
•

•

Systems Reference Library

IBM System/3S0 Model 44

Programming System

File No. S360-25 44PS
Form C28-6813-0

Guide to System Use for FORTRAN Programmers

IBM System/360 Model 44
Programming system
Guide to System Use for FORTRAN Programmers

This publication describes how to use the Model 44
programming System to compile and execute programs
written in the IBM System/360 FORTRAN IV language. A
discussion of program optimization and of the restric­
tions of the Model 44 FORTRAN IV compiler is also
included.

This publication is directed primarily at program­
mers who are familiar with the FORTRAN IV language.
Previous knowledge of the Model 44 Programming system
is not required •

PREFACE

The purpose of this publication is to
provide programmers with the information
required to process FORTRAN programs under
control of the Model 44 Programming System.
The three steps involved in processing a
FORTRAN program are compilation, editing,
and execution .•

This publication is not intended to be
an exhaustive discussion of the capabili­
ties of the Model 44 Programming system;
only those features that will be commonly
used by FORTRAN programmers are presented.
A more complete description of system capa­
bilities can be found in the publication
IBM System/360 Model 44 Programming System:
Guide to System Use, Form C28-6812.

It is assumed that the reader is famili­
ar with the FORTRAN language as described
in the publication IBM System/360 -FORTRAN
IV Language, Form C28-6515. No previous
knowledge of the Model 44 Programming Sys­
tem is required.

The organization of this publication is
such that the new reader is familiarized
with programming system concepts and learns
of the facilities available to him before
encountering procedural details. The
detailed information also serves as a body
of reference material for the programmer
who is already familiar with system con­
cepts. As an aid to the experienced pro­
grammer in his use of this publication, the
content of each chapter is described brief­
ly below:

1 .• "Introduction" describes the Model
Programming System and indicates
programming system components that
involved in FORTRAN processing.

44
the
are

2. "Job Definition" defines the terms
"job" and "job step," describes sever­
al types of jobs, and shows how to
structure a job via job control state­
ments.

First Edition

3. "Data Sets" provides information on
transmission of data to and from
external storage devices. It shows
the correspondence between the data
set reference numbers used in FORTRAN
input/output statements and the sym­
bolic unit names used by the program­
ming system. Discussions of data set
creation and data set maintenance are
included.

4. "Job Processing" describes each of the
processing steps -- compilation, edit­
ing". and execution -- in detail. The
facilities available to the programmer
are related to options in job control
statements and linkage editor control
statements.

5. "Control Statements" provides details
on filling out job control statements
and linkage editor control statements.
Conventions of the job control lan­
guage are described.

6. "System output" describes and illus­
trates the listings, maps, error mes­
sages, and dumps produced by the sys­
tem components.

7. "Programming Considerations" gives
information useful when writing FOR­
TRAN source programs. This includes
techniques that enable the programmer
to optimize compilation and execution
speed. Restrictions of the FORTRAN IV
compiler are also given.

Four appendixes provide examples of typ­
ical job decks; EBCDIC and BCDIC card codes
for valid FORTRAN characters; linkage con­
ventions for assembler language subpro­
grams; and a list of diagnostic messages.

Specifications contained herein are subject to change from time to time.
Any such change will be reported in subsequent revisions or Technical
Newsletters.

copies of this and other IBM publications can be obtained through IBM
Branch Offices.

A form is provided at the back of this publication for reader's
comments. If the form has been removed, comments may be addressed to
IBM Corporation, Programming Publications, 1271 Avenue of the Americas,
New York, N. Y •• 10020

© 1967 by International Business Machines corporation

------------_._---------

/-,

',~

•

•

~ .. , '. 'C'"

•

•

(

•

•

INTRODUCTION • • • • • • • 5
Supervisor. • • • • • • • • • • • 6
Job Control Processor • 6
Linkage Editor. • • 6
Utility Programs. • • • • • • • • •• 6
FORTRAN IV compiler • 6
Assembler Program • • • • • • • • 6
Programming system Operation. • 7

JOB DEFINITION ,. • • • • • • • • • • 8
8 Job Steps • • • • •• <. .

Compilation Job Steps. • • •• 8
Multiple Phase Execution • • • • •

Types of Jobs • • • • • •
8
9

Job Definition statements •
Job Definition Examples • • •
Other Job control Statements.

DATA SETS. •

Using System Data Sets •

9
• 10

• • 11

• 13

•• 13

Using Private Data Sets. • • 14
Unit Record Data Sets • 14
Tape Data Sets. • • • •• _... 14

Tape Labels. • . . • 15
creating Tape Data Sets. • • • 15
Using Existing Tape Data Sets. • • 16

Direct Access Data Sets • • • • • • • 16
Disk Labels. • • • • • • • •• 17
Organization of Direct Access

Data sets •••••••••••• 17
Creating Direct Access Data Sets • 17
Creating a Member of a
Directoried Data Set. • 18

Using Existing Direct Access
Data Sets •••••••••••• 19

Using Existing Members of a
Directoried Data Set. • • • • • • 19

Placing ALLOC and ACCESS Statements
in the Job Deck. • • • • • • • 19

Symbolic Unit Maintenance
Statements ••• ~ • • • • • 19

Data Set Maintenance Statements • • • 20

JOB PROCESSING •
Compilation •
Editing ••

Linkage Editor
Statements. •

Phase Execution •

Control

• • • • 22
• • • • 22

• 22

• 23
• • • 24

Multiphase Programs. • • 24
Allocation of COMMON by the

Linkage Editor. • • • • 25
Loading of Phases. • • • • • • • • 25

complete Phase Overlay. • • • • • • • 25
Calling Statement for complete

Phase Overlay • • • • • • • • • • 25
Linkage Editor Control
Statements •••••••••••• 26

Root Phase overlay. • • • • • 26

CONTENTS

calling Statement for Root Phase
Overlay • • • • • • • • • • • • • 27

Linkage Editor Control
Statements. • • • • • • • •• 27

Linkage Editor Operation. • • 28
Named COMMON and BLOCK DATA
Areas • • •

CONTROL STATEMENTS.
Job Control Statements. •

Comments in Job Control

• • 28

• • • 29
• • 29

• • • 29 Statements. • • •
Character set. • • • •
Statement Formats. • •

• • • • • • 30

ACCESS Statement (Unit Record
Data Sets) •••

ACCESS Statement (Tape Data
Sets) • • • • •

• • • 30

• • • 32

• 34
ACCESS Statement (Direct Access

Data sets). • • • •• • • • • • • 37
ALLOC Statement (Tape Data sets) • 39
ALLOC Statement (Direct Access

Data Sets). • • • • ••••• 42
CATLG Statement. • • • • • • • • • 45
CONDENSE Statement • 46
DELETE Statement • • ••••• 47
EXEC Statement (FORTRAN) • • 48
EXEC Statement (LNKEDT). • • 50
EXEC Statement (Phase) • 51
JOB Statement. • • • • • • •• 52
LABEL Statement. • • 53
LISTIO Statement • • • 55
RENAME Statement • • 56
RESET Statement. • • • 57
UNCATLG Statement. • • • 58

Linkage Editor Control Statements •• 59
Character Set. • • • • • • • • 59
Statement Formats. • • 59
INCLUDE Statement. • • • • • • 60
MODULE Statement • • • • • • • 61
PHASE Statement.. • • • • • • 62

SYSTEM OUTPUT. • • • • • 63
Compiler Output • • • • 63

Source Listing •• • • •• 63
Compiler Error/Warning Messages •• 63
Storage Map. • • • • •• ' ••• 64
Module Deck. • • • • • • • 65

Linkage Editor Output 66
Phase Map. • • • • 66

Phase Output. • • • • • • • 67
Error Code Diagnostic Messages • • 67
Program Interrupt Messages • • • • 68
Sample Storage Printouts. ••• 68
operator Messages. • • • 68

PROGRAMMING CONSIDERATIONS • • 70
Program Optimization. • • • • •• 70

Initialization • • • • • • • •• 70
Arithmetic Statements. • • • 70
IF Statement • • • • • • 70
DO Loop Considerations • • 71

READ/WRITE statements. • • • • • • 71
Boundary Alignment of Variables

in COMMON Blocks and
EQUIVALENCE Groups. • •

FUNCTION subprograms •
References to FUNCTION

subprograms • • • • •
Use of DUMP and PDUMP.
Block Length • • •

compiler Restrictions

• 72
• 72

• 73
• 73
• 74
• 74

APPENDIX A: EXAMPLES OF JOB DECKS • 75

APPENDIX B: EBCDIC AND BCDIC CARD
CODES • • • • 82

APPENDIX C: ASSEMBLER LANGUAGE
SUBPROGRAMS • • • • • •

subroutine References •
Argument List. • •
Save Area. • • • •
Calling Sequence •

Coding the Assembler Language
Subprog~am • • • • • • • • •

Coding a Lowest Level Assembler
Language Subprogram •

Sharing Data in COMMON • • • • •

ILLUSTRATIONS

FIGURES

Figure 1. Programming System

• 83
• 83
• 83
• 83
• 84

• 84

• 84
• 84

Structure • • • • • • • • • • • • • •• 5
Figure 2. Root Phase Overlay
Structure • • • • • . • • • • 26

Figure 3. order of Phases •• • . • 28
Figure 4. Source Listing. • • • • • 63
Figure 5. Source Listing with Errors •• 64
Figure 6. Compiler Storage Map. • 65
Figure 7. object Module Deck
Structure • • • • • • • • •

Figure 8. Phase Map ••••••
Figure 9. Program Interrupt Message •
Figure 10. Sample Storage Printouts •
Figure 11. Sample of Compile Only

• 66
67

• 68
• 69

(One Compilation) • • • • • • • • • • • 75

TABLES

Table 1. Job Control Statements • .• • • 11
Table 2. Data Set Reference Numbers

and Symbolic Unit Names • • • • •
Table 3. Compiler Restrictions. •
Table 4. Linkage Registers. • • • •
Table 5. Dimension and Subscript

Format.

• 13
• 74

• • 84

• • 87

Higher Level Assembly Language
Subprogram. • • • • • • • • '. • • 85

In-Line Argument List. . • • • • • 87
Getting Arguments from the Argument
List • • • • • • • • • • • • • • • • 87

APPENDIX 0: SYSTEM DIAGNOSTIC, MESSAGES • 89

Supervisor Messages. • • 89

Job Control Messages • 90

compiler Messages •• • 94

Linkage Editor Messages. • 97
Warning Messages, Severity Level

4 • • • • • • • • '. • • 98
Severe Error Messages, severity
Level 12. • • • • • • • • • • • • 98

Termination Messages, severity
Level 16. • • • • •• 100

Text Messages ••••••••••• 101

Phase Execution Diagnostic Messages ••• 101
Execution Error Messages • • .101
Program Interrupt Messages •• 106
Operator Messages. • • • • . .106

Figure 12. Sample of compile Only
(Three Compilations). • . . • • • • 76

Figure 13. Sample of Edit Only. • • 77
Figure 14. Sample of Compile and Edit • 78
Figure 15. Sample Of Execute Only • • • 79
Figure 16. Sample of Edit and Execute • 80
Figure 17. sample of Compile, Edit,

and Execute . • • . • • • • • • • 81
Figure 18. Save Area. • • • • • • • 83
Figure 19. Lowest Level Assembler

Subprogram. • • • • • • • • • • • • 85
Figure 20. Higher Level Assembler
Subprogram. • • • • • • • 86

Figure 21. In-Line Argument List. • 87

(~\

~I

11

•

(

•

(

The IBM System/360 Model 44 Programming
System provides a means for compiling and
executing programs written in the FORTRAN
IV language. Under control of the program­
ming system, a set of FORTRAN IV source
statements is translated to form a module.
In order to be executed, the module in turn
must be processed to form a EQase. The
reasons for this will become clear later.
For now it is sufficient to note that the
course of the FORTRAN program through the
programming system is from source state­
ments to module to phase.

Job Control
Processor

Not directly involved in
FORTRAN IV processing

Model 44
Programming

System

System
Support
Programs

Linkage
Editor

Figure 1. Programming System Structure

INTRODUCTION

The Model 44 Programming System itself
is essentially a collection of programs,
some interrelated, others independent. The
related programs include a supervisor, a
set of system support programs, and two
language processors. There are several
independent or stand-alone programs. Not
all of these component programs are
involved in compiling and executing a FOR­
TRAN program. Figure 1 shows the structure
of the programming system and indicates
those components that are of immediate
interest to the FORTRAN programmer.

Supervisor

FORTRAN IV
Compiler

Language
Processors

Introduction 5

SUPERVISOR

Tbe supervisor is the system control
program. To say that a program operates
under control of the programming system is
to say that it operates under control of
the supervisor. Accordingly, the stand­
alone programs" although part of tbe
programming system, do not operate under
system control.

The main function of the supervisor is
to provide the orderly and efficient flow
of jobs through the programming system. (A
job is some specified unit of work, such as
the processing of a FORTRAN program.) The
supervisor loads into the computer the
phases that are to he executed. During
execution of the program, control usually
alternates between the supervisor and the
processing program" as the supervisor, for
example, handles all requests for
input/output operations.

Detailed information about the
supervisor's operation need not concern the
FORTRAN programmer. Anyone interested in
·this material, however., can find it in the
publication IBM system/360 Model 44 Pro­
gramming System: Guide to System Use, Form
C28-6812.

JOB CONTROL PROCESSOR

Among the system support programs is the
job control processor. Its primary func­
tion is the processing of job control
statements" which describe the jobs to be
performed and specify the programmer's
requirements for each job. Job control
statements are written by the programmer,
using the job control language. The use of
job control statements and the rules for
specifying them in job control language are
discussed later.

LINKAGE EDITOR

The linkage editor, another system sup­
port program, processes modules and incor­
porates them into phases. A single module
can be edited to form a single phase or
several modules can be edited or linked
together . to form one executable phase.
Moreover, a module to be processed by the
linkage editor may be one that was just
created (during the same job) or one that
was created in a previous job and saved.

The use of the linkage editor to perform
these functions is controlled by the pro-

6

grammer through job control statements. In
addi tion" there are several linkage editor
control statements. Information on their
use is given later.

UTILITY PROGRAMS

The remaining system support programs
are the utility programs. They are used
primarily for initializing and maintaining
external storage devices and for transmit­
ting data between external storage devices.
More information about external storage is
given later. Since the utility programs
are not directly involved in compiling and
executing a FORTRAN program, they are not
described in this publication. Details on
their function and-use can be found in IBM
System/360 Model 44 Programming System:
Guide to system Use, Form C28-6812.

FORTRAN IV COMPILER

The FORTRAN IV compiler is the system
component that translates FORTRAN source
statements and produces a module. As the
statements are compiled, they are checked
for errors by the compiler, which issues a
diagnostic message for each error discov­
ered. All of this is discussed more com­
pletely later.

ASSEMBLER PROGRAM

The other language processor is the
assembler program" which, like the FORTRAN
IV compiler, translates source statements
to produce a module. Source statements
processed by the assembler program, howev­
er, are written in assembler language. The
assembler program, therefore, is parallel
in function to the FORTRAN IV compiler and
does not directly concern the FORTRAN pro­
grammer.

As will be shown later, it is possible"
under control of the programming system, to
combine modules produced by the FORTRAN IV
compiler with modules produced by the
assembler pr9gram to form one executable
phase. In this case, certain conventions
must be followed when the assembler lan­
guage source programs are written. These
conventions are explained in Appendix C.
For those who are interested, the assembler
language is described in the publication
IBM System/360 Model 44 Programming system:
Assembler Language, Form C28-6811, while
the use of the assembler program is

.~.
I \

'~

..

()

(

•

(

explained in IBM System/360 Model 44 Pro­
gramming System: Guide to System Use, Form
C28-6812.

PROGRAMMING SYSTEM OPERATION

The Model 44 Programming System is dis­
tributed to an installation as a deck of
cards. Before it can be used. the system
must be constructed. System construction
is a process whereby the programming system
is written onto an IBM 2315 Disk cartridge,
which is mounted on a single disk storage
drive within the Model 44 processing unit.
The disk cartridge containing the system is
called the system residence volume or sys­
tem residence disk. Once the system has
been constructed, it can be tailored to
meet the needs of the installation via a
process known as system assembly.

The programming system is put into oper­
ation as a result of an operator-initiated
procedure known as IPL (initial program
load). At this time, the supervisor is
loaded from the system residence disk into
the main storage of the computer, where it
remains for as long as the programming
system is in operation •

The supervisor then loads the job con­
trol processor, which reads and interprets
job control statements. One type of job
control statement (the EXEC statement) is
used to request the execution of a specific
program. When an EXEC statement is encoun­
tered, the job control processor relays the
name of the program to be executed to the
supervisor and returns control to it. The
supervisor then loads the requested pro­
gram. overlaying the job control processor.

When the program finishes execution,
control is returned to the supervisor,
which again loads the job control pro­
cessor, this time overlaying the program
just executed. The job control processor
continues reading and interpreting job con­
trol statements until another EXEC state­
ment is encountered (in this case the above
procedure is repeated) or until a STOP
statement is encountered. The STOP state­
ment terminates the operation of the pro­
gramming system. Before the system can be
used again, the operator must put it back
into operation via either the IPL procedure
or a restart procedure.

Introduction 7

JOB DEFINITION

A job is a specified unit of work to be
performed under control of the programming
system. As was pointed out earlier, a
typical job might be the processing of a
FO~TRAN program -- compiling source state­
ments., edi ting the module thus produced to
form a phase. and then executing the phase.
Or a job might be the processing of a
combined FORTRAN-assembler language source
program -- compiling FORTRAN source state­
ments. assembling the assembler language
statements, editing the modules to produce
a phase, and then executing the phase. Job
definition -- the process of specifying the
work to be done during a single job -­
allows the programmer much flexibility. A
job can include as many or as few job steps
as the programmer desires.

JOB STEPS

A job step is exactly what the name
implies -- one step in the processing of a
job. Thus. in the first job mentioned
above. one step is the compilation of
source statements: another is the editing
of a module: a third is the execution of a
phase. The second job mentioned involves
an additional job step: assembling source
language statements. Each job step is
associated with the execution of a program.
A compilation requires the execution of the
FORTRAN IV compiler. Similarly. an assem­
bly implies the execution of the assembler
program: an editing. the execution of the
linkage editor.. Finally, the execution of
a phase is the execution of the problem
program itself.

In contrast to job definition, the defi­
nition of a job step is fixed. Each job
step involves the execution of a program.
whether it be a program that is part of the
Model 44 Programming system or a program
that is written by the user.

compilation Job Steps

The compilation of a FORTRAN program may
necessitate more than one job step (more
than one execution of the FORTRAN IV
compiler). In many cases. a FORTRAN pro­
gram actually consists of a main program
and one or more subprograms, such as FUNC­
TION subprograms and SUBROUTINE subprograms
written by the FORTRAN programmer. To

8

compile such a program, a separate job step
must be specified for the main program and
for each of the subprograms. The FORTRAN
IV compiler is exe.cuted several times in
succession, once for the main program and
once for each subprogram. Each execution
of the compiler produces a module. The
separate modules can then be combined into
one phase by a single job step the
execution of the linkage editor.

For a FORTRAN program that consists of a
main program and two subprograms. compila­
tion and execution requires five steps:
compile (main program)., compile (first
subprogram). compile (second subprogram),
edit (three modules), and execute (phase).
compilation and execution in three job
steps -- compile, edit, and execute is
applicable only when the FORTRAN source
program is a single main program.

Multiple Phase Execution

The execution of a FORTRAN program has
thus far been spoken of as the execution of
a phase. It is possible, however, to
organize a FORTRAN program so that it is
executed as two or more phases. Such a
program is called a multiphase program.

By definition. a phase is that portion
of a program that is loaded into the
computer by a single operation of the
supervisor. (As was mentioned earlier, it
is the programming system supervisor that
loads phases for execution.) A FORTRAN
program can be executed as a single phase
as long as there is an area of main storage
available to accommodate it. On the other
hand, a program that is too large to be
executed as a single phase must be struc­
tured as a multiphase program.

The number of phases in a FORTRAN pro­
gram has no effect, however, on the number
of job steps required to process that
program. As will be seen. the linkage
editor can produce one or more phases in a
single job step. Similarly, both single­
phase and multiphase programs require only
one execution job step. Phase execution is
the execution of all the phases that make
up one FORTRAN program.

Detailed information on structuring
multiphase programs. as well as information
on using the facilities of the programming
system to create multiple phases and exe-

•

(

(

cute them., can be found in a subsequent
chapter, "Job Processing." For now, one
need only be aware that the facility for
creating and executing multiphase programs
exists,.

TYPES OF JOBS

The typical job falls into one of sever­
al categories. A brief description of
these follows: a more complete discussion
appears later" in the chapter "Job Process­
ing."

Compile Only: This type of job involves
only the execution of the FORTRAN IV com­
piler. It is useful when checking for
errors in FORTRAN source statements. A
compile-only job is also used to produce a
module that is to be further processed in a
subsequent job.

A compile-only job can consist of one
job step or several successive compilation
job steps.

Edit Only: This type of job involves only
the execution of the linkage editor. It is
used primarily to combine modules produced
in previous compile-only jobs and to check
that all cross-references between modules
have been resolved. The programmer can
specify that all modules be combined to
form one phase: or he can specify that some
modules form one phase and that others form
one or more other phases. The phase output
produced as the result of an edit-only job
can be retained eor execution in a subse­
quent job.

Compile and Edit: This type of job com­
bines the functions of the compile-only and
the edit-only jobs. It calls for the
execution of both the FORTRAN IV compiler
and the linkage editor. The job can
include one or more compilations, resulting
in one or more modules. The programmer can
specify that the linkage editor process any
or all of the modules just produced: in
addition, he can specify that one or more
previously produced modules be included in
the linkage editor processing.

Execute only: This type of job involves
the execution of a phase (or multiple
phases) produced in a previous job. Once a
FORTRAN program has been compiled and edit­
ed successfully, it can be retained as one
or more phases and executed whenever need­
ed. This eliminates the need for re­
compiling and re-editing every time a
FORTRAN program is to be executed.

Edit and Execute: This type of job com­
bines the functions of the edit-only and

the execute-only jobs. It calls for the
execution of both the linkage editor and
the resulting phase(s).

Compile, Edit, and Execute: This type of
job combines the functions of the compile­
and-edit and the execute-only jobs. It
calls for the execution of the FORTRAN IV
compiler, the linkage editor, and the
problem program: that is, the FORTRAN pro­
gram is to be completely processed.

When considering the definition of his
job, the programmer should be aware of the
following: if a job step is canceled during
execution, the entire job is terminated:
any remaining job steps are skipped. Thus,
in a compile-edit-and-execute job, a fail­
ure in compilation precludes the editing of
the module(s) and phase execution. Simi­
larly, a failure in editing precludes phase
execution.

For this reason, a job usually should
(but need not) consist of related job steps
only~ For example, if two independent
single-phase executions are included in one
job, the failure of the first phase execu­
tion precludes the execution of the second
phase. Defining each phase execution as a
separate job would prevent this from hap­
pening. If successful execution of both
phases can be guaranteed before the job is
run, however, the programmer may prefer to
include both executions in a single job.

JOB DEFINITION STATEMENTS

Once the programmer has decided what
work is to be done within his job and how
many job steps are required to perform the
job, he can then define his job by writing
job control statements. Since these state­
ments are usually punched in cards, the set
of job control statements is referred to as
a job deck. In addition to job control
statements, the job deck can include input
data for a program that is executed during
a job step. For example, input data for
the FORTRAN IV compiler the FORTRAN
source statements to be compiled -- can be
placed in the job deck.

The inclusion of input data in the job
deck depends upon the way the installation
has assigned input/output devices. Job
control statements are read from the unit
named SYSRDR (system reader), which can be
either a card reader or a magnetic tape
unit. Input to the processing programs is
read from the unit named SYSIPT (system
input), which also can be either a card
reader or a magnetic tape unit. The
installation has the option of assigning
either two separate devices for these units

Job Definition 9

(one device for SYSRDR., a second device for
SYSIPT) or one device to serve as both
SYSRDR and SYSIPT. If two devices have
been assigned, the job deck must consist of
only job control statements; input data
must be kept separate. If only one device
has been assigned, input data must be
included within the job deck.

There are four job control statements
that can be used for job definition: the
JOB statement, the EXEC statement, the
end-of-job (/&) statement" and the end-of­
data (/*) statement. The discussion of
these job control statements in this
chapter is limited to the function and use
of each statement. The rules for writing
each statement are given in a subsequent
chapter " "Control Statements. It

The JOB statement defines the start of a
job. One JOB statement is required for
every jOb; it must be the first statement
in the job deck. If the programmer wishes
to name his job, he may specify this name
in the JOB statement. Also, any job
accounting information required by the
programmer's installation can be placed in
this statement,.

The EXEC statement requests the execu­
tion of a program. Therefore, one EXEC
statement is required for each job step
within a job. The EXEC statement indicates
the program that is to be executed (for
example, the FORTRAN IV compiler, the link­
age editor). As in the JOB statement, the
programmer may specify a name, in this
case, for the job step, and also any
accounting information required by the
installation. As soon as the EXEC state­
ment has been processed, the program indi­
cated by the statement begins execution.

The end-of-job statement, also referred
to as the /& -- slash ampersand -- state­
ment, defines the end of a job. A /&
statement must appear as the last statement
in the job deck.

The end-of-data statement, also referred
to as the /* -- slash asterisk -- state­
ment, defines the end of a program's input
data. When the data is included within the
job deck (that is, SYSIPT and SYSRDR are
the same device), it is placed immediately
following the EXEC statement for the pro­
gram that requires it. The /* statement
immediately follows the input data. For
example, FORTRAN source statements would be
placed immediately after the EXEC statement
for the FORTRAN IV compiler; a /* st·atement
would follow the last FORTRAN source state­
ment.

When input data is kept separate (that
is, SYSIPT and SYSRDR are separate
devices), the /* statement immediately fol­
lows each set of input data on SYSIPT. For
example, if a job consists of two compila-

10

tion job steps, an editing job step, and an
execution job step, SYSIPT would contain
the source statements for the first compi­
lation followed by a /* statement, the
source statements fOr the second compila­
tion followed by a /* statement, any input
data for the linkage editor followed by a
/* statement" and perhaps some input data
for the problem program followed by a /*
statement.

A /* statement must always be used in an
editing job step whether or not there is
any input data for the linkage editor.
When there is input data, the /* statement
immediately follows the input data, whether
it is in the job deck or on a separate
SYSIPT. When there is no input data, the
/* statement either immediately follows the
EXEC statement for the linkage editor or
appears in the appropriate place on a
separate SYSIPT.

JOB DEFINITION EXAMPLES

The following are examples of "job
decks" for the various types of jobs.
Their purpose is to show the order of job
definition statements within a job. No
attempt is made to show the contents of
each statement. In addition, the examples
are limited to only the job definition
statements and input data; no other job
control statements are shown. (Examples of
complete job decks, indicating the contents
of all statements, are in Appendix A.)

Two compile-only jobs are shown below: a
single compilation and a multiple compila­
tion. For all other jobs, the reader can
assume that only one set of source state­
ments, one module, and/o~ one phase is
involved. Input data is shown only for the
sake of example; it is not always required
in the job deck.

compile only (one compilation):

JOB statement
EXEC statement (FORTRAN IV compiler)
Source language statements
/* statement
/& statement

Compile only (three compilations):

JOB statement
EXEC statement (FORTRAN IV compiler)
Source language statements
/* statement
EXEC statement (FORTRAN IV compiler)
Source language statements
/* statement
EXEC statement (FORTRAN IV compiler)
Source language statements
/* statement
/& statement

(

(

c

Edit only:

JOB statement
EXEC statement (linkage editor>
Module to be edited
/* statement
/& statement

Compile and edit:

JOB statement
EXEC statement (FORTRAN IV compiler)
Source language statements
/* statement
EXEC statement (linkage editor>
/* statement
/& statement

Execute only:

JOB statement
EXEC statement (phase)
Data used by problem program
/* statement
/& statement

Edit and execute:

JOB statement
EXEC statement (linkage editor)
Module to be edited
/* statement
EXEC statement1.
Data used by problem program
/* statement
/& statement

Compile., edit, and execute:

JOB statement
EXEC statement (FORTRAN IV compiler)
Source language statements
/* statement
EXEC statement (linkage editor)
/* statement
EXEC statement1.
Data used by problem program
/* statement
/& statement

OTHER JOB CONTROL STATEMENTS

The four job definition statements form
the framework of the job deck. There are a
number of other job control statements in
the job control language. Not all of them
must appear in the job deck; in fact, some
FORTRAN programs can be processed without
using any of these additional statements.
The job control statements are grouped by
category and summarized briefly in Table 1.

1.In this case, the program to be executed
need not be indicated; the system will
assume that the phase just produced by the
linkage editor is to be executed.

Table 1. Job Control statements
r------------T----------------------------,
I t I
I STATEMENT I FUNCTION I
~------------~----------------------------~
I I
I I
I JOB DEFINITION I
~------------T----------------------------~
I I I
1// JOB I Defines the start of a job. I
1// EXEC IDefines the start of a jobl
1 1 step execution and indi-I
I I cates the program to bel
I I executed. I
1/& I Indicates the end of a job. I
1/* IIndicates the end of input I
I I data for a processing pro-I
\ 1 gram. I
~------------~----------------------------~
I I
I I
I SYMBOLIC UNIT ASSIGNMENT I
~------------T----------------------------~

I
// ALLOC I Allocates space for a new

I data set.
// LABEL IDefines the characteristics

I of a data set.
// ACCESS I Permits access to an exist­

I ing data set.
// RESET IRestores unit assignments to

I their status at the start
I of the job.

// LISTIO ILists data set and device
I assignments.

~-----------~----------------------------~
I I
I I
I DATA SET MAINTENANCE I
~------------T----------------------------~
I I
1// DELETE Deletes a data set from al
I volume or a member from al
I directoried data set. I
\// CONDENSE Condenses a directoried datal
I set. I
\// RENAME Renames a data set or al
1 member of a directoriedl
I data set. I
1// CATLG Enters a data set name into I
I the catalog. I
1// UNCATLG Removes a data set name from I
\ the catalog. I
~------------~----------------------------~
I I
I I
I MISCELLANEOUS I
~------------T----------------------------~
I I I
1// PAUSE 1 Allows pause for operator I
1 I action. 1
1* {comments> 1 Allows logging of comments I
lion system log. 1
1// REWIND IRewinds a tape; repositions I
I \ a data set on a direct I
I I access volume to itsl
1 I beginning. I
1// UNLOAD I Rewinds and unloads a tape. I L ____________ L ____________________________ J

Job Definition 11

The double slash preceding each state­
ment name identifies the statement as a job
control statement. Most of the statements
are used for data management -- creating,
manipulating, and keeping track of data
sets (externally stored collections of
data, from which data is read and into
which data is written).

12

Information about using the remaining
control statements is given in the chapters
"Data Sets" and "Job Processing." Rules
for writing these statements are in the
chapter "Control Statements."

c

(

(

Almost all FORTRAN programs include
input/output statements calling for data to
be read from or written into data sets on
external storage devices. Each data set is
identified by a data set reference number
within the FORTRAN source statement. When
processing data under control of the Model
44 Programming system, the FORTRAN program­
mer can share system data sets -- data sets
used by the programming system itself -- or
he can use his own data sets, referred to
hereinafter as private data sets.

The data set reference numbers accepta­
ble to the Model 44 FORTRAN IV compiler
range from 0 through 8. Within the Model
44 FORTRAN IV compiler, each data set
reference number corresponds to a symbolic
unit name, which in turn is associated with
a particular data set. The correspondence
between data set reference numbers and
symbolic unit names is shown in Table 2.

Table 2. Data set Reference Numbers and
Symbolic Unit Names

r---,
I 0 - SYSLOG 3 - SYS003 6 - SYSOPT I·
I I
I 1 - SYS001 4 - SYS004 7 - SYSPCH I
I I
I 2 - SYS002 5 - SYSIPT 8 - SYSOOO I L-__ J

The data set reference numbers 0, 1, and
5 through 8 refer to system units, symbolic
units that are required for programming
system operation. Each system unit has a
predefined relationship with a system data
set (that is, each system unit name will
have been already associated with a system
data set by the time the FORTRAN
programmer's job is to be run).

