
File No. S360-36 
GY28-660S-4 

Program Logic 

IBM System/360 Operating System 

Introduction to Control Program Logic 

PrDgram Number 360S-CI-505 
360S-DM-S08 

This pUblication describes the components of the 
primary control program (PCP) configuration of IBM 
Systern/360 Operating System and indicates the program 
logic manuals that describe these components. It con­
tains general descriptions of the organization of the 
control program in both main and auxiliary storage, the 
flow of program control during a job step, the flow of 
control for supervisor operation, and the processing 
for input/output operations. The appendix contains the 
names, numbers, and macro instructions associated with 
the IBM-supplied SVC routines. 

Program Logic Manuals are intended for use by IBM 
customer engineers involved in program maintenance, and 
by system programmers involved in altering the program 
design. Program logic information is not necessary for 
program operation and use; therefore, distribution of 
this manual is limited to persons with program main­
tenance or modification responsibilities. 



Preface 

This publication is an introduction to 
the logic of the primary control program 
and to the program logic manuals t~t~ 
describe its components. The first section 
of this publicati9n discusses the contents 
of the different areas of main storage. 
The second section describes the stages of 
execution of a program in the operating 
system. The third section discusses how 
CPU control is passed between the control 
program and a processing program. The last 
section describes the programs provided to 
move data between main and auxiliary 
storage. 

The glossary defines many of the terms 
used in discussing the control program, and 
the appendix lists all the IBM-supplied SVC 
routines. The figures that trace the flow 

Fifth Edition (November, 1968) 

of CPU control for various operations are 
exameles of typical uses of control program 
f~c~lit±eS. 

Before using this publication. the read­
er should be familiar with the contents of: 

IBM System/360 Operating System: Intro­
duction. Form C28-6534 

IBM System/360 Operating System: Con­
cepts and Facilities, Form C28-6535 

IBM System/360: Principles of Opera­
tion, Form A22-6821 

This is a major rev~s~on of, and obsoletes, Y28-6605-2 and -3 
and Technical Newsletters Y2B-21BO, Y28-2203, Y28-2222, 
Y2B-2261, and Y28-2295. Discussions of checkpoint/restart 
processing and IBM 2361 Core Storage support have been added. 
Changes to the text, and small changes to illustrations, are 
indicated by a vertical line to the left of the change; 
changed or added illustrations are denoted by the symbol • to 
the left of the caption. 

This edition applies to release 17 of IBM System/360 
Operating System and to all subsequent releases until other­
wise indicated in new editions or Technical Newsletters. 
Changes are continually made to the specifications herein; 
before using this publication in connection with the opera­
tion of IBM systems, consult the latest IBM System/360 SRL 
Newsletter, Form N20-0360, for the editions that are 
applicable and current. 

Requests for copies of IBM publications should be made to 
your IBM representative or to the IBM branch office serving 
your locality. 

A form for readers' comments is provided at the back of 
this publication. If the form has been removed, comments may 
be addressed to IBM Corporation, Programming Systems Publica­
tions, Department D58, PO Box 390, Poughkeepsie, N. Y. 12602 

© Copyright International Business Machines Corporation 1966,1967,1968 



INTRODUCTION • • • • • • • • • • 
Functions of the Control Program 

Job Management Routines 
Task Management Routines • • • 
Data Management Routines '. • • • • 

ORGANIZATION OF THE CONTROL PROGRAM 
Resident Portion of the Control Program 
Nonresident Portion of the Control 
Program • • • • • 

Transient Areas 
Dynamic Area 

PROGRAM FLOW . 
SYSTEM CONTROL 
Control Flow to the 

SVC Interruptions 
Control . . . 

. . . . . · 
· Program · . . . . . · 

· 
· · · 

5 
5 
5 
5 
5 

7 
7 

8 
8 
8 

10 

17 
17 
17 

Contents 

other Interruptions ••••••••• 18 
Control Flow to a processing Program 20 

Returning Control to a Processing 
Program • • • • • • • • • • • • • 20 
Supervisor-Assisted Linkages • •• 20 

INPUT/OUTPUT CONTROL • • • • • • • • • • 22 
Processing Input/Output Operations • • • 22 

Opening a Data Control Block • • • • • 23 
Executing an Input/Output Operation • 24 

Starting an Input/Output Operation • 24 
Terminating an Input/Output 
Operation • • • • • • •• • 25 

GLOSSARY . . . . . . . · 27 

APPENDIX A: SVC ROUTINES . · 29 

INDEX . . . . . . . . . . . · 33 



Illustrations 

Figures 

Figure 1. Loading of the Control 
Program •••••••••••• 7 
Figure 2. Divisions of Main Storage 
for the Operating system ••••••• 8 
Figure 3. Example of CPU Control 
Flow for a Job Processing Cycle (Part 
1 of 3) •••••••••••••••• 11 
Figure 4. Example of CPU Control 
Flow for the Checkpoint Function 14 
Figure 5. Example of CPU Control 
Flow When a Job is Restarted (Part 1 
of 2) ••••••••••••••••• 15 

Figure 6. Example of CPU Control 
Flow for an SVC Interruption • 18 
Figure 7. Example of CPU Control 
Flow for an Asynchronous Interruption • 19 
Figure 8. Example of CPU Control 
Flow for a Supervisor-Assisted Linkage 21 
Figure 9. Example of CPU Control 
Flow When an OPEN Macro Instruction Is 
Issued (Part 1 of 2) ••••••••• 23 
Figure 10. Example of CPU Control 
Flow for an I/O operation (Part 1 of 
2) •••••••••••••••••• 25 



The control program is a collection of 
supervisory and service routines that 
govern System/360 Operating System. These 
routines have exclusive control over all 
input/output and machine-oriented func­
tions. The control program schedules work, 
allocates system resources, and performs 
input/output (I/O) operations. 

The operation of the control program is 
described in a ~eries of program logic 
manuals, each of which describes a func­
tional area within the control program. 

This publication briefly discusses the 
processing performed by the components of 
the primary control program and indicates 
the program logic manuals in which more 
detailed information can be found. The 
publication is divided into four sections: 

• Organization of the control program. 
• Program flow. 
• System control. 
• Input/output control. 

The first section describes the organi­
zation of the control program in main and 
auxiliary storage; the second, the control 
program processing required to execute a 
job step; the third, some of the supervisor 
operations during the execution of a job 
step; and the last, the control program 
operations required to perform I/O 
operations. 

Functions of the Control Program 

Control program routines are grouped into 
three functional areas: 

• Job management routines. 
• Task management routines. 
• Data management routines. 

JOB MANAGEMENT ROUTINES 

Job management routines provide communica­
tion between the user and the operating 
system by: 

• Analyzing the input job stream and 
collecting the information needed to 
prepare the job for execution. 

• Analyzing operator commands, and trans­
mitting messages from a program to the 
operator. 

Introduction 

There are three major job management 
routines: 

• Master scheduler, which analyzes com­
mands from the console and transmits 
messages to the operator. 

• Reader/interpreter, which reads the 
input job stream and constructs control 
blocks and tables from information in 
the control statements. 

• Initiator/terminator, which collects 
the information and resources needed to 
execute a job step and performs the 
operations required to terminate a job 
step. 

The operation of these routines is de­
scribed in the publication IBM System/360 
Operating System: Job Management, Program 
Logic Manual, Form Y28-6613. 

TASK MANAGEMENT ROUTINES 

Task management routines monitor and con­
trol the entire operating system, and are 
used throughout the operation of both the 
control program and processing programs. 

There are six functions performed by 
these routines: 

• Interruption handling. 
• Task supervision. 
• Main storage supervision. 
• Contents supervision (and program 

fetch). 
• Overlay supervision. 
• Time supervision. 

The task management routines are collec­
tively referred to as the "supervisor." A 
description of these routines is given in 
the publication IBM System/360 Operating 
System: Fixed-Task Supervisor, Program 
Logic Manual, Form Y28-6612. 

DATA MANAGEMENT ROUTINES 

Data management routines control all the 
operations associated with input/output 
devices: allocating of space on volumes, 
channel scheduling, storing, naming, and 
cataloging of data sets, moving of data 
between main and auxiliary storage and 
handling errors that occur during I/O 
operations. Data management routines are 
used by both processing programs and con­
trol program routines that require data 

Introduction 5 



movement. Processing programs use data 
management routines primarily to read and 
write data. The control program uses data 
management routines not only to read and 
write required data, but also to locate 
input data sets and to reserve auxiliary 
storage space for output data sets of the 
processing programs. 

There are five categories of data man­
agement routines: 

• Input/output (I/O) supervisor, which 
performs I/O operations and processes 
I/O interruptions. 

• Access methods, which communicate with 
the I/O supervisor. 

• Catalog management, which maintains the 
catalog and locates data sets on auxil­
iary storage. 

• Direct access device space management 
(DADSM), which allocates auxiliary 
storage space. 

• Open/Close/End-of-volume, which per­
forms required initialization for I/O 
operations and handles end-of-volume 
conditions. 

The operation of these routines is de­
scribed in the following publications: 

6 

IBM System/360 Operating system: Input/ 
output supervisor, Program Logic Manual, 
Form Y28-6616 

IBM System/360 Operating System: 
seguential Access Methods, Program Logic 
Manual, Form Y28-6604 

IBM System/360 Operating system: In­
dexed seguential Access Methods, Program 
Logic Manual, Form Y28-6618 

IBM System/360 Operating System: Basic 
Direct Access Method, Program Logic 
Manual, Form Y28-6617 

IBM System/360 Operating System: Graph­
ics Access Method, Program Logic Manual, 
Form Y27-7113 

IBM System/360 operating system: Cata­
log Management, Program Logic Manual, 
Form Y28-6606 

IBM System/360 Operating system: Direct 
Access Device Space Management, Program 
Logic Manual, Form Y28-66,07 

IBM System/360 Operating System: Input/ 
output Support (OPEN/CLOSE/EOV), Program 
Logic Manual, Form Y28-6609 



Organization of the Control Program 

Different portions of the control program 
operate from different areas of main 
storage,. Main storage is divided into two 
areas: the fixed area and the dynamic (or 
program) area. 

