
File No. S360-31
Form Y28-6661-0

Program Logic

IBM System/3S0 Operating System

Linkage Editor (F)

Program Number S360-ED-521

This publication describes the internal logic of the
IBM System/360 Operating System Linkage Editor (F),
Version 2, with design points of 44K, 88K, and 128K.
It identifies areas of the program that perform specif­
ic functions and relates those areas to the program
listing.

The linkage editor, a processing program, combines
and edits modules to produce a load module that can be
loaded into main storage by the control program. The
linkage editor:

• Allocates storage, analyzes attributes and options,
and initializes tables and buffers.
(Initialization)

• Transforms input into an internal format for subse­
quent processing. (Input Processing)

• Assigns relative storage addresses to external sym­
bols, writes records on the output data set, and
produces an optional module map and/or. cross­
reference table. (Intermediate Processing)

• Relocates address constants found in the input
text, and writes the remaining records on the out­
put data set. (Second Pass Processing)

• Completes the partitioned data set directory for
the output data set, produces an error diagnostic
directory, and releases storage allocated to the
linkage editor. (Final Processin~

This program logic manual is directed to the IBM
customer engineer who is responsible for program main­
tenance. Because program logic information is not
necessary for program operation and use, distribution
of this manual is restricted to persons with program
maintenance responsibilities.

Restricted Distribution

First Edition (January 1968)

This publication corresponds to Release 15.

Specifications contained herein are subject to change from time to
time. Any such changes will be reported in subsequent revisions or
Technical Newsletters.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page impres­
sions for photo-offset printing were obtained from an IBM 1Q03 Printer
using a special print chain.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's com­
ments. If the form has been removed, comments may be addressed to IBM
Corporation, Programming Systems Publications, Department D58, PO Box
390, poughkeepsie, N. Y. 12602

©International Business Machines Corporation 1968

This publication provides customer
engineers and other technical personnel
with information describing the internal
organization and logic of the level F lin­
kage editor, version 2. It is part of an
integrated library of IBM System/360
Operating System Program Logic Manuals.
Other publications that are required for an
understanding of the linkage editor are:

IBM System/360 Operating System:

Introduction to Control Program Logic,
Program Logic Manual, Form Y28-6605

Concepts and Facilities, Form C28-6535

Linkage Editor, Form C28-6538

Assembler Language, Form C28-6514

The reader should also refer to the co­
requisite publications:

IBM System/360 Operating System:

Storage Estimates, Form C28-6551

System Control Blocks, Form C28-6628

This manual consists of seven parts:

1. An Introduction, which describes the
linkage editor as a whole, including
its relationship to the operating sys­
tem. The major divisions of the pro­
gram and the relationships among them
are also described in this section.

2. A Method of Operation section which
provides: (a) an overview of, and an

PREFACE

introduction to the logic of the lin­
kage editor, and (~ detailed descrip­
tions of specific operations. Opera­
tion diagrams, included at the end of
this section, are designed to be used
with the text, and illustrate the flow
of data through tables and buffers
used during linkage editor processing.

3. A section describing the organization
of Linkage Editor F. Program com­
ponents (modules, control sections,
and routines) are described both in
terms of their operation and their
relation to other components. Flow­
charts are included at the end of this
section.

4. A directory which helps the reader
find named areas of code in the pro­
gram listing, which is contained on
microfiche cards.

5. A section illustrating the layouts of
tables used by linkage editor F.
Table layouts may not be essential for
an understanding of the basic logic of
the program, but are essential for
analysis of storage dumps.

6. Diagnostic aids, including general
register contents at entry to modules,
and an error message -- module cross
reference table.

7. An appendix, which includes input con­
ventions and record Iormats.

If more detailed information is
required, the reader should refer to the
comments and coding in the linkage editor
program listings.

SECTION 1: INTRODUCTION ••••••
Purpose of Linkage Editor •••••
Relationship to the Operating System
General Description ••• • •

Module Structure • • • • • •
External Symbol Dictionary •
Relocation Dictionary
Composite Dictionaries • •

Selected Options • •
Module Attributes

Input/Output Flow ••••

9
9
9

10
10
11
11
11
12
13
15

SECTION 2: METHOD OF OPERATION •••• 18
Logic of the Linkage Editor 18

Initialization • • • • • • • • • • • 18
Input Processing. • • • • • 18
Intermediate Processing 19
Second Pass Processing • 19
Final processing • • • • • • • 20

Initialization (IEWLMIN~ ••••••• 20
Main Storage Allocation 21

Input Processing (IEWLMINm • • • 22
Reading Blocked Input ••••••• 22
Blocked Output on SYSPRINT • • • • • 23
Control Statements • • • • • • 23
Control Statement Processors • • • • 24
Object Module Processing • • • 28
Load Module Processing • • • • • 29
ESD Record Types • • • • • • • • • • 29
CESD Record Types and Subtypes • • • 30
ESD Processing • • • • • • • •• 30
TXT Processing • • • • • • • • 33
Processing Object Module Text • • • 33
Processing Load Module Text • • • • 34
Writing Text on SYSUT1 • • • • 35
RLD Processing • • • • • • • • 35
END Processing • • • • • • • 38
Include Processing • • • • • 38
Automatic Library Call Processing • 39

Intermediate Processing • • • • • • 41
Address Assignment (IEWLMADA) •••• 41

ENTAB Size Determination • • • • • • 42
Entry Processing • • • • • • • 44

Intermediate Output (IEWLMOUT) 44
MAP/XREF Processing • • • • • • • • 46

Second Pass Processing (IEWLMSCD) 46
Relocation of Address Constants 47

Relocation of Non-Branch Type
(A-Type) Address Constants • • •

Relocation of Branch Type (V-Type)
48

51 Address Constants • • • •
ENTAB Creation • • •
Relocation Routine •

• • • 52

Final Processing (I EWLMFNL)
Error Logging •••••••••

53
• 56

56

CONTENTS

Cross-Reference Table 56

SECTION 3: PROGRAM ORGANIZATION. • 81
Initialization and Input Processing •• 81

Initial Processor -- IEWLMINT
(Chart IA) • • • • • • • • • 8 1

Attributes and Options Processor
IEWLMOPT • • • • • • • • • • • • • • 81
Allocation Processor -- ALOOl ••• 81
Input Processor -- IEWLMINP (Chart
JA) •••••••••••• • • 81
Control Statement Scanner --
IEWLMSCN (Charts JO, JP) • • 82
Object Module Processor --
IEWLMMDI (Chart JB) • • • • • • 82
Load Module Processor -- INP270
(Chart JC) • • • • • • • • • • 82

ESD Processor -- IEWLMESD (Charts
JE. JF. JG) • • • • • • • 82
SYM Processor -- IEWLMSYM ~hart
JD) •••• • • • • • • • 82
Text and RLD Processor -- IEWLMRAT
(Chart JH) • • • • • • • • • • • 83

Text Processor -- IEWLMTXT (Chart
JI) •••••••••••••••• 83
RLD Processor -- RLDOOl (Charts
JR, JL) •••••••••••••• 83
End Processor -- IEWLMEND (Chart
J~ •••••• • • • • • • • • 83
Include Processor -- IEWLMINC
(Chart JR) • • • • • • • • • • • 83

Automatic Library Call Processor
IEWLCAUT (Charts JS. JT) • 84

Intermediate Processing •••• • • 84
Address Assignment Processor
IEWLMADA (Chart KA) •••• • • 84
Intermediate Output Processor --
IEWLMOUT (Chart LA) • • • • • • 84

Second Pass Processing • • • • • • • • • 84
Second Pass Processor -- IEWLMSCD
(Charts MA. MB) •••••••••• 84

Final Processing • • • • • • • • • • • • 85
Final Processor -- IEWL~FNL (Chart
NA) •••••••• • • • 85
SYNAD Routine (Chart NB) • 85

SECTION 4: MICROFICHE DIRECTORY

SECTION 5: TABLE LAYOUTS • • •

SECTION 6: DIAGNOSTIC AIDS

SECTION 7: APPENDIX.
Input Conventions , ••
Record Formats •

INDEX

• .128

.135

• .161

• .167
• .167

.168

• .176

FIGURES

Figure 1. Linkage Editor Processing -
Simple Case ••••••••••••••••••••••••••••• 10
Figure 2. Combining Control
Dictionaries •••••••••••••••••••••••••••• 11
Figure 3. Linkage Editor Processing
- Using Overlay and Test Options •••••••• 14
Figure 4. Linkage Editor process~ng
- Using Scatter Load and Test Options ••• 14
Figure 5. Input/OUtput Flow ••••••••••• 16
Figure 6. Operation Diagram A1 -
Initial and Input Processing •••••••••••• 59
Figure 7. Operation Diagram A2 -
Intermediate Processing ••••••••••••••••• 61
Figure 8. Operation Diagram A3 -
Second Pass Processing •••••••••••••••••• 63
Figure 9. Operation Diagram A4 -
Final processing •••••••••••••••••••••••• 65
Figure 10. Operation Diagram B1 -
Control Statement processing •••••••••••• 67
Figure 11. Control Statement Scanner
Operation ••••••••••••••••••••••••••••••• 23
Figure 12. Include Statement
Processing for a Sequential Data set •••• 24
Figure 13. Include Statement
Processing With Nested Members •••••••••• 25
Figure 14. Overlay Statement
Processing •••••••••••••••••••••••••••••• 26
Figure 15. Library Statement
Processing •••••••••••••••••••••••••••••• 27
Figure 16. Operation Diagram B2 - ESD
Processing •••••••••••••••••••••••••••••• 69
Figure 17. Operation Diagram B3 -
Processing Object Module Text ••••••••••• 71
Figure 18. Operation Diagram B4 -
Processing Load Module Text Records ••••• 73
Figure 19. Operation Diagram B5 - RLD
Processing •••••••••••••••••••••••••••••• 15
Figure 20. Include Processing •••••••••• 39
Figure 21. Automatic Library Call
Processing •••••••••••••••••••••••••••••• 40
Figure 22. Operation Diagram C1 -
Address Assignment •••••••••••••••••••••• 77
Figure 23. ENTAB Size Determination •••• 43
Figure 24. Processing of Alias
Symbols by the Entry Processor •••••••••• 45
Figure 25. Writing
Scatter/Translation Records ••••••••••••• 46
Figure 26. Operation Diagram D1 -
Data Movement During Second Pass
Processing •••••••••••••••••••••••••••••• 79
Figure 27. Non-Branch Type Address
Constants - Relative Relocation ••••••••• 48
Figure 28. Non-Branch Type Address
Constants - Absolute Relocation ••••••••• 49
Figure 29. Non-Branch Type Address
Constants - Absolute and Relative
Relocation •••••••••••••••••••••••••••••• 50
Figure
Figure
Figure
Figure

30.
31.
32.
33.

Example of Delinking ••••••••
Entry List Processing •••••••
ENTAB Creation ••••••••••••••
Building Error Messages •••••

51
52
54
57

Figure 34. Linkage Editor F
Organization •••••••••••••••••••••••••••• 87
Figure 35. Overlay Tree Structure for
Linkage Editor F (44~ ••••••••••••••••• 133
Figure 36. Overlay Tree Structure for
Linkage Editor F (88K) ••••••••••••••••• 134
Figure 37. Alias Table •••••••••••••••• 143
Figure 38. Calls List (As built by
RLD Processor) ••••••••••••••••••••••••• 143
Figure 39. Calls List ~s altered and
used by ENTAB size determinations) ••••• 143
Figure 40. Composite External Symbol
Dictionary (CESD) -- Internal Format ••• 144
Figure 41. Delink Table ••••••••••••••• 146
Figure 42. Downward Calls List •••••••• 146
Figure 43. Entry List ••••••••••••••••• 146
Figure 44. Entry Table (ENTA~ •••••••• 147
Figure 45. Half External Symbol
Dictionary ••••••••••••••••••••••••••••• 148
Figure 46. High ID Table •••••••••••••• 148
Figure 47. Level F Main Storage
Allocation Table ••••••••••••••••••••••• 149
Figure 48. Relative Relocation
Constant Table ••••••••••••••••••••••••• 149
Figure 49. Renumbering Table •••••••••• 150
Figure 50. RLD Input Control Block •••• 150
Figure 51. Level F RLD Note List •••••• 151
Figure 52. RLD Output Control Block ••• 152
Figure 53. Second Pass Text Control
Block •••••••••••••••••••••••••••••••••• 153
Figure 54. Segment Length Table ••••••• 154
Figure 55. Segment Table (SEGTAB) ••••• 155
Figure 56. Level F Text I/O Table ••••• 156
Figure 57. Level F Text Note List ••••• 156
Figure 58. Partitioned Organization
Directory Record ••••••••••••••••••••••• 157
Figure 59. Module Attributes •••••••••• 158
Figure 60. Partitioned Organization
Directory Record ••••••••••••••••••••••• 159
Figure 61. Table - Referred to by
IEWLCBPT ••••••••••••••••••••••••••••••• 160
Figure 62. LIST - Referred to by
IEWLCBPT ••••••••••••••••••••••••••••••• 160
Figure 63. XAD2CESD Table - Built and
Referred to by Cross Reference Table
Routine •••••••••••••••••••••••••••••••• 160
Figure 64. SYM Input Record (Card
Image) ••••••••••••••••••••••••••••••••• 168
Figure 65. ESD Input Record (Card
Image) ••••••••••••••••••••••••••••••••• 168
Figure 66. Text Input Record (Card
Image) ••••••••••••••••••••••••••••••••• 169
Figure 67. RLD Input Record (Card
Image) ••••••••••••••••••••••••••••••••• 169
Figure 68. END Input Record - Type 1
(Card Imag~ ••••••••••••••••••••••••••• 170
Figure 69. END Input Record - Type 2
(Card Image) ••••••••••••••••••••••••••• 170

Figure 70. SYM Record - (Load Module). 170
Figure 71. CESD Record - ~oad Modul~ 171
Figure 72. Scatter-Translation Record. 172

Figure 73. Control Record - (Load
IllJodule) ••• • • • • ••• • • • • • • • • • • • • • •• • • • • • •• 173
Figure 74. Relocation Dictionary
Record - (Load .tvlodule) ••• • • • • • • • • • • • • •• 17 4
Figure 75. Control and Relocation
Dictionary Record - (Load Module) •••••• 175

Table 1. Incompatible Module
Attributes • • • • • • • • • • • • 21
Table 2. Block size Determination •• 23
Table 3. General Register
Information - Cbject Module processing • 28
Table 4. Record Types •••••• •• 29
Table 5. General Register
Information - Load Module Processing • • 29
Table 6. Flag Field Processing •••• 37
Table 7. Relationship of RLD Flag
Field to Relocation • • • • • • • • • • 55
Table 8. Load Module Record Types and
Associated Processors •• • • • • • • • 82

Chart HA. Level F Major Divisions ••• 89
Chart IA. Initial Processor (IEWLMINT) 90
Chart JA. Input Processor (IEWLMINP) • 91
Chart JB. Object Module Processor
(IEWLMMDI) • • • • • • • • • • • •

Chart JC. Load Module Processor
(INP270) • • • • • • • •••

Chart JD. Syrn Processor (IEWLMSYM)
Chart JE. ESD Processor (IEWLMESD)
Chart JF. ESD Processor (I EWLMES D)
Chart JG. ESD Processor (IEWLMESm
Chart JH. TXT and RLD Processor

92

• • • 93
94

• • 95
• • 96
• • 97

(IEWLMRhT) • • • • • • • • • • • • • 98
Chart JI. TXT Processor (I EWLMTXT) •• 99
Chart JJ. Level F TXTBUF Routine ••• 100
Chart JK. Level F RLD Processor •••• 101
Chart JL. Level L RLD Processor
(Continued) • • • • • • • •

Chart JM. RLDBUF Routine •••••
Chart IN. End Processor (I EWLMEND)
Chart JO. Control Statement Scanner

• • 102
• .103
• .104

(IEWLMSCN) ••••••••••••••• 105
Chart JP. Control Statement Scanner
(IEWLMSCN) (Continued) • • • • • • 106

Chart JQ. READ8 Routine •••••••• 107
Chart JR. Include Processor (IEWLMINC) 108
Chart JS. Automatic Library Call
Processor (I EWLCAUT) • • • • • • • • • • 109

TABLES

Table 9. Level F Module -- CSECT
Cross Reference Table ••••••••• 132
Table 10. Table Construction and Usage 135
Table 11. All Purpose Table ~PT) ••• 136
Table 12. Normal Combination of
Internal CESD Types •••••••••• 145
Table 13. General Register Contents
at Entry to Module. • • • • • • • .161
Table 14. Buffer Allocation •••••• 164
Table 15. Table Allocation •••••• 165
Table 16. Error Message -- Module
Cross Reference Table ••••••••• 166

Chart JT. Automatic Library Call
Processor (I EWLCAUT) (Continued)
Chart KA. Address Assignment
Processor (IEWLMADA) • • • •
Chart KB. IEWLMENS • • • •

CHARTS

.110

Chart KC. Entry Processor (IEWLMENT)
Chart KD. Entry Processor (IEWLMENT)

• 111
.112
.113

(Continued) ••••••• • • 114
Chart LA. Intermediate Output
Processor (I EWLMOUT) • • • • • • • • • • 115
Chart LB. MAP/XREF Processor
(IEWLMMAP) • • • • • • • • • •
Chart MA. Second Pass Processor •
Chart MB. Second Pass Processor

••• 116
.117

(Continued) •••••••••• • 118
Chart MC. GETIDMUL Routine •••• 119
Chart MD. TXT/RLD Rea1 Routines •••• 120
Chart ME. WRTTXT Routine ••• 121
Chart MF. Relocation Routine
(IEWLMREL) • • • • • • • • • •
Chart MG. Relocation Routine
(IEWLMREL) (Continued) • • • •

Chart MH. Relocation Routine

.122

••• 123

(I EWLMREL) (Continued) • • • • • • .124
Chart NA. Final Processor. • • .125
Chart NB. SYNAD Routine • • • • • .126
Chart NC. ERR. Logging RTN-IEWLMLOG •• 127

OPERATION DIAGRAMS

Figure 6. Operation Diagram Al. Initial
and Input Processing •••••••••••••••••••• 59
Figure 7. Operation Diagram A2.
Intermediate Processing ••••••••••••••••• 61
Figure 8. Operation Diagram A3. Second
Pass Processing ••••••••••••••••••••••••• 63
Figure 9. Operation Diagram A4. Final
Processing •••••••••••••••••••••••••••••• 65
Figure 10. Operation Diagram B1. Control
Statement Processing •••••••••••••••••••• 67

Figure 16. Operation Diagram B2. ESD
Processing •••••••••••••••••••••••••••••• 69
Figure 17. Operation Diagram B3.
Processing Object Module Text ••••••••••• 71
Figure 18. Operation Diagram B4.
Processing Load Module Text Records ••••• 73
Figure 19. Operation Diagram B5. RLD
Processing ••.••••••••••••••••••••••••••. 75
Figure 22. Operation Diagram Cl. Address
Assignment •••••••••••••••••••••••••••••• 77
Figure 26. Operation Diagram Dl. Data
Movement During Second Pass Processing •• 79

This section provides general informa­
tion describing the purpose, organization,
and internal operation of the linkage edi­
tor, and its relationship to the operating
system.

The level F linkage editor, version 2,
(hereinafter referred to as the linkage

editor) is available in 44K, 88K, and 128K
design points; they differ in speed and
table size. The 44K and 88K design points
use different overlay structures, and the
128K design point is not in overlay. All
versions of the linkage editor operate in
essentially the same manner.

PURPOSE OF LINKAGE EDITOR

The linkage editor is one of the proces­
sing programs of IBM System/360 Operating
System. It is a service program used in
association with the language translators
to prepare machine-language programs from
symbolic-language programs written in FOR­
TRAN, COBOL, report program generator, the
assembler language, or PL/I. Linkage edi­
tor processing is a necessary step that
follows source program assembly or
compilation.

Linkage editor processing allows the
programmer to divide his program into sev­
eral parts, each containing one or more
control sections. Each part may then be
coded in the programming language best
suited to it and may then be separately
assembled or compiled by a language trans­
lator ~nder the rules applicable to each
language translator) •

The primary purpose of the linkage edi­
tor is to combine and link object modules
(the output of the language translators)
into a load module in which all cross
references between control sections are
resolved as if they had been assembled or
compiled as one module. The load module
produced by the linkage editor consists of
executable machine-language code in a for­
mat that can be loaded into main storage
and relocated by program fetch.

In addition to combining and linking
object modules, the linkage editor performs
the following functions:

• Library Calls. Modules (such as stan­
dard subroutines) stored in a library
can be placed in the input to linkage
editor, either automatically or upon
request. If unresolved external

SECTION 1: INTRODUCTION

references remain after all input to
the linkage editor is processed, an
automatic library call routine
retrieves the modules required to
resolve the references.

• Program Modification. Control sections
can be replaced, deleted, or rearranged
(in overlay programs) during linkage
editor processing, as directed by link­
age editor control statements. Common
control sections generated by the FOR­
TRAN, PL/I, and assembler language
translators are provided locations
within the output load module.

• Overlay Module Processing. Linkage
editor prepares modules for overlay by
assigning relative locations within the
module to the overlay segments and by
inserting tables to be used by the
overlay supervisor during execution.

• Options and Error Messages. The link­
age editor can:

1. Process special options that over­
ride automatic library calls or
the effect of minor errors.

2. Produce a list of linkage editor
control statements that were
processed.

3. Produce coded diagnostic messages
and a directory describing those
diagnostic messages that were
printed out during linkage editor
processing.

4. Produce a module map or cross­
reference table of control sec­
tions in the output load module.

RELATIONSHIP TO THE OPERATING SYSTEM

The linkage editor has the same rela­
tionship to the operating system as any
other processing program. Control is
passed to the linkage editor in one of
three ways:

1. As a job step, when the linkage editor
is specified on an EXEC job control
statement in the input stream.

2. As a subprogram, via the execution of
a CALL macro instruction (after execu­
tion of a LOAD macro instruction) , a
LINK macro instruction, or an XCTL
macro instruction.

Section 1: Introduction 9

3. As a subtask, in multitasking systems,
via execution of the ATTACH macro
instruction.

GENERAL DESCRIPTION

Linkage editor input may consist of a
combination of object modules, load
modules, and linkage editor control state­
ments. The prime function of the linkage
editor is to combine these modules, in
accordance with requirements stated on con­
trol statements, into a single output load
module that can be relocated and loaded
into main storage by program fetch for
execution. Output load modules are placed
in partitioned data sets (libraries).

Each module to be processed by linkage
editor has an origin that was assigned dur­
ing assembly, during compilation, or during
a previous execution of the linkage editor.
Each module in the input to linkage editor
may contain symbolic references to control
sections in other modules; such references
are called external references.

TO produce an executable output load
module, the linkage editor:

1. Assigns relative main storage
addresses to the control sections to
be included in the output module.
Since each input module has an origin
that was assigned independently by a
language translator, the order of the
addresses in the input is unpredict­
able. (Two input modules, for
example, may have the same origin.)
Linkage editor assigns an origin to
the first control section and then
assigns addresses, relative to this
origin, to all other control sections
in the output. 1 Each item in a control
section is relocated the same number
of bytes as the control section
origin.

2. Resolves external references in the
input modules. Cross references
between control sections in different
modules are symbolic, and must be
resolven (translated into relocatable
machine addresses) , relative to the
contiguous main storage addresses
assigned to the output load module.

1If the program is in overlay, an origin is
assigned to the first control section in
each segment. Within each segment, con­
tiguous addresses are assigned relative to
the segment origin.

10

These symbolic cross-references are
made by means of address constants.
The linkage editor calculates the new
address of each relocatable expression
in a control section and determines
the assigned origin (valu~ of the
item to which it refers.

Linkage editor processing is affected by
specified options, operations requested on
control statements, module attributes con­
tained in partitioned data set directories,
and control information contained within
the modules themselves. The following
paragraphs describe the relationship of
module structure, selected options, and
module attributes to linkage editor
processing.

MODULE STRUCTURE

Object modules and load modules have the
same basic logical structure (see Figure
1). Each consists of:

• Control dictionaries, containing the
information necessary to resolve sym­
bolic cross references between control
sections of different modules, and to
relocate address constants.

• Text, containing the instructions and
data of the program.

• An end of module (EO~ indicator (END
statement in object modules; EOM indi­
cation in load mo~ules) •

Each language translator usually pro­
duces two kinds of control dictionaries:
an external symbol dictionary (ESD) and a
relocation dictionary ~LD). An object
module always contains an ESD; a load
module contains an ESD, unless it is marked
with the nnot editable" attribute. Object
and load modules usually contain an RLD
(unless there are no relocatable address
constants in the module). Control dic­
tionary entries are generated when external
symbols, address constants, or control sec­
tions are processed by a language
translator.

Input

Object Module

Output

Load Module

Figure 1. Linkage Editor Processing -
Simple Case

External Symbol Dictionary

The external symbol dictionary contains
entries for all external symbols defined or
referred to within a module. (An external
syrr.bol is one that is defined in one module
and can be referred to in another.) Each
entry identifies a symbol, or a symbol
reference, and gives its location, if any,
within the module. When combining input
modules, linkage editor resolves references
between different input modules by matching
the referenced symbols to defined symbols:
it does this by searching for the external
symbol definitions in each input module's
ESD. There is an ESD entry for each named
control section and each named common area.
The ESD also contains entries that identify
unnamed control sections and unnamed common
areas.

Relocation Dictionary

The relocation dictionary (RLD) lists
all relocatable address constants that must
be modified when the linkage editor pro­
duces an output load module. The linkage
editor uses the RLD whenever it processes a

Input Module 1

ESD

Symbol Type* Origin length

CSECT A SD 000 500 ~

~ CSECT C ER 000 0
CSECT B SD 500 1000

T 300

X ~~ T

l T
'----< X

T

RlD

module. The RLD is also used to adjust the
value of address constants after program
fetch reads an output load module from a
library and loads it into main storage for
execution. The RLD contains at least one
entry for every relocatable address con­
stant in a module. An RLD entry identifies
an address constant by indicating both its
location within a control section and the
external symbol (in the ES~ whose value
must be used to compute the value of the
address constant.

Composite Dictionaries

An output load module is composed of all
input object modules and input load modules
processed by the linkage editor (except
those that are replaced or delete~. The
control dictionaries of an output module
are therefore a composite of all the con­
trol dictionaries in the linkage editor
input. The control dictionaries of a load
module are called the composite ESD (CESD)
and the RLD.

Figure 2 shows how the control dic­
tionaries of two input modules are combined
into composite dictionaries by the linkage

• Output Module

ESD

Symbol Type Origin length /
ID

CSECT A SD 000 500
r-+ CSECT C SD 500 2000

"..--+ CSECT B SD 2500 1000

r
T leD 400
X Y
T

RlD
I R 1 liP 1 Fla~ 1 Address

_'- 1 , 1 F 300 e--t-'
2 'I F 400 ~ I R I P Flag I Address

!>U"~. >-1 1 ~ 1 1 ~ F 1 300

~~I T 700
2 1 1 1 I. F 1 400 Editor X ~ \ T

Input Module 2 RlD

ESD R 1 P 1 Flag 1 Address;V

Symbol Type Origin length / 2 .2 F 700
ID

..... CSECT C 1 SD 1 000 2000 1

41~ I
H~ c.cD

RlD J 1 R 1 P Flag 1 Address
1 , 1 fl F 1 200

))

-See "ESD Record Types"

Figure 2. Combining Control Dictionaries

Section 1: Introduction 11

editor. The control dictionaries and their
associated text are interrelated through a
system of line numbers and pointers.
Within an input module, each ESD item on
which an address constant may depend has a
line number (ESD identifier, or ESD ID):
the line number indicates the poSition of
the item, relative to the other ESD items
associated with the text.~ EVery item of
text in an object or load module has asso­
ciated control information that describes
it. This control information includes the
ESD ID of the ESD item for the control sec­
tion that contains the text. (In Figure 2,
the ESD ID of the text item that contains X
and Y points to line 1 of the ESD for input
module 1. The ESD ID of the text item con­
taining Z points to line 1 of the ESD for
input module 2.)

Each RLD item must point to two ESD
items:

I. The ESD item for the symbol on which
the address constant depends. This is
referred to by the RLD relocation
pointer ~ pointer) •

2. The ESD item for the control section
that contains the address constant.
This is referred to by the RLD posi­
tion pointer (P pointer) •

In input module 1, X and Yare address
constants in the same control section
~SECT A). X refers to a symbol in CSECT

A: therefore, both pointers of its asso­
ciated RLD item refer to the ESD entry for
CSECT A (line 1). The value field of Y
refers to a symbol in a different control
section (CSECT C): therefore, the R pointer
of its associated RLD points to the ESD
entry for the external reference (line 2) ,
whereas the P pointer refers to the ESD
entry for its control section (line 1).

When the linkage editor combines the
input modules, it must maintain this system
of pointers by renumbering the ESD items to
reflect their relative positions in the
CESD of the output module. It must also
update the RLD pointers and control infor­
mation for the text so that they refer to
the renumbered CESD items: the resulting
CESD and RLD items are shown in Figure 2.

'In an object module, one type of ESD item
(LD) may not have associated text or

address constants that depend on it.
(Refer to "ESD Processing.") Such ESD
items are excluded from the numbering
system.

12

SELECTED OPTIONS

Linkage editor processing also depends
on selected options. Figure 1 shows a
simple case in which a single object
module, containing only one control sec­
tion, is processed by the linkage editor
for block loading.

Figure 3 shows the processing of an
object module and a load module, each con­
taining several control sections. In this
example, test translator macro instructions
were included in an assembler language
source program and test symbol {SY~ rec­
ords were produced by the assembler lan­
guage translator. The TEST and overlay
options were specified on the execute
(EXEC) statement and overlay control state­

ments were included in the input to linkage
editor. With these options, the output
load module produced by the linkage editor
contains:

• SYM records to be used by the test
translator. (If the TEST option is not
specified on the EXEC sta~ement, SYM
records in input are not included in
the output load module.) These records
contain blocked SYM and ESD statements
created during a previous execution of
linkage editor. SYM records in load
modules are passed through the linkage
editor unmodified to the output device.

• A composite ESD. CESD records contain
the ESD items for the module. There is
a maximum of 15 ESD items per record on
the output device. The first eight
bytes of the CESD record contain con­
trol information pertaining to the ESD
items in the record. This information
consists of the ESD ID of the first ESD
item and the number of· bytes of ESD
items in the record.

• A control record, or a composite
control/RLD record, preceding each text
record. The RLD portion, if present,
contains the RLD items used to relocate
the previous text. 2 The control portion
may contain:

1. An end of segment (EOS) indica­
tion, if the following text record

2If there is a large number of RLD items
for the previous text, there may be sever­
al RLD records preceding the next text
record. The last of these is a control/
RLD record.

is the last text record of an
overlay segment. 3

2. An end of module (EO~ indication,
if the following text record is
the last text record of the
module. 3

3. The number of bytes of RLD infor­
mation that follow, if it is a
composite control/RLD record.

4. The number of bytes of control
information.

The control portion also contains the
IDs and lengths (in bytes) of all the
control sections in the following text,
to a maximum of 60, and a channel com­
mand word (CC~. The channel command
word contains the address assigned by
the linkage editor to the first byte of
that record, plus the total length of
the record. This information is used
by program fetch to read the following
text.

Note: The control portion contains as
many IDs and lengths as there are con­
trol sections in the following text
record.

• Text for each control section. Text
records contain the instructions and
data for the module. In overlay, the
linkage editor produces two special
types of text records, the segment
table (SEGTAB) and entry table (ENTAB).
The SEGTAB, located in the root seg­
ment, is used by the overlay supervisor
to keep track of the relationship of
segments during execution. The ENTAB
is a separate control section that may
be created by the linkage editor for
each overlay segment. An ENTAB is used
by the overlay supervisor to determine
the segment to be loaded when a segment
not in the path is referred to.

• A note list. The note list gives the
location of each overlay segment in the
output module library.

Figure 4
the scatter
requested.
load module

shows the module structure when
loading and test options are
With these options, the output
contains:

3If there are no RLD items for the last
text record, the control record that pre­
cedes the text contains the EOS or EOM
indication. If there are RLD items, the
EOS or EOM follows the text record. (See
Figure 3.)

• SYM records.

• A composite ESD.

• A scatter/translation record used by
program fetch to compute the relocated
addresses required for scatter loading
the module into the main storage. The
record contains a scatter table and a
translation table. The scatter table
is a list of control section addresses;
the translation table correlates the
CESD entry for each control section
with the address indicated in the
scatter table. (When a load module in
scatter format is processed again by
the linkage editor, this information is
ignored.)

• Text for each control section, preceded
by a control/RLD record describing it.
(Any RLDs pertaining to a text record

are contained in the control/RLD record
that follows it.)

• An EOM indication that marks the end of
the module.

The Appendix (Section 7) contains the
format of each record type.

MODULE ATTRIBUTES

When the linkage editor generates a load
module in a library (partitioned data set)
it places an entry for the module in the
PDS directory. This entry contains "attri­
butes" describing the structure, content,
and logical format of the load module. The
control program uses these attributes to
determine how a module is to be loaded,
what it contains, if it is executable,
whether it is executable more than once
without reloading, and if it can be
executed by concurrent tasks •

Some module attributes can be specified
by the programmer; others are specified by
the linkage editor as a result of informa­
tion gathered during processing. In the
following list, attributes marked with an
asterisk cannot be specified by the
programmer:

• Reenterable. A reenter able module can
be executed by more than one task at a
time and cannot be modified by itself
or by any other module during execu­
tion; i.e., a task may begin executing
a reenterable module before a previous
task has finished executing it.

Section 1: Introduction 13

Object
Modules

*

load
Module

Record
SEGTAB
Control
Record

TXT

Cont rol/R lD
Record
ENTAB
EOS/
RlD/Record
Control
Record
TXT
Control/RLD
Record
ENTAB
EOS/
RlD Record
Control
Record
TXT
EOM/
RlD
Note
list

.< ".ko,. Editor) ~

Output

load
Module

Control
Record
SEGTAB
Control
Record

Control
Record
TXT
Contral/
RlD Record

T
EOS/
RLD Record

Control/
RlD Record
ENTAB
EOS/
RLD Record
Control/
EOM

Segment 1
(Root
Segment)

Segment 2

* RlD items exist for previous TXT record;
therefore, EOM/RlD follows TXT record.

TXT Segment N

** No RlD items for last TXT record;
therefore, EOM precedes TXT record.

Any overlay statements in the load module
are ignored.

Figure 3. Linkage Editor Processing - Using Overlay and Test Options

Object
Modules

Figure 4.

14

load
Module

Control/RlD

Control/RlD

,------i~< U.ko,. r • . Editor

load
Module

Linkage Editor Processing - Using Scatter Load and Test Options

• Refreshable. A refreshable module can­
not be modified by itself or by any
other module during execution~ i.e., a
refreshable module can be replaced by a
new copy during execution by a recovery
management routine without changing
either the sequence or results of pro­
cessing. ~or details on recovery
management, refer to the publication
IBM System/360 Operating System, Con­
cepts and Facilities, Form C28-6535.

• Serially reusable. A serially reusable
module will be executed by only one
task at a time, and it will either
initialize itself and/or it will
restore any instructions or any data in
the module that it alters during its
execution.

• Overlay format. A load module struc­
tured for overlay includes a segment
table ~EGTAB) to enable the overlay
supervisor to load the proper segments,
and at least one ENTAB to assist in
passing control from one segment to
another. If a load module has the
overlay format attribute, the reenter­
able, reusable, and scatter attributes
cannot be present.

• Test. If this module is an assembler
language program and testing by the
test translator is desired, this attri­
bute can be specified. Test will cause
SYM records to be written. If the TEST
attribute is specified, the module can­
not be reenterable or serially
reusable.

• Only loadable. This attribute indi­
cates that the control program may load
this module only via the LOAD macro
instruction.

• Scatter format. A load module in
scatter format is suitable for block or
scatter loading. The scatter­
translation table and the relocation
dictionary maintain logical linkage
between scattered control sections when
program fetch loads them into main
storage.

• *Block format. If neither the overlay
nor scatter attributes are specified,
it is implied that the module can only
be block loaded. The control program
will load the module only if enough
contiguous main storage space is avail­
able for the entire module.

• *Executable. This attribute indicates
that linkage editor did not find any
errors that would prevent successful
execution. If this attribute is not
present the control program will not
load the module.

• *Module contains one text record and no
relocation dictionary records. This
attribute indicates that the control
program does not have to allocate main
storage for relocation dictionary items
when loading the module. It also indi­
cates that the first text record is the
last one~ there is no control record
following it. The entire module can be
read by program fetch in a single read
operation.

• Downward compatible. Indicates that
the module can be processed by either
the level E or F linkage editor. The
downward compatible option is assumed
by the level E linkage editor. Modules
processed by the level F linkage editor
that are not marked "downward compat­
ible w cannot be processed by the level
E linkage editor.

• *Linkage editor assigned origin of
first text record is zero. If this
attribute is present, the first byte of
instruction or data in the first text
record is aSSigned to location zero.

• *Entry point assigned by linkage editor
is zero. Indicates that the entry
point is at the first byte of the
module.

• *No relocation dictionary items pre­
sent. Indicates to the control program
that no allocation of main storage is
necessary to receive relocation dic­
tionary items when program fetch loads
them into main storage.

• Not editable. Indicates that the load
module cannot be accepted by the link­
age editor for subsequent processing.
~or example, the programmer may drop

the CESD from an output load module in
order to conserve space on the library~
such a load module cannot be repro­
cessed by linkage editor.)

• Symbol statements present. If a module
produced by the assembler language
translator is to be tested by the test
translator, it may contain a testing
symbol dictionary. In a load module,
this dictionary contains the informa­
tion from the symbol statement images
that were input to linkage editor.

INPUT/OUTPUT FLOW

Four data sets must be specified for
linkage editor processing~ their ddnames
and functions are:

• SYSLIN. This is the "primary input
data set," containing object modules
and control statements. All input from

Section 1: Introduction 15

SYSLIN must be in 80-column card image
format. 1 The SYSLIN source may be a
card reader, magnetic tape, a direct
access device, or a concatenation of
data sets from different types of input
devices. 2

• SYSPRINT. This is the "diagnostic out­
put data set." Diagnostic messages,
the module map, and the cross-reference
table are written on SYSPRINT. (In the
Sequential Scheduling System, the
SYSPRINT device is normally a printer
or magnetic tape.)

• SYSUT1. This is the "intermediate data
set." Linkage editor uses this data
set for temporary storage of text and
RLD items being processed. SYSUT1 must
be on a direct access volume.

Note: SYSUT1 is only opened when two­
pass processing is in effect.

• SYSLMOD. this is the "output module
data set." It is a partitioned data
set on a direct access volume. SYSLMOD
contains load modules; their attributes
are described in the user's portion of
the directory entry for the member.

An additional data set, SYSLIB, is used
by linkage editor if there are any automa­
tic library calls to be processed. SYSLIB
can be defined only as a partitioned data
set. The members of SYSLIB can be either
load modules or object modules (but object
and load modules cannot be contained in the
same PDS). When SYSLIB is opened, the
linkage editor determines whether the PDS
contains object or load modules by checking
the format in the data control block (DCB).
If the PDS contains object modules, the
record format (RECFM) field of the DCB
indicates "fixed (F) format;" if it con­
tains load modules, the DCB indicates
"unknown (U) format." (Load module records
are of variable length.) If SYSLIB con­
tains object modules, the linkage editor
ignores the user's portions of the PDS
directory entries for the object modules.

Other data sets may be read by linkage
editor when it processes INCLUDE or LIBRARY
statements specifying ddnames. Data sets
read into main storage with INCLUDE state­
ments may be either sequential or parti­
tioned. SYSLIB and data sets specified in
LIBRARY statements for use by automatic
library call must be partitioned.

The attributes for the "execute linkage
editor" job step are the attributes speci-

1The card images may be blocked.
2A concatenation of data sets cannot con­
tain both object and load modules.

16

fied on the EXEC statement. These attri­
butes may be modified if a load module hav­
ing different attributes is processed.

Figure 5 shows the input/output flow.
During the initial processing, SYSLIN,
SYSPRINT, SYSUT1, and SYSLMOD are opened.
During input processing, the primary input
is read from SYSLIN. If an INCLUDE state­
ment is read in the primary input, the data
set whose ddname is specified on the state­
ment is opened, and is processed. At the
end of all SYSLIN input, SYSLIB and any
other data sets whose ddnames are specified
on LIBRARY statements are processed through
automatic library calls.

SYSLIN

SYSLIB

Call
library

SYSUTl

mediate
Data Set

Initial
Processing

Input
Processing

Intermediate
Processing

Second Pass
Processing

Final
Processing

Figure 5. Input/Output Flow

SYSPRINT

SYSLMOD

If the TEST option has been selected,
SYM records are written during input pro­
cessing; text and RLD items are written
sequentially on SYSUT1, except during
single pass processing. The location of
each text record on SYSUT1 is entered in a
text note list. The location of each RLD
record on SYSUTl is entered in an RLD note
list. If either note list overflows, it is
written out. on SYSUT1; either note list may
overflow three times.

In intermediate processing, the CESD is
written on SYSLMOD (unless the not editable
attribute is indicate~. If a scatter
table, translation table, or SEGTAB is
required, it is also written on SYSLMOD.
The note list for the text and RLD items on
SYSUT1 are read into main storage. If a
module map was required, the CESD is used
in producing the map. If a cross-reference
table was requested and all RLDs are in
storage, the table is produced during
intermediate processing.

During second pass processing, text and
RLD records are read into main storage from
SYSUT1 in the order of assigned addresses
within each segment (using the note lists
to find the records) and are written out on
SYSLMOD.

In final processing, the member name and
any alias names are entered into the PDS
directory entry of the output load module,
via the STOW macro instruction. If any
coded diagnostic messages were written on
SYSPRINT during linkage editor processing,
a diagnostic message directory containing
error message text is written out on

SYSPRINT. If a cross-reference table was
requested and was not produced during
intermediate processing, SYSLMOD is opened
for input, RLDs are read, and the cross­
reference table is produced. At the end of
final processing, SYSLMOD is closed (if it
was opened for inpu~. All other data sets
are then closed and control is returned to
the calling program, unless the SYSLIN
input during input processing was ter­
minated by a NAME statement. If a NAME
statement terminated the primary input, and
it is not followed by end-of-file, control
is returned to initial processing and
SYSLMOD is opened for output, if it had
been closed during final processing.

When a NAME statement is used to produce
multiple load modules in a single execution
of linkage editor, SYSLIN, SYSPRINT, and
SYSUT1 remain open for the entire execu­
tion. (A pointer in the DCB for SYSUT1 is
repositioned to the beginning of extent of
SYSUT1 after each load module is produced.)
If neither a module map nor a cross­
reference table is requested, or if a
cross-reference table is requested and all
RLDs are in core, SYSLMOD remains open for
output for the entire linkage editor
execution.

Section 1: Introduction 17

SECTION 2: METHOD OF OPERATION

This section contains an introduction to
the logic of the linkage editor, which
emphasizes the flow of primary data and
control information through tables and
buffers, and detailed functional descrip­
tions of its phases.

LOGIC OF THE LINKAGE EDITOR

The linkage editor can be functionally
divided into five phases:

• Initialization

• Input processing

• Intermediate processing, including
address assignment and intermediate
output

• Second pass processing

• Final processing

Operation diagrams (see Figures 6-10,
16-19, 22, and 26) at the end of this sec­
tion illustrate the functional operation of
the linkage editor. The shaded areas of
the diagrams correspond to operations
described in the text.

Initialization

When the linkage editor receives control
from the job scheduler or a calling pro­
gram, it performs initialization functions
in preparation for all subsequent proces­
sing. (See Diagram A 1). The operations
included in initial processing (area A)
are:

• Initialize DCBs and open data sets to
be used during linkage editor
processing.

• Allocate storage for all tables, buff­
ers, and work areas to be used by link­
age editor processing.

• Build the all purpose table (APT) and
enter addresses and descriptions of all
other tables and buffers into it.

• Analyze the attributes and options
passed by the calling program (speci­
fied by the programmer) and save them
in the all purpose table.

When all initialization fUnctions are
completed, the linkage editor is ready to
accept input.

18

Input Processing

All linkage editor input is processed
initially during the first pass. (See Dia­
gram A1.) Object modules from SYSLIN (pri­
mary input data set) are read into the
SYSLIN buffer (area ~. Object modules
from SYSLIB or a specified user's library
(secondary input data sets) are read into

the object module buffer (area C). Text
records in load modules from SYSLIB or a
user's library are read into the input text
buffer (area F); all other load module
records are read into the first pass RLD
buffer (area D). The various records which
constitute these modules are processed as
follows.

Control Statements: These records, which
may precede or follow object modules, con­
tain information which is later used in
symbol resolution and which specifies
libraries containing secondary input.
Depending on the type of control statement,
entries are made in either the all purpose
table {AP~ or the composite external sym­
bol dictionary (CESD).

ESD Records: These records from object
modules, and CESD records from load
modules, describe symbols that have been
defined for external use. Entries for the
symbols are made in the CESD (area E) •
Entries are made in the renumbering table
to allow the translation of the input ESD
indentifiers (IDS) into new CESD IDs.
Entries are made in the delink table for
symbols that are to be deleted or replaced.

TXT Records: These records, containing the
instructions and data of the program, are
moved from the SYSLIN buffer and object
module buffer to the input text buffer
(text records from load modules are read
directly into the input text buffer) (area
F). They are arranged in the proper
sequence and recorded in the text I/O table
and the text note list. When the input
text buffer is filled, its contents are
written onto SYSUT1; if it does not become
filled, text records are retained in the
buffer, and "single-pass" processing is in
effect. Text note list entries contain the
location of text records (SYSUT1 address or
buffer address) and other descriptive
information. Text I/O table entries con­
tain information identifying text records
by ESD ID.

RLD Records: These records, to be used
later in relocating address constants, are
moved from the SYSLIN buffer and object

module buffer to the RLD buffer (area ~ •
The relocation and position pointers (R and
P pointers) are updated, using control
information from the renumbering table and
the delink table. RLD items are examined
and marked for future processing. If V­
type (branch-type) address constants are
found in overlay programs, entries are made
in the calls list for use during intermedi­
ate processing. When the RLD buffer is
full, RLD records are written onto SYSUT1,
and control information identifying RLD
records by size (byte coun~, P pointer,
and location on SYSUT1 is entered into the
RLD note list. If the RLD buffer does not
become filled, RLD records are retained in
the buffer and "single-pass" processing is
in effect.

SYM Records: These records, which are not
involved in linkage editor processing, are
gathered in the RLD buffer and are written
directly onto sYSLMOD if the TEST option
has been specified. If TEST has not been
specified, SYM records are ignored.

When all input records have been pro­
cessed (all external symbols have been
entered into the CESD) control is passed to
intermediate processing.

Intermediate processing

The operations included in intermediate
processing (see Diagram A2) have two pri­
mary objectives: to assign relative
storage addresses to symbols in the CESD,
and to write some of the records to be
included in the output load module onto the
SYSLMOD data set. MAP and XREF options may
also be produced during intermediate
processing.

Address Assignment: Entries which require
no further processing are deleted from the
CESD; all other CESD symbols are assigned
temporary linked addresses. Relocation
constants are determined for all control
sections, and the relocation constant
table(RC~ is built (area A).

For all programs in overlay, additional
processing is required. The calls list is
used to determine ENTAB entries to be
placed in the CESD, and the downward calls
list is built (area F). The segment length
table (SEGLGTH) is built (area B), and seg­
ment relocation constants are computed.
Temporary linked addresses in the CESD and
entries in the relocation constant table
are adjusted for overlay by adding to them
the segment relocation constants (area B) •

Temporary linked addresses and reloca­
tion constants are combined to determine
final linked addresses for symbols, and the
results are placed in the CESD. The alias
table is built from alias symbols in the

CESD. At this point CESD processing is
complete.

MAP/XREF Processing: If the MAP option has
been specified, a module map, containing
sorted CESD items, is built and written on
SYSPRINT. If the XREF option has been spe­
cified and all RLDs are in storage, a
cross-reference table is built from RLDs
(in the RLD buffer) and written on

SYSPRINT. If all RLDs are not in storage,
the cross-reference table is built during
final processing.

Intermediate Output: The principal fUnc­
tion of this section of intermediate pro­
cessing is to write the CESD onto the out­
put load module data set (SYSLMOD). T~
half ESD (HESD), containing control infor­
mation from CESD entries, is built (area C)
and held in main storage for use during
second pass processing. The text I/O table
(area E) is scanned to determine the ID of
the last control section containing text in
the program ~r in each segment of an over­
lay program); this information is placed in
the high ID table (BIID) (area E), and
noted in the HESD for use during second
pass processing.

For a program in overlay, the segment
table (SEGTAB), which defines the relation­
ships among segments, is built and written
(with a centrol record) onto sYSLMOD (area

D) •

For a program that is to be scatter
loaded, a scatter table and a translation
table are built from information in the
CESD, and scatter/translation records are
written onto SYSLMOD (area G) •

Module IEWLMOUT is the Intermediate Out­
put Processor.

Second Pass processing

The objectives of second pass processing
(see Diagram A~ are relocating address
constants in the text and writing onto the
SYSLMOD data set the remaining records that
constitute the output lead module.

Text records are read from SYSUT1
(intermediate data set) into the second
pass text buffer ~rea A) , using the text
I/O table and the text note list to locate
the records on SYSUT1. The text I/O table
is also used to determine the order in
which text records are to be processed.
RLD records associated with the text being
processed are read into the second pass RLD
input buffer, using the RLD notelist to
locate the required records (area B) •

Single-Pass processing: If the linkage
editor did not write text or RLD records
onto sYSUT1, single-pass proceSSing is in

Section 2: Method of Operation 19

effect for these records. The records are
accessed directly in the input text buffer
and the RLD buffer, which are physically
the same storage areas as the second pass
text buffer and the second pass RLD input
buffer. If text records or RLD records
were written onto SYSUT1, they are read
back into the same locations.

Relocation: Address constants described by
RLD items are moved from the second pass
text buffer to a work area, where reloca­
tion is performed (area C). The manner in
which each address constant is relocated
depends on whether it is a V-type (branch
type) or an A-type (non-branch type)
address constant, or a pseudo register
(type 1 or type 2) •

A V-type address constant can refer to a
named location in some other control sec­
tion (branch type address constant). The
value field of such a V-type address con­
stant always contains a zero because the
address was not known at compilation time.
During second pass processing, the linkage
editor address (absolute relocation factor)
that was assigned to the symbol and saved
in the HESD is inserted into the value
field. This is called absolute relocation.
If the V-type address constant is in an
overlay program, the address of an ENTAB
entry for the symbol and the segment number
of the current text is inserted in the
value field. (ENTABs are created in the
second pass RLD buffer from information in
the HESD and the entry list, which contains
an entry for each V-type address constant
in the path of a referred-to symbol (area
E) .)

The value field of an A-type address
constant that refers to a named location in
the same input module (non-branch type
address constant) contains an address
assigned by the language translator. Dur­
ing second pass processing, this address is
modified by adding or subtracting the rela­
tive relocation factor that was determined
for the symbol referred to by the address
constant. Relative relocation factors are
saved in the relocation constant table.
This process is called relative relocation.

When each address constant is relocated,
it is placed back in the text, and the
address field of the associated RLD item is
updated (area D). The RLD item is then
moved to the second pass RLD output buffer.
When all address constants in the text
buffer are relocated, the text is written
onto SYSLMOD, followed by the associated
RLD items (area F). A control record per­
taining to the next text record is written
onto SYSLMOD following the RLD records. If
the output load module is structured for
overlays a TTR list, containing the address
of the first control record of each segment

20

(for the first segment the list contains
the address of the first text recor~ is
also created and retained in main storage.

Second pass processing continues until
all segments in the output module are pro­
cessed. The last control record contains
end of module indicators. Control is then
passed to final processing.

Final Processing

The objectives of final processing (see
Diagram A4) include writing remaining out­
put to SYSLMOD, producing certain optional
output, and "cleanup" functions.

The partitioned data set directory for
SYSLMOD is completed, including modifica­
tions for ALIAS symbols (found in the ALIAS
table), and a STOW macro is issued (area--­
~The TTR list, containing the address
of the first text record in each segment,
is written onto SYSLMOD for overlay pro­
grams (area A) •

The error logging map, produced as
errors are encountered throughout linkage
editor processing, is scanned and an error
diagnostic directory is built and written
on SYSPRINT, (area C). Main storage allo­
cated to linkage editor is released.

If the XREF option is specified, and was
not processed during intermediate proces­
sing, RLD records are read from SYSLMOD,
and a cross-reference table is built and
written on SYSPRINT, (area D) •

At the completion of linkage editor pro­
cessing, control is returned to the calling
program.

INITIALIZATION (IEWLMINT)

When the linkage editor receives control
from the job scheduler, or from another
program via a CALL (after execution of
LOAD, LINK, XCTL, or ATTACH macro instruc­
tion), control information may be passed to
it. 1 This information includes the attri­
butes and options that control linkage edi­
tor processing. When control is passed to
the linkage editor from the job scheduler,
the passed control information is the
information contained in the operand field
of the EXEC statement. The control infor­
mation is interpreted, checked for validi­
ty, and saved for later use in linkage edi­
tor processing.

