File No. S360-31
Form Y28-6667-0

Program Logic

IBM System/360 Operating System
Linkage Editor (F)

Program Number S360-ED-521

This publication describes the internal logic of the
IBM System/360 Operating System Linkage Editor (F),
Version 2, with design points of 44K, 88K, and 128K.

It identifies areas of the program that perform specif-
ic functions and relates those areas to the program
listing.

The linkage editor, a processing program, combines
and edits modules to produce a load module that can be
loaded into main storage by the control program. The
linkage editor:

e Allocates storage, analyzes attributes and options,
and initializes tables and buffers.
(Initialization)

e Transforms input into an internal format for subse-
quent processing. (Input Processing)

e Assigns relative storage addresses to external sym-
bols, writes records on the output data set, and
produces an optional module map and/or cross-
reference table. (Intermediate Processing)

e Relocates address constants found in the input
text, and writes the remaining records on the out-
put data set. (Second Pass Processing)

e Completes the partitioned data set directory for
the output data set, produces an error diagnostic
directory, and releases storage allocated to the
linkage editor. (Final Processing)

This program logic manual is directed to the IBM
customer engineer who is responsible for program main-
tenance. Because program logic informwation is not
necessary for program operation and use, distribution
of this manual is restricted to persons with program
maintenance responsibilities.

Restricted Distribution

First Edition (January 1968)

This publication corresponds to Release 15.

Specifications contained herein are subject to change from time to
time. Any such changes will be reported in subsequent revisions or
Technical Newsletters.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page impres-
sions for photo-offset printing were obtained from an IBM 1403 Printer
using a special print chain.

Requests for copies of IBM publications should ke made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's com-
ments. If the form has been removed, comments may be addressed to IBM
Corporation, Programming Systems Publications, Department D58, PO Box
390, Poughkeepsie, N. Y. 12602

© International Business Machines Corporation 1968

This publication provides customer
engineers and other technical personnel
with information describing the internal
organization and logic of the level F 1lin-
kage editor, version 2. It is part of an
integrated library of IBM System/360
Operating System Program Logic Manuals.
Other publications that are required for an
understanding of the linkage editor are:

IBM System/360 Operating System:

Introduction to Control Program Logic,
Program Logic Manual, Form Y28-6605

Concepts and Facilities, Form C28-6535

Linkage Editor, Form C28-6538

Assembler Language, Form C28-6514

The reader should also refer to the co-
requisite publications:

IBM System/360 Operating System:

Storage Estimates, Form C28-6551

System Control Blocks, Form C28-6628

This manual consists of seven parts:

1. An Introduction, which describes the
linkage editor as a whole, including
its relationship to the operating sys-
tem. The major divisions of the pro-
gram and the relationships among them
are also described in this section.

2. A Method of Operation section which
provides: (a) an overview of, and an

PREFACE

introduction to the logic of the lin-
kage editor, and (b) detailed descrip-
tions of specific operations. Opera-
tion diagrams, included at the end of
this section, are designed to be used
with the text, and illustrate the flow
of data through tables and buffers
used during linkage editor processing.

3. A section describing the organization
of Linkage Editor F. Program com-
ponents (modules, control sections,
and routines) are described both in
terms of their operation and their
relation to other components. Flow-
charts are included at the end of this
section.

4. A directory which helps the reader
find named areas of code in the pro-
gram listing, which is contained on
microfiche cards.

5. A section illustrating the layouts of
tables used by linkage editor F.
Table layouts may not be essential for
an understanding of the basic logic of
the program, but are essential for
analysis of storage dumps.

6. Diagnostic aids, including general
register contents at entry to modules,
and an error message —— module cross
reference table.

7. An appendix, which includes input con-
ventions and record formats.

If more detailed information is
required, the reader should refer to the
comments and coding in the linkage editor
program listings.

SECTION 1: INTRODUCTION . « < o
Purpose of Linkage Editor

-

Relationship to the Operating System

General Description . « « « « « &«
Module Structure
External Symbol Dictionary
Relocation Dictionary . .
Composite Dictionaries
Selected Options . « . .
Module Attributes . . .
Input/Output Flow

SECTION 2: METHOD OF OPERATION
Logic of the Linkage Editor .
Initialization . « . « .
Input Processing
Intermediate Processing
Second Pass Processing .
Final Processing
Initialization (IEWLMINT) -
Main Storage Allocation
Input Processing (IEWLMINP)
Reading Blocked Input .
Blocked Output on SYSPRINT
Control Statements
Control Statement Processors
Object Module Processing . .
Load Module Processing . . .
ESD Record TypesS . « « « -
CESD Record Types and Subtypes
ESD Processing e« « « o« o « o «
TXT Processing « « o« o« « o o
Processing Object Module Text
Processing Load Module Text
Writing Text on SYSUT1 . . .
RLD ProcesSsSing « « « « « o o
END ProcessSing « « « « o o o
Include ProcessSing « « « « « «

Automatic Library Call Processing

Intermediate Processing . . . « =
Address Assignment (IEWLMADA)
ENTAB Size Determination . .
Entry Processing
Intermediate Output (IEWLMOUT)
MAP/XREF Processing . . .
Second Pass Processing (IEWLMSCD)
Relocation of Address Constants
Relocation of Non-Branch Type
(A-Type) Address Constants . .

Relocation of Branch Type (V-Type)

Address Constants <« « o« « « «
ENTAB Creation . « « « . .
Relocation Routine

Final Processing (IEWLMFNL)
Error Logging

-

¢ s o 0

CONTENTS

Cross-Reference Table

SECTION 3: PROGRAM ORGANIZATION . .

Initialization and Input Processing
Initial Processor —— IEWLMINT
(Chart IA) v 2 o « = = « o o o =
Attributes and Options Processor
JEWLMOPT ¢ @ ¢ o o = o « e o o
Allocation Processor —— AL001 .
Input Processor -- IEWLMINP (Char
JB) o o o o e« o o o o o o o o @
Control Statement Scanner --
IEWLMSCN (Charts JO, JP) . « . «
Object Module Processor --
IEWLMMDI (Chart JB) . . « . .
Load Module Processor —- INP27O
(Chart JC) . . « .
ESD Processor -- IEWLMESD (Charts
JE, JF, JG) e « o o « . .
SYM Processor -- IEWLMSYM (Chart
ID) o c o o o o e o o o = - o

Text and RLD Processor —-— IEWLMRA
(Chart JH) <« « « « - o o
Text Processor -- IEWLMTXT (Chart

TI) o o o o o « o « o o o = .
RLD Processor —-- RLD0O1 (Charts
IR, JL) e« e o o o o o =« = o «
End Processor —-- IEWLMEND (Chart
J e o o o o o o o o o e
Include Processor —— IEWLMINC
(ChaTt JR) e o o o o « o o o = «
Automatic Library Call Processor
IEWLCAUT (Charts JS, JT) . « - «
Intermediate Processing . « « - . .
Address Assignment Processor --
IEWLMADA (Chart KAa) e o o o o o
Intermediate Output Processor --
IEWLMOUT (Chart LA) .« o « « «
Second Pass ProceSSing « « « o« « « o
Second Pass Processor —-- IEWLMSCD
(Charts MA, MB) e @ o ® o o ® »
Final Processing « e« « o« o« o« o o « «

56

81
. 81

81
81

t

81
82

82

82

82

T

- . 83
83
83
83

84

84

84
84

- . 84
. 85

Final Processor ——- IEWLMFNL (Chart

NA) o o o o o o = o o« « = « = =
SYNAD Routine (Chart NB) . . « =«

SECTION 4: MICROFICHE DIRECTORY . .
SECTION 5: TABLE LAYOUTS . . - « . «
DIAGNOSTIC

SECTION 6: AIDS .« o « «

SECTION 7: APPENDIX .o 2 2 o o o o o
Input Conventions ,. « « « « = o « «
Record FOXmats o« o o « o o o o o o «

INDEX ¢ o o o o o = o o o = = = o =

85
85

. 128
. «135
.« «161
. 167
. .168
. 176

FIGURES

Figure 1.

Linkage Editor Processing -

Simple CaS€ececacscccscscccccscccccnccccans

Figure 2.

Combining Control

Dictionari€S.cceccccesscsccasscscsassscnss

Figure 3.

Linkage Editor Processing

- Using Overlay and Test OptionS.cececse.

Figure 4.

Linkage Editor Processing

- Using Scatter Load and Test Options...

Figure 5.
Figure 6.

Input/0utput FlOW..ecececeoeons
Operation Diagram A1 -

Initial and Input Processing.ececececcececececse

Figure 7.

Operation Diagram A2 -

Intermediate ProcesSingecceccecececcecccccces

Figure 8.

Operation Diagram A3 -

Second Pass ProCeSSiNgesecceccccccsccses

Figure 9.

Operation Diagram A4 -

Final ProCesSinNgeececcecceccccecccccccccccccs

Figure 10.

Operation Diagram B1 -

Control Statement Processingeececececceccees

Figure 11.

Control Statement Scanner

OperatiON.ccceccececcceccccccccccccccccnnce

Figure 12.

Include Statement

Processing for a Sequential Data set....

Figure 13.

Include Statement

Processing With Nested MembersSe.eececeeceecee.

Figure 14.

Overlay Statement

ProCEeSSiNgececcccceacacccccaccascscascenncs

Figure 15.

Library Statement

ProCesSSiNgeccececcecccaccescccccaccsscccnccnse

Figure 16.

Operation Diagram B2 - ESD

ProCeSSiNgeececcscosccocsccsncscscccccscacns

Figure 17.

Operation Diagram B3 -

Processing Object Module TeXte.eceeeeooscas

Figure 18.

Operation Diagram B4 -

Processing Load Module Text RecordS.....

Figure 19.

Operation Diagram B5 - RLD

PYOCEeSSiNgeececceccecscoascsccsnscccssnsccnces

Figure 20.
Figure 21.

Include ProcCesSinNgecececcececes
Automatic Library Call

ProCeSSiNgecccceccccccecccccccanncncnnns

Figure 22.

Operation Diagram C1 -

Address ASSignmMeNtececececcecceccccccccccnece

Figure 23.
Figure 24.

ENTAB Size Determination....
Processing of Alias

Symbols by the Entry ProceSSOr.ececeeceecsces

Figure 25.

Writing

Scatter/Translation ReCOYdS.eecececscascaee

Figure 26.

Operation Diagram D1 -

Data Movement During Second Pass
ProCeSSiNgececccececcccccccccccccacccccces

Figure 27.

Non-Branch Type Address

Constants - Relative RelocatiONececececasas

Figure 28.

Non-Branch Type Address

Constants - Absolute RelocatiONeeececcecse

Figure 29.

Non-Branch Type Address

Constants - Absolute and Relative
ReloCatiONeeecccacccccccsasccccacsccananacas

Figure 30.
Figure 31.
Figure 32.
Figure 33.

Example of Delinkingeeeeceece.e.
Entry List Processinge.......
ENTAB CreatiONecececececccccas
Building Error Messag€See...

10
1"
14

14
16

59
61
63

67
23
24
25
26

69
71
73

75
39

40

77
43

45
46

79
48

49

50
51
52
54
57

Figure 34. Linkage Editor F
OrganizatioON.ecececcceccecccaccccccccccnssas
Figure 35. Overlay Tree Structure for
Linkage EQitor F (U4UK) ccecececcecceccccccas
Figure 36. Overlay Tree Structure for
Linkage EQitOor F (88K) cccvccecscccocscccas
Figure 37. Alias Tabl€ceccecececceccccscaes
Figure 38. Calls List (As built by
RLD PrOCESSOY) ccecccccscccccccanccnssacns
Figure 39. Calls List (As altered and
used by ENTAB size determinations)
Figure 40. Composite External Symbol
Dictionary (CESD) -- Internal Format...
Figure 41. Delink Tabl€ccecccececaccann
Figure 42. Downward Calls Liste.ece.c...
Figure U3. Entry LiStecececcccceseaccccoss
Figure 44. Entry Table (ENTAB) cccccces
Figure 45. Half External Symbol
DictioNaryeececececeascccsasscscssascsccnnas
Figure 46. High ID Tabl€eececceccccacas
Figure 47. Level F Main Storage
Allocation Tabl€eececececeeccccacccaccnans
Figure 48. Relative Relocation
Constant Tableec.cecceccccccconcacncnnns
Figure 49. Renumbering Table.c.ceeece..
Figure 50. RLD Input Control Block....
Figure 51. Level F RLD Note List......
Figure 52. RLD Output Control Block...
Figure 53. Second Pass Text Control
BlOCKeeeoeooosooncseccescsoncccncnccccnee
Figure 54. Segment Length Table.......
Figure 55. Segment Table (SEGTAB) eceess
Figure 56. Level F Text I/0O Table.....
Figure 57. Level F Text Note List.....
Figure 58. Partitioned Organization
Directory ReCOXdeeceecececccccccaccncccccns
Figure 59. Module Attribute€S.cecececccass
Figure 60. Partitioned Organization
Directory R€COYXQeececeocacsccacaaccsnsnncs
Figure 61. Tabkle - Referred to by
IEWLCBP T ecceccccsccccnnccoccnacccncnccse
Figure 62. LIST - Referred to by
TEWLCBP Teceasccccscoscccacsccccncscccncasese
Figure 63. XAD2CESD Table - Built and
Referred to by Cross Reference Table
ROUtiINEeceeeceeccescccccnccacccacccanns
Figure 64. SYM Input Record (Card
IMAGE) ccvceccccccccccnaccaccscccasssnnes
Figure 65. ESD Input Record (Card
IMAQE) ceccoeceaccaccccacccscncccccsnonee
Figure 66. Text Input Record (Card
IMAgE) ceccececccccccncsccnccncccscsncscsccnanse
Figure 67. RLD Input Record (Card
IMAGE) ceecceccsccccscscsscncsnscsnssascccnasnse
Figure 68. END Input Record - Type 1
(Card INMAJE) eccecesscccccsscsssccassscnscns
Figure 69. END Input Record - Type 2
(Card IMAge) ecececaceccccccccscacsascncns
Figure 70. SYM Record - (Load Module) .
Figure 71. CESD Record - (Load Module)
Figure 72. Scatter-Translation Record.

87
133

134
143

143
143
144
146
146
146
147

148
148

149
149
150
150
151
152
153
154
155
156
156

157
158

159
160
160

160
168
168
169
169
170
170
170

171
172

Figure 73. Control Record - (Load
MOAULE) ceeeececssacsssccsnscccanccccceas 173
Figure 74. Relocation Dictionary
Record - (Load MOAUlE) ceeecccccaccceaas 17U
Figure 75. Control and Relocation
Dictionary Record - (Load Module) 175

Table 1. Incompatible Module

Attributes . o v v ¢ ¢ o o o o o o o o o 21
Takle 2. Block size Determination . . 23
Table 3. General Register

Information - Cbject Module processing . 28
Table 4. Record TYPES =« o « « « « « « 29
Table 5. General Register

Information - Load Module Processing . . 29
Table 6. Flag Field Processing 37
Table 7. Relationship of RLD Flag

Field to Relocation . « « ¢« « « « « « « 55
Table 8. Load Module Record Types and
Associated Processors . « « « « « « « o 82

Chart HA. Level F Major Divisions . . . 89
Chart IA. Initial Processor (IEWLMINT) 90
Chart JA. Input Processor (IEWLMINP) . 91
Chart JB. Object Module Processor

(TEWLMMDI) v v o o o o o o o = = = « « o 92

Chart JC. Load Module Processor

(INP270) o o o o o o o« o o« o« o = = « « « 93
Chart JD. Sym Processor (IEWLMSYM) . - 94
Chart JE. ESD Processor (IEWLMESD) . « 95
Chart JF. ESD Processor (IEWLMESD) . « 96
Chart JG. ESD Processor (IEWLMESD) - - 97
Chart JH. TXT and RLD Processor

(IENLMRET) o « « o « o o o o« =« « o « « « 98
Chart JI. TXT Processor (IEWLMTXT - . 99
Chart JJ. Level F TXTBUF Routine . . .100
Chart JK. Level F RLD Processor101
Chart JL. Level L RLD Processor
(Continued) . o o« o o o = « o « o + o 102
Chart JM. RLDBUF Routine . « « « . . 103
Chart JN. End Processor (IEWLMEND . 104
Chart JO. Control Statement Scanner
(TIEWLMSCN) o e o = o = o o = o« o« o« « « o105
Chart JP. Control Statement Scanner
(IEWLMSCN) (Continued) . « .« « « « « . .106
Chart JQ. READ8 Routine107
Chart JR. Include Processor (IEWLMINC) 108
Chart JS. Automatic Library Call

Processor (IEWLCAUT) ¢ « « « « « « « « 109

TABLES

Table 9. Level F Module -- CSECT

Cross Reference Table . « o « « « « « 132

Table 10. Table Construction and Usage 135
Table 11. All Purpose Table (APT) . . .136
Table 12. Normal Combination of
Internal CESD TYPES .« o o o « =« « « o o145
Table 13. General Register Contents
at Entry to Module « ¢« ¢ o« ¢ ¢« o « « « .161
Table 14, Buffer Allocation164
Takle 15. Table Allocation165
Table 16. Error Message —- Module
Cross Reference Table . « « =« « « « « .166
CHARTS
Chart JT. Automatic Library Call
Processor (IEWLCAUT) (Continued)110
Chart KA. Address Assignment
Processor (IEWLMADA) « 2 « = « =« o « = o111
Chart KB. IEWLMENS &+ 2« o o o o « « « 112
Chart KC. Entry Processor (IEWLMENT) . 113
Chart KD. Entry Processor (IEWLMENT)
(Continued) e o o o o o = o o e e« « « 2114
Chart LA. Intermediate Output
Processor (IEWLMOUT) . 2« « o « « « « =« o115
Chart LB. MAP/XREF Processor
(TEWLMMAP) v o o o o o o = o o « o « = 116
Chart MA. Second Pass Processor117
Chart MB. Second Pass Processor
(Continued) e o e o o o s o = o o o « 2118
Chart MC. GETIDMUL Routine119
Chart MD. TXT/RLD Read Routines120
Chart ME. WRTTXT Routine121
Chart MF. Relocation Routine
(IEWLMREL) - o = = « = o o o o« « o o « «122
Chart MG. Relocation Routine
(IEWLMREL) (Continued) . « « =« « « o « .123
Chart MH. Relocation Routine
(IEWLMREL) (Continued) . « - « « - « - o124
Chart NA. Final Processor . . « « - « .125
Chart NB. SYNAD Routine . « « « « o - .126
Chart NC. ERR. Logging RTN-IEWLMLOG . .127

OPERATION DIAGRAMS

Figure 6. Operation Diagram A1. Initial
and Input ProcessSingecececceccecccceccsecces 59
Figure 7. Operation Diagram A2.
Intermediate ProcessSing.ececcsceccacscsasss 61
Figure 8. Operation Diagram A3. Second
Pass ProCeSSiNg..cscecesccsccccccscccaces 03
Figure 9. Operation Diagram Al4. Final
PYOCESSiNgeeccacccescccssccscsccascacnaasccs 65
Figure 10. Operation Diagram B1. Control
Statement ProcessSingeecececceccecccceacccases 67

Figure 16. Operation Diagram B2. ESD
ProCesSingeeccececccccacccascccasccscsscaass 69
Figure 17. Operation Diagram B3.
Processing Object Module TeXt.ececeeeeess. 71
Figure 18. Operation Diagram Bi.
Processing Load Module Text RecordS..... 73
Figure 19. Operation Diagram B5. RLD
ProCesSingeccccecccececcscccccccccnccces 75
Figure 22. Operation Diagram C1. Address
Assignment.cccecceccccecccccccaccacccaas 17
Figure 26. Operation Diagram D1. Data
Movement During Second Pass Processing.. 79

This section provides general informa-
tion describing the purpose, organization,
and internal operation of the linkage edi-
tor, and its relationship to the operating
system.

The level F linkage editor, version 2,
(hereinafter referred to as the linkage
editor) is available in 44K, 88K, and 128K
design points; they differ in speed and
table size. The U4K and 88K design points
use different overlay structures, and the
128K design point is not in overlay. 2ll
versions of the linkage editor operate in
essentially the same manner.

PURPOSE OF LINKAGE EDITOR

The linkage editor is one of the proces-
sing programs of IBM System/360 Operating
System. It is a service program used in
association with the language translators
to prepare machine-language programs from
symbolic-language programs written in FOR-
TRAN, COBOL, report program generator, the
assembler language, or PL/I. Linkage edi-
tor processing is a necessary step that
follows source program assembly or
compilation.

Linkage editor processing allows the
programmer to divide his program into sev-
eral parts, each containing one or more
control sections. Each part may then be
coded in the programming language best
suited to it and may then be separately
assembled or compiled by a language trans-
lator (under the rules applicable to each
language translator).

The primary purpose of the linkage edi-
tor is to combine and link object modules
(the output of the language translators)
into a load module in which all cross
references between control sections are
resolved as if they had been assembled or
compiled as one module. The load module
produced by the linkage editor consists of
executable machine-language code in a for-
mat that can be loaded into main storage
and relocated by program fetch.

In addition to combining and linking
object modules, the linkage editor performs
the following functions:

e Library Calls. Modules (such as stan-
dard subroutines) stored in a library
can be placed in the input to linkage
editor, either automatically or upon
request. If unresolved extermnal

SECTION 1: INTRODUCTION

references remain after all input to
the linkage editor is processed, an
automatic library call routine
retrieves the modules required to
resolve the references.

e Program Modification. Control sections
can be replaced, deleted, or rearranged
(in overlay programs) during linkage
editor processing, as directed by link-
age editor control statements. Common
control sections generated by the FOR-
TRAN, PL/I, and assembler language
translators are provided locations
within the output load module.

e Overlay Module Processing. Linkage
editor prepares modules for overlay by
assigning relative locations within the
module to the overlay segments and by
inserting tables to be used by the
overlay supervisor during execution.

e Options and Exror Messages. The link-

age editor can:

1. Process special options that over-
ride automatic library calls or
the effect of minor errors.

2. Produce a list of linkage editor
control statements that were
processed.

3. Produce coded diagnostic messages
and a directory describing those
diagnostic messages that were
printed out during linkage editor
processing.

4, Produce a module map or cross-

reference table of control sec-
tions in the output load module.

RELATIONSHIP TO THE OPERATING SYSTEM

The linkage editor has the same rela-
tionship to the operating system as any
other processing program. Control is
passed to the linkage editor in one of
three ways:

1. As a job step, when the linkage editor
is specified on an EXEC job control
statement in the input stream.

2. As a subprogram, via the execution of
a CALL macro instruction (after execu-
tion of a LOAD macro instruction), a
LINK macro instruction, or an XCTL
macro instruction.

Section 1: Introduction 9

3. As a subtask, in multitasking systems,
via execution of the ATTACH macro
instruction.

GENERAL DESCRIPTION

Linkage editor input may consist of a
combination of object modules, load
modules, and linkage editor control state-
ments. The prime function of the linkage
editor is to combine these modules, in
accordance with requirements stated on con-
trol statements, into a single output load
module that can be relocated and loaded
into main storage by program fetch for
execution. Output load modules are placed
in partitioned data sets (libraries).

Each module to be processed by linkage
editor has an origin that was assigned dur-
ing assembly, during compilation, or during
a previous execution of the linkage editor.
Each module in the input to linkage editor
may contain symbolic references to control
sections in other modules; such references
are called external references.

To produce an executable output load
module, the linkage editor:

1. Assigns relative main storage
addresses to the control sections to
be included in the output module.
Since each input module has an origin
that was assigned independently by a
language translator, the order of the
addresses in the input is unpredict-
able. (Two input modules, for
example, may have the same origin.)
Linkage editor assigns an origin to
the first control section and then
assigns addresses, relative to this
origin, to all other control sections
in the output.?! Each item in a control
section is relocated the same number
of bytes as the control section
origin.

2. Resolves external references in the
input modules. Cross references
between control sections in different
modules are symbolic, and must be
resolved (translated into relocatable
machine addresses) , relative to the
contiguous main storage addresses
assigned to the output load module.

1If the program is in overlay, an origin is
assigned to the first control section in
each segment. Within each segment, con-
tiguous addresses are assigned relative to
the segment origin.

10

These symbolic cross-references are
made by means of address constants.
The linkage editor calculates the new
address of each relocatable expression
in a control section and determines
the assigned origin (value) of the
item to which it refers.

Linkage editor processing is affected by
specified options, operations requested on
control statements, module attributes con-
tained in partitioned data set directories,
and control information contained within
the modules themselves. The following
paragraphs describe the relationship of
module structure, selected options, and
module attributes to linkage editor
processing.

MODULE STRUCTURE

Object modules and load modules have the
same basic logical structure (see Figure
1) . Each consists of:

e Control dictionaries, containing the
information necessary to resolve sym-
bolic cross references between control
sections of different modules, and to
relocate address constants.

e Text, containing the instructions and
data of the program.

e An end of module (EOM) indicator (END
statement in object modules; EOM indi-
cation in load modules).

Each language translator usually pro-
duces two kinds of control dictionaries:
an external symbol dictionary (ESD) and a
relocation dictionary (RLD). An object
module always contains an ESD; a load
module contains an ESD, unless it is marked
with the "not editable" attribute. Object
and load modules usually contain an RLD
(unless there are no relocatable address
constants in the module) . Control dic-
tionary entries are generated when external
symbols, address constants, or control sec-
tions are processed by a language
translator.

Input Output

Object Module Load Module
ESD CESD
TXT 'E::l?:(:?e Control
RLD XT
END EOM/RLD

Linkage Editor Processing -
Simple Case

Figure 1.

External Symbol Dictionary

The external symbol dictionary contains
entries for all external symbols defined or
referred to within a module. (An external
symbol is one that is defined in one module
and can be referred to in another.) Each
entry identifies a symbol, or a symbol
reference, and gives its location, if any,
within the module. When combining input
modules, linkage editor resolves references
between different input modules by matching
the referenced symbols to defined symbols;
it does this by searching for the extermal
symbol definitions in each input module's
ESD. There is an ESD entry for each named
control section and each named common area.
The ESD also contains entries that identify
unnamed control sections and unnamed common
areas.

Relocation Dictionary

The relocation dictionary (RLD) lists
all relocatable address constants that must
be modified when the linkage editor pro-
duces an output load module. The linkage
editor uses the RLD whenever it processes a

Input Module 1
ESD
Symbol Type*| Origin | Length
CSECT A SD 000 500 [e———
~——» CSECT C ER 000 0
CSECT B SD 500 1000

—AX = [=Xx=
—

2

o Pas

400
Address
300
400

R P Flag

L_ K} 1e F \
2 (| 1]e F J
N A\
Input Module 2
ESD

Symbol Type [Origin ll.;ngth/

—» CSECTC | SD 000 2000

200

RLD

— X =

[R T P] Flag | Address |
[T e 1 o[F [200
.))

*See ''ESD Record Types''

Figure 2. Combining Control Dictionaries

Linkage
Editor

module. The RLD is also used to adjust the
value of address constants after program
fetch reads an output load module from a
library and loads it into main storage for
execution. The RLD contains at least one
entry for every relocatable address con-
stant in a module. An RLD entry identifies
an address constant by indicating both its
location within a control section and the
external symbol (in the ESD) whose value
mast be used to compute the value of the
address constant.

Composite Dictionaries

An output load module is composed of all
input object modules and input load modules
processed by the linkage editor (except
those that are replaced or deleted). The
control dictionaries of an output module
are therefore a composite of all the con-
trol dictionaries in the linkage editor
input. The control dictionaries of a load
module are called the composite ESD (CESD)
and the RLD.

Figure 2 shows how the control dic-

tionaries of two input modules are combined
into composite dictionaries by the linkage

* Output Module

Symbol Type ll.eng'rh /

Origin
CSECT A SD 000 500
CSECT C sD 500 2000
CSECT B sD 2500 1000

]

[X] [Y]

AR RLD

>
[T 300 400
L

Address
300 e
400 o

ole
N |—| D
—
-

f
—x =
N
A E

RLD
P [Flag
2 | F

} = Address |

R
2 e 700

I8

9

Section 1: Introduction 11

editor. The control dictionaries and their
associated text are interrelated through a
system of line numbers and pointers.

Within an input module, each ESD item on
which an address constant may depend has a
line number (ESD identifier, or ESD ID);
the line number indicates the position of
the item, relative to the other ESD items
associated with the text.' Every item of
text in an object or load module has asso-
ciated control information that describes
it. This control information includes the
ESD ID of the ESD item for the control sec-
tion that contains the text. (In Figure 2,
the ESD ID of the text item that contains X
and Y points to line 1 of the ESD for input
module 1. The ESD ID of the text item con-
taining Z points to line 1 of the ESD for
input module 2.)

Each RLD item must point to two ESD
items:

i. The ESD item for the symbol on which
the address constant depends. This is
referred to by the RLD relocation

pointer (R pointer).

