Systems Reference Library

IBM System/360 Model 40

Operating Techniques

This manual describes operator procedures for an IBM 2040 Processing Unit. It is intended to be a handy reference manual for the user to take to an IBM Test Center for preparation of testing materials.

For information pertaining to operation of the units attachable to System/360 Model 40, refer to the appropriate SRL publication. SRL publications that pertain to IBM System/360 and attachable units are abstracted and referenced by form number in IBM System/360 Bibliography (A22-6822).
System/360 Model 40 Configuration Example 1
System Configuration 1
CPU Features 1
I/O Units and Addresses 1
I/O Address Assignment Example 1
Functions of the IBM 2040 System Control Panel 1
Keys 1
Switches 2
Lights 2
Data and Address--Lights and Switches 2
System/360 Operating Techniques 3
Initial Program Loading (IPL) 3
Clear Storage--Manually 3
Displaying--Storage Select Switch 3
Floating Point Registers 3
General Purpose Registers 3
Current Program Status Word 3
Page Page
Main Storage 4
Instruction Counter 4
Storage Protection 4
Altering - Storage Select Switch 4
Main Storage 4
Current PSW, FP, and GP Registers 4
Instruction Counter 4
Storage Protect Key 5
Continuous Looping 5
Address Stop 5
Analyzing an Unexpected Wait State Condition 5
Analyzing Input/Output Commands 5
Appendix A:
Reference Tables for the System/360 7
Units
Appendix B:
IBM 2040 System Control Panel 12

[^0]This edition, C20-1635-2, is a major revision and completely obsoletes C20-1635-1. It removes a programming example no longer applicable, and updates the reference tables in Appendix A.

NOTE: LOAD/SYSTEM RESET forces Mode Set on all channels to 800 bpi , odd parity, data converter on, translator off, unless otherwise requested. Mode set applies only to 7 -track tapes, with the exception of track-in-error sense information, which applies to 9 -track tapes (1600 bpi).

I/O ADDRESS ASSIGNMENTS EXAMPLE

The three position device address XYZ indicates:
X -- Channel
$0=$ multiplexor
$1=$ selector channel 1
$2=$ selector channel 2
Y -- Control Unit
$0=$ peripheral or unit record
$8=$ magnetic tapes
$9=$ disk files
Z -- Device
A = 1442 Card Reader-Punch
$B=1443$ Printer

$$
\begin{aligned}
& \mathrm{C}=2540 \text { Reader } \\
& \mathrm{D}=2540 \text { Punch } \\
& \mathrm{E}=1403 \text { Printer } \\
& 9=1052 \text { Typewriter-Keyboard } \\
& 0 \text { to } 9=\text { Tape or Disk Address }
\end{aligned}
$$

For example: I/O address 00A would be interpreted as being on the multiplexor channel whose subchannel is 0 . The particular device selected is A , the 1442 ; I/O address 189 would be the tape drive number 9 on selector channel 1.

FUNCTIONS OF THE IBM 2040 SYSTEM CONTROL PANEL

The System Control Panel contains the switches, keys, and lights necessary to operate and control the system. The controls are divided into three sections: operator control, operator intervention, and field engineering control. In the following discussion, the operator's console refers to the former two sections, which constitute the lower half of the System Control Panel. The engineering control is the upper half.

All the keys, lights, and switches necessary for operator control and intervention are subsequently discussed; refer to Appendix D for the IBM 2040 Console diagram.

KEYS

LOAD -- loads from the I/O unit specified in the three LOAD UNIT SWITCHES on the console. Depressing the LOAD key causes execution of the system reset internal diagnostic sequence, then loads the first 24 bytes of information from the load unit into the first 24 bytes of main storage. This procedure is called initial program load (IPL).

START -- starts instruction execution in the manner defined by the RATE switch. This key is effective only when the CPU is in the stopped or manual state.

STOP -- causes the CPU to enter the stopped state as indicated by the MANUAL light on the console.

SYSTEM RESET -- stops all instruction processing; resets all indicators and lights on the console; resets channels, online nonshared control units, and I/O devices. It also restores the tape modes on all channels to their original setting (usually 800 bpi odd parity, data converter on, translator off). It does not reset any of the registers, or alter main storage.

CHECK RESET -- resets the three main error triggers. Specifically, it resets the EARLY, LATE and C'NTRL lights in the upper left portion of the System Control Panel. It does not reset any of the registers or channels.

PSW RESTART -- causes the IPL PSW to be fetched from core storage location zero (provided the CPU is in the manual state). The CPU then continues to process starting at the location indicated by the Instruction Address portion of the IPL PSW.

INTERRUPT -- requests an external interrupt, provided the PSW is masked to allow external interrupts.

STORE -- causes the information specified by the INSTRUCTION COUNTER OR STORAGE ADDRESS and STORAGE DATA keys to be entered in the area specified by the STORAGE SELECT switch. When the STORE key is being used, storage protection is ignored.

DISPLAY -- displays information in the location specified by the STORAGE SELECT and STORAGE ADDRESS switches.

POWER ON, POWER OFF -- initiates the power on or power off sequence for the entire system. Before initiating the power off sequence each I/O device must be at its not ready or unloaded state.

