File No. S360-30
Form Y28-6606-1

Program Logic

IBM System/360 Operating System

Catalog Management

Program Number 360S-DM-508

This manual provides detailed information on catalog
management routines. These routines record
identification of volumes used by data sets by
maintaining information in logical records called
indexes. The functions and structures of the routines
are described, as are their relationships to other
portions of IBM System/360 Operating System. This
manual also describes the structure of catalog data
sets that contain the indexes processed by catalog
management routines. It is intended for use by persons
involved in program maintenance, and system programmers
who are altering the program design. Program logic
information is not necessary for the use and operation
of the program; therefore, distribution of this
publication is limited to those with the aforementioned
requirements.

RESTRICTED DISTRIBUTION--SEE ABSTRACT

PREFACE

This publication provides customer
engineers and other technical personnel
with information describing the internal
organization and logic of the catalog
management routines. Publications that
contain external information about the
catalog and its use are:

IBM System/360 Operatinq*Sggtg@
Supervisor and Data Management Services,
Form C28-6646

IBM System/360 Operating System
System Programmer's Guide, Form C28-6550

Some publications describing other
aspects of the Operating System are
referred to in the text. These are:

IBM System/360 Operating System
Direct Access Device Space Management,
Form Y28-6607

IBM System/360 Operating System
Sequential Access Methods, Form Y28-6604

This manual is divided into eight major
sections with three appendixes.

The Introduction describes the catalog
management routines and the catalog as they
relate to the rest of the Operating System.

The Catalog Data Set section describes
the structure and organization of the
catalog data set. An understanding of this
data set is a prerequisite for an

Second Edition (July, 1969)

This publication corresponds to Release 18.

Newsletters Y26-8013 and Y26-8020.

publication.

been changed.

performed by IGGOCLC2.

understanding of the routines used to
access and modify it.

The Method of Operation section
describes the logical functions of the
catalog management routines.

Tne Program Organization section
describes each module of the routines in
detail, with particular emphasis on the
differences petween the actual code
involved and the logical functions of the
routines.

The Directory is a chart that enables
the reader to find a section of code, a
flowchart, or a text reference, given any
one of the three.

The Data Area Layouts section describes
in detail each of the catalog entries and
also the user's parameter list.

The Diagnostic Aids section contains
charts of register usage at various stages
in catalog processing and of the factors
involved in Jdetermining which module gets
control when.

The three appendixes contain detailed
flowcharts, a diagram of the device type
field found in data set pointer entries and
CVOL pointer entries, and a description of
a CVOL pointer entry which is no longer
created by catalog but which may still
exist in some installations.

s It is a major
revision of, and obsoletes, ¥Y28-6606-0 and Technical

This revision is a complete rewrite of the original

The organization has been completely revised,
the text has been rewritten, and most of the figures have
This edition also reflects the addition of a
new module, IGGOCLC6, to the catalog management routines.
This module performs some of the functions previously

Specifications contained herein are subject to change from

time to time.
revisions or technical newsletters.

Any such change will be reported in subsequent

This publication was prepared for production using an IBM
computer to update the text and to control the page and line

format.

Page impressions for photo-offset printing were

obtained from an IBM 1403 Printer using a special print

chain.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving

your locality.

A form is provided at the back of this publication for

reader's comments.
may be addressed to IBM Corporation, Programming

Publications, Department D78, San Jose, California,

If the form has been removed,

comments

95114.

©) Copyright International Business Machines Corporation 1969

INTRODUCTION e o o o

Organization by Level of Qua11f1cat10n
Generation Data Group Strucuture . . .
Control Volumes . . « « o o o o « o &
Calling the catalog Management

CATALOG DATA SET . . .
Physical Blocks . . .
Index Levels
Index Entry Types . .

e o o e

* o o 0

« e s e
.

s s s 0

METHOD OF OPERATION . . ¢ ¢ « « « o« &
Housekeeping Functions .« e o o o o
Maintaining Catalog Integrlty .« . e
Opening the Catalog Data Set
Locate Function . . . o . « e e .
BLDX, LINKX, and BLDG Functlons e o .
Catalog and RECAT Functions
BLDA Function . . « « ¢ ¢ ¢ ¢ o « o« .
DLTX, DLTA, DRPX, UNCAT Functions . .
The CVOL Routines .« « « ¢ o« o o« o o« &
Open Routine . . ¢« « ¢ ¢ ¢ ¢ o o« o &
Extend Routine & « . .
Formatting Routine

PROGRAM ORGANIZATION . . .« « o o o «
Initialization and Housekeeping:
IGCOO002F . . . e e e e e e
Locate: Module IGGOCLCl e e e e e e

FIGURES

Figure 1. A Control Volume Connected

to the system Residence Volume . . .
Figure 2. Functions of the Catalog
Management Routines . . . e e e e .
Figure 3. Typical Block in the
Catalog .« ¢ v ¢ ¢ ¢ ¢ e e e e e e e .

Figure 4.
the Catalog:

Logical Organization of
Normal Index Structure
figure 5. Logical Organization of
the Catalog: Generation Indexes and
Volume Control Blocks

Routines

DR R PR

iii

CONTENTS

Index/Catalog, Normal Structure:

Modules IGGOCLC2, IGGOCLC3, and

IGGOCLCH ¢« v o o o o o o o o o o o o o
IGGOCLC2 & &« ¢ o o o o o o o o s o o =
IJGGOCLCH « o o o« o o o o o o o o o o =
IGGOCLC3 & & ¢« o o o o o o o o o o o =

Locate Generations: Module IGGOCLCH4 . .

Catalog Generations: Module IGGOCLCS .

The CVOL Routines: Modules IGC0002H and

IGGOCLF2 & ¢ o 4 o o o o o o o o o o o «
IGCO00Z2H &« « o o o o o o o o o o o o
IGGOCLF2 &« ¢« ¢ ¢ o o o o o o o o o o

DIRECTORY &« &« & & « o o o o o o s o o »

DATA AREA LAYOUTS .« ¢ ¢ ¢ o ¢ o o o o =
Catalog Entries . . e e e e o e s o e
User's Parameter LlSt e e e & e e e e
DIAGNOSTIC AIDS . o « o o o o o o o o =«
Module Selection Chart
Register Usage « . « « « « « < .

APPENDIX A: FLOWCHARTS « .« . .

APPENDIX B: OLD CVOL POINTER
APPENDIX C: DEVICE TYPE FIELD

INDEX ¢ ¢ o o o o o a o o o o o s o o« =

Figure 6. Physical Organization of
the Catalog . « « « . « ¢« « ¢ « &« « . .

Figure 7. 1Index Entries
Figure 8. Catalog Module Flow
Figure 9. Directory <« . « . .
Figure 10. Catalog Entry Formats . . .
Figure 11. More Catalog Entry Formats .
Figure 12. User's Parameter List . . .
Figure 13. Module Selection Chart .- .
Figure 14. Register Usage e e v e e

30

49

50

51

This page intentionally left blank.

iv

Catalog management is the facility of
the Operating System for locating data sets
when the user specifies only the data set
names. The catalog, itself a data set
(DSNAME=SYSCTLG), contains data set names
correlated with volume and device type
information. The catalog management
routines supervise the organization of the
catalog, insert, remove, and locate entries
in the catalog, and format new catalogs and
partitioned data set directories.

ORGAWIZATION BY LEVEL OF QUALIFICATION

Operating System data set names may be
either simple or qualified. A simple name
is a collection of up to eight EBCDIC
characters. A gualified name is a
collection of simple names separated by
periods (.) with a total length of up to
44 bytes.

Catalog management uses the periods in a
qualified name as delimiters and uses the
simple names (called gualifiers) as index
names. The catalog is divided into
indexes, each of which represents one level
of qualification of a qualified name.

Since the catalog management routines can
puild or update only one index at a time,
all levels of a data set name except the
lowest one must exist before the data set
can pe cataloged or before a new index can
be built. If the user wishes to catalog a
data set called A.B.C, for example, he
would have to create index A first, then
index A.B, and then he would have to
catalog data set A.B.C.

The highest level index, called the
volume index, is puilt automatically the
first time a new catalog is used by the
catalog management routines.

GENERATION DATA GROUP STRUCUTURE

The same structure is used to maintain
generation data groups. A generation data

INTRODUCTION

set may be referred to by its absolute name
(e.g., A.B.C.G0006V00) for any catalog
functions, or by a relative generation
number (e.g., A.B.C(-2)) for the locate
function. The catalog management routines
keep only the specified number of entries
in the generation index (index 'C' in this
case), deleting older ones and adding new
ones when necessary, and emptying the index
and deleting the data sets themselves if
the user specified the EMPTY or DELETE
options when he created the generation
index.

For a description of the use of
generation data groups, see IBM System/360
operating System Supervisor and Data
Management Services, C28-66U6.

CONTROL_VOLUMES

Any direct access volume may contain a
catalog; any such volume is called a
control volume (CVOL). The system
residence volume always contains a catalog.

An item in the catalog of a CVOL other
than the system residence volume can be
made available to the system if the CVOL is
"connected" to the system residence volume.
To connect a CVOL to the system residence
volume, the catalog management routines
insert a control volume pointer entry into
the volume index of the catalog on the
system residence volume. This entry
contains, in its name field, the name of a
high level index which already exists on
the CVOL to be connected. (See Figure 1.)

Any search of the catalog always starts
on the system residence volume, but if the
catalog management routines encounter a
control volume pointer entry attached to
the highest level of the name in the volume
index, they continue the search for the
fully-gualified name on the specified CVOL.

Introduction 1

System Residence Volume

Volume Table of Contents

Volume Index

y T
I

nfer to E I
Index B

Volume Serial
| Number of
t Control Volume

Index

Figure 1.

CALLING THE CATALOG MANAGEMENT ROUTINES

Tne catalog management routines are
accessed through three assembler language
macro instructions: LOCATE, INDEX, and
CATALOG. The macro instructions generate a
reference to a parameter list, which the
user must build, and an SVC 26 instruction.
The user's parameter list contains a group
of flags that indicate what function he is
asking the catalog management routines to
perform. Ffigure 2 summarizes these
functions, and the section "Data Area
Layouts" contains a detailed descriotion of
the user's parameter list.

Control Volume

Volume Table of Contents

Volume
Index
DSCB

Volume Index

E : Pointer to
| Index E
1

i i Volume
Index Pointer to
E Ay Index A F1 Number
1] of F
) 1
Data
Set
E.F
i]
| Volume Volume
Index L : Number |p : Number
| of L 1 of P
H 1
Data Data
Set Set
E.A.L E.A.P

A Control Volume Connected to the System Residence Volume

The catalog management macro
instructions are most commonly used by the
utility IEHPROGM and the job scheduler,
although they may be employed by any user
of assembler language. LEHPROGM creates
and deletes indexes, aliases, and
generation indexes, and catalogs and
uncatalogs data sets according to
specifications supplied by tne user of
IEHPROGM. The job scheduler calls the
catalog management routines when it must
locate a data set, given only its name, or
when the DISP parameter on a DD card is
CATLG or UNCATLG.

1
| FUNCTION ABBREVIATION* |
| | |
| I |
| LOCATE a data set by name | NAME |
| a block in the catalog by TTR | BLOCK |
b + !
[_ | |
BUILD a normal index	BLDX
a generation index	BLDG
an alias to a high-level index	BLDA
t + !	
[_	
DELETE an index	DLTX
an alias	DLTA
L + -	
v T	
I	
CONNECT two control volumes	LINKX
T]	
DISCONNECT two control volumes	DRPX
b + -	
CATALOG a data set	CATALOG
f	l
UNCATALOG a data set	UNCAT
- —
| RECATALOG a data set (change the volume | RECAT |
{ serial number associated with an | |
| already cataloged data set) | |
.* . i
| *The abbreviations here are used in the comments of the |
| source code to indicate what operation the user requested |
| |
L ~d

Figure 2. Functions of the Catalog Management Routines

Introduction

3

CATALOG DATA SET

Physically, a catalog is arranged in
blocks with keys. Logically, it is
arranged in index levels. This section
will describe the catalog's physical
organization briefly and its logical
organization in detail.

PHYSICAL BLOCKS

The physical organizaticn of the catalog
is identical with that of a partitioned
data set directory.

A catalog data set is formatted into
256-byte blocks with 8-byte keys. Each
block contains a 2-byte count field, which
contains a number indicating how many bytes
are used in this block (including this
count field).

The keys of catalog blocks are always

X'FFFFFFFFFFFFFFFF', or
X'0000000000000000".

A high key indicates that the block
contains information, and a zero key
indicates that the block is available for
new entries. The keys are present because
the catalog routines use the BLDL routine
(IECPBLDL) to read the catalog. The BLDL
routine expects to find 256-byte records
with 8-byte keys. It ignores blocks with
keys of zero.

See Figure 3 for an illustration of a
typical block in the catalog.

INDEX LEVELS

The catalog is organized into a series
of indexes or levels. The highest level,
called the volume index, is initialized by
the catalog management routines when the
catalog data set is first opened.

Entries in each index are in standard
EBCDIC collating sequence by their name
fields.

The volume index is all that is required
to catalog simple names. It also is the
only index that may contain control volume
pointer entries (pointers to another
catalog) or alias entries. Lower level
indexes are required to catalog gualified
names, one index for each level of
qualification except the last.

To illustrate the organization of
indexes, consider the simple data set name,
'DSET' (Figure 4). If this were cataloged,
only one entry would be made in the
catalog: a data set pointer entry in the
volume index. However, a two-level name,

Data Set | Index Data Set | Index
Pointer | Pointer | Pointer Link
Entry Entry Entry Entry

Control
Entry

-ZCQO0O

Meaningless
Data

[¢—— Length in bytes = COUNT ——'—'——.l

- 256 bytes

Figure 3. Typical Block in the Catalog

Y

Data Set
Volume Index: Pointer Enel'ry Poi:\?gs)énfry
[t T — N — {0 T — N —— {
1) 4 LR T 37
Volume Index Vgrious Pointer Entries | Name I Volume Various Pointer Entries | Name I TTR of Various Pointer Entries
Control with Name Valve < 'DSET' Serial and | with Name Value < 'SYS1' | Index with Name Value
Entry 'DSET' Device 'SYS1" and > 'DSET' >'sys1
| Type I
—ir ' 4 ! '
) ' Data Set
Index 'SYS1 Pointer Entry
(¢
—45 . -
Index Various Pointer Entries |Name | Volume Various Pointer Entries
Control with Name Value < 'PROCLIB'; Serial and with Name Values
Entry 'PROCLIB' | Device > 'PROCLIB'
I Type
—4t : 4

Figure 4.

such as SYS1.PROCLIB requires another
index. To catalog this name, two entries
would have to be made: an index pointer
entry with name *'SYS1' and a data set
pointer entry with name 'PROCLIB'.

The periods (.) 1in a data set name act
as level delimiters. The characters to the
left of the first period are assumed to
indicate a name in the volume index, the
next level is assumed to be the name of an
entry in the index indicated by the pointer
in the volume index, and so on, until the
last level is a name in the lowest level
index and is associated with a data set
pointer entry or volume control block
pointer entry.

A data set pointer entry and a volume
control block both contain volume serial

Logical Organization of the Catalog:

Normal Index Structure

numbers and device type information for the
catalog data set. A data set pointer entry
can contain only five volume serial
numbers, while a chain of volume control
blocks can describe any number of volumes.

