Program Product

IBM

IBM OS FORTRAN IV (H Extended) Compiler Programmer's Guide

Program Product

IBM OS FORTRAN IV (H Extended) Compiler Programmer's Guide

Program Numbers: 5734-FO3 5734-LM3

This publication describes the steps to compile, link edit, and execute a FORTRAN IV program using the FORTRAN IV (H Extended) compiler, an IBM Program Product that operates under the control of the operating system. The methods of invoking each step, input to the steps, and output from the steps, are detailed. In addition, compiler options, features of the operating system used by the FORTRAN programmer, and practices for coding more efficient FORTRAN programs are discussed.

This publication is directed to programmers familiar with the FORTRAN IV language. Previous knowledge of the operating system is not required.

Information in this publication pertaining to OS/VS2 is for planning purposes until that product is available.

Second Edition (June 1972)

This edition corresponds to Release 1 of the FORTRAN IV (H Extended) Compiler.

Changes are periodically made to the specifications herein; any such changes will be reported in subsequent revisions or Technical Newsletters.

Requests for copies of IBM publications should be made to your IBM representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form has been removed, comments may be addressed to IBM Corporation, Programming Publications, 1271 Avenue of the Americas, New York, New York 10020.

© Copyright International Business Machines Corporation 1971

Summary of Amendments

Number 1

Date of Publication: June, 1972 Form of Publication: Revision, SC28-6852-1

OS/VS Information Added

New: Programming and Documentation

The use of the FORTRAN IV (H Extended) compiler with OS/VS1 and OS/VS2 is described. A brief overview of the virtual storage concept has been added to the Introduction, and the section "Using Job Control Statements" has been updated to include descriptions of the VS REGION and ADDRSPC parameters of the JOB and EXEC statements and the VS COPIES, DLM, and SYSOUT parameters of the DD statement. The ORDER and PAGE control statements of the linkage editor are discussed in the "Linkage Editor and Loader" section. In addition, publication references throughout the text have been revised to include the appropriate OS/VS publications.

ERRSET Description Expanded

Maintenance: Documentation Only

The description of the inomes option of the ERRSET subroutine of the Extended Error Handling Facility has been expanded to explain how an unlimited number of error messages may be printed.

Compiler System Requirements Information Removed

Maintenance: Documentation Only

Information about the system requirements of the FORTRAN IV (H Extended) compiler has been removed from the "Programming Considerations" section. This information can be found in the publication OS FORTRAN IV (H Extended) Installation Reference Material, Order No. SC28-6861.

Descriptions of SPLIT and SUBALLOC Removed

Maintenance: Documentation Only

Information pertaining to the SPLIT and SUBALLOC parameters of the DD statement has been removed from the section "Using Job Control Statements." Detailed descriptions of these parameters can be found in the job control language reference publications listed in the Preface.

System/360 Dependence of Some Direct Access Units Noted

Maintenance: Documentation Only

The use of the 2303, 2311, and 2321 direct access units with System/360 machines only is indicated in Appendix C: Unit Types.

Description of XCAL Removed

Maintenance: Documentation Only

Information pertaining to the XCAL option of the linkage editor has been removed from the section "Linkage Editor and Loader." A detailed description of this option can be found in the linkage editor and loader publications listed in the Preface.

Asynchronous I/O Information Expanded

Maintenance: Documentation Only

Added information includes the fact that blocked records may not be used with asynchronous I/O, that a BUFNO specification of three buffers in a DCB parameter is limited to asynchronous I/O only, and that a user-exit routine cannot perform any asynchronous I/O operation, even if the error involved was not caused during asynchronous I/O processing.

SIZE Option Information Expanded

Maintenance: Documentation Only

The use of the SIZE option of the PARM parameter of the JOB or EXEC statements to reduce the amount of storage required by the compiler in a multitasking environment is explained. The restriction that SIZE may not be specified on a *PROCESS card is noted.

OPTIMIZE(2) Information Expanded

Maintenance: Documentation Only

The explanation of computational reordering results under OPTIMIZE(2) in the section "Programming Considerations" is expanded.

Editorial changes having no technical significance are not noted here.

Specific changes to the text as of this publishing date are indicated by a vertical bar to the left of the text. These bars will be deleted at any subsequent republication of the page affected.

This publication describes the use of the operating system and the FORTRAN IV (H Extended) compiler to process programs written in the FORTRAN IV language. The FORTRAN IV language is described in the publication <u>IBM System/360 and System/370:</u> <u>FORTRAN IV Language</u>, Order No. GC28-6515.

This publication is designed for FORTRAN users having various programming needs. The programmer who wants to process a FORTRAN program using the compiler and wants to interpret the output should read the introduction and the first section "How to Submit a FORTRAN Program" in "Part I--Job Input." The introduction explains system concepts to help the programmer understand how the compiler and other operating system resources process a FORTRAN program and also describes the forms of program output. The section "How to Submit a FORTRAN Program" describes in greater detail how a program is processed under control of the operating system.

The remainder of the publication is directed to programmers who required detailed reference material regarding the operation of the compiler and its facilities.

The publication is organized as follows:

- <u>Introduction</u>. The introduction provides an overview of the operating system and how it interacts with the compiler during the processing of a FORTRAN program. Job control language, cataloged procedures, data sets and libraries, and program output are described. The information contained in the introduction is covered in greater detail in subsequent sections.
- <u>Part I--Job Input</u>. Part I describes how a FORTRAN program is processed under control of the operating system. The first section summarizes how a FORTRAN program may be submitted for processing. The remaining sections describe job control language; the three steps in processing a FORTRAN program (compiling, link editing, and executing a load module); and IBM-supplied cataloged procedures.
- <u>Part II--Job Output</u>. Part II describes the output from each step in FORTRAN processing and includes examples of both operating system and FORTRAN program output.

- Part III--Programming Techniques. Part III deals with program efficiency. The first section describes programming considerations for designing and coding more efficient FORTRAN programs. The remaining sections describe such facilities as the compiler automatic precision increase (API) facility, the linkage editor overlay feature, and the load module extended error handling facility.
- <u>Appendixes</u>. The appendixes describe sample FORTRAN programs; the use of assembler language subprograms; the input/output units available with System/360 and System/370; and the carriage control characters available to the FORTRAN programmer.

The FORTRAN programmer using the FORTRAN IV (H Extended) compiler and the FORTRAN IV library (Mod II) should be familiar with the information in the following publications:

IBM System/360 and System/370 FORTRAN IV Language Order No. GC28-6515

OS FORTRAN IV Library Mathematical and Service Subprograms Order No. GC28-6818

OS FORTRAN IV Mathematical and Service Subprograms Supplement for Mod I and Mod II Libraries Order No. SC28-6864

OS_FORTRAN_IV_(H_Extended)_Compiler and FORTRAN_IV_Library (Mod_II)_Messages Order No. SC28-6865

Information about the job control language can be found in the following publications:

OS/MFT and OS/MVT Job Control Language Reference, Order No. GC28-6704

OS/VS_Job_Control_Language_Reference, Order No. GC28-0618

Information about IBM-supplied utility programs can be found in the following publications:

OS/MFT and OS/MVT Utilities, Order No. GC28-6586

OS/VS Utilities, Order No. GC35-0005

Information about the linkage editor and loader programs can be found in the following publications:

OS/MFT and OS/MVT Linkage Editor and Loader, Order No. GC28-6538

OS/VS Linkage Editor and Loader, Order No. GC26-3813

Information about debugging techniques can be found in the following publications:

OS/MFT and OS/MVT Programmer's Guide to Debugging, Order no. GC28-6670

OS/VS1 Debugging Guide, Order No. GC24-5093

OS/VS2 Debugging Guide, Order No. GC28-0632 Information about assembler language programming can be found in the following publications:

OS/MFT and OS/MVT Assembler Language, Order No. GC28-6514

OS/VS Assembler Language, Order No. GC33-4010

OS/MFT and OS/MVT Assembler Programmer's Guide, Order No. GC26-3756

OS/VS Assembler Programmer's Guide, Order No. GC33-4021

Information about System/360 and System/370 machine characteristics can be found in the following publications:

IBM System/360 Principles of Operation, Order No. GA22-6821

IBM System/370 Principles of Operation, Order No. GA22-7000

INTRODUCTION	11 11
Processing Programs	11
Problem Programs	12
Processing A Fortran Program	12
	12
	13
Compile Only (More Than One Source	10
	13
Module)	13
Compile, Link Edit, and Execute	13
	$\frac{13}{13}$
	14
Data Sets	14
	14
	14
	14
	15
User Data Sets	15
Cataloged Data Sets	15
	15
	16
User Libraries	16
Program Output	16
PART I JOB INPUT	17
SUBMITTING A FORTRAN PROGRAM	19
Defining Private Data Sets	21
USING JOB CONTROL STATEMENTS	22
Syntax For Parameter Description	
	23
	23 24
JOB Statement	
JOB Statement	24
JOB Statement	24 25
JOB Statement	24 25 25
JOB Statement	24 25 25 2 7
JOB Statement	24 25 25 2 7
JOB Statement	24 25 25 27 27
JOB Statement	24 25 25 27 27 27
JOB Statement	24 25 25 27 27 27 27
JOB Statement	24 25 27 27 27 27 28 28
JOB Statement	24 25 25 27 27 27 28 28 28 28
JOB Statement	24 25 25 27 27 27 28 28 28 28 28 28
JOB Statement	24 25 25 27 27 27 28 28 28 28 28 28 29 29
JOB Statement	24 25 25 27 27 27 28 28 28 28 28 29 29 30
JOB Statement	24 25 25 27 27 27 28 28 28 28 28 28 29 29
JOB Statement	24 25 27 27 27 28 28 28 28 29 30 32
JOB Statement	24 25 25 27 27 27 28 28 28 28 29 30 32 32 32
JOB Statement	24 25 25 27 27 27 27 28 28 28 29 29 30 32 32 32 34
JOB Statement	24 25 25 27 27 27 28 28 28 28 29 30 32 32 32
JOB Statement	24 25 25 27 27 27 28 28 28 29 30 32 32 32 33 4 35
JOB Statement	24 25 25 27 27 27 28 28 28 29 30 32 32 32 33 4 35 35
JOB Statement	24 25 25 27 27 27 28 28 28 29 30 32 32 32 33 4 35
JOB Statement	24 25 25 27 27 27 28 28 28 29 30 32 32 32 32 32 33 5 35
JOB Statement	24 25 25 27 27 27 28 28 28 29 30 32 32 32 33 4 35 35
JOB Statement	24 25 25 27 27 27 28 28 28 29 30 32 32 32 32 33 5 35 35 35 36
JOB Statement	24 25 25 27 27 27 28 28 28 29 30 32 32 32 32 32 33 5 35
JOB Statement	24 25 25 27 27 28 28 29 30 32 32 33 35 35 36 36
JOB Statement	24 25 25 27 27 28 28 29 30 32 32 33 35 35 36 36 36
JOB Statement	24 25 25 27 27 28 28 29 30 32 32 33 35 35 36 36

Naming a DD Statement	. 42
Data Set Logation	42
Data Set Location	• 42
Data Set Identification	• 43
Data Set Disposition	. 44
Assigning a Data Set to an	
Input/Output Device	. 46
Assigning Space to a Data Set on a	
Direct Access Volumo	. 47
Direct Access Volume	
	. 47
	. 48
Defining Record Characteristics .	. 49
COMPILATION	. 53
Compiler Options	53
Changing Program Options During a	. 55
	сc
Batch Compilation	. 55
	. 55
Data Sets Defined in Cataloged	
Procedures	. 55
Data Sets That Must Be Defined by	
the Programmer	. 56
	. 50
LINKAGE EDITOR AND LOADER	58
Choosing the Proper Linkage Program .	. 58
Link Edit Job Step	. 58
Linkage Editor Options	58
Linkage Editor Data Sets	. 59
Data Cata Defined in Cataland	
Data Sets Defined in Cataloged	
Procedures	. 59
Data Sets That Must Be Defined by	
the Programmer	. 60
	60
Secondary Input	61
Linkara Editor Control Chatamanta	
Linkage Editor Control Statements	, ot
Ordering and Page-Aligning Program	
Units Under OS/VS	62
System Loader	. 63
Loader Options	
	65
Data Sets Defined in Cataloged	. 05
Data Sets Defined in Cataloged	
Procedures	. 65
Data Sets That Must be Defined by	
the Programmer	. 66
5	
LOAD MODULE EXECUTION	. 67
LOAD MODULE EXECUTION	67
Load Module Data Sets	. 0/
Data Sets Defined in Cataloged	
Procedures	. 67
Data Sets That Must Be Defined by	
the Programmer	
Sequential Data Sets	. 68
	. 68
Domtitioned Doto Coto	68
Partitioned Data Sets	68 70
Retrieving More Than One Member .	68 70 70
	68 70
Retrieving More Than One Member Deleting One Member	68 70 70
Retrieving More Than One Member Deleting One Member Direct-Access Data Sets	68 70 70 71 71
Retrieving More Than One Member Deleting One Member Direct-Access Data Sets DCB Parameter Considerations	68 70 70 71
Retrieving More Than One Member Deleting One Member Direct-Access Data Sets DCB Parameter Considerations DCB Considerations for Sequential	68 70 70 71 71 71
Retrieving More Than One Member Deleting One Member Direct-Access Data Sets DCB Parameter Considerations DCB Considerations for Sequential EBCDIC Data Sets	68 70 70 71 71
Retrieving More Than One Member Deleting One Member Direct-Access Data Sets DCB Parameter Considerations DCB Considerations for Sequential	68 70 70 71 71 71
Retrieving More Than One Member Deleting One Member Direct-Access Data Sets DCB Parameter Considerations DCB Considerations for Sequential EBCDIC Data Sets	68 70 70 71 71 71
Retrieving More Than One Member Deleting One Member Direct-Access Data Sets DCB Parameter Considerations DCB Considerations for Sequential EBCDIC Data Sets DCB Considerations for ASCII Data	68 70 70 71 71 71 71 71
Retrieving More Than One Member Deleting One Member Direct-Access Data Sets DCB Parameter Considerations DCB Considerations for Sequential EBCDIC Data Sets DCB Considerations for ASCII Data Sets	68 70 70 71 71 71 71 71

IBM-SUPPLIED CATALOGED PROCEDURES . . . 81 Cataloged Procedure Restrictions . . . 81 FORTRAN PROCESSING Cataloged Procedures 81 Symbolic Parameters and the PROC Executing the Load Module 90 Modifying Cataloged Procedures 90 Modifying PROC Statements 90 Modifying EXEC Statements 91 Modifying DD Statements 91 PART II -- JOB OUTPUT 95 Compiler Output With Default Options . 99 Informative Messages 99 Compiler Output With Programmer-Specified Options 101 Edited Source Module Listing 105 LINKAGE EDITOR AND LOADER OUTPUT 108 Procedure-Specified Options 108 Error Code Diagnostic Messages111 PART III -- PROGRAMMING TECHNIQUES . . .119 Asynchronous Input/Output Programming COMMON and EQUIVALENCE Statements Data Initialization Statement --Direct-Access Input/Output

Input/Output Statements --Job Control Language Considerations . . 129 Using Pre-allocated Data Sets130 FORTRAN Library Considerations130 Extended-Precision Subroutines 131 Compiler Storage Requirements . . .131 Boundary Alignment Considerations .133 Using Names Recognized by the Compiler as Generic or an Alias . .133 AUTOMATIC PRECISION INCREASE FACILITY .134 Programming Considerations With API .138 Effect on COMMON or EQUIVALENCE Data Values Effect on Literal Constants 139 Effect on Programs Calling Effect on FORTRAN Library Subprograms Effect on CALL DUMP or CALL PDUMP Effect on Direct-Access Input/Output Processing 140 Effect on Asynchronous Input/Output Effect on Unformatted Input/Output Effect on the Storage Map 140 Designing a Program for Overlay141 Communicating Between Segments 143 Construction of the OVERLAY Program . .146 Linkage Editor Control Statements . .146 Linkage Editor OVERLAY Options 148

EXTENDED ERROR HANDLING FACILITY 154
Functional Characteristics
Subprograms for the Extended Error
Handling Facility
ERRSAV Subroutine
ERRSTR Subroutine
ERRSET Subroutine
ERRTRA Subroutine
User-Supplied Error Handling
User-Supplied Exit Routine 161
Option Table Considerations
Considerations for the Library
Without Extended Error Handling
Facility
APPENDIXES
APPENDIX A: EXAMPLES OF JOB PROCESSING .173
APPENDIX B: ASSEMBLER LANGUAGE
SUBPROGRAMS
Subroutine References
Argument List
Save Area
Calling Sequence
Coding the Assembler Language
Subprogram

Coding a Lowest Level Assembler	
Language Subprogram	181
Higher Level Assembler Language	
Subprogram	181
In-Line Argument List	. 183
	183
Retrieving Arguments From the Argument	
List	183
RETURN i in an Assembler Language	100
Subprogram	184
Object-Time Representation of FORTRAN	101
Variables	184
INTEGER Type	
REAL Type	
COMPLEX Type	
	188
DOLCAT LAbe	100
APPENDIX C: UNIT TYPES	189
Tape Units	
Direct Access Units	
Unit Record Equipment	
Graphic Units	189
APPENDIX D: AMERICAN NATIONAL STANDARD	
CARRIAGE CONTROL CHARACTERS	190
INDEX	191

Figure I-1. Submitting FORTRAN Programs Through Cataloged Procedures . 19 Figure I-2. Job Control Statement Figure I-4. Sample JOB Statements . . . 25 . . 30 Figure I-5. EXEC Statement Format Figure I-6. Sample EXEC Statements . . 32 Figure I-7. DD Statement Format 37 Figure I-8. Sample DD Statements . . . 38 Figure I-9. Compiler Options 56 Figure I-10. Linkage Editor Options . . 58 Figure I-10.1. Ordering and Aligning Program Units on Page Boundaries • • • 63 Figure I-11. Linkage Editor •••••••• Processing Figure I-12. Loader Options 65 Figure I-13. Defining Unit Record . Data Sets 69 Figure I-14. Creating EBCDIC Sequential Data Sets on Tape or Direct Access Volumes • • • 69 Figure I-15. Retrieving Sequential Figure I-17. Creating Partitioned Data Sets 70 Figure I-18. Retrieving Partitioned Figure I-20. Creating a Direct-Access Direct-Access Data Set ••••••• Figure I-22. EBCDIC Sequential Data Sets--Structure of Formatted Records . . 75 Figure I-23. EBCDIC Sequential Data Sets--Structure of Unformatted Records . 76 Figure I-24. ASCII Data Sets --Structure of Records 78 Figure I-25. Direct-Access Data Sets--Structure of Records 80 Figure I-26. Cataloged Procedure Figure I-28. Cataloged Procedure Figure I-29. Cataloged Procedure FORTXG • • • • • • • • • • • • • 86 Figure I-31. Cataloged Procedure Figure I-34. Effect of PROC Statement

Figure I-35. Submitting Modifications to a Cataloged Procedure 93 Figure II-1. Sample Program as Coded . 97 Figure II-2. Sample Program as Keypunched 98 Figure II-3. Compiler Printed Output Figure II-5. Compiler Output from Figure II-6. Object Module Deck Storage Map for COMMON/EQUIVALENCE Blocks Figure II-8. Linkage Editor Output From Procedure-Specified Options . . . 109 Figure II-9. Loader Output .110 Figure II-10. Load Module Output with Figure II-11. Partial Object Code Statement as Coded and as Keypunched .114 Figure II-13. Program Interrupt Figure II-14. Operator Message Format 116 Figure III-3. Storage Structure Using Figure III-4. A FORTRAN Program Figure III-5. Time/Storage Map of Program Described in Figure III-4 . . .141 Figure III-6. Overlay Tree Structure of Program Described in Figure III-4 . . .142 Figure III-7. Overlay Paths Implied by Tree Structure in Figure III-6 142 Figure III-8. Overlay Tree Structure Figure III-9. Overlay Paths Implied by Tree Structure in Figure III-8 . . .143 Figure III-10. Overlay Configuration of Program Described in Figure III-8 . . .144 Figure III-11. Communication Between Figure III-12. Overlay Program Before Automatic Promotion of Common Areas . .145 Figure III-13. Overlay Program After Automatic Promotion of Common Areas . .145 Figure III-14. Linkage Editor Overlay Figure III-16. Link Edit Overlay Output -- Link Edit Job Step152

Figure III-17. Linkage Editor Overlay	Figure A-5. Block Diagram for Example
Output Load Module Execution Job	3
Step	Figure A-6. FORTRAN Coding for
Figure III-18. Sample Program Using	Example 3
the Extended Error Handling Facility .162	Figure A-7. Job Control Statements
Figure III-19. Option Table Preface164	for Example 3
Figure III-20. Option Table Entry165	Figure A-8. Save Area Layout and Word
Figure A-1. Input/Output Flow for	Contents
Example 1	Figure A-9. Linkage Conventions for
Figure A-2. Job Control Statements	Lowest Level Subprogram
for Example 1	Figure A-10. Linkage Conventions for
Figure A-3. Input Flow for Example 2	Higher Level Subprogram
	Figure A-11. In-Line Argument List183
Figure A-4. Job Control Statements	Figure A-12. Assembler Subprogram
for Example 2	Example

TABLES

Table I-1.Job Control StatementFunctions	Table III-1.Built-In Functions Substitution of Single and DoublePrecision
--	--

A program written for the FORTRAN IV (H Extended) compiler is processed under control of the IBM System/360 Operating System. The compiler is a program product included as part of the operating system in a process called <u>program installation</u>. The operating system consists of a <u>control</u> <u>program</u> and a number of <u>processing programs</u> that perform operations on <u>problem</u> <u>programs</u>.

CONTROL PROGRAM

The control program supervises the execution of the operating system and provides services required by all other programs. One of four control programs may be specified for use with the FORTRAN IV (H Extended) compiler: <u>Multiprogramming</u> with a Fixed Number of Tasks (MFT), <u>Multiprogramming with a Variable Number of</u> <u>Tasks</u> (MVT), and the virtual storage control programs VS1 and VS2. Each control program may handle up to 15 concurrently operating programs, and each control program has these major functions:

- The <u>supervisor</u> is the control center of the operating system and coordinates all activity within it.
- The job scheduler reads and analyzes the input job stream (control statements and data entering the system), allocates input/output devices as necessary, initiates the execution of programs, and provides a record of the work processed.
- 3. <u>Data management routines</u> control input/output operations, regulate the use of input/output devices after the job scheduler allocates them, and provide access to the data held in them.
- The MFT and VS1 control programs divide computer storage into areas of fixed sizes called <u>partitions</u>. Data entering the system is directed to these partitions on a priority scheduling basis; that is, data is not processed in the order in which it is encountered in the input stream but according to a priority code assigned by the user.

The MVT and VS2 control programs, like MFT and VS1, process data on a priority scheduling basis, but direct it to storage areas of variable sizes, called <u>regions;</u> each user indicates the amount of storage he needs.

VS1 is the virtual storage version of MFT, and VS2 is the virtual storage version of MVT. Both VS control programs provide the same services as their non-relocatable counterparts, but the partitions (VS1) and regions (VS2) to which job steps are directed are represented in virtual, rather than real, storage. Virtual storage is the name given to the address space that appears to the user as real (main) storage and from which instructions and data are mapped into real storage locations. The size of virtual storage is limited by the addressing range of the computing system, not the number of real storage locations. (Under OS/VS the term real storage is used to designate the physical main storage of System/370 rather than its complete addressing range.)

Virtual storage is provided by space on direct access storage devices (DASDs) and implemented by a combination of the Dynamic Address Translation (DAT) hardware feature of System/370 (often called the "relocate" feature) and the paging function provided by the OS/VS control programs. The contents of virtual storage are formatted into 2048 byte blocks (VS1) or 4096 byte blocks (VS2). These blocks are called pages. During execution of a program, the hardware system translates each virtual storage address into a corresponding real storage address that designates a physical location. The translation process actually amounts to relocation by a value that is a multiple of one page. The VS control program manages the transfer of pages between auxiliary storage and real storage. The number of pages that may reside in real storage at any given time depends on the amount of real storage available. The VS control programs enable the central processing unit to execute programs residing in virtual storage without moving all of the pages into real storage concurrently.

PROCESSING PROGRAMS

Processing programs perform specific tasks, such as language translation, link editing, loading, sorting and merging, and various utility functions. <u>Language translators</u>, or <u>compilers</u>, include FORTRAN, COBOL, and PL/I. The <u>linkage editor</u> and the <u>loader</u> programs combine many programs into one executable unit. <u>Sort and merge</u> programs sequence data into ordered formats prior to further processing. <u>Utility programs</u> provide the ability to create, print, duplicate, and reformat collections of data.

Processing programs of special concern to the FORTRAN programmer are the FORTRAN IV (H Extended) compiler, which translates FORTRAN statements into executable instructions; the linkage editor, which combines the FORTRAN program with subroutines from the FORTRAN library or user libraries with other routines required by the system; and the loader, which combines a number of programs and subprograms as does the linkage editor and then executes the resulting program.

PROBLEM PROGRAMS

Problem programs are written by the user for the creation and maintenance of files, creation of reports, solution of problems, or for whatever use the user wishes to make of the computer (for instance, a FORTRAN program, designed to do some particular work). Before it can do its work, however, the FORTRAN program must be processed by the operating system.

PROCESSING A FORTRAN PROGRAM

Three basic steps are taken to process a FORTRAN program: the compile step, the link edit step, and the load module execution (or go) step. The input to the compile step is the group of FORTRAN statements called a source module. The output from the compile step is a group of compiler-translated statements called an object module, which is the input to the link edit step. The output of the link edit step is the object module combined with other modules and is called the load module, the program that is executed in the go step. If the loader is used in place of the linkage editor, the last two steps (link edit and load module execution) are combined into one step.

Each step is termed a job step--the execution of one program. Each job step may be executed alone or in combination with other job steps as a job--an application involving one or more job steps. Hence, a job may consist of one step, such as FORTRAN compiler execution, or of many steps, such as compiler execution followed by linkage editor execution and load module execution.

The programmer defines the requirements of each job to the operating system <u>through</u> job_control_language_statements.

JOB CONTROL LANGUAGE STATEMENTS

A job control language statement is identified by the appearance of the characters // or /* in the statement's first two positions. The job control statements most often used by FORTRAN IV programmers are the JOB, EXEC, DD, delimiter, and null statements.

The JOB statement identifies the beginning of a job. It is required for each job, must be the first statement in a job, and must have a name to identify the job. It may also contain other information such as the programmer's name, accounting information, certain system options, and comments.

The EXEC statement identifies the beginning of a job step. It is required for each job step and must be the first statement in the step. The EXEC statement may be named to identify the step. The statement must specify the name of the program to be executed. It may also contain other information such as processor options and comments.

The DD statement defines a data set. A data set is an organized collection of records such as a source program, a set of input records, or a library of subprograms. The DD statement specifies information regarding a data set's characteristics, its location, its name, format of records contained in the data set, and the disposition to be made of the data set at the end of the job step.

The delimiter statement contains the characters /* in the first two positions and indicates the end of a data set contained on cards.

The null statement contains the characters // in the first two positions and indicates the end of the job. The remainder of the card must be blank.

The following examples illustrate the positioning of job control statements within a job for some of the combinations of FORTRAN processing.

Compile Only (One Source Module)

- // JOB Statement
- // DD Statements for compilation (as required)

Source module to be compiled

- /* Delimiter Statement (if source module is
- on cards)
 // Null Statement
- // Null Statement

Compile Only (More Than One Source Module)

- // JOB Statement
- // EXEC Statement (FORTRAN compiler)

Source module to be compiled

- // EXEC Statement (FORTRAN compiler)
- // DD Statements for compilation 2 (as required)

```
Source module to be compiled
```

- // EXEC statement (FORTRAN compiler)

Source module to be compiled

- // Null Statement

Compile and Link Edit

- // JOB Statement
- // EXEC Statement (FORTRAN compiler)
 // DD Statements for compilation (as
 required)

Source module to be compiled

- // EXEC Statement (Linkage Editor)
- // DD Statements for link editing (as required)
- // Null Statement

Compile, Link Edit, and Execute

- // JOB Statement
- // EXEC Statement (FORTRAN compiler)
- // DD Statements for compilation (as
 required)
 - Source module to be compiled
 - i_____i
- // EXEC Statement (Linkage Editor)
- // DD Statements for link editing (as
 required)
- // EXEC Statement (Load Module)
- // DD Statements for load module execution
 (as required)

Data input statements to be processed

- /* Delimiter Statement (if data input is on
- cards)
- // Null Statement

As these examples show, the same job control statements are used repeatedly. To save programming time and to reduce the possibility of error, IBM supplies sets of job control statements that the programmer may use in place of his own. Each set is given a name and is stored in a data set called the <u>procedure library</u>. The sets of statements are called <u>cataloged procedures</u>.

CATALOGED PROCEDURES

To retrieve a cataloged procedure from the library, the programmer specifies its name in an EXEC statement in place of a program name. The effect is the same as though the job control statements in the cataloged procedure appeared in the input stream in place of the EXEC statement that called it.

Note that a cataloged procedure does not execute a program; it merely supplies a set of job control statements. These statements must include appropriate EXEC statements naming programs to be executed.

IBM provides seven cataloged procedures for use with the FORTRAN IV (H Extended) compiler. They are:

- FORTXC, which includes one EXEC statement, to execute the compiler
- FORTXCL, which includes two EXEC statements, to execute the compiler and the linkage editor
- FORTXLG, which includes two EXEC statements, to execute the linkage editor and the load module

- FORTXCLG, which includes three EXEC statements, to execute the compiler, the linkage editor, and the load module
- FORTXCG, which includes two EXEC statements, to execute the compiler and the loader
- FORTXG, which includes one EXEC statement, to execute a load module
- FORTXL, which includes one EXEC statement, to execute the loader

In addition to EXEC statements, cataloged procedures contain DD statements to define data sets needed by each job step.

DATA SETS

A data set resides on one or more volume(s). A volume is a unit of external storage that is accessible to an input/output device. For example, a volume may be a magnetic tape, disk, drum, or data cell.

An input/output <u>device</u> is the piece of equipment that does the recording and/or the reading of data from the volume. For example, a device may be a tape drive or a disk drive.

Several input/output devices may be grouped together into a <u>device class</u> when the system is generated. A device class is referred to by a collective name. For example, the device class SYSDA may consist of all direct access devices in an installation; the device class SYSSQ may consist of magnetic tape and direct-access devices in an installation.

A data set may be a <u>system data set</u> or a <u>user data set</u>. A system data set is one used by the system; for example, to store an object module. A user data set is one defined by the programmer for a specific application; for example, to store intermediate results during program processing.

SYSTEM DATA SETS

System data sets are used in all three steps of FORTRAN processing.

Compiler Data Sets

Compiler data sets are defined in DD statements named SYSIN, SYSPRINT, SYSPUNCH, SYSLIN, SYSUT1, and SYSUT2.

- SYSIN specifies the primary input (the source module) to the compiler.
- SYSPRINT specifies the output data set used to write listings and messages.
- SYSPUNCH specifies the output data set used to punch cards or to write output in card image form.
- SYSLIN specifies the data set in which the object module was produced by the compiler.
- SYSUT1 and SYSUT2 specify utility data sets required by the compiler.

Linkage Editor Data Sets

Linkage editor data sets are defined in DD statements named SYSLIN, SYSPRINT, SYSLIB, SYSLMOD, and SYSUT1.

- SYSLIN specifes the data set in which the object module was created in a compile step and that is to be the input to the link edit step.
- SYSPRINT specifies the output data set used to write listings and messages.
- SYSLIB specifies the system data set, SYS1.FORTLIB, that contains IBM-supplied FORTRAN subprograms. The linkage editor uses this data set to include FORTRAN subprograms called by the compiler.
- SYSLMOD specifies the load module produced by the linkage editor.
- SYSUT1 specifies a utility data set required by the linkage editor.

Load Module Execution Data Sets

Load module execution data sets are defined by DD statements with names in the form FTxxFyyy, where xx is a <u>data set reference</u> <u>number</u> and yyy is a <u>sequence number</u>. A data set reference number may range from 01 to 99; a sequence number may range from 001 to 999. A data set reference number equates the data set defined in the DD statement to the data set referenced in the READ or WRITE statement in the source program. For example, the name FT08F001 describes the data set referenced by the READ statement:

READ (8, x)

IBM-supplied cataloged procedures contain DD statements named FT05F001, FT06F001, and FT07F001 which reserve data set reference number 5 for an input data set, 6 for a printer, and 7 for a card punch. All other data set reference numbers are available to the programmer for the definition of other data sets. These standards may be changed by the individual installation or they may be overridden by the programmer. The following discussion describes the data sets as specified in the IBM-supplied cataloged procedures.

FT05F001 defines the input data set. The FORTRAN programmer normally uses 5 as the data set reference number in the READ statement for input to his program.

FT06F001 defines the data set directed to the printer. The FORTRAN programmer uses 6 as the data set reference number in the WRITE statement for printed output.

FT07F001 defines the data set directed to the card punch. The FORTRAN programmer uses 7 as the data set reference number in the WRITE statement to direct output to the punch.

Loader Data Sets

Because the loader combines two job steps, it uses some of the same data sets as the linkage editor and the load module, such as SYSLIN, SYSLIB, FT05F001, FT06F001, and FT07F001.

In addition, it uses a DD statement named SYSLOUT to specify the output data set used to write loader output.

USER DATA SETS

<u>User data sets</u> are those which the user requires for his particular program. For example, the programmer must define data that will be created by a program or read from a previous program as a user data set. A user data set in FORTRAN may be one of three types: sequential, partitioned, or direct-access.

A <u>sequential data set</u> is one in which records are organized solely on the basis of their successive physical positions (i.e., arranged in sequential order). A sequential data set may reside on cards, tape, or a direct-access device. A FORTRAN source module is an example of a sequential data set.

A <u>partitioned data set</u> is one that is composed of groups of sequential data, each of which is called a <u>member</u>. Each member has a name stored in a <u>directory</u> that is part of the data set and that contains the location of each member's starting point. Partitioned data sets are used as <u>libraries</u> (data sets containing a number of programs). SYS1.FORTLIB, which contains FORTRAN subroutines, is an example of a partitioned data set.

A <u>direct-access data set</u> is one in which records may be accessed individually by specifying the position of the record within the data set. For example, if the 100th record of a sequential data set is needed, records 1 through 99 must be transmitted; record 100 of a direct-access data set can be accessed immediately. Records in a direct-access data set may be processed in FORTRAN only by direct-access I/O statements but may be processed in a sequential fashion through use of the associated variable in the direct-access statements. Direct-access data sets may reside only on direct-access devices. Α data set containing information on a department store's customers, arranged according to charge account numbers that may be accessed individually, is an example of a direct-access data set.

CATALOGED DATA SETS

Any partitioned or direct-access data set and any sequential data set not on cards, may be cataloged. A <u>cataloged data set</u> is one for which certain information describing the data set has been placed in an index called the <u>catalog</u>. When a data set is cataloged, the serial number of its volume is entered in the catalog together with the data set name, thereby providing a cross-reference. A programmer can subsequently refer to the data set without specifying its physical location. (The term cataloged data set should not be confused with cataloged procedure.)

LIBRARIES OF DATA SETS

A library is a partitioned data set containing a number of programs. Libraries supplied by IBM or the installation are system libraries; libraries created by the programmer are user libraries.

System Libraries

System libraries most useful to a FORTRAN programmer are SYS1.LINKLIB, SYS1.FORTLIB, and SYS1.PROCLIB.

SYS1.LINKLIB contains frequently-used programs, such as the FORTRAN compiler.

SYS1.FORTLIB contains FORTRAN subprograms used during FORTRAN processing.

SYS1.PROCLIB contains cataloged procedures and may contain user-written cataloged procedures as well as those supplied by IBM.

<u>User Libraries</u>

A user library is created by the programmer to serve a special application, such as storing frequently-used programmer-written programs. The programmer may adopt his own convention in naming his libraries.

A programmer creates a user library and adds programs or subprograms to it by defining it on a SYSLMOD DD statement of a linkage edit job step. He retrieves it through a DD statement named STEPLIB or JOBLIB. STEPLIB makes the library accessible during one step of a job; JOBLIB makes the library accessible for all steps of the job. When JOBLIB is specified, the DD statement must be placed immediately after the JOB statement to ensure that the library remains available for the duration of the job. The STEPLIB DD statement may appear anywhere among the DD statements within a job step.

PROGRAM OUTPUT

In addition to object and load modules, jobs produce other forms of output that

help the programmer analyze the job. The compile step informs the user of the success of the compilation by issuing messages, including a <u>severity code</u> for any error encountered. The following severity codes are associated with compilation messages:

- 0 to indicate an informational message; that is, no errors was detected
- 4 to indicate a warning message; that is, a possible minor syntactic error was detected
- 8 to indicate an error message; a syntactic error was detected
- 12 to indicate a serious error message; a serious syntactic error that prevents program execution was detected
- 16 to indicate an unrecoverable error message; compiler processing was terminated because of an error

Severity codes 0 and 4 require no action on the part of the programmer; the program may be executed. (Nevertheless, severity code 4 messages should be corrected.) The other codes require corrections before the program may be executed.

The compiler may also produce output, such as a card deck of the object module, a listing of the statements in an object module (pseudo-assembler listing), and a storage map that lists the names and storage locations of variables appearing in the object module.

The link edit step produces a map of the load module and may also produce a cross-reference listing that shows where the modules making up the program interrelate.

The load module step produces program output as required by the FORTRAN program and also produces any messages describing conditions encountered during execution. PART I -- JOB INPUT

SUBMITTING A FORTRAN PROGRAM

The simplest way to submit a FORTRAN program is by calling one of the cataloged procedures. The programmer calls a procedure by submitting:

- 1. A JOB statement
- 2. An EXEC statement that names the procedure
- The input to the operating system, such as the FORTRAN program to be compiled
- 4. A null statement at the end of the job

In addition, if the FORTRAN program is submitted in card deck form, the programmer must supply the following:

- A DD statement having the name SYSIN immediately preceding the card deck. The name SYSIN defines input data.
- A delimiter control statement immediately following the card deck to mark the end of card input.

Figure I-1 lists all the cataloged procedures for the FORTRAN IV (H Extended) compiler and an example in submitting card input for each of them.

Note that in Figure I-1, the DD statement named SYSIN may appear more than once within a job. The qualified name FORT.SYSIN defines the source module to the compile step (which is named FORT in cataloged procedures); the qualified name GO.SYSIN defines data records to be processed by the load module (go) step.

Cataloged Procedure Name	Function	Calling the Procedure
FORTXC	Compile	<pre>//jobname JOB // EXEC FORTXC //FORT.SYSIN DD * [FORTRAN source module] /* //</pre>
FORTXCL	Compile and Link Edit	<pre>//jobname JOB // EXEC FORTXCL //FORT.SYSIN DD * [FORTRAN source module] /* //</pre>
FORTXCLG	Compile, Link Edit and Execute	<pre>//jobname JOB // EXEC FORTXCLG //FORT.SYSIN DD * [FORTRAN source module] /* //GO.SYSIN DD * [Data] /* // mams Through Cataloged Procedures</pre>

(Part 1 of 2)

Cataloged Procedure Name	Function	Calling the Procedure
FORTXLG	Link Edit and Execute	//jobname JOB /// EXEC FORTXLG //LKED.SYSIN DD *
		first FORTRAN object module
		. last FORTRAN object module
İ		//GO.SYSIN DD *
		Data LJ
		/ * //
FORTXG	Execute	<pre>//jobname JOB //JOBLIB DD (parameters to describe library) // EXEC FORTXG //GO.SYSIN DD * [Data] [Data] //*</pre>
FORTXCG	Compile and Load	//jobname JOB // EXEC FORTXCG //FORT.SYSIN DD *
		FORTRAN source module
		/* //GO.SYSIN DD *
		Data
		/* //
FORTXL 	Load	//jobname JOB /// EXEC FORTXL //LKED.SYSLIN DD (parameters) //GO.SYSIN DD *
		Data LJ /*

Figure I-1. Submitting FORTRAN Programs Through Cataloged Procedures (Part 2 of 2)

The FORTRAN programmer should do one more thing before submitting a program for execution. If input and output data consist solely of cards and printer listing, he should code data set reference numbers for FORTRAN READ and WRITE statements as 5 and 6 respectively. Cataloged procedure FORTXCLG (and FORTXLG) contain DD statements that allocate the card reader to data set reference number 5 and the printer to data set reference number 6. The programmer need do no more than the foregoing to process a FORTRAN program. Use of the cataloged procedure FORTXCLG, as illustrated, enables the control program to read the source module, read the load module input data set, and write program output and system messages on the printer.

However, if the source module resides on some media other than cards (i.e., on tape or in a direct-access volume) or if the programmer needs specific data sets during program processing, he must make these private data sets available to the control program. To do this, he must define them in DD statements. The following discussion describes how to create and retrieve such data sets.

DEFINING PRIVATE DATA SETS

A private data set may be temporary or permanent. A <u>temporary data set</u> is one that is created and deleted in the same job; it is usually preferred when the programmer needs space temporarily to store data during program execution. The following is an example of a DD statement defining a temporary data set:

//GO.FT09F001 DD DSNAME=&&SET,UNIT=2311,
// SPACE=(TRK,(5,5))

The name GO.FT09F001 identifies a data set to be processed by the execute step and links the data set to FORTRAN READ and WRITE statements having 9 as the data set reference number. DSNAME=&&SET assigns the name set to the data set; the symbols && in the first positions signify a temporary data set. The UNIT parameter indicates that the data set is to reside on a 2311 device. SPACE indicates the amount of space allocated to the data set; space is allocated in number of tracks on the 2311 device, five tracks initially and five additional tracks each time the data set needs more space.

A <u>permanent data set</u> is one that is created and kept at the end of the job; it is defined when the data set is to contain information required in later jobs. To respecify the data set in the previous example as a permanent data set, the programmer may submit the following statement:

//GO.FT09F001	L DD DSNAME=SET, UNIT=2311,
11	SPACE=(TRK, (5, 5)),
11	VOLUME=SER=DA003,
11	DISP=(NEW, KEEP)

The DSNAME parameter names the data set without the && symbols in the first positions. The VOLUME parameter indicates that the data set is to reside on the disk pack having the serial number DA003. The VOLUME parameter is not mandatory when creating a data set; if it is omitted, the data set is assigned to any available volume. However, to retrieve the data set in a later job, the control program needs to know which volume to access. The DISP parameter indicates that the data set is new and is to be kept. The DISP parameter is mandatory; without it, the data set would be deleted at the end of the job.

To retrieve the data set SET in a later job, the programmer changes the DISP parameter from NEW to OLD; i.e.,

//GO.FT09F001 DD DSNAME=SET,UNIT=2311, // VOLUME=SER=DA003, // DISP=(<u>OLD</u>,KEEP)

OLD indicates that the data set existed prior to the job. (The underscore in these examples is for visual aid only and is not part of the statement coding.) Note that the SPACE parameter is not specified; it is used only when creating a data set. Note also that the UNIT and VOLUME parameters are repeated. The programmer can avoid repeating these parameters by cataloging the data set, that is, entering the data set's name and unit and volume information in the control program index. To catalog a data set, the programmer changes the DISP parameter from KEEP to CATLG, i.e.,

//GO.FT09F001 DD DSNAME=SET,UNIT=2311,
// VOLUME=SER=DA003,
// DISP=(OLD,CATLG)

Alternatively, the programmer may catalog the data set when he creates it, that is, DISP=(NEW,CATLG), is valid. After a data set has been cataloged, the programmer may retrieve it by specifying only the DSNAME and DISP parameters.

Finally, to delete the data set in a later job, the programmer changes the DISP parameter from CATLG (or KEEP) to DELETE, i.e.,

//GO.FT09F001 DD DSNAME=SET, // DISP=(OLD,DELETE)

DELETE indicates that the space occupied by the data set is to be released and made available for other uses at the end of the job.

The operating system contains many more options that can be specified in the job control language. The programmer may choose those options he needs to tailor the system's facilities to a particular application. The following sections describe some of those options and how he may use them. Job control statements provide a communications link between the FORTRAN programmer and the operating system. The FORTRAN programmer uses these statements to define a job, a job step within a job, and data sets required by the job. A full description of job control language can be found in the appropriate job control language reference publication, as listed in the Preface.

This section describes the job control statements most used by the FORTRAN programmer: the JOB, DD, EXEC, delimiter, comments and null statements. Another job control statement, the PROC statement, has a special application in FORTRAN processing; it assigns default values to program options specified in cataloged procedures. Because of its limited applicability to FORTRAN programs, the PROC statement is not further discussed in this section (see "IBM-Supplied Cataloged Procedures" for a discussion of this statement).

Job control statements are identified by the characters // in columns 1 and 2, except for the delimiter statement, which is identified by the characters /* in columns 1 and 2, and the comments statement, identified by the characters //* in columns 1, 2, and 3. The delimiter statement may contain optional comments preceded by one or more blanks. The null statement may contain only the two slashes; the remainder of the statement must be blank. The comments statement contains notes written by the programmer. The other three statements discussed in this section can contain up to four fields: name, operation, operand, and comments.

Table I-1 summarizes the function of job control statements. Figure I-2 illustrates the format of job control statements. The brackets around some of the items illustrated indicate that those items are optional when using the statement.

Table I-1. Job Control Statement Functions

Statement	Function
JOB	Indicates the beginning of a new job and describes that job
EXEC	Marks the beginning of a job step and indicates the program or cataloged procedure to be used
	Describes data sets and controls device and volume assignment
Delimiter	Separates data sets in the input stream from control statements; it appears after each data set in the input stream
Null	Indicates the end of a job
Comment	Contains miscellaneous remarks written by the programmer; it can appear before or after any control statement

FORMAT	APPLICABLE CONTROL STATEMENTS
//Name Operation [Operand] [Comment]	JOB
//[Name] Operation Operand [Comment]	EXEC, DD
/* [Comment]	delimiter
11	null
//* Comment	comments

Figure I-2. Job Control Statement Formats

The <u>name field</u> begins in column 3, immediately following the //.

The name field assigns a name to the statement, identifying it to other statements and to the operating system. A name consists of from one to eight alphameric characters or the characters #, \$, or @. The first character of the name must be alphabetic. A DD statement may contain a qualified name which is two names joined together with periods; the name FORT.SYSIN is an example of a qualified name.

The <u>operation field</u> begins in any column after the name field and is preceded and followed by one or more blanks.

The operation field identifies the type of control statement, e.g., JOB, DD, or EXEC.

The operand field begins in any column after the operation field and is preceded and followed by one or more blanks. The operand field identifies system options requested by the programmer. Options are specified through one or more parameters separated by commas.

Parameters may be either <u>positional</u> or <u>keyword</u>. Positional parameters must appear in a fixed order and are identified, or given meaning, by their position in that order. A keyword parameter is composed of an identifying keyword, an equal sign (=), and a value. Parameters may also comprise a number of subparameters, which can be either positional or keyword.

The <u>comments field</u> begins in any column after the operand field (or the /* in the delimiter statement) and is preceded by one or more blanks. The comments field may contain any information that is considered helpful. There is no required syntax for comments.

All statements (except the null statement) may be continued onto succeeding cards, using the following rules:

- 1. Interrupt operands after a completed parameter or subparameter, including the comma that follows it, at or before column 71.
- 2. If comments are desired in the same statement as an interrupted operand field and there is sufficient room, leave one or more spaces after the comma that follows the last parameter, and then code the comments.
- 3. For an interrupted comment, code any nonblank character in column 72. For an interrupted operand, the nonblank

character in column 72 is optional. If a nonblank character is not coded in column 72 of an interrupted operand, but the conventions outlined in the next two items are followed, the job scheduler will treat the next statement as a continuation statement.

- Code the identifying characters // in columns 1 and 2 of the following card or card image.
- Continue the interrupted operand beginning in any column from 4 through 16.

Note that excessive continuation cards (or card images) should be avoided whenever possible to reduce processing time for the control program.

SYNTAX FOR PARAMETER DESCRIPTION

In describing the syntax for parameters, this publication follows the conventions listed in the following paragraphs.

 The set of symbols listed below are used to define control statements, but are never coded in a control statement.

a.	hyphen	-
b.	logical or	1
C.	underscore	_
đ.	braces	{ }
e.	brackets	[]
f.	ellipsis	• • •
g.	superscript	1

The special uses of these symbols are explained in paragraphs numbered from 4 to 10.

2. Uppercase letters and words, numbers, and the set of symbols listed below are coded in a control statement exactly as shown in the statement definition.

a.	apostrophe	•
b.	asterisk	*
c.	comma	,
đ.	equal sign	=
e.	parentheses	(
f.	period	•
g.	slash	1

)

3. Lowercase letters, words, and symbols appearing in a statement definition represent variables for which specific information is substituted when the control statement is coded.

Example:

DSNAME=filename

may be coded as

DSNAME=MYNAME

4. Hyphens join lowercase letters, words, and symbols to form a single variable.

Example:

PGM=program-name

may be coded as

PGM=MYNAME

5. Stacked items or items separated from each other by the "logical or" symbol represent alternatives. Only one such alternative should be selected.

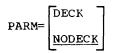
For example:

 $\begin{pmatrix} A \\ B \\ C \end{pmatrix}$

or an alternate designation:

 $\{A|B|C\}$

The above two examples have the same meaning and indicate that either A or B or C should be selected.


 Brackets also group related items; but everything within the brackets is optional and may be omitted.

Example:

ALPHA=([A|B|C],D)

The preceding example indicates that a choice can be made among the items enclosed within the brackets or that the items within the brackets may be omitted. If B is selected, the result is ALPHA=(B,D). If no choice is made, the result is ALPHA=(,D).

7. An underscore indicates the standard default option. If a default option is selected, it need not be coded in the actual statement.

If the user wants the DECK option, he will have to specify it; if he wants the NODECK option, he may specify it, but he does not need to do so.

8. Braces group related items, such as alternatives.

Example:

 $ALPHA=(\{A \mid B \mid C\}, D)$

The above example indicates that a choice must be made among the items enclosed within the braces. If A is selected, the result is ALPHA=(A,D). If C is selected, the result can be either ALPHA=(C,D) or ALPHA=(,D).

9. An ellipsis indicates that the preceding item or group of items can be repeated many times.

Example:

ALPHA[, BETA]...

The preceding example indicates that ALPHA can appear alone or it can appear followed by ,BETA optionally repeated many times in succession.

10. A superscript refers to a description in a footnote.

Example:

- (NEW)¹ OLD MOD SHR
- Blanks are used to improve the readability of control statement definitions. Unless otherwise noted, blanks may not appear in a statement definition.

JOB STATEMENT

A JOB statement initiates the beginning of a job and assigns a name to it.

The JOB statement may also contain the following information:

- Accounting information relative to the job
- 2. Programmer's name
- 3. The type of system messages to be written

- 4. Conditions for terminating the execution of the job
- 5. Assignment of input and output classes
- 6. Job priority
- 7. Main storage requirements
- 8. A time limit for the job

Figure I-3 illustrates the format of the JOB statement. Table I-2 summarizes the functions of the JOB statement. Figure I-4 shows sample JOB statements.

The job name is always required. All other information is optional unless made mandatory by each installation.

Naming the Job

Jobname identifies the job to the operating system. Because a multiprogramming environment permits many jobs to operate concurrently, the programmer should select a unique jobname for each job.

The accounting information and programmer's name are positional parameters

and, if used, must be the first ones specified in the operand field. All other parameters are keyword parameters and may appear in any order.

Specifying Accounting Information

Accounting information is used to store installation-required accounting procedures. It is specified as the first parameter in the operand field. The parameter has no predefined format; it consists of a string of up to 142 characters. If it contains any special characters (valid members of the character set not alphabetic or numeric) other than a hyphen, it is enclosed in apostrophes.

An example of the accounting parameter is:

'215,46WX819'

If this parameter is not present but the programmer's name is, a comma is required to indicate the omission. If both parameters are omitted, no commas are required. (The accounting field may be required, at the installation's option.)

Name	Operation	Operand
//jobname	JOB	Positional Parameters [,accounting-information] [,programmer-name]
		<pre>Keyword Parameters [MSGLEVEL=(x,y)] [COND=((code,operator))] [CLASS=job-class] [PRTY=job-priority] [MSGCLASS=x] [MSGCLASS=x] [REGION=region-size]¹ [TIME=(minutes,seconds)]² [ADDRSPC=REAL VIRT]³</pre>
¹ MVT and VS ² MVT and VS ³ VS only.	-	

Figure I-3. Job Statement Format

 //CLH1	JOB	NY237413, C.L. HARVEY, MSGLEVEL=1
//CLH2 //	JOB	,HARVEY,COND=(8,EQ),REGION=100K,TIME=60, CLASS=H,PRTY=10
//PROGRAM	JOB	873, COVER-RAMSEY', MSGLEVEL=(1,1), MSGCLASS=C, PRTY=10

Figure I-4. Sample JOB Statements

Table I-2.	JOB	Statement	Functions
------------	-----	-----------	-----------

Specification	Purpose	How to Specify
jobname	operating system.	One to eight alphameric (alphabetic or numeric) characters, the first of which must be alphabetic or one of the extended alphabetic characters #, @, or \$.
information	To identify the account number or other accounting information relating to the job.	Up to 142 characters; if any special characters other than a hyphen, enclose in apostrophes. See "Specifying Accounting Information" for details.
programmer- name	To identify the person submitting the job.	Up to 20 characters; if special characters other than a period, enclose in apostrophes.
	system messages (i.e., job control statements,	MSGLEVEL=(x,y), where x is 0, 1, or 2, to indicate which job control statements and diagnostic messages are to be written, and y is 0 or 1 to indicate whether termination messages are to be written. See "Specifying System Messages" for details.
COND	that are to result in program termination.	COND=((code,operator)), where code is a number between 0 and 4095 (usually 0, 4, 8, 12, or 16) and operator is a 2-character value that represents a comparison to be made between code and a return code issued by the operating system. If the comparison is true, the job is terminated. See "Specifying Condition Codes to Terminate a Job" for details.
CLASS		CLASS=job-class, where job-class is an alpha- betic character A thru O assigning the class represented by that character to the job.
PRTY	job. 	PRTY=job-priority, where job-priority is a number 0 through 13 assigning the priority represented by that number to the job; the higher the number, the greater the priority.
MSGCLASS		MSGCLASS=x, where x is an alphabetic or numeric character assigning the output class represented by that character to the job.
TIME	To assign a time limit to the job.	TIME=(minutes,seconds), where minutes is a number up to 1439, and seconds is a number up to 59.

(Part 1 of 2)

Table I-2. JOB Statement Functions (Part 2 of 2)

Specific	ation	Purpose	How to Specify
REGION			<pre>For MVT, REGION=(nnnn1K[,nnnn2K]), where Innnn1K is a value up to 16383K and indicates the amount of storage to be allocated (K=1024 bytes); nnnn2K is a value up to 2048K and indicates the amount of additional storage to be allocated, usually from an IBM 2361 Core Storage device. For an IBM 2361 Model 1, Innnn2K may be a value up to 1024K; for an IBM 2361 Model 2, nnnn2K may be a value up to 2048K. For VS, REGION=valueK, where valueK represents the number of contiguous 1024-byte areas of real or virtual storage to be allocated. See "Assigning Storage to a Job Under MVT" for details.</pre>
ADDRS PC		To specify the mode of operation, real or virtual, of the VS control program.	ADDRSPC=REAL for real mode, and ADDRSPC=VIRT for virtual mode.

Specifying the Programmer's Name

The programmer's name is specified as the second parameter in the operand field. It consists of a string of up to 20 characters. If it contains any special characters other than a period, it is enclosed in apostrophes.

Examples of the programmer-name parameter are:

J.SMITH

COVER-RAMSAY

If this parameter is not present, no comma is required to note the omission.

Specifying System Messages

The MSGLEVEL parameter is used to specify whether job control statements and termination messages are to be written.

MSGLEVEL has the format:

MSGLEVEL=(x,y)

The letter x represents a job control message code and indicates whether job control statements are to be written along with program statements. The value of x may be 0, 1, or 2. When x=0, the JOB statement, job control statement errors, and diagnostic messages are written. When x=1, all job control statements, including those appearing in called cataloged

procedures, are written. When x=2, only job control statements submitted with the job (not taken from cataloged procedures) are written.

The letter y represents a termination message code and indicates whether termination messages are to be produced. The value of y may be 0 or 1. When y=0, no termination messages appear for normal completion of the job; termination messages appear for abnormal termination. When y=1, termination messages appear under any circumstances.

If the parameter is omitted, the default values for x and y are those established by the installation.

An example of MSGLEVEL is:

MSGLEVEL=(2,0)

The example states that only control statements submitted with the job are to be written, and that termination messages are to be written only if abnormal termination occurs.

<u>Specifying Condition Codes to Terminate a</u> <u>Job</u>

The COND parameter is used to specify which condition codes terminate processing. It is useful in helping the programmer reduce computing time by making job continuation dependent upon successful completion of a previous job step. The system issues a number, called a return code, at the end of each job step. The return code is an indication of how well the job step ran, i.e., whether it completed processing normally or whether error conditions were detected. The COND parameter indicates a comparison to be made between the return code and the condition code specified in COND; if the condition is met, the job is terminated.

COND has the format:

COND=((code, operator)[, (code, operator)]...)

Code consists of a number. Operator consists of two alphabetic characters indicating a mathematical relationship between the condition code and the return code. There are six operators, as follows:

<u>Operator</u>	Meaning
\mathbf{GT}	greater than
GE	greater than or equal to
EQ	equal to
NE	not equal to
\mathbf{LT}	less than
LE	less than or equal to

Up to eight sets of codes and operators may be specified.

An example of COND is:

COND=((8,LT))

The example states that if 8 is less than the return code issued by the system, the job is to be terminated (any return code less than or equal to 8 allows the job to continue).

Assigning Job Priority

The CLASS parameter is used to assign a job class; the PRTY parameter assigns a priority within a class.

When a job is introduced to the system it is assigned to an input queue according to a code called a class. Main storage is divided into a number of areas, each of which handles jobs assigned a certain class. When one job has completed processing, that storage is given to the next job having the same class. The programmer determines the order in which jobs are entered into the system by specifying the CLASS parameter. He can further refine the order in which jobs within a class are entered into the system by specifying the PRTY parameter. CLASS has the format:

CLASS=a

The letter a indicates an alphabetic character A through O. The meaning of the characters is determined by each installation at system generation time. If the parameter is omitted, the default class A is assumed.

PRTY has the format:

PRTY=n

The letter n indicates a number from 0 through 13; the higher the number, the greater the priority. Whenever possible, priority 13 should be avoided. This number is used by the system for special processing. If the parameter is omitted, a standard default established by each installation is assumed.

An example of the CLASS and PRTY parameters is:

CLASS=C, PRTY=10

Assigning an Output Writer

The MSGCLASS parameter is used to assign messages to a specific output writer through a class code.

The system assigns messages to a variety of output devices according to the output class. By assigning an output class, the programmer directs output to a specific device.

MSGCLASS has the format:

MSGCLASS=x

The letter x indicates an alphabetic or numeric character. The meaning of the characters is determined by each installation at program installation time. If the parameter is omitted, the default class A (usually directed to a printer) is assumed.

An example of MSGCLASS is:

MSGCLASS=B

Assigning a Time Limit to a Job

The TIME parameter is used to assign a processing time limit. If the job is not

completed in the time specified, it is terminated.

TIME has the format:

TIME=(minutes, seconds)

Minutes and seconds are expressed in numeric characters. Minutes cannot exceed 1439; seconds cannot exceed 59. If a job is expected to run longer than 24 hours, the programmer may code TIME=1440 to eliminate job timing. If the TIME parameter is omitted, a default limit established by each installation is assumed.

If time is specified in minutes only, the delimiting parentheses are not required (e.g., TIME=10). If time is specified in seconds only, the parentheses and a comma denoting the omission of minutes are required (e.g., TIME=(,50)).

An example of TIME is:

TIME = (10, 30)

The example states that the job may run up to a maximum time of ten minutes and thirty seconds.

Assigning Storage to a Job Under MVT

Under MVT, storage is assigned according to the needs of each particular job. The REGION parameter is used to specify the amount of storage to be allocated. If the parameter is omitted, a default size established by each installation is assumed.

The programmer may assign storage to individual job steps rather than to the entire job by coding the REGION parameter in each EXEC statement instead.

REGION has the format:

REGION=(nnnn1K[,nnnn2K])

The term nnnn₁K indicates the number of contiguous 1024-byte areas to be allocated. The number specified may be from one to five digits but cannot exceed the total storage available. Parentheses are not required if only nnnn₁K is specified (e.g., REGION=200K).

The term nnnnn₂K is used only if the installation has specified hierarchy support. Hierarchy support indicates that storage may be allocated from two regions, one known as hierarchy 0, the other as hierarchy 1. Hierarchy 0 is always assigned from main storage and is specified by nnnn1K. Hierarchy 1 may be assigned either from main storage or from the large core storage device, IBM 2361 Model 1 or 2, and is specified by nnnn2K. If hierarchy 1 is assigned from main storage, the combined value of nnnn1K and nnnn2K cannot exceed the total storage available; if hierarchy 1 is assigned from the IBM 2361, nnnn1K cannot exceed 16383 and nnnn2K cannot exceed 1024 for an IBM 2361 Model 1 or 2048 for an IBM 2361 Model 2.

If storage is requested only from hierarchy 1, a comma is required to indicate the absence of $nnnn_1K$ (e.g., REGION=(,200K)).

An example of REGION is:

REGION=(100K,100K)

The example states that 200K bytes of storage are to be assigned, 100K from hierarchy 0 and 100K from hierarchy 1.

Assigning Storage to a Job Under VS

Storage can be allocated under the VS control programs by use of the ADDRSPC and REGION parameters.

The ADDRSPC parameter is used with the VS control programs to indicate whether a job or job step is to be run in real or virtual mode. This parameter takes the form ADDRSPC=REAL|VIRT, where REAL specifies real mode and VIRT specifies virtual mode. Most FORTRAN programs are run in virtual mode as described under "Operating System Control Programs" in the Introduction, and the default value for this parameter is ADDRSPC=VIRT. When ADDRSPC=REAL is coded on a JOB or EXEC card, all the pages of the job or job step in question are brought into real storage simultaneously and remain there for the duration of the job or job step.

The REGION parameter for the VS control programs takes the form REGION=<u>value</u>K, where <u>value</u>K indicates the number of contiguous 1024-byte areas of either real or virtual storage (depending on the mode of operation of the control program) to be allocated to the job or job step in question. There is no hierarchy support under VS.

Under VS1, in virtual mode, virtual storage is automatically allocated in partitions of installation-determined size in a manner analogous to the allocation of main storage under MFT. The REGION parameter, if coded, is ignored when VS1 is run in virtual mode. When VS1 is run in real mode, the REGION parameter must be coded to indicate the number of contiguous 1024-byte areas of real storage to be allocated, and <u>value</u>K may not exceed the total real storage available. If the REGION parameter is not coded, a default region of installation-determined size will be allocated.

Under VS2, in virtual mode, the REGION parameter may be used to specify the number of contiguous 1024-byte areas of virtual storage to be allocated, and <u>value</u>K is limited only by the addressing range of the System/370. Under VS2 in real mode, the REGION parameter must be coded to indicate the number of contiguous 1024-byte areas of real storage to be allocated, and <u>value</u>K may not exceed the total real storage available. If REGION is not coded, in either virtual or real mode, a default region of installation-determined size will be allocated.

For a further discussion of storage allocation under the VS control programs, see the publication OS/VS Job Management Services, Order No. GC28-0617.

EXEC STATEMENT

An EXEC statement indicates the beginning of a job step and names the program or cataloged procedure to be executed. The parameter indicating the program or cataloged procedure to be executed is the only one required and must be the first one specified; all others are optional and may appear in any order.

The EXEC statement also contains the following information:

- A job step name (a step name is required only when it is necessary for a later job step to reference information from this job step)
- 2. Compiler, linkage editor, or other options passed to the job step
- 3. Conditions for bypassing the execution of the job step
- Accounting information relative to the job step
- 5. A time limit for the step or cataloged procedure
- 6. Main storage requirements

Figure I-5 illustrates the format of the EXEC statement. Table I-3 summarizes the function of the EXEC statement. Figure I-6 shows sample EXEC statements.

Name	Operation	Operand
//[stepname]	EXEC	Positional Parameter {[PROC=]procedure-name} {PGM=program-name } <u>Keyword Parameters</u> [PARM='option[.option]' [ACCT=(accounting-information)]
		<pre>[COND=((code, operator[, stepname])()) [DPRTY=step-priority]¹ [TIME=(minutes, seconds)]¹ [REGION=region-size]² [ADDRSPC=REAL VIRT]³</pre>
¹ MVT and VS2 (² MVT and VS of ³ VS only	-	
	d parameters	ep of a cataloged procedure to which an option applies, any can be followed by a period and the name of the step to be step=option

Figure I-5. EXEC Statement Format

Table I-3.	EXEC	Statement	Functions	(Part	1	of	2)	
------------	------	-----------	-----------	-------	---	----	----	--

Specification	Purpose	How to Specify
stepname	to:	One to eight alphameric characters, the first of which must be alphabetic or one of the extended alphabetic characters 2, #, or \$.
procedure-name	To name the cataloged procedure to be executed. A procedure-name initiates the processing of a series of job control statements that has been previously written in the system library, SYS1.PROCLIB, and cataloged in the system catalog.	PROC=procedure-name, where procedure-name is the name of the cataloged procedure. See "Naming the Cataloged Procedure
program-name	To name the program to be executed.	PGM=program-name, where program-name is the name of a program.
		See "Naming the Cataloged Procedure or Program to be Executed" for details.
PARM	To specify program options.	PARM='option[,option]', where option names a particular program option that is to be in effect during processing.
		See "Specifying Program Options" for details in how to specify options. See the sections "Compilation" and "Linkage Editor and Loader" for descriptions of available options.
	To identify accounting information relating to the job step.	ACCT=(value[,value]) where value indicates accounting information.
		See "Specifying Accounting Information" for details.
COND	To specify those condition codes from previous job steps that will cause this job step to be bypassed.	COND= ((code,operator[,stepname])()), where code is a number between 0 and 4095, operator is a two- character value that represents a comparison to be made between code and a return code issued by a preceding job step or the operating system, and stepname is the name of the preceding job step issuing the return code.
		See "Specifying Condition Codes to Bypass a Job Step" for details.

