

System/360 Information Management System

System/360 Information Management System

Education Guide

Requests for copies of IBM publications should be made to your IBM representative or to the IBM branch office serving your locality. Address comments concerning the contents of this publication to IBM Corporation, DPD Education Development, Education Center, Poughkeepsie, New York 12602.

©Copyright International Business Machines Corporation 1969

CONTENTS

- SECTION 1 Introduction
- SECTION 2 Course Description
- SECTION 3 General Course Outline
- SECTION 4 Detailed Course Outline

Objectives and Purpose of IMS/	360 4.1.1
An Overview of IMS/360	4.2.1
Data Language/I	4.3.1
Online Processing (Message Pro	cessing) 4.4.1
Functional Description	4.5.1
Implementation and Internals	4.6.1

SECTION 5 Instructor Materials

•

Ą

INTRODUCTION

This Education Guide is intended for use in the Information Management System/360 classes.

CONCEPTS AND FACILITIES APPLICATION PROGRAMMING IMPLEMENTATION AND INTERNALS

Section 4 of this Education Guide consists of 6 modules, as can be seen from the general outline in Section 3. The first five of these modules are intended for use in the Concepts and Facilities course with no hands on. Depending on facilities available, it may be desirable to demonstrate IMS/360 at the end of the course.

The IMS/360 Application Programming course also makes use of the first five modules of Section 4 and includes hands on experience for the student. If it is desired to teach application programmers for a batch only environment, module 4 of Section 4 (ONLINE PROCESSING) may be dropped from the course.

The IMS/360 Implementation and Internals course consists of all material covered in the Application Programming course plus the last module of Section 4 (Implementation and Internals) with additional hands on experience.

The first week of the Application Programming course and the Implementation and Internals course can be a combined class. At the end of the first week, the Application Programming course would be complete and the Implementation and Internals course would continue the next week.

Considerations for generating a system to be used for hands on classes are presented in Section 5 - Instructor Materials.

IMS/360 COURSES

С	OURSES	SUGGESTED TIME	MODULES OF SECTION 4	NOTES
С	CONCEPTS AND FACILITIES	2 DAYS	1-2-3-4-5	NO HANDS ON
А	PPLICATION PROGRAMMING	4 OR 5 DAYS	1-2-3-4-5	HANDS ON
I	MPLEMENTATION AND INTERNALS	7 TO 10 DAYS	1-2-3-4-5-6	HANDS ON

MODULES TITLE

- 1 OBJECTIVES AND PURPOSE OF IMS/360
- 2 AN OVERVIEW OF IMS/360
- 3 DATA LANGUAGE/I
- 4 ONLINE PROCESSING
- 5 FUNCTIONAL DESCRIPTION
- 6 IMPLEMENTATION AND INTERNALS

NOTE:

IN ADDITION TO THE ABOVE THREE COURSES, MODULES 1 AND 2 CAN BE USED AS AN OVERVIEW IN A SURVEY COURSE.

IF IT IS DESIRED TO TEACH APPLICATION PROGRAMMERS WHO WILL NOT BE USING TELEPROCESSING, MODULE 4 CAN BE DROPPED FROM THE COURSE.

•

Course Description

SYSTEM/360 INFORMATION MANAGEMENT SYSTEM - IMPLEMENTATION AND INTERNALS

Course Code - U3672

Duration - 8 student days

Audience - System analysts and programmers who will be responsible for installing IMS/360

Prerequisites -Successful completion of S/360 OS System Control for Programmers (H3682), S/360 OS Data Management Coding (H3667), and S/360 OS Advanced Coding (H3670). In addition to these courses a working knowledge of COBOL, PL/I, or Assembler Language is required.

Objectives -

Upon successful completion of the course, the student should be able to:

- 1. List the advantages of using IMS/360 and describe the difference between traditional data processing and the data base approach.
- 2. Trace the flow of information and control through the system from the time a request is entered at a terminal until the response is received at the terminal.
- 3. Write a program specification block and a batch application program using all Data Language/I call functions.
- 4. Write a message processing program to handle input from a terminal, interaction with a data base, and output to a terminal.
- 5. Describe the major functional areas such as System Definition, System Log, Checkpoint/Restart, and Security Maintenance and their significance.
- 6. Generate an IMS/360 system for batch or online processing for PCP (batch only), MFT-II, or MVT; write a data base description; create a data base; use the utilities for processing the log tape; prepare control cards for the security maintenance program, and trace the flow of information and control through the major control blocks of IMS/360.

Requests for copies of IBM publications should be made to your IBM representative or to the IBM branch office serving your locality. Address comments concerning the contents of this publication to IBM Corporation, DPD Education Development, Education Center, Poughkeepsie, New York 12602.

Material Requirements

Student Materials

Title	Form No.	Abstract Ref.
IBM System/360 Operating System COBOL		
Language	C28-6516	*
Information Management System/360 Application		
Description Manual	H20-0524	None
Information Management System/360 Program		
Description Manual	* * *	None
Information Management System/360 System		
Operations Manual	* * *	None
Information Management System/360 Machine		
Operations Manual	* * *	None
Instructor Materials (in addition to the above)		
Information Management System/360 Implementation		
and Internals Education Guide	R20-4142	See Below
Information Management System/360 System		
Manual	* * *	None
	•	

* IBM System/360 Bibliography (A22-6822) *** To be released

Abstract -

R20-4142 Education Guide

8¹/₂" x 11" Looseleaf Instructor Outline, 400 pages (Red Cover)

This guide contains a detailed course outline which can be used for teaching three Information Management System/360 courses - Concepts and Facilities, Application Programming, and Implementation and Internals.

Included in the guide are class exercises and paper masters which may be used in preparing overhead projection transparencies.

SYSTEM/360 INFORMATION MANAGEMENT SYSTEM - APPLICATION PROGRAMMING

Course Code -	U3671
---------------	-------

Duration - 5 student days

Audience - Application programmers who will be responsible for writing programs in COBOL, PL/I, or Assembler Language using Data Language/I to interact with a Data Base.

Prerequisites - The student should have actual programming experience in COBOL, PL/I, or Assembler Language

Objectives - Upon successful completion of the course, the student should be able to:

- 1. List the advantages of using IMS/360 and describe the difference between traditional data processing and the data base approach.
- 2. Trace the flow of information and control through the system from the time a request is entered at a terminal until the response is received at the terminal.
- 3. Write a program specification block and a batch application program using all Data Language/I call functions.
- 4. Write a message processing program to handle input from a terminal, interaction with a data base, and output to a terminal.
- 5. Describe the major functional areas such as System Definition, System Log, Checkpoint/Restart, and Security Maintenance and their significance.

Requests for copies of IBM publications should be made to your IBM representative or to the IBM branch office serving your locality. Address comments concerning the contents of this publication to IBM Corporation, DPD Education Development, Education Center, Poughkeepsie, New York 12602.

Material Requirements

Student Materials

Title	Form No.	Abstract Ref.
IBM System/360 Operating System COBOL		
Language	C28-6516	*
Information Management System/360 Application		
Description Manual	H20-0524	None
Information Management System/360 Program		
Description Manual	***	None
Instructor Materials (in addition to the above)	•	
Information Management System/360 Application		
Programming Education Guide	R20-4142	See Below
Information Management System/360 System		
Operations Manual	***	None
Information Management System/360 Machine		
Operations Manual	* * *	None

* IBM System/360 Bibliography (A22-6822) *** To be released

Abstract -

R20-4142 Education Guide

8¹/₂" x 11" Looseleaf Instructor Outline, 400 pages (Red Cover)

This guide contains a detailed course outline which can be used for teaching three Information Management System/360 courses - Concepts and Facilities, Application Programming, and Implementation and Internals.

Included in the guide are class exercises and paper masters which may be used in preparing overhead projection transparencies.

2.4

Course Description

SYSTEM/360 INFORMATION MANAGEMENT SYSTEM - APPLICATION PROGRAMMING

Course Code - U3670

Duration - 2 student days

<u>Audience</u>- Data processing managers who are responsible for implementing IMS/360 and data processing managers who require an understanding of the system facilities in order to evaluate IMS/360 in relationship to other alternatives.

Prerequisites - Successful completion of S/360 for Data Processing Management (T3602) or equivalent experience.

Objectives - Upon successful completion of the course, the student should be able to:

- 1. List the advantages of using IMS/360 and describe the difference between traditional data processing and the data base approach.
- 2. Trace the flow of information and control through the system from the time a request is entered at a terminal until the response is received at the terminal.
- 3. Define a file in terms of a hierarchical file structure.
- 4. Distinguish the difference between a batch processing program and a message processing program.
- 5. Describe the major functional areas such as System Definition, System Log, Checkpoint/Restart, and Security Maintenance and their significance.

Requests for copies of IBM publications should be made to your IBM representative or to the IBM branch office serving your locality. Address comments concerning the contents of this publication to IBM Corporation, DPD Education Development, Education Center, Poughkeepsie, New York 12602.

Material Requirements

Student Materials

Title	Form No.	Abstract Ref.
Information Management System/360 Application		
Description Manual	H20-0524	None
Information Management System/360 Program		
Description Manual	* * *	None
Instructor Materials (in addition to the above)		
Information Management System/360 Concepts		
and Facilities Education Guide	R20-4142	See Below
Information Management System/360 System		
Operations Manual	***	None
Information Management System/360 Machine		
Operations Manual	***	None
* IBM System/360 Bibliography (A22-6822)		

*** To be released

Abstract -

R20-4142Education Guide8½" x 11" Looseleaf Instructor Outline
(Red Cover)

This guide contains a detailed course outline which can be used for teaching three Information Management System/360 courses - Concepts and Facilities, Application Programming, and Implementation and Internals.

Included in the guide are class exercises and paper masters which may be used in preparing overhead projection transparencies.

. •

GENERAL COURSE OUTLINE

Objectives and Purpose of IMS/360

- A. What is IMS/360
- B. What is a Data Base
- C. Primary Objectives of IMS/360
- D. A Typical Company's File Organization
- E. The Traditional Approach
- F. The Data Base Approach
- G. Conceptual View of IMS/360
- H. IMS/360 is an Extension of OS/360

An Overview of IMS/360

- A. Information Management System/360
- B. Requirements of an Information System
- C. Major Features of IMS/360
- D. Data Base Facilities
- E. Data Communication Facility
- F. OS/360 Extension
- G. Data Language/I
- H. Logical Data Structure
- I. Procedure for Using Data Base Facility
- J. Data Storage Techniques
- K. Using the Data Communication Facility
- L. System Organization and Data Flow

Data Language/I

- A. General Description
- B. Data Language/I vs OS/360 Data Management
- C. Data Language/I Structures General
- D. Dependent Segments
- E. Data Language/I Structure Rules
- F. Segment Sensitivity
- G. Key Length and Representation
- H. Storage Technique
- I. Data Base Description
- J. Program Specification Block
- K. Application Program Definition
- L. Data Language/f Calls
- M. Physical Storage
- N. Loading the Application Program

Online Processing (Message Processing)

- A. The Online Environment
- B. Preparing the Application Program
- C. Calling for an Input Message
- D. Outputting a Response
- E. The Message Format
- F. Message Processing Region Simulation
- G. An Input Message Editor

Functional Description

- A. System Definition
- B. IMS/360 System Log
- C. Checkpoint, Restart, Data Base Dump and Recovery
- D. Security Maintenance

Implementation and Internals

- A. IMS/360 Initialization and System Flow
- B. Communications Control
- C. Switched Communications Networks
- D. System Generation
- E. Security Maintenance
- F. Command Language Facilities
- G. Checkpoint, Restart, Data Base Dump and Recovery
- H. System Log
- I. Message Queue Space Allocation
- J. Estimating DASD Space for Data Bases
- K. Estimating Core Storage Requirements for IMS/360

PRIMARY OBJECTIVES OF IMS/360

- ELIMINATION OF REDUNDANT DATA
- REDUCTION IN PROGRAM MAINTENANCE
- PROVIDE ON-LINE MAINTENANCE OF A DATA BASE

COMPANY DATA BASE

 $\overline{ }$

TRADITIONAL APPROACH

1 - V - 4

DATA BASE APPROACH

DATA BASE FACILITY DATA COMMUNICATIONS FACILITY

1-V-6

AN EXTENSION OF 0S/360

1-V-7

INFORMATION MANAGEMENT SYSTEM/360

IS A GENERAL PURPOSE DATA BASE/DATA

COMMUNICATIONS SYSTEM

4.2.17

INFORMATION SYSTEM REQUIREMENTS

EVOLUTIONARY GROWTH

FROM BATCH TO ONLINE

FROM APPLICATION DATA FILES TO LARGE DATA BASES

SUPPORT BATCH AND ONLINE CONCURRENTLY

LARGE VOLUME WITH RAPID RESPONSE

HIGH DEGREE OF DATA INDEPENDENCE

APPLICATIONS IN HIGH LEVEL LANGUAGE IN BATCH AND TELEPROCESSING ENVIRONMENT

DATA BASE FACILITY

DATA LANGUAGE/I

- CREATION, MAINTENANCE, AND GROWTH
- VARIABLE LENGTH INFORMATION
- DATA AND PROGRAM INDEPENDENCE
- BATCH AND ONLINE CONCURRENTLY OR INDEPENDENTLY
- SUPPORTS HIGH LEVEL LANGUAGES

DATA COMMUNICATIONS FACILITIES

- 1. BATCH TO ONLINE SIMPLIFIES CONVERSION
- 2. HIGH LEVEL LANGUAGES COBOL AND PL/I
- 3. CHECKPOINT AND RESTART EXTENSIVE DATA BASE RECOVERY
- 4. SECURITY FOR MESSAGE ENTRY
- 5. LOGICAL TERMINAL OPERATION FOR MAINTENANCE AND CHANGE MULTIPLE USERS OF ONE PHYSICAL TERMINAL
- 6. MASTER TERMINAL CONTROL SUPPORTS DYNAMIC SYSTEM CHANGES CHECKPOINT/RESTART OTHER TERMINAL CONTROL
- 7. STATISTICAL AND ACCOUNTING INFORMATION DETAIL REPORTS PROVIDED

A SECOND LEVEL OF CONTROL IS ADDED BETWEEN THE USER APPLICATION PROGRAM AND 0S/360 CONTROL PROGRAM
DATA BASE FACILITIES

DATA LANGUAGE/I

LOGICAL DATA STRUCTURES

DATA BASE OPERATION

PHYSICAL DATA STRUCTURES

LOGICAL DATA STRUCTURE

HIERARCHICAL

EMPLOYEE	SECURITY	AUTHORI-	EDUCATION	RELATED	PREVIOUS	PAYROLL	CREDIT	BANK
	•	ZATION		EXPER-	POSITION		UNION	DEPOSIT
				<u>IENCE</u>				

BANK CUSTOMER	DEMAND DEPOSIT	STATEMENT INFO.	LOAN	PAYMENT HISTORY	ADDRESS	TRUST	TRUST BALANCES	TRUST TRANS. HISTORY
------------------	-------------------	--------------------	------	--------------------	---------	-------	-------------------	----------------------------

DRAWING	CONFIGURA	NEXT	FABRICA-	FABRICA-	DESCRIP-	ENGRG.	FABRICA-	CONFIGURA
MASTER	TION	ASSEMBLY	TION	TION	TION	ORDER	TION	TION
			PART	QUANTITY		HISTORY	HISTORY	HISTORY

2-V-9

LOGICAL DATA STRUCTURE

2-V-10

EMPLOYEE

SECURITY

4.2.27

2-V-10A

EDUCATION

PREVIOUS POSIT,

PAYROLL

BANK DEPOSIT

RELATED EXPERIENCE

CREDIT UNION

STATEMENT HISTORY

DEMAND

DEPOSIT

PAYMENT

LOAN

HISTORY

TRUST BALANCE

ADDRESS

TRANSACTION HISTORY

CUSTOMER

Ĺ

TRUST

2-V-10B

CONHIST EOHIST FABHIST DESCRIPT DWGMSTR FABPART FABQTY

CONFIG

NEXTASBY

4.2.29

A DATA BASE CONSISTS OF 1 TO N DATA BASE RECORDS A DATA BASE RECORD CONSISTS OF 1 TO N SEGMENTS MAXIMUM OF 255 SEGMENT NAMES MAXIMUM OF 15 SEGMENT LEVELS 1 ROOT SEGMENT PER DATA BASE RECORD DEPENDENT SEGMENTS -- O TO N PER PARENT

2-V-10D

SENSITIVITY OF USER ONE

SENSITIVITY OF USER TWO

4.2.32

2-V-10F

ORDER OF PHYSICAL STORAGE

4.2.33

2 - y - 11

DATA BASE OPERATION

DATA BASE DESCRIPTION

_ 1

PROGRAM DESCRIPTION

DATA BASE CREATION

DATA BASE PROCESSING

DATA BASE DESCRIPTION

PROGRAM DESCRIPTION

2 - y - 14

CALL STATEMENTS

FUNCTIONS (AT THE SEGMENT LEVEL) GET UNIQUE (HOLD) GET NEXT (HOLD) GET NEXT WITHIN PARENT (HOLD) INSERT DELETE REPLACE

SEGMENT SEARCH ARGUMENTS SEGNAME (KEY FIELD NAME=FIELD VALUE)

DATA LANGUAGE/I CALLS

1

GU ROOT (KEYFLD=0816) DEP1 (KEYFLD1=276)

> ISRT ROOT (KEYFLD=0912) DEP1 (KEYFLD1=314) DEP2

PHYSICAL DATA STRUCTURES

HSAM

HISAM

HSAM

_

BSAM RCD, NO, 1 BSAM RCD, NO, 2 BSAM RCD, NO, 3

1A	2A	2B	2A	2B	-2B
2A	3A	3B	30	3D	3B
3D	3D	1A	2A	2B	2B

HISAM - SINGLE DATA SET GROUP

2 - V - 21

HISAM - MULTIPLE DATA SET GROUP

2-V-22

DATA COMMUNICATION FACILITIES

PREDEFINITION

SECURITY AND PRIORITY

TERMINAL COMMAND LANGUAGE

RECOVERY

PREDEFINITION

2 - V - 24

	-VT
CODE CODE	

INPUT FORMAT

EXAMPLES OF TRANSACTIONS

TRANSACTION: SALARY (PASSWD) 281635

RESPONSE: SALARY FOR A.J. SMITH EMP. NO. 281635 IS \$1,000

TRANSACTION: INV 84312

RESPONSE: PART NUMBER 84312 HAS A TOTAL OF 261 UNITS

TRANSACTION: DDNO C.A. BRAWLEY

RESPONSE: C.A. BRAWLEY'S DEMAND DEPOSIT ACCOUNT NO. 15 285 16 8401

MESSAGE PROCESSING PRIORITY SCHEME

15 PRIORITY LEVELS

		2	3
NORMAL PRIORITY	3	3	3
LIMIT PRIORITY	12	12	12
LIMIT COUNT	10	10	10
QUEUE COUNT	4	10	0

MASTER TERMINAL COMMAND LANGUAGE

/ASSIGN

٦

/CHANGE

/CHECKPOINT

/DBDUMP

/DBLOG

/DBNOLOG

/DBRECOVERY

/DISPLAY

/ERESTART

/NRESTART

/PSTOP

/PURGE

/START

/STOP

/DELETE

2-V-28

REMOTE TERMINAL COMMAND LANGUAGE

/BROADCAST /EXCLUSIVE /END /LOCK /UNLOCK /TEST /IAM /SET /RESET

RECOVERY

IMS/360 CONTROL BLOCKS

QUEUES

4

DATA BASES

2-V-30

<u>SECURITY</u> MATRICES

TRANSACTION CODE

		DALL	RECER	IMIT	ABCVIL	XVZIN	7
	REC101	0	1	1	0	1	
SOURCE TERMINAL	SAL102	1	1	0	0	0	
	INV109	0	0	1	1	0	
	PDXIMQ	1	0	0	0	0	

TRANSACTION CODE

		PAN	AV77.	HIDZ	ABCN-	STAD	Altan
	ABCXYZ12	1	0	1	0	0	
SSWORD	PMX12122	1	1	1	1	. 1	
	ABOOXYOZ	0	0	0	1	0	

PAS

BATCH ONLY PROCESSING

IMS/360 SYSTEM ORGANIZATION

CONCURRENT ONLINE AND BATCH FACILITIES

IMS/360 SYSTEM ORGANIZATION

۲

C

2-V-34

MINIMUM BATCH CONFIGURATION

.1

4.2.62

4.3.31

3-V-1

LOGICAL RECORD	LOGICAL RECORD		LOGICAL RECORD	LOGICAL RECORD					
PHYSICAL RE	ECORD		PHYSICAL	RECORD					
DATA SET									
 PHYSICAL STORAGE DEVICE									
			and the second secon	<u>an an a</u>					

OS/360 DATA MANAGEMENT

3-V-2

_	LOG. RECORD	LOG. RECORD	LOG. RECORD	LOG. RECORD		_	LOG. RECORD	LOG. RECORD	LOG. RECORD	LOG. RECORD	
	PHYSICAL	RECORD	PHYSICAL	RECORD			PHYSICAL	RECORD	PHYSICAL	RECORD	
	DATA SET						· · ·	DAT	A SET		
	PHYSICAL STORAGE DEVICE						РНҮ	SICAL STO	DRAGE DEVI	I CE	
DATA BASE RECORD											

HIERARCHICAL STRUCTURE

ROOT	DEP1	DEP2	DEP3	DEP4
PART NO.	DESCRIPTION	QUAN. ON HAND	UNIT PRICE	VENDOR

3-V-4

CONCATENATED KEYS

LOGICAL HIERARCHY

TOP TO BOTTOM ~ LEFT TO RIGHT

3-4-6

THREE LEVEL HIERARCHY

KEY LENGTH

DOOT			000
RUU	1	•	002
	DE	EP1	0004
		DEP2	02
		DEP2	07
		DEP2	24
ſ	DE	EP1	0008
ſ	DE	EP1	0025
	DE	EP1	0911
	DE	EP1	0912
		DEP2	03
		DEP2	05
		DEP2	07
		DEP2	24
		DEP3	001
		DEP3	002
Γ	D	EP1	0925
Ī	D	EP4	451
	D	EP4	455

3-V-7

BSAM RCD, NO, 1 BSAM RCD, NO. 2 BSAM RCD, NO, 3

1A	2A	2B	2A	2B	2 B
2A	3A	3B	3C	3D	3B
3D	3D	1A	2A	2B	2B

HISAM - MULTIPLE DATA SET GROUP

4.3.43

MULTIPLE DATA SET GROUPS

	ROOT OO1	DEP1 02	DEP2 004	DEP3 005	PRIME DATA SET
ſ			.		 •
	ROOT	DEP4	DEP5		SUBORDINATE DATA
	001	003	006		 SET GROUP 1
		- 			
	ROOT	DEP6	DEP7	DEP8	
	001	04	05	06	SET GROUP 2

3-y-11C

DATA BASE DESCRIPTION

DBD INPUT CARDS

1	[PRINT	NOGEN]
2	DBD	NAME=, ACCESS=
3	DMAN	DD1=,DEV1=,[DD2=],[DLIOF=]
4	SEGM	NAME=, PARENT=, BYTES=, FREQ=
5	FLDK	NAME=, TYPE=, BYTES=, START=
	[FLD	NAME=, TYPE=, BYTES=, START=]
6	DBDGEN	
7	FINISH	
8	END	

EXAMPLE OF DBD GENERATION

PRINT

NOGEN

SEGM	NAME=ROOT, PARENT=0, BYTES=90, FREQ=500
FLUK	NAME=KEY, TYPE=C, BYTES=6, START=1
FLD	NAME=FIELD, TYPE=C, BYTES=84, START=7
SEGM	NAME=DEP1, PARENT=ROOT, BYTES=91, FREQ=1
FLUK	NAME=KEY1, TYPE=C, BYTES=4, START=19
SEGM	NAME=DEP2, PARENT=DEP1, BYTES=300, FREQ=1
FLDK	NAME=KEY2, TYPE=C, BYTES=8, START=1
FLD	NAME=FIELD3, TYPE=P, BYTES=253, START=7
SEGM	NAME=DEP3, PARENT=ROOT, BYTES=91, FREQ=1
FLDK	NAME=KEY3, TYPE=C, BYTES=6, START=14
SEGM	NAME=DEP4, PARENT=DEP3, BYTES=259, FREQ=1
FLDK	NAME=KEY4, TYPE=C, BYTES=3, START=1
DBDGEN	
FINISH	
END	

DBDNAME=AB,ACCESS=SEQDMANDD1=DBP,DEV1=TAPE,DD2=DBP1

DBD NAME=AB,ACCESS=INDEX DMAN DD1=DBP,DEV1=2311,DLIOF=OVFL1

DBD NAME=AB,ACCESS=INDEX DMAN DD1=ABC,DEV1=2311,DLIOF=OVFL1

DMAN

DD1=DB1,DEV1=2311,DLIOF=OVFL4

PSB INPUT

PCB	TYPE=DB,	
	DBDNAME=name,	
	PROCOPT=X,	
	KEYLEN=length	

SENSEG NAME OF SENSITIVE SEGMENT, PARENT OF THIS SENSITIVE SEGMENT

PSBGEN

LANG=compiler language, PSBNAME=name of this PSB

END

PCB TYPE=DB, DBDNAME=AB, PROCOPT=A, KEYLEN=18

SENSEG

LANG=COBOL, PSBNAME=DISBURSE

LANG=PL/I, PSBNAME=AUDIT

DEP2, DEP1

DEP3,ROOT

DEP4, DEP3

ROOT

DEP3,ROOT

DEP4, DEP3

SENSEG

SENSEG

SENSEG

PSEGEN

END

PCB

SENSEG

SENSEG

SENSEG

PSBGEN

END

SENSEG DEP1,ROOT

RCOT

TYPE=DB, DBDNAME=AB, PROCOPT=G, KEYLEN=15

THE PCB IS A FILTER

3-V-17

ONE-TO-ONE RELATIONSHIP IN COBOL

	GENERATED BY PSB UTILITY		<u>MASK WR</u>	ITTEN IN CCBOL	
BYTES	FUNCTION	ſ	O1 PCE	NAME.	
8	NAME OF DATA BASE DIRECTORY	 	02	DBD-NAME	PICTURE X(8).
			02	SEG-LEVEL	PICTURE XX.
2	SEGMENT HIERARCHY LEVEL		02	STATUS CODE	PICTURE XX.
			_02	PRCC-OPTIONS	PICTURE XXXX.
Ζ.	STATUS CODES	 	, 02	RESERVE-DLI	PICTURE S9(5) COMPUTATIONAL.
4	DATA LANGUAGE/L PROCESSING		, 02	SEG-NAME-FB	PICTURE X(8).
	OPTIONS		.02	LENGTH-FE-KEY	PICTURE S9(5) COMPUTATIONAL
4	RESERVED FOR DATA LANGUAGE/I		/02	NUMB-SENS-SEGS	PICTURE S9(5) COMPUTATIONAL.
	JCB ADDRESS		/ 02	KEY-FB-AREA.	
8	SEGMENT NAME FEEDBACK AREA			03 ROOT-SEG-KE	Y PICTURE X(12).
4	LENGTH OF FEEDBACK KEY			03 SECOND-SEG-	KEY PICTURE X(2).
4	NUMBER OF SENSITIVE SEGMENTS			03 THIRD-SEG-K	EY PICTURE X(5).
N	KEY FEEDBACK AREA		r 		1
			, 		

4.3.57

3-V-18

ONE-TO-ONE RELATIONSHIP IN PL/I

	GENERATED BY PSB UTILITY	MASK WRITTEN IN PL/I					
BYTES			DECLARE 1	SAMPLE PCB,			
8	NAME OF DATA BASE DIRECTORY		 2	DBD_NAME	CHARACTER (8),		
			I I2	SEG_LEVEL	CHARACTER (2),		
2	SEGMENT HIERARCHY LEVEL		12	STATUS_CODE	CHARACTER (2),		
2	DATA LANGUAGE/I RESULTS STATUS~		+2	PROC_OPTIONS	CHARACTER (4),		
	CODES		L	RESERVE_DLI	FIXED BINARY (31,0),		
4	DATA LANGUAGE/I PROCESSING		,2	SEG_NAME_FB	CHARACTER (8),		
	OPTIONS TO BE USED	/	12	LENGTH_FB_KEY	FIXED BINARY (31,0),		
4	RESERVED FOR DATA LANGUAGE/I		1 2	NUMB_SENS_SEGS	FIXED BINARY (31,0),		
	JCB ADDRESS	//	2	KEY_FB_AREA,			
8	SEGMENT NAME FEEDBACK AREA			3 ROOT_SEG_KEY	CHARACTER (12),		
4	LENGTH OF FEEDBACK KEY-	/ /		3 SECOND_SEG_KE	Y CHARACTER (2),		
4	NUMBER OF SENSITIVE SEGMENTS			3 THIRD_SEG_KEY	CHARACTER (5);		
N N	KEY FEEDBACK AREA						

3-V-19

DATA LANGUAGE/I CALLS

COBOL

ENTER LINKAGE . CALL 'CBLTDLI' USING CALL-FUNCTION, PCBNAME, USER-IO-AREA, SSA1,---,SSAN . ENTER COBOL .

