
' ,

c
:t
.t

File No. S360-32
Form Y28-6614-5

Program Logic

IBM System/360 Operating System

Utilities

Program Logic Manual

Program Number 36DS-UT-506

This publication describes the internal logic of
the utility programs provided for the IBM System/
360 Operating System:

• system utilities, which are executed under the
operating system to manipulate system data
sets such as catalogs.

• Data set utilities, which are executed under
the operating system to work with data sets at
the logical-record level.

• Independent utilities, which are executed out­
side of the operating system to dump, restore,
and recover data, and to initialize and assign
alternate tracks on direct access devices •

In addition to descriptive text, this publica­
tion contains flowcharts of the programs, figures
showing the formats of the major tables and rec­
ords, and an appendix that lists the modules of
the utility programs.

Program Logic Manuals are intended for use by
IBM customer engineers responsible for program
maintenance, and by system programmers involved in
altering the program design. Because program
logic information is not necessary for program
operation and use, distribution of this manual is
restricted to persons with program maintenance or
modification responsibilities.

Restricted Distribution

RESTRICTED DISTRIBUTION: This publication is intended pri­
marily for use by IBM personnel involved in frogram design
and maintenance. It may not be made available to others
without the approval of local IBM management.

Sixth Edition (July, 1969)

This is a major revision of Form Y28-6614-4. It contains the
following new or modified material.

• Changes have been made in the IEHPROGM, IEHMOVE, and IEH­
LIST utilities to eliminate specific unit entries from
the Device Mask and Device Name Tables. ihese changes
are indicated.

• The IEHLIST utility has been expanded to frovide a list­
ing of the DSCBs in the VTOC.

• The list of EREP Machine-Dependent Modules now includes
modules for the Model 85.

• The facility for user totaling-exits has been added to
the IEEUPDTE and IEEGENER utilities.

• The Data Generation Program has been modified to support
Indexed Sequential data sets. A new option has been
added to permit selection of specific infut record
fields.

other changes to text, and small changes to illustrations,
are indicated by a vertical line to the left of the change;
changed or added illustrations are denoted by the symbol • to
the left of the caption.

This edition applies to release 18 of IBM System/360 Operat­
ing System and to all subsequent releases until otherwise
indicated in new editions or Technical Newsletters. Changes
are continually made to the specifications herein; before
using this publication in connection with the operation of
IBM systems, consult the latest IBM System/360 SRL News­
letter, Form N20-0360, for the editions that are applicable
and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming Systems Publica­
tions, Department D58, PO Box 390, Poughkeepsie, N. Y. 12602

I e Copyright International Business Machines Corporation 1966,1967,1968,1969

'

'

t

The purpose of this publication is to
enable the reader to locate specific areas
of the utility programs provided for the
IBM system/360 Operating system, and to
relate those areas to the corresponding
program listings.

The publication is divided into three
major sections, corresponding to the three
major types of utility programs: system
utilities, data set utilities, and inde­
pendent utilities. Each section contains
descriptions of the programs of the corre­
sponding type; these descriptions consist
of text, flowcharts, and figures showing
record and table formats.

The introduction provides a brief
description of each utility program, and an
appendix lists the modules of the utility
programs.

To use this publication effectively, the
reader should have an understanding of the
material in the following publications:

Pref ace

IBM System/360 Operating System:

Principles of Operation, Form A22-6821

Utilities, Form C28-6586

Concepts and Facilities, Form C28-6535

System Control Blocks, Form C28-6628

Introduction to control Program Logic
Program Logic Manual, Form Y28-6605

IBM system/360 Component Descriptions-

2841 Storage Control

2302 Disk Storaqe, Models 3 and 4

2311 Disk Storaqe Drive, ~odel 1

2321 Data Cell Drive

2303 Drum Storage, Form A26-5988

Pref ace 3

'

: I

INTRODUCTION •

SYSTEM UTILITY PROGRAMS
Auxiliary Parameters •

•• 11

12
•• 12

Device Allocation and Volume
(IEHMVSSF and IEBMVXSF)
control card scanner (RCCDRT)

Mounting

Modifying System Control Data
(IEHPRCGM) • • • • • • •

Program Structure
Control Load Modules •

The Root (IEHEBASE)