2. The ESD item for the control section
that contains the address constant.
This is referred to by the RLD posi-
tion pointer (P pointer).

In input module 1, X and Y are address
constants in the same control section
(CSECT 2) . X refers to a symbol in CSECT
A; therefore, both pointers of its asso-
ciated RLD item refer to the ESD entry for
CSECT A (1line 1) . The value field of ¥
refers to a symbol in a different control
section (CSECT C); therefore, the R pointer
of its associated RLD points to the ESD
entry for the external reference (line 2),
whereas the P pointer refers to the ESD
entry for its control section (line 1).

When the linkage editor combines the
input modules, it must maintain this system
of pointers by renumbering the ESD items to
reflect their relative positions in the
CESD of the output module. It must also
update the RLD pointers and control infor-
mation for the text so that they refer to
the renumbered CESD items; the resulting
CESD and RLD items are shown in Figure 2.

1In an object module, one type of ESD item
(LD) may not have associated text or
address constants that depend on it.
(Refer to "ESD Processing.") Such ESD
items are excluded from the numbering
system.

12 :

SELECTED OPTIONS

Linkage editor processing also depends
on selected options. Figure 1 shows a
simple case in which a single object
module, containing only one control sec-
tion, is processed by the linkage editor
for block loading.

Figure 3 shows the processing of an
object module and a load module, each con-
taining several control sections. In this
example, test translator macro instructions
were included in an assembler language
source program and test symbol (SYM) rec-
ords were produced by the assembler lan-
guage translator. The TEST and overlay
options were specified on the execute
(EXEC) statement and overlay control state-
ments were included in the input to linkage
editor. With these options, the output
load module produced by the linkage editor
contains:

e SYM records to be used by the test
translator. (If the TFST option is not
specified on the EXEC statement, SYM
records in input are not included in
the output load module.) These recorxrds
contain blocked SYM and ESD statements
created during a previous execution of
linkage editor. SYM records in load
modules are passed through the linkage
editor unmodified to the output device.

e A composite ESD. CESD records contain
the ESD items for the module. There is
a maximum of 15 ESD items per record on
the output device. The first eight
kytes of the CESD record contain con-
trol information pertaining to the ESD
items in the record. This information
consists of the ESD ID of the first ESD
item and the number of bytes of ESD
items in the record.

e A control record, or a composite
control/RLD record, preceding each text
record. The RLD portion, if present,
contains the RLD items used to relocate
the previous text.2 The control portion
may contain:

1. An end of segment (EOS) indica-
tion, if the following text record

2If there is a large number of RLD items
for the previous text, there may be sever-
al RLD records preceding the next text
record. The last of these is a control/
RLD record.

is the last text record of an
overlay segment.?3

2. BAn end of module (EOM) indication,
if the following text record is
the last text record of the
module. 3

3. The number of bytes of RLD infor-
mation that follow, if it is a
composite control/RLD record.

4. The number of bytes of control
information.

The control portion also contains the
IDs and lengths (in bytes) of all the
control sections in the following text,
to a maximum of 60, and a channel com-
mand word (CCW). The channel command
word contains the address assigned by
the linkage editor to the first byte of
that record, plus the total length of
the record. This information is used
by program fetch to read the following
text.

Note: The control portion contains as
many IDs and lengths as there are con-
trol sections in the following text
record.

e Text for each control section. Text
records contain the instructions and
data for the module. In overlay, the
linkage editor produces two special
types of text records, the segment
table (SEGTAB) and entry table (ENTAB).
The SEGTAB, located in the root seg-
ment, is used by the overlay supervisor
to keep track of the relationship of
segments during execution. The ENTAB
is a separate control section that may
be created by the linkage editor for
each overlay segment. An ENTAB is used
by the overlay supervisor to determine
the segment to be loaded when a segment
not in the path is referred to.

e A note list. The note list gives the
location of each overlay segment in the
output module library.

Figure 4 shows the module structure when
the scatter loading and test options are
requested. With these options, the output
load module contains:

3If there are no RLD items for the last
text record, the control record that pre-
cedes the text contains the EOS or EOM
indication. If there are RLD items, the
EOS or EOM follows the text record. (See
Figure 3.)

e SYM records.
e A composite ESD.

e A scatter/translation record used by
program fetch to compute the relocated
addresses required for scatter loading
the module into the main storage. The
record contains a scatter table and a
translation table. The scatter table
is a list of control section addresses;
the translation table correlates the
CESD entry for each control section
with the address indicated in the
scatter table. (When a load module in
scatter format is processed again by
the linkage editor, this information is
ignored.)

e Text for each control section, preceded
by a control/RLD record describing it.
(Any RLDs pertaining to a text record
are contained in the control/RLD record
that follows it.)

e An EOM indication that marks the end of
the module.

The Appendix (Section 7) contains the
format of each record type.

MODULE ATTRIBUTES

When the linkage editor generates a load
module in a library (partitioned data set)
it places an entry for the module in the
PDS directory. This entry contains "attri-
butes" describing the structure, content,
and logical format of the load module. The
control program uses these attributes to
determine how a module is to be loaded,
what it contains, if it is executable,
whether it is executable more than once
without reloading, and if it can be
executed by concurrent tasks.

Some module attributes can be specified
by the programmer; others are specified by
the linkage editor as a result of informa-
tion gathered during processing. In the
following list, attributes marked with an
asterisk cannot be specified by the
programmer:

e Reenterable. A reenterable module can
be executed by more than one task at a
time and cannot be modified by itself
or by any other module during execu-
tion; i.e., a task may begin executing
a reenterable module before a previous
task has finished executing it.

Section 1: Introduction 13

Object
Modules

Input

SYM

ESD

TXT

END

ESD

T

END

ESD

TXT

RLD

END

Load
Module

SYM

CESD

Control
Record

SEGTAB

Control
Record

TXT

Control /RLD
Record

ENTAB

EOS/
RLD/Record

Control
Record

TXT

Control /RLD
Record

ENTAB

EOS/
RLD Record

Control
Record

IXT

EOM/
RLD

Note
List

* RLD items exist for previous TXT record;
therefore, EOM/RLD follows TXT record.

** No RLD items for last TXT record;
therefore, EOM precedes TXT record.

Any overlay statements in the load module
are ignored.

Figure

Object
Modules

3.

Figure 4.

14

Input

ESD

TXT

END

ESD

TXT

RLD

END

Load
Module

SYM

CESD

Scatter
Translation
Record

Control

TXT

Control/RLD

TXT

Control /RLD

TXT

EOM/RLD

Linkage
Editor

Linkage
Editor

*&

Linkage Editor Processing - Using Overlay and Test Options

Output
Load
Module
SYM
CESD
Control
Record
SEGTAB
Control
Record
TXT
Control/
RLD Record | Segment !
ENTAB (Root
\ EOS/ Segment)
RLD Record
Control
Record
TXT
Control/
RLD Record | Segment 2
ENTAB
\ EOS/
RLD Record
Control
Record
TXT
Control/
RLD Record
ENTAB
EOS/
RLD Record
Control/
EOM
TXT Segment N
Note
List
Output
SYM
CESD
Scatter
Load ;mnslgtion
MOdUle ecor
Control
TXT
Control/RLD
\ T
e
Control /RLD
TXT
EOM/RLD

Linkage Editor Processing - Using Scatter Load and Test Options

Refreshable. A refreshable module can-
not be modified by itself or by any
other module during execution; i.e., a
refreshable module can be replaced by a
new copy during execution by a recovery
management routine without changing
either the sequence or results of pro-
cessing. (For details on recovery
management, refer to the publication
IBM System/360 Operating System, Con-
cepts and Facilities, Form C28-6535.

Serially reusable. A serially reusable
module will be executed by only one
task at a time, and it will either
initialize itself and/or it will
restore any instructions or any data in
the module that it alters during its
execution.

Overlay format. A load module struc-
tured for overlay includes a segment
table (SEGTAB) to enable the overlay
supervisor to load the proper segments,
and at least one ENTAB to assist in
passing control from one segment to
another. If a load module has the
overlay format attribute, the reenter-
able, reusable, and scatter attributes
cannot be present.

Test. If this module is an assembler
language program and testing by the
test translator is desired, this attri-
bute can be specified. Test will cause
SYM records to be written. If the TEST
attribute is specified, the module can-
not be reenterable or serially
reusable.

Only loadable. This attribute indi-
cates that the control program may load
this module only via the LOAD macro
instruction.

Scatter format. A load module in
scatter format is suitable for block or
scatter loading. The scatter-
translation table and the relocation
dictionary maintain logical linkage
between scattered control sections when
program fetch loads them into main
storage.

*Block format. If neither the overlay
nor scatter attributes are specified,
it is implied that the module can only
be block loaded. The control program
will load the module only if enough
contiguous main storage space is avail-
able for the entire module.

*Executable. This attribute indicates
that linkage editor did not find any
errors that would prevent successful
execution. If this attribute is not
present the control program will not
load the module.

e *Module contains one text record and no

relocation dictionary records. This
attribute indicates that the control
program does not have to allocate main
storage for relocation dictionary items
when loading the module. It also indi-
cates that the first text record is the
last one; there is no control record
following it. The entire module can be
read by program fetch in a single read
operation.

Downward compatible. Indicates that
the module can be processed by either
the level E or F linkage editor. The
downward compatible option is assumed
by the level E linkage editor. Modules
processed by the level F linkage editor
that are not marked "downward compat-
ible" cannot be processed by the level
E linkage editor.

*Linkage editor assigned origin of
first text record is zero. If this
attribute is present, the first byte of
instruction or data in the first text
record is assigned to location zero.

*Entxy point assigned by linkage editor
is zero. Indicates that the entry
point is at the first byte of the
module.

*No relocation dictionary items pre-
sent. Indicates to the control program
that no allocation of main storage is
necessary to receive relocation dic-
tionary items when program fetch loads
them into main storage.

Not editable. Indicates that the load
module cannot be accepted by the link-
age editor for subsequent processing.
(For example, the programmer may drop
the CESD from an output load module in
order to conserve space on the library;
such a load module cannot be repro-
cessed by linkage editor.)

Symbol statements present. If a module
produced by the assembler language
translator is to be tested by the test
translator, it may contain a testing
symbol dictionary. 1In a load module,
this dictionary contains the informa-
tion from the symbol statement images
that were input to linkage editor.

INPUT/QUTPUT FLOW

Four data sets must be specified for

linkage editor processing; their ddnames
and functions are:

e SYSLIN. This is the "primary input

data set," containing object modules
and control statements. All input from

Section 1: Introduction 15

SYSLIN must be in 80-column card image
format.? The SYSLIN source may be a
card reader, magnetic tape, a direct
access device, or a concatenation of
data sets from different types of input
devices.?

e SYSPRINT. This is the "diagnostic out-
put data set." Diagnostic messages,
the module map, and the cross-reference
table are written on SYSPRINT. (In the
Sequential Scheduling System, the
SYSPRINT device is normally a printer
or magnetic tape.)

e SYSUT1. This is the "intermediate data
set." Linkage editor uses this data
set for temporary storage of text and
RLD items being processed. SYSUT1 must
be on a direct access volume.

Note: SYSUT1 is only opened when two-

pass processing is in effect.
e SYSIMOD. this is the "output module
data set." It is a partitioned data
set on a direct access volume. SYSLMOD
contains load modules; their attributes
are described in the user's portion of
the directory entry for the member.

An additional data set, SYSLIB, is used
by linkage editor if there are any automa-
tic library calls to be processed. SYSLIB
can be defined only as a partitioned data
set. The members of SYSLIB can be either
load modules or object modules (but object
and load modules cannot be contained in the
same PDS) . When SYSLIB is opened, the
linkage editor determines whether the PDS
contains object or load modules by checking
the format in the data control block (DCB) .
If the PDS contains object modules, the
record format (RECFM) field of the DCB
indicates "fixed (F) format;" if it con-
tains load modules, the DCB indicates
"unknown (U) format." (Load module recorxds
are of variable length.) If SYSLIB con-
tains object modules, the linkage editor
ignores the user's portions of the PDS
directory entries for the object modules.

Other data sets may be read by linkage
editor when it processes INCLUDE or LIBRARY
statements specifying ddnames. Data sets
read into main storage with INCLUDE state-
ments may be either sequential or parti-
tioned. SYSLIB and data sets specified in
LIBRARY statements for use by automatic
library call must be partitioned.

The attributes for the "execute linkage
editor" job step are the attributes speci-

"The card images may be blocked.
2A concatenation of data sets cannot con-
tain both object and load modules.

16

fied on the EXEC statement. These attri-
butes may be modified if a load module hav-
ing different attributes is processed.

Figure 5 shows the input/output flow.
During the initial processing, SYSLIN,
SYSPRINT, SYSUT1, and SYSLMOD are opened.
During input processing, the primary input
is read from SYSLIN. If an INCLUDE state-
ment is read in the primary input, the data
set whose ddname is specified on the state-
ment is opened, and is processed. At the
end of all SYSLIN input, SYSLIB and any
other data sets whose ddnames are specified
on LIBRARY statements are processed through
automatic library calls.

SYSPRINT

SYSLIN
_ Diagnostic
:’nm?ry Initial > Outg:)uf
;:ft; T Processing M Data Set
Ll
Additional i
Input :
Sources |
|
> —
Input
Processing
—_— =
|
|
|
SYSLIB {
- :)
Intermediate
Call S
Library — Processing
N—— ;
|
SYSUT | SYSLMOD
|
Second Pass Output
Processing
Library
|
|
|
|
l
Final
Processing

Figure 5. Input/Output Flow

If the TEST option has been selected,
SYM records are written during input pro-
cessing; text and RLD items are written
sequentially on SYSUT1, except during
single pass processing. The location of
each text record on SYSUT1 is entered in a
text note list. The location of each RLD
record on SYSUT1 is entered in an RLD note
list. If either note list overflows, it is
written out on SYSUT1; either note list may
overflow three times.

In intermediate processing, the CESD is
written on SYSLMOD (unless the not editable
attribute is indicated). If a scatter
table, translation table, or SEGTAB is
required, it is also written on SYSLMOD.
The note list for the text and RLD items on
SYSUT1 are read into main storage. If a
module map was required, the CESD is used
in producing the map. If a cross-reference
table was requested and all RLDs are in
storage, the table is produced during
intermediate processing.

During second pass processing, text and
RLD records are read into main storage from
SYSUT1 in the order of assigned addresses
within each segment (using the note lists
to find the records) and are written out on
SYSLMOD.

In final processing, the member name and
any alias names are entered into the PDS
directory entry of the output load module,
via the STOW macro instruction. If any
coded diagnostic messages were written on
SYSPRINT during linkage editor processing,
a diagnostic message directory containing
error message text is written out on

SYSPRINT. If a cross-reference table was
requested and was not produced during
intermediate processing, SYSLMOD is opened
for input, RLDs are read, and the cross-—
reference table is produced. At the end of
final processing, SYSLMOD is closed (if it
was opened for input). All other data sets
are then closed and control is returned to
the calling program, unless the SYSLIN
input during input processing was ter-
minated by a NAME statement. If a NAME
statement terminated the primary input, and
it is not followed by end-of-file, control
is returned to initial processing and
SYSLMOD is opened for output, if it had
been closed during final processing.

When a NAME statement is used to produce
multiple load modules in a single execution
of linkage editor, SYSLIN, SYSPRINT, and
SYSUT1 remain open for the entire execu-
tion. (A pointer in the DCB for SYSUT1 is
repositioned to the beginning of extent of
SYSUT1 after each load module is produced.)
If neither a module map nor a cross-
reference table is requested, or if a
cross-reference table is requested and all
RLDs are in core, SYSLMOD remains open for
output for the entire linkage editor
execution.

Section 1: Introduction 17

SECTION 2: METHOD OF OPERATION

This section contains an introduction to
the logic of the linkage editor, which
emphasizes the flow of primary data and
control information through tables and
buffers, and detailed functional descrip-
tions of its phases.

LOGIC OF THE LINKAGE EDITOR

The linkage editor can be functionally
divided into five phases:

e Initialization
e Input processing
e Intermediate processing, including
address assignment and intermediate
output
e Second pass processing
e Final processing
Operation diagrams (see Figures 6-10,
16-19, 22, and 26) at the end of this sec-
tion illustrate the functional operation of
the linkage editor. The shaded areas of
the diagrams correspond to operations
described in the text.

Initialization

When the linkage editor receives control
from the job scheduler or a calling pro-
gram, it performs initialization functions
in preparation for all subsequent proces-
sing. (See Diagram A1) . The operations
included in initial processing (area B3)
are:

e Initialize DCBs and open data sets to
be used during linkage editor
processing.

e Allocate storage for all tables, buff-
ers, and work areas to be used by link-
age editor processing.

e Build the all purpose table (APT) and
enter addresses and descriptions of all
other tables and buffers into it.

e Analyze the attributes and options
passed by the calling program (speci-
fied by the programmer) and save them
in the all purpose table.

When all initialization functions are

completed, the linkage editor is ready to
accept input.

18

Input Processing

All linkage editor input is processed
initially during the first pass. (See Dia-
gram Al1.) Object modules from SYSLIN (pri-
mary input data set) are read into the
SYSLIN buffer (area B). Object modules
from SYSLIB or a specified user's library
(secondary input data sets) are read into
the object module buffer (area C). Text
records in load modules from SYSLIB or a
user's library are read into the input text
buffer (area F); all other load module
records are read into the first pass RLD
buffer (area D). The various records which
constitute these modules are processed as
follows.

Control Statements: These records, which
may precede or follow object modules, con-
tain information which is later used in
symbol resolution and which specifies
libraries containing secondary input.
Depending on the type of control statemrment,
entries are made in either the all purpose
table (APT) or the composite external sym-
bol dictionary (CESD) .

ESD Records: These records from object
modules, and CESD records from load
modules, describe symbols that have been
defined for external use. Entries for the
symbols are made in the CESD (area E).
Entries are made in the renumbering table
to allow the translation of the input ESD
indentifiers (IDs) into new CESD IDs.
Entries are made in the delink table for
symbols that are to be deleted or replaced.

TXT Records: These records, containing the
instructions and data of the program, are
moved from the SYSLIN buffer and object
module buffer to the input text buffer
(text records from load modules are read
directly into the input text buffer) (area
F) . They are arranged in the proper
sequence and recorded in the text I/0 table
and the text note list. When the input
text buffer is filled, its contents are
written onto SYSUT1; if it does not become
filled, text records are retained in the
buffer, and "single-pass" processing is in
effect. Text note list entries contain the
location of text records (SYSUT1 address or
buffer address) and other descriptive
information. Text I/0 table entries con-
tain information identifying text records
by ESD ID.

RLD Records: These records, to be used
later in relocating address constants, are
moved from the SYSLIN buffer and object

module buffer to the RLD buffer (area G).
The relocation and position pointers (R and
P pointers) are updated, using control
information from the renumbering table and
the delink table. RLD items are examined
and marked for future processing. If V-
type (branch-type) address constants are
found in overlay programs, entries are made
in the calls list for use during intermedi-
ate processing. When the RLD buffer is
full, RLD records are written onto SYSUTI1,
and control information identifying RLD
records by size (byte count), P pointer,
and location on SYSUT1 is entered into the
RLD note list. 1If the RLD buffer does not
become filled, RLD records are retained in
the buffer and "single-pass" processing is
in effect.

SYM Records: These records, which are not
involved in linkage editor processing, are
gathered in the RLD buffer and are written
directly onto SYSLMOD if the TEST option
has been specified. If TEST has not been
specified, SYM records are ignored.

When all input records have been pro-
cessed (all external symbols have been
entered into the CESD) control is passed to
intermediate processing.

Intermediate Processing

The operations included in intermediate
processing (see Diagram A2) have two pri-
mary objectives: to assign relative
storage addresses to symbols in the CESD,
and to write some of the records to be
included in the output load module onto the
SYSLMOD data set. MAP and XREF options may
also be produced during intermediate
processing.

Address Assignment: Entries which require
no further processing are deleted from the
CESD; all other CESD symbols are assigned
temporary linked addresses. Relocation
constants are determined for all control
sections, and the relocation constant
table (RCT) is built (area 3).

For all programs in overlay, additional
processing is required. The calls list is
used to determine ENTAB entries to be
placed in the CESD, and the downward calls
list is built (area F) . The segment length

CESD. At this point CESD processing is
complete.

MAP/XREF Processing: If the MAP option has
been specified, a module map, containing
sorted CESD items, is built and written on
SYSPRINT. If the XREF option has been spe-
cified and all RLDs are in storage, a
cross-reference table is built from RLDs
(in the RLD buffer) and written on
SYSPRINT. If all RLDs are not in storage,
the cross-reference table is built during
final processing.

Intermediate Qutput: The principal func-
tion of this section of intermediate pro-
cessing is to write the CESD onto the out-
put load module data set (SYSLMOD). The
half ESD (HESD), containing control infor-
mation from CESD entries, is built (area C)
and held in main storage for use during
second pass processing. The text I/0 table
(area E) is scanned to determine the ID of
the last control section containing text in
the program (or in each segment of an over-
lay program) ; this information is placed in
the high ID table (HIID) (area E), and
noted in the HESD for use during second
pass processing.

For a program in overlay, the segment
table (SEGTAB) , which defines the relation-
ships among segments, is built and written
(with a ccntrol record) onto SYSLMOD (area
D) .

For a program that is to be scatter
loaded, a scatter table and a translation
table are built from information in the
CESD, and scatter/translation records are
written onto SYSLMOD (area G) .

Module IEWLMOUT is the Intermediate Out-
put Processor.

Second Pass Processing

The objectives of second pass processing
(see Diagram A3) are relocating address
constants in the text and writing onto the
SYSLMOD data set the remaining records that
constitute the output load module.

Text records are read from SYSUTI1
(intermediate data set) into the second
pass text buffer (area A), using the text

table (SEGLGTH) is built (area B), and seg-
ment relocation constants are computed.
Temporary linked addresses in the CESD and
entries in the relocation constant table
are adjusted for overlay by adding to them
the segment relocation constants (area B).

Temporary linked addresses and reloca-
tion constants are combined to determine
final linked addresses for symbols, and the
results are placed in the CESD. The alias
table is built from alias symbols in the

I/0 table and the text note list to locate
the records on SYSUT1. The text I/0 table
is also used to determine the order in
which text records are to be processed.

RLD records associated with the text being
processed are read into the second pass RLD
input buffer, using the RLD notelist to
locate the required records (area B).

Single-Pass Processing: If the linkage
editor did not write text or RLD records
onto SYSUT1, single-pass processing is in

Section 2: Method of Operation 19

effect for these records. The records are
accessed directly in the input text buffer
and the RLD buffer, which are physically
the same storage areas as the second pass
text buffer and the second pass RLD input
buffer. If text records or RLD records
were written onto SYSUT1, they are read
back into the same locations.

Relocation: Address constants described by
RLD items are moved from the second pass
text buffer to a work area, where reloca-
tion is performed (area C). The manner in
which each address constant is relocated
depends on whether it is a V-type (branch
type) or an A-type (non-branch type)
address constant, or a pseudo register
(type 1 or type 2).

A V-type address constant can refer to a
named location in some other control sec-
tion (branch type address constant). The
value field of such a V-type address con-
stant always contains a zero because the
address was not known at compilation time.
During second pass processing, the linkage
editor address (absolute relocation factor)
that was assigned to the symbol and saved
in the HESD is inserted into the value
field. This is called absolute relocation.

(for the first segment the list contains
the address of the first text record) is
also created and retained in main storage.

Second pass processing continues until
all segments in the output module are pro-
cessed. The last control record contains
end of module indicators. Control is then
passed to final processing.

Final Processing

The objectives of final processing (see
Diagram Al4) include writing remaining out-
put to SYSLMOD, producing certain optional
output, and "cleanup" functions.

The partitioned data set directory for
SYSLMOD is completed, including modifica-
tions for ALIAS symbols (found in the ALIAS
table), and a STOW macro is issued (area
B) . The TTR 1list, containing the address
of the first text record in each segment,
is written onto SYSLMOD for overlay pro-
grams (area A).

The error logging map, produced as
errors are encountered throughout linkage
editor processing, is scanned and an error
diagnostic directory is built and written

If the V-type address constant is in an
overlay program, the address of an ENTAB
entry for the symbol and the segment number
of the current text is inserted in the
value field. (ENTABs are created in the
second pass RLD buffer from information in
the HESD and the entry list, which contains
an entry for each V-type address constant
in the path of a referred-to symbol (area
E) .)

The value field of an A-type address
constant that refers to a named location in
the same input module (non-branch type
address constant) contains an address
assigned by the language translator. Dur-
ing second pass processing, this address is
modified by adding or subtracting the rela-
tive relocation factor that was determined
for the symbol referred to by the address
constant. Relative relocation factors are
saved in the relocation constant table.
This process is called relative relocation.

When each address constant is relocated,
it is placed back in the text, and the
address field of the associated RLD item is
updated (area D). The RLD item is then
moved to the second pass RLD output buffer.
When all address constants in the text
buffer are relocated, the text is written
onto SYSLMOD, followed by the associated
RLD items (area F¥). A control record per-
taining to the next text record is written
onto SYSLMOD following the RLD records. If
the output load module is structured for
overlays a TTR list, containing the address
of the first control record of each segment

20

on SYSPRINT, (area C). Main storage allo-
cated to linkage editor is released.

If the XREF option is specified, and was
not processed during intermediate proces-
sing, RLD records are read from SYSLMOD,
and a cross-reference table is built and
written on SYSPRINT, (area D).

At the completion of linkage editor pro-
cessing, control is returned to the calling
program.

INITIALIZATION (IEWLMINT)

When the linkage editor receives control
from the job scheduler, or from another
program via a CALL (after execution of
LOAD, LINK, XCTL, or ATTACH macro instruc-
tion) , control information may be passed to
it." This information includes the attri-
butes and options that control linkage edi-
tor processing. When control is passed to
the linkage editor from the job scheduler,
the passed control information is the
information contained in the operand field
of the EXEC statement. The control infor-
mation is interpreted, checked for validi-
ty, and saved for later use in linkage edi-
tor processing.

1The method of passing information to the
linkage editor is described in the System
Reference Library publication IBM System/
360 Operating System: Linkage Editor.

A program that passes control to the
linkage editor may provide a substitute
list of ddnames to be used in place of the
standard names, and a name that is to be
assigned to the output load module in the
PDS directory.

Initialization functions performed by
the linkage editor include:

e Building an all purpose table, which
contains descriptions of other tables
used by the linkage editor, and con-
tains decision indicators that control
linkage editor operation. The APT
remains in main storage throughout the
linkage editing process and is the
major communication area among internal
functions.

e Opening all data sets used by the link-
age editor, except SYSLIB and SYSUT1,
after the standard ddnames (or passed
ddnames) have been entered into the
data control blocks of the data sets.
(The SYSLIB DCB is used for automatic
library calls or INCLUDE statements; it
is opened during input processing only
if there are any automatic calls or
INCLUDE statements specifying it. The
SYSUT1 DCB is opened only when needed.)

e Setting an "unlike attributes" indica-
tor in the SYSLIN DCB. This indicates
to the open routine that SYSLIN may be
a concatenation of data sets stored on
different devices.

e Scanning and analyzing the control
information that was previously passed
in a 1list to linkage editor. The pro-
cessing options requested by the user
and the attributes to be assigned to
the output load module are compared
against an option table and noted in
the all purpose table. When mutually
exclusive attributes are specified for
a load module, the linkage editor
ignores the incompatible attribute
(refer to Table 1) . If the SIZE option
is specified, the associated value is
placed in the all purpose table. If
the SIZE option is not specified, the
default values chosen at system genera-
tion time are used.

e Requesting main storage space for
internal tables, buffers, and work
areas. The allocation processor issues
a request for a minimum requirement of
main storage space. The minimum value
depends on whether or not the module
being processed is structured for over-
lay; it includes an amount to be used
by data management functions. If suf-
ficient main storage space is avail-
able, the supervisor returns control to
the allocation processor and the space

exceeding the minimum requirement is
divided among the tables and buffers.
If sufficient main storage space is not
available, the control program will not
return control to the linkage editor;
instead, a system ABEND will occur.

Table 1. Incompatible Module Attributes

x
x
x
NS

XX

Note: An X indicates incompatible attri-
butes; the attribute that appears lower in
the list is ignored. For example, to check
the compatibility of XREF and NE, follow
the XREF column down and the NE row across
until they intersect. Since an X appears
where they intersect, they are incompatible
attributes. NE is ignored.

Main Storage Allocation

To obtain the required main storage
space, the allocation processor:

1. 1Issues the GETMAIN macro instruction,
and if sufficient main storage space
is available, assigns storage for the
maximum buffer lengths to each of the
object module buffers, SYSLIN buffers,
and SYSPRINT buffers. If sufficient
space for maximum buffer lengths is
not available, intermediate buffer
lengths are assigned. If sufficient
space for intermediate lengths is not
available, the minimum buffer lengths
are assigned.