A generation data group index contains
data set pointer entries and volume control
block pointer entries. Figure 5 shows how
a catalog containing generation data group
indexes and volume control blocks might
look. This sampleicatalog lists generation
data sets named "WEEKLY.INVNTRY.GnnnnVxx"
to illustrate generation indexes, and a
data set named "LOTSA.VOLUMES" to
illustrate volume control blocks.

The Catalog Data Set 5

Volume Index:

4 - T —4¢ e
Volume Index Name l TR of Name TIR of
Control Entry 'LOTSA' : Index 'WEEKLY" Index
|

P -
-~

pod
-~

GDG Index Pointer Entry

-
-

Index INVNTRY

e i—
Index WEEKLY 0 e
)Y T T)Y
|
Index Control Name I TR of | Flags
Entry 'INVNTRY' | Index | 9
|
L T

-

Data set and/or VCB pointers of the form 'GXXXXVNN?

-

Index Control where XXXX is the complement of the true generation
Entry number. Pointers are in order of name value.
X
)Y
Index LOTSA
4 ¢ 1 (
1))T
Index Control Pointer entries with Name TIR of Pointer entries with
Entry name value <'VOLUMES' ['VOLUMES' VvCB name value >'VOLUMES*

~~
-

=~
-~

Volume Control Block

L L
N R
o.
o [Serial No. Serial No. | Serial No. Serial No.
f land device | and device | and device and device Pointer to next VCB or zero if
V | Type of Type of Type of Type of no more VCB's.
? Volume 1 Volume 2 Volume 3 Volume n
s. "
)Y

Figure 5.
Blocks

Indexes may span blocks, but one block
may not contain more than one index, or
parts of more than one index. The last
entry in each index block is called an
Index Link Entry. (See Appendix B for
specific fields.) 1If the block is the last
one in an index, the pointer field of the
link entry contains zeros. If the index is

Logical Organization of the Catalog:

Generation Indexes and Volume Control

continued in another block, the pointer
field of the link entry contains the TTR of
the next block in the index. These link
entries are present even when the several
blocks of an index are contiguous (See
Figure 6).

Volume Table of Contents

Volume Label

Format 1

Format 4| Format 51 /o505 DSCB's |DSCB for | Various DSCB's
DscB | DSCB | O TR LSkenie

J

SYSCTLG Data Set

—T E:;Y'es I"‘ i: 256 bytes of data >i
L 1
8 Volume | TR ITTR
Volume Index| 'FF' u g::ffol Various Pointer Entries .T‘Z":J of \E/;r:i:l;s Pointer ;I??Fe.hf Meaningless Data
N £ '003' 1002
1 | Entry | |
IJ 1
¢ i
Volume - 8 Name| TTR
Index 'FF! Various Pointer Entries qmel of Meaningless D
e ngless Data
(Conf‘) l;l X FFI 004"
AN
T
¢ 1
O | Index Name | TR
Index 'AAA' 'FF! U | Control Various Pointer Entries g of Meaningless Data
N Entry X 'FF | ‘000!
T
1
< o
2@:‘;;“6) Index | \pp, u Various Pointer Entries Q??:.IOF Meaningless Data
. N I'OOO'
T 1
C
o
Free Block 00! U Meaningless Data
N
T
—D‘ L——Counf field 2 bytes

Figure 6.

Physical Organization of the Catalog

The Catalog Data Set

7

INDEX ENTRY TYPES

An index always contains one control
entry and any number of pointer entries.
The control entry is always the first entry
in the index (see Figure 6), and its
position here is assured by giving it a
name field of value X'1'. There are two
types of control entries: volume index
control entries and normal index control
entries. The general information about

these entries is given in Figure 7, while
specific information about fields and their
values is given in the section "Data Area
Layouts."

There are several types of pointer
entries. A summary of each type and the
information it contains is given in Figure
7, while specific information about exact
placement of fields, etc., is given in the
section "Data Area Layouts."

13 T

| ENTRY TYPE | CONTENTS

b Il

T T

| Alias Entry | Contains the name of the alias, a pointer to |
| | the next lower level index, and the true name. |
L 1 J
r T 1
CVOL Pointer	Contains the name of a high level index and a
Entry	pointer to the control volume on which this
	index may be found.
b 4 4	
) T 1	
Data set	Contains the lowest level of the data set name
Pointer Entry	and up to five entries specifying volume
] serial numbers and device codes for the volumes	
	of the data set.
b $ 1	
Index Control	Contains the address of the last block in this
Entry	index, the address of the first block (the
	address of the block which contains this

	entry), a count of the number of unused bytes
	in the last block of this index, and a count
	of the number of aliases to this index.
[N 4

v T ‘l
Generation Index	Contains the name of the generation index, the
Pointer Entry	number of entries to be maintained in the
	index, the number of entries currently in
	the index, codes for "delete" and "empty"
	options, and a pointer to the index.
L 4 J	
13 T 1	
Index Link	Contains a name field of X'FFFFFFFFFFFFFFFF',
Entry	and a zero to indicate the end of this index,
	or a pointer to the next block in this index.
L +____ - 1	
r 1	
Index Pointer	Contains an index name and a pointer to the
Entry	named index.
pommm oo m - + 1	
Volume Control	Contains an indication of the number of
Block	volumes named in the block and a list of the
	volume serials, device type codes, and data
	set sequence numbers of these volumes, plus a
	pointer to the next volume control block, or
	a zero to indicate end of chain.

L == 1
13

Volume Control	Contains the lowest level of the data set
Block Pointer	name and a pointer to the volume control block
Entry	which describes the volumes of this data set.
L 1 - J	
[8 T T	
Volume Index	Contains the address of the last block in the
Control Entry	volume index, the address of the last block in
	the SYSCTLG data set, and the address of the
	first available block in the SYSCTLG data set.
	It also contains a count of the number of
	unused bytes in the last block of the volume
I | index. I
Lo 1 S —d
Figure 7. 1Index Entries

The Catalog Data Set 9

METHOD OF OPERATION

This section describes the operation of
each logical function of the catalog
management routines. Since many of the
functions are quite similar to each other,
several of these functions have sometimes
been combined into one section. The
sequence of events described in this
section is the actual sequence aqf events
performed by the routines. However the
division of the routines into modules does
not necessarily correspond to the division
of functions used in this section.

HOUSEKEEPING FUNCTIONS

Before actually beginning to search or
update the catalog, the catalog management
routines must perform some initialization.
This initialization does two things: .

e It protects the integrity of the
catalog.

e It opens the catalog data set.
MAINTAINING CATALOG INTEGRITY

Since the catalog management routines
were designed to operate in
multiprogramming or multiprocessing
environments, they must perform certain
functions to ensure the integrity of the
catalog with many jobs and CPUs vying for
the use of the SYSCTLG data set. The first
thing the program must do, therefore, is to
protect the catalog from being modified by
another user before this particular
modification or search is completed.

To do this, the catalog management
routines issue the RESERVE and ENQ macro
instructions immediately after receiving
control. The RESERVE macro reserves the
device containing the control volume that
the present use of the catalog management
routines is searching or modifying. This
is necessary in a multiprocessing
environment where another CPU might try to
access or modify the catalog before the
search or update was complete. The ENQ
macro instruction informs the Operating
System that this use of the routines must
complete before another can begin. This
prevents other programs under control of
the same CPU from accessing the catalog
while it is being modified and from
attempting to modify while it is being
modified.

10

Since these routines are reenterable,
they cannot store within themselves. They
issue a GETMAIN macro instruction for some
storage area within the user‘*s region.
This area is freed when the catalog
routines terminate either normally or
abnormally. If storage is not available,
the calling task is abnormally terminated.

OPENING THE CATALOG DATA SET

To ready the catalog data set for
reading and writing, the catalog management
routines do not use the data management
open routine (SVC 19). 1Instead they have a
special open function called through an SVC
28. This routine builds a data extent
block and a data control block so that the
catalog routines can use the BLDL and EXCP
routines. For a more detailed discussion
of the open routine, see the section "The
CVOL Routines."

The catalog open routine is called
before each search of a catalog. If a
search encounters a control volume (CVOL)
pointer entry, the old CVOL is closed and
the new one is opened.

LOCATE FUNCTION

Regardless of the particular object of
one use of the catalog routines - whether
the user wishes to modify the catalog or
just locate a data set - the program always
first tries to locate as much of the
user-supplied name as possible.

The locate routine uses the resident
BLDL routine (IECPBLDL) to search the
catalog for the user-supplied name. This
search always begins with the volume index.
BLDL returns the entry with the desired
name field, locate examines it, and calls
BLDL again to find a lower level index or
returns to the caller (function requested
is locate) or passes control to another
phase (function is anything but locate).

The locate portion of the program then
passes an error code to other portions to
indicate how much of the name was found.

BLDX, LINKX, AND BLDG FUNCTIONS

These functions are quite similar to
each other. First, locate finds as much of
the user-supplied name as possible and
notes how much of the name it found and
what kind of entry it found at the lowest
level. 1If anything in the locate process
is inconsistent with the function
requested, the index/catalog portion of the
program frees all its core, dequeues, and
passes a nonzero return code to the caller.

For example, assume that a user wished
to catalog data set 'A,B.C'. Locate would
first search the catalog to find the data
set pointer entry, and would pass a zero
error code to index/catalog if it found the
entry. Index/catalog would immediately
return with an error code to the caller
because it cannot catalog a name that has
already been cataloged. If locate
indicated that it had found A.B, but not C,
and that it had found an index pointer
entry at B, then index/catalog would update
the index by inserting the new pointer
entry.

If the request is to build an index
(BLDX), index/catalog first finds an
available block in the catalog and
initializes it as an empty index. To do
this, it creates an index control entry and
an index link entry with a pointer field of
zero, and writes a high key
(X' FFFFFFFFFFFFFFFF') for the new index
block.

A new index pointer entry must then be
inserted in the next higher level index.
To do this, index/catalog searches the
index until it finds an entry which has a
name field with value higher than that of
the new index pointer entry and which is
not an index link entry with a nonzero
pointer field. When it finds such an
entry, it inserts the pointer to the new
index and rewrites the rest of the index.

The index always must be completely
rewritten pecause the insertion of the new
entry may cause the chain of index blocks
to break differently.

LINKX is just like BLDX, except that a
CVOL pointer is created instead of an index
pointer.

BLDG is similar, except that the index
pointer entry contains the appropriate
generation counts and flags.

CATALOG_AND RECAT FUNCTIONS

To catalog a data set, the program does
very much the same thing as when the
function is BLDX or BLDG except that:

e No new index is created. The new data
set pointer entry is simply inserted at
the appropriate place in the existing
index.

e If the data set to be cataloged resides
on more than five volumes, one or more
volume control blocks (VCBs) must be
created. The creation of this block
resembles the creation of a new index
very closely, except that instead of a
new index, a new VCB is created.

To catalog a data set that is part of a
generation data group (GDG), the routines
must first find the absolute generation
number if only the relative generation
number was given. First, the latest entry
in the index is found. This entry will be
the first one in the index even though it
has the highest generation number, because
the catalog stores generation numbers in
complement form. Then the given relative
generation number is added to or subtracted
from the found generation number to give
the desired true generation number.

The given name is now compared with the
present entries in the catalog to check for
duplications, and the new name is inserted
as any other Data Set Pointer Entry or VCB
Pointer Entry. The generation count is
updated, and, if necessary, the oldest
entry in the index is removed. The flags
of the generation index pointer entry are
checked to see if the index must be emptied
or if any data sets must be deleted. If
any data sets have to be deleted, the
routines transfer control to the Delete
routine of DADSM by issuing an SVC 29.

(For a discussion of the Delete routine see
IBM System/360 Operating System Direct

Access Device Space Management, ¥Y28-6607.)

For RECAT, the routines uncatalog the
old data set, then catalog the new, as
above. '

BLDA FUNCTION

The BLDA function is basically similar
to the BLDX function, except that BLDA only
creates a pointer entry; it puilds no new
index.

Locate finds the name for which an alias
is being built, and checks to be sure it is
a high-level name. If it is, the routines
read tne block containing the high-level

Method of Operation 11

name, add one to the entry alias count, and
rewrite the block.

The routines then create an alias entry
and insert it in alphameric order into the
volume index. The volume index is
reorganized as for BLDG and BLDX.

DLTX, DLTA, DRPX, UNCAT FUNCTIONS

The sequence of operations to delete an
index or an alias or to uncatalog a data
set or disconnect control volumes is
basically similar to the other functions
involving reorganization of the catalog:

1. The catalog is searched for the
user-supplied name. In this case the
entire name must be found.

2. If a pointer entry is deleted, the block
it points to must also be deleted. 1In
the case of UNCAT, a VCB may have to be
freed. With DLTX, an index block always
has to be freed. With DLTA and DRPX, no
blocks should have to be freed unless
deleting the pointer makes the volume
index enough shorter that it takes up
fewer blocks than before.

3. To delete a block, the program writes a
zero key for that block. The data
inside the block remains unchanged. The
program recognizes any block with a zero
key as a free block.

4. The index from which the entry was

deleted is reorganized just as when a
new entry is added.

THE CVOL ROUTINES

The CVOL routines open or extend the
SYSCTLG data set, format new catalogs or
extensions of old catalogs, and format
partitioned data set (PDS) directories.

The routines receive from their callers
the address of the Unit Control Block (UCB)
of the device containing the data set to be
opened or extended, and a parameter
indicating whether the request is to open a
catalog, to extend a catalog, or to format
a PDS directory.

OPEN ROUTINE

If the request is to open a catalog, the
routines build a data extent block (DEB)

12

and a data control block (DCB) for the
SYSCTLG data set using information from the
unit control block (UCB) and volume table
of contents (VTOC) of the volume being
opened. If no space has been allocated for
the SYSCTLG data set, an error code is
returned to the user.

The Format 1 data set control block
(DscB) for the catalog data set has a
format switch which indicates whether this
SYSCTLG data set has been previously
formatted. If the switch shows that the
data set has not been formatted, the open
routine passes control to the formatting
routine. Otherwise, it returns to the
caller.

EXTEND ROUTINE

To extend the data set, the CVOL routine
transfers control to the Extend routine of
Direct Access Device Space Management.

This routine extends the data set by
updating the VTOC (provided a secondary
allocation quantity was specified when
space for SYSCTLG was initially allocated),
and transfers control to the formatting
routine. The formatting routine formats
the extension, but does not initialize a
volume index, since there is already one
present. It does, however, update the
Volume Index Control Entry to show the
extra space.

FORMATTING ROUTINE

The formatting routine formats the
allocated space into 256-byte records with
8-byte keys, and initializes the volume
index with a volume index control entry and
an index link entry with a zero pointer
field. The key of this block is set to
X'FFFFFFFFFFFFFFFF' while the keys of all
the other blocks are set to zero. It sets
the format switch in the DSCB to indicate
that the data set has been formatted and
returns to the caller.

To format a partitioned data set (PDS)
directory, only the formatting routine is
used. The open routine immediately passes
control to the formatting routine.

Formatting takes place in the same
general way as for SYSCTLG data sets, with
256-byte records and 8-byte keys. Instead
of initializing a volume index, however,
the routine initializes the first block as
an empty PDS directory.

The catalog management modules are
designed to fit in the 1024-byte transient
areas of the nucleus. They are
reenterable. In general, the modules pass
control from one to the other through the
XCTL macro instruction, although they
sometimes use SVCs. The following
discussion will enlarge upon the Method of
Operation section by discussing the
routines module by module. Figure 8 shows
the relationships among the catalog
management routines and between the catalog
management routines and other parts of the
Operating System.

NOTE: In this discussion, the term 'write'
always refers to the use of an EXCP macro
instruction. 'Read' generally refers to
the use of the resident routine IECPBLDL,
but the modules occasionally use channel
programs here, also.