PL/I

CALL PLITDLI (PARM_COUNT, CALL_FUNCTION, PCBNAME, USER_IO_AREA, SSA1,---,SSAN);

SEGMENT SEARCH ARGUMENT

PARTBBBB (PARTKEYBB=AB7024)

SSA EXAMPLES

PARTBBBBB

PARTBBBB (PARTKEYBB=AB6023)

PARTBBBB (PARTKEYBB=AB7024) INVNTORY (KLOCBBBBB=BIN324) VENDHIST (KEYNAMEBB=SMITHBRD)

PARTBBBB (PARTKEYBB=AB7024) INVNTORY (BUILDINGB=BLD21) VENDHISTB

DATA LANGUAGE/I FUNCTION CODES

FUNCTION	CODE
GET UNIQUE	GUBB
GET NEXT	GNвв
GET NEXT WITHIN PARENT	GNРв
GET HOLD UNIQUE	GHUb
GET HOLD NEXT	GHNb
GET HOLD NEXT WITHIN PARENT	GHNP
INSERT	ISRT
DELETE	DLET
REPLACE	REPL

3-V-23
GET UNIQUE - STATUS CODES

STATUS CODE	MEANING
'AB'	NO SEGMENT I/O AREA SPECIFIED IN CALL
'AC'	HIERARCHICAL ERROR IN SSA's
'AD'	ILLEGAL FUNCTION PARAMETER
'AG'	FIRST SSA MUST BE FOR A LEVEL ONE SEGMENT
'AH'	SSA's MISSING
'AI'	DATA MANAGEMENT OPEN ERROR
'AJ'	INVALID SSA QUALIFICATION FORMAT
'AK'	INVALID FIELD NAME IN CALL
'AL'	TERMINAL PCB INVALID IN BATCH ONLY PROCESSING REGION
'AM'	CALL FUNCTION NOT COMPATIBLE WITH PROCESSING OPTION
'AO'	I/O ERROR IN ISAM OR BSAM
'AP'	I/O ERROR IN OSAM
'GE'	SEGMENT NOT FOUND

PARTBBBB(PARTKEYBB=AB7024) INVNTORY(KLOCBBBBB=BIN324) VENDHIST(KEYNAMEBB=SMITHBRO)

4.3.63

GET NEXT - STATUS CODES

<u>ST/</u>	ATUS CODE	MEANING
	'AB'	NO SEGMENT I/O AREA SPECIFIED IN CALL
	'AC'	HIERARCHICAL ERROR IN SSA's
	'AD'	ILLEGAL FUNCTION PARAMETER
	'AI'	DATA MANAGEMENT OPEN ERROR
	'AJ'	INVALID SSA QUALIFICATION FORMAT
	'AK'	INVALID FIELD NAME IN CALL
	'AL'	TERMINAL PCB INVALID IN BATCH ONLY PROCESSING REGION
	'AM'	CALL FUNCTION NOT COMPATIBLE WITH PROCESSING OPTION
*	'AN'	GN CALL NOT ALLOWED IMMEDIATELY AFTER ISRT CALL
	'A0'	I/O ERROR IN ISAM OR BSAM
	'AP'	I/O ERROR IN OSAM
*	'GA'	CROSSED HIERARCHICAL BOUNDARY
*	'GB'	END OF DATA SET
•	'GE'	SEGMENT NOT FOUND
*	'GK'	DIFFERENT SEGMENT NAME AT SAME LEVEL (RETURNED ON UNQUALIFIED CALLS ONLY)

GET NEXT WITHIN PARENT - STATUS CODES

STATUS CODE	MEANING
'AB'	NO SEGMENT I/O AREA SPECIFIED IN CALL
'AC'	HIERARCHICAL ERROR IN SSA's
'AD'	ILLEGAL FUNCTION PARAMETER
* 'AE'	ON GNP/GHNP CALLS, FIRST LEVEL SSA ILLEGAL
'AI'	DATA MANAGEMENT OPEN ERROR
'AJ'	INVALID SSA QUALIFICATION FORMAT
'AK'	INVALID FIELD NAME IN CALL
'AL'	TERMINAL PCB IS INVALID IN A BATCH PROCESSING REGION
'AM'	CALL FUNCTION NOT COMPATIBLE WITH PROCESSING OPTION
'AN'	GN CALL NOT ALLOWED IMMEDIATELY AFTER ISRT CALL
'A0'	I/O ERROR IN ISAM OR BSAM
'AP'	I/O ERROR IN OSAM
'GA'	CROSSED HIERARCHICAL BOUNDARY INTO HIGHER LEVEL
'GE'	SEGMENT NOT FOUND
'GK'	DIFFERENT SEGMENT TYPE AT SAME LEVEL RETURNED (RETURNED ON UNQUALIFIED CALLS ONLY)
* 'GP'	PARENT NOT ESTABLISHED

4.3.65

INSERT - STATUS CODE

STATUS CODE MEANING

'AB'	NO SEGMENT I/O AREA SPECIFIED IN CALL
'AC'	HIERARCHICAL ERROR IN SSA's
'AD'	THE FIRST SSA MUST BE FOR A LEVEL ONE SEGMENT
'AH'	SSA's MISSING
'AI'	DATA MANAGEMENT OPEN ERROR
'AJ'	INVALID SSA QUALIFICATION FORMAT
' AK '	INVALID FIELD NAME IN CALL
'AL'	TERMINAL PCB IS INVALID IN BATCH ONLY PROCESSING REGION
'AM'	CALL FUNCTION NOT COMPATIBLE WITH PROCESSING OPTION
'AO'	I/O ERROR IN ISAM OR BSAM
'AP'	I/O ERROR IN OSAM
'GE'	QUALIFYING SEGMENT NOT FOUND
'II'	DUPLICATE SEGMENT ALREADY IN DATA BASE
'LB'	DUPLUCATE SEGMENT ALREADY IN DATA BASE
'LC'	SEGMENT KEY FIELD CONTENTS OUT OF SEQUENCE
'LD'	THE PARENT FOR THIS SEGMENT HAS NOT BEEN SUBMITTED
'LE'	SUBMISSIONS VIOLATE ORDER WITHIN A LEVEL
'LH'	LEVEL IMMEDIATELY FOLLOWING ROOT HAS BEEN SKIPPED 4.3.66
	<pre>'AB' 'AC' 'AD' 'AD' 'AH' 'AI' 'AJ' 'AJ' 'AK' 'AL' 'AL' 'AC' 'AP' 'GE' 'II' 'LB' 'LC' 'LD' 'LE' 'LH'</pre>

'LD' STATUS CODE

'LE' STATUS CODE

.

3-V-29

'LH' STATUS CODE

3-V-30

DELETE/REPLACE - STATUS CODES

STATUS CODE	MEANING
'AB'	NO SEGMENT I/O AREA ADDRESS IN CALL
'AD'	ILLEGAL FUNCTION PARAMETER
'AF'	NO SSA's ALLOWED FOR DLET/REPL CALLS
'AI'	DATA MANAGEMENT OPEN ERROR
'AL'	TERMINAL PCB INVALID IN BATCH ONLY REGION
'A0'	I/O ERROR IN ISAM OR BSAM
'AP'	I/O ERROR IN OSAM
'AM'	CALL FUNCTION NOT COMPATIBLE WITH PROCESSING OPTION
'DA'	KEY FIELD CANNOT BE CHANGED ON A DELETE OR REPLACE
'DJ'	NO PRECEDING SUCCESSFUL GET HOLD

4,3,70

DATA BASE WITH THREE RECORDS

ENTRY

KEY FIELD

KFLD2

1	ROOT 001	RUT
2	DEP1 0001	KFLD1
3	DEP1 0002	KFLD1
4	DEP2 0001	KFLD2
5	DEP3 0004	KFLD3
6	DEP4 000	08 KFLD4
7	DEP5 0006	KFLD5
8	DEP5 0007	KFLD5
9	DEP6 0007	KFLD6
10	DEP2 0004	KFLD2
11	DEP3 0005	KFLD3
12	DEP5 0007	KFLD5
13	DEP2 0005	KFLD2
14	ROOT 002	RUT
15	DEP1 0012	KFLD1
16	DEP2 0011	KFLD2
17	DEP3 0004	KFLD3
18	DEP5 0007	KFLD5
19	R00T 005	RUT

	R	ETRIEVES	S
		ENTRY	
GU	ROOT(RUT=002)	T	-
	DEP1(KEI D1=0012)	15	•
CU	DOOT	1	
GU	RUUT		
	·		
GU	ROOT(RUT=001)		
	DEP2(KFLD2=0004)		
	DEP5(KFLD5=0007)	12	
GU	ROOT(RUT=001)		
	DEP5(KFLD5=0008)	AC	\bigcirc
			\bigcirc
GN		1	
UN	• .	<u> </u>	
CAL	DOOT	-	
GN	RUUT		
· .			
GN	ROOT(RUT=001)		
	DEP1	2	
GN	ROOT		
	DEP2	4	
GN	ROOT(RUT=001)		
UN			(
			\smile
	UER2(KFLU3=0002)		
		3-V-32	2A

4.3.72

•

.

	RET	TRIEVES
	[ENTRY
GN	ROOT	
	DEP5(KFLD5=0007)	AC
GN	ROOT	
	DEP2	
	DEP3	5
		_
GN	ROOT(RUT=001)	1
GN		
UN		z
	DELI(KLTDI-0002)	
GN	ROOT(RUT=001)	
	DEP2(KFLD2=0001)	
	DEP3(KFLD3=0004)	5
GN	ROOT(RUT=004)	GE
GN	ROOT(RUT=002)	14

l			
			RETRIEVES
		_	ENTRY
	GN		1 .
	GN		2
	GN	POOT	1
		NUUT	
	GN		2
	GN	ROOT	1
	GN	ROOT	14
	CN	DOOT	1
	GN	KUUT	
	GN		2
	GN		3
	GN		4
	GN	ROOT(RUT=001)	
		DEP2(KFLD2=0001)	
		DEP6(KFLD6=0007)	9
	GN		10
	GN	ROOT(RUT=001)	
		DEP2(KFLD2=0001)	
		DEP5(KFLD5=0007)	8
	GN	DEP5	12

		RE	IRIEVES
			ENTRY
GN	ROOT(RUT=001)		
	DEP2(KFLD=0005)		13
GN			14
GN	ROOT(RIIT=001)		
CIT .	DEP2(KEI D2=0004)		
	DEP5(KELD5=0009)		GE
CN			17
GN			12
0.11			F
GN	DEP3		5
GN	DEP3		11
GN	DEP3		17
GN	DEP3		GB
GN	ROOT		1
GNP			2
GU	ROOT(RUT=001)		
	DEP2(KFLD2=0004)		10
GNP			11
GNP			12
GND			GE
			UL

	R	ETRIEVES ENTRY	:
GU	ROOT(RUT=001)	1	• •
GNP	ROOT(RUT=001)		
	DEP1(KFLD1=0001)	AE	
GU	ROOT(RUT=001)		
	DEP1(KFLD1=0001)	2	
GNP		GE	

IDENTIFICATION DIVISION. DATA DIVISION. WORKING STORAGE SECTION.

- 01 IN-ROOT.
 - 02 KEY PICTURE X(6),
 - 02 FIELD PICTURE X(84).

01 IN-DEP1,

02 KEY1 PICTURE X(4).

02 FIELD1 PICTURE X(85).

01 IN-DEP2.

02 KEY2 PICTURE X(8),

02 FIELD2 PICTURE X(253).

01 SSA1,

	02	SEG1-NAME	PICTURE	X(8),
	02	PAREN1	PICTURE	X VALUE '('.
	02	KEY1-NAME	PICTURE	X(8),
	02	0P1	PICTURE	XX.
·	02	VALUE1	PICTURE	9(6).
	02	PAREN11	PICTURE	X VALUE ')'.
01	SSA2.		•	
	02	SEG2-NAME	PICTURE	X(8),
	02	PAREN2	PICTURE	X VALUE (C.
	02	KEY2-NAME	PICTURE	Χ(8).
	02	0P2	PICTURE	XX.
	02	VALUE2	PICTURE	9(4),
	02	PAREN22	PICTURE	X VALUE ()(,
01	SSA3.			
	02	SEG3-NAME	PICTURE	X(8).
	02	PAREN3	PICTURE	X VALUE '('.
	02	KEY3-NAME	PICTURE	X(8),
	02	0P3	PICTURE	XX.
	02	VALUE3	PICTURE	9(8).
	02	PAREN33	PICTURE	X VALUE ')'.
01	CALL-	FUNC	PICTURE	X(4) VALUE 'ISRT'.

4.3.78

LINKAGE SECTION.

01 PCBNAME.

02	DBD-NAME	PICTURE X(8),
02	SEG-LEVEL	PICTURE XX.
02	STATUS CODE	PICTURE XX.
02	PROC-OPTIONS	PICTURE XXXX,
02	RESERVE-DLI	PICTURE S9(5) COMPUTATIONAL.
02	SEG-NAME-FB	PICTURE X(8).
02	LENGTH-FE-KEY	PICTURE S9(5) COMPUTATIONAL.
02	NUMB-SENS-SEGS	PICTURE S9(5) COMPUTATIONAL.
02	KEY-FB-AREA.	

O3 ROOT-SEG-KEY PICTURE X(6).

03 SECOND-SEG-KEY PICTURE X(4),

- 03 THIRD-SEG-KEY PICTURE X(8).

PROCEDURE DIVISION. BEGIN.

ENTER LINKAGE .

ENTRY 'DLITCEL' USING PCBNAME .

ENTER COBOL.

MOVE SPACE TO PAREN3.

ENTER LINKAGE.

CALL 'CBLTDLI' USING

CALL-FUNC,

PCBNAPE,

IN-DEP2,

- SSA-1,
- SSA-2,
- SSA-3.

ENTER COBOL.

ROOTвввв(КЕУвввввв=678512)

DEP1вввв(КЕY1ввввв=3412)

DEP2вввв (КЕY2ввввв=56744788)

RETURN FROM APPLICATION PROGRAM

<u>COBOL</u>

ENTER LINKAGE. RETURN. ENTER COBOL.

<u>PL/I</u>

RETURN:

ASSEMBLER

RETURN (14,12), RC=0

\sim	ISAM OPER	ATION			
STEP 1		PRIME		. 1	
	LOGICAL RECORD 1	LOGICAL RECORD 2	LOGICAL RECORD 7		
RECORD 5		INDEX			
	7 X				
STEP 2		PRIME			
	LOGICAL RECORD 1	LOGICAL RECORD 2	LOGICAL RECORD 5		
MEMORY BUFFER LOG.RECORD 7		INDEX			
	5 7				
STEP 3	LOGICAL RECORD 1	PRIME LOGICAL RECORD 2	LOGICAL RECORD 5		
	5 7	INDEX		1	
	LOGICAL RECORD 7	OVERFLOW			

ISAM PHYSICAL STRUCTURE

4.3.84

OSAM-DEPENDENT SEGMENT OVERFLOW STRUCTURE

4,3.85

ISAM/OSAM RELATIONSHIP

ROOT INSERTION

2nd

34

32

4тн

o

4.3.87

A 0 PHYSICAL BLOCK A

PHYSICAL BLOCK B

PHYSICAL BLOCK B

4.3.90 *

DEPENDENT SEGMENT INSERTION

DEPENDENT SEGMENT INSERTION

PHYSICAL BLOCK A

04

4.3.93

LOADING A BATCH PROGRAM

// EXEC DLIBATCH, PSB=PSBNAME

4.3.94

INSTRUCTORS' NOTE:

Additional material can be found in Section 5 - Instructor Materials to help in assigning these exercises.

1. Write a data base description using the segment names, lengths, key fields, and key field lengths shown on the following page. The student should provide his own frequencies of occurrences.

It is suggested that the following page be reproduced and given to the student. The only additional material required by the student is the JCL provided by the instructor.

2. Write a program specification block for the structure on the following page and declare sensitivity to all segments. The PCB Control Card should specify --TYPE=DCB and PROCOPT=A. The DBDNAME should be provided by the instructor and should be the name of the data base to be used by the class when they write their processing programs.

The PSBGEN Control Card should specify the language in which the student will later write his processing program to use this PSB. The PSBNAME will be the same as that on the JCL provided by the instructor for running the PSB generation.

The student should be informed that this PSB will be used by him when his processing program is written later in the course.

3. Given a program which retrieves and prints the information in the PARTROOT and STANINFO segments shown in the structure on the following page, modify the program to insert new PARTROOT and STANINFO segments, retrieve and print the newly added segments, and then delete them.

The segment names, sizes, and key fields are those shown on the following page.

Use the PSB which was generated for exercise 2 above.

Additional material for assigning this problem can be found in Section 5.

DATA BASE STRUCTURE

NOTE: ALL KEY FIELDS ARE AT THE BEGINNING OF EACH SEGMENT. ALL FIELD TYPES ARE \underline{C}

4.3.96

ONLINE PROCESSING (MESSAGE PROCESSING)

Outline

Α.	The Online Environment	4.4.2
в.	Preparing the Application Program	4.4.2
с.	Calling for an Input Message	4.4.3
D.	Outputting a Response	4.4.3
Ε.	The Message Format	4.4.4
F.	Message Processing Region Simulation	4.4.5
G.	An Input Message Editor	4.4.5
Visual 2	Aids	4.4.7
Class E	xercises and Solutions	4.4.19

Bibliography

Information Management System/360	
Application Description Manual	H20-0524
Program Description	

ONLINE PROCESSING (Message Processing)

Objectives: Upon successful completion of this topic, the student is able to:

- 1. Convert a batch processing program to a message processing program.
- 2. Write Data Language/I calls for input messages and output messages to terminals.
- 3. Describe the necessary program interface to simulate a message processing region in a batch processing region.
- 4. State the significance of an input message editor.
- A. The Online Environment

Teleprocessing with IMS/360 requires either MFT-II or MVT.

(V-1)

1. System structure and facilities

(V-1A)

2. Scheduling a message processing program

B. Preparing the Application Program

- 1. Required additions to the batch processing program are an input/output PCB and Data Language/I calls for input and output.
- 2. The input/output PCB is not specified at PSB generation time but is generated internally by IMS/360 when an application program is scheduled.

(V-2)

3. The one-to-one relationship between the PCBs generated at PSB generation time and the PCBs in the linkage section of the COBOL program exists but in an indirect manner.

4.4.2
- 4. Additional PCBs may be added for outputting to terminals other than the inputting terminal. If output is for other than the input terminal, another terminal PCB must be present. The name of the I/O PCB cannot be altered in the COBOL program.
- 5. If the output is to be processed by another message processing program, an alternate PCB is used for output. The destination is not a logical terminal name but rather a transaction code.

(V-4)

6. Format of the terminal PCB at PSB generation time.

(V-5)

7. Format of the terminal PCB mask in the COBOL program.

(V-6)

- C. Calling for an input message
 - 1. The first line of a message is obtained with a GET UNIQUE call. No SSAs are allowed.
 - 2. Subsequent lines of a message are obtained with a GET NEXT call. No SSAs are allowed.
 - 3. The GET UNIQUE call is used to obtain the first line of the message. A GET NEXT call after the last segment of a message has been obtained will result in the returning of a status code indicating this condition.
 - 4. Structure of the calls for messages.

(V-7)

- D. Outputting a response
 - 1. A Data Language/I INSERT call is used to enqueue a line of an output message. No SSAs are allowed.
 - 2. Each line of the output message should be terminated with a carriage return character. A decimal 21 (CR).

4.4.3

- 3. More than one line of output can be placed in the output area before making the INSERT call.
- 4. Multiple INSERT calls given in succession will result in one message only.

(V-8)

(V-9)

5. Status codes for Data Language/I message calls.

(v-10)

E. Message Formats

- 1. The input message has three fields. The first field is a half-word binary field containing the total number of characters in the message line including all three fields. The maximum count is 136.
- 2. The second field of the input message is a half-word which is reserved by IMS/360.
- 3. The TEXT portion of the message is the message exactly as it was entered from the terminal. This includes the transaction code, the message text, and the carriage return character.

If the message consists of multiple lines of text, each subsequent line has the same format.

The transaction code appears only in the first line.

If a password is entered with the message, it is edited out before getting to the application program. A blank is placed between the transaction code and the first text character.

The only two acceptable delimiters for the transaction code are a blank or a left parenthesis.

4. The format of an output message is the same as the input message format but the contents of the text portion are different.

No logical terminal name is included in the output message. The destination is determined from the PCB.

- 5. In COBOL, the count field is supplied by the application programmer and is equal to the length of the TEXT portion plus 4.
- 6. The two byte field following the count is reserved for Data Language/I use and must be binary zeros.
- 7. Device control characters may be inserted into the message where it is desired to format the message at the terminal output device.

Idle characters are automatically supplied for tabs and carriage returns.

8. Passing a message from one application program to another has the same format as a message to an output terminal. The destination is obtained through the PCB reference.

Password security is not available to a program-toprogram message.

(V-11)

- F. Message Processing Region Simulation
 - 1. Message processing region simulation is not supplied as a part of the distributed IMS/360 program.
 - 2. The checkout of any message processing program in the online terminal environment is often impractical.
 - 3. A technique for simulation is presented here. Minimal change is required when converting the application program to a message processing program. An example can be found in the IMS/360 Program Description Manual.
 - 4. The simulation is accomplished by writing two interfaces. The first interface (A) is used to modify the PCB parameters which are passed to Data Language/I. The second interface (B) is used to simulate message input and output.
- G. An Input Message Editor
 - 1. In order to allow freedom in entering a message at a terminal, it may be desirable to write an input message editor.

4.4.5

- 2. The input message editor could accept a relatively free form input and convert it to a number of fixed length fields to be operated on by a COBOL or PL/I program.
- 3. A complete guide as to how to write an input message editor can be found in the Program Description Manual.

IMS/360 SYSTEM ORGANIZATION

I/O PCB

MESSAGE PROCESSING PROGRAM

ALTERNATE OUTPUT PCB

MESSAGE PROCESSING PROGRAM

4-V-3

PCB FORMAT

LINKAGE SECTION.

01 I-0 TERM.

	02	LTERM-N	AME	PICTURE	X(8).	
	02	DLI-RES	ERVE	PICTURE	XX.	
	02	STATUS-	CODE	PICTURE	XX.	
	02	DATE-TI	ME.			
		03 JU	LIAN-DATE	PICTURE	S9(7)	COMPUTATIONAL-3.
		03 TI	ME-OF-DAY	PICTURE	S9(7).	COMPUTATIONAL-3.
		03 MS	G-SEQ	PICTURE	S9(3)	COMPUTATIONAL.
		03 FI	LLER	PICTURE	XX.	
01	ALT	TERM-A.				
	02	LTERM-N	AME-A	PICTURE	X(8).	
	02	DLI-RES	ERVE-A	PICTURE	XX.	
	02	STATUS-	CODE-A	PICTURE	XX.	
01	ALT	TERM-B.			• •	
	02	LTERM-N	AME-B	PICTURE	X(8).	
	02	DLI-RES	ERVE-B	PICTURE	XX.	
	02	STATUS-	CODE-B	PICTURE	XX.	
01	DATAE	BASE.				
	02	DBASE-N	AME	PICTURE	X(8).	ан Ал
	0 0 0					
	0					

÷

PROCEDURE DIVISION.

ENTER LINKAGE.

CALL 'CBLTDLI' USING FUNCTION, TERM-PCB-IN, MSG-SEG-IO-AREA.

INSERTING AN OUTPUT MESSAGE

OUTENT

7 -1 35

FIELD	CONTENTS
FIELD-A	NO STOCK ON HAND <u>cr</u>
FIELD-B	BACK ORDERS ARE PRESENT <u>CR</u>
FIELD-C	THE NEXT SCHEDULED ARRIVAL IS XX-XX-XX <u>CR</u>

CALL 'CBLTDLI' USING INSERT-FUNC, TERM-PCB, FIELD-A. CALL 'CBLTDLI' USING INSERT-FUNC, TERM-PCB, FIELD-B. CALL 'CBLTDLI' USING INSERT-FUNC, TERM-PCB, FIELD-C.

THESE THREE CALLS CREATE ONE OUTPUT MESSAGE

FIELDCONTENTSFIELD-DNO STOCK ON HAND<u>CR</u> BACK ORDERS ARE
PRESENT<u>CR</u> THE NEXT SCHEDULED ARRIVAL
IS XX-XX-XX.<u>CR</u>

CALL 'CBLTDLI' USING INSERT-FUNC, TERM-PCB, FIELD-D. THIS CALL CREATES ONE MESSAGE OF THREE LINES

4 - V - 7

INPUT MESSAGE CALLS

STATUS CODE	MEANING
AB	NO SEGMENT I/O AREA IN CALL
AQ	READ I/O ERROR. MESSAGE CHAIN CANNOT BE FOLLOWED. MINIMUM OF ONE LOST MESSAGE
AR	READ I/O ERROR. MESSAGE SEGMENT HAS BEEN LOST. MESSAGE CHAIN IS STILL INTACT.
AS	QUEUES NOT AVAILABLE
QC	NO MORE INPUT MESSAGES
QŬ	NO MORE SEGMENTS FOR THIS MESSAGE
QE	GET NEXT REQUEST BEFORE GET UNIQUE
QG	QUEUE MANAGER ERROR
QI	GET NEXT AFTER END OF MESSAGE
QJ	UNKNOWN SYSTEM ERROR

4.4.15

INSERT MESSAGE CALLS

STATUS CODE	MEANING
AB	NO SEGMENT I/O AREA IN CALL
AP	I/O ERROR IN OSAM
QF	SEGMENT LESS THAN FIVE CHARACTERS (SEG LENGTH IS MSG TEXT PLUS FOUR CONTROL CHARACTERS)
QG	QUEUE MANAGER ERROR
QH	TERMINAL SYMBOLIC ERROR - OUTPUT DESIGNATION UNKNOWN TO IMS/360 (LOGICAL TERMINALS OR TRANSACTION CODE)

TRANSACT (PASSWORD) THIS IS THE MESSAGE TEXT

TEXT TRANSACT THIS IS THE MESSAGE TEXT

TRANS THIS IS THE MESSAGE TEXT

TEXT

TRANS THIS IS THE MESSAGE TEXT

MESSAGE PROCESSING REGION SIMULATION

ENTRY:

4 - V - 11

CLASS EXERCISES

INSTRUCTORS' NOTE:

See Section 5 - Instructor Materials for additional information on this exercise.

Convert the batch program written in the last module to a message processing program. Do not change any existing logic or data base calls. Do not include an alternate PCB.

• **`**

FUNCTIONAL DESCRIPTION

Outline

Α.	System Definition		4.5.2
в.	IMS/360 System Log		4.5.2
с.	Checkpoint, Restart, Data Ba	se Dump and Recovery	4.5.3
D.	Security Maintenance		4.5.4

Visual Aids

4.5.6

Bibliography

Information Management System/360	
Application Description Manual	H20-0524
System Operations Manual	

IMS/360 FUNCTIONAL DESCRIPTION OF FACILITIES

Objectives: Upon completion of this topic, the student is able to:

- 1. Describe the process of IMS/360 system definition.
- 2. Describe the logging process of IMS/360 and the reports produced by the statistical utilities.
- 3. Describe the checkpoint, restart, and data base dump and recovery facilities of IMS/360.
- 4. Describe the security maintenance facilities of IMS/360.

(V-1)

A. System Definition

The IMS/360 system definition is similar to OS/360 generation.