1The method of passing information to the
linkage editor is described in the System
Reference Library publication IBM System/
360 Operating System: Linkage Editor.

A program that passes control to the
linkage editor may provide a substitute
list of ddnames to be used in place of the
standard names, and a name that is to be
assigned to the output load module in the
PDS directory.

Initialization functions performed by
the linkage editor include:

• Building an all purpose table, which
contains descriptions of other tables
used by the linkage editor, and con­
tains decision indicators that control
linkage editor operation. The APT
remains in main storage throughout the
linkage editing process and is the
major communication area among internal
functions.

• Opening all data sets used by the link­
age editor, except SYSLIB and SYSUT1,
after the standard ddnames (or passed
ddname~ have been entered into the
data control blocks of the data sets.
(The SYSLIB DCB is used for automatic
library calls or INCLUDE statements~ it
is opened during input processing only
if there are any automatic calls or
INCLUDE statements specifying it. The
SYSUT1 DCB is opened only when needed.)

• Setting an "unlike attributes· indica­
tor in the SYSLIN DCB. This indicates
to the open routine that SYSLIN may be
a concatenation of data sets stored on
different devices.

• Scanning and analyzing the control
information that was previously passed
in a list to linkage editor. The pro­
cessing options requested by the user
and the attributes to be assigned to
the output load module are compared
against an option table and noted in
the all purpose table. When mutually
exclusive attributes are specified for
a load module, the linkage editor
ignores the incompatible attribute
(refer to Table 1). If the SIZE option
is specified, the associated value is
placed in the all purpose table. If
the SIZE option is not specified, the
default values chosen at system genera­
tion time are used.

• Requesting main storage space for
internal tables, buffers, and work
areas. The allocation processor issues
a request for a minimum requirement of
main storage space. The minimum value
depends on whether or not the module
being processed is structured for over­
lay; it includes an amount to be used
by data management functions. If suf­
ficient main storage space is avail­
able, the supervisor returns control to
the allocation processor and the space

exceeding the minimum requirement is
divided among the tables and buffers.
If sufficient main storage space is not
available, the control program will not
return control to the linkage editor~
instead, a system ABEND will occur.

Table 1. Incompatible Module Attributes

~
~

~
~

~

~ r-- --
~

x $
~
~

x x ~ ~

x x x ~
~

x ~
~ x x x ~

x ~
~ ~
~

if
~

I ~ ~

x x I I
Note: An X indicates incompatible attri­
butes; the attribute that appears lower in
the list is ignored. For example, to check
the compatibility of XREF and NE, follow
the XREF column down and the NE row across
until they intersect. Since an X appears
where they intersect, they are incompatible
attributes. NE is ignored.

Main Storage Allocation

To obtain the required main storage
space, the allocation processor:

1. Issues the GETMAIN macro instruction,
and if sufficient main storage space
is available, assigns storage for the
maximum buffer lengths to each of the
object module buffers, SYSLIN buffers,
and SYSPRINT buffers. If sufficient
space for maximum buffer lengths is
not available, intermediate buffer
lengths are aSSigned. If sufficient
space for intermediate lengths is not
available, the minimum buffer lengths
are assigned.

2. Assigns main storage to the RLD buffer
and the text buffer. The text buffer
area is referred to as the input text
buffer during input and intermediate
processing, and as the second pass

Section 2: Method of Operation 21

text buffer during second pass proces­
sing. The text buffer will be
assigned the minimum length (6K bytes)
unless additional space was requested
via the SIZE parameter, in which case
the text buffer will be expanded, as
specified, up to a maximum of lOOK
bytes.

Note: All space allocated for buffers
is released only at the completion of
linkage editor processing.

3. Determines the excess of main storage
space allocated by the supervisor.

4. Divides the total excess by the total
weight factor. A weight factor is a
ratio based on the individual main
storage requirements of linkage editor
tables that are not fixed in size.
(Fixed tables have weight factors of
zero.) The total weight factor
depends on whether or not the module
is structured for overlay.

5. Multiplies the quotient obtained in
step 6 (rounded to the nearest lower
integer) by the weight factor for each
table and adds the result to the mini­
mum requirement for the table. This
is done for all tables and buffers.

6. Divides the total byte count for each
table by the number of bytes per
entry, and saves the result in the all
purpose table.

7. Computes the addresses for the tables
and places them in the all purpose
table.

8. Releases excess main storage space,
saving the last address used.

When the required main storage space has
been allocated, tables are initialized to
zero, and the linkage editor is ready to
accept input.

INPUT PROCESSING (I EWLMINP)

The operations performed during input
processing depend on the nature of the
input; special processing is required for
each input record type. Each input record
is read, using one of two read blocks. The
first read control block contains the
address of the SYSLIN buffer, the address
of the SYSLIN DCB, and the block size and
logical record length. The second read
control block contains the address of the
buffer for library records (object module
buffer or load module buffe~ , the address
of the library DCB, and the block size and
logical record length. A pointer is used
to indicate which read control block is to

22

be used for the input record. Initially,
the pointer is set to the SYSLIN read con­
trol block.

The t)~e of input processing required is
determined by the following conditions:

• For all object module records whose
first column character is a blank, con­
trol statement scanning is required,
provided that the record is not encoun­
tered "in module". (Control statements
encountered within a module cause an
error indication.)

• Either object module processing or load
module processing is required, depend­
ing on the type of input module. Only
object modules are read from SYSLIN.
Input modules from libraries are iden­
tified by record format. F format
indicates object modules; U format
indicates load modules.

• At end-of-input (from SYSLIN or
SYSLIB) , include processing is required
if more modules must be included before
rerunning normal processing.

• At end-of-input from SYSLIN, automatic
library call processing is required if
the NCAL option (no automatic library
calls) was not selected. If the NCAL
option was selected, input processing
is coltlplete.

• If a NAME statement, which may indicate
a multiple execution of linkage editor,
is detected during control statement
scanning, processing proceeds as if an
end-of-input has occurred on SYSLIN
(automatic library call processing is

performed). The next record is read to
determine if end-of-input has occurred;
if not, input processing will be
repeated at the end of final
processing.

• If an end-of-input occurs on SYSLIN,
but no valid input was received, link­
age editor processing is terminated.

Reading Blocked Input

The linkage editor can accept blocked
card image input from the SYSLIN data set
and blocked object module records from the
SYSLIB data set (or from a user's library) •
Maximum block sizes allowed by the linkage
editor are shown in Table 2. Generally,
the record format, block size, and logical
record length are established either when
the data set is created, or when they are
specified on the DD statement for the data
set in an execution of the linkage editor.
If the BLKSIZE field is not specified, the
linkage editor assumes a block size of 80.

The logical record length (LREC~ is fixed
at 80.

Table 2. Block size Determination
r------------------T----------------------,
IMaximum Block sizelMain Storage Available I
I---------------+---------------~
I 5 144K (+xK) - 52K (+xK) I
I------------------+-----------------~
I 10 I 52K (+xK) - 88K (+xK) I
~------------------+-----------------~
I 40 188K(+xK) - 9999K I
~------------------~--------------------~
IxK is the (optional) additional storage I
lallocated to the load module buffer I
I (i. e., storage in excess of 3K) • I L ___ J

If the block size specified on primary
input exceeds the allowable maximum (see
Table 2), or is not a multiple of the log­
ical record length, an error message
(IEW0594) is issued and linkage editor pro-
cessing is terminated; if the invalid block
size is specified on input from a library,
the data set is ignored, but processing is
not terminated. The block size specified
by the user is used as the read count; if a
short block is read, the linkage editor
determines (via an exit at SYNA~ if the
length of the short block is valid (a mul­
tiple of the logical record lengt~, and
the number of the logical records it
contains.

If SYSLIN is a concatenation of data
sets, the input processor reexamines the
block size fields whenever a data set
boundary is crossed to determine if their
values have changed.

Blocked Output on SYSPRINT

The logical record length for output to
SYSPRINT is fixed at 121. If the BLKSIZE
is not specified by the user, it is set
equal to the logical record length. If the
specified block size exceeds the allowable
maximum (see Table 2), or is not an inte­
gral multiple of the logical record length,
linkage editor processing is terminated and
a condition code of 16 is returned.

Control Statements

When an input record is found to be a
control statement (blank in column 1), it
is scanned to detect format errors and con­
tinuation of comments or operands. A vec­
tor table is scanned to determine the
appropriate processor; separate processing
is required for each type of control state­
ment (INCLUDE, REPLACE, LIBRARY, CHANGE,
INSERT, OVERLAY, ENTRY, ALIAS, NAME, or
SETSSI). Diagram B1 illustrates general
processing of each control statement type.

The general format for linkage editor
control statements is shown in Figure 11.
The control statement scanner interprets
symbols enclosed in parentheses as "level
1" symbols; symbols not enclosed within
parentheses are wlevel 0." ENTRY, ALIAS,
INSERT, and SETSSI control statement
operands contain only level 0 symbols.
CHANGE statement operands always contain
both a level 0 symbol and a level 1 symbol.

The operands of REPLACE, INCLUDE, OVER­
LAY, and NAME control statements contain
level 0 symbols, or both level 0 and level
1 symbols. LIBRARY statement operands may
contain level 1, or both level 0 and level
1 symbols. The operation to be performed
depends on the operand format.

Operatian Operand

OPRTIONX 4····· l (.......), (1' ...)
I I I I

PI PI PI PI

------d--,---
P2

t
l....IL.....l L-.J
OPoo OPOI

I--I~
P2 I

~
P2 ,

L.!L...J L.S.....J
OPOO OPO!

1----
P2

+ L....L.J L!L.J
OPOO OPO!

1-------
P2

• L-.J LL.J
OPOO OPO!

I
PI Befare ReadS

Pracessing
- --After Read8 -

Processing

Figure 11. Control Statement Scanner
Operation

The control statement scanner searches a
vector table for the operation symbol to
determine the associated control statement
processor. It then analyzes the operands
using two work areas, ROPD1 R and ·OPDO,·
and two pointers, ·Pl· and HP2.H OPDl is
used for level 1 operand symbols; OPDO is
for level 0 operand symbols. Pl points to
the operand symbol being analyzed; P2
points to either OPDO or OPD1, depending on
the level of the operand symbol referred to
by Pl.

Section 2: Method of Operation 23

An operand symbol referred to by P1 is
placed by the READS routine into the work
area referred to by P2. Parentheses and
commas control the switching of pointer P2
between the work areas. For example, when
a left parenthesis is encountered, P2 moves
to OPD1 because a level 1 operand symbol
will follow. When a comma, blank, or right
parenthesis is detected, the PROCENTY rou­
tine passes control to the control state­
ment processor that was previously found
during the search of the vector table.

Control Statement Processors

When the operand symbols have been read
into work areas OPDO and OPD1, control is
passed to the control statement processor
at the saved entry point. Scanning of the
control statement resumes when the control
statement processor returns control. The
individual control statement processors are
described in the following paragraphs.

INCLUDE STATEMENT PROCESSOR: The include
statement processor builds a chain in the
CESD of items to be included. Each item in
the chain contains the address of the next
item in the chain (in the chain/address
field - bytes 9, 10, and 11). The last
item in the chain contains zeros in this
field.

Chained include items have two kinds of
subtypes: "include with pointer" and
ninclude without pointer." In Figure 12,
the statement INCLUDE M defines M as a
sequential data set. The include statement
processor creates an entry for the ddname M

in the CESD with the subtype -include
without pointer."

In the statement INCLUDE LIBX(A), A is
defined as a member of a PDS. The include
statement processor creates an entry for A
in the CESD with the subtype ninclude with
pointer." The pointer is in the chain
pointer/chain ID field (bytes 14 and 15);
it contains the CESD line number of the
ddname LIBX. A single ddname, such as
LIBX, may be referred to by several
pointers.

In Figure 13, the statement INCLUDE
TEMP (A,B,C) indicates that A, B, and Care
members to be included from library TEMP.
Member B contains the nested statement
INCLUDE LIBX (U, V , W) ; this is the last
statement processed in member B. The CESD
is shown at the time when the control
statement scanner has read operand V, but
not W. The include statement processor has
created a CESD line for operand V in the
LIBX include chain. C is currently the
last item in the TEMP include chain. When
the control statement scanner reads operand
W, the include statement processor enters a
CESD line for W between V and C; this pro­
cess is distinct from the one that actually
searches the members U, V, and C on the
library. (Refer to the paragraph "Include
Processor.") At the time chosen for this
example, the data set member B is being
read; data set member A has been read and
therefore is no longer in the CESD as a
member name, but data set members U, V, and
C have not yet been read.

The chained CESD entries created by the
include statement processor are later pro­
cessed by the include processor (Chart JR) •

CESO

Chn Addr
Chn

Symbol Type /Reverse
Seg Sub Pointer

Chain 10 No Type Chain
Length/I 0

.. ,;~,2 ~_~

~---------~8Aoo *M 02 00000000 CO

~
OPOO

L-.J
OP01

* ddname

Figure 12. Include Statement Processing for a Sequential Data set

24

Register 2

I All Purpose Table
L _ ~ --'-----.

Current
Include
Pointer

17COO
i

---------,

2
3
4

Symbol

•
•
•

* TEMP
•
•
•

Library

CESO

Type
Chn Addr Reverse Seg Sub Chn Pointer Chain
Chain ID No Type Length/I 0

02 BO

Include Chain
Breaking Point

'----.... 7COO 8 B 02 007010 00 04

•
Pointer ·

7030 f- -- -------"1 7010 12
•
U 02 007030 00 19

I •
'- - - -+- 7030 14 V 02 007060 00 19

l...!JM.J
OPOO

L..Y---.l
OPOl

7060 17

19

•
• · C

•
•

* LlBX
•
•

02 000000 00 04

02 BO

* ddname
Figure 13. Include Statement Processing With Nested Members

OVERLAY STATEMENT PROCESSOR: The overlay
statement processor maintains a record of
the current segment number and updates it
by one each time a new OVERLAY statement is
encountered. The relationship of segments
in an overlay tree structure is kept in
SEGTA1 (see Figure 14). Entry n in SEGTAl
contains the number of the segment that
precedes the nth segment of the overlay
tree structure (the next higher segment in
its path). The overlay statement processor
creates a chain of overlay items in the
CESD and updates SEGTA1. If the level 1
operand (REGIOm is detected, the current
region number is incremented by one, and a
zero is entered as the previous segment
number in SEGTA1.

If an OVERLAY statement is encountered
that refers to a node point higher in the
overlay tree structure, all symbols identi­
fying node points higher in the path are
removed from the chain; their CESD lines
are marked "null." For example, in Figure
14, when the statement OVERLAY A is encoun­
tered after segment 4, the CESD entry for
symbol B is marked null and is no longer in
the chain. If an OVERLAY B statement was
encountered at the end of segment 5, a new

node point would be established for B, and
symbol B would again be entered in the
CESD.

INSERT STATEMENT PROCESSOR: The insert
statement processor scans the CESD for the
symbol indicated in the INSERT statement.
If the symbol is found, the segment number
field is changed to the number of the seg­
ment that contains the INSERT statement.
If the symbol is not found in the CESD, a
new ER-type CESD entry is created. In
either case, the new CESD entry is marked
"insert" in the subtype field, and the seg­
ment number of the INSERT statement is
placed in the segment number field.

REPLACE AND CHANGE STATEMENT PROCESSORS:
The replace and change statement processors
build a chain of CESD entries. Each entry
to be replaced, changed, or deleted is so
marked in the subtype field. The ESD pro­
cessor examines the replace/change chain
before processing any ESD item. Since a
REPLACE or CHANGE statement applies only to
the module that immediately follows it in
the input, the replace-change chain is
removed from the CESD at the end of the
module.

Section 2: Method of Operation 25

Register 2

I

l All Purpase Table

Address of
SEGTAI

Starting Address of
Overlay Chain

o
1
2
2
1

• •
•

OVERLAY A OVERLAY A

Symbol Type

•

4

5
OVERLAY C
--l

: 7
I

CESD

Chn Addr/ Seg Sub
Reverse No Type
Chain ID

Chn Pointer
Chain
Length/ID

I Address of A r ------~\ ____ _ • • -. A 02 Addr of C 01 90

L£J
OPDO

Note: In this example, card OVERLAY C has just been
read. Name B is no longer in the chain.

L-J
OPDl

Figure 14. Overlay Statement Processing

When a REPLACE statement or a CHANGE
statement operand contains two symbols,
such as CHANGE A (B), A and B are entered
in consecutive lines of the CESD. Only the
first line of the pair (the line for A)
contains the address (in the chain address
field) of the next item in the replace/
change chain.

NAME STATEMENT PROCESSOR: The name state­
ment processor places an entry in the all
purpose table containing the name under
which the following input module is to be
STOWed in the PDS directory. If the
operand contains the level 1 symbol (R), a
bit is set to indicate that the module is
to be STOWed as a replacement for a module
of the same name. Another bit is set to
indicate that a NAME statement was encoun­
tered; the input processor tests this indi­
cator and terminates input operations for

26

,-
(
\ ..

• • •
--
• •
C

•
• •

I

I
I

-- f-- /

02 000000 05 90

this load module if it is set. If a NAME
statement is received from any input source
other tha~ SYSLIN, the error routine is
entered; NAME statements are accepted only
if they are in the primary input.

SETSSI STATEMENT PROCESSOR: The SETSSI
statement processor converts the eight
bytes of hexadecimal information specified
on a SETSSI statement to a 4-byte field,
and enters it into the APT. During final
processing, this information is entered
into the system status index, a 4-byte
extension of the user data area in the PDS
directory. The index contains information
describing the status of members in the
library and is used for maintenance
purposes.

ENTRY STATEMENT PROCESSOR: The entry
statement processor places the symbol spe­
cified in an ENTRY statement in the all

purpose table. The symbol will override
any symbol specified in an END statement as
the entry point for the module.

each distinct library. Each chain begins
with a library ddname and contains all
member names specified for the library (see
Figure 15).

ALIAS STATEMENT PROCESSOR: The alias
statement processor creates chained CESD
entries for a maximum of five alias names
specified in ALIAS statements. During
address assignment, these entries are used
to build the alias table.

A member nawe specified in a LIBRARY
statement can result in two kinds of ER
subtypes: "matched library member" or
"unmatched library member." If a CESD
entry is created for a member name speci­
fied in an input ER and also specified in a
LIBRARY statement, it is called a nmatched
library member." However, if the member
name was specified only in a LIBRARY state­
ment, the entry subtype is Dunmatched
library member."

LIBRARY STATEMENT PROCESSOR: The library
statement processor creates chained CESD
entries for the operands specified in
LIBRARY statements; a chain is created for

"';'""~--8
(------- ---------- ------ - - - ----'

I
I
I
I

~01
02
03
04
05
06
07
08
09
OA
OB
OC

01
02
03
04
05
06
07
08
09
OA
OB
OC

Symbol

JOE

PETE

Symbol

JOE

L1B2
SAM
PETE

MARY

L1Bl

Figure 15.

Chn Addr Seg Sub Chn Pointer /
Type / Reverse No Type Chain

Chain ID Length/ID

02 00

02 00

Diagram A

Chn Addr
Seg Sub

Chn Pointer
Type /Reverse Chain

Chain ID No Type
Length/ID

00

02 00 BO 07
02 06 02 08
02 07 03 00

02 OC 03 00

02 00 BO OA

Diagram C

Library Statement Processing

Notes:

01
02
03
04
05
06
07
08
09
OA
OB
OC

Symbol

JOE

L1B2
SAM
PETE

MARY

L1Bl

Type

02

02
02
02

02

02

Chn Addr/
Seg Sub

Chn Pointer
Reverse Chain
Chain ID No Type Length/ID

OC 03 OA

00 BO 07
06 02 08
07 03 00

04 02 00

00 BO 04

Diagram B

---.--rhe CESD shown in diagram B results from the CESD shown in diagram A after
reading in three library cards. A chain with direct and reverse painters is
created for L1Bl and also for LlB2.

• JOE and PETE were ERs (subtype 00) and became "matched library member"
(subtype 03).

• SAM and MARY were not previously in the CESD. They are created as "unmatched
library member" (subtype 02).

• The CESD shown in diagram C results from the CESD shown in diagram B after
reading in an input module containing the ER MARY and the SD JOE. (Only the
I ibrary chains are shown).

• JOE is removed from the chain in diagram C, and the chain pointers are madified.

• MARY becomes a "matched" subtype and will be called by the automatic
I ibrary call processor (unless resolved by other input).

• SAM remains "unmatched" and will be ignored by the automatic library call
processor (unless matched in other input).

Section 2: Method of Operation 27

Object Module Processing

If input to be read by linkage editor
consists of object modules ~ record format
indicates object modules from a library)
the following operations are performed:

• Determine record type
• Set up general registers
• Special event processing

The record type is determined by examin­
ing columns 2 through 4 of each logical
input record. For each record type (SYM,
ESD, TXT, RLD, EN~, special processing is
required.

The general registers are loaded with
input record information to be used in the
required processing, as described in Table
3.

Following is a description of special
event processing:

• When end-ot-input is detected, any data
still contained in the input RLD buffer
or the input text buffer is written out
on SYSUT1, if necessary.

• If the TEST option is selected, the SYM
records from the object module are
gathered in the input RLD buffer. When
the first TXT statement in a module is

encountered (or if no text statement
has been encountered when the END
statement is detected), the contents of
the input RLD buffer are written out on
SYSLMOD.

• When ESD processing is completed, indi­
cators in the all purpose table are
examined to determine if:

1. A control section (SD, PC, or com­
mon) was indicated on the ESD
statement.

2. The TEST option was specified.

If both conditions are met, the ESD
record is blocked with any other ESD
records in the input RLD buffer.

• If a control statement continuation is
expected and an object module record is
read, an error condition occurs, and a
coded diagnostic message is produced.
Normal object module processing is then
performed on the record.

• If, during object module processing, a
statement is encountered which is not
one of the five acceptable types (SYM,
ESD, TXT, RLD, or END), an error condi­
tion occurs and a diagnostic message is
produced. The input record is then
ignored.

Table 3. General Register Information - Object Module processing
r------------------~--------------------------------- 1
IInput Record Type I General Register I
I (See the Appendix ~----------------T , T----------------~
IFor record formats) I 3 I 4 I 5 I 6 I
~------------------+----------------+----------------+----------------+----------------~
I SYM I ISYM statement I IAddress of SYM I
I I I byte count I I statement in I
I I I I I buffer I
~------------------+----------------+----------------+----------------+----------------~
I ESD I INumber of bytes IESDID of first IAddress of firstl
I I lof ESD informa- IESD item on Ibyte of ESD in I
I I Ition I statement I buffer I
~------------------+-- +----------------+----------------+----------------~
I TXT IAssigned addressiNumber of bytes IESDID of CSECT IAddress of first I
I lof first byte oflof text informa-Ito which text Ibyte of text in I
I I text Ition I belongs I buffer I
~-----------------_+-------------+----------------+__-----------+----------------t
I RLD I lNumber of bytes I IAddress of firstl
I I lof RLD informa- I Ibyte of RLD in I
I I IUon I I buffer I
~-------------------+----------------+----------------+--------------+-----------~
I END IAbsolute addressiLength of CSECT IESDID of CSECT I I
I lof entry point I for which no I containing entry I I
I Ion END statementllength was givenlpoint I I
I I I in ESD item I I I L-________________ ~ ________________ ~ ______________ ~ ________________ ~ ________________ J

28

Load Module Processing

Load modules included in the input to
linkage editor are processed in the follow­
ing manner:

• The input record type is determined by
an identification field (byte 1 of the
recor~, as shown in Table 4. Special
processing is performed for each record
type.

• The parameter registers are loaded with
input record information to be used in
the required processing, as described
in Table 5.

• If the record is not identified as a
TXT, CESD, Scatter/Translation, SYM, or
CCW/RLD record, an error condition
occurs, and a diagnostic message is
printed out. The input record is
otherwise ignored.

• If the TEST option was not specified on
the EXEC statement, all SYM records are
ignored.

• If an end-of-module indication is found
in a CCW or RLD record, cleanup fUnc­
tions are performed.

• When a CCW record is detected, the fol­
lowing TXT record is immediately read
into the input text buffer if it is not
to be deleted.

• If the TEST option was specified on the
EXEC statement and a SYM record is
received, the record is written out as
test translation data from the RLD
input buffer.

The following text describes the special
processing performed, during object and
load module processing, for the ESD, TXT,
RLD, and END records.

Table 4. Record Types
r--------------------~-------------------,
IRecord Type I Identifier I
~---------------------+-------------------~
I TXT I * I
I CESD I hex' 20 ' I
I Scatter/Translation Ihex'10' I
I SYM I hex' 40 ' I
I CCW Ihex' 01' I
I CCW/RLD I hex' 03 ' I
I RLD Ihex'02' I
~---------------------~-------------------~
IIf End of Module indication is on: I
~---------------------T-------------------~
1 CCW I hex' OD ' I
I CCW/RLD Ihex'OF' I
I RLD I hex' OE ' I
~---------------------~-------------------~
I*Identified by preceding control record I l ___ J

ESD Record Types

Every object module in the input to
linkage editor must contain at least one
ESDitem. An ESD item is created by a lan­
guage translator whenever it finds a symbol
that is defined for external use. In the
assembler language, for example, ESD items
are created whenever an ENTRY, EXTRN, COM,
START, or CSECT statement, or a V-type
address constant is found. An ESD item is
created to define the beginning of each
control section, and to define a common
area. Each ESD item has a type assigned to
it that indicates its function. The ESD
types are:

• Section Definition (SD). Defines the
beginning of a named control section.

• Private Code (PC). Defines the begin­
ning of an unnamed control section.

• Label Definition (L~. Defines a label
(symbol) whose location is defined

Table 5. General Register Information - Load Module Processing
r-----------T---,
I I General Register I
ILoad module~----------------~------------------T-----------------~-------------------~
IRecord Typel 3 I 4 I 5 I 6 I
~-----------+-----------------+------------------+------------------+-------------------~
I SYM I I Zero I I I
~-----------+-----------------+------------------+------------------+-------------------~
I CESD I IByte count of ESD IESDID of first IAddress of first I
I I litems in record ICESD item in ICESD item in buffer I
I I I I record I I
~----------+-----------------+------------------+------------------+-------------------~
I CCW (TXT) IAssigned address INumber of entries IESDID of CSECT to I I
I lof first byte of lin ID-Length list Iwhich text belongs I I
~-----------+-----------------+------------------+------------------+-------------------~
I RLD I IByte count of RLD I IAddress of first I
I I litems in record I IRLD item in I
I I I I Ibuffer I L-__________ ~ _________________ ~ __________________ ~ __________________ i ___________________ J

Section 2: Method of Operation 29

relative to the location of the control
section in which it is contained. An
LD type ESD item contains the ESD ID of
the control section that contains the
label.

• Common (CM). Defines a common area for
which a main storage address is
assigned during linkage editor proces­
sing. The area may be named or
unnamed; an unnamed area is referred to
as a "blank common" area.

• Pseudo Register (PR). Defines an area
external to the output module, but
referred to by it, for which main
storage space is allocated at execution
time. The linkage editor treats PR
symbols as a block that is external to
the program. The value assigned to
each symbol is a displacement within
this block.

• External Reference (ER). Refers to a
symbol that is referred to but not
defined within an input module.

CESD Record Types and Subtypes

A load module in the input to linkage
editor contains at least one CESD record
(240 bytes, maximum). The CESD record
types are the same as for ESD records, with
the following additions:

• Null type. This indicates that the
item is to be ignored in any reproces­
sing of the module by linkage editor.

• Label Reference (LR). This defines a
label (symbol) within a control sec­
tion. An LR type CESD entry is num­
bered; it contains the ESD ID of the
control section entry in the ID/length
field. An LR may be referenced direct­
ly by an RLD item in the same module,
whereas an LD may not. All LD items
are changed to LR items during linkage
editor processing (LDS are contained
only in object modules, never in load
modules) •

• Private Code (PC) Marked Delete. This
is a CESD item created only for ENTABs
and SEGTABs. PC-delete entries are
placed in the renumbering table, indi­
cating that associated TXT and RLD
information is to be deleted.

CESD items may also contain a ·subtype."
The subtypes are listed in the internal
CESD format in the Appendix (Section 7).

30

ESD Processing

The main fUnction of ESD proceSSing is
symbol resolution. Individual ESDs in the
input to linkage editor are combined into a
composite ESD, which contains all symbols
in the input which were not changed,
deleted, or replaced. A chained REPLACE/
CHANGE list wroduced by the control card
scanner) specifies which ESD items are to
be changed, deleted, or replaced. A
renumbering table (RNT) is also produced
during ESD processing; it is used during
TXT, RLD, and END processing to translate
the ESD ID of the input ESD items to CESD
IDs. Diagram B2 provides a general illus­
tration of several types of ESD processing.

At the beginning of ESD processing, con­
trol information from the ESD record is
saved: the ESD ID of the ESD record, the
number of bytes of ESD information, and the
type field of the first ESD item. The cur­
rent segment number is placed in the ESD,
unless it is aPR-type (PRS have an align­
ment value in the segment number field) •
If the automatic library call indicator is
on, the segment number is set to 1 so that
called modules will be placed in the root
segment. The ESD item is then processed
according to its type, in the following
manner:

• If the ESD item is an ER, bytes 10, 11,
and 12 are set to zero in the input
buffer (either the object module buff­
er, the SYSLIN buffer, or the first
pass RLD input buffer). Byte 10 must
be cleared because automatic library
call processing uses it to indicate if
automatic library calls have been pro­
cessed. Bytes 11 and 12 must be
cleared because any nonzero data
(including blanks) will be entered in
the delink table if del inking is
required for the symbol. If the input
item is an ER item from an object
module, the CESD subtype field is also
reset to zero to indicate that there
are no modifiers in the subtype field.

• If a REPLACE/CHANGE function has been
requested for the input module, the
REPLACE/CHANGE chain that was built in
the CESD by the control statement
scanner is examined and the appropriate
modifications are made. For example,
if the scanner received the statement
CHANGE A (~, the CESD contains a line
for A, marked as a change statement
item in the subtype field; the next
line contains the symbol B. The input
ESD item symbol is changed from A to B
during ESD processing.

• If the ESD item is a PC, the CESD is
not searched because each PC entry is
treated as a unique entry. The PC is

placed in the next available CESD line
and is processed in the same manner as
an SD.

• If the ESD item is NULL. the renumber­
ing routine is entered. (This routine
is described in "Non-Resolution
Processing. ")

• If the ESD item is an LD. it is changed
to an LR. The item is then processed
as an LR. (There are some minor dif­
ferences in processing LDs that have
been changed to LRs; for this reason.
an internal indicator is set when the
type is changed to LR.)

After the ESD type is determined. the
CESD is scanned for a matching symbol. If
no match is found. non-resolution proces­
sing is performed. If the input ESD symbol
matches a symbol in the CESD. resolution
processing is performed. Resolution pro­
cessing results in only one CESD entry for
each unique input ESD symbol; multiple
occurrences of the same input ESD symbol
are listed in the renumbering table (RNT)
with pointers to the single CESD entry.

NON-RESOLUTION PROCESSING: If no matching
symbol is found in the CESD. the input ESD
item is processed as described in the fol­
lowing paragraphs.

SD Items: If the input ESD item is an SD
(see Diagram B2. Area A) :

• The Freeline routine selects an empty
line in the CESD. The line following
the current line is chosen unless a
previous CESD line is marked null.
(Null lines are used whenever possible
to save space.)

• If automatic library calls are being
processed. an indicator is set in the
type field of the selected CESD line.
(If a module map was requested. this
indicator is checked during module map
processing. If the indicator is set.
the control section is marked with an
asterisk in the module map or cross
reference table to indicate that it was
obtained from a library during automat­
ic library call processing.)

• A "write" indicator is set in the all­
purpose table to note that SDs. PCs. or
CMs were encountered in the input rec­
ord. When ESD processing is completed.
the write indicator is tested. If it
is on and the TEST option was speci­
fied. ESD recor,is containing SDs. PCs.
or CMs are saved. blocked into 244-byte
records (including four bytes of con­
trol informatiom. and written out on
SYSLMOD.

• In any input object module the CESD
line number of the first SD entry whose
length is zero is saved. END proces­
sing uses this CESD line to enter the
length specified on the END card.

• The enter routine creates a CESD entry
for the input ESD item; it moves the
symbol. length. segment number. ID. and
type into the selected CESD line.

• The renumber routine places the line
number of the new CESD entry into the
renumbering table to provide a means of
translating the input IDs to the new
CESD IDs. For example. if the input
ESD item has a line number (ESDID) of 3
but the item is placed into the CESD at
line 5. 5 is placed in the third line
of the renumbering table. (For each
input ESD line. except LD lines. there
is a corresponding RNT line. The RNT
contains information for the current
module; it is set to zero at the end of
each input module.)

ER Items: If the input ESD item is an ER.
it is entered in the CESD and renumbered as
described above; no special processing is
required.

CM Items: If the input ESD item is CM (see
Diagram B2. Area E). a "common" indicator
is set and the item is treated as a delete
item. If the address that was aSSigned to
the CM item by the language translator is
not zero. it is saved in the delink table
for later use. (Two CM items with the same
identifying symbol may have different
assigned addresses; therefore, the assigned
address in the input must be subtracted
from all address constants that refer to
the CM items so that they are returned to
their displacement value before reloca­
tion.) The CM item is then renumbered and
entered into the CESD.

LR (or LD) Items: If the input ESD item is
an LR or LD (see Diagram B2, Area C) :

• When processing an LR, the Label rou­
tine determines if the SD for the con­
trol section has been processed. If
the SD has not been received, any LRs
that refer to that SD are chained
together in the CESD until the SD is
received. (The SD might be marked
replace; therefore. the LR cannot be
processed until the SD is received.)
When the SD is received all dependent
LRs are processed. Each LR ID field is
renumbered using the renumbering table
so that it refers to the CESD ID of the
SD.

• LDs are not renumbered because they are
not referred to by RLDs and are not
numbered in language translator output.

Section 2: Method of Operation 31

The enter routine places them directly
in the CESD. If an LD is received
before the SD to which it belongs, it
is handled as an LR.

PR Items: If the input ESD item is a pseu­
do register, the current segment number is
not entered in column 12 of the ESD item
(Chart J~. Column 12 of a PR item may
contain an alignment value which indicates
that the PR must be aligned to a ha1fword,
full word, or doubleword boundary. The PR
is then processed by the free1ine, enter,
and renumber routines, as described
previously.

RESOLUTION PROCESSING: If a matching sym­
bol is found in the CESD, the type fieldS
of the input item and the matching CESD
item are compared and resolution processing
is then performed. The following conven­
tions are observed during resolution
processing:

1. Input PR items may match only PR-type
entries in the CESD. If aPR-type
input item matches a non-PR item in
the CESD, it is not treated as a
match; the CESD search for a matching
PR item continues.

2. If the matching CESD item is marked
"chained," resolution is performed on
the item to which it is chained.

3. If the CESD line is marked null, the
match is ignored and the search
continues.

4. If the CESD item is an ER produced
from a REPLACE, CHANGE, OVERLAY, or
ALIAS statement, or from the ddname
field of an INCLUDE or LIBRARY state­
ment, the match is ignored and the
search continues.

Matching items are processed in the fol­
lowing manner:

32

• If the input ESD item is CM, SD, or LR,
and it matches an ER in the CESD, the
input type replaces the type indicated
in the CESD item (see Diagram B2, Area
B). Non-resolution processing is then
performed on the input item.

• If the input ESD item is an LR and it
matches a CM, SD, or LR in the CESD, a
"match" bit is set, indicating that a
double symbol definition is possible.
If the SD for the control section has
been entered in the CESD and is marked
for deletion, the label routine deletes
the label; if it is not marked for
deletion a "double symbol definition"
message is produced. If the SD for the
control section is not in the CESD, the

LR is chained to the matching LR; when
the SD is received, the LR is deleted
or a double symbol definition is pro­
duced, depending on whether or not the
SD is being deleted.

• If an input PR matches a PR in the CESD
(Diagram B2, Area D), the greater
length and the most "constrictive"
boundary alignment are placed in the
CESD entry. (A doubleword alignment is
more constrictive than fullword align­
ment; fu11word is more constrictive
than halfword; etc.) The input PR
entry is then renumbered to the updated
PR entry in the CESD.

~ If an input SD item matches an SD entry
in the CESD, automatic replacement of
the control section occurs. The input
SD item is entered into the CESD as a
delete-type and is chained to the
matching SD entry. ~uring second pass
processing, the assigned address of the
control section being replaced will be
subtracted (ndelinked n) from the
addresses of any non-branch type
address constants that refer to the
ER-delete entry.) The SD-delete item
remains chained only while the module
is being processed; END processing will
change the chained items to null-type
entries. (Refer to "Delinking Non­
Branch Type Address Constants. ")

• If an input SD item matches a CM entry
in the CESD, the greater length is
entered in the length field of the SD
entry. If the program is in overlay,
the common path routine scans SEGTA1 to
find the segment in the overlay struc­
ture that is common to both items and
places the segment number in the SD
entry. The SD item is then written
over the CM line and renumbered. (This
is referred to as "automatic promotion
of coromon. n)

• If an input SD or CM item matches an LR
in the CESD, a ndouble symbol defini­
tionn message is produced and the SD or
CM item is entered in the CESD as a
delete-type item and is chained to the
matching LR entry, causing the SD or CM
to be replaced.

• If the input item is CM, it may be
nblank common." Blank common may match
a PC-type CESD item because both con­
tain blanks in the symbol field. In
such a case, the match is ignored and
the search continues.

• If an input CM item matches an SD or CM
item in the CESD (Diagram B2, Area F) ,
the greater of the two lengths is
entered in the CESD item. (The CESD
type is not changed.) If the module is

being processed for overlay, the seg­
ment number of the segment common to
both the input item and the CESD item
is also entered in the CESD item (auto­
matic promotion of common) •

• Whenever an input ER item matches an ER
in the CESD, both the type and subtype
fields are examined; the ER items are
then resolved in the following manner:

1. If the subtype fields of both ER
items are not marked, the input
item is not entered into the CESD;
the matching ER remains in the
CESD and a pointer to it is placed
in the renumbering table entry for
the input item.

2. If both items are marked -delete,"
the new ER is entered into the
CESD and the old item remains
there so that they can be delinked
individually (in this case, the
CESD may contain two ER items for
the same symbo~. Delinking is
described in "Second Pass
Processing."

3. If the input ER item is marked for
deletion, but the ER item in the
CESD is not marked delete, the
input ER is chained to the match­
ing ER in the CESD. The chained
ER item remains in the CESD until
the end of module is detected so
that the delink value can be
saved.

4. If the input ER item is not marked
for deletion and the ER item in
the CESD is marked "delete" or
"replace," the delete bit in the
subtype field is cleared (delete
is changed to replace) and the
item is renumbered. If the match­
ing ER item in the, .CESD is marked
"no call" or "library member" it
is marked "matched n bef0re
renuinbering.

5. If the input ER item is marked in
the subtype field, but is not
"delete" or nreplace," it is
assumed to be "never call"; if the
matching ER item in the CESD is
"library member," the CESD item is
removed from the chain of library
members and the input ER item is
entered into the CESD and
renumbered.

TXT Processing

The manner in Which TXT records are pro­
cessed depends on whether they are part of
a load module or an object module. A load
module contains records in a specified

order. However, in an object module the
records may not be in the proper sequence
because the language translator may have
created them out of order. (The restric­
tions on linkage editor input are described
in the Appendix under "Input Conventions.")
Diagrams B3 and B4 illustrate processing of
TXT records from object and load modules,
respectively.

Before any address constants can be
relocated within a control section of an
object module, all TXT records must be
placed in the proper order. This is done
in the input text buffer (TXTBFBEG), which
is variable in length, allowing grouping of
data within the buffer.

Each nmultiplicity" of text is assigned
a number as it is moved (or read) into
TXTBFBEG. A multiplicity is a portion of
text equal in length to the maximum size of
a SYSLMOD output record. Within each con­
trol section, multiplicity numbers are
assigned consecutively, starting at O.

Text records from object modules contain
both text data and the control information
needed for processing. Text records from
load modules contain only text, so the
associated control record must also be
examined to obtain the required control
information. During object module proces­
sing, control information is placed in
registers; this information allows the
object module text to be moved from the
object module buffer into TXTBFBEG. For
load module text, the aSSigned address of
the first byte of text and a pointer to the
ID-length list (in the control record) is
determined during load module processing.
This information allows the text record to
be read directly into TXTBFBEG.

processing Object Module Text

When text is received from an object
module, the text record ID is renumbered,
using the renumbering table, so that it
refers to the CESD entry for the control
section which contains the text. The size
of the control section is obtained from the
CESD, and a test is made to determine if
the whole control section or a multiplicity
~hichever is smalle~ will fit into the
space available in TXTBFBEG. (If the con­
trol section length was not specified in
the CESD entry, only text for the current
ID is accepted; refer to the'paragraph
headed nNo-Length Control Sections.")

If there is sufficient space in TXTBFBEG
to accommodate the control section or mul­
tiplicity, the text is moved into the buff­
er, and an entry (containing the ID and
multiplicity number of the text) is made in
the text I/O table. A corresponding entry,
containing the location of the multiplicity

Section 2: Method of Operation 33

and the length of the text, is made in the
text note list. The text note list entry
also contains a displacement field. When
text is in order, or on the first occur­
rence of text for a multiplicity, the dis­
placement field is set to O~ for out-of­
order text the displacement field contains
the displacement from the beginning of the
multiplicity of the first byte of contigu­
ous text.

If the SYSUTl record size is smaller
than the multiplicity size, each multipli­
city is divided into pieces, each piece
having a length equal to the SYSUTl record
size. New text I/O table and text note
list entries are made for each piece; the
displacement field will contain the displa­
cement of each piece from the beginning of
the multipli~ity.

NO-LENGTH CONTROL SECTION: When text is
received for a no-length control section (a
control section for which no length is spe­
cified in its CESD item), space for one
multiplicity is allocated in TXTBFBEG.
Entries are made in the text I/O table and
the text note list for the multiplicity,
and the text is moved into TXTBFBEG. This
procedure is repeated for each subsequent
multiplicity of text for the no-length con­
trol section. If TXTBFBEG becomes full,
its contents are written onto SYSUTl as
described below in the section headed
"Writing Text on SYSUT1". When the length
is received, it is entered in the text note
list.

PROCESSING OUT-OF-ORDER TEXT: A load
module contains records in a definite
order. However, records in an object
module may not be in the proper sequence
because the language translator may have
created them out of order. 1 Such records
may contain discontinuities in addresses
(due to a reorigin or a disjointed control
section), or they may not be contiguous
(i.e., text of a given ID and multiplicity

may be interspersed with text of other IDs
or multiplicities). Records of contiguous
text must be built on SYSUTl so that during
second pass processing the text can be
placed into its proper position, within its
ID and multiplicity, in the second pass
text buffer.

The first occurrence of a given ID and
multiplicity is read into the input text
buffer as it is received. Discontinuities
and non-contiguous text are of no conse­
quence at the first occurrence of an ID and
multiplicity. However, once text of a
given ID and multiplicity has been written

1The restrictions on linkage editor input
are described in Appendix A under -Input
Conventions. R

34

out on SYSUT1, any subsequent text of that
ID and multiplicity must be contiguous to
be written out on SYSUTl within each text
record.

Text of a previously-written ID and mul­
tiplicity is read into the input text buff­
er until a discontinuity, or text of a dif­
ferent ID or multiplicity, is encountered.
The contiguous text in the buffer is then
written out on SYSUT1. The discontinuous
(or non-contiguous) text is then placed in
the buffer. If this text represents the
first occurrence of an ID and multiplicity,
the buffer is loaded without regard for
discontinuities or non-contiguous text. If
the text belongs to a previously-written ID
and multiplicity, the text processor will
again place only continuous text of that ID
and multiplicity in the buffer.

A record that contains non-contiguous
text is called a Rloose R record~ a record
that contains contiguous text is called
-dense." The text note list entry for a
dense record usually has a nonzero value in
the displacement field. When the text is
read back from SYSUTl into the second pass
text buffer, during second pass processing,
this displacement is used to place the text
in its proper position within its ID and
multiplicity.

ProceSSing Load Module Text

Since text records from load modules are
ordered and well-defined, they require
little further processing by the text pro­
cessor. The information in the ID-Iength
list (in the control recor~ is scanned,
and each ID is renumbered and checked to
determine if it is to be deleted. If all
IDs are to be deleted, the record is
ignored, and control is returned to the
input processor.

When an ID that is to be processed is
found, the text record containing the ID
must be read into TXTBFBEG. The text rec­
ord length is obtained from the associated
control record and compared against the
free space available in TXTBFBEG. If suf­
ficient space is available, the text record
is read into the buffer~ otherwise, the
contents of the buffer is written onto
SYSUTl to ensure sufficient space, and the
record is read.

Text is processed in the buffer in the
order specified by the ID-Iength list (in
the control recor~. IDs that are to be
deleted are overlaid by IDs that are to be
processed. The text is divided into multi­
plicities and entries are made in the text
I/O table and the text note list. When all
text identified by the ID-length list is
processed, text processing is completed.

writing Text on SYSUT1

When no more control sections can be r

accommodated in TXTBFBEG, the contents of
the buffer must be written onto the inter­
mediate data set (SYSUT1). The text I/O
table is scanned to determine the order in
which control sections are to be written.
The length of the first control section
(i.e., corresponding to the first text I/O
table entry) is obtained from its corres­
ponding ESD ID: if the length is less than
the size of the SYSUT1 record, the text I/O
table entry for the control section is
marked nwritten.- Each subsequent control
section is similarly processed, and its
length is added to the sum of the lengths
of previously processed control sections.

When the sum of control section lengths
reaches the limit of a SYSUT1 record, the
entire group of control sections is written
onto SYSUT1. The relative track address
~) is placed in the text note list entry

corresponding to the last text I/O table
entry that was processed.

When a single control section is larger
than a SYSUT1 record, the multiplicities of
the control section are grouped, up to the
limit of the SYSUT1 record size, and
written. 1 When control sections or mUlti­
plicities are grouped on SYSUT1, the mUlti­
plicities must be in ascending consecutive
order. If the overlay option has been
specified, no grouped control sections are
permitted on SYSUT1.

Note: Each time an entry is made in the
text note list during text processing, a
check is made to determine if the list is
full. If it is full, the contents of
TXTBFBEG are grouped (if possible) and
written onto SYSUT1, and the TTRs are
placed in the text note list. The list is
then written onto SYSUT1, and its address
is noted in the I/O control table. The
text note list may be written a maximum of
three times.

If neither TXTBFBEG nor the text note
list becomes full during text proccessing,
no text is written onto SYSUT1. The text
is retained in the buffer, and single-pass
processing is in effect for text records.

RLD Processing

RLD processing baSically consists of:

1. Updating each set of relocation and
position pointers ~ and P pointers) •

1If the SYSUT1 record size is smaller than
the SYSLMOD record size, no grouping is
permitted.

2. processing each flag and address (FA)
in the input item until the end of the
record or the next item with an Rand
P pointer is detected.

RLD records from object modules and load
modules are processed in the same manner.
During object or load module processing, a
pointer to the first RLD record encountered
in a load module or object module record is
placed in register 6.

RLD information is grouped in the RLD
buffer by P pointer. Each P pointer of an
input RLD record refers to the ESD entry in
the input module for the control section
that contains the address constant. Each
time a new P pointer ~ne referring to a
different ESD ID) is detected, an entry is
made in the RLD note list for the RLD set
(a set being an unbroken sequence of RLD
items having the same P pointer). The RLD
note list entry contains the following
information for each set:

1. The renumbered P pointer to which
these RLDs refer.

2. The lowest multiplicity of text to
which these RLDs refer.

3. The number of bytes of RLDs.

4. The storage address of the first byte
of RLD data if all RLDs remain in
core; if RLDs are written onto SYSUT1,
this field contains the accumulated
byte count for intermediate chains, or
the TTR of the record on SYSUT1.

All adjacent RLD items containing the
same P pointer are referred to by only one
RLD note list entry. Adjacent RLD items
containing the same Rand P pointers are
chained, with the Rand P pointers appear­
ing only once, at the beginning of the
chain. The remaining RLDS in the chain are
compressed by setting the flag indicating
continuation and discarding the four bytes
containing the Rand P pointers.

Each R pointer of an input RLD record
refers to the ESD entry in the input module
on whose value the address constant
depends. The Rand P pointers are updated,
using the renumbering table. Before
renumbering, the Rand P pointers refer to
ESD entries of the input module that con­
tains the RLD items. The pointers are
renumbered so that they point to the proper
entries in the CESD being created for the
output load module. If the R pointer
refers to a deleted ESD entry, del inking
may be performed. If the assigned address

Section 2: Method of Operation 35

of the symbol referred to by the address
constant is zero, the address constant is
not delinked. (Normal relocation is per­
formed.) When delinking is necessary, an
entry is placed in the del ink table (a
function of ESD processing). The delink
table entry contains the address (del ink
value) of the symbol being deleted and the
CESD entry number of the identically named
symbol that is to replace the deleted
symbol.

The ID of the del ink table entry for the
deleted symbol is saved in the renumbering
table, and a "delink value saved" indicator
is set. The ID of the indentically-named
symbol and the ID of the new delink table
entry are saved because they are later used
to complete the delinking operation. The R
pointer of the RLD item must be modified to
refer to the delink table entry for the
deleted symbol, but the original R pointer
is needed to process any V-type address
constants referred to in the RLD item.
Therefore, the R pointer is not modified
until the string of flag-address (FA)
fields following the Rand P pointers has
been processed as described below. At that
time, if the module is to be structured for
overlay and it contains v-type address
constants1 that refer to the symbol, the ID
of the identically-named symbol is inserted
into the calls list.

Each FA field of the RLD record is pro­
cessed as follows:

• The high-order bit of the flag field is
set to zero.

• If the address constant is an A-type,
the renumbering table entry referred to
by the R pointer is checked to deter­
mine if it is marked as a PR type. If
it is a PR, the RLD flag field is also
marked PR (because second pass proces­
sing must handle PRs in a special mann­
er). If the renumbering table entry is
not an ER or marked delete, the RLD
flag field is marked for relative relo­
cation. This indicates to second pass
processing that the difference between
the origin of the control section in
the input and the origin assigned by
the linkage editor is to be used as a
relocation factor for the value of the
address constant. If the RNT entry is

tv-type address constants do not require
delinking, but may be in a FA string with
A-type address constants that do require
del inking (or other control sections in
the same input module may contain A-type
address constants that refer to the
deleted control section) •

36

an ER or marked delete, the RLD flag
field is not marked. This indicates to
second pass processing that the address
constant is to be relocated by absolute
relocation; second pass processing uses
the linkage editor assigned address of
the symbol in the output module as a
relocation factor for the value of the
address constant. (This procedure is
described in the paragraph "Second Pass
Processing. ")

• If the address constant is a 4-byte
v-type (":tranch-type"), and the program
is in overlay, an entry is placed in
the calls list, provided that the
address constant refers across control
sections (R not equal P). The calls
list is used during address assignment
processing to determine which segments
require ENTABs, and the number of
entries each ENTAB must contain.

• For both A-type and V-type address con­
stants, the mUltiplicity of the address
field is determined and is saved in the
RLD note list if it is lower than any
previous multiplicity in the RLD rec­
ord. If two-pass processing is in
effect, the RLD note list is used dur­
ing second pass processing to read back
RLD data from SYSUTl (each RLD note
list entry contains the relative track
location (TTR) of an RLD record on
SYSUT1). The second pass processor
uses the mUltiplicity field of the RLD
note list entry to determine if the
associated RLD record should be read
back from SYSUTl for a given multipli­
city of text •

When the last FA field in the string
has been processed, all items in the
string have been checked to determine
if they require delinking. If any A­
type address constants in the string
required delinking, the R pointer for
the string is modified to refer to the
associated delink table entry.

Table 6 shows the actions performed dur­
ing RLD processing for each input flag for­
mat, and the format of the flags after RLD
processing. (The "output" column shows the
flag formats that are passed as input to
the relocation routine of second pass pro­
cessing; refer to Table 7.) After all FA
fields have been processed, the next RLD
record is processed.

If the RLD buffer becomes full, its con­
tents must be written onto the intermediate
data set (SYSUT1). The RLD buffer is allo­
cated with a maximum length less than or

equal to the size of a SYSUTl record. so
the entire buffer may always be written.
As many consecutive RLD sets as possible
are grouped in a SYSUTl record. The RLD
note list entry for each RLD set in the
group contains a "grouped" indicator; the
note list entry for the last RLD set in the
group also contains the relative track
address (TTR) of the group.

RLD sets whose length exceeds that of a
SYSUTl record (requiring more than one out­
put record) are not grouped. RLD note list
entries for RLD sets that are not grouped
contain the relative track address (TTR) of
the SYSUT1 record and a "non-grouped"
indicator.

