
File No. S360-30
Form Y28-6606-l

Program Logic

IBM System/36D Operating System

Catalog Management

Program Number 360S-DM-508

This manual provides detailed information on catalog
management routines. These routines record
identification of volumes used by data sets by
maintaining information in logical records called
indexes. The functions and structures of the routines
are described, as are their relationships to other
portions of IBM System/360 Operating System. This
manual also describes the structure of catalog data
sets that contain the indexes processed by catalog
management routines. It is intended for use by persons
involved in program maintenance, and system programmers
who are altering the program design. Program logic
information is not necessary for the use and operation
of the program; therefore, distribution of this
publication is limited to those with the aforementioned
requirements.

RESTRICTED DISTRIBUTION--SEE ABSTRACT

PREFACE

This pUblication provides customer
engineers and other technical personnel
with information describing the internal
organization and logic of the catalog
management routines. Publications that
contain external information about the
catalog and its use are:

IBM System/360 operating :.*'t~1l}; .
Supervisor and Data Management Serv1ces,
Form C28-6646

IBM System/360 operating System
System Programmer's Guide, Form C28-6550

Some publications describing other
aspects of the operating System are
referred to in the text. 'I'hese are:

IBM System/360 operating system
Direct Access Device Space Management,
Form Y28-6607

IBM System/360 operating system
Seguential Access Methods, Form Y28-6604

This manual is divided into eight major
sections with three appendixes.

The Introduction describes the catalog
management routines and the catalog as they
relate to the rest of the Operating System.

The catalog Data Set section describes
the structure and organization of the
catalog data set. An understanding of this
data set is a prerequisite for an

Second Edition (July, 1969)

understanding of the routines usej to
access and modify it.

The Method of Operation section
describes the logical fUnctions of the
catalog management routines.

Tne Program Organization section
describes each module of the routines in
detail, with particular emphasis on the
differences between the actual code
involved and the logical fUnctions of the
routines.

The Directory is a chart that enables
the reader to find a section of code, a
flowchart, or a text reference, given any
one of the three.

The Data Area Layouts section describes
in detail each of the catalog entries and
also the user's parameter list.

The Diagnostic Aids section contains
charts of register usage at variou3 stages
in catalog processing and of the factors
involved in Jetermining which module gets
control when.

The three appendixes contain detailed
flowcharts, a diagram of the device type
iield found in data set pointer entries and
CVOL pointer entries, and a descrip.tion of
a CVOL pointer entry which is no longer
created by catalog but which may still
exist in some installations.

This publication corresponds to Release 18. It is a major
revision of, and obsoletes, Y28-6606-0 and Technical
Newsletters Y26-8013 and Y26-8020.

This revision is a complete rewrite of the original
publication. The organization has been completely revised,
the text has been rewritten, and most of the figures have
been changed. This edition also reflects the addition of a
new module, IGGOCLC6, to the catalog management routines.
This module performs some of the functions previously
performed by IGGOCLC2.

Specifications contained herein are subject to change from
time to time. Any such change will be reported in sUbsequent
revisions or technical newsletters.

This publication was prepared for production using an IBM
computer to update the text and to control the page and line
format. Page impressions for photo-offset printing were
obtained from an IBM 1403 Printer using a special print
chain.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form is provided at the back of this publication for
reader's comments. If the form has been removed, comments
may be addressed to IBM Corporation, Programming
Publications, Department D78, San Jose, California, 95114.

€VCopyright International Business Machines Corporation 1969

..

I

INTRODUCTION • • • • • • • • • • • • •• 1
Organization by Level of Qualification. 1
Generation Data Group Strucuture • • •• 1
Control Volumes ••• • • • • • • • •• 1
calling the catalog Management Routines 2

CATALOG DATA SET •
Physical Blocks
Index Levels • •
Index Entry Types

METHOD OF OPERATION
Housekeeping Functions

Maintaining catalog Integrity
Opening the Catalog Data Set •

Locate FWlction • • • • • • • •
BLDX, LINKX, and BLDG Functions
catalog and RECAT Functions

4
4
4
8

• 10
• • 10
• • 10
• • 10
• • 10
• • 11
• • 11
• • 11 BLDA Function • • • • • • • • •

DLTX, DLTA, DRPX, UNCAT Functions
The CVOL Routines • • • • • •

• • • 12

Open Routine • •• • • • •
Extend Routine • • • • • • • •
Formatting Routine

• • 12
• 12

12
• • 12

PROGRAM ORGANIZATION • • • 13
Initialization and Housekeeping: MOdule
IGC0002F • • • • • • • • • • • • • 13
Locate: MOdule IGGOCLCl •• • • • • • • 13

I FIGURES

Figure 1. A Control Volume Connected
to the system Residence Volume
Figure 2. Functions of the catalog
Management Routines •• • •
Figure 3. Typical Block in the
Catalog • • • • • • • • • •
Figure 4. Logical Organization of
the Catalog: Normal Index structure
Figure 5. Logical Organization of
the Catalog: Generation Indexes and
volume Control Blocks • • • • •

2

3

4

5

6

iii

CONTENTS

Index/catalog, Normal structure:
Modules IGGOCLC2, IGGOCLC3, and
IGGOCLC6 • • • • • • • 15

IGGOCLC2 ••• • • 15
IGGOCLC6 • 15
IGGOCLC3 • 15

Locate Generations: Module IGGOCLC4 •• 16
catalog Generations: Module IGGOCLC5 •• 16
The CVOL Routines: Modules IGC0002H and
IGGOCLF2 • • • • • • 17

IGC0002H • • • • • • 17
IGGOCLF2 •••• • 17

DIRECTORY

DATA AREA LAYOUTS
Catalog Entries
User's Parameter List

DIAGNOSTIC AIDS
Module Selection Chart
Register Usage •

APPENDIX A: FLOWCHARTS

APPENDIX B: OLD CVOL POINTER

APPENDIX C: DEVICE TYPE FIELD

INDEX

Figure 6.
the Catalog
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.

Physical Organization of

Index Entries •• • •
catalog Module Flow
Directory • • • •
Catalog Entry Formats
More catalog Entry Formats
User's Parameter List
Module Selection Chart
Register Usage

• 19

• 20
• 20

25

• 27
• 27
• 28

• 30

49

50

• 51

7
9

• 14
• 19
• 21

22
• 26

27
• 29

This page intentionally left blank.

I

iv

Catalog management is the facility of
the Operating System for locating data sets
when the user specifies only the data set
names. The catalog, itself a data set
(DSNAME=SYSCTLG), contains data set names
correlated with volume and device type
information. The catalog management
routines supervise the organization of the
catalog, insert, remove, and locate entries
in the catalog, and forn,at new catalogs and
partitioned data set directories.

ORGAlUZATION BY LEVEL OF QUALIFICATION

operating system data set names may be
either simple or gualified. A simple name
is a collection of up to eight EBCDIC
characters. A qualified name is a
collection of simple names separated by
periods (.) with a total length of up to
44 bytes.

Catalog management uses the periods in a
qualified name as delimiter~ and uses the
simple names (called qualifiers) as index
names. The catalog is divided into
indexes, each of which represents one level
of qualification of a qualified name.
Since the catalog management routines can
ouild or update only one index at a time,
all levels of a data set name except the
lowest one must exist before the data set
can oe cataloged or before a new index can
be built. If the user wishes to catalog a
data set called A.B.C, for example, he
would have to create index A first, then
index A.B, and then he would have to
catalog data set A.B.C.

The highest level index, called the
volume injex, is ouilt automatically the
first time a new catalog is used by the
catalog management routines.

GENERATION DATA GROUP STRUCUTURE

The same structure is used to maintain
generation data groups. A generation data

INTRODUCTION

set may be referred to by its absolute name
(e.g., A.B.C.G0006VOO) for any catalog
functions, or by a relative generation
number (e.g., A.B.C(-2)) for the locate
function. The catalog management routines
keep only the specified number of entries
in the generation index (index ·C· in this
case), deleting older ones and adding new
ones when necessary, and emptying the index
and deleting the data sets themselves if
the user specified the EMPTY or DELETE
options when he created the generation
index.

For a description of the use of
generation data groups, see IBM system/360
operating system Supervisor and Data
~anaqement Services, C28-6646.

CONTROL VOLUMES

Any direct access volume may contain a
catalog; any such volume is called a
control volume (CVOL). The system
residence volume always contains a catalog.

An item in the catalog of a CVOL other
than tne system residence volume can be
made available to the system if the CVOL is
"connected" to the system residence volume.
To connect a CVOL to the system residence
volume, the catalog management routines
insert a control volume pointer entry into
the volume index of the catalog on the
system residence volume. This entry
contains, in its name field, the name of a
high level index which already exists on
the CVOL to be connected. (see Figure 1.)

Any search of the catalog always starts
on the system residence volume, but if the
catalog management routines encounter a
control volume pointer entry attached to
the highest level of the name in the volume
index, they continue the search for the
fully-~ualified name on the specified CVOL.

Introduction 1

Index
B

System Residence Volume

Volume Table of Contents

Volume Serial
Number of

Control Volume

Index
E

Index
A

Control Volume

Volume
Number

of ILl

Dota
Set

E.A.L

Volume Table of Contents

Volume
Index
DSCB

Volume Index

E : Pointer to
I Index E

P:
Volume
Number

I of P

Data
Set

E.A.P

Figure 1. A Control Volume Connected to the System Residence Volume

CALLING THE CATALOG MANAGEMENT ROUTINES

Tne catalog management routines are
accessed through three assembler language
macro instructions: LOCATE, INDEX, and
CATAI.OG. The macro instructions generate a
reference to a parameter list, which the
user must build, and an SVC 26 instruction.
The user's pararr.eter list contains a group
of flags that indicate what function he is
asking the catalog management routines to
perform. Figure 2 summarizes these
functions, and the section "Data Area
Layouts" contains a detailed description of
the user's parameter list.

2

The catalog management macro
instructions are most commonly used by the
utility IEHPROGM and the job scheduler,
although they mat be employed ny any user
of assembler language. IEHPROGlv1 creates
and deletes indexes, aliases, and
generation indexes, and catalogs and
uncatalogs data sets according to
specifications supplied by tne user of
IEHPaOGM. The job schedUler calls the
catalog management routines when it must
locate a data set, given only its name, or
when the DISP parameter on a DD card is
CATLG or U~CATLG.

I

r--, 1 FUNCTION ABBREVIATION· I
1--1---------------I
1 I I
I LOCATE a data set by name I NAME I
I a block in the catalog by TTR I BLOCK I
~--+---------------i
1 1 I
1 BUILD a normal index I BLDX I
1 a generation index I BLDG I
I an alias to a high-level index I BLDA I
~--+---------------i
I I I
I DELETE an index I DLTX 1
I an alias 1 DLTA I
~--+---------------i
I I I
I CONNECT two control volumes I LINKX I
~--+---------------i
I I 1
I DISCONNECT two control volumes 1 DRPX 1
~--+---------------i
I I I
1 CATALOG a data set 1 CATALOG I
~--+---------------i
I 1 I
1 UNCATALOG a data set I UNCAT I
~--+---------------i
1 I I
I RECATALOG a data set (change the volume I RECAT 1
1 serial number associated with an 1 I
1 already cataloged data set) I I
~--~---------------i
1 1
1 *The abbreviations here are used in the comments of the 1
1 source code to indicate what operation the user requested I
I I L ___________________ ---__ J

Figure 2. FUnctions of the catalog Management Routines

Introductiol'l 3

CATALOG DATA SET

Physically, a catalog is arranged in
blocks with keys. Logically, it is
arranged in index levels. This section
will describe the catalog's physical
organization briefly and its logical
organization in detail.

PHYSICAL BLOCKS

The physical organization of the catalog
is identical with that of a partitioned
data set directory.

A catalog data set is formatted into
256-byte blocks with a-byte keys. Each
block contains a 2-byte count field, which
contains a number indicating how many bytes
are used in this block (including this
count field).

The keys of catalog blocks are always

X'FFFFFFFFFFFFFFFF', or
X'OOOOOOOOOOOOOOOO'.

A high key indicates that the block
contains information, and a zero key
indicates that the block is available for
new entries. The keys are present because
the catalog routines use the BLDL routine
(IECPBLDL) to read the catalog. The BLDL
routine expects to find 256-byte records
with a-byte keys. It ignores blocks with
keys of zero.

C Control Data Set Index Data Set Index
0 Entry Pointer Pointer Pointer Link
U Entry Entry Entry Entry
N
T

See Figure 3 for an illustration of a
typical block in the catalog.

INDEX LEVELS

The catalog is organized into a series
of indexes or levels. The highest level,
called the volume index, is initialized by
the catalog management routines when the
catalog data set is first opened.

Entries in each index are in standard
EBCDIC collating sequence by their name
fields.

The volume index is all that is required
to catalog simple names. It also is the
only index that may contain control volume
pointer entries (pointers to another
catalog> or alias entries. Lower level
indexes are required to catalog qualified
names, one index for each level of
qualification except the last.

To illustrate the organization of
indexes, consider the simple data set name,
'DSET' (Figure 4). If this were cataloged,
only one entry would be made in the
catalog: a data set pointer entry in the
volume index. However, a two-level name,