2. MAssigns main storage to the RLD buffer
and the text buffer. The text buffer
area is referred to as the input text
btuffer during input and intermediate
processing, and as the second pass

Section 2: Method of Operation 21

text buffer during second pass proces-
sing. The text buffer will be
assigned the minimum length (6K bytes)
unless additional space was requested
via the SIZE parameter, in which case
the text buffer will be expanded, as
specified, up to a maximum of 100K
bytes.

Note: All space allocated for buffers
is released only at the completion of
linkage editor processing.

3. Determines the excess of main storage
space allocated by the supervisor.

4. Divides the total excess by the total
weight factor. A weight factor is a
ratio based on the individual main
storage requirements of linkage editor
tables that are not fixed in size.
(Fixed tables have weight factors of
zero.) The total weight factor
depends on whether or not the module
is structured for overlay.

5. Multiplies the quotient obtained in
step 6 (rounded to the nearest lower
integer) by the weight factor for each
table and adds the result to the mini-
mum requirement for the table. This
is done for all tables and buffers.

6. Divides the total byte count for each
table by the number of bytes per
entry, and saves the result in the all
purpose table.

7. Computes the addresses for the tables
and places them in the all purpose
table.

8. Releases excess main storage space,
saving the last address used.

When the required main storage space has
been allocated, tables are initialized to
zero, and the linkage editor is ready to
accept input.

INPUT PROCESSING (IEWLMINP)

The operations performed during input
processing depend on the nature of the
input; special processing is required for
each input record type. Each input record
is read, using one of two read blocks. The
first read control block contains the
address of the SYSLIN buffer, the address
of the SYSLIN DCB, and the block size and
logical record length. The second read
control block contains the address of the
buffer for library records (object module
buffer or load module buffer), the address
of the library DCB, and the block size and
logical record length. A pointer is used
to indicate which read control block is to

22

be used for the input record. Initially,
the pointer is set to the SYSLIN read con-
trol block.

The type of input processing required is
determined by the following conditions:

e For all object module records whose
first colurn character is a blank, con-
trol statement scanning is required,
provided that the record is not encoun-
tered "in module". (Control statements
encountered within a module cause an
error indication.)

e Either object module processing or load
module processing is required, depend-
ing on the type of input module. Only
object modules are read from SYSLIN.
Input modules from libraries are iden-
tified by record format. F format
indicates object modules; U format
indicates load modules.

e At end-of-input (from SYSLIN or
SYSLIB) , include processing is required
if more modules must be included before
rerunning normal processing.

e At end-of-input from SYSLIN, automatic
library call processing is required if
the NCAL option (no automatic library
calls) was not selected. If the NCAL
ortion was selected, input processing
is complete.

e If a NAME statement, which may indicate
a multiple execution of linkage editor,
is detected during control statement
scanning, processing proceeds as if an
end-of-input has occurred on SYSLIN
(automatic library call processing is
performed) . The next record is read to
determine if end-of-input has occurred;
if not, input processing will be
repeated at the end of final
processing.

e If an end-of-input occurs on SYSLIN,

kut no valid input was received, link-
age editor processing is terminated.

Reading Blocked Input

The linkage editor can accept blocked
card image input from the SYSLIN data set
and blocked object module records from the
SYSLIB data set (or from a user's library).
Maximum block sizes allowed by the linkage
editor are shown in Table 2. Generally,
the record format, block size, and logical
record length are established either when
the data set is created, or when they are
specified on the DD statement for the data
set in an execution of the linkage editor.
If the BLKSIZE field is not specified, the
linkage editor assumes a block size of 80.

The logical record length (LRECL) is fixed
at 80.

Table 2. Block size Determination

) L]
|Maximum Block size|Main Storage Available
[}

T
5 | 44K (+xK) - 52K (+xK)
1
T
10 | 52K (+XK) - 88K (+XK)
(|
50 188K (+xK) - 9999K
L

xK is the (optional) additional storage
allocated to the load module buffer
(i.e., storage in excess of 3K).

D e
e e e s i e edin s b . e .

If the block size specified on primary
input exceeds the allowable maximum (see
Table 2), or is not a multiple of the log-
ical record length, an error message
(IEW0594) is issued and linkage editor pro-
cessing is terminated; if the invalid block
size is specified on input from a library,
the data set is ignored, but processing is
not terminated. The block size specified
by the user is used as the read count; if a
short block is read, the linkage editor
determines (via an exit at SYNAD) if the
length of the short block is valid (a mul-
tiple of the logical record length) , and
the number of the logical records it
contains.

If SYSLIN is a concatenation of data
sets, the input processor reexamines the
block size fields whenever a data set
boundary is crossed to determine if their
values have changed.

Blocked Output on SYSPRINT

The logical record length for output to
SYSPRINT is fixed at 121. If the BLKSIZE
is not specified by the user, it is set
equal to the logical record length. If the
specified block size exceeds the allowable
maximum (see Table 2), or is not an inte-
gral multiple of the logical record length,
linkage editor processing is terminated and
a condition code of 16 is returned.

Control Statements

When an input record is found to be a
control statement (blank in column 1), it
is scanned to detect format errors and con-
tinuation of comments or operands. A vec-
tor table is scanned to determine the
appropriate processor; separate processing
is required for each type of control state-
ment (INCLUDE, REPLACE, LIBRARY, CHANGE,
INSERT, OVERLAY, ENTRY, ALIAS, NAME, or
SETSSI) . Diagram B1 illustrates general
processing of each control statement type.

The general format for linkage editor
control statements is shown in Figure 11.
The control statement scanner interprets
symbols enclosed in parentheses as "level
1" symbols; symbols not enclosed within
parentheses are "level 0." ENTRY, ALIAS,
INSERT, and SETSSI control statement
operands contain only level 0 symbols.
CHANGE statement operands always contain
both a level 0 symbol and a level 1 symbol.

The operands of REPLACE, INCLUDE, OVER-
LAY, and NAME control statements contain
level 0 symbols, or both level 0 and level
1 symbols. LIBRARY statement operands may
contain level 1, or both level 0 and level

1 symbols. The operation to be performed
depends on the operand format.
Operation Operand
OPRTIONX a,.e., b(c,d, Y, (e,),
A
Pl P1 P1 PI Pl Before Read8
Processing
T T T T T T T T T] " AferReed8
|_ Processing
P2
l—la I—l
OPDO OPD1

[

b

Lb | Le

OPDO OoPDI
-————
P2

Lb 1 dj

OPDO OPD1
~
P2

I——-—J I—]e

OPDO OoPD1

Control Statement Scanner
Operation

Figure 11.

The control statement scanner searches a
vector table for the operation symbol to
determine the associated control statement
processor. It then analyzes the operands
using two work areas, "OPD1" and "OPDO,"
and two pointers, "P1" and "P2." OPD1 is
used for level 1 operand symbols; OPDO is
for level 0 operand symbols. P1 points to
the operand symbol being analyzed; P2
points to either OPD0 or OPD1, depending on
the level of the operand symbol referred to
by P1.

Section 2: Method of Operation 23

An operand symbol referred to by P1 is
placed by the READ8 routine into the work
area referred to by P2. Parentheses and
commas control the switching of pointer P2
between the work areas. For example, when
a left parenthesis is encountered, P2 moves
to OPD1 because a level 1 operand symbol
will follow. When a comma, blank, or right
parenthesis is detected, the PROCENTY rou-
tine passes control to the control state-
ment processor that was previously found
during the search of the vector table.

Control Statement Processors

When the operand symbols have been read
into work areas OPD0O and OPD1, control is
passed to the control statement processor
at the saved entry point. Scanning of the
control statement resumes when the control
statement processor returns control. The
individual control statement processors are
described in the following paragraphs.

INCLUDE STATEMENT PROCESSOR: The include
statement processor builds a chain in the
CESD of items to be included. Each item in
the chain contains the address of the next
item in the chain (in the chain/address
field - bytes 9, 10, and 11) . The last
item in the chain contains zeros in this
field.

Chained include items have two kinds of
subtypes: "include with pointer" and
"include without pointer." In Figure 12,
the statement INCLUDE M defines M as a
sequential data set. The include statement
processor creates an entry for the ddname M

e

=i

Register 2

All Purpose Table

LM [
OPDO OPDI

Figure 12.

24

8A00 4 »8A00 *M 02

in the CESD with the subtype "include
without pointer.”

In the statement INCLUDE LIBX (A), A is
defined as a member of a PDS. The include
statement processor creates an entry for A
in the CESD with the subtype "include with
pointer." The pointer is in the chain
pointer/chain ID field (bytes 14 and 15);
it contains the CESD line number of the
ddname LIBX. A single ddname, such as
LIBX, may be referred to by several
pointers.

In Figure 13, the statement INCLUDE
TEMP (A,B,C) indicates that A, B, and C are
members to be included from library TEMP.
Member B contains the nested statement
INCLUDE LIBX (U,V,W); this is the last
statement processed in member B. The CESD
is shown at the time when the control
statement scanner has read operand V, but
not W. The include statement processor has
created a CESD line for operand V in the
LIBX include chain. C is currently the
last item in the TEMP include chain. When
the control statement scanner reads operand
W, the include statement processor enters a
CESD line for W between V and C; this pro-
cess is distinct from the one that actually
searches the members U, V, and C on the
library. (Refer to the paragraph "Include
Processor.") At the tiwme chosen for this
example, the data set member B is being
read; data set member A has been read and
therefore is no longer in the CESD as a
menmber name, but data set members U, V, and
C have not yet been read.

The chained CESD entries created by the
include statement processor are later pro-
cessed by the include processor (Chart JR).

CESD

Chn Addr
Symbol | Type|/Reverse
Chain 1D [No | TyPe

Chn
Seg|Sub |Pointer
Chain
Length/ID

00000000 co

* ddname

Include Statement Processing for a Sequential Data set

Library

/7
(/INCLUDE TEMP (A,8,0) Member B of Temp
TNCLUDE
(LIBX
Register 2
CESD
| . o
| Chn Addr Reverse | Seg|Sub |Chn Pointer Chain
L All Purpose Table Symbol 1 TyPe | & in 1D No |Type|Length/ID
—->
Current 1 .
Include 2 .
Pointer 3)
4 | *TEMP | 02 BO
7CDO o
I .
(O S - .
Include Chain L—— ——» 7CD0 8 B 02 007D10 DO 04
Breaking Point :
Pointer :
0 T ———— - 7D10 12 u 02 007D30 DO 19
I L]
———-»7D30 14 v 02 007D&0 DO 19
L]
L]
L]
LIBX | v) 7D60 17 ¢ 02 000000 DO 04
OPDO OPDI :
19 |*LBX | 02 BO
L]
L]
. . . * ddname
Figure 13. 1Include Statement Processing With Nested Members

OVERLAY STATEMENT PROCESSOR: The overlay
statement processor maintains a record of
the current segment number and updates it
by one each time a new OVERLAY statement is
encountered. The relationship of segments
in an overlay tree structure is kept in
SEGTA1 (see Figure 14). Entry n in SEGTA1
contains the number of the segment that
precedes the nth segment of the overlay
tree structure (the next higher segment in
its path) . The overlay statement processor
creates a chain of overlay items in the
CESD and updates SEGTA1. If the level 1
operand (REGION) is detected, the current
region number is incremented by one, and a
zero is entered as the previous segment
number in SEGTA1.

If an OVERLAY statement is encountered
that refers to a node point higher in the
overlay tree structure, all symbols identi-
fying node points higher in the path are
removed from the chain; their CESD lines
are wmarked "null." For example, in Figure
14, when the statement OVERLAY A is encoun-
tered after segment 4, the CESD entry for
symbol B is marked null and is no longer in
the chain. If an OVERLAY B statement was
encountered at the end of segment 5, a new

node point would be established fcr B, and
symbol B would again be entered in the

CESD.

INSERT STATEMENT PROCESSOR: The insert
statement processor scans the CESD for the
symbol indicated in the INSERT statement.
If the symbol is found, the segment number
field is changed to the numker of the seg-
ment that contains the INSERT statement.
If the symbol is not found in the CESD, a
new ER-type CESD entry is created. 1In
either case, the new CESD entry is marked
"insert" in the subtype field, and the seg-
ment number of the INSERT statement is
placed in the segment number field.

REPLACE AND CHANGE STATEMENT PROCESSORS:
The replace and change statement processors
build a chain of CESD entries. Each entry
to ke replaced, changed, or deleted is so
marked in the subtype field. The ESD pro-
cessor examines the replace/change chain
before processing any ESD item. Since a
REPLACE or CHANGE statement applies only to
the module that immediately follows it in
the input, the replace-change chain is
removed from the CESD at the end of the
module.

Section 2: Method of Operation 25

_ (oVeRAT T

T

OVERLAY B
s 7
OVERLAY B l
l

==

00 —~—NMN—~O

Register 2

]

'\ _ All Purpose Table
Address of _
SEGTAI

Starting Address of
Overlay Chain

L1
OPDO OPDI1

Note: In this example, card OVERLAY C has just been
read. Name B is no longer in the chain.

Figure 14. Overlay Statement Processing

When a REPLACE statement or a CHANGE
statement operand contains two symbols,
such as CHANGE A (B), A and B are entered
in consecutive lines of the CESD. Only the
first line of the pair (the line for A)
contains the address (in the chain address
field) of the next item in the replace/
change chain.

NAME STATEMENT PROCESSOR: The name state-
ment processor places an entry in the all
purpose table containing the namwe under
which the follcwing input module is to be
STOWed in the PDS directory. If the
operand contains the level 1 symbol (R),
bit is set to indicate that the module is
to be STOWed as a replacement for a module
of the same name. Another bit is set to
indicate that a NAME statement was encoun-
tered; the input processor tests this indi-
cator and terminates input operations for

a

26

Address of A -4 —————

______ - i
_____)
b
I
! ,._yJ OVERLAY A | OVERLAY A
r—- 2 5
OVERLAY CJOVERLAY C
6]
OVERLAY B__JOVERLAY B |7
3)
4 [
CESD
Chn Addr/ Chn Pointer
Symbol | Type | Reverse ijeg ?;I;e Chain
Chain 1D Length/ID
[]
[]
— .
s A 02 | AddrofC |01 | 90
° 1
. |
° |
SN I AU
P
([]
\ []
~» C 02 | 000000 05 | 90
[]
[)
[]
this load module if it is set. If a NAME

statement is received from any input source
other thar SYSLIN, the error routine is
entered; NAME statements are accepted only
if they are in the primary input.

SETSSI STATEMENT PROCESSOR: The SETSSI
statement processor converts the eight
kytes of hexadecimal information specified
on a SETSSI statement to a 4-byte field,
and enters it into the APT. During final
processing, this information is entered
into the system status index, a 4-byte
extension of the user data area in the PDS
directory. The index contains information
describing the status of members in the
library and is used for maintenance
purposes.

ENTRY STATEMENT PROCESSOR: The entry
statement processor places the symbol spe-
cified in an ENTRY statement in the all

purpose table. The symbol will override
any symbol specified in an END statement as
the entry point for the module.

ALIAS STATEMENT PROCESSOR: The alias
statement processor creates chained CESD
entries for a maximum of five alias names
specified in ALIAS statements. During
address assignment, these entries are used
to build the alias table.

LIBRARY STATEMENT PROCESSOR: The library
statement processor creates chained CESD
entries for the operands specified in
LIBRARY statements; a chain is created for

Register 2 All Purpose Table

| }———-»

LIBRARY LIB1 (MARY)
LIBRARY LIB2 (SAM,PETE)

each distinct library. Each chain begins
with a library ddname and contains all
member names specified for the library (see
Figure 15).

A member name specified in a LIBRARY
statement can result in two kinds of ER
subtypes: "matched library member" or
"unmatched library member." If a CESD
entry is created for a member name speci-
fied in an input ER and also specified in a
LIBRARY statement, it is called a "matched
library merber." However, if the member
name was specified only in a LIBRARY state-

ment, the entry subtype is "unmatched
library member."
Chn Addr, S Sub Chn Pointer
Symbol | Type |Reverse Ne 9|2 | Chain
Chain ID o | Type Length/ID
01
02
03
04 JOE 02 0ocC 03 0A
05
06 LIB2 02 00 BO 07
07 SAM 02 06 02 08
08 PETE 02 07 03 00
09
0A MARY 02 04 02 00
0B
ocC LIB1 02 00 BO 04
Diagram B

® The CESD shown in diagram B results from the CESD shown in diagram A after

(LIBRARY LIB] (JOE) I:|
1
|
(. ___________________________ _lr
|
Chn Addr Chn Pointer/
l Symbol | Type |/ Reverse ?\leog -?Ube Chain
| Chain ID » Length/ID
-
02
03
04 JOE 02 00
05
06
07
08 PETE 02 00
09
0A
08
0oC
Diagram A
Notes:
Chn Addr Seglsub Chn Pointer
Symbol | Type | /Reverse Neg Tu Chain
Chain ID | "°|'YP®|Length/ID
01
02
03
04 JOE 00
05
06 LIB2 02 00 BO 07
07 SAM 02 06 02 08
08 PETE 02 o7 03 00
09
0A MARY 02 oC 03 00
0B
oc| um 02| oo BO 0A
Diagram C
Figure 15. Library Statement Processing

reading in three library cards. A chain with direct and reverse pointers is
created for LIBI and also for LIB2.

® JOE and PETE were ERs (subtype 00) and became "matched library member"
(subtype 03).

® SAM and MARY were not previously in the CESD. They are created as "unmatched
library member" (subtype 02).

® The CESD shown in diagram C results from the CESD shown in diagram B after
reading in an input module containing the ER MARY and the SD JOE. (Only the
library chains are shown),

® JOE is removed from the chain in diagram C, and the chain pointers are modified.

® MARY becomes a "matched” subtype and will be called by the automatic
library call processor (unless resolved by other input).

® SAM remains "unmatched" and will be ignored by the automatic library call
processor (unless matched in other input).

Section 2: Method of Operation 27

Object Module Processing

If input to be read by linkage editor
consists of object modules (F record format
indicates object modules from a library)
the following operations are performed:

e Determine record type
e Set up general registers
e Special event processing

The record type is determined by examin-
ing columns 2 through 4 of each logical
input record. For each record type (SYM,
ESD, TXT, RLD, END), special processing is
required.

The general registers are loaded with
input record information to be used in the
required processing, as described in Table
3.

Following is a description of special
event processing:

e When end-of-input is detected, any data
still contained in the input RLD buffer
or the input text buffer is written out
on SYSUT1, if necessary.

e If the TEST option is selected, the SYM
records from the object module are
gathered in the input RLD buffer. When
the first TXT statement in a module is

encountered (or if no text statement
has been encountered when the END
statement is detected), the contents of
the input RLD buffer are written out on
SYSLMOD.

e When ESD processing is completed, indi-
cators in the all purpose table are
examined to determine if:

1. A control section (SD, PC, or com—
mon) was indicated on the ESD
statement.

2. The TEST option was specified.

If both conditions are met, the ESD
record is blocked with any other ESD
records in the input RLD buffer.

e If a control statement continuation is
expected and an object module record is
read, an error condition occurs, and a
coded diagnostic message is produced.
Normal object module processing is then
performed on the record.

e If, during object module processing, a
statement is encountered which is not
one of the five acceptable types (SYM,
ESD, TXT, RLD, or END), an error condi-
tion occurs and a diagnostic message is
produced. The input record is then
ignored.

Table 3. General Register Information - Object Module processing

) T 1
|Input Record Type | General Register |
| (See the Appendix } Y Y T q
|For record formats) | 3 | L} | 5 | 6 |
k t 1 1 + 1
| SYM | | SYM statement | |Address of SYM |
] | | byte count | |statement in |
| ! | | |buffer |
b { 1 t $ {
ESD		Number of bytes	ESDID of first	Address of first
		of ESD informa-	ESD item on	byte of ESD in
		tion	statement	butfer
b = t + t {				
TXT	Assigned address	Number of bytes	ESDID of CSECT	Address of first
	of first byte of	of text informa-	to which text	byte of text in
	text	tion	belongs	buffer
b : + + t 1				
RLD		Number of bytes		Address of first
		of RLD informa-		byte of RLD in
		tion		buffer
F 4 +	: 1			
END	Absolute address	Length of CSECT	ESDID of CSECT	
	of entry point	for which no	containing entry	
]on END statement	length was given	point	
		in ESD item		
L 1 1 L L J

28

Load Module Processing

Load modules included in the input to
linkage editor are processed in the follow-
ing manner:

e The input record type is determined by
an identification field (byte 1 of the
record) , as shown in Table 4. Special
processing is performed for each record

type.

e The parameter registers are loaded with
input record information to be used in
the required processing, as described
in Table 5.

e If the record is not identified as a
TXT, CESD, Scatter/Translation, SYM, or
CCW/RLD record, an error condition
occurs, and a diagnostic message is
printed out. The input record is
otherwise ignored.

e If the TEST option was not specified on
the EXEC statement, all SYM records are
ignored.

e If an end-of-module indication is found
in a CCW or RLD record, cleanup func-
tions are performed.

e When a CCW record is detected, the fol-
lowing TXT record is immediately read
into the input text buffer if it is not
to be deleted.

e If the TEST option was specified on the
EXEC statement and a SYM record is
received, the record is written out as
test translation data from the RLD
input buffer.

The following text describes the special
processing performed, during object and
load module processing, for the ESD, TXT,
RLD, and END records.

RLD |hex'0E"
1

*Tdentified by preceding control record

Tabkle U. Record Types

r T 1
|Record Type |Identifier |
| 1 {
TXT	*
CESD	hex'20"'
Scatter/Translation	hex'10*
SyYM	hex'40°*
CCw lhex* 01"	
CCW/RLD	hex'03*
RLD	hex'02"
b L {	
If End of Module indication is on:	
b T {	
CCW	hex'0D*
CCW/RLD	hex'0F*
b 1	
L J

ESD Recoxrd Types

Every object module in the input to
linkage editor must contain at least one
ESD '‘item. An ESD item is created by a lan-
guage translator whenever it finds a symbol
that is defined for external use. In the
assembler language, for example, ESD itemws
are created whenever an ENTRY, EXTRN, COM,
START, or CSECT statement, or a V-type
address constant is found. BAn ESD item is
created to define the beginning of each
control section, and to define a common
area. Each ESD item has a type assigned to
it that indicates its function. The ESD
types are:

e Section Definition (SD). Defines the
beginning of a named control section.

e Private Code (PC). Defines the begin-
ning of an unnamed ccocntrol section.

e Label Definition (LD). Defines a label
(symkol) whose location is defined

Table 5. General Register Information - Load Module Processing
r T 1
| | General Register |
|Load module} T r T ¥
|Recoxrd Type| 3 | 4 | 5 | 6 |
1 1] N i d
r] B)] 1 1
| SYM | |Zero | | i
b + : t t !
| CESD | |Byte count of ESD |ESDID of first |Address of first |
| | |items in record |CESD item in |CESD item in buffer|
! | | |record | |
z t ¢ : + !
| CCW (TXT) |Assigned address |Number of entries |ESDID of CSECT to | |
| |of first byte of |in ID-Length list |which text belongs]| |
L. 1 i] { N |
] T T 1 T 1
| RLD | |Byte count of RLD | |Address of first l
| | |items in record | |RLD item in |
| | | | |butffer |
L 1 1. L 1 J
Section 2: Method of Operation 29

relative to the location of the control
section in which it is contained. An
LD type ESD item contains the ESD ID of
the control section that contains the
label.

e Common (CM). Defines a common area for
which a main storage address is
assigned during linkage editor proces-—
sing. The area may be named oxr
unnamed; an unnamed area is referred to
as a "blank common" area.

e Pseudo Register (PR). Defines an area
external to the output module, but
referred to by it, for which main
storage space is allocated at execution
time. The linkage editor treats PR
symbols as a block that is external to
the program. The value assigned to
each symbol is a displacement within
this block.

e External Reference (ER). Refers to a
symbol that is referred to but not
defined within an input module.

CESD Record Types and Subtypes

A load module in the input to linkage
editor contains at least one CESD record
(240 bytes, maximum) . The CESD record
types are the same as for ESD records, with
the following additions:

e Null type. This indicates that the
item is to be ignored in any reproces-
sing of the module by linkage editor.

e Label Reference (LR). This defines a
label (symbol) within a control sec-
tion. An LR type CESD entry is num—
bered; it contains the ESD ID of the
control section entry in the ID/length
field. An LR may be referenced direct-
ly by an RLD item in the same module,
whereas an LD may not. All LD items
are changed to LR items during linkage
editor processing (LDs are contained
only in object modules, never in load
modules) .

e Private Code (PC) Marked Delete. This
is a CESD item created only for ENTABs
and SEGTABs. PC-delete entries are
placed in the renumbering table, indi-
cating that associated TXT and RLD
information is to be deleted.

CESD items may also contain a "subtype."
The subtypes are listed in the internal
CESD format in the Appendix (Section 7).

30

ESD Processing

The main function of ESD processing is
symbol resolution. Individual ESDs in the
input to linkage editor are combined into a
composite ESD, which contains all symbols
in the input which were not changed,
deleted, or replaced. A chained REPLACE/
CHANGE list (produced by the control card
scanner) specifies which ESD items are to
be changed, deleted, or replaced. A
renumbering table (RNT) is also produced
during ESD processing; it is used during
TXT, RLD, and END processing to translate
the ESD ID of the input ESD items to CESD
IDs. Diagram B2 provides a general illus-
tration of several types of ESD processing.

At the beginning of ESD processing, con-
trol information from the ESD record is
saved: the ESD ID of the ESD record, the
number of bytes of ESD information, and the
type field of the first ESD itemw. The cur-
rent segment number is placed in the ESD,
unless it is a PR-type (PRs have an align-
ment value in the segment number field).

If the automatic library call indicator is
on, the segment number is set to 1 so that
called modules will be placed in the root
segment. The ESD item is then processed
according to its type, in the following
manner:

e If the ESD item is an ER, bytes 10, 11,
and 12 are set to zero in the input
tuffer (either the object module buff-
er, the SYSLIN buffer, or the first
pass RLD input buffer). Byte 10 must
be cleared because automatic library
call processing uses it to indicate if
automatic library calls have been pro-
cessed. Bytes 11 and 12 must be
cleared because any nonzero data
(including blanks) will be entered in
the delink table if delinking is
required for the symbol. If the input
item is an ER item from an object
module, the CESD subtype field is also
reset to zero to indicate that there
are no modifiers in the subtype field.

e If a REPLACE/CHANGE function has been
requested for the input module, the
REPLACE/CHANGE chain that was built in
the CESD by the control statement
scanner is examined and the appropriate
modifications are made. For example,
if the scanner received the statement
CHANGE A (B) , the CESD contains a line
for A, marked as a change statement
item in the subtype field; the next
line contains the symbol B. The input
ESD item symbol is changed from A to B
during ESD processing.

e If the ESD item is a PC, the CESD is
not searched because each PC entry is
treated as a unique entry. The PC is

placed in the next available CESD line
and is processed in the same manner as
an SD.

e If the ESD item is NULL, the renumber-
ing routine is entered. (This routine
is described in "Non-Resolution
Processing.")

e If the ESD item is an LD, it is changed
to an LR. The item is then processed
as an LR. (There are some minor dif-
ferences in processing LDs that have
been changed to LRs; for this reason,
an internal indicator is set when the
type is changed to IR.)

After the ESD type is determined, the
CESD is scanned for a matching symbol. If
no match is found, non-resolution proces-
sing is performed. If the input ESD symbol
matches a symbol in the CESD, resolution
processing is performed. Resolution pro-
cessing results in only one CESD entry for
each unique input ESD symbol; multiple
occurrences of the same input ESD symbol
are listed in the renumbering table (RNT)
with pointers to the single CESD entry.

NON-RESOLUTION PROCESSING: If no matching
symbol is found in the CESD, the input ESD
item is processed as described in the fol-
lowing paragraphs.

SD Items: If the input ESD item is an SD
(see Diagram B2, Area A):

e The Freeline routine selects an empty
line in the CESD. The line following
the current line is chosen unless a
previous CESD line is marked null.
(Null lines are used whenever possible
to save space.)

e If automatic library calls are being
processed, an indicator is set in the
type field of the selected CESD line.
(If a module map was requested, this
indicator is checked during module map
processing. If the indicator is set,
the control section is marked with an
asterisk in the module map or cross
reference table to indicate that it was
obtained from a library during automat-
ic library call processing.)

e A "write" indicator is set in the all-
purpose table to note that SDs, PCs, or
CMs were encountered in the input rec-
ord. When ESD processing is completed,
the write indicator is tested. If it
is on and the TEST option was speci-
fied, ESD records containing SDs, PCs,
or CMs are saved, blocked into 244-byte
records (including four bytes of con-
trol information), and written out on
SYSLMOD.