- 1. Macro-instruction control cards describing the user's IMS/360 system are input to Stage 1.
- 2. Output from Stage 1 is a set of punched control cards describing a series of jobs which are input to Stage 2.
- 3. Output from Stage 2 is the IMS/360 system.

B. IMS/360 System Log

The system recorder is designed to facilitate the placing of data on the system log. The information is used primarily for checkpoint/restart and data base recovery functions.

(V-2)

- 1. Some information is written for restart
 - a. Message queue control blocks
 - b. Checkpoint data, consisting of dynamic fields in IMS control blocks which vary as a result of normal processing or master terminal commands.

4.5.2

- c. OS/360 data set open or close
- d. Changes to a data base on an optional basis (adds, deletes, and updates)
- 2. For restart and statistics
 - a. All messages received from terminals
 - b. All messages sent to terminals or programs
- 3. For statistics only

a. Error segments from or to terminals

- b. At completion of sending a record to a terminal
- c. Application accounting record
- d. IMS/360 Accounting Record
- 4. Records are written to the log using QSAM.

(V-3)

5. Statistical utilities are provided to process log tape.

(V - 4)

6. Types of statistical reports

(V-5 thru V-10)

7. Examples of statistical reports

(V - 11)

C. Checkpoint, Restart, Data Base Dump, and Recovery

There are four checkpoint commands and two data base dump commands.

- 1. The simple checkpoint command causes the IMS/360 control blocks and tables which control the system to be written to the log tape.
- 2. The CHECKPOINT FREEZE causes orderly shutdown of communications, stops program scheduling, dumps control blocks, and terminates IMS/360.

- 3. The CHECKPOINT DUMPQ causes the same action as the CHECKPOINT FREEZE, and, in addition, dumps the input and output message queues to the log tape.
- 4. The CHECKPOINT PURGE requires the longest to shut down as all input messages in the system at the time of the request are processed and all output messages are sent to their destinations if possible. The control blocks are then written to the log tape.
- 5. The DBDUMP command causes the data base to be dumped to tape after transactions which update it are stopped.
- 6. The DBDUMP STOP is a command which prepares the system for data base reconstruction.
- 7. There are two types of restart and a data base recovery command.
 - a. NRESTART is used to initially start the system and, after a normal CHECKPOINT command has been used, to shut the system down.
 - b. ERESTART, or emergency restart, is used after a system failure such as the loss of core or the loss of message queues.
 - c. DBRECOVERY is used to reprocess transactions against a damaged data base which has been rebuilt from a previously dumped copy.

(V-12)

D. Security Maintenance

The IMS/360 system definition supplies no password security capabilities

- 1. The terminal and password security is assigned and changed through a utility program.
- 2. This structure allows the security information to be changed without a new IMS/360 generation.

(V-13)

3. Through use of the security maintenance program (SMP), passwords can be changed or assigned for transaction codes, terminal command verbs, program status changes,

4.5.4

data base status changes, and logical and physical terminal status changes.

SYSTEM DEFINITION FLOW

5-V-1

IMS/360 SYSTEM LOG ENTRIES

FOR RESTART

- MESSAGE QUEUE CONTROL BLOCKS
- CHECKPOINT DATA
- OS/360 DATA SET OPEN OR CLOSE
- CHANGES TO A DATA BASE

FOR RESTART AND STATISTICS

- MESSAGE FROM TERMINAL
- MESSAGE TO TERMINAL OR PROGRAM

FOR STATISTICS ONLY

- ERROR SEGMENTS
- COMPLETION OF SEND RECORD
- APPLICATION ACCOUNTING RECORD
- IMS/360 ACCOUNTING RECORD

WHEN WRITTEN

WHEN CHANGED AT TIME OF CHECKPOINT WHEN DATA SET OPENED OR CLOSED INSERT, DELETE, OR REPLACE AGAINST A DATA BASE

WHEN MESSAGE COMPLETE WHEN MESSAGE COMPLETE

WHEN HARDWARE ERROR COMPLETION OF SENDING TERMINATION OF APPL. PROGRAM IMS/360 IS STARTED OR STOPPED

4.5.7

PROCESSING THE LOG

TYPES OF STATISTICAL REPORTS

- MESSAGES QUEUED BUT NOT SENT -- BY TERMINAL
- LINE AND TERMINAL LOADING BY TIME OF DAY
- ERROR REPORTS ON BAD TRANSMISSION
- TRANSACTION REPORT
- TRANSACTION RESPONSE REPORT
- APPLICATION ACCOUNTING REPORT
- IMS/360 ACCOUNTING REPORT

IMS ACCOUNTING REPORT

DATE 1-22-68

 IMS
 CPU TIME FOR DAY 1/20/68
 IS
 O7H
 47M
 O7.9S
 OR
 28,027.9S

 IMS
 CPU TIME FOR DAY 1/21/68
 IS
 O6H
 30M
 29.5S
 OR
 23,429.5S

 IMS
 CPU TIME FOR DAY 1/22/68
 IS
 O7H
 40M
 39.5S
 OR
 27,639.5S

 IMS
 CPU TOTAL TIME
 IS
 21H
 58M
 16.9S
 OR
 79,096.9S

4.5.11

TRANSACTION RESPONSE REPORT

DATE 08-31-67

TRANSACTION REPORT

TRANSACTION CODE	R/S	TOTAL MESSAGES	TOTAL CHARACTERS	AVG SIZE	HOURLY 00-07	DISTRI 07-08	BUTION 08-09
T21CAS1R	R	5	250	50	0	1	1
T21CAS2S	S	15	1250	83	5	2	3
SYSTEM	S	15	1250	83	5	2	3
TOTALS	R	5	250	50	0	1	1

4.5.13

•			LINE AND TERMINAL REPORT			DATE 2/11/69				
LINE	TERM	R/S	TOTAL MESSAGES	TOTAL CHARACTERS	AVG. SIZE	Hourly 00-07.	DISTF 07-08	RIBUTION 8 08-09	\geq	
001	AO	·							ζ	
T15CAS	SIA	S	12	600	50	1	3	2	\langle	
		R	14	840	60	1	2	2	2	
002	AO								\mathbf{S}	
T15CAS	S2A	S	4	320	80	1	0	0	\langle	
		R	4	80	20	0	0	0	2	
T15CA	AS2B	S	6	180	30	1	0	1	2	
		R	5	200	40	1	2	1	2	
TRM		S	10	500	50	2	0	2	\leq	
TOTAL	_S	R	9	280	31	1	2	2	\geq	
SYSTE	EM	S	22	1100	50	3	3	4	\geq	
TOTAI	LS	R	23	1120	48	2	4	4	5	
									-	

 $\left(\right)$

DATE 05/31/67

MESSAGES -- QUEUED BUT NOT SENT

TRANSACTION CODE	TOTAL MESSAGES
T19QCA2A	9
T19QCA2B	19

4.5.15

TERMINAL COMMANDS

/CHECKPOINT FREEZE
/CHECKPOINT FREEZE
/CHECKPOINT DUMPQ
/CHECKPOINT PURGE
/DBDUMP
/DBDUMP STOP
/NRESTART
/ERESTART
/DBRECOVERY

SECURITY MAINTENANCE

ADD, DELETE, OR CHANGE PASSWORDS FOR THE FOLLOWING RESOURCES:

- TRANSACTION CODES
- TERMINAL COMMAND VERBS
- PROGRAMS
- DATA BASES
- LOGICAL TERMINALS
- PHYSICAL TERMINALS

SPECIFY TERMINAL SECURITY FOR:

- TRANSACTION CODES
- COMMAND VERBS
IMPLEMENTATION AND INTERNALS

Outline

Α.	IMS/360 Initialization and System Flow	4.6.2
в.	Communications Control	4.6.8
с.	Switched Communications Networks	4,6,12
D.	System Generation	4.6.15
Ε.	Security Maintenance	4.6.21
F.	Command Language Facilities	4,6.24
G,	Checkpoint, Restart, Data Base Dump and Recovery	4.6.30
н.	System Log	4.6.35
I.	Message Queue Space Allocation	4.6.40
J,	Estimating DASD Space for Data Bases	4.6.43
К.	Estimating Core Storage Requirements for IMS/360	4.6.46

Visual Aids

Class Exercises and Solutions

Bibliography

Information Management System/360 Application Description Manual System Operations Manual Program Description Manual Machine Operations Manual

H20-0524

4.6.49

IMPLEMENTATION AND INTERNALS

- Objectives: Upon successful completion of this topic, the student is able to:
 - 1. Describe the initialization process for IMS/360
 - 2. Describe the flow of control between the batch and message processing regions and the IMS/360 control modules
 - 3. Write the necessary control cards and generate an IMS/360 system
 - 4. Write the necessary input cards to the security maintenance program to establish security requirements for the IMS/360 system.
 - 5. Describe the terminal commands for IMS/360.
 - 6. Explain the use of the checkpoint and restart facilities during normal and abnormal conditions.
 - 7. List the various log entries and statistical and accounting reports available from the system.
 - 8. Explain the relationship of the various communication control blocks in a switched and non-switched environment.
 - 9. Estimate storage requirements for an IMS/360 system

INSTRUCTORS' NOTE:

This section describes how the system is initialized and shows the flow of control once the system is loaded.

- A. IMS/360 Initialization and System Flow
 - 1. Assume that OS/360 is to be loaded. An IMS/360 cold start is to take place.
 - a. The operator depresses the IPL key.

b. The OS/360 nucleus is loaded, system queue space is allocated, and messages are sent to the OS/360 console asking for system parameters, time, automatic initialization of readers, writers, and initiators. The operator responds in the normal manner when starting OS/360.

(V-2)

- c. The operator keys in start WRITER and READER commands.
- d. JCL to start IMS/360 is placed in the card reader.
- e. The job is read in and placed in the OS/360 System Job Queue.

(V-3)

- f. The operator starts an INITIATOR.
- 2. The INITIATOR reads the job from the job queue, loads IMS/360, and gives it control. Initiator will usually be overlayed by IMS/360.
- 3. IMS calls its initialization routines and gives them control.

(V-4)

- a. The initialization routine loads the Data Language/I ISAM, OSAM, BTAM, and OSAM into the IMS region if they are not to reside in Link Pack. The stand-alone modules and access methods are loaded.
- b. Buffer pools are created for message gueues, data bases, PSB and DBD control blocks
- c. The master terminal line group is opened.

(V-5)

- d. A message is sent to the master terminal: "IMS READY 068092/115930" (Julian date and time).
- e. The master terminal is polled as IMS/360 is expecting a restart command.

- 4. The master terminal operator enters an /NRESTART command with the appropriate parameters. Since this is a cold start, CLKPT=0 would be one parameter.
 - a. "NRESTART IN PROGRESS" will be typed on the master terminal by IMS/360.
 - b. The message queue data sets and the log tape are opened.
 - c. The security tables are loaded and initialized as part of the /NRESTART command if the appropriate parameters are entered from the master terminal.
 - d. IMS sends a message to the master terminal: "*COLD START COMPLETED, ENTER START COMMANDS".
- 5. The operator will start other lines on the system through the /START command and IMS responds with *START COMMAND COMPLETED". A message is provided on each terminal that is started: "TERMINAL STARTED". The other lines are then polled and input will be accepted or output transmitted.
- 6. In order for message processing programs to be executed, it is necessary to start a message region.
 - a. A message region may be started by entering a deck of JCL cards through the card reader or by a /START MSGREG command from the master console.
 - b. The /START MSGREG command causes the IMS control program to start one message region. If the command is entered a second time, another region will be started.
 - c. The /START MSGREG command causes a START READER command to be simulated and the JCL for a job is read from disk and placed in the system job queue. Part of the /START MSGREG command's responsibility is to start an initiator which will later be used to initiate the message region as an OS/360 job.

(V-6)

7. When a message region is started, a region controller is loaded into the region and given control (or a copy of the reentrant region controller already in link pack is given control). The region controller is approximately 500 bytes.

- a. The region controller is resident for the life of the message region.
- b. The region controller, upon gaining initial control in the message region, executes one of the interregion SVCs and informs IMS that the region is available for message processing.

(V-7)

- 8. Immediately after IMS/360 gains control and the message region's region controller is placed in the wait state, the IMS dispatcher gives control to the IMS scheduler if there is a message to be processed.
 - a. The scheduler determines the program to be loaded and executes another interregion SVC to post the region controller of the message region control.
 - b. One of the parameters which is passed to the region controller is the name of the program to be loaded.

(V-8)

- 9. Prior to loading the application program, the region controller loads a module called the Data Language/I block loader (DFSIDLLO) which determines if sufficient control blocks are in core in the IMS region to execute the program. These are blocks such as the PSBs and DBDs.
 - a. If the necessary blocks are not available in core, the block loader reads in the necessary information and builds the control blocks.
 - b. After the control blocks are built, the block loader requests, through the interregion SVC, that the blocks be moved into the IMS0 region.
 - c. IMS (Data Language/I block move module) moves the control blocks and issues another interregion SVC to return control to the block loader. The block loader then returns to the region controller.
 - d. The region controller ATTACHes the appropriate program and it is loaded into core and given control.
 - e. The application program calls on Data Language/I with a GET UNIQUE for the first segment of the input message.

- 10. Once IMS/360 is loaded and initialized, it is ready to start accepting messages from the master terminal.
 - a. The IMS/360 dispatcher of the Type 0 region gives control to the telecommunications facility for communications with the master terminal.
 - b. The master terminal operator restarts the system.
 - c. The restart facility restarts the system from a log tape if it is a "Warm Start". No input log tape is required if this is a "Cold Start".
 - d. The restart facility returns control to the telecommunications facility, which allows the master terminal operator to start the other communication lines.
 - e. The telecommunications facility returns control to the dispatcher.
 - f. Telecommunications receives the incoming message and invokes the common service facility.
 - g. The common service facility logs the message, queues it on disk, and returns control to the dispatcher through the telecommunications facility.
 - h. When a complete message is received, telecommunications notifies the message scheduling facility of input available for processing.
 - i. The region controller of the message region is given control by an SVC.
 - j. The application program is loaded by the region controller and given control.
 - k. The message processing program accesses messages and data bases through the Data Language/I

facility. (Control comes through the IMS/360 dispatcher.)

- 1. When the message or data base segment is given to the application program, another SVC is issued to give control back to the application program.
- m. The same sequence of events (as obtaining a message) is repeated when sending output.
- n. When the application program terminates, the region controller gets control and issues an SVC to give the IMS/360 dispatcher control.
- o. The dispatcher passes control to the message scheduling facility, which notifies the telecommunications facility of pending output.
- p. Subsequently, the telecommunications facility gets control and invokes the common service facility to obtain a message from the queue. It is then transmitted by the telecommunications facility.
- q. Based upon either message volume or notification from the master terminal, a checkpoint of the system occurs. This is performed by the checkpoint facility through the common service facility.
- 11. Once IMS/360 is initiated, a Type 2 (batch) processing program can be initiated.
 - a. The Type 2 (batch) processing program is controlled through a region controller in the same manner as a Type 1 region.
 - b. The batch program has access to the input message queues, data bases, and output message queues.
 - c. The transaction type to be processed from the input message queue by the batch processing program is specified in the JCL for the batch program (on the EXEC card).
- 12. It is recommended that a Type 2 batch processing program not update a data base used for online processing. Data base backout does not handle data base backout for Type 2 batch regions.

INSTRUCTORS' NOTE:

The terms "tables" and "blocks" are sometimes used interchangebly in this section. The specific structure of various blocks and tables can be found in the IMS/360 System Manual.

B. Communications Control

Communications Control provides the user an interface between his remote terminal and IMS/360. Within the provisions of security control, transactions may be entered from a remote terminal, resulting in the scheduling of message programs that may update or inquire into one or more bata bases.

(V - 10)

- 1. Inputting a message from a terminal
 - a. The user keys in the message.
 - b. The input message is received by communications control and is translated from terminal code to EBCDIC.
 - c. Backspace and control character elimination is provided.
 - d. A check is made to determine if the segment ends with the characters **. If so, the segment is cancelled and ignored.
 - e. The destination of the message is determined from the transaction code.
 - f. Security requirements are checked
 - g. Message is written on the log and queued on a random access device.
 - h. The application scheduler is notified that a complete message has been received.

(V - 11)

2. Processing the message

- a. When the user program which processes the entered transaction is available and scheduled, it requests a message from the message queue.
- b. The user program obtains the message a segment at a time and may generate one or more messages as a result.

(V-12)

- 3. Outputting the response
 - a. Output messages are written on the log and queued on a random access device by logical terminal destination or transaction code. Output from one program may be input for another program.
 - b. If the output message has been gueued upon a logical terminal, the message is dequeued when the output physical terminal and its associated line are available.
 - c. The message is translated to terminal code and edited relative to the insertion of control characters.
 - d. The message is sent to the specified terminal.

(v-13)

4. Communication Blocks

- a. Communication Line Block (CLB) this is the basic control block for communications.
 - 1) Each physical line is represented by a CLB and it is used for control of that line.
 - 2) The basic pointer in this block is to a Communication Terminal Block (CTB).
- b. Communication Terminal Block (CTB) each physical terminal is represented by a CTB. CTBs are grouped according to lines and are generated in line number order.
 - 1) The number of the associated line is present in the CTB. A pointer to the associated CLB can be calculated, as the CLBs are in line number order.

- 2) An index to a communications terminal table (CTT) exists in the CTB, providing the ability to calculate the associated CTT address.
- c. Communications Terminal Table there is an entry in the CTT for each type of terminal. The CTT provides information about the hardware features of a terminal. A separate CTT exists for each type of terminal and for each set of unique hardware features within the terminal type.
- d. Communications Name Table (CNT) each logical terminal is represented by a communications name table.
 - 1) The CNT functions as an output queue block and points to the physical terminal (CTB) to which the output will be directed. Although any number of logical terminals may direct their output to one physical terminal, one logical terminal can direct its output to only one physical terminal at a given time. The association of a logical terminal with a given physical terminal can be changed by means of the command language (/ASSIGN).
 - 2) Many logical terminals may point to one physical terminal.
 - 3) A logical terminal may point to only one physical terminal.
 - 4) The destination of messages can be changed by changing the relationship of physical and logical terminals (/ASSIGN).

(V - 14)

- e. Multiple CTBs may be related to a CLB.
 - 1) A pointer always exists to the first CTB related to the line.
 - 2) Upon the receipt of the first segment of a message from a terminal on the line, a pointer is dynamically established from the CLB to the inputting CTB.
 - 3) Multiple logical terminals (CNTs) may be related to a CTB.

4) Multiple CTBs on the same line point to a single entry in the CTT.

(V - 15)

f. A single CNT (logical terminal) may be associated with one physical terminal (CTB) for input and another for output.

This can be accomplished through use of the /ASSIGN command.

INSTRUCTORS' NOTE:

This section logically breaks away from the communications blocks. The blocks described here are used for controlling and routing the message once it is in the system.

(V - 16)

- g. Scheduler Message Block (SMB) each transaction code known to the system is represented by an SMB.
 - 1) The SMB contains a relative offset pointer to an entry in the Program Specification Block Directory, thus tieing this transaction code to a specific message program for processing.
 - 2) There are three priorities normal, limit, and current, contained in the SMB, as well as the count of unprocessed messages of this type.
- h. Scheduler Priority Table (SPT) this table (actually a number of separate blocks) is used for queuing SMBs by priority.
 - 1) Priorities range from 0 to 15. Priority 15 is not available as it is reserved for the system. Priority 0 is a null priority and will not cause a message processing program to be scheduled.
 - 2) A batch program can request the 0 priority messages.
- i. Message Request Queue (MRQ) the MRQ is interrogated by the dispatcher to determine if a message is ready for processing. If the Partition

Request Queue (PRQ) is also posted, then a partition is available and the application scheduler gains control.

- 1) The MRQ indicates the presence of messages within the system through an event control block.
- 2) When a message is enqueued on an SMB, SMB is enqueued on the SPT representing the appropriate priority. The specific SPT is then enqueued on the MRQ in priority sequence, and the MRQ is posted.

Schedulable priority levels are then obtained in order by dequeuing them off the MRQ.

(V - 17)

j. The MRQ contains pointers to the highest and lowest SPTs with SMBs ready for scheduling.

SMBs are chained off the SPT entries by priority and order of arrival within priority. SMBs are FIFO enqueued at the appropriate SPT priority level.

(V-18)

k.

. The SMB has messages queued on it. The queue consists of Queue Control Records (QCRs). A QCR may contain a pointer to an incore buffer, a pointer to a relative disk block containing the message, or it may contain the message.

Messages of one segment are contained in the QCR. If it is necessary to queue on disk, a relative block pointer to the message is established.

INSTRUCTORS' NOTE:

The fields of all communication control blocks and their function can be found in the Blocks and Tables chapter of the System Manual.

C. Switched Communications Network

1. Before discussing the switched network it is important to have a good understanding of the nonswitched environment.

(v - 19)

- a. The relationship between the physical terminal and the logical terminal is a fairly stable one and is defined at system definition time. This can be varied with the /ASSIGN command.
- b. Typically, there is a one-to-one relationship between the physical terminal and the logical terminal. There may, however, be a number of logical terminals associated with a physical terminal.

(V-20)

2. In the switched network environment, the relationship between a logical terminal and a physical terminal is not established until the remote user dials the computer and issues the /IAM command.

The relationship between a terminal user, a physical terminal, a communication network, and IMS/360 logical terminals at system definition time appears as shown. A physical terminal may have the possibility of relating to a number of logical terminals.

Once the user dials the System/360 computer and issues the /IAM command to sign himself on to IMS/360, a stable relationship between the physical terminal and one or more logical terminals is established.

(v-21)

- 3. In the switched communications network environment, the IMS/360 user employs system definition to define one or more communications lines.
 - a. Associated with each line there must be one logical terminal designated as the inquiry logical terminal for the dialable communication line.
 - b. In addition to an inquiry logical terminal for each dialable communication line, pools of logical terminals may be defined at system definition time.
 - c. One or more logical terminals from the pools of logical terminals are associated with a particular

line when a remote terminal user dials the IMS/360 system.

(v-22)

d. Within any logical terminal pool for a switched communications network, the IMS/360 user can define logical terminal subpools.

- 1) A logical terminal subpool is composed of one or more logical terminals within a given logical terminal pool.
- 2) A particular logical terminal may exist in only one pool and subpool.
- 3) A remote user may call in and sign on for a single logical terminal or all logical terminals within a logical terminal subpool.

(V-23)

- e. After dialing the computer, the relationship is established by the /IAM command.
 - 1) The LTERM parameter may specify the inquiry logical terminal.
 - 2) The LTERM may specify a logical terminal from the pools of logical terminals.
 - 3) If LTERM and PTERM parameters are specified, all logical terminals within a subpool are associated with the physical terminal.

(V-24)

- f. The logical terminal subpool concept allows for efficient use of communication facilities. If the PTERM parameter was specified, all of the output queued on each logical terminal in the subpool for which the /IAM command was issued is sent to the physical terminal.
- g. A subpool might be defined to contain the logical terminals for all of the users of a single physical terminal.

While a user is signed onto a logical terminal within the subpool, the subpool is unavailable to users signing on from other physical terminals.

- h. The relationship of the control block in a switched line group can be seen here.
- 4. A /START LINE command, when issued against a switched network answering line, results in the specified line adapter being enabled.

(V-25)

- a. A physical connection will be established when a remote terminal operator dials the telephone number of the answering line adapter.
- b. After a phyiscal connection is established, the communications controller monitors all terminal input to assure that a logical connection is completed before any transactions or commands other than /IAM are accepted.
- c. If a logical connection is not established within five input messages, the physical connection is terminated by disabling the answering line adapter, and reenabling it to answer the next call.
- D. System Generation
 - 1. IMS/360 is distributed on a nonlabeled, nine or seven track 800 BPI tape. An optional tape is available containing the source modules.

(V-26)

2. The first step is to move the data sets to disk. This is accomplished with IEHMOVE. The data sets are unloaded copies of partitioned data sets.

INSTRUCTORS' NOTE:

The JCL for accomplishing move is in Chapter 2, Volume 1, of the Systems Operation Manual.

(V-27)

3. System generation is accomplished by using the IMS/360 macro-instruction contained within IMS.GENLIB.

The IMS/360 generation is similar to an OS/360 generation. It is accomplished in two stages.

a. Stage 1 causes a series of jobs to be produced

_ - 1

- b. Stage 2 consists of processing the individual jobs produced from Stage 1.
- 4. A system may be defined for online and batch processing or batch-only processing.

(V-28)

5. System generation macros are used in defining the IMS/360 system. A complete list of the macros is shown here. Each will be treated in turn.

Note the requirements for batch-only system.

- a. Three groups of macro-instructions are required for the description of user resources.
 - 1) Group 1 describes the OS/360-IMS/360 operating environment and resources such as SVCs, buffers, and data sets.
 - 2) Group 2 describes application programs and their related resources.
 - 3) Group 3 describes communication line groups, communication lines, and associated physical and logical terminals.

(V-29)

- b. IMSCTRL is used to describe the basic IMS/360 control program options and the Operating System/360, with which IMS/360 will operate.
 - 1) SYSTEM specifies which system environment is to be used MVT-MFT-PCP.
 - a) ALL Generate batch and teleprocessing system.
 - b) BATCH Generate batch-only system.
 - 2) MAXIO Specifies the maximum number of terminal I/O requests, message queue requests, and Data Language/I data base requests which may be in progress in the IMS/360 control program region at any one time.

- 3) MAXREGN The maximum number of regions or partitions to be supported at any one time
- 4) COMMSVC specifies the numbers of the Type 1 SVC which IMS/360 uses for interregion communication
- 5) OCENDA specifies the load module member name to be given the OSAM channel end appendage.
- 6) OSAMSVC specifies the user SVC number to be given the OSAM Type 2 SVC.
- MSGBUFF specifies number of incore message buffers for multiple line messages.
- 8) CKPT a checkpoint will be written each time the specified entries are made to the log.

(V - 30)

- c. MSGQUEUE defines the input and output single line message and multiple line message data sets desired by the user.
 - 1) OCRIN defines the single line input message data set.
 - 2) QCROUT defines the single line output message data set.
 - 3) MSGIN defines input multiple line message data set.
 - 4) MSGOUT defines the output multiple line data set.

(V-31)

- A series of definitions for the various d. libraries must be made as to unit and volume. A default option for the name is provided for each. These macros cause the various data sets to be moved to The XXXLIB macros are all the appropriate volume. the same format with the exception of MACLIB of which has a COPY. The COPY allows the entire macro library to be copied or only the macros required for PSB or DBD to be copied.
- e. IMSGEN Specifies the data sets, volumes, and I/O devices required for the definition process.

1) UT1SDS - names a utility to be used during Stage 2 by the assembler and linkage editor.

1

- 2) ASMPRT specifies whether assembly listings will be produced for the module assembled during system definition.
- 3) LEPRT the linkage editor print options LIST, MAP, and XREF. XREF includes MAP.

(V-32)

(V-33)

- f. APPLCTN Describes the program resource requirements for application programs which will run under control of the IMS/360 Type 0 region.
 - 1) PSB specifies the logical name of the program specification block as generated using the IMS/360 PSB generation utility.
 - 2) PGMTYPE specifies message processing region or batch.
- g. DATABASE Defines all data bases to be used by the preceding APPLCTN macro.
 - 1) DBD logical name of the data base as generated by the DBD generation utility.
 - 2) INTENT specifies whether the program is read-only, update, or sole use to the exclusion of all other applications which may use the same data base.
 - 3) LOG the logging of all segments, added, deleted, or replaced in the data base will allow data base "backout".
- h. TRANSACT Specifies the transaction codes which will cause the program named in the APPLCTN macro to be scheduled.
 - 1) CODE specifies the transaction code.
 - 2) PRTY specifies the priorities at which this transaction code contends for IMS/360 resources with other transaction codes.

- a) Normal and limit priorities may range from 0 through 14.
- b) The limit count may range from 1 through 65535.
- c) Default values for normal, limit, and limit count are 1,1,65535.
- 3) MSGTYPE Specifies when a message is considered complete. That is, whether it is single line or multiple line.
 - a) SNGLSEG Single line input
 - b) MULTSEG Multiple line input
 - c) NONRESPONSE Accept further input without waiting to respond to the message previously entered.
 - d) RESPONSE upon completion of an input message, no further input from the line and terminal is accepted until the response to the input is sent. (One in one out.)
- 4) PROCLIM Specifies the maximum number of seconds allowed for processing each message and the maximum number of messages to be processed upon each loading of the program. Default values are 65535, and 65535.
- 5) INQUIRY If the operand is NO, data base recovery reprocesses all messages entered against this transaction code and no activity is allowed against this transaction during DBDump.