IECPBLDL, the resident BLDL routine, is
accessed by the catalog management routines
through the Communication Vector Table
(CVT). The routines find the address of
IECPBLDL in the CVT, put the address of the
catalog DCB in register 1 and the address
of the BIDL list in register 0, and execute
a BALR to the BLDL routine. For the
functions of the BLDL routine, see IBM
System/360 Operating System Sequential
Access Methods, Y28-6604.

INITIALIZATION AND HOUSEKEEPING:
IGCO002F

MODULE

Entry to the catalog management
routines, except the open routine, is
through an SVC 26, which gives control to
this module. The module issues an ENQ
macro instruction on the name 'SYSCTLG' to
protect against simultaneous modifications
of the catalog in a multiprogramming
environment and gets main storage for the
open routine. It searches the unit control
block (UCB) table to find the UCB of the
specified control volume (CVOL) or the
system residence device (if no CVOL was
specified) to pass on to the open routine,
and then reserves the CVOL (if it is not
the system residence device) to prevent
accesses by another CPU. It then calls the
catalog open routine with an SVC 28. It
checks the return code from open, and, if
no error has occurred, it requests the
appropriate amount of storage for locate or
index/catalog, via GETMAIN, and transfers
control to IGGOCLC1.

PROGRAM ORGANIZATION

IGCO0002F may be reentered from IGGOCLC1l
if that module finds a control volume
pointer entry which it must follow. The
only difference this makes in the control
path through IGCO0002F is that IGC0002F does
not issue the ENQ macro instruction if
entry was from IGGOCLCl. This is because
the ENQ was already issued in the first
pass through IGCO0002F. IGGOCLCl1l passes the
address of the serial number of the CVOL to
be opened as a parameter to IGCO002F.

LOCATE: MODULE IGGOCLC1

This module always gets control from
IGC0002F. It searches the specified
catalog for the supplied name and passes
control to one of two other modules,
depending on the function requested and the
type of entry found at the lowest level.

An input parameter indicates whether the
user wishes to locate a data set by name or
to locate an entry in the catalog by giving
the TTR of the block.

If the request is to search for a
specified block, the module passes the
block's address to the resident routine
IECPBLDL. IECPBLDL searches the catalog
and returns the correct entry to the
caller. The only error possible is that
the block might be outside of the SYSCTLG
data set, in which case an error code is
set and the module returns control to the
caller.

If the request is to search for a name
or to index or catalog a name, IGGOCLC1
isolates the first level of the name. It
uses BLDL to search the volume index for
this simple name and analyzes what type of
pointer is associated with it. Several
different things can happen, depending on
what pointer type was found and what
function was requested.

In the most typical case, the routines
will f£ind an index pointer entry and note
that there are more qualifiers left in the
name. In this case, the module isolates
the next gualifier and searches for that
name, specifying to BLDL that the search is
to begin at the TTR specified in the found
index pointer entry. This process is
repeated until either all levels of the
name are exhausted or an entry which is not
an index pointer entry is found.

Program Organization 13

SVC 26

Enter

IGCO002F §
Initialize
IGGOCLCI 1GC0002H 1GGOCLF2
SVC 28
Locate as >
Much of Name Open Catalog anrtn;fofg or
as Possible Function Extend Catalog PDS Directory
is Y
Generation Data Group Locate
IGGOCLC4 IGGOCLC2 y 2 !
Locate Gen- Build New (Return) m
eration Data Entries Free
Set 2 Old Blocks
IGGOCLC5 4 (Return)
Build Genera- _
tion Index
Entries
o~
N
g IGGOCLC3
v SVC 28
DADSAQ y__lL_ Reorganize
a Index -
| Scratch Pre- | (If No More Room in Catalog)
| vious Genera~ |
| tion | 2
b J
Return
‘This is a return to the issuer of SVC 28:
IGGOCLC1 or IGGOCLCS.
2This is a return to the issuer of SVC 26: the user.
Figure 8. Catalog Module Flow
When Locate has found all of the If control is going anywhere but back to
pointers it can find, it determines what the caller, Locate reads several relevant
action to take on the basis of what kind of blocks into main storage:
pointer was the last found, how much of the
name could not be found, and what function ¢ Block Containing Volume Index Control
was requested. It may transfer control to Entry - This is necessary to indicate
IGGOCLC2 to build new entries in the where the first available block in the
catalog, it may transfer control to catalog is. It has to be updated if any
IGGOCLCY4 to search generation indexes, or new blocks are used or any old ones are

it may return to the caller via an SVC 3 freed.
with the appropriate error code.

e Block Containing Index Control gntry -
This entry is the control entry for the

iu

The catalog manacgement modules are
designed to fit in the 1024-byte transient
areas of the nucleus. Tney are
reenterable. In general, the modules pass
control from one to tne other throuuh the
XCTL macro instruction, although they
sometimes use SVCs. Tne followino
discussion will enlarge upon the Method of
Operation section by discussinc the
routines module by module. Figure 8 shows
the relationships among the catalog
management routines, as well as between the
catalog manacement routines and other parts
of the Operatinc System.

NOTE: In this discussion, the term 'write'
always refers to the use of an EXCP macro
instruction. ‘'Read' generally refers to
the use of the resident routine ILCPBLDL,
but the modules occasionally use channel
programs here, also.

IECPBLDL, the resident BLDL routine, is
accessed by the catalog management routines
through the communication vector table
(CVT). The routines find the address of
IECPRLDL in the CVT, put the address of the
catalog DCE in register 1 and the address
of the BLDL 1list in register 0, and execute
a BALR to the BLDL routine. For the
functions of the BLDL routine, see IBM
System/360 Operating Systenmr Seqguential
Access Methods, Y28-660L.

INITIALIZATION AND HOUSEKEEPING:
IGCO0002F

MODULE

Entry to the catalog management
routines, except the open routine, is
through an SVC26, which gives control to
this module.

It searches the unit control block (UCB)
table to find the UCEB of the specified
control volume (CVOL) or the system
residence device (if no CVOL was specified)
to pass on to the Open routine. It then
calls the catalog open routine with an SVC
28. It checks the return code from open,
and, if no error has occurred, it requests
the appropriate amount of storace for the
locate or index/catalog routines, via
GETMAIN, and transfers control to IGGOCLC1.

IGCO0002F enqueues on the catalog
resources and reserves the specified CVOL.
The ENQ macro instruction requires two
names to be specified: a "gname" and an
"rname." The catalog management routines
use the following names:

PROGRAM ORGANIZATION

gname rname
SYSCTLG SYSCTLGH0O0ua

Where "ua" is the two-byte address of the
UCB of the CVOL if a CVOL was specified, or
two bytes of zeros if no CVOL was
specified.

IGCO0002F may be reentered from IGGOCLC1l
if that module finds a control volume
pointer entry which it must follow. The
only difference this makes in the control
path through IGCO0002F is that IGCO0002F does
not issue the ENQ macro instruction if
entry was from IGGOCLCl. This is because
the ENQ was already issued in the first
pass throuah IGC000z2F. IGGOCLC1l passes the
address of the serial number of the CVOL to
be opened as a parameter to IGCO002F.

LOCATE: MODULE IGGOCLC1l

This module always gets control from
IGCO0002F. It searches the specified
catalog for the supplied name and passes
control to one of two other modules,
depending on the function requested and the
type of entry found at the lowest level.

An input parameter indicates whether the
user wishes to locate a data set by name or
to locate an entry in the catalog by giving
the TTR of the block.

If the request is to search for a
specified block, the module passes the
block's address to the resident routine
IECPFBLDL. IECPBLDL searches the catalog
and returns the correct entry to the
caller. The only error possible is that
the block might be outside of the SYSCTLG
data set, in which case an error code is
set and the module returns control to the
caller.

If the request is to search for a name
or to index or catalog a name, IGGCCLC1
isolates the first level of the name. It
uses BLDL to search the volume index for
this simple name and analyzes what type of
pointer is associated with it. Several
different things can happen, depending on
what pointer type was found and what
function was requested.

In the most typical case, the routines
will find an index pointer entry and note
that there are more qualifiers left in the
name. In this case, the module isolates
the next qualifier and searches for that

Program Organization 15

Order Number GY28-6606-2, Page Revised 6/1/70, by TNL GN26-8006

SVC 26
‘ Enter ’
IGCO002F
SVC 28
> Initialize
XCTL} |GGoCLCY y 1GCO002H ¥ IGGOCLF2
Format
Locate as Much of Open Catalog o] Catalog or
Name as Possible Extend Catalog o PDS D?rectory
A
Generation Data Group | Function
is Locate 1
IGGOCLCA IGGOCLC2 y 2 m
Function
. . Reti
Locate Generation | is Locate Build New Entries (eturn)
Data Set Free Old Blocks
\ 2

IGGOCLCH 1 IGGOCLCE y
’ e (If there is no more room in the catalog.)

Process Errors

Build Generation
Index Entries

' Y 2
SvVC 29 ‘ Return ’ sve
DADSM 28

r——a——41—

-
| |
| Scratch Previous |
|
|
a

IGGOCLC3 ¢ IGGOCLC7

Update Blocks of
Reorganized
Index

| Generation XCTL Update Index

" | Control Entries

1 This is a return to the issuer of SVC 28:

IGGOCLC1, IGGOCLC3, or IGGOCLCT. Return

2 This is a return to the issuer of SVC 26:
the user.

®Figure 8. Catalog Module Flow

name, specifying to BLDL that the search is IGGOCLC2 to build new entries in the

to begin at the TTR specified in the found catalog, it may transfer control to
index pointer entry. This process is IGGOCLCY4 to search generation indexes, or
repeated until either all levels of the it may return to the caller via an SVC 3

name are exhausted or an entry which is not with the appropriate error code.
an index pointer entry is found.
If control is going anywhere but back to

When Locate has found all of the the caller, Locate reads several relevant
pointers it can find, it determines what blocks into main storage:
action to take on the basis of what kind of
pointer was the last found, how much of the ¢ Elock Containing Volume Index Control
name could not be found, and what €function Entry - This is necessary to indicate
was requested. It may transfer control to where the first available block in the

16

If an entry must be removed from the
index, IGGOCLCS removes it and rewrites the
index block which contained this entry. If
the empty option is indicated by the flags
in the generation index pointer entry, the
module transfers control back to IGGOCLCH
to empty the index. If the delete option
is indicated, the module calls the SCRATCH
function of Direct Access Device Space
Management (DADSM)#* with an SVC 29 to
scratch the data set. After the module
deletes whatever entries it must delete, it
builds any new entries necessary.

When all the counts have been updated,
the necessary entries removed from the
index, and the specified data sets
scratched, IGGOCLC5 reads the index to be
updated and transfers control to IGGOCLC3.
IGGOCLC3 reorganizes the index just as if
it were a normal index.

THE CVOL ROUTINES: MODULES IGCO0002H AND

IGGOCLF2

These modules together take care of the
Open and initialization functions for the
catalog management routines. IGC0002H
opens or extends the catalog by building or
modifying a data control block (DCB) and a
data extent block (DEB) for the SYSCTLG
data set and IGGOCLF2 formats new catalogs,
extensions of the catalog, and new
partitioned data set directories.

IGCO0002H

Tnis module is entered by an SvVC 28, or
by XCTL if returning from the Extend
routine of DADSM*. If entry is by SVC 28,
the module opens or extends the catalog,
depending on input parameters. If entry is
by XCTL from the DADSM Extend routine, the
module finishes extending the catalog.

To open the catalog, the module searches
the volume table of contents (VTOC) of the
volume whose unit control block (UCB)
address was specified by the caller
(IGGOCLC1 or 3). If it does not find a
format 1 data set control block (DSCB) with
name SYSCTLG in the VTOC, it sets a return
code of 4 and exits. If it does find the
format 1 DSCB, it constructs a DCB and DEB
from information in the DSCB and from
information contained in the module itself

*See IBM System/360 Operating System Direct
Access Device Space Management Program

Logic Manual, ¥Y28-6607.

(information common to all SYSCTLG data
sets such as blocksize and record format).

There is a switch in the DSCB of a
SYSCTLG data set that indicates whether the
data set has been formatted or not. If
this switch is off, IGC0002H transfers
control to IGGOCLF2, the formatting
routine, to format the data set. If the
switch is on, the module releases any
unused DEB or DCB space and exits.

To extend the catalog, the module gets
main storage for the Extend routine of
DADSM, reads the format 1 DSCB for SYSCTLG,
and checks the secondary allocation
quantity in the DSCB. If this quantity is
zero, the catalog cannot be extended and
IGC0002H returns to the caller with an
error code of 4. If there is a secondary
allocation quantity specified in the DSCB,
the module builds a parameter list for the
Extend routine and transfers control to
module IGGO0533A.

The Extend routine of DADSM returns
control to the beginning of IGC0002H, which
indicates that the data set must be
formatted and where the formatting is to
begin, and then passes control to the
formatting routine (IGGOCLF2). It also
builds a new DEB which includes the newly
allocated space.

IGGOCLF2

This module formats new catalogs,
extensions of existing catalogs, and new
partitioned data set (PDS) directories. It
does this by filling the available space
with 256-byte records with 8-byte keys. If
it is formatting a new SYSCTLG data set or
a PDS directory it also initjializes the
first block.

If the request is to format a PDS
directory, the module constructs a channel
program to write one 256-byte block at a
time. The first write operation writes an
empty directory, and each subsequent write
writes an 8-byte zero key and 256-byte zero
record. When it has formatted all the
requested blocks, it writes an end of data
mark, and returns to the caller via an SVC
3.

If the request is to format a catalog,
the module constructs a channel program to
write keys and data, a full track at a
time. The module uses information from the
DSCB to determine how many blocks will fit
on a track. It keeps a record of the last
relative track formatted to insert it into
the volume index control entry.

Program Organization 17

When the module has reached the end of
the extent assigned to SYSCTLG, it checks
to see if it has been formatting a new
catalog or an extension. If it has been
formatting an extension, it returns
directly to the caller. If it has been
formatting a new SYSCTLG data set, it
builds an empty volume index, containing a

18

volume index control entry and an index
link entry with zero TTR field, and sets
the format switch in the DSCB to indicate
that the data set has been formatted.
Before returning to the caller, the module
always frees the working storage obtained
for it by IGCO002H.

DIRECTORY

This chart contains information to assist the reader in making the
transition from this manual to the assembler language listings of the

catalog management modules.

sources:

e The source code

¢ The executable load modules

e This manual

It correlates information from three

r L) T L] T
|LOAD MODULE| RESIDENCE | DESCRIPTION | CSECT | FLOWCHART |
| NAME | NAME | | | PAGE(S) |
¢ — $ —4-—= t -1
| IGCO002F |SYS1.SVCLIB | Initialization | IGCO026 | 31 |
e 1 ¥ + + i
| IGGOCLC1 |SYS1.SVCLIB | Locate | IcGOcLCcl | 32-34 |
L. } Il i
L} - = T T T __—'|
| IGGOCLC2 |SYS1.SVCLIB | Build and free | IGGOCIC2 | 35-37 |
I I | block | | |
e ¥ t _ + ¢ —
| IGGOCLC3 |SYS1.SVCLIB | Reorganize | I6G0CIC3 | 38,39 |
I | | index | I |
o —4-- t + -4
| IGGOCLCY4 |SYS1.SVCLIB | Locate gener- | IGGOCLCH4 | 40-42 |
| | | ations | | |
e 1 1 ¢ + -1
IGGOCLC5	SYS1.SVCLIB	Build gener-	IGGOCLCS	43,44
		ation index		
		entries		
——— 1 4 4 4 }				
T T 1 T 1				
IGGOCLC6	SYS1.SVCLIB	Process	IGGOCLC6	45
		errors		
-~ e + + ¥ !				
IGCO0002H	SYS1.SVCLIB	Open/extend	I6C028	46,47
		catalog		
- — ¥ 4 4 —
| IGGOCLF2 |SYS1.SVCLIB | Format catalog | IGGOCLF2 | 48 |
| | | & PDS I | I
| | | directory | | |
[IS —_—d L L L ——dd
Figure 9. Directory

Directory 19

DATA AREA LAYOUTS

This section contains illustrations and
explanations of the layouts of the various
types of catalog entries and of the
parameter list which the user supplies to
the catalog management routines.

