

Program Product

SC28-6852-1

IBM OS FORTRAN IV
(H Extended) Compiler
Programmer's Guide

Program Numbers: 5734-F03
5734-LM3

This publication describes the steps to compile, link edit,
and execute a FORTRAN IV program using the
FORTRAN IV (H Extended) compiler, an IBM Program
Product that operates under the control of the operating
system. The methods of invoking each step, input to the
steps, and output from the steps, are detailed. In addition,
compiler options, features of the operating system used
by the FORTRAN programmer, and practices for coding
more efficient FORTRAN programs are discussed.

This public.ation is directed to programmers familiar with
the FORTRAN IV language. Previous knowledge of the
operating system is not required.

Information in this publciation pertaining to OS/VS2 is
for planning purposes until that product is available.

I Second Edition (June 1972)

This edition corresponds to Release 1 of the FORTRAN IV (H Extended)
Compiler.

Changes are periodically made to the specifications herein; any such
changes will be reported in subsequent revisions or Technical
Newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be addressed to
IBM corporation, Programming Publications, 1271 Avenue of the Americas,
New York, New York 10020.

©Copyright International Business Machines Corporation 1971

Summary of Amendments Number 1

Date of Publication: June, 1972

Form of Publication: Revision, SC28-68S2-1

OS/VS I nformation Added

New: Programming and Documentation
The use of the FORTRAN IV (H Extended) compiler With OSiVSl and OSiVS2 is described. A
brief overview of the virtual storage concept has been added to the Introduction, and the section
"Using Job Control Statements" has been updated to include descriptions of the VS REGION and
ADDRSPC parameters of the JOB and EXEC statements and the VS COPIES, DLM, and SYSOUT
parameters of the DD statement. The ORDER and PAGE control statements of the linkage editor
are discussed in the "Linkage Editor and Loader" section. In addition, publication references
throughout the text have been revised to include the appropriate OS/VS publications.

ER RSET Description Expanded

Maintenance: Documentation Only
The description of the inomes option of the ERRSET subroutine of the Extended Error Handling
Facility has been expanded to explain how an unlimited number of error messages may be printed.

Compiler System Requirements Information Removed

Maintenance: Documentation Only
Information about the system requirements of the FORTRAN IV (H Extended) compiler has been
removed from the "Programming Considerations" section. This information can be found in the
publication OS FORTRAN IV (H Extended) Installation Reference Material, Order No. SC28-6861.

Descriptions of SPLIT and SUBALLOC Removed

Maintenance: Documentation Only

Information pertaining to the SPLIT and SUBALLOC parameters of the DD statement has been
removed from the section "Using Job Control Statements." Detailed descriptions of these
parameters can be found in the job control language reference publications listed in the Preface.

System/360 Dependence of Some Direct Access Units Noted

Maintenance: Documentation Only
The use of the 2303, 2311, and 2321 direct access units with System/360 machines only is
indicated in Appendix C: Unit Types.

Description of XCAL Removed

Maintenance: Documentation Only
Information pertaining to the XCAL option of the linkage editor has been removed from the
section "Linkage Editor and Loader." A detailed description of this option can be found in
the linkage editor and loader publications listed in the Preface.

Asynchronous I/O I nformation Expanded

Maintenance: Documentation Only
Added information includes the fact that blocked records may not be used with asynchronous I/O,
that a BUFNO specification of three buffers in a DCB parameter is limited to asynchronous I/O
only, and that a user-exit routine cannot perform aIiy asynchronous I/O operation, even if the
error involved was not caused during asynchronous I/O processing.

SIZE Option Information Expanded

Maintenance: Documentation Only
The use of the SIZE option of the PARM parameter of the JOB or EXEC statements to reduce the
amount of storage required by the compiler in a multitasking environment is explained. The
restriction that SIZE may not be specified on a *PROCESS card is noted.

OPTIMIZE(2) Information Expanded

Maintenance: Documentation Only
The explanation of computational reordering results under OPTIMIZE(2) in the section
"Programming Considerations" is expanded.

Editorial changes having no technical significance are not noted here.
Specific changes to the text as of this publishing date are indicated by a vertical bar to the left of the text.
These bars will be deleted at any subsequent republication of the page affected.

This publication describes the use of the
operating system and the FORTRAN IV (H
Extended) compiler to process programs
written in the FORTRAN IV language. The
FORTRAN IV language is described in the
publication IBM System/360 and System/370:
FORTRAN IV Language, Order No. GC28-6515.

This publication is designed for FORT&~N
users having various programming needs.
The programmer who wants to process a
FORTRAN program using the compiler and
wants to interpret the output should read
the introduction and the first section "How
to Submit a FORTRAN Program" in "Part
I--Job Input." The introduction explains
system concepts to help the programmer
understand how the compiler and other
operating system resources process a
FORTRAN program and also describes the
forms of program output. The section "How
to Submit a FORTRAN Program" describes in
greater detail how a program is processed
under control of the operating system.

The remainder of the publication is
directed to programmers who required
detailed reference material regarding the
operation of the compiler and its
facilities.

The publication is organized as follows:

• Introduction. The introduction
provides an overview of the operating
system and how it interacts with the
compiler during the processing of a
FORTRAN program. Job control language,
cataloged procedures, data sets and
libraries, and program output are
described. The information contained
in the introduction is covered in
greater detail in subsequent sections.

• Part I--Job Input. Part I describes
how a FORTRAN program is processed
under control of the operating system.
The first section summarizes how a
FORTRAN program may be submitted for
processing. The remaining sections
describe job control language; the
three steps in processing a FORTRAN
program (compiling, link editing, and
executing a load module); and
IBM-supplied cataloged procedures.

• Part II--Job Output. Part II describes
the output from each step in FORTRAN
processing and includes examples of
both operating system and FORTRAN
program output.

PREFACE

• E~~~_III~~ro~Ea~ig~Techniques. Part
III deals with program efficiency. The
first section describes programming
considerations for designing and coding
more efficient FORTRAN programs. The
remaining sections describe such
facilities as the compiler automatic
precision increase (API) facility, the
linkage editor overlay feature, and the
load module extended error handling
facility.

• ~endixes. The appendixes describe
sample FORTRAN programs; the use of
assembler language subprograms; the
input/output units available with
Systern/360 and System/370; and the
carriage control characters available
to the FORTRAN programmer.

The FORTRAN programmer using the FORTRAN
IV (H Extended) compiler and the FORTRAN IV
library (Mod II) should be familiar with
the information in the following
publications:

OS FORTRAN IV Library
Mathematical and Service Subprograms
Order No. GC28-6818

OS FORTP~N IV Mathematical and Service
~!!~EQ.gram~
~!!PE!~~~g~for_~od I_~gg_~2g_!I
Libraries
Order NO~ SC28-6864

Information about the job control
language can be found in the following
publications:

OS/MFT and OS/MVT Job Control Language
Reference, Order No. GC28-6704

Information about IBM-supplied utility
programs can be found in the following
publications:

OS/MFT and OS/MVT Utilities, Order
No. GC28- 6586

OS/VS Utilities, Order No. GC35-0005

Information about the linkage editor and
loader programs can be found in the
following publications:

OS/MFT and OS/MVT Linkage Editor and
Loader, Order No. GC28-6538

OS/VS Linkage Editor and Loader, Order
No. GC26- 3813

Information about debugging techniques
can be found in the following publications:

QS/MFT a!!Q OS/MVT Programmer's Guide to
Debugging, Order no. GC28-6610

OS/VS1 Debuggin~uide, Order
No. GC24- 509 3

OS/VS2 Debugging Guide, Order
No. GC28- 0632

Information about assembler language
programming can be found in the following
publications:

OS/VS Assembler Language, Order
No. GC33-4010

OS/VS Assembler Programmer's Guide,
Order No. GC33-4021

Information about System/360 and
System/310 machine characteristics can be
found in the following publications:

IBM System/360 Principles of operation,
Order No. GA22-6821

!~~System/310 Principles of Operation,
Order No. GA22-1000

INTRODUCTION • • • • •
Control Program
Processing Programs
Problem Programs • •

Processing A Fortran Program •
Job Control Language Statements

Compile Only <One Source Module) •
Compile Only (More Than One Source
Module) ••••••••••••
Compile and Link Edit ••••••
Compile, Li~k Edit. and Execute

cataloged Procedures
Data Sets • • • • • •

• 11
11

• 11
• 12
• 12
• 12
• 13

13
• 13

13
13

• 14
• • • • • • • 14 System Data Sets • •

compiler Data Sets • •
Linkage Editor Data Sets •
Load Module Execution Data Sets
Loader Data Sets •

• 14
14

• • 14
• • 15

User Data Sets • • • • • • • • •
cataloged Data Sets

• • • 15

Libraries of Data Sets •
System Libraries •
User Libraries •

Proqram Output • • • •

15
• 15

16
• 16

16

PART I -- JOB INPUT • • 17

SUBMITTING A FORTRAN PROGRAM •
Defining Private Data Sets • •

• 19
21

USING JOB CONTROL STATEMENTS • 22
Syntax For Parameter Description • • • • 23
JOB Statement • • • • • • • • • • • 24

Naming the Job • • • • • • • • • • • 25
Specifying Accounting Information • 25
Specifying the Programmer's Name •• 27
Specifying System Messages 27
Specifying Condition Codes to
Terminate a Job • • • • •
Assigning Job Priority • •
Assigning an Output Writer
Assigning a Time Limit to a Job
Assigning Storage to a Job Under
MVT • • • • • • • • •
Assigning Storage to a Job Under

EXEC Statement • • • • • •
Naming an EXEC statement •
Naming the Cataloged Procedure or
Program to be Executed • • • •
Specifying Program Options • •
Specifying Accounting Information
Specifying Condition Codes to
Bypass a Job Step • • • • • • •
Assigning Step Priority • • • •
Assigning a Time Limit to a Job

VS

Step • • • • • • • • • • • • •
Assigning Storage to a Job Step
Under MVT • • • • • • • • • •
Assigning Storage to a Job Step
Under VS • • • • • •

DD Statement • •
DD Statement Uses

27
28
28
28

29
29
30

· 32

32
34

· 35

35
35

• 36

• 36

36
37

• 41

Naming a DD Statement
Data Set Location
Data Set Identification
Data Set Disposition • • • •
Assigning a Data Set to an
Input/Output Device

42
42

• • • • 43
44

46
Assigning Space to a Data Set on a
Direct Access VolUme • 47

47
48
49

Data Set Labels • • • • • •
Assigning Channel Use • • • • •
Defining Record Characteristics

COMPILATION • • • • • • • • • • • • 53
Compiler Options • • • • • • • • • 53

Changing Program Options During a
Batch Compilation 55

Compiler Data Sets • • •• • • 55
Data Sets Defined in Cataloged
Procedures • • • • • • • • • • • 55
Data Sets That Must Be Defined by
the Programmer • • • • • 56

LINKAGE EDITOR AND LOADER 4 • • • 58
Choosing the Proper Linkage Program 58
Link Edit Job Step • • • • ~ • • • • 58

58
59

Linkage Editor Options • • • • •
Linkage Editor Data Sets • • • •

Data Sets Defined in Cataloged
Procedures • • • • • • • • • • •
Data Sets That Must Be Defined by
the Programmer • • • • •
Primary Input • • • • • • • •
Secondary Input • • • •
Linkage Editor Control Statements

Ordering and Page-Aligning Program
Units Under OS/VS

System Loader

59

60
60
61

• 61

62
63
63 Loader Options • •

Loader Data Sets • • • • • • • • 65
Data Sets Defined in Cataloged
Procedures • •
Data Sets That Must be Defined by
the Programmer

65

66

LOAD MODULE EXECUTION • • • • • • 67
Load Module Data Sets • • • • 67

Data Sets Defined in Cataloged
Procedures • • • • • • • • • •
Data Sets That Must Be Defined by
the Programmer • • • • • •
sequential Data Sets • •
Partitioned Data Sets • • • • •
Retrieving More Than One Member
Deleting One Member
Direct-Access Data Sets • • • •

DCB Parameter Considerations • • •
DCB Considerations for Sequential
EBCDIC Data Sets •
DCB Considerations for ASCII Data
Sets • • • • • • •

67

68
68
70
10

• • 71
71
71

• 73

76
DCB Considerations for
Direct-access Data Sets • • • • 80

IBM-SUPPLIED CATALOGED PROCEDURES 81
Cataloged Procedure Restrictions • 81
FORTRAN PROCESSING Cataloged Procedures 81

Symbolic Parameters and the PROC
Statement • • • • • • • • • 88

Compiling • • • • • • •• • • • • 89
Link Editing • • • • • • • • 89
Executing the Load Module ••• • 90

Loading • • • • • • • • • • • • • • • • 90
Modifying Cataloged Procedures • 90

Modifying PROC Statements • • • • 90
Modifying EXEC Statements • • 91
Modifying DD Statements 91

PART II -- JOB OUTPUT 95

JOB OUTPUT • • 97

COMPILER OUTPUT • • • • • 99
Compiler output With Default Options • 99

Informative Messages • • • • • • 99
Diagnostic Messages ••••• 101
Source Listing ••••••••••• 101

Compiler Output With
Programmer-Specified Options

Cross-Reference Listing
Object Module Listing

.101

.101
• .104

.105 Edited Source Module Listing •
Source Module Map
Object Module Deck • • • • • •

• .105
••• 106

LINKAGE EDITOR AND LOADER OUTPUT • •
Linkage Editor Output • • • •

Linkage Editor Output With
Procedure-specified Options

Cross-Reference Table
Loader Output

• .108
• • 108

• .108
• .108

.110

LOAD MODULE OUTPUT •• • • • • 111
Messages • • • • • • •

Error Code Diagnostic Messages
Using the Traceback Map

Program Interrupt Messages •
Requesting a Dump

Operator Messages
Proqram output • • • •

.111
• .111

.112
• .113
• .115
• .115
• .116

PART III -- PROGRAMMING TECHNIQUES ••• 119

PROGRAMMING CONSIDERATIONS ••••••• 121
FORTRAN Implementation. • • • .121

Array Considerations. • • •• 121
Arithmetic IF Statement •• 121
Asynchronous Input/Output Programming
Considerations •••••••••••• 121
BACKSPACE Statement ••••••••• 122
COMMON and EQUIVALENCE Statements
Used Together •••••••••••• 122
COMMON Statement ••••••••••• 122
Data Initialization Statement -
Specifying Literals
Direct-Access Input/Output
Considerations • • • • •
EQUIVALENCE Statement
EXTERNAL Statement •
GENERIC Statement

• .123

.124

.125

.126
• .126

Input/Output Statements -
Unformatted Forms • • • • • • • •
List-Directed Input/Output •
Logical IF Statement • •
Name Handling • • • • • • • • • •

• .127
• • 127
• .127
• .127
• .127 OPTIMIZE Compiler Option •

READ Statement • • •
RETURN Statement • • • • •
STOP Statement • • • • • •
User-Supplied Subroutines

• • • • • • 129
• ••• 129

• • • • • • 129

Job Control Language Considerations
Using Pre-allocated Data Sets

• ."129
• .129
• .130

• • • 130 FORTRAN Library Considerations • •
DUMP and PDUMP Subprograms • •
Extended-Precision Subroutines • •

• .130
• .131

Sense Light Subprograms • .131
system Considerations • • • • •

Compilation Considerations • •
Compiler Storage Requirements
Compiler Restrictions

• • • • 131
• .131

• • • 131

Load Module Considerations • • • •
Load Module Restrictions • • • •
Boundary Alignment Considerations
Using Names Recognized by the
compiler as Generic or an Alias

• • 132
• .133
• .133

.133

• .133

AUTOMATIC PRECISION INCREASE
The Conversion Process

Promotion • • • • •

FACILITY .134
• • • • • • 134
• • • • • • 134

EXEC Statement Options • •
AUTODBL Subparameter
Coding Examples

• • • • • • 135
• • • • • • 135

ALC Subparameter • • •
Programming Considerations With API

Effect on COMMON or EQUIVALENCE
Data Values • • • • • • • •
Effect on Literal Constants
Effect on Programs Calling
Subprograms • • • • • • • •
Effect on FORTRAN Library
Subprograms •• • • •
Effect on CALL DUMP or CALL PDUMP

• • 138
• .138

.138

• .13(·
.13

• .139

• .139

Statements ••••••••••••• 139
Effect on Direct-Access
Input/Output Processing •••••• 140
Effect on Asynchronous Input/Output
Processing ••••••••••••• 140
Effect on Unformatted Input/Output
Data Sets • • • • • • • • •
Effect on the Storage Map

• .140
• .140

LINKAGE EDITOR OVERLAY FEATURE. • .141
Designing a Program for Overlay •••• 141

Segments. • • • • • • • • •• • .141
Paths ••• • • • • • • • •• • .142
Communicating Between Segments •••• 143

Inclusive References •••••••• 143
Exclusive References •• 144

COMMON Areas. • • • • • ••••• 144
The OVERLAY Process ••••••• 144
Construction of the OVERLAY Program •• 146

Linkage Editor Control Statements •• 146
OVERLAY Statement •••••• 146
INSERT Statement. • .146
INCLUDE Statement .147
ENTRY Statement • • • • • .148

Overlay Example • • • • • • • • .14
Linkage Editor OVERLAY Options. .14(8

EXTENDED ERROR HANDLING FACILITY •••• 154
Functional Characteristics ••••••• 154
Subprograms for the Extended Error
1''1' __ ..:J, .:: _ _ T.'i __ .: , ~ ..i.... __

DClllUJ..J..UY J:Cl~J..J..J..'-y

ERRSAV Subroutine
ERRSTR Subroutine
ERRSET Subroutine • • • •
ERRTRA Subroutine • • • •

User-Supplied Error Handling •
User-Supplied Exit Routine •

Option Table Considerations
Considerations for the Library
Without Extended Error Handling

• .156
• •• 156
• •• 156
• •• 158
• •• 160

• .160
• .161

• • .163

Facility • • •• • .163

APPENDIXES • .171

APPENDIX A: EXAMPLES OF JOB PROCESSING .173

APPENDIX B: ASSEMBLER LANGUAGE
SUBPROGRAMS • • • • •
Subroutine References

Argument List
Save Area • • • •
calling Sequence • • • • •

Coding the Assembler Language
Subprogram • • • • • • • • • •

• 179
• •• 179

.179

.179

.179

• .181

Coding a Lowest Level Assembler
Language Subprogram •••••••• 181
Higher Level Assembler Language
Subprogram. • • • • • • .181
In-Line Argument List ••••••• 183
Sharing Data in COMMON ••••••• 183

Retrieving Arguments From the Argument
List •••••••••••••••••• 183

RETURN i in an Assembler Language
Subprogram • • • • • • •

Object-Time Representation
Variables • • • •

INTEGER Type •
REAL Type • • • • •
COMPLEX Type • • •
LOGICAL Type • •

APPENDIX C: UNIT TYPES •
Tape Units • • • • •
Direct Access Units
Unit Record Equipment
Graphic Units •••• •

• • • • • • 184
of FORTRAN
• ••••• 184
• • • • • • 185

.186
• .187
• .iSS

.189
• • • • • • 189
• ••••• 189

• .189
• .189

APPENDIX D: AMERICAN NATIONAL STANDARD
CARRIAGE CONTROL CHARACTERS •••••• 190

INDEX • .191

FIGURES

Figure 1-1. Submitting FORTRAN
Proqrams Through cataloged Procedures • 19
Figure 1-2. Job Control Statement
Formats • • • • • • • • • • • • •
Figure 1-3. Job Statement Format
Figure 1-4. sample JOB Statements
Figure 1-5. EXEC Statement Format
Figure 1-6. Sample EXEC Statements
Figure 1-7. DD Statement Format
Figure 1-8. Sample DD Statements
Figure 1-9. compiler Options

22
25

• 25
30
32
37
38

Figure 1-10. Linkage Editor Options • •
Figure 1-10.1. Ordering and Aligning
Proqram Units on Page Boundaries

56
58

63
Figure 1-11. Linkage Editor
Processing •••••••••••
Fiqure 1-12. Loader Options • •
Figure 1-13. Defining Unit Record·
Data Sets • • • •
Fiqure 1-14. Creating EBCDIC

64
65

• 69

Sequential Data Sets on Tape or Direct
Access Volumes • • • • • • • • • • • • • 69
Figure 1-15. Retrieving Sequential
Data Sets • • • • • • • • • • • • •
Figure 1-16. Creating an ASCII Tape
Data Set •••••••••••••
Fiqure 1-17. Creating Partitioned
Data Sets • • • • • • • • • • • •
Figure 1-18. Retrieving Partitioned
Data Sets • • • • • • • • • • • • •
Figure 1-19. Deleting a Member of a
Partitioned Data Set ••••••••
Figure 1-20. Creating a Direct-Access
Data Set • • • • • • •
Fiqure 1-21. Retreiving a
Direct-Access Data Set ••••

69

69

• 70

70

72

• 72

72
Fiqure 1-22. EBCDIC Sequential Data
Sets--Structure of Formatted Records • • 75
Figure 1-23. EBCDIC Sequential Data
Sets--Structure of Unformatted Records • 76
Figure 1-24. ASCII Data Sets -
Structure of Records • • • • • • • • 78
Figure 1-25. Direct-Access Data
Sets--Structure of Records • • • • • • • 80
Figure 1-26. Cataloged Procedure
FORTXC • • • • • • • • • • • 82
Figure 1-27. Cataloged Procedure
FORTXCL • • • • • • • • • • • • • • 83
Figure 1-28. Cataloged Procedure
FORTXLG • • • • • • • • • • • 84
Fiqure 1-29. Cataloged Procedure
FORTXCLG ••••••••••••• 85
Figure 1-30. Cataloged Procedure
FORTXG • • • • • • • • • • • 86
Figure 1-31.
FORTXCG
Figure 1-32.
FORTXL

Cataloged Procedure

Cataloged Procedure

Figure 1-33. PROC Statement Format
Figure 1-34. Effect of PROC Statement

87

88
88

in a Cataloged Procedure • • • • • • • • 89

Figure 1-35. submitting Modifications
to a Cataloged Procedure • • • • • • • • 93
Figure 11-1. Sample Program as Coded • 97
Figure 11-2. Sample Program as
Keypunched • • • • • • • • • • • • 98
Figure 11-3. compiler Printed Output
Format • . • • • • • • • • • • 99
Figure 11-4. Compiler Output from
Defaul t Options • • • • • • • • • 100
Figure 11-5. Compiler Output from
Programmer-specified Op.tions •• • .102
Figure 11-6. Object Module Deck
Structure • • • • • • • • • • • .107
Figure 11-7. Source Statements and
Storage Map for COMMON/EQUIVALENCE
Blocks •••••••••••••••• 107
Figure 11-8. Linkage Editor Output
From Procedure-Specified Options •••• 109
Figure 11-9. Loader Output •••••• 110
Figure 11-10. Load Module Output with
Traceback Map ••••••••••••• 112
Figure 11-11. Partial Object Code
Listing ••••••••••••• 114
Figure 11-12. comparison of FORTRAN
Statement as Coded and as Keypunched .114
Figure 11-13. Program Interrupt
Message Format •••••••••••• 116
Figure 11-14. Operator Message Format 116
Figure 11-15. Program Output ••••• 117
Figure 111-1. Record Chaining .125
Figure 111-2. Writing a Direct-Access
Data Set for the First Time .126
Figure 111-3. Storage Structure Using
SIZE and REGION • • • • • • •• • .132
Figure 111-4. A FORTRAN Program
containing Three Program Units. • .141
Figure 111-5. Time/storage Map of
Program Described in Figure 111-4 ••• 141
Figure 111-6. Overlay Tree Structure of
Program Described in Figure 111-4 .142
Figure 111-7. Overlay Paths Implied by
Tree Structure in Figure 111-6 ••••• 142
Figure 111-8. Overlay Tree Structure
Having six Segments •••••••••• 143
Figure 111-9. Overlay Paths Implied
by Tree Structure in Figure 111-8 .143
Figure 111-10. Overlay Configuration of
Program Described in Figure 111-8 .144
Figure 111-11. communication Between
Overlay Segment ••••••••. 144
Figure 111-12. Overlay Program Before
Automatic Promotion of Common Areas •• 145
Figure 111-13. Overlay Program After
Automatic Promotion of Common Areas •• 14S
Figure 111-14. Linkage Editor Overlay
Input ••••••••••••••••• 150
Figure 111-15. Linkage Editor Overlay
Output -- Compile Job Step •• 151
Figure 111-16. Link Edit Overlay
Output -- Link Edit Job Step ••• 152

Figure 111-17. Linkage Editor Overlay
Output -- Load Module Execution Job
Step •••••••••••••••••• 153
Figure 111-18. Sample Program Using
the Extended Error Handling Facility
Fiqure 111-19. Option Table Preface
Figure 111-20. Option Table Entry
Figure A-l. Input/Output Flow for

• 162
" 164
.165

Example 1 •••••••••••• 173
Figure A-2. Job Control Statements
for Example 1 ••••••••••• 174
Figure A-3. Input Flow for Example 2

•• 174
Figure A-4. Job Control Statements
for Example 2 • • • • • • • • • • • •• 175

Table 1-1.
Functions
Table 1-2.
Table 1-3.
Table 1-4.
Table 1-5.
Table 1-6.
Table 1-7.
Table 1-8.

Job Control Statement

JOB Statement Functions
EXEC Statement Functions
DO Statement Functions

• 22
26
31

• • • 39
Data Set Names • • • •
Device Class Names • • •
Compiler Data Sets. ••••

44
46
57

DCB Default Values for
Compiler Data Sets • • • • • • • • • 57
Table 1-9. Linkage Editor Data Sets •• 60
Table 1-10. Loader Data Sets. • • • • • 66
Table 1-11. Load Module Data Sets • • • 68
Table 1-12. DCB Default Values for
Load Module Data Sets • • • • • • 72
Table 1-13. Maximum BLKSIZE Values • • 73

Figure A-5. Block Diagram for Example
3 • • • • • • • • • • • • • • • • • • • 176
Figure A-6. FORTRAN Coding for
Example 3 •••••••••••• 178
Figure A-7. Job Control Statements
for Example 3 ••••••••••••• 178
Figure A-8. Save Area Layout and Word
Contents ••••••••••• • .180
Figure A-9. Linkage Conventions for
Lowest Level Subprogram •••••••• 181
Figure A-lO. Linkage Conventions for
Higher Level Subprogram •••••••• 182
Figure A-l1. In-Line Argument List •• 183
Figure A-12. Assembler Subprogram
Example •••••••••••••• 185

TABLES

Table 111-1. Built-In Functions -
Substitution of Single and Double
Precision ••••••••••••••• 136
Table 111-2. Library Functions -
Substitution of Single and Double
Precision • • • • • • •••••• 136
Table 111-3. Option Table Default
Values • • •
Table 111-4.

• •• 155
Corrective Action After

Error Occurrence. • • • • • • • .157
Table 1II-5. Corrective Action After
Mathematical Subroutine Error
Occurrence •
Table 111-6. Corrective Action After

•• 16b

Program Interrupt Occurrence •••••• 170
Table A-l. Linkage Registers •• 180
Table A-2.. Dimension and subscript
Format •• •• 184

A program written for the FORTRAN IV
(H Extended) compiler is processed under
control of the IBM Systeml360 Operating
System. The compiler is a program product
included as part of the operating system in
a process called program installation. The
operating system consists of a control
2!Qg~ and a number of processing programs
that perform operations on problem
}2roqrams.

CONTROL PROGRAM

The control program supervises the
execution of the operating system and
provides services required by all other
programs. One of four control programs may
be specified for use with the FORTRAN IV
(H Extended) compiler: Multiprogramming
with a Fixed Number of Tasks (MFT),
Multi}2rogramming with a Variable Number of
Task~ (MVT), and the virtual storage
control programs VSl and VS2. Each control
program may handle up to 15 concurrently
operating programs, and each control
program has these major functions:

1. The supervisor is the control center
of the operating system and
coordinates all activity within it.

2. The job scheduler reads and analyzes
the input job stream (control
statements and data entering the
system), allocates input/output
devices as necessary, initiates the
execution of programs, and provides a
record of the work processed.

3. Data management routines control
input/output operations, regulate the
use of input/output devices after the
job scheduler allocates them, and
provide access to the data held in
them.

The MFT and VSl control programs divide
computer storage into areas of fixed sizes
called partitions. Data entering the
system is directed to these partitions on a
priority scheduling basis; that is, data is
not processed in the order in which it is
encountered in the input stream but
according to a priority code assigned by
the user.

The MVT and VS2 control programs, like
MFT and VS1, process data on a priority
scheduling basis, but direct it to storage

areas of variable sizes, called ~~q~Q~~;
each user indicates the amount of storage
he needs.

VSl is the virtual storage version of
MFT, and VS2 is the virtual storage version
of MVT. Both VS control programs provide
the same services as their non-relocatable
counterparts, but the partitions (VS1) and
regions (VS2) to which job steps are
directed are represented in virtual, rather
than real, storage. Virtual storage is the
name given to the address space that
appears to the user as real (main) storage
and from which instructions and data are
mapped into real storage locations. The
size of virtual storage is limited by the
addressing range of the computing system,
not the number of real storage locations.
(Under OS/VS the term rea! storage is used
to designate the physical main storage of
System/310 rather than its complete
addressing range.)

Virtual storage is provided by space on
direct access storage devices (DASDs) and
implemented by a combination of the Dynamic
Address Translation (DAT) hardware feature
of System/310 (often called the "relocate"
feature) and the pagi~q function provided
by the OS/VS control programs. The
contents of virtual storage are formatted
into 2048 byte blocks (VS1) or 4096 byte
blocks (VS2). These blocks are called
pages. During execution of a program, the
hardware system translates each virtual
storage address into a corresponding real
storage address that designates a physical
location. The translation process actually
amounts to relocation by a value that is a
multiple of one page. The VS control
program manages the transfer of pages
between auxiliary storage and real storage.
The number of pages that may reside in real
storage at any given time depends on the
amount of real storage available. The VS
control programs enable the central
processing unit to execute programs
residing in virtual storage without moving
all of the pages into real storage
concurrently.

PROCESSING PROGRAMS

Processing programs perform specific tasks,
such as language translation, link editing,
loading, sorting and merging, and various
utility functions. Language translators,
or compilers, include FORTRAN, COBOL, and

Introduction 11

PL/I. The !!nk~~~~ito~ and the loader
programs combine many programs into one
executable unit. Sort and merge programs
sequence data into ordered formats prior to
further processing. utility programs
provide the ability to create, print,
duplicate, and reformat collections of
data.

Processing programs of special concern
to the FORTRAN programmer are the FORTRAN
IV (H Extended) compiler, which translates
FORTRAN statements into executable
instructions; the linkage editor, which
combines the FORTRAN program with
subroutines from the FORTRAN library or
user libraries with other routines required
by the system; and the loader, which
combines a number of programs and
subprograms as does the linkage editor and
then executes the resulting program.

PROBLEM PROGRAMS

Problem programs are written by the user
for the creation and maintenance of files,
creation of reports, solution of problems,
or for whatever use the user wishes to make
of the computer (for instance, a FORTRAN
program, deSigned to do some particular
work). Before it can do its work, however,
the FORTRAN program must be processed by
the operating system.

PROCESSING A FORTRAN PROGRAM

Three basic steps are taken to process a
FORTRAN program: the compile step, the
link edit step, and the load module
execution (or go) step. The input to the
compile step is the group of FORTRAN
statements called a source module. The
output from the compile step-Is a group of
compiler-translated statements called an
Qbje£t mod~!~, which is the input to the
link edit step. The output of the link
edit step is the object module combined
with other modules and is called the load
module, the program that is executed in~he
go step. If the loader is used in place of
the linkage editor, the last two steps
(link edit and load module execution) are
combined into one step.

Each step is termed a job step--the
execution of one program. Each job step
may be executed alone or in combination
with other job steps as a job--an
application involving one or more job
steps. Hence, a job may consist of one
step, such as FORTRAN compiler execution,
or of many steps, such as compiler

12

execution followed by linkage editor
execution and load module execution.

The programmer defines the requirements
of each job to the operating system through
i2~£Q~:!:.ro!._!.~~!:!~e statements.

JOB CONTROL LANGUAGE STATEMENTS

A job control language statement is
identified by the appearance of the
characters // or /* in the statement's
first two positions. The job control
statements most often used by FORTRAN IV
programmers are the JOB, EXEC, DD,
delimiter, and null statements.

The JOB statement identifies the
beginning of a job. It is required for
each job, must be the first statement in a
job, and must have a name to identify the
job. It may also contain other information
such as the programmer's name, accounting
information, certain system options, and
comments.

The EXEC statement identifies the
beginning of a job step. It is required
for each job step and must be the first
statement in the step. The EXEC statement
may be named to identify the step. The
statement must specify the name of the
program to be executed. It may also
contain other information such as processor
options and comments.

The DD statement defines a data set. A
data set is an organized collection of
records such as a source program, a set of
input records, or a library of subprograms.
~he DD statement specifies information
regarding a data set's characteristics, its
location, its name, format' of records
contained in the data set, and the
disposition to be made of the data set at
the end of the job step.

The delimiter statement contains the
characters /* in the first two positions
and indicates the end of a data set
contained on cards.

The null statement contains the
characters // in the first two pOSitions
and indicates the end of the job. The
remainder of the card must be blank.

The following examples illustrate the
positioning of job control statements,
within a job for some of the combinations
of FORTRAN processing.

Compile Only (One Source Module)

// JOB Statement
// EXEC Statement (to execute FORTRAN

compiler)
// DD Statements for compilation (as

required)
r----------------------------,
!Source module to be compiled! L ____________________________ J

/* Delimiter Statement (if source module is
on cards)

// Null Statement

Compile Only (More Than One Source Module)

// JOB Statement
// EXEC Statement (FORTRAN compiler)
// DD Statements for compilation 1 (as

required)
r---------------------------,
!Source module to be compiled! L ______________ ~ _____________ J

/* Delimiter Statement (if source module is
on cards)

// EXEC Statement (FORTRAN compiler)
// DD Statements for compilation 2 (as

required)
r----------------------------,
ISource module to be compiled! L ____________________________ J

/* Delimiter Statement (if source module is
on cards)

// EXEC statement (FORTRAN compiler)
// DD Statements for compilation 3 (as

required)
r----------------------------,
\Source module to be compiledj L ____________________________ J

/* Delimiter Statement (if source module is
on cards)

// Null Statement

Compile and Link Edit

// JOB Statement
// EXEC Statement (FORTRAN compiler)
// DD Statements for compilation (as

required)
r----------------------------,
ISource module to be compiled I L ____________________________ J

/* Delimiter Statement (if source module is
on cards)

// EXEC Statement (Linkage Editor)
// DD Statements for link editing (as

required)
// Null Statement

Compil~L Link Edit, and Execute

// JOB Statement
// EXEC Statement (FORTRAN compiler)
// DD Statements for compilation (as

required)
r----------------------------,
ISource module to be compiled I L ____________________________ J

/* Delimiter Statement <if source module is
on cards)

// EXEC Statement (Linkage Editor)
// DD statements for link editing (as

required)
// EXEC Statement (Load Module)
// DD statements for load module execution

(as required)
r-------------------------------------,
IData input statements to be processed I L _____________________________________ J

/* Delimiter Statement (if data input is on
cards)

// Null Statement

As these examples show, the same job
control statements are used repeatedly. To
save programming time and to reduce the
possibility of error, IBM supplies sets of
job control statements that the programmer
may use in place of his own. Each set is
given a name and is stored in a data set
called the procedure library. The sets of
statements are called cataloged procedures.

CATALOGED PROCEDURES

To retrieve a cataloged procedure from the
library, the programmer specifies its name
in an EXEC statement in place of a program
name. The effect is the same as though the
job control statements in the cataloged
procedure appeared in the input stream in
place of the EXEC statement that called it.

Note that a cataloged procedure does not
execute a program; it merely supplies a set
of job control statements. These
statements must include appropriate EXEC
statements naming programs to be executed.

IBM provides seven cataloged procedures
for use with the FORTRAN IV (H Extended>
compiler. They are:

• FORTXC, which includes one EXEC
statement, to execute the compiler

• FORTXCL, which includes two EXEC
statements, to execute the compiler and
the linkage editor

• FORTXLG, which includes two EXEC
statements, to execute the linkage
editor and the load module

Introduction 13

• FORTXCLG, which includes three EXEC
statements, to execute the compiler,
the linkage editor, and the load module

• FORTXCG, which includes two EXEC
statements, to execute the compiler and
the loader

• FORTXG, which includes one EXEC
statement, to execute a load module

• FORTXL, which includes one EXEC
statement, to execute the loader

In addition to EXEC statements,
cataloged procedures contain DD statements
to define data sets needed by each job
step.

A data set resides on one or more
volume(s). A volume is a unit of external
storage that is-accessible to an
input/output device. For example, a volume
may be a magnetic tape, disk, drum, or data
cell.

An input/output gevice is the piece of
equipment that does the recording and/or
the reading of data from the volume. For
example, a device may be a tape drive or a
disk drive.

Several input/output devices may be
grouped together into a device class when
the system is generated. A device class is
referred to by a collective name. For
example, the device class SYSDA may consist
of all direct access devices in an
installation; the device class SYSSQ may
consist of magnetic tape and direct-access
devices in an installation.

A data set may be a system dat~~et or a
user data set. A system data set is one
used by the system; for example, to store
an object module. A user data set is one
defined by the programmer for a specific
application; for example, to store
intermediate results during program
processing.

SYSTEM DATA SETS

System data sets are used in all three
steps of FORTRAN processing.

14

Compiler data sets are defined in DD
statements named SYSIN, SYSPRINT, SYSPUNCH,
SYSLIN, SYSUT1, and SYSUT2.

• SYSIN specifies the primary input (the
source module) to the compiler.

• SYSPRINT specifies the output data set
used to write listings and messages.

• SYSPUNCH specifies the output data set
used to punch cards or to write output
in card image form.

• SYSLIN specifies the data set in which
the object module was produced by the
compiler.

• SYSUTl and SYSUT2 specify utility data
sets required by the compiler.

Linkage editor data sets are defined in DD
statements named SYSLIN, SYSPRINT, SYSLIB,
SYSLMOD, and SYSUT1.

• SYSLIN specifes the data set in which
the object module was created in a
compile step and that is to be the
input to the link edit step.

• SYSPRINT specifies the output data set
used to write listings and messages.

• SYSLIB specifies the system data set,
SYS1.FORTLIB, that contains
IBM-supplied FORTRAN subprograms. The
linkage editor uses this data set to
include FORTRAN subprograms called by
the compiler.

• SYSLMOD specifies the load module
produced by the linkage editor.

• SYSUTl specifies a utility data set
required by the linkage editor.

Load module execution data sets are defined
by DD statements with names in the form
FTxxFyyy, where xx is a data set reference
nU~Qer and yyy is a ~~quence number. A
data set reference number may range from 01
to 99; a sequence number may range from 001
to 999. A data set reference number
equates the data set defined in the DD
statement to the data set referenced in the

READ or WRITE statement in the source
proqram. For example, the name FT08F001
describes the data set referenced by the
READ statement:

n~7\.r. in __ \
nLfi.LJ 'O,AI

IBM-supplied cataloged procedures
contain DD statements named FT05F001,
FT06F001, and FT07F001 which reserve data
set reference number 5 for an input data
set, 6 for a printer, and 7 for a card
punch. All other data set reference
numbers are available to the programmer for
the definition of other data sets. These
standards may be changed by the individual
installation or they may be overridden by
the programmer. The following discussion
describes the data sets as specified in the
IBM-supplied cataloged procedures.

FT05F001 defines the input data set.
The FORTRAN programmer normally uses 5 as
the data set reference number in the READ
statement for input to his program.

FT06F001 defines the data set directed
to the printer. The FORTRAN programmer
uses 6 as the data set reference number in
the WRITE statement for printed output.

FT07F001 defines the data set directed
to the card punch. The FORTRAN programmer
uses 7 as the data set reference number in
the WRITE statement to direct output to the
punch.

Loader Data sets

Because the loader combines two job steps,
it uses some of the same data sets as the
linkage editor and the load module, such as
SYSLIN, SYSLIB, FT05F001, FT06F001, and
FT07F001.

In addition, it uses a DD statement
named SYSLOUT to specify the output data
set used to write loader output.

USER DATA SETS

User data sets are those which the user
requires for his particular program. For
example, the programmer must define data
that will be created by a program or read
from a previous program as a user data set.
A user data set in FORTRAN may be one of
three types: sequential, partitioned, or
direct-access.

A seguential data set is one in which
records are organized solely on the basis

of their successive physical positions
(i.e., arranged in sequential order). A
sequential data set may reside on cards,
tape, or a direct-access device. A FORTRAN
source module is an example of a sequential
data set.

A partitioned data set is one that is
composed of groups of sequential data, each
of which is called a member. Each member
has a name stored in a dire££2~ that is
part of the data set and that contains the
location of each member's starting point.
Partitioned data sets are used as libraries
(data sets containing a number of ---------
programs). SYS1.FORTLIB, which contains
FORTRAN subroutines, is an example of a
partitioned data set.

A direct-access data set is one in which
records-rnay~e-accesse~rndividually by
specifying the position of the record
within the data set. For example, if the
100th record of a sequential data set is
needed, records 1 through 99 must be
transmitted; record 100 of a direct-access
data set can be accessed immediately.
Records in a direct-access data set may be
processed in FORTRAN only by direct-access
I/O statements,but may be processed in a
sequential fashion through use of the
associated variable in the direct-access
statements. Direct-access data sets may
reside only on direct-access devices. A
data set containing information on a
department store's customers, arranged
according to charge account numbers that
may be accessed individually, is an example
of a direct-access data set.

CATALOGED DATA SETS

Any partitioned or direct-access data set
and any sequential data set not on cards,
may be cataloged. A cataloged data set is
one for which certain information
describing the data set has been placed in
an index called the cata!Qg. When a data
set is cataloged, the serial number of its
volume is entered in the catalog together
with the data set name, thereby providing a
cross-reference. A programmer can
subsequently refer to the data set without
specifying its physical location. (The
term cataloged data set should not be
confused with cataloged procedure.)

LIBRARIES OF DATA SETS

A library is a partitioned data set
containing a number of programs. Libraries
supplied by IBM or the installation are

Introduction 15

§ystem libraries; libraries created by the
proqrammer are user libraries.

System Libraries

System libraries most useful to a FORTRAN
proqrammer are SYS1.LINKLIB, SYS1.FORTLIB,
and SYS1.PROCLIB.

SYS1.LINKLIB contains frequently-used
proqrams, such as the FORTRAN compiler.

SYS1.FORTLIB contains FORTRAN
subprograms used during FORTRAN processing.

SYS1.PROCLIB contains cataloged
procedures and may contain user-written
cataloged procedures as well as those
supplied by IBM.

User Libraries

A user library is created by the programmer
to serve a special application, such as
storing frequently-used programmer-written
programs. The programmer may adopt his own
convention in naming his libraries.

A programmer creates a user library and
adds programs or subprograms to it by
defining it on a SYSLMOD DD statement of a
linkage edit job step. He retrieves it
through a DD statement named STEPLIB or
JOBLIB. STEPLIB makes the library
accessible during one step of a job; JOBLIB
makes the library accessible for all steps
of the job. When JOBLIB is specified, the
DD statement must be placed immediately
after the JOB statement to ensure that the
library remains available for the duration
of the job. The STEPLIB DD statement may
appear anywhere among the DD statements
within a job step.

In addition to object and load modules,
jobs produce other forms of output that

16

help the programmer analyze the job. The
compile step informs the user of the
success of the compilation by issuing
messages, including a severity code for any
error encountered. The following severity
codes are associated with compilation
messages:

• 0 to indicate an informational message;
that is, no errors was detected

• 4 to indicate a warning message; that
is, a possible minor syntactic error
was detected

• 8 to indicate an error message; a
syntactic error was detected

• 12 to indicate a serious error message;
a serious syntactic error that prevents
program execution was detected

• 16 to indicate an unrecoverable error
message; compiler processing was
terminated because of an error

severity codes 0 and 4 require no action on
the part of the programmer; the program may
be executed. (Nevertheless, severity code
4 messages should be corrected.) The other
codes require corrections before the
program may be executed.

The compiler may also produce output,
such as a card deck of the object module, a
listing of the statements in an object
module (pseudo-assembler listing)~ and a
storage map that lists the names and
storage locations of variables appearing in
the object module.

.The link edit step produces a map of the
load module and may also produce a
cross-reference listing that shows where
the modules making up the program
interrelate.

The load module step produces program
output as required by the FORTRAN program
and also produces any messages describing
conditions encountered during execution.

PART I -- JOB INPUT

Introduction 17

The simplest way to submit a FORTRAN
program is by calling one of the cataloged
procedures. The programmer calls a
procedure by submitting:

1. A JOB statement

2. An EXEC statement that names the
procedure

3. The input to the operating system,
such as the FORTRAN program to be
compiled

SUBMITTING A FOR'1:RAN PROGRAh

1. A DD statement having the name SYSIN
immediately preceding the card deck.
The name SYSIN defines input data.

2. A delimiter control stateffient
immediately following the card deck to
mark the end of card input.

Figure 1-1 lists all the cataloged
procedures for the FORTRAN IV (H Extended)
compiler and an example in submitting card
input for each of them.

4. A null statement at the end of the job

Note that in Figure 1-1, the DD
statement named SYSIN may appear more than
once within a job. The qualified name
FORT.SYSIN defines the source module to the
compile step (which is named FORT in
cataloged procedures); the qualified name
GO.SYSIN defines data records to be
processed by the load module (go) step.

In addition, if the FORTRAN program is
submitted in card deck form, the programmer
must supply the following:

r---------------T------------------T--,
I Cataloged 'I I
'Procedure Name, Function I Calling the Procedure ,
~---------------+------------------+--~
'FORTXC 'Compile I Iljobname JOB I
I , I II EXEC FORTXC I
, , I IIFORT.SYSIN DD * I
, , 'r---------------------, ,
, , I' FORTRAN source module I I I I I l _____________________ J I

, I I 1* I
I , , II ,

~---------------+------------------+--~
FORTXCL 'Compile and i //jobname JOB I

, Link Edit, I I EXEC FORTXCL ,
I , IIFORT.SYSIN DD * I
, 'r---------------------, ,
, I I FORTRAN source module I , I 'l _____________________ J ,

, I 1* ,
, , , II ,

~---------------+------------------+--~
FORTXCLG Compile, Iljobname JOB

Link Edit II EXEC FORTXCLG
and Execute IIFORT.SYSIN DD *

r---------------------,
,FORTRAN source module, l _____________________ J

1*
IIGO.SYSIN DD *

1*
II

r----'
IDatal
l ____ J

l _______________ ~ __________________ ~ ___ _

Figure I-i. Submitting FORTRAN Programs Through Cataloged Procedures
(Part 1 of 2)

Submitting a FORTRAN Program 19

r---------------T------------------T--,
I Cataloged I I I
I Procedure Name I Function I Calling the Procedure I
~---------------+------------------+--1

FORTXLG Link Edit //jobname JOB
and Execute // EXEC FORTXLG

//LKED.SYSIN DD *
r---------------------------,
Ifirst FORTRAN object module I L ___________________________ J

r--------------------------,
Ilast FORTRAN object module I L __________________________ J

/*
//GO.SYSIN DD *

r----'
IDatal
L ____ J

1 /*
I //

~---------------f------------------f--1
I FORTXG I Execute I / / jobname JOB I
I I I //JOBLIB DD (parameters to describe library) I
I I I / / EXEC FORTXG ,
I I , / /GO. SYSIN DD * I
I I I r----' I
I , 'IDatal ,
I I I L ____ J I
, I , /* I , , , // ,
~---------------+------------------+--1

FORTXCG I Compile and / /jobname JOB I
I Load / / EXEC FORTXCG I
, / /FORT. SYSIN DD * I
, r---------------------, I
I ,FORTRAN source module I I I L _____________________ J I

,/* I
I / /GO. SYSIN DD * ,
I r----' I
I IDatal I I L ____ J I
I /* ,
I // I

~---------------+------------------f--1
I FORTXL I Load ,/ /jobname JOB I
I , I / / EXEC FORTXL I
I , I //LKED.SYSLIN DD (parameters) I
I I I / /GO. SYSIN DD * I
I , I r----' ,
I I I ,Datal ,
I I I L ____ J I
I , I /* I
I I I // I L _______________ L __________________ ~ __ J

Fiqure I-i. Submitting FORTRAN Programs Through Cataloged Procedures (Part 2 of 2)

The FORTRAN programmer should do one
more thing before submitting a program for
execution. If input and output data
consist solely of cards and printer
listing, he should code data set reference
numbers for FORTRAN READ and WRITE
statements as 5 and 6 respectively.

20

Cataloged procedure FORTXCLG (and FORTXLG)
contain DD statements that allocate the
card reader to data set reference number 5
and the printer to data set reference
number 6.

The programmer need do no more than the
foregoing to process a FORTRAN program.
Use of the cataloged procedure FORTXCLG, as
illustrated, enables the control program to
read the source module: read the load
module input data set, and write program
output and system messages on the printer.

However, if the source module resides on
some media other than cards (i.e., on tape
or in a direct-access volume) or if the
programmer needs specific data sets during
program processing, he must make these
private data sets available to the control
program. To do this, he must define them
in DD statements. The following discussion
describes how to create and retrieve such

A private data set may be temporary or
permanent. A temporary data set is one
that is created and deleted in the same
job; it is usually preferred when the
programmer needs space temporarily to store
data during program execution. The
following is an example of a DD statement
defining a temporary data set:

//GO.FT09F001 DD DSNAME=&&SET,UNIT=2311,
// SPACE=(TRK, (5,5»

The name GO.FT09F001 identifies a data set
to be processed by the execute step and
links the data set to FORTRAN READ and
WRITE statements having 9 as the data set
reference number. DSNAME=&&SET assigns the
name set to the data set; the symbols && in
the first positions signify a temporary
data set. The UNIT parameter indicntes
that the data set is to reside on a 2311
device. SPACE indicates the amount of
space allocated to the data set; space is
allocated in number of tracks on the 2311
device, five tracks initially and five
additional tracks each time the data set
needs more space.

A permanent data set is one that is
created and kept at the end of the job; it
is defined when the data set is to contain
information required in later jobs. To
respecify the data set in the previous
example as a permanent data set, the
programmer may submit the following
statement:

//GO.FT09F001 DD DSNAME=SET,UNIT=2311,
// SPACE=(TRK, (5,5»,
// VOLUME=SER=DA003,
// DISP=(NEW,KEEP)

The DSNAME parameter names the data set
without the && symbols in the first
positions. The VOLUME parameter indicates

that the data set is to reside on the disk
pack having the serial number DA003. The
VOLUME parameter is not mandatory when
creating a data set; if it is omitted, the
data set is assigned to any available
volume. However, to retrieve the data set
in a later job, the control program needs
to know which volume to access. The DISP
parameter indicates that the data set is
new and is to be kept. The DISP parameter
is mandatory; without it, the data set
would be deleted at the end of the job.

To retrieve the data set SET in a later
job, the programmer changes the DISP
parameter from t~EW to OLD; i. e.,

/ /GO. FT09F001 DD DSNAME=SET, UNI'l'=2311,
// VOLUME=SER=DA003,
// DISP= (OLD, KEEP)

OLD indicates that the data set existed
prior to the job. (The underscore in these
examples is for visual aid only and is not
part of the statement coding.) Note that
the SPACE parameter is not specified; it is
used only when creating a data s.~t. Note
also that the UNIT and VOLUME parameters
are repeated. The programmer can avoid
repeating these parameters by cataloging
the data set, that is, entering the data
set's name and unit and volume information
in the control program index. To catalog a
data set, the programmer changes the DISP
parameter from KEEP to CATLG, i.e.,

/ /GO. F'I'09F001 DD DSNAME=SET, UNIT=2311,
// VOLUME=SER=DA003,
// DISP=(OLD,CATLG)

Alternatively, the programmer may catalog
the data set when he creates it, that is,
DISP=(NEW, CATLG), is valid. After a data
set has been cataloged, the programmer may
retrieve it by specifying only the DSNAME
and DISP parameters.

Finally, to delete the data set in a
later job, the programmer changes the DISP
parameter from CATLG (or KEEP) to DELETE,
i. e.,

//GO.FT09F001 DD DSNAME=SET,
// DISP=(OLD,Q~~~~~)

DELETE indicates that the space occupied by
the data set is to be released and made
available for other uses at the end of the
job.

The operating system contains many more
options that can be specified in the job
control language. The programmer may
choose those options he needs to tailor the
system's facilities to a particular
application. The following sections
describe some of those options and how he
may use them.

Submitting a FORTRAN Program 21

Job control statements provide a
communications link between the FORTRAN
proqrammer and the operating system. The
FORTRAN programmer uses these statements to
define a job, a job step within a job, and
data sets required by the job. A full
description of job control language can be
found in the appropriate job control
language reference publication, as listed
in the Preface.

This section describes the job control
statements most used by the FORTRAN
proqrammer: the JOB, DO, EXEC, delimiter,
comments and null statements. Another job
control statement, the PROC statement, has
a special application in FORTRAN
processing; it assigns default values to
proqram options specified in cataloged
procedures. Because of its limited
applicability to FORTRAN programs, the PROC
statement is not fUrther discussed in this
section (see "IBM-Supplied Catalog~d
Procedures" for a discussion of this
statement) •

Job control statements are identified by
the characters // in columns 1 and 2,
except for the delimiter statement, which
is identified by the characters /* in
columns 1 and 2, and the comments
statement, identified by the characters //*
in columns 1, 2, and 3. The delimiter
statement may contain optional comments
preceded by one or more blanks. The null
statement may contain only the two slashes;
the remainder of the statement must be
blank. The comments statement contains
notes written by the programmer. The other

three statements discussed in this section
can contain up to four fields: name,
operation, operand, and comments.

Table 1-1 summarizes the function of job
control statements. Figure 1-2 illustrates
the format of job control statements. The
brackets around some of the items
illustrated indicate that those items are
optional when using the statement.

Table I-i. Job Control statement Functions
r----------T------------------------------,
IStatement I Function I
t----------t------------------------------~
I JOB IIndicates the beginning of a I
I Inew job and describes that jobl
t----------t------------------------------~
I EXEC IMarks the beginning of a job I
I Istep and indicates the programl
I lor cataloged procedure to be I
I lused I
t----------t------------------------------~
IDD IDescribes data sets and I
I Icontrols device and volume I
I I assignment I
t----------t------------------------------1
IDelimiter ISeparates data sets in the I
I I input stream from control I
I Istatements; it appears after I
I leach data set in the input I
I I stream I
t----------t------------------------------~
INull IIndicates the end of a job I
r----------t------------------------------1
I Comment Icontains miscellaneous remarks I
I Iwritten by the programmer; it I
I Ican appear before or after anyl
I Icontrol statement I L __________ ~ ______________________________ J

r---T---,
I FORMAT I APPLICABLE CONTROL STATEMENTS I
t---t---~
I//Name Operation [Operand] [Comment] I JOB I
I I I
I//[Name] Operation Operand [Comment] I EXEC,DD I
I I I
1/* [Comment] I delimiter I
I I I
1// I null I
I I I
1//* Comment I comments I L ___ ~ ___ J

Figure 1-2. Job Control Statement Formats

22

The name field begins in column 3,
immediately following the //.

The name field assigns a name to the
statement, identifying it to other
statements and to the operating system. A
name consists of from one to eight
alphameric characters or the characters #,
$, or @. The first character of the name
must be alphabetic. A DD statement may
contain a qualified name which is two names
joined together with periods; the name
FORT.SYSIN is an example of a qualified
name.

The operation field oegins in any column
after the name field and is preceded and
followed by one or more blanks.

The operation field identifies the type
of control statement, e.g., JOB, DD, or
EXEC.

The operand field begins in any column
after the operation field and is preceded
and followed by one or more blanks. The
operand field identifies system options
requested by the programmer. Options are
specified through one or more parameters
separated by commas.

Parameters may be either EQsitiona! or
keyword. Positional parameters must appear
in a fixed order and are identified, or
given meaning, by their position in that
order. A keyword parameter is composed of
an identifying keyword, an equal sign (=),
and a value. Parameters may also comprise
a number of subparameters, which can be
either positional or keyword.

The comments field begins in any column
after the operand field (or the /* in the
delimiter statement) dnd is preceded by one
or more blanks. The comments field may
contain any information that is considered
helpful. There is no required syntax for
comments.

All statements (except the null
statement) may be continued onto succeeding
cards, using the following rules:

1. Interrupt operands after a completed
parameter or subparameter, including
the comma that follows it, at or
before column 71.

2. If comments are desired in the same
statement as an interrupted operand
field and there is sufficient room,
leave one or more spaces after the
comma that follows the last parameter,
and then code the comments.

3. For an interrupted comment, code any
nonblank character in column 72. For
an interrupted operand, the nonblank

4.

character in colUITill 72 is optional.
If a nonblank character is not coded
in column 72 of an interrupted
operand, but the conventions outlined
in the next two items are fOllowed:
the job scheduler will treat the next
statement as a continuation statement.

Code the identifying characters // in
columns 1 and 2 of the following card
or card image.

5. Continue the interrupted operand
beginning in any column from 4 through
16.

Note that excessive continuation cards (or
card images) should be avoided whenever
possible to reduce processing time for the
control program.

In describing the syntax for parameters,
this publication follows the conventions
listed in the following paragraphs.

1. The set of symbols listed below are
used to define control statements, but
are never coded in a control
statement.

a. hyphen
b. logical or
c. underscore
d. braces }

e. brackets]

f. ellipsis
g. superscript 1

The special uses of these symbols are
explained in paragraphs numbered from
4 to 10.

2. Uppercase letters and words, numbers,
and the set of symbols listed below
are coded in a control statement
exactly as shown in the statement
definition.

a. apostrophe
b. asterisk * c. comma
d. equal sign
e. parentheses
f. period
g. slash /

Using Job Control Statements 23

3. Lowercase letters, words, and symbols
appearing in a statement definition
represent variables for which specific
information is substituted when the
control statement is coded.

DSNAME=filename

may be coded as

OSNAME=MYNAME

4. Hyphens join lowercase letters, words,
and symbols to form a single variable.

Example:

PGM=program-name

may be coded as

PGM=MYNAME

5. Stacked items or items separated from
each other by the "logical or" symbol
represent alternatives. Only one such
alternative should be selected.

For example:

or an alternate designation:

{AlBIC}

The above two examples have the same
meaning and indicate that either A or
B or C should be selected.

6. Brackets also group related items; but
everything within the brackets is
optional and may be omitted.

ALPHA=([AIBIC],D)

The preceding example indicates that a
choice can be made among the items
enclosed within the brackets or that
the items within the brackets may be
omitted. If B is selected, the result
is ALPHA=(B,O). If no choice is made,
the result is ALPHA=(,O).

7. An underscore indicates the standard
default option. If a default option
is selected, it need not be coded in
the actual statement.

G

OECK

J PARM=
NOOECK

24

If the user wants the DECK option, he
will have to specify it; if he wants
the NODECK option, he may specify it,
but he does not need to do so.

8. Braces group related ite~s, such as
alternatives.

ALPHA=({AIBI~},D)

The above example indicates that a
choice must be made among thE items
enclosed within the braces. If A is
selected, the result is ALPHA=(A,O).
If C is selected, the result can be
either ALPHA=<C,D) or ALPHA=(,D).

9. An ellipsis indicates that the
preceding item or group of items can
be repeated many times.

ALPHA [, BETA] •••

The preceding example indicates that
ALPHA can appear alone or it can
appear followed by ,BETA optionally
repeated many times in succession.

10. A superscript refers to a description
in a footnote.

{
NEWl1. OLD
MO~

SHR

11. Blanks are used to improve the
readability of control statement
definitions. Unless otherwise noted,
blanks may not appear in a statement
definition.

A JOB statement initiates the beginning of
a job and assigns a name to it.

The JOB statement may also contain the
following information:

1. Accounting information relative to the
job

2. Programmer's name

3. The type of system messages to be
written

4. Conditions for terminating the
execution of the job

5. Assignment of input and output classes

6. Job priority

7. Main storage requirements

8. A time limit for the job

Figure 1-3 illustrates the format of the
JOB statement. Table 1-2 summarizes the
functions of the JOB statement. Figure 1-4
shows sample JOB statements.

The job name is always required. All
other information is optional unless made
mandatory by each installation.

Naming the Job

Jobname identifies the job to the operating
system. Because a multiprogramming
environment permits many jobs to operate
concurrently, the programmer should select
a unique jobname for each job.

The accounting information and
programmer's name are positional parameters

and, if used, must be the first ones
specified in the operand field. All other
parameters are keyword parameters and may
appear in any order.

Accounting information is used to store
installation-required accounting
procedures. It is specified as the first
parameter in the operand field. The
parameter has no predefined format; it
consists of a string of up to 142
chart=l~ters. If it contains any special
characters (valid members of the character
set not alphabetic or numeric) other than a
hyphen, it is enclosed in apostrophes.

An example of the accounting parameter
is:

'215, 46WX819'

If this parameter is not present but the
programmer's name is, a comma is required
to indicate the omission. If both
parameters are omitted, no commas are
required. (The accounting field may be
required, at the installation's option.)

r-----------T-----------T---,
I Name I Operation I Operand I
~-----------+-----------+---~

//jobname JOB
I Positional Parameters
I [,accounting=inforrnation]
I [,programmer-name]
I
I
I
I
I
I
I
I
I

Keyword Parameters
[MSGLEVEL=(x, yJ]
[COND=«code,operator) •••)]
[CLASS=job-class]
[PRTY=job-priorityl
[MSGCLASS=x]
[REGION=region-size1 1
[TIME=(minutes,seconds)]2

I [ADDRSPC=REALI VIRT] 3

~-----------~-----------~---~
I 1MVT and VS only. I
I 2MVT and VS2 only. I
I 3VS only. I L ___ J

Figure 1-3. Job Statement Format

r---,
I //CLH1 JOB NY237413,C.L. HARVEY, MSGLEVEL=l I
I I
I //CLH2 JOB ,HARVEY,COND=(8,EQ),REGION=100K,TIME=60, I
I // CLASS=H,PRTY=10 I
I I
I //PROGRAM JOB 873,'COVER-RAMSEY',~£GLEVEL=(1,1),MSGCLASS=Cr I
I / / PRTY=10 I L ___ J

Figure 1-4. Sample JOB Statements

Using Job Control Statements 25

Table 1-2. JOB statement Functions
r-------------T---------------------------T---,
I Specif ica tion I Purpose I How to Specify I
~-------------+---------------------------+---~
Ijobname ITO identify the job to the lane to eight alphameric (alphabetic or I
I loperating system. I numeric) characters, the first of which must I
I I Ibe alphabetic or one of the extended I
I I lalphabetic characters #, @, or $. I
~-------------t---------------------------+---~
I accounting- ITo identify the account IUp to 142 characters; if any special I
I informationlnurnber or other accounting Icharacters other than a hyphen, enclose in I
I I information relating to thelapostrophes. I
I I job. I See "Specifying Accounting Information" I
I I I for details. I
~-------------+---------------------------+---~
Iprograrnrner- ITo identify the person IUp to 20 characters; if special characters I
I name Isubmitting the job. lother than a period, enclose in apostrophes. I
~-------------+---------------------------+---~
I MSGLEVEL ITO specify the type of I MSGLEVEL=(x,y), where ~ is 0, 1, or 2, to I
I I system messages <i.e., job lindicate which job control statements and I
I Icontrol statements, Idiagnostic messages are to be written, and y I
I Idiagnostic roessages, lis 0 or 1 to indicate whether termination I
I Itermination messages) to belmessages are to be written. I
I Iwritten as part of the I See "Specifying System Messages" I
I loutput listing. Ifor details. I
~-------------+---------------------------+---~
ICOND ITO specify those conditionsICOND=«code,operator) •••), where code is a I
I Ithat are to result in Inumber between 0 and 4095 (usually 0, 4, 8, I
I Iprogram termination. t12, or 16) and operator is a 2-character I
I I Ivalue that represents a comparison to be madel
I I Ibetween code and a return code issued by the I
I I loperating system. If the comparison is true, I
I I I the job is terminated. I
I I I See "Specifying Condition Codes to I
I I ITerminate a Job" for details. I
~-------------+---------------------------+---~
I CLASS ITo assign an input class toICLASS=job-class, where job-class is an alpha-I
I Ithe job. Ibetic character A thru a assigning the class I
I I Irepresented by that character to the job. I
~-------------+---------------------------+---1
IFRTY ITO assign a priority to theIPRTY=job-priority, where job-priority is a I
I Ijob. Inumber 0 through 13 assigning the priority I
I I I represented by that number to the job; the I
I I Ihigher the number, the greater the priority. I
~-------------+---------------------------+---1
I MSGCLASS ITo assign an output class I MSGCLASS=x, where x is an alphabetic or I
I Ito the job. Inumeric character assigning the output class I
I I Irepresented by that character to the job. I
~-------------+---------------------------+---~
I TIME ITo assign a time limit to ITIME=(minutes,seconds), where minutes is a I
I Ithe job. Inumber up to 1439, and seconds is a number upi
I I I to 59. I l _____________ L ___________________________ ~ ___________ ---_______________________________ J

(Part 1 of 2)

26

Table 1-2. JOB Statement Functions (Part 2 of 2)
r-------------T---------------------------T---,
I Specification I Purpose I How to Specify I
~-------------+---------------------------+---~

I
I
I

REGION To assiqn storage to a ;ob
operating in the MVT or VS
environment.

For MVT, REGION=(nnnnn~K[:nnnnn~K]'. where
nnnnn1K is a value up to 16383K and indicates
the amount of storage to be allocated (K=1024
bytes); nnnnn2K is a value up to 2048K and
indicates the amount of additional storage to
be allocated, usually from an IBM 2361 Core
Storage device. For an IBM 2361 Modell,
nnnnn2K may be a value up to 1024K; for an
IBM 2361 Model 2, nnnnn2K may be a value up
to 2048K.

For VS, REGION=valueK, where valueK
represents the number of contiguous l024-byte
areas of real or virtual storage to be I
allocated. I

See "Assigning Storage to a Job Under MVT" I
I for details. I
~-------------+---------------------------+---~
IADDRSPC ITO specify the mode of IADDRSPC=REAL for real mode, and ADDRSPC=VIRT I
I I operation, real or virtual, I for virtual mode. I
I lof the VS control program. I I L _____________ ~ ___________________________ L ___ J

The programmer's name is specified as the
second parameter in the operand field. It
consists of a string of up to 20
characters. If it contains any special
characters other than a period, it is
enclosed in apostrophes.

Examples of the programmer-name
parameter are:

J.SMITH
• COVER-RAMSAY'

If this parameter is not present, no
comma is required to note the omission.