SWITCHES

ADDRESS COMPARE (a rotary switch) -- provides the means of stopping the CPU at a predetermined address (indicated by the INSTRUCTION COUNTER OR STORAGE ADDRESS keys) when in the MS position. An equal address comparison causes the CPU to enter the manual state.

LOAD UNIT (three rotary switches) -- provides the "XYZ" (eleven-bit) address of the input device to be used for initial program loading. The leftmost switch, corresponding to the "X" position of the device address, has eight positions labeled $0-7$. The other two switches, " Y " and " Z ", have 16 positions each, and are labeled with the hexadecimal characters $0-F$. (Refer to the I/O address assignments example given earlier.)

RATE (a rotary switch) -- indicates the manner in which instructions are to be performed. The position of the switch should be changed only while the CPU is in the manual state. The RATE switch has the following settings:

PROCESS. In this position, the system operates at normal speed.
INSTRUCTION STEP. When the START key is pressed with the RATE switch in this position, one complete instruction is performed, and the CPU then returns to the manual state. The

Interval Timer is not updated when the switch is in this position.
SINGLE-CYCLE (ordinarily for customer engineering use only). In this position single-cycling of each phase of an instruction is allowed.
STORAGE SELECT (a rotary switch) -- selects the storage area to be addressed by the ADDRESS switches. It can be manipulated without disrupting CPU operations, and has the following settings:

FP -- Floating Point Registers
GP -- General Purpose Registers
PSW -- Current Program Status Word
MS -- Main Storage
IC -- Instruction Counter
SP -- Storage Protect

LIGHTS

LOAD -- is turned on when the LOAD key is pressed for initial program loading (IPL), and remains on until the loading process has been terminated (that is, until the CCWs have been successfully executed). WAIT -- is on when the CPU is in the wait state.
MANUAL -- is on when the CPU is in the stopped state or manual mode (caused by pressing the STOP key or the SYSTEM RESET key). In this state, the CPU is not actually stopped, but rather is cycling through the microprogram. To exit from this state (that is, to resume instruction processing), press the START key.

TEST -- is on when the ADDRESS COMPARE, INTERFACE CONTROL, CPU, and RATE switches are in other than their normal positions.

SYSTEM -- is on when the CPU is in the running state.

DATA AND ADDRESS -- LIGHTS AND SWITCHES

Directly above the System Control Panel keys are two individual sets of lights and switches. They each have a length of two bytes (one halfword).

STORAGE DATA -- specify the data to be stored in the location indicated by the INSTRUCTION COUNTER OR STORAGE ADDRESS keys, and the STORAGE SELECT switch. The lights directly above the STORAGE DATA keys indicate the information being displayed or stored.

INSTRUCTION COUNTER OR STORAGE ADDRESS -- specify the address of the halfword of storage to be altered or displayed; these keys may also be used to indicate the number of the register (general purpose or floating point) to be altered or displayed. They can be manipulated without disrupting CPU operations only when the ADDRESS COMPARE switch is in the PROCESS position.

INITIAL PROGRAM LOADING (IPL)

Initial program loading is started manually by selecting the desired input device with the three LOAD UNIT (XYZ) switches, and then pressing the LOAD key. The first 24 bytes (six words) of information are loaded from the device selected into positions $0-23$ of storage. These positions contain the initial program load program status word (IPL PSW), and the two channel command words (CCW) after initial loading. The IPL PSW will be in positions $0-7$, and the CCWs in 8-23. If loading was not successful, the CPU idles (SYSTEM light is on) and the LOAD light remains on.

If, at the beginning of a job, any individual unit cannot be readied, press the SYSTEM RESET key on the console. This should reset all unusual conditions. (Note, however, that if this key is depressed while running a job, information already on the channels or interface units will be lost.)

Since this IPL procedure executes the same internal diagnostic sequence and reset functions that the SYSTEM RESET key performs, the SYSTEM RESET key need not be pressed before IPL.

CLEAR STORAGE -- MANUALLY
The following procedure for clearing storage manually does not clear the general purpose or floating point registers:

1. Press the DSAB INTVL TIMER (disable interval timer) switch down.
2. Press the SYSTEM RESET key
3. Set the RATE switch to SINGLE CYCLE
4. Set the DIAGNOSTIC CONTROL switch to MS ADDRESS
5. Set bit 3 of byte 0 of the STORAGE DATA keys in the down position to address the clear storage microprogram.
6. Flip up the STORAGE STATS switch
7. RESET the RATE switch to PROCESS
8. Press START. This causes the microprogram that sets all of main storage to zeros to be executed. None of the STORAGE DATA lights should be on, but the microprogram light (μ P light in the upper left-hand portion of the field engineering console) should be on, to indicate successful completion. If this light does not come on, or if any other lights on the field engineering console are on, the clear storage procedure was not successful.

DISPLAYING -- STORAGE SELECT SWITCH

All console displaying on the System/360 Model 40 is done a halfword at a time only when the system is
in the manual state. The STORAGE SELECT switch and the STORAGE ADDRESS keys are used for the register select, etc. All the data is displayed in the STORAGE DATA registers, bytes 0 and 1 , except as indicated.

