
File No. 8360-25 OS
Order No. GC28-6817-4

Systems Reference Library

IBM System/360 Operating System

FORTRAN IV (6 andH) Programmer's Guide

Program Numbers 360S-P0-500

360S-F0-520

This publication explains how to use the ~BM
Systern/360 Operating System to compile, linkage edit,
and execute programs written in the IBM Systew/360
FORTRAN IV language. In addition, it contains
information on program optimization, processing
efficiency, extended error handling, and Assembler
language subroutine linkage conventions. A section on
programming factors of special interest to users of the
IBM System/360 Models 91 and 195 is also included.

This publication is directed primarily to
programmers familiar with the FORTRAN IV language.
Previous knowledge of the IBM System/360 Operating
System is not required.

Fifth Edition (September 1973)

This is a major revision of, and makes obsolete, the previous editions
GC28-6817-2, -3, and Technical Newsletters GN28-0590 and GN28-0591.

All changes to the text, and small changes to illustrations, are
indicated by a vertical line to the left of the change.

Changes are periodically made to the specifications herein. Before
using this publication in connection with the operation of IBM systems,
consult the latest IBM system/360 and system/370 Bibliography, Order
No. GA22-6822 for the editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM Branch Office serving your locality.

Address comments concerning the contents of this publication to IBM
Corporation, Programming Publications, 1271 Avenue of the Americas, New
York, New York 10020. Comments become the property of IBM.

©Copyright International Business Machines corporation 1966, 1967,
1970, 1973

This publication is directed to
programmers using either the IBM System/360
FORTRAN IV (G) or FORTRAN IV {H) compiler.
It explains how to compile, linkage edit,
and execute programs under control of the
IBM System/360 Operating System. The
FORTRAN IV language is described in the
publication IBM-System/360.and System/370
FORTRAN IV Language, Order No. GC28-6515,
which is a corequisite to this publication.

Most of the information contained in
this guide is common to both the FORTRAN IV
{G) and FORTRAN IV CH) compilers. Where
differences exist, they are clearly marked.

Paragraphs or sections applicable to the
{G) compiler, but not the (H), are
designated throughout this publication by
the symbol:

r------,
IG ONLY!
L------J

Conversely, paragraphs or sections
applicable to the (H) compiler, but not the
CG), are designated by the symbol:

r------1
IH ONLY!
L------J

The programme_r' s guide is designed to
provide programmers with information at
three levels of complexity.

1. Programmers who will use the cataloged
procedures as provided by IBM should
read the "Introduction" and "Job
control Language" sections to
understand the job control statements,
the "FORTRAN Job Processing" section
to understand the use of cataloged
procedures, the "Programming
Considerations~ section to be able to
use the FORTRAN language correctly and
efficiently, and the "System Output"
section to understand the listings,
maps, and messages generated by the
compiler, the linkage editor, and a
load module.

2. Programmers who, in addition, are
concerned with creating and retrieving
data sets, optimizing the use of I/O
devices, or temporarily modifying
IBM-supplied cataloged procedures
should read the entire programmer's
guide.

PREFACE ----

3. Programmers who are concerned with
making extensive use of the operating
system facilities, such as writing
their own cataloged procedures,
modifying the FORTRAN library, or
calculating region sizes for operating
in an MVT environment, should also
read the entire programmer's guide in
conjunction with the following
publications, as required:

IBM Systern/360 Operating System:
Job Control Language Reference,
Order No. GC28-6704

IBM Systern/360 Operating System:
Job Control Language User's Guide,
Order No. GC28-6703

IBM Systern/360 Operating System:
Introduction, Order No. GC28-6534

IBM System/360 Operating System:
system Programmer's Guide, Order
No. GC28-6550

IBM System/360 Operating System:
Supervisor and Data Management
Services, Order No. GC28-6646

IBM Systern/360 Operating System:
Supervisor and Data Management
Macro Instructions, Order No.
GC28-6647

IBM Systern/360 Operating System:
Utilities, Order No. GC28-6586

IBM System/360: FORTRAN IV
Library: Mathematical and Service
Subprograms, Order No. GC28-6818

IBM System/360 Operating System:
Linkage Editor and Loader, Order
No. GC28-6538

IBM Systern/360 Operating system:
System Generation, Order No.
GC28-6554

IBM System/360 Operating System:
Operator's Guide, Order No.
GC28-6540

IBM System/360 Operating System:
Messages and Codes, Order No.
GC28-6608

IBM Systern/360 Operating System:
Programmer's Guide to Debug9.!!!g_,
Order No. GC28-6670

IBM System/360 Operating System:
Storage.Estimates, Order No.
GC28-6551

This publication contains appendixes
that provide the programmer with the
following information:

• Descriptions and explanations of
compiler invocation from a problem
program.

• Examples of job processing.

• Descriptions and explanations for the
preparation of subprograms written in
assembler language for use with a main
program written in FORTRAN.

• Descriptions of the diagnostic messages
produced during compilation and load
module execution.

• A list of American National Standard
carriage control characters.

• A list of input/output unit types.

• A description of the FORTRAN IV (H)
optimization features.

• A description of the FORTRAN IV (G)
debug facility.

• A discussion of FORTRAN programming
considerations for the user of the IBM
System/360 Models 91 and 195.

For easier reading, the titles of
publications referred to in this
publication are abbreviated. F'or example,
references to the publication IBM
System/360 Operating System: Linkage
Editor and Loader are abbreviated to
Linkage Editor and Loader publication.

Summary of Amendments Number 1

Date of Publication: September 1973

Order No. of Publication: Revision GC28-6817-4

New System Diagnostics

Maintenance: Programming and Documentation

Two new FORTRAN IV (G) compiler diagnostics messages (IEY0451 and IEY0461)
and one new FORTRAN IV {H) compiler diagnostic message {IEK790I) have been
added. Furthermore, the text of FORTRAN IV library diagnostic message IHC240I
has been revised.

Miscellaneous Changes

Maintenance: Documentation Only

SIZE Compiler Option

The description of the FOR TRAN IV {H) compiler option SIZE has been expanded
and clarified.

Linkage Editor Input
The discussion of primary input to the linkage editor now includes members of
partitioned data sets as being acceptable:

Use of DD Statements for Direct Access Data Sets

Clarifications have been made to the discussion of direct access data set character
istics and the unique relationships between such specifications on DEFINE FILE
and DD statements.

Label Information

The discussion of the LABEL subparameters IN and OUT have been revised; a
reference to partitioned data set retrieval for read purposes has been added.

Tape Recording Density Information

Magnetic tape density default values are now listed for 7-track tape, 9-track tape
without dual density, and 9-track tape with dual density.

Record Format Specifications
Specification of standard blocks (S) and the track overflow feature (T) are mutually
exclusive for fixed length records. Examples of the subparameter RECFM have
been corrected to indicate this fact.

Programming Considerations
Clarifications have been made to the following areas of discussion: conditional
branching, use of embedded blanks in FORTRAN programs, DO loop optimization,
data initialization, and compiler data set concatenation. A further entry has also
been added to the list of FORTRAN IV (G) and FORTRAN IV (H) compiler
restrictions.

Extended Error Handling Facility

Descriptions of the specifications inoal and inomes in the CALL ERRSET statement
have been revised and expanded. Changes have also been made to the current list
of option table default values.

Assembler Language Subprograms

The description of assembler language subprogram linkage conventions has been
updated.

System Diagnostics

The description of FORTRAN IV (H) compiler informative messages has been
updated to conform to the current version of compiler output.

Program Optimization Considerations
A further consideration has been added to the items already specified under
"Programming Considerations Using the Optimizer."

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of this publishing date are indicated by a vertical bar to the left
of the text. These bars will be deleted at any subsequent republication of the page affected.

INTRODUCTION • • • • • • • • • • • • • • 13
Job and Job Step Relationship • • • • 13
FORTRAN Processing and cataloged
Procedures • • • • • • •
Data Sets • • • • • • •

Data Set Organization
Data Set Labels
Data Set Cataloging

JOB CONTROL LANGUAGE • • •

• • 13
• • 14
• • 14

• 15
• • 15

• • 16
16 Job Management • • • • ·• •

Coding Job Control Statements . • • • • 16
Name Field • • •
Operation Field
Operand Field
comments Field • •

Continuing Control Statements
Notation for Defining Control
Statements •

JOB Statement
Name Field • •
Operand Field

Job Accounting Information •
Programmer's Name
Statement, Allocation, and

• • 16
• • 17

17
• • 17

• 17

• 18
• • 19

19
• 19
• 19

19

Termination Messages • • • • • 21
conditions for Terminating a Job •• 21
Assigning Job Priority CPRTY) • 22
Requesting a Message Class
(MSGCLASS) • • • • • • • • • •
Specifying Main Storage
Requirements for a Job (REGION)
Setting a Job Time Limit (TIME)

EXEC Statement • • • • • •

• 22

• • 22
23

• • 23
Name Field . • • . •
Operand Field

. • • • • 25
• • • • • 25

Positional Parameter
Keyword Parameters • •
Specifying Main Storage
Requirements for a Job Step
(REGION) • • • • • • • • • •
Establishing a Dispatching

• • • 25
• • 26

28

Priority CDPRTY) • • • • • • • • • • 29
Data Definition (DD) Statement • 30

Name Field • • • • • • 30
Blank Name Field • • • • • • • • • • • 32
Operand Field • • • • • • • • 32

Retrieving Previously created Data
Sets • • • • • • • • • • • 34

Delimiter Statement • 37
Comment Statement • • • • • 37

FORTRAN JOB PROCESSING • • • • • • •. 38
Using Cataloged Procedures • 38

Compile • • • • • • • • • • 38
Compile and Linkage Edit 39
Linkage Edit and Execute • • 39
Compile, Linkage Edit, and Execute • • 40
compile and Load • • • • • • • • • 40

Compiler Processing • 41
Compiler Name • 41
Compiler ddnames • • • • • • 41

CONTENTS

Compiler Device Classes • • • • •
Compiler Data Set Assumptions
compiler Options • • • • • • • • •
H ONLY OPT={Oj1j2} •••••••
H ONLY SIZE=nnnnK • • • • • • •
Multiple Compilation Within a Job

• 42
• 42
• 43
• 45

46

Step • • • • • . • • • • • • • • 47
Linkage Editor Processing • • • • • • • 48

Linkage Editor Names •••.•••• 48
Linkage Editor Input and Output • • 48
Linkage Editor ddnames and Device
Classes • • . • . • • • • • • 49
Additional Input •••••••••• 50
Linkage Editor Priority • • • • 51
Other Linkage Editor Control
Statements • • • • • • • •
Options for Linkage .Editor
Processing • • • • •

Load Module Execution • • • •
Execution ddnames • • . •

51

52
• • 52

. 52
Reference Numbers for Data Sets
Specified in DEFINE FILE Statements 53
Retrieving Data Sets Written with
Varying FORTRAN Sequence Numbers • • 53
Partitioned Data Set Processing • • 55
REWIND and BACKSPACE Statements • • 56
Error Message Data Set • • • • • • • 57
Execution Device Classes • • • 57
DCB Parameter . • • • • • • 57

Loader Processing • • . • • • • • • • . 57
Loader Name • • • • 57
Loader Input and output . • • • • • 57
Loader ddnames and Device Classes • 57
Loader Priority • • • • • • • • . • 58
Options for Loader Processing . . • 58
MAP or NOMAP • • • • • • 58
CALL or NOCALL or NCAL • • • • • 58
LET or NOLET • • • • • • • 58
SIZE=size • 58
EP=name • • • • • • 59
PRINT or NOPRINT • • • • 59
Programming Example • • 59

Dedicated work Data sets 59

CREATING DATA SETS • • • • • • • • . • • 61
Use of DD Statements for Direct-Access
Data Sets • • • • • • • • •
Data Set Name • • • •
Specifying Input/Output Devices
Specifying Volumes • • • • • • • •
Specifying Space on Direct-Access

• • 63
• 63

• • 63
• • • 64

Volumes • • • • • • • • • • • • • • • • 65
Label Information • • • • • 66
Disposition of a Data Set • 67
Writing a Unit Record Data Set on an
Intermediate Device • • 67
DCB Parameter • • • • • • • • 68

Ref erring to Previously Specified DCB
Information • • • • • • • • • • • • • 68
Density and Conversion • • • • • • 68
Number of Buffers for Sequential
Data sets • • • • • • • • • • • • • • 69

Chained Scheduling • • • • • • • • • • 69
Record Format • • • • • • • • • • • • 6 9
Record Length, Buff er Length, and
Block Length • • • • • • • • • • • • • 69
FORTRAN Records and Logical Records • 70
. FORMAT Control • . • • • • • • • • • • 71

Unformatted control • • • • • • 73
BACKSPACE Operations • • • • • • • • 75

Record Length, Buff er Length, and
Number of Buffers for Direct Access
Data Sets • • • • • • • • • • • • 76
Spanning Considerations • • • • • • • 76
DCB Assumptions for Load Module
Execution • • • • • • • • • • 77

G ONLY CATALOGED PROCEDURES • • • • • • 19
Compile • . • • • • • 79
compile and Linkage Edit • 19
Linkage Edit and Execute • • 80
Compile, Linkage Edit, and Execute • 82
Compile and Load • • • • • • • • • • 82

User and Modified Cataloged Procedures • 82
overriding Cataloged Procedures • 83

Overriding Parameters in the EXEC
Statement . • • • • • • • • • • 84
overriding and Adding DD Statements 85

H ONLY CATALOGED PROCEDURES • 87
Compile • • • • 87
Linkage Edit . • • • • • • • • • 88
Execute • • • 88
Load • • • • • • • • • 90

User and Modified cataloged Procedures • 90
overriding Cataloged Procedures • 90

overriding Parameters in the EXEC
Statement • • • • • • • • • • • 92
overriding and Adding DD Statements 93

PROGRAMMING CONSIDERATIONS • • • • • • • 95
Storage Locations and Bytes • • • • 95
Minimum System Requirements for the
FORTRAN IV CG) and (H) Compilers • • • • 95
Boundary Adjustment of Variables in
COMMON Blocks and EQUIVALENCE Groups • • 95
Indicators and Sense Lights • • • • 96
Conditional Branching . • • • • • • 96
Arithmetic IF Statement • • • • • • 96
Use of STOP n Statement • • • • • • • • 96
Register 15 as a Condition .Code
Register • • • • • • • • • 96
Use of Embedded Blanks in FORTRAN
Programs • • • • • • • • 96
Use of DUMP and PDUMP • • • • • • • • • 96
Use of ERR Parameter in READ Statement • 91
Arithmetic Statement Functions 97
G ONLY Use Of ASSIGN Statement • • 97
G ONLY DO Loop Optimization . • 98
G ONLY Dummy Argument References • • 98
H ONLY support Of AND, OR, and COMPL • • 98
Data Initialization Statement • • 98
Object Time Input/Output Efficiency • • 99
Data Definition considerations ••••• 100
Direct-Access Programming •• 100
Direct-Access Programming
Considerations •••••••••••• ~102
G Only compiler Restrictions .104
H ONLY Compiler Restrictions •• 104
H ONLY Compiler Data Set Concatenation .105

Library considerations • • • • .105
DD Statement Considerations .105

Channel Optimization • • .105
I/O Device Optimization •••• 105
Direct-Access Space Optimization •• 106

SYSTEM OUTPUT .108
compiler Output •• 108

Source Listing •••••. 108
Storage Map •••••• 108
H ONLY Label Map • • ••••• 110
Object Module Listing ••••••. 110
Object Module Card Deck ••. 111
H ONLY Cross Reference Listing .116
H ONLY Structured Source Listing •• 116
source Module Diagnostics · ••• 117

Linkage Editor Output •• 117
Module Map • • • • • • • • • • • 117
Cross-Reference List • • • • • .118

Load Module Output •••• • ••.•••• 119
Error Code Diagnostics and
Traceback without Extended Error
Handling Message Facility ••. 119
Program Interrupt Messages • • .120
ABEND Dump • • • • • • • • • • . 12 0
Operator Messages • • • • • •• 120

Loader output .121

LINKAGE EDITOR OVERLAY FEATURE • • .122
Designing a Program for Overlay •••• 122

Segments • • • • • • • • • • • • .122
Paths •••••••••••.••.. 123
communication Between Segments •••• 125
Inclusive References • • .125
Exclusive References • .126

overlay Processing • • • .126
COMMON Areas • .. . • . • • • . • 126

Construction of the overlay Program •• 127
Linkage Editor Control Statements .• 127

The OVERLAY Statement .128
The INSERT Statement ••••••.• 129
The INCLUDE Statement •••.. 129
The ENTRY Statement •••••.•. 130

Processing Options • • . • • •• 130

EXTENDED ERROR HANDLING FACILITY •••. 131
Functional Characteristics ••••••• 131
Subprogram for the Extended Error
Handling Facility • • • • • .132

Accessing and Altering the Option
Table Dynamically • • • • • .132

User-Supplied Error Handling • • • .133
User-supplied Exit Routine • . .134

Option Table Considerations .• 135
Option Table Default Values .135

How To Create or Alter an Option
Table • • • • • • • • • •
Errors in Use of Facility
Programming Example
considerations for the Library
Without Extended Error Handling

•• 135
.136

..• 136

Facility ••••••••••••••• 136

APPENDIX A: INVOKING THE FORTRAN
COMPILER • • ;.147

APPENDIX B: EXAMPLES OF JOB PROCESSING 148
Example 1 • • • • • • .•••• 148

Example 2
Example 3

APPENDIX C:
SUBPROGRAMS

ASSEMBLER LANGUAGE

•••• 149
.150

•• 154
•• 154 Subroutine References

Argument List
Save Area

••••• 154

Calling Sequence •
Coding the Assembler Language
Subprogram • • • • • • • • • • •

•• 154
.154

.156
Coding a Lowest Level Assembler
Language Subprogram •••••••• 156
Higher Level Assembler Language
subprogram • • • • • • • .156
Inline Argument List •••••••• 159
Sharing Data in COMMON ••••••• 159

Retrieving Arguments From the Argument
List •••••••••••••••••• 159

RETURN i in an Assemoler Language
Subprogram • • • • • • • • • .160
Object-Time Representation of
FORTRAN Variables ••••• 160
INTEGER Type • • •••• 161
REAL Type • • • • • .16 2
COMPLEX Type • .162
LOGICAL Type • • • • • • .163

APPENDIX D: SYSTEM DIAGNOSTICS •
FORTRAN IV (G) compiler Diagnostic

•• 165

Messages • • • • • • • • • • ••• 165
Error/Warning Messages • • ••• 165
Status Messages •• 172
Informative Messages •••••••• 173

FORTRAN IV (H) Compiler Diagnostic
Messages • • • • • • • • • • ••• 174

Informative Messages •••••••• 174
Error/Warning Messages • • • • .175

Load Module Execution Diagnostic
Messages • • • • • • • • • • • •

Program Interrupt Messages
Execution Error Messages
Operator Messages • • • • •

APPENDIX E: EXTENDED AMERICAN

•• 206
.206

•••• 209
.235

NATIONAL STANDARD CARRIAGE CONTROL
CHARACTERS •••••••.•••.••• 236

APPENDIX F: UNIT TYPES •••• 237

APPENDIX G: FORTRAN IV (G) DEBUG
FACILITY • • • • • • • • • 238
DEBUG Statement

TRACE
• • • • • • 238

• • • • • • • 2 38
SUBTRACE • • • • • •
INIT .••

• • • • • • 238

SUBCHK • • • • •
• 238

••••• 238
DISPLAY Statement
Special considerations •

• • • • • • • 238
• • • • • • 239

APPENDIX H: FORTRAN IV (H)
OPTIMIZATION FACILITIES •• 240
Program Optimization • • • • •••• 240

Programming Considerations Using
the Optimizer • • • • • • • • .240
Definition of a Loop • • • • • • • • 241
Movement of Code Into
Initialization of a Loop ••
Common Expression Elimination
Induction Variable Optimization
Register Allocation
COMMON Blocks • • • • •
EQUIVALENCE Statements •
Multidimensional Arrays
Program Structure
Logical IF Statements • • • • •
Branching
Name Assignment • • • •

APPENDIX I: CONSIDERATIONS FOR ~ODELS

• 242
.242

•• 242
.243

• .243
• 243

•• 243
•• 244
• • 244
•. 245

.245

91 AND 195 • • • • • • • • • •••• 246
Program Interruption Exit Routine •. 246
Boundary Adjustment Routines (Model
91 only) • • • • • • . • • • • .246
Floating-point Operations •••••• 246

Exponent overflow •• 246
Exponent Underflow • • • • .246

INDEX .249

ILLUSTRATIONS

FIGURES

Figure 1. Rocket Firing Job
Figure 2. Job Control Statement

• 13

Formats • • • • • • • • • • • • • • 16
Figure 3. JOB Statement • 20
Figure 4. Sample JOB Statements • 20
Figure 5. EXEC Statement • 24
Figure 6. Sample EXEC Statements • 25
Figure 7. Compiler, Linkage
Editor, and Loader Options
Figure 8. Data Definition
Statement • • • • ~ • • .
Figure 9. DD Statement ••
Figure 10. Examples of DD

• . 27

• 31
• • 33

Statements for Unit Record Devices • 33
Figure 11. Retrieving Previously
Created Data Sets • • • • . • • • • 35
Figure 12. Delimiter Statement • • 37
Figure 13. Comment Statement ••• 37
Figure 14. Invoking the cataloged
Procedure FORTGC or FORTHC • • • • • 38
Figure 15. Compiling a Single
Source Module • • • • • • • • . • • 38
Figure 16. Compiling Several
Source Modules • • . . • . • • 3 9
Figure 17. Invoking the Cataloged
Procedure FORTGCL or FORTHCL
Figure 18. Invoking the Cataloged
Procedure FORTGLG or FORTHLG
Figure 19. Linkage Edit and
Execute • • . . . • . • • .
Figure 20. Linkage Edit and
Execute Object Modules in a
Cataloged Data Set • • • • •

• 39

• 39

39

• 40
Figure 21. Invoking the Cataloged
Procedure FORTGCLG or FORTHCLG • • 40
Figure 22. Single compile,
Linkage Edit, and Execute
Figure 23. Batched compile,

• • 4 0

Linkage Edit, and Execute . • 40
Figure 24. Invoking the cataloged
Procedure FORTGCLD or FORTHCLD • . • 40
Figure 25. Single Compile and Load 41
Figure 26. Batched Compile and
Load • • • • . • • • • . • • • . 41
Figure 27. Compiler Options
Figure 28. Multiple Compilation
Within a Job Step • • • • . . • •
Figure 29. Linkage Editor Input

• 44

. 47

and Output . . • • • • • • • 49
Figure 30. Linkage Editor Example
-- CH) Compiler . • • • • . • . •
Figure 31. Tape Output for
Several Data Sets Using Same Data

. 51

Set Reference Number • • 54
Figure 32. Loader Example •• 59
Figure 33. Examples of DD
Statements • • • • • • . •
Figure 34. DD Parameters for

• • 61

Creating Data Sets • • 62
Figure 35. FORTRAN Record (FORMAT
Control) Fixed-Length
Specif ica ti on . • . . • • • • • . • 71

Figure 36. FORTRAN Record (FORMAT
Control) Fixed-Length
Specification and FORTRAN Record
Length Less Than BLKSIZE • • 71
Figure 37. FORTRAN Record (FORMAT
Control) Variable-Length
Specification • • • • • Q • • • • • 71
Figure 38. FORTRAN Record (FORMAT
Control) With Variable-Length
Specification and the FORTRAN
Record Length Less Than CLRECL-4) • 72
Figure 39., FORTRAN Record (FORMAT
Control) With Undefined
Specification and the FORTRAN
Record Length Less Than BLKSIZE • • 72
Figure 40. Fixed-Length Blocked
Records Written Under FORMAT
Control • • • • • . . • • • • • • . 72
Figure 41. Variable-Length
Blocked Records Written Under
FORMAT Control • • . • • • • . 7 3
Figure 42. Format of a Block
Descriptor Word CBDW) • • • • • • • 73
Figure 43. Format of a Segment
Descriptor word CSDW) • 73
Figure 44. Unblocked Records
Written Without FORMAT Control ••. 74
Figure 45. Unblocked Segmented
Records Written Without FORMAT
Control • • 74
Figure 46. Blocked Records
Written Without FORMAT Control ••. 75
Figure 47. Blocked Segmented
Records Written Without FORMAT
Control • • • • . • . • • • 75
Figure 48. Logical Record (No
FORMAT Control) for Direct Access • 76
Figure 49. Compile cataloged
Procedure (FORTGC) • • . . • • . . 80
Figure 50. compile and Linkage
Edit Cataloged Procedure CFORT3CL) 81
Figure 51. Linkage Edit and
Execute Cataloged Procedure
(FORTGLG) . • • • . • • • . • 81
Figure 52. Compile, Linkage Edit,
and Execute Cataloged Procedure
(FORTGCLG) • • • • • • • 83
Figure 53. Compile ana LOad
Cataloged Procedure CFORTGCLD) • • • 84
Figure 54. Compile Cataloged
Procedure CFORTHC) • • . . • . 88
Figure 55. compile and Linkage
Edit Cataloged Procedure CFORTHCL) . 89
Figure 56. Linkage Edit and
Execute Cataloged Procedure
(FORTHLG) • • • • • • • • • . 91
Figure 57. compile, Linkage Ejit,
and Execute Cataloged Procedure
(FORTHCLG) • • • . • . • • . • • • • 91
Figure 58. compile and Load
Cataloged Procedure (FORTHCLD) • • • 92
Figure 59. Record Chaining .102

Figure 60. Writing a
Direct-Access Data Set for the
First Time • • • • • • .103
Figure 61. DD Statement
Parameters for Optimization .106
Figure 62. Source Module Listing .108
Figure 63. Sample FORTRAN IV
Program . • • • • • • • . • .109
Figure 64. storage Map -- CG)
Compiler • ~ • • • • • • • .109
Figure 65. Storage Map -- (H)
compiler • • . • • • • .110
Figure 66. Label Map -- CH)
Compiler • • • • • . • • . • .111
Figure 67. Object Module Listing
-- (G) Compiler (Part 1 of 2) .112
Figure 68. Object Module Listing
-- (H) Compiler (Part 1 of 2) ••• 114
Figure 69. Object Module Deck
Structure -- (G) Compiler •• 116
Figure 70. Object Module Deck
Structure -- CH) Compiler .116
Figure 71. Compiler Cross
Reference Listing -- CH) Compiler .116
Figure 72. Structured Source
Listing -- (H) Compiler .118
Figure 73. Load Module Map --
CG) Compiler •••.•••••.. 118
Figure 74. Load Module Map --
CH) Compiler ••••.••.••• 118
Figure 75. Linkage Editor Cross
Reference List -- (G) Compiler .• 119
Figure 76. Linkage Editor Cross
Reference List -- (H) Compiler ••• 119
Figure 77. Sample Traceback for
Execution-Time Errors ••..••• 120
Figure 78. Storage Map Produced
by the Loader ••••••.••.• 121
Figure 79. A FORTRAN Program
consisting of Three Program Units .122
Figure 80. Time/Storage Map of a
Three Segment Overlay Structure •. 122
Figure 81. Overlay Tree Structure
of Three Program Units • • • . .123
Figure 82. The Paths in the
Overlay Tree in Figure 81 .123
Figure 83. Overlay Tree Structure
Having Six Segments • • • • .123
Figure 84. Paths Implied by Tree
Structure in Figure 83 n124

Figure 85. Time/Storage Map of Six
Segment Structure ..•..• 125
Figure 86. Communication Between
Overlay Segments • • • 126
Figure 87. Overlay Program Bef~re
Automatic Promotion of Common ~reas 127
Figure 88. Overlay Program After
Automatic Promotion of Common Areas 128
Figure 89. Option Table Preface .137
Figure 90. Option Table Entry •. 138
Figure 91. Example of Assembler
Language Macro Definition Used To
Generate Option Table ••••••. 145
Figure 92. Sample Program Using
Extended Error Handling Facility .• 146
Figure 93. Input/Output Flow for
Example 1 •••.•••.•••.• 148
Figure 94. Job Control Statements
for Example 1 •...•.•••.• 148
Figure 95. Job Control Statements
for Example 2 .••..•.••.. 150
Figure 96. Block Diagram for
Example 3 •...••••••••• 151
Figure 97. Job Control Statements
for Example 3 • • • • • • • .152
Figure 98. FORTRAN Coding for
Example 3 . . • • • " • • 153
Figure 99. Save Area Layout and
Word Contents •••.•.•.•• 155
Figure 100. Linkage Conventions
for Lowest Level Subprogram .156
Figure 101. Linkage Conventions
for Higher Level Subprogram .. 158
Figure 102. Inline Argument List .159
Figure 103. Assembler Subprogram
Example ••..•••.•••. 161
Figure 104. Format of Diagnostic
Messages •.•.•.•••••.. 165
Figure 105. Format of Diagnostic
Messages .•••••••••••• 175
Figure 106. compile-Time Program
Interrupt Message .•••.•••• 175
Figure 107. Program Interrupt
Message Format Without Extended
Error Message Facility .••••• 207
Figure 108. Summary of Error and
Traceback•.•••••• 233
Figure 109. Example of rraceback
Map • • • • • • . • • • • • • • • • 233

TABLES

Table 1. cataloged
Procedure-Names and Functions . 14
Table 2. Job control Statements • 16
Table 3. Compiler ddnames · • 42
Table 4. Device Class Names • 42
Table 5. Correspondence Between
Compiler ddnames and Device Classes 43
Table 6. DCB Assumptions for the
CG) compiler Data Sets • • • • • • • 43
Table 7. DCB Assumptions for the
CH> Compiler Data Sets • • • • • • . 44
Table 8. Linkage Editor ddnames • 49
Table 9. correspondence Between
Linkage Editor ddnames and Device
Classes • • • • • • • . • • • • • • 50
Table 10. Load Module ddnames ••• 53
Table 11. Loader ddnames . • • • • 58
Table 12. Correspondence Between
Loader ddnames and Device Classes • 58
Table 13. Data Set References • 65
Table 14. DEN Values ••••.•• 68

Table 15. Specifications Made by
the FORTRAN Programmer for Record
Types and Blocking • • • • . • • . • 1 O
Table 16. BLKSIZE Ranges: Device
considerations . • • • • • • • . • • 77
Table 17. Load Module DCB
Parameter Default Values • . • 78
Table 18. Storage Allocation ••• 95
Table 19. Additional Built-In
Functions -- (H) Compiler • • 99
rable 20. Option Table Default
Values • • . . • • . . . • . • • 139
Table 21. Corrective Action After
Error Occurrence . . •140
Table 22. Corrective Action After
Mathematical Subroutines Error
Occurrence (Part 1 of 3) . . .141
Table 23. Corrective Action After
Program Interrupt Occurrence .144
Table 24. Linkage Registers .155
Table 25. Dimension and Subscript
Format ••
Table 26. Constant Expressions

• .160
•• 242

The IBM System/360 Operating system
consists of a control program and
processing programs. The control program
supervises execution of all processing
programs, such as the FORTRAN compiler, and
all problem programs, such as a FORTRAN
program. Therefore, to execute a FORTRAN
program, the programmer must first
communicate with the operating system. The
medium of communication between the
programmer and the operating system is the
job control language.

The programmer uses job control
statements to define two units of work
the job and the job step -- to the
operating system and to define the files
(data sets) used in these jobs and job
steps. He defines a job to the operating
system by using a JOB statement: a job step
by using an EXEC statement: and a data set
by using a DD statement.

JOB AND JOB STEP RELATIONSHIP

To the operating system, a job consists
of executing one or more job steps. In the
simplest case, a job consists of one job
step. For example, executing a FORTRAN
main program to invert a matrix is a job
consisting of one job step.

In more complex cases, one job may
consist of a series of job steps. For
example, a programmer is given a tape
containing raw data from a rocket firing:
he must transform this raw data into a
series of graphs and reports. Three steps
may be defined:

1. compare the raw data to projected data
and eliminate errors which arise
because of intermittent errors in
gauges and transmission facilities.

2. Use the redefined data and a set of
parameters as input to a set of
equations, which develop values for
the production of graphs and reports.

3. Use the values to plot the graphs and
print the reports.

Figure 1 illustrates the rocket firing
job with three job steps.

In the previous example, each step could
be defined as a separate job with one job
step in each job. However, designating
related job steps as one job is more

efficient: processing time is decreased
because only one job is defined, and
interdependence of job steps may be stated.
(The interdependence of jobs cannot be
stated.>

Projected
Dato

Parameters

Job Step l:
Refine Data

Job Step 2:
Develop Values

Job Step 3:
Generate

Graphs and
Re orts

Figure 1. Rocket Firing Job

FORTRAN PROCESSING AND CATALOGED PROCEDUHES

When a programmer writes a FORTRAN
program, the oojective is to obtain a
problem solution. However, before the
program can provide this solution, the
program itself must undergo processing.
The source program (source module) is
compiled to give an object module: and the
object module is linkage edited to give a
load module. 1 This load module is then
executed to give the desired problem
solution.

If each of the three steps involved in
processing a FORTRAN module is a job step
in the same job, a set of job control
statements that consists of one EXEC

1 As an alternative, the object module may
be edited and then automatically executed
by the loader, another IBM-supplied
program. Details on the use of the loader
can be found in the section "Loader
Processing."

Introduction 13

statement and one or more DD statements is
required for each step. Because writing
these job control statements can be
time-consuming work for the programmer, IBM
supplies cataloged procedures to aid in the
processing of FORTRAN modules. A cataloged
procedure consists of a procedure step or a
series of procedure steps. Each step
contains the necessary set of job control
statements to compile or to linkage edit or
to execute a FORTRAN module. (Note: A JOB
statement cannot be cataloged.)~~-

For each compiler, IBM provides five
cataloged procedures. The procedures and
their uses are shown in Table 1.

Any of the cataloged procedures can be
invoked by an EXEC statement in the input
stream. In addition, each of the
procedures can be temporarily modified by
this EXEC statement and any DD statements
in the input stream; this temporary
modification is called overriding.

Table 1. Cataloged Procedure-Names and
Functions

r-------------------1
I Procedure-Name I
r---------T---------+---------------------1
!FORTRAN GIFORTRAN HI Function I
r---------+---------+---------------------1
r---------+---------+---------------------~
IFORTGC IFORTHC I compile I
r---------+---------+---------------------~
IFORTGCL IFORTHCL !compile and linkage I
I I I edit I
r---------+---------+---------------------~
IFORTGLG IFORTHLG !linkage edit and I
I I I execute I
r---------+---------+---------------------~
IFORTGCLG IFORTHCLG !compile, linkage I
I I I edit, and execute I
r---------+---------+---------------------~
IFOR~GCLD IFORTHCLD !compile and load I
L---------i---------i--------------------~J

DATA SETS

For FORTRAN processing, a programmer
uses DD statements to define the particular
data set(s) required for a compile, linkage
edit, or execute step. In the operating
system, a data set is a named, organized
collection of one er more records that are
logically related. For example, a data set
may be a source module, a library of
mathematical functions, or the data
processed by a load module.

14

Data Set Organization

A data set in FORTRAN may be one of
three types: sequential, partitioned or
direct-access.

A seguential data set is one in which
records are accessed solely on the basis of
their successive physical positions. A
sequential data set may reside on cards,
tape, or disk. The compiler, linkage
editor, and load modules process sequential
data sets. The compiler uses the queued
sequential access method (QSAM) for such
processing, and load modules use the basic
sequential access method CBSAM) for object
time I/O operations. (For additional
information on access methods, see the
Supervisor and Data Management Services
publication, Order No. GC28-6646.)

A Eartitioned data set CPDS) is composed
of named, independent groups of sequential
data and resides on a direct-access volume.
A directory index resides in the PDS and
directs the operating system to any group
of sequential data. Each group of
sequential data is called a member.
Partitioned data sets are used for storage
of any type of sequentially organized data.
In particular, they are used for storage of
source and load modules (each module is a
member). In fact, a load module can be
executed only if it is a member of a
partitioned data set. A PDS of load
modules is created by either the linkage
editor or a utility program. A PDS is
accessible to the linkage editor; however,
only individual members of a PDS are
accessible to the co1npiler. r--~embers of a
PDS are accessible to a FORrRAN load
module; however, concurrent processing of
two or more members of the same PDS is not
supported. Sequential processing of two or
more members is permitted if one member is
closed before the other is processed. See
the discussion "Partitioned Data Set
Processing" for details on accessing
partitioned data sets.

The FORTRAN library is a cataloged PDS
that contains the library subprograms in
the form of load modules. SYSl.FORTLIB is
the name given to this PDS.

To process a member of a partitioned
data set, the programmer must use the DD
statement to provide information about the
data set and the member. The programmer
must specify (in the DSNAME parameter) both
the name of the data set and of the member,
and must indicate Cin the LABEL parameter)
if the member is to be created or
retrieved. However, if the programmer
requests the FORTRAN compiler to process a
partitioned data set (for example, to
compile a source deck stored as a member of

a partitioned data set) no LABEL
information need be specified.

Note that the processing of a
partitioned data set is limited to READ or
WRITE operations only. The programmer is
not permitted both to READ and WRITE the
same data set in a single program.

A direct-access data set contains
records that are read or written by
specifying the position of the record
within the data set. When the position of
the record is indicated in a FIND, READ, or
WRITE statement, the operating system goes
directly to that position in the data set
and either retrieves, reads, or writes the
record. For example, with a sequential
data set, if the 100th record is read or
written, all records preceding the 100th
record (records 1 through 99) must be
transmitted before the 100th record can be
transmitted. With a direct-access data set
the 100th record can be transmitted
directly by indicating in the I/O statement
that the 100th record is to be transmitted.
However, in a direct-access data set,
records can be transmitted by FORTRAN
direct-access I/O statements only; they
cannot be transmitted by FORTRAN sequential
I/O statements. Records in a direct-access
data set can be transmitted sequentially by
using the associated variable in
direct-access I/O statements.

A direct-access data set must reside on
a direct-access volume. Direct-access data
sets are processed by FORTRAN.load modules;
the compiler and linkage editor cannot
process direct-access data sets. Load

modules process data sets of this type with
the basic direct-access method CBDAM).

Data set Labels

Data sets that reside on direct-access
volumes have standard labels only; data
sets that reside on magnetic tape volumes
can have standard labels or no labels.
Information, such as a data set identifier,
volume sequence number, record format,
density, etc., is stored in the data set
labels. 'The information required in a DD
statement used to retrieve a labeled data
set is substantially less than in one used
to retrieve an unlabeled data set.

Data Set Cataloging

To relieve the programmer of the burden
of remembering the volume on which a
particular data set resides, the operating
system provides a cataloging facility.
When a data set is cataloged, the serial
number of its volume is associated in the
catalog with the data set name. A
programmer can ref er to this data set
without specifying its physical location.
Any data set residing on a direct-access or
magnetic tape volume can be cataloged.

Sequential, partitioned, and
direct-access data sets can be cataloged;
however, an individual member of a PDS
cannot be cataloged because a member is not
a data set.

Introduction 15

JOB .. CONTROL .. LANGUAGE

The FORTRAN programmer uses the job
control statements shown in Table 2 in
compiling, linkage editing, and executing
programs.

JOB .. MANAGEMENT

Job control statements are processed by
a group of operating system routines known
collectively as job management. Job
management routines interpret control
statements, control the flow of jobs, and
issue messages to both the operator and the
programmer. Job management has two major
components: a job scheduler and a master
scheduler.

Table 2. Job control Statements
r----------T------------------------------1
!Statement I Function I
t----------+------------------------------i
IJOB !Indicates the beginning of a I
I lnew job and describes that jobl
t----------+------------------------------i
IEXEC !Indicates a job ·step and I
I !describes that job step; I
I !indicates the cataloged I
I jprocedure or load module to bel
I I executed I
t----------+------~-----------------------i
IDD !Describes data sets, and I
I !controls device and volume I
I I assignment I
f----------+------------------------------~
!delimiter !Separates data sets in the in-I
I lput stream from control I
I !statements; it appears after I
I leach data set in the input I
I I stream I
t----------+------------------------------~
jcomment !Contains miscellaneous I
I !remarks, annotations, etc., I
I !written by the programmer; it I
I jean appear before or after anyl
I jcontrol statement. I
L----------i------------------------------J

The specific facilities available
through the job scheduler and the master
scheduler depend on the scheduling level
the,installation selects during system
generation. Schedulers are available at
two levels -- the sequential scheduler and
the priority scheduler.

Sequ~ntial schedulers process job steps
one at a time in the order of their
appearance in the input stream. Operating
systems with a primary control program
(PCP) use sequential schedulers.

Priority schedulers are used by systems
that provide multiprogramming with a fixed
number of tasks (MFT) or multiprogramming
with a variable number of tasks CMVT).
Priority schedulers process complete jobs
according to their relative priority within
job classes. Priority schedulers can
accept input data from more than one input
stream.

CODING JOB CONTROL STATEMENTS

Except for the comment statement,
control statements contain two identifying
characters (// or /*) in card columns 1 and
2. The comment statement is identified by
the initial characters //* in card columns
1, 2, and 3. control statements may
contain four fields -- name, operation,
operand, and comments (see Figure 2).

NAME FIELD

The name field contains between one and
eight alphameric characters, the first of
which must be alphabetic or the characters
#, &, or $. The name field begins in card
column 3 and is followed by one or more

r---T---1
I FORMAT I APPLICABLE CONTROL STATEMENTS I
~---+---~
j//Name Operation Operand [Comment] I JOB,EXEC,DD I
I I I
j// Operation Operand [Comment] I EXEC,DD I
I I I
I/* [Comment] I delimiter I
I I I
l//*[Commentl I comment I
L---i---J
Figure 2. Job control Statement Formats

16

blanks to separate it from the operation
field. The name field is used:

1. To identify the control statement to
the operating system.

2. To enable other control statements in
the job to ref er to information
contained in the named statement.

3. To relate DD statements to I/O
statements in the load module.

OPERATION FIELD

The operation field contains one of the
following operation codes:

JOB
EXEC
DD

or, if the statement is a delimiter or
comment statement, the operation field is
blank. The operation code is preceded and
followed by one or more blanks.

OPERAND FIELD

The operand field contains the
parameters that provide required and
optional information to the operating
system. Parameters are separated by
commas, and the operand field is ended by
pl9cing one or more blanks after the last
parameter. There are two types of
parameters, positional and keyword.

Positional Parameters: Positional
parameters are placed first in the operand
field and must appear in the specified
order. If a positional parameter is
omitted and other positional parameters
follow, the omission must be indicated by a
comma.

Keyword Parameters: Keyword parameters
follow positional parameters in the operand
field. (If no positional parameters
appear, a keyword parameter can appear
first in the operand field; no leading
comma is required.) Keyword parameters may
appear in any order. If a keyword
parameter is omitted, a comma is not
required to indicate the omission.

Subparameters: Subparameters are either
positional or keyword and are noted as such
in the definition of control statements.

Positional subparameters appear first in
a parameter and must appear in the

specified order. If a positional
subparameter is omitted and other
positional subparameters follow, the
omission must be indicated by a comma.

Keyword subparameters follow positional
subparameters in a parameter. (If no
positional subparameters appear, a keyword
subparameter can appear first in the
parameter; no leading comma is required.)
Keyword subparameters may appear in any
order. If a keyword subparameter is
omitted, a comma is not required to
indicate the omission.

COMMENTS FIELD

The comments field can contain any
information considered helpful by the
programmer. Comments, except for those on
a comment statement, must be separated from
the operand field (or the * in a delimeter
statement) by at least one blank; they may
appear in the remaining columns up to and
including column 71.

continuing Control Statements

Except for the comment statement, which
is contained in columns 1 through 80,
control statements are contained in columns
1 through 71 of.cards or card images. If
the total length of a statement exceeds 71
columns, or if parameters are to be placed
on separate cards, operating system
continuation conventions must be followed.
To continue an operand field:

1. Interrupt the field after a complete
parameter or subparameter (including
the comma that follows it) at or
before column 71.

2. Include comments, if desired, by
following the interrupted field with
at least one blank.

3. Optionally, code any nonblank
character in column 72. If a
character is not coded in column 72,
the job scheduler treats the next
statement as a continuation statement
if the conventions outlined in points
4 and 5 are followed.

4. Code the identifying characters // in
columns 1 and 2 of the following card
or card image.

5. Continue the interrupted operand
beginning in any column from 4 through
16.

Job Control Language 17

Note: Excessive continuation cards should
be avoided whenever possible to reduce
processing time for the control program.

Comments can be continued onto
additional cards after the operand has been
completed. To continue a comments field:

1. Interrupt the comment at a convenient
place.

2. Code a nonblank character in column
72.

3. Code the identifying characters // in
columns 1 and 2 of th~ following card
or card image.

4. Continue the comments field beginning
in any column after column 3.

Note: The comment-statement cannot be
continued.

NOTATION FOR DEFINING CONTROL STATEMENTS

The notation used in this publication to
define control statements is described in
the following paragraphs.

1. The set of symbols listed below are
used to define control statements, but
are never written in an actual
statement.

a. hyphen
b. or
c. underscore
d. braces { }

e. brackets []
f. ellipsis
g. superscript 2..

The special uses of these symbols are
explained in paragraphs 4-10.

2. Uppercase letters and words, numbers,
and the set of symbols listed below
are written in an actual control
statement exactly as shown in the
statement definition. (Any exceptions
to this rule are noted in the
definition of a control statement.)

a. apostrophe
b. asterisk *
c. comma
d. equal sign
e. parentheses ()

f. period
g. slash /

3. Lowercase letters, words, and symbols
appearing in a control statement
definition represent variables for

18

which specific information is
substituted in the actual statement.

Example: If name appears in a
statement definition, a specific value
(e.g., ALPHA) is substituted for the
variable in the actual statement.

4. Hyphens join lowercase letters, words,
and symbols to form a single variable.

Example: If member-name appears in a
statement definition, a specific value
(e.g., BETA) is substituted for the
variable in the actual statement.

5. Stacked items or items separated from
each other by the nor" symbol
represent alternatives. Only one such
alternative should be selected.

Example: The two representations

A
B and AIBIC
c

have the same meaning and indicate
that either A or B or c should be
selected.

6. An underscore indicates a default
option. If an underscored alternative
is selected, it need not be written in
the actual statement.

Example: The two representations

A
B and Al.~I C
c

have the same meaning and indicate
that either A or B or c should be
selected; however, if B is selected,
it need not be written, because it is
the default option.

7. Braces group related items, such as
al terna ti ves.

Example: ALPHA=({AIBl~l.,D)

indicates that a choice should be made
among the items enclosed within the
braces. If A is selected, the result
is ALPHA=CA,D). If C is selected, the
result can be either ALPHA=C,D) or
ALPHA=(C,D).

8. Brackets also group related items;
however, everything within the
brackets is optional and may be
omitted.

Example: ALPHA=CCAIBICl,D)

indicates that a choice can be made
among the items enclosed within the
brackets or that the items within the
brackets can be omitted. If B is
selected, the result is ALPHA=(B,D).
If no choice is made, the result is
ALPHA=(,D).

9. An ellipsis indicates that the
preceding item or group of items can
be repeated more than once in
succession.

Example: ALPHA[,BETA] •••

indicates that ALPHA can appear alone
or can be followed by ,BETA optionally
repeated any number of times in
succession.

10. A superscript refers to a description
in a footnote.

Example:

{

NEWl1 OLD
MOD
SHR

indicates that additional information
concerning the grouped items is
contained in footnote number 1.

11. Blanks are used to improve the
readability of control statement
definitions. Unless otherwise noted,
blanks have no meaning in a statement
definition.

JOB STATEMENT

The JOB statement (Figure 3)
first statement in the sequence
statements that describe a job.
statement contains the following
information:

1. Name of the job.

is the
of control

The JOB

2. Accounting information relative to the
job.

3. Programmer's name.

4. Whether the job control statements are
printed for the programmer.

5. Conditions for terminating the
execution of the job.

6. A job priority assignment.

7. Output class for priority scheduler
messages.

8. Specification of main storage
requirements for a job.

9. Specification of the maximum amount of
time to be allotted for a job.

Examples of the JOB statement are shown
in Figure 4.

NAME FIELD

The "jobname" must always be specified;
it identifies the job to the operating
system. No two jobs being handled
concurrently by a priority scheduler should
have the same "jobname".

OPERAND FIELD

Job Accounting Information

The first positional parameter can
contain the installation account number and
any parameters passed to the installation
accounting routines. These routines are
written by the installation and inserted in
the operating system when it is generated.
The format of the accounting information is
specified by the installation.

As a system generation option with
sequential schedulers, the account number
can be established as a required parameter.
With priority schedulers, the requirement
can be established with a cataloged
procedure for the input reader.
Cinf ormation on the cataloged procedure for
the input reader and on how to write an
accounting routine may be found in the
System Programmer's Guide, Order No.
GC28~6550.) Otherwise, the account number
is optional.

Programmer's Name

The "programmer name" is the second
positional parameter. If no job accounting
information is supplied, its absence must
be indicated by a comma preceding the
programmer's name. If neither job
accounting information nor programmer's
name is
present, commas need not be used to indi
cate their absence.

This parameter is optional unless it is
made mandatory at the installation in the
same way as job accounting information is
made mandatory.

Job Control Language 19

r---------T---------T---1
I I I I
I Name I Operation I Operand I
~---------+---------+---~
I f I Positional Parameters
I I .
//jobname JOB [([account-number] C,accounting-information1) 1 2 3 1

C,progranuner-name)4 s 6

Keyword Parameters

[MSGLEVEL=Cx,y)]7

[COND=CCcode,operator>C,Ccode,operator)] ••• e)9)

[PRTY=nn)1.0

(MSGCLASS=x)1.0

[REGION= ({ nnnnnK }
value0 K

[, value1 Kl >] 11

[TIME=Cminutes, seconds)J 10

~---------i _________ i---~
1 If the information specified ("account-number" and/or "accounting-information") I
contains blanks, or any special characters other than hyphens, it must be delimited I
by apostrophes instead of parentheses. I

2 If only "account-number" is specified, the delimiting parentheses may be omitted. I
3 The maximum number of characters allowed between the delimiting parentheses or I
apostrophes is 142. I

4If "progranuner-narne" contains blanks, or any special characters other than periods,
it must be enclosed within apostrophes.

5 When an apostrophe is contained within "programmer-name", the apostrophe must be
shown as two consecutive apostrophes.

6 The maximum number of characters allowed for "progranuner-name" is 20.
7The symbol x represents a job control language message code and may be specified as

0, 1, or 2; y represents a job scheduler allocation message code and may be
specified as O or 1.

8 The maximum number of repetitions allowed is 7.
9 If only one test is specified, the outer pair of parentheses may be omitted.

1 0This parameter is used with priority sc·hedulers only. The sequential scheduler
ignores it.

j 11This parameter is used with MVT priority schedulers only.
L---
F igure 3. JOB Statement

Sample Coding Form

Figure 4. Sample JOB Statements

20

Statement, Allocation, and Termination
Messages

The MSGLEVEL parameter indicates the
type of messages the programmer wishes to
receive from the control program.

MSGLEVEL=(x,y)
The letter x represents a job control
language message code. The value of x
may be O, 1, or 2. When x=O, only the
JOB statement, control statement
errors, and diagnostics appear on
SYSOUT. When x=l, input statements,
cataloged procedure statements, and
symbolic substitutions of parameters
appear. When x=2, only input
statements appear.

The letter y represents an allocation
message code. The value of y may be 0
or 1. When y=O, no allocation or
termination messages appear, if the
program completes execution. In the
event of an abnormal termination, only
termination messages appear. When
y=l, allocation, termination, and
recovery messages all appear.

If MSGLEVEL is omitted, the default
values assigned are those established
at system generation time for PCP or
from the reader procedure in a
multiprogramming environment.

Conditions for Terminating a Job

At the completion of a job step, a code
is issued indicating the outcome of that
job step. This generated code is tested
against the conditions stated in control
statements.

The COND parameter of the JOB statement
specifies conditions under which a job is
terminated. Up to eight different tests,
each consisting of a code and an operator,
may be specified to the right of the equal
sign. The code may be any number between O
and 4095. The operator indicates the
mathematical relationship between the code
placed in the JOB statement and the codes
issued by completed job steps. If the
relationship is true, the job is
terminated. The six operators and their
meanings are:

Operator
GT
GE
EQ
NE
LT
LE

Meaning
greater than
greater than or equal to
equal to
not equal to
less than
less than or equal to

For example, if a code 8 is returned by
the compiler and the JOB statement
contains:

COND=C7,LT)

the job is terminated.

If more than one condition is indicated
in the COND parameter and any condition is
satisfied, the job is terminated.

For the FORT step of both the FORTGCLG
and FORTHCLG cataloged procedures, the
compilers issue one of the following error
codes:

0 - No errors or warnings detected.

4 - Possible errors <warnings) detected,
execution should be successful.

8 - Errors detected, execution may fail.
Compilation continues but the
linkage editor job step is not
executed unless the programmer has
increased the error code acceptable
to the linkage editor. (The
discussion "Condition for Bypassing
a Job Step" later in this section
describes the method for specifying
the acceptable error code.)

r------,
IG ONLYI
L------J If the LOAD option has
been specified, an object module
will be supplied.

r------,
IH ONLYI
L------J If the error is found in
an executable statement, the
statement is replaced by a call to
the IBERH routine CIHCIBERH). If
the resulting load module is
executed, IBERH is called and
execution is terminated.

r------,
IG ONLYI

12 - L------J Severe errors detected,
execution is impossible.

16 - Terminal errors detected, compiler
terminated abnormally.

Job Control Language 21

Assigning Job Priority (PRTY)
(Used with Priority Schedulers Only)

To assign a priority other than the
default job priority (as established in the
input reader procedure), the parameter
PRTY=nn must be coded in the operand field
of the JOB statement. The "nn" is to be
replaced with a decimal number from O
through 13 (the highest priority that can
be assigned is 13).

Whenever possible, avoid using priority
13. This is used by the system to expedite
processing of jobs in which certain errors
were diagnosed. It is also intended for
other special uses by future features of
systems with priority schedulers~

If the PRTY parameter is omitted, the
default job priority is assumed.

Reguesting a Message Class (MSGCLASS)
(Used with Priority Schedulers Only)

With a quantity and diversity of data in
the output stream, an installation may want
to separate different types of output data
into different classes. Each class is
directed to an output writer associated
with a specific output unit.

The MSGCLASS=x parameter allows the
messages issued by the priority scheduler
to be routed to an output class other than
the normal message class,, A. The "x" is to
be replaced with an alphabetic or numeric
character. An output writer, assigned to
process this class, transfers the data to a
specific device.

If the MSGCLASS parameter is omitted,
the job scheduler messages are routed to
the standard output class, A.

Specifying Main-Storage Requirements for a
Job .. (REGION)
(Systems with MVT Only)

The REGION parameter is used to specify:

• The maximum amount of main storage to
be allocated to the job. This figure
must include the size of those
components that are required by the
user's program and that are not
resident in main storage.

• The amount of main storage to be
allocated to the job, and in which
storage hierarchy or hierarchies the
space is to be allocated. This request
should be made only if main storage
hierarchy support is specified during
system generation.

To request the maximum amount of main
storage required by the job, REGION=nnnnnK

22

is coded in the operand field of the JOB
statement. The term nnnnn is replaced with
the number of contiguous 1024-byte areas to
be allocated to the job, e.g., REGION=52K.
This number can range from one to five
digits, but cannot exceed 16383. It should
be specified as an even number. (If an odd
number is specified, the system treats it
as the next highest even number.)

If the REGION parameter is omitted or if
a region size smaller than the default
region size is requested, the default value
(as established in the input reader
procedure) is assumed.

Note: If different region sizes are to be
specified for each step in the job code,
the REGION parameter must be specified in
the EXEC statement associated with each
step, as described in the section "EXEC
Statement."

Main storage hierarchy support provides
for storage hierarchies 0 and 1. If IBM
2361 Core Storage, Model 1 or 2, is present
in the system, processor storage is
ref erred to as hierarchy O and 2361 core
Storage is referred to as hierarchy 1. If
2361 Core Storage is not present but main
storage hierarchy support was specified
during system generation, a 2-part region
is established in processor storage when a
reqion is defined to exist in two
hierarchies. The two parts are not
necessarily contiguous.

When main storage hierarchy support is
included in the system, the REGION
parameter can be used to request both the
maximum amount of storage to be allocated
to the job and the hierarchy or hierarchies
in which the storage is to be allocated.

To specify a region size and the
hierarchy desired, REGION=Cvalue0 K,value1 K)
is coded in the operand field of the JOB
statement. The term "value 0 " is replaced
with the number of contiguous 1024-byte
areas to be allocated to the job in
hierarchy O; the term "value1 " is replaced
with the number of contiguous 1024-byte
areas to be allocated in hierarchy 1, e.g.,
REGION= C60K,200K). When processor storage
includes hierarchies 0 and 1, the combined
values of value 0 and value1 cannot exceed
16383. If 2361 Core Storage is present,
value cannot exceed 16383, and value1
cannot exceed 1024, if using a single Model
1, or 2048, if using a single Model 2.
Each value specified should be an even
number. (If an odd number is specified,
the system treats it as the next highest
even number.)

In systems with main storage hierarchy
support, either subparameter can be omitted
to request storage in only one hierarchy.

If storage is requested only in hierarchy
1, a comma must be coded to indicate the
absence of the first subparameter, e.g.,
REGION=C,52K). If storage is requested
only in hierarchy O, the parentheses need
not be coded, e.g., REGION=70K.

If the REGION parameter is omitted, or
if a region size smaller than the default
region size is requested, the default value
(as established in the input reader
procedure) is assumed. When the default
region size is assumed, storage is always
allocated in hierarchy o.

Notes:

• If different region sizes are to be
specified for e~ch step in the job,
code the REGION parameter in the EXEC
statement associated with each step, as
described in the section "EXEC
Statement."

• If main storage hierarchy support is
not included and regions are requested
in both hierarchies, the region sizes
are combined and an attempt is made to
allocate a single region from processor
storage. If a region is requested
entirely from hierarchy 1, an attempt
is made to allocate the region from
processor storage.

• For information on storage requirements
to be considered when specifying a
region size, see the Storage Estimates
publication.

Setting.a Job Time Limit (TIME)

(Used by Priority Schedulers Only)

To limit the computing time used by a
single job, a maximum time for its

completion can be assigned. Such an
assignment is useful in a multiprogramming
environment where more than one job has
access to the computing system.

The time is coded in minutes and
seconds. The number of minutes cannot
exceed 1439. The number of seconds cannot
exceed 59. If the job is not completed in
the assigned time, it is terminated. If
the job execution time is expected to
exceed 1439 minutes (24 hours), TIME=1440
can be coded to eliminate job timing. If
the TIME parameter is omitted, the default
job time limit Cas established in the
cataloged procedure for the
reader/interpreter) is assumed.

EXEC STATEMENT

The EXEC statement (Figure 5) indicates
the beginning of a job step and describes
that job step. The statement can contain
the following information:

1. Name of job step or procedure step.

2. Name of the cataloged procedure or
load module to be executed.

3. Compiler and/or linkage editor options
passed to the job step.

4. Accounting information relative to
this job step.

5. Conditions for bypassing the execution
of this job step.

6. A time limit for the job step or an
entire cataloged procedure.

7. Specification of main storage
requirements for a job step or an
.entire cataloged procedure.

Job control Language 23

r~------------T---------T----------------------------~----------------------------------1
I Name I Opera ti on I Operand I
~-------------+-----~---+--------~--i

I
I
I
I
I
I
I

I I Positional Parameter
// Cstepnamel s. EXEC I l PROC=cataloged-procedure-name. !

I cataloged-procedure-name
I PGM=program-name
I PGM=•.stepname.ddname
I .. PGM=•. stepname. proc step. ddname
I
I Keyword Parameters_

: [{~:.procstep.a} =(option C ,option] ••• > 3 '+ s]
I

l [{~~~;.procstep2}=caccounting-information) 3 6 7]
I

: . [{ ~g:. procstep2 }= C C code, operator [, stepname [. procstepl l > J
I C, (code, operator C, stepname C. procstepl l) l ••• a> 9]·

l [{ii:.procstep2 }=<minutes, seconds>] s.o u. . I
I I
I [{REGION } J I
Ir REGION. procstep 2 = C {nnnnnK } [, value1.Kl) 10 12 I
I value-0 K I
I I
I [{bPRTY .} J I

I I DPRTY. procstep2 =(value 1 C, value 2] > 13 I
~-------------i---------~-~~--i
I 1 If information from this control statement is ref erred to in a later job step, I
I "stepname" is required. I
I 2 If this format is selected, it may be repeated in the EXEC statement, once for each I
I step in the cataloged procedure. I
I 3 If the information specified contains blanks, parentheses, or equal signs, either I
I the keyword subparameter must be enclosed by apostrophes or the entire PARM field I
I must be delimited by apostrophes instead of parentheses. I
I ~If only one option is specified and it does not contain any blanks, parentheses, or I
I equal signs, the delimiting parentheses may be omitted. I
I 5 The maximum number of characters allowed between delimiting parentheses is 100. If I
I the option list is enclosed in apostrophes, however, the parameter must be coded on I
I one card. I

6 If "accounting-information" does not contain commas, blanks, parentheses, or equal I
signs, the delimiting parentheses may be omitted. I

7 The maximum number of characters allowed between the delimiting apostrophes or I
parentheses is 142. I

8 The maximum number of repetitions allowed is 7. I
9 If only one test is specified, the outer pair of parentheses may be omitted. I

10This parameter is used with prior1ty schedulers only. Sequential schedulers ignore I
it. I

1.1.If only minutes are given, the parentheses need not be used. If only seconds are I
given, the parentheses must be used and a comma must precede the seconds. I

1. 2 If only value0 K is given,, the parentheses need not be used. If only value1 K is I
given, the parentheses must be used and a comma must precede value1 K. I

l1. 3 If only value 1 is given, the parentheses need not be used. If only value 2 is I
I given, the parentheses must be used and a comma must precede value 2. I
L---J
Figure 5. EXEC Statement

24

Example 1 of Figure 6 shows EXEC
statements used to execute programs. The
program names used are the (G) and CH)
compiler names. Example 2 in Figure 6
shows, for each compiler, an EXEC statement
used to execute a cataloged procedure.

NAME FIELD

The "stepname" is the name of the job
step or procedure step. It is required
when information from this job step is
referred to in a later job step. No two
steps in the same job should have the same
"stepname."

OPERAND FIELD

Positional Parameter

The first parameter of an EXEC statement
must specify either the name of the
cataloged procedure or program to be
executed. Each program Cload module) to be
executed must be a member of a library
CPDS). The library can be the system
library CSYSl.LINKLIB), a private library,

Sample Coding Form

Figure 6. Sample EXEC Statements

or a temporary library created to store a
program from a previous job step of the
same job.

Specifying a Catalooed Procedure:

{
PROC=cataloged-procedure-name}
cataloged-procedure-name

indicate that a cataloged procedure is
invoked. The "cataloged
procedure-name" is the name of the
cataloged procedure. For example,

// EXEC PROC=FORTHC
or

// EXEC FORTHC

indicates that the FORTRAN IV (H)
cataloged procedure FORTHC is to be
executed.

Specifying a Program in a Library:

PGM=program-name
indicates that a program is executed.
The "program name" is the member name
of a load module in the system library
(SYSl.LINKLIB) or private library.
For example,

// EXEC PGM=IEWL

indicates that the load module IEWL is
executed. CA load module in a private

Job control Language 25

library is executed by concatenating
that private library with the system
library through the use of a JOBLIB DD
statement. See the discussion
concerning JOBLIB under "Data
Definition CDD> Statement" in this
section.>

Specifying a Program Described in a
Previous Job SteE:

PGM=*.stepname.ddname
indicates that the name of the program
to be executed is taken from a DD
statement of a previous job step. The
* indicates the current job;
"stepname" is the name of a previous
step within the current job; a.nd
"ddname" is the name of a DD statement
within that previous job step. (The
"stepname" cannot refer to a job step
in another job.) The program referred
to must be a member of a PDS. For
example, in the following statements,
statement STEPS indicates that the
name of the program is taken from the
DD statement SYSLMOD in job step
STEP4. Consequently, the load module
ARCTAN in the PDS MATH is executed.

//MCLX JOB ,JOHNSMITH,COND=C7,LT)

//STEP4 EXEC PGM=IEWL
//SYSLMOD DD DSNAME=MATH(ARCTAN)

//STEPS EXEC PGM=*.STEP4.SYSLMOD

Specifying a Program Described in a
Cataloged Procedure:

PGM=*.stepname.procstep.ddname

26

indicates that the name of the program
to be executed is taken from a DD
statement of a previously executed
step of a cataloged procedure. The *
indicates the current job; "stepname"
is the name of the job step that
invoked the cataloged procedure;
"procstep" is the name of a step
within the procedure; "ddname" is the
name of a DD statement within the
procedure step. (The "stepname"
cannot ref er to a job step in another
job.) For example, consider a
cataloged procedure FORT,

//COMPIL EXEC PGM=IEKAAOO
//SYSPUNCH DD UNIT=SYSCP
//SYSPRINT DD SYSOUT=A
//SYSLIN DD DSNAME=LINKINP

//LKED EXEC PGM=IEWL
//SYSLMOD DD DSNAME=RESULT(ANS)

Furthermore, assume the following
statements are placed in the input
stream.

//XLIV
//Sl

JOB ,SMITH,COND=C7,LT)
EXEC PROC=FORT

//S2 EXEC PGM=*.Sl.LKED.SYSLMOD
//FT03F001 DD UNIT=PRINTER
//FT01F001 DD UNIT=INPUT

statement S2 indicates that the name
of the program is taken from the DD
statement SYSLMOD. The statement is
located in the procedure step LKED of
the cataloged procedure FORT, which
was invoked by statement Sl.
Consequently, the load module ANS in
the PDS RESULT is executed.

Keyword Parameters

The keyword parameters may ref er to a
program, to an entire cataloged procedure,
or to a step within a cataloged procedure.

Options for the Compiler and Linkage
Editor:

The PARM parameter is used to pass
options to the compiler or linkage editor.
(PARM has no meaning to a FORTRAN load
module.)

PARM
passes options to the compiler or
linkage editor, when either is invoked
by the PGM parameter in an EXEC
statement, or to the first step in a
cataloged procedure.

PARM.procstep
passes options to a compiler or
linkage editor step within the named
cataloged procedure step.

The formats for compiler options and
those linkage editor options most
applicable to the FORTRAN programmer are
shown in Figure 7.

Note: If a subparameter expression in the
list.of the PARM parameter contains special
characters, either of two methods may be
used to delimit the expression:

1. Enclose the entire subparameter list
in apostrophes. For example:

PARM = 'LIST,MAP,NAME=MYMAIN,DECK'

2. Enclose the subparameter expression in
apostrophes and the entire
subparameter list in parentheses.
Thus, the above example can be coded
as:

PARM= (LIST,MAP,'NAME=MYMAIN',DECK)

Since a list enclosed in apostrophes cannot
be continued onto another control
statement, the second method should be used
when the PARM parameter must be
interrupted.

Detailed information concerning compiler
and linkage editor options is given in the
section "FORTRAN Job Processing."

Condition for Bypassing a Job Step:

This COND parameter (unlike the one in
the JOB statement) determines if the job

step defined by the EXEC statement is
bypassed.

COND
states conditions for bypassing the
execution of a program or an entire
cataloged procedure.

cmm. procstep
states conditions for bypassing the
execution of a specific cataloged
procedure step "procstep".

The subparameters for the COND parameter
are of the form:

(code,operatorC,stepname])

The subparameters "code" and "operator"
are the same as the code and operator
described for the COND parameter in the JOB
statement. The subparameter "stepname"
identifies the previous job step that
issued the code. For example, the COND
parameter

COND=((5,LT,FORT),(5,LT,LKED))

indicates that the step in which the COND
parameter appears is bypassed if 5 is less
than the code returned by either of the
steps FORT or LKED.

r---1
Compiler Options: FORTRAN IV (G) and FORTRAN IV (H)

{PARM }
PARM.procstep =

'{LIST }
NOLIST [,NAME=xxxxxx] [, LINECNT=xx]

{ 'DECK } {'MAP }
,NODECK ,NOMAP {

'LOAD } {''BCD }
. , NOLOAD ,EBCDIC

Compiler Options: FORTRAN IV (H) only

jPARM }
lPARM.procstep = 'COPT=£Ql112}][,SIZE=nnnnk] {

,EDIT }
,NOEDIT

Linkage Editor:

{:=.procstep} = c[~:FJ [,LET] [, NCAL] [I LIST]) j_

Loader:

{
,SOURCE }

. ,NOSOURCE

{
,ID } •:i.. 2

,NOID

{
' XREF } ' :1..

2

,NOXREF

{:=.procstep.} = C {~MAP} {
,CALL } {,LET } {,SIZE=lOOK}
,NOCALL ,NOLET _,SIZE=size

C , EP name J {,PRINT } :i..
2 I

NOPRINT) I
~---~
l~The subparam~ters (options) are keyword subparameters. I
12If any keyword subparameter contains blanks, parentheses, or equal signs, either the I
I keyword subparameter must be enclosed by apostrophes or the entire PARM field must be I
I delimited by apostrophes instead of parentheses. I
L---J
Figure 7. compiler, Linkage Editor, and Loader Options

Job Control Language 27

If a step in a cataloged procedure
issued the code, "stepname" must qualify
the name of the procedure step; that is,

Ccode,operatorC,stepname.procstep])

If "stepname" is not given, "code" is
compared with all codes issued by previous
job steps.

Accounting.Information:

The ACCT parameter specifies accounting
information for a job step within a job.

ACCT
is used to pass accounting information
to the installation accounting
routines for this job step.

ACCT.procstep
is used to pass accounting information
for a step within a cataloged
procedure.

If both the JOB and EXEC statements
contain accounting information, the
installation accounting routines decide how
the accounting information -shall be use'd
for the job step.

Setting.Job Step Time Limits (TIME):
(Used with MVT Priority Schedulers Only)

To limit the computing time used by a
single job step or cataloged procedure, a
maximum time for its completion can be
assigned. If the job step is not completed
in this time, the entire job is terminated.
Assignment of such a time limit is
particularly useful in a multiprogramming
environment where more than one job has
access to the computing system.

The time is coded in minutes and
seconds. The number of minutes cannot
exceed 1439 C24 hours); the number of
seconds cannot exceed 59. (If the job step
execution time is expected to exceed 1439
minutes, TIME=1440 can be coded to
eliminate job step timing.)

If the TIME parameter is omitted, the
default job step time limit (as established
in the cataloged procedure for the input
reader). is assumed.

TIME
is used to assign a time limit for a
job step or for an entire cataloged
procedure. For a cataloged procedure,
this parameter overrides all TIME
parameters that may have been
specified in the procedure.

TIME.procstep

28

is used to assign a time limit for a
single step of a cataloged procedure.

This parameter overrides, for the
named step, any TIME parameter which
is present. One parameter of this
form can be written for each step in
the procedure.

Specifying Main Storage Requirements for a
Job Step (REGION)
(Systems with MVT Only)

The REGION parameter is used to specify:

• The maximum amount of main storage to
be allocated to the job step. This
figure must include the size of those
components that are required by the
user's program and that are not
resident in main storage.

• The amount of main storage to be
allocated to the job, step and in which
storage hierarchy or hie~archies the
space is to be allocated. This reguest
should be made only if main storage
hierarchy support is specified during
system generation.

To request the maximum amount of main
storage required by the job step,
REGION=nnnnnK is coded in the operand field
of the JOB statement. The term nnnnn is
replaced with the number of contiguous
1024-byte areas to be allocated to the job,
e.g., REGION=52K. This number can range
from one to five digits, but cannot exceed
16383. It should be specified as an even
number. (If an odq number is specified,
the system treats it as the next highest
even number.)

If the REGION parameter is omitted or if
a region size smaller than the default
region size is requested, the default value
(as established in the input reader
procedure) is assumed.

Main storage hierarchy support provides
for storage hierarchies 0 and 1. If IBM
2361 Core Storage, Model 1 or 2, is present
in the system, processor storage is
referred to as hierarchy 0 and 2361 Core
Storage is referred to as hierarchy 1. If
2361 Core Storage is not present but main
storage hierarchy support was specified
during system generation, a 2-part region
is established in processor storage when a
region is defined to exist in two
hierarchies. The two parts are not
necessarily contiguous.

When main storage hierarchy support is
included in the system, the REGION
parameter can be used to request both the
maximum amount of storage to be allocated
to the job step and the hierarchy or
hierarchies in which the storage is to be
allocated.

To specify a region size and the
hierarchy desired, 'REGION=Cvalue 0 K,
value1 K) is coded in the operand field of
the JOB statement. The term "value0 " is
replaced with the number of contiguous
1024-byte areas to be allocated to the job
step in hierarchy O; the term "value1 " is
replaced with the number of contiguous
1024-byte areas to be allocated in
hierarchy 1, e.g., REGION= (60K,200K).
When processor storage includes hierarchies
0 and 1, the combined values of value 0 and
value 1 cannot exceed 16383. If 2361 core
Storage is present, value 0 cannot exceed
16383, and value 1 cannot exceed 1024, if
using a single Model 1, or 2048, if using a
single Model 2. Each value specified
should be an even number. (If an odd
number is specified, the system treats it
as the next highest even number.)

In systems with main storage hierarchy
support, either subparameter can be omitted
to request storage in only one hierarchy.
If storage is requested only in hierarchy
1, a comma must be coded to indicate the
absence of the first subparameter, e.g.,
REGION=C,52K). If storage is requested
only in hierarchy O, the parentheses need
not be coded, e.g., REGION=70K.

If the REGION parameter is omitted, or
if a region size smaller than the default
region size is requested, the default value
Cas established in the input reader
procedure) is assumed. When the default
region size is assumed, storage is always
allocated in hierarchy o.

~:

• If the REGION parameter has been
specified on the JOB statement, REGION
parameters on the job's EXEC statements
are ignored.

• If main storage hierarchy support is
not included and regions are requested
in both hierarchies, the region sizes
are combined and an attempt is made to
allocate a single region from processor
storage. If a region is requested
entirely from hierarchy 1, an attempt
is made to allocate the region from
processor storage.

• When the job step uses a cataloged
procedure, a region size can be
requested for a single procedure step
by including, as part of the REGION
parameter, the procedure step name,
i.e., REGION.procstep. This
specification overrides the REGION
parameter in the named procedure step,
if one is present. As many parameters
of this form can be coded as there are
steps in the cataloged procedure.

• To request a single region size for an
entire cataloged procedure, code the
REGION parameter without a procedure
step name. This specification
overrides all REGION parameters in the
procedure, if any are present.

• For information on storage requirements
to be considered when specifying a
region size, see the Storage Estimates
publication.

Establishing a Dispatching Priority CDPRTY)
(Systems with MVT only)

The DPRTY parameter specifies the
dispatching priority of a job step's tasks.
The dispatching priority determines the
order in which a job step's tasks will use
main storage and CPU resources. Unless the
DPRTY parameter is coded, each job step is
assigned the same dispatching priority as
the job.

To assign a dispatching priority to a
job step, the keyword parameter:

DPRTY = <value 1, value 2)

is coded in the operand field of the EXEC
statement. The terms value 1 and value 2
may each be assigned a number from O
through 15. The higher the number, the
higher the dispatching priority will be.
(Whenever possible, assigning a number of
15 to value 1 should be avoided since this
number is used for certain system tasks.)
The number assigned to value 1 is converted
by the system to determine an internal
priority. The number assigned to value 2
is added to the internal priority to form
the dispatching priority. If a number is
not assigned to value 1, a default value of
zero is assumed; for value 2 a default
value of 11 is assumed.

DPRTY
is used to assign a dispatching
priority for a job step or for an
entire cataloged procedure. For a
cataloged procedure, this
specification overrides all DPRTY
parameters that may have been
specified in. the procedure.

DPRTY.procstep
is used to assign a dispatching
priority to a single procedure step in
a cataloged procedure. This parameter
overrides, for the named step, any
DPRTY parameter which is present. One
parameter of this form can be written
for each step in the cataloged
procedure.

Note: A detailed discussion of dispatching
priorities can be found in the Introduction
publication listed in the Preface.

Job Control Lan~uage 29

DATA DEFINITION (DD) STATEMENT

The DD statement (Figure 8) describes
data sets. The DD statement can contain
the following information:

1. Name of the data set to be processed.

2. Type and number of I/O devices for the
data set.

3. Volume(s) on which the data set
resides.

4. Amount and type of space allocated on
a direct access volume.

5. Label information for the data set.

6. Disposition of the data set after
execution of the job step.

7. Allocation of data sets with regard to
channel optimization.

8. Whether a particular data set may be
used only for input or only for
output.

NAME FIELD

ddname
is used:

1. To identify data sets defined by
this DD statement to the compiler
or linkage editor.

2. To relate data sets defined by
this DD statement to data set
reference numbers used by the
programmer in his source module.

3. To identify this DD statement to
other control statements in the
input stream.

The "ddname" format is given in "FORTRAN
Job Processing."

procstep.ddname

30

is used to override DD statements in
cataloged procedures. The step in the
cataloged procedure is identified by
"procstep". The "ddname" identifies
either:

1. A DD statement in the cataloged
procedure that is to be modified
by the DD statement in the input
stream, or

2. A DD statement that is to be added
to the DD statements iri the
procedure step.

JOBLIB and STEPLIB
are used to concatenate a private
library with the system library,
SYSl.LINKLIB; that is, the operating
system library and the data sets
specified in the JOBLIB or STEPLIB DD
statement are temporarily combined to
form one library. Use of JOBLIB
results in concatenation for the
duration of a job; use of STEPLIB, for
the duration of a job step.

The JOBLIB DD statement must appear
immediately after the JOB statement of
the job to which it pertains, and its
operand field, at a minimum, must
contain the DSNAME and DISP
parameters. The DISP parameter must
be coded either DISP=CNEW,P~SS) or
DISP=(OLD,PASS) or DISP=(StlR,PASS) so
that the library remains available
throughout the job. (See the
discussion of the DISP parameter under
"Operand Field."

The STEPLIB DD statement may appear in
any position among the DD statements
for the step. The data set defined
should be OLD. If the private library
is not cataloged and is to be referred
to in a later step (or steps),
DISP=(OLD,PASS) or DISP=CSHR,PASS)
should be coded; a later step may then
refer to it by coding
DSNAME=*.stepname.STEPLIB,
DISP=(OLD,PASS) on the STEPLIB DD
statement for the later step.

For additional information on the use
of JOBLIB and STEPLIB DD statements,
see the Job Control Language Reference
publication, Order No. GC28-6704.

SYSABEND and SYSUDUMP
are special DD names used to define a
data set on which a system abnormal
termination dump can be written. The
dump is provided for job steps subject
to abnormal termination.

The dump provided when the SYSABEND DD
statement is used includes the system
nucleus, the problem program storage
area, and a trace table, if the trace
table option was requested at system
generation. The SYSUDUMP DD statement
provides a dump of only the problem
program area.

l

A full discussion of SYSABEND and
SYSUDUMP DD statements, with an
example of use, appears in the Job
Control Language Reference
publication, Order No. GC28-6704.

r----------------------T---------T--1
I Name I Operation I Operand 1 ' I
~----------------------+---------+--1

i
ddname ! 2 / procstep.ddname
JOBLIB3
STEP LIB
SYSABEND
SY SUD UMP

DD

!Positional Parameter
I
I * 't
1[ouMMY]·
I PATA
I
I
!Keyword Parameterss e
I
I DDNAME=ddname
I

1[{ DSNAME}=
I, DSN

'
!

dsname
dsnameCelement}
•.ddname
•.stepname.ddname
•.stepname.procstep.ddname
&name
&nameCelement}

I
I [UNIT=Csubparameter-list>l
I
I [DCB=Csubparameter-list)]
I

l[{:::UME} = Csubparameter-listl]

[

SPACE=Csubparameter-list}]
SPLIT=Csubparameter-list}
SUBALLOC=Csubparameter-list)

[LABEL=Csubparameter-list}]

[

DISP=Csubparameter-list} ·
SYSOUT=A
SYSOUT=B
SYSOUT=CxC,program-namelC,form-numberl} 7

!]
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I [SEP=Csubparameter-list)] I
~----------------------i---------~--~
1A DD statement with a blank operand field can be used to override parameters
specified in cataloged procedures. (See "Overriding and Adding DD Statements" in the
section "Cataloged Procedures".) ·

2 The name field is blank when concatenating data sets. (Note the exception for the
use of JOBLIB. }

3The JOBLIB statement precedes any EXEC statements in the job. (See the discussion
concerning JOBLIB under "Name Field" in this section.>

't!f either the * or DATA positional parameter is specified, no keyword parameters
other than DCB=BLKSIZE and DCB=BUFNO can be specified.