Specifying System Messages

The MSGLEVEL parameter is used to specify
whether job control statements and
termination messages are to be written.

MSGLEVEL has the format:

MSGLEVEL=(x,y)

The letter x represents a job control
messaqe code and indicates whether job
control statements are to be written along
with proqram statements. The value of x
may be 0, 1, or 2. ~hen x=O, the JOB
statement, job control statement errors,
and diagnostic messages are written. When
x=l, all job control statements, including
those appearing in called cataloged

procedures, are written. When x=2, only
job control statements submitted with the
job (not taken from cataloged procedures)
are written.

The letter y represents a termination
message code and indicates whether
termination messages are to be produced.
The value of y may be ° or 1. When y=O, no
termination messages appear for normal
completion of the jOb; termination messages
appear for abnormal termination. When y=l,
termination messages appear under any
circumstances.

If the parameter is omitted! the default
values for x and yare those established by
the installation.

An example of MSGLEVEL is:

NSGLEVEL=(2, 0)

The example states that only control
statements submitted with the job are to be
written, and that termination messages are
to be written only if abnormal termination
occurs.

Specifying Condition Codes to Terminate a
Job

The COND parameter is used to specify which
condition codes terminate processing. It
is useful in helping the programmer reduce
computing time by making jOb continuation
dependent upon successful completion of a
previous job step.

Using Job Control Statements 27

The system issues a number, called a
return code, at the end of each job step.
The return code is an indication of how
well the job step ran, i.e., whether it
completed processing normally or whether
error conditions were detected. The COND
parameter indicates a comparison to be made
between the return code and the condition
code specified in COND; if the condition is
met, the job is terminated.

COND has the format:

COND=«code,operator) [, (code,operator)] •••)

Code consists of a number. Operator
consists of two alphabetic characters
indicating a mathematical relationship
between the condition code and the return
code. There are six operators, as follows:

Operator
GT
GE
EQ
NE
LT
LE

~§.~!!ing
greater than
greater than or equal to
equal to
not equal to
less than
less than or equal to

Up to eight sets of codes and operators may
be specified.

An example of COND is:

COND= ((8 , LT))

The example states that if 8 is less than
the return code issued by the system, the
job is to be terminated (any return code
less than or equal to 8 allows the job to
continue).

Assigning Job Priority

The CLASS parameter is used to assign a job
class; the PRTY parameter assigns a
priority within a class.

When a job is introduced to the system
it is assigned to an input queue according
to a code called a class. Main storage is
divided into a number of areas, each of
which handles jobs assigned a certain
class. When one job has completed
processing, that storage is given to the
next job having the same class. The
proqrarnmer determines the order in which
jobs are entered into the system by
specifying the CLASS parameter. He can
further refine the order in which jobs
within a class are entered into the system
by specifying the PRTY parameter.

28

CLASS has the format:

CLASS=a

The letter a indicates an alphabetic
character A through o. The meaning of the
characters is determined by each
installation at system generation time. If
the parameter is omitted, the default class
A is assumed.

PRTY has the format:

PRTY=n

The letter n indicates a number fron, 0
through 13; the higher the number, the
greater the priority. whenever possible,
priority 13 should be avoided. This number
is used by the system for special
processing. If the parameter is omitted, a
standard default estaolished by each
installation is assumed.

An example of the CLASS and PRTY
parameters is:

CLASS=C, PRTY=10

~~~igQi~g an output Writer 

The MSGCLASS parameter is used to assign 
messages to a specific output writer 
through a class code. 

The system assigns messages to a variety 
of output devices according to the output 
class. By assigning an output class, the 
programmer directs output to a specific 
device. 

MSGCLASS has the format: 

MSGCLASS=x 

The letter x indicates an alphabetic or 
numeric character. The meaning of the 
characters is determined by each 
installation at program installation time. 
If the parameter is omitted, the default 
class A (usually directed to a printer) is 
assumed. 

An example of MSGCLASS is: 

MSGCLASS=B 

Assigning a Time Limit to a Job 

The TIME parameter is used to assign a 
processing time limit. If the job is not 



completed in the time specified, it is 
terminated. 

TIME has the format: 

TIME=(minutes, seconds) 

Minutes and seconds are expressed in 
numeric characters. Minutes cannot exceed 
1439; seconds cannot exceed 59. If a job 
is expected to run longer than 24 hours, 
the programmer may code TIME=1440 to 
eliminate job timing. If the TIME 
parameter is omitted, a default limit 
established by each installation is 
assumed. 

If time is specified in minutes only, 
the delimiting parentheses are not required 
(e.g., TIME=10). If time is specified in 
seconds only, the parentheses and a comma 
denoting the omission of minutes are 
required (e.g., TIME=(,50». 

An example of TIME is: 

TIME=(10,30) 

The example states that the job may run up 
to a maximum time of ten minutes and thirty 
seconds. 

Assigning Storage to a Job Under MVT 

Under MVT, storage is assigned according to 
the needs of each particular job. The 
REGION parameter is used to specify the 
amount of storage to be allocated. If the 
parameter is omitted, a default size 
__ L_"-'':_1...._..::I 1-. ___ ..... _1- .: __ ~-.,,_.L...: __ ..:_ 
ebL..ClJJ.L.J.bueu JJy eCl\.,;U .J.UbL..C1.J..J.ClL...J.Ull .J.b 

assumed. 

The programmer may assign storage to 
individual job steps rather than to the 
entire job by coding the REGION parameter 
in each EXEC statement instead. 

REGION has the format: 

The term nnnnn1K indicates the number of 
contiguous 1024-byte areas to be allocated. 
The number specified may be from one to 
five digits but cannot exceed the total 
storage available. Parentheses are not 
required if only nnnnn1K is specified 
(e.g., REGION=200K). 

The term nnnnn2K is used only if the 
installation has specified hierarchy 
support. Hierarchy support indicates that 
storage may be allocated from two regions, 
one known as hierarchy 0, the other as 

hierarchy 1. Hierarchy 0 is always 
assigned from main storage and is specified 
by nnnnn1K. Hierarchy 1 may be assigned 
either from main storage or from the large 
core storage device, IBM 2361 Model 1 or 2, 
and is specified by nnnnn2K. If hierarchy 
1 is assigned from main storage, the 
combined value of nnnnn1K and nnnnn2K 
cannot exceed the total storage available; 
if hierarchy 1 is assigned from the IBM 
2361, nnnnn1K cannot exceed 16383 and 
nnnnn2K cannot exceed 1024 for an IBM 2361 
Model 1 or 2048 for an IBM 2361 Model 2. 

If storage is requested only from 
hierarchy 1, a comma is requlrea to 
indicate the absence of nnnnnsK (e.g., 
REGION= (, 200K) ). 

An example of REGION is: 

REGION=(100K,100K) 

The example states that 200K bytes of 
storage are to be assigned, lOOK from 
hierarchy a and lOOK from hierarchy 1. 

Assigning Storage to a Job Under VS 

storage can be allocated under the VS 
con-trol programs by use of the ADDRSPC and 
REGION parameters. 

The ADDRSPC parameter is used with the 
VS control programs to indicate whether a 
job or job step is to be run in real or 
virtual mode. This parameter takes the 
form ADDRSPC=REALIVIRT, where REAL 
specifies real mode and VIRT specifies 
virtual mode. Most FORTRAN programs are 
run in virtual mode as described under 
"Operating System Control Programs" in the 
Introductiqn, and the default value for 
this parameter is ADDRSPC=VIRT. When 
ADDRSPC=REAL is coded on a JOB or EXEC 
card, all the pages of the job or jOb step 
in question are brought into real storage 
simultaneously and remain there for the 
duration of the job or job step. 

The REGION parameter for the VS control 
programs takes the form REGION=valueK, 
where valueK indicates the number-of 
contiguous 1024-byte areas of either real 
or virtual storage (depending on the mode 
of operation of the control program) to be 
allocated to the job or job step in 
question. There is no hierarchy support 
under VS. 

Under VS1, in virtual mode, virtual 
storage is automatically allocated in 
partitions of installation-determined size 
in a manner analogous to the allocation of 
main storage under MFT. The REGION 

Using Job Control Statements 29 



parameter, if coded, is ignored when VS1 is 
run in virtual mode. When VS1 is run in 
real mode, the REGION parameter must be 
coded to 'indicate the number of contiguous 
1024-byte areas of real storage to be 
allocated, and valueK may not exceed the 
total real storage available. If the 
REGION parameter is not coded, a default 
region of installation-determined size will 
be allocated. 

Under VS2, in virtual mode, the REGION 
parameter may be used to specify the number 
of contiguous 1024-byte areas of virtual 
storage to be allocated, and valu~K is 
limited only by the addressing range of the 
System/370. Under VS2 in real mode, the 
REGION parameter must be coded to indicate 
the number of contiguous 1024-byte areas of 
real storage to be allocated, and valueK 
may not exceed the total real storage 
available. If REGION is not coded, in 
either virtual or real mode, a default 
region of installation-determined size will 
be allocated. 

For a further discussion of storage 
allocation under the VS control programs, 
see the publication Q§Ly§~ob_~~g~~ment 
Services, Order No. GC28-0617. 

EXEC STATEMENT 

An EXEC statement indicates the beginning 
of a job step and names the program or 
cataloged procedure to be executed. 

The parameter indicating the program or 
cataloged procedure to be executed is the 
only one required and must be the first one 
specified; all others are optional and may 
appear in any order. 

The EXEC statement also contains the 
following information: 

1. A job step name (a step name is 
required only when it is necessary for 
a later job step to reference 
information from this job step) 

2. compiler, linkage editor, or other 
options passed to the job step 

3. Conditions for bypassing the execution 
of the job step 

4. Accounting information relative to the 
job step 

5. A time limit for the step or cataloged 
procedure 

6. Main storage requirements 

Figure 1-5 illustrates the format of the 
EXEC statement. Table 1-3 summarizes the 
function of the EXEC statement. Figure 1-6 
shows sample EXEC statements. 

r--------------T-----------T------------------------------------------------------------, 
I Name I Operation I Operand I 
~--------------+-----------+------------------------------------------------------------~ 

//[stepname] EXEC 
Positional Parameter 

{
[PROC=] procedure-name} 
PGM=program-name 

~~~or~~~~~~~ter~ 
[PARM='option[,option] ••• •
[ACCT=(accounting-information)]
[COND=«code,operator[,stepname]) (•••)
[DPRTY=step-priority] 1
[TIME=(minutes,seconds)]1
[REGION=region-size] 2

[ADDRSPC=REALI VIRT] 3

~--------------~-----------~--~
I 1MVT and VS2 only. I
I 2MVT and VS only. I
I 3VS only I
~---~
I Note: To indicate the step of a cataloged procedure to which an option applies, any I
I of the keyword parameters can be followed by a period and the name of the step to be I
I executed; e.g., PARM.procstep=option I l ___ J

Figure 1-5. EXEC Statement Format

30

Table 1-3. EXEC statement Functions (Part 1 of 2)
r----------------T----------------------------------T-----------------------------------,
I Specification I Purpose I How to Specify I
~----------------t----------------------------------t-----------------------------------~

stepname iTo permit other job steps to referlOne to eight alphameric characters, I
Ito: Ithe first of which must be I
I lalphabetic or one of the extended I
I 1. The condition code resulting lalphabetic characters @, #, or $. i

I I from this step, and I I
I I 2. The data sets in this step. I I
~----------------t----------------------------------t-----------------------------------~
I procedure-name ITO name the cataloged procedure tolprocedure-name, or I
I Ibe executed. A procedure-name IPROC=procedure-name, where I
I linitiates the processing of a Iprocedure-name is the name of the I
I I series of job control statements Icataloged procedure. !

jthat has been previously written I I
lin the system library. !See "Naming the Cataloged Procedure I

I ISYS1.PROCLIB, and cataloged in thelor Program to be Executed" for I
I I system catalog. Idetails. I
~----------------t----------------------------------t-----------------------------------~
I program-name ITo name the program to be IPGM=program-name, where I
J I executed. Iprogram-name is the name of a I
I I I program. I
J I I I
I I ISee "Naming the Cataloged Procedure I
I I lor Program to be Executed" for I
I I ,I details. I
~----------------t----------------------------------+-----------------------------------~
I PARM ITO specify program options. IPARM='option[,optionJ ••• ', where I
I I loption names a particular program I
I I loption that is to be in effect I
I I I during processing. I
I I I I
I I ISee "Specifying Program Options" I
I I Ifor details in how to specify I
I I I options. See the sections I
'I I "Compilation" and "Linkage Editor ,
I I I and Loader" for descriptions of I
I I I available options. I
~----------------+----------------------------------t-----------------------------------~
I ACCT ITo identify accounting informationIACCT=Cvalue[,value]) where value I
I Irelating to the job step. lindicates accounting information. I

I i I
I I ,See "Specifying Accounting I
I I I Information" for details. I
~----------------t----------------------------------+-----------------------------------~

COND To specify those condition codes COND= I
from previous job steps that will (Ccode,operator[,stepnameJ) C ••• », I
cause this job step to be where code is a number between 0 I
bypassed. and 4095, operator is a two- I

character value that represents a I
comparison to be made between code I
and a return code issued by a I
preceding job step or the operating I
system, and stepname is the name I
of the preceding job step issuing I
the return code. I

I
See "Specifying Condition Codes I
to Bypass a Job Step" for details. I ________________ ~ __________________________________ i ___________________________________ J

Using Job Control Statements 31

Table 1-3. EXEC Statement Functions (Part 2 of 2)
r----------------~---------------------------------T------------------------------------,

I Specification I Purpose I How to Specify I
~----------------+---------------------------------+------------------------------------~
I DPRTY ITO assign a priority to the job IDPRTY=(step-priority,n), where I
I I step. Istep-priority is a number from 0 I
I I Ito 15 that the system converts I
I I I into an internal priority, and n I
I I I is a number from 0 to 15 that is I
I I ladded to the internal priority to I
I I I establish a step priority. I
~----------------+---------------------------------+------------------------------------1
I TIME ITo assign a time limit to the jobITIME=(minutes,seconds), where I
I I step. I minutes is a number up to 1439, I
I I land seconds is a number up to 59. I
~----------------t---------------------------------+------------------------------------~

REGION To specify the amount of main For MVT, REGION=(nnnnn1K[,nnnnn2K]),
storage to be allocated to a job where nnnnn1K is a value up to
step operating in the MVT 16383K and indicates the amount of
environment. storage to be allocated; nnnnn2K

is a value that usually indicates
the amount of additional storage
to be allocated from an IBM 2361
Core Storage Device. For an IBM
2361 Modell, nnnnn2K may be any
value up to 1024K; from an IBM 2361
Model 2, nnnnn2K may be any value
up to 2048K. The combined value of
of nnnnn1K and nnnnn2K may not
exceed 16383.

For VS, REGION=valueK, where valueKI
represents ~he number of contiguous I
1024-byte areas of real or virtual I
storage to be allocated. I

~----------------+---------------------------------+------------------------------------1
I ADDRSPC ITo specify the mode of operation, IADDRSPC=REAL for real mode, I
I I real or virtual, of the VS IADDRSPC=VIRT for virtual mode. I
I Icontrol program. I I L ________________ ~ _________________________________ ~ ____________________________________ J

r---,
I //STEPA EXEC PARM=(MAP,DECK) I
I I
I //DO EXEC PROC=FORTXCLG,PARM.LKED=DECK,ACCT=248 I
I I
I // EXEC PGM=MYPROG,ACCT=NY12345,REG10N=128K,T1ME=3, I
I / / COND= (8, GT, H1SPROG) I L ___ J

Figure 1-6. Sample EXEC Statements

Naming an EXEC Statement

Stepname identifies the EXEC statement to
other control statements and permits them
to refer to information contained in the
lob step. steps within cataloged
procedures should be given unique names so
that identification to the correct step can
be easily made.

32

Naming the Cataloged Procedure or Program
to be Executed

The PROC parameter is used to specify a
cataloged procedure; PGM, to specify a
program.

The format of PROC is:

PROC=procedure-name

where:

procedure-name
names the cataloged procedure to be
executed.

The word PROC is optional; if it is
omitted, PROC is assumed. For example, the
following are equivalent:

// EXEC PROC=FORTXCLG
// EXEC FORTXCLG

t~ote that a cataloged pr"ocedure does not in
itself execute a program; it permits
previously written job control statements
to be inserted into the job stream at the
point that the procedure was called. The
job control statements in the cataloged
procedure should contain at least one EXEC
statement having the PGM parameter which
names the program to be executed.

The PGM parameter may specify any load
module name accessible to the operating
system. For example, PGM identifies the
FORTRAN IV (H Extended) compiler as
PGM=IFEAAB; PGM identifies the linkage
editor as PGM=IEWL.

The format of PGM is:

{

program-name }
PGM= *.stepname.ddname

*.stepname.procstep.ddname

where:

proqram-name
names a program that resides in either
the system library or a private
library. The system library is a
partitioned data set named
SYS1.LINKLIB that stores
frequently-used programs such as
IFEAAB and IEWL. Private libraries
are partitioned data sets that store
groups of programs that are used by
individual users.

*.stepname.ddname
names a program found on a data set
defined in a previous job step of the
current job. The * indicates the

current job, "stepname" is the name of
the job step, and "ddname" is the name
of the DD statement defining the
program. (The "stepname" cannot refer
to a job step in another job.; Tue
program referred to must be a member
of a partitioned data set.

This form of a program name is most
familiar to a FORTRAN programmer in an
execution step following a link edit
step. The linkage editor stores the
load module in the data set defined by
the SYSLMOD DD statement. For
example, in the following statements,
STEP4 executes the linkage editor.
The linkage editor stores the
resulting load module named ARCTAN
into the partitioned data set, MATH,
defined by the SYSLMOD DD statement.
STEPS indicates that the program to be
executed (ARCTAN) is defined in the DD
statement SYSLMOD in the job step
named STEP4 of the current job. b

//XYZ

//STEP4
//SYSLMOD

//STEP5

JOB

EXEC
DD

,JSMITH,COND=(7,L~)

PGM=IEWL
DSNAME=MATHCARCTAN)

EXEC PGM=*.STEP4.SYSLHOD

*.stepname.procstep.ddname
names a program found on a data set
defined in a previously executed step
of a cataloged procedure. The *
indicates the current job, ~stepname"
is the name of the job step that
invoked the cataloged procedure,
"procstep" is the name of a step
within the cataloged procedure, and
"ddname" is the name of a DD statement
that defines the data set within that
procedure step. Consider a cataloged
procedure, FORT, containing the
following statements:

//COMPFIL
//SYSPUNCH
//SYSPRINT
//SYSLIN

EXEC
DD
DD
DD

PGM=IExxx
SYSOU'I'=B
SYSOUT=A
DSNAME=LINKINP

Using Job Control Stateffients 33

//LKEO
//SYSLMOO

EXEC PGM=IEWL
DO DSNAME=RESULT(ANS)

Assume that the following
statements appear in the input stream:

//MAINJOB
//Sl

JOB ,SMITH,COIID=(7,LT)
EXEC PROC=FORT

//S2 EXEC
//FT03FOOl DD
//FT01FOOl DD

PGM=*.Sl.LKED.SYSLMOD
UNIT=PRINTER
UNIT=INPUT

Statement Sl calls the cataloged
procedure FORT.

nt S2 indicates that the program to be
executed is found on a data set described
by the DD statement SYSLMOD, located in the
procedure step LKED of the cataloged
procedure FORT, which was invoked by the
statement Sl. consequently, the load
module ANS in the data set RESULT is
executed.

Specifying Program Options

The PARM parameter is used to specify
proqram options applicable during execution
of a job step. Program options increase
the flexibility of a program by allowing
the programmer to choose the form of input
and output, the type of output, and
otherwise tailor the program to his needs.
A FORTRAN programmer may specify options
for the FORTRAN compiler, the linkage
editor, and the system loader.

See the sections "Compilation" and
"Linkage Editor and Loader" for a
discussion of these options.

If a PARM parameter is not specified,
the program being executed assumes default
values established at program installation
time. When the user's installation
receives a copy of the proqram product, it
will contain the default options indicated
in this publication. (Default values are
shown underlined in this publication.) The
user's installation can customize the
compiler for its needs and default options
may be permanently established at that
time.

PARM has the format:

34

PARM='option[,optionl ••• '
PARM.procstep='option[,optionl ••• '

where:

procstep
is used when a cataloged procedure has
been specified in the PROC parameter.
Specified PARM options are to apply to
the job step in the cataloged
procedure identified by procstep. For
example, the following indicates that
changes are to be made to the FORT
step:

PARM.FORT='NOOBJECT'

option
indicates either a keyword that has an
intrinsic value to the program (e.g.,
LIST, SOURCE) or a keyword that is
assigned a value by means of an equal
sign or a pair of parentheses, for
example, LINECOUNT(nn). The option
field may contain up to 100 characters
of information.

The field of PARM options may be
enclosed in either apostrophes or
parentheses according to the following
rules:

1. If no individual option contains a
special character (such as an equal
sign or parenthesis), the programmer
may enclose the field in either
apostrophes or parentheses. For
example, either of the following
formats is valid:

PARM=' LIST, SOURCE, NODECK'
PARM=(LIST,SOURCE~NODECK)

2. If an option contains a special
character, the programmer may enclose
either that option in apostrophes and
the entire field in parentheses, or
the entire field in apostrophes. For
example, either of the following is
valid:

PARM=(LIST, 'LINECOUNT(SO) ',SOURCE)
PARM='LIST,LINECOUNT(SO),SOURCE'

(This publication adopts the
convention of enclosing the entire
field in apostrophes.)

3. If the PARM parameter is continued
onto a following card, the programmer
must enclose the entire field in
parentheses and any individual options
containing special characters in
apostrophes. For example, only the
following is valid:

PARM=(LIST,'LINECOUNT(SO)'iSOURCE,
NODECK)

4~ If only one option is specified, the
programmer need not enclose the option
in either apostrophes or parentheses
(except if that option contains a
special character, in which case
apostrophes are mandatory). For
example, any of the following is
valid:

PARM=LIST
PARM='LIST'
PARM=(LIST)

Specifying Accounting Information

The ACCT parameter is used to specify
accounting information for a job step.

Like the accounting parameter in the JOB
statement, the field may contain up to 142
characters and is enclosed in apostrophes
if it contains any special characters other
than a hyphen. Unlike the JOB statement
parameter, ACCT is a keyword parameter and
may appear anywhere in the operand field.

ACCT has the format:

ACCT=(value[,va!ue] •••)
ACCT.procstep=(value[,value] •••)

where:

procstep

value

indicates in which step of a cataloged
procedure the accounting information
is to apply.

indicates some accounting information,
such as the account number to be
charged for machine time. If value
contains any special characters, it
must be enclosed in apostrophes. If
only one value is specified, it need
not be enclosed in parentheses.

An example of ACCT is:

ACCT='NY432777'.

Note that a blank is considered a special
character, requiring the use of
apostrophes.

Specifyin~_£ondit~2~_£Qdes_to_~~~_~_~2Q
Step

The COND parameter is used to specify which
condition codes are to cause job step
processing to be bypassed.

Like the COND parameter in the JOB
statement, the parameter lists codes and
operators to test the return code issued by
the system. Unlike the JOB statement
parameter, if the condition is met, the job
step is not terminated but bypassed.

COND has the format:

COND=«code,operator[,stepname]) (••• »
COND.procstep=«code,operator[,stepname])

(... » .. »
where:

procstep
is used when a cataloged procedure has
been specified in the PROC parameter,
to indicate in which step of the
procedure the condition applies.

stepname
indicates the name of a previous job
step that issued the return code to be
tested against the code in COND.

The meanings of code and operator are
the same as described for the COND
parameter of the JOB statement.

An example of COND is:

COND.GO=«4,LT,FORT) (4,LT,LKED»

The example states that if 4 is less than
the return code issued by FORT or LKED, the
job is to be terminated (any return code
les~ than or equal to 4 allows the job to
continue) •

The DPRTY parameter is used to assign a
dispatching priority to a job step. The
dispatching priority determines the order
in which job steps will use main storage
and CPU (central processing unit)
resources. If the parameter is omitted,
each job step is assigned the same priority
as the job, either through the JOB
statement PRTY parameter or by default.

DPRTY has the format:

DPRTY= (step-priority, n)
DPRTY.procstep=(step-priority,n)

Using Job Control Statements 35

where:

procstep
is used when a cataloged procedure has
been specified in the PROC parameter
to indicate in which step of the
procedure the dispatching priority
applies.

step-priority

n

is a number from 1 through 15
representing a priority. This
subparameter has the same meaning as
the PRTY parameter in the JOB
statement; that is, if PRTY=10 is
coded in the JOB statement and
DPRTY=10 is coded in the EXEC
statement, job and step priority are
the same. If the step priority is to
be different from that assigned to the
job, a different number is assigned.
The step-priority is converted by the
system into an internal priority; the
higher the number the greater the
priority. Whenever possible, the
number 15 should be avoided; this
number is reserved for certain system
tasks.

is a number from 0 to 15 that is added
to the internal priority to establish
the dispatching priority.

If the first value is omitted but the
second is specified, a comma is required to
indicate the absence (e.g., DPRTY=(,12».
If the second value is omitted, the
delimiting parentheses are not required
(e.g., DPRTY=3).

An example of DPRTY is:

DPRTY=(10,9)

The example states that the number 10 is to
be converted into an internal priority and
the number 9 is to be added to the
resulting priority.

Assigning a Time Limit to a Job Step

The TIME parameter is used to assign a time
limit to the step. If not completed in the
time specified, the step is terminated.

TIME has the format:

TIME=(minutes,seconds)
TIME.procstep=(minutes, seconds)

where:

procstep
is used when a cataloged procedure has

36

been specified in the PROC parameter
to indicate in which step of the
procedure timing considerations apply_

If procstep is omitted, the time limit
applies to the entire procedure.

The meanings of minutes and seconds are
the same as described for the TIME
parameter of the JOB statement.

An example of TIME is:

TIME. FORT=5

The example states that the FORT step of a
cataloged procedure is to have a time limit
of five minutes.

Under MVT the REGION parameter is used to
specify the amount of storage to be
allocated to a job step. A REGION
parameter specified on a JOB statement
overrides any EXEC statement REGION
parameters.

REGION has the format:

REGION=(nnnnn1K[,nnnnn2K])
REGION.procstep=(nnnnn1K[,nnnnn2K])

where:

procstep
is used when a cataloged procedure has
been specified in the PROC parameter,
to indicate in which step of the
procedure storage allocation applies.

If procstep is omitted, the allocation
applies to all steps of the procedure.

The meanings of nnnnn1K and nnnnn2K are
the same as described for the REGION
parameter of the JOB statement.

An example of REGION is:

REGION=100K

The example states that lOOK bytes of
storage are to be allocated to the job
step.

Under the vs control programs, the REGION
and ADDRSPC parameters can be used to
specify the amount and type of storage to
be allocated to individual job steps. The

REGION and ADDRSPC parameters specified on
JOB statements override those specified on
EXEC statements. Rules for coding them are
the same as those described for the JOB
statement.

DD STATEMENT

DD statements describe and identify data
sets and the volumes in which they reside.
They also provide instructions for their
proper handling and disposition. DD
statements supply information which is used
hv t-hp ;oh ~("'hponl~,... +() ~lll'"'l"'::>~o

i~p~t/o~tPut-d~;i~;; ~~d-b;~d;t; management
to supervise the input/output operations.

The DD statement is concerned with the
data set, records within the data set, and
the location of the data set.

The DD statement specifies the following
information:

1. A name for the DD statement

2. The location of the data set in the
system's resources

3. The nanl€ of the data set

4. The status of the data set at the
beginning and end of the job step

5. Labeling information for the data set
volume

6. Data set allocation to optimize the
use of input/output channels

7. The type of input/output device on
which the data set resides

8. Space allocation for data sets on
direct access devices

9. Characteristics of the records in the
data set

Figure 1-7 illustrates the format of the
DD statement. Figure 1-8 shows sample DD
statements. Table 1-4 summarizes the
functions of the DD statement parameters.

r---------------------T-----------T---,
I Name I Operation I Operand I
~---------------------+-----------+---~

// {ddname }

procstep.ddname

DD
~Ositi2gaJl-pa~~~~t~~~

[
:ATA
DUMMY

KeY~2~~_~~ramet~~~
rcVOLUME) TsER=serial-numbedl

l\VOL ;= lREF=ddname S J

[

DDNMlE=ddname J
SDSNAME}
lDSN . =data-set-name

rDISP=(SUbParameter-list~

LSYSOUT=X J
[LABEL=<subparameter-list)]
[COP IES=numbe r p
[SEP=(ddname[,ddname] •••)]
[DLM=delimi ter]1
[UNIT=(device[,SEP=(ddname, •••)])]

[SPACE=(subparameter-list)]

[DCB=<subparameter-list)]
L _____________________ ~ ___________ ~ ___________________ -----------------_________________ ~

l:~~_~~~~: __ J

Fiqure 1-7. DD statement Format

Using Job Control Statements 37

r---,

I

Exa~~: Directing a data set to the printer:

//SYSPRINT DD SYSOUT=A

Example 2: Creating a temporary data set (created and deleted within the same job):

//FT14FOOl DD DSNAME=i&TEMP,UNIT=SYSSQ

Example 3: Creating a permanent data set:

//FT89FOOl DD DSNAME=MINE,VOLUME=SER=8342,UNIT=2400,
// DISP=(NEW,KEEP),LABEL=(,SL,EXPDT=71365)

~mple 4: Creating a permanent cataloged data set:

//FT31FOOl DD
//
//

DSNAME=t4ATRIX, DISP= (NEW, CATLG, DELETE),
UNIT=2311,VOLUME=SER=AA69,SPACE=(TRK, (50,5,ROUND»,
DCB=(RECFM=FB,LRECL=604,BLKSIZE=1208)

Example 5: Retrieving the permanent uncataloged data set defined in Example 3:

//FT89FOOl DD DSNAME=MINE,VOLUME=SER=8342,UNIT=2400,DISP=(OLD)

Exa~le 6: Retrieving the cataloged data set defined in Example 4:

I //FT37FOOl DD DSNAME=MATRIX,DISP=JOLD) L __ _

Figure 1-8. Sample DD Statements

38

Table 1-4. DD Statement Functions (Part 1 of 3)
r---------------T----------------------------------T------------------------------------,
I Specification I Purpose I How to Specify I
~---------------+----------------------------------+------------------------------------~
Iddname I To identify the DD statement to lOne to eight alphameric characters. !
I I other job control statements , the first of which must be I
I I that may need to refer to it. ,alphabetic or one of the extended ,
I I I alphabetic characters #, ~, or $. I
~---------------+----------------------------------+------------------------------------~
I procstep.ddnameI To identify the DD statement in I Procstep and ddname are each I
I , the particular jobstep identified, specified as one to eight alpha- I
I I as procstep. I meric characters, the first of I
I I I which must be alphabetic or one of I
I I I the extended alphabetic characters. ,
I I , Procstep and ddname are separated I
I I , by a per iod (.). I
~---------------+----------------------------------+------------------------------------~ * To indicate that the data set When * is used, .

appears in the input stream
• The data set must appear

immediatedly following the DD *
statement;

• No other parameter except the
DCB parameter has meaning on
the DD statement.

See "Data Set Location" for
details.

~---------------+----------------------------------+------------------------------------~
I DATA , To indicate that the data set I When DATA is used, ,
I I appears in the input stream and , I
I I contains job control statements I • The data set must appear I
I , that are to be read as data and I immediately following the DD I
I I not as instructions. Used, for I DATA statement; I
I I example, when job control state- I • No other parameter except the I
I I ments are being entered into the I DCB parameter has meaning on I
I I system catalog as a cataloged I the DD statement. I
I I procedure. I I
I I , See "Data Set Location" for ,
I I I details. I
~---------------+----------------------------------+------------------------------------~
IDLM I To specify a delimiter other than' DLM=delimiter, where delimiter ,
, I /* to terminate a group of data I is any combination of two char- !
i I in the input stream. I acters that will indicate the end I
I I I of a group of data in the input I
I' I stream. I
~---------------+----------------------------------+------------------------------------~
'DUMMY , To identify a data set on which 'See "Data Set Location" for ,
I I no operations are to be , details. I
I I performed (such as to defer I I
I I processing a data set in a I I
I I program segment that has already I I
I I been tested). I I
~---------------+----------------------------------+------------------------------------~
VOLUME To identify the volume in which VOLUME=SER=serial-nurnber, where

the data set resides. serial-number consists of one
through six alphameric characters
identifying the volume, or
VOLU~~=REF=ddname, where ddname is
the name of another DD statement
and indicates that the data set is
to share the same volume as the
data set defined in ddname.

See "Data Set Location" for
details. l _______________ 4 __________________________________ ~ ____________________________________ J

Using Job Control Statements 39

Table 1-4. DD Statement Functions (Part 2 of 3)
r---------------T----------------------------------T------------------------------------,
I Specification I Purpose 'How to Specify ,
~---------------+----------------------------------+------------------------------------~
IDDNAME , To indicate that the data set is , DDNAME=ddname, where ddname is thE? I
I I to have the same characteristics , name of another DD statement or the,
I I as a data set defined in another I characteristics of the data set ,
I I DD statement. , defined in ddname. I
~---------------+----------------------------------+------------------------------------~
I DSNAME I To name the data set or a member I DSNA~£=data-set-name, where I
I I of a partitioned data set. I data-set-name is the name of a I
I I I permanent data set, a temporary I
I I I data set, a member of a partitioned I
I' , data set, or a reference to a data I
I I I set defined in another DD I
I' , statement. ,
I I I I
'I I See "Data Set Identification" for ,
I I I details. I
~---------------+----------------------------------+------------------------------------~
IDISP To indicate whether the data set DISP=(subparameter-list), where ,
I is new or old, and whether it subparameter-list indicates: I
I is to be kept or released at the ,
I end of the job step. • The disposition of the data set
I at the beginning of the job

step (i.e., whether new or old)
• The disposition to be made of

the data set at the end of the
job step (i.e., whether to be
kept, deleted, or passed to
another job step),

• The disposition to be made of
the data set if abnormal
termination occurs (i.e.,
whether to be kept or deleted).

See "Data Set Disposition" for
details.

~---------------+----------------------------------f------------------------------------~
ISYSOUT I To assign the output of the data' SYSOUT=x, where x is an alphabetic,
I I set to an output class. I or numeric character assigning the I
I I I output class represented by the ,
I I I character to the data set. I
I I I SYSOUT=A is usually specified for I
I I I printer output, SYSOU'l'=B for card I
I I I punch output. I
I I I I
I I , See "Data Set Disposition" for I
I I I details and VS options. I
~---------------+----------------------------------t------------------------------------~
I COPIES I To obtain between 1 and 255 hard I COPIES=number, where number is I
I I copies of the output data set. I between 1 and 255. I
~---------------t-------------~--------------------f------------------------------------~
I LABEL I To assign such information as I See "Data Set Labels" for details. ,
I I labels, whether the data set is I I
I I protected from unauthorized , ,
I I processing, and how long the datal I
I I set should be kept. I ,
~---------------+----------------------------------+------------------------------------~
ISEP I To assign the data set to a I SEP=(ddname[,ddnamel ••.), where I
I I different input/output channel ,ddname is the name of another DD ,
I I from the data set defined in I statement. I
I I ddname. I , L _______________ ~ __________________________________ ~ ____________________________________ J

40

Table 1-4. DD Statement Functions (Part 3 of 3)
r---------------~----------------------------------T------------------------------------,
, Specification I Purpose I How to Specify I
~---------------+----------------------------------+------------------------------------~
lmIT To identify the input/output UNIT=(devicet,SEP=(ddname, ••• J;;,

device or device class on which where device is a number or name
the data set resides. identifying the device and ddname

is the name of another DD
statement. SEP=ddname... is used
only for data sets on direct access
devices and only when the data set
is not to share device access arms
with the data set defined in
ddname.

See "Assigning a Data Set to an
Input/Output Device" for details.

~---------------t----------------------------------t------------------------------------~
'SPACE I Used only for a data set in a ,SPACE=(subparameter-list), where I
, I direct access volume, to I subparameter-list indicates I
I , allocate space to the data set. I whether space is to be allocated tol
I I I a specific address or to any I
I I I location in the direct access I
I I I volume, and the amount of space to I
I I I be allocated. I
I I I ,
I I I See "Assigning Space to a Data Set ,
I I , on a Direct Access Volume" for I
'I , details. I
~---------------t----------------------------------+------------------------------------~
IDCB I To identify the characteristics 'See "Defining Record I
, I of the records in a data set. I Characteristics" for details. I L _______________ ~ __________________________________ ~ ____________________________________ J

DD Statement Uses

DD statements define the following types of
data sets:

1. System data sets. These include
SYSIN, SYSPRINT, SYSPUNCH, SYSLIN,
SYSLMOD, SYSUT1, and SYSUT2. These
data sets are used by various system
components as work areas and temporary
storage areas, and are necessary for
the execution of the compiler, linkage
editor, and loader.

2. FORTRAN load module data sets. If the
FORTRAN programmer uses cataloged
procedures and the standard data set
reference numbers (5 for card input, 6
for printer output, and 7 for
punched-card output>, there is no need
to supply DD statements for those data
sets; they are contained in the
cataloged procedures.

If the FORTRAN programmer uses other
forms of input/output, such as
magnetic tape or disk, it is necessary
to define those data sets with DD

statements. The DD statements are
equated to the data set reference
numbers through the DDNAME parameter
which identifies the DD statement.
The ddname format for data sets used
in FORTRAN load module execution is:

FTxxFyyy

where xx is the data set reference
number and yyy is a FORTRAN sequence
number (usually 001). The data set
reference number is nothing more than
a numeric means of equating FORTRAN
input/output statements with the
proper data set definition; it has
nothing to do with the physical
address of the device or its type.

3. A sequential data set on which a dump
can be written in the event of an
abnormal termination. Definition of
this data set automatically requests
the dump facility; if no data set has
been defined for dump output, it is
bypassed. A ddname of SYSUDUMP
specifies a dump of the problem
program area. A ddname of SYSABEND

Using Job Control Statements 41

specifies a dump of the problem
program area and the system nucleus.

4. Concatenated data sets (data sets
temporarily joined together), usually
consisting of one or more private
libraries and the system library
SYS1.LINKLIB. In other words, the
system library and the specified
libraries will be combined temporarily
to form one library. A ddname of
STEPLIB will retain the concatenated
library for the duration of the job
step; a ddname of JOBLIB will retain
the concatenated library for the
duration of the job.

In theory, all DO statement parameters
are optional; that is, no one parameter is
required for all DD statements. In
practice, however, some parameters are
required to describe a function properly.
For example, to create a permanent data
set, the DISP, UNIT, and DSNAME parameters
are required; to create a permanent data
set on a particular direct access volume,
the VOLUME and SPACE parameters are also
required.

The ddname identifies the statement to
other control statements and relates the
data set to I/O statements in the FORTRAN
source module. The name may be a qualified
name with the format procstep.ddname to
associate the DO statement with a cataloged
procedure job step, such as FORT.SYSIN.

Data Set Location

The *, DATA, or VOLUME parameters are used
to specify a data set's location. The
DUMMY parameter is used to inhibit I/O
operations on a data set.

The * parameter defines a data set in
the input stream, usually a card deck or a
data set in card image form. An example of
the * parameter is:

//DSETl DD *

The data set is physically placed after the
DD * statement, and it must be followed by
a /* statement to denote the end of the
data set.

The DATA parameter also defines a data
set in the input stream. It is used in
place of the * when the data set contains
records having the characters // in columns
1 and 2.

42

An example of DATA is:

//DSET2 DD DATA

When either the * or the DATA parameter
is used, no other operand in the DO
statement has meaning except the DCB
parameter which may specify block and
buffer information for the data set, e.g.,

DCB=(BLKSIZE=800,BUFNO=2)

(The DCB parameter is discussed in the
section "Defining Record Characteristics.")

In addition, under VS, the DLM parameter
may be coded with the * or DATA parameter
to allow the programmer to specify a
delimiter other than /* to terminate a
group of data in the input stream. By
assigning a different delimiter in the DLM
parameter, the programmer can include a
standard delimiter (/*> as data in the
input stream.

The DLM parameter has the format:

DLM=delimiter

where delimiter is any combination of two
characters that will indicate the end of a
group of data in the input stream. (If the
delimiter contains any special characters,
it must be enclosed in apostrophes.)

An example of the use of the DLM
parameter is:

//DD1 DD *,DLM=AA

Data

AA

This example shows the DLM parameter
being used to assign the characters AA as
the valid delimiter for the data defined in
the input stream by 001.

VOLUME specifies the location of a data
set not in the input stream (i.e., it is
used for data sets res~ding on tape or in
direct-access volumes). The parameter is
required when creating a new data set if
the programmer wants the data set assigned
to a specific volume; if the parameter is
omitted, the data set is assigned to any
available volume. The parameter is
required when retrieving an existing data
set except if the data set has been
cataloged. The VOLUME parameter contains
many subparameters. Two subparameters most
useful to the FORTRAN programmer are SER
and REF. SER specifies the volume serial
numbera REF specifies the name of another
data set or the name of another DO

statement and indicates that more than one
data set is to share the same volume.

The format of VOLUME=SER is:

VOLUME=SER=serial-number

where:

serial-number
is a 1 to 6 character serial number.

An example is:

VOLu~m=SER=DA1234

The format of VOLUME=REF is:

VOLUME=REF=

{

dSname }
*.ddname
*.stepname.ddname
*.stepname.procstep.ddname

See Table 1-5 for an explanation of the
data set name formats.

An example of VOLUME=REF is:

VOL=REF=*.DDNAM

The example states that the data set is to
share the same volume as the data set
described on the DD statement DDNAM in the
current job. Note that VOLUME may be
abbreviated VOL.

For a discussion of the other
subparameters available in the VOLUME
parameter, see the appropriate job control
language reference publication, as listed
in the Preface.

The D~~Y parameter is used to prevent
input/output operations on the data set. A
WRITE statement is recognized but no data
-is transmitted. A READ statement is
recognized but permits further processing
only if the END= option is specified; if
the option is not specified, a read causes
an end of data set condition and
termination of load module execution.

DSNAME and DDNAME are used to identify a
data set.

DSNAME specifies either the name of the
data set or the name of an earlier defined
DD statement that identifies this data set.
DDNAME specifies the name of a DD statement
to be defined later which lS to identify
this data set.

DSNAME has the format:

(~~~::: (member))
J &&dsname ~

= ~&&dSname(member) ~
*.ddname
*.stepname.ddname
*.stepname.procstep.ddname

See Table DD3 for an explanation of the
data set name formats.

Examples of DSNAME are:

DSNAME=DSET
DSN=LIB(PROG1)
DSNAME=*.FORT.SYSLIN

The first example states that the data set
name is DSET. The second example states
that the data set is a partitioned data set
named LIB and that the DD statement defines
the member named PROG1. The third example
states that the data set is the one defined
in the OD statement named SYSLIN occurring
in the job step named FORT. (This last
example is how loader cataloged procedures
define the object module resulting from the
compilation job step.)

DDNAME has the format:

DDNAME=ddname

where:

ddname
is the name of another DO statement.

When this parameter is used, no other
parameter except the DCB parameter may be
specified on the DD statement.

An example of DDNAME is:

DDNAME=FT08FOOl

The example states that data set definition
is to be found on the DD statement named
FT08F001.

Using Job Control Statements 43

Table 1-5. Data Set Names
r-------------------T--T------------------------,
I Format I Description I Example I
~-------------------f--+------------------------~

dsname 1 IA data set named dsname NAME
I

dsname(element) 2 IA member of a partitioned data set MYPROG(PROGA)
I

&&dsname 2 IA temporary data set, to be deleted at the &&TEMP
lend of the job
I

&&dsnameCelement)2IA member of a temporary partitioned data &&TEMPP(PROG)
Iset
I

*.ddname1 IA data set defined in another DD statement *.SYSPRINT
Iwithin the current job step
I

*.stepname.ddname1 IA data set defined in another DD statement *.STEPA.SYSPRINT
Ibut in an earlier job step named stepname
lof the current job
I

*.stepname. IA data set defined in a DD statement in *.STEPA.LKED.SYSPRINT
procstep.ddname1 Ithe cataloged procedure step named

Iprocstep called by the job step named
Istepname.

~-------------------~--~------------------------~
I 1This format may appear in the DSNAME, VOLUME, and DeB parameters I
I 2This format may appear in the DSNAME parameter only I L ___ ---_______________________________ J

DataSet Disposition

The SYSOUT and DISP parameters indicate the
status of a data set.

SYSOUT directs data set output to a unit
record device such as a printer or a card
punch device class. Table 1-6 summarizes
device classes.

The format of SYSOUT is:

SYSOUT=x

where:

x
is an alphabetic or numeric character
that assigns the data set to the
device class represented by the
character.

An example of SYSOUT is:

SYSOUT=B

The example states that the data set is to
be directed to the device class B, usually
a card punch.

Under the VSl and VS2 control programs,
the programmer has the additional options
of using the SYSOUT parameter to specify a

44

program in the system library which will
write the output data set, as well as a
special output form on which the data set
is to be printed or punched.

The format of the VS SYSOUT parameter
is:

SYSOUT= (x [program name] [. form number] I

where:

x
is as described above.

,program name
is the member name of a program in the
system library (other than the system
output writer) that is to write the
output data set to a unit record
device.

specifies that the system output
writer is to write the output data set
to a unit record device, and a form
number follows.

,form number
is from 1 through 4 alphabetic or
numeric characters (including ~, $,
and #) which specify that the output

data set is to be printed or punched
on a special output form.

The parentheses are optional if the program
name and form n~~ber are omitted.

An example is:

SYSOUT=(F,,7402)

The example specifies that the data set is
to be written by the system output writer
to a unit record device corresponding to
class F. The data set is to be printed on
a special form. The form number is 7402.

Under VS, the programmer may also use
the COPIES parameter in conjunction with
the SYSOUT parameter to obtain between 1
and 255 copies of the output data set.

The format of the COPIES parameter is:

COPIES=number

where number may be between 1 and 255.

An example is:

//RECORD DD SYSOUT=W,COPIES=32

The example is a request for 32 copies of
the data set RECORD to be produced by a
unit record device corresponding to class
W.

If fewer than 1 or more than 255 copies
are specified, or if the COPIES parameter
is coded without an associated SYSOUT
parameter, the job will be canceled.

The DISP parameter indicates the status
of a data set not on a Q~it record device.
It contains three subparameters, the first
describes the data set status at the
beginning of the job step, the second the
disposition of the data set at the end of
the step, and the third the data set's
disposition if an abnormal termination
occurs.

The format of DISP is:

DISP= (~~
~o~J ~

KEEP ~ ,DELETE
,CATLG
,UNCATLG
,PASS

[

KEEP J ,DELETE
,CATLG

UNCATLG

where:

NEW
describes a data set that is being
created in the current job step. If
the status is NEW, that subparameter
may be omitted (NEW is the assumed
value) by indicating its absence with
a comma.

OLD

SHl{

MOD

KEEP

describes a data set that existed
before the current job step.

describes an existing data set which
resides on a direct-access volume that
is also available to other
concurrently-operating jobs.

describes a sequential or partitioned
data set that is to be added to.
Before the first input/output
operation occurs, the data set will be
automatically positioned after the
last record.

specifies that the data set is to be
retained for future use in other jobs.
KEEP is the default value for old data
sets.

DELETE

CATLG

specifies that the space occupied by
this data set is to be released and
made available for other uses. If the
data set was cataloged, the entry for
it will be removed from the catalog.
If the data set resides on a
direct-access volume, the entry for
the data set will be removed from the
volume table of contents. Once this
disposition has taken place, the data
set will have ceased to exist. DELETE
is the default value for new data
sets.

specifies that a catalog entry that
points to the data set is to be
entered in the system catalog. The
data set can then be referred to by
name in subsequent jobs or job steps.
CATLG implies KEEP.

UNCATLG

PASS

specifies that the catalog entry that
points to the data set is to be
removed from the system catalog.
UNCATLG implies KEEP. If the data set
resides on a direct-access volume, the
entry for the data set will remain in
the volume table of contents. The
area occupied by the data set is still
reserved for the data set, and is not
released.

specifies that the data set is to be
used in a later job step. A DD
statement in a later job step can
reference the data set using the
DSNAME parameter format
*.stepname.ddname. The final
disposition of the data set should be
given in the last job step that uses

Using Job Control Statements 45

the data set. When a data set is in
the PASS status, the volume on which
it resides remains mounted.

If the third subparameter is not
specified, the disposition is the same as
that specified in the second subparameter;
if the second subparameter specifies PASS,
the status of the data set reverts to the
status it had before the job step that
passed it. In other words, if the data set
had an initial disposition of OLD, MOD, or
SHR, the data set is kept; if it had an
initial disposition of NEW, it is deleted.

Examples of the DISP parameter are:

DISP=(NEW,CATLG, DELETE)
DISP=(OLD,DELETE,KEEP)
DISP=SHR

The first example specifies a new data set
that is to be cataloged; if abnormal
termination occurs, information in the data
set is considered useless and the data set
is deleted. The second example specifies
an existing data set that is to be deleted;
if abnormal termination occurs, information
in the data set is needed and the data set
is retained so that it may be resubmitted.
The third example specifies an existing
data set that is to be shared with other
jobs; it is implicitly retained. Note that
if only the first subparameter is specified
the delimiting parentheses may be omitted.

Table 1-6. Device Class Names
r------T------------------T---------------,
I Class I I I
I Name I Class Function I Device Type I
~-----+------------------+---------------~
I SYSSQI Reading, Writing I Magnetic Tape I
I I (sequential) I Direct Access I
~------f------------------+---------------~
I SYSDAI Reading, Writing, I Direct Access I
I I Updating I I
I I (direct) I I
~------+------------------+---------------~
I A I Printed Line I Printer I
I I output I Magnetic Tape I
I I I Direct Access I
~------+------------------f---------------~
I B I Card Image I Card Punch I
I I Output I Magnetic Tape I
I I I Direct Access I l ______ i __________________ i _______________ J

Assigning a Data Set to an Input/Output
Device

The UNIT parameter assigns a data set to a
device. The device may be identified by
its identification number (e.g., 2400 for
tape, 2311 for a disk), or by its device

46

class name (e.g., SYSSQ for devices
containing sequential data sets). A device
class is a group of input/output devices
performing similar functions, which is
given a collective name. Device class
names are assigned at program installation
time. See Table 1-6 for a summary of
device class names supplied by IBM.

For data sets residing on direct access
devices, the UNIT parameter may also
specify those data sets that are not to
share the same device access arms, thereby
increasing operating efficiency for data
sets whose input/output operations occur at
the same time; these other data sets are
identified by naming the DD statements
defining them.

The format of the UNIT parameter most
applicable to FORTRAN programs is:

{

deVice-type}
UNIT ([,SEP=(ddname, •••)])

group-name

where:

device type
identifies an input/output unit by its
device number. For example, to
request a 2400 Magnetic Tape DeVice,
UNIT=2400 is specified; to request a
2311 Disk Storage Unit, UNIT=2311 is
specified. See "Appendix C: Unit
Types" for a list of device types that
can be specified in the UNIT
parameter.

groupname
identifies a device class name, such
as SYSSQ.

ddname
identifies a DD statement defining a
data set that is to be on a separate
device access arm from the data set
defined in the current DD statement.
Up to eight ddnames may be specified.

Examples of UNIT are:

UNIT=SYSDA
UNIT=(2311,SEP=DDNAME1,DDNAME3)

The first example states that the data set
may be assigned to any unit in the SYSDA
device class. Note that parentheses are
not required if only one value is
specified. The second example states that
the data set is to be assigned to a 2311
device and is to use different access arms
from the data sets described in DD
statements DDNAME1 and DDNAME3.

For a discussion of the other
subparameters available in the UNIT
parameter, see the appropriate job control

language reference publication, as listed
in the Preface.

Assigning Space to a Data Set on a Direct
Access Volume

The SPACE parameter is used to allocate
space to data sets residing on direct
access volumes. This parameter is required
when defining a new data set on a direct
access volume.

To assign space anywhere within a
volume, the SPACE parameter has the format:

{
TRK }

SPACE=(CYL
block-length

(, primary [,'secondary] [, directory])
[, RLSE]
[, CONTIG]
[, ROUND])

where:

TRK

CYL

specifies that space is to be
allocated in number of tracks.

specifies that space is to be
allocated in number of cylinders.

block-length
is a number indicating the average
length of a block of records in the
data set; the system is to allocate
space according to the block length
specified.

primary
is a number indicating the amount of
tracks, cylinders, or blocks to be
allocated.

secondary
is a number indicating the amount of
tracks, cylinders, or blocks to be
allocated if additional space is
required. Additional space is
allocated up to fifteen times.

directory

RLSE

is a number indicating the amount of
blocks of 256-byte areas to be
allocated for the directory of a
partitioned data set.

is a keyword indicating the unused
space may be released at the end of
the job step.

CONTIG

ROUND

is a keyword indicating that space is
to be assigned contiguously within the
volume.

is a keyword indicating that space to
be allocated must be equal to one or
more cyli nders.

Examples of this form of the SPACE
parameter are:

SPACE=(TRK, (10,10,2»
SPACE=(400, (5,5),CONTIG,RLSE)

The first example states that space is to
be allocated in tracks; 10 tracks are to be
allocated initially; 10 additional tracks
are to be allocated as needed; additional
space is to be reserved for 2 records of a
directory.

The second example states that space is
to be allocated according to the size of
each block of records (400 bytes). Space
to accomodate five blocks is to be
allocated initially. Space to accomodate
five more blocks is to be allocated as
needed up to a maximum of 15 times. Space
is to be assigned contiguously. Unused
space may be released at the end of the job
step.

The LABEL parameter is used to specify
label information for a data set. Labels
are used by the control program to store
information about the data set and to
identify the volume on which it is
contained. Data sets on direct access
volumes always have labels, data sets on
magnetic tape volumes usually have labels,
and data sets on unit record devices never
have labels.

The LABEL parameter consists of four
positional subparameters and one keyword
subparameter (any subparameter not
specified must have its position noted by a
comma, except the last subparameter).

The first subparameter indicates the
position of the data set relative to other
data sets sharing the volume (tape only).
The second subparameter identifies the type
of label associated with the data set. 'The
third specifies whether the data set is
protected against unauthorized processing.
The fourth specifies whether the data set
is to be processed for input or output
operations only. The fifth specifies a
date when the data set may be released.

Using Job Control Statements 47

LABEL has the format:

LABEL= ([~equence nUmber]

~SLJ
[: PASSWORD]

,NL
, AL
,BLP

[
, EXPDT=yyddd]
, RETPD=nnnn

[,IN j ,OUT
,

where:

sequence-number

SL

NL

AL

BLP

is used only for data sets residing on
magnetic tape to specify which data
set is to be processed in a volume
containing more than one data set
(e.g., 3 specifies the third data
set). The subparameter may consist of
up to four digits. If the data set is
the first or only data set in the
volume, the subparameter need not be
coded; the default value is 1.

specifies the absence of a
subparameter when following
subparameters are specified.

specifies that the data set has
standard system-created labels.

specifies that the data set has no
labels.

specifies that the data set has ASCII
labels (American National Standard
Code for Information Interchange, a
system of coding computer-processed
characters differently from the IBM
standard EBCDIC). ASCII data sets can
reside only on magnetic tape.

specified that label processing for
the data set is to be bypassed.

PASSWORD

IN

48

specifies that the data set is
protected by a password. In order to
access the data set the operator must
issue the correct password on the
system console. Password-protected
data sets must have standard labels.

specifies that the data set is to be
processed for input operations only.
IN will be recognized only if the
first input/output operation is a
READ. If it is not a READ, IN is

OUT

ignored and both input and output
operations are permitted; if it is a
READ, any subsequent WRITE will be
treated as an error and job processing
is terminated. IN also permits a
password-protected data set to be read
(if the correct password is supplied)
and avoids the need of operator
intervention when reading a data set
having a high expiration date (for an
explanation of the expiration date,
see the description of EXPDT). IN
must be specified to read a
partitioned data set or number.

specifies that the data set is to be
processed for output operations only.
OUT will be recognized only if the
first input/output operation is a
WRITE. If it is not a WRITE, OUT is
ignored and both input and output
operations are permitted. If it is a
WRITE, any subsequent READ will be
treated as an error and job processing
is terminated. OU'I' must be specified
to create a partitioned data set or
member and WRITE operations only may
be specified.

EXPDT=yyddd
specifies a date when the data set can
be deleted. The date is expressed as
a 2-digit number for the year and a
3-digit number for the number of the
day in the year (e.g., 72100 indicates
that the data set may be released on
the 100th day of the year 1972).

RETPD=nnnn
specifies the number of days that the
data set is to be kept.

Examples of LABEL are:

LABEL= (3, SL)
LABEL=(,SL"OUT,EXPDT=71196)

The first example states that the third
data set of a magnetic tape volume has
standard labels. The second example
specifies a data set with standard labels
which is used only for output operations
and which may be released on the 196th day
of 1971.

The SEP parameter indicates a data set that
is to be assigned to a different channel
from other data sets.

A channel is a small control unit that
manages data transmission operations
between a number of input/output devices

and the system's central processing unit.
Processing time may be shortened by the use
of separate channels; assigning data sets
whose input/output operations occur at the
same time to separate channels increases
the speed of input/output operations.

SEP has the format:

SEP=(ddname, •••)

where:

ddname
is the name of a DD statement whose
data set is not to share the same
channel as the data set being defined.
Up to eight ddnames may be specified.
If only one ddname is specified, the
enclosing parentheses are not
required.

An example of SEP is:

SEP=(NAMEA,NAMEB,NAMED)

The example states that the data set being
defined is to be assigned to a separate
channel from the data sets defined on DD
statements NAME A , NAMEB, and NAMED.

Defining Record Characteristics

The DCB parameter defines characteristics
of records in a data set. The parameter
may specify the following:

• Record format, i.e., whether records
are fixed-length (all records in the
data set are of equal length),
variable-length (records are of
different length), or undefined-length
(no record length information has been
stated) •

• Record length. For variable-length
records, the record length specifies
the length of the largest record.

• Block information, i.e., whether
records are accessed individually
(unblocked) or in groups (blocked), and
the block size of blocked records.

• The number of buffers to be assigned to
a data set when data is transmitted
between system devices.

• Information identifying ASCII data
sets.

• options to describe characteristics of
data sets residing on tape.

• Options to describe characteristics of
data sets residing on direct access
devices.

• Characteristics of data sets to be
taken from another data set.

If the parameter is not specified, default
values are supplied according to the data
set description presented by other
parameters in the DD statement. Table C1
in the section "Compilation" lists DCB
defaults for compiler data sets; Table I-12
in the section "Load Module Execution"
lists DCB defaults for load module data
sets.

The format of the DeB subparameter is:

DCB=([data-set-name]
[,RECFM=record-formatJ
[,LRECL=record-length]
[,BLKSIZE=block-length]
[,BUFNO=nurnber-of-buffersJ
[,BUFOFF=block-prefix]
[,DEN=tape-density]
[,TRTCH=tape-recording-techniqueJ
[,DSORG=direct-access-organizationJ
[,OPTCD=optional-services]

The data-set-name subparameter indicates
that DCB attributes are to be taken from a
data set defined earlier. Other DCB
subparameters may be coded on the same DD
statement to override any of the attributes
taken from the earlier data set. The
data-set-name subparameter is specified as:

data-set-name= *.ddname
{

dSname ~
*.stepname.ddname
.*.stepname.procstep~dQ~am~

The form that data-set-name may take is
summarized in Table 1-5.

An example of dsname is:

DCB=*.STEP1.SMITH2

The example states the data set is to have
the same characteristics as the data set
defined in the DD statement SMITH2
appearing in job step STEP1.

RECFM is specified as follows:

RECFM~ m [B] [S] [~J [T]

where:

F
indicates fixed-length records.

Using Job Control Statements 49

v

D

u

B

S

A

M

T

indicates variable-length EBCDIC
records.

indicates variable-length ASCII
records.

indicates undefined-length records.

indicates that records are blocked.
B may not be specified for
undefined-length records.

indicates spanned records, i.e., a
record spans over two or more blocks.
S may be specified only for
variable-length EBCDIC records.

indicates that carriage control
characters are used for formatting
purposes.

indicates that machine code control
characters are used. M may not be
coded for ASCII records.

indicates that the track overflow
feature is to be used. This feature
permits records to be written even
though the block size exceeds the
track size of a direct access device.
This feature results in more efficient
track utilization.

Examples of RECFM are:

RECFM=V
RECFM=FBA

The first example specifies variable-length
records. The second example specifies
fixed-length records which are blocked and
written according to carriage control
characters.

LRECL is specified as:

LRECL=record-length

where:

record-length
is a number indicating the length of
the largest record to be found in the
data set. The maximum value that may
be specified is 32756.

For fixed-length records, LRECL
indicates the actual length of the record.

50

For variable-length records, LRECL
indicates the length of the longest record,
plus four for a segment control word. A
four-byte ~~g~~~i_~2ntrol_~2~Q precedes
each variable-length record and specifies
the actual length of the record. For
undefined records LRECL is omitted.

An example of LRECL is:

LRECL=84

This example states that the record length
is 84 bytes.

BLKSIZE is specified as:

BLKSIZE=block-length

block-length
is a number indicating the length of
the block of records. The number
specified also determines the length
of the buffer, i.e., the number of
bytes of data transmitted between an
I/O unit and main storage in one
operation. The maximum value that may
be specified is 32760.

For fixed-length unblocked records,
BLKSIZE is the same as the number specified
in LRECL (LRECL may be omitted; if it is,
the operating system determines the record
length from BLKSIZE). For fixed-length
blocked records, BLKSIZE is an integral
multiple of LRECL.

For variable-length unblocked records,
BLKSIZE is equal to LRECL plus four for a
block control word. A four-byte block
control word precedes each block of--
variable-length records (whether the block
contains a single unblocked record or a
number of blocked records) and specifies
the actual number of bytes contained in the
block (including the length of the records,
the segment control words preceding each
record, and the block control word itself).
For variable-length blocked records, data
management will place records being written
in an output block until there is no more
room left for the next record and segment
control word. It will then write the
completed block (which does not have to be
as large as BLKSIZE) and will start a new
one with the new record.

For undefined-length records, BLKSIZE
should be specified to indicate the largest
record that might be encountered.

An example of BLKSIZE is:

BLKSIZE=300

This example states that the block size is
300 bytes.

BUFNO is specified as:

BUFNO=n

where:

n
is a number indicating how many
buffers are to be assigned to the data
set. One, two, or three buffers may
be assigned. (Three buffers may be
specified only with asynchronous I/O.>
If the subparameter is omitted, two
buffers are assigned. If the
programmer specifies a number greater
than three, three buffers are
assigned.

An example of BUFNO is:

BUFNO=l

This example states that only one buffer is
to be assigned to the data set.

BUFOFF is used with ASCII data sets to
indicate the size of an optional block
prefix. The block prefix is a field that,
if specified, precedes each unblocked
record or the first record in a block and
contains information describing the record
or block. It may be up to 99 bytes in
length, and may be specified for
fixed-length, undefined-length, and
variable-length records. No use is made of
the block prefix by IBM System/360
Operating System except in certain cases
where the information contained in it is
used to determine the length of a block of
variable-length records.

BUFOFF is specified as:

BUFOFF= {:}

where:

n
is a number from 0 to 99 indicating
the size of the block prefix.
BUFOFF=n may be specified only for
input data sets; the operating system
makes no use of the block prefix but
skips the number of bytes specified
before beginning record processing.
If specified for output data sets,
BUFOFF=n causes an error message to be
written with abnormal termination
resulting <unless the extended error
handling facility is in force).

L
indicates that the block prefix is
four bytes long and that it is to be
used to compute the block size.
BUFOFF=L may be specified for both
input and output data sets but only
for variable-length records, that is,
when RECFM=D (or RECFM=DB) is also
specified.

The BUFOFF subparameter is optional;
if not specified, BUFOFF defaults to
o.

An example of BUFOFF is:

BUFOFF=40

This example states that 40 bytes are to be
skipped before record processing is to
begin.

The DEN and TRTCH subparameters define
characteristics of data sets residing on
magnetic tape.

DEN indicates the recording density of a
tape volume. It is specified as:

DEN=density

where:

density
is the number 0, 1, 2, or 3. The
number 0 indicates density of 200 bits
per inch of tape (bpi); 1 indicates
556 bpi; 2 800 bpi; and 3 1600 bpi.

Ud~a may be stored on seven-track tape or
nine-track tape. Seven-track tape may be
written 200 bpi, 556 bpi, or 800 bpi.
Nine-track tape may be written 800 bpi or
1600 bpi. DEN ~s optional; if it is not
specified, 800 bpi is assumed for both
seven-track and nine-track tape.

An example of DEN is:

DEN=3

The example states that the data set has a
density of 1600 bpi.

TRTCH is used for seven-track tape to
indicate the recording technique to be
used.

TRTCH has the format:

Using Job Control Statements 51

where:

C

E

indicates the data conversion feature.
The data conversion feature converts
binary data between seven-track tape
and eight-bit main-storage. Because
of the difference in the number of
bits per character (seven-track tape
has six data bits and one parity-check
bit), four tape characters are stored
as three main-storage bytes.

indicates even parity. Parity is a
technique that determines whether any
bits were lost during data
transmission by counting the number of
bits in each character. The mode may
require the parity check to be even or

PS
indicates physical sequential
organization. PS is specified for
direct access data sets that will De
processed only by FORTRAN programs.

OPT CD indicates optional services to be
performed by the control program. As
applicable to a FORTRAN program, it is
specified as:

where:

odd; the default value is odd parity~ Q

T

ET

indicates data translation from BCD to
EBCDIC.

indicates even parity and data
translation.

If this subparameter is not specified,
the default value is odd parity with no
conversion or translation.

DSORG defines the organization of a
direct-access data set. As applicable to a
FORTRAN program, it is specified as:

where:

DA

52

indicates direct access organization.
DA should be specified for
direct-access data sets that will be
processed by non-FORTRAN programs:
this specification causes a label to
be created indicating that the data
set has direct organization.

C

indicates an unlabeled ASCII data set.
If an ASCII data set has been
specified with a label (LABEL=(,AL»,
this option need not be specified.

indicates chained scheduling. Chained
scheduling is a technique whereby the
control program receives several
separate read or write operations as
one continuous operation: in a program
ha.ving extensive input/output
operations, chained scheduling may
result in a significant reduction in
processing time, particularly when
creating a FORTRAN DA data set.

Examples of the DCB parameter are:

DCB=(RECFM=F,BLKSIZE=100,DEN=2)
DCB=(RECFM=VB,LRECL=54,

BLKSIZE=850,BUFNO=1)

The first example describes fixed-length
unblocked records 100 bytes long on tape
written in 800 bpi. The second example
describes variable-length blocked records
with a maximum record size of 50 bytes plus
four for segment control word, a maximum
block size (including record control words
and block control word) of 850, and one
buffer to transmit this data.