Floating Point Registers

1. Press the STOP or SYSTEM RESET key.
2. Set the STORAGE SELECT switch to FP.
3. Set the following bits in byte 1 of the STORAGE ADDRESS keys:

Bits 0-3 (REGISTER SELECT switches), for the desired register to be displayed.
Bits 4-5, ignore.
Bits 6-7 (HALFWORD SELECT switches), to indicate which halfword is to be displayed, as follows:

First halfword -- 00
Second halfword -- 01
Third halfword -- 10
Last halfword -- 11
4. Press the DISPLAY button.

General Purpose Registers

1. Press the STOP or SYSTEM RESET key.
2. Set the STORAGE SELECT switch to GP.
3. Set the following bits of byte 1 of the STORAGE ADDRESS bit switches:

Bits 0-3 (REGISTER SELECT switches), for the desired register to be displayed.
Bits 4-5, ignore.
Bits 6-7 (HALFWORD SELECT switches), to indicate which halfword is to be displayed, as follows:

First halfword -- 00
Second halfword -- 01
4. Press the DISPLAY button.

Current Program Status Word

1. Press the STOP or SYSTEM RESET key.
2. Set the STORAGE SELECT switch to PSW.
3. Set the following bits in byte 1 of the STOR-

AGE ADDRESS keys:
Bits 0-3 (REGISTER SELECT switches), ignore Bits 4-5, ignore.
Bits 6-7 (HALFWORD SELECT switches), to indicate which halfword is to be displayed, as follows:

First halfword -- 00
Second halfword -- 01
Third halfword -- 10
Last halfword -- 11
4. Press the DISPLAY button.

Main Storage

1. Press the STOP or SYSTEM RESET key.
2. Set the STORAGE SELECT switch to MS.
3. Set the STORAGE ADDRESS keys for the desired storage address.
4. Press the DISPLAY button.
(Note that two bytes are always displayed in the STORAGE DATA lights at one time; byte 0 always displays the contents of an even numbered address, and byte 1 of the next higher odd numbered address. If an even numbered address is set into the STORAGE ADDRESS keys, byte 0 of the STORAGE DATA lights displays the contents of that address, and byte 1 displays the contents of the next higher odd numbered address. If an odd numbered address is set into the STORAGE ADDRESS keys, byte 1 of the STORAGE DATA lights displays the contents of the odd numbered address, and byte 0 displays the contents of the next lower even numbered address.)

Instruction Counter (Instruction Address Portion of PSW)

1. Press the STOP or SYSTEM RESET key.
2. Set the STORAGE SELECT switch to IC.
3. Press the DISPLAY key. The entire 3 bytes of the IC are displayed; the first byte is in byte 1 of the STORAGE DATA lights; the second byte is in byte 0 of the INSTRUCTION COUNTER lights; and the third byte is in byte 1 of the INSTRUCTION COUNTER lights.

Storage Protection

1. Press the STOP or SYSTEM RESET key.
2. Set the STORAGE SELECT switch to SP.
3. Set in the STORAGE ADDRESS bit switches the storage address for which the protection information is desired.
4. Press the DISPLAY button; the following information will be displayed in bytes 0 and 1 of the STORAGE DATA lights:
a. Byte 0 will be cleared.
b. Bits $0-3$ (SP DATA) of byte 1 contain the protection key for the block of core in which the desired storage address is located; this is called the "protection data"
c. Bits 4-7 (SP KEY) contain the protection key in the current PSW (bits 8-11 in the (PSW); this is called the 'protection tag".

ALTERING -- STORAGE SELECT SWITCH

Main Storage

The altering or changing of the contents of main storage (done only when the system is in the manual
state) always involves two bytes at a time, even though only one of the bytes may be actually changed. The procedure is as follows:

1. Press the STOP or SYSTEM RESET key.
2. Set the STORAGE SELECT switch to MS.
3. Set the STORAGE ADDRESS keys to the address of the data to be changed.
4. Set the STORAGE DATA keys as follows: If the content of an even numbered address is to be changed, set the new data in the byte 0 STORAGE DATA keys. Also, since two bytes are always stored at the same time, the data already stored in the odd numbered address (next above the even address being changed) must be repeated in byte 1 of the STORAGE DATA keys, so that it may be "restored" at the same time the contents of the even numbered address are changed.

If the content of an odd numbered address is to be changed, set the new data in the byte 1 DATA STORAGE keys, and "repeat" the data already stored in the next lower even numbered address in byte 0 of the STORAGE DATA keys.
5. Press the STORE key; the data stored will be displayed in the STORAGE DATA lights.

Current PSW, FP, and GP Registers
The procedure for changing data in any of these registers (done only when the system is in the manual state) which is similar to the procedure for displaying the respective registers is as follows:

1. Press the STOP or SYSTEM RESET key.
2. Set the STORAGE SELECT switch to select the desired type of register.
3. Set bits $0-3$ of byte 1 of the STORAGE ADDRESS keys to select the desired number of the register.
4. Set bits 4-7 of byte 1 of the STORAGE ADDRESS keys to select the halfword to be changed.
5. Set the STORAGE DATA keys for the halfword of data to be stored.
6. Press the STORE key; the data stored will be displayed in the STORAGE DATA lights.
7. Repeat steps 3 through 5 for all halfwords of data to be changed.