5 If "subparameter-list" consists of only one subparameter and no leading comma
(indicating the omission of a positional subparameter) is required, the delimiting
parentheses may be omitted.

6If "subparameter-list" is omitted, the entire parameter must be omitted.
7 This form of the parameter is used only with priority schedulers.

j 8 If "program-name" and "form-number" are omitted, the delimiting parentheses can be
I omitted. If only the form number is given, the parentheses must be used and two
I commas must precede the form number.
l---J
Figure 8. Data Definition Statement

Job control Language 31

BLANK NAME FIELD

If the name field is blank, the data set
defined by the DD statement is concatenated
with the data set defined in the preceding
DD statement. In effect, these two data
sets are combined into one data set.
(Private libraries, i.e., partitioned data
sets, may also be concatenated with the
library specified in the JOBLIB DD
statement. Therefore, several libraries
can be concatenated with the system
library. Individual members of a
partitioned data set, however, cannot be
concatenated.)

~; Handling of data sets whose records
are of different lengths and/or different
formats is a function of the program being
executed. Data sets designated for
concatenation may not be in the input
stream.

OPERAND FIELD

For purposes of discussion, parameters
for the DD statement have been divided into
seven functions. Parameters are used to:

• Specify data in ~he input stream.

• Specify unit record data sets.

• Retrieve a previously created and
cataloged data set.

• Retrieve a data set created in a
previous job step in the current job
and passed to the current job step.

• Retrieve a data set created but not
cataloged in a previous job.

• Create data sets that reside on
magnetic tape or direct access volumes.

• Optimize I/O operations.

The following text describes the DD
statement parameters that apply to:

32

• Processing unit record data sets.

• Retrieving data sets created in
previous job steps.

• Retrieving data sets created and
cataloged in previous jobs.

See Figure 9 for applicable parameters.

Parameters shown in Figure 8 and not
mentioned in this section are used to
create data sets and optimize I/O
operations in job steps. These parameters
are discussed in the sections "Creating
Data Sets" and "Programming
Considerations."

Specifying Data in the Input Stream:

*

DATA

indicates that a data set Ce.g., a
source module or data) immediately
follows this DD statement in the input
stream (see Figure 10). If the EXEC
statement for the job step invokes a
cataloged procedure, a data set may be
placed in the input stream for each
procedure step. If the EXEC statement
specifies execution of a program, only
one data set may be placed in the
input stream. The DD * statement must
be the last DD statement for the
procedure step or program. The end of
the data set must be indicated by a
delimiter statement. The data itself
cannot contain job control statements
(neither the comment statement nor any
statements with // or /* in columns 1
or 2). Note, too, that if* is
specified, no keyword parameters other
than DCB=BLKSIZE or DCB=BUFNO may be
specified.

also indicates data in the input
stream. The restrictions and use of
the DATA parameter are the same as the
* parameter, except that // may appear
in the first and second positions of a
record.

r---1
I {* }~ .
I DATA
I
I
I
I
I l

dsname l dsname(element)
•.ddname

DSNAME = •.stepname.ddname
{DsN } •.stepname.procstep.ddname

&name
&name(element)

UNIT=(name[,{njP}2))3

DCB= ({ {MODE::;:E l {' STACK=l }}
. MODE=C f , STACK=2

SYSOUT=A
SYSOUT=B
SYSOUT=(x[,program-name]

(,form-number])~ s

{

SHR}~DELETE6] OLD ,KEEP
~. ISP= (NEW '. PASS
: MOD ,CATLG
; UNCATLG

[:~m: J)7
,UNCATLG

LABEL=(subparameter-list) 8

{
VOLUME}= (subparameter-list) a

VOL
~--------------~--------------------------~
~If * is specified, no keyword parameters
other than DCB=BLKSIZE or DCB=BUFNO may
be specified.

2If neither "n" nor "P" is specified, 1
is assumed.

3 If only "name" is specified, the
delimiting parentheses may be omitted.
~This form of the parameter is used only
with priority schedulers.

5 If "program.:.name" and "form-number" are
omitted, the delimiting parentheses can
be omitted.
~The assumption for the second
subparameter is discussed in "Specifying!
the Disposition of a Data Set" in this I
section. I

7 The subparameters are positional. I
l 6 See the section "Creating Data Sets." I
L---J
Figure 9. DD Statement

UNIT Parameter:

UNIT=Cname[,{njP}])
specifies the name and number of I/O
devices for a data set (see Figure
10). When the system is generated,
the "name" is assigned by the
operating system or the installation
and represents a device address, a
device type, or a device class. (See
the System-Generation publication.)

nlP

The programmer can use only the
assigned names in his DD statements.
For example,

UNIT=190, UNIT=2311, UNIT=TAPE

where 190 is a device address, 2311 is
a device type, and TAPE is a device
class.

specifies the number of devices
allocated to the data set. If a
number "n" is specified, the operating
system assigns that number of devices
to the data set. "P" is used with
cataloged data sets when the required
number of volumes is unknown. The
control program assigns a device for
each volume required by the data set.

Sample Coding Form

Figure 10. Examples of DD Statements for
Unit Record Devices

DCB Parameter:

{
MODE=E } {'STACK= 1}

DCB=(MODE=C ,STACK=2)

specify options for the card read
punch. The MODE subparameter
indicates whether the card is
transmitted in column binary or EBCDIC
mode; c specifies column binary, and h
specifies EBCDIC.

The STACK subparameter indicates
stacker selection for the card read
punch.

Routing a Data Set To An Output Stream
(SYSOUT): With the SYSOUT parameter,
output data sets can be routed to a system
output stream and handled much the same as
system messages.

SYS OUT= A
can be used with sequential schedulers
to indicate that the data set is to be

Job Control Language 33

written on the system output device.
No parameter other than the DCB
parameter has any meaning when
SYSOUT=A is used •. This form of the
SYSOUT parameter may be specified for
printer data sets.

SYSOUT=B
can be used with sequential schedulers
to indicate the system card punch
unit. The priority scheduler routes
the output data set to class B.

SYSOUT=CxC,program-namelC,form-number])
is used with priority schedulers.
When priority schedulers are used, a
data set is normally written on an
intermediate direct access device
during program execution and later
routed through an output stream to a
system output device. The "xn is to
be replaced by an alphabetic or
numeric character that specifies the
system output class to be used.
Output writers route data from the
output classes to system output
devices. The DD statement for this
data set can also include a unit
specification that describes the
intermediate direct access device and
an estimate of the space required. If
these parameters are omitted, the job
scheduler provides default values as
the job is read'and processed.

If there is a special installation
program to handle output operations,
its nprogram-namen should be
specified. nprogram-name" is the
member name of the program, which must
reside in the system library.

If the output data set is to be
printed or punched on a specific type
of output form, a 4-digit
"form-number" should be specified.
This form number is used to instruct
the operator, in a message issued at
the time the data set is to be
printed, of the form to be used.

Retrieving Previously created Data Sets

If a data set is created with standard
labels and cataloged in a previous job, all
information for the data set, such as
record format, density, volume sequence
number, device type, etc., is stored in the
catalog and labels. This information need

34

not be repeated in the DD statement used to
retrieve the data set: only the name
CDSNAME) and disposition (DISP) is
required.

If a data set was created in a previous
job step in the current job and its
disposition was specified as PASS, all the
information in the previous DD statement is
available to the control program, and is
accessible by ref erring to the previous DD
statement by name. To retrieve the data
set, a pointer to a data set created in a
previous job step is specified by the
DSNAME parameter. The disposition (DISP)
of the data set is also specified, along
with the UNIT parameter if more than one
unit is to be allocated.

If a data set is created with standard
labels in a previous job but not cataloged,
information for the data set, such as
record format, density, volume sequence
number, etc., is stored in the labels; the
device type information is not stored. To
retrieve the data set, the name CDSNAME),
disposition CDISP), volume serial number
(VOLUME), and device (UNIT) must be
specified.

If a data set is created with no labels
and cataloged, device type information is
stored in the catalog. To retrieve the
data set, the name (DSNAME), disposition
CDISP), volume serial number (VOLUME), and
the LABEL and DCB parameters must be
specified.

Examples of the use of DD statements to
retrieve previously created data sets are
shown in Figure 11.

IDENTIFYING A CREATED DATA SET: The DSNAME
parameter indicates the name of a data set
or refers to a data set defined in the
current or a previous job step.

Specif yinq a Cataloged Data Set by Name:

DSNAME=dsname
the name of the data set is indicated
by "dsname." If the data set was
previously created and cataloged, the
control program uses the catalog to
find the data set and instructs the
operator to mount the required
volumes.

Sample Coding Form

Figure 11. Retrieving Previously Created Data Sets

Specifying a Generation Data Group or PDS:

DSNAME=dsname(element)
indicates either a generation data set
contained in a generation data group,
or a member of a partitioned data set.
The name of the generation data group
or partitioned data set is indicated
by "dsname"; if "element" is either O
or a signed integer, a generation data
set is indicated. For example,

DSNAME=FIRING(-2)

indicates the thirdmost recent member
of the generation data group FIRING.
(See the Data Management publication
for the complete description of
generation data sets.) If "element•
is a name, a member of a partitioned
data set is indicated.

Note: Members of a partitioned data
set may be read as input to a FORTRAN
object program or created as output
from a FORTRAN object program, but
only if the member name and either
LABEL=(,,,IN) or LABEL=C,,,OUT) are
specified in an associated DD
statement.

Ref erring to a Data Set in the current Job
Step:

DSNAME=*.ddname
indicates a data set that is defined
previously in a DD statement in this
job step. The * indicates the current
job. The name of the data set is
copied from the DSNAME parameter in
the DD statement named nddname•.

Referring to a Data Set in a Previous Job
Step:

DSNAME=*.stepname.ddname
indicates a data set that is defined
in a DD statement in a previous job
step in this job. The * indicates the
current job, and "stepname" is the
name of a previous job step. The name
of the data set is copied from the
DSNAME parameter in the DD statement
named nddname•. For example, in the
following control statements the DD
statement FT08F001 in job step S2
indicates that the data set name
(TIME) is copied from the DD statement
FT09F001 in job step Sl.

//LAUNCH JOB
//JOBLIB DD DSNAME=FIRING,DISP=(OLD,PASS)
//Sl EXEC PGM=ROCKET
//FTOlFOOl DD DSNAME=RATES(+l),DISP=OLD
//FT09F001 DD DSNAME=TIME,DISP=(OLD,PASS)
//S2 EXEC PGM=DISTANCE
//FT08F001 DD DSNAME=*.Sl.FT09F001, X
// DISP=OLD
//FT05F001 DD *

Ref erring to a Data Set in a Cataloged
Procedure:

DSNAME=*.stepname.procstep.ddname
indicates a data set that is defined
in a cataloged procedure invoked by a
previous job step in this job. The *
indicates the current job; "stepname"
is the name of a previous job step
that invoked the cataloged procedure;
nprocstep" is the name of a step in
the cataloged procedure. The name of
the data set is copied from the DSNAM~
parameter in the DD statement named
nddname•.

Job Control Language 35

Assigning Names-to Temporary Data Sets:

DSNAME=&name
assigns a name to a temporary data
set. The control program assigns the
data set a unique name which exists
only until the end of the current job.
The data set is accessible in
subsequent job steps by specifying
"&name". This option is useful in
passing an object module from a
compiler job step to a linkage editor
job step.

DSNAME=&name(element)
assigns a name to a member of a
temporary PDS. The name is assigned
in the same manner as for the
DSNAME=&name option. The
"&name<element)" option is useful in
storing load modules that will be
executed in a later job step in t:he
current job.

SPECIFYING THE-DISPOSITION OF A DATA SET:
The DISP parameter is specified for both
previously created data sets and data sets
being created in this job step. It
contains three subparameters.

NEW ,KEEP ,KEEP
{

SHR} ['DELETE] [. , DELETE J
DISP= (OLD . I PASS . I CATLG)

MOD I CATLG I UNCATLG
,UNCATLG

The first subparameter indicates the
status of the data set at the beginning of
or during the job step.

SHR

NEW

OLD

36

indicates that the data set resides on
a direct-access volume and is used as
input to a job whose operations do not
prevent simultaneous use of the data
set as input to another job. This
parameter has ~eaning only in a
multiprogralllliling environment for
existing data sets. If it is omitted
in a.multiprogramming environment, the
data set is considered unusable by any
other concurrently operating job. If
it is coded in pther than a
multiprogramming environment, the
system assumes that the disposition of
the data set is OLD.

indicates that the data set is created
in this step. NEW is discussed in
more detail' in the $ection "Creating
Data 'sets."

indicates that the data set was
created by a previous job or job step.

MOD
indicates that the data set was
created in a previous job or job step,
and that additional records are to be
added to it. Before the first
input/output operation for the data
set occurs, the data set is
automatically positioned ~fter the
last record in the data set. If MOD
is specified and no volume information
(e.g., volume serial number) is
available for the data set, the system
assumes the data set does not yet
exist and creates the data set for the
job step. ~Volume informat~on is
considered available if it is coded in
the DD statement, passed with the data
set from a previous step, or contained
in the catalog.)

The second supparameter indicates the
disposition of the data set at normal job
step termination.

DELETE

KEEP

PASS

causes the space occupied by the data
set to be released and made available
at the end of the current job step.
If the data set was cataloged, it is
removed from the catalog.

insures that the data set is kept
intact until a DELETE parameter is
specified in a subsequent job or job
step. KEEP is used to retain
uncataloged data sets for processing
in future jobs. KEEP does not imply
PASS.

indicates that the data set is
referred to in a later job step. When
a subsequent reference to the data set
is made, its PASS status lapses unless
another PASS is issued. The final
disposition of the data set should be
stated in the last job step that uses
the data set. When a data set is in
PASS status, the volumeCs> on which it
is mounted is retained. If demounting
is necessary, the control program
issues a message to mount the vol-
ume Cs) when needed. PA$S is used to
pass data sets among job steps in the
same job.

If a data set on an unlabeled tape is
being passed, the volqme serial number
must be specified in the VOLUME=SER=
parameter of the DD statement that
passed the data set.

Note: The PASS status of the private
library specified in a JOBLIB DD statement
always remains in effect for the duration
of a job.

CAT LG
causes the creation of a catalog entry
that points to the data set. The data
set can then be ref erred to in
subsequent jobs or job steps by name
(CATLG implies KEEP).

UNCATLG
causes references to the data set to
be removed from the catalog at the end
of the job step.

If the second subparameter is not
specified, no action is taken to alter the
status of the data set. If the data set
was created in this job, it is deleted at
the end of the current job step. If the
data set existed before this job, it exists
after the end of the job.

The third subparameter indicates the
disposition of the data set if the job step
terminates abnormally. This is the
conditional disposition of the data set.
Explanations for DELETE, KEEP, CATLG, and
UNCATLG are the same as those for normal
termination.

~:

• If a conditional disposition is not
specified and the job step abnormally
terminates, the requested disposition
(the second subparameter of the DISP
keyword) is performed.

• Data sets that were passed but not
received by subsequent steps because of
abnormal termination will assume the
conditional disposition specified the
last time they were passed. If a
conditional disposition was not
specified then, all data sets that were
new when initially passed are deleted.
All other data sets are kept.

• A conditional disposition other than
DELETE for a temporary data set is
invalid, and the system assumes DELETE.

Effect of DISP Parameter at End of FORTRAN
~ob: In a FORTRAN job that is terminated
by a STOP or CALL EXIT statement all data
sets that were used by the job will be
closed. The closing operation will
position the volume in accordance with the
DISP parameter, as follows:

DISP-Parameter
PASS

DELETE

KEEP, CATLG, UNCATLG

Positioning Action
Forward space to end
of data set

Rewind

Rewind and unload

DELIMITER STATEMENT

The delimiter statement (see Figure 12)
is used to separate data from subsequent
control statements in the input stream, and
is placed after each data set in the input
stream.

r----T------------------------------------1
I Name I I
~----+------------------------------------1
I/* I I
L----i------------------------------------J
Figure 12. Delimiter Statement

The delimiter statement contains a slash
in column 1, an asterisk in column 2, and a
blank in column 3. The remainder of the
card may contain comments.

COMMENT STATEMENT

The comment statement (see Figure 13) is
used to enter any information considered
helpful by the programmer. It can be
inserted before or after any control
statement that follows the JOB statement.
Comments can be coded in columns 4 through
80. The comments cannot be continued onto
another statement. (If the comment
statement appears on a system output
listing, it can be identified by the
appearance of *** in columns 1 through 3.)

r----T------------------------------------1
I Name I I
~----+------------------------------------1
I//* I I
L----~------------------------------------J
Figure 13. Comment Statement

The comment statement contains a slash
in column 1, a slash in column 2, and an
asterisk in column 3. The rest of the card
can contain comments.

Job Control Language 37

FORTRAN JOB PROCESSING

To process a FORTRAN source module from
compilation through execution, three steps
are required: to compile the source module
to obtain an object module, to linkage edit
the object module to obtain a load module, 1

and to execute the load module. For each
of these three steps, job control
statements are required to indicate the
program or procedure to be executed, to
specify options for the compiler and
linkage ~ditor, to specify conditions for
termination of processing, and to define
the data sets used during processing.
Because writing these job control
statements can be time-consuming work for
the programmer, IBM supplies, for each
compiler, four cataloged procedures to aid
in the processing of FORTRAN modules. The
use of cataloged procedures minimizes the
number of job control statements that must
be supplied by the programmer.

USING CATALOGED-PROCEDURES

When a programmer uses cataloged
procedures, he must supply the following
job control statements.

1. A JOB statement.

2. An EXEC statement that indicates the
cataloged procedure to be executed.

3. A procstep.SYSIN DD statement that
specifies the location of the source
module(s) or the object module(s) to
the control program. (Note: If the
source module(s) and/or object
module(s) are placed in the input
stream, a delimiter statement is
required at the end of each data set.)

In addition, a GO.SYSIN DD statement
can be used to define data in the input
stream for load module execution. CA
delimiter statement is required at the end
of the data.)

The job control statements needed to
invoke the procedures, and deck structures

1 As an alternative, the object module may
be edited and then automatically executed
by the loader, another IBM-supplied
program. Details on the use of the loader
can be found in the Linkage Editor and
Loader publication.

38

used with the procedures are described in
the following text.

COMPILE

The FORTRAN IV (G) cataloged procedure
for compilation is FORTGC; the FORTR~N IV
(H), FORTHC. 2 These cataloged procedures
consist of the control statements shown in
Figures 49 and 54, respectively.

Figures 14, 15, and 16 show control
statements that can be used, as programming
needs dictate, to invoke for either
compiler the cataloged procedure for
compilation. For both compilers, control
statements and control statement fields are
identical, except for the procedure-name
specified on the EXEC statement: FORTGC is
specified for the (G) compiler; FORTHC, for
the CH) compiler. In the control statement
sequences shown, the SYSIN data set
containing the source module is defined as
data in the input stream for the compiler.
Note that a delimiter statement follows the
FORTRAN source module.

//jobname JOB
// EXEC FORTGC or FORTHC
//FORT.SYSIN DD *
r---1
I FORTRAN Source Module I
L---J
/*

Figure 14. Invoking the Cataloged
Procedure FORTGC or FORTHC

Single Compile: A sample deck structure to
compile a single source module is shown in
Figure 15.

//JOBSC JOB 00,FORTRANPROG,MSGLEVEL=l
//EXECC EXEC PROC=FORTGC or PROC=FORTHC
//FORT.SYSIN DD *
r---1
I FORTRAN Source Module I
L---J
/*

Figure 15. Compiling a Single Source
Module

2 For FORTRAN IV (H), if the EDIT option is
specified, a SYSUTl data set must be
defined as a work data set for the
compiler; if the compiler XREF option is
specified, a SYSUT2 data set must be
defined as a work data set.

Batched-compile; A sample deck structure
to batch compile is shown in Figure 16.

//JOBBC JOB 00,FORTRANPROG,MSGLEVEL=l
//EXECC EXEC PROC=FORTGC or PROC=FORTHC
//FORT.SYSIN DD *
r---1
I First FORTRAN source Module I
L---J

r--1
I Last FORTRAN source Module I
L---J
/*

Figure 16. Compiling several source
Modules

When several source modules are entered
in the SYSIN data set for one job step, the
compiler recognizes the FORTRAN END
statement. If the next card is a delimiter
statement, control returns to the control
program at the end of the compilation. If
the next card is a FORTRAN statement,
control remains with the FORTRAN compiler.

COMPILE AND LINKAGE EDIT

For FORTRAN IV (G), the cataloged
procedure to compile FORTRAN source modules
and linkage edit the resulting object
modules is FORTGCL; for FORTRAN IV (H),
FORTHCL. These cataloged procedures
consist of the control statements shown in
Figures 50 and 55, respectively.

Figure 17 shows control statements that
can be used to invoke FORTGCL or FORTHCL.
The control statements are identical for
both compilers, except for the
procedure-name specified on the EXEC
statement: FORTGCL is specified for the
(G) compiler; FORTHCL, for the (H)
compiler.

//jobname JOB
// EXEC FORTGCL or FORTHCL
//FORT.SYSIN DD *
r---1
I FORTRAN Source Module I
L---J
/*

Figure 17. Invoking the Cataloged
Procedure FORTGCL or FORTHCL

LINKAGE EDIT AND EXECUTE

For FORTRAN IV (G), the cataloged
procedure to linkage edit FORTRAN object
modules and execute the resulting load

module is FORTGLG; for FORTRAN IV (H),
FORTHLG. These cataloged procedures
consist of the control statements shown in
Figures 51 and 56, respectively.

Figure 18 shows control statements that
can be used to invoke FORTGLG or FORTHLG.
The control statements are identical for
both compilers, except for the procedure
name specified on the EXEC statement:
FORTGLG is specified for the (G) compiler;
FORTHLG, for the (H) compiler.

//jobname JOB
// EXEC FORTGLG or FORTHLG
//LKED.SYSIN DD *
r---1
I FORTRAN Object Module I
L---J
/*

Figure 18. Invoking the Cataloged
Procedure FORTGLG or FORTHLG

A sample deck structure to linkage edit
and execute, as one load module, several
object modules entered in the input stream
is shown in Figure 19.

The object module decks were created by
the DECK compiler option. The linkage
editor recognizes the end of one module and
the beginning of another, and resolves
references between them.

//JOBBLG JOB 00,FORTPROG,MSGLEVEL=l
//EXECLG EXEC PROC=FORTGLG or PROC=FORTHLG
//LKED.SYSIN DD *
r---1
I First FORTRAN Object Module I
L---J

r---1
I Last FORTRAN Object Module I
L---J
/*
//GO.SYSIN DD *
r---1
I Data I
L---J
/*

Figure 19. Linkage Edit and Execute

A sample deck structure is shown in
Figure 20 to linkage edit and execute, as
one load module, object modules that are
members of the cataloged sequential data
set, OBJMODS, which resides on a tape
volume. In addition, a data set in the
input stream is processed using the SYSIN
data set.

FORTRAN Job Processing 39

//JOBBLG JOB 00,FORTPROG,MSGLEVEL=l
//EXECLG EXEC FORTGLG or FORTHLG
//LKED.SYSIN DD DSNAME=OBJMODS,DISP=OLD
//GO.SYSIN DD *
r---1
I Data I
L---J
/*

Figure 20. Linkage Edit and Execute Object
Modules in a Cataloged Data Set

COMPILE, LINKAGE EDIT, AND EXECUTE

The FORTRAN IV CG) cataloged procedure
FORTGCLG and the FORTRAN IV (H) cataloged
procedure FORTHCLG each pass a source
through three procedure steps -- compi~e,
linkage edit, and go <execute). These
cataloged procedures consist of the control
statements shown in Figures 52 and 57,
respectively.

Figures 21, 22, and 23 show control
statements used to invoke FORTGCLG or
FORTHCLG. For both compilers, control
statements and control statement fields are
identical, except fo~ the procedure name
specified on the EXEC statement: FORTGCLG
is specified for the (G) compiler;
FORTHCLG, for the (H).

//jobname JOB
// EXEC PROC=FORTGCLG or PROC=FORTHCLG
//FORT.SYSIN DD *
r---1
I FORTRAN Source Module I
L---J
/*

Figure 21. Invoking the cataloged
Procedure FORTGCLG or FORTHCLG

Single.Compile, Linkage Edit, and Execute:
Figure 22 shows a sample deck structure to
compile, linkage edit, and execute a single
source module.

//JOBSCLG JOB 00,FORTPROG,MSGLEVEL=l
//EXECC EXEC FORTGCLG or FORTHCLG
//FORT.SYSIN DD *
r---1
I FORTRAN source Module I
L---J
/*
//GO.SYSIN DD *
r---1
I Data I
L---J
/*

Figure 22. Single Compile, Linkage Edit,
and Execute

40

Batched Compile, Linkage Edit, and Execute:
Figure 23 shows a sample deck structure to
batch compile, linkage edit, and execute a
FORTRAN main program and its subprograms.
The source modules are placed in the input
stream along with a data set that is read
using the SYSI~ data set.

//JOBBCLG JOB 00,FORTPROG,MSGLEVEL=l
//EXECCLG EXEC FORTGCLG or FORTHCLG
//FORT.SYSIN DD *
r---1
I First FORTRAN Source Module I
L---J

r---,
I Last FORTRAN source Module I
L---J
/*
//GO.SYSIN DD *
r---1
I Data I
L---J
/*

Figure 23. Batched Compile, Linkage Edit,
and Execute

COMPILE AND LOAD

The FORTRAN IV (G) cataloged procedure
FORTGCLD and the FORTRAN IV (H) cataloged
procedure FORTHCLD compile FORTRAN source
modules and load the resulting object
modules. The load step combines the
function of the linkage editor with
execution of the edited module.

Figure 24 shows control statements that
can be used to invoke FORTGCLD or FORTHCLD.

//jobname JOB
//EXECLD EXEC PRoc=FORTGCLD

or PROC=FORTHCLD
//FORT.SYSIN DD *
r---1
I FORTRAN Source Module I
L---J
/*

Figure 24. Invoking the Cataloged
Procedure FORTGCLD or FORTHCLD

Single compile and Load: Figure 25 shows
control statements that can be used to
compile and load a single source module.

//jobname JOB 00,'SOURCE A',MSGLEVEL=l
//EXECA EXEC FORTGCLD or FORTHCLD
//FORT.SYSIN DD *
r---1
I FORTRAN source Module I
L---J
/*
//GO.SYSIN DD *
r---1
I Data I
L---J
/*

Figure 25. Single Compile and Load

Batched Compile and Load: Figure 26 shows
control statements that can be used to
batch compile and load a FORTRAN main
program and its subprograms. The source
modules are placed in the input stream
along with a data set that is read using
the SYSIN data set.

//jobname JOB 00,'SOURCE B',MSGLEVEL=l
//EXECB EXEC PROC=FORTGCLD or PROC=FORTHCLD
//FORT.SYSIN DD *
r---1
I First FORTRAN Source Module I
L---J

r---1
I Last FORTRAN Source Module I
L---J
/*
//GO.SYSIN DD *
r---1
I Data I
L---J
/*

Figure 26. Batched Compile and Load

COMPILER PROCESSING

The names for DD statements Cddnames)
relate I/O statements in the compiler with
data sets used by the compiler. These
ddnames must be used for the compiler.
When the system is generated, names for I/O
device classes are also established and
must be used by the programmer.

compiler Name

The program name for the FORTRAN IV (G)
compiler is IEYFORT; for the FORTRAN IV (H)

compiler, IEKAAOO. If.either compiler is
to be executed without using the supplied
cataloged procedures, an EXEC statement of
the following form must be used:

// EXEC PGM=IEYFORT or // EXEC PGM=IEKAAOO

(For more information on procedures and
options in invoking IEYFORT or IEKAAOO, see
"Appendix A: Invoking the FORTRAN
Compiler.">

compiler ddnames

The compiler can use seven data sets.
To establish communication between the
compiler and the programmer, each data set
is assigned a specific ddname. Each data
set has a specific function and device
requirement. Table 3 lists the ddnames,
functions, and device requirements for the
data sets.

To compile a FORTRAN source module, two
of these data sets are necessary -- SYSIN
and SYSPRINT, along with the direct access
volume(s) that contains the operating
system. However, with these two data sets,
only the source listing is generated by the
compiler. If an object module is to be
punched and/or written on a direct-access
or magnetic tape volume, a SYSLIN and/or
SYSPUNCH DD statement must be supplied.1

For the DD statements SYSIN, SYSABEND,
SYSUDUMP, or SYSPRINT, an intermediate
storage device may be specified instead of
the card reader or printer. The
intermediate storage device can be magnetic
tape or a direct-access device.

If an intermediate device is specified
for SYSIN, the compiler assumes that the
source module deck was written on
intermediate storage by a previous job or
job step. If an intermediate device is
specified for SYSPRINT, the map, listing,
and error/warning messages are written on
intermediate storage; a new job or job step
can print the contents of the data set.
When the SYSPRINT data set is written on
intermediate storage, carriage control
characters are placed in the records.

1For FORTRAN IV (H), if a structured source
listing is to be generated, a SYSUTl DD
statement must be supplied. If a cross
reference listing is to be generated by
the compiler, a SYSUT2 DD statement must
be supplied.

FORTRAN Job Processing 41

Table 3. Compiler ddname$
r--------T-----------T--------------------1
lddname !Function !Device Requirements I
r--------~-----------~--------------------~
!FORTRAN IV (G) and FORTRAN IV (H) I
r--------T-----------T--------------------~
ISYSIN !reading thel•card reader I
I !source !•intermediate I
I I program I storage I
r--------+-----------+--------------------~
ISYSPRINTlwriting !•printer I
I !the storagel•intermediate I
I I map, I storage I
I I listing, I I
I I label map, I I
I land I I
I I messages I I
r--------+-----------+--------------------~
ISYSPUNCHlpunching l•card punch1 I
I lthe object !•direct access I
I tmodule deckl•magnetic tape I
r-~------+-----------+--------------------~
ISYSLIN toutput datal•direct access I
I jset for thel•magnetic tape I
I !object l•card punch1 I
I tmodule, I I
I !used as I I
I !input to I I
I lthe linkage! I
I I editor I I
r--------~-----------~--------------------~
!FORTRAN IV CH) Only I
r--------T-----------T--------------------~
ISYSUTl jwork data !•direct access I
I lset for thel•magnetic tape I
I !structured I I
I I source I I
I I listing I I
r--------+-----------+--------------------~
ISYSUT2 lwork data !•direct access I
I jset for thel•magnetic tape I
I I compiler I I
I I cross I I
I !reference I I
I I listing I I
r--------+-----------+--------------------~
ISYSABENDlwriting thel•printer I
I or jdump for anj•intermediate I
ISYSUDUMPjabnormal I storage I
I I termination I I
r--------~-----------~--------------------~
l 1 These must not be the same card punches. I
L---J

Compiler Device Classes

Names for input/output device classes
used for compilation are also specified by
the operating system when the system is

42

generated. The class names, functions, and
types of devices are shown in Table 4.

The data sets used by the compiler must
be assigned to the device classes listed in
Table 5.

Compiler Data Set Assumptions

Standard assumptions are made for the
DCB parameter of the data sets used by the
FORTRAN IV (G) and (H) compilers. Table 6
contains the values set for the logical
record length, record format, and
blocksize for the FORTRAN IV (G) compiler.
Table 7 contains the values set for the
logical record length, record format, and
blocksize for the FORTRAN IV CH) compiler.
Of the values in these two tables, only the
values for blocksize may be overridden with
a DD statement.

In addition, the programmer may specify
the number of buffers to be used for the
compiler data sets. If this information is
missing, the queued sequential access
method (QSAM) default is used. This
default is three buffers for an IBM 2540
card read punch and two buffers for all
other devices.

Table 4. Device Class Names
r----------T---------------T--------------1
!Class NamelClass FunctionslDevice Type I
r----------+---------------+--------------~
ISYSSQ !writing, !•magnetic tape!
I treading, and !•direct accessl
I I backspacing I I
I I (sequential) I I
r----------+---------------+--------------1
jSYSDA jwriting, !•direct access!
I I reading , I I
I I backspacing, I I
I jand updating I I
I jrecords in I I
I !place (direct) I I
r----------+------------~--+--------------1
ISYSCP !punching cards !•card punch I
r----------+---------------+--------------~
IA ISYSOUT output !•printer I
I I I •magnetic tapel
r----------+---------------+--------------1
IB ISYSOUT card l•card punch I
I I image output I •magnetic tape I
L----------~---------------~--------------J

Table 5. correspondence Between Compiler ddnames and Device Classes
r----------T------------------------------------T---------------------------------------1
lddname I Possible Device Classes CH) I Possible Device Classes CG) I
~----------+------------------------------------+---------------------------------------1
ISYSIN I SYSSQ, or the input stream device I SYSSQ, or the input stream device I
I I (specified by DD * or DD DATA), I Cspecif·ied by DD * or DD DATA), I
I I or a device specified as the I or a device specified as the I
I I card reader I card reader I
~----------+-----------------~-----------------+---------------------------------------1
ISYSPRINT I A,SYSSQ I A,SYSSQ I
~----------+------------------------------------+---------------------------------------1
ISYSPUNCH I B,SYSCP1 ,SYSSQ,SYSDA I B,SYSCP I
~----------+------------------------------------+---------------------------------------~
ISYSLIN I SYSSQ,SYSDA,SYSCP1 I SYSSQ,SYSDA I
~----------+------------------------------------+---------------------------------------~
ISYSUT1 I SYSSQ I I
~----------+------------------------------------+---------------------------------------1
jSYSUT2 I SYSSQ I I
~----------+------------------------------------+---------------------------------------~
ISYSABEND I A,SYSSQ I I
I or I I I
I SYSUDUMP I I I
~----------i------------------------------------~---------------------------------------~
l 1 SYSPUNCH and SYSLIN must not be assigned to the same card punch. I
L--~------------------J

Comgiler Options

Options may be passed to the FORTRAN IV
CG) or CH) compiler through the PARM
parameter in the EXEC statement (see Figure
27).

The following information may be
specified for both compilers:

1. Whether a listing of an object module
is printed.

2. The name assigned to the program.

3. The number of lines per page for the
source listing.

4. Whether the source module is coded in
Binary Coded Decimal CBCD) or Extended
Binary Coded Decimal Interchange Code
(EBCDIC).

5. Whether a list of the source
statements, with their associated
internal statement numbers, is
printed.

6. Whether an object module is punched.

7. Whether a storage map of variable
names used in the source mdoule is
printed.

8. Whether the compiler writes the object
module on external storage for input
to the linkage editor.

9. Whether traceback information is to be
inserted into the source module.

Table 6. DCB Assumptions for the CG)
Compiler Data Sets

r------------T-----~--T--------T----------1
I ddname I LRECL I RECFM I BLKSIZE I
~------~-----+--------+--------+----------1
I SYSIN I 80 I FB I 80 I
~------------+--------+--------+----------~
I SYSPRINT I 120 I FBSA I 120 I
~------------+--------+--------+----------~
I SYSLIN I 80 I FBS I 80 I
~------------+--------+--------+----------~
I SYSPUNCH I 80 I FBSA I 80 I
~------------~--------i--------i----------1
!Note: The values specified for LRECL andl
IRECFM cannot be changed by the FORTRAN I
!programmer. The value for BLKSIZE may bej
I changed. I
I I
IFor fixed-length records CF), S indicates!
tstandard blocks, with no truncated blocks I
lor unfilled tracks within the data set. I
L---J

The following information may be
specified for the (H) compiler only:

1. Whether a storage map of labels used
in the source module is printed.

2. The type of optimization, if any,
desired by the programmer.

3. Whether a structured source listing is
written.

4. Whether a cross reference listing is
printed.

Compiler options in the PARM parameter
need not be coded in any specific order.

FORTRAN Job Processing 43

r---~-------------------1
Compiler Options: FORTRAN IV (G) and FORTRAN IV (H) I

{PARM }
PARM.procstep =

' {LIST }
NOLI ST C , NAME=xxxxxx]

{
,DECK }
,NODECK { ,MAP } {,LOAD }

,NOMAP ,NOLOAD

Compiler Options: FORTRAN IV (H) ONLY

[, LINECNT=xxl {
,SOURCE }
.,NOSOURCE

{ 'BCD } {'ID } '1.
,EBCDIC #NOID

2 3

I
l
I
I
I
I
I
I
I
I
I

{ PARM }· {,EDIT } {,XREF }' 1. 2 3 I
PARM.procstep = 'LOPT={~l112}] C,SIZE=nnnnkl ,NOEDIT ,NOXREF I

~---------------------------------~-------------~----~~---------------------------------1
11.If the information specified contains blanks, parentheses, or equal signs, either the I
I subparameter must be enclosed by apostrophes or the entire PARM field must be I
I delimited by apostrophes instead of parentheses. I
l 2 If only one option is specified and it does not contain any blanks, parentheses or I
I equal signs; the delimiting parentheses or apostrophes may be omitted. I
l 3 The maximum number of characters allowed between delimiting parentheses is 100. If I
I the option list is enclosed in apostrophes, however, the PARM parameter must be coded I
I on one card. l
L---J
Figure 27. compiler Options

Table 7. DCB Assumptions for the (H)
compiler Data Sets

r----------T----------T--------T----------1 I ddname I LRECL I RECFM I BLKSIZE1. I
~----------+----------+--------+----------i
I SYSIN I 80 I FB I 801. I
~----------+----------+--------+----------i
I SYSPRINT I 137 I VBA I 1411. I
t----------+----------+--------+----------i
I SYSLIN I 80 I FB I 801. I
~----------+----------+--------+-----~----i
I SYSPUNCH I 80 I FB I 801. I
~----------+----------+--------+----------i
I SYSUTl I 105 I FB I 10502 I
~----------+----------+--------+----------i
I SYSUT2 11024-4096 3 1 FB 11024-4096 2 1 t----------i __________ i ________ i----------i
1.This value may be increased by
overriding the present value, either
through a DCB BLKSIZE parameter in the
associated DD statement or through the
DSCB blocksize information for a
preallocated data set -- if the
overriding value is a multiple of LRECL.

2 This value is fixed by the compiler and
may not be overridden. If BLKSIZE is
provided either through a DCB parameter
in the DD statement or through a DSCB
for a preallocated data set, it is
ignored.

3 The value is within this range, and the
actual value is calculated during
execution.. The size of one of the
tables used by the compiler (the address
constant table) is compared with the
tracksize of the device specified by
SYSUT2, and the LRECL and BLKSIZE fields!
are equated to the smaller value. I

L---J

44

LIST or NOLIST

The LIST option indicates that the
object module listing is written in the
data s~t specified by the SYSPRINT DD card.
(The statements in the object module
listing are in a pseudo assembler language
format.) The NOLIST option indicates that
no object module listing is written. A
description of the object module listing is
given in the section "System Output."

NAME=xxxxxx

The NAME option specifies the name
(xxxxxx) assigned to a module (main program
only) by the programmer. If NAME is not
specified or the main program is not the
first module in a compilation, the compiler
assumes the name MAIN for the main program.
The name of a subprogram is always the name
specified in the SUBROUTINE or FUNCTION
statement.

The name appears in the source listing,
map, and object module listing. (See
"Multiple Compilation Within a Job Step" in
this section for additional considerations
concerning the NAME option.)

LINECNT=xx

The LINECNT option specifies the maximum
number of lines Cxx) per page for a source
listing. The specified number Cxx) may be
any in the range 01 to 99. If LINECNT is
not specified, a default of 50 lines per
page is provided. (The LINECNT option is
effective only at compile time.)

SOURCE or NOSOURCE

The SOURCE option specifies that the
source listing is written in the data set
specified by the SYSPRINT DD statement.
The NOSOURCE option indicates that no
source listing is written. A description
of the source listing is given in the
section "System Output~"

DECK or NODECK

The DECK option specifies that an object
module card deck is punched as specified by
the SYSPUNCH DD statement. The object
module deck can be used as input to the
linkage editor in a subseguent job. NODECK
specifies that no object module deck is
punched. A description of the deck is
given in the section "System Output."

MAP.or NOMAP

The MAP option specifies that a table of
names is written in the data set specified
by the SYSPRINT DD statement. The type and
location of each name is listed. Included
in the table of names for FORTRAN IV CH) is
a table of labels appearing in the input
stream. A description of the table is
given in the section "System Output." The
NOMAP option specifies that the table of
names is not written.

LOAD.or NOLOAD.

The LOAD option indicates that the
object module is written in the data set
specified by the SYSLIN DD statement. This
option must be used if the cataloged
procedure to compile and linkage edit, or
to compile, linkage edit, and execute is
used; i.e., the object module is used as
input to the linkage editor in the current
job. The NOLOAD option indicates that the
object module is not written on external
storage. This.option can only be used if
the cataloged procedure to compile is used.

BCD.or EBCDIC

The BCD option indicates that the source
module is written in Biriary coded Decimal;
EBCDIC indicates Extended Binary Coded
Decimal Interchange Code. To intermix BCD
and EBCDIC in the source module, BCD should
be specified.

Notes:

1. If the EBCDIC option is selected,
statement numbers passed as arguments
must be coded as

&n

However, if the BCD option is
selected, statement numbers passed as
arguments must be coded as

$n

and the $ must not be used as an
alphabetic character in the source
module.

(The g represents the statement
number.>

2. The compiler does not support BCD
characters either in literal data or
as print control characters. Such
characters are treated as EBCDIC. For
example, a BCD + used as a carriage
control character will not cause
printing to continue on the same line.
Programs keypunched in BCD, therefore,
should be carefully screened if errors
relating to literal data and print
control characters are to be avoided.

ID or NOID

The ID option specifies that internal
statement numbers CISN) are to be generated
for statements that call subroutine or
contain external function references.
Calls to IBCOM are not affected. An
additional four bytes are required for each
linkage.

The ISN is used by the traceback in the
event of an error in the called subprogram.
see the discussion on "Load Module Output"
in the section on "System Output."

r------,,
I H ONLY liOPT={ 01112}
L------J

The OPT=O option indicates that the
compiler uses no optimizing techniques in
producing an object module. The OPT=l
option indicates that the compiler treats
each source module as a single program loop
and optimizes the loop with regard to
register allocation and branching. The
OPT=2 option indicates that the compiler
treats each source module as a collection
of program loops and optimizes each loop
with regard to register allocation,
branching, common expression elimination,
and replacement of redundant computations.
The options OPT=l and OPT=2 are described
in more detail in the section "Appendix H:
FORTRAN IV (H) Optimization Facilities."

FORTRAN Job Processing 45

r------,
IH ONLYISIZE=nnnnK
L------J

The SIZE compiler option is used to
limit the amount of main storage used by
the compiler. In normal instances the
total amount of main storage available to
the compiler depends on the region size in
an MVT environment, the partition size in
an MFT environment, or the machine size in
a PCP environment. Of this available
space, compiler code takes up a fixed
amount of storage, followed by compiler
work table area; the size of the work table
area is fixed at system generation time via
the SIZE specification in the FORTRAN
system generation macro. (The SIZE
specification at SYSGEN time should not be
confused with the SIZE compiler option.)
The remainder of available main storage is
used by the compiler for work space except
for 3K bytes which are left for
non-resident system routines. For example,
a REGION specification of 200K would be
typically allocated as follows:

T
I
I 92K
I
I
I
I
I 7K
I
I
I
I

total
region size

200K
I
I 98K
I
I
I
I

J
3K

r--------------1

I I
I I
I I
!compiler code I
I I
I I
I I
r--------------~
!table area I
r--------------~
I I
I I
I I
I I
I I
I I
I I
!work space I
I I
I I
r--------------~
I I
!system area I
I I
L--------------J

{

fixed by
sysgen SIZE
option

In certain instances however, a
programmer may wish to limit the amount of
main storage used by the compiler. The
prime example is when the FORTRAN H
compiler is executed as the original task
in a multitasking environment. Unless the
compiler is confined to a portion of the
region or partition, no subtasks could be
created by the multitasking monitor.

The programmer may limit the amount of
main storage available to the compiler by
specifying SIZE=nnnnK in the operand field
of the EXEC statement.. The value nnnn can
range from 115 to 9999 and is equal to the

46

size of the compiler code, table area, and
work space; the first two quantities are
fixed, while the last is dependent on the
SIZE value coded. Using the same REGION
specification of 200K as in the first
example, a compile-time specification of
SIZE=160K would typically result in the
following allocation:

r--------------1
I I
I I

_T ______ T
I I I I

92K !compiler code I I I
I I I I
I I I I
I I I I
r--------------~ I I
I I I I

7K jtable area I 160K I
r--------------~ I
I I I I
I I
I I
I I
I I

61K jwork space I
I I
I I
I I
r--------------~
I I

37K !this space I
javailable for I
I subtasks I
r--------------~
I I

3K I system area I
I I
L--------------J

I I
I I
I 200K
I
I
I

l

The compiler prints two informational
messages that ref er to the specification of
the SIZE option. 'I'he first appears as
follows:

OPTIONS IN EFFECT option , ••• ,SIZE=nnnnK

The value listed for nnnn represents the
user-specified SIZE value. If the SIZE
option was not coded, nnn is listed as O.

The second informational message is:

nnnnK BYTES OF CORE NOT USED

This message is produced if more than lOK
bytes of available work space remained
unused during compilation. If the SIZE
option was indicated, the term nnnn
indicates how much smaller the SIZE value
could have been specified for optimal
storage use. If the SIZE option was not
coded, this message indicates how much
smaller the region size could have been
specified.

The size of the region or partition in
which the compiler is running must be at
least lOK bytes larger than the specified
SIZE value. If the SIZE option is
specified incorrectly, the compiler
diagnostic message IEK410I (INVALID SIZE
PARAMETER) is produced and the SIZE option
is ignored.

r------,
I H ONLY I· EDIT . or NOEDIT
L------J

The EDIT option specifies that a
structured source listing is written in the
data set specified by the SYSPRINT DD
statement. This listing indicates the loop
structure and the logical continuity of the
source program. If this option is used,
OPT=2 must be specified and a DD statement
with the name SYSUTl must be supplied. The
following is a typical DD statement for a
utility data set:

//SYSUTl DD DSNAME=&UTl,UNIT=SYSSQ,
SPACE= (TRK, C 40))

&UTl
specifies a temporary data set.

UNIT=SYSSQ
specifies that the data set is to
reside in a sequential device class.

SPACE=(TRK,(40))
specifies that if the data set is
assigned to a direct access device, 40
tracks are to be allocated to the data
set.

The NOEDIT option specifies that no
structured source listing is written. A
description of the structured source
listing is given in the section "System
Output."

r------,
IH ONLYI XREF or NOXREF
L------J

The XREF option specifies that a cross
reference listing of variables and labels
is written in the data set specified by the
SYSPRINT DD statement. This listing
indicates the internal statement number of
every statement in which a variable or
label is used. If this option is
specified, a DD statement with the name
SYSUT2 must be supplied. The NOXREF option
specifies that no cross reference listing
is written. A description of the compiler
cross reference listing is given in the
section "System output."

Note: The default compiler options shown
in this publication are standard IBM
defaults; however, during system
generation, an installation can choose its
own set of default options.

Multiple compilation Within a Job Step

Several compilations may be performed
within one job step. The compiler
recognizes the FORTRAN END statement in a
source module, compiles the program, and
determines if another source module follows
the END statement. If there is another
source module, another compilation is
initiated Csee Figure 28).

r---1
//JOBRA JOB ,'FORTRAN PROG'
//STEPl EXEC FORTGC or FORTHC
//FORT.SYSIN DD *

1 READ C8,10)A,B,C

END
SUBROUTINE CALC

END
II*
L---
Figure 28. Multiple Compilation Within a

Job Step

Only one EXEC statement may be used to
initiate a job step; therefore, compiler
options can be stated only once for all
compilations in a job step.

In a multiple compilation, only the
first program Cif it is a main program) is
given the name specified in the NAME
option; all subsequent main programs are
given the name MAIN. If the first program
is a subprogram, the name specified in the
NAME option is not used. If the NAME
option is not specified, all main programs
in a multiple compilation are given the
name MAIN. For example, in the multiple
compilation,

//MULCOM JOB
// EXEC FORTGC or

FORTHC,PARM.FORT='NAME=IOR'
//FORT.SYSIN DD *

READCl,lO)ALP,BETA

END
SUBROUTINE INVERTCA,B)

END
READ (5) P, Q, R

END
I*

FORTRAN Job Processing 47

the first main program is given the name
IOR; the third program is given the name
MAIN. The second program is assigned the
name INVERT.

When a multiple compilation is
performed, the SYSLIN data set contains all
the object modules, because only one SYSLIN
DD statement may be supplied for compiler
output. If tape or direct-access output is
specified for the compiler, the object
modules are written sequentially on the
volume:

r-----------------T-----------------1
I Object Module 1 I Object Module 2 I
L-----------------i-----------------J

LINKAGE .. EDITOR . PROCESS ING

The linkage editor processes FORTRAN
object modules, resolves any references to
subprograms, and prepares a load module for
execution. 1 To communicate with the linkage
editor, the programmer supplies an EXEC
statement and DD statements that define all
required data sets; he may also supply
linkage editor control statements.

Linkage Editor.Names

Five linkage editor programs are
available with the operating system. The
program names for these linkage editors and
the minimum storage in which they are
designed to operate are:

PCP and MFT MVT-System

IEWLE150 15K 24K
IEWLE180 18K 26K
IEWLF440 44K 54K
IEWLF880 88K 96K
IEWLF128 128K 136K

(Where K=1024 Bytes)

All facilities described for the linkage
editor in this publication are available
with all five linkage edi.tors, except that
blocking of primary input/output is
available only with the higher level
linkage editors: IEWLF440, IEWLF880, and
IEWLF128.

1 Another IBM~supplied program, the loader,
combines -- into one job step -- the
functions of the linkage editor with
execution of the edited module. Details
on the use of the loader can be found in
the Linkage Editor and Loader publication.

48

For simpler programming, the linkage
editors have been assigned the alias
program name IEWL. If the programmer
specifies the parameter

PGM=IEWL

in the EXEC statement, the highest level
linkage editor provided in the
installation's operating system is
executed. If he wants to execute a
specific linkage editor, he must specify
the specific program name of that linkage
editor.

Linkage Editor Input and Output

There are two types of input to the
linkage editor: primary and secondary.

Primary input is a sequential data set
that contains object· modules and linkage
editor control statements. CA member of a
PDS can be the primary input.) Any
external references among object modules in
the primary input are resolved by the
linkage editor as the primary input is
processed. Furthermore, the primary input
can contain references to the secondary
input. These references are linkage editor
control statements and/or external
references in the FORTRAN modules.

Secondary input resolves the references
and is separated into two types: automatic
call library and additional input specified
by the programmer. The automatic call
library should always be the FORTRAN
library (SYSl.FORTLIB), which is the PDS
that contains the FORTRAN library
subprograms. Through the use of DD
statements the automatic call library can
be concatenated with other partitioned data
sets. Three types of additional input may
be specified by the programmer:

• An object module used as the main
program in the load module being
constructed. This object module, which
can be accompanied by linkage editor
control statements, is either a member
of a PDS or is a sequential data set.
The first record in the primary input
data set must be a linkage editor
INCLUDE control statement that tells
the linkage editor to insert the main
program.

• An object module or a load module used
to resolve external references made in
another module. The object module,
which can be accompanied by linkage
editor control statements, is a
sequential data set or is a member of a
PDS. The load module, which is a

member of a PDS, cannot be accompanied
by linkage editor control statements.
An INCLUDE statement that defines the
data set must be given.

• A module used to resolve external
references made in another module. The
load module or object module, which can
be accompanied by linkage editor
control statements, is a member of PDS.
A linkage editor LIBRARY control
statement that defines the data set to
the linkage editor must be given.

In addition, the secondary input can
contain external references and linkage
editor control statements. The automatic
call library and any of the three types of
additional input may be used to resolve
references in the secondary input.

The load module created by the linkage
editor is always placed in a PDS. Error
messages and optional diagnostic messages
are written on intermediate storage or a
printer. In addition, a work data set is
required by the linkage editor to do its
processing. Figure 29 shows the I/O flow
in linkage editor processing.

Linkage Editor ddnarnes and Device Classes

The programmer communicates data set
inf orrnation to the linkage editor through
DD statements identified by specific
ddnames (similar to the ddnarnes used by the
compiler). The ddnames, functions, and
requirements for data sets are shown in
Table 8.

Table 8. Linkage Editor ddnames

SYSLIN

SYSLIB

Automatic
Call
Library

Additional
Libraries

SYSUT 1

Work
Data Set

Linkage
Editor

SYSLMOD

Output
Module
Library

Diagnostic
Data Set

SYS PRINT

Figure 29. Linkage Editor Input and Output

Ahy data sets spectf ied by SYSLIB or
SYSLMOD must be partitioned data sets. The
ddname for the DD statement that retrieves
any additional libraries is written in
INCLUDE and LIBRARY statements and is not
fixed by the linkage editor.

The device classes used by the compiler
(see Table 4) must also be used with the
linkage editor:--T°he data sets used by
linkage editor may be assigned to the
device classes listed in Table 9.

r--------------T---T----------------------------1
I ddname I Function I Device Requirements I
~--------------+---+----------------------------1
ISYSLIN !primary input data, normally the output of !•direct access I
I lthe compiler !•magnetic tape I
I I l•card reader I
r--------------+---+----------------------------~
I SYSLIB I automatic call library CSYSl.FORTLIB) I •direct access I
r--------------+---+----------------------------1
ISYSUTl !work data set !•direct access I
r--------------+---+----------------------------~
jSYSPRINT !diagnostic messages !•printer I
I I !•intermediate storage devicej
r--------------+---+----------------------------~
ISYSLMOD !output data set for the load module !•direct access I
r--------------+-~---+----------------------------1
luser-specifiedladditional libraries and object modules !•direct access I
I I !•magnetic tape I
L--------------i---i----------------------------J

FORTRAN Job Processing 49

Table 9. Correspondence Between Linkage
Editor ddnames and Device
Classes

r--------------T--------------------------1
I ddname !Possible Device Classes I
t--------------+--------------------------i
ISYSLIN ISYSSQ,SYSDA,or the input I
I I stream device (specified I
I lby DD *or DD DATA); or al
I !device specified as the I
I Icard reader I
~--------------+--------------------------i
ISYSLIB ISYSDA I
t--------------+--------------------------i
ISYSUT1 ISYSDA I
t--------------+--------------------------i
ISYSLMOD ISYSDA I
t--------------+--------------------------i
ISYSPRINT IA,SYSSQ I
t--------------+--------------------------i
1user-specifiedlSYSDA,SYSSQ I
L--------------~-----~--------------------J

Additional Input

The INCLUDE and LIBRARY statements are
used to specify additional secondary input
to the linkage editor. Modules neither
specified by INCLUDE or,LIBRARY statements
nor contained in the primary input are
retrieved from the automatic call library.

INCLUDE Statement:

r---------T-------------------------------1
I Operation I Operand I
t---------+-------------------------------i
!INCLUDE lddname[Cmember-nam~ I
I I [,member-name] •••) J I
I I C,ddname[Cmember-name I
I I C,member-nameJ •••)JJ... I
L---------~-------------------------------J

The INCLUDE statement is used to include
either members of additional libraries or a
sequential data set. The "ddname"
specifies a DD statement that defines
either a library containing object modules
and control statements or just load
modules, or defines a sequential data set
containing object modules and control
statements. The "member name" is not used
when a sequential data set is specified.

The linkage editor inserts the object
module or load module in the output load
module when the INCLUDE statement is
encountered.

50

LIBRARY Statement:

r---------T------------------------------:-1
I Operation I Operand I
r--:-:------+-------------------------------i
!LIBRARY lddnameCmember-name I
I I [,member-name] .••) I
I I C,ddnameCmember-name I
I I [,member-name] •••)]... I
L---------~-------------------------------J

The LIBRARY statement is used to include
members of additional libraries. The
"ddname" must be the-name

1
of a DD statement

that specifies a library that contains
either object modules and linkage editor
control statements, or just load modules.
The "member name" is an external reference
that is unresolved after primary input
processing is complete.

The LIBRARY statement differs from the
INCLUDE statement: external references
specified in the LIBRARY statement are not
resolved until all other processing, except
references reserved for the automatic call
library, is completed by the linkage
editor. (INCLUDE statements resolve
external references when the INCLUDE
statement is encountered.)

Example: Two subprograms, SUBl and SUB2,
and a main program, MAIN, are compiled by
separate job steps. In addition to the
FORTRAN library, a private, library, MYLIB,
is used to resolve external references to
the symbols X,, Y, and z. Each of the
object modules is placed in a sequential
data set by the compiler, and passed to the
linkage editor job step.

Figure 30 shows the control statements
for this job. (Cataloged procedures are
not used.) In this job, an additional
library, MYLIB, is specified by the LIBRARY
statement and the ADDLIB DD statement.
SUB1 and SUB2 are included in the load
module by the INCLUDE statements and the DD
statements DD1 and DD2. The linkage editor
input stream, SYSLIN, is two concatenated
data sets: the first data set is the
sequential data set &GOFILE which contains
the main program; the second data set is
the two INCLUDE statements and the LIBRARY
statement. After linkage editor execution,
the load module is placed in the PDS
PROGLIB and given the name CALC.

Note: This example shows the use of the
FORTRAN IV CH) compiler (program name
IEKAAOO). An example showing the use of
the CG) compiler would be identical except
for program name; PGM=IEYFORT would be
coded, where appropriate, instead of
PGM=IEKAAOO.

r---1
//JOBX JOB
/ /STEPl EXEC PGM=IEKAAOO I PARM=. NAME=MAIN I LOAD''

//SYSLIN
//SYSIN

/•
//STEP2

//SYSLIN.
//SYSIN

/•
//STEP3

//SYSLIN
//SYSIN

/*
//STEP4

//SYSLIB
//SYSLMOD
//ADDLIB
//DDl
//DD2
//SYSLIN
//

DD DSNAME=&GOFILE,DISP=C,PASS),UNIT=SYSSQ
DD •
Source module for MAIN

EXEC PGM=IEKAAOO,PARM='NAME=SUBl,LOAD'

DD DSNAME=&SUBPROGl,DISP=C,PASS),UNIT=SYSSQ
DD •
Source module for SUBl

EXEC PGM=IEKAAOO, PARM=' NAME=SUB2, LOAD''

DD DSNAME=&SUBPROG2,DISP=(,PASS),UNIT=SYSSQ
DD *
Source module for SUB2

EXEC

DD
DD
DD
DD
DD
DD
DD
INCLUDE
INCLUDE
LIBRARY

PGM=IEWL

DSNAME=SYSl.FORTLIB,DISP=OLD
DSNAME=PROGLIBCCALC),UNIT=SYSDA
DSNAME=MYLIB,DISP=OLD
DSNAME=•.STEP2.SYSLIN,DISP=OLD
DSNAME=•.STEP3.SYSLIN,DISP=OLD
DSNAME=•.STEPl.SYSLIN,DISP=OLD

* DDl
DD2
ADDLIB ex, y, Z)

I
I
I
I
I

L---J
Figure 30. Linkage Editor Example -- CH) Compiler

Linkage Editor Priority

If modules with the same name appear in
a single data set, only the module
encountered first is inserted in the output
load module.

Other Linkage Editor Control Statements

In addition to the LIBRARY and INCLUDE
statements, other control statements are

available for use with the linkage editor.
These statements enable the user to:
specify different names for load modules
(ALIAS), replace modules within a load
module (REPLACE), change program names
(CHANGE), and name entry points (ENTRY).
In addition, two statements (OVERLAY and
INSERT) enable the programmer to overlay
load modules. For a detailed description
of these control statements, see the
Linkage Editor and Loader publication,
Order No. GC28-6538.

FORTRAN Job Processing 51

Options for Linkage Editor Processing

The linkage editor options are specified
in an EXEC statement. The options that are
most applicable to the FORTRAN programmer
are:

{ PARM } [MAP J
PARM. procstep = (XREF [,LET] C, NCAL]

[,LIST])

MAP.or XREF

The MAP option informs the linkage
editor to produce a map of the load module;
this map indicates the relative location
and length of main programs and
subprograms. If XREF is specified, a map
of the load module is produced and a cross
reference list indicating all external
references in each main program and
subprogram is generated. The map or map
and cross reference list are written in the
data set specified by the SYSPRINT DD
statement. If neither option is specified,
the system generation option for the
procedure for the linkage editor is put
into effect. Descriptions of the map and
cross reference listing are given in
"System Output."

The LET option informs the linkage
editor to mark the load module executable
even though error conditions, which could
cause execution to fail, have been
detected.

The NCAL option informs the linkage
editor that the libraries specified in the
SYSLIB DD statement or specified in LIBRARY
statements are not used to resolve external
references. (The SYSLIB DD statement need
not be specified.) The subprograms in the
libraries are not inserted in the load
module; however, the load module is marked
executable.

The LIST option indicates that linkage
editor control statements are listed in
card-image format in the diagnostic output
data set specified by the SYSPRINT DD
statement.

Other options can also be specified for
the linkage editor. For a detailed
description of all linkage editor options,
see the Linkage Editor and Loader
publication, Order No. GC28-6538.

52

LOAD MODULE EXECUTION

When "PGM=program name" is used to
indicate the execution of a load module,
the module must be in either the system
library CSYSl.LINKLIB) or a private
library. When the module is in a private
library, a JOBLIB DD statement must be
supplied to indicate the name of the
private library. For example, assume that
the load modules CALC and ALGBRA in the
library MATH and the load module M~TRIX in
the library MATRICES are executed in the
following job:

//JOBN JOB 00,FORTPROG
//JOBLIB DD DSNAME=MATH,DISP=(OLD,PASS)
// DD DSNA!v'..E=MATRICES,DISP=(OLD,PASS)
//STEPl EXEC PGM=CALC

//STEP2 EXEC PGM=MATRIX

//STEP3 EXEC PGM=ALGBRA

The JOBLIB DD statement concatenates the
private library MATH with the system
library. The private library MATRICES is
concatenated with the system library, by
concatenating the second DD statement with
the JOBLIB DD statement.

Execution ddnames

In the source module, data set reference
numbers are used to identify data sets.
Data sets processed by a FORTRAN load
module must be defined by DD statements.
The correspondence between a data set
reference number and a DD statement is made
by a ddname.

The ddname format that must be used for
load module execution is

FTxxFyyy

where xx is the data set reference number,
and yyy is a FORTRAN sequence number.

Data Set Reference Number (xx): When the
system is generated, the upper limit for
data set reference numbers is specified by
the installation; it must not exceed 99.
This upper limit does not correspond to the
number of input/output devices.

If an installation specifies an upper
limit of 99 for its data set reference
numbers, the ddnames and data set reference
numbers correspond as shown in Table 10.
Note that 0 is not a valid data set
reference number.

FORTRAN-Sequence Number Cyyy): The FORTRAN
sequence number is used to ref er to
separate data sets that are read or written
using the same data set reference number.
For the first data set, the sequence number
is 001; for the second 002; etc. This
sequence number is incremented when Cl) an
END FILE statement is executed and a
subsequent WRITE is issued with the same
data set reference number or (2) the "END="
exit is taken following a READ and a
subsequent READ or WRITE is issued with the
same data set reference number.

A DD statement with the required ddname
must be supplied every time the WRITE, END
FILE, WRITE sequence occurs. If the
FORTRAN statements in the following example
are executed, DD statements with the
ddnames indicated by the arrows must be
supplied for the corresponding WRITE
statements.

Statements ddnames

15 FORMAT(3F10.3,I7)
10 FORMATC3F10.3)

DO 20 I=l,J

20 WRITE(17,10)A,B,C -----------> FT17F001

END FILE 17
DO 30 I=l,N

30 WRITE(17,15)X,Y,Z,K ---------> FT17F002
END FILE 17
DO 40 I=l,M,2

40 WRITE(17,10)A,B,C -----------> FT17F003

END FILE 17

If the preceding instructions are used
to write a tape, the output tape
(unlabeled) has t~e appearance shown in
Figure 31. The tapemarks are written by
execution of the ENDFILE statements.
Successful execution of ENDFILE always
includes writing an end-of-data indicator.

Reference Numbers for Data Sets Specified
in DEFINE FILE Statements

The characteristics of any data set to
be used during a direct-access input/output
operation-must be described by a DEFINE
FILE statement.

The data set reference number specified
in any DEFINE FILE statement may ref er to
only one data set. In other words, the
method described previously concerning
references to separate data sets that are
read or written using the same data set
reference number is prohibited. For
example, the statement

DEFINE FILE 2C50,100,L,I2)

establishes a data set reference number of
02. All subsequent input/output statements
must ref er to only one data set with the DD
name of FT02F001. (For a more detailed
explanation of the DEFINE FILE statement,
ref er to the FORTRAN IV Language
publication, Order No. GC28-6515.)

Retrieving Data sets Written with Varying
FORTRAN Sequence Numbers

To retrieve the data sets shown in
Figure 31, the data set sequence number in
the LABEL parameter must be supplied in the
DD statement. The LABEL parameter is
described in detail in the section
"Creating Data Sets."

LABEL=([data-set-sequence-number] ,SL)
{
,NL}

,BLP

The "data set sequence number" indicates
the position of the data set on a
sequential volume. (This sequence number
is cataloged.) For the first data set on
the volume, the data set sequence number is
1; for the second, it is 2; etc.

Table 10. Load Module ddnames
r-----------------------------T-----------1
I Data Set Reference Numbers I ddnames I
~-----------------------------+-----------~
I 1 I FT01Fyyy I
I 2 I FT02Fyyy I
I I I
I I I
I I I
I 13 I FT13Fyyy I
I I I
I I I
I I I
I 99 I FT99Fyyy I
L-----------------------------L-----------J

FORTRAN Job Processing 53

If one of the data sets shown in Figure
31 is read in the same job step in which it
is written, an END FILE statement must be
issued after the last WRITE instruction.
If the data set is to be read by the same
data set reference number, DD statement
FT17F004 is used to read the data set. The
execution of a READ statement following an
END FILE increments the FORTRAN sequence
number by 1. For example, the following DD
statements are used to write the three data
sets shown in Figure 31 and then read the
second data set:

//FT17F001 DD UNIT=TAPE,LABEL=C,NL), X
// DISP=(,PASS)
//FT17F002 DD UNIT=TAPE,LABEL=C2,NL}, X
// VOLUME=REF=*.FT17F001
//FT17F003 DD UNIT=TAPE,LABEL=(3,NL), X
// VOLUME=REF=*.FT17F001
//FT17F004 DD VOLUME=REF=*.FT17F001, X
// DISP=OLO,LABEL=C2,NL}, X
// DSNAME=*.FT17F002,UNIT=TAPE

The VOLUME parameter indicates that the
data set resides on the same volume as the
data set defined by DD statement FT17F001.
DD statement FTl7F004 refers to the data
set defined by DD statement FT17F002.

If the data set is read by a different
data set reference number, for example,
data set reference number 18; then, the DD
statement FT17F004 is replaced by the
statement.

//FT18F001 DD VOLUME=REF=*.FT17F002, X
// DlSP=OLD,LABEL=(2,NL}

If the data sets shown in Figure 31 are
cataloged for later reading, and if the
following DD statements are used to write
the data sets,

//FT17F001 DD DSNAME=Nl,LABEL=Cl,NL}, X
// DlSP=(,CATLG),,UNIT=TAPE, X
// VOLUME=SER=163K
//FT17F002 DD DSNAME=N2,LABEL=(2,NL), X
// DISP=(,CATLG),VOLUME=REF=*.FT17F001
//FT17F003 DD DSNAME=N3,LABEL=C3,NL}, X
// DlSP=C,CATLG),VOLUME=REF=*.FT17F002

the information necessary to retrieve the
data sets is the DSNAME, the LABEL, and the
DISP parameters. For example, if data set
reference number 10 is used to retrieve
data set Nl, the following DD statement is
required.

//FTlOFOOl DD DSNAME=Nl,DISP=OLD,
// LABEL= (,NL)

If the data set is not cataloged and
then retrieved in a later job, the VOLUME,
UNIT, and LABEL information is needed to
retrieve the data set. When the data set
is created, the programmer must assign a
specific volume to it.

x

Assume the data sets shown in Figure 28
were assigned the volume identified by the
volume serial number Alllll when the data
sets were created. If the second data set
written on the volume is retrieved by data
set reference number 10 in a later job, the
following DD statement is needed.

//FTlOFOOl DD VOLUME=SER=Alllll,DISP=OLD, X
// LABEL=C2,NL},UNIT=SYSSQ

END Exit: Data sets written using the same
data set reference number can be retrieved
in the same job or job step by using a
facility provided in the FORTRAN language
-- the "END=" exit in a READ statement.
After the last data set is written and the
END FILE is executed, a REWIND may be
issued. A subsequent READ using the same
data set reference number resets the
FORTRAN sequence number to 001. When the
last record of a data set has been read, an
additional READ causes the END exit to be
taken. On the next READ, the sequence
number is incremented by 1. The data sets
shown in Figure 31 can be read by using the
following sequence of statements.

Note: The DD statements used to create the
data sets also suffice for retrieving the
data sets. No additional DD statements are
required.

r---1
I tapemark tapemark tapemark I

! r----T_:::::::,-___ jT _______ T ___ :::::::r---J~---T::::::: __ 1_ !
I IA,B,CIA,B,c1 ••• jA,B,CI 1x,Y,Z,KIX,Y,Z,Kl ••• 1x,Y,Z,KI IA,B,cj ••• jA,B,CI I··· 1 I L _____ i _____ i ___ i _____ i_~-------~-------i ___ i _______ i_~ _____ i ___ i----~~-i- I
I ,_ I
I Written using DD Written using DD Written using DD I
I statement FT17F001 statement FT17F002 statement FT17F003 I
L---J
Figure 31. Tape Output for Several Data Sets Using Same Data Set Reference Number

54

REWIND 17

100 READ(17,10,END=200)A,B,C ---->FT17F001

GO TO 100

200 READC17,15,END=300)X,Y,Z,K---->FT17F002

GO TO 200

300 READ(17,10,END=350)A,B,C ---->FT17F003

GO TO 300

350 REWIND 17

Concatenation: The data sets shown in
Figure 31 can be concatenated and read as a
single data set. The information necessary
(assume cataloged data sets) to retrieve
the data sets is the DSNAME, LABEL, and
DISP parameters. For example, if data set
reference number 16 is used to retrieve the
data sets, the following DD statements are
required.

//FT16F001 DD DSNAME=Nl,DISP=OLD, x
// LABEL= (I NL)
// DD DSNAME=N2,DISP=OLD, x
// LABEL= (2 I NL)
// DD DSNAME=N3,DISP=OLD, x
// LABEL=C3,NL)

The ERR option the FORTRAN READ
statement may be used to give control to
the problem program if an uncorrectable I/O
error occurs on a magnetic tape or direct
access device. This parameter is not
effective for data sets on unit record
devices.

~: Conca~enation of data sets with
unlike attributes is not supported.
Partitioned data sets with like attributes
may be concatenated for input only.
Concatenation of two or more members of the
same PDS is not supported.

Partitioned Data Set Processing

FORTRAN load modules may access two or
more members of the same partitioned data
set CPDS); however, only sequential
processing is permitted. The PDS.must be
closed for one member before attempting to
read or write another member.

PDS Processing Using "END=" Option: One
method of sequentially processing two or
more members of the same PDS is by using
the "END=" option in a FORTRAN sequential
READ statement. When the "END=" option is
executed and a subsequent READ or WRITE
statement is issued with the same data set
reference number, the FORTRAN sequence
number is incremented by one. This allows
another member of the PDS referenced by the
same data set reference number to be
processed.

The following FORTRAN program
illustrates how this method is put into
effect:

INTEGER *4 X(20),Y(20)
10 READ C2,1,END=98) X
1 FORMAT (20A4)

GO TO 10
98 READ (2,1,END=99) Y

GO TO 98
99 WRITE (6,2) X,Y

STOP
END

Execution of statement 10 results in the
processing of the first PDS member which is
referenced by the FORTRAN sequence number
001. If this member has the name MEMBER!
and resides in the cataloged partitioned
data set named PDS, the DD statement that
must be supplied is:

//FT02F001 DD DSN=PDS(MEMBERl),
LABELC,,,IN),DISP=OLD

When the "END=" option is executed in
statement 10 and the next READ statement,
statement 98, is encountered, the FORTRAN·
sequence number becomes 002. This closes
the PDS for the first member. Another
member may then be processed. If its name
is MEMBERS, the DD statement that must be
supplied is:

//FT02F002 DD DSN=PDS(MEMBER5),
LABEL=(,,,IN),DISP=OLD

Note: For PDS processing, the "END="
option specification is the only method of
incrementing the FORTRAN sequence number.
The END FILE statement methods described
earlier in the section "FORTRAN Sequence
Number" cannot be implemented since END
FILE statements cannot be used for
partitioned data sets.

FORTRAN Job Processing SS

PDS -Processing . Using . REWIND: _,. A second
method of processing two or more members of
the same PDS is the use of the REWIND
statement in the FORTRAN program. This
statement should be of the form:

REWIND a

where a is an unsigned integer constant or
variable representing a data set reference
number. Execution of the REWIND statement
closes the data set represented by the
integer a. Any subsequent READ or WRITE
statement opens the data set again.

The following example illustrates the
use of the REWIND statement for the reading
of two members of the same PDS:

INTEGER *4 X(20),Y(20)
READ (2,1) X
REWIND 2
READ (3,1) Y
WRITE (6,2) X,Y

i FORMAT C20A4)
2 FORMAT(' ',20A4)

STOP
END

Execution of the first READ statement
results in the processing of the first PDS
member which is referenced by the FORTRAN
sequence number 001. If the member has the
name MEMBERl and resides in the cataloged
partitioned data set named PDS, the DD
statement that must be supplied is:

//~"'':r02F001 DD DSN=PDS (MEMBERl),
LABEL=<., , , IN) I DISP=OLD

When the REWIND statement is executed, the
PDS is closed for MEMBER!. The next READ
statement reopens the data set for another
POS member. If the next member name is
MEMBERS, the DD statement that must be
supplied is:

//FT03F001 DD DSN=PDS(MEMBERS),
LABEL=C,,,IN),DISP=OLD

The following example illustrates the use
of the REWIND statement for the writing of
two PDS members:

INTEGER *4 X(20)
DO 3 I=1,20

3 X(I)=I
WRITE (2,l)X

1 FORMAT (' ',20A4)
REWIND 2
WRITE (3,l)X
STOP
END

Here, the use of the REWIND statement for
the data set reference number 2 closes the
PD&. It is reopened for the next member by
the· reference to data set reference

56

number 3. The DD statements that must be
supplied are the same as those in the
previous example; however, LABEL=(,,,OUT)
must be specified to indicate output
processing.

REWIND and BACKSPACE Statements

The REWIND and BACKSPACE statements
force execution of positioning operations
by the control program.

A REWIND statement instructs the control
program to position the volume on the
device so that the next record read or
written is the first record transmitted for
that data set reference number on that
volume, irrespective of data set sequence
numbers. The space acquired dynamically
for I/O buffers for a data set is released
as part of the REWIND operation. For this
reason, a program that uses many data sets
may conserve main storage by issuing REWIND
statements after processing is completed.
Since a REWIND statement closes the data
set, any subsequent READ or WRITE statement
opens the data set again. For a data set
where DISP=MOD was specified, the READ or
WRITE statement causes positioning at the
end of the data set before the statement is
executed.

The BACKSPACE statement causes a
backward skip of one logical record for
each BACKSPACE issued. The records may be
blocked or unblocked and of any valid type
CF,U,V). Note that the default selection
for FORTRAN data sets is u-type
Cundefined)records which can not be
blocked. If a BACKSPACE statement requests
backward movement past the load point or
first record of the data set, that request
is ignored. Since BACKSPACE is not
supported across reels of a multi-reel data
set on tape, a BACKSPACE request made under
sµch conditions is treated as an attempt to
move backward past the load point. The
user is not made aware of input/output
errors that have occurred during a
BACKSPACE operation until he issues his
next READ or WRITE request.

Notes:

1. REWIND, BACKSPACE or END FILE
statements specified for data sets
defined in direct-access statements
are ignored.

2. BACKSPACE statements should not be
directed to the data set defined as
SYSIN.

3. At end-of-file, if the programmer
wishes to access the file, he should
issue at least two BACKSPACE
statements. The first statement
causes his file to be positioned
before the tapemark; the second
positions the file at the beginning of
the last logical record.

Error Message.Data Set

When the system is generated, the
installation assigns a data set reference
number so that execution error messages and
information for traceback, DUMPs, and
PDUMPs can be written on a data set. This
data set is automatically opened at library
initialization time. The programmer must
define a data set, using a DD statement
with the ddname for that data set reference
number. This data set should be defined
using the SYSOUT=A parameter. If the error
message data set is on tape, the DD
statement should contain DCB parameters for
BLKSIZE=133 and RECFM=UA. (The System
Generation publication, Order No.
GC28-6554, explains the method of assigning
the data set reference number. See the
description of the OBJERR parameter in the
section on the FORTLIB macro instruction.)

Execution Device Classes

For load module execution, the
programmer can use the same names assigned
to device classes used by the compiler
(shown in Table 4). However, additional
names for specific devices and device
classes can be assigned by the
installation. The programmer can choose
which device to use for his data sets, and
can specify the name of the device or class
of devices in the UNIT parameter of the DD
statement.

DCB Parameter

The DCB parameter may be specified for
data sets when a load module is executed.
For information concerning the DCB
parameter, see the section "Creating Data
Sets."

LOADER PROCESSING

The loader combines into one job step
the functions of the linkage editor with
execution of the edited module. It
processes. FORTRAN object or load modules,
resolves any references to subprograms,
loads the module, and executes the loaded
module. The loader does not produce load
modules for program libraries. For
detailed information on the loader, see the
Linkage Editor and Loader publication.

Loader Name

The program name for the loader is
IEWLDRGO. An alias program name., LOADER I
has been assigned to the loader for simpler
programming. If the loader is executed as
a job step, the parameter PGM=LOADER or
PGM=IEWLDRGO is used in the EXEC statement
of that job step.

Loader Input and output

The primary input to the loader is in
the form of object modules and/or load
modules. While processing an input module,
the loader finds any references to
subprograms in the input module and
resolves them.

The output of the loader consists of
error and diagnostic messages and an
optional storage map of the loaded program.
The output is written on either an
intermediate stor~ge device or a printer.
The loader does not require intermediate
work data sets.

Loader ddnames and Device Classes

The programmer communicates data set
information to the loader through DD
statements identified by specific ddnames.
(These ddnames can be changed during system
generation.) The ddnames, functions, and
requirements for data sets are shown in
Table 11. Only the SYSLIN DD statement is
required; the other two are optional. In
addition, any DD statements required for
execution of the loaded program must be
included in the job step. (These DD
statements are described in the section
"Load Module Execution.")

FORTRAN Job Processing 57

Table 11. Loader ddnames
r---------T----------------T--------------1
I I I Device I
lddname !Function !Requirements I
~---------+----------------+--------------~
ISYSLIN !Primary input !direct access I
I jdata, normally !magnetic tape I
I I the output of I card reader I
I l~he compiler. I I
~---------+----------------+--------------~
ISYSLIB !Automatic call !direct access I
I I library I I
I I (SYSl.FORTLIB) I I
~---------+----------------+--------------~
ISYSLOUT !Diagnostic !printer I
I I messages and I intermediate I
I !storage map. !storage devicel
~---------+----------------+--------------~
juser- !Data required !any device I
lspecifiedlfor execution I I
I lof the loaded I I
I I program. I I
L---------i----------------i ______________ J

The device classes used by the compiler
(see Table 3) must also be used with the
loader. The data sets used by the loader
may be assigned to the device classes
listed in Table 12.

Table 12. correspondence Between Loader
ddnames and Device Classes

r---------T-------------------------------1
lddname !Possible Device Classes I
~---------+---~---------------------------~
ISYSLIN ISYSSQ, SYSDA, or the input I
I !stream device (specified by DD I
I I* or DD DATA), or a device I
I I specified as the card reader. I
~---------+-------------------------------~
ISYSLIB ISYSDA I
~---------+-------------------------------~
ISYSPRINT IA, SYSSQ I
~---------+-------------------------------~
juser- ISYSDA, SYSSQ I
jspecifiedl I
L---------i-------------------------------J

Loader Priority

If modules with the same name appear in
the input to the loader, the loader accepts
only the first module which appears.

Options for Loader Processing

The loader and loaded program options
are specified in the PARM field of the EXEC
statement as follows:

58

{ PARM }
PARM.procstep

MAP or NOMAP

{ MAP } {,CALL }
NOMAP , NOCALL

{
,LET } {,SIZE=lOOK}
,NOLET ,SIZE=size

[, EP=name] {·r PRINT }>
,NOPRINT.