The FORTRAN IV (H Extended) compiler is a
processing program that translates a
FORTRAN IV source module into an object
module.

The EXEC statement calls the compiler by
name, IFEAAB, in the PGM parameter, i.e.,

// EXEC PGM=IFEAAB

The EXEC statement may also specify other
parameters and compiler options.

COMPILER OPTIONS

Compiler options are specified in the PARM
parameter of the EXEC statement. They
increase the flexibility of the compiler.
For example:

• The SOURCE option lists the statements
in the source module

• The LIST option writes the object
module

• The MAP option writes a table of names
used in the source module

• The DECK option produces a card deck of
the object module.

All the options available are illustrated
in Figure 1-9. Default options are
indicated by an underscore and need never
be specified explicitly. The default
options shown are standard IBM defaults;
when the compiler is installed, each
installation may establish its own set of
default options.

Options may be coded in any order and
may be separated by blanks or commas. As
many as 100 characters may be coded in the
PARM field. The options are enclosed in
quotation marks except when the PARM field
is continued onto a following card; the
field must then be enclosed in parentheses
rather than quotation marks, and each
option containing a parenthesis must be
enclosed in quotation marks. The following
is an example of a continued PARM field:

PARM=(NOSOURCE,

'LINECOUNT(50)',LIST)

For purposes of simplicity, the discussion
below lists only one affirmative and

COMPILATION

negative form of each option. For examples
of output that these options produce, see
the chapter "Compiler Output."

£~
NOSOURCE

indicates whether the source module
li~tig~ is to be written~--if-SOURCL
is specified, the listing is produced
in the data set defined by the
SYSPRINT DD statement.

LINECOUNT(number)
indicates the maximum number of lines
to be assigned per page of the source
listing. The number may be in the
range 1 to 99. If the option is
omitted, the compiler assumes 60.

LIST
NOLIST
---indicates whe.ther the 2Qj~~!:_!!!22~!~

listing is to be written. The object
module listing consists of statements
written in pseudo-assembler language
format. If LIST is specified, the
listing is produced in the data set
defined by the SYSPRINT DD statement.

Q~EC:K
NOOBJECT

indicates whether the object module
(not the listing) is to be written.
OBJECT must be specified if the
linkage editor job step is to be
called in the current job. If the
object module is to be written, ~L is
written in the data set defined by the
SYSLIN DD statement, which defines
primary input to the linkage editor
job step.

DECK
NODECK
----indicates whether the 2Qi~~~!!!2Q~!~_!g

card image form is to be produced in
the data set specified by the SYSPUNCH
DD statement. DECK is usually
specified when the compilation step is
not immediately followed by the
linkage editor step; the deck is used
to supply input to the linkage editor
in a subsequent job.

OPTIMIZE({~1112})
NOOPTIMIZE
---indicates what 2E~imi~~g~!~y~! is to

be in force. NOOPTIMIZE indicates
that no optimization is to be
performed, and is equivalent to the
specification OPTIMIZE(O).
OPTIMIZE(l) specifies that each source

compilation 53

module is to be treated by the
compiler as a single program loop and
that the single loop is to be
optimized with regard to register
allocation and branching. OPTIMIZE(2)
specifies that each source module is
to be treated as a collection of
program loops and that each loop is to
be optimized with regard to register
allocation, branching, common
expression elimination, and
replacement of redundant computations.
Optimizing techniques are discussed in
greater detail in the section
"Programming Considerations."

FORMAT
NOFORMAT

indicates whether a structured source
module listing is to be written. A
structured source module listing
indicates loop structures and the
logical continuity of a source
program. This option is effective
only when OPTIMIZE(2) is in effect,
and a DD statement named SYSUT1 is
present; the listing is written in the
data set specified by the SYSPRINT DD
statement.

GOSTMT
NOGOSTMT

MAP
NOMAP

indicates whether internal sequence
numbers (ISN) are to be generated for
the calling sequence to subroutines
for a traceback map. (A traceback map
is a tool used in diagnosing execution
errors; it is discussed in "Load
Module Output.")

indicates whether a table of names and
statement labels used by the source
program is to be written. If MAP is
specified, the table is written in the
data set specified by the SYSPRINT DD
statement.

XREF
NOXREF

54

indicates whether a cross reference
listing of variables and labels used
in the source program is to be
written. If XREF is specified, ISNs
are generated for each statement in
which a variable or label is used. If
XREF is specified, a DD statement
named SYSUT2 must be supplied; the
listing is written in the data set
specified by the SYSPRINT DO
statement.

NAME (name)
indicates the name to be given to the
~~i~_~ou~~~ogram. The name may be
from one to six characters. If NAME
is not specified, the compiler assumes
the name MAIN.

BCD
EBCDIC
-----Indicates whether the source module is

wr~~~~g_~~~~Q (Binary-coded-OecIrnaI)
Q~_EB~DI~ (Extended Binary Coded
Decimal Interchange Code). If BCD and
EBCDIC statements are intermixed in
the source module, BCD should be
specified. BCD characters are not
supported by the compiler as print
control characters or in literal data.
For example, the carriage control
character to specify same line
printing, +, is specified as a 12-8-6
punch in EBCDIC and as a 12 punch in
BCD; the compiler recognizes only the
EBCDIC code. Therefore, programs
keypunched in BCD should be carefully
screened for potential errors before
job submission.

SIZE
MAX

nnnnk
indicates the ~~£~~_£f_~~ig_~~Q~~g~
to be allocated to the compilation
step. The symbol nnnnK represents the
number, multiplied by K (1024-bytes),
to be allocated. The number may range
from 160 to 9999.

If SIZE(MAX) is specified, or if
the option is omitted, the compiler
uses all available storage in the
environment in which it is operating,
except for approximately 3K bytes
which are left for system routines.
SIZE should only be specified to
reduce the amount of storage required
by FORTRAN in a multitasking
environment.

AUTODBL(value)
-----calls the Automatic Precision Increase

(API) facility and indicates whether
data items are to be converted to
~~qh~r 2~eci~~Qg:--API-provides-an
automatic means of converting single
precision floating point calculations
to double precision accuracy and
double precision calculations to
extended precision accuracy. The
AUTODBL option indicates which
particular data types are to be
converted. The AUTODBL option is
discussed in detail in the section
"Automatic Precision Increase".

If AUTODBL is omitted, no precision
increase is performed.

ALC
NOALe
-----indicates whether data items are to be

aligned on ~Q~r storage boundaries.
It is often used with the AUTODBL
option to restore proper storage
boundaries when a conversion is
performed. ALC is discussed in detail
in the section "Automatic Precision
Increase."

ANSF
NOANSF
-----rndicates whether the compiler is to

recognize only those library and
built-in functions specified by th~
American National Standards Institute,
\ANb', or the entire range ot
functions specified by IBM in the
publication IBM System/360 and
System/370 FORTRAN IV Language, Order
No. GC28-6515. If ANSF is specified,
any function not supported by ANS is
considered to be user-supplied.

FLAG(I)
FLAG (E)
FLAG(S)

indicates the level of diagnostic
messages to be printed. FLAG (I)
indicates that information messages,
warning messages (those generating a
return code of 4>, error messages
(those generating a return code of 8),
and severe error messages (generating
a return code of 12 or higher), are to
be printed. FLAG(E) indicates that
only error messages and severe error
messages are to be printed. FLAG(S)
indicates that only severe error
messages are to be printed.

DUMP
NODUMP
-----rndicates whether the contents of

registers, storage, and files
associated with the compiler are to be
printed if an abnormal termination
occurs. If DUMP is specified, a DD
statement named SYSUDUMP or SYSABEND
must be supplied; the dump is written
in the data set specified by the DD
statement.

Changing Program options During a Batch
Compilation

A batch compilation permits the programmer
to compile more than one source module in a
sinqle job. The PARM options specified in
the EXEC statement apply to each of the
source modules unless the programmer
specifies different options for a source

module. To change the options for any
source module, the programmer precedes the
source module with a card containing the
characters *PROCESSb in columns 1 through 9
followed by the options up to column 72,
which must be left blank and which denotes
the end of the *PROCESS card.

An example of the *PROCESS card is:

*PROCESS LIST,MAP

If succeeding source modules are not
preceded by a *PROCESS card, options revert
to those specified in the EXEC statement.
Any option except SIZE may be specified on
the *PROCESS card.

COMPILER DATA SETS

The compiler uses up to seven data sets.

Table 1-7 lists the function, device
types, and allowable device classes for
each data set. Table 1-8 lists the DCB
default values for data set
characteristics.

If the programmer uses a cataloged
procedure, he need not define the DD
statements SYSPRINT, SYSPUNCH, SYSLIN,
SYSUT1, and SYSUT2; these are defined in
the cataloged procedure.

SYSPRINT defines printed output. Such
output may be directed to a tape, direct
access device, or to a printer. To specify
output to a printer, the DD statement is
coded:

//SYSPRINT DD SYSOUT=A

SYSOUT is the disposition for system data
sets, and A is the standard output class
for a printer.

SYSPUNCH defines punched output (output
in card image format). Such output may be
directed to a tape, direct access device,
or to a card punch. To specify output to a
card punch, the DD statement is coded:

//SYSPUNCH DD SYSOUT=B

B is the standard output class for a card
punch.

Compilation 5S

r---,
I COMPILER OPTIONS I
~---------------------------T-------------~
I I Abbreviated I
I Form I Form I
~---------------------------+-------------~

SOURCE I NOSOURCE I SINOS

LINECOUNT(number) 1

LISTINOLIST

QBJECTINOOBJECT2

DECK I NODECK

OPTIMIZE({01112})3
NOOPTIMIZE

GOSTMTINOGOSTMT5

MAPINOMAP

XREF I NOXREF

NAME (name) 6

EBCDIC I BCD

SIZE<{MAX })
nnnnK

AUTODBL(value)

ALCINOALC

I
I LC(number)
I
I
I
I OBJINOOBJ
I
I
I
I OPT < {O 111 2})
I NOOPT
I
I FMTINOFMT
I
I
I
I
I
I
I

EBIBCD

AD (value)

ANSFI NOANSF I
I

FLAG(±) IFLAG(E) IFLAG(S> I
I

DUMP I NODUMP I
~---------------------------~-------------~
Notes:

1Compiler also accepts the old form:
LINECNT=xx

2Compiler also accepts the old form:
LOAD I NOLOAD

3Compiler also accepts the old form:
OPT={01112}

4Compiler also accepts the old form:
EDITINOEDIT

5Compiler also accepts the old form:
IDINOID

6Compiler also accepts the old form:
NAME=name L ___ J

Figure 1-9. Compiler Options

SYSLIN defines the object module created
by the compiler. The object module may be
directed to a tape or direct access device.
The following is a typical SYSLIN DD
statement:

56

//SYSLIN DD DSNAME=~~LOADSET,
// DISP=(MOD,PASS>,UNIT=SYSSQ,
// SPACE=(400,<200,50»

In this example, DSNAME=~~LOADSET specifies
a temporary data set that is to contain the
object module. DISP=(MOD,PASS) specifies
that the data set is new or is to be
modified (in the event of multiple
compilations) and is to be passed to a
succeeding job step, in this case the link
edit step. UNIT=SYSSQ specifies that the
data set is to reside in a sequential
device class. SPACE=(400, (200,50»
specifies that space is to be allocated for
records whose average block length is 400
bytes; space is allocated initially for 200
such blocks and additional space is
allocated as necessary for 50 more such
blocks.

SYSUTl and SYSUT2 define utility data
sets used by the compiler. SYSUTl is used
if the compiler option FORMAT (structured
source listing> is requested. SYSUT2 is
used if the compiler option XREF (produce
cross reference listing) is requested.
Both data sets may reside on a tape or
direct access device. The following is a
typical DO statement for a utility data
set:

//SYSUTl DD UNIT=SYSSQ,SPACE=(3465, (10,10»

In this example, UNIT=SYSSQ specifies that
the data set is to reside in the sequential
device class SYSSQ. SPACE=(3465, (10,10»
specifies that space is to be allocated for
records whose average block length is 1050
bytes; space is allocated initially for 10
such blocks, and additional space is
allocated as necessary for 10 more such
blocks.

Data Sets That Must Be Defined by the
Programmer

cataloged procedures do not supply the DD
statements SYSIN, SYSUDUMP, and SYSABEND;
the programmer must define these, as
required, when he submits a program to be
compiled.

SYSIN defines the source module. The
source module may reside on a tape, on a
direct-access device, or on cards. To
specify a source module in the input
stream, the DD statement is coded:

//SYSIN DD *

The asterisk indicates that the source
module statements physically follow the
SYSIN DD* statement.

Table 1-7. Compiler Data Sets.
r--------T---------------------T-------------T---------------------T--------------------,
I I I I I Defined in Cataloged I
I I I I Applicable I Procedures Calling I
i ddname i Func"Cl0n I uevice Types I Device Class I the Compiler I
~--------+---------------------+-------------+---------------------+--------------------~
SYSIN IReading input source Card reader IInput stream <defined No

I module Magnetic tapel as DD * or DD DATA)
I Direct accesslSYSSQ
I I

SYSPRINTIWriting listings, Printer IA Yes
Istorage maps, mes- Magnetic tapelSYSSQ
Isages Direct accessl
I I

SYSPUNCHIPunching the object Card punch 1 IB Yes
jmodule deck Magnetic tape SYSCP
t Direct access SYSSQ

SYSDA

SYSLIN Creating an object
module data set as
compiler output and
linkage editor input

Direct access SYSDA
Magnetic tape SYSSQ
Card punch1 SYSCP

Yes

SYSUTl Work data set for
structured source
listing; required if
compiler option EDIT
is requested

Magnetic tape SYSSQ
Direct access

Yes

SYSUT2 Work data set for
compiler cross
reference listing;
required if compiler
option XREF is re
quested

Magnetic tape SYSSQ
Direct access

Yes

SYSUDUMPIWriting dump in event Printer A No
or lof abnormal termina- Magnetic tape SYSSQ

SYSABENDltion Direct access
~--------~---------------------~-------------~--------_____________ i ____________________ ~
11 SYSPUNCH and SYSLIN may not be directed to the same card punch. I l ___ J

Table 1-8. DCB Default Values for Compiler
Data sets

r--------T-------T-----T-------T----------,
Iddname I LRECL I RECFMI BLKSIZE I BUFNO I
~--------+-------+-----+-------+----------~
ISYSIN I 80 I FB I 80 I 2 I
tSYSPRINTI 137 I VBA I 141 I 2 I
ISYSLIN I 80 I FB I 3200 I 2 I
ISYSPUNCHI 80 I FB I 3440 I 2 I
ISYSUTl I 105 I FB I 34651 I 2 I
ISYSUT2 I 1024- I FB I 1024- I 2 I
I I 4096 2 I I 4096 1 I I
~--------i-------L-----i-------~----------~
11This value is fixed by the compiler and I
I may not be overridden. (Values for I
I other entries may be overridden through I
I the DCB parameter in the DD statement.) I
12The value is within this range and the I
I actual value is calculated during I
I compiler execution. I L ___ J

SYSUDUMP or SYSABEND define data sets on
which abnormal termination dumps may be
written if the DUMP compiler option has
been specified. SYSUDUMP is requested when
the user wants to display the problem
program area in the event of an abnormal
termination. SYSABEND is requested when
the user wants to display the system
nucleus and trace table in addition to the
problem program area. Abnormal termination
data sets may be directed to tape, direct
access devices, or to a printer. To
specify the data set to a printer, the DD
statement is coded:

//SYSUDUMP DD SYSOUT=A

or

//SYSABEND DD SYSOUT=A

Compilation 57

The linkage editor and the loader are two
of the processing programs in the operating
system. They both perform the link edit
function, i.e., combining the object module
with other modules to form one executable
load module. They differ in the way they
store the load module. The linkage editor
places the load module into a library,
where it is called for execution by another
iob step; the loader places the load module
directly into storage for execution in the
same job step.

CHOOSING THE PROPER LINKAGE PROGRAM

The choice of the proper linkage program
depends upon the facilities required. The
linkage editor provides the following
facilities:

1. The overlay feature. The overlay
feature separates a program into two
or more segments that do not have to
be in main storage at the same time,
thereby reducing storage size
requirements for large programs.

2. Control statements to provide
additional processing flexibility.
Linkage editor control statements
define additional libraries available
to the linkage editor, define the
structure of segments of a program,
and serve other uses.

3. Placement of the load module into a
library for execution at a later time.

The EXEC statement calls the linkage editor
by name, IEWL, in the PGM parameter, i.e.,

// EXEC PGM=IEWL

The EXEC statement may also specify other
parameters and linkage editor options.

LINKAGE EDITOR OPTIONS

Linkage editor options increase the
flexibility of the linkage editor. At the
time the operating system is generated,
each installation chooses its set of
default options. At execution time, the
programmer may specify other options
through the EXEC statement PARM parameter.
Options available are illustrated in Figure
1-10. Options may appear in any order.
For examples of output that these options
produce, see the section "Linkage Editor
and Loader Output."

MAP
XREF

indicates that a map of the load
module is to be produced, showing the
lQ£~~iQg_an~length of main programs
~gg_~ubp£ogr~~~. The map is produced
in the data set defined by the
SYSPRINT DD statement. XREF indicates
that a ££Q~~_£eferen£~_l!~~igg is also
to be produced. If neither option is
specified, no map or cross-reference
listing is produced.

The loader is the more efficient program LET
when: indicates that the linkage editor is

to mark the load module executable
even though abnormal conditions, which
could cause execution to fail, have
been detected. The LET option is
useful in testing segments of a large
program that refer to segments not yet
coded; as long as the calls to absent
segments are not executed, the user
can still test the finished segments.

1. a small load module, not requiring the
use of overlay, is to be executed,

2. no linkage editor control statements
are needed, and

3. the load module is to be executed
immediately.

r---,
I I

! PARM;' [::J [LET). [NeAL) [LIST) [OVLY) • !
I I l ___ J

Figure 1-10. Linkage Editor Options

58

NCAL

LIST

OVLY

indicates that the linkage editor is
to call no system libraries to resolve
external references. (The SYSLIB DO
st~ternent, which defines system
libraries, need not be submitted.)
The load module is marked executable
even though references to other
programs may have been detected.

indicates that any linkage editor
control statements are to be listed in
the data set defined by the SYSPRINT
DD statement.

indicates that the load module ~s to
be in the format of an overlay
program, i.e., segments of the program
may share the same storage area at
different times during processing.
Overlay programs are described in
detail in the section "Linkage Editor
Overlay Feature."

LINKAGE EDITOR DATA SETS

The linkage editor normally uses five data
sets; others may be necessary if secondary
input is specified.

Table I-9 lists the function, device
types, and allowable device classes for
each data set.

Data Sets Defined in cataloged Procedures

cataloged procedures calling the linkage
editor contain the DD statements SYSLIN,
SYSLIB, SYSLMOD, SYSPRINT, and SYSUT1.
(Note that the SYSUTl DD statement for the
linkage editor should not be confused with
the SYSUTl DD statement used in the compile
job step.)

SYSLIN defines the object module used as
input to the linkage editor. The following
is a linkage editor SYSLIN DD statement
that is the counterpart to the compiler
SYSLIN DD statement illustrated in the
section "Compilation":

IISYSLIN DD DSNAME=&LOADSET,
II UNIT=SYSSQ,DISP=(OLD,DELETE)

In this example, DISP=(OLD,DELETE)
specifies that the data set existed prior
to this job step and that it is to be
deleted at the end of the step.

SYSLIB defines the system library,
SYS1.FORTLIB, from which IBM-supplied
FORTRAN subroutines may be obtained by the
linkage editor to resolve references made
by the object module to other programs
(such references are called external
references). SYSLIB is specified-II there
is a possibility that the compiler may have
generated calls to any FORTRAN subroutine.
SYS1.FORTLIB exists prior to the job and
may be called simply by name. To specify
the library, the DD statement is coded:

IISYSLIB DD DSNAME=SYS1.FORTLIB,DISP=SHR

In this example, DISP=SHR is coded to
permit other jobs to have access to the
1; h "" '07 7 •• h; 1"" +-h; co ";,...h co+-"" ; c C+-; 11 ; n
-L...L,AJ.a.u.~~ W'I ... ~..&.-L'- '-...... ~u J"""", '-'-,t',, \"..~&.

progress. If the NCAL option is specified,
the SYSLIB DD statement is not required.

SYSLMOD defines the load module created
by the link edit job step. The load module
may be directed only to a direct access
device and must be stored in a library as a
named member. The library may be the
system library, SYS1.LINKLIB, a temporary
library, or a private library. The
following is a typical SYSLMOD DD
statement:

IISYSLMOD DD
II
II

DSNAME=&GOSET(MAIN) ,
UNIT=SYSDA,DISP=(,PASS) ,
SPACE=(3072, (30,10,1),RLSE)

In this example, DSNAME=&GOSET specifies a
temporary library. MAIN specifies the
member name of the load module. UNIT=SYSDA
specifies that the data set is to reside in
a direct access device class, DISP=(,PASS)
specifies that the data set is new (by
default) and that it is to be passed to a
later job step. SPACE=(3072, (30,10,1),RLSE)
allocates space for 30 record blocks, whose
size is 3072 bytes, allocates space for 10
additional blocks as necessary, allocates 1
block of 256 bytes for the directory, and
specifies that unused space may be released
at the end of the step.

The following example indicates how a
programmer may store the load module into a
private library:

IISYSLMOD DD DSNAME=USERLIB(PROG1),
II UNIT=SYSSQ,DISP=(,CATLG),
II SPACE=(TRK, (50,30,3),
II VOLUME=SER=34345

In this example, USERLIB specifies the name
of the library. PROGl the member name of
the load module. UNIT=SYSSQ specifies that
the library (or data set) is to reside in a
sequential device class. DISP=(,CATLG)
specifies a new data set that is to be
cataloged. SPACE allocates 50 tracks
initially, 30 tracks if needed
subsequently, and 3 blocks of 256 bytes for

Linkage Editor and Loader 59

the directory. VOLUME specifies the
specific volume which is to hold the data
set.

To execute the load module PROGl in a
later job, the programmer must submit job
control statements containing the following
minimum information:

//jobname JOB
//JOBLIB DD DSNAME=USERLIB,DISP=(OLD,KEEP)
// EXEC PGM=PROGl

The DD statement defining a private library
must be named JOBLIB and must follow the
JOB statement and precede any EXEC
statements. It makes the private library
available. The EXEC statement names the
proqram to be executed. These statements
cause the operating system to search the
private library to locate the program as an
executable load module.

SYSPRINT defines printed output. As in
the compiler step, such output may be
directed to a tape, a direct access device,
or to a printer.

SYSUTl defines a utility data set used
by the linkage editor. This data set may
reside only in a direct access device
class. The following is a typical SYSUTl
DD statement:

//SYSUTl
//
//

DD DSNAME=&SYSUT1,UNIT=SYSDA,
SPACE=(1024, (200,20»,
SEP=SYSLMOD

Table 1-9. Linkage Editor Data Sets

In this example, DSNAME=&SYSUTl specifies a
temporary data set. UNIT=SYSDA specifies
that the data set resides in a direct
access device class. SPACE allocates space
to the data set. SEP=SYSLMOD specifies
that this data set is not to use the same
channel as the data set defined in the
SYSLMOD DD statement.

There are two kinds of input to the linkage
editor: primary and secondary. If any
secondary input is to be submitted, the
programmer must define it; cataloged
procedures do not supply DD statements for
secondary input.

Primary input is the data set defined in
the SYSLIN DD statement. Normally, this
data set consists of the output from a
previous compilation job step, but primary
input may also be linkage editor control
statements (discussed under "Linkage Editor
Control Statements"). Primary input may
reside on tape, direct access, or cards.

r--------T------------------------T---------------T---------------------T---------------,
I I I I I Defined in I
I I I I I Cataloged I
I I I I I Procedures I
I I I I Applicable I Calling the I
Iddname I Function I Device Type I Device Class I Linkage Editor I
~--------+------------------------+---------------+---------------------+---------------~
SYSLIN Primary input data, Direct access SYSDA Yes

SYSLIB

SYSLMOD

normally output of Magnetic tape SYSSQ
the compiler Card reader input stream (defined

as DD * or DD DATA)

Automatic call library
(SYS1.FORTLIB)

Link edit output
(load module input)

Direct access SYSDA

Direct access SYSDA

Yes

Yes

SYSPRINTI Writing listings, Printer IA Yes
I messages Magnetic tape ISYSSQ
I Direct access I
I I

SYSUTl I Work data set Direct access ISYSDA Yes
I I

I user- I Additional libraries Direct access ISYSDA No
I defined I and object modules Magnetic tape ISYSSQ
l ________ ~ ________________________ ~ _______________ ~ ___ ------------------~---------------

60

secondary Input

secondary input consists of modules that
are not part of the primary input data set
but are to be included in the load module.
The linkage editor uses secondary input to
resolve external references between the
primary input and other programs which it
calls. Secondary input may be in the
following forms:

1. Object modules specified by the user.
These modules may be either sequential
data sets or members of a library.

2. Load modules specified by the user.
These modules must be members of a
library. They may contain linkage
editor control statements.

3. The automatic call library,
SYS1.FORTLIB. This is the data set
defined in the SYSLIB DD statement.
SYS1.FORTLIB contains the FORTRAN
library subprograms as its members.
The linkage editor uses this library
if unresolved references remain after
other input has been processed.

The user defines secondary input in a
linkage editor control statement and a DD
statement.

Linkage Editor Control Statements

Linkage editor control statements specify
an operation and one or more operands.

The first column of a control statement
must be left blank. The operation field
begins in column 2 and specifies the name
of the operation to be performed. The
operand field must be separated from the
operation field by at least one blank. The
operand field specifies one or more
operands separated by commas. No embedded
blanks may appear in the field. Linkage
editor control statements may be placed
before, between, or after either modules or
other control statements in primary or
secondary input data sets.

The INCLUDE and LIBRARY control
statements specify secondary input.

INCLUDE Statement: The INCLUDE statement
specifies additional programs to be
included as part of the load module. Its
format is:

r---------T-------------------------------,
I Operation I Operand I
~---------+-------------------------------~
I INCLUDE Iddname[(member-name I
I I [,member-name] •••)] I
I I [,ddname[(member-name I
I I [,member-name] •••)] •••] I L-________ ~ _______________________________ J

Each ddname indicates the name of a DD
statement specifying a library or a
sequential data set, and each member-name
is the name of the member to be included.
When sequential data sets (not members) are
specified, member-name is omitted.

The following is an example of the
INCLUDE control statement and its
corresponding DD statement:

//LIB1 DD DSNAME=MYLIB,OISP=OLD
//SYSLIN OD *

INCLUDE LIB1(PROG1}

LIBRARY Statement: The LIBRARY statement
speciFies-additional libraries to be
searched for object modules to be included
in the load module.

The LIBRARY statement differs from the
INCLUDE statement in that libraries
specified in the LIBRARY statement are not
searched until all other references (except
those reserved for the automatic call
library) are completed by the linkage
editor. A module specified by an INCLUDE
statement is included iwmediately.

The format of the LIBRARY statement is:

r---------T-------------------------------,
I Operation I Operand I
~---------+-------------------------------~
ILIBRARY Iddname(member-name I
I I [,member-name] •••) I
I I [,ddname(member-name I
I I [,member-name] •••)] •••] I L _________ ~ _______________________________ J

Each ddname indicates the name of a DD
statement specifying a library, and each
member-name is the name of a member of the
library.

The following is an example of the
LIBRARY control statement and its
corresponding DD statement:

//LIB2 DO DSNAME=ADDLIB,DISP=OLD
//SYSLIN DO *

LIBRARY LIB2(ADD1,ADD2)

Linkage Editor and Loader 61

Figure 1-11 illustrates the use of
linkage editor control statements. STEP1,
STEP2, and STEP3 are compile job steps.
STEPl compiles a main program, MAIN, and
places the object module in a sequential
data set called &&GOFILE. STEP2 and STEP3
compile subprograms SUBl and SUB2 and place
the object modules in separate sequential
data sets.

STEP4 is the link edit job step. It
uses the &&GOFILE data set as primary
input. The compiled subprograms are used
as secondary input through the INCLUDE
statements and the DD statements named DDl
and DD2. An additional data set, defined
in the LIBRARY statement and in the DD
statement named ADDLIB, is to be used if
external references are not resolved among
the three object modules. Note that the
INCLUDE and LIBRARY statements are entered
through the input job stream with a DD *
statement.

After link edit processing, the load
module CALC is stored as a member of the
load module library PROGLIB. CALC contains
the main program, the two subprograms, and,
possibly, routines from the user library
MYLIB and the system library SYS1.FORTLIB.

IDENTIFY Statement: For a description of
the IDENTIFY statement, see the OS/VS
linkage editor and loader publication
listed in the Preface.

ORDERING AND PAGE-ALIGNING PROGRAM UNITS
UNDER OS/VS

Under the VS control programs, linkage
editor control statements may be used to
specify the sequence of FORTRAN program
units in the output load module and to
specify their alignment on page boundaries.
Such ordering and alignment can be used to
effect a lower paging rate and thus make
more efficient use of real storage.

ORDER Statement: The ORDER statement
indicates the sequence in which program
units are to appear in the output load
module. The program units appear in the
sequence in which they are specified on the
ORDER statement. When multiple ORDER
statements are used, their sequence further
determines the sequence of program units in
the output load module; those named on the
first statement appear first, and so forth.

The format of the ORDER statement is:

62

r---------T-------------------------------,
IOperationloperand I
~---------+-------------------------------~
I ORDER I name [(P)] , name [(P)] I l _________ ~ _______________________________ J

where:

name

(P)

is the name of a FORTRAN main program,
subprogram, or COl~ON block

indicates that the starting address of
the program of the program unit is to
be on a page boundary within the load
module. The program units are aligned
on 4K page boundaries unless the
ALIGN2 attribute is specified on the
EXEC statement. <Page boundary
alignment in the executing module can
only occur when the operating system
supervisor includes support for fetch
on a page boundary. This support is
available only with VS2.)

An ORDER statement may be placed before,
between, or after object modules or other
control statements.

PAGE statement: The PAGE statement, like
the (P) operand of the ORDER statement,
aligns a program unit on a 4K page boundary
in the output load module. If the ALIGN2
attribute is specified on the EXEC
statement for the linkage editor job step,
use of the PAGE statement aliqns the
specified program units on 2K-page
boundaries within the load module. (As
with the (P) operand of the ORDER
statement, page boundary alignment in the
executing module can only occur when the
operating system supervisor includes
support for fetch on a page boundary. This
support is available only with VS2.)

The format of the PAGE statement is:

r---------T-------------------------------,
I Operation I Operand I
~---------+-------------------------------~
I PAGE I name [, name]. • • I l _________ ~ _______________________________ J

where:

name
is the name of a FORTRAN main program,
SUbprogram or COMMON block.

The PAGE statement may be placed before,
between, or after Object modules or other
control statement.

In the example shown in Figure 1-10.1.,
the program units RAREUSE and MAINRT are
aligned on 2K page boundaries by PAGE and
ORDER control statements used with the

r---,
INPUT MODULE

MAINROOT
OUTPUT LOAD MODULE

MAINROOT
r====~--------, JCL p.~tm CC~lTROL STATEt .. 1EtiTS OK r-----------,

I
I

//LKED EXEC PGM=IEWL,PARM='ALIGN2' I I
I I

SBPRGA I I MAINRT I
I I I I
I I //SYSLMOD

//SYSLIN
PAGE
ORDER
INCLUDE

DD DSNAME=OWNLIB, ••• I I
~-----------~ DD * 2K ~-----------~
I RAREUSE I
~-----------~
I SUBPRGl I

RAREUSE
MAINRTCP),SBPRGA,SUBPRGl
SYSLMODCMAINROOT)

I I
I I
I SUBPRGA I

~-----------~
I I
I I

BOTTOIvl i
I

I I
~-----------~
I I
I I
I MAINRT I
I I L ___________ J

/* I I
i I
~----------- ...
I SUBPRGl i

4K ~-----------~
I I

6K ~-----------~
I RAREUSE I
~-----------~
I I
I I
I BOTTOM !
I I
I I L ___________ J

L ___ ---------_________________________ J

Figure 1-10.1. Ordering and Aligning Program Units on Page Boundaries

ALIGN2 attribute. Program units SBPRGA and
SUBPRGl are sequenced by the ORDER control
statement. Assume that each program unit
is 2K in length except for SUBPPGl and
RAREUSE.

The linkage editor places the program
units MAINRT and RAREUSE on 2K page
boundaries because ALIGN2 is specified in
the EXEC statement. Program units MAINRT,
SBPRGA, and SUBPRGl are sequenced as
specified in the ORDER statement. RAREUSE,
while placed on a 2K page boundary, appears
after the program units specified in the
ORDER statement because it was not
included. The program unit BOTTOM comes
after RAREUSE because it appeared after
RAREUSE in the input module.

SYSTEM LOADER

The loader combines into one job step the
functions of link editing and load module
execution. The loader combines the object
module with other modules to form one
executable load module. It places the load
module directly into main storage and then
executes it. By placing the load module
directly into main storage, the loader
eliminates the need for writing and then
reading the SYSLMOD data set. The EXEC
statement identifies the loader by either

of its names, IEWLDRGO or LOADER, in the
PGM parameter, i.e.,

//EXEC PGM=LOADER

The EXEC statement may also specify
other parameters and loader options.

LOADER OPTIONS

Loader options increase the flexibility of
the loader. At the time the operating
system is generated, each installation
chooses its set of default options. At
execution time, the programmer may specify
other options through the EXEC statement
PARM parameter. Options available are
illustrated in Figure 1-12. Options may be
coded in any order.

MAP
NOMAP
-----indicates whether a map of the loaded

program is to be produced, listing
external names and absolute storage
~gdr~sses!..

LET
NOLET
-----indicates whether the loader is to

mark the load module executable even

Linkage Editor and Loader 63

though abnormal conditions, which
could cause execution to fail, have
been detected.

SIZE=nnnnn

CALL
NCAL

SIZE indicates the amount of storage,
in bytes, that is to be allocated to
loader processing. The size of the
load module must be included in this
number. If the option is not
specified, the default size, lOOK, is
assumed.

indicates whether the loader is to
call a system library to resolve
external references. If the library
is to be called, the SYSLIB DD
statement must be submitted.

r---,

I
I
I
I
I
I

//JOBX JOB
//STEPl EXEC PGM=IFEAAB, PARM=' NAME (MAIN) ,LOAD'

Step 1 //SYSLIN DD DSNAME=&&GOFILE,DISP=(,PASS>,UNIT=SYSSQ

* //SYSIN DD

/*
//STEP2

r----------------------,
ISource module for MAIN I L ______________________ J

EXEC PGM=IFEAAB, PARM='NAME(SUB1> ,LOAD '

Step 2 //SYSLIN DD DSNAME=&&SUBPROG1,DISP=(,PASS>,UNIT=SYSSQ

* //SYSIN DD

/*
//STEP3

r----------------------,
ISource module for SUBll L ______________________ J

EXEC PGM=IFEAAB,PARM='NAME(SUB2>,LOAD '

Step 3 //SYSLIN DD DSNAME=&&SUBPROG2,DISP=(,PASS>,UNIT=SYSSQ

*

Step 4

//SYSIN DD

/*
//STEP4

//SYSLIB
//SYSLMOD
//ADDLIB
//DDl
I/DD2
I/SYSLIN
//

INCLUDE
INCLUDE
LIBRARY

1*
//

r----------------------,
ISource module for SUB21 L ______________________ J

EXEC

DD
DD
DD
DD
DD
DD
DD
DDl

PGM=IEWL

DSNAME=SYS1.FORTLIB,DISP=SHR
DSNAME=PROGLIB(CALC),UNIT=SYSDA
DSNAME=MYLIB,DISP=OLD
DSNAME=*.STEP2.SYSLIN,DISP=OLD
DSNAME=*.STEP3.SYSLIN,DISP=OLD
DSNAME=*.STEP1.SYSLIN,DISP=OLD

*
DD2
ADDLIB<X,Y,Z)

L __ _

Figure 1-11. Linkage Editor Processing

64

r---------~~~---J----r:-~;---J----l;-~~-J------~-;;---J------------------------------l~;~~;--J----l
I PARM=' ,--, --, , [SIZE=nnnnnJ , [EP=nameJ ,--- • I
I NOMAP NORES NCAL NOLET NOPRINT I l ___ j

Figure 1-12. Loader Options

EP=name
indicates the name that is to be the
entry point of the program being
loaded.

PRINT
NOPRINT

RES
NORES

indicates whether loader messages are
to be produced. Messages are produced
in the data set defined by the SYSLOUT
DD statement.

indicates whether, in an MVT
environment, the link pack area g~eue
is to be searched to resolve external
references. The link pack is an area
of storage that contains a number of
modules needed for job processing. If
RES is specified, the link pack area
queue is searched prior to any search
of the SYSLIB data set.

LOADER DATA SETS

The loader normally uses six data sets;
other data sets may be defined to describe
libraries, loader output, and load module
data sets.

Table I-10 lists the function, device
types, and allowable device classes for
each data set.

Data Sets Defined in Cataloged Procedures

cataloged procedures calling the loader
contain the DD statements SYSLIN, SYSLIB,
SYSLOUT, FTOSF001, FT06F001, and FT07F001.

SYSLIN defines the object module that is
primary input to the loader. Normally this
data set consists of the output from a
previous compile job step, but it may also
be an object module from a partitioned data
set. Input may reside on a tape, a direct
access device, or on cards. The following
is the loader SYSLIN DD statement
corresponding to the compiler SYSLIN DD
statement illustrated in the section
"Compilation."

//SYSLIN
//

DD DSNAME=&&LOADSET,
DISP=(OLD,OELETE)

SYSLIB defines the system library,
SYS1.FORTLIB, that is to be searched to
resolve external references made by the
input data set. The SYSLIB DD statement
may be coded as follows:

//SYSLIB DD DSNAME=SYS1.FORTLIB,OISP=SHR

SYSLIB is not required if the NCAL loader
option is specified.

SYSLOUT defines the output data set to
store the loader map. A printed listing is
obtained if SYSLOUT is allocated to a
printer device class, as follows:

//SYSLOUT DD SYSOUT=A

SYSLOUT is not required if the NO~illP and
NOPRINT options are specified.

FT05F001 defines the input data set to
the load module. The function of this
ddname is to associate the system input
unit to FORTRAN READ statements having 5 as
the data set reference number.

Since cataloged procedures may not
contain DD * statements, FTOSFOOl defers
data set definition to the SYSIN DD
statement, which the programmer must
supply. The following FTOSF001 DD
statement appears in cataloged procedures:

The programmer completes card input
definition by supplying a SYSIN DD
statement as follows:

//GO.SYSIN DO *
GO identifies card input with the GO step
in cataloged procedures.

FT06F001 defines the system printer
unit. The function of this ddname is to
associate the system printer to FORTRAN
WRITE statements having 6 as the data set
reference number. It is defined as
follows:

//FT06F001 DD SYSOUT=A

FT07F001 defines the system card punch
unit. The function of this ddname is to
associate the card punch to FORT'RAN WRITE
statements having 7 as the data set
reference number. It is defined as
follows:

Linkage Editor and Loader 65

//FT01FOOl DD SYSOUT=B messages. Output may be directed to a
tape, a direct access device, or to a
printer. To direct output to a printer,
SYSPRINT is coded:

Data Sets That Must be Defined by the
Programmer

//SYSPRINT DD SYSOUT=A

The programmer must define the SYSIN DD
statement to complete the description of
the input data set, and the SYSPRINT DD
statement.

SYSPRINT defines system printed output,
such as allocation and job control

The programmer may also define other data
sets as required by the load module
execution function. See the section "Load
Module Execution" for a discussion of these
data sets.

Table 1-10. Loader Data Sets.
r---------T-----------------------T---------------T---------------------T---------------,
I I I I I Defined in I
I I I I I Cataloged I
I I I I I Procedures I
I I I I Applicable I Calling the I
Iddname I Function I Device Type IDevice Class I Loader I
~---------+-----------------------+---------------+---------------------+---------------~
SYSLIN Input data to linkage Direct access SYSDA I Yes

function, normally Magnetic tape SYSSQ I
output of the compiler card reader Input stream (defined

as DD *)

SYSLIB Automatic call
library
(SYS1.FORTLIB)

SYSLOUT Writing listings

SYSPRINT Writing messages

SYSIN Input data to load
module function

FT05FOOl Primary input data
to be processed by
the load module

FT06FOOl Printed output data

FT01FOOl Punched output data

Direct access

Printer
Magnetic tape
Direct access

Printer
Magnetic tape
Direct access

Card reader

Magnetic tape
Direct access

Card reader

Magnetic tape
Direct access

Printer

Card punch

SYSDA

A
SYSSQ

A
SYSSQ

Input
as DD
SYSSQ
SYSDA

Input
as DD
SYSSQ
SYSDA

A

B

stream (defined
*>

stream (defined
* or DD DATA)

Yes

Yes

No

No

Yes

Yes

Yes

FTnnFnnn* User-defined data set Unit record SYSSQ A,B No
Magnetic tape
Direct access SYSDA

~---------~-----------------------~---------------~---------------------~---------------~
I *nn and nnn cannot be set to O. I L ___ J

66

The load module execution job step executes
a load module. The load module may be
passed directly from a preceding link edit
job step, it may be called from a library
of programs, or it may form part of the
loader job step. If passed from the link
edit job step, the load module is called in
the PGM parameter of the EXEC statement,
i. e.,

// EXEC PGM=*.LKED.SYSLMOD

This statement defines the load module as
consisting of the data set described in the
SYSLMOD DD statement in the link edit
(LKED) job step of the current job.

If the load module is called from a
library, it is called by name, as any
program, in the PGM parameter, i.e.,

// EXEC PGM=MATRIX

The library in which the load module
resides must also be made available to the
operating system via a DD statement. A
load module may reside on the system
library, SYS1.LINKLIB, or on a private
library. A private library is defined in a
JOBLIB or STEPLIB DD statement. For
example, if the load module MATRIX is a
member of a private library named MATH, the
user may supply the following DD statement:

//JOBLIB DD DSNAME=MATH,DISP=(OLD,PASS)

The JOBLIB DD statement must appear after
the JOB statement and before any other
control statement. This placement ensures
that the private library is kept available
for all steps within the job.

If the load module is executed as part
of the loader, it is not defined in an EXEC
statement. The loader combines the link
editing and load module execution into one
job step.

LOAD MODULE DATA SETS

The load module execution job step may use
many data sets. Table 1-11 lists the

LOAD MODULE EXECU'I'ION

function, device types, and allowable
device classes for each data set.

Cataloged procedures calling thp pxecution
job step contain the DD statements
FT05F001, FT06F001, and FT07F001.

FT05F001 defines the input data set.
The programmer codes 5 as the data set
reference number in any FORTRAN READ
statement that reads card input. Since
cataloged procedures may not contain DD *
statements, FTOSF001 is coded to defer data
set definition to the SYSIN DD statement,
which the programmer must supply. The
following FTOSF001 DD statement appears in
cataloged procedures:

//FTOSF001 DD DDNAME=SYSIN

The programmer completes card input
definition by supplying a SYSIN DD
statement as follows:

//GO.SYSIN DD *

GO identifies card input with the GO step
in cataloged procedures.

FT06F001 defines a printer data set.
The programmer codes 6 as the data set
reference number in any WRITE statement
writing data to be printed. The following
FT06F001 DD statement appears in cataloged
procedures:

//FT06F001 DD SYSOUT=A

FT07F001 defines a card punch data set.
The programmer codes 7 as the data set
reference number in any WRITE statement
writing data to be punched. The following
FT07F001 DD statement appears in cataloged
procedures:

//FT07F001 DD SYSOUT=B

Load Module Execution 67

Table 1-11. Load Module Data Sets
r---------T-----------------------T-------------T------------T--------------------------,
I I I I I Defined in cataloged I
I I I I Applicable IProcedures calling the I
Iddname I Function \Device Type \Device ClasslLoad Module \
r---------f-----------------------f-------------f------------f--------------------------~
FT05FOOl Input data to the ICard reader SYSSQ Yes

load module IMagnetic tape SYSDA
IDirect access
\

SYSIN Input data to the
load module

ICard reader SYSSQ No
\Magnetic tape SYSDA
Direct access

FT06FOOl Printed output data Printer A

FT07FOOl Punched output data Card punch B

FTnnFnnn*\User-defined sequential Unit-record SYSSQ A,B
Idata set Magnetic tape
I Direct access
I

FTnnFnnn*IUser-defined Direct access SYSSQ
\partitioned data set
\containing sequential
\ members
\

FTnnFnnn*luser-defined Direct- direct access SYSDA

Yes

Yes

No

No

No

I
\

I
I
I
I
I
\
I
I

\access data set \
~---------~-----------------------~-------------~------------~--------------------------~
*nn and nnn cannot be set to O. I l ___ J

Data sets That Must Be Defined by the
Programmer

The SYSIN DD statement must be defined by
the programmer to complete the description
of the input data set begun by the DD
statement FT05F001. (If no input data set
is to be submitted, the SYSIN DD statement
is omitted and the operating system ignores
the FTOSFOOl DD statement.)

The FORTRAN programmer may define other
data sets for use in the load module
execution step. There are three types of
data sets: sequential, partitioned, and
direct-access.

Sequential Data Sets

A sequential data set may be coded either
in EBCDIC (Extended Binary-Coded-Decimal
Interchange Code) or in ASCII (American
National Standard Code for Information
Interchange). ASCII data sets may be
processed by the IBM System/360 Operating
System only if the option ASCII=INCRES or
ASCII=INCTRAN has been specified at the
time the operating system is generated.

68

An EBCDIC data set may reside on unit
record devices, magnetic tape volumes or
direct access volumes. Data sets defined
on a tape or direct access device may be
retained for use in later jobs; unit record
data sets are temporary and exist for the
current job only (although data from these
data sets may be transmitted to permanent
volumes during job processing). FT05F001,
FT06F001, FT07F001, and SYSIN DD * all
define sequential data sets.

Figure 1-13 illustrates DD statements to
define unit record data sets. Figure 1-14
illustrates DD statements to create tape
and direct access data sets. Figure 1-15
illustrates DD statements to retrieve data
sets.

An ASCII data set may reside only on
magnetic tape volumes. Essentially, a
programmer uses the same DD statement
parameters to define an ASCII tape as he
would an EBCDIC tape. The differences are
that an ASCII tape must be identifie1
either through the LABEL parameter
(LABEL=AL) or through the DCB subparameter
OPTCD (OPTCD=Q) and may be defined only on
9-track tape having a density of 800 bpi.
Figure 1-16 illustrates the corresponding
DD statement for the one shown in Figure
LM2 if an ASCII data set was being defined.

r---,
Example 1: Data set in the input stream:

//SYSIN DD *
Example 2: Data set on the printer:

//SYSPRINT DD SYSOUT=A

Example 3: Data set on the card punch:

//FT07FOOl DD SYSOUT=B L ___ ----______________________________ J

Figure 1-13. Defining Unit Record Data Sets

r---,
Example 1: Temporary Data set:

//FT14FOOl DD DSNAME= &TEMP,UNIT=SYSSQ,SPACE=(TRK, (50»

Example 2: Permanent data set on a tape volume:

//FT36FOOl DD DSNAME=ANY,VOLUME=SER=7342,UNIT=2400,
// DISP=(NEW,KEEP,DELETE),LABEL=(,SL,EXPDT=6936S)

Example 3: Permanent data set on a direct access volume:

//FT41FOOl DD DSNAME=SOME,DISP=(NEW,CATLG,DELETE),UNIT=2311,
// VOLUME=SER=AA69,SPACE=(300, (100,100»,
// DCB=(RECFM=VB,LRECL=304,BLKSIZE=612) I L ___ J

Figure 1-14. Creating EBCDIC Sequential Data Sets on Tape or Direct Access Volumes

r---,
IExample 1: Retrieving an uncataloged data set (to be kept at the end of the job): I
I I
I //FT36FOOl DD DSNAME=ANY,VOLUME=SER=7342,UNIT=2400,DISP=OLD I
I I
IExample 2: Retrieving a cataloged data set (to be deleted at the end of the job;: I
I I
I //FT41F001 DD DSNAME=SOME,DISP=(OLD,DELETE) I L ___ J

Figure 1-15. Retrieving sequential Data Sets

r---,
IExample 1: Using the LABEL parameter: I
I I
I //FT36FOOl DD DSNAME=ANY,VOLUME=SER=7342,UNIT=2400, I
I // DISP=(NEW,KEEP,DELETE),LABEL=(AL,EXPDT=6936S) I
I I
IExample 2: Using the DCB parameter OPTCD subparameter: I
I I
I //FT36FOOl DD DSNAME=ANY,VOLUME=SER=7342,UNIT=2400, I
I // DISP=(NEW,KEEP,DELETE),DCB=(OPTCD=Q) I L ___ J

Figure 1-16. Creating an ASCII Tape Data Set

Load Module Execution 69

Partitioned Data Sets

A partitioned data set (PDS) may reside
only on a direct access device; hence, any
DD statement parameters defining unit
record or magnetic tape data sets are not
applicable.

A PDS consists of groups of sequential
data which are called members of the data
set. Partitioned data sets are used to
contain libraries.

Figure 1-17 illustrates DD statements to
define partitioned data sets.

Figure 1-18 illustrates DD statements to
retrieve a member from a partitioned data
set. The first example indicates that the
member CASE2 is to be retrieved from the
data set USERLIB, that the member is to be
used for input operations (LABEL=(",IN»,
and that the data set is to be retained at
the end of the job (the absence of the
second subparameter in DISP causes old data
sets to be kept).

Like the first example, the second
example retrieves a member for input
operations, but the DELETE specification in
the DISP parameter deletes the entire data
set, including all members.

The following discussion describes how
more than one member may be processed in
the same job and how a single member may be
deleted from a partitioned data set.

Retrieving More Than One Member

Two or more members of the same partitioned
data set may be processed in one job in a
sequential manner, i.e., the PDS must be
closed for one member before attempting to
read or write another member. Two or more
members may be retrieved using either the
READ statement END= option or the REWIND
statement.

~DS P~Q.£essi!lg Using END=n Option: When
the END=n option is executed and a
subsequent READ or WRITE statement is
issued with the same data set reference
number, the FORTRAN sequence number is
incremented by one. This allows another
member of the PDS referenced by the same
data set reference number to be processed.

The following FORTRAN program
illustrates this method:

INTEGER*4 X(20),Y(20)
10 READ (2,1,END=98) X

1 FORMAT (2 OA4)
GO TO 10

98 READ (2,1,END=99) Y
GO TO 98

99 WRITE (6,2) X,Y
STOP
END

Execution of statement 10 results in
processing the first PDS member which is
referenced by the FOR'I'RAN sequence number
001. Assume that this member has the name

r---,
Example 1: New Partitioned data set with its first member:

//FT20FOOl
//

DD DSNAME=USERLIB(CASE1),DISP=(NEW,CATLG),UNIT=2311,
SPACE=(TRK, (SO,20,S»,VOLUME=SER=DA31

Example 2: Adding a member to an existing data set:

//FT20F002 DD DSNAME=USERLIB(CASE2),DISP=OLD

Example 3: Temporary data set (created and deleted in the same job):

//FT21FOOl DD DSNAME=&TEMPLIB(MY),DISP=(NEW, PASS>, UNIT=SYSDA,
// SPACE=(TRK, (20,S,1»

l ___ ----------------------------------

Figure 1-17. Creating Partitioned Data sets

r---,
,Example 1: Retrieving a member of a data set: , , ,
, //FT2SFOOl DD DSNAME=USERLIB(CASE2),DISP=OLD,LABEL=(",IN) ,
I ,
IExample 2: Retrieving a member and deleting the data set at the end of the job: , , ,
I //FT26FOOl DD DSNAME=USERLIB(CASE1>,DISP=(OLD,DELETE,KEEP),LABEL=(",IN) I l ___ J

Fiqure 1-18. Retrieving Partitioned Data Sets

70

CASEl and resides in the cataloged
partitioned data set named USERLIBi the DD
statement that must be supplied is:

//FT02FOOl DD DSN=USERLIB(CASE1);
// LABEL=(",IN),DISP=OLD

When the END=n option is executed in
statement 10 and the next READ statement,
statement 98, is encountered, the FORTRAN
sequence number becomes 002. This closes
the PDS for the first mewber. Another
member may then be processed. If its name
is CASE2, the DD statement that must be
supplied is:

//FT02F002 DD DSN=USERLIB(CASE2),
// LABEL=(",IN),DISP~OLD

PDS Processing Using REWIND: Execution of
the REWIND statement closes a data set.
Any subsequent READ or WRITE statement
opens the data set again.

The following example illustrates the
use of the REWIND statement in reading two
members of the same PDS:

INTEGER*4 X(20),Y(20)
READ (2,1) X
REWIND 2
READ (3,1) Y
WRITE (6,2) X,Y

1 FORMAT (20A4)
2 FORMAT (' ',20A4)

STOP
END

Execution of the first READ statement
results in the processing of the first PDS
member which is referenced by the FORTRAN
sequence number 001. If the member has the
name CASEl and resides in the cataloged
partitioned data set named USERLIB, the DD
statement that must be supplied is:

//FT02FOOl DD DSN=USERLIB(CASE1),
// LABEL=C",IN),DISP=OLD

When the REWIND statement is executed, the
PDS is closed for MEMBER1. The next READ
statement reopens the data set for another
PDS member. If the next member name is
CASE4, the DD statement that must be
supplied is:

//FT03FOOl DD DSN=USERLIBCCASE4),
// LABEL=(",IN),DISP=OLD

Deletigg One Member

To delete a member while retaining the
remainder of the data set, the programmer
submits a separate job executing the

operating system utility program IEHPROGM.
(IEHPROGM is described in the appropriate
utilities publication, as listed in the
Preface.) Figure 1-19 illustrates how a
job may be subrrdtted to delete a member
only. The DD statement named DD2 defines
the data set. The utility program
statement SCRATCH releases the member named
CASEl from the partitioned data set named
USERLIB.

The SCRATCH statement deletes only the
directory entry that refers to the member;
the space occupied by the member is
released only if the entire data set is
reorganized. To reorganize a partitioned
data set, the programmer copies the members
into a temporary data set, deletes and
recreates the original data set, and copies
the members back into it. The operating
system utility programs contain facilities
for copying members of partitioned data
sets.

A direct-access data set may reside only on
a direct access device; hence, any DD
statement parameters defining unit record
or magnetic tape data sets are not
applicable.

A direct-access data set consists of a
number of records that may be accessed
individually: i.e., only the record that is
needed is accessed regardless of its
physical position within the data set. A
direct-access data set requires a
corresponding DEFINE FILE statement in the
FORTR~N program. Figure 1-20 illustrates a
DD statement and the corresponding DEFINE
FILE statement to create a direct-access
data set. Note that the record
characteristics described in the DEFINE
FILE statement must agree with the space
allocation requested in the DD statement
(for example, in the example, both
statements specify records, ~hose average
length is 100 bytes, allocated in blocks of
50 records). Figure 1-21 illustrates the
statements to retrieve the direct-access
data set.

Note that the data set created in Figure
1-20 was to be cataloged: therefore, to
retrieve it, only the DSNAME and DISP
parameters are required.

DCB PARAMETER CONSIDERATIONS

The following DCB subparameters define
record characteristics of a data set:

Load Module Execution 71

• RECFM, to specify the format of a
record, for example, whether
fixed-length, variable-length, or
undefined-length, and whether records
are blocked

• LRECL, to specify the size of a record
or the maximum size of a
variable-length record

• BLKSIZE, to specify the size of a
record or a block of records and the
length of the buffers required to
transmit data between main storage and
input/output devices

Table 1-12 lists the DCB default values
for load module data sets. Table 1-13
summarizes the maximum allowable values for
the BLKSIZE subparameter.

r---,
1 //SCRTCH JOB 1
1 // EXEC PGM=IEHPROGM 1
1 //SYSPRINT DD SYSOUT=A I
1 / /DD2 DD UNIT=2311, VOLUME=SER=DA31, DIS P= OLD 1
1 //SYSIN DD * 1
1 SCRATCH DSN~£=USERLIB,VOL=2311=DA31,MEMBER=CASEl 1
1 /* 1 L ___ ---_______________________________ J

Figure 1-19. Deleting a Member of a Partitioned Data Set

r---,
1 DEFINE FILE S (SO, 100, L, 12) 1
1 1
1//FTOSFOOl DD DSNAME=DADS,UNIT=SYSDA,VOLUME=SER=12347S, 1
1// DISP=(NEW,CATLG,DELETE),SPACE=(100,(SO,50), 1
1// DCB=(RECFM=F,BLKSIZE=100) I L ___ J

Figure 1-20. creating a Direct-Access Data Set

r---,
1 DEFINE FILE S(SO,100,L,12) 1
1 1
1//FTOSFOOl DD DSNAME=DADS,DISP=OLD I L ___ J

Figure 1-21. Retreiving a Direct-Access Data Set

Table 1-12. DCB Default Values for Load Module Data Sets
r------------T---T--------------------------------,
I I Sequential Data Sets 1 Direct-Access Data Sets I
I ~--------T--------T---------T-----T-------+-------T----------------T-------~
1 , , , I' I 'LRECL or' ,
, ddname ,RECFM1, LRECL2 , BLKSIZE I DEN I BUFNO , RECFM' BLKSIZE , BUFNO ,
~------------+--------+--------+---------+-----+-------+-------+----------------+-------~
,FT03Fyyy , u, I SOO , 2 I 2 , FA 'The value ,2 I
1 , , , " I Ispecified as the, I
1 FTOSFyyy IF' 80 , SO I I 2 ,F 'maximum size of, 2 I
1 I 1 I I I I la record in the I I
1 FT06Fyyy I UA 1 132 I 133 1 ,2 I F 'DEFINE FILE ,2 I
1 I 1 I I I I I sta tement. I 1
1 FT 0 7 Fyyy 1 F 1 80 , 80, ,2 1 F I , 2 1
1 I 1 I I I I' I I
, all others' U 1 ,800 1 2 , 2 ,F , I 2 I
t------------L--------~--------~---------~-----~-------~-------~----------------~-------~
11For records not under FORMAT control, the default is VS. I
12For records not under FORMAT control, the default is 4 less than shown. I L ___ J

72

Table 1-13. Maximum BLKSIZE Values
r-------------------T---1
I I BLKSIZE Value I
I ~-------------------------------------T-----------------------------~
I Device Type I Fixed-Lenqth and Undefined-Lenath ! Variable-Length Records
I i Records (minimum value is 1) - i (minimum value is 9) I
~-------------------t-------------------------------------t-----------------------------~

Card Reader 80 80

Card Punch 81 89

Printer
120 characters 121 129
132 characters 133 141
144 characters 145 153
150 characters 151 159

Direct Access1.
2301 20483 20483
2302 4984 4984
2303 4892 4892
2305

Mod I 14136 14136
Mod II 14660 14660

2311 3625 3625
2314 7294 7294
3330 13030 13030

Magnetic Tape2 32760 32760
~-------------------~-------------------------------------~-----------------------------~
I1.With track overflow, the maximum BLKSIZE value is 32760 for each device. I
12The minimum value is 18. I l ___ J

DCB Considerations for Seguential EBCDIC
Data sets

FORTRAN records in an EBCDIC data set may
be formatted or unformatted, i.e., they may
or may not be defined in a FORMAT
statement. List-directed I/O statements
are considered formatted. Formatted
records may be specified as fixed length,
variable length, or of undefined length.
Unformatted records may be specified only
as variable length. If records are to be
processed using asynchronous input/output,
they may not be blocked.

FORMATTED RECORDS: Formatted records are
specified as follows:

Fixed-Length Records: Unblocked
fixed-length records are specified as
RECFM=Fi blocked records as RECFM=FB. For
unblocked records, BLKSIZE specifies the
record length, (e.g., BLKSIZE=80)i the
buffer length is the same as the record
length. For blocked records, LRECL
specifies the record length and BLKSIZE the
block length, which must be a multiple of
LRECL, (e.g., LRECL=80,BLKSIZE=400); the

buffer length is the same as the block
length.

Variable-Length Records: Unblocked
variable-length records are specified as
RECFM=Vi blocked records as RECFM=VB.

For unblocked records, LRECL specifies
the maximum length of any record in the
data set, plus four additional bytes for
the segment control word that precedes each
record, and BLKSIZE specifies the buffer
length, which is LRECL plus four bytes for
the block control word that precedes each
block, (e.g., LRECL=84,BLKSIZE=88)i the
block control word is required even though
the record is unblocked. If the record is
smaller than the size specified in LRECL,
unused space is not written.

For blocked records, LRECL specifies the
maximum record length plus four bytes for
the segment control word, and BLKSIZE
specifies the block length, a number equal
to or larger than that specified in LRECL
plus four bytes for the block control word.
(e.g., LRECL=84,BLKSIZE=350). The block
accommodates as many records as possible
without exceeding the limit specified in

Load Module Execution 73

BLKSIZE. Unused space at the end of the
block is not written.

If LRECL is omitted, its default value is
set to BLKSIZE-4, resulting in having only
one record written in any block.

Undefined-Length Records: Undefined-length
records may be specified only as unblocked
records, i.e., RECFM=U. BLKSIZE specifies
the length of the buffer; this number must
take into account the largest possible size
record which may be encountered in the
FORMAT statement; e.g., BLKSIZE=SO
indicates that no record larger than SO
bytes will be encountered. Unused space is
not written.

Figure 1-22 illustrates the structure of
formatted records in sequential data sets,
using a FORTRAN record size of SO
characters. An example of a DCB parameter
describing a block of ten variable-length
records whose maximum size is 121 is:

DCB=(RECFM=VB,LRECL=125,BLKSIZE=1254)

UNFORMATTED RECORDS: Unformatted records
are those not described by a FORMAT
statement. The size of each record is
determined by the input/output list of READ
and WRITE statements. Unformatted records
are always specified as variable and
spanned. In addition, they may be blocked
or unblocked. Unblocked records are
specified as RECFM=VS, blocked records as
RECFM=VBS. Blocked records reduce

74

processing time substantially and are
recommended whenever possible.

For unblocked records, BLKSIZE specifies
the length of the buffer and is immaterial
to the size of the logical record, i.e., it
may be larger than, equal to, or smaller
than the logical record. The first eight
bytes of the block are reserved for the
block and segment control words. For a
record smaller than or equal to
BLKSIZE(-S), one record per block is
transmitted; unused space is not written.
For a record larger than BLKSIZE-S, the
record is transmitted over as many blocks
as necessary to accommodate it; such a
record is called a ~anned record, since it
spans more than one block.

For blocked records, LRECL specifies the
maximum record length, and BLKSIZE
specifies a block length not necessarily a
multiple of LRECL. The block accommodates
as many records as possible. If necessary.
the last record of a block may span to the
next block.

Figure 1-23 illustrates the structure of
unformatted records in storage.

Note: The track overflow feature may be
specified with any of the record formats.
This feature permits more efficient
utilization of track capacity by allowing
records to be written when a block size
exceeds a track size. The feature is
requested by the letter T in the RECFM
subparameter, e.g., RECFM=VBT.

r---,
FIXED-LENGTH RECORDS

1. Unblocked, e.g., DCB=(RECFM=F,BLKSIZE=SO)

r------------------,
I I
I FORTRAN Record 1 I
I I L __________________ J

o 80

2. Blocked, e.g., DCB=(RECFM=FB,LRECL=80,BLKSIZE=400)

r------------------T------------------T--7 r-T-----------------------------,
I I I (f I I I FORTRAN Record i 1 FORTRAN Record 2 ~ { J I FORTRAN Record 5 !
L __________________ i __________________ l __ l ~_l _____________________________ J
o 80 160 320 400

~---~
VARIABLE-LENGTH RECORDS

1. Unblocked, e.g., DCB=(RECFM=V,LRECL=84,BLKSIZE=8S); record may be any size up to 80
bytes.

r---T---T------------------,
I B I S I I
I C I C I FORTRAN Record 1 I
I W I W I I L ___ ~ ___ ~ __________________ J

o 4 8 88

2. Blocked, e.g., DCB=(RECFM=VB,LRECL=84,BLKSIZE=424); a record may be any size up to
SO bytes, and the block will contain as many records as may be accommodated in 424
bytes.

r---T---T----------T---T----------T---T---------T---T--(---T---T----------,
IBISI lSI lSI ISI{ f lSI I
I C I C I FORTRAN I C I FORTRAN I C I FORTRAN I C I f I C I FORTRAN I
t_~_l_~_l_~~~~~~_:_l_~_l_~~~~~~_~_l_~_l_~~~~~~_:l_~_l__ ~ __ l_~_l_~~~~~~_~_J
o 4 8 424

~---~
IUNDEFINED-LENGTH RECORDS I
I I
I Unblocked only, e.g., DCB=(RECFM=U,BLKSIZE=80); a record may be any size up to 80 I
I bytes. I
I I
I r------------------, I
I I 1 I
I I FORTRAN Record 1 I I
I I I I I L __________________ J I

I 0 80 I
~---1
~---1
I Legend: I
I BCW=Block Control Word I
I SCW=Segment Control Word I L ___ J

Figure 1-22. EBCDIC Sequential Data sets--Structure of Formatted Records

Load Module Execution 75

r---,
1. Unblocked Records, e.q., DCB=(RECFM=VS,BLKSIZE=68); assume two FORTRAN records, one

50 characters in length, the other 130 characters

r-T-T--------T------, r-T-T----------, r-T-T----------, r-T-T----------T------,
IBISI I I IBISIFORTRAN I IBISIFORTRAN I IBISIFORTRAN I I
ICICIFORTRAN I I ICICIRecord 2 I ICICIRecord 2 I ICICIRecord 2 I I
IWIWIRecord 11Unusedl IWIWISegment 1 I IWIWISegment 2 I IWIWISegment 3 IUnusedl
I I I I I I I I (60 chars) I I I I (60 chars) I I I I (10 chars) I I
l_~_~ ________ ~ ______ J l_~_~ __________ J l_~_~ __________ J l_~_~ __________ ~ ______ J

o 4 8 58 68 0 4 8 68 0 4 8 68 0 4 8 18 68

2. Blocked Records, e.g., DCB=(RECFM=VBS,LRECL=130,BLKSIZE=200); assume three FORTRAN
records, the first 130 characters in length, the second and third 100 characters inl
length I

r-T-T----------------T-T----------,
I B \ S I I S I FORTRAN I
IC\C\FORTRAN Record 1lC\Record 2 \
IWIWI<130 characters)\W\Segment 1 \
I I I I 1(58 chars) I l_i_i ________________ ~_~ __________ J

r-T-T----------T-T----------------T------,
I B I S I FORTRAN I S I I \
I C I C I Record 2 I C I FOR'I'RAN Record 3 I I
IWIWISegment 2 IWI(100 characters) IUnusedl
I I I (42 chars) I I I I
l_~_~ __________ ~_~ ________________ ~ ______ J

I
I
I
\
I
I
I

o 4 8 138 142 200 0 4 8 50 54 154 200 I
~---~
~---~
I Legend: I
I BCW=Block Control Word I
\ SCW=Segment Control Word I l ___ J

Figure 1-23. EBCDIC sequential Data sets--Structure of Unformatted Records

DCB Considerations for ASCII Data Sets

ASCII data sets may have sequential
organization only and may reside only on
9-track tape having a density of 800 bpi
(the DCB subparameter DEN=2 must be implied
or explicitly specified). If an ASCII data
set has not been identified by means of the
LABEL parameter (LABEL=AL), the programmer
indicates the presence of an ASCII data set
by specifying the DCB subparameter OPTCD=Q.