Meaningless
Data

... :J----- Length in bytes = COUNT --------1 1 I
~~~-------------------------256bytes------------------.~ 

Figure 3. Typical Block in the Catalog 

4 

I 



Volume Index: 
Data Set Index 

Painter Entry Pointer Entry --------- ~ •• , 
Volume Index 
Control 

,I 
Variaus Pointer Entries 
with Name Value < 
'DSET' 

Name I Volume Vorious Pointer Entries Nome I TTR of Various Pointer Entries 
with Name Value 

Entry 
'DSET' I Serial and with Name Value < 'SYSI' I Index 

I Device 'SYSI" and> 'DSET' I > 'SYSI' 
I Type i 

~----------~----~,r--------L------~------~------~I'r-------~----~--------~------4Ir-----~ 

Data Set 
Pointer Entry Index 'SYSI' 

..------------,-----.....( • • \-------,r"'~===,::::: I===::::::T------I~ '1'-------, 

Index Various Pointer Entries Name I Volume Various Pointer Entries 
Control with Name Value < 'PROCLlB'I Serial and with Name Values 
Entry 'PROCLlB' Device > 'PROCLlB' 

I Type 
L-__________ ~ ______ ~.~~------~----~L-------~----~,~------~ 

Figure 4. Logical Organization of the catalog: Normal Index structure 

such as SYS1.PROCLIB requires another 
index. To catalog this name, two entries 
would have to be made: an index pointer 
entry with name 'SYS1' and a data set 
pointer entry with name 'PROCLIB'. 

The periods (.) in a data set name act 
as level delimiters. The characters to the 
left of the first period are assumed to 
indicate a name in the volume index, the 
next level is assumed to be the name of an 
entry in the index indicated by the pointer 
in the volume index, and so on, until the 
last level is a name in the lowest level 
index and is associated with a data set 
pointer entry or volume control block 
pointer entry. 

A data set pointer entry and a volume 
control block both contain volume serial 

numbers and device type information for the 
catalog data set. A data set pointer entry 
can contain only five volume serial 
numbers, while a chain of volume control 
blocks can describe any number of volumes. 

A generation data group index contains 
data set pointer entries and volume control 
block pointer entries. Figure 5 shows how 
a catalog containing generation data group 
indexes and volume control blocks might 
look. This sample'catalog lists generation 
data sets named nWEEKLY.INVNTRY.GnnnnVxxn 
to illustrate generation indexes, and a 
data set named nLOTSA.VOLUMES n to 
illustrate volume control blocks. 

The Catalog Data set 5 



Volume Index: 
r------------r------~Lr_----_T------_r------~r_~~--~----~--------~----~~----~ , 

Volume Index 
Control Entry 

Nome 
'WEEKLY' 

TIR of 
Index 

~~f------~~------~--------~~~~--L-------~--------~~-----l,':--------J 

Index WEEKLY 
GOG Index Pointer Entry ---------

Index Control 
Entry 

Index INVNTRY 

Index Control 
Entry 

, , 
I I 
I I 

Name I TTR of I Flags 
'INVNTRY'I Index 

I I 
I I 

Data set and/or VCB pointers of the form 'GXXXXVNN' 
where XXXX is the complement of the true generation 
number. Pointers are in order of name value. 

I , 

, 

~----------~------------------------------------~----------------~'r---------------~ 

Index LOTSA 

Index Control 
Entry 

Pointer entr:es with Name : TIR of 
nome value < 'VOLUMES' 'VOLUMES' I VC B 

Pointer entries with 
name value >'VOLUMES' 

I 
I 

~ ____________ ~ ________ ~,~,------~~-------4------~~------------~I~------------~ 

Volume Control Block 
I 

~. 
, , 

0 Serial No. Serial No. Serial No. 
f and device and device and device 

Serial No. 
and device Pointer to next VCB or zero if 

V Type of Type of Type of ... 
0 Volume I Volume 2 Volume 3 
I 

.. ... Type of no more VCB's. 
Volume n 

s. 
, 

Figure 5. Logical Organization of the Catalog: Generation Indexes and Volume Control 
Blocks 

Indexes may span blocks, but one block 
may not contain more than one index, or 
parts of more than one index. The last 
entry in each index block is called an 
Index Link Entry. (See Appendix B for 
specific fields.) If the block is the last 
one in an index, the pointer field of the 
link entry contains zeros. If the index is 

b 

continued in another block, the pointer 
field of the link entry contains the TTR of 
the next block in the index. These link 
entries are present even when the several 
blocks of an index are contiguous (See 
F.igure 6). 

I 



Volume Tobie of Contents 

Volume Lob 

Formot 1 
Formot 4 Formot 5 Various DSCB's DseB for Various DseB's el DseB DSCB 'SYSCTLG' 

J 

~ SYSCTLG Data Set 

I ~~es 11""4-----------256 bytes of data ------------------+1-, 

~{:J Volume In 

Volurpe 
Index 
(Cont.) 

r 

"-

Index 'AAA 
, 

G 

G 
Volume In 
(Cont.) ~'G 

"" 

C 
Volume 0 

U Index 
Control N 

T Entry 

C 
0 
U 
N 
T 

C 
0 Index 
U Control 
N Entry 
T 

C 
0 
U 
N 
T 

ITTR ITTR 
Various Pointer Entries Namel f Various Pointer Name 1 f Meaningless Data 'AAA' 0 Entries X 'FF' 0 

1'003' 1'002' 

I I 

.J 

./ 

1 TTR 
Various Pointer Entries Namel f Meaningless Data 

X 'FF'I ?O04' 

\ 

ITTR 
Various Pointer Entries Name 1 Meaningless Data X 'FF' of 

1'000' 

ITTR 
Name 1 Various Pointer Entries 
X 'FF' ?~, Meaningless Data 

I 

~~-. GI ~~-TI~------------M-e-OO-i-ng-le-SS-D-a-~------------~ 
-.I !'-Count field 2 bytes 

Figure 6. Physical organization of the catalog 

'\ 

The catalog Data set 7 



INDEX ENTRY TYPES 

An index always contains one control 
entry and any number of pointer entries. 
The control entry is always the first entry 
in the index (see Figure 6), and its 
position here is assured by giving it a 
name field of value X'1'. There are two 
types of control entries: volume index 
control entries and normal index control 
entries. The gene~al information about 

8 

these entries is given in Figure 7, while 
specific information about fields and their 
values is given in the section "Data Area 
Layouts." 

There are several types of pointer 
entries. A s~ry of each type and the 
information it contains is given in Figure 
7, while specific information about exact 
placement of fields, etc., is given in the 
section "Data Area Layouts." 

I 



r------------------T----------------------------------------------------, I ENTRY TYPE I CONTENTS I 
~-------------------+----------------------------------------------------~ I Alias Entry I Contains the name of the alias, a pointer to I 
I I the next lower level index, and the true name. I 
~-------------------+----------------------------------------------------~ 
I CVOL Pointer I Contains the name of a high level index and a I 
I Entry I pointer to the control volume on which this I 
I I index may be found. I 
~-------------------+----------------------------------------------------~ 
I Data set I Contains the lowest level of the data set name I 
I Pointer Entry I and up to five entries specifying volume I 
I I serial numbers and device codes for the volumes I 
I I of the data set. I 

~-------------------+----------------------------------------------------~ 
I Index Control I Contains the address of the last block in this I 
I Entry I index, the address of the first block (the I 
I I address of the block which contains this I 
I I entry), a count of the number of unused bytes I 
I I in the last block of this index, and a count I 
I I of the number of aliases to this index. I 

~-------------------+----------------------------------------------------~ 
I Generation Index I Contains the name of the generation index, the I 
I Pointer Entry I number of entries to be maintained in the I 
I I index, the number of entries currently in I 
I I the index, codes for "delete" and "empty" I 
I I options, and a pointer to the index. I 
~-------------------+----------------------------------------------------~ 
I Index Link I contains a name field of X'FFFFFFFFFFFFFFFF', I 
I Entry I and a zero to indicate the end of this index, I 
I I or a pointer to the next block in this index. I 
~-------------------+----------------------------------------------------~ 
I Index Pointer I Contains an index name and a pointer to the I 
I Entry I named index. I 
~-------------------+----------------------------------------------------~ 
I Volume Control I Contains an indication of the number of I 
I Block I volumes named in the block and a list of the I 
I I volume serials, device type codes, and data I 
I I set sequence numbers of these volumes, plus a I 
I I pointer to the next volume control block, or I 
I I a zero to indicate end of chain. I 
~-------------------+----------------------------------------------------~ 
I Volume Control I Contains the lowest level of the data set I 
I Block Pointer I name and a pointer to the volume control block I 
I Entry I which describes the volumes of this data set. I 
~-------------------+----------------------------------------------------~ 
I Volume Index I Contains the address of the last block in the I 
I Control Entry I volume index, the address of the last block in I 
I I the SYSCTLG data set, and the address of the I 
I I first available block in the SYSCTLG data set. I 
I I It also contains a count of the number of I 
I I unused bytes in the last block of the volume I 
I I index. I L ___________________ ~ ___________________________________________________ J 

Figure 7. Index Entries 

The catalog Data Set 9 



METHOD OF OPERATION 

This section describes the operation of 
each logical function of the catalog 
management routines. Since many of the 
fUnctions are quite similar to each other, 
several of these functions have sometimes 
been combined into one section. The 
sequence of events described in this 
section is the actual sequence af events 
performed by the routines. However the 
division of the routines into modules does 
not necessarily correspond to the division 
of fUnctions used in this section. 

HOUSEKEEPING FUNCTIONS 

Before actually beginning to search or 
update the catalog, the catalog management 
routines must perform some initialization. 
This initialization does two things: 

• It protects the integrity of the 
catalog. 

• It opens the catalog data set. 

MAINTAINING CATALOG INTEGRITY 

Since the catalog management routines 
were designed to operate in 
multiprogramming or multiprocessing 
environments, they must perform certain 
fUnctions to ensure the integrity of the 
catalog with many jobs and CPUs vying for 
the use of the SYSCTLG data set. The first 
thing the program must do, therefore, is to 
protect the catalog from being modified by 
another user before this particular 
modification or search is completed. 

To do this, the catalog management 
routines issue the RESERVE and ENQ macro 
instructions immediately after receiving 
control. The RESERVE macro reserves the 
device containing the ,control volume that 
the present use of the catalog management 
routines is searching or modifying. This 
is necessary in a multiprocessing 
environment where another CPU might try to 
access or modify the catalog before the 
search or update was complete. The ENQ 
macro instruction informs the Operating 
System that this use of the routines must 
complete before another can begin. This 
prevents other programs under control of 
the same CPU from accessing the catalog 
while it is being modified and from 
attempting to modify while it is being 
modified. 

10 

Since these routines are reenterable, 
they cannot store within themselves. They 
issue a GETMAIN macro instruction for some 
storage area within the user's region. 
This area is freed when the catalog 
routines terminate either normally or 
abnormally. If storage is not available, 
the calling task is abnormally terminated. 

OPENING THE CATALOG DATA SET 

To ready the catalog data set for 
reading and writing, the catalog management 
routines do not use the data management 
open routine (SVC 19). Instead they have a 
special open function called through an SVC 
28. This routine builds a data extent 
block and a data control block so that the 
catalog routines can use the BLDL and EXCP 
routines. For a more detailed discussion 
of the open routine, see the section "The 
CVOL Routines." 

The catalog open routine is called 
before each seprch of a catalog. If a 
search encounters a control volume (CVOL) 
pointer entry, the old CVOL is closed and 
the new one is opened. 

LOCATE FUNCTION 

Regardless of the particular object of 
one use of the catalog routines - whether 
the user wishes to modify the catalog or 
just locate a data set - the program always 
first tries to locate as much of the 
user-supplied name as possible. 

The locate routine uses the resident 
BLDL routine (IECPBLDL) to search the 
catalog for the user-supplied name. This 
search always begins with the volume index. 
BLDL returns the entry with the desired 
name field, locate examines it, and calls 
BLDL again to find a lower level index or 
returns to the caller (function requested 
is locate) or passes control to another 
phase (function is anything but locate). 

The locate portion of the program then 
passes an error code to other portions to 
indicate how much of the name was found. 

I , I' 



BLDX, LINKX, AND BLDG FUNCTIONS 

These functions are quite similar to 
each other. First. locate finds as much of 
the user-supplied name as possible and 
notes how much of the name it found and 
what kind of entry it found at the lowest 
level. If anything in the locate process 
is inconsistent with the function 
requested, the index/catalog portion of the 
program frees all its core, dequeues, and 
passes a nonzero return code to the caller. 

For example, assume that a user wished 
to catalog data set 'A.B.C'. Locate would 
first search the catalog to find the data 
set pointer entry, and would pass a zero 
error code to index/catalog if it found the 
entry. Index/catalog would immediately 
return with an error code to the caller 
because it cannot catalog a name that has 
already been cataloged. If locate 
indicated that it had found A.B, but not C, 
and that it had found an index pointer 
entry at B, then index/catalog would update 
the index by inserting the new pOinter 
entry. 

If the request is to build an index 
(BLDX), index/catalog first finds an 
available block in the catalog and 
initializes it as an empty index. To do 
this, it creates an index control entry and 
an index link entry with a pointer field of 
zero, and writes a high key 
(X'FFFFFFFFFFFFFFFF') for the new index 
block. 

A new index pointer entry must then be 
inserted in the next higher level index. 
To do this, index/catalog searches the 
index until it finds an entry which has a 
name field with value higher than that of 
the new index pointer entry and which is 
not an index link entry with a nonzero 
pointer field. When it finds such an 
entry, it inserts the pointer to the new 
index and rewrites the rest of the index. 

The injex always must be completely 
rewritten because the insertion of the new 
entry may cause the chain of index blocks 
to break differently. 

LINKX is just like BLDX, except that a 
CVOL pointer is created instead of an index 
pointer. 

BLDG is similar, except that the index 