Table 6. Flag Field Processing

Each time an entry is made in the RLD
note list. a check is made to determine if
the list is full. If it is full. the RLD
sets in the RLD buffer are grouped and
written onto SYSUT1. and the TTR is placed
in the appropriate RLD note list entry.
The RLD note list is then written onto
SYSUT1. and its address is noted in the I/O
control table. The RLD note list may be--­
written a maximum of three times.

Note: If neither the RLD buffer nor the
RLD note list becomes full during RLD pro­
cessing. no RLDs are written onto SYSUT1.
The RLD information is retained in the RLD
buffer. and single-pass processing is in
effect for RLDs.

r------------------~--~-------------------,
, Input I I Output ,
I-------T-------~ ~----------_r___------~
I I Flag I Type I Action Performed I Flag I Type ,
I-------f----------+---+------+---------~
10000LLST INot PRo IMarked for relative relocation 11000LLST IRelative I
I IER. eM. orl I I I
I I delete I I I I
1---------+----------+-------------------------------------+--------+---------~
10000LLST IER ('02' IMarked for absolute relocation 10000LLST IAbsolute I
I I in renum- I I I I
I I bering I , I I
, ,table) I I I I
~-------+-------+------------------------------------+----------+-------~
,OOOOLLST ,Delete or 'Marked for absolute relocation is assigned 10000LLST ,Absolute'
, ,eM ('OS') laddress of input item is zero I I I
~---------+----------+---------------------------------------+----------+---------~
,OOOOLLST IPR ('06') 'Marked as PR (displacement value) 10010LLST I Pseudo ,
I , , , IRegister I
, , I , I Type 1 ,
1---------+----------+---f----------+---------~
10000LLST IDelete or ,Marked "delink value saved" if assigned I High-order I Delink ,
I I eM I address of input item is not zero I bi t of P I I
I I , I pointer, I
I-------f----------+------------------------------------+--------+-------~
10001LLST 'Type is IRLD is marked branch-type 10001LLST I Branch I
, I not I I I I
I I checked I I I ,
1--------+----------+--+--------+-------~
,000lLLST IDelete ,Marked "delink value saved and other FA itemslHigh-orderlDelink I
I or I lin string exist that are non-branch type" andlbit of P I I
1*1001LLSTI lare being del inked I pointer. I I
~---------+----------+---+----------+---------~
10010LLST ,Pseudo INone - Remains as a PR (displacement value) 10010LLST I Pseudo ,
I ,Register , I I Register I
I I Type 1 , I 'Type 1 ,
I---------+----------+--_+_---------+---------~
,0011LLST 'Type is 'Marked as PR (cumulative length) 10011LLST I Pseudo ,
I I not I I IRegister I
I I checked I I IType 2 I
~-------.1.--------.L--'---------__ .L _______ ~
I*Internal types processed during second pass. I
IIRefer to "RLD Input Record (card image)" and "RLD data" (load module) in Section 7: I
I Appendix. I L ___ J

Section 2: Method of Operation 37

END Processing

When an END statement or the end of an
input load module is detected, END proces­
sing is required. The functions of END
processing include:

• Reset tables (such as the renumbering
table) that were involved in the pro­
cessing of the input module.

• Process entry point inforroation.

• Delete any CESD lines marked CHAIN or
DELETE, and keep track of deleted
lines.

• Enters in the CESD the length of a con­
trol section for which no length was
specified in the ESD item (if the
length is contained on the end
statement) •

Include Processing

Include processing is required when:

1. The control statement scanner has
detected an INCLUDE statement and the
include statement processor has built
an include chain.

2. End-of-input has been detected, and
the "more includes" indicator in the
all purpose table is on.

Include processing consists of prepara­
tory functions (OPEN, BLDL, FIND) required
before the module to be included can be
read.

• An input pointer to the library read
block is set.

• The SYSLIB DCB is closed (unless it is
open for a partitioned data set cur­
rently being use~ •

• Each entry in the include chain is
examined sequentially.

SEQUENTIAL DATA SETS: If an include chain
entry specifies a sequential data set, the
data set organization field of the DCB is
changed from partitioned to physical
sequential, and the ddname field is
updated. The DCB is then opened, and the
module is read in.

PARTITIONED DATA SETS: If an include chain
entry specifies a member of a partitioned
data set, the member name is entered into
the BLDL list, and the next entry is
examined. If the next entry specifies a
different data set name, the partitioned
data set is opened, and a BLDL macro
instruction is executed for the single
member name.

38

If the next entry specifies another
member of the same partitioned data set,
the member name is added to the BLDL list,
and the next entry in the include chain is
examined. Member names are added to the
BLDL list until a different data set name
is encountered, the BLDL list becomes full,
or the end of the include chain is reached.
Since the BLDL list must be in collating
sequence, each member name is inserted into
its proper position, moving other entries
as necessary. Since included modules must
be read in the order in which they appear
in the INCLUDE statement (without regard
for collating sequence) , a separate table,
indicating the order of processing BLDL
list entries, is maintained.

When the BLDL list is completed, the
partitioned data set is opened and the rec­
ord format field (RECFM) in the DCB is
tested to determine if the included modules
are load modules (U-format) or object
modules (F-forma~. If they are load
modules, the "load module" indicator is set
in the APT. This indicator is tested when
each module is read in. A BLDL macro
instruction is then executed for the member
names in the list. The list is then
examined in the order specified in the
INCLUDE statement to obtain the attributes
of each included module (if it is a load
modul~; the attributes of the output load
module may be "downgraded" accordingly in
the APT.

If the BLDL macro instruction was suc­
cessful for a particular member, the member
is read in. The FIND macro instruction and
the directory entry obtained from BLDL are
used to set a pointer in the DCB to the
first record of the member. If the BLDL
was not successful for a particular member,
a diagnostic message is printed.

Note: If a nested INCLUDE statement is
encountered, it is processed immediately,
without attempting to construct a multiple
BLDL list.

An example of include processing is
given in Figure 20. The input pointer is
set to the address of the library read
block. The address of the current include
item is contained in the all purpose table.

Assuming that no includes have yet been
processed, A will be the first item
examined. The subtype 'DO' indicates that
A is a member of a partitioned data set, so
A will be entered into the BLDL list. The
pointer OOOD refers to the data set
DATASETX. The next item in the include
chain, B, is also a member of DATASETX, so
it is added to the BLDL list. The next
item in the chain, M, is a sequential data
set (subtype CO), so the BLDL list is com­
pleted with two entries (~ and B). Assum-

ing that DATASETX is not currently open and
the SYSLIB DCB is not opened for another
data set, the SYSLIB DCB is opened for
DAT.~SETX. (The RECFM field of the data set
DSCB is merged into the DCB.) Assuming
that the RECFM field indicates U-format, a
load module indicator is set in the all
purpose table, and a pointer to the load
module buffer is placed in the library read
block. The attributes of A and Bare
obtained, using BLDL, and the attributes
specified on the EXEC statement are updated
accordingly. (The attributes of the output
load module may be downgraded as a result.)
A pointer in the DCB is then set to the
first record of member A, using the FIND
macro instruction, and the "include
initiated" indicator is set in the all pur­
pose table.

Member A is read using the input pointer
and library read block. Module A is then
processed. When the end of module A is

INCLUDE DATASETX
(A,B,C),M

Register 2

9400

Load
Module
Buffer

F278

77CO

Figure 20. Include Processing

All Purpose Table

"MORE INCLUDES" INDR

I 1 I

I nput Poi nter

F278

SYSLIB DCB
RECFM

DDNAME

I
BLKSIZE
I

reached, item A is deleted from the chain
and the CESD line is marked "null." Member
B is then read and processed.

When the end of module B is reached,
item B is deleted from the chain, the CESD
line is marked "null," and the remainder of
the chain is processed.

Automatic Library Call Processing

Automatic library call processing is
required:

• At the end of SYSLIN input when unre­
solved ERs still exist, and the NCAL
option was not specified.

• When a NAME statement has been detected
(provided that the NCAL option was not
specified and no more includes are to
be processed) •

ill
01
02
03
04
05
06
07
08
09
OA
DB
DC
OD
DE
OF
10
11

F28C

967C

LOC. o
9F38
9F48

9F68

9F88

9FB8

9FF8

SYSLIN
Read Block

SYSLIN
Buffer

C

B

M

A

DATASETX

8 12 13

OOUUUU D I UULD
9F88
9F88 DO DODD

9F48 CO 0000

9F68 DO DODD

BO

BLDL list

~

SYSLIN DCB

7768 RECFM

DDNAME
I
BLKSIZE

I

Section 2: Method of Operation 39

Automatic library call processing con­
sists of two series of CESD scans. The
first series of scans operates on unre­
solved ERs specified on LIBRARY statements.
It finds the first ddname that contains a
pointer in the chain pointer field (bytes
14 and 15). Such an entry is the first
item in a chain of members associated with
this ddname; there is a distinct chain for
each ddname that was specified on a LIBRARY
statement. Chained member names for a par­
ticular ddname are entered into a BLDL list
which is processed as previously described
under the heading RInclude Processing."

The scan of the CESD continues until all
ddname chains have been processed. A
second scan of the CESD then searches for
external references not specified on
LIBRARY statements and attempts to resolve
them by calling members of the same name
from SYSLIB. ~

An example of automatic library call
processing is given in Figure 21. Diagram
A shows two library chains that were built
in the CESD by the library statement pro­
cessor. In diagram B, an SD item for JOE
has been entered into the CESD, resolving
the reference to JOE. (JOE was removed
from the chain by ESD processing, and the
LIB1 chain ID now points to the line con­
taining TOM.) Automatic library call pro­
cessing operates on the library chains, as
modified by ESD processing (diagram B) •

In the first series of scans, the CESD
is searched for a ddname (type 02, subtype
BO) with a chain pointer. The ddname item
LIB1 is found; its chain ID points to TOM.
Because TOM is unmatched (subtype 02) it is
not called and since TOM is the last item
in the chain (0 in the chain ID field), the
scan is resumed for another ddname with a
chain pointer. LIB2 is found; its chain ID
points to SAM. No call is issued for SAM,
since it is unmatched. The chain ID of SAM
points to PETE, which is matched (indicat­
ing that PETE is an external reference, and
not just an operand of a LIBRARY state­
ment). PETE is entered into the BLDL list;
since PETE is the last item in the chain,
the list is completed with one entry.

LIB2 is opened and the BLDL macro
instruc~ion is used to obtain the attri­
butes of PETE ~he attributes of PETE are
not obtained if the format is F). A "BLDL
attemptedn indicator is set for the CESD
entry for PETE so that no other search for
PETE will be made in the event of an unsuc-

~SYSLIB is the standard library whenever
the linkage editor is executed as a job
step. If another program LINKs to the
linkage editor, the ddname of the standard
library is passed in a parameter list.

40

cessful BLDL or non-resolution of the ER
for PETE by the member PETE. The FIND
macro instruction is used to set a pointer
in the SYSLIB DCB to the member PETE; PETE
is then read in.

When processing for PETE is completed,
the scan for ddnames resumes at the begin­
ning of the CESD, rather than at the CESD
line where the scan was interrupted,
because additional ddname items may have
been entered at any available line in the
CESD. (Object modules with additional
LIBRARY statements may have been read in.)
When the last line of the CESD is reached
the second series of scans is begun.

ID
01
02
03
04
05
06
07
08
09
OA
OS
OC
OD

ID

01
02
03
04
05
06
07
08
09
OA
OB
OC

CESD
a

L1Bl

JOE
SIMPLE
L1B2
SAM
PETE

TOM

CESD
a

L1BI

JOE
SIMPLE
L1B2
SAM
PETE

TOM

Diagram A

Type
8

02

02
02
02
02
02

02

Diagram B

8 9 10

I
02 I

I

00

02

00
06
07

04

00

00 06E273
02
02 00
02 06
02 07

02 02

Sub­
Type

12 13

BO

03
00
BO
02
03

02

04

OA

07
08
00

00

12 13 14 15

BO A

0121E3
00
BO 7
02 8
03 a

02 a

Figure 21. Automatic Library Call
Processing

~

B

~

DUring the second series of scans, the
CESD is searched for "unmarked" external
references (type "02", subtype "00").
These are ER items not specified on LIBRARY
statements. In diagram B, the scan finds
SIMPLE. Assuming that SYSLIB is the ddname
for the standard library, SIMPLE is called
from SYSLIB in the same way that PETE was
called from LIB2. Every time automatic
library call processing is resumed after a
module is read, the second series of scans
resumes at the beginning of the CESD
(because ER items from a library member may

have been entered in any available CESD
line) •

When the second series of scans is
finished, input processing is complete.

INTERMEDIATE PROCESSING

When all input processing is completed.
the second phase of Linkage Editor F
(intermediate processing) begins operation.

The two major functions of the second phase
are address assignment and intermediate
output.

ADDRESS ASSIGNMENT (IEWLMAD~

At the conclusion of input processing.
address assignment processing is required.
(See Diagram C1.) Address assignment
includes the following operations:

• CESD entries are deleted for ER items
marked included. called. ddname. or
overlay in the subtype field. These
lines are marked "null" and are deleted
if the module is processed again in a
subsequent execution of the linkage
editor.

• Compute. for programs in overlay. the
size of SEGTAB~ enter the size in the
all purpose table. and place a private
code delete entry for the SEGTAB in the
CESD. The PC-delete type entry is
deleted from the module if it is pro­
cessed again by linkage editor. (Dia­
gram C 1. Area A)

• Enter segment numbers for label
references in the CESD. If the program
is in overlay. the calls list (built
during RLD processing) is also scanned.
and pointers from one chain of calls to
the next chain are entered; (Area B)
the number of ENTAB bytes2 for each
segment is determined; and a PC-delete
type entry is placed in the CESD for
each ENTAB. (Refer to "ENTAB Size
Determination. ")

• Assign temporary linked addresses to
SD-, PC-, and CM-type entries in the
CESD (Area C). CSECTs are processed
according to the order of input deter­
mined by scanning entries in the text
I/O table. Since an ID can appear more
than once in the text I/O table, a
"processed" bit (bit 4 of the "type"
byt~ is set in the CESD entry to indi­
cate that a temporary linked address
has been assigned to the associated

ISEGTAB size = 24 + (4 x number of
segments) •

2ENTAB size = 12 + (12 x number of unique
downward calls per segment) •

CSECT. The "processed" bit must be
reset to 0 before address assignment
processing is terminated. CSECTs that
do not contain text have no entries in
the text I/O table. After processing
all CSECTs with text. addresses are
assigned to CSECTs without text by
referring to the CESD.

• Each segment is considered to be at a
zero origin. The temporary starting
address of each control section is com­
puted with respect to its location in
the segment, relative to the zero ori­
gin (plus any adjustments for boundary
alignment). These addresses are tem­
porary because the starting addresses
of the segments must later be relocated
with respect to their positions in the
overlay tree. If the program is not in
overlay ~onsists of a single segment)
the addresses are final. because no
further relocation by address assign­
ment is necessary.

• Compute the temporary relocation con­
stant for each control section (the
difference between the temporary linked
address and the assigned address in the
input) and place it in the relocation
constant table (RCT) (Area D). If the
program is not in overlay, these are
the final relocation constants (rela­
tive relocation factors) •

• Accumulate the length of each segment
in the leftmost three bytes of an entry
in the segment length table (SEGLGTH).
The boundary alignment factor of the
first control section in the segment is
placed in the fourth byte of the entry.

• Determine the address of each PR-type
entry in the CESD. using the total
length of all PRs previously encoun­
tered, plus the boundary alignment fac­
tor. 'I'his address is placed in the
CESD entry for the PRo The length of
this PR is then added to the cumUlative
PR length.

• Process the SEGLGTH table (if the pro­
gram is in overlay) to determine the
starting address of each segment, rela­
tive to the beginning of the program.
(Area E) SEGTA1 is checked to find the

proper location of each segment in the
tree. SEGLGTH at this time contains
the length of each segment. To deter­
mine the starting address of a segment.
the length of all previous segments in
the same path are added, together with
any adjustments for boundary alignment.

Section 2: Method of Operation 41

(Boundary alignment adjustment is
determined by the last three bits of
the address of the first control sec­
tion in a segment.) This sum, minus
the boundary alignment factor for the
segment, is the segment relocation con­
stant (SRC). The SRC is then placed in
the rightmost three bytes of the
SEGLGTH table. The sum of the SRC, the
boundary alignment factor, and the seg­
ment length is placed in the leftmost
three bytes of the SEGLGTH table entry
for the segment. It is the length of
the path of the segment (including the
segment itseln. At the completion of
this process, the entry in SEGLGTH for
each segment contains the cumulative
length of its path; the longest of
these lengths is the program length.

• Perform a second scan of the CESD if
the program is in overlay. The segment
relocation constant in the SEGLGTH
table is added to the temporary linked
address in the CESD entry for the con­
trol section; this sum is the final
linked address. The SRC is also added
to the temporary relocation constant in
the relocation constant table; this sum
is the final relocation constant for
the control section.

• Make a final scan of the CESD to assign
a final linked address to each label
reference.

The CESD entry for each LR contains a
reference to the control section in
which it resides. The relocation con­
stant for that control section is
located in the RCT and is added to the
temporary linked address in the CESD
entry for the LR. This sum, the final
linked address for the LR, is placed in
the CESD.

• Mark the program as not executable if
there are still unresolved external
references and if neither the no call
(NCAL) option nor the LET option has

been specified.

• Build the alias table and compute an
entry point for the program. (Refer to
"Entry Processing.")

ENTAB Size Determination

ENTAB size determination consists of
computing the size of ENTABs so that the
size of each segment in an overlay program
can be determined and relative relocation
factors can be computed for use by second
pass processing. The size is determined by
the number of downward calls, or calls
across regions, to symbols that are not
referred to by segments higher in the path
of the calling segments.

42

An example of ENTAB size determination
is given in Figure 23. The overlay tree
structure shown in the illustration con­
sists of nine segments residing in two
regions; all references between segments
are made using V-type address constants.
Functions of ENTAB size determination are:

• Scanning the CESD for LR-type entries
and entering their segment numbers. In
Figure 23, item 6 is an LR item; its
ID/length field points to the CESD
entry for the control section in which
it resides (line 3). The segment num­
ber contained in line 3 (segment number
3) is entered in the segment number
field of the LR item.

• Scanning the calls list, inserting
chaining values that point from one
group of Rand P pointers to the next.

• Scanning the calls list, for each seg­
~ent (starting with segment 1), find
symbols referred to by that segment.
For each reference found, the type of
call (upward, downward, or exclusive)
is determined. If an ENTAB is required
for the segment, its size is determined
and a PC-delete type entry for the
ENTAB is made in the CESD. Referring
to Figure 23, the segments are pro­
cessed in the following manner:

1. The calls list is scanned for P
pointers that refer to control
sections in segment 1. If one is
found, the associated R pointers
(which refer to referenced sym­

bols) are examined to determine
the segment in which each
referenced symbol resides. In
Figure 23, the fifth P pointer
refers to line 7 of the CESD,
which contains an SD-type entry
for a control section in segment
1. The associated R pointers
refer to line 6 (symbol B in seg­
ment 3) and line 4 (symbol C in
segment 5). For each reference,
the type of call (upward, down­
ward, or exclusive) is determined,
using SEGTA1 and the segment num­
bers of the calling and called
segments. In Figure 23, SEGTAl
indicates that segment 1 is in the
path of segments 3 and 5; there­
fore, the calls from segment 1 to
Band C are downward calls. This
is noted in the downward calls
list by entering segment number 1
in the lines referred to by the R
pointer (lines 6 and 4). Since
segment 1 is the root segment, it
must have an ENTAB; the size of
the ENTAB is determined and a PC­
delete type entry for the ENTAB is
created in the CESD.

1

2

3
4

5

6
7

8

9

10

11

I 8

Symbol

D

H

A
C

B

I

E

G

F

9

Type

SD

SD

SD
SD

LR
SD

SD

SD

CM

PC
* PC(d)

'I' PC(d)

'I' PC(d)

'I' PC(d)

I 2

CESD

Chain Seg Sub- Length
Address No Type /ID

9

2

3
5

3 3
1

8

4
6

7

1 60

1 36

3 24
4 24

8 6 8

I 1
~---------V (B) 1 2

(3
I v (C)---. 4
I
I 5

I H C 6 I V-------V (B) 2 I 5 7
I I 8
I A 3 G 4 I 9
I) \ v (H)--~-""B

V (E)----~, V (E)_~
I '

Region I I 1

~"~-Ij' i-T --rIT9--
7 8 E .. ------ +

I
V (D)--- - ---)

6

* PC - delete type entry for SEGTAB
'I' PC - delete type entries for ENTABs

CALLS LIST

2 6 6 3 I 8 8 7 I 6

SEGTAI

o
1
2
2
I
o
6
6
o

I
I I

L-J

4 I 0

1
2
3
4
5
6
7
8
9
10
11

Downward
Calls List

J4

I

LJ

----,
I ___ ---l

* CV,,- P R R CV P R CV P R CV P R CV P R R 1
-", ~" ~" 11'" /i "- / "-

'----/ " ----~
* cv = Chaining Value (gives number of bytes to next CV)

Figure 23. ENTAB Size Determination

2. When the scan for segment 1 is
completed, the calls list is
scanned for P pointers that refer
to segment 2. In Figure 23, the
third P pointer in the calls list
refers to CESD line 6, which con­
tains segment number 3. This
indicates (via SEGTA1) a downward
call from segment 2 to symbol B in
segment 3. In this case, however,
no entry is made in the downward
calls list because it indicates a
call to B in segment 3 from seg­
ment 1, which is higher in the
path of the calling segment (seg­
ment 2). No ENTAB is required for
segment 2 because the reference to
symbol B in segment 2 can be
resolved through the ENTAB entry
in segment 1.

3. The calls list is scanned for P
pointers that refer to segment 3.
In Figure 23, the fourth P pointer
in the calls list refers to CESD

'" " ---- .---'" --- ./ I ------- I
End of Calls List

line 3 (segment 3). The R pointer
refers to CESD line 8 (segment 8) •
SEGTA1 indicates that the call
from 3 to 8 is downward, across
regions, and the call is noted in
the downward calls list. Segment
3 requires an ENTAB because it
contains a downward call to a sym­
bol not referred to by a segment
in the path of the calling seg­
ment; the ENTAB size is deter­
mined, and a PC-delete type entry
for the ENTAB is created in the
CESD.

4. The calls list is scanned for P
pointers that refer to segment 4.
In Figure 23, the first P pointer
in the calls list refers to CESD
line 9 (segment 4). The R point­
ers refer to line 2 (segment 2)
and line 8 (segment 8). SEGTAl
indicates that the call from 4 to
2 is upward, while the call from 4
to 8 is downward across regions.

Section 2: Method of Operation 43

The upward call is ignored because
the address constant can be
resolved directly to the
referenced symbol. The downward
call from 4 to 8 is noted in the
downward calls list, replacing the
previous entry for segment 3
(because no segment with a segment

number greater than 4 can have
segment 3 in its path). Since an
ENTAB is required, the size is
determined and a PC-delete type
entry is created in the CESD.

This process continues until all seg­
ments have been processed. The required
ENTABs are built during second pass proces­
sing (Refer to "ENTAB Creation" and "Relo­
cation of V-Type Address Constants in
OVerlay. ")

Entry Processing

Entry processing includes the following
operations:

44

• Enters into the alias table any alias
symbols that were chained together and
saved in the CESD by the alias state­
ment processor. Each entry in this
table consists of an 8-byte symbol
field and a 2-byte ESDID field. For
each saved alias symbol, the entry pro­
cesssor scans the CESD for a matching
SD-type or LR-type entry. If no match
is found, a zero is placed in the ESDID
field of the alias table entry for the
symbol. If a matching SD or LR entry
is found, the ESDID of the alias entry
in the chain is placed in the ESDID
field of the alias table entry for the
symbol. (See Figure 24.) The address
assigned by linkage editor to the
matching SD or LR and the ESDID of its
control section are placed in the CESD
entry for the chained symbol, and the
type of the chained symbol is changed
to null.

• Determines whether the entry point was
specified as an address on an END
statement, or as a symbol on an ENTRY
statement or END statement:

1. If the entry point was specified
as an address on an END statement,
the assigned address is determined
by either absolute or relative
relocation. If the 10 on the END
statement referred to an ER which
was resolved with an SD or LR, the
address assigned by the linkage
editor to the SD or LR is added to
the address from the END statement
(absolute relocation). If the ID

on the END statement referred
directly to an SD or PC, the relo-

cation constant for the SD or PC
is added to the address from the
END statement (relative
relocation) •

2. If a symbolic entry point was
specified on an ENTRY statement or
END statement, the CESD is scanned
for a matching SD- or LR-type sym­
bol. The address of the matching
symbol is used as the entry point.

3. If no entry point was specified,
the starting address of the SD- or
PC-type control section (not
marked delete) with the lowest
assigned address is chosen as the
entry point. The entry point
associated with the main name (not
an alias) and all alias entry
points must be in segment number
one if the program is in overlay.

INTERMEDIATE OUTPUT (IEWLMOUT)

Intermediate output processing includes
the following operations:

• Writes out the CESD on SYSLMOD in
groups of 15 entries per record. 1 (The
last record may consist of less than 15
entries.)

• Builds a half ESD (HESD), consisting of
the last eight bytes of each CESD
entry. (The symbol is deleted from
each CESD entry to conserve main
storage space during second pass pro­
cessing.) The HESD is not complete at
this time. (The ID of each label
reference is used in building the
scatter and translation tables.)

• Builds and writes out the segment table
(SEGTAB) , preceded by a control record
describing it, if the program is in
overlay.2 SEGTAB contains information
required by the overlay supervisor.

• Builds a scatter table and a transla­
tion table for a program that is to be
scatter loaded and writes out scatter/
translation records in a form accept­
able to program fetch at execution
time. The scatter/translation informa­
tion is written out on SYSLMOD in 1024-
byte records. The first four bytes of
each record are used to identify the

The CESD and control record are not writ­
ten out on SYSLMOD if the "not editable"
attribute is specified.

2If it is negative, an indicator is set in
the HESD to note that it is in complement
form.

All Purpose Table

AI ios Chain Address

Address X
CESO - Before Entry Processing

Chn Addr Il'ointer

Symbol Type Reverse Seg Sub Chn

Chain 10 No Type Chn Lgth
/10 I • •

'-- ----I , •
Address X 3 SAM ER Addr Y-, Alias

• f---I
- -.--- - ---(------

'-"'Address Y 7 JOE ER Addr Z-...., Alios
• J ---;---- - I-----~ ,--------

I
'-... Address Z 10 BILL ER 000 Alios

• •
•

SAM SO * LAI (Length)

• ---.--- - -- - - 1---,
\

22 JOE LR * LA2 20--1

•
* Linked address CESO - After Entry Processi ng

Chn Addr Chn
Seg Sub Pointer

Symbol Type Reverse No Type Chn Chain 10 Lgth/lO
Alios Table •

Alios Symbol ESOIO •
•

SAM 3- --- ---~3 SAM Null LAI 20-,
• I • I

JOE 7- - --- -- 7 JOE Null LA2
201 •

• I
BILL 0 10 BILL Null 000 Alios I

--!...--- r- r--- - r- --)

•
SAM SO LAI (Length)

• • •
22 JOE LR LA2 20

•

Figure 24. Processing of Alias Symbols by the Entry Processor

records as scatter/translation informa­
tion. If the length of scatter/
translation information is greater than
1020 bytes, the last 1020 bytes (plus
four bytes of header information) are
written out as the first scatter/
translation record. The data in the
last record may be 1020 bytes, or less.
(See Figure 25.)

• Reads the TXT and RLD note lists into
main storage if they were placed on
SYSUT1 during TXT and RLD processing.
(Each note list may have been written a

maximum of three times on SYSUT1 for a
large program. In this case, TTRs
pointing to the locations of note list
information are contained in the I/O
control table.)

• Determines the control section contain­
ing the last text in the program (or in
each segment, if the program is struc­
tured for overlay), and the highest
segment number of the segments that
contain text. (This information is
necessary so that second pass proces­
sing can determine when to set the end­
of-segment or end-of-module indicator.)
The highest ESDID is determined by
scanning the text I/O table for the
ESDIDs of control sections that contain
text. This ESDID is entered into the
high ID ~IID) table along with its
associated segment number.

• Determines, via bits in the all purpose
table (APT), if the MAP option has been
specified, or if the XREF option has

Section 2: Method of Operation 45

Beginning of
Tronslotion
Tobie

Beginning of
Scatter
Table

Low-Order Posi tion
in Main Storoge ..

D

.. --c--

B

A

High-Order Position
in Main Storage

500 bytes

1020 bytes

1020 bytes

4-byte header

/

D D D [j
1024 bytes 1024 bytes 1024 bytes 504 bytes

1020 bytes

Sequential Order of Records

Figure 25. Writing Scatter/Translation Records

been specified and all RLDs are in
storage. If either of these conditions
exists, the module map and/or the
cross-reference table are produced. If
the XREF option is specified and all
RLDs are not in storage, XREF proces­
sing will be done as part of final
processing.

MAP/XREF Processing

When MAP/XREF processing is required as
part of intermediate output processing, a
table address is obtained from the APT. and
a table of two-byte entries pointing
directly to the CESD is constructed. The
CESD records for the current segment are
gathered and sorted by address. The module
map is then printed out: the map lists. in
ascending order according to their assigned
origins. all control sections contained in
the output module and the entry points
within the control sections. Control sec­
tions in an overlay output module are
grouped by segment.

If XREF processing is done during inter­
mediate output processing. RLD items are
incompletely relocated; their addresses are
relative to the origins of their respective
CSECTs rather than the origin of the load
module. and the address of each RLD must be
added to the linkage editor assigned
address of its corresponding CSECT before
the cross-reference table is produced. The
cross-reference table inclUdes a module map
and a list of all references within a given
segment that refer across control section
boundaries. Each entry in the list con­
tains the address of the reference. the
symbol to which it refers. and the name of
the control section in which the symbol is
defined. For overlay programs, each item
in the list also contains the number of the
segment in which the symbol is defined.

46

If the MAP and XREF options are pro­
cessed during intermediate output proces­
sing, ALIAS and NAME messages and the diag­
nostic message directory are printed after
the module map and cross-reference table.
If the cross-reference table is produced
during final processing. the ALIAS and NAME
messages are printed before the map and
table. and the diagnostic message directory
is printed after the map and table.

SECOND PASS PROCESSING (IEWLMSCD)

After intermediate processing is com-
pleted, the third phase of Linkage Editor F
(second pass processing) begins. (See Dia­

gram D1.) The major functions of second
pass processing include:

• Relocate address constants contained in
the text.

• Create control/RLD records.

• Write TXT and control/RLD records 'onto
SYSLMOD in a format that can be loaded
by program fetch.

• Create ENTABs and associated RLD items
for overlay modules.

Operation Diagram D1 illustrates the func­
tions of second pass processing.

SINGLE-PASS PROCESSING: "In-core" indica­
tors in the text I/O table and the RLD note
list are checked to determine if text and
RLD records have been written onto SYSUT1
or have been retained in the text buffer
and the RLD buffer. If either text or RLD
records have been retained in storage.
single-pass processing is in effect for
that record type. If two-pass processing
is in effect, the records are read into the
buffers from SYSUT1.

ORDERING OF TEXT: In two-pass processing,
the ID sequence in the text I/O table is
used to determine the order in which CSECTs
are to be read into the second pass text
buffer (which is physically the same
storage area as the input text buffer) •
The text I/O table entry for each ID and
the corresponding text note list entry are
used to locate text on SYSUT1. (See Dia­
gram D1, Area A.) Text is read into the
buffer a mUltiplicity at a time, using the
displacement field in the text note list to
determine where within the buffer the text
must be placed. Information about the text
is entered into the second pass text con­
trol table, which is used to control subse­
quent processing of the text (area B) •

SECOND PASS RLD BUFFERS: When the required
text is in the text buffer, the correspond­
ing RLDs are read into the RLD input buff­
er, using the RLD note list to locate the
RLD records (area C). The RLD input buffer
can contain two RLD records from SYSUT1;
for each RLD input buffer area, an RLD
input control block is ffiaintained (area ~ •
The RLD output buffer is 768 bytes long and
is divided into three buffer areas (the
maximum RLD output record is 256 bytes
long); for each RLD output buffer area, an
RLD output control block is maintained
(area F). While text is being relocated,
the control record for that portion of text
occupies one of the output buffers; the
other two output buffers contain the relo­
cated RLDs for the text being processed
(area E). If the relocated RLDs exceed two
buffers, the control record is written onto
SYSLMOD; relocated RLDs may then be moved
into the third output buffer.

When all three RLD output buffers and
the RLD input buffers are filled and addi­
tional RLDs are required to relocate the
text currently being processed, the con­
tents of the output buffer wust be written
out. However, to maintain the required
TXT/RLD sequence in the output module (area
~, the associated text must precede the
RLD record. Space for the text is reserved
in the output module by writing the incom­
pletely relocated text; the contents of the
RLD output buffer may then be written, and
processing can continue. When the text is
completely relocated, it is written over
the space reserved for it, using XDAP
("execute direct-access program") •

GROUPING SYSLMOD OUTPUT: As many CSECTs as
will completely fit in one SYSLMOD record
(up to a maximum of 60) are grouped and

written as one record. RLDs are grouped to
correspond to the grouping of their asso­
ciated text. If the overlay option is
specified, only CSECTs belonging to the
same segment will be grouped.

If a CSECT is larger than the SYSLMOD
record size, the CSECT is divided in multi­
plicities, each multiplicity being equal to
the SYSLMOD record size. (The length of
the last multiplicity may be less than the
SYSLMOD record size.) Each multiplicity is
written as a record, followed by RLDs asso­
ciated with only that multiplicity.

Note: If the downward compatible option
(DC) or the scatter format option (SCT~ is
specified, CSECTs will not be grouped.

END OF MODULE: When control sections for
all segments of the output module have been
processed (determined via the "high ID"
indicator in the HESD type field and the
"last segment with text" field in the all
purpose table) , indicators are set in the
last control/RLD record to mark it as the
end of the module. The control/RLD record
is written out on SYSLMOD, and second pass
~rocessin9 is completed.

Note: If the output load module is to be
structured for overlay, a list of relative
track addresses (TTR list) is created to be
used by program fetch when it loads the
segments into main storage for execution.
The TTR list contains one entry for each
segment in the overlay load module. Each
entry contains the relative track address
of the first record (control recor~ of a
segment, except for the first segment,
which contains the relative track address
of the first text record. A PC-type con­
trol section, which contains ENTAB entries
in each segment where the text requires
them, and the RLD records required by pro­
gram fetch to relocate address constants
contained in the ENTABs, are also created.

RELOCATION OF ADDRESS CONSTANTS

There are two types of relocatable
address constants:

1. Branch type, such as DC V (X) •

2. Non-branch type, such as DC A (X) •

The value of a branch type or non-branch
type address constant depends on a symbol
in the CESD. To adjust an address constant
to its proper value in the output load
module, the linkage editor uses an absolute
or relative relocation factor. The abso­
lute relocation factor is the address
assigned by linkage editor to the symbol on
which the value of the address constant
depends. The relative relocation factor is
the difference between the address assigned
to the symbol by linkage editor and the
address of the symbol in the input module.

Section 2: Method of Operation 47

The relative relocation factor may be posi­
tive or negative. The absolute and rela­
tive relocation factor of each symbol in
the CESD is computed during address assign­
ment and is saved in the half ESD (HESD).

Relocation of Non-Branch Type (A-Type)
Address Constants

A relative relocation factor is used for
a non-branch type address constant if the
symbol on which its value depends is in the
same input module as the control section
that contains the address constant. (The
address constant and the symbol it refers
to were assembled or compiled together, or
were previously processed together by link­
age editor.) An example of relative relo­
cation of non-branch type address constants
is shown in Figure 27. Since the address
of DICK is known, the language translator
places it in the value of the address con­
stant. DICK is a known value prior to
linkage editor processing (not an external
reference in the input); therefore, a rela­
tive relocation factor (+1000) is use1 to
relocate DICK during linkage editor
processing.

An absolute relocation factor is used
for a non-branch type address constant if
the symbol referred to by the address con­
stant does not have a defined v~lue within
the same input module. (The R pointer of
the RLD item refers to an external

Input Module I

:~IL-__ _
Input Module 2

reference.) An example of absolute reloca­
tion of a non-branch type address constant
is shown in Figure 28. In this example,
the value of SAM is unknown when input

·module 1 is processed by the language
translator; therefore, zeros are placed in
the value of the address constant. During
second pass processing, the absolute relo­
cation factor (the linkage-editor-assigned
address) is used to relocate the address
constant.

Figure 29 shows the use of both a rela­
tive relocation factor and an absolute
relocation factor in relocating a symbol.
Two input modules are to be processed by
linkage editor. Input module 1 contains a
non-branch type address constant whose
value depends on the syrrhol PETE; PETE is
an external reference in the same module.
The language translator has assigned a
value of +10 to the address constant. The
R pOinter of the RLD item refers to the ER
entry for PETE in the ESD; this entry con­
tains zeros in the origin and length
fields. The P pointer refers to the SD
entry for the control section that contains
the address constant.

Input module 2 contains two control sec­
tions, BOB and PETE. BOB contains a non­
branch type address constant whose value
depends on PETE; since PETE has a defined
value (300) in the same module, the lan­
guage translator has used that value to

Output Module

0000

I I 0999

1000
JOHN CSECT

0000 JOHN CSECT
~ •

•
/ lOokoo')
\ Editor .

•
• f2000 •
• .LOGe-DCA .(D.I€KT

•
*1000

DCA..(Dl€1()

•
0999 •

''''''' I"C' DS

•
•
•

* Known value of DICK is inserted by
language translator.

1999

1

2000

I"C'

Figure 27. Non-Branch Type Address Constants - Relative Relocation

48

•
• •

DS

•
•
• I

~ Relative relocation
factor is +1000.

Input Module I

0000
JOE CSECT

• • •
EXTRN SAM

• • • '0000
OCA~

• •
0500 •

~
Input Module 2 /
~-------,

0250
OS

•
• • •

ISAM

1250 '-___________ -----J

* Language translator
inserts zeros because
value of SAM is un­
known.

~

Output Module

0000

0500

0501

1501

JOE CSECT

• •
•

EXTRN SAM

•
•
• *0501

.oeetl'"
OC A~

• • •

ISAM
OS

I

• • •
•

f Actual address of SAM in the output module
{0501} is added to value of address constant.
(Note that the relative relocation factor of
SAM is +251.)

Figure 28. Non-Branch Type Address Constants - Absolute Relocation

compute the value of the address constant
(PETE+10=310). The R pointer of the RLD
item refers to the SD entry for PETE in the
ESD: the P pointer refers to the SD entry
for BOB (the control section that contains
the address constant) •

During linkage editor processing, the ER
and SD entries for PETE are merged into one
CESD entry; the R pointers of both RLD
items in the output module will refer to
that entry. The RLD P pointer for the
address constant in control section BILL
will refer to the SD entry for BILL; the P
pointer for the other address constant will
refer to the SD entry for BOB. In the out­
put module, both address constants will
contain the same value. Since the R point­
er of the RLD item in input module 1 refers
to an ER-type ESD entry in that module, it
is marked for absolute relocation: the
absolute relocation factor for PETE (+500)
is added to the value (+10) assigned by the
language translator. Since the R pointer
of the RLD item in input module 2 refers to
an SD-type ESD entry in module 2, it is
marked for relative relocation; therefore,
during relocation the relative relocation
factor for PETE (+20~ is added to the
value (+31~ aSSigned by the language
translator. The relocated value for both
address constants is 510.

Relocation of all non-branch type
address constants requires an addition or
subtraction of the relocation factor to or
from the value of the address constant in
the text of the input module. (Addition or
subtraction is specified in the flag field
of the RLD item for the address constant.)

DELINKING NON-BRANCH TYPE ADDRESS CON­
STANTS: A relative relocation factor can­
not be used to relocate an A-type address
constant that refers to a symbol in a con­
trol section being replaced. Since the
address constant has been previously relo­
cated (by a language translator or by link­
age editor), it contains the value of a
symbol being replaced; therefore, the value
of that symbol must be subtracted from the
value of the address constant. This pro­
cess is called delinkinq. In delinking, an
address constant is reduced to the value it
would have contained if it referred to an
external reference in the input module.
After delinking, the address constant con­
tains the value required for proper reloca­
tion, should the replaced symbol appear
later in the input, in another control sec­
tion. Delinked address constants are
treated like address constants whose values
depend on external references. (Absolute
relocation factors are used in relocating
them.)

Section 2: Method of Operation 49

Input Module 1 Output Module

ESO Symbol Type Origin Length ESD Symbol Type Origin Length
Entry 1 BILL SO 0000 500
No 2 PETE SO 0500 400

Entry 1 BILL SO 0000 5w
No 2 I PETE I ER I 0000 1000 I

31JOE I ER I 0000 1000 I 3 BOB SO 0900 300

0000 BILL CSECT
4 JOE _R 0620 2

• 0000 BILL CSECT

• •
• •

EXTRN PETE •
• EXTRN PETE

EXTRN JOE •
• ·0010 EXTRN JOE

• * 0510
.oetO"

0490 DC~

• ·0000
0494 DC ALJ.eft 0490 DC ~
0499 R P FLA('; Address * 0620

.oeeo-
0494 DC A£.J.e!T

Linkage
0499 R P Flaa Address
RLD

I
2

I
1

I I
0490 I Editor

RLD 4 1 0494

RLD I 2 I 1 I 1
0490 I RLD 3 1 0494

Input Module 2
Symbol Type Origin Length

1 BOB SO OUUL 300
2 IPETE I SO I 0300 1400 I 0500 PETE CSECT

• •
IJOE LD 0420 2

0000
BOB CSECT

0620 JOE • • • • • ·0310
DC~ * Inse

tra
rted by language

0899
0900 BOB CSECT • nslator •

0299 '* De
ed

termined by linkage •
• Entry JOE itor usi ng obsol ute

1194 EXTRN PETE
0300 PETE CSECT

•
•

ocoti on factors rei
(+5 00, +620) • • • * 0510 • * De
ed

termined by linkage
• 03-Hl" • itor using relative 1199 DCA (P~

aeatian factor (+200)
Flag 0420 JOE • rei

R P Address
RLD 1 2 1 3 1 11194 I •

0699 •
R P Flail Address

RLD 1 2 1 1 1 10294 I

Figure 29. Non-Branch Type Address Constants - Absolute and Relative Relocation

Delinking of an A-type address constant
is shown in Figure 30. Input load modules
A and B both contain control section SAM.
During linkage editor processing, the first
occurrence of control section SAM is
accepted, while the second occurrence is
deleted through automatic control section
replacement.

Control section BILL in module B con­
tains a reference to symbol JOHN in control
section SAM. Since SAM in module B will be
deleted, the address constant A (JOHN+50) in
module B must be delinked so that it may be
properly resolved with the symbol JOHN in
module A. In delinking, the old value of
JOHN is subtracted from the value of the
address constant in BILL (120-70=50). The
absolute relocation factor for JOHN (1850)
is then added to the delinked value of JOHN
(50+ 1850=1900) •

50

DELINKING COMMON CONTROL SECTIONS: Common
~ontrol sections (either blank common or
named common) must be ndelinkedn by linkage
editor. All references to common control
sections are made by means of non-branch
type address constants.

If the aSSigned address of a common con­
trol section in the input to linkage editor
is not zero, all such references must be
delinked. Delinking is necessary because
during linkage editor processing all blank
common control sections are collected into
a single control section. All identically
named common control sections are gathered
into individual control sections;
references to them from different input
modules must be del inked so that they can
be properly relocated with res~ect to the
locations of the common control sections in
the output module.

Module A Output Module

JOE SD 0 1000 JOE SD * 0 1000

BILL ER 0 0 BILL SD *1000 800
SAM SD 1000 750 SAM SD *1800 750

JOHN LR 1050 3
0

JOHN LR *1850 3
JOE 0 JOE ** 1900

1100 .ueo-
DC A(~} DCA~
DC V (BH:() 700 700 DC V {B.II:(f 1 000

_______ - - _0000- ___ - ___ 800 800 R P Flag Address
SAM 1000 2 I 1 I lC 800
JOHN 1050 4 I 1 I OC 700

} RLD

RLD

R P Flag Address
1000 BILL

2 I 1 I lC I 800
*1900

DC A~
4 I 1 I OC I 700 1630 R P Flag Address

linkage ... }11 I 2 1 OC 1350 RLD
Module B Editor 1800 SAM
SAM SD 0 720

JOHN LR 70 1 1850 JOHN

BILL SD 720 800 * Values are derived from HESD.

SAM
0 ** 1100+800=1900

* 120 - 70 + 1850 = 1900
Notes:

JOHN 70 • A relative relocation factor is used to relocate the address constant A(JOHN+50} in

~~----------------- 720
control section JOE, because JOE and SAM are in the some module.

BILL
120 • The address constant A(JOHN+50} in control section BILL must be delinked because it

DC A~} 1350 was resolved with the symbol JOHN in the replaced control section SAM. The old
value of JOHN must be subtracted from the value of the address constant before it can

R p Flag Address be relocated (using the absolute relocation factor) to the new value of JOHN in the
RLD 2 I 3 I oc I 1350 output load module.

Dellnk Table

0004

HESD

Type Absolute Reloc Fact

00 000000

00 001000

00 001800

03 001850

Figure 30. Example of Delinking

Delinking adjusts the value of each
address constant in a common control sec­
tion so that it contains its correct dis­
placement from the control section origin.
The values of such address constants are
then relocated so that they refer to link­
age editor assigned addresses, using abso­
lute relocation factors.

Relocation of Branch Type (V-Type) Address
Constants

Only absolute relocation factors are
used to relocate branch type address con­
stants. Since a displacement is not
allowed in the value of a V-type address
constant, the absolute relocation factor is
inserted in the value field during reloca­
tion. (It is not added to or subtracted
from the value assigned by the language
translator, as described for A-type address
constants.) Because the value of a V-type
address constant is inserted, delinking is

000070

Relocation Constant Table

Seg No Length 000000

01
000280

01

01 000800

01 000800

never necessary for such address constants.
Relocation of V-type address constants in
an overlay structure is discussed in the
following paragraph.

RELOCATION OF V-TYPE ADDRESS CONSTANTS IN
OVERLAY: If the output of linkage editor
is to be an overlay load module, a 4-byte~
branch type address constant in the path of
the symbol it refers to (but in a different
segment), or in a different region, will be
relocated in a special wanner. The value

1Any address constant must be four bytes
because the high-order byte is used by the
overlay supervisor during execution. The
number of the segment containing the
address constant will be placed in the
high-order byte of any V-type address con­
stant resolved to an ENTAB entry. (The
high-order byte must be zero if it is not
resolved to ENTAB entry.)

Section 2: Method of Operation 51

field of the address constant will contain
the address of an ENTAB entry. The ENTAB
entry will contain the address assigned by
linkage editor to the symbol referred to by
the value of the address constant. An
ENTAB entry is created for each V-type
address constant that is in the path of the
symbol it refers to (but is not in the same
segment), or located in a different region,
provided that the symbol is not referred to
in a segment higher in the path of the
calling segment. (Such address constants
are resolved so that they refer to the
ENTAB entry previously created for the sym­
bol in the higher segment.) ENTAB entries
are not created for address constants that
refer to symbols higher in the path.
Whenever an ENTAB entry is created, it is
noted in an entry list; each item in the
entry list contains the entry number of the
referenced symbol in the HESD, the segment
number of the calling segment, and the
address assigned to the ENTAB entry by lin­
kage editor. The ENTAB creation routine
uses the entry list to build ENTAB entries.
(Refer to "ENTAB Creation. H)

When second pass processing begins to
process a segment, the entry list is modi­
fied so that it contains only entries for
segments higher in the path of the current
segment. (In Figure 31 segment 4 is being
processed; the entry for segment 3 is
removed since it is not higher in the path
of 4.)

3

Current
Segment

Entry List

HESD
Seg Entry Address

Number No

1

2

3

Figure 31. Entry List Processing

I+-

Next
available
line; 4
will be
entered
here.

During relocation, each V-type address
constant is examined to determine if an
ENTAB entry must be created for it. The R
pointer of the RLD item for the address
constant is used to find the associated
HESD entry; this entry contains the segment
number of the symbol referred to by the
address constant. The relationship of this
segment to the current segment is then
determined, using SEGTA1. Depending on the
relationship in SEGTA1, the address con­
stant is relocated in one of three ways:

1. If the segment that contains the sym­
bol is higher in the path of the cur-

52

rent segment, the call is upward and
the address constant is resolved
directly. ~he absolute relocation
factor of the symbol is inserted in
the value of the address constant.)

2. If the current segment is higher in
the path of the segment that contains
the symbol, the call is downward. The
entry list is checked to determine if
an ENTAB entry was previously created
for the symbol in this segment, or in
a segment higher in the path of this
,segment. If an ENTAB entry for the
symbol exists, its address (contained
in the entry list) is placed in the
value field of the address constant.
If no ENTAB entry exists for the sym­
bol, a new entry is placed in the
entry list, and an FNTAB entry will be
created by the ENTAB creation routine.
~efer to RENTAB Creation.") The ENTAB
entry will contain the address
assigned to the symbol by linkage edi­
tor, and the address of the ENTAB
entry will be placed in the value of
the address constant and in the entry
list item.

3. If neither of the two segments is
higher in the path of the other, the
call is either exclusive or across
regions. If the two segments are in
different regions, and no ENTAB entry
already exists for the symbol in the
entry list, an ENTAB entry will be
created and an entry is made in the
entry list; the value field of the
address constant is relocated to the
address of the ENTAB entry, which in
turn contains the relocated address of
the symbol. If the two segments are
in the same region, the call is exclu­
sive. If there is an entry in the
entry list for the symbol, the address
constant is resolved through its ENTAB
entry; if there is no entry for the
symbol in the entry list, the call is
an invalid exclusive call and the
address constant is resolved directly
to the symbol. (This usually leads to
incorrect results during execution of
the module.)

ENTAB Creation

The ENTAB creation routine uses the size
field in the HESD to determine the number
of ENTAB entries to be created for a given
segment. The entry list is scanned for all
entries that were created for the current
segment; each of these entries contains the
HESD entry number for the corresponding
symbol. The value and segment number of
the symbol are obtained from the HESD and
are entered into the ENTAB entry, along
with standard information shown in the
Appendix.

ENTAB creation is shown in Figure 32.
The v-type address constants referring to
SAM and BILL in segment 1 meet the require­
ments for building ENTAB entries. The ESD
and RLD input to the second pass processor,
and the overlay tree structure are shown in
diagram A. During relocation, entries are
created for SAM and BILL in the entry list
(see diagram B); each entry contains the

address of the ENTAB entry created for the
address constant.

In segment 1, location 136 of control
section JOE contained a call to control
section SAM before relocation. After relo­
cation, location 136 contains the address
of the ENTAB entry for SAM, and the high­
order byte of the address constant contains
the segment number of the calling segment.
An ENTAB entry is created, in like manner,
for BILL in segment 1.

In segment 2, the address constant
referring to BILL does not meet the
requirements for building an ENTAB entry.
(It is not in the path of the segment con­
taining the symbol.) Therefore, no ENTAB
is created in segment 2. The call for seg­
ment 2 to BILL in segment 3 is an exclusive
call. Since a call to the same symbol
appears in a higher segment common to 2 and
3 (segment 1) the address constant may
refer to the ENTAB entry for BILL in seg­
ment 1. (This is determined by scanning
the entry list for the HESD entry corre­
sponding to the symbol BILL.) If a call to
BILL was not contained in a common segment,
the address constant DC V (BILL) in segment
2 would be resolved using the value
aSSigned by linkage editor to the symbol
BILL, which results in an error.

In segment 3, the address constant is an
upward call and is resolved directly.

Relocation Routine

The relocation of address constants is
performed by the relocation routine; the
routine operates on the following input
data:

• The address of the RLD input buffers
which contain RLD records.

• The address of the RLD notelist entry
for the RLDs being processed.

• The address of the next available entry
in the RLD output buffer.

• The buffer relocation constant (BRC)
where:

BRC = starting buffer address of cur­
rent text + relative relocation
constant of current control section
- address assigned to current con­
trol section by linkage editor -
multiplicity size X current multip­
licity number

The relocation routine operates in the
following manner:

1. The size of the RLD set1 and the dis­
placement from the beginning of the
buffer is determined from the RLD note
list.

2. Each RLD item in the current RLD set
is scanned to determine if:

a. It describes an address constant
for the current text being pro­
cessed (BRC + address contained in
RLD address field falls within the
text buffer boundaries of the cur­
rent text.)

b. The address constant is either a
valid 2-, 3-, or 4-byte address
constant. (The only valid 2-byte
address constants are pseudo
register type.)

3. Each address constant whose RLD meets
the above requirements is moved from
the text into a computation area. The
address constant associated with the
RLD item is then relocated according
to the information in the flag field
of the RLD item (refer to Table 7) •
The relocated address constant is then
placed back into the text.