. . .•

The Parameter List Euilder
(IEHEUPl, IEHEDCl, IEHEDC2)
The Volume Mounter (IEHMOUNT,

•• 12
•• 15

• • 18
• • 18

• 20
• • 20

• • 20

IEHVCLMI', DEVMASKT) • • • • • • 21
The SVC Return Analyzer (IEHEUPlA) • 21

Subordinate Load Modules • • • • • • • 22
The Awciliary Parameter Analyzer
(IEHINVOC) • • • • • • • • • • • 22
The Message Writer (IEHEMSGX) • 22
Volume Look-up (IEHDTTLU, DEVN.AMET) 22

Program Flow • • • 22
Phase 1 • • • • • • 23
Phase 2 • • 23
Phase 3 • • • • • 24

Moving and Copying Data (IEHMOVE) ••• 30
overall Flow • • • • • • • • • • • • • 30
Program Structure • • • • • • • • • • 30

Program Set-up (IEHMOVE, IEHMVXSE,
IEHMVXSF) • • • • • • • • • • • 30
Request Set-up (IEHMVEST, IEHMVESJ,
IEHMVESS) •••••• 30
Message Writing (IEHMVESA,
IEHMVESU) • • • • • • • • 32
DSGROUP Set-up (IEHivNESI, IEHMVESC,
IEHMVESH) • • • • • • • • • • 32
Data Set and Volume Set-up
(IEHMVESZ, IEHMVXSF, IEHMVESX,
IEHMVESV, IEHMVESY) •••••••• 32
PDS Subroutines (IEHMVESR,
IEHMVETG, IEHMVXSF) • • • • • • • • 33
Copying, Un1oading, and Loading • • 34
DSGROUF Wrap-up (IEBMVESH,
IEHMVETA) • • • • • • • • • • •
Data Set Wrap-up (IEHMVESN,
IEHMVESO, IEHMVESP, IEHMVESQ,

37

IEHMVESK) • • • • • • • • 37
Communication Area (I~HMVV) 37
IEHMOVE Work Data Set Record Formats • 38

Cbtaining Space for a Work Data Set 38
Releasing Space Used by a Work
Data Set • • • • • • • • • • • • • • 38

Listing system Control Data CIEHLIST) • 45
Program Structure • • • • • 45

Updating XCTL Tables for OPEN, CLOSE,
and EOV (IEHICSUP) ••••••

Program Flow • • • • • • • •
50

• • 50
Finding the Load Module • • • •
Updating the XCTL Table • • • •

Initializing the SYSl.LOGREC Data Set
(IFCDIPOO) ••••••••••••••• 53

• • 50
• • 50

Contents

Program Flow • • • •
First Pass • • • •
Second Pass • • • •

• 53
• 53
• 53
• 54
• 54
• 54

SYSl.LOGREC Record Format
Header Record • • • • • •
Statistical Data Records
RecGrd Entry Area • • • • • • • 54

Editing and Printing Environmental
Records (IFCEREPO) • • • 56

overall Flow • • • •
SYSl.LOGREC Input
Accumulation Input •

• • • 56
• 56
• 57

control Module Subroutines • •
Loading the 2821 Generator Storage
(IEHUCSLD) • • • • • • • • • •

Program Flow • • • • • • • •

• • • 58

"riting ~ape Labels (IEHINITT)
Program Flow • • • • • • •
Program Structure • • • • •

Dumping, Restoring, and Initializing

• 68
• 68
• 71
• 71

•• 71

Direct Access Volumes (IEHDASDR) • • 76
~he Control Routine (IEHDASDS) • • • 76
Performing the Dump Function • • • • 80
Performing the Restore Function • • 83
Performing the Analyze and Fornat
Functions • • • • • • • • • .• • 8 4
Performing the Label Function • • • 87
Performing the GETALT Function • 88
IEHDASDR Service Routines • 88

DA'IA SE~ UTILI~Y PROGRA~S .103
Updating Partitioned and Sequential
Data Sets (IEBUPDTE) • • • • • .103

Program Structure •••••••• 103
~he Root Segment •••••••• 103
The Control Card Analyzer Segment .104
Initialization Routine Module ••• 104