The MAP option informs the loader to
produce a map of the loaded program; this
map lists external names and their absolute
storage addresses on the data set specified
by the SYSLOUT DD statement. (If the
SYSLOUT DD statement is not used in the
input deck, this option is ignored.) The
NOMAP option specifies that the map of the
loaded program is not to be written.

CALL or NOCALL or NCAL

The CALL option specifies that an
automatic search of the data set specified
on the SYSLIB DD statement is to be made.
(If the SYSLIB DD statement is not in the
input deck, this option is ignored.) The
NOCALL or NCAL option specifies that an
automatic search of the SYSLIB data set is
not to be made.

LET or NOLET

The LET option informs the loader to try
to execute the object program even though a
severity 2 error condition is found. CA
severity 2 error condition is one that
could make execution of the loaded program
impossible.> The NOLET option informs the
loader not to try to execute the loaded
program when a severity 2 error condition
is found.

SIZE= size

The SIZE option specifies the size, in
bytes, of dynamic main storage that can be
used by the loader. ' The size of the
program to be loaded must be included in,
this figure.

EP::;:name

The EP option specifies the external
name to be assigned as the entry point of
the loaded program.

PRINT or NOPRINT

The PRINT option informs the loader to
produce diagnostic messages on the SYSLOUT
data set. The NOPRINT option informs the
loader not to produce diagnostic messages
on the SYSLOUT data set; SYSLOUT will not
be opened.

Note: The default options are: NOMAP,
CALL, NOLET, SIZE=lOOK, and PRINT. Other
default options, however, can be specified
with the LOADER macro instruction during
system generation.

The following are examples of the EXEC
statement specified for loader processing:

//LOAD
//LOAD
//
//LOAD
//LOAD

EXEC PGM=LOADER
EXEC PGM=IEWLDRGO,PARM=CMAP, X

I EP=FIRST')
EXEC PGM=IEWLDRGO,PARM=CMAP,LET)
EXEC PGM=LOADER,PARM=NOPRINT

Programming Example

Figure 32 shows the control statements
used in a job invoking the loader. Two
subprograms, SUBl and SUB2, and a main
program, MAIN, are compiled in separate job
steps. In addition to the FORTRAN library,
a private library, MYLIB, is used to
resolve external references. Each of the
object modules is placed in a sequential
data set by the compiler and passed to the
loader step.

It should be noted that cataloged
procedures are not used in this job. The
private library, MYLIB, is concatenated
with the SYSLIB DD statement. SUBl and
SUB2 are included in the program to be
loaded by concatenating them with the
SYSLIN DD statement. The loaded program
requires the FT01F001 and FT10F001 DD
statements for execution.

r---1
//JOBX JOB I
//STEPl EXEC PGM=IEKAAOO, XI
// PARM='NAME=MAIN,LOAD' I

//SYSLIN DD DSNAME=&GOFILE,
// DISP=C,PASS),
// UNIT=SYSSQ
//SYSIN DD *

source Module for MAIN
/*
//STEP2
//

EXEC PGM=IEKAAOO,
PARM='NAME=SUBl,LOAD'

//SYSLIN DD DSNAME=&SUBPROGl,
// DISP= (I PASS) I

// UNIT=SYSSQ
//SYSIN DD *

Source Module for SUBl
/*
//STEP3
//

EXEC PGM=IEKAAOO,
PARM='NAME=SUB2,LOAD'

//SYSLIN DD DSNAME=&SUBPROG2,
// DISP=(,PASS),
// UNIT=SYSSQ
//SYSIN DD *

Source Module for SUB2
/*
//STEP4
//SYSLOUT
//SYSLIB
//
//
//SYSLIN
//
//
//
//
//
//FTOlFOOl
//FT10F001

EXEC
DD
DD

DD
DD

DD

DD

DD
DD

PGM=LOADER
SY SO UT= A
DSNAME=SYSl.FORTLIB,
DISP=SHR
DSNAME=MYLIB,DISP=SHR
DSNAME=*.STEPl.SYSLIN,
DISP=OLD
DSNAME=*.STEP2.SYSLIN,
DISP=OLD
DSNAME=*.STEP3.SYSLIN,
DISP=OLD
DSNAME=PARAMS,DISP=OLD
SYSOUT=A

I
I
I

XI
XI

I
I
I
I

XI
I
I
I
I

XI
XI

I
I
I
I

XI
I
I
I
I

XI
XI

I
I
I
I
I
I

XI
I
I

XI
I

XI
I

XI
I
I
I

I/* I
L---J
Figure 32. Loader Example

DEDICATED WORK DATA SETS

Under MVT, installations can provide
preallocated or dedicated work data sets.
If an installation has provided these data
sets, the programmer can use them as an
alternative to creating his work data sets.
Use of dedicated work data sets is more
efficient than creating work data sets by
specifying a disposition of NEW,DELETE on
the work data set DD statement.

FORTRAN Job Processing 59

The system allocates these data sets at
start initiator time <when input/output
device requirements for a job step are
analyzed by the system). The number of
data sets to be allocated is based Qn the
number of work data set DD statements in a
cataloged proceqµre known as the initiator
procedure. Tne initiator procedure is
supplied by IBM, and can be modified or
rewritten by the installation.

To use a dedicated work data set,
DSNAME=&&name or DSNAME=&name must be coded
on a DD statement along with all other
parameters used to define a new data set
Csee Figure 34). Every PD statement in a
job with' a "name" identical to a ddname on
a DD statement in the initiator procedure
is assigned the corresponding dedicated
data set. If the system cannot assign this
dedicated data set, it uses the parameters
coded on the DD statement to create a
temporary data set.

Note: This facility does not support tape
files.

The following rules apply to the
parameters of DD statements associated with
dedicated work data sets:

1. DSNAME -- The temporary name from the
initiator procedure replaces that
specified in the DD statement.

2. DISP -- The disposition specification
cannot cause deletion of a dedicated
work data set. Disposition will
appear to allocation as OLD,KEEP or
OLD,PASS, only.

60

3. UNIT -- Specification of
UNit=AFF=DDNAME and DEFER on DD
statements are ignored if they apply
to dedicated work data sets.

4. VOLUME -- Volume information on the DD
statement is overridden by the volume
information in the initiator
procedure. A specification of
REF=*.stepname.ddname is not valid
since the initiator procedure may
contain only one step.

5. EXPDT/RETPD -- Expiration date or
retention is ignored if it is
specified on the DD statement.

6. SUBALLOC=stepname.ddname must not be
specified since the initiator may
contain only one job step. A
specification of RLSE will be ignored.
All other space parameters are
allowed.

Note: The units, primary space, secondary
space, and directory quantities on the DD
statement are compared with those in the
dedicated data set. The data set will be
assigned as long as it is equal to or
greater than the parameter specified.

7. DCB -- Information specified in the
DCB parameter overrides the DCB
specification in the initiator
procedure.

For detailed information on
pre-allocated or dedicated data sets, see
the chapte~ "System Reader, Initiator and
Writer Cataloged Procedures" in the System
PfOqramrner's Guide publication.

Data sets are created by specifying
parameters in the DD statement or by using
a data set utility program. This section
discusses the use of the DD statement to
create data sets. (The Utilities
publication, Order No. GC28-6586,
discusses data set utility programs.) No
consideration is given to optimizing I/O
operations; this information is given in
the section "Program Optimization."

To create data sets, the DSNAME, UNIT,
VOLUME, SPACE, LABEL, DISP, SYSOUT, and DCB
parameters are of special significance (see
Figure 34). These parameters specify:

DSNAME - name of the data set

UNIT - class and number of devices
used for the data set

CREATING DATA SETS

VOLUME - volume on which the data set
resides

LABEL - label specification

DISP - the disposition of the data set
after the completion of the job
step

SYSOUT - ultimate device for unit record
data sets

DCB - tape density, record format,
record length

Examples of DD statements used to create
data sets are shown in Figure 33.

Sample Coding Form

Figure 33. Examples of DD Statements

Creating Data Sets 61

0\
N '" I \ dsname q ~· \ JDSNAME'l.=., dsname(element)

~ lDSN f {&name \ "' t · · &name(element) . \
w DUMMY
f DDNAME=ddname

t:I
0

UNIT=(name[,{nlPJ1])2

[

SER=(volume-serial-number[,volume-serial-number] ...)3]
'~n~e ·

"'d {VOL UME}=([PRI VATE][,RETAIN][, volume-sequence-number][, volume-count] ,REF=)*. ddname ~)4

~ VOL . /*.stepname.ddname l
~ .*.stepname.procstep.ddname)
(I)

~ SPACE=(CYL . l, (primary-quantity[,secondary-quantity] [,di rectory-quantity])[,RLSE] ,ALX [,ROUND]6) 7
rt {TRK l [,MXIG]s
C/l .average-record-length I ,CONTIG

Hi f, BLP l [,IN J [·EX PDT= yyddd] 8 g I LABEL=([data-set-sequence-number])_' NL . [,PASSWORD] , OUT , RETPD=xxxx)
n , SL ~
~
(I)
llJ
rt
;::s

l.Q

t:I
llJ
rt
llJ

en
(I)
rt
C/l

SYSOUT=A 1

SYSOUT=B \

SYSOUT=(X[,p[r::~:~~n]a:e]l~•::~~:ol.]) ~
NEW KEEP KEEP DISP=()om~\ PASS :cATLG)7

\
MOD CATLG ,UNCATLG
SHR UNCATLG

~sname J [\O/J[~C~~ 10] [{ ~FIU) [Al M][T][,BLKSIZE=xxxxx] ~ DCB=(.ddname ,DEN=· l · ,TRTCH=.E. ,BUFNO=H} [,OPTCD=C] ,RECFM= FB[AIM][T],LRECL=xxxx,BL.KSIZE=xxxxx)
11 .stepname.ddname /2\ · jT \ _, V[S][B][AIM][T],LRECL=xxxxx,BLKSIZE=xxxxx~ . s tepname. procs tep. ddname . 3 n:

,BLKSIZE=xxxx12

1If neither 11 n11 nor 11 P11 is specified, l is assumed.
2lf only 11 name 11 is specified, the delimiting parentheses may be omitted.
3 lf only one 11 volume-serial-number 11 is specified, the delimiting parentheses may be omitted.
4 SER and REF are keyword subparameters; the remaining subparameters are positional subparameters.
5 The assumption made when this subparameter is omitted is discussed with the SPACE parameter.
6ROUND can be specified only if 11 average-record-length 11 is specified for the first subparameter.
7 All subparameters are positional subparameters.
8 EXPDT and RETPD are keyword subparameters; the remaining subparameters are positional subparameters.
9 The assumption made when this subparameter is omitted is discussed in 11Job Control Language. 11

10BUFNO is the only DCB subparameter that shoul~ be specified for direct access data sets.
11The first subparameter is positional; all other subparameters are keyword subparameters.
12This form is used only with compiler and linkage editor blocked input and output.

USE OF DD STATEMENTS FOR DIRECT-ACCESS DATA
~

Data sets that are referred to in
FORTRAN direct-access input/output
statements ·must first be defined in the
DEFINE FILE statement. However, the DD
statement may be used in conjunction with
the DEFINE FILE statement for designating
other characteristics of the data set.

For example, a direct-access data set
containing fifty formatted records of
maximum length 100 bytes can be defined as
follows:

DEFINE FILE 2(50,100,E,12}

The DD statement associated with this data
set may be specified with additional
information such as data set disposition
and data set name. For example:

//FT02f001 DD DSNAME=BOQL,DISP=CNEW,CATLG}l
// LABEL=C,SL),UNIT=SYSDA, 2
// VOLUME=(PRIVATE,RETAIN) 3
// SPACE=Cl00,(50,30},,CONTIG), 4
// DCB=(RECFM=F,BLKSIZE=100)

Caution must be taken when specifying
the name field and parameters in the DD
statement. The name field must contain
FTxxFOOl, where xx is the data set
reference number specified in the DEFINE
FILE statement. The DD statement
parameters must conform to the
specifications in the DEFINE FILE
statement. Specifically, the SPACE
parameter, which must be indicated for all
direct-access data sets, must specify the
same record length and number of records as
in the DEFINE FILE statement. In the DCB
parameter, the subparameters DEN and TRTCH
should not be specified since they apply
only to data sets residing on magnetic tape
volumes. In addition, the DUMMY parameter
should not be specified, because of a
conflict in specifications. The conflict
arises because the disposition of a
direct-access data set is always checked
and a dummy data set has no disposition.

DATA SET.NAME

The DSNAME parameter specifies the name
of the data set. Only four forms of the
DSNAME parameter are used to create data
sets.

{
DSNAME=dsname }
DSNAME=dsname(element}

specify names for data sets that are
created for permanent use.

Note: Members of a partitioned
dataset may be read as input to a
FORTRAN object program or created as
output from a FORTRAN object program,
but only if the member name and either
LABEL= <,,,IN} or LABEL= C,,,ouT}
are specified in an associated DD
statement.

{
DSNAME=&name }
DSNAME=&nameCelement)

specify data sets that are temporarily
created for the execution of a single
job or job step.

DUMMY
is specified in the DD statement to
inhibit I/O operations specified for
the data set. A WRITE statement is
recognized, but no data is
transmitted. (When the programmer
specifies DUMMY in a DD statement used
to override a cataloged procedure, all
parameters in the cataloged DD
statement are overridden.)

Note: A DUMMY data set should only be
read if the "END= " option is
specified in the FORTRAN RBAD
statement. If the option is not
specified, a read causes an end of
data set condition, and termination of
execution of the load module.

DDNAME=ddname
indicates a DUMMY data set that will
assume.the characteristics specified
in a following DD statement "ddname".
The DD statement identified by
"ddname" then loses its identity; that
is, it cannot be referred to by an
* ddname parameter. The statement
in which the DDNAME parameter appears
may be referenced by subsequent
* ddname parameters. If a
subsequent statement identified by
"ddname" does not appear, the data set
defined by the DD statement containing
the DDNAME parameter is assumed to be
an unused statement. The DDNAME
parameter can be used five times in
any given job step or procedure step,
but no two uses can ref er to the same
"ddname". The DDNAME parameter is
used mainly for cataloged procedures.

SPECIFYING INPUT/OUTPUT DEVICES

The name and number of input/output
devices are specified in the UNIT
parameter,

UNIT=Cname[,{nlP}]

Creating Data Sets 63

name

nlP

is given to the input/output device
when the system is generated.

specifies the number of devices
allocated to the data set. If a
number "n" is specified, the operating
system assigns that number of devices
to the data set. "P" is used with
cataloged data sets when the required
number of volumes is unknown. The
control program assigns a device for
each volume required by the data set.

Note: See Appendix F for a list of
input/output unit types.

SPECIFYING VOLUMES

The programmer indicates the volumes
used for the data set in the VOLUME
parameter.

VOLUME= ([PRIVATE] [,RETAIN]

[,volume-sequence-number]

[,volume-count]

,SER=<volume-serial-number
[,volume-serial-number] ••• >

dsname
,REF= *.ddname)

*.stepname.ddname
*.stepname.procstep.ddname

identifies the volume(s) assigned to
the data set.

PRIVATE
indicates that the assigned volume is
to contain only the data set defined
by this DD statement. PRIVATE is
overridden when the DD statement for a
data set requests the use of the
private volume with the SER or REF
subparameter. The volume is demounted
after its last use in the job step,
unless RETAIN is specified.

RETAIN

64

indicates that this volume is to
remain mounted after the job step is
completed. Volumes are retained so
that data may be transmitted to or
from t.he data set, or so that other
data sets may reside on the volume.
If the data set requires more than one
vo·lume, only the last volume is
retained; the other volumes are
demounted when the end of volume is

reached. If each job step issues a
RETAIN for the volume, the retained
status lapses when execution of the
job is completed.

volume-sequence-number
is a 1- to 4-digit decimal number that
specifies the sequence number of the
first volume of the data set that is
read or written. The volume sequence
number is meaningful only if the data
set is cataloged and volumes lower in
sequence are omitted.

volume-count

SER

REF

specifies the number of volumes
required by the data set. Unless the
SER or REF subparameter is used, this
subparameter is required for every
multi-volume output data set.

specifies one or more serial numbers
for the volumes required by the data
sets. A volume serial number consists
of one to six alphameric characters.
If it contains less than six
characters, the serial number is left
adjusted and padded with blanks. If
SER is not specified, and DISP is not
specified as NEW, the data set is
assumed to be cataloged and serial
numbers are retrieved from the
catalog, or inherited from passed data
sets in a previous step. A volume
serial number is not required for new
output data sets.

indicates that the data set is to
occupy the same volume(s) as the data
set identified by "dsname",
"*.ddname", "*.stepname.ddname", or
*.stepname.procstep.ddname. Table 13
shows the data set references.

When the data set resides on a tape
volume and REF is specified, the data set
is placed on the same volume, behind the
data set referred to by this subparameter.
If this subparameter is used, the UNIT
parameter, if specified, is ignored.

If SER or REF is not specified, the
control program allocates any non-private
volume that is available.

Table 13. Data Set References
r---------------------T-------------------1
I Option I Refers to I
~---------------------+-------------------i
IREF=dsname la data set named I
I l"dsname" I
~---------------------+-------------------i
IREF=•.ddname ja data set indicat-1
I I ed by DD statement I
I l"ddname" in the I
I !current job step I
~---------------------+-------------------i
IREF=•.stepname.ddnameja data set indicat-1
I led by DD statement I
I l"ddname" in the I
I !previous job step I
I l"stepname" I
~---------------------+-------------------i
jREF=•.stepname. la data set indicat-1
I procstep.ddnamejed by DD statement I
I l"ddname" in the I
I !procedure step I
I l"procstep" invoked I
I jin the previous jobl
I lstep "stepname" I
L---------------------i-------------------J
SPECIFYING SPACE ON DIRECT-ACCESS VOLUMES

The programmer indicates the amount of
space for a data set in the SPACE
parameter.

SPACE=(CYL
{

TRK }

average-record-length

,(primary-quantity

[,secondary-quantity]

[,directory-quantity])

[
.,MXIG]

[I RLSE] I ALX [I ROUND])
,CONTIG

The SPACE parameter specifies:

1. Units of measurement in which space is
allocated.

2. Amount of space allocated.

3. Whether unused space can be released.

~. In what format space is allocated.

{
TRK } CYL
average-record-length

specifies the units of measurement in
which storage is assigned. The units
may be tracks (TRI<), cylinders CCYL),
or records (average record length in
bytes expressed as a decimal number
less than or equal to 65,535).

Cprimary-quantity[,secondary-quantity]
[directory-quantity])

RLSE

specifies the amount of space
allocated for the data set. The
"primary quantity" indicates the
number of records, tracks, or
cylinders to be allocated when the job
step begins. The "secondary quantity"
indicates how much space is to be
allocated each time previously
allocated space is exhausted. (Note:
The maximum number of times secondary
allocation will be made is 15.)

For example, by specifying:

SPACE=C120,(400,100))

space is reserved for 400 records; the
average record length is 120
characters. Each time space is
exhausted, space for 100 additional
records is allocated.

The "directory quantity" is used only
in writing a PDS; it specifies the
number of 256-byte blocks to reserve
for the PDS directory.

By specifying:

SPACE=(CYL,(20,2,5))

20 cylinders are allocated to the data
set. When previously allocated space
is exhausted, two additional cylinders
are allocated. Furthermore, space is
reserved for five 256-byte blocks in
the directory of a PDS.

Note: When the FORTRAN programmer
uses a direct-access data set, he must
allocate space on the direct-access
volume in two places: the DEFINE FILE
statement in the source module and a
DD statement at load module execution.
He must also make certain that the DD
statement SPACE parameter contains an
adequate SPACE allocation, based on
the value specified in the DEFINE FILE
statement.

indicates that all unused external
storage assigned to a data set is to
be released when the data set is
closed in a job step.

Note: The RLSE subparameter is
ignored for any file for which END
FILE is specified, or for which a
BACKSPACE statement is issued.

Creating Data Sets 65

[

1
MXIG]
ALX
CONTIG

MXIG

ALX

specify the format of the space
allocated to the data set, as
requested in the "primary quantity".

requests the largest single block of
contiguous storage that is greater
than or equal to the space requested
in the "primary quantity".

requests all available storage on the
volume as long as there is at least as
much space as specified in the
"primary quantity". The operating
system must be able to allocate at
least the amount specified as the
"primary quantity" by using, at most,
five noncontiguous areas of storage.

CONTIG

ROUND

requests that the space indicated in
the "primary quantity" be contiguous.

If the subparameter is not specified,
or if any option cannot be fulfilled,
the operating system attempts to
assign contiguous space. If there is
not enough contiguous space, up to
five noncontiguous areas· are
allocated.

indicates that allocation of space for
the specified number of records is to
begin and end on a cylinder boundary.

Note; If a data set.might be written on a
direct access volume, the SPACE parameter
must be specified in the DD statement.

LABEL INFORMATION

The label parameter (LABEL) is used to
specify the type and contents of a data set
label.

{
,NL }

LABEL=< [data-set-sequence-number] , SL .
,BLP

[
'OUT] [' EXPDT=yyddd]

[,PASSWORD] ,IN ,RETPD=xxxx)

data-set-sequence-nwnber

66

is a 4-digit number that identifies
the relative location of the data set
with respect to the first data set on
a tape volume. (For example, if there
are three data sets on a magnetic tape
volume, the third data set is
identified by data set sequence number
3.) If the data set sequence number

is not specified, the operating system
assumes 1.

{~}
specifies data set label information.
SL indicates standard labels. NL
indicates no labels (applicable only
to data sets residing on a tape
volume). BLP indicates that label
processing should be bypassed.

The feature that allows bypassing of
label processing is a system
generation option (OPTIONS=BYLABEL).
If this option has not been specified
and BLP is coded, the system assumes
NL.

PASSWORD
is used to secure a data set from
unauthorized access. The operating
system assigns security protection to
the data set. Subsequently, whenever
the data set is retrieved, the
operator must respond to a message by
issuing the correct password.
Detailed information on the use of the
PASSWORD subparameter can be found in
the Job control Language and the Data
Management and Supervisor Services
publications. Not~ that prudence
should be exercised in specifying this
option; indiscriminate use of PASSWORD
can result in operation
inefficiencies.

The subparameters IN, OUT are used to
control data sets that are to be processed
as input or output only. Thus a form of
read/write protection is offered by these
parameters.

For input data sets, the IN subparameter
allows:

• Access to members of a partitioned data
set (for read purposes only).

• A means of avoiding operator
intervention when reading a data set
that is protected by either a high
expiration date or by the absence of
the write ring (file-protected tape).

For output data sets, the OUT
subparameter allows a member of a
partitioned data set to be created.

IN
specifies that the data set is to be
processed for input only. IN will be
recognized only if the first
input/output operation specifying the

OUT

data set is a READ; any subsequent
WRITE issued to the data set will be
treated as an error, and the job will
be terminated. If the first operation
is not READ, the IN subparameter has
no effect and both READ/WRITE
operations are allowed.

Specification of the IN subparameter
allows access to members of a
partitioned data set for read
purposes. Additionally, the
specification of IN permits the
reading of a password-protected data
set Cif the correct password is
supplied) and avoids the need of
operator intervention when reading a
data set protected by either a high
expiration date or the absence of a
write-ring.

specifies that the data set defined by
the DD statement is to be processed
for output only. OUT will be recog
nized only if the first input/output
operation specifying the data set is a
WRITE; any subsequent READ issued to
the data set will be treated as an
error, and the job will be terminated.
If the first operation is not WRITE,
the OUT subparameter has no effect and
both READ/WRITE operations are
allowed.

The OUT subparameter permits the
creation of a partitioned data set but
only if the first input/output
specification is a WRITE.

~; If neither subparameter is
specified, the data set will be opened for
both input and output processing
necessitating the use of a write-ring.

EXPDT=yyddd
RETPD=xxxx

specifies how long the data set shall
exist. The expiration date,
EXPDT=yyddd, indicates the year Cyy)
and the day Cddd) the data set can be
deleted. The period of retention,
RETPD=xxxx, indicates the period of
time, in days, that the data set is to
be retained. If neither is specified,
the retention period is assumed to be
zero.

DISPOSITION OF A DATA SET

The disposition of a data set is
specified by the DISP parameter; see "Data
Definition CDD) Statement". The same
options are used for both creating data
sets and retrieving previously created data

sets. When a data set is created, the
subparameters used are NEW, MOD, KEEP,
PASS, and CATLG.

WRITING A UNIT RECORD DATA SET ON AN
INTERMEDIATE DEVICE

With the SYSOUT parameter, output data
sets can be routed to a system output
stream and handled much the same as system
messages.

SY SO UT= A
can be used with sequential schedulers
to indicate that the data set is to be
written on the system output device.
No parameter other than the DCB
parameter has any meaning when
SYSOUT=A is used. This form of the
SYSOUT parameter may be specified for
printer data sets.

SYSOUT=B
can be used with sequential schedulers
to indicate the system card punch
unit. The priority scheduler routes
the output data set to class B.

SYSOUT=CxC,program-name] [,form-number])
indicates that the data set is
normally written on an intermediate
direct access device during program
execution, and later routed through an
output stream to a system output
device. The "x" is to be replaced by
an alphabetic or numeric character
that specifies the system output class
to be used. Output writers route data
from the output classes to system
output devices. The DD statement for
this data set can also include a unit
specification that describes the
intermediate direct access device and
an estimate of the space required. If
these parameters are omitted, the job
scheduler provides default values as
the job is read and processed.

If there is a special installation
program to handle output operations,
its "program-name" should be
specified. "Program-name" is the
member name of the program, which must
reside in the system library.

If the output data set is to be
printed or punched on a specific type
of output form, a four-digit "form
number" should be specified. This
form number is used to instruct the
operator, in a message issued at the
time the data set is to be printed, of
the form to be used.

creating Data Sets 67

~: If the DEN subparameter is
explicitly specified for SYSOUT data sets,
only DEN=2 is allowed in the DCB parameter.
In addition, TRTCH=C must be specified in
the DCB parameter, when the SYSOUT data set
(1) is written on 7-track tape and (2) is
composed of variable~length records or
contains binary information.

DCB.l?ARAMETER

For load module execution, the FORTRAN
programmer may specify record formats and
record lengths for sequentially organized
data sets that reside on magnetic tape or
direct access volumes. The DCB information
is placed in the labels for these data
sets.

[

asname J
DCB=(•.ddname

•.stepname.ddname
•.stepname.procstep.ddname

[,DEN={0111213}][,TRTCH={CIEITIET}]

[,BUFN0={11£J][,OPTCD=C]

dsname
indicates that the DCB subparameters
of a cataloged data set "dsname" are
copied. The data set indicated by
"dsname" must be currently mounted and
it must reside on a direct access
volume.

•.ddname
indicates that the DCB subparameters
in a preceding DD statement "ddnarne"
in the current job step are copied.

•.stepnarne.ddname
indicates that the DCB subparameters
in a DD statement "ddname" that occurs
in a previous job step "stepname" in
the current job are copied.

•.stepname.procstep.ddname
indicates that the DCB subpararneters
in the D.D statement "ddname" are
copied from a previous step "procstep"
in a cataloged procedure. The
procedure was invoked by the EXEC
stqtement "stepname" in the current
job.

DENSITY AND CONVERSION

The second subparameter indicates the
density and conversion for data sets
residing on magnetic tape volumes.

i

{FIU}[AIM][T][,BLKSIZE=xxxx] ~ DENSITY: Density is specified for data
,RECFM= FB[AI Ml [T] ,LRECL=xxxx,BLKSlZE=xxxx, ·.) sets· residing on any magnetic tape volume.

V[S] CB] CAIMlCTl,LRECL=xxxx,
BLKSIZE=xxxx DEN={Oj11213l

,BLKSIZE=xxxx

REFERRING TO PREVIOUSLY SPECIFIED DCB
INFORMATION

The first subparameter

[

dsname J
*.ddname
*.stepname.ddname
*.stepname.procstep.ddname

is used to copy DCB information from the
data set label of a cataloged data set or
from a preceding DD statement. The copied
information is used for processing the data
set defined by the DD statement in which
the subparameter appears. Any
subparameters that follow this subparameter
override any co~ied DCB subparameters.

68

indicates the density used to write a
data set Csee Table 14).

Table 14. DEN Values
r-----T-----------------------------------1
I I Ta'pe Recording Density (bits/inch) I
I DEN ~-----------------------------------~
I Value I Model 2400 I
I ~-----------------T-----------------1
I I 7-Track I 9-Track I
~-----+-----------------+-----------------~
I o I 200 I I
·1 1 I 556 I I
I 2 I aoo I 800 I
I 3 I I 1600 I
L-----i-----------------i-----------------J

If DEN is not specified, 800 bits per inch
is assumed for 7-track tape, 800
bit$-per-inch for 9-track tape without dual
density, and 1600 bits-per-inch for 9-track
tape with dual density.

CONVERSION: Conversion is used only for
data sets residing on 7-track tape volumes.

TRTCH={CIEITIET}
indicates which conversion type is
used:

C - data conversion feature is
used

E - even parity is used

T - translation from BCD to EBCDIC
is required

ET - even parity is used and
translation from BCD to EBCDIC
is required.

NUMBER OF BUFFERS FOR SEQUENTIAL DATA SETS

The number of buffers required to read
or write any data set is specified by

BUFNO=x

where x=l or 2

CHAINED SCHEDULING

Chained scheduling may be requested by
specifying OPTCD=C as a DCB subparameter in
the DD statement. Although chained
scheduling is not used for direct-access
I/O itself, it does produce faster
formatting of direct-access data sets.
Note that when chained scheduling is
specified, the system makes use of about 2K
additional bytes of main storage to provide
the feature.

RECORD FORMAT

Formatted Control Unformatted Control

lRECFM=U[AjM] [T]] RECFM=VS[B] [AIM] (T]
RECFM=V[B][AjM] [T][S]
RECFM=F[B] [AjM] [TIS]

The characters u, V, F, B, and s
represent

U - undefined records (records that do
not conform to either the
fixed-length or variable-length
format)

V - variable-length records (records
whose length can vary throughout the

data set)
F - fixed-length records (records wnose

length is constant throughout the
data set)

B - blocked records
S - for fixed-length records, the

records are written as standard
blocks, i.e., no truncated blocks or
unfilled tracks within tne data set,
witn the exception of the last block
or track.

S - for variable-length records, a
record may span more than one block.

The character A indicates the use of the
extended American National Standard
carriage control characters (see Appendix
E); the character M indicates the use of
machine code control characters.

Note: If A is not specified (or assumed),
a carriage control character is treated as
data and written. Single spacing is
provided.

The character T specifies the use of the
track overflow feature. Use of this
feature results in more efficient
utilization of track capacity and allows
records to be written when the specified
block size exceeds track size. RECFM
subparameter specifications, and the type
of processing each is associated with,
follow:

RECFM=UT
Formatted sequential I/O

RECFM=VT
Formatted Sequential I/O

RECFM=VST
Unformatted Sequential I/O

RECFM=FT
Direct Access I/O or Formatted
Sequential I/O

Note that oackspacing is not allowed when
track overflow is specified. Therefore, a
FORTRAN program using the track overflow
feature may not contain the BACKSPACE
statement.

RECORD LENGTH, BUFFER LENGTH, AND BLOCK
LENGTH

For blocked records used by the compiler
or linkage editor, the length of a block is
specified by the buff er length which is
specified by

BLKSIZE=xxxx

where xxxx is a multiple of the record
length.

Creating Data Sets 69

The record length CLRECL) is permanently
specified by the compiler or linkage
editor.

The SYSPRINT data set of the (G)
compiler has a record length of 120 bytes
<including the carriage control byte); the
SYSPRINT data set of the CH) compiler has a
record length of 137 bytes. The SYSIN,
SYSPUNCH, and SYSLIN data sets have a
record length of 80 bytes.

For unblocked records used by the
compiler or linkage editor, the programmer
should set BLKSIZE equal to record length
except for the FORTRAN IV (H) SYSPRINT data
set, which has a record length of 141
bytes. ·

For unblocked fixed-length records or
undefined records used during load module
execution, the record length and the buff er
length are specified by

BLKSIZE=xxxx

For unblocked variable-length records,
the record length is specified by

LRECL=xxxx

buff er length is specified by

BLKSIZE=xxxx

For blocked variable-length or
fixed-length records used by load modules,
the record length is specified by

LRECL=xxxx

block length and buff er length are
specified by

BLKSIZE=xxxx

Undefined records cannot be blocked.

Table 15 is a summary of the
specifications made by the programmer for
record types and blocking in FORTRAN
processing.

FORTRAN RECORDS AND LOGICAL RECORDS

In FORTRAN, records for sequential data
sets are defined by specifications in
FORMAT statements and by READ/WRITE lists.
A record defined by a specification in a
FORMAT statement is a FORTRAN record Csee
the FORTRAN IV Language publication, Order
No. GC28-6515). A record defined by a
READ/WRITE list is a logical record.
Within each category, there are three types

Table 15. Specifications Made by the FORTRAN Programmer for Record Types and Blocking
r-----------T----------T----------------T---------------T----~----------T---------------1
I I Blocked or I I RECFM I I I
I Step !Unblocked I Record Type I Specification I Record Length I Buffer Length I
t------~----+----------+----------------+---------------+---------------+---------------~
!Compiler orjUnblocked !Fixed-Length jnot specified jnot specified1 IBLKSIZE=record I
I Linkage I I I I I length I
I Editor r----------+----------------+---------------+---------------+---------------~
I !Blocked !Fixed-Length jnot specified1 jnot specified1 IBLKSIZE=xxxx I
t-----------+----------+----------------+---------------+---------------+---------------i

I I Fixed-Length I RECFM=F2 I BLKSIZE=xxxx2 I I
I r----------------+---------------+-----------~---~ I
!Unblocked !Variable-Length IRECFM=V ILRECL=xxxx I I
I r----------------+---------------+---------------i I
I !Variable-Length IRECFM=VS ILRECL=xxxx I I
I I spanned I I I I
I r----------------+---------------+---------------i I

Load Module I I Undefined I RECFM=U I BLKSIZE=xxxx I BLKSIZE=xxxx I
Execution r----------+----------------+---------------+---------------~ I

I I Fixed-Length I RECFM=FB I I I
I r----------------+---------------iLRECL=xxxx I I
!Blocked !Variable-Length IRECFM=VB I I I
I t----------------t---------------i I I
I !Variable-Length IRECFM=VSB I I I
I I spanned I I I I
I t----------------t---------------i---------------i---------------~
I !Undefined !Blocked undefined records are not permitted I t-----------i __________ i ________________ i---i

l 1 Permanently specified by the compiler and cannot be altered Csee "DCB Assumptions I
I for Load Module Execution"). I
12 Not specified for direct-access data sets. I
L---J
70

of records: fixed-length, variable-length,
and undefined. In addition, fixed-length
and variable~length records can be blocked.

For unformatted READ and WRITE
statements the logical record, as defined
by the I/O list, is placed into physical
records and, if required, the.logical
record is spanned over physical records.
When spanning occurs 1 FORTRAN library
routines do not split-write an item over
the span even though there is enough room
in the buff er to accomodate part of the
item. However, FORTRAN does provide the
ability to read items split across
segments.

FORMAT.Control

The following discussion provides
information on records written under
control of a FORMAT statement.

UNBLOCKED RECORDS: For fixed-length and
undefined records, the record length and
buff er length are specified in the BLKSIZE
subparameter. For variable-length records,
the record length is specified in the LRECL
subparameter; the buffer length in.the
BLKSIZE subparameter. The information
coded in a FORMAT statement indicates the
FORTRAN record length Cin bytes).

Fixed-Length Records: For unblocked
fixed-length records written under FORMAT
control, the FORTRAN record length must not
exceed BLKSIZE (see Figure 35).

Example: Assume BLKSIZE=44

10 FORMAT(F10.5,I6,2F12.5,'SUMS')
WRITE(20,10)AB,NA,AC,AD

r - - - - - - - BLKSJZE - - - - - - - - -,
I I
I - - - - FORTRAN Record - - - - --t
I I

I 44 Bytes of Data I
Figure 35. FORTRAN Record (FORMAT Control)

Fixed-Length Specification

If the FORTRAN record length is less
than BLKSIZE, the record is padded with
blanks to fill the remainder of the buffer
(see Figure 36). The entire buffer is
written.

Example: Assume BLKSIZE=56

5 FORMATCF10.5,I6,Fl2.5,'TOTAL')
WRITE(15,5)BC,NB,BD

I - - - - - - - BLKSJZE - - - - - - - --,
I

~ - - - - - - - Written Record - - - - - - -1
I- - - FORTRAN Record - - ---, I
I I I

I 33 Bytes of Data I 23 Bytes of Blanks I
Figure 36. FORTRAN Record (FORMAT Control)

Fixed-Length Specification and
FORTRAN Record Length Less Than
BLKSIZE

Variable-Length Records: For unblocked
variable-length records written under
FORMAT control, LRECL is specified as four
greater than the maximum FORTRAN record
length; and BLKSIZE as four greater than
LRECL. These extra eight bytes are
required for the 4-byte block descriptor
word CBDW) and the 4-byte segment
descriptor word (SDW), as shown in Figure
37. The BDW (see Figure 42) contains the
length of the block; the sow Csee Figure
40) contains the length of the record
segment, i.e., the data length plus four
bytes for the sow.

I - - - - - - - - - - BLKSJZE - - - - - - - - - - - 1
I I
I I
I 1- - - - - - - - - -- LRECL - - - - - - - -- - - -j

I I :
I I r ·- - - - - - -FORTRAN Record - - - - - - -1
I I I I
I I I I

IBDW,SDWI Data I

Figure 37. FORTRAN Record (FORMAT Control)
Variable-Length Specification

Creating Data Sets 71

If the data length is less than
(LRECL-4 > ., the unused portion of the buffer
is not written <see Figure 38).

I - - - - - - - -: - BLKSIZE - - - - - -:- - - - - - 1

I I
1 - - - - - Written Record - - - - -l I

I I I
~----------IBKL-~--------~

I I I I
I I ~ I I I r- -- - FORTRAN Record - - - I I

I I I I I

lsoif owl Data 1--~~~~~~~n==]
Figure 38. FORTRAN Record (FORMAT Control)

With variable-Length
Specification and the FORTRAN
Record Length Less Than
(LRECL-4)

Undefined Records: For undefined records
written under FORMAT control, BLKSIZE is
specified as the maximum FORTRAN record
length. If the FORTRAN record length is
less than BLKSIZE, the unused portion of
the buffer is not written (see Figure 39).

,---------- BLKSIZE-- -------,

I I
I-- - - - FORTRAN Record - - - - -, I
I I I
I I I

I Data I =~:~tten=]
Figure 39. FORTRAN Record (FORMAT Control)

With Undefined Specification
and the FORTRAN Record Length
Less Than BLKSIZE

BLOCKED-RECORDS: For all blocked records,
the record length is specified in the LRECL
subparameter; the block length and buffer
length in the BLKSIZE subparameter.

Fixed-Length Records: For blocked
fixed-length records written under FORMAT
control, LRECL is specified as maximum
possible FORTRAN record length, and BLKSIZE
must be an integral multiple of LRECL. If
the FORTRAN record length is less than
LRECL, the rightmost portion of the record
is padded with blanks (see Figure 40).

72

Example: Assume BLKSIZE=48 and LRECL=24

10 FORMAT(I2,F4.1,F8.4,F10.5)
20 FORMAT(I3,F9.4)

WRITE(13,10)N,B,Q,S

WRITE(13,20)K,Z

.----- - ----- -..,... BLKSIZE - -- - - - - ---1
I I
L------- - -Written Block---- - - ---1
I I
1-------LRECL ------,------LRECL- - --1
I I FORTRAN I
t- - - - FORTRAN Record - - - - -t- Record -1 I
l I I I

12 12 Bytes

24 Data Bytes Data Bytes of
Blanks

Figure 40. Fixed-Length Blocked Records
Written Under FORMAT Control

Variable-Length Records: For blocked
variable-length records written under
FORMAT control, LRECL is specified as four
greater than the maximum FORTRAN record
length, and BLKSIZE must be 4 plus an
integral multiple of LRECL. The four
additional bytes allocated with BLKSIZE are
required for the block descriptor word
(BOW) that contains the block length. The
four additional bytes allocated with LRECL
are used for the segment descriptor word
(SDW) that contains the record length
indication.

If a WRITE is executed and the amount of
space remaining in the-present buffer is
less than LRECL, only the filled portion of
this buffer is written (see Figure 41); the
new data goes into the next buffer.
However, if the space remaining in a buffer
is greater than LRECL, the buffer is not
written, but held for the next WRITE (see
Figure 41). If another WRITE is not
executed before the job step is terminated,
then the filled portion of the buff er is
written.

If LRECL is omitted, its default value
is set almost equal to the value of
BLKSIZE. This results in having only one
record written in any block.

Example: Assume BLKSIZE=28 and LRECL=12

30 FORMATCI3,F5.2)
40 FORMATCF4 .1)
50 FORMATCF7.3)

WRITE(12,30)M,Z
WRITEC12,40)V
WRITEC12,50)Y

1 --- - ------- BLKSIZE - - - - - - - ----1

I I
I------- - Written Block - ------, I
I : I
I ,-- - - - - LREC L - - - - T - - - - - LR EC L - - - - -I

I
1

1 I FORTRAN i I I r - -FORTRAN Record - --j r - -1
I I I I I Record I
I I I I I I

I
I

4
----,
4 Bytes 1

BDW SDW 8 Data Bytes SDW Data Not I
Bytes Written I _____ ,.J

,--FORTRAN Record- -1

I I
I I

BDWI SDW 7 Data Bytes
This space of 13 bytes
Ready for next WRITE.

(space> LRECL)

Figure 41. Variable-Length Blocked Records
Written Under FORMAT control

Unformatted Control

Only variable-length records can be
written without format control, i.e., the
RECFM subparameter must be vs or VBS. (If
nothing is specified, vs is assumed.)

Records written with no FORMAT control
have the following properties:

• The length of the logical record is
controlled by the type and number of
variables in the input/output list of
its associated READ or WRITE statement.

• A logical record can be physically
recorded on an external medium as one
or more record segments. Not all
segments of a logical record must fit
into the same physical record (block).

• Two quantities control the manner in
which records are placed on an external
medium: the block size Cas specified
by the BLKSIZE parameter), and the
logical record (as defined by the
length of the I/O list). BLKSIZE is
specified as part of the DCB parameter
of the data definition CDD) statement.
If not specified, FORTRAN provides
default values.

Each block begins with a 4-byte block
descriptor word (BDW); each segment begins
with a 4-byte segment descriptor word
CSDW). The sows and BDWs are provided by
the system. Each buffer begins with a
4-byte block descriptor word CBDW). The
SDWs and BDWs are provided by the system.

The format of a BDW is given in Figure
42.

r--------------------T--------------------1
I block-length I reserved I
L--------------------i--------------------J

2 bytes 2 bytes

Figur~ 42. Format of a Block Descriptor
Word (BDW)

where:

block-length
is a binary count of the total number
of bytes of information in the block.
This includes four bytes for the BDW
plus the sum of the segment lengths
specified in each SDW in the block.
(The permissible range is from 8 to
32,760 bytes.)

reserved
is two bytes of zeros reserved for
system use.

The format of an SDW is given in Figure
43.

r--------------------T----------T---------1
I segment-length I code !reserved I
L--------------------~----------i---------J

2 bytes 1 byte 1 byte

Figure 43. Format of a Segment Descriptor
Word (SDW)

where:

segment-length

code

is a binary count of the number of
bytes in the sow (four bytes> plus the
number of bytes in the data portion of
the segment following the sow. (The
permissible range is f rorn 4 to
32,756 bytes.)

indicates the position of the segment
with respect to the other segments Cif
any> of the record. Bits O through 5
are reserved for system use and are
set to O. Bits 6 and 7 contain the
codes:

Creating Data Sets 73

Code
()()

01

10

11

reserved

Meaning
This segment is not followed or
preceded by another segment of
the record.
This segment is the first of a
multisegment record.
This segment is the last of a
multisegment record.
This segment is neither the
first nor last of a multi
segment record.

is a byte of zeros reserved for system
use.

UNBLOCKED RECORDS: For unblocked records,
if the logical record length is less than
or equal to the length of the block
(allowing four bytes for the BDW and four
bytes for the SDW), the block will contain
the entire logical record. The remainder
of the block is unused and is not
transmitted. The next record is placed in
the following block in the same manner (see
Figure 44).

Example: Assume BLKSIZE=40

REAL*4 A,B,C,D,E,F,G,H

WRITE{9) A,B,C,D

WRITE{9) E,F,G,H

r- ------ - - BLKSIZE- -
I

------,
I
I
I

BDW SDW

I - - - Record 1 - - I
I I

16 Data Bytes

I
I
I -----------,

16 Bytes Not Written
I
I

.______.__....._ ___________ - - - - - - - _ _J

BDW SDW

I - - -Record 2- - ---,

I I

16 Data Bytes

--------,
I

16 Bytes Not Written I
.______.__....._ ___________ - - - - - - - - _J

Figure 44. Unblocked Records Written
Without FORMAT Control

74

If the logical record length is greater
than the length of the block, the record is
divided into record segments. The number
of segments is determined from the
READ/WRITE statement and the BLKSIZE
specification. Again, only the filled
portion of the block is transmitted and the
next record is placed in the following
block Csee Figure 45).

Example: Assume BLKSIZE=32

REAL*8 A,B,C,D,E,F,G,H

WRITE{9) A,B,C,D

WRITE(9) E,F,G,H

,------- - --BLKSIZE- ---- - - --1
I

1
_______ Record 1 _______ __j

I 1 Segment 1 I

l•D+WI 24 Doro '''" I
Record 1

, - - ·segment 2 - -J

BDW SDW 8 Data Bytes

- - - -- -- - ----,
16 Bytes Not Written I

I
.___,_____...__ ______ ____,_ - - - - - - - - _ __J

Record 2
I - - - - - - - -Segment 1- - - - - - - ,

l•DWISDWI 24 Doro'''" I
Figure 45. Unblocked Segmented Records

Written Without FORMAT Control

BLOCKED-RECORDS: For blocked records, if
the logical record length is less than or
equal to the length of the block (allowing
four bytes for the BDW and four bytes for
the SDW), the block will contain the entire
logical record. The next record, preceded
by its SDW, begins in the same block Csee
Figure 46).

Example: Assume BLKSIZE=44

REAL*S A,B,C,D

WRITE(9) A,B

WRITE(9) C,D

I - - - - - - - -BLKSIZE - - - - - - - ,

I
I
I

BDWSDW

r - - - Record 1 - - I
I I

16 Data Bytes SDW

1 - --Record 2· - - _J
I I

I

16 Data Bytes

Figure 46. Blocked Records Written Without
FORMAT Control

If the logical record is greater than
the length of the block, the record is
divided into record segments. The number
of segments is determined from the
READ/WRITE statement and the BLKSIZE
specification. The next record, preceded
by its SDW, begins in the same block. If
the length of the second record exceeds the
remainder of the block it too is segmented
(see Figure 47).

Example: Assume BLKSIZE=32

REAL*B A,B,C,D,E,F,G,H

WRITE(9) A,B,C,D

WRITE(9) E,F,G,H
,----- - - - -BLKSIZE- - - -- - --1

I
I I - - - - - -~:~::n: I- - - - - -1

i•DWISDWi 24 ~ro '''" I

1
___ Record I. __

1 I Segment 2 I

BDW SDW 8 Data Bytes SDW

___ Record 2 __ _ i Segment I l
I

12 Data Bytes

--------, Record 2
i--- - - - -Segment 2

l•D+Wi
2 0 Data Bytes

I
Figure 47. Blocked Segmented Records

Written Without FORMAT control

BACKSPACE Operations

Unblocked Records: For all unblocked
records written with or without FORMAT
control, the volume is positioned so that
the last logical record read or written is
transmitted next.

Blocked Records: Blocked records are
backspaced on a logical record basis.
Thus, a BACKSPACE may result in a
deblocking operation rather than making
available a new physical record.

Note: Logical records are usually
synonymous with the amount of data
specified in the I/O list for the READ or
WRITE statement that processes the record.
Thus, when there is no FORMAT control, the
logical record may be spanned over one or
more physical recorqs on the volume;
however, ·FORTRAN treats only the logical
record as an entity. For records written
under FORMAT control, a single READ/WRITE
statement may ref er to or create several
logical records. This occurs when there is
a "/" character in the FORMAT statement or
when the I/O list exceeds the FORMAT
specifications, causing the FOrutiAT
statement to be used again from the first
parenthesis.

Creating Data Sets 75

Extending a Data Set: The execution of an
ENDFILE followed by the execution of a
BACKSPACE does not cause the FORTRAN
sequence number to be incremented. The
data set can be extended <written) using
the same FORTRAN sequence number.

RECORD LENGTH, BUFFER LENGTH, AND NUMBER OF
BUFFERS FOR DIRECT ACCESS DATA SETS

A direct-access data set can contain
only fixed-length, unblocked records. Any
attempt to read or write any other record
format by specification in the DCB
parameter is ignored. The record length
and buff er length for a data set are
specified by the programmer as the record
size in the DEFINE FILE statement, and
cannot be changed by specifying the BLKSIZE
or LRECL subparameters in the DCB
parameter. For example, the statement:

DEFINE FILE 8(1000,152,E,INDIC)

sets the record length and buff er length
permanently at.152 bytes. The direct
access data set defined by this DEFINE FILE
statement contains 1000 fixed-length,
unblocked records; each record is 152 bytes
long and is written under FORMAT control.

The programmer may specify the number of
buffers for a direct-access data set as
follows:

BUFNO=x

where: x is the number Cl or 2) of buffers
used to read or write the data set.

For records written with FORMAT control,
the record format is the same as for
fixed-length unblocked records written with
FORMAT control for sequential data sets.
For records written with no FORMAT control,
the re~ords must be fixed-length and
unblocked. These records do not contain a
block control word or a segment control
word.

SPANNING CONSIDERATIONS

For records written with no FORMAT
control, the input/output list may exceed
the logical record length <i.e., block
size). In this cas€ a new block is started
on output, and the next block is processed
on input. If it is shorter than the record
length, the remaining portion of the record
is padded with zeros (see Figure 48-).

76

The DEFINE FILE fieid r (r=152 in the
example shown above) specifies the maximum
size of each record in a data set. It is
only when this size is exceeded by the I/O
list that spanning occurs.

Note that the spanning feature is an
extension to FORTRAN language
specifications in that it is applicable
only for programs written in FORTRAN under
the System/360 Operating System.

When spanning occurs, the FORTR~N
library routines do not split an itetn over
the span even if there is enough room in
the buff er to accommodate part of the item.
The same considerations apply to reading.

Example: A DEFINE FILE statement has
specified the record length for a
direct-access data set as 20. This
statement is then executed:

WRITE(9'IX)DP1,DP2,R1,R2

where: DPl and DP2 are real *8 variables.
Rl and R2 are real *4 variables.
IX is an integer variable that
contains the record position.

BACKSPACE, END FILE, and REWIND
operations are ignored for direct access
data sets.

r
I

l-
1

r -
I

- - - - - Record Length - - -

- - - - -Record Segment 1- - -

20 Data Bytes

Record Segment l + Record Segment 2 = 1 Logical Record

- - -Record Segment 2- - - - - -

14 Data Byte• I i 6 Bytes of Zeros

Figure 48. Logical Record (No FORMAT
Control> for Direct Access

I
I _,
I

-,
I

DCB ASSUMPTIONS FOR LOAD MODULE EXECUTION

For compilation, the LRECL value for the
following data sets is fixed and cannot be
altered by the programmer:

Data Set
SYSPRINT
SYS IN
SYSPUNCH
SYS LIN

LRECL .. Value
120(G), 137CH)

80
80
80

The SYSPRINT, SYSIN, and SYSPUNCH
compiler data sets can contain blocked
records. If the higher level linkage
editor (program name: IEWLE440) is used,
~he SYSLIN data set can contain blocked
records.

The BLKSIZE value must be an integral
multiple of the corresponding LRECL value
shown above. The maximum BLKSIZE value is
limited only by the type of input/output
device (see Table 16), except that for
SYSLIN the maximum BLKSIZE value is 400
with linkage editor IEWLE440.

For load module execution,
specifications depend on record type. For
F type records, the BLKS.IZE value must be
an integral multiple of the LRECL value;
for v type records, BLKSIZE must be
specified as 4 + n x LRECL <where n is the
number of records in the block); for U type
records, no blocking is permitted. Note,
too, that.the BLKSIZE and LRECL range is
limited only by the type of device used to
directly write the data set. Load module
DCB parameter default values are shown in
Table 17.

Table 16. BLKSIZE Ranges: Device Considerations

r~------------------T--1
I I BLKSI ZE Ranges I
1 r----------------------------------T-------------------------------~
I Device Type I F and u Record Type I V .Record Type I
t--------------------+------------------------~---------+-------------------------------i
I Card Reader I 1SxS80 I 9SxS80 I
r--------------------+----------------------------------+-------------------------------~
I Card Punch I 1SxS81 I 9SxS89 I
r--------------------+----------------------------------+-------------------------------i
I Printer: I I I
I 120 Spaces I 1SxS121 I 9SxS129 I
I 132 Spaces I 1SxS133 I 9SxS141 I
I 144 Spaces I 1SxS145 I 9SxS153 I
r--------------------+----------------------------------~-------------------------------~ I Magnetic Tape I 18SxS32,760 I
L--------------------~--J

r--------------------T----------------------------------T-------------------------------1
I Direct Access: I Without Track Overflow1 I With Track Overflow1 I
I t----------------------------------+-------------------------------1
I 2301 I 1SxS20,483 I 1SxS32,760 I
I 2302 I 1SxS4984 I 1SxS32,760 I
I 2303 I 1SxS4892 I 1SxS32,760 I
I 2311 I 1SxS3625 I 1SxS32,760 I
I 2314 I 1SxS7294 I 1SxS32,760 I
r--------------------~--------~-------------------------~-------------------------------i
l 1 If RECFM=V, the minimum block size is 9. I
L---J

Creating Data Sets 77

Table 17. Load Module DCB Parameter Default Values
r-----------------------y----------------~-------------,
I Sequential Data Sets I Direct-Access Data Sets I

r-------------------T------------t-----------T-----------t-----------T------------------i
I Data Set I I Default I Default I Default I Default LRECL I
I Reference Number I ddname I BLKSIZE1 I RECFM 2 I RECFM I or BLKSIZE I
t-------------------+------------+-----------+-----------+-----------+------------------i
I 1 I FTOlFyyy I 800 I u I F I I
t-------------------+------------+-----------+-----------+-----------~ I
I 2 I FT02Fyyy I 800 I U I F I The value spec-I
t-------------------+------------+-----------t-----------+-----------i I
I 3 I FT03Fyyy I 800 I U I FA3 I ified as the I
t-------------------+------------+-----------t-----------+----~------~ I
I 4 I FT04Fyyy I 800 I U I F I maximum size of I
t-------------------+------------+----------~+-----------+-----------i I
I 5 I FTOSFyyy I 80 I F I F I a record in thel
t-------------------+------------+-----------t-----------+-----------~ I
I 6 I FT06Fyyy I 133 I UA3 I F I DEFINE FILE I
t-------------------+------------+-----------t-----------+-----------i I
I 7 I FT07Fyyy I 80 I F I F I statement. I
t-------------------+------------+-----------t-----------+-----------~ I
I 8 I FT08Fyyy I 800 I u I F I I
I I I I I I I
I I I I I I I
I I I I I I I
I 99 I FT99Fyyy I 800 I u I F I I
~-------------------~------------~-----------~-----------~-----------~------------------i
11 If the records have no FORMAT control, the default LRECL is 4 less than BLKSIZE, where!
I the default BLKSIZE is as specified in this table. For direct-access data sets, I
I blocksize is usually limited by track capacity, unless track overflow has been I
I specified. I
l 2 If the records have no FORMAT control, the default RECFM is VS CF if it is direct I
I access). I
l 3 The first character in the record is for carriage control. I
L---J

78

For ease of reference this section,
directed solely to the user of the FORTRAN
IV CG) compiler, has been written as a
self-contained, independent unit. For
information on FORTRAN IV (H) cataloged
procedures, see "FORTRAN IV CH) Cataloged
Procedures."

This section contains figures
illustrating the job control statements
used in the FORTRAN IV CG) cataloged
procedures and a brief description of each
procedure. The statements used to override
the statements and parameters in any
cataloged procedure are also discussed in
this section. (The use of cataloged
procedures is described in "FORTRAN Job
Processing.")

compile

In each of the four cataloged procedures
that include the compile step (Figures 49,
50, 52, and 53), the EXEC statement named
FORT designates that the operating system
is to execute the program IEYFORT (the
FORTRAN IV (G) compiler).

The REGION parameter is ignored by
sequential schedulers. For priority
schedulers, it specifies a region size
sufficient to compile approximately 400
statements.

MVT priority schedulers require that
region size be specified, unless the user
is willing to accept the default region
size Cas established in the input reader
procedure).

The size of the region is directly
related to the maximum number of source
statements that can be compiled by the
FORTRAN CG) compiler. A region size of
lOOK is estimated to be sufficient to
compile approximately 400 statements
assuming unblocked input and output and
non-resident access methods. To adjust
this region size for smaller or larger
source programs, use 75 bytes per statement
as a rule of thumb.

Note; If different region sizes are to be
specified for each step in the job, the
REGION parameter should be coded in the
EXEC statement associated with each step
instead of in the JOB statement.

r------,
IG ONLYICATALOGED PROCEDURES
L------J

The compiler options (shown in Figure
27) are not supplied with any procedure
containing a compile step. Therefore, if
the user wishes to have certain operations
performed, he must specify those options in
the job control statements. However, if
the user does not specify any of the
options, the system will assume certain
default options which are noted by the
underscores in Figure 27.

The control statements contained in the
procedure, FORTGC (shown in Figure 49),
designate the data sets to be used by the
compiler during its operation. The source
listing, compile-time information, and
error messages are written on the data set
designated by. the SYSPRINT DD statement.
The object module resulting from the
operation of the FORTRAN compiler is
written in the temporary data set &LOADSET,
designated in the SYSLIN DD statement.
This data set is sequential and is assigned
to a sequential device such as a tape or
direct-access device. However, ,if the
direct-access device is assigned, a primary
allocation of 200 records is requested with
a secondary allocation of 100 records.
Average record length is specified as 80
bytes. The data set is in PASS status, and
records can be added to the data set. rhe
SYSPUNCH DD statement defines the card
punch to be used in obtaining an object
deck.

The SYSOUT=B parameter on the SYSPUNCh
DD statement is interpreted by sequential
schedulers as indicating the system card
punch unit. The priority scheduler will
route the output to output class B.

The programmer can override any of the
default options by using an EXEC statement
which includes the options that are
desired.

Compile and Linkage Edit

The cataloged procedure to compile the
source module and linkage edit the
resulting FORTRAN object module (FORTGCL)
is shown in Figure 50. The control
statements for compilation are the same as
described above. However, output of the
object module is defined by the SYSLIN DD
statement.

FORTRAN IV CG) Cataloged Procedures 79

Sample.Coding Form

Figure 49. Compile Cataloged Procedure CFORTGC)

In each of the cataloged procedures that
include a linkage edit step (Figures 50, 51
and 52), the EXEC statement named LKED
specifies that the operating system is to
execute the program IEWL <the linkage
editor). However, the linkage editor step
Cor the remainder of the procedure) is not
executed if a condition code greater than 4
was generated during the operation of the
compile step in the same procedure.

Execution of the linkage editor step
produces a list of the linkage editor
control statements Cin card image format),
a map or cross-reference listing of the
load module, and a list of linkage editor
diagnostic messages on the data set
specified by the SYSPRINT DD statement.
The load module is marked executable even
though error conditions are found during
processing.

The primary input to the linkage editor
may consist of concatenated data sets. The
first, def!ned by the SYSLIN DD statement,
is the output of the compiler; the second
(may be omitted) is the data set defined by
a LKED.SYSIN DD statement which is
specified by the user and is external to
the procedure.

External references made in a FORTRAN
object module are resolved by the linkage
editor. Some or all of these references
can be resolved from the FORTRAN library
(SYSl.FORTLIB) designated in the SYSLIB DD
statement.

During processing, the linkage editor
requires a work data set which is defined
by the SYSUT1 DD statement. This data set
is assigned to a direct-access device with
primary allocation of 20 records and
secondary allocation of 10 records. The
load module produced by the linkage editor
is written in the temporary PDS defined in
the SYSLMOD DD statement. The data set is
in the PASS status.

80

Linkage Edit and Execute

This cataloged procedure, FORTGLG, first
linkage edits the FORTRAN object module and
then executes the resulting load module.
<The FORTGLG procedure is shown in Figure
51.) Since the linkage edit step is the
first step in the procedure, the primary
input is the data set defined by the
LKED.SYSIN DD statement.

The execute step is included in two
cataloged procedures Csee Figures 51 and
52). In each of these procedures the
execute step is invoked by the EXEC
statement named GO. However, this step is
bypassed if a condition code greater than 4
was generated during the operation of the
linkage edit step in this procedure.

Input to the execute step is defined by
a GO.SYSIN DD statement which is supplied
by the user and is external to the
procedure. The data set is read using data
set reference number 5. In the linkage
edit step, execution-time error messages
are written in the data set defined by the
SYSPRINT DD statement. In the execute
step, error messages and informati.on for
traceback, DUMPs, and ~DUMPS are written on
the data set associated with the reference
number 6. (Output from the load module can
also be written in the same data set.) The
card punch is associated with data set
reference number 7.

I~ a multiprogramming environment with
an MVT priority scheduler, main storage
requirements for the execute step are
determined by a number of factors. These
include: the size of the object program
produced by the compiler,, the requirements
of the data access method used, the
blocking factors, the number and sizes of
the data sets used, the number and sizes of
library subprograms invoked, and the sizes
of the execution time routines required by
the program. If the default region size
(established in the cataloged procedure for
the input reader) is not large enough for

Sample Coding Form

Figure 50. Compile and Linkage Edit Cataloged Procedure CFORTGCL}

Sample Coding Form

Figure 51. Linkage Edit and Execute Cataloged Procedure (FORTGLG}

FORTRAN IV CG} Cataloged Procedures 81

the program, REGION.GO must be used to
specify the region size for the execute
step.

A listing of the execution time routines
required for various input/output,
interruption, and error procedures is
contained in the FORTRAN IV Library
Subprograms publication, Order No.
GC28-6818. That publication also lists the
sizes of both the execution-time routines
and the mathematical subprograms.

An example of using a REGION.GO
specification to indicate the main storage
requirements for the execute step of a
FORTRAN program follows.

//EXAMPLEl JOB ACCOUNTl,'JOHNSMITH',
// MSGLEVEL=l

// EXEC FORTGCLG,PARM.FORT=DECK,
REGION.G0=84K.

//FORT.SYSIN DD *

FORTRAN SOURCE SYMBOLIC DECKS

/*

//LKED.SYSIN DD *

/*

PREVIOUSLY COMPILED OR ASSEMBLED
OBJECT DECKS

//GO.SYSIN DD *

INPUT DATA

/*

Compile, Linkage Edit, and Execute

x

x

The cataloged procedure (FORTGCLG) to
compile, linkage edit, and execute FORTRAN
source modules is shown in Figure 52. This
cataloged procedure consists of the
statements in the FORTGC and FORTGLG
procedures, with the following exception:
the SYSLIN DD statement defines the output
of the compiler, and the same statement in

82

the linkage edit step identifies this
output as the primary input.

The programmer does not have to define
the linkage editor input as was required
for the FORTGLG procedure, but the input
data set must be defined for the compiler
so that the source module can be read. A
data set containing primary input to the
linkage editor may also be defined by using
a LKED.SYSIN DD statement. This data set
is concatenated with the data set
containing the output of the compiler.

Compile and Load

The cataloged procedure (FORTGCLD) to
compile and load FORTRAN source modules is
shown in Figure 53. The control statements
used in the compiler step are the same as
those used in the cataloged procedure
FORTGC (Figure 49).

The load step is invoked by the EXEC
statement GO. This statement specifies
that the loader (program name LOADER) is to
be executed. The EXEC statement also
specifies that a storage map and any
diagnostic messages produced in the load
step are to be placed in the data set
specified in the SYSLOUT DD statement.

The load step will not be executed if a
condition code greater than 4 was generated
during the compile step.

Primary input to the load step is
defined in the SYSLIN DD statement. This
is the output data set produced by the
compiler. Additional input may be defined
by a GO.SYSIN DD statement which is
supplied by the user and is external to the
procedure. This data set is concatenated
with the primary input data set.

Any external references made in the load
step are resolved by the loader. Some or
all of these references can be resolved
from the FORTRAN library (SYSl.FORTLIB)
designated in the SYSLIB DD statement.
Private libraries may be concatenated with
the FORTRAN library to help resolve
external references. Figure 32 shows how
this may be done.

USER AND MODIFIED CATALOGED PROCEDURES

The programmer can write his own
cataloged procedures and tailor them to the
facilities in his installation. He can
also permanently modify the IBM-supplied
cataloged procedures. For information

about permanently modifying cataloged
procedures, see the Job Control Language
publication.

The IBM-supplied cataloged procedures
for FORTRAN IV (G) define logical unit 05
as SYSIN, 06 as SYSOUT, and 07 as SYSCP
(see Figures 51, 52, and 53). If, during
system generation, values other than 05 for
the ONLNRD parameter, 06 for the OBJERR
parameter, and 07 for the ONLNPCH parameter
were specified in the FORTLIB macro
instruction, one or more of the following
DD cards must be added to the cataloged
procedures, either to override them at
execution time or to modify them
permanently. (The System Generation
publication, Order No. GC28-6554,
describes the FORTLIB macro instruction.>

If a //GO.SYSIN DD * statement is used
to define the input data set, DCB
parameters should not be specified.
However, if the data set defined as SYSIN
resides somewhere other than on the system
input device, the programmer should be
aware that the default BLKSIZE is 800 and
the default RECFM is u (see Table 17).
Therefore, if he desires a BLKSIZE of 80
and a RECFM of F, he must specify them
explicitly.

• For the unit specified as ONLNRD, use
the DD card:

//GO.FTxxFOOl DD DDNAME=SYSIN

• For the unit specified as OBJERR, use
the DD card:

//GO.FTxxFOOl DD SYSOUT=A

• For the unit specified as ONLNPCH, use
the DD card:

//GO.FTxxFOOl DD UNI'I'=SYSCP, X
// DCB=(BLKSIZE=80,RECFM=F)

where:
xx (2 digits) is the unit
specified

In addition, the DD card for FT05F001
must be deleted permanently from the
cataloged procedure.

OVERRIDING CATALOGED PROCEDURES

Cataloged procedures are composed of
EXEC and DD statements. A feature of the
operating system is its ability to read
control statements and modify a cataloged
procedure for the duration of the current
job. Overriding is only temporary; that
is, the parameters added or modifi~d are in
effect only for the duration of the job.
The following text discusses the techniques
used to modify cataloged procedures.

Sample Coding Form

Figure 52. Compile, Linkage Edit, and Execute Cataloged Procedure (FORTGCLG)

FORTRAN IV (G) Cataloged Procedures 83

Sample Coding Form

//F6R[7 8 9
•

10
"1

2 £x£c 17 1819 20 21 PG~~[EtrF~Rr~REGioN~ il ®I< 45 46 47 ~ 49 50 51 52 53 ,.
1

" 56,, 58 5960 61 62 63 .. ~ .. 67 6869 70 7172 73 74.75 7611787980

~/SYSPRINT DD ~Ys~~r=~ I I
/lL~IYSPUNCH QJD _SYSOU[T= I I T
) /SYISLI N DD OSN~ME::li LQADSE ~DI 5P=l(lMODL_o_P~SS ~ iN I JI= Sl'dSSQ_.._)<
VII ~P~C E:: (80' (20~]., I [OO)l.2'.RLSE)-1DIC~=BLKS 1 IZjE'Jfl~O.
//GO EXEC PGIM=1=:0~ E8LtPARM=(M1AP_t_iLET Lt_P.R I NT)LLCIOND=[J4l, L TuFbatru
I IS SLI B DD DSNAMEr=15YS1iFIQRTiUI BL.t_DI SP=SHR I l
//SYSLJQU[DD l~YSQUT ~ l I '

//SYSL IN QD QSN1AME=*•F[QR[]. S~ I N_._.Dll SP,=(IOLD DIELE]IJEbJ
//FTQ5[6Q011 ·oo DDNAME SY51 N l
/]LfT~QJFPPI D.Q S)'SOUT=A
//FTQ?FO~I_ QD. __ . .. __ S)'SC~Lf-EL ___ _ _ __ _ 1

l
I

l I I i

l I
!

I T :

! I ! ' I I I ! I !

I I I i I I

I
! I] I

I I I I l l I

T
I

T
l

t i ! I l :

T i I I
!

l 11
I
i

I T· ! I

i l I

I
JI i ! i I l ll

1 2 3 4 s 6 1 s 9 10 11 12 13 14 1s 16 11 111.19 20 21 22 23 24 25· 26 27 20 29 3o 31 32 33 34·35 36 3738 39 40 41 '12 43 44 45 46 47 48 49 50 51 52 53 S4 ss 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 1112 73 74 75 76 n 78 79 eo
A standard card form, IBM electro 888157, n available for punching 1tatttmentl from thn form

Figure 53. Compile and Load Cataloged Procedure CFORTGCLD)

overriding Parameters in the EXEC Statement

Two forms of keyword parameters
("keyword" and "keyword.procstep") are
discussed in "Job Control Language." The
form "keyword.procstep" is used to add or
override parameters in an EXEC statement in
a cataloged procedure.

The FORTRAN programmer can, for example,
add (or override) compiler, linkage editor,
or loader options for an execution of a
cataloged procedure, or he can state
different conditions for bypassing a job
step.

Note: When the PARM parameter is
overridden, all compiler, linkage editor,
or loader options stated in the EXEC
statement in the procedure step are deleted
and replaced by those in the overriding
PARM parameter.

Example .. 1: Assume the cataloged procedure
FORTGC is used to compile a program, and
the programmer wants to specify the name of
his program and the MAP.option. The
following statement can be used to invoke
the procedure and to supply the compiler
options.

//STEPl EXEC FORTGC, X
// PARM.FORT='MAP,NAME=MYPROG'

84

The PARM options apply to the procedure
step FORT.

Example 2: Assume the cataloged procedure
FORTGLG is used to linkage edit and execute
a module. Furthermore, the MAP option
overrides XREF, LET, and LIST in the link
age editor step and the COND parameter is
changed for the execution of the load
module. The following EXEC statement adds
and overrides parameters in the procedure.

//DO EXEC FORTGLG,PARM.LKED=MAP, X
// COND.G0=(3,LT,DO.LKED)

The PARM parameter applies to the link
age editor procedure step LKED, and the
COND parameter applied to the execution
procedure step GO.

Example 3: Assume a source module is
compiled and loaded using the cataloged
procedure FORTGCLD. Furthermore, an
external name is specified as the entry
point of the loaded program. The following
EXEC statement adds and overrides
parameters in the procedure.

//STEPl EXEC FORTGCLD,PARM.GO='EP=FIRST'

Overriding and Adding DD Statements

A DD statement with the name
"stepname.ddname" is used to override
parameters in DD statements in cataloged
procedures, or to add DD statements to
cataloged procedures. The •stepname•
identifies the step in the cataloged
procedure. If "ddname" is the name of a DD
statement present in the step, the
parameters in the new DD statement override
parameters in the DD statement in the
procedure step. If "ddname" is the name of
a DD statement not present in the step, the
new DD statement is added to the step.

In any case, the modification is
effective only for the current execution of
the cataloged procedure.

When overriding, the original DD
statement in the cataloged procedure is
copied, and the parameters specified in it
are replaced by the corresponding
parameters in the new DD statement.
Therefore, only parameters that must be
changed are specified in the overriding DD
statement.

If more than one DD statement is
modified, the overriding DD statements must
be in the same order as the DD statements
appear in the cataloged procedure. Any DD
statements that are added to the procedure
must follow overriding DD statements.

When the procedures FORTGC, FORTGCL,
FORTGCLG, and FORTGCLD are used, a DD
statement must be added to define the SYSIN
data set to the compile step in the
procedures (see Figures 16, 17, 21, and 24).
When the procedure FORTGLG is used, a DD
statement must be added to define the
SYSLIN data set (see Figure 19).

When the procedures FORTGCL, FORTGLG,
and FORTGCLG are used, an overriding DD
statement can be used to write the load
module constructed in the linkage editor
step in a particular PDS chosen by the
programmer, and assign that member of the
PDS a particular name.

During execution of procedure steps, the
programmer can catalog data sets, assign
names to data sets, supply DCB information
for data sets, add data sets, or specify
particular volumes for data sets by using
overriding DD statements.

Example 1: Assume the data sets identified
by ddnames FT04F001 and FT08F001 are named,
cataloged, and assigned specific volumes.
The following DD statements are used to add
this information and indicate the location
of the source module.

//JOB1 JOB MSGLEVEL=1
//STEPl EXEC FORTGCLG
//FORT.SYSIN DD *
r---1
I FORTRAN Source Module I
L---J
/*
//GO.FT04F001 DD DSNAME=MATRIX, X
// DISP=CNEW,CATLG),UNIT=TAPE, X
// VOLUME=SER=987K
//GO.FT08F001 DD DSNAME=INVERT, X
// DISP=(NEW,CATLG),UNIT=TAPE, X
// VOLUME=SER=1020
//GO.SYSIN DD *
r---1 I Input to Load Module I
L---J
I*

Example 2: Assume DCB information is added
to the DD statement identified by ddname
FT08F001 and a data set for data set
reference number 4 is created and
cataloged.

//JOB2 JOB
//STEPl EXEC FORTGLG
//LKED.SYSIN DD *
r---1
I FORTRAN Object Module I
L---J
/*
//GO.FT08F001 DD DCB=(RECFM=F,BLKSIZE=200)
//GO.FT04F001 DD DSNAME=FIRING, X
// UNIT=SYSDA,DISP=(NEW,CATLG), X
// SPACE=C100,C2000,200)1,,ROUND), X
// VOLUME=CPRIVATE,SER=207H), X
// DCB=CRECFM=VB,LRECL=300,BLKSIZE=604)
//GO.SYSIN DD *
r---1
I Input to Load Module I
L---J
/*

Example 3: Assume the linkage edit and
execute cataloged procedure CFORTGLG) is
used. The load module constructed in the
linkage editor step is placed in the
cataloged partitioned data set MATH and is
assigned the member name DERIV.

FORTRAN IV CG) Cataloged Procedures 85

//JOB3 JOB
//STEPl EXEC FORTGLG
//LKED.SYSLMOD DD DSNAME=MATH(DERIV), X
// DISP=(OLD,PASS)
//LKED.SYSIN DD *
,---,
I FORTRAN Object Module I
L---J
/*
//GO.SYSIN DD *
,---,
I Input to Load Module I
L---J
/*

Example 4: Assume the compile, linkage
edit, and execute cataloged procedure
(FORTGCLG) is used with three data sets in
the input stream:

1. A FORTRAN main program MAIN with a
series of subprograms, SUBl through
SUBN.

2. A linkage editor control statement
that specifies an additional library,
MYLIB. MYLIB is used to resolve
external references for the symbols
ALPHA, BETA, and GAMMA.

3. A data set used by the load module and
identified by data set reference
number 5 in the source module.

The following example shows the deck
structure.

86

//JOBCLG JOB 00,FORTRANPROG,MSGLEVEL=l
//HXECCLGX EXEC FORTGCLG
//FORT.SYSIN DD *
,---,
I FORTRAN source Module MAIN I
~---~
I FORTRAN Source Module SUBl I
~---1
I I
I I
I I
~---1
I FORTRAN Source Module SUBN I
L---J
/*
//LKED.ADDLIB DD DSNAME=MYLIB
//LKED.SYSIN DD *

LIBRARY ADDLIB(ALPHA,BETA,GAMMA)
/*
//GO.SYSIN DD *
r---1
I Input to Load Module I· l ___ J

/*

The DD statement FORT.SYSIN indicates to
the compiler that the source modules are in
the input stream. The DD statement
LKED.ADDLIB defines the additional library
MYLIB to the linkage editor. The DD
statement LKED.SYSIN defines a data set
that is concatenated with the primary input
to the linkage editor. The linkage editor
control statements and the object modules
appear as one data set to the linkage
editor. The DD statement GO.SYSIN defines
data in the input stream for the load
module.

For ease of reference this section,
directed solely to the user of the FORTRAN
IV CH) compiler, has been written as a
self-contained, independent unit. For
information on FORTRAN IV CG) cataloged
procedures, see "FORTRAN IV CG) cataloged
Procedures."

This section contains figures showing
the job control statements used in the
FORTRAN IV cataloged procedures and a brief
description of each procedure. This
section also describes statements used to
override statements and parameters in any
cataloged procedure. (The use of cataloged
procedures is discussed in "FORTRAN Job
Processing.")

Compile

In the four cataloged procedures that
have a compile step Csee Figures 54, 55, 57
and 58) the EXEC statement named FORT
indicates that the operating system is to
execute the program IEKAAOO (the FORTRAN IV
H compiler).

The REGION parameter is ignored by
sequential schedulers. MVT priority
schedulers require that region size be
specified, unless the user is willing to
accept the default region size (as
established in the input reader procedure).

The amount of main storage allocated for
the FORTRAN H compiler depends on the
region size in an MVT environment, the
partition size in an MFT environment, or
the machine size in a PCP environment. The
compiler uses all available main storage
except for 3K bytes which are left for
non-resident system routines.

In certain instances, a programmer may
wish to limit the amount of main storage
used by the compiler. An example would be
when the FORTRAN H compiler is executed as
the original task in a multitasking
environemnt. Unless the amount of main
storage used by the compiler is limited, no
subtasks could be created since no more
storage would be available in the region.

The programmer may request the amount of
main storage to be allocated for the
compiler by specifying the SIZE option in
the PARM parameter. Specific information
concerning the SIZE option can be found in
the section "Compiler Options."

r------,
IH ONLY!CATALOGED PROCEDURES
l------J

Note~ If different region sizes are to be
specified for each step in the job, the
REGION parameter should be coded in the
EXEC statement associated with each step
instead of the JOB statement.

Compiler options are not explicitly
specified; default options are assumed
in particular, SOURCE and LOAD. The source
listing and compile-time information and
error messages are written in the SYSOUT
data set.

The object module is written in the
temporary data set &LOADSET. The data set
&LOADSET is a sequential data set and is in
"pass" status; records can be added to the
data set.

The SYSOUT=B parameter on the SYSPUNCH
DD statement is interpreted by sequential
schedulers as a specification for the
system card punch unit. The priority
schedulers route the output data set to
system output class B. A programmer can
get an object module card deck by
overriding the default NODECK option with
an explicit DECK option.

Several additional DD statements,
external to the procedure, may be supplied.
If the EDIT option is used, a work data set
must be defined with a FORT.SYSUTl DD
statement. If the compiler XREF option is
specified, a work data set must be defined
with a FORT.SYSUT2 DD statement. Input to
the compile step is defined by a FORT.SYSIN
DD statement.

The data set SYSUTl must be specified if
the compiler option EDIT (produce
structured source listing) was requested.
SYSUT2 must be specified if the compiler
option XREF (produce cross reference
listing) was requested. Both data sets may
reside on tape or direct access but must be
defined in the sequential device class.
The following is a typical DD statement for
a utility data set:

//SYSUT1 DD DSNAME=&UTl,UNIT=SYSSQ, x
SPACE=CTRK, (40))

&UTl
specifies a temporary data set.

UNIT=SYSSQ
specifies that the data set is to
reside in a sequential device class.

FORTRAN IV (H) cataloged Procedures 87

Sample Coding Form

Figure 54. compile Cataloged Procedure (FORTHC)

SPACE=CTRK,(40)
specifies that if the data set is
assigned to a direct access device, 40
tracks are to be allocated to the data
set.

Linkage.Edit

In the three cataloged procedures that
have a linkage edit step Csee Figures 55,
56, and 57), the EXEC statement named LKED
indicates that the operating system is to
execute the program IEWL (the linkage
editor). The linkage editor requires a
region of 54K if used with MVT. The
linkage editor step Cor the remainder of a
procedure) is not executed if a condition
code greater than 4 was generated by a
compile step in the same procedure.

If the linkage edit step is executed, a
list of linkage editor control statements
(in card image format), a map of the load
module and a list of linkage editor
diagnostic messages are written in the
SYSOUT data set. The load module is marked
executable even though error conditions are
found during linkage editor processing.

If the linkage edit step is preceded by
a compile step Csee Figures 55 and 57), the
primary input to the linkage editor may
consist of concatenated data sets. The
first, defined by the SYSLIN DD statement,
is the output of the compiler C&LOADSET
data set); the second Cif present) is the
data set defined by a LKED.SYSIN DD
statement (external to the procedure).
However, if the linkage edit step is the
first step in a procedure (see Figure 56),
the primary input is the data set defined
by a LKFD.SYSIN DD statement.