The data set reference numbers 2, 3, and
4 refer to units for which a predefined
relationship (also called a standard unit
assignment) is not required. It is up to
the programmer to determine whether or not
a standard unit assignment for any of these
units exists at his installation.

It is also the programmer" s
responsibility to determine whether the
installation has modified the FORTRAN IV
compiler and changed the relationships
between data set reference numbers and
symbolic unit names. The relationships
shown in Table 2 reflect the FORTRAN IV
compiler distributed as part o~ the Model
44 Programming System.

DATA SETS

USING SYSTEM DATA SETS

To use a system data set, a programmer
need only specify the appropriate data set
reference number in his program. The FOR­
TRAN IV compiler associates the number with
the corresponding system unit. The rela­
tionship between the system units and the
system data sets is predefined by standard
unit assignments.

The system log (data set reference num­
ber 0) is located on the unit named SYSLOG.
This unit is always the console printer­
keyboard used for communication with the
operator.

The system work data set (data set
reference number 1) is located on the unit
named SYS001. The data set contains
intermediate data from any of the program­
ming system components. (Intermediate data
is data that· is stored temporarily on an
external medium by one part of a program to
be read and processed by another part of
that program.) Intermediate data for a
FORTRAN program can be written into and
read from the system work data set.

The system input data set (data set
reference number 5) is located on the unit
named SYSIPT. The data set contains input
to the processing programs, such as FORTRAN
source statements and linkage editor con­
trol statements. Input data for a FORTRAN
program can be placed on SYSIPT along with
any other input data. If SYSIPT is
assigned to the same device as SYSRDR, the
input data should be placed in the job deck
immediately after the EXEC statement that
requests phase execution.

The system output data set (data set
reference number 6) is located on the unit
named SYSOPT. The data set contains system
print output., such as a listing of FORTRAN
source statements. Print output from a
FORTRAN program can be written into the
system output data set.

The system punch data set (data set
reference number 7) is located on the unit
named SYSPCH. The. data set contains all of
the system punch output. Punch output from
a FORTRAN program can be written into the
system punch data set.

The linkage editor input data set (data
set reference number 8) is located on the
unit named SYSOOO. The data set contains
output from the compiler (or the assembler)

Data Sets 13

that is to be used as input to the linkage
editor. For example, a module that is
produced by the compiler and intended for
editing in a subsequent job step is written
on SYSOOO. Later in the job, the linkage
editor reads the module from SYSOOO. The
FORTRAN programmer may use the linkage
editor input data set provided that it is
no longer needed during the job by the
linkage editor ~that is, there is no edit­
ing job step subsequent to the job step in
which the FORTRAN programmer uses SYSOOO).

When using any system data set, the
programmer should be aware of the installa­
tion device assignment for the unit on
which the data set is located. For exam­
ple" SYSIPT can be either a card reader or
a magnetic tape unit. SYSPCH can be either
a card punch or a magnetic tape unit.
SYSOPT can be either a printer or a magnet­
ic tape unit.. SYSOOl can be either a
magnetic tape unit or an area of disk
storage. Also., if SYSOOl is an area of
disk storage, the programmer should know
how large an area the installation has
reserved (or allocated) for SYSOOl and,
thus, determine whether it can accommodate
the work data for his FORTRAN program.

If a programmer can satisfy his data
requirements by using only system data
sets, he need not concern himself with the
details of using private data sets. It is
also unlikely that he will have to use any
of the job control statements intended for
data management. Since the remainder of
this chapter discusses the use and mainten­
ance of private data sets, the programmer
using only system data sets can skip to the
next chapter. '

USING PRIVATE DATA SETS

To use one of his own data sets, a
programmer specifies anyone of the data
set reference numbers 2, 3, or 4 in his
program. As with the system data sets, the
FORTRAN IV compiler associates the number
with a particular symbolic unit. Unless a
standard unit assignment exists for this
unit, the FORTRAN programmer must establish
a relationship between the sYmbolic unit
and his data set by using j0b control
statements.. Even when a standard uni t
assignment is in effect, the programmer can
use job control statements to temporarily
override the assignment and establish a new
relationship..

In addition, the programmer must provide
the system with whatever information it
needs to be able to process the data set.
The nature of the reqUired information
varies according to the type of data set.

14

One way of classifying a data set is
according to the type of storage medium it
occup1es. This places a data set into one
of three categories: unit record data sets.,
tape data sets, and direct access data
sets.

UNIT RECORD DATA SETS

Unit record data sets include data sets
on cards and data sets on the printed page.
Card data sets can be further divided into
input data sets, which contain data to be
read, and output data sets, into which data
is to be punched. Card data sets are
processed either by a card reader (for
input) or a card punch (for output).
Printed data sets are processed by a prin­
ter.

It is unusual for private unit record
data sets to be used since the type of data
they contain can be accommodated by the
system data sets. Furthermore, few instal­
lations will have card readers, card punch­
es" or printers other than those used for
system data sets. However, if the
appropriate devices are available, the pro­
grammer is free to forego using system data
sets.

For each private unit record data set
that he uses, the programmer places an
ACCESS statement in his job deck. In this
statement he specifies the name of the data
set and the symbolic unit name with which
the data set is to be associated. He also
indicates, in either of two ways, the
device containing the data set. He can
indicate a particular device by specifying
the physical address of the device. Or he
can indicate that a certain type of device
is to be used by specifying a device type
code. In this case, the system determines
the particular device to be used and prints
a message indicating its choice.

Details on writing the ACCESS statement
for unit record data sets, including a list
of the permissible device type codes and
their meanings, can be found in the chapter
"Control Statements."

TAPE DATA SETS

A tape data set is a data set ori a reel
of magnetic tape. A tape data set cannot
extend beyond one reel of tape, nor can a
reel of tape contain more than one data
set.

..

(

•

(

Tape data sets fall into two
categories: existing tape data sets and
new tape data sets. An existing tape data
set already contains data and has already
been assigned to a particular tape volume
(reel of tape). The programmer uses an
existing tape data set either to read data
from it or to add data to it.

A new tape data set is one that contains
no data, nor has it been assigned to a tape
volume. A new tape data set must be
created by the programmer before data can
be written into it. The programmer uses a
new tape data set whenever he is writing an
entirely new collection of data. This
includes intermediate data, which is writ­
ten by one part of a program and read by
another part of that program.

When a data set is created, the program­
mer can request that the data set be placed
into the system catalog. This means that
the system will keep track of the data set
and its location (the tape volume to which
it is assigned). A data set in the system
catalog is referred to as a cataloged data
set.

Tape Labels

Each installation has the option of
using tape labels to facilitate the use of
tape data sets. Tape labels include a
volume label, which identifies a particular
reel of tape, and two data set labels,
which provide information about the data
set on the tape.

A volume label is written on the tape
when the tape volume is initialized.
(Volumes are initialized by a system utili­
ty program and the process usually is the
responsibility of the installation. The
system utility programs are discussed in
the publication IBM System/360 Model 44
Rrogramminq System: Guide to System Use.,
Form C28-6812.) The volume label contains
a volume serial number, consisting of from
one through six characters, which serves to
identify the tape volume.

The two data set labels are a header
label and a trailer label. Both labels
contain the name of the data set, its
creation date, and its expiration date (the
date the data set may be deleted). The
header label may be written when the volume
is initialized. Otherwise, it is written
just before any data is written into the
data set on the volume. The trailer label
is written at the end of the data set.

A tape volume is considered labeled if
the installation uses tape labels and if

the tape has been initialized (that is, a
volume label has been written on it). If
the tape volume contains data that is to be
read., it must also contain data set labels
in order to be considered labeled.

Creatinq Tape Data sets

The programmer must create any new tape
data set that he wants to use. That is, he
must allocate a tape volume to contain the
data set -- either a particular tape volume
or, as is more commonly the case., any fresh
tape volume. A fresh tape volume is one
that either contains no data set or con­
tains an expired data set.

To create a tape data set., the program­
mer places an ALLOC statement in his job
deck.. In this statement, he specifies the
name of the data set, the symbolic unit
name with which the data set is to be
associated, and a volume designation.

The volume designation identifies the
device to be used, either through a device
address or through a device type code. It
may also include volume options, which vary
according to the type of tape being used
(that is, 7-track tape, 9-track tape).
Finally, the volume designation indicates
whether a fresh tape volume or a particular
tape volume is to be used.

A fresh volume is requested by speci­
fying the word FRESH in the volume designa­
tion. A particular tape volume is request­
ed by specifying a volume identification
(also referred to as the volid).. If the
tape is labeled, the volid is the volume
serial number in the tape's volume label.
If the tape is not labeled, the volid
reflects whatever external identification
is used by the installation.

The programmer can request that the data
set be cataloged by specifying the CATLG
parameter in the ALLOC statement. This
causes the name of the data set, and an
indication of its location, to be entered
into the system catalog.

Details on writing the ALLOC statement
for tape data sets, including lists of the
permissible device type codes and volume
options and their meanings, can be found in
the chapter "Control Statements."

The system determines the device that is
to be used, either the particular tape
drive whose device address was specified or
an available tape drive of the type speci­
fied. A message is printed instructing the
operator to mount a tape volume on that
unit, either a fresh tape volume or a tape

Data sets 15

volume with the specified volid. As soon
as the tape volume is mounted, the operator
gives a signal for the system to proceed.

If the tape volume is unlabeled, no
further checking is done. If the tape
volume is labeled, however, the system
checks to see that it meets the
specifications -- that is, whether the
specified volid matches the volume serial
number in the volume label or whether the
volume is a fresh one <contains no header
label or an unexpired label}. If the tape
volume does not meet the specifications, a
message is printed, informing the operator
of the discrepancy. The operator can then
choose between continuing with the same
tape volume or mounting another tape vol­
ume. If he mounts another volume, the
checking procedure is repeated until an
appropriate tape is found.

If the tape volume is labeled, the
programmer must also inclUde a LABEL state­
ment immediately after the ALLOC statement
in his job deck. In this statement, he
must specify the expiration date of the
data set unless the current date is to be
used as the expiration date. The LABEL
statement causes data set labels to be
written (or their contents to be changed)
when the first WRITE instruction is issued
for that data set.

Details on writing the LABEL statement
can be found in the chapter "Control state­
ments."

Using Existing Tape Data Sets

To use an existing tape data set, the
programmer places an ACCESS statement in
his job deck. In this statement he speci­
fies the name of the data set, the symbolic
unit name with which the data set is to be
associated, and a volume designation. (The
volume designation is not required for a
cataloged data set because the system
already has a record of this information.)

The volume designation identifies the
device to be used, either through a device
address o'r through a device type code. It
may also include volume options, which vary
according to the type of tape being used
(that is, 7-track tape, 9-track tape).
Finally, the volume designation specifies
the volume identification (volid) of the
tape containing the data set. The volid is
required only if the tape is labeled; it
mayor may not be used for unlabeled tapes.

For a labeled tape, the volid is the
volume serial number in the tape's volume
label. For an unlabeled tape, the volid is

16

whatever external identification is used by
the installation.

If the programmer is adding data to an
existing data set (rather than reading from
it), he must also specify an EXT parameter
in the ACCESS statement. This causes the
tape volume to be positioned at the end of
the existing data set.

Details on writing the ACCESS statement
for tape data sets., incl uding lists of the
permissible device type codes and volume
options and their meanings, can be found in
the chapter "Control Statements."

The system determines the device that is
to be used, either the particular tape
drive whose device address was specified or
an available tape drive of the type speci­
fied. A message is printed instructing the
operator to mount the tape with the speci­
fied volid on that unit. If no volid was
specified in the ACCESS statement
(permitted for unlabeled tapes only), the
message simply tells the operator to mount
a tape volume. It is up to the programmer
to make sure that the operator knows which
volume is to be mounted.

As soon as the tape volume is mounted,
the operator gives a Signal for the system
to proceed. If the tape volume is unla­
beled, no further checking is done. If the
tape volume is labeled, however, the system
checks to see whether the specified volid
matches the volume serial number in the
volume label. If it does not match, a
message is printed informing the operator
of the discrepancy. The operator can then
choose between continuing with the same
tape volume or mounting another tape vol­
ume. If he mounts another volume, the
checking procedure is repeated until an
appropriate tape volume is found.

If the tape volume is labeled, the data
set labels are checked when the first READ
statement is issued for that data set.
Checking a data set label includes compar­
ing the data set name in the label with
that specified in the ACCESS statement for
the data set.

DIRECT ACCESS DATA SETS

A direct access data set resides on a
disk volume, that is, a disk cartridge ora
disk pack. A direct access data set may
not extend beyond one disk volume; however,
several direct access data sets may reside
on a single volume. Each data set must
reside on contiguous tracks and cylinders.
The space on a volume occupied by a parti­
cular data set is called the extent of that
data set. ------

•

<.

c

(

Direct access data sets fall into two
categories: existing direct access data
sets and new direct access data sets. An
existing direct access data set has already
been assigned to a particular area of disk
storage (its extent has already been
defined). It mayor may not contain any
data.

A new direct access data set is one
contains no data, nor has its extent
defined. A new direct access data set
be created by the programmer before
can be written into it.

Disk Labels

that
been
must
data

All direct access volumes must be
labeled. Disk labels include a volume
label" which identif ies a particular disk
volume, and a volume table of contents
(VTOC), which keeps track of the data sets
on that volume. The VTOC is essentially a
collection of labels, the first of which
defines the VTOC. The VTOC also includes
one label for each data set on the volume:
each label contains such information as the
data set name and the location of the data
set on the volume. Finally, the VTOC
contains one or more labels that manage
space on the volume by keeping track of the
extents of available space.

Disk labels are written on a direct
access volume when the volume is initial­
ized. Volumes are initialized by a system
utility program and the process is usually
the responsibility of the installation.
(The system utility programs are discussed
in the publication IBM System/360 Model 44
Programming System: Guide to system Use,
Form C28-6812.)

Organization of Direct Access Data Sets

The programmer can organize a direct
access data set in either of two ways. The
first of these, called seglliilltial, is the
familiar structure in which records are
placed in sequence. In the second organi­
zation, called directoried, each data set
is organized into two parts, a directory
and members.

A member of a directoried data set has
the characteristics of a sequential data
set: for example" it has a name,. it is
processed sequentially. and it can be asso­
ciated with a symbolic unit name. However,
a member is not a data set, but only part
of one. Also, a member can have more than
one name.

The directory keeps track of each mem­
ber" its location in the data set, and its
length. The directory contains at least
one entry for each member. There are
multiple entries for members with more than
one name (one entry for each name). The
system uses the directory to locate
individual members when they are required.

Creating Direct Access Data Sets

The programmer must create any new
direct access data sets that he wants to
use. That is, he must allocate all or part
of a disk volume for the data set. The
programmer can request that space for the
data set be allocated on a fresh disk
volume (one that contains no ,data sets).
Or he can request that space be allocated
on a particular disk volume, either the
volume having a specific volume serial
number or the volume that already contains
a'specific data set whose location is known
to the system. (The location of a data set
is known to the system if it is one of the
system data sets, if it is a cataloged data
set" or if it is a data set for which an
ALLOC or ACCESS statement was previously
processed in the job.)

To create a direct access data set, the
programmer places an ALLOC statement in his
job deck. In this statement, he specifies
the name of the data set and either of two
types of volume designation.

The first type of volume designation is
used when a programmer wants space allocat­
ed either on a fresh volume or on a
particular volume identified by its volume
serial number. It identifies the device to
be used, either through a device address or
through a device type code. In addition"
it indicates the type of volume to be used.
A particular volume is requested by speci­
fying a volume identification (volid). The
volid is the volume serial number in the
disk's volume label. A fresh volume is
requested by specifying the word FRESH in
the volume designation.

The second type of volume designation is
used when the programmer wants space allo­
cated on a particular volume that already
holds a specific data set. The programmer
specifies the word SAME in the volume
designation. He then identifies the data
set either by specifying its name or by
specifying the symbolic unit name with
which it is currently associated.

Both types of volume designation allow
the programmer to indicate whether or not
write validity checking is to be performed
for the data set. When write validity

Data Sets 17

checking is performed. the system checks
each block of data as it is written to see
that it has been written correctly. Stand­
ard error recovery procedures are followed
if an error is detected. The write check­
ing procedure requires an additional disk
revolution for each data block that is
written.

The programmer must also indicate in the
ALLoe statement the length of the data set.
That is. he must specify the number of
blocks that are to be allocated for the
data set. The number of blocks is equal to
the number of FORTRAN records in the data
set.

The programmer can request that the data
set be cataloged by specifying the eATLG
parameter in the ALLOe statement. This
causes the name of the data set. along with
an indication of its 'location. to be placed
into the system catalog.

Within a FORTRAN program, either sequen­
tial or direct access input/output state­
ments can be used to transfer data to or
from a direct access data set. If direct
access statements (for example, the DEFINE
FILE statement) have been used for the data
set being created, the programmer must
specify the FMT parameter in the ALLOe
statement. This causes the system to pre­
pare the disk area for direct access
input/output operations.

If a directoried data set is being
created.. the length of the directory must
also be specified in the ALLoe statement.
The length of the directory is equal to the
number of entries that are to be made in
it. allowing one entry for each member
name.

If a symbolic unit name is to be asso­
ciated with the data set. the programmer
can specify this name in the ALLoe state­
ment. A symbolic unit name must be asso­
ciated with a sequential data set before it
can be used. For a directoried data set" a
symbolic unit name is usually associated
with each member of the data set, rather
than with the entire data set.

The programmer must also include a LABEL
statement in his job deck, immediately
after the ALLOe statement. In the LABEL
statement. he must specify the block length
of the data set. The block length is the
number of bytes in each FORTRAN record.
This number cannot exceed 360 unless direct
access input/output operations are to be
performed on the data set. In this case,
the block length specified for the data set
in the LABEL statement should agree with
the record length specified for the data
set in the DEFINE FILE statement within the
FORTRAN program.

18

The programmer can also specify the
expiration date of the data set in the
LABEL statement. The absence of this
specification causes the system to assume
that the current date is to be used, that
is. that the data set is not to be retained
after the date it is created.

Finally. the programmer can indicate
whether or not write validity checking is
to be performed for this data set. The
specification given here can be overridden,
however,. by the write validity checking
option in the ALLoe statement. In other
words. the system acts in accordance with
the specification in the ALLOe statement.
If nothing is specified in the ALLOC state­
ment,. the system acts in accordance with
the specification in the LABEL statement.
If nothing is specified in either state­
ment, no write validity checking is per­
formed.

If the information to be given in the
LABEL statement duplicates that given in
the LABEL statement for another data set"
the programmer need not repeat the informa­
tion. This is true, however, only if the
other data set is one for which an ALLOe or
ACCESS statement was processed previously
in the job. The programmer need only
specify the word SAME in the LABEL state­
ment and then identify the other data set.
He can identify it either by specifying its
name or by specifying the symbclic unit
name with which it is currently associated.

creating a Member of a Directoried Data Set

In addition to creating a directoried
data set in the manner just described, the
programmer must also create each member of
the data set. Only one member can be
created in a single job step. Whatever is
written into the member during that job
step determines the size of the member.
Once the member is created, its size cannot
be changed.

A member is given one or more unique
names when it is created: the names are
unique in that they may not duplicate any
other member names in the data set. The
number of names given to a member cannot be
increased after the member has been creat­
ed, although existing member names can be
replaced by new names (this is exPlained in
a later section, "Data Set Maintenance
Statements") •

A member of a directoried data set will
be created only if there is space for it in
the data set and if there is room in the
directory for the entries required for that
member.

(, ",
,j

(

(

To create a member, the programmer plac­
es an ACCESS statement in his job deck. In
this statement" he specif ied the names to
be given to the member, the name of the
data set to which the member is to belong,
and the symbolic unit name with which the
member is to be associated.

The programmer must also indicate the
location of the directoried data set to
which the member is being added, unless its
location is already known to the system.
The location of the data set is indicated
by a volume designation. The volume desig­
nation can be any of those used in the
ALLOC statement to create a data set, with
one exception. The ACCESS statement cannot
indicate that the directoried data set
resides on a fresh volume.

Finally, the
NEW parameter
indicate that a
ed.

programmer must specify the
in the ACCESS statement to
new member is being creat-

Using Existing Direct Access Data Sets

To use an existing direct access data
set, the programmer places an ACCESS state­
ment in his job deck. In this statement,
he specifies the name of the data set, the
symbolic unit name with which the data set
is to be associated, and either of two
types of volume designation. (The volume
designation is not required for a cataloged
data set because the system already has a
record of this information.)

The first type of volume designation is
used to request a volume through its volume
serial number. It identifies the device to
be used, either through a device address or
through a device type code. It also speci­
fies the volume identification (volid) of
the disk containing the data set.

The second type of volume designation is
used to request the same volume that con­
tains another specific data set. The loca­
tion of this other data set must be known
to the system. The programmer specifies
the word SAME in the volume designation.
He then identifies the other data set,
either by specifying its name or by speci­
fying the symbolic unit name with which it
is currently associated.

Both types of volume designation allow
the programmer to indicate whether or not
write validity checking is to be performed
for the data set.

If the programmer is adding data to a
sequential data set (rather than reading
from it), he must also specify the EXT

parameter in the ACCESS statement. This
causes the disk volume to be positioned
after the last item of data in the existing
data set, rather than at the beginning of
the data set. Adding data to a direct
access data set does not affect the size of
the data set. Additional data is limited
to whatever amount can be contained in the
extent that was defined for the data set at
the time it was created.

Using Existing Members of a Directoried
Data set

A member of a directoried data set, once
it has been created, cannot be enlarged;
however, data within it can be manipulated
freely or replaced. To use an existing
member of a directoried data set, the
programmer places an ACCESS statement in
his job deck. In this statement, he speci­
fies one name of the member, the name of
the directoried data set to which the
member belongs, and the symbolic unit name
with which the member is to be associated.

The programmer must also indicate the
location ot the direc~oried data set to
which the member belongs, unless its loca­
tion is already known to the system. The
location of the directoried data set is
given by a volume designation. This can be
either of the volume designations valid in
the ACCESS statement for using an existing
direct address data set (discussed in the
previous section).

PLACING ALLOC AND ACCESS STATEMENTS IN THE
JOB DECK

The ALLOC and ACCESS statements for data
sets that are to be created or used during
a job should be placed before the EXEC
statement for the job step using the data
sets. In most cases, this will be a phase
execution job step. The programmer can
p~ace all of the ALLOC and ACCESS state­
ments for a job in front of the first EXEC
statement in the job deck. This means that
the assignments made by the statements
remain in effect throughout the entire job
or until changed by a RESET statement
(discussed in the next section, "symbolic
Unit Maintenance Statements").

SYMBOLIC UNIT MAINTENANCE STATEMENTS

Two job control statements, RESET and
LISTIO, are used in conjunction with ALLOC

Data Sets 19

and ACCESS statements that
assignments of system units.

alter the

The RESET statement is used to restore
one or more symbolic units to their stand­
ard assignments. The statement is used
when an assignment has been altered by an
ALLOC or ACCESS statement in a previous job
step. The RESET statement applies only to
those unifs that were given standard
assignments either when the system was
constructed or when the operator performed
an IPL procedure.

One RESET statement can be used to
restore either all units with standard
assignments or just one unit. If more than
one unit is to be restored, but not all, a
separate RESET statement is required for
each. Rules for writing the RESET state­
ment can be found in the chapter "Control
Statements."

Regardless of whether RESET statements
are used, all units are restored to their
standa~a assignments at the end of the job.

The LISTIO statement is used to obtain a
listing of current symbolic unit assign­
ments. The listing, which is produced on
SYSLST and on SYSLOG, includes the name of
the symbolic unit, its current device
address, the volume designation (volid) of
the volume to which it is assigned, and the
name of the data set currently associated
with the symbolic unit.

Three types of listing can be obtained.
The programmer can request a listing for a
single unit by specifying its symbolic unit
name in the LISTIO statement. He can
request a listing of all assignments made
or altered by ALLOC or ACCESS statements
during the current job by specifying the
word PROG in the LISTIO statement. (This
listing does not include units already
restored to their standard assignments as a
result of RESET statements.) Finally, the
programmer can request a listing for all
units that have assignments by omitting any
specification from the LISTIO statement.

Rules for writing the LISTIO statement
can be found in the chapter "Control State­
ments."

DATA SET MAINTENANCE STATEMENTS

There are five job control statements
used for the maintenance of data sets:
CATLG, UNCATLG, DELETE, CONDENSE, and
RENAME. These statements are intended pri­
marily for use with direct access data
sets, although the CATLG and UNCATLG state­
ments can be used for other data sets.

20

Each of the data set maintenance state­
ments is discussed here with respect to its
function and use. Rules for writing these
statements can be found in the chapter
"Control Statements."

The CATLG statement is used to make an
entry for a data set in the system catalog.
A cataloged data set can be referred to by
name only, without any need for stating its
location. catalog entries are retained
until specifically deleted by an UNCATLG
statement or until the data set is deleted.

The name of the data set to be cataloged
may not duplicate the name of a data set
already in the catalog. Catalog entries
can also be made through use of the CATLG
specification in the ALLOC statement that
creates a data set.

The UNCATLG statement is used to delete
a data set entry from the system catalog.
Removal of the catalog entry does not
change the data set itself or the volume
containing it. The data set entry in the
volume table of contents is also unaffect­
ed.

The DELETE statement is used to elimi­
nate a data set or a member of a director­
ied data set. When a member has more than
one entry in the directory (more than one
member name)" the DELETE statement can be
used to remove one or more of the entries.
The member continues to exist as long as it
is represented by at least one entry in the
directory.

When an entire data set is deleted, the
system removes its entry from the volume
table of contents (VTOC), updates one of
the volume'S space management labels to
reflect the removal, and, if applicable,
removes the entry for the data set from the
system catalog.

The data set is not physically altered
at this point. It cannot be referred to,
however, and the system treats the space it
occupies as vacant. The same applies to a
member of a directoried data set when all
its entries have been removed from the
directory.

The space occupied by a deleted data set
can be assigned to a new data set: the
space occupied by a deleted member within a
directoried data set, however, cannot be
reassigned. The CONDENSE job control
statement (described later) can be used to
shift existing members toward the beginning
of a directoried data set so that new
members can be added at the end.

A separate DELETE statement is required
for each data set that is to be deleted.
Any number of the members of one director-

..

c

(

(

ied data set can be deleted with a single
DELETE statement.

Any data set cited in a DELETE statement
must have been referred to in an ALLOC or
ACCESS statement processed previously in
the job.

The CONDENSE statement is used to shift
the contents of a directoried data set in
order to fill space occupied by deleted
members and directory entries. This space
is treated as though it were empty.. Exist­
ing members and directory entries are
shifted toward the beginning of the data
set to fill the space. The total size of
the data set is not changed. Also, there
is no change in the order in which the
remaining members and entries appear.

After the data set has been condensed.,
all available space is at the end of the
data set and at the end of the directory.
New members may be added and new entries
may be made in the directory.

Any data set cited in a CONDENSE state­
ment must have been referred to in an ALLOC
or ACCESS statement processed previously in
the job.

The RENAME statement is used to change
the name of a data set or the name of a
member of a directoried data set. When a
data set is renamed, the name is changed in
the VTOC and, if applicable, in the system
catalog. The name of a member is changed
in the directory of the data set to which
it belongs. Other names of that member, if
any, are not affected.

The new name may not duplicate an exist­
ing name in the system catalog, volume
table of contents, or data set directory.
System data sets should not be renamed.

Any data set cited in a RENAME statement
must have been referred to in an ALLOC or
ACCESS statement processed previously in
the job.

Data Sets 21

JOB PROCESSING

This chapter describes in greater detail
the three types of job steps involved in
processing a FORTRAN program. It describes
the options available to the programmer for
each process and refers to specifications
in job control statements and linkage edi­
tor control statements. Once the reader
has become familiar with the information
presented here, he should be able to write
control statements merely by referring to
the next chapter, "Control Statements."

COMPILATION

Compilation is the execution of the
FORTRAN IV compiler. The programmer
requests compilation by placing in the job
deck an EXEC statement that contains the
program name FORTRAN (the name of the
FORTRAN IV compiler). This is the EXEC
FORTRAN statement.

Input to the compiler is a set of
FORTRAN source statements, constituting
either a main program or a subprogram.
Source statements punched in either card
code, Extended Binary-Coded-Decimal Inter­
change Code (EBCDIC) or Binary-Coded­
Decimal Interchange Code {BCDIC}, are
acceptable. (Appendix B shows the EBCDIC
and BCDIC card codes for each of the 49
characters that are valid in FORTRAN source
statements.)

If any source statements are in the
BCDIC card code" the programmer must speci­
fy BCD as a compiler option in the EXEC
FORTRAN statement. Otherwise, the FORTRAN
IV compiler assumes that all source state­
ments for the compilation are punched in
EBCDIC and" therefore, treats any BCD char­
acters as invalid.

The FORTRAN source statements are read
from SYSIPT. The job deck is read from
SYSRDR. If SYSIPT and SYSRDR are assigned
to the same unit, the FORTRAN source state­
ments should be placed after the EXEC
FORTRAN statement in the job deck.

Output from the FORTRAN IV compiler
includes a source listing, a list of the
source statements exactly as they appeared
in the input deck. The source listing is
produced on SYSOPT. Any errors in the
source statements are indicated in the
source listing and appropriate error messa­
ges are written~ (The format of the source
listing is discussed and illustrated in the

22

chapter "System Output. n) In addition" the
module produced by the compiler is written
on SYSOOO, the linkage editor input unit.

The programmer can override the produc­
tion of any of this output by specifyi~g
compiler options in the EXEC FORTRAN state­
ment. The NOSOURCE option suppresses the
production of a source listing, except for
the indication of errors. The NOLINK
option suppresses the writing of the module
on SYSOOO. The programmer should specify
NOLINK in a compile-only job or whenever
the module is to be excluded from linkage
editor processing during the same job.

If a module is produced on SYSOOO., the
programmer should name this module by spec­
ifying a name for the job step in the EXEC
FORTRAN statement. The module name is the
same as the job step name.

The programmer can request output in two
additional forms, again via options in the
EXEC FORTRAN statement. The compiler will
produce a module deck (the module, written
on SYSPCH) if the programmer specifies DECK
in the EXEC statement. The module deck can
be used in a subsequent job as input to the
linkage editor.

A compiler storage map is written on
SYSOPT if the programmer specifies MAP in
the EXEC statement. This storage map
includes a list of all the variables (both
local and COMMON variables) that were
defined in the source statements just com­
piled. (The contents of the compiler stor­
age map are discussed and illustrated in
the chapter "system output.")

EDITING

Editing is the execution of the linkage
editor. The programmer requests editing by
placing in the job deck an. EXEC statement
that contains the program name LNKEDT (the
name of the. linkage editor). This is the
EXEC LNKEDT statement.

Input to the linkage editor is
linkage editor control statements
or more modules to be edited.
modules include either or both
following:

a set of
and one

These
of the

1. Modules that were compiled previously
in the job and placed at that time on
the linkage editor input unit, SYSOOO.

(

(

2. Modules that were compiled in a pre­
vious job and saved as module decks.
The module decks must be placed on
SYSIPT along with the linkage editor
control statements.

In addition, the linkage editor will
process modules that are in the module
library. The module library is a collec­
tion of frequently used subprograms, such
as the FORTRAN-supplied library subpro­
grams., in the form of modules. The module
library is on the unit named SYSREL.

Many FORTRAN programs contain references
to FORTRAN-supplied library subprograms.
Some references are explicit: for example,
the statement B = SQRT(A) contains an
explicit reference to the square root
library subprogram, which computes, in this
case, the square root of A. Other referen­
ces are implicit: for example. the state­
ment C = D**5 contains an implicit ref­
erence to the exponential library subpro­
gram, which computes, in this case, the
value of D raised to the fifth power

When the linkage editor processes a
module that makes use of a library subpro­
gram, it automatically searches the module
library for the requested subprogram module
and processes it along with the module that
requested it. It is possible to suppress
this automatic linking facility by speci­
fying NOAUTO as an option in the EXEC
LNKEDT statement. In doing so, the pro­
grammer accepts responsibility for ensuring
that all library subprograms required by a
FORTRAN program are included in linkage
editor processing.