CATALOG ENTRIES

This section describes in detail the
format of each of the possible entries in
the catalog. Figures 10 and 11 represent
each entry pictorially and the following
text describes the contents of each field.

The Volume Index Control Entry contains
information about the entire catalog and
the volume index. It is always the first
entry in the catalog. It is 22 bytes long
and contains 8 entries.

Field 1: This is the name field. It
always contains the value
X*'0000000000000001' to ensure that this
entry is always first in the volume index.

Field 2: This field contains the TTR of
the last block in the volume index.

Field 3: This field contains the number
5 to indicate that five halfwords of user
data follow. It also serves to identify
this entry as a volume index control entry,
since this is the only entry that is
twenty-two bytes long (total).

Field 4: This field contains the TTR of
the last block in the SYSCTLG data set.

Field 5: This is the alias count field
in a normal index, but since this is the
volume index it will always contain zero.

Field 6: This field contains the TTR of
the first unused block in the catalog.

Field 7: This field contains zero.
Field 8: This field contains a count of

the number of unused bytes in the last
block of the volume index.

An Index Control Entry is quite similar
to a volume index control entry, but it
only contains information about the index
which it begins. It is 18 bytes long and
contains six fields.

Field 1: This name field contains
X'0000000000000001' to ensure that this
entry is first in its index.

20

Field 2: As in the volume index control
entry, this field contains the TTR of the
last block in this index.

Field 3: This field contains the number
3 to indicate that three halfwords follow.
It identifies this entry as an index
control entry.

Field 4: This field contains the TTR of
the first block in this index. This
address is always the address of the block
which contains this entry.

Field 5: This field contains a count of
the number of aliases in the catalog that
reference this index. This count will be
nonzero only for indexes one level removed
from the volume index.

Field 6: This field contains a count of
the number of unused bytes in the last
block of the index.

Index Link Entries and Index Pointer
Entries are quite similar. An index link
entry is used to chain several blocks of an
index together and an index pointer entry
is used to chain an index to the next lower
level index. An index link entry is always
the last entry in any index block. These
blocks contain three fields and are 12
bytes long.

Field 1: This is the name field and
contains the name of the index to which
this entry points. If the entry is an
index 1link entry, the name field contains
X'FFFFFFFFFFFFFFFF" .

Field 2: This is the pointer field and
contains either the TTR of the first block
of the index, in the case of an index
pointer entry, or the TTR of the next block
of the index, in the case of an index link
entry.

Field 3: This is the count field, and
it contains zero to indicate that the entry
ends here.

The Data Set Pointer Entry contains the
actual information for which the catalog
exists: the volume serial number, data set
sequence number, and device type code of
the data set which the fully qualified name
represents. The entry can be from 26 to 74
bytes long, depending on how many volumes
the data set occupies.

Volume Index Control Entry

Field 1: Name Field 2: 05 | Field 4: Field & Fleld 7:
TTR of last TIR of last TTR of first Count of
X'0000000000000001* block in C | block in unused block unused
volume O | SYSCTLG 00| in SYSCTLG 0 bytes in
index U | data set data set last block
N of volume|
T index
0 7 8 10 1 12 14 15 16 18 19 20 21
Total Length: 22 bytes
Index Control Entry
Field 1: Name Field 2: 03 | Field 4 Count of
TTR of last TIR of first [, &= |unused
X'0000000000000001" block in this | C [block in < 5 |bytes in
index O | this index Z Olast block
u O] of this
N index
T
0 7 8 10 11 12
- Total Length 18 bytes >
Index Link Entry
Field1: Name Field 2: 00
X'FFFFFFFFFFFFFFFF' TTR of next c
block in b
index Y
(or zero if no N
next block)
T
0 7 8 10 1
(€¢————————————Total Length: 12 bytes =
Index Pointer Entry
Field 1: Name Field 2: 00
TTR of index
Index Name (padded to right C
with blanks if necessary) 8
N
T
0 7 8 10 N
j¢———————— Total Length 12 bytes ———————]
Data Set Pointer Entry
Field 1: Name Field 2: * | Field 4 Field 5: Field & Field 7:
Lowest level name of data Dummy Volume Device Code Serial Number of volume Data set
set or complemented generation pointer field: Count on which data set resides | sequence
number (if part of GDG) zeros number
(zero for
direct
0 7 8 10 11 12 13 Q4 17 18 23 24 2
Repeated for each volume
Total Length 26 to 74 bytes 46

* Count: equal to 6 times the number

of volumes, plus 1.

Figure 10.

Catalog Entry Formats

Data Area Layouts

21

Volume Control Block Pointer Entry

Volume Control Block

Field 1: Name Field 2: 01 | Field 4
Lowest level of data set name TR of C | Dummy
Volume O | data
Control U | entry:
Block N | zeros
T
0 78 10 11 12 13
Total Length: 14 bytes ———————4

Control Volume Pointer Entry

C Field 2. Field 3: Field 4: Field 5 Field &
o Device Serial number Data set sequence | Ten bytes of zeros TTR of next
U of volume n number for the volume control
N volume described block, or zero 00
T in field 5. Zero if none
for direct access
0 1 m m+3 mtd mt9 m+10 m+12 241 250 251 254 255
Repeated once for each volume; total 6 to 20
- 4§ Total Length: 256 bytes

Field 1: Name Field 2: 05 | Field 4: Field 5:
Name of index on Dummy pointer| C | Device Code of Serial number of
other control volume field: zeros O | control volume control volume
U
N
T
0 7 8 10 11 12 15 16 21
Total Length: 22 bytes
NOTE: Prior to release 17, the Control Volume Pointer Entry contained a count
of 03 and did not have a Device Code field (Field 4
Alias Entry
Field 1: Name Field 2: 04 Field 3:
Name of alias TR of index | C Name of high level index
named in field] O to which this is an alias
U
N
T
0 7 8 10 11 12 19
Total Length: 20 bytes >
Generation Index Pointer Entry
*1 | *2
Field 1: Name Field 2: 02 Field &
Name of generation index TIR of C Count of
generation o genera-
index u tions
N currently
T in index
0 7 8 10 11 12 13 14 15
- Total Length: 16 bytes
*] Field 4:
Flags: bits meaning
0-5 Reserved
6 Delete
7 Empty
*2 Field 5:

Count of maximum gererations to be maintained in index

Figure 11.

22

More Catalog Entry Formats

Fields one through four occur only once
while fields five through seven occur once
for each volume of the data set.

Field 1: This field contains the lowest
level of the data set name.

Field 2: This would normally be the
address field, but since a data set pointer
entry references no other entries in the
catalog, it contains zeros.

Field 3: Count of user data. This
field indicates how many halfwords of data
follow. The number in here will be six
times the number of volumes (there are six
halfwords for each volume) plus one (for
the volume count).

Field 4: This field contains a count of
the volumes following (one to five).

Field 5: This field contains the device
type code of the device on which the volume
with the following serial can be mounted.
(See Appendix C.)

Field 6: This field contains the volume
serial number of one of the volumes of the
data set.

Field 7: This field contains the
sequence number of the data set on a
magnetic tape volume. It is zero for any
other device.

A Volume Control Block Pointer Entry is
used instead of a data set pointer entry
when the data set occupies more than five
volumes. This entry points to a volume
control block, which, in turn, describes
the data set. The entry is 14 bytes long.

Field 1: This name field contains the
lowest level of the data set name.

Field 2: This field contains the TTR of
the first (or only) volume control block
for the data set.

Field 3: The count field contains zero
to indicate that this is the end of the
entry.

A Volume Control Block contains the
description of all the volumes of a data
set which resides on more than five
voiumes. One volume control block can
describe up to twenty volumes and volume
control blocks may be chained together, so
that a data set can be cataloged no matter
how many volumes it requires. The volume
control block is always 256 bytes long,
regardless of how many volumes it
describes.

Field 1: The first two bytes of a
volume control block contain a count of the

number of volumes described by this volume
control block and any following it. For
example the count fields of a series of
VCBs for a data set that occupied sixty
volumes would show sixty, forty, and twenty
as the volume count.

This is the only kind of block in the
catalog in which the first two bytes are
not used as a count of the number of used
bytes in the block.

Field 2: This field can contain up to
twenty 12-byte volume descriptions,
consisting of device type codes (See
Appendix C) and volume serial numbers.

Field 3: This field contains ten bytes
of zeros, followed by the TTR of the next
volume control block for this data set,
followed by one byte of zeros. If there
are no more yvolume control blocks for this
data set, the TTR is zero.

A Control Volume Pointer Entry is used
to indicate that a particular index resides
on a volume other than the system residence
volume. Control volume pointer entries can
exist only in the volume index. They are
22 bytes long.

Field 1: The name field contains the
name of the high level index which resides
in the volume described by this entry.

Field 2: The address field contains
zeros, because this entry references no
others in the catalog.

Field 3: The count field contains the
number three to indicate that three
halfwords follow.

Field 4: This field contains the device
type code of the specified control volume.
(See Appendix C.)

Field 5: This field contains the volume
serial number of the control volume which
has an entry in its volume index of the
same name as this entry.

An Alias Entry is used to specify a
substitute name for a high level index.
Alias entries only appear in the volume

index. They are 20 bytes long.
Field 1: The name field contains the
alias.

Field 2: The address field contains the
TTR of the first block of the index for
which this entry specifies an alias.

Field 3: The count field contains the

number 3 to indicate that three halfwords
of data follow.

Data Area Layouts 23

Field 4: This field contains the true
name of the index for which this entry is
an alias.

A Generation Index Pointer Entry points
to a generation index. It is basically the
same as an Index Pointer Entry, except that
it includes the flag and count fields. It
is 16 bytes long.

Field 1: The name field contains the
lowest level name of the generation data
group. That is, a generation data set
named WEEKLY.INVNTRY.G0001V00 would have
the name "INVNTRY" in the generation index
pointer entry name field.

Field 2: The address field contains the

TTR of the first block of the generation
index.

24

Field 3: The count field contains the
number 2 to indicate that two halfwords
follow.

Field 4: This field contains the flags
which indicate special handling for
generation data sets. Bit 7 indicates the

-Empty option and bit 6 indicates the Delete

option. Bits 0-5 are reserved and are
always zero. -

Field 5: This field indicates the
maximum number of entries to be maintained
in the index at one time.

Field 6: This field indicates the
number of entries currently in the index.

USER'S PARAMETER LIST

This parameter list must be supplied by the user before he calls the
catalog management routines. The CAMLST macro instruction, described in
IBM System/360 Operating System Programmer's Guide, form C28-6550, can
be used to generate the 1list.

Data Area Layouts 25

Register

Olption
0 0 Flags
(see below)

Generation
Count

Pointer to Fully

1 At entry to IGC0002F, register 1 points to the user's parameter list.

4 4 Qualified Name
8 8 Pointer to Serial Number
of Control Volume
12 C Pointer to User's Work Area

At all other times, register 8 points there.

Option Flags

Byte loee ceen Catalog is on System Residence Device
XKoo een Reserved
T CTLG Catalog a data set
eeel ol RECAT Recatalog a data set
cees 1l... UNCAT Uncatalog a data set
cees oX.. Reserved
cees ool BLOCK Read a block by TTR
ceee <X Reserved
Byte Xeee oeee Reserved
B BLDX Build normal index structure
eel. o.. BLDG Build generation index
S BLDA Build an alias to a high-level
name
P R LINKX Connect control volumes
ceee o1l.. DLTX Delete an index Structure
ceee ooXe RrReserved
ceee oeel DLTA Delete an alias entry
Byte leee oeee DRPX Disconnect control volumes
D DELETE Scratch generation data sets
when they are uncataloged
<. XX ... Reserved
cees 1... EMPTY Remove all entries from the
index when the maximum gen-
eration count has been reached
ceee JXXX Reserved
Note: Function is locate by name if all flags are zero.
Figure 12. User's Parameter List

This section includes miscellaneous charts and tables that might be

useful in locating program errors.

MODULE SELECTION CHART

This chart can be used to determine what modules of the catalog

DIAGNOSTIC AIDS

management routine will be used to perform a particular function, given
the function required and the current status of the catalog.

| 11112{3[4]5]6]7]8]
F ———= H-+-t-+-+-+-+-+-
| FUNCTION: LOCATE D41 4 I I I T T I
k e H-+-+-+-+-+-+-+-4
| OTHER FEL ey yiy)yy
b= H-+-+-+-+-+-+-1-1
| TYPE INDEX FOUND: NORMAL pretelel 11t
k H-+-+-+-+-+-+-+-4
I GENERATION || |¥| | | | |¥l¥|
k H-+-+-+-+-+-+-+-
| NONE bty ||
k H-+-+-t-+-+-+-+-
| UNFORMATTED CATALOG [l INJYIN[Y|N]Y]
p-———- H-+-+-+-+-+-+-+-1
b= H-t-+-+-+-+-+-+-1
I IGCO002F XXX XXX X]| X]
b H-+-+-+-+-+-+-+-
| I1GC0002H XXX X XXX X]
F—- H-+-+-+-+-+-+-1+-
| IGGOCLF2 b Ixr Xy x|
k H-t+-+-+-+-+-+-1+-
| 1GGOCLC1 [IXIX]X|X|X]X|X]| %]
F-- - H-+-+-+-+-+-+-+-4
I IGGOCLC2 FETIXIXEXX) ||
F H-t-+-+-+-+-+-4-
| IGGOCLCY LEExE b Ixx|
F=- H-t-+-+-+-+-+-+-1
[IGGOCLCS e b xix|
k +H-+-t+-+-4+-+-4-1-
| 1GGOCLC3 I IxIxIxx|x|x|
L i O TN N Ty NI WY IR O I |

Figure 13. Module Selection Chart

Diagnostic Aids

27

REGISTER USAGE

Figure 14 is a register usage chart. In the chart, the contents of
certain registers are given as they appear at entry to each module and
just before each module loses control. All entries in the table, except
those marked "*", are addresses. That is, when the table indicates that
at entry to module IGGOCLCl1l register 9 is 'DCB', this means that
register 9 contains the address of the data control block. When the
table indicates that at entry to module IGGOCLC2 register 6 is "No. of
Levels Searched *," this means that register 6 contains that number.