Instruction Counter

To manually transfer to another location in main storage (that is, to set the IC to a new starting point) when the CPU is in any state other than the wait state:

1. Press the STOP key to place the CPU in the manual state.
2. Set the STORAGE SELECT switch to IC.
3. Set the STORAGE ADDRESS keys to the transfer location.
4. Press the STORE button.
5. Press the START button to resume processing at the new location.

NOTE: The transfer to another location can also be accomplished by altering the Instruction Address (last three bytes) of the current PSW.

To alter the IC in wait state, the wait state bit in the current PSW (bit 14) must first be cleared. This returns the system to the operating state as indicated by the SYSTEM light on the console.

1. Press the STOP or SYSTEM RESET key.
2. Display the first halfword of the current PSW in the STORAGE DATA lights.
3. Restore the contents of the first halfword with the exception of the wait state bit (byte 1, bit 6 in the Storage Data lights). This turns the wait state off.
4. Follow the above steps for transferring to another location of storage

Storage Protect Key

To change the protection information associated with a given block of core (in blocks of 2048 bytes):

1. Press the STOP button.
2. Set the STORAGE SELECT switch to SP.
3. Set the STORAGE ADDRESS keys to the storage address that is to be changed.
4. In the SP DATA keys, bits $0-3$ of byte 1 , key in the new "Protection Data"; in bits 4-7 (SP KEY) of byte 1, key in the new "Protection Tag" (byte 0 is ignored for this operation).
5. Press the STORE button.
6. Press the START button to resume processing.

CONTINUOUS LOOPING

When a program is continuously looping in execution (indicated by console lights steadily flashing, and no indication of correct processing) and it is desired to trace the loop:

1. Press the STOP button.
2. Record the current PSW.
3. Record the CAW, if the loop involves some I/O function.
4. Set the STORAGE SELECT switch to IC.
5. Set the RATE switch to INSTRUCTION STEP.
6. Press the START key; one instruction is executed, and the address of the next sequential instruction is displayed in the STORAGE ADDRESS lights. Record the displayed address, and keep pressing the START key until this recorded address is again displayed in the STORAGE ADDRESS lights, that is, until one loop is completed.
7. Reset the RATE switch to PROCESS.
8. Take a core dump.

ADDRESS STOP

To stop the CPU at a specified address:

1. Press the STOP key.
2. Set the ADDRESS COMPARE switch to MS STOP.
3. Place the desired address in the STORAGE ADDRESS keys.
4. Press the START button.

The system will resume processing until an equal address comparison is made. The CPU then switches itself to the manual state. This condition will occur when an equal comparison is made on an instruction or a data address.

ANALYZING AN UNEXPECTED WAIT STATE CONDITION

If the CPU unexpectedly switches to the wait state as indicated by the WAIT light on the console, the contents of the current PSW should be examined, and then a core dump should be taken. Note that PSW is an internal register that will be destroyed by any core dump program.

If any of the System/360 BPS Utility programs are being used, bits 40 to 63 of the current PSW, which normally contain the instruction address, will contain a three-byte BCD message indicating the type of error. For example, if the instruction address field of the current PSW contains D3D7C1, decoded LPA, this signifies that a program check has occurred; a core dump helps to investigate further the cause. In this example, the old program PSW should be examined starting in location 28 hexadecimal. This action helps to isolate the cause of the program check and where it occurred. The instruction address (which caused the wait state) minus the instruction length code is found at location hexadecimal 2 E .

Under the BPS packages, an I/O interrupt will also switch the CPU to the wait state. In this case, the above procedure should be followed, except that the old I/O PSW (starting in hexadecimal location 38) should be examined instead of the old program PSW.

Refer to Operating Guide for Basic Assembler and Utilities (C28-6557) for the list of codes (and corresponding descriptions) that replace the instruction address in the current program PSW following an unexpected switch by the CPU to the wait state. Appendix C contains a reference list.

ANALYZING INPUT/OUTPUT COMMANDS

For analyzing I/O commands for any reason whatever, the procedure for using either the console or a core dump to determine the last I/O command
issued, the device associated with that command, and the status or result of the execution of that command, is as follows:

1. Examine the Channel Address Word (CAW -fullword at location 48 hexadecimal), which contains the address of the Channel Command Word (CCW). (Refer to Appendix C for formats.)
(NOTE: If I/O command chaining was employed, the CAW will contain the address of the first CCW.)
2. Analyze the Channel Status Word (CSW -doubleword starting at location 40 hexadecimal). The CSW has three significant parts: (a) the command address of the CCW, (b) the status of the channel, etc., and (c) the residual byte count (which may be zero).
a. The command address portion of the CSW always contains the address of the last CCW executed plus eight bytes.
b. The status portion (bits 32 through 47) of the CSW halfword at location 44 hexadecimal contains the status of the channel control unit or subchannel, and the status of the device to which the I/O command was issued. Each I/O device that can be attached to the system has its own characteristics as far as status bits are concerned. Refer to the individual SRL for each I/O device status bit meaning, as they vary. The address of the particular device to which the I/O command was directed can normally be found in the Interruption Code portion (bits 16 through 31) of the old I/O PSW at location 3A hexadecimal.
c. The residual byte count should be zero at the completion of the I/O command. Otherwise, one of three things is indicated:
(a) a wrong-length record was encountered;
(b) a command reject was issued from the channel for the last I/O command received - in either of these two cases, something may be wrong with the user's channel program; (c) a data check occurs during a read or write operation causing data transfer to stop at the point where the error occurred, and causing device motion to stop at the end of the affected record. Channel end, device end, unit check and incorrect length indications are posted in the CSW, and the residual byte count may indicate the amount of data not stored.
When working with variable-length records, the wrong-length record indication in the CCW bit 34 should be on; otherwise, every time a record with a count different from that specified in the CCW is encountered, bit 41 in the CSW (incorrect length) will be turned on, causing an I/O interrupt (if the Basic I/O subroutines are used, the CPU will enter the wait state).
3. Check the Channel Command Word (CCW-doubleword location on any doubleword boundary in storage). The CCW contains the data address, a byte count indicating the number of bytes involved in the operation, the command code defining the actual I/O operation, and the flag bits (if any) for command and data chaining, etc. Note that, initially, there must be a byte count of one or more for any I/O operation, except Transfer in Channel (TIC). (For the definitions of I/O device command codes, refer to the individual SRLs; Appendix B contains a reference list.)