88

External references made in a FORTRAN
object module are resolved by the linkage
editor. Some or ~11 of these references
can be resolved from the FORTRAN library
CSYSl.FORTLIB) which is a system resident
PDS.

During processing, the linkage editor
requires a work data set which is defined
by the SYSUTl DD statement. This data set
is assigned to a direct-access device.

The load module produced by the
editor is written in the temporary
&GOSET with a member name of MAIN.
data set is in "pass" status and is
assigned to a direct-access device.

Execute

linkage
PDS

The

In the two cataloged procedures that
have an execute step (see Figures 56 and
57), the EXEC statement named GO indicates
that the operating system is to execute the
load module (program) produced in a
preceding linkage edit step in the same
procedure. However, the execute step is
bypassed if a condition code greater than 4
was generated by a compile or linkage edit
step in the same procedure.

Input to the execute step is defined by
a GO.SYSIN DD statement (external to the
procedure) and is read using data set
reference number 5. Execution-time error
messages and information for traceback and
FORTRAN dumps are written in the SYSOUT
data set that is associated with data set
reference number 6. (Output from the load
module can also be written in the same data
set.) The card punch is associated with
data set reference number 7.

Sample Coding Form

Figure 55. Compile and Linkage Edit Cataloged Procedure (FORTHCL)

In a multiprogramming environment with
an MVT priority scheduler, main storage
requirements for the execute step are
determined by a number of factors. These
include: the size of the object program
produced by the compiler, the requirements
of the data access method used, the
blocking factors, the number and sizes of
the data sets used, the number and sizes of
library subprograms invoked., and the sizes
of the execution time routines required by
the program. If the default region size
(established in the cataloged procedure for
the input reader) is not large enough for
the program, REGION.GO must be used to
specify the region size for the execute
step.

A list of the execution time routines
required for various input/output,
interruption, and error procedures is
contained in the FORTRAN IV Library
Subprograms publication, Order No.
GC28-6818. That publication also lists the
sizes of both the execution-time routines
and the mathematical subprograms.

An example of using a REGION.GO
specification to indicate the main storage
requirements for the execute step of a
FORTRAN program follows.

//EXAMPLEl JOB ACCOUNTl,'JOHNSMITH', X
// MSGLEVEL=l
/I EXEC FORTHCLG,PARM.FORT=DECK, X
II REGION.G0=200K
/IFORT.SYSIN DD *
r---1
I FORTRAN Source Symbolic Decks I
L---J
I*
/ILKED.SYSIN DD *
r---1
I Previously Compiled or Assembled I
I Object Decks I
L---J
I*
/IGO.SYSIN DD *
r---,
I Input Data I
L---J
I*

FORTRAN IV CH) Cataloged Procedures 89

In the one cataloged procedure that has
a load step (see Figure 58), the EXEC
statement named GO indicates that the
operating system is to execute the program
LOADER (the loader). The EXEC statement
also specifies that a storage map of the
loaded program is to be produced. This map
is to be placed in the data set specified
in the SYSLOUT DD statement.

The load step will not be executed if a
condition code greater than 4 was generated
during the compile step.

Primary input to the load step is
defined in the SYSLIN DD statement. This
is the output data set produced by the
compiler. Additional input may be defined
by a GO.SYSIN DD statement which is
supplied by the user and is external to the
procedure. This data set is concatenated
with the primary input data set.

Any external references made in the load
step are resolved by the loader. Some or
all of these references can be resolved
from the FORTRAN library (SYSl.FORTLIB)
designated in the SYSLIB DD statement.
Private libraries may be concatenated with
the FORTRAN library to help resolve
external references. Figure 32 shows how
this may be done.

USER AND MODIFIED CATALOGED PROCEDURES

The programmer can write his own
cataloged procedures and tailor them to the
facilities in his installation. He can
also permanently modify the IBM-supplied
cataloged procedures. For information
about permanently modifying cataloged
procedures, see the Job control Language
Reference publication, Order No.
GC28-6704.

90

The IBM-supplied cataloged procedures
for FORTRAN IV (H) define logical unit 05
as SYSIN and 06 as SYSOUT (see Figures 56,
57, and 58). If, during system generation,
values other than 05 for the ONLNRD
parameter and 06 for the OBJERR parameter
were specified in the FORTLIB macro
instruction, one or both of the following
DD cards must be added to the cataloged
procedures, either at execution time or
permanently.

• For the unit specified as ONLNRD, use
the DD card:

//GO.FTxxFOOl DD DDNAME=SYSIN,
DCB=(BLKSIZE=80,RECFM=F)

• For the unit specified as OBJERR, use
the DD card:

//GO.F'I'xxFOOl DD SYSOUT=A where xx is
the unit specified. (The system Generation
publication, Order No. GC28-6554,
describes the FORTLIB macro instruction.)

In addition, the DD card for FT05F001
must be deleted permanently from the
procedure. The following section describes
the general procedure for adding and
deleting statements from cataloged
procedures.

OVERRIDING CATALOGED PROCEDURES

Cataloged procedures are composed of
EXEC and DD statements. A feature of the
operating system is its ability to read
control statements and modify a cataloged
procedure for the duration of the current
job. overriding is only temporary; that
is, the parameters added or modified are in
effect only for the duration of the job.
The fallowing text discuss.es the techniques
used to modify cataloged procedures.

Sample Coding Form

Figure 56. Linkage Edit and Execute Cataloged Procedure (FORTHLG)

Sample Coding Form

Figure 57. Compile, Linkage Edit. and Execute Cataloged Procedure CFORTHCLG)

FORTRAN IV (H} Cataloged Procedures 91

Sample Coding Form

//SYSPUNCH DD SYSOUT=F TT T

//k; 10 EXEC PGM= LOADER ,_PARM= CMA,P)!, !CQN0=!(]1, Lrr, FIORT)
//SYSLIB D[I:) !)SNAME=SYSI .F~RTIL'liB,DI .)P=SJHlB I !

//SYSLOUT DD SYSOU!fl=A T T I

//FT]Q5Fk:lr\/I DD DNAME=S~~IN
//FTIC . ii- ' - I DI~ MSQUT=IA I
//FTQ7F'.QOJ DO - -· SY&'?UT~.J:L - ---- --- -- - IT

i l
I +! I

! I

I i I l ! l ! I !
I

-·
I t l

'
!

I ' l I I 1 T I
I

!

J I I
I I

'l i ' i I I I
I I

I l l ! I I
I I I ! i I J

l
I i

l I T
l

! 1 l T i
1 2 3 4 5 6 7 s 9 10 11 i2 13 1" 1s 16 11 1s 19 20 21 22 23 24 25· 26 21 2s. 29 30 31 32 33 34 as 36 37 3a 39 40 41 ~2 43 44 45 46 47 48 49 so s1 s2 53 54 ss 56 s1 ss 59 60 61. 62 63 64 .65 66 67 68 69 10 11 12 73 74 1s 76 n 1a 79 so

A $fondard c:ord form, IBM electro 888151, n ovodoble for punchini; statements from thn form

Figure 58. Compile and Load Cataloged Procedure (FORTHCLD)

overriding Parameters in the EXEC Statement

Two forms of keyword parameters
<"keyword" and "keyword.procstep") are
discussed in "Job Control Language." The
form "keyword.procstep" is used to add or
override parameters in an EXEC statement in
a cataloged procedure.

The FORTRAN programmer can, for example,
add (or override) compiler or linkage
editor options for an execution of a
cataloged procedure, or he can state
different co~ditions for bypassing a job
step.

Note: When the PARM parameter is
overridd~n, all compiler and/or linkage
editor options stated in the EXEC statement
in the procedure step are deleted and
replaced by those in the overriding PARM
parameter.

Example.1: Assume the cataloged procedure
FORTHC is used to compile a program, and
the programmer wants to specify the name of
his program and the MAP option. The
following statement can be used to invoke
the procedure, and to supply the compiler
options~

92

//STEPl E~EC FORTHC,
// PARM.FORT='MAP,NAME=MYPROG'

The PARM options apply to the procedure
step FORT.

x

Example 2: Assume the cataloged procedure
FORTHLG is used to linkage edit and execute
a module. Furthermore, the XREF option
overrides MAP, LET, and LIST in the linkage
editor step and the COND parameter is
changed for the execution of the load
module. The following EXEC statement adds
and overrides parameters in the procedure.

//DO EXEC FORTHLG,PARM.LKED=XREF, x
// COND.G0=(3,LT,DO.LKED)

The PARM parameter applies to the
linkage editor procedure step LKED, and the
COND parameter applies to the execution
procedure step GO.

Example 3: Assume a source module is
compiled, linkage edited, and executed
using the cataloged procedure FORTHCLG.
Furthermor~, the compiler option OPT and
the linkage editor option XREF are
specified, and account number 506 is used
for the execution procedure step. The
following EXEC statement adds and overrides
parameters ip· the procedure.

//STEPl EXEC FORTHCLG,
// PARM.FORT='OPT=2',
/I PARM.LKED=XREF,
// ACCT.G0=506

x
x
x

Example.4: Assume a source module is
compiled and loaded using the cataloged
procedure FORTHCLD. Furthermore an
external name is specified as the entry
point of the loaded program. The following
EXEC statement adds and overrides
parameters in the procedure.

//STEPl EXEC FORTHCLD,PARM.GO='EP=FIRST'

overriding and Adding DD Statements

A DD statement with the name
"stepname.ddname" is used to override
parameters in DD statements in cataloged
procedures, or to add DD statements to
cataloged procedures. The "stepname"
identifies the step in the cataloged
procedure. If "ddname" is the name of a DD
statement present in the step, the
parameters in the new DD statement override
parameters in the DD statement in the
procedure step. If "ddname" is the name of
a DD statement not present in the step, the
new DD statement is added to the step.

In any case, the modification is only
effective for the current execution of the
cataloged procedure.

When overriding, the original DD
statement in the cataloged procedure is
copied, and the parameters specified in it
are replaced by the corresponding
parameters in the new DD statement.
Therefore, only parameters that must be
changed are specified in the overriding DD
statement.

If more than one DD statement is
modified, the overriding DD statements must
be in the same order as the DD statements
appearing in the cataloged procedure. Any
DD statements that are added to the
procedure must follow overriding DD
statements.

Note; The following additional rules apply
to overriding in cataloged procedures:

1. In the DCB parameter, individual
subparameters can be overridden.

2. To nullify the use of any particular
keyword parameter (except the DCB
parameter>, the overriding DD
statement must specify

keyword=,

3. A parameter can be overridden by
specifying a mutually exclusive
parameter in the overriding DD
statement. For example, in the FORTHC
procedure, the SPACE specification for
SYSLIN may be overridden by using
either the SPLIT or SUBALLOC
parameter.

When the procedures FORTHC, FORTHCL,
FORTHCLG, and FORTHCLD are used, a DD
statement must be added to define the SYSIN
data set to the compile step in the
procedures (see Figures 16, 17, 21, and 24).
With MVT, if SYSUTl and SYSUT2 DD
statements are added to the FORT step, the
DSNAME=&SYSUTl and DSNAME=&SYSUT2 DD
parameters should be used in order to
employ the dedicated workf ile feature of
the operating system. For information on
dedicated workfiles, see the Job control
Language Reference publication. When the
procedure FORTHLG is used, a DD statement
must be added to define the SYSLIN data set
(see Figures 18 and 19).

When the procedures FORTHCL, FORTHLG,
and FORTHCLG are used, an overriding DD
statement can be used to write the load
module constructed in the linkage editor
step in a particular PDS chosen by the
programmer, and assign that member of the
PDS a particular name.

In execution procedure steps, the
programmer ·can catalog data sets, assign
names to data sets, supply DCB information
for data sets, add data sets, or specify
particular volumes for data sets by using
overriding and/or additional DD statements.

Example 1: Assume the data sets identified
by ddnames FT04F001 and FT08F001 are named,
cataloged, and assigned specific volumes.
The following DD statements are used to add
this information and indicate the location
of the source module.

FORTRAN IV CH) Cataloged Procedures 93

//JOB1 JOB MSGLEVEL=l
//STEP1 EXEC FORTHCLG
//FORT.SYSIN DD *
r---1
I FORTRAN Source Module I
L---J
/*
//GO.FT04F001 DD DSNAME=MATRIX, X
// DISP={NEW,CATLG),UNIT=TAPE, X
// VOLUME=SER=987K
//GO.FT08F001 DD DSNAME=INVERT, X
// DISP={NEW,CATLG),UNIT=TAPE, X
// VOLUME=SER=1020
//GO.SYSIN DD *
r-----------------~-----------------------1

I Input to Load Module I
L---J
/*

Example 2: Assume the linkage edit and
execute cataloged procedure CFORTHLG) is
used. The load module constructed in the
linkage editor step is placed in the
cataloged partitioned data set MATH and is
assigned the member name DERIV.

//JOB3 JOB
//STEP1 EXEC FORTHLG
//LKED.SYSLMOD DD DSNAME=MATH{DERIV), X
// DISP={MOD,PASS)
//LKED.SYSIN DD *
r---1
I FORTRAN Object Module I
L---J
/*
//GO.SYSIN DD *
r-----------------------------~-----------1

I Input to Load Module I
L---J
/*

Example 3: Assume the compile, linkage
edit, and execute cataloged procedure
CFORTHCLG) is used with three data sets in
the input stream:

1. A FORTRAN main program MAIN with a
series of subprograms, SUB1 through
SUBN.

94

2. A linkage editor control statement
that ·specifies an additional library,
MYLIB. MYLIB is used to resolve
external references for the symbols
ALPHA, BETA, and GAMMA.

3. A data set used by the load module and
identified by data set reference
number 5 in the source module.

The following example shows the deck
structure.

//JOBCLG JOB 00,FORTRANPROG,MSGLEVEL=l
//HXECCLGX EXEC FORTHCLG
//FORT.SYSIN DD *
r---1
I FORTRAN Source Module MAIN I
~---~
I FORTRAN Source Module SUB1 I
~---~
I I
I I
I I
~---~
I FORTRAN Source Module SUBN I
L---J
/*
//LKED.ADDLIB DD DSNAME=MYLIB
//LKED.SYSIN DD *

LIBRARY ADDLIB{ALPHA,BETA,GAMMA)
/* /
//GO.SYSIN DD *
r---1
I Input to Load Module I
L---J
/*

The DD statement FORT.SYSIN indicates to
the compiler that the source modules are
in the input stream. The DD statement
LKED.ADDLIB defines the additional library
MYLIB to the linkage editor. The DD
statement LKED.SYSIN defines a data set
that is concatenated with the primary input
to the linkage editor. The linkage editor
control statements and the object modules
appear as one data set to the linkage
editor. The DD statement GO.SYSIN defines
data in the input stream for the load
module.

This section discusses a variety of
programming topics that should be
considered in writing a FORTRAN program.

STORAGE .. LOCATIONS . AND BYTES

Storage locations in Syste.rn/360 are
called bytes, words, and doublewords. One
word is four bytes long; a doubleword is
eight bytes long. When data is read into
main storage, it is translated into
internal format. See Table 18 for storage
allocation according to the type and length
of the constant or variable.

Table 18. Storage Allocation
r---------------T------T---------~--------1
I Type I Length I Storage I
~---------------+------+------------------i
I Logical I 1 11 byte I
I I 4 I 4 bytes . I
~--------------~+------+------------------i
I Real I 4 14 bytes I
I I 8 18 bytes I
~---------------+---.---+-------------------.,
I Integer I 2 12 bytesCvariable I
I I I only> I
I I 4 14 bytes I
r---------------+------+------------------i
I Complex I 8 18 bytes I
I I 16 116 bytes I
r---------------+------+------------------~
I Character I 11 character/byte I
I (BCD or EBCDIC) I I I
r---------------+------+------------------i
I Hexadecimal I 12 characters/byte I
L---------------~------i------------------J

MINIMUM SYSTEM REQUIREMENTS-FOR THE FORTRAN
IV (G) AND CH) COMPILERS

The operating system is device
independent. In particular, the FORTRAN IV
CG) and (H) compilers can operate with any
combination of devices (shown in Table 4);
however, there are certain requirements.

• The FORTRAN IV (G) compiler requires at
least a System/360, Model 40, with 128K
bytes of storage and a standard
instruction set with the floating-point
option.

• The FO~TRAN IV (H) compiler requires at
lea~t a System/360, Model 40, with 256K
bytes of storage and the standard
instruction set with the floating-point
option.

PROGRAMMING CONSIDERATIONS

• All programs require a device, such as
the 1052 keyboard printer, for direct
operator communication.

• At least one direct-access device must
be used for residence of the operating
system.

•For FORTRAN IV (G), the printer must
have at ieast a 120-character print
line; for FORTRAN IV (H), at least a
132-character print line.

BOUNDARY ADJUSTMENT OF VARIABLES IN COMMON
BLOCKS AND.EQUIVALENCE GROUPS

Variables in a COMMON block or
EQUIVALENCE group may be in any order if
the BOUNDRY=ALIGN option is specified in
the FORTLIB macro instruction during system
generation, because boundary alignment
violations are corrected during execution.
(The FORTLIB macro instruction is described
in the System Generation publication.) If
the BOUNDRY=NOALIGN option is specified and
boundary violations are encountered during
execution of the object program, the job
terminates.

If the BOUNDRY=ALIGN option of the FORT
LIB macro instruction is specified and a
boundary violation occurs in a FORTRAN main
program or in a FORTRAN or assembler
language subprogram, each instruction that
refers to the improperly aligned variable
requires that Cl) the specification
exception resulting from this reference be
proc- essed, and (2) the boundary alignment
routine be invoked. Therefore,
considerable programming efficiency is
gained if the programmer ensures that all
of tjle variables have proper boundary
alignment. The FORTRAN IV Language
publication contains information on
boundary alignment.

When boundary alignment is performed,
program interrupt message IHC210I is
issued. (This message is described
completely in the section "Program
Interrupt Messages" in Appendix D). For
boundary alignment, the letter A appears in
the text of the message and the code 6
appears in the old PSW (program status
word), which is included in the message.
The numbe+ of warning messages printed is
limited to 10. After 10 boundary alignment
adjustments have been made, the message is
suppressed, but boundary alignment
violations continue to be corrected.

Programming Considerations 95

Note: Even if BOUNDRY=AL!GN is specified
and a boundary error occurs in an EXECUTE,
LM Cload multiple>, or STM Cstore multiple)
instruction in a subprogram written in
assembler language, boundary adjustment
does not take place and the job terminates.
Therefore, if these instructions ref er to
improperly aligned data, they should not be
used in assembler language subprograms.

INDICATORS AND SENSE LIGHTS

At the start of program execution, the
divide-check indicator, the overflow
indicator, and the pseudo sense lights are
not initialized. Therefore~ if a
programmer intends to use the indicators or
sense lights, he should initialize them
prior to use; otherwise, erroneous results
may be obtained. (For additional
information, see the FORTRAN IV Library
publication.)

CONDITIONAL BRANCHING

A test for 0.0 in an IF statement is not
recommended. Floatirtg-point round-off
errors may cause the low-order bitCs) to be
set. Therefore, the test for o.o may not
yield the expected result.

ARITHMETIC IF STATEMENT

A fixed-point overflow condition results I
in the following action:

• In FORTRAN (G), if the integer is
positive, a negative branch is taken,
i.e., the first branch. If the integer
is negative, a positive branch is
taken, i.e., the third branch.

•In FORTRAN (H), the zero (middle)
branch is always taken.

USE-OF STOP N STATEMENT

There are no checks made to determine if
a value of n greater than 4095 is used in
the STOP n statement. 4095 is the maximum
value that can be used for n and still fit
into the 3 digits used for the user
condition-code. Any value of n greater
than 4095 overflows into the system
condition code.

REGISTER 15 AS A CONDITION CODE RE3ISTER

Register 15 is used by the compilers as
a condition code register, a RETURN code
register, and a STOP code register (STOP
code= condition code). The particular
values that Register 15 can contain and
their explanations follow:

16 -- A terminal error has been detected
during execution in a subprogram
(an IHCxxxI message is generated).

4*i -- A RETURN i statement has been
executed in a subprogram <! is a
RETURN· code).

n -- A STOP n statement has been executed
C!! is the condition code).

O -- A RETURN or a STOP statement has
been executed in either a main
program or a subprogram CO is a
RETURN code or a condition code).

Note: Both FORTRAN (G) and (H) will
generate a STOP (i.e., 0 is the condition
code) for a RETURN or RETURN i issued in a
main program.

USE OF EMBEDDED BLANKS IN FORTRAN PROGRAMS

To improve the readability of a source
program, the programmer may use any number
of blanks when writing FORTRAN statements.
Except for literal data·, in which blanks
are retained as coded in the source
statement, blanks are normally ignored by
the compilers. Thus, the statements
IJ = 10 is the equivalent of IJ=lO. Both
statements are syntactically correct
assignment statements and are executed as
such, i.e., a value of 10 is assigned to
the variable IJ.

USE OF DUMP AND PDUMP

Under the operating system, a program
may be loaded into different areas of
storage for different executions of the
same job. The following conventions should
be observed when using the DUMP or PDUMP
subroutine to insure that the appropriate
areas of storage are dumped.

If an array and a variable are to be
dumped at the same time, a separate set of
arguments should be used for the array and
for the variable. The specification of
limits for the array should be from the
first element in the array to the last

element. For example, if an array TABLE is
dimensioned as:

DIMENSION TABLE (20)

the following statement could be used to
dump TABLE and the real variable B in
hexadecimal format and terminate execution
after the dump is taken:

CALL DUMP (TABLE(1),TABLEC20),0,B,B,0)

If an area in COMMON is to be dumped at
the same time as an area of storage not in
COMMON, the arguments for the area in
COMMON should be given separately. For
example, if A is a variable in COMMON, the
following statement could be used to dump
the variables A and B in real format
without terminating execution:

CALL PDUMP CA,A,5,B,B,5)

If variables not in COMMON are to be
dumped, the programs should list each
variable separately in the argument list.
For example, if R, P, Q are defined
implicitly in the program, the statement

CALL PDUMP(R,R,5,P,P,5,Q,Q,5)

should be used to dump the three
variables. If

CALL PDUMPCR,Q,5)

is used, all main storage between R and Q
is dumped.

If an array and a variable are passed as
arguments to a subroutine, the arguments in
the call to DUMP or PDUMP in the subroutine
should specify the parameters used in the
definition of the subroutine. For example,
if the subroutine SUBI is defined as:

SUBROUTINE SUBI(X,Y)
DIMENSION XC10)

and the call to SUB! within the source
module is:

DIMENSION A(10)

CALL SUBICA,B)

then the following statement in the
subroutine should be used to dump the
variables in hexadecimal format without
terminating execution:

CALL PDUMP (X(1),X(10),0,Y,Y,0)

If the statement

CALL PDUMP CX(l),Y,0)

is used, all storage between A Cl) and Y is
dumped, due to the method of transmitting
arguments. CY does not occupy the same
storage location as B.)

USE OF ERR PARAMETER IN READ STATEMENT

Use of the optional ERR parameter for a
READ statement can indicate the source
program statement to which transfer should
be made if an error is encountered during
data transfer. When transfer has been made
to that statement, the first subsequent
READ in the source program provides the
record that was in error. If this is not
the record desired, an additional READ
should be issued.

If the ERR parameter is omitted from the
READ statement, an input/output device
error terminates pro9:ram execution.

ARITHMETIC STATEMENT;FUNCTIONS

The Arithmetic Statement Functions CASF)
can be used to cause selective "automatic"
typing. For example, the ASF,

SQRT(X)=DSQRT(X)

causes the desired function name
substitution, so that each use of SQRT(X)
in an expression in th~ program will cause
execution of DSQRTCX).

To accomplish the substitution, the
argument typeCs) in the ASF should agree
with the type of argument(s) required for
the desired subprogram. In the example
above, X should be typed as REAL*8.
Furthermore, the function name itself
should be typed to 'agree with the function
value type of the de~ired subprogram. In
the example, SQRT should be typed as
REAL*8.

FOR~RAN (H) does not actually require
that an ASF argument be typed as REAL*8,
but because FORTRAN (Gl does, it is
recommended it be done for both compilers
to ensure interchangeability. However, the
actual argument should be REAL*8 or be
typed to be REAL*8.

r------,
IG ONLYI USE OF ASSIGN STATEMENT
L------J

The FORTRAN IV CG) compiler uses table
entries produced in one of its phases to
perform storage alloca~ion for the

Programming Considerations 97

variables defined in the source module.
This process may result in an unusual
amount of compilation time if a large
number of ASSIGN statements are specified
in the source program. The use of a large
number of ASSIGN statements should be
avoided.

r------,
IG ONLYIDO LOOP OPTIMIZATION
L------J

The following discussion applies to
FORTRAN IV CG) only. For information on
FORTRAN IV CH) DO loop optimization, see
Appendix G, "FORTRAN IV CH) Optimization
Facilities."

During the operation of the FORTRAN IV
CG) compiler, one complete phase is
included for the purpose of DO loop
optimization.

Each loop is recorded internally as it
is encountered in the source module. As
each step of the optimization process
progresses, the loops are further
categorized for ease of reference in
generating the corresponding object code.

If loops are nested, the end of each
loop is denoted by a special reserve mark,
which is placed at the end of the
intermediate notation that is being
produced. The level of nesting is also
recorded for each group of nested loops.
This minimizes execution time in
determining at object time the depth to
which calculation must be maintained to
close the first loop of the nest.

A further categorization divides the
loops into standard and non-standard. The
compiler determines, based on frequency of
use, which subscript expressions are to
appear in general registers (standard) and
which are to remain in storage
(nonstandard). This method enables the
compiler to make register assignments prior
to the final generation of the object code.
In this way, addresses are retrieved and
inserted into the designated instruction
without unnecessary repeated address
calculation .•

r------,
ll:_~~~~JDUMMY ARGUMENT REFERENCES

I

In a subprogram, any dummy argument
beyond the 128th should not be ref erred to
within a DO loop.

98

r------,
IH ONLYISUPPORT OF AND, OR, AND COMPL
L------J

The functions listed in Table 19 are not
part of the standard FORTRAN language, but
are currently supported by.the (H)
compiler. Caution should be exercised in
their use since continued support is not
assured.

DATA INITIALIZATION STATEMENT

To initialize an array, the programmer
should consider the following points:

1. He may initialize any element of an
array by subscripting the array name.
Only one element is initialized; if
any excess characters are specified,
they are truncated and not placed into
the next element. coverf low from one
element to the next is known as
spill.) A partially filled array
element is padded on the right with
blanks. The following example
illustrates how individual array
elements may be initialized:

DIMENSION AC10)
DATA A(l),A(2),A(4),A(5)/'ABCD',

'QRSTUVW','123','6666'/

AC1) contains ABCD
AC2) contains QRST
A(3) is not initialized (note that

spill does not occur for a
subscripted array name)

A(4) contains 123b
ACS) contains 6666
A(6) through AC10) are not

initialized.

2. Several consecutive elements of an
array may be initialized with a single
literal constant by specifying the
array name without a subscript. Data
spill occurs through as many elements
as are necessary to insert the
constant. If the last element
initialized is only partially filled,
it is padded on the right with blanks.
(Any subsequent array elements are not
initialized; that is, their contents
are unchanged.) Truncation occurs if
the constant exceeds the limit of the

array. The following example illustrates
how several array elements may be
initialized with one constant:

DIMENSION ARRAY(9)
DATA ARRAY/
'ABCDEFGHIJKLMNOPQRSTUVWXYZ'/

ARRAY(!) contains ABCD
ARRAY(2) contains EFGH
ARRAY(3) contains IJKL
ARRAY(4) contains MNOP
ARRAY(5) contains QRST
ARRAY(6) contains uvwx
ARRAY(?) contains YZbb
ARRAY(8) and ARRAYC9) are not

initialized.

Note that data spill occurs only at
the beginning of an array. To begin
data spill in the middle of an array,
the EQUIVALENCE statement is used in
the following manner:

DIMENSION ARRAYAC10),ARRAYB(5)
EQUIVALENCE CARRAYA(6),ARRAYB(l))
DATA ARRAYB/'ABCDEFGHIJKLMNOPQRST'/

ARRAYA(l) through ARRAYACS) are not
initialized.

ARRAYA(6) contains ABCD
ARRAYA(7) contains EFGH
ARRAYA(8) contains IJKL
ARRAYA~< 9) contains MNOP
ARRAYAC10) contains QRST

3. The FORTRAN language requires that
there must be a one-to-one
correspondence between data elements
and initializing constants. However,
this correspondence may be violated
when using data spill, both the (G)
and CH) compilers will flag use of
this technique but will not terminate
processing. In this case, each
constant should be specified
immediately after the name of the
array or element it is to initialize.
In the following example, an array is

initialized (using data spill); then a
variable is initialized.

DIMENSION A(3)
DATA A/'' ABCDEFGHIJKL I/, X/' MNOP I /

A(l) contains ABCD
A(2) contains EFGH
A(3) contains IJKL
X contains MNOP

If each constant is not specified
immediately after its associated array
or variable name, overlay of spilled
data may occur, as shown in the
following example:

DIMENSION A(3)
DATA A,X/'ABCDEFGHIJKL',10.0/

A(l) contains ABCD
A(2) contains 10.0
A(3) contains IJKL
X is not initialized

In this example, the second element of
the array is overlaid by the second
initializing constant.

OBJECT TIME INPUT/OUTPUT EFFICIENCY

FORTRAN processing time can be
appreciably reduced by the use of
programming techniques that result in
greater data transfer efficiency. Such
techniques are particularly important in
executing programs that require substantial
input/output operations. Discussed below
are four programming areas in which the
correct choice of programming method can
increase FORTRAN processing speed.

READ/WRITE TYPE: The unformatted form of
the READ and WRITE statement provides the
fastest data transfer rate. For most
efficient processing, therefore, the

Table 19. Additional Built-In Functions -- CH) Compiler
r-----------------------T--------------T-------T-----------T-----------T----------------1
I I jin-Linej No. of I Type of I Type of I
I Function I Entry Name I I ·I Arguments I Arguments I Function Value I

~-----------------------+--------------+-------+-----------+-----------+----------------~
I Logical intersection of I I I I Real•4 I I
I two arguments I AND I I I 2 I or I Real*4 I
I I I I I Integer*4 I I
~-----------------------+--------------+-------+-----------+-----------+----------------~
!Logical union I I I I Real*4 I I
I of two arguments I OR I I I 2 I or I Real*4 I

I I I I I Integer*4 I I

~---------------------~+--------------+-------+-----------+-----------+----------------~
!Logical l's complement I I I I Real*4 I I

I of argument I COMPL I I I 1 I or I Real*4 I

I I I I I Integer*4 I I

L~---------------------i--------------i-------i-----------i-----------i----------------J

Programming Considerations 99

unformatted form should be used to transfer
inf ormatian to or from an intermediate data
set, a data set that is written out during
a program, not examined by the programmer,
and then read back for additional process
ing later in the program or in another
program. Thus, for an intermediate data
set, statement 11 in the following example
is to be preferred to statement 9.

COMMON AC10), BC10)
DIMENSION DC20)
EQUIVALENCE (A(l), D(l))

9 WRITE C10,10)A, B
10 FORMAT C10E13.3/)
11 WRITE (9) D

IMPLIED DO: Array notation is far more
efficient than the indexing capability of
an implied DO in an I/O list. Thus, for
efficiency, the statement WRITE (9) A
<where A is an array name) is preferable to
WRITE (9) (A(I),I=l,10).

EQUIVALENCE STATEMENT: In FORTRAN, on
input, data is taken from a record and
placed into storage locations that are not
necessarily contiguous. On output, data is
normally gathered fro-m di verse storage
locations. Input/output operations,
however, can be made more efficient by
storing and retrieving data from contiguous
locations.

To construct an ef ~icient READ or WRITE
statement for an I/O list consisting of
many variables, use a COMMON or named
COMMON statement to force all the variables
in the list to be allocated contiguous
storage space. Next, use an EQUIVALENCE
statement to define a single dimensioned
variable that is the same length as the
list of variables. Finally, use a WRITE on
the single-dimensioned variable using array
notation. The following example
illustrates this technique:

COMMON/LISTA/A(10),B(8),C,D,I,K,LC10)
REAL*8 B
COMPLEX*16 LISTC10)
EQUIVALENCE(A(l),LIST(l))

WRITE(9) LIST

BACKSPACE STATEMENT: Use of the BACKSPACE
statement is not recommended if efficient
processing is desired.

DATA-DEFINITION CONSIDERATIONS

The DCB parameter of the DD statement
allows for the redefinition of many data
set characteristics at execution time.
Those specifications that most concern the

100

FORTRAN programmer are discussed_below.
For a full description of the DCB parame
ter, see the Supervisor and Data Management
Macro Instructions publication.

BLKSIZE: The BLKSIZE subparameter
specifies the buffer size to be used; the
maximum is 32K. As a general rule, for
tape, the larger the blocksize, the more
efficient the processing. (Note that for
tape, the user should not specify a
blocksize of less than 18 bytes. Records
of less than 18 bytes may be lost when
read.) On disk, specifying the full track
as a blocksize is more efficient than
specifying a partial track. The blocksize
specified should be large enough to hold
the largest logical record produced. No
spanning of a logical record into physical
records will then occur.

BUFNO: The BUFNO subparameter specifies
the number of buffers to be used. If a
value of 1 is specified for BUFNO, single
buffering is provided. If either no value
or any value other than 1 is specified,
double buffering, which offers an overlap
advantage,, is provided.

RECFM: The RECFM subparameter specifies
both record format and the use of blocking.
When records are blocked, fewer I/O
requests are made to a device during the
processing of logical records; I/O
processing speeds are thereby increased.
In general, large blocking factors improve
performance. formance. (See "Record
Format" for additional information.)

OPTCD: OPTCD=C requests the use of chained
scheduling, a feature that results in the
decrease of I/O transfer time. Chained
scheduling is put into effect only when an
I/O request is received before a previous
I/O request has ended. For this reason it
is difficult to predict when chained
scheduling will be effective. However, the
use of chained scheduling will provide a
performance improvement in the formatting
that is done with a new direct access data
set. For sequential data sets the user may
wish to measure the effect before selecting
chained scheduling for production runs.

DIRECT-ACCESS PROGRAMMING

Using direct-access I/O rather than
sequential I/O can decrease load module
execution time: the direct access
statements in the FORTRAN IV language
enable the programmer to retrieve a record
from any place on the volume without
reading all the records preceding that
record in the data set. For efficiency,
direct data sets should be pre-formatted.

If, however, the NEW subparameter is
specified in the DD statement for the data
set, a FORTRAN-supplied load module will
format the data set before the program
begins processing.

Note: Direct-access I/O statements and
sequential I/O statements may not be used
to process the same direct data set within
the same FORTRAN load module. However,
sequential I/O statements may process under
format control a direct data set in one
load module, while direct access I/O
statements process it in another.

Not all applications are suited to
direct-access I/O, but an application that
uses a large table that must be held in
external storage can use direct-access I/O
effectively. An even better example of a
direct-access application is a data set
that is updated frequently. Records in the
data set that are updated frequently are
called master records. Records in other
data sets used to update the master records
are called detail records.

Each of the master records should
contain a unique identification that
distinguishes this reco~d from any other
master record. Detail records used to
update the masters sho~ld contain an
identification field that identifies a
detail record with a master record. For
example, astronomers might have assigned
unique numbers to some stars, and they wish
to collect data for each star on a data
set. The unique number for each star can
be used as identification for each master
record, and any detail record used to
update a master record for a star would
have to contain the same nurr~er as the
star.

A FORTRAN program indicates which record
to FIND, READ, or WRITE by its record
position within the data set. The ideal
situation would be to use the unique record
identification as the record position.
However, in most cases this is impractical.
The solution to this problem is a
randomizing technique. A randomizing
technique is a function which operates on
the identification field and converts it to
a record position. For example, if 6-digit
numbers are assigned to each star, the
randomizing technique may truncate the last
two digits of the number assigned to the
star and use the remaining four digits as a
record position. For example, star number
383320 would be assigned position 3833.
Another example of a randomizing technique
would be a mathematical operation performed
on the identification number, such as
squaring the identification number and
truncating the first four digits and the

last four digits of the result. Then the
record for star number 383320 is assigned
record position 3422. There is no general
randomizing technique for all sets of
identification numbers. The programmer
must devise his own technique for a given
set of identification numbers.

Two problems arise when randomizing
techniques are used. The first problem is
that there may be a lot of space wasted on
the volume. Ti:1e solution in this instance
must be developed within the randomizin9·
technique itself. For example, if the last
two digits on the identification numbers
for stars are truncated and no star numbers
begin with zero, the first thousand record
positions are blank. Then a step should be
added to the randornizing technique to
subtract 999 from the result of the
truncation.

The second problem is that more than one
identification may randomize to the same
record location. For example, if the last
two digits are truncated, the stars
identified by numbers 383320, 383396, and
383352 randomize to the same record
location - 3833. Records that randomize to
the same record location are called
synonyms. This problem can be solved by
developing a different randomizing
technique. However, in some situations
this is difficult, and the problem must be
solved by chaining.

Chaining is arranging records in a
string by reserving an integer variable in
each re~ord to point to another record.
This integer variable will contain eitner
an indicator showing that there are no mor~
records in this chain, or the record
location of the next record in the chain.
Records chained together are not adjacent
to each other. Figure 59 shows the records
for star numbers 383320, 383396, and
383352:

When records are chained, the first
record encountered for a record position is
written in the record position that
resulted from randomizing the
identification number. Any records that
then randomize to that same record location
must be written in record positions to
which no other record identifications
randomize. The space for these synonyms
can be allocated either at the end or the
beginning of the data set. However, this
space must be allocated when the data set
is first written. For example, if the
randomizing technique assigns master
records to record locations between 1 and
9999, the programmer may wish to reserve
record locations 10000 to 12000 for master
records that become synonyms.

Programming Considerations 101

Identifier Chain
r--------T------------T---1
I I Record I I
I 383320 !Position forl Data I
I I 383396 I I

:====~===:=====~======~==: I I Record I I
I 383396 !Position forl Data I
I I 383352 I I

:====~===~====~======:=========================--=======================================: I I End I I
I 383352 I of I Data I
I I Chain I I
L--------i------------i---J
Figure 59. Record Chaining

The programmer must keep a record
location counter to keep track of the space
assigned for synonyms. When a synonym is
inserted in this space, the record location
counter must be incremented. The
programmer should set up a dummy record in
his data set to maintain this record
location counter. When the direct-access
data set is created, the record location
counter should be set at the lower limit of
the record positions available for synonyms
Ci.e., record location 10000 in the example
used above).

Also an indicator should be reserved to
indicate to the program that the end of a
chain has been reached. Since no record
position is designated as O, O can be used
to indicate the end of a chain.

Before a FORTRAN program writes a
direct-access data set for the first time,
the data set must be created by writing
"skeleton records" in the space that is to
be allocated for the direct-access data
set. These skeleton records should be
written by an installation-written program.
After the skeleton records are written, the
direct-access data set must be classified
as OLD in the DISP parameter of the DD
statement. However, if the skeleton
records are not written before
direct-access records are written by the
FORTRAN program for the first time, a
FORTRAN load module automatically creates
the data set and writes the skeleton
records. The programmer indicates that
skeleton records have not been written by
specifying NEW in the DISP parameter. When
the data set is opened, records are

102

initialized as blank records (hexadecimal
40). If unformatted WRITE statements are
then encountered in the program, the buff er
for the data set is initialized to binary
zeroes before the data is placed in the
buffer. If formatted WRITE statements are
encountered, the buffer is initialized to
blanks.

Figure 60 shows a block diagram of the
logic that can be used to write a direct
access data set for the first time. The
block diagram does not show any attempt to
write skeleton records.

Example 3 in Appendix B shows a program
and job control statements used to update a
direct-access data set.

DIRECT-ACCESS PROGRAMMING CONSIDERATIONS

In a job that creates a data set that
will reside on a direct-access device and
will be processed by some non-FORTRAN
program, the DCB subparameter of the DD
statement must specify DSORG = DA. This
specification causes the creation of a
label indicating a direct-access data set.
(See "Creating a Direct Data Set" in the
IBM Supervisor and Data Management Services
publication.) If the direct-access data
set will not be processed by a non-FORTRAN
program, the DSORG parameter need not be
specified since the default specification,
DSORG=PS, is the one required.

Set Record Position
in Read Statement
= Chain Variable

DEFINE FILE

Allowing enough
Space for Synonyms

Set Record
Location Counter=

Lower Limit of
Space for Synonyms

Set Chain
Variable in Master

Record = Record
Location Counter

Set Record Position
in Write Statement

=Record
Location Counter

Increment
Record Location

Counter by 1

Build
Master
Record·

Figure 60. Writing a Direct-Access Data
Set for the First Time

Space must be allocated in the SPACE
parameter of the DD statement for a data
set written on a direct-access volume. For
direct-access data sets, the space
allocated in the SPACE parameter should be
consistent with the record length and
number of .records specified in the DEFINE
FILE statement in the FORTRAN program. For
example, in the DEFINE FILE statement

DEFINE FILE 8 (1000,40,E,I)

the number of records is specified as 1000
and the record length is specified as 40.
When this program is executed, the DD

statement fo~ this data set should contain
the SPACE parameter

SPACE=(40, (1000))

indicating that space is allocated for 1000
records, with 40 bytes for each record.

The DEFINE FILE statement for a data set
must be in a program unit that will not be
overlaid, but does not have to be in the
same program unit in which I/O operations
occur. (If the DEFINE FILE is coded in a
root segment, there is little chance of
error.> For example, the DEFINE FILE
statement can be given in a main program
with a subprogram performing the I/O
operations on the data set. However, if an
associated variable defined in the main
p~ogram is to be used by a subprogram, it
must be passed to the subprogram in COMMON.
Since an associated variable is updated by
I/O operations, the subprogram cannot get
to the updated value to make use of it in
its operations unless the associated
variabl.e is in COMMON.

An associated variable should not be
passed as a parameter between a main
program and its subprograms because the
associated variable is not passed in the
same way that other variables are passed.
Other variables reflect the result of any
operations performed on them in the
subprogram. An associated variable Cif
passed as a parameter) is not changed by
operations performed on it in the
subprogram.

The FIND statement permits record
retrieval to occur concurrently with
computation or I/O operations performed on
different data sets. By using the FIND
statement., load module execution time can
be decreased. For example, the statements

10 A=SQRTCX)

52 E=ALPHA+BETA*SIN(Y)
64 WRITE(9)A,B,C,D,E
76 R~AD(8'101)X,Y

are inefficient because computations are
performed between statements 10 and 52 and
an I/O operation is performed on another
data set while record number 101 could be
retrieved. If the following statements are
substituted, the execution of this module
becomes more efficient because record
number 101 is retrieved during computation
and I/O operations on other data sets.

Programming considerations 103

5 FIND(8'101)
10 A= SQRT (X)

52 E=ALPHA+BETA*SIN(Y)
65 WRITE(9)A,B,C,D,E
76 READ (8·' 101) X, Y

r------, I
I G ONLY I jCOMPILER- RESTRICTIONS
L------J

• The maximum level of nesting for DO
loops and implied Dos is 25.

• The maximum number of expressions that
can be nested is 100.

• The maximum level of nested references
in an arithmetic statement function
definition to another statement
function or a function subprogram is
25.

• The maximum number of source cards for
one compilation is dependent upon the
amount of storage available to the
compiler. A 400 card program requires
approximately 90K bytes in PCP or MFT
systems and 100K bytes in MVT systems.
However, depending upon the complexity
of a program,, more storage may be
required. For example, a program
containing a high incidence of

- input/output statements generates more
internal code, resulting in greater
storage size requirements.

• The maximum number of comment cards
between two statements is 30. The
maximum number of continuation cards
between two statements is 19. There is
no restriction on the number· of comment
cards at tne beginning of a deck.

• The repetition field (~) for format
codes in a FORMAT statement, if pres
ent, must be an unsigned integer
constant less than 256. This
restriction also applies· to
execution-time formats.

• The FORMAT statement specification w,
indicating the number of characters-of
data in the field, must be an unsigned
integer constant less than 256. This
restriction also applies to
execution-time formats.

• The FORMAT statement specification £,
specifying the position in the FORTRAN
record where the transfer of data is to
begin, ·must be an unsigned integer
constant less than 256.

104

• In literal constants in the source
program, any valid card code is
permissible, except a 12-11-0-7-8-9
punch.

r------,
I H ONLY l1COMPILER RESTRICTIONS
L------J-

• The maximum level of nesting for DO
loops is 25.

• The maximum number of implied DOs per
statement is 20.

• The maximum number of characters
allowed in a literal constant is 255.

• The maximum number of characters
allowed in a PAUSE message is 255.

• The maximum number of nested references
to another statement function within a
sta-tement function definition is 50;
the maximum number of times a statement
function may be nested is 50.

• The repetition field Ca) for FORMAT
codes in a FORMAT statement, if
present, must be an unsigned integer
constant less than 256. This
restriction also applies to
execution-time formats.

• The FORMAT statement specification ~,
indicating the number of characters of
data in the field, must be an unsigned
integer constant less than 256. This
restriction also applies to
execution-time formats.

• The FORMAT statement specification £,
specifying the position in the FORTRAN
record where the transfer of data is to
begin must he an unsigned integer
constant less than 256.

• The debug facility is not supported.

• The maximum number of arguments in a
CALL statement is 196. If an argument
has a variable subscript, that argument
is counted as two arguments.

• The maximum number of arguments in
unique parameter lists in an entire
program is dependent on the size of the
compiler, with a maximum of 1024.

• The maximum number of arguments in a
Statement Function Definition is 20.

(If any of the three preceding
restrictions is violated, message
IEK550I-"PUSHDOWN, ADCON, OR ASF
ARGUMENT TABLE EXCEEDED." - is issued.)

• The maximum number of literal constants
and arguments in unique parameter lists
contained in an entire program is
approximately 990. (If this
restriction is violated, message
IEK500I-"SOURCE PROGRAM IS TOO LARGE"
is issued. Either the program must be
segmented or the number of literal
constants and arguments must be
reduced.)

Note: In this version of the compiler,
Statement Functions are expanded inline.

r------,
jH ONLYICOMPILER-DATA SET CONCATENATION
L------J

The SIZE compiler option should be
specified when using concatenated data sets
with unlike attributes as input to, the
compiler. Failure to specify SIZE, may
result in abnormal termination of the
compile step due to unsatisfied buffer
space requests. For a description of the
SIZE compiler option ref er to the heading
"SIZE=nnnnK" in the section "FORTRAN Job
Processing."

LIBRARY CONSIDERATIONS

The FORTRAN library is a group of
subprograms residing in the partitioned
data set SYSl.FORTLIB. For a detailed
description of the FORTRAN library, see the
FORTRAN IV Library subprograms publication,
Order No. GC28-6818. A programmer can
change the subprograms in the library; he
can add, delete, or substitute library
subprograms;. or he can create his own
library. These topics are discussed in
detail in the Utilities publication, Order
No. GC28-6586.

When the FORTRAN library is changed for
ma~ntenance or to provide additional
features, precompiled programs in a user
library require special attention to
benefit from the changed library modules.
This can be accomplished by using the
linkage edit facilities to include the
current library modules, and storing the
resultant load module back into the FORTRAN
library. When the facilities of the
linkage editor are used to provide an
overlay structure or to replace a single
control section,, care should be taken not
to mix FORTRAN library modules that are at
diverse operating system levels.

This requirement to maintain all library
routines at the same level also applies to
IHCADJST. This module is dynamically
loaded from the system link library when a
specification exception occurs. Therefore,
even though a FORTRAN program is in an
executable form, if it is at a previous
release level, it will still LOAD the
current IHCADJST with which it may be
incompatible.

DD STATEMENT CONSIDERATIONS

Several DD statement parameters and
subparameters are provided for I/O
optimization (see Figure 61). Other DD
statement parameters are discµssed in "Job
control Language" and "creating Data sets."

Channel Optimization

The SEP parameter indicates that I/O
operations for specified data sets are to
use separate channels (channel separation),
if possible. The I/O operations for the
data set, defined by the DD statement in
which

SEP=CddnameC,ddname] •••)

appears, are assigned to a channel
different from those assigned to the I/O
operations for data sets defined by the DD
statements "ddname". Assigning data sets
whose. I/O operations occur at the same time
to different channels increases the speed
of I/O operations.

I/O Device Optimization

UNIT subparameters can be specified for
device optimization.

VOLUME MOUNTING AND DEVICE SEPARATION:

UNIT= (name{:~ }c ,DEFER]

C,SEP=CddnameC,ddname] •••)])

can be specified for volume mounting and
device separation. The "name" and number
of units are discussed in the section "Data
Definition Statement•.

Programming Considerations 105

r~---1 I SEP=(ddnameC,ddname] ••• 1) 2

I
I {(nameC,{nlP} 3] C,DEFER][,SEP=(ddnameC,ddname] ••• 1) 2)4 5)6}
I UNIT= AFF=ddname
I
I SPACE=(ABSTR,(quantity,beginning-address>C,directory-quantityl)
I

l: SPLIT= <n [{;;!!:rage-record-length}, (primary-quantity C, secondary-quantity] >J)
I

: SUBALLOC=<{~~~ },<primary-quantityC,secondary-quantityl
I average-record-length

\ C,directory-quantityl>,{~~~~::me.ddname })
I stepname.procstep.ddname

~--~------------------------------~ l 1 The maximum number of repetitions allowed is seven. I
l 2 If only one "ddname" is specified, the delimiting parentheses may be omitted. I
l 3 If neither "n" nor "P" is specified, 1 is assumed. I
l 4 This subparameter is applicable only for direct-access devices. I
j 5 This subparameter is the only keyword subparameter shown in this figure. All the I
I remaining subparameters shown in the UNIT, SPACE, SPLIT, and SUBALLOC parameters are I
I positional subparameters. I
l 6 If only "name" is specified, the delimiting parentheses may be omitted. I
L---J
Figure 61. DD Statement Parameters for Optimization

DEFER
indicates that the volume{s) for the
data set need not be mounted until
needed. The control program notifies
the operator when to mount the volume.
Def erred mounting cannot be specified
for a new output data set on a direct
access device.

SEP=(ddnameC,ddname] •••)
is used when a data set is not
assigned to the same access arms on
direct-access devices as the data sets
identified by the list of ddnames.
This subparameter is used to decrease
access time for data sets and is
meaningful only for direct-access
devices. The operating system
provides device separation if
possible, but ignores the SEP
subparameter if an insufficient number
of access arms is available. The SEP
subparameter in the UNIT parameter ·
provides for device separation, while
the SEP parameter provides for channel
separation.

DEVICE AFFINITY: The use of the same
device by data sets is specified by:

UNIT=AFF=ddname

The data set defined by the DD statement in
which this UNIT parameter appears uses the
same device as the data set defined by the
DD statement "ddname" in the current job
step.

106

Note: Channel separation and affinity
requests are ignored if the system's
automatic volume recognition feature is
used.

Direct-Access Space Optimization

The SPACE parameter can be used to
specify space beginning at a designated
track address on a direct-access volume.
The SPLIT or SUBALLOC parameters may be
specified instead of SPACE to split the use
of cylinders among data sets on a direct
access volume or to use space specified for
another data set which it did not use.
(The other SPACE parameter is discussed in
"Creating Data Sets.")

SPACE BEGINNING AT A SPECIFIED ADDRESS:

SPACE=CABSTR,Cquantity,beginning-address)
[,directory-quantity])

specifies space beginning at a
particular track address on a direct
access volume. The "quantity" is the
number of tracks allocated to the data
set. The "beginning address" is the
relative track address on a direct
access volume where the space begins.
If the data set is a new partitioned
data set CPDS) the
"directory-quantity" specifies the
number of 256-byte blocks that are
allocated to the directory of the data
set.

SPLITTING .. THE .. USE OF CYLINDERS AMONG DATA
SETS: If several data sets use the same
direct-access volume in a job step, proc
ssing time can be saved by splitting the
use of cylinders among the data sets.
Splitting cylinders eliminates seek
operations on separate cylinders for
different data sets. Seek operations are
measured in milliseconds, whil~ the data
transfer is measured in microseconds.

[{
,CYL }

SPLIT= Cn. _,average-record-length

,(primary-quantity

[,secondary-quantity])])

is substituted for the SPACE parameter when
the use of cylinders is split. If CYL is
specified, "n" indicates the number of
tracks per cylinder to be used for this
data set. If "average record length" is
specified, "n" indicates the percentage of
tracks per cylinder used for this data set.
The remaining subparameters are the same as
those specified for SPACE in "Creating Data
Sets."

More than one DD statement in a step
will use the SPLIT parameter. However,
only the first DD statement specifies all
the subparameters; the remaining DD
statements need only specify "n". For
example,

//STEP4 EXEC PGM=TESTFI
//FT08F001 DD SPLIT=C45,800,C100,25))

//FT17F001 DD SPLIT=C35)

//FT23F001 DD SPLIT=(20)

ACCESSING UNUSED SPACE: Data sets in
previous steps may not have used all the
space allocated to them in a DD statement.
The SUBALLOC parameter may be substituted
for the SPACE parameter to permit a new
data set to use this unused space.

{
TRK } SUBALLOC=(CYL
average-record-length

(,primary-quantity

[,secondary-quantity]

[,directory-quantity])

{
ddnarne }
stepname.ddname)
stepname.procstep.ddname

The data set from which unused space is
taken is defined in the DD statement
"ddname", which appears in the step
"stepname." (The step must be in the
current job.) The other subparameters
specified in the SUBALLOC parameter are the
same as the subpararneters described for
SPACE in "Creating Data Sets."

Progranuning Considerations 107

SYSTEM OUTPUT

The compilers, the linkage editor, and
load modules produce aids which may be used
to document and debug programs. This
section describes the listings, maps, card
decks, and error messages produced by these
components of the operating system.

COMPILER OUTPUT

Both the FORTRAN IV (G) and the FORTRAN
IV CH) compilers can generate, depending
upon user-specified options, a listing of
source statements, a table of source module
names, an object module listing, and an
object module card deck. Additionally, the
CH) compiler can generate a structured
listing of source statements, and a table
of source module labels.

Source module diagnostic messages are
also produced during compilation.

Source Listing

If the SOURCE option of the PARM param
eter of the EXEC statement is specified,
the source listing is written in the data
set specified by the SYSPRINT DD statement.
An example qf a source program listing is
shown in Figure 62. This printout is the
source listing of the sample program shown
in Figure 63. (This program will be used
throughout the remainder of this
publication for purposes of illustration.)

C PRIME NUMBER PR:OBLEM
100 WRITE C 6r 8)

Storage Map

If the MAP option of the PARM parameter
of the EXEC statement is specified, a table
of names, which appear Cor are implied) in
the source module, is written in the data
set specified by the SYSPRINT DD statement.
The storage map produced differs according
to the compiler used.

r------,
IG ONLYI
L------J A table is generated for each of
seven classifications of variables used in
the source module. Each table contains the
names and locations of variables used in
that particular context. The
classifications are as follows:

• COMMON variables

• EQUIVALENCE variables

• Scalar variables

• Array variables

• Subprograms called

• NAMELIST variables

• FORMAT statements

Separate maps are produced for each
classification, with the appropriate
heading preceding the data. The variable
names, statement labels or subprogram name

.ISN 0002
ISN 0003 8 FORMAT (52H FOLLOWING IS A LIST OF PRU4E NUMBERS FROM 1 TO 1000/

ll9Xr1Hl/19X,1H2/19X,1H3)
ISN 0004
ISN 0005
ISN 0006
ISN 0007
ISN 0008
ISN 0009
ISN 0010
ISN 0011
ISN 0012
ISN 0013
lSN 0014
lSN 0015
ISN 0016
ISN 0017
ISN 0018
ISN 0019
.ISN ·0020
lSN 0021

101 1=5
3 A=I

102 A=SQRH A')
103 J=A
104 DO l K=3rJr2
105 L=IIK
106 lFl•L*K-L'H12t4

1 CONTINUE
107 WRITE (6~5)1

5 FORMAT U20)
2 1=1+2

108 IF{l000-1)7,4,3
4 WRITE (6,9)
9 FORMAT •14H PROGRAM ERROR)
7 WRITE {6,6)
6 FORMAT (31H THIS IS THE END OF THE PROGRAM)

109 STOP
ENO

Figure 62. source Module Listing

108

- FORTRAN Coding Form

- S_AMR_LE PR:QGRAM __J,UNCHING 1GU.PHIC I l PAGE 1 Of _1
l'IOGIAMMH DAH --·-----~-l INSTRUCTIONS 1 l'UNCH I 1 j_

~· 1 I • 5 T . 'l i ! i I r ! r I i ! . . '

1 2 ~- RHA) [I I l
1 '3 J -~ i !

1 5 L •I /II< I i ! I I \ I l

1
T 1 NTINUE +

F R~AI (I2fll}
I 1

I i I

I I T l 1

' F R~~~ [31H ~HIS IS [HE END ~F THE PR RA~I)
1 9 ~TIQP

END I I

l
l

1 ' ' '''' o•wttuu~~~»~w~~n~~~u~a~»~»»~~u"~"~u~~~~~-•~~~n"~"~~~"~~u~~M"M~•~nnnnnnn~nm
A.,...._..,_, IJM•ltctt11 .. 157, h••ollabl•fo<flUl'Kh•,,."°'~ f,_tftk f-

Figure 63. Sample FORTRAN IV Program

SUBPROGRAMS CALLED
SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION
IBCOM# BC SORT co

SCALAR MAP
SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION
I CB A cc J 00 K 04 L 08

FORMAT STATEMENT MAP
SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION

8 DC 5 126 9

Figure 64. Storage Map (G) Compiler

are arranged across the page; five to a
line. However, storage maps of variables
not used in the source module are not
produced.

Figure 64 is an example of a storage map
produced by the CG) compiler for the sample
program in Figure 63.

r------,
IH ONLYI
L------J Figure 65 is an example of a
storage map produced by the CH) compiler
for the program in Figure 63. The figure
displays the following items:

1. The first line shows the name of the
program (MAIN) and the program size in
hexadecimal C00027C).

12A 6 13C

2. The second line shows headings which
identify names used in the program.
These headings and the information
they describe are as follows;

a. NAME lists names of all variables,
statement functions, subprograms,
and internal functions.

b. TAG lists variable and name use
codes. Variable use codes are as
follows:

A indicates that the variable was
used as an argument; i.e., it
appeared in a parameter list

F indicates that the variable
appeared on the right of the
equal sign, was referenced in

system output 109

an expression, or was specified
in an output list, i.e., its
value was used at some time.

s indicates that the variable
appeared on the left of an
equal sign, appeared in an
input list, or was specified in
a subroutine calling sequence;
i.e., its value was stored at
some time.

Name use codes are as follows:

c indicates variables in COMMON

E indicates variables that appear
in an EQUIVALENCE statement

IF indicates an internal function.

N.R indicates variables not
ref erred to

SF indicates arithmetic statement
functions

XF indicates subprograms

XR indicates variables, arrays, or
subprograms that are referenced
by name

Note that the name code SF
should not be confused with the
variable codes s and F. codes
s and F are positiotied left of
the heading TAG whereas the
name identifier SF appears
under the heading (actually,
beginning under the letter G;
see the placement of codes for
the variable I and the
subprogram SQRT in Figure 65).

c. Type identifies the type and
length of each variable.

d. ADD identifies the relative
address assigned to each name.
(All functions and subroutines
have a relative address of 00000.)

I MAIN I

NAME TAG TYPE ADD.
R•4 000120
1*4 00013'0

fWti TAG TY.PE A&D.
A SFA I Sf 1*4 OOCU2~
L S &QU Xf R*4 000000

Figure 65. Storage Map -- CH> compiler

110

The FORTRAN CH) compiler also produces a
map of each COMMON block, followed by a map
of any equivalences made for the block.
The map for each COMMON block contains the
same type of information as for the main
program. The map for the equivalences
lists the name of ~ach variable along with
its displacement (offset) from the
beginning of the common block.

r------,
IH ONLYILabel Map
L------J

In addition to the storage map,
specification of the MAP option for the CH)
compiler produces a table of statement
numbers known as a label map. The
statement numbers that appear in the source
module are written in the data set
specified by the SYSPRINT DD statement.
This table includes:

1. The statement number of each source
label.

2. The relative address assigned to each
label.

3. The symbol 'NR' next to each source
label that is not referenced.

Figure 66 shows a portion of the label
map produced by the CH> compiler for the
program in Figure 63.

Object Module Listing

If the LIST option of the PARM parameter
of the EXEC statement is specified, the
object module listing .is written in the
data set specified by the SYSPRINT DD
statement. The listing is in
pseudo-assembler language format; i.e., all
instructions are not valid assembler
language instructions.

The listing produced differs according
to the compiler used.

SIZE OF .PROGRAM 00027t HEXAOEClltAL 8YTES

NAME TAG lYPE ADD. NAME TAG TYPE ADD. ·
J Sf 1*4 000128 K . Sf I *4 00tll2C

l8COM= f XF 1*4 '000000

LABE.L ADDR LABEL ADDR

100 000158 NR 101 00016C NR
103 OOOlAE NR 104 0001C6 NR

1 0001E8 107 OOOlEC
4 000224 7 000238

Figure 66. Label Map -- (H) Compiler

r------,
IG ONLYI
L------J The object module listing is
arranged in column format, with headings,
as follows:

Column 1: LOCATION--The address in
hexadecimal of the
instruction.

Column 2: STA NUM--The source program
statement numbers of all
FORTRAN executable statements.

Column 3: LABEL--Source labels and
compiler generated labels.

Column 4
and

Column 5: OP and OPERAND--The actual
instruction.

Column 6: BCD OPERAND--Significant items
ref erred to in the
corresponding instruction,
e.g., entry points, labels,
variables, and constants.

Figure 67 shows an object module listing
produced for the program in Figure 63.

LABEL ADDR LABEL ADDR

3 000170 102 00019C NR
105 OOOlCC 106 000108 NR

2 000208 108 000212 NR
109 00024C NR

r------,
IH ONLYI
L------J The CH) compiler object module
listing is arranged in column format as
follows:

Column 1: The address Cin hexadecimal) of
the instruction.

column 2: The assembly format Cin
hexadecimal) of the instruction.

Column 3: Source.labels and compiler
generated labels (compiler
generated labels contain six
digits>.

Column 4: The actual instruction.

Column 5: Significant items referred to in
the corresponding instruction,
e.g., entry points, labels,
variables, constants, and
temporaries C.yxx where y is s,
T, or Q and xx is two digits).

Figure 68 shows an object module listing
produced for the program in Figure 63.

Object Module Card Deck

If the DECK option of the PARM parameter
of the EXEC statement is specified, an
object module card deck is produced. This
deck is made up of four types of cards
TXT, RLD, ESD, and END. A functional
description of these cards is given in the
following paragraphs.

System output 111

LOCATION STA NUM LABEL OP OPERAND BCD OPERAND
000000 BC 15,12(0,15)
000004 DC . 06D4ClC9
00 0008 DC 05404040
oooooc STM 14, 1.2, 12(13)
000010 LM 2,3,40(15)
000014 LR 4tl3
000016 l 13,36(0, 15)
OOOOlA ST 13,8(0,4)
OOOOlE STM 3,4,0(13)
000022 BCR 15,2
000024 DC 00000000 A4
000028 DC 00000000 A20
00002C DC 00000000 A36
0001A8 A36 l 13,4(0,13)
OOOlAC l 14, 12(0, 13)
000160 LM 2t 12, 28 {13)
000164 MVI 12tl31,255
000168 BCR 15tl4
00016A A20 L 15 rl 40 (0 ' 13) ISCOM#
OOOlBE LR 12, 13
OOOlCO LR 13,4
0001C2 BAL. 14,64(0,15)
0001C6 lR 13, 12
OOOlC 8 100 L 15,140(0,13) IBCOM#
ooou:c BAL 14,4(0,15)
000100 DC< 00000006
000104 oc OOOOOODC
000108 BAL 14, 16{ 0 tl 5)
OOOlDC 3 101 l o,360(0,13)
OOOlEO ST 0' 152 (0 tl 3)
0001E4 4 3 L o, 152(0, 13)
0001E8 LPR ltO
OOOlEA ST lr324(0,13)
OOOlEE lD o,32orn, 13>
0001F2 AD 0, 304 (0' 13)
0001F6 LTR o,o
0001F8 BALR 14,0
OOOlFA BC 11,6(0.14)
0001 FE lCDR o,o
000200 STE 0,156 {Q,13) A
000204 5 102 LA ltl48(0,13)
000208 L 15,144(0,13) SQRT
00020C BALR 14,15
00020E STE o,l56l0,13l A
000212 6 103 SOR o,o
000214 LE Orl56(0,13) A
000218 AW Q,336{0, 13)
00021C STD Or328l0tl3)
000220 L 0 ,3 32 (0 ' 13)
000224 lTDR o,o
000226 BALR 14,0
000228 BC 11,6(0,14)
00022C LCR o,o
00022E ST o, 160(0,131 J
000232 7 104 l Ot364(0,13J
000236 L44 ST 01164(0,13) K
00023A 8 105 l 0,152 (Q,13) I
00023E SRDA Ot32(0)
000242 D Orl64l0,13l K
000246 ST lrl68·(Q,13) L
00024A 9 106 L lt168rn,i3> L
00024E M 0,164(0,13) K
0002 52 s l tl 52 (0 t 13) I
000256 LTR l t l
000258 L 14rl04l0rl3l 2
00025C £3CR 8,14
00025E L 14,108(0,13) 4
000262 BCR 2 ,14
000264 10 l Otl64(0tl3l K
000268 l 1,116 cot 13) l44
00026C LA 2,2(0,0J
000270 l 3rl6010,13) J
0002 74 BXLE 0,2,0fU

Figure 67. object Module Listing -- (G) compiler (Part 1 of 2)

112

I

000278 11 107 L 15,140(0,13) IBCOM#
0002 7C BAL 14,4(0,15t
000280 DC 00000006
000284 DC 00000126
0002 88 BAL 14,8(0,15)
00028C DC 04500098
000290 BAL 14,16(0,15)
000294 13 2 l 0 ' 152 co' 1 3) I
000298 A o,368IO,l3t
00029C ST 0,152(0,13) I
0002AO 14 108 l 0 '3 72 (0 t 1 3)
0002A4 s 0,152(0,13) I
0002A 8 LTR o,o
0002AA L 14.112(0' 13) 7
0002 AE BCR 4,14
000280 l 14,96(0,13) 3
000284 BCR 2,14
000286 15 4 l 15, 140(0, 13) IBCOM#
0002BA BCR o,o
0002BC BAL 14,4(0,15)
0002CO DC 00000006
0002C4 oc 0000012A
0002C8 BAL 14116(0,15)
0002CC 17 7 l 15,140(0,13) IBCOM#
000200 • BAL 14,4{0,15)
000204 DC 00000006
000208 DC 0000013C
0002DC BAL 14,16(0,15)
0002EO 19 109 L 15,140(0,13) IBCOM#
0002E4 BAL 14,52(0,15)
0002E8 DC 05404040
0002EC DC 40FO

END
OPTIONS IN EFFECT NOID,EBCDIC,SOURCE,LIST,NODECK,LOAD,NOMAP
OPTIONS IN EFFECT NAME = MAIN , LINECNT = 50
STATISTICS SOURCE STATEMENTS = 20,PROGRAM SIZE = 750
STATISTICS NO DIAGNOSTICS GENERATED

Figure 67. Object Module Listing -- CG) Compiler (Part 2 of 2)

System Output 113

000000 47 fO F ooc MAIN BC 15.12(0,15)

000004 07404040 OC Xl41 4040.4040 1

000008 40404040 DC Xl41 404040401

oooooc 90 EC D ooc STM 14112112(13}
000010 98 23 F !)20 LM 2,3132(EH
00ii014 50 30 D go ti ST 3•8ll3)
OOC018 50 00 3 04 sr 13,4(013)
vOCOlC 07 F2 BCR 15,2

Tt:MPORARY FOR FLOAT/rlX
CONSTANTS

000108 4EOOOOOO UC XL4 14EOQ0000 1

OOOlOC 00000000 DC XL4' aooaoooo•
000110 00000002 OG XL4 100000002'
000114 00000003 oc XL4 1 000000031
000118 00000005 DC XL4 I 0000000 5 I
OOOllC OOG003E8 oc XL4 1000003E8 1.

ADCONS FOR VARIABLES AND CONSTANTS
AIJCONS FOR EXTERNAL RcFERl:NCE S

000138 00000000 DC XL4 1 0000l)000 1 SQRT
00013C 00000000 DC XL4 1 00000000 1 IBCOM=
oo.;148 41 40 0 OQ2 lOOJOO LA 4, <:'.(o, 0) 2
oe1;14L 41 90 0 OG3 LA 91 3((J, 0) 3
Oli0l50 41 AO v 005 LA 10, 5(o, 01 !>
000154 41 80 0 3Ed LA 81 lUOO(01 0.1 3cd
00~158 58 FO D OBi:; lUO L 15, 140(o, 13) 1BCUM=
Oli015C 4!:i EO F oo .. bAl 14,, 4{ 01 15)
Ot1Cl60 0()(;00006 DC Xl..4 1 00000006 1 F
001..164 00(;0(l(.;28 UC XL4 1 00000028 1 G+'
OOU16<l 4!> EO F 010 oAl 14, 16(0,15.1
00ul6C 50 AO j) 074 1()1 ::if 10, llol 0,13.1
oeo11-0 58 QC D ()74 3 l o. llo(o, u >
OUJl 74 b~ 00 D O!>d ll) o,. tllU o, 13.)

000178 60 O'O U nso :; I"[; o, 80l- 0113)
00\Jl 7C 12 oc lTk o. 0
OUC17c 47 40 D Of.le dC 4, 2221 o, 13.I
00\:.182 !>O 00 Ll fl!:i-t ST o, d4l o, 13)

OC!J\.0186 6A 00 0 oso AU o, 80(o, 13.1
00Cl8A 47 FO D Ocd dC lt>, 232(o, 13)

0"018E Hl 00 LPk o, 0
0{Hil90 50 QC 0 054 Sf o, o4l o, 13)
000194 68 00 0 050 SU o, 80(o, 13)
0&0198 70 O'O D 07{) Sfl o, 112.l 0113) A
O&<il9C 41 10 i) 04C 10.2 LA l, 76(o, 13)

Oe<ilAO 58 FC D 08d L 15t 136(o, 13) SQRT
OO'OlA4 05 Ef bALR 14,.15
06~1A6 70 00 D 090 :;n o, 144(0,13> .100
OOOlAA 1/S cm o OCJO u: o, 144(, o, l3J .TOO
OOClAE 70 {)0 0 010 STE o. ll2l ..,, 13} A
QB(;ll.l2 28 00 103 50£.; o, 0
OOi..184 78 ()O 0 070 Lt o. 112(0113) A
OOCllH:> 6E f)f) 0 058 Aili o. 88(01Ul
OOulBI:. 60 QO D 05-0 STLi o. liOt o, 13)

oe-.1co 58 50 0 Ob4 l 5, 84(o, 13}

0001C4 47 AtJ 0 llA ~c 10, 282(Otl3J
0001C8 11 55 u-.1\ 5, 5
OOOlCA 18 69 l04 LK 61, 9
OOOlCC 5tl 70 I) 074 L 1. 1161 0113.1
Ol'ililDO 18 07 105 LX. o, 7
OGC1D2 8E 00 0 na-0 s;~[;A o, 32(01 0)
0001D6 10 06 OK o,, 6
0Gl.ilU8 5G 10 D 080 .Sf l, 128(o, 13) l
OlJClDC 18 36 106 LR 3, 6
OCOlDE 5C 20 i) 08() M 2, 12'3(o, 13) L
0001E2 18 37 sx. 3, 7
001Jl£:4 47 80 D 15~ 6.:. l:i9 3481 0,13) 2
06Clf8 47 20 0 17d BC 2. 376(o, 13.1 4
OC>OlEC 87 64 0 120 1 8XU:: 6t 28Bl 4113) 105
ObClFO 58 FO i) Olil. 107 L L!:i, 140(o, 13) IBCUM=
OOOlF.4 45 EC f 0U4 dAl 14,, 4(o, 15)
Oellllfi> OOCQ0006 we XL4'00\J0000.6 1 F
OOClfiC OOCIJ007L llC XL4 1 00000072 1 G -
00u200 45 EO F f'O<l tiAL 14-. 8(Orl5)
000204 04500074 UC XL4'0450Uu74'
O<:J020ti 4:> tO F 0hJ dAL 14. lb(0,15)
OGC20C 58 00 i) 074 2 L o, 116(o, 13)
OOC210 lA 04 AX o, 4
oe11212 50 co 0 074 Sf o. 1161 o, 13)

OOC216 18 28 108 L:{ 2, 8
(){1(;218 5b 20 j) 070:. :) ~. 116(o, 13) I
O<HJ21C 47 40 j) Ht&: th;. 4, 396(0, 13) 7
00C220 47 80 D Hd tiC (l, 376(o, 13) 4
000224 47 20 I) oco i:IC 2. Hl2t 0, 13) 3
000228 58 FO 0 oat 4 L 151 140(Otl3l IBCOM=
OOU22C 45 t:C f 004 l:!t\L 14, 4(0115)
Of)'(i230 0000()060 OG XL4 10000C006 1 F
000234 00000076 oc Xi.4 1 000000761 G+S
OCH.l238 45 EO F Plu ti AL 14. 161 0,15)
06v23C 58 FO D 08~ 7 t. 15, 140(0113) IBCOM=
00\.'240 45 EO f 004 ti4l 14, 4(0,15)
oou244 QOC<H;oo6 oc Xl.4'0000<J0Uo•

----r

Figure 68. Object Module Listing -- (H) compiler <Part 1 of 2)

114

oec24a oeoeoaaa llC XL4 1 0QOQ0088 1 G+Q
OOU24C 45 EO F 010 IUL lf•· l6L o, 15)
OfJ0250 58 FO 0 08C 109 L 15. 140(o, 13) IBCOH=
000254 45 EC F 031t HAL L4• 52(0,15.J
060258 0.5 DC XU 1 00006005 1

OfJ0.259 46 liC XL1 1 QOOV0040 1

Oe025A 4() LlC XLl I OOOOQ040'
060258 40 DC XL1 1 000000401

OfJ025C 40 DC Xl..1 1 00000040 1

000250 FO li>C XLl 1 0QQOOOf0 1

AODRESS OF EP lLOGUE
00025E 58 FO 0 oac L 15. 1401. o, 13J
060262 45 EO F O.i4 BAL 14t' 52L o, 15) 1BCOM=
Oe0266 0540 lilC XL2 1 40400.i40 1

000268 4C4040FO SC Xl.<+'404040F0 1

ADDRESS OF PROLOGUE
0{J026E 58 FO 3 08C L 15, 140(o, 3)
000272 45 EO f 040 El Al v •• 64(0,15) IBCOM=
000216 18 03 lR 13, 3
000278 47 fl) D 098 BC 15, 152(o, 13)

A OCON FOR PROLOGUE
000020 0000026E oc XL4' 000 0026 E'

A OCON FOR SAVE AREA
000024 00000080 DC Xl4 1 QOOQOOB0'

A OCON FOR EPILOGUE
000080 0000'025E DC XL4 1 QOOQ025E 1

AOCONS FOR PARAMETER LISJS
OOOGFC 80()00120 DC XL4'80000120' A

AO.CONS FOR TEMPORARIES
OEIOlltO 00()(J'Q0()0 oc XL4'00000000'·
000144 0000'0000 DC XL4 1 00000000 1

AOCONS FOR 3 BLOCK LA8ELS

Figure 68. Object Module Listing -- (H) Compiler (Part 2 of 2)

OBJECT MODULE .. CARDS: Every card in :the
object module deck contains a 12-2-9 punch
in column 1 and an identifier in columns 2
through 4. The identifier consists of the
characters ESD, RLD, TXT or END. The first
four characters of the name of the program
are placed in columns 73 through 76 with
the sequence number of the card in columns
77 through 80.

ESD-Card: Four types of ESD cards are
generated as follows:

ESD, type 0 - contains the name of the
program and indicates the
beginning of the object
module.

ESD, type 1 - contains the entry point
name c9rresponding to an
ENTRY statement in a
subprogram.

ESD, type 2 - contains the names of
subprograms ref erred to in
the source module by CALL
statements, EXTERNAL
statements, explicit
function references, and
implicit function
references.

ESD, type 5 - contains information about
each COMMON block.

The number O, 1, 2, or 5 is placed in card
column 25.

RLD Card: An RLD card is generated for
external references indicated in the ESD,
type 2 cards. To complete external
references, the linkage editor matches the
addresses in the RLD card with external
symbols in the ESD card. When external
references are resolved, the storage at the
address indicated in the RLD card contains
the address assigned to the subprogram
indicated in the ESD, type 2 card. RLD
cards are also generated for a branch list
produced for statement numbers.

TXT card: The TXT card contains the
constants and variables used by the
programmer in his source module, any
constants and variables generated by the
compiler, coded information for FORMAT
statements, and the machine instructions
generated by the compiler from the source
module.

END Card: One END card is generated for
each compiled source module. This card
indicates the end of the object module to
the linkage editor, the relative location
of the main entry point, and the length (in
bytes) of the object module.

OBJECT MODULE DECK STRUCTURE: Because of
implementation, object module deck
structures differ by compiler. Figure 69
shows the deck structure for the FORTRAN IV
(G) compiler; Figure 70 shows the deck
structure for the CH) compiler.

System Outp~t 115

Figure 69.

TXT Cards for
Temp Storage
and Constants

Object Module Deck Structure -
CG) Compiler

End Card

the Branch List

ESD, Type 1 Giving
Entry Points from
ENTRY Statements

ESD, Type 0
Giving the Name
of the Object
Module

Figure 70.

r------,

Object Module Deck Structure -
CH) Compiler

IH ONLYICross Reference Listing
L------J

If the compiler XREF option is
specified, a cross reference listing of
variables and labels is written in the data
set specified by the SYSPRINT DD statement.
The variable names are listed in
alphabetical order, according to length.
(Variable names of one character appear

116

first in the listing.) The labels are
listed in ascending sequence along with the
internal statement number of the statement
in which the label is defined.

For both variable names and labels, the
listing also contains the internal
statement number of each statement in which
the variable or label is used. Figure 71
shows a compiler cross reference listing
produced for the program in Figure 63.

r------,
IH ONLYIStructured Source Listing
L------J

If the EDIT option is specified, a
structured source listing is written in the
data set specified by the SYSPRINT DD
statement. This listing is independent of
the usual source listing and indicates the
loop structure and logical continuity of
the source program.

Each loop is assigned a unique 3-digit
number. Entrance to the loop is indicated
by a left parenthesis followed by a 3-digit
loop number -- Cxxx -- before the internal
statement number of the first statement in
the loop; exit from the loop is indicated
by the 3-digit loop number followed by a
right parenthesis -- xxx> -- on a separate
line before the next non-comment line.

SYMBOL
A
I
J
K
l
SQRT

LABEL
1
2
3
4
5
6
7
8
9

100
101
102
103
104
105
106
107
108
109

INTERNAL STATEMENT NUMBERS
0005 0006 0006 0007
0004 0005 0009 0010 0012
0007 0008
0009 0009 OOHl
0009 0010
OQ06

DEFINED
OOH
0014
0005
0016
0013
0019
0018
0003
0017
0002
0004
0006
0007
0008
0009
0010
0012
0015
0020

REFERENCES
OOC8 0010
001()
OOJ.5
0010 0015
0012
0018
0015
0002
0016

0014 0014 0015

Figure 71. Compiler Cross Reference
Listing -- CH) Compiler

Indentations are used to show dominance
relationships among executable source
statements. Statement A dominates
statement B if A is the last statement
common to all logical paths from which B
receives control. Statement A is called a
dominator, statement B is called a dominee.
By this definition, a statement can have
only one dominator, but a dominator may
have several dominees. For example, a
computed GO TO statement is the last
statement through which control passes
before reaching three other statements.
The GO TO statement is a dominator with
three dominees.

A dominee is indented from its dominator
unless it is either the only dominee or the
last dominee of that dominator. The line
of sight between a dominator and its
dominee(s) may be obscured by intervening
statements. This is a dominance
discontinuity and is indicated by c--- on a
separate line above the dominee.

comments and non-executable statements
are not involved in dominance
relationships; their presence never causes
a dominance discontinuity. comments line
up with the last preceding non-comment
line; nonexecutable statements line up
either with the last preceding executable
statement or with the first one following.

Figure 72 shows a structured source
listing produced for the program in Figure
63.

Source Module Diagnostics

FORTRAN IV CG) and CH> compiler messages
are described in Appendix D.