Output from the linkage editor is one or
more phases. A phase may be an entire
program or it may be part of a multiphase
program..

A phase produced by the linkage editor
can be executed immediately after it is
produced (that is, in the job step immedi­
ately following the linkage editor job
step). Or it can be executed later, either
in a subsequent job step of the same job or
in a subsequent job. In either of the
latter cases, the programmer must specify
KEEP as an option in the EXEC LNKEDT
statement in order to retain the phase
output. Otherwise, the phase output is
retained only for the duration of one job
step after the linkage editor job step.

In addition to the phase, the linkage
editor produces a phase map on SYSLST. The
contents of the phase map are discussed and
illustrated in the chapter "System output."
The programmer can suppress the production
of a phase map by specifying the NOMAP
option in the EXEC LNKEDT statement.

Linkage Editor Control Statements

Linkage editor control statements direct
the execution of the linkage editor.
Together with any module decks to be proc­
essed, they form the linkage editor input
deck, which is read by the linkage editor
frOm SYSIPT. If SYSIPT and SYSRDR are
assigned to the same unit., the linkage
editor input deck should be placed after
the EXEC LNKEDT statement in the job deck.

There are three linkage editor control
statements that may be used by the FOR'IRAN
programmer: the MODULE statement, the
PHASE statement, and the INCLUDE statement.
The discussion of these statements in this
chapter is limited to the function and use
of each statement. The rules for writing
each statement are given in a subsequent
chapter, "Control Statements."

The MODULE statement is required whenev­
er a module deck is included on SYSIPT in
the linkage editor input deck. One MODULE
statement must precede each module deck:
each MODULE statement must specify a name
for the module deck it precedes. The
MODULE statements and their associated
module decks must appear first in the
linkage editor input deck: no other linkage
editor control statements may precede them.

As soon as a MODULE statement has been
processed, the module deck following it is
copied onto the linkage editor input unit,
SYSOOO. Thereafter, it is treated exactly
as any modules already on that unit (that
is, the modules placed there earlier by the
FORTRAN IV compiler).

The PHASE statement is used to specify a
name for the phase that is to be produced
by the linkage editor and to indicate the
origin of the phase, that is, the first
main storage location that is to be occu­
pied by the phase when it is loaded. For a
single-phase program, the origin is speci­
fied as the letter S, which indicates the
first main storage location available to a
problem program.

The INCLUDE statement identifies a par­
ticular module for inclusion in a phase.
There must be one INCLUDE statement for
each module that is to be included (except
for those subprogram modules in the module
library that will be linked automatically);
all of the INCLUDE statements for a parti­
cular phase must immediately follow the
PHASE statement that names the phase. The
order of the INCLUDE statements indicates
the order in which modules are to be
included in the phase.

Each INCLUDE statement must identify the
module by name. For a module on SYSOOO

Job Processing 23

that wa$ produced by the FORTRAN IV compil­
er earlier in the job., the module name is
the name of the job step -- the step
name -- specified in the EXEC FORTRAN
statement. For a module on SYSOOO that was
copied by the linkage editor from a module
deck on SYSIPT" the module name is the name
specified in the MODULE statement.

The INCLUDE statement must also indicate
the location of the module. If the module
is on SYSOOO, the programmer must specify
the letter L; if the module is in the
module library" he must specify the letter
R. An INCLUDE statement is required for
modules in the module library if the
modules have not been referred to in the
source program or if the automatic linking
facility has been suppressed.

The PHASE and INCLUDE statements can be
omitted from the linkage editor input deck
if all of the following conditions exist:

1. Only one phase is to be produced by
the linkage editor.

2,. All of the modules on SYSOOO, includ­
ing any that are to be copied from
module decks on SYSIPT., are to be
included in the phase.

3,. The modules are to be included in the
phase in the order in which they
appear on SYSOOO.

If the programmer omits the PHASE and
INCLUDE statements, the linkage editor will
generate these statements. The name of the
ph~se will be the name of the first module
included in the phase. The origin of the
phase will be the first main storage loca­
tion available to a problem program
(equivalent to a specification of S).

Note that the programmer must omit both
the PHASE and the INCLUDE statements if he
wishes to use this feature. In other
words, a PHASE statement in the linkage
editor input deck must always be accompan­
ied by a set of INCLUDE statements and vice
versa.

PHASE EXECUTION

Phase execution is the execution of the
problem program, for example, the program
wri tten by the FORTRAN programmer.. If the
program is a multi phase program, phase
execution actually entails the execution of
all the phases in the program.

The phaseCs) to be executed must be in
the phase library. The phase library is a
collection of executable phases from which

24

programs are loaded by the supervisor. A
phase is written in the phase library by
the linkage editor at the time the phase ~s
produced. It is retained in the phase
library if the programmer has so requested
via the KEEP option in the EXEC LNKEDT
statement.

The programmer requests the execution of
a phase by placing in the job deck an EXEC
statement that specifies the name of the
phase. If the phase to be executed was
produced in the immediately preceding job
step, however, its name need not be speci­
fied in the EXEC statement.

The programmer can also request, via the
EXEC statement, that the setting of the
variable precision switch be checked. This
switch, which is set manually by the opera­
tor, indicates the level of precision at
which floating-point operations are per­
formed. Precision may be 8" 10, 12, or 14
bits. In general" the highest precision
provides greatest accuracy and the lowest
precision provides greatest speed.

MULTIPHASE PROGRAMS

A FORTRAN program can be executed as a
single phase as long as there is an area of
main storage available to accommodate it.
This area, known as the problem program
~" must be large enough to contain the
main program, all called subprograms (both
library subprograms and those written by
the user), and an area of common storage
when applicable (whenever COMMON statements
are used anywhere in the source program).
When a program is too large to be executed
as a single phase, it must be structured as
a multiphase program.

A multiphase program may have either of
two structures. The first of these is a
complete phase overlay structure, permitted
for a program of two or more phases. Only
one phase of the program is in the problem
program area at any given time, each phase
completely replacing, or overlaying, the
previous phase.

The other structure available for multi­
phase programs is known as root phase
overlay and is used primarily for programs
of three or more phases. One phase of the
program is designated the root phase and,
as such, remains in the problem program
area throughout the execution of the entire
program. The other phases in the
program -- subordinate phases -- are loaded
into the problem program area as they are
needed. A subordinate phase may overlay
any previously loaded subordinate phase.,
but, under ordinary circumstances, no

"

(

,.

(

(

subordinate phase should overlay the root
phase. One or more subordinate phases can
reside simultaneously in main storage with
the root phase.

In order to choose the overlay structure
best suited for his program, the programmer
should examine the program for subprogram
structures. A subprogram structure is a
series of two or more subprograms, the
first of which is called by the main
program; the second subprogram is called by
the first subprogram, the third is called
by the second, and so on. For example,
every FORTRAN main program contains a call
to the library subprogram IBCOM; the IBCOM
subprogram contains a call to the library
subprogram FIOCS; in turn, FIOCS calls the
library subprogram UNITAB. Thus, it can be
said that every FORTRAN main program uses
the subprogram structure consisting of
IBCOM, FIOCS, and UNITAB. As a second
example, consider the group of subprograms
A, B, C, and D. Subprogram A contains a
call to subprogram B, which, in turn"
contains calls to subprograms C and D. In
this example, two subprogram structures
exist -- the first consisting of the sub­
programs A, B, and C, the other consisting
of the subprograms A, B, and D.

The root phase overlay structure may be
used whenever the problem program area is
large enough to include the entire main
program, the common area (when applicable),
and the largest subprogram or subprogram
structure used by the main program. Other­
wise, the complete overlay structure must
be used.

Allocation of COMMON by the Linkage Editor

For a multiphase program, the linkage
editor allocates a common area equal in
size to the largest common area required by
any phase. The common area is present in
main storage throughout the execution of
the entire program. Parameters may be
passed through the common area from one
phase to another, making possible communi­
cation between phases.

Loading of Phases

When a multiphase program is to be
executed, the first phase is loaded by the
supervisor as a result of job control
processing. The loading of subsequent
phases, however, is controlled by the pro­
grammer. In dOing so, the programmer makes
use of a special library subprogram,
BOAOVLY, provided expressly for multiphase

programs. For each phase that is to be
loaded, the programmer places in his source
program a call to the BOAOVLY subprogram.,
which causes the appropriate phase to be
loaded.

Since the calling statements differ,
depending on the type of overlay structure
being used, they are discussed in detail in
the appropriate section, that is, "Complete
Phase Overlay" or "Root Phase Overlay."

COMPLETE PHASE OVERLAY

The complete phase overlay structure
requires that a FORTRAN main program be
divided into two or more main programs, one
for each phase of the multiphase program.
Once the original main program has been
divided by the programmer, each newly
formed main program, together with the
subprograms and subprogram structures it
uses, is processed to form one phase of the
new program.

For example, consider a FORTRAN main
program that consists of 300 source state­
ments and makes use of eight subprograms,
named A through H. Assume that this main
program can be divided into three parts of
100 statements each, so that all three
parts make use of subprograms A, B, and C,
only part 1 makes use of subprograms D and
E" only part 2 makes use of subprograms F
and G, and only part 3 makes use of
subprogram H. The result is a three-phase
program: the first phase includes part 1,
as the main program, and subprograms A, B,
C, D, and E; the second phase includes part
2, as the main program, and subprograms
A,B,C,F, and G; the third phase includes
part 3, as the main program, and subpro­
grams A,B,C, and H.

calling Statement for Complete Phase
Overlay

To request that a new phase be loaded,
the programmer must place the following
CALL statement in his source program:

CALL LINK (. phasename')

This statement causes the phase whose name
is specified to be loaded into the problem
program area. In addition, control is
given to the newly loaded phase, which then
begins execution.

The phase name specified in the CALL
statement must be the name of the phase as
specified in a linkage editor PHASE state­
ment.

Job Processing 25

Since the CALL LINK statement causes
control to be transferred to a new phase,
it should appear as the last executable
statement in each phase except the last.

The following illustrates the CALL LINK
statement:

CALL LINK (. PHASEC')

This statement results in the loading of
PHASEC by the supervisor and the transfer
of control to PHASEC.

Linkage Editor Control Statements

Linkage editor control statements for a
multiphase program using complete phase
overlay are specified exactly as they would
be for a single-phase program. The linkage
editor input deck differs in that there
~ust be one PHASE statement for each phase
in the-program. Each PHASE statement must
specify a unique phase name; as in the case
of a single-phase program, the origin of
each phase should be specified by the
letter S. A set of INCLUDE statements must
follow each PHASE statement to indicate
which modules are to be included in the
phase.

The first PHASE statement in the linkage
editor input deck identifies the phase that
is to be loaded and executed first. unless
the programmer explicitly specifies the
name of another phase in the EXEC statement
for phase execution. For example, with the
following set of control statements, PHASEA
would be executed first:

// EXEC LNKEDT
PHASE PHASEA,S
INCLUDE MODi,L
INCLUDE MOD2,L
PHASE PHASEB,S
INCLUDE MOD3,L

/*
// EXEC

However" the last statement could have been
written:

// EXEC PHASEB

In this case, PHASEB would be loaded and
executed first.

ROOT PHASE OVERLAY

The root phase overlay structure
requires that the entire FORTRAN main pro­
gram be included in a root phase., together

26

with some of the subprograms it uses. The
remaining subprograms are incorporated into
two or more subordinate phases, so that the
root phase and the largest subordinate
phase can reside in the problem program
area simultaneously.

The programmer can construct subordinate
phases of several levels. A first-level
subordinate phase is one that is loaded as
the result of a call from the root phase;
theor~g~n of such a phase usually is the
first available location following the root
phase.. A second-level subordinate phase is
one that is loaded as the result of a call
from a first-level phase; its origin usual­
ly is the first available location follow­
ing the first-level phase. A third-level
subordinate phase is one that is loaded as
the result of a call from a second-level
phase., and so on. When phases of several
levels are used, the root phase and the
largest subordinate phase structure -- a
series of two or more levels of subordinate
phases -- may not exceed the size of the
problem program area.

Figure 2 gives an example of a root
phase overlay structure in the problem
program area. In this illustration, ROOT
is the root phase; A, B, and Care first­
level subordinate phases; AA and CC are
second-level phases. Two subordinate phase
structures exist. One consists of phases A
and AA; the other is made up of phases C
and CC.

r---,
I I
I I
I ROOT I
I I
I I
r---------T---------------------T---------~
I I I I
I A I B I C I
I I I I
I I I I
r---------~ I I
I I I I
I I I I
I AA I
I I
I I
I I
I ~
I I
I I

I
cc I

I
I ._. __ • __ . ____ J

Figure 2. Root Phase Overlay structure

The programmer is free to structure his
subordinate phases in the way that best
suits the needs of his program.

..

,.

(

(

calling Statement for Root Phase Overlay

To request that a new phase be loaded,
the programmer must place the following
CALL statement in his source program:

CALL LOAD ("phasename")

This statement causes the phase whose name
is specified to be loaded into the problem
program area. However, control returns to
the next statement in the calling phase; it
is not transferred to the newly loaded
phase.

The phase
statement must
spec if ied in
statement.

name specified in the CALL
be the name of the phase as
a linkage editor PHASE

After the requested phase has been load­
ed, the programmer can use any subprogram
within it by means of a CALL statement
addressing that subprogram. For example,
consider a first-level subordinate phase
ALPHA incorporating the subprograms BETA
and GAMMA. The following sequence of
statements in the root phase will cause
phase ALPHA to be loaded and subprogram
GAMMA to be executed:

CALL LOAD (" ALPHA I)

CALL GAMMA (X" Y, Z)

Note that it is permissible to pass argu­
ments (represented here by X, Y, and Z)
from one phase to a subprogram in another
phase. Once the called subprogram has been
executed in the normal fashion" return is
made to the calling phase (in the above
example, from phase ALPHA to the root
phase).

Linkage Editor Control statements

There must be one PHASE statement in the
linkage editor input deck for each phase of
a multiphase program using root phase over­
lay. Each PHASE statement must specify a
un1que phase name. The origin of each
phase is specified as follows:

1. The word ROOT is specified for the
origin of the root phase. This causes
the phase to be loaded at the first
available location in the problem pro­
gram area. The specification ROOT
differs from the specification S in
that it identifies the root phase to
the linkage editor.

2. The character * (asterisk) can be
specified to set the origin of a

subordinate phase at the first loca­
tion following the most recently proc­
essed phase. For example, assume that
the first PHASE statement in the deck
refers to the root phase; accordingly.,
its or1g1n is specified by ROOT.
Assume that the next PHASE statement
refers to a first-level subordinate
phase named ALPHA. The or1g1n of
ALPHA should be specified by * to
cause it to be loaded into the area
immediately following that occupied by
the root phase. If the next PHASE
statement refers to a second-level
subordinate phase named BETA that is
called by phase ALPHA, the or1g1n of
BETA should also be specified by * to
cause it to follow phase ALPHA in
storage.

3. The name of a phase currently in the
phase library (this includes all phas­
es previously created in this job
step) can be specified to set the
origin of the current phase equal to
the origin of the phase whose name is
specified. For example, consider
again the linkage editor input deck
discussed in point 2, above. Assume
that the next PHASE statement (after
the PHASE statement for BETA) refers
to another first-level subordinate
phase named GAMMA. Phase GAMMA should
have the same origin as phase ALPHA,
namely, the first available location
following the root phase. This can be
accomplished by specifying the phase
name ALPHA as the origin in the PHASE
statement for GAMMA.

If phase GAMMA calls a second-level
subordinate phase, named DELTA, the PHASE
statement for DELTA should be the next
PHASE statement in the linkage editor input
deck. Its origin should be specified by *"
which loads DELTA at the first location
following GAMMA. Note that the specifi­
cation BETA,. the name of the second-level
phase called by ALPHA, should not be used.
The origin of BETA follows ALPHA; the
origin of DELTA should follow GAMMA. If
GAMMA is longer than ALPHA, the specifi­
cation BETA would cause DELTA to overlay
part of GAMMA.

If phase GAMMA calls another second­
level phase named ETA, its PHASE statement
should be the next PHASE statement in the
linkage editor input deck. The origin of
ETA can be specified by DELTA, since ETA
and DELTA are both second-level phases
called by GAMMA and should have the same
origin.

From the examples given thus far, it can
be seen that phases should be processed in

Job Processing 27

a given order. The root phase should be
processed first" followed by a first-level
subordinate phase.,' followed by a second­
level phase, if any, and so on. If a
program is to be structured as shown in
Figure 3" the order in which these phases
should be processed and the origin that
should be specified for each is:

Phase Origin
ROOTPH ROOT
A * AA * AM * AAB AM
AB AA
B A
BB * BC BB
C A or B
CC * D A or B or C

r---,
I I
I I
I ROOT PH I
I I
I I
~---------~----T--------T--------T--------~
I I I I I
I A I B I C I D I
I I I I I
I I I I I
I I ~--------~ I
I I I I I
I I I I I
~-------T------~ I CC I I
I I I I I I
I I I I I I
I AA I AB .----T---~ I I
I I I I I I I
I I I I I I I
I I I BB I BCI I I
I I I I I
I I I I I
~---T---~ I I I
I I I I I I
I I I I I
I I I
IAMIAAB I
I I I
I I I
I I I L__ _ _____ J

Figure 3. Order of Phases

LINKAGE EDITOR OPERATION

To the linkage editor each module it
processes is a control section <CSECT).

28

EacnCSECT has a name -- the name of every
CSECT that is a FORTRAN main program is
MAIN44; the name of every subprogram CSECT
is the subprogram name followed by an equal
sign. For example, the CSECT name for the
subprogram SUBPRO is SUBPRO=.

The linkage editor processes control
sections according to the following rules:

1. If a CSECT name matches the name of
another CSECT in the same phase or in
the root phase, the new CSECT is not
included in the current phase. For
example., an attempt to include two
main programs (both have the CSECT

. name MAIN44) in one phase causes the
second main program to be ignored.

2. If a CSECT name matches the name of a
CSECT in another phase (except the
root phase), the new CSECT is included
in the current phase but a warning
message is issued. The message is
numbered KA02I. (This does not hold
true when the new CSECT is one
automatically linked from the module
library .•) An example of this occurs
when a complete overlay multiphase
program is processed. Each phase con­
tains a main program with CSECT name
MAIN44. The linkage editor prints the
KA021 message for each main program it
processes other than the first. How­
ever, in these instances the warning
message can be ignored.

Named COMMON and BLOCK DATA Areas

It has alre~dy been mentioned that the
linkage editor allocates a common area
equal in size to the largest common area in
any phase. All references to COMMON are
resolved to this area except for re~erences
to a named COMMON of the same name as a
BLOCK DATA area. All references to such a
named COMMON are resolved to the BLOCK DATA
area, which is within a phase.

This causes no problem when the complete
phase overlay structure is used. However,
for the root phase overlay structure, the
danger exists that a reference to named
COMMON will be resolved to a BLOCK DATA
area, even though the phase containing the
BLOCK DATA is not in main storage. For
this reason,. a BLOCK DATA area of the same
name as a named COMMON should appear only
in the root phase.

..

(

(

(/

The Model 44 Programming System provides
two types of control statements that can be
used by the FORTRAN programmer: job control
statements and linkage editor control
statements. This chapter gives the rules
for writing these control statements and
describes each statement with respect to
format and content.

JOB CONTROL STATEMENTS

Job control statements are designed for
an aO-column punched card format. Although
certain restrictions must be observed, the
statements are essentially free form.
Information must start in column 1 and
cannot extend beyond column 71. If the
length of a statement exceeds 71 charac­
ters, it may be continued on additional
cards, as discussed later in this section.

A statement may consist of from one
through four fields. The order of the
fields in the statement are: the identifier
field" the name field, the operation field,
and the operand field.

The identifier field occupies card
columns 1 and 2. It contains a two­
character combination that identifies the
statement as a job control statement. The
ident:i;fier combination for 'most job control
statements is //. The exceptions are /&
for the end-of-job statement, /*for the
end-of-data statement, and *~ (asterisk
followed by a blank) for the comments
statement.

The name field begins in column 3 and
may not extend beyond column 10. The name
field is permitted in only the JOB, EXEC,
ALLOC, and ACCESS statements. If the name
field of a statement is not used, column 3
must contain a blank.

The operation field, which identifies
the statement by name (JOB, EXEC, etc.>,
may start in any column after column 3. If
the statement has a name field, the
operation field must be separated from the
name field by at least one blank.

The operand field follows the operation
field, separated from it by at least one
blank. The operand field usually consists
of a series of specifications, separated
from each other' by commas or parentheses.
Except where otherwise indicated, specifi­
cations should be punched in the order

CONTROL STATEMENTS

shown in the statement formats. In gener­
al, no blanks are permitted within the
operand field. The exception to this rule
occurs when a blank character is permitted
within a specification. Otherwise, the
first blank in an operand field causes any
characters following the blank and preced­
ing column 72 to be treated as comments.

Column 72 in each card is the continua­
tion column. A nonblank character in this
column indicates that the statement is
continued on the next card. The first card
of a statement must contain the identifier
field, the name field (if used), the opera­
tion field, and at least one specification
of the operand field. The statement can be
interrupted only after a comma used to
separate two specifications.

It is not necessary to fill up a card
before continuing the statement on a new
card. The final comma may appear in any
column before column 71; in this case, at
least one blank must follow the comma and
then comments may appear through column 71.
The continuation character is punched in
column 72.

As many continuation cards as necessary
may be used for a single statement. There
must be a nonblank character in column 72
of each card except the last. Each card
must contain the characters // in columns 1
and 2. The operand field of the statement
must always resume in column 16. If column
16 of any continuation card is blank, the
text on it and on any subsequent continua­
tion cards for the statement is treated as
comments.

Columns 73 through 80 of all cards are
ignored by the system and may be used for
any purpose.

Comments in Job Control Statements

There are several ways in which comments
can appear in job control statements. All
such comments are printed on SYSLST.

As was already shown, _comments can
appear in job control statements that have
an operand field. They are written after
the operand field (or a portion of an
operand field that is continued on ~nother
card) and separated from it by at least one
blank. Comments/can also be written as a
series of continuation cards, the first of
which has ,a blank in col;urnn 16~

Control Statements 29

For statements in which an operand field
is permitted but is not' being used, the
absence of the field must be indicated by a
comma and at least one blank before the
start of any comments.

comments are also permitted in state­
ments that do not have an operand field"
such as the end-of-job (/&) statement. as
long as the comments are preceded by at
least one blank. Continuation cards may
not be used. however,. to extend thes e
comments.

Comments statements may be placed any­
where in the job deck. Column 1 must
contain an asterisk; column 2 must contain
a blank; the remainder of the card. up to
column 72" may contain any characters,
including blanks. Comments statements are
designed for communication with the opera­
tor; accordingly" they are written on the
console printer-keyboard, SYSLOG, as well
as being written on SYSLST.

Character set

statements may contain any
meric characters recognized by
ming system. The term
characters" refers to both

of 39 alpha­
the program­

"alphameric
alphabetic and

numeric characters.

Alphabetic characters are defined for
the system as the 26 letters of the alpha­
bet, A through Z, plus 3 special charac­
ters: $ # Gl.

The numeric characters are the digits 0
through 9.

In addition to the 39 alphameric charac­
ters, the following characters may appear
in job control statements, but only where
specifically indicated in the statement
formats:

asterisk * comma
equal sign =
parentheses ()

single quote
slash /

All job control statements must be
punched in the Extended Binary-Coded­
Decimal Interchange Code (EBCDIC).

statement Formats

The job control statements are presented
in this chapter in alphabetic order. For

30

each statement" the statement format
appears first, showing the contents of the
identifier, name, operation, and operand
fields. Immediately following each state­
ment format is a specifications table,
which indicates for each specification in
the statement format the reason for,speci­
fying it and how to specify it.

An attempt has been made to keep each
statement format as simple as possible.
For some statements, more complex specifi­
cations in the operand field are dealt with
in additional tables" one for each of these
more complex specifications. In all cases,
the reader is directed to the appropriate
table in the specifications table following
the statement format.

The following notation is used in the
statement formats:

1. All upper-case letters represent
specifications that are to appear in
the actual statement exactly as shown
in the statement format. For example,
JOB in the operation field of the JOB
statement should be punched exactly as
shown -- JOB

2,. All lower-case letters represent gen­
eric terms that are to be replaced in
the actual statement. For example.
jobname is a generic term that should
be replaced by the name that the
programmer is ,giving his job.

3. Hyphens are used to join two or more
words in order to form a single gener­
ic term. For example" data-length is
one generic term.'

4. Brackets are used to indicate that a
specification is optional and is not
always required in the statement. For
example, [CATLG] means that the word

5.

CATLG mayor may not appear in the
statement, depending on the
programmer's requirements.

Braces enclosing stacked items indi­
cate that a choice of one item must be
made by the programmer. For example:

! 2400 l
11600 r

means that either 2400 or 1600, but
not both, must appear in the actual
statement.

6. Brackets enclosing stacked items indi­
cate that a choice of one item may,
but need not, be made by the program­
mer. For example:

..

(

..

(

{

[DECK J
NODECK

means that either DECK or NODECK. but
not both. may appear in the actual
statement f or the specification can be
omitted entirely.

7~ An underlined item represents the
default option -- the choice that will
be made by the programming system if
the programmer omits a specification.
For example:

[NOSOURCEJ
SOURCE

means that either NOSOURCE or SOURCE •
but not both. may appear in the actual
statement,. or the specification can be
omitted entirely (in which case SOURCE
is assumed by the programming system).

In other words. specifying SOURCE pro­
duces the same result as omitting the
specification entirely.

Note: The default options shown in
this publication are those that exist
in the distributed version of the
Model 44 Programming System. However.
these defaults can be altered by an
installation during the system con­
struction process or the system assem­
bly process.

8. All punctuation marks shown in the
statement formats other than hyphens.
brackets. braces, and underlines are
punched exactly as shown. For exam­
ple. [,NOAUTO] means that the specifi­
cation. if present in the statement,
should consist of the seven characters
.NOAUTO so that the initial comma is
included.

Control Statements 31

ACCESS Statement (Unit Record Data Sets)

rd Name Operation Operand
r--T----------T---------~--,
1// I SYSxxx I ACCESS I dsname, { t. ype:;: } I
I I I I devadr:o: I L __ ~ __________ ~ _________ ~ _____________ -----------------_________________________________ J

r------------------T-------------------------------T------------------------------------,
I Specification I Reason for specifying I How to Specify I •
~------------------+-------------------------------+------------------------------------~
1// I Required lAs shown I
~------------------+-------------------------------+------------------------------------~
ISYSxxx IRequired~ associates the data IAny valid symbolic unit name I ..
I I set with a symbolic unit name I I
~------------------+-------------------------------+------------------------------------~
I ACCESS I Required lAS shown I
~------------------+-------------------------------+------------------------------------~
I dsname I Required~ indicates the name of I From one through eight alphameric. I
I I the data set I characters" the first of which must I
I I Ibe a letter I
~------------------+-------------------------------+------------------------------------~
Itype= ITO identify" through its devicelOne of the unit record device type I
I I type code, the device to be I codes (see next chart) " followed by I
I I used I an equal sign I
~------------------+-------------------------------+------------------------------------~
I devadr= I To identify" through its device I A three-character device address I
I I address, the device to be used I (supplied by the installation)., fo1-1
I I 110wed by an equal sign I L __________________ ~ _______________________________ L ____________________________________ J

32

(

Unit Record Device Type Codes:

code Meaning
r------------------T-------------------------------------,
11442 1 IBM 1442-N1 Card Read-Punch 1
• ------------------t-------------------------------------~
11442P IIBM 1442-N2 Card Punch 1
~------------------t-------------------------------------~
12520 IIBM 2520 Card Read-Punch 1
~------------------+-------------------------------------~
12520P 1 IBM 2520-B2, B3 Card Punch 1
~------------------t-------------------------------------~
12501 IIBM 2501 Card Reader 1
r------------------t-------------------------------------~
12540 IIBM 2540 Card Read-Punch 1
1 1 (Reader side) 1
~------------------+-------------------------------------~
12540P 1 IBM 2540 Card Read-Punch I
1 1 (Punch side) I
~------------------t-------------------------------------~
11403 1 IBM 1403 Printer" Model 2, 3, or N1 I
1 I (132 characters) I
~------------------t-------------------------------------~
11403M7 1 IBM 1403 Printer" Model 7 1
I 1(120 characters) I
~------------------t-------------------------------------~
11443 1 IBM 1443 Printer, Model N1 I
1 I (120 characters) 1
~------------------+-------------------------------------~
11443S 1 IBM 1443 Printer., Model N1 1
1 1 (144 characters) Special Feature 1 L __________________ ~ _____________________________________ J

Example:

//SYS004 ACCESS CARDDATA,1442=

This statement causes an IBM 1442-N1
Card Read Punch to be used for the data set
named CARDDATA. The data set is associated
with symbolic unit SYS004 (corresponding to
data set reference number 4).

Note: Each code is speci­
fied as shown •

Control Statements 33

ACCESS Statement (Tape Data Sets)

Id Name Operation Operand
r--T----------T---------T---,
1// I SYSxxx I ~CCESS I dsname, vol ume [, EXT] I L __ ~ __________ ~ _________ ~ ___ J

r------------------T-------------------------------T------------------------------------,
I Specification I Reason for specifying I How to Specify I
~------------------+---------.----------------------+------------------------------------~
1// I Required lAS shown I
.------------------+-------------------------------+------------------------------------~
ISYSxxx I Required; associates the data IAny valid symbolic unit name I
I I set with a symbolic unit name II
.------------------+-------------------------------+------------------------------------~
I ACCESS I Required lAs shown I
.------------------+-------------------------------+------------------------------------~
Idsname I Required; indicates the name of IF rom one through eight alphameric I
I I the data set J characters., the first of which must I
I I I be a letter; for labeled tapes, the I
I I Idata set name as contained in the I
I I I data set label I
~------------------+~------------------------------+------------------------------------~
I volume I Required; identifies the devicelThe tape volume designation (see I
I land volume to be used Inext chart) I
r------------------+--~----------------------------+------------------------------------~
I EXT IIndicates that data is to be lAs shown I
I I added to the data set I I L __________________ ~ _______________________________ ~ ____________________________________ J

, ..

. ." ""
\~

34

(

(

Tape Volume Desiqnation:

{ type }
devadr

[(options)] {~'"VOlidl}

r------------------T-------------------------------T------------------------------------,
I Specification I Reason for Specifying I How to Specify I
~------------------+-------------------------------+------------------------------------~
I type ITo identify, through its devicelOne of the tape device type codes I
I I type code, the device to be I (see below) I
I lused I I
.------------------+-------------------------------+------------------------------------~
Idevadr ITO identify, through its devicelA three-character device address I
I I address., the device to be used I (supplied by the installation) I
~------------------+-------------------------------+------------------------------------~
I (options) ITo specify tape options for I From one through four tape options I
I I tape units with device type I (see next page), separated by com- I
I I codes (see below) 2400T7" I mas ~ the list must be enclosed in I
I 12400T7C, or 2400D I parentheses I
~------------------+-------------------------------+------------------------------------~
I="volid" ITo identify, through its volid,IFrom one through six characters (fori
I Ithe tape volume to be used Ilabeled tapes, the volume serial I
I II number from the volume label>, en- I
I I I closed in single quotes ~ an equal I
I I I sign must precede the first quote I
~------------------+-------------------------------+------------------------------------~
1= ITO indicate that the tape has IAn equal sign I
I I no volid~ permitted for unla- I I
I Ibeled tapes only I I L __________________ ~ _______________________________ ~ ____________________________________ J

Tape Device Type Codes:

Code Meaning
r------------------T-------------------------------------,
12400 I IBM 2400 Magnetic Tape Unit with I
I 19-track read/write head~ BOO bpi only I
.------------------+-------------------------------------~
12400H IIBM 2400 Magnetic Tape Unit with I
I 19- t rack read/write head~ 1600 bpi I
I I only I
~------------------+-------------------------------------~
12400D IIBM 2400 Magnetic Tape Unit with I
I 19-track read/write head~ dual density I
.------------------+-------------------------------------~
I 2400T7 IIBM 2400 Magnetic Tape Unit with I
I 17-track read/write head I
.------------------+-------------------------------------~
I 2400T7C IIBM 2400 Magnetic Tape Unit with I
I 17-track read/write head and the I
I I Convert Feature I L __________________ ~ _____________________________________ J

Note: Each code is speci­
fied as shown.