OPERATION CODES FOR:
RR FORMAT INSTRUCTIONS

(2) Note that check bit (C) is not shown; add C bit for odd or even parity as needed except (2) Note that check bit C) is not shown; add C bit for odd or even
(3) CCW flag bit assignments 64 CA , the same 25 decimal 122
(3) CCW flag bit assignments
(4) Decimal feature instructions
(5) System/360 assembler programs require these codes

RX FORMAT INSTRUCTIONS

ADDRESS				LENGTH
DEC	HEX	BINARY		PURPOSE
0	0	0000	0000	double-word

(1) The size of the diagnostic scan-out area depends on the particular model and I/O channels; for models 30 through 75, maximum size is 256 bytes.

Decimal	$\begin{gathered} \text { Hexa- } \\ \text { deci- } \\ \text { mal } \end{gathered}$	Mnemonic	Graphic \& Control Symbols BCDIC EBCDIC	$\begin{gathered} \text { (2) } \\ \text { 7-Track Tape } \\ \text { BCDIC } \\ \hline \end{gathered}$	Punched Card Code	$\begin{gathered} \hline \text { System } / 360 \\ 8 \text {-bit } \\ \text { Code } \\ \hline \end{gathered}$	(3)
128	80	SSM			12-0-8-1	10000000	ccw
129	81		a		12-0-1	10000001	
130	82	LPSW	b		12-0-2	10000010	
131	83	(Diagnose)	c		12-0-3	10000011	
132	84	WRD	d		12-0-4	10000100	
133	85	RDD	e		12-0-5	10000101	
134	86	BXH	1		$12-0.6$	10000110	
135	87	BXLE	9		12-0.7	10000111	
136	88	SRL			12-0-8	10001000	ccw
137	89	SLL	i		12-0-9	10001001	
138	84	SRA			12-0-8-2	10001010	
139	88	SLA			12-0-8-3	10001011	
140	8 C	SRDL			12-0-8-4	10001100	
141	80	SLDL			12-0-8-5	10001101	
142	8	SRDA			12-0-8-6	10001110	
143	${ }^{8 F}$	SLDA			12-0-8-7	10001111	
144	90	STM			12-11-8-1	10010000	ccw
145	91	TM	j		12-11-1	10010001	
146	92	MVI	k		12-11-2	10010010	
147	93	TS	1		12-11-3	10010011	
148	94	NI	m		12-11-4	10010100	
149	95	CLI	ก		12-11-5	10010101	
150	9	01	0		12-11-6	10010110	
151	97	XI	p		12-11-7	10010111	
152	98	LM	9		12-11-8	10011000	ccw
153	99		r		12-11-9	10011001	
154	9 A				12-11-8-2	10011010	
155	98				12-11-8-3	10011011	
156	9	S10			12-11-8-4	10011100	
157	90	ItO			12-11-8-5	10011101	
158	9	HIO			12-11-8-6	10011110	
159	9 F	TCH			12-11-8-7	10011111	
160	${ }^{\text {A }}$				11-0-8-1	10100000	$\mathrm{ccw}^{\text {cm }}$
161	Al				$11-0-1$	10100001	
162	A2		5		11-0-2	10100010	
163	A3		t		$1110-3$	10100011	
164	A4		u		11-0.4	10100100	
165	A5		v		$11-0.5$	10100101	
166	A6		w		$11-0.6$	10100110	
167	A7		x		$11-0.7$	10100111	
168	A8		y		$111-0.8$	10101000	ccw
169	${ }^{\text {A }}$ 9		2		$11-0-9$	10101001	
170	AA				11-0-8-2	101 1010	
171	AB				11-0-8-3	10101011	
172	AC				11-0-8-4	10101100	
173	AD				11-0-8-5	10101101	
174	${ }^{\text {AE }}$				$1110-8-6$	10101110	
175	AF				11-0-8-7	10101111	
176	80				12-11-0-8-1	10110000	cCw
177	B1				12-11-0-1	10110001	
178	82				12-11-0-2	10110010	
179	83				12-11-0-3	10110011	
180	84				12-11-0-4	10110100	
181	85				12-11-0-5	10110101	
18	B6				12-11-0-6	10110110	
183	87				12-11-0.7	10110111	
184	88				12-11-0-8	10111000	ccw
185	89				12-11-0-9	10111001	
186	BA				12-11-0-8-2	10111010	
187	BB				12-11-0-8-3	10111011	
188	BC				12-11-0-8-4	10111100	
189	BD				12-11-0-8-5	10111101	
190	BE				12-11-0-8-6	10111110	
191	BF				12-11-0-8-7	10111111	