		Statement Functions (Part 2 of 2)	
	Specification	Purpose	How to Specify
	DPRTY	To assign a priority to the job step.	DPRTY=(step-priority,n), where step-priority is a number from 0 to 15 that the system converts into an internal priority, and n is a number from 0 to 15 that is added to the internal priority to establish a step priority.
	TIME	To assign a time limit to the job step.	TIME=(minutes, seconds), where minutes is a number up to 1439, and seconds is a number up to 59.
	REGION	storage to be allocated to a job step operating in the MVT environment.	For MVT, REGION=(nnnn1K[,nnnn2K]), where nnnn1K is a value up to 16383K and indicates the amount of storage to be allocated; nnnn2K is a value that usually indicates the amount of additional storage to be allocated from an IBM 2361 Core Storage Device. For an IBM 2361 Model 1, nnnn2K may be any value up to 1024K; from an IBM 2361 Model 2, nnnn2K may be any value up to 2048K. The combined value of of nnnn1K and nnnn2K may not exceed 16383. For VS, REGION=valueK, where valueK represents the number of contiguous 1024-byte areas of real or virtual storage to be allocated.
	ADDRSPC	To specify the mode of operation, real or virtual, of the VS control program.	ADDRSPC=REAL for real mode, ADDRSPC=VIRT for virtual mode.

Table I-3. EXEC Statement Functions (Part 2 of 2)

//STEPA	EXEC	PARM=(MAP, DECK)
//DO	EXEC	PROC=FORTXCLG, PARM.LKED=DECK, ACCT=248
//	EXEC	PGM=MYPROG,ACCT=NY12345,REGION=128K,TIME=3, COND=(8.GT.HISPROG)

Figure I-6. Sample EXEC Statements

Naming an EXEC Statement

Stepname identifies the EXEC statement to other control statements and permits them to refer to information contained in the job step. Steps within cataloged procedures should be given unique names so that identification to the correct step can be easily made. Naming the Cataloged Procedure or Program to be Executed

The PROC parameter is used to specify a cataloged procedure; PGM, to specify a program.

The format of PROC is:

PROC=procedure-name

where:

procedure-name names the cataloged procedure to be executed.

The word PROC is optional; if it is omitted, PROC is assumed. For example, the following are equivalent:

```
// EXEC PROC=FORTXCLG
// EXEC FORTXCLG
```

Note that a cataloged procedure does not in itself execute a program; it permits previously written job control statements to be inserted into the job stream at the point that the procedure was called. The job control statements in the cataloged procedure should contain at least one EXEC statement having the PGM parameter which names the program to be executed.

The PGM parameter may specify any load module name accessible to the operating system. For example, PGM identifies the FORTRAN IV (H Extended) compiler as PGM=IFEAAB; PGM identifies the linkage editor as PGM=IEWL.

The format of PGM is:

PGM= { program-name *.stepname.ddname *.stepname.procstep.ddname }

where:

program-name names a program that resides in either the system library or a private library. The system library is a partitioned data set named SYS1.LINKLIB that stores frequently-used programs such as IFEAAB and IEWL. Private libraries are partitioned data sets that store groups of programs that are used by individual users. *.stepname.ddname

names a program found on a data set defined in a previous job step of the current job. The * indicates the current job, "stepname" is the name of the job step, and "ddname" is the name of the DD statement defining the program. (The "stepname" cannot refer to a job step in another job.) The program referred to must be a member of a partitioned data set.

This form of a program name is most familiar to a FORTRAN programmer in an execution step following a link edit step. The linkage editor stores the load module in the data set defined by the SYSLMOD DD statement. For example, in the following statements, STEP4 executes the linkage editor. The linkage editor stores the resulting load module named ARCTAN into the partitioned data set, MATH, defined by the SYSLMOD DD statement. STEP5 indicates that the program to be executed (ARCTAN) is defined in the DD statement SYSLMOD in the job step named STEP4 of the current job.

//XYZ	JOB	,JSMITH,COND=(7,LT)
		•
		•
		•
//STEP4	EXEC	PGM=IEWL
//SYSLMOD	DD	DSNAME=MATH(ARCTAN)
		•
		•
		•
//STEP5	EXEC	PGM=*.STEP4.SYSLMOD

*.stepname.procstep.ddname

names a program found on a data set defined in a previously executed step of a cataloged procedure. The * indicates the current job, "stepname" is the name of the job step that invoked the cataloged procedure, "procstep" is the name of a step within the cataloged procedure, and "ddname" is the name of a DD statement that defines the data set within that procedure step. Consider a cataloged procedure, FORT, containing the following statements:

//COMPFIL	EXEC	PGM=IExxx
//SYSPUNCH	DD	SYSOUT=B
//SYSPRINT	DD	SYSOUT=A
//SYSLIN	DD	DSNAME=LINKINP
	•	
	•	

//LKED	EXEC	PGM=IEWL
//SYSLMOD	DD	DSNAME=RESULT(ANS)

PARM='option[,option]...'
PARM.procstep='option[,option]...'

where:

Assume that the following statements appear in the input stream:

//MAINJOB //S1	JOB EXEC	,SMITH,COND=(7,LT) PROC=FORT
	•	
	•	
	•	
//S2 H	EXEC P	GM=*.S1.LKED.SYSLMOD
//FT03F001	DD	UNIT=PRINTER
//FT01F001	DD	UNIT=INPUT

Statement S1 calls the cataloged procedure FORT.

nt S2 indicates that the program to be executed is found on a data set described by the DD statement SYSLMOD, located in the procedure step LKED of the cataloged procedure FORT, which was invoked by the statement S1. Consequently, the load module ANS in the data set RESULT is executed.

Specifying Program Options

The PARM parameter is used to specify program options applicable during execution of a job step. Program options increase the flexibility of a program by allowing the programmer to choose the form of input and output, the type of output, and otherwise tailor the program to his needs. A FORTRAN programmer may specify options for the FORTRAN compiler, the linkage editor, and the system loader.

See the sections "Compilation" and "Linkage Editor and Loader" for a discussion of these options.

If a PARM parameter is not specified, the program being executed assumes default values established at program installation time. When the user's installation receives a copy of the program product, it will contain the default options indicated in this publication. (Default values are shown underlined in this publication.) The user's installation can customize the compiler for its needs and default options may be permanently established at that time.

PARM has the format:

procstep is used when a cataloged procedure has been specified in the PROC parameter. Specified PARM options are to apply to

the job step in the cataloged procedure identified by procstep. For example, the following indicates that changes are to be made to the FORT step:

PARM. FORT= 'NOOBJECT'

option

indicates either a keyword that has an intrinsic value to the program (e.g., LIST, SOURCE) or a keyword that is assigned a value by means of an equal sign or a pair of parentheses, for example, LINECOUNT(nn). The option field may contain up to 100 characters of information.

The field of PARM options may be enclosed in either apostrophes or parentheses according to the following rules:

 If no individual option contains a special character (such as an equal sign or parenthesis), the programmer may enclose the field in either apostrophes or parentheses. For example, either of the following formats is valid:

PARM='LIST, SOURCE, NODECK' PARM=(LIST, SOURCE, NODECK)

2. If an option contains a special character, the programmer may enclose either that option in apostrophes and the entire field in parentheses, or the entire field in apostrophes. For example, either of the following is valid:

PARM=(LIST, 'LINECOUNT(50)', SOURCE)
PARM='LIST, LINECOUNT(50), SOURCE'

(This publication adopts the convention of enclosing the entire field in apostrophes.)

3. If the PARM parameter is continued onto a following card, the programmer must enclose the entire field in parentheses and any individual options containing special characters in apostrophes. For example, only the following is valid: PARM=(LIST, 'LINECOUNT(50)', SOURCE, NODECK)

4. If only one option is specified, the programmer need not enclose the option in either apostrophes or parentheses (except if that option contains a special character, in which case apostrophes are mandatory). For example, any of the following is valid:

PARM=LIST PARM='LIST' PARM=(LIST)

Specifying Accounting Information

The ACCT parameter is used to specify accounting information for a job step.

Like the accounting parameter in the JOB statement, the field may contain up to 142 characters and is enclosed in apostrophes if it contains any special characters other than a hyphen. Unlike the JOB statement parameter, ACCT is a keyword parameter and may appear anywhere in the operand field.

ACCT has the format:

```
ACCT=(value[,value]...)
ACCT.procstep=(value[,value]...)
```

where:

procstep indicates in which step of a cataloged procedure the accounting information is to apply.

value

indicates some accounting information, such as the account number to be charged for machine time. If value contains any special characters, it must be enclosed in apostrophes. If only one value is specified, it need not be enclosed in parentheses.

An example of ACCT is:

ACCT='NY432 777'.

Note that a blank is considered a special character, requiring the use of apostrophes.

Specifying Condition Codes to Bypass a Job Step

The COND parameter is used to specify which condition codes are to cause job step processing to be bypassed.

Like the COND parameter in the JOB statement, the parameter lists codes and operators to test the return code issued by the system. Unlike the JOB statement parameter, if the condition is met, the job step is not terminated but bypassed.

COND has the format:

where:

procstep is used when a cataloged procedure has been specified in the PROC parameter, to indicate in which step of the procedure the condition applies.

stepname indicates the name of a previous job step that issued the return code to be tested against the code in COND.

The meanings of code and operator are the same as described for the COND parameter of the JOB statement.

An example of COND is:

COND.GO=((4, LT, FORT)(4, LT, LKED))

The example states that if 4 is less than the return code issued by FORT or LKED, the job is to be terminated (any return code less than or equal to 4 allows the job to continue).

Assigning Step Priority

The DPRTY parameter is used to assign a dispatching priority to a job step. The dispatching priority determines the order in which job steps will use main storage and CPU (central processing unit) resources. If the parameter is omitted, each job step is assigned the same priority as the job, either through the JOB statement PRTY parameter or by default.

DPRTY has the format:

DPRTY=(step-priority,n) DPRTY.procstep=(step-priority,n) where:

procstep is used when a cataloged procedure has been specified in the PROC parameter to indicate in which step of the procedure the dispatching priority applies.

step-priority

is a number from 1 through 15 representing a priority. This subparameter has the same meaning as the PRTY parameter in the JOB statement; that is, if PRTY=10 is coded in the JOB statement and DPRTY=10 is coded in the EXEC statement, job and step priority are the same. If the step priority is to be different from that assigned to the job, a different number is assigned. The step-priority is converted by the system into an internal priority; the higher the number the greater the priority. Whenever possible, the number 15 should be avoided; this number is reserved for certain system tasks.

n

is a number from 0 to 15 that is added to the internal priority to establish the dispatching priority.

If the first value is omitted but the second is specified, a comma is required to indicate the absence (e.g., DPRTY=(,12)). If the second value is omitted, the delimiting parentheses are not required (e.g., DPRTY=3).

An example of DPRTY is:

DPRTY = (10, 9)

The example states that the number 10 is to be converted into an internal priority and the number 9 is to be added to the resulting priority.

Assigning a Time Limit to a Job Step

The TIME parameter is used to assign a time limit to the step. If not completed in the time specified, the step is terminated.

TIME has the format:

TIME=(minutes, seconds) TIME.procstep=(minutes, seconds)

where:

procstep

been specified in the PROC parameter to indicate in which step of the procedure timing considerations apply.

If procstep is omitted, the time limit applies to the entire procedure.

The meanings of minutes and seconds are the same as described for the TIME parameter of the JOB statement.

An example of TIME is:

TIME, FORT=5

The example states that the FORT step of a cataloged procedure is to have a time limit of five minutes.

Assigning Storage to a Job Step Under MVT

Under MVT the REGION parameter is used to specify the amount of storage to be allocated to a job step. A REGION parameter specified on a JOB statement overrides any EXEC statement REGION parameters.

REGION has the format:

REGION=($nnnn_1K[,nnnn_2K]$) REGION. procstep=(nnnnn_K[, nnnnn_K])

where:

procstep is used when a cataloged procedure has been specified in the PROC parameter, to indicate in which step of the procedure storage allocation applies.

If procstep is omitted, the allocation applies to all steps of the procedure.

The meanings of nnnnn₁K and nnnnn₂K are the same as described for the REGION parameter of the JOB statement.

An example of REGION is:

REGION=100K

The example states that 100K bytes of storage are to be allocated to the job step.

Assigning Storage to a Job Step Under VS

Under the VS control programs, the REGION and ADDRSPC parameters can be used to specify the amount and type of storage to is used when a cataloged procedure has | be allocated to individual job steps. The REGION and ADDRSPC parameters specified on JOB statements override those specified on EXEC statements. Rules for coding them are the same as those described for the JOB statement.

DD STATEMENT

DD statements describe and identify data sets and the volumes in which they reside. They also provide instructions for their proper handling and disposition. DD statements supply information which is used by the job scheduler to allocate input/output devices and by data management to supervise the input/output operations.

The DD statement is concerned with the data set, records within the data set, and the location of the data set.

The DD statement specifies the following information:

1. A name for the DD statement

- The location of the data set in the system's resources
- 3. The name of the data set
- 4. The status of the data set at the beginning and end of the job step
- 5. Labeling information for the data set volume
- 6. Data set allocation to optimize the use of input/output channels
- The type of input/output device on which the data set resides
- Space allocation for data sets on direct access devices
- 9. Characteristics of the records in the data set

Figure I-7 illustrates the format of the DD statement. Figure I-8 shows sample DD statements. Table I-4 summarizes the functions of the DD statement parameters.

Name	Operation	Operand
// {ddname (procstep.ddname)	DD	Positional Parameters Positional Parameters DATA DUMMY Keyword Parameters [{VOLUME (SER=serial-number) [{VOL / (REF=ddname)] DDNAME=ddname (DSNAME) =data-set-name [DISP=(subparameter-list)] [DISP=(subparameter-list)] [COPIES=number] ¹ [SEP=(ddname[,ddname])] [DLM=delimiter] ¹ [UNIT=(device[,SEP=(ddname,)])] [SPACE=(subparameter-list)]
1 VS only.		

Figure I-7. DD Statement Format

Example 1:	Directing a data set to the printer:
	//SYSPRINT DD SYSOUT=A
Example 2:	Creating a temporary data set (created and deleted within the same job):
	//FT14F001 DD DSNAME=&&TEMP,UNIT=SYSSQ
Example 3:	Creating a permanent data set:
	<pre>//FT89F001 DD DSNAME=MINE, VOLUME=SER=8342, UNIT=2400, // DISP=(NEW, KEEP), LABEL=(,SL,EXPDT=71365)</pre>
Example 4:	Creating a permanent cataloged data set:
	//FT31F001DDDSNAME=MATRIX, DISP=(NEW, CATLG, DELETE),//UNIT=2311, VOLUME=SER=AA69, SPACE=(TRK, (50, 5, ROUND)),//DCB=(RECFM=FB, LRECL=604, BLKSIZE=1208)
Example 5:	Retrieving the permanent uncataloged data set defined in Example 3:
	//FT89F001 DD DSNAME=MINE, VOLUME=SER=8342, UNIT=2400, DISP=(OLD)
Example 6:	Retrieving the cataloged data set defined in Example 4:
	//FT37F001 DD DSNAME=MATRIX,DISP=(OLD)
Figure I-8.	Sample DD Statements

Figure I-8. Sample DD Statements

Specification	Purpose	How to Specify
ddname	To identify the DD statement to other job control statements that may need to refer to it.	One to eight alphameric characters, the first of which must be alphabetic or one of the extended alphabetic characters #, @, or \$.
procstep.ddname	To identify the DD statement in the particular jobstep identified as procstep.	Procstep and ddname are each specified as one to eight alpha- meric characters, the first of which must be alphabetic or one of the extended alphabetic characters. Procstep and ddname are separated by a period (.).
*	To indicate that the data set appears in the input stream	 When * is used, The data set must appear immediatedly following the DD * statement; No other parameter except the DCB parameter has meaning on the DD statement. See "Data Set Location" for details.
DATA	To indicate that the data set appears in the input stream and contains job control statements that are to be read as data and not as instructions. Used, for example, when job control state- ments are being entered into the system catalog as a cataloged procedure.	 When DATA is used, The data set must appear immediately following the DD DATA statement; No other parameter except the DCB parameter has meaning on the DD statement. See "Data Set Location" for details.
DLM	To specify a delimiter other than /* to terminate a group of data in the input stream.	DLM=delimiter, where delimiter is any combination of two char- acters that will indicate the end of a group of data in the input stream.
DUMMY	To identify a data set on which no operations are to be performed (such as to defer processing a data set in a program segment that has already been tested).	See "Data Set Location" for details.
VOLUME	To identify the volume in which the data set resides.	VOLUME=SER=serial-number, where serial-number consists of one through six alphameric characters identifying the volume, or VOLUME=REF=ddname, where ddname is the name of another DD statement and indicates that the data set is to share the same volume as the data set defined in ddname. See "Data Set Location" for details.

Table I-4. DD Statement Functions (Part 2 of 3)

Specification	Purpose	How to Specify
DDNAME	To indicate that the data set is to have the same characteristics as a data set defined in another DD statement.	DDNAME=ddname, where ddname is the name of another DD statement or the characteristics of the data set defined in ddname.
DSNAME	To name the data set or a member of a partitioned data set.	DSNAME=data-set-name, where data-set-name is the name of a permanent data set, a temporary data set, a member of a partitioned data set, or a reference to a data set defined in another DD statement.
		See "Data Set Identification" for details.
DISP	To indicate whether the data set is new or old, and whether it is to be kept or released at the end of the job step.	 DISP=(subparameter-list), where subparameter-list indicates: The disposition of the data set at the beginning of the job step (i.e., whether new or old) The disposition to be made of the data set at the end of the job step (i.e., whether to be kept, deleted, or passed to another job step), The disposition to be made of the data set if abnormal termination occurs (i.e.,
		whether to be kept or deleted). See "Data Set Disposition" for details.
SYSOUT	To assign the output of the data set to an output class.	SYSOUT=x, where x is an alphabetic or numeric character assigning the output class represented by the character to the data set. SYSOUT=A is usually specified for printer output, SYSOUT=B for card punch output.
		See "Data Set Disposition" for details and VS options.
COPIES	To obtain between 1 and 255 hard copies of the output data set.	COPIES=number, where number is between 1 and 255.
LABEL	To assign such information as labels, whether the data set is protected from unauthorized processing, and how long the data set should be kept.	See "Data Set Labels" for details.
SEP	To assign the data set to a different input/output channel from the data set defined in ddname.	SEP=(ddname[,ddname]), where ddname is the name of another DD statement.

Table I-4. DD Statement Functions (Part 3 of 3)

Specification	Purpose	How to Specify
UNIT	To identify the input/output device or device class on which the data set resides.	UNIT=(device[,SEP=(ddname,])), where device is a number or name identifying the device and ddname is the name of another DD statement. SEP=ddname is used only for data sets on direct access devices and only when the data set is not to share device access arms with the data set defined in ddname. See "Assigning a Data Set to an Input/Output Device" for details.
SPACE	Used only for a data set in a direct access volume, to allocate space to the data set.	SPACE=(subparameter-list), where subparameter-list indicates whether space is to be allocated to a specific address or to any location in the direct access volume, and the amount of space to be allocated. See "Assigning Space to a Data Set on a Direct Access Volume" for details.
DCB	To identify the characteristics of the records in a data set.	See "Defining Record Characteristics" for details.

DD Statement Uses

DD statements define the following types of data sets:

- System data sets. These include SYSIN, SYSPRINT, SYSPUNCH, SYSLIN, SYSLMOD, SYSUT1, and SYSUT2. These data sets are used by various system components as work areas and temporary storage areas, and are necessary for the execution of the compiler, linkage editor, and loader.
- 2. FORTRAN load module data sets. If the FORTRAN programmer uses cataloged procedures and the standard data set reference numbers (5 for card input, 6 for printer output, and 7 for punched-card output), there is no need to supply DD statements for those data sets; they are contained in the cataloged procedures.

If the FORTRAN programmer uses other forms of input/output, such as magnetic tape or disk, it is necessary to define those data sets with DD statements. The DD statements are equated to the data set reference numbers through the DDNAME parameter which identifies the DD statement. The ddname format for data sets used in FORTRAN load module execution is:

FTxxFyyy

where xx is the data set reference number and yyy is a FORTRAN sequence number (usually 001). The data set reference number is nothing more than a numeric means of equating FORTRAN input/output statements with the proper data set definition; it has nothing to do with the physical address of the device or its type.

3. A sequential data set on which a dump can be written in the event of an abnormal termination. Definition of this data set automatically requests the dump facility; if no data set has been defined for dump output, it is bypassed. A ddname of SYSUDUMP specifies a dump of the problem program area. A ddname of SYSABEND specifies a dump of the problem program area and the system nucleus.

4. Concatenated data sets (data sets temporarily joined together), usually consisting of one or more private libraries and the system library SYS1.LINKLIB. In other words, the system library and the specified libraries will be combined temporarily to form one library. A ddname of STEPLIB will retain the concatenated library for the duration of the job step; a ddname of JOBLIB will retain the concatenated library for the duration of the job.

In theory, all DD statement parameters are optional; that is, no one parameter is required for all DD statements. In practice, however, some parameters are required to describe a function properly. For example, to create a permanent data set, the DISP, UNIT, and DSNAME parameters are required; to create a permanent data set on a particular direct access volume, the VOLUME and SPACE parameters are also required.

Naming a DD Statement

The ddname identifies the statement to other control statements and relates the data set to I/O statements in the FORTRAN source module. The name may be a qualified name with the format procstep.ddname to associate the DD statement with a cataloged procedure job step, such as FORT.SYSIN.

Data Set Location

The *****, DATA, or VOLUME parameters are used to specify a data set's location. The DUMMY parameter is used to inhibit I/O operations on a data set.

The * parameter defines a data set in the input stream, usually a card deck or a data set in card image form. An example of the * parameter is:

//DSET1 DD *

The data set is physically placed after the DD * statement, and it must be followed by a /* statement to denote the end of the data set.

The DATA parameter also defines a data set in the input stream. It is used in place of the * when the data set contains records having the characters // in columns 1 and 2. An example of DATA is:

//DSET2 DD DATA

When either the * or the DATA parameter is used, no other operand in the DD statement has meaning except the DCB parameter which may specify block and buffer information for the data set, e.g.,

DCB=(BLKSIZE=800, BUFNO=2)

(The DCB parameter is discussed in the section "Defining Record Characteristics.")

In addition, under VS, the DLM parameter may be coded with the * or DATA parameter to allow the programmer to specify a delimiter other than /* to terminate a group of data in the input stream. By assigning a different delimiter in the DLM parameter, the programmer can include a standard delimiter (/*) as data in the input stream.

The DLM parameter has the format:

DLM=delimiter

where delimiter is any combination of two characters that will indicate the end of a group of data in the input stream. (If the delimiter contains any special characters, it must be enclosed in apostrophes.)

An example of the use of the DLM parameter is:

//DD1 DD *,DLM=AA Data

This example shows the DLM parameter being used to assign the characters AA as the valid delimiter for the data defined in the input stream by DD1.

VOLUME specifies the location of a data set not in the input stream (i.e., it is used for data sets residing on tape or in direct-access volumes). The parameter is required when creating a new data set if the programmer wants the data set assigned to a specific volume; if the parameter is omitted, the data set is assigned to any available volume. The parameter is required when retrieving an existing data set except if the data set has been cataloged. The VOLUME parameter contains many subparameters. Two subparameters most useful to the FORTRAN programmer are SER and REF. SER specifies the volume serial number. REF specifies the name of another data set or the name of another DD

statement and indicates that more than one data set is to share the same volume.

The format of VOLUME=SER is:

VOLUME=SER=serial-number

where:

serial-number is a 1 to 6 character serial number.

An example is:

VOLUME=SER=DA1234

The format of VOLUME=REF is:

VOLUME=REF= VOLUME=REF= *.ddname *.stepname.ddname *.stepname.procstep.ddname

See Table I-5 for an explanation of the data set name formats.

An example of VOLUME=REF is:

VOL=REF=*.DDNAM

The example states that the data set is to share the same volume as the data set described on the DD statement DDNAM in the current job. Note that VOLUME may be abbreviated VOL.

For a discussion of the other subparameters available in the VOLUME parameter, see the appropriate job control language reference publication, as listed in the Preface.

The DUMMY parameter is used to prevent input/output operations on the data set. A WRITE statement is recognized but no data is transmitted. A READ statement is recognized but permits further processing only if the END= option is specified; if the option is not specified, a read causes an end of data set condition and termination of load module execution.

Data Set Identification

DSNAME and DDNAME are used to identify a data set.

DSNAME specifies either the name of the data set or the name of an earlier defined DD statement that identifies this data set. DDNAME specifies the name of a DD statement to be defined later which is to identify this data set.

DSNAME has the format:

(DSNAME) DSN	= <	dsname dsname(member) &&dsname &&dsname(member) *.ddname *.stepname.ddname * stepname.procstep.ddname	
	,	*.stepname.procstep.ddname	<i>'</i>

See Table DD3 for an explanation of the data set name formats.

Examples of DSNAME are:

DSNAME=DSET DSN=LIB(PROG1) DSNAME=*.FORT.SYSLIN

The first example states that the data set name is DSET. The second example states that the data set is a partitioned data set named LIB and that the DD statement defines the member named PROG1. The third example states that the data set is the one defined in the DD statement named SYSLIN occurring in the job step named FORT. (This last example is how loader cataloged procedures define the object module resulting from the compilation job step.)

DDNAME has the format:

DDNAME=ddname

where:

ddname is the name of another DD statement.

When this parameter is used, no other parameter except the DCB parameter may be specified on the DD statement.

An example of DDNAME is:

DDNAME=FT08F001

The example states that data set definition is to be found on the DD statement named FT08F001. Table I-5. Data Set Names

Format	Description	Example					
dsname ¹	A data set named dsname	NAME					
dsname(element) ²	A member of a partitioned data set	MYPROG (PROGA)					
&&dsname²	A temporary data set, to be deleted at the end of the job	&&TEMP					
&&dsname(element) ²	A member of a temporary partitioned data set	&&TEMPP(PROG)					
*.ddname1	A data set defined in another DD statement within the current job step	*.SYSPRINT					
*.stepname.ddname1	A data set defined in another DD statement but in an earlier job step named stepname of the current job	*.STEPA.SYSPRINT					
*.stepname. procstep.ddname ¹ 	A data set defined in a DD statement in the cataloged procedure step named procstep called by the job step named stepname.	*.STEPA.LKED.SYSPRINT					
¹ This format may appear in the DSNAME, VOLUME, and DCB parameters ² This format may appear in the DSNAME parameter only							

D	a	tа	ι.	S	e	t	D	i	S	p	0	s	i	t	i	0	n	

The SYSOUT and DISP parameters indicate the status of a data set.

SYSOUT directs data set output to a unit record device such as a printer or a card punch device class. Table I-6 summarizes device classes.

The format of SYSOUT is:

SYSOUT=x

where:

х

is an alphabetic or numeric character that assigns the data set to the device class represented by the character.

An example of SYSOUT is:

SYSOUT=B

The example states that the data set is to be directed to the device class B, usually a card punch.

Under the VS1 and VS2 control programs, the programmer has the additional options of using the SYSOUT parameter to specify a program in the system library which will write the output data set, as well as a special output form on which the data set is to be printed or punched.

The format of the VS SYSOUT parameter is:

SYSOUT=(x program name] [,form number])

where:

x

.

is as described above.

,program name is the member name of a program in the system library (other than the system output writer) that is to write the output data set to a unit record device.

specifies that the system output writer is to write the output data set to a unit record device, and a form number follows.

 data set is to be printed or punched on a special output form.

The parentheses are optional if the program name and form number are omitted.

An example is:

SYSOUT=(F,,7402)

The example specifies that the data set is to be written by the system output writer to a unit record device corresponding to class F. The data set is to be printed on a special form. The form number is 7402.

Under VS, the programmer may also use the COPIES parameter in conjunction with the SYSOUT parameter to obtain between 1 and 255 copies of the output data set.

The format of the COPIES parameter is:

COPIES=number

where number may be between 1 and 255.

An example is:

//RECORD DD SYSOUT=W, COPIES=32

The example is a request for 32 copies of the data set RECORD to be produced by a unit record device corresponding to class W.

If fewer than 1 or more than 255 copies are specified, or if the COPIES parameter is coded without an associated SYSOUT parameter, the job will be canceled.

The DISP parameter indicates the status of a data set not on a unit record device. It contains three subparameters, the first describes the data set status at the beginning of the job step, the second the disposition of the data set at the end of the step, and the third the data set's disposition if an abnormal termination occurs.

The format of DISP is:

		NEW		KEEP	KEEP]	
DISP=	(OLD		, DELETE	, DELETE)
		SHR		CATLG	CATLG	
		MOD		UNCATLG	UNCATLG	
			•	PASS		

where:

NEW

describes a data set that is being created in the current job step. If the status is NEW, that subparameter may be omitted (NEW is the assumed value) by indicating its absence with a comma. OLD

describes a data set that existed before the current job step.

SHR

describes an existing data set which resides on a direct-access volume that is also available to other concurrently-operating jobs.

MOD

describes a sequential or partitioned data set that is to be added to. Before the first input/output operation occurs, the data set will be automatically positioned after the last record.

KEEP

specifies that the data set is to be retained for future use in other jobs. KEEP is the default value for old data sets.

DELETE

specifies that the space occupied by this data set is to be released and made available for other uses. If the data set was cataloged, the entry for it will be removed from the catalog. If the data set resides on a direct-access volume, the entry for the data set will be removed from the volume table of contents. Once this disposition has taken place, the data set will have ceased to exist. DELETE is the default value for new data sets.

CATLG

specifies that a catalog entry that points to the data set is to be entered in the system catalog. The data set can then be referred to by name in subsequent jobs or job steps. CATLG implies KEEP.

UNCATLG

specifies that the catalog entry that points to the data set is to be removed from the system catalog. UNCATLG implies KEEP. If the data set resides on a direct-access volume, the entry for the data set will remain in the volume table of contents. The area occupied by the data set is still reserved for the data set, and is not released.

PASS

specifies that the data set is to be used in a later job step. A DD statement in a later job step can reference the data set using the DSNAME parameter format *.stepname.ddname. The final disposition of the data set should be given in the last job step that uses the data set. When a data set is in the PASS status, the volume on which it resides remains mounted.

If the third subparameter is not specified, the disposition is the same as that specified in the second subparameter; if the second subparameter specifies PASS, the status of the data set reverts to the status it had before the job step that passed it. In other words, if the data set had an initial disposition of OLD, MOD, or SHR, the data set is kept; if it had an initial disposition of NEW, it is deleted.

Examples of the DISP parameter are:

DISP=(NEW,CATLG,DELETE) DISP=(OLD,DELETE,KEEP) DISP=SHR

The first example specifies a new data set that is to be cataloged; if abnormal termination occurs, information in the data set is considered useless and the data set is deleted. The second example specifies an existing data set that is to be deleted; if abnormal termination occurs, information in the data set is needed and the data set is retained so that it may be resubmitted. The third example specifies an existing data set that is to be shared with other jobs; it is implicitly retained. Note that if only the first subparameter is specified the delimiting parentheses may be omitted.

Table	I-6.	Device	Class	Names
-------	------	--------	-------	-------

Class Name	Class Function	De v ice Type
SYSSQ	Reading, Writing (sequential)	Magnetic Tape Direct Access
SYSDA	Reading, Writing, Updating (direct)	Direct Access
A	Printed Line Output	Printer Magnetic Tape Direct Access
В	Card Image Output	Card Punch Magnetic Tape Direct Access

Assigning a Data Set to an Input/Output Device

The UNIT parameter assigns a data set to a device. The device may be identified by its identification number (e.g., 2400 for tape, 2311 for a disk), or by its device

class name (e.g., SYSSQ for devices containing sequential data sets). A device class is a group of input/output devices performing similar functions, which is given a collective name. Device class names are assigned at program installation time. See Table I-6 for a summary of device class names supplied by IBM.

For data sets residing on direct access devices, the UNIT parameter may also specify those data sets that are not to share the same device access arms, thereby increasing operating efficiency for data sets whose input/output operations occur at the same time; these other data sets are identified by naming the DD statements defining them.

The format of the UNIT parameter most applicable to FORTRAN programs is:

UNIT	({device-type}	[,SEP=(ddname,)])
		(group-name)	

where:

device type identifies an input/output unit by its device number. For example, to request a 2400 Magnetic Tape Device, UNIT=2400 is specified; to request a 2311 Disk Storage Unit, UNIT=2311 is specified. See "Appendix C: Unit Types" for a list of device types that can be specified in the UNIT parameter.

groupname

identifies a device class name, such as SYSSQ.

ddname

identifies a DD statement defining a data set that is to be on a separate device access arm from the data set defined in the current DD statement. Up to eight ddnames may be specified.

Examples of UNIT are:

UNIT=SYSDA UNIT=(2311, SEP=DDNAME1, DDNAME3)

The first example states that the data set may be assigned to any unit in the SYSDA device class. Note that parentheses are not required if only one value is specified. The second example states that the data set is to be assigned to a 2311 device and is to use different access arms from the data sets described in DD statements DDNAME1 and DDNAME3.

For a discussion of the other subparameters available in the UNIT parameter, see the appropriate job control language reference publication, as listed in the Preface.

<u>Assigning Space to a Data Set on a Direct</u> <u>Access Volume</u>

The SPACE parameter is used to allocate space to data sets residing on direct access volumes. This parameter is required when defining a new data set on a direct access volume.

To assign space anywhere within a volume, the SPACE parameter has the format:

SPACE=({TRK CYL block-length }

(,primary[,secondary][,directory])
[,RLSE]
[,CONTIG]
[,ROUND])

where:

TRK specifies that space is to be allocated in number of tracks.

CYL

specifies that space is to be allocated in number of cylinders.

block-length

is a number indicating the average length of a block of records in the data set; the system is to allocate space according to the block length specified.

primary

is a number indicating the amount of tracks, cylinders, or blocks to be allocated.

secondary

is a number indicating the amount of tracks, cylinders, or blocks to be allocated if additional space is required. Additional space is allocated up to fifteen times.

directory

is a number indicating the amount of blocks of 256-byte areas to be allocated for the directory of a partitioned data set.

RLSE

is a keyword indicating the unused space may be released at the end of the job step.

CONTIG

is a keyword indicating that space is to be assigned contiguously within the volume.

ROUND

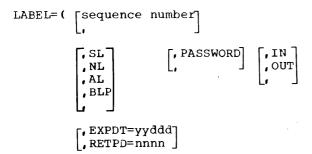
is a keyword indicating that space to be allocated must be equal to one or more cylinders.

Examples of this form of the SPACE parameter are:

SPACE=(TRK, (10,10,2)) SPACE=(400, (5,5), CONTIG, RLSE)

The first example states that space is to be allocated in tracks; 10 tracks are to be allocated initially; 10 additional tracks are to be allocated as needed; additional space is to be reserved for 2 records of a directory.

The second example states that space is to be allocated according to the size of each block of records (400 bytes). Space to accomodate five blocks is to be allocated initially. Space to accomodate five more blocks is to be allocated as needed up to a maximum of 15 times. Space is to be assigned contiguously. Unused space may be released at the end of the job step.


Data Set Labels

The LABEL parameter is used to specify label information for a data set. Labels are used by the control program to store information about the data set and to identify the volume on which it is contained. Data sets on direct access volumes always have labels, data sets on magnetic tape volumes usually have labels, and data sets on unit record devices never have labels.

The LABEL parameter consists of four positional subparameters and one keyword subparameter (any subparameter not specified must have its position noted by a comma, except the last subparameter).

The first subparameter indicates the position of the data set relative to other data sets sharing the volume (tape only). The second subparameter identifies the type of label associated with the data set. The third specifies whether the data set is protected against unauthorized processing. The fourth specifies whether the data set is to be processed for input or output operations only. The fifth specifies a date when the data set may be released.

LABEL has the format:

where:

sequence-number

is used only for data sets residing on magnetic tape to specify which data set is to be processed in a volume containing more than one data set (e.g., 3 specifies the third data set). The subparameter may consist of up to four digits. If the data set is the first or only data set in the volume, the subparameter need not be coded; the default value is 1.

specifies the absence of a subparameter when following subparameters are specified.

SL

specifies that the data set has standard system-created labels.

NL

specifies that the data set has no labels.

AL

specifies that the data set has ASCII labels (American National Standard Code for Information Interchange, a system of coding computer-processed characters differently from the IBM standard EBCDIC). ASCII data sets can reside only on magnetic tape.

BLP

specified that label processing for the data set is to be bypassed.

PASSWORD

specifies that the data set is protected by a password. In order to access the data set the operator must issue the correct password on the system console. Password-protected data sets must have standard labels.

IN

specifies that the data set is to be processed for input operations only. IN will be recognized only if the first input/output operation is a READ. If it is not a READ, IN is ignored and both input and output operations are permitted; if it is a READ, any subsequent WRITE will be treated as an error and job processing is terminated. IN also permits a password-protected data set to be read (if the correct password is supplied) and avoids the need of operator intervention when reading a data set having a high expiration date (for an explanation of the expiration date, see the description of EXPDT). IN must be specified to read a partitioned data set or number.

OUT

specifies that the data set is to be processed for output operations only. OUT will be recognized only if the first input/output operation is a WRITE. If it is not a WRITE, OUT is ignored and both input and output operations are permitted. If it is a WRITE, any subsequent READ will be treated as an error and job processing is terminated. OUT must be specified to create a partitioned data set or member and WRITE operations only may be specified.

EXPDT=yyddd

specifies a date when the data set can be deleted. The date is expressed as a 2-digit number for the year and a 3-digit number for the number of the day in the year (e.g., 72100 indicates that the data set may be released on the 100th day of the year 1972).

RETPD=nnnn specifies the number of days that the data set is to be kept.

Examples of LABEL are:

LABEL=(3,SL) LABEL=(,SL,OUT,EXPDT=71196)

The first example states that the third data set of a magnetic tape volume has standard labels. The second example specifies a data set with standard labels which is used only for output operations and which may be released on the 196th day of 1971.

Assigning Channel Use

The SEP parameter indicates a data set that is to be assigned to a different channel from other data sets.

A channel is a small control unit that manages data transmission operations between a number of input/output devices and the system's central processing unit. Processing time may be shortened by the use of separate channels; assigning data sets whose input/output operations occur at the same time to separate channels increases the speed of input/output operations.

SEP has the format:

SEP=(ddname,...)

where:

ddname

is the name of a DD statement whose data set is not to share the same channel as the data set being defined. Up to eight ddnames may be specified. If only one ddname is specified, the enclosing parentheses are not required.

An example of SEP is:

SEP= (NAMEA, NAMEB, NAMED)

The example states that the data set being defined is to be assigned to a separate channel from the data sets defined on DD statements NAMEA, NAMEB, and NAMED.

Defining Record Characteristics

The DCB parameter defines characteristics of records in a data set. The parameter may specify the following:

- Record format, i.e., whether records are fixed-length (all records in the data set are of equal length), variable-length (records are of different length), or undefined-length (no record length information has been stated).
- Record length. For variable-length records, the record length specifies the length of the largest record.
- Block information, i.e., whether records are accessed individually (unblocked) or in groups (blocked), and the block size of blocked records.
- The number of buffers to be assigned to a data set when data is transmitted between system devices.
- Information identifying ASCII data sets.
- Options to describe characteristics of data sets residing on tape.

- Options to describe characteristics of data sets residing on direct access devices.
- Characteristics of data sets to be taken from another data set.

If the parameter is not specified, default values are supplied according to the data set description presented by other parameters in the DD statement. Table C1 in the section "Compilation" lists DCB defaults for compiler data sets; Table I-12 in the section "Load Module Execution" lists DCB defaults for load module data sets.

The format of the DCB subparameter is:

DCB=([data-set-name]

- [,RECFM=record-format]
 [,LRECL=record-length]
 [,BLKSIZE=block-length]
 [,BUFNO=number-of-buffers]
 [,BUFOFF=block-prefix]
 [,DEN=tape-density]
 [,TRTCH=tape-recording-technique]
 [,DSORG=direct-access-organization]
 - [OPTCD=optional-services]

The data-set-name subparameter indicates that DCB attributes are to be taken from a data set defined earlier. Other DCB subparameters may be coded on the same DD statement to override any of the attributes taken from the earlier data set. The data-set-name subparameter is specified as:

data-set-name= data-set-name= *.ddname *.stepname.ddname *.stepname.procstep.ddname

The form that data-set-name may take is summarized in Table I-5.

An example of dsname is:

DCB=*.STEP1.SMITH2

The example states the data set is to have the same characteristics as the data set defined in the DD statement SMITH2 appearing in job step STEP1.

RECFM is specified as follows:

 $\operatorname{RECFM} = \begin{bmatrix} F \\ V \\ D \\ U \end{bmatrix} \quad [B] \quad [S] \begin{bmatrix} A \\ M \end{bmatrix} \quad [T]$

where:

F

indicates fixed-length records.

- indicates variable-length EBCDIC records.
- indicates variable-length ASCII records.
- U

А

М

v

D

indicates undefined-length records.

B indicates that records are blocked. B may not be specified for undefined-length records.

S indicates spanned records, i.e., a record spans over two or more blocks. S may be specified only for variable-length EBCDIC records.

indicates that carriage control characters are used for formatting purposes.

indicates that machine code control characters are used. M may not be coded for ASCII records.

This feature results in more efficient

T indicates that the track overflow feature is to be used. This feature permits records to be written even though the block size exceeds the track size of a direct access device.

Examples of RECFM are:

track utilization.

RECEM=V

RECFM=V RECFM=FBA

The first example specifies variable-length records. The second example specifies fixed-length records which are blocked and written according to carriage control characters.

LRECL is specified as:

LRECL=record-length

where:

record-length is a number indicating the length of the largest record to be found in the data set. The maximum value that may be specified is 32756.

For fixed-length records, LRECL indicates the actual length of the record.

For variable-length records, LRECL indicates the length of the longest record, plus four for a segment control word. A four-byte <u>Segment control word</u> precedes each variable-length record and specifies the actual length of the record. For undefined records LRECL is omitted.

An example of LRECL is:

LRECL=84

This example states that the record length is 84 bytes.

BLKSIZE is specified as:

BLKSIZE=block-length

where:

block-length
 is a number indicating the length of
 the block of records. The number
 specified also determines the length
 of the buffer, i.e., the number of
 bytes of data transmitted between an
 I/O unit and main storage in one
 operation. The maximum value that may
 be specified is 32760.

For fixed-length unblocked records, BLKSIZE is the same as the number specified in LRECL (LRECL may be omitted; if it is, the operating system determines the record length from BLKSIZE). For fixed-length blocked records, BLKSIZE is an integral multiple of LRECL.

For variable-length unblocked records, BLKSIZE is equal to LRECL plus four for a block control word. A four-byte block control word precedes each block of variable-length records (whether the block contains a single unblocked record or a number of blocked records) and specifies the actual number of bytes contained in the block (including the length of the records, the segment control words preceding each record, and the block control word itself). For variable-length blocked records, data management will place records being written in an output block until there is no more room left for the next record and segment control word. It will then write the completed block (which does not have to be as large as BLKSIZE) and will start a new one with the new record.

For undefined-length records, BLKSIZE should be specified to indicate the largest record that might be encountered.

An example of BLKSIZE is:

BLKSIZE=300

This example states that the block size is 300 bytes.

BUFNO is specified as:

BUFNO=n

where:

n

is a number indicating how many buffers are to be assigned to the data set. One, two, or three buffers may be assigned. (Three buffers may be specified only with asynchronous I/O.) If the subparameter is omitted, two buffers are assigned. If the programmer specifies a number greater than three, three buffers are assigned.

An example of BUFNO is:

BUFNO=1

This example states that only one buffer is to be assigned to the data set.

BUFOFF is used with ASCII data sets to indicate the size of an optional block prefix. The block prefix is a field that, if specified, precedes each unblocked record or the first record in a block and contains information describing the record or block. It may be up to 99 bytes in length, and may be specified for fixed-length, undefined-length, and variable-length records. No use is made of the block prefix by IBM System/360 Operating System except in certain cases where the information contained in it is used to determine the length of a block of variable-length records.

BUFOFF is specified as:

BUFOFF=
$$\begin{cases} n \\ L \end{cases}$$

where:

n

is a number from 0 to 99 indicating the size of the block prefix. BUFOFF=n may be specified only for input data sets; the operating system makes no use of the block prefix but skips the number of bytes specified before beginning record processing. If specified for output data sets, BUFOFF=n causes an error message to be written with abnormal termination resulting (unless the extended error handling facility is in force). indicates that the block prefix is four bytes long and that it is to be used to compute the block size. BUFOFF=L may be specified for both input and output data sets but only for variable-length records, that is, when RECFM=D (or RECFM=DB) is also specified.

The BUFOFF subparameter is optional; if not specified, BUFOFF defaults to 0.

An example of BUFOFF is:

BUFOFF=40

 \mathbf{L}

This example states that 40 bytes are to be skipped before record processing is to begin.

The DEN and TRTCH subparameters define characteristics of data sets residing on magnetic tape.

DEN indicates the recording density of a tape volume. It is specified as:

DEN=density

where:

density
 is the number 0, 1, 2, or 3. The
 number 0 indicates density of 200 bits
 per inch of tape (bpi); 1 indicates
 556 bpi; 2 800 bpi; and 3 1600 bpi.

Data may be stored on seven-track tape or nine-track tape. Seven-track tape may be written 200 bpi, 556 bpi, or 800 bpi. Nine-track tape may be written 800 bpi or 1600 bpi. DEN is optional; if it is not specified, 800 bpi is assumed for both seven-track and nine-track tape.

An example of DEN is:

DEN=3

The example states that the data set has a density of 1600 bpi.

TRTCH is used for seven-track tape to indicate the recording technique to be used.

TRTCH has the format:

$$TRTCH = \begin{cases} C \\ E \\ T \\ ET \end{cases}$$

where:

С

- indicates the data conversion feature. The data conversion feature converts binary data between seven-track tape and eight-bit main-storage. Because of the difference in the number of bits per character (seven-track tape has six data bits and one parity-check bit), four tape characters are stored as three main-storage bytes.
- E indicates even parity. Parity is a technique that determines whether any bits were lost during data transmission by counting the number of bits in each character. The mode may require the parity check to be even or odd; the default value is odd parity.
- T indicates data translation from BCD to EBCDIC.
- ET indicates even parity and data translation.

If this subparameter is not specified, the default value is odd parity with no conversion or translation.

DSORG defines the organization of a direct-access data set. As applicable to a FORTRAN program, it is specified as:

$$DSORG= \left\{ \begin{matrix} DA \\ \underline{PS} \end{matrix} \right\}$$

where:

DA indicates direct access organization. DA should be specified for direct-access data sets that will be processed by non-FORTRAN programs; this specification causes a label to be created indicating that the data set has direct organization. indicates physical sequential organization. PS is specified for direct access data sets that will be processed only by FORTRAN programs.

OPTCD indicates optional services to be performed by the control program. As applicable to a FORTRAN program, it is specified as:

$$OPTCD = \begin{cases} Q \\ C \end{cases}$$

where:

Q

С

indicates an unlabeled ASCII data set. If an ASCII data set has been specified with a label (LABEL=(,AL)), this option need not be specified.

indicates chained scheduling. Chained scheduling is a technique whereby the control program receives several separate read or write operations as one continuous operation; in a program having extensive input/output operations, chained scheduling may result in a significant reduction in processing time, particularly when creating a FORTRAN DA data set.

Examples of the DCB parameter are:

DCB=(RECFM=F,BLKSIZE=100,DEN=2) DCB=(RECFM=VB,LRECL=54, BLKSIZE=850,BUFNO=1)

The first example describes fixed-length unblocked records 100 bytes long on tape written in 800 bpi. The second example describes variable-length blocked records with a maximum record size of 50 bytes plus four for segment control word, a maximum block size (including record control words and block control word) of 850, and one buffer to transmit this data.

 \mathbf{PS}

The FORTRAN IV (H Extended) compiler is a processing program that translates a FORTRAN IV source module into an object module.

The EXEC statement calls the compiler by name, IFEAAB, in the PGM parameter, i.e.,

// EXEC PGM=IFEAAB

The EXEC statement may also specify other parameters and compiler options.

COMPILER OPTIONS

Compiler options are specified in the PARM parameter of the EXEC statement. They increase the flexibility of the compiler. For example:

- The SOURCE option lists the statements in the source module
- The LIST option writes the object module
- The MAP option writes a table of names used in the source module
- The DECK option produces a card deck of the object module.

All the options available are illustrated in Figure I-9. Default options are indicated by an underscore and need never be specified explicitly. The default options shown are standard IBM defaults; when the compiler is installed, each installation may establish its own set of default options.

Options may be coded in any order and may be separated by blanks or commas. As many as 100 characters may be coded in the PARM field. The options are enclosed in quotation marks except when the PARM field is continued onto a following card; the field must then be enclosed in parentheses rather than quotation marks, and each option containing a parenthesis must be enclosed in quotation marks. The following is an example of a continued PARM field:

PARM=(NOSOURCE,

'LINECOUNT(50)',LIST)

For purposes of simplicity, the discussion below lists only one affirmative and

negative form of each option. For examples of output that these options produce, see the chapter "Compiler Output."

SOURCE

NOSOURCE indicates whether the <u>source module</u> <u>listing</u> is to be written. If SOURCE is specified, the listing is produced in the data set defined by the SYSPRINT DD statement.

LINECOUNT(number)

indicates the maximum <u>number of lines</u> to be assigned per page of the source listing. The number may be in the range 1 to 99. If the option is omitted, the compiler assumes 60.

LIST

NOLIST

indicates whether the <u>object module</u> <u>listing</u> is to be written. The object module listing consists of statements written in pseudo-assembler language format. If LIST is specified, the listing is produced in the data set defined by the SYSPRINT DD statement.

OBJECT

NOOBJECT

indicates whether the <u>object module</u> (not the listing) is to be written. OBJECT must be specified if the linkage editor job step is to be called in the current job. If the object module is to be written, it is written in the data set defined by the SYSLIN DD statement, which defines primary input to the linkage editor job step.

DECK NODECK

indicates whether the <u>object module in</u> <u>card image form</u> is to be produced in the data set specified by the SYSPUNCH DD statement. DECK is usually specified when the compilation step is not immediately followed by the linkage editor step; the deck is used to supply input to the linkage editor in a subsequent job.

OPTIMIZE({0|1|2})

NOOPTIMIZE

indicates what optimizing level is to be in force. NOOPTIMIZE indicates that no optimization is to be performed, and is equivalent to the specification OPTIMIZE(0). OPTIMIZE(1) specifies that each source module is to be treated by the compiler as a single program loop and that the single loop is to be optimized with regard to register allocation and branching. OPTIMIZE(2) specifies that each source module is to be treated as a collection of program loops and that each loop is to be optimized with regard to register allocation, branching, common expression elimination, and replacement of redundant computations. Optimizing techniques are discussed in greater detail in the section "Programming Considerations."

FORMAT

NOFORMAT

indicates whether a <u>structured source</u> <u>module listing</u> is to be written. A structured source module listing indicates loop structures and the logical continuity of a source program. This option is effective only when OPTIMIZE(2) is in effect, and a DD statement named SYSUT1 is present; the listing is written in the data set specified by the SYSPRINT DD statement.

GOSTMT

NOGOSTMT

indicates whether <u>internal sequence</u> <u>numbers</u> (ISN) are to be generated for the calling sequence to subroutines for a traceback map. (A traceback map is a tool used in diagnosing execution errors; it is discussed in "Load Module Output.")

MAP NOMAP

indicates whether a <u>table of names and</u> <u>statement labels</u> used by the source program is to be written. If MAP is specified, the table is written in the data set specified by the SYSPRINT DD statement.

XREF

NOXREF

indicates whether a <u>cross reference</u> <u>listing of variables and labels</u> used in the source program is to be written. If XREF is specified, ISNs are generated for each statement in which a variable or label is used. If XREF is specified, a DD statement named SYSUT2 must be supplied; the listing is written in the data set specified by the SYSPRINT DD statement. NAME(name) indicates the name to be given to the <u>main source program</u>. The name may be from one to six characters. If NAME is not specified, the compiler assumes the name MAIN.

BCD EBCDIC

indicates whether the source module is written in BCD (Binary Coded Decimal) or EBCDIC (Extended Binary Coded Decimal Interchange Code). If BCD and EBCDIC statements are intermixed in the source module, BCD should be specified. BCD characters are not supported by the compiler as print control characters or in literal data. For example, the carriage control character to specify same line printing, +, is specified as a 12-8-6 punch in EBCDIC and as a 12 punch in BCD; the compiler recognizes only the EBCDIC code. Therefore, programs keypunched in BCD should be carefully screened for potential errors before job submission.

SIZE

nnnnk

MAX

indicates the <u>amount of main storage</u> to be allocated to the compilation step. The symbol nnnnK represents the number, multiplied by K (1024-bytes), to be allocated. The number may range from 160 to 9999.

If SIZE(MAX) is specified, or if the option is omitted, the compiler uses all available storage in the environment in which it is operating, except for approximately 3K bytes which are left for system routines. SIZE should only be specified to reduce the amount of storage required by FORTRAN in a multitasking environment.

AUTODBL(value)

calls the Automatic Precision Increase (API) facility and indicates whether <u>data items are to be converted to</u> <u>higher precision</u>. API provides an automatic means of converting single precision floating point calculations to double precision accuracy and double precision calculations to extended precision accuracy. The AUTODBL option indicates which particular data types are to be converted. The AUTODBL option is discussed in detail in the section "Automatic Precision Increase".

If AUTODBL is omitted, no precision increase is performed.

ALC NOALC

indicates whether <u>data items are to be</u> <u>aligned on proper storage boundaries</u>. It is often used with the AUTODBL option to restore proper storage boundaries when a conversion is performed. ALC is discussed in detail in the section "Automatic Precision Increase."

ANSF

NOANSF

indicates whether the compiler is to recognize only those library and built-in <u>functions specified by the</u> <u>American National Standards Institute</u>, (ANS), or the entire range of functions specified by IBM in the publication <u>IBM System/360 and</u> <u>System/370 FORTRAN IV Language</u>, Order No. GC28-6515. If ANSF is specified, any function not supported by ANS is considered to be user-supplied.

FLAG(I)

FLAG(E)

FLAG(S)

indicates the <u>level of diagnostic</u> <u>messages to be printed</u>. FLAG(I) indicates that information messages, warning messages (those generating a return code of 4), error messages (those generating a return code of 8), and severe error messages (generating a return code of 12 or higher), are to be printed. FLAG(E) indicates that only error messages and severe error messages are to be printed. FLAG(S) indicates that only severe error messages are to be printed.

DUMP NODUMP

indicates whether the contents of registers, storage, and files associated with the compiler are to be printed if an abnormal termination occurs. If DUMP is specified, a DD statement named SYSUDUMP or SYSABEND must be supplied; the dump is written in the data set specified by the DD statement.

Changing Program Options During a Batch Compilation

A batch compilation permits the programmer to compile more than one source module in a single job. The PARM options specified in the EXEC statement apply to each of the source modules unless the programmer specifies different options for a source module. To change the options for any source module, the programmer precedes the source module with a card containing the characters *PROCESSb in columns 1 through 9 followed by the options up to column 72, which must be left blank and which denotes the end of the *PROCESS card.

An example of the *PROCESS card is:

*PROCESS LIST, MAP

If succeeding source modules are not preceded by a *PROCESS card, options revert to those specified in the EXEC statement. Any option except SIZE may be specified on the *PROCESS card.

COMPILER DATA SETS

The compiler uses up to seven data sets.

Table I-7 lists the function, device types, and allowable device classes for each data set. Table I-8 lists the DCB default values for data set characteristics.

Data Sets Defined in Cataloged Procedures

If the programmer uses a cataloged procedure, he need not define the DD statements SYSPRINT, SYSPUNCH, SYSLIN, SYSUT1, and SYSUT2; these are defined in the cataloged procedure.

SYSPRINT defines printed output. Such output may be directed to a tape, direct access device, or to a printer. To specify output to a printer, the DD statement is coded:

//SYSPRINT DD SYSOUT=A

SYSOUT is the disposition for system data sets, and A is the standard output class for a printer.

SYSPUNCH defines punched output (output in card image format). Such output may be directed to a tape, direct access device, or to a card punch. To specify output to a card punch, the DD statement is coded:

//SYSPUNCH DD SYSOUT=B

B is the standard output class for a card punch.

COMPILER OPTIONS					
Form	Abbreviated Form				
SOURCE NOSOURCE	SINOS				
LINECOUNT(number) ¹	LC(number)				
LIST NOLIST					
OBJECT NOOBJECT ²	OBJ NOOBJ				
DECK <u>NODECK</u>					
OPTIMIZE({0 1 2}) ³ <u>NOOPTIMIZE</u>	OPT({0 1 2}) NOOPT				
FORMAT NOFORMAT"	FMT NOFMT				
GOSTMT <u>NOGOSTMT</u> 5					
MAP <u>NOMAP</u>					
XREF <u>NOXREF</u>					
NAME(name) ⁶					
EBCDIC BCD	 EB BCD				
$SIZE(\left\{\frac{MAX}{nnnnK}\right\})$					
AUTODBL(value)	AD(value)				
ALC NOALC					
ANSF <u>NOANSF</u>	1 1				
FLAG(<u>I</u>) FLAG(E) FLAG(S)					
DUMP NODUMP					
 <u>Notes</u> :	L				
¹ Compiler also accepts the LINECNT=xx	old form:				
² Compiler also accepts the LOAD NOLOAD	old form:				
³ Compiler also accepts the	old form:				
OPT={0 1 2} "Compiler also accepts the	old form:				
EDIT NOEDIT					
⁵ Compiler also accepts the ID NOID	ora rorm:				
⁶ Compiler also accepts the NAME=name	old form:				

Figure I-9. Compiler Options

SYSLIN defines the object module created by the compiler. The object module may be directed to a tape or direct access device. The following is a typical SYSLIN DD statement: //SYSLIN DD DSNAME=&&LOADSET, // DISP=(MOD, PASS),UNIT=SYSSQ, // SPACE=(400,(200,50))

In this example, DSNAME=&&LOADSET specifies a temporary data set that is to contain the object module. DISP=(MOD, PASS) specifies that the data set is new or is to be modified (in the event of multiple compilations) and is to be passed to a succeeding job step, in this case the link edit step. UNIT=SYSSQ specifies that the data set is to reside in a sequential device class. SPACE=(400, (200,50)) specifies that space is to be allocated for records whose average block length is 400 bytes; space is allocated initially for 200 such blocks and additional space is allocated as necessary for 50 more such blocks.

SYSUT1 and SYSUT2 define utility data sets used by the compiler. SYSUT1 is used if the compiler option FORMAT (structured source listing) is requested. SYSUT2 is used if the compiler option XREF (produce cross reference listing) is requested. Both data sets may reside on a tape or direct access device. The following is a typical DD statement for a utility data set:

//SYSUT1 DD UNIT=SYSSQ, SPACE=(3465, (10, 10))

In this example, UNIT=SYSSQ specifies that the data set is to reside in the sequential device class SYSSQ. SPACE=(3465,(10,10)) specifies that space is to be allocated for records whose average block length is 1050 bytes; space is allocated initially for 10 such blocks, and additional space is allocated as necessary for 10 more such blocks.

Data Sets That Must Be Defined by the Programmer

Cataloged procedures do not supply the DD statements SYSIN, SYSUDUMP, and SYSABEND; the programmer must define these, as required, when he submits a program to be compiled.

SYSIN defines the source module. The source module may reside on a tape, on a direct-access device, or on cards. To specify a source module in the input stream, the DD statement is coded:

//SYSIN DD *

The asterisk indicates that the source module statements physically follow the SYSIN DD* statement.

Table	I-7.	Compiler	Data	Sets.
-------	------	----------	------	-------

dđname	Function	Device Types	Applicable Device Class	Defined in Cataloged Procedures Calling the Compiler
	Reading input source module		Input stream (defined as DD * or DD DATA) SYSSQ	No
Í	Writing listings, storage maps, mes- sages	Printer Magnetic tape Direct access		Yes
	Punching the object module deck	Card punch ¹ Magnetic tape Direct access		Yes
1	module data set as	Direct access Magnetic tape Card punch ¹		Yes
	Work data set for structured source listing; required if compiler option EDIT is requested	Magnetic tape Direct access		Yes
	Work data set for compiler cross reference listing; required if compiler option XREF is re- quested	Magnetic tape Direct access		Yes
	Writing dump in event of abnormal termina- tion		A SYSSQ	No
1SYSPUNCH	I and SYSLIN may not be	e directed to 1	the same card punch.	

Table I-8. DCB Default Values for Compiler Data Sets

ddname	LRECL	RECFM	BLKSIZE	BUFNO	
SYSIN SYSPRINT SYSLIN SYSPUNCH SYSUT1 SYSUT2	80	FB VBA FB FB FB FB	80 141 3200 3440 34651 1024- 40961	2 2 2 2 2 2 2 2 2	
¹ This value is fixed by the compiler and may not be overridden. (Values for other entries may be overridden through the DCB parameter in the DD statement.) ² The value is within this range and the actual value is calculated during compiler execution.					

SYSUDUMP or SYSABEND define data sets on which abnormal termination dumps may be written if the DUMP compiler option has been specified. SYSUDUMP is requested when the user wants to display the problem program area in the event of an abnormal termination. SYSABEND is requested when the user wants to display the system nucleus and trace table in addition to the problem program area. Abnormal termination data sets may be directed to tape, direct access devices, or to a printer. To specify the data set to a printer, the DD statement is coded:

//SYSUDUMP DD SYSOUT=A

or

//SYSABEND DD SYSOUT=A

LINKAGE EDITOR AND LOADER

The linkage editor and the loader are two of the processing programs in the operating system. They both perform the link edit function, i.e., combining the object module with other modules to form one executable load module. They differ in the way they store the load module. The linkage editor places the load module into a library, where it is called for execution by another job step; the loader places the load module directly into storage for execution in the same job step.

CHOOSING THE PROPER LINKAGE PROGRAM

The choice of the proper linkage program depends upon the facilities required. The linkage editor provides the following facilities:

- The overlay feature. The overlay feature separates a program into two or more segments that do not have to be in main storage at the same time, thereby reducing storage size requirements for large programs.
- Control statements to provide additional processing flexibility. Linkage editor control statements define additional libraries available to the linkage editor, define the structure of segments of a program, and serve other uses.
- 3. Placement of the load module into a library for execution at a later time.

The loader is the more efficient program when:

- a small load module, not requiring the use of overlay, is to be executed,
- 2. no linkage editor control statements are needed, and
- 3. the load module is to be executed immediately.

LINK EDIT JOB STEP

The EXEC statement calls the linkage editor by name, IEWL, in the PGM parameter, i.e.,

// EXEC PGM=IEWL

The EXEC statement may also specify other parameters and linkage editor options.

LINKAGE EDITOR OPTIONS

Linkage editor options increase the flexibility of the linkage editor. At the time the operating system is generated, each installation chooses its set of default options. At execution time, the programmer may specify other options through the EXEC statement PARM parameter. Options available are illustrated in Figure I-10. Options may appear in any order. For examples of output that these options produce, see the section "Linkage Editor and Loader Output."

MAP
XREF

indicates that a map of the load module is to be produced, showing the <u>location and length of main programs</u> <u>and subprograms</u>. The map is produced in the data set defined by the SYSPRINT DD statement. XREF indicates that a <u>cross reference listing</u> is also to be produced. If neither option is specified, no map or cross-reference listing is produced.

LET indicates that the linkage editor is to <u>mark the load module executable</u> even though abnormal conditions, which could cause execution to fail, have been detected. The LET option is useful in testing segments of a large program that refer to segments not yet coded; as long as the calls to absent

segments are not executed, the user

can still test the finished segments.

PARM='	[MAP], [LET], [NCAL] XREF	, [LIST]	, [OVLY] '	
Figure I-10.	Linkage Editor Options			

58

NCAL

indicates that the linkage editor is to <u>call no system libraries</u> to resolve external references. (The SYSLIB DD statement, which defines system libraries, need not be submitted.) The load module is marked executable even though references to other programs may have been detected.

LIST

indicates that any <u>linkage editor</u> <u>control statements are to be listed</u> in the data set defined by the SYSPRINT DD statement.

OVLY

indicates that the load module is to be in the format of an <u>overlay</u> <u>program</u>, i.e., segments of the program may share the same storage area at different times during processing. Overlay programs are described in detail in the section "Linkage Editor Overlay Feature."

LINKAGE EDITOR DATA SETS

The linkage editor normally uses five data sets; others may be necessary if secondary input is specified.

Table I-9 lists the function, device types, and allowable device classes for each data set.