Control Statements 35

Tape options:

For tape units of device type code 2400T7:
[

200 J 556
800

For tape units of device type code 2400T7C:
[

200J 556
800

For tape units of device type code 2400D:
[800]

1600

option Meaning
r------------------T-------------------------------------,
1200 ITo indicate a tape density of 200 bpil
r------------------+-------------------------------------~
1556 ITo indicate a tape density of 556 bpi I
r------------------+-------------------------------------~
1800 IDefault option; indicates a tape den-I
I I sity Qf 800 bpi I
~------------------+-----~-------------------------------1
11600 ITO indicate a tape density of 1600 I
I I bpi I
~------------------+-------------------------------------~
IE ITo indicate even parity; should not I
I I be specified unless NC is specified I
~------------------+-------------------------------------~
10 .IDefault option; indicates odd parity I
~------------------+-------------------------------------i
IT ITo indicate that the translate fea- I
I Iture is to be used; should not be I
I Ispecified unless NC is specified I
.------------------+-------------------------------------~
INT IDefault option; indicates that the I
I I translate feature is not to be used I
~------------------+-----~-------------------------------~
INC ITO indicate that the convert feature I
I lis not to be used; required if either I
I IE Or T is specified I
.------------------+-------------------------------------1
IC IDefault option; indicates that the I
I I convert feature is to be used I L __________________ ~ _____________________________________ J

Example:

/ /SYS004 ACCESS TAPEDATA., 2400D (1600)=' T7063'

[~J [~T]

[~J [~T] [~CJ

Note: options may appear in
the option list in any or­
der; each option is speci­
fied as shown.

This statement causes an IBM 2400 Mag­
netic Tape Unit with 9-track read/write
head and dual density to be used for the
data set named TAPEDATA. The tape density
is 1600 bytes per inch. The data set is

located on the volume whose volid is T7063;
the data set is associated with symbolic
unit SYS004 (corresponding to data set
reference number 4).

36

ACCESS Statement (Direct Access Data sets)

Id Name Operation Operand
r--~---------T---------T---, 1//1 [SYSXXX] I ACCESS Idsname[(member names)] L,volumell,EXTH,NEWl I l __ ~ ______ ~ ___ ~ ________ ~ __ J

r------------------T-------------------------------T------------------------------------,
I Specification I Reason for Specifying I How to Specify I
~------------------+-------------------------------+------------------------------------~
1// I Required lAs shown I
~------------------+-------------------------------+------------------------------------~
ISYSxxx IAssociates the data set. or a IAny valid symbolic unit name I
I I member of a directoried data I I
I I set, with a symbolic unit name I I
I I(a member is associated if mem-I I
I I ber names are specified in the I I
I loperand field) ~ may be omitted I I
I lif no data transmission is in- I I
I Itended for the data set (for I I
I I example, the data set is to be I I
I Ideleted, condensed, or renamed I I
I I subsequently in the job) I I
~------------------+-------------------------------+------------------------------------~
I ACCESS I Required I As shown I
~------------------+-------------------------------+------------------------------------~
Idsname IRequired~ indicates the name of IT he name of the data set, as con- I
I Ithe data set Itained in the VTOC of the volume on I
I I Iwhich it is located I

(~------------------+-------------------------------+------------------------------------~
I (member names) IFor directoried data sets onlY~lone or more member names. separated I
I Irequired when an existing mem- Iby commas~ the list must be enclosed I
I Iber is to be used or when a new I in parentheses~ each member name I
I Imember is to be created~ indi- Iconsists of from one through eight I
I Icates one name of an existing I alphameric characters, the first of I
I Imember or one or more names of Iwhich must be a letter I
I la new member I I
~------------------+-------------------------------+------------------------------------~
I volume ITo indicate the location of the I One of the disk volume designations I
I Idata set~ may be omitted for I (see next chart) I
I I system data sets, cataloged I I
I I data sets, or data sets spec i- I I
I If ied in a previous ACCESS or I I
I IALLOC statement within the job I I
~------------------+-------------------------------+------------------------------------~
I EXT IIndicates that data is to be lAS shown I
I ladded to the data set~ not per-I I
I I mi tted if member names are spe-I I
I Icified I I
~------------------+-------------------------------+------------------------------------~
I NEW IFor directoried data sets onlY~IAs shown I
I Irequired when a data set member I I
I I is to be created I I L-_________________ ~ _______________________________ ~ ____________________________________ J

Control Statements 37

Disk Volume Designations:

To identify a volume through its vOlid: { type } [(WRCHK)' J =' volid"
devadr (NOWRCHK)

To identify a volume through another data set it contains:

SAME [(WRCHK) .J
(NOWRCHK) { =dsname}

=SYSxxx

r------------------T-------------------------------T------------------------------------,
I Specification I Reason for Specifying I How to specify I
~------------------+-------------------------------+------------------------------------~
I type I To identify, through its device lOne of the direct access device type.!
I I type code, the device. to be I codes (see below) I
I lused I I
~------------------+-------------------------------+------------------------------------~
I devadr I To identify., through its device I A three-character device address I
I laddress, the device to be used I (supplied by the installation> I
~------------------+-------------------------------+------------------------------------i
I (WRCHK) . ITO indicate that write validitylAS shown, enclosed in parentheses I
I I checking is to be performed for I I
I Ithe data set I I
~------------------+-------------------------------+------------------------------------i
I (NOWRCHK) ITO indicate that write validitylAS shown, enclosed in parentheses I
I I checking is not to be performed I I
I Ifor the data set I I
~------------------+-------------------------------+------------------------------------~
I='volid' ITO identify the disk volume IThe volume serial number from the I
I Ithat contains the data set~ re-Ivolume label, enclosed in single I
I Iquired if type or devadr is lquotes~ an equal sign must precede I
I I specified Ithe first quote I
~------------------+-------------------------------+------------------------------------i
I SAME IRequired when the volume is be-lAs shown I
I ling identified through another I I
I Idata set it contains I I
~------------------+-------------------------------+------------------------------------i
I=dsname ITO identify the other data set IAn equal sign followed by the name I
I Iby name lof the other data set I
.------------------+------------------~------------+------------------------------------i
I=SYSxxx ITo identify the other data set IAn equal sign followed by the sym- I
I Ithrough the symbolic unit name Ibolic unit name associated with the I
I Icurrently associated with it I data set I l __________________ ~ _______________________________ ~ ____________________________________ J

Direct Access Device Type Codes:

Code Meaning
r------------------T-------------------------------------,
ISDSD ISingle Disk storage Drive I
I I (2315 Pisk cartridge-) I
~------------------+-------------------------------------i
11316 I IBM 1316 Disk Pack mounted on ;
I Ian IBM 2311 Disk storage Drive I l __________________ ~ _____________________________________ J

38

Note: Each code is speci­
fied as shown.

c

ALLOC Statement (Tape Data Sets)

(Id Name operation Operand
r--T----------T---------~--,
1// I SYSxxx I ALLOC I dsname, volume [, CATLG] I L __ ~ __________ ~ ________ ~ __ J

r------------------T-------------------------------T------------------------------------,
I Specification I Reason for Specifying I How to Specify I
~------------------+-------------------------------+------------------------------------~
1// I Required I As shown I
~------------------+-------------------------------+------------------------------------~
ISYSxxx IRequired; associates the data IAny valid symbolic unit name I
I I set with a symbolic unit name I I
~------------------+-------------------------------+------------------------------------~
IALLOC I Required lAS shown I
~------------------+-------------------------------+------------------------------------~
Idsname IRequired; indicates the name oflFrom one through eight alphameric I
I Ithe data set I characters, the first of which must I
I I Ibe a letter I
.------------------+-------------------------------+------------------------------------~ I volume I Required; identifies the devicelThe tape volume designation (see I
I I and volume to be us ed I next chart) I
.------------------+-------------------------------+------------------------------------~
ICATLG ITO enter the data set into the lAS shown I
I Isystem catalog I I L __________________ ~ _______________________________ ~ ____________________________________ J

(

c
Control Statements 39

Tape Volume Designation:

{ type }
devadr

[(options)] { =OVOlid l }

=FRESH

r------------------T-------------------------------T------------------------------------,
I Specification I Reason for Specifying I How to Specify I
.------------------+-------------------------------+------------------------------------i
I type ITo identify. through its device I One of the tape device type codes I
I I type code,. the device to be I (see below) I
I I used I I
~------------------+-------------------------------+------------------------------------~
I devadr I To identify,. through its device I A three-character device address I
I laddress, the device to be used I {supplied by the installation) I
~------------------+-------------------------------+------------------------------------i
I (options) ITO specify tape options for I From one through four tape options I
I Itape units with device type I (see next page), separated by com- I
I Icodes (see below) 2400T7, Imas; the list must be enclosed in I
I 12400T7C, or 2400D I parentheses I
.------------------+-------------------------------+------------------------------------i
1=' volid I I To identify, through its volid" I From one through six characters (for I
I Ithe tape volume to be used Ilabeled tapes, the volume serial I
I I Inumber from the volume label). en- I
I I Iclosed in single quotes; an equal I
I I Isign must precede the first quote I
.------------------+-------------------------------+------------------------------------i
I=FRESH ITO indicate that a fresh tape lAs shown, preceded by an equal sign I
I Ivolume is to be used I I L __________________ ~ _______________________________ ~ ____________________________________ J

Tape Device Type Codes:

Code Meaning
r------------------T-------------------------------------,
12400 IIBM 2400 Magnetic Tape Unit with I
I 19-track read/write head; 800 bpi only I
.------------------+-------------------------------------i
12400H I IBM 2400 Magnetic Tape Unit with I
I 19-track read/write head; 1600 bpi I
I I only I
~------------------+-------------------------------------~
12400D IIBM 2400 Magnetic Tape Unit with I
I 19-track read/write head; dual density I
t------------------+-------------------------------------i
I 2400T7 IIBM 2400 Magnetic Tape Unit with I
I 17- t rack read/write head I
.------------------+-------------------------------------i
I 2400T7C I IBM 2400 Magnetic Tape Unit with I
I 17-track read/write head and the I
I IConvert Feature I L __________________ ~ _____________________________________ J

40

Note: Each code is speci­
fied as shown.

(

(

(

Tape options:

[
200] 556
800

For tape units of device type code 2400T7:

For tape units of device type cod~ 2400T7C:
[

200] 556 .
800

For tape units of device type code 2400D:
[800]

1600

option Meaning
r------------------T-------------------------------------,
1200 ITo indicate a tape density of 200 bpi I
~------------------+-------------------------------------~
1556 ITO indicate a tape density of 556 bpi I
r------------------+-------------------------------------i
1800 IDefault option; indicates a tape den-I
I I sity of 800 bpi I
~------------------+-------------------------------------i
11600 ITo indicate a tape density of 1600 I
I I~i I
~------------------+-------------------------------------i
IE ITo indicate even parity; should not I
I Ibe specified unless NC is specified I
r------------------+-------------------------------------~
10 IDefault option; indicates odd parity I
~------------------+-------------------------------------i
IT ITO indicate that the translate fea- I
I Iture is to be used; should not be I
I Ispecified unless NC is specified I
r------------------+-------------------------------------i
INT IDefault option; indicates that the I
I I translate feature is not to be used I
r------------------+-------------------------------------i
INC ITO indicate that the convert feature I
I lis not to be used; required if either I
I IE or T is specified I
t------------------+-------------------------------------~
IC IDefault option; indicates that the I
I I convert feature is to be used I L __________________ ~ _____________________________________ J

Example:

//SYS003 ALLOC NEWDATA.,2400T7C(556)==FRESH

[~J [~TJ

[~J [~TJ [~cJ

Note: options may appear in
the option list in any or­
der; each option is speci­
fied as shown.

The statement causes an IBM 2400 Magnet­
ic Tape Unit with a 7-track read/write head
and the convert feature to be used for the
data set named NEWDATA. The tape density
is 556 bytes per inch; default options
indicate odd parity, the nonuse of the

translate feature, and the use of the
convert feature. The data set is aSSigned
to a fresh tape volume and associated with
symbolic unit SYS003 (corresponding to data
set reference number 3).

Control Stateroents 41

ALLOC Statement (Direct Access Data sets)

Id Name Operation Operand
r--T----------T---------T-----------------------------------~---------------------------, 1//1 [SYSxxx] I ALLOC Idsname[,volume]"data length[,directory length] [,CATLG] L,FMT] I L __ ~ __________ ~ ________ ~ _______________ ~---------------________________________________ J

r------------------~-----------------------------~T------------------------------------,
I Specification I Reason for Specifying I . How to Specify I
.------------------+-------------------------------+------------------------------------~
1// I Required lAs shown I
~-----------------+-------------------------------+------------------------------------~
ISYSxxx ITo associate the data set with IAny valid symbolic unit name I
I I a symbol ic unit name I I
~-----------------+-------------------------------+------------------------------------~
IALLOC I Required lAS shown I
.------------------+-------------------------------+------------------------------------~
Idsname I Required; indicates the name oflFrom one through eight alphameric I
I I the data set I characters, the first of which must, I
I I I be a 1 etter I
.------------------+-------------------------------+------------------------------------~
I volume IIdentifies the device and/or lOne of the disk volume desiqnations I
I Ivolume on which space for the I (see next chart) I
I I data set is to be allocated; I I
I Irequired unless the data set isl I
I I to be allocated on the sytem I I
I Iresidence volume I I
~------------------+-------------------------------+------------------------------------~
Idata length I Required; indicates the number IA decimal number from 1 through I
I lof blocks to be allocated for 165535 I
I Ithe data set I I
.------------------+-------------------------------+------------------------------------~

,.~

Idirectory length IRequired for a directoried datalA decimal number from 1 through I
I Iset only; indicates the number 165534 I
I lof entries in the directory" 1 I
I lone for each member name I I
~------------------+-------------------------------+------------------------------------~
ICATLG ITO enter th~ data set into the lAs shown I
I I system catalog I I
.------------------+-------------------------------+------------------------------------~
IFMT IRequired if FORTRAN direct ac- I I
I 1 cess input/output operations I I
I lare to be performed on the datal I
I Iset I I L __________________ ~ _______________________ --------~---_________________________________ J

42

(

(

Disk Volume Designations:

To request a fresh volume or a volume having a particular volid:

{ type } [(WRCHK)] {=FRESH }
devadr (NOWRCHK) ='volid'

To request a volume that contains another particular data set:

SAME [(WRCHK)]
(NOWRCHK) { =dsname}

=SYSxxx

r------------------T-------------------------------T------------------------------------,
I Specification I Reason for specifying I How to Specify I
~------------------+-------------------------------+------------------------------------~
I type I To identify., through its device lOne of the direct access device type I
I I type code., the device to be I codes (see next chart) I
I I used I I
.------------------+-------------------------------+------------------------------------~
Idevadr ITO identify. through its devicelA three-character device address I
I I address, the device to be used I (supplied by the installation> I
.------------------+-------------------------------+------------------------------------~
ICWRCHK) ITO indicate that write validitylAS shown, enclosed in parentheses I
I Ichecking is to be performed fori I
I Ithe data set I I
.------------------+-------------------------------+------------------------------------~
ICNOWRCHK) ITo indicate that write validitylAs shown, enclosed in parentheses I
I Ichecking is not to be performed I . I
I I for the data set I I
~-----------------+-------------------------------+------------------------------------~
I=FRESH ITo indicate that a fresh disk lAS shown, preceded by an equal sign I
I Ivolume is to be used I I
.------------------+-------------------------------+------------------------------------~
I='volid' ITO identify, through its volid,IThe volume serial number from the I
I Ithe disk volume to be used Ivolume label, enclosed in single I
I I I quotes; an equal sign must precede I
I I I the first quote I
.------------------+-------------------------------+------------------------------------~
I SAME IRequired when a volume contain-lAs shown I
I ling another particular data setl I
I I is to be used I I
.------------------+-------------------------------+------------------------------------~
I=dsname ITO identify the other data set IAn equal sign followed by the name I
I Iby name lof the other data set I
.------------------+-------------------------------+------------------------------------~
I=SYSxxx ITO identify the other data set IAn equal sign followed by the sym- I
I Ithrough the symbolic unit name Ibolic unit name associated with the I
I I currently associated with it I data set I l __________________ ~ _______________________________ ~ __________________________________ ~-J

control Statements 43

Direct Access Device Type Codes:

Code Meaning
r------------------T-------------------------------------,
ISDSD ISingle Disk Storage Drive I
I I (2315 Disk Cartridge) 1
.------------------+-------------------------------------~
11316 IIBM 1316 Disk Pack mounted on 1
1 1 an IBM 2311 Disk Storage Drive I L __________________ ~ _____________________________________ J

Example:

/ /SYS002 ALLOC DISKDATA, 1316 (NOWRCHI{)=' D0036' , 50

Note: Each code is speci­
fied as shown.

This seatement causes 50 blocks of space
to be allocated on an IBM 1316 Disk Pack
for the data set named DISKDATA. The disk
pack has the volume identification D0036.
No write checking is performed for the data
set, which is associated with symbolic unit

SYS002 (corresponding to data set reference
number 2).

44

(Note: This statement must be immediately
followed by a LABEL statement.)

.. ~

•

(

CATLG Statement

Id Name Operation Operand
r--T----------T---------T---1
1//1 I CATLG IdsnameL.volume] , I L __ ~ __________ ~ _________ ~ ___ J

r------------------T-------------------------------T------------------------------------, I Specification I Reason for Specifying I How to Specify I
~------------------+-------------------------------+------------------------------------1
1// I Required lAS shown I
.------------------+-------------------------------+------------------------------------~
I CATLG I Required I As shown I
r------------------+-------------------------------+------------------------------------~
Idsname I Required; indicates the name of IF rom one through eight alphameric I
I Ithe data set to be entered intolcharacters, the first of which must I
I I the system catalog I be a letter; may not duplicate any I
I I Idata set name already in the catalog I
.------------------+-------------------------------+------------------------------------~
I volume IIndicates the location of the ,The cataloging volume designation I
I Idata set to the system; may be I (see below) I
I lomitted for a system data set I I
I lor a data set specified in a , ,
I I previous ALLOC or ACCESS state-I I
I I ment within the job I , L _____ ~ ____________ ~ _______________________________ ~ ____________________________________ J

cataloging Volume Designation:

type[(options)]='volid'

r------------------T-------------------------------T------------------------------------,
I Specification I Reason for Specifying I How to specify I
.------------------+-------------------------------+------------------------------------~
I type ITO identify the device contain-IAny of the unit record, tape, or I
I ling the data set by its device Idirect access device type codes I
I Itype code Ilisted for the ACCES.S statement I
.------------------+-------------------------------+------------------------------------~
I (options) ITo specify tape options or the IFrom one through four options, sepa-I
I Iwrite checking options for Irated by .commas; the list must be I
I Idirect access devices lenclosed in parentheses (see the I
I I IACCESS statement for permissible I
I I I options) I
~------------------+-------------------------------+------------------------------------~
I ='"volid' ITO identify, through its vOlid,IThe volume serial number, enclosed I
I Ithe volume containing the data lin single quotes; an equal sign must I
I I set I precede the first quote I L __________________ ~ _______________________________ ~ ____________________________________ J

Example:

// CATLG DISKDATA,1316{NOWRCHK)='D0036'

This statement causes an entry for the
data set named DISKDATA to be placed in the
system catalog. The data set is located on
an IBM 1316 Disk Pack with volume identifi­
cation D0036. No write checking is to be
performed for the data set.

Control statements 45

CONDENSE Statement

Id Name Operation Operand
r--T----------T---------T---,
1//1 I CONDENSE 1 dsname 1 L __ ~ __________ ~ _________ ~ ___ J

r------------------T-------------------------------T------------------------------------,
1 Specification 1 Reason for Specifying 1 How to Specify I
~------------------+-------------------------------+------------------------------------~
1// 1 Required lAS shown I
~------------------+-------------------------------+------------------------------------~
I CONDENSE I Required lAs shown I
~------------------+-------------------------------+------------------------------------~
Idsname I Required; ind~cates the name oflThe name of the data set as con- I
I Ithe directoried data set to be Itained in the VTOC of the volume on I
I I condensed Iwhich it is located I L __________________ ~ _______________________________ ~ ____________________________________ J

Example:

// CONDENSE DRCTRYB

This statement causes the directoried
data set named· DRCTRYB to be condensed.
After condensing, all space in the data set
follows the data set; all space in the
directory follows the last entry in the
directory.

46

c

(

•

('

DELETE Statement

Id Name operation Operand
r--T----------T---------r---,
1// I I DELETE I dsname [(member names») I L __ ~ __________ ~ _________ ~ ___ J

r------------------T-------------------------------T------------------------------------,
I Specification I Reason for Specifying I How to Specify I
~------------------+-------------------------------+------------------------------------~
1// I Required lAS shown I
~------------------+-------------------------------+------------------------------------~
I DELETE I Required lAs shown I
~------------------+-------------------------------+------------------------------------~
Idsname IRequired; indicates the name of IT he name of the data set as con- I
I Ithe data set that is to be de- Itained in the VTOC of the volume on I
I Ileted or from which one or more I which it is located I
I I rroember names are to be deleted I I
~------------------+-------------------------------+------------------------------------~
I (member names) IFor directoried data sets only; lOne or more Il'errber narr,es, separated I
I Ito delete one or more member Iby commas; the list must be enclosed I
I Inames from a data set (deletinglin parentheses; each member name I
I lall the names of a particular Imust appear exactly as specified in I
I I member deletes the member) I the ACCESS or RENAI·!E statement that I
I I I assigned the name to the member I L __________________ ~ ______________________________ ~ ____________________________________ J

Example:

// DELETE DISKDATA

This statement causes the data set named
DISKDATA to be deleted from the volume on
which it is located. Its name is removed
from the volume table of contents (VTOC)
and from the system catalog, if applicable.
(Note: This statement must be preceded in
the job deck by an ALLOC or ACCESS state­
ment that refers to DISKDATA.)

Control Statements 47

EXEC Statement (FORTRAN)

Id Name Operation Operand
r--T----------T---------T---,
1// I [stepnamel I EXEC I FORTRAN [(parameter list)] L. (VPSnn)] [, accounting information] I L __ L ____ ------~-------~ ___ J

r------------------T-------------------------------T------------------------------------,
I Specification I Reason for Specifying I How to specify I
~------------------+-------------------------------+------------------------------------~
1// I Required lAS shown I
~------------------+-------------------------------+------------------------------------~
Istepname ITO name the job step; required IFrom one through eight alphameric I
I I to name the module produced by I characters, the first of which must I
I I the compiler, unless NOLINK is I be a letter I
I I specified in the parameter listl I
~------------------+-------------------------------+------------------------------------~
I EXEC I Required lAs shown I
~------------------+-------------------------------+------------------------------------~
I FORTRAN I Required lAs shown I
~------------------+-------------------------------+------------------------------------~
I (parameter list) ITO specify compiler options IFrom one through five parameters I
I I I (see next chart), separated byl
I I I commas; the list must be enclosed I
I I lin parentheses I
~------------------+-------------------------------+------------------------------------~
I (VPSnn) ITO ensure that the variable lOne of the following, enclosed in I
I I preci sion switch is set to the I parentheses: I
I Ivalue nn I I
I I I VPS14 VPS10 I
I I I VPS12 VPS08 I
~-----------------+-------------------------------+------------------------------------~
I accounting ITO satisfy any installation re-IFrom 1 through 16 alphameric charac-I
I information Iquirement Iters, the first of which must be I
I I lother than a left parenthesis or a I
I I I blank I L __________________ L _______________________________ L ____________________________________ J

(-"
. ~

48

(
Parameters:

[DECK] [NOSOURCEJ
NODECK SOURCE

Parameter

[NOLINK]
LINK [BCD J. [MAP]

EBCDIC NOMAP

Reason for Specifying
r----------------~-T-------------------------------------,
I DECK ITO produce a module deck on SYSPCH I
~------------------+-------------------------------------1
I NODECK IDefault option -- no deck produced I
t------------------+-------------------------------------~
I NOSOURCE ITO suppress production of a source I
I llisting on SYSOPT I
t------------------+-------------------------------------1
I SOURCE IDefault option -- source listing pro-I
I Iduced on SYSOPT I
~------------------+-------------------------------------~
I NOLINK ITO suppress the writing of the modulel
I Ion SYSOOO, the linkage editor input I
I I unit I
t------------------+-------------------------------------i
I LINK IDefault option -- module written on I
I ISYSOOO I
t------------------+-------------------------------------~
I BCD IRequired if any source statements arel
I Ipunched in BCDIC I
t------------------+-------------------------------------~
I EBCDIC IDefault option -- source statements I
I lare punched in EBCDIC I
~------------------+-------------------------------------~
I MAP ITo produce a compiler storage map on I
I ISYSLST I
t------------------+-------------------------------------~
I NOMAP IDefault option -- no compiler storage I
I Imap produced I L __________________ ~ _____________________________________ J

Note: Parameters may appear
in the parameter list in
any order; each parameter
is specified as shown.

Control Statements 49

EXEC statement (LNKEDT)

Id Name Operation Operand
r--T----------T---------T---,
1// I [stepname] I EXEC I LNKEDT [(parameter list)] t, accounting information] I L __ ~ __________ ~ ________ ~ __ J

r------------------T-------------------------------T------------------------------------,
I Specification I Reason for Specifying I How to Specify I
~------------------+-------------------------------+------------------------------------~
1// I Required lAs shown I
~------------------+-------------------------------+------------------------------------~
Istepname ITo name the job step IFrom one through eight alphameric I
I I I characters, the first of which must I
I I Ibe a letter I
.------------------+-------------------------------+------------------------------------~
I EXEC I Required lAs shown I
~------------------+-----------------~-------------+-----------~------------------------~
ILNKEDT I Required lAS shown I
~------------------+-------------------------------+------------------------------------~
I (parameter list) ITO specify linkage editor op- IFrom one through three parameters I
I I tions I (see below), separated by commas; I
I I Ithe list must be enclosed in paren- I
I I I theses I
~------------------+------------------~------------+------------------------------------~
I accounting ITo satisfy any installation re-IFrom 1 through 16 alphameric charac-I
I information Iquirement Iters, tQe first of which must be I
I I lather than a left parenthesis or a I
I I I blank I L __________________ ~ _______________________________ ~ ____________________________________ J

Parameters:

[KEEP] [NO MAP]
1:!OKEEP MAP

[NOAUTO]

Parameter Reason for Specifying
r------------------T-------------------------------------,
I KEEP ITo retain the phase output produced I
I Iby the linkage editor; required if I
I Iphase execution is desired subsequent I
I Ito the job step immediately following I
I Ithe linkage editor job step I
.------------------+-------------------------------------~
I NOKEEP IDefault option -- phase output is I
I Idiscarded at the end of the job step \
I I immediately following the linkage ed-\
I I itor job step I
~------------------+-------------------------------------~
I NOMAP ITO suppress the production of a phasel
I Imap on SYSLST I
r------------------+-------------------------------------~
I MAP IDefault option -- phase map produced I
I Ion SYSLST I
~------------------+-------------------------------------~ I NOAUTO ITO suppress the automatic linking I
I I facility of the linkage editor during I
I Ithis job step I L __________________ ~ _____________________________________ J

50

Note: Parameters may appear
rn--the parameter list in
any order; each parameter
is specified as shown.

c

EXEC statement (Phase)

Id Name Operation Operand
r--T----------T---------T---,
1//1 [stepnamell EXEC I [phasename] [,(VPSnn)] [,accounting infor~ation] I L __ ~ __________ ~ ________ ~ ___ J

r------------------T-------------------------------T------------------------------------,
I Specification I Reason for Specifying I How to Specify I
~------------------+-------------------------------+------------------------------------~
1// I Required lAs shown I
.------------------+-------------------------------+------------------------------------~
Istepname ITo name the job step IFrom one through eight alpha~eric I

• I I I characters, the first of which must I
I I Ibe a letter I
r------------------+-------------------------------+------------------------------------~
I EXEC I Required lAS shown I
.------------------+-------------------------------+------------------------------------~
Iphasename ITo identify the phase that is IThe name of the phase, exactly as I
I Ito be executed; may be omitted Ispecified on the PHASE card used at I
I lif phase was produced by the Ithe time the phase was created I
I Ilinkage editor in the immedi- I ' I
I lately preceding job step I I
.------------------+-------------------------------+------------------------------------~
I (VPSnn) ITo ensure that the variable lOne of the following, enclosed in I
I Iprecision switch is set to the Iparentheses: I
I Ivalue nn I I
I I I VPS14 VPS10 I
I I I VPS12 VPS08 I

{ r------------------+-------------------------------+------------------------------------~
laccounting ITO satisfy any installation re-IFrom 1 through 16 alphameric charac-I
I information Iquirement Iters, the first of which must be I
I I lother than a left parenthesis or a I
I I I blank I L-_________________ ~ _______________________________ ~ ____________________________________ J

(

Control Statements 51

JOB Statement

Id Name Operation operand
r--T----------T---------~--,
1//1 [jobname] I JOB I [DUMP] [,accounting information] I
I I I I NODUMP I L-_~ __________ ~ _________ ~ ___ J

r------------------T-------------------------------T------------------------------------,
I Specification I Reason for Specifying I How to Specify I
~------------------+-------------------------------+------------------------------------~
1// IRequired lAs shown I
~------------------+-------------------------------+-----------------------------~------i
I jobname ITO nan1e the job I From one through eight alphameric I
I I Icharacters, the first of which must I
I I Ibe a letter I
~------------------+-------------------------------+------------------------------------~
I JOB I Required I As shown I
~'------------------+-------------------------------+------------------------------------~
IDUMP ITO produce a dump if the pro- lAS shown I
I I gram terminates abnormally; the I I'
I Icontents of main storage and ofl I
I Ithe general registers are writ-I I
I I ten on SYSLST I I
~------------------+-------------------------------+------------------------------------i
I NODUMP IDefault option -- no dump pro- lAs shown I
I I duced I I
~------------------+-------------------------------+------------------------------------i
I accounting ITO satisfy any installation re-IFrom 1 through 16 alpharreric charac-I
I information Iquirement Iters, the first of which must be I
I I lother than a left parenthesis or a I
I I I blank I L __________________ ~ _______________________________ ~ ____________________________________ J

52

LABEL Statement

Id Name Operation Operand
r--T----------T---------T---,
1//1 I LABEL I [label-informatiOn] I
I I I I { =dsname } I
I I I I SAME =SYSxxx I L __ ~ __________ ~ _________ ~ ___ J

r------------------T-------------------------------T------------------------------------,
I Specification I Reason for Specifying I How to specify I
.------------------+-------------------------------+------------------------------------~
1// I Required I As shown I
~------------------+-------------------------------+------------------------------------~
I LABEL I Requi red I As shown I
.------------------+-------------------------------+------------------------------------~
Ilabel-information ITO provide label information ILabel specifications (see next I
I Ifor a data set; required for I chart) I
I Idirect access data sets unless I I
I I SAfI'.E is specified I I
~------------------+-------------------------------+------------------------------------~
I SAME ITo indicate that the label in- lAs shown I
I Iformation for a data set dupli-I I
I I cates the information already I I
I I given for another data set I I
~------------------+-------------------------------+------------------------------------~
I=dsname ITo identify the other data set IAn equal sign followed by the name I
I I by name lof the other data set I
.------------------f-------------------------------+------------------------------------i