4. The RLD address field is updated using
the relative relocation factor for the
control section being processed. (The
control section referred to by the P
pointer of the RLD item) •

5. The RLD is moved into the RLD output
buffer if space is available. If
space is not available, the contents
of the RLD output buffer are written
out on SYSLMOD.2

6. Steps 2 through 5 are repeated until
all RLD items have been scanned in the
RLD set being processed. The multip­
licity number in the RLD notelist is
updated if unprocessed RLDs remain in
the set.

7. If there are more RLD sets in the
input buffer to be processed, the
address of the next record is deter­
mined and steps 1 through 6 are
performed.

~An RLD set is a group of RLDs referred to
by a particular RLD notelist entry.

2If the XDAP indicator is off, a dummy text
record is written out before the contents
of the RIJD output buffer are placed on
SYSLMOD. If the XDAP indicator is on, a
dummy write of the text record is not
required, because text is already written.

Section 2: Method of Operation 53

Diagram A.

JOE
SAM
Bill
SEGTAB
ENTAB

RlD

Type

SO
SO
SO
PC
PC

R
2
3

l.E.
Assigned

HESD

Address Seg

36 1
272 2
272 3
0 1
236 1

P

Input RLDs - Segment 1

Diagram B.

Output RLD Buffer

2 1 lC 136
3 1 lC 186

length

Address
100
150

Entry list

2
3

RlDs and Entry list after relocation for control section JOE.

Diagram C.

Segment 1 after processing by Second Pass Processor.

136

186

236
248
260

Diagram D.

JOE
01000236

DC V~
01000248

DC VjBI.I:tf

47FF 0024 J 00000272 I 02 I 000000
47FF 0012 I 00000272 I 03 I 000000

Standard Last ENTAB Entry

Segment 2 after processing by Second Pass Processor.

272 SAM

02000248
752 DC V!Bl-l:tT

Input RLD Buffer

3 2 lC 680

Diagram E.

Output RLD Buffer

3 2

Segment 3 after Second Pass Processing

BILL

00000036
DC vU-efj

Input RLD Buffer

3 lC 690

Output RLD Buffer

3

Figure 32. ENTAB Creation

54

lC

lC

752

762

Relocation
Constant
Table

200
.500
500

36
36

} ENTAB

236
248

ENTAB RLD Items

None

ENTAB RLD Items

None

272

036 JOE

136 DC V(SAM)* Segment 1

186 DC V(Blll)*
236

SAM 272

Segment 2

DC V(Blll)

Structure with V-type address
Constants.

Bill

Segment 3

DC V(JOE)

* Zero value assigned by the assembler.

Entab RLD Items

o 10 240
10 252

Entry List

I *

* Some as after processing segment 1.

Entry list

* Same as after processi ng segment 1

Table 7. Relationship of RLD Flag Field to Relocation
r----------------------------T-------------------------------T--------------------------,
, Input, ,Output,
~-----------T---------------~ Action ~----------T---------------~
I Flag I Type' Performed ,Flag, Type I
~-----------+---------------+-------------------------------+----------+---------------~
I OOOOLLST , Absolute 'Absolute relocation factor is ,OOOOLLST, A-type ,
I , ladded to value of address con- , , ,
, I , stant 'I I
~------------+---------------+-------------------------------+----------+---------------~
I 000lLLST I Branch IAbsolute relocation factor is I 0001LLST I V-type I
I , ,inserted into value of address I , I
, I I constant I I I
~------------+---------------+-------------------------------+----------+---------------~
I 0010LLST IPR-displacementlAbsolute relocation factor is I 0010LLST I PR-displacement I
I I value linserted into value of address , I value I
I I (PR type 1) I constant " ,
~------------+---------------+-------------------------------+----------+---------------~
, 00llLLST IPR-cumulative IPR length from All Purpose I 0011LLST ,PR-cumulative ,
I Idis~lacement ITable is inserted into value ofl I displacement I
I I value 'address constant I I value I
I , (PR type 2) I I I ,
~------------+---------------+-------------------------------+----------+---------------~
, 1000LLST I Relative 'Relative relocation factor is ,OOOOLLST I A-type ,
, I ,added to value of address, , ,
, , , constant " ,
~------------~---------------~------------------------------~----------~---------------~
INotes: ,
, • If S (sign) in LLST is 1. subtraction is performed. rather than addition. ,
, • In delink type. the delink value is added or subtracted according to the opposite I
, of the sign; the absolute relocation factor is added to or subtracted from the ,
, address constant according to the indicated sign. I
, • If an RLD item refers to an undefined symbol, the associated address constant is I
I not relocated. (It may have been delinked.) The high-order bit of the RLD item ,
, flag field is set to one (1000LLST for an A-type constant. 1001LLST for a V-type ,
, constant) and no relocation will be performed when the module is loaded into main I
, storage for execution. ,
I • Delinking is noted in the high-order bit of the P pointer. , L ___ J

Note: In order to minimize the number of
times that RLD records are read from SYS­
UT1. RLD records for a control section are
held in the input RLD buffer. when possi­
ble, until all RLD records in the buffer
have been processed (because each RLD rec­
ord may pertain to many multiplicities of
text). After each set of RLDs is scanned.
the multiplicity number in the RLD note
list is updated to reflect the multiplicity
of the remaining unprocessed RLD records in
the set. An RLD record is removed from the
buffer when:

1. All RLD items in the record have been
processed. ~heir associated address
constants have been relocated.)

2. Another RLD record must be read into
the buffer and space is not available.

When all records in the input RLD buffer
have been scanned. the relocation routine
determines if more RLD records for the cur­
rent mUltiplicity of text are to be read

in. ~he read RLD routine sets an indica­
tor when it encounters such a record but
cannot read it into the buffer because the
buffer is full.) When both buffers are
full. the second buffer is freed. and the
corresponding RLD note list entries are
marked "out-of-core." The records to be
read in are then placed in the second RLD
buffer; these records are processed in the
same manner as those already residing in
the first buffer. This process is repeated
until all records that contain RLD items
pertaining to the current multiplicity of
text have been scanned and processed.

When all RLDs in a buffer are processed.
the buffer is marked "free" in the RLD con­
trol block. When a new multiplicity of
text is to be relocated. the RLD note list
is scanned sequentially (on ID and mUlti­
plicity number) from the first entry. If
an entry indicates that the record is "in
core" and the record contains RLD items
pertaining to the new multiplicity of text,
it is processed.

Section 2: Method of Operation 55

FINAL PROCESSING (IEWLMFNL)

The fourth phase of Linkage Editor F
(final processing) performs ·cleanup" func­
tions, and is the last operation of linkage
editor processing. Functions of final pro­
cessing include:

• Write the TTR note list, created during
second pass processing, on SYSLMOD if
the output load module is to be used in
overlay. The TTR list contains the
relative track address of the first
record of each segment of the overlay
load module. It is used by program
fetch to find the segments when it
loads them into main storage for
execution.

• Place each entry in the proper format
for the partitioned data set directory,
modify it if there are alias symbols,
and issue a STOW macro instruction~ for
the member name and each alias.

• Check attributes (reusable, reentrant,
and refreshable). If the attributes
have become more restrictive, a message
describing the change in attributes is
printed out. (For example, the input
module was specified as "reusable" and
is now Rnot reusable.")

• Print out a directory of logged errors.

• Produce a cross-reference table if the
XREF option is specified, and the
cross-reference table was not produced
during intermediate output processing.

• If the module has been marked "not
executable," an error message is
printed out.

• If a NAME card, not followed by end of
file, terminated SYSLIN input, linkage
editor processing is repeated, begin­
ning with initialization.

• If end of file terminated SYSLIN input,
linkage editor processing is completed.

1The STOW macro instruction is not issued
if there was no valid input, if there were
no ESDs, if nothing was written out on
SYSLMOD, or if the run was terminated by a
severity 4 error.

56

Allocated main storage is released, and
control is returned to the caller.

Error Loqqing

Whenever an error condition is detected
during linkage editor processing, an indi­
cator is set in an error logging map and a
coded diagnostic message is printed out.
During final processing, the error logging
map is scanned. When an indicator is found
·onR in the map, an associated list is used
to build a diagnostic message.

Note: An example of error logging in level
F is given in Figure 33. Each entry in the
list contains a length indicator and a
pointer to a phrase to be assembled into
the message. (Phrases are stored to save
main storage space1 complete messages would
require additional space due to repetition
of identical phrases.) The diagnostic
directory is then printed out, one or two
lines to a message.

All error messages produced by the link­
age editor are identified by a message ID
having the format:

IEWDMMS

where:

lEW - identifies the message as a linkage
editor error message.

D - contains a zero.

MM - is the message number.

S is the severity code.

The module in which an error message
occurred is identified by the message num­
ber (MM). (Refer to Section 6 for an error
message-module cross reference table.)

CrOSS-Reference Table

If the XREF option is specified, and the
cross-reference table was not produced dur­
ing intermediate output processing, the RLD
records are read back from SYSLMOD, and the
cross-reference table is built, as
described in the discussion of intermediate
processing.

Error Logging Map

o

Table

li st

Phrases

Message

16
'-,

Phrase P

///

i i
/

/

63

/

---_/

I
I j

/

I
\

j i

~------------------~~------~~----------------~~-----.
Phrase P

* This pointer is determined by subtracting the
bit number from the length of the error
logging map (64 - 16 = 48).

Phrase M

Figure 33. Building Error Messages

Section 2: Method of Operation 57

Calling
Program

Data
Management
Opens Data

Sets

Supervisor
Allocates
Storage

Figure 6.

SYM

Control Infonnotion

CESD

Control
Information
for Resolving
2Y~~s __

ESD Symbols
and Associated
Data

First Pass
RLD Buffer

SYM

APT

Addresses &
Descriptions of
Tables & Buffers

- - -- --
Attributes and
Options
- - ----
Pointers to
Control Informa-
tion in CESD

ESD Item
Control In forma-

Calls List

Entries for
V-Type
ADCONS
in Overlay
Pragrams

Delink Table Renumbering Table

Add resses of
Symbols Being
Deleted

CESD Entry
Numbers of
Symbols Replac-
ing Those Deleted

RLD Note
list

Byte Count,
P Pointer,
and TTR
Info for
RLDs on
SYSUTl

Txt Note
List

TTR and
Displace-
ment Info
for Txton
SYSUTl

SYSLMOD

Sym
Records
If Test

ESD Items, with
IDs and Pointers
to Corresponding
CESD Items

IDs of Delink
Table Entries for
De leted Symbols

Text VD
Table

ESDID
Info for
Txt on
SYSUTl

L... __,> Primary Flow

Control - Information

Operation Diagram A1 - Initial and Input Processing

Section 2: Method of Operation 59

Figure

External
Symbol
Control
Information

Segment
Relationships

High ID Notes

A

Temporary Linked

Addresses + __ _

When Combined with
Segments Lengths and

'!!--......,,....,~ Relocation Constants

Become Fina I Linked
Addresses for Externa I
Symbols

Final CESD
Records

SYSLMOD

Calls List

V-Type
ADCON
Entries

"r ''-, "

, 'ji

.' .
Downward
Calls List

Alias Symbols

Symbol Addresses
in Ascending
Order

7. Operation Diagram A2 - Intermediate Processing

,.

HIID Text Vo Table

High ID for
Each Segment

ESD ID Info for
Text on SYSUTl

F \

Alias
Table

E

Translation Table

Pointers to Scatter
Table Entries

D
o

Previously Existing
or Defined

Created During
Intermediate Processing

Primary Flow

Secondary Flow

Section 2: Method of Operation 61

0t'4et III Which
Text Vo ,fl:?ReOd Text
Table

.!

~I~
Text Note of TWtt
List

A
o~ •

'-
SYSUTl

TXT

n~·1.D;7·!' • RLD

d -- ---
./

B
. "'

.. iA I:ocction'
RLD Note 01 Rf..Ds . "!i

List .,;~.~

. /, '" ~~~~

Primary Flow

Secondary Flow ---

Previously
Existing or
Defined

Created During
Second Pass
Processing

D
Cl

/"

'-

J..
v

•. ': «;f:t"~l~'; .
' .. "<lfb-

Relatlve R.'QOQtIQn~roit ~
>. } (

'.
:1Jf'lte~d Relocated , , ~)
AQCONS Relocation ADCONS

Work Area Relocation . Constant

Table
! .

C

('.
r

----~ ---
1\ Second Pass ... :----SYS LMOD ____

Control
V Text Buffer ..

Record ------
Text

ENTAIlS for F -- ----
Overloy Programs Con tro V

"- RLD Record - - ---v ENTAB
~. ~~QS' - - - --

TEXT
. Associated Address '--- ----Second Pass t' Conshmts Relocated Second Pass

R LD Input Buffer lo" R LD Output Buffer

t.
0

1·"'<* .

Vy "h' I·<o····v.
!

HESD 'Symbol Symbols Entry List TTR List
Absolute Voluesand and HESD
Relocation

Values and
S"egment Entry

Factors Numbers NU!IIbers Info for V- Addr of First Segment
Type Address Text in Each

Numbers for
Symbols

Constants Segment
E
. "

Figure 8. Operation Diagram A3 - Second Pass Processing

Section 2: Methon of Operation 63

PDS Directory

Alias Table

Figure 9.

SYSLMOD

Entries for All
Errors

RLD Records

c

Cross-Reference

Table

Operation Diagram A4 - Final Processing

Error
Diagnostic
Directory

Section 2:

SYSPRINT

Dcreated During Final
Processi ng

Method of Operation 65

SEGTA1 Updated

SEGTA1

1
2
3

o
1
2

Overlay Items Added to Overlay Chain in CESD
7C40

7C50

7C60
Include Items Added to Include Chain In CESD
~~~~~~~~~~~~~~----~7C70 

~~--~~~~~~~~~----------------------__ .. ~7C80 
If Symbal Not Found, New CESD Entry Made 
~~~~~~~~~~~~--~~~----------------~ .... 7C90 

7CAO
,-,..--r--;-;---o Items Added to Replace/Change Chain. Operation Noted in Subtype Field

--------------------------------------~----___ • 7CW

Alias Symbols Entered into Alias Chain in CESD

library Chain Created for Each library ddname/Member Name

Symbol Entered in APT,
Indicators Set

System Stotus
Index Information
Entered in APT

1 Entry Symbol
Entered in APT

1

~

APT

KK I
I Address of

SEGTA1
PDSEI SGTl

x1x1xxxx I I Address of
CESO

APT3 CHESO

xxxx I
SSI

RR I
EPSM

7CCO

7CDO

• 7CEO

7CFO

7DOO .. 7D10

7D20

7D30

7D40

7D50

7060

7070

7080

7090

70AO

Symbol

EE

OD

FF

AA

GG

HH

BB

JJ

LL

CC

MM

II

NN

00

PP

QQ

Figure 10. Operation Diagram B1 - Control Statement Processing

CESO

Chain
Sub

Chain
Type Addr/ Seg Pointer/ /

Reverse No. Type Chain 10
Chain ID Lenath

02 7C60 02 90

02 7C40 01 90

02 0000 03 90

02 7CAO 00

02 0000 06 90 -Got-

02 0000 06 90

02 7COO 00

00 7CFO 08

00 0000 FO

02 0000 00

02 7000 AO

02 0000 08

02 0000 AO

02 0000 BO 7030

02 7010 02 7050

02 7030 02 0000

Section 2: Method of Operation 67

@

®

©

@

®

Object Modu Ie Buffer

(lD) ESD SD (Non- 7D30

01 AA 00 7CAO 089A
Resolution)

7D40

02
SD Matching 7D50

03 BB 00 7C40 00A6 ~AnER

04

R LD Input Buffer LR (Non-

(I~) Resolution,
CESD SD Not

05 CC 03 7C80 04
Received

06 PR Matching
aPR

07 DD 06 03 06A8

08

·
·

SYSLIN Buffer

(lD)
ESD CM (Non-

09 EE 05 7CBO 00A8
Resolution)

OA CM Matching
aCM

OB FF 05 02 006A

OC

· ·
• The type of each input ESD item is determined

• The CESD is scanned for a matching symbol

• If no match is found, non-resolution processing
is performed (A,C,E)

• If a match is found, resolution processing is
performed (B, D, F)

7D60

~7D70

~

,-

7D80

7D90

7DAO

7DBO

7DCO

7DDO

7DEO

7DFO

7EOO

7E10

7E20

7E30

CESD

HH 03 7D50

AA 00 01 009A

JJ 03 7D70
--eeoo-

BB 00 OOM -62-

CC 03 0000

DD 06
03

07A8 G!-

EE 05 08 00A8

FF 05
01 006A
.as- 0068

(lD)

01

02

03

04

05

06

07

08

09

OA

OB

OC

OD

OE

OF

10

11

----.J

r

~

~

"""

"-

RNT

02

04

08

OD

Delink Table

OD 7CBO

Figure 16. Operation Diagram B2 - ESD Processing

Section 2: Method of Operation 69

• Text record IDs are renumbered (A)

• CSECT lengths obtained (B)

• Assuming there is space in TXTBUF1,
d d (C)

SYSUTl
text recor s are move

• Entries made in Text Vo Table and
....... --

Text Note List (D)

• Contents of TXTBUFI written onto
SYSUTl (E)

• TTR entered into Text Note List (F) ""
Object Module Buffer E

01 TXTBUFI ...-
TXT ~ Dato A 78CO Data A

C
TXT p4' Data B II Data B

02 7F68

Text Vo Table

01 00

~
F

02 00
B

-

CESD
D

00 01 06AC ---../ RNT
A

00 03 045E ---../

Text Note list

r{ 01 0 78CO 06AC ~ 02 0 .Jf6'8' 045E

TTR

Figure 17. Operation Diagram B3 - Processing Object Module Text

Section 2: Method of Operation 71

Control Records

SYSLIB

T ex t Records

Renumbering
Table (RNT)
-t-';:<', < "<'$[iil
'~", ,,..;<i"1~

..... " -'f"

7C60

First Pass RLD Buffer

SYSUTl

TXTBUFI
Contents Written
When Buffer Is Fu II

• The ID in the first control record is renumbered.
The third line of the RNT contains a 4, so the ID
is renumbered to refer to the fourth I ine of the
CESD (CSECT DD).

• Assuming CSECT DD (CESD ID = 4) is not to be
deleted, its length (in the control record) is checked.

• If the entire CSECT or a complete multiplicity will
fit in TXTBUF1, the record containing text for DD
is read into TXTBUF1, and entries are made in the
text I/O table and the text note list*.

• Each subsequent control record is processed. Text
records are read into TXTBUFI until it becomes full,
at which time its contents are written onto SYSUTl .

4 In the two text records in this example, the multi­
plicity number is 0, since they are the first text
records for their respective control sections.

Figure 18. Operation Diagram B4 - Processing Load Module Text Records

Section 2: Method of Operation 73

R P

IRLDI 1161 14131 Data (
R c:;)

IRLDI 1241 11 121 ~
, ,

Data

R P

IRLDI 1421 11 121 Data ~
R P

IRLDI 1301 16151 Data (

RNT CESD

5 CSECTA 00
3 RLDA 02
2 RLDB 02
1 CSECTC 00
6 CSECTB 00
4 RLDC 02

• Register 6 initially points to the first RLD input record.

• RLD records are grouped in the RLD buffer by P pointer.
In this example, the first and second, and third and fourth
R LD records are grouped.

• Rand P pointers are renumbered, using the renumbering table, as
RLD records are moved into the buffer.

• Entries for each RLD set are made in the RLD notelist. Length
and displacement fields refer to the first record of the set.

• When the contents of the RLD buffer are written, the displacement
field of the RLD note list entry for the last set included in the output
record is replaced by the relative track address (TTR) of the SYSUTl
record.

RLD Buffer

RLD

Data

RLD Nate List

2 i 20 16
3 I 24 82
6 I 30 +38-

TTR

I

:
ID Mult Length Addr/

Displ

Figure 19. Operation Diagram B5 - RLD Processing

Section 2:

SYSUTl

Method of Operation 75

Text I/o Table CESD

2

:if
CSECT 00

6 04 ----...
1 ENTABI 14 RCT

ENTAB2 14 I I 1 I I I
~ SEGTAB 14 UJ '-... 05 \.

SEGTAI

A 1 0
SEG LGTH

APT 2 1 LC LD
LA 0 SRC 1

3 1
'I:-k ~

~ 4 0

)

Calls List

l~l:---- O----~~-

LC J---P!"' __ "' __ " j~r
4

---- -----

----~ ----------
2 3

Figure 22. Operation Diagram C1 - Address Assignment

Section 2: Method of Operation 77

SYSUTI

'--

~" fA)
_/

Text I/o Table

10 Mult

Txt

RLO

RLD Note List

10 Mult Lgth Disp
or TTR

Text Note List

Oisp Addr Length

RLD Input Buffer

Second Pass
Text Buffer

(~."\

Second Pass Text
Control Table

Relocated Text

, I R LO Output Buffer

~ 1.,'000,""",
CTRL

RLD

I Relocated RLOs
RLD I

I
1

)

(0 \
'r)

I
I
I RLO Input Control Blocks

t:~ I I I I I I

I
I
I

1'1.\
\ F)

'r
I RLD Output Control Blocks t--mm 1 -
\ -

SYSLMOO

f-.-

.----
CTRL
f--

~
~

'- --

Figure 26. Operation Diagram D1 - Data Movement During Second Pass Processing

Section 2: Method of Operation 79

The following text and the flowcharts at
the end of this section describe the pro­
cessors (code modules. control sections,
and routines) that accomplish the functions
of Linkage Editor F. The organization of
this section corresponds to the organiza­
tion of the linkage editor; descriptions of
all processors which constitute a phase of
the linkage editor are grouped together.
For each processor the symbolic name is
given to facilitate use of program listings
(see "Section 4: Michofiche Directory")

and the descriptive name is given to facil­
itate reference to the Method of Operation"
section (Section 2) •

Figure 34 (a foldout) shows the overall
organization of Linkage Editor F; this
figure is designed to help determine rela­
tionships among the processors described in
this section.

Refer to the microfiche directory (Sec­
tion 4) for the chart numbers associated
with each module.

INITIALIZATION AND INPUT PROCESSING

Initial Processor -- IEWLMINT (Chart IA)

Entrance: IEWLMINT is entered from
IEWLMROU at the beginning of linkage editor
processing.

Operation: IEWLMINT performs initializa­
tion functions, including: building the
all purpose table (APT), opening data sets,
analyzing attributes and options passed by
the calling program. and allocating main
storage for internal tables. buffers, and
work areas.

Routines Called: IEWLMINT calls the attri­
butes and options processor (IEWLMOPT) and
the allocation routine (ALL001).

Exits: When initialization is completed,
IEWLMINT passes control to the input pro­
cessor (IEWLMINP).

Attributes and Options Processor -­
IEWLMOPT

Entrance: IEWLMOPT is entered from the
initial processor after all data sets
except SYSLIB and SYSUT1 are opened.

Operation: IEWLMOPT analyzes the options
requested and the attributes specified by
the calling program, and notes this infor­
mation in the APT.

SECTION 3: PROGRAM ORGANIZATION

Routines Called: None

Exits: When attribute and option proces­
sing is completed, IEWLMOPT returns control
to the initial processor (IEWLMINT).

Allocation Processor -- AL001

Entrance: AL001 is entered from the ini­
tial processor after all data sets (except
SYSLIB and SYSUT1) are opened.

Operation: AL001 issues the GETMAIN macro
instruction and assigns storage to buffers.
The remaining storage is assigned to
tables. with variable tables being assigned
as much storage as possible.

Routines Called: None

Exits: When allocation processing is com­
pleted, AL001 returns control to the ini­
tial processor (IEWLMINT).

Input Processor -- IEWLMINP (Chart JA)

Entrance: IEWLMINP receives control from
the initial processor when all initializa­
tion functions are completed.

Operation: IEWLMINP reads and initially
processes all linkage editor input. Input
type (object module or load module) and
input conditions are determined, and con­
trol is passed to appropriate processors.

Routines Called: IEWLMINP calls the fol­
lowing processors:

• Control statement scanner (IEWLMSCN)
when a control statement is detected
(blank in column 1).

• Object module processor (IEWLMMDI) when
object module input is detected (SYSLIN
input or F-format input from SYSLIB) •

• Load module processor (INP270) when
load module input is detected ~-format
input from SYSLI~ •

• Include processor (IEWLMINC) at end-of­
input. if more modules must be
included.

• Automatic library call processor
(IEWLCAUT) at end-of-input on SYSLIN,
if the NCAL option is not specified.

Exits: When input processing is completed,
IEWLMINP passes control to the address
assignment processor (IEWLMADA) if valid

Section 3: Program Organization 81

input was received.
received, control is
processor (I EWLMFNL)
editor processing.

If no valid input was
passed to the final
to terminate linkage

Control Statement Scanner -- IEWLMSCN
(Charts JO, JP)

Entrance: IEWLMSCN is entered from the
input processor when a control statement is
detected.

Operation: Depending on the type of con­
trol statement being processed, the control
statement scanner makes entries in the APT,
SEGTA1, and the CESD. This information is
used to control subsequent linkage editor
processing.

Routines Called: IEWLMSCN calls the READ8
routine (Chart JQ) to process control
statement operands.

Exits: When control statement processing
is completed, IEWLMSCN passes control to
the include processor (IEWLMINq if an
INCLUDE control statement was processed
(include chain built in the CESD). Other-

wise, IEWLMSCN returns control to the input
processor.

Object Module Processor -- IEWLMMDI (Chart
JB)

Entrance: IEWLMMDI is entered from the
input processor when object module input is
detected.

Operation: IEWLMMDI determines the input
record type (SYM, TXT, RLD, ESD, END) ,
loads input record information into general
registers, and passes control to the appro­
priate processors.

Routines Called: Depending on input record
type, IEWLMMDI calls the following
processors:

• SYM Processor (IEWLMSY~

• ESD Processor (IEWLMESD)

• END Processor (IEWLMEND)

• Text and RLD Processor (IEWLMRAT)

Exits: When object module processing is
completed, IEWLMMDI returns control to the
input processor.

Load Module Processor -- INP270 (Chart Jq

Entrance: INP270 is entered from the input
processor when load module input is
detected.

82

Operation: INP270 determines the input
record type ~XT, CESD, scatter/
translation, SYM, CCW, CCW/RLD, RL~, loads
input record information into general regi­
sters, and passes control to the appropri­
ate processors.

Routines Called: Depending on input record
type, INP270 calls an associated processor,
as shown in Table 8.

Exits: When load module processing is com­
pleted, INP270 returns control to the input
processor.

Table 8. Load Module Record Types and
Associated Processors

r-------------------------~--------------,
I Record Type I Processor I
~-------------------------+--------------~
I TXT I IEWLMRAT I
I CESD I IEWLMESD I
I Scatter/Translation I (Ignored) I
I SYM I IEWLMSYM I
I CCW I I EWLMRAT I
I CCW/RLD I IEWLMRAT I
I RLD I IEWLMRAT I ~ ________________________ ..L-. _____________ ~

I If end-of-module indicator is on: I
~-----------------------T--------------~
I CCW I IEWLMEND I
I CCW/RLD I IEWLMEND I
I RLD I IEWLMEND I L __________________________ ..L-. _____________ J

ESD Processor -- IEWLMESD (Charts JE, JF,
JG)

Entrance: IEWLMESD is entered from the
object module processor when an ESD record
is detected, and from the load module pro­
cessor when a CESD record is detected.

Operation: IEWLMESD combines ESDs in the
linkage editor input into a composite ESD.
Matching input symbols are resolved, and
specified operations (replace, change,
delete) are performed on the symbols. A
renumbering table ~NT) is produced to
allow input ESD IDs to be translated into
CESD IDs.

Routines Called: None

Exits: When ESD processing is completed,
IEWLMESD returns control to the routine
from which it was entered (object module
processor or load module processor) •

SYM Processor -- IEWLMSYM (Chart JD)

Entrance: IEWLMSYM is entered from the
object module processor when SYM records
have been detected and the TEST option has
been specified. If TEST is not specified,
SYM records are ignored.

Operation: IEWLMSYM gathers SYM records in
the RLD input buffer, and writes the buffer
contents onto SYSLMOD when the first TXT
record of a module is detected.

Routines Called: None

Exits: When SYM processing is completed,
IEWLMSYM returns control to the object
module processor.

Text and RLD Processor -- IEWLMRAT (Chart
JH)

Entrance: IEWLMRAT is entered from the
object or load module processors when a
text or RLD record is detected.

Operation: IEWLMRAT determines record type
(TXT or RLD), checks for error conditions
(input record larger than buffe~, and
passes control to the appropriate
processor.

Routines Called: Depending on the record
type, IEWLMRAT passes control to either the
text processor (IEWLMTX~ or the RLD pro­
cessor (RLD001).

Exits: When text and RLD processing is
completed, IEWLMRAT returns control to the
object or load module processor.

Text Processor -- IEWLMTXT (Chart JI)

Entrance: IEWLMTXT is entered from the
text and RLD processor when a text record
is detected.

Operation: IEWLMTXT operation depends on
whether text input is from object or load
modules. Object module text is moved from
the object module buffer to the input text
buffer, and must be arranged in the proper
order. Load module text input is already
ordered, so IEWLMTXT reads it directly into
the input text buffer. In either case, the
input text ID is renumbered to refer to the
CESD ID of the appropriate control section.
When the input text buffer becomes full,
its contents are written onto SYSUT1.

Routines Called: When the input text buff­
er is full, IEWLMTXT calls the text write
routine (TXTBUF -- Chart JJ) to write the
buffer contents onto SYSUT1.

Exits: When text processing is completed,
IEWLMTXT returns control to the text and
RLD processor.

RLD Processor -- RLDOOl (Charts JK, J~

Entrance: RLDOOl is entered from the text
and RLD processor when an RLD record is
detected.

Operation: RLDOOl groups RLD items in the
RLD buffer and renumbers the Rand P point­
ers to refer to appropriate CESD entries.
Each RLD item is processed according to its
flag and address (FA) field. RLDOOl also
creates an RLD note list, with entries for
each set of RLDs (a set being all RLDs hav­
ing the same P pointer). If either the RLD
buffer or the RLD note list becomes full,
the contents of the buffer and the note
list are written onto SYSUT1.

Routines Called: When the RLD buffer or
the RLD note list is full, RLDOOl calls the
RLD write routine (RLDBUF -- Chart JM) to
write the note list and the buffer contents
onto SYSUT 1 •

Exits: When RLD processing is completed,
RLDOOl returns control to the text and RLD
processor.

End Processor -- IEWLMEND (Chart JM

Entrance:
object or
statement
detected.

IEWLMEND is entered from the
load module processor when an END
or the end of a load module is

Operation: IEWLMEND resets tables involved
in input processing, processes entry point
information, deletes CESD lines marked
CHAIN or DELETE, and enters into the CESD
the length of control sections for which no
length was previously indicated.

Routines Called: None

Exits: When end processing is completed,
IEWLMEND returns control to the object or
load module processor.

Include Processor -- IEWLMINC (Chart JR)

Entrance: IEWLMINC is entered from the
input processor when "more includes" are
indicated at end-of-input, and from the
control statement scanner when an INCLUDE
statement has been processed.

Operation: IEWLMINC examines the include
chain in the CESD and selects the next
module to be included. It opens the data
set, determines the attributes of the
module to be included, and initializes the
DCB to allow the module to be read.

Routines Called: None.

Exits: When include processing is com­
pleted, control is returned to the input
processor.

Section 3: Program Organization 83

Automatic Library Call Processor
IEWLCAUT (Charts JS, JT)

Entrance: IEWLCAUT is entered from the
input processor at the end of SYSLIN input,
or when a NAME statement has been detected
(provided that the NCAL option was not
specified) • ---

Operation: IEWLCAUT first scans the CESD
for unresolved ERs specified on LIBRARY
statements. It attempts to resolve these
ERs by searching the PDS directories of
ddnames included in library chains, allow­
ing the members found to be read. A second
CESD scan attempts to resolve ERs not spec­
ified on LIBRARY statements by attempting
to call them from SYSLIB.

Routines Called: After the first series of
CESD scans, IEWLCAUT returns control to the
input processor to read the members.

Exits: After the second series of CESD
scans, IEWLCAUT passes control to the
address assignment processor (IEWLMADA).

INTERMEDIATE PROCESSING

Address Assignment Processor -- IEWLNADA
(Chart KA)

Entrance: IEWLMADA is entered from the
input processor when input processing is
completed.

Operation: IEWLMADA assigns linked
addresses to all CESD entries, determines
the size of SEGTAB if the program is in
overlay, determines the number of ENTAB
bytes required for each segment, builds the
alias table, and determines an entry point
for the program.

Routines Called: IEWLMADA call the ENTAB
size determination routine (IEWMLENS -­
Chart KB) to compute the size of ENTABS,
and calls the entry processor (IEWLMENT
Charts KC, KD) to build the alias table and
determine an entry point.

Exits: When address assignment processing
is completed, IEWLMADA passes control to
the intermediate output processor
(IEWLMOUT) •

Intermediate Output Processor -- IEWLMOUT
(Chart LA)

Entrance: IEWLMOUT is entered from
IEWLMADA when address assignment processing
is complete.

Operation: IEWLMOUT writes the following
onto SYSLMOD: CESD, SEGTAB (for programs
in overlay), and scatter/translation rec­
ords (for programs to be scatter loade~ •

84

If the MAP option has been specified, a
module map is produced and written on
SYSPRINT; if the XREF option has been spec­
ified and all RLDs are in storage, a cross­
reference table is produced and written on
SYSPRINT.

If the TXT and RLD note lists were
placed on SYSUT1 during TXT and RLD proces­
Sing, IEWLMOUT reads them back into
storage, and builds the high ID table
(HIID). The half ESD (HESD) is also built,
after the CESD has been written.

Routines Called: IEWLMOUT calls the MAP/
XREF processor (I EWLMMAP) to produce and
write the module map and cross-reference
table, if requested.

Exits: When intermediate output processing
is completed, control is passed to the
second pass processor (IEWLMSCD).

SECOND PASS PROCESSING

Second Pass Processor -- IEWLMSCD (Charts
MA, MB)

Entrance: IEWLMSCD is entered from
IEWLMOUT when intermediate output proces­
sing is completed.

Operation: IEWLMSCD performs the following
functions:

• Reads text from SYSUT1.

• Relocates address constants contained
in the text.

• Creates control/RLD records.

• Writes text and control/RLD records
onto SYSLMOD in a format that can be
loaded by program fetch.

• Creates ENTABs and associated RLD items
for overlay modules.

Routines Called: During second pass pro­
cessing, IEWU1SCD calls the following
routines:

• Control section search routine
(GETIDMUL -- Chart MC) to determine the

next ID and multiplicity to be
processed.

• Text and RLD read routines (RDTXT,
RDRLD -- Chart M~ to read required
text and RLDs from SYSUT1.

• Text write routine (WRTTXT
to write text onto SYSLMOD.

Chart ME)

• RLD/control record write routine
(WRTCRRLD) to write RLDs and control
records onto SYSLMOD.

• Relocation routine ~ELOCATE -- Charts
MF, MG, MH) to relocate address con­
stants (branch type and non-branch
type) in the text.

• Common path routine (IEWLCPTH) to
determine common segments in an overlay
path.

• ENTAB creation routine (SCDENTAB) to
create ENTAB items for each segment.

Exits: When second pass processing is com­
pleted, control is passed to the final pro­
cessor (IEWLMFNL).

FINAL PROCESSING

Final Processor -- IEWLMFNL (Chart NA)

Entrance: IEWLMFNL is entered from
IEWLMSCD when second pass processing is
completed.

Operation: IEWLMFNL performs the following
"cleanup" functions:

• Writes the TTR list for overlay modules
onto SYSLMOD.

• Places entries in the partitioned data
set directory and issues a STOW macro
instruction.

• Prints a directory of logged errors.

• Checks for more restrictive module
attributes.

• Produces a cross-reference table if it
was requested and not produced during
intermediate processing.

Routines Called: During final processing,
IEWLMFNL calls the following routines:

• Diagnostic message directory print rou­
tine (IEWLMBT~ which scans the error
logging map produced throughout linkage
editor processing by the error logging
routine (IEWLMLOG -- Chart NC) ;
IEWLMBTP builds and prints a directory
of error messages.

• MAP/XREF processor (IEWLMMAP -- Chart
LB) which produces a cross reference
table if it was not produced during
intermediate processing.

Exits: If end-of-file was not detected on
a SYSLIN input, IEWLMFNL returns control to
the initial processor (IEWLMINT), and link­
age editor processing is repeated. Other­
wise, linkage editor processing is ter­
minated, and control is returned to the
control program.

SYNAD Routine (Chart NB)

Entrance: The SYNAD routine may be entered
from the following routines:

• From the control program when any I/O
error has been detected.

• From the second pass processor, if an
error is found after executing XDAP

Operation: Following are SYNAD considera­
tions for linkage editor F:

• The SYNAD fields of the DCBs in
IEWLMROU contain the address of the
appropriate SYNAD entry point for the
access method used with the data set.

• If the SYNAD routine is entered from
the input processor because of incor­
rect length, the length of the incor­
rect input block is checked. If a
valid short block (integral multiple of
LRECL) is found, control is returned to
the supervisor to continue processing;
if not, processing is terminated with
an error message and completion code of
16.

• If the SYNAD routine is entered while
writing to the SYSPRINT data set, con­
trol is passed to the final processor,
and execution is abnormally terminated
with a condition code of 16.

• When the include processor opens the
DCB for SYSLIB, the address of the
appropriate SYNAD entry (for either
BSAM or BPAM access methods) is moved
into the SYNAD field.

• If the second pass processor finds an
error after executing XDAP, it loads
register 1 with the lOB address, loads
register 15 with the SYNAD entry point
for EXCP, and branches on register 15.

Section 3: Program Organization 85

Initial Processing Input Process ing

IEWLMDCN RENUMBER
IEWLMMOI IEWLMESD

LABEL ENTER
Object Module ES D Proc essor

Processor FREELINE IEWLCPTH
(Charts JE, JF, NXTLINE IDCESD

(Chart JB) JG)
IEWLMRCG IEWLCDLK

DLDEF
IEWLMSYM

SY M Processor

(Chart JD)

IEWLMROU IEWLMINT IEWLMOPT
INP270 I EWLMRAT I EWLMTXT

Attributes and
Entry Point Initial Options I- Processor t-r-

Processor
(Chart HA) (Chart IA)

(Chart IA)

Load Module Text and RLD Text Processor TXTBUF
Processor Processor I-

(Chart JC) (Chart JH) (Chart JI) (Chart JJ)

ALDOl IEWLMINP IEWMEND RLDOO1

Allocation
Routine

Input Processor EN D Processor R LD Processor RLDBUF
I-

(Chart IA) (Chart JA) (Chart IN) (Charts JK, JL) (Chart JM)

IEWLMINC

Include
Processor

(Chart JR)

IEWLCAUT

Automatic
Librory Call

Processor

(Charts JS, JT)

IEWLMSCN
Control READ 8

Statement (Chart JQ)
Scanner PROCENTY

(Charts JO, JP) (Chart JO)

Figure 34. Linkage Editor F Organization

Intermediate Processing

I EWLMADA

Address Ass i gn- IEWLMENS
ment Processor (Chart KB)

(Chart KA)
IEWLMENT

(Charts KC KD)

IEWLMOUT IEWLMMAP

Intermed iate MAP/XREF
Output Processor (- Processor

(Chart LA) (Chart LB)

Second Pass Process ing

IEWLMSCD

Second Pass
Processor

(Char~,MA,
MBI

GETIDMUL

Control Section
Search (Get ID/

r- Mult)

(Chart MC)

RDTXT/RDRLD

Read From
t- SYSUTl

(Chart MD)

WRTTXT/WRTCRRLD

Write To
t- SYSLMOD

(Chart ME)

RELOCATE
Relocation

t-
Routine

(Charts MF,
MG MH)

SCDENTAB

t-
ENTAB

Creation

IEWLCPTH

"'-
Cammon Path

Routine

Final Processing

FNL

Write TTR List
(In Overlay)

FNL300 FND 30lA -
Set Up DDS 1-- STOW

Directory Entry Member

FNL 900

Set Up and
"'- STOW

Aliases

IEWLMFNL
FNLSCN

Final Processor Print Down-
Graded

(Chart NA) Attributes

IEWLMBTP

Print Diagnostic
Message

Directory

I EWLMMAP

XREF Processor

IEWLCEDI

Final Cleanup
Terminate and

Return

SYNAD

SYNAD Routine

(Chart NB)

Section 3: Program Organization 87

Chart HA. Level F Major Divisions

*****A4****·*****
****A3*** •• **** * IEWLMROU HA • * CONTROL * *-*-*-*-*-*-*-*-*

PROGRAM •• ------->* ENTRY *
• POINT * . .
** •• * •• * •••••••••

--~----------------------------->

INITIAL PROCESSING

I
V

·*·**83*********­* IEWLMINT IA *
--*-*-*-*-*-*-*

INITIAL
• PROCESSOR · •••• *.********.*.

I
--~--->

I NPUT PROCESS I NG

INTERMEDIATE PROCESSING

I
V

****·C3****······
• IEWLMINP JA *
--*-*-*-*-*-*-*
• INPUT • * PROCESSOR · ******** ••• ******

I

I
V

*****03*··******­
* IEWLMAOA KA *
--*-*-*-*-*-*-* * ADDRESS

ASSIGNMENT
* PROCESSOR *
** •• *************

I
V

*****E3**********
• IEWLMOUT LA •
--*-*-*-*-*-*-* * INTERMEDIATE *
* OUTPUT

PROCESSOR *
••• **.****.*** •••

>

I
--~-->

I
V

·*.**F3********** * I EWLMSCO MA •
--*-*-*-*-*-*-*

SECOND *
* PASS * PROCESSOR *
***** •• **********

SECOND PASS PROCESS ING I
----------------~--------------------------------~-->

I
V

*****G3********** * IEWLMFNL NA *
--*-*-*-*-*-*-*

FINAL *
PROCESSOR *

FINAL PROCESSING I
--~~~~~~------------------------------------~-->

I
V

****H3********* · . * CONTROL
PROGRAM *

Section 3: Program Organization 89

Chart IA.

90

Initial Processor (IEWLMIN~

FROM FINAL PROCESSOR

FROM ROOT SEGMENT (IEWLMROU)
****A3*********

* * IEWLMINT
• *
*****.it****** ...

I
V

*****S3***·******
"SAVE REGISTERS *
.. 3-12 AND ..
.. PLACE ADDRESS ..
.. OF APT IN *
.. REGISTER 2 ..
****itit ... _._*_*._*

1 .*.
*****C2********** C3 ... *****C4**********
.. PLACE" .* *.
.. STANDARD" NO .* PARAMETER *. YES .. PLACE PASSED ..
DONAMES IN DCBS<--------.. LIST .~.------~>* DDNAMES IN ..
.. OF ALL DATA .. *. PASSED .* .. DCB·S OF ALL ..
.. SETS" *..* .. DATA SETS ..
it* it .. ***_*._ •• .* .************_* __ I . I

L----------------,i<~------------~

.*. E2 *.

V
*****03**********
.. SAVE DDNAMES ..
.. FOR ..
.. SYSUTI AND
.. SYSLMQD ..

* * ****itit* .. __ **_* __ ..

I
V

it*E3*"·****
****El********* .* *. .. OPEN ..

* .. .* SYSLMOD *. YES

I EWLMNAM *------->*.*.DA~:E~ET .*.l
*************** *..*

* •• *

ro

F2""'***
* * OPEN * * SYSLMDD *->

* *

.. SYSLIN ..
SYSPRINT

.. SYSLMOD ..
• * * ... it* .. **_ ••

I
V .**it·F3it**.* ___ **

.. IEWLNOPT ..
--*-*-*-*-*-*-*
.. ATTRIBUTES *
.. AND OPTIONS ..
.. PROCESSOR ..
............ *******

I
FSTENTRY V

****-G3*·"-*-***­.. ALLOCATE ..
.. INPUT/OUTPUT. *
* L.OAD MODULE. * * RLD, TXT
* BUFFERS *

I
FSTENTRY V

*****H3********** * ALLOCATE *
* ALL. * * PROCESSING
* TABLES

* * *****************

'----->1
SCOENTRY V

*****.J3**********
* * *CLEAR REQUIRED *
* PARTS OF *
.. PROCESSING *
.. TABLES *

V
****K3*********

* * IEWLMINP *
*

TO I NPUT PROCESSOR

Chart JA. Input Processor (IEWLMINP)

*.**Cl *******4 ...
... EOFON ...

SYSLIN DCB

***** ********

JEWLMEON V
*****01 ********** ... SET ...
... AUTOMATIC ...
... LIBRARY CALL ...
... INDICATOR ON *
* * *****************

I
V

*****Et**********
* * ... SET END ...
... OF INPUT ..
... INDICATOR ON ...

* * *****************

I
v

• *.
Fl * •

• * *. • * INPUT *. YES

FROM JNITt AL
PRQCE5S0R

*.4*A2*********
* * IEWLNINP ...

**** * * ... 82 *->
* * **** INPIO

<:--------------------~I YE~
v .*.

82***** 83 *.*-.* OPEN *.
... READ A RECORD *------->*. EXIT TAKEN .*
.. ... *. .* *..*

*********** *. .*

r-____________ -Ji NO

~
INP12 .*.

C2 *. *****C3*****.**** .* *. *INP270 JC* **** .* IS *. YES *---*-*-*-*-*-*-* *. THIS A LOAD .*.------->* LOAD *---->* B2 *
•• MODULE .* • MODULE * - *
...* ... PROCESSOR - .***

. . ***************** ro

v
INP13 .*.

02 *. *****03**********
.* *. *IEWLMMDI JB* ****

.* CONTROL *. NO *-*-*-*-*-*-*-*-* • *
. STATEMENT ..------->* OBJECT *---->* 82 *

. . * MODULE * - *
.. * PROCESSOR * ****

* •• * *****************

rES

v
*****E2**********
IEWLMSCN JO
--*-*-*-*-*-*-*
* CONTROL *
* STATEMENT -I-
* SCANNER *

I
v

.* •
F2 *.

.* * •
.* NAME *. NO * *

*. RECEIVED -l *. .* *. .* * •• * * NO

I :::* ...

. STATEMENT .->* 82 *
-. .- * * *. .*

* •• -
rES

TO '->* G2 ...
FINAL
PROCESSOR ****

****G 1 *********
v

*****G2 ***-... *****
* SET *

.. EOFON ... * AUTOMATIC ..
SVSLIB DCB *--> <-* LIBRARY CALL *

* INDICATOR ON * * * * *****************

*J.A *
* H2* IEWLNEOD .-.

- * H2 *. ****-I-H3**********
* .* *. *IEWLMINC JR*
~>*::ORE ~=~LUDE;:'" Y_E_S _____ :>:-*-*J:C~U~E*-*-=-->: B2 :

. . * PROCESSOR * * *
FROM LDAD*..* * * ****
MODULE * •• * *****************
PROCESSOR i NO

V .*. .*. J2 *. J3 * •
• * IS *. .* *. ****J4*********

.* AUTOMATIC *. YES.* *. YES * TO *
.LIBRARY CALL .------->*. NO CALL .*.-------:>* ADDRESS *

.INDICATOR. *. .* * ASSIGNMENT *
. SET . *..* *************-*

. . -. .* 1:0 *1 NO

* * * 82 - V
* * *****K3**********

IEWLCAUT JS ****
--*-*-*-*-*-*-* * *
* AUTOMATIC *->* B2 *
* LIBRARY CALL * * *
* PROCESSOR *

FROM OPEN DURING
CONCATENATION

****AS**_******
* * * DC8 EXIT *
* * ***************

V
*****85**********
* IEWL EXIT *
--*-*-*-*-*-*-*
.. OPEN EXIT *
.. SET INDICATOR *
* AND RETURN ...

V
****cs*********

* * * RETURN *
* ***************

TO OPEN

Section 3: Program Organization 91

Chart JB. Object Module Processor (IEWLMMDI)

92

FROM INPUT .*.
PROCESSOR A2 *. *****A3**********

-*.-AI**-*-**-* .* *. *IEWLMLOG Ne-
...* CONTROL *. NO *-*-*-*-*-*-*-*-*
... IEWLMMDI ~.------->*. STATEMENT ••• ------->* CONTINUATION n

.CONTINUA-. *EXPCTD BUT NOT ...
*************** -.TION .* ... RECEIVED ...

. . ***************** v *1 YES :~~*:
... G3·
* * *

INP22 V .*. INPlSO .*.
*****62***.****** 83 *. 84 *. *****65*********-
-LOAD PARAMETER'" .*.. .* *. ... * * REGISTERS AND'" .* SYM *. YES .* TEST *. YES * LOAD *
... SET IN MOOULE •• ------->*. RECORD ••• ------->*. INDICATOR .*.------->* GR4 WITH BYTE *
... INDICATOR IN ... *. .* *. ON.* ... COUNT *
... A.P.T.'" *..* *..* ... *
***************** * •• * * •• * *****************

*1 NO *LN~*** 1 *JC *
>* G3 *
* *

y --.*. .*. .*. INP140 V
Cl *. C2 *. C3 *. *****C4********** *****CS**********

.* *. .* *. .* *. * * *1 EWLMSYM JO*
NO .- *. NO.* TXT *. NO.* ESD *. YES * SET * *-*-*-*-*-*-4-*-* i *. RLD .*<-------*. RECORD .*<-------*. RECORD ••• ------->* ESD INDICATOR * * SAVE *

. RECORD . *. .* *. .* * ON * SYM *
.. *..* *..* * * RECORD

* •• * * •• * * •• * ***************4* *****************

*1 YES *yl YES * I **L
*JC *

INP!;~**Ol*~*****4** INP160 02·*·*. *****03********** *****D4*~******** * * G;:*
* * .* *. *IEWLMSYN .JO* *IEWLMESo .JE* *
* CLEAR * .* WERE *. YES *-*-*-*-*-*_*_*_* *-*-4-*-*-*-*-*-*
*TEXT INDICATOR * *. SYM RECORDS •• >* SYM * * ESo n
* * *.RECEIVED .* * PURGE * PROCESSOR *

* *..* * * * *
***************** *. .* ***************** ***************** v

.. _ L_. I •.• _ .. [.• m ••• _,J. __ . ::~;:
IEWLMRAT .JH L* * * *
--*-*-H-*-*-*-* * seT * * CLEAR *
* RLD AND TXT * *TEXT INDICATOR *<-------* SYM INDICATOR *

PROCESSOR * * * *
* ***************** * ***************** * ***************** l LE~~::*

.*. .*. INP70 .*. INP90 .*.
Ft *. F2 *. F3 *. *****F4********** FS * •

• * *. .* IS *. .* *. * LOAD GR4 * .* * •
• - END *. YES .* SYM *. NO .* ENTRY *. YES * WITH CONTROL * .* GR4 *. NO

>-. RECORD ••• ------->*RECEIVEO INol-.~'-------:>*. POINT .*, *SECTION LENGTH •• ------->*. CONTAINS
. . *.CATOR ON .* "*.INDICATOR.* *FROM END RECORD* " *. LENGTH .*
.. *..* *. ON .* * * *..*

4. .* *. .* *. .* v ***************** *. .*

*)1 NO *1 YES *yl NO (::) AI <_: *::* : *1 YES

NO****

*****Gl*~******** *****G2*~******** I G3·*·*. INP80 G4 .*.*. *****GS*~********
IE"'LMLOG Ne *IEWLMSYM .JD*~ .* *. .4 *. * SET *
--*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* .* ABSOLUTE *. NO .* SYMBOLIC *. * NO LENGTH
*UNRECOGNIZABLE * * SYM * *. ENTRY .*.-------:>*. ENTRY.* * RECEIVED *
* INPUT-NOT * * PURGE * *. POINT .* *. POINT .* * INDICATOR IN *
* OBJECT MODULE'" * ... *..* *..* ... A. P. T. *
***************** ***************** * •• * * •• * *****************

**L *1 YES "I YES 1 <:-------'

*JC *
* G3* V V V

* * *****H3********** *****H4********** *****HS**********
* * * * *IEWLMEND IN*
* SET ABSOLUTE * * SET SYMBOLIC * *-*-*-*-*-*-*-*-*
* ENTRY POINT * * ENTRY POINT * * END *
* INDICATOR IN * INDICATOR IN * * PROCESSOR *
* A. P. T. * * A. P. T. * * *
***************** ***************** *****************

1 I I
y y Y

''***J3********** *****J4********** *****JS**********
* STORE * * * *IEWLMRAT JH*
.. ASSEMBLED * SET ENTRY * *-*-*-*-*-*---*-*
* ADDRESS IN * *POINT INDICATOR* * END CARD *
* A. P. T. * * IN A. P. T. * * PURGE *
* * * * * *

*******"1******** **"******1 ******** ********1********
'* **

* ... *JC *
* F4 * V * G3*
*.. *****K4********** * *

**** * * *
* STORE *

SYMBOL IN
A. P. T. *

* * *****************

Chart JC. Load Module Processor (INP270)

FROM INPUT
PROCESSOR

.****Al*********.