The fixed area of main storage is the 
lower portion of main storage; its size is 
determined by the control program config­
uration. The fixed area contains those 
control program routines that perform a 
system function during the execution of a 
processing program. 

The dynamic area is the upper portion of 
main storage. It is occupied by a proces­
sing program, or control program routines 
that either prepare job steps for execution 
(i.e., job management routines), or handle 
data for a processing program (i.e., the 
access methods) '. 

On auxiliary storage, the control pro­
gram resides in three partitioned data sets 
that are created when the operating system 
is generated. These data sets are: 

• The NUCLEUS partitioned data set (SYS1. 
NUCLEUS) which contains the resident 
portion of the control program and the 
nucleus initialization program. 

• The SVCLIB partitioned data set (SYS1. 
SVCLIB) which contains the nonresident 
SVC routines, nonresident error handl­
ing routines and the access method 
routines. 

Main Storage 

• The LINKLIB partitioned data set (SYS1. 
LINKLIB) which contains the other non­
resident control program routines and 
the IBM-supplied processing 'programs. 

Figure 1 shows the main storage areas 
into which the routines from each parti­
tioned data set are loaded. 

Resident Portion of the Control Program 

The resident portion of the control program 
(the nucleus) resides in the NUCLEUS parti­
tioned data set. This portion of the con­
trol program is made up of those routines, 
control blocks, and tables that are brought 
into main storage at initial-program­
loading (IPL) time and that are never over­
laid by another part of the operating sys­
tem. The nucleus is loaded into the fixed 
area of main storage. 

The resident task management routines 
are: all of the routines that perform 
interruption handling, main storage super­
vision, and time supervision; and some of 
the routines that perform task supervision, 
contents supervision, and overlay supervi­
sion. These routines are described in IBM 
System/360 Operating System: Fixed-Tas~ 
Supervisor, Program Logic Manual. 

The only resident job management routine 
is that portion of the master scheduler 
that receives commands from the oper'ator. 
This routine is described in IBM System/360 
Operating System: Job Management, Program 
Logic Manual. 

~ystem Residence Volume(SYSRES) 

Dynamic Area Access Method Routines 

Nonresident Control p'rogram Routines -----.1......1 

I/O Supervisor 
Transient Area .......... ----.-------

SVC Transient Area 

Fixed Area 

or Processing Program 

I/O Error Handling Routines 

Nonresident SVC Routines 

Resident Portion of 
the Control Program 

Figure 1. Loading of the Control Program 

Organization of the Control Program 7 



The resident data management routines 
are the I/O supervisor and the BLDL rou­
tine. These routines are described in IBM 
System/360 Operating system: Input/output 
Supervisor, Program Logic Manual and IBM 
System/360 Operating System: Seguential 
Access Methods, Program Logic Manual. 

The user may also select access method 
modules to be made resident. These modules 
are referred to as the resident access 
method (RAM). They are loaded during IPL 
rather than during open processing. RAM 
modules reside in the fixed area adjacent 
to the higher end of the nucleus. 

SVC routines and modules of SVC routines 
that are normally nonresident (i.e., type 3 
and 4 SVC routines) can be made part of the 
resident portion of the control program. 
When the system is generated, the user spe­
cifies that he wants nonresident SVC rou­
tines to be made resident. When IPL is 
performed, he specifies which SVC routines 
he wants resident and the nucleus initiali­
zation program loads them into the fixed 
area adjacent to the RAM modules, or to the 
nucleus if there are no RAM modules. 

The test translator (TESTRAN) has an SVC 
routine in the nucleus. This routine pro­
vides a linkage to nonresident TESTRAN rou­
tines. The operation of TESTRAN is de­
scribed in IBM System/360 Operating system: 
TESTRAN, Program Logic Manual, Form 
Y28-6611. 

In systems that support graphic devices, 
the graphics access method has an SVC rou­
tine and a table in the nucleus. Both are 
described in IBM System/360 Operating Sys­
tem: Graphics Access Method, Program Logic 
Manual. 

Nonresident Portion of the 
Control Program 

The nonresident portion of the control pro­
gram is made up of those routines that are 
loaded into main storage as they are 
needed, and can be overlaid after their 
completion. The nonresident routines oper­
ate from the dynamic area and from two sec­
tions of the fixed area called transient 
areas. 

TRANSIENT AREAS 

The transient areas are two blocks of main 
storage defined in the nucleus and embedded 
in the fixed area. The first, the SVC 
transient area, is reserved for nonresident 
SVC routines. The second, the I/O supervi­
sor transient area, is used by nonresident 

B 

I/O error handling routines that are 
brought in by the I/O supervisor. Each 
transient area contains only one routine at 
a time. When a nonresident SVC or error 
handling routine is required, it is read 
into the appropriate transient area. All 
routines read into the transient areas 
reside in SYS1.SVCLIB. 

DYNAMIC AREA 

The dynamic or program area is all main 
storage that is not part of the fixed area. 
It is used for all processing programs as 
well as for the access method routines and 
the nonresident job management routines of 
the control program. Processing programs 
are brought from either SYS1.LINKLIB, or a 
user-specified partitioned data set. 
Access method routines are brought in from 
SYS1.SVCLIB. Job management routines are 
brought in from SYS1.LINKLIB. When the 
control program needs main storage to build 
control blocks or for a work area, it 
obtains this space from the dynamic area. 

The dynamic area is subdivided as shown 
in Figure 2. "Job management routines, pro­
cessing programs, and routines brought into 
storage via a LINK, ATTACH, or XCTL macro 
instruction are loaded into the lowest 
available portion of the dynamic area. The 
highest portion of the dynamic area is 
occupied by a table (the task input/output 
table) built by a job management routine. 
This table is used by data management rou­
tines and contains information about DD 
statements. It remains in storage for the 
whole job step. Access method routines and 
routines brought into storage via a LOAD 
macro instruction are placed in the highest 
available locations in the dynamic area. 

Task Input/Out ut Table 

Access Method Routines and Routines 
Brought in via a LOAD Macro-Instruction 

Processing Program or Job Management Routine 

Dynamic 
(Program) 

Area 

I/O Supervisor } 

L. 

__________ Tr_a_ns_ie_n_t _A_re_a ___ ---l Fixed Area Isvc Transient Areal 

Figure 2. uivisions of Main Storage for 
the Operating System 



.--

The dynam~c area may be expanded by 
including IBM 2361 Core Storage in the sys­
tem. Main storaqe hierarchy support for 
IBM 2361 Models 1 and 2 permits selective 
access to the processor storage (hierarchy 
0) or IBM 2361 (hierarchy 1) portions of 
main storage. Extensions are made to the 

various assembler languaqe macro instruc­
tions to permit specification of either 
hierarchy as desired. If the system does 
not include IBM 2361 Core Storage, requests 
for storage within hierarchy 1 are obtained 
from hierarchy o. 

organization of the Control Program 9 



Program Flow 

The stages to execution of a program under 
System/360 Operating System are: 

O. Loading the nucleus into main storage 
(IPL). 

1. Reading control statements. 

2. Initiating a job step. 

3. Executing a job step. 

4. Terminating a job step. 

The operating system is given control of 
the computer when the control program 
nucleus is loaded. Thereafter, jobs may be 
processed continuously without reloading 
the nucleus. 

When the user introduces a job into the 
input stream, the initial processing ~ 
required to prepare his job for execution 
is performed by jOb management routines. 
Control statements for a complete job are 
read during stage 1. (When a user data set 
is included in the input stream, only con­
trol cards for job steps preceding this 
data set are read during stage 1.) 

stage 2 is the processing required to 
initiate the execution of a user"s job 
step. Stage 3 occurs when CPU control is 
passed to that job step. stage 4 occurs 
when the job step terminates; job manage­
ment routines perform termination proce­
dllIes for the step (and, when applicable, 
for the job). 

Upon completion of a job or a job step 
that had a data set in the input job 
stream, control passes back to stage 1. If 
further job step control statements had 
been read during stage 1, control passes to 
the initiation of the next job step (stage 
2). 

When a job terminates, and there are no 
succeeding jobs in the input job stream, 
the control program places the CPU in the 
wait state. As long as the nucleus remains 
intact in main storage, the user can intro­
duce new jobs into the input job stream 
without reloading the nucleus. 

10 

Reading control statements and initia­
ting a job step are performed by the 
reader/interpreter and initiator/terminator 
routines, respectively. Descriptions of 
these routines are given in the publication 
IBM System/360 Operating System: Job Man­
agement, Program Logic Manual. 

A job step is performed by a user­
written (e.g., a payroll program), or IBM­
supplied (e.g., linkage editor, COBOL) pro­
cessing program. 

Terminating a job step is performed by 
the initiator/terminator and the supervi­
sor. Descriptions of these routines are 
given in the publications IBM System/360 
Operating System: Job Management. Program 
Logic Manual and IBM System/360 Operating 
System: Fixed-Task Supervisor, Program 
Logic Manual. 

Job steps that have been terminated 
abnormally can be restarted. Restart func­
tions are performed by job management and 
supervisor checkpoint/restart routines, 
also described in the Job Management and 
Fixed-Task Supervisor Program Logic 
Manuals. 

Figure 3 shows the overall flow of CPU 
control through the job processing cycle. 
This figure describes the processing per­
formed by various components of the control 
program as it loads the nucleus, reads con­
trol statements, initiates the job step, 
and terminates the job step. Control pro­
gram processing performed during the execu­
tion of a job step is discussed in the sub­
sequent chapters of this publication. 