If the operand is YES, data base recovery does not reprocess messages against the transaction code and input is allowed against this transaction code.

(V-34)

(V-35)

i. LINEGRP - Defines the beginning of a set of physical terminals, communication lines, and logical terminal definitions.

- 1) DDNAME specifies the ddname which is used to allocate the communication line devices described in the following LINE and TERMINAL macros.
- 2) FEAT specifies features concerning the line group.
- 3) UNITYPE specifies the unit number.

(V-36)

- j. LINE Defines the beginning of a set of TERMINAL and NAME macro-instructions which describe the physical and logical terminals on a single communications line.
 - 1) FEAT Describes the features on the terminals which are attached to this line.
 - 2) ADDR Address of the communication line
 - 3) ZONE specifies the WATS area zone to be associated with this line.
- k. TERMINAL Describes a physical terminal which must be an input device. It may in addition be an output device.

ADDR - specifies the physical terminal address

- 1. NAME defines a logical terminal name to be associated with the physical terminal described by a preceding TERMINAL or SUBPOOL macro. At least one must follow TERMINAL or SUBPOOL.
- m. MASTTERM Identifies the master terminal. Only one of these is allowed for each IMS/360 generation.

(V-37)

- n. POOL Describes a pool of logical terminals which are to be associated with a set of switched communication lines.
 - 1) ZONE specifies the WATS area zone associated with these logical terminals.
 - 2) FEAT specifies the POOL of logical terminals to be associated with those physical lines

defined by the LINE macro with the equivalent FEAT operands.

- o. SUBPOOL delimits a set of logical terminals to be associated with a given physical terminal. At least one for each POOL macro.
 - 1) TELNO specifies the telephone number for AUTOCALL operations.
 - 2) lterm name a logical terminal name of one to eight alphameric characters must be unique.

(V-38)

(V-39)

- 6. The output from Stage 1 consists of a series of job steps. These job steps can be logically divided into six groups.
- E. Security Maintenance

(v - 40)

The security maintenance program is a utility program which is run after IMS/360 generation if security is desired in the system.

1. The security maintenance program accepts control statements and data statements and produces two matrices which are used for terminal and password security.

(V-41)

- a. Password security may be specified for transaction codes, terminal command verbs, programs, data bases, logical terminals, and physical terminals.
- b. Terminal security may be specified for transaction codes and commands.
- 2. The security can become effective on the next restart. The master terminal operator may specify this with the restart command (TERMINAL and/or PASSWORD).
- 3. The security maintenance program is not executable unless an IMS/360 system definition has been performed. The Security Maintenance Program (SMP) requires the IMS/360 System Definition Block (SDB) as input.

- 4. Input cards to the SMP are control statements or data statements.
 - a. Control statements contain a right parenthesis,), and left parenthesis (, in positions 1 and 2; position 3 is blank followed by the control word.
 - b. Data statements contain a blank in the first position.
 - c. The valid combinations of control and data statements are shown here.
 - 1) A password may begin with any alphanumeric character.
 - 2) Passwords are one to eight characters in length.
 - d. Only the first three characters of the operation code of control or data statements are necessary to identify the statements.
 - e. Physical terminal numbers may be found in the terminal map printed at the end of Stage 1 of IMS/360 system definition.
- 5. Security maintenance is discussed in two parts. The first covers password security and the second covers terminal security.

(v - 43)

- a. Password security may be expressed as a password profile or a resource profile. The results are the same.
 - 1) The first part of this example shows a password profile. The password SAMSMITH gives access to the resources which follow.
 - 2) The second part shows a resource profile. These resources require these passwords.
 - 3) The results of these two series of statements would be identical. The two methods simply offer two ways of looking at the problem.

b. This shows a different way of looking at the profiles. In the vertical here, we see a password profile.

If turned horizontially (turn), we see a resource profile.

(V-45)

c. The actual implementation can be seen here. Each resource is assigned a row of matrix and each column is assigned a password.

Here we see that transaction code PAYREC requires the password SAMSMITH.

6. Terminal security is provided for the command language and transaction codes. Terminals may be limited as to which commands and transaction codes they may enter.

(V-46)

- a. Terminal security may be expressed as a transaction and command profile or as a terminal profile.
 - 1) The first part of the example shows a transaction and command profile. The second part shows a terminal profile.
 - 2) Results of the two are identical.

(V - 47)

- b. The vertical here shows a terminal profile. Terminal DEPT 40 can enter transaction codes PAYROLL and PERS.
- c. The horizontal (turn), shows a transaction and command profile (no commands are present). INVENTORY may be entered from logical terminals \$274001, \$274002, and \$274003.

(V - 48)

7. This shows the implementation of the terminal matrix. Each transaction code and command which is secured is assigned a row in the matrix. Each logical terminal included in security is assigned a column. In the example shown, TRAN2 could be entered from logical terminal CNTA and CNTD.

(V - 49)

- 8. The security maintenance run is a three-step job.
 - a. Step 1 edits the control and data cards for the security maintenance program. The cards are checked for validity against the system being maintained.

(V-50)

- b. Step 2 is an assembly.
- c. Step 3 is a linkage edit which places four sequential members in IMS.RESLIB.
 - 1) Communication Password Table and Matrix
 - 2) Communication Terminal Matrix
 - 3) Communication Password List
 - 4) Communication Terminal List
- d. Only those members affected are changed when the security maintenance program is run. For example, the communication terminal and the communication terminal list can be generated or altered without affecting the communication password table and matrix and the communication password list.
- e. A listing is provided of the created maintenance tables.
- 9. JCL required to run the security maintenance program can be found in the IMS/360 Systems Operation Manual.

(V-51)

F. Command Language Facilities

The command language is divided into two groups for the purpose of presentation -- master terminal commands and remote terminal commands. A different division may be selected by each installation at IMS/360 system definition time.

- 1. Any command message entered results in a completion message going to the originating terminal and affected terminals; error messages go only to the originating terminal.
- 2. Certain command type messages which interrogate, alter, and control the overall system should be restricted to entryzfrom the master terminal.
- 3. Passwords may be required for commands. This is specified when the security maintenance program is run.

(V-52)

- 4. The format of the command is simple and relatively free form.
 - a. The first character is a slash (/).
 - b. The slash is followed by the command verb.
 - c. If required, the password follows the verb and is enclosed in parentheses. The command and the password left parenthesis may be separated by one or more blanks.
 - d. Following the password or command may be a list of key words and parameters.
 - e. Although much freedom is allowed when inputting the command, the following rules apply:
 - 1) The password is enclosed in parentheses (bypass and restore characters may be substituted on the 1050).
 - 2) Delimiters are space, dash, or equal sign.
 - 3) A series of parameters is separated with commas.
 - 4) A period is not required, but if present, it designates the end of the command.
 - . 5) Any characters following the period are treated as a comment.

(V - 53)

6) Key words are used with commands. A partial list is shown here. A complete list is

available in the IMS/360 Machine Operations Manual.

- a) LINE a communication line; one to three character numeric line numbers.
- b) PTERM A physical terminal; one or two character physical terminal address
- c) LTERM A logical terminal; one to eight character alphameric logical terminal address
- d) TRAN or TRANS a transaction code; one to eight alphameric characters.
- e) PROG PROGRAM or PGM a program; one to eight alphameric character program name
- f) DATABASE a data base; one to eight alphameric character data base names.
- g) PASSWORD or PSWD a password; passwords as designated at system definition time.
- h) ALL may be used with many key words. Acceptable uses are explained with the individual commands
- CPRI current priority; one or two character numeric priorities between 0 and 14, inclusive
- j) LPRI limit priority; one or two character numeric priorities from 0 to 14, inclusive.
- k) LMCT limit count of a transaction code; values range from 0 to 32,000.
- 1) TERMINAL or TERM or TER a terminal when deleting terminal security.
- m) REGION or REG or MSGREG refers to a message region.
- n) Certain key words are limited to use with the checkpoint/restart commands and the display command. They are discussed with these specific commands.

- Certain words are considered null if used in a command. These are FOR, SECURITY, TO, ON, MODE, and AFTER.
- 5. Master Terminal Commands

Certain commands are restricted to the master terminal by IMSGEN. Others may be restricted through the security maintenance program.

(V-54)

- a. /CHANGE changes one password to another. In the example shown, ABCD must be present in the password table and the addition of EFGH must not create a duplicate entry in the password table (discussed under security).
- b. /ASSIGN can be used for the reassignment of a logical terminal relative to input and/or output.

A logical terminal that is to be assigned must be stopped unless the logical terminal is the master logical terminal.

This command is also used to change current priority, normal priority, limit priority, or limit count for an SMB.

(V-55)

c. /DELETE - used to eliminate password security for a transaction code, physical terminal, logical terminal, program, or data base. It can also be used to delete terminal security for one or more SMBs.

(V-56)

- d. /DISPLAY displays the status of the system relative to requested information.
 - 1) STATUS causes the displaying of transaction codes and their status relative to inputting, scheduling, locked or unlocked, or locked specifically for DBDUMP.

The status of data bases, programs, lines, physical terminals, and logical terminals is also displayed.

2) ACTIVE - displays the active program in Type 1 and Type 2 regions and the transaction code for which they were loaded.

-1

- 3) QUEUE displays the message queue according to priority, transaction type, and message count. If used with PRIORITY transaction code names for that priority will be displayed.
- 4) TRAN displays data for the transaction code(s) specified.
- 5) PGM displays data for the program(s) specified.
- 6) DATABASE displays data for the data base(s) specified.
- 7) LINE displays data for the specified line. For a further breakdown PTERM may be used.
- 8) LTERM displays data concerning the logical terminal name(s).
- 9) ASSIGNMENT LTERM displays which input and output communication line and physical terminal address are assigned to each LTERM. LINE and PTERM may be used instead of LTERM.
- 10) MASTER displays the logical terminal name, physical terminal address, and line number assigned as the master terminal.

(V-57)

e. /PSTOP, /PURGE, and /STOP are used to temporarily stop various system resources such as lines, terminals, transaction codes, programs, and data bases.

(V-58)

The action taken with each command and its key word are shown in chart form. The numbers under each key word refer to the action taken.

- f. /START is used to start various system resources initially or after a /PSTOP, /PURGE, or /STOP.
- 6. Remote Terminal Commands These are used by the remote . terminal operator to control his own resources. These

include those allowed by system definition and not restricted by running the security maintenance program.

(V - 59)

- a. /BROADCAST used to transmit a message to one or more terminals.
 - 1) This is an exception to the rule that all command messages are one line in length.
 - 2) The command is entered as one line and the message is entered on a separate line.

(V-60)

- b. /TEST Places the user's terminal in a test mode such that any input messages that are entered into the user's terminal will be turned around and transmitted back to the user's terminal. Messages from outside sources will not be transmitted to a terminal that is in test mode.
- c. /EXCLUSIVE This command is used to place the user's own terminal into exclusive or inquirv mode.

In this mode, no output will be sent to the terminal which is not in response to an inquiry from that terminal.

- d. /END this command is used for ending the /EXCLUSIVE or /TEST mode.
- e. /LOG causes the entire line to be written on the log tape.
- f. /CANCEL -zcauses the cancellation of an entire input message regardless of the number of lines.

This is the only command that can be entered as other than the first line of a message.

(V-61)

- g. /LOCK and /UNLOCK used to control various facilities of IMS. /LOCK is functionally similar to /PSTOP. /LOCK is explained here.
 - 1) PTERM applies to the physical terminal into which the command is entered. This causes the

physical terminal to be locked. No command except /UNLOCK will be accepted.

- 2) LTERM a logical terminal or a series of logical terminals which are associated with the physical terminal from which the command is entered. Parameters can be one or more names or ALL; parameters apply to user's own, only; cannot use ALL with /UNLOCK.
- 3) TRAN do not schedule this transaction code.
- 4) PROGRAM do not schedule this program.
- 5) DATABASE do not schedule any program that uses this data base.

(V-62)

- h. /IAM this is the first acceptable command from a dial-up terminal.
 - 1) Logical terminal P1 is associated with the physical terminal.
 - PTERM LTERM causes the attachment of all logical terminal in which P1 exists.
- i. /RDISPLAY displays the logical terminal name, the physical terminal address, and the line number assigned as the master terminal. This is useful in determining the name of the master terminal to be used when broadcasting a message.
- j. /SET sets the destination of all messages entered into this terminal to another terminal or to an SMB. This mode may be reset by the /RESET, /START LINE for the terminal or by the /IAM command.
- k. /RESET eliminates the existing destination mode.
- G. Checkpoint, Restart, Data Base Dump, and Recovery
 - 1. The checkpoint facilities of the IMS/360 control program provide the means for periodically recording control information and status to enable IMS/360 restart after failure.

2. The checkpoint facility provides for orderly shutdown.

(V-63)

3. There are four checkpoint commands, two data base dump commands, two restart commands, and a data base recovery command.

(V - 64)

- a. The checkpoint command, /CHECKPOINT with no operands, causes a simple checkpoint.
 - 1) It may be invoked from the master terminal.
 - 2) It may be taken automatically based on the number of log entries.

(V-65)

- b. The simple checkpoint logs the status of all dynamically changing IMS/360 control program blocks.
- c. Scheduling of programs into message regions is stopped while the checkpoint is taken. Other functions are not interrupted.
- d. The three remaining checkpoint commands are each used to orderly terminate the IMS/360 system.

Each is invoked from the master terminal.

(V - 64)

- e. The /CHECKPOINT FREEZE is the fastest means of orderly termination.
 - 1) Input communications lines are terminated as soon as any messages being entered are completely received.
 - 2) Output communications lines are terminated as soon as any messages being sent are completely transmitted.
 - 3) Message regions are terminated as soon as the current messages being processed have been completed.

- 4) All remaining input messages to be processed and all output messages remaining to be transmitted are retained in the message queue data sets.
- 5) Control blocks are logged.
- 6) The /NRESTART command is used to restart the system.
- 7) If ABDUMP is included a SYSDUMP of the IMS/360 Type 0 region will be provided.
- f. The /CHECKPOINT DUMPO operates exactly as the /CHECKPOINT FREEZE but, in addition, all input and output messages in the gueues are dumped to the log tape.

The /NRESTART with message queue reconstruction is used to restart IMS/360 after a /CHECKPOINT DUMPO.

- g. The /CHECKPOINT PURGE command is the most orderly and time-consuming.
 - Input communication lines are terminated as soon as messages being entered are completely received.
 - 2) All messages in the input queue are processed.
 - 3) All output messages are transmitted to their specified destinations.
 - 4) The message regions are terminated.
 - 5) Input and output messages which could not be processed are dumped to the log tape.
 - 6) IMS/360 control program job is terminated.
 - 7) The /NRESTART with message queue reconstruction is used to restart.

(V-66)

- 8) The order of action during shutdown checkpoint is shown here.
- 4. The data base dump capabilities of checkpoint include the functions of creating a dumped tape image of a complete data base.

It also performs preparatory functions for the reconstruction of a data base.

(V-64)

- a. The /DBDUMP command is entered from the master terminal.
 - 1) All transaction input of an update nature against the data base is stopped.
 - 2) Transactions already in the queue against the data base are processed.
 - A special checkpoint request is issued. This takes a checkpoint and then forces an end-ofvolume on the system log.
 - 4) A special utility is scheduled for execution in a message processing region.
 - 5) The utility program issues GETs against the data base and ISRTs to an HSAM tape.
 - 6) At the completion of the data base dump, the tape is unloaded.
 - 7) Update transactions are allowed to come in from terminals.
- b. The /DBDUMP STOP is used in preparatory procedures prior to data base reconstruction.
 - 1) Transactions against the data base are not scheduled for processing.
 - 2) The data base is reconstructed with a batch program executed from an IMS/360 Type 3 region.
 - 3) After reconstruction, all transactions on all log tapes since the last data base dump must be reprocessed.
- 5. The restart facilities provide for recovery of IMS/360, its message queues, and the data bases.
 - a. Normal restart has two basic versions.
 - 1) Cold start

2) Restart after normal shutdown

Checkpoint number, julian date, and time of dayz

- 3) FORMAT ALL
- 4) BLDQ
- b. Emergency restart is used to restart after a system failure.
 - 1) In order to recover after a loss of core, the /ERESTART command is issued with the checkpoint number of the last checkpoint prior to failure and the tape serial number.
 - a) IMS/360 control blocks are restored from the checkpoint data.
 - b) The log tape is processed forward from the checkpoint to the point of failure.

This process allows checkpoint/restart to determine the message processing programs which were active at the time of failure so that they may be rescheduled.

- 2) If message queues as well as core are lost, it is necessary to rebuild the message queues.
 - a) The FORMAT ALL parameter on the /ERESTART command causes the message gueues to be reformatted.
 - b) The BLDQ causes the message queues to be rebuilt.
 - c) In order to restart with BLDO or FORMAT ALL, it is necessary to back up to the last cold start or the last /CHECKPOINT with PURGE or DUMPO.

The message queues are rebuilt by starting with the queues as they were dumped and then processing forward on the log tape.

Messages are queued and dequeued as a result of the log entries up to the point

of failure. The message queues are totally rebuilt at that point.

d) Data base backout may be required as a result of a failure.

If data base logging has been requested against a data base, all changes to the data base are written on the log tape.

When recovering, if a program was executing against a data base and changes were being logged, then all changes which resulted after that program was loaded will be backed out.

e) Data base recovery can be performed if a data base has been previously dumped and update activity against the data base has been logged.

The first action is to stop all activity against the data base with /DBDUMP command with the STOP operand.

The next action is to restore the data base from the last dumped copy. This is done with a batch program in a Type 3 region.

The /DBRECOVERY command with the data base names and the serial numbers of the log tapes is used to initiate processing of the log tapes against the data base.

All transactions of an update nature are reprocessed. Messages which result from the processing may be resent to the originating terminal if this option is specified with the /DBRECOVERY command.

H. System Log

INSTRUCTORS' NOTE:

The JCL necessary to make the statistical run can be found in the Systems Operation Manual - Volume 1, Chapter 4. Examples of statistical reports can be found in Chapter 5.

The system recorder is a service routine designed to write data on the system log.

- 1. Information is written on the log tape for restart.
 - a. Message enqueue blocks -- when they change
 - b. Checkpoint data -- when a checkpoint is taken
 - c. Record indicating data management open or close -when an IMS/360 data set is opened or closed
 - d. Changes to a data base.
- 2. Information can be written for restart and statistics
 - a. Message received from terminal -- when a message is completely received or when the disk block is full.
 - b. Message sent to a terminal or another program -when the message is complete or when the disk block is full.
- 3. Information may be written for statistics only
 - a. Error segments -- when a hardware error is detected while receiving or sending to a terminal.
 - b. At the completion of a send record -- at completion of sending a message to a terminal.
 - c. Application accounting record -- when application program terminates.
 - d. IMS/360 accounting record -- when the system is started or stopped.

(V-68)

- 4. Records are written on the log tape using QSAM variable length blocked records.
 - a. LL represents the total length.
 - b. BB is a half word used by OS/360.
 - c. FLAG is a one byte field identifying the log entry type.
- d. RECORD is the variable length portion.
- e. The logical record consists of FLAG and RECORD.

(V-69)

- f. There are seven different types of records which are used for statistics and accounting.
 - 1) The basic information in the records is similar.
 - 2) The format for a log entry for an input message, output message, statistics, and errors is shown here.

The variable information contains such things as the transaction code and text of a message or response.

(v-70)

- 3) The application accounting log record contains information about an application program and is written each time a program terminates.
- q. No processing is performed by the logging routine.
- 5. The IMSO procedure includes DD cards for old and new log data set allocations.
 - a. The old log DD card name is LOGDCBR.
 - b. The new log DD card name is LOGDCB.

(v - 71)

- 6. System flow of statistics utilities
 - a. Edit pass 1 edits the prefix of each log entry to ensure that when the log tape is sorted related input and output messages are contiguous.
 - b. Edit pass 2 explodes the system log entries and produces records to be used to produce statistical reports.

(v - 72)

Statistical reports provide a means of evaluating line and terminal loading, traffic volumes, response times, and accounting (billing) information.

7.

(V-73)

- a. Messages queued but not sent -- by transaction code.
- b. Messages queued but not sent by terminal. Format is the same as by transaction code.

(V - 74)

- c. Line and terminal report -- shows loading by time of day
- d. Error reports -- for terminals. Format is the same as the line and terminal report.

(V - 75)

e. Transaction report -- loading by transaction code by time of day.

(V-76)

f. Transaction response report -- measures time from complete receipt of input message until response starts back to terminal.

(V-77)

- g. Application accounting report -- provides sufficient data to allow machine charges to be distributed to terminal users
 - 1) Counts of all requests to Data Language/I
 - 2) Amount of CPU task time
 - 3) Number of bad completion codes by program
 - 4) Average CPU time processing

(V-78)

h. IMS/360 accounting report -- shows amount of CPU time used by IMS/360 region. (Task time does not include wait time.)

- 8. The message select and display program selects messages based on control cards.
 - a. Control cards begin in column 1 with an identifying key word.
 - b. Following the key word is a series of parameters enclosed within parentheses and separated by commas.
 - c. Control cards cannot be continued beyond column 71.
 - d. Multiple control cards with the same key word are permitted.
 - e. Within parentheses, all parameters are positional. Missing parameters must be indicated by commas.
 - f. A group of names may be selected by terminating the parameter with an *. Example: INV* selects INV, INVENTORY, INVA, and INVB.
 - g. The name parameter ALL may be used to select all names rather than a specific name.
- 9. There are five types of control cards.
 - a. Transaction code
 - b. Symbolic terminal name
 - c. Hardware terminal address
 - d. Time control card
 - e. Nonprintable character control card

(V - 80)

10. The sort of the log tape may be by date. If sorted by date, reports are provided by date. If sorted by period, reports are produced by period.

SORT FIELD = (5, 1, CH, A, 9, 4, PD, A, 13, 36, CH, A)

or without date

SORT FIELD = (5, 1, CH, A, 13, 36, CH, A)

- 11. A line count parameter LINECOUNT=XX may be included in the execute card. This controls the number of lines per page, and, if not included, default is 36.
- I. Message Queue Space Allocation

.{

- 1. All messages (transactions) coming into the system are queued on direct access storage devices.
 - a. Messages may be received from communication terminals or application programs.
 - b. Messages may be destined for communication terminals or application programs.

(V-81)

- c. All transactions of the same type are queued in a serial chain based upon time of receipt.
- d. Messages destined for a particular communications logical terminal are queued serially by message class. There are four logical classes:
 - 1) Response Messages (Reply from Response SMB)
 - 2) Replies for an Exclusive terminal
 - 3) System Messages
 - 4) Other traffic (Message switches etc)
 - 5) Although the classes are logically separate, the messages are queued physically (on disk) in two separate strings by manipulating the queue pointers as necessary to maintain their relative priorities.
- 2. Messages may be single line or multiple line.
 - a. Single line messages are normally maintained in a QCR (Queue Control Record).
 - b. Multiple line messages are normally maintained in one or more message buffer records which have been queued to the QCR controlling the message.
 - c. Small multiple line messages will be wholly contained within QCR if the text length is less than the available text capacity of the QCR.

3. From two to four data sets may be used to store messages. At least one QCR data set must be available for message queuing, and one message buffer data set must be available to allow for messages which may exceed the capacity of a QCR.

(V-82)

a. If two data sets are used, the OCR data set is used for both input and output single line messages and for the control of both input and output multiple line messages. The Message Buffer data set is used for both input and output text which cannot be contained in a QCR.

(V-83)

b. Three data sets may be used. A common Message Buffer data set is shown with separate QCR data sets. Possible use is when very little multiple line input is expected with a large percentage of multiple line output.

(V-84)

c. Four data sets are normally used because this allocation provides the least contention between input and output messages.

Message queues are OSAM data sets.

- 4. Message queue data sets must be preformatted before initial usage.
 - a. Use of preformatted queues provides increased performance and reliability.
 - 1) Performance is increased by preassigning direct access storage records for any chain of messages. This reduces the input/output operations required for queue management.
 - Reliability is increased as record X is not relied upon to write record X + 1.
 - b. Messages are written sequentially from the beginning of the data set to the end.
 - 1) Space is reused after the entire data set is written.

2) Restart after a PURGE or DUMP queue causes the allocation of queue space to be reinitialized to the beginning of the queue data sets.

(V-85)

5. Actual space allocation is best explained by example.

- a. Space required depends upon:
 - 1) How many data sets are used (2 or 4).
 - 2) How many messages are received from and sent to terminals.
 - 3) The length of the messages received from or sent to terminals.
- b. The calculation for the example shown assumes four data sets of a 2314.
- c. The computation shown is an outside limit, as no reuse of space has been considered.

(V - 86)

- d. Reuse of space can significantly decrease the space allocation required for message queues.
 - 1) Message turnover rate and number of transactions and logical terminals must be considered.
 - 2) Message buffer records can only be reached through QCR records; therefore, allocation should be such that QCR data sets are reused before message buffer data sets.

(V - 87)

- 3) Reuse of space adds a significant amount of disk I/O time to writing message queues (112.7%).
 - a) To search for each QCR string requires time.
 - b) QCR must be read to follow backward chain when reassigning the QCR.

- c) Message buffer strings must be obtained from QCRs and linked together.
- d) Message buffer record must be read to follow backward chain when reassigning the message buffer.
- J. Estimating DASD Space for Data Bases
 - 1. IMS/360 uses the OS/360 convention in space allocation for direct access storage devices.
 - a. The amount of space can be specified in terms of blocks, tracks, or cylinders.
 - b. If device independence is desired, space should be specified in blocks.
 - c. ISAM data sets must be allocated by cylinder.
 - d. Allocating space for an IMS/360 Data Base which uses ISAM and OSAM data set.
 - 1) OS/360 ISAM has three areas index, prime, and overflow.
 - 2) IMS/360's HISAM Data Base has three areas index, prime, and OSAM overflow.
 - 2. In generating a data base description, the logical record size and blocking factor may be computed by the generation utility or it may be overridden on the DMAN card with LRECL and BLKFACT specifications.
 - a. LRECL (logical record size) and BLKFACT (blocking factor) may be specified on the DMAN card.
 - b. When LRECL is z computed by the DBD generation utility, it considers the device and rounds to the next higher 1/4 track, 1/3 track, or 1/2 track.

(V - 88)

- 3. Data Base allocation is best explained by an example.
 - a. Assume a data base in which 50% of the logical records are 300 bytes or less; 70% (includes the 50%) are 400 bytes or less; 90% (includes the 70%) are 900 bytes or less in length; 100% (includes the 90%) are 1200 bytes or less in length.

- b. With fixed length ISAM it is necessary to establish a fixed value for the logical record length (LRECL).
- c. In the example given, an LRECL of 1200 bytes would accommodate the data base record but 90% of the records would have at least 300 bytes of slack whereas 70% of the records would have at least 800 bytes of slack.
- d. If an LRECL of less than 1200 bytes is selected, it will not accommodate all of the data base records. Some dependent segments will be placed in OSAM.
- e. In determining the best balance between ISAM and OSAM, a number of points must be considered.
 - Access to records completely contained in the prime area is faster than accessing data in two areas.
 - 2) OSAM space can be used to hold overflow segments from any logical record. Slack in the prime is tied to a specific root.
 - 3) Another consideration is that records in the prime area are blocked while records in OSAM are unblocked. With small data base records, this can make a significant difference.
 - 4) Are the longer data base records accessed more or less often than the shorter data base records? If longer records are accessed more often, it may be best to have them in the prime area rather than in OSAM.

(V-89)

- 4. A data base record size is computed by DBD the generation utility using the segment sizes and frequency.
 - a. The calculation for a data base record length is shown by example.
 - b. The calculation is shown with a letter above the calculation identifying specific segments.
 - c. If one desired, he could specify the size of the LRECL on the DMAN card.

- 5. Once the LRECL is established, the blocking factor must be computed.
 - a. The LRECL is always 1/2 track or less. If the computed LRECL is greater than 1/2 track, then 1/2 track LRECL will be used.
 - b. The blocking will be 1/2, 1/4, or 1/3 track whichever accommodates the most logical records. This is computed by the DBD generation utility.