(I=SYSxxx ITO identify the other data set IAn equal sign followed by the sym- I
I Ithrough the symbolic unit name Ibolic unit name associated with the I
I Icurrently associated with it lother data set I L __________________ ~ _______________________________ ~ ____________________________________ J

Control Statements 53

Label Specifications:

[block-length] [,expiration-date] [,WRCHK]
, NOWRCHK

r------------------~------------------------------T------------------------------------,
I Specification I Reason for Specifying I How to Specify ,
~------------------+-------------------------------+------------------------------------i
I block-length IRequired for direct access data I Either a decimal number from 1 ,
I Isets; indicates the number of Ithrough 360 or a number equal to the I
I Ibytes in a FORTRAN record Inumber specified for record length I
I I lin a DEFINE FILE statement within I
I I Ithe FORTRAN program I
~-----------------+-------------------------------+-----------~--------~---------------i
I expiration-date ITo specify the date on which IThe date in the form yyddd, where yyl
I Ithe data set may be deleted; I (two digits from 00 through 99) re- ,
I lotherwise, the current date is ,presents the year and ddd (three ,
I lused as the expiration date Idigits from 001 through 366) repre- , I' I sents the day of the year ,
~------------------+-------------------------------+-------------.----------------------~
IWRCHK ITO indicate that write checkinglAs shown ,
, lis to be performed on a direct, I
I laccess data set; can be over- I ,
, Iridden by a specification of I I
, ,NOVIRCHK in an ALLOC or ACCESS I I
I I statement for the data set I I
.------------------+-------------------------------+------------------------------------i
I NOWRCHK ITo indicate that write checkinglAs shown ,
I lis not to be performed on a di-I ,
I Irect access data set; can be , ,
, loverridden by a specification I ,
, 'of WRCHK in an ALLOC or ACCESS I ,
, ,statement for the data set I , L __________________ ~ ______________________________ ~ ____________________________________ J

c

LISTIO Statement

(Id Name Operation Operand
r--T----------T---------T---,
1//1 1 LISTIO 1 [FROG] I
I I I I SYSxxx . I l __ ~ __________ ~ ________ ~ ___ J

r-----~------------T-------------------------------T------------------------------------,
I Specification I Reason for Specifying I How to specify I
~-----------------+-------------------------------+------------------------------------~
1// I Required I As shown I
~------------------+-------------------------------+------------------------------------~
ILISTIO I Required lAS shown I
~------------------+-------------------------------+------------------------------------~
IPROG ITo limit the list of current lAS shown I
I lunit assignments to only those I I
I I assignments made or altered I I
I I during the current job I I
~------------------+-------------------------------+------------------------------------~
ISYSxxx ITO request that the current as-IThe name of the symbolic unit whose I
I Isignment of a single symbolic Icurrent assignment is to be listed I
I lunit be listed I I l __________________ ~ _______________________________ ~ _______ ~ ____________________________ J

(

•

Control Statements 55

RENAME statement

Id Name Operation Operand
r--T----------~--------~--,
1// I I RENAME I {Old-dSname" new-dsname } I
I I I I dsname (old-member-name" new-member-name) I L __ ~ __________ ~ _________ ~ __ J

r------------------T-------------------------------T------------------------------------, I Specification I Reason for Specifying I How to Specify I
t------------------f-------~-----------------------f------------------------------------~
1// I Required lAs shown I
b------------------f-------------------------------f------------------------------------~
I RENAME I Required lAs shown I
t------------------f-------------------------------f------------------------------------~
lold-dsname ITO indicate the data set whose IThe name of the data set as it I
I Iname is to be changed lappears in the volume table of I
I I I contents I
t------------------f-------------------------------f------------------------------------~
Inew-dsname ITO specify the new name for a IFrom one through eight alphameric I
I Idata set whose name is to be Icharacters" the first of which must I
I I changed Ibe a letter I
t------------------f-------------------------------f------------------------------------~
Idsname ITO indicate the name of a IThe name of the data set as it I
I Idirectoried data set containinglappears in the volume table of I
I la member whose name is to be. I contents I
I I changed I I
t------------------f-------------------------------f------------------------------------~
lold-member-name ITO indicate the member name IThe name of the member as it appears I
I I that is to be changed I in the directory 1""'-",
t------------------f-------------------------------f------------------------------------~ "",,~'
Inew-member-name ITO indicate the new name of thelFrom one through eight alphameric I
I Imember whose name is to be Icharacters, the first of which must I
I I changed Ibe a letter I L __________________ ~ _______________________________ ~ ____________________________________ J

c
56

RESET Statement

(Id Name Operation Operand
r--T----------T---------T---, ~
1// I 1 RESET I [SYSXXX] I ~ L __ ~ __________ ~ ________ ~ ___ J

r------------------T-------------------------------T------------------------------------,
1 Specification 1 Reason for Specifying I How to Specify I
~------------------+-------------------------------+----.. -------------------------------~
1// I Required lAS shown I
~------------------+-------------------------------+------------------------------------~
1 RESET I Required lAS shown I
~------------------+-------------------------------+------------------------------------~
ISYSxxx ITO indicate the unit whose IThe symbolic unit name of any unit I
I lassignment is to be restored~ Ihaving a standard assignment I
I I the absence of this specifica- 1 I
1 Ition causes all units with I I
I I standard assignments to be 1 I
I I restored I I L __________________ ~ _______________________________ ~ ____________________________________ J

f

Control Statements 57

UNCATLG Statement

Id Name Operation Operand
r--T----------T---------T---,
1 //1 I UNCATLG I dsname ·1 L __ ~~ _________ ~ ____ ~ ____ ~ _____________ ~ ___ J

r------------------T-------------------------------T-----------------------------------~,
I Specification I Reason for Specifying I How to Specify 1
~------------------+-------------------------------+------------------------------------~
1// I Required lAs shown I
~------------------+-------------------------------+------------------------------------~
IUNCATLG I Required lAS shown 1

~----------~-------+-------------------------------+------------------------------------~
Idsname IRequired~ indicates the name oflThe name of the data set as it was 1
I Ithe data set to be removed fromlentered into the system catalog 1
1 Ithe system catalog I 1 L ________ -" _________ ~ ______________________________ .1. ____________________________________ J

..

c
58 .

«

LINKAGE EDITOR CONTROL STATEMENTS

Linkage editor control statements con­
sist of only two fields -- an operation
field and an operand field. Both fields
are required.

The operation field,. which identifies
the statement by name, may start in any
column after column 1. The operand field
follows the operation field" separated from
it by at least one blank. The operand
field consists of from one through three
specifications, separated from each other
by commas. Specifications must be punched
in the order shown in the statement for­
mats. No blanks are permitted within the
operand fieid.

Linkage editor control statements may
not be continued; all information must be
punched in one card. Comments may be
written in the statements; they must be
separated from the last character of the
operand field by at least one blank and
must not extend beyond column 71.

Character Set

In addition to the 39 alphameric charac­
ters permitted in job control statements"

linkage editor control statements allow the
use of the characters comma and asterisk,
but only where specifically indicated in
the statement formats.

All linkage editor control statements
must be punched in the Extended Binary­
Coded-Decimal Interchange Code (EBCDIC).

Statement Formats

The linkage editor control statements
are presented here in alphabetic order.
For each statement, the statement format
appears first, showing the contents of the
operation and operand fields. Immediately
following each statement format is a
specifications table, which indicates for
each statement format specification the
reason for specifying it and how to specify
it.

The notation used in
fQrmats is the same as that
job control statements.

these statement
used for the

Control Statements 59

INCLUDE Statement

Operation Operand
r---------r---------------~~--,
, INCLUDE Imodule. {L} ,
, I R , l _________ ~ ___ J

r--------~--------T-------------------------------T------------------------------------, I Specification, Reason for Specifying' How to Specify ,
~------------------+--------------------~----------+------------------------------------~ I INCLUDE I Required lAs shown ,
~------------------+-------------------------------+------------------------------------~ I module 'Required to identify the modulelThe name of the module as it appears I
, ,that is to be included in the lin a MODULE statement or in the name I
I 'phase Ifield of an EXEC FORTRAN statement I
~------------------+-------------------------------+------------------------------------~ I L I To indicate that the module to I As shown ,
I I be processed can be found on I ,
I ISYSOOO I I
~------------------+-------------------------------+------------------------------------~
IR ITo indicate that the module to lAs shown I
I I be processed can be found in I ,
I ,the module library I I l __________________ ~ _______________________________ ~ ____________________________________ J

•

c
60

MODULE Statement

(operation Operand I

if
r---------T---,
,MODULE I name I L _________ ~ ___ ~ ___________________ J

r

r------------------T-------------------------------T------------------------------------,
I Specification I Reason for Specifying I How to specify I
~------------------+-------------------------------+------------------------------------~
I MODULE I Required lAS shown I
~------------------+----------------------~--------+------------------------------------~
I name I Required: indicates the name of IF rom one through eight alphameric I
I I the module I characters,. the first of which must I
I I Ibe a letter I L-_________________ ~ _______________________________ L ____________________________________ J

(

..

Control Statements 61

PHASE Statement

Operation Operand

l---~-----i-----------l-~-----l---1

~. . PHASE I phasename. . * [• NOAUTO] I
I I ROOT I
I I phase I L _________ ~ ___ ~ ________________________________ J

r------------------T-------------------------------T------------------------------------,
I specification I Reason for Specifying . I How to Specify I
f------------------+-------------------------------+------------------------------------~
I PHASE I Required lAS shown I
f------------------+-------------------------------+------------------------------------~
Iphasename IRequired to name the phase IFrom one through eight alphameric I
I I Icharacters. the first of which must I
I I Ibe alphabetic I
f------------------+-------------------------------+------------------------------------~
IS ITo specify that the phase have lAS shown I
I I its origin at the first avail- I . I
I I able location in the problem I I
I I program area I I
f------------------+-------------------------------+------------------------------------~ 1* ITo specify that the phase have lAs shown I
I tits origin at the first avail- I I
I I able location after the most I I
I I recently processed phase in I I
I Ithe job step~ equivalent to the I I
I . I S spedf ication if this is I I
I I the first PHASE statement in I I
I Ithe linkage editor input I I
I I deck I I
f------------------+-------------------------------+------------------------------------~
I ROOT IFor multiphase programs only~ lAs shown I
I lidentifies the phase as a root I I
I I phase (its origin is the first I I
I lavailable location in the prob-I I
I Ilem program area I I
f------------------+-------------------------------+------------------------------------~
I phase ITo indicate that this phase is IThe name of the other phase as spec-I
I Ito have the same origin as lified in the linkage editor PHASE I
I I another phase currently in I statement that named it I
I Ithe phase library I I
f------------------+-------------------------------+------------------------------------~
I NOAUTO ITO suppress the automatic link-lAs shown I
I ling facility for this phase I I
I I only I I L __________________ ~ _______________________________ ~ ____________________________________ J •

c
62

to

(,

The components of the Model 44 Program­
ming system produce aids that may be used
to document and debug programs. This chap­
ter describes the listings" maps" card
decks., and error messages produced by these
components.

COMPILER OUTPUT

Output from the compiler includes a
source listing., a compiler storage map.,
and/or a module deck, depending on options
specified by the programmer in the EXEC
statement for the FORTRAN compiler.

FORTRAN IV MODEL 44 PS DATE 67023

0001 SUBROUTINE SUBA
0002 DIMENSION JNPUT(IO),JNOUT(IO)
0003 30 FORMAT (015)
0004 10 FORMAT ('1',1015)
0005 INDEX = 100
0006 READ 0, 30)(dNPUT(J),J=1, 10)
0007 DO 40 1=1,10
0008 JNPUT(I) = JNPUT(I) - INDEX
0009 40 JNOUT(I) = JNPUT(I)
0010 WRITE 0, 10)(JNOUT(J),J=I, 10)
0011 RETURN
0012 END

Figure 4. Source Listing

SYSTEM OUTPUT

Source Listing

Unless the NOSOURCE option is specified,
a source listing is written on the system
output unit SYSOPT. An example of a source
listing is shown in Figure 4.

compiler Error/Warning Messages

The error/warning messages produced by
the compiler are noted on the source list­
ing. Figure 5 illustrates a source listing
with error messages.

PAGE 0001

system Output 63

FORTRAN IV

0001
0002
0003
0004

01)
0005
0006
0007
0008

01)
0009

01)
00 I 0

MODEL 44 PS

DIMENSION A(IO,IO),B(IO,IO)
READ 0,5) E,F,G
GO TO 2
DO 10, 1=1,10

$ $
LABEL 02) SYNTAX

DO 20 J=2,10
10 A(I,J) = B(I,J).C(I,J)
20 CONTINUE

WRITE 0,6) A,

SYNTAX
6 FORMAT (5FIO.2

SYNTAX
END

Figure 5. Source Listing with Errors

DATE 67023

Error information for a source statement
containing errors appears on the listing
lines immediately following that statement.
For each error encountered" a dollar sign
is printed beneath the' active character
preceding the one that was being inspected
when the error was detected. The listing
line that follows the printed statement
contains only the dollar sign markers.

The next line of the listing describes
the marked errors. The errors are numbered
within the statement (counting from one for
the first error marked)~ the number is
followed by a right parenthesis, the error
number, and the type of error. Four errors
are described on each line, for as many
lines as are required to list all the
marked errors in the source statement.

For a description of error/warning
sages,. see Appendix D.

64

mes-

PAGE 0001

storage Map

If the MAP option
piler storage map is
The map is divided
classified as follows:

• COMMON variables

is specified, a com­
written on SYSOPT.
into several tables.

• EQUIVALENCE variables

• Scalar variables

• Array variables

• Subprograms called

• NAMELIST variables

• Statement labels

In the case
separate table

of COMMON variables, a
is provided for each blank

•

c

(-
FORTRAN IV MODEL 44 PS DATE 67023 PAGE 0002

COMMON BLOCK I I MAP SIZE 000010
SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYt4BOL LOCATION SYMBOL LOCATION
CMl 000000 CM2 000004 CM3 000008 CM4 OOOOOC

COMMON BLOCK I NCMl I MAP SIZE 000008
SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION
AA 000000 BB 000004

COMMON BLOCK I NCM2 I MAP SIZE 000008
SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION
CC 000000 DO 000004

SCALAR MAP
SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION
B 0000E4 C 0000E8 A OOOOEC
I 0000F8 ·OOOOFC L 000100

ARRAY MAP
SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION
ARRAY OOOIOC LIST 000300

SUBPROGRAMS CALLED
SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION
FRXPR= 000328 IBCOM: 00032C SIN 000330

NAMELIST MAP
SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION
xx 000340 YY 0003A4

LABEL MAP
LABEL LOCATION LABEL LOCAT ION LABEL LOCATION

1 000454 10 00045A 7 000466

TOTAL MEMORY REQUIREMENTS 000514 BYTES

COMPILER HIGHEST SEVERITY CODE WAS 0

Figure 6. compiler Storage Map

or named COMMON defined in the set of
source statements. In all other cases, a
separate table is produced for each classi­
fication, with the appropriate heading
preceding the data. The variable names.,
statement labels or subprogram names ar.e
arranged across the page, five to a line.
The relative location of each appears next
to the name. If a particular classifica­
tion of names is not used anywhere in the
source program, the corresponding table
does not appear in the storage map.

Figure 6 shows a sample compiler storage
map.

Module Deck

If the DECK option is specified, a
module deck is produced on the system punch
unit, SYSPCH. This deck is made up of four

SYMBOL LOCATION SYMBOL LOCATION

SYMBOL LOCATION SYMBOL LOCATION
0 OOOOFO E 0000F4
F 000104 K 000108

SYMBOL LOCATION SYMBOL LOCATION

SYMBOL LOCATION SYMBOL LOCATION

SYf1BOL LOCATION SYMBOL LOCATION

LABEL LOCATION LABEL LOCATION
5 0004CO

types of cards -- TXT, RLD, ESD, and END.
A functional description of these cards is
given in the following paragraphs.

MODULE DECK CARDS: Every card in the
module deck contains a 12-2-9 punch in
column 1 and an identifier in columns 2
through 4. The identifier consists of the
characters ESD, RLD, TXT, or END. The
first four characters of the name of the
program are placed in columns 73 through 76
with the sequence number of the card in
columns 77-80.

ESD Card: Four types of ESD cards are
generated as follows:

ESD, type 0
contains the name of the program and
indicates the beginning of the module.
The name is the module name followed
by an equal sign.

System output 65

I

II

ESD., type 1
contains the entry point (where con­
trol is given to begin execution of
the module). The entry point is the
name in a SUBROUTINE or FUNCTION
statement or the name' MAIN44.

ESD" type 2
contains the names of subprograms re­
ferred to in the source module by CALL
statements" EXTERNAL statements"
explicit function references" and
implici t function references,.

ESD" type 5
contains information about each COMMON
area ..

The number 0, 1, 2, or 5 is placed in
card column 25.

RLD Card: An RLD card is generated for
external references indicated in the ESD,
type 2 cards. To complete external ref­
erences" the linkage editor matches the
addresses in the RLD card with external
symbols in the ESD card. When external
references are resolved, the storage at the
address indicated in the RLD card contains
the address assigned to the subprogram
indicated in the ESD" type 2 card. RLD
cards are also generated for a branch list
produced for statement numbers.

TXT Card: The TXT card contains the con­
stants and variables used by the programmer
in his source statements, any constants and
variables generated by the compiler" cod~d
information for FORMAT statements, and the
machine instructions generated by the com­
piler from the set of source statements.

END Card: One END card is generated for
each set of compiled source statements.
This card indicates the end of the module
to the linkage editor, the relative loca­
tion of the main entry point, and the
length (in bytes) of the module.

MODULE DECK STRUCTURE: Figure
FORTRAN module deck structure.
ar,e listed in the order in
appear in the module deck.

66

7 shows the
The cards
which they

LINKAGE EDITOR OUTPUT

The linkage editor produces a phase map
unless the NOMAP option is specified. The
linkage editor also produces diagnostic
messages., which are listed in Appendix D.

Phase Map

The phase map is written on SYSLST. To
the linkage editor, each program (main or
subprogram) ,is a control section (CSECT).

Each control section name is written
along with the origin and the length of the
control section. ' The origin and length of
a control section are written in hexadeci­
mal numbers.

For each control section, any entry
points and their locations are also writ­
ten; any functions called from the module
library are listed.

Figure 8 shows a sample phase map.

r---, IESD, Type 0 Program 'Name of the Module I
~---~-------------------------------------~
I ESD" Type 1 Entry Points I
~---~
I ESD, Type 5 COMMON Area I

~---~ IESD, Type 2 External References I

~---~
ITXT Cards for NAMELIST Tables I
~---~
ITXT Cards for Literal Constants I
~---~
ITXT Cards for FORMAT Statements I
~---~
ITXT Cards for Temporary Storage and I
I Constants I
~---~
ITXT Cards for Module Code I

~---~
ITXT Cards for the BASE Table I

~---~ ITXT Cards for the BRANCH Table I
~---~
ITXT Cards for Subprogram Argument Lists I
~---~
ITXT cards for Subprogram Addresses I
~---~
ITXT Cards for Address Constants I
~---------.,...-------------------------------~
IRLD Cards for the Module I
~---~
lEND Card I L __________________________________ ~ ______ J

Figure 7. Object Module Deck Structure c

(

(

67/000 PHASE TRANSFER ADDR. LOCORE HICORE BLOCK NO.

COMMON

COMMON

ROOT RTPHAS 0043A8 0043A8 007947 293

PI 007948 007948 0086C7 313

P2 007948 007948 0086F7 318

LINKAGE EDITOR HIGHEST SEVERITY WAS 0

Figure 8. Phase Map

PHASE OUTPUT

At execution time,. FORTRAN phase execu­
tion diagnostic messages are generated in
three forms -- error code diagnostic messa­
ges. program interrupt messages,. and opera­
tor messages. An error code indicates an
input/output error or a misuse of a FORTRAN
library function. A program interrupt mes­
sage indicates a condition that is beyond
the capacity of the programming system to
correct. An operator message is generated
when a STOP or PAUSE statement is executed.

ESD TYPE LABEL LOADED REL-FACTOR

COMMON 004200 OOOIAO

COMMON CTRL 0043AO 000004

CSECT MAIN44= 0043A8 0043A8
• ENTRY P,AIN44 0043A8

CSECT BOAI BCOM 004B98 004B98
ENTRY IBCOM= 004B98

• ENTRY ADCON= 004C54
ENTRY FI RSTIM 005004

CSECT BOAFEXI T 007170 007170
ENTRY EXIT 007176

CSf.CT BOAOVLY 007190 007190
ENTRY LOAD 0071A8

• ENTRY LINK 007198

CSECT BOAFIOCS 007288 007288
ENTRY RCBORG== 007890
ENTRY BUFDRG= 00788C
ENTRY Fl OCS= 007288

• Et1TRY VDIDCS= 007894
• ENTRY FIOCD= 0072C2

CSECT BOAUOPT 0078B8 0078B8
ENTRY USERDPT 0078B8

CSECT BOAUNITB 0078CO 0078CO
ENTRY UNITAB= 0078CO

CSECT SUB= 007948 007948
ENTRY SUB 007948

CSECT BOAFRXPI 008610 008610
ENTRY FRXPI= 008618

CSECT CFUNC= 007948 007948
ENTRY CFUNC 007948

CSECT BOAFRXPI 008640 008640
ENTRY FRXPI= 008648

Error Code Diagnostic Messages

When an error condition arises during
execution of a FORTRAN program, a message
is written on SYSOPT, as follows:

OAxxxI

The error code is the number specified by
the digits xxx. These error codes are
described in Appendix D. If any errors are
detected, execution of the job step is
terminated and a condition code of 16 is
returned to the programming system.

System Output 67

Program Interrupt Message~

A program interrupt message containing
the old Program Status Word (PSW) is pro­
duced on SYSLST when one of the following
exceptions occurs:

• Specification Exception (6)

• Fixed-Point Divide Exception (9)

• Exponent-Overflow Exception (c)

• Exponent-Underflow Exception (D)

• Floating-Point Divide Exception (F,)

Operator intervention is not required
for any, of these interruptions" and execu­
tion is not terminated. Figure 9 shows the
interruption message format.

The five characters in the PSW <i.e., 6"
9, C,' D, or F) represent the code number

(in hexadecimal) associated with the type
of interruption.

Sample storage Printouts

Figure 10 shows a sample printout for
each dump format that can be specified in a
call to DUMP or PDUMP. ,The printouts are
given in the following order: hexadecimal,
LOGICAL*1, LOGICAL*4, INTEGER*2,~ I NTEGER* 4 ,
REAL*4, REAL*S, COMPLEX*S, COMPLEX*16, and
literal.

Operator Messages

A message is transmitted to the operator
when a STOP or PAUSE statement is executed.
Operator messages are written on SYSLOG.,
the console printer. For a description of
these messages, see Appendix D.

r---~-6-~-------------------------------1

I 9 I
I OA210I PROGRAM INTERRUPT () - OLD PSW IS xxxxxxx C xxxxxxxx I
I D I
I F I l ___ J

Figure 9. Program Interrupt Message

68

/,,,,,,,

\~

c

CALL PDUMP WITH HEXADECIMAL FORMAT SPECIFIED

(00A3EO 485F5El0 00000000 485F5El0 10000000 42100000

006DC8 42800000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
006DFS COOOOOOO 00000000 41200000 41566666 OOOOOOOC 41100000

CALL PDUMP WITH LOGICAL'1 FORMAT SPECIFIED

I

il

~
006E1E T F

CALL PDUMP WITH LOGICAL'4 FORMAT SPECIFIED

006El0 F T

CALL PDUMP WITH INTEGER'2 FOR~1AT SPECIFIED

006E1S 10

006E1A -100

006E1C 10

CALL PDUMP WITH INTEGERo4 FORMAT SPECIFIED

006E20 1 2 3 4 5 6 7 S 9 10
006E4S 11 12

CALL PDUMP WITH REAL'4. FORMAT SPECIFIED

006EOO 0.20000000E 01 0.53999996E 01

CALL PDUMP WITH REAL'8 FORMAT SPECIFIED

006DC8 0.17599999999999990 03

CALL PDUMP WITH COMPLEXOS FORMAT SPECIFIED

006000 (3.0000000,4.0000000) (4.0000000,S.0000000)

CALL PDUMP WITH COMPLEXo16 FORMAT SPEC I FI ED

006DEO (0.9999999999999990,0.9999999999999990) (-0.9999999999999990,-0.9999999999999990)

·CALL PDUMP WITH LITERAL FORMAT SPECIFIED

006E5C THIS ARRAY CONTAINS ALPHAMERIC DATA

Figure 10. Sample Storage Printouts

System Output 69

PROGRAMMING CONSIDERATIONS

This section discusses program optimiza­
tion and limitations of the compiler.

PROGRAM OPTIMIZATION

Facilities are available in the FORTRAN
language that enable a programmer to optim­
ize compilation and execution speed and to
reduce the size of the phase.

Initialization

The programmer should initially set to
zero all variables that are no~injtjalized
by arithmetic statements in his program.
The value of a variable cannot be guaran­
teed until the programmer has given that
variable a value by a replacement state­
ment. For example, in the following sub­
program:

SUBROUTINE ALPHA(X,Y,Z)
A=B+2.0

the result A may contain any value, because
B was not initialized. If the programmer
expects B to be zero" he should initialize
B as shown in the following statements:

SUBROUTINE ALPHA (X" Y, Z)
B=O.O
A=B+2.0

Whenever possible., for greater efficien­
cy the DATA initialization statement should
be used to define initial values.

Arithmetic Statements

When the programmer wants to calculate
the square root, the square root library
subprogram should be used instead of the
exponential function. For example, the
statement:

HYPOT=SQRT(A*A+B*B)

70

is more accurate than the statement:

HYPOT=(A*A+B*B) **0. 5

because the SQRT function is more accurate
than the exponential function.

The mixed mode arithmetic expression is
provided as a convenience to the program­
mer. The number of instructions generated
to perform conversions can be reduced"
however" if the order of evaluation of
expressions is kept in mind.

For example, in the expression:

A=A+I+J

where A is real and I and J are integer"
the evaluation is from lef,t., to right.
Instructions are" therefore" produced to
convert I to real before it is added to A,
and additional instructions are included to
convert J to real before it is added t9 the
previous result. If the expression is
written in either of the following ways:

A = A + (I + J)
A = I + J + A

one of the conversions is eliminated
because I and J are added together first,
and the result is converted to real before
being added to A,.

IF Statement

An arithmetic IF statement lists three
statement numbers. One of the listed num­
bers should immediately follow the IF
statement to eliminate unnecessary branch­
ing in the phase. For example, the coding
represented by the following statements:

IF (A-B)20,30,30
30 A=O.O

20 B=O.O

is more efficient than the coding rep­
resented by the statements:

,/"'--";r,,\

'.J

C'"
-I

(

•

('

IF (A-B) 20,,30,30
10 X=2.+Y

30 A=O.O

20 B=O.O

DO Loop Considerations

Values for expressions that remain con­
stant within a DO loop should be calculated
before entry into the loop, instead of
calculating the expression each time
through the loop. For example, in the
following statements:

DO 10 1=1.,100
X(I)=2.4*(G+ALPHA)+Y(I)

10 CONTINUE

the expression 2.0*(G+ALPHA) must
lated each time the DO loop is
For greater efficiency, the
statements should be substituted:

BETA=2.4*(G+ALPHA)
DO 10 1=1,100
X (I) =BETA+Y (I)

10 CONTINUE

be calcu­
executed .•
following

Because the expression 2.0* (G+ALPHA) is
calculated only once, the execution time is
decreased.

Any subscripts that remain constant
within the range of a DO should not be used
in the DO loop. For example, in the
following statements:

DO 10 1=1,50

X(I)=Y(!)+Z(J)

10 CONTINUE

a subscript calculation for Z(J) is per­
formed each time the DO loop is executed,
even though Z(J) remains constant for each
execution of the loop. By substituting the
following statements:

B=Z(J)
DO fO 1=1,50

X(I)=Y(I)+B

10 CONTINUE

only one subscript calculation is made for
Z(J) and execution time is decreased •

READ/WRITE Statements

To read or write an array, an implied DO
in a READ/WRITE statement should be used
instead of a DO loop. For example, 5
records, each containing two values, are
written by the following statements:

10

15

FORMAT (F20.5,I10)
DO 15 1=1,5
WRITE(5.,lO)A(I),J(I)

In the statements:

10 FORMAT (5(F20.5,I10»
WRITE (5,10) (A(!) ,J (I)., 1=1,5)

only one record
written. The use
phase execution
volume.

containing 10 values is
of an implied DO saves
time and space on the

Extra subscript calculation within the
range of an implied DO should be avoided.
This is the same consideration shown in
regard to the DO loop. For example, if the
statements:

2 FORMAT('0',10F12.6)

READ <1,2) (A U) ,1=4,,31,3)

are substituted for the statements:

2 FORMAT('0',10F12.6)
READ(1,2) (A(3*I+1),I=1,10)

the intricacy of the subscript calculation
is reduced and the phase execution time is
reduced.

programming Considerations 71

Boundary Alignment of Variables in COMMON
Blocks and EQUIVALENCE Groups

The Model 44 programming System will
adjust improper boundary alignments result­
ing from the ordering of variables in a
COMMON block or in an EQUIVALENCE group.
However, considerable efficiency is lost
during program execution if the order of
the variables is such that they are not
located on proper boundaries. A complex
variable of length 16 or a real or complex
variable of length 8 should be located on a
double-word boundary: a real, integer, or
logical variable of length 4 should be
located on a fullword boundary: an integer
variable of length 2 should be located on a
halfword boundary. <Information on avoid­
ing improper alignment of variables and the
resulting loss in efficiency can be found
in the discussions of COMMON blocks and
EQUIVALENCE groups in the publication IBM
System/360 FORTRAN IV Language" Form
c28-6S1S.)

If a variable is located on an improper
boundary, each machine-instruction ref­
erence to the variable requires that:

1. The specification exception resulting
from this reference be processed.

2,. The boundary adjustment routine be
invoked to simulate the execution of
the instruction containing the ref­
erence in order to circumvent the
boundary violation.

The use of the boundary adjustment rou­
tine is an installation option; that is, at
the time the system is assembled, an
installation can indicate whether or not
the routine is to be invoked.

An installation can also modify the
system to request that a boundary adjust­
ment message be printed. The message indi­
cates that a boundary adjustment is to take
place. It is printed once for each bounda­
ry alignment error" up to a maximum of !!
errors. The value of!! is determined by
the installation. Boundary adjustment
takes place, however, whether or not the
boundary adjustment message is printed.

The format of the message is:

OA210I PROGRAM INTERRUPT CA) OLD PSW
IS xxxxxxxxxxxxxxxx

The A in parentheses identifies boundary
adjustment as the cause of the message.

72

The boundary adjustment routine is
invoked whenever a boundary violation
occurs in either a FORTRAN main program or
subprogram. The routine is also available
to assembler language subprograms that
operate in.a FORTRAN environment (see
Appendix C).

When" for some reason, the boundary
adjustment routine cannot be loaded from
the phase library., the diagnostic message
OA219I is printed. The loading of the
boundary adjustment routine is dependent
upon the amount of space available in the
problem program area. The first location
available to the boundary adjustment rou­
tine is the one immediately following the
highest location thus far occupied by any
phase of the user" s program. This is not
necessarily the highest location occupied
by the phase in which the boundary align­
ment error occurs.

FUNCTION Subprograms

The function variables for the principal
entry and for each alternate entry to a
FUNCTION subprogram are made equivalent.
As a result" the value returned for a
function is the value of the last function
variable set before the RETURN statement
causing the return, regardless of the entry
point used •. For example:

FUNCTION SIN (X)
ENTRY COS eX}
SIN = X-X**3/6+X**S/120
COS = SQRT(1.0-SIN**2)
RETURN
END

always returns the cosine value" since the
variables SIN and COS occupy the same space
in storage. In order to produce the
desired result, the FUNCTION subprogram
should be coded:

FUNCTION SIN{X)
X = X-PI/2.0
ENTRY COS <X)
COS = l-X**2/2+X**4/24
RETURN
END

In this case,. a change in the argument
determines that the value in COS actually
is the sine of the angle X when the SIN
entry to the function is used. c

(-

(

(

References to FUNCTION Subprograms

The convention for linkage to FUNCTION
subprograms requires that all registers
containing active partial results from an
expression be saved before branching to the
FUNCTION subprogram. As a result, more
efficient codes can be produced by placing
FUNCTION references so that they are evalu­
ated before the rest of the expression in
which they appear is evaluated.