Figures 4 and 5 show the flow of CPU 
control for checkpoint/restart processing. 
Figure 4 describes the flow for the check­
point function, and Figure 5 describes the 
flow when a job is restarted. Only proces­
sing related to checkpoint/restart func­
tions is shown in these figures. Once a 
checkpoint is taken, or after a step is 
restarted, the job processing cycle shown 
in Figure 3 is resumed. 



r---------------~-----------------------------------------------------------------------, 

I· 

IPL 

Load N ucl eus 

NIP 

Initialize Nucleus 

SUPERVISOR 

Bring 
Reader/I nterprete r 
and Part of Master 

Scheduler into 
the Dynamic Area 

MASTER SCHEDULER 

Interpret Commands 

+ . 
Build Tables 

SUPERVISOR 

Bring 
Initiator/Terminotor 

into 
Dynamic Are.a 

I . 

START READER 
START WRITER 
SET 

To load the nucleus. the operator speci­
fies the device on which the system resi­
dence volume is mounted, and presses the 
LOAD button on the console. This action 
causes an IPL record to be read and to be 
given CPU control. This record reads a 
second IPL record which. in turn. reads the 
rest of the IPL program into main storage. 

The IPL program searches the volume 
label to locate the volume table of con­
tents (VTOC) of the system residence 
volume. The volume table of contents is 
then searched for the SYS1.NUCLEUS. The 
nucleus is brought into the fixed area. and 
the nucleus initialization program (NIP). 
which is also part of SYS1.NUCLEUS. is 
brought into the dynamic area~ NIP 
receives CPU control from the IPL program. 
and initializes the nucleus. After com­
pleting its processing. NIP causes itself 
to be replaced in the dynamic area with the 
reader/interpreter and the master co«mand 
routine of the master scheduler. 

When the start reader (START RDR). start 
writer (START WTR). and set date (SET) com­
mands are issued. the resulting interrup­
tion causes CPU control to be given to the 
master command routine. After processing 
the commands. this master scheduler routine 
passes CPU control to the reader/ 
interpreter. The master scheduler and 
reader/interpreter are described in the 
publication IBM System/360 Operating Sys­
tem: Job Management, Program Logic Manual. 

----
The reader/interpreter reads the control 

statements from the input job stream. 
Information from the JOB. EXEC. and DD 
statements is used to control the execution 
of job steps. This information is used to 
construct a job control table (JCT) for the 
job being read. a step control table (SCT) 
for the job step being read. and a job file 
control block (JFCB) and step input/output 
table (SIOT) for each data set being used 
or created by the job step. Information 
from these tables and control blocks is 
combined with information in the data con­
trol block (DCB> and data set control block 
(DSCB) or label when a data set is opened 
during step execution. 

The reader/interpreter has itself 
replaced by the initiator/terminator 
routine. 

L __________________ -. __________________________________________________________________ _ 

Figure 3. Example of CPU control Flow for a Job processing Cycle (Part 1 of 3) 

Program Flow 11 



r---------------------------------------------------------------------------------------, 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I I NITIA TOR/TERMI NATOR 

Locate 
Input 

Data Sets 

j 
Assign 

Input/Output 
Devices to 
Data Sets 

j 
Allocate 
Auxiliary 

Storage 

r 
Write Tables 

and 
Control Blocks 

SUPERVISOR 

Bring 
Processing Program 

into 
Dynami c Area 

Processing Program 
to 

Execute Job Step 

B 

After receiving CPU control, the 
initiator/terminator prepares to initiate 
the job step that has been read and inter­
preted. Using the data which the reader/ 
interpreter extracted from DD statements, 
the initiator/terminator: 

Locates Input Data Sets: The initiator/ 
terminator determines the volume containing 
a given input data set from the data 
definition (DD) statement, or from a search 
of the catalog. This search is performed 
by a catalog management routine that is 
entered from the initiator/terminator. A 
description of the routines that maintain 
and search the catalog is given in the pub­
lication IBM System/360 Operating System: 
Catalog Management, Program Logic Manual. 

Assigns I/O Devices: A job step cannot be 
initiated unless there are enough I/O de­
vices to fill its needs. The initiator/ 
terminator determines whether the required 
devices are available, and makes specific 
assignments. If necessary, messages to the 
operator direct the mounting of volumes 
(tapes, etc.). 

Allocates Auxiliary Storage Space: Direct 
access volume space required for output 
data sets of a job step is acquired by the 
initiator/terminator, which uses DADSM. A 
description of the operation of DADSM is 
given in the publication IBM System/360 
Operating System: Direct Access Device 
Space Management, Prograro Logic Manual. 

The JFCB, which contains information 
concerning the data sets to be used during 
step execution, is written on auxiliary 
storage. This data is used when a data set 
is opened, and when the job step is ter­
minated (e.g., disposition). 

The initiator/terminator causes itself 
to be replaced by the processing program to 
be executed. 

The processing program can be one of the 
IBM-supplied processors (e.g., COBOL, link­
age editor), or a user-written program. 
The processing program uses control program 
services for operations such as loading 
other programs, and performing I/O 
operations. 

I 
I 
I 
I 
I 
I 
I _______________________________________________________________________________________ J 

Figure 3. Example of CPU Control Flow for a Job processing Cycle (Part 2 of 3) 

12 



r---------------------------------------------------------------------------------------, 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

SUPERVISOR 

Dump, if 
Required 

• load 
Initiator/ 

Terminator 

I NITJA TOR/TERMINATOR 

Dispose of Data Sets, 
Write Messages 

No 

SUPERVISOR 

Bring 
Reader/lnterpreter 

into the Dynamic Area 

When the processing program terminates, 
the supervisor receives CPU control. The 
supervisor uses the OPEN/CLOSE/EOV routines 
to close any open data control blocks. 
These routines are described in the publi­
cation IBM System/360 Operating system: 
Input/Output Support (OPEN/CLOSE/EOV>, Pro­
gram Logic Manual. 

Under abnormal termination conditions, 
the supervisor may also provide special 
termination procedures such as a storage 
dump • 

The supervisor passes control to the 
initiator/terminator, which is brought into 
the dynamic area replacing the processing 
program. 

The initiator/terminator performs func­
tions required to terminate individual job 
steps and complete jobs. It executes an 
installation accounting routine if one is 
provided. 

The initiator/terminator releases the 
I/O devices, and disposes of data sets used 
and/or created during the job step. (This 
requires reading tables prepared during 
initiation, which include information such 
as disposition of data sets.) 

If the control statements for the next 
job step were read and interpreted, the 
initiator/terminator initiates that step 
(entry point Y on page 12). If the state­
ments were not read, the initiator/ 
terminator is replaced with the reader/ 
interpreter which starts the read-initiate­
execute-terminate cycle for the next job 
step or job (entry point Z on page 11). 

Figure 3. Example of CPU Control Flow for a Job Processing Cycle (Part 3 of 3) 

Program Flow 13 



r---------------------------------------------------------------------------------------, 

Processing Program 

--
CHKPT ---

SUPERVISOR 

Bring 
CHKPT Routine 
into Transient Area 

t 
C HK PT Routine 

Quiesce 
Input/Output 
Activity 

t 
Write Contents 
of Dyno mic Area 
onto Checkpoi nt 
Data Set 

t 
. Resume 

Input/Output 
Activity 

Processing Program 

~HKPT~ 
--

To cause the checkpoint function to be 
performed, the programmer places a CHKPT 
macro instruction in his program. The 
expansion of the CHKPT macro instruction 
includes an SVC 63 instruction, which 
causes CPU control to be passed to the 
supervisor. 

The CHKPT routine is a nonresident SVC 
routine. 

Any input/output operations in progress 
are allowed to complete, and no new input/ 
output operations are begun. 

Enough information about the status of 
the job step is recorded to allow a restart 
to be made from the place in the processing 
program where the checkpoint is taken. 

Input/output operations, delayed so the 
checkpoint could be taken, are started. 

Step execution is resumed. 

eFigure 4. Example of CPU Control Flow for the Checkpoint Function 

14 



r---------------------------------------------------------------------------------------, 

For Jobs Be i ng 
Restarted Automatica lIy , 
Restart Processing Begins 
During Step Termination 

-lJ. 
INITIATOIVTERMINATOR 

Determine if a 
Restart Shou Id 
be Attempted , 
Ask Operator to 
Authorize the 
Restart 

SUPERVISOR 

Bring Reader/Interpreter 
inta Dynamic Area 

For Resubmitted 
Jobs, Restart ~ 
Processing Begins 
During Interpretation 

READEIVINTERPRETER 

Re-Read 
and Rei nterpret 
Entire Job 

Is The 
Restart to be 
Made From a 
Checkpoint 

, Yes 

Create 
Special Job 
Step (lEFDSDRP) 

SUPERVISOR 

Bring Initiator/Terminator 
into Dynamic Area 

~ 

No 

Resume 
Normal 
Processing 
Cycle 

When an error condition causes step ter­
mination to begin prematurely, the 
initiator/terminator determines if the pro­
grammer has requested an automatic restart. 
If so, it then determines if a restart is 
likely to be successful (some types of 
errors can make a successful restart 
unlikely) . 

A request for operator authorization 
consists of a message to which the operator 
may reply by indicating whether or not the 
step is to be restarted. 

If the restart is to be made from the 
beginning of a step, the normal read­
initiate-execute-terminate job processing 
cycle will be resumed with initiation of 
the step to be restarted. 

If the restart is to occur at a place 
where a checkpoint was taken, however, the 
normal cycle cannot be resumed until the 
partially executed step is retrieved from 
the checkpoint data set. 

A special job step, IEFDSDRP, will be 
executed immediately before the step to be 
restarted. It is used for input/output 
allocation purposes. 