FORTRAN records in an ASCII data set
must be formatted and unspanned and may be
fixed-length, undefined-length, or
variable-length specified as follows:

Fixed-Length Records: Like EBCDIC records,
ASCII records may be blocked or unblocked.
Unblocked records are defined as RECFM=F;
blocked records as RECFM=FB.

For unblocked records, BLKSIZE specifies
the buffer length, which is the record
lenqth plus the length of an optional block
prefix. The block prefix is a field that,
if present, precedes each unblocked record
or the first record in a block. BUFOFF
specifies the size of the block prefix.

For blocked records, LRECL specifies the
record length and BLKSIZE the buffer

16

length, which is the data length (a
multiple of LRECL) plus the length of the
block prefix if present. BUFOFF specifies
the size of the block prefix.

BUFOFF may be specified for input data
sets only; the operating system does not
use the information contained in the block
prefix but skips the number of bytes
specified before beginning record
processing. If BUFOFF is specified for
output data sets, abnormal termination may
result.

The following example defines a block of
five records, each 80 bytes long, with a
block prefix of 20 bytes:

DCB=(RECFM=FB,LRECL=80,BLKSIZE=420,
BUFOFF=20)

Undefined-Length Records: Records may be
unblocked only, defined as RECFM=U.
BLKSIZE specifies the buffer length, which
is the size of the largest record that may
be encountered in the FORMAT statement plus
the size of the block prefix if present.
BUFOFF specifies the size of the block
prefix. It may be coded for input data
sets only. The operating system skips the
number of bytes specified before beginning
record processing. BUFOFF specified for

output data sets may result in abnormal
termination.

The following example specifies a buffer
lenqth of 200 bytes with no block prefix:

DCB=(RECFM=U,BLKSIZE=200)

Variable-Length Records: Records may be
blocked or unblocked. Unblocked records
are specified as RECFM~D; blocked records
as RECFM=DB.

For unblocked records, LRECL specifies
the maximum length of any record in the
data set plus four bytes for the segment
control word that precedes each record.
BLKSIZE specifies the buffer length, which
is the same size as specified in LRECL plus
the size of the block prefix if present.
BUFOFF specifies the size of the block
prefix.

For blocked records, LRECL specifies the
maximum record length plus four bytes for
the segment control word. BLKSIZE
specifies the buffer length, which is the
block length plus the size of the block
prefix if present. BUFOFF specifies the
size of the block prefix.

BUFOFF may be coded as BUFOFF=L or
BUFOFF=n. BUFOFF=L indicates that the
block prefix is four bytes long and is to
be used in calculating the length of the
block. BUFOFF=n indicates the size of the
block prefix (where n is a number between 1
and 99); the operating system skips the
number of bytes specified before beginning

record processing. (Note that BUFOFF=4 is
not equivalent to BUFOFF=L.) BUFOFF=L may
be specified for both input and output data
sets. BUFOFF=n may be specified for input
data sets only.

The following example defines a block of
up to 10 maximum length records (defined as
100 bytes) with the block prefix to be used
to calculate the block length:

DCB=(RECFM=DB,LRECL=104,BLKSIZE=1044,
BUFOFF=L)

Notes:

1. ASCII data sets may specify only ASA
carriage control characters in the
RECFM subparameter (for example,
RECFM=FBA); machine control characters
(coded M in the RECFM subparameter)
are not available for ASCII data sets.

2. For efficient use of storage when
writing blocked records, the
programmer should always specify
LRECL. If LRECL is omitted, its
default value is set equal to the
value of BLKSIZE less eight bytes. In
output operations, the operating
system checks to see if there is room
in a block for a record of length
LRECL; if there is not, the current
block is written and a new one is
started. The default convention thus
results in having only one record
written in any block.

Figure 1-24 ililustrates the structure
of records in ASCII data sets.

Load Module Execution 77

r---~----,
FIXED-LENGTH RECORDS

1. Unblocked, with no block prefix, e.g., DCB=(RECFM=F,BLKSIZE=80).

r----------------,
, I
I FORTRAN Record , , ,
l ________________ J

o 80

2. Unblocked, with block prefix (input data sets only), e.g.,
DCB=(RECFM=F,BLKSIZE=90,BUFOFF=10).

r------T----------------,
\Block , ,
I , FORTRAN Record ,
,Prefix, , l ______ ~ ________________ J

o 10 90

3. Blocked, with no prefix, e.g., DCB=(RECFM=F,LRECL=80,BLKSIZE=400).

r------------------T------------------T--l I , ,
, FORTRAN Record 1 , FORTRAN Record 2 ,
I I , L __________________ ~ __________________ ~ __ (

--T-------------------' , ,
, FORTRAN Record 5 ,
, I

__~ ___________________ J

o 80 160 320

4. Blocked, with block prefix (input data sets only), e.g.,
DCB=(RECFM=FB,LRECL=80,BLKSIZE=420,BUFOFF=20).

400

'Block , I I I ,
, I FORTRAN Record 1 I FORTRAN Record 2 , I FORTRAN Record 5 I

r------T------------------T------------------T---[c---T------------------'

I IPrefixl , I I , , l ______ ~ __________________ ~ __________________ ~___ _ __ ~ __________________ J

, 0 20 100 180 340 420
~---~
IUNDEFINED-LENGTH RECORDS <Unblocked only) ,
I 1. With no block prefix, e.g., DCB=(RECFM=U,BLKSIZE=80); a record may be any size up

to 80 bytes.

r----------------,
I ,
, FORTRAN Record I
I I L ________________ J

o 80

2. With block prefix (input data sets only), e.g.,
DCB(RECFM=U,BLKSIZE=100,BUFOFF=20).

r------T----------------,
IBlock I ,
I I FORTRAN Record ,
IPrefix, , L ______ ~ ________________ J

o 20 100 ___ J

Figure 1-24. ASCII Data Sets -- Structure of Records
(Part 1 of 2)

18

r---,
VARIABLE-LENGTH RECORDS

1. Unblocked, no block prefix, e.g., DCB=(RECFM=D,LRECL=84,BLKSIZE=84); a record
may be any size up to 80 bytes.

r---T----------------,
I S I I
, C I FORTRAN Record I
I W , I L ___ ~ ________________ J

o 4 84

2. Unblocked, with block prefix, e.g., DCB=(RECFM=D,LRECL=84,BLKSIZE=94,BUFOFF=10); a
record may be any size up to 80 bytes; a block prefix is not used to determine
block length and may be specified only for an input data set.

r------T---T----------------,
IBlock , S , ,
, I C , FORTRAN Record ,
,Prefix, W , , l ______ ~ ___ ~ ________________ J

o 10 14 94

3. Blocked, no block prefix, e.g., DCB=(RECFM=DB,LRECL=84,BLKSIZE=420); a record may
be any size up to 80 bytes, and the block will contain as many records as may be
accommodated in 420 bytes.

r---T------------------T---T-----------------I
' S I , S ,
, C I FORTRAN Record 1 , C I FORTRAN Record 2
, W , , W , L ___ ~ __________________ ~ ___ ~ _________________ _

o 4

C
--T---T------------------'

I S I ,
, C , FORTRAN Record n I
, W , ,

__~ ___ ~ __________________ J

420

4. Blocked, with block prefix, e. g., DCB= tRECFM=DB, LRECL=84, BLKSIZE=424, BUFOFF'=L) ;
block prefix is used to determine block length.

r------T---T-----------------T---T----------------\ C--T---T----------------'
'Block , S , IS' , S , ,
, I C IFORTRAN Record 1 , C ,FORTRAN Record 2 I C IFORTRAN Record n'
,Prefix, W , , W , , W , , l ____ ~~A~~_L _________________ ~ ___ ~ _________________ ~ __ i ___ i ________________ J

o 4 8 424
~---~
~---~
,Legend: ,
, SCW=Segment Control Word , l ___ J

Figure 1-24. ASCII Data Sets -- Structure of Records (Part 2 of 2)

Load ~odule Execution 79

DCB Considerations for Direct-access Data
sets

FORTRAN records may be formatted or
unformatted, out must be fixed and
unblocked only. The DEFINE FILE statement
specifies the record length and buffer
lenqth for a direct-access data set. This
provides the default value for BLKSIZE.

FORMATTED RECORDS: Record format is
specified as RECFM=F (fixed). Record
lenqth is specified by BLKSIZE, e.g.,
BLKSIZE=SO.

UNFOg~~TE!LRE£ORQ§': Record format is
specified as RECFM=F, BLKSIZE specifies a
pseudo block size, which, as for sequential
data sets, may specify a length different
from the record length. Unlike sequential
data sets, no bytes are reserved for block
or segment control words. For a record
smaller than or equal to BLKSIZE, one
record per block is transmitted; unused
space is left blank. For a record larger

than BLKSIZE, the record is transmitted
over as many blocks as are required to
accommodate it.

Figure 1-25 illustrates the structure of
records in a direct-access data set.

Notes:
~--Track-overflowl denoted by the letter

T in the RECFM. subparameter, may be
specified to permit more efficient use
of track capacity.

2. If a direct-access data set is to be
processed by non-FORTRAN programs,
DSORG=DA must be specified, i.e.,

DCB=(RECFM=F, BLKSIZE=SO, DSORG=DA)

This specification causes the creation
of a label indicating a direct-access
data set. (If the data set is to be
processed only by FOR'I'RAN programs,
the default specification, DSORG=PS,
may be used.>

r---,

,
I ,
I

FORMATTED RECORDS

May be fixed, unblocked only e.g., DCB=(RECFM=F,BLKSIZE=SO)

r------------------,
I ,
I FORTRAN Record 1 I
I I L __________________ J

o so

UNFORMATTED RECORDS

May be fixed, unblocked only
Assume: A. DCB=(RECFM=F,BLKSIZE=SO)

B. Two Records
Record 1 is SO characters
Record 2 is 100 characters

I r------------------, r-----------------, r-----------------T------------------,
I I 1 1 FORTRAN Record 21 1 FORTRAN Record 21 I
I I FORTRAN Record 1 1 I Segment 1 1 I Segment 2 1 Unused I
I I I I (SO characters) I I (20 characters I I I L __________________ J L _________________ J L _________________ i __________________ J

I 0 SO 0 SO 0 20 SO L ___ J

Figure 1-25. Direct-Access Data Sets--Structure of Records

SO

cataloged procedures provide pre-coded DD
and EXEC statements for the most common
functions, such as compile, or compile and
execute. Cataloged procedures may be
easily modified to accommodate special
situations.

Cataloged procedures are sets of EXEC
and DD statements that are placed in the
procedure library. SYS1.PROCLIB. Each
procedure is retrieved by specifying its
name in an EXEC statement; for example, to
retrieve the procedure named FORTXC, the
user submits the following EXEC statement:

// EXEC FORTXC

This statement retrieves the cataloged
procedure named and places the statements
from the procedure into the job stream.

CATALOGED PROCEDURE RESTRICTIONS

Cataloged procedures may consist only of
EXEC statements, certain DD statements,
and, optionally, PROC statements. FROC
statements are used to assign default
values to parameters. The PROC statement
is discussed fUrther in "Symbolic
Parameters and the PROC Statement" later in
this chapter.

The following statements may not form
part of a cataloged procedure:

1. The JOB statement

2. The JOBLIB DD statement

3. A DD statement containing * or DATA
the operand field

4. The delimiter statement

5. The null statement

in

6. An EXEC statement that calls another
cataloged procedure; that is, only the
form PGM=progname is valid

IBM supplies seven procedures for use with
the FORTRAN IV (H Extended) Compiler. They
are:

1. FORTXC, to compile, illustrated in
Figure I-26.

2. FORTXCL, to compile and link edit,
illustrated in Figure I-27.

3. FORTXLG, to link edit and execute
(load module execution), illustrated
in Figure I-28.

4. FORTXCLG, to compile, link edit, and
execute, illustrated in Figure I-29.

5. FORTXG, to execute, illustrated in
Figure I-30.

6. FORTXCG, to compile and load,
illustrated in Figure I-31.

7. FORTXL, to load, illustrated in Figure
I-32.

The first job control statement in each
cataloged procedure is the PRoe statement,
which assigns default values to symbolic
parameters. The statements identified by
the characters //* following the PROC
statement consist of comments only, giving
more information about the symbolic
parameters. A full discussion of the PROC
statement and symbolic parameters may be
found in the appropriate job control
language reference publication, as listed
in the Preface. The following discussion
briefly describes their use in FORTRAN
cataloged procedures.

IBM-Supplied cataloged Procedures 81

MEMBER "JAME FORTXC
IIFORTXC PROC FXPGM=IFEAAB,FXREGN=256K,FXPDECK=DECK,
II FXPOL ST=NOL 1ST, FXPOPT=O, FXLNS PC=' 3200, (25,6) I

11*
11*
11*
II *
11*
II *
11*
11*
II *
11*
IIFORT EXEC
II
II SY SPR I NT
IISYSUTl
IISYSUT2
/lSYSPUNC>-\
IISYSLIN
II

PARAMETER

FXPGM
FXREGN
FXPDECK
FXPOLST
FXPOPT
FXLNSPC

DEFA UL T-VALU E

IFEAAB
256K
DECK
NOLIST
o
3200'(25,6)

USAGE

COMPILER NAME
FORT-STEP REGION
COMPILER DECK OPTION
COMPILER LIST OPTION
COMPILER OPTIMIZATION

FORT.SYSLIN SPACE

PGM=&FXPGM,REGION=&FXREGN,COND=(4,LT),
PA~M='&FXPDECK,&FXPOLST,OPT(&FXPOPT)'

DO SYSOUT=A,DCB=BLKSIZE=3429
DO UNIT=SYSSQ,SPACE=(3465,(3,3»,DCB=BLKSIZE=3465
DO UNIT=SYSSQ,SPACE=(2048 ,(10,10»
DO SYSOUT=B,DCB=BLKSIZE=3440
DO DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSSQ,
SPACE=(&FXLNSPC),DCB=BLKSIZE=3200

Figure I-26. cataloged Procedure FORTXC

82

+39450000
39500000
39550000
39600000
39650000
39700000
39750000
39800000
3985C~00
399COOOO
39950000
40000000

+40050000
40180:)00
40150000
40200000
40250000
40300000

+40350000
40400000

MEMBER NA'-1E FORTXCL
//FO~rXCL PROC FXPGM=IFEAAB,FXREGN=256K,FXPOECK=NOOECK,FXPOLST=NOLIST,
II FXPNAME=MAIN,FXPOPT=O,PGMLB='&&GOSET'
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
II FORT EXEC
II
IISYSPRINT
IISYSUT1

--t------,-,II,---=-S Y S U T 2
IISYSPU\JCH
II S Y SL IN
II
IILKEO EXEC
II
IISYSPRINT
IISYSLIB
IISYSUT1
IISYSL~OO

II
IISYSLIN
II

PARAMETER

FXPGM
FXREGN
FXPOECK
F XPOL ST
F XP NAME
FXPOPT
PGMLB

DE FA Ul T-VALUE

I FEAAB
256K
NOOECK
NOLIST
MAIN
o
&&GOSET

USAGE

COMPILER NAME
FORT-STEP REGION
COMPILER DECK OPTION
COMPILER LIST OPTION
COMPILER NAME OPTION
COMPILER OPTIMIZATION
LKEO.SYSLMOO OSNAME

PGM=&FXPGM,REGION=&FXREGN,CONO=(4,LT),
PARM='&FXPOECK,&FXPOLST,NAME(&FXPNAME),OPTt&FXPOPTl'
DO SYSOUT=A,OCB=BLKSIZE=3429
DO UNIT=SYSSQ,SPACE=(3465,(3,3)),OCB=BLKSIZE=3465
DO UNIT=~YSSQ,SPACE=(2048,(10,10))
DO SYSOUT=B,DCB=BLKSIZE=3440
DO OSN=&&LOAOSET,OISP=(MOO,PASS),UNIT=SYSSQ,
SPACE=(3200,(25,6)),OCB=BLKSIZE=3200
PGM=IEWL,REGION=96K,CONO=(4,LT),
PARM='LET,LIST,MAP,XREF'
DO SYSOUT=A
DO DSN=SYS1.FORTLIB,DISP=SHR
DD UNIT=SYSOA,SPACE=(1024,(200,20))
DD DSN=&PGMLB.(&FXPNAME),UNIT=SYSOA,
DISP=(NEW,PASS) ,SPACE=(TRK, (10,10,1),RLSE)
DO OSN=&&lOAOSET,DISP=(OLD,DELETE)
DO DD NAME=SYS I N

Figure 1-21. cataloged Procedure FORTXCL

+41350000
41400000
41450000
41500000
41550000
41600000
41650000
41700000
41750000
41800000
41850000
41900000
41950000

+42000000
/."lnl::nnnn
"'"vJvV \.Iv

42100000
42150000
42200000
42250000

+42300000
42350000

+42400000
42450000
42500000
42550000
42600000

+42650000
42700000
42750000
42800000

IBM-Supplied Cataloged Procedures 83

~E MB E R. N A /.1 E FOR TX L G
/IFORTXLG PROC LKLNDD='DDNAME=SYSIN',GOPGM=MAIN,GOREGN=lOOK,
II GOF5DD='DDNAME=SYSIN',GOF6DD='SYSOUT=A',
1/ GOF7DD='SYSOUT=B'
1/*
11*
11*
11*
1/*
11*
11*
1/*
11*
11*
II LK ED
II

EXEC

/I SY SPR I NT
IISYSLIB
/I SY SUT 1
II SY SL MOD
/I
I/SYSLIN
II GO EXEC
IIFT05FOCl
IIFT06FOOl
/1 FT07FOOl

PARAMETER
LKLNDD
GOPG~

GOREGN
GOF5DD
GOF6DD
GOF7DD

DEFA UL T-VALUE
DDNAME=SYSIN
MAIN
lOOK
DDNAME=SYSIN
SYSOUT=A
SYSO UT=B

US AGE
LKED.SYSLIN OPERAND
OBJECT PROGRAM NAME
GO-STEP REGION
GO.FT05FOOl OPERAND
GO.FT06FOOl OPERAND
GO.FT07FOOl OPERAND

PGM=IEWL,REGION=96K,COND=(4,LT),
PA~M='LET,LIST,MAP,XREF'

DO SYSOUT=A
00 DSN=SYSl.FORTlIB,DISP=SHR
DO UNIT=SYSDA,SPACE=(1024,(200,20»
DO DSN=&&GOSET(&GOPGM),DISP=(,PASS),UNIT=SYSDA,
SPACE=(TRK,(lO,lO,l),RLSE)
DO &LKLNDD
PGM=*.LKED.SYSLMOD,REGION=&GOREGN,COND=(4,LT)
DO &GOF50D
DO &GOF6DD
DO &GOF7DD

Figure 1-28. cataloged Procedure FORTXLG

84

+44850COO
+44900000

44950000
45000000
45050000
45100000
45150000
45200000
45250000
45300000
45350000
45400000
45450000

+45500000
45550000
45600000
45650000
45700000

+45750000
45800000
45850000
45900000
45950000
46000000
46050000

M:MBER. NAI.1E I=ORTXCLG
IIFORTXCLG PRJC FXPGM=IFEAAB,FXREGN=256K,FXPDECK=NODECK,
II FXPOLST=NOLIST,FXPOPT=O,GOREGN=100K,
II GOI=5DO=' DDNAME=SYSIN' ,GOF6DD='SYSOUT=A',
II
11*
II *
11*
11*
11*
11*
II
II .,..

11*
11*
11*
11*
11*
ii*
IIFJRT EXEC
II
I/SYSP~I NT
IISYSUT1
IISYSUT2
II SYSPUNCH
IISYSLIN
II
IILKED EXEC
II
// SY SPR I NT
IISYSLIB
IISYSUT1
IISYSLMOD
II
IISYSLIN
II
IIGO EXEC
IIFT05F001
/1 FT061=001
II FT07F001

GOF7DD~'SYSOUT=S'

PARAMETER

FXPGM
FXREGN
FXPDECK
FXPOL ST
FXPOPT
GOREGN
GOF5DD
GOF6DD
GOF7DD

DE FA UL T-VALU E

IFEAAB
256K
NODECK
NOLIST
o
lOOK
DDNAME=SYS IN
SYSDUT=A
SYSOUT=B

USAGE

COMPILER NAME
FORT-STEP REGION
COMPILER DECK OPTION
COMPILER LIST OPTION
COMPILER OPTIMIZATION
GO-STEP REGION
GO.FT05F001 OPERAND
GO.FT06FCCl OPERAND
GO.FT07F001 OPERAND

PGM=&FXPGM,REGION=&FXREGN,COND=(4,LT),
PA~M='&FXPDECK,&FXPOLST,OPT(&FXPOPT)'

DO SYSOUT=A,DCB=BLKSIZE=3429
DO UNIT=SYSSQ,SPACE=(3465,(3,3»,DCB=BLKSIZE=3465
DO UNIT=SYSSQ,SPACE={5048'(10,10»
DO SYSOUT=B,DCB=BLKSIZE=3440
DO DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSSQ,
SPACE=(3200,(25,6»,DCB=BLKSIZE=3200
PGM=IEWL,REGION=96K,COND=(4,LT),
PARM='LET,LIST,MAP,XREF'
DO SYSOUT=A
DO DSN=SYS1.FORTLIB,DISP=SHR
DO UNIT=SYSDA,SPACE=(1024,(200,20»
DD DSN=&&GOSET(MAIN),DISP=(,PASS) ,UNIT=SYSDA,
SPACE=(TRK,(10,10,1),RLSE)
DO DSN=&&LOADSET,DISP=(OLD,DELETE)
DO DDNAME=SYSIN
PGI.1=*.LKED.SYSLMOD,REGION=&GOREGN,COND=(4,LT)
DO &GOF5DD
DO &GOF60D
DO &GOF7DD

Figure 1-29. Cataloged Procedure FORTXCLG

+42900000
+42950000
+430COOOO

43050000
43100000
43150000
43200000
43250000
43300COO
43350000
43400000
43450000
43500000
43550000
43600000
43650000
43700000

+43750000
43800000
43850000
43900000
43950000
44000000

+44050000
44100000

+44150000
44200000
44250000
44300000
44350000

+44400000
44450000
44500000
44550000
44600000
44650000
44700000
44750000

IBM-Supplied Cataloged Procedures 85

tJE M B E R ~ A Iv1 E FOR T X G
IIFORTXG PROC GOPGM=MAIN,GOREGN=100K,
II GOF5DD='DDNAME=SYSIN',GOF6DD='SYSOUT=A',
II GOF 700=' S YSOUT=B'
11*
11*
11*
11*
11*
11*
11*
11*
11*
II GO EXEC
II FT05F001
IIFTC6F001
IIFT07F001

PARAMETER

GOPGM
GOREGN
GOF5DD
GOF6DD
GOF7DD

DEFAULT-VALUE

MAIN
lOOK
DONA ME= SYS I N
SYSOUT=A
SYSOUT=B

USAGE

PROGRAM NAME
GO-STEP REGION
GO.FT05F001 DO OPERAND
GO.FT06FOC1 DO OPERAND
GO.FT07F001 DO OPERAND

PGM=&GOPGM,REGION=&GOREGN,COND=(4,LT)
DO &GOF5DD
DD &GOF6DD
DD &GOF7DD

Figure 1-30. cataloged Procedure FORTXG

86

+40500000
+40550000

40600000
40650000
40700COO
40750000
40800000
40850000
40900000
40950000
41000000
41050000
41100000
41150000
41200000
41250000

tJEMBER NA'vtE FORTXCG
/IFO~TXCG PROC FXPGM=IFEAAB,FXREGN=256K,FXPDECK=NODECK,
II FXPOLST=NOLIST, FXPOPT=0,GOF5DD='DDNAME=SYSIN',
H GOF600=iSYSOUT=Ai,GOF7DD=iSYSOUT=B-,GOREGN=100K
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
II ""II ..,.

11*
11*
IIFORT EXEC
II
IISYSPRINT
IISYSUTl
/lSYSUT2
II SY SPUNCH
IISYSL IN
II
IIGO EXEC
II
IISYSLOUT
IISYSLIB
IISYSLIN
IIFT05FOOl
II FT06FOOl
IIFT07FOOl

PARAMETER

GOREGN
FXPGM
FXREG~

FXPDECK
FXPOLST
FXPOPT
GOF5DD
GOF6DD
GOF7DD

DE FAUL T- VALUE

lOOK
IFEAAB
256K
NODECK
NOlIST
o
DDNAME=SYSIN
SYSOUT=A
SYSOUT=B

USAGE

GO-STEP REGION
COMPILER NAME
FORT-STEP REGION
COMPILER DECK OPTION
COMPILER LIST OPTION
COMPILER OPTIMIZATION
GO.FT05FOOl OPERAND
GO.FT06FOOl OPERAND
GO.FT07FOOl OPERAND

PGM=&FXPGM,REGION=&FXREGN,COND=(4,LT),
PARM='&FXPDECK,&FXPOLST,OPT(&FXPOPT)'
DD SYSOUT=A,DCB=BLKSIZE=3429
DO UNIT=SYSSQ,SPACE=(3465,(3,3)),DCB=BLKSIZE=3465
DD UNIT=SYSSQ,SPACE=(2048,(10,lO))
DD SYSOUT=B,DCB=BLKSIZE=3440
DD PSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSSQ,
SPACE=(3200,(25,6)),DCB=BLKSIZE=3200
PGM=LOADER,COND=(4,LT),REGION=&GOREGN,
PARM=llET,NORES,EP=MAIN'
DD SYSOUT=A
DO DSN=SYSl.FORTLIB,DISP=SHR
DO DSN=&&LOADSET,DISP=(OLD,DELETE)
DO &GOF5DD
DO &GOF6DD
DD &GOF7DD

Figure 1-31. cataloged Procedure FORTXCG

+46150000
+46200000

46250000
46300000
46350000
46400000
46450000
46500000
46550000
46600000
46650000
467COOOO
46750000
46800000
46850000
46900000

+46950000
47000000
47050000
47100000
47150000
47200000

+47250000
47300000

+47350000
47400000
47450000
47500000
47550000
47600000
47650000
47700000

IBM-Supplied Cataloged Procedures 87

tolE M B E R t\J A ~ E ~ 0 R T X L

IIFORTXL PROC GOF5DD='DDNAME=SYSIN',GOF6DD='SYSOUT=A',
II GO~7DD='SYSOUT=B' ,GOREGN=lOOK

+47800000
47850000
47900COO
47950000
48000000
48050000
48100000
48150000
48200000
48250000

11*
11*
11*
11*
11*
11*
11*
11*

PARAMETER

GOF50D
GQF 600
GOF7DD
GOREGN

DE FA UL T - V A L U E

DDNAME=SYSIN
SYSQUT=A
SY SO UT=B
lOOK

USAGE

GO.FT05FOOl OPERAND
GO.FT06FOOl OPERAND
GO.FT07FOOl OPERAND
GO-STEP REGION

IIGO EXEC
II

PGM=LOADER,COND=(4,LT),REGION=&GOREGN,
PARM='LET,NORES,EP=MAIN'

+48300000
48350000
48400000
48450COO
48500000
48550000
48600000

/I SY SLOUT
IISYSLIB
IIFT05FOOl
/I FT06FOOl
1/ FT071=001

DO SYSOUT=A
DD DSN=SYS1.FORTLIB,DISP=SHR
DO &GOF5DD
DD &GOF600
DO &GOF7DD

Figure 1-32. Cataloged P.rocedure FORTXL

Symbolic Parameters and the PROC Statement

A symbolic parameter is a name preceded by
an ampersand (&). It appears in the
operand field of a statement and stands as
a symbol for a parameter, a subparameter,
or a value. For example, in the cataloged
procedure FORTXC, the EXEC statement named
FORT contains a number of symbolic
parameters, such as &FXPGM and &FXREGN in
the expressions PGM=&FXPGM and
REGION=&FXREGN.

Symbolic parameters are used to make a
cataloged procedure easily modified when it
is called. The programmer may assign
values to symbolic parameters when he calls
a cataloged procedure, or he may permit the
default value assigned by the PROC
statement to be in effect.

Figure 1-33 illustrates the format of
the PROC statement. Since the statement

deals only with the symbolic parameters,
the identifying ampersand is unnecessary
and is omitted. In the cataloged procedure
FORTXC, the PROC statement assigns default
values to &FXPGM and &FXREGN in the manner:

//FORTXC PROC FXPGM=IFEAAB,FXREGN=228K, ••.

When the cataloged procedure is executed,
these default values are assigned if the
programmer does not override them. That
is, the EXEC statement named FORT would
appear as if it were coded:

//FORT EXEC PGM=IFEAAB,REGION=228K, •••

Figure 1-34 is another example
illustrating how the PROC statement affects
symbolic parameters of a cataloged
procedure. For easier reference, the
symbolic parameters in Figure 1-34 are
shown underscored.

r-----------T-----------T---,
I Name I Operation I Operand I
~-----------+-----------+---~
I //[name] I PROC I symbolic-parameter=value[, •••] I l ___________ ~ ___________ ~ ___ J

Figure 1-33. PROC Statement Format

88

r---,
PROC Statement in cataloged procedure FORTXCLG: I

I
IIFORTXcLG PROC
//
//
//

FXPGM~IFEAAB,fXREGN~228K,fxPD~CK~NODECK,

FXPOLST=NOLIST,FXPOPT=O,GOREGN=lOOK,
GOF5DD='DDNAME=SYSIN',GOF6DD='SYSOUT=A',
GOF7DD='SYSOUT=B' ------

Statements in FORTXCLG specifying symbolic parameters:

//FORT
//

EXEC PGM=&FXPGM,REGION=&FXREGN,COND=(4,LT),
PARM='&FXPDECK,&FXPOLST;OPTIMIZE(!~XPQ~~)'

//GO EXEC
//FT05FOOl DD
//FT06FOOl DD
//FT07FOOl DD

PGM=*.LKED.SYSLMOD,REGION=&GOREGN,COND=(4,LT)
&GOF5DD
&GOF6DD
&GOF7DD

substitution of default values at execution time:

//FORT
//

EXEC PGM=IFEAAB,REGION=228K,COND=(4,LT),
PARM='NODECK,NOLIST,OPTIMIZE(O)I

//GO EXEC
//FT05FOOl DD
//FT06FOOl DD
//FT07FOOl DD

PGM=*.LKED.SYSLMOD,REGION=lOOK,COND=(4,LT)
DDNAME=SYSIN
SYSOUT=A
SYSOUT=B

Figure 1-34. Effect of PROC Statement in a Cataloged Procedure

COMPILING LINK EDITING

The EXEC statement for the compilation step
is named FORT and, through the PGM
parameter, specifies the compiler as the
program to be executed (PGM=IFEAAB). The
DD statements describe data sets required
by the compiler. SYSLIN describes the
output of the compilation step, an object
module stored as a temporary data set named
&&LOADSET. (A double ampersand is assigned
to avoid confusion with symbolic
parameters, which are preceded by one
ampersand.) The DISP parameter is coded
(MOD,PASS); MOD permits more than one
object module to be stored (if many source
modules are submitted for compilation), and
PASS permits the data set to be used in
later job steps. The programmer specifies
the source module data set in a SYSIN DD
statement coded as follows:

//FORT.SYSIN DD * (or appropriate
parameters to define
the data set)

The EXEC statement for the link edit step
is named LKED and specifies the linkage
editor as the program to be executed
(PGM=IEWL). In FORTXCL and FORTXCLG, the
EXEC statement COND parameter indicates
that the program is to be executed only if
the FORT step has returned a code less than
or equal to 4. (Each job step issues a
return code indicating the results of
processing, e.g., 0 for normal completion,
4 for minor errors detected, 8 for serious
errors.) The DD statements describe
required data sets. SYSLMOD describes the
output of the link edit step, a load module
named MAIN, which is stored as a member of
a temporary library named &&GOSET. SYSLIN
describes the input to the linkage editor.
When the linkage editor is to be the first
step executed, as in FORTXLG, SYSLIN
indicates the object module defined by a
SYSIN DD statement which the programmer
must supply, as follows:

//LKED.SYSIN DD * (or appropriate
parameters)

IBM-supplied Cataloged Procedures 89

EXECUTING THE LOAD MODULE

The EXEC statement for the go step is named
GO, and specifies, as the program to be
executed, the load module created in the
link edit step (PGM=*.LKED.SYSLMOD). The
COND parameter indicates that the program
is to be executed only if previous steps
returned a code less than or equal to 4.
The DO statements describe required data
sets. DO statement FT05FOOl indicates that
the input data set is to be defined by a
SYSIN DO statement which the programmer
must supply. FT06FOOl defines a printer
data set; FT07FOOl a card punch data set.

The programmer specifies input to the
load module by a SYSIN DO statement coded
as follows:

IIGO.SYSIN DO * (or appropriate parameters)

LOADING

The EXEC statement for the loader step is
named GO, and specifies the loader as the
proqram to be executed (PGM=LOADER). The
DO statements describe required data sets.
SYSLOUT describes printed output, such as a
module map. The other data sets are the
same ones as used by the linkage editor and
the load module. Note that a SYSLMOD DO
statement is not specified; the loader
places the load module directly into
storage for execution. When the loader is
to be the first step executed, as in
FORTXL, the object module must be defined
in a SYSLIN DO statement (not SYSIN),
supplied by the programmer, as follows:

IIGO.SYSLIN DD * (or appropriate
parameters)

Input to the load module is defined in a
SYSIN DO statement, as follows:

IIGO.SYSIN DD * (or appropriate
parameters)

MODIFYING CATALOGED PROCEDURES

Except for the PGM parameter, any parameter
in the PROC, EXEC, or DD statements may be
modified. New parameters may be added;
existing parameters may be overridden.
Parameters not overridden continue to
remain in effect.

When a cataloged procedure is modified,
the changes apply only for the duration of
the job.

90

Figure 1-35 at the end of this chapter
illustrates how a programmer may modify a
cataloged procedure using some of the
examples described below.

MODIFYING PROC STATEMENTS

The programmer modifies PROC statement
parameters by specifying the changes in the
EXEC statement that calls the procedure.
When he changes a PROC statement parameter,
the programmer is assigning a temporary
value to a symbolic parameter, and this
value is transferred to the appropriate
parameter in the EXEC or DO statement in
the cataloged procedure when it is
executed.

For example, to change the region size
of the compiler from 228K to 200K, and to
change card punch output in the load module
from output class B to output class C, the
programmer may use the following statement
(assume that changes are being made to
FORTXCLG for this and for all examples in
this chapter):

II EXEC
II

FORTXCLG,FXREGN=200K,
GOF7DD='SYSOUT=C'

Note that the ampersand preceding a
symbolic parameter is not coded; note also
that a value containing a special
character, as in SYSOUT=C, is enclosed in
apostrophes.

Prior to being called, the appropriate
statements in FORTXCLG appear as follows:

IIFORT EXEC PGM=&FXPGM,REGION=&FXREGN, ••.

IIFT07FOOl DO &GOF7DD

When the cataloged procedUre is called, the
statements appear as though they were
coded:

IIFORT EXEC PGM=IFEAAB,REGION=200K, •••

IIFT07FOOl DO SYSOUT=C

Note that a symbolic parameter not changed
(PGM=&FXPGM) retains its default value.

An alternative method to change a value
is by assigning the new value directly to
the parameter itself, not the symbolic
parameter associated with it. For example,
the region size may be changed by
specifying REGION=200K in place of
FXREGN=200K. (Actually, in this example,

the region size for all job steps would be
changed; to change the region size only for
the compile job step, the appropriate job
step name~ FORT~ must also appear in the
parameter, i.e., REGION.FORT=200K.)

MODIFYING EXEC STATEMENTS

The programmer modifies EXEC statement
parameters by specifying the changes in the
EXEC statement that calls the procedure.

The following rules apply to EXEC
statement modifications~

• Parameters are overridden in their
entirety. If the programmer wishes to
retain some options while changing
others, he must respecify the options
he wishes kept. (However, default
options remain in effect if not
overridden.>

• Parameters specified for individual job
steps use the form:

keyword.stepname=value

where:
keyword indicates the name of the

parameter
stepname indicates the name of the

procedure, for example,
REGION. FORT=value

Parameters not specifying stepname are
assumed to apply to all steps in the
procedure; for example, REGION=value
applies to the entire cataloged procedure.

• To make changes to more than one
step, the programmer must specify all
changes for an earlier step before
those for later steps.

• Changes to symbolic parameters and
EXEC statement parameters may be
combined on the same card.

The programmer may make the following
modifications:

1. Override existing parameters: For
example, to modify the LKED step by
raising the condition code from 4 to
S, he may use the statement:

//SOMENAME EXEC FORTXCLG,
// COND.LKED=(S,LT)

2. Add new parameters: For example, to
modify FORT by specifying the TIME
parameter, he may use the statement:

//ANYNAME EXEC FORTXCLG,TIME.FORT=5

3. Ch~~q~~2re ~h~~_2ne-P~f~~~~~f: For
example, to modify FORT by changing
the region from 22SK to 200K and the
PARM option NOLIST to LIST, he may use
the statement:

//SOME EXEC FORTXCLG,
// REGION. FORT=200K,
// PARM.FORT=LIST

4. ~h~~q~_~2f~Eh~~_2g~_st~p: For
example, to modify FORT by specifying
TIME and to modify LKED by raising the
condition code from 4 to S, he may use
the statement:

5.

//ANY EXEC
//

FORTXCLG,TIME.FORT=5,
COND.LKED=(S,LT)

Note that the user may add a parameter
while revising an existing one.

CO~Q!~~£hang~s to symbolic parameters
and EXEC statement parameters: For
example, to modify the symbolic
parameter FXREGN, and to add the TIME
parameter to the FORT EXEC statement,
he may use the statement:

//ANY
//

EXEC FORTXCLG,FXREGN=200K,
TIME. FORT=5

MODIFYING DD STATEMENTS

The proqrammer modifies DD statements by
submitting new DD statements after the EXEC
statement that calls the procedure. As
with modifications to EXEC statements, the
user may override or add parameters to DD
statements in one or many steps. In
addition, he may add entirely new DD
statements to any step (whenever he
supplies a SYSIN DD statement, the
programmer is adding a new DD statement).

The following rules apply to DD
statement modifications:

• Parameters are overriden in their
entirety except for the DCB parameter
where individual subparameters may be
overridden

• Parameters are nullified by specifying
a comma after the equal sign in the
parameter, e.g., UNIT=,

• Parameters are overridden when mutually
exclusive parameters are specified in
their place, e.g., SPLIT overrides
SPACE

IBM-Supplied Cataloged Procedures 91

• DD statements must indicate the related
procedure step, using the form
//stepname.ddname, e.g., //FORT.SYSIN

• To make changes in more than one step,
the user must specify all changes for
an earlier step before those for later
steps

• To modify more than one DD statement in
a job step, the programmer must specify
the applicable DD statements in the
same sequence as they appear in the
cataloged procedure

The programmer may make the following
modifications:

1. Override existing parameters. For
example, to modify SYSLMOD so that the
load module is stored in a private
library rather than in the system
library, the user may submit the
statement:

//LKED.SYSLMOD DD DSNAME=PRIV(PROG),
// DISP=(MOD,PASS>

In this example the library PRIV is
assumed to be an old library and is
cataloged (that is, VOLUME and UNIT
parameters need not be specified).
Note that in subsequent uses of the
library a JOBLIB DD statement,
defining the private library, must
also be submitted to make the library
available to the system.

2. Add new parameters. For example, to
store the load module in a new,
uncataloged library, the programmer
must specify the VOLUME, UNIT, and
SPACE parameters. He may submit the
statement:

//LKED.SYSLMOD DD DSNAME=MYLIB(FIRST) ,
// DISP=(NEW, PASS> ,
// VOLUME=SER=11234.
// UNIT=SYSDA,
// SPACE=(TRK, (50,10,2)

92

3. Add new DD statements. For example,
to add new data sets having data set
reference numbers 10 and 15 for
processing in the go step, the user
may submit the statements:

//GO.FT10FOOl
//
//
//
//GO.FT15FOOl
//
//
//
//

DD DSNAME=DSET1,
DISP=(NEW, DELETE) ,
VOLUME=SER=Tl132,
UNIT=TAPE

DD DSNAME=DSET2,
DISP= (, DELETE),
VOLUME=SER=DA45,
UNIT=2311,
SPACE=(TRK, (10,10»

Note that the user may explicitly
define a data set as new (DISP
parameter for FT10F001) or may permit
the system to assume a new data set by
default (DISP in FT15F001).

Figure 1-35 illustrates a deck setup for
FORTXCLG modified as follows:

• A SYSIN DD statement defines the source
module

• A SYSIN DD statement defines input data
to the load module

• Job steps are modified as shown in the
EXEC statement discussion in "Modifying
EXEC Statements", example 4 (TIME in
FORT, COND in LKED)

• The SYSLMOD DD statement is modified as
shown in the DD statement discussion
above, example 1

• Additional data sets to the load module
are defined as shown in the DD
statement discussion, example 3

Note that all changes to a job step
appearing earlier in the job processing
sequence must be made before changes for
later job steps.

r---,
//TEST JOB ACCT3,J.SMITH,MSGLEVEL=1 I
//JOBLIB DO DSNAME=PRIV,DISP=(MOD,PASS) 1
//ANY EXEC FORTXCLG:TIME~FORT=5:COND~LKED=(8iLT)
//FORT.SYS1N DD *

r-------------,
I Source module I L _____________ J

//LKED.SYSLMOD DO
//GO.FT10FOOl DO
//
//GO.FT15FOOl DD
j//
I//GO.SYSIN DD *
I

DSNAME=PR1V(PROG), D1SP=(MOD, PASS)
DSNAME=DSET1,D1SP=(NEW,DELETE),VOLUME=SER=Tl132,
UN1T=TAPE
DSNAME=DSET2,DISP=(,DELETE);VOLUME=SER=DA45;
UN1T=2311,SPACE=(TRK, (10,10»

1 r-----------------,
I ILoad module input 1 I L _________________ J

I
1/* L ___ -----____________________________ _

Figure 1-35. Submitting Modifications to a cataloged Procedure

IBM-Supplied cataloged Procedures 93

PART II -- JOB OUTPUT

IBM-supplied cataloged Procedures 95

JOB OUTPU'l'

Part II describes job step output for the
FORTRAN program depicted in Figures 11-1
and 11-2. Figure 11-1 shows a program as
coded. Figure 11-2 shows the program as

keypunched; keypunch errors have been
introduced on purpose to provide instances
of system diagnostic action.

I G lC I I I I I I , AGI I OF t
I PuNCH I I I I I I

1 13 J·A 'i I I 1 I! I i I

I I \

! : I
I I

R~ ~T CI20) ! ~ i I I

I • I}+ I i I ~ \ \: I : l' H'C;1 ~-r 7,14-'13 I I I : I

" to' R~ TI j(!31H: iTHIS IS THE ~ND OF THE P1ROGRAM) .1 i I I I ! i

I ,

1 el9 SiT \oj P iii ! iii i :: L ;, i : 1 I 1
fiN : : I I

, I ! I

I I : Ii., j 1 I I

I 2 J .. , • 1 • t 10 II 12 13 14 IS 16 17 I, " 20 11 n 13 14 H 26 '/7 11 '}9 Xl 31 32 J) 34 35 l6)7 18)9 40 ., 42 U 45 46 47 " 49)0 51 51 5) S4 S5 56 57 sa 59 60 61 61 63 64 ~ 66 67 61 " 70 71 n 73 74 75 76 n 71 7t ID

Figure 11-1. Sample Program as Coded

Job Output 97

r---,
C PRIME NUMBER PROBLEM

100 WRITE (6,8)
8 FORMAT (52H FOLLOWING IS A LIST OF PRIME NUMBERS FROM 1 TO 1000/

119X,lHl/19X,lH2/19X,lH3)
101 1=5

3 A=I
102 A=SQRT (A)

103 J=A
104 DO I K=3,J,2
105 L=I/K
106 IF (L*K-I)1,2,4

CONTINUE
1 CONTINUE

107 WRITE (3,5)1
5 FORMAT (120)
2 1=1+2

108 IF (1000-1)7,4,3
4 WRITE (6,9)
9 FORMAT (14H PROGRAM ERROR)
7 WRITE (6,6)
6 FORMAT (31H THIS IS THE END OF THE PROGRAM)

109 STOP
END L __ _

Figure 11-2. Sample Program as Keypunched

98

Each compilation produces the following:

• Informative messages letting the
programmer know the status of the
compilation

• Any diagnostic messages generated
during the compilation

• Output as determined by rhp options
selected by the programmer, either
explicitly or by default

The programmer may request the compiler
options he wishes to exercise through the
PARM parameter of the EXEC statement, or he
may permit default options to govern
compiler output.

Figure 11-3 shows the sequence in which
output from compiler options is printed.

In addition to the options shown in
Figure 11-3, the programmer may request the
DECK option, which produces no listing, but
generates a card deck of the object module.

COMPILER OUTPUT WITH DEFAULT OPTIONS

Default options cause the compiler to
produce informative messages, diagnostic
messages, compiler statistics, and a
listing of the source module. Figure 11-4
shows a printout for the FORTRAN program
illustrated in Figure 11-2.

Informative Messages

The first line of a compilation output
listing (Figure 11-4, A) states the release
level number of the compiler, the
compiler's name, and the date of the run
shown in the format

year. date/hour. minute. second.

Date information in Figure 11-4 is shown as
70.002/12.04.4, indicating the year 1970,
the second day of the year, and the time of
the day the job was completed, 12:04.4
Cbased on a 24-hour clock).

r---------T---,
I Option I Produces I
~---------+---~

Informative messages

SOURCE* Source module listing

XREF Cross-reference listing

LIST Object module listing:
Part I: Entry code, constants, external address constants

FORMAT Edited source module listing

LIST Object module listing:
Part II: Executable instructions, internal address constants

Source module map

Diagnostic messages

Compiler statistics
~---------~---~
I *Specified as default option in cataloged procedures. I L ___ J

Figure 11-3. Compiler Printed output Format

Compiler output 99

1 (MAR 71) MAIN 05/360 FORTRAN H EXTENDED DATE 71.057/09.59.01

OPTIONS: NODECK,NCLIST,OPT=C

e- LEVEL

~ { REOUESTED

W OPTI(lNS IN EFFECT: NAME(MAIN),NOOPTIMIZE,LINECOUNT(6C),SIZE(MAXI,AUTODBL(NONEI,
SOURCE,EECDIC,NOLIST,NODECK,CBJECT,NOMAP,NOFORMAT,NOGOSTMT,NOXREF,NOALC,NOANSF,FLAG(II

ISN CCC2
ISN CCC3

ISN C004
ISN cce5
ISN 00(6
ISN C007
ISN ccce
ISN cccq
ISN CC10
ISN 0011
ISN 0012
ISN 0013
ISN C014
ISN CC15
ISN (016
ISN C017
ISN C018
ISN (C19
ISN CC2C
ISN C021
ISN C(22

C PRIME NUMEER PROBLEM
ICC WRITE (6,81

S FORMAT (52H FOLLOWING IS A LIST OF PRIME ~U~BERS FRCM 1 TO 10CCI
119X,lH1/19X,lH2/19X,lH31

101 1=5
3 A=I

102 A=SQRT(AI
103 J=A
104 DO 1 K=3,J,2
105 L=I/K
106 IF(L*K-Il1,2,4

CONTINUE
1 CCNTI~UE

107 WRITE(3,5)I
5 FORMAT (I2C)
2 1=1+2

1CS IF(lCOC-I)7,4,3
4 WR IT E (6,91
9 FORMAT (14H PROGRAM ERRCRI
7 WR I TE (6,6)
6 FCRMAT (31H THIS IS THE END OF THE PROGRAM)

lC9 STOP
END

~ NUMBER LEVEL FORTRAN H EXTENDED ERROR MESSAGES

~) IFE224I S(EI ISN COlI THE STATEMENT AFTER AN ARITHMETIC IF, GO Te, CR RETURN HAS NC LABEL.
~ IFE2CSI 4(WI ISN 0011 THE CONTINUE STATEMENT DOES NOT HAVE A STATEMENT NUMBER.

i

~OPTIONS IN EFFECT*NAME(MAINI,NOOPTIMIZE,LINECCUNT(6C),SIZE(~AXI,AUTCCBL(NO~E),

:OPTIONS IN EFFECT*SOURCE,EBCDIC,NOLIST,NODECK,CBJECT,NOMAP,NOFORMAT,NOGOSTMT,NOXREF,NOALC,NOANSF,FLAG(I)

~ *STATISTICS* SOURCE STATEMENTS = 21, PROGRAM SIZE = 706, SUBPROGRAM NAME = MAIN

STATISTICS 2 DIAGNOSTICS GENERATED, HIGHEST SEVERITY CODE IS

****** END OF COMPILATION ****** lC5K BYTES OF CORE NOT USED

Figure 11-4. Compiler Output from Default Options

PAGE

The second line (and a third line, if
needed) shows the compiler options current
at the time of job submission (Figure 11-4,
B) •

module size in decimal, and the number and
severity of diagnostic messages.

At the end of the listing, compiler
statistics are printed (Figure 11-4, E)
listing all current options, the number of
statements in the source module, the source

100

The last entry of a compilation is the
informative message:

******END OF COMP1LAT10N******

Diagnostic Messages

Compiler diagnostic messages are assigned
severitv codes as follows~

Severity
Code

o

4

8

12

16

Meaning
Indicates an informational
message; messages with a 0
severity code act as notes to
the programmer

Is a warning message code;
usually, a minor error. which
does not violate the syntax of
the FORTRAN IV language was
detected

Is an error message code;
usually, an error which
violates FORTRAN IV syntax was
detected. The compiler
attempts to make a corrective
assumption.

Is a serious error message
code; an error which violates
FORTRAN IV syntax and for which
the compiler could make no
corrective assumption was
detected

Is an abnormal termination
message code; an error which
prevents the compiler from
continuing program processing
was detected

Messages with severity code 4 permit the
compiled obiect module to be passed t-o the
link edit step. Severity levels higher
than level 4 prevent link edit procepsing,
unless the programmer has increased the
permissible condition code in the COND
parameter of the compilation EXEC
statement.

Diagnostic messages in Figure 11-4 are
marked D. Messages display the call
letters IFE identifying the FORTRAN IV
(H Extended) compiler, an internal
statement number developed from the
oriqinal source statement, the severity
code, and explanatory text. In Figure
11-4, two diagnostic messages were
generated by statement 11, an extraneous
CONTINUE statement.

Source Listing

The source listing in Figure 11-4 is marked
c. Source listing statements are identical
to the original statements submitted in the
FORTRAN program, except for the addition of
internal sequence numbers (ISN).

COMPILER OUTPUT WITH PROGRAMMER-SPECIFIED
OPTIONS

The compiler always produces informative
and diagnostic messages. The programmer
may suppress the source listing by
specifying NOSOURCE and may also choose to
generate other forms of output.

Figures 11-5 and 11-6 show additional
output for the program illustrated in
Figure 11-2. Figure 11-5 illustrates the
following:

1. A cross-reference listing

2. An object module listing

3. An edited source module listing

4. A source module map

Figure 11-6 shows the deck setup of an
object card deck.

Cross-Reference Listing

The programmer requests a cross-reference
listing by specifying the compiler option
XREF and a DD statement named SYSUT2. The
cross-reference listing in Figure 11-5 is
marked A.

A cross-reference listing shows the
symbols and statement labels in the source
module together with the internal statement
numbers in which they appear. Symbols
(which define variables) are listed by
name, according to length, in alphabetic
order, beginning with names one character
long. Statement labels are listed in
ascending order and display each internal
sequence number (ISN) in which they are
referenced.

compiler Output 101

lolA IN 05/360 FORTRAN H EXTENDED

SYMBOL
A
I
J
K
L
SORT

LABEL
1
2
3 • 6
7
8
9

100
101
102
103
104
105
106
107
108
109

* ***.F 0 R T II. A NCR 0 5 5
INTER'IAL STATEMENT NUMBERS
0005 01)06 0006 0001
C~04 ')01)5 oonq 0010 0012 0014 0014 0015
00 C7 0008
00 08 0009 0010
00C9 0010
0006

****.F ORTRAN Cli.O S S
DEFI'IED REFER ENCES
0011 0008 0010
0014 0010
0005 0015
0016 0010 ':'015
0013 0012
0019 0018
0018 0015
0003 0002
:l011 0016
0002
0004
0006
000'7
0006
0009
0010
0012
0015
0020

• ~ e
occoce 47 FC F OOC MAl"
0000C4 07
OCOO05 D4CIC9D5404040
~OOOQC 9C EC D OOC
OOCOll) 98 23 F C20
000014 5C 30 D 008
000018 50 DO 3 004
00001C 07 F2

TEMPORARY FOR FIX/FLOAT
OCOI00 OOOCOOOO
000104 00000000
00010B 4EOOOOOO
0001CC 00000000

CONSHNTS
000110 4FO 80000
OCC 114 ')0000000
000118 4EOOOOOO
00011C 80000000
000120 00000002
00C124 00000003
000128 0000COC5
0OO12C 000003E 8

AOCONS FOR V All. I ABL ES AND CONST ANTS
ADCONS FOR EXTER.NAL REFERENCES

~00148 OCOOOOOO
OCC14C 00000000 • 000178 58FOD09C 100
a co 1 7C 45 EO F C04
0001 BO 00000006
000184 OOCCCC2 a
:J00188 45 EO F 010
(1)018C 58 00 D 078 101
~00190 50 00 D 084
~OO194 58 OC D 084 3
OO~198 5C 00 D 05C
COO19C 97 80 D 05:
o aOlAO 68 00 D 058
000 lA4 6B 00 D 068
000 lA8 70 co D 080
(1)0 lAC 41 10 0 04C 102
0001BO 58FODC98
~OO IB4 05 EF
,)001B6 70 00 D DAD
OOC IBA 78 00 D OAO
0001 B E 70 CO o 080
coo lC 2 2B 00 103
0001C4 78 OO.D C80
~O(,lCB 6A CO D 060
0001CC 60 00 D 05C
0001 DO 58 00 D 054
00CID4 50 00 D 08~
0001D8 58 00 D 074 104
0001DC 50 00 D 08C
oa01EO 58 00 0 084 105
OOOlE4 8E 00 0 020
00OlE8 5D 00 D 08C
OOOlEC 50 10 D 090
a001FO 58 10 D 08e 106
0001 F4 5C 00 D 090

REFERENCE

R~FERENCE

0
BC 15,1210,15)
DC XL l' 07'
DC CL 7' MAIN
STM 14,12,12(13)
LM 2,3.32(15)
ST 3,8(13)
ST 13,410,3)
BCR 15,2

DC XL4'00000000'
DC XL4'000000CO'
D: Xl4' 4E cooeoc'
DC XL4' 00000000'

DC XL4'4F080000'
DC XL4' 00000000'
D: XL4'4EOOOOOO'
DC XL4' 8000000C'
DC XL4' 00000002'
DC XL4' 00000003'
DC XL4'OOOOOOC5'
DC XL4'OOOOO3E8'

DC XL4' 00000000'
DC XL4' OOOOOOOC'
L 15, 156 I 0,13)
8AL 14, 41 0,15)
DC XL4'OCOOOO06'
DC XL4'OOOOC028'
BAL 14, 16 I C,15)
L 0, 1201 0,13)
ST 0, 1321 C,13)
L C, 1321 0,13)
ST C, 921 0,13)
XI 92(13) ,128
LD 0, 881 C,13)
SD 0, 1041 0,13)
STE 0, 1281 0,131
LA 1, 761 0,13)
L 15, 1521 0,13)
BALR 14,15
STE 0, 1001 0,13)
LE 0, 1601 0,13)
STE 0, 1281 C,13)
SDR 0, 0
lE 0, 1281 C,13)
AD 0, 961 0,13)
ST D 0, 801 0,13)
L 0, 841 0,13)
ST 0, 13M 0,13)
l 0, ll61 0,131
ST 0, l'oO(0,131
L 0, 1321 0,13)
SRDA 0, 32
D 0, 1401 0,131
ST 1, 1441 0,13)
L 1, 140 I 0,13)
M 0, 1441 0,13)

DATE 71.062121.06.44

LIS TIN G*****

L I 5 TIN G*****

.. --------

SQRT
I BCOM#
I BC 0101#

4EOOO 00080000000
A

SQRT

• SO'.
• sao

A

A
4F 08000000000000

Figure 11-5. Compiler Output from Programmer-Specified Options
(Part 1 of 3)

102

PAGE

r
0001F8 5B 10 D 084 S 1, 132(0,13) I
0001FC 58 50 D aBC L 5, 188(0,13) 2
000200 07 95 BCR 9, 5
000202 58 50 D OCO L 5, 192(0,13) 4
000206 07 25 BCR 2, 5
eC0208 58 00 D 08C L 0, 140(0,13) K
00020C 5A 00 D 070 A 0, ll2(0,13) 2
:;00210 50 00 n CSC roT U, ' i. I-' I 0,13) '"

1

~I "'"TV \

000214 59 00 D 088 C 0, 136(0,13) J
000218 58 50 D OBO L 5, 176(0,13) 105
00021C 07 D5 BCR 13, 5
0OO21E 58 FO D 09C 107 L 15, 156(0,13) ! BC OM#
000222 18 00 LR 0, 0
000224 45 EO F 004 BAl 14, 4(0,15)
000228 00000003 DC XL4' 00000003' 3
00022C 00000072 DC XL4' 00000072'
000230 45 EO F 008 BAl 14, 8(0,15)
000234 0450D084 DC XL 4' 04 50D084'
000238 45 EO F 010 BAl 14, 16(0,15)
00023C 58 00 D 084 2 l 0, 132(0,13) I
000240 5A 00 D 070 A 0, 1I2(0,13) 2
000244 50 00 D 084 ST 0, 132(0,13) I
000248 58 00 D 07C 108 l 0, 124(0,13) 1000
00024C 5B 00 D 084 S 0, 132(0,13) I
000250 58 50 D OC4 l 5, 196(0,13) 7
000254 07 45 BCR 4, 5
000256 58 50 D OCO l 5, 192(0,13) 4
00025A 07 95 BCR 9, 5
00025C 58 50 D OAC L 5, 172(0,13) 3
000260 07 25 BCR 2, 5
000262 58 FO D 09C 4 L 15, 156(0,13) I BC OM#
000266 18 00 LR 0, 0
000268 45 EO F 004 BAL 14, 4(0,15)
00026C 00000006 DC XL4'00000006' 6
000270 00000076 DC XL4' 00000076'
000274 45 EO F 010 BAL 14, 16(0,15)
000278 58 FO 0 09C 7 l 15, 156(0,13) I BC OM#
00027C 45 EO F 004 BAL 14, 4(0,15) • 000280 00000006 DC XL4'00000006' 6
000284 00000088 DC XL4'00000088'
000288 45 EO F 010 BAl 14, 16(0,15)
00028C 58 FO D 09C 109 L 15, 156 (0,13) I BC OM#
000290 45 EO F 034 BAl 14, 52(0,15)
000294 05 DC XLl'05'
000295 40 DC XL l' 40'
000296 40 DC XL l' 40'
000297 40 DC XLl'40'
000298 40 DC XL l' 40'
000299 FO DC XL l' FO'

ADDRESS OF EPILOGJE
00029A 58 FO 0 09C l 15, 15M 0,13)
00029E 45 EO F 034 BAL 14, 52(0,15) I BC OM#
0002A2 0540 DC XL2' 0540'
0002A4 404040FO DC XL4'404040FO'

ADDRESS OF nn"". ,.,"llr
"'''.JLU~Ut:

0002AA 58 FO 3 09C L 15, 156 (0, 3)
0002AE 45 EO F 040 BAL 14, 64(0,15) I BC OM#
0002B2 18 03 lR 13, 3
0002B4 58 FO 0 OA8 l 15, 16!n.0,13)
0002B8 07 FF BCR 15,15

ADCON FOR PROLOGUE
000020 000002AA DC XL4' 000002AA'

ADCON FOR SAVE AREA
000024 OOOOOOBO DC XL4'000000BO'

ADCON FOR EPILOGUI:
OOOOBO 00OO029A DC Xl4' 0000029A'

ADCONS FOR PARAMETER lISTS
OOOOFC 80000130 DC Xl4' 80000130 '

TEMPORARIES AND GENERATED CONSTANTS
000150 00000000 DC XL4' 00000000'
000154 00000000 DC XL4'00000000'

ADCONS FOR B BLOCK LAB ElS
000158 00000178 DC XL4'0~000178'
00015C 00000194 DC XL4'00000194'
000160 000001EO DC XL4'000OOlEO'
000164 00000208 DC XL4' 00000208'
000168 0000021E DC XL4' OCOO021E'
00016C 0000023C DC Xl4'0000023C'
000170 00000262 DC XL4' 00000262'
000174 00000278 DC XL4'00000278'

Figure 11-5. Compiler Output from Programmer-Specified Options (Part 2 of 3)

Compiler output 103

e

f)

0

I STRUCTURED SOURC E LI ST ING I
C PRIME NUMBER PROBLEM

(Cl0.> ISN 0002 100 WRITE (6,81
ISN 0003 8 FORMAT (52H FOLLOWING IS A LI ST OF PRIME NUMBERS FROM 1 TO 10001

119X,lHl/19X,lH2/19X,lH31
ISN 0004 101 1=5
ISN 0005 3 A=I

(002 ISN 0006 102 A=SQRTI AI
ISN 0007 103 J=A
ISN 0008 104 DO 1 K=3,J,2
I SN 0009 105 L=I/K

(801 ISN 0010 106IF(L*K-Ill,2,4
ISN 0011 1 CONTINUE
ISN 0012 107 WR IT E (3, 5 I I
ISN 0013 5 FORMAT (1201

0011 C
I SN 0014 2 1=1+2
ISN 0015 108 IF (1000- I I 7 , 4, 3
I SN 0016 4 WR ITE (6,91
ISN 0017 9 FORMAT (14H PROGRAM ERRORI

0021 C
ISN 0018 7 WRITE (6,61
ISN 0019 6 FORMAT (31H THIS IS THE END OF THE PROGRAM I
IS N 0020 109 STOP
I SN 0021 END

~

I~AI N SI ZE OF PROGRAM 0002BA HEXADECIMAL BYTES

'4A..,E TA:; TYPE ADD. NAME TAG TYP E ADD. NAME TAG TYPE ADD. NAME TAG TYPE ADD.
A SFA R*4 000130 I SF 1*4 000134 J SF 1*4 000138 K SF 1*4 00013:
L S 1*4 000140 SQRT F XF R*4 000000 I BCOM# F XF 000000

SJUR:: E STATE . ..,ENT LAB EL S

LABEL I SN ADDR LABEL I SN ADDR LABEL I SN ADDR LABEL ISN ADDR
lClO 2 000178 NR 101 4 00018C NR 3 5 000194 102 6 0001AC NR
103 7 OClOIC2 NR 104 8 000108 NR 105 9 0001 EO 106 10 0001FO NR

1 11 000208 107 12 00021E 2 14 00023C 108 15 000248 NR
4 16 000262 7 18 000278 109 20 00028C NR

COMPILER GENERATED LABELS

LABEL I SN ADDR LABEL ISN ADDR LABEL I SN ADDR LABEL I SN ADDR
100ClOO 1 000178

FOR..,AT STATEMENT LABELS

LABEL I SN ADOR LABEL I SN ADDR LABEL ISN ADDR LABEL I SN ADDR
8 3 000028 5 13 000072 9 17 000076 6 19 000088

Figure 11-5. Compiler Output from Programmer-Specified Options (Part 3 of 3)

Object Module Listing

The programmer requests an object module
listing by specifying the option LIST. The
object module listing in Figure 11-5 is
marked B.

An object module listing is in an
assembler language format showing each
assembler language instruction. The
listing is arranged as follows:

104

• The first column, labeled 1, indicates
the relative address of the instruction
in hexadecimal format.

• The columns labeled 2 indicate the
storage representation of the
instruction in hexadecimal format.

• The column labeled 3 indicates
statement numbers, which may be either
those appearing in the source program
or those generated by the compiler
(compiler-generated n~hers contain six
digits) •

• The columns labeled 4 indicate the
pseudo-assembler language format for
each statement.

• The column labeled 5 indicates any
significant items referred to by the
instruction, such as entry points of
subprograms or other statement numbers.

Edited Source Module Listing

The programmer requests an edited source
module listing by specifying the options
FORMAT and OPTIMIZE(2) and by including a
DD statement named SYSUT1. The edited
source module listing in Figure 11-5 is
marked C.

This listing is independent of the usual
source listing; it indicates the loop
structure and logical continuity of the
source program.

Each loop is assigned a unique 3-digit
number. Entrance to the loop is indicated
by a left parenthesis followed by a 3-digit
number; exit from the loop is indicated by
the 3-digit number followed by a right
parenthesis on a separate line before the
next non-comment line.

Indentions are used to show dominance
relationships among executable source
statements. statement A dominates
statement B if A is the last statement
common to all logical paths from which B
receives control. Statement A is called a
dominator, statement B is called a dominee.
By this definition, a statement can have
only one dominator, but a dominator may
have several dominees. For example, a
computed GO TO statement is the last
statement through which control passes
before reaching three other statements.
The GO TO statement is a dominator with
three dominees.

A dominee is indented from its dominator
unless it is either the only dominee or the
last dominee of that dominator. The line
of sight between a dominator and its
dominee(s) may be obscured by intervening
statements. This is a dominance
discontinuity and is indicated by C--- on a
separate line above the dominee.

comments and non-executable statements
are not involved in dominance
relationships; their presence never causes
a dominance discontinuity. comments are
aliqned with the last preceding non-comment
line; nonexecutable statements are aligned
either with the last preceding executable
statement or with the first one following.

The edited source module listing in
Figure 11-5 shows two loops; loop 001 is
nested within loop 002.

The programmer requests a storage map by
specifying the option MAP. The source
module map in Figure II-5 is marked D.

A map indicates the use made of each
number within a program.