LINKAGE EDITOR OUTPUT

The linkage editor produces a map of a
load module if the MAP option of the PARM
parameter of the EXEC statement is

specified, or a cross reference list and a
map if the XREF option is specified. The
linkage editor also produces diagnostic
messages, which are discussed in the
Linkage Editor and Loader publication.

Module Map

The module map is written in the data
set specified in the SYSPRINT DD statement
for the linkage editor. To the linkage
editor, each program (main or subprogram)
and each COMMON (blank or named) block is a
control section.

Each control section name is written
along with origin and length of the control
section. For a program and named COMMON,
the name is listed; for blank COMMON, the
name $BLANKCOM is listed. The origin and
length of a control section is written in
hexadecimal numbers. A segment number is
also listed for overlay structures (see the
Linkage Editor and Loader publication).

For each control section, any entry
points and their locations are also
written; any functions called from the data
set specified by the SYSLIB DD statement
are listed and marked by asterisks.

The total length and entry point of the
load module are listed. Figure 73 shows,
for the CG) compiler, a load module map
produced for the program in Figure 63; the
map produced for the CH) compiler is shown
in Figure 74.

System Output 117

C PRlHE NUMBER PROBLEM
100 WRITE ,6,8) ISN 0002

I SN 0003 8 FORMAT (52H FOLLOWING IS A LIST OF PRIME NUM~ERS FROM 1 TD 1000/
119X,1Hl/19X11H2/l9X11H3)

ISN 0004
C 0021 SN 000.5

ISN 0006
I SN 0007
ISN 0008

C 0011 SN 0009
ISN OQlO
I SN 0011

001)
ISN 0012
ISN 0013
!SN 0014
ISN 0015

002)

101 1=5
3 A=l

102 A=SQRHAl
lQ.3 J=A
104 DO 1 K=3,J,2
105 L=I/K
106 IFlL*K-IJl,2,~

1 CONTINUE
c

107 WRITE (6,~ll
5 FORMAT ll201
2 1=1+2

108 IF(l000-117,4,3
c

4 WRITE 16,<l) ISN 0016
I SN 0017
ISN 0018
ISN 0019
ISN 0020
ISN 0021

9 FORMAT (l4H PROGRAM ERROR)
1 WRITE (6,6)
6 FORMAT (31H THlS IS THE END OF THE PROGRAM)

109 STOP
END

Figure 72. Structured source Listing -- CH) Compiler

CONTROL SECT ION ENTRY

NAME ORIGIN LENGTH NAME LOCATION

MAIN 00 2E6
MAIN 00

IHCFCOMH* 2E8 FB3
IBCOM= 2E8

IHCSSQRT* 12AO AC
SQRT 12AO

IHCFCVTH* 1350 FEB
ADC ON= 1350
FCVIO 1808

IHCFIOSH* 2340 C30
FIOCS= 2340

IHCUATBL* 2F70 108

Figure 73. Load Module Map (G) Comp_~ler
--·-·-~--

CONTROL SECTION ENTRY

NAME ORIGIN U:NGTH NAME LOCA'fION

HAIN 00 27C
IHCSSQRT* 280 AC

SQRT 280
UiCFCOMH* 330 FfiD

IBCOH= 330
IHCUOPT * 1330 8
IHCTRCH * 1338 258
IHCFCVTH* 1590 ff3

ADC ON= 1590
FCVIO 1818

IHCFIOSH* 2588 CF2
FIOCS= 2588

IHCUATBt.* 3280 638

Figure 74. Load Module Map -- (H) Compiler

Cross-Reference List

If the linkage editor XREF option of the
PARM parameter of the EXEC statement is
specified, a cross reference list is
written with the module map. This cross
reference list gives the location from
which an external reference is made, the
symbol externally ref erred to in this

118

NAME LOCATION NAME LOCATION NAME LOCATION

FDIOCS= 3A4

FCVZO 149C FCVAO 1542 FCVLO 15CA
FCVEO 1072 FCVCO 1F6C

"'-

NAME LOCATION NAME LOCATION NAME LOCATION

FDIOCS= 3EC

FCVZO l60C FCVAO 1782 FCVLO l80A
FCVEO lFBC FCVCO 2186

control section, the control section in
which the symbol appears, and the segment
number of the control section in which the
symbol appears. Unless the linkage editor
is building an overlay structure, the cross
reference list appears after the module map
for all control sections. Figure 75 shows,
for the (G) compiler, the cross reference
list produced for the program in Figure 63;
the list produced for the CH) compiler is
shown in Figure 76.

LOAD MODULE OUTPUT

At execution time, FORTRAN load module
diagnostics are generated in three forms -
error code diagnostics, program interrupt
messages, and operator messages. An error
code indicates an input/output error or a
misuse of a FORTRAN library function. A
program interrupt message indicates a
condition that is beyond the capacity of
System/360 to correct. An operator message
is generated when a STOP or PAUSE is
executed.

LCCATION REFERS TO SYMBOL

00
04

1134
112C
1138
113C
1140
1144
1148
114C
1324
21 FC
24t:4
2470

ENTRY ADDRESS
TOTAL LENGTH

IBCOM=
SQRT
ADCON=
FIOCS=
FCVEO
FCVLO
FCVIO
FCVCO
FCVAO
FCVZO
IBCOM=
IBCOM=
I HC UATBL
IBCOM=
00

3078

CONTROL SECT ION

IHCFCOMH
IHCSSQRT
IHCFCVTH
I HCF IOSH
IHCFCVTH
IHCFCVTH
IHCFCVTH
IHCFCVTH
I HC FC VTH
I HCFC VTH
IHCFCOMH
IHCFCOMH
I HCUA TBL
IHCFCOMH

Figure 75. Linkage Editor Cross Reference
List -- CG) compiler

LOCATION REFERS TO SYMBOL IN CONTROL SECTION

138
13C
304

1108
UDO
lOEO
llDC
llEO
llE4
11E8
llEC
UFO
llC8
1490
1494
1498
2444
2680
26BC

ENTRY ADDRESS
Y'OTAL LENGTH

SQRT
lBCOM=
IBCOH=
ADCON=
FtOCS=
IHCUOPT
FCVEO
fCVLO
fCVlO
FCVCO
FCVAO
fC.VZO
lHCTRCH
I SCOH=
A OCON=
fLOCS=
IBCOM=
IMCUATBL
IBCOM=
00

38B8

JHCSSQRT
lHCFCOMH
lHCFCOMH
IHC.FCVTH
JHCFIOSH
IHCUOPT
IHCFCVTH
IHCFCVTH
IHCFCVTH
IHCFCVTH
IHCFCVTH
1HCFCVTH
lHCTRCH
IHCFCQHH
IHCFCVT.H
IHCFIOSH
lHCFCOHH
lHCUATBL
lHCFCOHH

Figure 76. Linkage Editor Cross Reference
List -- CH) compiler

Error Code Diagnostics and Traceback
without Extended Error Handling Message
Facility

If an error is detected during execution
of a FORTRAN load module, a message and a

diagnostic traceback are written in the
error message data set Csee "FORTRAN Job
Processing"). The message is of the form:

message text
TRACEBACK FOLLOWS-ROUTINE ISN REG. 14,
REG. 15, REG. 0, REG. 1

These error messages are described in
Appendix D. For the error conditions
numbered 211 through 214, 217, 219, 220,
and 231 through 237, the message will
consist of only IHCxxxI where xxx is a
3-digit error code. The errors detected by
the FORTRAN mathematical functions will
provide message text describing the error
condition. The traceback, which follows
the error message, is a list of routines in
the direct line of call to the routine in
error, in reverse order of use. After the
traceback is completed, for error message
IHC218I, control is passed to the statement
designated in the ERR parameter of the
FORTRAN READ statement if that parameter
was specified. In all other cases,
execution of the job step is terminated and
a condition code of 16 is returned to the
operating system.

Each entry in the traceback contains the
name of the called routine, an internal
statement number CISN) from the calling
routine Cif one was generated for that
call), and the contents, in hexadecimal, of
register 14 Cwhich indicate the point of
return to the calling routine).

The first routine listed in the
traceback is the one that called the
library subprogram in which the error
occurred, except when the name given is
IBCOM. Then, the error could have occurred
in IHCFCOMH or one of the routines that it
calls: IHCFCVTH, or IHCFIOSH. The error
code in the message indicates the actual
origin of the error.

Note: For an assembler language program or
subprogram, the routine name field in the
traceback contains the identifier specified
in the SAVE macro instruction or equivalent
coding. Cif the identifier specified is
longer than eight characters, only the
first eight appear.) If no identifier is
specified, the traceback routine name field
is either blank or its contents are
meaningless in the traceback.

Internal statement number identifiers
are generated for function references and
calls when the ID option is specified on
the EXEC statement for the compile step.
These identifiers appear in the traceback,
except for FORTRAN calls to IBCOM for which
no identifiers are generated. If NOID is
specified, no identifiers are generated and
the internal statement number field will be
blank.

system Output 119

r---1
IIHC219I I
I TRACEBACK FOLLOWS ROUTINE ISN REG. 14 REG. 15 REG. 0 REG. 1 I
I IBCOM 820068FC xxxxxxxx xxxxxxxx xxxxxxxx I
I MASTR 010 00005378 I
I PAYROLL 00003148 xxxxxxxx xxxxxxxx xxxxxxxx I
!ENTRY POINT = 00005000 I
L---J
Fiqure 77. Sample Traceback for Execution-Time Errors

~; For an assembler language program or
subprogram, the internal statement number
field contains the value of the binary
calling sequence identifier specified in
the CALL macro instruction or equivalent
coding. If no identifier was specified,
the field is either blank or its contents
are meaningless in the traceback.

If the traceback cannot be completed,
the message TRACEBACK TERMINATED is issued
and the job step is terminated. This
message appears only if either 13 names of
subprograms appear in the traceback or a
calling loop has been detected (e.g.,
subprogram A calling B calling A).

At the end of the traceback, whether it
was completed or not, the entry point of
the main FORTRAN program is given in
hexadecimal.

Figure 77 shows the traceback
information placed in the error message
data set for the following example.

Example: A FORTRAN program PAYROLL calls
the subroutine MASTR, which contains a READ
statement. The IHCFIOSH routine is called
to perform the input operation, but an
error condition arises because there is no
DD ·statement for the data set.

Explanation: PAYROLL was entered at
location 5000 and call.ed MASTR at internal
statement number CISN) 10 in PAYROLL.
IBCOM Cin this case, the error occurred in
the IHCFIOSH routine) would have returned
to location 68FC in MASTR; MASTR would have
returned to location 5378 in PAYROLL and
PAYROLL would have returned to location
3148 in the supervisor. Execution
terminates and a condition code of 16 is
returned to the operating system.

Program Interrupt Messages

Program interrupt messages containing
the old Program Status Word CPSW) are
produced when one of the following occurs:

120

• Protection Exception (4)
• Addressing Exception (5)
• Specification Exception (6)
• Data Exception (7)
• Fixed-Point Divide Exception (9)
• Exponent-Overflow Exception Cc>
• Exponent-Underflow Exception CD)
• Floating-Point Divide Exception CF)

The characters in parentheses following
the exceptions are PSW codes that appear in
the program interrupt message to indicate
the type of exception. Appendix D contains
a complete description of the message and
its format.

The program interrupt messages are
written on a data set specified by the
programmer. (See "FORTRAN Job
Processing.") Operator intervention is not
required for any of these interruptions.

ABEND Dump

If a program interrupt occurs that
causes abnormal termination of a ioad
module, an indicative dump is given Ci.e.,
only the contents of significant registers,
indicators, etc., are dumped). However, if
a programmer adds the statement

//GO.SYSABEND DD SYSOUT=A

to the execute step of a cataloged
procedure, main storage and significant
registers, indicators, etc., are dumped.
(For information about interpreting an
ABEND dump, see the Guide to Debugging
publication.>

Operator Messages

A message is transmitted to the operator
when a STOP or PAUSE is encountered during
load module execution. Operator messages
are written on the device specified for
operator communication. For a description
of these messages, see Appendix D.

The value associated with the STOP
statement CO if a value is not coded) is
passed to the next job step and can be
tested as a condition code by the COND

parameter in the EXEC statement. This
condition code will have a value of 16 if
FORTRAN terminates the step because of a
detected execution error. The STOP
statement, like CALL EXIT, terminates a
FORTRAN program and causes automatic
closing and positioning of FORTRAN data
sets, i.e., the writing out of the last
buffer on output, the releasing of dynamic
storage, the closing of data sets, etc.

LOADER OUTPUT

The loader produces error and diagnostic
messages and a storage map of the loaded
program if the PRINT and MAP options,

respectively, are specified in in the PARM
field of the EXEC statement. The storage
map and diagnostic messages are produced on
the data set specified in the SYSLOUT DD
statement. The diagnostic messages are
fully described in the Messages and Codes
publication.

The storage map includes the name and
absolute address of each control section
and entry point defined in the program. It
is written on SYSLOUT concurrently with
input CSYSLIN) processing, as its entries
appear in the same order as the input ESD
items. The total size and storage extent
of the loaded program are also included.
Figure 78 shows the storage map produced
for the program in Figure 63.

OS/360 LOADER

OPTIONS USED - PRINT,MAP,LET,CALL,RES,SIZE=l02400

NAME TYPE ADDR NAME TYPE ADDR NAME TYPE ADDR NAME TYPE ADDR NAME TYPE ADDR

MAIN SD 63360 IHCSSQRT* SD 63650 SQRT * LR 63650 IHCECOMH* SD 63798 IBCOM# * LR 63798
FDIOCS# * LR 63854 INTSWTCH* LR 646B6 IHCCOMH2* SD 646DO SEQDASD * LR 64958 IHCERRM * SD 64C40
ERRMON * LR 64C40 IHCERRE * LR 64C58 IHCUOPT * SD 65200 IHCEFNTH* SD 65500 ARI TH# * LR 65500
ADJSWTCH* LR 6586C IHCEFIOS* SD 65A18 FIOCS# * LR 65A18 FIOCSBEP* LR 65A1E IHCFCVTH* SD 66C98
ADC ON# * LR 66C98 FCVAOUTP* LR 66D42 FCVLOUTP* LR 66DD2 FCVZOUTP* LR 66F22 FCVIOUTP* LR 672C8
FCVEOUTP* LR 677CA FCVCOUTP* LR 679E4 INT6SWCH* LR 67CCB IHCUATBL* SD 67E30 IHCETRCH* SD 68038
IHCTRCH * LR 68038 ERRTRA * LR 68040

TOTAL LENGTH 4F68
ENTRY ADDRESS 63360

Figure 78. Storage Map Produced by the Loader

System Output 121

LINKAGE EDITOR OVERLAY FEATURE

overlay is a feature of linkage editor
processing that allows the FORTRAN
programmer to reduce the main storage
requirements of his program by breaking it
up into two or more segments that need not
be in main storage at the same time. These
segments can be assigned the same relative
storage addresses and can be loaded at
different times during execution of the
program. The programmer uses linkage
editor control statements to specify the
relationship of segments within the overlay
structure.

DESIGNING A PROGRAM FOR OVERLAY

Programs are placed in an overlay
structure according to the size, frequency
of use, and logical relationships between
the program units that they comprise. The
basic principle of overlay is illustrated
by the simple example in Figure 79. It
shows a FORTRAN program consisting of a
main program and two very large subprograms
named SUBA and SUB. Normally, all three
program units would be loaded into main
storage at the same time and would remain
there throughout execution of the entire
program. However, if there was not enough
main storage space available to accommodate
all three program units at once, and if
SUBA and SUBB did not have to be in main
storage at the same time, the programmer
could design an overlay structure in which
the MAIN routine stayed in main storage at
all times, while subprograms SUBA and SUBB
made use of the remaining space as they
were needed.

r---1
I I
I MAIN I
I I
r---~
I I
I SUBA I
I I
r---~
I I
I SUBB I
I I
L---J
Figure 79. A FORTRAN Program Consisting of

Three Program Units

Figure 80 shows what happens at
execution time to the program in Figure 79.
The MAIN routine' is loaded and processing
begins. When the MAIN routine calls SUBA,

122

SUBA is loaded and processing continues
until SUBB is called. SUBB then overlays
SUBA in main storage and remains there
until SUBA is called again. The main
storage requirements of the program are

·thus reduced from the total number of bytes
in all three program units to the total
number of bytes ~n the MAIN routine plus
the larger of the two subprograms.

Main Storage

Time 0----------------~------->n

Problem
Program
Area

Figure 80. Time/Storage Map of a Three
Segment Overlay Structure

SEGMENTS

The relationships among the program
units in the ov.erlay program described
above can be graphically represented by an
overlay "tree" structure, as shown in
Figure 81. Each "branch" of the overlay
tree consists of a separately loadable unit
of the program to which the linkage editor
assigns a number. These overlay segments
may contain one or more subprograms
totaling 512K bytes (524,288 ~ytes).

The first segment in any overlay program
is called the root segment. The root
segment remains in main storage at all
times during execution of the program. It
must contain:

• The program unit which receives control
at the start of processing. Usually
this is the main routine in which
processing begins at the entry point
named MAIN.

• Any program units which should remain
in main storage throughout processing.
For greater efficiency, subprograms
which are frequently called should also
be placed in the root segment if
possibl.e.

• Any program units containing DEFINE
FILE statements.

• Certain information which is needed by
the operating system to control the
overlay operation. This information is
automatically included in the root
segment by the linkage editor.

• Any automatically called FORTRAN
library subprograms that have not been
explicitly positioned in the overlay
structure.

Segment 1
(ROOT)

r--------,
I I
I MAIN I
I I
L----T ___ J

I
Segment 2 I Segment 3

r---------------i---------------,
I I
I I

r----i---, r---i----,
I SUBA I I SUBB I
L--------J L--------J

Figure 81. Overlay Tree Structure of Three
Program Units

PATHS

The relationships among the segments of
an overlay program are expressed in terms
of "paths". A path consists of a given
segment and any segments between it and the
root segment. The root segment is thus a
part of every path, and when a given
segment is in main storage, all segments in
its path are also in main storage. The
simple program in Figure 81 is made up of
only two paths, as shown in Figure 82.

The paths of an overlay program are
determined by the dependencies between the
program units which it comprises. A
program unit is considered to be dependent
on any program unit which it calls or whose
data it must process.

Path 1
r------------,
I I
I I
I MAIN I
I I
I I L-----T ______ J

I
I
I
I
I
I

r-----i------,
I I
I I
I SUBA I
I I
I I L------------J

Path 2
r------------,
I I
I I
I MAIN I
I I
I I
L------T _____ J

I
I
I
I
I
I r------i-----,

I I
I I
I SUBB I
I I
I I L------------J

Figure 82. The Paths in the overlay Tree
in Figure 81

Figure 83 shows a FORTRAN program in an
overlay tree structure. The paths implied
by that structure are illustrated in Figure
84. The MAIN routine and subprograms SUBl

Segment 1
(ROOT)

r-------,
I MAIN I
r--------1
I SUBl I
(-------~
I SUB2 I
L ___ T ___ J

Segment 2 I segment 6
r----------i-----------,
I ALPHA I

r---i---, r---i---,
I SUB3 I I SUB11 I
1--------i r-------1
I SUB4 I I SUB12 I
L---T ___ J L-------J

I
r----------+----------1
I BETA I I
I I I

r---i---, r---i---, r---i---,
I SUBS I I SUBS I I SUBlO I
~-------i ~--------f L-------J
I SUB6 I I SUB9 I Segment 5
~-------~ L _______ J

I SUB7 I Segment 4
L-------J
Segment 3

Figure 83. Overlay Tree Structure Having
Six Segments

Linkage Editor overlay Feature 123

Path 1
r-------,
I MAIN I
I I
~-------~
I I
I SUBl I Segment 1
I I (ROOT)
~-------~
I I
I SUB2 I
I I
L---T ___ J

I
I
I
I

r---..L---,
I I
I SUB3 I
I I
~-------~ Segment 2
I I
I SUB4 I
I I
L---T---J

I
I
I
I

r---..L---,
I I
I SUBS I
I I
~-------~
I I
I SUB6 I Segment 3
I I
~-------~
I I
I SUB? I
I I
L-------J

Path 2
r-------,
I MAIN I
I I
~-------~
I I
I SUBl I
I I
r-------i
I I
I SUB2 I
I I
L---T---J

I
I
I
I

r---..L---,
I I
I SUB3 I
I I
r-------i
I I
I SUB4 I
I I
L---T ___ J

I
I
I
I

r---..L---1
I I
I SUBS I
I I
~-------i Segment 4
I I
I SUB9 I
I I
L-------J

Path 3
r-------,
I MAIN I
I I
~-------i
I I
I SUBl I
I I
~-------i
I I
I SUB2 I
I I
L---T ___ J

I
I
I
I

r---..L---,
I I
I SUB3 I
I I
~-------i
I I
I SUB4 I
I I
L---T ___ J

I
I
I
I

r-::::-1} Segment 5

L-------J

Figure 84. Paths Implied by Tree Structure in Figure 83

124

Path 4
r-------,
I MAIN I
I I
~-------~
I I
I SUBl I
I I
~-------i
I I
I SUB2 I
I I
L---T ___ J

I
I
I
I

r---..L---,
I I
I SUBll I
I I r-------i Segment 6
I I
I SUB12 I
I I
L-------J

and SUB2 will remain in main storage for
the duration of execution time. They will
occupy the root segment. The segment
containing subprograms SUB3 and SUB4 will
use the same area of main storage as the
segment containing subprograms SUB11 and
SUB12. Likewise, the main storage area
used by the segment containing SUBS, SUB6,
and SUB7 will be used by the segment
containing SUBS and SUB9, as well as ~y the
segment containing SUB10. Figure 85 is a
time/storage map of the program shown in
Figures 83 and 84.

The structure in Figures 83 and 84
·consists of segments numbered 1 through 6,
with segment 1 being the root segment.
Segments 2 and 6 have the same relative
origin; that is, they will start at the
same location when in main storage. This
origin has been given the symbolic name
ALPHA by the programmer (on an OVERLAY
control card). The relative origin of
segments 3, 4, and 5 has been given the
symbolic name BETA.

The relative origin of the root segment,
also called the relocatable origin, is
assigned at o. The relative origin of any
segment other than the root segment is
determined by adding the lengths of all
segments in its path, including the root
segment. When the program is loaded for
execution, the first location of the root
segment (the relocatable origin of the
program) is assigned to an absolute storage
address. All other origins are
automatically increased by the value of
that storage address.

COMMUNICATION BETWEEN SEGMENTS

Overlay segments can be related to one
another by being either inclusive or
exclusive. Inclusive segments are those
which can be in main storage
simultaneously, in other words, those which
lie in the same path. Exclusive segments
are those which lie in different paths.
Thus, in the program shown in Figures 83
and 84, segments 2 and 5 are inclusive,
while segments 2 and 6 are exclusive.

Main Storage

.------------------------------,
I I
I Segment 1 (ROOT) I
I I
I I
I ALPHA I
t----------------------'-T-------i
I I I
I Segment 2 f Segmentf
I I 6 I
I I I
IBETA I I

~-------T------•,.-------
1 I I
I I I Segment
I I I s
I f Segment
I I 4
rsegment
I 3

Problem
Program
Area

Time 0--------------------------->n

Figure 85. Time/Storage Map of Six Segment
Structure

INCLUSIVE REFERENCES

An inclusive reference is a reference
from a segment in main storage to a
subprogram that will not overlay the
calling segment. When a CALL is made from
a program unit in one segment to a program
unit in an inclusive segment, control may
be returned to the calling segment by means
of a RETURN statement.

When a CALL is issued in any segment to
a subprogram which is higher (closer to the
root segment) on the overlay tree, the
called subprogram must return control to
the calling segment by a RETURN statement
before any exclusive overlay segments may
be loaded.

Linkage Editor overlay Feature 125

EXCLUSIVE REFERENCES

Exclusive references are those made in
one segment to another segment that will
overlay it.

An exclusive reference is considered
valid only if the called routine is also
ref erred to in a segment common to both the
segment to be loaded and the segment to be
overlaid. Assume, for example, in Figure
86 that the main program (common segment>
contains a reference to segment A but not
to segment B. A reference in segment B to
a routine in segment A is valid because
there is also an inclusive reference
between the common segment and segment A.
CA table in the common segment, supplied by
the linkage editor, contains the address of
segment A. The overlay does not destroy
this table.) An exclusive reference in
segment A to a routine in segment B is
invalid because there is no reference to
segment B in the common segment.

Both valid and invalid exclusive
references are considered errors by the
linkage editor; however, by use of the LET
or XCAL processing options described later
in this section, the programmer can allow a
program containing a valid exclusive
reference to be executed. Programs
containing invalid exclusive references are
never executable.

r---------,
I COMMON I
I Segment I
L----T----J

I
I

r-------------i-------------1
I I
I I

r----~----1 r----i----1
I I I I
I Segment Al !Segment Bl
I I I I
L---------J L---------J

Exclusive Reference

Figure 86. Communication Between overlay
Segments

OVERLAY PROCESSING

Overlay is initiated at execution time
in response to a reference to a subprogram
which is not already in main storage. The
subprogram reference may be either a

126

FUNCTION name or a CALL statement reference
to a SUBROUTINE name. When the reference
is executed, the overlay segment containing
the required subprogram, as well as a~y
segments in its path not currently in main
storage, are loaded.

When a segment is loaded, it overlays
any segment in storage with the same
relative origin. It also overlays any
segments that are lower in the path of the
overlaid segment (i.e., farther from the
root segment). For example, if segments 1,
2, and 3 in Figures 83 and 84 are in main
storage when the main program executes a
call to subprogram SUB11, segments 2 and 3
will not be available for as long as
segment 6 is in main storage.

Whenever a segment is loaded, it
contains a fresh copy of the program units
that it comprises; any data values that may
have been established or altered during
previous processing are returned to their
initial values each time the segment is
loaded. Thus, data values that are to be
retained for longer than a single load
phase should be placed in the root segment.

Overlay is not initiated when a return
is made from a subprogram, or when a
segment in main storage executes a
reference to a subprogram that is already
in main storage.

COMMON AREAS

The linkage editor treats all FORTRAN
COMMON areas as separate subprograms. When
modules containing COMMON areas are
processed by the linkage editor, the COMMON
areas are collected. That is, when two or
more blank (unnamed) COMMON areas are
encountered in the input to the linkage
editor, only the largest of them is
retained in the output module. Likewise,
when two or more named COMMON areas of the
same name are encountered, only the largest
of them is retained in the output module.

In an overlay program, the ultimate
location of blank and named COMMON areas in
the output module depends upon which
linkage editor control statements are used
in the building of the overlay structure
(see the section "Construction of the
Overlay Program"). Overlay structures
built without the use of INSERT statements
(those in which the program units for each
segment are included between OVERLAY
statements) produce an output module in
which the linkage editor "promotes"·· the
COMMON areas automatically. The promotion
process places each COMMON area in the lowest

possible segment on the overlay tree. The
lowest possible segment is one that will
always be in main storage with every
segment containing a reference to it.

Figures 87 and 88 show an overlay
program as it appears before and after the
automatic promotion of COMMON areas. The
exact position of a promoted COMMON area
within the segment to which it is promoted
is unpredictable.

If INSERT statements are used to
structure the overlay program, a blank
COMMON area should appear physically in the
input stream in the segment to which it
belongs. A named COMMON area either should
appear physically in the segment to which
it belongs, or should be placed there with
an INSERT statement.

COMMON areas encountered in modules from
automatic call libraries are automatically
promoted to the root segment. If such
COMMON areas are named, they can be
positioned by the use of an INSERT
statement.

Named COMMON areas in BLOCK DATA
subprograms must be at least as large as
any identically named COMMON areas in
FORTRAN programs that are to be link edited
with the BLOCK DATA subprograms.

CONSTRUCTION OF THE OVERLAY PROGRAM

The programmer communicates his overlay
strategy to the operating system in two
ways: through the use of special
processing options which he specifies in
the PARM parameter of the EXEC statement
which invokes the linkage editor, and
through the use of linkage editor control
statements. The general functions of these
options and statements are described in the
section "FORTRAN Job Processing." Those
which are of particular interest to the
programmer constructing an overlay program
are discussed below.

LINKAGE EDITOR CONTROL STATEMENTS

Once the programmer has designed an
overlay tree structure for his program, he
places the program in that structure by
indicating to the linkage editor the
relative positions of the segments which
make up the tree. The control statements
which accomplish this are placed in the
input stream following the //SYSIN DD*
card, or after the //LKED.SYSIN DD* card if

r-------,
I MAIN I
~-------i
I SUB1 I
~-------i
I SUB2 I
L---T ___ J

I
I

r----------~----------,
I I
I I r---.L---, r---~---1

ICOMMONAI ICOMMONAI
~-------i ~-------~
I SUB3 I I SUBll I
~-------i ~-------i
I SUB4 I I SUB12 I L ___ T ___ J L-------J

I
I

r----------+----------,
I I I
I I I

r---.L---, r---~---, r---~---,
ICOMMONBI I SUBS I jCOMMONBI
~-------i ~-------~ ~-------i
I SUBS I I SUB9 I I SUBlO I
~--------f L-------J L-------J
I SUB6 I
~-------~
I SUB? I
L-------J

Figure 87. overlay Program Before
Automatic Promotion of Common
Areas

a cataloged procedure is used. Linkage
editor control statements have the
following form:

r--------------------T--------------------1
I Operation I Operand I
~--------------------+--------------------.,
I verb I operandCs) I
L--------------------.L--------------------J
where "verb" is the name of the operation
to be performed. The first column of all
linkage editor control statements must be
blank, and the operation field, which
begins in column 2, must contain a verb.
The operand field, which must be separated
from the operation field by at least one
blank, must contain one or more symbols
s.eparated by commas. No embedded blanks
may appear in the operand field. Linkage
editor control statements are placed
before, between, or after modules in the
input stream. They may be grouped, but
they may not be placed, within a module.

The most important control statements
for implementing an overlay program are the
OVERLAY, INSERT, INCLUDE and ENTRY
statements. The OVERLAY statement

Linkage Editor overlay Feature 127

indicates the beginning of an overlay
segment. The INSERT statement is used to

r-------,
I MAIN I
~-------i
I SUBl I
~-------i
I SUB2 I
~-------~
ICOMMONAI L ___ T ___ J

I
I

r----------~----------1
I I
I I

r---.1.---,
I SUB3 I
~-------i
I SUB4 I
~-------i
ICOMMONBI
L---T ___ J

I
I

r----------+----------1
I I I
I I I

r---.1.---, r---.1.---, r---.1.---,
I SUBS I ISUB8 I ISUB10 I
~-------~ ~-------~ L _______ J

I SUB6 I I SUB9 I
~-------~ L-------J
I SUB7 I
L-------J

r---.1.---,
I SUBll I
~-------~
I SUB12 I
L-------J

Figure 88. Overlay Program After Automatic
Promotion of Common Areas

rearrange the sequence of object modules in
the resulting load module(s). The INCLUDE
statement is used to incorporate input from
secondary sources into the load module.
The ENTRY statement specifies the first
instruction to be executed.

The OVERLAY Statement

The OVERLAY statement indicates the
beginning of an overlay segment. Its
general form is:

r--------------------T--------------------1
I Operation I Operand I
~--------------------+--------------------i I OVERLAY I symbol I
L--------------------.1.--------------------J

where the operand "symbol" is the
programmer's identification of the
beginning of the segment, that is, the
symbolic name of the relative origin. Such
symbols may be any group of from one
through eight alphameric characters
beginning with an alphabetic character.

128

The OVERLAY statement for a segment is
placed in one, of three places: directly
before the object module deck for the first
program unit of the new segment, or before
an INSERT statement specifying the program
units to be placed in the segment, or
before an INCLUDE statement specifying the
program units to be placed in the segment.
Assuming that object module decks are
available, the input deck to the linkage
editor for the program in Figures 83 and 84
could be arranged as follows:

r~~;-1l
I SUBl I .object module deck
ISUB2 I
L-----J
OVERLAY ALPHA

r~~;;-11
I I object
ISUB4 I
L-----J

module deck

OVERLAY BETA
r-----,
I SUBS ll
ISUB6 I object
ISUB7 I
L-----J

module deck

OVERLAY BETA

r;~~0-1}
I I object
ISUB9 I
L-----J

module deck

OVERLAY BETA
r-----,
l:~~=~J} object module deck

OVERLAY ALPHA

1;~;1111
I I object
I SUB12 I
L-----J

module deck

ENTRY MAIN

The order in which the overlay segments
are specified has nothing to do with the
order of execution, which is determined by
subprogram references; however, once a
symbolic name has been specified for a
point of origin, it may not be used again
in the deck after specifications have been
made for a point higher in the overlay
tree. Thus, in the example above, no
further segments could be specified for
load point BETA after the second
specification for load point ALPHA.

An OVERLAY statement must never be
placed before the root segment.

The INSERT Statement

There are many instances in which it is
inconvenient or impossible for the
programmer to position object module decks
physically in the input stream. Library
routines, which are normally placed in the
root segment, and routines compiled in an
earlier step in the same job, are examples
of program units for which the object
module decks are not available for
positioning at the time the job is set up.

The INSERT statement is used to position
control sections from such program units in
an overlay structure. A control section,
or CSECT, is the operating system
designation for the smallest separately
relocatable unit of a program. Examples of
FORTRAN control sections are: main
programs, subprograms, blank and named
COMMON blocks.

The INSERT statement has the form:

r-------------T---------------------------1
I Operation I Operand I
~-------------+---------------------------i
I INSERT I csectname[,csectname •••] I
L-------------i---------------------------J
where "csectname" is the name of the
control section to be positioned. Multiple
operands, separated by commas (not blanks),
may be specified.

The INSERT statement is placed directly
after the OVERLAY statement for the segment
containing the control section. If the
control section is to be positioned in the
root segment, the INSERT statement is
placed before the first OVERLAY statement.

Using INSERT statements and a FORTRAN
object module deck, the overlay structure
specified in Figures 83 and 84 could be
implemented as follows:

r-------------------1
!FORTRAN object I
!module deck con- I
ltaining units MAIN I
!through SUB12 I
L-------------------J
ENTRY MAIN
INSERT MAIN, SUB1,SUB2
OVERLAY ALPHA
INSERT SUB3,SUB4
OVERLAY BETA
INSERT SUB5,SUB6,SUB7
OVERLAY BETA
INSERT SUB8,SUB9
OVERLAY BETA
INSERT SUBlO
OVERLAY ALPHA
INSERT SUB11,SUB12

If INSERT statements are used more than
once in the same program for a control
section of the same name, the CSECT will be
positioned in the segment specified by the
first occurrence of the CSECT name in the
input stream. Any additional INSERT
statements referring to the CSECT will be
ignored and, at execution time, all
references to the CSECT will resolve to the
first one positioned. Thus, if a
subprogram is required in more than one
path, it must be either inserted in the
root segment or renamed before being used
with an INSERT statement.

The INCLUDE Statement

The INCLUDE statement is described in
the section "FORTRAN Job Processing." When
used in an overlay program, the INCLUDE
statement is generally placed in the
segment in which the material to be
included is required. It is possible to
manipulate the control sections which were
added by an INCLUDE statement through the
use of the INSERT statement. Assuming that
the control sections of the overlay program
from the previous examples resided in a
partitioned data set named LIBA and a
sequential data set LIBB as follows:

r-------------,
I LIBA I
~-------T------f
IBOOKl IBOOK21
~-------+------1
!MAIN ISUB3 I
jSUBl ISUB4 I
ISUB2 I I L _______ i _____ J

r-----,
ILIBB I
~-----~
!SUBS I
jSUB6 I
jSUB7 I
jSUB8 I
jSUB9 I
jSUBlOI
ISUBlll
jSUB121
L-----J

Then the overlay structure could be
implemented by the use of the following
control statements:

ENTRY MAIN
INCLUDE LIBA(BOOKl)
INCLUDE LIBB
OVERLAY ALPHA
INCLUDE LIBA(BOOK2)
OVERLAY BETA
INSERT SUB5,SUB6,SUB7
OVERLAY BETA
INSERT SUB8,SUB9
OVERLAY BETA
INSERT SUBlO
OVERLAY ALPHA
INSERT SUB11,SUB12

Linkage Editor overlay Feature 129

The ENTRY Statement

The ENTRY statement specifies the first
instruction of the program to be executed.
It has the form:

r--------------------T--------------------1
I Operation I Operand I
~--------------------+--------------------~
I ENTRY I External-name I
L--------------------i--------------------J
where the operand "external-name" must be
the name of an instruction in the root
segment. Usually it will be the name MAIN.

The ENTRY statement may be placed
before, between, or after the program units
or other control statements in the input
stream. An ENTRY statement is necessary in
all overlay programs because, after linkage
editor processing, the first part of the
root segment contains special overlay
control information rather than executable
code. The previous examples of overlay
implementation show the use and placement
of the ENTRY statement.

PROCESSING OPTIONS

Along with the necessary linkage editor
control statements, the programmer
implementing an overlay structure must
provide certain information to the
operating system by means of the PARM
parameter of the EXEC statement which
invokes the linkage editor. This
information is in the form of keyword
parameters such as OVLY, LIST, XCAL, etc.
Thus, the EXEC statement invoking the
linkage editor might have the form:

//LKED EXEC PGN=IEWL,PARM='OVLY,LIST, ••• '

When the linkage edit is one step
Cstepname LKED) of a compile, linkage edit,
and execute procedure such as FORTGCLG, the
PARM information is supplied in the EXEC
statement for the cataloged procedure as
follows:

//STEP EXEC FORTGCLG,PARM.LKED='OVLY,
LIST, ••• '

When PARM is specified for a cataloged
procedure, any processing options which
were originally part of the procedure are
nullified. It is therefore good practice

130

to list all desired options when PARM is
used for the linkage editor step of such
procedures.

Those linkage editor processing options
which are of special interest to the
overlay programmer are discussed below.

• The OVLY option indicates that the load
module produced will be an overlay
structure, as directed by subsequent
linkage ed~tor control statements.
OVLY must be specified for all overlay
processi.ng.

• When LIST is specified, all linkage
editor control statements will be
listed in card image format on the
diagnostic output data set, SYSPRINT.

• The MAP option instructs the linkage
editor to produce a map of the output
module. The map of the output module
of an overlay structure shows the
control sections grouped by segment.
Within each segment, the control
sections are listed in ascending order
according to their assigned origins.
The number of the segment in which each
appears is also printed.

• When the XREF option is specified, the
linkage editor produces a
cross-reference table of the output
module. The cross-reference table
includes a module map and a list of all
address constants that ref er to other
control sections. Since the
cross-reference table includes a module
map, XREF and MAP cannot both be
specified for one linkage editor job
step.

• When XCAL is specified to the linkage
editor, a valid exclusive call is not
considered an error, and the load
module is to be marked executable, even
though improper branches were made
between control sections.

• When LET is specified, any exclusive
call <valid or invalid) is accepted.
The output module will be marked "ready
for execution" even though certain·
error or abnormal conditions were found
during linkage editing. At execution
time, a valid exclusive call may or may
not be executed correctly. An invalid
call will usually cause unpredictable
results: the requested segment will not
be loaded.

This section describes the error
diagnostic facilities available during
program execution when the extended error
handling facility has been requested at
system generation time.1

The extended error handling facility
provides the user with information about
data-dependent or program errors detected
in a FORTRAN program during execution. 2

(These errors are not syntactical or
semantic in nature.) When a data-dependent
or program error occurs, the user is given:

• Messages more informative than those
issued with standard diagnostic
facilities.

• Traceback information more extensive
than that provided with standard
diagnostic facilities.

• Either standard FORTRAN corrective
action with continued execution or,
optionally, the opportunity to examine
and alter erroneous data.

When an error occurs with extended error
handling in effect, a short message text is
printed along with an error identification
number. The data in error (or some other
associated information) is printed as part
of the message text. A summary error
count, printed when a job is completed,
informs the user how many times each error
occurred.

A traceback map, tracing the subroutine
flow back to the main program, is printed
after each error occurrence; execution then
continues. (If the extended error handling
facility is not specified, a traceback map
is printed only for errors causing program
termination and -- if the ERR= option has
been specified in a READ statement -- for
error IHC218I.)

For each error condition detected, the
user has both dynamic and default control
over:

1 This facility is requested by means of the
OPTERR parameter of the FORTLIB macro
instruction. For details, see the System
Generation publication.

2 The errors detected by the extended error
handling fac~lity are listed in Appendix D
under the heading "Extended Error· Messages
for Execution Errors."

EXTENDED ERROR HANDLING FACILITY

• The number of times the error is
allowed to occur before program
termination.

• The maximum number of times each
message may be printed.

• Whether or not the traceback map is to
be printed with the message.

• Whether or not a user-written
error-exit routine is to be called.

The action that takes place is governed by
information stored in an area of main
storage called the option table. CA
permanent copy of the option table is
maintained in the FORTRAN library.)

FUNCTIONAL CHARACTERISTICS

When an error is detected, the FORTRAN
error monitor CERRMON) receives control.
The error monitor is passed the following
information:

• An error identification number.

• The text of the appropriate message to
be printed on the object error unit.

• A pointer to the data in the error.

• The address of an area for a return
code.

The error monitor prints the necessary
diagnostic and informative messages and
then takes one of the following actions:

• Terminates the job.

• Returns control to the calling routine,
which takes a standard corrective
action and then continues execution.

• Calls a user-written closed subroutine
to correct the data in error, and then
returns to the routine that detected
the error, which then continues
execution.

The actions of the error monitor are
controlled by settings in the option table.
The option table consists of a doubleword
preface, followed by a doubleword entry for
each error condition. (If the extended
error handling facility is not specified,
the option table is reduced to the pref ace

Extended Error Handling Facility 131

alone.) IBM provides a default of 95
entries; the programmer can provide
additional entries during system
generation. Figures 89 and 90 describe the
fields of the option table and list the
system generation default values for the
contents of these fields. Table 20 shows
the system generation default values for
each error condition. Note that default
values can be overridden only; they cannot
be permanently changed.

SUBPROGRAM FOR THE EXTENDED ERROR HANDLING
FACILITY

To make full use of the extended error
handling facility, the programmer may call
four IBM-supplied subroutines in his
FORTRAN source program: ERRSAV, ERRSTR,
ERRSET, and ERRTRA. These subroutines
allow access to the option table to alter
it dynamically.1 Changes made dynamically
are in effect for the duration of the
program that made the change. Only the
current copy of the option table in main
storage is affected; the copy in the
FORTRAN library remains unchanged. All
passed parameters, unless otherwise
indicated, are 4-byte (fullword) integers.

Accessing and Altering the Option Table
Dynamically

1. The CALL ERRSAV statement, described
below, can be used in modifying an
entry temporarily to save the original
entry for later restoration. The
statement causes an option table entry
to be copied into an 8-byte storage
area accessible to the FORTRAN
programmer.

CALL ERRSAV Cierno,tabent)

ierno
is an integer equal to the error
number to be referenced in the
option table. Should any number
not within the range of the option
table be used, an error message
will be printed.

1 Certain option table entries may be
protected against alteration when the
option table is set up. If a request is
made by means of CALL ERRSTR or CALL
ERRSET to alter such an entry, the request
is ignored. (See Table 20 for which
IBM-supplied option table entries cannot
be altered. >

132

tabent
is the address of an 8-byte storage
area where the option table entry
is to be stored.

2. To store an entry in the option table,
the following statement is used:

CALL ERRSTR Cierno,tabent)

ierno
is an integer equal to the error
number for which the entry is to be
stored in the option table. Should
any number not within the range of
the option table be used, an error
message will be printed.

tabent
is the address of an 8-byte storage
area containing the table entry
data.

3. The CALL ERRSET statement, described
below, permits the user to change up
to five different options in an option
table entry. A procedure for altering
only one option without altering
others is explained in the definition
of the parameters. Another procedure
is to omit the final parameter (or the
last two or three parameters) from the
calling sequence, or to give the value
of zero to a parameter to indicate no
change.

CALL ERRSET Cierno,inoal,inomes,
itrace,iusadr,irange)

ierno
is an integer equal to the error
number to be referenced in the
option table. Should any number
not within the range of the option
table be used, an error message
will be printed. (Note that if
ierno is specified as 212, there is
a special relationship between the
ierno and irange parameters. See
the explanation for irange.)

inoal
is an integer specifying that
execution be terminated when this
number of errors has occurred. For
example, setting inoal equal to 10
will permit transfer of control to
a user-supplied error routine for
the first nine error occurrences.
On the tenth error occurrence
execution will be terminated. If
inoal is specified as either zero
or a negative number, the
specification is ignored, and the
number-of-errors option is not
altered. If a value of more than
255 is specified, an unlimited
number of errors is permitted.

in om es
is an integer indicating the number
of messages to be printed. A
negative value specified for inomes
causes all messages to be
suppressed while setting inomes to
256 will cause unlimited message
printing. A specification of zero
indicates that the
number-of-messages option is not to
be altered.

itrace
is an integer whose value may be O,
1, or 2. A specification of O
indicates the option is not to be
changed; a specification of 1
requests that no traceback be
printed after an error occurrence;
a specification of 2 requests the
printing of a traceback after each
error occurrence. (If a value
other than 1 or 2 is specified, the
option remains unchanged.)

iusadr
is an optional parameter that may
contain either:

a. the value 1, as a 4-byte integer,
indicating that the option table
is to be set to show there is no
user-exit routine <i.e., standard
corrective action is to be used
when continuing execution).

b. the name of a closed subroutine
that is to be executed after the
occurrence of the error identified
by ierno. The name must appear in
an EXTERNAL statement in the
source program, and the routine to
which control is to be passed must
be available at linkage editing
time.

c. the value 0, indicating that the
table entry is not to be altered.

irange
is an optional parameter specified
as an integer that performs a
double function and indicates that
the inoal, inomes, itrace, and
iusadr options values are to be
applied to the range of error
numbers ierno to irange. If irange
is smaller than ierno, irange is
ignored (unless ierno has been
specified as 212).

If ierno has been specified as
212, irange functions as a control
carriage parameter. Thus, if ierno
is specified as 212, and irange as
1, single spacing is provided on an
overflow line (standard f ixup for
WRITE). If a value other than 1 is

specified, no carriage control is
provided. (Note that if ierno has
been specified as 212 and the
carriage control option is not to
be changed, irange must be omitted
from the call to ERRSET.)

4. Under the extended error handling
facility, a user may dynamically
request a traceback and continued
execution. To obtain subroutine
trace, the following statement is
used:

CALL ERRTRA

The call has no parameters.

USER-SUPPLIED ERROR HANDLING

The user has the ability of calling, in
his own program, the FORTRAN error monitor
CERRMON) routine, the same routine used by
FORTRAN itself when it detects an error.
ERRMON examines the option table for the
appropriate error number and its associated
entry and takes the actions specified. If
a user-exit address has been specified,
ERRMON transfers control to the
user-written routine indicated by that
address. Thus, the user has the option of
handling errors in one of two ways: (1)
simply by calling ERRMON -- without
supplying a user-written exit routine; or
(2) by calling ERRMON and providing a
user-written exit routine.

In either case, certain planning is
required at the installation level. For
example, error numbers must be assigned to
error conditions to be detected by the
user, and additional option table entries
must be made available for these
conditions. The routine that uses the
error monitor for error service should have
the status of an installation
general-purpose function similar to the
IBM-supplied mathematical functions. The
number of installation error conditions
must be known when the FORTRAN library is
created at system generation, so that
entries will be provided in the option
table by the ADDNTRY parameter of the
FORTLIB macro instruction. The error
numbers chosen for user subprograms are
restricted in range. IBM-designated error
conditions have reserved error codes from
000 to 301. Error codes for
installation-designated error situations
must be assigned in the range 302 to 899.
The error code is used by FORTRAN to find
the proper entry in the option table.

To call the ERRMON routine, the
following statement is used:

Extended Error Handling Facility 133

imes

CALL ERRMON Cimes,iretcd,ierno
C,datal,data2, •••])

is the address of an array aligned on
a fullword boundary, that contains, in
EBCDIC characters, the text of the
message to be printed. The number of
the error condition should be included
as part of the text, because the error
monitor prints only the text passed to
it. The first item of the array
contains an integer whose value is the
length of the message. Thus, the
first four bytes of the array will not
be printed. If the message length is
greater than 133 characters, it will
be printed on two or more lines of
printed output.

iretcd
is an integer variable made available
to the error monitor for the setting
of a return code. A code of 0 or 1
can be set. An interpretation of
these codes follows:

0 - The option table or user-exit
routine indicates that standard
correction is required.

1 - The option table indicates that a
user exit to a corrective routine
has been executed. The function
is to be reevaluated using
arguments supplied in the
parameters data1,data2 •••• For
input/output type errors, the
value 1 indicates that standard
correction is not wanted.

ierno
is an integer representation of the
error condition. The value assigned
identifies an error condition for
which there is a unique entry in the
option table. Should any number not
within the range of the option table
be specified, an error message will be
printed.

data1,data2

134

are variable names in an
error-detecting routine for the
passing of arguments found to be in
error. One variable must be specified
for each argument. Upon return to the
error-detecting routine, results
obtained from corrective action are in
these variables. Because the content
of the variables can be altered, the
locations in which they are placed
should be used only in the CALL
statement to the error monitor;
otherwise, the user of the function
may have literals or variables
destroyed.

Since datal and data2 are the
parameters which the error monitor
will pass to a user-written routine to
correct the detected error, care must
be taken to make sure that these
parameters agree in type and number in
the call to ERRMON and in a
user-written corrective routine, if
one exists.

User-Supplied Exit Routine

When a user-exit address is supplied in
the option table entry for a given error
number, the error monitor calls the
specified subroutine for corrective action.
The subroutine may be user-written and is
called by the equivalent of the following
FORTRAN statement:

x

CALL x Ciretcd,ierno,data1,data2 ••.)

is the name of the routine whose
address was placed into the option
table by the iusadr parameter of the
CALL ERRSET statement.
(Interpretations of the other
parameters -- iretcd, ierno, datal,
data2 -- are the same as those for the
CALL ERRMON statement.) If an
input/output error is detected Ci.e.,
an error for codes 211 to 237),
subroutine "x" must not execute any
FORTRAN I/O statements, i.e., READ,
WRITE, BACKSPACE, END FILE, REWIND,
DEBUG, or any calls to PDUMP or
ERRTRA. Similarly, if errors for
codes 216 or 241-301 occur, the
subroutine "x" must not call the
library routine that detected the
error or any routine which uses that
library routine. For example, a
statement such as

R = A ** B

cannot be used in the exit routine for
error 252, because FRXPR# uses EXP,
which detects error 252.

Note that although a user-written
corrective routine may change the setting
of the return code Ciretcd), such a change
is subject to the following restrictions:

1. If iretcd is set to O, then datal and
data2 must not be altered by the
corrective routine, since standard
corrective action is requested. If
datal and data2 are altered when
iretcd is set to O, the operations
that follow will have unpredictable
results.

2. Only the values O and 1 are valid for
iretcd. A user-exit routine must
ensure that one of these values is
used if it changes the return code
setting.

Note, too, that the user-written exit
routine can be written in FORTRAN or in
assembler language. In either case, it
must be able to accept the call to it as
shown above. The user-exit routine must be
a closed subroutine that returns control to
the caller.

If the user-written exit routine is
written in assembler language, the end of
the parameter list can be checked. The
high-order byte of the last parameter will
have the hexadecimal value 80. If the
routine is written in FORTRAN, the
parameter list must match in length the
parameter list passed in the CALL statement
issued to the error monitor.

Actions the user may take if he wishes
to correct an error are described in Tables
21, 22 (parts 1, 2, 3), and 23.

OPTION TABLE CONSIDERATIONS

When a user-written exit subroutine is
to be executed for a given error condition,
the programmer must enter the address of
the routine into the option table entry
associated with that error condition.

Addresses for user-exit subroutines
cannot be entered into option table entries
during system generation. An installation
may, however, construct an option table
containing user-exit addresses and placed
that option table into the FORTRAN library.
(Each address must be specified as a V-type
address constant.) Use of this procedure,
though, results in the inclusion, in the
load module, of all such user-exit
subroutines by the linkage editor.

If the user-exit address is not
specified in advance through the use of
V-type address constants, the programmer
must issue a CALL ERRSET statement at
execution time to insert an address into
the option table that was created during
system generation.

The programmer should be warned that
altering an option table entry to allow
"unlimited" error occurrence <specifying a
number greater than 255) may cause a
program to loop indefinitely.

Option Table Default Values

Table 20 shows the default values for
the option table. If an option recorded in
a table entry does not apply to a
particular error condition, it is shown as
not applicable (NA).

The field that is defined as the
user-exit address also serves as a means of
specifying standard corrective action.
When the table entry contains an address,
the user exit is specified; when it
contains the integer 1, standard correction
is specified. It is not possible for the
system generation process to create an
option table entry with the user-exit
address specified. The user exit must be
specified by altering the option table at
execution time. To specify that no
corrective action -- either standard or
user-written -- is to be taken, the table
entry must specify that only one error is
to be allowed before termination of
execution.

HOW TO CREATE OR ALTER AN OPTION TABLE

As previously explained, the option
table supplied during system generation may
be altered dynamically for any particular
FORTRAN job by the use of the subprograms
ERRSET and ERRSTR. However, to provide a
new set of options for the entire
installation, the option table must be
reassembled and linkage edited into the
FORTRAN library -- after system generation
and before the system is used. A procedure
for accomplishing this is described in the
following text.

An assembler language macro definition
can be used to generate an option table.
The macro definition and use of the macro
for each option table entry are supplied as
input to the assembler procedure ASMFCL to
replace the system-generated option table
with the new one. An example of an
assembler language macro definition used to
generate an option table is shown in Figure
91. This example may be used as a guide by
the user.

In the example, the macro parameters are
as follows:

a

b

PREFACE a,b,c

is the number of user entries to be
created.

is· the boundary alignment desired. A

Extended Error Handling Facility 135

value of O is used for no alignment; a
value of 1 for alignment.

c
is the number of times the SETENT
macro instruction is to be issued.
CSETENT is described below.>

SETENT Ca,b,c,d)

a
is the error entry to be altered.

b

c

is the count of errors to be allowed.
CA specification of 0 indicates
unlimited error occurrence.)

is the count of the nwnber of times
the message should be printed before
suppression.

d
is two hexadecimal digits that specify
the option bits field. This field is
described in Figure 90.

The macro instructions are used as
follows:

1. Only one PREFACE macro instruction is
allowed.

2. As many SETENT macro instructions as
are desired may be used. From 1 to
200 error entries can be specified in
the use of a single SETENT macro
instruction by using continuation
cards.

3. Only error entries that d°iffer from
the default options need be specified.
The default options will be the same
as those listed in Table 20.

4. Error codes must be placed in
ascending order in the SETENT macro
instruction. For IBM-supplied
entries, error codes are in the range
207 to 301. User entries are in the
range 302 to 899.

5. Changing one option for any error
entry requires that all four
parameters be specified. If default
values are desired for an entry, they
must be respecified. For example:

136

SETENT (241,50,5,42)

indicates that for error 241, the
number of errors to be allowed is 50;
the other two parameters, which must
be specified, are simply the default
values shown in Table 20.

ERRORS IN USE OF FACILITY

When the extended error handling
facility encounters a condition or a
request that requires user notification, an
informational message is printed.

The error monitor is not recursive: If
it has already been called for an error, it
cannot be re-entered if the user-written
corrective routine causes any of the error
conditions that are listed in the option
table. Boundary misalignment is therefore
not allowed in a user-exit routine.

PROGRAMMING EXAMPLE

The programming example in Figure 92
shows how features of the error handling
facility may be used.

In the example, a FORTRAN job utilizes a
user-supplied library subprogram that makes
use of the error handling facility to
handle a divide-by-zero situation. A
user-written routine is supplied to take
corrective action after the detection of
the error. Comments in the FORTRAN program
describe what is being done.

CONSIDERATIONS FOR THE LIBRARY WITHOUT
EXTENDED ERROR HANDLING FACILITY

When the extended error handling
facility is not chosen at system
generation, execution terminates after the
first occurrence of an error, unless it is
one caused by boundary misalignment, divide
check, exponent underflow, or exponent
overflow. The messages for errors 215,
216, 218, 221-225, and 241-301 are the same
as those with the extended error handling
facility. The other error messages are of
the form "IHCxxxI" with no text.

Without the facility, ERRMON becomes an
entry point to the traceback routine. User
programs that call the error monitor do not
have to be altered. The error message will
be printed with a traceback map and
execution will terminate.

Note, too, that if the facility is not
selected at system generation, the ERRTRA,
ERRSET, ERRSAV, and ERRSTR subprograms are
assumed to be user supplied if they are
called in a FORTRAN program.

r---1
Format I

I
<--------------------------------------4 Bytes--------------------------------------> I
r---1 I
I Number of entries I I
~----------------------T---------------------------T-------------------T------------1 I
I Boundary alignment I Extended error handling I Alignment count I Reserved I I L----------------------i ___________________________ i ___________________ i ____________ J I

I
Description I

I
r---------T--------T--1 I
I Field I Length I I I
!Contents lin Bytesj Field Description I I
~---------+--------+--~ I
!Number of I 4 !Number of entries in the Option Table. The default setting I I
I entries I I is 95. I I
~---------+--------+--~ I
!Boundary I 1 !Bit 1 of this byte indicates whether boundary alignment was I I
lalignmentl !chosen at system generation. (Bits 0 and 2 through 7 are I I
I I !reserved for future use.) I I
I I I I I
I I IBit 1: 0 = NOALIGN I I
I I I 1 = ALIGN I I
I I I I I
I I !The default setting is 1 (ALIGN). I
~---------+--------+--1
!Extended I 1 !Indicates whether extended error handling facility was chosen atj
!error I jsystem generation. I
!handling I I I
I I jFF(hexadecimal) = EXCLUDE I
I I jOOChexadecimal) =INCLUDE I
~---------+--------+--~
IAlignmentl 1 !Maximum number of boundary alignment messages when extended I
!count I 1error handling facility is not chosen. The default setting I
I I I is 10. I
~---------+--------+--1
!Reserved I 1 !Reserved for future use. I
l _________ i ________ i--~ ___ J

Figure 89. Option Table Preface

Extended Error Handling Facility 137

r---1
Format I
~~ I

<------1 Byte------> <------1 Byte------> <------1 Byte------> <------1 Byte------> I
r--------------------T--------------------T--------------------T--------------------1 I
I Number of error I Number of messages I I I I
!occurrences allowed I to print I Error count I Option bits I I
~--------------~-----i--------------------i--------------------i--------------------1 I
I User exit address I I
L---J I

I
Description I

I
r-----------T--------T--1 I
I Field I I I I
!Contents IDefault1 1 Field Description I
r-----------+--------+--1
!Number of I 10 2 !Number of times this error condition should be allowed to I
!error I joccur. The maximum setting is 255. When the value of the I
joccurrencesj jerror count field (below) matches the value in this field, tnel
!allowed I I job is terminated. A value of 0 means an unlimited number of I
I I loccurrences. 3 An attempt to set this field at a value greater I
I I jthan 255 results in the field being set to O. I
r-----------+--------+--~
!Number I 54 jThe number of times to print the error message when this errorj
!messages I joccurs. Message printing is suppressed thereafter. A value I
Ito print I lof O means no message is to be printed. I
r-----------+--------+--1
!Error I O IA count of the number of times this error has occurred. A I
jcount I jvalue of O means none have occurred. I
r-----------+--------+--1
!Option I 42 !Eight option bits defined as follows: I
I bits I Chexa- I Bit 0: 0 no control character is supplied for overflow I
I I decimal> I lines. I
I I I 1 = control character supplied, when needed, to I
I I I provide single spacing for overflow lines. I
I I I I
I I I The default setting is 0. I I
I I I I I
I I IBit 1: 0 = table entry not modifiable. 5 I I
I I I 1 = table entry modifable. I I
I I I I I
I I I The default setting is 1. I I
I I I I I
I I IBit 2: 0 fewer than 256 errors have occurred. I I
I I I 1 = more than 256 errors have occurred. To determine I I
I I I how many, add 256 to the value contained in the I I
I I I error count field (above). I I
I I I I I
I I IThe default setting is O. I I
I I I I I
I I IBit 3: 6 0 buffer content with message for this error is not I I
I I I to be printed. I I
I I I 1 buffer content is to be printed. I I

I I I I
I IThe default setting is O. I I
I IBit 4: Reserved for future use. I I
I I I I
I !Bit 5: 0 = unlimited printing of error message was not I I
I I requested. The error message is to be printed I I
I I only the number of times shown in the I I
I I number-of-messages-to-print field (above). I I
I I 1 = message is to be printed with every occurrence of I I
I I this error. I I
I I I I
I I The default setting is O. I I
I I I I
I !Bit ti: 0 = traceback is not to be printed. I I
I I 1 = traceback is to be printed. I I
I I I I
I I The default setting is 1. I I

I I I I I
I I I Bit 7: Reserved for future use. I I
r-----------+--------+--~ I
!User I 1 IA value of 1 in this field indicates that no user-supplied I I
!exit I jexit is to be taken. If a value other than 1 appears in this I I
I I !field, it is the address of the user-supplied exit routine to I I
I I I be taken when this error occurs. I I
L-----------i--------i--J I

1 The default values shown apply to all error numbers (including additional user I
entries) unless excepted by a footnote. I

2 Errors 208, 210, and 215 are set as unlimited, and errors 217 and 230 are set to 1. I
3 When the user sets the count of allowed errors as unlimited, the FORTRAN job may loop I
endlessly unless the operator intervenes. I

l 4 Error 210 is set to 10, and errors 217 and 230 are set to 1. I
l 5 The entry for error 230 and 240 is not modifiable. I
l 6 This entry is set to O except for error numbers 212, 215, 218, 221, 222, 223, 224, andj
I 225. 1
L---J
Figure 90. Option Table Entry

138

Table 20. Option Table Default Values
r-----T----------T---------T--------------T----------T-------T---------T-----------T----1
I !Number of !Number of I I !Print I !Standard I I
IErrorl Errors I Messages! jModifiablejBuffer jTracebackjCorrective jUserj
I codel Allowed I Allowed !Print Control I Entry jContentl Allowed I Action jExitl
r-----+----------+---------+--------------+----------+-------+---------+-----------+----~

207 10 5 NA Yes NA Yes Yes No
208 Unlimited 5 NA Yes NA Yes Yes No
209 10 5 NA Yes NA Yes Yes 1 No 1

210 Unlimited 10 NA Yes NA Yes Yes 1 No
211 10 5 NA Yes NA Yes Yes No
212 10 5 No character Yes Yes Yes Yes No

213
214
215
216
217
218
219
220
221
222
223
224
225
230
231
232
233-

237

10
10

Unlimited
10

14
105

106

10
10
10
10
10
10

1
10
10
10

5
5
5
5
1
5
5
5
5
5
5
5
5
1
5
5
5

supplied2

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes

NA
NA
Yes
NA
NA
Yes5

NA
NA
Yes
Yes
Yes
Yes
Yes
NA
NA
NA
NA

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes 3

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes

No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No

238 10 5 NA Yes Yes Yes Yes No
239 10 5 NA Yes NA Yes Yes No
240 1 1 NA NO NA Yes No No
241- 10 5 NA Yes NA Yes Yes No

301 I I
~-----i __________ i---------~--------------i----------~-------i---------~-----------~----1

1 No corrective action is taken except to return to execution. For boundary alignment, I
the corrective action is part of the support for misalignment. For divide check, the I
contents of the result register are not altered. I

2 If a print control character is not supplied, the overflow line is not shifted to I
incorporate the print control character. Thus, if the device is tape, the data is I
intact, but if the device is a printer, the first character of the overflow line is I
not printed and is treated as the print control. Unless the user has planned the I
overflow, the first character would be random and thus the overflow print line control!
can be any of the possible ones. It is suggested that when the device is a printer, I
the option be changed to single space supplied. I

3 Corrective action consists of return to execution for SLITE. I
4 It is not considered an error if the END parameter is present in a READ statement. Nol
message or traceback is printed and the error count is not altered. I

5 For an I/O error, the buffer may have been partially filled or not filled at all when I
the error was detected. Thus, the buffer contents could be blank when printed. When I
an ERR parameter is specified in a READ statement, it is honored even though the error!
occurrence is greater than the amount allowed. I

6 The count field does not necessarily mean that up to 10 missing DD cards will be I
detected in a single debugging run, since a single WRITE performed in a loop could I
cause 10 occurrences of the message f·or the same missing DD card. I

L---J

Extended Error Handling Facility 139

Table 21. Corrective Action After .Error .. Qccurrence

,.-----T----------T------------------------------------T---1 I I Parameters I I I
I Error I Passed to I . I I
I code I User I Standard Corrective Action I User-supplied corrective Action I
~-----+----------+---~-------.;_-----------------------+------~-------~---------------------------~ 211 A,B,C !Treat format field containing c as l<a) If comp~led FORMAT statement; put I

212

213

214

I
I
I
I
I

215 I
I
I
I
I
I

211 I
I
I
I

21a+1
I
I

219-I
224

225

231

232

233

234-
236 I

I

A,B,D

A,B,D

A,B,D

A,B,E

A,B,D

lend of FORMAT statement I hexadecimal equivalent of character in
I I C (see Note 1).
I I Cb) If variable format, move EBCJ:)IC
I I character into C (See Note 1)
I I
I I
!Input: Ignore remainder of I/O tsee Note 2
Jlist~ I
toutput: continue by starting new I
toutput record. Supply carriage I
tcontrol character if required by I
I Option Table. I
I I
I I
!Ignore remainder of I/O list !See Note 2
I I
I I
!Input: Ignore remainder of I/O !If user correction is requested, the
llist. . . tre~ainder of the I/O list is ignored.
!Output: If unformat~ed write I
!initially requested changed record I
!format to vs (or VBS). If formatted!
!write initially requested, I
!ignore I/O. I
I I
I I
!Substitute zero for the invalid !The character placed in E will be sub-
lcharacter. tstituted for the invalid character
I II/O operations may not be performed.
I t<see Note 1)
I I
I I
!Increment FORTRAN sequence number tsee Note 2
I and read next file I
I I
I I

A,B,D,F !Ignore remainder of I/O list !See Note 2
I I
I I

A;B,D !Ignore remainder of I/O list tsee Note 2
I I
I I
I I

A,B,E !Substitute zero for the invalid !The character placed in E will be sub-
lcharacter lstituted for the invalid character
I I (see Note 1)
I I
I I

A1 B1 D !Ignore remainder of I/O list tsee Note 2
I I

AiiB,D,G. !Ignore remainder of I/O list tsee Note 2
I I

A,B,D !Change record nwnber to list maximum!See Note 2
tallowed (32i000) I
I I

A,B,D !Ignore remainder of I/O list tsee Note 2
I I
I I

237 I A,B,DiF !Ignore remainder of I/O list !See Note 2 ""'" ____ ..._ _________ .._ __________________________________ .._ __ -&

!Meanings: I
I I
IA - Address of return code field Cinteger•4) I
IB - Address of error number (Integer*4> I
IC - Address of invalid format character (LOgical•l> I
ID - Address of data set reference number (Integer•4)
IE - Address of invalid character (Logical•l>
IF - Address of DECB
IG - Address of record number requested (Integer •4>
I
!Notes:
I
I 1.
I
I
I 2.
I
I
I

Alternatively, the user can set the return code to o, thus requesting a standard corrective
action.

The user can do anything he wishes except perform·another I/O operation - i.e., issue a
READ, WRITE, BACKSPACE, END FILE, REWIND, PAUSE, PDUMP, DBUG, or ERRTRA. On return to the
Libraryi the remainder.of the I/O request will be ignored.

lfif error condition 218 (I/O error detected) occurs while error messages are being written on thel
I object error data set, the message is written on the console and the job is terminated.
I
I If no DD card has been supplied for the object error unit, error message IHC219I is.written on I
I the SYSOUT data set and the job is terminated. I
L---/

140

rable 22. corrective Action After Mathematical Subroutines Error Occurrence (Part 1 of 3)

r-------,.----~-------------T------------------T--------------------~~--~·----------------~---1 I I I I Optiont: · I
I l l Invalid t-------;~;~d;;d---------1J-;;;;:5;;-;1;;d--~---1
I Error I FORTRAN I Argument I corrective I Corrective Action I
I code I Reference I Range I Action I (See Note 1) I
~-------+-------------------+------------------+------------------------+-----------------~~-i

216 I CALL SLITE (I) I>4 The call is treated I
I as a no operation
I

216 I CALL SLITET I>4 J=2 I
I U,J>
I

241 I K=I••J I=O, JSO K=O I,J

242

243

244

245

246

247

251

252

253

254

255

256

257

I

Y=X**I

DA=D**I

XA=X**Y

DA=D**DB

CA=C**I

CDA=CD*I

Y=SQRT (X)

Y=EXP (X)

Y=ALOG (X)

Y=ALOG10 (X)

Y=COS (X)
Y=SIN (X)

Y=ATAN2 (X, XA)

Y=SINH (X)
Y=COSH (X)

Y=ARSIN (X)
Y=ARCOS (X)

X=O, ISO Y=O X,I

D=O, ISO DA=O D,I

X=O, YSO XA=O X,Y

D=O, DBSO DA=O D,DB

C=O+Oi, ISO CA=O+Oi C,I

C=O+Oi,ISO CA=O+Oi CD,I

X<O Y= IXl'·/2 x

X>174.673 Y=* x

X=O Y=-* x
X<O Y=log·1 o Ix I x

X=O Y=-* x
x<O y=log1olxl x

Ix I ~2u• n Y=v'2/2 x

X=O, XA=O Y=O X,XA

IXl~174.673 Y=* x

IXl>l Y=*
{IF X>l. 0; ARSIN(X)= n

2
IF X<-1.0; ARSIN(X)=-1!1

2
{ IF X>l. 0; ARCOS (X) =O

IF X<-1.0; ARCOS(X)=n x

258 I ~=TAN <x> 1x1~<2s.e>•n Y=1 x
I Y=COTAN (X)
I

259 I Y=TAN (X) X is too close y=• X
I to an odd
I multiple of ~
I 2

-------~------------------- --~--------------~------------------------..1-----------------·----1 variable '.!YE~ · I
II,J Variables of INTEGER*4 I
IX,XA,Y variables of REAL•4 I
ID,DA,DB Variables of REAL•S I
IC,CA Variables of COMPLEX*8 I
1z,x~ 1 x2 complex variables to be given the length of the functioned argument when I
I they appear i

ti~~-----------~::~:~==~-~=-~~~~~::=~---·-------'
~.~ 1. Th7 user-supplied answer is obtained by recomputation of the function I
I using the value set by the user routine for the parameters listed. t
I I
I 2. The largest number that can be represented in floating point is I
f------------~~~~:::=~-:~~~=-~:-~: __ J

Extended Error Handling Facility 141

Table 22. Corrective Action After Mathematical Subroutines Error Occurrence (Part 2of3)

~------y-------------------T------------------T-----------------~------------------~-------1
I I I I Options I
I I I i----------~-----------T----------------------~
I I I Invalid I Standard I User-Supplied I
I Error I FORTRAN I Argument I Corrective Corrective Action I
I Code I Reference I Range I Action (See Note 1) I
~-------+-------------------+------------------+----------------------f~----~~------~--------i

261

262

263

264

265

266

267

268

269

Y=COTAN (X)

DA=DSQRT CD)

DA=DEXP (D)

DA=DLOG (D)

DA=DLOG10 (D)

DA=DSIN (D)
DA=DCOS (D)

DA=DATAN2(D,DB)

DA=DSINH (D)
DA=DCOSH (D)

DA=DARSIN (D)
DA=DARCOS (D)

DA=DTAN (D)
DA=DCOTAN (D)

DA=DTAN (D)

DA=DCOTAN (D)

X is too close Y=* x
to a multiple
of 3t

D<O DA=IDl1:/ 2 D

D>174.673 DA=* D

D=O DA=-* D
D<O DA=log1·x1

D=O DA=-* D
D<O DA=log;1 o IX I

IDl~2so*31: DA=v'2/2 D

D=O,DB=O DA=O D,DB

IDl~174.673 DA=* D

IDl>1 DA=O D

1x1~2so* :n; DA=1 D

D is too close DA=* D
to an odd :n;

multiple of 2

D is too close DA=* D
to a multiple
of :n:

** **!
For errors 271 through 275, C=X1:+iX2 I

!*****~***!
I I
I 211 Z=CEXP <c> x1:>174.673 z=•<cos X2+ SIN X2> c I
I I
I 272 Z=CEXP (C) IX21~21: 8*~ Z=O+Oi c I
I I
I 273 Z=CLOG CC) C=O+Oi z=-*+Oi c I
~v~;i~"h1;----;v-p;---=-~~-~-----1
II,J Variables of INTEGER*4 I
1x,XA,Y variables of REAL*4 I
ID,DA,DB Variables of REAL*8 I
1c,,cA variables of COMPLEX*8 I
1z,x1: 1 x2 complex variables to be given the length of the functioned argument when I
I they appear f
.~D Variables of COMPLEX*l6 f
t---~1
~Otes: 1. The user-supplied answer is obtained by recomputation of the function I
,----- using the valuP. set by the user routine for the parameters listed. ~
I 11
I 2. The largest number that can be represented in floating point is indicated I
I above by *· I
L---~~-------..,,J

142

tble 22. corrective Action After Mathematical Subroutines Error Occurrence (Part 3 of 3)

·------T-------------------T------------------T-----------------------~----------------~--------1
I I I Options I
I I ~----------------------T---------------------------~
I I Invalid I Standard I User-Supplied I

:rror I FORTRAN I Argwnent I Corrective I corrective Action I
:ode I Reference I Range I Action I (See Note 1) I
·------+-------------------+------------------+----------------------+---------------------------~

274 Z=CSIN (C) Z=O+Oi c
Z=CCOS (C)

275 Z=CSIN (C) X2>174.673 Z=*(SIN X1 +iCOS x,,.> c
2

Z=CCOS (C) Z=*(COS X1 -iSIN x,,.> c
2

Z=CSIN (C) Z=*(SIN X1 -iCOS x,,.> c
2

Z=CCOS (C) z=•<cos x,,_ +iSIN x,,_) c
2

'**
For errors 281 through 285, CD=X1 +iX2

'**

281

282

283

284

285

290

291

300

Z=CDEXP (CD)

Z=CDEXP (CD)

Z=CDLOG (CD)

Z=CDSIN (CD)
Z=CDCOS (CD)

Z=CDSIN (CD)

Z=CDCOS (CD)

Z=CDSIN (CD)

Z=CDCOS (CD)

Y=GAMMA (X)

Y=ALGAMA (X)

DA=DGAMMA (D)

x,,.>174.673

I X2 I ~250* 31:

CD=O+Oi

x~2-2s2 or
X~57.5744

x~o or
X~4.2937*1073

D~2-252 or
D~57.5774

Z=*(COS X2+iSIN X2) CD

Z=O+Oi CD

Z=-•+Oi CD

Z=O+Oi CD

Z=*(SIN x 1 +icos x,,.> CD
2

Z=*(COS X1 -iSIN x,,.> CD
2

Z=*(SIN x 1 -icos X1.) CD
2

Z=* (COS X1 +iSIN X1) CD
2

Y=* x

Y=* x

DA=* D

301 DA=DLGAMA (D) D~O or DA=• D
D~4.2937•1073

-----~---------------------L--~--1
Tariable ~ I
[,J Variables of INTEGER*4 I
c,XA,Y Variables of REAL*4 I
>,DA,DB Variables of REAL*8 I
~,CA Variables of COMPLEX*8 I
~,X1 ,X2 Complex variables to be given the length of the functioned argument when they appear I
~D Variables of COMPLEX*16 I
-------~--------------~---~
~otes: 1. The user-supplied answer is obtained by recomputation of the function using the value!

set by the user routine for the parameters listed. I
2. The largest number that can be represented in floating point is indicated above by *· I

----------------------~~---J

Extended Error Handling Facility 143

Table 23. Corrective Action After Program Interrupt Occurrence
r---T---1
I Program Interrupt Messages I Options I
~-----T----------T-----~-------------------+---------------------------T---------------~
I jParametersl I I User-Supplied I
IErrorf Passed to I I I corrective I
jCode jUser Exit I Reason for Interrupt1 !Standard Corrective Action I Action I
~-----+----------+--------------------------+---------------------------+---------------~

207 D,I Exponent overflow Result register set to the User may alter

208 D,I

209 D,I 4

210 None

(Interrupt Code 12) largest possible floating D. 2
point number. The sign of

Exponent underflow
(Interrupt Code 13)

Divide check, Integer
divide (interrupt code 9),
Decimal divide (Interrupt
Code 11), Floating point
divide <Interrupt Code
15). 3

the result register is not
altered.

The result register is set User may alter
to zero. D.2

There is no standard fixup. See Note 5.
Result registers are not
touched.

Specification interrupt No special corrective See Note 5.
(Interrupt Code 6) occurs action other than correct
for boundary misalignment. ing boundary misalignments.
Other interrupts occur
during boundary alignment
adjustment. They will be
shown with this error code
and the PSW portion of the
message will identify the
interrupt.

~-----~----------L--------------------------L---------------------------~---------------~
!Variable ~ Description I
I D A variable REAL*8 This variable contains the contents of the result I
I register after the interrupt. I
I I A variable INTEGER*4 This variable contains the "exponent" as an integer I
I value for the number in D. It may be used to I
I determine the amount of the underflow or overflow. I
I The value in I is not the true exponent, but what wasj
I left in the exponent field of a floating point number!
I after the interrupt. I
~---~

1 A program interrupt occurs asynchronously. Interrupts are described in IBM system/3601
oeeratinq system: Principles of Operation, Order No. GA22-6821. I

I
2 The user exit routine may supply an alternate answer for the setting of the result I
register. This is accomplished by placing a value for D in the user-exit routine. I
Although the interrupt may be caused by a long or short floating-point operation, the I
user-exit routine need not be concerned with this. The user-exit routine should I
always set a REAL*8 variable and the FORTRAN library will load short or long depending!
upon the floating-point operation that caused the interrupt. I

3For floating-point divide check, the contents of the result register is shown in the
message.

4 For integer and decimal divide checks, no parameters are passed to the user exit
routines.

I
I
I
I
I
I
I

jSThe user-exit routine does not have the ability to change result registers after a I
I divide check. The boundary alignment adjustments are informational messages and there!
I is nothing to alter before execution continues. I
L---~-------J

144

//OPTAB JOB 1,'SAMPLE MACR0 1 ,MSGLEVEL•1 CREATE IHCUOPT
//VER1 EXEC ASMFC,PARM.ASM•NODECK
//ASM.SYSIN DD •

MACRO
PREFACE 'ADENT, 'ADJ ST, 'SETENT

• • THIS MACRO GENERATES THE PREFACE TO THE OPTION TABLE AND SETS
.• GLOBALS FOR SUBSEQUENT CALLS TO THE SETENT MACRO
.• THE USE OF THIS MACRO GENERATES AN OPTION TABLE AS DEFINED BY IBM
.• AND ALLOWS CHANGES TO INDIVIDUAL ERROR NUMBERS AS DESIRED, BY USE
.• OF SETENT

IHCUOPT
'SETNR
'COUNT
'TOTAL
'A

GBLA 'COUNT,,TOTAL,,SETNR
LCLA 'A
CSECT
SETA
SETA
SETA
SETA
DC

'SETENT
207
t;ADEN'l'+301
'ADENT+95

ERROR NUMBER OF FIRST ENTRY IN TABLE
NUMBER OF LAST ENTRY IN TABLE

DC
DC
MEND
MACRO

F' 'A' TOTAL
B' OUDJST.000000 I
AL3(0)

SETENT 'E
GBLA 'COUNT,,TOTAL,,SETNR
LCLA 'B

NUMBER OF ENTRIES IN TABLE

'B SETA 1
t;SETNR SETA 'SETNR-1
.AGAIN ANOP START OF LOOP TO GEN ONE ENTRY IN TABLE FOR ERROR NUMBER

AIF ('COUNT GT 'TOTAL) .MEND HAVE ALL ENTRIES BEEN CREATED
AIF ('B LE N't;SYSLIST).TEST
AIF ('SETNR EQ 0) .DEFAULT
MEX IT

.TEST ANOP
• • IF THERE IS NO USER SUPPLIED INFO FOR THIS ERROR NO TAKE DEFAULT

AIF ('SYSLIST(,B,1) NE 'COUNT).DEFAULT
ERR,COUNT DC AL1 ('SYSLIST(,B;2)) NUMBER OF ERRORS TO ALLOW FR SETENT

DC AL1 ('SYSLIST(,B,3)) NO OF MSGS TO PRINT FROM SETEN'l'
cc x•oo•
DC X1 ,SYSLIST('8,4)' OPTION BITS SUPPLIED BY SETENT
DC F 1 1'

'COUNT SETA 'COUNT+1
'B SETA 'B+1

AGO .AGAIN RETURN .TO LOOP
.DEFAULT ANOP IBM DEFAULTS FOR ERRORS NOT INDICATED BY SETENT

IBM SPECIAL CASES FOR MESSAGE COUNT
AIF (&COUNT EQ 2oai .UNLIM
AIF (&COUNT EQ 210) .UNLIM
AIF (&COUNT EQ 215).UNLIM
AIF (&COUNT EQ 217) .ONE
AIF (&COUNT EQ 230) .ONE

ERR,COUNT DC AL 1 (10)
.BACK1 ANOP

DC AL1 (5)
.BACK2 ANOP

DC X'OO'
IBM SPECIAL CASES FOR OPTION BITS

AIF (&COUNT EQ 212) .SPBITS
AIF (&COUNT EQ 215) • SPBITS
AIF (&COUNT EQ 218) ,SPBITS
AIF (&COUNT EQ 221) .SPBITS
AIF (&COUNT EQ 222) ,SPBITS
AIF ('COUNT EQ 223) .SPBITS
AIF (&COUNT EQ 224) .SPBITS
AIF (&COUNT EQ 225).SPBITS
DC X'42'
AGO ,CONT

.SPBITS DC X1 52'
,CONT ANOP

DC F'1'
&COUNT SETA &COUNT+1

AGO .AGAIN RETURN TO LOOP
.UNLIM ANOP
ERRt;COUNT DC AL 1 (0)

AIF ('COUNT NE 210) .BACK1
DC AL1 (10)
AGO .BACK2

.ONE ANOP
ERR&COUNT DC

DC
AIF
DC
DC

,MEND
AGO
ANOP
MEND

AL1 (1)
AL1 (1)
(&COUNT EQ
x•oo•
X'02'
.CONT

217).BACK2

END OF MACRO DEFINITION

• EXAMPLE OF THE USE OF THE MACRO
•

PREFACE 50, 1 , 2
SETENT (220,5,2,21), (235, 10,5,42), (255,2,0,4)
SETENT (300,56,65,3)

END
1.•

END OF DATA

Figure 91. Example of Assembler Language Macro Definition Used To Generate Option Table

Extended Error Handling Facility 145

//SAMPLE JOB 1,SAMPLE, MSGLEVEL-1 ..