pointer entry contains the appropriate 
generation counts and flags. 

CATALOG AND RECAT FUNCTIONS 

To catalog a data set, the program does 
very much the same thing as when the 
function is BLDX or BLDG except that: 

• No new index is created. The new data 
set pointer entry is simply inserted at 
the appropriate place in the existing 
index. 

• If the data set to be cataloged resides 
on more than five volumes, one or more 
volume control blocks (VCBs) must be 
created. The creation of this block 
resembles the creation of a new index 
very closely, except that instead of a 
new index, a new VCB is created. 

To catalog a data set that is part of a 
generation data group (GDG), the routines 
must first find the absolute generation 
number if only the relative generation 
number was given. First, the latest entry 
in the index is found. This entry will be 
the first one in the index even though it 
has the highest generation number, because 
the catalog stores generation numbers in 
complement form. Then the given relative 
generation number is added to or subtracted 
from the found generation number to give 
the desired true generation number. 

The given name is now compared with the 
present entries in.the catalog to check for 
duplications, and the new name is inserted 
as any other Data set Pointer Entry or VCB 
Pointer Entry. The generation count is 
updated, and, if necessary, the oldest 
entry in the index is removed. The flags 
of the generation index pointer entry are 
checked to see if the index must be emptied 
or if any data sets must be deleted. If 
any data sets have to be deleted, the 
routines transfer control to the Delete 
routine of DADSM by issuing an SVC 29. 
(For a discussion of the Delete routine see 
IBM System/360 Operating system Direct 
Access Device Space Management, Y28-6607.) 

For RECAT, the routines uncatalog the 
old data set, then catalog the new, as 
above. 

BLDA FUNCTION 

The BLDA fUnction is basically similar 
to the BLDX function, except that BLDA only 
creates a pointer entry: it ouilds no new 
index. 

Locate finds the name for which an alias 
is being built, and checks to be sure it is 
a high-level name. If it is, the routines 
read tne block containing the high-level 

Method of Operation 11 



name, add one to the entry alias count, and 
rewrite the block. 

The routines then create an alias entry 
and insert it in alphameric order into the 
volume index. The volume index is 
reorganized as for BLDG and BLDX. 

DLTX, DLTA, DRPX, UNCAT FUNCTIONS 

The sequence of operations to delete an 
index or an alias or to uncatalog a data 
set or disconnect control volumes is 
basically similar to the other functions 
involving reorganization of the catalog: 

1. The catalog is searched for the 
user-supplied name. In this case the 
entire name must be found. 

2. If a pointer entry is deleted, the block 
it points to must also be deleted. In 
the case of UNCAT, a VCB may have to be 
freed. With DLTX, an index block always 
has to be freed. with DLTA and DRPX, no 
blocks should have to be freed unless 
deleting the pointer makes the volume 
index enough shorter that it takes up 
fewer blocks than before. 

3. To delete a block, the program writes a 
zero key for that block. The data 
inside the block remains unchanged. The 
program recognizes any block with a zero 
key as a free block. 

4. The index from which the entry was 
deleted is reorganized just as when a 
new entry is added. 

THE CVOL ROUTINES 

The CVOL routines open or extend the 
SYSCTLG data set, format new catalogs or 
extensions of old catalogs, and format 
partitioned data set (PDS) directories. 

The routines receive from their callers 
the address of the Unit Control Block (UCB) 
of the device containing the data set to be 
opened or extended, and a parameter 
indicating whether the request is to open a 
catalog, to extend a catalog, or to format 
a PDS directory. 

OPEN ROUTINE 

If the request is to open a catalog, the 
routines build a data extent block (DEB) 

12 

and a data control block (DCB) for the 
SYSCTLG data set using information from the 
unit control block (UCB) and volume table 
of contents (VTOC> of the volume being 
opened. If no space has been allocated for 
the SYSCTLG data set, an error code is 
returned to the user. 

The Format 1 data set control block 
(DSeB) for the catalog data set has a 
format switch which indicates whether this 
SYSCTLG data set has been previously 
formatted. If the switch shows that the 
data set has not been formatted, the open 
routine passes control to the formatting 
routine. otherwise, it returns to the 
caller. 

EXTEND ROUTINE 

To extend the data set, the CVOL routine 
transfers control to the Extend routine of 
Direct Access Device Space Management. 
This routine extends the data set by 
updating the VTOC (provided a secondary 
allocation quantity was specified when 
space for SYSCTLG was initially allocated), 
and transfers control to the formatting 
routine. The formatting routine formats 
the extension, but does not initialize a 
volume index, since there 'is already one 
present. It does, however, update the 
Volume Index control Entry to show the 
extra space. 

FORMATTING ROUTINE 

The formatting routine formats the 
allocated space into 256-byte records with 
a-byte keys, and initializes the volume 
index with a volume index control entry and 
an index link entry with a zero pointer 
field. The key of this block is set to 
X'FFFFFFFFFFFFFFFF' while the keys of all 
the other blocks are set to zero. It sets 
the format switch in the DSCB to indicate 
that the data set has been formatted and 
returns to the caller. 

To format a partitioned data set (PDS) 
directory, only the formatting routine is 
used. The open routine immediately passes 
control to the formatting routine. 

Formatting takes place in the same 
general way as for SYSCTLG data sets, with 
256-byte records and a-byte keys. Instead 
of initializing a volume index, however, 
the routine initializes the first block as 
an empty PDS directory. 

I 



The catalog management modules are 
designed to fit in the 1024-byte transient 
areas of the nucleus. They are 
reenterable. In general, the modules pass 
control from one to the other through the 
XCTL macro instruction, although they 
sometimes use SVcs. The following 
discussion will enlarge upon the Method of 
Operation section by discussing the 
routines module by module. Figure 8 shows 
the relationships among the catalog 
management routines and between the catalog 
management routines and other parts of the 
Operating System. 

NOTE: In this discussion, the term 'write' 
always refers to the use of an EXCP macro 
instruction. 'Read' generally refers to 
the use of the resident routine IECPBLDL, 
but the modules occasionally use channel 
programs here, also. 

IECPBLDL, the resident BLDL routine, is 
accessed by the catalog management routines 
through the communication vector Table 
(CVT). The routines find the address of 
IECPBLDL in the CVT, put the address of the 
catalog DCB in register 1 and the address 
of the BLDL list in register 0, and execute 
a BALR to the BLDL routine. For the 
functions of the BLDL routine, see IBM 
Systeml360 operating system seguentIal 
Access Methods, Y28-6604. 

INITIALIZATION AND HOUSEKEEPING: MODULE 
IGC0002F 

Entry to the catalog management 
routines, except the open routine, is 
through an SVC 26, which gives control to 
this module. The module issues an ENQ 
macro instruction on the name 'SYSCTLG' to 
protect against simultaneous modifications 
of the catalog in a multiprogramming 
environment and gets main storage for the 
open routine. It searches the unit control 
block (UCB) table to find the UCB of the 
specified control volume (CVOL) or the 
system residence device (if no CVOL was 
specified) to pass on to the open routine, 
and then reserves the CVOL (if it is not 
the system residence device> to prevent 
accesses by another CPU. It then calls the 
catalog open routine with an SVC 28. It 
cheCKS the return code from open, and, if 
no error has occurred, it requests the 
appropriate amount of storage for locate or 
index/catalog, via GETMAIN, and transfers 
control to IGGOCLC1. 

PROGRAM ORGANIZATION 

IGC0002F may be reentered from IGGOCLCl 
if that module finds a control volume 
pointer entry which it must follow. The 
only difference this makes in the control 
path through IGC0002F is that IGC0002F does 
not issue the ENQ macro instruction if 
entry was from IGGOCLC1. This is because 
the ENQ was already issued in the first 
pass through IGC0002F. IGGOCLCl passes the 
address of the serial number of the CVOL to 
be opened as a parameter to IGC0002F. 

LOCATE: MODULE IGGOCLCl 

This module always gets control from 
IGC0002F. It searches the specified 
catalog for the supplied name and passes 
control to one of two other modules, 
depending on the function requested and the 
type of entry found at the lowest level. 
An input parameter indicates whether the 
user wishes to locate a data set by name or 
to locate an entry in the catalog by giving 
the TTR of the block. 

If the request is to search for a 
specified block, the module passes the 
block's address to the resident routine 
IECPBLDL. IECPBLDL searches the catalog 
and returns the correct entry to the 
caller. The only error possible is that 
the block might be outside of the SYSCTLG 
data set, in which case an error code is 
set and the module returns control to the 
caller. 

If the request is to search for a name 
or to index or catalog a name, IGGOCLCl 
isolates the first level of the name. It 
uses BLDL to search the volume index for 
this simple name and analyzes what type of 
pointer is associated with it. Several 
different things can happen, depending on 
what pointer type was found and what 
function was requested. 

In the most typical case, the routines 
will find an index pointer entry and note 
that there are more qualifiers left in the 
name. In this case, the module isolates 
the next qualifier and searches for that 
name, specifying to BLDL that the search is 
to begin at the TTR specified in the found 
index pointer entry. This process is 
repeated until either all levels of the 
name are exhausted or an entry which is not 
an index pointer entry is found. 

Program Organization 13 



SVC 26 

Enter 

IGCOOO2F 

Initialize 

IGGOCLCl I GC0002H IGGOCLF2 

SVC 28 
Locate as 0 C I Format 
Much of Name pen ata og 1----04 
as Possible ~ ___________ ---1 Catalog or 

Generation Data Group 

Function 
is 

Locate 

Extend Catalog PDS Directory 

IGG OCLc41 IGGOCLC2 1 2 

Locate Gen-
eration Data 

Build New 
Entries Free 
Old Blocks 

( Return Return 

Set l 2 

IGGOC LC5! ( Return 

Build Genera-
tion Index 
Entries 

0-
N 

~ IGGOCLC3 
II> SVC 28 

DA DSM 
r- -- -.., 
I Scratch Pre- I 
I vious Genera- I 

Reorganize 
Index 

(If No More Room in Catalog) 

I tion I L ______ .J 2 

Return ) 

lThis is a return to the issuer of SVC 28: 
IGGOCLCl or IGGOCLC3. 

2This is a return to the issuer of SVC 26: the user. 

Figure 8. Catalog Module Flow 

When Locate has found all of the 
pointers it can find, it determines what 
action to take on the basis of what kind of 
pointer was the last found, how much of the 
name could not be found, and what function 
wa3 requested. It may transfer control to 
IGGOCLC2 to build new entries in the 
catalog, it may transfer control to 
IGGOCLC4 to search generation indexes, or 
it may return to the caller via an SVC 3 
with the appropriate error code. 

14 

If control is going anywhere but back to 
the caller, Locate reads several relevant 
blocks into main storage: 

• Block Containing Volume Index Control 
Entry - This is necessary to indicate 
where the first available block in the 
catalog is. It has to be updated if any 
new blocks are used or any old ones are 
freed. 

• Block Containing Index Control Entry -
This entry is the control entry for the 



The catalog manacrement modules are 
designed to fit in the 1024-byte transient 
areas of the nucleus. ~ney are 
reenterable. In general, the modules pass 
control from one to the other throuGh the 
XCTL macro instruction, although they 
sometimes use SVCs. Tne followinq 
discussion will enlarge upon the Method of 
Operation section by discussin~ the 
routines module by module. Figure 8 shows 
the relationships among the catalog 
management routines, as well as between the 
catalog management routines and other parts 
of the Operating System. 

NOTE: In this discussion, the term 'write' 
always refers to the use of an EXCP macro 
instruction. 'Read' generally refers to 
the use of the resident routine ILCPBLDL, 
but the modules occasionally use channel 
programs here, also. 

IECPBLDL, the resident BLDL routine, is 
accessed by the catalog manacrement routines 
through the communication vector table 
(CVT). The routines find the address of 
IECPBLDL in the CVT, put the address of the 
catalog DCB in register 1 and the address 
of the BLDL list in register 0, and execute 
a BALR to the BLDL routine. For the 
functions of the BLDL routine, see IBM 
System/360 Operating Syste~ sequentIal 
Access Methods, Y28-6604. 

INITIALIZATION AND HOUSEKEEPING: MOJULE 
IGC0002F 

Entry to the catalog management 
routines, except the open routine, is 
through an SVC26, which gives control to 
this module. 

It searches the unit control block (UCB) 
table to find the UCB of the specified 
control volume (CVOL) or the system 
residence device (if no CVOL was specified) 
to pass on to the Open routine. It then 
calls the catalog open routine with an SVC 
28. It checks the return code from open, 
and, if no error has occurred, it requests 
the appropriate amount of storage for the 
locate or index/catalog routines, via 
GETMAIN, and transfers control to IGGOCLC1. 

IGC0002F enqueues on the catalog 
resources and reserves the specified CVOL. 
The ENQ macro instruction requires two 
names to be specified: a "qname" and an 
"rname." The catalog management routines 
use the following names: 

gname 
SYSCTLG 

PROGRAM ORGANIZATION 

rname 
SYSCTLGhOOua 

Nhere "ua" is the tWO-byte address of the 
UCB of the CVOL if a CVOL was ~pecified, or 
two bytes o~ zeros if no CVOL was 
speciFied. 

IGC0002F may be reentered from IGGOCLC1 
if that module ~inds a control volume 
pointer entry which it must follow. The 
only difference this makes in the control 
path through IGC0002F is that IGC0002F does 
not issue tne ENQ macro instruction if 
entry was from IGGOCLC1. This is because 
the ENQ was already issued in the first 
pass through IGCOOOLF. IGGOCLCl passes the 
address of the serial number of the CVOL to 
be opened as a parameter to IGC0002F. 

LOCATE: MODULE IGGOCLCl 

This module always gets control from 
IGC0002F. It searches the specified 
catalog for the supplied name and passes 
control to one of two other modules, 
depending on the function requested and the 
type of entry Tound at the lowest level. 
An input parameter indicates whether the 