The first line of a map gives the name
and size of the program. The size is noted
in hexadecimal format.

The column headed NAME indicates the
name of each variable, statement function,
subprogram, or implicit function.

The column headed TAG indicates use
codes for each name and variable. Use
codes are the following:

1. The letter S for a variable appearing
to the left of an eqllal sign; i.e., a
variable whose value was stored during
some operation

2. The letter F for a variable appearing
to the right of an equal sign; i.e., a
variable whose value was manipulated
during some operation

3. The letter A for a variable used as an
argument in a parameter list

4. The letter C for a variable in a
COMMON block

5. The letter E for a variable in an
EQUIVALENCE block

6. The letters'ASF for an arithmetic
statement function

7. The letters XF for an external
function

8. The letters XR for an external
reference to an array, variable, or
subprogram that is referenced by name.

9. The letter D for a promoted (doubled)
variable

10. The letter P for a padded variable

11. An asterisk (*) for a promoted library
function

Note that the combination code ASF should
not be confused with the individual codes
A, S, and F. The individual codes print

Compiler Output 105

out in the order SFA while the arithmetic
function code always prints as ASF.

The column headed TYPE indicates the
type and length of each variable.

The column headed ADD indicates the
relative address assigned to a name.
(Functions, arithmetic statement function,
subroutines, and external references have a
relative address of 00000.) For
non-referenced variables, this column
contains the letters NR instead of a
relative address.

The MAP option also produces a table of
statement numbers known as a label map
(marked E in Figure 11-5). The label map
shows each statement number from the source
statement, from compiler generated labels,
and from FORMAT statements, the relative
address assigned to each statement, and the
symbol NR for each statement that is not
referenced.

If the source module contains COMMON or
EQUIVALENCE statements, the MAP option also
produces a storage map for each COMMON and
EQUIVALENCE block. Because the sample
program in Figure 11-1 contained no COMMON
or EQUIVALENCE statement, no such storage
map is illustrated in Figure 11-5. Figure
11-1 illustrates a section of another
program and the resulting storage map. The
map for a COI~ON block contains the same
kind of information as for the main
program. Any variable equivalenced to a
variable in COMMON is listed along with its
displacement (offset) from the beginning of
the block.

Object Module Deck

The programmer requests an object module
deck by specifying the compiler option
DECK. Figure 11-6 shows a typical layout
of an object deck.

The object deck may be used as input to
the linkage editor in a later job. The
deck is a copy of the object module which
consists of dictionaries, text, and an
end-of-module indicator. Object modules
are described in greater detail in the
appropriate linkage editor and loader
publication, as listed in the Preface.

The object deck consists of four types
of cards identified by the characters ESD,
RLD, TXT, or END in columns 2 through 4.
Column 1 of each card contains a 12-2-9
punch. Columns 13 through 80 contain the
first four characters of the program name
followed by a four-digit sequence number.
The remainder of the card contains program
information.

106

ESD CARD: ESD cards describe the entries
of the External Symbol Dictionary, which
contains one entry for each external symbol
defined or referred to within a module.
For example, if program MAIN calls
subprogram SUBA, the symbol SUBA will
appear as an entry in the External Symbol
Dictionaries of both the program MAIN and
the SUbprogram SUBA. The linkage editor
matches the entries in the dictionary to
the entries in the dictionaries of other
included subprograms and, when necessary,
to the automatic call library.

ESD cards are divided into four types,
identified by the digits 0, 1, 2, or 5 in
column 25 of the first entry in the card,
column 41 if a second entry, and column 51
if a third entry (there can be 1, 2, or 3
external-symbol entries in a card).

ESD
!YE~
o

1

2

5

Contents
Name o~the-program or
subprogram and indicates the
beginning of the module.

Entry point name appearing in
an ENTRY statement of a
subprogram.

Name of a subprogram referred
to by the source module
through CALL statements,
EXTERNAL statements, and
explicit and implicit
function references <Some
usages of FORTRAN are of such
complexity, that a function
subprogram is called in place
of in-line coding. such
calls are called iillE!!£!~
function references).

Information about a COMMON
block.

TXT CARD: TXT cards contain the constants
and-Variables used by the programmer in his
source module, any constants and variables
generated by the compiler, coded
information for FORMAT statements, and the
machine instructions generated by the
compiler from the source module.

RLD CARD: RLD cards describe entries in
the-gelQcatiQn Diction~~, which contains
one entry for each address that must be
resolved before a module can be executed.
The Relocation Dictionary contains
information that enables absolute storage
addresses to be established when a module
is loaded into main storage for execution.
These addresses cannot be determined
earlier because the starting address of a
module is not known until the module is

loaded. The linkage editor consolidates
RLD entries in the input modules into a
sinqle relocation dictionary when it
creates a load module.

RLD cards contain the storage address of
subprograms called by ESD type 2 cards.

END The END card indicates:

1. The end of the object module to the
linkage editor,

2. The relative location of the main
entry point, and

3. The length (in bytes) of the object
module.

Figure 11-6. Object Module Deck Structure

ISN 0002

ISN 0003
ISN 0004
ISN 0005
ISN 0006
ISN 0007
ISN 0008
ISN 0009

ISN 0010

SUtlROUTI:,E POSV"C (P, T)
C
CKKKKKKKKKKKK THIS SUBROUTINE COMPUTES AND PRINTS
C
CK~~~~~~~~~~~ EIGENVALUES, CUMULATIVE PROPORTIONS OF TOTAL
C
C~~~~~~~~~~~~ VARIANCES AND POSITIVE EIGENVECTORS.
C

INTEGER P, T
COMMON I SHARE 1 I EIGVEC(80,80)
COMMON I SHARE4 I CUMPRO(80)
COMMON I VALUE I EIGVAL(80)
DIMENSION POSVEX(80,80), POSVAL(80)
EQUIVALENCE (EIGVEC(I,l), POSVEX(I,I))
EQUIVALENCE (EIGVAL(l), POSVAL(I))

CALL EIGEN (P)

::::::~):X

:::::::c::::

POSVEC I SIZE OF PROGRAM 000478 HEXADECIMAL BYTES

NAME TAG TYPE ADD. NAME TAG TYPE ADD. NAME TAG TYPE ADD. NAME TAG
I SF P:4 000180 J SF 1):4 0001B4 P SFA 1):4 0001B8 T SF

EIGEN SF XF R::4 000000 CUMPRO SF C R):4 000000 EIGVAL F C'= R::4 000000 EIGVEC CE
IBCOMII F XF R~4 000000 HlERHII XF P:4 N.R. POSVAL F CE R):4 000000 POSVEC
POSVEX F CE R::4 000000

x:::::::: COMMON INFORMATION ::::::::::

NAME OF COMMON BLOCK ::SHARE IX SIZE OF BLOCK 006400 HEXADECIMAL BYTES

VAR. NAME TYPE REL. ADDR. VAR. NAME TYPE REL. ADDR. VAR. NAME TYPE REt. ADDR. VAR. NAME TYPE
EIGVEC RX4 000000

EQUIVALENCED VARIABLES WITHIN THIS COMMON BLOCK
VARIABLE OFFSET VARIABLE OFFSET VARIABLE OFFSET VARIABLE OFFSET
POSVEX 000000

NAME OF COMMON t:SLOCK ::SHARE4:: SIZE OF BLOCK 000140 HEXADECIMAL BYTES

VAR. NAME TYPE REL. ADDR. VAR. NAME TYPE REL. ADDR. VAR. NAME TYPE REL. ADDR. VAR. NAME TYPE
CUMPRO R~4 000000

NAME OF COMMON BLOCK :: VALUE:: SIZE OF BLOCK 000140 HEXADECIMAL BYTES

VAR. NAME TYPE REL. ADDR. VAR. NAME TYPE REL. ADDR. VAR. NAME TYPE REL. ADDR. VAR. NAME TYPE
EIGVAL R::4 000000

EQUIVALENCED VARIAt:SLES WITHIN THIS COMMON BLOCK
VARIABLE OFFSET VARIABLE OFFSET VARIABLE OFFSET VARIABLE OFFSET
POSVAL 000000

Figure 11-1. Source Statements and Storage Map for COMMON/EQUIVALENCE Blocks

TYPE ADD.
P:4 0001BC
RX4 000000
R::4 000100

REL.ADDR.

REL. ADDR.

REt. ADDR.

Compiler Output 101

LINKAGE EDITOR AND LOADER OUTPUT

As with compiler output, output from the
link edit step depends upon the options in
effect at the time of job submission.

LINKAGE EDITOR OUTPUT

The cataloged procedures calling the
linkage editor specify the LET, LIST, and
XREF options; the programmer may override
or add to these options through the PARM
parameter of the EXEC statement.

LINKAGE EDITOR OUTPUT WITH
PROCEDURE-SPECIFIED OPTIONS

For the FORTRAN program illustrated in
Figure 11-2, linkage editor output is shown
in Figure II-S. Options current at the
time of job submission are always listed
(Figure II-S, A) followed by any printed
output.

The linkage editor combines a number of
modules into one load module. The LET
option marks the load module executable
even though certain error conditions may
have been detected. LET does not result in
any printed output.

LIST causes linkage editor control
statements associated with the job step to
be printed. No linkage editor control
statements are shown in Figure II-S. See
the section "Linkage Editor Overlay
Feature" for an example.

Unlike the compiler MAP and XREF options,
which are mutually independent, the linkage
editor XREF option produces both a module
map and a cross-reference listing. If the
programmer wants the only module map
printed, he specifies MAP in place of XREF.
The module map shows the name of each
program unit, the relative location of its
beginning point, its length, and any entry
names to the program unit. The module map
in Figure II-S is labeled B.

lOS

A program unit (main program,
subprogram, or COMMON block) is termed a
control section in the link edit step. A
control section may be the object module
produced from the original source module,
or it may be a module called by the linkage
editor to perform such functions as
input/output operations, interface with the
operating system, or mathematical
operations required by the program.
Control sections called by the linkage
editor are identified on the module map by
the character * after the control section
name (for example, IHOECOMH* in Figure
11- S) •

In Figure II-S, the control section MAIN
begins at relative location 00 and has a
length expressed in hexadecimal format of
27S (equal to 632 bytes). The remaining
control sections are those called from the
FORTRAN library by the linkage editor.
Control section IHOECOMH begins at location
27S and has entry points named IBCOM,
FDIOCS, and INTSWTCH. IBCOM is also the
beginning point of the control section
since it too begins at location 27S; FDIOCS
begins at location 334, and INSWTCH at
location 1196. Control section IHOCOMH2
contains only one entry point, SEQDASD,
beginning at a location within the section.

Following the map in Figure II-S is the
cross-reference table (labeled C) which
lists the location of each reference within
the load module, the symbol to which the
reference refers, and the name of the
control section in which the symbol is
defined.

If an overlay structure has been
specified, a separate map and
cross-reference listing is produced for
each segment of the structure. See the
section "Linkage Editor Overlay Feature"
for an example.

The total length of the load module is
listed at the bottom of the cross-reference
table.

The message (Figure 11-8, D) is not part
of the module map; it is a disposition
message issued by the linkage editor
stating that MAIN has been added to a load
module library.

~ ~ F88-LEVEL LINKAGE EDITCR CPTICNS SPECIFIEC XREF,LET,LIST
~ ~ VARIABLE OPTIONS USEC - SIZE=192160,81921- DEFALLT OPTICNISI USED

CROSS REFERENCE TABLE

~NTROl SECTION

G

NAME ORIGIN LENGTH

MAIN
IHCECCMH*

IHOCCMH2*

IHOSSQRT*

IHOFCVTH*

IHOEFNTH*

I rOEF IOS*

IHOFIOS2*
IHOUOPT *
IHOFCCNI*

IHOFCONO*

IHOERRM *
IHCUATBL*
IHCFTEN *

IHOETRCH*

CO
278

1040

19Be

1B20

252 E

2CFC

3CEO
4390
46A8

49A8

4FOO

54FC
56F8

58SC

278
CC4

975

it:S

AC7

7C8

lOFC

5AC
318
2FD

558

5EC

2ce
1ge

2Al:

LOCATION REFERS TO SYMBOL

150
3(:0
F34
F38
FC8
F4C
F48
F50
E8C
flO
EE8
EFO

1220
1825
1A9C
2318
23l:8
2AE4
2A84
2AFO
2BFO
2E50
3B7C
3B91
3009
4938
4DA4
4DA8
54EO
54E8
5A18
5A24

ENTRY ADDRESS
TOTAL LENGTH

SQRT
SEQCASD
ADCON#
AR ITH#
IHOUOPT
FCVLOUTP
FCVCOUTP
FCVZCUTP
IHOERRM
IHCCOMI-<2
IHOCOMH2
IHOCOMH2
IHCECOMH
IHCECOMH
IBCCM#
IBCOM#
FQCONO#
IBCOM#
INT6SWCH
ACCON#
IHOERRM
IHOERRM
IHOUATBL
IHOFIOS2
IHOFIOS2
FQTEN#
FTEN#
FQTEN#
IBCOM#
FIOCSBEP
IBCCM#
FIOCSBEP
00

5B38

ENTRY

NAME LCCATION

IBCOM# 2A4

SEQDASC l3AA

SORT 1988

ADCON# 1B20
FCVIOUTP 215A

AR ITH# 2528

FIOCS# 2CFO

FCCONI# 46A8

FCCONC# 49A8

ERRMON 4FOO

FTEN# 56F8

IHOTRCH 5B90

IN CONTROL SECTICN

IHOSSQRT
IHOCCMH2
IHOFCVTH
IHOEFNTH
IHOUCPT
IHOFCVTH
IHCFCVTt-
IHCFCVTI-
II-OERRM
IHGCCMH2
IHOCCMH2
IHOCOMH2
IHOECCIIH
IHGECCMH
IHOECCMI-
IHOECCMh
IHOFCONO
IHCECOMH
IHCFCVTH
IHOFCVTH
IHCERRM
IHCERRM
IHOUATBL
IHOFICS2
IHGFIOS2

SUI\RESOLVEDIWI
IHOFTEN

SlJNRESOLVEDIWI
IHCECCMH
IHOEFIOS
IHGECOMH
IHOEFICS

~****MAIN DOES NOT EXIST BUT HAS BEEN ADDED TC DATA SET

NAME LCCATION NAME LOCATION NAME LCCATICN

FD IOC S# 360 INTSWTCH 1028

!H$SQRT 1988

FCVACUTP 1BCA FCVLCUTP 1C5A FCVZOUTP 1CBl:
FCVEOUTP 224C FCVCCUTP 224C I Jl.T6 SWCH 24Ae

ACJSWTCH 2A88

FIOCSBEP 2CF6

It-OERRE 4F18

ERRTRA 5898

LCCATICN REFERS TO SYMBOL IN CONTRCL SECTION

154 IBCGM# IHC ECCMH
3B8 IHCCGMH2 IHCCOMH2
F2C FIOCS# IHCEFICS
F54 ADJSIoITCH IHCEFHH
F3C FCVEGUTP IHGFCVTh
F44 FCVIOUTP IHOFCVTI-
F4C FCVAOUTP IHOFCVTH

1C2C IHOASYNC SUNRESCLVEOIWI
EEC IHOERRE IHCERRII
EE4 IHOCOMH2 IHOCOMH2
EEC IHOCCMH2 IHOCCMH2

117C IHOECOMH IHCECCMH
1815 IHOECOMH IHOECOMH
1835 IHCECCMh IHOECCMH
1AC4 IHOERRM IHCERR"
2314 IHOERRM IHOERRM
236C FQCONI# IHCFCCNI
2AE8 INTSIITCH IHCECUH
2A80 IHOUOPT IHCUCPT
2AEC FICCS# II-CEFICS
2E58 IHOASYNC SlJl\RESCLVEOIWI
2E54 IHOF IOS2 IHOFIOS2
3B7C IBCOM# IHCECCIIH
3BA8 IHOFIOS2 IHOFICS2
493C IHCQCCr-.I SU~RESClVEDIWI
4934 FTEN# IHCFTEI\
4DAC IHOQCONO Sl;~RESOlVEDOn
54DC IHCUCPT IHCUOPT
54E4 IHOTRCH IHCETRCH
5A2C LDFIC# SUNRESOLVEDIWI
5A 1C ADCCI\# IHCFCVTH

Figure 11-8. Linkage Editor output From Procedure-Specified Options

Linkage Editor and Loader Output 109

LOADER OUTPUT

For the FORTRAN program illustrated in
Figure 11-2, loader output is shown in
Figure 11-9. Options current at the time
of job submission are always listed (Figure
11-9, A) followed by any printed output.

MAP causes a load module map to be
produced (Figure 11-9, B). The map
produced by the loader is somewhat
different from that produced by the linkage
editor. Like the link edit map, the loader
map shows the name and the location of each
program unit's beginning point. Unlike the
link edit map, this map shows the absolute
address rather than a relative address.
The loader map also has a different format;
it is designed horizontally, i.e., it is
meant to be read across from line to line
rather than down by column.

Each control section is mapped with
three entries: its name, its type, and its
beginning address. In Figure 11-9, MAIN is

identified as a type SD program (Section
Definition, signifying a control section),
and begins at absolute address 90008.
IHOECOMH is also a type SO program and
begins at absolute address 902C8; it
contains IBCOM, FDIOCS, and INTSWTCH, all
identified as type LR (Label Reference,
signifying entry points within a control
section). Sections called by the loader
are identified by the character * after the
section name.

PRINT produces a message indicating the
length of the program and its absolute
entry point (Figure 11-9, C).

The other loader options do not produce
any printed output. LET marks the load
module executable even though certain error
conditions may have been detected. CALL
permits the loader to search system
libraries to resolve external references.
RES permits the loader to search the MVT
link pack area queue to resolve external
references. SIZE indicates the amount of
storage allocated to the loader step.

CS/36C LeADER

~~DPTIDNS USED - PRINT,MAP,LET,CALL,RES,SIZE=65536

NAME TYPE AOOR NAME TYPE AOOR

MAIN SO 82808 IHOECOt'lH* SO 82AC8
IHDCOMH2* SO 83890 SEQOASO * LR 83BFA

G IHOERRM * SO 8437C ERRMON * LR 84370
AR ITH# * LR 84C78 AOJSWTCH* LR 85108
IHOFIDS2* SO 8653C I HO FC VT H* SO 86AEO
FCVZOUTP* LR 86076 FCVIOUTP* LR 8711A
IHDFCONI* SO 874E8 FQCONIf * LR 874E8
IHOETRCH* SO 87F48 IHOTRCH * LR 87F48

e { TOT ilL L ENGT 1-1 5B8('
FNTRY AOOflESS 8281:8

Figure 11-9. Loader output

110

NAME TYPE IIOOR

IBCOM# * LR 82AF4
IHOSSQRT* SO 84208
IHDERRE * LR 84388
IHOEFIOS* SO 8544C
AOCON# * LR 86AEO
FCVCOUTP* LR 872CC
IHDFCOND* SO 877E8
ERRTRA * LR 87F50

NAME TYPE

FOICCS# * LR
IH$SQRT * LR
IHDUDPT * SO
FIOCS# * LR
FCVADUTP* LR
FCVEOUTP* LR
FQCCNO# * LR
IHOFTEN * SO

AOOR

828BO
84208
84960
85440
86B8A
872CC
877E8
881Fe

NAME TYPE AOOR

INTSWTCH* LR 83878
SQRT * LR 84208
IHOEFNTH* SO 84C78
FIOCSBEP* LR 85446
FCVLOUTP* LR 86C1A
INT6SWCH* LR 87468
IHOUATBL* SO 8704C
FTEN# * LR 881FC

Load module output consists of messages and
proqram output.

Load module messages are generated in three
forms: error code diagnostics, program
interrupt messages, and operator messages.
Error code diagnostics indicate
input/output errors or misuse of FORTRAN
library functions. Program interrupt
messages indicate violations of system
restrictions. Operator messages indicate
interrupts caused by execution of STOP g or
PAUSE statements.

ERROR CODE DIAGNOSTIC MESSAGES

An error code diagnostic generates a
message followed by a traceback map written
in the error message data set (usually
FT06F001). The traceback map provides a
guide to the programmer in determining the
cause of the error and shows the path of
calls made between routines in the program.

Figure 11-10 shows an example of an
error code message and its related
traceback map, generated for the FORTRAN
proqram illustrated in Figure 11-2. The
message, IH0219I, indicates that a call was
made to the Floes routine, which processes
input/output requests for a FORTRAN
sequential data set, and that the operation
could not be completed because of a missing
DD statement. The traceback map lists the
names of called routines, internal sequence
numbers within routines, and contents of
registers, as follows:

ROUTINE lists the names of all routines
entered during processing. Names are shown
with the latest routine called at the top
and the earliest routine called at the
bottom of the listing except when the
earliest name shown is IBCOM. Then, the
error could have occurred in one of the
subroutines called by IBCOM. In this
example, IBCOM, the FORTRAN input/output
subroutine, was the last routine entered,
called by MAIN, the main program. (IBCOM

LOAD MODULE OUTPUT

then called its subroutine Floes in which
the error occurred.)

The entry CALLED FROM ISN lists the
FORTRAN program's internal sequence number
(ISN) that called the routine, except when
calls were to IBCOM. ISNs are available to
the traceback routine only if the compiler
option GOSTMT was specified.

The entrv REG. lU lists the absolute
storage loc~tion-of the instruction calling
ROUTINE.

The entry REG. 15 lists the absolute
location of ROUTINE's entry point.

The entry REG. 0 lists the results of
function subprogram operations, when
applicable. (In this example, the contents
of register 0 are meaningless.)

The entry REG. 1 lists the address of
any argument list passed to ROUTINE.

The message ENTRY POINT=01087730 shows
the entry point of the earliest routine
entered. In the example, the number is
identical to the number shown in register
15 for MAIN. The numbers do not
necessarily have to agree; for example, if
MAIN had several entry points, the number
in the ENTRY POINT message might show a
different entry point.

In Figure 11-10, the control program
executed its own routine to recover from
the error, and displays the following
message:

STANDARD FIXUP TAKEN, EXECUTION CON'IINUING

If the data processing installation uses
its own error recovery routine, the word
USER would replace STANDARD.

After the fixup, execution continues.
In the example, additional instructions
calling for data set FT03FOOl eventually
cause execution to terminate. Message
IH09001 explains that the number of errors
exceeded the number permitted by the
control program. A summary of errors is
printed at the end of the listing to assist
the programmer in determining how many
times an error was encountered.

Load Module Output 111

FJLLOWING IS A LIST OF PRIME NUMBERS FROM 1 TO 1000
1
2
3

Il-i02191 I=IOCS - MISSING DO CARD OR DCB ERROR FOR ASCII TAPE FOR FT03F001

n.ACEB~:K ROJTINE CALLED FROM ISN REG. 14 REG. 15 RE G. o REG.

I Be OM 000456BO 0004576C 00000005 F FFFF FF E

MAI~ 00COF98C 01045480 FFFFFF2E 0005D7F8

ENTRY POI~T= 01045480

STANDAR.D FIXUP TAKEN, EXECUTION CONTINUING

1-102191 FIOCS - MISSING DD CARD OR DCB ERROR FOR ASCII TAPE FOR FT03F001

TRACEBACK ROUTINE CALLED FROM ISN REG. 14 REG. 15 REG. o REG.

I BCOM 000456BO 0004576C 00000005 FFFFFFFF

MAl\! 0000F98C 01045480 FF FF FF2E 0005D7F8

ENTRY POINT= 01045480

STANDARD FIXUP TAKEN, EXECUTION CONTINUING

1-102191 FIOCS - MISSING DO CARD OR DCB ERROR FOR ASCII TAPE FOR FT03F001

TR. ACEBAC K R. OUTI NE CALLED FRO M IS N REG. 14 REG. 15 REG. o REG. 1

I BCOM 000456BO 0004576C 00000005 FFFFFFFE

MAI~ OOOOF98C 01045480 FFFFFF2E 0005D7F8

E~TRY POINT= 01C45480

STANDARD FIXUP TAKEN, EXECUTION CONTINUING

1-109001 EXECUTION TERMINATING DUE TO ERROR COUNT FOR ERROR NUMBER 219

1-102191 FIOCS - MISSING DO CARD OR DCB ERROR FOR ASCII TAPE FOR FT03F001

IRACEBACK ROUTINE CALLED FROM ISN RE G. 14 REG. 15 REG. o REG.

I Be OM 000456BO 0004576C 00000007 FFFFFFFE

MAI~ 0000F98C 01045480 FFFFFF2E 0005D7F8

ENTRY POI~T= 01045480

SUMMARY OF ERRORS FOR THIS JOB ERROR NUMBER NUMBER OF ERRORS

219 10

Figure 11-10. Load Module Output with Traceback Map

Using the Traceback Map

In Figure 11-10, the messages generated
during traceback processing indicate that:

1. The error results from a missing 00
statement for FT03FOOli hence, an
input/output operation is involved in
the error, and, therefore, a FORTRAN
input/output statement is involved.

112

2. The FORTRAN statement is encountered
many times rather than once, since
multiple occurrences of the same
traceback map result.

From the foregoing description, the
programmer can locate and correct either
the DO statement or the FORTRAN statement
containing 3 as its data set reference
number. For the small program illustrated,
the error may be easily locatedi if,

however, the source program is long and
contains many input/output statements, the
task of locating the error may be
formidable. The traceback map further
simplifies error location by pinpointing
the exact FORTRAN statement involved.

If the GOSTMT compiler option is
specified, the traceback map lists the
internal sequence number (ISN) calling each
routine. From the ISN the source module
statement can be located. The example
illustrated in Figure 11-10 cannot take
advantage of the GOSTMT option, however,
because calls to IBCOM do not generate
ISNs.

In addition, the programmer can take
advantage of the LIST compiler option. If
the option is specified, an assembler
language translation of the source module
is printed. The traceback map, used in the
following manner, locates the last
assembler language instruction executed:

1. For the topmost routine listed under
the heading REG.14, subtract the 6
low-order digits in the number shown
under ENTRY POINT. This produces the
relative location of the instruction
in the listing. In Figure 11-10,
location 087730 subtracted from 087960
yields 230.

2. Find the location in the
pseudo-assembler listing. A portion
of the pseudo-assembler listing
illustrated in Figure 11-5 has been
reproduced in Figure 11-11. Location
230 contains a BAL (Branch and Link)
instruction; this is the instruction
that would have been executed next if
the error had not occurred.

3. Using the location as a beginning
point, scan upward in the column that
identifies statement numbers to locate
the nearest number occurring before
the instruction; this will be the
statement number of the FORTRAN
statement involved in the error. In
Figure 11-11, the statement number is
107.

4. Investigate the statement in the
source module deck. Figure 11-12
illustrates statement number 107 as it
was coded and as it was keypunched.
The statement had a keypunch error,
designating 3 in place of 6 as the
data set reference number.

5. If the statement had been correctly
specified, the programmer would
investigate the corresponding DD
statement for accuracy. (In this
example, this step is, of course,
unnecessary since the programmer

intended no DD statement named
FT03F001.)

PROGRAM INTERRUPT MESSAGES

Program interrupt messages provide a guide
to the programmer in determining the cause
of the error; it indicates what system
restriction was violated. Program
interrupt messages are written in the
object error message data set (usually on
FT06F001).

Figure 11-13 shows the format of a
program interrupt message with and without
the extended error handling facility. The
extended error handling facility is
discussed in detail in Part III in this
publication.

The meaning of characters enclosed in
braces is as follows:

A or Alignment

P

indicates that the boundary alignment
routine has been executed. Boundary
alignment is performed to properly
align items in storage. It is
generally employed to ensure correct
alignment of variables in a COMMON
block or EQUIVALENCE group. Boundary
alignment is performed if the option
BOUNDRY=ALIGN is included at program
installation time; otherwise, boundary
violations cause the job to terminate.
When boundary alignment is performed,
message IH02101 is generated, for a
maximum of ten performances. After
ten performances, the message is
suppressed but alignment violations
continue to be corrected.

indicates that the interruption was
precise, i.e., the PSW (program status
word) shown in message IH02101 is the
one related to the interruption. In
some computer models, such as the IBM
System/360 Model 91, instructions may
be executed in a non-sequential order
such that if an interruption occurs,
the printed PSW may not be the one
causing the interruption. such
interruptions are called imprecise
interruptions.

o or operation
indicates that extended precision
simulation has taken place. The
simulator is a routine that forms part
of the supervisor. Some models of the
System/360 are equipped with hardware
to accomplish arithmetic operations
involving extended precision add,
subtract, and multiply floating-point

Load Module Output 113

OCOlF8 5B 10 0 084 S 1, 132(0,13)
0001Fe 58 50 0 OBe L 5, 188(0,13)
000200 07 95 BeR 9, 5
000202 58 50 0 oeo L 5, 192(0,13)
OC0206 07 25 BeR 2, 5
000208 58 00 0 08C L 0, 140(0,13)
00020e 5A 00 0 070 A 0, 112(0,13)
000210 50 00 0 08C ST 0, \ 140(0,13)
000214 59 00 0 088 C 0, 136(0,13)
000218 58 50 0 OBO L 5, 176 (0,13)
00021e 07 05 aeR 13, 5
00021E 58 FO o 09C 107 L 15, 156(0,13)
000222 18 00 LR 0, 0
000224 45 EO F 004 BAL 14, 4(0,15)
000228 00000003 DC XL4'000COC03'
OC022e OCOOOO72 DC XL4'OOOOOO72'
000230 45 EO F 008 BAL 14, 8(0,15)
o 0234 04500084 DC XL4' 04500084'
000238 45 EO F 010 BAL 14, 16(0,15)
00023C 58 00 0 084 2 L 0, 132(0,13)
000240 5A 00 0 070 A 0, 112(0,13)
000244 50 00 0 084 ST 0, 132(0,13)
000248 58 00 0 07e 108 L 0, 124(0,13)
00024e 58 00 0 084 S 0, 132 (0,13)
000250 58 50 0 oe4 L 5, 196(0,13)
000254 07 45 BCR 4, 5
000256 58 50 o oeo L 5, 192(0,13)
00025A 07 95 BeR 9, 5
00025e 58 50 o OAe L 5, 172(0,13)
000260 07 25 BeR 2, 5
000262 58 FO o 0ge 4 L 15, 156(0,13)
000266 18 00 LR 0, C
000268 45 EO F 004 8AL 14, 4(0,15)
00026e 00000006 DC XL4'00000006'
000270 00000076 DC XL4'00000076'
000274 45 EO F 010 BAL 14, 16(0,15)
00C278 58 FO 0 0ge 7 L 15, 156(0,13)
0OO27e 45 EO F 004 BAL 14, 4(0,15)

Figure 11-11. Partial Object Code Listing

instructions. On those models which
are not thus equipped, the simulator
performs these operations. The
simulator is always required for
extended precision divide
instructions.

r---,
I I
I Statement 101 as coded: I
I I
I 101 WRITE (6,5)1 I
I I
I I
I Statement 101 as keypunched: I
I I
I 101 WRITE (3,5)1 I
I I L ___ J

Figure 11-12. Comparison of FORTRAN
Statement as Coded and as
Keypunched

114

I
2

4

K
2
K
J

105

IBeOH'

3

I
2
I

1000
I
7

4

3

IBCOH'

6

IBeOH'

Exception codes themselves appear in the
eighth position of the PSW and indicate the
reason for the interruption. Their
meanings are as follows:

Code ~~~ni~g
1 indicates an operation exception,

i.e., the operation was not one that
could be defined by the operating
system.

4

5

6

indicates a protection exception,
i.e., an illegal reference was made to
an area of storage protected by a key.

indicates an ~dd~~~~!~~~~~~~io~,
i.e., a reference was made to a
storage location outside the range of
storage available to the job.

indicates a specification exception,
i.e., a unit of information does not
begin on its proper boundary.

Code Meaning
--7-- indicates a data exception, i.e., the

arithmetic sign or the digits in a
number are incorrect for the operation

9

C

D

being performed.

indicates a fixed-point-divide
exception, i.e., an attempt was made
to divide by zero.

indicates an exponent-overflow
exception, i.e., a floating-point
arithmetic operation produced a
positive number too large to be
contained in a register (the largest
number that may be contained is 16 63

or approximately 7.2 x 1075).

Exponent-overflow generates the
additional message:

REGISTER CONTAINED number

where:
number is the floating-point number
in hexadecimal format. (When
extended-precision is in use, the
message prints out the contents of
two registers.) If extended error
handling is specified, a standard
fixup is taken and execution
continues; otherwise, job
termination results.

indicates an exponent-underflow
exception, i.e., a floating-point
arithmetic operation generated a
negative number too large to be
contained in a register (larger than
16- 65 or approximately 5.4 x 10-79).

Exponent-underflow also generates the
message:

REGISTER CONTAINED number

(When extended-precision is in use,
the message prints out the contents of
two registers.) If extended error
handling is specified, a standard
fixup is taken and execution
continues; otherwise, job termination
results.

F indicates a floating-point-divide
exception, i.e., an attempt was made
to divide by zero in a floating-point
operation.

Floating-point divide also generates
the message:

REGISTER CONTAINED number

(When extended-precision is in use,
the message prints out the contents of
two registers.) If extended error
handling is specified, a standard

fixup is taken and execution
continues; otherwise, job termination
results.

~; Operation, protection, addressing,
and data exceptions (codes 1, 4, 5, and 7)
ordinarily cause abnormal termination
without any corresponding message.
Protection and addressing exceptions (codes
4 and 5) generate message IH0210I only if a
specification ~xception (code 6) or an
operation exception (code 1) has also been
detected. A data exception (code 7)
generates message IH0210I only if a
specification exception has also been
detected. When message IH02101 is
generated for codes 4, 5, or 7, the job
will terminate. The completion code in the
dump indicates that job termination is due
to a specification or operation exception;
however, the error message indicates the
true exception that caused the termination.

Under MFT and VS1, program interrupts
causing abnormal termination produce a dump
called an indicative dump which displays
the completion code and the contents of
registers and system control fields.

To display the contents of main storage
as well, the programmer must request an
abnormal termination (ABEND) dump by
including a SYSABEND DO statement in the
appropriate job step. The following
example shows how the statement may be
specified for IBM-supplied cataloged
procedureS:

//GO.SYSABEND DO SYSOUT=A

Information on interpreting indicative and
ABEND dumps is found in the appropriate
debugging guide, as listed in the Preface.

To specify a dump under MVT and VS2, the
programmer should include SYSUDUMP or
SYSABEND DD statements.

OPERATOR MESSAGES

Operator messages are generated when a
PAUSE or STOP n statement is executed.
Operator messages are written on the system
device specified for operator
communication, usually the console. The
message provides a guide to the programmer
in determining how far his FORTRAN program
has executed.

Load Module Output 115

r---,
1. Without Extended Error Handling Facility

IH0210I PROGRAM INTERRUPT ({i}1 OLD PSW IS xxxxxxx xxxxxxxx

2. With Extended Error Handling Facility:

IH0210I
{

ALIGNMENT}
IBCOM-PROGRAM INTERRUPT

OPERATION

1
4
5
6

OLD PSW IS xxxxxxx 7 xxxxxxxx
9
C
D
F

L ___ --------------------------_______ _

Figure 11-13. Program Interrupt Message Format

Figure 11-14 shows the form that the
operator message may take. The meaning of
lowercase characters in the figure is as
follows:

n

, message'

o

Meaning
message identification number
assigned by the system.

string of 1 through 5 decimal
digits specified by the
programmer in the statement.
For the STOP statement, this
number is placed in register
15.

literal constant specified by
the programmer.

printed when a PAUSE statement
containing no characters is
executed. (Nothing is printed
for a similar STOP statement.)

A PAUSE message causes program execution
to halt pending operator response. To
resume program execution, the operator
issues the command:

REPLY yy,' z·

where yy is the message identification
number and z is any letter or number.

A STOP message causes program
termina tion.

116

Program structure dictates the form that
program output will take._ Generally,
output that is to be used in future jobs is
directed to tape or direct access volumes
for storage; the programmer defines such
volumes on appropriate DD statements.
Output that is to be visible at job end is
directed to a unit record device; when
using cataloged procedures, the programmer
may conveniently direct such output by
assigning the appropriate data set
reference number in his WRITE statements,
or he may define his own DD statements.

Figure 11-15 shows the program output
resulting from correct execution of the
FORTRAN program illustrated in Figure 11-1
The first four lines are generated as a
result of the WRITE statement labeled 100
and the FORMAT statement labeled 8. All
the remaining lines except the last result
from WRITE statement 107 and FORMAT
statement 5; the last line results from
WRITE statement 7 and FORMAT statement 6.

r---,
Operator message caused by a PAUSE

statement:

yy IH0001A PAUSE

Operator message caused by a STOP g
statement:

IH0002I STOP !! L ___ J

Figure 11-14. Operator Message Format

FOLLOWING IS A LIST
1
2
3
5
7

OF PRIME NUMBERS FROM 1 TO leoe

11
13
17
19
23
29
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97

1e 1
103
1e7
1(9
113
127
131
137
139
149
151
157
163
167
173
179
181
191
193
197
199
211
223
227
229
233
239
241

Figure 11-15. Program output

I

{\
263
269
271
277
281
283
293
3C7
311
313
317
331
337
347
349
353
359
367
373
379
383
389
397
4('1
4(9
419
421
431
433
439
443
449
457
461
463
467
479
487
491
499
5(3
5(9
521
523
541
547
557
563
569
571
577
587
593
599
6e1
6(7
613

n,
j ~~i

641
643

f ~;~
659
661
673
677
683
691
701
7C9
719
727
733
739
743
751
757
761
769
773
787
797
8(9
811
821
823
827
829
839
853
857
859
863
877
881
883
887
907
911
919
929
937
941
947
953
967
971
977
983
991
997

THIS IS THE END OF THE PROGRAM

Load Module Output 117

PART III -- PROGRAMMING TECHNIQUES

Load Module Output 119

The programmer can significantly influence
the efficiency of a job by the manner in
which he uses FORTRAN statements and the
facilities of the operating system.

This chapter discusses the following:

• FORTRAN implementation considerations

• Job control language considerations

• FORTRAN library considerations

• System considerations

FORTRAN IMPLEMENTATIOli

This topic describes how the programmer can
use FORTRAN statements and compiler
facilities to implement an efficient
proqram. Topics are arranged in alphabetic
order.

ARRAY CONSIDERATIONS

Wherever possible, arrays should be
specified as one-dimensional rather than as
multi-dimensional. References to higher
dimensioned arrays are slower than
references to lower dimensioned arrays.

ARITHMETIC IF STATEMENT

A test depending on the zero value of a
real floating-point number is not
recommended. Many real numbers must be
represented approximately (although to a
high degree of accuracy) in the internal
hexadecimal code of the computer. Slight
errors resulting from computation with
these numbers may prevent the anticipated
true zero condition from being obtained.

A fixed-point overflow condition in an
arithmetic IF statement causes the middle
branch (i.e., equal zero) to be taken.

ASYNCHRONOUS INPUT/OUTPUT PROGRAMMING
CONSIDERATIONS

WAIT Statement: The WAIT statement need
not appear in the same program unit as the
r.nrrpsnondina READ or WRITE statement.
H~;~~~~, -the J WAIT statement must identify
the same list items as indicated in the
list of the corresponding READ or WRITE
statement. If OPTIMIZE(2) is requested,
the WAIT statement list must be specified
in order to ensure correct results.

~~!~QL_~~QK!~~_~~g~~~KS~~~~_§1at~~en1~:
These statements should not be issued for
any data set on which a request is
outstanding, i.e., for any data set
expecting a WAIT statement.

~2~~2g!ro!_~~gg~~g~L_§~~~~_~~~~~br~~y
Considerations: The DD statement DCB
parameter-affects asynchronous input/output
processing as follows:

1. BLKSIZE specifies the block length.
If it is not specified, for direct
access devices the optimum block
length for the particular device is
assumed; for magnetic tape the block
length defaults to 10K bytes.

2. BUFNO specifies the number of buffers
(1, 2 or 3). If it is not specified,
two buffers are assumed.

3. RECFM specifies the record format and
may be specifed as either VS or VST.
If RECFM is not specified, VS is
assumed.

The following system restrictions affect
asynchronous input/output processing:

1. If track overflow is specified
(RECFM=VST), chained scheduling and
backspacing are not permitted.

2. The asynchronous input/output facility
does not check the characteristics of
the data it moves (e.g., whether
padded, promoted, REAL*16 , etc.).
Specifying correct data types is the
programmer's responsibility.

3. A data set accessed by asynchronous
input/output may not be accessed by
any other type of input/output
facility unless the data set is
rewound before input/output facilities
are changed.

Programming considerations 121

4. Asynchronous input/output is not
supported for unit record equipment,
or for direct-access data sets.

The following library considerations
affect asynchronous input/output
processing:

1. Asynchronous input/output operations
are assigned to a task having a higher
priority than the main program,
thereby permitting the operations to
occur asynchronously with computation.

2. Each logical record is assigned the
format RECFM=VS. The programmer may
specify track overflow by coding
RECFM=VST but blocked records are not
permitted. If blocked records are
specified, the RECFM request is
ignored and RECFM=VS is assigned.

BACKSPACE STATEMENT

The BACKSPACE statement may be used to
extend a data set, i.e., write additional
data. In a program containing DD
statements with more than one FORTRAN
sequence number, the execution of an
ENDFILE followed by the execution of a
BACKSPACE does not cause the sequence
number to increment; the latest data set
remains available.

The following restrictions govern the
use of the BACKSPACE statement:

1. It may not be used for any data set
specifying track overflow (e.g.,
RECFM=FT).

2. It should not be used for any data set
executing list-directed input/output
statements (e.g., WRITE(10,*)A)
because it would cause uncertain
record placement.

3. When asynchronous input/output
processing is specified, it should not
be executed for any data set on which
a request is outstanding, i.e., for
any data set expecting a WAIT
statement.

COMMON AND EQUIVALENCE STATEMENTS USED
TOGETHER

Increased efficiency occurs when
input/output operations are performed on
data stored in contiguous storage
locations. Normally, however, in input

122

operations data may be stored in locations
not necessarily contiguous; on output, data
may be gathered from diverse storage
locations. To make input/output operations
more efficient, the following technique is
suggested:

An I/O list comprising many items in a
READ or WRITE statement should be
defined in a COMMON statement to
allocate contiguous storage space. An
EQUIVALENCE statement should be defined
which contains one item, equal in size
to all the items in the I/O list, thus
permitting the same space to be referred
to by one name. Finally, an
input/output statement calling the one
name permits all items to be treated as
one unit. An example follows:

COMMON/LISTA/A(4),B(4),C,D,E,F,G(S)
REAL*4 A(4),B(4),GCS),LISTB(20)
EQUIVALENCE (A(l),LISTB(l»
WRITE(6) LISTB

Note that the variable and the
equivalenced array must be of the same
type.

COMMON STATEMENT

Use of COMMON to contain variables passed
among calling and called programs can
result in time and storage savings.
Consider the following example:

DIMENSION E(20),I(lS)
READ (10) A,B,C
CALL SUBA (A,B,C,D,E,F,I)

END

SUBROUTINE SUBA (P,Q,R,S,T,U,J)
DIMENSION T(20),J(lS)

RETURN
END

The compiler must assign storage to both
main program and subprogram variables and
must issue instructions required to
transfer the variables from one program to
another. Greater efficiency would result
by specifying a COMMON block as follows:

COMMON A,B,C,D,E(20),F,I(15)
READ (10) A,B,C
CALL SUBA

END

SUBROUTINE SUBA
COMMON P,Q,R,S,T(20),U,J(15)

RETURN
END

Note, however, that the savings thus
made may be partially or completely
eliminated in a program compiled with
OPTIMIZE (1) or OPTIMIZE(2) in which calls
to user subprograms occur between two uses
of a variable. If the variable is in
COMMON, it will be stored before the call
and must be loaded from storage after the
call. If the variable is not in COMMON, it
can be retained in a register and thus used
more efficiently. This is true of
relatively high-activity variables.

DATA INITIALIZATION STATEMENT -- SPECIFYING
LITERALS

To initialize an array with literal data,
the programmer should consider the
following points:

1. He may initialize any element of an
array by subscripting the array name.
Only one element is initialized; if
excess characters are specified, they
are not placed, or spilled, into the
next element. (Overflow from one
element to the next is known as
spill.) An array element partially
filled is padded on the right with
blanks. The following example
illustrates how individual array
elements may be initialized:

DIMENSION A(10)
DATA A(1),A(2),A(4),A(5)/'ABCD',

'QRSTUVW','123',6666,/
A(l)=ABCD
A(2)=QRST
A(3) not initialized (note that spill

does not occur for a subscripted
array name)

A(4)=123
A(5)=6666
A(6) through A(10) not initialized.

2. He may initialize several consecutive
elements of an array with a single
constant by specifying the array name
without a subscript. Spill occurs
through as many elements as necessary
to insert the constant (as long as the
constant does not exceed the limits of
the array). The following example
illustrates how several array elements
may be initialized with one constant:

DIMENSION ARRAY(9)
DATA ARRAY/'ABCDEFGHIJKLMNOPQRS

TUVWXYZ'/
ARRAY(l)=ABCD
ARRAY(2)=EFGH
ARRAY(3)=IJKL
lL"R.RAY(4) =MNOP
ARRAY(5)=QRST
ARRAY(6)=UVWX
ARRAY(7)=YZbb
ARRAY(S) and ARRAY(9) not initialized.

Note that spill normally begins only
at the beginning of an array. To
begin spill in the middle of an array,
the programmer uses the EQUIVALENCE
statement as in the following example:

DIMENSION ARRAYA(10),ARRAYB(5)
EQUIVALENCE (ARRAYA(6),ARRAYB(1»
DATA ARRAYB/'ABCDEFGHIJKLMNOPQRST'/
ARRAYA(l) through ARRAYA(5) not

initialized
ARRAYA(6)=ABCD
ARRAYA(7)=EFGH
ARRAYA(S)=IJKL
ARRAYA(9)=MNOP
ARRAY A (10) =QRST

3. He may initialize individual variables
after initializing an array. Each
constant must be specified immediately
following ~he variable which it is to
initialize. The following example
illustrates how literal data for
arrays and variables may be specified
together:

DIMENSION ARAY(5)
DATA ARAY/'ABCDEFGH'/,X/'4444'Z

, Y/' 5555' /
ARAY(l)=ABCD
ARAY(2)=EFGH
ARAY(3),ARAY(4), and ARAY(5) not
initialized

X=4444
Y=5555

If each constant is not specified
immediately after its associated array
or variable name, spilled data may be

Programming Considerations 123

overlaid, as shown in the following
example:

DIMENSION A(3)
DATA A,X/ ' ABCDEFGHIJKL ' ,10.0/
A(l)=ABCD
A(2)=10.0
A(3)=IJKL
X is not initialized

In this example, the second element of the
array is overlaid by the second
initializing constant.

DIRECT-ACCESS INPUT/OUTPUT CONSIDERATIONS

Direct-access input/output provides the
programmer with the ability to retrieve
selected records from a data set, i.e.,
records can be retrieved without the
necessity of reading all preceding records.

Direct-access input/output is suited to
applications where large tables must be
frequently searched during processing or
where data sets are constantly updated.

Master and DetaiJ Records: Records to be
updated are called master records. Records
containing information used to update
master records are called detail records.
In a direct-access data se~-each-master
record should be constructed such that it
contains a unique identification, or key,
distinguishing it from all other master
records. Each detail record should match
the key of the appropriate master record.
For example, astronomers assign numbers to
identify stars; these star numbers could be
used as the keys of master records, and
detail records update the correct master
record by matching the star number. Thus,
detail records to update information for
star number 383320 should contain a field
specifying 383320 as the key of the master
record.

A FORTRAN program indicates the record
to be processed by its position in the data
set. If star number 383320 is assigned to
record position 383320 in the data set, the
key can also be used to indicate the record
position. sometimes, however. arranging
records in serial order is impractical (a
data set might not contain 383320
positions). In such cases, the programmer
can more conveniently arrange records in
the data set by using a rando~zing
iechnique. For example, a randomizing
technique to arrange star numbers might be
to use the first four digits as the record
position and to ignore the last two digits.
ThUS, star number 383320 is assigned to
position 3833.

124

Another method might be to perform an
algorithm on the number, such as squaring
the number and truncating the first four
and last four digits of the result. In
this example, star number 383320 is
assigned record position 3422. No general
randomizing technique works best for all
sets of identification numbers; the
programmer should devise his own technique
for each application.

Synonyms: Two problems arise when
randomizing techniques are used: waste of
space in a data set and duplication of
record position numbers, called synonyms
(e.g., by ignoring the last two digits,
star numbers 383320, 383352, and 383396
randomize to the same number, 3833). The
solution to the first problem should be
developed within the randomizing technique
itself. For example, if no star number
begins with zero, the first thousand record
positions are left blank (star number
123456 would be assigned to record position
1234). To eliminate this waste, a step
might be added to this randomizing
technique to subtract 1000 from the
randomized numbers (star number 123456
would then be assigned to position 0234).

~haini!!Sl: The solution to the second
problem is either to develop another
randomizing technique that results in fewer
synonyms, or to chain synonyms. Chaining
is a method of arranging non-contiguous
records in a chain such that each record
contains a field specifying the location of
the next record in the chain; the last
record in the chain may contain 0 in the
field to indicate the end of the chain.
For example, see Figure 111-1 which
illustrates how star numbers 383320,
383396, and 383352, randomized to 3833,
might be chained together.

Since only one record can be assigned to
anyone record position (if star number
383320 is assigned to record position 3833,
star numbers 383396 and 383352 must be
assigned elsewhere), space to accommodate
synonyms must be allocated to a data set.
For example, if no star number begins with
zero, the programmer may choose to keep the
first thousand positions of the data set
available for synonyms. Thus, star numbers
383396 and 383352 are assigned somewhere in
the first thousand record positions. To
keep track of the exact location of any
synonym, the programmer should create a
record location counter (a dummy record
that is initialized to the lowest record
position available for synonyms, e.g.,
record position 1 in the example above).
When the first synonym is encountered, it
is inserted into record 1; address 1 is
stored in the chaining field of the
previous record having the same
identification; and the location co~nter is

incremented by 1. The next synonym is
allocated to the next record and the
address of that record is stored in the
chaining field of the previous record. The
same procedure is followed for each
succeeding synonym.

Cre~!:i!!LLQirect=Ac£~ss Data2~!:: To
create a direct-access data set, the
proqrammer initializes the volume by
writing "skeleton records" using an
installation-written routine. After the
data set has been initialized, the
proqrammer specifies DISP=OLD in the DD
statement that defines the data set, and a
FORTRAN load module can enter records into
it. However, if a data set cannot be
initialized prior to execution time, the
proqrammer can initialize it at execution
time by specifying DISP=NEW; the FORTRAN
load module writes skeleton records into
the volume as a series of blanks
(hexadecimal 40).

Figure 111-2 shows a block diagram
describing the logic that can be used to
write a direct-access data set for the
first time. The block diagram does not
show any attempt to write skeleton records.

For an example showing how a
direct-access data set can be updated, see
the section "Appendix A: Examples of Job
Processing."

DEFINE FILE S±ATE!.1ENT: The record
description information in a DEFINE FILE
statement must be consistent with space
allocation specified in the SPACE parameter
of the DD statement. The example below
illustrates this relationship.

DEFINE FILE 8(1000,40,E,I)

//DD1 DD SPACE=(40, (1000) •••

Both the DEFINE FILE statement and the
SPACE parameter describe 1000 records, each
40 bytes in length.

The DEFINE FILE statement may not be in
a program unit that is overlaid; it may,
however, be ina program unit not overlaid
while the corresponding input/output
operations are specified in an overlaid
program unit. For example, the main
program may specify the DEFINE FILE
statement and a subprogram may perform
input/output operations.

r---,
Identifier Chain
r-------T------------T------------------,
I I Record I I
j383320 IPosition fori Data I
I I 383396 I I
L-------~-----T------~------------------J

I
r---------J
I
V

r-------T------------T------------------,
I I Record I I
1383396 IPosition fori Data I
! ! 383352 I I
L-------~-----T------~------------------J

!
r---------J
I
V

r-------T------------T------------------,
I I E~ I I
1383352 I of I Data I
I I Chain I I L _______ ~ ____________ ~ _______ .. __________ J

L __ _

Figure 111-1. Record Chaining

FIND STATEMENT: The FIND statement permits
record retrieval to occur concurrently with
computations of input/output operations,
thus resulting in a decrease in execution
time. The example below illustrates the
use of the FIND statement. In this
example, record 101 is retrieved while
arithmetic operations are performed and is
available for processing when the READ
statement is reached.

FIND (8'101)
10 A=SQRT(X)

E=ALPHA+BETA*SIN(Y)
WRITE (9)A,B,C,E
READ (8'101)X,Y

EQUIVALENCE STATEMENT

To reduce compilation time for
equivalence groups, the entries in the
EQUIVALENCE statement should be specified
in descending order according to
displacement. Consider the following
example:

EQUIVALENCE (VARA,ARAYA(3),ARAYB(S),
ARAYC (10)

Programming Considerations 125

Set Record Position
in Read Statement
= Chain Variable

DEFINE FILE

Allowing enough

Space for Synonyms

SP.t Record
Location Counter =

Lower Limit of
Space for Synonyms

Variable in Master
Record = Record

Location Counter

Set Record Position
in Write Statement

= Record
Location Counter

Increment
Record Location

Counter by 1

No Build
Master
Record

Figure 111-2. Writing a Direct-Access Data
Set for the First Time

126

This statement would be compiled faster by
reversing the order, i.e.,

EQUIVALENCE (ARAYC(10),ARAYB(S),ARAYA(3)
VARA)

To reduce compilation time and save
internal table space, equivalence groups
should be combined where possible.
Consider the example:

EQUIVALENCE (ARRA(10,10),VAR1),
(ARRB(S,S)VAR1)

This statement could be recoded more
efficiently as:

EQUIVALENCE (ARRA(lO,10),ARRB(S,S),VAR1)

EXTERNAL STATEMENT

By placing an ampersand before a function
name in an EXTERNAL statement, the
programmer "detaches" that name, i. e. ,
declares it to be the name of a
user-supplied function even though the name
may be the same as a function or subroutine
appearing in the FORTRAN library. If the
function name following the ampersand is
not the same as a library function, it is
still considered detached; no diagnostic
action is taken.

Also, by specifically typing a
subprogram name, the programmer detaches
the name from the library; for example, if
SIN is typed as REAL*8, it is detached from
the FORTRAN library.

GENERIC STATEMENT

The GENERIC statement requests the use of
the Automatic Function Selection facility;
i.e., the appearance of the generic name in
a program causes the appropriate function
name to be substituted according to the
length and type of the arguments specified.
For example, the generic name COS,
specified with arguments of REAL*8, causes
the function DCOS to be substituted.

In order to avoid conflict with specific
references to functions, the function names
substituted as a result of automatic
function selection are aliases, not
otherwise obtainable by the user. The
aliases are formed by prefixing the
characters IHO$$ to function names three
characters in length, and IH$ to names four
to six characters in length. Names six
characters in length are reduced to five
characters by deleting the next to last

character before prefixing the name with
IH$. For example, the function DCOTAN
substituted for COTAN would appear to have
the name IH$DCOTN.

INPUT/OUTPUT STATEMENTS -- UNFO~illTTED

FORMS

The unformatted form of an input/output
statement results in a faster data transfer
rate into and out of storage. When
operations are being performed on
intermediate data sets, (those which are
not intended to be printed), use of the
unformatted forms increase program
efficiency. In the example below,
statement 11 is more efficient than
statement 10:

DIMENSION A(10),B(10),D(20)
EQUIVALENCE CA(l),D(l»

10 WRITE (20,9)A,B
9 FORMAT (10E13.3/)

11 WRI'I'E (20) D

Note: A, B, and D must be the same type.

Unformatted input/output statements may
not be used for ASCII data sets.

LIST-DIRECTED INPUT/OUTPUT

The buffer length (specified by BLKSIZE)
must be large enough to contain the largest
data item other than a complex item or
literals in quotation marks; if it is not,
an infinite loop results as the operating
system attempts to get more space for the
item.

LOGICAL IF STATEMENT

Use of the logical IF statement may result
in more efficient compilation time. For
example, statement 5 below is more
efficient than statement 6:

5 IF (A.GT.B) GOTO 20
6 IF (A-B) 10,10,20

10 CONTINUE

When a choice between logical operators
can be made, the .OR. operator should be
selected in place of the • AND. operator.
For example, statement 7 below is more
efficient than statement 8:

7 IF (A.LT.B .OR. C.EQ.D) GO TO 15
8 IF (.NOT.(A.GE.B • AND. C.NE.D» GO TO 15

In statement 7, the compiler analyzes each
set of comparisons separately; that is, the
statement is compiled as though it were
written:

IF (A. LT. B) GO TO 15
IF (C.EQ.D) GO TO 15

Thus, at execution time, if the first test
is true, the remainder of the expression is
not evaluated. Statement 8, however, must
be evaluated in its entirety before a
branch decision can be made.

The programmer can further improve the
execution time of a logical IF stat_ernent by
specifying as the first test the comparison
that is most likely to be true. For
example, in statement 7 above, if the test
C.EQ.D is expected to be true more often
than the test A.LT.B, the programmer should
write the statement as follows:

IF (C.EQ.D .OR. A.LT.B) GO TO 15

NAME HANDLING

The compiler places names used for
variables, arrays, and sUbprograms into a
table and searches the table whenever a
reference is made to a name. The table is
divided into six strings. Names that are
one character long are placed into the
first string; names two characters long are
placed into the second string; and so on.
For faster compiling, the programmer should
allocate names as evenly as possible among
the sizes.

OPTIMIZE COMPILER OPTION

The OPTIMIZE option permits compiler
optimization techniques to improve
execution time and to reduce the size of
the object module.

OPTIMIZE(l) causes the entire program to
be treated as a loop, with individual
sections of coding, headed and terminated
by labeled statements, treated as blocks.
The object code is made more efficient by:

• Improving local register assignment.
(Variables that are defined and used in
a block are retained where possible in
registers during the processing of the
block. Time is saved because the
number of load and store instructions
are reduced.)

Programming Considerations 127

• Retaining the most active base
addresses and variables in registers
across the whole program. (Retention
in registers saves time because the
number of load instructions are
reduced.)

• Improving branching by the use of
assembler language RX format branch
instructions in the object code. (An
RX branch instruction saves a load
instruction and reduces the number of
required address constants.)

OPTIMIZE(2) performs object code
optimization beyond that performed by
OPTIMIZE(l) by:

• Assigning registers across a loop to
the most active variables, constants,
and base addresses within the loop.

• Moving outside the loop many
computations which need not be within
the loop.

• Recognizing and replacing redundant
computations.

• Replacing where possible multiplication
of induction variables by addition of
those variables. (An induction
variable is one that is only
incremented by a constant or a variable
whose value remains constant in the
loop.)

• Using, where possible, the BXLE
assembler instruction for loop
termination. (The BXLE instruction is
the fastest conditional branch; time
and space are saved.)

Registers 0, 1, and 12-15 are required
by the system. The remaining registers,
2-11, are available for use by optimization
techniques.

PROGRAMMING CONSIDERATIONS WHEN USING
OPTIMIZE (1) AND OPTIMIZE(2): Although
these options can result in more efficient
code, they place additional
responsibilities on the programmer in
coding his program with care.

Using COMMON Statements: Variables in
COMMON are normally not stored on exit from
a FORTRAN main program, unless an
input/output statement or a subroutine call
using them is issued.

Using Subprograms: If a programmer-defined
subprogram is given the same name as a
FORTRAN-supplied subprogram (e.g., SIN,
ATAN) , errors could be introduced during
optimization. To avoid errors, the
proqrammer should specify the subprogram

128

name in an EXTERNAL statement (with an
ampersand preceding the subprogram name).

If the extended error handling facility
is specified and a user-supplied subroutine
uses program variables, there is no
guarantee that correct values will be
available.

If a SUbprogram is called at one entry
pOint for the purpose of initializing
arguments and at another entry point for
computations, the latter call must include
an argument list to ensure that the
subprogram will receive current values for
the arguments. This rule applies when the
subprogram refers to the arguments by name
(i.e., accesses them in their location in
the calling routine rather than through
local variables).

In the following example, the updated
value of I will be correctly stored and
transmitted to the subprogram. If the call
to the subprogram did not include the
argument list, I would be updated in a
register but not in storage.

CALL INIT(I)

10 CALL COMP(I)

1=1+1

GO TO 10

SUBROUTINE INIT(/J/)

ENTRY COMP(/J/)

Because each COMMON block is an
independent program unit, it is
independently relocatable and thus requires
a base address that specifies its beginning
pOint in storage. Each base address must
be stored into a register in order to be
accessible. If many COMMON blocks are
defined, the need to load base addresses
slows down processing time. If multiple
blocks can be combined into one block less
than 4096 bytes in length (the maximum
number that can be accommodated in a
register) one base register can serve to
address each variable.

Using the Assigned GO TO Statement: If the
list of statement numbers is incomplete,
errors that were not present in the
unoptimized code may appear. The
programmer should correct such GO TO
statements.

PROGRAMMING CONSIDERATIONS WHEN USING
OPTIMIZE(2): OPTIMIZE(2) evaluates
expressions and eliminates common
expressions. For example, if an expression
occurs more than once such that the program
path always passes through the first
occurrence to reach a later occurrence with
no change in the expression's value, the
first value is saved and used instead.
consider the following example:

A=C+D

F=C+D+E

The common expression C+D is saved from its
first evaluation occurring in A and is used
in F.

ComEutational Reordering: computational
reordering performed by OPTIMIZE(2) may
produce unexpected results. For example, a
test of an argument of a FORTRAN library
function may be executed after the call to
the function. This is caused by the
movement of the function call to the back
tarqet of the loop when the function
argument is not changed within the loop.
Consider the following example:

DO 11 1=1,10
DO 12 J=1,10

9 IF (B(I).LT.O) GO TO 11
12 C(J)=SQRT(B(I)
11 CONTINUE

The optimization technique moves the
library function call to before statement
9, causing the square root computation to
occur before the test for zero. To avoid
this situation, the program could be
reconstructed in the following manner:

DO 11 1=1,10
9 IF (B(I).LT.O) GO TO 11

DO 12 J=1,10
12 C(J)=SQRT(B(I)
11 CONTINUE

READ STATEMENT

The ERR parameter in the READ statement
causes a branch to another statement if an
input error is encountered. The READ
statement encountering the error does not
bring the data into working storage; the
data remains in the buffer when the branch
is taken. The next READ statement brings
in the data. Thus, the programmer can
direct the ERR parameter to an error
processing routine that reads in the error
and disposes of it prior to returning to
normal processing. An example is:

5
100

READ (4,100,ERR=200) A
FORMAT (110)

200 READ (4,100) AX
GO TO 5

If the ERR parameter is not provided, an
input error causes the program to terminate
processing, unless the extended error
handling feature is in effect. For a
discussion of this feature, see the chapter
"Extended Error Handling Facility."

RETURN STATEMENT

The RETURN statement issues the following
codes in register 15:

Code ---0 Me~ni!!g
A RETURN statement was executed
in either a main program or a
subprogram

A RETURN i statement was
executed in a subprogram

16 A terminal error was detected
during execution of a library
subprogram

STOP STATEMENT

In the STOP Q statement, any number
specified larger than 4095 causes an
overflow into a system return code field;
the return code that will be issued is n
modulo 4096, that is, the remainder after
dividing ~ by 4096. However, the number
specified by the programmer will be
displayed.

USER-SUPPLIED SUBROUTINES

A user-supplied routine having the same
name as a FORTRAN-supplied subroutine or
function causes the linkage editor to issue
the following warning message:

IEW024I EXTERNAL SYMBOL PRINTED IS DOUBLY
DEFINED -- ESD TYPE DEFINITIONS
CONFLICT.

JOB CONTROL LANGUAGE CONSIDERATIONS

The following list describes how DD
statement parameters can improve efficiency

Programming Considerations 129

of a program (see the section "Using Job
Control Language" for examples in coding DD
statements) :

• The SEP parameter may assign data sets
whose input/output operations occur at
the same time to separate channels.

• The SEP subparameter in the UNIT
parameter may assign data sets to
separate direct access device arms.
The SEP sUbparameter results in ~evice
optimization; the SEP parameter,
described above, results in channel
optimization.

• The DISP parameter may specify the
CATLG option for frequently used data
sets to make use of the system's
cataloging capability.

• Subparameters in the DCB parameter may
be used as follows:

a. BUFNO may be specified as BUFNO=2
to provide double buffering,
resulting in an input/output
overlap advantage.

b. BLKSIZE may be specified to provide
a large buffer, resulting in fewer
input/output requests.

c. OPTCD=C may be specified to provide
chained scheduling, which may
result in decreased transfer time
for input/output operations.

USING PRE-ALLOCATED DATA SETS

Installations operating under MVT or VS2
can provide pre-allocated. data sets as an
aid in reducing the time required by the
system to allocate data sets used on a
temporary basis.

Whenever a data set is defined in a DD
statement, the system must search for
allocation space and must build storage
tables to describe data set
characteristics; the more data sets
defined, the greater the time required to
perform these operations.

Pre-allocated data sets are allocated
once, when the system is initiated and
remain available for use by all jobs
submitted to the system. Use of
pre-allocated data sets avoids the
necessity of having the system repeat the
allocation process.

If his installation provides
pre-allocated data sets, the FORTRAN
proqrammer can use them by coding the

130

parameter DSNAME=&ddname in a DD statement,
replacing ddname with the name of a
pre-allocated data set. (Pre-allocated
data sets are defined in the cataloged
procedures calling the MVT or VS2
initiator.) The programmer codes the other
DD statement parameters that he normally
would to define a new data set, i.e., UNIT,
SPACE, DCB. An example is the follo~ing:

IIMYNAME
II

DD DSNAME=&DED1,UNIT=SYSSQ,
SPACE=(SO, (100,10»,
DCB=(RECFM=F,BLKSIZE=SO) II

The following restrictions apply ~hen
using pre-allocated data sets:

• Data sets must be on direct access
devices.

• Space is provided only for the duration
of the job; if the programmer wishes to
keep a data set after job completion,
he should not use pre-allocated data
sets.

• If the system cannot assign a
pre-allocated data set, the
programmer-coded DD statement is used
to create a temporary data set.

Detailed information on pre-allocated
data sets may be found in the publication
IBM System/360 Operating System: System
Programmer1s Guide, Order No. GC28-6550,
OS/VSl Planning and Use Guide, Order
No. GC24-5090, or OS/VS2 Planning Guide,
Order No. GC2S-0600, as appropriate.

The uses of the utility SUbprograms DUMP
and PDUMP, the sense light subprograms, and
detaching library subprogram names, are
discussed in the following paragraphs.

DUMP AND PDUMP SUBPROGRAMS

The DUMP and PDUMP subprograms write the
contents of storage onto the system output
data set; DUMP causes the program to
terminate processing and PDUMP permits the
program to continue processing.