Data Sets Defined in Cataloged Procedures

Cataloged procedures calling the linkage editor contain the DD statements SYSLIN, SYSLIB, SYSLMOD, SYSPRINT, and SYSUT1. (Note that the SYSUT1 DD statement for the linkage editor should not be confused with the SYSUT1 DD statement used in the compile job step.)

SYSLIN defines the object module used as input to the linkage editor. The following is a linkage editor SYSLIN DD statement that is the counterpart to the compiler SYSLIN DD statement illustrated in the section "Compilation":

//SYSLIN DD DSNAME=&LOADSET, // UNIT=SYSSQ,DISP=(OLD,DELETE)

In this example, DISP=(OLD,DELETE) specifies that the data set existed prior to this job step and that it is to be deleted at the end of the step. SYSLIB defines the system library, SYS1.FORTLIB, from which IBM-supplied FORTRAN subroutines may be obtained by the linkage editor to resolve references made by the object module to other programs (such references are called <u>external</u> <u>references</u>). SYSLIB is specified if there is a possibility that the compiler may have generated calls to any FORTRAN subroutine. SYS1.FORTLIB exists prior to the job and may be called simply by name. To specify the library, the DD statement is coded:

//SYSLIB DD DSNAME=SYS1.FORTLIB, DISP=SHR

In this example, DISP=SHR is coded to permit other jobs to have access to the library while this job step is still in progress. If the NCAL option is specified, the SYSLIB DD statement is not required.

SYSLMOD defines the load module created by the link edit job step. The load module may be directed only to a direct access device and must be stored in a library as a named member. The library may be the system library, SYS1.LINKLIB, a temporary library, or a private library. The following is a typical SYSLMOD DD statement:

//SYSLMOD	DD	DSNAME=&GOSET(MAIN),
11		UNIT=SYSDA,DISP=(,PASS),
11		SPACE=(3072,(30,10,1),RLSE)

In this example, DSNAME=&GOSET specifies a temporary library. MAIN specifies the member name of the load module. UNIT=SYSDA specifies that the data set is to reside in a direct access device class, DISP=(,PASS) specifies that the data set is new (by default) and that it is to be passed to a later job step. SPACE=(3072,(30,10,1),RLSE) allocates space for 30 record blocks, whose size is 3072 bytes, allocates space for 10 additional blocks as necessary, allocates 1 block of 256 bytes for the directory, and specifies that unused space may be released at the end of the step.

The following example indicates how a programmer may store the load module into a private library:

//SYSLMOD	DD	DSNAME=USERLIB(PROG1),
11		UNIT=SYSSQ, DISP=(, CATLG),
11		SPACE=(TRK, (50, 30, 3),
11		VOLUME=SER=34345

In this example, USERLIB specifies the name of the library. PROG1 the member name of the load module. UNIT=SYSSQ specifies that the library (or data set) is to reside in a sequential device class. DISP=(,CATLG) specifies a new data set that is to be cataloged. SPACE allocates 50 tracks initially, 30 tracks if needed subsequently, and 3 blocks of 256 bytes for the directory. VOLUME specifies the specific volume which is to hold the data set.

To execute the load module PROG1 in a later job, the programmer must submit job control statements containing the following minimum information:

//jobname JOB //JOBLIB DD DSNAME=USERLIB,DISP=(OLD,KEEP) // EXEC PGM=PROG1

The DD statement defining a private library must be named JOBLIB and must follow the JOB statement and precede any EXEC statements. It makes the private library available. The EXEC statement names the program to be executed. These statements cause the operating system to search the private library to locate the program as an executable load module.

SYSPRINT defines printed output. As in the compiler step, such output may be directed to a tape, a direct access device, or to a printer.

SYSUT1 defines a utility data set used by the linkage editor. This data set may reside only in a direct access device class. The following is a typical SYSUT1 DD statement:

//SYSUT1 DD DSNAME=&SYSUT1,UNIT=SYSDA, // SPACE=(1024,(200,20)), // SEP=SYSLMOD In this example, DSNAME=&SYSUT1 specifies a temporary data set. UNIT=SYSDA specifies that the data set resides in a direct access device class. SPACE allocates space to the data set. SEP=SYSLMOD specifies that this data set is not to use the same channel as the data set defined in the SYSLMOD DD statement.

<u>Data_Sets_That_Must_Be_Defined_by_the</u> <u>Programmer</u>

There are two kinds of input to the linkage editor: primary and secondary. If any secondary input is to be submitted, the programmer must define it; cataloged procedures do not supply DD statements for secondary input.

Primary Input

<u>Primary input</u> is the data set defined in the SYSLIN DD statement. Normally, this data set consists of the output from a previous compilation job step, but primary input may also be linkage editor control statements (discussed under "Linkage Editor Control Statements"). Primary input may reside on tape, direct access, or cards.

Table I-9. Linkage Editor Data Sets

ddname	Function	Device Type	Applicable Device Class	Defined in Cataloged Procedures Calling the Linkage Editor
SYSLIN	Primary input data, normally output of the compiler	Direct access Magnetic tape Card reader	SYSDA SYSSQ input stream (defined as DD * or DD DATA)	Yes
SYSLIB	Automatic call library (SYS1.FORTLIB)	Direct access	SYSDA	Yes
SYSLMOD	Link edit output (load module input)	Direct access	SYSDA	Yes
SYSPRINT	Writing listings, messages	Printer Magnetic tape Direct access	A SYSSQ 	Yes
SYSUT1	Work data set	Direct access	SYSDA	Yes
user- defined	Additional libraries and object modules	Direct access Magnetic tape	SYSDA SYSSQ	No

Secondary Input

<u>Secondary input</u> consists of modules that are not part of the primary input data set but are to be included in the load module. The linkage editor uses secondary input to resolve external references between the primary input and other programs which it calls. Secondary input may be in the following forms:

- Object modules specified by the user. These modules may be either sequential data sets or members of a library.
- Load modules specified by the user. These modules must be members of a library. They may contain linkage editor control statements.
- 3. The <u>automatic call library</u>, SYS1.FORTLIB. This is the data set defined in the SYSLIB DD statement. SYS1.FORTLIB contains the FORTRAN library subprograms as its members. The linkage editor uses this library if unresolved references remain after other input has been processed.

The user defines secondary input in a <u>linkage editor control statement</u> and a DD statement.

Linkage Editor Control Statements

Linkage editor control statements specify an operation and one or more operands.

The first column of a control statement must be left blank. The operation field begins in column 2 and specifies the name of the operation to be performed. The operand field must be separated from the operation field by at least one blank. The operand field specifies one or more operands separated by commas. No embedded blanks may appear in the field. Linkage editor control statements may be placed before, between, or after either modules or other control statements in primary or secondary input data sets.

The INCLUDE and LIBRARY control statements specify secondary input.

<u>INCLUDE Statement</u>: The INCLUDE statement specifies additional programs to be included as part of the load module. Its format is:

Operation	Operand
INCLUDE	ddname[(member-name [,member-name])] [,ddname[(member-name [,member-name])]]

Each ddname indicates the name of a DD statement specifying a library or a sequential data set, and each member-name is the name of the member to be included. When sequential data sets (not members) are specified, member-name is omitted.

The following is an example of the INCLUDE control statement and its corresponding DD statement:

```
//LIB1 DD DSNAME=MYLIB,DISP=OLD
//SYSLIN DD *
INCLUDE LIB1(PROG1)
```

LIBRARY Statement: The LIBRARY statement specifies additional libraries to be searched for object modules to be included in the load module.

The LIBRARY statement differs from the INCLUDE statement in that libraries specified in the LIBRARY statement are not searched until all other references (except those reserved for the automatic call library) are completed by the linkage editor. A module specified by an INCLUDE statement is included immediately.

The format of the LIBRARY statement is:

Operation	Operand
LIBRARY	ddname(member-name [,member-name]) [,ddname(member-name [,member-name])]]

Each ddname indicates the name of a DD statement specifying a library, and each member-name is the name of a member of the library.

The following is an example of the LIBRARY control statement and its corresponding DD statement:

//LIB2 DD DSNAME=ADDLIB,DISP=OLD
//SYSLIN DD *
LIBRARY LIB2(ADD1,ADD2)

Figure I-11 illustrates the use of linkage editor control statements. STEP1, STEP2, and STEP3 are compile job steps. STEP1 compiles a main program, MAIN, and places the object module in a sequential data set called &&GOFILE. STEP2 and STEP3 compile subprograms SUB1 and SUB2 and place the object modules in separate sequential data sets.

STEP4 is the link edit job step. It uses the &&GOFILE data set as primary input. The compiled subprograms are used as secondary input through the INCLUDE statements and the DD statements named DD1 and DD2. An additional data set, defined in the LIBRARY statement and in the DD statement named ADDLIB, is to be used if external references are not resolved among the three object modules. Note that the INCLUDE and LIBRARY statements are entered through the input job stream with a DD * statement.

After link edit processing, the load module CALC is stored as a member of the load module library PROGLIB. CALC contains the main program, the two subprograms, and, possibly, routines from the user library MYLIB and the system library SYS1.FORTLIB.

<u>IDENTIFY Statement</u>: For a description of the IDENTIFY statement, see the OS/VS linkage editor and loader publication listed in the Preface.

ORDERING AND PAGE-ALIGNING PROGRAM UNITS UNDER OS/VS

Under the VS control programs, linkage editor control statements may be used to specify the sequence of FORTRAN program units in the output load module and to specify their alignment on page boundaries. Such ordering and alignment can be used to effect a lower paging rate and thus make more efficient use of real storage.

ORDER Statement: The ORDER statement indicates the sequence in which program units are to appear in the output load module. The program units appear in the sequence in which they are specified on the ORDER statement. When multiple ORDER statements are used, their sequence further determines the sequence of program units in the output load module; those named on the first statement appear first, and so forth.

The format of the ORDER statement is:

Operation	Operand				-1
ORDER	name[(P)]	, name	[(P)]	•••	

where:

name

is the name of a FORTRAN main program, subprogram, or COMMON block

(P)

indicates that the starting address of the program of the program unit is to be on a page boundary within the load module. The program units are aligned on 4K page boundaries unless the ALIGN2 attribute is specified on the EXEC statement. (Page boundary alignment in the executing module can only occur when the operating system supervisor includes support for fetch on a page boundary. This support is available only with VS2.)

An ORDER statement may be placed before, between, or after object modules or other control statements.

<u>PAGE Statement</u>: The PAGE statement, like the (P) operand of the ORDER statement, aligns a program unit on a 4K page boundary in the output load module. If the ALIGN2 attribute is specified on the EXEC statement for the linkage editor job step, use of the PAGE statement aligns the specified program units on 2K page boundaries within the load module. (As with the (P) operand of the ORDER statement, page boundary alignment in the executing module can only occur when the operating system supervisor includes support for fetch on a page boundary. This support is available only with VS2.)

The format of the PAGE statement is:

Operation	Operand	1
PAGE	name [,name]	1

where:

name

is the name of a FORTRAN main program, subprogram or COMMON block.

The PAGE statement may be placed before, between, or after object modules or other control statement.

In the example shown in Figure I-10.1., the program units RAREUSE and MAINRT are aligned on 2K page boundaries by PAGE and ORDER control statements used with the

MAINROOT	JCL AND CONTROL STATEMENTS	0 K	MAINROOT
	//LKED EXEC PGM=IEWL, PARM='ALIGN2'	UN	
SBPRGA 	· · ·//SYSLMOD DD DSNAME=OWNLIB,		MAINRT
RAREUSE	//SYSLIN DD * PAGE RAREUSE	2К	
SUBPRG1	ORDER MAINRT(P),SBPRGA,SUBPRG1 INCLUDE SYSLMOD(MAINROOT) /*		SUBPRGA
BOTTOM		4K	SUBPRG1
		6K	RAREUSE
MAINRT			
لــــــ			BOTTOM

Figure I-10.1. Ordering and Aligning Program Units on Page Boundaries

ALIGN2 attribute. Program units SBPRGA and SUBPRG1 are sequenced by the ORDER control statement. Assume that each program unit is 2K in length except for SUBPPG1 and RAREUSE.

The linkage editor places the program units MAINRT and RAREUSE on 2K page boundaries because ALIGN2 is specified in the EXEC statement. Program units MAINRT, SBPRGA, and SUBPRG1 are sequenced as specified in the ORDER statement. RAREUSE, while placed on a 2K page boundary, appears after the program units specified in the ORDER statement because it was not included. The program unit BOTTOM comes after RAREUSE because it appeared after RAREUSE in the input module.

SYSTEM LOADER

The loader combines into one job step the functions of link editing and load module execution. The loader combines the object module with other modules to form one executable load module. It places the load module directly into main storage and then executes it. By placing the load module directly into main storage, the loader eliminates the need for writing and then reading the SYSLMOD data set. The EXEC statement identifies the loader by either of its names, IEWLDRGO or LOADER, in the PGM parameter, i.e.,

//EXEC PGM=LOADER

The EXEC statement may also specify other parameters and loader options.

LOADER OPTIONS

Loader options increase the flexibility of the loader. At the time the operating system is generated, each installation chooses its set of default options. At execution time, the programmer may specify other options through the EXEC statement PARM parameter. Options available are illustrated in Figure I-12. Options may be coded in any order.

MAP

NOMAP

indicates whether a map of the loaded program is to be produced, listing <u>external names and absolute storage</u> <u>addresses.</u>

LET

NOLET

indicates whether the loader is to mark the load module executable even though abnormal conditions, which SIZE=nnnnn could cause execution to fail, have SIZE indicates the amount of storage, been detected.

CALL NCAL

indicates whether the loader is to call a system library to resolve external references. If the library is to be called, the SYSLIB DD statement must be submitted.

in bytes, that is to be allocated to loader processing. The size of the load module must be included in this number. If the option is not specified, the default size, 100K, is assumed.

	//JOBX //STEP1	JOB EXEC	PGM=IFEAAB, PARM='NAME(MAIN), LOAD'
Step 1 (//SYSLIN //SYSIN	DD DD	DSNAME=&&GOFILE,DISP=(,PASS),UNIT=SYSSQ *
(Source mo	dule for MAIN
	/* //STEP2	EXEC	PGM=IFEAAB, PARM='NAME(SUB1), LOAD'
Step 2	//SYSLIN //SYSIN	DD DD	DSNAME=&&SUBPROG1,DISP=(,PASS),UNIT=SYSSQ *
		Source mo	dule for SUB1
	\ /* ///STEP3	EXEC	PGM=IFEAAB, PARM='NAME(SUB2), LOAD'
Step 3	//SYSLIN //SYSIN	DD DD	DSNAME=&&SUBPROG2,DISP=(,PASS),UNIT=SYSSQ *
		Source mo	dule for SUB2
	/* //STEP4	EXEC	PGM=IEWL
Step 4 d	// INCLUDE INCLUDE	DD DD DD DD DD DD DD DD1 DD2 ADDLIB(X,	DSNAME=SYS1.FORTLIB, DISP=SHR DSNAME=PROGLIB(CALC), UNIT=SYSDA DSNAME=MYLIB, DISP=OLD DSNAME=*.STEP2.SYSLIN, DISP=OLD DSNAME=*.STEP3.SYSLIN, DISP=OLD DSNAME=*.STEP1.SYSLIN, DISP=OLD *

PARM=	MAP		RES	 [CALL]		[LET]		[SIZE=nnnnn],	 [EP=name]		PRINT	
PARM-*	NOMAP	•	NORES_	 NCAL	'	NOLET	•	[512E-mmm] ,	 EP-namej	•	NOPRINT	

Figure I-12. Loader Options

EP=name

indicates the <u>name that is to be the</u> <u>entry point</u> of the program being loaded.

PRINT

NOPRINT

indicates whether <u>loader messages</u> are to be produced. Messages are produced in the data set defined by the SYSLOUT DD statement.

<u>RES</u> NORES

indicates whether, in an MVT environment, the <u>link pack area queue</u> <u>is to be searched</u> to resolve external references. The link pack is an area of storage that contains a number of modules needed for job processing. If RES is specified, the link pack area queue is searched prior to any search of the SYSLIB data set.

LOADER DATA SETS

The loader normally uses six data sets; other data sets may be defined to describe libraries, loader output, and load module data sets.

Table I-10 lists the function, device types, and allowable device classes for each data set.

Data Sets Defined in Cataloged Procedures

Cataloged procedures calling the loader contain the DD statements SYSLIN, SYSLIB, SYSLOUT, FT05F001, FT06F001, and FT07F001.

SYSLIN defines the object module that is primary input to the loader. Normally this data set consists of the output from a previous compile job step, but it may also be an object module from a partitioned data set. Input may reside on a tape, a direct access device, or on cards. The following is the loader SYSLIN DD statement corresponding to the compiler SYSLIN DD statement illustrated in the section "Compilation."

//SYSLIN DD DSNAME=&&LOADSET,
// DISP=(OLD,DELETE)

SYSLIB defines the system library, SYS1.FORTLIB, that is to be searched to resolve external references made by the input data set. The SYSLIB DD statement may be coded as follows:

//SYSLIB DD DSNAME=SYS1.FORTLIB, DISP=SHR

SYSLIB is not required if the NCAL loader option is specified.

SYSLOUT defines the output data set to store the loader map. A printed listing is obtained if SYSLOUT is allocated to a printer device class, as follows:

//SYSLOUT DD SYSOUT=A

SYSLOUT is not required if the NOMAP and NOPRINT options are specified.

FT05F001 defines the input data set to the load module. The function of this ddname is to associate the system input unit to FORTRAN READ statements having 5 as the data set reference number.

Since cataloged procedures may not contain DD * statements, FT05F001 defers data set definition to the SYSIN DD statement, which the programmer must supply. The following FT05F001 DD statement appears in cataloged procedures:

//FT05F001 DD DDNAME=SYSIN

The programmer completes card input definition by supplying a SYSIN DD statement as follows:

//GO.SYSIN DD *

GO identifies card input with the GO step in cataloged procedures.

FT06F001 defines the system printer unit. The function of this ddname is to associate the system printer to FORTRAN WRITE statements having 6 as the data set reference number. It is defined as follows:

//FT06F001 DD SYSOUT=A

FT07F001 defines the system card punch unit. The function of this ddname is to associate the card punch to FORTRAN WRITE statements having 7 as the data set reference number. It is defined as follows:

//FT07F001 DD SYSOUT=B

Data Sets That Must be Defined by the Programmer

The programmer must define the SYSIN DD statement to complete the description of the input data set, and the SYSPRINT DD statement.

SYSPRINT defines system printed output, such as allocation and job control

messages. Output may be directed to a tape, a direct access device, or to a printer. To direct output to a printer, SYSPRINT is coded:

//SYSPRINT DD SYSOUT=A

The programmer may also define other data sets as required by the load module execution function. See the section "Load Module Execution" for a discussion of these data sets.

Table I-10. Loader Data Sets.

ddname	Function	Device Type	Applicable Device Class	Defined in Cataloged Procedures Calling the Loader
	Input data to linkage function, normally output of the compiler	Direct access Magnetic tape Card reader		Yes
· · · · · ·	Automatic call library (SYS1.FORTLIB)	Direct access	SYSDA	Yes
SYSLOUT	Writing listings	Printer Magnetic tape Direct access	A SYSSQ	Yes
SYSPRINT	Writing messages	Printer Magnetic tape Direct access	A SYSSQ	No
	Input data to load module function	Card reader Magnetic tape Direct access		No
i	Primary input data to be processed by the load module	Card reader Magnetic tape Direct access	Input stream (defined as DD * or DD DATA) SYSSQ SYSDA	Yes
FT06F001	Printed output data	Printer	Α	Yes
FT07F001	Punched output data	Card punch	В	Yes
FTnnFnnn*	User-defined data set	Unit record Magnetic tape Direct access	SYSSQ A,B Sysda	No
*nn and nr	nn cannot be set to 0.		±	

The load module execution job step executes a load module. The load module may be passed directly from a preceding link edit job step, it may be called from a library of programs, or it may form part of the loader job step. If passed from the link edit job step, the load module is called in the PGM parameter of the EXEC statement, i.e.,

// EXEC PGM=*.LKED.SYSLMOD

This statement defines the load module as consisting of the data set described in the SYSLMOD DD statement in the link edit (LKED) job step of the current job.

If the load module is called from a library, it is called by name, as any program, in the PGM parameter, i.e.,

// EXEC PGM=MATRIX

The library in which the load module resides must also be made available to the operating system via a DD statement. A load module may reside on the system library, SYS1.LINKLIB, or on a private library. A private library is defined in a JOBLIB or STEPLIB DD statement. For example, if the load module MATRIX is a member of a private library named MATH, the user may supply the following DD statement:

//JOBLIB DD DSNAME=MATH, DISP=(OLD, PASS)

The JOBLIE DD statement must appear after the JOB statement and before any other control statement. This placement ensures that the private library is kept available for all steps within the job.

If the load module is executed as part of the loader, it is not defined in an EXEC statement. The loader combines the link editing and load module execution into one job step.

LOAD MODULE DATA SETS

The load module execution job step may use many data sets. Table I-11 lists the

function, device types, and allowable device classes for each data set.

Data Sets Defined in Cataloged Procedures

Cataloged procedures calling the execution job step contain the DD statements FT05F001, FT06F001, and FT07F001.

FT05F001 defines the input data set. The programmer codes 5 as the data set reference number in any FORTRAN READ statement that reads card input. Since cataloged procedures may not contain DD * statements, FT05F001 is coded to defer data set definition to the SYSIN DD statement, which the programmer must supply. The following FT05F001 DD statement appears in cataloged procedures:

//FT05F001 DD DDNAME=SYSIN

The programmer completes card input definition by supplying a SYSIN DD statement as follows:

//GO.SYSIN DD *

GO identifies card input with the GO step in cataloged procedures.

FT06F001 defines a printer data set. The programmer codes 6 as the data set reference number in any WRITE statement writing data to be printed. The following FT06F001 DD statement appears in cataloged procedures:

//FT06F001 DD SYSOUT=A

FT07F001 defines a card punch data set. The programmer codes 7 as the data set reference number in any WRITE statement writing data to be punched. The following FT07F001 DD statement appears in cataloged procedures:

//FT07F001 DD SYSOUT=B

Table I-11. Load Module Data Sets

 ddname	Function			Defined in Cataloged Procedures Calling the Load Module					
FT05F001	I.	Card reader Magnetic tape Direct access	SYSDA	Yes					
SYSIN	load module	Card reader Magnetic tape Direct access	SYSDA	No					
FT06F001	Printed output data	Printer	А	Yes					
FT0 7 F001	Punched output data	Card punch	В	Yes					
FTnnFnnn*	User-defined sequential data set	Unit-record Magnetic tape Direct access		NO					
FTnnFnnn*	User-defined partitioned data set containing sequential members	Direct access	SYSSQ	NO					
	User-defined Direct- access data set	direct access	SYSDA	No					
*nn and nr	*nn and nnn cannot be set to 0.								

Data Sets That Must Be Defined by the Programmer

The SYSIN DD statement must be defined by the programmer to complete the description of the input data set begun by the DD statement FT05F001. (If no input data set is to be submitted, the SYSIN DD statement is omitted and the operating system ignores the FT05F001 DD statement.)

The FORTRAN programmer may define other data sets for use in the load module execution step. There are three types of data sets: sequential, partitioned, and direct-access.

Sequential Data Sets

A sequential data set may be coded either in EBCDIC (Extended Binary-Coded-Decimal Interchange Code) or in ASCII (American National Standard Code for Information Interchange). ASCII data sets may be processed by the IBM System/360 Operating System only if the option ASCII=INCRES or ASCII=INCTRAN has been specified at the time the operating system is generated. An EBCDIC data set may reside on unit record devices, magnetic tape volumes or direct access volumes. Data sets defined on a tape or direct access device may be retained for use in later jobs; unit record data sets are temporary and exist for the current job only (although data from these data sets may be transmitted to permanent volumes during job processing). FT05F001, FT06F001, FT07F001, and SYSIN DD * all define sequential data sets.

Figure I-13 illustrates DD statements to define unit record data sets. Figure I-14 illustrates DD statements to create tape and direct access data sets. Figure I-15 illustrates DD statements to retrieve data sets.

An ASCII data set may reside only on magnetic tape volumes. Essentially, a programmer uses the same DD statement parameters to define an ASCII tape as he would an EBCDIC tape. The differences are that an ASCII tape must be identified either through the LABEL parameter (LABEL=AL) or through the DCB subparameter OPTCD (OPTCD=Q) and may be defined only on 9-track tape having a density of 800 bpi. Figure I-16 illustrates the corresponding DD statement for the one shown in Figure LM2 if an ASCII data set was being defined.

Example 1:	Data set in the input stream:
	//SYSIN DD *
Example 2:	Data set on the printer:
	//SYSPRINT DD SYSOUT=A
Example 3:	Data set on the card punch:
	//FT07F001 DD SYSOUT=B
Figure I-13.	Defining Unit Record Data Sets

Figure I-14. Creating EBCDIC Sequential Data Sets on Tape or Direct Access Volumes

Figure I-15. Retrieving Sequential Data Sets

 Example 1:
 Using the LABEL parameter:

 //FT36F001 DD DSNAME=ANY, VOLUME=SER=7342, UNIT=2400,

 //
 DISP=(NEW, KEEP, DELETE), LABEL=(AL, EXPDT=69365)

 Image: Example 2:
 Using the DCB parameter OPTCD subparameter:

 //FT36F001 DD DSNAME=ANY, VOLUME=SER=7342, UNIT=2400,

 //FT36F001 DD DSNAME=ANY, VOLUME=SER=7342, UNIT=2400,

 //
 DISP=(NEW, KEEP, DELETE), DCB=(OPTCD=Q)

Figure I-16. Creating an ASCII Tape Data Set

Partitioned Data Sets

A partitioned data set (PDS) may reside only on a direct access device; hence, any DD statement parameters defining unit record or magnetic tape data sets are not applicable.

A PDS consists of groups of sequential data which are called members of the data set. Partitioned data sets are used to contain libraries.

Figure I-17 illustrates DD statements to define partitioned data sets.

Figure I-18 illustrates DD statements to retrieve a member from a partitioned data set. The first example indicates that the member CASE2 is to be retrieved from the data set USERLIB, that the member is to be used for input operations (LABEL=(,,,IN)), and that the data set is to be retained at the end of the job (the absence of the second subparameter in DISP causes old data sets to be kept).

Like the first example, the second example retrieves a member for input operations, but the DELETE specification in the DISP parameter deletes the entire data set, including all members.

The following discussion describes how more than one member may be processed in the same job and how a single member may be deleted from a partitioned data set.

Retrieving More Than One Member

Two or more members of the same partitioned data set may be processed in one job in a sequential manner, i.e., the PDS must be closed for one member before attempting to read or write another member. Two or more members may be retrieved using either the READ statement END= option or the REWIND statement.

<u>PDS Processing Using END=n Option</u>: When the END=n option is executed and a subsequent READ or WRITE statement is issued with the same data set reference number, the FORTRAN sequence number is incremented by one. This allows another member of the PDS referenced by the same data set reference number to be processed.

The following FORTRAN program illustrates this method:

	INTEGER*4 X(20), Y(20)
10	READ (2,1,END=98) X
1	FORMAT (20A4)
	GO TO 10
98	READ (2,1,END=99) Y
	GO TO 98
99	WRITE (6,2) X,Y
	STOP
	END

Execution of statement 10 results in processing the first PDS member which is referenced by the FORTRAN sequence number 001. Assume that this member has the name

Example 1:	New Partitioned data set with its first member:
	<pre>//FT20F001 DD DSNAME=USERLIB(CASE1),DISP=(NEW,CATLG),UNIT=2311, // SPACE=(TRK,(50,20,5)),VOLUME=SER=DA31</pre>
Example 2:	Adding a member to an existing data set:
	//FT20F002 DD DSNAME=USERLIB(CASE2),DISP=OLD
Example 3:	Temporary data set (created and deleted in the same job):
 	<pre>//FT21F001 DD DSNAME=&TEMPLIB(MY),DISP=(NEW,PASS),UNIT=SYSDA, // SPACE=(TRK,(20,5,1))</pre>

Figure I-17. Creating Partitioned Data Sets

CASE1 and resides in the cataloged partitioned data set named USERLIB; the DD statement that must be supplied is:

//FT02F001 DD DSN=USERLIB(CASE1); 11 LABEL=(,,,IN),DISP=OLD

When the END=n option is executed in statement 10 and the next READ statement, statement 98, is encountered, the FORTRAN sequence number becomes 002. This closes the PDS for the first member. Another member may then be processed. If its n If its name is CASE2, the DD statement that must be supplied is:

//FT02F002 DD DSN=USERLIB(CASE2), LABEL=(,,,IN),DISP=OLD 11

PDS Processing Using REWIND: Execution of the REWIND statement closes a data set. Any subsequent READ or WRITE statement opens the data set again.

The following example illustrates the use of the REWIND statement in reading two members of the same PDS:

```
INTEGER*4 X(20), Y(20)
       READ (2,1) X
       REWIND 2
       READ (3,1) Y
       WRITE (6,2) X,Y
       FORMAT (20A4)
       FORMAT (' ', 20A4)
2
       STOP
       END
```

1

Execution of the first READ statement results in the processing of the first PDS member which is referenced by the FORTRAN sequence number 001. If the member has the name CASE1 and resides in the cataloged partitioned data set named USERLIB, the DD statement that must be supplied is:

//FT02F001 DD DSN=USERLIB(CASE1), LABEL=(,,,IN),DISP=OLD 11

When the REWIND statement is executed, the PDS is closed for MEMBER1. The next READ statement reopens the data set for another PDS member. If the next member name is CASE4, the DD statement that must be supplied is:

//FT03F001 DD DSN=USERLIB(CASE4), LABEL=(,,,IN),DISP=OLD 11

Deleting One Member

To delete a member while retaining the remainder of the data set, the programmer submits a separate job executing the

operating system utility program IEHPROGM. (IEHPROGM is described in the appropriate utilities publication, as listed in the Preface.) Figure I-19 illustrates how a job may be submitted to delete a member only. The DD statement named DD2 defines the data set. The utility program statement SCRATCH releases the member named CASE1 from the partitioned data set named USERLIB.

The SCRATCH statement deletes only the directory entry that refers to the member; the space occupied by the member is released only if the entire data set is reorganized. To reorganize a partitioned data set, the programmer copies the members into a temporary data set, deletes and recreates the original data set, and copies the members back into it. The operating system utility programs contain facilities for copying members of partitioned data sets.

Direct-Access Data Sets

A direct-access data set may reside only on a direct access device; hence, any DD statement parameters defining unit record or magnetic tape data sets are not applicable.

A direct-access data set consists of a number of records that may be accessed individually; i.e., only the record that is needed is accessed regardless of its physical position within the data set. A direct-access data set requires a corresponding DEFINE FILE statement in the FORTRAN program. Figure I-20 illustrates a DD statement and the corresponding DEFINE FILE statement to create a direct-access data set. Note that the record characteristics described in the DEFINE FILE statement must agree with the space allocation requested in the DD statement (for example, in the example, both statements specify records, whose average length is 100 bytes, allocated in blocks of 50 records). Figure I-21 illustrates the statements to retrieve the direct-access data set.

Note that the data set created in Figure I-20 was to be cataloged; therefore, to retrieve it, only the DSNAME and DISP parameters are required.

DCB PARAMETER CONSIDERATIONS

The following DCB subparameters define record characteristics of a data set:

- RECFM, to specify the format of a record, for example, whether fixed-length, variable-length, or undefined-length, and whether records are blocked
- LRECL, to specify the size of a record or the maximum size of a variable-length record
- BLKSIZE, to specify the size of a record or a block of records and the length of the buffers required to transmit data between main storage and input/output devices

Table I-12 lists the DCB default values for load module data sets. Table I-13 summarizes the maximum allowable values for the BLKSIZE subparameter.

//SCRTCH	JOB	
11	EXEC	PGM=IEHPROGM
//SYSPRINT	DD	SYSOUT=A
//DD2	DD	UNIT=2311, VOLUME=SER=DA31, DISP=OLD
//SYSIN	DD	*
i i	SCRATCH	DSNAME=USERLIB, VOL=2311=DA31, MEMBER=CASE1
/*		
Figure T-19	Dolotin	A Member of a Partitioned Data Set

Figure I-19. Deleting a Member of a Partitioned Data Set

DEFINE FILE 8(50,100,L,12)

|--|

Figure I-20. Creating a Direct-Access Data Set

DEFINE FILE 8(50,100,L,I2)

//FT08F001 DD DSNAME=DADS, DISP=OLD

Figure I-21. Retreiving a Direct-Access Data Set

[]	Sequential Data Sets				ta Sets Direct-Access Data Sets		Gets	
ddname	RECFM ¹	LRECL ²	BLKSIZE	DEN	BUFNO	RECFM	LRECL Or BLKSIZE	BUFNO
FT03Fyyy	U		800	2	2	FA	The value	2
F T05 F yyy	F	80	80	-	2	F	maximum size of a record in the	2
FT06Fyyy	UA	132	133	-	2	F	DEFINE FILE	2
FT07Fyyy	F	80	80	-	2	F		2
all others	U		800	2	2	F		2
¹ For records not under FORMAT control, the default is VS. ² For records not under FORMAT control, the default is 4 less than shown.								

Table I-12. DCB Default Values for Load Module Data Sets

Table I-13. Maximum BLKSIZE Values

	BLKSIZE Value	
Device Type	Fixed-Length and Undefined-Length Records (minimum value is 1)	Variable-Length Records (minimum value is 9)
Card Reader	80	80
Card Punch	81	89
Printer		
120 characters	121	129
132 characters	133	141
144 characters	145	153
150 characters	151	159
Direct Access ¹		
2301	20483	20483
2302	4984	4984
2303	4892	4892
2305		
Mod I	14136	14136
Mod II	14660	14660
2311	3625	3625
2314	7294	7294
3330	13030	13030
Magnetic Tape ²	32760	32 7 60

DCB_Considerations_for_Sequential_EBCDIC Data_Sets

FORTRAN records in an EBCDIC data set may be formatted or unformatted, i.e., they may or may not be defined in a FORMAT statement. List-directed I/O statements are considered formatted. Formatted records may be specified as fixed length, variable length, or of undefined length. Unformatted records may be specified only as variable length. If records are to be processed using asynchronous input/output, they may not be blocked.

FORMATTED RECORDS: Formatted records are specified as follows:

Fixed-Length Records: Unblocked fixed-length records are specified as RECFM=F; blocked records as RECFM=FB. For unblocked records, BLKSIZE specifies the record length, (e.g., BLKSIZE=80); the buffer length is the same as the record length. For blocked records, LRECL specifies the record length and BLKSIZE the block length, which must be a multiple of LRECL, (e.g., LRECL=80, BLKSIZE=400); the buffer length is the same as the block length.

Variable-Length Records: Unblocked variable-length records are specified as RECFM=V; blocked records as RECFM=VB.

For unblocked records, LRECL specifies the maximum length of any record in the data set, plus four additional bytes for the <u>seqment control word</u> that precedes each record, and BLKSIZE specifies the buffer length, which is LRECL plus four bytes for the <u>block control word</u> that precedes each block, (e.g., LRECL=84, BLKSIZE=88); the block control word is required even though the record is unblocked. If the record is smaller than the size specified in LRECL, unused space is not written.

For blocked records, LRECL specifies the maximum record length plus four bytes for the segment control word, and BLKSIZE specifies the block length, a number equal to or larger than that specified in LRECL plus four bytes for the block control word, (e.g., LRECL=84,BLKSIZE=350). The block accommodates as many records as possible without exceeding the limit specified in BLKSIZE. Unused space at the end of the block is not written.

If LRECL is omitted, its default value is set to BLKSIZE-4, resulting in having only one record written in any block.

<u>Undefined-Length Records</u>: Undefined-length records may be specified only as unblocked records, i.e., RECFM=U. BLKSIZE specifies the length of the buffer; this number must take into account the largest possible size record which may be encountered in the FORMAT statement; e.g., BLKSIZE=80 indicates that no record larger than 80 bytes will be encountered. Unused space is not written.

Figure I-22 illustrates the structure of formatted records in sequential data sets, using a FORTRAN record size of 80 characters. An example of a DCB parameter describing a block of ten variable-length records whose maximum size is 121 is:

DCB=(RECFM=VB, LRECL=125, BLKSIZE=1254)

UNFORMATTED RECORDS: Unformatted records are those not described by a FORMAT statement. The size of each record is determined by the input/output list of READ and WRITE statements. Unformatted records are always specified as variable and spanned. In addition, they may be blocked or unblocked. Unblocked records are specified as RECFM=VS, blocked records as RECFM=VBS. Blocked records reduce processing time substantially and are recommended whenever possible.

For unblocked records, BLKSIZE specifies the length of the buffer and is immaterial to the size of the logical record, i.e., it may be larger than, equal to, or smaller than the logical record. The first eight bytes of the block are reserved for the block and segment control words. For a record smaller than or equal to BLKSIZE(-8), one record per block is transmitted; unused space is not written. For a record larger than BLKSIZE-8, the record is transmitted over as many blocks as necessary to accommodate it; such a record is called a spanned record, since it spans more than one block.

For blocked records, LRECL specifies the maximum record length, and BLKSIZE specifies a block length not necessarily a multiple of LRECL. The block accommodates as many records as possible. If necessary, the last record of a block may span to the next block.

Figure I-23 illustrates the structure of unformatted records in storage.

Note: The track overflow feature may be specified with any of the record formats. This feature permits more efficient utilization of track capacity by allowing records to be written when a block size exceeds a track size. The feature is requested by the letter T in the RECFM subparameter, e.g., RECFM=VBT.

FIX	ED-LENGTH RECORDS
1.	Unblocked, e.g., DCB=(RECFM=F,BLKSIZE=80)
	FORTRAN Record 1
 	0 80
2. 	Blocked, e.g., DCB=(RECFM=FB,LRECL=80,BLKSIZE=400)
	FORTRAN Record 1 FORTRAN Record 2 FORTRAN Record 5
	0 80 160 320 400
VAR	ABLE-LENGTH RECORDS
1.	Unblocked, e.g., DCB=(RECFM=V,LRECL=84,BLKSIZE=88); record may be any size up to 80 bytes.
	B S C C FORTRAN Record 1 W W
1	0 4 8 88
2.	Blocked, e.g., DCB=(RECFM=VB,LRECL=84,BLKSIZE=424); a record may be any size up to 80 bytes, and the block will contain as many records as may be accommodated in 424 bytes.
	B S S S S S C C FORTRAN C FORTRAN C FORTRAN W W Record 1 W Record 2 W Record 3 W W
 	0 4 8 424
UNDE	FINED-LENGTH RECORDS
• 	Unblocked only, e.g., DCB=(RECFM=U,BLKSIZE=80); a record may be any size up to 80 bytes.
	FORTRAN Record 1
	end: SCW=Block Control Word SCW=Segment Control Word

Figure I-22. EBCDIC Sequential Data Sets--Structure of Formatted Records

B S C C FORTRAN W W Record 1 Unused 	CCRecord 2	B S FORTRAN B C C Record 2 C W W Segment 2 W) (60 chars)	CRecord 2 WSegment 3 Unused
0 4 8 58 68	8 0 4 8	68 0 4 8 68 0	4 8 18 68
length B S C C FORTRAN Record 1 W W (130 characters)	WSegment 1	WWSegment 2 W (10	
	(58 chars) 	(42 chars) L_L_L 0 4 8 50 54	
048 13	88 142 200	0 4 8 50 54	154 200

DCB Considerations for ASCII Data Sets

ASCII data sets may have sequential organization only and may reside only on 9-track tape having a density of 800 bpi (the DCB subparameter DEN=2 must be implied or explicitly specified). If an ASCII data set has not been identified by means of the LABEL parameter (LABEL=AL), the programmer indicates the presence of an ASCII data set by specifying the DCB subparameter OPTCD=Q.

FORTRAN records in an ASCII data set must be formatted and unspanned and may be fixed-length, undefined-length, or variable-length specified as follows:

Fixed-Length Records: Like EBCDIC records, ASCII records may be blocked or unblocked. Unblocked records are defined as RECFM=F; blocked records as RECFM=FB.

For unblocked records, BLKSIZE specifies the buffer length, which is the record length plus the length of an optional block prefix. The block prefix is a field that, if present, precedes each unblocked record or the first record in a block. BUFOFF specifies the size of the block prefix.

For blocked records, LRECL specifies the record length and BLKSIZE the buffer

length, which is the data length (a multiple of LRECL) plus the length of the block prefix if present. BUFOFF specifies the size of the block prefix.

BUFOFF may be specified for input data sets only; the operating system does not use the information contained in the block prefix but skips the number of bytes specified before beginning record processing. If BUFOFF is specified for output data sets, abnormal termination may result.

The following example defines a block of five records, each 80 bytes long, with a block prefix of 20 bytes:

DCB=(RECFM=FB,LRECL=80,BLKSIZE=420, BUFOFF=20)

Undefined-Length Records: Records may be unblocked only, defined as RECFM=U. BLKSIZE specifies the buffer length, which is the size of the largest record that may be encountered in the FORMAT statement plus the size of the block prefix if present. BUFOFF specifies the size of the block prefix. It may be coded for input data sets only. The operating system skips the number of bytes specified before beginning record processing. BUFOFF specified for output data sets may result in abnormal termination.

The following example specifies a buffer length of 200 bytes with no block prefix:

DCB=(RECFM=U, BLKSIZE=200)

Variable-Length Records: Records may be blocked or unblocked. Unblocked records are specified as RECFM=D; blocked records as RECFM=DB.

For unblocked records, LRECL specifies the maximum length of any record in the data set plus four bytes for the segment control word that precedes each record. BLKSIZE specifies the buffer length, which is the same size as specified in LRECL plus the size of the block prefix if present. BUFOFF specifies the size of the block prefix.

For blocked records, LRECL specifies the maximum record length plus four bytes for the segment control word. BLKSIZE specifies the buffer length, which is the block length plus the size of the block prefix if present. BUFOFF specifies the size of the block prefix.

BUFOFF may be coded as BUFOFF=L or BUFOFF=n. BUFOFF=L indicates that the block prefix is four bytes long and is to be used in calculating the length of the block. BUFOFF=n indicates the size of the block prefix (where n is a number between 1 and 99); the operating system skips the number of bytes specified before beginning record processing. (Note that BUFOFF=4 is not equivalent to BUFOFF=L.) BUFOFF=L may be specified for both input and output data sets. BUFOFF=n may be specified for input data sets only.

The following example defines a block of up to 10 maximum length records (defined as 100 bytes) with the block prefix to be used to calculate the block length:

```
DCB=(RECFM=DB,LRECL=104,BLKSIZE=1044,
BUFOFF=L)
```

Notes:

- ASCII data sets may specify only ASA carriage control characters in the RECFM subparameter (for example, RECFM=FBA); machine control characters (coded M in the RECFM subparameter) are not available for ASCII data sets.
- For efficient use of storage when 2. writing blocked records, the programmer should always specify LRECL. If LRECL is omitted, its default value is set equal to the value of BLKSIZE less eight bytes. In output operations, the operating system checks to see if there is room in a block for a record of length LRECL; if there is not, the current block is written and a new one is started. The default convention thus results in having only one record written in any block.

Figure I-24 illlustrates the structure of records in ASCII data sets.

FIXE	D-LENGTH RECORDS						
1.	Unblocked, with no block prefix, e.g., DCB=(RECFM=F,BLKSIZE=80).						
ĺ							
1	FORTRAN Record						
1							
1	0 80						
2.	Unblocked, with block prefix (input data sets only), e.g., DCB=(RECFM=F,BLKSIZE=90,BUFOFF=10).						
	Block						
1	FORTRAN Record						
	$ \begin{bmatrix} 1 & - & - & - & - & - & - & - & - & - & $						
3.	Blocked, with no prefix, e.g., DCB=(RECFM=F,LRECL=80,BLKSIZE=400).						
1	[]						
1	FORTRAN Record 1 FORTRAN Record 2 FORTRAN Record 5						
1	$i_{1} = i_{1} = i_{1$						
4.	 Blocked, with block prefix (input data sets only), e.g., DCB=(RECFM=FB,LRECL=80,BLKSIZE=420,BUFOFF=20). 						
	۲۶ ۲۶						
1	Block						
1	Prefix { { } } / [
	0 20 100 180 340 420						
UNDE	FINED-LENGTH RECORDS (Unblocked only)						
1.	With no block prefix, e.g., DCB=(RECFM=U,BLKSIZE=80); a record may be any size up to 80 bytes.						
	<u>۲</u> i						
1	FORTRAN Record						
İ	0 80						
2.	With block prefix (input data sets only), e.g., DCB(RECFM=U,BLKSIZE=100,BUFOFF=20).						
	<u>[]</u>						
	Block						
1	Prefix L						
İ L	0 20 100						
Figur	e I-24. ASCII Data Sets Structure of Records (Part 1 of 2)						

VARIA	ABLE-LENGTH RECORDS
1.	Unblocked, no block prefix, e.g., DCB=(RECFM=D,LRECL=84,BLKSIZE=84); a record may be any size up to 80 bytes.
	S
 2. 	Unblocked, with block prefix, e.g., DCB=(RECFM=D,LRECL=84,BLKSIZE=94,BUFOFF=10); a record may be any size up to 80 bytes; a block prefix is not used to determine block length and may be specified only for an input data set.
	Block S C FORTRAN Record Prefix W 0 10 14
 3. 	Blocked, no block prefix, e.g., DCB=(RECFM=DB,LRECL=84,BLKSIZE=420); a record may be any size up to 80 bytes, and the block will contain as many records as may be accommodated in 420 bytes.
	S S
 4. 	Blocked, with block prefix, e.g., DCB=(RECFM=DB,LRECL=84,BLKSIZE=424,BUFOFF=L); block prefix is used to determine block length.
	Block S S S C FORTRAN Record 1 Prefix W
 	0 4 8 424
Leger	nd•
	ILL: CW=Segment Control Word
Figure	e I-24. ASCII Data Sets Structure of Records (Part 2 of 2)

DCB Considerations for Direct-access Data Sets

FORTRAN records may be formatted or unformatted, but must be fixed and unblocked only. The DEFINE FILE statement specifies the record length and buffer length for a direct-access data set. This provides the default value for BLKSIZE.

FORMATTED RECORDS: Record format is specified as RECFM=F (fixed). Record length is specified by BLKSIZE, e.g., BLKSIZE=80.

<u>UNFORMATTED RECORDS</u>: Record format is specified as RECFM=F, BLKSIZE specifies a pseudo block size, which, as for sequential data sets, may specify a length different from the record length. Unlike sequential data sets, no bytes are reserved for block or segment control words. For a record smaller than or equal to BLKSIZE, one record per block is transmitted; unused space is left blank. For a record larger than BLKSIZE, the record is transmitted over as many blocks as are required to accommodate it.

Figure I-25 illustrates the structure of records in a direct-access data set.

Notes:

- Track-overflow, denoted by the letter T in the RECFM subparameter, may be specified to permit more efficient use of track capacity.
- If a direct-access data set is to be processed by non-FORTRAN programs, DSORG=DA must be specified, i.e.,

DCB=(RECFM=F, BLKSIZE=80, DSORG=DA)

This specification causes the creation of a label indicating a direct-access data set. (If the data set is to be processed only by FORTRAN programs, the default specification, DSORG=PS, may be used.)

FORMATTED RECORDS							
May be fixed, unblocked only e.g., DCB=(RECFM=F,BLKSIZE=80)							
FORTRAN Record 1 0 80							
UNFORMATTED RECORDS May be fixed, unblocked only Assume: A. DCB=(RECFM=F,BLKSIZE=80)							
B. Two Records Record 1 is 80 characters Record 2 is 100 characters							
FORTRAN Record 2 FORTRAN Record 1 FORTRAN Record 1 Segment 1 (80 characters)	Segment 2 Unused						
0 80 0 80 0	20 80						

Figure I-25. Direct-Access Data Sets--Structure of Records

IBM-SUPPLIED CATALOGED PROCEDURES

Cataloged procedures provide pre-coded DD and EXEC statements for the most common functions, such as compile, or compile and execute. Cataloged procedures may be easily modified to accommodate special situations.

Cataloged procedures are sets of EXEC and DD statements that are placed in the procedure library, SYS1.PROCLIB. Each procedure is retrieved by specifying its name in an EXEC statement; for example, to retrieve the procedure named FORTXC, the user submits the following EXEC statement:

// EXEC FORTXC

This statement retrieves the cataloged procedure named and places the statements from the procedure into the job stream.

CATALOGED PROCEDURE RESTRICTIONS

Cataloged procedures may consist only of EXEC statements, certain DD statements, and, optionally, PROC statements. PROC statements are used to assign default values to parameters. The PROC statement is discussed further in "Symbolic Parameters and the PROC Statement" later in this chapter.

The following statements may not form part of a cataloged procedure:

- 1. The JOB statement
- 2. The JOBLIB DD statement
- 3. A DD statement containing * or DATA in the operand field
- 4. The delimiter statement
- 5. The null statement

6. An EXEC statement that calls another cataloged procedure; that is, only the form PGM=progname is valid

FORTRAN PROCESSING CATALOGED PROCEDURES

IBM supplies seven procedures for use with the FORTRAN IV (H Extended) Compiler. They are:

- 1. FORTXC, to compile, illustrated in Figure I-26.
- 2. FORTXCL, to compile and link edit, illustrated in Figure I-27.
- 3. FORTXLG, to link edit and execute (load module execution), illustrated in Figure I-28.
- FORTXCLG, to compile, link edit, and execute, illustrated in Figure I-29.
- 5. FORTXG, to execute, illustrated in Figure I-30.
- FORTXCG, to compile and load, illustrated in Figure I-31.
- 7. FORTXL, to load, illustrated in Figure I-32.

The first job control statement in each cataloged procedure is the PROC statement, which assigns default values to symbolic parameters. The statements identified by the characters //* following the PROC statement consist of comments only, giving more information about the symbolic parameters. A full discussion of the PROC statement and symbolic parameters may be found in the appropriate job control language reference publication, as listed in the Preface. The following discussion briefly describes their use in FORTRAN cataloged procedures.

VFORTXC PROC	FXPGM=IFEA	+39450000				
7	FXPOLST=NC	FXPOLST=NOLIST, FXPOPT=0, FXLNSPC='3200, (25,6)'				
'/*			• • • • • • • • • • •	3955000		
'/*	PAR AMETER	DEFAULT-VALUE	USAGE	3960000		
'/*				39650000		
'/ *	FXPGM	IFEAAB	COMPILER NAME	3970000		
'/*	F X R E G N	256K	FORT-STEP REGION	3975000		
//*	FXPDECK	DECK	COMPILER DECK OPTION	3980000		
'/*	FXPOLST	NOLIST	COMPILER LIST OPTION	3985000		
'/*	FXPOPT	0	COMPILER OPTIMIZATION	3990000		
/ *	FXLNSPC	3200,(25,6)	FORT.SYSLIN SPACE	3995000		
'/*				400000		
VFORT EXEC	PGM=&FXPGM	,REGION=&FXREGN	COND=(4,LT),	+4005000		
1	PARM='&FXPDECK,&FXPOLST,OPT(&FXPOPT)'					
/ SY SPR I NT	DD SYSOUT=	4015000				
V SY SUT 1	DD UNIT=SY	4020000				
VSYSUT2	DD UNIT=SY	4025000				
VSYSPUNCH	DD SYSOUT=		4030000			
VSYSLIN			D, PASS), UNIT=SYSSQ,	+4035000		
1	SPACE=(&FX	LNSPC), DCB=BLKS	IZE=3200	4040000		

Figure I-26. Cataloged Procedure FORTXC

//FORTXCL PROC	FXPGM=IFEA	AB, FXREGN=256K, FX	KPDECK=NODECK, FXPOLST=NOLIST,	+4135000
//	FXPNAME=MA	IN, FXPOPT=0, PGML	B=!&&GOSET!	4140000
//*				4145000
//*	PARAMETER	DEFAULT-VALUE	USAGE	4150000
//*				4155000
// *	FXPGM	IFEAAB	COMPILER NAME	4160000
//*	FXREGN	256K	FORT-STEP REGION	4165000
// *	FXPDECK	NODECK	COMPILER DECK OPTION	4170000
// *	FXPOLST	NOLIST	COMPILER LIST OPTION	4175000
//*	FXPNAME	MAIN	COMPILER NAME OPTION	4180000
//*	FXPOPT	0	COMPILER OPTIMIZATION	4185000
//*	PGMLB	& & GOSET	LKED.SYSLMOD DSNAME	4190000
//*				4195000
//FORT EXEC	PGM=&FXPGM	COND=(4,LT),	+4200000	
11	PARM="&FXP	4205000		
// SY SPR I NT	DD SYSOUT =	29	4210000	
// SY SUT1	DD UNIT=SY	SSQ,SPACE=(3465,	(3,3)),DCB=BLKSIZE=3465	4215000
<u>// S</u> Y SUT 2	DD UNIT=SY	SSQ, SPACE=(2048,	(10,10))	4220000
// SY SPUNCH	DD SYSOUT=	40	4225000	
// SY SL I N	DD DSN=&&L	OADSET, DISP=(MOD	, PASS) , UN IT=SYSSQ ,	+4230000
'/	SPACE=(32C	0,(25,6)),DCB=BL	<pre><\$IZE=3200</pre>	4235000
VLKED EXEC	PGM=IEWL,R	EGION=96K,COND=(4,LT),	+4240000
'/	PARM="LET,	LIST, MAP, XREF		4245000
// SY SPR I NT	DD SYSOUT=			4250000
// SY SL I B	DD DSN=SYS	1.FORTLIB,DISP=S	HR	42 55 00 0
// SY SUT 1	DD UNIT=SY	SDA, SPACE=(1024,	(200,20))	4260000
// SY SL MOD	DD DSN=&PG	MLB.(&FXPNAME),U	NIT=SYSDA,	+4265000
//	DISP=(NEW,	PASS),SPACE=(TRK	,(10,10,1),RLSE)	4270000
// SY SL I N	DD DSN=&&L	OADSET, DISP=(OLD	,DELETE)	4275000
11	DD DDNAME=	SYSIN		4280000

Figure I-27. Cataloged Procedure FORTXCL

MEMBER NAME F	ORTXLG					
		NAME = SYSIN , GOPG	M=MAIN,GOREGN=1COK,	+44850000		
11	GOF 5DD= DD	NAME = SYSIN, GOF 6	DD="SYSOUT=A",	+44900000		
1/	GOF 7DD= 'SY	SOUT=B		44950000		
//*			45000000			
//*				45050000		
//*	PARAMETER	DEFAULT-VALUE	USAGE	45100000		
//*	LKLNDD	DDNAME=SYSIN	LKED.SYSLIN OPERAND	45150000		
//*	GOPGM	MAIN	OBJECT PROGRAM NAME	45200000		
//*	GOREGN	100K	GO-STEP REGION	45250000		
//*	GOF 5DD	DDNAME=SYSIN	GO.FT05F001 OPERAND	45300000		
//*	GOF6DD	SY SOUT = A	GO.FT06F001 OPERAND	45350000		
//*	GOF 7DD	SYSOUT=B	GO.FT07F001 OPERAND	45400000		
//*				45450000		
//LKED EXEC	PGM=IEWL,R	EGION=96K,COND=(4 , ∟T),	+45500000		
11	PARM="LET,		45550000			
// SY SPR INT		45600000				
// SY SL I B	//SYSLIB DD DSN=SYS1.FORTLIB,DISP=SHR					
// SY SUT 1	//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,2C))					
// SY SL MOD	<pre>//SYSLMOD DD DSN=&&GOSET(&GOPGM),DISP=(,PASS),UNIT=SYSDA,</pre>					
11	SPACE=(TRK	(10,10,1),RLSE)		45800000		
// SY SL I N	DD &LKLNDD)		45850000		
//GO EXEC	PGM=*.LKED	• SYSLMOD, REGION=	&GOREGN,COND=(4,LT)	45900000		
//FT05F0C1	DD &GOF500)		45950000		
//FT06F001	DD &GOF6DD)		46000000		
//FT07F001	DD &GOF7DC)		46050000		