ER Itens:

CM Items:

e In any input object module the CESD
line number of the first SD entry whose
length is zero is saved. END proces-
sing uses this CESD line to enter the
length specified on the END card.

e The enter routine creates a CESD entry
for the input ESD item; it moves the
symbol, length, segment number, ID, and
type into the selected CESD line.

e The renumber routine places the line
number of the new CESD entry into the
renumbering table to provide a means of
translating the input IDs to the new
CESD IDs. For example, if the input
ESD item has a line number (ESDID) of 3
but the item is placed into the CESD at
line 5, 5 is placed in the third line
of the renumbering table. (For each
input ESD line, except LD lines, there
is a corresponding RNT line. The RNT
contains information for the current
module; it is set to zero at the end of
each input module.)

If the input ESD item is an ER,
it is entered in the CESD and renumbered as
described above; no special processing is
required.

If the input ESD item is CM (see
Diagram B2, Area E), a "common" indicator
is set and the item is treated as a delete
item. If the address that was assigned to
the CM item by the language translator is
not zero, it is saved in the delink table
for later use. (Two CM items with the same
identifying symbol may have different
assigned addresses; therefore, the assigned
address in the input must be subtracted
from all address constants that refer to
the CM items so that they are returned to
their displacement value before reloca-
tion.) The CM item is then renumbered and
entered into the CESD.

LR (or LD) Items: If the input ESD item is

an IR or LD (see Diagram B2, Area C):

e When processing an LR, the Label rou-
tine determines if the SD for the con-
trol section has been processed. If
the SD has not been received, any LRs
that refer to that SD are chained
together in the CESD until the SD is
received. (The SD might be marked
replace; therefore, the LR cannot be
processed until the SD is received.)
When the SD is received all dependent
LRs are processed. Each LR ID field is
renumbered using the renumbering table
so that it refers to the CESD ID of the
SD.

e IDs are not renumbered because they are
not referred to by RLDs and are not
numbered in language translator output.

Section 2: Method of Operation 31

The enter routine places them directly
in the CESD. If an LD is received
before the SD to which it belongs, it
is handled as an LR.

PR Items: If the input ESD item is a pseu-
do register, the current segment number is
not entered in column 12 of the ESD item
(Chart JE) . Column 12 of a PR item may
contain an alignment value which indicates
that the PR must be aligned to a halfword,
fullword, or doubleword boundary. The PR
is then processed by the freeline, enter,
and renumber routines, as described
previously.

RESOLUTION PROCESSING: If a matching sym—
bol is found in the CESD, the type fields
of the input item and the matching CESD
item are compared and resolution processing
is then performed. The following conven-
tions are observed during resolution
processing:

1. Input PR items may match only PR-type
entries in the CESD. If a PR-type
input item matches a non-PR item in
the CESD, it is not treated as a
match; the CESD search for a matching
PR item continues.

2. If the matching CESD item is marked
"chained," resolution is performed on
the item to which it is chained.

3. If the CESD line is marked null, the
match is ignored and the search
continues.

4. If the CESD item is an ER produced
from a REPLACE, CHANGE, OVERLAY, or
ALIAS statement, or frcm the ddname
field of an INCLUDE or LIBRARY state-
ment, the match is ignored and the
search continues.

Matching items are processed in the fol-
lowing manner:

e Tf the input ESD item is CM, SD, or IR,
and it matches an ER in the CESD, the
input type replaces the type indicated
in the CESD item (see Diagram B2, Area
B) . Non-resolution processing is then
performed on the input item.

e If the input ESD item is an LR and it
matches a CM, SD, or LR in the CESD, a
"match" bit is set, indicating that a
double symbol definition is possible.
If the SD for the control section has
been entered in the CESD and is marked
for deletion, the label routine deletes
the label; if it is not marked for
deletion a "double symbol definition"
message is produced. If the SD for the
control section is not in the CESD, the

32

LR is chained to the matching LR; when
the SD is received, the LR is deleted
or a double symbol definition is pro-
duced, depending on whether or not the
SD is being deleted.

If an input PR matches a PR in the CESD
(Diagram B2, Area D), the greater
length and the most "constrictive"
boundary alignment are placed in the
CESD entry. (A doubleword alignment is
more constrictive than fullword align-
ment; fullword is more constrictive
than halfword; etc.) The input PR
entry is then renumbered to the updated
PR entry in the CESD.

If an input SD item matches an SD entry
in the CESD, automatic replacement of
the control section occurs. The input
SD item is entered into the CESD as a
delete-type and is chained to the
matching SD entry. (During second pass
processing, the assigned address of the
control section being replaced will be
subtracted ("delinked") from the
addresses of any non-branch type
address constants that refer to the
ER-delete entry.) The SD-delete item
remains chained only while the module
is being processed; END processing will
change the chained items to null-type
entries. (Refer to "Delinking Non-
Branch Type Address Constants.")

If an input SD item matches a CM entry
in the CESD, the greater length is
entered in the length field of the SD
entry. If the program is in overlay,
the common path routine scans SEGTA1 to
find the segment in the overlay struc-
ture that is common to both items and
places the segment number in the SD
entry. The SD item is then written
over the CM line and renumbered. (This
is referred to as "automatic promotion
of common.")

If an input SD or CM item matches an IR
in the CESD, a "double symbol defini-
tion" message is produced and the SD or
CM item is entered in the CESD as a
delete-type item and is chained to the
matching LR entry, causing the SD or CM
to be replaced.

If the input item is CM, it may be
"blank common." Blank common may match
a PC-type CESD item because both con-
tain blanks in the symbol field. 1In
such a case, the match is ignored and
the search continues.

If an input CM item matches an SD or CM
item in the CESD (Diagram B2, Area F),
the greater of the two lengths is
entered in the CESD item. (The CESD
type is not changed.) If the module is

being processed for overlay, the seg-
ment number of the segment common to
both the input item and the CESD item
is also entered in the CESD item (auto-
matic promotion of common) .

e Whenever an input ER item matches an ER
in the CESD, both the type and subtype
fields are examined; the ER items are
then resolved in the following manner:

1. If the subtype fields of both ER
items are not marked, the input
item is not entered into the CESD;
the matching ER remains in the
CESD and a pointer to it is placed
in the renumbering table entry for
the input item.

2. If both items are marked "delete,"
the new ER is entered into the
CESD and the 0ld item remains
there so that they can be delinked
individually (in this case, the
CESD may contain two ER items for
the same symbol) . Delinking is
described in "Second Pass
Processing."

3. If the input ER item is marked for
deletion, but the ER item in the
CESD is not marked delete, the
input ER is chained to the match-
ing ER in the CESD. The chained
ER item remains in the CESD until
the end of module is detected so
that the delink value can be
saved.

4. If the input ER item is not marked
for deletion and the ER item in
the CESD is marked "delete" or
"replace," the delete bit in the
subtype field is cleared (delete
is changed to replace) and the
item is renumbered. If the match-
ing ER item in the .CESD is marked
"no call" or "library member" it
is marked "matched" before
renumbering.

5. If the input ER item is marked in
the subtype field, but is not
"delete" or "replace," it is
assumed to be "never call®™; if the
matching FR item in the CESD is
"library member," the CESD item is
removed from the chain of library
members and the input ER item is
entered into the CESD and
renumbered.

TXT Processing

The manner in which TXT records are pro-
cessed depends on whether they are part of
a load module or an object module. A load
module contains records in a specified

order. However, in an object module the
records may not be in the proper sequence
because the language translator may have
created them out of order. (The restric-
tions on linkage editor input are described
in the Appendix under "Input Conventions.")
Diagrams B3 and B4 illustrate processing of
TXT records from object and load modules,
respectively.

Before any address constants can be
relocated within a control section of an
object module, all TXT records must be
placed in the proper order. This is done
in the input text buffer (TXTBFBEG), which
is variable in length, allowing grouping of
data within the buffer.

Each "multiplicity" of text is assigned
a number as it is moved (or read) into
TXTBFBEG. A multiplicity is a portion of
text equal in length to the maximum size of
a SYSLMOD output record. Within each con-
trol section, multiplicity numbers are
assigned consecutively, starting at O.

Text records from object modules contain
both text data and the control information
needed for processing. Text records from
load modules contain only text, so the
associated control record must also be
examined to obtain the required control
information. During object module proces-
sing, control information is placed in
registers; this information allows the
object module text to be moved from the
object module buffer into TXTBFBEG. For
load module text, the assigned address of
the first byte of text and a pointer to the
ID-length list (in the control record) is
determined during load module processing.
This information allows the text record to
be read directly into TXTBFBEG.

Processing Object Module Text

When text is received from an object
module, the text record ID is renumbered,
using the renumbering table, so that it
refers to the CESD entry for the control
section which contains the text. The size
of the control section is obtained from the
CESD, and a test is made to determine if
the whole control section or a multiplicity
(whichever is smaller) will fit into the
space available in TXTBFBEG. (If the con-
trol section length was not specified in
the CESD entry, only text for the current
ID is accepted; refer to the‘paragraph
headed "No-Length Control Sections.")

If there is sufficient space in TXTBFBEG
to accommodate the control section or mul-
tiplicity, the text is moved into the buff-
er, and an entry (containing the ID and
multiplicity number of the text) is made in
the text I/0 table. A corresponding entry,
containing the location of the multiplicity

Section 2: Method of Operation 33

and the length of the text, is made in the
text note list. The text note list entry
also contains a displacement field. When
text is in order, or on the first occur-
rence of text for a multiplicity, the dis-
placement field is set to 0; for out-of-
order text the displacement field contains
the displacement from the beginning of the
multiplicity of the first byte of contigu-
ous text.

If the SYSUT1 record size is smaller
than the multiplicity size, each multipli-
city is divided into pieces, each piece
having a length equal to the SYSUT1 record
size. New text I/0O table and text note
list entries are made for each piece; the
displacement field will contain the displa-
cement of each piece from the beginning of
the multiplicity.

NO-LENGTH CONTROL SECTION: When text is
received for a no-length control section (a
control section for which no length is spe-
cified in its CESD item), space for one
multiplicity is allocated in TXTBFBEG.
Entries are made in the text I/0 table and
the text note list for the multiplicity,
and the text is moved into TXTBFBEG. This
procedure is repeated for each subsequent
multiplicity of text for the no-length con-
trol section. If TXTBFBEG becomes full,
its contents are written onto SYSUT1 as
described below in the section headed
"Writing Text on SYSUT1". When the length
is received, it is entered in the text note
list.

PROCESSING OUT-OF-ORDER TEXT: A load
module contains records in a definite
order. However, records in an object
module may not be in the proper sequence
because the language translator may have
created them out of order.' Such records
may contain discontinuities in addresses
(due to a reorigin or a disjointed control
section) , or they may not be contiguous
(i.e., text of a given ID and multiplicity
may be interspersed with text of other IDs
or multiplicities).. Records of contiguous
text must be built on SYSUT1 so that during
second pass processing the text can be
placed into its proper position, within its
ID and multiplicity, in the second pass
text buffer.

The first occurrence of a given ID and
multiplicity is read into the input text
buffer as it is received. Discontinuities
and non-contiguous text are of no conse-
quence at the first occurrence of an ID and
multiplicity. However, once text of a
given ID and multiplicity has been written

'The restrictions on linkage editor input
are described in Appendix A under "Input
Conventions."

34

out on SYSUT1, any subsequent text of that
ID and multiplicity must be contiguous to
be written out on SYSUT1 within each text
record.

Text of a previously-written ID and mul-
tiplicity is read into the input text buff-
er until a discontinuity, or text of a dif-
ferent ID or multiplicity, is encountered.
The contiguous text in the buffer is then
written out on SYSUT1. The discontinuous
(or non-contiguous) text is then placed in
the buffer. If this text represents the
first occurrence of an ID and multiplicity,
the buffer is loaded without regard for
discontinuities or non-contiguous text. If
the text belongs to a previously-written ID
and multiplicity, the text processor will
again place only continuous text of that ID
and multiplicity in the buffer.

A record that contains non-contiguous
text is called a "loose™ record; a record
that contains contiguous text is called
"dense." The text note list entry for a
dense record usually has a nonzero value in
the displacement field. When the text is
read back from SYSUT1 into the second pass
text buffer, during second pass processing,
this displacement is used to place the text
in its proper position within its ID and
maltiplicity.

Processing Load Module Text

Since text records from load modules are
ordered and well-defined, they require
little further processing by the text pro-
cessor. The information in the ID-length
list (in the control record) is scanned,
and each ID is renumbered and checked to
determine if it is to be deleted. If all
IDs are to be deleted, the record is
ignored, and control is returned to the
input processor.

When an ID that is to be processed is
found, the text record containing the ID
must be read into TXTBFBEG. The text rec-
ord length is obtained from the associated
control record and compared against the
free space available in TXTBFBEG. If suf-
ficient space is available, the text record
is read into the buffer; otherwise, the
contents of the buffer is written onto
SYSUT1 to ensure sufficient space, and the
record is read.

Text is processed in the buffer in the
order specified by the ID-length list (in
the control record) . IDs that are to be
deleted are overlaid by IDs that are to be
processed. The text is divided into multi-
plicities and entries are made in the text
I/0 table and the text note list. When all
text identified by the ID-length list is
processed, text processing is completed.

Writing Text on SYSUT1

When no more control sections can be -
accommodated in TXTBFBEG, the contents of
the buffer must be written onto the inter-
mediate data set (SYSUT1). The text I/0
table is scanned to determine the order in
which control sections are to be written.
The length of the first control section
(i.e., corresponding to the first text I/0
table entry) is obtained from its corres-
ponding ESD ID; if the length is less than
the size of the SYSUT1 record, the text I/O0
table entry for the control section is
marked "written." Each subsequent control
section is similarly processed, and its
length is added to the sum of the lengths
of previously processed control sections.

When the sum of control section lengths
reaches the limit of a SYSUT1 record, the
entire group of control sections is written
onto SYSUT1. The relative track address
(TTR) is placed in the text note list entry
corresponding to the last text I/0 table
entry that was processed.

When a single control section is larger
than a SYSUT1 record, the multiplicities of
the control section are grouped, up to the
limit of the SYSUT1 record size, and
written.?' When control sections or multi-
plicities are grouped on SYSUT1, the multi-
plicities must be in ascending consecutive
order. If the overlay option has been
specified, no grouped control sections are
permitted on SYSUT1.

Note: Each time an entry is made in the
text note list during text processing, a
check is made to determine if the list is
full. If it is full, the contents of
TXTBFBEG are grouped (if possible) and
written onto SYSUT1, and the TTRs are
placed in the text note list. The list is
then written onto SYSUT1, and its address
is noted in the I/0 control table. The
text note list may be written a maximum of
three times.

If neither TXTBFBEG nor the text note
list becomes full during text proccessing,
no text is written onto SYSUT1. The text
is retained in the buffer, and single-pass
processing is in effect for text records.

RLD Processing

RLD processing basically consists of:

1. Updating each set of relocation and
position pointers (R and P pointers).

1If the SYSUT1 record size is smaller than
the SYSLMOD record size, no grouping is
permitted.

2. Processing each flag and address (FA)
in the input item until the end of the
record or the next item with an R and
P pointer is detected.

RLD records from object modules and load
modules are processed in the same manner.
During object or load module processing, a
pointer to the first RLD record encountered
in a load module or object module record is
placed in register 6.

RLD information is grouped in the RLD
buffer by P pointer. Each P pointer of an
input RLD record refers to the ESD entry in
the input module for the control section
that contains the address constant. Each
time a new P pointer (one referring to a
different ESD ID) is detected, an entry is
made in the RLD note list for the RLD set
(@ set being an unbroken sequence of RLD
items having the same P pointer). The RLD
note list entry contains the following
information for each set:

1. The renumbered P pointer to which
these RLDs refer.

2. The lowest multiplicity of text to
which these RLDs refer.

3. The number of bytes of RLDs.

4. The storage address of the first byte
of RLD data if all RLDs remain in
core; if RLDs are written onto SYSUT1,
this field contains the accumulated
byte count for intermediate chains, or
the TTR of the record on SYSUTI1.

All adjacent RLD items containing the
same P pointer are referred to by only omne
RLD note list entry. Adjacent RLD items
containing the same R and P pointers are
chained, with the R and P pointers appear-
ing only once, at the beginning of the
chain. The remaining RLDs in the chain are
compressed by setting the flag indicating
continuation and discarding the four bytes
containing the R and P pointers.

Each R pointer of an input RLD record
refers to the ESD entry in the input module
on whose value the address constant
depends. The R and P pointers are updated,
using the renumbering table. Before
renunbering, the R and P pointers refer to
ESD entries of the input module that con-
tains the RLD items. The pointers are
renumbered so that they point to the proper
entries in the CESD being created for the
output load module. If the R pointer
refers to a deleted ESD entry, delinking
may be performed. If the assigned address

Section 2: Method of Operation 35

of the symbol referred to by the address
constant is zero, the address constant is
not delinked. (Normal relocation is per-
formed.) When delinking is necessary, an
entry is placed in the delink table (a
function of ESD processing) . The delink
table entry contains the address (delink
value) of the symbol being deleted and the
CESD entry number of the identically named
symbol that is to replace the deleted
symbol.

The ID of the delink table entry for the
deleted symbol is saved in the renumbering
table, and a "delink value saved" indicator
is set. The ID of the indentically-named
symbol and the ID of the new delink table
entry are saved because they are later used
to complete the delinking operation. The R
pointer of the RLD item must be modified to
refer to the delink table entry for the
deleted symbol, but the original R pointer
is needed to process any V-type address
constants referred to in the RLD item.
Therefore, the R pointer is not modified
until the string of flag—-address (FA)
fields following the R and P pointers has
been processed as described below. At that
time, if the module is to be structured for
overlay and it contains V-type address
constants? that refer to the symbol, the ID
of the identically-named symbol is inserted
into the calls list.

Each FA field of the RLD record is pro-
cessed as follows:

e The high-order bit of the flag field is
set to zero.

e If the address constant is an A-type,
the renumbering table entry referred to
by the R pointer is checked to deter-
mine if it is marked as a PR type. If
it is a PR, the RLD flag field is also
marked PR (because second pass proces-—
sing must handle PRs in a special mann-
er) . If the renumbering table entry is
not an ER or marked delete, the RLD
flag field is marked for relative relo-
cation. This indicates to second pass
processing that the difference between
the origin of the control section in
the input and the origin assigned by
the linkage editor is to be used as a
relocation factor for the value of the
address constant. If the RNT entry is

17-type address constants do not require
delinking, but may be in a FA string with
A-type address constants that do require
delinking (or other control sections in
the same input module may contain A-type
address constants that refer to the
deleted control section).

36

data set

an ER or marked delete, the RLD flag
field is not marked. This indicates to
second pass processing that the address
constant is to be relocated by absolute
relocation; second pass processing uses
the linkage editor assigned address of
the symbol in the output module as a
relocation factor for the value of the
address constant. (This procedure is
described in the paragraph "Second Pass
Processing.")

e If the address constant is a U4-byte
V-type ("bkranch-type"), and the program
is in overlay, an entry is placed in
the calls list, provided that the
address constant refers across control
sections (R not equal P). The calls
list is used during address assignment
processing to determine which segments
require ENTABs, and the number of
entries each ENTAB must contain.

e For both A-type and V-type address con-
stants, the multiplicity of the address
field is determined and is saved in the
RLD note list if it is lower than any
previous multiplicity in the RLD rec-
ord. If two-pass processing is in
effect, the RLD note list is used dur-
ing second pass processing to read back
RLD data from SYSUT1 (each RLD note
list entry contains the relative track
location (TTR) of an RLD record on
SYSUT1) . The second pass processor
uses the multiplicity field of the RLD
note list entry to determine if the
associated RLD record should be read
back from SYSUT1 for a given multipli-
city of text.

When the last FA field in the string
has been processed, all items in the
string have been checked to determine
if they require delinking. If any A-
type address constants in the string
required delinking, the R pointer for
the string is modified to refer to the
associated delink table entry.

Table 6 shows the actions performed dur-
ing RLD processing for each input flag for-
mat, and the format of the flags after RLD
processing. (The “output" column shows the
flag formats that are passed as input to
the relocation routine of second pass pro-
cessing; refer to Table 7.) After all FA
fields have been processed, the next RLD
record is processed.

If the RLD buffer becomes full, its con-
tents must be written onto the intermediate
(SYSUT1) . The RLD buffer is allo-
cated with a maximum length less than or

equal to the size of a SYSUT1 record, so
the entire buffer may always be written.

As many consecutive RLD sets as possible
are grouped in a SYSUT1 record. The RLD
note list entry for each RLD set in the
group contains a "grouped" indicator; the
note list entry for the last RLD set in the
group also contains the relative track
address (TTR) of the group.

RLD sets whose length exceeds that of a
SYSUT1 record (requiring more than one out-
put record) are not grouped. RLD note list
entries for RLD sets that are not grouped
contain the relative track address (TTR) of
the SYSUT1 record and a "non-grouped”
indicator.

Each time an entry is made in the RLD
note list, a check is made to determine if
the list is full. If it is full, the RLD
sets in the RLD buffer are grouped and
written onto SYSUT1, and the TTR is placed
in the appropriate RLD note list entry.

The RLD note list is then written onto
SYSUT1, and its address is noted in the 1/0
control table. The RLD note list may be
written a maximum of three times.

Note: If neither the RID buffer nor the
RLD note list becomes full during RLD pro-
cessing, no RLDs are written onto SYSUT1.
The RLD information is retained in the RLD
buffer, and single-pass processing is in
effect for RLDs.

Table 6. Flag Field Processing

T T T b}
| Input | | Output |
: : { 'r T 1
| # Flag | Type | Action Performed | Flag | Type |
L 1 1 1 1 4
L 1] 1) 1 T 1
]0000LLST	Not PR,	Marked for relative relocation	1000LLST	Relative
	ER, CM, or			
	delete			
t } + + + .				
0000LLST	ER ('02'	Marked for absolute relocation	0000LLST	Absolute
lin renum-				
	bering			
	table)			
F : : 1 : {				
0000LLST	Delete or	Marked for absolute relocation is assigned	0000LLST	Absolute
	CM ('05')	address of input item is zero		
[1 i 1 1 4				
v T T T T A				
0000LLST	PR ('06')	Marked as PR (displacement value)	0010LLST	Pseudo
				Register
				Type 1
t + } + t i				
0000LLST	Delete or	Marked "delink value saved" if assigned	High-order	Delink
	CM	address of input item is not zero	bit of P	
			pointer	
t + } } } 1				
0001LLST	Type is	RLD is marked branch-type]0001LLST	Branch	
	not			
	checked			
t } 1 + 1 {				
0001LLST	Delete	Marked "delink value saved and other FA items	High-order	Delink
or		in string exist that are non-branch type" and	bit of P	
*#1001LLST		are being delinked	pointer.	
L i [] 1 i ¥]
1)) T T T 1
|0010LLST |Pseudo |None - Remains as a PR (displacement value) |0010LLST |Pseudo |
| |Register | | |Register |
| |Type 1 | | |Type 1 |
t + + } + i
|0011LLST |Type is |Marked as PR (cumulative length) |0011LLST |Pseudo |
| |not | | |Register |
| |checked | | | Type 2 |
}. i 1 [i %
|*Internal types processed during second pass. |
|#Refer to "RLD Input Record (card image) " and "RLD data" (load module) in Section 7: |
| Appendix. |
L J

Section 2: Method of Operation 37

END Processing

When an END statement or the end of an
input load module is detected, END proces-
sing is required. The functions of END
processing include:

e Reset tables (such as the renumbering
table) that were involved in the pro-
cessing of the input module.

e Process entry point information.

e Delete any CESD lines marked CHAIN or
DELETE, and keep track of deleted
lines.

e Enters in the CESD the length of a con-
trol section for which no length was
specified in the ESD item (if the
length is contained on the end
statement) .

Include Processing

Include processing is required when:

1. The control statement scanner has
detected an INCLUDE statement and the
include statement processor has built
an include chain.

2. End-of-input has been detected, and
the "more includes" indicator in the
all purpose table is on.

Include processing consists of prepara-
tory functions (OPEN, BLDL, FIND) required
before the module to be included can be
read.

e An input pointer to the library read
block is set.

e The SYSLIB DCB is closed (unless it is
open for a partitioned data set cur-
rently being used).

e Each entry in the include chain is
examined sequentially.

SEQUENTIAL DATA SETS: If an include chain
entry specifies a sequential data set, the
data set organization field of the DCB is
changed from partitioned to physical
sequential, and the ddname field is
updated. The DCB is then opened, and the
module is read in.

PARTITIONED DATA SETS: If an include chain
entry specifies a member of a partitioned
data set, the member name is entered into
the BLDL 1list, and the next entry is
examined. If the next entry specifies a
different data set name, the partitioned
data set is opened, and a BLDL macro
instruction is executed for the single
member name.

38

If the next entry specifies another
member of the same partitioned data set,
the member name is added to the BLDL list,
and the next entry in the include chain is
examined. Membker names are added to the
BLDL list until a different data set name
is encountered, the BLDL list becomes full,
or the end of the include chain is reached.
Since the BLDL list must be in collating
sequence, each member name is inserted into
its proper position, moving other entries
as necessary. Since included modules must
be read in the order in which they appear
in the INCLUDE statement (without regard
for collating sequence) , a separate table,
indicating the order of processing BLDL
list entries, is maintained.

When the BLDL list is completed, the
partitioned data set is opened and the rec-
ord format field (RECFM) in the DCB is
tested to determine if the included modules
are load modules (U-format) or object
modules (F-format). If they are load
modules, the "load module"™ indicator is set
in the APT. This indicator is tested when
each module is read in. A BLDL macro
instruction is then executed for the member
names in the list. The list is then
examined in the order specified in the
INCLUDE statement to obtain the attributes
of each included module (if it is a load
module) ; the attributes of the output load
module may be "downgraded" accordingly in
the APT.

If the BLDL macro instruction was suc-
cessful for a particular member, the member
is read in. The FIND macro instruction and
the directory entry obtained from BLDL are
used to set a pointer in the DCB to the
first record of the member. If the BLDL
was not successful for a particular member,
a diagnostic message is printed.

Note: If a nested INCLUDE statement is
encountered, it is processed immediately,
without attempting to construct a multiple
BLDL list.

An example of include processing is
given in Figure 20. The input pointer is
set to the address of the library read
block. The address of the current include
item is contained in the all purpose table.

Assuming that no includes have yet been
processed, A will be the first item
examined. The subtype 'D0' indicates that
A is a member of a partitioned data set, so
A will be entered into the BLDL list. The
pointer 000D refers to the data set
DATASETX. The next item in the include
chain, B, is also a member of DATASETX, so
it is added to the BLDL list. The next
item in the chain, M, is a sequential data
set (subtype C0O) , so the BLDL list is com-
pleted with two entries (A and B) . Assum-

ing that DATASETX is not currently open and
the SYSLIB DCB is not opened for another
data set, the SYSLIB DCB is opened for
DATASETX. (The RECFM field of the data set
DSCB is merged into the DCB.) Assuming
that the RECFM field indicates U-format, a
load module indicator is set in the all
purpose table, and a pointer to the load
module buffer is placed in the library read
block. The attributes of A and B are
obtained, using BLDL, and the attributes
specified on the EXEC statement are updated
accordingly. (The attributes of the output
load module may be downgraded as a result.)
A pointer in the DCB is then set to the
first record of member A, using the FIND
macro instruction, and the "include
initiated" indicator is set in the all pur-
pose table.

Member A is read using the input pointer
and library read block. Module A is then
processed. When the end of module A is

INCLUDE DATASETX
(A,B,C),M

reached, item A is deleted from the chain
and the CESD line is marked "null." Member
B is then read and processed.

When the end of module B is reached,
item B is deleted from the chain, the CESD
line is marked "null," and the remainder of
the chain is processed.

Automatic Library Call Processing

Register 2 All Purpose Table
{ "MORE INCLUDES" INDR
CRRTINCL
9FB8
INCBRKPT
9F B8
Input Pointer
*i F278 I
Library Read
Block
F278 77C0
9400
17400]
SYSLIB DCB
9400 77C0 RECFM
DDNAME
Load
Module BLKSIZE
Buffer

Figure 20. 1Include Processing

Automatic library call processing is
required:

e At the end of SYSLIN input when unre-
solved ERs still exist, and the NCAL
ortion was not specified.

e When a NAME statement has been detected
(provided that the NCAL option was not
specified and no more includes are to
ke processed) .

ID LOC. O 8 12 13
01 9F38
02 9F48 C 000000 DOJ 000D
03 9F88
04 9F68 B 9F88 D0 | 000D
05
06 9F88 M 9F48 C0} 0000
07
08
09 9FB8 A 9F 68 DO | 000D
0A
0B
oC
0D 9FF8 DATASETX BO
OE
OF
10
1
BLDL List
A
B
SYSLIN
Read Block
F28C 7768
967C
50
SYSLIN DCB
7768 RECFM
967C SYSLIN
Buffer DDNAME
BLKSIZE

Section 2: Method of Operation 39

Automatic library call processing con-
sists of two series of CESD scans. The
first series of scans operates on unre-
solved ERs specified on LIBRARY statements.
It finds the first ddname that contains a
pointer in the chain pointer field (bytes
14 and 15) . Such an entry is the first
item in a chain of members associated with
this ddname; there is a distinct chain for
each ddname that was specified on a LIBRARY
statement. Chained member names for a par-
ticular ddname are entered into a BLDL list
which is processed as previously described
under the heading "Include Processing."