Program Flow • • • • • • • • • • • • .104
Processor Data Flow ••••••••• 105

copying and Merging Partitioned Data
Set Members (IEBCOPY) ••••••••• 111

Program Structure •••••••••• 111
The Root Segment •••••••••• 111
The Control Card Analyzer Segment .111
The Processor segment • • • • .111

Program Flow ••••••••••••• 112
Copying Without Data set
Compression •••••••••••• 113
Copying With Data Set compression .113

Comparing Records (IEBOCMPR) •••••• 116
Program Structure •••••••••• 116

The Root Segment •••••••••• 116
~he Control card Analyzer segment .116
~he Processor Segment ••• 116

Program Flow • • • • • • • • .117
Copying and Modifying Records
(IEBGENER) • • • • • • • • • • • •• 120

Program Structure • • • • • .120
'Ihe Root Segment • • • • • • •• 120
The Control Card Analyzer Segment .120
The Processor Segment ••••••• 120

Contents 5

Printing and Funching Records
CIEBPTPCH) • • • • • • • • • • • .125

Program Structure • • • • • • .125
The Root Segment • • • • • • .125
The Control Card Analyzer Segment .125
The Processor Segment ••••••• 125

Program F'low • • • • • • • • • • • • .126
Operating on an Indexed Sequential
Data Set CIEBISAM) • • • • • • • • • • .129

Initializing IEEISAM ••••••••• 129
Co~ying an Indexed Sequential Data
Set ••••••••••••••••• 129
Unloading an Indexed Sequential Data
Set • • • • • • • • • • • • •

Cbtaining Indexed Sequential
Records • • • • • • • • • •
Building the Cutput Data Set

Loading an Indexed Sequential Data
Set • • • • • • • • • • • • •
Printing Logical Records of an

.130

•• 130
•• 130

• • 133

Indexed Sequential Data Set •• 133
Terminating the IEBISAM Program ••• 134

Updating Symbolic Libraries CIEBUPDAT) .144
Program Structure • • • • • • .144

Initialization • • • • • • • .144
Member Processor • • • • • • .144
Within Member Processor •••••• 145

Program Flow • • • • • • • • • .146
Creating a Modified Input Stream
CIEBEDIT) • • • • • • • • •• • .149

•• 149 Program Structure • • • • •
The Initializing Routine •
The Main Routine • • • • •
The Post Processing Routine
IEBEDIT Subroutines • • • • • •

• .149
• .149
•• 151
•• 151

The Data Generator CIEBDG) Program •
Program Functions • • • • •
control Card Scanning

• • 157
• .157
•• 158

6

The Base Module CIEBDG) Charts
60,61,62 •••••••

Initialization • • •
Cpening Data sets • • • •
~essages • • • • • •
Reading Control Cards • •
Base .Module card-Processing

•• 158
• .158
•• 158
• • 159
•• 159
•• 160

The Clean-up Module (IEEDGCUP) Chart
63 • • • • • • • • • • • • • • • .160
The FD Analysis Module (IEEFDANL)
Charts 64,65 •••••••••

FD card Scanning • • • • • •
The FD Table Module (IEBFDTBL)
Charts 66,67 • ~ •••••

•• 161
•• 161

• .162
•• 162 FD Pattern Construction

The Create Analysis Module
Charts 68,69,70,71,72

Table Construction •

(IEBCRANL)

Module Entries • • • • • •
Module Subroutines • • • •
Keyword Processing • • • •

The Create Module (IEECREAT) Charts

•• 165
• .165
•• 165
•• 166
•• 167

73,7q ••••.•..••••••• • 170
.170
.170

output Record .Modifications
Updating the FD Table • • • • • •

The Message Module <IEEDGMSG) Chart
75 • • • • • • • • • • • • • • • • • • 171

Service Aids172
'Iables and work Areas Used by Q Modules of Data Generator Program .180

INDEPENDEN'I U'IILITY PRCGRAMS198
Supervisory Routines of the Independent
Utilities198

Checking the Input Device . .198
Data Input Routine198
control Statement Analysis . . .198
Volume Label checking .199
Message output Routine199
~rite to Operator Routine . .199
I/O Control Routine199
I/O Interruption Analysis . . .200