Decimal	$\left\lvert\, \begin{array}{c\|} \text { Hexa- } \\ \text { deci- } \\ \text { mal } \end{array}\right.$	Mnemonic	$\begin{aligned} & \text { Graphic \& Con- } \\ & \text { trol Symbols } \\ & \hline \end{aligned}$ BCDIC EBCDIC	$\begin{gathered} \text { 12) } \\ \text { 7-Track Tape } \\ \text { BCDIC } \end{gathered}$	Punched Card Code	$\begin{gathered} \hline \text { System/360 } \\ 8-\text { bit } \\ \text { Code } \end{gathered}$	(3)
192	C0		?	BA8 2	12-0	11000000	ccw
193	Cl		A A	BA 1	12-1	11000001	
194	C2		B B	BA ?	12-2	11000010	
195	C3		C C	BA 21	12-3	11000011	
19	C4		D D	BA 4	12-4	11000100	
197	C5		F	$B A 41$	12-5	11000101	
198	C6		F	BA 42	12-6	11000110	
199	C7		G G	BA 421	12-7	11000111	
200	C8		H H	BA 8	12-8	11001000	ccw
201	C9		1	BA8 \ldots	12-9	11001001	
202	CA				12-0-9-8-2	11001010	
203	CB				12-0-9-8-3	11001011	
204	CC				12-0-9-8-4	11001100	
205	CD				12-0-9-8-5	11001101	
206	CE				12-0-9-8-6	11001110	
207	CF				12-0-9-8-7	11001111	
208	D0		$!$	B 82	$11-0$	11010000	ccw
209	D1	MVN	J	B 1	11-1	11010001	
210	D2	MVC	K K	B 2	11-2	11010010	
211	03	MVZ	L L	B 21	11-3	11010011	
212	D4	NC	M M	B 4	11-4	11010100	
213	DS	CLC	$\mathrm{N} \quad \mathrm{N}$	B 41	11-5	11010101	
214	D6	${ }^{\text {oc }}$	0 O	B 42	11-6	11010110	
215	07	XC	$\mathrm{P} \quad \mathrm{P}$	B 421	11-7	11010111	
216	08		Q Q	B 8	11-8	11011000	ccw
217	09		$R \quad \mathrm{R}$	B 8 I	11-9	11011001	
218	DA				12-11-9-8-2	11011010	
219	DB				12-11-9-8-3	11011011	
220	DC	TR			12-11-9-8-4	11011100	
221	DD	TRT			12-11-9-8-5	11011101	
222	DE	ED (4)			12-11-9-8-6	11011110	
223	DF	EDMK (4)			12-11-9-8-7	11011111	
224	E0		*	A 82	0-8-2	11100000	ccw
225	E1				11-0-9-1	11100001	
226	E2		5	A 2	0-2	11100010	
227	53		T	A 21	0-3	11100011	
228	E4		U	A 4	0-4	11100100	
229	E5		$v \quad v$	A 41	0-5	11100101	
230	E6		w w	A 42	0.6	11100110	
231	E7		$\mathrm{X} \quad \mathrm{X}$	A 421	0-7	11100111	
232	E8		Y	A 8	0-8	11101000	ccw
233	E9		$z \quad$ Z	A 81	0-9	11101001	
234	EA				11-0-9-8-2	11101010	
235	EB				11-0-9-8-3	11101011	
236	EC				11-0-9-8-4	11101100	
237	ED				11-0-9-8-5	11101101	
238	EE				11-0-9-8-6	11101110	
239	EF				11-0-9-8-7	11101111	
240	F0		00	82	-	11110000	ccw
241	F1	MVO	1	1	1	11110001	
242	F2	PACK	?	2	2	11110010	
243	F3	UNPK	3	21	3	11110011	
244	F4		4		S	11110100	
245	Fs		55	41	5	11110101	
246	F6		$6 \quad 6$	42	6	11110110	
247	F7		7	421	7	11110111	
248	F8	ZAP (4)	8	8	8	11111000	ccw
249	F9	CP (4)	9	8	12	11111001	
250	FA	AP (4)			12-11-0-9-8-2	11111010	
251	FB	SP (4)			12-11-0-9-8-3	11111011	
252	FC	MP (4)			12-11-0-9-8-4	11111100	
253	FD	DP (4)			12-11-0-9-8-5	11111101	
254	FE				12-11-0-9-8-6	11111110	
255	FF				12-11-0-9-8-7	1111111	

CODE FOR PROGRAM INTERRUPTION

Interruption Code			Program Interruption Cause
DEC	HEX	BINARY	
1	01	00000001	Operation
2	02	00000010	Privileged operation
3	03	00000011	Execute
4	04	00000100	Protection
5	05	00000101	Addressing
6	06	00000110	Specification
7	07	00000111	Data
8	08	00001000	Fixed-point overflow
9	09	00001001	Fixed-point divide
10	$0 A$	00001010	Decimal overflow
11	0B	00001011	Decimal divide
12	0C	00001100	Exponent overflow
13	0D	00001101	Exponent underflow
14	OE	00001110	Significance
15	OF	00001111	Floating-point divide