The scan of the CESD continues until all
ddname chains have been processed. A
second scan of the CESD then searches for
external references not specified on
LIBRARY statements and attempts to resolve
them by calling members of the same name
from SYSLIB."

An example of automatic library call
processing is given in Figure 21. Diagram
A shows two library chains that were built
in the CESD by the library statement pro-
cessor. In diagram B, an SD item for JOE
has been entered into the CESD, resolving
the reference to JOE. (JOE was removed
from the chain by ESD processing, and the
LIB1 chain ID now points to the line con-
taining TOM.) Automatic library call pro-
cessing operates on the library chains, as
modified by ESD processing (diagram B).

In the first series of scans, the CESD
is searched for a ddname (type 02, subtype
BO0) with a chain pointer. The ddname item
LIB1 is found; its chain ID points to TOM.
Because TOM is unmatched (subtype 02) it is
not called and since TOM is the last item
in the chain (0 in the chain ID field), the
scan is resumed for another ddname with a
chain pointer. LIB2 is found; its chain ID
points to SAM. No call is issued for SAM,
since it is unmatched. The chain ID of SAM
points to PETE, which is matched (indicat-
ing that PETE is an external reference, and
not just an operand of a LIBRARY state-
ment) . PETE is entered into the BLDL 1list;
since PETE is the last item in the chain,
the list is completed with one entry.

LIB2 is opened and the BLDL macro
instruction is used to obtain the attri-
butes of PETE (the attributes of PETE are
not obtained if the format is F). A "BLDL
attempted" indicator is set for the CESD
entry for PETE so that no other search for
PETE will be made in the event of an unsuc-

1SYSLIB is the standard library whenever
the linkage editor is executed as a job
step. If another program LINKs to the
linkage editor, the ddname of the standard
library is passed in a parameter list.

40

cessful BLDL or non-resolution of the ER
for PETE ky the member PETE. The FIND
macro instruction is used to set a pointer
in the SYSLIB DCB to the member PETE; PETE
is then read in.

When processing for PETE is completed,
the scan for ddnames resumes at the begin-
ning of the CESD, rather than at the CESD
line where the scan was interrupted,
because additional ddname items may have
been entered at any available line in the
CESD. (Object modules with additional
LIBRARY statements may have been read in.)
When the last line of the CESD is reached
the second series of scans is begun.

Diagram A Sub-

CESD Type Type
ID 0 8 12 13
ol
02 [LIBI 02| 00 BO| 04
03)
04 [JOE 02| 02 03| 0A
05 [SIMPLE 02 00
06 [LiB2 02| 00 BO [07
07 [SAM 02| 06 02| 08 ?
08 PETE 02| 07 03 [00 D
09
0A [TOM 02| 04 02| 0
0B
oc
oD

Diagram B

CESD EE—
D 0 8 9 10 12 13 14 15
o1
02 |LBI 02 00 BO A
03
04 [JOE 00 | 08E273 0121E3
05 | SIMPLE 02 00
06 |LIB2 02 00 BO| 7
07 [sAm 02 06 02 8 D
08 [PETE 02 07 03 0 D
09
0A [TOM 02 02 02 0
08
ocC
Figure 21. Automatic Library Call

Processing

During the second series of scans, the
CESD is searched for "unmarked" external
references (type '02', subtype '00').

These are ER items not specified on LIBRARY
statements. In diagram B, the scan finds
SIMPLE. Assuming that SYSLIB is the ddname
for the standard library, SIMPLE is called
from SYSLIB in the same way that PETE was
called from LIB2. Every time automatic
library call processing is resumed after a
module is read, the second series of scans
resumes at the beginning of the CESD
(tecause ER items from a library member may
have been entered in any available CESD
line) .

When the second series of scans is
finished, input processing is complete.

INTERMEDIATE PROCESSING

When all input processing is completed,
the second phase of Linkage Editor F
(intermediate processing) begins operation.
The two major functions of the second phase
are address assignment and intermediate
output.

ADDRESS ASSIGNMENT (IEWLMADA)

At the conclusion of input processing,
address assignment processing is required.
(See Diagram C1.) Address assignment
includes the following operations:

e CESD entries are deleted for ER items
marked included, called, ddname, or
overlay in the subtype field. These
lines are marked "null" and are deleted
if the module is processed again in a
subsequent execution of the linkage
editor.

e Compute, for programs in overlay, the
size of SEGTAB' enter the size in the
all purpose table, and place a private
code delete entry for the SEGTAB in the
CESD. The PC-delete type entry is
deleted from the module if it is pro-
cessed again by linkage editor. (Dia-
gram C1, Area 3)

e Enter segment numbers for label
references in the CESD. If the program
is in overlay, the calls list (built
during RLD processing) is also scanned,
and pointers from one chain of calls to
the next chain are entered; (Area B)
the number of ENTAB bytes2 for each
segment is determined; and a PC-delete
type entry is placed in the CESD for
each ENTAB. (Refer to "ENTAB Size
Determination.")

e Assign temporary linked addresses to
SD-, PC-, and CM-type entries in the
CESD (Area C) . CSECTs are processed
according to the order of input deter-
mined by scanning entries in the text
I/0 table. Since an ID can appear more
than once in the text I/0O table, a
"processed" bit (bit 4 of the "type"
byte) is set in the CESD entry to indi-
cate that a temporary linked address
has been assigned to the associated

1SEGTAB size = 24 + (4 x number of
segments) .

2ENTAB size = 12 + (12 x number of unigue
downward calls per segment).

CSECT. The "processed" bit must be
reset to 0 before address assignment
processing is terminated. CSECTs that
do not contain text have no entries in
the text I/0 table. After processing
all CSECTs with text, addresses are
assigned to CSECTs without text by
referring to the CESD.

Each segment is considered to be at a
zero origin. The temporary starting
address of each control section is com-
puted with respect to its location in
the segment, relative to the zero ori-
gin (plus any adjustments for boundary
alignmwent) . These addresses are tem-
porary because the starting addresses
of the segments must later be relocated
with respect to their positions in the
overlay tree. If the program is not in
overlay (consists of a single segment)
the addresses are final, because no
further relocation by address assign-
ment is necessary.

Compute the temporary relocation con-
stant for each control section (the
difference between the temporary linked
address and the assigned address in the
input) and place it in the relocation
constant table (RCT) (Area D). If the
program is not in overlay, these are
the final relocation constants (rela-
tive relocation factors).

Accumulate the length of each segment
in the leftmost three bytes of an entry
in the segment length takle (SEGLGTH) .
The boundary alignment factor of the
first control section in the segment is
placed in the fourth byte of the entry.

Determine the address of each PR-type
entry in the CESD, using the total
length of all PRs previously encoun-
tered, plus the boundary alignment fac-
tor. This address is placed in the
CESD entry for the PR. The length of
this PR is then added to the cumulative
PR length.

Process the SEGLGTH table (if the pro-
gram is in overlay) to determine the
starting address of each segment, rela-
tive to the beginning of the program.
(Area E) SEGTA1 is checked to f£ind the
proper location of each segment in the
tree. SEGLGTH at this time contains
the length of each segment. To deter-
mine the starting address of a segment,
the length of all previous segments in
the same path are added, together with
any adjustments for boundary alignment.

Section 2: Method of Operation 41

(Boundary alignment adjustment is
determined by the last three bits of
the address of the first control sec-
tion in a segment.) This sum, minus
the boundary alignment factor for the
segment, is the segment relocation con-

An example of ENTAB size determination
is given in Figure 23. The overlay tree
structure shown in the illustration con-
sists of nine segments residing in two
regions; all references between segments
are made using V-type address constants.

stant (SRC). The SRC is then placed in
the rightmost three bytes of the
SEGLGTH table. The sum of the SRC, the
boundary alignment factor, and the seg-
ment length is placed in the leftmost
three bytes of the SEGLGTH table entry
for the segment. It is the length of
the path of the segment (including the
segment itself). At the completion of
this process, the entry in SEGLGTH for
each segment contains the cumulative
length of its path; the longest of
these lengths is the program length.

e Perform a second scan of the CESD if
the program is in overlay. The segment
relocation constant in the SEGLGTH
table is added to the temporary linked
address in the CESD entry for the con-
trol section; this sum is the final
linked address. The SRC is also added
to the temporary relocation constant in
the relocation constant table; this sum
is the final relocation constant for
the control section.

e Make a final scan of the CESD to assign
a final linked address to each label
reference.

The CESD entry for each LR contains a
reference to the control section in
which it resides. The relocation con-
stant for that control section is
located in the RCT and is added to the
temporary linked address in the CESD
entry for the LR. This sum, the final
linked address for the LR, is placed in
the CESD.

e Mark the program as not executable if
there are still unresolved external
references and if neither the no call
(NCAL) option nor the LET option has
been specified.

e Build the alias table and compute an
entry point for the program. (Refer to
"Entry Processing.")

ENTAB Size Determination

ENTAB size determination consists of
computing the size of ENTABs so that the
size of each segment in an overlay program
can be determined and relative relocation
factors can be computed for use by second
pass processing. The size is determined by
the number of downward calls, or calls
across regions, to symbols that are not
referred to by segments higher in the path
of the calling segments.

42

Functions of ENTAB size determination are:

e Scanning the CESD for LR-type entries

and entering their segment numbers. In
Figure 23, item 6 is an IR item; its
ID/length field points to the CESD
entry for the control section in which
it resides (line 3) . The segment num-
ber contained in line 3 (segment number
3) is entered in the segment number
field of the LR item.

Scanning the calls list, inserting
chaining values that point from one
group of R and P pointers to the next.

Scanning the calls list, for each seg-
ment (starting with segment 1), find
symbols referred to by that segment.
For each reference found, the type of
call (upward, downward, or exclusive)
is determined. If an ENTAB is required
for the segment, its size is determined
and a PC-delete type entry for the
ENTAB is made in the CESD. Referring
to Figure 23, the segments are pro-
cessed in the following manner:

1. The calls list is scanned for P
pointers that refer to control
sections in segment 1. If one is
found, the associated R pointers
(which refer to referenced sym—
bols) are examined to determine
the segment in which each
referenced symbol resides. In
Figure 23, the fifth P pointer
refers to line 7 of the CESD,
which contains an SD-type entry
for a control section in segment
1. The associated R pointers
refer to line 6 (symbol B in seg-
ment 3) and line 4 (symbol C in
segment 5) . For each reference,
the type of call (upward, down-
ward, or exclusive) is determined,
using SEGTA1 and the segment num-
bers of the calling and called
segments. In Figure 23, SEGTA1
indicates that segment 1 is in the
path of segments 3 and 5; there-
fore, the calls from segment 1 to
B and C are downward calls. This
is noted in the downward calls
list by entering segment number 1
in the lines referred to by the R
pointer (lines 6 and 4) . Since
segment 1 is the root segment, it
must have an ENTAB; the size of
the ENTAB is determined and a PC-
delete type entry for the ENTAB is
created in the CESD.

SEGTA1

1 0
S V@) 2 1
| 3 2
| 4 2
| 5 1
| 6 0
p-——————= 7 6
CESD { A .
Chain Seg|Sub-| Length A 43 9 0
Symbol [T D d
ymbo YP| Address | No Type| /ID I\‘——PB | ‘ | C:“:Y_?;
! b ’ ve--———— fve-- Lo
2 H sD 2 Region 1 I | L
Tegion _ _ - — 1
3 A SsD 3 Region 2 \ N 2
1
4 C sD 5 I) A 3
5 | 4 [
6 B LR 3 3 V) -—————- g 5
7 I sD 1 6 !
8 E SD 8 8 34
9 G sD 4 9
10 F cMm 6 N
1 PC 7
* [PC(d) 1 60 : !
*|PC(d) 1 36 | |
*|PC(d) 3 24 * PC - delete type entry for SEGTAB
+|PC(d) 4 24 T PC - delete type entries for ENTABs
CALLS LIST
I
8 9 2 | 8 l 6 8 1 6 2 6 641 3 8 ‘ 7 6 4] 0 } _J
NG R R cv P R o P R < P R o P R Rr A& T
! - ~ A~ ~ A
— R _ - ‘
* CV = Chaining Value (gives number of bytes to next CV) End of Calls List
Figure 23. ENTAB Size Determination
2. When the scan for segment 1 is line 3 (segment 3). The R pointer
completed, the calls list is refers to CESD line 8 (segment 8).
scanned for P pointers that refer SEGTA1 indicates that the call
to segment 2. In Figure 23, the from 3 to 8 is downward, across
third P pointer in the calls list regions, and the call is noted in
refers to CESD line 6, which con- the downward calls list. Segment
tains segment number 3. This 3 requires an ENTAB because it
indicates (via SEGTA1) a downward contains a downward call to a sym-
call from segment 2 to symbol B in bol not referred to by a segment
segment 3. In this case, however, in the path of the calling seg-
no entry is made in the downward ment; the ENTAB size is deter-
calls list because it indicates a mined, and a PC-delete type entry
call to B in segment 3 from seg- for the ENTAB is created in the
ment 1, which is higher in the CESD.
path of the calling segment (seg- .
ment 2). No ENTAB is required for 4, The calls list is scanned for P

segment 2 because the reference to
symbol B in segment 2 can be
resolved through the ENTAB entry
in segment 1.

The calls list is scanned for P
pointers that refer to segment 3.
In Figure 23, the fourth P pointer
in the calls list refers to CESD

pointers that refer to segment 4.
In Figure 23, the first P pointer
in the calls list refers to CESD
line 9 (segment 4) . The R point-
ers refer to line 2 (segment 2)
and line 8 (segment 8) . SEGTA1
indicates that the call from 4 to
2 is upward, while the call from 4
to 8 is downward across regions.

Section 2: Method of Operation 43

The upward call is ignored because
the address constant can be
resolved directly to the
referenced symbol. The downward
call from 4 to 8 is noted in the
downward calls list, replacing the
previous entry for segment 3
{(because no segment with a segment
number greater than 4 can have
segment 3 in its path) . Since an
ENTAB is required, the size is
determined and a PC-delete type
entry is created in the CESD.

This process continues until all seg-
ments have been processed.

The required

ENTABs are built during second pass proces-—

sing

(Refer to "ENTAB Creation" and "Relo-

cation of V-Type Address Constants in
Overlay.")

Entry Processing

Entry processing includes the following

operations:

44

e Enters into the alias table any alias

symbols that were chained together and
saved in the CESD by the alias state-
ment processor. Each entry in this
table consists of an 8-byte symbol
field and a 2-byte ESDID field. For
each saved alias symbol, the entry pro-
cesssor scans the CESD for a matching
SD-type or LR-type entry. If no match
is found, a zero is placed in the ESDID
field of the alias table entry for the
symbol. If a matching SD or LR entry
is found, the ESDID of the alias entry
in the chain is placed in the ESDID
field of the alias table entry for the
symbol. (See Figure 24.) The address
assigned by linkage editor to the
matching SD or LR and the ESDID of its
control section are placed in the CESD
entry for the chained symbol, and the
type of the chained symbol is changed
to null.

Determines whether the entry point was
specified as an address on an END
statement, or as a symbol on an ENTRY
statement or END statement:

1. If the entry point was specified
as an address on an END statement,
the assigned address is determined
by either absolute or relative
relocation. If the ID on the END
statement referred to an ER which
was resolved with an SD or LR, the
address assigned by the linkage
editor to the SD or LR is added to
the address from the END statement
(absolute relocation). If the ID
on the END statement referred
directly to an SD or PC, the relo-

cation constant for the SD or PC
is added to the address from the
END statement (relative
relocation) .

2. If a symbolic entry point was
specified on an ENTRY statement or
END statement, the CESD is scanned
for a matching SD- or LR-type sym-—
bel. The address of the matching
symbol is used as the entry point.

3. If no entry point was specified,
the starting address of the SD- or
PC-type control section (not
marked delete) with the lowest
assigned address is chosen as the
entry point. The entry point
associated with the main name (not
an alias) and all alias entry
points must be in segment number
cne if the program is in overlay.

INTERMEDIATE OUTPUT (IEWLMOUT)

Intermediate output processing includes

the following operations:

e Writes out the CESD on SYSLMOD in

groups of 15 entries per record.' (The
last record may consist of less than 15
entries.)

Builds a half ESD (HESD) , consisting of
the last eight bytes of each CESD
entry. (The symbol is deleted from
each CESD entry to conserve main
storage space during second pass pro-
cessing.) The HESD is not complete at
this time. (The ID of each label
reference is used in building the
scatter and translation tables.)

Builds and writes out the segment table
(SEGTAB) , preceded by a control record
describing it, if the program is in
overlay.2? SEGTAB contains information
required by the overlay supervisor.

Builds a scatter table and a transla-
tion table for a program that is to be
scatter loaded and writes out scatter/
translation records in a form accept-
able to program fetch at execution
time. The scatter/translation informa-
tion is written out on SYSLMOD in 1024-
byte records. The first four bytes of
each record are used to identify the

The CESD and control record are not writ-
ten out on SYSLMOD if the "not editable"
attribute is specified.

2If it is negative, an indicator is set in
the HESD to note that it is in complement
form.

All Purpose Table

Alias Chain Address
r Address)|(CESD - Before Entry Processing
Pointer
| Chn Addr
i eg | Sub | Chn
| Symbol Type RCT,:;?:GID No | Type| Chn Lgth
| /1D
. 5
| °
v o
Address X 3 SAM ER | Addr Y=|~ |Alias
[R S A SN
.
~>Address Y 7 JOE ER | Addr Z-| Alias
.)
JSPRNR R [—— I E—
{ L]
N-p-Address Z 10 BILL ER 000 Alias
.
.
°
-~ -»20 SAM SD|{ * LAl (Length)
°
*———-————.——-——1-——«———— T —\\
22 JOE IR | *LA2 20-7
.
* Linked address CESD - After Entry Processing
Chn
Chn Addr Seg|Sub |Pointer
Symbol Type|Reverse |\ 1y, e Ch
Chain ID P Lath/ID
Alias Table)
Alias Symbol ESDID b
.
SAM 3—F — — — — — —p3 SAM Null LAl 20~
. !
* |
JOE] — —— — —_——7 JOE Null] LA2 20~1
.
® |
BILL 0 10 BILL Null| 000 Alias |
L e ___ | _ L)
H)
S— —»20 SAM SD LAl (Length)
.
.
.
22 JOE LR LA2 20
.
Figure 24. Processing of Alias Symbols by the Entry Processor

e Determines the control section contain-
ing the last text in the program (or in

records as scatter/translation informa-
tion. If the length of scatter/

translation information is greater than
1020 bytes, the last 1020 bytes (plus
four bytes of header information) are
written out as the first scatter/
translation record. The data in the
last record may be 1020 bytes, or less.
(See Figure 25.)

Reads the TXT and RLD note lists into
main storage if they were placed on

each segment, if the program is struc-
tured for overlay), and the highest
segment number of the segments that
contain text. (This information is
necessary so that second pass proces-
sing can determine when to set the end-
of-segment or end-of-module indicator.)
The highest ESDID is determined by
scanning the text I/0 table for the
ESDIDs of control sections that contain

SYSUT1 during TXT and RLD processing. text. This ESDID is entered into the
(Each note list may have been written a high ID (HIID) table along with its

maximum of three times on SYSUT1 for a
large program. In this case, TTRs
pointing to the locations of note list
information are contained in the I/0
control table.)

associated segment number.

Determines, via bits in the all purpose
table (APT), if the MAP option has been
specified, or if the XREF option has

Section 2: Method of Operation 45

Low-Order Position

Beginning of in Main Storage
Translation >
Table D 500 bytes
Beginning of 4-byte header
Scatter ———————po |- — —C— — 1020 bytes
Table
_____ 4] [T ||
B 1020 bytes A B c b
1024 bytes 1024 bytes 1024 bytes 504 bytes
A 1020 bytes
High=Order Position . f Record
in Main Storage Sequential Order of Records
Figure 25. Writing Scatter/Translation Records

been specified and all RLDs are in
storage. If either of these conditions
exists, the module map and/or the
cross-reference table are produced. If
the XREF option is specified and all
RLDs are not in storage, XREF proces-
sing will be done as part of final
processing.

MAP/XREF Processing

When MAP/XREF processing is required as
part of intermediate output processing, a
table address is obtained from the APT, and
a table of two-byte entries pointing
directly to the CESD is constructed. The
CESD records for the current segment are
gathered and sorted by address. The module
map is then printed out; the map lists, in
ascending order according to their assigned
origins, all control sections contained in
the output module and the entry points
within the control sections. Control sec-
tions in an overlay output module are
grouped by segment.

If XREF processing is done during inter-
mediate output processing, RLD items are
incompletely relocated; their addresses are
relative to the origins of their respective
CSECTs rather than the origin of the load
module, and the address of each RLD must be
added to the linkage editor assigned
address of its corresponding CSECT before
the cross-reference table is produced. The
cross-reference table includes a module map
and a list of all references within a given
segment that refer across control section
boundaries. Each entry in the list con-
tains the address of the reference, the
symbol to which it refers, and the name of
the control section in which the symkol is
defined. For overlay programs, each item
in the list also contains the number of the
segment in which the symbol is defined.

46

If the MAP and XREF options are pro-
cessed during intermediate output proces-
sing, ALIAS and NAME messages and the diag-
nostic message directory are printed after
the wodule map and cross-reference table.
If the cross-reference table is produced
during final processing, the ALIAS and NAME
messages are printed before the map and
table, and the diagnostic message directory
is printed after the map and table.

SECOND PASS PROCESSING (IEWLMSCD)

After intermediate processing is com-
pleted, the third phase of Linkage Editor F
(second pass processing) begins. (See Dia-
gram D1.) The major functions of second
pass processing include:

e Relocate address constants contained in
the text.

e Create control/RLD records.

e Write TXT and control/RLD records onto
SYSLMOD in a format that can be loaded
by program fetch.

e Create ENTABs and associated RLD items
for overlay modules.

Operation Diagram D1 illustrates the func-
tions of second pass processing.

SINGLE-PASS PROCESSING: "In-core" indica-
tors in the text I/0 table and the RLD note
list are checked to determine if text and
RLD records have been written onto SYSUTI1
or have been retained in the text buffer
and the RLD buffer. If either text or RLD
records have been retained in storage,
single-pass processing is in effect for
that record type. If two-pass processing
is in effect, the records are read into the
buffers from SYSUTI1.

ORDERING OF TEXT: In two-pass processing,
the ID sequence in the text I/0O table is
used to determine the order in which CSECTs
are to be read into the second pass text
buffer (which is physically the same
storage area as the input text buffer).

The text I/0 table entry for each ID and
the corresponding text note list entry are
used to locate text on SYSUTI1. (See Dia-
gram D1, Area A.) Text is read into the
buffer a multiplicity at a time, using the
displacement field in the text note list to
determine where within the buffer the text
must be placed. Information about the text
is entered into the second pass text con-

If a CSECT is larger than the SYSLMOD
record size, the CSECT is divided in multi-
plicities, each multiplicity being equal to
the SYSLMOD record size. (The length of
the last multiplicity may be less than the
SYSLMOD record size.) Each multiplicity is
written as a record, followed by RLDs asso-
ciated with only that multiplicity.

Note: If the downward compatible option

(DC) or the scatter format option (SCTR) is
specified, CSECTs will not be grouped.

END OF MODULE: When control sections for

trol table, which is used to control subse-
quent processing of the text (area B).

SECOND PASS RLD BUFFERS: When the required
text is in the text buffer, the correspond-
ing RLDs are read into the RLD input buff-
er, using the RLD note list to locate the
RLD records (area C). The RLD input buffer
can contain two RLD records from SYSUT1;
for each RLD input buffer area, an RLD
input control block is maintained (area D).
The RLD output buffer is 768 bytes long and
is divided into three buffer areas (the
maximum RLD output record is 256 bytes
long) ; for each RLD output buffer area, an
RLD output control block is maintained
(area F) . While text is being relocated,
the control record for that portion of text
occupies one of the output buffers; the
other two output buffers contain the relo-
cated RLDs for the text being processed
(area E). If the relocated RLDs exceed two
buffers, the control record is written onto
SYSLMOD; relocated RLDs may then be moved
into the third output buffer.

When all three RLD output buffers and
the RLD input buffers are filled and addi-
tional RLDs are required to relocate the
text currently being processed, the con-
tents of the output buffer must be written
out. However, to maintain the required
TXT/RLD sequence in the output module (area
G) , the associated text must precede the
RLD record. Space for the text is reserved
in the output module by writing the incom-
pletely relocated text; the contents of the
RID output buffer may then be written, and
processing can continue. When the text is
completely relocated, it is written over
the space reserved for it, using XDAP
("execute direct-access program") .

GROUPING SYSLMOD OUTPUT: As many CSECTs as
will completely fit in one SYSLMOD record
(up to a maximum of 60) are grouped and
written as one record. RLDs are grouped to
correspond to the grouping of their asso-
ciated text. If the overlay option is
specified, only CSECTs belonging to the
same segment will be grouped.

all segments of the output module have been
processed (determined via the "high ID"
indicator in the HESD type field and the
"last segment with text" field in the all
purpose table) , indicators are set in the
last control/RLD record to mark it as the
end of the module. The control/RLD record
is written out on SYSLMOD, and second pass
rrocessina is completed.

Note: If the output load module is to be
structured for overlay, a list of relative
track addresses (TTR list) is created to be
used by program fetch when it loads the
segments into main storage for execution.
The TTR list contains one entry for each
segment in the overlay load module. Each
entry contains the relative track address
of the first record (control record) of a
segment, except for the first segment,
which contains the relative track address
of the first text record. A PC-type con-
trol section, which contains ENTAB entries
in each segment where the text requires
them, and the RLD records required by pro-
gram fetch to relocate address constants
contained in the ENTABs, are also created.

RELOCATION OF ADDRESS CONSTANTS

There are two types of relocatable
address constants:

1. Pranch type, such as DC V (X).
2. Non-branch type, such as DC A (X).

The value of a branch type or non-branch
type address constant depends on a symbol
in the CESD. To adjust an address constant
to its proper value in the output load
module, the linkage editor uses an absolute
or relative relocation factor. The abso-
lute relocation factor is the address
assigned by linkage editor to the symbol on
which the value of the address constant
depends. The relative relocation factor is
the difference between the address assigned
to the symbol by linkage editor and the
address of the symbol in the input module.

Section 2: Method of Operation 47

The relative relocation factor may be posi-
tive or negative. The absolute and rela-
tive relocation factor of each symbol in
the CESD is computed during address assign-
ment and is saved in the half ESD (HESD) .

Relocation of Non—-Branch Type (A-Type)
Address Constants

A relative relocation factor is used for
a non-branch type address constant if the
symbol on which its value depends is in the
same input module as the control section
that contains the address constant. (The
address constant and the symbol it refers
to were assembled or compiled together, or
were previously processed together by link-
age editor.) An example of relative relo-
cation of non-branch type address constants
is shown in Figure 27. Since the address
of DICK is known, the lanquage translator
places it in the value of the address con-
stant. DICK is a known value prior to
linkage editor processing (not an external
reference in the input) ; therefore, a rela-
tive relocation factor (+1000) is used to
relocate DICK during linkage editor
processing.

An absolute relocation factor is used
for a non-branch type address constant if
the symbol referred to by the address con-
stant does not have a defined value within
the same input module. (The R pointer of
the RID item refers to an external

Input Module 1
0000
0999
Input Module 2
0000 IyoHN CSECT Linkage
° Editor
[)
[)
%1000
DC A (DseKT
[)
0999 L
1000 rpjek DS
[)
[)
[]

* Known value of DICK is inserted by
language translator.

Figure 27.

48

reference.) An example of absolute reloca-
tion of a non-branch type address constant
is shown in Figure 28. In this example,
the value of SAM is unknown when input

-module 1 is processed by the language

translator; therefore, zeros are placed in
the value of the address constant. During
second pass processing, the absolute relo-
cation factor (the linkage-editor-assigned
address) is used to relocate the address
constant.

Figure 29 shows the use of both a rela-
tive relocation factor and an absolute
relocation factor in relocating a symbol.
Two input modules are to be processed by
linkage editor. Input module 1 contains a
non-branch type address constant whose
value depends on the symbol PETE; PETE is
an external reference in the same module.
The language translator has assigned a
value of +10 to the address constant. The
R pointer of the RLD item refers to the ER
entry for PETE in the ESD; this entry con-
tains zeros in the origin and length
fields. The P pointer refers to the SD
entry for the control section that contains
the address constant.