28

Module Name Registers
0 1 2 3 4 5 6 8 10 1 12 13 15
1GC0002F Entry User's SVRB
Parameter
List
Exit ENQ User's DCB Work Area BLDL
Parameter Parameter Work Area
List List
IGGOCLC! Entry ENQ User's DCB Work Area BLDL
Parameter Parameter Work Area
List List
Exit ENQ No. of User's DCB Generation Work Area BLDL
(To IGGOCLC2 Parameter Levels Parameter Index Work Area
or IGGOCLC4) List Searched* List Block
Exit No. of Locate Error Code*
(To User) Levels Error Code *
Searched*
1GGOCLC2 Entry No. of User's DCB Work Area
Levels Parameter
Searched* ist
Exit No. of User's DCe Work Area
Levels Parameter
Searched* List
1GGOCLC3 Entry User's DCB Work Area
Parameter
List
Exit No. of Locate Index
Levels Error Code* Catalog
Searched * Error Code*
IGGOCLC4 Entry Entr; User's DCB Work Area BLDL
Indicator* Parameter Work Area
List
Exit Entry User's DCB Gen. Index Work Area BLDL
Indicator® Parameter Pointer Work Area
List Entry
1GGOCLCS Entry Entry User's DCB Gen. Index Work Area BLDL
Indicator* Parameter Pointer Work Area
List Entry
Exit No. of Locate Index
(User) Levels Error Code * Catalog
Searched* Error Code*
Exit User's DCB Work Area BLDL
(1IGGOCLC3) tarume'er Work Area
ist
Exit Entry User's DCB Work Area BLDL
(IGGOCLC4) Indicator* Parameter Work Area
List -
IGGOCLC6 Entry Index Locate No. of DCB Locate
Catalog Error Code* Levels Work Area
Error Code* Searched*
Exit No. of Locate Error Code*
Levels Error Code*
Searched*
1GC0002H Ent: UCB of Work Area Bin Number
(V’i‘or);VC 28) CVOL or for DEB/DCB if CVOL is
DCB on 2321+
Ent A Negative Extend Bin Number DCB TTR of ucs
(XCTL from Value* Work Area if 2321* new Extent*
Extend Routine)
Exit Error Code*
(To Caller)
Exit DCB Work Area DEB ucs Non-zero*
(To DADSM
Extend Routine)
Exit Zero* DCB No. of Subpool ID Work Area Begin TTR*
(To IGGOCLF2) Blocks/Track and Size of
* Work Area*
IGGOCLF2 Entry DCB Work Area DEB ucs Non-zero*
Exit Error Code*®
0 1 2 3 4 5 6 8 10 n 12 13 15
Figure 14. Register Usage

Diagnostic Aids

29

APPENDIX

A: FLOWCHARTS

These
routines
from the
intended

flowcharts illustrate the operation of the catalog management
module by module. Each label in the charts is taken directly
assembler language source code for the module. The charts are
to bridge the gap between the textual materjal of this manual

and the code itself, so they are best used in conjunction with the code
|and the text (particularly the Program Organization section).

30

CATALOG NAMAGENEWT

IGCO002F
IGCO0002F o*.
A2 0. taa.tngttto'tt.ta
SRR SRR H R0 S ot *
ENTER VIA SVC26‘ o *. NO ENgUEUE oN ‘ '
* OR_X FROM #—eeewe —D%, VIA XCTL FR .‘——--——-)’ * YSC!
* IGG! CLCl *. IGGOle o* * * RESOURCE ‘ ‘
“OO“..““O‘. .. o .. s
, . P T T P
YES
ERRY UCBLOOP __.%.
SERRSBLESEEERERRS B2 %,
* * . *,
+SET ERROR CODE * YES .+ IN A ..
* T0 4 *#{wwq{mmme=*, CVOL LOOP .*
* * *. .t
* * ., %
R T T *, L*
hax NO
[3dd * *
031+ * Bl #
* Cl *-—> * *
- * R
rhes
DEQ
REEERCLEERER RS RS 4an.tc2t Ot#tt.it
* & RELEASE * * * GET MAIN *
‘ ‘ RESERVED : : ‘ *STORAGE FOR' ‘
' ‘DEggBUE ON : : ‘ ‘ FU"ICTIONS ' ‘
‘ottatt‘-tttcttt# tt#tt*tt ‘t“t'ot
. -.
D2 #. tt“tD]tt#t"‘.tt DU e,
FEEADIREEER AR RS . . * .* .
* RETURN TO * * 1s *. YES SEARCH FOR_UCB * .* WAS UCB *. NO
* CALLER * *. CONTROL VOL .%e—e————e >* OF SPECIFIED ‘--—-——-—->‘ FOUND ¥
* *.SPECIFIED.* * VOLUME *. o*
AEEEREERSERRRES %, o* * H ., ..
. L% P) *, .x
* NO + YES a8
* *
* Bl *
* *
s
A’ TESTDE?
tt00052t~.‘tt‘ttt FREFEETSAREREERE S
‘ *RELEASE ANY* #
‘ FIND SYSTEM ’ *PREVIOUSLY * ¥
* RESIDENCE UCB o—_-—->‘ 4 RESERVED ¢ ¢
DEVICE b
ttttt“‘t't't.t*t AREREERARER RS S
CATRES
ERREEPIEERRORES S
* % RESERVE #
* #CVOL IF NOT* #
+ # SYSTEM * *
* * RESIDENCE * *
R T Y TP
FREEEGIEERERRNEE S
* * *
* * OPEN * %
* ¢ CATALOG * #
* *WITH SVC 28% #
* ¥ * %
EERERERERERRRRRE D
. % ERR %,
SREREHIAEREEERR S H2" e H3 s, HY s,
* * * o *, .* IS *, ¥ -,
* #GETMAIN 408* * YES .* 1S *. YES .#RETURN CODE*#. NO .. 1s .
* + BYTES IN P FR SVC 28 _, #m——meeme >+, RETURN CODE
* & SUBPOOL 0 + * . LT 8 .*
* *, o* *, . .
D R Y TP *, L% £, e
NO - *
CATMAIN
AEEEITLAKERREEERS :tt‘tJ2‘"tt‘tt0t: Ju EEEEETSEERER RS
* * * * ¥ . *
* LOCATE * *+ #*GETMAIN 896% * . 1s * *SET ERROR CODE *
* SWITCH ON * * % BYTES IN * * *. FUNCTION > TO 28 *
- : * * SUBPOOL 0 : * *. LOCATE .-‘ * :
- - . *
P L T FAEERRAAIRERERR AN . .* ARESRESRRERERENNE
YES
sees
* *
~>% C1 *
+ -
*eee
XCNTL v
AEREER2ERSREE SRS *tt“xut tt.t‘a#t
FEEAKLASERR RS * *
X TO * * SET LOCATE * ‘SET ERRO CODB ‘
* IGGOCLC1 #lmm * 'H OFF * ‘ -
* * * * H
P e T * * * -1
ERREEREERRERR RS Terrrsaseeranenes
shee
* .
*C1 *
.
oo

Appendix A: Flowcharts

.o;.;%1oantott:¢

NTRY XCTL FR

* IGC0502P
SERSIRRAEERESER

32

*

CEEEEP2AE SRS ERS
*
:INITIALIZE TTR *

* VOLUME INDEX :
EREEEASRERERSANES

SERREE2REREERESES
* *
* MOVE CATALOG

*
* DATA TQ USER *<-
* AREA *

* *
EERBRRRERERR R R AR

P S
v
FREEAT 2R SRR R RERR
* * FREE ALL * *
* % MAIN *
% % STORAGE * *
* * USED Prs
* * * %
P T T T

her

*032¢

* G2 *->]
*

e

tht:tezn bbb d b bd
D

ELEAS *
* * "SYCTLG * ¥
* % AND CVOL : :

EREEEIRRREERERARE

FEERH2ERREERERR
RETURN_TO *
CALLER *

e

AREEERRIESR IR

ALLSET

 S—

CATALOG MANAGEMENT
IGGOCICL

o
A3 ..
-* IS -,
+* FUNCTION #. NO
LOCATE BY _.
. PBLOCK .
*, .
., .*
YES

““‘53"""““:
$SET ERROR CODE

TO ZERO, SET *
t LOCATE 5W ON :

t"tttttwtttt.ttt

L
EEEERCIEREER S0 S
* SET NAME TO
* LERO, TTR TO
: USERYS VALUE
AEESEEAREIEARNES S

YT Y

FEERAD IHERRERARE S
:CALLBLDL 03“020

*READ SPECIFIED ‘
* BLOCK U

' ET ERROR CODE ’
o

* *
EEERRERERERE RIS

e

ETNAME
SEASSRUISEEES S IRE
EA *

% SEPARAT!

* SIMPLE NAME

* FROM THE .
*QUALIFIED NAME *

*
SEEERERERE RN R bR

B4 .
. ..
.+ IS THE_*. N

[
*. NAME VALID ‘.‘-_.

., ..

e e¥
* YES

SEREECULEE SRS S04
‘C!LLBLDL 03“92‘

SBARCH FOR BLK ‘
CONTAINING NAME

* *
TR a2 1T 22 2

*
PRI TT TR TS 2
nEE
#032*
* E3 *->
* P i
*033%
%, Al*
* &
* *, *
* 1s *.
LOCATE SW .*
* ON .
*, .
.
NO
CATENTRY _.*.
F3~ s, ttlpa‘lttt‘l’tttt
.* IS *, READ_ INDEX
.*" LOCATE _*. NO + VoL INDEX .
#.ERROR_CODE GT. #=—m=m > CONT.
LR YA * BLOCKS .
“a, o FREEERRARRAES RS
YES
AEAERGIRERRRREESS
* * SREEGUSERRERARS
* MOVE LOCATE * * XC' Tg *
*+ FRROR CODE TO * * IGGOCLC *
* REGISTER ONE * * *
* * FRREE R R R R AR R
SEEERRRIARGERREER
badnaz Bt tidlond]

.t‘t'as"t‘.tt‘.:
*SET ERROR CODE *
>: TO 20 :

* *
SEERERRAREERRARES
ens

* *

—>% E3 %

* *

sens

SEESED5 RS EERRES
*
‘SET ERROR CODE ‘
-)‘ .IGHT
‘
teesrnssrnrneraer
LTS
*
->* E3 #
* *
eee

CATALOG MANAGEMERT

IGGOCLC1
ALIAS o ERR12
‘.‘.‘AZ‘.‘....“: ‘A3 ‘.‘ ."‘.AI".“‘O“.‘
* REPLACE ALIAS * .*" WAS %, YES SET ERROR_CODE .
..)‘HITH TRUE NAME ‘--'- --)‘ TO 12 e
« AL A
R uuun”nuno ‘e, e l FERERBARRRLRR BURD
* NO e
.
l * AL *
* *
[t e
*032¢
¥, DSET % * DU
Bl .. B2 ., - *
o* .. 4 IS .. *
.* IS IT A #*. YES ERE . ‘lES
*. DATA SET et RS ANOTH
.. POINTBR‘.‘ *. QUALIFIEF‘(*"
Ce, 0 e
NO * NO
ERRSAC20RR NN A%S
*
#SET ERROR CODE #
* TO ZERO e
* b
* * Lidd4d
ARRERRRRR RN AR *032%
E3#
.
¥, GINDEX .,
D1 D2 *, A ED IR e 00 bE &D“'..“““.
. .* *, * *
. IS IT A * WAS * * SAVE ADDR OF * SAVB DELIMITER '
*. GEN. INDEX DELIMITER 1#-------->% = GEN INDEX $-----—-->% AND ADDR OF *
‘.'POINTER . *. BLANK .* POINTER * . DELIMITER :
“u, s “a. " SEREEIEREROREIRES SEREERESERRRERIES
* NO * YES
l .“‘
l ->‘ A4 ‘
*
“‘ﬁ
Lt DRPX
El ., E2 ., E3" . FARKRESIS ISR ERED
Is . * N N .
.* ENTRY A *. YES IS o FUNCTION *, YES * SEPARATE OUT +#
*. CVOL ¥ —>%, DELIMITER . #-—e—ee==D>¥, LNK o B * NEXT NAME *
. POINT .‘ ‘.‘ BLANK . ‘.. * : :
.t_ ,o' ‘e, o 't, .c' FERAERAREERRBEREE
Il NO NO NO
Tt <
+03u% v
* Al* CVOLPTR %, ERR16
* % “ﬁt‘}‘z‘::““‘.‘: EEFEAF IS0 00N .P“ *, ‘.“‘PS"““.":
* *
* SET UP VOL *SET ERROR_CODE #* IS S - NO $SET ERROR CODE “
‘SERIAL AND XCTL' * TO 12 #<mm *#. DELIMITER A . -—)‘ 16
CATOR : : ‘s NK ot H *
LRI RIS R] SEERRE SRR NN S .‘. ‘. LRI IR R T R ITE Y
YE: i
LS bd L3 dd
*032¢ *032+
* E3* v * E3¢
* % EXEGUSERIRRRRE NS * %
LRI eI R SR 1 * *
* XCT& TO * * READ INDE.
* IGCO002F * AND VOL INDEX
* CONTR BLK
BEEBRARRER RN AR
BRERASR AR A RE R RS
*RERHUSS SRR R4
g *
: IGGOCLCH :
BERARARNR RN SRS

Appendix A: Flowcharts

33

CATALOG MANAGEMENT

1GGOCLC1
*ease
*034%
* AL*
* s
.
.g. B . %
Al SEEBER2RRARERRRRR A3" e, PO VET TP TTPRe es
o . * . *
* Is *. YES *SET ERROR CODE * .* THERE *. YES *SET ERROR CODE *
*. ENTRY A VCB .#——oo—m —> TO ZERO > SO >¢. AN - > TO 16 *
, POINTER . * * ‘.QUBLIFIER.‘ * *
. . * * . . * *
% ARERRRARRARRRRERS . .k D T P 2
* NO NO
ane
*032%
., * C3%
B1" s, SEEEIBIIEEER RIS %
s A * * .
.* THERE *. YES *#SET TTR IN USER*
*. OTHER o ¥ e *#*AREA TO TTR OF *
*.QUALIFIER. * R4 * VB *
*. o FaREE
. .t *032% ARRARR R RO RR RN
* NO * AUus
* %
*
P ety
*032#
* Cis
SEERRCLAFERRRRO RS . *
* .
*SET ERROR_CODE *
* TO 12 :
* *
P T P T
ErEEE
*032+%
'.Cg‘ CALLBLDL
* AREAD 2 EEERRRRS
* ENTRY VIA BAL *
: CALLBLDL,14 *
T
AREE2SR AR RER RS RS
D
* SPECIFIED *
BLOCK_AND
* NAME *
BEAERRR SR ARSI RN R RN
F2_ s, ARESIPIERFEERROE S BEREAFURRS SRR ROND
.* IS *. *# * FREE ALL * #
¥* THERE *. YES * * MAIN * * *SET ERROR CODE #*
* .UNCORRECTABLE « ¥ === === >% % STORAGE # #ececeeooD# TO 24 *
.I1/0 ERROE.‘ : : USED * * : :
Ce. e P T T T B T
NO
.
SERERGIRREAIIRRES G4 .
AERRGOREERRRRAS * * *.
* RETURN VIA BR * # SET CATALOG * NO . IS
* 14 * * ERROR=28 b St *. FUNCTION o*
+ * LOCATE .*
AEERRAEREERRRRR * * . o
ARERRRARERASERRE R .
L l YES
ko e
*032% %032+
* G2 + G
. . %
. .