Initializing and Assigning Alternate
'Iracks on Direct Access Volumes
CIBCDASDI)202

Program Flow202
Initializing a Volume • 203
Obtaining Alternate Tracks .204

Dumping and Restoring a Direct Access
Volume (IBCDMPRS) . . .206

Dumped Data Format206
Program Flow207

Dumping201
Restoring208

Recovering and Replacing a Track
(IBCRCVRP)211

Overall Flow211
Recovering212
Replacing .212

APPENDIX A: MODULES OF UTILITY Q PROGRAMS219
IEBCOMPR . . .219
IEBP'IPCH219
IEBCOPY . . .219
IEBEDI'I·219
I EB GENER • 219
IEHUCSLD . . .220
IEHIOSUP220
IEHINI'IT220
IEHDASDR . . .220
IEHMOVE .221
IEBISAM222
IEHPROGM . .• . .• .222
IEHLIST222
IEBUPDAT • 223
IEBUPD'IE .223
IBCDMPRS223 '!

IBCRCVRP .223
IBCDASDI . . .223
IEBDG223

APPENDIX B: USER LABEL-PROCESSING AND
'IO'IALING•224
Parameter List226

Parameter List Modification .226
Return Codes227

Return Code Modifications .227

I APPENDIX c: DSCB FORMATS FOR THE
I EHLI ST PROGRAM • • • • • • • • • . . .230

INDEX231 ~

Figures

Figure 1. Auxiliary Parameter Format
for IEHPROGM, IEHMOVE, IEBLIST,
IEHIOSUP, IEHUCSLD, IEHINITT, and
IEHDASDR • • • • • • • • • • • • • • • 13
Figure 2. Internal Table Header ••• 14
Figure 3. Volume Mounting Request • • 14
Figure 4. Internal Table Maintained
by IEHVCLMI' • • • • • • • • • • • • 15
Figure 5. The General Design of
the IEHPROGM Program • • • • •
Figure 6. The Overlay Structure of
the IEHPROGM Program (Each block
represents one control section>

• • 18

• • 19
Figure 7. The Structural Flow of
IEHPROGM Program <Each block represents -
one load module) • • • • • • • • • 19
Figure 8. Linkage Procedure Used by
the IEHPROGM Program to Invoke a
subordinate Load Module • • • • •
Figure 9. IEHECHAR, the

• 20

communication Table for
FNDECODE,KODECCDE,IEBESCAN, and IEHE'ILU 23
Figure 10. The CATALOG Routing Table • 24
Figure 11. Parameter Lists Built by
IEHPROGM for Data Management Routines • 25
Figure 12. The Return-Indexing Entry
(for the Catalog SVC) of the catalog
Operation • • • • • • • • • • • • • • • 26
Figure 13. The Design of the IEHMOVE
Program • • • • • • • • • • • •
Figure 14. SYSUT1 Record Format (for

• 31

a PDS request only> • • • • • • • 32
Figure 15. SYSUT2 Record Format (for
a PDS Request only) • • • • • •
Figure 16. SYSUT3 Record Format
Figure 17. Load Module Groupings for

• 32
• 34

Copying, Unloading, and Loading •• 35
Figure 18. SYSUTl and SYSUT2 Record
Fonnats for DSGROUP; SYSUT1 Record
Formats for CATALOG • • • • • • • • • • 36
Figure 19. Label Save Area Pointers • 38
Figure 20. Where to Find Record
Formats • • • • • • • • • • • • • • • • 38
Figure 21. The overlay structure of
the IEHLIST Program • • • • • • • 45
Figure 22. The Structural Flow of the
IEHLIST Program • • • • • • • • • • • • 46
Figure 23. Embedded XCTL Table Format

• • • • • • • • • • • • • • • • • • 50
Figure 24. SYSl.LOGREC After First and -
second Passes of IFCDlPOO • • 53
Figure 25. Control Flow Between
Modules • • • • • • • • • • • •
Figure 26. EREP Machine-Dependent
Modules • • • • • • • • • • • • • •
Figure 27. Writing Tape Labels
Figure 28. IEHDASDR Common Work Area
Figure 29. IEHDASDR Function Block
Figure 3 0 • IEHDASDR Copy Block
Figure 31. IEHDASDR Control Routine
Processing at Functional Routine