//STEP1 EXEC FORTHCLG
//FORT.SYSIN DD *
C MAIN PROGRAM THAT USES THE SUBROUTINE DIVIDE

COMMON E

c

c

2
1

9
10

c
c
c

c
c
c
c

c
100
c
1

c
2
c

c
c
c
6
8

7
9
c
5

c
c
c
c
c

c
1

c
2

I*

EXTERNAL FIXDIV
SET UP OPTION TABLE WITH ADDRESS OF USER EXIT
CALL ERRSET(302,30,5,1,FIXDIV)
E=O
GET VALUES TO CALL DIVIDE WITH
READ (5·, 9 > A, B
IF (B) 1 , 2, 1
E=1.0
CALL DIVIDE(A,B,C)
WRITE(6,10)C
FORMAT{2E20.8)
FORMAT{'1',E20.8)
STOP
END
SUBROUTINE DIVIDE(A,B,C)
ROUTINE TO PERFORM THE CALCULATION C=A/B
IF B=O THEN USE ERROR MESSAGE FACILITY TO SERVICE ERROR
PROVIDE MESSAGE TO BE PRINTED
DIMENSION MES(4)
DATA MES(r)/12/,MES{2)/' DIV'/,MES(3)/'302I'/,MES(4)/' B=O'/
DATA RMAX/Z7FFFFFFF/
MESSAGE TO BE PRINTED IS
DIV302I B=O
ERROR CODE 302 IS AVAILABLE AND ASSIGNED TO THIS ROUTINE
STEP1 SAVE A,B IN LOCAL STORAGE
D=A
E=B
STEP2 TEST FOR ERROR CONDITION
IF (E) 1, 2, 1
NORMAL CASE -- COMPUTE FUNCTION
C=D/E
RETURN
STEP3 ERROR DETECTED CALL ERROR MONITOR
CALL ERRMON(MES,IRETCD,302,D,E)
STEP 4 BE READY TO ACCEPT A RETURN FROM THE ERROR MONITOR
IF(IRETCD) 5,6,5

IF IRETCD=O STANDARD RESULT IS DESIRED
STANDARD RESULT WILL BE C=LARGEST NUMBER IF D IS NOT ZERO
CR C=O IF E=O AND D=O
IF(D) 7,8,7
C=O.O
GO TO 9
C=RMAX
RETURN
USER FIX UP INDICATED. RECOMPUTE WITH NEW VALUE PLACED IN E
GO TO 100
END
SUBROUTINE FIXDIV(IRETCD,INO,A,B)
THIS IS A USER EXIT TO SERVE THE SUBROUTINE DIVIDE
THE PARAMETERS IN THE CALL MATCH THOSE USE IN THE CALL TO
ERRMON MADE BY SUBROUTINE DIVIDE

STEP1 IS ALTERNATE VALUE FOR B AVAILABLE -- MAIN PROGRAM
HAS SUPPLIED A NEW VALUE IN E. IF E=O NO NEW VALUE IS AVAILABLE
COMMON E
IF (E) 1, 2, 1
NEW VALUE AVAILABLE TAKE USER CORRECTION EXIT
B=E
RETURN
NEW VALUE NOT AVAILABLE USE STANDARD FIX UP
IRETCD=O
RETURN
END

//GO.SYSIN DD *
0.1EOO O.OEOp

/*

Figure 92. Sample Program Using Extended Error Handling Facility

146

FORTRAN can be invoked by a problem
program through the use of the CALL,
ATTACH, or LINK macro instructions.

The program must supply to the FORTRAN
compiler:

• The inf orrnation usually specified in
the PARM parameter of the EXEC
statement.

• The ddnames of the data sets to be used
during processing by the FORTRAN
compiler.

r------T---------T------------------------1
!Name IOperationlOperand I
~------+---------+------------------------~
I [namell{LINK } IEP=compiler-name, I
I I ATTACH I PARAM=(optionaddr I
I I I [, ddnameaddrl), VL=l I
I I I I
I [namellCALL IIEKAAOO, (optionaddr I
I I I [,ddnameaddrl),VL I
L------i---------i------------------------J
compiler-name

specifies the program name of the
compiler to be invoked. IEYFORT is
spec- ified for FORTRAN IV (G);
IEKAAOO, for FORTRAN IV (H).

optionaddr
specifies the address of a variable
length list containing inf orrnation
usually specified in the PARM
parameter of the EXEC statement.

The option list must begin on a
half-word boundary. The two
high~order bytes contain a count of
the number of bytes in the remainder
of the list. If there are no
parameters, the count must be zero.
The option list is free form with each
field separated by a comma. No blanks
should appear in the list.

APPENDIX A: INVOKING THE FORTRAN COMPILEK

ddnameaddr
specifies the address of a variable
length list containing alternate
ddnames for the data sets used during
FORTRAN compiler processing. This
address is supplied by the invoking
program. If standard ddnames are
used, this operand may be omitted.

The ddname list must begin on a
halfword boundary. The two high-order
bytes contain a count of the number of
bytes in the remainder of the list.
Each name of less than eight bytes
must be left justified and padded with
blanks. If an alternate ddname is
omitted from the list, the standard
name is assumed. If the name is
omitted within the list, the 8-byte
entry must contain binary zeros.
Names can be completely omitted only
from the end of the list.

The sequence of the 8-byte entries in
the ddname list is as follows:

Entry
1
2
3
4
5
6
7
8
9

VL=l or VL

Alternate Name
SYSLIN
00000000
00000000
00000000
SY SIN
SYSPRINT
SYSPUNCH
SYSUTl
SYSUT2

specifies that the sign bit of the
last fullword of the address parameter
list is to be set to 1.

Appendix A: Invoking the FORTRAN Compiler 147

APPENDIX B: EXAMPLES OF JOB PROCESSING

The following examples show several
methods to process load modules.

Example 1

Problem Statement: A previously created
data set SCIENCE.MATH.MATRICES contains a
set of 80 matrices. Each matrix is an
array containing real*4 variables. The
size of the matrices varies from 2x2 to
25x25; the average size is 10x10. The
matrices are inverted by a load module
MATINV in the library MATPROGS. Each
inverted matrix is written (assume FORMAT
control) as a single record on the data set
SCIENCE.MATH.INVMATRS. The first variable
in each record denotes the size of the
matrix.

SCIENCE.
MAT I NV MATH.

INVMATRS

Figure 93. Input/Output Flow for Example 1

The I/O flow for the example is shown in
Figure 93. The job control statements used
to define this job are shown in Figure 94.

Explanation: The JOB statement identifies
the programmer as JOHN SMITH and supplies
the account number 537. Control statements
and control statement error messages are
written in the SYSOUT data set.

The JOBLIB DD statement indicates that
the private library MATPROGS is
concatenated with the system library.

The EXEC statement indicates that the
load module MATINV is executed.

DD statement FT08F001 identifies the
input data set, SCIENCE.MATH.MATRICES.
(Data set reference number 8 is used to
read the input data set.) Because this
data set has been previously created and
cataloged, no information other than the
data set name and disposition has to be
supplied.

DD statement FTlOFOOl identifies the
printed output. (Data set reference number
10 is used for printed output.)

DD statement FT04F001 defines the output
data set. (Data set reference number 4 is
used to write the data set containing the
inverted matrices.) Because the data set
is created and cataloged in this job step,
a complete data set specification is
supplied.

The DSNAME parameter indicates that the
data set is named SCIENCE.MATH.INVMATRS.
The DISP parameter indicates that the data

Sample Coding Form

Figure 94. Job Control Statements for Example 1

148

set is new and is to be cataloged. The
SPACE parameter indicates that space is
reserved for 80 records, 408 characters
long (80 matrices of average size). When
space is exhausted, space for 9 more
records is allocated. The space is
contiguous; any unused space is released,
and allocation begins and ends on cylinder
boundaries.

The DCB parameter indicates
variable-length records, because the size
of matrices vary. The record length is
specified as 2504, the maximum size of a
variable-length record. CThe maximum size
of a record in this data set is the maximum
number of elements (625) in any matrix
multiplied by the number of bytes (4)
allocated for an element, plus 4 for the
segment control word CSCW) that indicates
the count of the number of data bytes
contained in the record.) The buffer
length is specified as 2508 Cthe 4 bytes
are for the block control word CBCW) that
contains the length of the block).

The SEP parameter indicates that read
and write operations should take place on
different channels.

Example 2

Problem Statement: A previously created
data set RAWDATA contains raw data from a
test firing. A load module PROGRD refines
data by comparing the data set RAWDATA
against a forecasted result, PROJDATA. The
output of PROGRD is a data set &REFDATA,
which contains the refined data.

The refined data is used to develop
values from which graphs and reports can be
generated. The load module ANALYZ contains
a series of equations and uses a previously
created and cataloged data set PARAMS which
contains the parameters for these
equations. ANALYZ creates a data set
&VALUES, which contains intermediate
values.

These values are used as input to the
load module REPORT, which prints graphs and
reports of the data gathered from the test
firing. Figure 1 in the "Introductionn
shows the I/O flow for the example. Figure
95 shows the job control statements used to
process this job.

The load modules PROGRD, ANALYZ, and
REPORT are contained in the private library
FIRING.

Explanation: The JOB statement indicates
the programmer's name, JOHN SMITH, and
specifies that control statements and

control statement error messages are
written in the SYSOUT data set.

The JOBLIB DD statement indicates that
the private library FIRING is concatenated
with the system library.

The EXEC statement STEPl defines the
first job step in the job and indicates
that the load module PROGRD is executed.

The DD statements FTlOFOOl and FTllFOOl
identify the data sets containing raw data
(RAWDATA) and the forecasted result
CPROJDATA), respectively.

DD statement FT12F001 defines a
temporary data set, &REFDATA, created for
input to the second step. (In the load
module, data set reference number 12 is
used to write &REFDATA.) The DISP parame
ter indicates that a data set is new and is
passed. The data set is written using the
device class TAPECLS. The VOLUME parameter
indicates that the volume identified by
serial number 2107 is used for this data
set. The DCB parameter indicates that the
volume is written using high density; the
records are fixed-length with FORMAT
control and the buffer length is 400.

The EXEC statement STEP2 defines the
second job step in the job and indicates
that the load module ANALYZ is executed.

DD statement FT17F001 identifies the
data set which contains refined data. The
DISP parameter indicates that the data set
is deleted after execution of this job
step. The DD statement FT18F001 identifies
the previously created and cataloged data
set PARAMS.

DD statement FT20F001 defines the
temporary data set &VALUES containing the
intermediate values. The DISP parameter
indicates that the data set is created in
this step, and that it is passed to the
next job step. The data set is written on
volume 2108 using one of the devices
assigned to the class TAPECLS. The DCB
parameter indicates high density and
fixed-length blocked records (written under
FORMAT control). Each record is 204 char
acters long.

The EXEC statement STEP3 defines the
third job step and indicates that the load
module REPORT is executed. DD statement
FT08F001 identifies the data set containing
intermediate values.

DD statement FT06F001 indicates that the
data set reference number 06 is used to
print the reports and graphs for job step
three.

Appendix B: Examples of Job Processing 149

Sample Coding Form

Figure 95. Job Control Statements for Example 2

Example 3 The following conventions must be

A data set has been created that
contains master records for an index of
stars. Each star is identified by a unique
6-digit star identification number. Each
star is assigned a record position in the
data set by truncating the last two digits
in the star identification number. Because
synonyms arise, records are chained.

Problem Statement: Figure 96 shows a block
diagram illustrating the logic for this
problem.

A card data set read from the input
stream is used to update the star master
data set. Each record Cdetail record) in
this data set contains:

1. The star identification field of the
star master record that the detail
record is used to update.

2. Six variables that are to be used to
update the star master.

150

observed in processing this data set:

1. The star master record that contains
the record location counter pointing
to space reserved for chained records
is assigned to record location 1.

2. A zero in the chain variable indicates
that the end of a chain has been
reached.

3. The first variable in each star master
record is the star identification
field; the second variable in each
star master is the chain variable.

4. Each record contains six other
variables that contain information
about that star.

Stop

Set Record Position
in Read Statement
= Chain Variable

Randomize Star
Number to a

Record Location

Set Chain
Variable = Record
Location Counter

Set Record Position
in Write Statement

=Record
Location Counter

Increment
Record Location

Counter by l

Build Star
Master Record

Update
Variable in
Star Master

Figure 96. Block Diagram for Example 3

When a star detail record is read, its
identification field is randomized, and the
appropriate star master record is read. If
the correct star master record is found,
the record is to be updated. If a star
master is not found, then a star master
record is to be created for that star.

The last record in the star detail data
set contains a star identification number
999999 which indicates that processing the
star detail data set is completed.

Explanation: Figure 96 is similar to the
diagram shown in Figure 60 except Figure 96
includes blocks that describe updating
variables in master records already present
in the data set. (Figure 60 includes
blocks describing certain operations that
must be performed when a direct access data
set is first written.) Also, Figure 96 is
adapted to Example 3, while Figure 60 is
more general. Figure 98 shows the FORTRAN
coding for this program.

The star master record that contains the
record counter is read, placing the record
location counter in LOCREC. Whenever a
detail record is read, the identification
variable is checked to determine if the end
of the detail data set has been reached.
The star detail records contain the
variables A, B, c, D, E, and F.

The identification number in the detail
record is randomized and the result is
placed in the variable NOR~C, which is used
to read a master record. The master record
contains the star identification number
CIDSTRM), a chain record location (!CHAIN),
and six variables (T, u, V, X, Y, and Z)
which are to be updated by the variables in
the star detail records. IDSTRM and IDSTRD
are compared to see if the correct star
master is found. If it is not found, then
the variables containing the chain record
numbers are followed until the correct star
master is found or a new star master is
created.

Job Control Statements: The program shown
in Figure 98 is compiled and link edited,
placing the load module in the PDS STARPGMS
and assigning the load module the name
UPDATE. The data set that contains the
star master records was cataloged and
assigned the name STARMSTR when it was
created. Figure 97 shows the job control
statements needed to execute the module
UPDATE.

Appendix B: Examples of Job Processing 151

Sample Coding Form

Figure 97. Job control Statements for Example 3

152

IDENTIF1CAJION
SfAllMlNT z FORTRAN STAlEMENT SEQUENCE

c :_~i:~ :H_~~_·F:H_·~·_r_r_i ~-i_~;-:~_Hr_-_H_~ .. ~.~~'.n·~ON·C~·~·-N~~~-1 ··•·• ·_-_--_--~- ____ ···_•---~_.····_~_--·_· '' '' "' ··= ''' '' ., ... , .. '"
Ci &;E]t> _S_T_AR DA_TA AN_D CHECK FOR LAST STAR -DATA--RECORD -~--~-
2iG; ~-~_A_D(1_,_1~2)IDSTR_D_,A,B,c_,o,E,F . - - - ----
~- . IF(IOSTRD-999999)2fJ,99,99. _ _ _______ _ _________________ _

c:· °RA1t5-0MYi!E--to-E N.T.fi=-1 cA rr'c:>N ____ tr_y_ o. 1 N __ $TAR _p_~_r_~ ~~_o_ RfAQ. __ ~ __ T_. _ _:____:_A~R __ f'.M:__:_:_A_:_::s=---:r__c:_e+-'R=-------r-----i
20 N_QRE~_:J_D_srr_ROL1~(t_ __ - ---·----· ----=+;-;-------- ---- - - - - - -· --

2-1 RE AD (7 I N_Q]REC' 1 r/J3) ID ST RM, I c HA IN' T 'u, v' x, y, i!

.
,_____-+-+----··- - -- ------ ----- ---- --- ----- - ------ -------t---------t----+------------+-----+------t

---j----------- ----- -- ------+---+---------+-----+-----------+---------+-----1

• . ·- --- ---- . . • -·-- ·-------1 r-:c;10 -ro' W-R+--I_T_E_S-+-T-A_R_M+--AS-fE-R RECORD

d~ R~gO~g ~f~~'~PDATE AND WRift_-~-~~~--~_R_---~~A_ST_E_R~-~~~~~~~~~~~~
2 2 r = A_/ B_ _ . _ . . _ _ _ ------r---- _ _ _____ _ _____ ---i-----1------r------t-------+-----1

- --- ---------t---------1------f----- --- ------------ -- ---r-------r----t----+---t-------1

- - ----- ·- ----· ·--·-------- r----~---·---

2s_ ~-R~~~~J_0_3>_ro_sTRM,ICH_AIN,r,~_v_~,_x_~,y_,~i~--t---~-~--~---~
C GO TO READ NE~J STAR DATA RECORD __ .. ·---- 6·6-to· °2'6. · ... · · _ - -- -- · · ----- -·- ·-----t-----

c IF CH~ _'l#\RIAS_L_E_ lN __ ~~OR_Q_ REAl2___JHE_]J]"_fr-~f-[A __ RJi1]~__S_TER IN THE CHAIN
23 NOREC=ICHAIN
--·+-·Go -To")i ~: ·- . -·-:- -- ------~~--~~ ~~-~---- ----~-~ - - - . . --t------·

C IF END OF STAR DATA_,WRJJ_~ __ SJ}KJAi\.§_lf:_R_~_Q_N_TM_NG RECORD LOCATION COUNTER
99 IDSTRM=0 --------- r-ITTv·~~~:~~-1Jf0 I~S.fRM._,_L_o:cR~_C ___ __, __ --- ----~ ~- -~----+-----_---_,--_--_---_-----+----+-----1-------1

10L~9~~~I_(I~ ,tll:.L -~-: _ -- -- ----- -- ------- -------t---

102 FORMA_T_(!:6' ~F 1i), 3) -- - ------- ------------ --- ------r--------------------------1

103 FOR_MAJ_(_I_6 ,{Lf, 6 F°2{1. ·3) -- --- ·-·r------- ----t---i-------t-------+---+-----+-----1
EN D - - -- - . -- . ----- ----+----------- -----r--------t----r--t----+----------+------1

---t--- ---t-- . - -
1---·- - - - t -

Figure 98. FORTRAN Coding for Example 3

- -- - --- ------t---------+-----1---~_ --t- ------+------+----t
\ ..

Appendix B: Examples of Job Processing 153

APPENDIX C: ASSEMBLER LANGUAGE SUBPROGRAMS

A FORTRAN programmer can use assembler
language subprograms with his FORTRAN main
program. This section describes the
linkage conventions that must be used by
the assembler language subprogram to
communicate with the FORTRAN main program.
To understand this appendix, the reader
must be familiar with the Assembler
Language publication, Order No. GC28-6514
and the Assembler Programmer's Guide.

SUBROUTINE REFERENCES

The FORTRAN programmer can ref er to a
subprogram in two ways: by a CALL
statement or a function reference within an
arithmetic expression. For example, the
statements

CALL MYSUBCX,Y,Z)
I=J+K+MYFUNC(L,M,N)

ref er to a subroutine subprogram MYSUB and
a function subprogram MYFUNC, respectively.

For subprogram reference, the compiler
generates:

1. A contiguous argument list; the
addresses of the arguments are placed
in this list to make the arguments
accessible to the subprogram.

2. A save area in which the subprogram
can save information related to the
calling program.

3. A calling sequence to pass control to
the subprogram.

Argument List

The argument list contains addresses of
variables, arrays, and subprogram names
used as arguments. Each entry in the

154

argument list is four bytes and is aligned
on a fullword boundary. The last three
bytes of each entry contain the 24-bit
address of an argument. The first byte of
each entry contains zeros, unless it is the
last entry in the argument list. If this
is the last entry, the sign bit in the
entry is set to 1.

The address of the argument list is
placed in general register 1 by the calling
program.

Save Area

The calling program contains a save area
in which the subprogram places information,
such as the entry point for this program,
an address to which the subprogram returns,
general register contents, and addresses of
save areas used by programs other than the
subprogram. The amount of storage reserved
by the calling program is 18 words. Figure
99 shows the layout of the save area and
the contents of each word. The address of
the save area is placed in general register
13.

The called subprogram does not have to
save and restore floating-point registers.

Calling Sequence

A calling sequence is generated to
transfer control to the subprogram. The
address of the save area in the calling
program is placed in general register 13.
The address of the argument list is placed
in general register 1, and the entry
address is placed in general register 15.
If there is no argument list, then general
register 1 will contain zero. A branch is
made to the address in register 15 and the
return address is saved in general register
14. Table 24 illustrates the use of the
linkage registers.

r---1
AREA------------>r--1 I

(word 1) jThis word is used by a FORTRAN compiled routine to store its I I
I epilogue address and may not be used by the assembler language I I
I subprogram for any purpose. I I

AREA+4---------->~--~ I
(word 2) I If the program that calls the assembler language subprogram is I I

!itself a subprogram, this word contains the address of the save I I
!area of the calling program; otherwise, this word is not used. I

AREA+8---------->~--~
Cword 3} !The address of the save area of the called subprogram. I

AREA+12--------->~--~
<word 4} IThe contents of register 14 (the return address}. When the I

jsubprogram returns control, the first byte of this location is I
jset to ones. I

AREA+16--------->~--1
<word 5) !The contents of register 15 (the entry address}. I

AREA+20--------->~--~
Cword 6) !The contents of register O. I

AREA+24--------->~--~
<word 7) !The contents of register 1. I

~--1
I I
I I
I I

AREA+68--------->~--~
Cword 18) jThe contents of register 12. I

L--J
I
I
I ___ J

Figure 99. Save Area Layout and Word Contents

Table 24. Linkage Registers
r--------T---------------T--1
I Register I I I
!Number !Register Name !Function I
~--------+---------------+--~
I 0 !Result RegisterlUsed for function subprograms only. The result is returned inj
I I jgeneral or floating-point register o. However, if the result I
I I lis a complex number, it is returned in floating-point I
I I !registers 0 Creal part} and 2 (imaginary part}. I
I I I I
I I !Note: For subroutine subprograms, the result(s) is returned I
I I lin a variable(s) passed by the progranuner. I
~--------+---------------+--1
I 1 !Argument List !Address of the argument list passed to the called I
I I Register I subprogram. I
~--------+---------------+--1
I 2 !Result RegisterlSee Function of Register o. I
~--------+---------------+--~
I 13 jSave Area !Address of the area reserved by the calling program I
I !Register lin which the contents of certain registers are stored by the I
I I !called program. I
~--------+---------------+--~
I 14 !Return RegisterlAddress of the location in the calling program to which I
I I jcontrol is returned after execution of the called program. I
~--------+---------------+--~
I 15 I Entry Point I Address of the entry point in the called subprogram. I
I !Register !Note: Register 15 is also used as a condition code register, I
I I la RETURN code register, and a STOP code register. The I
I I !particular values that can be contained in the register are I
I I I 16 - a terminal error was detected during execution of a I
I I I subprogram Can IHCxxxI message is generated} I
I I 14*i - a RETURN i statement was executed I
I I I n - a STOP n statement was executed I
I I I 0 - a RETURN or a STOP statement was executed I
L--------L---------------L-------------------------------------~------------------------J

Appendix C: Assembler Language Subprograms 155

CODING THE ASSEMBLER LANGUAGE SUBPROGRAM

Two types of assembler language
subprograms are possible: the first type
(lowest level) assembler subprogram does
not call another subprogram; ~he second
type (higher level) subprogram does call
another subprogram. ·

Coding a Lowest Level Assembler Language
Subprogram

For the lowest level assembler language
subprogram, the linkage instructions must
include:

1. An assembler instruction that names an
entry point for the subprogram. The
entry point name must conform to
FORTRAN naming conventions.

2. An instruction(s) to save any general
registers used by the subprogram in
the save area reserved by the calling
program. CThe contents of linkage
registers O and 1 need not be saved.)

3. An instruction(s) to restore the
"saved" registers before returning
control to the calling program.

4.

5.

An instruction that sets the first
byte in the fourth word of .the save
area to ones, indicating that control
is returned to the calling program.

An instruction that returns control to I
the calling program.

Figure 100 shows the linkage conventions
for an assembler language subprogram that
does not call another subprogram. In
addition to these conventions, the
assembler program must provide a method to
transfer arguments from the calling program
and return the arguments to the calling
program.

Higher Level Assembler Language Subprogram

A higher level assembler subprogram must
include the same linkage instructions as
the lowest level subprogram, but because
the higher level subprogram calls another
subprogram, it must simulate a FORTRAN ·
subprogram reference statement and include:

1. A save area and additional
instructions to insert entries into
its save area.

2. A calling sequence and a parameter
list for the subprogram that the
higher level subprogram calls.

3. An assembler instruction that
indicates an external reference to the
subprogram called by the higher level
subprogram.

4. Additional instructions in the return
routine to retrieve en.tries in the
save area.

Note: If an assembler language main
program calls one or more FORTRAN
subprograms, the following instructions
must be executed once Can~ only once) in

r---------T------T--1
I Name I Oper. I Operand Comments I
~---------+----~-+--~
ldeckname START 0
I BC 15,m+1+4(15)
I DC X'm'
I
I
I*
I
I*
I*
I
I

DC

STM

BALR
USING

CLm'name'

14,R,12(13)

B,O
*,B

BRANCH AROUND CONSTANTS IN CALLING SEQUENCE
name IS THE SUBPGM NAME OF LENGTH m. m MUST BE AN ODD
INTEGER TO INSUlIB THAT THE PROGRAM
STARTS ON A HALF-WORD BOUNDARY. THE NAME CAN BE PADDED
WITH. BLANKS.
THE CONTENTS OF REGISTERS 14, 15, AND 0 THROUGH R ARE
STORED IN THE SAVE AREA OF THE CALLING PROGRAM. R IS ANY
NUMBER FROM 2 THROUGH 12.
ESTABLISH BASE REGISTER (2SBS12)

I user written source statements
I
I
I
I LM 2,R,28(13) RESTORE REGISTERS
I MVI 12(13),X'FF' INDICATE CONTROL RETURNED TO CALLING PROGRAM
I BCR 15,14 RETURN TO CALLING PROGRAM I
L---------i------L--J
Figure 100. Linkage conventions for Lowest Level subprogram

156

the assembler language program before the
first FORTRAN subprogram is called:

L 15,=V(IBCOM#)
BAL 14,64(15)

These instructions cause initialization of
return coding interruption exceptions, and
opening of the error message data set. If
this is not done and the FORTRAN subprogram
terminates either with a STOP statement or
because of an execution-time error, the
data sets opened by FORTRAN are not closed
and the result of the termination cannot be
predicted. Register 13 must contain the

address of the save area that contains the
registers to be restored upon termination
of the FORTRAN subprogram. Specifically,
the fifth word of the save area must
contain the address which error-handling
routines are to consider the program entry
point. If control is to return to the
assembler language subprogram, then
register 13 contains the address of its
save area. If control is to return to the
operating system, then register 13 contains
the address of its save area.

Figure 101 shows the linkage conventions
for an assembler subprogram that calls
another assembler subprogram.

Appendix C: Assembler Language Subprograms 157

r---------T------T--1
I Name I Oper. I Operand Comments I
~---------+------+--~
deckname START 0 I

*
*
*

*
*
*
*
*
*
AREA

*
prob1

*

*
*

EXTRN name2 NAME OF THE SUBPROGRAM CALLED BY THIS SUBPROGRAM I
BC 15,m+1+4(15) m IS THE NUMBER OF CHARACTERS IN THE SUBPROGRAM NAME. I
DC X'm' I
DC CLm'name1 NAME OF THIS SUBPROGRAM.

STM

BALR
USING
LR

LA

ST

ST

BC
DS

user

LA
L
BALR
more

L

SAVE ROUTINE
14,R,12(13)

B,O
*,B
Q,13

13,AREA

13,8(0,Q)

Q,4(0,13)

15,prob1

THE CONTENTS OF REGISTERS 14, 15, AND 0 THROUGH R ARE
STORED IN THE SAVE AREA OF THE CALLING PROGRAM. R IS
ANY NUMBER FROM 2 THROUGH 12.
ESTABLISH BASE REGISTER

LOADS REGISTER 13, WHICH POINTS TO THE SAVE AREA OF THE
CALLING PROGRAM, INTO ANY GENERAL REGISTER, Q, EXCEPT O,
1, 13, AND B.
LOADS THE ADDRESS OF THIS PROGRAM'S SAVE AREA INTO
REGISTER 13.
STORES THE ADDRESS OF THIS PROGRAM'S SAVE AREA INTO THE
CALLING PROGRAM'S SAVE AREA
STORES THE ADDRESS OF THE PREVIOUS SAVE AREA (THE SAVE
AREA OF THE CALLING PROGRAM) INTO WORD 2 OF THIS PRO
GRAM'S SAVE AREA

18F RESERVES 18 WORDS FOR THE SAVE AREA
END OF SAVE ROUTINE

written program statements

CALLING SEQUENCE
1,ARGLIST LOAD ADDRESS OF ARGUMENT LIST
15,ADCON
14,15
user written program statements
RETURN ROUTINE
13,AREA+4 LOADS THE ADDRESS OF THE PREVIOUS SAVE AREA BACK INTO

REGISTER 13
LM 2,R,28(13)
L 14,12(13) LOADS THE RETURN ADDRESS INTO REGISTER 14.
MVI 12(13),X'FF'
BCR 15,14 RETURN TO CALLING PROGRAM

* END OF RETURN ROUTINE
ADCON DC A(name2>
* I ARGUMENT LIST

IARGLIST jDC IAL4Carg1) ADDRESS OF FIRST ARGUMENT
I I · I
I I • I
I I · I
I I DC IX' 80' INDICATE LAST ARGUMENT IN ARGUMENT LIST
I IDC IAL3Cargn> ADDRESS OF LAST ARGUMENT I
L---------~------~--J
Figure 101. Linkage Conventions for Higher Level Subprogram

158

Inline Argument List

The assembler programmer may establish
an inline argument list instead of
out-of-line list. In this case, he may
substitute the calling sequence and
argument list shown in Figure 102 for that
shown in Figure 101. The 'isn' entry
following the inline argument list
represents a user-supplied internal
statement number corresponding to the
return point in the calling routine.

r---1
ADCON DC A(prob1>

LA
L
CNOP
BALR
DC
DC

14, RETURN
15, ADCON
2,4
1,15
AL4Carg1>
AL4Carg2)

DC X'80'
DC AL3(argn>

I RETURN BC O,X'isn'
L---
Figure 102. Inline Argument List

Sharing Data in COMMON

Both named and blank COMMON in a FORTRAN
IV program can be ref erred to by an
assembler language subprogram. To ref er to
named COMMON, the V-type address constant

name DC V(name of COMMON)

is used.

If a FORTRAN program has a blank COMMON
area and blank COMMON is also defined Cby
the COM instruction) in an assembler
language subprogram, only one blank COMMON
area is generated for the output load
module. Data in this blank COMMON is
accessible to both programs.

To refer to blank COMMON, the following
linkage may be specified:

COM
name DS OF

--------------> cname

L 11,=ACname)
USING name,11

CSECT

RETRIEVING ARGUMENTS FROM THE ARGUMENT LIST

The argument list contains addresses for
the arguments passed to a subprogram. The
order of these addresses is the same as the
order specified for the arguments in the
calling statement in the main program. The
address for the argument list is placed in
register 1. For example, when the
statement

CALL MYSUB(A,B,C)

is compiled, the following argument list is
generated.

r--------T--------------------------------1
1000000001 address for A I
t--------+--------------------------------~
1000000001 address for B I
t--------+--------------------------------1
1100000001 address for c I
L--------i--------------------------------J
For purposes of discussion, A is a real*8
variable, B is a subprogram name, and c is
an array.

The address of a variable in the calling
program is placed in the argument list.
The following instructions in an assembler
language subprogram can be used to move the
real*8 variable A to location VAR in the
subprogram.

L
MVC

where

Q,0(1)
VAR(8),0(Q)

Q is any general register except O.

For a subprogram reference, an address
of a storage location is placed in the
argument list. The address at this storage
location is the entry point to the
subprogram. The following instructions can
be used to enter subprogram B from the
subprogram to which B is passed as an
argument.

L
L
BALR

where

Q,4(1)
15,0(Q)
14,15

Q is any general register except o.

For an array, the address of the first
variable in the array is placed in the
argument list. An array [for example, a
three-dimensional array CC3,2,2)] appears
in this format in main storage.

Appendix C: Assembler Language Subprograms 159

C(1,1,1) CC2,1,1) C(3,1,1) C(l,2,1)--1
r---J
L-C(2,2,1) C(3,2,1) C(l,1,2) C(2,1,2)--,
r---J
L-C(3,1,2) C(l,2,2) C(2,2,2) CC3,2,2)

Table 25 shows the general subscript format
for arrays of 1, 2, and 3 dimensions.

Table 25. Dimension and subscript Format
r-----------T-----------------------------1
!Array A I Subscript Format I
~-----------+------------------------------~
IACDl) IACSl) I
IACD1,D2) IACS1,S2) I
IACD1,D2,D3)IACS1,S2,S3) I
~-----------i-----------------------------~
IDl, D2, and D3 are integer constants used!
lin the DIMENSION statement. Sl, S2, and I
IS3 are subscripts used with subscripted I
I variables. I
L---J

The address of the first variable in the
array is placed in the argument list. To
retrieve any other variables in the array,
the displacement of the variable, that is,
the distance of a variable from the first
variable in the array, must be calculated.
The formulas for computing the displacement
CDISPLC) of a variable for one, two, and
three dimensional arrays are

DISPLC= (S1-1) *L
DISPLC=(Sl-1)*L+(S2-l)*Dl*L
DISPLC=CS1-l)*L+(S2-l)*Dl*L+(S3-l)*D2*Dl*L

where
L is the length of each variable in
this array.

For example, the variable CC2,1,2) in
the main program is to be moved to a
location ARVAR in the subprogram. Using
the formula for displacement of integer
variables in a three-dimensional array, the
displacement CDISP) is calculated to be 28.
The following instructions can be used to
move the variable,

L
L
L
ST

Q,8(1)
R,DISP
S,OCQ,R)
S,ARVAR

where
Q and R are any general register
except O.
s is any general register. Q and R
cannot be general register O.

Example: An assembler language subprogram
is to be named ADDARR, and a real variable,
an array, and an integer variab1e are to be

160

passed as arguments to the subprogram. The
statement

CALL ADDARR (X,Y,J)

is used to call the subprogram. Figure 103
shows the linkage used in the assembler
subprogram.

RETURN i in an Assembler Language
Subprogram

When a statement number is an argument
in a CALL to an assembler language
subprogram, the subprogram cannot access
the statement number argument.

To accomplish the same thing as the
FORTRAN statement RETURN i (used in FORTRAN
subprograms to return to a point other than
that immediately following the CALL), the
assembler subprogram must place 4*! in
register 15 before returning to the calling
program.

For example, when the statement

CALL SUB CA,B,&10,&20)

is used to call an asserr~ler language
subprogram, the following instructions
would cause the subprogram to return to the
proper point in the calling program:

LA 15,4 (to return to 10)

BCR 15,14

LA 15,8 (to return to 20)

BCR 15,14

Object-Time Representation of FORTRAN
Variables

The programmer who uses FORTRAN in
connection with assembler language may need
to know how the various FORTRAN data types
appear in the computer. The following
examples illustrate the object-time
representation of FORTRAN variables as they·
appear in System/360.

r--------T-----T--1
jName IOper.jOperand I
r--------+-----+--~
ADDARR START 0 I
B EQU 8 I

BC 15,12(15) I
DC X'7' I
DC CL 7' ADDARR' I
s TM 14 I 12 I 12 (13) I
BALR B,0 I
USING *,B I
L 2,8(1) MOVE 3RD ARGUMENT TO LOCATION CALLED I
MVC INDEX(4),0(2) INDEX IN ASSEMBLER LANGUAGE SUBPROGRAM. I
L 3,0(1) MOVE lST ARGUMENT TO LOCATION CALLED VAR I
MVC VAR(4),0(3) IN ASSEMBLER LANGUAGE SUBPROGRAM. I
L 4,4(1) LOAD ADDRESS OF ARRAY INTO REGISTER 4. I
user written statements I

I
I

I I
ILM 2,12,28(13) I
IMVI 12(13),X'FF' I
IBCR 15,14 I
IDS OF I

INDEX IDS lF I
IVAR IDS lF I
L--------L-----L--J
Figure 103. Assembler Subprogram Example

INTEGER Type

INTEGER variables are treated as fixed-point operands by the FORTRAN IV (G) and (H)
compilers, and are governed by the principles of System/360 fixed-point arithmetic.
INTEGER variables are converted into either fullword (32 bit) or halfword (16 bit) signed
integers.

The statements:

INTEGER*2 ITEM/76/,VALUE
INTEGER*4 F,F64/100/
F = 15
VALUE = -2

would cause the variables ITEM, VALUE, F, F64 to appear in the computer as:

2 Bytes
r-T-------T--------1

ITEM IOIOOOOOOOj01001100j
L-L-------L--------J
s 1 15

2 Bytes
r-T-------T--------1

Valuelll11111111111111101
L-L-------L--------J
s 1 15

4 Bytes
r-T-------T--------T--------T--------1

F IOIOOOOOOOjOOOOOOOOjOOOOOOOOI000011111
L-L-------L--------L--------L--------J
s 1 31

Appendix C: Assembler Language subprograms 161

4 Bytes
r-T-------T--------T--------T--------1

F64 IOIOOOOOOOIOOOOOOOOIOOOOOOOOI01100100I
L-~-------~--------~--------~--------J
s 1 31

where s in bit position O represents the sign bit. All negative numbers are represented
in two's complement notation with a one in the sign-bit position. (For a more complete
explanation of fixed-point arithmetic, ref er to the publication IBM System/360 Principles
of Operation, Order No. GA22-6821.)

REAL Type

All REAL variables are converted into short (32 bit) or long C64 bit) floating-point
numbers by the compiler. The length of the numbers is determined by FORTRAN IV
specification conventions. For example, the statements:

REAL*4 HOLD,R/100./
REAL*8 A,RATE/-8./
HOLD = -4.
A = 8.

would cause the variables to appear internally as:

S CHARACTERISTIC FRACTION
r-T-------T--------T--------T--------1

HOLDl111000001101000000IOOOOOOOOIOOOOOOOOI
L-~-------~--------~--------~--------J
0 1 7 8 31

S CHARACTERISTIC FRACTION
r--------T--------T--------T--------1

R 101000010101100100IOOOOOOOOIOOOOOOOOI
L--------L--------~--------L--------J
01 7 8 31

S CHARACTERISTIC FRACTION

A [~E~~~~~~I~~~~~~~~I~~~~~~~~I~~~~~~~~I~~~~} f ~~~~J
0 1 7 8 31 63

S CHARACTERISTIC FRACTION
r-T-------T--------T--------T--------T----1!----1

RATEl111000001110000000IOOOOOOOOIOOOOOOOOIOOOO 00001
L-L-------~--------~--------L--------L---- ____ J

0 1 7 8 31 63

where:

• The sign bit CS) occupies bit position O.

• The characteristic occupies bit positions 1-7.

• The fraction occupies either bit positions 8-31 for a short floating-point number or
bit positions 8-63 for a long floating-point number.

COMPLEX Type

A COMPLEX variable has two parts Creal and imaginary) and is treated as a pair of REAL
numbers. The COMPLEX parts are converted into two contiguous, short or long,
floating-point numbers. For example:

162

COMPLEX D/(2.1,4.7)/,E*16
E = (55.5 -55.5)

will cause the variables D and E to appear in the computer as:

D

E

S CHARACTERISTIC FRACTION
r-T-------T--------T--------T--------1
101100000110010000111001100111001100112.1
~-+-------+~-------+--------+--------~
101100000110100101110011001110011001114.7
L-~-------L--------L--------L--------J
0 1 7 8 31

S CHARACTERISTIC FRACTION

loT1oaoo10Tao11011111000000010000000010000}[000015s.s
~-+-------+--------+--------+--------+---- ----~
111100001010011011111000000010000000010000 0000155.5
L-L-------L--------~--------L--------L---- ----J
0 1 7 8 31 63

Note: Floating-point operations in System/360 may sometimes produce a negative zero,
i.e., the sign bit of a floating-point zero will contain a one. FORTRAN IV compilers
consider all floating-point numbers having a fraction of zero as equivalent. The setting
of the sign bit is unpredictable in floating-point zeros computed by a FORTRAN G or H
object program. CA detailed explanation of floating-point operations can be found in the
publication IBM System/360: Principles of Operation, Order No. GA22-6821.)

LOGICAL Type

FORTRAN IV LOGICAL variables may specify only 2 values:

.TRUE. or .FALSE.

These logical values are assigned numerical values of '1' and 'O', for .TRUE. and
.FALSE., respectively, by both the G and H compilers. The statements:

LOGICAL*l Ll,L2/.TRUE./
LOGICAL*4 L3,L4/.FALSE./
Ll = .FALSE.
L3 = .TRUE.

would cause the variables Ll, L2, L3, L4 to be assigned the following values <using
hexadecimal notation):

<--1 Byte-->
r----------,

Ll I 00 I
L----------J
<--1 Byte-->
r----------1

L2 I 01 I
L----------J
<------4 Bytes------>
r----T----T----T----1

L3 I 00 I 00 I 00 I 01 I
L----.1..----L----L----J
<------4 Bytes------>
r----T----T----T----1

L4 I oo I oo I oo I oo I
L----L----L----L----J

Appendix C: Assembler Language Subprograms 163

Note: The values shown above for LOGICAL variables are those assigned for the current
implementation of the FORTRAN IV (G) and CH) compilers. The assembler language
programmer should not assume these values for future versions of either the (G) or CH)
compilers, since both compilers are subject to change.

The DUMP or PDUMP subroutine can also be used as an additional tool for understanding
the object-time representation of FORTRAN data. Refer to the "Use of DUMP and PDUMP"
section in the "Programming considerations" chapter of this publication or consult the
FORTRAN IV Library Subprograms publication.

164

APPENDIX D: SYSTEM DIAGNOSTICS

This appendix contains a detailed description of the diagnostic messages produced
during compilation and load module execution. The description of each message includes a
suggested operator or programmer response.

FORTRAN IV CG) COMPILER DIAGNOSTIC MESSAGES

Two types of compiler diagnostic
messages are generated -- error/warning and
status.

The error/warning messages produced by
the compiler are noted on the source
listing immediately after the statement in
which they occur. A maximum of four
messages appears on each line. Figure 104
illustrates the format of the messages as
they are written in the data set specified
by the SYSPRINT DD statement.

There are two types of error/warning
messages: serious error messages, and
warning messages. The serious error
messages have a condition code of 8 and the
warning messages a code of 4 or o.

status messages are produced during the
operation of the compiler. Most indicate
termination of compilation resulting from
internal compiler errors.

r---1
IXX = A+B+-C/(X**3-A**-75)
I $ $
I
In> y message, n) y message
I
Where: n is an integer noting the ordi-

nal occurrence of the error on
each card.

y is a 1- to 3-digit message nwn
ber in IEYxxxI format.

$ is the symbol used by the
compiler for flagging the
particular error in the
statement. (This symbol is
usually noted on the line
following the source statement
and may appear at various
points beneath the error
statement depending on the
of error.)

typeJ

message is the actual message

I
I
I

printed I ___ J

Figure 104. Format of Diagnostic Messages

Error/Warning Messaqes

The following text contains a
description of error/warning messages
produced by the compiler. The message is
shown with an explanation.

IEY001I ILLEGAL TYPE

Explanation: The type of a
constant, a variable, or an
expression is not correct for its
usage. For example, the variable
in an Assigned GO TO statement is
not an integer variable; or the
variable in an assignment
statement on the left of the equal
sign is of logical type and the
expression on the right side does
not correspond; or an argument in
a reference to an IBM-supplied
subprogram is not the type
required by the subprogram.
(Condition code - 8)

Proqrammer Response: Probable
user error. Make sure that the
variable in an Assigned GO TO
statement is an integer variable.
Verify that any variable in an
assignment statement on the left
of the equal sign is not of
logical type with the expression
on the right side not in
correspondence. Make sure that an
argwnent in a reference to an
IBM-supplied subprogram is the
type required by the subprogram.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEY002I LABEL

Explanation: The statement in
question is unlabeled and follows
a transfer of control; the
statement therefore cannot be
executed. (Condition code - 0)

Appendix D: System Diagnostics 165

Programmer Response: Probable
user error. correct an unlabeled
statement following a transfer of
control, as it cannot be executed.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEY003I NAME LENGTH

Explanation: The name of a
variable, COMMON block, NAMELIST
or subprogram exceeds six
characters in length; or two
variable names appear in an
expression without a separating
operation symbol.
(Condition code - 0)

Programmer Response: Probable
user error. Make sure that the
name of a variable, COMMON block,
NAMELIST, or subprogram does not
exceed six characters in length.
Check that two variable names do
not appear in an expression
without a separating operation
symbol. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEY004I COMMA

Explanation: The delimiter
required in the statement has been
omitted.
(Condition code - 0)

Programmer Response: Probable
user error. Correct or delete
invalid delimiters and insert the
required delimiter that has been
omitted. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEY005I ILLEGAL LABEL

166

Explanation: Illegal usage of a
statement label; for example, an
attempt is made to branch to the
label of a FORMAT statement.
(Condition code - 8)

Prograwmer Response: Probable
user error. Correct the illegal
usage of a statement label.
Example: No branch to the label
of a FORMAT statement should be
coded. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEY006I DUPLICATE LABEL

Explanation: The label appearing
in the label field of a statement
has previously been defined for
another statement.
(Condition code - 8)

Programmer Response: Probable
user error. correct or delete the
previously defined label and
adjust any code referencing the
label. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

lEY007I ID CONFLICT

IEY008I

Explanation: The name of a
variable or subprogram has been
used in conflict with the type
that was defined for the variable
or subprogram in a previous
statement. <condition code - 8)

Programmer Response: Probable
user error. .correct any variable
or subprogram name used in
conflict with the type defined for
the variable or subprogram in a
previous statement. Examples:
The name listed in a CALL
statement is the name of a
variable; a single name appears
more than once in the dummy list
of a statement function; a name
listed in an EXTERNAL statement
has been defined in another
context. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

ALLOCATION

Explanation: The storage
allocation specified by a source
module statement cannot be
performed because of an

inconsistency between the present
usage of a variable name and some
prior usage of that name.
(Condition code - 8)

Programmer Response: Probable
user error. Correct the statement
since the storage allocation
specified by a source module
statement cannot be performed.
Make sure that an inconsistency
between present usage of a
variable name and some prior usage
of that name does not occur.
Examples: A name listed in a
COMMON block has been listed in
another COMMON block; a variable
listed in an EQUIVALENCE statement
is followed by more than seven
subscripts. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEY009I ORDER

Explanation: The statements
contained in the source module are
used in an improper sequence.
(Condition code - 8)

Programmer Response: Probable
user error. Make sure that
statements contained in the source
module are used in proper
sequence. Examples: An IMPLICIT
statement does not appear as the
first or second statement of the
source module; an ENTRY statement
appears within a DO loop. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEYOlOI SIZE

Explanation: A number used in tne
source module does not conform to
the legal values for its use.
(Condition code - 8)

Programmer Response: Probable
user error. Make sure that a
number used in the source module
conforms to the legal values for
its use. Examples: A label used
in a statement exceeds the legal
size for a statement label; the
size specification in an EXPLICIT
statement is not acceptable; an
integer constant is not within the
allowable magnitude. If the

problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEYOllI UNDIMENSIONED

IEY012I

Explanation: A variable name is
used as an array (i.e., subscripts
follow the name), and the variable
has not been dimensioned.
(Condition code - 8)

Programmer Response: Probable
user error. Make sure that a
variable name is not used as an
array (i.e., subscripts must not
follow the name). Include a
DIMENSION statement if one is
missing. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

SUBSCRIPT

Explanation: The number of
subscripts used in an array
reference is either too large or
too small for the array.
(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
number of subscripts used in an
array reference corresponds to the
number appearing in the DIMENSION
statement. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEY013I SYNTAX

Explanation: The statement or
part of a statement to which this
message refers does not conform to
the FORTRAN IV syntax.
(Condition code - 8}

Programmer Response: Probable
user error. Make sure that all
source code conforms to the
FORTRAN IV syntax. Examples: The
statement cannot be identified; a
non-digit appears in the label
field; fewer than three labels
follow the expression in an
Arithmetic IF statement. If the
problem recurs, do the following
before calling IBM for programming
support:

Appendix D: System Diagnostics 167

• Have source and associated
listing available.

IEY014I CONVERT

Explanation: The mode of the
constant used in a DATA or in an
Explicit Specification statement
is different from the mode of the
variable with which it is
associated. The constant is then
converted to the correct mode.
(Condition code - 0)

Programmer Response: Probable
user error. Make sure that the
mode of the constant used in a
DATA or in an EXPLICIT
specification statement is
identical to the mode of the
variable with which it is
associated.

IEY015I NO END CARD

Explanation: The source module
does not contain an END statement.
(Condition code - 0)

Programmer Response: Probable
user error. Include the necessary
END statement for the source
module. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEY016I ILLEGAL STA.

Explanation: The context in which
the statement in question has been
used is illegal.
(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete
illegal context. Examples: A
specification or a DO statement
appears in a Logical IF; an ENTRY
statement appears outside a
subprogram. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEY017I ILLEGAL STA. WRN.

168

Explanation: The message is
produced as a result of any of the
following: a RETURN statement
appears and the source module is
not a subprogram; a RETURN i
statement appears in a FUNCTION

subprogram.
(Condition code - 0)

Programmer Response: Probable
user error. Correct or delete a
RETURN statement appearing outside
a subprogram or a RETURN I
statement appearing in a FUNCTION
subprogram. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEY018I NUMBER ARG

Explanation: The reference to a
library subprogram specifies an
incorrect number of arguments.
(Condition code - 4)

Programmer Response: Probable
user error. Correct or delete an
invalid reference to a library
subprogram specifying an incorrect
number of arguments. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEY019I FUNCTION ENTRIES UNDEFINED

Explanation: In a FUNCTION
subprogram, there was no statement
to assign a value to the function
name or an entry name. If the
FUNCTION subprogram contains no
ENTRY statements, the error must
be corrected. When ENTRY
statements are present, this
message is a warning provided that
at least one function or entry
name is assigned a value in the
FUNCTION subprogram. However if
no function or entry name is
assigned a value, that error must
be corrected.
(Condition code - 4)

Programmer Response: Probable
user error. Make sure that the
function name and each entry name
is assigned a value in a FUNCTION
subprogram. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEY020I COMMON BLOCK name ERRORS

Explanation: This message
pertains to errors that exist in
the definitions of EQUIVALENCE
sets which ref er to the COMMON
area. The message is produced
when there is a contradiction in
the allocation specified, a
designation to extend the
beginning of the COMMON area, or
if the assignment of
COMMON storage attempts
to allocate a variable to a
location which does not fall on
the appropriate boundary; "name"
is the name of the COMMON block in
error.
(Condition code - 4)

Programmer Response: Probable
user error. Verify that
definitions of EQUIVALENCE sets
which ref er to a COMMON area are
correct. Make sure that none of
the following occurs: a
contradicition in the allocation
specified, a designation to extend
the beginning of the COMMON area,
or an assignment of COMMON storage
attempts to allocate a variable to
a location which does not fall on
the appropriate boundary. Use the
MAP option to determine off sets in
the COMMON block designated in
error ("name"). If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Have source and associated
listing available.

IEY021I UNCLOSED DO LOOPS

Explanation: The message is
produced if DO loops are initiated
in the source module, but their
terminal statements do not exist.
A list of the labels which
appeared in the DO statements but
were not defined follows the
printing of the message.
(Condition code - 8)

Programmer Response: Probable
user error. Correct or insert
statements where DO loops are
initiated and their terminal
statements do not exist. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEY022I U~DEFINED LABELS

Explanation: If any labels are
used in the source module but are
not defined, this message is
produced. A list of the undefined
labels appears on the lines
following the message.
(Condition code - 8)

Programmer Response: Probable
user error. Correct or insert
necessary references to labels
which require definition. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEY023I EQUIVALENCE ALLOCATION ERRORS

Explanation: This message is
produced when there is a conflict
between two EQUIVALENCE sets, or
if there is an incompatible
boundary alignment in the
EQUIVALENCE set. The message is
followed by a list of the
variables which could not be
allocated according to source
module specifications.
(Condition code - 4)

Programmer Response: Probable
user error. Correct or delete
conflicts between two EQUIVALENCE
sets or incompatible boundary
alignments in the EQUIVALENCE set.
If the problem recurs, do the
following before calling IBM for
programming support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Have source and associated
listing available.

IEY024I EQUIVALENCE DEFINITION ERRORS

Explanation: This message denotes
an error in an EQUIVALENCE set
when an array element is outside
the array. (Condition code - 4)

Programmer Response: Probable
user error. Correct or delete the
invalid reference in the
EQUIVALENCE set. If the problem

Appendix D: System Diagnostics 169

recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP has been
specified as a parameter on the
EXEC statement.

• Have source and associated
listing available.

IEY025I DUMMY DIMENSION ERRORS

Explanation: If variables
specified as dununy array
dimensions are not in COMMON and
are not global dummy variables,
the above error message is
p~oduced. A list of the dummy
variables which are found in error
is printed on the lines following
the message. (Condition code - 4)

Programmer Response: Probable
user error. Make sure that
variables assigned to a program
block are defined previously as in
COMMON. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEY026I BLOCK DATA PROGRAM ERRORS

Explanation: This message is
produced if variables in the
source module have been assigned
to a program block but have not
been defined previously as COMMON.
A list of these variables is
printed on the lines following the
message. (Condition code - 4)

Programmer Response: Probable
user error. Make sure that
variables assigned to a program
block are defined previously as in
COMMON. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEY027I CONTINUATION CARDS DELETED

170

Explanation: More than 19
continuation lines were read for
one statement. All subsequent
lines are skipped until the
beginning of the next statement is
encountered.
(Condition code - 8)

Programmer Response: Probable
user error. Delete the
continuation cards in error and
begin a new source statement to
correct the source. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEY032I NULL PROGRAM

Explanation: This message is
produced when an end of file mark
precedes any true FORTRAN
statements in the source module.
(Condition code - 0)

Programmer Response: Probable
user error. Correct or delete an
end-of-file mark preceding any two
FORTRAN statements in the source
module. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEY033I COMMENTS DELETED

Explanation: More than 30 comment
lines were read between the
initial lines of two consecutive
statements. The 31st comment line
and all subsequent comment lines
are skipped until the beginning of
the next statement is encountered.
(There is no restriction on the
number of comment lines preceding
the first statement.)
(Condition code - 0)

Programmer Response: Probable
user error. Make sure that more
than 30 comment lines do not
appear between the initial lines
of two consecutive statements. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEY036I ILLEGAL LABEL WRN

Explanation: The label on this
nonexecutable statement has no
valid use beyond visual
identification, and may produce
errors in the object module if the
same label is the target of a
branch type statement. (Only
branches to executable statements
are valid.) This message is

produced, for example, when an END
statement is labeled. The message
is issued as a warning only.
(Condition code - 4)

Programmer Response: Probable
user error. Correct or delete the
occurrence of a label on a
nonexecutable statement having no
valid use beyond visual
identification. Make sure that
only branches to executable
statements are indicated.
Example: An END statement is
labeled. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

employed to.initialize an array.
For example:

DIMENSION ARRAY(3)
ARRAY/'ABCDEFGHIJKL'/

(Condition code - 4)

Programmer Response: Probable
user error. Make sure that data
initializing values for a variable
do not exceed the size of the
scalar or the array or array
element. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEY039I RETURN

IEY037I PREVIOUSLY DIMENSIONED WRN
Explanation: A RETURN statement
is needed. (Condition code - 0)

IEY038I

Explanation: This message is
produced if arrays are
redimensioned. The dimensions
first to be given are used. An
example of a situation that would
cause this message to be issued
follows: Dimension information
for an array is given in a type
statement and subsequent COMMON I IEY040I
and/or DIMENSION statements
redefine the dimensions.
(Condition code - 4)

Programmer Response: Probable
user error. Make sure that arrays
have not been redimensioned.
Example: Dimension information
for an array is given in a type
statement and subsequent COMMON
and/or DIMENSION statements
redefine the dimensions. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

SIZE WRN

Programmer Response: Probable
user error. Insert missing RETURN
statement. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

COMMON ERROR IN BLOCK DATA

Explanation: An error has ocurred
in the use of a BLOCK DATA
subprogram. There must be at
least one named COMMON statement
within the BLOCK DATA subprogram.
The BLOCK DATA subprogram cannot
contain any references to blank
COMMON.
(Condition code - 8)

Programmer Response: Probable
user error. Make sure that there
is at least one named COMMON
statement within the BLOCK DATA
subprogram. The BLOCK DATA
subprogram cannot contain any
references to blank COMMON. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

Explanation: A variable has data
initializing values that exceed
the size of the scalar or the
array or array element. Examples
of situations that would cause
this message to be issued follow:
(1) Five bytes of initializing
data are given for a scalar
variable, as in REAL A/'ABCDE'/
(2) Excessive bytes are given for
an element of an array, as in DATA
A (1)/'ABCDEFG'/. This message is
also produced when data spill is

IEY041I COMMON INITIALIZATION ERRORS

Explanation: An attempt has been
made to initialize a variable in
unlabeled COMMON or an attempt has
been made, outside of a BLOCK DATA
subprogram, to initialize a
variable in labeled COMMON. A
list of the variables in error

Appendix D: System Diagnostics 171

follows the message.
(Condition code - 8).

Programmer Response: Delete the
invalidly referenced variables.
Make sure that variables in COMMON
Cby declaration or equivalence)
are initialized in a BLOCK DATA
subprogram. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

I IEY045I SP CONSTANT

Explanation: The constant flagged
is typed single precision CREAL*4)
regardless of the number of digits
coded.
(Condition code - 0).

Programmer Response: Reduce the
number of digits specified for the
constant to seven or fewer. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

I IEYO 4 6I DP CONSTANT

Explanation: The constant flagged
is·typed double precision (REAL*8)
because it contains more than
seven digits; the letter D was not
specified.
<condition code - 0)

Programmer Response: Specify the
letter D for all double precision
constants. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

Status Messages

The following paragraphs describe the
messages that are produced during the
operation of the CG) compiler which denote
the progress of the compilation. Most of
the messages discussed in this section
pertain to the conditions that result in
the termination of the compilation.

172

IEY028I NO CORE AVAILABLE-COMPILATION
TERMINATED

IEY029I

Explanation: This message is
produced when the system is unable
to supply the compiler with an
additional 4K byte block of roll
(or table) storage.
(Condition code - 16)

Programmer Response: Probable
user error. Either segment the
program unit into subroutines or
specify a larger REGION size on
the JOB or EXEC card. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Have source and associated
listing available.

DECK OUTPUT DELETED

Explanation: If the DECK option
has been specified, and an error
occurs during the process of
punching the designated output,
this message is produced. No
condition code is generated for
this error.

Programmer Response: If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MSGLEVEL=(l,1)
has been specified on the JOB
statement.

• Have source and associated
listing available.

IEY030I LINK EDIT OUTPUT DELETED

Explanation: If the LOAD option
has been specified, and an error
occurs during the process of
generating the load module, this
message is produced.
(Condition code - 16)

Programmer Response: If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MSGLEVEL=Cl,1)
has been specified on the JOB
statement.

• Have source and associated
listing available.

IEY031I ROLL SIZE EXCEEDED

Explanation: This message is
produced when the WORK or EXIT
roll <table) has exceeded the
storage capacity to which it has
been assigned, or some other roll
used by the compiler has exceeded
64K bytes of storage.
(Condition code - 16)

Programmer Response: Restructure
the program unit and recompile.
If the problem recurs, do the
following before calling IBM for
programming support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Have source and associated
listing available.

IEY034I I/O ERROR [COMPILATION TERMINATED]
xxx .•. xxx

Explanation: This message is
produced when an input/output
error is detected during
compilation. If the error
occurred on SYSPUNCH, compilation
is continued and the "COMPILATION
TERMINATED" portion of the message
is not printed. (Condition code -
8). If the error occurred on
SYSIN, SYSPRINT or SYSLIN,
compilation is terminated.
(Condition code - 16). xxx ••• xxx
is the character string formatted
by the SYNADAF macro instruction.
For an interpretation of this
information, see the publication
IBM System/360 Operating System:
supervisor and Data Management
Macro Instructions, Order No.
GC28-6647.

Programmer Response: Check all DD
statements. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MSGLEVEL=(l,1)
has been specified on the JOB
statement.

• Have source and associated
listing available.

IEY035I UNABLE TO OPEN ddname

Explanation: This message is
produced when the required ddname
data definition card is missing or
the ddname is misspelled.

Programmer Response: Probable
user error. Include the required
ddname data definition statement
or correct a misspelled ddname.
If the problem recurs, do the
following before calling IBM for
programming support:

• Make sure that MSGLEVEL=Cl,1)
has been specified on the JOB
statement.

• Have source and associated
listing available.

Informative Messages

Informative messages are generated by
the compiler to inform the programmer of
the result of the compilation. The
messages are shown with any compiler action
taken.

OPTIONS IN EFFECT option {,option} •••
OPTIONS IN EFFECT option {,option} •••
STATISTICS SOURCE STATEMENTS=nnnnnnnn1

PROGRAM SIZE=nnnnnnnn2

and
STATISTICS NO DIAGNOSTICS GENERATED

or
STATISTICS nnn DIAGNOSTICS GENERATED,

HIGHEST SEVERITY CODE IS n

where

nnnnnnnn1

is the number of source statements,
expressed as a decimal integer.

nnnnnnnn2

nnn

n

is the size, in bytes, of the object
module expressed as a decimal integer.

is the number of diagnostics
generated, expressed as a decimal
integer.

is the condition code.

The first statistics message (giving source
statements and program size) is suppressed
whenever a BLOCK DATA subprogram is
compiled; however, the two
options-in-effect messages and one of the
other statistics messages will still
appear.

If there was more than one compilation
Ci.e., there was a multiple compilation),
one final message is printed. This message
is suppressed when there is only one main
or subprogram. The message appears as
either:

Appendix D: System Diagnostics 173

STATISTICS NO DIAGNOSTICS THIS STEP

or

STATISTICS nnn DIAGNOSTICS THIS STEP

Explanation: If there were no errors in
any of the compilations the first message
is printed. The second message is printed
when there are errors in one or more of the
compilations; the cumulative number of
errors is indicated by the value nnn.

FORTRAN IV (H} COMPILER DIAGNOSTIC MESSAGES

Two types of compiler diagnostic
messages are generated - informative and
error/warning.

Informative Messages

Six unnumbered messages are generated by
the compiler to provide the programmer with
compilation information.

LEVEL- nn.n(date) OS/360 FORTRAN H
DATE- yy.ddd/HH.mm.ss

Explanation: This message is generated at
the beginning of every compilation. The
level of the compiler corresponds to the
release number and release date of the
operating system. The number of the day
Cddd) in the year Cyy> that the compilation
takes place is given by "yy.ddd"; the time
of day in hours (HH), minutes Cmm), and
seconds Css) (based on a 24-hour clock) is
given by "HH.mrn.ss". The time is also
punched into the END card of the object
deck.

COMPILER OPTIONS - option{option} •••

Explanation: This message is printed on
the first page of every source listing.
Options explicitly specified in the PARM
parameter and any default options appear in
the message.

OPTIONS IN EFFECT NAME=xxxxxx,OPT=On,
LINECNT=xx, SIZE=nnnnK

OPTIONS IN EFFECT option {,option} •••
STATISTICS SOURCE STATEMENTS=nnnnnnnn11

PROGRAM SIZE=nnnnnnnn2
STATISTICS NO DIAGNOSTICS GENERATED

or

STATISTICS nnn DIAGNOSTICS GENERATED,
HIGHEST SEVERITY CODE IS n

Explanation: This message appears
immediately before the ****** END OF
COMPILATION ****** message. It indicates
the size of both the source module and the

174

object module as well as the FORTRAN CH)
environment in which they were processed.

nnnn
is the value specified for the SIZE
option expressed as a decimal integer.
(IF this parameter was not specified
the value listed in the message is
0000.)

nnnnnnnn1
is the number of source statements
(comments cards are not included)
expressed as a decimal integer.

nnnnnnnn2

nnn

is the size of the object module, in
bytes, expressed as a decimal integer.

is the number of diagnostics for each
compilation expressed as a decimal
integer.

The options indicated are the default
options and those explicitly specified in
the PARM parameter of the EXEC statement.
For a full explanation of these options,
see "Compiler Options" in the "FORTRAN Job
Processing" section of this publication.
The severity code, n, is the completion
code.

nnnnK BYTES OF CORE NOT USED

Explanation: This message is produced if
more than lOK bytes of available work area
remain unused during compilation. This
message appears immediately after the
****** END OF COMPILATION ****** message.
The term nnnn indicates how much smaller
the region size could have been specified
for optimal storage use during compilation.
If the SIZE option was indicated for the
compilation step, the term nnnn indicates
how much smaller the specified SIZE value
could have been.

******END OF COMPILATION******

Explanation: This message, which indicates
that all processing of the source program
has been completed, is generated at the end
of every compilation except when an
abnormal termination causes the generation
of the message COMPILATION DELETED. ~

If there is more than one compilation in
a job step, one of the following messages
will be printed after the last compilation:

STATISTICS NO DIAGNOSTICS THIS STEP

or

STATISTICS nnn DIAGNOSTICS THIS STEP,
HIGHEST SEVERITY CODE IS n

Explanation: If there were no errors in
any of the compilations, the first message
is printed. The second message is printed
when there are errors in one or more of the
compilations; the cumulative number of
errors is indicated by the value nnn. The
severity code, n, is the completion code.

Error/Warning Messages

The following text contains a
description of error/warning messages
produced by the compiler. The message is
shown with an explanation, and any compiler
action or user action that is required.

All error/warning messages produced are
written in a group following the source
module listing and object module name
table. Figure 105 shows the format of each
message as it is written in the data set
specified by the SYSPRINT DD statement.

There are three types of messages: Cl)
a terminal error message, (2) serious error
messages, and (3) warning messages. The
terminal error message returns a condition
code of 16; the serious error messages a
code of 8; and the warning messages a code
of 4.

r---1
I I
I ERROR NO. ERROR MESSAGE I
I ISN a I
I LABEL b IEKxxxI message I
I NAME c I
~---~

a I
is the internal statement I
number of either the state-I
ment in error or the state
ment following the last
previous executable
statement.

b is a source label (state
ment number)

c is a variable name
xxx is a 3-digit message

number
message is the actual message

printed

Figure 105. Format of Diagnostic Messages

In addition, following the statement in
which a serious error is detected, the
following appears in the source listing:

ERROR DETECTED - SCAN POINTER = x; x
represents the position of the character
pointed to by the compiler's scan pointer
at the time the error is detected. Any
FORTRAN keywords and/or meaningless blanks
are ignored in determining the position of
the character. (If the statement is found
to be invalid during the classification
process, the value of x always equals one.)

In the case of compilation deletion, the
following message appears:

COMPILATION DELETED. g

where g can be 1, 2, 3, 4, 5, 6, or 7

Explanation: The message is generated by
the FORTRAN System Director. The
compilation is deleted because of the
reason indicated by the value of g.
(Condition code - 16)

n=l

n=2

Phase 10 Program too large to compile
or main storage allocation is too
small for compiler size.
A program interrupt occurred during
execution of the compiler. A program
interrupt message and the contents of
all registers are written preceding
the message.

Figure 106 shows the format of the
compile-time program interrupt
message when the extended error
message facility has not been
specified at system generation time.
In the old PSW, c is a hexadecimal
number that indicates the cause of
the interruption; £ may be one of the
following values:

c cause
I Operation
2 Privileged operation
3 Execute
4 Protection
5 Addressing
6 Specification
7 Data
8 Fixed-point overflow
9 Fixed-point divide
A Decimal overflow
B Decimal divide
c Exponent overflow
D Exponent underflow
E Significance
F Floating-point divide

r---1
I I
I IHC210I PROGRAM INTERRUPT - OLD PSW IS xxxxxxxcxxxxxxxx - PHASE SWITCH m I
I I
l---~-----------------------------J
Figure 106. compile-Time Program Interrupt Message

Appendix D: System Diagnostics 175

n=3
n=4
n=5

n=6

n=7

Following PHASE SWITCH, fil is a
hexadecimal number that indicates
which phase of the compiler was
executing when the interrupt
occurred; .!!! may be one of the
following values:

.!!! Phase
1 Phase 10
2 Phase 10 (STALL routine)
4 Phase 15 CPHAZ15 routine)
8 Phase 15 (CORAL routine>

10 Phase 20
20 Phase 25
40 Phase 30

Phase 15 Program too large to compile
Phase 20 Program too large to compile
Phase in control requested System
Director to terminate compilation
immediately. (Any error messages
generated by the calling phase will
also be written.)
Error detected by IHCFCOMH (IBCOM)
I/O error detected during compilation
- an IHCxxxI message may also be
generated
End of file, no END statement in
source module

IEKOOlI THE NUMBER OF ENTRIES IN THE ERROR
TABLE HAS EXCEEDED THE MAXIMUM.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the
statements in error. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that all indicated
statements in error are
corrected.

• Have source and associated
listing available.

IEK002I THE DO LOOPS ARE INCORRECTLY
NESTED.

176

(Condition code - 8)

Programmer Response: Probable
user error. Resubmit the job with
all statements in the range of the
inner DO also in the range of the

outer DO. If the problem recurs,
do the following before calling
IBM for programming support:

• Make sure that the extended
range of a DO statement does not
contain another DO statement
that has an extended range if
the second DO is within the same
program unit as the first.

• Have source and associated
listing available.

IEK003I THE EXPRESSION HAS AN INVALID
LOGICAL OPERATOR.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the invalid
logical operator. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEKOOSI THE STATEMENT HAS AN INVALID USE
OF PARENTHESES.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
parenthesis in question. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK006I THE STATEMENT HAS AN INVALID
LABEL.

(Condition code - 8)

Programmer Response: Probable
user error. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK007I THE EXPRESSION HAS AN INVALID
DOUBLE DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK008I THE EXPRESSION HAS A CONSTANT
WHICH IS GREATER THAN THE
ALLOWABLE MAGNITUDE.

(Condition code - 8)

Programmer Response: Probable
user error. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing a~ailable.

IEK009I THE EXPRESSION HAS A NON-NUMERIC
CHARACTER IN A NUMERIC CONSTANT.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
constant contains only numeric
characters. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEKOlOI THE EXPRESSION HAS A CONSTANT WITH
AN INVALID EXPONENT.

(Condition code - 8)

Programmer Response: Probable
user error. Delete or correct the
invalid exponent. Make sure that
the base and exponent are valid
combinations of operand types. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK011I THE ARITHMETIC OR LOGICAL
EXPRESSION USES AN EXTERNAL
FUNCTION NAME AS A VARIABLE NAME.

(Condition code - 8)

Proqrammer Response: Probable
user error. Make sure that the
external function name is not
employed as a variable. Resubmit
the job using the MAP option to
obtain indication of the use of
each name. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK012I THE EXPRESSION HAS A COMPLEX
CONSTANT WHICH IS NOT COMPOSED OF
REAL CONSTANTS.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that both
the real and imaginary parts of
the complex number are valid real
constants. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK013I AN INVALID CHARACTER IS USED AS A
DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid character. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK014I THE STATEMENT HAS AN INVALID
NON-INTEGER CONSTANT.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid non-integer constant. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK015I THE ARITHMETIC OR LOGICAL
EXPRESSION USES A VARIABLE NAME AS
AN EXTERNAL FUNCTION NAME.

(Condition code - 8)

Appendix D: System Diagnostics 177

Programmer Response: Probable
user error. Make sure that the
variable is not employed as an
external function. Resubmit the
job using the MAP option to obtain
indications of the use of each
name. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEK016I THE GO TO STATEMENT HAS AN INVALID
DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
statement contains valid
delimiters. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK017I THE ASSIGNED O~ COMPUTED GO TO HAS
AN INVALID ELEMENT IN ITS
STATEMENT NUMBER LIST.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
statement number list contains
executable statement numbers. If
an assigned GO TO is in question,
make sure that the ASSIGN
statement is correct. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK019I THE ASSIGNED GO TO HAS THE OPENING
PARENTHESIS MISPLACED OR MISSING.

178

(Condition code - 8)

Programmer Response: Probable
user error. Correct or insert
parenthesis. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK020I THE ASSIGNED GO TO HAS AN INVALID
DELIMITER FOLLOWING THE ASSIGNED
VARIABLE.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that a
comma follows the assigned
variable. If the problem recurs,
do the f Ollowing before calling
IBM for programming support:

• Have source and associated
listing available.

IEK021I THE COMPUTED GO TO HAS AN INVALID
COMPUTED VARIABLE.

(Condition code - 8)

Programmer Response:· Probable
user error. Make sure that the
referenced variable is integer and
non-subscripted. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK022I THE VARIABLE IN THE ASSIGNED GO TO
STATEMENT IS NOT INTEGRAL.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the
non-integral variable. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK023I THE DEFINE FILE STATEMENT HAS AN
INVALID DATA SET REFERENCE NUMBER.

(Condition code - 8)

Procframmei:· Response: Probable
user error. Make sure that the
data set reference number or size
is an integer constant. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK024I THE DEFINE FILE STATEMENT HAS AN
INVALID DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. correct the invalid
delimiter. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK025I THE DEFINE FILE STATEMENT HAS AN
INVALID INTEGER CONSTANT AS THE
RECORD NUMBER OR SIZE.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the invalid
integer. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK026I THE DEFINE FILE STATEMENT HAS AN
INVALID FORMAT CONTROL CHARACTER.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
format control character is one of
L, E, or u. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK027I THE ASSIGN STATEMENT HAS AN
INVALID INTEGER VARIABLE.

(Condition code - 8)

Programmer Response: Probable
user error. correct or delete the
invalid integer variable. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK028I THE ASSIGN STATEMENT HAS AN
INVALID DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. Determine the invalid
deli·mi ter and correct the
statement. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK030I THE DO STATEMENT HAS AN INVALID
END OF RANGE STATEMENT NUMBER.

(Condition code - 8)

Proqrammer Response: Probable
user error. Make sure that the
end of range statement number is
an executable statement number
appearing after the DO statement.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK031I THE DO STATEMENT OR IMPLIED DO HAS
AN INVALID INITIAL VALUE.

(Condition code - 8)

Proqrammer Response: Probable
user error. Check that the
initial value is either an
unsigned integer constant greater
than zero, or an unsigned non
subscripted integer variable
greater than zero. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK034I THE ASSIGNMENT STATEMENT BEGINS
WITH A NON-VARIABLE.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the
statement. Resubmit the job with
the MAP option to determine the
nature of the non-variable in
question, if possible. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

Appendix D: System Diagnostics 179

IEK035I THE NUMBER OF CONTINUATION CARDS
EXCEEDS THE COMPILER LIMIT.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
statement does not extend over
more than 19 continuation cards.
If the problem recursi do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK036I THE STATEMENT CONTAINS INVALID
SYNTAX. THE STATEMENT CANNOT BE
CLASSIFIED.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the
statement. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK039I THE DEFINE FILE STATEMENT HAS AN
INVALID ASSOCIATED VARIABLE.

(Condition code - 8)

Programmer Response: Probable
user error. Check that the
associated variable is
non-subscripted and integral.
Make sure that the associated
variable does not appear in the
I/O list of a READ or WRITE for a
data set associated with the
DEFINE FILE statement. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK040I IT IS ILLEGAL TO HAVE A &
STATEMENT NUMBER PARAMETER OUTSIDE
A CALL STATEMENT.

180

(Condition code - 8)

Programmer Response: Probable
user error. Delete the &
statement number. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK044I ONLY THE CALL, FORMAT, OR DATA
STATEMENTS MAY HAVE LITERAL
FIELDS.

(Condition code - 8)

Programmer Response: Probable
user error. Delete or correct the
misplaced literal field. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK045I THE EXPRESSION HAS A LITERAL WHICH
IS MISSING A DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. Insert the missing
delimiter, or correct the
erroneous delimiter. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK047I THE LITERAL HAS MORE THAN 255
CHARACTERS IN IT.

(Condition code - 8)

Programmer Response: Probable
user error. Delete the excessive
characters, or make sure that the
constant is properly delimited.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK050I THE ARITHMETIC IF HAS THE SYNTAX
OF THE BRANCH LABELS INCORRECT.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that there
are three executable statement
numbers with commas following the
first two. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK052I THE EXPRESSION HAS AN INCORRECT
PAIRING OF PARENTHESES OR QUOTES.

(Condition code - 8)

Programmer Response: Probable
user error. Check that there are
as many left parentheses as there
are right. If a FORMAT statement
contains an H Format Code, check
that w is large enough to
accommodate the data and does not
encompass the closing parenthesis.
Make sure that there is an even
number of single quotes, and that
single quotes. within data, if any,
are represented by two successive
single quotes. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated

IEK058I THE SUBPROGRAM STATEMENT HAS AN
INVALID ARGUMENT.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid argument. Use the MAP
option to determine its nature, if
necessary. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK059I THE FUNCTION STATEMENT HAS AN
INVALID LENGTH SPECIFICATION.

listing available. (Condition code - 8)

IEK053I THE STATEMENT HAS A MISPLACED
EQUAL SIGN.

(Condition code - 8)

Programmer Response: Probable
user error. correct or delete the
equal sign indicated. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK056I THE FUNCTION STATEMENT MUST HAVE
AT LEAST ONE ARGUMENT.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the function
statement. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK057I THE STATEMENT HAS A NON-VARIABLE
SPECIFIED AS A SUBPROGRAM NAME.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the
non-variable subprogram name. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

Programmer Response: Probable
user error. Make sure that the
length specification is
permissible for the associated
type. Check that a type has been
specified and that DOUBLE
PRECISION has not been included.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK061I THE EQUIVALENCE STATEMENT CONTAINS
A NON-SUBSCRIPTED ARRAY ITEM.
INCORRECT ADCONS MAY BE GENERATED.

(Condition code - 4)

Programmer Response: Probable
user error. Include the necessary
subscripts. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK062I THE EQUIVALENCE STATEMENT HAS AN
ARRAY WITH AN INVALID NUMBER OF
SUBSCRIPTS.

(Condition code - 8)

Programmer Response: Probable
user error. Delete the invalid
subscripts or include those
necessary for agreement with the
associated specification
statement. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

Appendix D: System Diagnostics 181

IEK064I THE NAMELIST STATEMENT HAS AN
INVALID DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. Delete or correct the
invalid delimiter. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK065I THE NAMELIST STATEMENT HAS A
NAMELIST NAME NOT BEGINNING WITH
AN ALPHABETIC CHARACTER.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the invalid
character. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK066I THE NAMELIST S~ATEMENT HAS A
NON-UNIQUE NAMELIST NAME.