In using either subprogram, the user
specifies the following:

1. The variables delimiting the storage
areas to be dumped. More than one
area may be specified.

2. The format of the items to be dumped,
coded as follows:

code Format
0 Hexadecimal
1 LOGICAL*l
2 LOGICAL*4
3 INTEGER*2
4 INTEGER*4
S REAL*4
6 REAL*8
.... ,...." •• T"'\T T':'t"., n , \-Vl'lX' l.JLA'" 0

8 COMPLEX*16
9 LITERAL

10 REAL * 16
11 COMPLEX*32

The following examples illustrate how a
user may specify storage areas to be
dumped:

1. To dump a single variable, the user
specifies the variable name as both
the beginning and the ending point.
For example, to dump the variable B in
real format and to terminate
processinq, the user specifies the
statement:

CALL DUMP (B,B,S)

2. To dump more than one variable
individually, the user specifies each
variable. For example, to dump
variables A, B, and C in real format
and to continue program processing.
the user specifies:

CALL PDUMP (A,A,5,B,B,5,C,C,5)

3. To dump all of main storage between
variables, the user specifies the
first and last variable to be dumped.
For example, to dump main storage
between variables A and C in real
format and to continue program
processing, the user specifies:

CALL PDUMP (AfC,S)

4. To dump an array, the user specifies
the first and last elements of the
array. For example, to dump the array
TABLE containing 20 elements in
hexadecimal format and to terminate
program execution, the user specifies:

CALL DUMP (TABLE(l),TABLE(20),0)

EXTENDED-PRECISION SUBROUTINES

The extended-precision subroutines are
designed for use where maximum accuracy .v

required. Note, however, that each
extended-precision subroutine increases the
execution time of a program (approximately
3 to 9 times longer than the corresponding
double precision subroutine).

SENSE LIGHT SUBPROGRAMS

If the programmer intends to use the SLITE,
SLITET, DVCHK, or OVERFL subprograms, he
should initialize the indicators to zero at
the beginning of his program since the
system does not automatically initialize
them.

Compilation and load module considerations
are discussed in the following paragraphs.

COMPILATION CONSIDERATIONS

Included in this topic are discussions of
compiler restrictions and storage
requirements.

£Q~iler Storage Requirements

The compiler itself requires
160K bytes of main storage.
200 to 300 source statements
compiled when this amount of
available to the compiler.

a minimum of
Approximately
can be
storage is

The compiler's secondary storage
requirement is 160 tracks on an IBM 2311
Disk Storage Unit.

The compiler itself requires a minimum
of 160K bytes of main storage for compiler
code and work areas. Approximately 200 to
300 source statements can be compiled when
this amount of storage is available to the
compiler.

The compiler code includes two tables
whose sizes are determined at installation
time. The adcon table NADCON handles
address constants, parameters and

Programming Considerations 131

temporaries. If the table is exceeded the
message

ADCON TABLE EXCEEDED

is issued and compilation is terminated.
The backward connector table CMAJOR is used
for certain optimization features. It
receives backward connector information for
each block in the source program, a block
being the unit of instructions associated
with a single user or compiler-generated
label. If CMAJOR is too small to handle
all of the blocks in the source program,
the message

TABLE EXCEEDED OPTIMIZATION DOWNGRADED

is issued and the compilation is affected
as follows: No branching optimization will
be performed with either OPTIMIZE(1) or
OPTIMIZE(2). With OPTIMIZE(2), no text
optimization will be performed and register
assignment will treat the whole program as
one loop, as in OPTIMIZE(1). The result is
longer and less efficient object code.

If either of these tables overflows
without having been installed at the
maximum size, it may be desirable to
re-install the compiler with a larger size
specified for the table in question (see
the publication OS FORTRAN IV (H Ex!gnded~
Compiler and LibraIT-(Mod.-!!!. Inst:allatiQ.!!
Reference Material, Order No. SC28-6861 for
details). Note that such a procedure will
slightly change the amount of main storage
required for compiler code.

In the partition or region in which the
compiler is running, any available space in
excess of that required by the compiler
code is used as a work area. In a
multitasking environment, to limit the
amount of storage for the compiler plus the
work area, thereby making more storage
available for other tasks, the FORTRAN
programmer can reduce the amount of storage
to be allocated through use of the SIZE
option.

During compilation, if the unused work
area is more than 10K bytes, the compiler
prints the following informational message:

nnnnK BYTES OF CORE NOT USED

This message indicates how much smaller the
specified SIZE value could be. This
message may also be generated when SIZE has
not been specified; in such a case, the
message indicates how much smaller a region
or partition size could be.

Note that the SIZE option indicates only
the space required by the FORTRAN option
and has no effect on space required by
operating system facilities. The partition

132

or region in which the compiler is running
must be at least 10K bytes larger than the
specified SIZE value to accommodate
facilities required by the system, such as
buffer allocation routines.

If the SIZE option is specified
incorrectly, a compiler diagnostic message
is produced and the SIZE parameter is
ignored.

Figure 111-3 illustrates a sample
storage structure using the SIZE option and
the REGION parameter.

r---,
Assume: REGION=200K,PARM='SIZE(180K),

o r---------------, 0
I I
I I
ICompiler Code I
I I
I I

REGION=200K t---------------~ SIZE(180K)
I I
IWork Area I
I I
~---------------~
I I
I System-required I 180
I facilities I L _______________ J 200

L ___ J

Figure 111-3. Storage Structure Using SIZE
and REGION

Compiler Restrictions

Compiler restrictions are the following:

1. For DO loops:

2.

• The maximum number of nested open DO
statements is 25

• The maximum number of implied DOs
per input/output statement is 20

For FORMAT statements:

• The maximum value for the repetition
field (a) is 255.

• The maximum value for the character
specification field (w) is 255.

3. For statement functions:

• The maximum number of arguments per
function definition statement is 20.

• within a function definition, the
maximum number of nested references
to other statement functions is 50.

• Within a function reference, the
maximum number of nested references
to other statement functions is 50.

4. For CALL statements:

• The maximum number of arguments is
196; any argument containing a
subscript is counted as two
arguments.

5. For PAUSE statements:

• The maximum number of characters
permitted is 255.

6. For literal constants:

• The maximum number of characters
permitted is 255; this restriction
applies to literal constants
specified in list-directed input
statements (statements with no
corresponding FORMAT statement).

LOAD MODULE CONSIDERATIONS

Included in this topic are discussions of:

1. Load module restrictions

2. Boundary alignment considerations

3. Using names that the compiler
recognizes as generic.

Load Module Restrictions

The following is a list of load module
restrictions:

• The minimum record length for records
on a magnetic tape volume is 18w

• A data set reference number cannot
exceed the maximum data set reference
number specified by the installation
when the system is generated.

Boundary Alignment Considerations

Greater efficiency results if the
programmer specifies proper boundary

alignment for items in COMMON or
EQUIVALENCE lists. If items are not
properly aligned, further processing is
dependent upon the BOUNDRY option specified
at program installation time. .11:

BOUNDARY=ALIGN was specified, boundary
alignment is performed through execution of
a subprogram from the SYS1.LINKLIB library;
if BOUNDARY=NOALIGN was specified, the job
terminates.

When automatic function selection has been
requested, the H Extended compiler
recognizes as generic the list of function
names given in Appendix H of !~~_~y~~~~~~Q
~nd Syst~~lIQ_FOg~gAN_!~_~~gg~~g~, Order
No. GC28-6515-8, and subsequent revisions.
Of this list, eight names are aliases; that
is, they are common abbreviations for
certain existing functioil names. In
program units specifying GENERIC, they are
also the generic names for the classes of
function. For example, the name LOG, an
alias, is recognized as generic for the
family of natural logarithmic functions.

In any program unit in which GENERIC has
been specified, user-supplied external
procedures whose names coincide with a
generic name will not be executed unless
they are "detached;" that is, used in a
conflicting Type statement or specified in
an EXTERNAL statement and preceded by an
ampersand; for example, REAL*8 ~VU, UL

EXTERNAL &LOG. When a generic name has
been so detached, it loses its generic
status. Each member of that family of
functions must then be referred to
specifically within the program unit.

Aliases are recognized as substitute
specific names even in program units not
using the automatic function selection
facility. Therefore, user-supplied
external procedures whose names coincide
with aliases for built-in functions must be
detached as described above or else they
will not be executed. For example, if a
user-supplied function, MAX, is to be used,
the name MAX must be detached. In
references to the FORTRAN-supplied function
within the program unit, the specific
function name, MAX 0, rather than the alias,
MAX must be used. The aliases for built-in
function names are: MAX for MAXO, MIN for
MINO, and IMAG for AIMAG.

Programming Considerations 133

AUTOMATIC PRECISION INCREASE FACILITY

The Automatic Precision Increase facility
of the FORTRAN compiler automatically
converts single precision floating point
calculations to double precision and/or
double precision to extended precision. It
is designed to be used with programs
originally written for earlier computers
that offered greater precision than that
available with System/360; the conversion
facility may be used to convert programs
where this extra precision may be of
critical importance.

The facility is not meant to be used
with new programs (those written for
System/360 compilers). If such programs
require operations with greater precision,
they should be coded using the precision
forms available in FORTRAN. Although the
facility will convert new programs, the
cost in programmer and compilation time and
the increase in storage space makes its use
inefficient.

No recoding of source programs is
necessary to take advantage of the
facility. Conversion is requested through
an EXEC statement option at compilation
time.

THE CONVERSION PROCESS

The conversion process comprises two
functions: promotion and padding.
Promotion is the process of converting
items from one precision to a higher
precision, for example, from single
precision to double precision. The
promotion function is described in greater
detail below. Padding is the process of
doubling the storage size of non-promoted
items. Padding helps the user preserve the
size relationships between promoted and
non-promoted items sharing storage.

Promotion

The user may request either or both of the
following conversions:

1. Single precision items to be promoted
to double precision items, that is,
REAL*4 to REAL*8 and COMPLEX*8 to
COMPLEX*16.

134

2. Double precision items to be promoted
to extended precision items, that is,
REAL*8 to REAL*16 and COMPLEX*16 to
COMPLEX*32.

Note that single precision items cannot be
increased directly to extended precision
items.

Promotion converts the following:

~2~~~~~~~: Single-precision real and
complex constants are promoted to double
precision. Double-precision real and
complex constants are promoted to extended
precision. Logical and integer constants
are not affected.

Examples of promoted constants are:

Constant 3:0-----
4.24E5
4.24D5
(3.2,3.1416EO)

Promoted Form
of Constant 3:0DO----------

4.24D5
4.24Q5
(3.2DO,3.1416DO)

Variables: REAL*4 and COMPLEX*8 variables
are promoted to REAL*8 and COMPLEX*16 ,
respectively. REAL*8 and COMPLEX*16
variables are promoted to REAL*16 and
COMPLEX*32, respectively.

Examples of promoted variables are:

Variable
REAL STAR,

MOON,PLANET

IMPLICIT
REAL*8(S,T,U)

COMPLEX*8
A,B,C,D

Promoted Form
of Variable

REAL*8-STAR~---
MOON,PLANET

IMPLICIT
REAL*16(S,T,U)

COMPLEX*16
A,B,C,D

Functions: The correct FORTRAN-supplied
functions are substituted when a program is
converted. For example, a reference to SIN
causes the DSIN function to be substituted
if double precision calculation is to be
performed; a reference to DINT causes QINT
to be substituted if extended precision
calculation is performed. Table 111-1
lists FORTRAN-supplied built-in functions
that are substituted. Table 111-2 lists
FORTRAN-supplied library functions that are
substituted. Function yal~~~ are promoted
in the same manner as constants; that is,
single precision values are promoted to
double precision, double precision values
are promoted to extended precision.

Previously compiled subprograms must be
recompiled to be converted to the correct
precision. For example, if a user-supplied
subprogram accepts only single precision
arquments and it is to be used with a
proqram being converted to double
precision, it must be recompiled using API
to accept double precision arguments.

EXEC STATE~~NT OPTIONS

The programmer requests the automatic
precision increase facility through the
PARM parameter in the EXEC statement
calling the compiler. The PARM parameter
specifies the AUTODBL subparameter to
indicate the form that the conversion will
take and the ALC sUbparameter to indicate
whether storage alignment is to take place.

AUTODBL Subparameter

The AUTODBL subparameter takes one of the
following forms:

AUTODBL(NONE)
to indicate no conversion. This is
the default condition.

AUTODBL(DBLPAD)
to indicate promotion and padding of
single and double precision jtems.
REAL*4, REAL*S, COMPLEX*S and
COMPLEX*16 types are converted. Items
of other types are padded if they
share storage space with converted
items.

AUTODBL(DBLPAD4)
to indicate promotion of single
precision items only, and padding of
other items that share storage with
promoted items.

AUTODBL(DBLPADS)
to indicate promotion of double
precision items only, and padding of
other items that share storage with
promoted items.

The promotion and padding options,
DBLPAD, DBLPAD4, and DBLPADS, ensure that
the storage-sharing relationship that
existed prior to conversion is maintained.

Note, however, that padding reduces the
efficiency of input/output operations for
padded arrays.

AUTODBL(DBL)
to indicate promotion (but no padding)
of both single and double precision
items. Items of REAL*4 and COMPLEX*S
types are converted to REAL*S and
COMPLEX*16. Items of REAL*S and
COMPLEX*16 types are converted to
REAL*16 and COMPLEX*32.

AUTODBL(DBL4)
to indicate promotion of single
precision items only.

Au~ODBL(DBL8)

to indicate promotion of double
precision items only.

Note: If AUTODBL is specified, and an
error in coding the parameter is detected,
the compiler substitutes the option DBLPADS
as a default.

For most programs, one of the above
forms is sufficient. The following form
offers greater flexibility to the user who
wishes to tailor the conversion process to
a particular program; however, it also
increases the chance of error and should be
used with care.

AUTODBL(abcde)
indicates that the program is to be
converted according to the value of
abcde, a five-position field. Each
position is coded with a numeric value
that specifies how a particulaI
conversion function is to be
performed.

The leftmost position (position ~)
describes the promotion function, that
is, whether promotion is to occur and,
if so, which items are to be promoted.
The second position (position Q)
describes the padding function, that
is, whether padding is to occur and,
if so, the sections in the program
(such as COMMON or argument lists)
where padding is to take place. The
third, fourth, and fifth positions
describe whether padding is to occur
for particular types (LOGICAL,
INTEGER, and REAL, respectively)
within the program sections specified
in position Q.

Automatic Precision Increase Facility 135

Table 111-1. Built-In Functions -- substitution of Single and Double Precision
r---------------------------T------------------------------T----------------------------,
I I Corresponding I Corresponding I
I Single Precision Function I Double Precision Function I Extended Precision Functionl
~---------------------------+------------------------------+----------------------------~

Argument Function I Argument Function Argument Function I
Name Type Value Type I Name Type Value Type Name ~~____ Va!~~_!Y~~1
AMOD REAL*4 REAL*4 IDMOD REAL*8 REAL*8 QMOD REAL*16 REAL*16 I
ABS REAL*4 REAL*4 I DABS REAL*8 REAL*8 QABS REAL*16 REAL*16 I
INT REAL * 4 INT*4 IIDINT REAL*8 INT*4 IQINT REAL*16 INT*4 I
AINT REAL*4 REAL*4 IDINT REAL*8 REAL*8 QINT REAL*16 INT* I
AMAX01 INT*4 REAL*4 I I
AMAX1 REAL*4 REAL*4 IDMAX1 REAL*8 REAL*8 QMAX1 REAL*16 REAL*16 I
MAX 1 1 REAL* 4 INT* 4 I I
AMIN01 INT*4 REAL*4 I I
AMINi REAL*4 REAL*4 !DMINl REAL*8 REAL*8 QMINl REAL*16 REAL*16 I
MIN11 REAL*4 INT*4 I I
FLOAT INT*4 REAL*4 IDFLOAT INT*4 REAL*8 QFLOAT INT*4 REAL*lb I
IFIX REAL*4 INT*4 IIDINT REAL*8 INT*4 IIQINT REAL * 16 INT*4 I
HFIX1 REAL * 4 INT*2 I I I
SIGN REAL * 4 REAL*4 IDSIGN REAL*8 REAL*8 IQSIGN REAL*16 REAL*16 I
DIM REAL*4 REAL*4 IDDIM REAL*8 REAL*8 IQDIM REAL * 16 REAL*16 I
REAL COMPLEX*8 REAL*4 IDREAL COMPLEX*16 REAL*8 IQREAL COMPLEX*32 REAL*16 I
AI MAG COMPLEX*8 REAL*4 IDIMAG COMPLEX*16 REAL*8 IQIMAG COMPLEX*32 REAL*16 I
CMPLX REAL*4 COMPLEX*8 IDCMPLX REAL*8 COMPLEX*16IQCMPLX REAL*16 COMPLEX*32 I
CONJG COMPLEX*8 COMPLEX*8 IDCONJG COMPLEX*16 COMPLEX*16IQCONJG COMPLEX*32 COMPLEX*32 I
~---------------------------L-------------------------_____ L ____________________________ ~
11The corresponding double precision function does not exist by name, but the single I
I precision function is expanded as though the double precision function existed. I L ___ J

Table 111-2. Library Functions -- Substitution of Single and Double Precision
r---------------------------T------------------------------T----------------------------,
I I Corresponding I corresponding I
I Single Precision Function I Double Precision Function I Extended Precision Function I
~---------------------------+------------------------------+----------------------------1
I Argument Function I Argument Function I Argument Function I
INam~ Type Value Type ~ame ~yp~____ y~!~~_~~INa~~ Type Value TY~I
EXP REAL * 4 REAL * 4 DEXP REAL*8 REAL*8 IQEXP REAL*16 REAL*16 I
CEXP COMPLEX*8 COMPLEX*8 CDEXP COMPLEX*16 COMPLEX*16ICQEXP COMPLEX*32 COMPLEX*32 I
ALOG REAL * 4 REAL*4 DLOG REAL*8 REAL * 8 QLOG REAL*16 REAL*16 I
CLOG COMPLEX*8 COMPLEX*8 CDLOG COMPLEX*16 COMPLEX*16 CQLOG COMPLEX*32 COMPLEX*32 I
ALOG10 REAL*4 REAL*4 DLOG10 REAL*8 REAL*8 QLOG10 REAL*16 REAL*16 I
ARSIN REAL * 4 REAL*4 DARSIN REAL*8 REAL*8 QARSIN REAL*16 REAL*16 I
ARCOS REAL*4 REAL*4 DARCOS REAL*8 REAL * 8 QARCOS REAL*16 REAL*16 I
ATAN REAL*4 REAL*4 DATAN REAL*8 REAL*8 QATAN REAL*16 REAL * 16 I
ATAN2 REAL*4 REAL*4 DATAN2 REAL*8 REAL * 8 QATAN2 REAL*16 REAL*16 I
SIN REAL*4 REAL*4 DSIN REAL*8 REAL*8 QSIN REAL * 16 REAL*16 I
CSIN COMPLEX*8 COMPLEX*8 CDSIN COMPLEX*16 COMPLEX*16 CQSIN COMPLEX*32 COMPLEX*32 I
COS REAL*4 REAL*4 DCOS REAL*8 REAL*8 QCOS REAL * 16 REAL*16 I
CCOS COMPLEX*8 COMPLEX*8 CDCOS COMPLEX*16 COMPLEX*16 CQCOS COMPLEX*32 COMPLEX*32 I
TAN REAL*4 REAL*4 DTAN REAL*8 REAL*8 QTAN REAL*16 REAL*16 I
COTAN REAL*4 REAL * 4 DCOTAN REAL*8 REAL*8 QCOTAN REAL*16 REAL * 16 I
SQRT REAL * 4 REAL*4 DSQRT REAL*8 REAL*8 QSQRT REAL*16 REAL*16 I
CSQRT COMPLEX*8 COMPLEX*8 CDSQRT COMPLEX*16 COMPLEX*16 CQSQRT COMPLEX*32 COMPLEX*32 I
TANH REAL*4 REAL * 4 DTANH REAL*8 REAL * 8 QTANH REAL*16 REAL * 16 I
SINH REAL * 4 REAL * 4 DSINH REAL*8 REAL*8 QSINH REAL*16 REAL * 16 I
COSH REAL * 4 REAL*4 DCOSH REAL*8 REAL*8 QCOSH REAL * 16 REAL*16 I

IERF REAL*4 REAL*4 DERF REAL*8 REAL * 8 QERF REAL * 16 REAL*16 I
IERFC REAL*4 REAL*4 DERFC REAL*8 REAL*8 QERFC REAL*16 REAL * 16 I
I GAMMA1 REAL*4 REAL*4 DGAMMA1 REAL*8 REAL * 8 I
I ALGAMA1REAL*4 REAL * 4 DLGAMA1 REAL*8 REAL*8 I
I CABS COMPLEX*8 REAL*4 CDABS COMPLEX*16 REAL*8 ICQABS COMPLEX*32 REAL*16 I
~---------------------------L-------------------------_____ L ____________________________ ~
11The extended precision equivalences of these functions do not exist. In promoting I
I REAL*8 to REAL*16, the double precision function will be used. I L ___ J

136

All five positions must be coded;
if a function is to be omitted, the
corresponding position is coded with a
zero. The values for each position
-3_re as follows:

• Position ~, the promotion function:

Value
-0-

2

Me~ning
No promotion

Promote REAL*4 and COMPLEX*8
items only

Promote REAL*8 and
COMPLEX*16 iteros only

3 Promote all real and complex
items

• Position Q, the padding function:

Value
-0-

Meaning
No padding

i Pad COMMON statement and
argument list variables

2

3

4

5

Pad EQUIVALENCE statement
variables equivalenced to
promoted variables

Pad COMMON and EQUIVALENCE
statement variables related
to promoted variables and
argument list variables

Pad EQUIVALENCE statement
variables that do not relate
to variables in COMMON
statements

Pad variables everywhere

The code specified in this position
determines in which areas of a program
the padding requested by positions c
to e is to take place.

• Position~, padding logical
variables in program sections
specified in position ~:

Value Meaning
0 Pad no logical variables

1 Pad LOGICAL*l variables

2 Pad LOGICAL*4 variables

only

only

3 Pad all logical variables

• Position Q, padding integer
variables in program sections
specified in position Q:

Value
-0-

1

2

3

t·ie a :ni n 9.
Pad no integer variables

Pad INTEGER*2 variables only

Pad INTEGER*4 variables only

Pad all integer variables

• Position ~, padding real and complex
variables in program sections
specified in position Q:

Value --0-- !:!eanigg
Pad no real or complex
variables

1 Pad REAL*4 and COMPLEX*8
variables

2

3

4

5

6

7

Pad REAL*8 and COMPLEX*16
variables

Pad REAL*4, REAL*8,
COMPLEX*8, and COMPLEX*16
variables

Pad REAL*16 and COMPLEX*32
variables

Pad REAL*4, COMPLEX*8,
REAL*16, and COMPLEX*32
variables

Pad REAL*8, REAL*16,
COMPLEX*16 , and COMPLEX*32
variables

Pad all real and complex
variables

Note that promotion overrides padding.
For example, if the first position
specifies promotion to occur for single
precision items, REAL*4 and COMPLEX*8 items
are promoted regardless of the padding
function specified in position ~.

Automatic Precision Increase Facility 137

Coding Examples

The AUTODBL(abcde) settings that correspond
to the mnemonic options are:

NONE(OOOOO)

DBL(30000)

DBL4(10000)

DBLS(20000)

DBLPAD(33334)

DBLPAD4(13336)

DBLPAD8(2333S)

The following examples illustrate other
possible selections of the AUTODBL(abcde)
format.

~~: AUTODBL(12330)

Promotion is performed and padding is
performed for all EQUIVALENCE
statements, logical variables, and
integer variables.

~~: AUTODBL(01001)

No promotion is performed, but padding
is performed for all REAL*4 and
COMPLEX*8 variables in common blocks and
argument lists. This code setting
permits a program not requiring double
precision accuracy to link with a
subprogram compiled with the option
AUTODBL(DBL).

Example 3: AUTODBL(01337)

No promotion is performed, but padding
is performed for all integer, logical,
real, and complex variables that are in
COMMON or are used as subprogram
arguments. This code setting permits a
non-converted program to link with a
program converted with the option
AUTODBL(DBLPAD4).

The ALC subparameter is used to specify
storage alignment. It takes one of the
forms:

ALe
NOALC

138

to indicate whether storage alignment
is to take place. NOALC is the
default value.

Ordinarily, to increase execution-time
efficiency, COMMON statements are coded so
that variables in COMMON blocks are aligned
on proper boundaries: doubleword variables
on doubleword boundaries, fullword
variables on fullword boundaries, and
halfword variables on halfword boundaries.
When the conversion facility is used, these
alignments may become altered. The ALC
option restores alignment.

The ALC option should be used with care
for it may cause previously matched COMMON
blocks to become mismatched. For example,
consider the two COMMON statements below
where the variable INTER is to be shared:

Program 1
REAL*8 RS
COMMON/X/A,R8,INTER

Prog!:~!!!_~
REAL*4 R4
COMMON/X/A, I, R4, IN'I'ER

With neither the AUTODBL nor the ALC
option specified, both occurrences of the
variable INTER will be at an offset of 12
bytes from the start of COMMON block X.

If ALC alone is used, INTER would be 16
bytes from the start of COMMON X in Program
1 since RS would have been placed on a
double word boundary. COMMON X in Program
2 would have been unaffected.

If AUTODBL(DBL) and ALC are specified,
INTER would be 16 bytes from start of block
X in Program 1 and 24 bytes from start in
Program 2. (This is because of the
promotion of REAL*4 to REAL*S and
subsequent alignment.)

It is recommendea that ALe be used only
when the COMMON variables are identical in
type.

PROGRAMMING CONSIDERATIONS WITH API

This section provides a brief discussion of
how use of the Automatic Precision Increase
facility affects program processing.

Effect on COMMON or EQUIVALENCE Data Values

Promotion and padding operations preserve
the storage sharing relationships that
existed before conversion. However, in
storage sharing items, ~~~~_y~!~~~ are
preserved only for the following:

1. Variables having the same length

2. Real and complex variables having the
same precision

For example, the following items retain
value sharing relationships:

LOGICAL*4 and INTEGER*4 (same length)

REAL*4 and COMPLEX*8 (same precision)

The following items do not retain value
sharing relationships:

I~~EGER*2 and INTEGER*4 (different lengths)

REAL*8 and COMPLEX*8 (different precision)

Effect on Literal Constants

Care should be exercised when specifying
literal constants as data initialization
values for promoted or padded variables, as
subprogram arguments, or in NAMELIST input.
For example, literals should be entered
into arrays on an element by element basis
rather than as one continuous string.
Consider the following statements:

DIMENSION A(2),B(2)
DATA A/'ABCDEFGH'/,B(1)/'IJKL'/,B(2)

/'MNOP'/

Array B will be initialized correctly but
not array A, because padding takes place at
the end of each element.

Effect on Programs Calling SUbprograms

FORTRAN main programs and subprograms must
be converted so that variables in COMMON
retain the same relationship to guarantee
correct linkage during execution. The
recommended procedure is to compile all
program units using AUTODBL(DBLPAD). If an
option other than DBLPAD is selected, care
must be taken if the COMMON variables in
one program unit differ from those in
another; COMMON variables that are not to
be promoted should be padded.

Any non-FORTRAN external subprogram
called by a converted program unit should
be recoded to accept padded and promoted
arguments.

Effect on FORTRAN Library Subprograms

1. If a call to a FORTRAN library
subprogram contains promoted

arguments, the next higher precision
subprograms are substituted for the
original ones. The extended symbol
dictionary, used by the linkage editor
to resolve references between program
units, will contain the double and
extended precision names for each
single and double precision library
program promoted.

2. If the programmer has supplied his own
function for a FORTRAN-supplied
function, but has neglected to detach
the name through an EXTERNAL
statement, the wrong function may be
executed.

~~amp!~: AUTODBL(DBL4)

REAL*4 X,Y
4 Y=SIN(X)

STOP
END

FUNCTION SIN(X)

RETURN
END

In this example, because the compiler
cannot recognize SIN as a
user-supplied function, it substitutes
the name of the FORTRAN-supplied
function DSIN in statement 3.
However, the compiler does not change
the function definition statement; the
name remains SIN. At execution time
the user-supplied function SIN is
ignored and the FORTRAN-supplied
function DSIN is executed in its
place.

The programmer can avoid this
confusion either by making sure he
detaches the name SIN, preceded by an
ampersand, in an EXTERNAL statement or
by changing the name of the function
to DSIN.

Effect on CALL DUMP or CALL PDUMP
Stat~me!!.ts

If a CALL DUMP or CALL PDUMP statement
requests a dump format of either REAL*4 or
COMPLEX*8, output from a converted program
is shown in single precision format. Each
item is displayed as two single precision
numbers rather than as one double precision
number.

Automatic Precision Increase Facility 139

For variables that are promoted, the
first number is approximately the value of
the stored variable; the second number is
meaningless.

For variables that are padded, the first
number is exactly the value of the
variable; the second number is meaningless.

Effect on Direct-Access~nput/Output
Processing

When a DEFINE FILE statement has been
specified, any record exceeding the maximum
specified record length causes record
overflow to occur.

For converted programs, the programmer
should check the record size coded in the
statement to determine if it can handle the
increased record lengths. If not
sufficient, the size should be increased
appropriately.

Effect on Asynchro!!.Qus-I!!.P.ut/Oui!?!!!:.
~~i!!.9

Extreme care should be exercised in using
the Automatic Precision Increase facility
for programs containing asynchronous
input/output statements.

The asynchronous input/output facility
transmits the number of bytes as specified
by the transmitting or receiving areas.
These areas for any given data set must
have the same characteristics regarding
promotion and padding; e.g., both must be
padded or both must be promoted.

Effect on Unformatted Input/Output Data
Sets

Unformatted input/output data sets which
have not been converted are not directly

140

acceptable to converted programs if the I/O
list contains promoted variables.

To make an unconverted data set
accessible to the converted program, the
programmer should code BFALN=F in the DeB
parameter at load module execution time,
causing data to be transmitted in its
unconverted form. For example, assume that
a program contains the statement:

WRITE (3) I, J, (ARRAY(N), N=l, J)

If the program is converted such that ARRAY
contains promoted items, the programmer
should code the following DD statement to
write unconverted ARRAY records:

//FT03Fxxx DD DCB=(BFALN=F •••) •••

The BFALN parameter is not specified
for:

• Programs and data sets having the same
conversion characteristics,

• Formatted data sets, regardless of
conversion characteristics; the FORMAT
statement controls the correct
transmission of data.

Effect on the Storage Map

The storage map produced by the MAP option
contains the following codes:

Meaning
Promoted variable

P Padded variable

* Promoted library function name

Overlay is a feature of linkage editor
processing that allows the FORTRAN user to
reduce the main storage requirements of his
program by breaking it up into two or more
segments that need not be in main storage
at the same time. These segments can be
assigned the same storage addresses and can
be loaded at different times during
execution of the program. The user
specifies linkage editor control statements
to indicate the relationship of segments
within the overlay structure. FORTRAN
programs run under VS seldom require
overlay processing.

DESIGNING A PROGRAM FOR OVERLAY

Programs are placed in an overlay structure
according to the size, frequency of use,
and logical relationships between the
program units that they comprise. The
basic principle of overlay is illustrated
by the simple example in Figure 111-4.
This figure shows a FORTRAN program
consisting of a main program and two large
subprograms named SUBA and SUBB. Normally,
all three program units would be loaded
into main storage at the same time and
would remain there throughout execution of
the entire program. However, if there is
not enough main storage space available to
accommodate all three program units at
once, and if SUBA and SUBB do not have to
be in main storage at the same time, the
user could design an overlay structure in
which the MAIN routine resides in main
storage at all times, while subprograms
SUBA and SUBB make use of the remaining
space as they are needed.

Figure 111-5 shows what happens at
execution time to the program in Figure
111-4. The MAIN routine is loaded and
processing begins. When the MAIN routine
calls SUBA, SUBA is loaded and processing
continues until SUBB is called. SUBB then
overlays SUBA in main storage and remains
there until SUBA is called again. The main
storage requirements of the program are
thus reduced from the total number of bytes
in all three program units to the total
number of bytes in the MAIN program plus
the larger of the two subprograms.

SEGMENTS

The relationships among the program units
in the overlay proqram described in the
preceding paragraphs can be graphically
represented by an overlay "tree" structure
as shown in Figure 111-6. Each "branch" of
the overlay tree consists of a separately
loaded unit of the program to which the -
linkage editor assigns a number. Such
overlay units, or segments, may contain one
or more sUbprograms totaling 524,288 bytes
(512K).

r---,
I MAIN I
~--------------------------------~--------~
I SUBA I
~---~
I SUBB I l ___ J

Figure 111-4. A FORTRAN Program Containing
Three Program Units

MAIN STORAGE
r-------------------------------,
I I
I I
I I
~-------------------------------~
I I
I MAIN I
i I
~-------T-------T-------T-------~
I I I I I
I I I I I Problem
I I I SUBB I I program
I I I I I area
I I SUBA I I SUBA I
I I ~-------~ I
I I I I I
~-------~-------i-------i-------~
I I
I I
I I
I I
I I
I I l _______________________________ J

Time O-------------------------->n

Figure 111-5. Time/Storage Map of Program
Described in Figure 111-4

The first segment in any overlay program
is called the root segment. The root
segment remains in main storage at all

Linkage Editor Overlay Feature 141

times during execution of the program. It
must contain:

• The program unit which receives control
at the start of processing. usually
this is the main routine in which
processing begins at the entry point
named MAIN.

• Any program units which should remain
in main storage throughtout processing.
For greater efficiency, subprograms
that are frequently called should also
be placed in the root segment if
possible.

• Any program units containing DEFINE
FILE statements.

• Certain information needed by the
operating system to control the overlay
operation. Like FORTRAN library
subprograms, this information is
automatically included in the root
segment by the linkage editor.

PATHS

The relationships among the segments of an
overlay program are expressed in terms of
"paths." A path consists of a given
segment and any segments between it and the
root segment. The root segment is thus a
part of every path, and when a given
segment is in main storage, all segments in
its path are also in main storage. The
simple program in Figure 111-6 is made up
of only two paths as shown in Figure 111-7.

The paths of an overlay program are
determined by the dependencies between
proqram units. A program unit is

ROOT
Segment 1

r----------,
I MAIN I
L-----T----J

Seqment 2 I Segment 3
r--------------~--------------,
I ALPHA I

r-----~----,
I SUBA I L __________ J

Figure 111-6.

142

r----~-----,

I SUBB I l __________ J

Overlay Tree Structure of
Program Described in Figure
111-4

Path 1
r------,
I MAIN I
L--T---J

I
I

r--~---,
I SUBA I
L ______ J

Path 2
r------,
I MAIN I
L--T---J

I
I

r--l.---,
I SUBB I
L ______ J

Figure 111-7. Overlay Paths Implied by
Tree Structure in Figure
111-6

considered to be dependent on any other
program unit which it calls or whose data
it must process.

Figure 111-8 shows a FORTRAN program in
an overlay tree structure. The paths
implied by that structure are illustrated
in Figure 111-9. The MAIN routine and
subprograms SUB1 and SUB2 remain in main
storage for the duration of execution time;
they occupy the root segment. The segment
containing subprograms SUB3 and SUB4 use
the same area of main storage as the
segment containing subprograms SUB11 and
SUB12. Likewise, the main storage area
used by the segment containing SUB5, SUB6,
and SUB7 are used by the segment containing
SUB8 and SUB9, as well as by the segment
containing SUB10. Figure 111-10 is a
time/storage map of the program shown in
Figures 111-8 and 111-9.

The structure in Figures 111-8 and 111-9
consists of segments numbered 1 through 6,
with segment 1 being the root segment.
Segments 2 and 6 have the same relative
origin; that is, they will start at the
same location when in main storage. This
origin has been given the symbolic name
ALPHA by the user (on an OVERLAY control
card). The relative origin of segments 3,
4, and 5 has been given the symbolic name
BETA.

The relative origin of the root segment,
also called the relocatable origin, is
assigned at O. The relative origin of any
segment other than the root segment is
determined by adding the lengths of all
segments in its path, including the root
segment. When the program is loaded for
execution, the first location of the root
segment (the relocatable origin of the
program) is assigned to an absolute storage
address. All other origins are
automatically increased by the number of
that storage address, i.e., given an
address relative to the address assigned to
the root segment.

ROOT
Segment 1
r-------,
I MAIN I
~-------~
I SUBl I
~-------~
I SUB2 I
l---T---J

Segment 2 I segment 6
r----------~-----------,
I ALPHA !

r---~---, r---~---,
I SUB3 I I SUBll I

~-------~ ~-------~
I SUB4 I I SUB12 I
L---T---J L _______ J

I
I
I

Segment 3 Segment 4 Segment S
r----------T----------,
I I I

r---~---, r---~---, r---~---,
I SUBS I I SUB8 I I SUB10 I
~ _______ ~ ~ _______ ~ L _______ J

I SUB6 I I SUB9 I
~-------~ L _______ J

I SUB7 I L _______ J

Figure 111-8. Overlay Tree Structure
Having Six Segments

Path 1
r-------,
I MAIN I
~-------i
I SUBl I Segment 1
~-------~ (ROOT)
I SUB2 I
L---T---J

I
I
I

r---~---,
I SUB3 I
~-------~
I SUB4 I Segment 2
L---T---J

I
I
I

r---~---,
I SUBS I
~-------~
I SUB6 I Segment 3
~-------~
I SUB7 I L _______ J

Path 2
r-------,
I MAIN I
~-------~
I SUBl I
~-------~
I SUB2 I
L---T---J

I
I
I

r---~---,
I SUB3 I
~-------~
I SUB4 I
l---T---J

I
I
I

r---~---,
I SUB8 I
~-------~ Segment 4
I SUB9 I l _______ J

COMMUNICATING BETWEEN SEGMENTS

Overlay segments can be related to one
another either by beinq inclusive or
exclusive. Inclusive segments are those
which can be in main storage
simultaneously; in other words, those which
lie in the same path. Exclusive segments
are those which lie in different paths.
Thus, in the program shown in Figures 111-8
and 111-9. segments 2 and 5 are inclusive,
while segments 2 and 6 are exclusive.

Inclusive References

An inclusive reference is a reference from
a segment in main storage to a subprogram
which will not overlay the calling segment.
When a CALL is made from a program unit in
one segment to a program unit in an
inclusive segment, control may be returned
to the calling segment by means of a RETURN
statement.

When a CALL is issued to a subprogram
which is higher <closer to the root
segment) on the overlay tree, the called
subprogram must return control to the
calling segment by a RETURN statement
before any exclusive overlay segments may
be loaded.

Path 3
r-------,
I MAIN I
~-------~
I SUBi I
~-------~
I SUB2 I
l---T--- J

I
I
I

r---~---,
I SUB3 I
~-------~
I SUB4 I
l---T--- J

I
I
I

r---~---,
I SUBi0 I Segment S
l _______ J

Path 4
r-------,
! MAIN I
~-------~
I SUBi I
~-------~
I SUB2 I
l---T---J

I
I
I

r---~---l

I SUBli I
~-------~ Segment 6
I SUB12 I
l _______ J

Figure 111-9. Overlay Paths Implied by Tree Structure in Figure 111-8

Linkage Editor Overlay Feature 143

Exclusive References

An exclusive reference, one made in any
segment to another segment which will
overlay it, can be either valid or invalid.

An exclusive reference is considered
valid only if there is a reference to the
called routine in a segment common to both
the segment to be loaded and the segment to
be overlaid. Assume, for example, in
Fiqure 111-11 that the main program (common
segment) contains a call to Segment A but
not to Segment B. A reference in Segment B
to a routine in Segment A is valid because
of the inclusive reference between the
common segment and Segment A. (A table in
the common segment, supplied by the linkage
editor, contains the address of Segment A.
The overlay does not destroy this table.)
An exclusive reference in Segment A to a
routine in Segment B is invalid since the
common segment contains no reference to
Segment B.

Both valid and invalid exclusive
references are considered errors by the
linkage editor; however, the user can allow
a program containing a valid exclusive
reference to be executed. (See the
discussion of XCAL and LET options later in
this chapter.) Programs containing invalid
exclusive references are never executable.
For more detailed information on exclusive
references, see the appropriate linkage
editor and loader publication, as listed in
the Preface.

MAIN STORAGE
r-------------------------------, , ,
, Segment 1 (ROOT) , , ,
~-----------------------T-------~
I I I
I Segment 2 ,Segmentl Problem
I I 6 I Program
I I I Area
~-------T-------T-------+-------~
I I I SEGMENT I I
I I Segment I 5 I I
I Segment I 4 ~ _______ J I
I 3 ~ _______ J I
~-------J I
I I
I I
~-------------------------------~
I I
I I
I I L _______________________________ J

Time O------------------------->n

Figure 111-10. Overlay Configuration of
Program Described in
Figure 111-8

144

INCLUSIVE
REFERENCE

r-----------,
I COMMON I

Segment I
L-----T-----J

I
r--------------~--------------,
I I

r- ---~-----, r-----~-----,

l_~~~~~~~_~_J~L_~~~~~~:_~_J

EXCLUSIVE
REFERENCE

Figure 111-11. Communication Between
Overlay Segment

COMMON AREAS

The linkage editor treats all FORTRAN
COMMON areas as separate sUbprograms. When
modules containing COMMON areas are
processed by the linkage editor, the COMMON
areas are collected. That is, when two or
more blank (unnamed) COMMON areas are
encountered in the input to the linkage
editor, only the largest of them is
retained in the output module. (In the
case of named COMMON areas, the question of
different lengths does not arise since all
named COMMON areas of the same name must be
the same length.)

THE OVERLAY PROCESS

Overlay is initiated at execution time in
response to a reference to a sUbprogram
which is not already in main storage. The
subprogram reference may be either a
FUNCTION name or a CALL statement to a
SUBROUTINE name. When the reference is
executed, the overlay segment containing
the required subprogram, as well as any
segments in its path not currently in main
storage, is loaded.

When a segment is loaded, it overlays
any segment in storage with the same
relative origin. It also overlays any
segments that are lower (farther from the
root segment) in the path of the overlaid
segment. For example, if segments 1, 2,
and 3 in Figures 111-8 and 111-9 are in
main storage when the main program executes
a call to subprogram SUBll, segment 6 is
called into main storage and segments 2 and
3 will not be available for as long as
segment 6 is in main storage.

Whenever a segment is loaded it contains
a fresh copy of the program units that it
comprises; any data values that may have

been established or altered during previous
processing are returned to their initial
values each time the segment is loaded.
Thus, data values that are to be retained
for longer than a single load phase should
be placed in the root segment.

Overlay is not initiated when a return
is made from a subprogram or when a segment
in main storage executes a reference to a
subprogram that is already in main storage:

In an overlay program, when blank or
named COMMON areas are encountered by the
linkage editor. they are collected as
described above. Their ultimate location
in the output module depends upon which
linkage editor control statements are used
in the building of the overlay structure
(see the discussion of linkage editor
control statements below). Overlay
structures built without the use of INSERT
statements (in which the program units for
each segment are included between OVERLAY
statements) produce an output module in
which the linkage editor "promotes" the
COMMON areas automatically. The promotion
process places each COMMON area in the
lowest segment on the overlay tree which
will always be in main storage with any
segment containing a reference to it.

Figures 111-12 and 111-13 show an
overlay program as it appears before and
after the automatic promotion of COMMON
areas. The position of a promoted COMMON
area within the segment to which it is
promoted is unpredictable.

If INSERT statements are used to
structure the overlay program, a blank
COMMON area should appear physically in the
input stream in the segment to which it
belongs. A named COMMON area should either
appear physically in the segment to which
it belongs or should be placed there with
an INSERT statement.

COMMON areas encountered in modules from
automatic call libraries are automatically
promoted to the root segment. If such
COMMON areas are named, they may be
positioned by the use of an INSERT
statement.

Named COMMON areas in BLOCK DATA
subprograms must be exactly as large as any
identically named COMMON areas in FORTRAN
programs that are to be link edited with
the BLOCK DATA subprograms.

r-------,
I MAIN I
~-------~
I SUBl I
~-------~
I SUB2 I
L---T---J

I
r----------~-----------,
I I

r---~---,
I COM..~ONl'~ I
~-------~
I SUB3 I
~-------~
! SUB4 I
L---T---J

i
r----------t----------,
I I I

r---~---, r---~---, r---~---,
ICOMMONBI I SUB8 I I COMMONB I
~-------~ ~-------~ ~-------~
I SUBS I 'SUB9 I ,SUB10,
~ _______ ~ L _______ J L _______ J

'SUB6 I
~-------~
'SUB7 ,
L _______ J

r---~---,
I COr.1t\10NA i
~-------~
I SUBll I
~-------~
I SUB12 I
L _______ J

Figure 111-12. Overlay Program Before
Automatic Promotion of
Cornmon Areas

r-------,
,MAIN ,
~-------~
'SUBl ,
~-------~
'SUB2 ,
~--.-----~
ICOMMONAI
L---T---J ,

r----------~-----------,
I ,

r---~---,
,SUB3 ,
~-------~
I SUB4 I
~-------~
,COMMONB,
L---T---J ,

r----------t----------, I , ,
r---~---, r---~---, r---~---,
'SUBS I I SUB8 , I SUB10 I
~ _______ ~ ~ _______ ~ L _______ J

'SUB6 I 'SUB9 ,
~ _______ ~ L _______ J

,SUB7 I
L _______ J

r---~---,
, SUBll I
~-------~
I SUB12 I
L _______ J

Figure 111-13. Overlay Program After
Automatic Promotion of
Cornmon Areas

Linkage Editor Overlay Feature 145

CONSTRUCTION OF THE OVERLAY PROGRAM

The programmer communicates his overlay
strategy to the operating system in two
ways: through the use of special
processing options which he specifies in
the PARM parameter of the EXEC statement
that calls the linkage editor, and through
the use of linkage editor control
statements. The general functions of these
options and statements are described in the
section "Linkage Editor and Loader." Those
which are of particular interest to the
programmer constructing an overlay program
are discussed immediately below.

LINKAGE EDITOR CONTROL STATEMENTS

Once the programmer has designed an overlay
tree structure for this program, he places
the program in that structure by indicating
to the linkage editor the relative
positions of the segments that make up the
tree. The control statements which
accomplish this are placed in the input
stream following the IISYSLIN DD statement,
or after the IILKED.SYSLIN DD statement if
a cataloged procedure is used.

The most important control statements
for implementing an overlay program are the
OVERLAY, INSERT, INCLUDE, and ENTRY
statements. The OVERLAY statement
indicates the beginning of an overlay
segment. The INSERT statement is used to
rearrange the sequence of object modules in
the resulting load module(s). The I NCLUDE
statement is used to incorporate input from
secondary sources into the load module.
The ENTRY statement specified the first
instruction to be executed.

OVERLAY Statement

The OVERLAY statement indicates the
beginning of an overlay segment. Its
format is:

r-------------------T---------------------,
I Operation I Operand I
~-------------------f---------------------~
I OVERLAY I name I L ___________________ ~ _____________________ J

where name indicates the beginning of the
segment, that is, the symbolic name of the
relative origin. The following statement

146

may be used to indicate overlay of segments
2 and 6 in Figure III-S:

OVERLAY ALPHA

OVERLAY statements are placed directly
before the object decks of the first
program unit of the new segment, before an
INSERT statement specifying the program
units to be placed in the segment, or
before an INCLUDE statement specifying the
program units to be placed in the segment.
Assuming that object decks were available,
the input deck to the linkage editor for
the program in Figures lII-S and 111-9
could be arranged as follows:

r---,
I Object deck for MAIN I
I SUBl I
I SUB2 I
~---~
I OVERLAY ALPHA I
I Object deck for SUB3 I
I SUB4 I
~---~
I OVERLAY BETA I
I Object deck for SUB5 I
I SUB6 I
I SUB7 I
~---~
I OVERLAY BETA I
I Object deck for SUBS I
I SUB9 I
~---~
I OVERLAY BETA I
I Object deck for SUB10 I
~---~
I OVERLAY ALPHA I
I Object deck for SUBll I
I SUB12 I
I _ ENTRY MAIN I L ___ J

INSERT Statement

There are many instances in which it is
inconvenient or impossible for the user to
position object decks physically in the
input stream. Library routines, normally
placed in the root segment, and routines
compiled in an earlier step in the same job
are examples of program units for which the
object decks are not available for
positioning at the time the job is set up.

The INSERT statement is used to position
such control sections in an overlay
structure. A control section, or CSEC'T, is
the operating system deSignation for the
smallest separately relocatable unit of a
program. Examples of FORTRAN control
sections are main programs, subprograms,
and blank or named COMMON blocks.

The format of the INSERT statement is:

r-------------T---------------------------,
I Operation I Operand I
~-------------+---------------------------~
I INSERT I csect-namel,csect-name •• ·JI L _____________ ~ ___________________________ J

where csect-name indicates the name(s) of
the control section(s) to be positioned.

The INSERT statement is placed in the
input sequence directly following the
OVERLAY statement that specifies the
segment origin in which the control section
is to be positioned. If the control
section is to be positioned in the root
segment, the INSERT statement is placed
before the first OVERLAY statement.

Using INSERT statements and a FORTRAN
source deck, the overlay structure
specified in Figures 111-8 and 111-9 could
be implemented as follows:

Input to the compiler:
r---,
I FORTRAN source deck containing units I
I MAIN through SUB12 I L ___ J

Input to the linkage editor:
r---,
I ENTRY MAIN I
I INSERT MAIN, SUB1, SUB2 I
~---~
I OVERLAY ALPHA I
I INSERT SUB3,SUB4 I
~---~
I OVERLAY BETA I
I INSERT SUBS,SUB6,SUB7 !
~---~
I OVERLAY BETA I
I INSERT SUB8,SUB9 I
~------------------------------~-------~--~
I OVERLAY BETA I
I INSERT SUB10 I
~---~
I OVERLAY ALPHA I
I INSERT SUB11,SUB12 I l ___ J

If INSERT statements are used more than
once in the same program for a control
section of the same name, the CSECT will be
positioned in the segment specified by the
first occurrence of the CSECT name in the
input stream. Any additional INSERT
statements referring to the CSECT will be
ignored, and, at execution time, all
references to the CSECT will resolve to the
first one positioned. Thus, if a

subprogram is required in more than one
path, it must be either inserted in the
root segment or renamed before being used
with an INSERT statement.

INCLUDE Statement

The INCLUDE statement is described in the
section "Linkage Editor and Loader." When
used in an overlay program, the INCLUDE
statement is generally placed in the input
stream in the position where the material
to be included is required.

It is possible to manipulate the control
sections that were added by an INCLUDE
statement through the use of the INSERT
statement. Assume that the control
sections of the overlay program from the
previous examples resided in libraries as
follows:

r------------------,
I LIBA I
~--------T---------~
I BOOK1 I BOOK2 I
~--------+---------~
I MAIN I SUB3 I
I SUB1 I SUB4 I
I SUB2 I I l ________ i _________ J

r--------,
I LIBB I
~--------~
I SUBS I
I SUB6 I
I SUB7 I
I SUB8 I
I SUB9 I
I SUB10 I
I SUB11 I
I SUB12 I l ________ J

where LIBA is a partitioned data set with
members BOOK1 and BOOK2 and LIBB is a
sequential data set.

Then the overlay structure could be
implemented by the use of the following
control statements:

r---,
I ENT RY MAIN I
~---~
I INCLUDE LIBACBOOK1) I
I INCLUDE LIBB I
I OVERLAY ALPHA I
~---~
I INCLUDE LIBA(BOOK2) I
I OVERLAY BETA I
I INSERT SUBS,SUB6,SUB7 I
I OVERLAY BETA I
I INSERT SUB8,SUB9 I
I OVERLAY BETA I
I INSERT SUB10 I
I OVERLAY ALPHA I
I INSERT SUB11,SUB12 I l ___ J

Linkage Editor Overlay Feature 147

ENTRY Statement

The ENTRY statement specifies the first
instruction of the program to be executed.
Its format is:

r-------------------T---------------------,
I Operation I Operand I
~-------------------+---------------------~
I ENTRY I external-name I L ___________________ ~ _____________________ J

where external-name indicates the name of
an instruction in the root segment.
Usually it will be the name MAIN.

The ENTRY statement may be placed
before, between, or after the program units
or other control statements in the input
stream. An ENTRY statement is necessary in
all overlay programs because, after linkage
editor processing, the first part of the
root segment contains special overlay
control information rather than executable
code. See the previous examples of overlay
implementation for the use and placement of
the ENTRY statement.

LINKAGE EDITOR OVERLAY OPTIONS

In addition to the necessary linkage editor
control statements, the user implementing
an overlay structure must provide certain
information to the operating system by
means of the PARM parameter of the EXEC
statement that calls the linkage editor.

Linkage editor options are described in
the section "Linkage Editor and Loader."
Those options which are of special interest
to the user of the overlay feature are
discussed in the following paragraphs.

OVLY indicates that the load module
produced will be an overlay structure, as
directed by subsequent linkage editor
control statements. OVLY must be specified
for all overlay processing.

LIST indicates that linkage editor
control statements are to be listed in card
imaqe format on the system output data set,
SYSPRINT.

MAP indicates that the linkage editor is
to produce a map of the output module. The
map of the output module of an overlay
structure shows the control sections
grouped by segment. Within each segment,
the control sections are listed in
ascending order according to their assigned
origins. The number of the segment in
which each appears is also printed.

148

XREF indicates that the linkage editor
is to produce a cross-reference table of
the output module. The cross-reference
table includes a module map and a list of
all address constants that refer to other
control sections. since the
cross-reference table includes a module
map, XREF may be substituted for MAP.

XCAL indicates that a valid exclusive
call is not to be considered an error, and
that the load module is to be marked
executable even though improper branches
were made between control sections.

LET indicates that any exclusive call
(valid or invalid) is accepted. The output
module will be marked executable even
though certain error or abnormal conditions
were found during link editing. At
execution time, a valid exclusive call may
or may not be executed correctly. An
invalid call will usually cause
unpredictable results; the requested
segment will not be loaded.

Assume that the program suggested by Figure
111-8 consists of a main program and twelve
subroutines. The sole function of the main
program is to call the subroutines, and
each subroutine prints the message "IN
SUBx", where x is a number identifying the
subroutine.

Figure 111-14 illustrates the input and
Figure 111-15 the output of the program.

Figure 111-14 shows the program in card
deck form, as it might be submitted for
execution. The EXEC statement specifies
the cataloged procedure FORTXCLG, to
process three job steps to compile, link
edit, and execute. The EXEC statement also
specifies the linkage editor options OVLY,
XREF, and LIST.

Input to the compile step consists of
the statements in the main program unit and
in the subroutines.

Input to the link edit step consists of
INSERT, OVERLAY, and ENTRY statements,
which define the overlay structure of the
program.

There is no input to the load module
step; however, output from the step is
directed to the printer, as defined by the
DO statement IIGO.FT06F001.

Output from the compile job step is
shown in Figure 111-15. Note that each
program unit is compiled separately. The

FORTRAN IV (H Extended) compiler recognizes
the FORTRAN END statement as the last
statement in a unit.

Output from the link edit job ~L~p 15

shown in Figure 111-16. The LIST option
causes the linkage editor control
statements to be listed (labeled A). The
XREF option causes a cross reference table
to be printed for each overlay segment.
Each overlay segment consists of the
FORTRAN program units specified in an
INSERT statement together with any modules
called by the linkage editor. For example,

the following statement defines one overlay
segment:

INSERT MAIN,SUB1,SUB2

The overlay segments are labeled B through
G. The OVLY option causes no printed
output.

Output from the load module execution
job step is shown in Figure 111-17. The
messages generated by the subroutines are
labeled H.

Linkage Editor Overlay Feature 149

II EXEC FORTXCLG,PftR~.LKED='OVLY,XREF,LIST'
/lFORT.SYSItj DD:: InpUT TO cm'PILE JrlB STEP

Cf.LL SUB1

15

15

15

15

15

15

CALL SUB2
CALL SUB3
CALL SLJB4
CALL SU135
CALL SUB6
(.ALL SUB7
CALL SUB8
(JILL SUB9
CALL SUB10
CALL SUB11
CALL SUB12
STOP
END
SUBROUT ItjE SUBI
DIMENSION A(100,10)
FORMAT (lHO,8HIN SUBI
WRITE (6,15)
RETURN
END
SUBROUTINE SUB2
DIMENSION A(100,10)
FORMAT (lHO,8HIN SUB2
HRITE (6,15)
RETURN
END
SUBROUTINE SUB3
DIMENSION A(100,10)
FORMAT (lHO,8HIN SUB3
WRITE (6,15)
RETURN
END
SUBROUTINE SUB4
DIt1ENSION A(lOO,10)
FORMAT (lHO,8HIN SUB4
WRITE (6,15)
RETURN
END
SUBROUTINE SUBS
DIMENSION A(100,10)
FORMAT (lHO,8HIN SUBS
WRITE (6,15)
RETURN
END
SUBROUTINE SUB6
DIMENSION A(100,10)
FOR/1AT (lHO, 8HI N SUB6
WRITE (6,15)
RETURN
END

15

15

15

15

,::

SUBROUTINE SUB7
DIMENSION A(100,10)
FOPJ1J1.T (lHO ,8HIt1 SUB7
WR ITE (6,15)
RETURN
Etm
SUBROUTINE SUB8
DIMENSION A(100,10)
FORMAT (lHO,8HIN SUB
WRITE (6,15)
RETURN
END
SUBROUTINE StJB9
DIMENSION A(100,10)
FORMAT (lHO,8HIN SUB
WRITE (6,15)
RETURN
END
SUBROUTINE SUBI0
DIMENSION4A(100,10)
FORMAT (lHO,8HIN SUB
WRITE (6,15)
RETURN
END
SUBROUT I NE SUB 11
DIMENSION A(100,10)
FORMAT (lHO,8HIN SUB
WRITE (6,15)
RETURN
END
SUBROUTINE SUB12
DIMENSION A(100,10)
FORMAT (lHO,8HIN SUB
WRITE (6,15)
RETURN
END

8)

9)

10)

11)

12)

IILKED.SYSIN DO = INPUT TO LINK EDIT JOB STEP
INSERT MAIN,SUB1,SUB2
OVERLAY ALPHA
ItjSERT SUB3, SUB4
OVERLAY BETA
INSERT SUB5,SUB6,SUB7
OVERLAY BETA
INSERT SUB8,SUB9
OVERLAY BETA
INSERT SUBI0
OVERLAY ALPHJI.
INSERT SLJB11,SUB12
ENTRY ~1AIN

,::
IIGO.FT06FOOl DO SYSOUT=A OUTPUT FROM LOAD MODULE JOB STEP
II

Figure 111-14. Linkage Editor Overlay Input

150

REQUESTED OPTIONS: NODECK,NOLIST,OPT=O

CPTIONS IN EFFECT: NAMEI MAIN),NOOPTIMIZE,LlNECOUNTI60),SIZEIMAX),AUTODBLlNONE),
SOURCE,EBCDIC,NOLIST,NODECK,OBJECT,NOMAP,NOFORMAT,NOGOSTMT,NOXREF,NOALC,NOANSF,FLAGII)

I SN 0002
I St\l OC03
I SN 0004
"I' ~1.1 ,-• .-• .-. i:'
J. ...,)" VVV-'

ISN 0006
ISN 0007
ISN 0008
I SN 0009
ISN 0010
ISN OCll
ISN 0012
I SN 0013
ISN 0014
ISt\l 0015

CALL
CALL
CALL
r A; ;
..... HL.L

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
STOP
END

SUBI
SUB2
SUB3
~ i:O /. ...Jvu,.

SUB5
SUB6
SUB7
SUB 8
SUB9
SUBI0
SUBll
SUB12

*OPTIONS IN EFF~CT*NAMEI MAIN),NOOPTIMIZE,LINECOUNTI6C),SIZEIMAX),AUTODBLINONE),

*OPTIONS IN EFFECT*SOURCE,EBCDIC,NOLIST,NODECK,OBJECT,NOMAP,NOFORMAT,NOGOSTMT,NDXREF,NOALC,NOANSF,FLAG(I)

wC'TATTC'TTrC'-h
'.").,,,",,1.1.-'1.1.'-',,)' SOURCE STATEMENTS =

STATISTICS NO DIAGNOSTICS GENERATED

~***** END OF COMPILATION ******

REQUESTED OPTIONS: NODECK,NOLIST,OPT=O

14, PROGRAM SIZE

105K BYTES OF CORE NOT USED

CPTIONS IN EFFECT: NAMEI MAIN),NOOPTIMIZE,LINECOUNTI60) ,SIZEIMAX) ,AUTODBLINONE),
SOURCE,EBCDIC,NOLIST,NODECK,OBJECT,NOMAP,NOFORMAT,NOGOSTMT,NOXREFiNOALC,NOANSF,FlAGII)

I SN 0002
I SN 0003
I SN 0004
ISN 0005
I SN 0006
I SN 0007

SUBROUTI NE SUB 1
DIMENSION A(lOO,lC)

15 FORMAT I1HO,8HIN SUB1
WR IT E 1 6 , 1 5)
RETURN
END

*OPTIONS IN EFFECT*NAMEI MAIN),NOOPTIMIZE,LlNECOUNTI60),SIZEIMAX),AUTODBLlNONE),

*OPTIONS IN E~FECT*SOURCE,EBCDIC,NOLIST,NODECK,OBJECT,NOMAP,NOFORMAT,NOGOSTMT,NOXREF,NOALC,NOANSF,FlAGII)

*S T A TI S TIC S * SOURCE STATEMENTS = 6, PROGRAM SIZE = 218, SUBPROGRAM NAME = SUB1

STATISTICS NO DIAGNOSTICS GENERATED

#**** END OF COMPILATION ****** 105K BYTES OF CORE NOT USED

REQLJESTED OPTIONS: NODECK,NOLIST,OPT=O

CPTIONS It\l EFFECT: NAMEI MAIN),NOOPTIMIZE,LINECOUNTI601,SIZEIMAXI,AUTODBLlNONE),
SOURCE,EBCDIC,NOLIST,NODECK,OBJECT,NOMAP,NOFORMAT,NOGOSTMT,NOXREF,NOALC,NOANSF,FLAGII)

I SN 0002
ISN 0003
! SN CO(\4
I SN 0005
ISN 0006
I S"l 0007

SUBROUTINE SUB12
DIMENSION AI100,10)

15 FORMAT 11HO,8HIN SUB121
WRITE 16,151
RETURN
END

*OPTIONS IN EFFECT*NAMEI MAIN),NOOPTIMIZE,LINECOUNTI60) ,SIZEIMAXI,AUTODBLINONE),

*OPTIOt\lS IN EFFECT*SOURCE,EBCDIC,NOLIST,NODECK,OBJECT,NOMAP,NOFORMAT,NOGOSTMT,NOXREF,NOALC,NOANSF,FLAGII)

STATI STICS SOURCE STATEMENTS = 6, PROGRAM SIZE = 218, SUBPROGRAM NAME = SUB12

~TATISTICS* NO DIAGNOSTICS GENERATED

****** END OF COMPILATION ****** 105K BYTES OF CORE NOT USED

STATISTICS NO DIAGNOSTICS THIS STEP

Figure 111-15. Linkage Editor Overlay Output -- Compile Job Step

Linkage Editor Overlay Feature 151

F 88-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED OVLY,XREF,LIST
VARIABLE OPTIONS USED - SIZE=192160,8192)- DEFAULT OPTIONIS) USED

IE WO 000 INSERT MAIN,SUBI,SUB2
IEWOOOO DVERLAY ALPHA
IEWOOOO INSERT SUB3, SUB4
IE 010000 OVERLAY BETA
IEWOOOO I~SERT SUB5,SUB6,SUB7

eIEV/OOOO OVERLAY BETA
IEWOOOO INSERT SUB8,SUB9
IEWOOOO OVERLAY BETA
IEWOOOO INSERT SUB10
IEWOOOO OVERLAY ALPHA
IEWOOOO INSERT SUBl1,SUB12
IEWOOOO ENTRY MAIN
****MAIN DOES NOT EXIST BUT HAS BEEN ADDED TO DAT A SET

CROSS REFERENCE TABLE

CONTROL SECTION ENTRY

NAME ORIGIN LENGTH SEG. NO. NAME LOC AT I ON NAME LOCA TI ON NAME LOCAT ION NAME LOCATION

$SEGTAB 00 30
MAIN 30 13E
SUB1 170 DA
SUB2 250 DA
IHOECOMH* 330 DC4

IBCOM# 35C FDIOCS# 418 INTS WTCH IOEO
IHOCOMH2* IOF8 975

SEQDASD 1462
IH OFCVTH* 1A70 A07

ADCON# lA70 FC VAOUTP IBIA FC VL OUTP IBAA FCVZOUTP ID06
FCVIOUTP 20AA FCVEOUTP 219C FC VC OUTP 219C INT6 SWCH 23F8

IHOEFNTH* 2478 7C8
ARITH# 2478 ADJSWTCH 29D8

IHOEFInS* 2C40 10FO
FIOCS# 2C40 F IOCSBEP 2C46

IHOF IOS2* 3D30 5 AC
IHOUOPT * 42EO 318
IHOFCONI* 45F8 2FD

FQCONU 45F8
IHOFCONO* 48F8 558

FQCONO# 48F8
IHOERRM * 4E50 5EC

ERRMON 4E50 IHOERRE 4E68
IHOUATBL* 5440 208
IHOFTEN * 5648 198

FTEN# 5648
IHOETRCH* 57EO 2A6

IHOTRCH 57EO ERRTRA 57E8
HNTAB 5A88 84

e
LOCATl ON RE FERS TO SYMBOL IN CONTROL S ECTI ON SEG. NO. LOCAr ION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.