Figure I-28. Cataloged Procedure FORTXLG

MEMBER NAME FORTXCLG //FORTXCLG PROC FXPCM=IFEAAB,FXREGN=256K,FXPDECK=NDDECK, +42900000 //FORTXCLG PROC FXPCM=IFEAAB,FXREGN=256K,FXPDECK=NDDECK, +42950000 /// GDF5DD='DDNAME=SYSIN',GOF6DD='SYSUUT=A', +430C0000 /// GDF7DD='SYSUUT=B' 43050000 //* YA30C000 +43050000 //* PARAMFTER DEFAULT-VALUE USAGE 43150000 //* FXPEGN IFEAAB COMPILER NAME 43200000 //* FXREGN 256K FORT-STEP REGION 43300000 //* FXPDECK NODECK COMPILER NAME 43200000 //* FXPDECK NODECK COMPILER DIST 43400000 //* FXPODT C COMPILER DIST OFTIN 43500000 //* GDF5DD DDNAME=SYSIN GO.FT05F001 OPERAND 43600000 //* GDF7DD SYSUT=A GO.FT05F001 OPERAND 43600000 //* GDF7DD SYSUT=A GO.FT07FC01 OPERAND 43600000 <th></th> <th></th> <th></th> <th></th> <th></th>					
// FXP0LST=NOLIST_FXP0PT=0,G0REGN=10CK, +429500C0 // G0F5DD='DDNAME=SYSIN',G0F6DD='SYSOUT=A', +43050000 //* 4310C000 //* 4310C000 //* 4310C000 //* 4310C000 //* 4310C000 //* FXPGM IFEAAB COMPILER NAME 43200000 4310C000 //* FXPGM IFEAAB COMPILER NAME 43200000 #X FXPGK IFEAAB //* FXPDECK NODECK COMPILER DECK DPTION //* FXPDECK NODECK COMPILER DIST DTION //* FXPDECK NODECK COMPILER DPTIMIZATION //* GDF5DD DDNAME=SYSIN GD_FTOFC01 //* GDF5DD DDNAMESYSUT GD_FTOFC01 //* GDF5DD SYSUT=A GD_FTOFC01 //* GDF7DD SYSOUT=B GD_FTOFC01 GPERAND //* GDF7DD SYSOUT=A GD_FTOFC01 GPERAND //* GDF5DD DNAMESYSUT GD_FTOFC01 GPERAND //* GDF7DD SYSUT=A GD_FTOFC01 GPERAND					
// GDF5DD='DDNAME=SYSIN',GDF6DD='SYSDUTA', +430C0000 /// GDF7DD='SYSDUTB', 43050000 //* GDF7DD='SYSDUTB', 43100000 //* YARAMETER DEFAULT-VALUE USAGE 43100000 //* FXPGM IFEAAB COMPILER NAME 43200000 //* FXPGM IFEAAB COMPILER NAME 43200000 //* FXPGK NDDECK COMPILER DECK OPTION 43300000 //* FXPDECK NDDICK COMPILER DECK OPTION 4350000 //* FXPDECK NDDICK COMPILER DECK OPTION 43500000 //* FXPDECK NDLIST COMPILER OPTIMIZATION 43600000 //* FXPOPT C COMPILER DECK 43500000 //* GDF5DD DNAME=SYSIN GD-FTOFCOI OPERAND 43600000 //* GDF7DD SYSOUTA GD-FTOFCOI OPERAND 43600000 //* GDF7DD SYSOUTA GD-FTOFCOI OPERAND 43600000 //* GDF7DD SYSOUTA GD-FTOFCOI OPERAND 43600000 //* MAM='SFXPDECK, G					
//* 43050000 //* 43100000 //* PARAMETER DEFAULT-VALUE USAGE 43150000 //* FXPGM IFEAAB COMPILER NAME 43200000 //* FXPGM IFEAAB COMPILER NAME 43200000 //* FXPGM IFEAAB COMPILER NAME 43200000 //* FXPDEX NODECK COMPILER DECK OPTION 43300000 //* FXPDEX NOLIST CUMPILER DECK OPTION 43300000 //* FXPDEX NOLIST CUMPILER DECK OPTION 43500000 //* FXPDEX NOLIST CUMPILER DECK OPTION 43500000 //* GOF5DD DDNAME=SYSIN GO-FT05F001 DPERAND 43650000 //* GOF6DD SYSUT=A GO-FT0FC01 DPERAND 43650000 //* GOF7DD SYSUT=B GO-FT0FC01 DPERAND 43650000 //* GOF7DD SYSUT=A GO-FT0FC01 DPERAND 43650000 //* MAR=*EKXPDECK, GEXPOEST,OPT (GEXPOPT)* 43850000 43950000 //*SYSUTI DD UNIT=SYSSQ,SPACE=(3465,(3,3),J),DEB=BLKSIZE=3465 43900000 43950000					
//* PAR AMETER DEFAULT-VALUE USAGE 43100000 //* PAR AMETER DEFAULT-VALUE USAGE 43100000 //* FXPEGN IFEAAB COMPILER NAME 43200000 //* FXPEGN 256K FDRT-STEP REGION 43300000 //* FXPECK NODECK COMPILER DETON 43350000 //* FXPECK NODECK COMPILER DETK OPTION 43460000 //* FXPECK NOLIST CUMPILER DPTIMIZATION 43450000 //* FXPERS GOREGN 100K GO-STEP REGION 43500000 //* GDF5DD DDNAMESYSIN GO-FT05F001 OPERAND 43600000 //* GDF6DD SYSUT=A GO-FT0FC01 OPERAND 43600000 //* GDF7DD SYSUT=B GO-FT0FC01 OPERAND 43600000 //* PARM=*EKXPDECK, GEXPOLST, OPT (GEXPOPT)' 43800000 439500000 //* VSYSUT1 DD UNIT=SYSSQ, SPACE=13465, (3,3)), DCB=BLKSIZE=3465 43900000 //SYSUT2 DD UNIT=SYSA, SPACE=13465, (10,10) 439500000 44000000			•	DD="SYSOUT=A",	
//* PARAMETER DEFAULT-VALUE USAGE 43150000 //* 43200000 43200000 //* FXPGM IFEAAB COMPILER NAME 43200000 //* FXPEGN 256K FORT-STEP REGION 43300000 //* FXPDECK NODECK COMPILER DECK OPTION 43350000 //* FXPDECK NODECK COMPILER DET NOTION 434500000 //* FXPODT C COMPILER DET NOLER 434500000 //* GOREGN 100K GO-STEP REGION 43500000 //* GOF5DD DNAME=SYSIN GO-FT05F001 DPERAND 43600000 //* GOF6DD SYSUT=A GO-FT0FC01 OPERAND 43600000 //* GOF7DD SYSUT=B GO-FT0FC01 OPERAND 43600000 //* GOF7DD SYSUT=A, DCB=BLKSIZE=3429 43800000 43950000 //* VSSUT=A, DCB=BLKSIZE=3440 44000000 44000000 44000000 44000000 44500000 44000000 44500000 44000000 44500000 440000000 57SUT=A, DEB=EKSIZE=3200 444		GOF7DD= * SY	SOUT=B •		43050000
//* FXPGM IFEAAB COMPILER NAME 43200000 //* FXREGN 256K FDRT-STEP REGION 43300000 //* FXPDECK NODECK COMPILER DECK OPTION 43300000 //* FXPDECK NODECK COMPILER DECK OPTION 43350000 //* FXPDEX NULIST CUMPILER LIST OPTION 43450000 //* FXPODT C COMPILER DECK OPTION 43500000 //* GOREGN 100K GO-STEP REGION 43500000 //* GOREGN 100K GO-FT05F001 DPERAND 43600000 //* GOF5DD DDNAME=SYSIN GO-FT05F001 DPERAND 43600000 //* GOF7DD SYSUT=A GO-FT07F001 OPERAND 43600000 //* GDF7DD SYSUT=B GO-FT07F001 OPERAND 43600000 //* MAR=*6FXPGM,REGION=6FXREGN,COND=(4,LT), +43750000 43850000 43950000 //* PAR=*6FXPGM,REGION=6FXREGN,COND=(4,LT), +43750000 43950000 44000000 \$YSUT2 DU UNIT=SYSSQ,SPACE=(5048,(10,10,1)) 43950000 44000	••				
//* FXPGM IFEAAB COMPILER NAME 43250000 //* FXREGN 256K FORT-STEP REGION 4330000 //* FXPDECK NODECK COMPILER DECK OPTION 43350000 //* FXPDLST NOLIST COMPILER DET OPTION 43450000 //* FXPOLST NOLIST COMPILER DPTIMIZATION 43450000 //* GOF5DD DDNAME=SYSIN GO-FTO5F001 DPERAND 43500000 //* GOF5DD DDNAME=SYSIN GO-FTO5F001 DPERAND 43650000 //* GOF7DD SYSUT=A GO-FTOFF001 DPERAND 43650000 //* PAM=*EFXPGM, REGION=&FXREGN, COND=(4, LT), +43750000 43850000 D/SSUT=A 43850000 44000000 SYSUT		PARAMETER	DEFAULT-VALUE	USAGE	43150000
//* FXREGN 256K FORT-STEP REGION 43300000 //* FXPDECK NODECK COMPILER DECK OPTION 43350000 //* FXPDEST NOLIST CUMPILER LIST OPTION 43460000 //* FXPDEST NOLIST CUMPILER OPTIMIZATION 43450000 //* GOREGN 100K GO-FTOFOI OPERAND 43500000 //* GOF5DD DDNAME=SYSIN GO-FTOFOI OPERAND 43500000 //* GOF5DD DYSUT=A GO-FTOFCOI OPERAND 43600000 //* GOF7DD SYSUT=B GO-FTOFCOI OPERAND 43600000 //* GOF7DD SYSUT=B GO-FTOFCOI OPERAND 43600000 //* GOF7DD SYSUT=B GO-FTOFCOI OPERAND 43600000 //* VSYSUTA DSYSOUT=A, DCB=BLKSIZE=3429 43800000 //SYSUT1 DD UNIT=SYSSQ, SPACE=(5046, (10, 10)) 43950000 //SYSUT2 DD UNIT=SYSSQ, SPACE=(5046, (10, 10)) 43950000 //SYSUTN DD SNSELOADSET, DISP=(MD, PASS), UNIT=SYSQ, +44050000 //SYSUNCH DD SNSELOADSET, DISP=(M	••				
//* FXPDECK NODECK COMPILER DECK OPTION 43350000 //* FXPDEXT NOLIST COMPILER LIST OPTION 43400000 //* FXPDEXT NOLIST COMPILER LIST OPTION 43400000 //* GOREGN 100K GO-STEP REGION 43500000 //* GOF5DD DDNAMESYSIN GO-FTOFFOOL OPERAND 43500000 //* GOF5DD DSNMESYSIN GO-FTOFFOOL OPERAND 43600000 //* GOF6DD SYSOUT=A GO-FTOFFOCL OPERAND 43650000 //* GOF7DD SYSOUT=B GO-FTOFFOCL OPERAND 43650000 //* GOF7DD SYSOUT=B GO-FTOFFOCL OPERAND 43650000 //* PARM=*6FXPGM, REGION=6FXREGN, COND=(4,LT), +43750000 +443750000 //* PARM=*16FXPGM, REGION=6FXREGN, COND=(4,LT), +43500000 438500000 //* PARM=*16FXPGM, REGION=6FXREGN, COND=(4,LT), +437500000 438500000 //* PARM=*16FXPGM, REGION=6FXREGN, COND=(4,LT), +440500000 440000000 +55500000000 44100000000000000000000000000000000000				COMPILER NAME	
//* FXPOLST NOLIST COMPILER LIST OPTION 43400000 //* FXPOPT C COMPILER OPTIMIZATION 43450000 //* GOREGN 100K GO-STEP REGION 4350000 //* GOREGN 100K GO-STEP REGION 4350000 //* GOF50D DNAME=SYSIN GO.FTOF001 OPERAND 4350000 //* GOF6DD SYSOUT=A GO.FTO6F001 OPERAND 43600000 //* GOF7DD SYSOUT=B GO.FT07F001 OPERAND 43650000 //* GOF7DD SYSOUT=B GO.FT07F001 OPERAND 43650000 //* GOF7DD SYSOUT=B GO.FT07F001 OPERAND 43650000 //* GOF7DD SYSOUT=A, DCB=BLKSIZE=3429 43850000 //SYSVI1 DD UNIT=SYSSQ,SPACE=(3465,(3,3)),DCB=BLKSIZE=3465 43900000 //SYSVI2 DD UNIT=SYSSQ,SPACE=(5048,(10,10)) 43950000 //SYSVI1 DD SYSOUT=B,DCB=BLKSIZE=3429 44000000 //SYSVI2 DD UNIT=SYSQ,SPACE=(5048,(10,10,10)) 43950000 //SYSVI1 DD DSN=6&ELADSET,DISP=(MDD,PASS),UNIT=SYSQ, +44050000 // SPACE=(3200,(25,6)),DCB=BLKSIZE=3200 44100000 // KYSPRINT DD SYSOUT=A 442	• •				
//* FXPOPT C COMPILER OPTIMIZATION 43450000 //* GOREGN 100K GO-STEP REGION 43550000 //* GOF5DD DDNAME=SYSIN GO.FTO5F001 OPERAND 43550000 //* GOF6DD SYSUT=A GO.FT05F001 OPERAND 43650000 //* GOF7DD SYSUT=B GO.FT07FC01 OPERAND 43650000 //* 43700000 //* 43700000 43550000 //* PARM='&EXPOECK, & FXPOLST, OPT(&FXPOPT)' 43800000 43650000 //* PARM='&EXPDECK, & FXPOLST, OPT(&FXPOPT)' 43800000 43650000 //* PARM='&EXPDECK, & FXPOLST, OPT(&FXPOPT)' 43800000 43650000 //SYSVT1 DD SNSQUT=A, DCB=BLKSIZE=3429 43850000 43950000 //SYSUT2 DD UNIT=SYSSQ, SPACE=(5046, (10,10)) 43950000 44000000 44000000 44000000 44000000 44000000 44000000 44100000 44000000 44100000 44100000 44200000 44200000 442000000 44350000 44350000 442000000 443500000 44350	••				
//* GOREGN 100K GO-STEP REGIDN 4350000 //* GOF5DD DDNAME=SYSIN GO.FT05F001 OPERAND 43550000 //* GOF6DD SYSUT=A GO.FT06F0C1 OPERAND 43600000 //* GOF7DD SYSUT=B GO.FT06F0C1 OPERAND 43600000 //* GOF7DD SYSUT=B GO.FT07F001 OPERAND 43600000 //* GOF7DD SYSUT=B GO.FT07F001 OPERAND 43600000 //* HARM='SEXPDECK, GEXPOLST, OPT(GEXPOPT)' 43800000 43600000 //* PARM='SEXPDECK, GEXPOLST, OPT(GEXPOPT)' 43800000 43950000 //SYSUT1 DD UNIT=SYSSQ, SPACE=(3465, (3,3)), DCB=BLKSIZE=3465 43900000 //SYSUT2 DD UNIT=SYSSQ, SPACE=(5048, (10,10)) 43950000 //SYSUT1 DD DSN=68LGADASET, DISP=(MOD, PASS), UNIT=SYSSQ, +44050000 //SYSUTN DD SN=68LGADASET, DISP=(MOD, PASS), UNIT=SYSSQ, +44050000 //LKED EXEC PGM=IEML, REGIDN=96K, COND=(4,LT), +44150000 // PACE=(3200,(25,6)), DCB=BLKSIZE=3200 441000000 <td>• •</td> <td></td> <td>NOLIST</td> <td></td> <td>-</td>	• •		NOLIST		-
//* GDF5DD DDNAME=SYSIN GD.FT05F001 OPERAND 43550000 //* GDF6DD SYSUT=A GD.FT06FC01 OPERAND 43600000 //* GDF7DD SYSUT=B GD.FT07FC01 OPERAND 43600000 //* GDF7DD SYSUT=B GD.FT07FC01 OPERAND 43600000 //* GDF7DD SYSUT=A GD.FT07FC01 OPERAND 43600000 //* GDF7DD SYSUT=A GD.FT07FC01 OPERAND 43800000 //* PARM='&EFXPGM, REGION=&EFXREGN, COND=(4,LT), +43750000 43800000 //SYSUT1 DD UNIT=SYSSQ, SPACE=(3465, (3,3)), DCB=BLKSIZE=3465 43900000 //SYSUT2 DD UNIT=SYSQ, SPACE=(5048, (10,10)) 43950000 //SYSUT1 DD SNSECBBLKSIZE=3440 44000000 //SYSUN DD SN=&&ECBBLKSIZE=3440 44000000 //SYSUN DD SN=&&ECBBLKSIZE=3420 44100000 /// SPACE=(320, (25,6)), DCB=BLKSIZE=3200 44100000 /// SPACE=(320, (25,6)), DCB=BLKSIZE=3200 44100000 /// SPACE=(1020, (25,6)), DCB=BLKS	••		•		
//* GDF6DD SYSDUT=A GD.FT06FCC1 OPERAND 43600000 //* GDF7DD SYSOUT=B GD.FT07FC01 OPERAND 43650000 //* 43700000 //* YA 43700000 //* YA YA YA YA YA YA YA YYA YA YA YA YA YA YA YA YA YA YA YA YA YA YA YA YA YA YA YA YA </td <td></td> <td></td> <td>100K</td> <td></td> <td>43500000</td>			100K		43500000
//* GDF7DD SYSDUT=B GD.FT07FC01 OPERAND 43650000 //* 43700000 //FDRT EXEC PGM=&FXPGM, REGIDN=&FXREGN, COND= (4,LT), +43750000 // PARM='&EXPDECK, &FXPOLST, OPT(&FXPOPT)' 43800000 //SYSPRINT DD SYSOUT=A, DCB=BLKSIZE=3429 43850000 //SYSUT1 DD UNIT=SYSSQ, SPACE=(3465, (3,3)), DCB=BLKSIZE=3465 4390000 //SYSUT2 DD UNIT=SYSSQ, SPACE=(5048, (10,10)) 43950000 //SYSUT2 DD UNIT=SYSSQ, SPACE=(5048, (10,10)) 43950000 //SYSUT2 DD UNIT=SYSSQ, SPACE=(048, (10,10)) 43950000 //SYSUT2 DD UNIT=SYSSQ, SPACE=(1004, (10,10,1)) 43950000 //SYSUT1 DD SN=&&LOADSET, DISP=(MD, PASS), UNIT=SYSSQ, +44050000 //LKED EXEC PGM=IEWL, REGION=96K, COND=(4,LT), +44150000 /// VSYSUT1 DD SYSUT=A 44200000 //SYSUT1 DD SN=SYS1.FORTLIB, DISP=SHR 44200000 //SYSLIB DD DD SN=&&CE=(1024, (200, 20)) 44350000 //SYSLIN DD DSN=&&&COSET(MAIN), DISP=(,PASS),		GOF5DD	DDNAME=SYSIN	GO.FT05F001 OPERAND	43550000
//* 43700000 //FDRT EXEC PGM=&FXPGM, REGION=&FXREGN, COND=(4,LT), +43750000 // PARM='&EXPDECK, &EXPOLST, OPT(&FXPOPT)' 43800000 //SYSPRINT DD SYSOUT=A, DCB=BLKSIZE=3429 43850000 //SYSUT1 DD UNIT=SYSSQ, SPACE=(5048,(10,10)) 43950000 //SYSUT2 DD UNIT=SYSSQ, SPACE=(5048,(10,10)) 43950000 //SYSUT2 DD UNIT=SYSQ, SPACE=(5048,(10,10,1)) 43950000 //SYSUT1 DD DSN=& CLOADSET, DISP=(MDD, PASS), UNIT=SYSQ, +44050000 //LKED EXEC PGM=IEWL, REGION=96K, COND=(4,LT), +44150000 //LKED EXEC PGM=IEWL, REGION=96K, COND=(4,LT), +44200000 //SYSLIB DD DSN=SYSI.FORTLIB, DISP=SHR 44300000 44550000 //SYSLMDD DD DN=SN=& COSET(MAIN), DISP=(,PASS), UNIT=SYSDA, +44400000 //SYSLMOD DD DSN=& COSET(MAIN), DISP=(,PASS), UNIT=SYSD		GOF 6DD	GO.FTO6FCC1 OPERAND	43600000	
//FORT EXEC PGM=&FXPGM, REGION=&FXREGN, COND=(4,LT), +43750000 // PARM='&FXPDECK, &FXPOLST, OPT(&FXPOPT)' 43800000 //SYSPRINT DD SYSOUT=A, DCB=BLKSIZE=3429 43850000 //SYSUT1 DD UNIT=SYSSQ, SPACE=(3465, (3,3)), DCB=BLKSIZE=3465 43900000 //SYSUT2 DD UNIT=SYSSQ, SPACE=(5048, (10,10)) 43950000 //SYSUT2 DD UNIT=SYSSQ, SPACE=(5048, (10,10)) 43950000 //SYSUT2 DD UNIT=SYSSQ, SPACE=(5048, (10,10)) 43950000 //SYSUT2 DD UNIT=SYSSQ, SPACE=(3465, (10,10)) 43950000 //SYSUT2 DD UNIT=SYSQ, SPACE=(3465, (10,10)) 43950000 //SYSUT2 DD UNIT=SYSQ, SPACE=(3465, (10,10)) 43950000 //SYSUT1 DD DSN=&&LOADSET, DISP=(MDD, PASS), UNIT=SYSQ, +44050000 44000000 //LKED EXEC PGM=IEWL, REGION=96K, COND=(4,LT), +44150000 442200000 //SYSUT1 DD SNSUT=A 44200000 44250000 //SYSUT3 DD SNSUT=A 44200000 443500000 //SYSUT4 DD SNSUSTSTA 444300000C 443500000		GD F 7 D D	43650000		
//SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=3429 43850000 //SYSUT1 DD UNIT=SYSSQ,SPACE=(3465,(3,3)),DCB=BLKSIZE=3465 43900000 //SYSUT2 DD UNIT=SYSSQ,SPACE=(5048,(10,10)) 43950000 //SYSUT2 DD UNIT=SYSSQ,SPACE=(5048,(10,10)) 43950000 //SYSUT2 DD UNIT=SYSSQ,SPACE=(5048,(10,10)) 43950000 //SYSUT2 DD UNIT=SYSQ,SPACE=(1004,010) 44000000 //SYSUT0 DD SN=&&L0ADSET,DISP=(MDD,PASS),UNIT=SYSSQ, +44000000 //SYSUT1 DD SN=&&E&L0ADSET,DISP=(MDD,PASS),UNIT=SYSSQ, +44100000 //LKED EXEC PGM=IEWL,REGION=96K,COND=(4,LT), +44150000 //LKED EXEC PGM=IEWL,REGION=96K,COND=(4,LT), +44200000 //SYSPRINT DD SYSOUT=A 44250000 //SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20)) 443500000 //SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20)) 443500000 //SYSLIN DD SN=&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&	// *				43700000
//SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=3429 43850000 //SYSUT1 DD UNIT=SYSSQ,SPACE=(3465,(3,3)),DCB=BLKSIZE=3465 43900000 //SYSUT2 DD UNIT=SYSSQ,SPACE=(5048,(10,10)) 43950000 //SYSUT2 DD UNIT=SYSSQ,SPACE=(5048,(10,10)) 43950000 //SYSUT2 DD UNIT=SYSSQ,SPACE=(5048,(10,10)) 43950000 //SYSUT2 DD UNIT=SYSQ,SPACE=(1004,010) 44000000 //SYSUT0 DD SN=&&L0ADSET,DISP=(MDD,PASS),UNIT=SYSSQ, +44000000 //SYSUT1 DD SN=&&E&L0ADSET,DISP=(MDD,PASS),UNIT=SYSSQ, +44100000 //LKED EXEC PGM=IEWL,REGION=96K,COND=(4,LT), +44150000 //LKED EXEC PGM=IEWL,REGION=96K,COND=(4,LT), +44200000 //SYSPRINT DD SYSOUT=A 44250000 //SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20)) 443500000 //SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20)) 443500000 //SYSLIN DD SN=&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&	//FORT EXEC	PGM=&FXPGM	I,REGION=&FXREGN,	COND=(4,LT),	+43750000
//SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=3429 43850000 //SYSUT1 DD UNIT=SYSSQ,SPACE=(3465,(3,3)),DCB=BLKSIZE=3465 43900000 //SYSUT2 DD UNIT=SYSSQ,SPACE=(5048,(10,10)) 43950000 //SYSUT2 DD UNIT=SYSSQ,SPACE=(5048,(10,10)) 43950000 //SYSUT2 DD UNIT=SYSSQ,SPACE=(5048,(10,10)) 43950000 //SYSUT2 DD UNIT=SYSSQ,SPACE=(1004,010) 4400000 //SYSUT0 DD SN=&&L0ADSET,DISP=(MOD,PASS),UNIT=SYSSQ, +44050000 //SYSUT1 DD DSN=&&L0ADSET,DISP=(MOD,PASS),UNIT=SYSSQ, +44100000 //LKED EXEC PGM=IEWL,REGION=96K,COND=(4,LT), +44150000 //LKED EXEC PGM=IEWL,REGION=96K,COND=(4,LT), +44200000 //SYSPRINT DD SYSOUT=A 44250000 //SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20)) 44350000 //SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20)) 44350000 //SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20)) 44350000 //SYSUT0 DD SN=&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&	11	PARM="&FXP	43800000		
//SYSUT2 DD UNIT=SYSSQ, SPACE=(5048,(10,10)) 43950000 //SYSPUNCH DD SYSOUT=B, DCB=BLKSIZE=3440 4400000 //SYSLIN DD DSN=&&LDADSET, DISP=(MDD, PASS), UNIT=SYSSQ, +44050000 //SYSLIN DD SN=&&LDADSET, DISP=(MDD, PASS), UNIT=SYSSQ, +44050000 //SYSLIN DD SN=&&LDADSET, DISP=(MDD, PASS), UNIT=SYSSQ, +44050000 //LKED EXEC PGM=IEWL, REGION=96K, COND=(4, LT), +44150000 //LKED EXEC PGM=IEWL, REGIDN=96K, COND=(4, LT), +44150000 //SYSPRINT DD SYSOUT=A 44250000 //SYSLIB DD DN=SYSOL, FORTLIB, DISP=SHR 4430000C //SYSUT1 DD UNIT=SYSDA, SPACE=(1024,(200,20)) 44350000 //SYSLMDD DD DSN=&& GOSET(MAIN), DISP=(, PASS), UNIT=SYSDA, +4440000C //SYSLIN DD DSN=&& GOSET, DISP=(0LD, DELETE) 44450000 //SYSLIN DD DNAME=SYSIN 44550000 //SYSLIN DD DNAME=SYSIN 44550000 //GO EXEC PGM==*.LKED.SYSLMOD, REGION=& GOREGN, COND=(4, LT) 44600000 //FT05F001 DD & GOF5DD 44650000 44650000	// SY SPR I NT	DD SYSOUT =	A, DCB=BLKSIZE=34	29	43850000
//SYSPUNCH DD SYSOUT=B,DCB=BLKSIZE=3440 4400000 //SYSLIN DD DSN=&&LDADSET,DISP=(MDD,PASS),UNIT=SYSSQ, +44050000 // SPACE=(3200,(25,6)),DCB=BLKSIZE=3200 44100C00 //LKED EXEC PGM=IEWL,REGIDN=96K,COND=(4,LT), +44150000 // PARM='LET,LIST,MAP,XREF' 4420000 //SYSPRINT DD SYSOUT=A 44250000 //SYSUI1 DD UNIT=SYSDA,SPACE=(1024,(200,20)) 44350000 //SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20)) 44350000 //SYSUN1 DD DD DSN=&& GOSET(MAIN),DISP=(,PASS),UNIT=SYSDA, +44400000 //SYSLIN DD DSN=&& GOSET(MAIN),DISP=(,PASS),UNIT=SYSDA, +44400000 //SYSLIN DD DSN=&& GOSET(MAIN),DISP=(,PASS),UNIT=SYSDA, +4450000 //SYSLIN DD DSN=&& GOSET,DISP=(OLD,DELETE) 44550000 //SYSLIN DD DNAME=SYSIN 44550000 //GO EXEC PGM==*.LKED.SYSLMOD,REGION=& GOREGN,COND=(4,LT) 44600000 //FT05F001 DD & GOF5DD 44650000 44650000 //FT06F001 DD & GOF6DD 44650000 44650000	//SYSUT1	DD UNIT=SY	SSQ, SPACE=(3465,	(3,3)), DC B= BLKS IZE= 3465	
//SYSLIN DD DSN=&&LDADSET,DISP=(MDD,PASS),UNIT=SYSSQ, +44050000 // SPACE=(3200,(25,6)),DCB=BLKSIZE=3200 44100C00 //LKED EXEC PGM=IEWL,REGION=96K,COND=(4,LT), +44150000 // PARM='LET,LIST,MAP,XREF' 44200000 //SYSPRINT DD SYSOUT=A 44250000 //SYSLIB DD DSN=SYS1.FORTLIB,DISP=SHR 44300000 //SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20)) 44350000 //SYSLMOD DD DSN=&&GOSET(MAIN),DISP=(,PASS),UNIT=SYSDA, +44400000 // SPACE=(TRK,(10,10,1),RLSE) 44450000 //SYSLIN DD DSN=&&LGADSET,DISP=(OLD,DELETE) 44500000 //OD DDNAME=SYSIN 44550000 44650000 //GO EXEC PGM==*.LKED.SYSLMOD,REGION=& GOREGN,COND=(4,LT) 44600000 //FT05F001 DD &GOF5DD 44650000 44650000 //FT06F001 DD &GOF6DD 44700000 44700000	// SY SUT 2	DD UNIT=SY	SSQ,SPACE=(5048,	(10,10))	43950000
// SPACE=(3200,(25,6)),DCB=BLKSIZE=3200 44100C00 //LKED EXEC PGM=IEWL,REGION=96K,COND=(4,LT), +44150000 // PARM='LET,LIST,MAP,XREF' 44200000 //SYSPRINT DD SYSOUT=A 44250000 //SYSLIB DD DSN=SYS1.FORTLIB,DISP=SHR 4430000C //SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20)) 44350000 //SYSLMOD DD SN=&&&GOSET(MAIN),DISP=(,PASS),UNIT=SYSDA, +4440000C //SYSLIN DD DSN=&&&GOSET(MAIN),DISP=(,PASS),UNIT=SYSDA, +44450000 //SYSLIN DD DSN=&&&GOSET,DISP=(OLD,DELETE) 44450000 //SYSLIN DD DSN=&&&COADSET,DISP=(OLD,DELETE) 44550000 //GO EXEC PGM==*.LKED.SYSLMOD,REGION=&&GOREGN,COND=(4,LT) 44600000 //FT05F001 DD &GOF5DD 44650000 //FT06F001 DD &GOF6DD 44650000	// SY SP UNCH	DD SYSOUT=	B,DCB=BLKSIZE=344	40	44000000
// SPACE=(3200,(25,6)),DCB=BLKSIZE=3200 44100C00 //LKED EXEC PGM=IEWL,REGION=96K,COND=(4,LT), +44150000 // PARM='LET,LIST,MAP,XREF' 44200000 //SYSPRINT DD SYSOUT=A 44250000 //SYSLIB DD DSN=SYS1.FORTLIB,DISP=SHR 4430000C //SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20)) 44350000 //SYSLMOD DD SN=&&&GOSET(MAIN),DISP=(,PASS),UNIT=SYSDA, +4440000C //SYSLIN DD DSN=&&&GOSET(MAIN),DISP=(,PASS),UNIT=SYSDA, +44450000 //SYSLIN DD DSN=&&&GOSET,DISP=(OLD,DELETE) 44450000 //SYSLIN DD DSN=&&&COADSET,DISP=(OLD,DELETE) 44550000 //GO EXEC PGM==*.LKED.SYSLMOD,REGION=&&GOREGN,COND=(4,LT) 44600000 //FT05F001 DD &GOF5DD 44650000 //FT06F001 DD &GOF6DD 44650000	// SY SL I N	DD DSN=&&L	+44050000		
//GO EXEC PGM=*.LKED.SYSLMOD,REGION=&GOREGN,COND=(4,LT) 44600000 //FT05F001 DD &GOF5DD 44650000 //FT06F001 DD &GOF6DD 44700000	11	SPACE=(320	44100000		
//GO EXEC PGM=*.LKED.SYSLMOD,REGION=&GOREGN,COND=(4,LT) 44600000 //FT05F001 DD &GOF5DD 44650000 //FT06F001 DD &GOF6DD 44700000	//LKED EXEC	PGM=IEWL,R	EGION=96K,COND=(4	4 , LT),	+44150000
//GO EXEC PGM=*.LKED.SYSLMOD,REGION=&GOREGN,COND=(4,LT) 44600000 //FT05F001 DD &GOF5DD 44650000 //FT06F001 DD &GOF6DD 44700000	11	PARM='LET,	LIST, MAP, XREF		44200000
//GO EXEC PGM=*.LKED.SYSLMOD,REGION=&GOREGN,COND=(4,LT) 44600000 //FT05F001 DD &GOF5DD 44650000 //FT06F001 DD &GOF6DD 44700000	// SY SPR I NT	DD SYSOUT=	Α		44250000
//GO EXEC PGM=*.LKED.SYSLMOD,REGION=&GOREGN,COND=(4,LT) 44600000 //FT05F001 DD &GOF5DD 44650000 //FT06F001 DD &GOF6DD 44700000	// SY SL I B	DD DSN=SYS	1.FORTLIB,DISP=S	HR .	44300000
//GO EXEC PGM=*.LKED.SYSLMOD,REGION=&GOREGN,COND=(4,LT) 44600000 //FT05F001 DD &GOF5DD 44650000 //FT06F001 DD &GOF6DD 44700000	// SY SUT 1	DD UNIT=SY	SDA, SPACE=(1024,	(200,20))	44350000
//GO EXEC PGM=*.LKED.SYSLMOD,REGION=&GOREGN,COND=(4,LT) 44600000 //FT05F001 DD &GOF5DD 44650000 //FT06F001 DD &GOF6DD 44700000	// SY SLMOD	DD DSN=&&G	OSET(MAIN), DISP=	(,PASS),UNIT=SYSDA,	+44400000
//GO EXEC PGM=*.LKED.SYSLMOD,REGION=&GOREGN,COND=(4,LT) 44600000 //FT05F001 DD &GOF5DD 44650000 //FT06F001 DD &GOF6DD 44700000	11	SPACE=(TRK	,(10,10,1),RLSE)		44450000
//GO EXEC PGM=*.LKED.SYSLMOD,REGION=&GOREGN,COND=(4,LT) 44600000 //FT05F001 DD &GOF5DD 44650000 //FT06F001 DD &GOF6DD 44700000	// SY SL I N	DD DSN=&&L	OADSET, DI SP=(OLD	,DELETE)	44500000
//GO EXEC PGM=*.LKED.SYSLMOD,REGION=&GOREGN,COND=(4,LT) 44600000 //FT05F001 DD &GOF5DD 44650000 //FT06F001 DD &GOF6DD 44700000	11	DD DDNAME=	SYSIN		44550000
//FTC6F001 DD &G0F6DD 44700000	//GO EXEC	PG¶=*∙LKED	• SYSLMOD, REGION=	& GOREGN,COND=(4,LT)	44600000
	// FT 05 F 0 01	DD &GOF5DD)		44650000
//FT07F001 DD & GDF7DD 44750000	//FT06F001	DD &GOF6DD			44700000
	//FT07F001	DD &GOF7DD			44750000

Figure I-29. Cataloged Procedure FORTXCLG

	ORTXG			-		
//FORTXG PROC	GOP GM=MAIN	I,GOREGN=100K,		+40500000		
11	GOF 5DD= • DD	NAME=SYSIN, GOF6	DD='SYSOUT=A',	+40550000		
11	GOF7DD='SY	40600000				
//*				40650000		
// *	PARAMETER	DEFAULT-VALUE	US AG E	40700000		
//*				40750000		
//*	GOPGM	MAIN	PROGRAM NAME	40800000		
//*	GOREGN	100K	GO-STEP REGION	40850000		
//*	GOF 5DD	DDNAME=SYSIN	GO.FT05F001 DD OPERAND	40900000		
//*	GOF 6DD	SYSOUT=A	GO.FT06F0C1 DD DPERAND	40950000		
// *	GOF7DD	SYSOUT=B	GO.FT07F001 DD OPERAND	41000000		
// *				41050000		
//GO EXEC	PGM=&GOPGM	,REGION=&GOREGN,	COND=(4,LT)	41100000		
// FT 05 F 0 0 1	DD &GOF5DD	D &GOF5DD				
//FT06F001	DD &GOF6DD	1		41200000		
//FT07F001	DD &GOF7DD)		41250000		

Figure I-30. Cataloged Procedure FORTXG

MEMBER NAME FORTXCG //FORTXCG PROC FXPGM=IFEAAB,FXREGN=256K,FXPDECK=NODECK,								
//	EXPOL ST=NO	LIST . FXPOPT=0.GO	5DD= DDNAME= SYSIN ,	+46200000				
, //		GOF6DD='SYSOUT=A',GOF7DD='SYSOUT=B',GOREGN=100K						
, //*	•••••			46300000				
// *	PARAMETER	DEFAULT-VALUE	USAGE	46350000				
, //*				46400000				
// *	GOREGN	100K	GO-STEP REGION	46450000				
// *	FXPGM	IFEAAB	COMPILER NAME	46500000				
// *	FXREGN	256K	FORT-STEP REGION	46550000				
//*	FXPDECK	NODECK	COMPILER DECK OPTION	46600000				
// *	FXPOLST	NOLIST	COMPILER LIST OPTION	46650000				
//*	FXPOPT	0	COMPILER OPTIMIZATION	4670000				
// *	GOF 5DD	DDNAME=SYSIN	GO.FT05F001 OPERAND	46750000				
//*	GOF6DD	SYSOUT=A	GO.FT06F001 OPERAND	46800000				
//*	GOF 7DD	SYSOUT=B	GO.FT07F001 OPERAND	46850000				
//*				46900000				
//FORT EXEC	PGM=&FXPGM	+46950000						
11	PARM= * & F X P	DECK,&FXPOLST,OP	Γ(&FXPOPT)"	47000000				
// SY SPR I NT	DD SYSOUT=	A, DCB = BLKSIZE = 34	29	47050000				
// SY SUT 1			(3,3)),DCB=BLKSIZE=3465	47100000				
// SY SUT 2	DD UNIT=SY	SSQ,SPACE=(2048,	47150000					
// SY SPUNCH		B,DCB=BLKSIZE=34		47200000				
//SYSLIN	DD DSN=&&L	OADSET, DISP=(MOD	, PASS), UNIT=SYSSQ,	+47250000				
//		0,(25,6)),DCB=BL		47300000				
//GO EXEC	PGM=LOADEF	,COND=(4,LT),REG	ION=&GOREGN,	+47350000				
//	PARM='LET	NORES, EP=MAIN"		47400000				
// SY SLOUT	DD SYSOUT=			47450000				
// SY SL I B		S1.FORTLIB,DISP=S		47500000				
// SY SL I N		.OADSET,DISP=(OLD	,DELETE)	47550000				
//FT05F001	DD &GOF5D)		47600000				
//FT06F001	DD &GOF6DD)		47650000				
//FT07F001	DD &GOF7DD)		47700000				

Figure I-31. Cataloged Procedure FORTXCG

MEMBER NAME F	ORTXL					
//FORTXL PROG	//FORTXL PROC GOF5DD='DDNAME=SYSIN',GOF6DD='SYSOUT=A',					
//* //*	PARAMETER	DEFAULT-VALUE	US AG E	47900000 47950000 48000000		
//* //* //*	GOF5DD GOF6DD	DDNAME=SYSIN SYSOUT=A	GO.FT05F001 OPERAND GO.FT06F001 OPERAND	48050000 48050000 48100000		
// * // *	GOF 7DD GOR EGN	SY SO UT = B 100K	GO.FT07F001 OPERAND GD-STEP REGION	48150000 48200000 48250000		
//GD EXEC	<pre>// PARM='LET,NORES,EP=MAIN'</pre>					
// SY SL DUT // SY SL I B // FT 05 F0 01	DD SYSOUT= DD DSN=SYS DD &GOF5DD	1.FORTLIB,DISP=SH	IR	48400000 48450000		
//FT06F001 //FT07F001	DD &GOF6DD DD &GOF7DD			48500000 48550000 48600000		

Figure I-32. Cataloged Procedure FORTXL

Symbolic Parameters and the PROC Statement

A symbolic parameter is a name preceded by an ampersand (&). It appears in the operand field of a statement and stands as a symbol for a parameter, a subparameter, or a value. For example, in the cataloged procedure FORTXC, the EXEC statement named FORT contains a number of symbolic parameters, such as &FXPGM and &FXREGN in the expressions PGM=&FXPGM and REGION=&FXREGN.

Symbolic parameters are used to make a cataloged procedure easily modified when it is called. The programmer may assign values to symbolic parameters when he calls a cataloged procedure, or he may permit the default value assigned by the PROC statement to be in effect.

Figure I-33 illustrates the format of the PROC statement. Since the statement

deals only with the symbolic parameters, the identifying ampersand is unnecessary and is omitted. In the cataloged procedure FORTXC, the PROC statement assigns default values to &FXPGM and &FXREGN in the manner:

//FORTXC PROC FXPGM=IFEAAB, FXREGN=228K, ...

When the cataloged procedure is executed, these default values are assigned if the programmer does not override them. That is, the EXEC statement named FORT would appear as if it were coded:

//FORT EXEC PGM=IFEAAB, REGION=228K,...

Figure I-34 is another example illustrating how the PROC statement affects symbolic parameters of a cataloged procedure. For easier reference, the symbolic parameters in Figure I-34 are shown underscored.

ľ	Name	Operation	Operand				
	//[name]	PROC	<pre>symbolic-parameter=value[,]</pre>				
5							

Figure I-33. PROC Statement Format

PROC Statement in	cataloged procedure FORTXCLG:
//FORTXCLG PROC // // //	<u>FXPGM=IFEAAB, FXREGN=228k, FXPDECK=NODECK,</u> <u>FXPOLST=NOLIST, FXPOPT=0, GOREGN=100K,</u> <u>GOF5DD='DDNAME=SYSIN', GOF6DD</u> ='SYSOUT=A', <u>GOF7DD</u> ='SYSOUT=B'
Statements in FORT	XCLG specifying symbolic parameters:
//FORT EXEC //	PGM= <u>&FXPGM</u> , REGION= <u>&FXREGN</u> , COND=(4, LT), PARM=' <u>&FXPDECK</u> , <u>&FXPOLST</u> , OPTIMIZE(<u>&FXPOPT</u>)'
//GO EXEC //FT05F001 DD //FT06F001 DD //FT07F001 DD	• PGM=*.LKED.SYSLMOD, REGION= <u>&GOREGN</u> , COND=(4,LT) <u>&GOF5DD</u> <u>&GOF6DD</u> <u>&GOF7DD</u>
Substitution of de	fault values at execution time:
//FORT EXEC //	PGM=IFEAAB,REGION=228K,COND=(4,LT), PARM='NODECK,NOLIST,OPTIMIZE(0)'
//GO EXEC //FT05F001 DD //FT06F001 DD //FT07F001 DD	• PGM=*.LKED.SYSLMOD,REGION=100K,COND=(4,LT) DDNAME=SYSIN SYSOUT=A SYSOUT=B
	of PROC Statement in a Cataloged Procedure

Figure I-34. Effect of PROC Statement in a Cataloged Procedure

COMPILING

LINK EDITING

The EXEC statement for the compilation step is named FORT and, through the PGM parameter, specifies the compiler as the program to be executed (PGM=IFEAAB). The DD statements describe data sets required by the compiler. SYSLIN describes the output of the compilation step, an object module stored as a temporary data set named &&LOADSET. (A double ampersand is assigned to avoid confusion with symbolic parameters, which are preceded by one ampersand.) The DISP parameter is coded (MOD, PASS); MOD permits more than one object module to be stored (if many source modules are submitted for compilation), and PASS permits the data set to be used in later job steps. The programmer specifies the source module data set in a SYSIN DD statement coded as follows:

//FORT.SYSIN DD * (or appropriate
 parameters to define
 the data set)

The EXEC statement for the link edit step is named LKED and specifies the linkage editor as the program to be executed (PGM=IEWL). In FORTXCL and FORTXCLG, the EXEC statement COND parameter indicates that the program is to be executed only if the FORT step has returned a code less than or equal to 4. (Each job step issues a return code indicating the results of processing, e.g., 0 for normal completion, 4 for minor errors detected, 8 for serious errors.) The DD statements describe required data sets. SYSLMOD describes the output of the link edit step, a load module named MAIN, which is stored as a member of a temporary library named &&GOSET. SYSLIN describes the input to the linkage editor. When the linkage editor is to be the first step executed, as in FORTXLG, SYSLIN indicates the object module defined by a SYSIN DD statement which the programmer must supply, as follows:

//LKED.SYSIN DD * (or appropriate parameters)

EXECUTING THE LOAD MODULE

The EXEC statement for the go step is named GO, and specifies, as the program to be executed, the load module created in the link edit step (PGM=*.LKED.SYSLMOD). The COND parameter indicates that the program is to be executed only if previous steps returned a code less than or equal to 4. The DD statements describe required data sets. DD statement FT05F001 indicates that the input data set is to be defined by a SYSIN DD statement which the programmer must supply. FT06F001 defines a printer data set; FT07F001 a card punch data set.

The programmer specifies input to the load module by a SYSIN DD statement coded as follows:

//GO.SYSIN DD * (or appropriate parameters)

LOADING

The EXEC statement for the loader step is named GO, and specifies the loader as the program to be executed (PGM=LOADER). The DD statements describe required data sets. SYSLOUT describes printed output, such as a module map. The other data sets are the same ones as used by the linkage editor and the load module. Note that a SYSLMOD DD statement is not specified; the loader places the load module directly into storage for execution. When the loader is to be the first step executed, as in FORTXL, the object module must be defined in a SYSLIN DD statement (not SYSIN), supplied by the programmer, as follows:

//GO.SYSLIN DD * (or appropriate parameters)

Input to the load module is defined in a SYSIN DD statement, as follows:

//GO.SYSIN DD * (or appropriate parameters)

MODIFYING CATALOGED PROCEDURES

Except for the PGM parameter, any parameter in the PROC, EXEC, or DD statements may be modified. New parameters may be added; existing parameters may be overridden. Parameters not overridden continue to remain in effect.

When a cataloged procedure is modified, the changes apply only for the duration of the job. Figure I-35 at the end of this chapter illustrates how a programmer may modify a cataloged procedure using some of the examples described below.

MODIFYING PROC STATEMENTS

The programmer modifies PROC statement parameters by specifying the changes in the EXEC statement that calls the procedure. When he changes a PROC statement parameter, the programmer is assigning a temporary value to a symbolic parameter, and this value is transferred to the appropriate parameter in the EXEC or DD statement in the cataloged procedure when it is executed.

For example, to change the region size of the compiler from 228K to 200K, and to change card punch output in the load module from output class B to output class C, the programmer may use the following statement (assume that changes are being made to FORTXCLG for this and for all examples in this chapter):

// EXEC FORTXCLG,FXREGN=200K, // GOF7DD='SYSOUT=C'

Note that the ampersand preceding a symbolic parameter is not coded; note also that a value containing a special character, as in SYSOUT=C, is enclosed in apostrophes.

Prior to being called, the appropriate statements in FORTXCLG appear as follows:

//FORT EXEC PGM=&FXPGM, REGION=&FXREGN, ...

//FT07F001 DD &GOF7DD

٠

.

When the cataloged procedure is called, the statements appear as though they were coded:

//FORT EXEC PGM=IFEAAB, REGION=200K,...

//FT07F001 DD SYSOUT=C

•

Note that a symbolic parameter not changed (PGM=&FXPGM) retains its default value.

An alternative method to change a value is by assigning the new value directly to the parameter itself, not the symbolic parameter associated with it. For example, the region size may be changed by specifying REGION=200K in place of FXREGN=200K. (Actually, in this example, the region size for all job steps would be changed; to change the region size only for the compile job step, the appropriate job step name, FORT, must also appear in the parameter, i.e., REGION.FORT=200K.)

MODIFYING EXEC STATEMENTS

The programmer modifies EXEC statement parameters by specifying the changes in the EXEC statement that calls the procedure.

The following rules apply to EXEC statement modifications:

- Parameters are overridden in their entirety. If the programmer wishes to retain some options while changing others, he must respecify the options he wishes kept. (However, default options remain in effect if not overridden.)
- Parameters specified for individual job steps use the form:

keyword.stepname=value

where:

keyword indicates the name of the parameter stepname indicates the name of the procedure, for example, REGION.FORT=value

Parameters not specifying stepname are assumed to apply to all steps in the procedure; for example, REGION=value applies to the entire cataloged procedure.

- To make changes to more than one step, the programmer must specify all changes for an earlier step before those for later steps.
- Changes to symbolic parameters and EXEC statement parameters may be combined on the same card.

The programmer may make the following modifications:

 <u>Override existing parameters</u>: For example, to modify the LKED step by raising the condition code from 4 to 8, he may use the statement:

//SOMENAME EXEC FORTXCLG, // COND.LKED=(8,LT)

 Add new parameters: For example, to modify FORT by specifying the TIME parameter, he may use the statement:

//ANYNAME EXEC FORTXCLG, TIME. FORT=5

3. <u>Change more than one parameter</u>: For example, to modify FORT by changing the region from 228K to 200K and the PARM option NOLIST to LIST, he may use the statement:

//SOME EXEC FORTXCLG, // REGION.FORT=200K, // PARM.FORT=LIST

4. <u>Change more than one step</u>: For example, to modify FORT by specifying TIME and to modify LKED by raising the condition code from 4 to 8, he may use the statement:

//ANY EXEC FORTXCLG,TIME.FORT=5,
// COND.LKED=(8,LT)

Note that the user may add a parameter while revising an existing one.

- 5. <u>Combine changes to symbolic parameters</u> and <u>EXEC statement parameters</u>: For example, to modify the symbolic parameter FXREGN, and to add the TIME parameter to the FORT EXEC statement, he may use the statement:
 - //ANY EXEC FORTXCLG,FXREGN=200K,
 // TIME.FORT=5

MODIFYING DD STATEMENTS

The programmer modifies DD statements by submitting new DD statements after the EXEC statement that calls the procedure. As with modifications to EXEC statements, the user may override or add parameters to DD statements in one or many steps. In addition, he may add entirely new DD statements to any step (whenever he supplies a SYSIN DD statement, the programmer is adding a new DD statement).

The following rules apply to DD statement modifications:

- Parameters are overriden in their entirety except for the DCB parameter where individual subparameters may be overridden
- Parameters are nullified by specifying a comma after the equal sign in the parameter, e.g., UNIT=,
- Parameters are overridden when mutually exclusive parameters are specified in their place, e.g., SPLIT overrides SPACE

- DD statements must indicate the related procedure step, using the form <u>//stepname.ddname</u>, e.g., //FORT.SYSIN
- To make changes in more than one step, the user must specify all changes for an earlier step before those for later steps
- To modify more than one DD statement in a job step, the programmer must specify the applicable DD statements in the same sequence as they appear in the cataloged procedure

The programmer may make the following modifications:

1. <u>Override existing parameters</u>. For example, to modify SYSLMOD so that the load module is stored in a private library rather than in the system library, the user may submit the statement:

//LKED.SYSLMOD DD DSNAME=PRIV(PROG),
// DISP=(MOD,PASS)

In this example the library PRIV is assumed to be an old library and is cataloged (that is, VOLUME and UNIT parameters need not be specified). Note that in subsequent uses of the library a JOBLIB DD statement, defining the private library, must also be submitted to make the library available to the system.

2. <u>Add new parameters</u>. For example, to store the load module in a new, uncataloged library, the programmer must specify the VOLUME, UNIT, and SPACE parameters. He may submit the statement:

//LKED.SYSLMOD DD DSNAME=MYLIB(FIRST),

- // DISP=(NEW, PASS),
- // VOLUME=SER=11234,
- // UNIT=SYSDA,
- // SPACE=(TRK, (50, 10, 2))

3. <u>Add new DD statements</u>. For example, to add new data sets having data set reference numbers 10 and 15 for processing in the go step, the user may submit the statements:

//GO.FT10F001 // //	DD	DSNAME=DSET1, DISP=(NEW,DELETE), VOLUME=SER=T1132, UNIT=TAPE
//GO.FT15F001 // // //	DD	DSNAME=DSET2, DISP=(,DELETE), VOLUME=SER=DA45, UNIT=2311, SPACE=(TRK,(10,10))

Note that the user may explicitly define a data set as new (DISP parameter for FT10F001) or may permit the system to assume a new data set by default (DISP in FT15F001).

Figure I-35 illustrates a deck setup for FORTXCLG modified as follows:

- A SYSIN DD statement defines the source module
- A SYSIN DD statement defines input data to the load module
- Job steps are modified as shown in the EXEC statement discussion in "Modifying EXEC Statements", example 4 (TIME in FORT, COND in LKED)
- The SYSLMOD DD statement is modified as shown in the DD statement discussion above, example 1
- Additional data sets to the load module are defined as shown in the DD statement discussion, example 3

Note that all changes to a job step appearing earlier in the job processing sequence must be made before changes for later job steps.

```
//TEST JOB ACCT3, J. SMITH, MSGLEVEL=1
//JOBLIB DD DSNAME=PRIV, DISP=(MOD, PASS)
//ANY EXEC FORTXCLG, TIME. FORT=5, COND. LKED=(8, LT)
//FORT.SYSIN DD *
      ------
   F 7
   |Source module|
   L_____J
1/*
//LKED.SYSLMOD DD DSNAME=PRIV(PROG), DISP=(MOD, PASS)
//GO.FT10F001 DD DSNAME=DSET1, DISP=(NEW, DELETE), VOLUME=SER=T1132,
                       UNIT=TAPE
111
//GO.FT15F001 DD DSNAME=DSET2,DISP=(,DELETE),VOLUME=SER=DA45,
                       UNIT=2311, SPACE=(TRK, (10,10))
111
//GO.SYSIN DD *
   r-----
   |Load module input|
   L_____/
|/*
L_____
```

Figure I-35. Submitting Modifications to a Cataloged Procedure

PART II -- JOB OUTPUT

Ţ

JOB OUTPUT

Part II describes job step output for the FORTRAN program depicted in Figures II-1 and II-2. Figure II-1 shows a program as coded. Figure II-2 shows the program as keypunched; keypunch errors have been introduced on purpose to provide instances of system diagnostic action.

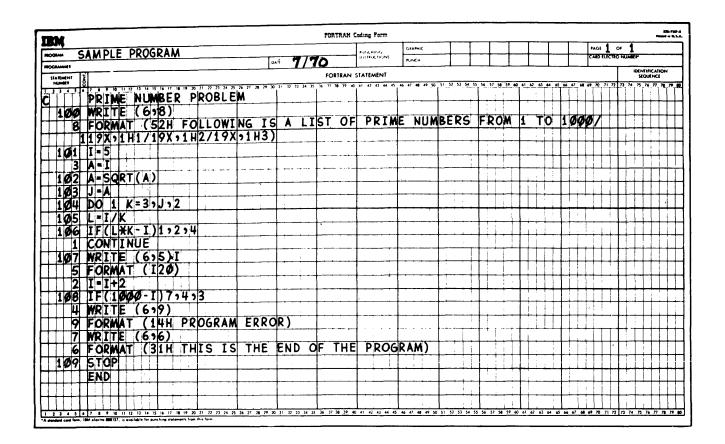


Figure II-1. Sample Program as Coded

	PRIME NUMBER PROBLEM
10	0 WRITE (6,8)
	8 FORMAT (52H FOLLOWING IS A LIST OF PRIME NUMBERS FROM 1 TO 1000/
	119X, 1H1/19X, 1H2/19X, 1H3)
10	1 I=5
	3 A=I
10	2 = A = SQRT(A)
10	3 J=A
10	4 DO I $K=3,J,2$
10	5 L=I/K
10	6 IF (L*K-I)1,2,4
	CONTINUE
	1 CONTINUE
10	
	5 FORMAT (120)
	2 I=I+2
10	8 IF (1000-I)7,4,3
	4 WRITE (6,9)
	9 FORMAT (14H PROGRAM ERROR)
	7 WRITE (6,6)
	6 FORMAT (31H THIS IS THE END OF THE PROGRAM)
10	
	END

Figure II-2. Sample Program as Keypunched

Each compilation produces the following:

- Informative messages letting the programmer know the status of the compilation
- Any diagnostic messages generated during the compilation
- Output as determined by the options selected by the programmer, either explicitly or by default

The programmer may request the compiler options he wishes to exercise through the PARM parameter of the EXEC statement, or he may permit default options to govern compiler output.

Figure II-3 shows the sequence in which output from compiler options is printed.

In addition to the options shown in Figure II-3, the programmer may request the DECK option, which produces no listing, but generates a card deck of the object module. COMPILER OUTPUT WITH DEFAULT OPTIONS

Default options cause the compiler to produce informative messages, diagnostic messages, compiler statistics, and a listing of the source module. Figure II-4 shows a printout for the FORTRAN program illustrated in Figure II-2.

Informative Messages

The first line of a compilation output listing (Figure II-4, A) states the release level number of the compiler, the compiler's name, and the date of the run shown in the format

year.date/hour.minute.second.

Date information in Figure II-4 is shown as 70.002/12.04.4, indicating the year 1970, the second day of the year, and the time of the day the job was completed, 12:04.4 (based on a 24-hour clock).

Option	Produces
	Informative messages
SOURCE*	Source module listing
XREF	Cross-reference listing
LIST	Object module listing: Part I: Entry code, constants, external address constants
FORMAT	Edited source module listing
LIST	Object module listing: Part II: Executable instructions, internal address constants
МАР	Source module map
	Diagnostic messages
	Compiler statistics
*Specifie	ed as default option in cataloged procedures.