• • 56

• • 57
•• 71

• 77
78
79

Return • • • • • • • • • • • • • • • • 80

Illustrations

Figure 32. IEHDASDR Function Block -­
Dump/Restore Area • • • • • • • •
Figure 33. 24-Byte Limits Record
Figure 34. Restore Tape Format
Figure 35. IEHDASDR Function Block -­
Analyze/Format Area • • • •
Figure 36. Analyze/Format Channel
Pz:ograms • • • • • • • • • •
Figure 37. Format of Track O, Records

• 81
• 81
• 83

• 85

• 85

0 and 1 • • • • • • • • • • • • • • • • 87
Figure 38. IEHDASDR Function Block --
Label Area • • • • • • • • • • • • • • 88
Figure 39. IEHDASDR Function Block -­
GE ~L'I Area • • • .• • • • • • 88
Figure 40. SVC 82 Parameter Lists
Figure 41. IEBUPDTE Overall Flow
Figure 42. IEBUPDTE Principle of

• • 89
.105

Oferation • • • • • • • • • • • • .107
Figure 43. Overlay Structure of the •• 112

•• 117
Figure 44. overlay Structure of the
IEBCOMPR Program • • • • • • •
Figure 45. Overlay Structure of the
IEBGENER Program • • • • • • •
Figure 46. overlay Structure of the -
IEBPTPCH Program • • • • • • •
Figure 47. 'Work Area Settings for
Support of Variable Spanned Records
Figure 48. Module Directory, Summary,
and Chart IDs for IEBISAM Program
Figure 49. Unloading and Loading an
Indexed Sequential Data Set
Figure 50. Functional structure of
the IEBUPDAT Program
Figure 51. EXEC Statement

.121

.125

.126

.130

.132

•• 145

Include/Exclude Processing •••••• 150
Figure 52. Scan Routine Operation Code
'!able Entry • .• • • • • • • • .151
Figure 53. Scan Routine Parameter
'!able Entry • • • • .152
Figure 54. Scan Routine Fixed Operand
'!able Entry .• • • • • • • • • • • .152
Figure 55. Information Summary and
overa11 Flow of Data Generator Program 156
Figure 56. Storage Area Obtained by
Base Module for current DCB .• • • • • .160
Figure 57. FD Table Constructed by FD
Analysis Module and FD Table Module • .163
Figure 58. Create Table constructed
by Create Analysis Module ••••• 166
Figure 59. FD Address Table
Constructed by Create Analysis Module .167
Figure 60. User Exit Name Table
constructed by create Analysis Module .168
Figure 61. Picture Table constructed
by create Analysis Module
Figure 62. The Use of UCBs in the
Independent Utilities • • • •
Figure 63. Track Zero
Figure 64. Dumping and Restoring a

.169

•• 200
.202

Direct Access Track •••••••• 208
Figure 65. Main Storage Management
for Recover Replace ••••••• 211

Illustrations 7

Figure 66. Format of Recovery Output
Tape • • • • • • • • • • • .212
Figure 67. An Example of the
Recover-Replace Cycle •• 213
Figure 68. General Logic of Utility
Program With User Label-Processing
Routine Exits • • • • • • • • • • • • 225

Tables

Table 1. Access Methods used for
Comparing ~ecords ••••••••••• 116
Table 2. FD control card Keyword
Parameter Processing, and Default
Values Assigned, if • • • • • • • .164
Table 3. Values of Increment-Restore -
Fields in the FD Table ••••••••• 171
Table 4. Changes Made to FD Table
Values as create Module Builds output
Records •••••••••••••••• 172

8

Figure 69. Parameter List Passed to
User-Label Exit Routine •••••••• 226
Figure 70. Return code Modification
for IEBCOMPR Program •••••• 229

I Figure 71. Description of . Fields in
Data Set Control Block Formats 1-6 on
Print-out by IEHLIST Program •••••• 230

Table 5. conunon communication Area
(Part 1 of 3) • • • • • • • • • •
Table 6. Data Control Block
Table 7. Defined Constants for