, , , , , , , , , , , , 
I , 
I 
I , , , , _______________________________________________________________________________________ J 

-Figure 5. Example of CPU Control Flow When a Job is Restarted (Part 1 of 2) 

Program Flow 15 



r---------------------------------------------------------------------------------------, 

cp 
I NITIA TOR/TERMI NATOR 

Initiate 
IEFDSDRP Job Step 

• JOB STEP I EFDSDRP 

Obtain Input/OutpUt 
Information from 
Checkpoint Data Set 

Update Restarting 
Step's Input/Output 
Requ i rements 

Change Name of 
Restarting Step 
to IEFRSTRT 

+ 
INITIATOR/TERMINATOR 

Initiate 
I EFRSTRT Job Step 

t 
JOB STEP I EFRSTRT 

Issue 
SVC 52 Instruction 

t 
SUPERVISOR 

Bring Restart Routine 
into SVC Transient Area 

t 
Restart Routi ne 

Return Step to 
Dynamic Area 

t 
Reposition 
Input/Output 
Devices 

t 
Restart 
Input/Output 
Activity 

t 
Processing Program 
-

I 
--
CHKPT - ~ --

During initiation for job step IEFDSDRP 
the initiator/terminator assigns a device 
to the checkpoint data set. If necessary, 
the operator is instructed to mount the 
volume containing the checkpoint data set • 

The restarting step's input/output 
device and space requirements, recorded in 
control blocks by the reader/interpreter, 
reflect what is needed to start execution 
at the beginning of the step. The check­
point data set contains a record of input/ 
output assignments that existed when the 
checkpoint was taken. Where differences 
exist, the control blocks are changed so 
that requirements for the restart will 
reflect what is needed to start execution 
from the checkpoint. 

During initiation for job step IEFRSTRT, 
the initiator/terminator assigns input/ 
output devices to the restarting step, and 
instructs the operator to mount any needed 
volumes. 

The first instruction of the restarting 
step was made to be in SVC 52 instruction, 
intended to cause CPU control to pass to 
the restart SVC routine. 

The restart routine is a nonresident SVC 
routine. 

The step is restored to the dynamic area 
and an environment similar to that which 
existed when the checkpoint was taken is 
re-created. 

CPU control is returned to the proces­
sing program at the instruction following 
the CHKPT macro instruction. 

eFigure 5. Example of CPU Control Flow When a Job is Restarted (Part 2 of 2) 

16 



During execution of a processing program (a 
job step), CPU control is passed back and 
forth between the control program and the 
processing program. This section of the 
publication discusses how CPU control is 
passed between programs and routines in the 
fixed and dynamic areas of main storage. 

Control Flow to the Control Program 

CPU control is passed from a processing 
program to the control program via an 
interruption; an interruption causes CPU 
control to be given to an interruption 
handler routine of the control program. 
The interruption handler gives CPU control 
to a routine that processes the interrup­
tion. This routine returns CPU control to 
the supervisor which, in turn, causes CPU 
control to be passed to the appropriate 
processing program. A description of the 
interruption handlers is given in the pub­
lication IBM System/360 Operating system: 
Fixed-Task supervisor, Program Logic 
Manual. 

The processing performed by the control 
program is determined by the type of inter­
ruption and falls into five categories: 

• SVC interruption. The processing pro­
gram requires a control program service 
and requests that service via an SVC 
instruction. 

• Input/output interruption. An input/ 
output operation terminates, or the 
operator issues a command. 

• Timer/external interruption. An event 
(e.g., a timer or external signal) 
indicates the need for control program 
processing. 

• Program interruption. The processing 
program execution generates an unex­
pected need for control program pro­
cessing either because an invalid 
operation is attempted (e.g., execution 
of a privileged instruction by a pro­
gram in the problem state), or a data 
error (e.g., overflow) is detected. 

• Machine-check interruption. A computer 
error signal indicates that a recogniz­
able machine error has occurred. 

An SVC interruption is the only type of 
interruption that must be initiated in the 
interrupted program; the other types of 
interruptions occur because of an event 

System Control 

that is generally not anticipated ~y the 
program that is interrupted. 

SVC INTERRUPTIONS 

SVC interruptions result from program 
requests for contol program services. The 
SVC interruption handler saves critical 
information about the interrupted program 
before passing CPU control to the SVC rou­
tine that performs or initiates the 
requested service. 

There are four types of SVC routines: 

• Type 1 SVC routines are part of the 
resident portion of the control program 
and are disabled (masked) for all types 
of interruptions except machine-check 
interruptions. 

• Type 2 SVC routines are part of the 
resident portion of the control pro­
gram, but may be enabled (interrupt­
able) for part of their operation. 

• Type 3 SVC routines are part of the 
nonresident portion of the control pro­
gram, may be enabled, and occupy not 
more than 1024 bytes of main storage 
when loaded. 

• Type 4 
may be 
bytes. 
storage 
less. 

SVC routines are nonresident, 
enabled and are larger than 1024 

They are brought into main 
in segments of 1024 bytes or 

When the requested service is performed 
by a type 3 or type 4 routine, the supervi­
sor fetches it into the SVC transient area, 
unless it was loaded by the nucleus initia­
lization program. A list of the SVC rou­
tines, their types, and the program logic 
manuals in which they are described is 
given in Appendix A. 

A processing program uses the SVC facil­
ities to request services that can be per­
formed only by the control program. One of 
these services, dynamic allocation of main 
storage, is requested via the GETMAIN macro 
instruction. Figure 6 shows the overall 
flow of CPU control when the expansion of a 
GET MAIN macro instruction is executed in a 
proceSSing program. The flow of CPU con­
trol for all SVC interruptions is similar 
to the flow for that of GETMAIN; the SVC 
interruption handler receives CPU control, 

System Control 17 



r---------------------------------------------------------------------------------------, 

!!'ocess i ng Program 

gETMAIN-

SVC Interruption 

+ 
SUPERVISOR 

+ 
SVC 

Interruption 
Handler 

1 

+ 
GETMAIN SVC Routine 

Allocate Main Storage 

+ 
SUPERVISOR 

+ 
Type 1 Exit 

+ 
Dispatcher 

I 
I 

Processing Program 

i~~IN I 
-----

Expansion of a GETMAIN macro instruction 
includes an SVC instruction and instruc­
tions that set up the parameters of the 
requested main storage area. Execution of 
the SVC instruction causes an SVC interrup­
tion to occur. CPU control is passed ~o 
the SVC interruption handler which saves 
the program status word and register 
contents. 

The SVC interruption handler analyzes 
the cause of the interruption. Since, in 
this case, the SVC routine that is to 
receive CPU control is a type 1 routine, 
the SVC interruption handler passes CPU 
control directly to the GETMAIN SVC 
routine. 

The GETMAIN routine determines whether 
the request is valid and whether there is 
enough available main storage to fill the 
request. When storage is allocated, indi­
cators are set, showing that this storage 
is in use. ~he GETMAIN SVC routine is 
described in the publication IBM System/360 
Operating System: Fixed-Task supervisor, 
Program Logic Manual. 

When the GETMAIN SVC routine has com­
pleted its processing, it passes CPU con­
trol to the type 1 exit routine which 
determines whether the routine that issued 
the GETMAIN macro instruction is enabled or 
disabled. Since a processing program 
(i.e., an enabled program) issued the re­
quest, CPU control is passed to the dis­
patcher which, in turn, passes CPU control 
to the processing program. 

L-_______________________________ ~------------------------______________________________ J 

Figure 6. Example of CPU Control Flow for an SVC Interruption 

determines which SVC routine is to perforw 
the requested service, brings that routine 
into storage if it is not already there, 
and passes CPU control to it. After the 
SVC routine performs its service, it 
returns control to the supervisor which in 
turn, returns control to the processing 
program. 

18 

OTHER INTERRUPTIONS 

Program, timer/external, input/output, 
and machine-check interruptions give CPU 
control to the control program when certain 
computer or program events occur. The main 
characteristic of these interruptions is 
that they are asynchronous <i.e., they 



occur at an undetermined point in the pro­
gram). ~ach of these interruptions is pro­
cessed in a unique way but the overall flow 
of CPU control is similar for all of them • 
. Figure 7 uses a program interruption as an 
example of the overall flow of CPU control 
for an asynchronous interruption. 

When such an interruption occurs, the 
appropriate interruption handler receives 
CPU control and, in turn, passes control to 
the routine that processes the interrup­
tion. After this routine completes its 
processing, it passes control to the super­
visor. ~he routine that now receives CPU 
control is determined by the result of the 
interruption processing. 

The routines that process asynchronous 
interruptions are described in the 
publications: 

• IBM Svstem/360 Operating System: 
Fixed-Task Supervisor, Program Logic 
Manual. 

• IBM System/360 Operating System: Job 
Management, Prograrr. Logic Manual. 

• IBM System/360 Operating Systerr.: 
Input/Output Supervisor, Program Logic 
Manual. 

r---------------------------------------------------------------------------------------, 

~ocessing Program 

Program Interruption 

~ 
SUPERVISOR 

+ 
Program 

Interruption 
Handler 

User-Written Routine 

SUPERVISOR 

Processing Program ---------------

During execution of a processing pro­
gram, a program interruption occurs causing 
CPU control to be passed to the program 
interruption handler routine. This routine 
stores register contents and the PSW of the 
interrupted program, and determines the 
cause of this interruption. 

If the user has not indicated (via a 
SPIE macro instruction) a routine to pro­
cess this particular program interruption 
type, the job is abnormally terminated. If 
such a routine is provided, the program 
interruption handler passes CPU control to 
this user-written routine. 

When the user-written routine has com­
pleted its processing, CPU control is 
returned to the supervisor which returns 
control to the interrupted program. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

_______________________________________________________________________________________ J 

Figure 7. Example of CPU Control Flow for an Asynchronous Interruption / 

System Control 19 



Control Flow to a Processing Program 

Two conditions that can exist when the con­
trol program is to pass CPU control to a 
processing program are: 

• The supervisor must return CPU control 
to a processing program that previously 
relinquished control for some control 
program service or supervisory 
function. 

• The supervisor must pass CPU control to 
a new processing program whose execu­
tion was requested via a supervisor­
assisted linkage. 

The supervisor passes CPU control to any 
program in the dynamic area by loading the 
program status word (PSW) for that program. 
The supervisor routine that loads the PSW 
is the dispatcher; its operation is 
referred to as dispatching. 