(V-90)

- 6. If, in the example, we assume 1/2 track blocks on a 2314, six LRECLs would be placed on each track.
 - a. The table shows that our LRECL of 909 falls in the 870-1158 range, which gives us three records per block.
 - b. A 2314 track is shown beneath the chart. We have two blocks of three records each or six records per track.
- 7. Our next step is to estimate the number of roots in the data base. Let us assume 20,000 parts or 20,000 logical records.
 - a. We are now ready to calculate the prime area required for the data base.
 - b. Our records are blocked 6 per track and there are 19 tracks per cylinder, excluding track indexes. Thus we get 114 logical data base records per cylinder. Our requirements are approximately 176 cylinders of a 2314 pack.
- 8. In order to estimate the OSAM space required, one must allow space for initial loading plus space for adding new segments of information.
 - a. In order to determine what is required in initial loading in our example, we must know something of the unaccounted for 10% in GENINFO, STOKSTAT, and BACKORDR segments (only 90% were less than the frequency used - the other 10% had a greater occurrence).
 - b. Our calculated LRECL of 909 would have accommodated 90% of the records in our data base but we were given an LRECL of 1158.

- c. With an LRECL of 1158 we would have very little loaded into OSAM, since none of our records are over 1200 bytes long.
- 9. This example has been given to show the approach in analyzing a data base's space requirements and should not be looked at as an absolute approach to the problem.
- 10. Space for the ISAM index is as required by OS/360 Data Management.

INSTRUCTORS' NOTE:

No simple answer or explanation can be given as to core requirements for IMS/360. The requirement can vary over a wide range and result from the equipment to be supported and the IMS/360 option specified. The information presented here should be used for guide lines and not as absolute requirements.

- K. Estimating Core Storage Requirements for IMS/360
 - The IMS/360 control program region can vary in size as a result of the number of lines, terminals, programs, transaction types, and data bases, and the placing of certain program modules in OS/360 link pack instead of the IMS/360 control program region.

(v-91)

2. The basic requirements are presented in chart form. All modules shown other than the IMS resident nucleus may be placed in link pack.

(V-92)

In addition to these basic requirements, space must be provided for control blocks, buffers, and BTAM device modules.

3. The BTAM device modules vary in size depending on the terminal and features to be supported.

(V-93)

4. Control blocks are required for communication lines, terminals, transaction types, message processing programs, and open data bases.

5. Buffers are required for communication lines and data bases.

(V - 94)

6. To estimate the total requirements for an IMS/360 system, we must first define the environment in which the system is to run. Assumptions are shown in chart form.

(V-95)

- a. The basic storage requirements consist of 60,000 bytes for the IMS/360 nucleus and 30,100 bytes of action modules and access modules. The 30,100 bytes may be in OS/360 link pack.
- b. There are two line groups one for 2740s and one for 1050s. The requirements for the BTAM device support are shown.
- c. IMS/360 control block requirement are a function of the number of lines, terminals, transaction types, data bases, and programs. An estimate of 18,000 is used here. Some blocks included are 500 bytes for each line, 75 bytes for each terminal, and 60 bytes for each transaction type.
- d. One queue control record is required for each line (16 X 176).
- e. This example assumes that about one-third of all messages coming in are multiple line, thus space is required to store the multiple segments (5 X 880).
- f. It is assumed that output will be going to 5 lines concurrently (5 X 500).
- g. It is assumed that there are five open data bases each requiring buffer space of 3000 bytes. Since two regions may be concurrently resident, this requirement must be doubled (2 X 5 X 3000).
- h. There are 10 program specification blocks concurrently resident. The typical size of a PSB is from 500 to 1,000 bytes. This requirement can vary significantly depending on the complexity of the data base and the specified sensitivity of the PSB.

- i. The data management block required for each data base varies with the degree of complexity of the data base. The assumption here is that two require 1,000 bytes while three require 500 bytes.
- j. The total estimate shown is based on the assumption of specific requirements. No generalization should be based on this figure.
- 7. The MVT requirements exceed the MFT-II requirements as a result of the system queue space required and the additional requirements for system fetch work area and ABEND work area. This will vary from approximately 3,000 bytes to 4,000 bytes.

IPL

OS/360 SYSTEM QUEUE SPACE		RDR	WTR	LINK PACK
---------------------------------	--	-----	-----	--------------

6-V-1

PORTION OF DYNAMIC CORE

LINK PACK)

MASTER TERMINAL MESSAGES AND COMMANDS

IMS READY 068092/1159308 /NRESTART CHKPT O FORMAT ALL [TERMINAL] [PASSWORD] *NRESTART COMMAND IN PROGRESS *COLD START COMPLETED, ENTER START COMMANDS /START LINE 2, 4, 7, 9 *START COMMAND COMPLETED /START MSGREG /START MSGREG IN PROGRESS IMS116I MESSAGE PROCESSING REGION STARTED

INTER-REGION COMMUNICATION

6-V-6

 $\left(\right)$

()

6-V-9

COMMUNICATIONS CONTROL

- RECEIVE MESSAGE
- TRANSLATE TO EBCDIC
- DETERMINE DESTINATION
- CHECK SECURITY REQUIREMENTS
- WRITE ON LOG
- QUEUE ON RANDOM ACCESS DEVICE
- NOTIFY APPLICATION SCHEDULER

PROCESSING A MESSAGE

¢,

COMMUNICATIONS CONTROL

Q

- DEQUEUE MESSAGE
- TRANSLATE TO TERMINAL CODE
- EDIT FOR CONTROL CHARACTER INSERTION
- SEND TO TERMINAL

COMMUNICATIONS CONTROL BLOCKS

()

INPUT ON CTB1 - OUTPUT ON CTB2

/ASSIGN LTERM CNT1 TO LINE 2 PTERM CTB1 PTERM CTB2
(BOTH CTB'S ARE ON THE SAME LINE IN THIS EXAMPLE)

6-V-15

QUEUING MESSAGES

J

6-V-18

NON-SWITCHED PHYSICAL-LOGICAL RELATIONSHIP

SWITCHED LINE RELATIONSHIP

SWITCHED NETWORK

POOLS AND SUBPOOLS

6-V-22

/IAM LTERM INQLOG1

/IAM LTERM LOGPOOL1

/IAM PTERM LTERM ABCX

DIAL SIGN ON PROCEDURES

TRAN1 TEXT *SIGN ON REQUIRED

IAM A 1050 *SIGN ON REQUIRED

IAM A SWITCHED NETWORK 1050 *SIGN ON REQUIRED

IAM NOT A 1050 *SIGN ON REQUIRED

HE IS *SYSTEM DISCONNECT

/IAM LTERM MASTER *PTERM/LTERM IN USE, CANNUT PROCESS COMMAND

/IAM LOGTR TERMO1 *REQUIRED KEYWORD NOT PRESENT

/IAM LTERM TRANT1 *LTERM KEYWORD PARAMETER INVALID

6-V-26

IMS GENERATION FLOW

(

6-V-27

SYSTEM DEFINITION MACROS

MACRO	TYPE OF DEFINITION					
INSTRUCTION	COMPLETE SYSTEM	BATCH TYPE 3				
MACRO INSTRUCTION INSCTRL MSGQUEUE MACLIB RESLIB PGMLIB PSBLIB DBDLIB PROCLIB IMSGEN APPLCTN DATABASE TRANSACT LINEGRP LINE TERMINAL NAME	TYPE OF DE COMPLETE SYSTEM REQUIRED 1 REQUIRED 1 OPTIONAL 1 OPTIONAL 1 OPTIONAL 1 OPTIONAL 1 OPTIONAL 1 OPTIONAL 1 OPTIONAL 1 REQUIRED 1 REQUIRED 1 REQUIRED N REQUIRED N REQUIRED N REQUIRED N REQUIRED N REQUIRED N	FINITION BATCH TYPE 3 REQUIRED 1 NOT ALLOWED OPTIONAL 1 OPTIONAL 1 OPTIONAL 1 OPTIONAL 1 OPTIONAL 1 OPTIONAL 1 OPTIONAL 1 REQUIRED 1 NOT ALLOWED NOT ALLOWED NOT ALLOWED NOT ALLOWED NOT ALLOWED				
MASTTERM	REQUIRED 1	NOT ALLOWED				
POGL	OPTIONAL N	NOT ALLOWED				
SUBPOOL	OPTIONAL N	NOT ALLOWED				

1

λ

2

3

 \bigcirc

IMSCTRL SYSTEM = (MFT-II,ALL), MAXIO=10,MAXREGN=2, c
COMMSVC=(244,245),OCENDA=Z8,OSAMSVC=243, c
MSGBUFF=5,CKPT=500

NAME	MSGQUEUE	$QCRIN = (DDNAME, DSNAME, UNIT, SERIAL),$ $QCROUT = (DDNAME, DSNAME, UNIT, SERIAL),$ $MSGIN = (DDNAME, DSNAME, UNIT, SERIAL),$ $MSGOUT = (DDNAME, DSNAME, UNIT, SERIAL),$ $REUSE = \left(\frac{YES, 100}{N0, N}\right)$
	MSGQUEUE	QCRIN = (SMSGIN, IMS, SMSGIN, 2311, IMS001), QCROUT = (SMSGOUT, IMS, SMSGOUT, 2311, IMS001), MSGIN = (MMSGIN, IMS, MMSGIN, 2311, IMS002), MSGOUT = (MMSGOUT, IMS, MMSGOUT, 2311, IMS002),

REUSE =

YES,20

4.6.78

r		 	p=====================================
	NAME	MACLIB	UNIT = NAME VOLNO = SERIAL PDS = <u>IMS.MACLIB</u> NAME COPY = <u>UTILITY</u> ALL
		MACLIB	UNIT=2314,VOLNO=IMFMFT,PDS=IMS.MACLIB, COPY=UTILITY
	PROCLIB	 IMS.PROCLIB	
	DBDLIB	 IMS.DBDLIB	
	PSBLIB	 IMS.PSBLIB	

PGMLIB -- IMS.PGMLIB RESLIB -- IMS.RESLIB

6-V-31

MACRO-INSTRUCTION	NUMBER PER SET	PURPOSE
APPLCTN	1	NAMES APPLICATION PROGRAM. DELIMITS THIS SET OF MACRO- INSTRUCTIONS.
DATABASE	N	NAMES DATA BASES USED BY APPLICATION PROGRAM.
TRANSACT	Ν	NAMES TRANSACTION CODES WHICH WILL BE PROCESSED BY THE ABOVE APPLICATION PROGRAM.

APPLICATION DESCRIPTION MACRO-INSTRUCTION SET

2

MACRO-INSTRUCTION	NUMBER PER SET	PURPOSE
LINEGRP	1	NAMES COLLECTION OF TERMINALS WITH LIKE ATTRIBUTES. DELIMITS THIS SET OF MACRO- INSTRUCTIONS.
LINE	Ν	PROVIDES ADDRESS OF LINE AND DELIMITS TERMINALS ON SAME LINE.
TERMINAL	Ν	PROVIDES PHYSICAL TERMINAL DATA AND DELIMITS LOGICAL TERMINAL NAME.
NAME	Ν	PROVIDES LOGICAL TERMINAL NAMES
MASTTERM	1 (per definition)	LOGICAL NAME OF MASTER TERMINAL
POOL	1	POOL OF LOGICAL TERMINALS
SUBPOOL	1	SUBPOOL OF LOGICAL TERMINALS

NAME	LINEGRP	DDNAME = name					
		FEAT = { <u>STACTL, NONSWITCH</u> TRANSCTL, SWITCHED }					
		$\text{UNITYPE} = \left\{ \frac{2740}{1052} \right\}$					

LING1

LINEGRP

DDNAME=DD1,FEAT=(TRANSCTL,SWITCHED), UNITYPE=2740

TERMINAL TYPE

	_ _	1050 🖛	
			+►2740 ◀
<u>UPERAND</u>	STACTL	STACTL	TRANSCTL
	SWITCHED	NONSWITCHED	SWITCHED
AUTOCALL	OPTIONAL	NOT ALLOWED	OPTIONAL
AUTOANS	OPTIONAL	NOT ALLOWED	OPTIONAL
AUTOPOLL	NOT ALLOWED	OPTIONAL	NOT ALLOWED

NAME LINE	AUTOCANS
	AUTOCALL
	FEAT = AUTOPOLL
	POLL
	ADDR = hexnumber ZONE = number

 NAME
 TERMINAL
 ADDR = terminal address

 TERMINAL
 ADDR = E2

FEAT = POLL, ADDR=03B

LINE

 $\lfloor 1$

NAME LTERM NAME NAME L2740S2 N22 NAME

NAME	MASTTERM	LOGICAL NAME	-
L	MASTTERM	MASTER	

4.6.84

GROUP 1 CREATE RESLIB, MACLIB, AND RESLIB

STEP 1 MOVES LOAD MODULES TO RESLIB

- STEP 2 LINK EDITS THE OSAM SVC ROUTINE, IF BATCH ONLY WILL ALSO LINK EDIT DFSIRCOO, DFSIPCOO, AND DFSIDLLO WITH DUMMY INTER-REGION SVC'S
- STEP 3 MOVES MACROS TO MACLIB
- STEP 4 ADDS IMS PROCEDURES TO PROCLIB
- STEP 5 ASSEMBLES THE BATCH SCD
- STEP 6 LINK EDITS THE BATCH SCD WITH THE BATCH NUCLEUS
- GROUP II DL/I CONTROL BLOCKS
- STEPS 7 & 8 ASSEMBLE AND LINK EDIT DFSIDIRO AND INCLUDES PSB DIRECTORY, DMB LISTS, AND DMB DIRECTORY

STEPS 9 & 10 ASSEMBLE AND LINK EDIT DFSISMBO

GROUP III USER SPECIFIED COMMUNICATION CONTROL BLOCKS

- STEPS 11 & 12 ASSEMBLE AND LINK EDIT DFSICLLO INCLUDES CLB's, POLLING LISTS, LERB's, LINE DCB's, AND THE BTAM OPEN LIST
- STEPS 13 & 14 ASSEMBLE AND LINK EDIT DFSICNTO INCLUDES SKELETON DFSICTMO
- STEPS 15 & 16 ASSEMBLE AND LINK EDIT DFSICTBO

GROUP	IV			SYSTEM	SPEC:	IFIED) COM	IUNICA	TION	CONTROL	BLOCKS
STEPS	17	&	18	ASSEM	BLES	AND	LINK	EDITS	DFSI	CTTO	
STEPS	19	&	20	ASSEM	BLES	AND	LINK	EDITS	DFS	[CVB0	
STEPS	21	&	22	ASSEM	BLE	and L	INK I	EDIT D	FSISì)BO	

- GROUP V SYSTEM CONTROL BLOCKS
- STEPS 23 & 24 ASSEMBLE AND LINK EDIT DFSISAVO
- STEPS 25 & 26 ASSEMBLE AND LINK EDIT DFSIPSTO
- STEPS 27 & 28 ASSEMBLE AND LINK EDIT DFSIQUEO INCLUDES DFSIHLDO
- STEPS 29 & 30 ASSEMBLE AND LINK EDIT DFSIOS40 INCLUDES DFSIOS50
- STEPS 31 & 32 ASSEMBLE AND LINK EDIT DFSISCDO INCLUDES DFSINTBO

STEPS 33 & 34 ASSEMBLE AND LINK EDIT DFSISVAO

- GROUP VI SYSTEM LINK EDITS
- STEP 35 LINK EDITS DFSISVFO OR DFSISVVO LINK EDITS DFSIRCOO LINK EDITS DFSIPCOO LINK EDITS DFSIDLLO
- STEP 36 LINK EDITS DFSIBLKO
- STEP 37 LINK EDITS DFSINUCO
- STEP 38 PRODUCES A PDS DIRECTORY LIST OF RESLIB

6-V-39

SECURITY MAINTENANCE

ADD, DELETE, OR CHANGE PASSWORDS FOR THE FOLLOWING RESOURCES:

- TRANSACTION CODES
- TERMINAL COMMAND VERBS
- PROGRAMS
- DATA BASES
- LOGICAL TERMINALS
- PHYSICAL TERMINALS

SPECIFY TERMINAL SECURITY FOR;

- TRANSACTION CODES
- COMMAND VERBS

CONTROL STATEMENT	DATA STATEMENT	OPERAND
		NAME
		NAME
	TDANGACT	LOGICAL TERMINAL NAME
		NAME
		COMMAND LANGUAGE VERB
	DATABASE	NAME
	PROGRAM	NAME
	PTERM	NAME
) (TERMINAL		LOGICAL TERMINAL NAME
	PASSWORD	NAME
	TRANSACT	NAME
	COMMAND	COMMAND LANGUAGE VERB
	na ann ann ann bac ann ann ann ann ann ann ann ann ann	
) (TRANSACT		NAME
	PASSWORD	NAME
	TERMINAL	LOGICAL TERMINAL NAME
) (COMMAND		COMMAND LANGUAGE VERB
	PASSWOR))	NAME
	TERMINAL	LOGICAL TERMINAL NAME
) (DATABASE		NAME
) (PROGRAM		NAME
) (PTERM		NAME
	PASSWORD	NAME

PASSWORD SECURITY

PASSWORD PROFILE

) (PASSWORD TRANSACT TRANSACT COMMAND COMMAND DATABASE PROGRAM SAMSMITH PAYROLL PERS LOCK UNLOCK PAYREC PAYPROG

RESOURCE PROFILE

) (TRANSACT PASSWORD) (TRANSACT PASSWORD) (COMMAND PASSWORD) (COMMAND PASSWORD) (DATABASE PASSWORD) (PROGRAM PASSWORD PAYROLL SAMSMITH PERS SAMSMITH LOCK SAMSMITH UNLOCK SAMSMITH PAYREC SAMSMITH PAYPROG SAMSMITH

PASSWORD SECURITY

ABCXYZ	Х			Х		
SAMSMITH	х	Х	Х	Х	х	X
V142613			X			
WTWT			X	X		
ZZABC	Х		X			х
				2		
	PAYPROG	PAYREC	PAYROLL	PERS	LOCK	NNLOCK

PASSWORD SECURITY

PAYREC (SAMSMITH) TEXT

TERMINAL SECURITY

TRANSACTION AND COMMAND PROFILE

) (TRANSACT	PAYROLL
TERMINAL	DEPT40
TERMINAL	DEPT65
TERMINAL	VPPERS
) (TRANSACT	PERS
TERMINAL	DEPT40
) (COMMAND	HOLD
TERMINAL	DEPT3L

TERMINAL PROFILE

) (TERMINAL TRANSACT TRANSACT) (TERMINAL TRANSACT) (TERMINAL TRANSACT) (TERMINAL COMMAND DEPT40 PAYROLL PERS DEPT65 PAYROLL VPPERS PAYROLL DEPT3L HOLD

6-V-46

TERMINAL SECURITY

	r		r	·····
DEPT40		Х	х	
DEPT65		Х		
S274001	X		-	х
S274002	X			X
S274003	х			X
VPPERS		Х		
	TORY			щ
	INVN	PAYRC	PERS	SAMPL

TERMINAL SECURITY

4.6.96

•

SECURITY MAINTENANCE -- STEPS 2 AND 3

TERMINAL COMMANDS (SUGGESTED GROUPINGS)

MASTER TERMINAL ONLY

REMOTE AND MASTER TERMINAL

/ASSIGN
/CHANGE
/CHECKPOINT
/DBDUMP
/DBLOG
/DBNOLOG
/DBRECOVERY
/ERESTART
/NRESTART
/DELETE
/DISPLAY
/PSTOP
/PURGE
/START
/STOP

/BROADCAST /TEST /EXCLUSIVE /END /LOG /CANCEL /LOCK /IAM /UNLOCK /RDISPLAY /SET /RESET

4.6.99

COMMAND LANGUAGE FORMAT

/VERB (PASSWORD) KEYWORD P1 KEYWORD P2, P3, P4, COMMENTS

EXAMPLE:

/START (MASXYZ) LINE 1 PTERM A, B, THIS IS A COMMENT

KEYWORDS

LINE PTERM LTERM TRAN OR TRANS PROG OR PROGRAM OR PGM DATABASE PASSWORD OR PSWD CPRI LPRI NPRI LMCT REGION OR REG OR MSGREG

/CHANGE

/CHANGE PASSWORD ABCD TO PASSWORD EFGH /CHANGE PASSWORD ABCD TO EFGH

/ASSIGN

/ASSIGN LTERM ABC TO LINE 15 PTERM A

/ASSIGN LTERM ABC TO LINE 2 PTERM A PTERM B

/ASSIGN LTERM ABC TO LINE 3 PTERM A LINE 4 PTERM B

/ASSIGN CPRI 6 TO TRAN ABC

/ASSIGN LPRI 12 TO TRAN XYZ, ABC

/ASSIGN NPRI 10 TO TRAN N24

/ASSIGN LMCT 15 TO TRAN Z31

/DELETE

/DELETE	PASSWORD	SECURITY	FOR	TRAN AB1, AB2
/DELETE	PASSWORD	SECURITY	FOR	LTERM ABC, DEF
/DELETE	PASSWORD	SECURITY	FOR	LINE 1 PTERM A, B
/DELETE	PASSWORD	SECURITY	FOR	PROGRAM DFG, RST
/DELETE	PASSWORD	SECURITY	FOR	DATABASE MN1, MN2

/DELETE TERMINAL SECURITY FOR TRAN AB1, AB2

/DISPLAY				. (
(PASSWORD)	STATUS			
	ACTIVE			
*	QUEUE	PRIORITY	N ALL	
*	TRAN	{ code } ALL }		
*	PGM	ALL		
*	DATABASE	{ name } ALL }		
*	LINE	ALL		
	LINE NUMBER	PTERM	{ NUMBER } ALL }	
*	LTERM	{ name } ALL }		
	ASSIGNMENT	LTERM	{ name } { ALL }	
	ASSIGNMENT	LINE NUMBER		
		PTERM	{ number } { ALL }	
	MASTER			(

* A SERIES OF PARAMETERS ARE ACCEPTABLE 4.6.104

/PSTOP - /PURGE - /STOP - /START

/PSTOP	LINE 1, 2, 3
/START	LINE ALL
/STOP	LINE 1 PTERM A, B
/START	LINE 1 PTERM ALL
/PSTOP	LTERM ABC, DEF
/PURGE	LTERM ALL
/STOP	TRAN AB1, AB2
/START	TRAN ALL
/STOP	PROGRAM GH2, GH3
/START	PROGRAM ALL
/STOP	DATABASE MN1, MN2
/START	REGION

١

NOTE: PROGRAM, DATABASE, REGION - ONLY /START AND /STOP ARE ACCEPTABLE

LI	NE	&
----	----	---

	LINE	PTERM	LTERM	TRAN	PROGRAM	DATABASE	REGION
/PSTOP	1, 2, 3	1, 2, 3	2,3	6,7	*	*	*
/PURGE	1,4,5	1, 4, 5	4,5	1,8	*	*	*
/STOP	1, 2, 4	1, 2, 4	2,4	1,7	9	10	11

1 - DO NOT QUEUE INPUT

2 - DO NOT SEND OUTPUT

3 - QUEUE OUTPUT

4 - DO NOT QUEUE OUTPUT

5 - SEND OUTPUT

6 - QUEUE INPUT

7 - DO NOT SCHEDULE SMB

8 - SCHEDULE THIS SMB

9 – DO NOT SCHEDULE THIS PROGRAM

10 - DO NOT USE THIS DATA BASE

11 - STOP A MESSAGE REGION

* - NOT ALLOWED

6-V-58

/BROADCAST

/BROADCAST TO PTERM ALL MESSAGE TEXT

/BROADCAST TO ALL MESSAGE TEXT

/BROADCAST TO LINE ALL MESSAGE TEXT

/BROADCAST TO LTERM ALL MESSAGE TEXT

/BROADCAST TO LTERM ABC, DEF MESSAGE TEXT

/BROADCAST TO ABC, DEF MESSAGE TEXT

/BROADCAST TO LINE 2 MESSAGE TEXT

/BROADCAST TO LINE 2 PTERM ALL MESSAGE TEXT

/BRÓADCAST TO LINE 2, 3 MESSAGE TEXT

/BROADCAST TO LINE 2 PTERM A, B MESSAGE TEXT

6-V-59

/TEST

ł

/EXCLUSIVE

/END

/LOG THIS IS A CLASS EXERCISE

/CANCEL
<u>/LOCK – /UNLOCK</u>

/LOCK	PTERM (PASSWORD)
/LOCK	(PASSWD1) LTERM ABC (PASSWD2), EFG (PASSWD3)
/LOCK	TRAN AB1 (PASSWD4), AB2 (PASSWD5)
/LOCK	PROGRAM GH1 (PASSWD6), GH2 (PASSWD7)
/LOCK	DATABASE MN1 (PASSWD8), MN2 (PASSWD9)
/UNLOCK	DATABASE MN1 (PASSWD8), MN2 (PASSWD9)

<u>/IAM</u>

/IAM LTERM P1 (PASSWD)

/IAM PTERM (PASSWD1) LTERM P1 (PASSWD3)

/RDISPLAY

/RDISPLAY (PASSWD) MASTER

COMMANDS

/CHECKPOINT [ABDUMP] /CHECKPOINT FREEZE [ABDUMP] /CHECKPOINT DUMPQ [ABDUMP] /CHECKPOINT PURGE /DBDUMP /DBDUMP STOP /NRESTART /ERESTART /DBRECOVERY

١

COMMANDS

/CHECKPOINT

/CHECKPOINT FREEZE ABDUMP

/CHECKPOINT DUMPQ

/CHECKPOINT PURGE

/DBDUMP

/DBDUMP STOP

/NRESTART CHKPT 0

/NRESTART CHKPT 68173/141020

/NRESTART CHKPT O FORMAT ALL

/NRESTART CHKPT 68165/141050 BLDQ

/NRESTART CHKPT 68143/11300 BLDQ FORMAT ALL

/ERESTART CHKPT 68176/105010 SERIAL TAPE50

/ERESTART CHKPT 68141/091050 BLDQ FORMAT ALL

/DBRECOVERY DATABASE NAME SERIAL NUMBER, , NUMBERS

SIMPLE CHECKPOINTS

ACTION ORDER	ACTIVITY COUNT	TERMINAL COMMAND	ABNORMAL END
FREE MESSAGE REGIONS	X	X	
LOG BLOCKS AND TABLES	X	X	X
WRITE CHECKPOINT ID TO MASTER TERMINAL	Х	Х	
WRITE CHECKPOINT ID TO SYSTEM CONSOLE		· · · · · · · · · · · · · · · · · · ·	Х
CLOSE LOG			Х
RESUME NORMAL PROCESSING	Х	X	
CLOSE ALL DATA BASES			Х
CLOSE QUEUES			Х
WRITE CHECKPOINT ID TO MASTER TERMINAL			Х
TERMINATE			Х

SHUTDOWN CHECKPOINTS

-1

	·····		······	
ACTION ORDER	FREEZE	DUMPQ	PURGE	Í
STOP TERMINAL INPUT	Х	Х	Х	
STOP TERMINAL OUTPUT	Х	Х		
PROCESS ALL QUEUED TRANSACTIONS			Х	
FREE MESSAGE REGIONS	X	Х	Х	
TERMINATE MESSAGE REGIONS	Х	Х	Х	
SEND ALL OUTPUT			Х	
STOP TERMINAL OUTPUT			X	•~]
FORCE END OF VOLUME ON LOG TAPE	Х	Х	Х	
DUMP QUEUES TO LOG TAPE		Х	X	
CLOSE QUEUES	Х	Х	X	
CLOSE ALL DATA BASES	Х	Х	X	
LOG BLOCKS AND TABLES	X	X	Х	
WRITE CHECKPOINT ID TO MASTER TERMINAL	X	Х	Х	
WRITE CHECKPOINT ID TO SYSTEM CONSOLE	X	Х	Х	ł
CLOSE LOG	X	Х	X	
TERMINATE	Х	Х	Х	ſ
	1	1	1	

IMS/360 SYSTEM LOG ENTRIES

FOR RESTART

- MESSAGE QUEUE CONTROL BLOCKS
- CHECKPOINT DATA
- OS/360 DATA SET OPEN OR CLOSE
- CHANGES TO A DATA BASE

FOR RESTART AND STATISTICS

- MESSAGE FROM TERMINAL
- MESSAGE TO TERMINAL OR PROGRAM

FOR STATISTICS ONLY

- ERROR SEGMENTS
- COMPLETION OF SEND RECORD
- APPLICATION ACCOUNTING RECORD
- IMS/360 ACCOUNTING RECORD

WHEN WRITTEN

WHEN CHANGED AT TIME OF CHECKPOINT WHEN DATA SET OPENED OR CLOSED INSERT, DELETE, OR REPLACE AGAINST A DATA BASE

WHEN MESSAGE COMPLETE WHEN MESSAGE COMPLETE

WHEN HARDWARE ERROR COMPLETION OF SENDING TERMINATION OF APPL. PROGRAM IMS/360 IS STARTED OR STOPPED LOG RECORD FORMAT

MESSAGE LOG RECORD

DATE

TIME

•

•

•

•

•

4

4

(OUTPUT)

RECORD FLAG

INPUT MESSAGES	01	
INPUT ERRORS	02	
OUTPUT MESSAGES	03	
OUTPUT ERRORS	04	
STATISTICS	05	
ACCOUNTING LOG	06	
APPLICATION ACCOUNTING		
1.00	~7	

LOG

07

APPLICATION ACCOUNTING LOG RECORD

<u>BYTES</u>

-1

2	RECORD LENGTH = 108	
2	NOT USED	
1	RECORD CODE = $X'07'$	
8	PSB NAME	
8	TRANSACTION CODE	
1	PRIORITY	
1	TYPE OO = MESS O2 = BATCH	
1	PARTITION KEY	
4	ELAPSED TIME	
4	COMPLETION CODE	
8	JOB NAME	
4	NO. OF MESSAGES PROCESSED	
4	GU	
4	GN	
4	GNP	
4	GUH	
4	GNH	DATA VACE
4	GNPH	DATA DASE
4	INSERT	
4	DELETE	
4	REPLACE	
4	MOVE CALLS	
4	GU MESS	A
4	GN MESS	MECOACE
4	INSERT MESS	
4	NOT USED	

4.6.119

TYPES OF STATISTICAL REPORTS

-1

- MESSAGES QUEUED BUT NOT SENT -- BY TERMINAL
- LINE AND TERMINAL LOADING BY TIME OF DAY
- ERROR REPORTS ON BAD TRANSMISSION
- TRANSACTION REPORT
- TRANSACTION RESPONSE REPORT
- APPLICATION ACCOUNTING REPORT
- IMS/360 ACCOUNTING REPORT

MESSAGES -- QUEUED BUT NOT SENT

TOTAL MESSAGES	5	19	
RANSACTION CODE	T190CA2A	T19QCA2B	

DATE 05/31/67

•			LINE AND TE	RMINAL REPORT		DATE 2/11/	' 69	
LINE	TERM	R/S	TOTAL MESSAGES	TOTAL CHARACTERS	AVG, SIZE	Hourly 00-07	DISTRI 07-08	BUTION 08-09
001	AO							ζ
T15CA	SIA	S	12	600	50	1	3	2 <
		R	14	840	60	1	2	2 >
002	AO							\geq
T15CA	S2A	S	4	320	80	1	0	0 <
		R	4	80	20	0	0	0
T15C	AS2B	S	6	180	30	1	0	1 2
		R	5	200	40	1	2	1 2
TRM		S	10	500	50	2	0	2
TOTA	LS	R	9	280	31	1	2	$_{2}$
SYST	EM	S	22	1100	50	3	3	$_4 \geq$
TOTA	LS	R	23	1120	48	2	4	4 3

... 1

4.6.122

6-V-74

TRANSACTION REPORT

TRANSACTION		TOTAL	TOTAL	AVG	HOURLY	DISTRI	BUTION
CODE	R/S	MESSAGES	CHARACTERS	SIZE	00-07	07-08	08-09
		· · · · · · · · · · · · · · · · · · ·					
T21CAS1R	R	5	250	50	0	1	1
T21CAS2S	S	15	1250	83	5	2	3
SYSTEM	S	15	1250	83	5	2	3
TOTALS	R	5	250	50	0	1	1

6-V-75

ς.