.174
•• 177

Modules of the Data Generator Program .178
Table 8. Equated Symbols for Modules
of the Data Generator Program ••• 179
Table 9. Data Generator Modules
Information Tables and Areas •• 180
Table 10. Module Inputs and Outputs •• 181

Charts

Chart 01. IEHVOLMT - Volwne Mounting
Logic • •
Chart 02. IEHPROGM Phase 1 -
Modifying System Control Data
Chart 03. IEHPROGM Phase 2 -
Modifying System Control Data
Chart 04. IEHPROGM Phase 3 -
Modifying System Control Data
Chart OS. IEHMOVE overall Logic
Chart 06. IEHMOVE DSGROUP Logic
Chart 07. IEHMOVE VOLUME Logic
Chart 08. IEHMOVE PDS Logic ••
Chart 09. IEHMOVE DSNAME Logic
Chart 10 • IEHMOVE CATALOG Logic
Chart 11. IEHLIST - Listing System
Control Data ·• • • • • • • • •
Chart 12. IEHIOSUP - Updating I/O

17

27

• • 28

•• 29
• • 39
• • 40
•• 41
• • 42
• • 43

44

• • 49

Support XCTL Tables • • • • • • • • • • S2

• 5S
Chart 13. IFCDIPOO - Initializing the
SYS1.LOGREC Data Set •••••••
Chart 14. IFCEREPO Initialization and
Linkage to Editing Modules • • • • S9
Chart 15. EREP - Input From
SYS1.LOGREC Data Set •••••
Chart 16. EREP - Input From

• • 60

Accumulation Data Set • • • • • • 61
Chart 17. EREP - Accumulation Input -
End of Data • • • • • • • • • • • 62
Chart 18. EREP Termination • • • • 63
Chart 19. IFCSDROO - Editing SDRs 64
Chart 20. IFCOBROO - Editing OBRs ••• 6S
Chart 21. IFCMCHOO - Editing Inboard
and CPU Records (Part 1 of 2) ••••• 66
Chart 22. IFCMCHOO - Editing Inboard
and CPU Records (Part 2 of 2) • • • • • 67
Chart 23. IEHUCSLD - Loading the 2821
Generator Storage • • • • • • • • 70
Chart 24. IEHINITT (Part 1 of 2) ••• 73
Chart 2S. IEHINITT (Part 2 of 2) ••• 74
chart 26. SVC 39 Tape Label Routine •• 75
Chart 27. I~HDASDR Overall Flow • • 90
Chart 28. IEHDASDR Control Routine
(Part 1 of 2) • • • • • • • • • • • 91
Chart 29. IEHDASDR Control Routine
(Part 2 of 2) ••••••••••••• 92
Chart 30. IEHDASDR Dump .Routine ••• 93
Chart 31. IEHDASDR EXCP Routine ••• 94
Chart 32. IEHDASDR Restore Routine •• 95
Chart 33. IEHDASDR Analysis Routine • 96
Chart 34. IEHDASDR VTOC Routine •••• 97
Chart 35. IEHDASDR Data Cell Analysis
Routine • • • • • • • • • • • • • • 98
Chart 36. IEHDASDR Label Routine ••• 99
Chart 37. IEHDASDR GE'TALT Routine ••• 100
Chart 38. IEHDASDR Password
Protection Routine ••••••••••• 101
Chart 39. IEHDASDR SVC 82 Routine ••• 102
Chart 40. IEBUPDTE (Part 1 of 3) ••• 108
Chart 41. IEBUPDTE (Part 2 of 3) ••• 109