*
*

INP270

I
v

*
*

INP270 .*. .4-.
81 *. B2 *. *****83**********

.* *. .* IS *. *IEWLMSYM JO*
.* *. YES .* TEST *. YES *-*-*-*-*-*-*-*-*

. SYM RECORD .~'------->.INDICATOR ON .*------->*
. . *. .* * SYM PURGE

I NP2Bl

- . *. •• ro

v .*.

. .
* •• * * NO L ****

* * >* G3 *
* *

L ****
* * >* G3 *
* *

Cl *. *****C2********** *****C3********** *****C4********** *****cs**********
.* *. * * *LOAD NUMBER OF * * LOAD * *LOAD ADDRESS OF*

.* *. YES * SET * * BYTES OF CESD * * ESO 10 OF 1ST * * CESO *
. ESO RECORD .------->* ESO INDICATOR •• ------->* INFORMATION *------->* ENTRY INTO *------->* INFORMATION *

. . * ON * * INTO GENERAL * * GENERAL * INTO GENERAL *
. . * REGISTER 4 * * REGISTER 5 * * REGISTER 6 *

. . ***************** ***************** ***************** *****************

INP290

I~ I
.*. V

01 *. *****02********** *****03********** *****04********** *****05**********
.* *. *LOAD NUMBER OF * * LOAD STARTING * *IEWLMRAT JH* *IEWLMESD JE*

.* *. YES * BYTES OF RLD * *ADDRESS OF RLD * *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*
. RLD RECORD .------->* INFORMATION •• ------->* INFORMATION *------->* PROCESS PROCESS *

. . * INTO GENERAL * INTO GENERAL * * RLO * ESD *
.. * REGISTER 4 * REGISTER 6 * INFORMATION * * INFORMATION *

. . ***************** ***************** ***************** *****************

*1 NO I L * **** *
>* G3 *

< * * v .*.
El *. *****E2********** *****E3********** *****E4********** *****E5**********

.* *. * LOAD ASSIGNED * * LOAD * * * *IEWLMRAT JH*
.* *. YES * ADDRESS OF * * BYTE COUNT OF * * LOAD 10 INTO * *-*-*-*-*-*-*-*-*

. CCW/RLD ••• -------> FOLLOWING TXT *------->* TXT INTO •• ------->* GENERAL ~------>* PROCESS
. RECORD . * INTO GENERAL * * GENERAL * * REGISTER 5 * TEXT
.. * REGISTER 3 * REGISTER 4 * * INFORMATION *

. . ***************** ***************** ***************** *****************

INa :F3~. I'

Fl *. F3 * •
• * *. .* * •

• * *. YES * * YES .* *.
. RLD RECORD .~> F3 * ,----------------*. LAST RECORD .*<--------------------------------------~

INP305

. . * * *..*
. . *. .*

* •• * * •• *
*~ *~

II :~~* * 'I * G3 *->
* * v **** v

INP320 .*. INPI10 .*. .*.
Gl *. G3 *. G4 * •

• * *. .* *. .* * •
• * *. YES * * .* IS RETURN *. YES .* IS ESD *. NO * *

. SCATTER .---->* G3 .. *. FROM ESD .*------->*. WRITE .*---->* K5 *
. RECORD. * * *.PROCESSOR.* *.INDICATOR.* * *

_ . *..* *. ON .*
* •• * * •• * * •• *

*11 NO I NO *11 YES

v * * v
.*. * K5 * .*.

HI *. *****H2********** * * H4 * •
• * *. *IEWLMEND IN* **** .* IS * •

• * *. YES V *-*-*-*-*-*-*-*-* .* TEST *. NO * *
*. LAST RECORD •• *------->* END ~ *.INDICATOR ON .*---->* K5 *

. . * PROCESSOR * V *..* * *
. . * *****TO INPUT *. .*

* •• * ***************** *JA *PROCESSOR * •• *

r o **:i* rES

v INPl11 .*.
*****Jl********** *****J2********** *****J3********** J4 *. *****J5**********
IEWLMLOG NC *IEWLMSYM JD* * * .* *. *IEWLMSYM JD*
--*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* * SET * NO.* IS *. YES *-*-*-*-*-*-*-*-*
* UNRECONIZABLE n * SAVE *<-------*SYM RECEIVE BIT*<-------*.INPUT A LOAD ••• ------->* *
* INPUT LOAD * * ESD * * * *. MODULE .* * SYM PURGE *
* MODULE * * CARD * *. .*
***************** v ***************** ***************** * •• *

**** I * * * * G3 *
* * v

* * * KS *
* *

Section 3:

* * * K5 *->
* *

V
****K5*********

* * * RETURN *
* ***************

TO INPUT
PROCESSOR

Program Organization 93

Chart JD.

94

Sym Processor (IEWLMSY~

FROM LOAD OR
OBJECT MOOULE
PROCESSOR

****A2*********
* *
* *

IEWLMSYM

I
V

SYMOOtOO .*.
82 * •

• * *.
NO .* *.

*
*

r-------------------*.OBJECT MODULE.*

I
I *..*

I
. •• *.*

* YES

I
V

V SYM00200 .*. SYM00900
*****Cl********** C2 *. *****C3**********
... * .* *. * *
* INITIALIZE * .* IS RLD *. NO * MOVE SYM/ESD *
*FOR WRITE FROM * *.BUFFER TO BE .*--------->* RECORD TO RLD *
* RLO BUFFER * *. PURGED .* * BUFFER *
* * *..* * *
***************** *. .* *****************

I
i ,e, I
V V

*****D2********** *****03**********
* * * * *INITIALIZE FOR * * *
WRITE FROM OBJ. *INCREMENT COUNT*
* MODULE BUFFER * * *
* * * * ***************** *****************

I
L-_______________________ >

SYM00300 V
******E2***********

* * WRITE AND CHECK
* *

<--------------------~
SYM00500

V
****F2*********

* * * RETURN * * * ***************
TO LOAD OR

OBJECT MODULE
PROCESSOR

Chart JE. ESD Processor (IEWLMESD)

FROM INPUT
PROCESSOR

*··*AI***-*·_*· * * IEWLMESD *
* ***************

I
V

*****61********** *****83*********.
*INITIALIZE SAVE- * * * ESDID. NO. OF * * SET *
*ESO ITEMS. ESO • -SEGMENT NUMBER *l * TYPE. ADOR OF * * TO ONE *
* CESO AND RNT * * *
*************.*** *·*·****~I*****·**

:~~: **J
**** V YES

ESDIAO .*. .*. ESDIA .*. * * I I
Cl •• ****.C2*****.*.** C3 *. C4 *. *****C5******.**-

•• IS •• * * .* IS *. .*15 ESO *. • *
.* ESO TYPE *. NO _INSERT CURRENT * .* AUTOMATIC *. NO V .* TYPE *. YES • ZERO BYTES *

. PSEUDO .------->*SEGMENT NUMBER *------->*.LIBRARY CALL .*------->*. EXTERNAL .*------->*10, II, AND 12 *
-.REGISTER .* -IN ESO (IN BYTE. _.INDICATOR.. -.REFERENCE.- * OF ESO ITEM *

-.(PR) .* * 12) * *. ON .* *.(ER) ••
* •• * ****.*.********** * •• * * •• * *****************

i<YES * i NO I
ESD2

Dl *****D2********** D5 * •
• * *. *IEWLMRCG * .* * •

.~.*. All .~.
• * ANY *. YES *-*-*-*-*-*-*-*-* NO.* IS THIS *.

REPLACE/CHANGE.------->* SCAN REPLACE/ * L-_______________ *. AN OBJECT .*
. SYMBOLS . * CHANGE CHAIN * *. MODULE .*

. .
. . *****************

L: __ NO ____ --"I
v

ESD3 .*.
El *. *****E2**********

• * *. *NXTLINE *
.* IS ESD *. YES *-*-*-*-*-*-*-*-*

.TYPE PRIVATE .-,------->* SET POINTER *-----,
.CODE (PC). * TO NEXT LINE * V
.. * OF CESD * *****

* •• * * NO

I
v .*.

Fl * •
• * * • • * IS *. YES

.ESO TYPE NULL.-----,
. . v

***************** *JF *
* B3*

.. *****
. . *JF *

* NO * E2*
I * *

I
v .*.

Gl *. *****G2**********
.*15 ESD *. * *

.*TYPE LABEL *. YES *CHANGE TYPE TO *
*. DEFINITION • *-------> * LR INDICATE *

. (LO). *THAT IT WAS AN *
.. * LD *

**** *·i·~O *********1********

:J~1 * *_> I
* * 1<

ES04 V
*****Hl **********
* * * SEARCH THE
* CESO FOR A *
MATCHING SYMBOL
* * *****************
**** I

:J~1 **->1
!*** * V <---------------------'1 NO

ESOS .*. ESD6 .*.
Jl *. J2 * •

• * *. .* * • • * IS THIS *. NO .* DOES ESO *.
. THE END OF .1 >. MATCH CESD .*

.THE CESO . *. SYMBOL .*
*. • * *..*

* •• * * •• *
* YES * YES

I I
v V

*****NON-RESOLUTION *****RESOLUTION
*JF *PROCESSING *JG *PROCESSING
* Al* * Al*
* * * '*
*

. . * •• *
* YES

I
V

*****E5**********
* • * ZERO *

~---------------------------------------* THE SUBTYPE

Section 3:

FIELD *
*

Program Organization 95

Chart JF.

96

ESD Processor (IEWLMESD)

***** ***** *****
*JF * *JF * *JF *
At *A2* *A3*
* * * * * * * * *

I ! I
ESD23 V ESD23A. *. V

*****Al********** A2 *. *****A3**********
*FREELINE * .* IS *. *LABEL *
--*-*-*-*-*-*-* • * ESC TYPE *. YES *-*-*-*-*-*-*-*-* * * * SELECT NEXT •• ------->*. LABEL • *-------> * RENUMBER 10 *---->* E2 *
* AVAILABLE * *.REFERENCE.* * FIELD OF * * * * LINE IN CESD * *.(LR) .* * LABEL ITEM *
***************** *- .* ***************** * NO

I *JF *
* 83 *-,
* * I

v **** v .*. ESD21 .*.
82 *. 83 *. *****84**********

.* IS *. .* IS *. * INDICATE *
.*ESD TYPE A *. YES .* AUTOMATIC *. YES SD IS FROM

. SECTION OE- .------->*.LIBRARy CALL ••• ------->* A LIBRARY *
.~!(~6)O~.* *.!~D6~AT~~.* :(AUTOLIB INPUT):

* * * •• * * •• * *****************

: *~I:*: I NO i <_NO ___ -->1
.*. ESD22 v

*****Cl********** C2 *. *****C3**********
* MARK COMMON * .* *. * INDICATE *
* ITEM AS A * YES.* IS ESD *. NO *THAT ESO IS SO *
DELETE ITEM AND<-------*. TYPE COMMON .*, * OR PC-SET ESO *
* SET COMMON * *. (CM).* *WRITE INDICATOR*
* INDICATOR * *..* * IN APT *
***************** * •• * v *****************

**** * ****** **** II

:J62 **1 : El! :J~3 * *->

* * * * **** **** v
v .*. .*.

*****02********** 03 *. 04 *.
*ENTER * .* *. .* IS *.
--*-*-*-*-*-*-* NO.* IS *. YES .* LENGTH 10 *. YES * * r>* ENTER THE *<-------*. SO LENGTH .*------->*. SAVED .*-->* 02 *
* ITEM IN THE * *. ZERO .* *.INDICATOR.* * *

**** * CESO * *..* *. ON .* ****

:*::*: ;;;::****1******** *.*.* *·*I·~O
I : E2**->

El·~·*. I ::::*E2*~******** *****E4*~********
.* *. ~ *RENUMBER * *SAVE NO LENGTH *

.* LD *. NO *-*-*-*-*-*-*-*-* * LINE ADDRESS *
.INDICATOR ON . *TRANSLATE ESOIO* * AND SET 10

. . * TO CESOIO IN * *SAVED INDICATOR*
.. *RENUMBERING TBL* * IN APT *

. . ***************** *****************
i YES I I ****

I L>! 02 :
* * v

ESD29 .*.
F2 *. *****F3********** *****F4**********

.* IS *. * CLEAR * *IEWLCDLK *
.* COMMON *. YES * COMMON * *-*-*-*-*-*-*-*-*

.INDICATOR ON .------->* INDICATOR *------->* BUILD ENTRY *
. . * PREPARE FOR * * FOR CESD LINE *
.. * DELINKING * * IN DELINK TBL *

. . ***************** *****************

L----_1NO

1
v

ES030 .*. ESD30AO
G2 *. *****G4**********

.* *. * * .* ANY MORE *. YES * GO TO NEXT *
. INPUT ESO .·--~---------------------------->*ESD ITEM -SAVE ~

. ITEMS . * ESO TYPE * V
. . *****

* •• * ***************** *JE * I "" '.:,'
v

****H2*********
* * RETURN

Chart JG. ESD Processor (IEWLMESD)

* •• *.
*JG *
* .A!* .
I RESOLUTION PROCESSING

. .
*JF *
:*;;!

A

I YES
ESD6A V .*. ES012A .*. .*.

*****Al **it ••• it._* . . A2 *. A3 *. *****A4********** AS *.
.*15 ESD *. .* *. * CLEAR * .* IS * ..

.. SAVE TYPE .. .* TYPE *. NO .. * IS ER *. YES *SUBTYPE DELETE * .* CESD *.

.. OF MATCHING * r>*. DELETE/ .*--->*.. UNMARKED .->* BIT IN CESD *->*. UNMARKED OR .*
: CESD ENTRY : *. REPLACE .* *. (ESD) .* *LINE (MAKE IT A* *. NEVER .*

.. *..* * REPLACE) * *.CALL .* .*itit*.it* •• **_ ••• * * •• * * •• * ***************** * •• *

I
(::) I YES :*::. :_> i NO '1 NO

V **** V
v

*****81··**···_··
.*. ESD17A .*. V

62 *.. B3 *. *****B4********** *****B5**********

:~~~i=~_*_*_*_*_: .*15 CESO*. .*IS CESD*. * IEWLCOCN * * *
.* TYPE * .. NO TYPE A *. YES *-*-*-*-*-*-*-*-* MARK *

.OETERMINE LINE ..
_NO. OF CURRENT it REPLACE .* *. MEMBER .* *LIBRARY MEMBER * * MATCHEO *

. OELETE/ ., *. LIBRARY .*--->* REMOVE * * CESD TYPE *

:***~~~~*~!~;***: *..* *..* * FROM CHAIN * * *
* •• * V * •• * ***************** ******** ... ********

1 .'.
Cl *.

.* * .. .* IS *. YES
*. CESD TYPE _\ *. NULL .*

. . * •• * v
NO *****

*JE *
* * J!* .

... YES * **** * * N~*** 1 I I * F5 * L *JF *
... **** ... >: A2 * * **~** **~**

V *JF * *JF *
C2·*-*. C3·*·*_ **A::* **E~*

.* *.. ..* *.. **** *
.* IS *. YES .* IS *. NO *

. CESO TYPE .--->*. ESO TYPE .*-->* K4 *
* .. DELETE .. * *. DELETE.* * *
.. *...*

* ... * * •• *
* NO * YES

I I
*~** * ... ~**

,. * *JF ...
: F5 : **A!* .

IS ESD IS CESD GO

*****04********** *****05*********­.. *.. IEWLCPTH ..
.. UPDATE LENGTH .. *-*-*-*-*-*-*-*-*
.. OF CESD ENTRY _>* FIND it A PR A PR TO
.. TO GREATER" .. COMMON PATH • --- :****;i~:!~****.: :****~i::;~!*.**:

A I I .. ~ ..
NO *CF it

YES NO JEJI
NO YES JEJ1
NO NO JGJ1
YES YES CONTINUE

I .it. .*. .. E2*
E3 it. E4 -.(TYPE IS * *

I .* *. .it -.co) •
YES.* [5 *. NO .* IS *. YES" *

r---*.CESD TYPE PC .->*.CESD TYPE LR .*->* J4 *
V *. .* it. .* * * ••••• *..* *..*

I
I :J~,: •.... . .•..

• • rYES

I I

.v. ESD18 .*. .*.
Fl *. *****F2********** F3 *. F4 ••

ESD15A
*****F5**********

• * *.* *. .*-.
NO.* IS ESC *. '* SET * .* IS *. NO .* IS *. YES :~~=;~~-*-*-*-*-:

it. LENGTH.* *MATCH INDICATOR*, * .. ESD TYPE CM .. *->*. ESD TYPE .. *->* CREATE A LINE *
* .. GREATER .. * * * *. .* (TYPE IS * .. DELETE .* II *CHAINED TO LINE*

*. * •• *.* :***************! v * .. * ... *" * ER) * .. * *.* •• I •• :~~~*~!!i~~:*~!*!
* YES II ***** * * NO L
I

I *JF * AI L :~;* * : F5 : :~:* *

I 1
* * :.i* >: E2 * * * * >: 02**

YES NO
V .*.. ESD14 .*. .*.

:****Gl*********: .. * G2 * .. *. .* G3 *. *. .* G4 *. *. :~:;*~~~~*~~~~;~:
* SET CESD * .* IS *. NO .* IS *. YES .* IS * .. YES * EQUAL TO *
LENGTH EQUAL TO *. ESO TYPE AN .->*. ESO TYPE AN .. *->* .. CESD TYPE CM .->*GREATER OF CESD*
: ESD LENGTH : *. * .. LR .*.* *. *. so .*.* * .. *. .*"* : AND ESD ITEMS:

*'of*************** * •• * * ... * * •• * ***************** ,------->1 ;1 .~~.: . '1 NO I
* * J1:<l I NO **** YES V V

ESD10 V .*. ESD12 .. *. ESD15 .*. ESD14A .. *.
*****Ht********** H2 *. H3 *. H4 *. H5 *.
* SET * .* *. .* *. .* *. .* IS *.
*CESD ALIGNMENT * .* IS *. YES .* IS CESD *. .* IS *. NO * OVERLAY *. YES
* EQUAL TO n *.CESD TYPE AN .*--->*. ITEM FOR A .* *.CESD TYPE AN .\ *:INDICATOR ON .*]
HIGHEST OF CESD *. ER.* *. CONTROL .* *. LR.* *. IN APT .*
* AND ESC * *..* *.CARD .* *..* *..*
***************** **~** * •• * * •• * * •• * v * •• *

*JF * ~I '1 NO **** *1 YES * **** * *LN~***
: J1 :--, * *E~* : J4 :-> : *::*: >:J~2: *

**** v I v **** **** .*. .*. V
J1 *. J3 *. *****J4********** *****J5**********

.*.* IS *. *. NO .* *. :~;~~~*-*-*-*-*-: :~~!;.:~~~-*-*-*-:
*. CESD TYPE ---------' *:*TY~~ ~~?SD'*:~ * DOUBLE LABEL * * FIND *<

*. *~::I::~*.* *. *. OR LR.*.* I :**:::iE~~~::***: : Co~~g=E~~TH !
'1 YES *·*I·~ES *~** L **** *********1********

: *::* : >: F5 : **~**
v **** *JF *

:****Kl*~*******: ESD17 .*K3·*.*.*. :~::~~~~~*******: **A~*
* SET CESD * * * NO.* IS * .. YES *-*-*-*-*-*-*-*-*
.. POINTER TO * * 83 *<--*. CESD TYPE .*--->* DELINK *-,

••••••• CH •• A L.l.~N.E E.D.T.O....... * * *. * DELETE *.* AI: ~i~~ : **!**
• *. *.*" **** ***************** *JF * I * * * *A~*

v : K4 :
**** **** . .

* A1 * . .

Section 3: Program Organization 97

Chart JH. TXT and RLD Processor (IEWLMRAT)

98

FROM OBJECT
OR LOAD MODULE

PROCESSOR

****83*********
* *
*
*

IEWLMRAT

I
v .*.

*
*

C3 *. *****C4**********
.* *. * RLDBUF *

.* *. YES *-*-*-*-*-*-*-*-*
. END OF DATA .--------->* WRITE OUT *

. . * RLD BUFFER *
. .

* •• * i NO

V .*.
03 *.

.* *.
.* *. YES

.!~PUT ~OUNT.:.~

. . *. .* i NO

V .*.
E3 * •

• * *.
RLD .* *. TXT

* * *****************

I
V

*****04********** * TXTBUF * ****05*********
--*-*-*-*-*-*-* * *
* WRITE OUT .*--------->* RETURN *
* TXT BUFFER * A * *
* * ***************

Ir--------*.*~LD OR TXT.*.*_

I I
v v .*. .*.

F2 *. *****F3********** F4 * •
• * INPUT *. * IEWLMLOG * .* * • • * SIZE *. YES *-*-*-*-*-*-*-*-* YES .*INPUT SIZE *.

. EXCEEDS RLD .--------~>* INPUT RECORD *<---------*. EXCEEDS TXT .*
. BUFFER . * TOO LARGE * *. BUFFER .*
.. * * *..*

. . ***************** *. .* i "" Ii"'
v V

*****G2********** *****G4********** * RLDOOI * * IEWLMTXT *
--*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*
* PROCESS * * PROCESS *
* RLD RECORDS * * TXT RECORDS *
* * * * ***************** *****************

I ,.1........ I
L. _________________ >* RETURN *<----------------~I

* * ***************

Chart JI. TXT Processor (IEWLMTX~

.*. .*. A3 *. A4 *. • 5 •••••••••• .. •••• A2............ .*.* *. *. YES .*.* p~~~ *. *. NO :_._.!::!:~~~_._._:
: IEWLMTXT :-> ... ~ND OF DAT~ •• *-> ••• ~ROCESSING.*.-->: T:~I~5F~~~ : ••..•••••.•• *.. *..* *..*

,,~ .'. 1~ ,~ "-'l'-'-
.* B2 ALL *. *. .*83 *. *. L ** •• B5.~* ••••• *

... ... YES.* IO-LENGTH *. YES .* *.

... 85 .<--*.L]ST ITi=:MS TO.*<---*. LOAD MODULE .* >* RETURN ...

...... -.BE DELET-.. *. •• A.

TXTREAO *··.··Cl······· __ ··

. _:0..* *. * •• *.* I ••••••• ~ •• * ••• * i NO i NO (::)

v v .*. TxTOOll .*.
C2 *. C3 *. • •••• C" •••••••••• .* WILL *. .* *. .. IEWLMLDG ...

.. YES .-RECORD FIT *. .* IS *. NO *-*-*-*-*-*-*-*-*
READ RECORD <---*.IN AVAILABLE .* _.TXT IO AN so .*->* INVALID Ie <>--------'

(::::->1
v

··.··01·····-···­
• RENUMBER •
• 10; UPDATE TXT.
• I/O TABLE AND.
:TEXT NOTE LIST :

AL '. ':y:;'.' '. '. :: i:;;;·· :"::.:::.::::":
v v 02.......... . .•.. 03

:_._.:!:~:!::~L._._:: :
... WRITE OUT" ... RENUMBER 10 ..
: TEXT BUFFER :: : *.*.**•......

I
v

TXTLM2 .*. El •• : •••• E2 :

•• 10 •• YES .MOVE FOLLOWING •
•• TO BE DELETED.->. IO-S UP TO • •• .* .OVERLAY DELETED*

•••• • 10 •

·l_~o _______ *_·_··_·_·_·-'·r****···
v .'. F! ••

•• •• NO • •
•• ANY MORE 10-5.*-->. 85 •

•• .* ••
• YES

.!
: 01 :

'**"***r"**"*
v I NO I .•. . .. V

E3 •• E4- •• • •• ··E5··········
•••• •• NEW *.

<. ':::r~' ·::1:: <~:::i~ ·::lYES

TXT00151 v •••
• •••• F3.......... F4 ••

:-.-.!=!:~~-.-.-:
• WRITE OUT •
: TEXT BUFFER :

1
: •••• FS ••••••••• :

• CALCULATE. •• PREVIOUS •• NO V • ENTER NEW •
• MULTIPLICITY I> •• RECORO DENSE .*->. RECORD •
• AND· •• •• • •
• DISPLACEMENT • •••• • • """**r'**"" ' ... ' *

V
TXTJNT ••• TXT003B •••

G3 •• G4 ••
..CURRENT.. •• NEW ••

• -10 AND MULT •• YES.- •• YES. •
•• AGREE WITH .J> •• MULTIPLICITY .->. K4 • *.PREVIOUS .* •• •• •• *... i NO i NO :.;:.:

TXT003 .~. TXTOLD .~. I
H3 •• H4- •• • •••• HS ••••••••••

•• •• NO •• •• YES • ENTER •
•• NEW 10. •• NOW IN CORE .*->. IN TXT BUFFER • iYES ro A

TXTNEW ••• V
J3 •• • •••• J4 •••••••

•• LENGTH •• YES • SET •
·.SPECIFIED IN.l ·DENSE INDICATOR·

-. CESD.· • •
'T~O ·······T····

v BUFALLOC v : K3.--.... . : ..•. K4 ••••••••• : : •••• KS .•....... :
• SET NO. V. ALLOCATE. • RECORD IN TXT.
• LENGTH *-->. NEW fII---->. I/O TABLE AND.
• INDICATOR. A _ NUL TIPLICITY • .TEXT NOTE LIST •

:............. • I :-.-•••••••••••• : : ••••••••••••••• :
: K4 :

Section 3: Program Organization 99

Chart JJ. Level F TXTBUF Routine

100

"'A.3*****­
* * ... TXTaUF ..

* * **********.* •••

I
y .*.

83 ... **.**s.********** •••• *S5 •••••••••• • * *. .. CLEAN UP"" .. • * *. YES .. NECESSARV" .. POST LENGTH ..
. END OF DATA .------->*PORTION OF TEXT •• ------->*IF IN NO-LENGTH-*. .* .. BUFFER" .. SITUATION ..

*..4
. . ••• ***.*.*.***... • ••••••••• *** •••• ro

y .*.
C3 *. V

.* *. ·*·*cs***···*** .* TXT *. YES
.INPUT COUNT = ••• --------------------------------> RETURN .. *. 0 .it

TXTBUFI

. . ••••••••••••• **
*. .-ro
.*.

03 * • • * *.

<. ::::r~:·: :lYES

.*. TXTENTI
E3 ... • ••••• E4.** ••••••• -

.* *. ****E5*····"··· .* MULT *. YES Y .. WRITE ONE"" .. *. LARGER THAN .*------> RECORD PER ------->* RETURN .. *. SYSUTI .* *TXTIOT ENTRY" A" .. *. .* * .. *.* ••••• ** ••• *. •• *** •• ** •••• *.
: *;:* !-> *, NO

* * .*** y

···**F3*······.** * * -RECORD CURRENT ..
.. LENGTH AND ..
_BUFFER ADDRESS *
* * *****************

I
y

*****G3**********
* * * I NCREMENT TO *

>* NEXT TXT lOT * I * ENTRY

I :*******.:*,*.******=

.*. TXT BEND
*****Hl********** H2 *. H3 *. ******H4*****··****
* * .* *. .* AL.L. *.
* ADD PRESENT * YES .* THIS MUL.T *. NO.* TXTIOT *. yeS

LENGTH TO *<------*. ONE LARGER .*<-------*. ENTRIES .*------->
* ACCUMULATED * *.THAN LAST.* *. WRITTEN .*
* LENGTH * *..* *..*

WRITE ANY
ACCUMULATED

LENGTH

***************** * •• * * •• * **.*******.**

A ro *

y .*.
J2 *. ******J3***********

.* * •
• - *. NO - WRITE

ACCUMULATED
LENGTH

*.PRESENT MULT .~.------->

L ·····:i~:::·· JII
K2 * •

• * *.
YES.* LAST *. NO

*.ENTRY HIGHEST.
. MULT .

. . * •• *
*

·--·r· ...
y

*****K3*******·**
* * - I NCRENENT" • *
• TO NEXT ENTRY *->* F3 •
* *... ...
* • **.*

Chart JK. Level F RLD Processor

.*.
A2 *. *** •• A3 ••••••••••

---"AI ••• -"".-. .* *. .. RLDBUF" ••• *A4 •••••••••
.. .. .* *. YES *-*-*-*-*-*-*-*-*.. ..
.. RLDOOI •• ------->*. FROM EOD ••• ----->* WRITE OUT *------->* RETURN ..
.. .. *. .* .. RLO BUFFER"" .. *..* *

* •• -

ro

v
*****82*·*·*···*·
* * .. seT COUNTERS • r>*FOR NEXT RAND ..
.. P POINTERS ..

* * ••••• ** ••••••••••

* I * * *JK ..
.. 82-
.**** V .*.

.................

C2 *. • •••• C3 ••••••••••
• * *. • * IS *. YES .. seT DELETE ..

. P DELETE IN .------->* FLAG AND SKIP ..
. RNT. .. RLD ITEM ..

. .
*T~O ~ *.** ••••• **.

RL0003 .* • • **.*01............ 02 *.
.. RLDBUF'" .* *.
--*-*-*-*-*-*-* NO ... P SAME ...
.. MAKE *<-------*.AS PREVIOUS P.*<

BUFFER" *. .*
.. ENTRY'" *..* •• *** •• **........ *. .*

jYES

RL0004A V

*****E2···*****··
* * .. RENUMBER

'--------->* RAND P
* POINTERS
* *****************

I
v .*.

*****F I ********** F2 *.
* IEWLCDLK * .* *.
--*-*-*-*-*-*-* YES .* *.
* *<-------*. DELINK .*
* DELINK * *. .*
- * *..*
-**************** *. .* I >i NO

v .*. RLDOIO .*.
G2 *. G04 *. *****G5**********

.* RLD *. .* IS R *. * *
.*FLAGGED AS *. NO .* PSEUOO- *. YES * FLAG *

r-->*. BRANCH TYPE .*-------------------------------->*. REGISTER IN ••• -------:>*RLD AS PR TYPE *
. . *. RNT.* * *

. . *. .* * •• * * •• * rES ro

v v .*. .*. H2 *. H04 * •
• * *. .* IS R * •

. :: .. :::? ·::·l~ m ·····:1::···
RLDCALL V V

*****J2********** *****J3******"*** *****J4**"*******
* * * MULTDET" .. FLAG *
* SET * V *-*-*-*-*-*-*-.. -* V * RLD FOR *
ENTRY IN CALLS • > ESTABLISH *<-------. RELATIVE *
• LIST * * MULTIPLICITY • * RELOCATION *
* * * * * *
******.*** •• ***** ***************** *****************

I
V

RL00122 .*.
*****K2********** K3 *.
* * .*IS RLD *.
* UPDATE • YES .* *. NO

COUNTERS FOR *<-------*.CONTINUATION .*,
* NEXT FA FJELD * *.FLAG SET .*
* * *..*
*************.*** *. .* v

* *****
·JL ...
* 83*
* *

* * *****************

Section 3: Program Organization 101

Chart JL.

102

Level L RLD Processor (Continued)

RLD013

***** *JL * * 83*
* *
* I
v .*.

83 * •
• * * • • * *. YES

*. DELETE .~
.* I

.*
* •• *

r------------------------->i NO I RLD015 .~.
*****C2********** C3 *.
... RLDBUF * .* *.
--*-*-*-*-*-*-* NO .*SUFFICIENT *.
* WRITE OUT *<:-----*. SPACE IN .* * RLO BUFFER * *. BUFFER .*
* * *. .*
***************** * •• * i YES

V .*.
*****02********** 03 *.
... * • * *.
* *
*
*

COMPRESS
* YES.* 10 SAME *.
<:--------. AS PREVIOUS .*
* *. 10'S .*
* *..*

***************** * •• * * NO

I
V

*****E3**********
* * * MOVE L-_________________ >* RLD ITEMS TO
* BUFFER
*

*
* *
* *****************

I
v .*. I F3 *.

RLDOIS2

NO _*-* ALL *-*e ~
r--*- ITEMS .*<
I *.PROCESSED.*
I *. .*
v * •• *

***** * YES
*JK * I * 82*

* * I
v

****G3*********
* * * RETURN *
* * ***************

Chart JM. RLDBUF Routine

I NO I .*. .*. .*. A2*. A3*. A4*. V
.** •• Al ••• ****.". •••• • ••• NO •• -* •••• YES _.- .. ANY ... -._ NO ."***AS* ••• ****"'.
... RLDBUF •• -------:>*.ANy NEW RLDS ••• -------:>*. EOO ••• ~~---:> •• RLO'S LEFT ••• ~----->. RETURN •
.. *..* *. .* *. .* •

*****.*******--*

RLOBUFI

....* *..* *..* *** •••• ******** * •• * * •• * * •• * i YES " " YES

V .".
82 * •

• * * • • * *. NO
. LOAD MODULE .----------------,

. .
-. .* *. .*

i YES <~--------------------J
V V .*. .*. RLDBUF3 .*. .*.

··.·.Cl ••••• ***** C2 *. C3 *. C4 *. C5 *.
.. IEWLMLOG'" .* *. .* *. .* *. .* *. *-*-*-*-*-*-*-*-* YES.* OVER *. NO .* BUFFER *. NO •• NOTE *. NO .* *. NO
" ,,<-------*.MAXIMUM SIZE .*------->*. OVERFLOW ••• ------->*. LIST FULL ••• ------->*. EOD
.. ERROR" *. .* *. .* *. .* *. .* *..* *..* *..* *..* ***........ * •• * * •• * * •• * * •• * " i YES "LES

vrES

v " " RLDBUF4A .*. .. 02 .. RLOBUF2A .*.
V *****02********** 03 *. * * 05 *.

------*01 ********* * * .* *. **** .* *.
" " * * YES .* 2 *. YES .* *.

" *
RETURN

--*--***********
" * r>*SET 2 PASS FLAG*<-------*.BUFFERS FULL .*< *. 2 PASS .*

• * *. .* *. .*
- - *..* *. .*

* **** :********1******** *. *1.:0 *. * ·:0
• 02 *
" "

v .*.
*****E2********** E3 *.
* * .* *. ****E4*******··
... FORMAT * YES .* *. NO * *
• NOTE LIST *<-------*. EOO .*------->* RETURN
* ENTRIES * *. .* *
* *..* *****.****-****
*******---******** *. .*

1" 1
.*. v I F2 *. *****F4*****-**** *****F5**********

.* *. * * * -
RLOBUF6

: BU~~~R *: •• N_O _______________________________ :>!NOTE ~:~i ENTRY:<-------: IN-CO~~TOATA :<~
. WRITTEN . 1\ * - * if

. •• *.* I :***************: :.*.***-********:

rES I 1
*****G2********** G4 *. ******65***********
* COMCHK* *.

v IRLDBUF7 .*.

--*-*-*-*-*-*-* .* *. YES *
r--------------->* CHECK/NOTE *. LIST FULL ••• ~~---> WRITE LIST

* LAST WRITE *. .*
. . * ••• ro

YES v .". .*. RLOBUF7A .*.
HI *. ******H2·********** H3 *. H4 * •

• * *. .* *. .* * •
• * *. * NO .* 2 *. YES .* 2 *.

•• EOO .*<------- WRITE BUFFER
"

<-------*. BUFFERS .*<-------*.BUFFERS FULL .*<--------------~
. . *. WRITTEN .* *. .*

-. .* *..* *..* * ***-*.*.***** *. .* *. .*
" NO

_ .. "I:._ ~"NO
" " L-______________________________________ >* RETURN *<

* " *****.*********

Section 3: Program Organization 103

Chart IN. End Processor (I EWLMEND)

****Al ititititititit ••
* IEWLMENO :

_ .. _**--*-----**

I
v

*****Bl ititit.*it*it*_
... INITIALIZE ..
.. RENUMBERING ...
*T ABLE AND CESD ...
!BASE REGISTERS :

****""r*******
v

• *.
Cl *.

• * IS -. rYES *:;~I~~ ~~~R~~::*
*. .-

it •• it ro

v .-.
01 * •

• * *. V NO.it IS _.

104

i*-*:~~~~L~~~E.* ••
*. .-

-'rES

IEND03 v
*****El *it*itit*itit*.

- * -RENUMBER THE 10.
.. FIELD FOR ..
... ABSOLUTE ..

:****!~~:~;~*.**:

I
v

*****F 1 -_._._----- -... SET ...
-ENTRY POINT BIT-
• ON IN APT .. - -.. -._-*------._.-

'->1
V

ENOl .-.
Gl *.

.* -. .* IS NO *. NO
it.LENGTH BIT ON.*->* A3 ..

it. IN APT.*
. .- •• -

rES
v .*. HI *. ***.*H2****.****. • * IS *. *IEWLMLOG Ne-

.- LENGTH *. NO _*_it_*_*_._*_*
it.GIVEN IN END .->* NO LENGTH ..

.... RECORD .* .. GIVEN FOR ...
.. -CONTROL SEeTON .. -'rES ****-*-*rm *-*

ENOlA v
*****Jl ------_._.
.. PUT •
• LENGTH INTO *
*CESO ENTRY FOR *
* THE CONTROL *

:** •• ~;;!!~~****:

I
v

:****K 1 *****.***:

* TURN OFF 'NO *
* LENGTH' *
* INDICATOR IN •

:**.***:~!******:

I
v

.***
* *
: A3 :

* *
: A3 :

I
END2 V END7

:****A3*********: : •• **A5*********:

• REFER TO • * CLEAR •
*REPLACE/CHANGE *
BITS AND SYM80L

,------------->*CESD USING RNT •

:.**.*;~~~!*****:

I
v

·83*·*··*****
* SETUP *
* LOOP INDEX TO *
* REFER TO *
* RENUM8ERI NG *

:****.!::ii*****:

END3 :1. J
C3 *.

• * * •
• * IS RNT *. YES

. TYPE DELETE .
.DR CHAIN .

. .
* •• *

j<NO

EN010 v
:*.**03*********:

* ZERO OUT *
* RENUM8ERING *
: TABLE ENTRY :

1
v

EN010B .*.
E3 * •

• * *.
NO.* IS *.

.RNT LOOP OONE.
. . *. .* * •• *

j'"
* ****F3*****.***_

: RETURN

•••••••• *** •• *.

TO INPUT
PROCESSOR

• 10 VALUE • - -.***.** ••• ***** ••

I
v .*.

85 *.
.* IS *.

.* CESD *. YES
*.ENTRY'S TYPE .+--,

*. DELETE ••
. . * •• * * NO

I
v

.* •
C5 * • .* IS ••

NO.* CESO ••
,-------------*.ENTRY·S TYPE ••

. CHAIN .
. . * •• *

FES

END4 V
:****05*********:

* BLANK *
:OUT CESO ENTRY :

* -.************-***

I
v

:***.E5.*****.*.:

* INCREMENT *
.ENTRIES DELETEO*
: COUNT :

••••• **_._***** ••

1
v .*. *-••• F4**.**..... F5 *.

* SAVE * .* IS *.
- CESD ENTRY. YES .* THIS THE _.
.NUMBER AS FIRST*<---*.FIRST DELETEO.-
* OF THE CHAIN • *. ENTRY ._
• - *..*
** •• _***-*.****-* •• • .. I * NO '----. ->1

V
--***GS**-*-*****
*USING INDEX TO -
* LAST ENTRY OF *
.CESO CHAIN-PUT *
* NEW ENTRY -
*NUMBER IN CESO •
_ •• _**-*.** •• *.*.

I
END6 V

****.HS··*···*·*·
• PUT ENTRY •
• NUMBER OF •
* DELETED CESD •
.ENTRY I N APT AS •
* LAST OF CHAIN.
* •••••••••••• *.*.

Chart JO. Control Statement Scanner (IEWLMSCm

FROM INPUT
PROCESSOR

* ** Al ... * ... **· *

] EWLMSCN

I
SCN900 V .*. SCNI0240 .*. .*. : 81 **: .• ~~ TH;S*. ..83 IS *. *. .* B4 [S *. *. :=:;:~5~~=::~;;*:

.. SAVE COLUMN .. .* A *. YES .* THIS It *. YES .* THERE It *. YES .. AND ..
72 -SET PO]NTER->.CONT]NUATION .*--->*CONTINUATION OF->*. BLANK IN .->* CONTINUATION ..
:Pl TO COLUMN 1 : •• :!ATEME~!.. *.~~MMENT~ •• " •• ~~LUMN :~.. : INDICATORS :

••••••••••••••••• * •• * * •• * * •• * •••••••••••••• **.

'1 NO '1 NO J.:O

•• L
*JP .. *JP ..

SCNI000 V V .. Co\.- C:*
:=::~~l •••• * •• ~~: : •••• C2 ••••••••• : :;:;.~~;:~::.:~.: " .. "
--*-*-*-*-*-*-* .. SeT .. -TO READ COLUMN ..
-READ OPERATION *<---* POINTER P2 TO .. • 16 ..
*SVM-5ET OPTION" .. OPO 1" • (CONTINUATION ..

:!~~!~!!~~.!~*!.: : ••••••••••••••• : .. OF OPERANDS) ..

1 ·······T·······
v v .*. .-.

01 *. 03 - •
• * *. .* * •

• *010 SYMBOL *. NO .* OLD *. YES * *
*. END WITH A ., *. STATUS WAS .*-->* G.2 *

. BLANK . *. LEVEL 1 .* * *
. . *..* ****

* •• * v * •• *

* B4* .. '1 YES :~:*: *1 NO

SCN10l00 V v
:****El *********: :****E3*********:

* SEARCH * * SET *

.*. SCN10l.20

1::::::=r:::::1 l.::~::~:.:.ll

Fl *. *****F2********** *****F3********** *****F4********** NOTE - OPTION
.* *. * SAVE ENTRY * *TURN ON 'OPO 0 * *READ8 .. Q* INDICATOR IS

.* IS *. YES * POINT OF * *NEW· INDICATOR * V *-*-*-*-*-*-*-*-* SET TO 1
*.THERE A MATCH._>*PRDCESSOR -SET *--->"AND SET 'LEVEL'->* READ 1ST OPNO *

. . * POINTER P.2 TO * * INDICATOR TO * *OR CONTINUATION*
.. * OPO 0 * * ZERO * * PARAMETER *

* •• * ***************** ** •• *.** ••• ****** *****************
• NO I
I * **** * :~~* * I

~ : G2 !i : G4 * *->
*"P * ****- I **** v
* B4* SCN101BO V .*. SCNI0130 •••

• * *****62********** 63 *. G4 *.
* * SET * .* ENDED *. .*WAS AT ••

* "LEVEL' * YES .* BY A LEFT *. YES .* LEAST ONE *.
* INDICATOR TO *<---*. PARENTHESIS .*<---*VALIO CHARACTER*
* ONE * *. .* It. READ .*
* * *..* *..*
***************** * •• * * •• *

I * NO **** * NO

;~~::-> L>: K3 : 1
SCN10190 v SCN10220

:*"'*"'H2*"'*******: :***.H3*"'*******: .* H:NDE~. *.

... SET * * SET' OPDO * YES .* BY A LEFT *. it POINTER P2 TO ... lit ABSENT" *<---*. PARENTHESIS .*
: OPO 1 : I: INDICATOR : *. .*.*

****** ********* ... ~** **.*.**** ... **.**** ·:0

I
. .
: G2 :

v
** ... **J2 ********

~;~~~*-*-*-*-~~:
*READ NEXT SYMB *
* -SET OPTION *

I
v . '.

.. 4 *. .*]S ••
YES .*CONTINUITY *.

,----*.]NOICATOR SET ••
V *. • ...

:!~~!~~!~~*!~*~*: ***** *..*
"'JP * * •• *

1

* B4* * NO

v
.*. SCNI0140

K2 *. *****K3.****.****
.* *. *PROCENTY *

* * NO AT LEAST *. YES *-*-*-*-... -*-*-*-*

• > I
*~**

• >
: G5 :

* G5 *<--*. ONE VALID .*--->* PASS CONTROL -------,
* * *. CHAR.* A * TO CTRL STMNT * V

**** * •••• *.* I :***~~~~~~i~~***: :~: ... :
* ****** **A!*

: K3 : ...

Section 3:

** ... * . .
: G5 :

I
V

SCNI0200 .*.
G5 * •

.* *.
NO.* ENDED *.

i *. BY A BLANK .*
*. • ...

. .
V * •• *

***** * YES
..... P * I ... 84* · . • I

v .>.
H5 *.

.* *.
NO.*]S OLD *.

i *.STATUS ENDED .*
. BY A .

.COMMA.
V * •• *

***** * YES
>JP > I ... B4'" · .

V
.> •

.. 5 * •
.* *.

YES.* BLANK

i *- IN COLUMN 72 .*
. .

. .
v * •••

:~:*: *1 NO
* 84* · . .

v
:****KS****"'****:

• SET *
* CONTINUATION *
: INDICATOR :

***********.*.***

I
~
*JP *
. C! .

Program Organization 105

Chart JP. Control Statement Scanner (IEWLMSC~ (Continued)

106

***** *JP *
... AI-

* * * !, r-Y-ES----------------',
••• ••• SCNIOl.S .*. .•. V

At *. A2 *. A3 *. A4 *. *****AS********_ • • * *. .* *. .* *. .* *. ... SET COMMENTS ... • * LEVEL *. NO .* ENDED *. NO .* ENDED *. NO .* BLANK *. NO ... AND
. ONE ..------->*. BY A COMMA .*'-------:>*. BY A BLANK •• ,------~>*.IN COLUMN 72 • .. CONTINUATION ...

. . *. .* *. .* *. .* ... INDICATORS ...
.. *..* *..* *..* ...

. . *. .* *. .* *. .* ***************** i YES LY:i**** i YES :~~** *
SCN10150 .t .*.>: G2 : 1 scj~;;:!

81 *. 82 *. *****84**4******* .* ENDED *. .* *. *IEWLMLOG Ne-
•• BY A RIGHT *. NO •• ENDED *. NO V *-*-*-*-*-*-*-*-*

. PARENTHESIS ..-------:>*. BY COMMA .*'-------------------------------->* ERROR *. .* *. .* ... ROUTINE
.. *..* * •• * * •• * *****4***********

1 YES J:ES
*JO ..

SCNI0160 V .. H2*
*****Cl ********** * * * ... seT ...
LEVEL INDICATOR
... TO ZERO ...
*

I
v .*.

*****01********** 02 *.
* * *.
* UPDATE PI * .* IS *. YES * ...
POINTER TO NEXT •• -------:>.Pl AT COLUMN .*->* C4 *
* COLUMN * *. 72.* * *

* *..* ****
***************** *. .* ra

v .*.
E2 * •

• * IS * •
• * THIS *. NO • *

I.. CHARACTER A .*->* C4 *
. CONMA. * *
.. **** ••• *

rES
v

*.***F2**********
* * * SET 'ENDED *
*BY A CaMMAl IN *
* STATUS *
* *****************

: *::* :->1
* * .***

SCNI0170 V
*****G2*****"'****
* * * SET *
* POINTER P2 ON *
* OPD 0 *

I
V

*****H2**********
READS JQ
--*-*-*-*-*-*-*
READ NEXT PARAM
* SET OPTION *
*INDICATOR TO 0 *

I
v

*JO ...
... G4·
* *
*

*JP • <:------------1
* C4 *->
* * <:----------------------~
*** ...

SCNI0210
V

** C4*********
* * RETURN

***** ... *********

TO INPUT
PROCESSOR

Chart JQ. READS Routine

FROM CONTROL
STATEMENT
SCANNER

.... *.*Al********* ...
READS

······r·_··
SCNIIRD8 v

:****61*****.***:
.. SAVE ...
.. 'STATUS' IN ...
: 'OLD STATUS' :

-_ -.. -._--_.-

I
V

···**Cl --_ •••••••
... CLEAR *
... WORK AREA ...
-REFERRED TO BY ...
: POINTER P2 : ._ .. _ _._.-

1
v :* ••• 01 •• ****.**:

... SET *

.CHARACTER COUNT-

: TO 9 : ... -.-.. _ _._.

I
v ··.·.E1········** ... RESET ..

... • AT LEAST ONE ...

... VALID ...

.. CHARACTER' ..

:.*.!=~!i:!~:.**:

(::)->1
SCNtlOOO v

:****FI _ •••••••• :
.*. SCNI0230

F2 *. • ••• *F3** •••• **** .* *. *IEWLIIILOG Ne_
.. UPDATE PI'" .* IS *. yes *-*-*-*-*-*-*-*-* • ...
.POINTER TO NExr*->*.Pl AT COLUMN .tt--->*OPERANO EXTENOS_>* J3 ..
... CHARACTER" *. 72.* A ... BEYOND COLUMN'"

.---_._._ •• _ •• : *. * •••• * I :.****.!!*******: ****

* NO * **** * I : F3 :

v
.*. .*. .*. SCNII020

G2 *. G3 *. G4 *. *****G5********44
.*·*Pll~T A4 .*_ NO .*.4 IS *.*. NO .*·:TI~ i~F~·*. YES :SET "C~~~D BY A:

. BLANK .->.Pl AT A COMMA.->*. PARENTHESIS .*--->* PARENTHESIS' *
.CHARACTER. *. .* *. .* * INDICATOR IN *
4..* *..4 *..* * STATUS *

*. •• * •• * * •• * *4**4*4*4****444*
4 YES * YES * NO L
1 I 1 >(~:::

SCNll050 SCNII040 .*. SCNIIOIO V .*.
4*4HI ******** H2 4. ***44H3**4**4**4* H4 *. *****H5**********

: IENO~~TBY A: NO .4·*OP~~ON *.*. : 'EN~~~ BY: .*,;.; !SR~~H;·*. YES : SE;T ~i~~iO BY :
* BLANK" *<---*.INDICATOR SET.* * COMMA' * *. PARENTHESIS .->* PARENTHESIS" *
* INDICATOR IN * A *. .* * INDICATOR IN * *. .* * INDICATOR IN *
* STATUS * L *..* * STATUS * *..* * STATUS * ········r······· ···I·~ES ;::::~:·I******** *·*I·~O ·······T:~::::~

**** * * * *
* * v ****
• ..13 * .*. V .* ..
* * ..12 *. V *****..14********** ..15 * •

• * IS *. ****..134******** * * .* *.
YES .* "AT LEAST *. * * * SUBTRACT * .* *. NO

. ONE'. * RETURN * *ONE FROM COUNT ->*.15 COUNT ZERO.l
.INDICATOR. * * * *. .*

. SET . *************** * * *..*
* •• * ***************** * •• *

* NO TO CONTROL * YES

I STATEMENT L .****.
SCANNER

*~** >: F3 : . . --* Fl * SCNIIOOS
* * *****K3********** *****K4********** *****KS**********

* * * seT * * MOVE * ~
* UPDATE P2 * * 'AT LEAST ONE * * CHAR. AT PI * r * POINTER TO *<---* VALID *<---*INTO WORK AREA *<
OTHER WORK AREA * CHARACTER' * * POINTED TO BY *
* * * INDICATOR * * P2 *

~4 ***************** ***************** ***************** . .
: FI :

Section 3: Program Organization 107

Chart JR.

108

Include Processor (IEWLMINC)

: •••• B2 ••••••••• :

FROM
INPUT
PROCESSOR

It ****A3***··***· ..
.. IEWLMINC ...
* ••...

1 .*.
83 *. .* HAS *.

.. seT ... YES.* INCLUDE * •
... SINGLE BLOL *<:---*. POINTER .*
... INDICATOR .. •• CHANGED .* *..-••••••••••••••••• * •• -ro

y
INCLUI10 .*. .*.

C3 *. C4 ... • •••• cs ••••••••••
• * *. .* *. • * WAS ... YES .* ARE *. YES .. GET ..

•• BLDL DONE ON .*___>*. ANY LEFT ._>* NEXT ITEM IN .. *. LIST .* *. IN LIST .* ".. LIST ...

.. ••• *... *. * •• *.* *. * •• *.* .1 •• : ••••••••••••••• :
: *r:*: , j < NO i NO : *~JN:C*L:U605 vi

INCLU160 .*. I NCLU250 V 01 *. • •••• D2 •••..••• ** ••••• 03.......... ..05 .•..••• • * *. • * IS SINGLE *. YES ... PUT NAME" .. FIND NEXT"

•••• !~~~~T~:.*.---->:]N SI~~~ BLDL : EtTEN ~~A~:CLUDE:<--: .::.: ... _.ISSUE FIND "

. . ••••••••••••••••• ••••••••••••••••• ..** •••••••

.----,j NO 1 1 .J** *
* •••• EI*~........ E2···.. E3·*·.. : G3 :
* PUT NAME IN • ..INCLUDE*. •••• * •••
• BLDL LIST.. •• POINTER •• NO •• IS IT •• YES. •
• UPDATE COUNT. • ..EQUAL INCLUDE., •• INCLUDE WITH .->. 01 •
• UPDATE INCLUDE • *. BREAK .* •• POINTER •• ••
: •••• ~~!::!~= •••• : .P~!N!~R. v •••• •••• • •• * ••••• _

J I YES (::: :NCLU450 I NO .*. : *j:*:
•• FI •••• : •••• F2 ••••••••• : : •••• F3;:; •••••• : •• F4 *... : ••• ;~~~~; •• *.:

•• LAST •• YES .TURN OFF SINGLE. - PS INDICATOR • •• OPEN •• NO *-.-.-.-____ *_._ .
•• !!EM IN CHA!:. :BLOL INDICATOR : :OPENF~~S~~8 oca:--->-•• !UCCESSFUL ••• ->: IEW0432 : -

•. • ·~o ·········L··:::::: ::::::........... ···I·;es ·········1··*····· I ': K2 : : G3 :-, <~ _________ .J.