RETURNING CONTROL TO A PROCESSING PROGRAM 

Normally after the control program has per­
formed some requested service or required 
supervisory function for a processing pro­
gram, the supervisor returns CPU control to 
that processing program. When this pro­
cessing program had been interrupted, cer­
tain registers and the PSW under which it 
was operating were stored by the interrup­
tion handler. The dispatcher restores the 
registers to their previous values and 
loads this PSW, returning CPU control to 
that program. 

SUPERVISOR-ASSISTED LINKAGES 

By using certain SVC macro instructions, 
the user can have the control program per­
form all the linkages required to pass CPU 

20 

control from one program or routine to 
another. In general, when a supervisor­
assisted linkage such as a LINK, ATTACH, or 
XCTL macro instruction is used, the control 
proqram brinos the desired program into 
storage, builds a PSW for that program, 
passes CPU control to this program, and 
saves the information required to pass CPU 
control to the proper program when the 
'linked-to' program is complete. 

Figure 8 shows the flow of CPU control 
when a processing program uses the LINK 
macro instruction to pass CPU control to 
another program. The SVC interruption 
handler receives CPU control as a result of 
the interruption, and passes control to the 
link SVC routine. This routine uses pro­
gram fetch to bring the linked-to routine 
into storage and constructs a control block 
so that the supervisor can control this 
routine. The link SVC routine then returns 
CPU control to the supervisor which dis­
patches the linked-to routine. 

When the linked-to routine is complete, 
CPU control is returned to the supervisor 
which dispatches the processing program 
that issued the LINK macro instruction. 

supervisor-assisted linkages are used 
not only by processing programs, but also 
by certain control program routines. Job 
management routines use supervisor-assisted 
linkages to pass CPU control. When the 
initiating of a job step is completed. the 
initiator/terminator uses an XCTL macro 
instruction to pass CPU control to the pro­
cessing program that is to execute the job 
step. This macro instruction causes the 
program that issued" it (in this case the 
initiator/terminator) to be overlaid by the 
program that is to receive CPU control. 



r---------------------------------------------------------------------------------------, 

I 
I 
I 

Processing Program 

= = 
!,!NKB-

SVC Interruption • SUPERVISOR .. 
I 

SVC 

I Interruption 
Handler 

t 
LINK SVC Routine 

I f Necessary, Have the 
Linked-to Routine Brought 

into the Dynamic Area 

1-
Modify Queue 

,; 
SUPERVISOR 

t 

I Exit SVC I Routine 
t 

L Dispatcher I 
t 

~utine B(Linked-to Routine) 
---= = --
-= ------
RETURN _-------, 

I 
SVC Interruption • "- SUPERVISOR 

,; 

I 
SVC 

I Interruption 
Handler 

t 

I Exit SVC I Routine 
,; 

I Dispatcher I 

Processing Program 

~~ -= -

Expansion of the LINK macro instruction 
includes an SVC instruction and instruc~ 
tions that set up parameters. Execution of 
the SVC instruction causes an SVC interrup­
tion. CPU control is passed to the SVC 
interruption handler which saves the pro­
gram status word and register contents, and 
analyzes the cause of the interruption. 
since the link SVC routine is a type 2 rou­
tine, the SVC interruption handler can pass 
CPU control directly to the LINK routine. 

If necessary, the link SVC routine has a 
copy of the linked-to routine brought into 
main storage. The link SVC routine then 
modifies a request block queue so that the 
'linked-to' routine will receive CPU con­
trol, and passes CPU control to the exit 
SVC routine. ~his routine passes control 
to the dispatcher which dispatches the 
'linked-to' routine. The link SVC routine, 
and request block queue are discussed in 
the publication IBM system/360 ,operating 
System: Fixed-Task Supervisor, Program 
Logic ManuaL 

When the 'linked-to' routine is com­
pleted, it issues a RETURN macro instruc­
tion. In this case, an SVC interruption 
occurs causing CPU control to pass first to 
the SVC interruption handler and then to 
the exit SVC routine. The exit SVC routine 
restores the conditions required by the 
program that issued the LINK macro instruc­
tion. CPU control is then passed to the 
dispatcher which returns CPU control to the 
program that issued the LINK macro 
instruction. 

L--____________________________________________________________________________________ _ 

Figure 8. Example of CPU Control Flow for a Supervisor-Assisted Linkage 

System Control 21 



Input/Output Control 

The I/O control facilities provided by the 
operating system perform services asso­
ciated with the moving of data between main 
and auxiliary storage. These services are 
performed by the control program's data 
management routines and consist of: 

• Catalog management. 
• Direct access device space management. 
• Input/output support. 
• Input/output operation control. 

The catalog management routines maintain 
a catalog of certain data sets and the 
volumes on which they reside. These rou­
tines locate cataloged data sets, and add 
and delete items from the catalog. A 
description of the catalog management rou­
tines is given in the publication IBM 
System/360 Operating System: catalog Man­
agement, Program Logic Manual. 

The catalog management routines are SVC 
routines which operate from the SVC tran­
sient area. The initiator/terminator of 
job management uses catalog management rou­
tines both to locate cataloged input data 
sets for a job step being initiated, and to 
catalog specified data sets created during 
the job step. The IEHPROGM utility program 
uses catalog management routines to add, 
change, or delete the components of the 
catalog. 

The direct access device space manage­
ment (DADSM) routines allocate and release 
space on direct access volumes. A descrip­
tion of the DADSM routines is given in the 
publication IBM System/360 Operating Sys­
tem: Direct Access Device Space Manage­
ment, Program Logic Manual. 

The DADSM routines are sve routines that 
operate from the SVC transient area. They 
are used by the initiator/terminator when a 
job step is being initiated to get direct 
access storage space for output data sets, 
and by I/O support routines to acquire 
additional space and to release unneeded 
space. 

The I/O support routines are SVC rou­
tines that perform operations directly 
associated with an I/O operation. These 
operations are: 

• Opening a data control block. 
• Closing a data control block. 
• Performing end-of-volume procedures. 

The I/O support routines operate from 
the SVC transient area. They are used by 

22 

processing programs, the supervisor, and 
job management routines, and are described 
in the publication IBM System/360 Operating 
System: Input/Output Support (OPEN/CLOSE/ 
EOV), Program Logic Manual. 

Control of I/O operations occurs both 
when an I/O operation is to be initiated, 
and when an I/O operation terminates. 

Initiation of an I/O operation normally 
is performed by access method routines and 
the I/O supervisor. The access method rou­
tines operate from the dynamic area, and 
the I/O supervisor operates from the fixed 
area. The access methods are described in 
the publications: 

• IBM System/360 Operating System: 
seguential Access Methods, Program 
Logic Manual. 

• IBM System/360 Operating System: In­
dexed Seguential Access Methods, Pro­
gram Logic Manual. 

• IBM System/360 Operating Svstem: Basic 
Direct Access Method, Program Logic 
Manual. 

• IBM Svstem/360 Operating system: Gra­
phics Access Methods, Program Logic 
Manual. 

The I/O supervisor is described in the 
publication IBM system/360 Operating Sys­
tem: Input/Output Supervisor, Program 
Logic Manual. 

Termination of an I/O operation causes 
another part of the I/O supervisor to 
receive CPU control. During its process­
ing, the I/O supervisor uses error handling 
routines and access method routines called 
appendages. The I/O supervisor and the 
error handling routines are described in 
the Input/Output Supervisor, Program Logic 
Manual. The access method appendage rou­
tines are described in the program logic 
manuals for the various access methods. 

Processing Input/Output Operations 

The processing directly associated with I/O 
operations is performed when a data control 
block is opened and when an I/O operation 
is executed. 



OPENING A DATA CONTROL BLOCK 

Before any information can be read from or 
written into a data set, initialization 
must be performed. This initialization is 
referred to as 'opening' the data control 
block of the data set, and consists of: 

The program that uses or creates a data 
set specifies the opening of its DCB via an 
OPEN macro instruction. The execution of 
this macro instruction causes an SVC inter­
ruption. The SVC interruption handler 
passes CPU control to the data management 
open SVC routine. 

• Completing the data control bloCK 
(DCB), job file control block (JF'CB), 
and data set control block (DSCB) of 
the data set. 

When the open routine has completed its 
processing, it returns CPU control to the 
supervisor which, in turn, dispatches the 
processing program. 

• Building the data extent block (DEB). 
The open routine completes the DCB so 

that sufficient information is available to 
perform I/O operations on the associated 
data set. Empty fields in the DCB are 
filled from information in the DSCE or 
label (if the data set is input) and the 
JFCB. The DSCB is the data set label for 
data sets residing on a direct access 
volume; the JFCB was built when the job 
step was read and interpreted, and contains 
inforlTlation from the DD statement. The 
formats of the DCB, JFCB, and DSCB are 
given in the publication IBM System/360 
Operating System: System Control Blocks, 
Form C28-6628. 

• Acquiring the access method routines 
that are to operate on the data set. 

• Priming buffers when the queued sequen­
tial access method (QSAM) is used for 
input. 

Figure 9 shows the flow of CPU control 
when an OPEN macro instruction is issued 
for the data control block of a data set 
residing on a direct access volume. 

r---------------------------------------------------------------------------------------, 
~ocessing Program 

QPEN-

SVC Interruption 

SUPERVISOR 

SVC 
Interruption 

Handler 

BLDL 

Program Fetch 

SVC 
Interruption 

Handler 

OPEN SVC Routine 

Verify volume and 
data set 

+ 
Read DSCB and JFCB 

+ 
com~DCB 

Expansion of an OPEN macro instruction 
includes an SVC instruction which causes an 
SVC interruption when executed. CPU con­
trol is passed to the SVC interruption 
handler. 

If a table of record addresses for type 
3 and 4 SVC routines was not set up at 
initial-program-Ioading time, the SVC 
interruption handler uses the BLDL routine 
of data management to find the open SVC 
routine on SYS1.SVCLIB. Program fetch then 
loads the first segment of the open SVC 
routine into the SVC transient area. 