Input module 2 contains two control sec-
tions, BOB and PETE. BOB contains a non-
branch type address constant whose value
depends on PETE; since PETE has a defined
value (300) in the same module, the lan-
guage translator has used that value to

Output Module

0000

0999

1000 FaER CSECT
[)
©$2000
o 1006

DC A (DierT

[]
[]

1999 L

2000 rEiER DS
[]
[
[]

Relative relocation
factor is +1000.

Non-Branch Type Address Constants - Relative Relocation

Input Module 1

0000 &g CSECT
[]
L]
[]
EXTRN SAM
. Output Module
[]
DC A [SAMY JOE CSECT
[] []
[) [)
[) []
0500 EXTRN SAM
[)
[]
® #0501
Linkage oeet
Editor > DC A (SAMT
[
[]
| t Module 2 °
e T 0500
0250
SAM DS 0501
* SAM DS
° []
° [)
° [)
1250 .
1501

Language translator

inserts zeros because
value of SAM is un-
known.

Figure 28.

compute the value of the address constant
(PETE+10=310) . The R pointer of the RLD
item refers to the SD entry for PETE in the
ESD; the P pointer refers to the SD entry
for BOB (the control section that contains
the address constant).

During linkage editor processing, the ER
and SD entries for PETE are merged into one
CESD entry; the R pointers of both RLD
items in the output module will refer to
that entry. The RLD P pointer for the
address constant in control section BILL
will refer to the SD entry for BILL; the P
pointer for the other address constant will
refer to the SD entry for BOB. In the out-
put module, both address constants will
contain the same value. Since the R point-
er of the RLD item in input module 1 refers
to an ER-type ESD entry in that module, it
is marked for absolute relocation; the
absolute relocation factor for PETE (+500)
is added to the value (+10) assigned by the
language translator. Since the R pointer
of the RLD item in input module 2 refers to
an SD-type ESD entry in module 2, it is
marked for relative relocation; therefore,
during relocation the relative relocation
factor for PETE (+200) is added to the
value (+310) assigned by the language
translator. The relocated value for both
address constants is 510.

+ Actual address of SAM in the output module
(0501) is added to value of address constant.
(Note that the relative relocation factor of
SAM is +251.)

Non-Branch Type Address Constants - Absolute Relocation

Relocation of all non-branch type
address constants requires an addition or
subtraction of the relocation factor to or
from the value of the address constant in
the text of the input module. (Addition or
subtraction is specified in the flag field
of the RLD item for the address constant.)

DELINKING NON-BRANCH TYPE ADDRESS CON-
STANTS: A relative relocation factor can-
not be used to relocate an A-type address
constant that refers to a symbol in a con-
trol section being replaced. Since the
address constant has been previously relo-
cated (by a language translator or by link-
age editor), it contains the value of a
symbol being replaced; therefore, the value
of that symbol must be subtracted from the
value of the address constant. This pro-
cess is called delinking. In delinking, an
address constant is reduced to the value it
would have contained if it referred to an
external reference in the input module.
After delinking, the address constant con-
tains the value required for proper reloca-
tion, should the replaced sywmbol appear
later in the input, in another control sec-
tion. Delinked address constants are
treated like address constants whose values
depend on external references. (Absolute
relocation factors are used in relocating
them.)

Section 2: Method of Operation 49

Input Module 1 Output Module
ESD Symbol Type Origin Length ESD Symbol Type Origin Length
Entry 1 [BILL SD 0000 500 Entry 1 [BILL D 0000 500
No 2 | PETE ER 0000 000 No 2 | PETE SD 0500 400
3 [JOE ER 0000 000 3 | BOB) 0900 300
2
0000 BILL CSECT 4 LIOE LR 0620
(] 0000 BILL CSECT
° .
) L]
EXTRN PETE *
o EXTRN PETE
EXTRN JOE .
e *0010 EXTRN JOE
0490 DC A(PEFE+O) ® ¥ 0510
e * 0000 Lettr
0494 DC AUOET 0490 DC A(BETE+TO)
0499 R Address ¥ 0620
RLD [2 T I 10490 | 0000
RLD [3 1 l [0494 | 0494 DC_AUOE]
\ X 0499 R P Flag Address
Input Module 2 Linkage RLD 2 T 1 I [0490]
Symbol Type Origin Length / Editor RLD 4 1 0494
1 [BOB SD 0000 300 . L I I L
2 |PETE SD 0300 400 0500 PETE CSECT
JOE LD 0420 2 N
0000]
BOB CSECT
0620 JOE °
.
°
°
* Lo 0899
*
DC.A_(BETE‘H‘GT :nser:ed by language 0500 508 CSECT
ranslator °
0299 # De.rermin.ed by linkage :
Entry JOE editor using absolute 1194 EXTRN PETE
0300 PETE CSECT relocation factors °
° (+500, +620) .
° e ¥ 0510
. % Determined by linkage o 0310
° editor using relative 1199 DC A (PETEHOY
relocation factor (+200)
0420 JOE : R p Flag Address
0699 . RLD [27 3 | [T1194]
R P Flag Address
RLD [2] 1 [0294]
Figure 29. Non-Branch Type Address Constants - Absolute and Relative Relocation
Delinking of an A-type address constant DELINKING COMMON CONTROIL SECTIONS: Common

is shown in Figure 30. Input load modules
A and B both contain control section SAM.
During linkage editor processing, the first
occurrence of control section SAM is
accepted, while the second occurrence is
deleted through automatic control section
replacement.

Control section BILL in module B con-
tains a reference to symbol JOHN in control
section SAM. Since SAM in module B will be
deleted, the address constant A (JOHN+50) in
module B must be delinked so that it may be
properly resolved with the symbol JOHN in
module A. In delinking, the o0ld value of
JOHN is subtracted from the value of the
address constant in BILL (120-70=50). The
absolute relocation factor for JOHN (1850)
is then added to the delinked value of JOHN
(50+1850=1900) .

50

control sections (either blank common or
named common) must be "delinked" by linkage
editor. All references to common control
sections are made by means of non-branch
type address constants.

If the assigned address of a common con-
trol section in the input to linkage editor
is not zero, all such references must be
delinked. Delinking is necessary because
during linkage editor processing all blank
common control sections are collected into
a single control section. All identically
named common control sections are gathered
into individual control sections;
references to ther from different input
modules must be delinked so that they can
be properly relocated with respect to the
locations of the common control sections in
the output module.

Module A Output Module
JOE SD 0 1000 JOE SD|* 0 1000
BILL ER 0 0 *
ESD BILL SD | *1000 800 ESD
SAM sb| 1000 750 SAM SD | *1800 750
JOHN LR] 1050 3 0 JOHN LR | *1850 3
JOE 0 |JOE ** 1900
1100 1160
DC A (JOHMN-+350) DC A (JOHN-+750)
DC V (BHD) 700 700 DC V (BKL] 1000
___________ Qo _ ___ _ ___] 800 800 R P Flag Address
SAM 1000 2 1 C 800
JOHN 1050 2] oc 700 RLD
R P Flag Address 1000 BitL
2 1 1C 800 900
RLD DC A(JOHN+30)
4 1 oC 700 1630 R P Flag Address
Linkage M 2 [oc T 1350 RLD
Module B Editor 1800 |SAM
SAM sD 0 720
ESD JOHN R| 70 1 1850 [JOHN
BILL so| 720 800 * Values are derived from HESD.
0 ** 1100 + 800 = 1900
SAM $ 120 - 70 + 1850 = 1900
Notes:
JOHN 70 ® A relative relocation factor is used to relocate the address constant A(JOHN+50) in
___________________ 720 control section JOE, because JOE and SAM are in the same module.
BILL
120 @ The address constant A(JOHN+50) in control section BILL must be delinked because it
DC A(JOHN=50) 1350 was resolved with the symbol JOHN in the replaced control section SAM. The old
value of JOHN must be subtracted from the value of the address constant before it can
R P Flag Address be relocated (using the absolute relocation factor) to the new value of JOHN in the
RLD 2 L 3 J ocC I 1350 output load module.
Delink Table
0004 | 000070
HESD Relocation Constant Table
Type [Absolute Reloc Fact | Seg No Length 000000
00 000000 01 000280
00 001000 01
00 001800 ol 000800
03 001850 01 000800
Figure 30. Example of Delinking

Delinking adjusts the value of each
address constant in a common control sec-
tion so that it contains its correct dis-
placement from the control section origin.
The values of such address constants are
then relocated so that they refer to link-
age editor assigned addresses, using akso-
lute relocation factors.

Relocation of Branch Type (V-Type) Address
Constants

absolute relocation factors are
relocate branch type address con-
stants. Since a displacement is not
allowed in the value of a V-type address
constant, the absolute relocation factor is
inserted in the value field during reloca-
tion. (It is not added to or subtracted
from the value assigned by the language
translator, as described for A-type address
constants.) Because the value of a V-type
address constant is inserted, delinking is

Only
used to

never necessary for such address constants.
Relocation of V-type address constants in
an overlay structure is discussed in the
following paragraph.

RELOCATION OF V-TYPE ADDRESS CONSTANTS IN
OVERLAY: If the output of linkage editor
is to be an overlay load module, a U4-byte?
branch type address constant in the path of
the symbol it refers to (but in a different
segment) , or in a different region, will be
relocated in a special manner. The value

1Any address constant must be four bytes
because the high—-order byte is used by the
overlay supervisor during execution. The
number of the segment containing the
address constant will be placed in the
high-order byte of any V-type address con-
stant resolved to an ENTAB entry. (The
high-order byte must be zero if it is not
resolved to ENTAB entry.)

Section 2: Method of Operation 51

field of the address constant will contain
the address of an ENTAB entry. The ENTAB
entry will contain the address assigned by
linkage editor to the symbol referred to by
the value of the address constant. 2n
ENTAB entry is created for each V-type
address constant that is in the path of the
symbol it refers to (but is not in the same
segment) , or located in a different region,
provided that the symbol is not referred to
in a segment higher in the path of the
calling segment. (Such address constants
are resolved so that they refer to the
ENTAB entry previously created for the sym-
bol in the higher segment.) ENTAB entries
are not created for address constants that
refer to symbols higher in the path.
Whenever an ENTAB entry is created, it is
noted in an entry list; each item in the
entry list contains the entry number of the
referenced symbol in the HESD, the segment
number of the calling segment, and the
address assigned to the ENTAB entry by lin-
kage editor. The ENTAB creation routine
uses the entry list to build ENTAB entries.
(Refer to "ENTAB Creation.")

When second pass processing begins to
process a segment, the entry list is modi-
fied so that it contains only entries for
segments higher in the path of the current
segment. (In Figure 31 segment 4 is being
processed; the entry for segment 3 is
removed since it is not higher in the path
of 4.)

— L

2 r— 1 _7—} Entry List
3 4 e HESD
Entry ?:g Address
Number °
1
Next
2 available
Current 3 line; 4
Segment will be
entered
here.
Figure 31. Entry List Processing

During relocation, each V-type address
constant is examined to determine if an
ENTAB entry must be created for it. The R
pointer of the RLD item for the address
constant is used to find the associated
HESD entry; this entry contains the segment
number of the symbol referred to by the
address constant. The relationship of this
segment to the current segment is then
determined, using SEGTA1. Depending on the
relationship in SEGTA1, the address con-
stant is relocated in one of three ways:

1. If the segment that contains the sym-
bol is higher in the path of the cur-

52

rent segment, the call is upward and
the address constant is resolved
directly. (The absolute relocation
factor of the symbol is inserted in
the value of the address constant.)

2. If the current segment is higher in
the path of the segment that contains
the symbol, the call is downward. The
entry list is checked to determine if
an ENTAB entry was previously created
for the symbol in this segment, or in
a segment higher in the path of this
segment. If an ENTAB entry for the
symbol exists, its address (contained
in the entry list) is placed in the
value field of the address constant.
If no ENTAB entry exists for the sym-
bol, a new entry is placed in the
entry list, and an FNTAB entry will be
created by the ENTAB creation routine.
(Refer to "ENTAB Creation.") The ENTAB
entry will contain the address
assigned to the symbol by linkage edi-
tor, and the address of the ENTAB
entry will be placed in the value of
the address constant and in the entry
list item.

3. If neither of the two segments is
higher in the path of the other, the
call is either exclusive or across
regions. If the two segments are in
different regions, and no ENTAB entry
already exists for the symbol in the
entry list, an ENTAB entry will be
created and an entry is made in the
entry list; the value field of the
address constant is relocated to the
address of the ENTAB entry, which in
turn contains the relocated address of
the symbol. If the two segments are
in the same region, the call is exclu-
sive. If there is an entry in the
entry list for the symbol, the address
constant is resolved through its ENTAB
entry; if there is no entry for the
symbol in the entry 1list, the call is
an invalid exclusive call and the
address constant is resolved directly
to the symbol. (This usually leads to
incorrect results during execution of
the module.)

ENTAB Creation

The ENTAB creation routine uses the size
field in the HESD to determine the number
of ENTAB entries to be created for a given
segment. The entry list is scanned for all
entries that were created for the current
segment; each of these entries contains the
HESD entry number for the corresponding
symbol. The value and segment number of
the symbol are obtained from the HESD and
are entered into the ENTAB entry, along
with standard information shown in the
Appendix.

ENTAB creation is shown in Figure 32.
The V-type address constants referring to
SAM and BILL in segment 1 meet the require-
ments for building ENTAB entries. The ESD
and RLD input to the second pass processor,
and the overlay tree structure are shown in
diagram A. During relocation, entries are
created for SAM and BILL in the entry list
(see diagram B) ; each entry contains the
address of the ENTAB entry created for the
address constant.

In segment 1, location 136 of control
section JOE contained a call to control
section SAM before relocation. After relo-
cation, location 136 contains the address
of the ENTAB entry for SAM, and the high-
order byte of the address constant contains
the segment number of the calling segment.
An ENTAB entry is created, in like manner,
for BILL in segment 1.

In segment 2, the address constant
referring to BILL does not meet the
requirements for building an ENTAB entry.
(It is not in the path of the segment con-
taining the symbol.) Therefore, no ENTAB
is created in segment 2. The call for seg-
ment 2 to BILL in segment 3 is an exclusive
call. Since a call to the same symbol
appears in a higher segment common to 2 and
3 (segment 1) the address constant may
refer to the ENTAB entry for BILL in seg-
ment 1. (This is determined by scanning
the entry list for the HESD entry corre-
sponding to the symbol BILL.) If a call to
BILL was not contained in a common segment,
the address constant DC V (BILL) in segment
2 would pe resolved using the value
assigned by linkage editor to the symbol
BILL, which results in an error.

In segment 3, the address constant is an
upward call and is resolved directly.

Relocation Routine

The relocation of address constants is
performed by the relocation routine; the
routine operates on the following input
data:

e The address of the RLD input buffers
which contain RLD records.

e The address of the RLD notelist entry
for the RLDs being processed.

e The address of the next available entry
in the RLD output buffer.

e The buffer relocation constant (BRC)
where:

BRC = starting buffer address of cur-
rent text + relative relocation
constant of current control section
- address assigned to current con-
trol section by linkage editor -
multiplicity size X current multip-
licity number

The relocation routine operates in the
following manner:

1. The size of the RLD set' and the dis-
placement from the beginning of the
buffer is determined from the RLD note
list.

2. FEach RLD item in the current RLD set
is scanned to determine if:

a. It describes an address constant
for the current text being pro-
cessed (BRC + address contained in
RLD address field falls within the
text buffer boundaries of the cur-
rent text.)

b. The address constant is either a
valid 2-, 3-, or U-byte address
constant. (The only valid 2-byte
address constants are pseudo
register type.)

3. Each address constant whose RLD meets
the above requirements is moved from
the text into a computation area. The
address constant associated with the
RLD item is then relocated according
to the information in the flag field
of the RLD item (refer to Table 7).
The relocated address constant is then
placed back into the text.

4., The RLD address field is updated using
the relative relocation factor for the
control section being processed. (The
control section referred to by the P
pointer of the RID item).

5. The RLD is moved into the RLD output
buffer if space is available. If
space is not available, the contents
of the RLD output buffer are written
out on SYSLMOD.?2

6. Steps 2 through 5 are repeated until
all RLD items have been scanned in the
RLD set being processed. The multip-
licity number in the RID notelist is
updated if unprocessed RLDs remain in
the set.

7. If there are more RLD sets in the
input buffer to be processed, the
address of the next record is deter-
mined and steps 1 through 6 are
performed.

1An RLD set is a group of RIDs referred to
by a particular RLD notelist entry.

2If the XDAP indicator is off, a dummy text
record is written out before the contents
of the RLD output buffer are placed on
SYSLMOD. If the XDAP indicator is on, a
dumwy write of the text record is not
required, because text is already written.

Section 2: Method of Operation 53

036 | JOE

Diagram A, HESD
L.E Relocation 136 | DC V(SAM)* Segment 1
Assigned Constant
Type Address Seg Length Table 236 186 | DCV(@ILL)*
JOE) 36 1 200 W
o = 2z Z % 272 [SAM 272 |BILL
SEGTAB PC 0 1 36
ENTAB PC 2386 1 36 Segment 2 Segment 3
DC V(BILL) DC V(JOE)
R P Flag Address
RLID [217 1T 1T 1C T 100 | Structure with V-type address
[3 | 1 [1C] 150] Constants.
Input RLDs - Segment 1 * Zero value assigned by the assembler.
Diagram B.
OQutput RLD Buffer Entry List Entab RLD Items
2 17 71 T 1¢c T 1%] | 7 T 236] [0 _ 1 1 [1 T 240
3117 1T 1¢c 1 18] (3 1T | 248 | { | [b 1 252
RLDs and Entry List after relocation for control section JOE.
Diagram C.
Segment 1 after processing by Second Pass Processor.
JOE
01000236
136 DC V(SAM)
01000248
186 DC VBt
236 47FF 0024 | 00000272 | 02 | 000000
248 47FF 0012 | 00000272 | 03 | 000000 ENTAB
260 Standard Last ENTAB Entry
Diagram D.
Segment 2 after processing by Second Pass Processor.
272 | SAM
02000248
752 | DC V(BHLY
Input RLD Buffer Output RLD Buffer ENTAB RLD Items Entry List
3 1 2 J1C [&80] 3 1 2 [1cC] [None | L

Diagram E.

Segment 3 after Second Pass Processing

* Same as after processing segment 1.

BILL
00000036
DC V(IOET
Input RLD Buffer Output RLD Buffer ENTAB RLD Items Entry List
L1 [3 [1c [ev% | L1 T 3 Tic [7e | [None i I
* Same as after processing segment 1
Figure 32. ENTAB Creation

54

Table 7. Relationship of RLD Flag Field to Relocation
T 1
Input | | Output
3 i Action
Flag Type | Performed Flag Type
4
T
0000LLST Absolute |Absolute relocation factor is 0000LLST A-type
|added to value of address con-
| stant
[
+
Branch |Absolute relocation factor is 0001LLST V-type

|constant
i

|inserted into value of address

!

[l

T

|

|

|

4

T

0001LLST |

|

|

t

0010LLST |
| value

| (PR type 1)

i

1

| constant
il

T
PrR-displacement |Absolute relocation factor is
|inserted into value of address

value

-
|
1
1
|
|
|
1
4
|
|
|
+

0010LLST |PR-displacement
|
|
]
+
|
|
|
|
i
T
|
|
|
1

|
|
|
1
1
|
|
|
1
T
|
|
|
1
I
|
|
|
|
i
T
|
|
|
| K

not relocated.

storage for execution.

(- e e ——— — —— — ——— — — " — ——— — T~ —— ———— — T c—— — " W C—— o S m— —— i, G i o st @

T

0011LLST |PR-cumulative |PR length from All Purpose 0011LLST |PR-cumulative
| displacement |Table is inserted into value of displacement
| value |address constant value
!(PR type 2) l
] B}

1000LLST | Relative |Relative relocation factor is 0000LLST A-type
| |added to value of address
| | constant
L 1

Notes:

e If S (sign) in LLST is 1, subtraction is performed, rather than addition.

e In delink type, the delink value is added or subtracted according to the opposite
of the sign; the absolute relocation factor is added to or subtracted from the
address constant according to the indicated sign.

e If an RLD item refers to an undefined symbol, the associated address constant is

(It may have been delinked.)

flag field is set to one (1000LLST for an A-type constant,

constant) and no relocation will be performed when the module is loaded into main

e Delinking is noted in the high-order bit of the P pointer.

The high-order bit of the RID item
1001LLST for a V-type

b o e ot s S it S comems ot et s s e e, s el e s . s ks e e S ek et et csssts b e e e s o cedits vt

Note: In order to minimize the number of
times that RLD records are read from SYS-
UT1, RLD records for a control section are
held in the input RLD buffer, when possi-
ble, until all RLD records in the buffer
have been processed (because each RLD rec-
ord may pertain to many multiplicities of
text) . After each set of RLDs is scanned,
the multiplicity number in the RLD note
list is updated to reflect the multiplicity
of the remaining unprocessed RLD records in
the set. BAn RLD record is removed from the
buffer when:

1. All RLD items in the record have been
processed. (Their associated address
constants have been relocated.)

2. Another RID record must be read into
the buffer and space is not available.

When all records in the input RLD buffer
have been scanned, the relocation routine
determines if more RLD records for the cur-
rent multiplicity of text are to be read

in. (The read RLD routine sets an indica-
tor when it encounters such a record but
cannot read it into the buffer because the
buffer is full.) When both buffers are
full, the second buffer is freed, and the
corresponding RLD note list entries are
marked "out-of-core." The records to be
read in are then placed in the second RLD
buffer; these records are processed in the
same manner as those already residing in
the first buffer. This process is repeated
until all records that contain RLD items
pertaining to the current multiplicity of
text have been scanned and processed.

When all RLDs in a buffer are processed,
the buffer is marked "free" in the RLD con-
trol block. When a new multiplicity of
text is to be relocated, the RLD note list
is scanned sequentially (on ID and multi-
plicity number) from the first entry. If
an entry indicates that the record is "in
core" and the record contains RLD items
pertaining to the new multiplicity of text,
it is processed.

Section 2: Method of Operation 55

FINAL PROCESSING (IEWLMFNL)

The fourth phase of Linkage Editor F
(final processing) performs "cleanup" func-
tions, and is the last operation of linkage
editor processing. Functions of final pro-
cessing include:

e Write the TTR note list, created during
second pass processing, on SYSLMOD if
the output load module is to be used in
overlay. The TTR list contains the
relative track address of the first
record of each segment of the overlay
load module. It is used by program
fetch to find the segments when it
loads them into main storage for
execution.

e Place each entry in the proper format
for the partitioned data set directory,
modify it if there are alias symbols,
and issue a STOW macro instruction' for
the member name and each alias.

e Check attributes (reusable, reentrant,
and refreshable) . If the attributes
have become more restrictive, a message
describing the change in attributes is
printed out. (For example, the input
module was specified as "reusable" and
is now "not reusable.")

e Print out a directory of logged errors.

e Produce a cross-reference table if the
XREF option is specified, and the
cross-reference table was not produced
during intermediate output processing.

e Tf the module has been marked "not
executable," an error message is
printed out.

e If a NAME card, not followed by end of
file, terminated SYSLIN input, linkage
editor processing is repeated, begin-
ning with initialization.

e If end of file terminated SYSLIN input,
linkage editor processing is completed.

1The STOW macro instruction is not issued
if there was no valid input, if there were
no ESDs, if nothing was written out on
SYSLMOD, or if the run was terminated by a
severity 4 error.

56

Allocated main storage is released, and
control is returned to the caller.

Exrror Logging

Whenever an error condition is detected
during linkage editor processing, an indi-
cator is set in an error logging map and a
coded diagnostic message is printed out.
During final processing, the error logging
map is scanned. When an indicator is found
"on" in the map, an associated list is used
to build a diagnostic message.

Note: An example of error logging in level
F is given in Figure 33. Each entry in the
list contains a length indicator and a
pointer to a phrase to be assembled into
the message. (Phrases are stored to save
main storage space; complete messages would
require additional space due to repetition
of identical phrases.) The diagnostic
directory is then printed out, one or two
lines to a message.

All error messages produced by the link-
age editor are identified by a message ID
having the format:

IEWDMMS

where:

IEW

identifies the message as a linkage
editor error message.

D - contains a zero.
MM - is the message number.
S - is the severity code.

The module in which an error message
occurred is identified by the message num-
ber (MM) . (Refer to Section 6 for an error
message-module cross reference table.)

Cross—-Reference Table

If the XREF option is specified, and the
cross-reference table was not produced dur-
ing intermediate output processing, the RLD
records are read back from SYSLMOD, and the
cross—-reference table is built, as
described in the discussion of intermediate
processing.

Error Logging Map

0 16 63
\\ - .
Table \
[} Entry 48 l I
~
——— -
List
is : — — :
]
I R] |
| 1
’/// // \\\ —_—— e ————
T T T T T T T T - 7 - =~
Phrases ¥ ‘ i \
I Phrase P] Phrase R l Phrase M Phrase J |
Message y
Phrase P Phrase R Phrase M Phrase J

* This pointer is determined by subtracting the

bit number from the length of the error
logging map (64 - 16 = 48).

Figure 33.

Building Error Messages

Section 2:

Method of Operation

57

Calling Control Information
Program)
CESD APT Delink Table Renumbering Table
Data \ Control Addresses & Addresses of ESD ltems, with
Management . Information Descriptions of Symbols Being IDs and Pointers
Opens Data for Resolving Tables & Buffers Deleted to Corresponding
Sets | Symbols_ | | ____ | L ______] CESD ltems
Attributes and
ESD Symbols Options CESD Entry
jated | [5. T 7 "7 Numbersof | [~ ——— —]
Supervisor and Associated Pointers to .
Al'lpocutes Data Control Informa- Symbols Replac- IDs of Delink
Storage tion in CESD ing Those Deleted Table Entries for
______ - Deleted Symbols
ESD ltem
! Confrol Informa-
tion

Txt Note Text I/D
List Table
Control Statements TTR and ESDID
ESD) Displace- Info for
Input ment Info Txt on
SYSLIN TXT » | for Txton SYSUT1
SYSLIN - Buffer e ' SYsuTi
RLD W
SYM
A
Control Statements _J
e ESD 1y
DRIt ¥ Obiect
= Module TXT n /
Buffer
RLD
SYSLIB 4 I CEsD
svm V4 3
- — Calls List RLI.) Note
L L - — List
N “ | First Pass
oo RLD Buffer | > SYSLMOD
R Entries for Byte Count,
I V-Type P Pointer,
. ADCONS and TTR Primary Fl
J in Overlay Info for ::> fmaty Tow
Programs RLDs on
SYSUT1
Control
Records Information
Specified
SYM

Figure 6. Operation Diagram A1 - Initial and Input Processing

Section 2: Method of Operation 59

High ID Notes

RCT

Relocation
Constants

SEGLGTH

Segment
Lengths

External

Symbol

High ID for

Text /O Table

 CSECT IDs
IS ESD ID Info for

Control
Information

Segment
Relationships

R

7.