For example., in the statement:

A = B * C + D * E * FN(G)

the partial results B * C and D * E must
both be stored in temporary locations
before a call is made to the FUNCTION
subprogram FN. If the statement is rewrit­
ten as follows:

A = FN(G) * D * E + B * C

the unnecessary STORE instructions are eli­
minated because no partial results exist
when FN is called.

Use of DUMP and PDUMP

The storage locations assigned to varia­
bles in a FORTRAN program are listed in the
compiler storage map.. Whenever possible,
the programmer should refer to the storage
map before using the DUMP or PDUMP subrou­
tines. Otherwise, the following conven­
tions should be observed when using the
DUMP or PDUMP subroutines to insure that
the appropriate areas of storage are
dumped.

In the following examples, A is a varia­
ble in COMMON, B is a real number, and the
array TABLE is dimensioned as:

DIMENSION TABLE(20)

If an array and a variable are to be
dumped at the same time, a separate set of
arguments should be used for the array and
for the variable. The specification of
limits for the array should be from the
first element in the array to the last
element. For example, the following state­
ment could be used to dump TABLE and B in
hexadecimal format, and to terminate execu­
tion after the dump is taken:

CALL DUMP (TABLE(l) ,TABLE(20)"O"B,B,O)

If an area in COMMON is to be dumped at
the same time as an area of storage not in
COMMON, the arguments for the area in
COMMON should be given separately. For
example, the following statement could be
used to dump the variables A and B in real
format without terminating execution:

CALL PDUMP (A, A" S,B-,B., S)

If variables not in COMMON are to be
dumped, the programs should list each vari­
able separately in the argument list. For
example, if R, P, Q are defined implicitly
in the program, the statement:

CALL PDUMP(R,R,S,P,P,S,Q,Q,S}

should be used to dump the three variables
in storage. If" however, the statement:

CALL PDUMP(R,Q,S}

is used., all main storage between Rand Q
is dumped.

If an array and a variable are passed as
arguments to a subroutine, the arguments in
the call to DUMP or PDUMP in the subroutine
should specify the parameters used in the
definition of the subroutine. For example,
if the subroutine SUBI is defined as:

SUBROUTINE SUBI (X, Y)
DIMENSION X(10}

and the call to SUBI within the source
program is:

DIMENSION A(10}

CALL SUBI (A., B)

then the following statement in the subrou­
tine should be used to dump the variables
in hexadecimal format without terminating
execution:

CALL PDUMP (X(l},X(lO},O,Y,Y,O)

If the statement

CALL PDUMP (X(l},Y,O)

Programming Considerations 73

Table 3. Compiler Restrictions
r---------------------------------~------, , I MAXIMUM ,
, ITEM , NUMBER,
.---------------------------------t-------~
,Unique variable names , 8000,
.----~----------------------------t-------~
1 Unique array names 1 300 0 1
.--------~------------------------t------~~
IVariables and arrays in COMMON , 8000 I
.---------------------------------t-------i
INames in EQUIVALENCE statements I 5000,
1 plus number of EQUIVALENCE 1 1
, lists 'I
.---------------------------------t-------~
,statement numbers" including one , 16000 1
, additional statement number' I
1 for each DQ. Logical IF. and , ,
I implied DC in an input/output, 1
I list 1 ,
.---------------------------------t-------i
,Names in Explicit specification I 8000,
, statements 1 1
• ---------------------------------t-------i
IUnique real constants 1 16000 1
.---------------------------------t-------i
IUnique integer constants 1 16000 1
.-----------·----------------------t-------~
1 Unique double-precision real, 8000 1
1 constants 1 I
.---------------------------------t-------i
IUnique complex constants I 8000 1
.---------------------------------t-------~
Iunique double-precision complex 1 4000 I
I constants 1 I
• ---------------------------------t-------~
I References to unique subprogram I 8000 1
I entry point names (explicit 1 ,
1 and implicit) 1 1
.---------------------------------t-------i
IStatement function definitions 1 8000 I
~--------------------------------t-------i
INested statement function defi- 1 15 I
, nitions I . I
.---------------------------------t-------~
IDummy arguments for a subprogram I 8000 I
~--------------------------------t-------i
ITotal arguments to all subpro- I 16000 I
I grams and statement functions, I
~--------------------------------t-------i
INested DO statements I 3000 I
.---------------------------------t-------~
,Nested FUNCTION subprogram ref-, 20 I
, erences " L _________________________________ ~ _______ J

74

is used, all storage between A(l) and Y is
dumped., as the result of the method of
transmitting arguments.

Block Length

A block of data written by the FCRTRAN
IV compiler is never less than 360 bytes
long. Even though the LABEL job control
statement permits a block length specifi­
cation smaller than 360. the size of the
buffer from which records are written is
always at least 360 bytes. While writing
his source program, the FORTRAN programmer
should try to format his records so that
optimum use is made of the 360-byte buffer,
thereby conserving space on external stor­
age media •

COMPILER RESTRICTIONS

Table 3 is a list of the limitations
imposed on the source program by the FOR­
TRAN compiler •

c

(

(

(~

This appendix illustrates a number of
job decks" representing several types of
jobs, that could be used with the Model 44
Programming system. For each example, it
is assumed that SYSIPT and SYSRDR are
assigned to the same device: however, the
portions of the job deck read by SYSIPT
(that is, all input data) are indicated so
that they can easily be removed in the
event SYSIPT and SYSRDR are assigned to
separate devices,.

compile only (one compilation):

Figure 11 shows a job that consists of
one job step -- a FORTRAN compilation. A

APPENDIX A: EXAMPLES OF JOB DECKS

job name and accounting information are
provided in the JOB statement. The comma
in the operand field is required by the
absence of the DUMP or NODUMP specifi­
cations (indicating that NODUMP is to be
assumed) •

The EXEC statement indicates that the
job step is to be unnamed, that a module
deck and a compiler map are to be produced"
and that a module is not to be written on
SYSOOO. By default, a source listing is
produced and it is assumed that source
statements are to be punched in EBCDIC.

r---,
I
I
I //JOBONE
I //
I
I

JOB
EXEC

"PGN03410
FORTRAN (DECK, NOLINK, MAP'~ __ "

I
I
I
I

FORTRAN source statements

I
I /*
I /&
I
I

(end of data~) __________ ~
(end of job)

SYSIPT

L __ _

Figure 11. sample of Compile Only (One compilation)

Appendix A: Examples of Job Decks 75

Compile only (three compilations):

Figure 12 shows a job that consists of
three job steps -- three FORTRAN compila­
tions involving one main program and two
subprograms. The job steps are named MAIN­
PRO, SUBA, and SUBB. In each job step, a
module deck, a compiler map, and a source

listing are produced and no module is
written on SYSOOO. The EXEC statement for
job step SUBA indicates that the source
statements following it are in BCD; for the
other two job· steps, EBCDIC is assumed.
The EXEC statements for MAINPRO and SUBB
illustrate that compiler options may be
specified in any order.

r---,
I
I
I //JOBTWO JOB

//MAINPRO EXEC

FORTRAN source

/*
//SUBA EXEC

FORTRAN source

/*
//SUBB EXEC

,PGN03411
FORTRAN (DECK" NOLINK, MAP"-__ _

statements (main program)

(end of data)
FORTRAN (DECK, NOLINK, MAP, BCD)

statements (subprogram)

(end of data)
FORTRAN (DECK, MAP, NOLINK

FORTRAN source statements (subprogram)

/*
/&

(end of data) (end of job) " ______________ -J

SYSIPT

SYSIPT

SYSIPT

I
I
I
I
I
I
I
I
I
I

I I L ___ J

Figure 12. Sample of compile Only (Three compilations)

76

c

(-

Edit only:

Figure 13 shows a job that consists of
one job step -- the editing of three module
decks. The EXEC statement indicates that
the job step is unnamed and that the phase
output produced by the linkage editor is to
be retained in the phase library for use in
subsequent jobs. By default, a phase map
is produced on SYSLST.

The modules to be edited are named MAIN,
SUBONE" and SUBTWO and will be copied in
that order onto SYSOOO by the linkage
editor. A single phase, named ALPHA" is to
be produced; its origin is to be the first
available location in the problem program
area. The INCLUDE statements indicate that
phase ALPHA is to be composed of modules
MAIN, SUBONE, and SUBTWO, in that order,

and that each module will be found on
SYSOOO. (Note that the PHASE and INCLUDE
statements could be omitted from the job
deck; the only difference in the results
obtained is that phase ALPHA would instead
be named MAIN, the name of the first module
to be included in the phase.)

The three module decks to be edited here
could well be the three decks produced in
the previous example of three compilations.
Although the job steps in that example are
named MAINPRO, SUBA, and SUBB, these names
are not carried over with the module decks
into another job. In order to be edited,
the modules must be named again in MODULE
statements. Of course, the names used for
the compilation job steps could be repeated
in the MODULE statements or, as is the case
here, entirely new names could be used.

r---,
//JOBTHREE JOB "PGN03412
// EXEC LNKEDT(KEEP)~ ______________ ~

/*
/&

MODULE MAIN

Module deck (main program)

MODULE SUBONE

Module deck (subprogram)

MODULE SUB TWO

Module deck (subprogram)

PHASE
INCLUDE
INCLUDE
INCLUDE

ALPHA,S
MAIN,L
SUBONE,L
SUBTWO,L
(end of data~)~ ______________ ~
(end of job)

Figure 13. sample of Edit Only

SYSIPT

Appendix A: Examples of Job Decks 77

compile and edit:

Figure, 14· shows a job that consists of
two job steps -- a FORTRAN compilation and
t,he editing of the resulting module and a

.module deck produced in a previous job.
The compilation job step is named MAINPRO;
output from the compiler is to include a
source listing, a compiler map., and a
module on SYSOOO. The name qf the module
on SYSOOO will be the job step name,.
MAINPRO. No module deck is produced, and
source statements are assumed to be in
EBCDIC.

The editing job step is unnamed; phase
output from the job step is to be retained
in the phase library; a phase map is to be
produced. The module deck, which will be
copied onto SYSOOO by the linkage editor,
is named SUBPROG. one phase, BETA, is to
be produced and is to include the modules
MAINPRO and SUBPROG in that order; both
modules will be found on SYSOOO. The PHASE
and INCLUDE statements could be left out of
this job deck without affecting the results
in any way other than phase BETA being
named MAINPRO instead.

r---,
I I
I I
I //JOBFOUR JOB ,PGN03413 I
I //MAINPRO EXEC FORTRAN (MAP) I
I
I
I
I FORTRAN source statements SYSIPT
I
I
I

/*
//

/*
/&

EXEC
MODULE

Module

PHASE
INCLUDE
INCLUDE

(end of data)
LNKEDT{KEEP)
SUBPROG

deck
SYSIPT

BETA,S
MAINPRO,L
SUBPROG.L
(end of data)
(end of job)

___ J

Figure 14. sample of compile and Edit

78

..

r.£'>

'---,

c

Execute only:

Figure 15 shows a job that consists of
one job step -- the execution of the phase"
BETA, produced in the previously illustrat­
ed compile-and-edit job. The JOB statement
now indicates that a dump is to be produced
if the job terminates abnormally.

Before the phase is executed, two data
sets required by it are associated with
symbolic unit names. The ACCESS statement
associates the data set named INPUT with
symbolic unit SYS004 (which corresponds to
data set reference number 4). The device
to be used for this data set is an IBM 2400
Magnetic Tape Unit with a 9-track

read/write head and a recording density of
800 bytes per inch; the data set itself is
located on the tape whose valid is T645.

The ALLOC statement associates the data
set named MASTER with symbolic unit SYS002
(which corresponds to data set reference
number 2). In addition, 20 blocks of space
are allocated for the data set on a fresh
disk volume, which must be an IBM 1316 Disk
Pack mounted on an IBM 2311 Disk Storage
Drive. Finally, the data set MASTER is to
be entered into the system catalog. The
LABEL statement, which is required after
the ALLOC statement shown,. indicates a
FORTRAN record length of 360 bytes and an
expiration date of January 1, 1968.

r---,
I I
I I
I //JOBFIVE JOB DUMP,PGN03414 I
I //SYS004 ACCESS INPUT,2400='T645' I
I //SYS002 ALLOC MASTER,1316=FRESH,20,CATLG I
I // LABEL 360,68001 I
I // EXEC BETA I
I /& (end of job) I
I I
I I L ___ J

Figure 15. Sample of Execute Only

Appendix A: Examples of Job Decks 79

Edit and execute:

Figure 16 shows a job that consists of
two job steps-- the editing of two module
decks and the execution of the resulting
phase. The editing job step is unnamed and
no phase map is to be produced. Also, the
phase output can be discarded at the end of
the next job step (in this case, immediate­
ly after the phaae is executed).

The modules to be edited are named
PAYMAIN and PAYSUB and will be copied in
that order onto SYSOOO by the linkage
editor. The absence of PHASE and INCLUDE
statements causes the linkage editor to
generate the following statements:

PHASE PAYMAIN" *
INCLUDE PAYMAIN,L
INCLUDE PAYSUB,L

The result is that a single phase named
PAYMAIN is produced and the two modules on
SYSOOO (namely, PAYMAIN and PAYSUB) are
included in the phase in that order. The
or1g1n of the phase is the first available
location in the problem program area.

The presence of input data after the
phase execution EXEC statement indicates
that the data set reference number 5
(corresponding to SYSIPT) is cited in the
source program.

r---,
I I
I I
I //JOBSIX JOB DUMP"PGN03415 I
I EXEC LNKEDT(NOMAP} I
I # MODULE PAYMAIN I
I
I
I
I Module deck
I
I
I

/*
//

/*
/f,

MODULE PAYSUB

Module deck

(end of data~) ________________ ~ EXEC ______________________________ ~

Input data to FORTRAN program

(end of data)
(end of jOb)~--------------~

SYSIPT

SYSIPT
I
I
I
I
I
I
I
I
I L-__ J

Figure 16. Sample of Edit and Execute

80

c

(
compile" edit., and execute:

Figure 17 shows a job that consists of
four job steps -- two FORTRAN compilations
involving a subprogram and a main program,
the editing of the two resulting modules.,
and the execution of the resulting phase.
The compilation job steps are named SUBPROG
and MAIN. In each job step, a source
listing" a compiler map, and a module on
SYSOOO are to be produced, a module deck is
not to be produced" and the source state­
ments are punched in EBCDIC. (Note that in
the EXEC statement for job step SUBPROG,
all compiler options are specified., while
in the EXEC statement for job step MAIN.,
the default options are omitted.)

The editing job step is unnamed~ phase
output is to be retained~ a phase map is to
be produced.. A single phase, named GAMMA"
is to be produced; its origin is to be the

first available iocation in the problem
program area. The phase is to include two
modules, MAIN and SUBPROG" in that order ~
the source of each module is SYSOOO. (Note
that the omission of the PHASE and INCLUDE
statements from this job deck would cause a
change not only in the phase name., but also
in the order in which the modules are
included in the phase.)

Before the phase is executed" one data
set required by it is associated with a
symbolic unit name. This is the data set
MASTER (cataloged in the execute-only
example), which is again associated with
symbolic unit SYS002. No. further informa­
tion is required in the ACCESS statement
because MASTER is a cataloged data set.
The presence of input data after the phase
execution EXEC statement indicates that
data set reference number 5 (corresponding
to SYSIPT) is cited in the source program.

r---,
DUMP,PGN03416 //JOBSEVEN JOB

//SUBPROG EXEC FORTRAN (NODECK, SOURCE, LINK" MAP, EBCDIC)

FORTRAN source statements (subprogram)

/*
//MAIN EXEC

(end of data) ________________ -'
FORTRAN(MAP) ________________ ~

FORTRAN source statements (main program)

/* (end of data>
// EXEC LNKEDT{KEEP)

SYSIPT

SYSIPT

PHASE GAMMA,S
}SYSIPT INCLUDE MAIN,.L

INCLUDE SUBPROG,L
/* (end of data)
//SYSOO2 ACCESS MASTER
// EXEC

.
Input data to FORTRAN program

/*
/&

(end of data)~ ______________ ~
(end of job)

Figure 17. Sample of Compile, Edit, and Execute

SYSIPT

I
I
I
I
I
I
I
I
I
I
I
I
I
I

Appendix A: Examples of Job Decks 81

APPENDIX B: EBCDIC AND BCDIC CARD CODES

Character EBCDIC ECDIC
r------------------T--------y-------------,

(blank)
+ 12-8-6 12

11
/ 0-1
= 8-6 3-8 . (period) 12-3-8
) 11-5-8 12-4-8

* 11-4-8
1I (comma) 0-3-8
(12-5-8 0-4-8
• (apostrophe) 5-8 4-8
& 12
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
A 12-1
B 12-2
C 12-3
D 12-4
E 12-5
F 12-6
G 12-7
H 12-8
I 12-9
J 11-1
K 11-2
L 11-3
M 11-4
N 11-5
0 11-6
p 11-7
Q 11-8
R 11-9
S 0-2
T 0-3
U 0-4
V 0-5
W 0-6
X 0-7
y 0-8
Z 0-9
$ 11-3-8 L-_________________ ~ ________ ~ ____________ _

82

This appendix provides a list of the 49
characters valid in a FORTRAN source pro­
gram (except in literal data where any
valid card code is acceptable). The EBCDIC
punch combination for each character is
shown.. A BCDIC punch combination is shown
only when it differs from the EBCDIC punch
combination. Only five characters

+ =

have different punch combinations; in all
other cases, the EBCDIC and BCDIC combina­
tions are the same.

Note: If the source program is punched
entirely in EBCDIC (that is" the EBCDIC
option is in effect), statement numbers
passed as arguments must be coded as &n
(where ~ represents the statement number):

However, if BCD characters appear in the
source program (that is, the BCD option is
in effect), statement numbers passed as "':_"'"
arguments must be coded as $n and the
character $ must not be used as an alpha - '_..J
betic character elsewhere in the source
program.

c

(

(

A FORTRAN programmer can use assembler
language subprograms with his FORTRAN pro­
gram. This section describes the linkage
conventions that must be used by the assem­
bler language subprogram to communicate
with the FORTRAN program .•

SUBROUTINE REFERENCES

The FORTRAN programmer can refer to a
subprogram in two ways: by a CALL statement
or by a function reference within an arith­
metic expression. For each subproqram ref­
erence., the compiler generates:

1. An argument list; the addresses of the
arguments are placed in this list to
make the arguments accessible to the
subprogram.

2. A save area in which the subprogram
can save information related to the
calling program.

3. A calling sequence to pass control to
the subprogram.

Argument List

The argument list contains addresses of
variables, arrays., and subprogram names

APPENDIX C: ASSEMBLER LANGUAGE SUBPROGRAMS

used as arguments. Each entry in the
argument list is four bytes and is aligned
on a fullword boundary. The last three
bytes of each entry contain the 24-bit
address of an argument. The first byte of
each entry contains zeros, unless it is the
last entry in the argument list. For the
last entry, the first (leftmost) bit in the
entry is set to 1.

The address of the argument list is
placed in general register 1 by the calling
program.

Save Area

The calling program contains a save area
in which the subprogram places information,
such as the entry point for the called
subprogram, an address to which the subpro­
gram returns, general register contents,
and addresses of save areas used by pro­
grams other than the subprogram. The
amount of storage reserved by the calling
program is 18 words. Figure 18 shows the
layout of the save area and the contents of
each word. The address of the save area is
placed in general register 13.

FORTRAN programs save floating-point
registers before calling a subprogram. The
subprogram does not have to save and re­
store them.

AREA------>r--,
(word 1) IThis word is part of the standard linkage convention used by the programming I

I system. An assembler language subprogram can use the word for any purpose. I
AREA+4---->~--~
(word 2) IIf the program that calls the assembler language subprogram is itself al

I subprogram, this word contains the address of the save area of the calling I
I program. Otherwise, this word is not used.. I

AREA+8---->~--~
(word 3) IThe address of the save area of the called subprogram. I
AREA+12--->~--~
(word 4) I The contents of register 14; that is., the return address. When a subprogram I

Ireturns control, the first byte of this word is set to ones. I
AREA+16--->~--~
(word 5) IThe contents of register 15: that is, the entry address. I
AREA+20--->~--~
(word 6) IThe contents of register o. I
AREA+24--->~--~
(word 7) IThe contents of register 1. I

.-- I
I I
I I
I I

AREA+68--->~--~
(word 18) IThe contents of register 12. I L __ J

Figure 18. Save Area

Appendix C: Assembler Language subprograms 83

calling Seguence

A calling sequence is generated to
transfer control to the subprogram,. The
address of the save area in the calling
program is placed in general register 13.
The address of the argument list is placed
in general register 1,. and the entry
address is placed in general register 15.
A branch is made to the address in general
register 15 and the return address is saved
in general register 14. Table 4 illus­
trates the use of the linkage registers.

CODING THE ASSEMBLER LANGUAGE SUBPROGRAM

Two types of assembler language subpro­
grams are possible: the first type (lowest
level) assembler subprogram does not call
another subprogram; the second type (higher
level) subprogram does call another subpro­
gram.

Coding a Lowest Level Assembler Language
Subprogram

For the lowest level assembler language
subprogram. the linkage instructions must
include:

1. An assembler instruction that names an
entry point for the subprogram.

Table 4. Linkage Registers

2. Instructions to save any general reg­
isters used by the subprogram in the
save area reserved by the calling
program.

3. Instructions to restore the "saved"
registers before returning control to
the calling program.

4.. An instruction that sets to ones the
first byte in the fourth word of the
save area, indicating that control is
returned to the calling program.

5. An instruction that returns control to
the calling program.

Figure 19 shows the linkage conventions
for an assembler language subprogram that
does not call another subprogram. In addi­
tion to these conventions, the assembler
program must provide a method for transfer­
ring arguments from the calling program and
returning the arguments to the calling
program.

Sharing Data in COMMON

with Model 44 FORTRAN" general register
4 contains the address of the CO~~ON area.
If the size of the COMMON area exceeds 4095
bytes., additional registers (e.g., register
5,. 6, and 7) are assigned consecutively.

r---------T-------------T---,
I Register I I I
I Number IRegister Name I Function I
.---------+-------~-----+---~
,0 I Result ,Used for function subprograms only. The result is returned in ,
I I Register Igeneral or floating-point register O. (For subroutine subpro- ,
I I Igrams. the result is returned by the subprogram in a variable I
I I Ipassed to the subprogram by the programmer's CALL statement.) I
.---------+-------------+---~ I 1 IArgument ListlAddress of the argument list passed to the called subprogram. ,
I , Register I ,

.---------+-------------+---~
I 13 I Save Area IAddress of the area reserved by the calling program in which I
I I Register I the contents of certain registers are stored by the called I
I I I program. ,
.---------+-------------+---~-----------~ I 14 I Return IAddress of the location in the calling program to which control I
I I Register lis returned after execution of the called program. ,
.---------+-------------+---~
I 15 I Entry Point IAddress of the entry point in the subprogram. I
I I Register I I L _________ ~ _____________ ~ ___ J

84

..

..

c

(

{

Higher Level Assembly Language SubRrogram

A higher level assembler subprogram must
include the same linkage instructions as
the lowest level subprogram, but because
the higher level subprogram calls another
subprogram, it must simulate a FORTRAN
subprogram reference statement and include:

1. A save area and additional instruc­
tions to insert entries into its save
area.

2.. A calling sequence and a parameter

list for the subprogram that the high­
er level subprogram calls.

3. An assembler instruction that indi­
cates an external reference to the
subprogram called by the higher level
subprogram.

4. Additional instructions in the return
routine to retrieve entries in the
save area.

Figure 20 shows the linkage conventions
for an assembler subprogram that calls
another assembler subprogram.

r--------r-------~---,
1 Name 1 Opere IOperand comments 1
~--------+-------+-----------------------------------~----------------------------------~
deckname START 1 0 1

*
name

ENTRY Iname NAME THE ENTRY POINT FOR THIS SUBPROGRAM 1
DC 1 CLm' name' m MUST BE AN ODD INTEGER TO INSURE THAT THE PROGRAM I
DC 1 X' m+l" STARTS ON A HALF-WORD BOUNDARY. THE NAME MAY BE I

USING
ST
ST
ST

ST

1 PADDED WITH BLANKS. 1
1*,15 1
114,12(13) THE CONTENTS OF REGISTERS 14, 15., AND 0 THROUGH R ARE 1
115,16(13) STORED IN THE SAVE AREA OF THE CALLING PROGRAM. R IS ANY
10,20(13) NUMBER FROM 0 THROUGH 12 AND D IS THE APPROPRIATE
1 DISPLACEMENT
1
1
IR,D(13)

user Iwritten source statements

L

1
1
1
12 ,28(13)
1
I
1

L IR,D(13)

THE CONTENTS OF REGISTERS 2 THROUGH R ARE RESTORED.

MY! 112 (13) ,X' FF' INDICATE CONTROL RETURNED TO CALLING PROGRAM
1 I BCR 115,14 RETURN TO CALLING PROGRAM L ________ ~ _______ ~ ___ _

Figure 19. Lowest Level Assembler Subprogram

Appendix C: Assembler Language Subprograms 85

r---,
deckname START 0 1

ENTRY name1 ENTRY NAME FOR THIS SUBPROGRAM
EXTRN name2 ENTRY NAME THE CALLED SUBPROGRAM
DC CLm' name1"
DC X'm+l"
USING *,,15

* SAVE ROUTINE
ST 14,12(13)

15,16(13)
0,20 (13)

*
*
*
*
*

ST
ST

ST
LR

LA

ST

ST

13,AREA

LOADS REGISTER 13, WHICH POINTS TO THE SAVE AREA OF THE
CALLING PROGRAM, INTO ANY GENERAL REGISTER, R2 , EXCEPT 0
AND 13.
LOADS THE ADDRESS OF THIS PROGRAM'S SAVE AREA INTO
REGISTER 13.
STORES THE ADDRESS OF THIS PROGRAM'S SAVE AREA INTO ~HE
CALLING PROGRAM'S SAVE AREA
STORES THE ADDRESS OF THE PREVIOUS SAVE AREA (THE SAVE
AREA OF THE CALLING PROGRAM) IN'l'O WORD 2 OF THIS PRO­
GRAM'S SAVE AREA

AREA
BC
OS RESERVES 18 WORDS FOR THE SAVE AREA

* user-written program statementS

15,prob1
18F

prob1

* CALLING SEQUENCE
LR 12,15 SAVE BASE REGISTER FOR THIS PROGRAM
LA l,ARGLIST LOAD ADDRESS OF ARGUMENT LIST
L 15,ADCON
BALR 14,15
LR 15,12 RESTORE BASE REGISTER FOR THIS PROGRAM

* more user-written program statements

* RETURN ROUTINE
L 13,AREA+4

* L 2,,28(13)

L
L
MVI
BCR

* END OF RETURN

R,D(13)
14,12(13)

LOADS THE ADDRESS OF THE PREVIOUS SAVE AREA BACK INTO
REGISTER 13

LOADS THE RETURN ADDRESS INTO REGISTER 14.

RETURN TO CALLING PROGRAM

IADCON DC

12 (13) ,X"FF'
15,14
ROUTINE
A(name2)

1* ARGUMENT LIST
JARGLIST bc

,I
I
I

AL4(arg1) ADDRESS OF FIRST ARGUMENT

I DC X'80' INDICATE LAST ARGUMENT IN ARGUMENT LIST
I DC AL3(argn) ADDRESS OF LAST ARGUMENT l __ _

Figure 20. Higher Level Assembler Subprogram

86

~\
I
~

"I ': C·""

1-,

(

In-Line Argument List

The assembler programmer can establish
an in-line argument list instead of an
out-of-line list. In this case, he may
substitute the calling-sequence and argu­
ment list shown in Figure 21 for that shown
in Figure 20.

r--------T-------T------------------------l
I Name I Opere IOperand I
~--------+-------+------------------------~

AD CON DC A(prob~)

LA
L
CNOP
BALR
DC

14, RETURN
15,ADCON
2,4
1,15
AL4(arg~)

DC X'80'
DC IAL3(argn)

I RETURN BC 10,X'isn' L ________ ~ _______ ~ _______________________ _

Figure 21. In-Line Argument List

GETTING ARGUMENTS FROM THE ARGUMENT LIST

The argument list contains addresses for
the arguments passed to a subprogram. The
order of these addresses is the same as the
order specified for the arguments in the
calling statement in the main program. The
address for the argument list is placed in
register 1. For example, when the state­
ment

CALL MYSUB CA" B, C)

is compiled, the following argument list is
generated.

r--------T--------------------------------,
1000000001 address for A I
~--------+--------------------------------~
1000000001 address for B I
~--------+--------------------------------~
1100000001 address for C I L ________ ~ ________________________________ J

For purposes of discussion, assume A is a
double-precision (real*S) variable, B is a
subprogram name, and C is an array.

The address of a variable in the calling
program is placed in the argument list.
The following instructions in an assembler
language subprogram can be used to move the
double-precision variable A to location VAR
in the subprogram.

L q,O(1)
L r,O(q)
ST VAR
L r,4(q)
ST VAR+4

where q and r are any general registers.

For a subprogram reference" an address
of a storage location is placed in the
argument list. The address at this storage
location is the entry point to the subpro­
gram. The following instructions can be
used to enter subprogram B from the subpro­
gram to which B is passed as an argument.

L
L
BALR

q,4(1)
15,0(q)
14,15

where q is any general register.

For an array, the address of the first
variable in the array is placed in the
argument list. An array [for example, a
three-dimensional array C(3,2,2)] appears
in this format in main storage.

C(l,l~l) C(2,1,1) C(3,1,1) C(1~2,l)--,

r---J
L-C(2,2,l> C(3,2,l> C(1,1,2) C(2,1,2)--,

r---J
L-CC3,l,2) C(l,2,2) C(2,2.,2) C(3,,2.,2)

Table 5 shows the general subscript format
for arrays of 1, 2, and 3 dimensions.

Table 5. Dimension and Subscript Format
r-----------T-----------------------------,
IArray A I Subscript Format I
~-----------+-----------------------------~
IA(D1) IA(C1*V1+J1) I
IA(D1,D2) IA(C1*V1+J1,C2*V2+J2) I
IACD1,D2,D3) IA(C1*V1+J1,C2*V2+J2,C3*V3+J3) I
~-----------~-----------------------------~
ID1, D2, and D3 are integer constants used I
lin the DIMENSION statement. C1, C2, C3, I
IJ1, J2., and J3 are integer constants. I
lVi, V2, and V3 are integer variables. I L ___ J

The address of the first variable in the
array is placed in the argument list. To
retrieve any other variables in the array,
the displacement of the variable, that is.,
the distance between the variable and the
first variable in the array, must be calcu­
lated. The formulas for computing the
displacement (DISPLC) of a variable for
one, two, and three dimensional arrays are:

Appendix C: Assembler Language Subprograms 87

DISPLC=(Cl*Vl+Jl-l)*L
DISPLC=(Cl*Vl+Jl-l)*L+(C2*V2+J2-1)*Dl*L
DISPLC=(Cl*Vl+Jl-l) *L+(C2*V2+J2-1) *Dl*L

+(C3*V3+J3-1)*D2*Dl*L

where L is the length of each variable in
the array.

For example" the variable C(2,l,2) in
the main program is to be moved to a
location ARVAR in the subprogram. Using
the formula for displacement of variables

88

in a three-dimensional array, the displace­
ment (DISPLC) is calculated to be 28. The
following instructions can be used to move
the variable:

LA q.,8(l)
LA r,DISPLC
L s,O(q,r)
ST s,ARVAR

where q, r, and s are general registers.