The open SVC routine first verifies that 
the proper volumes are mounted, and then 
finds the data set on the volume. If the 
data set has password-protection, the open 
routine issues a message to the operator 
requesting the proper password. If the 
operator provides a wrong password twice, 
the job step is terminated. 

The open routine reads the JFCB and DSCB 
into an open work area obtained from the 
dynarr.ic area. Information from the DSCB is 
used to fill empty fields in the JFCB. The 
JFCB is now used to fill empty fields in 
the DCB. 

Figure 9. Example of CPU Control Flow When an OPEN Macro Instruction Is Issued (Part 1 
of 2) 

Input/Output Control 23 



r---------------------------------------------------------------------------------------, 

If Data Set 
is Output, 

Complete DSCB 

SUPERVISOR 

rJ~·m 

If the user has provided a DCB exit rou­
tine, CPU control is passed to this rou­
tine. Upon completion of this user rou­
tine, control returns to the open SVC rou­
tine which merges fields from the now com­
plete DCB into the JFCB. For input data 
sets, this merge fills only empty fields; 
for output data sets, it also overlays any 
affected field except the JFCDSORG field. 

The segment of the open SVC routine that 
is now loaded and given CPU control is 
called an access method executor. These 
executor routines perform processing that 
is unique to the access method specified; 
they are described in the program logic 
manuals for the various access methods. 

The access method executor builds a DEB 
and loads the required access method rou­
tines into the dynamic area of main 
storage. 

If the data set is output, fields in the 
JFCB are now merged .into the DSCB, overlay­
ing as well as filling any affected fields 
except the DSORG field. The now-complete 
DSCB is written on auxiliary storage over­
laying the DSCB that was read in initially. 

The open SVC routine passes CPU control 
to the exit SVC routine. This routine, in 
turn, passes control to the dispatcher 
which dispatches the processing program. 

Figure 9. Example of CPU Control Program Flow When an OPEN Macro Instruction is Issued 
(Part 2 of 2) 

EXECUTING AN INPUT/OUTPUT OPERATION 

Executing an I/O operation is discussed in 
two phases: processing required to start 
the operation, and processing performed 
when the operation is terminated. The flow 
of CPU control during the execution of an 
I/O operation is shown in Figure 10. 

Starting an Input/Output Operation 

The expansion of an I/O macro instruction 
specified in the processing program results 
in a branch to the access method routines. 

24 

These routines gather information used to 
initiate the I/O operation and place this 
information in control blocks. An access 
method routine then issues an EXCP macro 
instruction causing an SVC interruption. 
The SVC interruption handler gives CPU con­
trol to the I/O supervisor. 

The I/O supervisor initiates the I/O 
operation and returns CPU control to the 
supervisor. The supervisor then returns 
CPU control to the access method routine 
which finishes its processing, and returns 
control to the processing program. 



Terminating an Input/Output Operation 

When an 1/0 operation terminates, an I/O 
interruption occurs causing CPU control to 
pass to the I/O interruption handler. This 
routine passes control to the I/O supervi­
sor which performs the termination process-

ing. The I/O supervisor may pass control 
to error handling routines and access 
method appendage routines to perform spe­
cial processing. when its processing is 
complete, the I/O supervisor passes control 
to the supervisor which dispatches the pro­
cessing program. 

r---------------------------------------------------------------------------------------, 

~ocessing Program 

REAO 

= 

ACCESS METHOD RTNE 

E?<CP 

SVC Interruption 

SUPERVISOR 

I/O SUPERVISOR 

To execute an I/O operation, an I/O 
macro instruction such as HEAD is specified 
in the processing prograrr. The expansion 
of this macro instruction includes a branch 
to an access method routine. 'The address 
of this routine is obtained from the DCB 
where it was stored when the DCB was 
opened. 

The access method routines set up a 
channel program and an input/output block 
(lOB) so that the I/O supervisor can initi­
ate the I/O operation. The access method 
routine then issues an SVC instruction. 

An SVC interruption occurs causing CPU 
control to be passed through the SVC inter­
ruption handler to the EXCP SVC routine of 
the I/O supervisor. The EXCF SVC routine 
passes CPU control to the I/O interrupticn 
supervisor portion of the I/O supervisor. 
This routine checks queues of pending I/O 
operations and, if possible, starts some of 
these operations. The EXCP SVC routine and 
the I/O interruption supervisor are 
described in the publication IBM System/360 
Operating System: Input/Output Supervisor, 
Program Logic Manual. CPU control is now 
passed from the I/O interruption supervisor 
through the EXCP SVC routine to the type 1 
exit routine. Since the program that 
issued the SVC is enabled, the type 1 exit 
routine passes control to the dispatcher 
which in turn, returns control to the 
access method routine. 

Figure 10. Example of CPU Control Flow for an I/O Operation (Part 1 of 2) 

Input/Output Control 25 



r---------------------------------------------------------------------------------------, 

Processing Program 

!E~ 
I/O Interruption 

t 
SUPERVISOR 

• 
~ 

I/O 
Interrupt i on 

Handler 

t 
I/O SUPERVISOR 

~ 

~ 
I/O 

Interruption 
Supervisor 

• 
I 

Access Method 
Appendage 

Routine 

• 
I 

I/O 
Interruption 
Supervisor 

• SUPERVISOR 

t 

I 
I/O 

Interruption 
Handler 

t 

I Dispatcher 

~ 
Processing Program 

I:J -

I 

I 

I 

I 
I 

The access method routine completes its 
processing and passes CPU control back to 
the processing program. The requested I/O 
operation can be in one of three condi­
tions: complete, in process, or queued as 
a pending request. In this last case, the 
operation will be started as part of the 
processing of some subsequent interruption. 

When an I/O operation terminates, an I/O 
interruption occurs causing CPU control to 
be passed through the I/O interruption 
handler to the I/O interruption supervisor 
portion of the I/O supervisor which pro­
cesses the I/O interruption. 

The I/O interruption supervisor branches 
to access method appendage routines to per­
form processing unique to the access method 
used. These routines are discussed in the 
program logic manuals for the various 
access methods. The I/O interruption 
supervisor then services pending I/O inter­
ruptions and tries to restart free channels 
before passing CPU control back to the I/O 
interruption handler. This routine gives 
control to the dispatcher which returns 
control to the processing program at the 
point where the I/O interruption occurred. 

Figure 10. Example of CPU Control Flow for an I/O Operation (Part 2 of 2) 

26 



access method executor: A routine that is 
entered during the performance of the open, 
close, or end-of-volume function, and per­
forms processing unique to the access 
method to which it applies. 

appendage: A routine that performs a func­
tion of the input/output supervisor but is 
not a part of the input/output supervisor. 
Appendages are provided by the user of the 
input/output supervisor (e.g., Access 
Method). 

asynchronous: Without regular time rela­
tionship to the affected program; as ap­
plied to program execution, unpredictable 
with respect to instruction sequence. 

catalog: One or more data sets that speci­
fy the volumes upon which cataloged data 
sets reside. 

checkpoint: 

1. A point at which information about the 
status of a job step can be recorded 
so that the job step can be restarted. 

2. To record such information. 

checkpoint/restart: A facility of the 
operating system that can minimize time 
lost in reprocessing a job step that ter­
minated abnormally due to a program or sys­
tem failure. It allows a restart to be 
made from a checkpoint or from the begin­
ning of a job step. 

disabled: (masked) A state of the CPU that 
prevents the occurrence of certain types of 
interruptions. The types of interruptions 
for which the CPU is masked is determined 
by the current program status word. Unless 
qualified, the terms 'masked' and 'dis­
abled' apply to I/O and External 
interruptions. 

dynamic area: That portion of main storage 
from which processing programs, job manage­
ment routines, access method routines and 
appendages operate. 

enabled: (interruptable) A state of the 
CPU that allows the occurrence of certain 
types of interruptions. The types of 
interruptions for which the CPU is inter-

Glossary 

ruptable is determined by the current pro­
gram status word. Unless qualified, the 
terms 'interruptable' and 'enanled' apply 
to all types of interruptions. 

fixed area: That portion of main storage 
occupied by the resident portion of the 
control program (nucleus). 

interruptable: See Enabled. 

masked: See Disabled. 

nonresident portion of control program: 
'I'hose control program routines that are 
loaded into main storage as they are 
needed, and can be overlaid after their 
completion. 

nucleus: That portion of the control pro­
gram that is loaded into main storage at 
initial-program-Ioading time and is never 
overlaid by another part of the operating 
system. 

SVC routine: A control program routine 
that performs or initiates,a control pro­
gram service specified by a supervisor call 
(SVC). 

system residence volume: The direct access 
volume that contains SYS1.NUCLEUS, SYS1. 
SVCLIB, a catalog data set, and the data 
set reserved for recording data about 
machine errors (i.e., SYS1.LOGREC). 

----SYS1.LINKLIB: The partitioned data set 
that contains the IBM-supplied processing 
programs and part of the nonresident por­
tion of the control program. It may also 
contain user-written programs. 

SYS1.NUCLEUS: The partitioned data set 
that contains the resident portion of the 
control program (i.e., the nucleus). 

SYS1.SVCLIB: The partitioned data set that 
contains the nonresident SVC routines, non­
resident error-handling routines, and the 
access method routines. 

transient areas: Two areas of main storage 
defined in the nucleus; one is reserved for 
nonresident SVC routines, the other is used 
by nonresident error-handling routines. 

Glossary 27 





Appendix A: SVC Routines 

This appendix contains two lists: the first is a list of those macro instructions whose 
expansion includes an SVC instruction and the SVC number (decimal) associated with that 
instruction; the second is a list of the routines that perform the services requested via 
the SVcs and the program logic manuals (PLMs) in which these routines are described. 