$\left.\mathrm{S}_{\mathrm{S} 1}^{\mathrm{D} 1(\mathrm{~B} 1)}\right\}$ HIO, SIO, TCH, TIO
CHANNEL ADDRESS WORD

| Key | 00000 | Command Address | |
| :--- | :--- | :--- | :--- | :--- |
| 0 | ${ }_{3}$ | 0 | |

CHANNEL COMMAND WORD

$\begin{gathered} \text { Command } \\ \text { Code } \end{gathered}$	${ }_{78}$ Data Address	
-		
Flags	$1000 \mathrm{~V} / 71711 / 17 / 1$	Count

Command Code assignments are listed in the following table. The symbol X indicates that the bit position is ignored; M identifies a modifier bit.

CODE
COMMAND

MMMM 010	10	0
XXXX 100	0	Sense
MMMM 1 100	Transfer in channel	
MMMM MM0	1	Read backward
MMMM MM1 0	Write	
MMMM MM1 1	Read	

Bits 0-7 specify the command code.
Bits 8-31 specify the location of a byte in main storage.
Bits 32-36 are flag bits; refer to OPERATION CODE tables for flag bit assignments.
Bit 32 causes the address portion of the next CCW to be used.
Bit 33 causes the command code and data address in the next CCW to be used.
Bit 34 causes a possible incorrect length indication to be suppressed
Bit 35 suppresses the transfer of information to main storage.
Bit 36 causes an interruption as Program Control Interrupt
Bits 37-39 must contain zeros
Bits 40-47 are ignored.
Bits 48-63 specify the number of bytes in the operation.

CHANNEL STATUS WORD

Count: Bits 48-63 form the residual count for the last CCW used.

HEXADECIMAL AND DECIMAL INTEGER CONVERSION TABLE

HALF WORD								HALF WORD							
BYTE				BYTE				BYTE				BYTE			
0123		4567		0123		4567		0123		4567		0123		4567	
Hex	Decimal														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	268,435,456	1	16,777,216	1.	1,048,576	1	65,536	1.	4,096	1	256	1	16	1	1
2	536,870,912	2	33,554,432	2	2,097,152	2	131,072	2	8,192	2	512	2	32	2	2
3	805, 306,368	3	50,331,648	3	3,145,728	3	196,608	3	12,288	3	768	3	48	3	3
4	1,073,741,824	4	67,108,864	4	4,194,304	4	262,144	4	16,384	4	1,024	4	64	4	4
5	1,342,177,280	5	83,886,080	5	5,242,880	5	327,680	5	20,480	5	1,280	5	80	5	5
6	1,610,612,736	6	100,663,296	6	6,291,456	6	393,216	6	24,576	6	1,536	6	96	6	6
7	1,879,048,192	7	117,440,512	7	7,340,032	7	458,752	7	28,672	7	1,792	7	112	7	7
8	2,147,483, 648	8	134,217, 728	8	8,388,608	8	524,288	8	32,768	8	2,048	8	128	8	8
9	2,415,919,104.	9	150,994,944	9	9,437,184	9	589,824	9	36,864	9	-2,304	9	144	9	9
A	2,684,354,560	A	167,772,160	A	10,485, 760	A	655,360	A	40,960	A	2,560	A	160	A	10
B	2,952,790,016	B	184,549,376	B	11,534,336	B	720,896	B	45,056	B	2,816	B	176	B	11
C.	3,221,225,472	C	201,326,592	C	12,582,912	C	786,432	C	49,152	C	3,072	C	192	C	12
D	3,489,660,928	D	218,103,808	D	13,631,488	D	851,968	D	53,248	D	3,328	D	208	D	13
E	3,758,096,384	E	234,881,024	E	14,680,064	E	917,504	E	57,344	E	3,584	E	224	E	14
F	4,026,531,840	F	251,658,240	F	15,728,640	F	983,040	F	61,440	F	3,840	F	240	F	15
	8		7		6		5		4		3		2		1

TO CONVERT HEXADECIMAL TO DECIMAL

1. Locate the column of decimal numbers corresponding to the left-most digit or letter of the hexadecimal; select from this column and record on a scratch sheet the number that corresponds to the position of the hexadecimal digit or letter.
Repeat step 1 for the next (second from the left) position.
. Repeat step 1 for the units (third from the left) position.
Add the numbers selected from the table to form the decimal number.

SAMPLE Conversion of Hexadecimal 1.	
D	034
2.	3

TO CONVERT DECIMAL TO HEXADECIMAL

1. (a) Select from the table the highest decimal number that is equal to or less than the number to be converted (b) Record the hexadecimal of the column containing the se lected number.
(c) Subtract the selected decimal from the number to be converted.
2. Using the remainder from step 1 (c) repeat all of step 1 to develop the second position of the hexadecimal (and a remainder).
3. Using the remainder from step 2 repeat all of step 1 to develop the units position of the hexadecimal.