..

c

~ .. ,

(

(

This appendix contains a detailed de­
scription of the diagnostic messages pro­
duced during operation of the Model 44
Programming System. Messages are discussed
in the following order:

• Supervisor messages

• Job control messages

• Compiler messages

• Linkage editor messages

• Phase execution messages

SUPERVISOR MESSAGES

Supervisor messages
time during execution.
the supervisor.

may appear at any
They are written by

FAOCI ERR LDING MESS WRTR

Explanation: An input/output error
occurred while the system was loading
its message writer routine. The job
is canceled.

FAODI cuu NOT OPERATIONAL

Explanation: cuu is the physical
address of an input/output device. An
input/output operation was requested
for a data set on a device that is not
operational. The job is canceled.

FAOE! cuu SNSE UN CHK

Explanation: cuu is the physical
address of an input/output device. A
unit check interruption occurred in
response to a sense operation on a
device. The job is canceled.

FAOFI cuu I/O PROG CHK

Explanation: cuu is the physical
address of an input/output device. A
program check occurred during execu­
tion of an input/output operation.
This may be the result of a zero count
in a data transmission request or an
invalid data address. The job is
canceled.

APPENDIX D: SYSTEM DIAGNOSTIC MESSAGES

FA10I xxxx CAN'T BE LOADED

Explanation: xxx x is the name of a
system routine. The routine is needed
by a system program, but it cannot be
found or it cannot be loaded because
of an input/output error on SYSAB1.
The job is canceled.

FBOBI OPRTR CNCLED

Explanation: A job has been canceled
by the operator.

FBllI CNCL IN CNCL RTN

Explanation: A CANCEL was requested
by the operator while the system was
executing the CANCEL routine.

GA06I PD LST FULL
LAST SVC PSW xxxxxxxxxxxxxxxx

Explanation: The x's are replaced by
the new program status word for the
last supervisor interruption. Too
many supervisor calls have been issued
in too short a time. The job is
canceled.

GA07! ILLEG CODE - SVC x

Explanation: x is an invalid code that
was used in a supervisor call. The
job is canceled.

GA08I xxxxxxxx CAN'T BE FTCHD

Explanation: xxxxxxxx was used as the
name of a phase. The system cannot
find any phase with this name in the
phase library. The job is canceled.

PROG CHK INT CODE x
HA02I IN USER PROG CHK RTN

Explanation: A program check developed
during execution of a user's program
check interruption routine. x is the
interruption code. The job is can­
celed.

Appendix D: system Diagnostics 89

HA031
PROG CHK INT CODE x
USER RTN NOT APPLICABLE

Explanation: x is
interruption code.
1 through 5, no
routine is entered.
celed.

the program
On interrupt
user program
The job is

check
codes
check
can-

PROG CHK INT CODE x
HAOqI NO USER RTN SPECIFIED

Explanation: x is the program check
interruption code. There is no user
program check routine specified to
handle this type of program check.
The job is canceled.

PROG CHK INT CODE x
HAOSI PSW - xxxxxxxxxxxxxxxx In sPVSR STATE

Explanation: x is the program check
code and the other XiS are replaced by
a program status word. A program
check occurred in the superv1sor
state. The PSW is the last problem
program PSW. The job is canceled.

JAOAI JOB CANCELLED

Explanation: A job has been canceled.
Another message usually appears giving
the reason for the cancellation.

JOB CONTROL MESSAGES

Messages written by the job
processor are distinguished by the
characters IA.

control
initial

These messages are written on SYSLST.
In the following listing, they are grouped
by type. Each group shares a common text
message" but the identification code dif~
fers to indicate the source of the error
condition.

The messages are as follows:

IAxxx STMNT FMT ERR

Messages IA01I through IA091 indicate an
error in the text of a job control state­
ment. The xxx portion identifies the prob­
lem area more specifically, as follows:

90

IA01I - Identification field.
two columns do not
proper characters for
trol statement. The
celed.

The first
contain the
a ;ob con­
job is can-

lA021 - Name field. An invalid name has
been specified. It may not be
appropriate for the statement, as
when something other than a sym­
bolic unit name is specified in
the name field of an ALLOC or
ACCESS statement. The job is
canceled.

lA031 - Operation field. The system does
not recognize the operation spec­
ified. The job is canceled.

lAOqI - Operand field. A required param­
eter is missing. The job is
canceled.

IAOSI - Operand delimiter. An improper
character has been used as a
delimiter. The job is canceled.

IA06I - Field size or count. A parameter
in the operand field is too long,
or specifies an unacceptable
size, or there are too many char­
acters within a pair of parenthe­
ses. The job is canceled.

IA07I - Operand field. The operand field
contains a parameter that cannot:
be recognized or that should not
be used in this sta.tement. The
job is canceled.

lAOSI - Continuation error. The £irst
two columns of a continuation
statement do not contain the //
characters" information starts
before column 16, or a continua­
tion statement is required but
column 72 is not punched. The
job is canceled.

IA09I - VPS field. The VPS field of an
EXEC statement contains an inval­
id entry, or a VPS setting has
been specified for a system that
is not equipped with this facili­
ty. The job continues, but the
parameter is ignored.

lAxxx STMNT SEQ ERR

Messages
improper
The xxx
problem,

lA11l through lA171 indicate
use of a job control statement.

portion identifies the specific
as follows:

IA11l - A LABEL statement was misused.
For a unit record data set or a
tape data set, the LABEL state­
ment did not follow an ACCESS or
ALLOC statement. For a direct
access data set, it did not fol­
low an ALLOC statement. Other­
wise, it appeared in an invalid
place in the job deck. The job
is canceled.

..

c

(

IA12I - An ALLOC statement for a direct
access data set was not followed
by a LABEL statement. The job is
canceled.

IA13I - The system read a // statement
that was not a JOB statement and
was not preceded by a JOB state­
ment. The job is canceled.

IA14I - The phase name field of an EXEC
statement is blank and the job
step does not immediately fOllow
a successful linkage editor job
step. or the linkage editor
reported an error severity level
greater than 4. The job is can-
celed. .

IA15I - A DELETE, CONDENSE, or RENAME
statement refers to a data set
that was not cited in an ACCESS
or ALLOC statement previously in
the job. The statement is
ignored.

IA16I - A data set or symbolic unit re­
ferred to in the SAME=parameter
field of a LABEL statement was
not defined previously in the job
nor is it a system data set. The
job is canceled.

IA17I - An invalid statement appears
among the job control statements
or an EXEC statement is missing.
The job is canceled.

IAxxx VOL REQ ERR

Messages IA21I through IA28I apply to
volumes requested in ALLOC or ACCESS state­
ments.

IA211 - The system has no record of the
volume or device referred to.
The job is canceled.

IA22I - A request for a particular type
of device cannot be satisfied.
Not enough devices of tnis type
are available. The JOD is can~
celed.

IA23I - The volume field of an ACCESS or
ALLOC statement contains an entry
that cannot be resolved. The job
is canceled.

IA25I - An attempt has been made to
remove the system residence vol­
ume. The job is canceled.

IA26I - A statement has requested assign­
ment of a device that is not
operational. The job is can­
celed.

IA27I - The volume field of an ACCESS or
ALLOC statement specifies the
address of a device that was
assigned to another data set pre­
viously in the same job step.
The job is canceled.

IA281 - A job control maintenance state­
ment has been detected for a data
set on a volume that is not
mounted. The statement is
ignored.

IAxxx DSNAME ERR xxxxxxxx

Messages IA31I through IA38I apply
names of data sets and members.
causing the condition is printed
message.

to the
The name

with the

IA311 - The required data set cannot be
found in the volume specified.
The job is canceled.

IA321 - The required member
found in the data set
The job is canceled.

cannot be
specified.

IA331 - The data set named cannot be
found in the system catalog. The
action requested for the data set
is not performed.

IA34I - The name specified for a data set
duplicates the name of a data set
that is already on the same vol­
ume. The job is canceled.

IA35I - The name of a member in a direc­
toried data set duplicates anoth­
er name already in the directory.
The job is canceled.

IA36I - A data set name duplicates anoth­
er name in the system catalog.
The job is canceled.

IA37I - The block length requested for
the data set is too large for the
device. The job is canceled.

IA38I - An attempt has been
a new member of a
data set, but the
never written.

IA41I INSUFF SP xxxxxx

made to close
directoried
Illember was

Explanation: xxx xxx is a volume iden­
tification number. This message indi­
cates there is not enough room on a
disk volume to permit a requested
operation. The job is canceled.

Appendix D: system Diagnostics 91

IA421 INSUFF SP xxxxxx

Explanation: xxx xxx is the volume
identification number of a disk volume
whose volume table of contents is
full. No new data sets can be added
to the volume until some of those
already on it are deleted or, if there
is vacant space on the disk. the
volume table of contents is enlarged
through reinitialization. The job is
canceled.

lA43l lNSUFF Sp'xxxxxxxx

Explanation: xxxxxxxx is the name of
a directoried data set whose directory
is full. No new members can be added
until some directory entries are
deleted. The job is canceled.

lA44l lNSUFF SP xxxxxxxx

Explanation: xxxxxxxx is the name of a
directoried data se¥ in which there is
not enough room to add another member'I
or it is the name of a data set of any
type in which there is not enough room
to write another block of data. The
job is canceled.

lA45l INSUFF SP CATLG

Explanation: There is not enough space
in the system catalog to add another
~ntry. The job i~ canceled.

lA46l lNSUFF SP JOBTABLE

Explanation: The job control
processor"s working space is full.
The job is ca~celed. Either the size
of the job must be reduced or the size
of the system's SDSUAS data set must
be increased before the next run.

lA47l lNSUFF SP FCB

Explanation: The system does not have
enough space in main storag~ to con­
struct a file control block for the
symbolic unit cited in an ALLOC or
ACCESS statement. The symbolic unit
number mayex,ceed the number that can

'be handled at the installation. The
job is canceled.

lASOl ABN EOJ

92

Explanation: The job did not include a
/& (end-of-job) statement. The job is '
canceled.

lASSl hhmmss

Explanation: This message,. appearing
after a JOB statement. gives the time
that the execution of the job started.
expressed in hours" minutes and sec­
onds.

lASSl CUU RW RR RN PW PR' PN

lAS91 xxx xx xx xx xx xx xx

Explanation: These messages report
the number of input/output errors
detected during the job. The count is
listed in columns by device. The CUU
column is the device address~ RW is
~he number of recovered writing
errors~ RR. recovered reading errors~
RN. the number of recovered nondata
transmit errors~ PW. permanent writing
errors~ PR. permanent reading errors~
and PN the number of permanent nondata
transmit errors.

IA61l NEW NAME NOT CAT

lA62I

Explanation: A renamed data set cannot
be cataloged. The name has been
changed,. as specified in a RENAME
s'tatement. but the new name cannot be
entered in the system catalog.

SYSERR

Explanation: An unrecoverable system
error has occurred. The operator must
reinitiate the initial program loading
procedure.

lA70l DA FMT ERR xxxxxx

Explanation: xxxxxx is the volume
identification number of a volume
whose volume label is unreadable or in
an improper format. The volume cannot
be used by the system until it is
initializ'ed via a system utility pro­
gram. The job is canceled.

lA71l DA FMT ERR xxxxxx

Explanation: xxxxxx is the volume
identification number of a volume
whose volume label has been changed
during the job. The job is canceled.

lA72l DA FMT ERR xxxxxx

Explanation: xxxxxx, is the volume
identification number of a volume
whose volume table of contents is not

I ,

•

'(,'

in the proper format. The volume
cannot be used until it is initialized
via a system utility program. The job
is canceled.

IA73I DA FMT ERR xxxxxxxx

Explanation: xxxxxxxx is the name of
a sequential data set for which a
directoried data set request has been
made. The job is canceled.

IA751 DISK I/O ERR

Explanation: The system" s standard
error recovery procedure has failed.
The system is unable to write on a
disk volume during an ACCESS or ALLOC
operation., either in handling the vol­
ume table of contents or a data set.
~he job is canceled.

IA761 DISK I/O ERR

Explanation: The system" s standard
error recovery procedure failed while
attempting to recover an input/output
error during a DELETE operation. The
job is canceled.

IA791 NO CATLG

Explanation: A cataloging request has
been made but cannot be executed
because the system does not have a
catalog.

IA821 JC INIT DONE

Explanation: The system has ;ust com­
pleted an initial program loading pro­
cedure.

IA86I CAUTION JOB TBL FULL

Explanation: The job control
processor's working space is full.
This is only a warning message. Any
additional job control statement will
overlay a previous entry. If this
happens, some references to data sets
or symbolic units mentioned in pre­
vious statements may not be accepta­
ble, and, some, symbolic unit assign­
ments may not be made. The size of
the job should be 'reduced, or the size
of system data set' SDSUAS should be
increased.

IA881 SYSXxx cuu dsname volid

Explanation: SYSxxx is a symbolic
unit name, cuu is the unit's physical
address" dsname is the data set asso­
ciated with the unit, and volid iden­
tifies the volume containing the data
set. This format is used by the
system in responding to a LISTIO
request.

IA891 M cuu volid

Explanation: M is the abbreviation
for Mount" cuu is a device address,
and volid is a volume identification
number. A new volume has just been
assigned to a disk device. The opera­
tor can mount the volume to prepare
for the IA90A message.

IA90A M ALL REQ DISKS

Explanation: This message instructs
the operator to mount all disk volumes
requested in preceding IA891 messages.
When this is done, he signals the
system to continue processing.

IA91D VOL xxxxxx UNREADABLE

Explanation: xxxxxx represents a vol­
ume identification number. This mes­
sage appears after an IA90A message.
It indicates that the system is unable
to read the volume label of a a:~.sk
that has been mounted. The operator
can mount another volume, instruct the
system to ignore the volume but con­
tinue processing, or cancel the job.

IA921 JeT OFLOW

Explanation: A LABEL statement uses
the SAME parameter, but the reference
cannot be resolve,d ,because the job
control processor's working space was
filled earlier in the program. This
message follows an IA861 message. The
job is canceled.

IA931 OPEN ERR SYSxxx

Explanation: SYSxxx identifies a sys­
tem unit. An error was detected while
the job control processor was opening
a data set on, the specified system
unit. The!data set is not opened, but

'processing continues.i

Appendix D: System Diagnostics 93

IA94I CLOSE ERR SYSxxx

Explanation: SYSxxx identifies a sys­
tem unit. An error was detected while
the job control processor was closing
a data set On the specified system
Unit. The data set is not closed" but
processing continues.

COMPILER MESSAGES

This section contains an alphabetic list
of the error/warning messages produced by
the FORTRAN IV compiler. An explanation of
each message, including its condition code
setting, is given. Serious error messages
have a condition code setting of 16 or 12~
warning messages have a condition code
setting of 4 or O.

ALLOCATION

Explanation: The storage assignment
specified by a source statement cannot
be performed because the use of a
variable name is either improper or in
conflict with some prior use of that
name. For example, a name listed in a
COMMON block has been listed in anoth­
er COMMON block; or a variable listed
in an EQUIVALENCE statement is fol­
lowed by more than seven sUDscripts.
(Condition code -- 12)

BLOCK DATA PROGRAM ERRORS

Explanation: This message is produced
if variables in the source statements
have been specified within a BLOCK
DATA subprogram but have not also been
defined as COMMON. A list of these
variables follows the message.
(Condition code -- 0)

COMMA

Explanation:,A comma required in a
statement does not appear. (Condition
code --'0)

COMMON BLOCK/ /ERRORS

94

Explanation: This message pertains to
errors that exist in the definitions
of EQUIVALENCE sets that refer to the
COMMON area. The message is produced
when there is a contradiction in the
allocation specified, when there is an
attempt to extend the beginning of the
COMMON area, or if the assignment of
COMMON storage results in an attempt

to allocate a variable at a location
that does not fallon the appropriate
boundary. The name of the COMMON
block in error appears between the two
slashes. A list of the variables that
could not be allocated because of the
errors follows the message.
(Condition code -- 4)

CONVERT

Explanation: In a DATA statement or in
an Explicit specification statement
containing data values" the mode of a
constant is different from the mode of
the variable with which the constant
is associated. The constant is con­
verted to the correct mode by the
compiler~ this message is simply a
notification to the programmer that
the conversion is performed.
(condition code -- 0)

DUMMY DIMENSION ERRORS

Explanation: If variables specified as
dummy array dimensions are not in
COMMON and are not global dummy varia­
bles" this message is produced. A
list of the dummy variables that are
in error follows the message.
(Condition code -- 12)

DUPLICATE LABEL

Explanation: The label appearing in
the label field of a statement is
already defined (has appeared in the
label field of a previous statement).
(Condition code -- 12)

DUPLICATE STEP NAME IN SYSPSD 'name'

Explanation: A module to be written
on SYSOOO by the compiler has the same
step name (as specified in the EXEC
FORTRAN statement) as a module already
on SYSOOO. The name in question
appears in the message between the
single quotes. compilation continues.
(Condition code -- 16)

EQUIVALENCE ALLOCATION ERRORS

Explanation: This message is produced
when there is a conflict between two
EQUIVALENCE groups, or if there is an
incompatible boundary alignment in an
EQUIVALENCE group. A list of the
variables that could not be allocated
according to source statement specifi­
cations follows the message.
(Condition code -- 4)

•

c

,

(

•

EQUIVALENCE DEFINITION ERRORS

Explanation: This message denotes an
error in an EQUIVALENCE group when an
array element is outside the array. A
list of the errors follows the mes­
sage. (Condition code -- 4)

EXIT ROLL FULL" COMPILATION TERMINATED

Explanation: This message is produced
when the EXIT roll (an internal table
used by the compiler) has exceeded the
amount of main storage assiqned for
it,. Compilation is terminated.
(Condition code -- 16)

FUNCTION ENTRIES UNDEFINED

Explanation: The program being com­
piled is a FUNCTION subproqram, but
there is no scalar with the same name
as the FUNCTION nor is there a defini­
tion for each ENTRY. A list of the
undefined names follows the message.
(Condition code -- 0)

ID CONFLICT

Explanation: The name of a variable or
subprogram has been used in conflict
with the type that was defined for it
in a previous statement. For example,
the name listed in a CALL statement is
the name of a variable, not a subpro­
gram; or a single name appears more
than once in the dummy list of a
statement function; or a name listed
in an EXTERNAL statement has already
been defined in another context.
(Condition code -- 12)

ILLEGAL LABEL

Explanation: Invalid use of a state­
ment label has occurred; for example,
an attempt has been made to branch to
the label of a FORMAT statement.
(Condition code -- 12)

ILLEGAL STA.

Explanation: The context in which a
statement has been used is invalid.
For example, the statement "s" in a
Logical IF statement (the result of
the true condition) is a Specification
statement, a DO statement, etc.; or an
ENTRY statement appears in a main
program. (Condition code -- 12)

ILLEGAL STA. WRN.

Explanation: A RETURN statement
appears in a main program; or a RETURN
i statement appears 1n a FUNCTION
subprogram. (Condition code -- 0)

ILLEGAL TYPE

Explanation: The variable in an
Assigned GO TO statement is not an
integer variable; or, in an assignment
statement, the variable on the left
side of the equal sign is of logical
type and the expression on the right
side is not,. (Condition code -- 12)

I/O ERROR SYS001

Explanation: An unrecoverable output
error has. occurred on SYS001. Compi­
lation is terminated. <Condition
code -- 16)

I/O ERROR SYSPSD ON INPUT

Explanation: An unrecoverable input
error has occurred on SYSPSD. Compi­
lation continues. (Condition code
16)

I/O ERROR SYSPSD ON OUTPUT

LABEL

Explanation: An unrecoverable output
error has occurred on SYSPSD. Compi­
lation continues. (Condition code --
16)

Explanation: A statement that should
be labeled is not. For example, a
FORMAT statement or a statement fol­
lowing a GO TO statement is not
labeled. (Condition code -- 0)

NAME LENGTH

Explanation: The name of a variable,
COMMON block, NAMELIST, or subprogram
exceeds six characters in length; or
two variable names appear in an
expression without a separating opera­
tion symbol. (Condition code -- 4)

Appendix D: System Diagnostics 95

NO CORE AVAILABLE

Explanation: This message is produced
when the program being compiled
exhausts the supply of main storage
available to the compiler. (Condition
code -- 16)

NO END CARD

Explanation: The set of source state­
ments does not contain an END state­
ment. (Condition code -- 0)

NUMBER ARG

Explanation: A reference to a library
subprogram specifies an incorrect num­
ber of arguments. (Condition
code -- 4)

OPEN ERROR POLISH FILE, COMPILATION TERMI­
NATED

Explanation: An error has occurred
during an attempt to open SYS001,
which is used by the compiler to
accommodate its strings of Polish
notation. compilation is terminated.
(Condition code -- 16)

ORDER

Explanation: Source statements are
used in an improper sequence. For
example, an IMPLICIT statement appears
as other than the first statement in a
main program or the second statement
in a subprogram; or an ENTRY statement
appears within a DO loop. (condition
code -- 12)

POLISH FILE READ ERROR" COMPILATION TERMI­
NATED

Explanation: An unrecoverable input
error has occurred on SYS001. Compi­
lation is terminated. (Condition code
-- 16)

POLISH READ END OF FILE

96

Explanation: An end-of-file mark was
erroneously read on SYS001 by the
compiler as it was reading Polish
notation. compilation is terminated.
(Condition code -- 16)

SIZE

Explanation: A number used in a source
statement does not conform to the
values allowed for its use. For exam­
ple, a label used ina statement
exceeds the maximum value for a state­
ment label; or the size specification
in an Explicit Specification statement
is not one of the acceptable values;
or an integer constant is too large.
(Condition code -- 12)

SUBSCRIPT

Explanation: The number of subscripts
used in an array reference is either
too large or too small for the array.
(Condition code -- 12)

SYNTAX

Explanation: A statement or part of a
statement does not conform to the
FORTRAN IV syntax. For example, a
statement cannot be identified; or a
nondigit appears in the label field;
or fewer than three labelS follow the
expression in an Arithmetic IF state­
ment; or a constant that begins with a
decimal point does not have a digit as
its second character. <Condition
code -- 12)

SYSIPT I/O ERROR, CARD DELETED

Explanation: An input/output error
occurred while the compiler was read­
ing a card from SYSIPT. The card
being read is ignored. Compilation
continues. <Condition code -- 16)

SYSIPT I/O ERROR, CARD DELETED COMPILATION
TERMINATED

Explanation: An input/output error
occurred while the compiler was read­
ing a card from SYSIPT. Either the
card being read was a comments card
that preceded all source language
statements or this was the tenth
input/output error on SYSIPT. Compi­
lation is terminated. (Condition code
-- 16)

UNCLOSED DO LOOPS

Explanation: This message is produced
if one or more DO loops are initiated,
but their terminal statements do not
exist. A list of the undefined labels
that appeared in the DO statements

,.

(

•

c

follows the
code -- 12)

message. (Condition

UNDEFINED LABELS

Explanation: Labels used in the set of
source statements are not defined. A
list of the undefined labels follows
the message. (Condition code -- 12)

UNDIMENSIONED

Explanation: The
name indicates an
subscripts follow
variable has not
(Condition code --

use of a variable
array (that is,

the name)~ but the
been dimensioned .•

12)

UNRECOVERABLE ERROR LINK
DELETED

EDIT, OUTPUT

Explanation: The LINK option was
specified or assumed in the EXEC FOR­
TRAN statement, but an unrecoverable
output error has occurred on SYSOOO.
The writing of the module on SYSOOO is
terminated. Compilation continues.
(Condition code -- 16)

UNRECOVERABLE PUNCH ERROR, OUTPUT DELETED

Explanation: The DECK option was
specified in the EXEC FORTRAN state­
ment" but an unrecoverable error has
occurred on SYSPCH. The punching of
the requested deck is terminated.
(Condition code -- 0)

WORK ROLL FULL, COMPILATION TERMINATED

Explanation: This message is produced
when the WORK roll (an internal table
used by the compiler) has exceeded the
amount of main storage assiqned for
it. Compilation is terminated.
(Condition code -- 16)

LINKAGE EDITOR MESSAGES

Linkage editor error messages are writ­
ten on SYSLST during the linkage editing
job step. These messages apply to the ESD.,
TXT, REP, RLD" and END statements produced
by the language processors and to the
linkage editor control statements.

In most cases., an error message is
accompanied by a listing of the statement
containing or causing the error.

Some of the statements reproduced in an
error listing do not correspond exactly to
the actual input statement. This is
because the linkage editor does some proc­
essing of the statements in the statement
input area, and some fields have been
altered by the time an error is detected.
This applies mainly to the byte count,
length, and type fields of the ESD state­
ment. In no case" however" should there be
any problem identifying the statement.

For TXT and RLD cards" only the first 36
columns of the variable field are printed.
For a REP card error, other than a sequence
error" the error code is printed immediate­
ly after the REP card listing. The nota­
tion FOR REP CARD is printed next to the
error code.

Error messages fall into three categor­
ies:

1. Warning Messages. These are produced
to call a programmer's attention to a
condition that mayor may not rep­
resent an error. They do not affect
continuation of the job step.

2. Severe Errors. These messages are
written when the linkage editor
detects errors that would prohibit
successful execution of the program.
Linkage editing continues, but its
output is flagged so that it will not
be accepted for execution.

3. Termination Messages. These messages
are written when conditions develop
that require immediate termination of
the job~ Most of these are not the
fault of the program, but represent an
inability of the system to continue
functioning properly.

Most of these messages are written in
the format KAxxI, where KA identifies a
linkage editor error message" xx represents
a numeric code identifying a particular
message" and I means the message is for
information. A few messages include writ­
ten text, as discussed in the following
list of numeric codes and their correspond­
ing messages.

The last line of any linkage editor
listing contains the message LINKAGE EDITOR
HIGHEST SEVERITY WAS xx, where xx indicates
the severity level, as follows:

o indicates no significant errors and
execution of the job may continue.

4 indicates that one or more warning
messages have been printed, but
execution may continue.

Appendix D: System Diagnostics 97

12 indicates that the program contains
errors that prevent its execution.
The phase or phases being edited
are not entered in the phase
library.

16 indicates that a termination condi­
tion exists. and editinq has not
been completed. No phases have
been entered in the phase library.
The job is canceled.

Warning Messages. severity Level 4

The following messages are designed
solely to call a programmer's attention to
an unusual condition.

Error
Code
RAOlI

Condition
A COMMON control section has the

same name as a regular control
section. but their lenqths dif­
fer. Space has been reserved
for the longer.

RA02I Two or more control sections in
different phases have the same
name.

RA03I The previous control section had
a length of O. If this condi­
tion is not intentional, it
could have been caused by an
error of the language pro­
cessor.

KA04I An END card that should indicate
the length of a control section
does not. The length- of the
last or only control section in
the external symbol dictionary
is o. This does not represent
an actual error if the control
section contains only instruc­
tions to the language processor
that do not require any main
storage space.

RA05I A control section name in a CSECT
list in an INCLUDE statement is
duplicated.

Severe Error MessagesL severity Level 12

The following messages document errors
that prohibit execution of the program.
Linkage editing continues.

98

Error
Code
KA11I

Condition
The type field of an ESD state­

ment contains an invalid entry.
This usually represents a lan­
guage processor error.

RA12I A COMMON control section has the
same name as an entry point.

KA13I A Label Definition type entry in
an ESD statement does not point
to a Section Definition or Pri­
vate Code type entry. This
usually represents a language
processor error.

KA14I An or1g1n for a control section
that should be aligned on a
double word boundary is not so
aligned. This usually rep­
resents a language processor
error.

KA15I An ESD statement indicates that a
private code section is named.
A private code section cannot
be named. This usually rep­
resents a language processor
error.

KA16I An SD" LD, or ER type entry with
a blank name field is invalid.
This usually represents a lan­
guage processor error.

KA18l An entry point name improperly
duplicates another entry point
or control section name.

KA19I Two or more ESD statements in the
same input module have the same
identification number. This
usually represents a language
processor error.

KA35l System unit SYSOOO or SYSREL con­
tains a statement that is eith­
er invalid or out of sequence.
Module cards must be in the
order ESD, TXT, RLD, REP, and
END.

KA36I A MODULE statement was not fol­
lowed by a statement with the
12-2-9 loader identification
punch in its first column.

KA37l The linkage editor has read be­
yond the last block of an input
module. The input deck is out
of sequence, or an END card is
missing.

KA38I A statement on SYSIPT is invalid
or out of sequence. c

" •
Error
Code
KA39I

KA40I

KA41I

KA421

KA431

KA441

KA451

Condition
A job control statement other

than the /* (end-of-data)
statement has been read. The
/* statement is the only job
control statement that should
be read by the linkage editor.

A hexadecimal field in a PHASE or
REP card contains an invalid
character.

A module contains an ESD iden­
tification number of 0 or
greater than 255. Except for
REP cards, this usually rep­
resents a language processor
error.

A TXT., REP, RLD, or END statement
contains an ESD identification
number that is not in the
module's external symbol dic­
tionary. Except for a REP
card, it may represent a lan­
guage processor error. For a
TXT or REP card, it also may
mean that the ESD number does
not point to a control section.
This message is written only
for the first TXT or REP card
containing the error even
though the following cards may
contain the same erroneous num­
ber.

The operand field of a control
statement extends beyond column
71: the variable field of a REP
card extends beyond column 71:
or the last field in a REP card
contains a number of characters
that is not divisible by four.

An entry point in the external
symbol dictionary has an ESD
number that should point to a
control section, but the con­
trol section that it points to
is not in the external symbol
dictionary. This may represent
the loss of cards or a language
processor error. This error is
detected when an END card is
processed, so the message is
listed with the END card.

The CSECT name list of an INCLUDE
statement contains one or more
control section names that are
not in the module. This error
code is printed with the END
card since the error cannot be
detected earlier. In some
cases, this message is given
because the control section in
the external symbol dictionary

Error
Code

KA461

KA47I

KA481

KA49I

KASOI

KA51I

KA521

KA531

KA541

KA55I

KA56I

condition
was not processed as the result
of another error condition,
usually made by a language pro­
cessor,. In this case, the ESD
card for the control section
has been printed with another
error code. If a phase map has
been produced, the control sec­
tions specified in the INCLUDE
statement that were actually
included in the phase are list­
ed.

An RLD statement contains a posi­
tion pointer to an BSD number
in the ESD dictionary that is
not of the SD or PC type. This
usually represents a language
processor error.

An entry in the operand field of
a linkage editor control state­
ment contains too many charac­
ters.

A required entry is missing from
the operand field of a linkage
editor control statement.

A linkage editor control state­
ment contains an invalid delim­
iter" or a required delimiter
is missing.

A decimal field in a PHASE state­
ment contains a non-decimal
character.

The third specification
operand fieid of a PHASE
ment is invalid. Only
can be specified in this

in the
state­
NOAUTO
field.

A name in a PHASE or MODULE
statement contains an invalid
character.

Two or more phases in the program
have the same name.

A PHASE statement with an * or S
origin also has a phase quali­
fier.. This is permitted only
when a control section or entry
point is specified as the ori­
gin.

A symbol specified in a PHASE
state~ent for the origin of the
phase was not defined previous­
ly.

A PHASE statement specifies a
negative origin.

Appendix D: System Diagnostics 99

100

Error
Code
KAs71

KA581

KA591

Condition
The END statement for the pre­

vious phase contains an invalid
entry in its transfer address
field..

The previous phase contained no
text. This may occur when the
linkage editor is unable to
find the modules named in an
INCLUDE statement.

The entry point specified in an
ENTRY statement is not the name
of a properly defined entry
pOint or control section.

KA601 A TXT or REP statement contains a
load address outside the limits
of the current phase. This
usually represents a language
processor error, when it is in
a TXT statement.

KA611 The program calls for
size greater than
bytes.

a phase
368,640

KA621 The control section name field of
an INCLUDE statement contains
the names of more than five
control sections.

KA631 A specification other than R or L
appears as the second operand
of an INCLUDE statement.

KA641 A module named in an INCLUDE
statement cannot be found in
the place indicated 'by the R or
L specification.

KA65I The linkage editor has read a job
control statement for the next
job step and is unable to save
it in the user communication
region. When the linkage edi­
tor reads a job control state­
ment at the end of the job
step, it attempts to save it
for the job control processor.
This message is written when
the attempt to store it in the
user communication region
results in an error return.