MACRO INSTRUCTION SVC NUMBER MACRO INSTRUCTION SVC NUMBER 

ABEND 13 LOAD 08 
ATTACH 42 LOCATE 26 
BLDL 18 OBTAIN 27 

BSP 69 OPEN 19 
CATALOG 26 OPEN (TYPE=J) 22 
CHAP 44 POST 02 

I CHKPT 63 PURGE 16 
CIRB 43 RELEX 5"3 
CLOSE 20 RENAME 30 

CLOSE (TYPE=T) 23 RESTART 52 
DELETE 09 RESTORE 17 
DEQ 48 SCRATCH 29 

DETACH 62 SEGLD 37 
DEVTYPE 24 SEGWT 37 
ENQ 56 SETPRT 81 

SPIE 14 
EOV 55 
EXCP 00 STAE 60 
EXTRA.CT 40 STIMER 47 

STOW 21 
FEOV 31 
FIND 18 SYNCH 12 
FREEDBUF 57 TIME 11 

TTl MER 46 
FREEMAIN 05 
GETMAIN 04 WAIT 01 
IDENTIFY 41 WAITR 01 

WTO 35 
INDEX 26 
IOHALT 33 WTOR 35 
LINK 06 WTL 36 

XCTL 07 

Appendix A: SVC Routines 29 



In the following list, 'ROUTINE NAME' indicates the name by which each SVC routine is 
referred to in the associated PLM. Two entries in the 'TYPE' field indicate that at sys­
tem generation time, the user can 'choose either type for this SVC routine. The first 
number indicated is the dominant one and is the type assigned unless the second number is 
explicitly specified. 

Use of an SVC number that has '**' in the 'ROUTINE NAME' field causes the SVC inter­
ruption handler to abnormally terminate the job step. All unassigned and some nonsup­
ported SVCS fall into this category. 

Use of the remaining nonsupported SVC numbers is effectively a no-operation instruc­
tion. An interruption will occur, but after the SVC interruption handler analyzes the 
SVC, it immediately passes CPU control to the SVC exit routine. Nonsupported or unas­
signed SVC numbers cannot be assigned to user-written SVC routines. 

SVC ROUTINE 
NUMBER NAME 

00 EXCP 
01 Wait 
02 Post 
03 Exit 
04 Getmain 
05 Freemain 

06 Link 
07 XCTL 
08 Load 
09 Delete 
10 Getmain/Freemain 

11 Time 
12 SYNCH 
13 ABEND 
14 SPIE 
15 ERREXCP 

16 Purge 
17 Restore 
18 BLDL 
19 Open 
20 Close 

21 Stow 
22 OpenJ 
23 Tclose 
24 DEVTYPE 
25 Track Balance 

26 Catalog 
27 Obtain 
28 CVOL 
29 Scratch 
30 Rename 

31 FEOV 
32 Allocate 
33 IOHALT 
34 Master Command 

EXCP 
35 Write to 

Operator 

36 
37 Overlay 

supervisor 
38 Resident SVC 

30 

1 
1 
1 
1 
1 
1 

2 
2 
2 
1 
1 

1 
2 
4 

3,2 
1 

3 
3 
2 
4 
4 

3 
4 
4 
3 
3 

4 
3 
4 
4 
4 

4 
4 
3 

4 

3 

2 
2 

PLM 

Input/Output Supervisor 
Fixed-Task supervisor 
Fixed-Task supervisor 
Fixed-Task Supervisor 
Fixed-Task supervisor 
Fixed-Task Supervisor 

Fixed-Task Supervisor 
Fixed-Task Supervisor 
Fixed-Task Supervisor 
Fixed-Task supervisor 
Fixed-Task Supervisor 

Fixed-Task supervisor 
Fixed-Task Supervisor 
Fixed-Task supervisor 
Fixed-Task supervisor 
Input/Output Supervisor 

Input/Output supervisor 
Input/Output Supervisor 
Sequential Access Methods 
Input/Output Support (OPEN/CLOSE/EOV) 
Input/Output Support (OPEN/CLOSE/EOV) 

Sequential Access Methods 
Input/Output Support (OPEN/CLOSE/EOV) 
Input/Output Support (OPEN/CLOSE/EOV) 
Input/Output Supervisor 
Sequential Access Methods 

Catalog Management 
Direct Access Device Space Management 
Catalog Management 
Direct Access Device Space Management 
Direct Access Device Space Management 

Input/Output Support (OPEN~CLOSE/EOV) 
Direct Access Device Space Management 
Input/Output Supervisor 

Job Management 

Job Management 

Not supported in this configuration 

Fixed-Task Supervisor 
TESTRAN 



SVC 
NU~.iBER 

39 
40 
41 
42 
43 
44 
45 

46 
47 
48 
49 
50 

51 
52 
53 
54 
55 

56 
57 
58 
59 
60 

61 
62 
63 
64 
65 

66 
67 
68 
69 
70 

71 
72 
73 
74 
75 

76-80 
81 
82 
83-199 

200-255 

ROUTINE 
NAME TYPE 

Label 4 
Extract 3,2 
Identify 3,2 
Attach 3,2 
CIRB 
CHAP 
Overlay 
Supervisor 

Ttimer 
Stimer 
DEQ 
Ttopen1 

** 
ABDUMP 
Restart 
RELEX 
Disable 
EOV 

ENQ 
Freedbuf 
REQBUF 
OLTEP 

Save 
DETACH 
CHKPT 
RDJFCB 
QWAIT 

QTAM test 
QPOST 
SYNADAF 
Backspace 
GSERV 

ASGNBFR 
IEECVCTR 
SPAR 
DAR 
Dequeue 

** SETPRT 
GETALT 

** 
Available for assignment 
to user-written SVC rou­
tines. Until a number is 
assigned, its use in a 
processing program 
causes termination. 

3 
1 

2 

1 
2 
1 
3 

4 
4 
3 
2 
4 

1 
3 
1 
3 

3 
2 
4 
3 
2 

4 
2 
4 
3 
2 

3 
4 
3 
3 
3 

4 
4 

PLI'1 

Utilities 
Fixed-Task supervisor 
Fixed-Task supervisor 
Fixed-Task Supervisor 
Fixed-Task Supervisor 
Supported in MVT configuration 

Fixed-Task Supervisor 

Fixed-Task Supervisor 
Fixed-Task Supervisor 
Control Program with MFT 
TESTRAN 
Unassigned 

Fixed-Task Supervisor 
Fixed-Task Supervisor 
Supported in MFT configuration 

Input/Output Support (OPEN/CLOSE/EOV) 
sequential Access Methods 

Control Program with MFT 

Basic Telecommunications Access Method 
On-Line Test Executor 
Not supported in this configuration 

TESTRAN 
Supported in MVT configuration 
Fixed-Task Supervisor 
Input/Output Support (OPEN/CLOSE/EOV) 
Queued Telecommunications Access Method 

Queued Telecommunications Access Method 
Queued Telecommunications Access Method 

sequential Access Methods 
Graphics Access Method 

Graphics Access Method 
Control Program with MFT 
Graphics Access Method 
Graphics Access Method 
Graphics Access Method 

Unassigned 
Sequential Access Methods 
Utilities 
Unassigned 

Appendix A: SVC Routines 31 





ABEND macro instruction •••••••••••••••• 29 
Access method 

appendages 
executors 

25,27 

definition of •••••••••••••••••• 24,27 
operation of •••••••••••••••..••••. 24 

routines 
loading of •••••••••••••••••••••• 8,23 
operation of •••••••••••••••• 22,24,26 

Allocation 
main storage •••.•.•••••••••.••.••••• 17 

Appendage •••••••••••••••••••••••• 22,25,26 
definition of ••••••••••••••••••••••• 27 

ATTACH macro instruction •••••••••• 8,20,29 
Auxiliary storage 

allocation of ••••••••••••••••••••••• 12 
control program on ••••••••••••••••••• 7 
relation to data management .••••••• 6,22 
writing DSCB onto ••••••••••••••••••• 24 

Backspace routine •••••••••••••••••••••• 31 
Buffer priming ••••••••••••••••••••••••• 23 

Catalog 
Catalog 
Channel 

management •••••••••••••••• 
22,27,29 
6,12,22 

program ••••••••••••••••••••••••••••• 25 
scheduling ••••••••••••••••••••••••••• 5 

Checkpoint/restart •••••••••••.••••••• 10,27 
CHKPT 

macro instruction •••••••••.•••• 14,16,29 
routine •••••••••••••.••..•••••••• 14,31 

Close routine ••••••••••••••••••••••••••• 6 
Console ••••••••••••••••••••••••••••••••• 5 

DADSM (direct access device space 
management) 

function of •••••••••.•••••••••••.••• 6,22 
use of •••••••••••••••••••••••••••••• 12 

Data control block (DCB) 
closing of •••••••••••••••••••••••••• 22 
construction of ••••••.•••••••••••• 11,23 
exit routine •.••••.••.••.••.•••••.•• 24 

22,23 
24,25 
23,24 

opening of ••••••••••••••••••••••• 
use of ••.••.••••••.•.•••.•••••••. 