SAMPLE		
Conversion of		
Decimal		
1.	D	$-\frac{3380}{52}$
2.	3	$\frac{-48}{4}$
3.	4	-4
4.	Hexadecimal	$D 34$

To convert integer numbers greater than the capacity of the table, use the techniques below:

- HEXADECIMAL TO DECIMAL

Successive cumulative multiplication from left to right, adding units position.
Example:
${ }^{D} 34_{16}=3^{3380} 10$

D	$=$13 $\times \frac{16}{208}$
3	$=+\frac{3}{211}$
$\times \frac{16}{3376}$	

- decimal to hexadecimal

Divide and collect the remainder in reverse order.
Example: $\quad 3_{10}=X_{16}$
$16 \quad 3380$
$16 \quad 211$

16	13

HEXADECIMAL AND DECIMAL FRACTION CONVERSION TABLE

HALF WORD													
BYTE					BYTE								
Hex	$\begin{array}{\|c\|} \hline 0123 \\ \text { Decimal } \\ \hline \end{array}$	Hex	4567 Decimal		Hex	0123 Decimal			Hex	Decimal Equivalent			
. 0	. 0000	. 00	. 0000	0000	. 000	. 0000	0000	0000	. 0000	. 0000	0000	0000	0000
. 1	. 0625	. 01	. 0039	0625	. 001	. 0002	4414	0625	. 0001	. 0000	1525	8789	0625
. 2	. 1250	. 02	. 0078	1250	. 002	. 0004	8828	1250	. 0002	. 0000	3051	7578	1250
. 3	. 1875	. 03	. 0117	1875	. 003	. 0007	3242	1875	. 0003	. 0000	4577	6367	1875
. 4	. 2500	. 04	. 0156	2500	. 004	. 0009	7656	2500	. 0004	. 0000	6103	5156	2500
. 5	. 3125	. 05	. 0195	3125	. 005	. 0012	2070	3125	. 0005	. 0000	7629	3945	3125
. 6	. 3750	. 06	. 0234	3750	. 006	. 0014	6484	3750	. 0006	. 0000	9155	2734	3750
. 7	. 4375	. 07	. 0273	4375	. 007	. 0017	0898	4375	. 0007	. 0001	0681	1523	4375
. 8	. 5000	. 08	. 0312	5000	. 008	. 0019	5312	5000	. 0008	. 0001	2207	0312	5000
. 9	. 5625	. 09	. 0351	5625	. 009	. 0021	9726	5625	. 0009	. 0001	3732	9101	5625
. A	. 6250	. 0 A	. 0390	6250	. 00 A	. 0024	4140	6250	.000A	. 0001	5258	7890	6250
. B	. 6875	. OB	. 0429	6875	. 000 B	. 0026	8554	6875	. 0000 B	. 0001	6784	6679	6875
. C	. 7500	. 0 C	'. 0468	7500	. 00 C	. 0029	2968	7500	. 000 C	. 0001	8310	5468	7500
. D	. 8125	. 0 D	. 0507	8125	. 000 D	. 0031	7382	8125	. 000 D	. 0001	9836	4257	8125
. E	. 8750	. OE	. 0546	8750	. 00 E	. 0034	1796	8750	. 000 E	. 0002	1362	3046	8750
.F	. 9375	. OF	. 0585	9375	. 00 F	. 0036	6210	9375	. 000 F	. 0002	2888	1835	9375
1		2			3				- 4				

POWERS OF 16 TABLE

16^{n}						n
					1	0
					16	1
					256	2
				4	096	3
				65	536	4
			1	048	576	5
			16	777	216	6
			268	435	456	7
		4	294	967	296	8
		68	719	476	736	9
	1	099	511	627	776	10
	17	592	186	044	416	11
	281	474	976	710	656	12
4	503	599	627	370	496	13
72	057	594	037	927	936	14
1152	921	504	606	846	976	15

TO CONVERT . ABC HEXADECIMAL TO DECIMAL

Find. A in position I . 6250
Find .OB in position 2 . 04296875
Find . 00 C in position 3 . 002929687500
. ABC Hex is equal to . 670898437500

TO CONVERT . 13 DECIMAL TO HEXADECIMAL

To convert fractions beyond the capacity of the table, use techniques below:

- heXAdecimal fraction to decimal

Convert the hexadecimal fraction to its decimal equivalent using the same Convert the hexadecimal fraction to its decimal equivalent using the technique as for integer numbers
Example: $\quad .8 \mathrm{~A} 7=.540771_{10}$

$$
\begin{array} { l }
{ 8 \mathrm { A } 7 _ { 1 6 } = 2 2 1 5 _ { 1 0 } } \\
{ 1 6 ^ { 3 } = 4 0 9 6 }
\end{array} \quad 4 0 9 6 \longdiv { 2 2 1 5 . 0 0 0 0 0 0 }
$$

- decimal fraction to hexadecimal

Collect integer parts of product in the order of calculation.
Example: $\quad .540810=.8 A 7_{16}$

$\begin{aligned} & 8-8 . \frac{\times 16}{6528} \\ & A-10 . \frac{16}{4448} \\ & 7 \leftarrow 7 . \frac{\times 16}{1168} \end{aligned}$

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601
(USA Only)
IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

[^0]: Major Revision