I chart 41.1. IEBUPDTE (Part 3 of 3) •• 110

Chart 42. IEBCOPY - Copying and
Merging Partitioned Data Set Members
(Part 1 of 2) • • • .• .• • • • • • • • .114
Chart 43. IEBCOPY - Copying and
Merging Partitioned Data Set Members
(Part 2 of 2) ••••••••••••• 11s
Chart 44. IEBCOMPR - Comparing Records 119
Chart 4S. IEBGENER - Copying and
Modifying Records (Part 1 of 2) .123
Chart 46. IEBGENER - Copying and
Modifying Records (Part 2 of 2) •• 124
Chart 47. IEBPTPCH - Printing and
Punching Records •••••••••••• 128
Chart 48. IEBISAM - Overall Flow .13S
Chart 49. IEBISAM - Initialize
IEBISAM Program • • • • • • • • • .136
Chart so. IEBISAM - Copy Indexed
Sequential Records CIEBISC) .137
Chart 51. IEBISAM - Retrieve Indexed
Sequential Records CIEBISU) •••••• 138
Chart 52. IEBISAM - Unload Physical
Sequential Records CIEBISSO) •••••• 139
Chart 53. IEBISAM - Reconstruct
Indexed Sequential Records CIEBISL) •• 140
Chart S4. IEBISAM - Retrieve Physical
Sequential Records (IEBISSI) • • • .141
Chart 5S. IEBISAM - Print logical
Records (IEBISPL) • • • • • • .142
Chart 56. IEBISAM - Terminate IEBISAM
Program (IEBISF) • • • • • • • .143
Chart S7. IEBUPDAT - Updating
Symbolic Libraries • • • • • • • •• 148
Chart 58. IEBEDIT Main Routine (Part
1 of 2) •••••••••••••••• 154
Chart 59. IEBEDIT Main routine (Part
2 of 2) • • • • • • • • • • .15S
Chart 60. IEBDG Base Module (Part 1
of 3) • • • • • • .182
Chart 61.
of 3)

Chart 62.
of 3)

IEBDG Base Module (Part 2
.183

IEBDG Base Module (Part 3
••• 184

Chart 63. IEBDG Clean-Up Module,
IEBDGCUP •
Chart 64. IEBDG
IFBFDANL (Part 1
Chart 65. IEBDG
IEBFDANL (Part 2
Chart 66. IEBDG
IEBFD'IBL (Part 1
Chart 67. IEBDG
IEBFD'IBL (Part 2
Chart 68. IEBDG
Module, IEBCRANL
Chart 69. IEBDG
Module, IEBCRANL
Chart 70. IEBDG
Module, IEBCRANL
Chart 71. IEBDG
Module, IEBCRANL
Chart 72. IEBDG
Module, IEBCRANL

••• 185
FD-Analysis Module,
of 2) ••••••••• 186
FD-Analysis Module,
of 2) • • • • • • .187
FD-Table Module,
of 2) ••••••••• 188
FD-Table Module,
of 2) • • • • • •
Create Analysis
(Part 1 of 5) •
Create Analysis

.189

• .190

(Part 2 of S) ••••• 191
Create Analysis
(Part 3 of 5) ••••• 192
Create Analysis
(Part 4 of 5) ••••• 193
Create Analysis
(Part 5 of 5) ••••• 194

Illustrations 9

Chart 73. IEBDG Create Module,
IEBCREAT (Part 1 of 2) • • • • • • .195
Chart 74. IEBDG Create Module,
IEBCREAT (Part 2 of 2) ••••••••• 196
Chart 75. IEEDG Message Module,
IEBDGMSG •••••••••••••••• 197
Chart 76. IBCDASDI - Initializing and
Assigning Alternate Tracks on Direct
Access Volumes ••••••••••••• 205

10

Chart 77. IBCDMPRS - Dumping and
Restoring a Direct Access Volume • .210
Chart 78. IBCRCVRP overall Logic ••• 214
Chart 79. IBCRCVRP Recover Logic .215
Chart 80. IBCRCVRP Recover Data Check
Routine • • • • • • • • • • • • • .216
Chart 81. IBCRCVRP Recover Count
Check and End-of-Track Routines .217
Chart 82. IBCRCVRP Replace logic ••• 218

IBM System/360 Operating System provides
the user with utility programs that perform
basic operations. These programs are
grouped in three categories: system utili­
ties, data set utilities, and independent
utilities.

System utilities are executed under the
operating system; these programs treat data
associated with the structure of the opera­
ting system. They are:

• IEHPROGM, a program that modifies con­
trol data contained in catalog and
volume structures.

• IEHMCVE, a program that duplicates
collections of data sets to produce
extra copies or rearrange existing
ones.

• IEHLIST, a program that lists a catalog
<or a portion thereof), a volume table
of contents, and the directory of a
partitioned data set.