Data extent block (DEB) ••••••••••••• 
Data movement •••••••••••••••••••••••• 
Data set control block (DSCB) 

6,22 

construction of ••••••••••••••• 11,23,24 
use of ••••••••••••••••••••••••••• 23,24 

Data set label ••••••••••••••••••••••••• 23 
DCB (data control block) 

closing of •••••••••••••••••••••••••• 22 
construction of •••••••••••••••••• 11,23 
exit routine ••••••••••.•••••••••••••• 24 
opening of ••••••••••••••••••••••• 22,23 
use of ••••••••••••••••••••••••••• 24,25 

DO statement ••••••••••••••••••• 8,11,12,23 
DEB (data extent block) ••••••••••••• 23,24 

Index 

Direct access device space management 
CDADSM) 

function of ••••••••••••••••••••••• 6,22 
use of •••••••••••••••••••••••••••••• 12 

Dispatcher ••••••••••••••••• 18,21,24,25,26 
DSCB (data set control block) 

construction of ••••••••••••••• 11,23,24 
use of ••••••••••••••••••••••••••• 23,24 

Dynamic allocation of storage •••••••••• 17 
Dynamic area of storage 

definition of ••••••••••••••••••••• 7,27 
use of •••••••••••••••••••••• 8,11,17,22 

ECB (see event control block) 
Error-handling routines 

use of ••••••••••••••••••••••• 7,8,22,25 
EXCP 

macro instruction ••••••••••••••••••• 24 
routine •••••••••••••••••••••••••• 25,30 

EXEC statement ••••••••••••••••.••••••••• 11 
Executor, access method ••••••••••••• 24,27 
Exit 

DCB ••••••••••••••••••••••••••••••••• 24 
routine •••••••••••••••••••• 18,21,25,30 

Fetch, program •.•••••••••••••••••••••• 5,23 

GET MAIN 
macro instruction ••••••••••••• 17,18,29 
routine •••••••••••••••••••••••••• 18,30 

Handler 
input/output 25 
program ••••••••••••••••••••••••••••• 19 
SVC •••••••••••••••••• 17,18,21,23,25,30 
(also see interruption handler) 

Hierarchy ••••••••••••••••••••••••••••• 8,9 

IEHPROGM utility program ••••••••••••••• 22 
Initiator/terminator 

function •••••••••.•••••.•••.•.••.•••••• 5,10 
operation •••••••••••••••••• 12,13,20,22 

Input job stream •••••••••••••••••• 5,10,11 
Input/output 

interruption •••.••••••••••••••• 17,18-19 
supervisor ••••••••••••••••. 6,8,22,24,25 
support •••••••.•••••••••••••••••••• 6,22 

Input/output block (lOB) ••••••••••••••• 25 
Interruption handlers •••••••••••• 17,18,19 

input/output •••••••••••••••••••••••• 25 
program ••••••••••••••••••••••••••••• 19 
SVC ••••••••••••••• 17,18,20,21,23,25,30 

Interruptions •••••••••••••••••••••••••• 17 
asynchronous ••••••••••••••••••••• 18-19 

lOB (Input/Output block) ••••••••••••••• 25 
IPL ••••••••••••••••••••••••••••••• 7,10,11 

33 



JFCB (Job file control block) ••••••• 11,23 
Job control table (JCT) •••••••••••••••• 11 
Job file control block (JFCB) ••••••• 11,23 
Job management routine ••••••••••••• 5,7,20 

function •••••.••••••••••..•••••••••• 10 
location ••••••••••••••••••••••••••• 7,8 
resident routine ••••••••••••••••••••• 7 

Job statement •••••••••••••••••••••••••• 11 
Job step ••••.•••••••••••••••••••• 5,7,8,10 

initiation of •••••••••••••••••••• 12,13 
termination of ••••••••••••••••••• 13,30 

Job stream •••••••••••••••••••••••• 5,10,11 

Label 
construction of 11 

11 use of •••••••••••••••••••••••••••••• 
Link 

macro instruction ••••••••••• 8,20,21,29 
routine •.••••••••••••••••••••. 20,21,30 

Linkage, superviSor assisted •••••••• 20,21 
Load 

button .............................. . 
,macro instruction 

11 
8,29 

Macro instruction 
ATTACH ••••••••••••••••••••••••• 8,20,29 
EXCP ••••••••••••••••••••••••••••• 25,29 
GETMAIN ••••••••••••••••••••••• 17,18,29 
LINK ••••• ' ••••••••••••••••••• 8,20,21,29 
LOAD .••••.••••.•••••••...••••••••• 8,29 
OPEN •••••••••••••••••••••••••• 23,24,29 
SPIE ••••••••••••••••••••••••••••• 19,29 
WAIT •..••••••••••••••••••••••••••••• 29 
XCTL •••••••••••••••••••••••• , ••• 8,20,29 

Main storage 
allocation of •••••••••••••••••••• 17,18 
contents of ••.••••••.••••••••••••.• 7,8 
divisions of ••••••••••••• ' •••••••••• 7,8 
loading nucleus into ••••••••••••• 10,11 
loading programs into •••••••••••• 20,21 
relation to data management ••••••• 5,22 

Master command routine ••••••••••••••••• 11 
Master scheduler •••••••••••••••••••••••• 7 

function •••••••••••••••••••••••••• 5,11 

NIP 
(nucleus initialization 
program) ••••••••••••••••••••••• 7,11,17 

Nonresident routines 
control program •••••••••••••• 7,8,17,27 
I/O error handling •••••••••••••••• 8,27 
SVC ••••••••••••••••••..•••••• 7,8,17,27 
TESTRAN •••••••••••••••••••••••••••••• 8 

Nucleus 
def inition of .................. ' .. . 
loading of .•.•••••••••.•••••••••• 
partitioned data set ••••••••••••• 
(also see SYS1.NUCLEUS) 

Nucleus initialization 

7,27 
10,11 
11,27 

program (NIP) •••••••••••••••••• 7,11,17 

Open 
function 

34 

6 

macro instruction ••••••••••••• 23,24,29 
operation ••••••••••••••••••••••••••• 11 
routine •••••••••••••••••••••••••• 23,24 

Operator commands •••••••••••••••••• 5,7,17 

Password protection ••••••••••••• '.. • • • •• 23 
Program area of storage ••••••••••••••••• 8 
Program interruption ••••• '. • • • • • • • • •• 17,19 
Program status word (PSW) 

loading of •••••••••••••••••••••••••• 20 
saving of •••••••••••••••••.•••.•••.• 21 

Queue, request block 21 

Reader/interpreter 
function •••.•••••••••••••••••••••• 5,10 
operation •••••••••.••••••••.•••••••. 10 

Request block (RB) queue ••••••••••••••• 21 
Resident access method (RAM) •••••••••••• 8 
Resident SVC modules •••••••••••••••••••• 8 
Restart functions ••••.••••••••••••••••• 10 

Scheduler (see master scheduler) 
Step (see job step) 
SVC 

instruction •••••••••• 17,18,20,21,25,29 
interruption •••••••••••• 17,18,21,23,25 
interruption 
handler ••••••••••• 17,18,20,21,23,25,30 

transient area •••••••••••••• 8,17,22,23 
SYS1.LINKLIB ••••••••••••••••••••••• 7,8,27 
SYS1. NUCLEUS •••••• '. • • • • • • • • • • • • • •• 7,11,27 
SYS1.SVCLIB ••••••••••••••••••••• 7,8,23,27 

Task input/output table (TIOT) • • • • • • • • •• 8 
Task management •••••.•••••••••.••••.•• 
Termination 

abnormal •••.••••••••.•••••..••••••.• 
of I/O operations ••••••••••••••••••• 

5,7 

13 
25 

TESTRAN ••••••••••••••••••••••••••••••••• 8 
SVC routine ••••••••••••••••••••••••• 

TIOT (task input/output table) •••••••••• 
31 

8 
Transient area •• '. • • • • • • • • • • • • • • • • • • • • • •• 8 

definition of ••••••••••••••••••••• 8,27 
I/O supervisor ....... ,. . . . . . . • • . . . . . .. 8 
SVC ••••••••••••••••••••••••• 8,17,22,23 

User-written routine 12,19,27 

Volume 
label 
system residence •••••••••••••••••••• 
table of contents (VTOC) •••••••••••• 

Wait 
macro instruction ••••••••••••••••••• 
routine •••••••..••• p •••••••••••••••• 

state 

11 
11 
11 

29 
30 
10 





READER'S COMMENT FORM 

mM System/360 Operating System 
Introduction to Control Program Logic 

• Is the material: 
Easy to read? 
Well organized? 
Complete? 
Well illustrated? 
Accurate? 
Suitable for its intended audience? 

• How did you use this publication? 
o As an introduction to the subject 
o For additional knowledge 

Other 

• Please check the items that descrihe your position: 

Yes 
o 
o 
o 
o 
o 
o 

No 
o 
o 
o 
o 
o 
o 

GY28-660S-4 

. 0 Customer personnel 0 Operator o Sales Representative 
o IBM personnel 0 Programmer 
o Manager 0 Customer Engineer 
o Systems Analyst 0 Instructor 

o Systems Engineer 
o Trainee 
Other 

• Please check specific criticism ( s), give page number(s), and explain below: 
o Clarification on page ( s ) 0 Deletion on page ( s ) 
o Addition on page ( s ) 0 Error on page ( s ) 

Explanation: 

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



GY28-66054 

YOUR COMMENTS PLEASE . . . 
This publication is one of a series which serves as reference for systems analysts, program­
mers and operators of IBM systems. Your answers to the questions on the back of this 
form, together with your comments, will help us produce better publications for your use. 
Each reply will be carefully reviewed by the persons responsible for writing and publish­
ing this material. All comments and suggestions become the property of IBM. 

Please note: Requests for copies of publications and for assistance in utilizing your IBM 
system should be directed to your IBM representative or to the IBM sales office serving 
your locality. 

Fold Fold 
, ............................................................................................................................................................................................................ ,. ........................ : 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A. 

Attention: Progromming Systems Publicotions 
Department 058 

POSTAGE Will liE PAID BY 

IBM Corporation 

P.O. Box 390 

Poughkeepsie, N.Y. 12602 

FIRST CLASS 
PERMIT NO. 81 

POUGHKEEPSIE, N.Y. 

................................................................................................................................................................................. ,. .................... a ........ .. 

Fold 

Internetional Bu.in •• s Machine. COl'poration 
Data Proceeaing Divieion 
1133 Westcheater Avemae, White Plains, Ne. York 10604 
IU.S.A. only) 

IBM World Trade COl'poration 
821 United Nations Plaza, New York, Ne. York 10017 
Iintemational) 

Fold 



GY28~605-4 

Intemallonal Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, WhHe Plains, New York 10604 
(U.S.A. only) 

IBM World Trade CorporaUon 
821 United Nations Plaza, New York, New York 10017 
(International) 