Figure II-3. Compiler Printed Output Format

A	LEVEL	1	(MAF	2 71 🕽)	MA	AIN	OS/360	FORTRAN H	EXTENDED	>	DATE 71.0	57/09.59.01	PA	GE	1
	REQUEST	ED OF	TIONS	: NOD	ECK,NO	CLIST,0	PT=0									
	OPTIONS	IN	FFECT					.LINECOUNT(DECK,CBJECT			BL(NONÉ), OSTMT,NOXREF,	NOALC,NOA	NSF,FLAG(I))		
	I SN (I	COC3 COC4 COC5 COC6 COC8 CCC8 CC10 CC12 CC12 CO13 CO14 CC15 CC16 CC16 CC18 CC19 CC16 CC18 CC12 CC16 CC18 CC12 CC12 CC12 CC12 CC12 CC12 CC12	с	1 CC 8 1 C1 3 1 C2 1 C3 1 C4 1 C5 1 C6 1 1 C7 5 2 1 C8 4 9 7 6 1 C9	WRITE FORMAT 19X,1H 1=5 A=I A=SQRT J=A DO 1 + L=I/K IF(L*H CONTIN WRITE FORMAT WRITE FORMAT WRITE FORMAT	(6,8) (52H (1/19X, (4) (4) (4) (4) (4) (4) (5) (5) (5) (5) (6,9) (6,6) (6,6)	1H2/19X, ,4 4,3 PROGRAM	NG IS A LIST 1H3)			RCM 1 TO 1000	27				
		~~~~	~~~~~	~~~~	~~~~	~~~~~	FORTE	AN H EXTEND	ED ERROR ME	SSAGES		~~~~~~	~~~~~~		~~~~~	~
	IFE224I IFE2 <b>C</b> 8I	8	E) W)	I S I S		C11 0011	THE S	TATEMENT AF	TER AN ARIT	HMETIC IF	F, GO TC, OR E A STATEMENT		S NG LABEL.	,		
$(\cdot)$	*OPTION	S IN	EFFEC	T*NAM	E( M4	IN),NO	OPTIMIZE	,LINECCUNT(	6C),SIZE(MA	X),AUTCEB	BL(NONE),					
	*OPTION:	S IN	EFFEC	T*SOU	RCE,EE	BCDIC,N	OLIST,NO	DECK,CBJECT	,NOMAP,NOFO	RMAT,NOGO	OSTMT,NOXREF,	NOALC, NOA	NSF,FLAG(I)	)		
_ 1	*STATIS	TICS:	¥	SOURC	E STAT	TEMENTS	=	21, PROGRAM	SIZE =	706, SU	UBPROGRAM NAM	E = MAIN				
	*STATIS	rics	¥ 2	DIAG	NOSTIC	S GENE	RATED, H	IGHEST SEVE	RITY CODE I	S 8						

Figure II-4. Compiler Output from Default Options

The second line (and a third line, if needed) shows the compiler options current at the time of job submission (Figure II-4, B).

At the end of the listing, compiler statistics are printed (Figure II-4, E) listing all current options, the number of statements in the source module, the source module size in decimal, and the number and severity of diagnostic messages.

The last entry of a compilation is the informative message:

*****END OF COMPILATION*****

## Diagnostic Messages

Compiler diagnostic messages are assigned <u>severity codes</u> as follows:

			ty

CodeMeaning0Indicates an informationalmessage; messages with a 0severity code act as notes tothe programmer

4 Is a warning message code; usually, a minor error, which does not violate the syntax of the FORTRAN IV language was detected

8 Is an error message code; usually, an error which violates FORTRAN IV syntax was detected. The compiler attempts to make a corrective assumption.

- 12 Is a serious error message code; an error which violates FORTRAN IV syntax and for which the compiler could make no corrective assumption was detected
- 16 Is an abnormal termination message code; an error which prevents the compiler from continuing program processing was detected

Messages with severity code 4 permit the compiled object module to be passed to the link edit step. Severity levels higher than level 4 prevent link edit processing, unless the programmer has increased the permissible condition code in the COND parameter of the compilation EXEC statement.

Diagnostic messages in Figure II-4 are marked D. Messages display the call letters IFE identifying the FORTRAN IV (H Extended) compiler, an internal statement number developed from the original source statement, the severity code, and explanatory text. In Figure II-4, two diagnostic messages were generated by statement 11, an extraneous CONTINUE statement.

## Source Listing

The source listing in Figure II-4 is marked C. Source listing statements are identical to the original statements submitted in the FORTRAN program, except for the addition of internal sequence numbers (ISN).

# COMPILER OUTPUT WITH PROGRAMMER-SPECIFIED OPTIONS

The compiler always produces informative and diagnostic messages. The programmer may suppress the source listing by specifying NOSOURCE and may also choose to generate other forms of output.

Figures II-5 and II-6 show additional output for the program illustrated in Figure II-2. Figure II-5 illustrates the following:

- 1. A cross-reference listing
- 2. An object module listing
- 3. An edited source module listing
- 4. A source module map

Figure II-6 shows the deck setup of an object card deck.

#### Cross-Reference Listing

The programmer requests a cross-reference listing by specifying the compiler option XREF and a DD statement named SYSUT2. The cross-reference listing in Figure II-5 is marked A.

A cross-reference listing shows the symbols and statement labels in the source module together with the internal statement numbers in which they appear. Symbols (which define variables) are listed by name, according to length, in alphabetic order, beginning with names one character long. Statement labels are listed in ascending order and display each internal sequence number (ISN) in which they are referenced.

	*****F O R T R A N STATEMENT NUMBERS 6 0006 0007 5 0009 0010 0012 0014 8 9 0010			DATE 71.062/21.06.44 L I S T I N G*****	PAGE 2
LABEL DEFINED 1 0011 2 0014 3 0005 4 0016 5 0013 6 0019 7 0018 8 0003 9 0017 10C 0002 101 0004 102 0006 103 0007 104 0008 105 0009 105 0010 107 0012 108 0015 109 0020	***** 0 R T R A N REFERENCES 0008 0010 0015 0015 0012 0012 0012 0012 0012	CROSS RE	F E R E N C E	L I S T I N G****	
-	0 2	3	4	5	
	0CCCCC 47 FC F 00C 000004 07 000005 D4CLC905404040 00001C 90 EC D 00C 000014 5C 30 D C08 000014 5C 30 D C08 000014 50 D0 3 004 00001C 07 F2	MAIN BC DC DC STM LM ST ST BCR	15,12(0,15) XL1'07' CL7'MAIN ' 14,12,12(13) 2,3,32(15) 3,8(13) 13,4(0,3) 15,2		
TEMPORARY FOR FI	XFLOAT 000100 00000000 000104 0000000 000108 4E00000 000108 0000000	DC DC DC DC	XL4 • 00 00 0000 • XL4 • 00 00 00000 • XL4 • 4E 00 00000 • XL4 • 00 00 000 •		
ADCONS FOR VARIA	000110 4F080000 000114 9000000 000118 4E000000 000120 00000000 000120 0000000 000128 9000005 000128 9000005 000128 9000005 000125 AND CONSTANTS	DC DC DC DC DC DC DC	XL 4 • 4F 08 0000 • XL 4 • 00 00 0000 XL 4 • 4E 0000000 XL 4 • 80 00 00000 XL 4 • 00 00 0000 3 XL 4 • 00 00 0000 3 XL 4 • 00 00 0000 5 XL 4 • 00 00 000 5 XL 4 • 00 00 00 58		
ADCONS FOR EXTER	IAL         REFERENCES           200148         0C000000           0C014C         0000000           000178         58         F0           000180         0C000006         0C01006           0C0184         0C000028         00188           000188         45         E0         F010           0C0190         58         00         078           0C0184         0C000028         0078         00190           0C0190         58         0D         084           0C0194         56         0D         055	DC DC BAL DC BAL 101 ST 3 L ST XI	XL4*0000000 XL4*0000000 15, 156(0,1) 14, 4(0,15 XL4*0000008 14, 16(0,15 0, 120(0,1) 0, 132(0,1) 0, 132(0,1)\\0, 132	IBCOW# BI IBCOM# IBCOM# BI 6 BI 6 BI 5 BI 5 BI 5 BI 1 I	
	0001AC 68 00 D 058 0001A8 68 00 D 068 0001A8 70 C0 D 080 001A8 70 C0 D 080 001B0 58 F0 D 04C 001B0 58 F0 D 098 001B4 05 EF 0001B6 70 00 D 0A0 0001B7 70 C0 D 080	LD SD STE 102 LA BALR STE LE STE	0, 88( C,12 0, 104( 0,12 0, 128( 0,13 1, 76( 0,12 15, 152( 0,13 14,15 0, 160( 0,13 0, 160( 0,12 0, 128( C,12	31         4E000000080000000           31         A           33         SQRT           33         -S00           33         -S00	
	CODIC2         2B         00           CODIC4         78         00.0         C80           OCCIC8         6A         C0         D         60           OCOIC6         60         0         D         55           OCOID0         58         00         D         54           OCCID4         5C         00         D         054           OCCID4         5C         00         D         074	103 SDR LE AD STD L ST	0, 0 0, 128( 0,13 0, 96( 0,13 0, 80( 0,13 0, 84( 0,13 0, 136( 0,13 0, 116( 0,13	8) A 8) 4F0800000000000 8) 8) 8) J	
	000106         50         00         044           000106         58         00         084           0001E0         58         00         084           0001E4         5D         00         084           0001E5         50         00         084           0001E6         5D         00         080           0001E6         5D         10         090           0001E6         58         10         086           0001F6         58         10         080           0001F4         5C         00         090	104 L ST 105 L SRDA D ST 106 L M	0, 140( 0,13	8) K 8) I 8) K 8) L 8) K	

Figure II-5. Compiler Output from Programmer-Specified Options (Part 1 of 3)

.

<b></b>	0001F8	5B 10 D 084		S	1, 132( 0,13)	I
	0001FC	58 50 D OBC		Ĺ	5, 188( 0,13)	2
	000200	07 95		BCR	9, 5	
	000202	58 50 D OCO		Ĺ	5, 192( 0,13)	4
	000206	07 25		BCR	2, 5	
	000208	58 00 D 08C	1	L	0, 140( 0,13)	к
	000200	5A 00 D 070		Α	0, 112( 0,13)	2
	000210	50 00 D 08C		ST	0, 140( 0,13)	K
	000214	59 00 D 088		c	0, 136( 0,13)	ť
ŀ	000218	58 50 D 080		Ĺ	5, 176( 0,13)	105
	000210	07 D5		BC R	13, 5	
- +	00021E	58 FO D 09C	107		15, 156( 0,13)	IBCOM#
•	000222	18 00		- LR	0, 0	1000.11
	000224	45 E0 F 004		BAL	14, 4(0,15)	
	000228	00000003		DC	XL 4 00 000003	3
	000220	00000072		DC	XL4 00000072	5
	000230	45 E0 F 008		BAL	14, 8(0,15)	
	000234	0450D084		DC	XL 4' 04 50 D084'	I
	000238	45 E0 F 010		BAL	14, 16(0,15)	•
	000230	58 00 D 084	2			I
	000240	5A 00 D 070	2		0, 132( 0,13)	
	000244	50 00 D 084		A	0, 112( 0,13)	2
	000248	58 00 D 07C	108	ST	0, 132( 0,13)	I
	000248	58 00 D 084	108		0, 124( 0,13)	1000
				S	0, 132( 0,13)	I
	0 00 25 0 0 00 25 4	58 50 D 0C4		L	5, 196( 0,13)	7
		07 45 50 50 D 000		BCR	4, 5	
	000256	58 50 D 0C0		L	5, 192( 0,13)	4
	00025A	07 95		BCR	9, 5	_
	000250	58 50 D OAC		L	5, 172( 0,13)	3
	000260	07 25		BC R	2, 5	
	000262	58 FO D 09C	4	L	15, 156( 0,13)	IBCOM#
	000266	18 00		LR	0,0	
	000268	45 EO F 004		BAL	14, 4(0,15)	
	00026C	0000006		DC	XL 4" 00 00 0006 "	6
	000270	00000076		DC	XL 4 00 00 00 76 1	
	000274	45 EO F 010		BAL	14, 16( 0,15)	
	000278	58 FO D 09C	7	L	15, 156( 0,13)	I BC OM#
	000270	45 EO F 004		BAL	14, 4(0,15)	
	000280	0000006		DC	XL4*0000006*	6
B	000284	00000088		DC	XL4º0000088º	
	000288	45 EO F 010		BAL	14, 16( 0,15)	
	000280	58 FO D 09C	109	L	15, 156( 0,13)	IBC OM#
	000290	45 EO F 034		BAL	14, 52(0,15)	
	000294	05		DC	XL1'05'	
	000295	40		DC	XL 1 40	
	000296	40		DC	XL1'40'	
	000297	40		DC	XL1'40'	
	000298	40		DC	XL1 40	
	000299	F0		DC	XL 1 • FO •	
	ADDRESS OF EPILOGJE	FU		DC	XL 1 · FO ·	
	00029A	58 FO D 09C			15 15// 0 131	
				L	15, 156( 0,13)	T D C ON #
	00029E	45 E0 F 034		BAL	14, 52(0,15)	I BC OM #
	0002A2	0540		DC	XL 2 05 40	
	0002A4	404 040F 0		DC	XL4'404040F0'	
	ADDRESS OF PROLOGUE					
	0002AA	58 F0 3 09C		L	15, 156( 0, 3)	
	0002AE	45 E0 F 040		BAL	14, 64( 0,15)	I BC OM #
	000282	18 D3		LR	13, 3	
	000284	58 FO D 0A8		L	15, 168(, 0,13)	
	000288	07 FF		BCR	15,15	
	ADCON FOR PROLOGUE					
	000020	000002 <b>A</b> A		DC	XL4º000002AA	
	ADCON FOR SAVE AREA					
	000024	00000080		DC	XL4º000000B0º	
	ADCON FOR EPILOGUÉ					
	000080	0000029A		DC	XL4'0000029A'	
	ADCONS FOR PARAMETER LISTS					
	0000FC	80000130		DC	XL4 80000130	
•	TEMPORARIES AND GENERATED					
	000150	00000000		DC	XL4 00 000000 "	
	000154	00000000		DC	XL 4'00 000000'	
	ADCONS FOR B BLOCK LABELS					
	000158	00000178		DC	XL4 0000178 1	
	000150	00000194		DC	XL4 00 000194	
	000160	000001E0		DC	XL4'000001E0'	
	000164	00000208		DC	XL4 00000208	
	000168	0000021E		DC	XL4'0000021E'	
	000160	00000230		DC	XL4'0000023C'	
	000170	00000262				
	000176	00000262		DC DC	XL4"00000262" XL4"00000278"	
_	000174	00000210				

Figure II-5. Compiler Output from Programmer-Specified Options (Part 2 of 3)

				C PRIME N				SOURCE LI	STING	/						
(005	ISN	0002		WRITE (6,8)	UNDER	TRODEC	r <b>1</b>									
	ISN	0003		FORMAT (52H F 19X,1H1/19X,1			A LIST (	OF PRIME	NUMBE	RS FROM 1 TO	1000/					
	ISN	00 04	101													
	ISN			A = I												
002	ISN			A=SQRT(A)												
	I S N I S N		103	J=A DO 1 K=3,J,2												
	ISN			L=I/K												
001	ISN			IF(L*K-I)1,2,	4											
	ISN		-	CONTINUE												
	ISN ISN		107 5	WRITE (3,5 FORMAT (12												
001)		0015	,	C	07											
	I SN	0014	2	I = I + 2												
	ISN		1 08	IF(1000-I)												
	ISN		4	WRITE (6,9 Format (14			0001									
002)	ISN	0017	9		n PRU	GRAM ER	KUKJ									
0027	ISN	0018	7	WRITE (6,6	)											
	ISN		6		н тні	S IS TH	E END O	F THE PRO	GRAM)							
	ISN		109	STOP END												
	ISN	0021										~~~~	~~~~~~	~~~~	~~~~~	
~~~~		~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MAIN /			AM 0002BA HE			~~~~	~~~~~	
~~~~	~~~~	~~~~	~~~~~~	~~~~~~			/	MAIN /	S	IZE OF PROGR	AM ODO2BA HE	XADE	CIMAL BYTES			
~~~~	~~~~ NAM		 TAG TYPE		~~~~~ NAME I	TAG	/		S			XADE		TAG		ADD. 00013
~~~~	~~~~~ NAM	 E	 TAG TYPE	. ADD.	NAME	TAG	/ TYPE I*4	MAIN / ADD.	S	IZE OF PROGR NAME TAG	AM ODO2BA HE	XADE	CIMAL BYTES NAME	TAG	TYPE	ADD.
~~~~	~~~~~ NAM	E A SFA	TAG TYPE R*4 I*4	ADD. 000130 000140	NAME I SQRT	TAG SF F XF	/ TYPE I*4	MAIN / ADD. 000134	S	IZE OF PROGR NAME TAG J SF	AM 0002BA HE TYPE ADD I*4 0001	XADE	CIMAL BYTES NAME	TAG	TYPE	ADD.
~~~~ sou	~~~~~	E A SFA L S	TAG TYPE R*4 I*4	ADD. 000130 000140	NAME I SQRT	TAG SF F XF	/ TYPE I*4	MAIN / ADD. 000134	S	IZE OF PROGR NAME TAG J SF	AM 0002BA HE TYPE ADD I*4 0001	XADE	CIMAL BYTES NAME	TAG	TYPE	ADD.
	NAM	E A SFA L S TATEM	TAG TYPE R*4 I*4 ENT LABELS	ADD. 000130 000140	NAME I SQRT	TAG SF F XF	/ TYPE I*4	MAIN / ADD. 000134 000000	S I B	IZE OF PROGR NAME TAG J SF COM# F XF	AM 0002BA HE TYPE ADD. I*4 0001 0000	38 000	CIMAL BYTES NAME K SF	TAG	TYPE	ADD.
	NAM NAM RCE S ABEL	E A SFA L S TATEM I SN	TAG TYPE R*4 I*4 ENT LABELS	ADD. 000130 000140	NAME I SQRT  I SN	TAG SF F XF	/ T YP E I *4 R *4	MAIN / ADD. 000134 000000	S I B  I SN	IZE OF PROGR NAME TAG J SF COM# F XF ADDR	AM 0002BA HE TYPE ADD. I*4 0001 0000	38 000 	CIMAL BYTES NAME K SF	TAG	TYPE	ADD.
	NAM	E A SFA L S TATEM I SN 2	TAG TYPE R*4 I*4 ENT LABELS ADDR 000178 NR	ADD. 000130 000140 LABEL 101	NAME I SQRT  I SN 4	TAG SF F XF ~~~~~ ADDR 00018C	/ TYPE I*4 R*4	MAIN / ADD. 000134 000000 LABEL 3	S I B ~~~~~ I SN 5	IZE OF PROGR NAME TAG J SF COM# F XF 	AM 0002BA HE TYPE ADD. I*4 0001 0000 	ISN 6	ADDR NODE NR	TAG	TYPE	ADD.
	NAM NAM RCE S ABEL 100	E A SFA L S TATEM I SN 2 7	TAG TYPE R*4 I*4 ENT LABELS	ADD. 000130 000140 LABEL 101	NAME I SQRT VVVV I SN 4 8	TAG SF F XF	/ TYPE I*4 R*4	MAIN / ADD. 000134 000000	S I B  I SN 5 9	IZE OF PROGR NAME TAG J SF COM# F XF ADDR	AM 0002BA HE TYPE ADD. I*4 0001 0000 	38 000 ISN 6 10	CIMAL BYTES NAME K SF	TAG	TYPE	ADD.
	NAM NAM RCE S ABEL 100 103	E A SFA L S TATEM I SN 2 7 11	TAG TYPE R*4 I*4 ENT LABELS 000178 NR 00012 NR	ADD. 000130 000140 LABEL 101 104	NAME I SQRT I SN 4 8 12	T AG SF F XF 	/ TYPE I*4 R*4	MAIN / ADD. 000134 000000 LABEL 3 105	S I B  I SN 5 9 14	IZE OF PROGR J SF COM# F XF ADDR 000194 0001E0	AM ODO2BA HE TYPE ADD 1*4 0001 0000 	38 000 ISN 6 10	ADDR 0001AC NR 0001AC NR	TAG	TYPE	ADD.
L	NAM RCE S ABEL 100 103 1 4	E A SFA L S TATEM I SN 2 7 11 16	TAG TYPE R*4 I*4 ENT LABELS ADDR 000178 NR 000178 NR 000122 NR 000208	ADD. 000130 000140 LABEL 101 104 107 7	NAME I SQRT I SN 4 8 12	TAG SF F XF  ADDR 00018C 000108 00021E	/ TYPE I*4 R*4	MAIN / ADD. 000134 000000 LABEL 3 105 2	S I B  I SN 5 9 14	IZE OF PROGR NAME TAG J SF CDM# F XF ADDR 000194 000160 00023C	AM ODO2BA HE TYPE ADD 1*4 0001 0000 	38 000 ISN 6 10	ADDR 0001AC NR	TAG	TYPE	ADD.
L Com L	NAM NAM RCE S ABEL 103 1 4 PILER ABEL	E SFA L SFA TATEM I SN 2 11 16 GENE I SN	TAG TYPE R*4 I*4 ENT LABELS 000178 NR 000178 NR 000122 NR 000262 RATED LABE ADDR	ADD. 000130 000140 LABEL 101 104 107 7	NAME I SQRT ISN 4 8 12 18	TAG SF F XF  ADDR 00018C 000108 00021E	/ TYPE I*4 R*4	MAIN / ADD. 000134 000000 LABEL 3 105 2	S I B  I SN 5 9 14 20	IZE OF PROGR NAME TAG J SF CDM# F XF ADDR 000194 000160 00023C	AM ODO2BA HE TYPE ADD 1*4 0001 0000 	ISN 6 10 15	ADDR 0001AC NR	TAG	TYPE	ADD.
L Com L	NAM NAM RCE S ABEL 100 103 1 4 PILER	E SFA L SFA TATEM I SN 2 11 16 GENE I SN	TAG TYPE R*4 I*4 ENT LABELS ADDR 000178 NR 000120 NR 000262 RATED LABE	ADD. 000130 000140 LABEL 101 104 107 7	NAME I SQRT ISN 4 8 12 18	TAG SF F XF ADDR 00018C 000108 000218 000278	/ TYPE I*4 R*4	MAIN / ADD. 000134 000000 LABEL 3 105 2 109	S I B  I SN 5 9 14 20	IZE OF PROGR NAME TAG J SF COM# F XF ADDR 000194 0001E0 00023C 00028C NR	AM 0002BA HE TYPE ADD. I*4 0001 0000 LABEL 102 106 108	ISN 6 10 15	ADDR 0001AC NR 000248 NR	TAG	TYPE	ADD.
L COM L 1 C	NAM RCE S ABEL 100 103 1 4 PILER ABEL 0000	E A SFA L S TATEM I SN 2 7 11 16 G EN E I SN 1	TAG TYPE R*4 I*4 ENT LABELS 000178 NR 000178 NR 000122 NR 000262 RATED LABE ADDR	ADD. 000130 000140 LABEL 101 104 107 7 ELS LABEL	NAME I SQRT ISN 4 8 12 18	TAG SF F XF ADDR 00018C 000108 000218 000278	/ TYPE I*4 R*4	MAIN / ADD. 000134 000000 LABEL 3 105 2 109	S I B  I SN 5 9 14 20	IZE OF PROGR NAME TAG J SF COM# F XF ADDR 000194 0001E0 00023C 00028C NR	AM 0002BA HE TYPE ADD. I*4 0001 0000 LABEL 102 106 108	ISN 6 10 15	ADDR 0001AC NR 000248 NR	TAG	TYPE	ADD.
L COM 1 C FOR	NAM RCE S ABEL 100 103 1 4 PILER ABEL 0000	E SFA L SFA TATEM ISN 2 71 16 GENE ISN 1 TATEM ISN	TAG TYPE R*4 I*4 ENT LABELS ADDR 000178 NR 000262 RATED LABE ADDR 000178	ADD. 000130 000140 LABEL 101 104 107 7 ELS LABEL	NAME I SQRT ISN 4 8 12 18 ISN	TAG SF F XF ADDR 00018C 000108 000218 000278	/ TYPE I*4 R*4	MAIN / ADD. 000134 000000 LABEL 3 105 2 109	S I B  I SN 5 9 14 20 I SN	IZE OF PROGR NAME TAG J SF COM# F XF ADDR 000194 0001E0 00023C 00028C NR	AM 0002BA HE TYPE ADD. I*4 0001 0000 LABEL 102 106 108	ISN ISN ISN ISN ISN	ADDR 0001AC NR 000248 NR	TAG	TYPE	ADD.

Figure II-5. Compiler Output from Programmer-Specified Options (Part 3 of 3)

## Object Module Listing

The programmer requests an object module listing by specifying the option LIST. The object module listing in Figure II-5 is marked B.

An object module listing is in an assembler language format showing each assembler language instruction. The listing is arranged as follows:

- The first column, labeled 1, indicates the relative address of the instruction in hexadecimal format.
- The columns labeled 2 indicate the storage representation of the instruction in hexadecimal format.
- The column labeled 3 indicates statement numbers, which may be either those appearing in the source program or those generated by the compiler (compiler-generated numbers contain six digits).

D

F

- The columns labeled 4 indicate the pseudo-assembler language format for each statement.
- The column labeled 5 indicates any significant items referred to by the instruction, such as entry points of subprograms or other statement numbers.

# Edited Source Module Listing

The programmer requests an edited source module listing by specifying the options FORMAT and OPTIMIZE(2) and by including a DD statement named SYSUT1. The edited source module listing in Figure II-5 is marked C.

This listing is independent of the usual source listing; it indicates the loop structure and logical continuity of the source program.

Each loop is assigned a unique 3-digit number. Entrance to the loop is indicated by a left parenthesis followed by a 3-digit number; exit from the loop is indicated by the 3-digit number followed by a right parenthesis on a separate line before the next non-comment line.

Indentions are used to show dominance relationships among executable source statements. Statement A dominates statement B if A is the last statement common to <u>all</u> logical paths from which B receives control. Statement A is called a dominator, statement B is called a dominee. By this definition, a statement can have only one dominator, but a dominator may have several dominees. For example, a computed GO TO statement is the last statement through which control passes before reaching three other statements. The GO TO statement is a dominator with three dominees.

A dominee is indented from its dominator unless it is either the only dominee or the last dominee of that dominator. The line of sight between a dominator and its dominee(s) may be obscured by intervening statements. This is a dominance discontinuity and is indicated by C--- on a separate line above the dominee.

Comments and non-executable statements are not involved in dominance relationships; their presence never causes a dominance discontinuity. Comments are aligned with the last preceding non-comment line; nonexecutable statements are aligned either with the last preceding executable statement or with the first one following. The edited source module listing in Figure II-5 shows two loops; loop 001 is nested within loop 002.

#### Source Module Map

The programmer requests a storage map by specifying the option MAP. The source module map in Figure II-5 is marked D.

A map indicates the use made of each number within a program.

The first line of a map gives the name and size of the program. The size is noted in hexadecimal format.

The column headed NAME indicates the name of each variable, statement function, subprogram, or implicit function.

The column headed TAG indicates use codes for each name and variable. Use codes are the following:

- The letter S for a variable appearing to the left of an equal sign; i.e., a variable whose value was stored during some operation
- The letter F for a variable appearing to the right of an equal sign; i.e., a variable whose value was manipulated during some operation
- 3. The letter A for a variable used as an argument in a parameter list
- 4. The letter C for a variable in a COMMON block
- 5. The letter E for a variable in an EQUIVALENCE block
- 6. The letters ASF for an arithmetic statement function
- 7. The letters XF for an external function
- The letters XR for an external reference to an array, variable, or subprogram that is referenced by name.
- 9. The letter D for a promoted (doubled) variable
- 10. The letter P for a padded variable
- 11. An asterisk (*) for a promoted library function

Note that the combination code ASF should not be confused with the individual codes A, S, and F. The individual codes print out in the order SFA while the arithmetic function code always prints as ASF.

The column headed TYPE indicates the type and length of each variable.

The column headed ADD indicates the relative address assigned to a name. (Functions, arithmetic statement function, subroutines, and external references have a relative address of 00000.) For non-referenced variables, this column contains the letters NR instead of a relative address.

The MAP option also produces a table of statement numbers known as a label map (marked E in Figure II-5). The label map shows each statement number from the source statement, from compiler generated labels, and from FORMAT statements, the relative address assigned to each statement, and the symbol NR for each statement that is not referenced.

If the source module contains COMMON or EQUIVALENCE statements, the MAP option also produces a storage map for each COMMON and EQUIVALENCE block. Because the sample program in Figure II-1 contained no COMMON or EQUIVALENCE statement, no such storage map is illustrated in Figure II-5. Figure II-7 illustrates a section of another program and the resulting storage map. The map for a COMMON block contains the same kind of information as for the main Any variable equivalenced to a program. variable in COMMON is listed along with its displacement (offset) from the beginning of the block.

#### Object Module Deck

The programmer requests an object module deck by specifying the compiler option DECK. Figure II-6 shows a typical layout of an object deck.

The object deck may be used as input to the linkage editor in a later job. The deck is a copy of the object module which consists of dictionaries, text, and an end-of-module indicator. Object modules are described in greater detail in the appropriate linkage editor and loader publication, as listed in the Preface.

The object deck consists of four types of cards identified by the characters ESD, RLD, TXT, or END in columns 2 through 4. Column 1 of each card contains a 12-2-9 punch. Columns 73 through 80 contain the first four characters of the program name followed by a four-digit sequence number. The remainder of the card contains program information. ESD CARD: ESD cards describe the entries of the External Symbol Dictionary, which contains one entry for each external symbol defined or referred to within a module. For example, if program MAIN calls subprogram SUBA, the symbol SUBA will appear as an entry in the External Symbol Dictionaries of both the program MAIN and the subprogram SUBA. The linkage editor matches the entries in the dictionary to the entries in the dictionary to the entries in the dictionaries of other included subprograms and, when necessary, to the automatic call library.

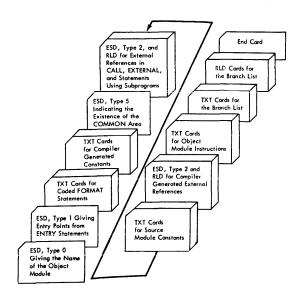
ESD cards are divided into four types, identified by the digits 0, 1, 2, or 5 in column 25 of the first entry in the card, column 41 if a second entry, and column 57 if a third entry (there can be 1, 2, or 3 external-symbol entries in a card).

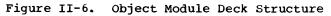
DOD

ESD <u>Type</u> 0	<u>Contents</u> Name of the program or subprogram and indicates the beginning of the module.
1	Entry point name appearing in an ENTRY statement of a subprogram.
2	Name of a subprogram referred to by the source module through CALL statements, EXTERNAL statements, and explicit and implicit function references (Some usages of FORTRAN are of such complexity, that a function subprogram is called in place of in-line coding. Such calls are called <u>implicit</u> <u>function references</u> ).
-	

5 Information about a COMMON block.

<u>TXT CARD</u>: TXT cards contain the constants and variables used by the programmer in his source module, any constants and variables generated by the compiler, coded information for FORMAT statements, and the machine instructions generated by the compiler from the source module.


<u>RLD_CARD</u>: RLD cards describe entries in the <u>Relocation Dictionary</u>, which contains one entry for each address that must be resolved before a module can be executed. The Relocation Dictionary contains information that enables absolute storage addresses to be established when a module is loaded into main storage for execution. These addresses cannot be determined earlier because the starting address of a module is not known until the module is


loaded. The linkage editor consolidates RLD entries in the input modules into a single relocation dictionary when it creates a load module.

RLD cards contain the storage address of subprograms called by ESD type 2 cards.

END_CARD: The END card indicates:

- 1. The end of the object module to the linkage editor,
- 2. The relative location of the main entry point, and
- 3. The length (in bytes) of the object module.





ISN 0002 SUBROUTINE POSVEC ( P, T)	
c	
C.	
C*********** EIGENVALUES, CUMULATIVE PROPORTIONS OF TOTAL ****** C	
C******** VARIANCES AND POSITIVE EIGENVECTORS. ******	
ISN 0003 INTEGER P, T ISN 0004 COMMON / SHARE1 / EIGVEC(80,80) ISN 0005 COMMON / SHARE4 / CUMPRO(80) ISN 0006 COMMON / VALUE / EIGVAL(80) ISN 0007 DIMENSION POSVEX(80,80), POSVAL(80) ISN 0008 EQUIVALENCE (EIGVEC(1,1), POSVEX(1,1)) ISN 0009 EQUIVALENCE (EIGVAL(1), POSVAL(1))	
ISN 0010 CALL EIGEN ( P )	
•	
•	
/ POSVEC / SIZE OF PROGRAM 000478 HEXADECIMAL BYTES	
NAME         TAG         TYPE         ADD.         NAME         TAG         TYPE         ADD.         NAME         TAG         TYPE         ADD.         NAME         TAG         TYPE         ADD.         NAME         TAG         TYPE         ADD.         NAME         TAG         TYPE         ADD.         NAME         TAG         TYPE         ADD.         NAME         TAG         TYPE         ADD.         NAME         TAG         TYPE         ADD.         NAME         TAG         TYPE         ADD.         NAME         TAG         TYPE         ADD.         NAME         TAG         TYPE         ADD.         NAME         TAG         TYPE         ADD.         NAME         TAG         TYPE         ADD.         NAME         TYPE         ADD.         NAME         TAG         TYPE         ADD.         TAG         TYPE         ADD.         TAG         TAG         TYPE         ADD.         TAG         TYPE         ADD.         TAG         TAG         TAG         TAG         TAG<	G TYPE ADD. I×4 0001BC E R×4 000000 R×4 000100
***** COMMON INFORMATION *****	
NAME OF COMMON BLOCK *SHARE1* SIZE OF BLOCK 006400 HEXADECIMAL BYTES	
VAR. NAME TYPE REL. ADDR. VAR. NAME TYPE REL. ADDR. VAR. NAME TYPE REL. ADDR. VAR. NAME TYPE EIGVEC R×4 000000	REL.ADDR.
EQUIVALENCED VARIABLES WITHIN THIS COMMON BLOCK VARIABLE OFFSET VARIABLE OFFSET VARIABLE OFFSET VARIABLE OFFS POSVEX 000000	ET
NAME OF COMMON BLOCK *SHARE4* SIZE OF BLOCK 000140 HEXADECIMAL BYTES	
VAR, NAME TYPE REL, ADDR. VAR. NAME TYPE REL. ADDR. VAR. NAME TYPE REL. ADDR. VAR. NAME TYPE CUMPRO R¥4 000000	REL. ADDR.
NAME OF COMMON BLOCK * VALUE* SIZE OF BLOCK 000140 HEXADECIMAL BYTES	
VAR. NAME TYPE REL. ADDR. VAR. NAME TYPE REL. ADDR. VAR. NAME TYPE REL. ADDR. VAR. NAME TYPE EIGVAL R≭4 000000	REL. ADDR.
EQUIVALENCED VARIABLES WITHIN THIS COMMON BLOCK VARIABLE OFFSET VARIABLE OFFSET VARIABLE OFFSET VARIABLE OFFS POSVAL 000000	ET

Figure II-7. Source Statements and Storage Map for COMMON/EQUIVALENCE Blocks

As with compiler output, output from the link edit step depends upon the options in effect at the time of job submission.

#### LINKAGE EDITOR OUTPUT

The cataloged procedures calling the linkage editor specify the LET, LIST, and XREF options; the programmer may override or add to these options through the PARM parameter of the EXEC statement.

LINKAGE EDITOR OUTPUT WITH PROCEDURE-SPECIFIED OPTIONS

For the FORTRAN program illustrated in Figure II-2, linkage editor output is shown in Figure II-8. Options current at the time of job submission are always listed (Figure II-8, A) followed by any printed output.

The linkage editor combines a number of modules into one load module. The LET option marks the load module executable even though certain error conditions may have been detected. LET does not result in any printed output.

LIST causes linkage editor control statements associated with the job step to be printed. No linkage editor control statements are shown in Figure II-8. See the section "Linkage Editor Overlay Feature" for an example.

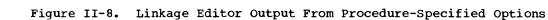
#### Cross-Reference Table

Unlike the compiler MAP and XREF options, which are mutually independent, the linkage editor XREF option produces both a module map and a cross-reference listing. If the programmer wants the only module map printed, he specifies MAP in place of XREF. The module map shows the name of each program unit, the relative location of its beginning point, its length, and any entry names to the program unit. The module map in Figure II-8 is labeled B.

A program unit (main program, subprogram, or COMMON block) is termed a control section in the link edit step. Α control section may be the object module produced from the original source module, or it may be a module called by the linkage editor to perform such functions as input/output operations, interface with the operating system, or mathematical operations required by the program. Control sections called by the linkage editor are identified on the module map by the character * after the control section name (for example, IHOECOMH* in Figure II-8).

In Figure II-8, the control section MAIN begins at relative location 00 and has a length expressed in hexadecimal format of 278 (equal to 632 bytes). The remaining control sections are those called from the FORTRAN library by the linkage editor. Control section IHOECOMH begins at location 278 and has entry points named IBCOM, FDIOCS, and INTSWTCH. IBCOM is also the beginning point of the control section since it too begins at location 278; FDIOCS begins at location 334, and INSWTCH at location 1196. Control section IHOCOMH2 contains only one entry point, SEQDASD, beginning at a location within the section.

Following the map in Figure II-8 is the cross-reference table (labeled C) which lists the location of each reference within the load module, the symbol to which the reference refers, and the name of the control section in which the symbol is defined.


If an overlay structure has been specified, a separate map and cross-reference listing is produced for each segment of the structure. See the section "Linkage Editor Overlay Feature" for an example.

The total length of the load module is listed at the bottom of the cross-reference table.

The message (Figure II-8, D) is not part of the module map; it is a disposition message issued by the linkage editor stating that MAIN has been added to a load module library.

	MAIN	C 0	278								
	IHCECCMH*	278	CC4								
	11100001111	2.0		IBCOM#	2 A 4	FDICCS#	360	INTSWTCH	1028		
	IHOCCMH2*	1040	975	1000/1#	644	101003#	500	1111341011	1020		
	1 HUCCPHZ#	1040	915	6500466	1244						
				SEQDASC	1344						
	IHOSSORT#	1988	168								
				SQRT	1988	IH\$SQRT	1988				
	IHOFCVTH*	1820	AC7								
				ADCON#	1 B 2 <b>0</b>	FCVACUTP	1 BC 🗛	FCVLCUTP	1C5A	FCVZOUTP	1CB6
				FCVIOUTE	215A	FCVEOUTP	224C	FCVCCUTP	224C	INT6 SWCH	2448
_	IHOEFNTH*	2528	7C8								
В	1.021.011	2720		ARITH#	2528	ACJSWTCH	2488				
- <b>D</b>	IFOEFIOS*	2C F <b>C</b>	10FC	ANTION.	2520	ACOSHICI	2400				
-	1FUEF103#	ZCFU	IUFC	E LOC C#	2000	E LOCODED	2054				
				FIOCS#	2CF0	FICCSBEP	2CF6				
	IHOFIOS2*	3CEO	5 A C								
4	IHOUOPT *	439 <b>0</b>	318								
	IHOFCCNI*	46A8	2FD								
				FCCONI#	4648						
	IHOFCONO*	4988	558								
				FCCONC#	4948						
	IHOERRM *	4F00	5EC								
	THOLMAN		200	ERRMON	4 F 0 0	IFCERRE	4F18				
	IHCUATEL*	54FC	2 <b>C</b> 8	Entrion		11 OLIVIC					
		56F8	198								
	IHCFTEN *	2018	198	CTEN/							
				FTEN#	56F8						
	IHOETRCH*	589 <b>C</b>	246			_					
				IHOTRCH	589 <b>0</b>	ERRTRA	5898				
	<u> </u>										
	LOCATION	REFERS	TO SYMBOL	IN CONTROL SECTION	N	LCCATION	REFERS	TO SYMBOL I	N CONTRO	CL SECTION	
	150		SQRT	IHOSSORT		154		IBCCM#	1	I H C E C C M H	
	360		SEQCASD	I HOC CMH2		388		IHCCCMH2		IHCCOMH2	
	F34		ADCON#	IHOFCVTH		F2C		FIOCS#		INCEFICS	
										INCEFNTH	
	F38		AR ITH#	IHOEFNTH		F54		ADJSWTCH			
	FC8		IHOUCPT	IHOUCPT		F3C		FCVECUTP		IHCFCVTH	
	F4C		FCVLOUTP	IHOFCVTH		F44		FCVIOUTP		IHOFCVTH	
	F48		FCVCOUTP	IHCFCVTH		F4C		FCVAOUTP	]	IHOFCVTH	
	F 50		FCVZCUTP	IHCFCVTH		102C		IHOASYNC	\$L	JNRESCLVED(W)	
	E8C		IHCERRM	IHDERRM		EEC		IHCERRE	1	IHCERR₽	
*	F10		IHCCOMH2	IHCCCMH2		EE4		IHOCOMH2	1	IHOCOMH2	
	EE8		IHOCOMH2	IHOC CMH2		EEC		IHOCCMH2		IHOCCMH2	
	EFO		IHCCOMH2	IHOCOMH2		1170		IHOECOMH		IHCECCMH	
						1815		IHOECOMH		THOECOMH	
	1220 1825		IHCECOMH IHCECOMH	IHOECCMH Ihoeccmh		1815		IHCECOMH		IHDECCMH	
-											
•	1490		IBCCM#	IHOECCMF		1404		IHOERRM		IHCERRM	
	2318		IBCOM#	IHOECCMH		2314		IHCERRM		IHOERRM	
	2368		FQCONO#	IHOFCONO		236C		FQCONI#		IHCECCNI	
	2AE4		IBCOM#	IHCECOMH		2AE8		INTSHTCH	1	IHCECCMH	
	2A84		INT6SWCH	IHCFCVTH		2 A 8 O		IHOUOPT	1	IHCUCPT	
	2 A F O		ACCON#	IHOFCVTH		2AEC		FICCS#	1	IFCEFICS	
	28F0		IHCERRM	IHCERRM		2E58		IHOASYNC	\$1	UNRESCLVED(W)	
	2E50		IHCERRM	IHCERRM		2E54		IHOF IOS 2		IHOFICS2	
	387C		IHOUATEL	IHOUATBL		3B7C		IBCOM#		IHGECCMH	
- +	3891		IHOF IOS2	IHOF ICS2				IHOF IOS2		IHOFICS2	
						3BA8					
	3DD9		IHOF IOS2	IHCFICS2		493C		IHEQCENI		JNRESGLVED(W)	
	4938		FQTEN#	\$UNRESOLVED	(W)	4934		FTEN#		IHOFTEN	
	4DA4		FTEN#	IHOFTEN		4DAC		IHOQCONO		UNRESOLVED(W)	
	4DA8		FQTEN#	\$UNRESOLVED	(W)	54DC		IHCUCPT	3	IHCUOPT	
	54E <b>0</b>		IBCOM#	IHCECCMH		54E4		IHOTRCH		IHCETRCH	
	54E8		FICCSBEP	IHDEFICS		5A2C		LDFIC#		UNRESOLVED(W)	
	5A18		IBCCM#	IHOECOMH		5A 1C		ADCCN#		INCECVTH	
	5424		FIOCSBEP	IHOEFICS		J# 10		FUCCIN#			
	ENTRY ADDRE		00	11011113							
			5838								
	TOTAL LENGT	п	0000								

#### CROSS REFERENCE TABLE



DOES NOT EXIST BUT HAS BEEN ADDED TO CATA SET



CONTROL SECTION

ORIGIN LENGTH

NAME

-****MAIN

F88-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF,LET,LIST VARIABLE OPTIONS USED - SIZE=(92160,8192)- DEFALLT OPTION(S) USED

ENTRY

NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION

#### LOADER OUTPUT

For the FORTRAN program illustrated in Figure II-2, loader output is shown in Figure II-9. Options current at the time of job submission are always listed (Figure II-9, A) followed by any printed output.

MAP causes a load module map to be produced (Figure II-9, B). The map produced by the loader is somewhat different from that produced by the linkage editor. Like the link edit map, the loader map shows the name and the location of each program unit's beginning point. Unlike the link edit map, this map shows the absolute address rather than a relative address. The loader map also has a different format; it is designed horizontally, i.e., it is meant to be read across from line to line rather than down by column.

Each control section is mapped with three entries: its name, its type, and its beginning address. In Figure II-9, MAIN is identified as a type SD program (Section Definition, signifying a control section), and begins at absolute address 90008. IHOECOMH is also a type SD program and begins at absolute address 902C8; it contains IBCOM, FDIOCS, and INTSWTCH, all identified as type LR (Label Reference, signifying entry points within a control section). Sections called by the loader are identified by the character * after the section name.

PRINT produces a message indicating the length of the program and its absolute entry point (Figure II-9, C).

The other loader options do not produce any printed output. LET marks the load module executable even though certain error conditions may have been detected. CALL permits the loader to search system libraries to resolve external references. RES permits the loader to search the MVT link pack area queue to resolve external references. SIZE indicates the amount of storage allocated to the loader step.

A→	A OPTIONS USED - PRINT, MAP, LET, CALL, RES, SIZE=65536									
_	NAME TYPE	ADDR	NAME TYPE	ADDR	NAME TYPE	ADDR	NAME TYPE	ADDR	NAME TYPE	ADDR
B	MAIN SD IHOCOMH2* SD IHOERRM* SD ARITH# * LR IHOFIOS2* SD FCVZCUTP* LR IHOFCONI* SD IHOETRCH* SD	82808 83890 8437C 84C78 8653C 86D76 874E8 87F48	IHDECOMH* SD SEQDASD * LR ERRMON * LR ADJSWTCH* LR IHDFCVTH* SD FCVIOUTP* LR FOCCNI# * LR IHDTRCH * LR	82AC8 83BFA 843 <b>70</b> 851D8 86AE0 8711A 874E8 87F48	IBCOM# * LR IHOSSQRT* SD IHOERRE * LR IHOEFIOS* SD ADCON# * LR FCVCOUTP* LR IHOFCONO* SD ERRTRA * LR	82AF4 842C8 84388 8544C 86AEC 872CC 877E8 87F5C	FDICCS# * LR IH\$SQRT * LR IHOUDPT * SC FIOCS# * LR FCVADUTP* LR FCVEDUTP* LR FQCCNO# * LR IHOFTEN * SC	82880 84208 8496C 85440 8688A 8720C 877E8 881FC	INTSWTCH* LR SQRT * LR IHDEFNTH* SD FICCSBEP* LR FCVLDUTP* LR INT6SWCH* LR IHDUATBL* SD FTEN* * LR	83878 84208 84C78 85446 86C1A 87468 87D4C 881FC
C	{ TOTAL LENGTH ENTRY ADDRESS	5880 82808								

Figure II-9. Loader Output

#### CS/36C LCADER

Load module output consists of messages and program output.

#### MESSAGES

Load module messages are generated in three forms: error code diagnostics, program interrupt messages, and operator messages. Error code diagnostics indicate input/output errors or misuse of FORTRAN library functions. Program interrupt messages indicate violations of system restrictions. Operator messages indicate interrupts caused by execution of STOP <u>n</u> or PAUSE statements.

ERROR CODE DIAGNOSTIC MESSAGES

An error code diagnostic generates a message followed by a traceback map written in the error message data set (usually FT06F001). The traceback map provides a guide to the programmer in determining the cause of the error and shows the path of calls made between routines in the program.

Figure II-10 shows an example of an error code message and its related traceback map, generated for the FORTRAN program illustrated in Figure II-2. The message, IH0219I, indicates that a call was made to the FIOCS routine, which processes input/output requests for a FORTRAN sequential data set, and that the operation could not be completed because of a missing DD statement. The traceback map lists the names of called routines, internal sequence numbers within routines, and contents of registers, as follows:

ROUTINE lists the names of all routines entered during processing. Names are shown with the latest routine called at the top and the earliest routine called at the bottom of the listing except when the earliest name shown is IBCOM. Then, the error could have occurred in one of the subroutines called by IBCOM. In this example, IBCOM, the FORTRAN input/output subroutine, was the last routine entered, called by MAIN, the main program. (IBCOM then called its subroutine FIOCS in which the error occurred.)

The entry CALLED FROM ISN lists the FORTRAN program's internal sequence number (ISN) that called the routine, except when calls were to IBCOM. ISNs are available to the traceback routine only if the compiler option GOSTMT was specified.

The entry REG. 14 lists the absolute storage location of the instruction calling ROUTINE.

The entry REG. 15 lists the absolute location of ROUTINE's entry point.

The entry REG. 0 lists the results of function subprogram operations, when applicable. (In this example, the contents of register 0 are meaningless.)

The entry REG. 1 lists the address of any argument list passed to ROUTINE.

The message ENTRY POINT=01087730 shows the entry point of the earliest routine entered. In the example, the number is identical to the number shown in register 15 for MAIN. The numbers do not necessarily have to agree; for example, if MAIN had several entry points, the number in the ENTRY POINT message might show a different entry point.

In Figure II-10, the control program executed its own routine to recover from the error, and displays the following message:

STANDARD FIXUP TAKEN, EXECUTION CONTINUING

If the data processing installation uses its own error recovery routine, the word USER would replace STANDARD.

After the fixup, execution continues. In the example, additional instructions calling for data set FT03F001 eventually cause execution to terminate. Message IH09001 explains that the number of errors exceeded the number permitted by the control program. A summary of errors is printed at the end of the listing to assist the programmer in determining how many times an error was encountered.

2 3 IH02191 FIOCS - MISSING DD CARD OR DCB ERROR FOR ASCII TAPE FOR FT03F001 TRACEBACK ROUTINE CALLED FROM ISN REG. 14 REG. 15 REG. 0 REG. 1 IBCOM 000456B0 00045760 00000005 FFFFFFFF MAIN 00C0F98C 01045480 FFFFFF2E 0005D7F8 ENTRY POINT= 01045480 STANDARD FIXUP TAKEN , EXECUTION CONTINUING IH0219I FIOCS - MISSING DD CARD OR DCB ERROR FOR ASCII TAPE FOR FT03F001 TRACEBACK ROUTINE CALLED FROM ISN REG. 14 REG. 15 REG. REG. 1 0 TBCOM 000456B0 00045760 00000005 FFFFFFFF MATN 0000F98C 01045480 FFFFFF2E 0005D7F8 ENTRY POINT= 01045480 STANDARD FIXUP TAKEN , EXECUTION CONTINUING IH0219I FIOCS - MISSING DD CARD OR DCB ERROR FOR ASCII TAPE FOR FT03F001 TRACEBACK ROUTINE CALLED FROM ISN REG. 14 REG. 15 RFG. 0 REG. 1 I BC OM 000456B0 0004576C 00000005 FFFFFFE MAIN 0000F98C 01045480 FFFFFF2E 0005D7E8 ENTRY PDINT= 01045480 STANDARD FIXUP TAKEN , EXECUTION CONTINUING IH0900I EXECUTION TERMINATING DUE TO ERROR COUNT FOR ERROR NUMBER 219 IH02191 FIDCS - MISSING DD CARD OR DCB ERROR FOR ASCII TAPE FOR FT03F001 TRACEBACK ROUTINE CALLED FROM ISN REG. 14 REG. 15 REG. 0 REG. 1 I BC OM 000456B0 0004576C 0000007 FFFFFFE MAIN 0000F98C 01045480 FFFFFF2F 0005D7F8 ENTRY POINT= 01045480 SUMMARY OF ERRORS FOR THIS JOB ERROR NUMBER NUMBER OF ERRORS 219 10

FJLLOWING IS A LIST OF PRIME NUMBERS FROM 1 TO 1000

Figure II-10. Load Module Output with Traceback Map

#### Using the Traceback Map

In Figure II-10, the messages generated during traceback processing indicate that:

- The error results from a missing DD statement for FT03F001; hence, an input/output operation is involved in the error, and, therefore, a FORTRAN input/output statement is involved.
- 2. The FORTRAN statement is encountered many times rather than once, since multiple occurrences of the same traceback map result.

From the foregoing description, the programmer can locate and correct either the DD statement or the FORTRAN statement containing 3 as its data set reference number. For the small program illustrated, the error may be easily located; if, however, the source program is long and contains many input/output statements, the task of locating the error may be formidable. The traceback map further simplifies error location by pinpointing the exact FORTRAN statement involved.

If the GOSTMT compiler option is specified, the traceback map lists the internal sequence number (ISN) calling each routine. From the ISN the source module statement can be located. The example illustrated in Figure II-10 cannot take advantage of the GOSTMT option, however, because calls to IBCOM do not generate ISNs.

In addition, the programmer can take advantage of the LIST compiler option. If the option is specified, an assembler language translation of the source module is printed. The traceback map, used in the following manner, locates the last assembler language instruction executed:

- For the topmost routine listed under the heading REG.14, subtract the 6 low-order digits in the number shown under ENTRY POINT. This produces the relative location of the instruction in the listing. In Figure II-10, location 087730 subtracted from 087960 yields 230.
- 2. Find the location in the pseudo-assembler listing. A portion of the pseudo-assembler listing illustrated in Figure II-5 has been reproduced in Figure II-11. Location 230 contains a BAL (Branch and Link) instruction; this is the instruction that would have been executed next if the error had not occurred.
- 3. Using the location as a beginning point, scan upward in the column that identifies statement numbers to locate the nearest number occurring before the instruction; this will be the statement number of the FORTRAN statement involved in the error. In Figure II-11, the statement number is 107.
- 4. Investigate the statement in the source module deck. Figure II-12 illustrates statement number 107 as it was coded and as it was keypunched. The statement had a keypunch error, designating 3 in place of 6 as the data set reference number.
- 5. If the statement had been correctly specified, the programmer would investigate the corresponding DD statement for accuracy. (In this example, this step is, of course, unnecessary since the programmer

intended no DD statement named
FT03F001.)

#### PROGRAM INTERRUPT MESSAGES

Program interrupt messages provide a guide to the programmer in determining the cause of the error; it indicates what system restriction was violated. Program interrupt messages are written in the object error message data set (usually on FT06F001).

Figure II-13 shows the format of a program interrupt message with and without the extended error handling facility. The extended error handling facility is discussed in detail in Part III in this publication.

The meaning of characters enclosed in braces is as follows:

A or Alignment

indicates that the boundary alignment routine has been executed. Boundary alignment is performed to properly align items in storage. It is generally employed to ensure correct alignment of variables in a COMMON block or EQUIVALENCE group. Boundary alignment is performed if the option BOUNDRY=ALIGN is included at program installation time; otherwise, boundary violations cause the job to terminate. When boundary alignment is performed, message IHO210I is generated, for a maximum of ten performances. After ten performances, the message is suppressed but alignment violations continue to be corrected.

Р

indicates that the interruption was precise, i.e., the PSW (program status word) shown in message IHO210I is the one related to the interruption. In some computer models, such as the IBM System/360 Model 91, instructions may be executed in a non-sequential order such that if an interruption occurs, the printed PSW may not be the one causing the interruption. Such interruptions are called imprecise interruptions.

O or operation indicates that extended precision simulation has taken place. The simulator is a routine that forms part of the supervisor. Some models of the System/360 are equipped with hardware to accomplish arithmetic operations involving extended precision add, subtract, and multiply floating-point

0001F8	5B 10 D 084		S		( 0,13)	I
0001FC	58 50 D OBC		L	5, 188	0,13)	2
000200	07 95		BCR	9,5		
000202	58 50 D OCO		L	5, 192	( 0,13)	4
0C0206	07 25		BCR	2, 5		•
000208	58 <b>00</b> D <b>0</b> 8C	1	L	0, 140	( 0,13)	к
00020C	5A 00 D 070		Α		( 0,13)	2
000210	50 00 D 08C		ST		( 0,13)	ĸ
000214	59 00 D 088		C	0, 136	( 0,13)	Ĺ
000218	58 50 D OBO		Ĺ		( 0,13)	105
0C021C	07 D5		BCR	13, 5		105
00021E	58 FO D 09C	107	L		( 0,13)	IBCOM#
000222	18 OC		LR	0, 0		10con#
000224	45 E0 F 004		BAL		(0,15)	
000228	00000003		DC	XL4 000		3
000220	0000072		DC	XL4'000		3
000230	45 E0 F 008		BAL		(0,15)	
000234	0450D084		DC	XL4'045		I
000238	45 E0 F 010		BAL		(0,15)	1
000230	58 00 D 084	2	L		(0,13)	I
COO240	5A 00 D 070	-	Ā		(0,13)	2
000244	50 00 D 084		ŜT		(0,13)	2
000248	58 00 D 07C	108	Ľ		(0,13)	1000
00024C	58 00 D 084		s		(0,13)	
000250	58 50 D 0C4		ĭ		(0,13)	17
000254	07 45		BCR	4, 5	0,157	r
000256	58 50 D 0C0		L		(0,13)	,
00025A	07 95		BCR	9, 5	( 0,15)	4
000250	58 50 D OAC		L		(0,13)	-
000260	07 25		BCR	2, 5	0,157	3
000262	58 FO D 09C	4	L			
000266	18 00	4	LR	15, 156	0,131	IBCOM#
000268	45 EC F 004			0, C	(	
000260	00000006		BAL		( 0,15)	
000270	00000076		DC	XL41000		6
000276	45 EC F 010		DC	XL4'000		
000278	58 FC D 09C	-	BAL		( 0,15)	
000270	45 E0 F 004	7	L	15, 156		IBCOM#
000270	49 CV P 004		BAL	14, 4	( 0,15)	

Figure II-11. Partial Object Code Listing

instructions. On those models which are not thus equipped, the simulator performs these operations. The simulator is always required for extended precision divide instructions.

Statement 107 as coded: 107 WRITE (6,5)I Statement 107 as keypunched: 107 WRITE (3,5)I Figure II-12. Comparison of FORTRAN Statement as Coded and as

Keypunched

Exception codes themselves appear in the eighth position of the PSW and indicate the reason for the interruption. Their meanings are as follows:

Code Meaning

- indicates an <u>operation exception</u>, i.e., the operation was not one that could be defined by the operating system.
- 4 indicates a protection exception, i.e., an illegal reference was made to an area of storage protected by a key.
- 5 indicates an <u>addressing exception</u>, i.e., a reference was made to a storage location outside the range of storage available to the job.
- 6 indicates a <u>specification exception</u>, i.e., a unit of information does not begin on its proper boundary.

<u>Code</u> <u>Meaning</u>

- 7 indicates a <u>data exception</u>, i.e., the arithmetic sign or the digits in a number are incorrect for the operation being performed.
- 9 indicates a <u>fixed-point-divide</u> <u>exception</u>, i.e., an attempt was made to divide by zero.
- C indicates an <u>exponent-overflow</u> <u>exception</u>, i.e., a floating-point arithmetic operation produced a positive number too large to be contained in a register (the largest number that may be contained is 16⁶³ or approximately 7.2 x 10⁷⁵). Exponent-overflow generates the additional message:

REGISTER CONTAINED number

where:

- number is the floating-point number in hexadecimal format. (When extended-precision is in use, the message prints out the contents of two registers.) If extended error handling is specified, a standard fixup is taken and execution continues; otherwise, job termination results.
- D indicates an <u>exponent-underflow</u> <u>exception</u>, i.e., a floating-point arithmetic operation generated a negative number too large to be contained in a register (larger than 16-65 or approximately 5.4 x 10-79).

Exponent-underflow also generates the
message:

REGISTER CONTAINED number

(When extended-precision is in use, the message prints out the contents of two registers.) If extended error handling is specified, a standard fixup is taken and execution continues; otherwise, job termination results.

F indicates a <u>floating-point-divide</u> <u>exception</u>, i.e., an attempt was made to divide by zero in a floating-point operation.

Floating-point divide also generates the message:

REGISTER CONTAINED number

(When extended-precision is in use, the message prints out the contents of two registers.) If extended error handling is specified, a standard fixup is taken and execution continues; otherwise, job termination results.

Note: Operation, protection, addressing, and data exceptions (codes 1, 4, 5, and 7) ordinarily cause abnormal termination without any corresponding message. Protection and addressing exceptions (codes 4 and 5) generate message IHO210I only if a specification exception (code 6) or an operation exception (code 1) has also been detected. A data exception (code 7) generates message IHO210I only if a specification exception has also been detected. When message IHO210I is generated for codes 4, 5, or 7, the job The completion code in the will terminate. dump indicates that job termination is due to a specification or operation exception; however, the error message indicates the true exception that caused the termination.

#### Requesting a Dump

Under MFT and VS1, program interrupts causing abnormal termination produce a dump called an indicative dump which displays the completion code and the contents of registers and system control fields.

To display the contents of main storage as well, the programmer must request an abnormal termination (ABEND) dump by including a SYSABEND DD statement in the appropriate job step. The following example shows how the statement may be specified for IBM-supplied cataloged procedures:

//GO.SYSABEND DD SYSOUT=A

Information on interpreting indicative and ABEND dumps is found in the appropriate debugging guide, as listed in the Preface.

To specify a dump under MVT and VS2, the programmer should include SYSUDUMP or SYSABEND DD statements.

#### OPERATOR MESSAGES

Operator messages are generated when a PAUSE or STOP n statement is executed. Operator messages are written on the system device specified for operator communication, usually the console. The message provides a guide to the programmer in determining how far his FORTRAN program has executed.

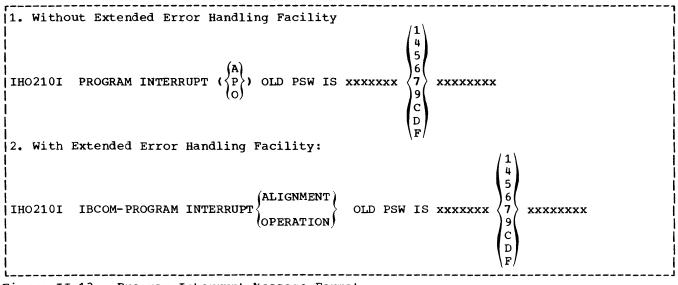



Figure II-13. Program Interrupt Message Format

Figure II-14 shows the form that the operator message may take. The meaning of lowercase characters in the figure is as follows:

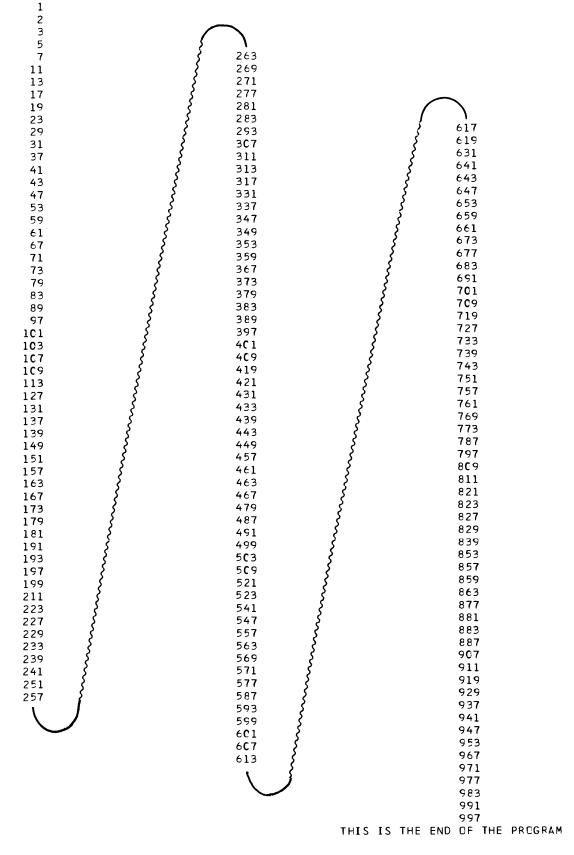
- <u>Character</u> <u>Meaning</u> yy message identification number assigned by the system.
- n string of 1 through 5 decimal digits specified by the programmer in the statement. For the STOP statement, this number is placed in register 15.
- 'message' literal constant specified by
  the programmer.
- 0 printed when a PAUSE statement containing no characters is executed. (Nothing is printed for a similar STOP statement.)

A PAUSE message causes program execution to halt pending operator response. To resume program execution, the operator issues the command:

REPLY yy, 'z'

where yy is the message identification number and z is any letter or number.

A STOP message causes program termination.


#### PROGRAM OUTPUT

Program structure dictates the form that program output will take. Generally, output that is to be used in future jobs is directed to tape or direct access volumes for storage; the programmer defines such volumes on appropriate DD statements. Output that is to be visible at job end is directed to a unit record device; when using cataloged procedures, the programmer may conveniently direct such output by assigning the appropriate data set reference number in his WRITE statements, or he may define his own DD statements.

Figure II-15 shows the program output resulting from correct execution of the FORTRAN program illustrated in Figure II-1 The first four lines are generated as a result of the WRITE statement labeled 100 and the FORMAT statement labeled 8. All the remaining lines except the last result from WRITE statement 107 and FORMAT statement 5; the last line results from WRITE statement 7 and FORMAT statement 6.

Operator message caused by a PAUSE statement: yy IHO001A PAUSE  $\begin{cases} \frac{n}{message} \\ 0 \end{cases}$ Operator message caused by a STOP <u>n</u> statement: IHO002I STOP <u>n</u>

Figure II-14. Operator Message Format



# PART III -- PROGRAMMING TECHNIQUES

The programmer can significantly influence the efficiency of a job by the manner in which he uses FORTRAN statements and the facilities of the operating system.

This chapter discusses the following:

- FORTRAN implementation considerations
- Job control language considerations
- FORTRAN library considerations
- System considerations

#### FORTRAN IMPLEMENTATION

This topic describes how the programmer can use FORTRAN statements and compiler facilities to implement an efficient program. Topics are arranged in alphabetic order.

#### ARRAY CONSIDERATIONS

Wherever possible, arrays should be specified as one-dimensional rather than as multi-dimensional. References to higher dimensioned arrays are slower than references to lower dimensioned arrays.

#### ARITHMETIC IF STATEMENT

A test depending on the zero value of a real floating-point number is not recommended. Many real numbers must be represented approximately (although to a high degree of accuracy) in the internal hexadecimal code of the computer. Slight errors resulting from computation with these numbers may prevent the anticipated true zero condition from being obtained.

A fixed-point overflow condition in an arithmetic IF statement causes the middle branch (i.e., equal zero) to be taken.

ASYNCHRONOUS INPUT/OUTPUT PROGRAMMING CONSIDERATIONS

WAIT Statement: The WAIT statement need not appear in the same program unit as the corresponding READ or WRITE statement. However, the WAIT statement must identify the same list items as indicated in the list of the corresponding READ or WRITE statement. If OPTIMIZE(2) is requested, the WAIT statement list must be specified in order to ensure correct results.

<u>REWIND, ENDFILE, and BACKSPACE Statements</u>: These statements should not be issued for any data set on which a request is outstanding, i.e., for any data set expecting a WAIT statement.

Job Control Language, System, and Library Considerations: The DD statement DCB parameter affects asynchronous input/output processing as follows:

- BLKSIZE specifies the block length. If it is not specified, for direct access devices the optimum block length for the particular device is assumed; for magnetic tape the block length defaults to 10K bytes.
- BUFNO specifies the number of buffers (1, 2 or 3). If it is not specified, two buffers are assumed.
- RECFM specifies the record format and may be specifed as either VS or VST. If RECFM is not specified, VS is assumed.

The following system restrictions affect asynchronous input/output processing:

- If track overflow is specified (RECFM=VST), chained scheduling and backspacing are not permitted.
- The asynchronous input/output facility does not check the characteristics of the data it moves (e.g., whether padded, promoted, REAL*16, etc.). Specifying correct data types is the programmer's responsibility.
- 3. A data set accessed by asynchronous input/output may not be accessed by any other type of input/output facility unless the data set is rewound before input/output facilities are changed.

 Asynchronous input/output is not supported for unit record equipment, or for direct-access data sets.

The following library considerations affect asynchronous input/output processing:

- Asynchronous input/output operations are assigned to a task having a higher priority than the main program, thereby permitting the operations to occur asynchronously with computation.
- Each logical record is assigned the format RECFM=VS. The programmer may specify track overflow by coding RECFM=VST but blocked records are not permitted. If blocked records are specified, the RECFM request is ignored and RECFM=VS is assigned.

#### BACKSPACE STATEMENT

The BACKSPACE statement may be used to extend a data set, i.e., write additional data. In a program containing DD statements with more than one FORTRAN sequence number, the execution of an ENDFILE followed by the execution of a BACKSPACE does not cause the sequence number to increment; the latest data set remains available.

The following restrictions govern the use of the BACKSPACE statement:

- It may not be used for any data set specifying track overflow (e.g., RECFM=FT).
- It should not be used for any data set executing list-directed input/output statements (e.g., WRITE(10,*)A) because it would cause uncertain record placement.
- 3. When asynchronous input/output processing is specified, it should not be executed for any data set on which a request is outstanding, i.e., for any data set expecting a WAIT statement.

COMMON AND EQUIVALENCE STATEMENTS USED TOGETHER

Increased efficiency occurs when input/output operations are performed on data stored in contiguous storage locations. Normally, however, in input operations data may be stored in locations not necessarily contiguous; on output, data may be gathered from diverse storage locations. To make input/output operations more efficient, the following technique is suggested:

An I/O list comprising many items in a READ or WRITE statement should be defined in a COMMON statement to allocate contiguous storage space. An EQUIVALENCE statement should be defined which contains one item, equal in size to all the items in the I/O list, thus permitting the same space to be referred to by one name. Finally, an input/output statement calling the one name permits all items to be treated as one unit. An example follows:

COMMON/LISTA/A(4),B(4),C,D,E,F,G(8) REAL*4 A(4),B(4),G(8),LISTB(20) EQUIVALENCE (A(1),LISTB(1)) WRITE(6) LISTB

Note that the variable and the equivalenced array must be of the same type.

#### COMMON STATEMENT

Use of COMMON to contain variables passed among calling and called programs can result in time and storage savings. Consider the following example:

```
DIMENSION E(20),I(15)

READ (10) A, B, C

CALL SUBA (A, B, C, D, E, F, I)

.

.

.

END

SUBROUTINE SUBA (P, Q, R, S, T, U, J)

DIMENSION T(20),J(15)

.
```

RETURN END

The compiler must assign storage to both main program and subprogram variables and must issue instructions required to transfer the variables from one program to another. Greater efficiency would result by specifying a COMMON block as follows:

```
COMMON A, B, C, D, E(20), F, I(15)

READ (10) A, B, C

CALL SUBA

.

.

END

SUBROUTINE SUBA

COMMON P, Q, R, S, T(20), U, J(15)

.

.

.

RETURN

END
```

Note, however, that the savings thus made may be partially or completely eliminated in a program compiled with OPTIMIZE(1) or OPTIMIZE(2) in which calls to user subprograms occur between two uses of a variable. If the variable is in COMMON, it will be stored before the call and must be loaded from storage after the call. If the variable is not in COMMON, it can be retained in a register and thus used more efficiently. This is true of relatively high-activity variables.

DATA INITIALIZATION STATEMENT -- SPECIFYING LITERALS

To initialize an array with literal data, the programmer should consider the following points:

- 1. He may initialize any element of an array by subscripting the array name. Only one element is initialized; if excess characters are specified, they are not placed, or spilled, into the next element. (Overflow from one element to the next is known as <u>spill</u>.) An array element partially filled is padded on the right with blanks. The following example illustrates how individual array elements may be initialized: DIMENSION A(10) DATA A(1),A(2),A(4),A(5)/'ABCD', 'QRSTUVW','123',6666,/'A(1)=ABCD
  - A(2)=QRST
    A(3) not initialized (note that spill
     does not occur for a subscripted
     array name)
    A(4)=123
    A(5)=6666
  - A(6) through A(10) not initialized.

2. He may initialize several consecutive elements of an array with a single constant by specifying the array name without a subscript. Spill occurs through as many elements as necessary to insert the constant (as long as the constant does not exceed the limits of the array). The following example illustrates how several array elements may be initialized with one constant:

DIMENSION ARRAY(9) DATA ARRAY/'ABCDEFGHIJKLMNOPQRS TUVWXYZ'/ ARRAY(1)=ABCD ARRAY(2)=EFGH ARRAY(3)=IJKL ARRAY(4)=MNOP ARRAY(5)=QRST ARRAY(6)=UVWX ARRAY(7)=YZbb ARRAY(8) and ARRAY(9) not initialized.

Note that spill normally begins only at the beginning of an array. To begin spill in the middle of an array, the programmer uses the EQUIVALENCE statement as in the following example:

DIMENSION ARRAYA(10),ARRAYB(5) EQUIVALENCE (ARRAYA(6),ARRAYB(1)) DATA ARRAYB/'ABCDEFGHIJKLMNOPQRST'/ ARRAYA(1) through ARRAYA(5) not initialized ARRAYA(6)=ABCD ARRAYA(6)=EFGH ARRAYA(8)=IJKL ARRAYA(9)=MNOP ARRAYA(10)=QRST

3. He may initialize individual variables after initializing an array. Each constant must be specified immediately following the variable which it is to initialize. The following example illustrates how literal data for arrays and variables may be specified together:

DIMENSION ARAY(5) DATA ARAY/'ABCDEFGH'/,X/'4444'/ ,Y/'5555'/ ARAY(1)=ABCD ARAY(2)=EFGH ARAY(3),ARAY(4), and ARAY(5) not initialized X=4444 Y=5555

If each constant is not specified immediately after its associated array or variable name, spilled data may be overlaid, as shown in the following example:

```
DIMENSION A(3)
DATA A,X/'ABCDEFGHIJKL',10.0/
A(1)=ABCD
A(2)=10.0
A(3)=IJKL
X is not initialized
```

In this example, the second element of the array is overlaid by the second initializing constant.

DIRECT-ACCESS INPUT/OUTPUT CONSIDERATIONS

Direct-access input/output provides the programmer with the ability to retrieve selected records from a data set, i.e., records can be retrieved without the necessity of reading all preceding records.

Direct-access input/output is suited to applications where large tables must be frequently searched during processing or where data sets are constantly updated.

Master and Detail Records: Records to be updated are called master records. Records containing information used to update master records are called <u>detail records</u>. In a direct-access data set, each master record should be constructed such that it contains a unique identification, or key, distinguishing it from all other master records. Each detail record should match the key of the appropriate master record. For example, astronomers assign numbers to identify stars; these star numbers could be used as the keys of master records, and detail records update the correct master record by matching the star number. Thus, detail records to update information for star number 383320 should contain a field specifying 383320 as the key of the master record.

A FORTRAN program indicates the record to be processed by its position in the data set. If star number 383320 is assigned to record position 383320 in the data set, the key can also be used to indicate the record position. Sometimes, however, arranging records in serial order is impractical (a data set might not contain 383320 positions). In such cases, the programmer can more conveniently arrange records in the data set by using a <u>randomizing</u> technique. For example, a randomizing technique to arrange star numbers might be to use the first four digits as the record position and to ignore the last two digits. Thus, star number 383320 is assigned to position 3833.

Another method might be to perform an algorithm on the number, such as squaring the number and truncating the first four and last four digits of the result. In this example, star number 383320 is assigned record position 3422. No general randomizing technique works best for all sets of identification numbers; the programmer should devise his own technique for each application.

Synonyms: Two problems arise when randomizing techniques are used: waste of space in a data set and duplication of record position numbers, called synonyms (e.g., by ignoring the last two digits, star numbers 383320, 383352, and 383396 randomize to the same number, 3833). The solution to the first problem should be developed within the randomizing technique itself. For example, if no star number begins with zero, the first thousand record positions are left blank (star number 123456 would be assigned to record position 1234). To eliminate this waste, a step might be added to this randomizing technique to subtract 1000 from the randomized numbers (star number 123456 would then be assigned to position 0234).

<u>Chaining</u>: The solution to the second problem is either to develop another randomizing technique that results in fewer synonyms, or to chain synonyms. <u>Chaining</u> is a method of arranging non-contiguous records in a chain such that each record contains a field specifying the location of the next record in the chain; the last record in the chain may contain 0 in the field to indicate the end of the chain. For example, see Figure III-1 which illustrates how star numbers 383320, 383396, and 383352, randomized to 3833, might be chained together.

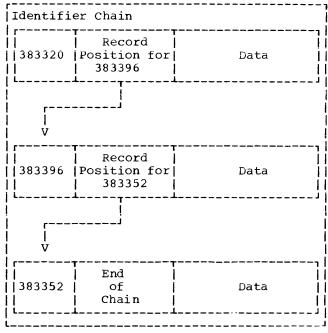
Since only one record can be assigned to any one record position (if star number 383320 is assigned to record position 3833, star numbers 383396 and 383352 must be assigned elsewhere), space to accommodate synonyms must be allocated to a data set. For example, if no star number begins with zero, the programmer may choose to keep the first thousand positions of the data set available for synonyms. Thus, star numbers 383396 and 383352 are assigned somewhere in the first thousand record positions. To keep track of the exact location of any synonym, the programmer should create a record location counter (a dummy record that is initialized to the lowest record position available for synonyms, e.g., record position 1 in the example above). When the first synonym is encountered, it is inserted into record 1; address 1 is stored in the chaining field of the previous record having the same identification; and the location counter is

incremented by 1. The next synonym is allocated to the next record and the address of that record is stored in the chaining field of the previous record. The same procedure is followed for each succeeding synonym.

Creating a Direct-Access Data Set: TO create a direct-access data set, the programmer initializes the volume by writing "skeleton records" using an installation-written routine. After the data set has been initialized, the programmer specifies DISP=OLD in the DD statement that defines the data set, and a FORTRAN load module can enter records into However, if a data set cannot be it. initialized prior to execution time, the programmer can initialize it at execution time by specifying DISP=NEW; the FORTRAN load module writes skeleton records into the volume as a series of blanks (hexadecimal 40).

Figure III-2 shows a block diagram describing the logic that can be used to write a direct-access data set for the first time. The block diagram does not show any attempt to write skeleton records.

For an example showing how a direct-access data set can be updated, see the section "Appendix A: Examples of Job Processing."


<u>DEFINE FILE STATEMENT</u>: The record description information in a DEFINE FILE statement must be consistent with space allocation specified in the SPACE parameter of the DD statement. The example below illustrates this relationship.

DEFINE FILE 8(1000,40,E,I)

//DD1 DD SPACE=(40,(1000))...

Both the DEFINE FILE statement and the SPACE parameter describe 1000 records, each 40 bytes in length.

The DEFINE FILE statement may not be in a program unit that is overlaid; it may, however, be in a program unit not overlaid while the corresponding input/output operations are specified in an overlaid program unit. For example, the main program may specify the DEFINE FILE statement and a subprogram may perform input/output operations.





FIND STATEMENT: The FIND statement permits record retrieval to occur concurrently with computations of input/output operations, thus resulting in a decrease in execution time. The example below illustrates the use of the FIND statement. In this example, record 101 is retrieved while arithmetic operations are performed and is available for processing when the READ statement is reached.