user wishes to locate a data set by name or 
to locate an entry in the catalog by giving 
the TTR of the block. 

If the request is to search for a 
specified block, the module passes the 
block's address to the resident routine 
IECPBLDL. IECPBLDL searches the catalog 
and returns the correct entry to the 
caller. The only error possible is that 
the block might be outside of the SYSCTLG 
data set, in which case an error code is 
set and the module returns control to the 
caller. 

If the request is to search for a name 
or to index or catalog a name, IGGOCLC1 
isolates the first level of the name. It 
uses BLDL to search the volume index for 
this simple name and analyzes what type of 
pointer is associated with it. Several 
different things can happen, depending on 
what pointer type was found and what 
function was requested. 

In the most typical case, the routines 
will find an index pointer entry and note 
that there are more qualifiers left in the 
name. In this case, the module isolates 
the next qualifier and searches for that 

Program organization 15 



Order Number GY2S-6606-2, Page Revised 6/1/70, by TNL GN26-S006 

SVC26 

( Enter 

IGCOOO2F 
SVC28 

Initialize 

XCTL IGGOCLC1 I GCOOO2H 

Locate as Much of 
'-- Name as Possible 

Generation Data Group Function 
1r-------------~------------~--------------,lisLoc2ate 

IGGOCLC4 + IGGOCLC2 + 
Locate Generation 
Data Set 

Function 
is Locate Build New Entries 

Free Old Blocks 

Return 

Open Catalog 
Extead Catalog 

IGGOCLF2 

Format r--- Catalog or r--
PDS Directory 

( Return 

IGGOCLC Return 

2 
L-----,r------'IGGOCLC6 ! 

Build Generation 
Index Entries 

SVC29 

DADSM 
r- -- -, 
I I 
I Scratch Previous I 

IGGOCLC3 

Process Errors 

2 

Return 

IGGOCLC7 

SVC 
28 

(If there is no more room in the catalog.) 

I Generation I 
I I L ______ ...J 

Update Blocks of 
Reorganized 
Index 

XCTL Update Index 
1-------------+\ Control Entries 

This is a return to the issuer of SVC 28: 
IGGOCLC1, IGGOCLC3, or IGGOCLC7. 

2 This is a return to the issuer of SVC 26: 
the user . 

• Figure S. Cataloq Module Flow 

name, specifying to BLDL that the search is 
to begin at the TTR specified in the found 
index pOinter entry. This procEss is 
repeated until either all levels of the 
name are exhausted or an entry which is not 
an index pointer entry is found. 

When Locate has found all of the 
pOinters it can find, it determines what 
action to take on the basis of what kind of 
pointer was the last found, how much of the 
name could not be found, and what function 
was requested. It may transfer control to 

16 

2 

Return 

IGGOCLC2 to build new entries in the 
catalog, it may transfer control to 
IGGOCLC4 to search generation ind€xes, or 
it may return to the caller via an SVC 3 
with the appropriate error code. 

If control is going anywhere but back to 
the caller, Locate reada several relevant 
blocks into main storage: 

• Block Containing Volume Index Control 
Entry - This is necessary to indicate 
where the first available block in the 



If an entry must be removed from the 
index, IGGOCLC5 removes it and rewrites the 
index block which contained this entry. If 
the empty option is indicated by the flags 
in tne generation index pointer entry, the 
module transfers control back to IGGOCLC4 
to empty the index. If the delete option 
is indicated, the module calls the SCRATCH 
function of Direct Access Device Space 
Management (DADSM). with an SVC 29 to 
scratch the data set. After the module 
deletes whatever entries it must delete, it 
builds any new entries necessary. 

When all the counts have been updated, 
the necessary entries removed from the 
index, and the specified data sets 
scratched, IGGOCLC5 reads the index to be 
updated and transfers control to IGGOCLC3. 
IGGOCLC3 reorganizes the index just as if 
it were a normal index. 

THE CVOL ROUTINES: MODULES IGC0002H AND 
IGGOCLF2 

These modules together take care of the 
Open and initiali~ation fUnctions for the 
catalog management~outines. IGC0002H 
opens or extendS the catalog by building or 
modifying a data control block (DCB) and a 
data extent block (DEB) for the SYSCTLG 
data set and IGGOCLF2 formats new catalogs, 
extensions of the catalog, and new 
partitioned data set directories. 

IGC0002H 

Tnis module is entered by an SVC 28, or 
by XCTL if returning from the Extend 
routine of DA:JSl-l*. If entry is by SVC 28, 
the module opens or extends the catalog, 
depending on input parameters. If entry is 
by XCTL from the DADSM Extend routine, the 
module finishes extending the catalog. 

To open the catalog, the module searches 
the volume table of contents (VTOC) of the 
volume whose unit control block (UCB) 
address was specified by the caller 
(IGGOCLC10r 3). If it does not find a 
format 1 data set control block (DSCB) with 
name SYSCTLG in the VTOC, it sets a return 
code of 4 and exits. If it does find the 
format 1 DSCB, it constructs a DCB and DEB 
from information in the DSCB and from 
information contained in the module itself 

*See IBM System/360 Operating system Direct 
Access Device Space Management Program 
Logic ~anual, Y28-6607. 

(information common to all SYSCTLG data 
sets such as blocksize and record format). 

There is a switch in the DSCB of a 
SYSCTLG data set that indicates whether the 
data set has been formatted or not. If 
this switch is off, IGC0002H transfers 
control to IGGOCLF2, the formatting 
routine, to format the data set. If the 
switch is on, the module releases any 
unused DEB or DCB space and exits. 

To extend the catalog, the module gets 
main storage for the Extend routine of 
DADSM, reads the format 1 DSCB for SYSCTLG, 
and checks the secondary allocation 
quantity in the DSCB. If this quantity is 
zero, the catalog cannot be extended and 
IGC0002H returns to the caller with an 
error code of 4. If there is a secondary 
allocation quantity specified in the DSCB, 
the module builds a parameter list for the 
Extend routine and transfers control to 
module IGG0533A. 

The Extend routine of DADSM returns 
control to the beginning of IGC0002H, Which 
indicates that the data set must be 
formatted and where the formatting is to 
begin, and then passes control to the 
formatting routine (IGGOCLF2). It also 
builds a new DEB which includes the newly 
allocated space. 

IGGOCLF2 

This module formats new catalogs, 
extensions of existing catalogs, and new 
partitioned data set (PDS) directories. It 
does this by filling the available space 
with 256-byte records with 8-byte keys. If 
it is formatting a new SYSCTLG data set or 
a PDS directory it also initializes the 
first block. 

If the request is to format a PDS 
directory, the module constructs a channel 
program to write one 256-byte block at a 
time. The first write operation writes an 
empty directory, and each subsequent write 
writes an 8-byte zero key and 256-byte zero 
record. When it has formatted all the 
requested blocks, it writes an end of data 
mark, and returns to the caller via an SVC 
3. 

If the request is to format a catalog, 
the module constructs a channel program to 
write keys and data, a full track at a 
time. The module uses information from the 
DSCB to determine how many blocks will fit 
on a traCk. It keeps a record of the last 
relative track formatted to insert it into 
the volume index control entry. 

Program Organization 17 



When the module has reached the end of 
the extent assigned to SYSCTLG, it checks 
to see if it has been formatting a new 
catalog or an extension. If it has been 
formatting an extension, it returns 
directly to the caller. If it has been 
formatting a new SYSCTLG data set, it 
builds an empty volume index, containing a 

18 

volume index control entry and an index 
link entry with zero TTR field, and sets 
the format switch in the DSCB to indicate 
that the data set has been formatted. 
Before returning to the caller, the module 
always frees the working, storage obtained 
for it by IGC0002H. 

I 



DIRECTORY 

This chart contains information to assist the reader in making the 
transition from this manual to the assembler language listings of the 
catalog management modules. It correlates information from three 
sources: 

• The source code 

• The executable load modules 

• This manual 

r-----------T------------T----------------T----------T----------, 
ILOAD MODULEI RESIDENCE I DESCRIPTION I CSECT IFLOWCHART I 
I NAME I NAME I I I PAGE (S) I 
~-----------+------------+_---------------+----------+----------i 
I IGC0002F ISYS1.SVCLIB I Initialization I IGC026 I 31 I 
r-----------+------------+----------------+----------+----------i 
I IGGOCLC1 ISYS1.SVCLIB I Locate I IGGOCLC1 I 32-34 I 
r-----------+------------+----------------+----------+----------i 
I IGGOCLC2 ISYS1.SVCLIB I Build and free I IGGOCLC2 I 35-37 I 
I I I block I I I 
r-----------+------------+----------------+----------+----------i 
I IGGOCLC3 ISYS1.SVCLIB I Reorganize I IGGOCLC3 I 38,39 I 
I I I index I I I 
~-----------+------------+----------------+----------+----------i 
I IGGOCLC4 ISYS1.SVCLIB I Locate gener- I IGGOCLC4 I 40-42 I 
I I I ations I I I 
~-----------+------------+----------------+----------+----------i 
I IGGOCLC5 ISYS1.SVCLIB I Build gener- I IGGOCLC5 I 43,44 I 
I I I ation index I I I 
I I I entries I I I 
~-----------+------------+----------------+----------+----------~ 
I IGGOCLC6 ISYS1.SVCLIB I Process I IGGOCLC6 I 45 I 
I I I errors I I I 
r-----------+------------+----------------+----------+----------~ 
I IGC0002H ISYS1.SVCLIB I Open/extend I IGC028 I 46,47 I 
I I I catalog I I I 
r-----------+------------+_---------------+----------+----------~ 
I IGGOCLF2 ISYS1.SVCLIB I Format catalog I IGGOCLF2 I 48 I 
I I I & FDS I I I 
I I I directory I I I L ________ ---~--__________ ~ ________________ ~ __________ ~ __________ J 

Figure 9. Directory 

Directory 19 



DATA AREA LAYOUTS 

This section contains illustrations and 
explanations of the layouts of the various 
types of catalog entries and of the 
parameter list which the user supplies to 
the catalog management routines. 

CATALOG ENTRIES 

This section describes in detail the 
format of each of the possible entries in 
the catalog. Figures 10 and 11 represent 
each entry pictorially and the following 
text describes the contents of each field. 

The Volume Index Control Entry contains 
information about the entire catalog and 
the volume index. It is always the first 
entry in the catalog. It is 22 bytes long 
and contains 8 entries. 

Field 1: This is the name field. It 
always contains the value 
X'OOOOOOOOOOOOOOOl' to ensure that this 
entry is always first in the volume index. 

Field 2: This field contains the TTR of 
the last block in the volume index. 

Field 3: This field contains the number 
5 to indica~e that five halfwords of user 
data follow. It also serves to identify 
this entry as a volume index control entry, 
since this is the only entry that is 
twenty-two bytes long (total). 

Field 4: This field contains the TTR of 
the last block in the SYSCTLG data set. 

Field 5: This is the alias count field 
in a normal index, but since this is the 
volume index it will always contain zero. 

Field 6: This field contains the TTR of 
the first unused block in the catalog. 

Field 7: This field contains zero. 

Field 8: This field contains a count of 
the number of unused bytes in the last 
block of the volume index. 

An Index Control Entry is quite similar 
to a volume index control entry, but it 
only contains information about the index 
which it begins. It is 18 bytes long and 
contains six fields. 

Field 1: This name field contains 
X'OOOOOOOOOOOOOOOl' to ensure that this 
entry is first in its index. 

20 

Field 2: As in the volume index control 
entry, this field contains the TTR of the 
last block in this index. 

Field 3: This field contains the number 
3 to indicate that three halfwords follow. 
It identifies this entry as an index 
control entry. 

Field 4: This field contains the TTR of 
the first block in this index. This 
address is always the address of the block 
which contains this entry. 

Field 5: This field contains a count of 
the number of aliases in the catalog that 
reference this index. This count will be 
nonzero only for indexes one level removed 
from the volume index. 

Field 6: This field contains a count of 
the number of unused bytes in the last 
block of the index. 

Index Link Entries and Index Pointer 
Entrres-are quite similar. An index link 
entry is used to chain several blocks of an 
index together and an index pointer entry 
is used to chain an index to the next lower 
level index. An index link entry is always 
the last entry in any index block. These 
blocks contain three fields and are 12 
bytes long. 

Field 1: This is the name field and 
contains the name of the index to which 
this entry points. If the entry is an 
index link entry, the name field contains 
X'FFFFFFFFFFFFFFFF'. 

Field 2: This is the pointer field and 
contains either the TTR of the first block 
of the index, in the case of an index 
pointer entry, or the TTR of the next block 
of the index, in the case of an index link 
entry. 

Field 3: This is the count field, and 
it contains zero to indicate that the entry 
ends here. 

The Data set Pointer Entry contains the 
actual information for which the catalog 
exists: the volume serial number, data set 
sequence number, and device type code of 
the data set which the fully qualified name 
represents. The entry can be from 26 to 74 
bytes long, depending on how many volumes 
the data set occupies. 

II 



Volume lfidex Control Entry 

Field 1: Name Field 2: 05 Field 4: Field to ~181d 7: 
TTR of last TTR of last TTR of first Count of 

X'OOOOOOOOOOOOOOOI ' block-in C block in unused block unused 
volume 0 SYSCTlG 00 in SYSCTLG 00 bytes in 
index U data set data set last blocl 

N of volume 
T index 

1112 14 15 16 18 19 20 

1 '" .. 0 ___________ 7_ :_, ~~ 21.1 
22 bytes --------------..... -. 

Index Control Entry 

Field 1: Name Field 2: 03 Field 4, Count of 
TTR of last TTR of first ~Z unused 

X' 0000000000000001 ' block in this C block in -:> bytes In 
index 0 this index ..... 0 last block 

U <u of this 
N index 
T 

1
4

0 7 8 10 11 12 I 

t-.• ~-----------Total Length 18 bytes ----------11"1-
Index link Entry 

Field 1: Name Field 2: 00 
X' FFFFFFFFFFFFFFFF' TTR of next 

C block in 
index 0 
(or zero if no U 

next block) N 
T 

1 
d O 7 8 10 11 I 
~·-------Total Length: 12 bytes----l 

Index Pointer Entry 

Field 1: Nome Field 2: 00 
TTR of index 

Index Name (padded to right C 
with blanks if necessary) 0 

U 
N 
T 

14

0 
t-.• 0------ Total Length 

1~ I 
12 bytes ------Ioi 

7 8 10 

Data Set Painter Entry 

Field 1: Name Field 2: . 
Lowest level name of data Dummy 
set or complemented generation pointer field: 
number (if part of GDG) zeros 

Field 4: Field 5: 
Volume Device Code 
Count 

Field 6: 
Serial Number of volume 
on which ddta set resides 

Field 7, 
Data set 
sequence 