TRANSACTION RESPONSE REPORT

DATE 08-31-67

TYPE TOTAL LONGEST 95% 75% 50% 25% SHORTEST RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE RESPONSES RESPONSE TRANSACTION 25 05M 30.0S 05M 00.0S 03M 00.0S 02M 20.0S 01M 00.0S T231T05M 40.0S T2359ALL 5 20.0S 15.0S 8.0S 6.0S 4.0S 3.0S

6-V-76

DATA CASE COUNTS PROGRAM TRANSACTION MESSAGE - - - - COUNTS MOVE BAD TOT MESS AVR 00 NAME NAME PRI GN ISRT GU GN CALL CPU TIME QTY GU TIME PSB00001 142 14 0.15S TRANSOO1 01 10.655 71 71 81 42 1 1 162 Ib 02 81 81 91 31 12,15S 0.15S 1. 0 304 50 152 152 ** 172 73 2 22.80S 0.15S 1 30 152 SYSTEM TOTAL 152 3U4 172 73 2 1

DATE 01/02/68

APPLICATION ACCOUNTING REPORT

4.6.125

6-V-77

DATE 1-22-68

 IMS
 CPU TIME FOR DAY 1/20/68
 IS
 O7H
 47M
 O7.9S
 OR
 28,027.9S

 IMS
 CPU TIME FOR DAY 1/21/68
 IS
 O6H
 30M
 29.5S
 OR
 23,429.5S

 IMS
 CPU TIME FOR DAY 1/22/68
 IS
 O7H
 40M
 39.5S
 OR
 27,639.5S

 IMS
 CPU TOTAL TIME
 IS
 21H
 58M
 16.9S
 OR
 28,096.9S

CONTROL CARDS

TRANS CODE=(TRANSCOD,I,O), (TRANSA,I)

TRANS CODE=(TRANSA,I)

TRANS CODE=(INV*,,0)

TRANS CODE=(ALL,I,O)

SYM NAME=(TERMA, I, O)

SYM NAME=(TERMPAY, I, O, TERM)

TERM ADDR=(3,A,I,O), (42,C,,O,21,A)

TERM ADDR=(I,ALL,I,O)

TIME=(68014,1620,68015,1900)

NON PRINT=HEX

SORTING THE LOG TAPE

BY DATE

SORT FIELD=(5,1,CH,A,9,4,PD,A,13,36,CH,A)

WITHOUT DATE

SORT FIELD=(5,1,CH,A,13,36,CH,A)

MESSAGE QUEUES

6-V-81

6-V-82

-) | _ _

4.6.132

MESSAGE QUEUE SPACE ALLOCATION (NO REUSE ALLOWED)

- 4 MESSAGE QUEUE DATA SETS
- 5 MESSAGE LINES PER BLOCK IN MSG BUFFER D/S TEXT + PREFIX ≈ 200 CHARACTERS SINGLE PREFIX PER PHYSICAL RECORD

50,000 INPUT MSGS/DAY (12 HOURS)

50,000 OUTPUT

10,000 OF INPUT MSGS ARE MULTIPLE LINE (AVERAGE 5 LINES) 25,000 OF OUTPUT MSGS ARE MULTIPLE LINE (AVERAGE 10 LINES) 9 MULTIPLE LINE OSAM (MSG BUFFER) RCDS PER 2314 TRACK 20 SINGLE LINE OSAM (QCR) RCDS PER 2314 TRACK

INPUT QCR = $\frac{50,000}{20}$ = 2500 TRACKS OR 125 CYL OUTPUT QCR = $\frac{50,000}{20}$ = 2500 TRACKS OR 125 CYL INPUT MSG BUFFER = $\frac{10,000}{9}$ = 1112 TRACKS OR 56 CYL 9 OUTPUT MSG BUFFER = $\frac{25,000x2}{9}$ = 5,556 TRACKS OR 278 CYL 9

TOTAL = 584 CYL

6 - V - 85

MESSAGE QUEUE SPACE ALLOCATION (REUSE ALLOWED)

200 TRANSACTION TYPES 200 LOGICAL TERMINALS

AVERAGE HOURLY MESSAGE TURN-OVER $\frac{50,000}{12 \times 200} = 21 \text{ MESSAGES PROCESSED PER QCB PER HOUR}$

TO RUN 3 HOURS BEFORE REUSE ALLOCATE:

INPUT QCR $\frac{3\times21\times200}{20} = \frac{12600}{20} = 630$ TRACKS OR 32 CYL OUTPUT QCR $\frac{3\times21\times200}{20} = \frac{12600}{20} = 630$ TRACKS OR 32 CYL INPUT MSG $\frac{12600}{5\times9} = \frac{3150}{9} = 350$ TRACKS OR 18 CYL OUTPUT MSG $\frac{12600}{9} = 1400$ TRACKS OR 70 CYL

TOTAL 152 CYL

DISK I/O OPERATIONS - WRITING

IST 3 HOURS (NO REUS	SE)	
INPUT QCR		12600 (WRITE)
OUTPUT QCR		12600 (WRITE)
INPUT MESSAGE		3150 (WRITE)
OUTPUT MESSAGE	-	12600 (WRITE)
	TOTAL	40950

2ND 3 HOURS (REUSE)

						MSG	SIRING	12)
		WRITE	READ		WRITE		READ	
INPUT QCR		12600	12600					
OUTPUT QCR		12600	12600					
INPUT MESSAGE		3150	3150		3150		3150	
OUTPUT MESSAG	E	12600	 12600	. <u></u>	6300		6300	
· .	SUBTOTAL	40950	40950		9450		9450	

AVERAGE QCR STRING OBTAINED = 3x21+6x21 - 2 = 94-2=922

NUMBER OF QCR SEARCHES = $3 \times 12600 = 411$ 92 411 x 2 READS = 822 411 x 1 WRITE = 411 SUBTOTAL 1233

TOTAL = 1233 + 40950 + 40950 + 9450 + 9450 = 102,033

RECORD LENGTH DISTRIBUTION

• }

DATA BASE RECORD

PRIME LRECL = 20 + (4x8) + 10(15 + (2x5) + 3(20)) + 7 = 909

CALCULATED <u>LRECL_RANGE</u>	LRECL SIZE USED BY IMS/360	LRECL'S P <u>ER BLOCK</u>
1739 - 3476	3476	1
1159 - 1738	1738	2
870 - 1158	1158	3
696 - 869	869	4
580 - 695	695	5

BASIC STORAGE REQUIREMENTS

	BYTES
IMS RESIDENT NUCLEUS (LESS CONTROL BLOCKS)	60,000
DATA LANGUAGE/I ACTION MODULES	12,800
OSAM ACCESS METHOD MODULES	2,900
ISAM AND IMS ISAM SIMULATOR MODULES	7,800
BTAM (LESS DEVICE SUPPORT MODULES)	6,600
	90,100

BTAM DEVICE SUPPORT

REQUIREMENTS FOR EACH LINE GROUP DESCRIBED AT IMS/360 SYSTEM DEFINITION TIME.

1050	NON-SWITCHED WITHOUT AUTOPOLL	224
1050	NON-SWITCHED WITH AUTOPOLL	234
1050	SWITCHED	328
2740	WITH DIAL, TRANSMIT CONTROL, AND CHECKING	304
2740	WITH STATION CONTROL AND CHECKING	204
2740	WITH STATION CONTROL, CHECKING, AND AUTOPOLL	224

CONTROL BLOCKS STORAGE REQUIREMENTS

		BYTES
EACH COMML	INICATION LINE AND BUFFER	500
EACH COMMU	JNICATION TERMINAL	75
EACH TRANS	SACTION TYPE	60
EACH MESSA	AGE PROGRAM	500
EACH OPEN	DATA BASE	1,000

ASSUMPTIONS

MFT-II SYSTEM

- 12 2740 LINES
- 4 1050 LINES
- 5 OPEN DATA BASES
- 16 TOTAL DATA BASES
 - 2 MESSAGE REGIONS CONCURRENT
- 10 PSB's RESIDENT LARGEST DATA BASE BUFFER IS 3,000 BYTES
- 30 PROGRAMS
- 50 TRANSACTION TYPES
- 3 MAX REGIONS
- 4 MAX I/O

ESTIMATE OF STORAGE REQUIREMENTS

BASIC STORAGE REQUIREMENTS (60,000 + 30,100)	90,100
2740 STATION CONTROL, AUTOPOLL AND CHECKING	224
1050 NON-SWITCHED WITH AUTOPOLL	192
IMS/360 CONTROL BLOCKS	18,000
QCR BUFFER POOL (16 X 176)	2,816
MESSAGE BUFFER POOL (5 X 880)	4,400
1050 AND 2740 OUTPUT BUFFERS (5 X 500)	2,500
DATA BASE BUFFERS 2 (5 X 3000)	30,000
PSB POOL (10 X 1,000)	10,000
DMB POOL (2 X 1,000) + (3 X 500)	3,500
TOTAL	161,732

CLASS EXERCISES

Write the necessary IMS/360 Definition Cards to define a system to operate in the following environment:

- 1. MVT System
- 2. Three message processing regions
- 3. Five transaction codes (TRANS01, through TRANS05). Each invokes a different program (STUDNT01 through STUDNT05 respectively). All use the same data base (DI21PART). Priorities and processing limits should be selected by the student.
- 4. The teleprocessing system consists of three nonswitched lines, each with a 2740, and one switched line to accommodate a 2740. Line addresses are 032 through 035. All terminal addresses are E2.
- 5. There is to be one pool-subpool combination with three logical terminals (LTERM1, LTERM2, and LTERM3).
- 6. The student is to supply all other necessary information to generate a system.

JCL will be provided by the instructor.

 \bigcirc

Instructor Materials

Generating a System	5.2
Assigning Class Problems	5,2
Machine Time Required	5.3
Message Simulator	5,4
Assignment of Student Numbers	5,5
Suggested JCL for Students	5.6
Batch Processing - COBOL Example	5,7
Batch Processing - PL/I Example	5,11
Batch Processing - Assembler Example	5.14
Field Definitions for Data Base Segments	5.18
Sample Output	5.19
COBOL Message Processing Program with	
Message Simulator	5,20
Suggested Solutions to DBD and PSB	
Generation	5.28
Suggested Solution for System Definition	5,29
Part Numbers in Data Base	5,31

*,*2

INSTRUCTORS' NOTE:

The information contained in this section is for use by the instructor in preparing for a hands-on class and in assigning the class problems.

Generating A System

An IMS/360 system must be generated for use in running class problems. The following is a list of considerations in generating the system.

- 1. If the system is to be used for teleprocessing by the class, transaction codes must be included in system definition.
- 2. Catalog the procedures to be used by the class.
- 3. Allocate adequate space for the DBD, PSB, and Program Libraries to be used by the class.
- 4. If teleprocessing is to be used, the sample problem which accompanies the IMS/360 system should be run to ensure proper system generation. This will entail generating the data base to be used by the class along with the Data Base Description.
- 5. If a teleprocessing system is not generated, the sample problem data base description and data base must still be generated for use by the class.
- 6. If the programs provided in this section of the Education Guide are to be used in the class, they should be punched and run against the established sample problem data base. It will be necessary to generate the PSB's to be used with the program. They will be the same as the one on page 5.28 with the appropriate language specified.

Assigning Class Problems

In order to allow the student experience in writing data base descriptions, program specification blocks, programs, and system definitions, it is suggested that prepunched JCL be given each student or student group. This avoids JCL errors and helps eliminate the bottleneck at the key punch. A list of the suggested JCL can be found on page 5.6.

The length of the courses taught from this Education Guide does not allow a student to write a complete program. For this reason, it is suggested that the student be given one of the programs which start on page 5.7. He can then be required to modify the program to perform a specific function. It is important to require specific functions of the student. If he is

5.2

simply given the program and told to modify it as he wishes, it is difficult to monitor his progress.

The COBOL, PL/I, and Assembler language program presented in Appendix B are written to run with the sample problem data base provided with the IMS/360 system. A write-up of this problem can be found in the IMS/360 Systems Operation Manual. A complete list of the part numbers in the data base can be found starting on page 5.31.

The programs beginning on page 5.6 should only be used as teaching aids, they should not be used to represent the standard means of writing IMS/360 programs. Each of these programs reads a card which has the key of the root segment (PARTROOT) punched in it, retrieves the PARTROOT and STANINFO segment from the data base, prints out the information contained in the segments, and reads another card.

Page 5.20 begins a message processing program which is written in COBOL and a message input/output simulator. The message processing program does the same functions as the COBOL program on page 5.7 but the input now appears to be coming from a terminal and the output is directed to a terminal. This technique is presented here to allow message processing programs to be written and checked out without any teleprocessing Only COBOL is supplied here. A similar technique equipment. could be developed for PL/I or Assembler. Once a message processing program is checked out with the simulator, the only change required is to call Data Language/I instead of the message simulator. Other examples of message processing programs can be found in the Systems Operation Manual.

Machine Time Required

It is suggested that the instructor run each class problem which he plans to assign to the student. Machine time requirements can vary widely depending on the equipment available and the mode of operation.

As a guide line, 2 minutes of 360/65 time should be allowed for any COBOL, PL/I, or Assembler jobs to be compiled, link edited and executed. Two minutes should also be allowed for DBD or PSB generation. System definition runs will require around 5 minutes of 360/65 time.

5.3

Message Simulator

The message simulator will simulate input from a terminal by reading cards and formatting them to look like they came from a terminal. Input may be single line or multiple line; however, the length of the line is limited to that which can be contained in an 80 column card.

Output to a terminal is also simulated. This is accomplished by writing to the system output device (SYSOUT).

The format of the calls to the message simulator from the program which is being checked out are the same as the calls which would be made to Data Language/I for input or output to a terminal. The only difference is that the message simulator is called instead of Data Language/I.

The format of the input card is a character count in 1-4, an H for header or B for body in 5, the terminal name in 6-13, followed by the text.

The character count in 1-4 should include an additional count of 4 for the four characters which normally precede an input or output message.

The output which follows was produced from the message simulator which is included in this section. The first line of output shows that the message type is IH for input header. Message count is 30. The terminal name is TERM0001. The call which was issued was a Get Unique.

The second line of output is the actual text of the message. The third line shows an insert call to send a message to a terminal,

MESSAGE TYPE = IH, MESSAGE COUNT = 0030, TERMINAL = TERMO001 GU PART 023008027

MESSAGE TYPE = 0MESSAGE COUNT = 0068, TERMINAL = TERM0001ISRTPART=023008027DESC=CARD FRONTPROC CODE=46MESSAGE TYPE = 0MESSAGE COUNT = 0080, TERMINAL = TERM0001ISRTINV CODE=AMAKE DEPT=72-46PLAN REV NUM=MAKE TIME= 26

Assignment of Student Numbers

Each student should be assigned a number to be used as a suffix for all computer runs. This will help identify output and make any library entries unique.

For Data Base Descriptions:

//DBDGEN01 JOB 01,STUDENT01,MSGLEVEL=1 // EXEC DBDGEN,MBR=DBASE01

The underlined number is the student number. JCL for each student will be identical except for this number.

For Program Specification Block Generation:

//PSBGEN01 JOB 01,STUDENT01,MSGLEVEL=1 // EXEC PSBGEN,MBR=STUDENT01

The same conventions should be used for compiling, link editing, and executing the application program.

SUGGESTED JCL FOR STUDENTS

DATA BASE DESCRIPTION

//DBDGEN01	JOB	01,STUDENTO1,MSGLEVEL=01
//	Exec	DBDGEN,MBR=DBASE01
//C•SYSIN /*	DD	* * · · · · · · · · · · · · · · · · · ·

PROGRAM SPECIFICATION BLOCK

//PSBGEN01	JOB	01,STUDENT01,MSGLEVEL=01	
//	EXEC	PSBGEN,MBR=SIUDNI01	
//C.SYSIN	DD	*	
/*			

BATCH COMPILE AND GO

//BATCH01	JOB	01,STUDENT01,MSGLEVEL=01
//JOBLIB	DD	DSN=ICS.LOAD,DISP=SHR
11	DD	DSN=CLA.PGMLIB,DISP=SHR
11	EXEC	IMSCOBGO, MBR=STUDNT01
//C.SYSIN	DD	*
/*		

COMPILE AND LINK

//MSGPR01	JOB	01,STUDENT01,MSGLEVEL=01
//	EXEC	IMSCOROL *WRK=210DN101
//C•SYSIN /*	DD	*

IMS/360 SYSTEM DEFINITION

//IMSDEF01	JOB	01,STUDENT01,MSGLEVEL=01
11	EXEC	ASMFC, REGION=96K
//ASM.SYSLIB	DD	DSN=ICS.MACLIB,DISP=SHR
//ASM.SYSPRI	NT DD	SYSOUT=3
//ASM.SYSPUN	CH DD	SYSOUT=3
//ASM.SYSIN	DD	*
/*		

ALTERNATIVE PROCEDURES

11	EXEC	DLIBATCH, PSB=STUDNT01
11	EXEC	IMSPLI,MBR=STUDNT01
11	EXEC	IMSPLIGO, MBR=STUDNT01
11	EXEC	IMSASSEM, MBR=STUDNT01

```
//BATCH01
            JOB
                  848, CABANISS, MSGLEVEL=1, MSGCLASS=3, CLASS=A, PRTY=8
//JOBLIB DD
              DSN=CLA.PGMLIB,DISP=SHR
11
           DD
                DSN=ICS.LOAD.DISP=SHR
11
           EXEC
                  IMSCOBGO, MBR=STUDNT01
//C.SYSIN
             DD
                   *
001010 IDENTIFICATION DIVISION.
001020
         PROGRAM-ID.
                     'IMSTEST'.
001030 ENVIRONMENT DIVISION.
001040 INPUT-OUTPUT SECTION.
001050 FILE-CONTROL.
           SELECT MESSAGE-FILE ASSIGN TO 'TESTIN' UTILITY.
001060
001070
           SELECT TEST-OUTPUT-FILE ASSIGN TO 'TESTOUT' UTILITY.
001080 DATA DIVISION.
001090 FILE SECTION.
001100 FD
           MESSAGE-FILE
           RECORDING MODE IS F
001110
001120
           DATA RECORD IS INPUT-MESSAGE.
                                         PICTURE IS X(80).
001130
           01
               INPUT-MESSAGE
001140 FD
           TEST-OUTPUT-FILE
001150
           BLOCK CONTAINS 10 RECORDS
           DATA RECORD IS PRINT-LINE.
001160
001170
           01
               PRINT-LINE
                                         PICTURE IS X(133).
001490
           01
               TEST-OUTPUT-TEXT.
001500
               02 TEST-OUTPUT-CHAR OCCURS 130 TIMES
001510
                                                    PICTURE X.
       WORKING-STORAGE SECTION.
01013
                                                     ۰.
               GET-UNIQUE
                            PICTURE XXXX VALUE 'GU
01014
           77
01015
           77
               GET-NEXT
                            PICTURE XXXX VALUE 'GN '.
           77
                            PICTURE XXXX VALUE 'ISRT'.
01016
               INSERT
               SEG-NOT-FOUND PICTURE XX VALUE 'GE'.
01017
           77
                                          VALUE ! !.
01020
           77
               ERROR-SWITCH PICTURE X
02016
           01
               LINE-OUTPUT.
                                PICTURE X VALUE ! !.
               02 BLANK-SPACE
02019
               02
                   OUTPUT-TEXT
                                 PICTURE X(132) VALUE SPACES.
               PART-NOT-FOUND-MSG.
03001
           01
03002
               02
                   FILLER PICTURE X(12) VALUE 'PART NUMBER '.
               02 FILL-PART-1 PICTURE X(17).
03004
                   FILLER PICTURE X(16) VALUE ' NOT ON DATABASE'.
               02
         01
             MESSAGE-IN-WORK-AREA.
               02
                   CARD-INPUT.
                 03
                     ROOT-KEY
                                 PICTURE X(17).
               FIRST-LINE.
03006
           01
                  FILLER PICTURE X(5) VALUE 'PART='.
03007
               02
               02 FILL-PART-2 PICTURE X(17).
03009
               02
                   FILLER PICTURE X(7) VALUE ' DESC='.
03010
               02
                   FILL-DESCR PICTURE X(20).
                   FILLER PICTURE X(12) VALUE ' PROC CODE='.
03011
               02
                   FILL-PROC-CODE PICTURE XX VALUE SPACES.
03012
               02
               SECOND-LINE.
03014
           01
                            PICTURE X(9) VALUE 'INV CODE='.
03015
               02
                   FILLER
               02
                   FILL-INV-CODE PICTURE X VALUE SPACE.
03016
03017
               02
                   FILLER PICTURE X(12) VALUE MAKE DEPT= .
```

03018		02 FILL-MAKE-1 PICTURE XX VALUE SPACES.
03019		02 FILLER PICTURE X VALUE '-'.
03020		02 FILL-MAKE-2 PICTURE XX VALUE SPACES.
04001		02 FILLER PICTURE X(15) VALUE ' PLAN REV NUM='.
04002		02 FILL-PLAN-REV-NUM PICTURE XX VALUE SPACES.
04003		02 FILLER PICTURE X(12) VALUE ' MAKE TIME='.
04004		02 FILL-MAKE-TIME PICTURE ZZZ.
04005		02 FILLER 'PICTURE X(12) VALUE ! COMM CODE=!.
04006		02 FILL-COMM-CODE PICTURE XXXX VALUE SPACES.
04012	01	ROOT-FORMAT.
04013		02 FILLER PICTURE X(26).
04014		02 DESCRIPTION PICTURE X(20).
04015		02 FILLER PICTURE XXX.
0.019	01	STANINEO-EORMAT.
05002	•1	02 FILLER PICTURE X(18).
05002		02 PROCIREMENT-CODE PICTURE XX
05004		
05004		
05005		02 FLANNING-REVISION-NOMDER FICTORE AA.
05000		A2 MAKE_DEDT DICTURE VY
05007		02 MAKE COST CTD DICTURE XX
05008		02 MARETUSITUR PICTURE XX.
05009		02 FILLEK FILIUKE XX.
05010		UZ CUMMUDITY-CUDE PICTURE XXXX.
05011		UZ FILLER FILIUKE XXXX.
05012		UZ MAKE-SPAN PICIURE S999.
05013		02 FILLER PICTURE X(21).
05014	01	ROOT-SSA.
		02 FILLER PICTURE X(19) VALUE 'PARTROOT (PARTKEY =)
		02 FILL-PART-3 PICTURE X(17).
05017		02 FILLER PICTURE X VALUE ')'.
05018	01	STANINFO-SSA PICTURE X(22) VALUE
05019		'STANINFO(STANKEY =02)'.
06001	01	STATUS-CODE-MSG.
06002		02 FILLER PICTURE X(23) VALUE 'UNRESOLVED STATUS CODE 1
06003		02 FILL-STATUS PICTURE XX.
06004		02. FILLER PICTURE X(4) VALUE ' ON '.
06005		02 FILL-FUNCTION PICTURE X(4).
06011	LINKAGE	SECTION.
07001	01	DATABASE.
07002		02 DBASE-NAME PICTURE X(8).
07003		02 SEGMENT-INDR PICTURE XX.
07004		02 DBASE-STATUS PICTURE XX.
07005		02 PROC-OPTIONS PICTURE XXXX.
07006		02 DLI-RESERVED PICTURE XXXX.
07007		02 SEG-FEEDBACK PICTURE X(8).
07008		02 KEY-FEEDBACK-LENGTH PICTURE XXXX.
07009		02 NO-OF-SENSEG-TYPES PICTURE XXXX.
07010		02 KEY-FEEDBACK.
		03 ROOT-KEY1.
07012		04 FILLER PICTURE XX.
07013		04 PARTNUM PICTURE X(15).
07014		03 STANINED-KEY PICTURE XX.
08001	PROCEDU	RE DIVISION.
08002	START-O	
08003	FNT	ER LINKAGE.