A8 SUBI SUB1 1 AC SUB2 SUB2 1
130 SUB3 SUB3 2 B4 SUB4 SUB4 2
B8 SUB5 SUB5 3 BC SUB6 SUB6 3
CO SUB7 SUB7 3 C4 SUB8 SUB8 4
C8 SUB9 SUB9 4 CC SUBI0 SUBI0 5
DO SUBll SUBll 6 D4 SUB 12 SUB12 6
D8 !BCOM# IHOECOMH 1 208 I BCOM# I HOECOMH 1

2E8 I BCOM# IHOECOMH 1 418 SEQDASD IHOCOMH2 1
470 IHOCOMH2 IHOCOMH2 1 FEC ADCON# IHOFCVTH 1
FE4 FIOCS# I HOEF lOS 1 FFO ARI TH# IHOEFNTH 1

100C ADJSWTCH IHOEFNTH 1 FCO IHOUOPT I HOUOPT 1
FF4 FCVEOUTP I HOFC VTH 1 FF8 FCVLOUTP IHOFCVTH 1
FFC FCVIOUTP IHOFCVTH 1 1000 FCVCOUTP IHOFCVTH 1

1004 FCVAOL'TP IHOFCVTH 1 1008 FCVZOUTP IHOFCVTH 1
10E4 IHOASYNC $UNRESOLVEDIW) F44 IHOERRM I HOERRM 1

F98 IHOERRE IHOERRM FC 8 IHOCOMH2 IHOCOMH2 1
F9C IHOCOMH2 IHOCOMH2 FAa IHOCOMH2 IHOCOMH2 1
FA4 IHOCOMH2 IHOCOMH2 FA8 IHOCOMH2 IHOCOMH2 1

1228 IHOECOMH I HO EC OMH 12D8 IHOECOMH IHOECOMH 1
18CD IHOECOMH IHOECOMH 18DD I HO ECOMH I HOECOMH 1
18ED IHOECOMH I HO ECOMH 2268 I Be OM# IHOECOMH 1
2264 IHOERRM IHOERRM 22B8 FQCONO# IHOFCONO 1
22BC FQCONU IHOFCONI 2A34 I BC OM# IHOECOMH 1
2A38 INTSWTCH IHOECOMH 2904 I NT6SWCH IHOFCVTH 1
29DO IHOUOPT IHOUOPT 2A40 ADCON# IHOFCVTH 1
2A3C FIOCS# I HOEF IDS 2B40 IHOERRM IHOERRM 1
20A8 IHOASYNC $U NR ES OL VE 0 I W) 20AO IHOERRM IHOERRM 1
2DA4 IHOFIOS2 IHOFIOS2 3ACO IHOUATBL IHOUATBL 1
3ACC I BCOM# IHOECOMH 3AEl I HOF IOS2 I HOFIOS2 1
3AF8 IHOFIOS2 IHOFIOS2 3D29 IHOFlOS2 IHOFIOS2 1
4884 FTEN# IHOFTEN 4CF4 FTEN# I HOFTEN 1
542C I HOUOPT IHOUOPT 5430 I BC OM# IHOECOMH 1
5434 IHOTRCH IHOETRCH 5438 FIOCSBEP IHOEFIOS 1
5968 IBCOM# IHOECOMH 596C ADCON# I HOFC VTH 1
5974 F IOCSBEP IHOEFIOS

Figure 111-16. Link Edit overlay output -- Link Edit Job Step

152

CONTROL SECT ION ENTRY

NAME ORIGIN lENGTH SEG. NO. NAME lOCAT ION NAME lOCATION NAME lOCAT ION NAME lOOT ION

SUB3 5810 OA 2

e SUB4 5B FO OA 2

lO~AT ION RE FERS TO SYMBOL IN CONTROL SECTION SEG. NO. l OCAT ION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.

5BA8 I BCOM# IHOECOMH 5C88 I BC OM# I HOEC OMH

SECTION ENTRY

NA'1E ORIGIN lENGTH SEG. NO. NAME lOC ATI ON NAME lOCATION NAME lOCAT ION NAME lOCATION

SUB5 5eno OA 3
SU86 5080 DA 3

E) SUB7 5E90 DA 3

(LOCA TI 0' REFERS TO SYMBOL IN CONTROL SECTI ON SEG. NO. lOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.

51)6 8 I BCO'1# IHOECOMH 5E48 I BCOM# IHOECOMH
5F28 IBCOM# IHOECOMH

SECT ION ENTRY

NAMF nRlr.IN Lt=NGH-1 SEt.;, ~Q, N~ME I n('" ATTn"l
.,.""rlL,.

I no,.. ATTn"l
t.,.M.I'".C LOCATiON NAME LOCATiON ~ , ,lI LUv""" J.UI'I

SUB8 5CDO DA 4

8 SUBq 5DBO DA 4

lOCA TI ON RE FERS TO SYMBOL IN CONTROL SECTION SEG. NO. l OCAT ION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.

5D68 I BC OM# IHOECOMH 5E48 I BC OM# IHOECOMH

CONTROL SECT ION ENTRY

NAME OR IGIN. lENGTH SEG. NO. NAME lOCATION NAME lOCATION NAME lOCATION NAME lOCAT ION

0
SUBI0 5CDO DA

lOCA TI ON RE FERS TO SYMBOL IN CONTROL S ECTI ON SEG. NO. lOCAT ION REFERS TO SYMBOL IN CONTROL SECT ION SEG. NO.

5D68 I BCOM# IHOECOMH

CONTROL SECT ION ENTRY

NAME ORIGIN lENGTH SEG. NO. NAME lOCATION NAME lOCAT ION NAME lOCATION NAME lOCATION

SUB11 5B10 DA 6

CD SUB12 5BFe DA 6

lOCA TI ON REFERS TO SYMBOL IN CONTROL S ECTl ON SEG. NO. lOC AT ION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.

5BA 8 I BC OM# THOFCOMH 5C88 ! 8e OM# Tllnr-r-nUII
I. nuc\.,ur"1n

ENTRY ADDRESS 30
TOT Al lENGTH 5F70

Figure III-16. Link Edit Overlay Output -- Link Edit Job Step (Part 2 of 2)

IN SUB 1

IN SUB2

IN SUB3

IN SUB4

IN SUB5

IN SUB6

1'1 SUB7

IN SUB8

IN SU'39

IN SUBIO

IN SUBll

IN SUB 12

Figure III-17. Linkage Editor Overlay Output ---Load Module Execution Job Step

Linkage Editor Overlay Feature 153

EXTENDED ERROR HANDLING FACILITY

The extended error handling facility
provides the FORTRAN programmer with
greater control over load module errors.
This facility is specified at program
installation time through the parameter
OPTERR=INCLUDE in the FORTLIB macro
instruction.

When a program error occurs, the user is
given:

• Messages more informative than those
issued with standard diagnostic
facilities

• The ability to continue execution after
the error

• Either standard FORTRAN corrective
action with continued execution or,
optionally, user-specified corrective
action

When an error occurs with extended error
handling in effect, a short message text is
printed along with an error identification
number. The data in error (or some other
associated information) is printed as part
of the message text. A summary error
count, printed when a job is completed,
informs the user how many times each error
occurred. For a complete listing of
compiler and library messages, see the
publication OS FORTRAN IV (H Extended)
ComQiler and Library (Mod II) Messages,
Order No. SC28-686S.

A traceback map, tracing the subroutine
flow back to the main program, is printed
after each error occurrence; execution then
continues. (If the extended error handling
facility is not specified, a traceback map
is printed only for errors causing program
termination and for error IH0218I if the
ERR= option has been specified in a READ
statement.)

For each error condition detected, the
user has both dynamic and default control
over:

• The number of times the error is
allowed to occur before program
termination

154

• The maximum number of times each
message may be printed

• Whether or not the traceback map is to
be printed with the message

• Whether or not a user-written
error-exit routine is to be called

The action that takes place is governed by
information stored in an area of main
storage called the option table. (A
permanent copy of the option table is
maintained in the FORTRAN library.)

~~~~~!ONAL CHARACTERISTICS 

When an error is detected, the FORTRAN 
error monitor (ERRMON) receives control. 

The error monitor prints the necessary 
diagnostic and informative messages and 
then takes one of the following actions: 

• Terminates the job 

• Returns control to the calling routine, 
which takes a standard corrective 
action and then continues execution 

• Calls a user-written closed subroutine 
to correct the data in error and then 
returns to the routine that detected 
the error, which then continues 
execution 

The actions of the error monitor are 
controlled by settings in the option table. 
The option table consists of a doubleword 
preface, followed by a doubleword entry for 
each error condition. (If the extended 
error handling facility is not specified, 
the option tab~e is reduced to the preface 
alone.> IBM provides a standard set of 97 
entries; the programmer can provide 
additional entries at program installation 
time. Table 111-3 shows the values for 
each error condition. If an option 
recorded in a table entry does not apply to 
a particular error condition, it is shown 
as not applicable (NA). 



Table III-3. Option Table Default Values 

Option Bits 

10 5 Yes No 
10 5 Yes No 

Unlimited 5 Yes No 
10 5 Yes3 No 

1&t 1 Yes No 
10 5 5 Yes No 
10 6 5 Yes No 
10 5 Yes No 
10 5 Yes No 
10 5 Yes No 
10 5 Yes No 
10 5 Yes No 
10 5 Yes No 
10 5 Yes No 
10 5 Yes No 
10 5 Yes No 

1 1 No No 
10 5 Yes No 
10 5 Yes No 
10 5 Yes No 

1 1 No No 
10 5 Yes No 

Yes No 
Yes No 

Extended Error Handling Facility 155 



The field that is defined as the 
user-exit address also serves as a means of 
specifying standard corrective action. 
When the table entry contains an address, 
the user exit is specified; when it 
contains the integer 1, standard correction 
is specified. It is not possible at 
program installation time to create an 
option table entry with the user-exit 
address specified. The user exit must be 
specified by altering the option table at 
execution time. To specify that no 
corrective action, either standard or 
user-written, is to be taken, the table 
entry must specify that only one error is 
to be allowed before termination of 
execution. 

To make changes to the option table 
dynamically at load module execution time, 
the programmer calls one of four 
subroutines; these subroutines are 
summarized below. 

SUBPROGRAMS FOR THE EXTENDED ERROR HANDLING 
FACILITY 

IBM provides four subroutines for use in 
extended error handling: ERRSAV, ERRSTR, 
ERRSET, and ERRTRA. These subroutines 
allow access to the option table to alter 
it dynamically. 

certain option table entries may be 
protected against alteration when the 
option table is set up. If a request is 
made by means of CALL ERRSTR or CALL ERRSET 
to alter such an entry, the request is 
iqnored. See Table 111-3 for those 
IBM-supplied option table entries that 
cannot be altered. 

Changes made dynamically are in effect 
for the duration of the pr0gram that made 
the change. Only the current copy of the 
option table in main storage is affected; 
the copy in the FORTRAN library remains 
unchanged. All passed parameters, unless 
otherwise indicated, are 4-byte (fullword) 
integers. 

The CALL ERRSAV statement is used to modify 
an entry temporarily. The statement causes 

156 

an option table entry to be copied into an 
8-byte storage area accessible to the 
FORTRAN programmer. CALL ERRSAV has the 
format: 

CALL ERRSAV (ierno, tabent) 

where: 

ierno 
is the error number to be referenced 
in the option table. Should any 
number not within the range of the 
option table be used, an error message 
will be printed. 

tabent 
is the name of an 8-byte storage area 
where the option table entry is to b~ 
stored. 

An example of CALL ERRSAV is: 

CALL ERRSAV (213,ALTERX) 

The example states that error number 213 
is to be stored in the area named ALTERX. 

ERRSTR Subroutine 

To store an entry in the option table, the 
following statement is used: 

CALL ERRSTR (ierno,tabent) 

where: 

ierno 
is the error number for which the 
entry is to be stored in the option 
table. Should any number not within 
the range of the option table be used, 
an error message will be printed. 

tabent 
is the name of an 8-byte storage area 
containing the table entry data. 

An example of CALL ERRSTR is: 

CALL ERRSTR (213,ALTERX) 

The example states that error number 
213. Stored in ALTERX, is to be restored 
to the option table. 



Table 111-4. Corrective Action After Error OccurrenceCPart 1 of 2) 
r-----T----------T-------------------------------T--------------------------------------, 
I I Parameters 1 I I 
I Error 1 Passed to 1 I I 
ICode I User~ I Standard Corrective Action I User-Supplied Corrective Action I 
~-----t----------+-------------------------------+--------------------------------------~ 
I 205 A, B, D Program Termination See Note 2 I 
I I 
I 206 A,B,I I=low order part of number for User may alter I I 
I input too large. (See note 3). I 
I I 
I 211 
I 
I 
I 
I 

212 

213 

214 

215 

217 

218 2 

219-
224 

225 

226 

227 

229 

A,B,C 

A,B,D 

A,B,D 

A,B,D 

A,B,E 

Treat format field containinq C (a) 
as end of FORMAT statement. -

Cb) 

If compiled FO~LAT statement: putl 
hexadecimal equivalent of 
character in C (see Note 1). 
If variable format, move EBCDIC 
character into C (see Note 1). 

Input: Ignore remainder of I/O,See Note 2. 
list. I 
Output: continue by starting 
new output record. Supply 
carriage control character if 
required by Option Table. 

Ignore remainder of I/O list. 

I 
I 
I 
I 
I 
I See Note 2. 
I 

I/OIIf user correction is requested, the Input: Ignore remainder of 
list. Ignore input/output 
request if for ASCII tape. 
output: If unformatted write 
initially requested, change 
record format to VS. If 
formatted write initally 
requested, ignore input/output 
request. 

Iremainder of the I/O list is ignored. 
I 
I 
I 
I 
I 
I 
I 
I 

Substitute zero for the invalid The character placed in E will be sub-
character. stituted for the invalid character; 

input/output operations may not be 
performed (see Note 1). 

A,B,D Increment FORTRAN sequence 
number and read next file. 

See Note 2. 

A,B,D,F Ignore remainder of I/O list. See Note 2. 

A,B,D Ignore remainder of I/O list. See Note 2. 

A,B,E 

A,B,R 

A,B,D 

A,B,D 

Substitute zero for the invalid The character placed in E will be sub-
character. stituted for the invalid character 

(see Note 1). 

R=O for input number too small; User may alter R. 
R=16 63 -1 for input number too 
large. 

Ignore remainder of I/O list. See Note 2. 

Ignore remainder of I/O list. See Note 2. 

231 A,B,D Ignore remainder of I/O list. See Note 2. L _____ ~ __________ ~ _______________________________ ~ _____________________________________ _ 

Extended Error Handling Facility 157 



Table 111-4. Corrective Action After Error Occurrence (Part 2 of 2) 
r-----T----------T-------------------------------T--------------------------------------1 
, , Parameters' , I 
, Error I Passed to, , , 
,Code, Use1 ,Standard Corrective Action, User Supplied Corrective Action I 
~-----+----------+-------------------------------+--------------------------------------~ 

232 A,B,D,G Ignore remainder of I/O list. See Note 2. , 

233 

234-
236 

237 

238 

286 

287 

A,B,D 

A,B,D 

A,B,D,F 

A,B,D 

A,B,D 

A,B,D 

Change record number to list 
maximum allowed (32,000). 

Ignore remainder of I/O list. 

Ignore remainder of I/O list. 

Ignore remainder of I/O list. 

Ignore Request 

Ignore Request 

See Note 2. 

See Note 2. 

See Note 2. 

See Note 2. 

See Note 2. 

See Note 2. 

I , , 
I 
I , , 
I 
I 
I 
I , , , , 

288 A, B, D Implied Wait See Note 2. , 
~-----~----------~-------------------------------~--------------------------------------~ 
1Parameter Code Meaning 

A Address of return code field (INTEGER*4) 
B Address of error number (INTEGER*4) 
C Address of invalid format character (LOGICAL*l) 
D Address of data set reference number (INTEGER*4) 
E Address of invalid character (LOGICAL*l) 
F Address of DECB 
G Address of record number requested (INTEGER*4) 
I Result after conversion (INTEGER*4) 
R Result after conversion (REAL*4) 

2If error condition 218 <input/output error detected) occurs while error messages are 
being written on the object error data set, the message is written on the console and 
the job is terminated. 

If no DD card has been supplied for the object error data set, error message 
IH02191 is written out on the console and the job is terminated. 

~---------------------------------------------------------------------------------------~ 
'Notes: , 

1. Alternatively, the user can set the return code to 0, thus requesting a standard , 
corrective action. I 

2. If the error was not caused during asynchronous input/output processing, the user' 
exit-routine cannot perform any asynchronous I/O operation and, in addition, may , 
not perform any REWIND, BACKSPACE, or ENDFILE operation. If the error was caused' 
during asynchronous input/output processing, the user cannot perform any I 
input/output operation. On return to the library, the remainder of the , 
input/output request will be ignored. , 

3. The user exit routine may supply an alternative answer for the setting of the , 
result register. The routine should always set an INTEGER*4 variable and the I 
FORTRAN library will load fullword or halfword depending on the length of the , 
argument causing the error. , _______________________________________________________________________________________ J 

ERRSET Subroutine 

The CALL ERRSET statement permits the user 
to change up to five different options. It 
consists of six parameters. The last four 
parameters are optional, but each omitted 
parameter must have its place noted by a 
comma and a zero if succeeding parameters 
are specified. <Omitted parameters at the 

158 

end of the list re9uire no place notation. ) 
CALL ERRSET has the format: 

CALL ERRSET (ierno,inoal,inomes, 
itrace,iusadr,irange) 

where: 

ierno 
is the error number to be referenced 
in the option table. Should any 



inoal 

number not within the range of the 
option table be used, an error message 
will be printed. (Note that if ierno 
is specified as 212, there is a 
special relationship between the ierno 
and irange parameters. See the 
explanation for irange.) 

is an integer specifying the number of 
errors permitted before execution is 
terminated. If inoal is specified as 
either zero or a negative number, the 
specification is ignored, and the 
number-of-errors option is not 
altered. If a value of more than 255 
is specified, an unlimited number of 
errors is permitted. 

inomes 
is an integer indicating the number of 
messages to be printed. A negative 
value specified for inomes causes all 
messages to be suppressed; a 
specification of zero indicates that 
the number-of-messages option is not 
to be altered. If a value greater 
than 255 is specified, an unlimited 
number of error messages is permitted. 

itrace 
is an integer whose value may be 0, 1, 
or 2. A specification of ° indicates 
the option is not to be changed; a 
specification of 1 requests that no 
traceback be printed after an error 
occurrence; a specification of 2 
requests the printing of a traceback 
after each error occurrence. (If a 
value other than 1 or 2 is specified, 
the option remains unchanged.) 

iusadr 
specifies one of the following: 

1. The value 1, as a 4-byte integer, 
indicating that the option table 
is to be set to show no user-exit 
routine (i.e., standard corrective 
action is to be used when 
continuing execution). 

2. The name of a closed subroutine 
that is to be executed after the 
occurrence of the error identified 
by ierno. The name must appear in 
an EXTERNAL statement in the 
source program, and the routine to 
which control is to be passed must 
be available at link editing time. 

3. The value 0, indicating that the 
table entry is not to be altered. 

irange 
serves a double function. It 
specifies one of the following: 

1. An error number higher than that 
specified in ierno. This number 
indicates that the options 
specified for the other parameters 
are to be applied to the entire 
range of error conditions 
encompassed by ierno and irange. 
(If irange specifies a number 
lower than ierno, the parameter is 
ignored, unless ierno specifies 
the number 212.) 

2. A print control character if ierno 
specified 212. The value 1 is 
specified to provide single 
spacing for an overflow line 
<standard fixup for WRITE 
statements). If a value other 
than 1 is specified, no print 
control is provided. 

The default value a is assumed if the 
parameter is omitted (i.e., no print 
control is provided, and the values 
specified for all parameters apply 
only to the error condition number in 
ierno) • 

Examples of CALL ERRSET are: 

Example 1: 

CALL ERR SET C310,20,5,0,MYERR,320) 

This example specifies the following: 

1. Error condition 310 (ierno) 

2. The error condition may occur up to 20 
times (inoal) 

3. The corresponding error message may be 
printed up to 5 times (inomes) 

4. The default for traceback information 
is to remain in force (itrace) 

5. The user-written routine MYERR is to 
be executed after each error 
occurrence (iusadr) 

6. The same options are to apply to all 
error conditions from 310 to 320 
(irange) 

Example 2: 

CALL ERR SET (212,10,5,2,1,1) 

This example specifies: 

1. Error condition 212 

2. The condition may occur up to 10 times 

Extended Error Handling Facility 159 



3. The corresponding message may be 
printed up to 5 times 

4. Traceback information is to be 
displayed after each error occurrence 

5. Standard corrective action is to be 
executed after an error 

6. Print control is to be employed 

For illustration purposes, this 
example explicitly specifies all 
default options except in requesting 
print control. 

CALL ERR SET (212,0,0,0,0,1) 

This example illustrates an alternate 
method of specifying exactly the same 
options as the second example. It states 
that no changes are to be made to default 
settings except in requesting print 
control. 

ERRTRA Subroutine 

The CALL ERRTRA statement permits the user 
to dynamically request a traceback and 
continued execution. It has the format: 

CALL ERRTRA 

The call has no parameters. 

USER-SUPPLIED ERROR HANDLING 

The user has the ability of calling, in his 
own program, the FORTRAN error monitor 
(ERRMON) routine, the same routine used by 
FORTRAN itself when it detects an error. 
ERRMON examines the option table for the 
appropriate error number and its associated 
entry and takes the actions specified. If 
a user-exit address has been specified, 
ERRMON transfers control to the 
user-written routine indicated by that 
address. Thus, the user has the option of 
handling errors in one of two ways: (1) 
simply by calling ERRMON without supplying 
a user-written exit routine; or (2) by 
calling ERRMON and providing a user-written 
exit routine. 

In either case, certain planning is 
required at the installation level. For 
example, error numbers must be assigned to 
error conditions to be detected by the 
user, and additional option table entries 

160 

must be made available for these 
conditions. The routine that uses the 
error monitor for error service should have 
the status of an installation 
general-purpose function similar to the 
IBM-supplied mathematical functions. The 
number of installation error conditions 
must be known when the FORTRAN library is 
created at program installation time, so 
that entries will be provided in the option 
table by the ADDNTRY parameter of the 
FORTLIB macro instruction. The error 
numbers chosen for user sUbprograms are 
restricted in range. IBM-designated error 
conditions have reserved error codes from 
000 to 301. Error codes for 
installation-designated error situations 
must be assigned in the range 302 to 899. 
The error code is used by FORTRAN to find 
the proper entry in the option table. 

To call the ERRMON routine, the 
following statement is used: 

CALL ERRMON (imes,iretcd,ierno 
[,data1.data2 •••• 1 ) 

where: 

imes 
is the name of an array aligned on a 
fullword boundary, that contains, in 
EBCDIC characters, the text of the 
message to be printed. The number of 
the error condition should be included 
as part of the text, because the error 
monitor prints only the text passed to 
it. The first item of the array 
contains an integer whose value is the 
length of the message. Thus, the 
first four bytes of the array will not 
be printed. If the message length is 
greater than the length of the buffer, 
it will be printed on two or more 
lines of printed output. 

iretcd 
is an integer variable made available 
to the error monitor for the setting 
of a return code. The following codes 
can be set: 

° -- The option table or user-exit 
routine indicates that standard 
correction is required. 

1 -- The option table indicates that a 
user exit to a corrective routine 
has been executed. The function 
is to be reevaluated using 
arguments supplied in the 
parameters data1,data2 •• 
For input/output type errors, the 
value 1 indicates that standard 
correction is not wanted. 



ierno 
is the error condition number in the 
option table. Should any number not 
within the range of the option table 
be specified, an error message will be 
printed. 

datal, data2 • 
are variable names in an error
detecting routine for the passing of 
arguments found to be 1n error. One 
variable must be specified for each 
argument. Upon return to the error
detecting routine, results obtained 
from corrective action are in these 
variables. Because the content of the 
variables can be altered, the 
locations in which they are placed 
should be used only in the CALL 
statement to the error monitor; 
otherwise, the user of the function 
may have literals or variables 
destroyed. 

Since datal and data2 are the 
parameters which the error monitor 
will pass to a user-written routine to 
correct the detected error, care must 
be taken to make sure that these 
parameters agree in type and number in 
the call to ERRMON and in a 
user-written corrective routine, if 
one exists. 

Note: If optimization has been 
requested, current values of variables 
may not be correct. 

An example of CALL ERRMON is: 

CALL ERRMONCMYMSG, ICODE, 315,Dl,D2) 

The example states that the message to 
be printed is contained in an array named 
MYMSG, the field named ICODE is to contain 
the return code, the error condition number 
to be investigated is 315, and arguments to 
be passed to the user-written routine are 
contained in fields named Dl and D2. 

Figure 111-18 illustrates the use of the 
CALL ERR SET and CALL ERRMON statements in a 
proqram utilizing a user-supplied 
subprogram to handle divide-by-zero 
situations. The CALL ERRSET and CALL 
ERRMON statements are highlighted for 
easier reference. 

user-Supplied Exit Routine 

When a user-exit address is supplied in the 
option table entry for a given error 
number, the error monitor calls the 

specified subroutine for corrective action. 
The subroutine may be user-written and is 
called by assembler-language code 
equivalent to the following statement: 

CALL x (iretcd,ierno,datal,data2 ••• ) 

where: 

x 
is t-he narne of the subroutine whose 
address was placed into the option 
table by the iusadr parameter of the 
CALL ERRSE'I' statement. 
(Interpretations of the other 
parameters -- iretcd, ierno, datal, 
data2 -- are the same as those for the 
CALL ERRMON statement.) 

If an input/output error is detected 
(i.e., an error for codes 211-237, 
286-288), and the error originally was 
caused by a FORTRAN input/output statement, 
subroutine x must not execute any FORTRAN 
input/output statements, but may issue an 
asynchronous input/output statement. If 
the original error was caused by an 
asynchronous input/output statement, 
subroutine x may issue a FORTRAN 
input/output statement but must not issue 
an asynchronous input/output statement. 
Similarly, if errors for codes 216 or 
241-301 occur, the subroutine x must not 
call the library routine that detected the 
error or any routine which uses that 
library routine. For example, a statement 
such as 

R A ** B 

cannot be used in the exit routine for 
error 252, because the FORTRAN library 
subroutine FRXPR# uses the function 
subprogram EXP, which detects error 252. 

Note: Although a user-written corrective 
routine may change the setting of the 
return code (iretcd), such a change is 
subject to the following restrictions: 

1. If iretcd is set to 0, then datal and 
data2 must not be altered by the 
corrective routine, since standard 
corrective action is requested. If 
datal and data2 are altered when 
iretcd is set to 0, the operations 
that follow will have unpredictable 
results. 

2. Only the values 0 and 1 are valid for 
iretcd. A user-exit routine must 
ensure that one of these values is 
used if it changes the return code 
setting. A value other than 0 or 1 
will cause unpredictable results. 

Extended Error Handling Facility 161 



/ /SAMPLE JOB 1, SAMPLE,MSGLEVEL=l 
//STEPl EXEC FORTXCLG 
//FORT.SYSIN DD • 
C MAIN PROGRAM' THAT USESTBE· SUBROUTINE DIVIDE 

COMMONE 
EXTERNAL FIXDIV 

C SET UP OPTION TABLE WITH ADDRESS OF USER EXIT 

C 

2 
1 , 
10 

CALL ERRSET(302,30,5,1,FIXDIV) 

Figure 111-18. Sample Program Using Extended Error Handling Facility 

162 



The user-written exit routine can be 
written in FORTRAN or in assembler 
lanquage. In either case, it must be able 
to accept the call to it as shown above. 
The user~exit routine must be a closed 
subroutine that returns control to the 
caller. 

If the user-written exit routine is 
written in assembler language, the end of 
the parameter list can be checked. The 
high-order byte of the last parameter will 
have the hexadecimal value 80. If the 
routine is written in FORTRAN, the 
parameter list must match in length the 
parameter list passed in the CALL statement 
issued to the error monitor. 

When the extended error handling 
facility encounters a condition or a 
request that requires user notification, an 
informative message is printed. 

The error monitor is not recursive; if 
it has already been called for an error, it 
cannot be re-entered if the user-written 
corrective routine causes any of the error 
conditions that are listed in the option 
table. Boundary misalignment is therefore 
not allowed in a user-exit routine. 

Actions the user may take if he wishes 
to correct an error are described in Tables 
111-4, 111-5, and 111-6. 

Figures 111-19 and 111-20 describe the 
fields of the option table and list the 
default values for the contents of these 
fields. 

When a user-written exit subroutine is 
to be executed for a given error condition, 
the programmer must enter the address of 
the routine into the option table entry 
associated with that error condition. 

Addresses for user-exit subroutines 
cannot be entered into option table entries 
during program installation. An 
installation may, however, construct an 

option table containing user-exit addresses 
and place that option table into the 
FORTRAN library. (Each address must be 
specified as a V-type address constant.) 
Use of this procedure, though, results in 
the inclusion, in the load module, of all 
such user-exit subroutines by the linkage 
editor. 

If the user-exit address is not 
specified in advance through the use of 
V-type address constants, the programmer 
must issue a CALL ERRSET statement at 
execution time to insert an address into 
the option table that was created during 
program installation. 

The programmer should be warned that 
altering an option table entry to allow 
"unlimited" error occurrence <specifying a 
number greater than 255) may cause a 
program to loop indefinitely. 

CONSIDERATIONS FOR THE LIBRARY WITHOUT 
EXTENDED ERROR HANDLING FACILI'I'Y 

When the extended error handling facility 
is not chosen, execution terminates after 
the first occurrence of an error, unless it 
is one caused by boundary misalignment, 
divide check, exponent underflow, or 
exponent overflow. The messages for errors 
205, 215, 216, 218, 221-230, 228, and 
238-301 are the same as those with tne 
extended error handling facility. The 
other error messages are of the form 
"IHOxxxI" with no text. 

without the extended error handling 
facility, ERRMON becomes an entry point to 
the traceback routine. User programs that 
call the error monitor do not have to be 
altered. The error message will be printed 
with a traceback map and execution will 
terminate. 

Note, that if the facility is not 
selected, the ERRTRA, ERRSET, ERRSAV, and 
ERRSTR subprograms are assumed to be user 
supplied if they are called in a FORTRAN 
program. 

Extended Error Handling Facility 163 



r-----------T----------T----------T-----------------------------------------------------, 
I I Field I I I 
I Field I Length I I I 
I contents I in Bytes I Default I Field Description I 

~-----------+----------+----------+-----------------------------------------------------~ 
I Number I 4 I 97 I Number of entries in the Option Table. I 

I of entries I I I I 

~-----------+----------+----------+-----------------------------------------------------~ 
I Boundary I 1 I 40 I Bit 1 indicates whether boundary alignment was I 

I alignment I I (hexa- I chosen at program installation time. Bits 0 and 2 I 
I I I decimal) I through 7 are reserved for future use. I 
I I I I I 
I I I I Bit 1: 0 indicates NOALIGN I 

I I I I 1 indicates ALIGN I 
~-----------+----------+----------+-----------------------------------------------------~ 
I Extended I 1 I FF I Indicates whether extended error handling was chosenl 
I error I I (hexa- I at program installation time. I 

I handling I I decimal) I I 

I I I I FF indicates that extended error handling was I 
I I I I excluded. I 
I I I I 00 indicates that extended error handling was I 
I I I I included. I 

~-----------+----------+----------+-----------------------------------------------------~ 
I Alignment I 1 I 10 I Maximum number of boundary alignment messages I 
I count I I I allowed when extended error handling is not chosen. I 
~-----------+----------+----------+-----------------------------------------------------~ 
I Reserved I 1 I 0 I Reserved for future use. I L ___________ L __________ i __________ L ___________________ __________________________________ J 

Figure 111-19. Option Table Preface 

164 



r------------T----------T----------T----------------------------------------------------, 
I IField I I I 
I Field I Length I I I 
I Contents lin bytes I Default1 I Field Description , 
r------------+----------+-~~-~~~~~~+~~~~~~~~~~~~~~~~~~~--~------------------------------i 
I Number I 1 , 10 2 INumber of times this error condition should be I 
lof error I I lallowed to occur. When the value of the error count I 
loccurrences I I Ifield (below) equals this value, job processing is I 
I allowed I I I terminated. Number may range from 0 to 255. A I 
I I I Ivalue of 0 means an unlimited number of I 
I I I I occurrences. 3 I 
~------------+----------+----------t----------------------------------------------------i 
I Number I 1 I 54 INumber of times the corresponding error message is I 
I messages I I Ito be printed before message printing is suppressed. I 
Ito print I I IA value of 0 means no message is to be printed. I 
~------------+----------+----------+----------------------------------------------------1 
I Error I 1 , 0 ,The number of times this error has occurred. A , 
jcount i I Ivalue of 0 indicates that no occurrences have been , 
, I I ,encountered. , 
~------------+----------t----------+----------------------------------------------------~ 
Option 1 42 IEight option bits defined as follows (the default I 
bits (hexa- ,setting is underscored) : , 

decimal) l~i~I~~tti~gl~~!~~~~io~ I 
1 0 I Q INO control character supplied for I 
I 1 loverflow lines. I 
1 1 1 IControl character supplied to provide I 
1 I Isingle spacing for overflow lines. I 
~---t-------+----------------------------------------~ 
1 1 1 0 ITable entry cannot be modified. 5 I 
II! ITable entry can be modified. I 
~---+-------+----------------------------------------~ 
I 2 I Q IFewer than 256 error have occurred. I 
I I 1 ,More than 256 errors have occurred. I 
'I I (Add 256 to error count field above to I 
'I Idetermine the number.> , 
~---+-------+----------------------------------------~ 
I 36 1 Q IDO not print buffer contents with error I 
1 1 I message. , 
1 I 1 IPrint buffer contents. I 
~---t-------t----------------------------------------~ 
1 4 1 Q 1 Reserved. 1 
~---t-------+----------------------------------------~ 
I 5 I Q IPrint messages default nu~~er of times I 
1 1 ,only. 1 
1 I 1 IUnlimited printing requested; print for I 
1 I levery occurrence of error. 1 
~---+-------+----------------------------------------~ 
I 6 1 0 IDO not print tr3ceback map. I 
I I ! ,Print traceback map. I 
~---+-------+----------------------------------------~ 
1 7 I Q 1 Reserved. 1 

~------------+----------+----------t---~-------~----------------------------------------~ 
IUser 1 4 I 1 IIndicates where a user corrective routine is I 
I exit , 1 I located. A value of 1 indicates that no user- I 
, , , Iwritten routine is available. A value other than 1 1 

, I I Ispecifies the address of the user-written routine. 1 
~------------~----------~----------~----------------------------------------------------~ 
,1The default values shown apply to all error numbers (including additional user , 
I entries» unless excepted by a footnote. I 
1 2 Errors 208, 210, and 215 are set as unlimited, and errors 205, 217, 230, and 240 are I 
I set to 1. I 
13An unlimited number of errors may cause the FORTRAN job to loop indefinitely until thel 
I operator intervenes. 1 
14Error 210 is set to 10, and errors 205, 217, 230, and 240 are set to 1. I 
,5The entry for errors 205, 230, and 240 cannot be modified. I 
1 6 The entry is set to 0 except for errors 212, 215, 218, 221, 222, 223, 224, and 225. I l _______________________________________________________________________________________ J 

Figure III-20. Option Table Entry 

Extended Error Handling Facility 165 



Table 111-5. Corrective Action After Mathematical Subroutine Error OCcurrence (Part 1 of 4) 
r-------T----------------T----------------T---------------------------------------------, 
I I I I Options I 
I I I ~-----------------------T---------------------~ 
I I FORTRAN I Invalid I Standard I User-Supplied I 
I Error I Reference I Argument I Corrective Action I Corrective Action I 
I Code I (See Note 1) I Range I (See Notes 2 and 3) I (See Note 4) I 
~-------+----------------+----------------+-----------------------+---------------------~ 

216 CALL SLITE (I) 1>4 IThe call is treated I 

216 

241 

242 

243 

244 

245 

246 

247 

251 

252 

253 

CALL SLITET 
(I,J) 

K=I**J 

Y=X**I 

DA=D**I 

XA=X**Y 

DA=D**DB 

CA=C**I 

CDA=CD*I 

Y=SQRT (X) 

Y=EXP (X) 

Y=ALOG (X) 

1>4 

1=0, J~O 

X=O, I~O 

D=O, I~O 

X=O, Y~O 

0=0, DB~O 

C=O+Oi, I~O 

C=O+Oi, I~O 

X<O 

X>174.673 

X=O 
X<O 

las a NO OP (an instruc
Ition that requests no 
laction be performed) 
I 
I 
IJ=2 
I 
I 
IK=O 
I 
IIf 1=0, Y=l 
IIf 1<0, Y=. 
I 
IIf 1=0, Y=l 
IIf 1<0, Y=. 
I 
lXA=O 
I 
DA=O 

If 1=0, 
If 1<0, 

If 1=0, 
If 1<0, 

Y=IXIS./2 

Y=· 

Y=-· 
Y=loglXI 

C=1+0 
e=·+Oi 

e=1+0 
C=.+Oi 

I 

I,J 

X,I 

D,I 

X,Y 

D,DB 

C,I 

CD, I 

X 

X 

X 
X 

Y=ALOG10 (X) X=O IY=-. X 
X<O IY=log1o IXI X 

I 
254 Y=COS (X) I X I ~2S.8*" I Y="2/2 X 

Y=SIN (X) I 
I 

255 Y=ATAN2 (X,XA) X=O, XA=O IY=O X,XA 
~------~---------------~----------------~-----------------------~---------------------~ 
INotes: 

1. The variable types are as follows: 
Variable ~ 
I,J INTEGER*4 
X,XA,Y REAL * 4 
D,DA,DB REAL*8 
C,CA COMPLEX*8 
Z,XS.,X2 Complex variables to be given the length of the functioned 

argument when they appear. 
CD COMPLEX*16 

2. The largest number that can be represented in floating point is indicated by the 
symbol •• 

3. The value e=approximately 2.7183. 
4. The user-supplied answer is obtained by recomputation of the function using the 

value set by the user routine for the parameters listed. 

166 



Table 111-5. Corrective Action After Mathematical Subroutine Error OCcurrence (Part 2 of 4) 
r-------T----------------T----------------T---------------------------------------------, 
I I I I Options I 
I I I ~-----------------------T---------------------~ 
I I FORTRAN I Invalid I Standard I User-Supplied I 
I Error I Reference I Argument I Corrective Action I Corrective Action I 
I Code I (See Note 1) I Range I (See Notes 2 and 3) I (See Note 4) I 
~-------+----------------+----------------+-----------------------+---------------------~ 

256 Y=SINH (X) IXI$175.366 IY=(SIN X). X 
Y=COSH (X) IY=. 

I " 257 Y=ARSIN (X) !X!>l ! If X>1.0,ARSIN(X)=,2 ff X 
IIf X<-1.0,ARSIN(X)=-2 

Y=ARCOS (X) IIf X>1.0,ARCOS=0 
I If X<-1.0,ARCOS=" 
I 

258 Y=TAN (X) IXI~(218)*" IY=l X 
Y=COTAN (X) ! 

I 
259 Y=TAN (X) X is too close IY=. X 

to an odd I 
multiple of ~ I 

I 
I 

Y=COTAN (X) X is too close IY=. X 
to a multiple I 
of" I 

I 
261 DA=DSQRT (D) D<O IDA=IDI1/2 D 

I 
262 DA=DEXP (D) D>174.673 IDA=. D 

I 
263 DA=DLOG (D) D=O IDA=-. D 

D<O I DA=logl XI 
I 

DA=DLOG10 (D) D=O I DA=-. D 
D<O IDA=log1o IXI 

I 
264 DA=DSIN (D) IDI~250*" IDA=~2/2 D 

DA=DCOS (D) I 
I 

265 DA=DATAN2(D,DB) D=O,DB=O IDA=O D,DB 
I 

266 DA=DSINH (D) IDI~175.366 IDA=(SIN X). D 
DA=DCOSH (D) IDA=. 

I " 267 DA=DARSIN (D) IDI>l IIf X>1.0,DARSIN(X)=2 D 
IIf X<-1.0,DARSIN(X)=-~ 

DA=DARCOS (D) IIf x>1.0,DARCOS=0 
IIf X<-1.0,DARCOS=" 

~-------~----------------~----------------~-----------------------~---------------------~ 
INotes: 

1. The variable types are as follows: 
variable ~ 
I,J INTEGER*4 
X,XA,Y REAL * 4 
D,DA,DB REAL * 8 
C,CA COMPLEX*8 
Z,X1 ,X2 Complex variables to be given the length of the functioned 

argument when they appear. 
CD COMPLEX*16 

2. The largest number that can be represented in floating point is indicated by the 
symbol •• 

3. The value e=approximately 2.7183 
4. The user-supplied answer is obtained by recomputation of the function using the 

value set by the user routine for the parameters listed. _______________________________________________________________________________________ J 

Extended Error Handling Facility 167 



Table 111-5. Corrective Action After Mathematical Subroutine Error Occurrence (Part 3 of 4) 
r-------T----------------T----------------T---------------------------------------------, 
I I I I Options I 
I I I .-----------------------T---------------------~ 
I I FORTRAN I Invalid I Standard I User-Supplied I 
I Error I Reference I Argument I Corrective Action I Corrective Action I 
I Code I (See Note 1) I Range I (See Notes 2 and 3) I (See Note 4) I 
~-------+----------------+----------------+-----------------------+---------------------~ 
I 268 I DA=DTAN (D) I IXI~250*77' I DA=l I D I 
I I DA=DCOTAN (D) I I I I 
I I I I I I 
I I I I I I 
I 269 I DA=DTAN (D) I D is too close I DA=. I D I 
I I I to an odd 77' I I I 
I I I multiple of 2" I I I 
I I I I I I 
I I DA=DCOTAN (D) I D is too close I DA=. I D I 
I I I to a multiple I I I 
I I I of 77' I I I 
~-------~---------------~----------------~-----------------------~---------------------~ 
I For errors 271 through 275, C=X1+iX2 I 
~------T----------------T----------------T-----------------------T---------------------~ 

271 Z=CEXP (C) X1>174.673 Z=*(COS X2+ SIN X2) C 

272 Z=CEXP (C) Z=ex1 +O*i C 

273 Z=CLOG (C) C=O+Oi Z=-.+Oi C 

274 Z=CSIN (C) Z=O+SINH(X2)*i C 
Z=CCOS (C) Z=COSH(X2)+O*i 

275 Z=CSIN (C) Z=.(SIN X1+iCOS X1 ) C 
"2 

Z=CCOS (C) Z=.(COS X1-iSIN X1 ) C 
"2 

Z=CSIN (C) Z=.(SIN X1-iCOS X1 ) C 
"2 

Z=CCOS (C) Z=.(COS X1+iSIN X1 ) C 
"2 

~-------~---------------~----------------~-----------------------~---------------------~ 
INotes: 
1. The variable types are as follows: 

Variable ~ 
I,J INTEGER*4 
X,XA,Y REAL * 4 
D,DA,DB REAL*8 
C,CA COMPLEX*8 
Z,X1,X2 Complex variables to be given the length of the functioned 

argument when they appear. 
CD COMPLEX*16 

2. The largest number that can be represented in floating point is indicated by the 
symbol •• 

3. The value e=approximately 2.7183 
4. The user-supplied answer is obtained by recomputation of the function using the 

value set by the user routine for the parameters listed. L ______________________________________________________________________________________ _ 

168 



Table 111-5. Corrective Action After Mathematical Subroutine Error Occurrence (Part 4 of 4) 
r-------T----------------T----------------T---------------------------------------------, 
I I I I Options I 
I I I .-----------------------T---------------------~ 
i FORTR~N Invalid! Standard ! User-Supplied ! 
I Error Reference Argument I Corrective Action I Corrective Action I 
I Code I (See Note 1) I Range I (See Notes 2 and 3) I (See Note 4) I 
~-------i----------------i----------------i-------------__________ i _____________________ ~ 
I For errors 281 through 285, CD=X~+iX2 I 
~-------T----------------T----------------T-----------------------T---------------------~ 

281 Z=CDEXP (CD) X1 >174.673 Z=*(COS X2+iS1N X2) CD 

282 Z=CDEXP (CD) 

283 Z=CDLOG (CD) 

284 Z=CDS1N (CD) 
Z=CDCOS (CD) 

284 Z=CDS1N (CD) 
Z=CDCOS (CD) 

285 Z=CDS1N (CD) 

Z=CDCOS (CD) 

Z=CDS1N (CD) 

Z=CDCOS (CD) 

290 Y=GAMMA (X) 

291 Y=ALGAMA (X) 

300 DA=DGAMMA (D) 

301 DA=DLGAMA (D) 

CD=O+Oi 

X~2-252 or 
X~57.5744 

X~O or 
X~4.2937*1073 

D~2-252 or 
D~57.5774 

D~O or 

Z=ex~+O*i 

z=-.+Oi 

Z= 0+S1NH(X2)*i 
Z= COSH(X2}+O*i 

Z=O+Oi 

Z=·(S1N X1 +iCOS 
"2 

Z=·(COS X~-iS1N 
2 

Z=·(S1N X1 -iCOS 
"2 

Z=. (COS X1 +iS1N 
2 

Y=· 

Y=· 

DA=. 

DA=. 

CD 

CD 

CD 

CD 

X1 ) CD 

X~) CD 

X1 ) CD 

X~) CD 

X 

X 

0 

I 0 
D~4.2937*1073 I 

~--_---i----------------i----------------i------------___________ i _____________________ ~ 

Notes: 
L"The variable types are as follows: 

Variable ~ 
I,J 1NTEGER*4 
X,XA,Y REAL * 4 
D,DA,DB REAL * 8 
C,CA COMPLEX*8 
Z,X~,X2 Complex variables to be given the length of the fUnctioned 

CD 
2. The largest 

symbol •• 

argument when they appear. 
COMPLEX*16 

number that can be represented in floating point is indicated by the 

3. The value e= approximately 2.7183 
4. The user-supplied answer is obtained by recomputation of the function using the 

value set by the user routine for the parameters listed. _______________________________________________________________________________________ J 

Extended Error Handling Facility 169 



Table 111-6. corrective Action After Program Interrupt Occurrence 
r-------------------------------------------T-------------------------------------------, 
I Program Interrupt Messages I Options I 
~-----T----------T--------------------------+---------------------------T---------------~ 
I I Parameters I I I I 
I I Passed to I I I user-Supplied I 
IErrorlUser Exit I Reason for Interrupt I I Corrective I 
ICode I (Note 1) I (Note 2) IStandard Corrective Action I Action I 
~-----+----------+--------------------------+---------------------------+---------------1 

207 I D,I Exponent overflow Result register set to the User may alter 

208 

209 

210 

I (Interrupt Code 12) largest possible floating D. (Note 3) 
point number. The sign of 

D,I 

None 

None 

Exponent underflow 
(Interrupt Code 13) 

Divide check, integer 
divide (interrupt code 9), 
decimal divide (Interrupt 
Code 11), floating point 
Code 11), floating point 
divide (interrupt code 
15). See Note 4. 

the result register is not 
altered. 

The result register is set User may alter 
to zero. D. (Note 3) 

For floating point divide, See Note 5. 
where n/O and n=O, result 
register is set to 0; where 
n*O, result register set to 
largest possible floating 
point number. No standard 
fixup for other interrupts. 

Specification interrupt No special corrective See Note 5. 
(interrupt code 6) occurs action other than correct
for boundary misalignment. ing boundary misalignments. 
Operation exception I 
(interrupt code 1) occurs I 
for operation interrupt. I 
Other interrupts occur I 
during boundary alignment I 
adjustment or extended I 
precision floating point I 
simulation. They will be I 
shown with this error code I 
and the PSW portion of thel 
message will identify the I 
in terrupt. I I 

~-----~----------~--------------------------~---------------------------~---------------1 
I Notes: 

1. The variable types and 
Variable ~ 

meaning are as follows: 

D REAL*8 

I INTEGER*4 

Meaning 
This variable contains the contents of the result 
register after the interrupt. 
The variable contains the "exponent" as an integer 
value for the number in D. It may be used to 
determine the amount of the underflow or overflow. 
The value in I is not the true exponent, but what was 
left in the exponent field of a floating point number 
after the interrupt. 

2. A program interrupt asynchronously. Interrupts are described in the appropriate 
principles of operation publication, as listed in the Preface. 

3. The user exit routine may supply an alternate answer for the setting of the result 
register. This is accomplished by placing a value for D in the user-exit routine. 
Although the interrupt may be caused by a long or short floating-point operation, 
the user-exit routine need not be concerned with this. The user-exit routine 
should always set a REAL*8 variable and the FORTRAN library will load a short or 
long data item depending upon the floating-point operation that caused the 
interrupt. 

4. For floating-point divide check, the contents of the result register is shown in 
the message. 

5. The user-exit routine does not have the ability to change result registers after al 
fixed-point divide check. The boundary alignment adjustments are informative I 
messages, and there is nothing to alter before execution continues. I _______________________________________________________________________________________ J 

170 



Appendixes 171 





The following examples show several methods 
of processing load modules. 

Example 1: Submittin~Job consisting of 
One ..Job ~tep 

Problem Statement: A previously created 
data set, SCIENCE. MATH. MATRICES, contains a 
set of 80 matrices. Each matrix is an 
array containing REAL*4 variables. The 
size of the matrices varies from 2x2 to 
25x25; the average size is 10xl0. The 
matrices are inverted by a load module 
MATINV in the library MATPROGS. Each 
inverted matrix is written (assume FORMAT 
control) as a single record on the data set 
SCIENCE.~~TH.INVMATRS. The first variable 
in each record denotes the size of the 
matrix. 

The input/output flow for the example is 
shown in Figure A-l. The job control 
statements used to define this job are 
shown in Figure A-2. 

MATINV 

Figure A-l. Input/Output Flow for 
Example 1 

Explanation: The JOB statement identifies 
the programmer as JOHN SMITH and supplies 
the account number 537. Control statements 
and control statement error messages are 
writte~ in the SYSOUT data set. 

The JOBLIB DD statement indic~tes that 
the private library MATPROGS is to be 
concatenated with the system library. 

The EXEC statement indicates that the 
load module MATINV is the program to be 
executed. 

DD statement FT08FOOl identifies the 
input data set, SCIENCE. MATH. MATRICES. 
(Data set reference number 8 is used to 
read the input data set.) Assume that this 
data set has been previously created and 
cataloged; therefore no information other 
than the data set name and disposition has 
to be supplied. 

DD statement FT10FOOl identifies the 
printed output. (Data set reference number 
10 is used for printed output.) 

DD statement FT04FOOl defines the output 
data set. (Data set reference number 4 is 
used to write the data set containing the 
inverted matrices.) Because the data set 
is to be created and cataloged in this 
job step, a complete data set specification 
is supplied. The DSNAME parameter 
indicates that the data set is named 
SCIENCE.MATH.INVMATRS. The DISP parameter 
indicates that the data set is new and is 
to be cataloged. SPACE indicates that 
space is to be reserved for 80 records, 408 
characters long (80 matrices of average 
size); when space is exhausted, space for 9 
more records is allocated. The space is 
contiguous; any unused space is released, 
and allocation is to begin and end on 
cylinder boundaries. 

DCB indicates that records are 
variable-length (because the size of 
matrices vary). The record length is 
specified as 2504, the maximum size of a 
variable-length record. The maximum size 
of a record in this data set is the maximum 
number of elements (625) in any matrix 
multiplied by the number of bytes (4) 
allocated for an element, plus 4 for the 
segment control word (SCW). The buffer 
length is specified as 2508 (the 4 extra 
bytes are for the block control word (BCW) 
that contains the length of the block). 

SEP indicates that read and write 
operations are to take place on different 
channels. 

Appendix A: Examples of Job Processing 173 



Sample Coding Form 

1-10 [ 11-20 [ 21-30 j --31-=-:-40------;----- -41:'50~----r-- 51-60 I 61-70 I 71-80 
1/2/3/41516/718/910/112131415161718191011121314151617181910,TT2T3BIill"6~8i9lQI1ill~@15~~llli.lJ2i3141516171819101112131415161718191011121314/5/617181910 

IIINV;ERT JPS 5317,JOH,N5MIT,H,MSG1L,E,V,E,L/=,1 -.-t-"--"--'--L-~ 1 J I I I 

IIJO,~LI8 DID DSN,AMs=MA,T,P,R'o,G,~~~P,=,O,LP" i"" i ~-"-, I" I' I , I , , 

IIINVjERT E,XEC P,G,M=,~A;TINV I -L~U"! I i-L-L-L~~~-LLL I ' I 1 1 

II FT~18F,0,0,ll ,0,0, ,DISNAMEI=,S,C,I,ENC,E'~iA,T,H,.,MIA~I,CIE,S",D,IISL~,O,LID, ' U~_-L_-1_LL-l- 1 1 1 1 

II FT11~F0011 DO ,~YSOUTI=A , , 1 , , , , I ' , , , I, "I"" 1 i , , , I ' , ~I , , , , I ' 1 1 I 

//,F,T,014,F,0,0,t l ,D,D, ,DIS,NAMEI=,S,C,I,EN,C,E,.,MIA,T,H,.,lIN,V,M,A,T1R,S,"), ~ , , , I ' U-L1 I 1 I 1 j I I 1 

II 1 I PISP=I(NEW,~,AI,LIGI)I'lqNIIITI=ID,AICILIA~"IVPIL,q~EI=-1SIEIR'=llJ61819~" I I 1 I 2 I 
1/, I ISPAC E,= (ij0.~, (8ft'1'19)"IR,LISIEI'IC,o~l,IIGI'I~pINIDi)I"S,EIP~F~~t001 'I 1 3 I 
1/, I ,DCB=CRECFM,=VS,L,RECL=2.50Lt',BL;K,51IE=2508 I I / I , 

Figure A-2. Job control statements for Example 1 

Problem Statement: Raw data gathered from 
a rocket test firing is to be converted in 
a report and graphs describing the success 
of the test. The data set RAWDATA contains 
the information gathered from the test 
firing. 

Job step 1 executes the load module 
PROGRD. PROGRD compares the raw data in 
RAWDATA against forecasted results 
contained in the data set PROJDATA, and 
generates the data set 'REFDATA containing 
refined data to be passed to the second job 
step. 

Job step 2 executes the load module 
ANALYZ. ANALYZ processes 'REFDATA against 
the data set PARAMS which contains 
parameters used in developing values, and 
generates the data set &VALUES containing 
results to be passed to the third job step. 

Job step 3 executes the load module 
REPORT. REPORT prints the values in 
&VALUES as a series of reports and graphs. 

Figure A-3 shows the 1/0 flow for this 
example. Figure A-4 shows the job control 
statements for the job. The load modules 
PROGRD, ANALYZ, and REPORT are contained in 
the private library FIRING. 

174 

Job Srep 1: 
Refine Data 

Job Step 2: 
Develop Values 

Figure A-3. Input Flow for Example 2 



Sample Coding Form 

1,I,Fl112,F,0.0.1: PiQ iD!SNAMEI=I&;RIEIFPIAITIAI'IDII,5PI=!(NEI~'PIAIS,S...L:...)~1'LlUN---L:r:...LT+-,=~TLlA---L:PE:.:.L.,C:..cL:c.SLl' --+'--L.l..-.L.l......J.1---L....L...L.L-j'f--11.....l......l.--L-L.J.i' ---L....L~ 
1/, I I 1 , , I I I I , , , ,V,O,L,U,M,E,=('),R,ETAI,N

"
,S.E,R,=,2,1.0.1J" ... I . I I I I I 2 I I 

//. I I ,DCB=(,OEN=21'REGit~I,IBIL,KI5,I,ZIE=4~,~,) I I I I I I 

/ /STE,P2 EX1EIC, ,PPIMI=IAN,AIL,Y,r, I I I Iii I I I I I I 

I 1 1 
I 

I 1/ FT118F0011 DO O,SWAME,=PARAMS, DI~~Q):P~...J. I I I I I I I 

/ / FT210F0011 DO D,SNAME,=&VALPES ,IDIIISfl=ICNIE~,IPIAISISJ'lqNIIITI=IMft.,SI", I I I I I I 1 I I I I I ,1, I I I I 
II I I JICIBI=I(IDIEINI=12i,I~,FIMI=,FI,IBILIKISIIIZIEI~~,~)I,IVIC1!#~~1.=M,R,=,2:=cll~I¢.L:..18LlI 1--1..1_.1-1 .L..L..L----L+--L--J-1-----'------L.L..L-L1----'-------L-J 
//ISlIE,PI3, ,E,XIE,C, ,P,GIM,= ,R,E,PIO,R,T, I I I I I I I I I .L...L.l. I I I I I I .LL..L...l--.-L.L.~....Ll......L..L . ..Ll..-L.J.....j..I--L.l..-.L.l......J.I---L....L..L-L..iI--LL---1-L..JILL-L~ 
I/F.TI~8IFI0,0,11 ,OP, ,DISINIAIMIEI=I*~ISITIEpI21·IF~T-L~~EiJ~J.I,p,IIS~PL-L...L.L~-1.-L~...L.L.L~_....L-,-------,-----I---L-l-+-I L..l-L--,-~I~ 
/1 Fl,0,6,F,e:,,1, ,oP, IqNIIITI=4~,T,EI~._L..L_~.LL_L . .l.J....L.L I I ! I I I 1.J_.L.L...LLL.L.L.u..J~~~....L..l-.L I.L.L....LJI,---l, ----L-L-L-LI~_"___'_i 

I I I I I I I I I I 

Figure A-4. Job Control Statements for Example 2 

Exl21~!!atiQ!LQL~.QQ_~.Qntrol St~t~ments: In 
Figure A-4, the JOB statement indicates the 
proqrarnrner's name, JOHN SMITH, and 
specifies that control statements and 
control statement error messages are to be 
written in the SYSOUT data set. Because 
the first positional parameter indicating 
accounting information is omitted, its 
absence is noted by a comma. 

The JOBLIB DD statement indicates that 
the private library FIRING is to be 
concatenated with the system library. 

The EXEC statement STEPl indicates that 
the load module PROGRD is to be executed. 

DD statement FT10FOOl and FTllFOOl 
identify the data sets containing raw data 
(RAWDATA) and the forecasted results 
(PROJDATA) respectively. 

DD statement FT12FOOl defines the 
temporary data set &&REFDATA (data set 
reference number 12 is used to write 
&&REFDATA). DISP indicates that the data 
set is new and is to be passed to the next 

job step. UNIT indicates that the data set 
is to be written on one of the units 
contained in the device class TAPECLS. 
VOLUME indicates that the volume whose 
serial number is 2107 is to be used to 
contain the data set. DCB indicates that 
the volume is written in high density and 
that records are fixed-length with FORMA~ 
control and a buffer length of 400. 

The EXEC statement STEP2 indicates that 
the load module ANALYZ is to be executed. 

DD statement FT17FOOl identifies the 
data set containing refined data. It 
specifies the data set as the one defined 
on DD statement FT12F001 appearing in job 
step STEP1. DISP indicates that the data 
set is to be deleted after execution of 
this job step. 

DD statement FT18FOOl identifies a 
previously created and cataloged data set 
PA.~AMS. 

DD statement FT20FOOl defines the 
temporary data set &VALUES containing the 

Appendix A: Examples of Job Processing 175 



values to be printed. DISP indicates that 
the data set is new and is to be passed to 
the next job step. VOLUME and UNIT 
indicate that the data set is to be written 
on volume 2108 using a device in the device 
class TAPECLS. DCB indicates high density 
and fixed-length records (written under 
FORMAT control) with a buffer length of 
204. 

The EXEC statement STEP3 indicates that 
the load module REPORT is to be executed. 

DD statement FT08FOOl identifies the 
data set containing the values to be 
printed. 

DD statement FT06FOOl indicates that the 
device class PRINTER is to be used to print 
the reports (data set reference number 6 is 
used to write the data set). 

Exam~3:~QQati~ a Direct-Access Data 
Set 

A data set has been created that contains 
master records for an index of stars. Each 
star is identified by a unique 6-digit star 
identification number. Each star is 
assigned a record position in the data set 
by truncating the last two digits in the 
star identification number. Because 
synonyms arise, records are chained. 

Problem Statement: Figure A-5 shows a 
block diagram illustrating the logic for 
this problem. 

A card data set read from the input 
stream is used to update the star master 
data set. Each detail record in this data 
set contains: 

1. The star identification field of the 
star master record that the detail 
record is to update. 

2. Six variables that are to be used to 
update the star master record. 

The following conventions are observed 
in processing this data set: 

1. The star master record that contains 
the record location counter pointing 
to space reserved for chained records 
is assigned to record location 1. 

2. A zero in the chain variable indicates 
that the end of a chain has been 
reached. 

176 

Set Record Position 
in Read Statement 
= Chain Variable 

Figure A-5. 

Record Location 

Set Chain 
Variable = Record 
Location Counter 

Set Record Position 
in Write Statement 

= Record 
Location Counter 

Increment 
Record Location 

Counter by 1 

Bui Id Star 
Moster Record 

Update 
Variable in 
Star Master 

Block Diagram for Example 3 



3. The first variable in each star master 
record is the star identification 
field; the second variable in each 
star master is the chain variable 
pointing to the next record in the 
chain. 

4. Each record contains six other 
variables that contain information 
about that star. 

When a detail record is read, its 
identification field is randomized and the 
appropriate star master record is read= If 
the correct star master record is found, 
the record is to be updated. If a star 
master is not found, then a star master 
record is to be created for that star. 

The last record in the star detail data 
set contains star identification number 
999999 to indicate the end of the data set. 

Expl~nation: Figure A-5 is similar to the 
diaqram shown in Figure 111-2 except Figure 
A-5 includes blocks that describe updating 
variables in master records already present 
in the data set. (Figure 111-2 includes 
blocks describing certain operations that 
must be performed when a direct access data 
set is created.) Also, Figure A-5 is 
adapted to Example 3, while Figure 111-2 is 
more general. Figure A-6 shows the FORTRAN 
coding for this program. 

The star master record that contains the 
record counter is read, placing the record 
location counter in LOCREC. Whenever a 
detail record is read: the identification 
variable is checked to determine if the end 
of the detail data set has been reached. 
The star detail records contain the 
variables A, B, C, D, E, and F. 

The identification nWI~er in the detail 
record is randomized and the result is 
placed in the variable NOREC, which is used 
to read a master record. The master record 
contains the star identification number 
(IDSTRM), a chain record location (ICHAIN). 
and six variables (T, U, V, X, Y. and z) 
which are to be updated by the variables in 
the star detail records. IDSTRM and IDSTRD 
are compared to see if the correct star 
master is found. If it is not found, then 
the variables containing the chain record 
numbers are followed until the correct star 
master is found or a new star master is 
created. 

Job_£Q.!!.t!:'Q.!._Stat~!!!~nt~: The program shown 
in Figure A-6 is compiled and link edited, 
placing the load module in the data set 
STARPGMS and assigning the load module the 
name UPDATE. The data set that contains 
the star master records was cataloged and 
assigned the name STARMSTR when it was 
created. Figure A-7 shows the job control 
statements needed to execute the module 
UPDATE. 

Appendix A: Examples of Job Processing 177 



Figure A-6. FORTRAN Coding for Example 3 

Sample Coding Form 

1-10 1 11-20 1 21-30 I 31-40 1 41-50 I 51-60 1 61-70 1 71 80 
112131415161718191011121314151617181910111213141516171819101112131415161718T9161 1121314151617181910111213141516171819101112131415161718191011121314151617181910 

/ /S,~A,RDAUP, JOB 1323, \J. AST,RONO,~ER' ,M1SGLEV1EL a 1 1 I I I I I I 

Figure A-7. Job Control Statements for Example 3 

178 



A FORTRAN programmer can use assembler 
lanquage subprograms with his FORTRAN main 
proqram. This section describes the 
linkage conventions that must be used by 
the assembler language subprogram to 
corr~unicate with the FORTRAN main program. 
To understand this appendix, the reader 
should be familiar with the appropriate 
assembler language publication and 
assembler program.rner's guide, as listed in 
the Preface. 

SUBROUTINE REFERENCES 

'l'he FORTRAN programmer can refer to a 
subprogram in two ways: by a CALL 
statement or a function reference within an 
arithmetic expression. For example, the 
statements: 

CALL MYSUB(X,Y,Z) 
I=J+K+MYFUNC(L,M,N) 

refer to a subroutine subprogram MYSUB and 
a function subrpogram MY FUNC, respectively. 

For subprogram reference, the compiler 
generates: 

1. A contiguous argument list; the 
addresses of the arguments are placed 
in this list to make the arguments 
accessible to the subprogram. 

2. A save area in which the subprogram 
can save information related to the 
calling program. 

3. A calling sequence to pass control to 
the subprogram, using linkage 
conventions (Table A-1 illustrates the 
use of registers during linkage). 

Argument List 

The argument list contains addresses of 
variables, arrays, and subprogram names 

used as arguments. Each entry in the 
argument list is four bytes and is aligned 
on a fullword boundary. The last three 
bytes of each entry contain the 24-bit 
address of an argument. The first byte of 
each entry contains zeros, unless it is the 
last entry in the argument list. If this 
is the last entry, the sign bit in the 
entry is set to 1. 

The address of the argument list is 
placed in general register 1 by the calling 
program. 

The calling program contains a save area in 
which the subprogram places information, 
such as the entry point for this program, 
an address to which the sUbprogram returns, 
general register contents, and addresses of 
save areas used by programs other than the 
subprogram. The amount of storage reserved 
by the calling program is 18 words. Figure 
A-8 shows the layout of the save area and 
the contents of each word. The address of 
the save area is placed in general register 
13. 

The called subprogram does not have to 
save and restore floating-point registers. 

A calling sequence is generated to transfer 
control to the subprogram. The address of 
the save area in the calling program is 
placed in general register 13. The address 
of the argument list is placed in general 
register 1, and the entry address is placed 
in general register 15. If there is no 
argument list, then general register 1 will 
contain zero. A branch is made to the 
address in register 15 and the return 
address is saved in general register 14. 

Appendix B: Assembler Language Subprograms 179 



Table A-1. Linkage Registers 
r--------T---------------T--------------------------------------------------------------, 
I Reqisterl I I 
I Number I Register Name I Function I 
~--------+---------------+--------------------------------------------------------------~ 
I 0 IResult RegisterlUsed for function subprograms only. The result is returned inl 
I I Igeneral or floating-point register O. An extended precision I 
I I Iresult is returned in floating-point registers 0 and 2. A I 
I I Icomplex result is returned in floating-point registers 0 (reall 
I I \ part) and 2 (imaginary part). I 
I I \ I 
\ \ I Note: For subroutine subprograms, the result(s) is returned I 
I I lin a variable(s) passed by the programmer. I 
~--------+---------------+--------------------------------------------------------------~ 
I 1 IArgument List IAddress of the argument list passed to the called I 
I \ Register \ subprogram. I 
~--------+---------------+--------------------------------------------------------------~ 
\ 2 \Result Register\See Function of Register O. \ 
~--------+---------------+--------------------------------------------------------------~ 
\ 13 ISave Area IAddress of the area reserved by the calling program I 
\ I Register lin which the contents of certain registers are stored by the I 
\ I \ called program. I 
~--------t---------------+--------------------------------------------------------------~ 
I 14 \Return Register\Address of the location in the calling program to which con- I 
\ I \trol is returned after execution of the called program. I 
~--------t---------------+--------------------------------------------------------------~ 
I 15 IEntry Point IAddress of the entry point in the called subprogram. I 
I I Register I I 
I I I Note: Register 15 is also used as a condition code register, I 
I I la RETURN code register, and a STOP code register. The parti- I 
I I Icular values that can be contained in the register are: I 
I I I 16 - a terminal error was detected during execution of a sub-I 
I I \ program (an IHOxxxI message is generated) I 
I I 14*i - a RETURN i statement was executed I 
I I I n - a STOP n statement was executed I 
I I I 0 - a RETURN or a STOP statement was executed I L ________ ~ _______________ ~ ______________________________________________________________ J 

r---------------------------------------------------------------------------------------, 
AREA------------>r----------------------------------------------------------------, 

<word 1) IThis word is used by a FORTRAN-compiled routine to store its I 
lepilogue address and may not be used by the assembler language I 
I subprogram for any purpose. I 

AREA+4---------->~----------------------------------------------------------------~ 
<word 2) IIf the program that calls the assembler language subprogram is I 

litself a subprogram, this word contains the address of the save ~ 
larea of the calling program; otherwise, this word is not used. I 

AREA+S---------->~----------------------------------------------------------------~ 
(word 3) IThe address of the save area of the called subprogram. I 

AREA+12--------->~----------------------------------------------------------------~ 
<word 4) IThe contents of register 14 (the return address). When the sub-I 

Iprogram returns control, the first byte of this location is set I 
Ito ones. I 

AREA+16--------->~----------------------------------------------------------------~ 
(word 5) IThe contents of register 15 (the entry address). \ 

AREA+20--------->~----------------------------------------------------------------~ 
(word 6) \The contents of register o. I 

AREA+24--------->~----------------------------------------------------------------~ 
(word 7) IThe contents of register 1. I 

~----------------------------------------------------------------~ 
I I I 
I I I 
I AREA+6S--------->~----------------------------------------------------------------~ 
I (word lS) IThe contents of register 12. I I L ________________________________________________________________ J 

L _______________________________________________________________________________________ J 

Figure A-S. Save Area Layout and Word Contents 

lS0 



CODING THE ASSEMBLER LANGUAGE SUBPROGRAM 

Two types of assembler language subprograms 
are possible: the first type (lowest 
level) assembler subprogram does not call 
another subprogram; the second type (higher 
level) subprogram does call another 
subprogram. 

Coding a Lowest Level Assembler Languagg 
§ubprogram 

For the lowest level assembler language 
subprogram, the linkage instructions must 
include: 

1. An assembler instruction that names an 
entry point for the subprogram. 

2. An instruction(s) to save any general 
registers used by the subprogram in 
the save area reserved by the calling 
program. (The contents of linkage 
registers 0 and 1 need not be saved.) 

3. An instruction(s) to restore the 
"saved" registers before returning 
control to the calling program. 

4. An instruction that sets the first 
byte in the fourth word of the save 
area to ones, indicating that control 
is returned to the calling program. 

5. An instruction that returns control to 
the calling program. 

Figure A-9 shows the linkage conventions 
for an assembler language subprogram that 
does not call another subprogram. In 

addition to these conventions, the 
assembler program must provide a method to 
transfer arguments from the calling program 
and return the arguments to the calling 
program. 

A higher level assembler subprogram must 
include the same linkage instructions as 
the lowest level subprogram, but because 
the higher level subprogram calls another 
subprogram, it must simulate a FORTRAN 
subprogram reference statement and include: 

1. A save area and additional 
instructions to insert entries into 
its save area. 

2. A calling sequence and a parameter 
list for the subprogram that the 
higher level subprogram calls. 

3. An assembler instruction that 
indicates an external reference to the 
subprogram called by the higher level 
sUbprogram. 

4. Additional instructions in the return 
routine to retrieve entries in the 
save area. 

~ote: If an assembler language main 
program calls a FORTRAN subprogram, the 
following instructions must be included in 
the assembler language program before the 
FORTRAN subprogram is called: 

L 15,=V(IBCOM#) 
BAL 14,64(15) 

r---------T------T---------------~------------------------------------------------------, 
I Name IOper. IOperand Comments I 
~---------+------+----------------------------------------------------------------------~ 
Ideckname START 0 I 
I BC 15,m+l+4(15) BRANCH AROUND CONSTANTS IN CALLING SEQUENCE I 
I DC X'm' m MUST BE AN ODD INTEGER TO INSURE THAT THE PROGRAM I 
I DC CLm'name ' STARTS ON A HALFWORD BOUNDARY. THE NAME CAN BE PADDED I 
I * WITH BLANKS. I 
I STM 14,R,12(13) THE CONTENTS OF REGISTERS 14, 15, AND 0 THROUGH R ARE I 
1* STORED IN THE SAVE AREA OF THE CALLING PROGRAM. R IS ANY 
I * NUMBER FROM 2 THROUGH 12. 
I BALR B,O ESTABLISH BASE REGISTER (2~B~12) 

I USING *,B 
I (user-written source statements) 
I 
I 
I 
I LM 2,R,28(13) RESTORE REGISTERS 
I MVI 12(13),X' FF ' INDICATE CONTROL RETURNED TO CALLING PROGRAM 
I BCR 15,14 RETURN TO CALLING PROGRAM l _________ ~ ______ ~ ____________________________________ - ________________________________ _ 

Figure A-9. Linkage conventions for Lowest Level Subprogram 

Appendix B: Assembler Language Subprograms 181 



These instructions cause initialization of 
return coding, interruption exceptions and 
openinq of the error message data set. If 
this is not done and the FORTRAN subprogram 
terminates either with a STOP statement or 
because of an execution-time error, the 
data sets opened by FORTRAN are not closed 
and the result of the termination cannot be 
predicted. Register 13 must contain the 
address of the save area that contains the 
registers to be restored upon termination 

of the FORTRAN subprogram. If control is 
to return to the assembler language 
subprogram, then register 13 contains the 
address of its save area. If control is to 
return to the operating system, then 
register 13 contains the address of its 
save area. 

Figure A-l0 shows the linkage 
conventions for an assembler subprogram 
that calls another assembler subprogram. 

r---------T------T----------------------------------------------------------------------, 
I Name IOper. IOperand comments I 
r---------+------+----------------------------------------------------------------------~ 
Ideckname START 0 I 
I EXTRN name2 NAME OF THE SUBPROGRAM CALLED BY THIS SUBPROGRAM I 
I BC 15,m+l+4(15) I 
I DC X'm' I 
\ DC CLm'namel' I 
* SAVE ROUTINE I 

* 
* 

* 
* 
* 
* 
* 
* 
AREA 

* probl 

* 

* 
* 

* ADCON 

* \ARGLIST 
I 
I 
I 

STM 14,R,12(13) THE CONTENTS OF REGISTERS 14, 15, AND 0 THROUGH R ARE I 

BALR 
USING 
LR 

LA 

ST 

ST 

BC 
DS 

LA 
L 
BALR 

L 

LM 
L 
MVI 
BCR 

DC 

DC 

B,O 
*,B 
Q,13 

13, AREA 

13,8(0,Q) 

Q,4(0,13) 

15,probl 

STORED IN THE SAVE AREA OF THE CALLING PROGRAM. R IS 
ANY NUMBER FROM 2 THROUGH 12. 
ESTABLISH BASE REGISTER 

LOADS REGISTER 13, WHICH POINTS TO THE SAVE AREA OF THE 
CALLING PROGRAM, INTO ANY GENERAL REGISTER, Q, EXCEPT 0, 
11, 13, AND 15. 
LOADS THE ADDRESS OF THIS PROGRAM'S SAVE AREA INTO 
REGISTER 13. 
STORES THE ADDRESS OF THIS PROGRAM'S SAVE AREA INTO THE 
CALLING PROGRAM'S SAVE AREA 
STORES THE ADDRESS OF THE PREVIOUS SAVE AREA (THE SAVE 
AREA OF THE CALLING PROGRAM) INTO WORD 2 OF THIS PRO
GRAM'S SAVE AREA 

18F RESERVES 18 WORDS FOR THE SAVE AREA 
END OF SAVE ROUTINE 
(user-written program statements) 

CALLING SEQUENCE 
1,ARGLIST LOAD ADDRESS OF ARGUMENT LIST 
15,ADCON 
14,15 
(more user-written program statements) 
RETURN ROUTINE 
13,AREA+4 LOADS THE ,ADDRESS OF THE PREVIOUS SAVE AREA BACK INTO 

REGISTER 13 
2,R,28(13) 
14,12(13) 
12(13),X'FF' 
15,14 
END OF RETURN 
A (name2) 
ARGUMENT LIST 
AL4(arg1.) 

LOADS THE RETURN ADDRESS INTO REGISTER 14. 

RETURN TO CALLING PROGRAM 
ROUTINE 

ADDRESS OF FIRST ARGUMENT 

I DC X'80' INDICATE LAST ARGUMENT IN ARGUMENT LIST 
I DC AL3(argn) ADDRESS OF LAST ARGUMENT L _________ ~ ______ ~ _____________________________________________________________________ _ 

Figure A-l0. Linkage Conventions for Higher Level Subprogram 

182 



In-Line Argument List 

The assembler programmer may establish an 
in-line argument list instead of out-of
line list. In this case, he may substitute 
the calling sequence and argument list 
shown in Figure A-ll for that shown in 
Figure A-l0. 

r-----------------------------------------, 
ADCON DC A(probl) 

LA 
L 
CNOP 
BALR 
DC 
DC 

i 4, RE'l'URN 
15, ADCON 
2,4 
1,15 
AL4,arg1.> 
AL4(arga) 

DC X' 80' 
DC AL3(argn) 

RETURN BC O,X'isn' L ________________________________________ _ 

Figure A-l1. In-Line Argument List 

Sharing Data in COMMON 

Both named and blank COMMON in a FORTRAN IV 
program can be referred to by an assembler 
language subprogram. To refer to named 
COMMON, t-he V-type address constant 

name DC V(name of COMMON} 

is used. 

If a FORTRAN program has a blank COMMON 
area and blank COMMON is also defined (by 
the COM instruction) in an assembler 
language subprogram, only one blank COMMON 
area is generated for the output load 
module. Data in this blank COMMON is 
accessible to both programs. 

To refer to blank COMMON, the following 
linkage may be specified: 

COM 
name DS OF 

--------------> cname 

L 11,=A(name) 
USING name, 11 

CSECT 

RETRIEVING ARGUMENTS FROM THE ARGUMENT LIST 

The argument list contains addresses for 
the arguments passed to a subprogram. The 
order of these addresses is the same as the 
order specified for the arguments in the 
calling statement in the main program. The 
address for the argument list is placed in 
register 1. For example, when the 
statement: 

CALL MYSUB(A,B,C) 

is compiled, the following argument list is 
generated. 

r--------T--------------------------------, 
1000000001 address of A I 
~--------+--------------------------------~ 
1000000001 address of B I 
~--------+--------------------------------~ 
1100000001 address of C I L ________ ~ ________________________________ J 

For purposes of discussion, A is a REAL*8 
variable, B is a subprogram name, and C is 
an array. 

The address of a variable in the calling 
program is placed in the argument list. 
The following instructions in an assembler 
language subprogram can be used to move the 
REAL*8 variable A to location VAR in the 
subprogram. 

L 
MVC 

where: 

Q,O(l) 
VAR(8),OCQ) 

Q is any general register except O. 

For a subprogram reference, an address 
of a storage location is placed in the 
argument list. The address at this storage 
location is the entry point to the 
subprogram. The following instructions can 
be used to enter subprogram B from the 
subprogram to which B is passed as an 
argument. -

L 
L 
BALR 

where: 

Q,4Cl) 
15,0(Q) 
14,15 

Q is any general register except o. 

For an array, the address of the first 
variable in the array is placed in the 
argument list. An array [for example, a 
three-dimensional array C(3,2,2)] appears 
in this format in main storage. 

Appendix B: Assembler Language Subprograms 183 



C(l,l,l) C(2,1,1) C(3,l,l) C(1,2,1) --, 
r----------------------------------------- J 

L-C(2,2,l) C(3,2,1) C(l, 1, 2) C(2, 1,2) --, 
r-----------------------------------------J 
L-C(3, 1, 2) C(l, 2, 2) C(2, 2, 2) C(3, 2, 2) 

Table A-2 shows the general subscript 
format for arrays of 1, 2, and 3 
dimensions. 

Table A-2. Dimension and Subscript Format 
r-----------T-----------------------------, 
IArray A I Subscript Format I 
~-----------+-----------------------------~ 
IA(Dl) IA(Sl) I 
IA(Dl,D2) IA(Sl,S2) I 
IA(Dl,D2,D3) IA(Sl,S2,S3) I 
~-----------~-----------------------------~ 
ID1, D2, and D3 are integer constants usedl 
lin the DIMENSION statement. Sl, S2, and I 
IS3 are subscripts used with subscripted I 
I variables. I L _________________________________________ J 

The address of the first variable in the 
array is placed in the argument list. To 
retrieve any other variables in the array, 
the displacement of the variable, that is, 
the distance of a variable from the first 
variable in the array, must be calculated. 
The formulas for computing the displacement 
(DISPLC) of a variable for one, two, and 
three dimensional arrays are: 

DISPLC=(Sl-1)*L 
DISPLC=(Sl-1)*L+(S2-1)*Dl*L 
DISPLC=(Sl-1)*L+(S2-1)*Dl*L+(S3-1)*D2*Dl*L 

where: 
L is the length of each variable in 
this array. 

For example, the variable C(2,1,2) in 
the main program is to be moved to a 
location ARVAR in the subprogram. Using 
the formula for displacement of integer 
variables in a three-dimensional array, the 
displacement (DISP) is calcualted to be 28. 
The following instructions can be used to 
move the variable, 

L Q,8(1) 
L R,DISP 
L S,O(Q,R) 
ST S,ARVAR 

where: 

184 

Q and R are any general registers 
except 0. 
S is any general register. Q and R 
cannot be general register 0. 

Example: An assembler language sUbprogram 
is to be named ADDARR, and a real variable, 
an array, and an integer variable are to be 
passed as arguments to the subprogram. The 
statement: 

CALL ADDARR (X,Y,J) 

is used to call the subprogram. Figure 
A-12 shows the linkage used in the 
assembler subprogram. 

RETURN i in an Assembler Language 
SUbprogram 

When a statement number is an argument in a 
CALL to an assembler language subprogram, 
the subprogram cannot access the statement 
number argument. 

To accomplish the same thing as the 
FORTRAN statement RETURN i (used in FORTRAN 
subprograms to return to a point other than 
that immediately following the CALL), the 
assembler subprogram must place 4*! in 
register 15 before returning to the calling 
program. 

For example, when the statement: 

CALL SUB (A,B,&10,&20) 

is used to call an assembler language 
subprogram, the following instructions 
would cause the subprogram to return to the 
proper point in the calling program: 

LA 15,4 (to return to 10) 

BCR 15,14 

LA 15,8 (to return to 20) 

BCR 15,14 

OBJECT-TIME REPRESENTATION OF FORTRAN 
VARIABLES 

The programmer who uses FORTRAN in 
connection with assembler language may need 
to know how the various FORTRAN data types 
appear in the computer. The following 
examples illustrate the object-time 
representation of FORTRAN variables as they 
appear in Systeml360 and System/370. 



r--------T---------T--------------------------------------------------------------------, 
1 Name 1 Operation 1 Operand 1 
r--------f---------f--------------------------------------------------------------------1 
ADDARR START 0 
B EQU 8 

BC 15,12(15) 
DC X'7' 
DC CL7'ADDARR' 
STM 14,12,12(13) 
BALR B,O 
USING *, B 
L 
MVC 
L 
MVC 

2,8(1) 
INDEX(4),0(2) 
3,0(1) 
VAR(4),0(3) 

MOVE 3RD ARGUMENT TO LOCATION CALLED 
INDEX IN ASSEMBLER LANGUAGE SUBPROGRAM. 
MOVE 1ST ARGUMENT TO LOCATION CALLED VAR 
IN ASSEMBLER LANGUAGE SUBPROGRAM. 

L 4,4(1) 
(user-written 

LOAD ADDRESS OF ARRAY IlliO REGISTER 4. 
sta tements) 

LM 2,12,28(13) 
MVI 12(13),X'FF' 
BCR 15,14 
DS OF 

INDEX DS IF 
IVAR IDS lF L ________ ~ _________ ~ ____________________________________________________________________ J 

Figure A-12. Assembler Subprogram Example 

INTEGER Type 

INTEGER values are treated as fixed-point operands by the compiler, and are governed by 
the principles of System/360 and System/370 fixed-point arithmetic. INTEGER values are 
converted into either fullword (32-bit) or halfword (16-bit) signed integers. 

Example: INTEGER*2 ITEM/76/,VALUE 
INTEGER*4 F,F64/100/ 
F = 15 
VALUE =-2 

The values of the variables ITErvl, VALUE, F, F64 appear In storage as follows; 

<-----2 Bytes------> <-----2 Bytes------> 
r-T-------T--------, r-T-------T--------, 

ITEM 10100000001010011001 VALUE 1 11 11111111111111101 
L_~ _______ ~ ________ J 

L_~ _______ L ________ J 

S 1 15 S 1 15 

<--------------4 Bytes---------------> 
r-T-------T--------T--------T--------, 

F 10100000001000000001000000001000011111 L_L _______ ~ ________ ~ ________ ~ ________ J 

S 1 31 

<--------------4 Bytes---------------> 
r-T-------T--------T--------T--------, 

F64 10100000001000000001000000001011001001 
L_~ _______ ~ ________ ~ ________ ~ ________ J 

S 1 31 

where S in bit position 0 represents the sign bit. All negative numbers are represented 
in two's complement notation with a one in the sign-bit position. (For a more complete 
explanation of fixed-point arithmetic, refer to the appropriate principles of operation 
publication, as listed in the Preface.) 

Appendix B: Assembler Language Subprograms 18S 



REAL Type 

All REAL variables are converted into short (32 bit), long (64 bit), or extended (128 
bit) floating-point numbers by the compiler. The length of the numbers is determined by 
FORTRAN IV specification conventions. 

Example: REAL*4 HOLD,R/100.1 
REAL*8 A,RATE/-8.1 
REAL*16 X 
HOLD = -4. 
A 8.000 
X = 2.0QO 

The values of the variables appear in storage as follows: 

<--------------4 Bytes---------------> 
S C F 

r-T-------T--------T--------T--------, 
HOLDl1110000011010000001000000001000000001 

l_~ _______ L ________ ~ ________ ~ ________ J 

o 1 7 8 31 

<--------------4 Bytes---------------> 
S C F 

r-T-------T--------T--------T--------, 
R 10110000101011001001000000001000000001 

l_~ _______ L ________ ~ ________ ~ ________ J 

o 1 7 8 31 

<--------------------8 Bytes---------------------> 
S C F 

r-T-------T--------T--------T--------T----l[----' 
A 101100000111000000010000000010000000010000 00001 l_i _______ L ________ ~ ________ ~ ________ J____ _ ___ J 

o 1 7 8 31 63 

<--------------------8 Bytes---------------------> 
S C F 

r-T-------T--------T--------T--------T----l[----' 
RA'I'E 11110000011100000 00 100000000100000000 I 0000 0000 I l_L _______ L ________ ~ ________ ~ ________ J____ _ ___ J 

o 1 7 8 31 63 

<-------------------------16 Bytes-------------------------> 
S C F S C F 

X [~I~~~~~~~I~~~~~~~~I~~~~~~~~I~~~J[~~I~I~~~~~~~I~~~~}~~~~~] 
o 1 7 8 63 64 65 71 72 127 

Legend: 

186 

S (sign bit) occupies bit position O. 
C (characteristic), or exponent, occupies bit positions 1 through 7. 
F (fraction) occupies either bit positions 8 through 31 for a short, floating-point 

number; bit positions 8 through 63 for a long, floating-point number; or bit 
positions 8 through 63, 72 through 127 for an extended-precision floating-point 
number (bit positions 64-71 represent a sign + characteristic having a value 14 
less than the data represented in bits 0 through 7). 



A COMPLEX variable has two parts (real and imaginary) and is treated internally as a pair 
of REAL numbers. The COMPLEX parts are converted into two short, long, or extended 
floating-point numbers. 

COMPLEX D/(2.1,4.7)/,E*16,Z*32 
E = (55,5DO-55.5DO) 
Z=(2. OQO, 4. OQO) 

The values of the variables D, E, and Z appear in storage as follows: 

<--------------4 Bytes---------------> 
S C F 

r-T-------T--------T--------T--------, 
D 10110000011001000011100110011100110011 2.1 

E 

Z 

~-+-------+--------+--------+--------~ 
10110000011010010111001100111001100111 4.7 L_i _______ i ________ i ________ i ________ J 

o 1 7 8 31 
<--------------4 Bytes---------------> 

<--------------------8 Bytes---------------------> 
S C F 

101100001010011011111000000010000000010000 00001 55.5DO r-T-------T--------T--------T--------T----Jf----' 
~-+-------+--------+--------+--------+---- ----~ 
111100001010011011111000000010000000010000 00001 -55.5DO L_i _______ i ________ i ________ i ________ i____ _ ___ J 

o 1 7 8 31 63 
<--------------------8 Bytes---------------------> 

<---------------------16 Bytes----------------------> 
S C F S C F 

rol~ooooo~loo~oooooI000ifoooolol011001~'OOOOlfooool 
~-~-------+--------+--- ----f-f-------f---- ----~ 
10110000011010000001000 0000101011001110000 00001 
L_i _______ L ________ i___ _ ___ i_i _______ i____ _ ___ J 

o 1 7 8 63 64 65 71 72 127 
<---------------------16 Bytes----------------------> 

2.0QO 

4.0QO 

Appendix B: Assembler Language Subprograms 187 



LOGICAL Type 

FORTRAN IV LOGICAL variables may specify only 2 values: 

• TRUE. or • FALSE. 

These logical values are assigned numerical values of '1' and '0', for .TRUE. and 
.FALSE., respectively. 

LOGICAL*l L1,L2/.TRUE./ 
LOGICAL*4 L3,L4/.FALSE./ 
L1 • FALSE. 
L3 = • TRUE. 

The variables L1, L2, L3, and L4 are assigned the following values (using hexadecimal 
notation) : 

<--1 Byte--> 
r----------, 

L1 I 00 I l __________ J 

<--1 Byte--> 
r----------, 

L2 I 01 I 
l __________ J 

<------4 Bytes------> 
r----T----T----T----' 

L3 I 00 I 00 I 00 I 01 I l ____ i ____ i ____ i ____ J 

<------4 Bytes------> 
r----T----T----T----' 

L4 I 00 I 00 I 00 I 00 I l ____ ~ ____ L ____ L ____ J 

The DUMP or PDUMP subroutine can also be used as an additional tool for understanding 
the object-time representation of FORTRAN data. Refer to the "Use of DUMP and PDUMP" 
section in the "Programming Considerations" chapter of this publication or consult the 
FORTRAN IV Library Subprograms publication. 

188 



The UNIT parameter of the DD statement can 
identify an input or output unit by its 
actual address, its type number, or its 
group name. Type numbers, automatically 
established at system generation, 
correspond to units entered into system 
configurations. Type numbers and 
corresponding units are listed here for the 
reader's convenience. 

Tape Units 

!~ 
2400 

2400-1 

2400-2 

2400-3 

2400-4 

'De~cr.!ption 
2400 series 9-Track Magnetic 

Tape Drive that can be 
allocated to a data set 
written or to be written 
in 800 bpi density 

2400 series Magnetic Tape 
Drive with 7-Track 
Compatibility and without 
Data Conversion 

2400 series Magnetic Tape 
Drive with 7-Track 
Compatibility and Data 
Conversion 

2400 series 9-Track Magnetic 
Tape Drive that can be 
allocated to a data set 
written or to be written 
In 1600 bpi density 

2400 series 9-Track Magnetic 
Tape Drive having an 800 
and 1600 bpi capability 

Direct Access Units 

!~ 
2301 
2302 

De~cription 
2301 Drum Storage Unit 
2302 Disk Storage Drive 

2303 
2311 

2314 
2321 

3330 

2305 

~Q~ 
1052 
1403 

1442 
1443 
2501 
2520 
2540 

2540-2 

2671 
3211 

'!YE~ 
1053 
2250-1 
2250-3 
2260-1 

2260-2 

2280 
2282 

2303 Drum Storage Unit** 
Any 2311 Disk Storage 

Drive** 
2314 Storage Facility 
Any bin mounted on a 2321 

data cell drive** 
3330 Disk Storage Facility* 

2305 Drum Storage Unit* 

Q~~£E!.E!:!.~!! 
1052 Printer-Keyboard 
1403 Printer or 1404 Printer 

<continuous form only» 
1442 Card Read Punch 
any 1443 Printer 
2501 Card Reader 
2520 Card Read Punch 
2540 Card Read Punch (read 
feed) 

2540 Card Read Punch (punch 
feed) 

2671 Paper Tape Reader 
3211 Printer* 

De~£riE:!:i~!! 
1053 Model 4 Printer 
2250 Display Unit, Model 1 
2250 Display Unit, Model 3 
2260 Model 1 Display Station 

(Local Attachment) 
2260 Model 2 Display Station 

(Local Attachment) 
2280 Film Recorder 
2282 Film Recorder-Scanner 

*Used with System/370 models only. 
**Used with System/360 Models only. 

Appendix C: unit Types 189 



APPENDIX D: AMERICAN NATIONAL STANDARD CARRIAGE CONTROL CHArtACTERS 

The following are the carriage control characters supported by the FORTRAN IV language. 

blank 
o 
+ 
1 

190 

Interpretation 

Space one line before printing 
Space two lines before printing 
Suppress space before printing 
Skip to first line of a new page 



(Where more than one page reference is given, the major reference appears first.) 

& 

$ 

* 

/* 

// 

//* 

to define temporary data sets 
in EXTERNAL statement 126 
in symbolic parameters 88 

use in library functions 126 

as a DD statement parameter 
description of 42 
example of 42 
function of 39 
restriction with cataloged 
procedures 81 

21,44 

to define a data set in a job step 
to describe compiler map variables 
to identify linkage editor control 
sections 108,109 

as job control statement identifiers 

as job control statement identifiers 

as job control statement identifiers 
• (apostrophe) in PARM parameter 34 
*PROCESS statement 55 

A 

44 
105 

22 

22 

22 

to describe compiler map variables 105 
to identify carriage control 
characters 50 

as an output class 55,28 
in program interrupt message 113,116 

ABEND dump 115 
abnormal termination 

dump 115 
message 101 

accounting information 
in EXEC statement 35 
parameter in JOB statement 

description of 25 
ACCT parameter 

description of 35 
function of 31 

AD (see AUTODBL compiler option) 
addressing exception code 114,116 
ADDRSPC parameter 

in EXEC statement 36-37,32 
in JOB statement 29-30,27 

ALC compiler option 55,138 
alignment routine 113 
ALIGN2 subparameter 62 
American National Standards Institute 

(ANS) 55 
ANSF, as a compiler option 55 
API (see Automatic Precision Increase) 
apostrophe, in PARM parameter 34 

argument list 179 
in-line 183 
retrieving arguments from 

Arithmetic IF statement 121 
array 

10"") 1 n I, 
..LOJ-.J..O"t 

dumping an 131 
initializing an 123-124 
notation in input/output statement 121 
overflow of element in 123 
programming considerations 121 
retrieving element from 183 

ASCII data sets 
contrasted with EBCDIC data sets 68 
description of 68 
example in specifying 69 
identifying an 51 
job control language considerations 

BUFOFF subparameter 51-52 
DCB parameter 76-79 
DEN parameter 76 
LABEL parameter 76 
OPTCD sUbparameter 52 

restrictions in use of 68,77 
assembler language 

subprogram, example of 185 
use of 179-184 

Assigned GO TO statement 128 
associated variable 16 
asynchronous input/output 

affected by automatic precision 
increase 140 

extended error handling 
considerations 161 

programming considerations 121-122 
AUTODBL compiler option 

description of 135-137,54 
examples of 138 

automatic call library 60 
Automatic Function Selection 126 
Automatic Precision Increase 

B 

description of 134-135 
programming considerations 138-140 
use of AUTODBL option 54,135-137 

to specify blocked records 
description of 50,73 
example in 75 

as an output class 55 
BACKSPACE statement 

asynchronous input/output 
considerations 121 

programming considerations 122 
restrictions with 122 

BAL assembler instruction 
use in tracing errors 113,114 

Index 191 



base registers 128 
batch compilation 

example of placement of job control 
statements 13 

BCD, as a compiler option 54 
BFALN subparameter 140 
bits per inch 51 
BLKSIZE subparameter 

ASCII data set considerations 76-79 
asynchronous input/output 
considerations 121 

compared to LRECL subparameter 50 
default values of 

for compiler data sets 57 
for load module data sets 72 

description of 50 
direct-access data set 
considerations 80 

EBCDIC data set considerations 73-76 
example of 50 
maximum values of 73 
programming considerations 130 
use of 

in fixed-length records 73 
in undefined-length records 74 
in variable-length records 73 

block control word 50,73 
BLOCK DATA subprogram 

use in overlay programs 145 
block length 

maximum value of 50 
specifying 50 

block prefix 76,77 
boundary alignment considerations 133 
BOUNDRYoption 133,113 
bpi (bits per inch) 51 
braces, use in job control language 24 
brackets, use in job control language 24 
branch considerations 128 
buffer length 

specifying 51 
buffers 

programming considerations 130 
specifying number of 51 

BUFNO subparameter 
asynchronous input/output 
considerations 121 

default values of 
for compiler data sets 57 
for load module data sets 72 

description of 51 
programming considerations 130 

BUFOFF subparameter 
description of 51 
examples of 78-79 

built-in functions 136 
BXLE assembler instruction 128 

C 
to describe compiler map variables 105 
to specify chained scheduling 52 

CALL loader option 64 
CALL statement, restrictions 133 
calling sequence 179 
card deck input, specifying 19 

192 

card punch 
BLKSIZE values for 73 

card reader 
BLKSIZE values for 73 

carriage control characters 50 
summary of 190 

cataloged data set 
contrasted with cataloged procedure 15 
description of 15 

cataloged procedure library 13,81 
cataloged procedures 

contrasted to executable program 13 
description of 81-93,13 
examples in use of 19-20 
location of 15 
modifying 

example in 93 
DD statement 91-92 
EXEC statement 91 
PROC statement 90 
with symbolic parameters 88-89 

naming through PROC parameter 33 
overriding parameters in 91 
restrictions 81 

CATLG, as a DISP subparameter 45 
chained scheduling 

restrictions 121 
specifying 52 

chaining 
in direct access programming 124-125 

channel, input/output 48-49 
CLASS parameter 

description of 28 
function of 28 

comments field, in job control statements 
description of 23 
function of 22 

COMMON area 
using assembler language 
instructions 183 

in overlay programs 144-145 
COMMON block 

storage map of 106,107 
COMMON statement 

automatic precision increase 
considerations 138-139 

with EQUIVALENCE statement 122 
with OPTIMIZE option 128 
programming considerations 122-123 

compilation 
batch 55,12 
cataloged procedures for 

description of 89 
FORT XC 82 
FORTXCG 87 
FORTXCL 83 
FORTXCLG 85 

compile job step 
cataloged procedures describing 89 
example of job control statements 13 
input to, description of 53-57 
output from, description of 99-107 

compiler 
cataloged procedures 89 
map 

affected by automatic precision 
increase 140 

description of 105-106 



example of 104 
specifying with MAP option 54 

messages 101 
name of 53 
names 

generic 
handling of 127 

optimization techniques 127-129 
output 16 
program 

as a language translator 12 
as a processing program 53 

restrictions i32-133 
statistics 100 
storage requirements 131-132 

use of SIZE option 54 
compiler data sets 

DCB default values for 57 
description of 55-57 
summary of 14,57 

compiler options 
changing during a batch compilation 
description of 53-56 
example of output from 100,102-104 
format of 53 
summary of 56 

COMPLEX items 
padding 137 
promoting 134-135 
storage representation of 187 

COND parameter 
cataloged procedure use of 89 
in EXEC statement 

contrasted with JOB statement 
parameter 35 

description of 35 
in JOB statement 

description of 27-28 
function of 27-28 

condition code 
compared to return code 28 
specifying to bypass job step 
processing 35 

specifying to terminate job 
processing 28 

constants, promotion of 134 
CONTIG, as a SPACE subparameter 47 
continuation of job control statements 
control program, description of 11 
control section 108 

in overlay programs 146 
control statements, linkage editor 

ENTRY statement 148 
IDENTIFY statement 62 
INCLUDE statement 61,147 
INSERT statement 146-147 
LIBRARY statement 61 
ORDER statement 62 
OVERLAY statement 146 
PAGE statement 62 

control word 
segment 50 
block 50 

COPIES parameter 
description of 45 
function of 40 

cross reference listing 
compiler 

55 

23 

description 
example of 
specifying 

linkage editor 
description 
example of 
in overlay 
specifying 

of 101 
102 
54 

of 108 
109 

programs 
58 

148 

CYL, 

D 

as a SPACE subparameter 47 

to describe compiler map variables 
to specify variable-length 

records 50,77 
DAT feature 11 
data 

alignment 55 
conversion of 134-140,54 
exception code 115,116 
padding 134 
promotion 134-135 

Data Initialization Statement 
programming considerations 123-124 

data management routines 
description of 12 

DATA parameter 
description of 42 
function of 39 
restrictions 81 

data set 
ASCII 

DCB considerations 
DCB subparameters 
description of 68 
example of 69 

cataloged 15 
channel assignment for 
concatenating a 42 
creating a 21,69 
DCB 

76-79 
49-51 

48-49 

considerations 
default values 

defined 14 

71-80 
57,72 

direct-access 
DCB considerations 80 
DCB DSORG subparameter 52 
description of 71,15 
examples of 

creating and retrieving 72 
updating 176-178 

space allocation for 47 
disposition of 44-46 
EBCDIC 

DCB considerations 73-76 
description of 68 
examples of 69 

identifying a 43 
input/output allocation for 46-47 
job step use of 

compiler 55-57,14 
linkage editor 59-61,14 
load module 67-72,14 
loader 65-66,15 

label 47-48 
location of 42-43 

105 

Index 193 



naming a 42,43 
partitioned 

DCB considerations for 73-76 
description of 70-11,15 
examples of 

creating 70 
deleting a member of 72 
retrieving 70 

permanent 21 
pre-allocated 130 
record characteristics of 48-52 
retrieving a 21 
sequential 

DCB considerations for 
ASCII 76-19 
EBCDIC 73-76 

description of 68,15 
examples of 69 

space allocation for 47 
system 14-15 
temporary 21 
unit record 69 
user 15 

data-set name 
as a DCB subparameter 49 

data set reference number 
defined 14 
restriction 133 
use of 41,67 

DBL, as an AUTODBL value 135 
DBLPAD 135,139 
DBLPAD4 135 
DBLPAD8 135 
DBL4 135 
DBL8 135 
DCB parameter 49-52 

asynchronous input/output 
considerations 121 

data set definition considerations 
description of 77-80 
summary of 11-72 

default values 
for compiler data sets 51 
for load module data sets 72 

description of 49-52 
examples of 52 
function of 41 
programming considerations 130 
use with * DD parameter 42 

DD statement 
description of 37-52,12 
examples of 38,173 
format of 37 
function of 39-41,22 
modifying in cataloged procedures 91-92 
naming a 42 
summary of 37 
uses of 41-42 

ddname 
description of 42 
function of 39 
qualified 19 

ODNAME parameter 
description of 43 
function of 39 

deck, object module 
description of 106-107 
specifying 53 

194 

DECK compiler option 53 
dedicated workfile (see pre-allocated data 
set) 

DEFINE FILE statement 
direct-access data set relationship 11 
overlay program use 142 
programming considerations 125 

DELETE 
as DISP subparameter 45,21 
contrasted with KEEP subparameter 21 

delimiter statement 
cataloged procedure 
considerations 81,19 

description of 12,22 
DEN subparameter of DCB parameter 51 

default values for load module data 
sets 72 

detail record 124 
device 

class 14,46 
type, summary of 189 

diagnostic messages 
description of 101 
example of 100 
specifying level of to be printed 55 

dictionary 
external symbol 106 
relocation 106 

direct-access data set 
creating a 72,125-126 
DCB considerations 80,52 
default values for 12 
description of 71,15 
retrieving a 12 
updating a 176-178 
using with non-FORTRAN processors 80 

direct access device 
BLKSIZE values for 73 
space allocation for 47 
summary of types 189 

direct-access input/output 
considerations 124-126 

affected by automatic precision 
increase 140 

DISP parameter 
description of 45-46 
example of 46,21 
function of 40 
programming considerations 130 

disposition message 108,109 
divide by zero 

exception code generated 115 
DLM parameter 

description of 42 
function of 39 

DO, implied 121,132 
DO loop 132 
dominance relationships 105 
DPRTY parameter 

description of 35-36 
function of 32 

DSNAME parameter 
description of 43 
function of 40 

DSORG subparameter 
description of 52 
direct-access data set consideration 80 



DUMMY parameter 
description of 43 
function of 39 

d~p 
requestinq a 115-116 
specifying DD statements 42 
using DUMP and PDUMP subprograms 131 

DUMP compiler option 55 
DUMP library subprogram 139 
DVCHK subprogram 131 

E 
to describe compiler map variables 105 

EBCDIC 
compiler option 54 
data set 

DCB considerations 73-76 
description of 68 

EDIT (see FORMAT compiler option) 
edited source listing 

(see also structured source listing) 
description of 105 
example of 104 

element, array 123 
ellipsis, use in job control language 24 
END card in object module 107 
END= option in READ statement 70-71 
ENDFILE statement 

asynchronous input/output 
considerations 121 

ENTRY linkage editor control statement 
description of 148 
example of 149 

environment, operating (see 
Multiprogramming with a Fixed Number of 
Tasks; Multiprogramming with a Variable 
Number of Tasks) 

EP loader option 65 
EQUIVALENCE statement 

affected by automatic precision 
increase 138-139 

COMMON statement considerations 122 
DATA statement considerations 123 
padding items 137,138 
programming considerations 125-126 
storage map for 106,107 

ERR parameter in READ statement 129 
ERRMON 

description of 160-161,154 
example of 162 

error code diagnostic message 
description of 111 
example of 112 

error correction 
extended error handling facility 
considerations 156 

summary of 
for mathematical subroutines 166-169 
for program interruptions 170 

user-supplied 160-161 
error message, description of 101 
error monitor 160-161,154 
ERRSAV subroutine 156 
ERRSET subroutine 

description of 158-160 
examples of 159-160,162 

ERRSTR subroutine 156 
ESD card 106-107 
exception codes 114-115 
exceptions, correction for 

exponent overflow 170 
exponent underflow 170 
floating-point-divide 170 
operation 170 
specification 170 

exclusive references, in overlay 
programs 144 

EXEC statement 30-37 
automatic precision increase 
options 135-138 

calling cataloged procedures 13 
description of 30-37,12 
examples of 32 
format of 30 
functions of 31-33,22 
modifying in cataloged procedures 91 
restriction in use of 81 
summary of 30 

execute job step (see load module execution 
job step) 

exponent-overflow exception code 115,116 
exponent-underflow exception code 115,116 
expression evaluation 129 
extended error handling facility 

description of 154,156 
message IH0210 with 116 
OPTIMIZE option considerations 128 
option table 154-156 
READ statement considerations 129 
sample program using 162 
SUbprograms in use of 156,158-160 

external function 
in compiler map 105 

external references 
defined 59 
in compiler map 105 

EXTERNAL statement 
programming considerations 126 

external symbol dictionary 106 

F 
to describe compiler map variables 105 
to specify fixed-length records 

description of 50,73 
example of 75 

FIND statement 125 
fixed-length records 

BLKSIZE value for 73 
DCB considerations 

for ASCII data sets 76,78 
for direct-access data sets 80 
for EBCDIC data sets 73,75 

description of 73,50 
examples of 75 

fixed-point-divide exception code 115,116 
fixed-point overflow 121 
FLAG compiler option 55 
floating-point-divide 

error, correction for 170 
exception code 115,116 

FMT (see FORMAT compiler option) 

Index 195 



FORMAT compiler option 
example of output 104 
relationship to OPTIMIZE option 54 

FORMAT statement 
restrictions 132 

formatted records 
ASCII data sets 76 
DCB considerations for 

description of 73-74 
examples of 75-77 

direct-access data sets 80 
EBCDIC data sets 73-74 

FORT, as a name in cataloged 
procedures 85,89 

FORT.SYSIN 19 
FORTLIB, as subroutine library (see 

SYS1.FORTLIB) 
FORTLIB macro instruction 154,160 
FORTRAN library 

programming considerations 130-131 
subprograms 

affected by automatic precision 
increase 139 

location 16 
FORTXC 

format of 82 
placement of job control statements 19 

FORTXCG 
format of 87 
placement of job control statements 20 

FORTXCL 
format of 83 
placement of job control statements 19 

FORTXCLG 
format of 85 
placement of job control statements 19 

FORTXG 
format of 86 
placement of job control statements 20 

FORTXL 
format of 88 
placement of job control statements 20 

FORTXLG 
format of 84 
placement of job control statements 20 

FT05FOOl DD statement 
DCB default values for 72 
description of 67,15 
SYSIN DD statement 67 

FT06FOOl DD statement 
DCB default values for 72 
description of 67,15 

FT07FOOl DD statement 
DCB default values for 72 
description of 67,15 

functions, promotion of 
built-in 136 
library 136,134 

generic names 133 
GENERIC statement 

programming considerations 126 
GO, as a name in cataloged 

procedures 85,90 
GO.SYSIN 19 

196 

GOSTMT compiler options 
description of 54 
relationship to traceback map 111 
use in tracing errors 113 

graphic units 
summary of types 189 

(H Extended) compiler 12 
location of 16 

hierarchy support 29 

IBCOM 111 
ID (see GOSTMT compiler option) 
IDENTIFY statement 62 
IEHPROGM 71,72 
IEWL 58 
IEWLDRGO 63 
IF statement 

Arithmetic 121 
Logical 127 

IFE, to identify the compiler 101 
IFEAAB 53 
IH02101 error message 

description of 113-115 
format of 116 
implied DOs 121 
restrictions 132 

imprecise interruption 113 
IN, as a LABEL subparameter 48 
INCLUDE linkage editor control statement 

description of 61 
in overlay program 147 

example of 61 
inclusive references, in overlay 

programs 143 
INCRES, as an ASCII option 68 
I NCTRAN , as an ASCII option 68 
indicative dump 115 
induction variables 128 
information message 101 
informative messages 

description of 99 
example of 100 

input, card deck 19 
input job stream 11 
input/output 

affected by automatic precision 
increase 140 

asynchronous programming 
considerations 121-122 

direct access considerations 124-125 
list-directed 127 
operations 48 
unformatted 127 

input/output statements 
array notation in 121 
relationship to DD statements 14-15 

INSERT linkage editor control statement 
description of 146-147 
example of 149 

INTEGER items 
padding 137 
storage representation of 185 



internal sequence number 
example of 100 
specifying 54 
use in traceback map 111,113 

~nterrUptlOn code 
(see also exception code) 
imprecise 113 
precise 113 

ISN (see internal sequence number) 

job 
defined 12 
naming a 25 
priority 28 
processing, examples in 173-178 
relationship to JOB statement 12 
termination 27-28 
time limit assignment 28-29 

job control language 
description of 12 
processing, examples of 13 
programming considerations 129-130 

job control statements 
DD statement 37-52 
delimiter statement 12,22 
examples of 173-178,19-20 
EXEC statement 30-37 
format of 22 
JOB statement 24-30 
null statement 12,22 
PROC statement 88-89 
rules for continuing 23 
syntax of 23-24 

job output writer 28 
job scheduler 

description of 11 
JOB statement 

description of 24-30,12 
examples of 25 
format of 25 
functions of 26-27 
restriction in use of 81 
summary of 24-25 

job step 
compile 

cataloged procedures 89 
description of 53-57 
output from 99-107 

defined 12 
description of 12 
example of job control 
statements 174-175 

link edit 
cataloged procedures 89 
description of 58-62,64 
output from 108-109 

load module 
cataloged procedures 90 
description of 67-72 
output from 111-117 

loader 
cataloged procedures 90 
description of 63-66 
output from 110 

naming a 33 

priority 35-36 
relationship to EXEC statement 12 
time limit assignment 35 

job stream 
input, defined 11 

JOBLIB DD statement 
concatenating a data set with 42 
contrasted with SYSLIB DD statement 67 
example of 173-174,60 
restrictions 81 
retrievina a librarv wirh 1f. 

jobname, par~meter in JOB-~tat~~ent 
description of 25 
function of 26 

KEEP, DISP subparameter 
contrasted with CATLG subparameter 21 
description of 45 

key, record 124 
keyword parameters 23 

L 
in BUFOFF subparameter 51 

label 
data set 47-48 
reference 110 
statement 104-106 

label map (see compiler map or map, 
compiler) 

LABEL parameter 
to define an ASCII data set 68 
description of 47-48 
function of 40 

language translators 11-12 
large core storage (see hierarchy support) 
LC compiler option 53 
LCS (see hierarchy support) 
L~T linkage editor option 58 

use in overlay programs 148 
LET loader option 63-64 
library, automatic call 60,61 
library 

description of 15-16 
FORTRAN 

asynchronous input/output 
considerations 122 

error correction for mathematical 
routines 166-169 

in link edit job step 61-62 
programming considerations 130-131 
restrictions with extended error 
handling facility 161 

relationship to partitioned data 
set 70,15 

storing load module into 59 
subprograms 

affected by automatic precision 
increase 139 

SYS1.FORTLIB 16 
use of NCAL linkage editor option 59 

library functions 136 
detaching 126 
aliases 126 

Index 197 



LIBRARY statement 
description of 61-62 
example of 61,64 

line printing, specifying 53 
LINECNT compiler option 53 
link edit job step 

cataloged procedures describing 89 
example of job control statements 13 
input to, description of 58-63,64 
output from, description of 108-109 
primary input 60 
secondary input 61-62 
summary of output 16 

link pack area queue 65 
linkage conventions 

coding, example of 181-183 
summary of 180 

linkage editor 
cataloged procedures 89 
contrasted with loader 58 
control statements 

description of 61-62 
in overlay programs 146-148 

example of 149-153 
map 58 
name of 58 
options 58-59 
overlay processing 141-145 

example of output 148-153 
processing 64 

linkage editor data sets 
description of 59-61,14 

linkage editor options 
description of 58-59 
example of output from 109 
overlay options 148 

LIST compiler option 53 
example of output 102-103 
use in tracing errors 113,114 

LIST linkage editor option 59 
example of overlay output 153 
use in overlay program 148 

list-directed input/output 127 
listing 

compiler cross reference 102,54 
linkage editor cross 
reference 108-109,58 

object module 102-103,53 
source module 100,53 
structured source 104,54 

literal constants 
affected by automatic precision 
increase 139 

restriction 133 
LKED, as a name in cataloged 

procedures 85,89 
LOAD (see OBJECT compiler option) 
load module execution job step 

cataloged procedures describing 90 
example of job control statements 13 
input to, description of 67-72 
messages 

198 

error code diagnostics 111 
operator 115-116 
program interrupt 113-116 

output from, description of 111-117 
summary of output 16 

load module 
called from library 67 
cataloged procedures 90 
defined 12 
description of 67 
length of 108,109 
map 108-110,63 
marking for execution 63-64 
restrictions 133 
retrieving from a library 60 
storing into a library 59 

load module data sets 
description of 67-72,14-15 
summary 68 

LOADER, as a name for the loader 
program 63 

loader 
cataloged procedures 90 
contrasted with linkage editor 58 
name of 63 
options 63-65 
storage allocation 64 

loader data sets 
description of 65-66,15 
summary of 66 

loader job step 
cataloged procedures describing 90 
input to, description of 63-66 
output from, description of 110 

loader options 63-65 
Logical IF statement 127 
LOGICAL items 

padding 137 
storage representation of 188 

logical operators 127 
loop, optimization of 128 
LR (label reference) 110 
LRECL subparameter 

M 

default values of 
for compiler data sets 57 
for load module data sets 72 

description of 50 
example of 50 
relationship to BLKSIZE sUbparameter 

to identify 
characters 

magnetic tape 
data set 68 

machine code control 
49-50,77 

ASCII 68 
creating, example in 69 

DEN subparameter 51 
device 

BLKSIZE values for 73 
summary of types 189 

volume 
record length restriction 133 

main storage 
allocating through SIZE option 54 

map 
compiler 

affected by automatic precision 
increase 140 

description of 105-106 
example of 104 

50 



specifying through MAP option 54 
linkage editor 

description of 108 
example of 109 
output from overlay program 153 
specifying through MAP option 58 

loader 63 
MAP compiler option 54 

example of output 104 
MAP linkage editor option 58 

contrasted with compiler option 1 "0 
.LVO 

contrasted Nith loader option 110 
example of output 109 
overlay program output 148 

MAP loader option 63 
contrasted with MAP linkage editor 
option 110 

description of 110 
example of 110 

map, traceback (see traceback map) 
master record 124 
MAX, as a SIZE option value 54 
member, partitioned data set 70-72,15 
messages 

compiler 101,99 
diagnostic 100,101 
FLAG compiler option to obtain 55 
informative 99,100 
linkage editor 108,109 
load module 111-116 

summary of 111 
operator 115-116 
program interrupt 113-116,170 
system, use of MSGLEVEL parameter 27 

MFT (see Multiprogramming with a Fixed 
Number of Tasks) 

MOD, as a DISP subparameter 45 
module 

load 12 
object 12 
source 12 

MSGCLASS parameter 
description of 28 
example of 28 
function of 26 

MSGLEVEL parameter 
description of 27 
example of 27 
function of 26 

Multiprogramming with a Fixed Nurober of 
Tasks 

description of 11 
partitions in 11 
requesting a dump under 115 

M.ultiprogramming with a Variable Number of 
Tasks 

description of 11 
REGION parameter 29,36 
regions in 11 
requesting a dump under 115 

MVT (see Multiprogramming with a Variable 
Number of Tasks) 

NAME compiler option 54 
name field, in job control statements 23 

names 
compiler handling of 127 
device cl~ss, s~ary of 46 
N~M~ complIer option to specify 54 
qualified 19 

NCAL linkage editor option 59 
NEW, as a DISP subparameter 21 

considerations with direct access 
programming 125 

contrasted with OLD subparameter 21 
nine-track tape, density of ~l 
NOALC (see ALe compiler option) 
NOANSF (see ANSF) 
NODECK (see DECK compiler option) 
NODUMP (see DUMP compiler option) 
NOEDIT (see FORMAT compiler option) 
NOFMT (see FORMAT compiler option) 
NOFORMAT (see FORMAT compiler option) 
NOGOSTMT (see GOSTMT compiler option) 
NOID (see GOSTMT compiler option) 
NOLET (see LET loader option) 
NOLIST (see LIST compiler option) 
NOLOAD (see OBJECT compiler option) 
NOMAP compiler option (see MAP compiler 
option) 

NOOBJ (see OBJECT compiler option) 
NOOBJECT (see OBJECT compiler option) 
NOOPT (see OPTIMIZE compiler option) 
NOOPTIMIZE (see OPTIMIZE compiler option) 
NOPRINT (see PRINT loader option) 
NORES (see RES loader option) 
NOSOURCE (see SOURCE compiler option) 
NOXREF (see XREF compiler option) 
NR, in compiler map 106 
null job control statement 12 

function of 22 

OBJ (see OBJECT compiler option) 
OBJECT compiler option 53 
object module 

considerations with OPTIMIZE option 127 
defined 11 
specifying 53 

object module deck 
DECK option to specify 53 
description of 106-107 
example of 107 

object module listing 
example of 102-103 
description of 104-105 
LIST option to specify 53 
use in tracing errors 113,114 

OLD, as a DISP subparameter 45 
considerations with direct access 

programming 125 
contrasted with NEW subparameter 21 

operand field, in job control statement 23 
operating environment (see Multiprogramming 
with a Fixed Number of Tasks; 
Multiprogramming with a Variable Number of 
Tasks) 

operation field, in job control 
statements 23 

operator exception code 114,116 
corrections for 170 

Index 199 



operator message 
description of 115-116 
example of 111 
summary of 111 

operators, in COND parameter of JOB 
statement 28 

OPT (see OPTIMIZE compiler option) 
OPTCD subparameter 

to define ASCII data set 68 
description of 52 
programming considerations 130 

OPTERR parameter 154 
optimization techniques 

specifying 53-54 
OPTIMIZE compiler option 53 

COMMON statement considerations 123 
example of output 104 
FORMAT option relationships 54 
programming considerations 121-129 

OPTIMIZE(l) programming 
considerations 121-128 

OPTIMIZE(2) programming 
considerations 128-129 

example of output 104 
option table 

changing entries in 158-160,156 
default values 155 
description of 154 
format of 164-165 
preface of 154,164 
specifying a user-supplied routine 159 

options 
ASCII 68 
compiler 

description of 53-56 
example of output 100,102-104 
format of 53 
summary of 56 

linkage editor 
description of 58-59 
example of output 109 

loader 
description of 63-66 
example of output 110 

PARM parameter considerations 34-35 
ORDER statement 62 
OUT, as a LABEL subparameter 48 
output 

compiler 99-101 
linkage editor 108-109 
load module 111-111 

program output 116-111 
loader 110 
summary of 16 

output class 
A for printer 55 
B for card punch 55 

output writer 28 
OVERFL subprogram 131 
overflow condition 121 
overlay 

200 

linkage editor control 
statements 146-148 

linkage editor options 148 
output, example of 149-153 
paths 142-143 
process, description of 141-145 
program 

constructing a 146-148 
designing a 141-144 

programming considerations 125 
references 

exclusive 144 
inclusive 143 

segments 141-142 
structure 

example of 141 
tree 141-142 

OVERLAY statement 
description of 146 
example of 149 

OVLY linkage editor option 148,59 
example of output 153 

P 
to describe compiler map variables 105 
in program interrupt message 113,116 

padding data 134 
PAGE statement 62 
parameters 

keyword 23 
positional 23 
symbolic 88 

parentheses, use in PARM parameter 34-35 
PARM parameter 

description 34 
examples of 34-35 
function of 31 
options specified in 

compiler 53-56 
ALC option 138 
AUTODBL option 135-138 

linkage editor 58-59 
overlay options 148 

loader 63 
rules for continuing 34-35 

partitioned data set 
adding members to 10 
creating 10 
deleting 11,12 
description of 10-11,15 
LABEL parameter considerations 48 
relationship to library 10 
restrictions 10 
retrieving 70-11 

partitions, in MFT and VSl control 
program 11 

PASS, AS A DISP subparameter 45-46 
paths, overlay 142-143 
PAUSE statement 

message generated by 115-116 
restriction 133 

PDS (see partitioned data set) 
PDUMP library subprogram 139 
permanent data set 

contrasted with temporary data set 21 
description of 21 

PGM parameter 
description of 33-34 
example of 33-34 
function of 31 
specifying 

compiler 53 
linkage editor 58 



load module 67 
loader 63 

positional parameter 23 
pre-allocated data set 130 
precise interruption ~~~ 
primary input, to link edit job step 60 
PRINT loader option 65 

example of output 110 
printer, BLKSIZE values for 73 
private data sets 

(see also user data sets) 
defining 21 
storing load modules into 59 

problem program 
description of 12 

PROC parameter 
description of 32-33 
function of 32-33 

PROC statement 
description of 88-89 
format of 88 
modifying cataloged procedures with 90 

procedure library 13 
procedure-name, parameter in EXEC statement 

(see PROC parameter) 
PROCESS statement 55 
processing program 

description of 11-12 
procstep.ddname 39 
proqram 

control program 11 
FORTRAN 

as a problem program 12 
restrictions in use by other 
processors 80 

naming a, through the EXEC statement 33 
processing program 11-12 
sample of a 97-98 
source program, listing of 100 

proqram interrupt message 
corrections for, with extended error 
handling facility 170 

description of 113-115 
example of 116 

proqram options 
use of PARM parameter 34-35 

proqram output 116-117 
summary of 16 

proqram status word 114-115,116 
program unit 

relationship to control section 108 
use in overlay structure 141-144 

proqram-name, parameter in EXEC statement 
(see PGM parameter) 

proqrammer-name, parameter in JOB statement 
description of 27 
example of 27 
function of 26 

promoting data 134-135 
protected storage, violation of 114 
protection exception code 114,116 
PRTY parameter 

description of 28 
example of 28 
function of 26 
restriction 28 

PSW (program status word) 114-115,116 
punch, card (see card punch) 

Q 
to define ASCII data set 52,68 

qualified names 19 

randomizing technique 124 
READ statement 

END= option 
to process partitioned data 
set 70-71 

FIND statement with 125 
programming considerations 129 
relationship to partitioned data set 48 

reader, card (see card reader) 
REAL items 

padding 137 
promoting 134-135 
storage representation of 186 

real mode 29-30 
RECFM subparameter 

ASCII data set considerations 76-79 
asynchronous input/output 
considerations 121 

default values of 
for compiler data sets S7 
for load module data sets 72 

description of 50 
direct-access data set 
considerations 80 

EBCDIC data set considerations 73-76 
use of 

in fixed-length records 73 
in undefined-length records 74 
in variable-length records 73 

record key 124 
record location counter 124 
records 

(see also fixed-length records, 
undefined-length records, 
variable-length records) 

BLKSIZE values for 73 
chaining of 125 
characteristics of, defining 49-52 
detail 124 
format of 50 
length of 50 
master 124 
spanned 74,76 
structure of 

ASCII 78-79 
direct-access 80 
formatted 75 
unformatted 76 

region, in MVT and VS2 control program 11 
REGION parameter 

in EXEC statement 36,32 
in JOB statement 29,27 
SIZE compiler option relationship 132 

register 
in linkage conventions 179,180 
OPTIMIZE option considerations 128 

relocate feature 11 
relocation dictionary 106 
RES loader option 65 
return code 129,184 

compared with condition code 28 

Index 201 



RETURN statement 129 
REWIND statement 

asynchronous input/output 
considerations 71 

partitioned data set considerations 71 
RLD card 106-107 
RLSE, as a SPACE subparameter 47 
root segment 141-142 
ROUND, as a SPACE subparameter 47 

S 
to describe compiler map variables 105 
to specify spanned records 50 

sample program 97 
save area 179-180 
SD (section definition) 110 
secondary input, to link edit job step 62 
section definition 110 
seqment control word 50,73 
segment, overlay 

communication with 143-144 
OVERLAY statement to define 146 
relation origin of 142 
root segments 141-142 

SEP parameter 
description of 49 
function of 40 
programming considerations 129 

SEP subparameter in UNIT parameter 46 
programming considerations 130 

sequence number 
defined 14 
description of 41 
processing partitioned data sets 
with 71 

sequential data set 
creating 69 
DCB considerations for 

ASCII data sets 76-79 
EBCDIC data sets 73-76 
default values for load module 72 

description of 69,15 
retrieving 69 

serious error message, description of 101 
seven-track, density of 51 
s~verity code 

explanation of 16 
listing of 101 

SHR, as a DISP subparameter 45 
simulator 113-114 
SIZE compiler option 54 

REGION parameter relationships 132 
SIZE loader option 64 
SLITE subprogram 131 
SLITET subprogram 131 
sort and merge program 12 
SOURCE compiler option 53 
source module 

defined 12 
listing of 

description of 101,100 
LIST option to specify 53 

naming 54 
SPACE parameter 

202 

DEFINE FILE statement relationship 125 
description of 47 
function of 41 

spanned records 
description of 74 
example of 76 

special characters 
in job control language 27,34 

specification exception code 114,116 
correction for 170 

spill, array element 123 
statement function 

restrictions 132 
statistics, compiler 100 
STEPLIB DD statement 

to concatenate data sets 42 
to retrieve a user library 16 

stepname, in EXEC statement 33,31 
STOP n statement 

message generated by 115-116 
restrictions 129 

storage 
allocation 

job 29 
job step 36 

dumping 131 
SIZE option 54 

storage map 
for COMMON blocks 

description of 106 
example of 107 

defined 16 
structured source listing 

(see also edited source listing) 
example of 104 
description of 105 
FORMAT option to specify 54 

subprograms 
affected by promotion of data items 135 
assembler language 

coding 181-183 
description of 179 
examples of 181-183 

entry points to 183 
extended error handling 
considerations 158-160,156 

OPTIMIZE option considerations 128-129 
programming considerations 130-131 
return codes 129 

subroutine 
extended-precision 131 
mathematical, error corrections 

for 166-169 
user-supplied 129 

summary of errors listing 111,112 
superscript, in job control statements 24 
supervisor, description of 11 
support, hierarchy (see hierarchy support) 
symbolic parameters 

description 88 
example of 89 
modifying cataloged procedures with 90 

synonyms, in direct-access programming 124 
SYSABEND DD statement 

contrasted with SYSUDUMP DD statement 
description of 57 
DUMP compiler option relationship 55 
requesting a dump 115,41 

SYSDA device class 14 
SYSIN DD statement 

cataloged procedure use of 89,19 



default values of 57 
description of 56,67 
FT05F001 DD statement relationship 67 
function of .1.4 

as a qualified name 19 
SYSLIB DD statement 

CALL option relationship 63 
contrasted to JOBLIB DD statement 67 
description of 59 
function of 14 
SYS1.FORTLIB library relationship 59 

SYSLIN DD statement 
default values of 57 
description of 

for compiler data set ~b 

for linkage editor data set 59 
for loader data set 65 

function of 14 
OBJECT compiler option relationships 53 

SYSLMOD DD statement 
cataloged procedure use of 89 
creating a user library with 16 
description of 59-60 
function of 14 
as the name of a load module 67 

SYSLOUT DD statement 
cataloged procedure use of 90 
description of 65 
function of 14 
PRINT loader option relationship 65 

SYSOUT parameter 
description of 44-45 
function of 40 

SYSPRINT DD statement 
default values of 57 
description of 55 
function of 14 

SYSPUNCH DD statement 
DECK compiler option relationship 53 
default values of 57 
description of 55 
function of 14 

SYSSQ device class 14 
system data set 14-15 
system library 16 
system messages 

specifying through MSGLEVEL 
parameter 27 

system storage requirements 131-132 
SYSUDUMP DD statement 

contrasted with SYSABEND DD 
statement 57 

description of 57 
DUMP compiler option relationship 55 
requesting a dump 115,41 

SYSUT1 DD statement 
default values of 57 
description of 

for compiler data sets 56 
for linkage editor data sets 60 

FORMAT compiler option relationship 54 
function of 14 

SYSUT2 DD statement 
(see also SYSUT1 DD statement) 
default values of 57 
description of 56 
XREF compiler option relationship 54 

SYSl. FORTLIB 
as automatic call library 61 
as partitioned data set 15 
SYSLIB DD statement relationship 59 

SYS1.LINKLIB 42,16 
SYSLMOD DD statement relationship 59 

SYS1.PROCLIB 81,16 

T 
to indicate track overflow 50 

table of names (compiler map) 54 
tape, magnetic (see magnetic tape) 
temporary data set 

contrasted with permanent data set 21 
creating a 69 
description of 21 
as a partitioned data set 69 

termination message 101,27 
time limit 

assigning to a job 28-29 
assigning to a job step 36 
suppressing 29 

TIME parameter 
in EXEC statement 

description of 36 
function of 32 

in JOB statement 
description of 28-29 
function of 26 

traceback map 
description of 111 
example of 112 
use of 112-114 

requesting printing of 160 
requesting suppressing of 159 

track overflow 
for direct-access data sets 80 
restrictions 121,122 
use of 74,50 

translators, language 11-12 
TRK 

as a SPACE subparameter 47 
TRTCH subparameter 51-52 
TXT card 106-107 

U 
to specify undefined-length records 

description of 50,74 
example of 75 

UNCATLG, as a DISP subparameter 45 
undefined-length records 

BLKSIZE values for 73 
DCB considerations 

for ASCII data sets 76,78 
for EBCDIC data sets 74-75 

description of 49 
underscore, use in job control language 24 
unformatted input/output 

affected by automatic precision 
increase 140 

unformatted records 
DeB considerations 74,76 

Index 203 



direct-access data sets 80 
input/output list relationship 74 

UNIT parameter 
description of 46-47 
examples of 46 
device types 189 
function of 41 

unit record 
data sets 68-69 
devices, summary of 189 

unit types 189 
user data sets 

(see also private data sets) 
defining 21,15 

user library 
description of 16 

user-supplied subroutines 129 
utility program 

v 

description of 12 

to specify variable-length records 
description of 50,73 
example of 10 

variable items 
dumping 131 
promotion of 134 
retrieving address of 183 
storage representation of 185-188 

variable, associated 16 
variable-length records 

BLKSIZE values for 73 
DCB considerations 

for ASCII data sets 76,78 
for EBCDIC data sets 73,15 

description of 50 
examples of 75 

virtual mode 29-30 
virtual storage 11 
volume, defined 14 

204 

VOLUME parameter 
description of 43 
function of 39 

VSl 11 
VS2 11 

WAIT statement 121 
warning message 101 
WRITE statement 

relationship to partitioned data set 

XCAL linkage editor option 148 
XF external function 105 
XR external reference 105 
XREF compiler option 54 

example of output 102 
XREF linkage editor option 58 

contrasted with XREF compiler 
option 108 

example of output 109 
use in overlay program 148,153 

o as a severity code 101,16 
4 as a severity code 101,16 
5 as a data set reference number 
6 as a data set reference number 
7 as a data set reference number 
8 as a severity code 101,16 
12 as a severity code 101,16 
16 as a severity code 101,lb 
2311 direct-access device 189 
2314 direct-access device 189 
2361 larger core storage device 
2400 magnetic tape device 189 

67,20 
b7,20 
67 

29 

48 



TITLE: 

READER'S COMMENTS 

IBM OS FORTRAN IV 
(H Extended) Compiler 
Programmer's Guide 

ORDER NO. SC28-6852-1 

Your comments assist us in improving the usefulness of our publications; they are an important part 
of the input used in preparing updates to the publications. All comments and suggestions become 
the property of IBM. 

Please do not use this form for technical questions about the system or for requests for additional 
publications; this only delays the response. Instead, direct your inquiries or requests to your IBM 
representative or to the IBM Branch Office serving your locality. 

Corrections or clarifications needed: 

Page Comment 

Please include your name and address in the space below if you wish a reply. 

Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



SC28-6852-1 

fold 

Attention: PUBLICATIONS 

BUSINESS REPLY MAil 
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY ... 

IBM CORPORATION 
1271 Avenue of the Americas 
New York, New York 10020 

FIRST CLASS 
PERMIT NO. 33504 
NEW YORK, N.Y. 

fold 

......................................................................... ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 
fold 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10804 
[U.S.A. only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

fold 

• 0 
• s:: · .... :e:. 
• 0 
• ::s .oq 

:e: 
• fIl · .... • 5-

('!) 

t:D 
s: 
o en 
II 
o 
JJ 
-I 
JJ 
~ 
Z 

< 
:::r: 
m 
x e. 




	001
	002
	002a
	002b
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	replyA
	replyB
	xBack