number 
(zel'o for 

I~~::!l 

... 1 .. 0 ____________ 7 __ 8 __ Tot:I
O 

Len::h 

equal to 6 times the number 
of volumes, plus I . 

12 13 ~ ____ .. 17-.. 18-~---... 23 .... 2-4. \ »-.• 1 
Repeated for each volume . 

26 to 74 bytes , 
* Count: 

Figure 10. catalog Entry Formats 

Data Area Layouts 21 



Volume Control Block Pointer Entry 

Field I: Name Field 2: 01 Field 4< 
Lawest level of data set name TTR of C Dummy 

Volume 0 data 
Control U entry: 
Block N zeros 

T 

1.0 7 8 10 II 12 131 
;... -...... -------Total Length: 14 bytes -------I~"'I 

Valume Control Block 

C Field 2: Field 3: Field 4< 
0 Device Serial number Data set sequence 
U Code of volume n number for the 
N volu me described 
T in field 5. Zera 

for direct access 

Field 5: Field 6: 
Ten bytes of zeros TTR of next 

vol ume control 
00 block, or zera 

if none 

1 

0 I m m+3 m+4 m+9 m+10 m+12 241 250 251 254 25~51 
;:;ated on: for e';';-volume; tatal 6 ;-20 

;.. • .---------~ ...... ,j Total Length: 256 bytes------------------t 

Cantral Volume Pointer Entry 

Field I: Name Field 2: 05 Field 4< Field 5: 
Name of index on Dummy pointer C Device Code of Serial number of 
other contral volume field: zeras 0 contral vol ume control volume 

U 
N 
T 

1.0 7 8 10 II 12 15 16 21 .. 1 
",. -I---------------Tatal Length: 22 bytes -------------.1-. 
NOTE: Prior to release 17, the Control Volume Pointer Entry contained a count 

of 03 and did not have a Device Code field (Field 4) 
Alias Entry 

Field l: Name Field 2: 04 Field 3: 
Name of al ias TTR of index C Name of high level index 

named in field 0 to which this is an alias 
3 U 

N 
T 

1 

0 7 8 10 II 12 191 

;...e__---------- Tatal Length: 20 bytes ------------I .. ~ 
Generation Index Pointer Entry 

Field I: Name 
Name of generation index 

0 7 

Total Length: 

*1 Field 4: 
Flags: 

*2 Field 5: 

bits 

0-5 
6 
7 

meaning 

Reserved 
Delete 
Empty 

Field 2: 02 
TTR of C 
generation 0 
index U 

N 
T 

8 10 11 

16 bytes 

Count of maximum gererations to be maintained in index 

-I -2 

12 13 

Figure 11. More Catalog Entry Formats 

22 

Field it 
Count of 
genera-
tions 
currently 
in index 

14 

1:1 

I: 



Fields one through four occur only once 
while fields five through seven occur once 
for each volume of the data set. 

Field 1: This field contains the lowest 
level of the data set name. 

Field 2: This would normally be the 
address field, but since a data set pointer 
entry references no other entries in the 
catalog, it contains zeros. 

Field 3: Count of user data. This 
field indicates how many halfwords of data 
follow. The number in here will be six 
times the number of volumes (there are six 
halfwords for each volume) plus one (for 
the volume count). 

Field 4: This field contains a count of 
the volumes following (one to five). 

Field 5: This field contains the device 
type code of the device on which the volume 
with the following serial can be mounted. 
(See Appendix C.) 

Field 6: This field contains the volume 
serial number of one of the volumes of the 
data set. 

Field 7: This field contains the 
sequence number of the data set on a 
magnetic tape volume. It is zero for any 
other device. 

A Volume Control Block Pointer Entry is 
used instead of a data set pointer entry 
when the data set occupies more than five 
volumes. This entry points to a volume 
control block, which, in turn, describes 
the data set. The entry is 14 bytes long. 

Field 1: This name field contains the 
lowest level of the data set name. 

Field 2: This field contains the TTR of 
the first (or only) volume control block 
for the data set. 

Field 3: The count field contains zero 
to indicate that this is the end of the 
entry. 

A Volume Control Block contains the 
description of all the volumes of a data 
set which resides on more than five 
volumes. One volume control block can 
deScribe up to twenty volumes and volume 
control blocks may be chained together, so 
that a data set can be cataloged no matter 
how many volumes it requires. The volume 
control block is always 256 bytes long, 
regardless of how many volumes it 
describes. 

Field 1: The first two bytes of a 
volume control block contain a count of the 

number of volumes described by this volume 
control block and any following it. For 
example the count fields of a series of 
VCBs for a data set that occupied sixty 
volumes would show sixty, forty, and twenty 
as the volume count. 

This is the only kind of block in the 
catalog in which the first two bytes are 
not used as a count of the number of used 
bytes in the block. 

Field 2: This field can contain up to 
twenty 12-byte volume descriptions, 
consisting of device type codes (see 
Appendix C) and volume serial numbers. 

Field 3: This field contains ten bytes 
of zeros, followed by the TTR of the next 
volume control block for this data set, 
followed by one byte of zeros. If there 
are no more volume control blocks for this 
data set, the TTR is zero. 

A Control Volume Pointer Entry is used 
to indicate that a particular index resides 
on a volume other than the system residence 
volume. control volume pointer entries can 
exist only in the volume index. They are 
22 bytes long. 

Field 1: The name field contains the 
name of the high level index which resides 
in the volume described by this entry. 

Field 2: The address field contains 
zeros, because this entry references no 
others in the catalog. 

Field 3: The count field contains the 
number three to indicate that three 
halfwords follow. 

Field 4: This field contains the device 
type code of the specified control volume. 
(See Appendix C.) 

Field 5: This field contains the volume 
serial number of the control volume which 
has an entry in its volume index of the 
same name as this entry. 

~ Alias Entry is used to specify a 
substitute name for a high level index. 
Alias entries only appear in the volume 
index. They are 20 bytes long. 

Field 1: The name field contains the 
alias. 

Field 2: The address field contains the 
TTR of the first block of the index for 
which this entry specifies an alias. 

Field 3: The count field contains the 
number 3 to indicate that three halfwords 
of data follow. 

Data Area Layouts 23 



Field 4: This field contains the true 
name of the index for which this entry is 
an alias. 

A Generation Index Pointer Entry points 
to a generation index. It is basically the 
same as an Index Pointer Entry, except that 
it includes the flag and count fields. It 
is 16 bytes long. 

Field 1: The name field contains the 
lowest level name of the generation data 
group. That is, a generation data set 
named WEEKLY.INVNTRY.G0001VOO would have 
the name ftINVNTRY" in the generation index 
pointer entry name field. 

Field 2: The address field contains the 
TTR of the first block of the generation 
index. 

24 

Field 3: The count field contains the 
number 2 to indicate that two halfwords 
follow. 

Field 4: This field contains the flags 
which indicate special handling for 
generation data sets. Bit 7 indicates the 
Empty option and bit 6 indicates the Delete 
option. Bits 0-5 are reserved and are 
always zero. 

Field 5: This field indicates the 
maximum number of entries to be maintained 
in the index at one time. 

Field 6: This field indicates the 
number of entries currently in the index. 

I 



USER'S PARAMETER LIST 

This parameter list must be supplied by the user before he calls the 
catalog management routines. The CAMLST macro instruction, described in 
IBM systeml360 Operating System Programmer's Guide, form C28-6550, can 
be used to generate the list. 

Data Area Layouts 25 



I Register 1 

Option Generation 0 0 Flags 
Count (see below) 

4 4 Pointer to Fully 
Qualified Name 

8 8 Pointer to Seriol Number 
of Control Volume 

12 C Pointer to User's Work Area 

1 At entry to IGC0002F, register 1 points to the user's parameter list. 
At all other times, registe~ 8 p~ints there. 

Byte 0 1 ..• 
• X •• 
· .1. 
· .. 1 

Byte 1 X ••• 

Byte 2 

.1 •• 
· .1. 
· .. 1 

1 ••• 
.1 .. 

• .XX 

1 ••. 
• X •• 
• .1. 
• •• X 

1 ••• 
.1 .. 
• • X. 
• •• 1 

1 ... 

• ••• .XXX 

option Flags 
catalog is on 
Reserved 

system Residence Device 

CTLG 
RECAT 
UNCAT 
Reserved 
BLOCK 
Reserved 
Reserved 
BLDX 
BLDG 
BLDA 

LINKX 
DLTX 
Reserved 
DLTA 
DRPX 
DELETE 

Reserved 
EMPTY 

Reserved 

catalog a data set 
Recatalog a data set 
Uncatalog a data set 

Read a block by TTR 

Build normal index structure 
Build generation index 
Build an alias to a high-level 
name 
Connect control volumes 
Delete an index structure 

Delete an alias entry 
Disconnect control volumes 
Scratch generation data sets 
when they are uncataloged 

Remove all entries from the 
index when the maximum gen
eration count has been reached 

Note: Function is locate by name if all flags are zero. 

Figure 12. User's Parameter List 

26 



DIAGNOSTIC AIDS 

This section includes miscellaneous charts and tables that might be 
useful in locating program errors. 

MODULE SELECTION CHART 

This chart can be used to determine what modules of the catalog 
management routine will be used to perform a particular function, given 
the function required and the current status of the catalog. 

r-----------------------------------TT-T-T-T-T-T-T-T-' 
I 11112131 4 15 1617181 
~-----------------------------------++-+-+-+-+-+-+-+-~ 
I FUNCTION: LOCATE IIYIYI I I I I I I 
~-----------------------------------t+-+-+-+-+-+-+-+-~ 
I OTHER " I I Y I Y I Y I Y I Y I Y I 
~-----------------------------------++-+-+-+-+-+-+-+-~ 
I TYPE INDEX FOUND: NORMAL II YI YI YI I I I I I 
~-----------------------------------++-+-+-+-+-+-+-+-~ 
I GENERATION II Iyl I I I IYIYI 
~-----------------------------------++-+-+-+-+-+-+-+-~ 
I NONE II I I I \ YI YI I \ 
~-----------------------------------++-+-+-+-+-+-+-+~ 
I UNFORMATTED CATALOG I I I INIYIN\YINIYI 
~-----------------------------------++-+-+-+-+-+-+-+-~ 
~-----------------------------------++-+-+-+-+-+-+-+-~ 
I IGC0002F lIXIXIXIXIXIX\XIXI 
~-----------------------------------++-+-+-+-+-+-+-+~ 
I IGC0002H IIXIXIXIXIXIXIXIXI 
~-----------------------------------++-+-+-+-+-+-+-+-~ 
I IGGOCLF2 II I I IXI IXI IXI 
~-----------------------------------++-+-+-+-+-+-+-+-~ 
I IGGOCLC1 IIXIXIXIXIXIXIXIXI 
~-----------------------------------++-+-+-+-+-+-+-+-~ 
I IGGOCLC2 II I IX\XIXIXI I I 
~-----------------------------------++-+-+-+-+-+-+-+-~ 
I IGGOCLC4 II IXI I I I IXIXI 
~-----------------------------------++-+-+-+-+-+-+-+-~ 
I IGGOCLCS II I I I I I IXIXI 
~-----------------------------------++-+-+-+-+-+-+-+-~ 
I IGGOCLC3 II I IXIXIXIXIXIXI L ___________________________________ ~~_~_~_~_~_~_~_~_J 

Figure 13. Module Selection Chart 

Diagnostic Aids 27 



REGISTER USAGE 

Figure 14 is a register usage chart. In the chart, the contents of 
certain registers are given as they appear at entry to each module and 
just before each module loses control. All entries in the table, except 
those marked "*", are addresses. That is, when the table indicates that 
at entry to module IGGOCLCl register 9 is 'DCB', this means that 
register 9 contains the address of the data control block. When the 
table indicates that at entry to module IGGOCLC2 register 6 is "No. of 
Levels Searched *," this means that register 6 contains that number. 

28 



Module Name Registers 

0 I 2 3 • 5 6 B 9 10 11 12 13 IS 

IGCOOO2F Entry User's SVRB 
Parameter 
List 

Exit ENQ User's DCB Work Area 8lDl 
Parameter Parametet Work Area 
List List 

IGGOClCI Entry ENQ User's DCB Work Area BlDl 
Parameter Parameter Work Area 
List List 

Exit ENQ No. of User's DCB Generation Work Area BlDl 
(To IGGOClC2 Parameter Levels Parameter Index Work Area 
or IGGOCLC4) List Searched· List alock 

Exit No. of Locate Error Code" 
(To User) Levels Error Code· 

Searched*' 

IGGOClC2 Entry No. of User's DCB Work Area 
levels Parameter 
Searched" List 

Exit No. of User's DCB Work Area 
Levels Parameter 
Searched* List 

IGGOClC3 Entry User's DCB Work Area 
Parameter 
List 

Exit No. of Locate Index 
Levels Error Code*' Catalog 
Searched *' Error Code· 

IGGOClC4 Entry Entry User's DCB Work Area alDL 
Indicator* Parameter Work Area 

List 

Exit Entry User's DCB Gen. Index Work Area BlDl 
Indicator" Parameter Pointer Work Area 

List Entry 

IGGOClCS Entry Entry User's DCB Gen. Index Work Area BlDl 
Indicator* Parameter Pointer Work Area 

List Entry 

Exit No. of Locate Index 
(U .. ,) Levels Error Code'" Catalog 

Searched* Error Code* 

Exit User's DCB Work Areo BlDl 
(IGGOClC3) Parometer WorkAreo 

List 

Exit Entry User's DCB Work Area BlDl 
(lGGOClC4) Indicator* Parameter Work Area 

List 

IGGOClC6 Entry Index locate No. of DCB locate 
Cata-Iog Error Code" levels Work Area 
Error Code* Searched" 

Exit No. of Locate Error Code· 
levels Error Code" 
Searched" 

IGCOOO2H Entry UCB of Wark Area ain Number 
(V;a SVC 28) CVOlor for DEB/DCa if CVOl is 

DC~ on 2321* 

Entry A Negative Extend Bin Number DCB TTR of UCB 
(XCTl. from Value" Work Area if 2321* new Extent'" 
Extend Routine) 

Exit Error Code· 
(To Coller) 

Exit DCB Work Area DEB UCB Non-zero" 
(To DADSM 
Extend Routine) 

Exit Zero" DCB No. of Subpool ID Work Area Begin TTR* 
(To IGGOClF2) Blocks/Track and Size of 

Work Area" 

IGGOClF2 Entry DCB Work Area DEB UCB Non-zero* 

Exit error CodeIl' 

10 11 12 13 IS 

Figure 14. Register Usage 

Diagnostic Aids 29 



APPENDIX A: FLOWCHARTS 

These flowcharts illustrate the operation of the catalog management 
routines module by module. Each label in the charts is taken directly 
from the assembler language source code for the module. The charts are 
intended to bridge the gap between the textual mater~al of this manual 
and the code itself, so they are best used in conjunction with the code 

land the text (particularly the Program Organization section). 

30 



ca __ _ 

IGC0002F 

IGC0002F " .. " 
A2 *0 ••••• A3 •••••••••• .... Al......... .+ t. .. .. .. .. 

:E~iE~cJfAF~~~2 6: _______ >*: .. VIA Er'Jl FR": .~~ ______ >: :EN~¥~~L3N : : 
.. IGGOCLC1" .. " IGGOCLCl ,," .... RESOURCE .... 
................ t o .* .. .. .. .. 

'·1 ~~:: ____________ ~::::::J ...... . 
ERR 4 UCBLOOP " .. " 

DEQ 

..... el.......... B2 *" .. .. .*-. 
• SET ERROR CODE .. YES .. " IN A"" 
.. TO " +<--1<----*" CVOL LOOP .* .. .. *0 0* 
.. .. *0.* 

~;ii~:::l········· :' B:': '·1*":0 .... 
••••• c •••••••••• • •••• c •••••••••• 
.. .. .. .. .. .. IN" .. 
.. .. FOR- .. .. .. .. .. .. .. 
.. .. .. .. FUN IONS"" .. .. .. .. .. .. ........ j ·······r .... ··. 

D2 *0 ••••• 03.......... 011 *0 .... Dl......... 0* *0 .. .. 0* *0 
.. RETURN TO" ,," IS .. " YES .SEARCH FOR UCB .. " .. WAS UCB .. " tW 
.. CALLER" .. " CONTROL VOr. ,,*-------->* OF SPECIFIED *-------->*" FOUND "*--1 
.. .. -.SPECIFIED.- .. VOLUME" *0 ,," ............... .... . . .... ·0 .• •.....•...•...... ." .. 

• NO • YES •••• 

1 r----------------------J: .:~.: 
••••• E2.......... TESi~~S. 3 •••••••••• 
• •• .RE NY •• 
• FIND SYSTEM • • .PR Y ... 
• RESIDENCE UCB .------->. • • • 