```
FIND (8'101)
10 A=SQRT(X)
.
.
.
.
.
E=ALPHA+BETA*SIN(Y)
WRITE (9)A,B,C,E
READ (8'101)X,Y
```

EQUIVALENCE STATEMENT

To reduce compilation time for equivalence groups, the entries in the EQUIVALENCE statement should be specified in descending order according to displacement. Consider the following example:

EQUIVALENCE (VARA, ARAYA(3), ARAYB(5), ARAYC(10))

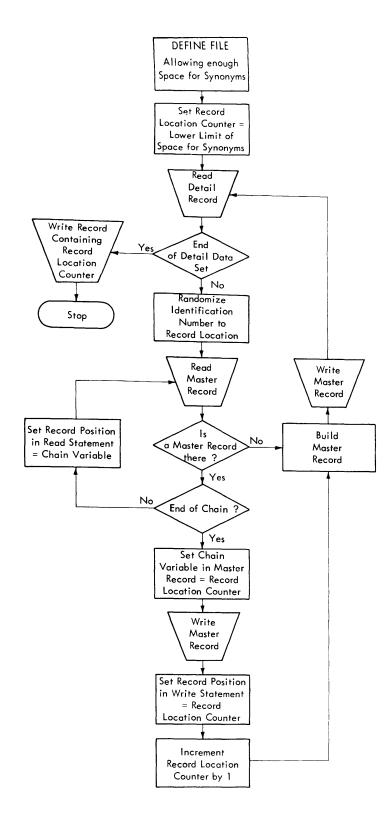



Figure III-2. Writing a Direct-Access Data Set for the First Time

This statement would be compiled faster by reversing the order, i.e.,

EQUIVALENCE (ARAYC(10), ARAYB(5), ARAYA(3) VARA)

To reduce compilation time and save internal table space, equivalence groups should be combined where possible. Consider the example:

EQUIVALENCE (ARRA(10,10),VAR1), (ARRB(5,5)VAR1)

This statement could be recoded more efficiently as:

EQUIVALENCE (ARRA(10, 10), ARRB(5, 5), VAR1)

#### EXTERNAL STATEMENT

By placing an ampersand before a function name in an EXTERNAL statement, the programmer "detaches" that name, i.e., declares it to be the name of a user-supplied function even though the name may be the same as a function or subroutine appearing in the FORTRAN library. If the function name following the ampersand is not the same as a library function, it is still considered detached; no diagnostic action is taken.

Also, by specifically typing a subprogram name, the programmer detaches the name from the library; for example, if SIN is typed as REAL*8, it is detached from the FORTRAN library.

#### GENERIC STATEMENT

The GENERIC statement requests the use of the Automatic Function Selection facility; i.e., the appearance of the generic name in a program causes the appropriate function name to be substituted according to the length and type of the arguments specified. For example, the generic name COS, specified with arguments of REAL*8, causes the function DCOS to be substituted.

In order to avoid conflict with specific references to functions, the function names substituted as a result of automatic function selection are aliases, not otherwise obtainable by the user. The aliases are formed by prefixing the characters IHO\$\$ to function names three characters in length, and IH\$ to names four to six characters in length. Names six characters in length are reduced to five characters by deleting the next to last character before prefixing the name with IH\$. For example, the function DCOTAN substituted for COTAN would appear to have the name IH\$DCOTN.

INPUT/OUTPUT STATEMENTS -- UNFORMATTED FORMS

The unformatted form of an input/output statement results in a faster data transfer rate into and out of storage. When operations are being performed on intermediate data sets, (those which are not intended to be printed), use of the unformatted forms increase program efficiency. In the example below, statement 11 is more efficient than statement 10:

DIMENSION A(10),B(10),D(20) EQUIVALENCE (A(1),D(1)) 10 WRITE (20,9)A,B 9 FORMAT (10E13.3/) 11 WRITE (20) D

Note: A, B, and D must be the same type.

Unformatted input/output statements may not be used for ASCII data sets.

LIST-DIRECTED INPUT/OUTPUT

The buffer length (specified by BLKSIZE) must be large enough to contain the largest data item other than a complex item or literals in quotation marks; if it is not, an infinite loop results as the operating system attempts to get more space for the item.

LOGICAL IF STATEMENT

Use of the logical IF statement may result in more efficient compilation time. For example, statement 5 below is more efficient than statement 6:

5 IF (A.GT.B) GOTO 20 6 IF (A-B) 10,10,20 10 CONTINUE

When a choice between logical operators can be made, the .OR. operator should be selected in place of the .AND. operator. For example, statement 7 below is more efficient than statement 8:

7 IF (A.LT.B .OR. C.EQ.D) GO TO 15 8 IF (.NOT.(A.GE.B .AND. C.NE.D)) GO TO 15 In statement 7, the compiler analyzes each set of comparisons separately; that is, the statement is compiled as though it were written:

IF (A.LT.B) GO TO 15 IF (C.EQ.D) GO TO 15

Thus, at execution time, if the first test is true, the remainder of the expression is not evaluated. Statement 8, however, must be evaluated in its entirety before a branch decision can be made.

The programmer can further improve the execution time of a logical IF statement by specifying as the first test the comparison that is most likely to be true. For example, in statement 7 above, if the test C.EQ.D is expected to be true more often than the test A.LT.B, the programmer should write the statement as follows:

IF (C.EQ.D.OR. A.LT.B) GO TO 15

#### NAME HANDLING

The compiler places names used for variables, arrays, and subprograms into a table and searches the table whenever a reference is made to a name. The table is divided into six strings. Names that are one character long are placed into the first string; names two characters long are placed into the second string; and so on. For faster compiling, the programmer should allocate names as evenly as possible among the sizes.

#### OPTIMIZE COMPILER OPTION

The OPTIMIZE option permits compiler optimization techniques to improve execution time and to reduce the size of the object module.

OPTIMIZE(1) causes the entire program to be treated as a loop, with individual sections of coding, headed and terminated by labeled statements, treated as blocks. The object code is made more efficient by:

• Improving local register assignment. (Variables that are defined and used in a block are retained where possible in registers during the processing of the block. Time is saved because the number of load and store instructions are reduced.)

- Retaining the most active base addresses and variables in registers across the whole program. (Retention in registers saves time because the number of load instructions are reduced.)
- Improving branching by the use of assembler language RX format branch instructions in the object code. (An RX branch instruction saves a load instruction and reduces the number of required address constants.)

OPTIMIZE(2) performs object code optimization beyond that performed by OPTIMIZE(1) by:

- Assigning registers across a loop to the most active variables, constants, and base addresses within the loop.
- Moving outside the loop many computations which need not be within the loop.
- Recognizing and replacing redundant computations.
- Replacing where possible multiplication of induction variables by addition of those variables. (An induction variable is one that is only incremented by a constant or a variable whose value remains constant in the loop.)
- Using, where possible, the BXLE assembler instruction for loop termination. (The BXLE instruction is the fastest conditional branch; time and space are saved.)

Registers 0, 1, and 12-15 are required by the system. The remaining registers, 2-11, are available for use by optimization techniques.

<u>PROGRAMMING CONSIDERATIONS WHEN USING</u> <u>OPTIMIZE(1) AND OPTIMIZE(2)</u>: Although these options can result in more efficient code, they place additional responsibilities on the programmer in coding his program with care.

<u>Using COMMON Statements</u>: Variables in COMMON are normally not stored on exit from a FORTRAN main program, unless an input/output statement or a subroutine call using them is issued.

Using Subprograms: If a programmer-defined subprogram is given the same name as a FORTRAN-supplied subprogram (e.g., SIN, ATAN), errors could be introduced during optimization. To avoid errors, the programmer should specify the subprogram name in an EXTERNAL statement (with an ampersand preceding the subprogram name).

If the extended error handling facility is specified and a user-supplied subroutine uses program variables, there is no guarantee that correct values will be available.

If a subprogram is called at one entry point for the purpose of initializing arguments and at another entry point for computations, the latter call must include an argument list to ensure that the subprogram will receive current values for the arguments. This rule applies when the subprogram refers to the arguments by name (i.e., accesses them in their location in the calling routine rather than through local variables).

In the following example, the updated value of I will be correctly stored and transmitted to the subprogram. If the call to the subprogram did not include the argument list, I would be updated in a register but not in storage.

ENTRY COMP(/J/)

Because each COMMON block is an independent program unit, it is independently relocatable and thus requires a base address that specifies its beginning point in storage. Each base address must be stored into a register in order to be accessible. If many COMMON blocks are defined, the need to load base addresses slows down processing time. If multiple blocks can be combined into one block less than 4096 bytes in length (the maximum number that can be accommodated in a register) one base register can serve to address each variable.

Using the Assigned GO TO Statement: If the list of statement numbers is incomplete, errors that were not present in the unoptimized code may appear. The programmer should correct such GO TO statements. PROGRAMMING CONSIDERATIONS WHEN USING OPTIMIZE(2): OPTIMIZE(2) evaluates expressions and eliminates common expressions. For example, if an expression occurs more than once such that the program path always passes through the first occurrence to reach a later occurrence with no change in the expression's value, the first value is saved and used instead. Consider the following example:

- A=C+D •
- F=C+D+E

The common expression C+D is saved from its first evaluation occurring in A and is used in F.

<u>Computational Reordering</u>: Computational reordering performed by OPTIMIZE(2) may produce unexpected results. For example, a test of an argument of a FORTRAN library function may be executed after the call to the function. This is caused by the movement of the function call to the back target of the loop when the function argument is not changed within the loop. Consider the following example:

DO 11 I=1,10 DO 12 J=1,10 9 IF (B(I).LT.0) GO TO 11 12 C(J)=SQRT(B(I)) 11 CONTINUE

The optimization technique moves the library function call to before statement 9, causing the square root computation to occur before the test for zero. To avoid this situation, the program could be reconstructed in the following manner:

DO 11 I=1,10 9 IF (B(I).LT.0) GO TO 11 DO 12 J=1,10 12 C(J)=SQRT(B(I)) 11 CONTINUE

#### READ STATEMENT

The ERR parameter in the READ statement causes a branch to another statement if an input error is encountered. The READ statement encountering the error does not bring the data into working storage; the data remains in the buffer when the branch is taken. The next READ statement brings in the data. Thus, the programmer can direct the ERR parameter to an error processing routine that reads in the error and disposes of it prior to returning to normal processing. An example is:

- 5 READ (4,100,ERR=200) A 100 FORMAT (110) ... 200 READ (4,100) AX
  - GO TO 5

If the ERR parameter is not provided, an input error causes the program to terminate processing, unless the extended error handling feature is in effect. For a discussion of this feature, see the chapter "Extended Error Handling Facility."

#### RETURN STATEMENT

The RETURN statement issues the following codes in register 15:

Code	Meaning
0	A RETURN statement was executed
	in either a main program or a subprogram

- 4*i A RETURN i statement was executed in a subprogram
- 16 A terminal error was detected during execution of a library subprogram

#### STOP STATEMENT

In the STOP <u>n</u> statement, any number specified larger than 4095 causes an overflow into a system return code field; the return code that will be issued is <u>n</u> modulo 4096, that is, the remainder after dividing <u>n</u> by 4096. However, the number specified by the programmer will be displayed.

#### USER-SUPPLIED SUBROUTINES

A user-supplied routine having the same name as a FORTRAN-supplied subroutine or function causes the linkage editor to issue the following warning message:

IEW024I EXTERNAL SYMBOL PRINTED IS DOUBLY DEFINED -- ESD TYPE DEFINITIONS CONFLICT.

#### JOB CONTROL LANGUAGE CONSIDERATIONS

The following list describes how DD statement parameters can improve efficiency

of a program (see the section "Using Job Control Language" for examples in coding DD statements):

- The SEP parameter may assign data sets whose input/output operations occur at the same time to separate channels.
- The SEP subparameter in the UNIT parameter may assign data sets to separate direct access device arms. The SEP <u>subparameter</u> results in <u>device</u> optimization; the SEP <u>parameter</u>, described above, results in <u>channel</u> optimization.
- The DISP parameter may specify the CATLG option for frequently used data sets to make use of the system's cataloging capability.
- Subparameters in the DCB parameter may be used as follows:
  - a. BUFNO may be specified as BUFNO=2 to provide double buffering, resulting in an input/output overlap advantage.
  - b. BLKSIZE may be specified to provide a large buffer, resulting in fewer input/output requests.
  - c. OPTCD=C may be specified to provide chained scheduling, which may result in decreased transfer time for input/output operations.

#### USING PRE-ALLOCATED DATA SETS

Installations operating under MVT or VS2 can provide <u>pre-allocated data sets</u> as an aid in reducing the time required by the system to allocate data sets used on a temporary basis.

Whenever a data set is defined in a DD statement, the system must search for allocation space and must build storage tables to describe data set characteristics; the more data sets defined, the greater the time required to perform these operations.

Pre-allocated data sets are allocated once, when the system is initiated and remain available for use by all jobs submitted to the system. Use of pre-allocated data sets avoids the necessity of having the system repeat the allocation process.

If his installation provides pre-allocated data sets, the FORTRAN programmer can use them by coding the parameter DSNAME=&ddname in a DD statement, replacing ddname with the name of a pre-allocated data set. (Pre-allocated data sets are defined in the cataloged procedures calling the MVT or VS2 initiator.) The programmer codes the other DD statement parameters that he normally would to define a new data set, i.e., UNIT, SPACE, DCB. An example is the following:

//MYNAME	DD	DSNAME=&DED1, UNIT=SYSSQ,
11		SPACE=(80,(100,10)),
//		DCB=(RECFM=F,BLKSIZE=80)

The following restrictions apply when using pre-allocated data sets:

- Data sets must be on direct access devices.
- Space is provided only for the duration of the job; if the programmer wishes to keep a data set after job completion, he should not use pre-allocated data sets.
- If the system cannot assign a pre-allocated data set, the programmer-coded DD statement is used to create a temporary data set.

Detailed information on pre-allocated data sets may be found in the publication IBM System/360 Operating System: System Programmer's Guide, Order No. GC28-6550, OS/VS1 Planning and Use Guide, Order No. GC24-5090, or OS/VS2 Planning Guide, Order No. GC28-0600, as appropriate.

#### FORTRAN LIBRARY CONSIDERATIONS

The uses of the utility subprograms DUMP and PDUMP, the sense light subprograms, and detaching library subprogram names, are discussed in the following paragraphs.

DUMP AND PDUMP SUBPROGRAMS

The DUMP and PDUMP subprograms write the contents of storage onto the system output data set; DUMP causes the program to terminate processing and PDUMP permits the program to continue processing.

In using either subprogram, the user specifies the following:

1. The variables delimiting the storage areas to be dumped. More than one area may be specified.

2. The format of the items to be dumped, coded as follows:

Code	Format
0	Hexadecimal
1	LOGICAL*1
2	LOGICAL*4
3	INTEGER*2
4	INTEGER*4
5	REAL*4
6	REAL*8
7	COMPLEX*8
8	COMPLEX*16
9	LITERAL
10	REAL*16
11	COMPLEX*32

The following examples illustrate how a user may specify storage areas to be dumped:

 To dump a single variable, the user specifies the variable name as both the beginning and the ending point. For example, to dump the variable B in real format and to terminate processing, the user specifies the statement:

CALL DUMP (B, B, 5)

 To dump more than one variable individually, the user specifies each variable. For example, to dump variables A, B, and C in real format and to continue program processing, the user specifies:

CALL PDUMP (A, A, 5, B, B, 5, C, C, 5)

3. To dump all of main storage between variables, the user specifies the first and last variable to be dumped. For example, to dump main storage between variables A and C in real format and to continue program processing, the user specifies:

CALL PDUMP (A,C,5)

4. To dump an array, the user specifies the first and last elements of the array. For example, to dump the array TABLE containing 20 elements in hexadecimal format and to terminate program execution, the user specifies:

CALL DUMP (TABLE(1), TABLE(20), 0)

EXTENDED-PRECISION SUBROUTINES

The extended-precision subroutines are designed for use where maximum accuracy is required. Note, however, that each extended-precision subroutine increases the execution time of a program (approximately 3 to 9 times longer than the corresponding double precision subroutine).

#### SENSE LIGHT SUBPROGRAMS

If the programmer intends to use the SLITE, SLITET, DVCHK, or OVERFL subprograms, he should initialize the indicators to zero at the beginning of his program since the system does not automatically initialize them.

#### SYSTEM CONSIDERATIONS

Compilation and load module considerations are discussed in the following paragraphs.

COMPILATION CONSIDERATIONS

Included in this topic are discussions of compiler restrictions and storage requirements.

#### Compiler Storage Requirements

The compiler itself requires a minimum of 160K bytes of main storage. Approximately 200 to 300 source statements can be compiled when this amount of storage is available to the compiler.

The compiler's secondary storage requirement is 160 tracks on an IBM 2311 Disk Storage Unit.

The compiler itself requires a minimum of 160K bytes of main storage for compiler code and work areas. Approximately 200 to 300 source statements can be compiled when this amount of storage is available to the compiler.

The compiler code includes two tables whose sizes are determined at installation time. The adcon table NADCON handles address constants, parameters and

temporaries. If the table is exceeded the message

#### ADCON TABLE EXCEEDED

is issued and compilation is terminated. The backward connector table CMAJOR is used for certain optimization features. It receives backward connector information for each block in the source program, a block being the unit of instructions associated with a single user or compiler-generated label. If CMAJOR is too small to handle all of the blocks in the source program, the message

#### TABLE EXCEEDED OPTIMIZATION DOWNGRADED

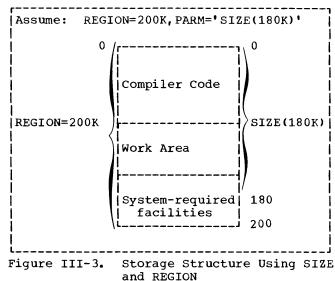
is issued and the compilation is affected as follows: No branching optimization will be performed with either OPTIMIZE(1) or OPTIMIZE(2). With OPTIMIZE(2), no text optimization will be performed and register assignment will treat the whole program as one loop, as in OPTIMIZE(1). The result is longer and less efficient object code.

If either of these tables overflows without having been installed at the maximum size, it may be desirable to re-install the compiler with a larger size specified for the table in question (see the publication <u>OS FORTRAN IV (H Extended)</u> <u>Compiler and Library (Mod II) Installation</u> <u>Reference Material</u>, Order No. SC28-6861 for details). Note that such a procedure will slightly change the amount of main storage required for compiler code.

In the partition or region in which the compiler is running, any available space in excess of that required by the compiler code is used as a work area. In a multitasking environment, to limit the amount of storage for the compiler plus the work area, thereby making more storage available for other tasks, the FORTRAN programmer can reduce the amount of storage to be allocated through use of the SIZE option.

During compilation, if the unused work area is more than 10K bytes, the compiler prints the following informational message:

#### nnnnK BYTES OF CORE NOT USED


This message indicates how much smaller the specified SIZE value could be. This message may also be generated when SIZE has not been specified; in such a case, the message indicates how much smaller a region or partition size could be.

Note that the SIZE option indicates only the space required by the FORTRAN option and has no effect on space required by operating system facilities. The partition

or region in which the compiler is running must be at least 10K bytes larger than the specified SIZE value to accommodate facilities required by the system, such as buffer allocation routines.

If the SIZE option is specified incorrectly, a compiler diagnostic message is produced and the SIZE parameter is ignored.

Figure III-3 illustrates a sample storage structure using the SIZE option and the REGION parameter.



#### Compiler Restrictions

Compiler restrictions are the following:

- 1. For DO loops:
  - The maximum number of nested open DO statements is 25
  - The maximum number of implied DOs per input/output statement is 20
- 2. For FORMAT statements:
  - The maximum value for the repetition field (a) is 255.
  - The maximum value for the character specification field (w) is 255.
- 3. For statement functions:
  - The maximum number of arguments per function definition statement is 20.

- Within a function definition, the maximum number of nested references to other statement functions is 50.
- Within a function reference, the maximum number of nested references to other statement functions is 50.
- 4. For CALL statements:
  - The maximum number of arguments is 196; any argument containing a subscript is counted as two arguments.
- 5. For PAUSE statements:
  - The maximum number of characters permitted is 255.
- 6. For literal constants:
  - The maximum number of characters permitted is 255; this restriction applies to literal constants specified in list-directed input statements (statements with no corresponding FORMAT statement).

#### LOAD MODULE CONSIDERATIONS

Included in this topic are discussions of:

- 1. Load module restrictions
- 2. Boundary alignment considerations
- 3. Using names that the compiler recognizes as generic.

### Load Module Restrictions

The following is a list of load module restrictions:

- The minimum record length for records on a magnetic tape volume is 18.
- A data set reference number cannot exceed the maximum data set reference number specified by the installation when the system is generated.

Boundary Alignment Considerations

Greater efficiency results if the programmer specifies proper boundary

alignment for items in COMMON or EQUIVALENCE lists. If items are not properly aligned, further processing is dependent upon the BOUNDRY option specified at program installation time. If BOUNDARY=ALIGN was specified, boundary alignment is performed through execution of a subprogram from the SYS1.LINKLIB library; if BOUNDARY=NOALIGN was specified, the job terminates.

#### <u>Using Names_Recognized by the Compiler as</u> <u>Generic_or_an_Alias</u>

When automatic function selection has been requested, the H Extended compiler recognizes as generic the list of function names given in Appendix H of <u>IBM System/360</u> and <u>System/370 FORTRAN IV Language</u>, Order No. GC28-6515-8, and subsequent revisions. Of this list, eight names are aliases; that is, they are common abbreviations for certain existing function names. In program units specifying GENERIC, they are also the generic names for the classes of function. For example, the name LOG, an alias, is recognized as generic for the family of natural logarithmic functions.

In any program unit in which GENERIC has been specified, user-supplied external procedures whose names coincide with a generic name will not be executed unless they are "detached;" that is, used in a conflicting Type statement or specified in an EXTERNAL statement and preceded by an ampersand; for example, REAL*8 LOG, or EXTERNAL &LOG. When a generic name has been so detached, it loses its generic status. Each member of that family of functions must then be referred to specifically within the program unit.

Aliases are recognized as substitute specific names even in program units not using the automatic function selection facility. Therefore, user-supplied external procedures whose names coincide with aliases for built-in functions must be detached as described above or else they will not be executed. For example, if a user-supplied function, MAX, is to be used, the name MAX must be detached. In references to the FORTRAN-supplied function within the program unit, the specific function name, MAXO, rather than the alias, MAX must be used. The aliases for built-in function names are: MAX for MAX0, MIN for MINO, and IMAG for AIMAG.

The Automatic Precision Increase facility of the FORTRAN compiler automatically converts single precision floating point calculations to double precision and/or double precision to extended precision. It is designed to be used with programs originally written for earlier computers that offered greater precision than that available with System/360; the conversion facility may be used to convert programs where this extra precision may be of critical importance.

The facility is not meant to be used with new programs (those written for System/360 compilers). If such programs require operations with greater precision, they should be coded using the precision forms available in FORTRAN. Although the facility will convert new programs, the cost in programmer and compilation time and the increase in storage space makes its use inefficient.

No recoding of source programs is necessary to take advantage of the facility. Conversion is requested through an EXEC statement option at compilation time.

THE CONVERSION PROCESS

The conversion process comprises two functions: promotion and padding. Promotion is the process of converting items from one precision to a higher precision, for example, from single precision to double precision. The promotion function is described in greater detail below. Padding is the process of doubling the storage size of non-promoted items. Padding helps the user preserve the size relationships between promoted and non-promoted items sharing storage.

#### Promotion

The user may request either or both of the following conversions:

 Single precision items to be promoted to double precision items, that is, REAL*4 to REAL*8 and COMPLEX*8 to COMPLEX*16.  Double precision items to be promoted to extended precision items, that is, REAL*8 to REAL*16 and COMPLEX*16 to COMPLEX*32.

Note that single precision items cannot be increased directly to extended precision items.

Promotion converts the following:

<u>Constants</u>: Single-precision real and complex constants are promoted to double precision. Double-precision real and complex constants are promoted to extended precision. Logical and integer constants are not affected.

Examples of promoted constants are:

	Promoted Form
Constant	of Constant
3.0	3.0D0
4.24E5	4.24D5
4.24D5	4.24Q5
(3.2,3.1416E0)	(3.2D0, 3.1416D0)

<u>Variables</u>: REAL*4 and COMPLEX*8 variables are promoted to REAL*8 and COMPLEX*16, respectively. REAL*8 and COMPLEX*16 variables are promoted to REAL*16 and COMPLEX*32, respectively.

Examples of promoted variables are:

<u>Variable</u> REAL STAR, MOON, PLANET	Promoted Form <u>of Variable</u> REAL*8 STAR, MOON,PLANET
IMPLICIT	IMPLICIT
REAL*8(S,T,U)	REAL*16(S,T,U)
COMPLEX*8	COMPLEX*16
A, B, C, D	A, B, C, D

Functions: The correct FORTRAN-supplied functions are substituted when a program is converted. For example, a reference to SIN causes the DSIN function to be substituted if double precision calculation is to be performed; a reference to DINT causes QINT to be substituted if extended precision calculation is performed. Table III-1 lists FORTRAN-supplied built-in functions that are substituted. Table III-2 lists FORTRAN-supplied library functions that are substituted. Function values are promoted in the same manner as constants; that is, single precision values are promoted to double precision, double precision values are promoted to extended precision.

Previously compiled subprograms must be recompiled to be converted to the correct precision. For example, if a user-supplied subprogram accepts only single precision arguments and it is to be used with a program being converted to double precision, it must be recompiled using API to accept double precision arguments.

EXEC STATEMENT OPTIONS

The programmer requests the automatic precision increase facility through the PARM parameter in the EXEC statement calling the compiler. The PARM parameter specifies the AUTODBL subparameter to indicate the form that the conversion will take and the ALC subparameter to indicate whether storage alignment is to take place.

#### AUTODBL Subparameter

The AUTODBL subparameter takes one of the following forms:

AUTODBL(NONE) to indicate no conversion. This is the default condition.

#### AUTODBL(DBLPAD)

to indicate promotion and padding of single and double precision items. REAL*4, REAL*8, COMPLEX*8 and COMPLEX*16 types are converted. Items of other types are padded if they share storage space with converted items.

AUTODBL (DBLPAD4)

to indicate promotion of single precision items only, and padding of other items that share storage with promoted items.

#### AUTODBL (DBLPAD8)

to indicate promotion of double precision items only, and padding of other items that share storage with promoted items.

The promotion and padding options, DBLPAD, DBLPAD4, and DBLPAD8, ensure that the storage-sharing relationship that existed prior to conversion is maintained. Note, however, that padding reduces the efficiency of input/output operations for padded arrays.

AUTODBL(DBL)

to indicate promotion (but no padding) of both single and double precision items. Items of REAL*4 and COMPLEX*8 types are converted to REAL*8 and COMPLEX*16. Items of REAL*8 and COMPLEX*16 types are converted to REAL*16 and COMPLEX*32.

#### AUTODBL(DBL4)

to indicate promotion of single precision items only.

AUTODBL(DBL8) to indicate promotion of double precision items only.

<u>Note</u>: If AUTODBL is specified, and an error in coding the parameter is detected, the compiler substitutes the option DBLPAD8 as a default.

For most programs, one of the above forms is sufficient. The following form offers greater flexibility to the user who wishes to tailor the conversion process to a particular program; however, it also increases the chance of error and should be used with care.

AUTODBL(abcde)

indicates that the program is to be converted according to the value of abcde, a five-position field. Each position is coded with a numeric value that specifies how a particular conversion function is to be performed.

The leftmost position (position a) describes the promotion function, that is, whether promotion is to occur and, if so, which items are to be promoted. The second position (position b) describes the padding function, that is, whether padding is to occur and, if so, the sections in the program (such as COMMON or argument lists) where padding is to take place. The third, fourth, and fifth positions describe whether padding is to occur for particular types (LOGICAL, INTEGER, and REAL, respectively) within the program sections specified in position b.

Single Precision Function			Corresponding Double Precision Function			Corresponding Extended Precision Function			
	Argument	Function		Argument	Function		Argument	Function	
Name	Туре	Value Type	Name	Туре	Value Type	Name	Туре	Value Type	
AMOD	REAL*4	REAL*4	DMOD	REAL*8	REAL*8	QMOD	REAL*16	REAL*16	
ABS	REAL¥4	REAL*4	DABS	REAL*8	REAL*8	QABS	REAL*16	REAL*16	
INT	REAL*4	INT*4	IDINT	REAL*8	INT*4	IQINT	REAL*16	INT*4	
AINT	REAL¥4	REAL*4	DINT	REAL*8	REAL*8	QINT	REAL*16	INT*	
10XAMA	INT*4	REAL*4	l					1	
AMAX1	REAL+4	REAL*4	DMAX1	REAL*8	REAL*8	QMAX1	REAL*16	REAL*16	
MAX11	REAL*4	INT*4	Ì						
AMINO1	INT*4	REAL*4	l					1	
AMI N1	REAL*4	REAL*4	DMIN1	REAL*8	REAL*8	QMIN1	REAL*16	REAL*16	
MIN11	REAL#4	INT*4	Ì					i	
FLOAT	INT*4	REAL*4	DFLOAT	INT*4	REAL*8	QFLOAT	INT*4	REAL*16	
IFIX	REAL+4	INT*4	IDINT	REAL*8	INT*4	IQINT	REAL*16	INT*4	
HFIX1	REAL*4	INT*2							
SIGN	REAL*4	REAL*4	DSIGN	REAL*8	REAL*8	QSIGN	REAL*16	REAL*16	
DIM	REAL*4	REAL*4	DDIM	REAL*8	REAL*8	QDIM	REAL*16	REAL*16	
REAL	COMPLEX*8	REAL*4	DREAL	COMPLEX*16	REAL*8	QREAL	COMPLEX*32	REAL*16	
AIMAG	COMPLEX*8	REAL*4	DIMAG	COMPLEX*16	REAL*8	QIMAG	COMPLEX*32	REAL*16	
CMPLX	REAL*4	COMPLEX*8	DCMPLX	REAL*8	COMPLEX*16	QCMPLX	REAL*16	COMPLEX*32	
CONJG	COMPLEX*8	COMPLEX*8	DCONJG	COMPLEX*16	COMPLEX*16	QCONJG	COMPLEX*32	COMPLEX*32	
			L			L			
¹ The co	orrespondin	ng double pr	recision	function doe	es not exist	t by nam	ne, but the	single	
¹ The corresponding double precision function does not exist by name, but the single precision function is expanded as though the double precision function existed.									

Table III-1. Built-In Functions -- Substitution of Single and Double Precision

| precision function is expanded as though the double precision function existed. |

Single Precision Function			Corresponding Double Precision Function			Corresponding Extended Precision Function		
r	Argument	Function	t 1	Argument	Function	Argument Functio		
Name	Туре	Value Type	Name	Туре	Value Type	Name	Туре	Value Type
EXP	REAL*4	REAL*4	DEXP	REAL*8	REAL*8	OEXP	REAL*16	REAL*16
CEXP	COMPLEX*8	COMPLEX*8	CDEXP	COMPLEX*16	COMPLEX*16	~	COMPLEX*32	
ALOG	REAL*4	REAL*4	DLOG	REAL*8		OLOG	REAL*16	REAL*16
CLOG	COMPLEX*8	COMPLEX*8	CDLOG	COMPLEX*16	COMPLEX*16		COMPLEX*32	
ALOG10	REAL*4	REAL*4	DLOG10	REAL*8	REAL*8	. ~	REAL*16	REAL*16
ARSIN	REAL*4	REAL*4	DARSIN	REAL*8			REAL*16	REAL*16
ARCOS	REAL*4	REAL*4	DARCOS	REAL*8			REAL*16	REAL*16
ATAN	REAL*4	REAL*4	DATAN	REAL*8	REAL*8	OATAN	REAL*16	REAL*16
ATAN2	REAL*4	REAL*4	DATAN2	REAL*8		· ~	REAL*16	REAL*16
SIN	REAL*4	REAL*4	DSIN	REAL*8	REAL*8	OSIN	REAL*16	REAL*16
CSIN	COMPLEX*8	COMPLEX*8	CDSIN	COMPLEX*16	COMPLEX*16		COMPLEX*32	
COS	REAL+4	REAL*4	DCOS	REAL*8	REAL*8	ocos	REAL*16	REAL*16
ccos	COMPLEX*8	COMPLEX*8	CDCOS	COMPLEX*16	COMPLEX*16		COMPLEX*32	COMPLEX*32
TAN	REAL+4	REAL*4	DTAN	REAL*8	REAL*8	OTAN	REAL*16	REAL*16
COTAN	REAL*4	REAL*4	DCOTAN	REAL*8	REAL*8	OCOTAN	REAL*16	REAL*16
SORT	REAL+4	REAL*4	DSORT	REAL*8	REAL*8	OSORT	REAL*16	REAL*16
CSORT	COMPLEX*8	COMPLEX*8	CDSQRT	COMPLEX*16	COMPLEX*16	COSORT	COMPLEX*32	COMPLEX*32
TANH	REAL*4	REAL*4	DTANH	REAL*8	REAL*8	OTANH	REAL*16	REAL*16
SINH	REAL*4	REAL*4	DSINH	REAL*8	REAL*8	QSINH	REAL*16	REAL*16
соѕн	REAL*4	REAL*4	DCOSH	REAL*8	REAL*8	<b>QCOSH</b>	REAL*16	REAL*16
ERF	REAL*4	REAL*4	DERF	REAL*8	REAL*8	QERF	REAL*16	REAL*16
ERFC	REAL*4	REAL*4	DERFC	REAL*8	REAL*8	QERFC	REAL*16	REAL*16
GAMMA1	REAL*4	REAL*4	DGAMMA1	REAL*8	REAL*8	-		
ALGAMA	REAL*4	REAL*4	DLGAMA1	REAL*8	REAL*8			
CABS	COMPLEX*8	REAL*4	CDABS	COMPLEX*16	REAL*8	CQABS	COMPLEX*32	REAL*16
				s of these fulsion function			ist. In pro	omoting

Table III-2. Library Functions -- Substitution of Single and Double Precision

All five positions must be coded; if a function is to be omitted, the corresponding position is coded with a zero. The values for each position are as follows:

• Position a, the promotion function:

<u>Value</u> <u>Meaning</u> 0 No promotion

- 1 Promote REAL*4 and COMPLEX*8 items only
- 2 Promote REAL*8 and COMPLEX*16 items only
- 3 Promote all real and complex items
- Position b, the padding function:

Value	Meaning
0	No padding

- 1 Pad COMMON statement and argument list variables
- 2 Pad EQUIVALENCE statement variables equivalenced to promoted variables
- 3 Pad COMMON and EQUIVALENCE statement variables related to promoted variables and argument list variables
- 4 Pad EQUIVALENCE statement variables that do not relate to variables in COMMON statements
- 5 Pad variables everywhere

The code specified in this position determines in which areas of a program the padding requested by positions c to e is to take place.

- Position <u>c</u>, padding logical variables in program sections specified in position <u>b</u>:
  - ValueMeaning0Pad no logical variables1Pad LOGICAL*1 variables only
    - 2 Pad LOGICAL*4 variables only
    - 3 Pad all logical variables

- Position <u>d</u>, padding integer variables in program sections specified in position b:
  - Value<br/>0Meaning<br/>Pad no integer variables
    - 1 Pad INTEGER*2 variables only
    - 2 Pad INTEGER*4 variables only
    - 3 Pad all integer variables
- Position e, padding real and complex variables in program sections specified in position b:
  - <u>Value</u> <u>Meaning</u> 0 Pad no real or complex variables
    - 1 Pad REAL*4 and COMPLEX*8 variables
    - 2 Pad REAL*8 and COMPLEX*16 variables
    - 3 Pad REAL*4, REAL*8, COMPLEX*8, and COMPLEX*16 variables
    - 4 Pad REAL*16 and COMPLEX*32 variables
    - 5 Pad REAL*4, COMPLEX*8, REAL*16, and COMPLEX*32 variables
    - 6 Pad REAL*8, REAL*16, COMPLEX*16, and COMPLEX*32 variables
    - 7 Pad all real and complex variables

Note that promotion overrides padding. For example, if the first position specifies promotion to occur for single precision items, REAL*4 and COMPLEX*8 items are promoted regardless of the padding function specified in position  $\underline{e}$ .

#### Coding Examples

The AUTODBL(abcde) settings that correspond to the mnemonic options are:

NONE (00000)

DBL(30000)

DBL4(10000)

- DBL8(20000)
- DBLPAD(33334)
- DBLPAD4 (13336)
- DBLPAD8(23335)

The following examples illustrate other possible selections of the AUTODBL(abcde) format.

# Example 1: AUTODBL(12330)

Promotion is performed and padding is performed for all EQUIVALENCE statements, logical variables, and integer variables.

#### Example 2: AUTODBL(01001)

No promotion is performed, but padding is performed for all REAL*4 and COMPLEX*8 variables in common blocks and argument lists. This code setting permits a program not requiring double precision accuracy to link with a subprogram compiled with the option AUTODBL(DBL).

#### Example 3: AUTODBL(01337)

No promotion is performed, but padding is performed for all integer, logical, real, and complex variables that are in COMMON or are used as subprogram arguments. This code setting permits a non-converted program to link with a program converted with the option AUTODBL(DBLPAD4).

#### ALC_Subparameter

The ALC subparameter is used to specify storage alignment. It takes one of the forms:

#### ALC NOALC

to indicate whether storage alignment is to take place. NOALC is the default value. Ordinarily, to increase execution-time efficiency, COMMON statements are coded so that variables in COMMON blocks are aligned on proper boundaries: doubleword variables on doubleword boundaries, fullword variables on fullword boundaries, and halfword variables on halfword boundaries. When the conversion facility is used, these alignments may become altered. The ALC option restores alignment.

The ALC option should be used with care for it may cause previously matched COMMON blocks to become mismatched. For example, consider the two COMMON statements below where the variable INTER is to be shared:

Program 1	Program 2
REAL*8 R8	REAL*4 R4
COMMON/X/A, R8, INTER	COMMON/X/A, I, R4, INTER

With neither the AUTODBL nor the ALC option specified, both occurrences of the variable INTER will be at an offset of 12 bytes from the start of COMMON block X.

If ALC alone is used, INTER would be 16 bytes from the start of COMMON X in Program 1 since R8 would have been placed on a double word boundary. COMMON X in Program 2 would have been unaffected.

If AUTODBL(DBL) and ALC are specified, INTER would be 16 bytes from start of block X in Program 1 and 24 bytes from start in Program 2. (This is because of the promotion of REAL*4 to REAL*8 and subsequent alignment.)

It is recommended that ALC be used only when the COMMON variables are identical in type.

#### PROGRAMMING CONSIDERATIONS WITH API

This section provides a brief discussion of how use of the Automatic Precision Increase facility affects program processing.

#### Effect on COMMON or EQUIVALENCE Data Values

Promotion and padding operations preserve the storage sharing relationships that existed before conversion. However, in storage sharing items, <u>data_values</u> are preserved only for the following:

- 1. Variables having the same length
- 2. Real and complex variables having the same precision

For example, the following items retain value sharing relationships:

LOGICAL*4 and INTEGER*4 (same length)

REAL*4 and COMPLEX*8 (same precision)

The following items do not retain value sharing relationships:

INTEGER*2 and INTEGER*4 (different lengths)

REAL*8 and COMPLEX*8 (different precision)

#### Effect on Literal Constants

Care should be exercised when specifying literal constants as data initialization values for promoted or padded variables, as subprogram arguments, or in NAMELIST input. For example, literals should be entered into arrays on an element by element basis rather than as one continuous string. Consider the following statements:

DIMENSION A(2),B(2)
DATA A/'ABCDEFGH'/,B(1)/'IJKL'/,B(2)
/'MNOP'/

Array B will be initialized correctly but not array A, because padding takes place at the end of each element.

## Effect on Programs Calling Subprograms

FORTRAN main programs and subprograms must be converted so that variables in COMMON retain the same relationship to guarantee correct linkage during execution. The recommended procedure is to compile all program units using AUTODBL(DBLPAD). If an option other than DBLPAD is selected, care must be taken if the COMMON variables in one program unit differ from those in another; COMMON variables that are not to be promoted should be padded.

Any non-FORTRAN external subprogram called by a converted program unit should be recoded to accept padded and promoted arguments.

#### Effect on FORTRAN Library Subprograms

1. If a call to a FORTRAN library subprogram contains promoted

arguments, the next higher precision subprograms are substituted for the original ones. The extended symbol dictionary, used by the linkage editor to resolve references between program units, will contain the double and extended precision names for each single and double precision library program promoted.

2. If the programmer has supplied his own function for a FORTRAN-supplied function, but has neglected to detach the name through an EXTERNAL statement, the wrong function may be executed.

Example: AUTODBL(DBL4)

In this example, because the compiler cannot recognize SIN as a user-supplied function, it substitutes the name of the FORTRAN-supplied function DSIN in statement 3. However, the compiler does not change the function definition statement; the name remains SIN. At execution time the user-supplied function SIN is ignored and the FORTRAN-supplied function DSIN is executed in its place.

The programmer can avoid this confusion either by making sure he detaches the name SIN, preceded by an ampersand, in an EXTERNAL statement or by changing the name of the function to DSIN.

#### Effect on CALL DUMP or CALL PDUMP Statements

If a CALL DUMP or CALL PDUMP statement requests a dump format of either REAL*4 or COMPLEX*8, output from a converted program is shown in single precision format. Each item is displayed as two single precision numbers rather than as one double precision number. For variables that are promoted, the first number is <u>approximately</u> the value of the stored variable; the second number is meaningless.

For variables that are padded, the first number is <u>exactly</u> the value of the variable; the second number is meaningless.

#### Effect_on_Direct-Access_Input/Output Processing

When a DEFINE FILE statement has been specified, any record exceeding the maximum specified record length causes record overflow to occur.

For converted programs, the programmer should check the record size coded in the statement to determine if it can handle the increased record lengths. If not sufficient, the size should be increased appropriately.

#### Effect on Asynchronous Input/Output Processing

Extreme care should be exercised in using the Automatic Precision Increase facility for programs containing asynchronous input/output statements.

The asynchronous input/output facility transmits the number of bytes as specified by the transmitting or receiving areas. These areas for any given data set must have the same characteristics regarding promotion and padding; e.g., both must be padded or both must be promoted.

# Effect on Unformatted Input/Output Data Sets

Unformatted input/output data sets which have not been converted are not directly

acceptable to converted programs if the I/O list contains promoted variables.

To make an unconverted data set accessible to the converted program, the programmer should code BFALN=F in the DCB parameter at load module execution time, causing data to be transmitted in its unconverted form. For example, assume that a program contains the statement:

WRITE (3) I, J, (ARRAY(N), N=1, J)

If the program is converted such that ARRAY contains promoted items, the programmer should code the following DD statement to write unconverted ARRAY records:

//FT03Fxxx DD DCB=(BFALN=F...)...

The BFALN parameter is not specified for:

- Programs and data sets having the same conversion characteristics,
- <u>Formatted</u> data sets, regardless of conversion characteristics; the FORMAT statement controls the correct transmission of data.

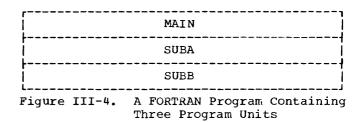
#### Effect on the Storage Map

The storage map produced by the MAP option contains the following codes:

Code	Meaning
D	Promoted variable
Ð	

- P Padded variable
- * Promoted library function name

Overlay is a feature of linkage editor processing that allows the FORTRAN user to reduce the main storage requirements of his program by breaking it up into two or more segments that need not be in main storage at the same time. These segments can be assigned the same storage addresses and can be loaded at different times during execution of the program. The user specifies linkage editor control statements to indicate the relationship of segments within the overlay structure. FORTRAN programs run under VS seldom require overlay processing.


#### DESIGNING A PROGRAM FOR OVERLAY

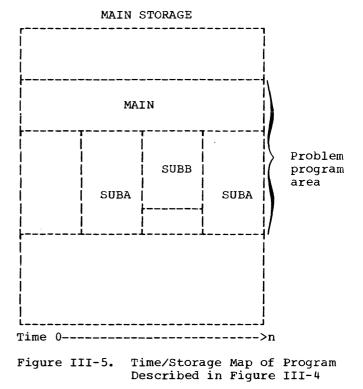

Programs are placed in an overlay structure according to the size, frequency of use, and logical relationships between the program units that they comprise. The basic principle of overlay is illustrated by the simple example in Figure III-4. This figure shows a FORTRAN program consisting of a main program and two large subprograms named SUBA and SUBB. Normally, all three program units would be loaded into main storage at the same time and would remain there throughout execution of the entire program. However, if there is not enough main storage space available to accommodate all three program units at once, and if SUBA and SUBB do not have to be in main storage at the same time, the user could design an overlay structure in which the MAIN routine resides in main storage at all times, while subprograms SUBA and SUBB make use of the remaining space as they are needed.

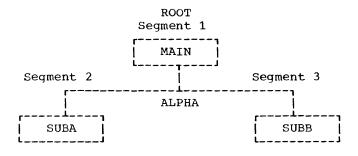
Figure III-5 shows what happens at execution time to the program in Figure III-4. The MAIN routine is loaded and processing begins. When the MAIN routine calls SUBA, SUBA is loaded and processing continues until SUBB is called. SUBB then overlays SUBA in main storage and remains there until SUBA is called again. The main storage requirements of the program are thus reduced from the total number of bytes in all three program units to the total number of bytes in the MAIN program plus the larger of the two subprograms.

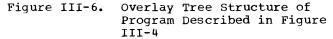
#### SEGMENTS

The relationships among the program units in the overlay program described in the preceding paragraphs can be graphically represented by an overlay "tree" structure as shown in Figure III-6. Each "branch" of the overlay tree consists of a separately loaded unit of the program to which the linkage editor assigns a number. Such overlay units, or segments, may contain one or more subprograms totaling 524,288 bytes (512K).






The first segment in any overlay program is called the root segment. The root segment remains in main storage at all times during execution of the program. It must contain:


- The program unit which receives control at the start of processing. Usually this is the main routine in which processing begins at the entry point named MAIN.
- Any program units which should remain in main storage throughtout processing. For greater efficiency, subprograms that are frequently called should also be placed in the root segment if possible.
- Any program units containing DEFINE FILE statements.
- Certain information needed by the operating system to control the overlay operation. Like FORTRAN library subprograms, this information is automatically included in the root segment by the linkage editor.

## PATHS

The relationships among the segments of an overlay program are expressed in terms of "paths." A path consists of a given segment and any segments between it and the root segment. The root segment is thus a part of every path, and when a given segment is in main storage, all segments in its path are also in main storage. The simple program in Figure III-6 is made up of only two paths as shown in Figure III-7.

The paths of an overlay program are determined by the dependencies between program units. A program unit is





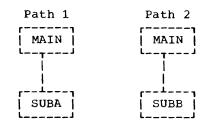



Figure III-7. Overlay Paths Implied by Tree Structure in Figure III-6

considered to be dependent on any other program unit which it calls or whose data it must process.

Figure III-8 shows a FORTRAN program in an overlay tree structure. The paths implied by that structure are illustrated in Figure III-9. The MAIN routine and subprograms SUB1 and SUB2 remain in main storage for the duration of execution time; they occupy the root segment. The segment containing subprograms SUB3 and SUB4 use the same area of main storage as the segment containing subprograms SUB11 and SUB12. Likewise, the main storage area used by the segment containing SUB5, SUB6, and SUB7 are used by the segment containing SUB8 and SUB9, as well as by the segment containing SUB10. Figure III-10 is a time/storage map of the program shown in Figures III-8 and III-9.

The structure in Figures III-8 and III-9 consists of segments numbered 1 through 6, with segment 1 being the root segment. Segments 2 and 6 have the same relative origin; that is, they will start at the same location when in main storage. This origin has been given the symbolic name ALPHA by the user (on an OVERLAY control card). The relative origin of segments 3, 4, and 5 has been given the symbolic name BETA.

The relative origin of the root segment, also called the relocatable origin, is assigned at 0. The relative origin of any segment other than the root segment is determined by adding the lengths of all segments in its path, including the root segment. When the program is loaded for execution, the first location of the root segment (the relocatable origin of the program) is assigned to an absolute storage address. All other origins are automatically increased by the number of that storage address, i.e., given an address relative to the address assigned to the root segment.

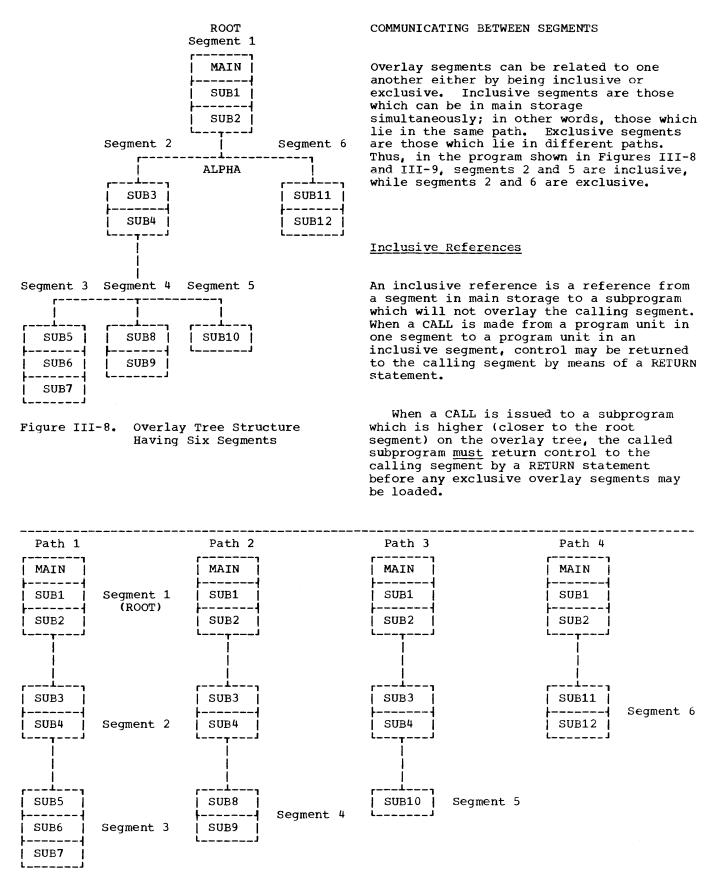



Figure III-9. Overlay Paths Implied by Tree Structure in Figure III-8

An exclusive reference, one made in any segment to another segment which will overlay it, can be either valid or invalid.

An exclusive reference is considered valid only if there is a reference to the called routine in a segment common to both the segment to be loaded and the segment to be overlaid. Assume, for example, in Figure III-11 that the main program (common segment) contains a call to Segment A but not to Segment B. A reference in Segment B to a routine in Segment A is valid because of the inclusive reference between the common segment and Segment A. (A table in the common segment, supplied by the linkage editor, contains the address of Segment A. The overlay does not destroy this table.) An exclusive reference in Segment A to a routine in Segment B is invalid since the common segment contains no reference to Segment B.

Both valid and invalid exclusive references are considered errors by the linkage editor; however, the user can allow a program containing a valid exclusive reference to be executed. (See the discussion of XCAL and LET options later in this chapter.) Programs containing invalid exclusive references are never executable. For more detailed information on exclusive references, see the appropriate linkage editor and loader publication, as listed in the Preface.

MAIN STORAGE

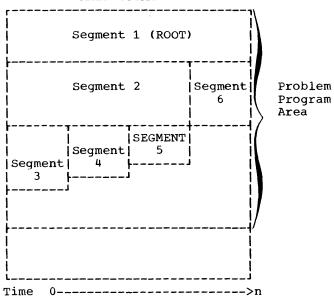
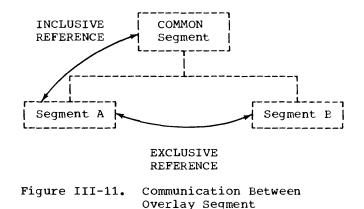




Figure III-10. Overlay Configuration of Program Described in Figure III-8



#### COMMON AREAS

The linkage editor treats all FORTRAN COMMON areas as separate subprograms. When modules containing COMMON areas are processed by the linkage editor, the COMMON areas are collected. That is, when two or more blank (unnamed) COMMON areas are encountered in the input to the linkage editor, only the largest of them is retained in the output module. (In the case of named COMMON areas, the question of different lengths does not arise since all named COMMON areas of the same name must be the same length.)

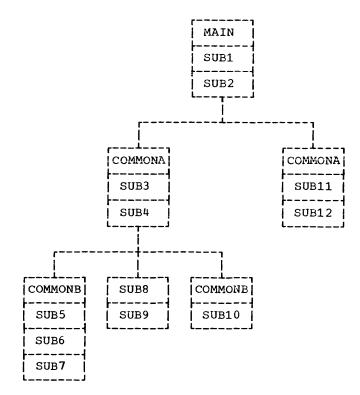
## THE OVERLAY PROCESS

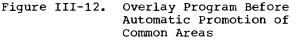
Overlay is initiated at execution time in response to a reference to a subprogram which is not already in main storage. The subprogram reference may be either a FUNCTION name or a CALL statement to a SUBROUTINE name. When the reference is executed, the overlay segment containing the required subprogram, as well as any segments in its path not currently in main storage, is loaded.

When a segment is loaded, it overlays any segment in storage with the same relative origin. It also overlays any segments that are lower (farther from the root segment) in the path of the overlaid segment. For example, if segments 1, 2, and 3 in Figures III-8 and III-9 are in main storage when the main program executes a call to subprogram SUB11, segment 6 is called into main storage and segments 2 and 3 will not be available for as long as segment 6 is in main storage.

Whenever a segment is loaded it contains a fresh copy of the program units that it comprises; any data values that may have been established or altered during previous processing are returned to their initial values each time the segment is loaded. Thus, data values that are to be retained for longer than a single load phase should be placed in the root segment.

Overlay is not initiated when a return is made from a subprogram or when a segment in main storage executes a reference to a subprogram that is already in main storage.


In an overlay program, when blank or named COMMON areas are encountered by the linkage editor, they are collected as described above. Their ultimate location in the output module depends upon which linkage editor control statements are used in the building of the overlay structure (see the discussion of linkage editor control statements below). Overlay structures built without the use of INSERT statements (in which the program units for each segment are included between OVERLAY statements) produce an output module in which the linkage editor "promotes" the COMMON areas automatically. The promotion process places each COMMON area in the lowest segment on the overlay tree which will always be in main storage with any segment containing a reference to it.


Figures III-12 and III-13 show an overlay program as it appears before and after the automatic promotion of COMMON areas. The position of a promoted COMMON area within the segment to which it is promoted is unpredictable.

If INSERT statements are used to structure the overlay program, a blank COMMON area should appear physically in the input stream in the segment to which it belongs. A named COMMON area should either appear physically in the segment to which it belongs or should be placed there with an INSERT statement.

COMMON areas encountered in modules from automatic call libraries are automatically promoted to the root segment. If such COMMON areas are named, they may be positioned by the use of an INSERT statement.

Named COMMON areas in BLOCK DATA subprograms must be exactly as large as any identically named COMMON areas in FORTRAN programs that are to be link edited with the BLOCK DATA subprograms.





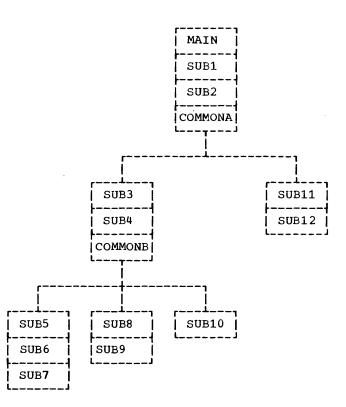



Figure III-13. Overlay Program After Automatic Promotion of Common Areas

#### CONSTRUCTION OF THE OVERLAY PROGRAM

The programmer communicates his overlay strategy to the operating system in two ways: through the use of special processing options which he specifies in the PARM parameter of the EXEC statement that calls the linkage editor, and through the use of linkage editor control statements. The general functions of these options and statements are described in the section "Linkage Editor and Loader." Those which are of particular interest to the programmer constructing an overlay program are discussed immediately below.

#### LINKAGE EDITOR CONTROL STATEMENTS

Once the programmer has designed an overlay tree structure for this program, he places the program in that structure by indicating to the linkage editor the relative positions of the segments that make up the tree. The control statements which accomplish this are placed in the input stream following the //SYSLIN DD statement, or after the //LKED.SYSLIN DD statement if a cataloged procedure is used.

The most important control statements for implementing an overlay program are the OVERLAY, INSERT, INCLUDE, and ENTRY statements. The OVERLAY statement indicates the beginning of an overlay segment. The INSERT statement is used to rearrange the sequence of object modules in the resulting load module(s). The INCLUDE statement is used to incorporate input from secondary sources into the load module. The ENTRY statement specified the first instruction to be executed.

#### **OVERLAY** Statement

The OVERLAY statement indicates the beginning of an overlay segment. Its format is:

Operation	Operand
OVERLAY	name

where name indicates the beginning of the segment, that is, the symbolic name of the relative origin. The following statement may be used to indicate overlay of segments 2 and 6 in Figure III-8:

## OVERLAY ALPHA

OVERLAY statements are placed directly before the object decks of the first program unit of the new segment, before an INSERT statement specifying the program units to be placed in the segment, or before an INCLUDE statement specifying the program units to be placed in the segment. Assuming that object decks were available, the input deck to the linkage editor for the program in Figures III-8 and III-9 could be arranged as follows:

Object deck for	MAIN SUB1 SUB2
OVERLAY ALPHA Object deck for	SUB3 SUB4
OVERLAY BETA Object deck for	SUB5 SUB6 SUB7
OVERLAY BETA Object deck for	SUB8 SUB9
OVERLAY BETA Object deck for	SUB10
OVERLAY ALPHA Object deck for ENTRY MAIN	SUB11 SUB12

#### INSERT Statement

There are many instances in which it is inconvenient or impossible for the user to position object decks physically in the input stream. Library routines, normally placed in the root segment, and routines compiled in an earlier step in the same job are examples of program units for which the object decks are not available for positioning at the time the job is set up.

The INSERT statement is used to position such control sections in an overlay structure. A control section, or CSECT, is the operating system designation for the smallest separately relocatable unit of a program. Examples of FORTRAN control sections are main programs, subprograms, and blank or named COMMON blocks. The format of the INSERT statement is:

Operation	Operand
INSERT	csect-name[,csect-name]

where csect-name indicates the name(s) of the control section(s) to be positioned.

The INSERT statement is placed in the input sequence directly following the OVERLAY statement that specifies the segment origin in which the control section is to be positioned. If the control section is to be positioned in the root segment, the INSERT statement is placed before the first OVERLAY statement.

Using INSERT statements and a FORTRAN source deck, the overlay structure specified in Figures III-8 and III-9 could be implemented as follows:

Input to the compiler:

FORTRAN source deck c MAIN through SUB12	ontaining units

Input to the linkage editor:

ENTRY MAIN INSERT MAIN, SUB1, SUB2
OVERLAY ALPHA INSERT SUB3, SUB4
OVERLAY BETA INSERT SUB5, SUB6, SUB7
OVERLAY BETA INSERT SUB8, SUB9
OVERLAY BETA INSERT SUB10
OVERLAY ALPHA INSERT SUB11,SUB12

If INSERT statements are used more than once in the same program for a control section of the same name, the CSECT will be positioned in the segment specified by the first occurrence of the CSECT name in the input stream. Any additional INSERT statements referring to the CSECT will be ignored, and, at execution time, all references to the CSECT will resolve to the first one positioned. Thus, if a subprogram is required in more than one path, it must be either inserted in the root segment or renamed before being used with an INSERT statement.

#### INCLUDE Statement

The INCLUDE statement is described in the section "Linkage Editor and Loader." When used in an overlay program, the INCLUDE statement is generally placed in the input stream in the position where the material to be included is required.

It is possible to manipulate the control sections that were added by an INCLUDE statement through the use of the INSERT statement. Assume that the control sections of the overlay program from the previous examples resided in libraries as follows:

LIBA							
BOOK1	BOOK2						
MAIN SUB1 SUB2	SUB3 SUB4						

____

i.	LIBB
i	SUB5
1	SUB6
1	SUB7
1	SUB8
1 .	SUB9
1	SUB10
1	SUB11
1	SUB12
L	

where LIBA is a partitioned data set with members BOOK1 and BOOK2 and LIBB is a sequential data set.

Then the overlay structure could be implemented by the use of the following control statements:

INCLUDE LIBA(BOOK1) INCLUDE LIBB OVERLAY ALPHA INCLUDE LIBA(BOOK2) OVERLAY BETA INSERT SUB5,SUB6,SUB7 OVERLAY BETA INSERT SUB8,SUB9 OVERLAY BETA INSERT SUB10 OVERLAY ALPHA	ENTRY MAIN	
OVERLAY BETA INSERT SUB5,SUB6,SUB7 OVERLAY BETA INSERT SUB8,SUB9 OVERLAY BETA INSERT SUB10 OVERLAY ALPHA	INCLUDE LIBB	
INSERT SUB11, SUB12	OVERLAY BETA INSERT SUB5,SUB6,SUB OVERLAY BETA INSERT SUB8,SUB9 OVERLAY BETA INSERT SUB10	7

#### ENTRY Statement

The ENTRY statement specifies the first instruction of the program to be executed. Its format is:

Operation	Operand
ENTRY	external-name

where external-name indicates the name of an instruction in the root segment. Usually it will be the name MAIN.

The ENTRY statement may be placed before, between, or after the program units or other control statements in the input stream. An ENTRY statement is necessary in all overlay programs because, after linkage editor processing, the first part of the root segment contains special overlay control information rather than executable code. See the previous examples of overlay implementation for the use and placement of the ENTRY statement.

#### LINKAGE EDITOR OVERLAY OPTIONS

In addition to the necessary linkage editor control statements, the user implementing an overlay structure must provide certain information to the operating system by means of the PARM parameter of the EXEC statement that calls the linkage editor.

Linkage editor options are described in the section "Linkage Editor and Loader." Those options which are of special interest to the user of the overlay feature are discussed in the following paragraphs.

OVLY indicates that the load module produced will be an overlay structure, as directed by subsequent linkage editor control statements. OVLY must be specified for all overlay processing.

LIST indicates that linkage editor control statements are to be listed in card image format on the system output data set, SYSPRINT.

MAP indicates that the linkage editor is to produce a map of the output module. The map of the output module of an overlay structure shows the control sections grouped by segment. Within each segment, the control sections are listed in ascending order according to their assigned origins. The number of the segment in which each appears is also printed. XREF indicates that the linkage editor is to produce a cross-reference table of the output module. The cross-reference table includes a module map and a list of all address constants that refer to other control sections. Since the cross-reference table includes a module map, XREF may be substituted for MAP.

XCAL indicates that a valid exclusive call is not to be considered an error, and that the load module is to be marked executable even though improper branches were made between control sections.

LET indicates that any exclusive call (valid or invalid) is accepted. The output module will be marked executable even though certain error or abnormal conditions were found during link editing. At execution time, a valid exclusive call may or may not be executed correctly. An invalid call will usually cause unpredictable results; the requested segment will <u>not</u> be loaded.

#### OVERLAY EXAMPLE

Assume that the program suggested by Figure III-8 consists of a main program and twelve subroutines. The sole function of the main program is to call the subroutines, and each subroutine prints the message "IN SUBx", where x is a number identifying the subroutine.

Figure III-14 illustrates the input and Figure III-15 the output of the program.

Figure III-14 shows the program in card deck form, as it might be submitted for execution. The EXEC statement specifies the cataloged procedure FORTXCLG, to process three job steps to compile, link edit, and execute. The EXEC statement also specifies the linkage editor options OVLY, XREF, and LIST.

Input to the compile step consists of the statements in the main program unit and in the subroutines.

Input to the link edit step consists of INSERT, OVERLAY, and ENTRY statements, which define the overlay structure of the program.

There is no input to the load module step; however, output from the step is directed to the printer, as defined by the DD statement //GO.FT06F001.

Output from the compile job step is shown in Figure III-15. Note that each program unit is compiled separately. The FORTRAN IV (H Extended) compiler recognizes the FORTRAN END statement as the last statement in a unit.

Output from the link edit job step is shown in Figure III-16. The LIST option causes the linkage editor control statements to be listed (labeled A). The XREF option causes a cross reference table to be printed for each overlay segment. Each overlay segment consists of the FORTRAN program units specified in an INSERT statement together with any modules called by the linkage editor. For example, the following statement defines one overlay segment:

INSERT MAIN, SUB1, SUB2

The overlay segments are labeled B through G. The OVLY option causes no printed output.

Output from the load module execution job step is shown in Figure III-17. The messages generated by the subroutines are labeled H.

// 8	EXEC FORTXCLG, PARM. LKE	D='OVLY,XP	EF,LIST'
//FORT.	SYSIN DD " INPUT TO CON	PILE JOB	STEP
	CALL SUB1 CALL SUB2		
	CALL SUB3		
	CALL SUB4		
	CALL SUB5		
	CALL SUB6		
	CALL SUB7		
	CALL SUB8		$\frown$
	CALL SUB9		
	CALL SUB10		
	CALL SUB11		
	CALL SUB12 STOP	3	SUBROUTINE SUB7
	END	3	DIMENSION A(100,10)
	SUBROUTINE SUB1	<b>}</b> 15	FORMAT (1H0,8HIN SUB7 )
	DIMENSION A(100,10)	}	WRITE (6,15)
15	FORMAT (1H0,8HIN SUB1	) {	RETURN
	WRITE (6,15)	ş	
	RETURN	5	SUBROUTINE SUB8 DIMENSION A(100,10)
	END SUBROUTINE SUB2	<b>{</b> 15	FORMAT (1H0,8HIN SUB 8 )
	DIMENSION A(100,10)	ş	WRITE (6,15)
15	FORMAT (1H0,8HIN SUB2	) {	RETURN
-	WRITE (6,15)	- 3	END
	RETURN	3	SUBROUTINE SUB9
	END	}	DIMENSION A(100,10)
	SUBROUTINE SUB3	15     1	FORMAT (1H0,8HIN SUB 9 ) WRITE (6,15)
15	DIMENSION A(100,10)	、 {	RETURN
15	FORMAT (1H0,8HIN SUB3 WRITE (6,15)	· {	END
	RETURN	5	SUBROUTINE SUB10
	END	£	DIMENSION4A(100,10)
	SUBROUTINE SUB4	\$ 15	FORMAT (1H0,8HIN SUB 10)
	DIMENSION A(100,10)	3	WRITE (6,15)
15	FORMAT (1H0,8HIN SUB4	) }	RETURN
	WRITE (6,15)	3	END SUBROUTINE SUB11
	RETURN END	3	DIMENSION A(100,10)
	SUBROUTINE SUB5	\$ 15	FORMAT (1H0,8HIN SUB 11)
	DIMENSION A(100,10)	}	WRITE (6,15)
15	FORMAT (1H0,8HIN SUB5	2	RETURN
	WRITE (6,15)	ş	END
	RETURN	5	SUBROUTINE SUB12
		\$ 15	DIMENSION A(100,10) Format (1h0,8hin sub 12)
	SUBROUTINE SUB6 DIMENSION A(100,10)	{ · ·	WRITE (6,15)
15	FORMAT (1H0,8HIN SUB6	5	RETURN
	WRITE (6,15)	S	END
	RETURN	} /×	
	END		SYSIN DD " INPUT TO LINK EDIT JOB STEP
			MAIN, SUB1, SUB2
			AY ALPHA I SUB3,SUB4
			AY BETA
	$\smile$		SUB5,SUB6,SUB7
			AY BETÁ
			r SUB8,SUB9
			AY BETA
			SUB10
			AY ALPHA
		ENTRY	SUB11,SUB12 MAIN
		/*	
			06F001 DD SYSOUT=A OUTPUT FROM LOAD MODULE JOB STEP
		11	

Figure III-14. Linkage Editor Overlay Input

Figure III-15. Linkage Editor Overlay Output -- Compile Job Step

ISN 0009 CALL SUB8 ISN 0010 CALL SUB9 ISN 0011 CALL SUB10 ISN 0012 CALL SUB11 LSN 0013 CALL SUB12 ISN 0014 STOP ISN 0015 END *OPTIONS IN EFFECT*NAME( MAIN),NOOPTIMIZE,LINECOUNT(6C),SIZE(MAX),AUTODBL(NONE), *OPTIONS IN EFFECT*SOURCE, EBCDIC, NOLIST, NODECK, OBJECT, NOMAP, NOFORMAT, NOGOSTMT, NOXREF, NOALC, NOANSF, FLAG(I) *STATISTICS* SOURCE STATEMENTS = 14, PROGRAM SIZE = 318, SUBPROGRAM NAME = MAIN *STATISTICS* NO DIAGNOSTICS GENERATED ***** END OF COMPILATION ***** 105K BYTES OF CORE NOT USED REQUESTED OPTIONS: NODECK, NOLIST, OPT=0 CPTIONS IN EFFECT: NAME( MAIN), NOOPTIMIZE, LINECOUNT(60), SIZE(MAX), AUTODBL(NONE), SOURCE, EBCDIC, NOLIST, NODECK, OBJECT, NOMAP, NOFORMAT, NOGOSTMT, NOXREF, NOALC, NOANSF, FLAG(I) ISN 0002 SUBROUTINE SUB1 ISN 0003 DIMENSION A(100,10) 15 FORMAT (1H0,8HIN SUB1 ) ISN 0004 ISN 0005 WRITE (6,15) ISN 0006 RETURN I SN 0007 END *OPTIONS IN EFFECT*NAME( MAIN),NOOPTIMIZE,LINECOUNT(60),SIZE(MAX),AUTODBL(NONE), *OPTIONS IN EFFECT*SOURCE, EBCDIC, NOLIST, NODECK, OBJECT, NOMAP, NOFORMAT, NOGOSTMT, NOXREF, NOALC, NOANSF, FLAG(I) *STATISTICS* SOURCE STATEMENTS = 6. PROGRAM SIZE = 218, SUBPROGRAM NAME = SUB1 *STATISTICS* NO DIAGNOSTICS GENERATED ****** END OF COMPILATION ***** 105K BYTES OF CORE NOT USED REQUESTED OPTIONS: NODECK, NOLIST, OPT=0 CPTIONS IN EFFECT: NAME( MAIN), NOOPTIMIZE, LINECOUNT (60), SIZE(MAX), AUTODBL (NONE), SOURCE, EBCDIC, NOLIST, NODECK, OBJECT, NOMAP, NOFORMAT, NOGOSTMT, NOXREF, NOALC, NOANSF, FLAG(I) ISN 0002 SUBROUTINE SUB12 ISN 0003 DIMENSION A(100,10) **ISN 0004** 15 FORMAT (1H0,8HIN SUB12) ISN 0005 WRITE (6,15) ISN 0006 RETURN TSN 0007 END ★①PTIONS IN EFFECT*NAME( MAIN),NOOPTIMIZE,LINECOUNT(60),SIZE(MAX),AUTODBL(NONE), *OPTIONS IN EFFECT*SOURCE, EBCDIC, NOLIST, NODECK, OBJECT, NOMAP, NOFORMAT, NOGOSTMT, NOXREF, NOALC, NOANSF, FLAG(I) 218, SUBPROGRAM NAME = SUB12 *STATISTICS* SOURCE STATEMENTS = 6, PROGRAM SIZE = *STATISTICS* NO DIAGNOSTICS GENERATED ** ** ** END OF COMPILATION ****** 105K BYTES OF CORE NOT USED *STATISTICS* NO DIAGNOSTICS THIS STEP

CPTIONS IN EFFECT: NAME( MAIN),NOOPTIMIZE,LINECOUNT(60),SIZE(MAX),AUTODBL(NONE), SOURCE,EBCDIC,NOLIST,NODECK,OBJECT,NOMAP,NOFORMAT,NOGOSTMT,NOXREF,NOALC,NOANSF,FLAG(I)

REQUESTED OPTIONS: NODECK, NOLIST, OPT=0

CALL SUB1

CALL SUB2

CALL SUB3 CALL SUB4

CALL SUB5 CALL SUB6

CALL SUB7

ISN 0002

ISN 0C03

TSN 0004

ISN 0005

ISN 0006 ISN 0007

ISN 0008

CONTROL S	ECTION			ENTRY							
NAME	ORIGIN	LENGTH	SEG. NO.	NAME	LOCATION	NAME	LOCATION	NAME	LOCATION	NAME	LOCATION
\$SEGTAB	00	30	1								
MAIN	30	13E	1								
SUB1	170	DA	1								
SUB2	250	DA	1								
IHOECOMH *	330	DC4	1								
				IBCOM#	35C	FDIOCS#	418	INTSWTCH	10 E 0		
IHOCOMH2 *	10F8	975	1								
			-	SEQDASD	1462						
IHOFCVTH*	1470	A07	1		1.02						
		401	-	ADCON#	1470	FCVAOUTP	1B1A	FCVLOUTP	1844	FCVZOUTP	1006
				FCVIOUTP		FCVEOUTP		FCVCOUTP	2190	INT6 SWCH	23F8
IHOEFNTH*	2478	7C8	1	LC & LOOILE	20 44	FUVEDUTE	2190	FUNCTON	2190	THIO SWCH	2548
THOLININ	2470	100	1	AR ITH#	2478	ADJSWTCH	2000				
IHOEFIOS*	2040	10F0	,	AKIID#	24/0	ADJSWICH	29D8				
10000103*	2040	1060	1	F1000#	2640	5 100 CO 5 D	26.4.4				
IHOF IOS2*	2020	<b>F 4 C</b>		FIOCS#	2040	FIOCSBEP	2C 46				
		5 AC	1								
IHOUOPT *		318	1 1								
IHOFCONI*	45F8	2 FD	1								
				FQCONI#	45F8						
IHOFCONO*	48F8	558	1								
				FQCONO#	48F8						
IHOERRM *	4E50	5 EC	1								
				ERRMON	4250	IHOERRE	4E68				
IHOUATBL*		208	1								
IHOFTEN *	5648	198	1								
				FTEN#	5648						
IHOETRCH*	57E0	2 A 6	1								
				IHOTRCH	57E0	ERRTRA	57E8				
\$ENTAB	5A88	84	1								

CROSS REFERENCE TABLE

DEFAULT OPTION(S) USED

В

LOCATION	REFERS TO SYMBOL	IN CONTROL SECTION	SEG. NO.	LOCATION	REFERS TO	SYMBOL I	N CONTROL SECTION	SEG. NO.
A 8	SUB 1	SUB 1	1	AC		SUB 2	SUB 2	1
B0	SUB 3	SUB 3	2	B4		SUB 4	SUB4	2
B 8	SUB 5	SUB 5	3	BC		SUB 6	SUB 6	3
CO	SUB 7	SUB7	3	C4		SUB8	SUB 8	4
C 8	SUB 9	SUB 9	4	CC		SUB10	SUB10	5
D 0	SUB11	SUB11	6	D4		SUB 12	SUB 12	6
D 8	IBCOM#	I HO EC OMH	1	208		IBCOM#	IHOECOMH	1
268	IBCOM#	IHOECOMH	1	418		SEQDASD	I HOCOMH 2	ī
470	IHOCOMH2	IHOCOMH2	1	FEC		A DC ON #	IHOFCVTH	1
FE4	FIDCS#	I HOEF IOS	1	FF0		ARITH#	IHOEFNTH	ī
1000	ADJSWTCH	IHOEFNTH	1	FCO		I HOUOP T	IHOUOPT	ī
FF4	FCVEOUTP	IHOFCVTH	1	FF8		FCVLOUTP	IHOFCVTH	ī
FFC	FCVIOUTP	IHOFC VTH	1	1000		FCVCOUTP	IHOFCVTH	ĩ
1004	FCVADUTP	I HOFC VT H	1	1008		FCVZOUTP	IHOFCVTH	ī
10E4	IHOASYNC	\$UNRESOLVED(W	)	F44		IHOERRM	I HO ER RM	ī
F98	IHDERRE	IHOERRM	1	FC 8		IHOCOMH2	IHOCOMH2	ī
F9C	IHOCOMH2	I HOCOMH2	1	FAO		IHOCOMH 2	IHOCOMH2	i
FA4	I HOCOMH2	IHOCOMH2	1	FA8		IHOCOMH2	IHOCOMH2	1
1228	IHOECOMH	IHOECOMH	1	12D8		IHOECOMH	IHOECOMH	ī
1 8C D	IHOECOMH	I HO EC OMH	1	18DD		I HO ECOMH	IHOECOMH	ī
18ED	IHOECOMH	IHOECOMH	1	2268		I BC OM#	I HO EC OMH	ī
2264	IHOERRM	IHOERRM	1	2288		FQCONO#	IHOFCOND	ĩ
22BC	FQCONI#	IHOFCONI	1	2A34		IBCOM#	IHOECOMH	ī
▲ 2A38	INTSWTCH	I HO EC OMH	1	29D4		INT6SWCH	IHOFCVTH	ĩ
2900	IHOUOPT	IHOUOPT	1	2440		ADCON#	IHOFCVTH	1
2A3C	FIDCS#	I HOEF I OS	1	2840		IHDERRM	IHOERRM	ī
2 D A 8	IHDASYNC	\$UNRESOLVED (W	)	2DA0		IHDERRM	IHOERRM	1
2 D A 4	IHOFIOS2	IHOFIOS2	1	3AC0		IHOUATBL	IHOUATBL	1
3 ACC	IBCOM#	I HOEC OMH	1	3AE1		IHOFIOS2	IHOFIOS2	1
3AF8	IHOFIOS2	IHOF1052	1	3D29		IHOFIOS2	IHOFIOS2	1
4884	FTEN#	IHOFTEN	1	4CF4		FTEN#	IHOFTEN	1
542C	IHOUOPT	IHOUOPT	1	5430		IBCOM#	I HO EC OMH	ī
5434	IHOTRCH	IHOETRCH	1	5438		FIOCSBEP	IHDEFIOS	ĩ
5968	IBCOM#	I HOEC OMH	1	596C		ADC ON#	IHOFCVTH	1
5974	FIOCSBEP	I HOEF IOS	1					_

Figure III-16. Link Edit Overlay Output -- Link Edit Job Step

CONTROL SECTION ENTRY NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION SUB3 5810 DA 2 SUB4 58 F 0 DA C LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. 58A8 I BCOM# I HOEC OMH 1 5C88 IBCOM# I HOEC OMH 1 CONTROL SECTION ENTRY NAME ORIGIN LENGTH SEG. NO. LOCATION NAME LOCATION LOCATION NAME NAME NAME LOCATION SUB5 5000 D٨ 3 3 DA SUB6 5DB0 SUB7 5 E 90 DA 3 D LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. THOEC OMH THOECOMH TBCOM# 5E48 T BC OM# 1 5068 1 5F28 IBCOM# I HOEC OMH CONTROL SECTION ENTRY NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION SUB8 5C D 0 DA 4 SUB9 5 D B 0 DA E LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. IBCOM# I HO EC OM H 5E48 IBCOM# I HOEC OMH 5D68 1 1 CONTROL SECTION ENTRY NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION SUB10 5 5CD0 DA F LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. 5D68 IBCOM# I HO EC OMH 1 CONTROL SECTION ENTRY NAME ORIGIN LENGTH SEG. NO. LOCATION NAME LOCATION NAME LOCATION NAME NAME LOCATION SUB11 5810 D۵ 6 SUB12 5BFC DA G LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. 58A8 IBCOM# THOFCOMH 1 5C88 IBC OM# I HOEC OMH ì ENTRY ADDRESS 30 TOTAL LENGTH 5F70 Link Edit Overlay Output -- Link Edit Job Step (Part 2 of 2) Figure III-16. IN SUB1 IN SUB2 IN SUB3 IN SUB4 IN SUB5

- IN SUB6
- IN SUB7
- IN SUB8
- IN SUB9
- IN SUB10
- IN SUB11
- IN SUB12

Figure III-17. Linkage Editor Overlay Output -- Load Module Execution Job Step

The extended error handling facility provides the FORTRAN programmer with greater control over load module errors. This facility is specified at program installation time through the parameter OPTERR=INCLUDE in the FORTLIB macro instruction.

When a program error occurs, the user is given:

- Messages more informative than those issued with standard diagnostic facilities
- The ability to continue execution after the error
- Either standard FORTRAN corrective action with continued execution or, optionally, user-specified corrective action

When an error occurs with extended error handling in effect, a short message text is printed along with an error identification number. The data in error (or some other associated information) is printed as part of the message text. A summary error count, printed when a job is completed, informs the user how many times each error occurred. For a complete listing of compiler and library messages, see the publication <u>OS FORTRAN IV (H Extended)</u> <u>Compiler and Library (Mod II) Messages</u>, Order No. SC28-6865.

A traceback map, tracing the subroutine flow back to the main program, is printed after each error occurrence; execution then continues. (If the extended error handling facility is not specified, a traceback map is printed only for errors causing program termination and for error IHO218I if the ERR= option has been specified in a READ statement.)

For each error condition detected, the user has both dynamic and default control over:

• The number of times the error is allowed to occur before program termination

- The maximum number of times each message may be printed
- Whether or not the traceback map is to be printed with the message
- Whether or not a user-written error-exit routine is to be called

The action that takes place is governed by information stored in an area of main storage called the option table. (A permanent copy of the option table is maintained in the FORTRAN library.)

## FUNCTIONAL CHARACTERISTICS

When an error is detected, the FORTRAN error monitor (ERRMON) receives control.

The error monitor prints the necessary diagnostic and informative messages and then takes one of the following actions:

- Terminates the job
- Returns control to the calling routine, which takes a standard corrective action and then continues execution
- Calls a user-written closed subroutine to correct the data in error and then returns to the routine that detected the error, which then continues execution

The actions of the error monitor are controlled by settings in the option table. The option table consists of a doubleword preface, followed by a doubleword entry for each error condition. (If the extended error handling facility is not specified, the option table is reduced to the preface alone.) IBM provides a standard set of 97 entries; the programmer can provide additional entries at program installation time. Table III-3 shows the values for each error condition. If an option recorded in a table entry does not apply to a particular error condition, it is shown as not applicable (NA).

r1	r	<b></b>	r	r	r	r	<b></b>	T=1
	Number of				Print	I,	Standard	
•	Errors   Allowed	Messages	•				Corrective	User
Code	Allowed	Allowed	Print Control	Entry	Content	Allowed	Action	Exit
205	1	1	NA	NO	No	No	NO	No
206	10	5	NA	Yes	NA	Yes	Yes	NO
207	10	5	NA	Yes	NA	Yes	Yes	NO
208	Unlimited	5	NA	Yes	NA	Yes	Yes	NO
209		5	NA	Yes	NA	Yes	Yes	NO ¹
210 211	Unlimited 10	10 5	NA NA	Yes Yes	NA NA	Yes Yes	Yes¹   Yes	NO NO
211	10	5	No ²	Yes	Yes	Yes	Yes	NO NO
	10	5	NA	Yes	NA	Yes	i Yes	NO NO
214	10	5	NA	Yes	NA	Yes	Yes	NO
	Unlimited	5	NA	Yes	Yes	Yes	Yes	NO
216	10	5	NA	Yes	NA	Yes	Yes ³	NO NO
217	14	1	NA	Yes	NA	Yes	Yes	NO
218	105	5	NA	Yes	Yes ⁵	Yes	Yes	NO
219	106	5	NA	Yes	NA	Yes	Yes	NO
220	10	5	NA	Yes	NA	Yes	Yes	NO NO
221	10	5 5 5 5 5	NA	Yes	Yes	Yes	Yes	NO NO
222	10 10	5	NA NA	Yes Yes	Yes Yes	Yes Yes	Yes Yes	NO NO
223	10		NA	Yes	Yes	Yes	Yes	NO NO NO NO NO NO NO NO NO NO NO NO NO N
225	10		NA	Yes	Yes	Yes	Yes	NO I
226	10	5 5	NA	Yes	NA	Yes	Yes	NO NO
227	10	5	NA	Yes	NA	Yes	Yes	NO
229	10	5 5	NA	Yes	NA	Yes	Yes	NO
230	1	1	NA	NO	NA	Yes	NO NO	NO I
231	10	5 5	NA	Yes	NA	Yes	Yes	NO
232	10	5	NA	Yes	NA	Yes	Yes	NO
233-		5	NA	Yes	NA	Yes	Yes	NO
237	_							
240	1		NA	No	NA	Yes	No	NO
241-		5	NA	Yes	NA	Yes	Yes	NO
285    286	10	5	NA	Yes	NA	Yes	Yes	NO I
287	10	5	NA	Yes	NA	Yes	Yes	
288	10	5	NA	Yes	NA	Yes	Yes	NO I
289-		5	NA	Yes	NA	Yes	Yes	NO
301		i		i				i i
<u> </u>		L		L]	LJ		L	L
			aken except to d			For bound	lary alignme	nt,
			art of the supp					
			er is not suppl					
			rol character.					
			is a printer, t l instead as the					
			aracter would h					
			possible ones.					
			inged to provide				TO RELATE TO	∽   
			s of return to e					i
			ror if the END				AD statement.	. No
messa	ige or trace	eback is pr	inted and the e	error count	is not a	ltered.		Í
5For a	⁵ For an input/output error, the buffer may have been partially filled or not filled at							
all w	all when the error was detected. Thus, the buffer contents could be blank when							
	printed. When an ERR parameter is specified in a READ statement, it is honored even							
			e is greater th					
			ecessarily mean					
			ging run, since				a loop could	a İ
cause	e 10 occurre	ences of th	he message for t	ne same mis	ssing DD	card.		ļ

# Option Bits

The field that is defined as the user-exit address also serves as a means of specifying standard corrective action. When the table entry contains an address, the user exit is specified; when it contains the integer 1, standard correction is specified. It is not possible at program installation time to create an option table entry with the user-exit address specified. The user exit must be specified by altering the option table at execution time. To specify that no corrective action, either standard or user-written, is to be taken, the table entry must specify that only one error is to be allowed before termination of execution.

To make changes to the option table dynamically at load module execution time, the programmer calls one of four subroutines; these subroutines are summarized below.

# SUBPROGRAMS FOR THE EXTENDED ERROR HANDLING FACILITY

IBM provides four subroutines for use in extended error handling: ERRSAV, ERRSTR, ERRSET, and ERRTRA. These subroutines allow access to the option table to alter it dynamically.

Certain option table entries may be protected against alteration when the option table is set up. If a request is made by means of CALL ERRSTR or CALL ERRSET to alter such an entry, the request is ignored. See Table III-3 for those IBM-supplied option table entries that cannot be altered.

Changes made dynamically are in effect for the duration of the program that made the change. Only the current copy of the option table in main storage is affected; the copy in the FORTRAN library remains unchanged. All passed parameters, unless otherwise indicated, are 4-byte (fullword) integers.

## ERRSAV Subroutine

The CALL ERRSAV statement is used to modify an entry temporarily. The statement causes an option table entry to be copied into an 8-byte storage area accessible to the FORTRAN programmer. CALL ERRSAV has the format:

CALL ERRSAV (ierno, tabent)

where:

ierno is the error number to be referenced in the option table. Should any number not within the range of the option table be used, an error message will be printed.

tabent

is the name of an 8-byte storage area where the option table entry is to be stored.

An example of CALL ERRSAV is:

CALL ERRSAV (213, ALTERX)

The example states that error number 213 is to be stored in the area named ALTERX.

## ERRSTR Subroutine

To store an entry in the option table, the following statement is used:

CALL ERRSTR (ierno, tabent)

where:

ierno

is the error number for which the entry is to be stored in the option table. Should any number not within the range of the option table be used, an error message will be printed.

tabent

is the name of an 8-byte storage area containing the table entry data.

An example of CALL ERRSTR is:

CALL ERRSTR (213, ALTERX)

The example states that error number 213. Stored in ALTERX, is to be restored to the option table.

[]	Parameters	r	r
	Passed to		User-Supplied Corrective Action
205	A, B, D	Program Termination	See Note 2
206	A,B,I	I=low order part of number for input too large.	User may alter I (See note 3).
211	A, B, C	Treat format field containing C as end of FORMAT statement.	<ul> <li>(a) If compiled FORMAT statement, put hexadecimal equivalent of character in C (see Note 1).</li> <li>(b) If variable format, move EBCDIC character into C (see Note 1).</li> </ul>
212	A, B, D	<u>Input</u> : Ignore remainder of I/O list. <u>Output</u> : Continue by starting new output record. Supply carriage control character if required by Option Table.	See Note 2.
213	A, B, D	Ignore remainder of I/O list.	See Note 2.
214			If user correction is requested, the remainder of the I/O list is ignored.
215		character.	The character placed in E will be sub- stituted for the invalid character; input/output operations may not be performed (see Note 1).
217		Increment FORTRAN sequence number and read next file.	See Note 2.
218²	A, B, D, F	Ignore remainder of I/O list.	See Note 2.
219-	A,B,D	Ignore remainder of I/O list.	See Note 2.
225	• • •		The character placed in E will be sub- stituted for the invalid character (see Note 1).
226	i i	R=0 for input number too small; R=16 ⁶³ -1 for input number too large.	User may alter R.
227	A, B, D	Ignore remainder of I/O list.	See Note 2.
229	A, B, D	Ignore remainder of I/O list.	See Note 2.
231	A, B, D	Ignore remainder of I/O list.	See Note 2.

Table III-4. Corrective Action After Error Occurrence (Part 1 of 2)

Table III-4. Corr	ective Action	After Error	Occurrence	(Part 2	of	2)
-------------------	---------------	-------------	------------	---------	----	----

Error	Parameters Passed to Use ¹		User Supplied Corrective Action		
232	A, B, D, G	Ignore remainder of I/O list.	See Note 2.		
233	A, B, D	Change record number to list maximum allowed (32,000).	See Note 2.		
234- 236		Ignore remainder of I/O list.	See Note 2.		
237	A, B, D, F	Ignore remainder of I/O list.	See Note 2.		
238	A, B, D	Ignore remainder of I/O list.	See Note 2.		
286	A, B, D	Ignore Request	See Note 2.		
287	A, B, D	Ignore Request	See Note 2.		
288	A, B, D	Implied Wait	See Note 2.		
A       Address of return code field (INTEGER*4)         B       Address of error number (INTEGER*4)         C       Address of invalid format character (LOGICAL*1)         D       Address of data set reference number (INTEGER*4)         E       Address of invalid character (LOGICAL*1)         F       Address of DECB         G       Address of record number requested (INTEGER*4)         I       Result after conversion (INTEGER*4)         R       Result after conversion (INTEGER*4)         R       Result after conversion (REAL*4)         'If error condition 218 (input/output error detected) occurs while error messages are         being written on the object error data set, the message is written on the console and         the job is terminated.         If no DD card has been supplied for the object error data set, error message         IH0219I is written out on the console and the job is terminated.					
<ul> <li>Notes: <ol> <li>Alternatively, the user can set the return code to 0, thus requesting a standard corrective action.</li> <li>If the error was not caused during asynchronous input/output processing, the user exit-routine cannot perform any asynchronous I/O operation and, in addition, may not perform any REWIND, BACKSPACE, or ENDFILE operation. If the error was caused during asynchronous input/output processing, the user cannot perform any input/output operation. On return to the library, the remainder of the input/output request will be ignored.</li> <li>The user exit routine may supply an alternative answer for the setting of the result register. The routine should always set an INTEGER*4 variable and the FORTRAN library will load fullword or halfword depending on the length of the argument causing the error.</li> </ol> </li> </ul>					

## ERRSET Subroutine

The CALL ERRSET statement permits the user to change up to five different options. It consists of six parameters. The last four parameters are optional, but each omitted parameter must have its place noted by a comma and a zero if succeeding parameters are specified. (Omitted parameters at the end of the list require no place notation.) CALL ERRSET has the format:

CALL ERRSET (ierno, inoal, inomes, itrace, iusadr, irange)

where:

ierno is the error number to be referenced in the option table. Should any number not within the range of the option table be used, an error message will be printed. (Note that if ierno is specified as 212, there is a special relationship between the ierno and irange parameters. See the explanation for irange.)

## inoal

is an integer specifying the number of errors permitted before execution is terminated. If inoal is specified as either zero or a negative number, the specification is ignored, and the number-of-errors option is not altered. If a value of more than 255 is specified, an unlimited number of errors is permitted.

#### inomes

is an integer indicating the number of messages to be printed. A negative value specified for inomes causes all messages to be suppressed; a specification of zero indicates that the number-of-messages option is not to be altered. If a value greater than 255 is specified, an unlimited number of error messages is permitted.

#### itrace

is an integer whose value may be 0, 1, or 2. A specification of 0 indicates the option is not to be changed; a specification of 1 requests that no traceback be printed after an error occurrence; a specification of 2 requests the printing of a traceback after each error occurrence. (If a value other than 1 or 2 is specified, the option remains unchanged.)

#### iusadr

specifies one of the following:

- The value 1, as a 4-byte integer, indicating that the option table is to be set to show no user-exit routine (i.e., standard corrective action is to be used when continuing execution).
- 2. The name of a closed subroutine that is to be executed after the occurrence of the error identified by ierno. The name must appear in an EXTERNAL statement in the source program, and the routine to which control is to be passed must be available at link editing time.
- 3. The value 0, indicating that the table entry is not to be altered.

#### irange

serves a double function. It specifies one of the following:

- An error number higher than that specified in ierno. This number indicates that the options specified for the other parameters are to be applied to the entire range of error conditions encompassed by ierno and irange. (If irange specifies a number lower than ierno, the parameter is ignored, unless ierno specifies the number 212.)
- 2. A print control character if ierno specified 212. The value 1 is specified to provide single spacing for an overflow line (standard fixup for WRITE statements). If a value other than 1 is specified, no print control is provided.

The default value 0 is assumed if the parameter is omitted (i.e., no print control is provided, and the values specified for all parameters apply only to the error condition number in ierno).

Examples of CALL ERRSET are:

## Example 1:

CALL ERRSET (310,20,5,0,MYERR,320)

This example specifies the following:

- 1. Error condition 310 (ierno)
- The error condition may occur up to 20 times (inoal)
- 3. The corresponding error message may be printed up to 5 times (inomes)
- 4. The default for traceback information is to remain in force (itrace)
- The user-written routine MYERR is to be executed after each error occurrence (iusadr)
- The same options are to apply to all error conditions from 310 to 320 (irange)

#### Example 2:

CALL ERRSET (212,10,5,2,1,1)

This example specifies:

- 1. Error condition 212
- 2. The condition may occur up to 10 times

- 3. The corresponding message may be printed up to 5 times
- Traceback information is to be displayed after each error occurrence
- 5. Standard corrective action is to be executed after an error
- 6. Print control is to be employed

For illustration purposes, this example explicitly specifies all default options except in requesting print control.

#### Example 3:

CALL ERRSET (212,0,0,0,0,1)

This example illustrates an alternate method of specifying exactly the same options as the second example. It states that no changes are to be made to default settings except in requesting print control.

#### ERRTRA Subroutine

The CALL ERRTRA statement permits the user to dynamically request a traceback and continued execution. It has the format:

CALL ERRTRA

The call has no parameters.

## USER-SUPPLIED ERROR HANDLING

The user has the ability of calling, in his own program, the FORTRAN error monitor (ERRMON) routine, the same routine used by FORTRAN itself when it detects an error. ERRMON examines the option table for the appropriate error number and its associated entry and takes the actions specified. If a user-exit address has been specified, ERRMON transfers control to the user-written routine indicated by that address. Thus, the user has the option of handling errors in one of two ways: (1) simply by calling ERRMON without supplying a user-written exit routine; or (2) by calling ERRMON and providing a user-written exit routine.

In either case, certain planning is required at the installation level. For example, error numbers must be assigned to error conditions to be detected by the user, and additional option table entries must be made available for these conditions. The routine that uses the error monitor for error service should have the status of an installation general-purpose function similar to the IBM-supplied mathematical functions. The number of installation error conditions must be known when the FORTRAN library is created at program installation time, so that entries will be provided in the option table by the ADDNTRY parameter of the FORTLIB macro instruction. The error numbers chosen for user subprograms are restricted in range. IBM-designated error conditions have reserved error codes from 000 to 301. Error codes for installation-designated error situations must be assigned in the range 302 to 899. The error code is used by FORTRAN to find the proper entry in the option table.

To call the ERRMON routine, the following statement is used:

CALL ERRMON (imes, iretcd, ierno [, data1, data2,...] )

where:

imes

is the name of an array aligned on a fullword boundary, that contains, in EBCDIC characters, the text of the message to be printed. The number of the error condition should be included as part of the text, because the error monitor prints <u>only</u> the text passed to it. The first item of the array contains an integer whose value is the length of the message. Thus, the first four bytes of the array will not be printed. If the message length is greater than the length of the buffer, it will be printed on two or more lines of printed output.

iretcd

is an integer variable made available to the error monitor for the setting of a return code. The following codes can be set:

- 0 -- The option table or user-exit routine indicates that standard correction is required.
- 1 -- The option table indicates that a
   user exit to a corrective routine
   has been executed. The function
   is to be reevaluated using
   arguments supplied in the
   parameters data1,data2 . . .
   For input/output type errors, the
   value 1 indicates that standard
   correction is not wanted.

ierno
 is the error condition number in the
 option table. Should any number not
 within the range of the option table
 be specified, an error message will be
 printed.

data1, data2 . . . are variable names in an errordetecting routine for the passing of arguments found to be in error. One variable must be specified for each argument. Upon return to the errordetecting routine, results obtained from corrective action are in these variables. Because the content of the variables can be altered, the locations in which they are placed should be used only in the CALL statement to the error monitor; otherwise, the user of the function may have literals or variables destroyed.

> Since data1 and data2 are the parameters which the error monitor will pass to a user-written routine to correct the detected error, care must be taken to make sure that these parameters agree in type and number in the call to ERRMON and in a user-written corrective routine, if one exists.

> Note: If optimization has been requested, current values of variables may not be correct.

An example of CALL ERRMON is:

CALL ERRMON(MYMSG, ICODE, 315, D1, D2)

The example states that the message to be printed is contained in an array named MYMSG, the field named ICODE is to contain the return code, the error condition number to be investigated is 315, and arguments to be passed to the user-written routine are contained in fields named D1 and D2.

Figure III-18 illustrates the use of the CALL ERRSET and CALL ERRMON statements in a program utilizing a user-supplied subprogram to handle divide-by-zero situations. The CALL ERRSET and CALL ERRMON statements are highlighted for easier reference.

## User-Supplied Exit Routine

When a user-exit address is supplied in the option table entry for a given error number, the error monitor calls the

specified subroutine for corrective action. The subroutine may be user-written and is called by assembler-language code equivalent to the following statement:

CALL x (iretcd, ierno, data1, data2...)

where:

x

is the name of the subroutine whose address was placed into the option table by the iusadr parameter of the CALL ERRSET statement. (Interpretations of the other parameters -- iretcd, ierno, data1, data2 -- are the same as those for the CALL ERRMON statement.)

If an input/output error is detected (i.e., an error for codes 211-237, 286-288), and the error originally was caused by a FORTRAN input/output statement, subroutine x must not execute any FORTRAN input/output statements, but may issue an asynchronous input/output statement. If the original error was caused by an asynchronous input/output statement, subroutine x may issue a FORTRAN input/output statement but must not issue an asynchronous input/output statement. Similarly, if errors for codes 216 or 241-301 occur, the subroutine x must not call the library routine that detected the error or any routine which uses that library routine. For example, a statement such as

R = A ** B

cannot be used in the exit routine for error 252, because the FORTRAN library subroutine FRXPR# uses the function subprogram EXP, which detects error 252.

Note: Although a user-written corrective routine may change the setting of the return code (iretcd), such a change is subject to the following restrictions:

- If iretcd is set to 0, then data1 and data2 must not be altered by the corrective routine, since standard corrective action is requested. If data1 and data2 are altered when iretcd is set to 0, the operations that follow will have unpredictable results.
- Only the values 0 and 1 are valid for iretcd. A user-exit routine must ensure that one of these values is used if it changes the return code setting. A value other than 0 or 1 will cause unpredictable results.

	2P1 EXEC FORTXCLG T.SYSIN DD *	
	MAIN PROGRAM THAT USES THE SUBROUTINE DIVIDE	
	COMMON E	
	EXTERNAL FIXDIV	
	SET UP OPTION TABLE WITH ADDRESS OF USER EXIT	1979 and 1979 States and 1979
	CALL ERRSET(302,30,5,1,FIXDIV)	
and Andrew Marine States	<b>E=0</b>	
ang si silan Manangka	GET VALUES TO CALL DIVIDE WITH	32.3640
	READ(5,9) A,B	
	IF(B) 1,2,1 E=1.0	(14 a)
norse interactiones Anteractiones	CALL DIVIDE(A, B, C)	
14 (1997) 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19	WRITE(6,10)C	n de la comita Referencia de la comita de la comita de la comita de la comita de la comita de la comita de la c
0	FORMAT(2E20.8) FORMAT('1', 2E20.8)	
an an an an an an an an an an an an an a	STOP	
Kiret (ö Maggeret	END	
	SUBROUTINE DIVIDE (A, B, C)	25. 15
	ROUTINE TO PERFORM THE CALCULATION C=A/B IF B=0 THEN USE ERROR MESSAGE FACILITY TO SERVICE ERROR	
	PROVIDE MESSAGE TO BE PRINTED	0-15432
	DIMENSION MES(4)	
	DATA MES(1)/12/, MES(2)/' DIV'/, MES(3)/'3021'/, MES(4)/' B=0'/	
	DATA RMAX/27FFFFFF/	1
	MESSAGE TO BE PRINTED IS DIV3021 B=0	
	ERROR CODE 302 IS AVAILABLE AND ASSIGNED TO THIS ROUTINE	
	STEP1 SAVE A, B IN LOCAL STORAGE	
Contractory Contractory	D=A	Carlo Carlo
	E=B STEP2 TEST FOR ERROR CONDITION	1912
00	IF(E) 1,2,1	
3	NORMAL CASE COMPUTE FUNCTION	
	C=D/E	
	RETURN STEP3 ERROR DETECTED CALL ERROR MONITOR	
	SIEFS ERROR DETECTED CALL BRROK MORITOR	
2	CALL ERRMON(MES, IRETCD, 302, D, E)	
2	STEP 4 BE READY TO ACCEPT A RETURN FROM THE ERROR MONITOR	
	IF(IRETCD) 5,6,5	
	IF IRETCD=0 STANDARD RESULT IS DESIRED STANDARD RESULT WILL BE C=LARGEST NUMBER IF D IS NOT ZERO	
	CR C=0 IF E=0 AND D=0	a Sub
	IF(D) 7,8,7	
1. Con	C=0.0	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
1	GO TO 9 C=RMAX	1.1
,	RETURN	
	USER FIX UP INDICATED. RECOMPUTE WITH NEW VALUE PLACED IN E	4.+1. 
5	GO TO 100	
	END SUBBOUTTINE FLYDTH (IPETCD ING A P)	
	SUBROUTINE FIXDIV(IRETCD, INO, A, B) THIS IS A USER EXIT TO SERVE THE SUBROUTINE DIVIDE	
	THE PARAMETERS IN THE CALL MATCH THOSE USE IN THE CALL TO ERRMON MADE BY SUBROUTINE DIVIDE	Jane
S KANA S .	ERRMON MADE BY SUBROUTINE DIVIDE	
1000	STEP1 IS ALTERNATE VALUE FOR B AVAILABLE MAIN PROGRAM HAS SUPPLIED A NEW VALUE IN E. IF E=0 NO NEW VALUE IS AVAILABLE	
	COMMON E	
	IF(E) 1.2.1	
iner er	NEW WATTE AVATTABLE TAKE LICED CODDECTION BYTT	and the se
1.11	B=E RETURN	and a strength
	RETURN NEW VALUE NOT AVAILABLE USE STANDARD FIX UP	17 3 A.
	IRETCD=0	and the
	RETURN	
	BND	and she
		2-30225-693
*	SYCIN DD .	
20 C C C R R R R R R R R R R R R R R R R	SYSIN DD * 0.1E00 0.0E00	

Figure III-18. Sample Program Using Extended Error Handling Facility

The user-written exit routine can be written in FORTRAN or in assembler language. In either case, it must be able to accept the call to it as shown above. The user-exit routine must be a closed subroutine that returns control to the caller.

If the user-written exit routine is written in assembler language, the end of the parameter list can be checked. The high-order byte of the last parameter will have the hexadecimal value 80. If the routine is written in FORTRAN, the parameter list must match in length the parameter list passed in the CALL statement issued to the error monitor.

When the extended error handling facility encounters a condition or a request that requires user notification, an informative message is printed.

The error monitor is not recursive; if it has already been called for an error, it cannot be re-entered if the user-written corrective routine causes any of the error conditions that are listed in the option table. Boundary misalignment is therefore not allowed in a user-exit routine.

Actions the user may take if he wishes to correct an error are described in Tables III-4, III-5, and III-6.

# OPTION TABLE CONSIDERATIONS

Figures III-19 and III-20 describe the fields of the option table and list the default values for the contents of these fields.

When a user-written exit subroutine is to be executed for a given error condition, the programmer must enter the address of the routine into the option table entry associated with that error condition.

Addresses for user-exit subroutines cannot be entered into option table entries during program installation. An installation may, however, construct an option table containing user-exit addresses and place that option table into the FORTRAN library. (Each address must be specified as a V-type address constant.) Use of this procedure, though, results in the inclusion, in the load module, of all such user-exit subroutines by the linkage editor.

If the user-exit address is not specified in advance through the use of V-type address constants, the programmer must issue a CALL ERRSET statement at execution time to insert an address into the option table that was created during program installation.

The programmer should be warned that altering an option table entry to allow "unlimited" error occurrence (specifying a number greater than 255) may cause a program to loop indefinitely.

CONSIDERATIONS FOR THE LIBRARY WITHOUT EXTENDED ERROR HANDLING FACILITY

When the extended error handling facility is not chosen, execution terminates after the first occurrence of an error, unless it is one caused by boundary misalignment, divide check, exponent underflow, or exponent overflow. The messages for errors 205, 215, 216, 218, 221-230, 228, and 238-301 are the same as those with the extended error handling facility. The other error messages are of the form "IHOXXXI" with no text.

Without the extended error handling facility, ERRMON becomes an entry point to the traceback routine. User programs that call the error monitor do not have to be altered. The error message will be printed with a traceback map and execution will terminate.

Note, that if the facility is not selected, the ERRTRA, ERRSET, ERRSAV, and ERRSTR subprograms are assumed to be user supplied if they are called in a FORTRAN program.

Field Contents	Field Length in Bytes	Default	Field Description
Number of entries	4	97	Number of entries in the Option Table.
Boundary alignment	1	40 (hexa- decimal)	Bit 1 indicates whether boundary alignment was chosen at program installation time. Bits 0 and 2 through 7 are reserved for future use. Bit 1: 0 indicates NOALIGN 1 indicates ALIGN
Extended error handling	1	FF (hexa- decimal)	<pre>Indicates whether extended error handling was chosen at program installation time. FF indicates that extended error handling was     excluded. 00 indicates that extended error handling was     included.</pre>
Alignment count	1	10	Maximum number of boundary alignment messages allowed when extended error handling is not chosen.
Reserved	1	0	Reserved for future use.

Figure III-19. Option Table Preface

•	Field  Length  in bytes	    Default ¹	T     		Field Description	
Number  of error  occurrences  allowed		102	Number of times this error condition should be allowed to occur. When the value of the error coun field (below) equals this value, job processing is terminated. Number may range from 0 to 255. A value of 0 means an unlimited number of occurrences. ³			
Number  messages  to print	1	54	Number of times the corresponding error message is to be printed before message printing is suppressed. A value of 0 means no message is to be printed.			
Error count	1	0	val		of times this error has occurred. A indicates that no occurrences have been	
Option bits	1	42 (hexa- decimal)	set	ting is <u>Setting</u> 1 1 0 <u>1</u> 0 <u>1</u> 1	n bits defined as follows (the default underscored): <u>Explanation</u> No control character supplied for [overflow lines. [Control character supplied to provide [single spacing for overflow lines. Table entry cannot be modified. ⁵ Table entry can be modified. Fewer than 256 error have occurred. [More than 256 errors have occurred. [Add 256 to error count field above to determine the number.) Do not print buffer contents with error message. Print buffer contents.	
				<u></u>	Reserved.	
			5		Print messages default number of times only. Unlimited printing requested; print for every occurrence of error.	
			6		Do not print traceback map. Print traceback map.	
 			7	<u>0</u>	Reserved.	
User exit	4	1	1  Indicates where a user corrective routine is    located. A value of 1 indicates that no user-    written routine is available. A value other than 1    specifies the address of the user-written routine.			
¹ The default values shown apply to all error numbers (including additional user entries) unless excepted by a footnote. ² Errors 208, 210, and 215 are set as unlimited, and errors 205, 217, 230, and 240 are set to 1. ³ An unlimited number of errors may cause the FORTRAN job to loop indefinitely until the operator intervenes. ⁴ Error 210 is set to 10, and errors 205, 217, 230, and 240 are set to 1. ⁵ The entry for errors 205, 230, and 240 cannot be modified. ⁶ The entry is set to 0 except for errors 212, 215, 218, 221, 222, 223, 224, and 225.						

[]			Opti	ons	
Error Code	FORTRAN Reference (See Note 1)	Invalid Argument Range	Standard Corrective Action (See Notes 2 and 3)	User-Supplied Corrective Action (See Note 4)	
216	CALL SLITE (I)	1>4	The call is treated as a NO OP (an instruc- tion that requests no action be performed)	I	
216	CALL SLITET (I,J)	1>4	  J=2 	I	
241	K=I**J	I=0, J≤0	K=0	I,J	
242	<b>X=X*</b> *I	X=0, I≤0	If I=0, Y=1 If I<0, Y=•	Х,І	
243	DA=D**I	D=0, I≤0	If I=0, Y=1 If I<0, Y=•	D <b>,</b> I	
244	XA=X**Y	X=0, Y≤0	XA=0	Х,Ү	
245	DA=D**DB	D=0, DB≤0	DA=0	D,DB	
246	CA=C**I	C=0+0i, I≤0	If I=0, C=1+0 If I<0, C=•+0i	C,I	
247	CDA=CD*I	C=0+0i, I≤0	If I=0, C=1+0 If I<0, C=•+0i	CD,I	
251	Y=SQRT (X)	X<0	Y= X 1/2	х	
252	Y=EXP (X)	X>174.673	Y=●	х	
253	Y=ALOG (X)	x=0 x<0	Y=-•   Y=log   X	x x	
	Y=ALOG10 (X)	x=0 x<0	¥=-•  ¥=log₁₀  X	x x	
254	Y=COS (X) Y=SIN (X)	X ≥2 <b>18≉</b> 77	¥=√ <u>2/2</u>	x	
255	Y=ATAN2 (X,XA)	X=0, XA=0	Y=0	Х, ХА	
<pre>Notes: 1. The variable types are as follows: <u>Variable</u> Type I,J INTEGER*4 X,XA,Y REAL*4 D,DA,DB REAL*8 C,CA COMPLEX*8 Z,X1,X2 Complex variables to be given the length of the functioned argument when they appear. CD COMPLEX*16 2. The largest number that can be represented in floating point is indicated by the symbol •. 3. The value e=approximately 2.7183.</pre>					
			by recomputation of the e parameters listed.	function using the	

Table III-5. Corrective Action After Mathematical Subroutine Error Occurrence (Part 1 of 4)

FORTRAN Reference (See Note 1)	Invalid Argument	Standard	Heer Cumplied
	Range	Corrective Action (See Notes 2 and 3)	User-Supplied Corrective Action (See Note 4)
Y=SINH (X) Y=COSH (X)	X ≤175 <b>.</b> 366	Y=(SIN X) • Y=•	x
Y=ARSIN (X) Y=ARCOS (X)	X >1	If X>1.0, ARSIN(X) = $\frac{\pi}{2}$ If X<-1.0, ARSIN(X) = $-\frac{\pi}{2}$ If X>1.0, ARCOS=0 If X<-1.0, ARCOS= $\pi$	х
Y=TAN (X) Y=COTAN (X)	X ≥(2 ¹⁸ )*π	Y=1	X
Y=TAN (X)	X is too close to an odd multiple of $\frac{\pi}{2}$	Y=●   	х
Y=COTAN (X)	X is too close to a multiple of $\pi$	Y=●	x
DA=DSQRT (D)	D<0	DA= D 1/2	D
DA=DEXP (D)	D>174.673	DA=•	D
DA=DLOG (D)	D=0 D<0	DA=-•  DA=log X	D
DA=DLOG10 (D)	D=0 D<0	DA=-• DA=log ₁₀  X	D
DA=DSIN (D) DA=DCOS (D)	D ≥2 ⁵⁰ ≠π	DA=√2/2	D
DA=DATAN2(D,DB)	D=0,DB=0	DA=0	D, DB
DA=DSINH (D) DA=DCOSH (D)	D ≥ <b>175.</b> 366	DA=(SIN X)• DA=•	D
DA=DARSIN (D) DA=DARCOS (D)	D >1	If X>1.0, DARSIN(X) = $\frac{\pi}{2}$ If X<-1.0, DARSIN(X) = $-\frac{\pi}{2}$ If X>1.0, DARCOS=0 If X<-1.0, DARCOS= $\pi$	D
VariableType $I,J$ INTE $X,XA,Y$ REAL $D,DA,DB$ REAL $C,CA$ COME $Z,X_1,X_2$ Comp $CD$ COME $clargest$ number t $bol \bullet.$ $e$ value $e=approxim$	GER*4 ,*4 ,*8 PLEX*8 plex variables to gument when they PLEX*16 that can be represented by 2.7183	appear. sented in floating point	is indicated by the
	Y=ARCOS (X) Y=TAN (X) Y=COTAN (X) Y=TAN (X) Y=TAN (X) Y=COTAN (X) DA=DSQRT (D) DA=DEXP (D) DA=DLOG (D) DA=DLOG (D) DA=DLOG (D) DA=DLOG (D) DA=DSIN (D) DA=DCOS (D) DA=DATAN2 (D, DB) DA=DATAN2 (D, DB) DA=DARSIN (D) DA=DARSIN (D) DA=DARSIN (D) DA=DARSIN (D) DA=DARCOS (D) Variable types a <u>Variable Type</u> I,J INTE X,XA,Y REAL D,DA,DB REAL C,CA COME Z,X1,X2 COME largest number to value e=approxim user-supplied an	Y=ARCOS (X) Y=TAN (X) Y=COTAN (X) Y=TAN (X) Y=TAN (X) Y=COTAN (X) Y=COTAN (X) Y=COTAN (X) Y=COTAN (X) Y=COTAN (X) X is too close to a multiple of $\frac{\pi}{2}$ Y=COTAN (X) X is too close to a multiple of $\pi$ DA=DSQRT (D) D<0 DA=DEXP (D) D=0 D<0 DA=DLOG (D) D=0 D<0 DA=DLOG (D) D=0 D<0 DA=DLOG (D) D=0 D<0 DA=DLOG (D) D=0 D<0 DA=DCOS (D) DA=DATAN2(D,DB) D=0,DB=0 DA=DSINH (D) DA=DATAN2(D,DB) D=0,DB=0 DA=DSINH (D) DA=DATAN2(D,DB) DA=DARSIN (D) DA=DARSIN (D) DA=DARCOS (D) Variable types are as follows: Variable Type I,J INTEGER*4 X,XA,Y REAL*4 D,DA,DB REAL*8 C,CA COMPLEX*8 Z,X1,X2 Complex variables to argument when they CD COMPLEX*16 largest number that can be repre- bol •. value e=approximately 2.7183 user-supplied answer is obtained	Y=ARCOS (X)If X<-1.0, ARCIN(X)=- $\frac{1}{2}$ Y=TAN (X) $ X  \ge (2^{1.0}) * \pi$ If X<-1.0, ARCOS= $\pi$ Y=TAN (X)X is too closeY=•Y=TAN (X)Y is too closeY=•y=TAN (X)D>=0DA=-•DA=DLOG (D)D=0DA=-•DA=DCOS (D)ID  >DA=0DA=DCOS (D)ID  >If X>1.0, DARCOS=0DA=DAROS (D)ID  >If X>1.0, DARCOS=0Uariable types are as follows:YariableYariable types are as follows:YariableYariable types are as follows:YariableYariable types are as follows:Yariable to be given the length of too argument when they appear.CDC

Table III-5. Corrective Action After Mathematical Subroutine Error Occurrence (Part 2 of 4)

[			Opti	lons			
Error Code	FORTRAN Reference (See Note 1)	Invalid Argument Range	Standard Corrective Action (See Notes 2 and 3)	User-Supplied Corrective Action (See Note 4)			
268	DA=DTAN (D) DA=DCOTAN (D)	X ≥2 ⁵⁰ ≠π	DA=1	D			
269	DA=DTAN (D)	D is too close to an odd $\frac{\pi}{2}$ multiple of $\frac{\pi}{2}$	DA=∙	D			
	DA=DCOTAN (D)	D is too close to a multiple of <i>m</i>	DA=∙	D			
For e	For errors 271 through 275, $C=X_1+iX_2$						
271	Z=CEXP (C)	X ₁ >174.673	Z=*(COS X ₂ + SIN X ₂ )	с			
272	Z=CEXP (C)	X ₂  ≥2 ¹⁸ ∗π	Z=e ^{X1} +0*i	с			
273	Z=CLOG (C)	C=0+0i	Z=-•+0i	С			
274	Z=CSIN (C) Z=CCOS (C)	X ₁  ≤2 ¹⁸ ≉π	$Z=0+SINH(X_2)*i$ $Z=COSH(X_2)+0*i$	с			
275	Z=CSIN (C)	X ₂ >174.673	$Z= \bullet (SIN X_1 + iCOS X_1)$	с			
	Z=CCOS (C)		$Z = \underbrace{\bullet}_{2} (COS X_1 - iSIN X_1)$	с			
	Z=CSIN (C)	X ₂ <-174.673	$\frac{Z=\bullet(SIN X_1-iCOS X_1)}{2}$	с			
	Z=CCOS (C)		$\frac{Z=\bullet}{2}(\cos X_1 + i \sin X_1)$	с			
Notes:         1. The variable types are as follows:         Variable       Type         I,J       INTEGER*4         X,XA,Y       REAL*4         D,DA,DB       REAL*8         C,CA       COMPLEX*8         Z,X1,X2       Complex variables to be given the length of the functioned         argument when they appear.       CD         CD       COMPLEX*16         2. The largest number that can be represented in floating point is indicated by the symbol •.         3. The value e=approximately 2.7183         4. The user-supplied answer is obtained by recomputation of the function using the value set by the user routine for the parameters listed.							

Table III-5. Corrective Action After Mathematical Subroutine Error Occurrence (Part 3 of 4)

Options						
Error Code	FORTRAN Reference (See Note 1)	Invalid Argument Range	Standard Corrective Action (See Notes 2 and 3)	User-Supplied Corrective Action (See Note 4)		
For e	rrors 281 through	285, CD=X ₁ +iX ₂		· · · · · · · · · · · · · · · · · · ·		
281	Z=CDEXP (CD)	X ₁ >174.673	$Z=*(COS X_2+iSIN X_2)$	CD		
282	Z=CDEXP (CD)	X ₂  ≥2 ⁵⁰ ≭π	Z=e ^X 1+0*i	CD		
283	Z=CDLOG (CD)	CD=0+0i	Z=-•+0i	CD		
284	Z=CDSIN (CD) Z=CDCOS (CD)	X ₁  ≥2 ⁵⁰ *π	$Z= 0+SINH(X_2)*i$ $Z= COSH(X_2)+0*i$	CD		
284	Z=CDSIN (CD) Z=CDCOS (CD)	X ₁  ≥2 ⁵⁰ *π	Z=0+0i	CD		
285	Z=CDSIN (CD)	X ₂ >174.673	$Z = \underbrace{\bullet}{2} (SIN X_1 + iCOS X_1)$	CD		
	Z=CDCOS (CD)		$Z= \bullet (COS X_1 - iSIN X_1)$	CD		
	Z=CDSIN (CD)	X2174.673	$\frac{Z=\bullet}{2}(SIN X_1-iCOS X_1)$	CD		
	Z=CDCOS (CD)		$\frac{Z=\bullet(\cos X_1+i\sin X_1)}{2}$	СD		
290	Y=GAMMA (X)	X≤2-252 or X≥57.5744	Ү=∙	x		
291	Y=ALGAMA (X)	X≤0 or X≥4.2937*10 ⁷³	¥=∙	x		
300	DA=DGAMMA (D)	D≤2-252 or D≥57.5774	DA=●	D		
301	DA=DLGAMA (D)	D≤0 or D≥4.2937*10 ⁷³	DA=●	D		
Notes: 1. The variable types are as follows: Variable Type I,J INTEGER*4 X,XA,Y REAL*4 D,DA,DB REAL*8 C,CA COMPLEX*8 Z,X1,X2 Complex variables to be given the length of the functioned argument when they appear. CD COMPLEX*16 2. The largest number that can be represented in floating point is indicated by the symbol •. 3. The value e= approximately 2.7183 4. The user-supplied answer is obtained by recomputation of the function using the value set by the user routine for the parameters listed.						

Table III-5. Corrective Action After Mathematical Subroutine Error Occurrence (Part 4 of 4)

[	Program In	terrupt Messages	Options				
Error	Parameters Passed to User Exit (Note 1)		Standard Corrective Action	User-Supplied Corrective Action			
207	D,I	(Interrupt Code 12)	Result register set to the largest possible floating point number. The sign of the result register is not altered.	User may alter D. (Note 3)			
208	D,I	Exponent underflow (Interrupt Code 13)	The result register is set to zero.	User may alter   D. (Note 3)			
209		divide (interrupt code 9), decimal divide (Interrupt Code 11), floating point Code 11), floating point divide (interrupt code	For floating point divide, where n/0 and n=0, result register is set to 0; where n≠0, result register set to largest possible floating point number. No standard fixup for other interrupts.				
210		(interrupt Code 6) occurs	action other than correct- ing boundary misalignments.	See Note 5.			
	Notes:       1         1. The variable types and meaning are as follows: <u>Variable Type</u> <u>Meaning</u> D       REAL*8         This variable contains the contents of the result         register after the interrupt.         I       INTEGER*4         I       INTEGER*4         The value for the number in D.       It may be used to         determine the amount of the underflow or overflow.         The value in I is not the true exponent, but what was         left in the exponent field of a floating point number						
after the interrupt. 2. A program interrupt asynchronously. Interrupts are described in the appropriate principles of operation publication, as listed in the Preface. 3. The user exit routine may supply an alternate answer for the setting of the result register. This is accomplished by placing a value for D in the user-exit routine. Although the interrupt may be caused by a long or short floating-point operation, the user-exit routine need not be concerned with this. The user-exit routine should always set a REAL*8 variable and the FORTRAN library will load a short or long data item depending upon the floating-point operation that caused the interrupt.							
t   5. 1   f	the message. The user-exi fixed-point	it routine does not have the divide check. The boundary	ontents of the result register e ability to change result re y alignment adjustments are is c before execution continues.	egisters after a informative			

Table III-6. Corrective Action After Program Interrupt Occurrence

APPENDIXES

The following examples show several methods of processing load modules.

## Example 1: Submitting a Job Consisting of One Job Step

<u>Problem Statement</u>: A previously created data set, SCIENCE.MATH.MATRICES, contains a set of 80 matrices. Each matrix is an array containing REAL*4 variables. The size of the matrices varies from 2x2 to 25x25; the average size is 10x10. The matrices are inverted by a load module MATINV in the library MATPROGS. Each inverted matrix is written (assume FORMAT control) as a single record on the data set SCIENCE.MATH.INVMATRS. The first variable in each record denotes the size of the matrix.

The input/output flow for the example is shown in Figure A-1. The job control statements used to define this job are shown in Figure A-2.

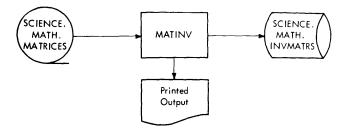



Figure A-1. Input/Output Flow for Example 1

Explanation: The JOB statement identifies the programmer as JOHN SMITH and supplies the account number 537. Control statements and control statement error messages are written in the SYSOUT data set.

The JOBLIB DD statement indicates that the private library MATPROGS is to be concatenated with the system library. The EXEC statement indicates that the load module MATINV is the program to be executed.

DD statement FT08F001 identifies the input data set, SCIENCE.MATH.MATRICES. (Data set reference number 8 is used to read the input data set.) Assume that this data set has been previously created and cataloged; therefore no information other than the data set name and disposition has to be supplied.

DD statement FT10F001 identifies the printed output. (Data set reference number 10 is used for printed output.)

DD statement FT04F001 defines the output data set. (Data set reference number 4 is used to write the data set containing the inverted matrices.) Because the data set is to be created and cataloged in this job step, a complete data set specification is supplied. The DSNAME parameter indicates that the data set is named SCIENCE.MATH.INVMATRS. The DISP parameter indicates that the data set is new and is to be cataloged. SPACE indicates that space is to be reserved for 80 records, 408 characters long (80 matrices of average size); when space is exhausted, space for 9 more records is allocated. The space is contiguous; any unused space is released, and allocation is to begin and end on cylinder boundaries.

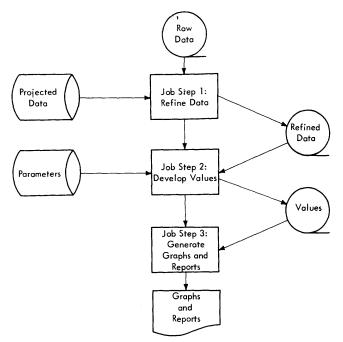
DCB indicates that records are variable-length (because the size of matrices vary). The record length is specified as 2504, the maximum size of a variable-length record. The maximum size of a record in this data set is the maximum number of elements (625) in any matrix multiplied by the number of bytes (4) allocated for an element, plus 4 for the segment control word (SCW). The buffer length is specified as 2508 (the 4 extra bytes are for the block control word (BCW) that contains the length of the block).

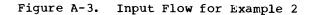
SEP indicates that read and write operations are to take place on different channels.

Sample Coding Form											
1-10	11-20	21-30	3140	41-50	51-60	61-70	71-80				
1234567890	1234567890	1234567890	1234567890	1234567890	1234567890	1234567890	1234567890				
//INVERT J	OB 537,JOH	NSMITH,MSG	LEVEL=1	<u> </u>							
//JOBLIB D	D DSNAME=M	ATPROGSODI	SP=OLD								
//INVERT E	XEC PGM=MA	TINV									
//FTØ8FØØ1	DD DSNAME	=SCIENCE.M	ATH .MATRIC	ES, DISP=OL	D						
//FT1ØFØØ1	DD SYSOUT	=A									
//FTØ4FØØ1	DD DSNAME	-SCIENCE.M	ATH.INVMAT	RS			1				
11	DISP=	(NEW)CATLG	);UNIT=DAC	LASSIVOLUM	E=SER=1Ø89	W ₁ , , , , , , , , , , , , , , , , , , ,	2				
11				NTIGIROUND			3				
//	DCB=(	RECFM=VB,L	RECL=2504,	BLKSIZE=25	Ø8		•				
				·····	· · · · · · · · · · · · · ·						

Figure A-2. Job Control Statements for Example 1

## Example 2: Submitting a Job Consisting of Multiple Job Steps


<u>Problem Statement</u>: Raw data gathered from a rocket test firing is to be converted in a report and graphs describing the success of the test. The data set RAWDATA contains the information gathered from the test firing.


Job step 1 executes the load module PROGRD. PROGRD compares the raw data in RAWDATA against forecasted results contained in the data set PROJDATA, and generates the data set &REFDATA containing refined data to be passed to the second job step.

Job step 2 executes the load module ANALYZ. ANALYZ processes &REFDATA against the data set PARAMS which contains parameters used in developing values, and generates the data set &VALUES containing results to be passed to the third job step.

Job step 3 executes the load module REPORT. REPORT prints the values in &VALUES as a series of reports and graphs.

Figure A-3 shows the I/O flow for this example. Figure A-4 shows the job control statements for the job. The load modules PROGRD, ANALYZ, and REPORT are contained in the private library FIRING.





Sample Coding Form											
1-10	11-20	21-30	3140	41-50	51-60	61-70	71-80				
1234567890		1234567890	1234567890	1234567890	234567890	1234567890	1234567890				
//TESTFIRE	JOB JOHN	SMITHOMSGL	EVEL=1								
//JOBLIB D	D DSNAME=F	IRINGDISP	= (OLD ) PASS	)	╵ <u>└──┶──┢──<u></u>┟──<u>┟──</u>┟──<u>┟─</u></u>						
//STEP1 EX	EC PGM=PRO	GRD									
//FT1ØFØØ1	DD DSNAME	=RAWDATA,D	ISP=OLD								
//FT11FØØ1	DD DSNAME	=PROJDATA;	DISP=OLD								
//FT12FØØ1	DD DSNAME	=&REFDATA	DISP=(NEW)	PASS) JUNIT	=TAPECLS		<b>1</b>				
11	VOLUM	E=(,RETAIN	9SER=21Ø7)	<b>9</b>			2				
11	DCB=(	DEN=29RECF	M=F>BLKSIZ	E,= <b>4ØØ</b> )	╞╍╍┶┲┠┲┎┰╍┙						
//STEP2 EX	EC PGM=ANA	LYZ	, <u>                                       </u>		┟┈┷╌┵╌╋╌╋╴╋╴┨╴╻╸╸╸╸						
//FT17FØØ1	DD DSNAME	=X.STEP1.F	T12FØØ1,DI	SP=OLD	, <u> </u>	<u></u>	·				
//FT18FØØ1	DD DSNAME	=PARAMS ) DI	SP=OLD	, <u> </u>	, <del> </del>						
//FT2ØFØØ1	DD DSNAME	≈&VALUES >D	ISP=(NEW,P	ASS);UNIT=	TAPECLS	, <u>  , , , ,                            </u>	<b>1</b>				
11	DCB=(	DEN=2, RECF	M=F,BLKSIZ	E=2Ø4) • VOL	UME=SER=21	Ø8	, <u>  , , , , , , , , , , , , , , , , , , ,</u>				
//STEP3 EX	EC PGM=REP	ORT	,   , , , , , <u>  , , , , , , ,</u>								
// FTØ8FØØ1	DD DSNAME	=¥•STEP2•F	T2ØFØØ1,DI	SP=OLD			<u>  , , , ,   , , , , , , , , , , , , , ,</u>				
//FTØ6F <b>ØØ</b> 1	DD UNIT=P	RINTER		. <u> </u>	<u>.</u>		· <u> </u>				
				· · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					

Figure A-4. Job Control Statements for Example 2

Explanation of Job Control Statements: In Figure A-4, the JOB statement indicates the programmer's name, JOHN SMITH, and specifies that control statements and control statement error messages are to be written in the SYSOUT data set. Because the first positional parameter indicating accounting information is omitted, its absence is noted by a comma.

The JOBLIB DD statement indicates that the private library FIRING is to be concatenated with the system library.

The EXEC statement STEP1 indicates that the load module PROGRD is to be executed.

DD statement FT10F001 and FT11F001 identify the data sets containing raw data (RAWDATA) and the forecasted results (PROJDATA) respectively.

DD statement FT12F001 defines the temporary data set &&REFDATA (data set reference number 12 is used to write &&REFDATA). DISP indicates that the data set is new and is to be passed to the next job step. UNIT indicates that the data set is to be written on one of the units contained in the device class TAPECLS. VOLUME indicates that the volume whose serial number is 2107 is to be used to contain the data set. DCB indicates that the volume is written in high density and that records are fixed-length with FORMAT control and a buffer length of 400.

The EXEC statement STEP2 indicates that the load module ANALYZ is to be executed.

DD statement FT17F001 identifies the data set containing refined data. It specifies the data set as the one defined on DD statement FT12F001 appearing in job step STEP1. DISP indicates that the data set is to be deleted after execution of this job step.

DD statement FT18F001 identifies a previously created and cataloged data set PARAMS.

DD statement FT20F001 defines the temporary data set &VALUES containing the

values to be printed. DISP indicates that the data set is new and is to be passed to the next job step. VOLUME and UNIT indicate that the data set is to be written on volume 2108 using a device in the device class TAPECLS. DCB indicates high density and fixed-length records (written under FORMAT control) with a buffer length of 204.

The EXEC statement STEP3 indicates that the load module REPORT is to be executed.

DD statement FT08F001 identifies the data set containing the values to be printed.

DD statement FT06F001 indicates that the device class PRINTER is to be used to print the reports (data set reference number 6 is used to write the data set).

#### Example 3: Updating a Direct-Access Data Set

A data set has been created that contains master records for an index of stars. Each star is identified by a unique 6-digit star identification number. Each star is assigned a record position in the data set by truncating the last two digits in the star identification number. Because synonyms arise, records are chained.

<u>Problem Statement</u>: Figure A-5 shows a block diagram illustrating the logic for this problem.

A card data set read from the input stream is used to update the star master data set. Each detail record in this data set contains:

- The star identification field of the star master record that the detail record is to update.
- 2. Six variables that are to be used to update the star master record.

The following conventions are observed in processing this data set:

- 1. The star master record that contains the record location counter pointing to space reserved for chained records is assigned to record location 1.
- 2. A zero in the chain variable indicates that the end of a chain has been reached.

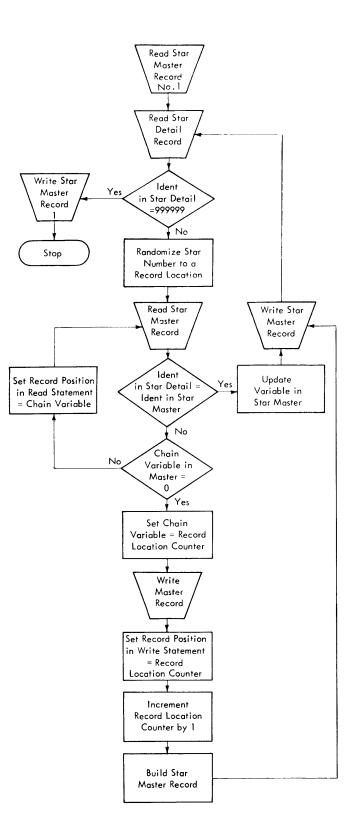



Figure A-5. Block Diagram for Example 3

- The first variable in each star master record is the star identification field; the second variable in each star master is the chain variable pointing to the next record in the chain.
- 4. Each record contains six other variables that contain information about that star.

When a detail record is read, its identification field is randomized and the appropriate star master record is read. If the correct star master record is found, the record is to be updated. If a star master is not found, then a star master record is to be created for that star.

The last record in the star detail data set contains star identification number 999999 to indicate the end of the data set.

Explanation: Figure A-5 is similar to the diagram shown in Figure III-2 except Figure A-5 includes blocks that describe updating variables in master records already present in the data set. (Figure III-2 includes blocks describing certain operations that must be performed when a direct access data set is created.) Also, Figure A-5 is adapted to Example 3, while Figure III-2 is more general. Figure A-6 shows the FORTRAN coding for this program. The star master record that contains the record counter is read, placing the record location counter in LOCREC. Whenever a detail record is read, the identification variable is checked to determine if the end of the detail data set has been reached. The star detail records contain the variables A, B, C, D, E, and F.

The identification number in the detail record is randomized and the result is placed in the variable NOREC, which is used to read a master record. The master record contains the star identification number (IDSTRM), a chain record location (ICHAIN), and six variables (T, U, V, X, Y, and Z) which are to be updated by the variables in the star detail records. IDSTRM and IDSTRD are compared to see if the correct star master is found. If it is not found, then the variables containing the chain record numbers are followed until the correct star master is found or a new star master is created.

Job Control Statements: The program shown in Figure A-6 is compiled and link edited, placing the load module in the data set STARPGMS and assigning the load module the name UPDATE. The data set that contains the star master records was cataloged and assigned the name STARMSTR when it was created. Figure A-7 shows the job control statements needed to execute the module UPDATE.

	LUKINAN STATEMEN'	SOUTHCE
	DEFINE FILE 7(12000,130)E, NEXT)	
REA	N RECORD CONTAINING RECORD LOCATION COUNTER	
REA	N CTAD NATA AND CHECK FUR LAST STAR DATA RECORD	
26		
	TF(IDSTRD-999999)20399999 DOMIZE IDENTIFICATION FIELD IN STAR DATA AND READ STAR MASTER	
RAN	DOMIZE IDENTIFICATION FIELD IN STAR DATA AND READ STAR	
ø	NOREC = IDSTRD/100 READ(7'NOREC1103)IDSTRM1ICHAIN1T2U2V2X2Y2Z	
27	READ(7'NOREC1103)ID31Km31CHAIM312011202	
: 15	THIS CORRECT STAR MASTER	
	IF(IDSTRD-IDSTRM)21,22,21	
	THERE A CHAIN VARIABLE IF(ICHAIN)24,24,23	
21		
NO.	BEGIN CONSTRUCTING NEW MASTER AND ANTER RECORD AND WRITE LAST RECORD	
	ICHAIN VARIABLE IN CASH ON A MICHAIN	
24	Commerce ( AQ) TOCTOMATCHATNATAILAV SX2Y3Z	
	DECODE WINDED TO REGIN CONSTRUCTION OF NEW STAK MASIER UPPRICE	
DEC	ORD LOCATION COUNTER. BUILD NEW STAR MASTER RECORD	
K C U	NOREC=LOCREC	
00 7	TO WRITE STAR MASTER RECORD	
T TE	RECORD IS FOUND, UPDATE AND WRITE STAR MASTER	
22	Z=A/B	ļ
<b>L L</b>		f
25	WRITE(7'NOREC, 103)IDSTRM, ICHAIN, T, U, V, X, Y, Z	
GO	TO READ NEXT STAR DATA RECORD	
C IF	CHAIN VARIABLE IN RECORD READ THE NEXT STAR MASTER IN THE CHAIN	
23	NOREC=ICHAIN	
	GO TO 27	>
C IF	END OF STAR DATA, WRITE STAR MASTER CONTAING RECORD LOCATION COUNTER	·
99	IDSTRM=Ø	
	WRITE(7'1'101)IDSTRM,LOCREC	
	STOP 99999	
1Ø1	FORMAT(16)14)	
102	FORMAT(I6)6F1Ø.3)	
1Ø3	FORMAT(16)14)6F2Ø.3)	
	END	
		· <del>  · · · · · · · ·</del>
		+

Figure A-6. FORTRAN Coding for Example 3

	Sample Coding Form						
1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80
1234567890	1234567890	1234567890	1234567890	1234567890	1234567890	1234567890	1234567890
//STARDAUP	JOB 323,	J.AST RONOM	ER' MSGLEV	EL=1			<u></u>
//JOBLIB D	D DSNAME=S	TARPGMS,DI	SP=OLD				, <u> </u>
// EXEC PG	M=UPDATE					<u></u>	
//FTØ7FØØ1	DD DSNAME	=STARMSTR1	DISP=OLD			,   , , , , , , , , , , , , ,	
//FTØ1FØØ1	DD 🗙	STAR	DETAILS F	OLLOW			
St.	ar Detail	Data Set	· · · · · · · · · · · · · · · · · · ·			, 	
/*	END	OF STAR D	ETAILS				

Figure A-7. Job Control Statements for Example 3

A FORTRAN programmer can use assembler language subprograms with his FORTRAN main program. This section describes the linkage conventions that must be used by the assembler language subprogram to communicate with the FORTRAN main program. To understand this appendix, the reader should be familiar with the appropriate assembler language publication and assembler programmer's guide, as listed in the Preface.

#### SUBROUTINE REFERENCES

The FORTRAN programmer can refer to a subprogram in two ways: by a CALL statement or a function reference within an arithmetic expression. For example, the statements:

CALL MYSUB(X,Y,Z) I=J+K+MYFUNC(L,M,N)

refer to a subroutine subprogram MYSUB and a function subrogram MYFUNC, respectively.

For subprogram reference, the compiler generates:

- A contiguous argument list; the addresses of the arguments are placed in this list to make the arguments accessible to the subprogram.
- 2. A save area in which the subprogram can save information related to the calling program.
- A calling sequence to pass control to the subprogram, using linkage conventions (Table A-1 illustrates the use of registers during linkage).

#### Argument List

The argument list contains addresses of variables, arrays, and subprogram names

used as arguments. Each entry in the argument list is four bytes and is aligned on a fullword boundary. The last three bytes of each entry contain the 24-bit address of an argument. The first byte of each entry contains zeros, unless it is the last entry in the argument list. If this is the last entry, the sign bit in the entry is set to 1.

The address of the argument list is placed in general register 1 by the calling program.

# Save Area

The calling program contains a save area in which the subprogram places information, such as the entry point for this program, an address to which the subprogram returns, general register contents, and addresses of save areas used by programs other than the subprogram. The amount of storage reserved by the calling program is 18 words. Figure A-8 shows the layout of the save area and the contents of each word. The address of the save area is placed in general register 13.

The called subprogram does not have to save and restore floating-point registers.

# Calling Sequence

A calling sequence is generated to transfer control to the subprogram. The address of the save area in the calling program is placed in general register 13. The address of the argument list is placed in general register 1, and the entry address is placed in general register 15. If there is no argument list, then general register 1 will contain zero. A branch is made to the address in register 15 and the return address is saved in general register 14.

# Table A-1. Linkage Registers

Register Number	Register Name	Function	
0	Result Register	Used for function subprograms only. The result is returned in general or floating-point register 0. An extended precision result is returned in floating-point registers 0 and 2. A (complex result is returned in floating-point registers 0 (real part) and 2 (imaginary part).	
		<u>Note</u> : For subroutine subprograms, the result(s) is returned in a variable(s) passed by the programmer.	
1		Address of the argument list passed to the called subprogram.	
2	Result Register	See Function of Register 0.	
13	Save Area Register	Address of the area reserved by the calling program    in which the contents of certain registers are stored by the    called program.	
14		Address of the location in the calling program to which con-	
15	Entry Point Register	<pre>Address of the entry point in the called subprogram. Note: Register 15 is also used as a condition code register, a RETURN code register, and a STOP code register. The parti- cular values that can be contained in the register are: 16 - a terminal error was detected during execution of a sub- program (an IHOXXXI message is generated) 4*i - a RETURN i statement was executed n - a STOP n statement was executed 0 - a RETURN or a STOP statement was executed</pre>	

AREA----> ---> _____ (word 1) This word is used by a FORTRAN-compiled routine to store its epilogue address and may not be used by the assembler language subprogram for any purpose. AREA+4_____> (word 2) If the program that calls the assembler language subprogram is itself a subprogram, this word contains the address of the save | area of the calling program; otherwise, this word is not used. (word 3) The address of the save area of the called subprogram. AREA+12-----> ------> (word 4) The contents of register 14 (the return address). When the subprogram returns control, the first byte of this location is set | to ones. AREA+16----->}-----> (word 5) [The contents of register 15 (the entry address). AREA+20----(word 6) |The contents of register 0. AREA+24----->}-----(word 7) |The contents of register 1. **+-----**______ AREA+68----->-----> (word 18) |The contents of register 12. L____

Figure A-8. Save Area Layout and Word Contents

## CODING THE ASSEMBLER LANGUAGE SUBPROGRAM

Two types of assembler language subprograms are possible: the first type (lowest level) assembler subprogram does not call another subprogram; the second type (higher level) subprogram does call another subprogram.

# <u>Coding a Lowest Level Assembler Language</u> <u>Subprogram</u>

For the lowest level assembler language subprogram, the linkage instructions must include:

- 1. An assembler instruction that names an entry point for the subprogram.
- An instruction(s) to save any general registers used by the subprogram in the save area reserved by the calling program. (The contents of linkage registers 0 and 1 need not be saved.)
- An instruction(s) to restore the "saved" registers before returning control to the calling program.
- 4. An instruction that sets the first byte in the fourth word of the save area to ones, indicating that control is returned to the calling program.
- 5. An instruction that returns control to the calling program.

Figure A-9 shows the linkage conventions for an assembler language subprogram that does not call another subprogram. In addition to these conventions, the assembler program must provide a method to transfer arguments from the calling program and return the arguments to the calling program.

Higher Level Assembler Language Subprogram

A higher level assembler subprogram must include the same linkage instructions as the lowest level subprogram, but because the higher level subprogram calls another subprogram, it must simulate a FORTRAN subprogram reference statement and include:

- A save area and additional instructions to insert entries into its save area.
- 2. A calling sequence and a parameter list for the subprogram that the higher level subprogram calls.
- 3. An assembler instruction that indicates an external reference to the subprogram called by the higher level subprogram.
- 4. Additional instructions in the return routine to retrieve entries in the save area.

<u>Note</u>: If an assembler language main program calls a FORTRAN subprogram, the following instructions must be included in the assembler language program before the FORTRAN subprogram is called:

L 15,=V(IBCOM#) BAL 14,64(15)

Name	Oper.	Operand	Comments
deckname	DC		BRANCH AROUND CONSTANTS IN CALLING SEQUENCE m MUST BE AN ODD INTEGER TO INSURE THAT THE PROGRAM STARTS ON A HALFWORD BOUNDARY. THE NAME CAN BE PADDED WITH BLANKS.
*   * 	BALR	14,R,12(13) B,0 *,B	THE CONTENTS OF REGISTERS 14, 15, AND 0 THROUGH R ARE STORED IN THE SAVE AREA OF THE CALLING PROGRAM. R IS ANY NUMBER FROM 2 THROUGH 12. ESTABLISH BASE REGISTER ( $2 \le B \le 12$ )
	LM MVI	(user-written 2,R,28(13) 12(13),X'FF'	Source statements) RESTORE REGISTERS INDICATE CONTROL RETURNED TO CALLING PROGRAM RETURN TO CALLING PROGRAM

Figure A-9. Linkage Conventions for Lowest Level Subprogram

These instructions cause initialization of return coding, interruption exceptions and opening of the error message data set. If this is not done and the FORTRAN subprogram terminates either with a STOP statement or because of an execution-time error, the data sets opened by FORTRAN are not closed and the result of the termination cannot be predicted. Register 13 must contain the address of the save area that contains the registers to be restored upon termination

182

of the FORTRAN subprogram. If control is to return to the assembler language subprogram, then register 13 contains the address of its save area. If control is to return to the operating system, then register 13 contains the address of its save area.

Figure A-10 shows the linkage conventions for an assembler subprogram that calls another assembler subprogram.

Name	Oper.	Operand	Comments	
deckname	START	0		
	EXTRN	name2	NAME OF THE SUBPROGRAM CALLED BY THIS SUBPROGRAM	
	BC	15,m+1+4(15)		
	DC	X'm'		
	DC	CLm'name1'		
*	i	SAVE ROUTINE		
	STM	14, R, 12(13)	THE CONTENTS OF REGISTERS 14, 15, AND 0 THROUGH R ARE	
*	i		STORED IN THE SAVE AREA OF THE CALLING PROGRAM. R IS	
*	1		ANY NUMBER FROM 2 THROUGH 12.	
	BALR	В,0	ESTABLISH BASE REGISTER	
	USING	*,B		
	LR	10,13	LOADS REGISTER 13, WHICH POINTS TO THE SAVE AREA OF THE	
*	i		CALLING PROGRAM, INTO ANY GENERAL REGISTER, Q, EXCEPT 0,	
*	i	i	11, 13, AND 15.	
	LA	13, AREA	LOADS THE ADDRESS OF THIS PROGRAM'S SAVE AREA INTO	
*	i		REGISTER 13.	
	ST	13,8(0,Q)	STORES THE ADDRESS OF THIS PROGRAM'S SAVE AREA INTO THE	
*	i	1	CALLING PROGRAM'S SAVE AREA	
	İST	10,4(0,13)	STORES THE ADDRESS OF THE PREVIOUS SAVE AREA (THE SAVE	
*	i		AREA OF THE CALLING PROGRAM) INTO WORD 2 OF THIS PRO-	
*	i	i	GRAM'S SAVE AREA	
	івс	15, prob1		
AREA	DS	118F	RESERVES 18 WORDS FOR THE SAVE AREA	
*	ì	IEND OF SAVE RO	END OF SAVE ROUTINE	
prob1	į	(user-written program statements)		
<b>.</b>		CALLTNC SECUE	NCE	
Ŧ	1	CALLING SEQUE		
	LA	1, ARGLIST	LOAD ADDRESS OF ARGUMENT LIST	
	L   BALR	15, ADCON		
	IDALK	14,15	itton program statements)	
+			itten program statements)	
+		RETURN ROUTIN		
*	111	13, AREA+4	LOADS THE ADDRESS OF THE PREVIOUS SAVE AREA BACK INTO REGISTER 13	
Ŧ	I ITM	12 0 20(12)	KEGIGIEK IJ	
	LM	2, R, 28(13)	TANDS THE DETILDN ADDERS INTO DECTOTED 14	
		14,12(13)	LOADS THE RETURN ADDRESS INTO REGISTER 14.	
	MVI	12(13), X'FF'		
<b>+</b>	BCR	15,14	RETURN TO CALLING PROGRAM	
*		END OF RETURN	KOUTINE	
ADCON	DC	A(name2)		
		ARGUMENT LIST	ADDRESS OF BIDSM ADSILVENT	
ARGLIST	DC	AL4(arg ₁ )	ADDRESS OF FIRST ARGUMENT	
	•			
	•	1		
			THETCHER I DOWNERS THE DOWNERS I TOP	
	DC	X'80'	INDICATE LAST ARGUMENT IN ARGUMENT LIST	
	DC	AL3(arg _n )	ADDRESS OF LAST ARGUMENT	

# In-Line Argument List

The assembler programmer may establish an in-line argument list instead of out-ofline list. In this case, he may substitute the calling sequence and argument list shown in Figure A-11 for that shown in Figure A-10.

r		
ADCON	DC	A(prob1)
1	•	
ļ	•	
1	•	
1	LA	14, RETURN
1	$\mathbf{L}$	15, ADCON
1	CNOP	2,4
1	BALR	1,15
1	DC	AL4(arg ₁ )
1	DC	AL4(arg ₂ )
1	•	
1	•	
1	•	
1	DC	X 80 *
1	DC	AL3(arg _n )
RETURN	BC	0,X'isn'
L	 11 T-	

Figure A-11. In-Line Argument List

## Sharing Data in COMMON

Both named and blank COMMON in a FORTRAN IV program can be referred to by an assembler language subprogram. To refer to named COMMON, the V-type address constant

name DC V(name of COMMON)

is used.

If a FORTRAN program has a blank COMMON area and blank COMMON is also defined (by the COM instruction) in an assembler language subprogram, <u>only</u> one blank COMMON area is generated for the output load module. Data in this blank COMMON is accessible to both programs.

To refer to blank COMMON, the following linkage may be specified:

	COM		
name	DS OF		
	•		•
	•		•
	•		•
	>	cname	CSECT
			•
	L 11,=A(nar		•
	USING name, 11	1	•

#### RETRIEVING ARGUMENTS FROM THE ARGUMENT LIST

The argument list contains addresses for the arguments passed to a subprogram. The order of these addresses is the same as the order specified for the arguments in the calling statement in the main program. The address for the argument list is placed in register 1. For example, when the statement:

CALL MYSUB(A, B, C)

is compiled, the following argument list is generated.

00000000	address of A
00000000	address of B
10000000	address of C

For purposes of discussion, A is a REAL*8 variable, B is a subprogram name, and C is an array.

The address of a variable in the calling program is placed in the argument list. The following instructions in an assembler language subprogram can be used to move the REAL*8 variable A to location VAR in the subprogram.

L	Q, 0(1)
MVC	VAR(8),0(Q)

where:

Q is any general register except 0.

For a subprogram reference, an address of a storage location is placed in the argument list. The address at this storage location is the entry point to the subprogram. The following instructions can be used to enter subprogram B from the subprogram to which B is passed as an argument.

L	Q,4(1)
L	15,0(Q)
BALR	14,15

where:

Q is any general register except 0.

For an array, the address of the first variable in the array is placed in the argument list. An array [for example, a three-dimensional array C(3,2,2)] appears in this format in main storage.

Appendix B: Assembler Language Subprograms 183

C(1,1,1)	C(2,1,1)	C(3,1,1)	C(1,2,1)	]
L-C(2,2,1)	C(3,2,1)	C(1,1,2)	C(2,1,2)	1
(-c(3,1,2)	C(1,2,2)	C(2,2,2)	C(3,2,2)	

Table A-2 shows the general subscript format for arrays of 1, 2, and 3 dimensions.

Table A-2. Dimension and Subscript Format

Array A	Subscript Format
A(D1) A(D1,D2) A(D1,D2,D3)	
in the DIMEN	D3 are integer constants used NSION statement. S1, S2, and cripts used with subscripted

The address of the first variable in the array is placed in the argument list. To retrieve any other variables in the array, the displacement of the variable, that is, the distance of a variable from the first variable in the array, must be calculated. The formulas for computing the displacement (DISPLC) of a variable for one, two, and three dimensional arrays are:

DISPLC=(S1-1)*L DISPLC=(S1-1)*L+(S2-1)*D1*L DISPLC=(S1-1)*L+(S2-1)*D1*L+(S3-1)*D2*D1*L

where: L is the length of each variable in this array.

For example, the variable C(2,1,2) in the main program is to be moved to a location ARVAR in the subprogram. Using the formula for displacement of integer variables in a three-dimensional array, the displacement (DISP) is calcualted to be 28. The following instructions can be used to move the variable,

L	Q,8(1)
L	R,DISP
L	S,0(Q,R)
ST	S, ARVAR

where: Q and R are any general registers except 0. S is any general register. Q and R cannot be general register 0. Example: An assembler language subprogram is to be named ADDARR, and a real variable, an array, and an integer variable are to be passed as arguments to the subprogram. The statement:

CALL ADDARR (X, Y, J)

is used to call the subprogram. Figure A-12 shows the linkage used in the assembler subprogram.

<u>RETURN i in an Assembler Language</u> <u>Subprogram</u>

When a statement number is an argument in a CALL to an assembler language subprogram, the subprogram cannot access the statement number argument.

To accomplish the same thing as the FORTRAN statement RETURN  $\underline{i}$  (used in FORTRAN subprograms to return to a point other than that immediately following the CALL), the assembler subprogram must place  $4*\underline{i}$  in register 15 before returning to the calling program.

For example, when the statement:

CALL SUB (A, B, \$10, \$20)

٠

is used to call an assembler language subprogram, the following instructions would cause the subprogram to return to the proper point in the calling program:

> LA 15,4 (to return to 10) BCR 15,14 LA 15,8 (to return to 20) BCR 15,14

OBJECT-TIME REPRESENTATION OF FORTRAN VARIABLES

The programmer who uses FORTRAN in connection with assembler language may need to know how the various FORTRAN data types appear in the computer. The following examples illustrate the object-time representation of FORTRAN variables as they appear in System/360 and System/370.

Name	Operation	Operand
ADDARR B	START  EQU  BC  DC  STM  BALR  USING  L  MVC  L  MVC  L	0 8 15,12(15) X'7' CL7'ADDARR' 14,12,12(13) B,0 *,B 2,8(1) MOVE 3RD ARGUMENT TO LOCATION CALLED INDEX(4),0(2) INDEX IN ASSEMBLER LANGUAGE SUBPROGRAM. 3,0(1) MOVE 1ST ARGUMENT TO LOCATION CALLED VAR VAR(4),0(3) IN ASSEMBLER LANGUAGE SUBPROGRAM. 4,4(1) LOAD ADDRESS OF ARRAY INTO REGISTER 4.
INDEX VAR	BCR   DS   DS	(user-written statements) 2,12,28(13) 12(13),X'FF' 15,14 0F 1F 1F

Figure A-12. Assembler Subprogram Example

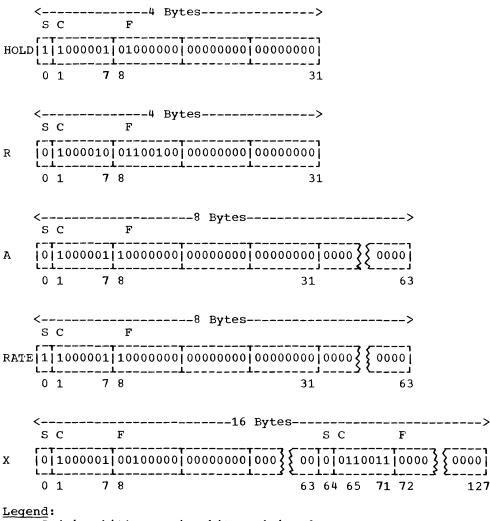
# INTEGER Type

INTEGER values are treated as fixed-point operands by the compiler, and are governed by the principles of System/360 and System/370 fixed-point arithmetic. INTEGER values are converted into either fullword (32-bit) or halfword (16-bit) signed integers.

Example: INTEGER*2 ITEM/76/,VALUE INTEGER*4 F,F64/100/ F = 15 VALUE =-2

The values of the variables ITEM, VALUE, F, F64 appear in storage as follows:

	<2 Byt	tes>	<2 Bytes	;>
ITEM [0 0000000 01001100]		VALUE		
	S 1	15	S 1	15
	<	4 Bytes	>	
F	0000000	000000000000000000000000000000000000000	0001111	


	100001111	000000000	0000000	101
L	L	 	L	L_1
1	3		1	S

	<	-		
F64	0000000	00000000	00000000	01100100
	s 1			31

where S in bit position 0 represents the sign bit. All negative numbers are represented in two's complement notation with a one in the sign-bit position. (For a more complete explanation of fixed-point arithmetic, refer to the appropriate principles of operation publication, as listed in the Preface.) All REAL variables are converted into short (32 bit), long (64 bit), or extended (128 bit) floating-point numbers by the compiler. The length of the numbers is determined by FORTRAN IV specification conventions.

Example: REAL*4 HOLD,R/100./ REAL*8 A,RATE/-8./ REAL*16 X HOLD = -4. A = 8.0D0 X = 2.0Q0

The values of the variables appear in storage as follows:



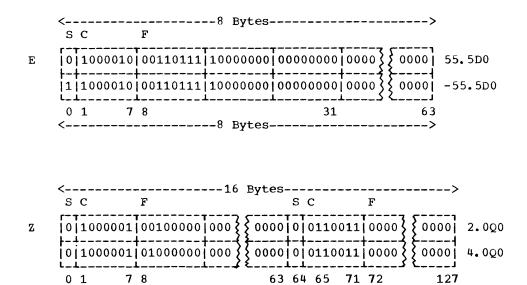
S (sign bit) occupies bit position 0.

C (characteristic), or exponent, occupies bit positions 1 through 7. F (fraction) occupies either bit positions 8 through 31 for a short, floating-point

number; bit positions 8 through 63 for a long, floating-point number; or bit positions 8 through 63, 72 through 127 for an extended-precision floating-point number (bit positions 64-71 represent a sign + characteristic having a value 14 less than the data represented in bits 0 through 7).

## COMPLEX Type

D


A COMPLEX variable has two parts (real and imaginary) and is treated internally as a pair of REAL numbers. The COMPLEX parts are converted into two short, long, or extended floating-point numbers.

Example: COMPLEX D/(2.1,4.7)/,E*16,Z*32 E = (55,5D0-55.5D0) Z=(2.000,4.000)

The values of the variables D, E, and Z appear in storage as follows:

<	4 Ву	tes	>	
sc	F			
r-t		· •	rı	
010000	01 00100001	10011001	10011001	2.1
b-+	+	+	+4	
010000	01 01001011	00110011	00110011	4.7
<b>L- L</b>	#	<b></b>	LJ	
01	78		31	

<-----> Bytes----->



<----->

# LOGICAL Type

FORTRAN IV LOGICAL variables may specify only 2 values:

.TRUE. or .FALSE.

These logical values are assigned numerical values of '1' and '0', for .TRUE. and .FALSE., respectively.