34

CATALOG MANAGEMENT
1sG0CLC2

1Gu0CLC2 CATPHASE _.*.
Ly S T P
ST Ty 0 ALL
‘EN’I‘HY VIA XCTL * ‘HIGH LEVEL *. NO
FR IGGOCLC1 +# —>el P e
: . . E 151 K
R T T ., ..
.
1 YES
. % P3A2 o
Bl n B2 ., B3 ., 0t‘ttauoot‘otntto
-* *. +% ARE . has
NAMED ITEM *. * 1S - *THERE MORE *. ‘ CALC ENTRY * *
*. FOUND_ IN K *. FUNCTION . - THAN 5 . ->‘LENGTH HOVE TO‘— ~>% H2 *
. CATALOG . *. CATALOG .* A *. VOLS .* USER AREA * *
*. " *, o* ., " t . L EL)
s, e FEREERRRRRERERRAR
* YES * NO * YES
* shen
*#035% l *037+
¢ B3* ~>% A3 *
rakEe Ty .
#0306+ P
* A2¢ o,
. c ., FEREECUSRIREESH0E SEERECHEERIRERANE
* .*IS THE *. :
-* NAME *. YES . MOVE cVvoL .
*. ——D, UNQUALIFIED b ~>% SERIAL NO., TO #-—
.. o * " USER AREA ¢ l
*. - * * - *
e AEEEERRRRRARRRRR P T T T
* NO LR TS
TS . %
* * * H2#
* DY #o * %
* * nan
L
.. ERRORS RETURN
D2 s, FERREDIS SRS BEEE
.* IS * * * SEEEDUSEE IR SRS
.+ FUNCTION NO * SET CATALOG * . XCTL TQ .
#. BLDX OR _.%=-wec=c->$ERROR CODE TO 8#%-———ee—m >% IGGOCLC6 .
. BLDG . A * . A * *
l * . l SEERRARREISR S
*, Lt RERERARAEERRNRRE S
«"YES
* % .t
*035% *035%
* DI * Dy#
e ke
AARKRE2RRRRRRRREE
* *
* SET UP EMPTY #
* INDEX *
* *
* *
AEEARRARE HRRRRRN
B el VI 2
'WRITENEH 037E'4‘
t WRI NEW BLK
:SEARCH FOR HEXT:
LT T PP
62" . treeaGIeserriaeey

. t,
- IS NO MOVE GENFRATION‘
*. FUUCTION n_--___-->‘ COUN

*., BLDX .+

s AR R AR AR
* YES
aank
*035%
* H2 %>
* *
LR L]
OKSTOW .t
FERH2EAR AR AR R R B3 el baadad ALt
LT TS .* WAS %,
* * * READ INDEX * % EMPTY *. YES ‘ ON EMPTY SH‘
* H2 #euo> BLK TO BE L= *. OPTION o H >‘ IN USER AREA
* * * ALTERED * *.SPECIFIED. *
hen s o+ *
AREERRE R AR AR RRRE et Vetrasernsnrnnent
NO
<
DOPTION ..
33" s, SEREATURRRERE R RNE
‘t“Jz‘ tt‘t.l‘ Y *, *
* CTL T +* DELETE *. YES * SET ON DELETE *
* IGuOCLC3 ‘ *. OPTION] >*SW IN USER AREA*
*.SPECIFIED. * * *
AEEARERARERRERS *, .+ * *
L AEERRRRERRRBERANS
* NO
<

Appendix A: Flowcharts 35

CATALOG MANAGEMENT

IGGOCLC2
seses
*036%
* A2
£ x
1
DLTPHASE __.*, UNCAT .. -t RECAT ok,
A2 * A3 .. Al *, A5 *.
. Is .. «* IS *. Bl *, o*
«* LOCATE ., +* FUNCTION *. .* WAS A *. NO 1s
. ERROR_CODE . ~>, RECAT OR . ->#%, VCB LOCATED . ~>%, FUNCTION o
.. 12 - *. UNCAT *, . + RECKA
. % . . *. . .
.t Lk . *. .
* YES * * YE! * Lo dd
(33 e *xx% %035
*#035¢ *035*% * B3+*
~>% D3 % ~>% G3 * -): H2 *
*aen ey rrke
¥, ALIAS N .. ¥
B2 *. .. Bl *.
-* IS *. <*IS THE #. o* -,
«* FUNCTION *. YES ¥ IAME *. YES o* IS *. YES . WA NO
. BLDA OR o ¥memweeea>*, UNQUALIFIED .*w————e—=>%, FUNCTION B >*%*. ALIAS BLK .#-—
‘.‘ DLTA ‘.. ..‘ *. DLTA * *. FOUNI
. .* .+ . .* %
* NO * NO * NO * YES LRt
035%
D3#
* ¥
shiae *
#035#%
DROP ¥, o*. * D3#* o
Cc1 ., c2 *. * * cH4 *.
* g *. * . IS ..
NO .+ _WAS YES .#+ IS . NO .* INDEX
%] CVOL PTR .#<——omoees . FUNCTION .* el #. HIGH LEVEL .*
*. LOCATED . » DRPX . . NNDE: .
N . . . ot *, .
*. Lx *, L *035% L .*
b4 * YES NO * D3# YES
*035% *
* D3¢ *
* %
* Pt ed
*035¢%
* H2* .. v
% D2~ "+, SEESEDURRERERSRAR
. . .. * *
o* IS *. 4BUILD THE ALIAS*
*. FUNCTION o Hm e * ENTRY *
*. DLTX ¥ * *
*, . Rid il * *
., % +035% P T TP
* YES * D3¢
%
<
ACOUNT
AREERE2 Rk R R kR REREIELR SRR IR RAS
037a1#*
*SET ERROR CODE * #e—e—ece—m—e-——— *
* T0 2 * *WRITE BACK ORIG*
* * *ENTRY WITH NEW *
* * * S COUNT *
P T P P FRERRERRRE AR R RS
T ety
*035%
.. * H2*
F2 . * %
o* *.
NO .* Is ..
6-————~’..INDEX EMPTY‘.‘
rkE *, .
*035% B
+ Diis *'YES
* % PrTes
* * *
* G3 %--,
*
*hEE
¥, o ¥,
G2 . FREE?%%:satttoytztn‘ GY *. FERRACSHRERRRE KA
* *CNVT 037A1% +*IS THIS*. *UPDATE VOL INDX*
----- ettiala g .* NOW 1ST *. YES * L B. WI *
—~>%* FREE BLK BY #—ceee——=>%, HOLE IN B) ADDR OF 1ST *
* WRITING ZERO * *. CATALOG'.’ HOLE *
SRAKEEERRERERRRRS % FEEREERERREREERRN
* NO
l(
o o,
H3 *. HY *,
¥ *, * *,
YES .* IS .. YES .* WAS *.
~~—%, ANOTHER VCB .#<-mw————= #. THIS BLK A .*
.IN CHAIN . *. VCB ¥
*. % *, o
. L.* . ¥
l NO i NO
PrTey T nd
* * #035%
* A5 * H2
* * *
Prr

36

CNVT
LIRS SELTELE T
: ENTER VIA BAL :
HERBERARE R RN NN

L L AR TR PTE LY
[*

* *CONVERT TTR*
: :Tg ABSOLUTF‘

LTS

EERERB RSB RRR N

CATALOG MANAGEMENT
IGGOCLC2

VCBRTN
AEAEIDTHARIERRN NS
* .

* CALC NO. OF *
:VCB’S REQUIRED :
* .
EL L S S R

(10)
FERRB2ARENRRRNS
: ENTER VIA BAL :
R RRRRBRRERR RN

ADDBACK
L) X1 no"tu

‘SET UP TO HRITE‘
VCB'S IN
t REVERSE ORDER :

T L R T Y

>|<
I0
FERRECIAREE SRS % EEERRCIH RSN R R RNk &
* & EXECUT * * U *
* * SPECIFIED % * - -‘
* % CHANNEL * # WRITE VCB
* % PROG! * * * * *SEARCH FOR NEXT‘
LR * » LRl
AEERRERRRR R R RN “‘.““ ‘.‘.‘.‘O
p1’ s, D3’ s,
.. .. FEREDDORRA RS . ..
* ANY * *RETURN VIA REG * .* ANY *. YES
. ERRORS >* 14 * #. MORE VCB'S . #=eeem—au
.. . *.TO WRI .*
., .* FRARERERE RN RS . .
L LI
* YES NO
E1S e, FEARCE2RRR AR R RR NN EERREEISRRRRRERE R
" » * * *
.* END OF *. NO *SET ERROR CODE * «PUT TTR OF 1ST #*
*. EXTENT o W m e —_—>% TO 28 * * VCB IN USER *
. - * * * AREA *
*, o * * .
*, * HEERIRAREER R RSN EEEOGRA AR N
* YES
LE 3 dd ETTIT
*035% *035%
* DU * H2#
LRI E R SRR E 22T * * %
* * % * *

* *EXTEND VIA #* #
: : svC 28 *

% %
e LR T A

Y EXTEHSION ‘. NO
+. SUCCESSFUL _.

., .+
L
* YES

:tootczoOtnooooc:
*SET ERROR CODE *
‘ TO 20 :

* *
R P e T

LS bbd
*035%
D *

oootoDuttao.ooo.n
*SET UP CHAINING

to.o

>‘ PTRS FOR NEXT ‘-—--)t c3 n

LT
LT R e T T 1

WR1TENEW

HERAEURERAI R NS

*
: ENTER VIA BAL :
ERRRRRRRE AR RS

i LA LRI T LT
:CNVT 037A1‘

‘WRITE SPECIFIED‘

LRI R R T 1

EERRAGUSER RS RN
*I0 037¢1%
*SEARCH_FOR NEXT'
4 oy AVALL HOLE

EXTENDUIF NORE *
""'l.. LRI EE L)

att"uuo tntt#‘tt

.
' 'ADDR OF BLK‘ M
t o pougT TO t ‘

o.‘t‘.tt tttttntt

SRS TUSSE RS S AN
- * SE4A TSRS NS
* SAVE THIS * *RETURN VIA REG *
#BLOCK'S ADDRESS$-------~ > 6 '
- * EEERRRREE RN RN
LTI TR R YY)

Appendix A: Flowcharts

37

CATALOG MANAGEMENT

1GGOCLC3
IGGOCLC3 aD3 .*
A2 .. ‘..“A]t.“.."“
seeenlesereieee R :
*ENTRY VIA XCTL ‘ WAS GDG_ *. YES ET U.
* FR IGGOCLC2 ‘~——-—-—->‘ INDEX PTR ‘--~---~-)‘COMPARE CHARS‘
A .. 'OUND .* * INSTEAD OF
T 1 o5 . e
P P PP P T . .
shen * NO * B5 *
eee
. . . A2+ e
* Bl #-- . .
. * sese
e
AD3P1 ¥ DELETE
sereanteseeeraees B2 s, Tetaen3erseseneey terssBusessrartey IEeaBSEEsrrasary
. +COMPARE® . M *
CALCULATE ‘NBW)OLD *NEW_NAME TO* *CALC_LENGTH OF ‘ ADD LENGTH TO ‘ ‘SET COMPLETION ‘
: LE“GTH OF OLD :(-————-~ - 50 ND Fommm e D> NEW ENTRY ‘——-—————)‘ INPUT POINTER ‘——————-)‘ SWITCH Ol :
N . * . *
SEEEERRERSERIREES o SEREEERERRROIREES Tersseersasearars thesssrrnssestrrs
*NEW<OLD
ADD
C1 SEERECOEE KRRBREE
* *
‘OUTPUT AREA‘ YES *SET COMPLETION *
- 'OR OLD et m ey * SWITCH ON *
*. ENTRY . : M
Ts, e FEEEAEAEE SEEEREE
NO
seee
* +
s D1 s>
sese
AG3 . ¥, AE3 ot
p1° s FEREAD2ES AREEEEE D5 e,
¥ *. ‘CALC LENGTH OF ‘ . .,
* IS NEXT *. NE Is
BLK UNUSED _.* ‘ENTRY UETRACT ‘(. FUNCTION o*
.-, o ¥ ENPUT * -, RECAT .
R ERERREARRBRARRERSE ., .
* YES NO
R :
SEEELSSSRR0RERRL E2°
« *ROOM
* WRITE UPDATED * -*QUTPUT AREA*. NO
BLOCK *. FOR NEI ¥
*. ENTRY ‘."
EEERERERRRERERRER Te. e
+"YES e
et - .
*« D1 *
« F2 %> * *
*ras
e
T ztt:a.pzt Eraraeen
* * * .
* RESET QUTPUT * * MCOVE IT TQ *
* AREA POINTERS ‘ —): OUTPUT AREA :
. * *
Tersseerraasennee FRER SRR ERERE LA
ers
. *
->% F2 *
* +
ens
AG2
PressGLusrensiese ARERRG2EREEREE R
* * ADD LENGTH OF *
' SET UP INDEX * *MOVED ENTRY TO #
L--)‘ LINK ENTR * * INPUT,OUTPUT *
. : * piRS *
AERERRRERIIRSRRES FEEERREEE EREERAS
.
H2 *.
.. .. eee
o IS *. NO * * -
*. CCMPLETION FemeD>® A2 *
. W ON .* * *
L *eee
o
* YES
<.
AJ2 . %
.. J3 o+,
. . axe
. * IS NEXT *
. ~->*%*, ENTRY NAME
. X'FF' .»*
B - . *akk hee
. . .o . . *
* NO * YES * K5 *
* *
saee
BA2 o*.
FEEEIK2SESRORREES .. AR EKURER SO SEEKSEEEREER0RAE
* * * *
*SET UP TO READ * YES .* IS TTR *. NO * SAVE THE TTR * + INDICATED BLK #
NEXT SEQUENTIAL -t POINTER B >* POINTER * INTO INPUT -
: BLK : ‘.'l ZERO o* : : AREA
SEERREERE EREREEE A SEEERRORERRSE LIS EIREAERRRRREERRES
erase
*039% l
* A2#
i
hes Y
* * * *
* KS #* *+ B5 ¢
. . . .
ree ae

38

CATALOG MANAGEMENT
14GOCLC3

-
bl
O
[al
td
o
(o]
£

“aen

« OUTPUT AREA
:.unn seeEsee

SHEREP2ERAEEERENE
* *
#«CALC_BYTE COUNT*
* OF BLK, STORE :
*

* *
EEPREREEREARAERER

LSTREL

*hhny

M SET KEY OF..“
RIEISK ISTBE o+

. ,gp’go HEX 1<

‘.
BLK*.