KA66I A PHASE statement identifies a
phase as ROOT but also speci­
fies a phase qualifier or relo­
cation factor.

Termination Messaqes, Severity Level 16

The following messages indicate error
conditions so severe that the linkage edi­
tor cancels the job immediately. In addi­
tion to the error code, the message LINKAGE
EDITOR CANNOT CONTINUE is printed.

Error
Code
KA80l

Condition
End of extent was detected during

a write operation. 'The output
data set is not large enough.

KA81l A permanent transmission error
was detected during an
input/output operation.

KA82I An input/output operation termi­
nated without transmitting any
data.

KA83I An input/output operation termi­
nated because of an invalid
command.

KA841 An input/output operation termi­
nated with an incorrect length
condition.

KA861 There is no room left in the
SYSPSD directory to list the
module specified in a MODULE
statement; or an invalid end­
of-extent condition was
detected reading the last block
of the directory. This means a
module cannot be inserted with
other modules on SYSOOO for
inclusion in a program.

KA87I An invalid end-oi-extent condi­
tion was detected while reading
SYSAB2 or the directories on
SYSPSD or SYSREL.

KA881 No phase can be created because
there are no entries in the
SYSPSD directory. This message
also appears when the name
field of an entry contains
blanks. The EXEC statement
name field was blank when the
module was assembled or com­
piled.

KA90l The linkage editor's control dic­
tionary and linkage table are
full. The program probably
contains too many control sec­
tions and entry points. A max­
imum of 2047 control dictionary
entries is permitted. If there
is no ROOT phase, the maximum
is 2048.

(11F"~"

""")

...

c

I ,

(

Error
Code
KA91I

RA921

RA93I

KA94I

Condition
The program specifies a phase

name that duplicates the name
of a phase already resident fn
the phase library.

There is not enough room in the
phase library directory for all
the phases in this proqram.

The system is unable to open the
SDSOOO or SDSOOl data sets.
The volumes containing these
data sets may not be mounted,
symbolic unit SYSOOO or SYSOOl
may have been reassigned., or an
error condition may have devel­
oped during opening.

The system
SYSOOO or
indicates
condition
job step.

is unable to close
SYS001. This usually
that a system error
developed during the

RA9SI SYSOOl is assigned to a 7-track
tape without the convert fea­
ture on; or SYSOOO and SYSOOl
are assigned to the same data
set.

Text Messages

The following messages are written by
the linkage editor. In some cases, as
indicated, the phase output is flagged so
that it cannot be executed, but linkage
editing is not interrupted.

xxxx ILLEGAL OPTION FOR LINKAGE EDITOR

Explanation: This message appears when
the EXEC LNKEDT statement contains an
invalid parameter. The incorrect par­
ameter is written at the start of the
message.

~. xxxx UNRESOLVED ADDRESS CONSTANTS

Explanation: This message appears when
a control section contains an address
constant for an external symbol in
another module, and the linkaqe editor
is unable to supply an address. The
number of such unresolved external
references in the program is written
at the start of the message.. If f.1AP
is specified, a list of unresolved
symbols is written. The phase output
is flagged so it cannot be executed.

xxxx ADDRESS CONSTANTS OUTSIDE LIMITS
OF PHASE

Explanation: This message is written
when the program contains address con­
stants referring to points outside the
phase that contains the address con­
stant. This condition usually rep­
resents a language processor error.
The phase output is flagged so it
cannot be executed.

The following messages are written only
if the MAP option has been specified in the
EXEC LNKEDT statement. They are warning
messages and do not prevent linkage editing
or execution.

ROOT PHASE OVERLAID BY ANOTHER PHASE

Explanation: The program specifies a
phase origin that would overlay all or
part of a phase that has been desig­
nated a root phase. The phase that
causes the overlay condition is marked
by the word OVERROOT in the listing.

POSSIBLE INVALID ENTRY POINT DUPLICA­
TION IN INPUT

Explanation: The input contains possi­
ble duplication of entry point names.
This may occur when control sections
from a single module are being split
among different phases, in which case
the message can be ignored. When this
message appears, one or more entry
pOints in the input have been ignored.
The phase map shows whether an entry
point for a certain control section is
missing.. If it is, any reference to
the entry pOint has probably been
resolved to the wrong location.

PHASE EXECUTION DIAGNOSTIC MESSAGES

During phase execution, three types of
diagnostic messages are produced:

• Execution error messages.

• Program interrupt messages.

• Operator messages.

Execution Error Messages

In the following text, the error codes
are given with an explanation describing
the type of error. Preceding the explana­
tion, an abbreviated name is given indicat­
ing the origin of the error. For any phase

Appendix D: System Diagnostics 101

execution error" a condition code of 16 is
generated and the job is terminated.

The abbreviated name for the origin of
the error is:

IBC - BOAFCOMH routine (performs interrup­
error tion, conversion, and

procedures).

FIOCS - BOAFIOSH routine (performs
for FORTRAN input/output operations

phase execution).

NAMEL - BOANAMEL
processing
cations).

routine (performs the
of NAMELIST specifi-

DIOCS - BOADIOCSE routine (performs direct­
access input/output operations for
FORTRAN phase execution).

LIB - FORTRAN-supplied library. In the
explanation of the messaqes" the
module name is given followed by the
entry point name(s) enclosed in paren­
theses.

OA2001

Explanation: FIOCS -- An attempt was
made to read from a data set for which
input operations are not allowed.

OA2011

Explanation: FIOCS -- An attempt was
made to write into a data set for
which output operations are not
allowed.

OA2021

Explana.tion: FIOCS -- A READ or WRITE
operation was attempted on a data set
whose most recent operation resulted
from an ENDFILE statement.

OA2031

Explanation: FIOCS -- An attempt was
made to rewind, backspace, or write an
end-of-file mark on one of the system
units SYSOPT" SYSPCH, or SYSIPT.

OA2041

102

Explanation: FIOCS -- An attempt was
made to rewind, backspace., or write an
end-of-file mark on a data set des­
cribed by a DEE'INE FILE statement.

OA2051

Explanation: FIOCS -- A data set ref­
erence number greater than 15 has been
used in an input/output statement.

OA2061

Explanation: FIOCS -- An attempt was
made to open a data set, but the data
set could not be found. This message
appears when a data set reference
number not valid for the installation
has been used in an input/output
statement.

OA207I

Explanation: FIOCS
was detected when
opened.

OA208I

a
A label error

data set was

Explanation: FIOCS -- An input/output
request has been made that is invalid
for a data set.

OA209I

Explanation: IBC -- There is insuffi­
cient main storage to allocate one
request control block and one 360-byte
buffer.

OA2111

Explanation: IBC -- An invalid charac­
ter has been detected in a FORMAT
statement.

OA2121

Explanation: IBC An attempt has
been made to read or wri te., under
FORMAT control, a record that exceeds
the buffer length (360 bytes).

OA2131

Explanation: IEC -- The input list in
an input/output statement without a
FORMAT specification is larger than
the logical record.

OA2151

Expla~tion: IEC -- An invalid·charac­
ter exists for the decimal input cor­
responding to an I" E, F, or D format
code.

OA216I

Explanation: IEC -- An invalid sense­
light number was detected in the
argument list in a call to the SLITE
or SLITET subprogram.

..

l

. ,

c

I" ,

,

(

OA217I

Explanation: IBC -- An end-of-data
condition was sensed during a READ
operation or an end-of-extent condi­
tion was detected during a WRITE oper~
ation.

OA218I

Explanation: IBC A permanent
input/output error has been encoun­
tered.

OA219I

Explanation: IBC -- A boundary error
has occurred but the boundary align­
ment routine could not be found in the
phase library.

OA220I

Explanation: IBC -- A boundary error
has occurred but there is not enough
space in main storage for the boundary
alignment routine to be loaded.

OA221I

Explanation: NAMEL -- An input varia­
ble name exceeds eight characters.

OA222I

Explanation: NAMEL -- An input varia­
ble name is not in the NAMELIST dic­
tionary, or an array is specified with
an insufficient amount of data.

OA223I

Explanation: NAMEL -- An input varia­
ble name or a subscript has no delimi­
ter.

OA224I

Explanation:
encountered
input name,.

OA225I

NAMEL A subscript is
after an undimensioned

Explanation: IBC -- An invalid charac­
ter is encountered on input for the Z
format code.

OA231I

Explanation: DIOCS -- Direct-access
input/output statements are used for a
sequential data set.

OA232I

Explanation: DIOCS The relative
position of a record is not a positive

integer, or the relative position
exceeds the number of records in the
data set.

OA233I

Explanatio~ DIOCS The record
length specified in the DEFINE FILE
statement exceeds the physical limita­
tion of available main storage.

OA234I

Explanation: DIOCS Direct access
input/output statements have been used
for one of the system units SYSIPT,
SYSPCH, or SYSOPT.

OA235I

Explanation: DIOCS -- A data set re­
ferred to in a direct access
input/output statement was not pre­
viously described in a DEFINE FILE
statement.

OA236I

Explanation:
erence number
statement has
ic unit.

OA241I

DIOCS -- A data set ref­
used in a DEFINE FILE
no corresponding symbol-

Explanation: LIB -- For an exponentia­
tion operation (i**j) in the subpro­
gram BOAFIXPI (FIXPI#) where i and j
represent integer variables or integer
constants, the value of i is zero and
the value of j is less than or equal
to zero.

OA242I

Explanation: LIB -- For an exponentia­
tion operation (r**j) in the subpro­
gram BOAFRXPI (FRXPI#), where r rep­
resents a real*4 variable or integer
constant, the value of r is zero and
the value of j is less than or equal
to zero.

OA243I

Explanation: LIB -- For an exponentia­
tion operation (d**j) in the subpro­
gram BOAFDXPI (FDXPI#), where d rep­
resents a real*8 variable or real*8
constant and j represents an integer
variable or integer constant, the
value of d is zero and the value of j
is less than or equal to zero.

OA244I

Explanation: LIB -- For an exponentia­
tion operation (r**s) in the subpro-

Appendix D: System Diagnostics 103

gram BOAFRXPR (FRXPR#), where rand s
represent real*4 variables or real*4
constants, the value of r is zero and
the value of s is less than or equal
to zero.

OA245I

Explanation: LIB -- For an exponentia­
tion operation (d**p) in the subpro­
gram BOAFDXPD (FDXPD#), where d and p
represent real*8 variables or real*8
constants" the value of d is zero and
the value of p is less than or equal
to zero.

OA246I

Explanation: LIB -- For an exponentia­
tion operation (z**j) in the subpro­
gram BOAFCXPI (FXCPI#), where z rep­
resents a complex*8 variable or inte­
ger constant. the value of z is zero
and the value of j is less than or
equal to zero.

OA247I

Explanation: LIB -- For an exponentia­
tion operation (z**j) in the subpro­
gram BOAFCDXI (FCDXI#), where z rep­
resents a complex*16 variable or
complex*16 constant and j represents
an integer variable or integer con­
stant" the value of z is zero and the
value of j is less than or equal to
zero.

OA251I

Explanation: LIB -- In the subprogram
BOASSQRT (SQRT), the value of the
argument is less than zero.

OA252I

Explanation: LIB -- In the subprogram
BOASEXP (EXP) " the value of the argu­
ment is greater than 174.673,.

OA253I

Explanation: LIB -- In the subprogram
BOASLOG (ALOG and ALOG10), the value
of the argument is less than or equal
to zero. Because this subprogram is
called by an exponential subprogram"
this message also indicates that an
attempt has been made to raise a
negative base to a real power.

OA254I

104

Explanation: LIB -- In the subprogram
BOASSCN (SIN and COS), the absolute
value of an argumept is greater than
or equal to 218~.
(218 W = .82354966406249996D+06)

OA255I

Explanation: LIB -- In the subprogram
BOASATN2, when entry name ATAN2 is
used" the value of both arguments is
zero.

OA256I

Explanation: LIB -- In the subprogram
BOASSCNH (SINH or COSH), the value of
the argument is greater than or equal
to 174.673.

OA257I

Explanation: LIB -- In the subrpogram
BOASASCN (ARCSIN or ARCOS), the abso­
lute value of the argument is greater
than one.

OA258I

Explanation: LIB -- In the subprogram
BOASTNCT (TAN or COTAN) " the absolute
value of the argument is greater than
or equal to 218 11.

(218 W = .82354966406249996D+06)

OA259I

Explanation: LIB -- In the subprogram
BOASTNCT (TAN or COTAN), the value of
the argument is too close to one of
the singularities (w/2, 3w/2, ••• for
the tangent; ~, 2~,. •• for the
cotangent) •

OA261I

Explanation: LIB -- In the subprogram
BOALSQRT (DSQRT), the value of the
argument is less than zero.

OA262I

Explanation: LIB -- In the subprogram
BOALEXP (DEXP), the value of the argu­
ment is greater than 174.673.

OA263I

Explanation: LIB -- In the subprogram
BOALLOG (DLOG and DLOG10>, the value
of the argument is less than or equal
to zero. Because the subprogram is
called by an exponential subprogram"
this message also indicates that an
attempt has been made to raise a
negative base to a real power.

OA264I

Explanation: LIB -- In the subprogram
BOALSCN (DSIN and DCOS) , the absolute
value of the argument is greater than
or equal to 250~.
(250~ = .35371188737802239D+16)

.,

•

OA265I

Explanation: LIB -- In the subprogram
BOALATN2" when entry name DATAN2 is
used" the value of both arguments is
zero.

OA266I

Explanation: LIB -- In the
BOALSCNH (DSINH or DCOSH),
lute value of the argument
than or equal to 174.673.

OA267I

subprogram
the abso­
is greater

Explanation: LIB -- In the subprogram
BOALASCN (DARSIN or DARCOS). the abso­
lute value of the argument is greater
than one.

OA268I

Explanation: LIB -- In the subprogram
BOALTNCT (DTAN or DCOTAN), the abso­
lute value of the argument is greater
than or equal to 2 50n.
(2 50 n = .35371188737802239D+16)

OA269I

Explanation: LIB -- In the subprogram
IHCLTNCT (DTAN or DCOTAN)" the value
of the argument is too close to one of
the singularities (n/2. 3n/2 • • ,.. for
the tangent~ 'n, 21T,.. •• for the
cotangent) •

OA271I

Explanation: LIB -- In the subprogram
BOACSEXP (CEXP), the value of the real
part of the argument is greater than
174.673.

OA272 I

Explanation: LIB -- In the subprogram
BOACSEXP (CEXP). the absolute value of
the imaginary part of the argument is
greater than or equal to 218n.
(218 1T = .82354966406249996D+06)

OA273I

Explanation: LIB -- In the subprogram
BOACSLOG (CLOG), the value of both the
real and imaginary parts of the argu­
ment is zero.

OA274I

Explanation: LIB -- In the subprogram
BOACSSCN (CSIN or CCOS). the absolute
value of the real part of the argument
is greater than or equal to 218 1T.
(218 1T = .82354966406249996D+06)

OA275I

Explanation: LIB -- In the subprogram
BOACSSCN (CSIN or CCOS), the absolute
value of the imaginary part of the
argument is greater than 174.673.

OA281I

Explanation: LIB -- In the subprogram
BOACLEXP (CDEXP), the value of the
real part of the argument is greater
than 174.673.

OA282I

Explanation: LIB -- In the subprogram
BOACLEXP (CDEXP), the absolute value
of the imaginary part of the argument
is greater than or equal to 250 1T.
(2 50 1T = .35371188737802239D+16)

OA283I

Explanation: LIB -- In the subprogram
BOACLLOG (CDLOG), the value of both
the real and imaginary parts of the
argument is zero.

OA284I

Explanation: LIB -- In the subprogram
BOACLSCN (CDSIN or CDCOS), the abso­
lute value of the real part of the
argument is grea.ter than or equal to
250 1T.
(2 50 n = .35371188737802239D+16)

OA285I

Explanation: LIB -- In the subprogram
BOACLSCN (CDSIN or CDCOS), the abso­
lute value of the imaginary part of
the argument is greater than 174.673.

OA290I

Explanation: LIB -- In the subprogram
BOASGAMA (GAMMA), the value of the
argument is outside the valid range.
(Valid range: 2-252<X<57.5744)

OA291I

Explanation: LIB -- In the subprogram
BOASGAMA (ALGAMA), the value of the
argument is outside the valid range.
(Valid range: 0<x<4.2937x1073)

OA300I

Explanation: LIB -- In the subprogram
BOALGAMA (DGAMMA), the value of the
argument is outside the valid range.
(Valid range: 2- 252<X<57.5744)

Appendix D: System Diagnostics 105

OA301I

Explanation: LIB -- In the subprogram
BOALGAMA (DLGAMA). the value of the
argument is outside the valid range.
(Valid range: 0<x<4.2937x1073)

Program Interrupt Messages

The following text describes program
interrupt messages. The format of these
messages is described in "System Output."

Specification Exception: The specification
exception. assigned code number 6. is rec­
ognized whenever a data address does not
specify an integral boundary for that unit
of information. A specification error
would occur. for example. during the execu­
tion of the following program segment:

DOUBLE-PRECISION D,E
COMMON A.B,.C
EQUIVALENCE (B,D)
D = 3.0D02

Fixed-Point-Divide Exception: The fixed­
point-divide exception, assigned code num­
ber 9" is recognized whenever division of a
fixed-point number by zero is attempted. A
fixed-point-divide exception would occur
during execution of the following state­
ments:

J = 0
I = 7
K = I/J

Exponent-Overflow Exception: The exponent­
overflow exception" assigned code number C"
is recognized whenever the result of a
floating-point addition, subtraction,
multiplication. or division is greater than
or equal to 1663 (approximately 7.2 x
1075). For example, an exponent-overflow
would occur during execution of the state­
ment:

A = 1.0E+75 + 7.2E+75

Exponent-Underflow Exception: The
exponent-underflow exception, assiqned code
number D. is recognized whenever the result
of a floating-point addition, subtraction.
multiplication, or division is less than
16- 65 (approximately 5.4x10-79). An
exponent-underflow exception would occur
during execution of the statement:

A = 3.2E-40*5.4E-50

Floating-Point-Di vide Exception: The
floating-point-di vide exception" assigned
code number F" is recognj..zed when division
of a floating-point number by zero is

106

attempted. A floating-point-divide
exception would occur during execution of
the following statements:

B = 0.0
A = 1.0
C = A/B

Operator Messages

Operator messages for STOP and PAUSE are
generated during phase execution.

The message for a PAUSE can be one of
the forms:

PAUSE n
PAUSE 'message'
PAUSE 0

where:

!! is the 1- through 5-digit
unsigned integer constant
specified in a PAUSE
source statement

~age is the literal constant
specified in a PAUSE
source statement

o is printed when a PAUSE
statement that does not
specify an integer or
literal constant is exe­
cuted

Explanation: The programmer should give
instructions that indicate the action to be
taken by the operator when the PAUSE is
encountered.

User Response: 'I'o resume execution, the
operator presses the EOB key on the console
keyboard,.

The message for a STOP statement can be
one of the forms:

STOP n
STOP 0

where:

!! is the 1-
unsigned
specified
statement

through 5-digit
integer constant
in a STOP source

o is printed when a STOP
statement that does not
specify an integer con­
stant is executed

User Response: None

..

r"

•

/& statement 10
/* statement 10

ACCESS statement
for direct access data sets 19

format 37
for tape data sets 16

example of 36
format 34

for unit record data sets 14
example of 33
format 32

position in job deck 19
adding a member to a directoried data set

18
adding data to a

direct access data set 19
sequential data set 19
tape data set 16

ALLOC statement
for direct access data sets 17

example of 44
format 42

for tape data sets 15
example of 41
format 39

position in job deck 19
allocation of a direct access data set 17
allocation of a tape data set 15
argument list 83

getting arguments for 87
arguments, total number allowed in source

program 74
array names 74
array variables in storage map 64
assembler language subprograms 83
assembler program 6
automatic library search 23

BCD compiler option 22
BCDIC card codes 82
BCDIC input to the compiler 22
BLOCK DATA areas 28
block length 18,74
boundary adjustment message 72
boundary adjustment routine 72
boundary alignment 72

CALL LINK statement 25
CALL LOAD statement 27
calling sequence 84
calling statements for multiphasing 25
catalog

placing a data set in 15,18,20
removing a data set from 20

cataloged data set, definition of 15
cataloging a data set 15,18,20
cataloging volume designation 45
CATLG parameter in ALLOC statement 15,18
CATLG statement 20

example of 45
format 45

changing the name of a data set 21
changing the name of a member 21
character set for job control statements

30
character set for linkage editor control
statements 59

coding assembler language subprograms 84
comments in job control statements 29,30
COMMON, allocation by linkage editor 25
COMMON blocks, improper boundary alignment
resulting from 72

COMMON variables in storage map 64
compilation 22

multiple job steps 8
compile-and-edit job 9

example of 78
job definition statements for 11

compi1e-edit-and-execute job 9
example of 81
job definition statements for 11

compile-only job 9
examples of 75,76
job definition statements for 10

compiler error/warning messages 63
example of 64
list of 94

compiler input 22
compiler messages 94
compiler options in EXEC statement 22

list of 49
compiler output 22.,63
compiler restrictions 74
compiler storage map 22,64

example of 65
complete phase overlay 25

linkage editor control statements for
26

structure 24
complex constants 74
CONDENSE statement 21

example of 46
format 46

condensing a data set 21
continuation cards in job deck 29
control section, definition of 66
control statements 29
creating a member of a directoried data set

18
creating direct access data sets 17
creating tape data sets 15

data management, definition of 12
data set 13

condensing 21
definition of 12
deleting 20
renaming 21

data set extent 16
data set labels for tapes 15
data set length 18
data set maintenance statements 20

Index 107

data set member
. crea ting 18
definition of 11
deleting 20
existing 19
new 18
renaming 21

data set reference numbers 13
DECK/option 22
DEF~E FILE statement 18
DELETE statement 20

example of 41
format 41

deleting a data set 20
deleting a member of a directoried data set

20
device type codes

direct access data sets 38,44
tape data sets 35,40
unit record data sets 33

diagnostic messages 89
direct access data sets 16

creating 11
restrictions for 16
using 19

direct access device type codes 38,44
directoried data set

condensing 21
definition of 11

directory. definition of 11
directory length 18
disk labels 11
disk volume. definition of 16
disk volume designations

ACCESS statement 38
ALLOC statement 43

DO loop considerations 11
dollar sign character

BCDIC restriction on 82
markers in source listing 64

double-precision complex constants 14
double-precision real constants 14
dummy arguments 14
dump formats 68,.69
DUMP subroutine 68

use of 13
dumping arrays and variables 13

EBCDIC card codes 82
EBCDIC in job control .statements 30
EBCDIC input to the compiler 22
edit-and-execute job 9

example of 80
job definition statements for 11

edit-only job 9
example of 11
job definition statements for 11

editing 22
END card 65,,66
end-of-data statement 10
end-of-job statement 10
EQUIVALENCE groups,. improper boundary

alignment resulting from 12
EQUIVALENCE lists 74
EQUIVALENCE variables in storage map 64
error code diagnostic messages 61
error indications during compilation 22
error messages

compiler 94

108

job control processor 90
linkage editor 91
phase execution 101
supervisor 89

ESD cards 65
type 0 65
type 1 66
type 2 66
type 5 66

examples of job decks 15
EXEC FORTRAN statement 22

format 48
EXEC LNKEDT statement 22

format 50
EXEC statement 10
EXEC statement for phase execution 24

format 51
execute-only job 9

example of 19
job definition statements for 11

existing direct access data sets
definition of 11
use of 19

existing members., use of 19
existing tape data sets

definition of 15
use of 16

exponential function 10
exponent-overflow exception 68.106
exponent-underflow exception 68.,106
EXT parameter 16,19
extent of a data set 16

fixed-point-divide exception 68.,106
floating-point-divide exception 68,106
FMT parameter 18
FORTRAN IV compiler 6,22
fresh disk volume, definition of 11
FRESH option 15,11
fresh tape volume. definition of 15
FUNCTION subprograms

references to 13
use of 12

header label 15
higher level assembler subprogram 85

example of linkage 86

identifier field
IF statement 10

29

implied DO, use of 11
in-line argument list 87
INCLUDE and PHASE statements, omission of

24
INCLUDE statement

format 60
23

order of statements 23
initial program load procedure
initialization of variables 70
initialization of volumes 15,17
input

to the compiler 22
to the linkage editor

input devices 9
integer constants
intermediate data
interruption codes

74
13

68

22

1

•

,

(-

f

interruption messages 68
IPL procedure 7

job. definition of 8
job control messages
job control processor
job control statements

rules for writing
table of 11

job deck
definition of
examples 75

job definition
examples 10
statements 9

8

JOB statement 10
format 52

9

90

job step. definition of 8
job step name in EXEC FORTRAN statement

22
job termination 9

KEEP opti on 23

LABEL statement
for direct access data sets 18
for tape data sets 16
format 53
label specifications for 54

labeled tape volume. conditions for 15
library subprograms 23
linkage conventions 84
linkage editing 22
linkage editor 6

input 22
input data set (see SYSOOO)
input deck 23
messages 97
operation of 28
options 50
output 23.,66

linkage editor control statements 22.23
rules for writing 59

listing of symbolic unit assignments 20
LISTIO statement 20

format 55
loading multiple phases 25
location of a module 24
lowest level assembler subprogram 84

example of linkage 85

MAP option 22
members

creating 18
definition of 17
deleting 20
renaming 21

mixed-mode arithmetic expressions 70
Model 44 Programming System 5
module deck 22.65

cards in 65
location in the input stream 23
structure 66

module library 23
module name 22,23

in INCLUDE statement 24
in MODULE statement 23

MODULE statement 23

format 61
modules

compiled in a previous job 23
compiled in the same job 22
copied from SYSIPT to SYSOOO 23

multiphase programs 8,24
multiphasing

linkage editor operation 28
named COMMON and BLOCK DATA areas 28

multiple compilation job steps 8
multiple directory entries 17
multiple member names 17
multiple phase execution 8

name field 29
named COMMON 28
NAMELIST variables in storage map 64
names in EQUIVALENCE statements 74
names in Explicit Specification statements

74
nested DO statements 74
nested FUNCTION subprogram references 74
nested statement function definitions 74
new direct access data sets

creating 17
definition of 17

NEW parameter 19
new tape data sets

creating. 15
definition of 15

NOAUTO option 23
NOLINK option 22
NOMAP option 23
NOSOURCE option 22
notation used in statement formats 30

obtaining a listing of symbolic unit
assignments 20

omitting PHASE and INCLUDE statements 24
operand field 29
operation field 29
operator messages 68,106
organization of direct access data sets

17
origin of a phase 23,26,27
output from the compiler 22,63
output from the linkage editor 23,66
overlay structures

complete phase overlay 24,25
root phase overlay 24.26

PAUSE statement in FORTRAN program 67
PDUHP subroutine 68

use of 73
phase, definition of 8
PHASE and INCLUDE statements" omission of

24
phase execution 24
phase execution diagnostic messages 101
phase library 24
phase map 23,66

exampl e of 67
phase name 23

specifying in EXEC statement 24
phase origin 23,26.27
phase output 67
PHASE statement 23

format 62

Index 109

and ALLOC statements in
19

placing ACCESS
the job deck

placing module
23

decks in the input stream

private data sets
definition of
use of 14

13

problem program area, definition of
program interrupt messages 68,106

format 68
program status word
programming system

operation 7
structure 5

psw 68

READ statement 71
reading an array 71
real constants 74

68
5

references to FUNCTION subprograms
nested references 74

24

73

relationship between data set reference
numbers and symbolic units 13

removing a data set from the system
catalog 20

RENAME statement
format 56

renaming a data
renaming a data
RESET statement

format 57

21

set 21
set member

20
21

restoring symbolic units to standard
assignments 20

RLD cards 65,66
root phase, definition of
root phase overlay 24,26

example of 26

24

linkage editor control statements for
27

SAME option
in ACCESS statement 19
in ALLOC statement 17
in LABEL statement 18

save area 83.84
scalar variables in storage map 64
sequential data set, definition of· 17
source listing 22,63

example of 63
specification exception 68,72,106
SQRT function 70
square root library subprogram 70
stand-alone programs 5
standard unit assignments 13
statement formats 30
statement function definitions 74
statement labels in storage map 64
statement numbers 74
step name in EXEC FORTRAN statement 22
STOP control statement 7
STOP statement in FORTRAN program 67
storage map

compiler 22,64
linkage editor (see phase map)

subordinate phase structure 26
subordinate phases 24
subprogram entry point names 74
subprogram names in storage map 64

110

subprogram structures 25
subscripts in a DO loop 71
supervisor 6,7,24

messages 89
symbolic unit maintenance statements 19
symbolic unit names 13
SYSOOO 13,14,22
SYS001 13
SYSIPT 9,13,22,23,75
SYSLOG 13.,20,30,68
SYSLST 20,23,29,30,66
SYSOPT 13,22,64,67
SYSPCH 13.22,65
SYSRDR 9,22,23,75
SYSREL 23
system assembly 7
system catalog 15

placing a data set in 15,,18,20
removing a data set from 20

system construction 7
system control 6
system data sets 13

use of 13
system diagnostic messages 89
system input data set (see SYSIPT)
system log (see SYSLOG)
system output 63
system output data set (see SYSOPT)
system punch data set (see SYSPCH)
system residence volume 7
system support programs 7
system units 13
system work data set (see SYS001)

tape data sets 14
creating 15
using 16

tape device type codes 35.,40
tape labels 15
tape options 36,41
tape volume, definition of 15
tape volume designations

ACCESS statement 35
ALLOC statement 40

termination of a job 9
trailer label 15
TXT cards 65,66
types of jobs 9

UNCATLG statement 20
format 58

unit record data sets 14
unit record device type codes 33
using existing data sets

direct access 19
tape 16

using existing members of a data set 19
utility programs 6

variable names in source program 74
variable precision switch 24
variables and arrays in COMMON 74
vo1id 15,16
volume designations for disk 18,19

ACCESS statement. 38
ALLOC statement 43

volume designations for tapes 15,16
.ACCESS statement 35

•

ALLOC statement 40 volume table of contents 11

II
volume identification 15 VTOC 11 , volume initialization 15,11
volume labels

disk 11 WRITE statement 11
tape 15 write validity checking 17,18,19

volume serial number 15 writing an array 11

"

(

c
Index 111

f

("" ,
"

, ... ,"--'

C28-6813-0

InternatiDnal Business Machines CDrpDratiDn
Data PrDcessing DivisiDn
112 East PDst RDad, White Plains, N.Y.IOBOI
[USA Only)

IBM WDrld Trade CDrpDratiDn
821 United NatiDns Plaza, New York, NewYDrk 10017
[InternatiDnal)

'1:f
11
::l
rt
(1)
P.
....
::l

C · en · >' .. ·
()
l\) • 00
I

0'1
00
W
I

0

Title:

READER'S COMMENTS

IBM System/360 Model 44
Programming System
Guide to System Use for FORTRAN

Programmers

Form: C28-68l3-0

Your comments assist us in improving the usefulness of our publications; they are a major
part of the input used for technical newsletters and revisions.

Please do not use this form for technical questions about the system; it only delays the
i response. Instead, direct your technical questions to your local IBM representative.

Corrections or clarifications needed:

,
If you wish a reply, please include your name and address below:

C:

C28-6813-0

fold fold

" " " " " " " "" " " " " " " " " " "" " " " " " " " " " "" ,. " " " " " " " " " " " " " " " "" "" "

Attention: PUBLICATIONS

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITEQ STATES

POSTAGE WILL BE PAID BY •••

IBM CORPORATION

1271 AVENUE OF THE AMERICAS
NEW YORK, N.Y. 10020

FIRST CLASS
PERMIT NO. 33504
NEW YORK. N.Y.

" ~ "" :
fold

..
International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601
[USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International)

fold

'tJ
11
f-O.
::s
IT
(1)
0.

f-O.
::s
c:: .
r:tl . • >

#.

()
,

!'V • 00
I

0'\
00
I-'
W
I

0