5,8

```
ENTRY 'DLITCBL' USING DATABASE.
08005
           ENTER COBOL.
          OPEN-FILES.
               OPEN INPUT MESSAGE-FILE
               OUTPUT TEST-OUTPUT-FILE.
         READ-MESSAGE-FILE.
                READ MESSAGE-FILE INTO MESSAGE-IN-WORK-AREA
                AT END GO TO EXIT-RTN.
                MOVE ROOT-KEY TO FILL-PART-3.
100069
            ENTER LINKAGE.
09016
             CALL 'CBLTDLI' USING GET-UNIQUE, DATABASE, ROOT-FORMAT,
09017
                                    ROOT-SSA.
            ENTER COBOL.
09018
              IF DBASE-STATUS = ' ' GO TO PROCESS-FIRST-LINE.
              IF DBASE-STATUS NOT = SEG-NOT-FOUND GO TO DBASE-ERROR.
              MOVE ROOT-KEY TO FILL-PART-1.
            MOVE PART-NOT-FOUND-MSG TO OUTPUT-TEXT.
10003
                  PERFORM TERM-OUT-RTN.
              GO TO READ-MESSAGE-FILE.
        PROCESS-FIRST-LINE.
11007
              MOVE ROOT-KEY TO FILL-PART-2.
11009
            MOVE DESCRIPTION TO FILL-DESCR.
11010
            MOVE GET-NEXT TO FILL-FUNCTION.
            ENTER LINKAGE.
11011
11012
             CALL 'CBLTDLI' USING GET-NEXT, DATABASE, STANINFO-FORMAT,
                                    ROOT-SSA, STANINFO-SSA.
11013
11014
            ENTER COBOL.
            IF DBASE-STATUS = ! ! MOVE PROCUREMENT-CODE TO
11015
                FILL-PROC-CODE, GO TO PROCESS-SECOND-LINE.
11016
            IF DBASE-STATUS = SEG-NOT-FOUND
11017
                PERFORM PROCESS-SECOND-LINE.
11018
11019
            GO TO DBASE-ERROR.
12001
        PROCESS-SECOND-LINE.
            MOVE FIRST-LINE TO OUTPUT-TEXT.
12003
12005
            PERFORM TERM-OUT-RTN.
        EXIT-FROM-PROCESS-2ND-LINE. EXIT.
12006
120061 PTCH-3.
12007
           MOVE INVENTORY-CODE TO FILL-INV-CODE.
12008
            MOVE MAKE-DEPT TO FILL-MAKE-1.
            MOVE MAKE-COST-CTR TO FILL-MAKE-2.
12009
            MOVE PLANNING-REVISION-NUMBER TO FILL-PLAN-REV-NUM.
12010
12011
           MOVE MAKE-SPAN TO FILL-MAKE-TIME.
            MOVE COMMODITY-CODE TO FILL-COMM-CODE.
12012
12014
           MOVE SECOND-LINE TO OUTPUT-TEXT.
            GO TO TERM-OUT-RTN.
12016
10005
       TERM-OUT-RTN.
              WRITE PRINT-LINE FROM LINE-OUTPUT.
        GO-BACK.
            GO TO READ-MESSAGE-FILE.
.08014
       EXIT-RTN.
            CLOSE MESSAGE-FILE.
           CLOSE TEST-OUTPUT-FILE.
08015
            ENTER LINKAGE.
08016
            RETURN.
08017
            ENTER COBOL.
```

```
100135 COMMON-ERROR.
10015
           MOVE STATUS-CODE-MSG TO OUTPUT-TEXT.
100165 EXIT-FROM-ERROR-HANDLER. EXIT.
100166 PTCH-2.
           GO TO TERM-OUT-RTN.
10017
10018
       DBASE-ERROR.
10019
           MOVE DBASE-STATUS TO FILL-STATUS.
10020
           GO TO COMMON-ERROR.
/*
                    DSN=IMS.DI21PARO,DISP=SHR,VOL=SER=IMSDBS,UNIT=2314
//G.DI21PARO
               DD
                    DSN=IMS.DI21PART,DISP=SHR,VOL=SER=IMSDBS,UNIT=2314
//G.DI21PART
               DD
//G.TESTOUT
             DD
                 SYSOUT=3
                  *,DCB=BLKSIZE=80
//G.TESTIN
             DD
02252252-003
023008027
0230080270000000
02JAN1N976B
023007228
023009225
02300928
023009270
023856124
/*
```

BATCH PROCESSING -- PL/I EXAMPLE

```
//PLICAB
            JOB
                   848, CABANISS, MSGLEVEL=1, MSGCLASS=3, CLASS=A, PRTY=8
//JOBLIB
           DD
                DSN=ICS.LOAD,DISP=SHR
         DD
11
              DSN=CLA.PGMLIB,DISP=SHR
         EXEC
                 IMSPLIGO, MBR=STUDNT03
11
//C.SYSIN
             DD
DLITPLI: PROC(DATABASE) OPTIONS(MAIN);
                          CHARACTER(4) INITIAL('GU
                                                     •);
 DECLARE
          GET_UNIQUE
 DECLARE
          GET_NEXT
                          CHARACTER(4) INITIAL('GN
                                                     •):
          INSERT
                          CHARACTER(4) INITIAL('ISRT');
 DECLARE
 DECLARE
          CARD_IN
                          CHARACTER(80);
          SEG_NOT_FOUND
                          CHARACTER(2) INITIAL('GE');
 DECLARE
 DECLARE
          FOUR FIXED BINARY
                             INITIAL(4);
                          CHARACTER(1) INITIAL(' ');
          ERROR_SWITCH
 DECLARE
 DECLARE FIVE FIXED BINARY
                             INITIAL(5);
 DECLARE
          1 PART NOT FOUND MSG.
             2 FILL35
                               CHARACTER(12)
                                               INITIAL ('PART NUMBER'),
                               CHARACTER(17),
             2 FILL_PART_1
                              CHARACTER(16) INITIAL(' NOT ON DATABASE');
             2 FILL36
 DECLARE
          1 LINE_OUTPUT,
             2 OUTPUT_TEXT
                               CHARACTER(132);
          1 MESSAGE_IN_WORK_AREA,
 DECLARE
             2 CARD_INPUT,
                 3 ROOT_KEY
                               CHARACTER(17);
 DECLARE
          1 FIRST_LINE,
             2 FILL1
                               CHARACTER(5)
                                              INITIAL ( PART= ),
             2 FILL_PART_2
                               CHARACTER(17),
             2 FILL2
                               CHARACTER(7)
                                              INITIAL( •
                                                          DESC=!).
             2 FILL_DESCR
                               CHARACTER(20),
             2 FILL3
                               CHARACTER(12) INITIAL(
                                                          PROC CODE=!),
             2 FILL_PROC_CODE CHARACTER(2)
                                              INITIAL(
                                                          •);
 DECLARE
          1 SECOND_LINE,
             2 FILL4
                               CHARACTER(9)
                                              INITIAL('INV CODE='),
             2 FILL_INV_CODE
                                              INITIAL( ! !),
                               CHARACTER(1)
                                                          MAKE DEPT='),
                               CHARACTER(12) INITIAL(
             2 FILL5
                                                          •),
             2 FILL_MAKE_1
                               CHARACTER(2) INITIAL(
                                              INITIAL ( -- ),
             2 FILL6
                               CHARACTER(1)
             2 FILL_MAKE_2
                               CHARACTER(2)
                                              INITIAL('
                                                          1),
             2 FILL7
                               CHARACTER(15) INITIAL( !
                                                          PLAN REV NUM=1).
             2 FILL_PLAN_REV_NUM CHARACTER(2) INITIAL(' '),
             2 FILL8
                               CHARACTER(12) INITIAL(
                                                         MAKE TIME="),
             2 FILL_MAKE_TIME PICTURE 'ZZZ',
             2 FILL9
                               CHARACTER(12) INITIAL(
                                                          COMM CODE=!),
             2 FILL_COMM_CODE CHARACTER(4) INITIAL( !
                                                            •);
          1 ROOT_FORMAT,
 DECLARE
             2 FILL10
                               CHARACTER(26),
             2 DESCRIPTION
                               CHARACTER(20),
                               CHARACTER(4);
             2 FILL11
 DECLARE
          1 STANINFO_FORMAT,
             2 FILL12
                               CHARACTER(18),
             2 PROCUREMENT_CODE CHARACTER(2) INITIAL('
                                                           •),
             2 INVENTORY CODE CHARACTER(2)
                                               INITIAL(* *),
             2 PLANNING_REVISION_NUMBER CHARACTER(2) INITIAL( •
                                                                    •).
```

2 FILL13 CHARACTER(24), 2 MAKE DEPT CHARACTER(2) •). INITIAL (2 MAKE_COST_CTR CHARACTER(2) !), INITIAL (2 FILL14 CHARACTER(2) INITIAL (•)• •), 2 COMMODITY_CODE CHARACTER(4) INITIAL (* 2 FILL15 CHARACTER(4) INITIAL(•), 2 MAKE_SPAN PICTURE 'S999', 2 FILL16 CHARACTER(21); DECLARE 1 ROOT_SSA, 2 FILL17 CHARACTER(19) INITIAL('PARTROOT(PARTKEY =!), 2 FILL PART 3 CHARACTER(17), 2 FILL18 CHARACTER(1) INITIAL(')'; DECLARE STANINFO_SSA CHARACTER(22) INITIAL('STANINFO(STANKEY =02)'); 1 STATUS_CODE_MSG, DECLARE 2 FILL19 CHARACTER(22) INITIAL('UNRESOLVED STATUS CODE'), 2 FILL_STATUS CHARACTER(2) INITIAL (•), 2 FILL20 CHARACTER(4) INITIAL (ON), 2 FILL_FUNCTION CHARACTER(4); DECLARE 1 DATABASE, 2 DBASE_NAME CHARACTER(8), 2 SEGMENT INDR CHARACTER(2), 2 DBASE_STATUS CHARACTER(2), 2 PROC_OPTIONS CHARACTER(4), 2 DLI_RESERVED CHARACTER(4), 2 SEG_FEEDBACK CHARACTER(4), 2 KEY_FEEDBACK_LENGTH CHARACTER(4), 2 NO_OF_SENSEG_TYPES CHARACTER(4), 2 KEY_FEEDBACK, 3 ROOT KEY1, 4 FILL21 CHARACTER(2), 4 PARTNUM CHARACTER(15), 3 STANINFO_KEY CHARACTER(2); READ_CARDS: GET FILE (TESTIN) EDIT (CARD_IN) (A(80)); ON ENDFILE (TESTIN) GO TO EXIT_RTN; GET STRING (CARD_IN) EDIT (ROOT_KEY) (A(17)); FILL_PART_3=ROOT_KEY; CALL PLITDLI(FOUR,GET_UNIQUE,DATABASE,ROOT_FORMAT, CALL_DB: ROOT_SSA); IF DBASE_STATUS=' ' THEN GO TO PROCESS_FIRST_LINE; IF DBASE_STATUS -= SEG_NOT_FOUND THEN GO TO DBASE ERROR; FILL_PART_1=ROOT_KEY; OUTPUT_TEXT=STRING(PART_NOT_FOUND_MSG); PUT SKIP FILE (TESTOUT) EDIT (LINE_OUTPUT) (A); GO TO READ_CARDS; PROCESS_FIRST_LINE: FILL_PART_2=ROOT_KEY; FILL_DESCR=DESCRIPTION; FILL_FUNCTION=GET_NEXT; CALL PLITDLI(FIVE,GET_NEXT,DATABASE, STANINFO_FORMAT,ROOT_SSA,STANINFO_SSA); IF DBASE_STATUS=' THEN FILL_PROC_CODE=PROCUREMENT_CODE; GO TO PROCESS_SECOND_LINE; IF DBASE_STATUS=SEG_NOT_FOUND THEN GO TO PROCESS_SECOND_LINE; GO TO DBASE_ERROR;

<pre>PROCESS_SECOND_LINE: OUTPUT_TEXT=STRING(FIRST_LINE);</pre>
PUT SKIP FILE (TESTOUT) EDIT (LINE OUTPUT) (A);
FILL_INV_CODE=INVENTORY_CODE;
FILL MAKE 1=MAKE DEPT;
FILL MAKE 2=MAKE COST CTR;
FILL PLAN REV NUM=PLANNING REVISION NUMBER;
FILL MAKE TIME=MAKE SPAN;
FILL COMM CODE=COMMODITY CODE;
OUTPUT TEXT=STRING(SECOND LINE);
TERM OUT RTN: PUT SKIP FILE (TESTOUT) EDIT (LINE OUTPUT) (A);
GO TO READ CARDS;
EXIT RTN: RETURN;
COMMON_ERROR: OUTPUT_TEXT=STRING(STATUS_CODE_MSG);
GO TO TERM OUT RTN:
DBASE ERROR: FILL STATUS=DBASE STATUS;
GO TO COMMON ERROR;
END DLITPLI;
/*
//G.DI21PARO DD DSN=IMS.DI21PARO.DISP=SHR,VOL=SER=IMSDBS.UNIT=2314
//G.DI21PART DD DSN=IMS.DI21PART.DISP=SHR.VOL=SER=IMSDBS.UNIT=2314
//G.TESTOUT DD SYSOUT=3.DCB=BLKSIZE=132
//G.TESTIN DD *.DCB=BLKSIZE=80
02252252-003
023008027
0230080270000000
02JAN1N976B
023007228
023009225
02300928
023009270
023856124
/*

.

BATCH PROCESSING -- ASSEMBLER EXAMPLE

//ASGOCAB JOB 848, CABANISS, MSGLEVEL=1, MSGCLASS=3, CLASS=A, PRTY=8 //JOBLIB DD DSN=ICS.LOAD.DISP=SHR DSN=CLA.PGMLIB,DISP=SHR 11 DD 11 EXEC IMSASSEM, MBR=STUDNT05 //C.SYSIN DD * DLITCBL CSECT USE A BASE REGISTER USING *,12 PROLOGUE DS 0H STM 14,12,12(13) SAVE REGISTERS SET UP BASE REGISTER LR 12,15 SAVE ADDRESS OF CALLER'S SAVE AREA 15,13 LR LA 13.SAVE0001 LOAD REGISTER 13 WITH SAVE AREA ADDRESS ST 15,4(13)FORWARD CHAIN BACK CHAIN ST 13,8(15)15, 16(15)RESTORE WORKING REGISTER L SAVE0001+72 BRANCH AROUND SAVE AREA В SAVE0001 DS 18F 8, SAVE0001+4 ADDRESS OF PREVIOUS SAVE L 8,24(8) ADDRESS OF FIRST PCB L MVC PCBPTR(4), 0(8)PCBPTR,X'7F' NI ***OPEN-FILES OPEN (CARD, (INPUT), PRINT, (OUTPUT)) ***READ-MESSAGE-FILE GETCARD GET CARD, INPUT GET INPUT CARD MVC FILLP3, ROOTKEY MOVE KEY TO SSA MVC FUNCTION, GETUNQ MOVE FUNCTION CODE MOVE IO AREA TO CALL LIST MVC IOAREA, AROOTFMT MVC PCOUNT,=F'4' 1, TPCOUNT LA **CBLTDLI** GO GET SEGMENT CALL ADDRESS OF DATABASE PCB 9, PCBPTR L $10(2,9),=X^{4}040^{4}$ CLC ΒE PROFLIN GO PROCESS FIRST LINE 10(2,9), SEGNOTF IF STATUS CODE NOT FOR SEGMENT CLC BNE DBASEROR NOT FOUND THEN ERROR MVC OUTTEXT(132), BLANKS SET UP PRINT FOR SEGMENT NOT FOUND MVC FILLP1, ROOTKEY MVC OUTTEXT(45), PARTNF MOVE TO OUTPUT AREA PUT PRINT, BLNKSP GETCARD GET NEXT INPUT CARD В ***PROCESS-FIRST-LINE PROFLIN MVC FILLP2, ROOTKEY MVC FILDESCR, DESCRPT MVC FILLFUN, GETNEXT MVC FUNCTION, GETNEXT PCOUNT,=F'5' SET PARM COUNT TO 5 MVC SET UP ADDRESS OF IO AREA MVC IOAREA, ASTANINF MVC OUTTEXT(132), BLANKS LA 1. TPCOUNT ADDRESS OF PARAMETER LIST CALL CBLTDLI GO GET SEGMENT 9, PCBPTR POINTER TO PCB L

CLC 10(2,9),=X'4040'COMPARE TO BLANKS BNE JUMP1 MVC FILLPCD, PROCCDE PROSECLN В JUMP1 CLC 10(2,9),=C'GE'SEGMENT NOT FOUND BE PROSECLN DBASEROR В ***PROCESS-SECOND-LINE PROSECLN MVC OUTTEXT(63), FIRSTLN PUT PRINT, BLNKSP PRINT FIRST LINE. MVC FILINVC, MKDPT SETUP MVC FILLMK1, MKDPT SECOND MVC FILLMK2, MKCOSTCR LINE MVC FILPRN, PLANRVNO MVC FILMT, MAKSPN MVC FILCOCD, COMMCODE MVC OUTTEXT(132), BLANKS MVC OUTTEXT(74), SECLINE PUT PRINT, BLNKSP GETCARD В ***EXIT-RTN EXITRTN CLOSE (CARD, PRINT) EXIT EPILOGUE DS OH 13,4(13) LOAD REGISTER 13 WITH ADDRESS L LM 14,12,12(13) **RESTORE REGISTERS** INDICATE RETURN 12(13), X'FF' MVI LA 15,0(0,0)SET UP RETURN CODE IN REGISTER 15 14 RETURN BR ***COMMON-ERROR CERROR MVC OUTTEXT(33), STATCOMS PUT PRINT, BLNKSP GETCARD R ****DBASE-ERROR** DBASEROR L 9, PCBPTR MVC FILLSTAT, 10(9) В CERROR RETURN В EXITRTN ***WORKING STORAGE SECTION C'GU GETUNQ DC C'GN ŧ GETNEXT DC. SEGNOTF DC C'GE! C + + ERSWTCH DC ***LINE-OUTPUT C ! ! BLNKSP DC OUTTEXT CL132' ' DC ***PART-NOT-FOUND-MSG PARTNE DC C PART NUMBER ! FILLP1 DS CL17 DC C' NOT ON DATABASE' ***MESSAGE-IN-WORK-AREA INPUT 0F DS ROOTKEY DS **CL17** DS CL63 ***FIRST-LINE C PART= FIRSTLN DC

5,15

FILLP2 DS CL17 DC C • DESC=! FILDESCR DS **CL20** PROC CODE=* DC С! FILLPCD C • DC ***SECOND-LINE C'INV CODE=! SECLINE DC FILINVC DC C I I C ! DC MAKE DEPT=! FILLMK1 DC С! DC C'-' FILLMK2 DC. С! C ' DC PLAN REV NUM= ! FILPRN DC С! C ! DC MAKE TIME=! FILMT DC С! С! DC COMM CODE=! FILCOCD C • DC ***ROOT-FORMAT ROOTFMT CL26 DS DESCRPT DS **CL20** DC C • . ***STANINFO-FORMAT STANINF **CL18** DS PROCCDE DC C . . INVCODE DC C ! Ð PLANRVNO DC С! . **CL24** DS MKDPT DC. C * . C • 1 MKCOSTCR DC DS CL2 COMMCODE DC С! 1 DS CL4 MAKSPN DS CL4 DS CL21 ***ROOT-SSA ROOTSSA DC C PARTROOT (PARTKEY = ! FILLP3 DS **CL17** C •) • DC PCOUNT DS F TPCOUNT DC A(PCOUNT) DC A(FUNCTION) PCBPTR DS F IDAREA DS F FLAG1 DC A(ROOTSSA) FLAG2 DC A(STANISSA) FUNCTION DS CL4 AROOTFMT DC A(ROOTFMT) ASTANINF DC A(STANINF) BLANKS DC CL132' ' ***STANINFO-SSA C'STANINFO(STANKEY STANISSA DC =02) ***STATUS-CODE-MSG STATCOMS DC C'UNRESOLVED STATUS CODE ! FILLSTAT DC C * 1

	DC	C !	ON	•												
FILLFUN	DC	C !		1												
CARD	DCB	BLK	SIZ	E=80	, BUFL	=160	,DDN/	AME=	TEST	TIN,E	SOR	G=PS	, EOI	DAD=R	ETUR	N • X
		LRE	CL=	80,M	ACRF=	GM,R	ECFM=	=F								
PRINT	DCB	DDN	AME	=TES	TOUT	DSOR	G=PS	MAC	RF=F	PM.LF	RECL	=133	•REC	CFM=F	٠A	
***LINKA(GE SEC	TION								• -			•			
DBPCB	DSECT															
DBDNAME	DS	CL8														
SEGLEVEL	DS	CL2														
STATCODE	DS	CL2														
PROCOPTS	DS	CL4														
RESVDLI	DS	CL4	•													
SEGNAME	DS	CL8														
LGTHFDBK	DS	CL4	•													
NOSENSEG	DS	CL4			,											
KEYFDBK	DS	CL1	9													
	END															
/*																
//L.SYSL	IN DD I	DSN=	133	IN,D	ISP=	OLD,	DELET	ΓE)								
11	DD I	DSN=	ICS	• PRO	CLIB	DLIT	CBL),	DIS	P=S+	HR						
11	DD I	DDNA	ME=	SYSI	N											
// E>	KEC	DL I	BAT	CH,P	SB=S	UDNT	05									
//G.DI21F	PARO	DD	D	SN=I	MS.DI	21 P A	RO,DI	[SP=	SHR,	VOL=	SER:	=IMS	DBS	,UNIT	=231	.4
//G.DI218	PART	DD	D	SN=I	MS.D]	21PA	RT,DI	ISP=	SHR,	,VOL=	SER:	=IMS	DBS	,UNIT	[=231	.4
//G.TESTO	DUT DI	Э.,	SYS	0UT=	3,DCE	B=BLK	SIZE=	=133								
//G.TEST	IN DI	D	×,D	CB=B	LKSIZ	2E=80										
02252252-	-003															
02300802	7															
023008027	7000000	000														
02JAN1N97	76B															
023007228	3															
023009225	5															
02300928																
023009270)															
023856124	+															
/*																

.

FIELD DEFINITIONS FOR DATA BASE SEGMENTS

000980	01	SEG-RET-AREA.		
001000		02 FILLER	PICTURE X(02).	
001020		02 PART-NO	PICTURE X(15).	
001040		02 FILLER	PICTURE X(09).	
001060		02 DESC	PICTURE X(15).	
001080		02 FILLER	PICTURE X(119).	
001100	01	STAN-INFO-RET REDEFINES	S SEG-RET-AREA.	
001120		02 FILLER	PICTURE X(18).	
001140		02 PROC-CODE	PICTURE XX.	
001160	01	STOCK-STATUS-RET REDEFI	INES STAN-INFO-RET.	
001180		02 FILLER	PICTURE XX.	
001200		02 SS-AREA	PICTURE X.	
001220		02 SS-DEPT	PICTURE XX.	
001240		02 SS-PROJ	PICTURE XXX.	
001260		02 SS-DIV	PICTURE XX.	
001280		02 FILLER	PICTURE X(10).	
001300		02 SS-UNIT-PRICE	PICTURE 9(6)V999.	
001320		02 FILLER	PICTURE X(05).	
001340		02 SS-UNIT-OF-MEAS	PICTURE X(04).	
001360		02 FILLER	PICTURE X(33).	
001380		02 SS-STOCK-DATE	PICTURE X(03).	
001400		02 FILLER	PICTURE X(15).	
001420		02 SS-CUR-REQMTS-1	PICTURE S9(7)V9.	
001440		02 SS-UNPL-REQMTS	PICTURE S9(7)V9.	
001460		02 SS-ON-ORDER	PICTURE S9(7)V9.	
001480		02 SS-IN-STOCK	PICTURE S9(7)V9.	
001500		02 SS-PLAN-DISB	PICTURE S9(7)V9.	
001520		02 SS-UNPL-DISB	PICTURE S9(7)V9.	
001540		02 FILLER	PICTURE X(23).	
001560	01	BACK-ORDER-RET	REDEFINES STOCK-STATUS-R	E٦
001580		02 FILLER	PICTURE X(02).	
001600		02 WORK-ORDER	PICTURE X(08).	
001620		02 FILLER	PICTURE X(53).	
001640		02 WO-QTY	PICTURE S9(07)V9.	
001660	01	CYCLE-COUNT-RET	REDEFINES BACK-ORDER-RET	•
001680		02 FILLER	PICTURE X(02).	
001700		02 PHYSICAL-COUNT	PICTURE S9(07)V9.	
001720		02 FILLER	PICTURE X(04).	
001740		02 TOTAL-STOCK	PICTURE S9(07)V9.	

The above COBOL field definitions may be used if one desires to print out segments other than the PARTROOT and STANINFO segments of the sample problem data base. SAMPLE OUTPUT

THE OUTPUT PRESENTED BELOW IS INDICATIVE OF THE OUTPUT WHICH CAN BE EXPECTED FROM THE PRECEDING COBOL, PL/I, OR ASSEMBLER PROGRAM,

PART=02252252-003 DESC=COUPLING PRUC CODE=74 INV CODE=2 MAKE DEPT=20-0 PLAN REV NUM= MAKE TIME=300 COMM CODE=6 PART=023008027 DESC=CARD FRONT PROC CODE=46 INV CODE=A MAKE DEPT=24-6 MAKE TIME=600 COMM CODE=4 PLAN REV NUM= PART NUMBER 0230080270000000 NOT UN DATABASE PART=02JAN1N976B DESC=DIODE CODE-A PROC CODE=74 MAKE DEPT=20-0 MAKE TIME=300 COMM CODE=2 INV CODE=2 PLAN REV NUM= PROC CODE=22 PART=023007228 DESC=HOUSING INV CODE=2 MAKE DEPT=20-0 PLAN REV NUM= MAKE TIME= COMM CODE=4 PART NUMBER 023009225 NOT ON DATABASE PART NUMBER 02300928 NOT ON DATABASE PART=023009270 PROC CODE=22 DESC=HOUSING MAKE TIME= INV CODE=2 MAKE DEPT=20-0 PLAN REV NUM= COMM CODE=8 PART NUMBER 023856124 NOT ON DATABASE

COBOL MESSAGE PROCESSING PROGRAM WITH MESSAGE SIMULATOR

<pre>//EXECO2 JOB 848,CABANISS,MSGLEVEL=1,MSGCLASS=3,CLASS=A,PRTY=8 //JOBLIB DD DSN=CLA.PGMLIB,DISP=SHR // DD DSN=ICS.LOAD,DISP=SHR // EXEC IMSCOBOL,MBR=CAB01</pre>	\langle
//C.SYSIN DD *	
IDENTIFICATION DIVISION. PROGRAM-ID. 'CAB'.	
ENVIRONMENT DIVISION.	
DATA DIVISION.	
WORKING-STORAGE SECTION.	
01 A PICTURE $X(24)$.	
LINKAGE SECTION.	
01 DB-PCB.	
02 DATA-BAS-DESC PICTURE X(71).	
PROCEDURE DIVISION.	
ENTER LINKAGE.	
ENTRY 'DLITCBL' USING DB-PCB.	
ENTER COBOL.	
ENTER LINKAGE.	
CALL 'TEST' USING A, DB-PCB.	
ENTER COBOL.	
STOP RUN.	
/*	
// EXEC IMSCOBOL, MBR=CABO2	
//C.SYSIN DD *	
01001 IDENTIFICATION DIVISION.	
01002 PROGRAM-ID. 'CLASSEX'	
01004 REMARKS. IMS DEMONSTRATION OF TERMINAL ABILITY	(
01005 TO DISPLAY A PART NUMBER SEGMENT AND	
01006 SOME OF ITS STANDARD INFORMATION WHICH	
01007 ARE ON AN IMS ISAM/OSAM INVENTORY DATABASE.	
01008 ENVIRONMENT DIVISION.	
01009 CONFIGURATION SECTION.	
01010 SOURCE-COMPUTER. IBM-360.	
01011 OBJECT-COMPUTER. IBM-360.	
01012 DATA DIVISION.	
01013 WUKKING-SIURAGE SECTION.	
01014 // GET-UNIQUE PICTURE XXXX VALUE 'GU '.	
$01020 \qquad 11 \text{ERROR SWITCH FICTORE } \text{VALUE} \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet $	
02012 01 EINE INFORM	
02014 02 FILLER PICTURE S99 COMPUTATIONAL	
02 TRAN-SACT PICTURE X(8).	
02 FILLER PICTURE X.	
02 ROOT-KEY PICTURE X(17).	
02 INPUT-TEXT PICTURE X(106) VALUE SPACES.	
02016 01 LINE-DUTPUT. *	
02017 02 OUTPUT-COUNT PICTURE S99 COMPUTATIONAL.	
02018 02 FILLER PICTURE S99 COMPUTATIONAL VALUE ZERG	י ב
020185 02 CARR-RETURN PICTURE X VALUE 'N'.	1
02019 02 OUTPUT-TEXT PICTURE X(132) VALUE SPACES.	