V •••• ..*. v v
••• ••• INCLU200 .-. INCLU600 •••

•• GI •••• ..G2 •••• ..G3IS •••• • •• G4* •••••• * •• G5 ••••

•• BLDL *. YES NO •• ANY ITEMS •• YES.. IT LAST •• • Issue. YES.. END ••
•• TABLE FULL .-> [.. LEFT IN BLDL •• <-*. ITEM IN.* r'·. BLDL *. r. OF INCLUOE .*'< •• •• *. LIST .*' •• INCLUDE •• •• CHAIN ••

•••• •••• ·.CHAIN.· • • ...*
•• •• •• •• •• •• ••••••••••• v ••••

*1 NO *1 YES ·1 NO :.::.: I :.::.: LN: •••••
> •••• •••••• >:03:

y y ****
HI···.. • •••• H2.......... • •••• H3.~........ H4 .•.•. • •••. HS ••••••••••

•• NEXT •• • *. • •••• • IEWLMLOG •
•• ITEM •• NO • CLEAR' MORE • • SET I MORE. •• BLDL •• NO --.-.---.-.-*-.-.

-.INCLUDE WITH .*-> >. INCLUOES TO *'<l • INCLUDES TO *' *. SUCCESSFUL .->- IEW0342 •
••• ~OINTE= •• * :COMEI INDICATOR: :COME' INDICATOR: •••• •••• : :~:E:E~g~:D :

··y·I·;ES ·········L .. :::::: :*::*: ::::::***,........ ···yl·~ES ·********1········
>. -13 • • •• -13 *->

•••• •••• • • v
••• • C5 • • ••

-11 •• • •••• -12.......... Y • • -15 ••
•••• • SAYE. • ••• -13......... •••• ••••

YES.. IS IT •• NO v • POINTER... • • YES.. ANY •• NO
.SAME POINTER .->. TO NEXT. • RETURN • • C5 .<--.. MI!:MBERS •
•• •• • ITEM... •••• FOUND ••

*. *.* ~::::~:r****·· ~gom~~R ;*::. ::l····
•••• v •••• NO

LIBOP ••• INCLU325 •••
•• K2 •• •• • •• K3....... • • •• K4....... • •• K5 ••••

•• IS •• NO • CLOSE. • OPEN" •• OPEN ••
•• THIS LIBRARY .-->. SYSLIB *->. SYSLIB FOR ___ >*. SUCCESSFUL ••

•• OPEN •• • • • THIS DDNAME • •• ••
•••• • • • TYPDRG=PD .. ••••

• YES • YES

.!.. .! .. · . . .
• G4 • • G4 • ·

Chart JS. Automatic Library Call Processor (IEWLCA~

FROM INPUT
PROCESSOR

**** · . :.::.!J
y

····"2········· · '" ;::::*;;::*.... ... •••• "4
: IEwLeAuT : .. FOR NEXT ITEM __ >* RETURN IN LIST .*

: *::* !<l :"::. :-> I
•••• YES •••• V .*. . •.

.
: B. :-.
•••• v

LIBOP •••
Bl *. 62 *.

• * *. .* *.
B. * •

• * NEXT YES "NYTH I NGOPEN DCB FOR. NO.. THIS ••
-.ITEM IN LIST .*<---*.IN BLDL LIST .* • THIS DDNAME *(---•. LIBRAAY OPEN ••

. FOUND . *. .* • TYPORG == PO • •• ••
.. *..*

* •• * ••• -ro ro
·····r.... ··.·~ES

y I
y INCLU630 v .*. V

: •••• C1 ••••••••• : : •••• cz •••••••• *: C3 •• ..C ••••••••
•• *. • •

.. STEP"'''' ...
... TO NEXT ITEM INITIATE (ESC ..

•• OPEN •• YES. •••
•• SUCCESSFUL .*->. ISSUE BLDL *->. B2 •

: :: SCAN : •. .• • • *.
·······I~······ ~::::~::[..... .

.. ... •••• v

'T~O
: B2 : 02 •••• _ y

••••• 03 ••••••••••
• * ••

YES .* *. :-.-!~:::=~~*-.-: ,.---*. END OF CESC .* · . V *. .* *... : IEW04-32 :

*JT ... * •• -.. :!' i NO

Y .'.
E2 -. •• * •

: •••• E3 ••••••••• :

• * IS THIS *. NO'"
•• DONAME FOR A .*--->*UPDATE POINTER *--->* 02 ... *. LIBRARY .*

.. ••• -* •• * •••••••••••••••••

rES AI

••• INCLU64-0
•• F2 •••• : ••• *F3 ••••••••• :