```
Example: LOGICAL*1 L1,L2/.TRUE./
LOGICAL*4 L3,L4/.FALSE./
L1 = .FALSE.
L3 = .TRUE.
```

The variables L1, L2, L3, and L4 are assigned the following values (using hexadecimal notation):

<--1 Byte--> L1 00

	<1	Byte>
г5	[	01

	<	4 By	ytes	>
L3	00	00	00	

	<-	 	-4 E	Byt	tes-	 	->
L4					00		

The DUMP or PDUMP subroutine can also be used as an additional tool for understanding the object-time representation of FORTRAN data. Refer to the "Use of DUMP and PDUMP" section in the "Programming Considerations" chapter of this publication or consult the FORTRAN IV Library Subprograms publication.

# APPENDIX C: UNIT TYPES

2303 Drum Storage Unit**

Any bin mounted on a 2321

3330 Disk Storage Facility*

Any 2311 Disk Storage

2314 Storage Facility

data cell drive**

2305 Drum Storage Unit*

1052 Printer-Keyboard

1403 Printer or 1404 Printer (continuous form only)

Drive**

Description

The UNIT parameter of the DD statement can identify an input or output unit by its actual address, its type number, or its group name. Type numbers, automatically established at system generation, correspond to units entered into system configurations. Type numbers and corresponding units are listed here for the reader's convenience.

### Tape Units

# Unit Record Equipment

2303

2311

2314

2321

3330

2305

Type 1052

1403

Туре	Description
2400	2400 series 9-Track Magnetic
	Tape Drive that can be
	allocated to a data set
	written or to be written
	in 800 bpi density

2400-1	2400 series Magnetic Tape
	Drive with 7-Track
	Compatibility and without
	Data Conversion

2400-2	2400 series Magnetic Tape
	Drive with 7-Track
	Compatibility and Data
	Conversion

2400-3	2000 generics 0 Empete Magnetic
2400-3	2400 series 9-Track Magnetic
	Tape Drive that can be
	allocated to a data set
	written or to be written
	in 1600 bpi density

2400-4	2400 series 9-Track Magnetic
	Tape Drive having an 800
	and 1600 bpi capability

Direct Access Units

2250-3	2250 Display Unit, Model 3
2260-1	2260 Model 1 Display Station
	(Local Attachment)
2260-2	2260 Model 2 Display Station
	(Local Attachment)
2280	2280 Film Recorder
2282	2282 Film Recorder-Scanner

Description

1053 Model 4 Printer

2250 Display Unit, Model 1

Type	Description	
2301	2301 Drum Storage Unit	*Used with System/370 models only.
2302	2302 Disk Storage Drive	**Used with System/360 Models only.

1442	1/1/1) Cond Dood Dunch
1442	1442 Card Read Punch
1443	any 1443 Printer
2501	2501 Card Reader
2520	2520 Card Read Punch
2540	2540 Card Read Punch (read
	feed)
2540-2	2540 Card Read Punch (punch feed)
2671	2671 Paper Tape Reader
3211	3211 Printer*

Graphic Units

<u>Type</u>

1053

2250-1

The following are the carriage control characters supported by the FORTRAN IV language.

#### Code Interpretation

- blank
- Space one line before printing Space two lines before printing 0
- Suppress space before printing Skip to first line of a new page +
- 1

(Where more than one page reference is given, the major reference appears first.)