LRI R T LY .Ottt.t:

ACK
FEADLA RS banannars IV Do e s nnsnse
* WRITE U * WRITE 0 KEY *
., INDEX ggé@ﬁm * IN FREED BLK
*
REEEE L L LT TP AEREEIRAEE S LRI R
v
- AREEREQRRERAE R AR
* IS e, *UPDATE INDEX § *
YES .* MODIFIED "+ #VOL INDEX CONTR¥
~=2+2" INDEXMOL *te leme—- + BLRS IF_ *
‘.' INDEX .» : NECESSARY :
T, _t" ERRAEERRRR AR RN
NO

FEEPLS bRt artins
* WRITE UPD *
INDEX CN%ED

BLK *

FEIEEEEAR RS AR Rt

S —

REAGLER SRS RERES
* WRITE UPDATED *
VOL INDEX
* CNTRL BLK *

LA R e TP T T Y

:“ﬁ'ﬁlt"‘ttttﬁ“

*SET ERROR CODE *
: TO ZERO :

* *
HEETRE SRR RRS

tttttJltltt.ttttt
* * FREEMAIN * * FERRT 2R R KRR RS

* % FO * % * RETURN TO *

: : USE% A%EQ * ‘—-———--—):CALLER VIA svC :
* %

* % Rggongss * * ARAEREERR R RRN R

EREREERERAAE R RS

Appendix A: Flowcharts 39

CATALOG MANAGEMENT
IGGOCLCYH

IGGOCLCY .
A2 .,
‘.t‘Al&“l.‘..‘ ¥
ENTRY VIA XCTL o ENTRY
SFR IGGOCLC OR ‘-—--—--—) . FROM
*oeol * *.IGGOCLCL .+ R
SR ER KSR R4S ., . Lidddd
o e *042%
& YES * A2¢
L
*
¥, RELATIVE__.*. .*
B2 -, B3 .. .
*nave 1n""s - +OF SELATIVE®. YES
* . . . T. *. Y
RELATIVE . o b . NO. oo
*. FORMAT *. LOCATE .»* *. CORRECT .*
. . . . *, . P L bad
oLt . .* . .* *041%
* NO * NO * NO * Al#
* %
*
<
¥, ERR20
c2 ‘,. ““‘C3“.¥““‘.
. NAME IN *. NO ‘SET ERROR CODE ‘
#. CORRECT . #=———eeem 0 20
. FORMAT ‘-‘
., . unununuut
YES
el]
* *
32 %
SEED24 SRS SRR E S * *
4y
* READ NAM|
ENTRY USING
* BLDL *
FEREEIERRAXEFER SR
NOERR o %, CATGEN ¥,
‘EZ *.. E3 *, :tttoEuountnu.
o 1S Ts. YES .+ WAS . #SET ERROR CODE #
*. FUNCTION o¥mm—mweeed>®, BLDL ERROR . #————eeao># TO 8 *
. CATALOG . *,CODE ZERQ.*
. o *. .* * *
*, L% *, % FERRRERERR SRR R RN
NO * YES
>
% ERRORO8 SKIP
F2 ., EEEFEP IS E S84 S
* . * tu*put"nuau
. AS . *SET ERROR CODE #* XCTL T *
. NAME FOUND .#c——eeaaoD> TO 8 * ‘ IGGOCLCS *
., o* * * * *
, o * * *EESERRRE R Rk RS
) l EEREREEER KSR RRER %
* YES
L3344 * &
040 040"
* G2 *-> * F3¢
* * *EREE
A
FOUND ..
SREARGLIRERERREES G2 *,
* ,t *,
*MOVE ENTRY PATA NO IS *.
* INTO USER ‘< I ENTRY A VCB .*
* INT! -
* . .
*, .
* YES
*EEE
* *
* J2 *
* * FESHOS SRR RE R RS
R L L)
* READ VCB_INTO *
USER'S AR
* USING BLDL *
EEEEAIEEREERREN RS
hEs
*040%
* J2 %>
t *
i
BEQUE
.OQOOJZ‘HQQ“..QO
L L)
* *
‘ ‘STORAGE AND' *(----O J2 *
’ ‘ Q * *
L2

Qttooaoo ooooo‘o

4K 2% t#ttn

‘ RET!

‘CALLER VIA SVC
.“t““ﬁ““t‘

40

t

‘

LYy
.

Ll
RT .

* RELATIVE SEN. o
3 No. 10 BINARY H
S ES S840 400 %0

NXTBLK
SSABLESs0E0R RS

. READ A BLK OF

GENERATION
. INDEX .

AAA LA LRl LI L]

SERBACLARASRER NS
* *

* EXAMINE NAME
~->¢ FIELD OF AN

-
:ENTRY IN INDEX :
LTI T

LI LI

(e d SRR TL L 1Y
* *
* POINT TO NEXT *
ENTRY ADD 1 TO #

GEN. NO. *

*
AEASESRENEERERE RS

61
YES .%_ MORE _ '*.
——-+. ENTRIES IN .+
. BLOCK _.

*.
*

FARKEEQR S RRRR SRS
* *

COMPLEMENT GEN.
-=>%* NO. OF FOUND ¢
. ENTRY .

* *
AEERAREREERERRENE

¥
F2 ..

.* IS
‘.‘GIVEN REL

*
.. GEN. NO _.*
. ZERO _.
.. .

*.
o
*"YES

FERERC2ERIBRRENRE
* MOVE FOUND *

. NAME,
* COMPLEMENTED,
* TO USER AREA

srne

BEERERERAERRERRER

Lt
*040%
* G2¢
*

*

LOG MANAGEMENT

1GG0CLCH

N

R
D3] s,

L% 15 s,
+*GIVEN REL. ‘.‘
“#.POSITIVE .+’

.. -

.8
* YES

*4%04E34
*

* SET UP
* FOUND

: G000 M
E e T

ErRRERRS
*

DUMMY #
NAME OF *
0voo *

SEE4RF 3N
*

*ADD GIVEN REL. *
>*VALUE TC FOUND #*
* GEN. NO. .

LTI LY
*

LRI e R TR]

EERARGIRRREEARRE S
* *

* MOVE TQOTAL TO *
* USER AREA AS
* GEN. NAME

‘aw

EERAERRERRRERRRE®

Appendix A: Flowcharts

41

BEMPTY

ssesp 2
‘ SET UP

CATALOG MANAGEMENT
IGGOCICH

‘tttttt

O

WITH X'FF"

REE D o
SENTRY, RAME OF '
ENTRY

x‘....“.

* NE!
RIS

s4844B2¢
*
0

* MOVE
: LINK ENTR\'

OUTPUT

sEeERErEe

**4C2#

* READ_THE OLD
INDEX

*

L

ey
* D2 *->
* *
e
**4D2¢ 4
*

*EEEREES
*

INDEX *

*

AREA #

R Y

sEREEBEE

*

sEeEEES

FEEEEBEREES
.

WRITE
CONTENTS_OF

* OUTPUT AREA *

SEIGLEEEEEEEEERES
READ VOL .
INDEX USING <~
BLDL *

FEEEIIFSEEIEBREI S

o:toun1m
.

: INDBX COE‘I‘ROL ‘
* NBCESSARY ‘
ASESEEEIESERERRES

-o.o.ttot

sEeJ1sssRREERRREE

REWRITE IT

CEEIRELSRRIREIRRES

42

SeEsIIRIRTIEEIEES
SEEFIE2EERERBRERS
* .
* SCAN F LAST *
* ENTRY IN BLK *
Us' EAD :
P
e, FEERIFITISEEFEEEE S
+* DOES _*. ‘ INCREHENT TTR * Liddd
«*NAME FIELD *. NO * * *
- CONTAIN oo e)‘ SEQUE“TIAL #eee>* H3
. BX'FF * * * *
.. . * “eee
. SEEBEIIRISSSERES
YES
G2 s, 3 EEEBIGUSEI SRS
* IS *. *TTR 0 * *
YES . CHAIN *. NO .+ 0LD INDEX *. YES ¢ UPDATE VOLUME #
— POINTER P LT 1ST AVAIL .#——-weue-] >*% INDEX CONTROL *
- ZERO . * *. HOLE . * BLOCK *
‘e, . e SErSEEEEEIEEIELES
NO
sase
. *
* H3 s>
* + <
e
SESHISESE S04 S
* READ NEXT BLK *
* USING B!.DL *
FEEEEERSERRS SRS
28T 242842220 “.“Ja‘ *EESEE S
* *
*SET ERROR CODE * SET K!Y OF *
>* TO ZERO * ‘OUTPUT A TO ¢
* * ZEROS *
. * *
P T YT YT SEsEERANREEIRNES
seee
. .
->* D2 *
sesee . .
«0uo* eees
. g2
L
.

CATALOG MANAGEMENT
IGGOCICS

IGGOCLCS

L S LTI Y
®ENTRY VIA XCTL *
* PROM IGGOCLCU *

"
. WAS *
NAME FOUND
ELDL

eee
*

CEIOIINEIEIIIIS . . [T
LI
¢ YES
', ERRO8
B2 ., 'Q".BJ*‘.‘.“"‘ SEEESBUSSSES SRS
.. o o FREEMAI .. uuas-n.tont.
. AS . N ‘SET ERROR CODE ‘ FOR ALL * #
‘.‘NAHE SOUND e ‘ 0 8 : ----- ———)‘ ‘USBDADEQ ON' ‘-—--—---)‘CAILBR VIA SVC :
...Y L ? * * M + RESOURCES . . oo..aoontt.aoon
L .‘.‘.‘....‘..‘.‘. LI TR P 21]
YES
c2” T,
"
R,
U_ OG' oo
., * *
. YES * D3 *
* *
reen
ot o
CEERAD2ERRERR RS FEERADIARESANNES D4 s, DS .
* * **
‘SUBTRACT 1 FROM‘ *SEARCH FOR NAME#* -t WAS *, NO . X
* GENERA ION * IGNORI] >%*, NAME FOUND .#wc—eeewx >#*. INDEX FULL .#~—
* COUNT * VERSION NO. * ‘.. ..‘ ‘e . l
LRI RS RS) FEAREEEARER RN R ° . . .
*°YES NO sennn
*044s
* Ale
D
*
ERXE2XEERNRERE R RS ..‘..E“..‘..‘...: :““BS‘ “‘...':
* WRITE UPDATED * #SET FUNCTION TO* * ADD 1 TO *
BLOCK * RECAT * * GENERATION *
* . : : COUNT :
*
EERERAPRRE RN RS RS R AR E NN ENAS BEERAERERRER NS4S
WRTVCB .
Ll B EAL LI LT L] *, FEEFSEREREA 000
’REPETBRE OUUE3* * *.
----------- YES .* WAS A *. * WRITE UPDATED *
‘ FREE ALL VCBS #<-——-———-%, VCB_POINTER .* INDEX BLOCK
: FOR THIS NAME : . FOUND ..‘ i
BEEEEE SRR ERAEERS "‘ . . FEEERRERRNRN RN
NO
L >
RECAT ¥
G2~ . FERAAGSEEERERENES
*. ‘BLDENTRY 0'"1?2‘
o 1S ., feeemmce e ———
—--#%., FUNCTION "
‘.‘ RECAT .* ‘BUILD NEW ENTRY‘
R FERAENIRRA RS RS
* YES
L3554
*0u3
* H2 *->
* .
R R
L VAR T T L T
‘ELDENTRY O‘UJFZ‘
:BUILD NEW ENTRY:
AEERRRRRR AR RN RS
---------- >
<
RDIX
ARET2ERAERRRRRNES
* READ BLOCK TO *
UPDATED
EEERRARRRR AR RN S
too‘xzt ototatt
XCTL_ TO *
‘ IGGOCLC3 *
AEARRBRRRRRR SRS

Appendix A: Flowcharts

43

IGGOCLCS
l"’!!ao.aznoototoooo SEEA3EERIENENES
. »
* RESET . * WRITE UPDATED *
—=>* GENERATION ~ #——=-- > BLOCK
. . * COUNT TO ONE * L4 *
.. .t * *
., . *
* NO
SA4S4BLESIRERAES SEEEEP2EERRASRERE SERERBIFERERRE S
: IND_OLDEST : *SET ERROR CODE : :SCRINIT onapas
FIND OLDEST * _#SET ERROR CODE * = #-==Ce-coco—ecoae
SENTRY IN INDEX *—w—e—e—># TC ZERO * *SCRATCH ANY OLD*
» * » * * VC]
. * * *
P . P S T T Y
LASTENT - *.
. FEERECIEERRERERES
.* NEW *. *BLDENTRY OU4UF2#*
.*ENTRY OLDER*. YES P]
. THAN P St — * *
‘.‘OLDBST ‘.' :BUILD NEW ENTRY:
R SRR ERRESRRBIRS
SARRADISRRRRRERES PREEgegynztntttttttt SCRINIT
$SCRINIT 044Dy* * % DEgUBUE * # *6REDIE42EE S804 R TR 2
P Situbhinshtnfu N . * * FR I e * XCTL TO * .
* SCRATCH ANY * * ¢ FOR ALL * * * IGGOCLCH TQO #* * ENTER VIA BAL *
*VCBS OF OLDEST * * & STORAGE * * * EMPTY INDEX ¢ * *
* T * * & (S * % R TEr T P T T e FEERRRRERRERAES
SEEEERRRRSEERERND P T T T P
REPETERE o,
SERSAEL S SR AE R %% E4 *,
. * SREEEQ SRR RN SEEEEIS A0 R4 .
¢ DELETE LAST * * RETURN TO * +* WAS VCB *. NO
*ENTRY IN INDEX * *CALLER VIA SVC * * ENTER VIA BAL # *, POINTER b
* * * * * * #. FOUND .*
* * ARRERRRR AR SRR L T ., .
P YT LIRS
YES
>
BLDENTRY AVCBPTR ‘
CEAFL S EER00RAEES FERFUREAISEEARAEE
FEEIF208 0080048
* WRITE THE * * * *
. UPDATED BLOCK‘ : ENTER VIA BAL * . READ VCB .
FEEEESRRRRE RN
L T T L T T A Y
sabas
043
* H2#* o*.
s 62" Te. :0*0‘G3*'t‘tt#$.: SEEGURRRR S RRERES
* o* .
.* OVER 5 *. * BUILD * * FREE IT BY *
. VOLS IN . ~=> APPROPRIATE * WRITING A
‘.EATA SET..' :NUHBER OF VCBS : * ZERO REY *
Te, " Ty EEEEE AR SRR SR SRR
NO
<
.'tttnzt"t“tttt: SEEERHUS ISR R ORE
.
iy §
* PTR ENTRY *
B LT P LI TS
Jul e,
RERT 2R R kR AR S . IS .
* YES .* THERE *. NO
* RETURN VIA BR * — ANOTHER o S
* *. VCB ¥
FEEREERREERRERE .. .
.
.

44

CATALOG MANAGEMENT

SCRATCH
SSREDSERRERIRES
: ENTER VIA BAL :
HERERE RN R RS S S

ES s,
.*_WAS "%,
.+" SCRATCH "*. NO
I OPTION = lI#——
*.SPECIFIED. %

.
YES

SEESFSEESERRRNES
* e ..
* ¢ SCRATCH * ¢
* & DATA SET_* #
* *WITH SVC 29% #+
* & * *
AEEAREEAEERRE RS

[S ——

v
SEEEGSEREERRERE

*
: RETURN VIA BR :
AEREEARERRNESS

SEEETSEEEES SR 0N

*
-——>: RETURN VIA BR *

EEEREEREERESRES

CATALOG MANAGEMENT
1GGOCLCE

IGGOCLC6
SeEORLANRENNINL
* XCT! FR%H
. IGGUCLC *
. .
eane
B1’ *eP20s Nt te
.* FREEMAIN ¢ ¢
. 1S NO R _IND: b
. FUNCTION S —> CATALOG * ¢
‘..LOCAT! . WORK AREA : :
R aeesesNtRE OIS
YES
FREE
e e e REC2EERRERR RS
. . . .
¢ * FREEMAIN ¢ ¢ * SDEQUEUE ON & #
* *FOR LOCATE ¢ * ———D & YSCTLG * *
* * WORK AREA * * . " .
. .
b 0% PP 754 P PRPPRRPRPIS P04

SERADN2 4RSS ES
* EXIT TO USER *
* VIA SVC 3 .