•• •• YES • MARK ENTRY •
•• IS POINTER .iI-->.NULL. PLACE IT •

•• == 0.. .IN HOLES CHAIN.
'1 NO :'::'~

•••• v
INCLU635 V •••

••••• G2.......... G3 •• ·
• INITIATE • YES. BLOL •

~~~~~::::I ::.::::~ ~.: '~~!:::I :~!~ .. :. 
!·::·:->v INCLU170 v 
••••• H2.......... • •••• H3 •••••••••• 
• •• ENTER • 
- TAKE • V • IN BLDL LIST •• 

• NEXT ENTRY IN .<1. SET BLDL • • CHAIN. • PREVIOUSLY • 
• •• ATTEMPTED • ········r······· ········r······· 

y y 
INCLU650 ••• • •• 

J2 •• J3 •• .... .... 
•• •• YES NO.* •• YES 

·.END OF CHAIN .-c=. LIST FULL ., -. .- .. .. -..- .... •• •• •• •• v 
• NO • _ ••••• 

I :.::.: 
y y 

I NCLU670 ••• INCLU186 ••• K2 _. K3 •• .... .... 
• • NO.. MATCHED -. •• ANY _. YES - • 
• H2 .<--.. LIBRARY.. ..ITEMS IN BLDL.*->. B4- • 
-. -. MEMBER •• •• LIST.. •• .... ...- .... . ... .. .. . .. . 

• YES • NO 

I I 
.~.. .~ .. . . . . 

_G3. .02. . - - . .... . ... 

Section 3: Program Organization 109 



Chart JT. Automatic Library Call Processor (IEWLCAUT) (Continued) 

110 

*.**. 
*JT .. 
.. AI* 

* * 
* 

i 
I NCLU670 V 

*·**·AI********** 

* * * A2 *-, 
* * I v .*. .*. 

A2 *. A3 *. 
.. .. .* *. .* *. ****A4********* * * .* *. YES .* ANYTHING *. NO * * 
.. INITIATE CESD ~.-------:>*. END OF CESD ••• ------->*.IN BLDL LIST .*------->* EXIT 
* SCAN * *. .* *. .* .. * 

*..* *..* *************** * •• * * •• * TO ADDRESS 
.. NO * YES ASSIGNMENT 

I' ! PROCESSOR 

**** * * v .. G2 * 
*****82********** * * 
* * * * *GET NEXT ENTRY * 
* * * * ***************** 

I 
v .*. I NCLU690 .*. 

C2 *. C3 *. *****C4********** 
.* *. .* *. * * **** .* IS *_ NO .* IS IT *. YES * MARK ENTRY * * * 

*.IT ER SUBTYPE.*------->*. OVERLAY .*.------->*NULL, PLACE IT ~>* A2 * 
*. 0.* *. CONTROL .* *IN HOLES CHAIN * * * 
*..* *..* * * *. .* *. .* ***************** * YES * NO 

i ! 
I 
v .*. 

D2 * • • * WAS * • • * BLDL *. YES * * *. PREVIOUL5Y .*-->* A2 * 
*.ATTEMPTED.* * .. 

*. .* 
* •• * 

ro 

INCLU170 v 
*****E2********** 
* * * MOVE * * NAME TO BLDL * 
* LIST * 

***************** 

I 
v .*. F2 * • 

• * * • • * BLDL *. NO .. * 
*. LIST FULL .*-->* A2 * 

*. .* * * *. .* * •• * * YES 
**** I 

: G2 :_>\ 
* * **** V 

* * * A2 * 
* * 

LIBOP .*. .*. 
G2 *. **G3******* G4 *. *****G5********** 

.* *. * * .* *. * IEWLMLOG * 
.* *. NO .. OPEN * .* OPEN *. NO *-*-*-*-*-*-*-*-* 

*.*:YSLIB OPE~*.*------->*;T~~~~:g ;Y~tI~*------->*.*:UCCESSFUL.* •• '------->: IEW0432 : 
*..* * * *..* * 

*. .* *********** *. .* ***************** 

*1\ <YES i YES *!** 
* * v * A2 * 

**H2******* * * 
* * 

* * * ISSUE 6LDL *----, 
* * v ***** 

*********** *JS * 
* 62* 
* * 



Chart KA. Address Assignment Processor (IEWLMADA) 

FROM INPUT 
PROCESSOR 

*****Al********** 
I EWLMADA * 

V ADA00120 .*. ADA00123 
*****61********** 92 *. *****93********** *****64********** *****85********** 
* CLOSE SYSLIB * .* *. * IEWLMENS * * * * ASSIGN * 
* CLEAR ADDRESS * .* *. NO *-*-*-*-*-*-*-*-* * SEARCH * * TEMP LINKED * 
* ASSIGNMENT •• -------:>*. IN OVERLAY .~.~--~-:>* ENTER SEG *------->* TXTIOT FIND •• ------->*ADDR TO EACH SO* 
* COUNTERS AND *..*" * NUMBERS IN * * CESD ENTRY * * OR PL LINE OF * 
* INDICATORS * *..* * CESO * * * * CESD * 
***************** *. .* ***************** ***************** ***************** 

rES 1 

*****C2*~*******LJ *****C5*~******** 
* COMPUTE * * COMPUTE * 
* SEGTAB LENGTH * *TEMPORARY RELOC* 
*AND BUILD A PC *CONST FOR EACH * 
* ENTRY FOR * *CONTROL SECTION* 

**** . . *SEGTAB IN CESO * *SAVE RC IN RCT * 
***************** ***************** 

* Dl * . . 
**** 

I 
V 

ADA00400 .*. 
01 *. *****02********** *****03********** *****04********** 

.* *. * TEMPORARY * * TE~P REL * * * 
.* *. NO * LINKED * * CONSTS ARE * .PROGRAM LGTH IS* 

*. IN OVERLAY ••• ------->* ADDRESSES ARE *------->* FINAL *------->*EQUAL TO LENGTH 
*. .* * FINAL LINKED * * RELOCATION * * OF SEGMENT 1 * 
*..* * ADDRESSES * * CONSTANTS * * * 

*. .* ***************** ***************** ***************** 

rES 
AOAOllOO V 

*****El********** *****E2********** *****E3********** *****E4********** 
* SCAN SEG LGTH * * * * * * DURING SCAN, * 
* COMPUTE SEG * *PROGRAM LENGTH * * SCAN CESD AND * * COMPUTE FINAL * 
:(~~~~~ ~g~~T~OR·~------->:o~Q~~~~E~~N~!~H*:------->:g~D:!~HA~g~E~~,:------->:~5~O~c~O~~TA~gR: 
* EACH SEG) * * * * OR CM * * PUT IN RCT * 
***************** ***************** ***************** ***************** 

i 
ADA00900 V 

*****Gl********** 
*WRITE OUT ERROR* 
*MESSAGE FOR ANY* 
* UNRESOLVED * 
* EXTERNAL * 
* REFERENCES * 
***************** 

I 
v .'. HI *. *****H2********** 

.* *. * * 
.* *. NO * PROGRAM IS * 

*. NO CALL .~.------->* EXECUTABLE ON * 
*. .* *LET OPTION ONLY* 
*..* * * 

*. .* *************** ... * i YES >1 
ADA00910 v ADA00700 

*****J2*"'******** *****J3********** 

1<----' 
ADA00550 V 

****"'F4********** 
* UPDATE * 
* LR ADDRESSES 
* USING RELOC * 
* CONST OF SO, * 
* PC, OR CM 
***************** 

I 

* * * IEWLMENT * ****J4********* 
* SET MARKED * *-*-*-*-*-*-*-*-* * TO * 
* CESD ITEMS TO ~.------->* COMPUTE ENTRY •• ------->* INTERMEDIATE * 
* NULL TYPE * * PT AND BUILD * * PROCESSOR * 

* AL I AS TABLE * *************** 
***************** 

1 
V 

*****05********** . . 
*ACCUMULAT= SEG * 
* LENGTH AND * 
*ENTER IT IN SEG* 
* LGTH TABLE * 
***************** 

1 
V 

*****E5********** 
* ASSIGN * 
* PENDING TEMP * 
*LINKED ADDR TO * 
*NO-TEXT cseCTS,* 
* ENTAB, CM * 
***************** 

1 
V 

*****F5********** 
* IF PR ASSIGN * 
*DISPLACEMENT IN* 
* CESD AND * 
* ACCUMULATE * 
*TOT AL PR LENGTH* 
***************** 

I 
v 

**** 
* * * 01 * . . 

**** 

Section 3: Program Organization 111 



Chart KB. I EWLMENS 

112 

FROM ADDRESS 
ASSIGNMENT PROCESSOR 
****A2********* · . * IEWLMENS * 

ENS0070 V 
*****62*********­· . * SCAN CESD FOR * 
* LABEL * * REFERENCES * . 
***************** 

I 
V 

*****C2********** * USING 10 OF * * IO LENGTH * 
*FIELO~ REFER TO­
.SO OR PC ENTRY * 
* IN CESD * 
***************** 

I 
V 

*****02*********· · . .. INSERT .. 
*SEG NO. IN CESD* 
.. FOR LR .. · . • *.************** 

I 
v .*. 

E2 * • 
• * * • • * *. NO *. IN OVERLAY .*----------------, 

*. .* 
*. .* * •• * * YES 

I 
V 

*****F2********** * SCAN .. 
.. CALL LIST * 
-ENTERING CHAIN .. 
.. POINTERS .. 

***************** 

I 
V 

ENS015 .*. 
G2 *. *****G3*********-

.* ANY *. *IEWLMLOG Ne* 
.*CALLS FROM *. NO *-*-*-*-*-*-*-*-* 

*.SEG NO. 1 TO .*---->* PROG IS * 
-.ANY OTHER.- .. EXECUTABLE ON .. 

*. SEG .* -LET OPT ON ONLY * 
* •• * ***************** i YES I 

1< , 
V 

*****H2********** · . * DETERMINE 
*NUMBER OF ENTAB* 
*L[NES FOR EACH * 
* SEGMENT * 
***************** 

I 
V 

*****J2********** * IEWLCADI * 
*-*-*-*-*-*-*-*-* * MAKE ONE CESD * 
*ENTRY FOR ENTAB* 
* PER SEGMENT * 
***************** 

I ................ . 
~---------------------------------------->* RETURN 

*************** 
TO ADDRESS 
ASSIGNMENT 
PROCESSOR 



Chart Re. Entry Processor (IEWLMENT) 

FROM ADDRESS 
ASSIGNMENT 
PROCESSOR 

****A2********* 
* * * 
* 

IEWLMENT 

*************** 
* * 

.------> 
ENT00150 V 

*****82********** 
* * * FINO NEXT * 
* CHAINED ALIAS * 
* ENTRY IN CESD * 
* * ***************** 

V 
*****C2********** 
* MOVE * 
* CHAINED ALIAS * 
* SYMBOL FROM * 
* CESD TO ALIAS * 
* TABLE * 
***************** 

ENT00190 V 
*****02*********-
* * * SCAN CESD * 
* FOR MATCHING * 
* ALIAS SYMBOL * 
* * ***************** 

I 
V .*. 

E2 *. *****E3********** *****E4********** *****E5********** 
.* *. * * * SET * *PUT ADDRESS OF * 

.* SYM *. YES *ENTER ESDID OF * * TYPE FIELD OF * *SO OR LR ENTRY * 
*. MATCH FOUND .*.--------->* CHAINED ALIAS *--------~>* ALIAS SYMBOL .1--------->* FOR ALIAS IN * 

*. .* *SYMBOL IN ALIAS* * ENTRY IN CESO * *CESO ENTRY FOR * 
*..* • TABLE. • TO 'NULL' * * ALIAS SYMBOL * 

*. .* ***************** ***************** ***************** 
* NO 

I 
V V 

*****F2********** *****F5********** 
* ENTER * * PUT ESOID OF * 
* ESOIO OF ZERO • .CONTROL SECTION* 
.IN ALIAS TABLE * *OF ALIAS SYMBOL* 
*FOR THIS ENTRY * * IN CESO ENTRY * 
* * * FOR SYMBOL * 
***************** ***************** 

L---------'I V 
ENT00160 .*. ENT00200 .*. 

G2 *. G3 * • 
• * *. .* *. 

YES.* ANY *. NO .* IS THERE *. NO 
*. MORE ~LIAS .*"--------->*. AN ENTRY .1 

*. ENTRIES .* *. POINT .* 
*..* *..* 

*. .* *. .* v 
... ... YES ***** I *KD .. 

.. A5-
V * * 

***** ... 
*KD ... 
* A2* 
* * * 

Section 3: Program Organization 113 



Chart KD. Entry Processor (IEWLMENT) (Continued) 

114 

***** *KO ... 
... A2* 

* * * 
I 
v .*. .*. 

A2 *. A3 *. *****A4********** .* *. .* *. ... USING ESDJD ... 
.* *. NO .* IS *. NO *FROM END CARD .... 

*.SYMBOLIC E.P •• *------->*.E.P. RELATIVE ••• ------->* POINT TO CESO ... 
*. .* *. .* *ENTRY FOR e.s .... *..* *..... *CONTAINING E.P.* 

*. .* *. .* **** ... ************ i YES i YES I 
ENT00300 V V V 

*****82********** *****63********"'''' *****a4*****-**** 
... ...... USING ESDID ... ... ADD CONTROL ... 
... SCAN CESD'" ... FROM END CARD ... *SECT I ON ADDRESS-
-FOR MATCHING SO* ... LOCATE REL'" ... TO ASSEMBLER ... 
... OR LR SYMBOL ... -CONST FOR e.s. ... ... ASSIGNED AOOR ... 
... *CONTAINI"'IG E.P.* ... IN END CARD ... 
***** ... * ... ********* ***************** ***************** 

1 I 
• *. V 

C2 *. *****C3 .... ******** 
• * *. * ADD REL * 

NO .* *. * CONST TO * 

***** "'KD ... 
... AS· 
* * * 
I 

ENT01250 V 
*****A5********** 
*SCAN CESD FOR A* 

:~g~~o~E~~L~i~) : 
... WITH LOWEST ... 
*ASSIGNED ADOR .... 

***************** 

I 

v 
.* • 

C5 *. 
.* * • 

YES .* *. 

[

*.;!MBOL FOUN~*.* : AS~~~~~Br~~OM : <:--------------•• ENTRY FOUND .* 

*..* ... END CARD) * 
.... .* *****.*.****.**** 

i<_Y_ES _____________________ ! ______________________ ~ 
V 

ENT00800 • *. 

:;::~~t~:*****~~: I .*02 15 * ..... 
*-*-*-.-*-*-*-*-* V NO.* ENTRY PT *. 
* INVALID .<-------_.CONT SECT IN .* 
• ENTRY - *. SEGMENT .... 
... POI NT. *.NO. 1.* 
**************-** *. • * 

jYES 

ENT00900 V 
*****E2·······*** 
• SAVE • 
• E.P. ADDR SAVE • 
• ESDID OF C.S. * 
.CONTAINING E.P.* 

* * •• *** ••••• * •• *.** 

*. .* *. .* * •• * ra 

v 
**··*05*****···** 
*IEWLMLOG NC* 
*-*-*-*-*-*-*-*-* 
... INVALID * 
• ENTRY * 
* POINT * 
.*.******* •••• *** 

~-------------------:> <-------------------------------------------------------------------' 
ENT0100 

V 
*-**F2·*··***** 

* * • RETURN * 
* * ******.****** •• 

TO ADDRESS 
ASSIGNMENT 
PROCESSOR 



Chart LA. Intermediate Output Processor (IEWLMOU~ 

* ••• 
• * 
: B3 : .... 

A 

~ I~ 
ADDRESS .*. .*. .-. 
ASSIGNMENT A3 *. A" *. A5 •• 

.. ····A2········· .. • .... * ... *. NO .*.* XREF *. *. YES .*.* *. *. 

... IEWLMOUT *->*.MAP SPECIFJEO.*->*. SPECIFIED .*___>*.RLOS IN CORE .* 

.. ... •• .* *. .* *. .-••••••••••••••• *..* ...* ...* 
* •• * * •• * * •• -

"-YES *NO *NO 

OUTOO.O. 1 • •• ·.83····**·· .. ... ... =-tt-~:~:~~._._: 
... 83 *-->* PRODUCE MAP .. 
•••••• : ORXAEF : ................. 

V 
DUT00300 .*. 

C3 * • ······C4··········· • * * • • * NOT *. NO ... *. EDITABLE .*-> 
*. .* *. .* 

* •• -res 
v 

: •••• 03 ••••••••• : · . : BUILD HESD : · . ..............•.. 
I 
V 

OUT00525 .*. 

WRITE OUT 
CESD ON 
SYSLMOD 

.* ••••••••••• 

I 

E3 *. • •••• E4 •••••••••• 

• * .... TEXT *.... NO :_._!~:~:~~:._._: ... ···~fi5~~::~ ...... 
*. *. ~~b~:D .* .*--->: ~~ 19~~ :->: PROCESSOR : 

*..* ... MODULE'" ••••••••••••••• * •• * ••••••••••••••••• res 
v 

••• OUTOIOOO ••• 
F3 •• F4 •• • •••• ·FS.··· ••• · •• · .... ... . 

• * IS •• YES.. •• NO .BUILO AND WRITE* 
•• PROGRAM IN .-> •• NOT EDITABLE .-> OUT SEGTAB 

•• OVERLAY.. •••• CONTROL 
•••• •••• RECORD 

'T~O 'T~es "'*'~r'''' 
OUT02000 ••• v 

•••••• G~:;~:....... : •••• G2 ••••••••• : •• G3 •••• • ••••• G5 •••• • ••••• • 

OUT. • BUILD SCATTER • YES •• IS PROGRAM •• BUILD 
SCATTER/TRANS <---.AND TRANSLATJON.<---•• TO BE SCATTER.. AND WRITE OUT 

• RECORDS. • TABLES. •• LOADED •• • SEGTAB • . . ... . . **.......... ................. .. .. . ........... . 
1<---____ ,j<:_NO ___ ----'I 

OUT00560 v •••••• H3··········· READ 
• TXT AND RLD • 

NOTE LISTS 
• INTO MAIN • 

... ~!~:~:~ ... 

I 
v ····*.13·········· • MARK SO.. PC • 

• WITH HIGH EtDJD • 
• 1 N PROGRAM DR. 
• EACH SEG W TH • 

:!~!.!:.~:~~i~!J: 

1 OUTOO.7 • ...•. K3.......... . .... K4 ......... . 
• SAVE HIGHEST •• • • ••• KS ••••••••• 
• SEG NO. OF. • INITIALIZE. • TO SECOND • 
• SEGMENTS THAT __ >.FOR SECOND PASS*->. PASS • 
• CONTAIN TEXT •• •• PROCESSOR • • •• • • ••••• * •••••••• ................. . ............... . 

Section 3: Program Organization 115 



Chart LB. MAP/XREF Processor (IEWLMMAP) 

.... 
• * 
: Cl :-. 
•••• Y 

NXTSEGNO ••• 
Cl •• .. -. 

YES.. IS •• 
• THIS LAST •• 
•• SEGMENT •• .. .. .... 

iNC 
v 

: •••• 01 ••••••••• : 

····li2········· • * 
: leWLMMAP : ............... 

1 
: •••• 82 ••••••••• : 

... INITIALIZE, ... 
-GETMAIN. PRINT .. 
.. HEADER. OPEN ... 
.. SVSLMOD ... 

********r******* 
v .*. C2 •• .. ., 

NO.. ENTRY _. 

, *. FROM FINAL .-.. .--. .-v * •• * (::) i YES 

V ······02····.······ READ CESQ 

t::i~~~~!~L*l; '. *::~~i~;~::: * 
(::::->1 

v v ...... El........... . .... E2 ......••.. 
WR I TE OUT ... MAP003 ... 

... PR' 5 CUML.'" *-*--.-*-*-.-*-*-* 
LENGTH. E.P. >* GATHER CESD ... 

... ADDR. TOTAL ... ... ENTR I ES FOR ... 
LENGTH -PRESENT SEGMNT .. ............. . ............... . 
I MAPOOO 1 
y ·····F2·········· •· .. FI········· ... ... ... ... -SORT ASSEMBLED ... 

... RETURN'" ... CESD ENTRIES ... 

... ... -USE ADDRESS AS .. •• ;~.::::~*~:.. : •• * ••• ~i~ •••••• : 
OUTPUT PROCESSOR 

INTERMEDIATE I 
MAP0055 Y 

: •••• G2 ••••••• **: 
* CREATE * 
* MAP FOR THIS * 
: SEGMENT : 

**"***'r******* 
. '. H2 •• 

• * *. 
* * NO.* XREF *. 
• Cl *<--*. SPECIFIED •• *.. •• • • ••• * •••• 

* •• * 

: *::* :->'1 YES 
** •• 

XREFS Y 

.... 
* * : A4 :-, 
•••• Y 

MAP13 ••• UNRES ••• 
A. •• AS •• .... .... 

IYES.::~LD i~PE P~::J.>.::!Y~~A~E~~R.:: NO •..• ...* .. .. . ... 
v r

o 
rES 

••• XLSCONT ••• Y 
83 •• B4 •• • •••• BS •••••••••• 

•••• •• IS •• .. • 
NO •• ]5.. •• ~ESD TYPE .j YES • INDICATE • r .RLD TYPE PR2 •• .ER (UNRESOLVED .'NEVER CALL' ON. •• •• •• .* .MAP PRINT LINE • .... .... . . 

v •• •• • •• * ••••••••••••••••• * **n * * YES * NO I 
: .::*: 1 1<---------'" 

v PUTLINS v 
: •••• C3 ••••••••• : •••••• C4........... : •••• CS ••••••••• : 

* SAVE. WR]TE.. ]ND]CATE • 
• CUMlA..ATIVE • LINE ON <---.'UNRESOLVED' ON.< 
: LENGTH VALVE : • SYSPRINT :"'AP PRINT LINE: ....••....•.•.... .•........... . .........•.....• 

I I v v .... . ... · . . . 
• K3 • • K3 • · . . . .... . ... 

.... . . 
: e4 :-. 
•••• V 

RLDOUTA ••• 
e40 •• .... .. .. 

• • LAST.. THIS •• RLD 
• Cl *<-.RECORD'S TYPE. .. .. .. .... ... . . .. . rew 

•••••• F4··········· 

PASS 
OVER TEXT 

RECORD ............. 
1<:-----1 
v 

•••••• G •••••••••••• 

READ 
ALD RECORO 

*·**·I~**·· 
* • 
: J2 : . ... 

: ••• *J2* •• *.* ••• : : •••• J3 •• ** ....... : 

.. INITIALIZE. • INCREMENT TO • 

: C~~~ i~gP R~~ : : NEXT ITEM : ................. . ............... . 
1< f NO .*. .•. . •. 

K2 .-.. K3 •• K4 •• 
•••• •••• .* •• 

• .-. NO •• DOES THIS •• YES.. •• YES •• ENTAY •• YES 
• A4 .<-. RLD ENTRY'S .*-> •. END OF LOOP • _____ >.. FROM ., 
•• •• R = P •• A.. ,. •• FINAL •• •••• •.•. .•.• I •.•. .•.• •.•. .•.• Y 

• • •••••• • NO.... • ••••• 

*K3. L. ··E4· • • >. Cl • • * .... . . . ... 
••• * 

116 



Chart MA. Second Pass Processor 

··**A2**·*·**** 
* * * * 

IEWLMSCD * * 

V 
*****82··*******-
* * * * -INITIALIZATION .. 

* * * * ••• ************** 

::~:**->I 
* * **.. V GETID .*. 

C2 *. ****.C3 ••••• * •••• • * *. ... GETIDMUL ... 
... ANY TEXT *. NO *-*-*-*-*-*-*-*-* *. READY TO BE .*------->* DETERMINE 
•• PROCESSED.. ... IO-MULT TO ... 
*..* .. PROCESS .. 

*. .* *****.*.*.****.*. 

i<YES I 
v 

LDOKAHED .*. 
02 *. *****03 •••••• ***-.* *. ... GETIDMUL ... 

.... NEXT TeXT .... NO *-*-*-*---*-*-*-* 
*. READY TO BE .*------->* DETERMINE ... 

-.PROCESSED.- .. NEXT IO-MULT .. 
*..* .. TO PROCESS ... 

*'i~;ES ********j******** 

V 
RLDSCAN .*. 

E2 * • 
• * * • • * ANY -.NO *. RLO·S FOR .------, 

*. TEXT.* V 
*..* •••• * 

* •• * 4MB ... i YES *oC~* 

V 
CRREADV .*. 

F2 *. *****F3******** •• • * PREV- .... ... WRTCRRLD .. 
• *IOUS CONTRL*. YES *-*-*-*-*--*-*-*-* 

-RECORD READY TO.'~~--~>* seT UP AND .. 
-Be WRITTEN.- .WRITE PREVIOUS ... 
*..* * CONTROL RECRD * 

*. .* ***************** 

[0 I 
v .0. 

G2 *. *****G3********** 
.* *. * RDRLD * 

.* NEEDED *. NO *-*-*-*-*-*-*-*-* 
*.RLD'S IN CORE.*------->* SET UP AND *<l 

*. .* * READ NEEDED * 
*..* * RLD'S * 

o. 0

1 
<';ES * ...... T******* :=;:: 

v 
-****H2********** 
* IEWLMREL * 
*-*-*-*-*-*-*-*-* 
* RELOCATE * 
*ADCONS OF CUR- * 
* RENT ID-MUL T * 
***************** 

:=;:**->1 
* * **.* 

MVRLD V 
*****J2******·*** 
* 0 
*MOVE RELOCATED * 
* RLD'S TO RLD • 
* OUTPUT BUFFER * 
* * ***************** 

I 
v 

**.** 
*MB • 
* AI* 
* * 

. -**-* 

Section 3: Program Organization 117 



Chart MB. 

118 

Second Pass Processor (Continued) 

. 
! .*. MVRLD210 .-. 

Al *. A3 *. .** ... *A4 •• **** •••• • * *. .* ONE *. ... WRTCRRLD ... 
.... RLD *. YES .* BUFFER •• YES *-.-*-*-*-*-*-*-* *. OUTPUT .".-------------->*CDNTAJNS PREV •• ->* SET UP AND *---, 
•• BUFFERS .* *. CONTROL .* .WRITE PREVIOUS ... 

-.FULL .* --RECORD.*'" CONTROL RECRD ... 
* •• * * •• * ••••••••••• ***.** 

I~ I~ 
v v .*. .-. 

Bl *. 63 * • 
• * *. .* * • • * MORE *. YES .* PREVIOUS *. YES 

**~** 
*MA * 
• *J:* . 

*. RLO'S FOR .*----, _.WRITE A DUMMY.*---------------, 
*. TEXT.* V *. WRITE .* 
*..* ••••• *. .-

* •• * "'MA ... * •• -
.... *- *1 NO ...... G~. *1 NO 
-Me'" ... 
: Cl. *-> 
.*.* v v .*. .*. MVRLD220 

Cl •• C3 *. .** •• C4.......... • •••• CS ••••••• ** • 
• *.* LAST *. *. NO .*.* MORE *. *. NO :-.-.!~~!~!-*--: v :-.-:~!::-:=~.-: 

-.TEXT IN GROUP.*---, -.RLD'S NEEDED .*->* SET UP AND *___>* SET UP AND ... *. .* V _.FOR TEXT .* *WRITE TXT REC. * A * WRITE AN RLD * 
*..* ***** *..* * IF NEEDED * * RECORD * 

* •• * *MA * * •• * ***************** *** ... * ... *** ... ******* *1 YES • *.C~' *1 YES I 
**~** V "'MA * 

LASTTXTO 01·*· *. *****02********** ***"'*03*~*"'****** * * J~* 
.* ·:REVIOUS *. *. NO :-... -:~!~~~;~*-*-: :-*-.!::!:!~!-*-*-: * 

*CONTROL RECORD.->* SET UP AND * * SET UP AND 
*. WRITTEN .* *WRITE PREVIOUS * * ISSUE DUMMY * 
*..* *CONTROL RECORD * :*****::!!~*****: 
'l~ES .OUOUT ....... 

V 
TEXTWRIT .*. 

El *. *****E2********** 
.* *. * WRTTXT * 

.* PREVIOUS *. YES *-*-*-... -*-*-*-*-* 
*.WRITE A DUMMY.->* SET UP AND 

*. WRITE .... * ISSUE XDAP 
*..* * WRITE * 

* •• * ***************** 

ro 
v 

*****F1 ** ......... ***** 
: __ *!:!~L*_*-: 
* SETUP AND * 
* WRITE TEXT * 
* RECORD * 

... ····T:-·-··-·-·-·-·-------~ 
WRITO Gl .~. *. *****G2*1******** 

.* *. * WRTCRRLD * 
• * MORE THAN *. YES -*-*-*-*-*-*-*-* 

*. ONE RLD .->* SET UP AND 
*.BUFFER IN.* * WRITE AN 

*. USE .* - RLD RECORD * 
*. •• *-*************** ro 

v 
TSTSGEND • * • 

• _Hl *. *. :****H3***** .. * .... : 

.TEXT LAST IN*. NO * SET 'END OF * 
*. SEGMENT .----, .. MODULE' IN 1 

*.... .*.* .. *!... :CONTROL RECORO : 

* •• * *MA • .. .. *.*** .. ** •••• **. 

l~ ~r AI 

V YES 
SGENOI .*. .*. .*. SGEN02 

.II *. J2 *. J3 *. **.**J4"********* *.*.*JS** •• *.**** 

.*.* *.*. NO .*·:NY RLD';-*. YES .*.* IS * ••• NO V : 'E~5TOF: !-.-:~!~~~--*-: 
*.ENTAB NEEDED ._>*. STILL TO BE .*->*. THIS LAST ._>* SEGMENT' IN ->* SET UP AND • ...... ( .. J' "'::i~'" ... ~:::::!.,. ::::::~=.: ;.3;"_!,,';"~ 

v SGEND3 .*. 
*****K 1.*** •• **** K2 •• 
:_*_~~~.:~!~~.-*_: ••• * M~:~ * ••• NQ * **.*K3***.***.** 
* ENTAB-ENTAB *. SEGMENTS TO ._>* TO FINAL * 
* RLO CREATION * *. PROCESS .* • PROCESSOR * 
.. * *... *.**** ••• * .... ** 
..... * ....... *****. • •• * 

* YES 

I 
•• :.* 
*MA • 
**C~. 

* 



Chart MC. GETIDMUL Routine 

****A2********* 

" " " GETIDMUL " 
" *************** 

v .". 
62 * • 

• * * • 

" 

• SEARCH TXTIDT. 
*. FOR NEXT .* 

*ID-MULT TO.* 
"PROCESS" 

* •. * 
" 

I 
v .". 

C2 *. *****C3******.*** 
.* *. ... seT UP'" ****C4********* 

.* *. NO ... CONTROL BLOCK ...... * 
*.ID-MULT FOUND.""---------.>" TO REFLECT NO **--------->* RETURN * 

*. .* ... LOOK-AHEAD"'''' * 
*..* ... ... *************** 

*. .* ***************** i YES AI 

V NO 
.-. IDMUL190 .-. 

02 *. 03 *. *****04********** 
.* *. .* *. *ROTXT * 

.* *. NO .* WILL *. YES *-*-*-*-*-*-*-*-* 
". ID-MULT IN ." >*.RECORD FIT IN.""--------->* SET UP AND " 

*. CORE .* *. BUFFER .* ... READ NEEDED ... 
*..* *..* ... TEXT ... 

*. .* *. .* ***************** 

i<YES " I 
V 

IDMUL301 .". 
E2 * • 

. * * . • * *. YES 
". SCTR OR OC 

*. .* 
*. .* 

*. .* 
" NO 

I 
v .". 

F2 *. *****F3********** 
.* *. ... seT * ****F4********* 

."CAN ID-MULT". NO V "UP CONTROL" * " 
*.BE GROUPED IN."*--------->" BLOCK TO ""--------~>" RETURN " 

*. PREY. .* ... REFLECT NEW ...... ... 
*.GROUP.* ... GROUP'" *************** 

* •• * ***************** jm 
v 

*****G2********** 
* SET UP " 
" CONTROL BLOCK " 
" TO REFLECT " 
" CONTINUED * 
" GROUPING " 
***************** 

V 
****H2********* 

" " " " 
RETURN 

*************** 
* " 

Section 3: Program Organization 119 



Chart MD. TXT/RLD Read Routines 

120 

···*1..1········· • * 
.. RDTXT .. ............... 

.---:J 
v .-. 

Bl *. ····.*82··········· • * * • • * ANY *. YES ... *. UNCHECKED .~O _______ > CHECK 
*. TEXT •• 

*.READS.­
* •• * 

j<NO 

v 
····**Cl ** ••••••••• 

READ 

...... * ••• ***. 

I 
V 

**··*01**····***-
* * .. MARK .. 
.. TEXT IN CORE .. 

* 
* * *********.*.* •••• 

I 
V 

RDTXT70 ••• 
El * • • * ANY -. 

YES .* *. 
*.OUT-OF-ORDER .* 

*. TEXT .* 
*. .* * •• * r 

v 
****F 1 ********* 

* * RETURN 

••••• ** •••••• 

I 

**·*A.*·***·*·* 
* * .. RORLD ... . ............. . 

I 
v .-. 

84 *. 
.* * • ·····.85·····** ••• · 

.* ANY *. YES .. *. UNCHECKED .*0 _______ :> CHECK 
*. READS •• 

*. .* *. .* ••••••••••••• 

: -::* !-> *1 NO I 
••••• * <:----------------------~ 

v 
·*···*C4 •• ••• ••• ••• 

READ 

•••••••• *** •• 

I 
V 

··****04***·******* 

CHECK 

.*.*.***** ••• 

I 
v :** •• E4 ••••••••• : 

... MARK .. 

.. RLO'S IN CORE .. 
* * 
* * ** •• ************* 

.---J 
V 

RORL01SO .*. 
F4 *. 

.* *. ****FS********* 
.* ANY MORE *. NO * * 

*.*.RL~~~TFOR.*.*'~----->: RETURN * 

*..* **-***-*******. 
* •• * rES 
.*. 

G4 * • 
• * *. 

YES .* *. 
*. RECORD IN .* 

*. CORE .* *. •• 
* •• * 

- NO 

1 .*. 
H4 * • 

• * *. 
* * YES.* ROOM IN *. 
* C4 *<--*. RLO INPUT .* 
- * *. BUFFER .* 

*. .* * •• * 

ro 

v 
*****J4********** 
- * * INDICATE * 
* MORE RLO'S TO * 
* BE READ * 

- * ***.************-

V 
***·K4********* 

* * * RETURN 
* * *************** 



Chart ME. WRTTXT Routine 

-·_·At-·---_·_-* * .. WRTTXT 

* *************** 

I 
v .*. .*. 81 *. 

WRTTXT90 
******82*****··**** ******63*********** B4 *. 

.* *. .* PREVIOUS *. YES ... 
-_WRITE A DUMMY ••• -------> 

•• WRITE .* 
*. .* *. •• ro 

v .*. 

* * XDAP -------> 

************* 

Cl *. ..***C2********** 
.* *. ... * .* FIRST *. YES ... SAVE RELATIVE ... 

*. TEXT OF ••• ------->* TRACK ADDRESS .. 
*. SEGMENT .* * IN TTR TABLE .. 
*..* * *. .* *******.******.*. 

i NO I 
1<--------1-v .*. 01 *. 

.* * • ******02*********·* 
• * ANY *. YES .. 

*. UNCHECKED ••• -------> CHECK 
*. WRITES .* 

*. .* 
*. .* 

i< NO 

V 
·*****El*********** 

WRITE 

************. 

I 
v .*. 

************. 

I 

Fl *. *****F2********** 
.* *. * * 

.* *. YES * * 
*. DUMMY WRITE •• '~~--->*INDICATE DUMMY * 

*. .* * WRITE * 
*. .* * 

* •• * ***************** 

i<NO I 
v .*. 

Gl * • 
• * *. ****G2********* 

.* FIRST *. NO * * 
*.TEXT OF LOAD .~.------->* RETURN * 

*. MOOULE .* * 
*..* *************** 

*. .* 
* YES 

I 
V 

*****Hl********** 
* PUT * * NEEDED * 
-INFORMATION IN * 
* PDS * 

* ***************** 

I 
V 

*··*.11 ********* 
* * RETURN 

*************** 

WAIT 

.* *. ·***as*******·-.* 110 *. YES" .. ------->*. SUCCESSFUL .*.------->* RETURN ... 
*. .* .. 
*..* *************** 

* •• * 

i~ 
V 

****C4··******* 
... EXIT .. 
.. ERROR ROUTINE ... 
* * *.**.********** 

Section 3: Program Organization 121 



Chart MF. Relocation Routine (IEWLMRE~ 

122 

*****01********** 
* * 

****A2********* 
* * IEWLMREL 

<------------------------------------------------------------, 
RELOCATE V 

*****82********** * CALCULATE * * ADOR. AND * 
*EXTENT OF RLD'S* 
*IN INPUT BUFFER* 
* * ***************** 

I 
V 

*****C2********** 
* * * SAVE R .. 

L 
I 

-POINTER; UPDATE* I 
.. TO FA FIELD * 
***************** 

~:~::*->I I 
**** V YES YES .*. RELOC150 .*. .*. 

D2 *. *****03********** 04 *. 05 *. .* *. * UPDATE" .* *. .-NEEDED *. 
.* END *. YES * LOW * .* MORE *. NO .* RLO'S IN *. UPDATE 

TO NEXT RLO 
ITEM 

•• ------->*.OF RLD EXTENT.*------->*MULTIPLICITY OR:+.------->*.NEEDEO RLO'S ••• ------->*.OTHER BUFFER .* 
* *. .* * MARK ENTRY * *.IN GROUP .* *. .* -..* .. . PROCESSED' * *..* *..* 

***************** * •• * ***************** * •• * * •• -

I r · r 
*****El********** E2 *. V * * .* *. ****E5********* * UPDATE LOW" NO.* RLD *. * * * MULT. IF IN *<-------*. WITHIN TEXT .* RETURN * 
* HIGHER MULl. * *. LIMITS .* * 
* *. .* 
***************** * •• * 

* YES 

I 
V 

*****F2********** 
* * * * *OETERM I NE AOCON* 
* LENGTH * 

***************** 

I 
v .*. G2 *. *****G3********** 

.* *. *ERROR * 
.* INVALID *. YES *-*-*-*-*-*-*-*-* 

*.*.TW~o~6~E .*·*------->:~~6I~l+EM~~vl~D:*------'~ 
*. • * * 2-BYTE AOCON * ***** 

*. .* ***************** *MG * i NO *<!* 

v 
RELOC20 .*. 

H2 *. *****H3********** 
.* *. * SPLTADCON * 

.* *. YES *-*-*-*-*-*-*-*-* 
*. SPLIT ADCON .*------->* SPLIT ADCON 

*. .* * ROUTINE * 
*..* * * * •• * ***************** ro I 

v 
RELOC60 .*. 

J2 *. *****J3********** 
.* *. * OBTAIN OELINK * 

.* AOCON *. YES * VALUE AND 
*. REQUIRES .*------->* CORRECT R * 

*.DELINKING.* * POINTER FOR * 
*..* * RELOCATION * 

*. • * ***************** ro I 
v .*. 

K2 * • 
• * * • • * IS THIS *. NO 

*. AN OVERLAY.+-----, *. MODULE .* V 
*..* ***** 

* •• * *MG * * YES * AI* L **** * * 
*MH * 

>* Al * 
* * 



Chart MG. Relocation Routine (IEWLMREL) 

.**** 

.MG * 

.. AI* 

* * 

* I 
RELOC75 V 

*****Al********** 

* * * MOVE ADCON * * FROM TEXT TO iI-
* WORK REGISTER * 
* * ***************** 

I 
v 

(Continued) 

.*. RELOC130 .*. 
61 *. B2 *. *****63********** .* *. .o* *. .. INSERT * 

.* IS RLD *. NO .o* IS *. YES .. CUMULATIVE PR i!-

*.TYPE RELATIVE.~'------->*. RLD TYPE PR .*------->* LENGTH INTO *---0 
*. .* *. TYPE2 .* *VALUE OF ADCON i!-

*..* *..* * «-
*. .* *. .* ***************** 

.. YES * NO 

I I 
v V 

RELOC90 .*. .*. 
Cl *. C2 *. 

.o* IS *. .o* *. *****C3********** 
* * .*HESD ENTRY *. NO .* IS *. YES * AOD OR i!-

*. FOR ADCON '"l *. RLD TYPE .*------->*SUBTRACT OELINK* *. MARKED .o* *. OELINK .* * VALUE * 
•• NEG .* *..* 

*. .* *. .* ***************** 

i YES I NO **1*** 
v .*. .. El it-

*****01********** 02 *. * * 
* * 1 .* *. MAKE IT A .o* IS RLD *. YES 
:NEG~~~~~B~~~BER: *_!!PE ABSOLU~;·I 
* * I *..* I 
***************** I *. .* v 

****** 11< _ *1 NO :*::*: 

!*::*:-> * * 

v V 
*****E1********** *****E2********** * PERFORM * *TYPE IS BRANCH * 
*RELOCATION: ADO* * OR PR TYPEI; * * OR SUBTRACT * *INSERT ABSOLUTE* 
* RELOC. FACTOR * *REL. FACTOR FOR* * * *VALUE OF ADCON * 
***************** ***************** 

I I I<: ___________ v ____________ ~ 

RELOC100 v 
*****Fl********** 
*MOVE RELOCATED * 
* AOCON BACK * 

INTO TEXT * 
RECORD * 

* ***************** 

:=i: * *->11 
* * **** 

V 
*****G1********** 
* * * RELOCATE * * ADDRESS FIELD * 
* OF RLD ITEM * 
***************** 

1 
v .*. 

HI *. *****H2********** 
.* *. * * 

.* *. YES * SAVE RLD * 
*. SPLIT AOCON .*.-------:>* ITEM IN HESO * 

*. .* * PREFIX * 
*..* * * 

*. .* ***************** 

:=;;*_>*1 NO I 
:**** <:----------------------~ 

RELOC120 V 
*****Jl********** 
* * UPDATE 
* TO NEXT RLO * 
* ITEM * 

* ***************** 

I 
v 

***** 
*MF * * 02* 
* * 

Section 3: Program Organization 123 



Chart MH. 

124 

Relocation Routine (I EWLMREL) 

***** 
*MH * 
... A!* , 

I 
v 

SCOOVL Y ••• 
Al * • 

• * * • • * IS IT *. NO *. A V-TYPE .*---, 
*. ADCON .* V 
*..* .it.** 

* •• * *MG * i YES ',A!' 

v .'. 

(Continued) 

81 *. *****82********** 
.* IS *. .ERROR * 

.* ADCON'S *. NO *-*-*-*-*-*-*-*-* *. LENGTH FOUR .->* seT BIT MAP *---, 
*. BYTES .* ... TO REFLECT'" V 
*..* .INVALID V-TYPE'" ***** 

* •• * ***************** *MG * i YES *,"!' 

v .'. 
Ct * • 

• * IS * • 
•• THE AOCON'S*. YES 

*. SYMBOL .*---, 
-UNRESOLVED.. V 
*..* .«-«-«-* 

* •• * *MG ... i NO ',A!' 

v 
:****01*********: 
.OBTAIN SEGMENT .. 
.. NUMBER OF ... 
:CALLED SEGMENT : 

***************** 

I 
v 

:****e 1 *********: 
«-OBTAIN SEGMENT * 
.. NUMBER OF * 
:CALL I NG SEGMENT: 

*_it«-«-«-«-«-«-_«-«-«-«-«-«-«-

I 
V 

*****F 1 ********** 
:-*-!::~~~!~*-*-: 
.. FIND COMMON * 
*SEG. WITH HIGH-* 

!**;~!*~i~*~~;**: 

I 
v v .*. OVLY70 .it. 

Gl *. 63 * • 
• * *. .* * • 

• * IS IT *. YES YES .*ENTRY LIST *. 
*. AN UPWARD .*---, *. ENTRY FOR .* *. CALL.* V *. THIS 10 .* 

*..* ***** *. .* 
* •• * *"'G * * •• * 

iNa *,:!' iNa 
v v .*. .*. HI *. H3 *. *****H4********** 

.*-* IS IT *.*. YES .*.* *.*. YES :_*_!~:~::.~:*_*_: * ****HS********** 

*.*~ 0g:~~ARD.*.~'------------ *.*:NT~~LtIST.*.*-->: E~~~~F~~:T :->: RETURN 
*. .* *..* * * *************** 

* •• * * •• * ***************** 

I~ I~ 
OYLYIO .*. OYLY90 V 

.*t~ IT *A*_ :****J3*********: 
.* LATERAL *. YES * CREATE * 

*. CALL ACROSS .-------------' * NE" ENTRY IN * 
*. *~EGION~*.* : ENTRY LIST : 

* •• * ***************** 

I~ I 
.*. V 

.*K~S I~· *. :****K3*********: 
.* AN *. YES *CHANGE VALUE OF* 

*. ALLOWABLE .... --------------:>*V-TYPE ADCON TO*---, 
*.EXCLUSIVE.* *POINT TO ENTAB * V 

*.CALL .* * ENTRY * ***** 
* •• * ***************** *"'G * 

* NO **G!* 

I ' 
**~** 
*"'G iI­

* *A~* 
* 



Chart NA. Final Processor 

FROM INTERMEDIATE 
OUTPUT OR SECOND 
PASS PROCESSOR 

* ****A2********* * 

IEWLMFNL : 

*************** 

I 
v .'. 

62 *. 
•• it. 

FNL100 
****··83·*·***··*·· ·····84*···*·.·.* 

* PLACE • 
•• OVLY it. YES .. WRITE TTR 

it. OPTlON .*---> LIST FOR 
• .TTR OF OVERLAY • 
--->.TTR LIST IN PDS. 

-.SPECIFIED.- ... SEGMENTS it. ._ : DIRECTORY : 

* •• * **.*.************ 

j<NO I 
V •.•.• C2.......... . ...... C3 .•••.••••• 

.. PLACE" .. seT UP C-BYTE .. 
-MEMBER NAME IN .. ... OF DIRECTORY ... 
.. PDS DIRECTORY *--->* FOR .. 
-FROM NAME CARD • .. BLOCK/SCATTER .. : .... ~:.~;: ..... : : .... ~~:~~! ..... : .... I 

ENTRY FROM itNA .. 
I EWLMLOG TO* 02 --, 
TERMINATE ! ••• * 1 <: __________ ...J 

FNL301A v .it • 
•• 02....... 03 ... .** •• 04-•••••• ** •• 

.. STOW ... .* ... IEWLMLOG .. 
.. 0] RECTORY .. .it *. YES *_*_*_it_*_*_*_*_* 

.. WITH AOD OR *--->*. ANY ERRORS .... --->. LOG ERROR 
... REPLACE AS .. *. .* .. TYPE AND 

... ~!~i~!;~ •• " it. it •• it·
it 

: •• *.:~~~~~; ••. *: ...... I NO I 
:.::.:~<: __________ ~ __________ J 

FNL900A .*. FNL900 .*. 
E2 it. .**.*e3*.* •• *._** E4 *. *****E5***** ••••• • * *. .. SAVE" .-RENT ORtt. .. SAVE MAIN * 

.. * ANY * .. YES * MAIN MEMBER * .* REVS * .. YES *MEMBER NAME AND* 
* .. ALIAS TO BE .. *--->*NAME AND ENTRY -->*.ATTRIBUTES ON.*->* E.P. IN * 

*. STOWED .. * * POINT PUT IN * *.. .* * DIRECTORY AND * 
*...* * ALIAS * *..* * ADJUST C-BYTE * 

* .... * ***************** * ... * ***************** 

: ';:':j NO " NO 

* **** * ~ <: __________ ...J 

FNLCN .. *. V 
F2 *.. *****F3********** *****F4********** 

.* HAVE *. * * * PICK UP * 
.*ATTRIBUTES *. yes *PRINT IMAGE TO * • ALIAS E .. P. * 

•• CHANGED SINCE.*--->* NOTIFY OF * *( EITHER DEFINED* 
*.START OF .* * CHANGED * OR USE MAIN * 

*.EDIT .* * ATTRIBUTES * * E.Poo) * 
* •• * ***************** ***************** 

• NO 
**** I 

ENTRY FROM *NA * I 
IEWLMINP TO* G2 *-> 
TERMINATE * • <:-----------' 

**** V I 
.*. FNLCN2 .*. V 

Gl *. G2 *. 
.* *. .* *. 

• *HAS IT BEEN*. YES .* XREF *. YES * * r>*. DONE .*---, *. SPECIFIED .*-->* G1 * 
*. ..* I *. oo* * * 
*..* *..* 

* •• * * •• * 
* **** * *1 NO I i NO 

: G, : I . >1 
v v IEWLCEOI oo*oo 

"'"****H1 *********.jI- *****H2********** H3 *. 
* IEWLMMAP * * IEWLMBTP * .* *. 
*-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* • * *oo YES 
* PRODUCE ->* GO TO PRINT *--->*.END OF INPUT .----. 

XREF * .jI- DIAGNOSTIC * *. .* I 
* * * DIRECTORY * *..* ................. .. .. ·· .. i .. ····.. ..~ 

V V 
* **J2******* * * **,J3******* * 

* REPOSITION * * * 
* *~~~~R~~~~~~il* * *;LOSE ALL FILE~* 

*********** 

I 
v 

*********** 

I 
V 

*****K3********** 

·*G4 •• ***** . . 
*STOW ALIAS IN* 

* PARTITIONED * 
* DATA SET * 

* *~!~;;!~~!* * 

I 
V .'. 

H4 *. *****H5********** 
.it *. * IEWLMLOG * 

.* *. YES *-*-*-*-*-*-*-*-* 
*. ANY ERRORS .*->* LOG ERROR * *. .* * TYPE AND 

*.* •• *.* :**.*~;~~!:;****: 
• NO 

I 
FNL906A V 

*****J4********** . . 
* GO TO PR I NT * * * 
*ALIAS NAME WITH->* E2 * 
* MESSAGE * .. * . . 
***************** 

I 
*~** . . 

* F2 * . . 

* ****K2********* * 

... RETURN TO * 

* SET UP * ""**KS********* 
*CONDITION CODE * * RETURN ... 
* INDICATING IF *-------------->* TO ... 

* **!~!!!!;!~;~** ... :*:~g~;~!~;~i:**: * ** ... *;!;~;~ ... * ... ** * 

Section 3: Program Organization 125 



Chart NB. 

126 

SYNAD Routine 

IEWLCROl .*. .*. .*. .*. 
A2 *. A3 *. A4 *. AS *. 

****Al********* .* *. .* IS *. .* IS *. .* *. .. .. .* IS THIS *. NO .* THIS FROM *. YES .* IT *. YES .* IS IT *. YES 
.. ENTER FROM *--->*.FROM SY5PRINT.*->*. SYSLIN OR .*->*. INCORRECT .*->*. VALID SHORT '"] * BSAM * *. .* *.SYSLIB & .* *. LENGTH .* *. BLOCK .* 
*************** *..* -.FIXED.* *..* *..-

* •• * * •• * * •• * * •• * 
.. YES .. NO .. NO .. NO 

)... 1< ! I 
.. K4 .. V 
.... *****83*********-
.*** .... ****85******·** 

.. SYNAOAF .. .. .. 
!MACRO FOR BSAM : : RETURN :< · . .. *********.****** L ..•. . . >: F3 : 

IEWLCR02 

.. ****C2********... :****:~:::::****: 
: **:::~:!;:~:*** :-->:MACRO FOR BPAN : 

***************** 

I 
v .*. 

03 *. *****04*********-.* *. .. SET BI T .. • * *. YES .. INDICATING .. 
*. ENTRY FROM .*->* ERROR WHILE • 

• .o MAP .o. .READING SVSLMOD. 
•••• * * 

• .o •• ** ...... *.*** .... ** ..... * 

L:~';:': 
**** 

IEWLCR03 
*****E3****·***.* 

**·*E2******·** * * 
* * * SVNADAF * 
* ENTER FROM *--->*MACRO FOR excp * 

* *****;~!~****** *: : 
***************** 

: *::* !->I' • • <~ __________________ J 

*.** V 
MESGPNTA .*. 

*****F2********** "F3 *. *****F4****** •• ** 
*INSERT'IEWOL30** .* *. * INSERT * 
*IN MESSAGE, SET* YES.ott ERROR *. NO * 'IEWL0294 ' IN * 
* BIT IN APT *<---.. READING .*--->*MESSAGE SET BIT* 
* FOR BIT MAP * *. SYSLMOD .o* * IN APT OR BIT * 
* PROCESSOR * *..* * MAP PROCESSOR * 
***************** * • .ott *********.* •• **** . 

L----------.1<--------------J 
v 

:***"'G3**"''''**'''**: 

* Move ... 
* MESSAGE TO * * PR INT aUFFER ... · . *** •• ********.* •• 

I 
V 

***·*H3********** 
: __ !:::=i~~~*_*_: 
: PRINT MESSAGE: 

* * ** •••• *********** 

I 
V 

*****J3********** · . 
• * :SYNADRLS MACRO : · . ************.**** 

I 
v 

'" .****K2********** K3 *. 
* ****Kl*********. : T¥~~lg~~I~~T: YES .*.tt ERROR .... *. NO ... ****K4********* * 

RETUR"'I TO * <---* ERROR WHILE *<---*. READING ._>* EXIT TO ... 
* ***~!~~!~;~**** * .READING SYSLMOD* • .o SVSLMOD .* '" *FINAL TO ABORT * 

:**.* ... *.********! *. *. *.tt·* *!** ***** ... ********* . . 
* K4 * * • 



Chart NC. ERR. Logging RTN-IEWLMLOG 

****A2********* 
* * IEWLMLOG 

*************4 ... 

I 
V 

*****82********** 
* * *SEPARATE ERROR ... 
... CODE AND ... 
*MESSAGE NUMBER ... 

***************** 

I 
V 

LOG03 
******Cl*********** 

LOG07 .*. 
C2 * • 

WRITE 
OUT CARD 

If.'lAGE 

************* 

I 
V 

****01********* 
* * RETURN ... 

• * *. 
YES.* CONTROL *. 

<-------*.STATEMENT TO .* 
*.BE LISTED.* 

*. .* 
* •• * 

• NO 

I 
v .*. 

02 *. 
.* *. 

.* CESO *. NO *. SYMBOL TO BE .... ---, 

*.*~R6~~E~*.* I 
*·*·~ES I I 1 

1 
V 

*****E2********** 
* * MOVE SYMBOL I 

TO MESSAGE I 

····:::I:···· I 

_* IS THERE *. NO V 
*. A SECOND .~ 

*. SYMBOL.* I 
*. .* * •• * * YES I 

I I 
v 1 

:****G2*********! I 
MOVE SECOND I 

* SYMBOL TO * I 
*MESSAGE BuFFER * I 
:"**.**j*******: I 

1<-----'-

LOGIO V 
******K2*********** 

WRITE 
OUT MESSAGE 

BUFFER 

************* 

I 
v 

*** ... 
* * * 84 * * • 

* * ... 84 ... 

* * 
**** 

I 
LOGOI V 

*****84********** 
* * * UPDATE ... 
*CONDITION CODE ... 
• * * • 
***************** 

I 
v .*. 

C4 *. 
.* *. 

.* *. YES 
*.;~VERlrY ca~;.*1 

*. .* 1 
* •• * v 

... NO ***** 

I ::~;:TO FINAL 
PROCESSOR 

V 
****044 ... 4****** 

* * ... RETURN 

* 

Section 3: Program Organization 127 



SECTION 4: MICROFICHE DIRECTORY 

The microfiche directory is designed to 
help you find named areas of code in the 
program listing, which is contained on 
microfiche cards at your installation. 
Microfiche cards are filed in alphameric 
order by object module name. If you wish 
to locate a control section, entry point, 
table, or routine on microfiche, find the 
name in column one and note the associated 
object module name. You can then find the 
item on microfiche, via the object module 
name; for example, the ~lias Table is on 
card IEWLMENT. The other columns provide a 

description of the item, its flowchart ID 
(if applicable) , its overlay segment numb­
er, and a synopsis of its function (or its 
contents, if a table) • 

This section also contains: 

• A CSECT-module cross-reference table. 

• Diagrams of the overlay tree structures 
for the 44K and 88K versions of Linkage 
Editor F. 

r-----------T-----------T-----------T--------~------T--------T-------------------------, 
1 Name 1 Description 1 Object ICSECT 1 Overlay 1 Chart 'Synopsis 1 
1 1 1 Module Name 1 Name 1 Segment 1 ID 1 1 
1 1 1 (Microfiche 1 1 ** 1 1 1 
1 1 1 Name) 1 1 1 1 1 
~-----------+-----------+-----------+-------_+_------+--------+-------------------------1 
IAlias 1 Table IIEWLMENT IIEWLMENTI 7,3 1-- IALIAS symbols from CESD 1 
1 Table 1 1 1 1 1 1 1 
~----------+----------_+-----------+-------_+_------+--------+-------------------------1 
IAII purposelTable 1 I EWLMAPT IIEWLMAPTI 1,1 1-- IMajor communication area 1 
1 Table 1 1 1 1 1 1 1 
~----------+-----------+-----------+-------~+-------+--------+-------------------------1 
ICaiis 1 Table IIEWLMRAT I I EWLMRAT 1 3,2 1-- IEntries for V-type ADCONSI 
1 List 1 1 1 1 1 1 1 
~-----------+-----------+-----------+--------+-------+--------+-------------------------1 
ICESD 1 Table IIEWLMESD IIEWLMESDI 5,2 1-- IESD control information I 
~-----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IDelink 1 Table IIEWLMINP IIEWLMINPI 3,2 1-- IEntries for symbols being 1 
1 Table 1 1 1 1 1 1 deleted 1 
~-----------+-----------+-----------+--------+_------+--------+_------------------------1 
1 Downward 1 Table IIEWLMENS IIEWLMENSI 1,3 1-- IDownward calls from 1 
1 Ca lIs 1 1 1 1 1 1 V-type ADCONS 1 
1 List 1 1 1 I 1 1 1 
~----------+_---------_+-----------+--------+-------+--------+-------------------------1 
1 Entry 1 Table 1 I EWLMREL 1 I EWLMREL 1 8,3 1-- IControl information for 1 
1 List 1 1 1 1 1 1 V-type ADCONS 1 
~----------+-----------+-----------+--------+-------+--------+-------------------------1 
1 FSNX IEntry PointlIEWLMFNL 1 I EWLMFNL 1 9,3 1-- ISynchronous file error 1 
1 1 1 1 1 1 1 exit 1 
~-----------+-----------+-----------+--------+-------+--------+-------------------------1 
IGETIDMUL ILookahead/ IIEWLMSCD IIEWLMSCDI 8,3 IMC IGet next ID/multiplicity 1 
1 1 Readahead 1 1 1 1 1 1 
1 1 Routine 1 1 1 1 1 1 
~-----------+-----------+-----------+--------+-------+--------+-------------------------1 
IHESD 1 Table IIEWLMOUT 1 I EWLMOUT 1 1,3 1-- IESD control information 1 
~----------+-----------+-----------+--------+-------+--------+-------------------------~ 
1 High ID 1 Table 1 IEWLMOUT 1 IEWLMOUT 1 1,3 1-- ,High ID for each segment 1 
1 Table 1 1 1 1 1 1 1 
~----------+-----------+-----------+--------+-------+--------+-------------------------~ 
1 I EflLCAD 1 1 Entry Point 1 IEWLMADA 1 IEWLMADA 1 1,3 1-- 1 Compute number of ENTAB I 
1 1 I 1 1 , 1 bytes per segment I 
~----------+-----------+-----------+--------+-------+--------+-------------------------~ 
1 I EWLCAUT IEntry PointlIEWLMINC 1 I EWLMINC 1 3,2 IJS,JT IAutomatic library call 1 
1 1 I 1 1 1 1 proceSSing 1 L ___________ ~ _________ ~ ___________ ~ ________ ~ ______ ~ ________ ~ _________________________ J 

(Continued) 

128 



(Continued) 
r-----------T-----------T-----------T-------~------~--------T-------------------------, 
I Name IDescriptioniObject ICSECT I OVerlay I Chart I Synopsis I 
I I IModule NameiName ISegmentiID I I 
I I I (Microfiche I I ** I I I 
I I I Name) I I I I 1 
~-----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IIEWLCDCN IEntry PointlIEWLMRCG I I EWLMRCG I 5,2 I*JG IRemove CESD item from 1 
I 1 I I I I I library chain 1 
~----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IIEWLCDLK IEntry PointlIEWLMINP IIEWLMINPI 3,2 I*JF,JG, I I 
I IJK I I I I IBuilds delink table I 
~----------+-----------+-----------+--------+-------+--------+-------------------------~ 
I I EWLCEOD IEntry PointlIEWLMINP IIEWLMINPI 3,2 1-- IEOD for SYSLIB 1 
~-----------+-----------+-----------+--------+-------+--------+-------------------------~ 
1 I EWLCFAB IEntry PointlIE~~MFNL IIEWLMFNLI 9,3 1-- ITermination processing I 
~----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IIEWLCPTH IEntry PointlIEWLMRCG IIEWLMRCGI 5,2 1-- IDetermine common segment I 
I I I I I 1 1 in Overlay path 1 
~----------+-----------+-----------+--------+-------+--------+-------------------------~ 
I I EWLCRBB IEntry PointlIEWLMAPT IIEWLMAPTI 1,1 1-- IDefine SYSLIB DECB I 
~----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IIEWLCRBN IEntry PointlIEWLMAPT IIEWLMAPTI 1,1 1-- IDefine SYSLIN DECB 1 
~----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IIEWLCR01 IEntry PointlIEWLMROU IIEWLMROUI 1,1 1-- ISYNAD routine 1 
~-----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IIEWLCSDB I Label I I EWLMROU IIEWLMROUI 1,1 1-- ISYSLIN DCE I 
~----------+-----------+-----------+--------+-------+--------+-------------------------~ 
1 I EWLEEON IEntry pointlIEWLMINP IIEWLMINPI 3,2 1-- IEOD for SYSLIN 1 
~-----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IIEWLERDM I Entry Point I IEWLMINP 1 IEWLMINP I 3,2 1-- I Read Routine 1 
~----------+-----------+-----------+--------+-------+--------+-------------------------1 
I IEWLMADA I CSECT 1 IEWLMADA 1 IEWLMADA I 7,3 I KA I Address assignroent 1 
~----------+-----------+-----------+--------+-------+--------+-------------------------~ 
I I EWLMAPT ICSECT IIEv~MAPT 1 I EWLMAPT 1 1,1 1-- IAII purpose table 1 
~----------+----------_+-----------+--------+-------+--------+-------------------------1 
IIEWLMBTP ICSECT IIEWLMBTP IIEWLMBTPI 9,3 I*NA IPrint Error Messages 1 
~-----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IIEWLMDEF ICSECT IIEWLMDEF IIEWLMDEFI 1,1 1-- IDefault values for SIZE 1 
~----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IIEWLMEND ICSECT IIEWLMEND I I EWLMEND I 5,2 IJN lEND Statement Processing \ 
~-----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IIEWLMENS ICSECT IIEWLMENS I I EWLMENS I 7,3 IKE IENTAB size deterroination I 
~----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IIEWLMENT I·CSECT I IEWLMENT I I EWLtJ'..ENT I 7,3 I KC, KD I ENTRY statement process- 1 
1 1 1 I I I ling \ 
~-----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IIEWLMESD ICSECT IIE~MESD IIEWLMESoi 5,2 IJE,JF,JGIESD record processing I 
~-----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IIEWLMFNL ICSECT IIE~LMFNL IIFWLMFNLI 9,3 INA IFinal processing 1 
~----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IIEWLMINC ICSECT IIEWLMINC IIEWLMINCI 3,2 \JR IInclude processing I 
~-----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IIEWLMINP I CSECT IIEi.qLMINP I IEWLMINP I 3,2 I JA I Input processing I 
~-----------+-----------+-----------+--------+-------+--------+-------------------------~ 
II~~LMLDB I Label IIEWLMROU IIEWLMROUI 1,1 1-- ISYSLIB DCB I 
~-----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IIEWLMLOG I Error Diag. IIEWLMROU 1 IEWL1Y1ROU I 1, 1 I NC I Print error messages and 1 
I I and Log I I I I I log control cards I 
I I Routine I I I I I I 
~-----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IIEWLMMAP ICSECT IIEWLMMAP. IIEWLMMAPI 6,3 ILfl lMAP/XP.EF processing I 
~----------+-----------+-----------+--------+-------+--------+-------------------------1 
IIEWLMMDI IEntry PointlIEwLMINP IIEWLMINPI 3,2 IJB lObject module processing I L-__________ ~ __________ ~ __________ ~ ________ ~ _______ ~ ________ ~ _________________________ J 

(Continued) 

Section 4: Microfiche Directory 129 



(Continued) 

r-----------T-----------T-----------T-------~-------T--------T-------------------------, 

IName IDescriptionlObject ICSECT IOverlaylChart 1 Synopsis 1 
I 1 1 Module Name 1 Name 1 Segment I ID I 1 
I 1 I (Microfiche I 1 ** I I 1 
1 1 I Name) 1 I 1 1 I 
~-----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IIEWLMOPT I CSECT IIEWLMOPT 1 IEWLMOP'I' 1 2,2 1 *IA 1 Determine attributes and 1 
I 1 1 1 I 1 1 options 1 
~-----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IIEWLMOUT I CSECT 1 IEWLMOUT I IEWLMOUT I 7,3 1 L.A 1 Intermediate output 1 
1 1 1 1 I 1 1 processing I 
~-----------+-----------+-----------+--------+-------+--------+-------------------------~ 
1 I EWLMRAT ICSECT 1 I EWLMRAT IIEWLMRATI 3,2 IJH ITXT and RLD processing 1 
~-----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IIE'.iLf1RCG 1 CSECT 1 IEWLMRCG 1 IEWLMRCG I 5, 2 1-- 1 Replace/change processing 1 
~-----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IIE'.vLMREL ICSECT IIEI'lLMREL IIEWLMRELI 8,3 IMF,MG,~mIRelocate address I 
1 I 1 1 1 1 1 constants 1 
~-----------+-----------+-----------+--------+-------+--------+-------------------------~ 
1 IE~VLMROU I CSECT IIEWLMROU 1 IEWLf.1ROU 1 1 ,1 1-- 1 Linkage editor F entry 1 
1 1 1 1 1 1 1 point 1 
~-----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IIEWLMSCD 1 CSECT IIEWLMSCD 1 IEWUJSCD I 8,3 1 MA, MB 1 Second pass process ing 1 
~-----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IIEWLMSCN ICSECT IIEv~SCN IIEWLMSCNI 4,2 IJO,JP IControl statement scan- 1 
1 1 1 I 1 lining 1 
~----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IIEWLMSYM ICSECT IIEWLMSYM IIEWLMSYMI 5,2 IJD ISYM processing 1 
~----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IIEWLMTXT ICSECT I I EWLMRAT IIEWLMTXTI 3,2 IJI ITXT processing 1 
~-----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IINP210 ILabel IIEWL~INP IIEWLMINPI 3,2 IJC ILoad module processing 1 
~----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IRDRLD IRLD Read IIEWLMSCD IIEWLMSCDI 8,3 IMD IRead RLDs from SYSUTl I 
1 1 Routine 1 I I 1 1 1 
~----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IRDTXT IText Read IIEWLMSCD IIEWLMSCDI 8,3 IMD IRead TXT from SYSUTl 1 
1 1 Routine 1 1 I I 1 I 
~----------+-----------+-----------+--------+-~-----+--------+-------------------------~ 
IRelocation ITable 1 I EWLMADA IIEWLMADAI 7,3 1-- IRelocation constants 1 
1 Constant 1 1 1 I 1 1 1 
1 Table 1 I 1 1 1 1 1 
~----------+-----------+-----------+--------+-------+--------+-------------------------~ 
1 Renumbering 1 Table IIEWLMESD IIEWLMESDI 3,2 1-- IESD - CESD item resolu- 1 
1 Table I 1 1 1 1 1 tion 1 
~-----------+-----------+-----------+--------+-------+--------+-------------------------~ 
1 RLD I/O 1 Table IIEWLMRAT 1 IEWLMRA'I' 1 3,2 1-- 1 Description of RLDs on 1 
1 Control 1 1 1 1 I 1 SYSUT1 1 
1 Table 1 1 1 1 I 1 1 
~-----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IRLD Note 1 Table 1 I EWLMRAT 1 I EWLMRAT 1 3,2 1-- ILocation of RLDs on 1 
1 List 1 1 1 1 I 1 SYSUTl 1 
~----------+-----------+-----------+--------+-------+--------+-------------------------~ 
IRLD001 IRLD IIEWLMRAT IIEJ;vLMRATI 3,2 IJK,JL IRLD processing 1 
1 1 Processing 1 1 1 I I 1 
1 I Routine 1 1 I 1 1 1 
~-----------+-----------+-----------+--------+-------+--------+-------------------------~ 
I Scatter 1 Table IIEWLMOUT I I EWLMOUT I 7,3 1-- 10rdered symbol addresses 1 
1 Table 1 I 1 1 I 1 I 
~-----------+-----------+-----------+--------+-------+--------+-------------------------~ 
ISCDENTAB IENTAB and IIEWLMREL I I EWLMREL I 6,3 I*MB 13uild and write ENTABs 1 
I 1 ENTAL RLD 1 I I I I and ENTAL RLD t,o SYSLMOD I 
I I Creation I 1 I I I 1 
1 I Routine 1 1 I I I I L-__________ ~ ___________ ~ ___________ ~ ________ ~ ______ ~ ________ ~ _________________________ J 

(Continued) 

130 



(Continued) 
r-----------T-----------T-----------T--------T-------T--------T-------------------------, 
1 Name 1 Descriptionl Object ICSECT 1 Overlay 1 Chart 1 Synopsis 1 
1 1 1 Module Name 1 Name 1 Segment 1 ID 1 1 
1 1 1 (Microfiche 1 1 ** 1 1 1 
1 1 1 Name) 1 1 1 I I 
~-----------+-----------+-----------+--------+-------+--------+-------------------------~ 
I Segment I Table 1 I EWLMADA IIEWLMADAI 7,3 1-- ISegment lengths 1 
1 Length I 1 I 1 I 1 1 
1 Table 1 1 I I 1 I 1 
~----------+-----------+-----------+--------+-------+--------+-------------------------~ 
ISEGTAB 1 Table IIEWLMOUT 1 I EWLMOUT 1 7,3 1-- ISegment relationships 1 
~----------+-----------+-----------+--------+-------+--------+-------------------------~ 
ISPLTADCN ISplit ADCONIIEWLMREL IIEWLMRELI 6,3 I*MF IRelocate split AD CONs 1 
1 1 Routine 1 I 1 1 1 1 
~--------+---------+---------+--------+-------+--------+-------------------------1 
ISYSLMOD 1 Label IIEWLMROU IIEWLMROUI 1,1 1-- ISYSLMOD DCB 1 
~----------+---------+-----------+--------+-------+------+-------------------------1 
ISYSPRINT 1 Label IIEWLMROU 1 I EWLMR OU 1 1,1 1-- ISYSPRINT DCB 1 
~-----------+----------_+-----------+--------+------_+--------+-------------------------1 
ISYSUT1 1 Label IIEWLMROU IIEWLMROUI 1,1 1-- ISYSUT1 DCB I 
~----------+---------+-----------+--------+-------+--------+-------------------------~ 
ITest I/O 1 Table 1 I EWLMRAT I I EWLMTXT 1 3,2 1-- IAddress of first text in 1 
1 Control 1 1 1 1 1 1 each segment 1 
1 Table (TTR 1 1 1 I 1 1 1 
1 Li st) 1 1 1 1 1 1 1 
~-----------+----------_+-------+--------+-------+--------+-------------------------1 
1 Text I/O 1 Table 1 IEWLMRAT 1 IEWLMTXT 1 3, 2 1-- 1 Description of TXT on 1 
1 Tdble 1 I 1 1 1 I SYSUT1 1 
~-----------+----------_+-----------+__------+_------+--------+-------------------------1 
ITEXT Note 1 Table IIEWLMRAT IIEWLMTXTI 3,2 1-- ILocation of TXT on SYSUT11 
I List 1 I I 1 1 1 I 
~----------+----------_+-----------+-------_+-------+------__+-------------------------1 
1 Translation ITable IIEWLMOUT I I EWLMOUT 1 7,3 1-- IPointers to Scatter Table 1 
1 Table I 1 I I 1 I entries 1 
~----------+-----------+-----------+--------+-------+--------+-----------------------~ 
I TXTSUF ITXT Write IIEWLMRAT I I EWLMTXT 1 3,2 IJJ IWrite test to SYSUT1 I 
1 1 Routine 1 I 1 1 I 1 
~-----------+-----------+-----------+------+-------+--------+-----------------------~ 
IWRTCRRLD IRLD/ControlIIEWLMSCD IIEWLMSCDI 6,3 I*MA,MB IWrite RLDs and control - 1 
1 1 Record 1 1 1 1 1 records 1 
1 1 Wri te 1 1 1 1 1 1 
1 1 Routine 1 I I 1 1 1 
~----------+----------_+---------+-------_+-------+--------+-------------------------1 
IWRTTXT ITXT Write IIEWJMSCD IIEWLMSCDI 6,3 IME IWrite TXT to SYSLMOD 1 
1 - 1 Routine I 1 I 1 1 1 
~-----------+_----------+-----------+-------_+_------+--------+-------------------------1 
IRLDBUF IRLD Write IIEWLMRAT I I EWLMRAT I 3,2 IJM IWrite RLDs and RLD Note 1 
I 1 Routine 1 1 1 1 1 List to SYSUT1 1 
~-----------i-----------~-----------~--------i-------i-----___ i _________________________ ~ 
1 *Mentioned only; not a completp chart for this routine. 1 
1 **The first number refers to the segment in the 44K overlay structure; the second 1 
1 number refers to the segment in the 88K overlay structure. 1 l _______________________________________________________________________________________ J 

Section 4: Microfiche Directory 131 



Table 9. Level F Module -- CSECT Cross 
Reference Table 

r-----------------------------------------, 
, Module Name CSECT Name , 
~-----------------------------------------i 

IEW~lADA IEWLMADA 
IEWL~APT IEWL~APT 

I EWLMBTP IEWLMBTP 

I EWLMEND 
I EWLMENS 
I EWLMENT 

IEWLMESD 
I EWLMFNL 
IEWLMINC 

IEWLMINP 
IEWLMIviAP 
I EWLMOUT 

I "EWLMRAT 
I EWLMRCG 
IEWLMREL 

I EWLMROU 
I EWLMSCD 
IEWLMSCN 

IEWLMEND 
IEWLMENS 
IEWLMENT 

IEWLMESD 
IEWLf."FNL 
IEWLMINC 

IEWLMINP 
I EWLMMAP 
IEWLMOUT 

IEWLMRAT,IEWLMTXT 
I EWLMRCG 
I EWLMREL 

IEWLMROU 
IEWLMSCD 
IEWLMSCN 

I EWLNSYM IEWLMSYM,IEWLMDEF L-_______________________________________ _ 

132 



Overlay Tree Structure for the 44K Version of Linkage Editor F 

r--
1 IEWLMROU (Entry Point) 

I EWLMAPT 
IEWLMDEF 

2 IEWLMINT 3 IEWLMINP 6 I EWLMMAP 
IEWLMOPT IEWLMRAT 

IEWLMTXT 
IEWLMINC 

L.-
7 I EWLMADA 8 IEWLMREL 9 IEWLMFNL 

IEWLMENT IEWLMSCD IEWLMBTP 
IEWLMENS 
IEWLMOUT ----

-

----4 IEWLMSCN 5 IEWLMESD 
IEWLMEND 
IEWLMRCG 

'-- IEWLMSYM 

-
Table ond Buffer Area 

Data Management and Control Program Blocks 

Figure 35. OVerlay Tree Structure for Linkage Editor F (44K) 

Section 4: Microfiche Directory 133 



1 IEWLMROU (Entry Point) 
IEWLMAPT 
IEWLMDEF 

2 3 
IEWLMINT IEWLMADA 
IEWLMOPT IEWLMOUT 
IEWLMINP IEWLMENT 
I EWLMRAT IEWLMENS 
IEWLMEND IEWLMFNL 
IEWLMESD IEWLMBTP 
IEWLMRCG IEWLMMAP 
IEWLMSYM IEWLMSCD 
IEWLMINC IEWLMREL 
IEWLMSCN 
IEWLMTXT 

'--

Ir 
Table and Buffer Area 

~ 
Data Management and Control Program Blocks 

Figure 36. OVerlay Tree Structure for Linkage Editor F (88K) 

134 



SECTION 5: TABLE LAYOUTS 

This section provides detailed layouts of internal tables used during Linkage Editor F 
processing. Table 10 indicates the modules in which tables are initialized and used or 
modified. Tables described in this section are included alphabetically except for the 
All Purpose Table, which is shown first. 

Table 10. Table Construction and Usage 
,-----------------------------r------T---------------------------, 
I Table IBuilt bYIUsed and/or Modified by I 
r-----------------------------+--------t--------------------------------~ 
IAlias Table I I EWLMENT I I EWLMFNL I 
1-----------------------------+-------+--------------------------~ 
IAII Purpose Table IIEWLMINTI** I 
r--------------------------------f-------t----------------------------~ 
ICaiis List ILEWLMRATIIEWLMENS I 
r--------------------------------+-------+----------------------------------~ 
ICESD IIEWLMESDIIEWLMRAT,IEWLMSCN,IEWLMINC,IEWLMAUT, I 
I I II~wLMENS,IEWLMENT,IEWLMOUT,IFWLMTXT I 
r-----------------------------+-------+---------------------------------~ 
IDelink Table I IEWLMFSDI IEWLMRAT,IEWLMSCD I 
r----------------------------------+-------+-----------------------------~ 
IDownward Calls List IIEWLMENSI* I 
r- +--------t---------------------------------~ 
IEntry List I IEWLMSCD I * I 
r----------------------------------+-------+--------------------------~ 
IEntry Table I IEWLMSCDI * I 
r----------------------------------+--------+-------------------------------------~ 
I Half ESD I IEWLMOUT I IEWLMSCD I 
r--------------------------------------+--------+-----------------------------------~ 
tHalf ESD Prefix IIEWLMSCDI* I 
r--------------------------------+--------+-----------------------------------~ 
IHigh ID Table IIEWLMOUTI* I 
r--------------------------------+--------+--------------------------------~ 
IMain Storage Allocation Table I IEWLMINTI * I 
IRelocation Constant Table IIEWL~ADAIIEWLMOUT,IEWLMSCD I 
r-----------------------------------f------+-----------------------------~ 
IRenumbering Table I IEWLMESDI IEWLMRAT,IEWLMTXT I 
r-------------------------------+-------+----------------------------------~ 
IRLD Input Control Blocks tIEWLMSCDI* I 
r------------------------------------t------+------------------------------------~ 
IRLD Note List I IEWLMRATI IEWLMOUT,IEWLMSCD I 
r----------------------------------+--------+-----------------------------------~ 
IRLD Output Control Blocks IIEWLMSCDI* I 
~-------------------------------------t-------+----------------------------------~ 
ISecond Pass Text Control Blocks IIEWLMSCDI* I 
1-------------------------------+--------+------------------------------------i 
ISEGLGTH Table IIEWLMADAI* I 
~---------------------------------------+--------+-----------------------------------~ 
I Segment Table (SEGTA 1) I IEWLMOUT I IEWLf.1SCD I 
~-----------------------------------+--------+------------------------------------~ 
I Text I/O Table I IEWLMTx'r I IEWLMOUT, IEWLMSCD I 
r----------------------------------+-------+--------------------------------i 
IText Note List I IEWLMTXTI IEWLMOUT,IEWLMSCD I 
~-----------------------------------+--------+-----------------------------------~ 
ITTR List ~XT I/O Control Tabl~ IIEWLMSCDIIFWLMSCD I 
r-----------------------------------~--------~---------------------------------i 
I*Built and processed entirely within one routine. I 
I**Major communications area throughout linkage editor processing. I L _______________________________________________________________________________ J 

Section 5: Table Layouts 135 



Table 11. All Purpose Table (AP~ 

All Purpose Table (APT) 

POSE! 
POSE2 POSE3 I POSE4 
POSE5 POSE6 I POSE7 I POSE8 I POSE9 

POSE9 I POSE10 POSEll I PDSE12 
PDSE12 I PDSE13 PDSE14 I PDSE15 iPDSE16 

o 
8 

16 
24 
32 
40 
48 
56 
64 
72 
80 
88 
96 

104 

PDSE16 I POSE17 I PDSE18 

112 
120 
128 
136 
144 
152 
160 
168 
176 
184 
192 
200 
208 
216 
224 
232 
240 

136 

PDSE18 

REGSA 

IOCT 
CHR 
PRAL 
RCCE 
ALCB 
SGTl 
TNTl 

RLDINPAO 
TXTIO 
DLKT 
SELST 
RNLS2 

RLDOUTBF 

I REGSA 
REGSA 
REGSA 
REGSA 
REGSA 
REGSA 
REGSA 
REGSA 
REGSA 

I IOCT 
IOCT 
IOCT 

APTO I APTl I APT2 I APT3 
CSNO I CRNO 

FLCD 
RCCB 

OVCMBGAD 

488 
496 
504 
512 
520 
528 
536 
544 
552 
560 
568 
576 
584 
592 
600 
608 
616 
624 
632 
640 

CLLT 
RNTl 
RECNT 
ALAS 
CHESD 
TNLS2 
HRLIST 
HIARADD 

I EWLCRBN 

RLDOUTl 
TXTBFBEG 
MULTSIZE 
SZSYSUTl 
VALUEI 
MSGONE 
MSGTHREE 

OECBUN 

NEGATE 

248 

~ 256 
Vl.B 264 o u 
0.. !! 272 

is 280 
288 
296 

Vl 304 "U 
~O 312 

Vl -
320 l!~ 

.!!! c 328 

"''' 336 " ~ o<<C 344 
352 
360 

O]..!! 368 
-:::.. c.D 376 o D 

384 ul-
392 
400 
408 
416 

$ 424 ::;; 
432 D 

I-
440 '0 

$ 448 

~ 456 

~ 
464 
472 
480 

IEWLCRBN 
IEWLCRBN 
I EWLCRBN 

I 
I EWLCWBB 
I EWLCWBB 
IEWLCWBB 

DECBUN 
OECBUN 

DECBLIB 
DEC BUB 

BITMAP 
LINECNT I HISEV INCBRKPT 

CRRTlNCL ENCDX ENTIX 
ENRIX I ENT2X ENR2X ENIOX 
ENCLX I ENDTX ENSIX BUFSIZ 

HESO ENELTX ENRLD2X 
ENSPX LSTS 

EPSM 
ENTIC ENRIC ENITC ENIRC 
ENTOC ENCLC ENSIC ENASC 
ENOTC EN CDC FNFI TC FNT?C 
ENIaC ENSPC SYSRTN 

SYSRTN Spaces 

Spaces 
SSI 

MAXBF I 

IEWLCWBB 

RLDOUT2 
TXTBFEND 
UTlSIZE 
RLDSIZE 
VALUE2 
MSGTWO 
I EWLCLAC 

DECBUB 

Spaces 
Spoces 
Spaces 
Spoces 
Spaces 
Spaces 
Spoces 
Spaces 

I ERDIG 
FFCADR 

LIBNAME 
LIBOPEN 

SAVATS I APTSWS INEWSWINEWSW: 

IEWLCRBB 
IEWLCRBB 
IEWLCRBB 

Z'" 
::iu 
Vl UJ 
>-0 
Vl 

~'" ....ou 
~o 

IEWLCRBB 1 

j 
., 
> 
D 

Vl 



Explanation of APT Entries -- Level F 

PDSEl Member or alias name of module being creat 

PDSE2 Relative disk address (TTR) of first record of module on SYSLMOD 

PDSE3 C-byte. Initial value 0 

Bit 0 Alias indicator 

Bits 1-2 Number of TTRs in user's data 

Bits 3-7 Lengh of user's data in halfwords 

PSDE4 Relative disk address ('I'TRO) of first text record 

PDSES Relative disk address (TTR) of note list or scatter-translation record 

PDS1.':6 "L" byte: number of TTKs in note list if present 

PDSE7 First attribute byte. 

Module Attribute Initial Value 
Bit 0 - Reenterable 0 

Bit - Reusable 0 

Bit 2 - Overlay 0 

Bit 3 - Test 0 

Bit 4 - Only loadable 0 

Bit S - Block/scatter 0 

Bit 6 - Executable 1 

Bit 7 - 1 text record, no RLDs 0 

PDSE8 Secone attribute byte 

Bit 0 - Compatibility: on indicates 1 
not DC 

Bit 1 - Origin of first text record 1 
is zero 

Bit 2 - Entry point assigned by 1 
linkage editor is 0 

Bit 3 - Module contains no RLDs 1 

Bit 4 - Module can be reprocessed 0 
by linkage editor 

Bit S - Module does not contain 0 
symbol cards 

Bit 6 - Spare 0 

Bit 7 Module is refreshable o 

PDSE9 Total contiguous main storage requirements of this module 

PDSE10 Length of first text record 

Section 5: Table Layouts 137 



PDSEll 

PDSE12 

PDSE13 

PDSE14 

PDSE15 

PDSE16 

PDSE17 

PDSE18 

REGS A 

IOCT 

APTO 

APT 1 

APT2 

138 

Entry point address 

Assigned origin of first text record 

Length, in bytes, of scatter list 

Length, in bytes, of translation table 

ESDID of the first text record 

ESDID of the control section containing the entry point 

Entry point of main member name 

Member name of module 

Register save area for IOCS 

I/O control table 

All PurEQse Indicators 
Bit o - NCAL 

Bit 1 - XREF 

Bit 2 - MAP 

Bit 3 - LET 

Bit 4 - LOG 

Bit 5 XCAL 

Bit 6 - TXT/RLD 

Bit 7 - A library card has been read 

All purpose indicators 

Bit 0 - More include input to come 

Initial Value 
o 

o 

o 

o 

o 

o 

o 

o 

Bit 1 Automatic library call in operation 

o 

o 

o Bit 2 Object or load module 

Bit 3 - Delete indicator 0 

Bit 4 - Entry point received 0 

Bit 5 - Symbolic or absolute entry point 1 

Bit 6 - Entry card received 0 

Bit 7 - ESD Write indicator 0 

All purpose indicators 

Bit 0 - No length received 

Bit 1 - No length indication 

Bit 2 - First text record 

Bit 3 - Status indicator received 

Bit 4 - Include previously initiated 

o 

o 

o 

o 

o 



APT 3 

Bit 5 - I/O overlap bit o 

Bit 6 - In module indicator 0 

Bit 7 - Programmer punched card continuation 0 

All purpose indicators 

Bit 0 - End of file 0 

Bit 1 - Name card received~ end of input 0 
for load module 

Bit 2 - End of SYSLIN input (/*) 

Bit 3 - To STOW as replacement 

Bit 4 - First text of load module 

Bit 5 - First text of segment 

Bit 6 - RLDs for group 

Bit 7 - SYSLIB opened 

o 

o 

o 

o 

o 

o 

CTTR TTRO of first CESD record on SYSLMOD. if MAP or XREF is specified. 

CSNO CUrrent segment number 

CRNO CUrrent region number 

PRAL Pseudo register accumulative length 

FLCD Address of first deleted CESD entry 

RCCE Address of end of replace/change chain 

ALCB Address of alias chain beginning 

OVCMBGAD Address of beginning of overlay chain 

SGTl Address of SEGTA1 - 1 

CLLT Address of calls list table 

TNT 1 Address of text note list 1 

.RNTl Address of RLD note list 1 

RLDINPAD Address of RLD input buffer 

RECNT Address of relocation constant table and renumbering table - 1 

TXTIO Address of test I/O table 

ALAS Address of alias table 

DLKT Address of delink table - 1 

CHESD Address of composite ESD - 16 

SELST Address of second pass entry list 

TNLS2 Address of text note list 2 

RNLS2 Address of RLD note list 2 

Section 5: Table Layouts 139 



TTRLIST 

RLDOUTBF 

HIARADD 

BITMAP 

LINECNT 

HISEV 

I NCBRKPT 

CRRTINCL 

ENCDX 

ENT1X 

ENR1X 

ENT2X 

ENR2X 

ENTOX 

ENCLX 

ENDTX 

ENS1X 

BUFSIZ 

HESD 

ENELTX 

ENRLD2X 

ENSPX 

LSTS 

EPSM 

ENT1C 

ENR1C 

ENITC 

ENIRC 

ENTOC 

ENCLC 

ENS1C 

ENASC 

ENDTC 

ENCDC 

140 

Address of TTR list 

Address of RLD output buffers 

Address of hierarchy table 

Switches denoting error messages logged 

Lines on this page 

Highest severity message 

Address of breaking point in include chain 

Address of currently included ESD item 

Maximum number of entries in CESD/HESD tables 

Maximum number of entries in test note list 1 

Maximum number of entries in RLD note list 1 

Maximum number of entires in test note list 2 

Maximum number of entries in RLD note list 2 

Maximum number of bytes in text I/O table 

Maximum number of entries in calls list 

Maximum number of entries in delink table 

Maxiwum number of segments 

Size of load module input buffer 

Address of HESD Table - 8 

Maximum number of entries in second pass entry list 

Maximum size on input RLD buffer 

Used by IEWLMOUT 

Last segment in each region (regions 1 - 4) 

Entry point symbol or end card address/symbol 

Current number of entries in text note list 1 

CUrrent number of entries in RLD note list 1 

CUrrent number of bytes in text I/O control table 

Current number of bytes in RLD I/O control table 

CUrrent number of bytes in text I/O table 

CUrrent number of bytes in calls list 

Current number of entries in SEGTAB 

Current number of entries in alias table 

CUrrent number of entries in de1ink table 

CUrrent number of entries in HESD/CESD table 



ENELTC 

ENT2C 

ENR2C 

ENSPC 

SYSRTN 

SPACES 

ERDIG 

SSI 

FFCADR 

LIBNAME 

LIBOPEN 

SAVATS 

APTSWS 

NEWSW 

NEWSW2 

Current number of entries in 2nd pass entry list 

Current number of entries in text note list 2 

Current number of entries in RLD note list 2 

Highest segment number with text 

Save area for registers 13 and 14 for return to scheduler 

Save area 

Address of IEWLMLOG 

System status indicator 

Highest address retained by allocator 

Name of library for automatic library call 

Name of library currently open 

Attributes save area 

Switches Initial Value 
Bits o - 3 space 

Bit 4 - Bit map processed 0 

Bit 5 - Linkage editor input received 0 

Bit 6 - SYM received 0 

Bit 7 - ESD received 0 

Switches for determining control 

Bit 0 - If 0, first time in initial 0 
processing 

Bit 1 - If 1, MAP/XREF entered from 1 
intermediate processor 
If 0, entered from final processor 

Bit 2 - If 0, all RLDs in core 0 
If 1, RLDs not in core 

Bit 3 - If 0, MAP/xREF not in control o 
If 1, MAP/XREF is in control 

Bit 4 - If 0, normal printing on SYSPRINT o 
If 1, abort immediately, no printing 

Bit 5 - Hierarchy 

Bits 6 Spare 

Bit 7 - If one, purge TEXT/RLD buffer 

Switches for Second Pass Processing Initial Value 

Bit 0 - More RLDs exist for current ID 0 

Bit 1 - Split RLD in output buffer 0 

Bit 2 - Rand P pointers have been saved 0 

Section 5: Table Layouts 141 



Bit 3 - If 0, relative relocation factor 0 
needed 
If 1, absolute relocation factor 
needed 

Bit 4 - Split RLD saved in HESD prefix 0 

Bit 5 - No RLDs exist for last text of 0 
segment or last text of module 

Bit 6 - RLDs are to be grouped with previous 0 
RLDs 

Bit 7 - Rand P pointers for current chain 0 
are in buffer 

MAXBF Maximum blocking factor 

IEWLCRBB Control block for SYSLIB 

IEWLCRBN Control block for SYSLIN 

IEWLCWBB Control block for SYSPRINT 

RLDOUT1 Address of first RLD output buffer 

RLDINBF1 Address of first RLD input buffer 

RLDOUT2 Address of second RLD output buffer 

RLDINBF2 Address of second RLD input buffer 

TXTBFBEG Address of start of text buffer 

TXTBFEND Address of end of text buffer 

MULTSIZE Size of SYSLMOD multiplicity or record 

UT1SIZE Size of SYSUT1 record 

SZSYSUT1 SYSUT1 maximum bytes per track 

RLDSIZE Size of each RLD buffer: 1st pass output, 2nd pass input 

VALUE 1 Size (value 1) for available linkage editor storage 

VALUE 2 Size (value2) for load module buffer 

MSGONE Indicates first message from IEWLMCPT 

MSGTWO Indicates second message from IEWLMOPT 

MSGTHREE Indicates third message from IEWLMOPT 

IEWLCLAC Address of current read block 

DECBLIN DECB for SYSLIN 

DECBLIB DECB for SYSLIB 

NEGATE End flag for all purpose table 

Note: The following areas are used by IEWLMSCD and IEWLMREL for other purposes: IOCT, 
SPACES, EPSM 

142 



Alias Table 

Bui It by: Entry Processor 
Referred to by: Fi nal Processor 

CEsD entry number - present only if symbol is one that is present in the CEsD and is type 
sD or LR. This field contains zero for all other symbols (2 bytes). 

Symbol - the eight-character alias name (8 bytes) 

Figure 37. Alias Table 

Calls List 

as built by RLD processor 

2 bytes of binary zeros 

Relocation pointer - points to the referred to symbol in the CEsD (types sD, LR, ER and CM) (2 bytes). 

Relocation pointer (2 bytes) 

Relocation pointer (2 bytes) 

Position pointer - points to sD or PC in CEsD that contains the references (V-constants) (2 bytes) 

Figure 38. Calls List (As built by RLD Processor) 

Calls List 

As altered and used by ENTAB size determination (iEWLCENs) 

Figure 39. 

2 bytes of binary zeros 
(End of chain indicator) 

Chaining value - inserted by IEWLCENs -- count, in bytes, to next chaining value (2 bytes) 

Calls List (As altered and Used by ENTAB Size Determinations) 

Section 5: Table Layouts 143 



Composite External Symbol Dictionary (CESD) - Internal Format 

Built by: ESD Processar and Cantrol Statement Processors 
Modified by: Address Assignment Processor 

II 

'-Chain pointer/chain ID/length - Chain pointer when the entry 
type is: ER-Include w/pointer or an ER-ddname 
that was extracted from a LIBRARY control statement 

Chain ID when the entry type is: 
ER-Library (the symbol was extracted from a LIBRARY control statement). 

Length af contral section for type: 
SD, PC, PR, or CM (2 bytes) 

'-Subtype - ER 
ER-Contral change 
ER-Control replace 
ER-Contral delete 
ER-Control include w/ pointer 
ER-Contral include w/o pointer 
ER-ddname 
ER-Alias 
ER-Overlay 
ER-Unmatched library member 
ER-Matched I ibrary member 
ER-Unmatched no call 
ER-Matched no call 
ER-Never call 
ER-Delete 
ER-Replace 

(1 byte) 

0000 0000 
1111 0000 
1110 0000 
1110 1000 
1101 0000 
1100 0000 
1011 0000 
1010 0000 
1001 0000 
0000 0010 
0000 0011 
0000 0100 
0000 0101 
0000 0110 
0000 1000 
0000 0000 

~Segment number - th is symbal appears in (1 byte). When type is 

Hex 
00 
FO 
EO 
E8 
DO 
CO 
BO 
AD 
90 
02 
03 
04 
05 
06 
08 
00 

PR, this byte contains the alignment value (See Half ESD). 

~Chain address/reverse chain ID - used to create a chain of CESD entries (3 bytes). 

~Type - Section definition (SD) xxxx 0000 Subclassification -
Label reference (LR) xxxx 0011 Delete xxx 1 xxxx 
Private code (PC) xxxx 0100 Replace xxx 1 xxxx 
Common (CM) xxxx 0101 Insert xxlx xxxx 
Pseudo register (PR) xxxx 0110 Chain xlxx xxxx 
Null 0000 0111 Map lxxx xxxx 
External reference (ER) xxxx 0010 
(1 byte) 

NOTE: = Not applicable 

'--Symbol - the eight-character symbolic name (8 bytes) 

Figure 40. Composite External Symbol Dictionary (CESD) -- Internal Format 

144 



Table 12. Normal Combination of Internal CESD Types 

CESD Entry Type Type Field 

(byte 8) 

Section Definition xxxx xOOO 

Private Code xxx x xlOO 

Common xxxx xlOI 

Pseudo Register xxxx xii a 

External Reference xxx x 0010 

labe I Reference xxxx x011 

NUll 0000 0111 

Replace xxxl xxxx 

Insert xxlx xxxx 

Chain xlxx xxxx 

Map lxxx xxxx 

Delete xxxl xxxx 

ER - Unmatched lib- 0000 DOlO 
rary Member Name 

ER - Matched library 0000 DOlO 
Member Name 

ER - Unmatched No 00000010 
Call Name 

E R - Matched No Co II 00000010 

ER - Never Call 0000 DOlO 

ER - Overlay Control 0000 0010 
Statement 

ERE - AI ias Control 0000 0010 
Statement 

ERE - ddname from 0000 0010 
library or Include Statement 

E R - I ncl ude Control 0000 0010 
Statement wlo Pointer 

ER - Include Control 0000 DOlO 
Statement with Pointer 

ER - Replace Control 0000 DOlO 
Statement (3) 

ER - Control Delete (4) 0000001 a 

ER - Change Control 0000 001 a 
Statement (3) 

I. Alignment Value - Specifies boundary alignment 
of the pseudo register. 
00 ~ byte 01 ignment 
01 ~ halfword 01 ignment 
03 ~ full-word alignment 
07 ~ double-word alignment 

Cha i n Address/ 
Chain ID 
(bytes 9-11) 

Hex 00 or 80 

Reverse chain 10 

Reverse chai n ID (2) 

Address of next 
item in the chain 

Address of next 
item in the chain 

Address of next 
item in the chain 

Address of next 
item in the chain 

Address of next 
item in the chain 

Address of next 
item in the chain 

Address of next 
item in the chain 

2. BlDl has been issued for this member name if bit 64 is set to I. 
3. Two CESD entries are mode for each Replace or Change control statement, 

one entry for each symbol. 
4. This entry results from a Replace or Chonge control statement containing 

only a single symbolic name. 

Segment ER Subtype ddname Pai nter/ 
Number Chain ID/length 
(byte 12) (byte 13) {bytes 14- 15} 

I to 64 length of control section 

I to 64 length of control section 

I to 64 length of common area 

Alignment length of pseudo register 
value (I) 

0000 0000 

I to 64 CESD entry no. of 
SD or FC (ID) 

0000 0000 

0000 1000 

0000 0010 CESD entry no. of 
next item (lD) 

0000 DOli CESD entry no. of 
next item (ID) 

0000 0100 

00000101 

0000 OliO 

IDOl 0000 

lOla 0000 

lOll 0000 Forward chain 
PTR (library only) 

11000000 

11010000 Pointer to li-
bra ry's ddname 

liDO 0000 

11101000 

IIII 0000 

Section 5: Table Layouts 145 



Delink Table 

Figure 41. 

Downward Calls List 

Address - assigned to the symbol being deleted (3 bytes) 

CESD entry number (lD) - is the relocation pointer of an RLD item referring to the symbol that is 
replacing the identically named symbol (or symbols) to be deleted. (2 bytes) 

Delink Table 

Built by and referred to by IEWLCENS routine 

SSL.-____ ---L..I....L......II 1---1........11 I IIIEIIIIIIIII 
Segment number - entries are one for one with those of the CESD. If a 

downward call is made to a symbol, the segment's number from 
which the call is made is entered in the downward calls list 

Figure 42. 

Entry List 

at an entry corresponding to the ESDID of the symbol in the 
CESD. The list is initially zero. (1 byte) 

Downward Calls List 

Built by and referred to by Second Pass Processor 

Figure 43. 

146 

Address - linkage editor assigned address of the 
--- ENTAB entry for this symbol (3 bytes) 

Segment number - that will contain this ENTAB entry (1 byte) 

Half ESD entry number - corresponding to the CESD entry that 
contained the referred to symbol (2 bytes) 

Entry List 



Entry Table (ENTAB) 

Built by Second Pass Processor 

Unconditional branch to last Address of referred "to" seg Previous Caller 
entry BC 15, DISP (15,0) to symbol number (zero initially) 

Unconditional bl anch to last Address of referred lito" seg Previous Caller 
entry Be 15, DISP (]5,O) to symbol number (zero in itially) 

Unconditional blanch to last I Address af referred lito" seg Previous Caller 
entry-BC 15, DISP (15,0) to symbol number (zero initially) 

SVC 45 I LIS, 4 (0,15) Loads GR15 with I BCR 15,15 
"from" Address of segment 

the value of the ADCON seg no table (SEGT AB) 

r-- 2 bytes -+2 bytes----l.~IIooI.I__--2 bytes -+- 2 bytes + 1 byte--I"~1"4----3 bytes ~ 

DISP -- is the displacement, in bytes, of this entry from the last entry. 
"to" segment number -- is the number of the segment containing the symbol being referred to. 
IIfrom ll segment number -- is the number of the segment that contains this entry table. 

Figure 44. Entry Table (ENTAB) 

Section 5: Table Layouts 147 



Half External Symbol Dictionary 

~~~~S~ __ ~II~II~ __ ~~~ __ ~II~II~I 
~ane ~

Length (3 bytes)

Segment Number· - segment in which this symbol appears. Segment number =
1 in non-overlay programs. (1 byte)

Linkage Editor assigned address - of this symbol (absolute value of the address constant) (3 bytes)

Indicator-Type - Bit zero is not used. Bits 1, 2 and 3 are used as an indicator field that applies to:
SD,PC - Bit 1 = 0 -- this control section (SD or PC) does not have

the highest CESD entry number with text in this segment
= 1 -- this control section (SD or PC) has the

highest CESD entry number in this segment
SD,PC or CM - Bit 2 = 0 -- relative relocation constant is a positive value

= 1 -- relative relocation constant is in
complemented form

PC delete - Bit 3 = 1 -- indicates that this unnamed control section
is a SEGTAB or ENTAB.