• ••• D, •• · .. . . . ................. ········r······· 

.......... · . · . · . E •• .. . . . 
·······r· .. ··· 
·····G3· ........... .. · .. .. . 
... OPEN •• 
•• CATALOG •• 
• .WITH SVC 26 ... · . . . 
········1 .. ······ 

.... .... ERR .... 
••• •• H1.......... H2 •• H 3 •• 84 •• 
• • • • ..... •• IS •• ".." 
• .GETMAnlj 408. • YES.. IS •• YES •• RETURN CODE ... NO ". IS •• YES 
• • BYTES IN •• <-------.. FUNCTION ".<--------.. FR sve 28 ... -------->." RETURN CODE •• --1 
• • SUBPOOL 0 • • ." LOCATE •• ... 0 •• ." LT 8 •• · . . . .".. ..". .... ................. .. .. .. .. ." ". 

1 1· N°'1' NO :*::': .... 
CATMAIN "." ..... Jl.......... . .... J2.......... J4 *" ••••• Js ......... . • .. . . • o· •. • . 

• SET LOCATE. • .GETMAn~ 896. • •• IS .0 NO .SET ERROR CODE. 
• SWITCH ON. • • BYTES IN •• .0 FUNCTION ".-------->. TO 28 
• •• • SUBPOOL a • • ." LOCATE " • • · .. . . . ." ... . . 

->: Cl : .... 
........ j......... ········1········· ··l··;ES ·········l···::::· 

XCNTL ••.•. K2.......... • .••. K4 ....•...•. ····Kl·.·· .. ····· .. • XCTL TO. • SET LOCATE • .SET ERROR CODE • 
• IGGOCLCl .<--------. SWITCH OFF • • TO 24 .---1 · ... .. ................. .. ................. . ............... . . ... · . • Cl • · . .... 

Appendix A: Flowcharts 31 



Cl\TALOG MANAGl!JIEII'l' 

IGGOCLCl 

..... 
*032-
• Ala· •• . 

••• GETNAIIB! ..... A2.......... A3 ... . .... A ........... . 
•••• Al......... • • ... IS *. • SEPARATE A • 

: B-rG60~~~ Fa : _____ >:IHI~~iBtiTR : ______ >*:* t&cNfITiO~y .:.~ ____ >: S~~TrE : 
• •• VOLUME INDEX • *.. BLOCk .* *QUALIFIED HAME • ••••••••••••••• • • *..* • • 

DEQ 

32 

••••••••.•••••••• ··.·~a ········r··· .. ·· 
1 ... ..... s3.......... B4 *. • •••• 85 ......... . 

• • .* *. • • • SET ERROR CODE • ... IS THE *.. MO -SET DRaR CODE • 
: ~H~OhS~ : * •• ~AME VALID .... *------>: TO 20 

• • *..* • • 
~iii::::1········· ··1··;£8 ........ [;::::; · . . . .... . ... 

ALLaRT ..... el.......... . .... C4 •••••••••• 
• • *CALLBLDL 034D2_ 
• SET NAME '1'0 • *---------------+ 
: ~~~~.sT~AL6i : :~~J~!Mi2: =~: · .. . ··· .. ·T .. · .. · ·······r······ 
•••.• D3.......... 011 *. • •••• DS ...••••••. 
*CALLBLOL 0 ]402. ...... • • *---------------* ... WAS *" NO -SET ERROR CODE • 
• READ SPECIFIED * •. NAME FOUND .*---->. TO EIGHT 
• BLOCK USING * too •• • 
• BLDL· •••• • • ;iii:···1········· .. i" ~ ·········l··:::::: 
• E3 .-> ~ ->. E3 • · . ..... . . 
•••• ·033· •••• 

LOCEXIT ... oo • Al • 
••••• E2.......... E3 ... • • · . .... . 
• MOVE CATALOG. YES •• IS •• 
• DATA TO USER .<------.. LOCATE SW' ... 
• AREA ••• ON •• · . .... 
· ..... ··1· ::~:~:--- · . CO 

CA'rENTRY ••• ..... F2.......... F3 .. 
• • FREE ALL •• .. • IS •• • * MAIN • • 0 • LOCATE ... NO 

···1'4············ READ INDEX , 

•• STORAGE •• •• ERROR CODE en .. *------> VOL INDEX 
CONTROL 
BLOCKS •• USED • t •• 12 o. . · . . . .... ::::····1········· · 01. ·;B8 

.032· 
• 02 ._> · . .... .... .......... ·····G3·········· · . . .. . 
• • • • • MOVE LOCA'l'E • 
• • II S • • • ERROR CODE TO • 
• • AN L. • • REGISTER ONE • · . . .. -
.. ··· .. r······ ::::::I:::~: 
····82·········· -• RETURN TO. -SET ERROR CODE • 

• CALLER • -----. TO EIGHT • - .. . ................ . ................. 

········r· .. ·· 
····GIf.········ • XCTt. TO • 

• IGGOCLC2 • · . ............... 



••••• • Oll • 
• Al· · . 

CATALOG MAllAGBIIER'l' 

IGGOCLC1 

1 
• •• ALIAS ••• UR12 

Al •• • •••• A2.......... Al •• • •••• A ••••••••••• .... . . .... . . 
•• IS •• YES • REPLACE ALIAS • •• WAS •• YEs .SIT ERROR CODE • 

•••• BHi£IASAN •••• ------>:WITH TROE HAME :-------> •.• ?ELmi~ ~ ••• ----A->: TO 12 :------~ •. .• • • •..• 1 • • • •••• 
•• •• ••••••••••••••••• • •• 0 ••••••••••••••••• .03~. 

I. NO IHO :·A:-: •• : •• ..... . ... 
·032· 

••• CSET ••• • All. 
Bl •• 22 •• • • 

•••• •• IS •• • 
•• IS IT A •• YES •• THERE •• YES 

•• DATA SET •• ------->.. ANOTHER •• ----------------------------------------------
••• ~OINT~... ..i?ALIFI~ •• 

*. .• • ..• 
"NO 1"0 

·····C2·········· · . • SET ERROR CODE • 
: TO ZERO :-------~ · . . .... ••••••••••••••••• ·032· 

• E3* .. . 
.... GINDEX ••• 

01 .0 D2 •• • •••• D3.......... • •••• D4 •••••••••• 0*.. .••. • •• • 
•• IS IT A •• YES .. * WAS •• NO • SAVE ADDR OF • .SAVE DBLIMITER • 

•• GEN. INDEX •• ------->.. DELIMITER •• -------->. GEN INDEX .----->. AND ADDR OF • 
•• POINTER •• •• BLANK ... • POINTER. • DELIMITER • 

•• • t t... • •• • 

'·1'·:" ··t:i~::·: ................. ········1········· 
.... 

· *. DRPX.·. • •• 
El .0 E2 ... E3 •• • •••• E4 •••••••••• 

... IS •• .0.... .." IS •• • • 
•• ENTRY A *.. YES .. " IS •• YES •• FUNCTION •• YES • SEPARATE OUT • *. CVOL •• ------->.. DELIMITER •• -------->.. LNKX OR •• --- • NEXT NAME • 
•• POINTER •• •• BLANK ... •• DRPX.. • • •. .• ...* •..• • • 

:~CO '·1' ~~~ ________________ :j ·~o • .. ·····1········· 
*03'1· * Al. c.vOLPTR • •• ERRl6 · . . .... F2.......... . .... F3.......... PII .. . .... Ps ......... . . • •. • .*.. • • 

• SET UP VOL. .SET ERROR CODE • • • IS ITS +. NO .SBT ERROR. CODE • 
• SERIAL AND XCTL. • TO 12 .<-- •. DELIMITER A • *----->. TO 16 
• INDICATOR.. * •• BLAN){ •• • · .. . .... . . ........ j......... . ..... ::[...... ··I··WS ······::C .. ···· 

*032. .032 • 
• E3. • li:3. . . ···G"············ .. .... G2·········· * : I~gbo~~ : • A~:oeot"¥I~BX 

•• CON'I'R BLlCS • ............... 
· .. ·····r··· .. 

····Sll ••••••••• 

: I~~~L~g : . . ............... 

Appendix A: Flowcharts 33 



..... 
*034-
• Ai-.( 

CATALOG MANAGEMENT 

IGGOCLCl 

.too VCB .too 
Al *oo ••••• A2.......... A3 too ••••• Aft •••••••••• 

...... IS ...... YES :SET ERROR CODE : ...... too too YES :SET ERROR CODE : 
too ENTRY A vea .*------>* TO ZERO *------->*. A .. *-------->* TO 16 •.• ~OINT~... : : *.i?AL .~.. : • 

*oo .* ••••••••••••••••• • • • •••••••••••••••• 
• NO ·'·NO i 
1 1 :m: .. *oo • elf a1 *oo ••••• B3........... . . * toO •• • . * *oo YES -SET TTR IN USER-

• AN • .AREA TO TTR OF • .. ... i?ALI .. • .. ... ---:J.. : vea : 

··1··~0 :~::: ········r······· ..... 
*032_ 
• el-·····cl·········· .. .. . 

-SET ERROR CODE • 
• TO 12 • · . · . ········r··· .. ·· 

34 

..... 
*032· 
• e3* .. . CALLBLDL 

····02········· • ENTRY VIA BAL • 
: CALLBLDL,14 : ...... 1' ..... 

···E2············ READ 
SPECIFIED 
BLOCK AND 

NAME 

·········r······ 
.'. F2 *oo ••••• Pl.......... • •.•. F •.......•.. 

... IS ... • • FREE ALL ••• • 
... THERE ... YES •• MAIN •• -SET ERROR CODE • 

*.UNCORRECTABLE.*----->*. STORAGE .... ------>. TO 24 
•• I/O ERROR.. *. USED •• • .... . . . .. . 

' .• ·;0 ••••••••••••••••• ········r····· .. 
1 ..... G3.......... G .. ·· .. ····G2········· . . .... • RETURN VIA BR • • SET CATALOG. NO •• IS •• 

• 14. ERRQR=28 .<------.. FUNCTION •• 
•• ••• LOCATE •• ............... . . .... ········r···· .. · ··r;ES ..... . .... 

*031. .032 • 
• G2,* .62.. . . . . . . 



lGc..OCI..C2 

····Al········· • Et-trltY VIA XCTL • 
• ~"A IGGOCLCl • . . .. · .. T ...... 

. '. Bl .a a. WAS .a 
• • IiAMED ITEM •• NO .0 FOUND IN 0.----.a CATALOG •• ... a· •. a· • YES 

! ..... 
·03&· 
• A2· . . . 

.... · . 

C~TPHASE ••• 

CATALOG MANAGEMENT 

ll.iGOCLC2 

11.2 .0 ••••• A3 •••••••••• 
•• Du ALL.. • • 

.. • HIGH LEVEL *. NO .SET ERROR CODE • 
->·0 INDEXES a .------>. TO 16 .---1 •• EXIST ... • • 

• 0 a. . . ·a .• • •••••••••••••••• 
1. YES :.::.: . . .... 

••• P3A2.·a 
92 •• B3 •• • •••• B" •••••••••• at.. .• ARE .0 • • •••• 

a • IS ... YES • -THERE ~RE • a NO • CALC ENTRY. • • 
··.a FgfTif.8~ a.··-----"A->·".a T~a£S a ... ·------->:L~h ~ TO:--->: 82 : .... t···· . . .... •. .• ·0 .• • •••••••••••••••• 

1· NO .'h;. ·l Y:~3; • 
• B3. ->. A3 • ..... .. .... .t. .. •. 

C2 •• C3 •• • •••• eq.......... . .... C50 •••••••••• 
• • • • • • IS THE •• • SET UP LNGTH •• • 

•• IS t. YES •• NAME •• YES • FIELD (X'03') • • MOVE CVOL • 
... FUNCTION •• ----->*. UNQUALIFIED .. ·-------->.FOR CVOL PTR, 0·------->. SERIAL NO. TO .--1 

•• LINKX •• •• •• • TTR. • USER AREA • ..... ..... . .. . .. .. .. .. ................. . ............... . 
1· NO 1· NO : .::. :--1 : ·:;i . . .... .... 

• • oO ERRORe RETURN 
D2 •• • •••• 03 •••••••••• 

•• IS .0 • • •••• 0" ••••••••• 

• :* Fg~giIg~ ·:.~~------>:ER~~i g~5~L~ 8:------->: I~go~xl2 : 
-.BLDG •• 1\ •• 1\ •• ·0 0- t • • 1 ••••••••••••••• .. .. . ............... . 

1* YES _~3;. .63; • 

·····E2·········. · . - SET UP EMPTY • 
• INDEX • · . · . ........ I ...... · 
·····F2·········· .WRITENEW 031E"-.---------------. 
• WRI'I'E NE"1'i' BLK • 
• SEARCH FOR (~EXT. 

• HOLE • .. · .. · .. 1 ...... · 
.', 

G2 .e .. .. 

• D3. • 011. ..... . .... 

: •••• GJ ••••••••• : 

•• IS •• NO .MOVE GENERATION. * e FUUCTION •• -------->. COUNT To USER • 
•• BLDX • -to • AREA • ·0 .• * • •. e· 

:Oi~· *->1· YES · . .... 
OKSTOW ···H2············ 

·· .. · .. ·i .. · .... · 
.'. H3 •• • •••• H4 •••••••••• 

•• WAS •• • • 
• • EMPTY .0 YES .SET ON EMPI'Y SW. · H2 ._--> • READ IN')EX 

BLK TO BE 
ALTERED 

. 
<-. •• OPTION • *-------->. IN USER AREA • · . . .... ........ 1' ..... 

····J2········· • XCTL TO • 
• IGGOCLC3 • · . ............... 

•• SPECIFIED. • • • .... . . 
.. I ~::-------------~~~~~~~:i········ 

DOPTION ••• 
J3 .e .•••• Jq •••••••••• 

•• WAs t. • • e. DELETE •• YES - SET ON DELETE • 
•• OPTION •• -------->.SW IN USER AREA. 

•• SP!CIFIEDe· • • .... . . ·0 .• • •••••••••••••••• _________ J <~: _________________ J 

Appendix A: Flowcharts 35 



..... 
·03' • 
• A~ .( 

CATALOG MANAGBMENT 

IGGOCLC2 

DLTPHASE ••• UNCAT... • *. RECAT. *. 
A2 .0 Al •• Art •• AS •• 

•• IS *. ... IS •• •••• .* •. 
•• LOCATE ... NO ... FUNCTION •• YES ... WAS A •• NO ... IS ... Yl!S 

•• ERROR CODE •• ----->.. RECAT OR • *--------> •. VCB LOCATED •• ------>.. FUNCTION • *--1 •• 12 ... •• UNCAT •• •• ... A.. RECAT •• .... .... .... 1···· •. .• •. .• *. ... • ..• 
• YES .NO • YES ••• .NO ..... 1 L •••• l •••• •• l •••• ·035· 

.035. • • • AS • .035 •• 83. 
>. D3 * ->. G3 • •• ->. 82 • • • * • • • •••• •• • .... . ... 

• •• ALIAS... .. *. DALlAS ••• 
B2 *. B3 *. BII *. BS •• 

• t IS *. . .IS THB *. .t.. ...0 
•• FUNCTION *. YES • • NAME t. YES •• IS *. YES •• WAS •• NO *. BLDA OR •• ------->.. UNQUALIFIED • *------->·0 FUNCTION • *-------->-. ALIAS BLK •• --1 
•• DLTA ... _. • * t. DLTA •• •• FOUND • -.... ·0.· *... •..• ·0 .• • .. * .0 .• .0 .-

1
· NO 1 NO 1· NO • YES :~~i: ..... . 

.035. 
DROP ••• ••• • 03. 0 •• 

cl .0 c2 •• • • Cq *. .••. .••. • .* IS •• 
NO .. * QS A •• YES .. * IS * 0 NO • * INDEX A *. r-*. CVOL PTR •• <--------.. FUNCTION •• L-------· 0 HIGH LEVEL •• 

•• LOCATED •• •• DRPX •• v.. INDEX •• .. .. .... ....... .. •. .• *. .• .035.. •• t 

:~~i: 1 YES 1· NO •• ~~* 1· YES . . .... 
·035· 
• H2* .*. 

36 

• • D2 *. • •••• 0'1 •••••••••• 
* .••. • * 

•• IS *. NO .BUILD THE ALIAS • 
•••• FU~f~ON •••• -------V : ENTRY : 

•• 0* ••••• •• 

··.·;E8 :Ofi~: •• .. ····1········· 
1 · . . ACOUNT <--------------------..... E2.......... • ..•. Eq .....•.••. 

•• .CNVT 031Al • 
• SET ERROR CODE. .---------------. 
• TO 2 • .WRITE BACK ORIG. 
•• .ENTRY WITH NEW • 
•• • ALIAS COUNT • 

········1········· ···· .. ··r······· ..... 
• 035· 

••• • 82· 
F2 •• • • .. .. . 

NO •• IS •• 
~-----••• ~NDEX EMPT~* •• ..... ..... 

·035· •••• 

. . ~:. 1. YES •••••• 

• G3 .--1 . . .... 
• -. !'RETBLK ••• G2 •. • •••• G3.......... G4 •. • •••• Gs •• ••••• •• • 

•••• .CNV'l' 037A1. • .IS THIS.. .UPDATE VOL INOX. 
YES.. DOES •• NO .---------------. •• NOW 1ST •• YES .CNTRL BLK WITH. -6-----... INOEX HAVE •• ------->. FREE BLK BY .-------->.. HOLE IN •• ------>. ADOR OF 1ST • 

:0;;: •. :~.~L~:~... "l :'::~:~~fi:::~ .. : ... ::~A~:X:. • : ..... :~~: ...... : 
• 04. • • NO j 
• • • 1<----------------------

.... "·0 
H3 •• 84 •• .... .... 

YES •• IS •• YES •• WAS •• 
--.. ANOTHER VCB 0.<--------.. THIS BLX A •• 

•• IN CHAIN •• •• VCB •• .... ... . .. ... . ... . 
• NO .NO 

i ~ .... . .... 
• • ·035· 
• A5 • • 82. · . . . .... . 



CNV'I' 

····Al········· · . • ENTER VIA SAL • · . ...... 1 ...... 
·····al·········· 1I0) · . . . · .. ·S2···.····. • .CONVERT TTR. •• • 
• .TO ABSOLUTE. • • ENTER VIA SAL • 
• • DISl( ADOR • •• • · . . . . ............. . •.•......••.•.... j 

~~-------> 1 <-----------------------

CATALOG MMAGIMIMT 

IGGOCLC2 

..... 
• 037 • 
• A3· .. 
• 

VCBRTN ! ·····A3 ...•.....• · . • eALC NO. OF • 
• VCS'S REQOIUD • · . · . 

~:"T""" ·····s3·.·.· .••.. • • .SET UP TO WRITE. 
• vca's IN • 
• REVERSE ORDER • · . ...... ·T· .. · .. 
····.e3 ..••••.... ·····cl·········· 

•• EXECUTE •• 
• • SPECIFIED • • 
•• CHANNEL •• 
•• PROGRAM •• · . . . 

.... .WRITENEW 037E4. . . .---------------. 
• C3 .----). WRITE VCS • 
.. .. .SEARCH FOR NEXT. 
•••• • ROLE • 

···· .. ··r······· 
-'-01 •• ...0 .... 02 ••••••••• 

•• ANY ... NO .RETURN VIA REG • 
•• ERRORS •• ------->. 14 • .. .. . . ·0 ... • .•••••••.••••• .. .. 

rES 
-'-El to ••••• E2 •••••••••• . ··0 . . ... END OF ... NO • SET ERROR CODE ... 

... ErrEI~T 0.------->. TO 28 
·0 0* • ·0 o. • 

·-l·-;ES ········1 .. ······ ..... 
*035· • nq· ·····F1·········· * · . . . . 

• • EXTEND VIA • • 
•• sve 28 •• · . · . . . 
···· .. ··r······· 

-'-G1 .0 ••••. G2 •••••••••• 
•• WAS •• • • o. EXTENSION. 0 NO .SET ERROR CODE • 

•• SUCCESSFUL •• ------>. TO 20 .0 .• . ·0 .• • _________ :~r ~S •••• ····r ...... . 
..... 
·035· 
•• D • . 

······ .. r······· 
-'-n3 •• • •••• D" •••••••••• .··0 . . .... 

• • ANY.. YES .SET UP CHAINING. • • .0 MORE VCS'S •• ------->. PTRS FOR NEXT .---->. C3 • .0 TO WRITE •• • VCS • • • 
to o. • t •••• .. .. . ............... . 

ro 
·····E3.··· •• •••• · . • PUT TTR OF 1ST • 
• VCB IN USER • 
• AREA • · . .. ·· .. ··r······· ..... 

.035. 
• H2· .. . 

WR1TENEW 

····E"········· · . • ENTER VIA SAL • · . ...... 1 ...... 
••••• F1t •••••••••• 
.CNVT 037Al • .---------------. 
.WRITE SPECIFIED. 
• RECORD • · . ........ r .... · 
·····Gq·········· .10 037cl. .---------.. -----. 
.SEARCH FOR NEXT. 

:Ex~~A6LI~0~g&E : . ....... 1' ...... . 

·····H"·········· •• CONVERT •• 
• .ADOR OF BLl( •• 
• • FOUND TO •• 
•• TTR •• · . . . ........ 1' ...... . 

·····J4·········· · . ····J5········· • SAVE THIS. .RETURN VIA REG • 
• BLOCK'S ADDRESS.------->. 6 • · .. . · . . ............. . ................. 

Appendix A: Flowcharts 37 



CATALOG MANAGEMENT 

IGGOCLC3 

IGGOCLC3 AD3 · . A2 •• ····A1········· ... . : •••• A3 ••••••••• : 

• ENTRY' VIA XCTL • ... WAS GDG •• YES • SET UP TO • 
• FR IGGOCLC2 .--------).. INDEX PTR •• --------).COMPARE 5 CHARS. 
• • 1\ •• FOUND •• • INSTEAD OF a • ••••••••••••••• 1 •. .• •• • ••• .. .. ................. . . 

••• • NO j .85. 

: .::. :--1 : .::. : 1<------------------------ • ·1···· .... 
AD3P1 ••• DELETE : ••.. 81 ...•..•.• : B2 .. . .•.. B3.......... : ••.. 84.......... • •••. B5 ••....•..• 

• CALCULATE .NEW>OLD •• N~So~~t~E;O •. EQ !CALC LENGTH OF : • ADD LENGTH TO·: :SET COMPLETION: 
• LENGTH OF OLD .<------+.. FOUND •• ------->. NEW ENTRY .-------->. INPUT POINTER .------->. SWITCH ON 
• ENTRY. •• NAME ... • •• •• · . .... . .. .. . ................. .. .. ................. ................... . ............... . 1 'N£W<OLD 