(Condition code - 8)

Programmer Response: Probable
user error. correct the NAMELIST
name. Invoke the MAP option for
indications of the use of each
name, if necessary. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK067I THE NAMELIST STATEMENT HAS AN
INVALID LIST ITEM.

(Condition code - 8)

Programmer Response: Probable
user error. Check that the list
item is a variable or array name.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK069I THE COMMON STATEMENT HAS AN
INVALID DELIMITER.

<condition code - 8)

182

Programmer Response: Probable
user error. Delete or correct the
invalid delimiter. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK070I THE EQUIVALENCE STATEMENT HAS A
MISSING OR MISPLACED DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that there
are as many left parentheses as
there are right parentheses.
Check all commas. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK071I THE EQUIVALENCE STATEMENT DOES NOT
SPECIFY AT LEAST TWO VARIABLES TO
BE EQUIVALENCED.

(Condition code - 8)

Programmer Response: Probable
user error. Check delimiters and
correct the invalid source. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK072I THE EQUIVALENCE STATEMENT HAS AN
INVALID VARIABLE NAME.

(Condition code - 8)

Programmer Response: Probable
user error. Delete or correct the
invalid variable name. Make sure
that the variable in question is
not a dummy argument. If
necessary, invoke the MAP optjon
for indications of the use of
variable names. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK073I THE EQUIVALENCE STATEMENT HAS A
SUBSCRIPT WHICH IS NOT AN INTEGER
CONSTANT.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the invalid
subscript. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK074I THE STATEMENT HAS A VARIABLE WITH
MORE THAN SEVEN SUBSCRIPTS.

(Condition code - 8)

Programmer Response: Probable
user error. Check that all commas
are in correct position. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK075I THE COMMON STATEMENT HAS A
VARIABLE THAT HAS BEEN REFERENCED
IN A PREVIOUS COMMON STATEMENT.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
redundant entry. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK076I THE IMPLICIT STATEMENT IS NOT THE
FIRST STATEMENT IN A MAIN PROGRAM
OR THE SECOND STATEMENT IN A
SUBPROGRAM.

(Condition Code - 8)

Programmer Response: Probable
user error. Place the IMPLICIT
statement in correct sequence. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK077I THE IMPLICIT STATEMENT HAS A
MISPLACED DELIMITER IN THE TYPE
SPECIFICATION FIELD.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid delimiter. If the problem
recurs, do the following before

calling IBM for programming
support:'

• Have source and associated
listing available.

IEK078I THE IMPLICIT STATEMENT HAS AN
INVALID TYPE.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that for
any type there is a corresponding
valid standard or optional length
specification. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK079I THE IMPLICIT STATEMENT HAS A
MISSING LETTER SPECIFICATION.

(Condition code - 8)

Programmer Response: Probable
user error. Insert the omitted
specification. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK080I THE IMPLICIT STATEMENT HAS AN
INVALID LETTER SPECIFICATION.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the invalid
letter specification. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK081I THE IMPLICIT STATEMENT HAS AN
INVALID DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. Delete or correct the
invalid delimiter. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

Appendix D: System Diagnostics 183

IEK082I THE IMPLICIT STATEMENT DOES NOT
END WITH A RIGHT PARENTHESIS.

(Condition code - 8)

Programmer Response: Probable
user error. · Insert the omitted
parenthesis. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK083I THE IMPLICIT STATEMENT HAS A
MISPLACED DELIMITER IN ITS
PARAMETER FIELD.

(Condition code - 8)

Programmer Response: Probable
user error. Delete or correct the
misplaced delimiter. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK084I THE IMPLICIT STATEMENT CONTAINS A
LITERAL FIELD.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that there
are no apostrophes or wH
specifications in the IMPLICIT
statement. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK086I THE COMMON STATEMENT SPECIFIES A
NON-VARIABLE TO BE ENTERED.

184

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that
delimiters are in correct
position. Check that only ·
variable or array names are
specified for entrance into a
common block. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK087I THE COMMON STATEMENT SPECIFIES A
NON-VARIABLE COMMON BLOCK NAME.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the invalid
name. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEK088I A DUMMY ARGUMENT IN A SUBPROGRAM
STATEMENT MAY NOT BE IN COMMON

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that only
variable or array names appear in
the COMMON statement. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK090I THE EXTERNAL STATEMENT HAS A
NON-VARIABLE DECLARED AS EXTERNAL.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the
non-variable name. If the proolem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK091I THE EXTERNAL STATEMENT HAS AN
INVALID DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid delimiter. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK092I THE TYPE STATEMENT MULTIPLY
DEFINES THE VARIABLE.

Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
variable in question. If the

problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK093I THE TYPE STATEMENT HAS AN INVALID
DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid delimiter. If the probelm
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK094I THE TYPE STATEMENT HAS A
NON-VARIABLE TO BE TYPED.

<condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
non-variable. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing avaiiable.

IEK095I THE TYPE STATEMENT HAS THE WRONG
LENGTH FOR THE GIVEN TYPE.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
specified length is permissible
for the associated type. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK096I THE TYPE STATEMENT HAS A MISSING
DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. Correct, delete, or
insert the delimiter in question.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK101I THE DO STATEMENT OR IMPLIED DO HAS
AN INVALID DELIMITER.

(Condition code - 8)

programmer Response: Probable
user error. Correct or delete the
invalid delimiter. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK102I THE BACKSPACE/REWIND/END FILE
STATEMENT HAS AN INVALID
DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid delimiter. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK104I THE BACKSPACE/REWIND/END FILE
STATEMENT HAS A DATA SET REFERENCE
NUMBER THAT IS EITHER A
NON-INTEGER OR AN ARRAY NAME.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
specified data set reference
number is either an unsigned
integer constant or an integer
variable of length 4. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK109I THB PAUSE STATEMENT HAS A
MISPLACED DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
PAUSE statement contains either no
delimiter or a literal constant
enclosed in single quotes. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

Appendix D: System Diagnostics 185

IEK110I THE PAUSE STATEMENT SPECIFIES A
VALUE WHICH IS NEITHER A LITERAL
NOR AN INTEGER CONSTANT.

(Condition code - 8)

Proqrammer Response: Probable
user error. Correct or delete the
value. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEKlllI THE PAUSE STATEMENT HAS MORE THAN
255 CHARACTERS IN ITS LITERAL
FIELD.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid characters. Make sure
that continuation cards are
correctly indicated. If the
problem recurs., do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK112I THE DICTIONARY HAS OVERFLOWED.

186

(Condition code - 16)

Proqrammer Response: Probable
user error. If the SIZE parameter
is specified incorrectly,
CIEK410I) correct it and resubmit
the job. If SIZE is coded
correctly, then increase the SIZE
value. Make sure that the region
or partition in which the compiler
is running is at least lOK larger
than the specified SIZE value. If
SIZE is not specified, increase
the REGION size on the JOB or EXEC
card. If the problem recurs, do
the following before calling IBM
for programming support:

• Make sure that MSGLEVEL=Cl,1)
was specified in the JOB
statement.

• Have source and associated
listing available.

• Have available the value of the
SIZE parameter assigned at
system generation time.

IEKllSI THE VARIABLE RETURN STATEMENT HAS
NEITHER AN INTEGER CONSTANT NOR
VARIABLE FOLLOWING THE KEYWORD.

(Condition code - 8)

Proqrammer Response: ?robable
user error. Correct or delete the
invalid constant or variable. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEKi16I THE DO·STATEMENT OR IMPLIED DO HAS
AN INVALID PARAMETER.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the DO
variable is a non-subscripted
integer variable. Check that the
initial value, test value, and
increment Cif specified) are
either unsigned integer constants
greater than zero, or unsigned
non-subscripted integer variables
whose value is greater than zero.
Verify that the test value does
not exceed the allowable
magnitude. If ·the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK117I THE BLOCK DATA STATEMENT HAS AN
INVALID DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid delimiter. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK120I THE BLOCK DATA STAT~MENT WAS NOT
THE FIRST STATEMENT OF THE
SUBPROGRAM.

(Condition code - 8)

Proqrammer Response: Probable
user error. Delete the invalid
delimiter. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK121I THE DATA STATEMENT HAS A VARIABLE
WHICH HAS A NON-ALPHABETIC FIRST
CHARACTER.

(Condition code - 8)

Programmer Response: Prob~ble
user error. Correct or delete the
invalid variable, or correct any
erroneous delimiters. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK122I THE DATA STATEMENT CONTAINS A
SUBSCRIPTED VARIABLE WHICH HAS NOT
BEEN DEFINED AS AN ARRAY.

(Condition code - 8)

Programmer Response: Probable
user error. Either define the
variable as an array, or correct
the variable in the DATA
statement. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK123I THE DATA STATEMENT HAS AN INVALID
DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid delimiter. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK124I THE DATA STATEMENT HAS A VARIABLE
WITH AN INVALID INTEGER SUBSCRIPT.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
subscript quantity contains only
integer constants separated by
commas. If the problem recurs, do
the following before calling IBM
for .Programming support:

• Have source and associated
listing available.

IEK125I THE DATA STATEMENT HAS A VARIABLE
WITH A SUBSCRIPT THAT CONTAINS AN
INVALID DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. correct or delete the
invalid delimiter. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK129I THE STATEMENT CONTAINS AN INVALID
DATA CONSTANT.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
constant is valid for its
designated class and/or type. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK132I THE DATA STATEMENT HAS AN INVALID
DELIMITER IN ITS INITIALIZATION
VALUES.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid delimiter. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK133I THE DO STATEMENT CANNOT FOLLOW A
LOGICAL IF STATEMENT.

(Condition code - 8)

Programmer Response: Probable
user error. Change the DO to a GO
TO n, where n is the statement
label of the DO located elsewhere
in the program unit. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

Appendix D: System Diagnostics 187

IEK134I THE DO STATEMENT HAS AN INVALID
INTEGER DO VARIABLE.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
integer DO variable is a non
subscripted integer variable. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK135I THE DO STATEMENT OR IMPLIED DO HAS
AN INVALID TEST VALUE.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
test value is either an unsigned
integer constant greater than
zero, or an unsigned
nonsubscripted integer variable
greater than zero• Verify that
the test value does not exceed
231-1. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEK136I THE NUMBER OF NESTED DO'S EXCEEDS
THE COMPILER LIMIT.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
maximum level of nesting for DO
loops, 25, is not exceeded. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK137I THE DO STATEMENT OR IMPLIED DO HAS
AN INVALID INCREMENT VALUE.

188

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
increment value is either an
unsigned integer constant greater
than zero, or an unsigned non
subscripted integer variable
greater than zero. If the problem
recurs, do the following before
calling IBM for programming ·
support:

• Have source and associated
listing available.

IEK138I THE DO STATEMENT HAS A PREVIOUSLY
DEFINED STATEMENT. NUMBER SPECIFIED
TO END THE DO RANGE.

(Condition code - 8)

Programmer Response: Probable
user error. Verify that the
statement number specified to end
the DO range is an executable
statement number appearing after
the DO statement. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK139I A LOGICAL IF IS FOLLOWED BY
ANOTHER LOGICAL IF OR A
SPECIFICATION STATEMENT.

(Condition code - 8)

Programmer Response: Probable
user error. Change the latter
logical IF to a GO TO n, where n
is the statement label of the
logical IF located elsewhere in
the program unit. Include the
specification statement in the
pres9ribed order prior to
executable statements and
statement function definitions, if
any. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEK140I THE IF STATEMENT BEGINS WITH AN
INVALID CHARACTER.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid character. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing availq,ble.

IEK141I THE FORMAT STATEMENT DOES NOT END
WITH A RIGHT PARENTHESIS.

(Condition code - 8)

Programmer Response: Probable
user error. Correct any invalid
delirrdters and' include the right

parenthesis. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK143I THE STATEMENT FUNCTION HAS AN
ARGUMENT· WHICH IS NOT A VARIABLE.

<condition code - 8)

Programmer Response: Probable
user error. Make sure that the
arguments are non-subscripted
variables. If the problem recurs,
do the following def ore calling
IBM for programmipg support:

• Have source and associated
listing available.

IEK144I THE STATEMENT FUNCTION HAS MORE
THAN 20 ARGUMENTS.

(Condition code - 8)

Programmer Response: Probable
user error. Redefine the
arguments so that the 20 argument
limit is not exceeded. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK145I THE STATEMENT FUNCTION HAS AN
INVALID DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid delimiter. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK146I THE STATEMENT FUNCTION HAS A
MISPLACED EQUAL SIGN.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
misplaced equal sign. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK147I A STATEMENT FUNCTION DEFINITION
MUST PRECEDE THE FIRST EXECUTABLE
STATEMENT.

(Condition code - 8)

Programmer Response: Probable
user error. Resequence the
definition so that it follows only
SUBPROGRAM, IMPLICIT, or other
specification statements. Include
a DIMENSION statement if it has
been omitted. If the problem
recurs, do the following before
calling IBM for progr~mming
support:

• Have source and associated
listing available.

IEK148I THE DIMENSIONED ITEM HAS A
NON-INTEGER SUBSCRIPT.

(Condition code - 8)

Programmer Response: Probable
user error. Verify that the
subscript quantity is validly
constructed. If the problem
recurs, do the following before
calling IBM for programmer
support:

• Have source and associated
listing available.

IEK149I A VARIABLE TO BE DIMENSIONED USING
ADJUSTABLE DIMENSIONS MUST HAVE
BEEN PASSED AS AN ARGUMENT AND
MUST NOT APPEAR IN COMMON.

(Condition code - 8)

Programmer Response: Probable
user error. Remove the variable
name from the COMMON statement, if
it has been entered in a COMMON
statement. Place the variable in
the argument list, if not already
there. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEK150I THE DIMENSIONED ITEM HAS AN
INVALID DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid delimiter. If the problem
recurs, do the following before
calling IBM for programming
support:

Appendix D: System Diagnostics 189

• Have source and associated
listing available.

IEK151I THE STATEMENT SPECIFIES A
NON-VARIABLE TO BE DIMENSIONED.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the
non-variable name. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK152I THE SUBPROGRAM STATEMENT HAS AN
INVALID DELIMITER IN THE ARGUMENT
LIST.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid delimiter. If the problem
recurs, do the following before
calling IBM .for programming
support:

• Have source and associated
listing available.

IEK153I THE STATEMENT HAS AN INVALID NAME
SPECIFIED AS A FUNCTION REFERENCE.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
function has been correctly
defined. Verify that the type of
the name used for the reference
agrees with the type of name used
in the definition. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK156I THE I/O STATEMENT HAS AN INVALID
NAME PRECEDING THE EQUAL SIGN.

190

(Condition code - 8)

Programmer Response: Probable
user error. correct or delete the
invalid name. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK157I THE I/O STATEMENT HAS A
NON-VARIABLE SPECIFIED AS A LIST
ITEM.

(Condition code - 8}

Programmer Response: Probable
user error. Make sure that the
I/O list contains variable names,
subscripted or unsubscripted array
names, or array names accompanied
by indexing specifications in the
form of an implied DO. Verify
that no function references or
arithmetic expressions appear in
the I/O list. Use the MAP option
to determine the use of names in
the program unit. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK158I THE I/O STATEMENT HAS AN IMPROPER
PAIRING OF PARENTHESES IN AN
IMPLIED DO, OR A NON-I~TEGRAL
INDEX.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that there
are as many left parentheses as
there are right parentheses.
Correct any invalid index. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK159I THE FORMAT STATEMENT DOES NOT HAVE
A STATEMENT NUMBER.

(Condition code - 4)

Programmer Response: Probable
user error. Insert the required
statement number. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK160I THE I/O STATEMENT HAS AN INVALID
DELIMITER IN THE PARAMETERS.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid delimiter. If the problem
recurs, do the following before

calling IBM for programming
support:

• Have source and associated
listing available.

IEK161I THE I/O STATEMENT HAS A DUPLICATE
PARAMETER.

(Condition code - 8)

Programmer Response: Probable
user error. Delete the duplicate
parameter. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

!EK163I THE I/O STATEMENT HAS AN ARRAY
WHICH IS NOT DIMENSIONED.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
subscripted array name or array
name in the form of an IMPLIED DO
has been previously declared in a
DIMENSION statement. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK164I THE I/O STATEMENT HAS AN
ARITHMETIC EXPRESSION OR A
FUNCTION NAME SPECIFIED AS A LIST
ITEM.

(Condition code - 8)

Programmer Response: Probable
user error. Verify that no
function references or arithmetic
expressions are contained in the
I/O list. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK165I THE I/O STATEMENT HAS A PARAMETER
WHICH IS NOT AN ARRAY AND NOT A
NAMELIST NAME.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
inva·lid parameter. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK166I THE I/O STATEMENT HAS A
NON-INTEGER CONSTANT OR VARIABLE
REPRESENTING THE DATA SET
REFER:ENCE NUMBER.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
data set reference number is
either an unsigned integer
constant or an integer variable of
length 4. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK167I THE STATEMENT HAS AN INVALID USE
OF A STATEMENT FUNCTION NAME.

(Condition code - 8)

Programmer Response: Probable
user error. verify that the
statement function name has been
previously defined. Correct any
invalid references. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK168I THE STATEMENT SPECIFIES AS A
SUBPROGRAM NAME A VARIABLE WHICH
HAS BEEN PREVIOUSLY USED AS A
NON-SUBPROGRAM NAME.

(Condition code - 8)

Programmer Response: Probable
user error. If the desired
subprogram name duplicates a
variable name, change the variable
name and all references to it.
Use the XREF option to determine
where the variable occurs if the
program unit contains many
statements. If the subroutine
name is in error, correct it. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement, and that
the necessary DD statement is
included.

Appendix D: System Diagnostics 191

IEK169I THE DIRECT ACCESS I/O STATEMENT
MAY NOT SPECIFY A NAMELIST NAME.

Cconditio~ code - 8)

Programmer Response: Probable
user error. Change the data set
reference number so that it refers
to a valid sequential device. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK170I THE DIRECT ACCESS I/O STATEMENT
HAS A NON-INTEGER SPECIFYING THE
RECORD'S RELATIVE POSITION.

1
IEK171I

(Condition code - 8)

Programmer Response: Probable
user error. correct the invalid
non-integer reference. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

THE NAME SPECIFIED FOR AN ENTRY
POINT HAS ALREADY BEEN MULTIPLY
DEFINED.

(Condition code - 8)

Programmer Response: Probable
user error. Change the entry
point name and all references to
it so that duplication is
eliminated. Determine if the name
was erroneously used previously
and correct it. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement, and that
the necessary DD statement is
included.

IEK176I THE I/O STATEMENT CONTAINS INVALID
SYNTAX IN ITS IMPLIED DO.

192

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that
indexing parameters are correctly
specified. Verify that there are
no more than 20 implied DO's per

statement. Correct any erroneous
delimiters. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK192I THE STATEMENT HAS A LABEL WHICH IS
SPECIFIED AS BOTH THE LABEL OF A
FORMAT STATEMENT AND THE OBJECT OF
A BRANCH.

IEK193I

·(Condition code - 8)

Programmer Response: Probable
user error. If the branch has
been specified erroneously to a
FORMAT statement, correct it.
Correct or delete any misplaced
labels. Use the XREF option for
listings of the internal statement
number of the statements in which
the label is defined and
referenced. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement, and that
the necessary DD statement is
included.

THE STATEMENT NUMBER HAS BEEN
PREVIOUSLY DEFINED.

(Condition code - 8)

Programmer Response: Probable
user error. Change the statement
number. Use the XREF option where
many labels occur to determine
which are unused. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement, and that
the necessary DD statement is
included.

IEK194I THE TYPE STATEMENT HAS A MISSING
DELIMITER IN THE INITIALIZATION
VALUES.

(Condition code - 8)

Programmer Response: Probable
user error. Correct any invalid
delimiter$. Supply the missing
delimiter. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK197I THE STOP STATEMENT HAS A
NON-INTEGER CONSTANT AFTER THE
KEYWORD.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
constant following the keyword is
a string of 1 to 5 decimal digits,
inclusive. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK199I THE SUBROUTINE OR FUNCTION
STATEMENT WAS NOT THE FIRST
STATEMENT.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that no
statements except comments occur
prior to the SUBROUTINE or
FUNCTION statement. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK200I QUOTE LITERALS MAY APPEAR ONLY IN
CALL, DATA INITIALIZATION,
FUNCTION AND FORMAT STATEMENTS.

(Condition code - 8)

Programmer Response: Probable
user error. Delete the invalid
reference to the quote literals.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK202I THE STATEMENT HAS A VARIABLE WHICH
HAS BEEN PREVIOUSLY DIMENSIONED.
THE INITIAL DIMENSION FACTORS ARE
USED.

(Condition code - 4)

Programmer Response: Probable
user error. Delete the
unnecessary or erroneous dimension
specification. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK203I AN ENTRY STATEMENT MUST NOT APPEAR
IN A MAIN PROGRAM. THE STATEMENT
IS IGNORED.

(Condition code - 8)

Programmer Response: Probable
user error. Delete the ENTRY
statement. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK204I THE STOP STATEMENT HAS AN INVALID
DELIMITER.

(Condition code - 4)

Programmer Response.: Probable
user error. Correct the invalid
delimiter. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK205I THE ASSIGNED OR COMPUTED GO TO HAS
AN INVALID ELEMENT FOLLOWING THE
CLOSING PARENTHESIS.

(Condition code - 4)

Programmer Response: Probable
user error. Correct or.delete the
invalid element. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK206I THE STATEMENT HAS A
NON-SUBSCRIPTED ARRAY ITEM.

(Condition code - 4)

Programmer Response: Probable
user error. correct the invalid
array reference. If the problem
recurs, do the following before
calling IBM for programming ·
support:

Appendix D: System Diagnostics 193

• Have source and associated
listing available.

IEK207I THE CONTINUE STATEMENT DOES NOT
END AFTER THE KEY WORD CONTINUE.

(Condition code - 4)

Programmer Response: Probable
user error. Delete any code
following the CONTINUE keyword.
Make sure that a continuation has
not been indicated on the
statement immediately following
the CONTINUE. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK208I THE CONTINUE STATEMENT DOES NOT
HAVE A STATEMENT NUMBER.

C Condition code - 4)

Programmer Response: Probable
user error. Delete the CONTINUE
statement if no 'related diagnostic
appears with respect to undefined
statement numbers. If there is an
undefined statement number related
to a label omission on the
CONTINUE, then correct the
CONTINUE statement. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK209I THE STATEMENT HAS AN OCTAL
CONSTANT SPECIFIED AS AN INITIAL
VALUE. THE VALUE IS REPLACED BY
ZERO.

194

(Condition code - 4)

Programmer Response: Probable
user error. If the value of the
octal constant is necessary,
convert it to the appropriate
hexadecimal equivalent. Verify
that a leading "O" has not been
inadvertently specified for a
leading "O" in an initialization
statement. If the problem recurs,
do the foliowing before calling
IBM for programming support:

• Have source and associated
listing available.

IEK211I THE STATEMENT HAS A COMPLEX
CONSTANT WHOSE REAL CO.NSTAN'l'S
DIFFER IN LENGTH.

(Condition code - 4)

Programmer Response: Probable
user error. Correct the constant
so that both parts are either
REAL*4 or REAL*8. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK212I THE BLOCK DATA SUBPROGRAM CONTAINS
EXECUTABLE STATEMENT(S). THE
EXECUTABLE STATEMENT(S) IS
IGNORED.

(Condition code - 4)

Programmer Response: Probable
user error. Delete the executable
statements. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK222I THE EXPRESSION HAS A LITERAL WITH
A MISSING DELIMITER.

(Condition code - 4)

Programmer Response: Probable
user error. Correct invalid
delimiters or insert the missing
delimiter. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK224I THE STATEMENT AFTER AN ARITHMETIC
IF, GO TO, OR RETURN HAS NO LABEL.

(Condition code - 4)

Programmer Response: Probable
user error. Insert any necessary
labels. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEK225I A LABEL APPEARS ON A
NON-EXECUTABLE STATEME~T. THE
LABEL IS IGNORED.

(Condition code - 4)

Programmer Response: Probable
user error. Delete the label. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK226I THE STATEMENT HAS A VARIABLE WITH
MORE THAN SIX CHARACTERS. THE
RIGHTMOST CHARACTERS ARE
TRUNCATED.

(Condition code - 4)

Programmer Response: Probable
user error. Delete extraneous
characters, or insert any missing
delimiter. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK229I ALL THE ARGUMENTS OF AN ARITHMETIC
STATEMENT FUNCTION ARE NOT USED IN
THE DEFINITION.

(Condition code - 4)

Programmer Response: Probable
user error. If the definition is
correct, then delete extraneous
arguments. If arguments were
omitted in the definition, then
include them. Verify that the
expression on the right contains
as many distinct variables as
there are distinct dummy
arguments. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK302I THE EQUIVALENCE STATEMENT HAS
EXTENDED COMMON BACKWARDS.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that any
implicit equivalencing or
assignment statements involving
arrays do not create an extension
such that elements are added
before the beginning of an
established COMMON block. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated ·
listing available.

IEK303I THE EQUIVALENCE STATEMENT CONTAINS
AN ARRAY WHICH IS NOT DIMENSIONED.

(Condition code - 8)

Programmer Response: Probable
user error. Include the necessary
subscript quantity for the array
name. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEK304I THE EQUIVALENCE STATEMENT HAS
LINKED BLOCKS OF COMMON TOGETHER.

(Condition code - 8)

Proqrammer Response: Probable
user error. Make sure that
implicit equivalencing does not
link COMMON blocks together. Use
the MAP option to determine
locations of variable names in the
COMMON blocks in question. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

• Make sure that the MAP option is
specified in the PARM field of
the EXEC statement.

IEK305I THE EQUIVALENCE STATEMENT CONTAINS
AN ARRAY WITH A SUBSCRIPT WHICH IS
OUT OF RANGE.

(Condition code - 4)

Programmer Response: Probable
user error. correct the invalid
subscript. If the problem recurs,
d.o the following before calling
IBM for programming support:

• Have source and associated
listing available.

• Make sure that the XREF option
is specifi:ed in the PARM
parameter of the EXEC statement,
and that the associated DD
statement is included in the job
stream.

IEK306I THE EQUIVALENCE STATEMENT HAS AN
INCONSISTENCY.

(Condition code - 8)

Appendix D: System Diagnostics 195

Programmer.Response: Probable
user error. Make sure that the
EQUIVALENCE statement does not
contradict itself or any
previously established
equivalences. Verif~ that
implicit equivalencing, if it
occurs, does not create
inconsistencies. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK307I THE DATA STATEMENT CONTAINS A
VARIABLE THAT IS NOT REFERENCED.

(Condition code - 4)

Programmer Response: Probable
user error. Make sure that the
indicated variable has not
inadvertently been omitted from a
program unit. If not, delete the
variable from the DATA statement.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK308I THE EQUIVALENCE STATEMENT HAS
EQUIVALENCED TWO VARIABLES IN THE
SAME COMMON BLOCK.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that source
is correct. If necessary and if
possible, replace one of the
invalid variables with a variable
not in COMMON. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

• Make sure that the MAP option is
specified in the PARM field of
the EXEC statement.

IEK312I THE EQUIVALENCE STATEMENT CONTAINS
AN EXTERNAL REFERENCE.

196

(Condition code - 8)

Programmer Response: Probable
user error. Delete or correct the
invalid externally referenced name
in the EQUIVALENCE group. If the
problem recurs, do the following

before calling IBM for programming
support:

• Have source and associated
listing availab1e.

IEK314I THE EQUIVALENCE STATEMENT MAY
CAUSE WORD BOUNDARY ERRORS.

(Condition code - 4)

Programmer Response: Probable
user error. Arrange variables in
fixed descending order according
to length, or force proper
alignment with dummy variables.
Construct the group so that the
displacement of each variable in
the group can be evenly divided by
the reference number associated
with the variable. Use the MAP
option for information on
variables and relative addresses.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

• Make sure that the MAP option is
specified in the PARM field of
the EXEC statement.

IEK315I THE EQUIVALENCE STATEMENT WILL
CAUSE WORD BOUNDARY ERRORS.

(Condition code - 4)

Programmer Response: Probable
user error. Arrange variable in
fixed descending order according
to length or force proper
alignment with dummy variables.
Construct the group so that the
displacement of each variable in
the group can be evenly divided by
the reference number associated
with the variable. Use the MAP
option for information on
variables and relative addresses.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK317I THE BLOCK DATA PROGRAM DOES NOT
CONTAIN A COMMON STATEMENT.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that all
elements of a COMMON block in any
main program or subprogram are
listed in a COMMON statement in

the BLOCK DATA subprogram. If the
problem recurs, do the following
before calling IBM for progamming
support:

• Have source and associated
listing available.

IEK318I THE DATA STATEMENT IS USED TO
ENTER DATA INTO COMMON OUTSIDE A
BLOCK DATA SUBPROGRAM.

(Condition code - 8)

Programmer Response: Probable
user error. Delete the invalid
reference to the variable in
COMMON. Include the reference in
a BLOCK DATA subprogram or in an
assignment statement. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK319I DATA IS ENTERED INTO A LOCAL
VARIABLE IN A BLOCK DATA PROGRAM.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
variable appears in COMMON. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK320I DATA MAY NOT BE ENTERED INTO A
VARIABLE WHICH HAS BEEN PASSED AS
AN ARGUMENT.

(Condition code - 8)

Programmer Response: Probable
user error. Delete any dummy
arguments that appea·r in the data
initialization list. Make sure
source is correct. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK322I THE COMMON STATEMENT MAY CAUSE
WORD BOUNDARY ERRORS.

(Condition code - 4)

Programmer Response: Probable
user error. Arrange variables in
fixed descending order according

to length, or force proper
alignment with dummy variables.
Construct the block so that the
displacement of each variable can
be evenly divided by the reference
number associated with the
variable. Use the ~ option for
information on the relative
address of each variable in the
block. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

• Make sure that the MAP option is
specified in the PARM field of
the EXEC statement.

IEK323I THE COMMON STATEMENT WILL CAUSE A
WORD BOUNDARY ERROR.

(Condition code - 4)

Programmer Response: Probable
user error. Arrange variable in
fixed descending order according
to length, or force proper
alignment with dummy variables.
Construct the block so that the
displacement of each variable can
be evenly divided by the reference
number associated with the
variable. Use the MAP option for
information on the relative
address of each variable in the
block. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

• Make sure that the MAP option is
specified in the PARM field of
the EXEC statement.

IEK332I THE STATEMENT NUMBER IS UNDEFINED.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the source so
that a valid statement number is
referenced. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK334I THE COMMON STATEMENT HAS A
VARIABLE WITH A VARIABLE
DIMENSION.

(Condition code - 8)

Appendix D: System Diagnostics 197

Programmer Response: Probable
user error. Make sure that a
subscript quantity contains only 1
through 7 unsigned integer
constants separated by commas. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK350I THE DATA STATEMENT HAS A MISSING
PARENTHESIS.

(Condition code - 8)

Programmer Response: Probable
user error. Correct any invalid
delimiters and insert the
appropriate parenthesis. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK351I THE DATA INITIALIZATION VALUE IS
LARGER THAN THE VARIABLE OR ARRAY
ELEMENT - TRUNCATION OR SPILL WILL
OCCUR.

(Condition code - 4)

Explanation: An array or variable
was initialized with a constant
whose length was greater than the
length of an array element. If

IEK352I THE DATA STATEMENT HAS TOO MANY
INITIALIZATION VALUES.

(Condition code - 4)

Programmer Response: Probable
user error. Make sure that a
one-to-one correspondence exists
between the total number of
elements specified or implied in
the data list and the total number
of constants specified by the
corresponding list embedded in
slashes. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK353I THE DIMENSION STATEMENT HAS A
VARIABLE WHICH HAS A SUBSCRIPT OF
REAL MODE.

(Condition code - 8)

Programmer Response: Probable
user error. Verify that all
subscripts are integer. Make sure
that only a combination of integer
and real mixed mode expressions
occurs, if mixed mode is present.
Check that no subscript rules are
violated. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

the constant was specified as the IEK354I A VARIABLE TO BE DIMENSIONED USING
ADJUSTABLE DIMENSIONS MUST HAVE
BEEN PASSED AS AN ARGUMENT AND
MUST NOT APPEAR IN COYJ.MON.

198

first element in a non-subscripted
array, part of the constant will
spill over into the succeeding
array element(s). If the constant
was specified as other than the
first element in a non-subscripted
array, or if it was specified as
any element in a subscripted
array, the constant will be
truncated.

Programmer Response: Probable
user error. If spill is not
desired, make sure th~t the length
of a constant specified does not
exceed the length of the element.
If truncation is not desired, make
sure that the length of any
constant specified as a subsequent
element in the array does not IEK355I
exceed the element length. If the
problem recurs, do the following
before calling. IBM for programming
support: I

• Have source and associated
listing available.

(Condition code - 8)

Programmer Response: Probable
user error. If the variable has
not been entered in a COMMON
statement, remove it. If the
variable is not already in the
argument list, place it there. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

ADCON TABLE EXCEEDED.

<condition code - 16)

Programmer Response: Restructure
any complex statement into less
involved statements. If the
problem recurs, do the following

before calling IBM for programming
support:

• Have source and associated
listing available.

IEK356I A PARAMETER CANNOT ALSO BE IN
COMMON.

(Condition code - 8)

Programmer Response: Probable
user error. correct the source
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK357I THE ARRAY HAS AN INCORRECT
ADJUSTABLE DIMENSION.

Ccondiiton code - 8)

Programmer Response: Probable
user error. correct invalid
adju~table dimension. If the
proolem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK358I THE ADJUSTABLE DIMENSION IS NOT
PASSED AS AN ARGUMENT OR IN
COMMON.

(Condition code - 8)

Programmer Response: Probable
user error. Either include the
adjustable dimension in an
argument list, or place it in
COMMON. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

• Make sure that the XREF option
is spec1f ied in the PARM field
and that the associated DD
statement is included in the job
stream.

IEK402I OPEN ERROR ON ddname

Explanation: The data set corres
ponding to the ddname cannot be
opened. If either the EDIT or the
XREF option has been requested,
the corresponding SYSUTl or SYSUT2
DD card has not been found.

(Condition code - 16)

Programmer Response: Probable
user error. Make sure that
appropriate DD cards are included
in correct sequence with necessary
keyword and/or positional
parameters. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MSGLEVEL=(l,1)
was specified in the JOB
statement.

• Have source and associated
listing available.

IEK403I OPEN ERROR ON SYSPRINT

IEK404I

(Condition code - 16)

Programmer Response: Probable
user error. Check the SYSPRINT DD
statement .and recompile. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MSGLEVEL=(l,1)
was specified in the JOB
statement.

• Have source and associated
listing available.

SYNCHRONOUS ERROR ON SYSPRINT

(Condition code - 16)

Programmer Response: Probable
user error. Check the SYSPRINT DD
statement and recompile. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MSGLEVEL=(l,1)
was specified in the JOB
statement.

• Have source and associ'ated
listing available.

Appendix D: System Diagnostics 199

IEK410I AN INVALID SIZE PARAMETER HAS BEEN
SPECIFIED. IT WILL BE IGNORED.

<condition code - 4)

Programmer Response: Probable
user error. Corre.ct the SIZE.
parameter. Make sure that it is
specified within the allowable
range, and that the size of- the
region or partition in which the
compiler is running is at least
lOK larger than the specif i--ed SIZE
value. If the problem recurs, do
the following before calling IBM
for programming support:

• Make sure that MSGLEVEL=(l,1)
was specified in the JOB
statement.

• Have source and pSsociated
listing available.

IEKSOOI AN ARGUMENT TO A FORTRAN SUPPLIED
FUNCTION IS OF THE WRONG TYPE.
THE FUNCTION IS ASSUMED TO BE USER
DEFINED.

(Condi ti on code - - 4 l

Programmer Response: Probable
user error. If the function is
user-suppied, make sure the
function name appears in an
EXTERNAL statement. Make sure
that an argument mode is correct.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK501I THE EXPRESSION HAS A COMPLEX
EXPONENT.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the exponent
so that it is integral with a
complex base, and otherwise
integr~l or real. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK502I THE EXPRESSION HAS A BASE WHICH IS
COMPLEX BUT THE EXPONENT IS
NON-INTEGER.

(Condition code - 8)

200

Programmer Response: Probable
user error. correct the
expression so that a complex base
has an integer exponent. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK503I A NON-SUBSCRIPTED ARRAY ITEM
APPEARS IMPROPERLY WITHIN A
FUNCTION REFERENCE OR A CALL.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the invalid
array item following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK504I THE BASE AND/OR EXPONENT IS A
LOGICAL VARIABLE.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that base
and/or exponent are only of type
real, integer, or complex. Check
placement of parentheses. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK505I THE INPUT/OUTPUT STATEMENT REFERS
TO THE STATEMENT NUMBER OF A
NON-FORMAT STATEMENT.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the invalid
statement number. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK506I THERE IS A MISSING OPERAND
PRECEEDING A RIGHT PARENTHESIS.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the statement
problem recurs, do the following

before calling IBM for programming
support:

• Have source and associated
listing available.

IEK507I A NON-SUBSCRIPTED ARRAY ITEM IS
USED AS AN ARGUMENT TO AN IN-LINE
FUNCTION.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the array
item. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEK508I THE NUMBER OF ARGUMENTS TO AN
IN-LINE FUNCTION IS INCORRECT.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that
necessary delimiters are
indicated. correct or delete
items in the argument list. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK509I THE PROGRAM DOES NOT END WITH A
STOP, RETURN, OR GO TO.

(Condition code - 4)

Programmer Response: Probable
user error. Insert the necessary
terminal statement. If the
problem recurs, do.the following
before calling IBM for programmer
support:

• Have source and associated
listing available.

IEKSlOI THE EXPRESSION HAS A LOGICAL
OPERATOR WITH A NON-LOGICAL
OPERAND.

(Condition code - 8)

Programmer Response: Probable
user error. correct the operand.
Make sure that a logical primary
or logical expressions have
correct form. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK512I THE LOGICAL IF DOES NOT CONTAIN A
LOGICAL EXPRESSION.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the
statement. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK515I THE EXPRESSION HAS A RELATIONAL
OPERATOR WITH A COMPLEX OPERAND.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete t~e
complex operand. Equivalence a
real array of two elements to a
complex variable to permit use of
the relational operator, if
necessary. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK516I THE ARITHMETIC IF CONTAINS A
COMPLEX EXPRESSION.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the
expression. Convert the
expression, if possible, to a
permissible type. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK520I THERE IS A COMMA IN AN INVALID
POSITION.

(Condition code - 8)

Programmer Response: Probable
user error. Delete or reposition
the comma. If the problem recurs,
do the following before calling
IBM for programming support:

• Bave source and associated
listing available.

Appendix D: System Diagnostics 201

IEK521I THE EXPRESSION HAS AT LEAST ONE
EXTRA RIGHT PARENTHESIS.

<condition code - 8)

Programmer Response: Probable
user error. Delete or correct
extraneous and invalid
parentheses. Make sure
parentheses are balanced. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK522I THE EXPRESSION HAS AT LEAST ONE
TOO FEW RIGHT PARENTHESES.

(Condition code - 8)

Programmer Response: Probable
user error. correct or add needed
parentheses. Make sure
parentheses are balanced. If the
problem rec.urs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK523I THE EQUAL SIGN IS IMPROPE~Y USED.

(Condition code - 8)

Programmer. Response: Probable
user error. Correct or delete the
invalid equal sign. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK524I THE EXPRESSION HAS AN OPERATOR
MISSING AFTER A RIGHT PARENTHESIS.

202

(Condition code - 8)

Programmer Response: Probable
user error. Insert the missing
operator or delete the erroneous
parenthesis. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK525I THE EXPRESSION USES A LOGICAL OR
RELATIONAL OPERATOR INCORRECTLY.

(Condition code - 8)

Programmer Response: Probable
user error. Either correct the
logical or relational operator, or
change invalid operand
expressions. Make sure operators
are preceded and followed by a
period. Verify that expressions
precede operators where required.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have s.ource and associated
listing available.

IEK529I A FUNCTION NAME APPEARING AS AN
ARGUMENT HAS NOT BEEN DECLARED
EXTERNAL.

(Condition code - 8)

Programmer Response: Probable
user error. Insert the required
EXTERNAL statement, or delete or
correct the invalid function
reference. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK530I THE EXPRESSION HAS A VARIABLE WITrl
AN IMPROPER NUMBER OF SUBSCRIPTS.

(Condition code - 8)

Programmer Response: Probable
user error. Check for all
necessary delimiters. Make sure
that there are as many subscripts
as are declared in the associated
specification statement. If the
problem recurs, do· the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK531I THE EXPRESSION HAS A STATEMENT
FUNCTION REFERENCE WITH AN
IMPROPER NUMBER OF ARGUMENTS.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the invalid
function reference. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK541I AN ARGUMENT TO A LIBRARY FUNCTION
HAS AN INVALID TYPE.

(Condition code - 8)

Programmer Response: Probable
user error. Corrrect the invalid
argument. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK542I A LOGICAL EXPRESSION APPEARS IN
INVALID CONTEXT.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
source statement. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK550I PUSHDOWN, ADCON, OR ASF ARGUMENT
TABLE EXCEEDED.

(Condition code - 16)

Programmer Response: Change the
program structure. If there are
many subroutine references in a
program unit, subdivide the
program unit. Restructure deeply
nested expressions or eliminate
some ASF arguments where many
occur, if possible. Where
parentheses are deeply nested,
restructure the source statement,
if possible, to eliminate some of
the nesting. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK552I SOURCE PROGRAM IS TOO LARGE.

(Condition code - 16)

Programming .. Response: Subdivide
the program and recompile. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK570I TABLE EXCEEDED. OPTIMIZATION
DOWNGRADED.

(Condition code - 0)

Explanation: Probable user error.
The program is too large to permit
optimization. This is a warning
message and appears in the source
listing at the point where the
table CRMAJOR) overflows. The
compiler performs OPT=l register
allocation only; no other
optimization is performed.

Programmer Response: Either the
program should be segmented or the
size of the table RMAJOR should be
increased. RMAJOR may be
increased by increasing the SIZE
option of the FORTRAN macro at
system generation time. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK580I COMPILER ERROR.

(Condition code - 16)

Explanation: One of the following
four conditions occurred: an
invalid adjective code was
detected; an illegal element
length was detected; no
equivalence group was found; an
unusual primary adjective code was
detected.

Programmer Response: Probable
user error. Make sure that the
source progra~ is correct. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK600I INTERNAL COMPILER ERROR.
LOGICALLY IMPOSSIBLE BRANCH TAKEN
IN A COMPILER SUBROUTINE.

(Condition code - 16)

Programmer Response: Make sure
that the source code is correct.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

Appendix D: System Diagnostics 203

IEK610I THE STATEMENT NUMBER OR GENERATED
LABEL IS UNREACHABLE•

(Condition code - 4)

Note: This message ~s generated
only if OPT=2 is specified in the
EXEC. statement.

Proqrammer Response: Probable
us~r error. Make sure that
control statements indicate
correct branch targets. Verify
that an unlabeled STOP, RETURN, or
GO TO does not immediately follow
any one of these same three source
statements. Make sure that the
statement following an arithmetic
IF is labeled. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK620I THE STATEMENT NUMBER OR GENERATED
LABEL IS A MEMBER OF AN
UNREACHABLE LOOP.

(Condition code - 4)

~: This message is generated
only if OPT=2 is specified in the
EXEC statement.

Programmer Response: Probable
user error. Make sure that
control statements indicate
correct branch targets. correct
labels so that the loop may be the
target of a branch. Delete
invalid terminal source
statements. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK630I INTERNAL TOPOLOGICAL ANALYSIS
TABLE EXCEEDED.

204

(Condition code - 16)

Programmer Response: Insert
statement numbers where a large
span of source code exists without
statement numbers. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK640I COVERAGE BY BASE REGISTER 12 IN
OBJECT MODULE EXCEEDED.

(Condition code - 16)

Programmer Response: Probable
user error. Segment the program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK650I INT~RNAL ADCON TABLE EXCEEDED.

(Condition code - 16)

Programmer Response: Segment the
program and recompile. If the
default value for the FORTRAN
macro SIZE option was used,
regenerate using a larger SIZE
value. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEK660I INTERNAL COMPILER ERROR.
TEMPORARY FETCHED BUT NEVER
STORED.

(Condition code - 16)

Programmer Response: Make sure
that source is correct. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK661I INTERNAL COMPILER ERROR. UNABLE
TO FREE A REGISTER.

(Condition code - 16)

Programmer Response: Segment
large spans of unlabeled source
code into smaller extents
delimited by statement numbers.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK662I INTERNAL COMPILER ERROR.
TEMPORARY NOT ENTERED IN
ASSIGNMENT TABLE.

(Condition code - 16)

Programmer Response: Make sure
that source is correct. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK670I LOGICALLY IMPOSSIBLE BRANCH TAKEN
IN A COMPILER SUBROUTINE.

(Condition code - 16)

Programmer Response: Make sure
that source code is correct. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK671I LOGICALLY IMPOSSIBLE BRANCH TAKEN
IN A COMPILER SUBROUTINE.

(Condition code - 16)

Programmer Response: Make $Ure
that source code is correct. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK710I THE FORMAT STATEMENT SPECIFIES A
FIELD WIDTH OF ZERO.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the invalid
field width. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK720I THE FORMAT STATEMENT CONTAINS AN
INVALID CHARACTER.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid character. If the problem
recurs, do the following before

calling IBM for programming
support:

• Have source and associated
listing available.

IEK730I THE FORMAT STATEMEN'l' HAS
UNBALANCED PARENTHESES.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the
statement. Delete any unnecessary
or insert missing parentheses.
Make sure wH specifications are
correct. If the problem recurs,
do.the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK740I THE FORMAT STATEMENT HAS NO
BEGINNING LEFT PARENTHESIS.

(Condition code - 8)

Programmer Response: Probaole
user error. Correct the source
statement. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK750I THE FORMAT STATEMENT SPECIFIES A
COUNT OF ZERO FOR A LITERAL FIELD.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the
incorrectly specified count. If
the problem recurs, do the
following before calling IBM for
programming support.:

• Have source and associated
listing available.

IEK760I THE FORMAT STATEMENT CONTAINS A
MEANINGLESS NUMBER.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid number. If the problem
recurs, do the following before
calling IBM for programming
support:

•Have source and associated
listing available.

Appendix D: System Diagnostics 205

IEK770I THE FORMAT STATEMENT HAS A MISSING
DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. Either correct or
delete invalid delimiters, or
insert the missing delimiter. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associ~ted
listing available.

IEK780I THE FORMAT STATEMENT CONTAINS A
NUMERIC SPECIFICATION GREATER THAN
255.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the invalid
numeric specification. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK790I THE FORMAT STATEMENT CONTAINS
GROUP FORMAT SPECIFICATIONS NESTED
TO A LEVEL GREATER THAN TWO

Explanation: The compiler
detected more than two left
parentheses without intervening
right parentheses, thereby
indicating a nesting level
exceeding two. The nesting is
encoded as written.

<Condi ti on code - 8 > .•

Programmer Response: Probable
user error. Correct the.invalid
specification. If the problem
recurs do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK800I SOURCE PROGRAM IS TOO LARGE.

206

(Condition code - 16)

Programmer Response: segment the
program and recompile. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK1000I INTERNAL COMPILER ERROR

(Condition code - 4)

Explanation: An erroneous error
number has been placed in the
error table.

Programmer Response: Probable
user error. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

LOAD MODULE EXECUTION DIAGNOSTIC MESSAGES

The load module produces three types of
diagnostic messages:

• Program interrupt messages
• Execution error messages
• Operator message

Program Interrupt Messages.

Program interrupt messages containing
the old Program Status Word CPSW) are
written when an exception occurs. The
format of the program interrupt message
when the extended error message facility
has not been specified at. system generation
time is given in Figure 107. Program
interrupt messages IHC207I, IHC208I, and
IHC209I are produced only when the extended
error message facility has been specified.
The format of these messages can be found
in the section "Execution Error Messages."

Note: Codes 4, 5, 6, and 7 are associated
with the execution-time adjustment of
boundary alignment errors and appear only
when the system is generated to provide
boundary alignment adjustment; i.e., when
BOUNDRY=ALIGN is specified in the FORTLIB
macro instruction during system generation
(see the System Generation publication).

The letter A in the message indicates
that boundary adjustment has taken
place.The letter P in the message indicates
that the interruption was precise. This
will always be the case for
non-specification interrupt messages in
FORTRAN except when using machines with
special hardware on which imprecise
interruptions may occur. The eighth
character in the PSW <i.e., 4, 5, 6, 7, 9,
c, D, or F) represents the code number Cin
hexadecimal) associated with the type of
interruption. The following text describes
these interruptions.

Protection Exception: The protection
exception <code 4), is recognized when the
key of an operand in storage does not match
the protection key in the PSW. A message
is issued only if a specification exception
<code 6) has already been recognized in the
same instruction. Otherwise, the job
terminates abnormally.

If the extended error message facility
is specif ie~, the following information is
provided.

IBCOM - PROGRAM INTERRUPT - ALIGNMENT OLD
PSW IS xxxxxxx4xxxxxxxx

Supplemental Data: None.

Standard Cofrective Action: continue
execution at point of interrupt.

Programmer Response: Probable user errpr.
If the job has been terminated with a
completion code of SYSTEM=OC6
(specification interrupt), correct the
source causing boundary misalignment. If
the problem recurs, do the following before
calling IBM for programming support:

• Make sure that MAP, LIST, and DUMP have
been specified as parameters on the EXEC
statement and provide the necessary
GO.SYSUDUMP or GO.SYSABEND DD statement.

• Make sure that the XREF option is
specified in the PARM field of the EXEC
statement and that the necessary DD
statement is included.

• Have source and associated listing
available.

Addressing Exception: The addressing
exception (code 5) is recognized when the
address of the data is outside of the
available storage for the particular
installation. A message is issued only if
a specification exception (code 6) has
already been recognized in the same
instruction. Otherwise, the job terminates
abnormally.

If the extended error message facility
is specified, the following information is
provided.

IBCOM - PROGRAM INTERRUPT - ALIGNMENT OLD
PSW IS xxxxxxx5xxxxxxxx

Supplemental Data: None.

Standard Corrective Action: Continue
execution at point of interrupt.

Programmer Response: Probable user error.
If the job has been terminated with a
completion code of SYSTEM=OC6
(specification interrupt>, correct the
source causing boundary misalignment. If
the problem recurs, do the following before
calling IBM for programming support:

• Make sure that MAP, LIST, and DUMP have
been specified as parameters on the EXEC
statement and provide the necessary
GO.SYSUDUMP or GO.SYSABEND DD statement.

• Make sure that the XREF option is
specified in the PARM field of the EXEC
statement and that the necessary DD
statement is included.

• Have source and associated listing
available.

Specification Exception: The specification
exception (code 6) is recognized when a
data address does not specify an integral
boundary for that unit of information. For
example, a specification error would occur
during execution of the following
instructions .•

REAL*8 D, E
COMMON A, B, C
EQUIVALENCE (B, D)
D = 3.0D02

Note: If an instruction contains a
boundary violation, a specifica~ion
interrupt occurs and the message is issued
with code 6. The boundary adjustment
routine is invoked if the BOUNDRY=ALIGN
option was specified in the FORTLIB macro
instruction during system generation. If
an instruction which has been processed for
a bgundary violation also contains a
protection, addressing, or data error, the
interrupt message is reissued with the
appropriate code (4, 5, or 7). The job
then terminates because both a

r-----------~---1
I 4 I
I 5 I
I 6 I
I IHC210I PROGRAM INTERRUPT (A) -- OLD PSW IS xxxxxxx 7 xxxxxxxx I
I <P> 9 I
I c I
I D I
I F I
L----------~--J
Figure 107. Program Interrupt Message Format Without Extended Error Message Facility

Appendix D: System Diagnostics 207

specification error and a protection,
addressing, or data error have been
detected. The completion code in the dump
indicates that the. job terminated because
of the specification error.

If the extended error mess.age facility
is specified, the following information is
provided.

IBCOM - PROGRAM INTERRUPT - ALIGNMENT OLD
PSW IS xxxxxxx6xxxxxxxx

Supplemental Data: None.

Standard Corrective Action: Continue
execution at point of interrupt.

Programmer.Response: Probable user user
error. Make sure that proper alignment of
variables is guaranteed. Arrange variables
in fixed descending order according to
length, or force proper alignment with
dummy variables. Construct COMMON blocks
so that the displacement of each variable
can be evenly divided by the reference
number associated with the variable. Use
the MAP option for information on the
relative address of each variable in the
block. Make SUre that EQUIVALENCE
statements do not cause misalignment. If
the problem recurs, do the following before
calling IBM for programming support:

• Make sure that MAP, LIST, anq DUMP have
been specified as parameters on the EXEC
statement and provide the necessary
GO.SYSUDUMP or GO.SYSABEND DD statement.

• Make sure that the XREF option is
specified in the PARM field of the EXEC
statement and that the necessary DD
statement is included.

• Have· source and associated listing
available.

Data-Exception: The data exception <code
7), is recognized when the sign and digit
codes for a CONVERT TO BINARY instruction
are incorrect. A message is issued only if
a specification exception (code 6) has
already been recognized in the same
instruction. Otherwise, the job terminates
abnormally.

If the extended error message facility
is specified, the follow.ing information is
provided.

IBCOM - PROGRAM INTERRUPT - ALIGNMENT OLD
PSW IS xxxxxxx7xxxxxxxx

Supplemental Data: None.

Standard Corrective Action: Continue
execution at point of interrupt.

208

Programmer Response: Probable user error.
If the job has been terminated with a
completion code of SYSTEM=OC6
(specification interrupt), correct the
source causing boundary misalignment. If
the problem recurs, do the following before
calling IBM for programming support:

• Make sure that MAP, LIST, and DUMP have
been specified as parameters on the EXEC
statement and provide the necessary
GO.SYSUDUMP or GO.SYSABEND DD statement.

• Make sure that the XREF option is
specified in the PARM field of the EXEC
statement and that the necessary DD
statement is included.

• Have source and associated listing
available.

Fixed-Point-Divide Exception: The
fixed-point-divide exception, assigned code
number ·9, is recognized when division of a
fixed-point number by zero is attempted. A
fixed-point divide exception will occur
during execution of the following
statement:

K=I/J

where: I=7 and J=O

Note: When dealing with large numbers, the
programmer should be aware that fixed-point
overflow does not cause an interrupt and
any overflow causes incorrect results. No
error message is issued.

Exponent-Overflow Exception: The
exponent-overflow exception, assigned code
number c, is recognized when the result of
a floating-point addition, subtraction,
multiplication, or division is greater than
or equal to 16 63 (approximately 7.2 x
1075). For example, an exponent-overflow
will occur during execution of the
statement:

A= 1.0E+75 + 7.2E+75

When the interrupt occurs, the result
register contains a floating-point number
whose fraction is normalized and whose sign
is correct. However, the number is not
usable for further computation since its
characteristic field no longer reflects the
true exponent. The content of the result
register as it existed when the interrupt
occurred is printed following the program
interrupt message with the format:

REGISTER CONTAINED hhhhhhhhhhhhhhhh

where: hhhhhhhhhhhhhhhh is the
floating-point number in
hexadecimal notation.

If the improved floating-point
engineering change is not in effect, the
register content cannot be used to
calculate the true value.

If the improved floating-point
engineering change is in effect, exponent
overflow causes "exponent wraparound• -
i.e., the characteristic field represents
an exponent that is 128 smaller than the
correct one. Treating bits 1 to 7 (the
exponent characteristic field) of the
floating-point number as a binary ·integer,
the true exponent may be computed as
follows:

TE = (Bits 1 to 7) + 128 - 64

Before program execution continues.. the
FORTRAN library sets the result register to
the largest possible floating-point number
that can be represented in short precision
(1663*(1-16-6)) or in long precision
(1663*(1-16-~~)), but the sign of the
result is not changed. The condition code
is not altered.

Exponent-Underflow Exception: The
exponent-underflow exception, assigned code
number D, is recognized when the result of
a floating-point addition, subtraction,
multiplication, or division is less than
16-65 (approximately 5.4x1Q-79). For
example, an exponent-underflow exception
will occur during execution of the
statement:

A= 1.0E-50 * 1.0E-50

Although exponent underflows are
maskable, FORTRAN jobs are executed without
the mask so that the library will handle
such interrupts.

When the interrupt occurs, the result
register contains a floating-point number
whose fraction is normalized and whose sign
is correct. However, the number is not
usable for further computation since its
characteristic field no longer reflects the
true exponent. The content of the result
register as it existed when the interrupt
occurred is printed following the program
interrupt message with the format:

REGISTER CONTAINED hhhhhhhhhhhhhhhh

where: hhhhhhhhhhhhhhhh is the
floating-point number in
hexadecimal notation.

If the improved floating-point
engineering change is not in effect, the
exponent underflow always leaves a zero in
the result register.

If the improved floating-point
engineering change is in effect, exponent

underflow causes "exponent wraparound" -
i.e., the.characteristic field represents
an exponent that is 128 larger than the
correct one. Treating bits 1 to 7 Cthe
exponent characteristic field) of the
floating-point number as a binary integer,
the true exponent may be computed as
follows:

TE = (Bits 1 to 7) - 128 - 64

Before program execution continues, the
library sets the result register to a true
zero of correct precision. If the
interrupt resulted from a floa~ing-point
addition or subtraction operation, the
condition code is set to zero to reflect
the setting of the result register.

Note: The System/360 Operating System
FORTRAN programmer who wishes to take
advantage of the "exponent wraparound"
feature and handle the interrupt in his own
program must call an assembly language
subroutine to issue a SPIE macro
instruction that will override the FORTRAN
interruption routine.

Floating-Point-Divide Exception: The
floating-point-divide exception, assigned
code number F, is recognized when division
of a floating-point number by zero is
attempted. For example, a floating-point
divide ex.ception will occur during
execution of the following statements:

C=A/B

where: A=l.O and B=O.O

Execution Error Messages

Execution error messages have the form:

IHCxxxI [message text]
TRACEBACK FOLLOWS-ROUTINE ISN REG. 14,

REG. 15, REG. O, REG. 1

The facility for error detection and
diagnostic messages is controlled by a
system generation option. When the
parameter OPTERR=INCLUDE is specified in
the FORTLIB macro instruction at system
generation time, the extended error
handling facility is made available during
program execution. This facility is not
made available if OPTERR=EXCLUDE is
specified or if no parameter is specified
at system generation time.

The description of each diagnostic
message contains the error code, the
abbreviated name for the origin of the
error, and an explanation describing the
type of error. In addition, supplemental

Appendix D: System Diagnostics 209

data is provided and standard corrective
action to be taken to correct the error is
described. Supplementary data and standard
corrective action are applicable only if
OPTERR=INCLUDE was specified.

Variable information in the message is
shown as X, and in the corrective action
descriptions, * denotes the largest
possible number that can be represented in
floating point. For all load module
execution error messages except IHC210I, a
condition code of 16 is generated and the
job step is terminated unless the
OPTERR=INCLUDE parameter was specified.

The abbreviated name for the origin of
the error is:

IBC - IHCFCOMH routine (performs
interruption, and error procedures).

FIOCS - IHCFIOSH routine (performs I/O
operations for FORTRAN load module
execution).

NAMEL - IHCNAMEL routine (performs
namelist processing).

DIOCS - IHCDIOSE routine (performs
direct access I/O operations for FORTRAN
load module execution).

IBERR - IHCIBERH routine (performs the
processing of errors detected during
execution of the load modules.)

LIB - SYSl.FORTLIB. In the explanation
of the messages, the module name is
given followed by the entry point
name(s) enclosed in parentheses.

FCVTH - IHCFCVTH routine Cperf orms
conversions).

IHC207I IBCOM - PROGRAM INTERRUPT-OVERFLOW
OLD PSW IS xxxxxxxCxxxxxxxx
REGISTER CONTAINED X

210

This message is produced only when
the extended error message
facility is specified.

Supplemental Data: The floating
point number before alteration.

Standard-Corrective Action:
Continue execution at point of
interrupt with result register set
to the largest possible
floating-point number that can be
represented in short precision
(1663*(1-16-6)) or in long
precision (1663*(1-16-1~)).

Programmer Response: Probable
user error. Make sure that a
variable or variable expression

does not exceed the allowable
magnitude. Verify that all
variables have been initialized
correctly in previous source
statements, and have not been
inadvertently modified in
intermediate source. If the
problem recurs, do the following
before calling IBM for programming
support.

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
i£ specified in the PARM field
of the- EXEC statement and the
necessary DD statement is
included.

• Have source and associated
listing available.

IHC208I IBCOM - PROGRAM
INTERRUPT-UNDERFLOW UNDERFLOW OLD
PSW IS xxxxxxxDxxxxxxxx REGISTER
CONTAINED X

This message is produced only when
the extended error message
facility is specified.

Supplemental Data: The floating
point number before alteration.

Standard Corrective Action:
Continue execution at point of
interrupt with result register set
to a true zero of correct
precision.

Programmer Response: Probable
user error. Make sure that a
variable or variable expression is
not smaller than the allowable
magnitude. Verify that all
variables have been initialized
correctly in previous source
statements and have not been
inadvertently modified in
intermediate source. If the
problem recurs, do the following
before calling IBM for programming
support.

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC209I IBCOM - PROGRAM INTERRUPT-DIVIDE
CHECK OLD PSW IS
xxxxxxx{;}xxxxxxxx

This message is produced only when
the extended error message
facility is specified.

Supplemental Data: None.

Standard corrective Action: Leave
register unmodified.

Programmer Response: Probable
user error. Either correct the
source where division by zero is
occurring, or modify previous
source statements to test for the
possibilities or bypass the
illegal division. If the problem
recurs, do the following before
calling IBM for programming
support.

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC210I Message IHC210I is a program
interrupt message. For a
description, see Figure 107 and
the section "Program Interrupt
Messages."

IHC211I
Explanation: IBC -- An invalid
character has been detected in a
FORMAT statement.

If the extended error message
facility is specified, the
following information is provided:

IBCOM - ILLEGAL COMPILED FORMAT
CHARACTER SPECIFIED
or
IBCOM - ILLEGAL VARIABLE FORMAT
CHARACTER SPECIFIED X

Supplemental Data: Character in
error.

Standard Corrective Action:
Format field treated as an end of
forniat..

IHC212I

Programmer Response: Probable
user error. Make sure that all
format specifications read in at
object time are valid. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Have source and associated
listing available.

Explanation: IBC -- An attempt
has been made to read or write a
record, under FORMAT control, that
exceeds the buff er length.

If the extended error message
facility is specified, the
following information is provided:

IBCOM - FORMATTED I/O, END OF
RECORD ON UNIT X

Supplemental Data: Unit number.

Standard Corrective Action: For a
read, ignore remainder of I/O
list; fo.r a write, start new
record with no control character.

Programmer Response: Probable
user error. If the error occurs
on input, verify that a FORMAT
statement does not define a
FORTRAN record longer than the
record ref erred to in the data
set. If reading in data, either
keep a counter to avoid exceeding
end of record or file, or insert
an END= parameter or on the READ
statement for appropriate transfer
of control on end of data set. No
record to be punched should be
specified as longer than 80
characters. For printed output
make sure that no specification is
longer than the printer's line
length. Check all DD statements.
If the problem recurs, do the
following before calling IBM for
programming support:

• Make sure that MSGLEVEL=Cl,1)
was specified on the JOB
statement.

• Have source and associated
listing available.

• Make sure that LIST has been
specified as a parameter on the
EXEC statement.

Appendix D: System Diagnostics 211

IHC213I

IHC214I

212

Explanation: IBC -- The input
list in an I/O statement without a
FORMAT specification is larger
than the logical record.

If the extended error message
facility is specified, the
following information is provided:

IBCOM - UNFORMATTED READ, END OF
RECORD ON UNIT X

supplemental Data: Unit number.

Standard Corrective Action:
Ignore remainder of I/O list.

Programmer Response: Probable
user error. Either keep a counter
to avoid exceeding end of record
or file, or insert an END=
parameter on the READ statement
for appropriate transfer of
control on end of data set. Check
all DD statements. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MSGLEVEL=Cl,1)
was specified on the JOB
statement.

• Have source and associated
listing available.

• Make sure that LIST has been
specified as a parameter on the
EXEC statement.

Explanation: FIOCS -- For
unformatted records read or
written in sequentially organized
data sets, the record format
CRECFM) specification must include
the characters vs <variable
spanned); any of the optional
characters CB, A, M, or T) may be
specified with the characters vs.
This message appears if the
programmer has coded RECFM=V,
RECFM=U, or RECFM=F.

If the extended error message
facility is specified, the
following information is provided:

FIOCS - UNFORMATTED 1/0, RECORD
FORMAT SPECIFIED AS F, U, OR V ON
UNIT X

supplemental Data: Unit number.

Standard Corrective Action: For
read, ignore I/O request; for
write, change record form to vs.

Programmer Response: Probable
user error. Correct the RECFM
subparameter. Change a V
(variable) or u (undefined) or F
(fixed) specification to vs. If
the problem recurs, do the
following before calling IBM for
programming support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Have source and associated
listing and the associated job
stream available.

• Make sure that MSGLEVEL=Cl,1)
was specified on the JOB
statement.

IHC215I CONVERT - ILLEGAL DECIMAL
CHARACTER X

Explanation: An invalid character
exists for the decimal input
corresponding to an I, E, F, or D
format code.

Supplemental Data: Display the
record in which character
appeared.

Standard corrective Action: Zero
replaces the character
encountered.

Note: If the standard or
corrective user action results in
a null format, no output will
result. If the FORMAT statement
is terminated in such a way that
no conversion type is called for,
an alpha-
numeric literal may be repeated
for each list item.

Programmer Response: Probable
user error. If an IHC214I message
has occurred previously, correct
the source causing the error.
Otherwise, make sure that all
decimal input is valid. Correct
any FORMAT statements specifying
decimal input where character
should be indicated. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Have source and associated
listing available.

IHC216I SLITE-SLITET X IS AN ILLEGAL VALUE

IHC217I

Explanation: LIB An invalid
sense light number was detected in
the argument list in a call to the
SLITE or SLITET subroutine.

supplemental Data: The sense
light value supplied.

Standard Corrective Action: For
SLITE., no action; for SLITET,
return OFF indication, i.e., J=2.

Programmer Response: Probable
user error. If CALL SLITE(i) is
specified make sure that i is an
integer expression with a value of
0-4, inclusive. If CALL
SLITETCi,j) is specified, make
sure that i is an integer
expression with a value of 0-4,
inclusive, and j is an integer
variable. If the problem recurs,
do the following before calling
IBM for programming support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Have source and associated
listing available.

Explanation: IBC -- An end of
data set was sensed during a READ
operation; that is, a program
attempted to read beyond the data.

If the extended error message
facility is specified, the
following information is provided:

FIOCS - END OF DATA SET ON UNIT X

supplemental Data: Unit number.

Standard Corrective Action: Read
next file, i.e., increment
sequence number by 1.

Programmer Response: Probable
user error. Make sure that a
FORMAT statement does not define a
FORTRAN record longer than the
record ref erred to in the data
set. Either keep a counter to
avoid exceeding end of record of
file, or insert an END= parameter
on the READ statement for
appropriate transfer of control on
end of data set. Check all DD
statements. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MSGLEVEL=Cl,1)
was specified on the JOB
statement.

• Have source and associated
listing available.

• Make sure that LIST has been
specified as a parameter on the
EXEC statement.

• If a PDS member is being read,
make sure that LABEL=(,,,IN) has
been specified.

IHC218I I/O ERROR xxx ••• xxx

Explanation: FIOCS or DIOCS -
One of the following occurred:

• A permanent input/output error
has been encountered.

• For sequential I/O, the length
of a physical record is
inconsistent with the default
block size or the blocksize
specified on the DD card.

• An attempt has been made to read
or write with magnetic tape a
record that is fewer than 18
bytes long.

xxx ••• xxx is the character string
formatted by the SYNADAF macro
instruction. For an
interpretation of this
information, .see the publication
IBM System/360 Operating System:
Supervisor and Data Management
Macro Instructions, Order
No. GC28-6647. After the
traceback is completed, control is
returned to the call routine
statement designated in the ERR
para~eter of a FORTRAN READ
statement if that parameter was
specified. (See "Use of ERR
Parameter in READ Statement" for
additional information.>

Note: If a permanent input/output
error has been detected while
writing in the object error unit
data set, the error message is
written in the SYSOUT data set and
execution of the job is
terminated.

If the extended error message
facility is specified, the
following information is provided:

FIOCS - I/O ERROR (text provided
by data management)

Appendix D: System Diagnos~ics 213

IHC219I

214

Supplemental Data: Unit number.

Standard Corrective Action:
Continue execution and ignore I/O
request.

Note: ERR= parameter is honored.

Programmer Response: Probable
user error. Make sure that, for
sequential I/O, the length of the
physical record is consistent with
the default or specified
blocksize. Check all DD
statements. Make sure that no
attempt has been made to read or
write with
magnetic tape from a record that
is fewer than 18 bytes in length.
If the problem recurs, do the
following before calling IBM for
programming support:

• Make sure that MSGLEVEL=(l,1)
was specified on the JOB
statement.

• Have source and associated
listing available.

• Make sure that LIST has been
specified as a parameter on the
EXEC statement.

Explanation: FIOCS -- Either a
data set is referred to in the
load module but no DD statement is
supplied for it, or a DD statement
has an erroneous ddname.

If the extended error message
facility is specified, the
following information is provided:

FIOCS - MISSING DD CARD FOR
CDDname)
or
DIOCS - MISSING DD CARD FOR UNIT X

Supplemental Data: Unit number.

Standard Corrective Action:
Continue execution and ignore I/O
request.

Programmer Response: Probable
user error. Either provide the
missing DD statement, or correct
any erroneous ddname. Example:
If Unit 6 is the installation data
set reference number for the
printer and an attempt is made to
write on Unit 3, then the
following DD statement should be
included: //GO.FT03F001 DD
SYSOUT=A. If the problem recurs,

IHC220I

do the following before calling
IBM for programming support:

• Make sure that MSGLEVEL=(l,1)
was specified on the JOB
statement.

• Have source and associated
listing available.

• Make sure that LIST has been
specified as a parameter on the
EXEC statement.

• Have Stage I SYSGEN output
available.

Explanation: FIOCS -- A
data set reference number
exceeds the limit
specified for data set
reference numbers when
this operating system was
generated.

If the extended error message
facility is specified, the
following information is provided:

FIOCS - UNIT NUMBER OUT OF RANGE.
UNIT=X
or
DIOCS - UNIT NUMBER OUT OF RANGE.
UNIT=X

Supplemental Data: Unit number.

Standard Corrective Action:
Continue execution and ignore I/O
request.

Programmer Response: Probable
user error. Correct the invalid
data set reference number. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MSGLEVEL=Cl,1)
was specified on the JOB
statement.

• Have source and associated
listing available.

• Have Stage I SYSGEN output
available.

IHC221I NAMEL-NAME LARGER THAN EIGHT
CHARACTERS. NAME=X

Explanation: NAMEL -- An input
variable name exceeds eight
characters.

Supplemental Data: Name specified
(first eight characters>.

Standard Corrective Action:
Ignore remainder of namelist
request.

Programmer Response: Correct the
invalid NAMELIST input variable,
or provide any missing delimiters.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IHC222I NAMEL-NAME NOT IN NAMELIST
DICTIONARY. NAME=X

Explanation: NAMEL -- An input
variable name is not in the
NAMELIST dictionary, or an array
is specified with an insufficient
amount of data.

Supplemental Data: Name
specified.

Standard Corrective Action:
Ignore remainder of namelist
request.

Programmer Response: Probable
user error. Make sure that a
correct NAMELIST statement is
included in the source module for
all 'variable and/or array names
read in using NAMELIST. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Have source and associated
listing available.

IHC223I NAMEL-END OF RECORD ENCOUNTERED
BEFORE EQUAL SIGN. NAME=X

Explanation: NAMEL Either an
input variable name or a subscript
has no delimiter.

Supplemental Data: Name of item.

Standard Corrective Action:
Ignore remainder· of the namelist
request.

Programmer Response: Probable
user error. Make sure that all
NAMELIST input data is correctly
specified and all delimiters are
correctly positioned. Check all
delimiters. Make sure that
sequence numbers are not present
in columns 73-80. If the problem

recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IHC224I NAMEL-SUBSCRIPT FOR
NON-DIMENSIONED VARIABLE OR
SUBSCRIPT OUT OF RANGE. NAME=X

Explanation: NAMEL -- A subscript
is encountered after an
undimensioned input name, or the
subscript is too big.

Supplemental Data: Name of item.

Standard corrective Action:
Ignore remainder of the namelist
request.

Probable.Response: Probable user
error. Insert any missing
DIMENSION statements, or correct
the invalid array reference. If
the problem recurs, do the
following before calling IBM for
programming support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Have source and associated
listing available.

IHC225I CONVERT-ILLEGAL HEXADECIMAL
CHARACTER X

Explanation: FCVTH -- An invalid
character is encountered on input
under Z format code.

Supplemental Data: Display the
record in which the character
appeared.

Standard Corrective Action: zero
replaces the encountered
character.

Programmer Response: Probable
user error. Either correct the
invalid character, or correct or
delete the z format code. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Have source and associated
listing available.

Appendix D: System Diagnostics 215

IHC230I SOURCE ERROR AT ISN xxxx -
EXECUTION FAILED [AT SUBROUTINE -
name]

IHC231I

216

Explanation: IBERR -- During load
module execution, a source
statement error is encountered.
The internal statement number for
the source statement is xxxx; the
routine that contains the
statement is specified by "name."

Supplemental Data: None.

Standard Corrective Action:
Terminate execution.

Programmer Response: Make sure
that all source module.code is
correct. If the problem recurs,
do the following before calling
IBM for programming support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Have source and associated
listing available.

Explanation: DIOCS -
Direct-access input/output
statements are used for a
sequential data. set, or
input/output statements for a
sequential data set ar~ used for a
direct access data set.

If the extended error message
facility is specified, the
following information is provided:

IBCOM - DIRECT ACCESS STATEMENT
USED WITHOUT DEFINE FILE ON UNIT X
or
DIOCS - DIRECT ACCESS STATEMENT
USED FOR SEQUENTIAL DATA SET X
or
FIOCS - SEQUENTIAL I/O STATEMENTS
USED FOR DIRECT ACCESS DATA SET X

Supplemental Data: unit number.

Standard Corrective Action:
Ignore I/O request.

Programmer Response: Probable
user error. Either include the
necessary DEFINE FILE statement
for direct access or delete the
DEFINE FILE for a sequential data
set. Make sure that all DD
statements are correct. Verify
that all data sets are referenced
with valid FORTRAN statements for
the data set type. If the problem
recurs, do the following before

IHC232I

IHC233I

calling IBM for programming
support:

• Make sure that MSGLEVEL=(l,1)
was specified on the JOB
statement.

• Have source and associated
listing available.

Explanation: DIOCS -- Relative
position of a record is not a
positive integer, or the relative
position exceeds the number of
records in the data set.

If the extended error message
facility is specified, the
following information is provided:

DIOCS - RECORD NUMBER X OUT OF
RANGE ON UNIT X

Supplemental Data: Unit number
and record number.

Standard Corrective Action:
Ignore I/O request.

Programmer Response: Probable
user error. Make sure that the
relative position on the data set
has been specified correctly.
Check all DD statements. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MSGLEVEL=(l,1)
was specified on the JOB
statement.·

• Have source and associated
listing available.

Explanation: DIOCS -- The record
length specified in the DEFINE
FILE statement exceeds the
physical limitation of the volume
assigned to the data set in the DD
statement.

If the extended error message
facility is specified, the
following information is provided:

DIOCS - RECORD LENGTH GREATER THAN
32K-l SPECIFIED FOR UNIT X

Supplemental Data: Unit number
specified.

Standard Corrective Action: Set
record length to 32K.

IHC234I

IHC235I

Programmer Response: Probable
user error. Make sure that
parameters of the DD statement
conform to specifications in the
DEFINE FILE statement; the record
length in both must be equivalent
and within the physical
limitations of the assigned
volume. If the problem recurs, do
the following before calling IBM
for programming support:

• Make sure that MSGLEVEL=(l,1)
was specified on the JOB
statement.

• Have source and associated
listing available.

Explanation: DIOCS -- The data
set assigned to print execution
error messages cannot be a direct
access data set.

If the extended error message
facility is specified, the
following information is provided:

DIOCS - ATTEMPT TO DEFINE THE
OBJECT ERROR UNIT AS DIRECT ACCESS
DATA SET. UNIT=X

Supplemental Data: Unit number.

Standard Corrective Action:
Ignore define file entry.

Proqrammer Response: Probable
user error. Make sure that the
object error unit specified is not
direct access. See to the
publication IBM System/360
Operating System: System
Generation, Order No. GC28-6554,
for information on assigning the
data set reference number. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MSGLEVEL=(l,1)
was specified on the JOB
statement.

• Have source and associated
listing available.

Explanation: DIOCS -- A data set
reference number assigned to a
direct access data set is used for
a sequential data set.

If the extended error message
facility is specified, the
following information is provided:

IHC236I

DIOCS - DEFINE A DATA SET WHICH
HAS BEEN USED SEQUENTIALLY AS A
DIRECT ACCESS DATA SET. UNIT=X

Supplemental Data: Unit number.

Standard Corrective Action:
Ignore define file entry.

Programmer Response: Probable
user error. Make sure that use of
and/or reference to sequential
data sets does not conflict with
FORTRAN defined direct access data
sets. Verify that device classes
assigned by the installation do
not conflict with the
specification on the UNIT
parameter of the DD statement.
Make sure that the DEFINE FILE
statement defines a direct access
data set. Check all DD
statements. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MSGLEVEL=(l,1)
was specified on the JOB
statement.

• Have source and associated
listing available.

Explanation: DIOCS -- A READ is
executed for a direct access data
set that has not been created.

If the extended error message
facility is specified, the
following information is provided:

DIOCS - READ REQUEST FOR AN
UNCREATED DATA SET ON UNIT X

supplemental Data: Unit number.

Standard Corrective Action:
Ignore I/O request.

Programmer Response: Probable
user error. Make sure that either
a data set utility program has
been used, or appropriate
parameters have been specified on
the associated DD statement.
Verify that, if a DD statement is
used, DSNAME, UNIT, VOLUME, SPACE,
LABEL DISP, SYSOUT, and DCB are
specified correctly or omitted
where appropriate. If the problem
recurs, do the following before
calling IBM for programming
support:

Appendix D: System Diagnostics 217

IHC237I

• Make sure that MSGLEVEL=(l,1)
was specified on the JOB
statement.

• Have source and associated
listing available.

Explanation: DIOCS -- Length of a
record did not correspond to
length of record specified in
DEFINE FILE statement.

If the extended error message
facility is specified, the
following information is provided:

DIOCS - INCORRECT RECORD LENGTH
SPECIFIED FOR UNIT X

Supplemental data: Unit for which
error occurred.

Standard Corrective Action:
Ignore the I/O request.

Programmer Response: Probable
user error. Make sure that
parameters on the DD statement
conform to specifications in the
DEFINE FILE statement. Verify
that record length, buff er length,
and/or block length as indicated
on the DD statement do not
conflict with specifications in
the DEFINE FILE statement. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MSGLEVEL=(l,1)
was specified on the JOB
statement.

• Have source and associated
listing available.

IHC240I STAE--ABEND CODE IS; SYSTEM XXXX,
USER YYYY

218

{
NOT RESTORED}

IO- RESTORED I SCB=xxxxxx,
NONE

PSW IS xxxxxxxxxxxxxxxx

Explanation: An abnormal
termination occurred. In some
instances, pointers to subroutine
entry points may have been
destroyed causing the traceback
map to be incomplete. If an
incomplete traceback map is
printed, the following additional
text appears between the message
IHC240I and the traceback map:

TRACEBACK MAY NOT BEGIN WITH
ABENDING ROUTINE.

Supplemental .Data: XXXX is the
completion code if a system code
caused termination. The SCB field
gives the address of the STAE
Control Block, which contains the
old PSW and the contents of the
general registers at the time of
the abnormal termination. For a
description of the contents of the
STAE Control Block, see the
publication IBM System/360
Operating System: Supervisor and
Data Management Services, Order
No. GC28-6646. The PSW field
gives the contents of the last
FORTRAN program status word when
an abnormal termination occurred.

Input/output operations associated
with the error are defined as NOT
RESTORED, RESTORED, or NONE as
follows:

NOT RESTORED -- Input/output has
been halted and cannot be
restored.

RESTORED -- Input/output has been
halted. FORTRAN will
attempt to restart
input/output and then
close data sets.

NONE -- No active input/output
operations were present at
abnormal termination time.
FORTRAN will close data
sets.

Standard corrective Action: None

Programmer Response: Use the
abend code and the contents of the
SCB and PSW to determine the
nature of the error. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MSGLEVEL=(l,1)
was specified on the JOB
statement.