Bits 4, 5, 6 and 7 are used to specify the entry type:
0000 - Section Definitian (SD)
0010 = External Reference (ER) - all fields are zero except type
0011 = Label Reference (LR)
01 00 = Pri vote Code (PC)
0101 = Common (CM)

entry (8 bytes)

• 0110 = Pseudo Register (PR) - the segment number field contains a byte alignment value as follows:
o = byte alignment

Figure 45.

High ID Table

1 = half word alignment
3 = full word 01 ignment
7 = double word alignment

0111 = Null - all fields are zero except type

Half External Symbol Dictionary

Built and referred to by Intermediate Output Processor

CESD entry numbel - entries are in segment number order. Each
entry contains the highest CESD entry number
(ID) assigned to a section definition (SD or PC)
within that segment. (2 bytes)

Note: If segment does not contain text, its corresponding entry contains zero.

Figure 46. High ID Table

148

Level F Main Storage Allocation Table

Used by Allocation Processor

Minimum Size - The minimum number of bytes
of main storage required for
this table (2 bytes).

Weight - The factor used to allocate extra main storage
-- to enlarge the toble. It specifies how many

bytes will be added to this table for every 582
bytes (or 603 bytes, with overlay) which become
available (2 bytes).

Number of Byt ... per Entry - The number of bytes per entry for
this toble (1 byte).

Number of Entries - 156 - A value to which must be added 156 to
determine the address in the all purpose
table at which the number of entries value
for this table is to be stored (1 byte).

Address - 156 - A value to which must be added 156 to determine the
--- address in the all purpose table at which the determined

address for this table is ta be stored (1 byte).

Indicators - (1 byte)

Bit 0 - Table needed to process overlay modules only
Bit 1 - Table needed during first pass
Bit 2 - Table needed for intermediate processing
Bit 3 - Table needed during second pass
Bit 4 - Table requires double - word alignment
Bit 5 - Table requires word alignment
Bit6 - NA
Bit 7 - Table has a zeroeth entry (prefix)

End Flag - FF (1 Byte)

Figure 47. Level F Main Storage Allocation Table

Relative Relocation Constant Table

Built by and referred to by Address Assignment Processor

I ~~ ____ ~ __ ~~~

["'="0" """mol 0 (n"ko,. odH. 001,00' odd ...)· ;o." 00;, .. , odd=) 01 0
control section (SD, PC or CM) or a label reference (LR). The

Figure 48.

entries are one for one with CESD, in true or complement form. Com­
plement form specified by binary ones in the high-order byte (4 bytes)

Relative Relocation Constant Table

Section 5: Table Layouts 149

Renumbering Table

Bui It by: ESD Processor
Referred to by: TXT, RLD, END and ESD Processor

Bits 567 Bits 01234
Section Definition - 000 Null - 000000
Label Reference - 011 Delete - 00010
Externa I Reference- 010 Replace - 00010
Private Code - 100 Chain - 01000
Common - 101 Insert - 00100
Pseudo Register - 110 Library - 10000
Nvll - III

(1 byte)

Flag - to indicate whether the section definition (SD or PC) this entry corre­
-- sponds to is pre.ent in the CESD (00000001), or that other CESO items

are dependent on its presence (00000010), or that a Delink Table entry
was created for this symbol (00000100). (1 byte)

CESO entry number (10) - points to an entry in the CESD. (2 bytes)

Figure 49. Renumbering Table

RLD Input Control Block*

Build and referred to by second pass RLD processor

Address of RLD note list entry
marking the end of the RLD
groupi ng {4 bytes)

Address of current RLD note list entry
be i ng processed (4 bytes)

Address of RLD note list entry marking the
beginning of the RLD grouping (4 bytes)

Beginning address of RLD input buffer (4 bytes)

Lowest RLD address of unprocessed RLDs in current RLD set (3 bytes)

Flags (1 byte)

Bit 0 - 1 Control block in use

Bit 3 - 0 Control block governs RLD input buffer 1
1 Control block governs RLD input buffer 2

* There is a control block for each of twa input buffers.

Figure 50. RLD Input Control Block

150

Level F RLD Note List

Built and referred 10 by Fint Pass RLD Processor

Address - Displacement in words from
beginning of record

TTR If last entry of a group

Length - The number of words of RLD dalo (2 bytes)

Lowest Multiplicity - of the control section referred 10
by the ID field, to which the RLD
information in this record pertains
(10 bits)

Flags - Bit 0 - 0 RLDs Not in Core
-- 1 RLDs in Core

Bit 1 - 0 Not Processed
1 Processed

Bit 2 - 0 Entry is Grouped
1 Entry Contains a TTR

Bit 3 - 0 RLDs in Buffer 1
1 RLDs in Buffer 2

Bit 4 - 0
1 Split RLD in Set (Second Pass)

Bit 5 - 0
1 Currently Being Processed (Second Pass)

!Q - The CESD entry for the control sec tion (SD or PC) 10
which this RLD information perloins

Figure 51. Level F RLD Note List

Section 5: Table Layouts 151

RLD Output Control Block *

Built and referred to by Second Pass RLD Processor

Address of end of buffer - 4
(4 bytes)

Address of beginning of buffer (4 bytes)

First free address in the buffer (4 bytes)

Length in bytes of ID-Iength list (2 bytes)

Flags Byte 1

Byte 2

Bit 0 - 1
Bit 1 - 1

Control block in use
Buffer is being written

Bit 8 - 15 Constant to turn off use bits in
the text control block
For: Buffer 1 - X 'DB'

Buffer 2 - X' ED'
Buffer 3- X'F6'

* There is a control block for each of three RLD output buffers.

Figure 52. RLD Output Control Block

152

Second Pass Text Control Block *

CCW Displacement for text (4 bytes)

Accumulated length of text (2 bytes)

Length of current text (2 bytes)

Address of text I/O table entry marking end of
text grouping (4 bytes)

Address of text I/O table entry marking beginning of text
grouping (4 bytes)

Address of current text I/O table entry being processed (4 bytes)

End address of text in buffer (4 bytes)

Beginning address of text in buffer (4 bytes)

Flags -
(4 bytes)

Byte 1

Byte 2

Byte 3

Bit 0 - 1
1 - 1
2 - 1
3 - 1
4 - 1
5 - 1
6 - 1
7 - 1

Bit 0 - 1

1 - 1
2 - 1
3 - 1
4 - 1
5 - 1

6 - 1

7 - 1

Bit 0 - 1
1 - 1

2 - 1
3 - 1

Control block in use
Text being written
Text being read
Text has RLDs
Text is fi rst of group,
Text is last of group
Text is last in segment
Text is lost in load madule

XDAP write needed
Dummy write needed
RLD output buffer 1 is being used
RLD output buffer 2 is being used
RLD output buffer 3 is being used
RLD output buffer 1 contains ID -length I ist for
this text
RLD output buffer 2 contains ID-Iength list for
this text
RLD output buffer 3 contains ID-Iength list for
this text

RLD input buffer 1 contains RLDs for this text
RLD input buffer 1 contains processed RLDs for
this text
RLD input buffer 2 contains RLDs for this text
RLD input buffer 2 contains processed RLDs for
this text

4 - 1 There is more text to process after current text

* There are two text control blocks - - one for current text being processed, another
for next text to be processed or text just processed.

Figure 53. Second Pass Text Control Block

Section 5: Table Layouts 153

segment Length Table

Built and referred to by address assignment processor

Appearance of table after assignment of control section addresses

~ II I II I II I II ~
Highest 10 or ENTAB Entry Count for Segment (2 bytes)

L-______ E!!!l! (1 byte) - Bits 0 through 3 not used
. Bit 4 = 0 -- next two bytes contains the highest ID of the segment

= 1 -- next two bytes contain the number of ENTAB entries for this segment

Bits 5,6,7 - The low-order three bits of the previously assigned address of the first control section of
this segment

Cumulative Segment Length (3 bytes) - in bytes, of control sections in this segment (including the ENTAB, if present)

Appearance of table after segment addresses are determined

~ I
Segment Relocation Constant (3 bytes) - for the segment that corresponds to this entry

Path Length - (3 bytes) - in bytes, of this segment, including this segment and its I::NTAB

Figure 54. Segment Length Table

154

Segment Table (SEGTAB)

Built by Intermediate Output Processor

TEST ,I
Indicator Address of Data Control Block (DCB) used to load module

Address of note list

Last segment Highest segment no. Last segment
number of region 1 in storage-region 1 number of region 2
Last segmen t Highest segment no. Last segment
number of region 3 in storage-region 3 number of region 4

Zero (Not used in the Fixed-Task Supervisor)

(Not used in the Fixed-Task Supervisor)

Previous segment *
number for segment 1 Zero

Previous segment Address of entry table entry (when caller

I~

number for segment 2

Previous segment
number for segmen t N

TEST indicator -- specifies that this module is "under test" using
TESTRAN. (Bit 1) Initialized by program fetch.

Highest segment no. in storage -- is initially set to 00 except for

chain exists)

Address of entry table entry {when caller
chain exists

4 bytes

region 1 which is initially set to 01 by linkage editor.

Status indicator -- indicates the status of this segment with the
two last bits of the entry table address field as follows:

00 segment is in main storage as a result of a branch to the segment.
10 segment is in main storage, no caller chain exists.
01 segment is not in main storage, but is scheduled to be loaded.
11 segment is not in main storage.

The status indicator for segment 1 is initially
set to 10, all the rest are initially set to 11.

* set to zero by I inkage editor

Figure 55. Segment Table (SEGTAB)

*

*

Highest segment no.
in storage-region 2

Highest segment no.
in storage-region 4

*

*

Status
Indicator

Status

* Indicator

Section 5: Table Layouts 155

Level F Text Va Table

.. n, 0", .I~" • by Fl., p= T~' P~7\.' ________________J

Multiplicity Number of this piece of text (10 bits)

Flags - Bit 0 0 Text is not in core
1 Text is in core

Bit 1 0 Corresponding TXT note list entry
is a grouped entry
Corresponding TXT note list entry
contains a TTR

Bit 2 0 Text not out - of - order
1 Out - of - order text

Bit 3 0 Text has not been processed (2nd pass)
1 Text has been processed (2nd pass)

Bit 4 0 Corresponding TXT note list entry contains
the true length of the text
Corresponding TXT note list entry contains
a full multiplicity length which is larger
than the actual length of the text

ID-The CESD entry for this control section (SD or PC) (2 bytes)

Figure 56. Level F Text I/O Table

Level F Text Note List

Length - The number of bytes of text (2 bytes)

Address - Storage address if text is in core
--- - TTR if non-grouped entry or last

entry in a group (3 bytes)

Displacement - Location of this text relative to the beginning
of the multiplicity - used only for out-of-order
text (2 bytes)

Figure 57. Level F Text Note List

156

Partitioned Organization Directory Record
As received from BLDL

Byte
o

Name of Load Module (Member or Alias Nome)
4

8

1 Concatenation
Relative (to beginning of data set) track address of module (TTR) number

12 Byte of binary AI ias indicator and Relative (to beginning of data set)
zeros. * miscellaneous info track address of first text record

16 Continuation of Byte of binary Relative (to beginning of data set)
track address Zeros track address of note I ist or scatter-

20 translation record Number of entries Module attributes
in note list ** 0,1,2,3,4,5,6,7,8,9,10,11,12, 13,R, 15

Total contiguous quantity of main storage required by the

I
Length (in bytes) of

module first text record

24

28 Continuation of Module's I inkage editor assigned entry point address
length

32 Linkage editor assigned origin of first text record

I

For load modules in scatter format add:

36 List (in bytes) Length of translation table (in bytes)

40 section name) for ESDID (CESD entry number of control
first text record section name) containing entry point

For load modules with RENT or REUS attribute and alias names adds I
44 of the member name

I
48

Member Name

52

I
551 Bytes - Aligned on a halfword boundary at the end of the PDS record

Alios indicator and miscellaneous information:
1. Alias indicator -- 0 signifies none, 1 signifies alias -- bit 0
2. Number of relative disk addresses (TTR) in user data field bits 1,2
3. Length of user data field (in halfwords) -- bits 3-7

PODS Directory Record size:
Block format 36 bytes (with alias names, 46 bytes)
Scatter format 44 bytes (with alias names, 54 bytes)

For 551, add 4 bytes to sizes given above
*This is normally a zero byte inserted to maintain halfword boundaries.
if t~e DCB operand was specified as zero and the name was found in the link library, this
byte ",,'II contain a 1; if the name was found in the job library, this byte will contain a 2.
**This byte contains zero if load rr..,dule is not in overlay.
R=Reserved

Figure 58. Partitioned Organization Directory Record Section 5:

Length of Scatter

ESDID (CESD entry
number of control

Entry point address

Table Layouts 157

Module Attributes

Bit Number Attributes Bit Setting

0 RENT 0
1

REUS 0
1

2 OVLY 0
1

3 TEST 0
1

4 LOAD 0
1

5 Format 0
1

6 Executable 0
1

7 Format 0
1

8 Compatibility 0
1

9 Format 0
1

10 Format 0
1

11 Format 0
1

12 Editability 0
1

13 Format 0
1

14 Reserved
15 REFR 0

1

*Module can be loaded only with the LOAD macro-instruction. When the module
is in main storage, it is entered d,irectly, nat thraugh the use
ofaXCTL, LINK or ATTACH macro-instruction.

Figure 59. Module Attributes

158

Indication

Nat re-enterable
Re-enterable
Nat reusab I e
Reusable
Not on overlay module
Overloy module
Not under test
Under test
Not only loodable
Only loodable *
Block format
Scatter Format
Not executable
Executable
Module contains more than one text record and/or RLD record(s).
Module contains only one text record and no RLD record.
Module can be processed by all levels of linkage editor.
Module cannot be reprocessed by linkage editor E.
Linkage editor assigned origin of first text record is not zero.
Linkage editor assigned origin of first text record is zero.
Linkage editor assigned entry point is not zero.
Linkage editor assigned entry point is zero.
Module contains RLD record(s)
Module does not contain on RLD record.
Module can be reprocessed by I inkoge editor.
Module cannot be reprocessed by linkage editor.
Module does not contain TEST RAN symbol records.
Module contains TEST RAN symbol records.

Module is not refreshable
Module is refreshable

Partitioned Organization Directory Record

k built by linkage editor

Byte 0

4

8

12

16

Name of load module (Member or 01 ias name)

Relative (to beginning of data set)trackaddress of
module. (TTR)

Relative (to beginning of data set)trackcddress of first
text record. (TTR)

Relative (to beginning of data set)track address of note
list or Scatter/translation record. (TTR)

AI ias indicator and
miscellaneous info.

Byte of binary
zeros.

Number of entries
innotelist.*

20 Module Attributes (see below)

I
Total contiguous main storage required

0,1,2,3,4,5,6,7,8,9,10,11,12, 13,R, 15

24 for the modu Ie. I Length (in bytes) of first text record, Module's linkage

28 editor assigned entry point address I Linkage editor assigned origin of

32

36

40

44
48

first text record I

tion table
(in bytes)

section name} cont-
aining entry point.

For load modules In scatter format add.

Length of scatter list (in bytes)

ES DI D (CES D entry number of control
section name) for first text record.

For load modules with RENT or REUS attribute and Alias
names "dd:

Entry point address of the member name

Member name

551 Bytes - Aligned on a half-word boundary at the end of the PDS
record.

Length of transla-

ESDID (CESD entry
number of control

Alias indicator and miscellaneous information:
1. Alias indicator -- 0 signifies none, 1 signifies alias
2. Number of relative track addresses in user data field

bit 0
bits 1,2
bits 3-7

Note: The I/O conventions and
record formats for Linkage Editor (E)
and Linkage Editor (F) are the same.

3. Length of user data field (in halfwords)

PODS Directory Record size:
Block format 34 bytes
Block format with 01 ias names ·44 bytes
Scatter format 42 bytes
Scatter format with alias names 52 bytes

For 551, add 4 bytes to sizes given above

R=Reserved

(when rounded to a half-word boundary)

'This byte contains zero if load module is not in overlay,

Figure 60. Partitioned Organization Directory Record

Section 5: Table Layouts 159

TABLE - referred to by I EWLCBPT •

- to beginning of a group of entries in LIST. (2 bytes)

Figure 61. Table - Referred to by IEWLCBPT

LIST - referred to by IEWLCBPT.

End of Message Indicator - delimits a group of entries that define
a message. (I byte - hex FF)

Pointer - to the first character of a phrase. (2 bytes)

Count-l - of characters in the phrase. (I byte)

Figure 62. LIST - Referred to by IEWLCBPT

XAD2CESD Table - built and referred to
by Cross Reference Table Routine

I I I ~~~I ~~~

[composite ESD entry number - specifies the CESD entry containing the
symbol (2 bytes).

Figure 63. XAD2CESD Table -- Built and Referred to by Cross Reference Table Routine

160

SECTION 6: DIAGNOSTIC AIDS

This section contains information that may be useful in diagnosing difficulties with
the linkage editor program. Included are: register contents at entry to modules, charts
describing buffer and table allocation, and an error message -- module cross reference
table.

Table 13. General Register Contents at Entry to Module
r--------------T--,
,Module , ,
'Entry Point I Register Contents ,
~-------------+--~
,IEWLMADA I 2 -- Address of all purpose table ,
~--------------+--~
'IEWLMBTP ,2 -- Address of all purpose table ,
, , 1q -- Return address ,
, , 15 -- Entry point address ,
~-------------+--~
'IEWLMEND ,2 Address of all purpose table ,
, , 4 Length of any no-length control section ,
, , 5 ID of the assembled address of the module entry point ,
, I 13 Address of save area ,
, , 14 Return address ,
, I 15 Entry point address I
~-------------+--~
IIEWLMENS I 2 -- Address of all purpose table ,
I I 13 -- Save area address I
, I 14 -- Return address ,
~--------------+--~
I I EWLMENT ,2 -- Address of all purpose table I
I I 13 -- Save area address I
I I 14 -- Return address ,
~-------------+--~
IIEWLMESD I 2 Address of all purpose table ,
I I 4 Byte count of ESD information ,
I , 5 ID of first ESD item to be processed ,
I I 6 Address of first ESD item to be processed ,
I ,13 Save area address ,
, I 14 Return address I
, ,15 Entry point address ,
~--------------+--~
'IEWLtII-FNL ,2 -- Address of all purpose table ,
~-------------+--~
,IEWLMINC I 2 -- Address of all purpose table I
, , 15 -- Entry point address ,
~-------------+--~
,IEWLMINP I 2 -- Address of all purpose table ,
, , 15 -- Entry point address ,
~-------------+--~
IIEWLMINT ,1 -- Pointer to parameter list ,
I I 13 -- Save area address ,
, , 14 -- Return address ,
~--------------+--~
\IEWLMMAP ,2 -- Address of all purpose table I
\ I 14 -- Return address if entry is from IEWLMOUNT I
, \ 15 -- Address of entry point I
~-------------+--~
'IEWLMOPT ,1 -- Pointer to parameter list ,
, , 2 -- Address of all purpose table I
, I 15 -- Entry point address , L-_____________ ~ __ J

(Continued)

Section 6: Diagnostic Aids 161

Table 13. General Register Contents at Entry to Module (Continued)
r--------------~---,
I Module I I
IEntry Point I Register Contents I
r-------------_+--~
I lE'i'lLMOUNT I 2 -- Address of all purpose table I
r-------------_+--~
IlEWLMRAT I 2 Address of all purpose table I
I I 4 -- Byte count of RLD input I
I I 6 -- Storage address of RLD input I
I I 14 -- Return address I
~--------------+--~
I lEWLMRCG I 2 Address of all purpose table I
I I 6 -- Address of ESD item being processed I
I I 10 -- Address of beginning of REPLACE/CHANGE chain I
I I 13 -- Entry point address I
~--------------+--~
IlEWLMREL I 1 HESD address of either first ENTAB entry (if overlay) or last I
I I HESD entry + 8 I

I 2 Address of all purpose table I
I 3 Address of text control block for current text I
I 12 Address of IEWLMSCD
I 13 Address of APT register save area (REGSA)
I 14 Return address
I 15 Entry point address (lEWLMREL)
I

SCDENTAB I 2 Address of all purpose table
I 3 Address of text control block for current text
I 8 Address of control block for previous control record
I 12 Address of lEWLMSCD
I 13 Address of APT register save area (REGSA)
I 14 Return address
I 15 Entry point address (lEWLMREL)

r--------------+--~
lEWLMROU I 1 Pointer to parameter list I

lEWLCR01

IEWLCR02

I EWLCRO 3

IEWLEPNT

I 14 Return address I
I 15 Entry point address (IEWLMRO~ I
I I
I
I
I
I
I
I
I
I
I
I
I
I

o

1
2

14
15

1
2

14
15

DECB address

DCB address
Address of all purpose table
Return address
Entry point address (IEWLCR01

Address of lOB for XDAP
Address of all purpose table
Return address
Entry point address (IEWLCR03)

I 2 Address of all purpose table
I 14 Return address
I 15 Entry point address (lEWLEPNT)

or lEWLCR02)

r--------------+--~
I IEWLMLOG I 0 Error Code I
I I 1 Address of first symbol (optional) I
I I 2 -- Address of all purpose table I
I I 13 -- Address of second symbol (optional) I
I I 14 -- Return address I L ______________ i __ J

(Continued)

162

Table 13. General Register Contents at Entry to Module (Continued)
r--------------T--,
,Module I ,
'Entry Point I Register Contents ,
~--------------+--~
IIEWL~SCD I 1 Address of first HESD ENTAB entry (overlay) or first entry I
I I beyond HESD ,
I , 2 Address of all purpose table , , , ,
,GETIDMUL I 0 Indicator: 0 - prime read; 1 - lookabead ,
I I 1 Text control block address , ,
'RDTXT I , ,
I RDRLD ,
I ,
I ,

GETIDMUL
RDTXT
RDRLD

I WRTCRRLD ,

2
3
4

Current TXTIOT entry address

Current RLD notelist entry address

Address of all purpose table
Address of control block for current text
Address of control block for previous or next text

Address of control block for buffer to be written

I WRTCRRLD 12 Address of IEWLMSCD
I 13 Address of APT register save area (R EG SA)
, 14 Return address
I 1 5 Address of IEWLMREL
~-------------+--~
,IEWLMSCN I 1 -- Address of column 1 of input record ,
I I 2 -- Address of all purpose table I
I I 15 -- Entry point address ,
~-------------+--~
IIEWLMSYM I 2 Address of all purpose table I
, I 13 Save area address ,
I I 14 -- Return address I
I I 15 -- Entry point address I
r-------------_+--~
IIEWLMTXT I 2 Address of all purpose table ,
I I 3 Assembled address of first byte of text ,
I I 6 TD of current text record ,
I I 7 Base register of IEWLMTXT (entry registe~ ,
I ,12 Base register of IEWLMRAT I
I I 14 Return address , L _____________ -i-___ J

Section 6: Diagnostic Aids 163

Table 14. Buffer Allocation

BUFFER ALLOCATION - (LINKAGE EDITOR F)

164

Initial and Input Processing

Initial and Input
Processing Tables

I Intermediate Processing

Object Modu Ie Buffer 1
3200 bytes (max.) or 800 bytes or 400 bytes (min.)

Object Module Buffer 2
3200 bytes (max.) or 800 bytes or 400 bytes (min.)

SYSLI N Buffer 1
3200 bytes (max.) or 800 bytes or 400 bytes (min.)

SYS LI N Buffer 2
3200 bytes (max.) or 800 bytes or 400 bytes (min.)

Print Buffer 1
4840 bytes (max.) or 1216 bytes or 608 bytes (min.)

Print Buffer 2
4840 bytes (max.) or 1216 bytes or 608 bytes (min.)

RLD Buffer Area
1024 bytes

Text Buffer Area
102400 bytes (max.) or 6144 bytes (min.)

I ntermedi ate
Processing Tables

I Second Pass Processing

Second Pass
Processing Tables

Table 15. Table Allocation
,---------r--,------,.---,-----,-----------,------T----,.-------------,
ITable Name I OVLY I Order IBytes/IWeightl Present In IPrefixiAlignlSize (in bytes) I
I I Only I in I Entry I ~----T-----'---~ I r--------,------~
I I I Coding I I IInp. I Int. 12nd I I I Min. IMax. I
I I I I I IProc·lprcc·IPassl I I I I
l----------f----f----f------+----+-----+----+--+------+----+--------+----~
IAlias Table INo 4 1 0 INO IYes IYes INO IByte I 50 50 I
ICaiis List IYes 18 1 20 IYes IYes INO INO IWord I 1368 *
IComposite ESDINO 10 16 352 IYes INo INO IYes I Dlbwd I 5600 *
I I I I I I I I
IDelink Table INO 3 5 30 Yes IYes IYes IYes IByte I 500 *
IEntry List IYes 12 6 6 No INo IYes INO IByte I 600 *
IHaif ESD INO 6 8 116 No IYes IYes INO I Dblwdl 2800 *
I I I I I I I
IHaif ESD INO 5 8 0 No IYes IYes INo I Dblwd 8 8
I Prefix I I I I I
IFirst Pass INO 9 1 0 Yes INo INo INo Word 256 256
I RLD Buffer I I I I
ISecond Pass INo 11 1 0 No INO IYes INo Word 168 168
I RLD Buffer I I I I
I Relocation INo 11 4 88 No IYes IYes IYes Word 1400 *
I Constant I I I I
I Table I I I I
I Renumcering INo 16 4 88 Yes INo INo IYes Word 1400 *
I Table I I I I
I Renumbering INO 16 1 0 IYes IYes INc INo Word 4 4
I Table I I I I I
I Prefix I I I I I
IRLD Note INo 15 9 28 IYes IYes INO INO Byte 450 *
I Li st I I I I I I
IRLD Note INo 8 9 112 INo IYes IYes INo Byte 1800 *
I I List II I I I I
ISEGTA1 IYes 2 I 1 0 IYes IYes IYes IYes Byte 256 256
IText I/O INo I 1 I 4 48 IYes IYes IYes INO alqs1~1

t-------~---~----.1.-------'-------'------~----..L----..L----~----~-------~------~
I*Maxiroum is determined by main storage availability I
I*CESD maximum = (2 16-1) x 2~ I
L J

Section 6: Diagnostic Aids 165

Table 16. Error Message -- Module Cross Reference Table
,-------r--,
I MMS I Module Where Error Occurred I
~------t---~
I 012 IEWLMSCD
I 022 I EWLMS CD
I 033 IEWLMENT
I 053 I EWLMENT

063 IEWLMENT
073 IEWLMENT
083 I EWLMENT
093 I EWLMENT
102 LEWLMEND
113 I EWLMENT
123 I EWLMADA
132 I EWLMADA
143 I EWLMOUT
152 I EWLMENS
161 IEWLMENS
161 IEWLMENS
172 I EWLMENS
182 I EWLMENS
192 I EWLMADA
202 IEWLMADA
212 IEWLMINP
222 IEWLMESD,IEWMINP,IEWLMRAT
232 IEWLMESD,IEWLMINP,IEWLMRAT
241 IEWLMESD
254 IEWLMESD,IEWLMADA
264 IEWLMESD
214 IEWLMINC
284 IEWLMSCN,IEWLMINT
294 IEWLMINT,IEWLMFNL
302 IEWLMSCN
314 IEWLMSCN
324 I EWLMSCN
332 IEWLMSCN
342 IEWLMINC
354 IEWLMRAT
364 IEWLMRAT
374 I EWLMRAT
383 IEWLMRAT
394 I EWLMFNL
404 IEWLMFNL
414 I EWLMFNL
421 IEWLMFNL
432 IEWLMINC
444 IEWLMSCD
461 I EWLMADA
473 IEWLMENT
484 IEWLMINP
492 I I EWLMSCN
504 I IEWLMFNL
512 I IEWLMINC
522 I IEWLMINC
532 I IEWLMINC
543 I IEWLMFNL
594 I IEWLMINT,IEWLMINP
611 I IEWLMRAT
630 I I EWLMMAP
611 I I EWLMRAT

------~---

166

This section contains linkage editor
input conventions and record formats. The
I/O conventions and record formats for
Linkage Editor E and Linkage Editor Fare
the same.)

INPUT CONVENTIONS

Input modules (object or loa~ to be
processed in a single execution of linkage
editor must conform with a number of input
conventions. Violations of the following
are treated as errors by linkage editor:

• All text records of a control section
must follow the ESD record containing
the SD or PC entry that describes the
control section.

• The end of every input module must be
marked by an end record (END in object
modules, LAST in load modules) •

• Each input module may contain only one
no-length control section (a control
section whose length field in its S~­
or PC-type ESD entry contains zero~ •
The length must be specified on the END
record of any module that contains a
no-length control section.

• After processing the first text record
of a no-length control section, linkage
editor will not accept a text record of
a different control section within the
same input module.

• Any RLD item must be read after the ESD
item to which it refers; if it refers
to a label within a different control
section, it must be read after the ESD
item for that control section.

• The language translators must gather
RLD items in groups of identical posi­
tion pointers. No two RLD items having
the same P pointer can be separated by
an RLD item having a different P
pointer.

• Each record of text' and each LD- or
LR-type ESD record must refer to an SD
or PC entry in the ESD.

• The position pointer of every RLD reco­
rd must point to an SD- or PC-type
entry in the ESD.

'A common (CM) control section cannot con­
tain text or external references.

SECTION 7: APPENDIX

• No LD or LR may have the same name as
an SD or CM.

• All SYM records ffiUSt be placed at the
beginning of an input module. The ESD
for an input module containing test
translator statements must follow the
SYM records and precede the TXT
records.

• Linkage editor accepts TXT records that
are out of order within a control sec­
tion, even though linkage editor pro­
cessing may be affected. TXT records
are accepted even though they may over­
write previous text in the same control
section. Linkage editor does not eli­
minate any RLD records that correspond
to overwritten text.

• During a single execution of linkage
editor, if two or more control sections
having the same name are read in, only
the first control section is accepted;
the subsequent control sections are
deleted.

• Linkage editor interpretes common (CM)
ESD items (blank or with the same name)
as references to a single control sec­
tion, whose length is the maximum
length specified in the CM items of
that name ~r blan~. No text may be
contained in a common control section.

• Within an input module, linkage editor
does not accept an SD- or PC-type ESD
item after the first RLD item is read.

To avoid unnecessary scanning and I/O
operations, input modules should conform
with the following conventions. Although
violations of these rules are not treated
as errors, avoiding them will im~rove the
efficiency of linkage editor processing.

• Within an input module, no LD or SD may
have the same name as an ER.

• Within an input module, no two ERs may
have the same name.

• Within an input module, TXT records may
be in the order of the addresses
assigned by the language translator.
(If TXT records are not in address
sequence, each reorigin operation may
require additional linkage editor pro­
cessing time.)

• SYSUT1 record size should be at least
as large as SYSLMOD.

Section 7: Appendix 167

RECORD FORMATS

The following are the card image and load module record formats for the level F ver­
sion of the linkage editor.

SYM Input Record (Card Image)

III 2-4 I 5-10 ~I,12113-72

L-~dato

'- Number of bytes of TESTRAN data

SYM

'-- 12-9-2 (00000010) I

Figure 64. SYM Input Record (Card Image)

ESD

12-9-2 (0000 0010)

17-72

ESD Data -- see below

Blank if all ESD items are LD
ESD IDENTIFIER of first ESD item (other than LD)

Blank
Number of bytes of ESD data '

ESD Data Item

1-8

Zero - if length is on END cord.
Length of control section (if type is:SD,PC,CM)
Identifier of SO entry containing nome
Blank if type is ER
Length of pseudo-register (PR)

Blank - Alignment Foetor for type PR

24 bit address (SO, PC, LD, LR)

!le! - Hex (00=SD,OI=LD,02=ER,03=LR,04>=PC,05=CM,06=PR)

Name -- when type is: SD,LO,LR,ER,CM,PR
Blank -- when type is: PC or blank CM.

Figure 65. ESD Input Record (Card Image)

168

I 73-80 I
L Not used

73-80

Not used

Text Input Record (Card Image)

Text data (machine language code)

ESD Identifier of SD for control section of this text

Blank

Number of bytes of text data

Blank

24 bit address of first byte of text data

TXT

12-9-2 (0000 0010)

Figure 66. Text Input Record (Card Image)

RLD Input Record (Card Image)

17-72

73-80

Not used

73-80

RLD data - see below Not used

Blank

Number of bytes of RlD data

Blank

RlD

12-9-2 (0000 0010)

RlD data item

Assigned address of address constant

Flag field -- (TTTTLlSTn)
-TTTT=type

OOOO=non-oranch
oool=branch
00ll=pseuda register cumulative length

LL=length af address constant
01=2 bytes
10=3 bytes
11=4 bytes

S=Direction of relocation
O=positive (+)
l=negotive H

T n=type of next RLD item
O=next RLD item has a different R or P

pointer; they ore present in the next item.
l=next RlD item has the same Rand P point­

ers, hence they are omitted.

Position pointer (P) - ESDID of SD for control section that contains the address constant

Relocation pointer (R) - ESDID of CESD entry for the symbol being referred to. Zero (00) if type=PR cumultative length

Figure 67. RLD Input Record (Card Image)

Section 7: Appendix 169

END Input Record - Type 1 (Card Image)

17-28 33-80

Nat used

Cantrol section length for control section whose length was not specified
in SO ESO item. Byte 29 is binary zero if length is present.

ESOID of SO item for this control sectian that cantains the address specified in bytes 6-8.

24 bit address of entry point (optional)

12-9-2 (00000010)

Figure 68. END Input Record - Type 1 (Card Image)

END Input Reca-d - Type 2 (Ccrd Image)

1112- 4 1 5-16 1 17-24 125- 28 1 29-32 1 33-80
1

Not used

'-- Control section length for control section whose length wa s not specified
in SO ESD item

~ Blank

L-- Symbolic entry point name (optional)

L-- Blank

'-- END

'-- - -12 9 2 (0000 0010)

Figure 69. END Input Record - Type 2 (Card Image)

SYM Record - (Lood Module)

~T-~ ____________________ ~h~ ____________________ ~

SYM data and ESO data (ESO type SO, CM and PC items) - (maximum of 240
bytes)

Count - in bytes, of SYM and ESO data (2 bytes)

- specifies information for TESTRAN - (1 byte)
1000 0000 - this SYM reca-d contains ESO items (SO, PC or CM) from

a load module that was not "under test". The test
option was not specified when it was link edited.

0000 0000 - this SYM record is not the above type.

Identification - specifies this is a SYM record -- 0100 0000 (1 byte)

Figure 70. SYM Record - (Load Module)

170

CESD Record - (Load Module)

1011- 3 14,516,718-247 ~<)~ ________ u_P __ tO __ 240 __ b_y_t_e_s_of __ ES_D __ d_a_ta ____________ __

"--ES D data - for detoiled information see below.

"--Count - in bytes, of ES D data (2 bytes)

"-- ESDID of first ESD item (2 bytes)

"--Spare - 3 bytes of binary zeros

'--Identification -- 0010 0000 -- (1 byte)

CESD Data (Laad Module)

1-8

- length (3 bytes), when type is: SD, PC, CM or PR
I D (2 bytes), when type is LR
Zero (3 bytes), when type is ER or Null

Segment number - in which this symbol oppears. Zero when type is ER or Null (1 byte).

Address - I inkage editor assighed address of this symbol. Zero when type is ER or Null (3 bytes).

Type - (1 byte) Section definition (SD) - hex 00
Label reference (LR) - hex 03
Private code (PC) - hex 04
Private code marked delete
(ENTAB and SEGTAB control sections) _ hex 14
Common (CM) - hex 05
Null _ hex 07
External reference (ER) _ hex 02
Pseudo register (PR) - hex 06

Symbol - The eight character external name - Zero when type is Null.

Figure 71. CESD Record - (Load Modul~

Section 1: Appendix 111

Scatter - Translation Recard

)~~ _________ u_p_t_o_a_n_d_i_nc_l_u_d_in_g_l_0_2_0_b_y_te_s ____________ ~

I-- Data - may contain translation table, translation table and scatter table or scatter table only

'--Count - in by tes, of data field

I-- Zero - one byte of binary zeros

I--Identification - identifies this as a scatter-translation record - bit configur­
ation is: 0001 0000

Translation Table

Padding (2 bytes) - if necessary, toforce full-word boundary alignment of scatter table.

Pointer (2 bytes) - to the scatter table entry that contains the address of the
control section containing this CESO entry.
Number of translation table entries = number of CESO entries +1.
Pointer will be zero if its corresponding CESO entry is not
SO, PC, CM or LR.

Zero - 2 bytes of binary zeros

Scatter Tobie

- of a control section (SO, PC or CM)

Zero - 4 bytes of binary zeros

Translation Table and Scatter Table

Padding (2 bytes) if necessary to align scatter table to a full-word boundary.

Translatian data

Figure 72. Scatter-Translation Record

172

Control Record - (Load Module)

1011- 3 14-5 16-7 1 8-15 J 1 1 ~S Record Length 20 to 256 bytes for level F
~.-~.-~~r---------~~~~------------------~

-- Length of text record and/or length of control section - specifies the
length of the control section {in bytes} to which the text in the
following record belongs, or the number of bytes of a control
section contained in the following text record (2 bytes)

L-* CESD entry number - specifies the composite external symbol dictionary entry that
contains the control section name of the control section of which this text is a port {2 bytes}

- Channel Command Word {CCW} - that could be used to read the text record that follows. The data address field contains
the linkage editor assigned address of the first byte of text in the text record that follows The count field contains the
length of the succeeding text record.

'-- Count - contains two bytes of binary zeros.

- ~ - in bytes, of the control information (CESD 10, length of control section) following the CCW field.

'-- Spore - contains three bytes of binary zeros

'-- Identification - specifies that this is: {I byte}

• A control record - 0000 0001

• The control record that precedes the last text record of this overlay segment - 00000101 (EOS)

• The control record that precedes the last text record of the module - 0000 1101 {EOM}

Figure 73. Control Record - (LOad Module)

Section 7: Appendix 173

Relocation Dictionally Record - (Load Madule)

.,IOrllT-I_-3_-'-r 14_,5_1-'-r6_,7_L....,... __ 8_-_1_5 ___ 1, __ 16_-_2_5_5 ____________ -' ~S Record length can be between 24 and 256

'-- RLD data -- see be I ow

- Spare - contains 8 bytes of binary zeros

- Count - in bytes of the relocation dictionary information following the spore 8 byte field (2 bytes)

- Count - contains two bytes of binary zeros

- Spore - contains three bytes of binary zeros

'-- Identification - specifies that this is: (1 byte)
• A relocation dictionary record - 00000010
• The last record of the segment - 0000 0110
• The last record of the madule - 0000 111 0

~~~~~~ ________ ~S~ ______ ~IF~I_A~R~P~I~FI~A~R~P~IF~I_A~ 
[ Address - linkage editor assigned address of 

the address constant (3 bytes) 
Flag - (1 byte) When byte format is xxxxLLST, 
- specifies miscellaneous information as follows: 

xxxx specifies the type of this RLD item (address constant). 
0000 -- non-branch type in assembler language, DC A (name) 
0001 -- branch type (in assembler language, DC V (name) 
0010 -- pseudo register displacement value 
0011 -- pseudo register cumulative displacement value 
1000 and 1001 -- this address constant is not to be relocated because it refers to an unresolved symbol. 
LL specifies the length of the address constant. 
01 -- two byte 
10 -- three byte 
11 -- four byte 
S specifies the direction of relocation. 
o -- positive 
1 -- negative 
T specifies the type of the next following RLD item. 
0-- the following RLD item has a different relocation and/or position pointer. 
1 -- the following RLD item has the same relocation and 

position pointers as this and therefore is omitted. 
Position pointer - contains the entry number of the CESD entry (or translation table entry) 

that indicates which control section holds the address constant (2 bytes). 

Relocation pointer - contains the entry number of the CESD entry (or translation table entry) that indicates which symbol value 
is to be used in the computation of the address constant's value (2 bytes). 

Figure 74. Relocation Dictionary Record - (LOad Mod~le) 

174 



Control ond Relocation Dictionary Recard - (Load Madule) 

~ 101~1-_3~14,_51~6,7~1~_8-1_5 __ ~11~1~ l~l~I~I ______ ~'~ ____ ~-;-T~ 

-Flag 

~ Address (3 bytes) 

~Flag (I byte) 

L-..Position pointer (2 bytes) 

'-- Relocation pointer (2 bytes) 

'-- Channel Command Word (8 bytes) 

~ Count, in bytes, of RLD information (2 bytes) 

~Count, in bytes, of control information following the last RLD address field. 
The control information contains the I D and length af control sections in the 
following text record (2 bytes). 

Spare (3 bytes) 

'--Identificat.on (I byte) - specifies that th.s record 's: 
• A control and RLD record - 00000011 - (it is followed by a text record) 
• A control and RLD record that is followed by the last text record of a segment - 0000 0111 (EOS) 
• A control and RLD record that is followed by the last text record of a module - 0000 1111 (EOM) 

Note: For detailed descriptions of the data fields see Relocation Dictionary Record, and Control Record. 

The record length varies from 20 to 260 bytes in the level E linkage editor 

Figure 15. Control and Relocation Dictionary Record - ~oad Module) 

• length of control section 
or text record (2 bytes) 

·CESD entry number (2 bytes) 

Section 7: Appendix 175 



INDEX 

A-type address constant 20,47-52 
Absolute relocation 20,36,44,47-52 
Address assignment 10,18,48,77,84 

processor 19,41,81 
Address constant 

branch-type (V-type) 
19,20,36,47,48,51,52 

delinking 35,49,50 
non-branch-type (A-type) 20,36,47-52 
relocation 46-55 

ALIAS statement 27,44,46 
Alias table 19,20,44,84,143 
All purpose table (APT) 18,21,45,81,82,135 
Allocation 

of main.storage 18,21,149 
processor (AL001) 21 

Attributes, module 13,21,56,158 
analysis of 81,83 
downgrading of 38 

Automatic 
library calls 9,16,39,81,84 
promotion of common 32 
replacement 32,50 

Blank common 30,50 
BLDL 

list 38,40 
macro instruction 38 

Block (ed) 
format attribute 15 
input 22 
output 23 

Boundary alignment factor 41 
Buffer 

allocation 21,164 
relocation constant (BRC) 53 

Calls 
automatic library 9,16,39,81,84 
downward 42,52 
exclusive 42,52 
list 19,36,43,143 
upward 42 

CESD (see composite external symbol 
dictionary) 

CHANGE statement 25 
Combining object modules 9 
Common (CM) 9,30-32,50 
Common path routine 32,85 
Composite external symbol dictionary 

(CESD)11 , 12,18,44,82,84 
internal format 144,145 
processing 84 
record format 171 
record types 30 

Concatenated data sets (on SYSLIN) 16 
Control 

176 

dictionaries 10 
information processing 21,67 
record format 173 
section (CSECT) 9,11 
section delinking 49,50 

section replacement 32 
section search routine 84 
statement format 23 
statement processing 10,18,23,24 
statement scanner 23,81,82 

Control/RLD records 46,84,175 
Cross reference 10,17,19,20 

table 9,46,56,84,85 
CSECT (see control section) 

Data control block (DCB) 16 
Delink table 18,35,146 
Delinking 49 

of common control sections 50 
of external symbols 49 
of non-branch (A-typ~ address 

constants 49 
Dense record 34 
Design points of the program 9 
Determining ESD type 29,30 
Diagnostic 

aids 161 
directory print routine 85 
messages 9,16,17,46,56,85 
output data set (SYSPRINT) 16 

Diagrams, operation 18,59-79 
Directory, microfiche 128 
Downward calls 42,52 

compatible attribute ~C) 15,47 
list 19,42,146 

Dummy text record 53 

END 

End 

processor 38,83 
record 28,170 
statement 10 

of module (EO~ 10,13,29,45,47 
of segment (EOS) 12,45 
size determination 42,52,84 

Entry 
list 20,52,146 
point proceSSing 44,83,84 
processor 44 

ENTRY statement 26 
Entry table (ENTAB) 13,19,51,52,146 

creation of 46,52,53,84,85 
size determination 42,52,84 

ER subtypes 27 
Error 

diagnostic directory 20,85 
logging 20,56,85 
message -- module cross reference table 

166 
messages 56,57,85 

ESD (see external symbol dictionary) 
ESDID (see external symbol dictionary 
identifier) 

Exclusive call 42,52 
Executable attribute 15 
External reference (ER) 9-11,30,31,48 



External symbol dictionary ~SD) 
identifier (ESDID) 12,30 
processing 18,30-32,69,82 
record format 168 
record types 29 

Final 

10,11 

processing 17,18,20,56,65,82,85 
relocation constant 42 

Fixed ~) format 16 
Formats, record 168 
Freeline routine 31 

General registers, contents of 28,29,161 

Half ESD table (HESD) 
High ID table (HIID) 

ID-length list 34 

19,44,48,52,84,148 
19,45,84,148 

INCLUDE statement processing 
21,24,38,81,83 

Incompatible module attributes 21 
Initialization 18,20,59,81 
Input 

conventions 167 
data set (SYSLIN) 15 
processing 16,18,22,59,81 
text buffer 18,33,47,83 

INSERT statement processing 25 
Intermediate 

data set (SYSUT1) 16,35,36 
output processor 19,44,84 
processing ~ddress assignmen~ 41 
process ing (general) 17, 18, 4 1 , 61 

I/O 
control table 35,36,45 
flow 15 

Language translators 9 
Library 

calls (see also automatic library 
calls) 9 

read block 38 
LIBRARY statement 27,40 
Linkage editor 

cross-reference table 9 
data sets 15 
design points 9 
final processing 20 
functional operation 18 
initialization 18 
input processing 10,11,18 
intermediate processing 17 
logic 5,18 
messages 9 
method of operation 9,18 
module map 9 
option processing 9 
organization 10,87 
output 10,11 
overlay structures 9 
relationship to the operating system 
second pass processing 19 

Linking object modules 9 
Load module 9,10,47 

attributes 13 
processing 29,34,81,82 
text processing 34,73,83 

9 

Logical record length (LRECL) 23 
Loose record 34 

Main storage allocation 18,21,149 
MAP option 19,45,46,84,85 
Messages 9 
Microfiche directory 128 
Module 

attributes 13,21,158 
map 9,17,19,46,84 
origin 10 
structure 10 

Module -- CSECT cross reference table 
Multi{:licity 33 

NAME statement 17,22,26,39 
NCAL option 22,38 
No length control section 34 
Non-branch (A-type) address constant 

20,47-52 
Non-resolution processing 31 
Not editable attribute 15 
Note list 13 
Null type 30,41 

Object module 9 
buffer 18 
processor 28,81,82 
text processing 33,71,83 

Only-loadable atrribute 15 
Opening data sets 21 
Operation diagrams 18,59-79 
Option processing 9,12,81 
Out of order text 34 
Output load module 10,47 

data set (SYSLMOD) 16, 19 
Overlay 

format attribute 15 
module processing 9 
tree structure 133,134 

OVERLAY statement processing 25 

P (position) pointer 12,19,48,49,83 
Partitioned data set 10,13,16 

directory (PDS) 13,20,56,84,85 
Private code (PC) processing 29,30 
PROCENTRY routine 24 

132 

Program 
modification 
organization 

Pseudo register 

9 
81 

(PR) processing 20,30,32 

READ8 routine 24,82 
Record 

format field (RECFM) 16 
formats 168 
types 28 

Recovery management 15 
Reenterable attribute 15 
Refreshable attribute 15 
Relative relocation 20,44,149 

factor 41,42,47-49,53 
Relocation 20 

of address constants 11,47-53,84 
constant table (RCT) 19 , 41 
dictionary (RLD) 10, 11, 174 

Index 177 



READER'S COMMENT FORM 

IBM System/360 Operating System 
Linkage Editor F 
Program Logic Manual 

• Is the material: 
Easy to read? 
Well organized? 
Complete? 
Well illustrated? 
Accurate? 
Suitable for its intended audience? 

• How did you use this publication? 
o As an introduction to the subject 
o For additional knowledge 

Other. 

• Please check the items that describe your position: 

Yes 
o 
o 
o 
o 
o 
o 

Form Y28-6667-0 

No 
o 
o 
o 
o 
o 
o 

o Customer personnel 0 Operator D Sales Representative 
D IBM personnel D Programmer D Systems Engineer 
D Manager D Customer Engineer D Trainee 
D Systems Analyst D Instructor Other 

• Please check specific criticism (s), give page number ( s), and explain below: 
D Clarification on page ( s ) 0 Deletion on page ( s) ... 
D Addition on page ( s ) 0 Error on page ( s ) 

Explanation: 

• Thank your for your cooperation. No postage necessary if mailed in the U.S.A. 



Y28-6667-0 

YOUR COMMENTS PLEASE . . . 

This publication is one of a series which serves as reference for systems analysts, program­
mers and operators of IBM systems. Your answers to the questions on the back of this 
form, together with your comments, will help us produce better publications for your use. 
Each reply will be carefully reviewed by the persons responsible for writing and publish­
ing this material. All comments and suggestions become the property of IBM. 

Please note: Requests for copies of publications and for assistance in utilizing your IBM 
system should be directed to your IBM representative or to the IBM sales office serving 
your locality. 

Fold Fold ........................................ , ............................................................................ : 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A. 

Attention: Programming Systems Publications 

Department 058 

Fold 

POSTAGE WILL 8E PAID 8Y 

IBM Corporation 

P.O. Box 390 

Poughkeepsie, N.Y. 12602 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.I0SOl 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

FIRST 'CLASS 
PERMIT NO. 81 

POUGHKEEPSIE, N.Y. 

F';ld 
=l' 
:;' 
[. 
:;' 
c 
VI 
). 



Y28-6667-0 

factor 20.36.41.48.51 
pointer (R) 12.19.35 
routine 53,85 

Renumber routine 31 
Renumbering table 18.30-32.35.82.150 
REPLACE statement 25 
Resolution processing 31.32 
Reusable attribute 15 
RLO 12 

buffer 18.19.46.47.53.83 
flag field processing 36.37.53.55 
input control block 47.50 
input record format 169 
note list 

16.19.35-37.45-47.53.55.83.84.151 
output control block 47.152 
position (P) pointer 12,19.35 
processing 75.83 
read routine 84 
records 18.19,28.35,47,83 
relocation ~) pointer 12,19.35 
write routine 84 

RLD/control record write routine 85 
Root segment 13 

Scatter 
attribute 15 
format (SCT~ 47 
load option 13 
table 13,19,44 

Scatter/translation record 13,19.44,84,172 
Second pass 

processing 17-19,44,46.63,79,84,172 
RLO input buffer 19.47 
RLO output buffer 20,47 
text buffer 19.47 
text control block 153 
text control table 47 

Section definition (SO) 29,31,32 
Segment 

length table (SEGLGT~ 19,41,154 
relocation constant (SRC) 19,42 
table (SEGTA~ 13,19,41,44,84,155 

SEGTA1 25,32,41,43,52.82 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y. 10601 
IUSAOnly] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, NawYork 10017 
IInternational] 

Serially reusable attribute 15 
SETSSI processing 26 
Single pass processing 19,35,37,46 
SIZE option 21 
Special event processing 28 
Storage allocation 18,21.149 
STOW macro instruction 17,20.56,85 
SY14 

processor 82 
record 12,19.28,168,170 

SYNAO routine 23,85 
SYSLIB 16.18 
SYSLIN 15.18.56 

buffer 18 
SYSLMOO 16,44-47,53,56.83-85 

SYSPRINT 16,84 
System status index 26 
SYSUT1 16,35.45.46,83.84 

Table 
allocation 165 
construction and usage 135 

Temporary linked addresses 41 
Test option 12,15,16,19,28,82 
Text (TXT) 

buffer 18,33,46 
input record format 169 
I/O table 18,19,33.34.45-47,156 
note list 16.18,19.34,45,47,84.156 
read routine 84 
records 13.18,19.28,33.83 

Translation table 13,19.44 
TTR list 20.37,45,47,56,85 
Two pass processing 46 

Unknown (U) format 16 
Unlike attributes indicator 21 
Upward calls 42 

V-type address constants 19,20,36,47-52 

Weight factor 22 

XREF option 19,20,45,46,56,84,85 