.'. ADD 1 
C1 •• • •••• C2 •• 

.. • ROOM IN... • • 
• • OUTPUT AREA •• YES .SET COMPLETION • 

•• FOR OLD ..... ---- • SWITCH ON • 
•• ENTRY ... • • .. .. . . 
.... 
: .::. ::~1":0 ········1· ...... . 

AG3 ••• AE3 ••• 
D1 •• • •••• 02.. 05 •• 

• _.. .CALC L •• •• 
NO.. IS NEXT •• • • YES •• IS •• 

--_.'. ~LK UNUSED.... : i~Z~Y f C :<----------------------------------------------------------•.•. F~~Ei~N .•.• .. .. .. . .. .. 
"1' ~~::------ ····· .. T······· .... ~o 

· ' . ... E1............ E2 .. 
I. WRITE UPDATED • 

BLOCK 

· ........ r······ 
: •••• Fl ••••••••• : 

• RESET OUTPUT • 
.. AREA POINTERS • · . · . • .. • .... ·l .. ·::::· . . 

->. F2 . . . 
·····G1·········· · . • SET UP INDEX • 

AF2 

• • ROOM IN •• 
• • OUTPUT AREA •• NO 

• • FOR NEW •• _--! •• ENTRY •• .. .. .. .. 
; .;;. :->1' YES ::~~:: .... 
·····F2·········· · . • MOVE IT TO • ->. OUTPUT AREA • · . · . 

AG2 ········r······· 
·····G2·········· • ADD lENGTH OF • 
• MOVED ENTRY TO • -->. LINK ENTRY • : INPU~T~¥TPUT : 

38 

· . · . ................. 
L _________ _ 

AJ2 

· . .. ...... I 
· . H2 •• .. -. •• IS •• NO • • 

•• COMPLETION •• ---->. A2 • 
•• SW ON •• •• .. ... . ... .. .. 

I <:::-----------------------------------------------------------------------------------... . .. 
J2 •• J3 •• 

•• MORE •• ••• • 
• • ENTRIES IN •• YES •• IS NEXT •• NO • • 

•• INPUT •• --------> •. ENTRY NAME •• ---->. B1 • 
•• AREA •• •• X"FF'.. •• ... .... . ... .. .. . .. . 
I NO BA2 .rES 

· .... K2.......... K3 .. . ..•. 1<4 •••••••••• · . .... . . 
• SET UP TO READ. YES.. IS TTR •• NO • SAVE THE TTR .. 
• NEXT SEQUENTIAL. !-_.. POINTER •• -------->. POINTER • 
• BLK. •• ZERO • • • • • • *... • • ········1· .......... ········1········· 

·039· •• A;. ..... .... . . . . 
! K5 : : B5 : .... . ... 

. ... . . 
.. K5 • . . .... 
1 ···K5············ READ 

• INDICATED BLl( • 
INTO INPUT 

AREA 



..... 
• 039 • 
• Ai· r 

ee2 ••••• A2 •••••••••• · . • ZEItO THE TTR • 
• POINTER IN • 
• oUTPUT AREA • · . .... · .. r·· .... 
... ··e2·········· · . • CALC BYTE COUNT. 
• OF BLK, STORE • · . · . ··· .. ···r······· 

LASTBLK .+. : •• ;;il;:;....... ..~~s sti< •• 
• BLOCK TOot:: NO ... DEEN FREED ... 
:WRI'l'T'~Fl'0 HEx • <-------- . DURING .. t 
t : {\ to ~~DATIN? ... 

...... "1'....... ~~~ 'or" 
... 01............ . .. D2 ........... . 

• W¥i6~x UK~~~D -· . ······· .. r······ 
o.El~:" .... 

YES •• MODI:FI:ED ... 
--.. INDEX VOL ". ·0 INDEX •• " 

•• to •••• 

i~ 
··.P1 ••••••.....• 

• WRITE UPDATED • 
• INDE~L~NTRL. 

~=T"'" 
···G1· ••••••...•• 

• WR~~f ~g~ED • 
• CNTRL BLK • · ...... ·T· .... 
·····81 .•........ · . • SET ERROR CODE • 
• TO ZERO • · . · . .... · .. T· .... · 
·····J1· ..... · .. · 

• WRITE 0 KEY • 
IN FREED BLK ........ r .. · .. 

..... . ........ . 
• UPe EX & .. 
.VOL CONTR. _____ • F· 

• RY· · . ................. 

• • FREEMAIN •• •••• J 2 ••••••••• 
•• FOR ALL •• • RETURN TO • 
: : ug~Dh~EQ : :------>:CALLER ¥IA sve : 
• • RESOURCES • • ••••••••••••••• ................. 

<'ATALQC. MAIiAGBIIJIlN'l' 

I""OCI£I 

Appendix A: Flowcharts 39 



CA'1'ALOa MMlAQ_MENT 

IOGOCLC4 

lOOOCLC4 ••• 

40 

.•.. Al......... ..A2 ••• " 
.BN'l'RY VIA XC'l'L • •• ENTRY *0 NO 
:FR Igggg~~~ OR :------->··.0 IG~~l •••• -----~ ••••••••••••••• •. o· ••••• 

• " •• ·0112· I YES •• :~. 

B2°·· *0 RELATIVEB3··" *. B4 0* ••• 0... ...0 o.F •• 
". NAME IN •• YES •• IS ." YES •• OF VE." YES 

•••• R~~I¥E ••• *-------> •.• 0 ~g~~N .... ·------->··.0 CO ... 0 .------~ •. ". •..• ." o· ••••• 
•• •• ." ... •• ". ·041· 

I NO 1· <:: ___________________ J NO •• :~ • 
... " ERR20 

C2 *. • •••• C3 •••••••••• .... . . 
•• NAME IN •• NO .SET ERROR CODE • •• CORRECT •• ________ >. TO 20 • 
•• FORMAT •• • • .... . . .. .. . ............... . 

• YES 1 
1 : .:;. : ···02····.· ..... · .. 

• READ NAMED 
ENTRY USING 

BLDL 

·········r······ 
.... 

NOERR .... CATGEN ... 0 

1:2 •• E3 •• • •••• E4 •••••••••• 0..0 0... t • o. IS t. YES •• WAS •• NO .SET ERROR CODE • 
•• FUNCTION ... _______ >t. BLDL ERROR • *-------->. TO 8 

•• CATALOG .. * ... CODE ZERO.. • *... •... . • 

. T ~O •• c:~----------::::::::l········· 
•• " ERROR08 SKIP 

1'2 ." ••••• 1'3 •••••••••• 0... . . . ... F4 ••••••••• 
•• WAS •• NO .SET ERROR CODE • • XCTL TO • 

• " NAME FOUND •• ------->. TO 8 • • IGGOCLC5 • •.•. .•.• 1": : ••••••••••••••••• ·0 .• • •••••••••••••••• 
• YES .... 1 · . • 0"0. .0"0. • G2 ._> . F3. · . . .... .... 

fOUND e •• ••••• Gl.......... G2 •. · . e··. 
:MOI=T~~iR~~TA:<_---.2!~.:. ENTRiSA YeB .:. 
• AREA * •. POINTER •• · . ·0.· ................. . .... ! . YES 

:.::.: 1 . . ···H2············ .... 
·::::····1········ : o~~: ._> < _____________________ _ .... 

DEQUE 
·····J2·········· · . . . . ... 
• • FREE MAIN. • • • 
• .STORAGE AND •• <----. J2 • 
•• DEQUEUE •• • • · . . . . ... .. ··· .. r .... ·· 
····K2·· ..••.• • RETURN TO • 

• CALLER VIA sVC • 
• 3 • ............... 



••••• :°11: •• • 

..... Al.t ...... . • • 
• CONVBRT • 
• RELATIVE GD. • 
• NO. TO BIliARY • • • -='""j==--···Bl·····.···.·· READ A BLl{ OF 

THE 
GENERATION 

INDEX ........ T .... .. 
. ···.el· ........ . · . • EXAMINE NAME • -->* .FIELD OP AN • 
_ENTRY IN INDEX • • • ········1········· 

YES 

CATaLOG IWIIIGUIII'1' 

!GQOCLC' 

01··· *. 02'" *. D3··· •• 
.• *. .* *. .* IS *. ... IS IT ... YES .. • MORE ... NO .. -GIVEN REL.. ... NO 

*. *oo ax' PF' .... *------>* .. *oo BLfN~~xIN .... *----->*. *oo POS~~iVE •• oo .------~ 
*oo.* too.* *oo... • •••• 

*oo .* * .• * * .. * ·0110-.ro . I YES ·.:r 
E1 *. • •••• £2.......... . .... E3 ..••..••.. 

• t IS *. • •• • 
.. -GIVEN REL. ... NO .COMPLEMENT GEN... • SET UP DUMMY • *. GEN. NO. .*----->* NO. OF FoUND • • FOUND NAME OF • 

-.NEGATIVE .* • EH'l'RY. • GOOOOVOO • 
*0.* • •• • 'r- ·" .... r...... .. ...... 1"' .... . 

..... "1.......... F2 *. • •••• F3 ......... . 
• • .* IS *. • • 
• POINT TO NEXT • .. -GIVEN REL. *. NO -ADD GIVEN REL •• -ENTRY ADD 1 TO • ... GEN. NO .* _______ >*VALUE TO FOUND * 
• REL. GEN. NO. • •• ZERO •• • GEN. NO. • • • •••• • * .... "·r...... 'fM ...... "1' ....... 

Gl *. •••••••••• • •••• G3 •••••••••• 

. * *. D··· YES • * MORE *. •• MOVE TOTAL TO * 
---* .• ~NT~~KIN • * .• ~. : : US~N~R~MDS : .. .. . .. . "r;o ········r······· ········r······· ..... ..... . .... 

• O~O. .OltO* .040-
• F3. • G2- - G2-. - . . . . . . 

Appendix A: Flowcharts 41 



···Gl············ 

ion: 
•• · 

I!MPTY ! •• ···1\2·· ••••••• 
• SET UP OUTPUT • 
• AREA WITH X, FF'. 

:~~Y;N~~T~~ : 
• NEw ENTRY • ....... 1' ...... 
. ····B2·········· · . • MOVE 0 INDEX • 
• LINK ENTRY TO • 
• OUTPUT AREA • · . · .. · .. ·r"···· 

CATALOG MANAGEMENT 

.IGGOCLC4 

···C2············ 

• READ THE OLD • 
INDEX 

··::::···1 .. · .... · · . • D2 .-> · . .... 
··.02············ 

WRITE 
CONTENTS OF 
OUTPU~ AREA • 

· .. ·····r····· 
·····E2·········· • • 
• SCAN FOR LAST • 
• ENTRY IN BLK • 
• JUST READ • · . .. · .. ···1 ...... · 

.'. F2 •• • •••• P3 •••••••••• 
•• DOES •• • INCREMENT TTR • 

.. • NAME FIELD •• NO • TO NEXT • • • 
... CONTAIN ... ------->. SEQUENTIAL *---->. H3 • 

• 0 SX' FF' ... • BLOCK • • • ...... . . . ... ... o· ••..••..•••••••.• rES 
• '*. • •• 

G2 •• G3 •• • •••• G" •••••••••• .. '* IS •• ..TTR OF •• • • 
READ VOL • YES .. '* CHAIN •• NO .. '* OLD INDEX •• YES • UPDATE VOLUME • 

INDEX USING <-------... POINTER •• --------> •. LT 1ST AVAIL ... ------>. INDEX CONTROL. 
BLDL. ... ZERO ... ... HOLE • • • BLOCK • 

···· .. ··r····· 
..... 1·········· .U EVOL. 
• IN CONTROL • 
• F' 
• Y • · . .. ·····r·· .. ·· 

.... .... . . .. .. .. ... . ............... . 
• :':;':->1' <:: ________________ J .... 

···H3············ 
• READ NEXT BLl( • 

IN CHAIN 
USING BLDL • 

···Jl············ ·····J2·········· · . 
·········r···· 
·····J3·········· · . • • SET ERROR CODE • 

'REWRITE IT ------>. TO ZERO • .. . · . ................. . ............... . 
! ..... 

·040· 
• J2· · . . 

42 

• SET KEY OF • 
.OUTPUT AREA TO • 
• ZEROS • · . . ............... . 

I ... . . . ->. 02 • . . .... 



IGGOCLCS 

CATALOG MANAG!lftNT 

IGGOCLCS 

••• SEARCH ••• 
A2 f. A3 •• ····Al···.····. .... .... . ... • ENTRY VIA XC'l'L • •• IS •• YES •• WAS • .o 110 • • 

: PRC14 ,IGGOCLC" :--------> • .o t. ~I~~f~ .• .o .-------> •.• ~A~ =gg~D ..... _->: D3 : ••••••••••••••• ...o. ...o. • ••• 
•• .o. • ••• 

.1. NO ERRoe I YES 

S2 .. . .•.• B3.......... ••.. • ••..••.•• ...0 . .. . IN. • • ••• Ss ••••••••• 
•• WAS •• NO .SET ERROR CODE • • • ALL. • • RETURN TO f 

•• NAME FOUND •• -------->. 'IO 8 *-------->. • EQ ON •• ------->.CALLER VIA sve • 
•• B'YBLOL.. • ••• AL ••• 3 • .. o. . .. . REBa CBS.. • •••••••••••••• .. .. ................. . ............... . rES 

.'. C2 •• .. .. o. IS •• MO 
t •• ~~gf*IxA'8. f.o f __ 

to .t 
f ••• 

rES 
·····02·········· · . • SUBTPACT 1 PROM. 
• GENERATION • 
• COUNT • · . .. ·····T .. ·· .. 

···E2············ 
• WRITE UPDATED • 

BLOCR 

······· .. i:::::::----
WRTVCB ••• ..... Pl.......... F2 •• 

• REPETERE 0""E3. •••• 
• ---------------. 'YES •• WAS A •• 
• FREE ALL vcas t< ______ •• VCB POINTER .o. 
• FOR THIS NAME • ... FOUND ... • • ...o. ········r······· ". '=0 

L _____________________ > 1 
RECAT ••• 

G2 •• .. .. 
NO •• IS •• 

--.. FUNCTION ... 
•• RECAT .o. .. .. .. .o. 

:~i~· .->1· YES · . .... 
·····H2·········· .ELDENTRY O_tlF2 • . ---------------. · . • BUILD NEW ENTR'Y. · . 

.... · . • 03 • · . 
'1'" .o.. . •. ..... 03.......... 011 . .o 05 .. • • .••. .o... 

.SEARCH lOR NAME. •• WAS •• NO •• IS •• YES 
• IGNORING • _______ >t. NAME FOUND •• _____ >t. INDEX FULL •• --1 
• VERSION NO. • •• •• ..o .• • • ...o. •..• .•...••..•..•...• . . .o. • . .o • I YES I NO :~~i: 

•••••• ".......... ·····ES·········· • •• • • SET FUNCTION 'JO. • ADD 1 TO • <--------__________________ • RECAT. • GEN.lRATION • 

• •• COUNT • · .. . ................. . ...... '1" ...... 
• •• ps •••••• •• •• •• 

• WRITE UPDATED • 
INDEX BLOCIt . ....... 1" ..... 

·····Gs·········· .BLDENTRY Olll1F2. .---------------. . . 
• BUD..D NEW ENTRY. . . ................. 

:=:::I~---------------------------------------
••• J2 •••••••••••• 

• READ BLOCK TO • 
BE UPDATED ........ 1' ..... 

····g2········· • XCTL TO .. 
• IGGOCLC3 • · . ............... 

Appendix A: Flowcharts 43 



••••• • 0 ..... 
• Ai' r 

BAYFLO • *. EMPTY 

CATALOG MAIlAGI!IIEII'f 

IGGOCLC5 

A1 t. • •••• A2.......... • •• A3 •••••••••••• . * +. • • 
• ' IS '. YES • RESET' • WRID UPDATED • *. EMPTY SW ON • +------->+ GBNERATION *-------> BLOCK 
'. • • • COUNT TO ONE • .... .... : ............... : 

100 

••..• Bl.......... . ..•• B2 ...•...... · .. . 
::utiVDIgL¥~gix : ______ >:SET ~gR~~RgODE : · .. . 
........ ::::::~-----~::::] ....... . 

LABTBn .t. 
Cl t. 

.' NEW t. . : :~~!7r~:: ';~~------------I 
..... D1.1........ . ....... . 
:~!!!!!---~~~~~: ¥A :: 
• SCRATCH ANY • • • • vcas OF OLDEST • • • 
• ENTRY • • • ................. . ...... . 
M ... J....... 1 · . ····E2········· • DELBTE LAST • • RETURN TO • 
• ENTRY IN INDEX • .CALLER VIA Bve • 
• •• 3 • 

········r····· 
. .... a3·.········ .sCRINrr 04404. .---------------. • SCRATCS ANY OLD. 
• vess • · . ·······r .. ·· .. 
· .. ··e3·········· .SLDENTRY 044F2 • .---------------+ • • • BUILD NEW ENTRY+ · . .... MT· .. ·· .. 
····03 ••.•••••• 

• XCTL TO • 
• IGGOCLC4 TO • 
• EMPTY INDEX • . ............. . 

RBPETBRE 

•• ··E3 ••••••••• • • 
• ENTBR VIA HAL • • • 

SCRINrI' SCRATCH . ... 0........... . ... 05 •........ · .. . 
• BNTER VIA BAL • • ENTER VIA HAL • · .. . ..····r .. ··· ·· .. ·T······ 

.*. .'. 
E4 *. 85 *. .' *. .f WAS *. 

.. • WAS ves *. NO .' SCRATCH '. NO *. POltfl'ER .. *------>*. OPTION • *--
'. POUND • • '. SPECIFIED •• ·· .... ··l· .. ···· ...... ;;: ...... ;;: 

-------ii~~~~;---->l 1 
· . ~ .. -.... -········1········· 

44 

BLDENTRY .. ·Pl············ 
• WRITE THE 

UPDATED BLOCJ( . 
··· .. ····r······ ..... 

·043· 
• H2· . . . 

····P2 ••• •• •• •• · . • EN'rER VIA BAL • · . ···· .. r· .. ·· 
.'. G2 .oo ••••• G3 •••••••••• oo··. • • •• OVER S •• YES • BUILD • 

•• VOLS IN ... -------->. APPROPRIATE • 
... DATA SET •• .NUMBER OF veBS • ·.oo· • • 

·"i:~_-=T····· 
·····82·········· · . • SUILD NEW DATA • 
• SET PTR oR veB • 
• PTR ENTRY • · . ·······r······ 
····J2··.···· .. · . • RETURN VIA SR • · . ............... 

... 1'4............ . .... ps •••••••••• 

READ YeB 

········r··M 

• 

···G4 •••••••••••• 
• FRBE IT BY 

WRITING A 
ZERO lQIy 

·······T·· .. ·· 
·····14· •• •••• •• • .SCRATCH 04405 • .---------------. : ~~~BRiSTa : · . · .. ·····r······· 

.', 
J4 •• 

· . . . •• SCRATCH •• 
• • DATA aft •• 
• -WITH ave 29+ • · . . . ·· .. ···F=--
····Gs········· · . • RETURN VIA BR • · . ............... 

•• IS •• • ••• JS ••••••••• 
YES ... THERE ... NO. • 
---.. ANOTHER •• ---___ >. anURN V1A SR • 

•• ves.. • • ·oo.. • •••••••••••••• .. ... 



IGGOCLC6 

·.··Al··· .. ··.· : ,a..~f1gl1 : · . . MM·r .. · .. 
81" to t. aat;~ •• B2 •••••••••• 

0* to •• REEMAIIi •• 
• ' IS '. NO • • !'OR INDBX • • 

to l"UltC"l'IOli .*------>*. CATALOG •• 
'. LOCATE .' • • WORJ( AREA • • 

to .' • • • • 

··1' -;1:8 ········1········· 
fREE ..... el.......... . .... e2 ......... . · . . . . . . . 

: :FgE~~lL : : _____ >: :D~~~'r.3N : : 
• • won AREA • • • • • • · . . . . . . . ................. .. .... ·r ...... 

····02········· • EXIT To USER • 
• VIA sve 3 • · . ............... 

CA'fALOG l1li11&11111111'1' 

lGOOCLC6 

Appendix A: Flowcharts 45 



OUALOG MMQ ........ 

tGO0002W 

lQOOOO~H ····ott ....... . :fl6, dDNt~ : ',,11"(, I ... · 
Bl- to to EXT'~i~.B2.......... . .•.. 83.......... . .... S4 ...•..•... 

•• IS •• • • FREEMAIN •• • • • • • SET SW TO • 
• -ENTRY XCTL to YES •• FOR EXTEND • • • *GE'l'MAIN FOR- • • INDICATE 2ND ., 

to FROM .*------>*. WK • *-------->* • NEW DCB. • *------->*PASS OF EXTEND *--
••• ~XTEND •••• : :DgE~~b O~~B: : • • DEB :: : FUNCTION : 

to •• ••••••••••••••••• ••••••••••••••••• • •••••••••••••••• 

1"0 
• to EXTEND Cl to ••••• e2.......... . .... c3 ......... . 

•• WHAT to •• •• • TO. 
•• FUNCTION •• EXTEND • -GETHAIN FOR- • • 1ST • 

•• WAS • *------->*. EXTEND • *------>*P TEND ----l •• REQUESTED.. •• MODULES •• • ON. 
to •• • • • •• • 

to .* ••••••••••••••••• • •••••••••••••••• . 
BLDEB 

1::::----------------------------------------------------------------------------------·····01·········· · . • BUILD DEB AND • 
• DCB FOR ENTIRE • 
• VOLUME • · . ...... ·r ...... 
••• •• El ••• ••••••• · . • BUILD lOB AND • 
• ECB • · . · . .... · .. r ...... 
···Fl············ SEARCH AND 

• READ DSCB FOR • 
SYSCTLG DATA 

SET ......... 1' ..... . 

..... EaROR4 RET,URN Gl •. • •••• G2.......... • .••. G3 ••.•.•.... 
oo.... • ... • • • • ••• G" ••••••••• 

•• WAS • ~ NO • SET ERROR CODE • • • FREE ALL •• • RETURN TO • 
... DATA SET oo.------>. TO 4 .------->.. MAIN •• -------->. CALLER • 

• FOUND • • .".. STORAGE ••• • 
'. .oo • • I . . . . . ............. . 

oo •••• OO ••••••••••••••••• • •••••••••••••••• I YES r:::-------
81" ..... EXTENDA H2· .... . .... 83.......... . ...• H4.......... XCTL ...... ...... . .. . ····as········· 