• Make sure that the LIST, XREF,
and MAP options were specified
in the PARM field of the EXEC
statement.

• Have source and associated
listing available.

IHC241I FIXPI INTEGER BASE=O, INTEGER
EXPONENT=X, LE 0

Explanation: LIB -- For an
exponentiation operation <I**J) in
the subprogram IHCFIXPI(FIXPI#)
where I and J represent integer

variables or integer constants, I
is equal to zero and J is less
than or equal to zero.

Supplemental Data: Exponent
specified.

Standard Corrective Action:
Result=O.

Programmer Response: Probable
user error. Make sure that
integer variables and/or integer
constants for an exponentiation
operation are within the allowable
range. If the base and exponent
may or will fall outside that
range during program execution,
then either modify the operand(s),
or insert source code to test for
the situation and make the
compensation appropriate to the
program unit. Bypass the
exponentiation operation if
necessary. Example: Assume I,J,K
previously defined integer
variables.

IFCI.EQ.O.AND.J.LE.0) GO TO 11
K = I**J
11 CONTINUE

If the problem recurs, do the
following before calling IBM for
programming support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC242I FRXPI REAL*4 BASE=O.O, INTEGER
EXPONENT=X, LE 0

Explanation: LIB -- For an
exponentiation operation CR**J) in
the subprogram IHCFRXPICFRXPI#),
where R represents a real•4
variable or real•4 constant, and J
represents an integer variable or
integer constant, R is equal to
zero and J is less than or equal
to zero.

Supplemental Data: Exponent
specified.

Standard Corrective Action:
Result=O.

Programmer Response: Probable
user error. Make sure that both
the real variable or constant base
and the integer variable or
constant exponent for an
exponentiation operation are
within the allowable range. If
the base and exponent may or will
fall outside that range during
program execution, then either
modify the operandCs), or insert
source code to test for the
situation and make the
compensation appropriate to the
program unit. Bypass the
exponentiation operation if
necessary. (See similar example
for IHC241I.) If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC243I FDXPI REAL*B BASE=O.O, INTEGER
EXPONENT=X, LE 0

Explanation: LIB -- For an
exponentiation operation CD**J) in
where D represents a real•8
variable or real*8 constant and J
represents an integer variable or
integer constant, D is equal to
zero and J is less than or equal
to zero.

Supplemental Data: Exponent
specified.

Standard Corrective Action:
Result=O.

Programmer Response: Probable
user error. Make sure that both
the real variable or constant base
and the integer variable or
constant exponent for an
exponentiation operation are
within the allowable range. If
the base and exponent may or will
fall outside that range during
execution, then either modify the
operand(s), or insert source code
to test for the situation and make
the compensation appropriate to
the program unit. Bypass the
exponentiation operation if

Appendix D: System Diagnostics 219

necessary. (See similar example
for IHC241I.) If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and the
necessary DD statement included.

• Have source and associated
listing available.

IHC244I FRXPR REAL*4 BASE=O.O, REAL*4,
EXPONENT=X.X, LE 0

220

Explanation: LIB -- For an
exponentiation operation (R**S) in
the subprogram IHCFRXPR(FRXPR#),
where R and s represent real*4
variables or real*4 constants, R
is equal to zero and s is less
than or equal to zero.

Supplemental Data: Exponent
specified.

Standard Corrective Action:
Result=O.

Programmer Response: Probable
user error. Make sure that both
the real variable or constant base
and exponent for an exponentiation
operation are within the allowable
range. If the base and exponent
may or will fall outside that
range during program execution,
then either modify the operand(s),
or insert source code to test for
the situation and make
compensation appropriate to the
program unit. Bypass the
exponentiation operation if
necessary. (See similar example
for IHC241I.) If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC245I FDXPD REAL*8 BASE=O.O, REAL*8
EXPONENT=X.X, LE 0

Explanation: LIB -- For an
exponentiation operation CD**P) in
the subprogram IHCFDXPD(FDXPD#),
where D and P represent real*8
variables or real*8 constants, D
is equal to zero and P is less
than or equal to zero.

Supplemental Data: Exponent
specified.

Standard Corrective Action:
Result=O.

Programmer Response: Probable
user error. Make sure that both
the real variable or constant base
and exponent for an exponentiation
operation are within the allowable
range. If the base and exponent
may or will fall outside that
range during program execution,
then either modify the operand(s),
or insert source code to test for
the situation and make
compensation appropriate to the
program unit. Bypass the
exponentiation operation if
necessary. (See similar example
for IHC241I.) If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC246I FCXPI COMPLEX*8 BASE=O.O+O.OI,
INTEGER EXPONENT=X, LE 0

Explanation: LIB -- For an
exponentiation operation (Z**J) in
the subprogram IHCFCXPI(FCXPI#),
where z represents a complex*8
variable or complex*8 constant and
J represents an integer variable
or integer constant, z is equal to
zero and J is less than or equal
to zero.

Supplemental Data: Exponent
specified.

Standard Corrective Action:
Result=O.

Proqrammer Response: Probable
user error. Make sure that both
the complex variable or constant
base and the integer variable or
constant exponent for an
exponentiation operation are
within the allowable range. If
the base and exponent may or will
fall outside that range during
program execution, then either
modify the operand(s), or insert
source code to test for the
situation and make the
compensation appropriate to the
program unit. Bypass the
exponentiation operation if
necessary. (See similar example
for IHC241I.) If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC247I FCDXI COMPLEX*16 BASE=0.0+0.0I,
INTEGER EXPONENT=X, LE 0

Explanation: LIB -- For an
exponentiation operation (Z**J) in
the subprogram IHCFCDXI(FCDXI#),
where Z represents a complex•16
variable or complex*16 constant
and J represents an integer
variable or integer constant, z is
equal to zero and J is less than
or equal to zero.

Supplemental Data: Exponent
specified.

Standard Corrective Action:
Result=O.

Programmer Response: Probable
user error. Make sure that both
the complex variable or constant
base and the integer variable or
constant exponent for an
exponentiation operation are
within the allowable range. If
the base and exponent may or will
fall outside that range during
program execution, then either
modify the operand(s), or insert
source code to test for the
situation and make the
compensation appropriate to the

program unit. Bypass the
exponentiation operation if
necessary. (See similar example
for IHC241I.) If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the"PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC251I SQRT NEGATIVE ARGUMENT=X

Explanation: LIB -- In the
subprogram IHCSSQRT(SQRT), the
argument is less than O.

supplemental Data: Argument
specified.

Standard Corrective Action:
Result=IXl~/2 •

Programmer Response: Probable
user error. Make sure that the
argument is within the allowable
range. Either modify the
argument, or insert source code to
test for a negative argument and
make the necessary compensation.
Bypass the function reference if
necessary. Example: Assume ARG
(REAL*4) is to be the input
argument to SORT. Then a simple
test might appear:

IF (ARG) 10,20,20
10 ARG ABS (ARG)
20 ANS = SORT (ARG)

If the problem recurs, do the
following before calling IBM for
programming support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

Appendix D: System Diagnostics 221

IHC252I EXP ARG=X.X, GT 174.673

Explanation: LIB -- In the
subprogram IHCSEXP(EXP), the
argument is greater than 174.673.

Supplemental Data: Argument
specified.

Standard Corrective Action:
Result=•.

Programmer Response: Probable
user error. Make sure that the
argument to the exponential
function is within the allowable
range. If the argument may or
will exceed that range during
program execution, then provide
code to test for the situation
and, if necessary, modify the
argument or bypass the source
referencing the function
subprogram. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC spatement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

·-- •. Have source and associated
listing available.

IHC253I ALOG-ALOG10 ARG=X.X, LE ZERO

222

Explanation: LIB -- In the
subprogram IHCSLOG(ALOG and
ALOGlO), the argument is less than
or equal to zero. Because this
subprogram is called by an
exponential subprogram, this
message also indicates that an
attempt has been made to raise a
negative base to a real power.

supplemental Data: Argument
specified.

standard corrective Action: If
X=O, result=-•; if X<O,
result=loglXI or log1.o IXI.

Programmer Response: Probable
user error. Make sure that the
argument to the logarithmic
function is within the allowable
range. If the argument may or
will be outside that range during
program execution, then provide
code to test for the situation

and, if necessary, modify the
argument or bypass the source
referencing the function
subprogram. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
specified in the PARM field of
the EXEC statement and that the
necessary DD statement is
included.

• Have source and associated
listing available.

IHC254I SIN-COS/ARG/=/X.X(HEX=X)/, GE
PI*2**18

Explanation: LIB -- In the
subprogram IHCSSCN(SIN and cos>,
the absolute value of an argument
is greater than or equal to 21een.
(2Ue n =. 823549664062499960+06)

Supplemental Data: Argument
specified.

Standard Corrective Action:
Result= v=tl2.

Proqrammer Response: Probable
user error. Make sure that the
argument (in radians where 1
radian:= 57.2957795131•) to the
trigonometric sine or cosine
function is within the allowable
range. If the argument may or
will exceed that range during
program execution, then provide
code to test for the situation
and, if necessary, modify the
argument or bypass the source
referencing the function
subprogram. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC255I ATAN2 ARGUMENTS=O.O

Explanation: LIB -- In the
subprogram IHCSATN2, when entry
name ATAN2 is used, both arguments
are equal to zero.

Supplemental Data: Arguments
specified.

Standard Corrective Action:
Result=O.

Programmer Response: Probable
user error. Make sure that both
arguments do not become zero
during program execution, or are
not inadvertently initialized or
modified to zero. Provide code to
test for the situation and,, if
necessary, modify the arguments or
bypass the source referencing the
function subprogram. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC256I SINH-COSH/ARG/=/X.X/, GE 175.366

Explanation: LIB -- In the
subprogram IHCSSCNH(SINH or COSH),
the argument is greater than or
equal to 174.673.

Supplemental Data: Argument
specified.

Standard Corrective Action:
Result=*·

Programmer Response: Probable
user error. Make sure that the
argument to the hyperbolic sine or
cosine function is within the
allowable range. If the argument
may or will exceed that range
during program execution, then
provide code to test for the
situation and, if necessary,
modify the argument or bypass the
source referencing the function
subprogram. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the xREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC257I ARSIN-ARCOS/ARG/=/X.X/ GT 1

Explanation: LIB -- In the
subprogram IHCSASCN (ARCSIN or
ARCOS), the absolute value of the
argument is greater than 1.

Supplemental Data: Argument
specified.

Standard Corrective Action:
Result=O.

Programmer Response: Probable
user error. Make sure that the
argument to the arcsine or
arccosing function is between -1
and +l, inclusive. If the
argument may or will fall outside
that range during program
execution, then provide code to
test for the situation and, if
necessary, modify the argument or
bypass the source referencing the
function subprogram. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC258I TAN-COTAN/ARG/=/X.X(HEX=X)/, GE
PI*2**18

Explanation: LIB -- In the
subprogram IHCSTNCT (TAN or
COTAN), the absolute value of the
argument is greater than or equal
to 21. 8 • 31'.

(21. 8 e3t=.82354966406249996D+06)

Supplemental Data: Argument
specified.

Appendix D: System Diagnostics 223

Standard Corrective Action:
Result=l.

Programmer Response: Probable
user error. Make sure that the
argument (in radians where 1
radian=:s.57.2957795131°> to the
trigonometric tanqent or cotangent
function is within the allowable
range. If the argument may or
will exceed that range during
program execution, then provide
code to test for the situation
and, if necessary, modify the
argument or bypass the source
referencing the function
subprogram. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC259I TAN-COTAN/ARG/=/X.X(HEX=X)/,
APPROACHES SINGULARITY

224

Explanation: LIB -- In the
subprogram IHCSTNCT (T~N or
COTAN), the argument value is too
close to one of the singularities

(±ln,±3n, ••• for the tangent;
~ 2

or ±~,±2~, ••• for the cotangent).

supplemental Data: Argument
specified.

Standard Corrective Action:
Result=*·

Programmer Response: Probable
user error. Make sure that the
argument (in radians where 1
radian~ 57. 2957795131'0) to the
trigonometric tangent or cotangent
function is within the allowable
range. If the argument may or
will approach the corresponding
singularities for the function
during program execution, then
provide code to test for the
situation and, if necessary,
modify the argument or byPass the
source referencing the function
subprogram. If the problem
recurs, do the following before

calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC261I DSQRT NEGATIVE ARGUMENT=X.X

Explanation: LIB -- In the
subprogram IHCLSQRT(DSQRT), the
argument is less than O.

Supplemental Data: Argument
specified.

Standard Corrective Action:
Result=IXl~/2 •

Programmer Response: Probable
user error. Make sure that the
argument is within the allowable
range. Either modify the
argument, or insert source code to
test for a negative argument and
make the necessary compensation.
Bypass the function reference if
necessary. Example: Assume DARG
CREAL*8) is to be the input
argument to DSQRT. Then a simple
test might appear:

IF (DARG) 10,20,20
10 DARG = DABS CDARG)
20 ANS = DSQRT CDARG)

If the problem recurs, do the
following before calling IBM for
programming support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM f·ield
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC262I DEXP ARG=X.X, GT 174.673

Explanation: LIB ~- In the
subprogram IHCLEXPCDEXP), the
argument is greater than 174.673.

Supplemental Data: Argument
specified.

standard Corrective Action:
Result=•.

Programmer Response: Probable
user error. Make sure that the
argument to the exponential
function is within the allowable
range. If the argument may or
will exceed that range during
program execution, then provide
code to test for the situation
and, if necessary, modify the
argument or bypass the source
referencing the function
subprogram. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC263I DLOG-DLOG10 ARG=X.X, LE ZERO

Explanation: LIB -- In the
subprogram IHCLLOG(DLOG and
DLOG10), the argument is less than
or equal to zero. Because the
subprogram is called by an
exponential subprogram, this
message also indicates that an
attempt has been made to raise a
negative base to a real power.

Supplemental Data: Argument
specified.

Standard-Corrective Action: If
X=O, result=-•; if X<O,
result=logjXI or log~o IXI.

Programmer Response: Probable
user error. Make sure that the
argument to the logarithmic
function is within the allowable
range. If the argument may or
will be outside that range during
program execution, then provide
code to test for the situation
and, if necessary, modify the
argument or bypass the source
referencing the function
subprogram. If the problem
recurs, do the following before

calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC264I DSIN-DCOS/ARG/=/X.XCHEX=X)/,
GE PI*2**50

Explanation: LIB -- In the
subprogram IHCLSCN(DSIN and DCOS),
the absolute value of the argument
is greater than or equal to 2soen.

(2SO• n =. 35371188737802239D+16)

supplemental Data: Argument
specified.

Standard corrective Action:
Result = OJT/2.

Programmer Response: Probable
user error. Make sure that the
argument (in radians where 1
radian= 57. 2957795131•) to the
trigonometric sine or cosine
function is within the allowable

. range~ If the argument may or
will exceed that range during
program execution, then provide
code to test for the situation
and, if necessary,, modify the
argument or bypass the source
referencing the function
subprogram. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC265I DATAN2 ARGUMENTS=O.O

Explanation: LIB -- In the
subprogram IHCLATN2, when entry
name DATAN2 is used, both
arguments are equal to zero.

Appendix D: System Diagnostics 225

supplemental Data: Arguments
specified.

Standard Corrective Action:
Result=O.

Programmer Response: Probable
user error. Make sure that both
arguments do not become zero
during program execution, or are
not inadvertently initialized or
modified to zero. Provide code to
test for the situation and, if
necessary, modify the arguments or
bypass the source referencing the
function subprogram. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing a•ailable.

IHC266I DSINH-DCOSH/ARG/=/X.X/, GE 175.366

226

Explanation: LIB -- In the
subprogram IHCLSCNH (DSINH or
DCOSH), the absolute value of the
argument is greater than or equal
to 175.366.

Supplemental Data: Argument
specified.

Standard Corrective Action:
Result=•.

Programmer Response: Probable
user error. Make sure that the
argument to the hyperbolic sine or
cosine function is within the
allowable .range. If the argument
may or will exceed that range
during program execution, then
provide code to test for the
situation and, if necessary,
modify the argument or bypass the
source referencing the function
subprogram. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC267I DARSIN-DARCOS/ARG/=/X.X/, GT 1

Explanation: LIB -- In the
subprogram IHCLASCN (DARSIN or
DARCOS), the absolute value of the
argument is greater than 1.

Supplemental Data: Argument
specified.

Standard Corrective Action:
Result=O.

Programmer Response: Probable
user error. .Make sure that the
argument to the arcsine or
arccosine function is between -1
and +1, inclusive. If the
argument may or will fall outside
that range during program
execution, then provide code to
test for the situation and, if
necessary, modify the argument or
bypass the source referencing the
function subprogram. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC268I DTAN-DCOTAN/ARG/=/X.X(HEX=X)/ GE
PI*(2**50)

Explanation: LIB -- In the
subprogram IHCLTNCT (DTAN or
DCOTAN), the absolute value of the
argument is greater than or equal
to 2so•n. (2soe n
=.353711887378022390+16)

Supplemental Data: Argument
specified.

Standard Corrective Action:
Result=l.

Programmer Response: Probable
user error. Make sure that the
argument Cin radians where 1
radian~ 57. 2957795131° > to the
trigonometric tangent or cotangent
function is within the allowable
range. If the argument may or
will exceed that range during
program execution, then provide
code to test for the situation
and, if necessary, modify the
argument or bypass the source
referencing the function
subprogram. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC269I DTAN-DCOTAN/ARG/=/X.X(HEX=X)/,
APPROACHES SINGULARITY

Explanation: LIB -- In the
subprogram IBCLTNCT (DTAN or
DCOTAN), the argument value is too
close to one of the singularities

(±1!'±3n, ••• for the tangent;
2 2

or ±n,±2n, ••• fo.r the cotangent).

Supplemental Data: Argument
specified.

Standard Corrective Action:
Result=•.

Programmer Response: Probable
user error. Make sure that the
argument (in radians where 1
radian• 57. 2957795131•.) to the
trigonometric tangent or cotangent
function is within the allowable
range. If the argument may or
will approach the corresponding
singularities for the function
during program execution, then
provide code to test for the
situation and, if necessary,
modify the argument or bypass the
source referencing the function
subprogram. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC271I CEXP REAL ARG=X.XCHEX=X), GT
174.673

Explanation: LIB -- In the
subprogram IHCCSEXP (CEXP), the
value of the real part of the
argument is greater than 174.673.

Supplemental Data: Argument
specified.

Standard Corrective Action:
Result=*(COS x + iSIN X) where x
is the imaginary portion of the
argument.

Programmer Response: Probable
user error. Make sure that the
argument is within the allowable
range. If the argument may or
will exceed that range during
program execution, then provide
code to test for the situation,
and, if necessary, modify the
argument or bypass the source
referencing the function
subprogram. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC272I CEXP IMAG ARG=X(HEX=X), ABS VALUE
GE PI*2**18

Explanation: LIB -- In the
subprogram IBCCSEXP (CEXP), the
absolute value of the imaginary
part of the argument is greater
than or equal to 21aex.

(21 8 •n=.82354966406249996D+06)

Appendix D: System Diagnostics 227

Supplemental Data: Argument
specified.

Standard Cor.recti ve Action:
Result=O+Oi.

Programmer Response: Probable
user error. Make sure that the
argument to the exponential
function is within the allowable
range. If the argument may or
will exceed that range during
program execution, then provide
code to test for the situation,
and, if necessary, modify the
argument or bypass the source
referencing the function
subprogram. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IBC273I CLOG ARGUMENT=O.O+O.OI

228

Explanation: LIB -- In the
subprogram IHCCSLOG (CLOG), the
real and imaginary parts of the
argument are equal to zero.

Supplemental Data: Argument
specified.

Standard Corrective Action:
Result=-*+Oi.

Programmer Response: Probable
user error. Make sure that both
the real and imaginary parts of
the argument do not become zero
during program execution, or are
not inadvertently initialized or
modified to zero. Provide code to
test for the situation and, if
necessary, modify the argument or
bypass the source referencing the
function subprogram. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IBC274I CSIN-CCOS/REAL ARG/=/X.X (HEX=X)/,
GE PI*2**18

Explanation: LIB -- In the
subprogram IBCCSSCN (CSIN or
ccos>, the absolute value of the
real part of the argument is
greater than or equal to 2~•.~.
(2~••n=.82354966406249996D+06)

Supplemental Data: Argument
specified.

Standard Corrective Action:
Result=O+Oi.

Programmer Response: Probable
user error. Make sure that the
real part of the argument
(in radians where 1 radian ~
57.2957795131°) to the
trigonometric sine or cosine
function is within the allowable
range. If the real part of the
argument may or will exceed the
range during program execution,
then provide code to test for the
situation and, if necessary,
modify the real part of the
argument or bypass the source
referencing the function
subprogram. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC275I CSIN-CCOS/IMAG ARG/=/X.X CHEX=X)/
GT 174.673

Explanation: LIB -- In the
subprogram IHCCSSCN (CSIN or
ccos>, the absolute value of the
imaginary part of the argument is
greater than 174.673.

Supplemental Data: Argument
specified.

Standard Corrective Data: If
imaginary part >O, CX is real
portion of argument):

• For sine, result=*/2(SIN x +
iCOS X).

• For cosine, result=*/2(COS X -
iSIN X).

If imaginary part <O, (X is real
portion of argument):

• For sine, result=*/2(SIN X -
iCOS X).

• For cosine, result=•/2(COS x +
iSIN X).

Programmer Response: Probable
user error. Make sure that the
imaginary part of the argument Cin
radians where 1 radian ~
57.2957797131°> to the
trigonometric sine or cosine
function is within the allowable
range. If the imaginary part of
the argument may or will exceed
that range during program
execution, then provide code to
test for the situation and, if
necessary, modify the imaginary
part of the argument or bypass the
source referencing the function
subprogram. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC281I CDEXP-REAL ARG=X.X(HEX=X) GT
174.673

Explanation: LIB -- In the
subprogram IHCCLEXP (CDEXP), the
value of the real part of the
argument is greater than 174.673.

Supplemental Data: Argument
specified.

Standard corrective Action:
Result=•<cos x + iSIN x> where x
is the imaginary portion of the
argument.

Programmer Response: Probable
user error. Make sure that the
real part of the argument to the
exponential function is within the
allowable range. If the real part
of the argument may or will exceed
that range during program
execution, then provide code to
test for the situation and, if
necessary, modify the real part of
the argument or bypass the source
referencing the function
subprogram. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC282I CDEXP !MAG ARG=X.X(HEX=X) ABS
VALUE GE PI*2**50

Explanation: LIB -- In the
subprogram IHCCLEXP (CDEXP), the
absolute value of the imaginary
part of the argument is greater
than or equal to 2so.~.
(250e~=.35371188737802239D+16)

Supplemental Data: Argument
specified.

Standard corrective Action:
Result=•+Oi.

Programmer Response: Probable
user error. Make sure that the
imaginary part of the argument to
the exponential function is within
the allowable range. If the
imaginary part of the argument may
or will exceed that range during
program execution, then provide
code to test for the situation
and, if necessary, modify the
imaginary part of the argument or
bypass the source referencing the
function subprogram. If the
problem recurs, do"the following
before calling IBM"-f or programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

Appendix D: System Diagnostics 229

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC283I CDLOG ARGUMENT=O.O+O.OI

Explanation: LIB -- In the
subprogram IHCCLLOG (CDLOG), the
real and imaginary parts of the
argument are equal to zero.

Supplemental Data: Argument
specified.

Standard Corrective Action:
Result=•+Oi.

Proqrammer Response: Probable
user error. Make sure that both
the real and imaginary parts of
the argument do not become zero
during program execution, or are
not inadvertently initialized or
modified to zero. Provide code to
test for the situation and, if
necessary, modify the argument or
bypass the source referencing the
function subprogram. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC284I CDSIN-CDCOS/REAL ARG/=/X.X

230

(HEX=X)/, GE PI*2**50

Explanation: LIB -- In the
subprogram IHCCLSCN (CDSIN or
cocos>, the absolute value of the
real part of the argument is
greater than or equal to 2soe3t.
(2!SOe3t=.35371188737802239D+16)

Supplemental Data: Argument
specified.

Standard Corrective Action:
Result=O+Oi.

Programmer Response: Probable
user error. Make sure that the

real part of the argument (in
radians where 1 radian ~
57.2957795131°) to the
trigonometric sine or cosine
function is within the al.lowable
range. If the part of the
.argument may or will exceed the
range during program execution,
then provide code to test for the
situation and, if necessary,
modify the real part of the
argument or bypass the source
referencing the function
subprogram. If the problem
rec~rs, do the following before
calling IBM for progranuning
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC285I CDSIN-CDCOS/IMAG ARG/=/X.X
(HEX=X)/, GT 174.673

Explanation: LIB -- In the
subprogram IHCCLSCN (CDSIN or
CDCOS), the absolute value of the
imaginary part of the argument is
greater than 174.673.

Supplemental Data: Argument
specified.

Standard corrective Action: If
imaginary part >O, CX is real
portion of argument):

• For sine, result=*/2CSIN X +
iCOS X).

• For cosine, result=*/2CCOS X -
iSIN S).

If imaginary part <O, CX is real
portion of argument):

• For sine, result=•/2CSIN x -
iCOS X).

• For cosine, result=*/2(COS X +
iSIN X).

Programmer Response: Probable
user error. Make sure that the
imaginary part of the argument (in
radians where 1 radian z
57.2957795131°> to the
trigonometric sine or cosine.

function is within the allowable
range. If the imaginary part of
the argument may or will exceed
that range during program
execution, then provide code to
test for the situation and, if
necessary, modify the imaginary
part of the argument or bypass the
source referencing the function
subprogram. If the program
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the 'XREF' option
is specified in the parm field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC290I GAMMA ARG=X.X(HEX=X), LE 2**-252
OR GE 57.5744

Explanation: LIB -- In the
subprogram IHCSGAMA (GAMMA), the
value of the argument is outside
the valid range. (Valid range:
2-2s2<x<57.5744)

Supplemental Data: Argument
specified.

Standard corrective Action:
Result=•.

Programmer Response: Probable
user error. Make sure that the
argument to the gamma function is
within the allowable range. If
the argument may or will be
outside that range during program
execution, then provide code to
test for the situation and, if
necessary, modify the argument or
bypass the source referencing the
function subprogram. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC291I ALGAMA ARG=X.X(HEX=X), LEO. OR
GE 4.2937*10**73

Explanation: LIB -- In the
subprogram IHCSGAMA (ALGAMA), the
value of the argument is outside
the valid range. (Valid range:
O<x<4~2937x1Q73)

Supplemental Data: Arqument
specified.

Standard corrective Action:
Result=•.

Programmer Response: Probable
user error. Make sure that the
argument to the algama function is
within the allowable range. If
the argument may or will be
outside that range during program
execution, then provide code to
test for the situation and, if
necessary, 'modify the argument or
bypass the source referencing the
function subprogram. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the necessary DD statement
included.

• Have source and associated
listing available.

IHC300I DGAMMA ARG=X.X(HEX=X), LE 2**-252
OR GE 57.5744

Explanation: LIB -- In the
subprogram IHCLGAMA (DGAMMA), the
value of the argument is outside
the valid range. (Valid range:
2-2s2<x<57.5744)

supplemental Data: Argument
specified.

Standard Corrective Action:
Result=*·

Programmer Response: Probable
user error. Make sure that the
argument to the dgarnrna function is
within the allowable range. If
the argument may or will be
outside that range during program
execution, then provide code to
test for the situation and, if

Appendix D: System Diagnostics 231

necessary, modify the argument or
bypass the source referencing the
function subprogram. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC301I DLGAMA ARG=X.XCHEX=X), LEO. OR
GE 4.2937*10**73

232

Explanation: LIB -- In the
subprogram IHCLGAMA CDLGAMA), the
value of the argument is outside
the valid range. (Valid range:
O<x<4.2937x1Q73)

Supplemental Data: Argument
specified.

Standard Corrective Action:
Result=•.

Programmer Response: Probable
user error. Make sure that the
argument to the dlgama function is
within the allowable fange. If
the argument may or will be
outside that range during program
execution, then provide code to
test for the situation and, if
necessary, modify the argument or
bypass the source referencing the
function subprogram. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field

of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

Even though message printing may be
suppressed when the extended error message
facility is available, a summary of errors
is printed when the job is completed. Its
format is shown in Figure 108 • The format
of a traceback map is shown in Figure 109.

The headings in the traceback map may be
described as follows:

ROUTINE The name of the routine entered,
which was called by the next
routine in the list.

ISN When the compiler's ID option
supplies an Internal Statement
Number CISN), the ISN entry is a
symbolic reference to the point
from which the routine was called.

REG. 14 This is the absolute location
reference to the point from which
ROUTINE was called. By using the
ENTRY POINT location, a relative
location can be computed.

REG. 15 This is the address of the entry
point in ROUTINE.

REG. O This is the result register used
by function subprograms.

REG. 1 This is the address of the
argument list passed to ROUTINE.

If the user specifies that an
installation-supplied routine is to be used
for corrective action, this line is added
to the message:

USER FIXUP TAKEN, EXECUTION CONTINUING

For a standard corrective action, the
message addition reads:

STANDARD FIXUP TAKEN, EXECUTION
CONTINUING

SUMMARY OF ERRORS FOR THIS JOB ERROR NUMBER
219
217
211

Figure 108. Summary of Error and Traceback

TRACEBACK FOLLOWS- ROUTINE
IBCOM
MAIN

ENTRY POINT- 50008020

Figure 109. Example of Traceback Map

ISN

If the extended error message facility
detects an error condition, an
informational message is printed and the
job may be terminated. The following text
contains a description of such messages.

REG. 14
000083B4
00004918

NUMBER OR ERRORS
1
1
57

REG. 15
00008988
50008020

REG. 0
00000005
00000030

REG. 1
000081A6
0003FF04

• Make sure that MSGLEVEL=Cl,1)
was specified on the JOB
statement.

• Have source and associated
listing available.

IHC900I EXECUTION TERMINATING DUE TO ERROR
COUNT FOR ERROR NUMBER X

Explanation: This error has
occurred frequently enough to
reach the count specified as the
number at which execution should
be terminated.

IHC901I EXECUTION TERMINATING DUE TO
SECONDARY ENTRY TO ERROR MONITOR
FOR ERROR X WHILE PROCESSING ERROR
x

System Action: The job is
terminated.

Programmer Response: Probable
user error. Make sure that
occurrences of the error number
indicated are eliminated. For
alternative action, see the
Extended Error Handling Facility
section. If the problem recurs,
do the following before calling
IBM for programming support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

Explanation: In a user's
corrective action routine, an
error has occurred that has called
the error monitor before it has
returned from processing a
diagnosed error.

System Action: The job is
terminated.

Note: If Traceback follows this
message, it may be unreliable.

Programmer Response: Probable
user error. Make sure that the
error monitor is not called prior
to processing the diagnosed error.
Example: A statement such as
R=A**B cannot be used in the exit
routine for error 252, because
FRXPR# uses EXP, which detects
error 252. If the problem recurs,
do the following before calling
IBM for programming support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

Appendix D: System Diagnostics 233

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC902I ERROR NUMBER X OUT OF RANGE OF
ERROR TABLE

Explanation: A request has been
made to reference a non-existent
Option Table entry.

System Action: The request is
ignored and execution continues.
IRETCD is set to zero.

Programmer Response: Probable
user error. Make sure that the
value assigned to an error
condition is within the range of
entries in the option table. If
the problem recurs, do the
following before calling IBM for
programming support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement in
included.

• Have source and associated
listing available.

• Have information from system
generation time on the extended
error handling facility
available.

IHC903I ATTEMPT TO CHANGE UNMODIFIABLE
TABLE ENTRY, NUMBER=X

234

Explanation: The Option Table
specifies that no changes may be
made in this entry, but a change
request has been made by use of
CALL ERRSET or CALL ERRSTR.

System Action: The request is
ignored and execution continues.

Programmer Response: Probable
user error. Make sure that no
attempt has been made to alter

dynamically an unmodifiable entry
in the Option Table. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

• Have information from system
generation time on the extended
error handling facility
available.

IHC904I ATTEMPT TO DO I/O DURING FIXUP
ROUTINE FOR AN I/O TYPE ERROR

Explanation: When attempting to
correct an input/output error, the
user may not issue a READ, WRITE,
BACKSPACE, ENDFILE, REWIND, PDUMP,
DEBUG, or ERRTRA.

System Action: The job is
terminated.

Proqramrner Response: Probable
user error. Make sure that, if an
I/O error is detected, the user
exit routine does not attempt to
execute any FORTRAN I/O statement.
If the problem recurs, do the
following before calling IBM for
programming support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

• Have information from system
generation time on the extended
error handling facility
available.

operator Messages

Operator messages for STOP and PAUSE are
generated during load module execution.

The message for a PAUSE can be one of
the forms:

{
PAUSE n }

yy IHC001A PAUSE Tmessage'

where: yy

PAUSE 0

is the identification
number

is the unsigned 1-5 digit
integer constant
specified in a PAUSE
source statement

'message' is the literal constant
specified in a PAUSE
source statement

0 is printed out when a

PAUSE

statement is executed

Explanation: The programmer should give
instructions that indicate the action to be
taken by the operator when the PAUSE is
encountered.

User Response: To resume execution, the
operator presses the REQUEST key. When the
PROCEED light comes on, the operator types

REPLY yy,'Z'

where yy is the identification number and Z
is any letter or number. To resmne program
execution, the operator must press the
alternate coding key and a numeric 5.

The message for a STOP statement is of
the form:

where: n

IHC002I STOP !!

is the unsigned 1-5 digit
integer constant specified in
a STOP source statement.
This value is placed in
register 15 when the STOP
statement is executed.

A STOP or STOP 0 message is
not displayed on the console.

User Response: None

Appendix D: System Diagnostics 235

APPENDIX E: EXTENDED AMERICAN NATIONAL STANDARD CARRIAGE CONTROL CHARACTERS

~ Interpretation

* blank Space one line before printing
* 0 Space two lines before printing

Space three lines before printing
* + Suppress space before printing
* 1 Skip to first line of a new page

2 Skip to channel 2
3 Skip to channel 3
4 Skip to channel 4
5 Skip to channel 5
6 Skip to channel 6
7 Skip to channel 7
8 Skip to channel 8
9 Skip to channel 9
A Skip to channel 10
B Skip to channel 11
c Skip to channel 12
V Select punch pocket 1
W Select punch pocket 2

* These carriage control characters are identical to the FORTRAN carriage control
characters specified in the FORTRAN IV Language publication.

236

The UNIT parameter of the DD statement
can identify an input or output unit by its
actual address, its type number, or its
group name. Type numbers, automatically
established at system generation, corre
spond to units entered into system
configurations. Type numbers and
corresponding units are listed here for the
reader's convenience.

Tape-Units

Unit Type
2400

2400-1

2400-2

2400-3

2400-4

Unit
2400 series 9-Track Magnetic

Tape Drive that can be
allocated to a data set
written or to be written
in 800 bpi density

2400 series Magnetic Tape
Drive with 7-Track
compatibility and without
Data conversion

2400 series Magnetic Tape
Drive with 7-Track
compatibility and Data
Conversion

2400 series 9-Track Magnetic
Tape Drive that can be
allocated to a data set
written or to be written
in 1600 bpi density

2400 series 9-Track Magnetic
Tape Drive having an 800
and 1600 bpi (density)
capability

APPENDIX F: UNIT TYPES

Direct Access Units

Unit Type
2301
2302
2303
2305
2311
2314
2321

3330

Unit
2301 Drum Storage Unit
2302 Disk Storage Drive
2303 Drum storage Unit
2305 Drum Storage Unit
Any 2311 Disk Storage Drive
2314 Storage Facility
Any bin mounted on a 2321

data cell drive
3330 Disk Storage Facility

Unit Record Equipment
1052
1403

1442
1443
2501
2520
2540

2540-2

2671
3211

Graphic Units
1053
2250-1
2250-3
2260-1

2260-2

2280
2282

1052 Printer-Keyboard
1403 Printer or 1404 Printer

(continuous form only>
1442 Card Read Punch
any 1443 Printer
2501 Card Reader
2520 Card Read Punch
2540 Card Read Punch (read

feed)
2540 card Read Punch (punch

feed)
2671 Paper Tape Reader
3211 Printer

1053 Model 4 Printer
2250 Display Unit, Model 1
2250 Display Unit, Model 3
2260 Model 1 Display station

(Local Attachment>
2260 Model 2 Display Station

(Local Attachment)
2280 Film Recorder
2282 Film Recorder-Scanner

Appendix F: Unit Types 237

APPENDIX G: FORTRAN IV (G) DE.BUG FACILITY

The FORTRAN IV (G) Debug Facility
statements (DEBUG, AT, DISP:):.AY, TRACE ON
and TRACE OFF) are described in the FORTRA~
IV Language publication. This section
describes the output produced when these
statements are used in a FORTRAN source
.module.

DEBUG STATEMENT

The options UNIT, TRACE, SUBTRACE, !NIT,
and SUBCHK may be specified in the DEBUG
statement. The·UNIT option indicates the
unit on which the DEBUG output is to be
written; if this option is omitted, DEBUG
output is written on SYSOUT.

TRACE

TRACE output is written only when TRACE
is on as a result of the TRACE ON
statement. For each labeled statement that
is executed, the line

-DEBUG-TRACE statement-label

is written.

SUB TRACE

SUBTRACE is used to trace program flow
from one routine to another. For each
subprogram called, the line

-DEBUG-SUBTRACE subprogram-name

is written on entry to the subprogram, and
the line

-DEBUG-SUBTRACE *RETURN*

is written on exit from the subprogram.

INIT

The output produced as a result of the
INIT option is written regardless of any
TRACE ON or TRACE OFF statements in the
source module. When the value of an
unsubscripted variable listed in the INIT
option

238

changes, the line

-DEBUG-variable-name = value

is written, with the value given in the
proper format for the variable type. When
the value of an element of an array listed
in the INIT option changes, t~e line

-DEBUG-array-name(element-number) = value

is written; with the format of the value
determined by the type of the array
element. The single element number
subscript is used regardless of the number
of dimensions on the array.

SUBCHK

SUBCHK output is not affected by TRACE
ON and TRACE OFF statements in the source
module. When a reference to an array
listed in the SUBCHK option includes
subscripts such that the reference is
outside the array, the line

-DEBUG-SUBCHK array-nameCelement-number>

is printed. The statement including the
out-of~bounds reference is operated
nonetheless.

DISPLAY STATEMENT

DISPLAY statement output is identical to
NAMELIST WRITE output. The first line
written is the name of the NAl'lELIST created
by the compiler for the DISPLAY statement,
preceded by the ampersand character:

&DBGnn#

where:
nn is the 2-digit decimal value

assigned to the DISPLAY statement;
this value begins at 01 for the
first DISPLAY statement in the
source module and increases by one
for each subsequent DISPLAY
statement.

The NAMELIST name is followed by the
DISPLAY list, in NAMELIST format. The
output is terminated with the line

&END

SPECIAL CONSIDERATIONS

Any DEBUG output which is produced
during an input/output operation is saved
in storage until the input or output
operation is complete, when it is written
out. Saving this information may require a
request for additional storage space from
the system. If the request cannot be
satisfied, some of the DEBUG output may be
lost. If this situation occurs, the
message

-DEBUG-SOME DEBUG OUTPUT MISSING

is written after the output which was
saved.

If a subscript appearing in an
input/output list includes a function
reference, and the FUNCTION contains a
DISPLAY statement, the DISPLAY cannot be
performed. In this case the message

-DEBUG-DISPLAY DURING I/O SKIPPED

is written in the DEBUG output.

Appendix G: FORTRAN IV (G) Debug Facility 239

APPENDIX H: FORTRAN IV CH) OPTIMIZATION FACILITIES

This appendix contains information relating
to the use of the FORTRAN IV CH) compiler
optimization facilities.

PROGRAM OPTIMIZATION

Facilities are·available in the FORTRAN
IV CH) compiler that enable a programmer to
optimize execution speed and to reduce the
size of the object module. However,
programs that are compiled using the
IBM-supplied cataloged procedures are not
optimized; OPT=O is the default option. A
programmer must override this default
option with either OPT=l or OPT=2 to
specify the use of the optimization
facilities. (See "Cataloged Procedures"
for overriding par- ameters in the EXEC
statement.)

When using OPT=l, the entire program is
a loop, while individual sections of
coding, headed and terminated by labeled
statements, are blocks. The object code is
improved by:

• Improving local register assignment.
(Variables that are defined and used in
a block are retained Cif possible) in
registers during the processing of the
block. Time is saved because the num
ber of load and store instructions are
reduced.}

• Retaining the most active base
addresses and variables in registers
across the whole program. (Retention
in registers saves time because the
number of load instructions are
reduced.)

• Improving branching by the use of RX
branch instructions. (An RX branch
instruction saves a load instruction
and reduces the number of required
address constants.)

When using OPT=2, the loop structure and
data flow of the program are analyzed. The
object code is improved over OPT=l by:

• Assigning registers across a loop to
the most active variables, constants,
and base addresses within the loop.

• Moving outside the loop many
computations which need not be
calculated within the loop.

240

• Recognizing and replacing redundant
computations.

• Replacing (if possible> multiplication
of induction variables by addition of
those variables.

• Deleting Cif possible) references to
some variables.

• Using (where possible} the BXLE
instruction for loop termination. (The
BXLE instruction is the fastest
conditional branch; time and space are
saved.>

Programming Considerations Using the
Optimizer

In general, the specification of OPT=l
or OPT=2 causes compilation time to
increase. However, the object code
produced is more concise and yields shorter
execution times.

The object module logic, when optimized,
is identical to the unoptimized logic,
except in the following cases:

1. If the list of statement numbers in an
Assigned GOTO statement is incomplete,
errors, which were not present in the
unoptimized code, may arise in the
optimized code.

2. With OPT=2, the computational
reordering done may produce a
different execution time behavior than
unoptimized code. For example, a test
of an argument of a FORTRAN library
function may be executed after the
call to the function. This is caused
by the movement of the function call
to the back target of the loop when
the function argument is not changed
within the loop.

DO 11 I=l,10
DO 12 J=l,10
IF (B(I}.LT.0.)GO TO 11

12 C(J)=SQRT(B(I)}
11 CONTINUE

The square root computation will occur
before the less-than-zero test, and
will result in a message if BCI) is
negative. A rearrangement of the
program which could avoid this
situation can be constructed:

DO 11 I=l,10
IF (B(I).LT.0.) GO TO 11
DO 12 J=l,10

12 C(J)=SQRT(B(I))
11 CONTINUE

A similar condition may result with
the statements:

CALL OVERFL(J)
CALL DVCHK(J)

These may produce different results
when optimized, because computations
causing overflow, underflow, or
divide-check conditions could be moved
out of the loop in which the test
occurs.

3. If a programmer defines a subprogram
with the same name as a
FORTRAN-supplied subprogram (e.g.,
SIN, ATAN, etc.), errors could be
introduced during optimization. If
the subprogram stores into its
arguments, refers to COMMON, performs
IIO, or remembers its own variables
from one execution to another, the
name of the subprogram must be
specified in an EXTERNAL statement to
allow the program to be optimized
without error.

4. In the statements

5.

COMMON X, Y1(10), W, Z
EQUIVALENCE CY1,Y2)
DIMENSION Y2(12)

there is an implied equivalence of Y2
Cll) and W and Y2(12) and z.

If the optimization feature is not
used, and

W=Q and A=Y2(I) <where I=ll)

then the value of Q is assigned to A.

However, if OPT=2 is used, and

W=Q and A=Y2 (I) (where I=ll)

there is no guarantee that the value
of Q is assigned to A.

When a subprogram is called at one
entry point for initialization of
reference-by-name arguments, and at
another entry point for subsequent
computation, certain argument values
may not be transmitted. This applies
to either arguments of the second call
or any argument values redefined
between calls and not explicitly
defined in COMMON.

In the following example the
incremented value for I may not be
transmitted to the subprogram due to
the loop initialization optimization.

CALL INIT (I) SUBROUTINE INIT (/J/)

I = 0
10 CALL COMP

I = I + 1

GO TO 10

ENTRY COMP

6. With OPT=2, variables in named COMMON
arrays may not be stored on exit from
a FORTRAN main program if these
variables have not been used in an I/O
statement in that main program, or if
there is no subroutine call following
the definition of these variables.

7. With OPT=2, implied DO variables
should not be stored if an END=
transfer was made out of a READ
statement.

Definition of a Loop

The term 'loop' is used to refer to DO
loops and other configurations of coding
that a programmer regards as a loop.

If a programmer writes a loop which is
preceded by an IF statement, a conditional
GOTO statement, or READ statement with END
or ERR parameters, the loop is not
identified and efficiency is lost. A
CONTINUE statement at the end of the range
of a DO also obscures a loop Cother than a
DO loop) that follows the CONTINUE without
intervening initialization. The insertion
of a labeled CONTINUE statement or any
other suitable rearrangement allows the
loop to be recognized.

The movement of computations from inside
a loop to the initialization coding is done
on the assumption that every statement in
the loop is executed more frequently than
the initialization coding. Occasionally,
this assumption fails and computations are
moved to a position where they are computed
more of ten. One way to prevent such a move
is to make a subprogram of the coding
(statements and computations) that is
executed less frequently within a loop than
it would be in the initialization coding.

The recognition of loops may also be
obscured when the programmer knows that
some paths through the program cannot
occur; for example,

Appendix H: FORTRAN IV CH) Optimization Facilities 241

10 IF (L) GOTO 200
20 I=l
30 ASSIGN 40 TO J

GOTO 100
40 I=I +1
50 IF (I. LE. N) GOTO 30

100 B(I) = FUNCT (I)
110 GOTO J, (40, 220)
200 ASSIGN 220 TO J
210 GOTO 100
220 CONTINUE

From the programmer's point of view, the
statements 30 to 50 comprise a loop which
is initialized by statement 20. The loop
causes an internal subprogram consisting of
statements 100 and 110 to be executed.
From the compiler's point of view, it
appears possible to execute statements in
the order 10, 200, 210, 100, 110, 40, 50,
30. The compiler does not recognize the
loop, because it appears possible to enter
it without passing through the
initialization coding in statement 20.

A loop can be obscured by the computed
GOTO, because the compiler always assumes
that one of the possible branches is to the
succeeding statement, even though the
programmer knows that such a branch is
impos- sible. A loop can also be obscured
by a call to the EXIT routine, because the
compiler assumes there is a path from such
a statement to the next.

Movement of Code Into Initialization of a
Loop

Where it is logically possible to do so
with OPT=2, the optimizer moves
computations from inside the loop to the
outside. This movement permits a
programmer to do more straightforward
coding without penalty in object code
efficiency.

If an expression is evaluated inside a
loop and all the variables in the
expression are unchanged within the loop,

Table 26. Constant Expressions

the computation is generally moved outside
the loop into the coding sequence which
initializes the loop. Even if the constant
expression is part of a larger expression,
this constant expression may still be
recognized and moved. However, the
movement depends on how the larger
expression is written. Table 26 gives
examples of expressions and the constant
parts which are recognized and moved.

Common Expression Elimination

With OPT=2, if an expression occurs
twice in such a way that:

1. any path starting at an entry to the
program always passes through the
first occurrence of the expression to
reach the second occurrence (and any
subsequent occurrence), and

2. any evaluation of the second (third,
fourth, etc.) expression produces a
result identical to the most recent
evaluation of the first expression,
then the value of the first expression
is saved (generally) and used instead
of the value of the second (third,
fourth, etc.) expression.

In statements such as:

A=B + C + D
E=C + D

the common expression c + D is not
recognized, because the first expression is
computed as CB + C) + D.

Induction Variable Optimization

In a loop with OPT=2, an induction
variable is a variable that is only
incremented by a constant or by a variable
whose value is constant in the loop.

When an induction variable is multiplied
by a constant in the loop, the optimizer

r---T---1
I Expression where Cl, c2,... I I
I are constant in the loop !Constant expression recognized and moved I
~---+---~ I Cl + C2 * C3/SIN (C4) I Cl + C2 * C3/SIN (C4) I
I Cl + C2 * C3 + Bl I Cl + C2 * C3 I
I Cl + Bl + C2 * C3 I C2 * C3 I
I Bl + Cl + C2 * C3 I C2 * C3 I
I Cl + Bl + B2 + C2 * C3 I C2 * C3 I
I Cl * C2/Bl I Cl * C2 ·1
L---~---J

242

may replace the multiplication with an
addition by introducing a new induction
variable into the loop. This new induction
variable may make it possible to delete all
references to the original induction
variable. This deletion is likely to occur
if the original induction variable is used
only as a subscript within the loop, and
the value of the subscript is not used on
exit from the loop.

Register Allocation

Some variables are assigned to a
register on entry to a loop and retained in
the register through part or all of the
loop to avoid loading and storing the
variable in the loop. Within the loop, the
variable is modified only in the assigned
register, the value of the variable in
storage is not changed. If necessary, the
latest value of the variable is stored
after exit from the loop.

The value in general register 13, which
points to the start of a register save
area, remains constant during execution of
a subprogram. This register is used to
refer to data, and possibly to branch
within the program. The value in general
register 12 remains constant and is used to
branch within the program, and possibly is
used to refer to data.

General registers 14 and 15 are used for
base addresses and index values on a
strictly local basis. Floating-point
register 0 and general register O are used
as locally assigned arithmetic
accumulators. General register 1 is used
in conjunction with general register O for
fixed-point arithmetic operations, and to
point to argument lists in subprogram
linkages.

The remaining registers are used for
accumulators, index values, base addresses,
and high speed storage Ca register
reference is faster than a main storage
reference).

Because general registers 12 and 13 are
not adequate to provide RX branching
throughout a large program, general
registers 11, 10, and 9 may be pre-empted
for RX branching Conly if the program
exceeds SK, 12K, and 16K bytes,
respectively). CRR branches preceded by
loads are required for branching to points
beyond the first 16K bytes of the program
and possibly to the last part of a program
if it exceeds SK, 12K, or 16K bytes by a
small amount.)

COMMON Blocks

Because each COMMON block is independ
ently relocatable, each requires at least
one base address to refer to the variables
in it. A sequence of coding that refers to
a large number of COMMON blocks is slowed
down by the need to load base addresses
into general registers. Thus, if three
COMMON blocks can be combined into one
block whose total size is less than 4096
bytes, one base address can serve to refer
to all the variables. (Many register loads
can be avoided.)

The order in which data is entered into
a COMMON block may also affect the number
of base addresses needed. For example, if
an array of 5000 bytes is placed in a
COMMON block and followed by 200 bytes of
variables, two base addresses are needed:
the beginning address of the first variable
and the beginning address of the last dif
fer by more than 4096 bytes. However, if
the variables preceded the array, one base
address would suffice.

EQUIVALENCE Statements

Optimization tends to be weakened by the
occurrence of variables in EQUIVALENCE
statements.

When an array appears in an EQUIVALENCE
statement, a reference to one of its
elements cannot be eliminated as a common
expression, nor can the reference be moved
out of a loop. However, the elimination
and movement of subscript calculations used
for making the reference is not affected.

If a variable is made equivalent only to
another variable (not in COMMON) of the
same type and length, optimization is not
weakened. The net effect is that the
compiler accepts the two names as alternate
pointers to the same storage location.
However, if a variable is made equivalent
to another variable in any other way, all
references to it are 'immobilized': the
references cannot be eliminated, moved,
confined to registers, or altered in any
way.

Multidimensional Arrays

In general, references to higher
dimensional arrays are slower than
references to lower dimensional arrays.
Thus, a set of one-dimensional arrays is
more efficient than a single

Appendix H: FORTRAN IV (H) Optimization Facilities 243

two-dimensional array in any case where the
two-dimensional array can be logically
treated as a set of one-dimensional arrays.

Constants occurring in subscript
expressions are accounted for at compile
time and have no effect at execution time.

Program.Structure

If a large number of variables are to be
passed among calling and called programs,
some of the variables should be placed in
the COMMON area. For example, in the main
program and subroutine EXAMPL

DIMENSION EC20),IC15)
READClO)A,B,C
CALL EXAMPL(A,B,C,D,E,F,I)

END

SUBROUTINE EXAMPL CX,Y,Z,P,Q,R,J)
DIMENSION QC20),JC15)

RETURN
END

time and storage are wasted by allocating
storage for variables in both the main
program and subprogram and by the
subsequent instructions required to
transfer variables from one program to
another. 1

The two programs.should be written U?ing
a COMMON area, as follows:

COMMON A, B, C, D, EC 20), F,·I C 15)
READClO)A,B,C
CALL EXAMPL

END

SUBROUTINE EXAMPL
COMMON X,Y,Z,P,Q(20),R,J(l5)

RETURN
END

storage is allocated for variables in
COMMON only once and fewer instructions are
needed to,cross reference the variables
between programs.

244

To reduce compilation time for
equivalence groups, the entries in the
EQUIVALENCE statement should be specified
in descending order according to offset.
For example, the statement

EQUIVALENCE CARR1(10,10),ARR2(5,5),
ARR3(1,1),VAR1)

compiles faster than the statement

EQUIVALENCE CVAR1,ARR3(1,1),ARR2C5,5),
ARRlCl0,10))

To reduce compilation time and save
internal table space, equivalence groups.
should be combined, if possible. For
example, the statement

EQUIVALENCE CARR1C10,10),ARR2(5,5);VAR1)
(

compiles faster and uses less internal
table space than the statement

EQUIVALENCE CARRlCl0,10),VARl),
CARR2C5,5),VAR1)

Logical IF Statements

A statement such as:

IFCA.~T.B.OR.C.GT.FCX).OR •• NOT.L)GO~O 10

is compiled as though it were written:

IF CA .LT. B) GO TO 10
IF CC .GT. F(X)) GO TO 10
IF C .NOT. L) GOTO, 10

Thus, if A .LT. Bis found to be' true, the
remainder of the logical expression is not
evaluated.

Similarly, a statement such as:

IF CD.NE. 7.0 .AND. E.GE.G) I=J

is compiled as:

20

IF CD.EQ. 7.0) GOTO 20
IF CE.LT.G) GOTO 20
I=J
CONTINUE

The order in which a programmer writes
logical expressions in an IF statement
affects the speed of execution.

If A is more often true than B, then
write A .OR. B rather than B .OR. A; and
write B .AND. A rather than A .AND. B.

I.f any of the following occur in a
logical expression:

· ..

1. p mixture of both .AND. and .OR.
operators

2. a .NOT. operator followed by a
parenthesized expression

the entire logical expression must be
evaluated and efficiency is lost.

Branching

The statement

IFCA.GT.B) GOTO 20

gives equivalent or better code~than

/ IF{A-B)l0,10,20
10 CONTINUE

The Assigned GO TO is the fastest
conditional branch.

The computed GO TO should be avoided
unless four or more statement labels occur
wi~hin the parentheses.

The statement

IFCI-2)20,30,40

is significantly faster than

GOTO (20,30,40), I

Name Assignment

For its internal use, the compiler
places names used for variables,. arrays,
and subprograms into a table. This table
is divided into six strings and is searched
many times during compilation. Names, that
are one character long are placed in the
first string; names two characters long are
placed in the second. string; and so on.
For faster compiling, the names should be
distributed equally among the· six· strJ,.n9s •.

'•

.....

Appendix H: FORTRAN IV (H) Optimization Facilities 245

APPENDIX I: CONSIDERATIONS FOR MODELS 91 AND 195

This appendix discusses FORTRAN
programming factors that are of special
concern to users of IBM System/360 Models
91 and 195.

PROGRAM INTERRUPTION EXIT ROUTINE

The library subroutine that handles
interruptions has been modified to recog
nize precise, imprecise, and multiple
imprecise interruptions. Multiple
imprecise interruptions may require that
the subroutine set more than one of the
indicators (for divide check, exponent
overflow, and exponent underflow).

Modifications are made to the message
that is issued for the following program
exceptions:

• Fixed-point divide

• Decimal divide

• Floating-point exponent overflow

• Floating-point exponent underflow

• Floating-point divide

The format of the message issued is

IHC210I PROGRAM INTERRUPT Cx) OLD PSW
IS y

where x represents one of the letters P
(for precise), I (for imprecise), or M Cfor
multiple imprecise of different classes),
and y is the hexadecimal representation of
the old PSW.

BOUNDARY ADJUSTMENT ROUTINES (MODEL 91
ONLY)

Specification of a system generation
option, BOUNDRY=ALIGN, will provide
boundary adjustment routines for correction
of instructions that cause specification
exceptions. However, the nature of these
fix-up routines requires the identification
of the instruction that causes the
exception. Since specification exceptions
on the Model 91 generate imprecise
interruptions, boundary adjustments cannot
be made. Thus, when the FORTRAN library is
specified for the Model 91, boundary

246

alignment must not be requested. Because
BOUNDRY=ALIGN is the default option,
BOUNDRY=NOALIGN must be specified. If
BOUNDRY=NOALIGN is not specified during
system generation for the Model 91, an
error message will occur.

Note: If boundary alignment were allowed,
the related task eventually could be
terminated for the following reason:
Boundary alignment is made with respect to
the instruction addressed by the program
old PSW, but since the related interruptiqn
may have been imprecise, the old PSW may
not contain the address of the incorrect
instruction.

FLOATING-POINT OPERATIONS

For the Models 91 and 195,
floating-point operations are somewhat
different from what they are on other
models. Discussed below are two of these
differences.

Exponent overflow

A floating-point exponent overflow
exception results in the maximum
floating-point number (see the publication
IBM system/360 Principles of Operation)
being placed in the result register. The
correct sign of the result is appended to
the result in the register. For operations
using long precision, all 56 of the
fraction bits in the register are set to
one. For operations using short precision,
the low-order 32 bits in the register
remain unchanged. In addition and
subtraction, the condition code reflects
the sign of the result. This exception
produces an imprecise interruption.

Exponent Underflow

The result of an exponent underflow
exception is that a true zero is placed in
the result register. For long-precision
operations, all 56 of the fraction bits in
the register are set to zero. For
short-precision operations, the low-order
32 bits in the register remain unchanged.
In addition and subtraction, the condition

code is set to zero. This exception
produces an imprecise interruption if the
mask bit Cbit 38) in the PSW is set to one.

~: Whenever an interruption occurs on
other models of System/360, system routines
provide the setting of the result register

when requested. To maintain compatibility,
these operations are performed in the
hardware of the Models 91 and 195 since the
imprecise interruption prohibits the
programming technique.

Appendix lt Considerations for Models 91 and 195 247

(Where more than one page reference is given. the major reference is first.>

* parameter 32
*.ddname 68
*.stepname.ddname 68
•.stepname.procstep.ddname 68

A, device class
correspondence with ddnames 43
in DD statement 33
with intermediate device 67
in JOB statement 22

ABEND dump 120
ABSTR subparameter 106
Accessing unused space 107
Account numbers 19
Accounting information

in the EXEC statement 28
in the JOB statement 19

Accounting routine 19
ACCT parameter 28
Address, specifying space peginning at 106
Affinity, device 106
ALIAS statement 51
ALX subparameter 66
American National Standard Extended
carriage Control Characters 236

AND function 99
Argument list considerations 159-160
Arithmetic IF statement 96
Arithmetic Statement Functions 97
Array

initialization 98-99
notation 100

Arrays, multidimensional 243-244
Assembler language subprograms

argument list 154
calling sequence 154
example of 161
linkage conventions 156,158
RETURN i simulation 160
save area 154,155
subroutine references 154

Assigning job priority 22
Asterisk <•> parameter 32
ATTACH macro instruction 147
Automatic call library 48
Average-record-length subparameter 65,107

B, device class
correspondence with ddnames 43
in DD statement 33
with intermediate device 67

BACKSPACE
restriction with SYSIN 56
statement 75,100

Backspace operations 75
BCD compiler option 45
BCD translation 69

BOW (Block Descriptor Word) 73
Blanks, embedded 96
BLKSIZE subparameter 70-75,100
Block Descriptor Word CBDW) 73
Blocked records

with FORMAT control 72-73
without FORMAT control 73-74

BLP subparameter 75
Boundary adjustment

in COMMON blocks 95
routines (Model 91) 246

Branching 96
Buffers

length of 69-70
number of 68,69

BUFNO subparameter
DD statement considerations 100
with sequential data sets 69
specification of 68

CALL ERRMON statement 133-134
CALL ERRSAV statement 132
CALL ERRSET statement 132
CALL ERRSTR statement 132
CALL ERRTRA statement 133
CALL macro instruction 147
CALL option for the loader 58
Carriage control characters 236
Catalog 15
Cataloged procedures

definition of 14
invoking 14
modifying 14
names 14

Cataloged procedures CG)
compile 79,80
compile and linkage edit 79-80,81
compile and load 82,84
compile, linkage edit, and execute

82,83
FORTGC

control statements 80
function 14,38
invoking of 38

FORTGCL
control statements 81
function 14,39
invoking of 39

FORTGCLD
control statements 84
function 14,40
invoking of 40

FORTGCLG
control statements 83
error codes 21
function 14,40
invoking of 40

Index 249

FORTGLG
control statements 81
function 14,39
invoking of 39

linkage edit and execute 80,81
overriding 83-86
user-written 82

Cataloged procedures CH)
compile 87,88
compile and linkage edit 88,89
compile and load 90,92
execute 88,91
FORTHC

control statements 88
function 14,38
invoking of 38

FORTH CL
control statements 89
function 14,39
invoking of 39

FORTHCLD
control statements 92
function 14,40
invoking of 40

FORTHCLG
control statements 91
error codes 21
function 14,40
invoking of 40

FORTHLG
control statements 91
function 14,39
invoking of 39

linkage edit 88,89
overriding 90-94
user-written 90

CATLG specification 36,37
Chained scheduling 69,101
Chaining records 101-102
CHANGE statement 51
Channel optimization 105
Channel separation 105
Column binary mode 33
comment statement 16,37
Comments field 17
COMMON

areas 126-127
boundary adjustment of variables in 95
in FORTRAN (H) optimization 243
sharing data in 159

compiler

250

data set assumptions 42
ddnames 42
main storage requirements 28,46
names 41
optimization 45,240-245
options 27,43-45

FORTRAN CG)
BCD 45
DECK 45
EBCDIC 45
ID 45
LINECNT 44
LIST 44
LOAD 45
MAP 45,108
NAME 44
NODECK 45

NOID 45
NOLIST 44
NOLOAD 45
NOMAP 45
NOSOURCE 45
SOURCE 45,108

FORTRAN (H)

output

BCD 45
DECK 45
EBCDIC 45
EDIT 47,87
ID 45
LINECNT 44
LIST 44
LOAD 45
MAP 45,108
NAME 44
NODECK 45
NOEDIT 47
NOID 45
NOLIST 44
NOLOAD 45
NOMAP 45
NOSOURCE 45
NOXREF 47
OPT 45
SIZE 46
SOURCE 45,108
XREF 47,116

cross-reference listing 116
label map 110,111
object module card deck 111,115-116
object module listing 110-115
source listing 108
source map 108

restrictions 104
statistics 173-174

COMPL function 99
Concatenation 55
COND parameter

error codes 21
in EXEC statement 27
in JOB statement 21

condition codes 21,96
CONTIG subparameter 65,66
continuing control statements 17
Conversion of 7-track tape 69
creating data sets 61-78
Cross-reference listing 47,116
CYL subparameter 65,107
Cylinders, split 107

Data conversion 69
Data initialization 98-99
DATA parameter 32
data set assumptions for compiler 43
Data set reference number 52-53
Data set security 66
Data set sequence number 53,66
Data sets

cataloging 15
creating 61-78
definition of 14
direct access

buffers for 76
definition of 15

programming considerations 100-103
record length considerations 76
space requirements 65

disposition of 36-37
expiration date of 66,67
labels for 15
naming 63
organization 14
partitioned

definition of 14
FORTRAN library relationship 14
members 14
processing 14,55-56
using "END=" option 55
using REWIND 56

preallocated 59-60
processing for input only
processing for output only
utility 47,87

data spill 98-99
DATA statement 98-99
DCB parameter

card read punch 33

66-67
66,67

for dedicated work data sets 60
default values for load module 78
description 62,68-75

DD (data definition) statement
examples of 61
information specified in 30
parameters

asterisk (*} 32
DATA 32
DCB 33
ddname 52-53
DDNAME 63
DISP 37
DSNAME 35-36,63
DUMMY 63
LABEL 66
PASSWORD 66
SEP 106
SPACE 65,106
SPLIT 107
SUBALLOC 107
SYSOUT 33-34,67
UNIT 33,63
VOLUME 64

DDNAME parameter 63
ddnames

compiler 41
execution 51
linkage editor 49
loader 57

Debug facility
DISPLAY statement 238
INIT option 238
SOBCHK option 238
SUBTRACE option 238
TRACE option 238
ONIT option 238

DECK compiler option 45,111
Dedicated work data set

function of 59-60
parameters

DCB 60
DISP 60
DSNAME 60
EXPDT/RETPD 60

SUBALLOC 60
UNIT 60
VOLUME 60

DEFER subparameter 106
DEFINE FILE statement

reference numbers used in 53
with spanning 76
use with DD statement 63

DELETE specification 36
Delimiter statement 16,37
DEN subparameter

restriction with SYSOUT 68
specification 68

Density values 68
Device affinity 106
Diagnostic Messages

compiler
FORTRAN CG) 165-174
FORTRAN CH) 174-206

load module execution 206-232
loader 121
operator 120,235

Direct access data sets
buffers for 76
programming considerations 102-103
record length considerations 76
space requirements 65-66
spanning considerations 76

Directory index 14
DISP parameter 37,60
Dispatching priority 29
DISPLAY statement 238
DO loops

implied 100
optimization of

FORTRAN CG) 98
FORTRAN (H) 241-242

DPRTY parameter 29
DSN parameter 63,60
DSNAME parameter 63,60
DUMMY parameter 63
DUMP subroutine 96-97

EBCDIC
compiler option 45
mode 33
translation 69

EDIT compiler option 47,87
Embedded blanks, use of 96
END FILE statement 53
End-of-data indicator 53
END option 53,63
ENTRY statement 51,130
EP loader option 59
EQUIVALENCE groups 95
EQUIVALENCE statement 100,243
ERR option 55
ERR parameter 97
Error codes 21
Error message data set 57
Error messages

Csee Diagnostic messages)
Error monitor 131
ERRSET subprogram 132-133
ERRSTR subprogram 132

Index 251

ESD card 115
exclusive references 126
EXEC statement

function 16
information specified in 23
name field 25
parameters

ACCT 28
COND 27
DPRTY 29
PARM 27,43-48
PGM 25,26
PROC 25
REGION 28-29
TIME 28

Execution device classes 57
EXPDT subparameter 67,60
Exponent overflow 246
Exponent underflow 246
Extended American National Standard
carriage Control Characters 236

Extended error handling facility
functional characteristics 131
obtaining a traceback 133
option table Csee Option table)
subprograms for using 132-133
user-supplied-exit considerations
134-135

File-protected tape volumes 66
FIND statement 103
Fixed-length records 71,72
Fixed-point overflow 96,208
Floating-point operations

Model 91 246
Model 195 246

FORMAT control
blocked records 72
unblocked records 71

FORTGC
control statements 80
function 14,38
invoking of 38

FORTGCL
control statements 81
function 14,39
invoking of 39

FORTGCLD
control statements 84
function 14,40
invoking of 40

FORTGCLG
control statements 83
error codes 21
function 14,40
invoking of 40

FORTGLG
control statements 81
function 14,39
invoking of 39

FORTHC
control statements 88
function 14,38
invoking of 38

FORTH CL

252

contrpl statements 89
function 14,39
invoking of 39

FORTHCLD
control statements 92
function 14,40
invoking of 40

FORTHCLG
control statements 91
error codes 21
function 14,40
invoking of 40

FORTHLG
control statements 91
function 14,39
invoking of 39

FORTLIB macro instruction 95
FORTRAN compiler, invoking of 147
FORTRAN library considerations 105
FORTRAN record 70
FORTRAN sequence number 53

Graphic units 237

IBCOM 119
ID compiler option 45
IEKAAOO 41
IEWL 49
IEWLPRGO 57
IEWLE150 48
IEWJ:,E180 48
IEWLF128 48
IEWLF440 48
IEWLF880 48
IEYFORT 41
IF statement 96,244
Implied DO 100
Imprecise interruptions 206,247
IN subparameter 66
INCLUDE statement 50,129
inclusive references 125
Indicators 96
Induction variable optimization 242
INIT option 238
initialization of data 98-99
INSERT statement 51,129
Invoking cataloged procedures

FORTGC 38
FORTGCL 39
FORTGCLD 40
FORTGCLG 40
FORTGLG 39
FORTHC 38
FORTHCL 39
FORTHCLD 40
FORTHCLG 40
FORTHLG 39

Invoking the FORTRAN compiler 147
I/O devices

address 33

Job

affinity 106
BLKSIZE ranges for 77
class 33
optimization 105-108
unit type 33,237

assigning priority to 22

conditions for terminating 21
relationship to job step 13

Job accounting information 19
Job control language 13
Job control statements

coding of 16
comment 16,37
comments field 16
continuing 17
DD 16
delimiter 16,37
EXEC 16
JOB 16
name field 16
notation for defining 18
operand field 17
operation field 17
processing of 16
use of 13

Job processing, examples of 148-153
Job scheduler 16
JOB statement

function 16,19
parameters

account number 19
COND 21
MSGCLASS 22
MSGLEVEL 21
programmer's name 19
PRTY 22
REGION 22-23
TIME 23

Job step
conditions for bypassing 27
main storage requirements 28-29
relationship to job 13
time limits, setting of 28

JOBLIB 30,52

KEEP specification 36
Keyword parameters 17

Label map 110
LABEL parameter 66
Labels

LET

bypassing processing of 66
contents of 66
data set 15
standard 15,66

linkage editor option 52
loader option 58
overlay processing option, linkage
editor 130

Library, FORTRAN 105
LIBRARY statement 50
LINECNT compiler option 44
LINK macro instruction 147
Linkage conventions 156,158
Linkage editor

control statements
ALIAS 51
CHANGE 51
ENTRY 51., 130
INCLUDE 50,129
INSERT 51,129

LIBRARY 50
OVERLAY 51,128
REPLACE 51

cross-reference list 116
ddnames 49
device classes 49
module map 117
names 48
options

LET 52
LIST 52
MAP 52,117
NCAL 52
XREF 52,118

overlay feature
design 122-127
exclusive references in 126
inclusive references in 125
paths 123
processing 126
processing options

LET 130
LIST 130
MAP 130
OVLY 130
XCAL 130
XREF 130

segments 122,125
Linkage registers 155
LIST compiler option 44,110
LIST linkage editor option 52
LIST linkage editor overlay precessing
option 130

Literal constants 104
LOAD compiler option 45
Load module output 119-121
Loader

ddnames 57-58
device classes 57-58
diagnostic messages 121
error messages 121
input 57
name (IEWLPRGO) 57
options

CALL 58
EP 59
LET 58
MAP 58
NOCALL 58
NOLET 58
NOMAP 58
NOPRINT 59
PRINT 59
SIZE 58

output 57,121
priority 58
storage map 121

Logical backspace 75

Macro instructions
ATTACH 147
CALL 147
FORTLIB 95
LINK 147
PREFACE 135
SETENT 136

Index 253

MAP compiler option
explanation 45
storage maps 108-110

MAP linkage editor option
explanation 52
module map 117

MAP linkage editor overlay processing
option 130

MAP loader option 58
Master scheduler 16
Messages

compiler
FORTRAN CG) 165-174
FORTRAN CH) 174-206

load module execution 206-234
operator 235

MODE subparameter 33
Model 91 considerations 246-247
Model 195 considerations 246-247
MSGCLASS parameter 22
MSGLEVEL parameter 21
MXIG subparameter 66

NAME compiler option 44
NCAL

linkage editor option 52
loader option 58

Nine-track tape density 68
NL subparameter 66
NODECK compiler option 45
NOEDIT compiler option 47
NOID compiler option 45
NOLET loader option 58
NOLIST compiler option 44
NOLOAD compiler option 45
NOMAP

compiler option 45
loader option 58

NOPRINT loader option 59
NOSOURCE compiler option 45
NOXREF compiler option 47

Object module card deck 111
Object module deck structure 115-116
Object module listing 110
Operating System/360, overview of 13-15
Operator intervention, avoiding 66
Operator messages 235
OPT compiler option 45
OPTCD subparameter

chained scheduling considerations
69,100

specification 69
Optimization, channel 105
Optimization, compiler 45,240-245
Optimization facilities, FORTRAN CH)

254

COMMON block considerations 243
common expression elimination 242
EQUIVALENCE statement considerations

243
induction variables 242
loop considerations 241-242
multidimensional arrays 243-244
program structure 244
programming considerations 240
register allocation 243

Option table
accessing entries from 132-133
altering 132-133,135-136
considerations 135
creating 135-136
default values 135,139
description of 131-132
description of entries 131-132

Options
compiler 26-27,43-47

FORTRAN (G)
BCD 45
DECK 45
EBCDIC 45
ID 45
LINECNT 44
LIST 44
LOAD 45
MAP 45
NAME 44
NODECK 45
NOID 45
NOLIST 44
NOLOAD 45
NOMAP 45
NOSOURCE 45
SOURCE 45

FORTRAN (H)
BCD 45
DECK 45
EBCDIC 45
EDIT 47
ID 45
LINECNT 44
LIST 44
LOAD 45
MAP 45,110
NAt-"iE 44
NODECK 45
NOEDIT 47
NOID 45
NOLIST 44
NOLOAD 45
NOMAP 45
NOSOURCE 45
NOXREF 47
OPT 45
SIZE 45
SOURCE 45,108
XREF 47

·linkage editor 26-27,52
LET 52
LIST 52
MAP 52,117-118
NCAL 52
XREF 52,118

loader
CALL 58
EP 59
LET 58
MAP 58
NOCALL 58
NOLET 58
NOMAP 58
NOPRINT 59
PRINT 59
SIZE 58

overlay processing, linkage editor
LET 130
LIST 130
MAP 130
OVLY 130
XCAL 130
XREF 130

OR function 99
OUT subparameter 66,67
Output

compiler 108-117
linkage editor 117-118
load module 119-121
loader 121
system 108-121

Output stream 67
Overflow

exponent 208,246
fixed-point 96,208

overlay feature
(see Linkage Editor)

OVERLAY statement 128,51
OVLY linkage editor overlay processing
option 130

Paths, overlay 123-125
Parameters

keyword 17
positional 17

Parity 69
PARM parameter 26-27
Partitioned data sets 55-56,63

(see also Data sets)
PASS specification 36
PASSWORD parameter 66
PAUSE statement 120,235
PDUMP subroutine 96-97
PGM parameter 25-26,52
Positional parameters 17
PREFACE macro instruction 135,136
PRINT loader option 59
Priority

dispatcher 29
loader 58

Priority schedulers
account number relationship 19
definition 16

PRIVATE keyword 64
Private volumes 64
PROC parameter 25
Procedures, cataloged

definition of 14
for FORTRAN (G)

compile 79,80
compile and linkage edit 79-80,81
compile and load 82,90
compile, linkage edit, and execute

81
FORTGC

control statements 80
function 14,38
invoking of 38

FORTGCL
control statements 81
function 14,39
invoking of 39

FORTGCLD
control statements 84
function 14,40
invoking of 40

FORTGCLG
control statements 83
error codes 21
function 14,40
invoking of 40

FORTGLG
control statements 81
function 14,39
invoking of 39

linkage edit and execute 80
overriding 83-86
user-written 82-83

for FORTRAN (H)

compile 87
execute 88-89
FORTHC

control statements 88
function 14,38
invoking of 38

FORTHCL
control statements 89
function 14,39
invoking of 39

FORTHCLD
control statements 92
function 14,40
invoking of 40

FORTHCLG
control statements 91
error codes 21
function 14,40
invoking of 40

FORTHLG
control statements 91
function 14,39
invoking of 39

linkage edit 88
load 90
overriding 90-94
user-written 90
invoking 14
modifying 14
names 14

Processing efficiency, increasing 99-100
Program interrupt messages 206-209,120
Program interruption exit routine,

Model 91 246
Model 195 246

programmer name 19
PRTY parameter 22

RECFM subparameter
DD statement considerations 100
specification 69

Record chaining 101-102
REF subpararneter 64
REGION parameter

in EXEC statement 28-29
in JOB statement 22-23

REPLACE statement 51
Requirements, system 95
Restrictions

BACKSPACE statement 56

Index 255

compiler 104
DEN subparameter 68

RETAIN keyword 64
RETPD subparameter 60,67
RETURN i simulation 160
REWIND statement 56
RLD card 115
RLSE subparameter 65

save area 154
SAVE macro instruction 119
scalar variables 108
SDW <segment Descriptor Word)
Segment descriptor word CSDW)
segments, overlay 122-123
sense lights 96
SEP parameter 105
Separation, channel 105
Sequential schedulers

account number relationship
definition 16

SER subparameter 64
SETENT macro instruction 136
seven-track tape conversion 69
seven-track tape density 68
SIZE compiler option 46
SIZE option <loader) 55
SL subparameter 66
SOURCE compiler option 45,108
source listing 108
SPACE parameter

for direct-access data sets
specification 62,106

Spanned records 76
spanning 16
SPLIT parameter 107
Split cylinders 107
STACK subparameter 33
stacker selection 33
statistics, compiler 174
STEPLIB 30
STOP statement

71,72
71,72

19

65,106

operator message 235,120
prograinming considerations 96

Storage locations
bytes 95
doublewords 95
words 95

Storage map 108-110,121
Storage requirements for compiler 28,46
Structured source listing 47,116-117
SUBALLOC parameter 60,107
SUBCHK option 238
Subprograms, assembler language

argument list 154
calling sequence 154
example of 161
linkage conventions 156,,158
RETURN i simulation 160
save area 154
subroutine references 154

SUBTRACE option 238
SYSABEND ddname

256

as abnormal termination dump data set
30

device requirements 42
£unction 42
possible device class 43

SYSCP device class 42
SYSDA device class 42
SYSIN ddname

DCB assumptions for, CH) compiler 44
device requirements 42
function 42
load module execution, assumptions
for 77

possible device class 43
record length, CH) compiler 70

SYSLIB ddname 49
SYSLIN ddname

DCB assumptions for, CH) compiler 44
device requirements 42,49
in example 51
function 42,49
load module execution, assumptions
for 77

possible device classes 43
record length, CH) compiler 70

SYSLMOD ddname 49,50
SYSLOUT ddname 58
SYSOUT parameter 34,67
SYSPRINT ddname

DCB assumptions for, CH) compiler 44
device requirements 42,49
function 42,49
load module execution, DCB assumptions
for 77

possible device class 43,49-50
record length 70

SYSPUNCH ddname
device requirements 42
function 42
load module execution, DCB assumptions
for 77

possible device class 43
record len~th 70

SYSSQ ddname 43
System output 108-121
System requirements 95
SYSUDUMP ddname

as abnormal termination data set 30
device requirements 42
function 42
possible device class 43

SYSUT1 ddname
DCB assumptions for, CH) compiler 44
device requirements 42,49
function 42,49
possible device class 43,50
use with EDIT option 47,87

SYSUT2 ddname
DCB assumptions for, CH> compiler 44
device requirements 42
function 42
possible device class 43
use with XREF option 47,87

SYSl.FORTLIB 14,48
SYSl.LINKLIB

concatenating with 30
with PGM parameter 52
as system library 25

Tape density 68
Tape units 237

Time limits, setting of 28
TIME parameter 28
TRACE option 238
Traceback

without extended error handling
facility 119-120

map 119-120
obtaining 133
sample of 120

Translation from BCD 69
TRK subparameter 65,106
TRTCH subparameter 69
TXT card 115

Unblocked records
with FORMAT control 71
without FORMAT control 74

UNCATLG specification 37
Undefined records 72
Underflow, exponent 209,246-247
UNIT option 238
UNIT parameter

dedicated work data sets 60
explanation 33
unit types 237

Unit record data sets 33
Unit record equipment 237
Utility data sets

dedicated 59-60
partitioned 47,87

Variable-length records 71,72
Variables, object-time representation of

160-164
VOL parameter 64
VOLUME parameter 64
Volume-count specification 64
Volume-sequence-number specification 64
Volumes, program 64

Warning messages
compiler

FORTRAN (G} 165-172
FORTRAN (H} 176-206

extended error handling 176-206
load module execution 209-234
operator 235

Work data sets
dedicated 59-60
partitioned 47,87

XCAL linkage editor overlay processing
option 130

XREF
compiler option 47,87,116
linkage editor option 52,118
overlay processing options, linkage
editor 130

7-track tape conversion 69
7-track tape density 68
9-track tape density 68

Index 257

GC28-6817-4

International Business Machines Corporation
Data Processing Dlvl•lon ·
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(lntematlonal)

H
<:

"'d .
G'l .

.
::t:" .
8
"' 00
I

°' 00

-..J
I

.(:::"