AALEI I RS L]

Appendix A: Flowcharts 45

16C00020
009, 1000»o.o'c

CATALOG MANAGEMENT
16C00024

.0!00'0" sdéene
B1" s, §oo.oazo.oo-oo.on sotoog]‘too.to‘t. .oc.oauoo.oo.o.‘.
.¢ IS ., FREEMAIN * T SW
+*ENTRY XCTL ¢. YES ‘ ‘FOR EXTEND * ‘ ‘ G!TMAIN FOR* * * INDICATE ZND *
. Fl S, WK B e L A >$PASS OF EXTEND 4-—
. EXTEND . ‘ * AREAS,OLD * # * * FUNCTI *
. .. * +DCB AND DEB* ¢ *
L LRl T A T R R S] ..‘.““‘.“““' FEEEEF SRS R R R EES
NO
. END
[§ ., ".“Cz...““‘.. “..‘Ca.“.“.‘.‘
<% WHAT +*. * * ET SW T *
.* FUNCTION ‘. EXTEND * SGETMAIN FOR#* ‘ * IND CATE 1 *
. _ _WAS #———o__ >$ ¢ EXTEND 4 #-—o-——->$PASS OF EXTEND b
‘.gBQUESTEE-‘ * : MODULES :
.'..,‘. SEFEXRSSEERRR RN FEEERRREREE S0 S
OPEN
BLDEEooop1tu‘.co.oco
* *
¢ BUILD DEB AND *
*DCB FOR ENTIRE *
* VOLUME *
SRS E R RSN RN
SESFSELF 4585044
* BUILD_IOB AND *
* ECB *
.
* *
SEEEFEEERSEELRSES
SEAF1 #5805 05884
SEARCH AN
READ DSCB_FOR #*
SYSCT%G DATA
SEEEEFR LR RSS90 S
. ERRORY RETURN
EERXC2HERER R L %S EEEEECIEEERERREE S
* * ** * HEEAGUERERRE RS
. *SET ERROR CODE #* ** FREE ALL * # * RETURN TO *
, —D>% TO 4 e L B4 AIN . > CALLER *
* * * % STORAGE *
* % AT EERE R SRS

* *
T T

.
*° YES
[YES
% EXTENDA %,
H1 .. H2 *,
. ., .+ ..
2ND .*_ 1ST OR *. 1ST «* SECONDARY *. NO
—==%, 2ND PASS OF .#%—w-ee- —>*%, ALLOC. QTY .#*—————o—-
. EXTEND . *. ZERO ¥
.. .+ .. *
T . .+
.
NEITHER
%, T
J1 *, tt)‘ttht.t“.‘t.
)
.* MUST *. NO ‘ CALC EXTENT
. DATA SET BE .—————- ——)‘ENTRIES OR DEB‘ ————————
‘.EORHATTBD * ‘
Ce. ot estsssssasansane
* YES
YESFMT
:.'..Kl.ut..‘.“:

* SET FORMAT #
* "USWITCH >
* *
* *
SRS SRS S 50

EEEREEESERRS SRR S

AREERHIERRREERRE
* *

*+ CONSTRUCT A *
>*DUMMY JFCB FOR *
* DADSM *

EERERREREERERRRE S

.t‘t.th‘t‘t‘t.‘t
*

‘MOVE THESE INTO*
> EXISTING DEB

*
‘.."t“‘tt““t.

*EEEHUSER SRR S50 S

#BUILD IOB, DCE,*
>4 "DEB CH HAIN '+

*
ta.at.ttt‘ottnton

. %

*+ IS *.
THERE A_ #.
LINK TO A
*, FORMAT 3 .+

- DS CB‘.'

* YES

SERRUERRERBEERESS

* READ THE
FORMAT 3

AEERERREERRBEEERR

46

*
DSCB
*

NO

P SN

XCTL
FEASHSEEREEREEE
* XCTL_TO
--—->: 1GG0533a
SERERRRRRRRAEES
v
sas ke
U7+
* Al*
* %
*

*
*

CATALOG MANAGEMENT

IGC0002H
esnee
047
* Ale®
o
*
SEEESAIF 820502000
FREEMAIN
* ¢FOR_UNUSED ¢ *
. B,DCB * #
» e PAC) .
* & * &
RIS IR T IS L]
... FORMAT
'Bl‘.’.Bz"."“.‘. “."Ba..“.“.“
o+ 18 “e. YES . ‘GETHAIN FOR® * *ADDR, INDICATE '
. _FORMAT i Seh . FORMAT ~ * %——-——-=->% RQUEST 1S T
‘.?WITCH Oﬂ.‘ : : ROUTINE : : *FOl T CATALOG *
'o.‘.n' T, SEREEEEROSEROEENS
NO
oo.o‘c1tottttttt'

‘SET ERROR CODE ‘
‘ ‘

*
Ocootttttcttota‘t

:ttltbltttttttntt

*
*PLACE DCB ADDR *
: IN REGISTER 1 :

* *
SEEEAESRRBARESRRS

t..tzltulttt.t‘
RETUR TO .

o *
*
FREAERSEREERAIS

*$$SBUSEE SRR S%S

el 3

RIS 2SI A2 1)

Appendix A: Flowcharts

47

CATALOG MANAGEMENT

IGGOCLF2
i PIT LI LE LAY
.at‘A1ttttt¢tt. * -
SENTRY VIA X * * BUILD ECB AND *
* FROM IGC000 H #eeweee—>% 10B, RELOCATE *
* THEM *
SEEIESEEREESRES

*
FIEEERRESRERES SRS

.,

BPAM
., DIRECTOR!.

*.

.
YES

EARREC2ESRERRRRER

FEERBEREEERRE RN RS

*,

FIRST
WRITE

*, g
L
* YES

T+, NO

pL e

LA WAL I Lt]

*SET UP 1ST CCW *
* TO WRITE *
SPECIAL BLK FOR¥
:EMPTY DIRECTORY:
FESIEEREERSRR NSRS

EPNFRST BN
G2

—

t' LAST RECORD I
*BEEN WR Tg.

R
. YES

t‘tttHZ#
‘SBT UP CHANNEL '

G_TO HRI *
* EOD MA *
* *
LRI T

ottoot‘o

IGGOCLF2

CTLGFMT B
+*HAS END:
+«* OF EXTENT *. NO
. BEEN o Fm e
. REACHED .’
., o
.
YES

SEEECTHEEIR RN E
1 *

EERERRERERERERRE N

D3 *.

.* IS .

"REQST TO _*. YES
. FORM T EXT E.‘—-—-w

L}
NO

*EsEREIRR
*

* BUILLC VOLUME *
* INDEX CONTROL *
* BLCCK *

R
*

*
FEEEEEERREERRERE &

FEAFIHRASE SRR baS

WRITE IT

AERBERARAIRIRRRER

FEAGIEREREEREEREE

* THE *
. SYSCTLG DSCB .

REA R AT I AT L)

ottttHJtnttt‘ttnt

SET FORMATTED
SW ON IN DSCB

ITXTYY

t
-
*
*
*

FPNLST
*HeJ28

ERRERRSRS

WR
SPECIFIED
* RECO! *

AEERSRRERE RSN RS

K2 *.
.+ HAVE "s.
NO .*ALL RECORD&*.
“¢. WRITTEN .+
* -

..

YES
*

.t
.

us

-

RLEANERTET I AT AT AT

CTLOOP1
SESBUESRESSESERES

WRITE FULL
K _OF
FORMATTED
* BLOCKS *

*

EEEEEEEEEBEREE RO

EXTENDED
FEARETUSEE SR ER 0

*PUT LAST TIT IN *

* WRITE BACK *
THE DSCB

*DATA SET IN REG‘
TO

~mme————=>%® TO RETN
: CALLER :
FEREEEREEEEERRENY EEEPEEISERIIRENIS
OK

‘.“OK3“‘...‘C“
*SET ERROR CODE ‘
>* TO 0

*
.tt.‘.“““.““

t‘tt‘xu“‘..“t.‘
oot.xs.aooooooo

‘ . G
--------)‘ :PROV DED BY‘ '—---o-—-)‘CALLER VIA sve ‘

002H

n . ‘ o ‘o‘oto‘o‘ttcooo
LI TR LY T

APPENDIX B: OLD CVOL POINTER

Before Release 17, the control volume pointer entry had no device
type code field. Since some control volumes may still contain the old
entry, and since the routines still check for it, its format is given
here.

Field 1: Field 2: 03 Field 4:

Name Zeros Control Volume
Serial Number

0 7 8 10 11 12 17

- 18 Bytes >

Appendix B: 01ld CVOL Pointer 49

APPENDIX C: DEVICE TYPE FIELD

The device code portion of Data Set Pointer Entries, Volume Control
Blocks, and Control Volume Pointer Entries is identical to the UCBTYP
field of the Unit Control Block. This description is included here for
easy reference.

Fllggss Aé%%i‘ Optional Features Device Class Unit Type

Byte 1 Byte 2 Byte 3 Byte 4

For a complete description of the fields shown above, please refer to
IBM System/360 Operating System System Control Blocks, Form C28-6628. A
brief description of some of the fields appears below.

Device Class: (Byte 3; values are in hex)

X'80' Magnetic Tape
X'20"' Direct Access
X'08' Unit Record
X'10"' Graphics

X'40' Communications

When Byte 3 indicates direct access, byte 4 indicates the specific
device as follows:

X'01' 2311 Disk Storage Drive J/
X'02' 2301 Parallel Drum

X'03' 2303 serial Drum

X'04*' 2302 Disk Storage

X'05' 2321 Data Cell Drive

X'08' 2314 Disk Storage Facility

50

Where more than one page reference is
given, the major reference is first.

abbreviations of routine names 3
abnormal termination 10
absolute generation number
obtained from relative gen. no.
reference to catalog using 1
address
fields of catalog entries (see
description of specific entry)
of UCB as a parameter 12,17
of IECPBLDL 13
alias entries
count of, in index control entry 20
creating 11
deleting 12
description of
detailed 22-24
general 9
allocated space for SYSCTLG 12,17

16,11

allocation quantity, secondary 12,17
assembler language code 19
BALR instruction as linkage 13
LDA function 11
BLDG function 11
BLDL routine (IECPBLDL)

linkage to 13

treatment of keys by 4

used to search for name

by locate generations 10,16

by normal locate
BLDX function 11,3
blocksize of SYSCTLG U4

10,13

calculation of absolute generation
numbers 16
calling

of catalog management routines 2

parameters passed 26

of CVOL routines 12,10

of IECPLOL 13
CAMLST macro instruction 25-26
CATALOG macro instruction 2
catalog function 11
CATLG sub-parameter on DD card 2
chaining

of physical blocks 6

of volume control blocks 23
channel programs

to format catalog 17

to read and write blocks 13
communication vector table (CVT) 13
complement form of generation number
connecting control volumes 1-3
count field

of physical blocks &

of catalog entries 20-24
CSECT names of routi es 19
CTLG parameter 26
CVOL (control volume)

16,11

INDEX

description 1
old pointer entry 50
pointer entry 9,23
routines 12,17
CVT (see communication vector table)

DADSM routines 17,11
DCB (data control block) for syscTLG 17,12
DEB (data extent block) for sSYSCTLG 17,12
delete option 17,26
DEQ macro instruction 11,15
device type field 49
directory of a partitioned data set 17,12
disconnecting control volumes 12
DISP parameter of DD card 2
DLTA function 12
DLTX function 12
DRPX function 12
DSCB (data set control block)
format switch in 17,12
information from 17
representation of generation nos.
in 16
secondary allocation quantity in 17
dummy generation number 16

empty option 17,26
ENC macro instruction 10,13
EXCP macro instruction
initialization for 10
use of 13
extend routine
catalog 12
DADSM 17
extending SYSCTLG data set 12,17

flags
in user's parameter list 26,2
in generation index pointer entry 24,9

flowcharts 30-47

format switch in SYSCTLG DSCB 17,12
formatting routine 17,12

free blocks 12

fully-qualified name 1

functions of routines-chart 3

GDG (generation data group) 1,11

gernieration index
building (see BLDG function)
deleting (see DLTX function)
inserting entries into 16-17
locating entries in 16
locating entries in 16
pointer entry 9,24
order of entries in 16
GETMAIN macro instruction 10,13
G0000V00 (see dummy generation number)

high-level name 11

housekeeping functions 13,10

Index 51

IECPBLDL 13 parameters passed to routines 26

IEHPROGM 2 partitioned data set (PDs) directory
IGC0002F 13 formatting of 17,12

IGC0002H 17 similarity of catalog to &4
IGCc026 19 physical organization of catalog 4
IGC028 19 pointer entries 20-24

IGc0cic1t 13
IGGOCLC2 15

IGGOCLC3 15 qualifiers 1
IGGOCLCY4 16
IGGOCLC5 16-17 reading the catalog 13
IGGOCLC6 15 RECAT function 11
IGGOCLF2 17 records (see physical organization)
IGG0533A 17 reenterable routines 10,13
index control entry 20,9 region 10
index, generation (see generation index) register usage (chart) 28-29
index levels 4 relative generation number
index link entry 20 in calculating absolute 16
index, normal validites of 1
building (see BLDX function) RESERVE macro instruction 10
deleting (see DLTX function)
entry type 8-9 scratch routine 17
inserting entries into (see catalog searching the catalog 10
function) secondary allocation quantity 17
pointer entry 20,9 sequence of entries in catalog (see order
removing entries from (see UNCAT of entries)
function) serial number, volume (see volume serial
structure 5 number)
initialization
of new catalogs 17 simple names 4
of processing 13 supervisor calls (SVCs)
input to the routines 25 svc 19 10
sSvC 26 2,13
job scheduler 2 svc 28 17,10,13
svCc 29 11,17
keys SYSCTLG
description 4 as name for ENQ/DEQ 13
initialization of 12,17 data set
use of 12 : allocation of space for 12
leveis of qualification 4-6,1 definition of 1
link fields (see index link entry and extending 17
volume control block) formatting 17-18
LINKX function 11 opening 17
locate function SYS1.SVCLIB 19
description 10,13
output from 14 unit control block (UCE)
logical organization of the catalog device type field of 51
(figure) 4,6 of control volume
macro instructions as parameter 12,17
CAMLST 25 searching for 13
CATALOG 2 UNCAT function 11
INDEX 2 user's parameter list 26
LOCATE 2 utility programs 2
modules of the routines 13,14 (see also
specific module names) volume control block (vC3) 9,23
multiprocessing environment 10 volume serial number
multiprogramming environment 10,13 of cataloged data set 5,9 (see also
volume control blocks and data set
NAME parameter 26 pointer entry)
of control volume 13
open routine 12,17 volume table of contents (VTOC) 12,17
options (see empty option, delete option)
order of entries writing in the catalog 13
in generation indexes 16
in normal indexes U XCTL macro instruction 13,17

52

—— — —— — — — — — — — — — — — — — — — — —— — — — — —— — — — — —— —— ——— —— — — — — —— —— — —— — — —— —— — — — — —— —

READER'S COMMENT FORM

IBM System/360 Operating System Form Y28-6606-1
Catalog Management
Program Logic Manual

® Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is “No” or requires qualification,
please explain in the space provided below. Comments and suggestions become the property of
IBM.

Yes No
® Does this publication meet your needs? O O
® Did you find the material:
Easy to read and understand? O O
Organized for convenient use? O O
Complete? O O
Well illustrated? O O
Written for your technical level? O O
® What is your occupation?
® How do you use this publication?
As an introduction to the subject? O As an instructor in a class? []
For advanced knowledge of the subject? O As a student in a class? O
For information about operating procedures? [] As a reference manual? O
Other
® Please give specific page and line references with your comments when appropriate.
COMMENTS

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

Y 28-6606-1

YOUR COMMENTS, PLEASE...

This publication is one of a series which serves as reference sources for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of
this form together with your comments, will help us produce better publications for your
use. Each reply will be carefully reviewed by the persons responsible for writing and pub-
lishing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

FIRST CLASS
PERMIT NO. 2078
SAN JOSE, CALIF.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY . ..

IBM Corporation
Monterey & Cottle Rds.
San Jose, California
95114

Attention: Programming Publications, Dept, D78

B

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

1-9099-8CA ‘V'S'n ul palulid 09¢/S WAl

Y 28-6606-1

IREIV

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

1-9099-8CA ‘V'S'N ul pawuld 09¢/S WAl