Figure

 SEGTAB and Conrol Record

SYSLMOD

PR

MUt

IEVEIVIVCNIN

Operation Diagram A2 - Intermediate Processing

Section 2:

Each Segment |- .9 Texton SYSUTI
S
CESD Calls List
Temporary Linked _
Addresses ¢ XDTCYSEN
_______ Entries
When Combined with E
Segments Lengths and 1
Relocation Constants -
Aad A
Downward Alias
Calls List Table
Become Final Linked
Addresses for External
Symbols
; \«ig%l
- C
.- Alias Symbols
¢ LE Assigned Addresses .
£ -
A Scatter Table Translation Table
Final CESD ¥)
Records N
’ Symbol Addresses Pointers to Scatter
N in Ascending Table Entries
f{\‘ Order
¥
¢ N
i ‘
W A
‘<Scatter/Translation Records

OV Saadaeds o

Previously Existing
or Defined

Created During
Intermediate Processing

@ Primary Flow

~——— Secondary Flow

Method of Operation 61

otz

Relative Rélmﬁon Factors *

S e 4
Order in Which . /
Text /O L¥o Read Text . Relocated -
Table .y Y
R Relocation
’ Work Area Relocation
.. ! *{ Constant
A Table
Location
Text Note |of Text -
List ’
, SYSLMOD
D Second Pass - >
Text Buffer Control
Record P
Te;t -
SYSUTI ENTABS for o=
Overlay Programs Control/
N |_ RLD Record J
R T) . e ——
_____ | RiDs- o | _enTAs
B *‘fY [Ds Updated as TEXT
- | Associated Address ~
Second Pass 77 Constants Relocated | second Pass
RLD Input Buffer \ RLD Output Buffer
. D
NN - A A
RLD Note
List
P i RN
HESD Symbol Entry List TTR List
Absolute Valves and
Relocation Segment
Factors yolves and | Numbers _J Info for V- Addr of First
9 Type Address Text in Each
Numbers for
s 2 Constants Segment
ymbols - - “F

Primary Flow :>

Secondary Flow ———=

Previously
Existing or
Defined

Created During
Second Pass
Processing

Figure 8. Operation Diagram A3 - Second Pass Processing

Section 2: Method of Operation 63

TTR List

Error Logging Map | *. " S Error
‘ I Diagnostic \
Directory

Address of First

- ; Entries for All
Text in Each —— niries for
Overlay Segment | L W

Errors

© L.SYSLMOD

RLD Records SYSPRINT

Alias Table

Previously Existing or Defined

Created During Final
Processing

Figure 9. Operation Diagram A4 - Final Processing

Section 2: Method of Operation 65

SEGTAI
SEGTAI1 , 0
Updated o g ; CESD
T o
Overlay DD ° Symbol | Type ,idg:; Seg | Sub goit"rner/
. 4 YP€ | Reverse No. | Type | Chain ID
. Chain ID Length
Include CC 7C40 EE 02 7C60 02 90
Include BB Overlay Items Added to Overlay Chain in CESE 7C50 DD 02 740 o1 %0
7C60 FF 02 0000 03 90
Include AA _nclude Items Added fo Include Chain In CESD
If Symbol | = 7C70 AA 02 7CA0 DO
Found, Seg. No. R d
ymbol Found, Seg. No. Replace - 7C80 GG 02 0000 06 %0
f Symb
Insert GG, HH | If Symbol Not Found, New CESD Entry Made - 7C90 HH 02 0000 06 90
y 7CA0 BB 02 7CDO DO
Items Added to Replace/Change Chain. Operation Noted in Subtype Field
Replace 11 R - 7CBO JJ 00 7CFO0 08
Change JJ (LL) 7CCO LL 00 0000 FO
7CDO cC 02 0000 DO
Alias Symbols Entered into Alias Chain in CESD
- 7CEO MM 02 7D00 A0
Al
lias MM, NN 7cro | 11 o2 | oooo 08
7D00 NN 02 0000 A0
Library Chain Created for Each Library ddname/Member Name
Library > 7D10 (e]e) 02 0000 BO 7D30
OO (PP, QQ) 7D20
Symbol Entered in APT, 7D30 PP 02 | 7D10 02 | 7D50
Indicators Set APT .
Name KK yom ; 7D40
System Status KK SEG’?;]" 7D50 QQ 02 7D30 02 0000
Index Information
Entered in APT PDSE] SCTI x 7D60
SETSSI Address of
XXXXXXXX XDxooox ' CESD 7D70
Entry Symbol APT3 CHESD 7D80
Entered in APT XX 7090
Entry RR _——__L’ SSi 7DA0
| RR
EPSM

Figure 10. Operation Diagram B1 - Control Statement Processing

Section 2: Method of Operation 67

Object Module Buffer CESD (ID) RNT

(ID) ESD SD (Non- 7030 | HH | 03| 7D50 o1 02
Resolution)
@ | o1 [aa]oo]7cao 089A | F——"" s 7D40 | AA | 00 o1 009A | 02
o 04
SD Matching 7D50 | 1J 03 | 2020 03
03 |BB |00 [7C40 00A6 | ~ An ER 00
o =7D60 | BB | of 00A6 | 04
7070 | cc | 03| 0000 05
. 7D80 06 08
7D90 07
_»| 0D
RLD Input Buffer [R (Non- 7D0A0 | DD | 06 P o07A8 | 08
(ID) Resolution,
: CESD SD Not 7DBO 09
: Received))
© |05 |cc |o3|7cs0 04 setl 7DCo 0A
06 :RPgAafching 7DD0O 0B
07 0
) DD |06 03 | 06A8 7DEO oc
08
7DFO | EE 05 08 | ooAs | oD
) 01 006A
: A—7E00 | FF 05 3 o0%s | oE
7E10 OF
SYSLIN Buffer 7E20 10
(ID)
. ESD CM (Non-
® ob [e [os | 7cso ooag | [Rexelution) e " - Pl Tavle
oD |7CB0
0A CM Matching
® a CM
08 | FF |05 o2 | ooea |
e

® The type of each input ESD item is determined
e The CESD is scanned for a matching symbol

e If no match is found, non-resolution processing
is performed (A,C,E)

e If a match is found, resolution processing is
performed (B,D,F)

Figure 16. Operation Diagram B2 - ESD Processing

Section 2: Method of Operation 69

Text record IDs are renumbered (A)
e CSECT lengths obtained (B)

e Assuming there is space in TXTBUF1,
text records are moved (C)

o Entries made in Text I/O Table and
Text Note List (D)

o Contents of TXTBUF1 written onto
SYSUTT (E)

e TTR entered into Text Note List (F)

Object Module Buffer

SYSUTI

-

-

Figure 17. Operation Diagram B3 - Processing Object Module Text

gl

o1 TXTBUF1 J
T 26 | Data A o\ 780 [Data A
T 94 | DataB _/ || Dot
02 7768
A
Text 1/O Table
o1 00
‘H' 02 00 }__\\
CESD <:§:>
00 01 06AC RNT
QD 00 03 045E
Text Note List
o1 78C0 | 06AC }__/
02 _ZF68 | 0456 |J
IR

Section 2:

Method of Operation 71

First Pass RLD Buffer ® The ID in the first control record is renumbered.
The third line of the RNT contains a 4, so the ID
is renumbered to refer to the fourth line of the

CESD (CSECT DD).

Control Records

® Assuming CSECT DD (CESD ID = 4) is not to be
deleted, its length (in the control record) is checked.

® |f the entire CSECT or a complete multiplicity will
fit in TXTBUF1, the record containing text for DD
is read into TXTBUF1, and entries are made in the

.' text 1/O table and the text note list*.

i

Each subsequent control record is processed. Text
records are read into TXTBUF1 until it becomes full,
at which time its contents are written onto SYSUT1.

* In the two text records in this example, the multi-
plicity number is 0, since they are the first text

Input Text Buffer (TXTBUFT) records for their respective control sections.

7C60 rTXﬂ 4 l Text Data I TXTBUF1
Text Data I TXYF;’“ bi{ %ﬂ Contents Written
Text Records AT T T gk Data When Buffer Is Full

PAC LTI
EREE

A i
P
Renumbering
Table (RNT) Text |/O Table Text Note List CESD
‘ 05cA |

SR
Ay

g

-5 o ID Mult Disp Addr Length

Figure 18. Operation Diagram B4 - Processing Load Module Text Records

Section 2: Method of Operation 73

REG 6

RLD Buffer

R P IRLD 20 1|2 |pata
RLDI |2o| |4I.’.ilData (

- Data JRLD 16 | |Data Y
IRLD‘ Ilél |4|3|Dam (

e B« 2] oere (—)
R P
IRI_Dl {42‘ I'I |2 | Data (I

R P RLD 30 4|6| Data
IRLD| 3o |65 pata (
Data
RNT CESD RLD Note List

5 CSECTA]00 2 |1 |20 |16
3 RLDA |02 3 : 24 | 82
2 RLDB |02 '

6 |1 [30 |98
1 CSECTC |00 }
6 CSECTB |00 :
4 RLDC |02 !

ID Mult Length Addr/
Disp!

e Register 6 initially points to the first RLD input record.

® RLD records are grouped in the RLD buffer by P pointer.
In this example, the first and second, and third and fourth
RLD records are grouped.

e R and P pointers are renumbered, using the renumbering table, as
RLD records are moved into the buffer.

e Entries for each RLD set are made in the RLD notelist. Length
and displacement fields refer to the first record of the set.

® When the contents of the RLD buffer are written, the displacement
field of the RLD note list entry for the last set included in the output
record is replaced by the relative track address (TTR) of the SYSUTI
record.

Figure 19. Operation Diagram B5 - RLD Processing

Section 2: Method of Operation 75

© O

Text I/O Table CESD

2 CSECT (00
6 04
1 ENTABI |14
ENTAB2 |14 | |
r» SEGTAB |14
-

SEGTAI
°] 0 SEGLGTH
APT L L L L
2 ! L, | o c SRC, b SRC, E SRC, B SRC,
;] He 2. T3 VR
ENSIC) 5
Calls List — - — Y I,
9
ZP]RRZP2RRRZP3-~0> L, SRC,
' : L By _
T _|4
T S A R
LE D
B L S
_/ Iz 3

Figure 22. Operation Diagram C1 - Address Assignment

Section 2:

Method of Operation

77

SYSUTI

,
A/)

Text 1/O Table

Second Pass Text
Control Table

/—
Text Note List
N
/l\ \G)
B =7
~ 7
ID Mult Disp Addr Length |
SYSLMOD
Second Pass
Text Buffer
Txt _ Relocated Text o CTRL
> >
TXT
RLD
> RLD
>
RLD Input Buffer AN
\E RLD Output Buffer
CTRL
Relocated RLDs o RLD
i _1 Relocated RLDs
| > RLD
' |
RLD Note List | |
{/k\ I
D
N r/ /‘L\
\ F
/
} T
ID Mult Lgth Di
e orls'lF')TR |‘ RLD Input Control Blocks | RLD Output Control Blocks
1~ 1>
\ \
o g I~— >
\\/' _—).

Figure 26. Operation Diagram D1 - Data Movement During Second Pass Processing

Section 2:

Method of Operation 79

The following text and the flowcharts at
the end of this section describe the pro-
cessors (code modules, control sectioms,
and routines) that accomplish the functions
of Linkage Editor F. The organization of
this section corresponds to the organiza-
tion of the linkage editor; descriptions of
all processors which constitute a phase of
the linkage editor are grouped together.
For each processor the symbolic name is
given to facilitate use of program listings
(see "Section U4: Michofiche Directory")
and the descriptive name is given to facil-
itate reference to the Method of Operation"”
section (Section 2).

Figure 34 (a foldout) shows the overall
organization of Linkage Editor F; this
figure is designed to help determine rela-
tionships among the processors described in
this section.

Refer to the microfiche directory (Sec-

tion 4) for the chart numbers associated
with each module.

INITIALIZATION AND INPUT PROCESSING

Initial Processor —- IEWLMINT (Chart IA)

Entrance: IEWLMINT is entered from
IEWLMROU at the beginning of linkage editor
processing.

Operation: IEWLMINT performs initializa-
tion functions, including: building the
all purpose table (APT), opening data sets,
analyzing attributes and options passed by
the calling program, and allocating main
storage for internal tables, buffers, and
work areas.

Routines Called: IEWLMINT calls the attri-
butes and options processor (IEWLMOPT) and
the allocation routine (ALLO001) .

Exits: When initialization is completed,
IEWLMINT passes control to the input pro-
cessor (IEWLMINP) .

Attributes and Options Processor --
IEWLMOPT

Entrance: TIEWLMOPT is entered from the
initial processor after all data sets
except SYSLIB and SYSUT1 are opened.

Operation: IEWLMOPT analyzes the options
requested and the attributes specified by
the calling program, and notes this infor-
mation in the APT.

SECTION 3: PROGRAM ORGANIZATION

Routines Called: None

Exits: When attribute and option proces-
sing is completed, IEWLMOPT returns control
to the initial processor (IEWLMINT) .

Allocation Processor —-- ALOO1

Entrance: ALOO1 is entered from the ini-
tial processor after all data sets (except
SYSLIB and SYSUT1) are opened.

Operation: ALOO1 issues the GETMAIN macro
instruction and assigns storage to buffers.
The remaining storage is assigned to
tables, with variable tables being assigned
as much storage as possible.

Routines Called: None

Exits: When allocation processing is com-
pleted, AL001 returns control to the ini-
tial processor (IEWLMINT).

Input Processor —— IEWLMINP (Chart JA)

Entrance: IEWLMINP receives control from
the initial processor when all initializa-
tion functions are completed.

Operation: IEWLMINP reads and initially
processes all linkage editor input. Input
type (object module or load module) and
input conditions are determined, and con-
trol is passed to appropriate processors.
Routines Called: IEWLMINP calls the fol-
lowing processors:

e Control statement scanner (IEWLMSCN)
when a control statement is detected
(blank in column 1).

e Okject module processor (IEWLMMDI) when
object module input is detected (SYSLIN
input or F-format input from SYSLIB).

e Load module processor (INP270) when
load module input is detected (U-format
input from SYSLIB).

e Include processor (IEWLMINC) at end-of-
input, if more modules must be
included.

e Automatic library call processor
(IEWLCAUT) at end-of-input on SYSLIN,
if the NCAL option is not specified.

Exits: When input processing is completed,
TIEWLMINP passes control to the address
assignment processor (IEWLMADA) if valid

Section 3: Program Organization 81

input was received. If no valid input was
received, control is passed to the final
processor (IEWLMFNL) to terminate linkage
editor processing.

Control Statement Scanner —-- IEWLMSCN
(Charts JO, JPpP)

Entrance: IEWLMSCN is entered from the
input processor when a control statement is
detected.

Operation: Depending on the type of con-
trol statement being processed, the control
statement scanner makes entries in the APT,
SEGTA1, and the CESD. This information is
used to control subsequent linkage editor
processing.

Routines Called: IEWLMSCN calls the READS
routine (Chart JQ) to process control
statement operands.

Exits: When control statement processing
is completed, IEWLMSCN passes control to
the include processor (IEWLMINC) if an
INCLUDE control statement was processed
(include chain built in the CESD). Other-
wise, IEWLMSCN returns control to the input
processor.

Object Module Processor —-— IEWLMMDI (Chart
JB)

Entrance: IEWLMMDI is entered from the
input processor when object module input is
detected.

Operation: IEWLMMDI determines the input
record type (S¥YM, TXT, RLD, ESD, END),
loads input record information into general
registers, and passes control to the appro-
priate processors.

Routines Called: Depending on input record
type, IEWLMMDI calls the following
processors:

e SYM Processor (IEWLMSYM)

e ESD Processor (IEWLMESD)

e END Processor (IEWLMEND)

e Text and RID Processor (IEWLMRAT)
Exits: When object module processing is

completed, IEWLMMDI returns control to the
input processor.

Load Module Processor —- INP270 (Chart JCQ)

Operation: INP270 determines the input
record type (TXT, CESD, scatter/
translation, SYM, CCW, CCW/RLD, RLD) , loads
input record information into general regi-
sters, and passes control to the appropri-
ate processors.

Routines Called: Depending on input record
type, INP270 calls an associated processor,
as shown in Table 8.

Exits: When load module processing is com—
pleted, INP270 returns control to the input
processor.
Table 8. Load Module Record Types and
Associated Processors

T

Record Type | Processor
]
}
TXT | IEWLMRAT
CESD | IEWLMESD
Scatter/Translation | (Ignored)
SYM | IEWLMSYM
ccw | IEWLMRAT
CCW/RLD | IEWLMRAT
RLD | IEWLMRAT
L

If end-of-module indicator is on:

[P s et e G e Y ot o S it T s e S st Y

T
cCW | IEWLMEND
CCW/RLD | IEWLMEND
RLD | IEWLMEND
1

b e e e ks e ey e e e e o s et it s wed

ESD Processor —— IEWLMESD (Charts JE, JF,
JG)

Entrance: IEWLMESD is entered from the
object module processor when an ESD record
is detected, and from the load module pro-
cessor when a CESD record is detected.

Operation: IEWLMESD combines ESDs in the
linkage editor input into a composite ESD.
Matching input symbols are resolved, and
specified operations (replace, change,
delete) are performed on the symbols. A
renumbering table (RNT) is produced to
allow input ESD IDs to be translated into
CESD IDs.

Routines Called: None

Exits: When ESD processing is completed,
IEWLMESD returns control to the routine
from which it was entered (object module
processor or load module processor).

SYM Processoxr —-- IEWLMSYM (Chart JD)

Entrance: IEWLMSYM is entered from the

Entrance: INP270 is entered from the input
processor when load module input is
detected.

82

object module processor when SYM records
have been detected and the TEST option has
been specified. If TEST is not specified,
SYM records are ignored.

Operation: IEWLMSYM gathers SYM records in
the RLD input buffer, and writes the buffer
contents onto SYSLMOD when the first TXT
record of a module is detected.

Routines Called: None

Exits: When SYM processing is completed,
IEWLMSYM returns control to the object
module processor.

Text and RLD Processor ——- IEWLMRAT (Chart
JH)

Entrance: IEWLMRAT is entered from the
object or load module processors when a
text or RLD record is detected.

Operation: IEWLMRAT determines record type
(TXT or RLD), checks for error conditions
(input record larger than buffer), and
passes control to the appropriate
processor.

Routines Called: Depending on the record
type, IEWLMRAT passes control to either the
text processor (IEWLMTXT) or the RLD pro-
cessor (RLD0O1).

Exits: When text and RLD processing is
completed, IEWLMRAT returns control to the
object or load module processor.

Text Processor —-- IEWLMTXT (Chart JI)

Entrance: IEWLMTXT is entered from the
text and RLD processor when a text record
is detected.

Operation: IEWLMTXT operation depends on
whether text input is from object or load
modules. Object module text is moved from
the object module buffer to the input text
buffer, and must be arranged in the proper
order. Load module text input is already
ordered, so IEWLMTXT reads it directly into
the input text buffer. In either case, the
input text ID is renumbered to refer to the
CESD ID of the appropriate control section.
When the input text buffer becomes full,
its contents are written onto SYSUTI1.

Routines Called: When the input text buff-
er is full, IEWLMTXT calls the text write
routine (TXTBUF -- Chart JJ) to write the
buffer contents onto SYSUT1.

Exits: When text processing is completed,
IEWLMTXT returns control to the text and
RLD processor.

RLD Processor -— RLDO001 (Charts JK, JIL)

Entrance: RLD001 is entered from the text
and RLD processor when an RLD record is
detected.

Operation: RLD001 groups RLD items in the
RLD buffer and renumbers the R and P point-
ers to refer to appropriate CESD entries.
Each RLD item is processed according to its
flag and address (FA) field. RLD00O1 also
creates an RLD note list, with entries for
each set of RLDs (a set being all RLDs hav-
ing the same P pointer). If either the RID
buffer or the RLD note list becomes full,
the contents of the buffer and the note
list are written onto SYSUTI1.

Routines Called: When the RLD buffer or
the RLD note list is full, RLDO001 calls the
RLD write routine (RLDBUF -- Chart JM) to
write the note list and the buffer contents
onto SYSUT1.

Exits: When RLD processing is completed,
RLDO001 returns control to the text and RLD
processor.

End Processor —- IEWLMEND (Chart JN)

Entrance: IEWLMEND is entered €from the
object or load module processor when an END
statement or the end of a load wmodule is
detected.

Operation: IEWLMEND resets tables involved
in input processing, processes entry point
information, deletes CESD lines marked
CHAIN or DELETE, and enters into the CESD
the length of control sections for which no
length was previously indicated.

Routines Called: None

Exits: When end processing is completed,
IEWLMEND returns control to the object or
load module processor.

Include Processor —— IEWLMINC (Chart JR)

Entrance: IEWLMINC is entered from the
input processor when "more includes" are
indicated at end-of-input, and from the
control statement scanner when an INCLUDE
statement has been processed.

Operation: IEWLMINC examines the include
chain in the CESD and selects the next
module to be included. It opens the data
set, determines the attributes of the
module to be included, and initializes the
DCB to allow the module to be read.

Routines Called: None.

Exits: When include processing is com-
pleted, control is returned to the input
processor.

Section 3: Program Organization 83

Automatic Library Call Processor —--
IEWLCAUT (Charts JS, JT)

Entrance: IEWLCAUT is entered from the
input processor at the end of SYSLIN input,
or when a NAME statement has been detected
(provided that the NCAL option was not
specified) .

Operation: IEWLCAUT first scans the CESD
for unresolved ERs specified on LIBRARY
statements. It attempts to resolve these
ERs by searching the PDS directories of
ddnames included in library chains, allow-
ing the members found to be read. A second
CESD scan attempts to resolve ERs not spec-
ified on LIBRARY statements by attempting
to call them from SYSLIB.

Routines Called: After the first series of
CESD scans, IEWLCAUT returns control to the
input processor to read the members.

Exits: After the second series of CESD
scans, IEWLCAUT passes control to the
address assignment processor (IEWLMADA).

INTERMEDIATE PROCESSING

If the MAP option has been specified, a
module map is produced and written on
SYSPRINT; if the XREF option has been spec-
ified and all RLDs are in storage, a cross-
reference table is produced and written on
SYSPRINT.

If the TXT and RLD note lists were
placed on SYSUT1 during TXT and RLD proces-
sing, IEWLMOUT reads them back into
storage, and builds the high ID table
(HIID) . The half ESD (HESD) is also built,
after the CESD has been written.

Routines Called: IEWLMOUT calls the MAP/
XREF processor (IEWLMMAP) to produce and
write the module map and cross-reference
table, if requested.

Exits: When intermediate output processing
is completed, control is passed to the
second pass processor (IEWLMSCD) .

SECOND PASS PROCESSING

Second Pass Processor —— IEWLMSCD (Charts
Address Assignment Processor ——- IEWLMADA MA, MB)
(Chart KA)

Entrance: IEWLMSCD is entered from
Entrance: IEWLMADA is entered from the TEWLMOUT when intermediate output proces-

input processor when input processing is
completed.

Operation: IEWLMADA assigns linked
addresses to all CESD entries, determines
the size of SEGTAB if the program is in
overlay, determines the number of ENTAB
bytes required for each segment, builds the
alias table, and determines an entry point
for the program.

Routines Called: IEWLMADA call the ENTAB
size determination routine (IEWMLENS --
Chart KB) to compute the size of ENTABs,
and calls the entry processor (IEWLMENT —-
Charts KC, KD) to build the alias table and
determine an entry point.

Exits: When address assignment processing
is completed, IEWLMADA passes control to
the intermediate output processor
(IEWLMOUT) .

Intermediate Output Processor —— IEWLMOUT
(Chart 1A)
Entrance: IEWLMOUT is entered from

IEWLMADA when address assignment processing
is complete.

Operation: IEWLMOUT writes the following
onto SYSIMOD: CESD, SEGTAB (for programs
in overlay), and scatter/translation rec-
ords (for programs to be scatter 1loaded) .

8u

sing is completed.

Operation: IEWLMSCD performs the following

functions:
e Reads text from SYSUTI1.

e Relocates address constants contained
in the text.

e Creates control/RLD records.

e Writes text and control/RLD records
onto SYSLMOD in a format that can be
loaded by program fetch.

e Creates ENTABs and associated RLD items
for overlay modules.

Routines Called: During second pass pro-
cessing, IEWLMSCD calls the following
routines:

e Control section search routine
(GETIDMUL -- Chart MC) to determine the
next ID and multiplicity to be
processed.

e Text and RLD read routines (RDTXT,
RDRLD -- Chart MD) to read required
text and RLDs from SYSUT1.

e Text write routine (WRTTXT -- Chart ME)
to write text onto SYSLMOD.

e RLD/control record write xroutine
(WRTCRRLD) to write RLDs and control
records onto SYSLMOD.

e Relocation routine (RELOCATE -- Charts
MF, MG, MH) to relocate address con-
stants (branch type and non-branch
type) in the text.

e Common path routine (IEWLCPTH) to
determine common segments in an overlay
path.

e ENTAB creation routine (SCDENTAB) to
create ENTAB items for each segment.

Exits: When second pass processing is com-—
pleted, control is passed to the final pro-
cessor (IEWLMFNL) .

FINAL PROCESSING

Final Processor -- IEWLMFNL (Chart NA)

Entrance: IEWLMFNL is entered from
IEWLMSCD when second pass processing is
completed.

Operation: IEWLMFNL performs the following
"cleanup" functions:

e Writes the TTR list for overlay modules
onto SYSLMOD.

e Places entries in the partitioned data
set directory and issues a STOW macro
instruction.

e Prints a directory of logged errors.

o Checks for more restrictive module
attributes.

e Produces a cross-reference table if it
was requested and not produced during
intermediate processing.

Routines Called: During final processing,
IEWLMFNL calls the following routines:

e Diagnostic message directory print rou-
tine (IEWLMBTP) which scans the error
logging map produced throughout linkage
editor processing by the error logging
routine (IEWLMLOG -- Chart NC) ;
IEWLMBTP builds and prints a directory
of error messages.

e MAP/XREF processor (IEWLMMAP -- Chart
LB) which produces a cross reference
table if it was not produced during
intermediate processing.

Exits: If end-of-file was not detected on
a SYSLIN input, IEWLMFNL returns control to
the initial processor (IEWLMINT), and link-
age editor processing is repeated. Other-
wise, linkage editor processing is ter-
minated, and control is returned to the
control program.

SYNAD Routine (Chart NB)

Entrance: The SYNAD routine may be entered
from the following routines:

e From the control program when any I/0
error has been detected.

e From the second pass processor, if an
error is found after executing XDAP

Operation: Following are SYNAD considera-
tions for linkage editor F:

e The SYNAD fields of the DCBs in
IEWLMROU contain the address of the
appropriate SYNAD entry point for the
access method used with the data set.

e If the SYNAD routine is entered from
the input processor because of incor-
rect length, the length of the incor-
rect input block is checked. 1If a
valid short block (integral multiple of
LRECIL) is found, control is returned to
the supervisor to continue processing;
if not, processing is terminated with
an error message and completion code of
16.

e If the SYNAD routine is entered while
writing to the SYSPRINT data set, con-
trol is passed to the final processor,
and execution is abnormally terminated
with a condition code of 16.

e When the include processor opens the
DCB for SYSLIB, the address of the
appropriate SYNAD entry (for either
BSAM or BPAM access methods) is moved
into the SYNAD field.

e If the second pass processor finds an
error after executing XDAP, it loads
register 1 with the IOB address, loads
register 15 with the SYNAD entry point
for EXCP, and branches on register 15.

Section 3: Program Organization 85

Initial Processing

IEWLMOPT

IEWLMROU IEWLMINT
Entry Point Initial
| Processor
(Chart HA) (Chart 1A)
Figure 34.