0300	1 0	01	PART-NOT-FOUND-MSG.
0300	2		02 FILLER PICTURE X(12) VALUE 'PART NUMBER '.
			02 FILL-PART-1 PICTURE X(17).
0300	4		02 FILLER PICTURE X(16) VALUE ' NOT ON DATABASE'.
0300	5		02 CR-1 PICTURE X.
0300	6 (01	FIRST-LINE.
0300	7		02 FILLER PICTURE X(5) VALUE 'PART='.
			02 FILL-PART-2 PICTURE X(17).
0300	9		02 FILLER PICTURE X(7) VALUE ' DESC='.
0301	0		02 FILL-DESCR PICTURE X(20).
0301	1		02 FILLER PICTURE X(12) VALUE ' PROC CODE= .
0301	2		02 FILL-PROC-CODE PICTURE XX VALUE SPACES.
0301	3		02 CR-2 PICTURE X.
0301	4 (01	SECOND-LINE.
0301	5		02 FILLER PICTURE X(9) VALUE 'INV CODE='.
0301	6		02 FILL-INV-CODE PICTURE X VALUE SPACE.
0301	7		02 FILLER PICTURE X(12) VALUE ' MAKE DEPT='.
0301	8		02 FILL-MAKE-1 PICTURE XX VALUE SPACES.
0301	9		02 FILLER PICTURE X VALUE '-'.
0302	0		02 FILL-MAKE-2 PICTURE XX VALUE SPACES.
0400	1		02 FILLER PICTURE X(15) VALUE ' PLAN REV NUM='.
0400	2		02 FILL-PLAN-REV-NUM PICTURE XX VALUE SPACES.
0400	3		02 FILLER PICTURE X(12) VALUE ' MAKE TIME='.
0400	4		02 FILL-MAKE-TIME PICTURE ZZZ.
0400	5		02 FILLER PICTURE X(12) VALUE ' COMM CODE='.
0400	6		02 FILL-COMM-CODE PICTURE XXXX VALUE SPACES.
0400	7		02 CR-3 PICTURE X.
0400	8 (01	NO-STANINFO-MSG.
0400	9		02 FILLER PICTURE X(29)
0401	0		VALUE 'THERE IS NO STANINFO SEGMENT.'.
0401	1		02 CR-4 PICTURE X.
0401	2 (01	ROOT-FORMAT.
0401	3		02 FILLER PICTURE X(26).
0401	4		02 DESCRIPTION PICTURE X(20).
0401	5		02 FILLER PICTURE XXXX.
0402	0 (01	STANINFO-FORMAT-DEFINITION PICTURE X(85) VALUE SPACES.
0500	1 (01	STANINFO-FORMAT REDEFINES STANINFO-FORMAT-DEFINITION.
0500	2		02 FILLER PICTURE X(18).
0500	3		02 PROCUREMENT-CODE PICTURE XX.
0500	4		02 INVENTORY-CODE PICTURE X.
0500	5		02 PLANNING-REVISION-NUMBER PICTURE XX.
0500	6		02 FILLER PICTURE X(24).
0500	1		UZ MAKE-DEPT PICTURE XX.
05000	8		UZ MAKE-CUSI-CIR PICIURE XX.
0500	9		02 FILLER PICTURE XX.
05010	0		02 CUMMUDILY-CUDE PICTURE XXXX.
0501	1		UZ FILLER PICTURE XXX.
0501	2		UZ MAKE-SPAN PILIURE S999.
0501	3	~ 1	UZ FILLER PICIURE X(ZI).
05014	4 (UL	
			UZ FILLER PICIURE X(19) VALUE 'PARIRUUI(PARIREY = .
0501	7		UZ FILL-PAKI-3 PILIUKE X(1/).
0501	1	• •	UZ FILLEK FILIUKE X VALUE ')'.
0501	o (01	STANINFU-SSA PILIUKE X(22) VALUE
0201	7		'STANINFUISTANKEY =UZ)'.

06001 01 STATUS-CODE-MSG. FILLER PICTURE X(23) VALUE 'UNRESOLVED STATUS COL 06002 02 06003 02 FILL-STATUS PICTURE XX. FILLER PICTURE X(4) VALUE ! ON !. 06004 02 06005 02 FILL-FUNCTION PICTURE X(4). 06006 02 CR-5 PICTURE X. LINKAGE SECTION. 06011 TERMINAL. 06012 01 02 LTERM-NAME PICTURE X(8). 06013 02 FILLER PICTURE XX. 06014 02 TERM-STATUS PICTURE XX. 06015 02 TERM-PREFIX. 06016 06017 03 FILLER PICTURE X. JULIAN-DATE PICTURE S9(5) COMPUTATIONAL-3. 06018 03 TIME-OF-DAY PICTURE S9(7) COMPUTATIONAL-3. 03 06019 06020 03 FILLER PICTURE XXXX. DATABASE. 07001 01 07002 02 DBASE-NAME PICTURE X(8). SEGMENT-INDR PICTURE XX. 07003 02 02 DBASE-STATUS PICTURE XX. 07004 PROC-OPTIONS PICTURE XXXX. 07005 02 07006 02 DLI-RESERVED PICTURE XXXX. 07007 02 SEG-FEEDBACK PICTURE X(8). 07008 02 KEY-FEEDBACK-LENGTH PICTURE XXXX. 02 NO-OF-SENSEG-TYPES PICTURE XXXX. 07009 07010 02 KEY-FEEDBACK. 03 ROOT-KEY1. 07012 FILLER PICTURE XX. Ω4 07013 04 PARTNUM PICTURE X(15). 07014 03 STANINFO-KEY PICTURE XX. 08001 PROCEDURE DIVISION. 08002 START-OUT. ENTER LINKAGE. 08003 08004 ENTRY 'TEST' USING TERMINAL, DATABASE. 08005 ENTER COBOL. **READ-MESG-FILE**. 08009 ENTER LINKAGE. CALL 'GEORGEI' USING GET-UNIQUE, TERMINAL, LINE-INPUT. 08010 08011 ENTER COBOL. 08012 IF TERM-STATUS = ' GO TO TERM-OK. IF TERM-STATUS NOT = NO-MSG-THERE GO TO ERROR-HANDLER. 08013 08014 EXIT-RTN. ENTER LINKAGE. 08015 08016 **RETURN**. 08017 ENTER COBOL. 08018 TERM-OK. MOVE ROOT-KEY TO FILL-PART-3. 09015 ENTER LINKAGE. CALL 'CBLTDLI' USING GET-UNIQUE, DATABASE, ROOT-FORMAT, 09016 09017 ROOT-SSA. ENTER COBOL. 09018 09019 IF DBASE-STATUS = 1GO TO PROCESS-FIRST-LINE. DBASE-STATUS NOT = SEG-NOT-FOUND GO TO DBASE-ERROR. 09020 IF MOVE ROOT-KEY TO FILL-PART-1. 10002 MOVE CARR-RETURN TO CR-1.

```
MOVE PART-NOT-FOUND-MSG TO OUTPUT-TEXT.
10003
10004
           MOVE 50 TO OUTPUT-COUNT.
10005
       TERM-OUT-RTN.
           MOVE INSERT TO FILL-FUNCTION.
10006
100069
           ENTER LINKAGE.
10007
           CALL 'GEORGEI' USING INSERT, TERMINAL, LINE-OUTPUT.
10008
           ENTER COBOL.
100085 EXIT-FROM-TERM-OUT. EXIT.
100086 PTCH-1.
           GO TO READ-MESG-FILE.
10009
       ERROR-HANDLER. MOVE TERM-STATUS TO FILL-STATUS.
10010
           IF ERROR-SWITCH NOT = ' ' DISPLAY STATUS-CODE-MSG UPON
10011
                CONSOLE, GO TO EXIT-RTN.
10012
10013
           MOVE 'E' TO ERROR-SWITCH.
100135 COMMON-ERROR.
           MOVE CARR-RETURN TO CR-5.
10014
10015
           MOVE STATUS-CODE-MSG TO OUTPUT-TEXT.
           MOVE 38 TO OUTPUT-COUNT.
10016
100165 EXIT-FROM-ERROR-HANDLER. EXIT.
100166 PTCH-2.
           GO TO TERM-OUT-RTN.
10017
10018
       DBASE-ERROR.
           MOVE DBASE-STATUS TO FILL-STATUS.
10019
10020
           GO TO COMMON-ERROR.
11007
       PROCESS-FIRST-LINE.
           MOVE ROOT-KEY TO FILL-PART-2.
           MOVE DESCRIPTION TO FILL-DESCR.
11009
11010
           MOVE GET-NEXT TO FILL-FUNCTION.
11011
           ENTER LINKAGE.
            CALL 'CBLTDLI' USING GET-NEXT, DATABASE, STANINFO-FORMAT,
11012
11013
                                    ROOT-SSA, STANINFO-SSA.
           ENTER COBOL.
11014
           IF DBASE-STATUS = '
                                MOVE PROCUREMENT-CODE TO
11015
               FILL-PROC-CODE, GO TO PROCESS-SECOND-LINE.
11016
           IF DBASE-STATUS = SEG-NOT-FOUND
11017
               PERFORM PROCESS-SECOND-LINE, GO TO EXIT-RTN.
11018
11019
           GO TO DBASE-ERROR.
       PROCESS-SECOND-LINE.
12001
12002
           MOVE CARR-RETURN TO CR-2.
           MOVE FIRST-LINE TO OUTPUT-TEXT.
12003
12004
           MOVE 68 TO OUTPUT-COUNT.
           PERFORM TERM-OUT-RTN.
12005
120055
           IF TERM-STATUS NOT = ' PERFORM ERROR-HANDLER THRU
120056
               COMMON-ERROR, PERFORM TERM-OUT-RTN.
           IF TERM-STATUS NOT = ' ' GO TO ERROR-HANDLER.
120057
       EXIT-FROM-PROCESS-2ND-LINE. EXIT.
12006
120061 PTCH-3.
12007
           MOVE INVENTORY-CODE TO FILL-INV-CODE.
12008
           MOVE MAKE-DEPT TO FILL-MAKE-1.
           MOVE MAKE-COST-CTR TO FILL-MAKE-2.
12009
           MOVE PLANNING-REVISION-NUMBER TO FILL-PLAN-REV-NUM.
12010
           MOVE MAKE-SPAN TO FILL-MAKE-TIME.
12011
           MOVE COMMODITY-CODE TO FILL-COMM-CODE.
12012
12013
           MOVE CARR-RETURN TO CR-3.
12014
           MOVE SECOND-LINE TO OUTPUT-TEXT.
```

12015 MOVE 80 TO OUTPUT-COUNT. 12016 GO TO TERM-OUT-RTN. /* 11 EXEC IMSCOBOL, MBR=CAB03 //C.SYSIN DD * 001010 IDENTIFICATION DIVISION. 001020 PROGRAM-ID. 'IMSTEST'. 001030 ENVIRONMENT DIVISION. 001040 INPUT-OUTPUT SECTION. 001050 FILE-CONTROL. SELECT MESSAGE-FILE ASSIGN TO 'TESTIN' UTILITY. 001060 001070 SELECT TEST-OUTPUT-FILE ASSIGN TO 'TESTOUT' UTILITY. 001080 DATA DIVISION. 001090 FILE SECTION. 001100 FD MESSAGE-FILE 001110 RECORDING MODE IS F DATA RECORD IS INPUT-MESSAGE. 001120 001130 · 01 INPUT-MESSAGE PICTURE IS X(80). TEST-OUTPUT-FILE 001140 FD 001150 **BLOCK CONTAINS 10 RECORDS** 001160 DATA RECORD IS PRINT-LINE. PRINT-LINE 001170 01 PICTURE IS X(133). 001180 WORKING-STURAGE SECTION. 001190 77 OPEN-SWITCH PICTURE X VALUE ! !. 77 END-SWITCH PICTURE X 001200 VALUE ! !. PICTURE S9(4) VALUE 0 001210 77 MESSAGE-SIZE-WORK 001220 USAGE COMPUTATIONAL. BAD-FUNCTION-CODE PICTURE XX 77 VALUE 'QA'. 001230 77 001240 NO-DATA-CODE PICTURE XX VALUE 'QC'. 001250 77 **REC-SWT** PICTURE X VALUE ! . PICTURE X VALUE ! !. 001260 77 MESS-OUT 001261 77 C-329 PICTURE S9(6) VALUE 329 USAGE COMPUTATIONAL. 001262 001270 01 MESSAGE-IN-WORK-AREA. 001280 02 HEADER-DATA-IN. 001290 03 MESSAGE-COUNT PICTURE 9(4). 001300 03 MESSAGE-TYPE PICTURE Χ. 001310 03 TERMINAL-NAME PICTURE X(8). **MESSAGE-TEXT**. 001320 02 001330 FILLER PICTURE X OCCURS 67 TIMES. 03 **TEST-OUTPUT-HEADER.** 001350 01 001360 02 FILLER PICTURE X(18) VALUE 001370 . MESSAGE TYPE = !. 02 FILLER. 001380 001390 03 IN-OR-OUT-MESSAGE PICTURE X. 001400 03 HEAD-OR-BODY PICTURE X. 001410 02 FILLER PICTURE X(18) VALUE 001420 ', MESSAGE COUNT = '. 02 OUTPUT-COUNT 001430 PICTURE 9999. 001440 02 FILLER PICTURE X(13) VALUE 001450 ', TERMINAL = '. 001460 02 OUTPUT-TERMINAL PICTURE X(8). 001470 02 FILLER PICTURE XX VALUE SPACES. 001480 02 OUT-FUN PICTURE XXXX. 001490 01 **TEST-OUTPUT-TEXT.**

```
02 TEST-DUTPUT-CHAR
001500
                                      OCCURS 130 TIMES
001510
                                                     PICTURE X.
001520 LINKAGE SECTION.
001530
           01
                INOUT-PCB.
                                          PICTURE X(8).
001540
                02
                     IO-TERMINAL
001550
               02
                     IO-RESERVE
                                          PICTURE XX.
001560
                02
                     IO-STATUS
                                          PICTURE XX.
                    I-PREFIX
001570
                02
                               PICTURE X(12).
001580
           01
                FUNCTION
                           PICTURE
                                    XXXX-
                IO-AREAS-RECORD.
001590
           01
001600
                02
                    RCC PICTURE S9(4) USAGE COMPUTATIONAL.
001610
                02
                     RCC-ZEROS
                                 PICTURE XX.
001620
                    TEXT.
                02
001630
                     03
                         FILLER PICTURE X OCCURS 130 TIMES.
001650 PROCEDURE DIVISION.
001660
           ENTER LINKAGE.
001670
           ENTRY 'GEORGEI' USING FUNCTION, INOUT-PCB, IO-AREAS-RECORD.
001680
           ENTER COBOL.
001690 OPEN-FILES.
001700
           IF OPEN-SWITCH = '1' GO TO PROCESS-X.
                MOVE O TO TALLY.
001705
           OPEN INPUT MESSAGE-FILE
001710
001720
                 OUTPUT TEST-OUTPUT-FILE.
           MOVE '1' TO OPEN-SWITCH.
001730
001740 PROCESS-X.
           IF FUNCTION = ^{\circ}GU
                                GO TO GET-HEADER.
001750
                                ' GO TO GET-BODY.
           IF FUNCTION = !GN
001760
001770
           IF FUNCTION = 'ISRT' GO TO WRITE-REPLY.
           MOVE BAD-FUNCTION-CODE
001780
                                     TO IO-STATUS.
001790 RETURN-TO-APPLICATION.
001806
           ENTER LINKAGE.
001810
           RETURN.
           ENTER COBOL.
001820
001830 FORMAT-INPUT-MESSAGE.
001840
           MOVE 'I' TO IN-OR-OUT-MESSAGE.
           MOVE MESSAGE-TYPE TO HEAD-OR-BODY.
001850
           MOVE MESSAGE-COUNT TO OUTPUT-COUNT.
001860
001870
           MOVE TERMINAL-NAME TO OUTPUT-TERMINAL.
           MOVE MESSAGE-TEXT
                               TO TEST-OUTPUT-TEXT.
001880
001890 SET-UP-FOR-USER.
001900
           MOVE MESSAGE-COUNT TO RCC.
           MOVE LOW-VALUES. TO RCC-ZEROS.
001910
           MOVE TERMINAL-NAME TO IO-TERMINAL.
001920
           MOVE MESSAGE-TEXT TO
001930
                                      TEXT.
            MOVE !
                   TO IO-STATUS.
001940
001950 READ-MESSAGE-FILE.
               END-SWITCH = '1' GO TO FINISH-UP.
001960
           IF
           READ MESSAGE-FILE INTO MESSAGE-IN-WORK-AREA
001990
002000
                          AT END MOVE '1' TO END-SWITCH
002010
                          GO TO READ-MESSAGE-FILE.
002020
           COMPUTE
                     MESSAGE-SIZE-WORK = MESSAGE-COUNT - 4.
002040
           PERFORM
                     FORMAT-INPUT-MESSAGE.
002050
           PERFORM
                     WRITE-TEST-OUTPUT-FILE.
002060 WRITE-TEST-DUTPUT-FILE.
002070
               MOVE
                      FUNCTION TO
                                    OUT-FUN.
```

002080 WRITE PRINT-LINE FROM TEST-OUTPUT-HEADER. 002090 WRITE PRINT-LINE FROM TEST-OUTPUT-TEXT. 002100 GET-HEADER. REC-SWT NOT = 'H' 002110 IF 002130 PERFORM READ-MESSAGE-FILE 002150 GO TO REC-GOT. 002170 MESSAGE-SIZE-WORK = MESSAGE-COUNT - 4. COMPUTE 002180 PERFORM FORMAT-INPUT-MESSAGE. PERFORM WRITE-TEST-OUTPUT-FILE. 002190 002200 REC-GOT. IF MESSAGE-TYPE NOT = TO 'H' GO TO GET-HEADER. 002210 PERFORM SET-UP-FOR-USER. MOVE ! ! TO REC-SWT. 002220 GO TO RETURN-TO-APPLICATION. 002230 002240 GET-BODY. PERFORM **READ-MESSAGE-FILE.** 002250 IF MESSAGE-TYPE = 'B' NEXT SENTENCE ELSE 002260 MOVE 'H' TO REC-SWT 002270 MOVE 10D1 TO IO-STATUS 002280 002290 GO TO RETURN-TO-APPLICATION. 002300 SET-UP-FOR-USER. PERFORM 002310 GO TO RETURN-TO-APPLICATION. 002320 WRITE-REPLY. MOVE IO-TERMINAL TO OUTPUT-TERMINAL. 002330 002340 COMPUTE MESSAGE-SIZE-WORK = RCC - 4.002350 MOVE RCC TO OUTPUT-COUNT. **'0'** TO IN-OR-OUT-MESSAGE. 002360 MOVE MOVE ' ' TO HEAD-OR-BODY. 002370 002380 MOVE TEXT TO **TEST-OUTPUT-TEXT**. 002390 MOVE MESS-OUT TO IO-STATUS. PERFORM WRITE-TEST-OUTPUT-FILE. 002400 002410 FINISH-UP. IF FUNCTION = 'GU ' MOVE 'QC' TO ID-STATUS. 002420 002430 IF FUNCTION = 'GN ' MOVE 'QD' TO ID-STATUS. GO TO RETURN-TO-APPLICATION. 002440 /* 11 EXEC IMSLINK //L.SYSLMOD DD DSN=CLA.PGMLIB,DISP=SHR //L.SYSOBJ DD DSN=CLA.PGMLIB,DISP=SHR DD DSN=ICS.LOAD,DISP=SHR 11 //L.SYSIN DD * INCLUDE SYSOBJ(CAB01) INCLUDE SYSOBJ(CAB02) SYSOBJ(CAB03) INCLUDE ENTRY DLITCBL NAME STUDNT02(R) /* 11 DLIBATCH, PSB=STUDNT02 EXEC 11 DD DSN=ICS.DBDLIB.DISP=SHR //G.IMS DD DSN=CLA.PSBLIB,DISP=SHR //G.DI21PARO DD DSN=IMS.DI21PARO,DISP=SHR,VOL=SER=IMSDBS,UNIT=2314 //G.DI21PART DD DSN=IMS.DI21PART,DISP=SHR,VOL=SER=IMSDBS,UNIT=2314 //G.TESTOUT DD SYSOUT=3 *, DCB=BLKSIZE=80 //G.TESTIN DD 0030HTERM0001PART 023008027 0030HTERM0002PART 023009228

0030HTERM0003PART	0268663-104
0030HTERM0004PART	02652540-002
0030HTERM0008PART	02989036-001
0030HTERM0005PART	02975105-001
0030HTERM0023PART	02974810-010
0030HTERM0099PART	02968534-001
0030HTERM1258PART	02958007-180
بلدار ا	

/*

SUGGESTED SOLUTIONS FOR EXERCISES

PSB GENERATION

//PSBGEN01	JOB	01,9	STUDENT01,MSGLEVEL=1
11	EXEC	C PSBO	GEN, MBR=STUDNTO1
//C.SYSIN	DD	*	
P	CB TY	/PE=DB,I	DBDNAME=DI21PART, PROCOPT=A, KEYLEN=43
S	ENSEG	PARTRO	TOD
S	ENSEG	STANIN	FO,PARTROOT
S	ENSEG	STOKS	TAT, PARTROOT
S	ENSEG	CYCCOU	NT, STOKSTAT
S	ENSEG	BACKORI	DR, STOKSTAT
Р	SBGEN	LANG=0	COBOL, PSBNAME=STUDNT01
E	ND		

/*

DBD GENERATION

//DBDGENO	1	DB .	01.51	ENTO	MSGL	EVEL	= 1			
770000LN0	1 0	00	01,0100				. – I			
//	E	XEC	DBDGEN,	MBR=L	BASEO	1				
//C.SYSIN	D	D *	:							
	DBD	NAME	=DBASEC	1,ACC	ESS=I	SAM				
	DMAN	DD1=P	ARTB, DE	V1=23	811,DL	IOF=	BASE1			
	SEGM	NAME=	PARTROC	T,PAR	ENT=0	,BYT	ES=50	,FREQ	=250	
	FLDK	NAME=	PARTKEY	, TYPE	=C,BY	TES=	17,ST	ART=1		
	SEGM	NAME=	STANINF	O,PAR	ENT=P	ARTR	00T,B	YTES=	85,FRE	Q=1
•	FLDK	NAME=	STANKEY	, TYPE	E=C,BY	TES=	2,STA	RT=1		
	SEGM	NAME=	STOKSTA	T,PAR	ENT=P	ARTR	OOT,B	YTES=	160,FR	EQ=2
	FLDK	NAME=	STOCKEY	, TYPE	=C,BY	TES=	:16,ST	ART=1		
	SEGM	NAME=	CYCCOUN	T,PAR	ENT=S	TOKS	TAT,B	YTES=	25, FRE	Q=1
	FLDK	NAME=	CYCLKEY	, TYPE	E=C,BY	TES=	2,STA	RT=1		
	SEGM	NAME=	BACKORD	R,PAR	ENT=S	TOKS	TAT,B	YTES=	75,FRE	Q=0
	FLDK	NAME=	BACKKEY	, TYPE	E=C,BY	'TES=	:10,ST	ART=1		
	DBDGE	N								
	FINIS	н								
	END									

/*

SUGGESTED SOLUTION FOR SYSTEM DEFINITION

I

//IMSDEF01 JOB 848,CABANISS,MSGLEVEL=1,MSGCLASS=3,CLASS=A,PRTY=8	
// EXEC ASMFC,REGION=96K	
//ASM.SYSLIB DD DSN=ICS.MACLIB,DISP=SHR	
//ASM.SYSPRINT DD SYSOUT=3	
//ASM.SYSPUNCH DD SYSOUT=3	
//ASM.SYSIN DD *	
IMSCTRL SYSTEM=(MVT,ALL),MAXIO=10,MAXREGN=3,MSGBUFF=10,	Х
COMMSVC=(244,245), OSAMSVC=243, OCENDA=Z8, CKPT=500	
APPLCTN PSB=STUDNT01	
DATABASE DBD=DI21PART	
TRANSACT CODE=TRANSO1, PRTY=(2,6,3), PROCLIM=(5,10)	
APPLCTN PSB=STUDNT02	
DATABASE DBD=DI21PART	
TRANSACT CODE=TRANSO2, PRTY=(2,6,3), PROCLIM=(5,10)	
APPLCTN PSB=STUDNT03	
DATABASE DBD=DI21PART	
TRANSACT CODE=TRANSO3, PRTY=(2,6,3), PROCLIM=(5,10)	
APPLCTN PSB=STUDNT04	
DATABASE DBD=DI21PART	
TRANSACT CODE=TRANSO4, PRTY=(2,6,3), PROCLIM=(5,10)	
APPLCTN PSB=STUDNT05	
DATABASE DBD=DI21PART	
TRANSACT CODE=TRANS05, PRTY=(2,6,3), PROCLIM=(5,10)	
LINEGRP DDNAME=DD2740S	
LINE FEAT=POLL, ADDR=032	
TERMINAL ADDR=E2	
NAME L2740S2	
LINE FEAT=POLL, ADDR=033	
DFSCTBMT TERMINAL ADDR=E2	
NAME MASTER	
NAME L2740S1	
MASTTERM MASTER	
LINE FEAT=POLL, ADDR=034	
TERMINAL ADDR=E2	
NAME L2740SM1	
LINEGRP DDNAME=DD2740A, FEAT=(TRANSCTL, SWITCHED), UNITYPE=2740)
LINE FEAT=AUTOANS, ADDR=035	
TERMINAL ADDR=E2	
NAME INQUIRY1	
POOL FEAT=AUTOCALL,ZONE=1	
SUBPOOL TELNO=2774211	
NAME LTERM1	
NAME LTERM2	
NAME LTERM3	
PROCLIB PDS=CLA.PROCLIB	
PGMLIB PDS=CLA.PGMLIB	
PSBLIB PDS=CLA.PSBLIB	
DBDLIB PDS=CLA.DBDLIB	
MACLIB PDS=ICS.MACLIB,UNIT=2314,VOLNO=IMSLIB	
RESLIB PDS=CLA.LOAD,UNIT=2311,VOLNO=CLASS1	
MSGQUEUE REUSE=(YES, 150),QCRIN=(INQCR.CLA.INQCR.2311.CLASS).	•
QCROUT=(OUTQCR,CLA,OUTQCR,2311,CLASS).	•

		MSGOUT=(OUTMSG,CLA.OUTMSG,2311,CLASS),
		MSGIN=(INMSG,CLA.INMSG,2311,CLASS)
	SPACE	2
IMSGEN		UT1SDS=TEMPSET,ASMPRT=ON,LEPRT=(XREF,LIST)
	END	

/*

02AN960C10 02CK05CW181K 02CSR13G104KL 02.JANIN976B 02MS16995-28 02N51P3003 02RC07GF273J 02106B1293P 02250236-001 02250239 02250241-001 0225079 02250796 02250891 02252252-003 023003802 023003806 023007228 023008027 023008838 023009228 023009270 023009280 023013405-002 023013412 023012419-001

023012460-001 023013548-002 0256134-016 0260003-118 02652540-002 02652799 028663-102 0268663-104 0269857-635 027060654P001 027438995P002 027454949P001 027618032P101 027618289P049 027630843P513 027736847P001 02803008035 0282125-056 0282124-640 0282125-869 0284353-456 0290-3033334 0290-3033665 02905537-384 02906028-040 02907021-782

02921125-009 02922294-002 02922399-001 02925363-136 029 25380-101 02930331-102 02930331-123 02930333-001 02945325-086 02950060-006 02954017-001 02958007-180 02960528-067 02968534-001 02974810-010 02975105-001

5.31

International Business Machine Corporation Data Processing Division 112 East Post Road, White Plains, New York 10601 (USA only)

IBM World Trade Corporation 821 United Nations Plaza, New York, N.Y. 10017 (International)

R20-4142-0

International Business Machine Corporation Data Processing Division 112 East Post Road, White Plains, New York 10601 (USA only)

IBM World Trade Corporation 821 United Nations Plaza, New York, N.Y. 10017 (International)

R20-4142-0