```
£
   to define temporary data sets
                                  21,44
  in EXTERNAL statement 126
  in symbolic parameters 88
Ś
  use in library functions 126
*
  as a DD statement parameter
     description of
                      42
      example of 42
      function of 39
      restriction with cataloged
       procedures 81
  to define a data set in a job step
                                       44
  to describe compiler map variables
                                       105
  to identify linkage editor control
   sections 108,109
  as job control statement identifiers
                                         22
11
  as job control statement identifiers
                                         22
//*
  as job control statement identifiers
                                         22
 (apostrophe) in PARM parameter 34
```

```
*PROCESS statement 55
```

А

```
to describe compiler map variables 105
   to identify carriage control
   characters 50
   as an output class 55,28
   in program interrupt message 113,116
ABEND dump 115
abnormal termination
   dump 115
  message 101
accounting information
   in EXEC statement 35
  parameter in JOB statement
     description of 25
ACCT parameter
  description of 35
   function of 31
AD (see AUTODBL compiler option)
addressing exception code 114,116
ADDRSPC parameter
   in EXEC statement 36-37,32
  in JOB statement 29-30,27
ALC compiler option 55,138
alignment routine 113
ALIGN2 subparameter 62
American National Standards Institute
 (ANS) 55
ANSF, as a compiler option 55
API (see Automatic Precision Increase)
apostrophe, in PARM parameter 34
```

argument list 179 in-line 183 retrieving arguments from 183-184 Arithmetic IF statement 121 array dumping an 131 initializing an 123-124 notation in input/output statement 121 overflow of element in 123 programming considerations 121 retrieving element from 183 ASCII data sets contrasted with EBCDIC data sets 68 description of 68 example in specifying 69 identifying an 51 job control language considerations BUFOFF subparameter 51-52 DCB parameter 76-79 DEN parameter 76 LABEL parameter 76 OPTCD subparameter 52 restrictions in use of 68,77 assembler language subprogram, example of 185 use of 179-184 Assigned GO TO statement 128 associated variable 16 asynchronous input/output affected by automatic precision increase 140 extended error handling considerations 161 programming considerations 121-122 AUTODBL compiler option description of 135-137,54 examples of 138 automatic call library 60 Automatic Function Selection 126 Automatic Precision Increase description of 134-135 programming considerations 138-140 use of AUTODBL option 54,135-137

в

to specify blocked records description of 50,73 example in 75 as an output class 55 BACKSPACE statement asynchronous input/output considerations 121 programming considerations 122 restrictions with 122 BAL assembler instruction use in tracing errors 113,114

base registers 128 batch compilation example of placement of job control statements 13 BCD, as a compiler option 54 BFALN subparameter 140 bits per inch 51 BLKSIZE subparameter ASCII data set considerations 76-79 asynchronous input/output considerations 121 compared to LRECL subparameter 50 default values of for compiler data sets 57 for load module data sets 72 description of 50 direct-access data set considerations 80 EBCDIC data set considerations 73-76 example of 50 maximum values of 73 programming considerations 130 use of in fixed-length records 73 in undefined-length records 74 in variable-length records 73 block control word 50,73 BLOCK DATA subprogram use in overlay programs 145 block length maximum value of 50 specifying 50 block prefix 76,77 boundary alignment considerations 133 BOUNDRY option 133,113 bpi (bits per inch) 51 braces, use in job control language 24 brackets, use in job control language 24 branch considerations 128 buffer length specifying 51 buffers programming considerations 130 specifying number of 51 BUFNO subparameter asynchronous input/output considerations 121 default values of for compiler data sets 57 for load module data sets 72 description of 51 programming considerations 130 BUFOFF subparameter description of 51 examples of 78-79 built-in functions 136 BXLE assembler instruction 128

C to describe compiler map variables 105 to specify chained scheduling 52 CALL loader option 64 CALL statement, restrictions 133 calling sequence 179 card deck input, specifying 19

card punch BLKSIZE values for 73 card reader BLKSIZE values for 73 carriage control characters 50 summary of 190 cataloged data set contrasted with cataloged procedure 15 description of 15 cataloged procedure library 13,81 cataloged procedures contrasted to executable program 13 description of 81-93,13 examples in use of 19-20 location of 15 modifying example in 93 DD statement 91-92 EXEC statement 91 PROC statement 90 with symbolic parameters 88-89 naming through PROC parameter 33 overriding parameters in 91 restrictions 81 CATLG, as a DISP subparameter 45 chained scheduling restrictions 121 specifying 52 chaining in direct access programming 124-125 channel, input/output 48-49 CLASS parameter description of 28 function of 28 comments field, in job control statements description of 23 function of 22 COMMON area using assembler language instructions 183 in overlay programs 144-145 COMMON block storage map of 106,107 COMMON statement automatic precision increase considerations 138-139 with EOUIVALENCE statement 122 with OPTIMIZE option 128 programming considerations 122-123 compilation batch 55,12 cataloged procedures for description of 89 FORTXC 82 FORTXCG 87 FORTXCL 83 FORTXCLG 85 compile job step cataloged procedures describing 89 example of job control statements 13 input to, description of 53-57 output from, description of 99-107 compiler cataloged procedures 89 map affected by automatic precision increase 140 description of 105-106

example of 104 specifying with MAP option 54 messages 101 name of 53 names generic 133 handling of 127 optimization techniques 127-129 output 16 program as a language translator 12 as a processing program 53 restrictions 132-133 statistics 100 storage requirements 131-132 use of SIZE option 54 compiler data sets DCB default values for 57 description of 55-57 summary of 14,57 compiler options changing during a batch compilation 55 description of 53-56 example of output from 100,102-104 format of 53 summary of 56 COMPLEX items padding 137 promoting 134-135 storage representation of 187 COND parameter cataloged procedure use of 89 in EXEC statement contrasted with JOB statement parameter 35 description of 35 in JOB statement description of 27-28 function of 27-28 condition code compared to return code 28 specifying to bypass job step processing 35 specifying to terminate job processing 28 constants, promotion of 134 CONTIG, as a SPACE subparameter 47 continuation of job control statements 23 control program, description of 11 control section 108 in overlay programs 146 control statements, linkage editor ENTRY statement 148 IDENTIFY statement 62 INCLUDE statement 61,147 INSERT statement 146-147 LIBRARY statement 61 ORDER statement 62 OVERLAY statement 146 PAGE statement 62 control word segment 50 block 50 COPIES parameter description of 45 function of 40 cross reference listing compiler

```
description of 101
example of 102
specifying 54
linkage editor
description of 108
example of 109
in overlay programs 148
specifying 58
CYL,
as a SPACE subparameter 47
```

D to describe compiler map variables 105 to specify variable-length records 50,77 DAT feature 11 data alignment 55 conversion of 134-140,54 exception code 115,116 padding 134 promotion 134-135 Data Initialization Statement programming considerations 123-124 data management routines description of 12 DATA parameter description of 42 function of 39 restrictions 81 data set ASCII DCB considerations 76-79 DCB subparameters 49-51 description of 68 example of 69 cataloged 15 channel assignment for 48-49 concatenating a 42 creating a 21,69 DCB considerations 71-80 default values 57,72 defined 14 direct-access DCB considerations 80 DCB DSORG subparameter 52 description of 71,15 examples of creating and retrieving 72 updating 176-178 space allocation for 47 disposition of 44-46 EBCDIC DCB considerations 73-76 description of 68 examples of 69 identifying a 43 input/output allocation for 46-47 job step use of compiler 55-57,14 linkage editor 59-61,14 load module 67-72,14 loader 65-66,15 label 47-48 location of 42-43

naming a 42,43 partitioned DCB considerations for 73-76 description of 70-71,15 examples of 70 creating deleting a member of 72 70 retrieving permanent 21 pre-allocated 130 record characteristics of 48-52 retrieving a 21 sequential DCB considerations for ASCII 76-79 EBCDIC 73-76 description of 68,15 examples of 69 space allocation for 47 system 14-15 temporary 21 unit record 69 user 15 data-set name as a DCB subparameter 49 data set reference number defined 14 restriction 133 use of 41,67 DBL, as an AUTODBL value 135 DBLPAD 135,139 DBLPAD4 135 DBLPAD8 135 DBL4 135 DBL8 135 DCB parameter 49-52 asynchronous input/output considerations 121 data set definition considerations description of 77-80 summary of 71-72 default values for compiler data sets 57 for load module data sets 72 description of 49-52 examples of 52 function of 41 programming considerations 130 use with * DD parameter 42 DD statement description of 37-52,12 examples of 38,173 format of 37 function of 39-41,22 modifying in cataloged procedures 91-92 naming a 42 summary of 37 uses of 41-42 ddname description of 42 function of 39 qualified 19 DDNAME parameter description of 43 function of 39 deck, object module description of 106-107 specifying 53

DECK compiler option 53 dedicated workfile (see pre-allocated data set) DEFINE FILE statement direct-access data set relationship 71 overlay program use 142 programming considerations 125 DELETE as DISP subparameter 45,21 contrasted with KEEP subparameter 21 delimiter statement cataloged procedure considerations 81,19 description of 12,22 DEN subparameter of DCB parameter 51 default values for load module data sets 72 detail record 124 device class 14,46 type, summary of 189 diagnostic messages description of 101 example of 100 specifying level of to be printed 55 dictionary external symbol 106 relocation 106 direct-access data set creating a 72,125-126 DCB considerations 80,52 default values for 72 description of 71,15 retrieving a 72 updating a 176-178 using with non-FORTRAN processors 80 direct access device BLKSIZE values for 73 space allocation for 47 summary of types 189 direct-access input/output considerations 124-126 affected by automatic precision increase 140 DISP parameter description of 45-46 example of 46,21 function of 40 programming considerations 130 disposition message 108,109 divide by zero exception code generated 115 DLM parameter description of 42 function of 39 DO, implied 121,132 DO loop 132 dominance relationships 105 **DPRTY** parameter description of 35-36 function of 32 DSNAME parameter 43 description of function of 40 DSORG subparameter description of 52 direct-access data set consideration 80 DUMMY parameter description of 43 function of 39 dump requesting a 115-116 specifying DD statements 42 using DUMP and PDUMP subprograms 131 DUMP compiler option 55 DUMP library subprogram 139 DVCHK subprogram 131

# Е

to describe compiler map variables 105 EBCDIC compiler option 54 data set DCB considerations 73-76 description of 68 EDIT (see FORMAT compiler option) edited source listing (see also structured source listing) description of 105 example of 104 element, array 123 ellipsis, use in job control language 24 END card in object module 107 END= option in READ statement 70-71 ENDFILE statement asynchronous input/output considerations 121 ENTRY linkage editor control statement description of 148 example of 149 environment, operating (see Multiprogramming with a Fixed Number of Tasks; Multiprogramming with a Variable Number of Tasks) EP loader option 65 EQUIVALENCE statement affected by automatic precision increase 138-139 COMMON statement considerations 122 DATA statement considerations 123 padding items 137,138 programming considerations 125-126 storage map for 106,107 ERR parameter in READ statement 129 ERRMON description of 160-161,154 example of 162 error code diagnostic message description of 111 example of 112 error correction extended error handling facility considerations 156 summary of for mathematical subroutines 166-169 for program interruptions 170 user-supplied 160-161 error message, description of 101 error monitor 160-161,154 ERRSAV subroutine 156 ERRSET subroutine description of 158-160 examples of 159-160,162

ERRSTR subroutine 156 ESD card 106-107 exception codes 114-115 exceptions, correction for exponent overflow 170 exponent underflow 170 floating-point-divide 170 operation 170 specification 170 exclusive references, in overlay programs 144 EXEC statement 30-37 automatic precision increase options 135-138 calling cataloged procedures 13 description of 30-37,12 examples of 32 format of 30 functions of 31-33,22 modifying in cataloged procedures 91 restriction in use of 81 summary of 30 execute job step (see load module execution job step) exponent-overflow exception code 115,116 exponent-underflow exception code 115,116 expression evaluation 129 extended error handling facility description of 154,156 message IHO210 with 116 OPTIMIZE option considerations 128 option table 154-156 READ statement considerations 129 sample program using 162
subprograms in use of 156,158-160 external function in compiler map 105 external references defined 59 in compiler map 105 EXTERNAL statement programming considerations 126 external symbol dictionary 106

# F

to describe compiler map variables 105 to specify fixed-length records description of 50,73 example of 75 FIND statement 125 fixed-length records BLKSIZE value for 73 DCB considerations for ASCII data sets 76,78 for direct-access data sets 80 for EBCDIC data sets 73,75 description of 73,50 examples of 75 fixed-point-divide exception code 115,116 fixed-point overflow 121 FLAG compiler option 55 floating-point-divide error, correction for 170 exception code 115,116 FMT (see FORMAT compiler option)

FORMAT compiler option example of output 104 relationship to OPTIMIZE option 54 FORMAT statement restrictions 132 formatted records ASCII data sets 76 DCB considerations for description of 73-74 examples of 75-77 direct-access data sets 80 EBCDIC data sets 73-74 FORT, as a name in cataloged procedures 85,89 FORT.SYSIN 19 FORTLIB, as subroutine library (see SYS1. FORTLIB) FORTLIB macro instruction 154,160 FORTRAN library programming considerations 130-131 subprograms affected by automatic precision increase 139 location 16 FORTXC format of 82 placement of job control statements 19 FORTXCG format of 87 placement of job control statements 20 FORTXCL format of 83 placement of job control statements 19 FORTXCLG format of 85 placement of job control statements 19 FORTXG format of 86 placement of job control statements 20 FORTXL format of 88 placement of job control statements 20 FORTXLG format of 84 placement of job control statements 20 FT05F001 DD statement DCB default values for 72 description of 67,15 SYSIN DD statement 67 FT06F001 DD statement DCB default values for 72 description of 67,15 FT07F001 DD statement DCB default values for 72 description of 67,15 functions, promotion of built-in 136 library 136,134

generic names 133
GENERIC statement
 programming considerations 126
GO, as a name in cataloged
 procedures 85,90
GO.SYSIN 19

GOSTMT compiler options description of 54 relationship to traceback map 111 use in tracing errors 113 graphic units summary of types 189 (H Extended) compiler 12 location of 16 hierarchy support 29 IBCOM 111 ID (see GOSTMT compiler option) IDENTIFY statement 62 IEHPROGM 71,72 IEWL 58 IEWLDRGO 63 IF statement Arithmetic 121 Logical 127 IFE, to identify the compiler 101 IFEAAB 53 IHO210I error message description of 113-115 format of 116 implied DOs 121 restrictions 132 imprecise interruption 113 IN, as a LABEL subparameter 48 INCLUDE linkage editor control statement description of 61 in overlay program 147 example of 61 inclusive references, in overlay programs 143 INCRES, as an ASCII option 68 INCTRAN, as an ASCII option 68 indicative dump 115 induction variables 128 information message 101 informative messages description of 99 example of 100 input, card deck 19 input job stream 11 input/output affected by automatic precision increase 140 asynchronous programming considerations 121-122 direct access considerations 124-125 list-directed 127 operations 48 unformatted 127 input/output statements array notation in 121 relationship to DD statements 14-15 INSERT linkage editor control statement description of 146-147 example of 149 INTEGER items padding 137 storage representation of 185

internal sequence number example of 100 specifying 54 use in traceback map 111,113 interruption code (see also exception code) imprecise 113 precise 113 ISN (see internal sequence number)

job defined 12 naming a 25 priority 28 processing, examples in 173-178 relationship to JOB statement 12 termination 27-28 time limit assignment 28-29 job control language description of 12 processing, examples of 13 programming considerations 129-130 job control statements DD statement 37-52 delimiter statement 12,22 examples of 173-178,19-20 EXEC statement 30-37 format of 22 JOB statement 24-30 null statement 12,22 PROC statement 88-89 rules for continuing 23 syntax of 23-24 job output writer 28 job scheduler description of 11 JOB statement description of 24-30,12 examples of 25 format of 25 functions of 26-27 restriction in use of 81 summary of 24-25 job step compile cataloged procedures 89 description of 53-57 output from 99-107 defined 12 description of 12 example of job control statements 174-175 link edit cataloged procedures 89 description of 58-62,64 output from 108-109 load module cataloged procedures 90 description of 67-72 output from 111-117 loader cataloged procedures 90 description of 63-66 output from 110 naming a 33

priority 35-36 relationship to EXEC statement 12 time limit assignment 35 job stream input, defined 11 JOBLIB DD statement concatenating a data set with 42 contrasted with SYSLIB DD statement 67 example of 173-174,60 restrictions 81 retrieving a library with 16 jobname, parameter in JOB statement description of 25 function of 26

KEEP, DISP subparameter contrasted with CATLG subparameter 21 description of 45 key, record 124 keyword parameters 23

L in BUFOFF subparameter 51 label data set 47-48 reference 110 statement 104-106 label map (see compiler map or map, compiler) LABEL parameter to define an ASCII data set 68 description of 47-48 function of 40 language translators 11-12 large core storage (see hierarchy support) LC compiler option 53 LCS (see hierarchy support) LET linkage editor option 58 use in overlay programs 148 LET loader option 63-64 library, automatic call 60,61 library description of 15-16 FORTRAN asynchronous input/output considerations 122 error correction for mathematical routines 166-169 in link edit job step 61-62 programming considerations 130-131 restrictions with extended error handling facility 161 relationship to partitioned data set 70,15 storing load module into 59 subprograms affected by automatic precision increase 139 SYS1.FORTLIB 16 use of NCAL linkage editor option 59 library functions 136 detaching 126 aliases 126

LIBRARY statement description of 61-62 example of 61,64 line printing, specifying 53 LINECNT compiler option 53 link edit job step cataloged procedures describing 89 example of job control statements 13 input to, description of 58-63,64 output from, description of 108-109 primary input 60 secondary input 61-62 summary of output 16 link pack area queue 65 linkage conventions coding, example of 181-183 summary of 180 linkage editor cataloged procedures 89 contrasted with loader 58 control statements description of 61-62 in overlay programs 146-148 example of 149-153 58 map name of 58 options 58-59 overlay processing 141-145 example of output 148-153 processing 64 linkage editor data sets description of 59-61,14 linkage editor options description of 58-59 example of output from 109 overlay options 148 LIST compiler option 53 example of output 102-103 use in tracing errors 113,114 LIST linkage editor option 59 example of overlay output 153 use in overlay program 148 list-directed input/output 127 listing compiler cross reference 102,54 linkage editor cross reference 108-109,58 object module 102-103,53 source module 100,53 structured source 104,54 literal constants affected by automatic precision increase 139 restriction 133 LKED, as a name in cataloged procedures 85,89 LOAD (see OBJECT compiler option) load module execution job step cataloged procedures describing 90 example of job control statements 13 input to, description of 67-72 messages error code diagnostics 111 operator 115-116 program interrupt 113-116 output from, description of 111-117 summary of output 16

load module called from library 67 cataloged procedures 90 defined 12 description of 67 length of 108,109 map 108-110,63 marking for execution 63-64 restrictions 133 retrieving from a library 60 storing into a library 59 load module data sets description of 67-72,14-15 summary 68 LOADER, as a name for the loader program 63 loader cataloged procedures 90 contrasted with linkage editor 58 name of 63 options 63-65 storage allocation 64 loader data sets description of 65-66,15 summary of 66 loader job step cataloged procedures describing 90 input to, description of 63-66 output from, description of 110 loader options 63-65 Logical IF statement 127 LOGICAL items padding 137 storage representation of 188 logical operators 127 loop, optimization of 128 LR (label reference) 110 LRECL subparameter default values of for compiler data sets 57 for load module data sets 72 description of 50 example of 50 relationship to BLKSIZE subparameter 50

# М

to identify machine code control characters 49-50,77 magnetic tape data set 68 ASCII 68 creating, example in 69 DEN subparameter 51 device BLKSIZE values for 73 summary of types 189 volume record length restriction 133 main storage allocating through SIZE option 54 map compiler affected by automatic precision increase 140 description of 105-106 example of 104

specifying through MAP option 54 linkage editor description of 108 example of 109 output from overlay program 153 specifying through MAP option 58 loader 63 MAP compiler option 54 example of output 104 MAP linkage editor option - 58 contrasted with compiler option 108 contrasted with loader option 110 example of output 109 overlay program output 148 MAP loader option 63 contrasted with MAP linkage editor option 110 description of 110 example of 110 map, traceback (see traceback map) master record 124 MAX, as a SIZE option value 54 member, partitioned data set 70-72,15 messages compiler 101,99 diagnostic 100,101 FLAG compiler option to obtain 55 informative 99,100 linkage editor 108,109 load module 111-116 summary of 111 operator 115-116 program interrupt 113-116,170 system, use of MSGLEVEL parameter 27 MFT (see Multiprogramming with a Fixed Number of Tasks) MOD, as a DISP subparameter 45 module load 12 object 12 source 12 MSGCLASS parameter description of 28 example of 28 function of 26 MSGLEVEL parameter 27 description of example of 27 function of 26 Multiprogramming with a Fixed Number of Tasks description of 11 partitions in 11 requesting a dump under 115 Multiprogramming with a Variable Number of Tasks description of 11 REGION parameter 29,36 regions in 11 requesting a dump under 115 MVT (see Multiprogramming with a Variable Number of Tasks)

NAME compiler option 54 name field, in job control statements 23

names compiler handling of 127 device class, summary of 46 NAME compiler option to specify 54 qualified 19 NCAL linkage editor option 59 NEW, as a DISP subparameter 21 considerations with direct access programming 125 contrasted with OLD subparameter 21 nine-track tape, density of 51 NOALC (see ALC compiler option) NOANSF (see ANSF) NODECK (see DECK compiler option) NODUMP (see DUMP compiler option) NOEDIT (see FORMAT compiler option) NOFMT (see FORMAT compiler option) NOFORMAT (see FORMAT compiler option) NOGOSTMT (see GOSTMT compiler option) NOID (see GOSTMT compiler option) NOLET (see LET loader option) NOLIST (see LIST compiler option) NOLOAD (see OBJECT compiler option) NOMAP compiler option (see MAP compiler option) NOOBJ (see OBJECT compiler option) NOOBJECT (see OBJECT compiler option) NOOPT (see OPTIMIZE compiler option) NOOPTIMIZE (see OPTIMIZE compiler option) NOPRINT (see PRINT loader option) NORES (see RES loader option) NOSOURCE (see SOURCE compiler option) NOXREF (see XREF compiler option) NR, in compiler map 106 null job control statement 12 function of 22

```
OBJ (see OBJECT compiler option)
OBJECT compiler option 53
object module
   considerations with OPTIMIZE option 127
   defined 11
   specifying
               -53
object module deck
   DECK option to specify
                            53
   description of 106-107
   example of 107
object module listing
   example of 102-103
   description of 104-105
   LIST option to specify 53
use in tracing errors 113,114
OLD, as a DISP subparameter
                             45
   considerations with direct access
    programming 125
   contrasted with NEW subparameter 21
operand field, in job control statement
                                          23
operating environment (see Multiprogramming
with a Fixed Number of Tasks;
Multiprogramming with a Variable Number of
Tasks)
operation field, in job control
 statements
            - 23
operator exception code 114,116
   corrections for 170
```

operator message description of 115-116 example of 117 summary of 111 operators, in COND parameter of JOB statement 28 OPT (see OPTIMIZE compiler option) **OPTCD** subparameter to define ASCII data set 68 description of 52 programming considerations 130 **OPTERR** parameter 154 optimization techniques specifying 53-54 OPTIMIZE compiler option 53 COMMON statement considerations 123 example of output 104 FORMAT option relationships 54 programming considerations 127-129 OPTIMIZE(1) programming considerations 127-128 OPTIMIZE(2) programming considerations 128-129 example of output 104 option table changing entries in 158-160,156 default values 155 description of 154 format of 164-165 preface of 154,164 specifying a user-supplied routine 159 options ASCII 68 compiler description of 53-56 example of output 100,102-104 format of 53 summary of 56 linkage editor description of 58-59 example of output 109 loader description of 63-66 example of output 110 PARM parameter considerations 34-35 ORDER statement 62 OUT, as a LABEL subparameter 48 output compiler 99-107 linkage editor 108-109 load module 111-117 program output 116-117 loader 110 summary of 16 output class A for printer 55 B for card punch 55 output writer 28 OVERFL subprogram 131 overflow condition 121 overlay linkage editor control statements 146-148 linkage editor options 148 output, example of 149-153 paths 142-143 process, description of 141-145 program

constructing a 146-148 designing a 141-144 programming considerations 125 references exclusive 144 inclusive 143 segments 141-142 structure example of 147 tree 141-142 OVERLAY statement description of 146 example of 149 OVLY linkage editor option 148,59 example of output 153

# Р

to describe compiler map variables 105 in program interrupt message 113,116 padding data 134 PAGE statement 62 parameters keyword 23 positional 23 symbolic 88 parentheses, use in PARM parameter 34-35 PARM parameter 34 description examples of 34-35 function of 31 options specified in compiler 53-56 ALC option 138 AUTODBL option 135-138 linkage editor 58-59 overlay options 148 loader 63 rules for continuing 34-35 partitioned data set adding members to 70 creating 70 deleting 71,72 description of 70-71,15 LABEL parameter considerations 48 relationship to library 70 restrictions 70 retrieving 70-71 partitions, in MFT and VS1 control program 11 PASS, AS A DISP subparameter 45-46 paths, overlay 142-143 PAUSE statement message generated by 115-116 restriction 133 PDS (see partitioned data set) PDUMP library subprogram 139 permanent data set contrasted with temporary data set 21 description of 21 PGM parameter description of 33-34 example of 33-34 function of 31 specifying compiler 53 linkage editor 58

load module 67 loader 63 positional parameter 23 pre-allocated data set 130 precise interruption 113 primary input, to link edit job step 60 PRINT loader option 65 example of output 110 printer, BLKSIZE values for 73 private data sets (see also user data sets) defining 21 storing load modules into 59 problem program description of 12 PROC parameter description of 32-33 function of 32-33 PROC statement description of 88-89 format of 88 modifying cataloged procedures with 90 procedure library 13 procedure-name, parameter in EXEC statement (see PROC parameter) PROCESS statement 55 processing program description of 11-12 procstep.ddname 39 program control program 11 FORTRAN as a problem program 12 restrictions in use by other processors 80 naming a, through the EXEC statement 33 processing program 11-12 sample of a 97-98 source program, listing of 100 program interrupt message corrections for, with extended error handling facility 170 description of 113-115 example of 116 program options use of PARM parameter 34-35 program output 116-117 summary of 16 program status word 114-115,116 program unit relationship to control section 108 use in overlay structure 141-144 program-name, parameter in EXEC statement (see PGM parameter) programmer-name, parameter in JOB statement description of 27 example of 27 function of 26 promoting data 134-135 protected storage, violation of 114 protection exception code 114,116 PRTY parameter description of 28 example of 28 function of 26 restriction 28 PSW (program status word) 114-115,116 punch, card (see card punch)

to define ASCII data set 52,68 qualified names 19 randomizing technique 124 READ statement END= option to process partitioned data set 70-71 FIND statement with 125 programming considerations 129 relationship to partitioned data set 48 reader, card (see card reader) REAL items padding 137 promoting 134-135 storage representation of 186 real mode 29-30 RECFM subparameter ASCII data set considerations 76-79 asynchronous input/output considerations 121 default values of for compiler data sets 57 for load module data sets 72 description of 50 direct-access data set considerations 80 EBCDIC data set considerations 73-76 use of in fixed-length records 73 in undefined-length records 74 in variable-length records 73 record key 124 record location counter 124 records (see also fixed-length records, undefined-length records, variable-length records) BLKSIZE values for 73 chaining of 125 characteristics of, defining 49-52 detail 124 format of 50 length of 50 master 124 spanned 74,76 structure of ASCII 78-79 direct-access 80 formatted 75 unformatted 76 region, in MVT and VS2 control program 11 REGION parameter in EXEC statement 36,32 in JOB statement 29,27 SIZE compiler option relationship 132 register in linkage conventions 179,180 OPTIMIZE option considerations 128 relocate feature 11 relocation dictionary 106 RES loader option 65 return code 129,184 compared with condition code 28

0

RETURN statement 129
REWIND statement
 asynchronous input/output
 considerations 71
 partitioned data set considerations 71
RLD card 106-107
RLSE, as a SPACE subparameter 47
root segment 141-142
ROUND, as a SPACE subparameter 47

## S

to describe compiler map variables 105 to specify spanned records 50 sample program 97 save area 179-180 SD (section definition) 110 secondary input, to link edit job step 62 section definition 110 segment control word 50,73 segment, overlay communication with 143-144 OVERLAY statement to define 146 relation origin of 142 root segments 141-142 SEP parameter description of 49 function of 40 programming considerations 129 SEP subparameter in UNIT parameter 46 programming considerations 130 sequence number defined 14 description of 41 processing partitioned data sets with 71 sequential data set creating 69 DCB considerations for ASCII data sets 76-79 EBCDIC data sets 73-76 default values for load module 72 description of 69,15 retrieving 69 serious error message, description of 101 seven-track, density of 51 severity code explanation of 16 listing of 101 SHR, as a DISP subparameter 45 simulator 113-114 SIZE compiler option 54 REGION parameter relationships 132 SIZE loader option 64 SLITE subprogram 131 SLITET subprogram 131 sort and merge program 12 SOURCE compiler option 53 source module defined 12 listing of description of 101,100 LIST option to specify 53 naming 54 SPACE parameter DEFINE FILE statement relationship 125 description of 47 function of 41

spanned records description of 74 example of 76 special characters in job control language 27,34 specification exception code 114,116 correction for 170 spill, array element 123 statement function restrictions 132 statistics, compiler 100 STEPLIB DD statement to concatenate data sets 42 to retrieve a user library 16 stepname, in EXEC statement 33,31 STOP n statement message generated by 115-116 restrictions 129 storage allocation job 29 job step 36 dumping 131 SIZE option 54 storage map for COMMON blocks description of 106 example of 107 defined 16 structured source listing (see also edited source listing) example of 104 description of 105 FORMAT option to specify 54 subprograms affected by promotion of data items 135 assembler language coding 181-183 description of 179 examples of 181-183 entry points to 183 extended error handling considerations 158-160,156 OPTIMIZE option considerations 128-129 programming considerations 130-131 return codes 129 subroutine extended-precision 131 mathematical, error corrections for 166-169 user-supplied 129 summary of errors listing 111,112 superscript, in job control statements supervisor, description of 11 24 support, hierarchy (see hierarchy support) symbolic parameters description 88 example of 89 modifying cataloged procedures with 90 synonyms, in direct-access programming 124 SYSABEND DD statement contrasted with SYSUDUMP DD statement description of 57 DUMP compiler option relationship 55 requesting a dump 115,41 14 SYSDA device class SYSIN DD statement cataloged procedure use of 89,19

default values of 57 description of 56,67 FT05F001 DD statement relationship 67 function of 14 as a qualified name 19 SYSLIB DD statement CALL option relationship 63 contrasted to JOBLIB DD statement 67 description of 59 function of 14 SYS1.FORTLIB library relationship 59 SYSLIN DD statement default values of 57 description of for compiler data set 56 for linkage editor data set 59 for loader data set 65 function of 14 OBJECT compiler option relationships 53 SYSLMOD DD statement cataloged procedure use of 89 creating a user library with 16 description of 59-60 function of 14 as the name of a load module 67 SYSLOUT DD statement cataloged procedure use of 90 description of 65 function of 14 PRINT loader option relationship 65 SYSOUT parameter description of 44-45 function of 40 SYSPRINT DD statement default values of 57 description of 55 function of 14 SYSPUNCH DD statement DECK compiler option relationship 53 default values of 57 description of 55 function of 14 SYSSQ device class 14 system data set 14-15 system library 16 system messages specifying through MSGLEVEL parameter 27 system storage requirements 131-132 SYSUDUMP DD statement contrasted with SYSABEND DD statement 57 description of 57 DUMP compiler option relationship 55 requesting a dump 115,41 SYSUT1 DD statement default values of 57 description of for compiler data sets 56 for linkage editor data sets 60 FORMAT compiler option relationship 54 function of 14 SYSUT2 DD statement (see also SYSUT1 DD statement) default values of 57 description of 56 XREF compiler option relationship 54

SYS1.FORTLIB
 as automatic call library 61
 as partitioned data set 15
 SYSLIB DD statement relationship 59
SYS1.LINKLIB 42,16
 SYSLMOD DD statement relationship 59
SYS1.PROCLIB 81,16

T to indicate track overflow 50 table of names (compiler map) 54 tape, magnetic (see magnetic tape) temporary data set contrasted with permanent data set 21 creating a 69 description of 21 as a partitioned data set 69 termination message 101,27 time limit assigning to a job 28-29 assigning to a job step 36 suppressing 29 TIME parameter in EXEC statement description of 36 function of 32 in JOB statement description of 28-29 function of 26 traceback map description of 111 example of 112 use of 112-114 requesting printing of 160 requesting suppressing of 159 track overflow for direct-access data sets 80 restrictions 121,122 use of 74,50 translators, language 11-12 as a SPACE subparameter 47 TRTCH subparameter 51-52 TXT card 106-107

IJ to specify undefined-length records description of 50,74 example of 75 UNCATLG, as a DISP subparameter 45 undefined-length records BLKSIZE values for 73 DCB considerations for ASCII data sets 76,78 for EBCDIC data sets 74-75 description of 49 underscore, use in job control language 24 unformatted input/output affected by automatic precision increase 140 unformatted records DCB considerations 74,76

```
direct-access data sets 80
   input/output list relationship 74
UNIT parameter
   description of 46-47
   examples of 46
   device types 189
   function of 41
unit record
   data sets 68-69
devices, summary of 189
unit types 189
user data sets
   (see also private data sets)
   defining 21,15
user library
   description of 16
user-supplied subroutines 129
utility program
   description of 12
```

v to specify variable-length records description of 50,73 example of 70 variable items dumping 131 promotion of 134 retrieving address of 183 storage representation of 185-188 variable, associated 16 variable-length records BLKSIZE values for 73 DCB considerations for ASCII data sets 76,78 for EBCDIC data sets 73,75 description of 50 examples of 75 virtual mode 29-30 virtual storage 11 volume, defined 14

description of 43 function of 39 VS1 11 VS2 11 WAIT statement 121 warning message 101 WRITE statement relationship to partitioned data set 48 XCAL linkage editor option 148 XF external function 105 XR external reference 105 XREF compiler option 54 example of output 102 XREF linkage editor option 58 contrasted with XREF compiler option 108 example of output 109 use in overlay program 148,153 0 as a severity code 101,16 4 as a severity code 101,16 5 as a data set reference number 67,20 6 as a data set reference number 67,20 7 as a data set reference number 67 8 as a severity code 101,16 12 as a severity code 101,16 16 as a severity code 101,16

VOLUME parameter

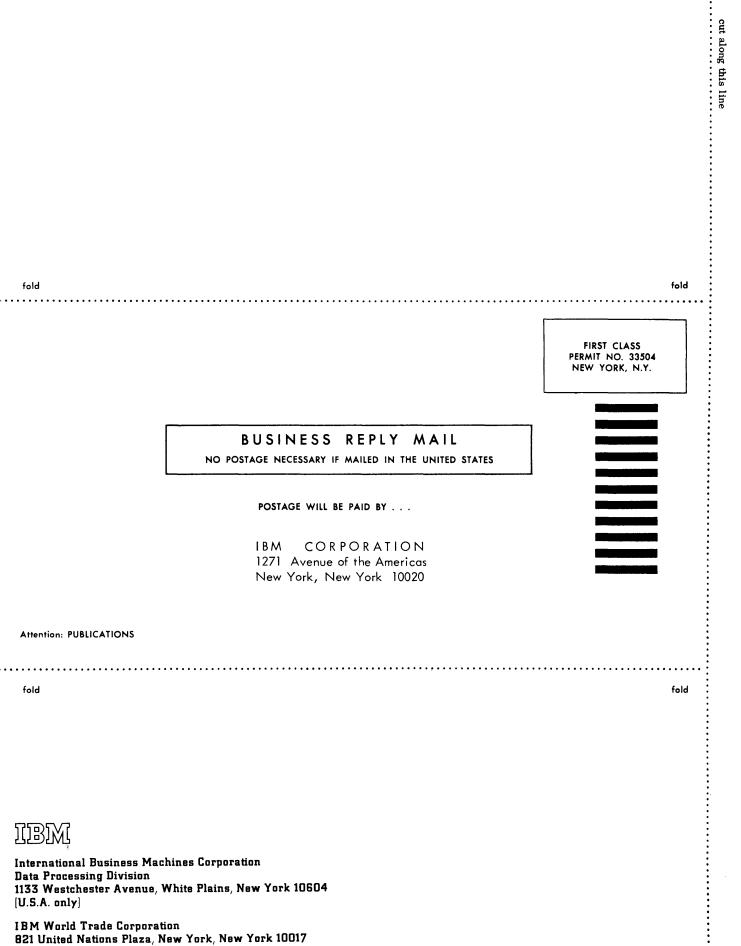
2311 direct-access device 189 2314 direct-access device 189 2361 larger core storage device 29 2400 magnetic tape device 189

# **READER'S COMMENTS**

TITLE: IBM OS FORTRAN IV (H Extended) Compiler Programmer's Guide ORDER NO. SC28-6852-1

Your comments assist us in improving the usefulness of our publications; they are an important part of the input used in preparing updates to the publications. All comments and suggestions become the property of IBM.

Please do not use this form for technical questions about the system or for requests for additional publications; this only delays the response. Instead, direct your inquiries or requests to your IBM representative or to the IBM Branch Office serving your locality.


Corrections or clarifications needed:

Page Comment

Please include your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

[International]



-

International Business Machines Corporation Data Processing Division 1133 Westchester Avenue, White Plains, New York 10604 (U.S.A. only)

IBM World Trade Corporation 821 United Nations Plaza, New York, New York 10017 (International)