Attributes and
Options
Processor

(Chart 1A)

ALOO1

IEWLMINP

Input Processing

Intermediate Processing

Allocation
Routine

(Chart 1A)

Input Processor

(Chart JA)

Linkage Editor F Organization

IEWLMMOI IEWLMESD IEWLMDCN_| RENUMBER |
LABEL ENTER '
Object Module ESD Processor I
Processor - (Chorts JE, JF FREELINE IEWLCPTH
P NXTLINE D D
(Chart JB) 1G) TLINE | IDCES |
IEWLMRCG IEWLCDLK |
DLDEF
IEWLMSYM |
SYM Processor |
(Chart JD) |
INP270 IEWLMRAT IEWLMTXT I IEWLMADA
Load Module Text and RLD Text Processor TXTBUF Address Assign~ IEWLMENS
Processor | Processor - l ment Processor (Chart KB)
|IEWLMENT
(Chart JC) (Chart JH) (Chart J1) (Chart JJ)| | | (Chart KA) (Charts KC,KD)
IEWMEND RLDOO] |
END Processor RLD Processor RLDBUF I
(Chart JN) (Charts JK, JL) (Chart JM) |
IEWLMINC I IEWLMOUT IEWLMMAP
Intermediate MAP/XREF
Include
Processor Output Processor | _| Processor
(Chart JR) : (Chart LA) (Chart LB)
IEWLCAUT I
Automatic I
Library Call
Processor I
(Charts JS, JT) I
IEWLMSCN l
Control READ 8 l
Statement (Chart JQ)
Scanner PROCENTY I
(Charts JO, JP) (Chart JO) l

Second Pass Processing

IEWLMSCD

GETIDMUL

—

Control Section
Search (Get ID/
Mult)

(Chart MC)

RDTXT/RDRLD

Read From
SYSUTI

(Chart MD)

WRTTXT/WRTCRRLD

Second Pass
Processor

(Charts MA,
MB)

Write To
SYSLMOD

(Chart ME)

RELOCATE

Relocation

Routine
(Charts MF,
MG, MH)

SCDENTAB

ENTAB
Creation

IEWLCPTH

Common Path
Routine

IEWLMFNL

Final Processor

(Chart NA)

Section 3:

Final Processing

FNL

Write TTR List
(In Overlay)

FNL300

Set Up DDS
Directory Entry

FND 301A _

STOW
Member

FNLSCN

FNL 9200

Set Up and
STOW
Aliases

Print Down-
— Graded
Attributes

IEWLMBTP

Print Diagnostic
= Message
Directory

IEWLMMAP

| XREF Processor

IEWLCEDI

Final Cleanup
H Terminate and
Return

SYNAD

L | SYNAD Routine
(Chart NB)

Program Organization

87

Chart HA. Level F Major Divisions

WA AT NN AR

RN AL NN R
* JTEWLMROU HA *

* CONTROL * P W W N e N B
* PROGRAM e mmn— L ENTRY *
* * * POINT *
EEZ A2 2228 S 2lsd

* *
FI I IR N

v
RREARBIHRRE R RRAR
#* TEWLMINT IA %
B T ot et T 3
* INITIAL *
* PROCESSOR *

*

*
FEERREERARRREERRR

INITIAL PROCESSING

v
HRRERCTHEAERERRER
#* TEWLMINP JA *
Lt R
* INPUT *
* PROCESSOR *
* *
e e e

INPUT PROCESSING

v
HRWAD TR RN
#* TEWLMADA KA %
et e e et
* ADDRESS *
* ASSIGNMENT *
* PROCESSOR *
LR e 2L 2

v
e
* JTEWLMOUT LA *
W e Hm e e Y B e I
* INTERMEDIATE ¥
* CUTPUT *
* PROCESSOR *
R e

INTERMEDIATE PROCESSING

v
W RN RE NN R R
* IEWLMSCD MA *
EE F B Bl B S o et
* SECOND *
* PASS *
* PROCESSOR _ *
RS2 222222222222t]

SECOND PASS PROCESSING

v
RGN NN NE
* TEWLMFNL NA %
o o Y W P e W N B
* FINAL *
* PROCESSOR *
* *
PN R

FINAL PROCESSING

I TR
* *
* CONTROL *

PROGRAM
a2 2 T S e 2

Section 3: Program Organization

89

Chart IA. Initial Processor (IEWLMINT)

*i*l*czll*li*il**

PLACE
* STANDARD

*

DDNAMES IN DCBS(
OF DA

SETS
ii&lai*ﬁ***&*i*i}

FROM ROOT SEGMENT (IEWLMROU)
HHTHATH NI KRR

TEWLMINT

IR RRR

* w
* *

v
B Sebal=F hebbebedabubabdiabd
*SAVE REGISTERS *

—12 AND
* PLACE ADDRESS *
* OF APT IN *
* REGISTER 2 *
LR R e T

v
o¥e
c3 *o
¥ *o
«* PARAMETER *. YES
*o LIST
*o PASSED
*eo
*o

NO
.
o*
*

o

I HC Y NN HAR
*

* PLACE PASSED
>* DDNAMES IN
* DCB'S OF ALL

* DATA SETS
LR R e e 2]

* % ok % %k

FROM FINAL PROCESSOR
s
2" “x.
* *
SYSLMOD
DATA SET
OPEN

-
*o

FEERE] HHRRRNRRN -
* * o¥
TEWLMNAM e mm— T
*

L T

*

* *o .

o
¥

* NO

*o

o

*

v
XRF2HERHEEN
* *

OPEN
* SYSLMOD
*

*
*

* *
R FRHNXEK

90

YES

>

v
AR D F XN NI HH
* SAVE DDNAMES
* FOR
* SYSUT1 AND
* SYSLMOD

*
*
*
*
* *
NI IR

v
XRETZHHXNN XN
*
*
*
*

*
*
*
*

OPEN
SYSLIN
SYSPRINT

SYSLMOD

* *
IR NR

v
R F WA RN

* IEWLMOPT *
o P e e W W N
* ATTRIBUTES *
* AND OPTIONS *

* PROCESSOR *
E i e S]

FSTENTRY v
KGN RRNRR
* ALLOCATE *
* INPUT/0UTPUT, *
* LOAD MODULE, *
RLDs TXT *
BUFFERS *

***l}i!*!i*ii**i*

FSTENTRY v
FRHN R T NRIR RN RN
* ALLOCATE *
* ALL *
* PROCESSING *
* TABLES *
* *

*

I IR H

>

SCDENTRY v
iiil*J3iiiin*li**

*CLEAR REOU!RED
* PRUCESS!NG

* TABLES
LR e E e e 2

K ok K K

v
HRHHC TN RN
*
* IEWLMINP

P ST

*
*
*

TO INPUT PROCESSOR

Chart JA. Input Processor (IEWLMINP)

FROM OPEN DURING

FROM INITIAL
PROCESSOR

QD NN
* *
* IEWLMINP *
* *

WXL N RN

R
* *
* B2 *—>
* * <
ETT T I YES
INP10 v oty
HRB2EERRRR B3 * g
* * o® * g
* * * OPEN .
* READ A RECORD * >%e EXIT TAKEN <%
* * *, -
* * *g ¥
E2 22222222 2] *e o
* NO
T
v
INP12 ¥
*q EX T Yok P T T T 2R
W CY NN NN R ¥ *INP270 JC* HRRE
* EOF ON * - 1s *q 3 W P P W N B R N * *
* SYSLIN DCB * *o THIS A LOAD <% >* LOAD #——>% B2 *
* * *. MODULE % * MODULE * * *
NI NN *e ¥ * PROCESSOR * ERRR
e o¥ ER 22T RSS2SR 2]
v
IEWLMEON V INP13 %o
RS RS IR 222 2 2 L2t D2 * g WD 3 W W W RN
* SET o* *. *TEWLMMDI JB* ERER
* AUTOMATIC * % CONTROL *. NO e et it L * *
* LIBRARY CALL * *o STATEMENT o¥%——>% 0BJECT *——>% B2 *
* INDICATOR ON * *e o* * MODULE * * *
* * *e o* PROCESSOR # EERE
I NN NN RR *y oF ER 2222222222222 2]
* YES
v v
NI E] W NN NN W W DWW RN NN
* * *IEWLMSCN JO*
* SET * W Yo W W e e e W W
* OF INPUT * * CONTROL *
* INDICATOR ON * * STATEMENT *
* * * SCANNER *
RS SRR 2SS 2 2 2] RS RS2 R RS2 T S L)
v v
o¥e ke
F1 %, F2 %,
¥ *q ¥ - R R
o* INPUT * NAME *. NO * *
*o RECEIVED %o STATEMENT o%——>% B2 %
*eo - - ¥ * *
*, ¥ *q oW X
Ko o¥ *e ot
* NO * YES
XN E
l— *#NA *
o >* G2 *
FINAL *
PROCESSOR *¥%%
v
NG RN
WG] IR * SET *
* EOF ON * * AUTOMATIC *
* SYSLIB DCB * >|<——% LIBRARY CALL ¥
* * * INDICATOR ON *
2NN * *
ER T2 222222222 23
L2 22
*JA *
* H2* |IEWLMEOD o%.
* * H2 *o EE 22 RS2 L2 s
¥ *o *IEWLMINC JR* *XHR
| v -¥ ANY *o YES E B B B B B B 2 * *
>%¢ MORE INCLUDES o #¥——————D> % INCLUDE * >* B2 *
o o * PROCESSOR * * *
FROM LOAD*. o* * e
MODULE * * 333 I I NN

o o
PROCESSOR * NO

v
¥,
J2 *e

1s e Ny]
* TO

o* *.
«% AUTOMATIC *. YES

*
.
*#.LIBRARY CALL o S¥e ADDRESS *
%« INDICATORS * * ASSIGNMENT *
*e S * RN N RN R
e o
T NO
v
XX H
* *
* B2 * v
* * e EA LA T T T
X *TEWLCAUT JS* haaided
Fm W o e Fm W N R * *
* AUTOMATIC * >* B2 *
* LIBRARY CALL * * *
* PROCESSOR * XK

R T T

Section 3: Program

CONCATENATION

WX AS KRR RN
* *
* DCB EXIT *
* *

L TR

v
WA BS WKW N RN

* IEWL EXIT *
Fm e W W e M N W R

* AND RETURN
R R e e e R 2y

v
N CSH RN NN
* *
* RETURN *
* *

NN NWK
TO OPEN

Organization

91

Chart JB.

FROM INPUT o¥e
PROCESSOR A2 *q NI A TN NN
*’**Al****i**** *q *TEWLMLOG NC*
* - * CONTROL *o4 NO e o e W W e e W W
* TIEWLMMDI *————————)*. STATEMENT o%——————>% CONTINUATION
* *e CONTINUA-o % *EXPCTD BUT NOT *
Y T *#oTION o% * RE! VE *
PO PRI XTI T T ST v
* YES "
®JC *
* G3%
* *
*
INP22 v oo INP150 o¥e
HRXERB2HRHREIIR RN 83 *o 4 *, *****Bs*ilii*lf%*
*_OAD PARAMETER ¥ B o ¥ *
* REGISTERS AND * SYM *. YES " TEST “*. YES LOAD *
* SET IN MODULE * >* o RECORD >#. INDICATOR .i———————~>* GR4 erH BYTE *
* INDICATOR IN * . . o¥ ¥
Pe * . N *o
B3I IR gy oF * g * **********’!*i**l
* NO * NO
***i
L *
>* G3 *
& ***&
o¥e INP140O v
c3 *e
¥ *o * * *IENLMSYM JD*
% ESD *e YES * f e e ¢
. RECORD o*————————>* ESD XNDICATDR * * SAVE *
*q - * * * *
*e o ¥ * * * RECORD *
Ko o
*
v
L2 2 223
*JC *
INP130 INP160 v * G3*
EERREDL HEHXRHHLXN D3 D4 * ®
* * ¥ *o *IEWLMSYM JD* *IEWLMESD JE* *
* CLEAR * * *o YES L e o S R e e e e e
*¥TEXT INDICATOR * SYM RECORDS o ¥ > ¥* SYM * * ESD
* * *¢RECEIVED % * PURGE * * PROCESSOR *
* * *. ok * * * *
36T IEI NN Ko o v
NO RN
*JC *
* G3%
* *
L
v v v
HIHIHIHE] T ENERH R E Py HRHIRETHE R RN R
IEWLMRAT JH * * * *
B T N * SET * * CLEAR *
* RLD AND TXT * ‘————%TEXT INDICATOR *<: * SYM INDICATOR *
* PROCESSOR * * * * *
* * * * * *
IR HINRHHNXR R T P T]
RN
*JC *
>%* G3 *
* *
LR L2
¥ ko INP70 ¥ INP9O o*e
F1 *o F2 - *q !i&**FA***&****il FS *o
o* PO * -
END *o YES SY *. [s] ENTRY YES * HITH CDNTRDL * o ¥ GR4 *o NO
D, RECORD)*RECEIVED INDI—.*————————)*. POINT *SECTION LENGTH *—————*——)*. CONTAINS ¥
- . #oCATOR ON o% A *.INDICATOR.* *FROM END RECORD#* A #, LENGTH %
o o¥ A o ‘ e ON o% * * *e o
Ee oF %o o ®e ¥ v R ERER IR RN %o ok
* NO * YES * NO HXEE * YES
* * % E
* F4 ®
* * <—% F4 *
XRRE
i ' v NO* %%
v v ¥ INP80O ke
HEEHEG]HEHEXERERR HHEHEG2EERHIKR RN R G3 *q G4 *o R R GE R R RN
IEWLMLOG NC3# *IEHLMSYM JD* ¥ . ¥ * SET *
Bebutoingabohmatin oo KR KXk «* ABSOLUTE ¥, NO «% SYMBOLIC %o * NO LENGTH *
*UNRECOGNIZABLE * * SYM *. *o NTI o ¥ Do ENTRY ¥ IVE *
* INPUT-NOT * * PURGE * *e POINT o% %o POINT % ’ !NDICAYOR IN *
* OBJECT MODULE * - . . . Ae *
P P e *, o %o ok *i***&*i&!***l***
* YES * YES
<
v
XREER
*JC *
* G3* v v
* * Ee 2T 2 TET IS TR T RS WX REHG HS:
* * * * * *ITEWLMEND JIN*
* SET ABSOLUTE #* * SET SYMBOLIC * F e YN Rm R RN R
* ENTRY POINT % * ENTRY POINT #* * END *
* INDICATOR IN * * INDICATOR IN * * PROCESSOR *
* Ae Pe To * * Ae Pe Ta * * *

92

Object Module Processor (IEWLMMDI)

v
WREEE P THERER N AR

v
*****JQ**********

v
L2 e N R e e s

* STORE * *IENLNRAT JH¥*
* ASSEMBLED * * o — W e
* ADDRESS_IN * *POINT !ND!CATDR‘ * END CARD *
* Ae Pe Te * IN Ae Pe Te * * PURGE *
* * * * *
v v
223 HRXRR
* * *JC *
* F4a * v * G3%
* * ARG R RN * %
XN * * *
* STORE *
* SYMBOL IN %———J
* Ae Pe Te *
*

*
EERERERRERERRERRRR

Chart JC. Load Module Processor

FROM INPUT
PROCESSOR

FHERA L HHEHIR NN
*

*

* INP270 *

* *

IR RN
I
v

INP270 ¥y oo
81 *o B2 .
¥ *o .ﬂ 15 *q
*. YES *o

¥
*o SYM RECORD

(INP270)

HEREXBIHE R EXERRR
IEVLMSYM JO
*— .

e sl INDICATOR nN o >* *
. ok - * SYM PURGE *
*g *g .* *
Xy o¥ ERAEREERRRRRERRRR
* NO
L2 2 2] X
L * *
>* G3 * >* G3 *
* * * *
v R *RER
INP281 o¥q
c1 *, c2 * c3 XXXRXCSHAEHENR LR
¥ *o * * *LOAD NUMBER OF * * LOAD * *LOAD ADDRESS DF*
¥ * SET * * BYTES OF CESD * * ESD 1D OF 1ST * CESD
. ESD RECORD > ESD INDICATOR #—————>% INFORMATION * >* ENTRY INTO i——-—————>* INFORMATION *
*o o * ON * * INTO GENERAL * * GENERAL * * INTO GENERAL *
*o ¥ * * * REGISTER 4 * * REGISTER 5 * * REGISTER 6
%, ¥ *l*i**{i{liil!lii
* NO
v
INP290 ¥ v
*g D2 D3 D4 ERRERDSHEFE R RE XXX
¥ *o *LOAD NUMBER OF % * LOAD STARTING * *IEWLMRAT JH* *TEWLMESD JE*
o¥ YES * BYTES OF RLD * *ADDRESS OF RLD * *—%—%—%—%— E—N— k% AR AR R E— A%
4 RLD RECORD -———-————)* INFORMATION * >% INFORMATION * >* PROCESS * * PROCESS *
*o - INTO GENERAL * * INTO GENERAL * RL = * ESD *
*e ¥ * REGISTER 4 * * REGISTER 6 * * INFORMATION * #* INFORMATION #*
g o EEREEXERAXEERERER
* NO
XXX
* *
| >* G3 *
* *
v EEER
o¥g
El * g E3 E4 HEEREXESHFFXERE XS
o *o * LOAD ASSIGNED #* * LOAD * * * *TEWLMRAT JH#*
¥ *o YES ADD! * * BYTE COUNT OF * * LOAD ID INTO * R R R R R R W
o CCW/RLD -————————)* FOLLOWING TXT * >* TXT INTO am— GENERAL * >* PROCESS *
*o RECORD * * INTO GENERAL * * GENERAL * * REGISTER S * * TEXT *
. . * REGISTER 3 * * REGISTER 4 % * * * INFORMATION *
e oF FHERFXEXRERREEERER
* NO
HER R
* *
* F3
*
. E2223
INP30S
¥ x, EREE -
¥ *eo YES ¥ * YES <% *o
*¢ RLD RECORD o¥———>% F3 * #*o LAST RECORD %<
q o * * *, o*
*g ¥ Ea 2 2] *e ¥
g ¥ g ¥
* NO * NO
| EXXR
Jc % I
* G3 *—>
v ERER v
INP320 ¥, INP110 o¥a ¥
G1 . G3 *o G4 *o
¥ *g R - *g ¥ *q XXX
o *eo YES * * «* IS RETURN *, YES «* IS ESD *o NO * *
*e SCATTER o ¥——>% G3 * *o. FROM ESD o ¥ D*e WRITE o ¥—D>% KS *
*o RECORD o% * * *o PROCESSOR. * *o INDICATORS* * *
- ¥ R x, o* *. ON % 222
*e oF *, ¥ He oF
* NO * NO ? YES
ERER 1
v * * v
o¥e * KS * oo
H1 *, 2 WHD AR ARRR * * Ha *,
.* *o *IEWLMEND JN* RER % IS *o EERX
o YES V e Y ——l—i—*—* o ¥ TEST NO * *
*- LAST RECORD o ¥ > % *¥oINDICATOR ON o¥#——>% K5 *
* PRDCESSOR * v *q - * *
i. .I * * #XEXXTO INPUT *, o® E2 223
*e ¥ EREEERERERERE AR *JA *PROCESSOR *. o
* NO * H2* * YES
] * ¥
*
v
v INP111 ¥
st IS et s T T2 XY HRREEJORERRRERNRR EEEERYITHEEEEREERE Ja *, HERRE JSH AR X R EER
TEWLMLOG NC *TEWLMSYM JO* * * *o *IEHLMSYM JD*
*—— R * SET * NO *eo YES ittt ekt il et g
* UNRECONIZABLE * SAVE *< *#SYM RECEIVE BIT*< ' !NPUT A LOAD o ¥———D>% *
* INPUT LOAD * * ESD * * * *q MGDULE ¥ * SYM PURGE *
* MODULE * * CARD * * * o® * *
v l'. ¥ FRRXERFXXEXXERRERE
R *
* * XXX
* G3 * * *
* * v * KS *->
R HXXE * *
* * EEEE
* KS *
* *
EE 22]

v
FERERKSERF X RERR
* *
* RETURN *
* *
EA 2222222 2 22222

TO INPUT
PROCESSOR

Section 3:

Program Organization 93

Chart JD.

94

Sym Processor (IEWLMSYM)

FROM LOAD OR
OBJECT MODULE
PROCESSOR
AN XN R
*

*
* IEWLMSYM *
* *

33636 3 3 I 36 3 I I XK

v
SYM00100 <%,
B2 -

o ¥ *q

NO <% *q
T *eOBJECT MODULE.*
* *

v
SYM00200 <%,
HXHHHC] HHHEENEREN c2 *o
* * ok *q
«* IS RLD *o NO
*#oBUFFER TO BE %
*o PURGED o
*

* INITIALIZE
*FOR WRITE FROM
RLD BUFFER

LE R

e %
* YES

v
HXEREDDHERREEEE XX
* *

* *
36 3 3363 I 36 3 I I I3 I X H N

#INITIALIZE FOR %
*WRITE FROM OBJe¥
MODULE BUFFER *

* *
3636 3 36 3 36 3 I 36 3 3 I I XN

>
SYM00300 \
93 IR E D I NN HN

* *
WRITE AND CHECK
* *

LR 2 2 2 2 22 22 22 2

SYM00900
HERRHCIHRRRRREH AR
* *

* MOVE SYM/ESD *
>%* RECORD TO RLD *
* BUFFER *

* *
333 I I I I I I XN

\
93363 D 3 XX XH
*

*
* *
INCREMENT COUNT
* *
* *

SYM00500
IR 2 XN
* *
* RETURN *
* *

9NN
TO LOAD OR
OBJECT MODULE
PROCESSOR

Chart JE.

FROM INPUT
PROCESSOR

HEREALHEERERENR
* *

* IEWLMESD *
* *

HERERERRRERERER

v
R abototiol: 2 Subafubatebulioobuled
*INITIALIZE SAVE¥®
* ESDIDs NO. OF *
*ESD ITEMS,
* TYPE, ADDR OF *
* CESD AND RNT %
HEEAEREERRRERREER

EERE

*JE *

* C1 *—>

* *

XEEE v
ESD1AO o¥a

*o
¥ 1s *
«* ESD TYPE
*o PSEU

-
*o. NO

ESD Processor (IEWLMESD)

HERNRBIHRRRERNRRR
* *
* SET *
*SEGMENT NUMBER

* TO ONE *

*
HERBEREREREERR RSN

YES
oo
ERERRCO2HEREIERRNR c3 *
*

*
#INSERT CURRENT #*

>#*SEGMENT NUMBER >*,LIBRARY CALL o¥*

o 1s *q
«* AUTOMATIC #*. NO

ESD1A o*
4 *o HRREFCSEREREXERXN
«*IS ESD %*. *
v ¥ TYPE *o YES * ZERO BYTES *
>%*, EXTERNAL o ¥o———>%10, 11, AND 12 *
*oREFERENCE o ¥ * OF ESD ITEM *

*o(ER) o%
*g o®

* NO

o

* *
HHFERN NI R NN KRR

v
ERRRRESH RN EXRXHRR
* *

DO .
*.REGISTER o% *IN ESD (IN BYTE® *o INDICATOR. *
*.(PR) o% * 1 * *o ON o%
g ¥ R 222222222222 s 2] e ¥
* YES *
<
v
ESD2 ¥
1 *g WD W RN XN
o* *. *IEWLMRCG *
¥ ANY *4 YES P W e Y B Y Y B
REPLACE/CHANGE o ¥ > SCAN REPLACE/ *
*. SYMBOLS <% * CHANGE CHAIN *
*o ¥ * *
*, o E2 22222222222 22 223
* NO
| <
v
ESD3 ¥
*q FR W EED HH W N RN
*e *NXTLINE *
¥ IS ESD *, YES W Yo W W P W e W W
*oTYPE PRIVATE o%——————>% SET POINTER *——y
.CODE (PC)e¥ * TO NEXT LINE #* v
e o OF CESD * XREER
e ¥ RS 22222 22222222223 *JF *
* * B3*
l * *
’ *
|
v
¥,
F1 *e
* * g
¥ 1s *o YES
*.ESD TYPE NULL ¢ ¥—mq
*. o v
*g - ¥ R 2222
¥ o¥ *JF *
NO * E2%
] * *
*
v
o¥e
*g HERERCG2HR TR XRRR
=1 *

+*IS ESD *.
«*TYPE LABEL *. YES
*. DEFINITION .
*e (LD o
* o ¥
e ¥

*CHANGE TYPE TO *
>% LR INDICATE #*
*THAT IT WAS AN *
* *

HREREFENHERENRRRRN

ESD4
HREHEH] X HHR R
* *

* SEARCH THE *
* CESD FOR A *
:MATCHING SYMBOL:
HEEEAREREERERRRRR

EEER

*JE *
* g1 *=>
* *

*REE v 1 no
ESDS o, ESD6 ¥
*e J2 *e
¥ . o ¥ *o
o* IS THIS *. NO «* DOES ESD
*e THE END OF o¥——————>%, MATCH CESD
*¢THE CESD <% *o SYMBOL %
*o ¥ . ¥
*e o¥ Ko oF
* YES * YES
v v
*%***¥NON-RESOLUTION * %% ¥ ¥RESOLUTION
*JF *PROCESSING *JG *PROCESSING
* Al* * Al
* % * *®
* *

Section 3:

* ZERO *
* THE _SUBTYPE *
* FIELD *
* *
E2 2222222222222 22

Program Organization

95

Chart JF. ESD Processor (IEWLMESD)

EE 2 2 2 LR 2 223 L2 22 2]
*JF * *JF * *JF *
* AL * A2x * A3
* * * * * *
* * *
v
ESD23 v ESD23A ot v
{*I{iAlilIl*%i**i WA TN
FREEL IN o 1 . *LABEL * S
i-*—i-l—!-{—*—i—* «* ESD TYPE #*, YES W e W e e e W N B *
* SELECT NEXT %——— D%, LABEL o >% RENUMBER ID *————>l E2 *
* AVAILABLE * *REFERENCE « % * FIELD OF
* LINE IN CESD * *o(LR) * LABEL ITEM * !*li
R 22222 22222 2222 2] *gy ¥ ER 2222222222 2222 23
*
No L 22
I *JF *
* B3 #—
| * o * |
v HRER v
¥ ESD21 *
B2 *q *o LR S Y S e e
o* IS %, o¥* IS X, * INDICATE *
+*ESD _TYPE A *. YES «* AUTOMATIC *. YES * SD IS FROM *
*. SECTION DE- o% >#,LIBRARY CALL o#——————>% A LIBRARY _ *
*oFINITION o% *.INDICATOR* *(AUTOLIB INPUT)*
HXRR SD ¥ *q ON ¥ * *
* * g ¥ e ¥ RS 2 22 222222 st
* D2 * * NO * NO
* *
EE 2 2]
A
v
¥ ESD22 v
W RN C] W NI N NN NN c2 * g RN NC TN X RE R
* MARK conuon * * * * INDICATE *
1S *o NO *THAT ESD IS SD *
'DELETE !TEM AND*(TYP counon . * OR_PC-SET ESD *
* SET COMMON *o o l *WRITE INDICATOR¥
* INDICATOR . *o o * N APT *
NI NN *. ¥ \"2 RS 222 S S 222222 sy
* R
L2 2] * * XR
*JF * * E1 ® *JF *
* D2 * * * % D3 *—>
* * | LR 22 *
L et 2 X ER \'2
v o¥e o¥o
R HRD D NN E RN D3 *g Da *g
*ENTER * o* . o¥ IS *, *x R
Eo R kRN AR NO % *o YES % LENGTH ID %o YES *
>* ENTER THE #*< *o SD_LENGTH o Ske SAVED e#———D>% D2 *
* ITEM IN THE * *o 0 . *o INDICATOR.* * *
LA 2 2 * ESD * *g P e« ON - R
* * B3I He o Hy o
* E1 * * * NO
* * R
HRRE *JF *
, * E2 *—>
*
v HEER
o¥e v
E1l *g RERAREDRERERRRERR ERRERREL AR RRRRRRER
ok *. *RENUMBER * *SAVE NO LENGTH *

o N e W W N N W
TRANSLATE ESDID#

o LD *. NO
#*.INDICATOR ON o
*e ¥

E T T e S e

ESD29

{!il§F3lililllill

* LINE ADDRESS #*
* AND SET 1D

*
SAVED INDICATOR
* *
R 222222222 222222
E2 22
* *
>% D2 *
* *
EE 2 2]
{III"FA‘.!‘II{!*I

-l—{—&—l——l-*—i
BUILD ENTRY *
* FOR CESD LINE *
* IN DELINK TBL *
R e s s e L

HHRR RGN R NNR
* *

- S CLEAR * *TEWLCDLK
e* COMMON *o YES MMO! *
.INDICATOR ON % > INDICATOR * >
*o . * PREPARE FOR *
*. o * DELINKING *
Wy o RS2 22 s 22 s
* NO
>
v
ESD30 ¥ ESD30A0
*g
o ¥ -
«* ANY MORE *. YES

*o

INPUT ESD .
*e ITEMS o%
*o -

e oF
* NO

\4
HRREHD R A RERR
*

* *

RETURN

s 222 222222 22

96

* GO TO NEXT *
>*ESD ITEM —SAVE *———
* ESD TYPE *

v
Ea 2223
#JE *
* C1%

* *

*

* *
HEEERRERERRRRRRR

Chart JG.

ESD Processor (IEWLMESD)

Relbobidd *
*JG * * *
* AL® *IF
* * * E2%
* RN
RESOLUTION PROCESSING A
YES
ESD6A ot ESD12A ot o*e
FREREAL HRREEREERE A2 *, * FEBERALERERRRRRRR S
* * .ﬂs (ESD *. *o * o* 1
* SAVE TYPE * o *. NO o* ER #*. YES #SUBTYPE DELETE * CES|
* OF uncums * >*e DELE E/ o >*e UNMARK D
* CESD * *o. REPLACE *o (E
* * . . ot * REPLACE *
NI *e o¥ “ke o EEERRRRERERERRERR . o
*XRH * YES * NO *
* * ry
* A2 *
* * * B3 *->
Prees * *
v ERRE v
ko ESD17A o¥e v
i&"{a].ll'l.hl!! B2 *, *, BS*#
*IDCESD «*IS CESD%. +*1S CESD*. * IEWLCDCN * * *
bobd 05t «* TYP - o* TYPE A *. YES B e * MARK *
*DETERMINE LINE * *. DELETE/ *. LIBRARY * >* REMO * * CESD TYPE *
#*NO. OF CURRENT # #*o REPLACE o% *o MEMBER _o% *LIBRARY MEHBER . * MATCHED *
LINE * *. o *o * * FROM CH, * *
HREREEERREERRRRRR Hy oF v e o
* YES wxnn * NO
* » ERRR
* FS * L *IF *
» - S* A2 * v v
ERER * * ERE RN EREEE
v P *JF * *JF *
. ok oo * A2% * E2%
c1 c2 *. C3 %o * * *
o* *o o* ox P
o *. YES o* “%. YES 1S « NO *
. csso YVPE . * CESD TYPE o%—————>%, ESD TYPE o%——D>% K4 *
o* *, DELETE % ELETE *
e . o . . .
. ox" v . o® e o
NO X RRR * NO * YES
#JE * |
* g1%
* * v M
* e ExEER
*gF *
v * Al¥
* * * HERREDLERERRRRERR ‘.lllos."l.l‘l'i
e * * * IEWLCPTH
1S ESD | IS CESD GO * UPDATE LENGTH * A il LN
A PR A PR T0 * OF CESD ENTRY #—————>% F IND *
TO GREATER * * COMMON PATH #*
* LENGTH * * SEGMENT *
YES NO JEJ1 A
NO YES JEJ1
NO NO JGJ1
YES YES CONTINUE v
ErERR
NO *CF *
| o - * E2%
E3 *q E4 *.(TYPE IS * *
o* *o o * rxxn *
YES o% 1s *. NO 1s *. 'YES *
—————*.CESD TYPE PC .f-———>a.czso TYPE LR o%——>% J4 *
v *o N . . * *
EREXE *. o* *. o* Exxn
*JE * L *o ok
* H1