~~~.:. 2N5S~~~ OF·: .:~~ ___ >.:. A~fgg~Da~i .: .~~ ______ >:DU~~Sj~g~TF~R : ________ >:BUI~~BIg~AI~CE, : ________ >: Iag6~3j~ : 
• .o EXTEND .o. •. ZERO .o. • DADSM.. •• • • .oo. • .• . . •.••••.....••.

• .o .• •. .• ••••••••••••••••• • •••••••••••••••• . .
fEITHER

• *.. Ndl'MT Jl J2.......... J3.......... J4 ..
..... • •• • •• IS ••

• • MUST •• NO • CALC EXTENT • .MOVE THESE INTO. • • THEltE A ~o

.... ~t6M~~Eg~ ••• -----:;\->:ENTRIES OR DEB:-------->: EXISTING DEB :--------> ~6~~~O 3A •• " ·-------v
•••• • •• • ·.DSCB •• • ••••tI...............041.

Y::::---->l YES 1 YES .. :l·
..... Kl.......... . .. K" · . • SET FORMAT • READ THE ..
: SWITCH :----> FORMAT 3 DSCB.' ·

---:::::::::j

46

.....
*OAt, •
• Ai-

'f
• • · . · . · . · ······r·······

CA'fALOG MAlIAGIIIIIIT

IGC0002H

.*. FORMAT XC'l'L 81 *. • •••• 82.......... .••• 3 ••••..•••• .• *. • • • • • UP DCl!. • ••• B" •••••••••
• :* PO~T .:.:~~ ___ >: :GEi~~TFOR: : _______ >: NIf'C~ : ______ >: I~~LJ~ :

*. SWITCH ON.. •• ROUTINB •• *p CATALOG •• •
t..* • • • •• • • ••••••••••••••

•• • + ••••••••••••••••• • ••••••••••••••••

100

·····Cl·········· • • • SET ERROR CODE •
• TO ZERO • · . · . ··· r .. ·· ..
·····01.·.··.· ... · . • PLACE DCB ADDR •
• IN REGISTER 1 • · . · . ··· .. · .. r·· ...
····El

• RETURN TO •
• CALLER • ·

Appendix A: Flowcharts 47

IGGOCLP2 ·····A2··········

CATALOG MANAGJDIBNT

IGGOCLP2

····Al········· . . :E~~ ¥~o~~fi : _____ >: ,g~;DRl?cd¥~ :
• •• THEM •

.. m.......... : .. · .. ·r .. · .. : f----------------------------------]
• • • CTLGFM'r • '. CTLOOPl

B2 '. B •• • •• Bq ••••••••••••
• ' IS '. ..8'. WRITB FULL

.:·~~i~:~TB~·:.~---->.:· OF T ':~ _____ >' J'~~ED ~
'. DIRECTORY.' '. RD.' • BLOCKS •

'0 .' ' .. ' rES rES
..... 2.......... C3
• IN START • • GO BACJ{ 1 TRX •
'AT lNG OF • .'1'0 PASS LAST '1"1"
'DIR. ALLOW • • IN CI\T}l.LOG TO •
• FOR HARX' • CALLER • · ········r·······

--------->
BPLOOP2 .'.

E2 '. o· '. o' FIRST •• NO
'. WRITE 0'---'. .' .. .' .. . '

fES

·····F2·········· 'SET UP 1ST CCW •
• TO WRITE •
'SPECIAL BLK FOR'
'EMPTY DIRECTORY' · .
· ·······1::::::::---

BPNFRST .'.
G2 ' • . ' ' . • ' HAS '.NO

'. LAST RECORD •• --
*.BEEN WRTN.' '. .' ' .. ' rES

·····H2·········· · . • SET UP CHANNEL •
• PROG TO WRITE •
• EOD MARl< • · .
~""}==-

···J2············

.'.
03 ' •

• ' IS '.
':;O~~i¥'lEi~ O;:'!~~--

'. CAT .' '. .' '. o' ro

·····E3 .••.•.•••• · . • BUlLe VOLUME •
• INDEX CONTROL •
• BLCCI: • · "1'

···F3 ...•••.•....
WRI'lE IT r .. · ..

···G3.·.· •. • ..••.
REAt THE

SYSCTLG DSCB

'~""'r"'"
·····H3 •.••••••.• · . • SET FORMATTED •
• SW ON IN DSCB • · . • • ·r

• •• J3 ••••••••••••

.................

EXTENDED
• •••• J
'PUT LAST 'IT IN •

WRITE
SPECIFIED
I~ECORDS

• WRITE BACX' .DATA SET IN REG'
THE OSCB ------->. TO RBTN 'l'O •

• • CALLER • . .
······· .. r······ ·········r··::::::----------::::::]········

.'. 01(X2 '. x3.......... 1
• ' HAVE '0 • •• • • • • ••• K5 •••••••••

NO • 'ALL RECORDS •• YES 'SET ERROR CODE • • • neEMA1N •• • RETURN 'Ie •
---. 0 •• W~f'~EN •• 0 .-------->: TO 0 :-------->: :P¥8c~8B~HBY: :------->:CALLER JIA sVC :

'0 o. • •• • • • • •••••••••••••• '. o' ••••••••••••••••• • •••••••••••••••• •

APPENDIX B: OLD CVOL POINTER

Before Release 17, the control volume pointer entry had no device
type code field. Since some control volumes may still contain the old
entry, and since the routines still check for it, its format is given
here.

Field 1: Field 2: 03 Field 4:

Name Zeros Control Volume
Serial Number

18 Bytes
I~I 1.°

7 8 10 11 12

Appendix B: Old CVOL Pointer 49

APPENDIX C: DEVICE TYPE FIELD

The device code portion of Data set Pointer Entries, Volume Control
Blocks, and Control Volume Pointer Entries is identical to the UCBTYP
field of the Unit Control Block. This description is included here for
easy reference.

lOS Model Optional Features Device Class Unit Type Flags Code

Byte 1 Byte 2 Byte 3

For a complete description of the fields shown above, please refer to
IBM system/360 operating system system Control Blocks, Form C2S-662S. A
brief description of some of the fields appears below.

Device Class: (Byte 3: values are in hex)

X'SO' Magnetic Tape
X'20' Direct Access
X'OS' unit Record
X'10' Graphics
X'40' Communications

When Byte 3 indicates direct access, byte 4 indicates the specific
device as follows:

50

X'01' 2311 Disk storage Drive
X'02' 2301 Parallel Drum
X'03' 2303 Serial Drum
X'04' 2302 Disk Storage
X'OS' 2321 Data Cell Drive
X'OS' 2314 Disk storage Facility

Byte 4

Where more than one page reference is
given, the major reference is first.

abnreviations of routine names 3
abnormal termination 10
absolute generation number

obtained from relative gen. no. 16,11
reference to catalog using 1

address
fields of catalog entries (see
description of specific entry)

of UCB as a parameter 12,17
of IECPBLDL 13

alias entries
count of, in index control entry 20
creating 11
deleting 12
description of

detailed 22-24
general 9

allocated space for SYSCTLG 12,17
allocation quantity, secondary 12,17
assembler language code 19

BALR instruction as linkage 13
BLDA fUnction 11
BLDG function 11
BLDL routine (IECPBLDL)

linkage to 13
treatment of keys by 4
used to search for name

by locate generations 10,16
by normal locate 10,13

BLDX function 11,3
block size of SYSCTLG 4

calculation of absolute generation
numbers 16

calling
of catalog management routines 2
parameters passed 26
of CVOL routines 12,10
of IECPLDL 13

C~lliST macro instruction 25-26
CATALOG macro instruction 2
catalog fUnction 11
CATLG sub-parameter on DD card 2
chaining

of physical blocks 6
of volume control blocks 23

channel programs
to format catalog 17
to read and write blocks 13

communication vector table (CVI) 13
complement form of generation number 16,11
connecting control volumes 1-3
count field

of physical blocks 4
of catalog entries 20-24

CSECT names of routi es 19
CTLG parameter 26
CVOL (control volume)

description 1
old pOinter entry 50
pointer entry 9,23
routines 12,17

CVT (see communication vector table)

DADSM routines 17,11
DCB (data control block) for SYSCTLG
DEB (data extent block) for SYSCTLG
delete option 17,26
DEQ macro instruction 11,15
device type field 49
directory of a partitioned data set
disconnecting control volumes 12
DISP parameter of DO card 2
DLTA fUnction 12
DLTX fUnction 12
DRPX function 12
OSCB (data set control block)

format switch in 17,12
information from 17
representation of generation nos.
in 16

secondary allocation quantity in
dummy generation number 16

empty option 17,26
ENQ macro instruction 10,13
EXCP macro instruction

initialization for 10
use of 13

extend routine
catalog 12
DAOSM 17

extending SYSCTLG data set 12,17

flags
in user's parameter list 26,2

17,12
17,12

17,12

17

in generation index pointer entry 24,9
flowcharts 30-47
format switch in SYSCTLG OSCE 17,12
formatting routine 17,12
free blocks 12
fully-qualified name 1
fUnctions of routines-chart 3

GDG (generation data group) 1,11
generation index

building (see BLDG function)
deleting (see DLTX function)
inserting entries into 16-17
locating entries in 16
locating entries in 16
pointer entry 9,24
order of entries in 16

GETMAI~ macro instruction 10,13
GOOOOVOO (see dummy generation number)

high-level name 11
housekeeping functions 13,10

Index 51

IECPBLDL 13
IEHPROGM 2
IGC0002F 13
IGC0002H 17
IGC026 19
IGC028 19
IGGOCLCl 13
IGGOCLC2 15
IGGOCLC3 15
IGGOCLC4 16
IGGOCLC5 16-17
IGGOCLC6 15
IGGOCLF2 17
IGG0533A 17
index control entry 20,9
index, generation (see generation index)
index levels 4
index link entry 20
index, normal

building (see BLDX function)
deleting (see DLTX function)
entry type 8-9
inserting entries into (see catalog
function)

pointer entry 20,9
removing entries from (see UNCAT

function)
structure 5

initialization
of new catalogs 17
of processing 13

input to the routines 25

job scheduler 2

keys
description 4
initialization of 12,17
use of 12

levels of qualification 4-6,1
link fields (see index link entry and
volume c0ntrol block)

LINKX function 11
locate function

description 10,13
output from 14

logical organization of the catalog
(figure) 4,6

macro instructions
CAMLST 25
CATALOG 2
Il~DEX 2
LOCATE 2

modules of the routines 13,14 (see also
specific module ~ames)

multiprocessing environment 10
multiprogramming environment 10,13

t~]\M.E. parameter 26

open routine 12,17
options (see empty option, delete option)
order of entries

52

in generation indexes 16
in normal indexes 4

parameters passed to routines 26
partitioned data set (PDS) directory

formatting of 17,12
similarity of catalog to 4

physical organization of catalog 4
pointer entries 20-24

qualifiers 1

reading the catalog 13
RECAT function 11
records (see physical organization)
reenterable routines 10,13
region 10
register usage (chart) 28-29
relative generation number

in calculating absolute 16
validites of 1

RESERVE macro instruction 10

scratch routine 17
searching the catalog 10
secondary allocation quantity 17
sequence of entries in catalog (see order
of entries)

serial number, volume (see volume serial
number)

simple names 4
supervisor

SVC 19
SVC 26
SVC 28
SVC 29

SYSCTLG

calls (SVCs)
10
2,13
17,10,13
11,17

as name for ENQ/DEQ 13
data set

allocation of space for 12
definition of 1
extend ing 17
formatting 17-18
opening 17

SYSl. SVCLIB 19

unit control block (UCB)
device type field of 51
of control volume

as parameter 12,17
searching for 13

UNCAT function 11
user's parameter list 26
utility programs 2

volume control block (VC3) 9,23
volume serial number

of cataloged data set 5,9 (see also
volume control blocks and data set
pointer entry)

of control volume 13
vol ume table of contents (VTOC) 12,17

writin~ in the catalog 13

XCTL macro instruction 13,17

READER'S COMMENT FORM

IBM System/360 Operating System
Catalog Management
Program Logic Manual

Form Y28-6606-l

• Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is "No" or requires qualification,
please explain in the space provided below. Comments and suggestions become the property of
WM.

Yes
• Does this publication meet your needs? 0
• Did you find the material:

Easy to read and understand? 0
Organized for convenient use? 0
Complete? 0
Well illustrated? 0
Written for your technical level? 0

No

o

o
o
o
o
o

• What is your occupation? ________________________ _

• How do you use this publication?
As an introduction to the subject? 0
For advanced knowledge of the subject? 0
For information about operating procedures? 0

As an instructor in a class? 0
As a student in a class? 0
As a reference manual? 0

Other ___ _

• Please give specific page and line references with your comments when appropriate.

COMMENTS

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

Y28-6606-1

YOUR COMMENTS, PLEASE •••

This publication is one of a series which serves as reference sources for systems analysts,
programmers and operators of IBM systems. Your answers to the questipns on the back of
this form together with your comments, will help us produce better publications for your
use. Each reply will be carefully reviewed by the persons responsible for writing and pub
lishing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

fold fold
___ .1

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY •..

IBM Corporation
Monterey & Cottle Rds.
San Jose, California
95114

Attention: Programming Publications, Dept. D78

FIRST CLASS

PERMIT NO. 2078

SAN JOSE, CALIF.

I ---1
fold

International Business Machines Corporation
Data Processing Di1(islon
112 East Past Road, White Plains, N.Y.lOSOl
[USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International)

fold

r

Y28-6606-1

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.I060t
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