• IEHIOSUP, a program that updates the
Transfer control (XCTL) tables embedded
within load modules and access executor
modules for the I/O support functions
OPEN, CLOSE, and EOV.

• IFCDIPOO, a program that writes the
SYSl.LCGREC data set in initialized
format.

• IFCEREPO, a program that edits and
prints environmental records from
SYSl.LOGREC.

• IEHUCSLD, a program that loads the 2821
generator storage with user-supplied
character images.

• IEHINITT, a program that creates volume
labels on magnetic tape.

• IEHDASDR, a program that dumps,
restores, and initializes direct access
volumes.

Data set utilities are executed under
the operating system and perform operations
on data sets at the logical record level.
They are:

Introduction

• IEBCOPY, a program that copies all or a
specified portion of a partitioned data
set.

• IEBCOMPR, a program that compares two
data sets at the logical record level.

• IEBGENER, a program that copies or con­
verts a sequential data set to a parti­
tioned data set.

• IEBP~POH, a program that prints or
punches all or selected portions of a
sequential data set, a partitioned data
set, or specified members of a parti­
tioned data set.

• IEBISAM, a program that copies,
unloads, loads and prints indexed
sequential data sets.

• IEBUPDAT, a program that modifies the
symbolic library.

• IEBUPDTE, a program that incorporates
source language modifications into
sequential and partitioned data sets.

• IEBEDIT, a program that produces an
edited input job stream data set from a
master input job stream data set.

• IEBDG, a program that produces test
data sets for use in program debugging
procedures.

Independent utilities are executed out­
side and in support of IBM System/360 Oper­
ating System. They are:

• IBCDASDI, a program that initializes
and assigns alternate tracks on direct
access volumes.

• IBCDMPRS, a program that dumps and
restores the data contents of a direct
access volume.

• IBCRCVRP, a program that recovers data
from a track on direct access storage,
replaces defective records with data
supplied by the user, and writes the
composite data on an operative track of
the original volume.

Introduction 11

System Utility Programs

System utility programs are executed under
the operating system in the problem program
mode. These utilities treat data asso­
ciated with the structure of the operating
system. They are:

• IEHPROGM, a program that modifies con­
trol data in volume and catalog
structures.

• IEHMCVE, a program that duplicates
collections of data sets to provide
tackup copies or to rearrange existing
ones.

• IEHLIST, a program that lists the cata­
log or a portion thereof, a volume
table contents, and the directories of
partitioned data sets.

• IEHIOSUP, a program that updates the
transfer control (XCTL) tables con­
tained within the I/O support routines
OPEN, CLCSE, and EOV.

• IFCDIPOO, a program that writes the
SYSl.LCGREC data set in initialized
format.

• IFCEREPO, a program that edits and
prints environmental records from
SYSl.LCGREC.

• IEHUCSLD, a program that loads the 2821
generator storage with user-supplied
character images.

• IEHINITT, a program that creates volume
labels on magnetic tape.

• IEHDASDR, a program that dumps,
restores, and initializes direct access
volumes.

The system utility programs IEHPROGM,
IEHMOVE, IEHLIST, IEHIOSUP, IEHUCSLD, and
IEHINITT use the queued sequential access
method (QSAM) to read and write the SYSIN
and/or SYSFRINT data sets or their <user­
designated) equivalents. For these pro­
grams, SYSIN and SYSPRINT data sets also
may have a blocking factor that is other
than one.

AUXILIARY PARAMETERS

IEHPROGM, IEHMOVE, IEHLIST, IEHIOSUP,
IEHUCSLD, IEHINITT, and IEHDASDR may be
invoked by a problem program. In this
case, the calling program provides the u­
tility program with certain auxiliary pa­
rameters in main storage, as shown in
Figure 1. If the utility program is
invoked l:y job scheduler, only the pointer
to the EXEC statement parameters is
present.

12

DEVICE ALLOCATION AND VOLUME MOUNTING
CIEHMVSSF AND IEHMVXSF)

IEHPROGM, IEHMOVE, and IEHLIST require that
volumes be mowited dynamically. However,
the serial numbers and device types of
these volumes are not necessarily known to
the user at the time the job is submitted.
For example, in moving a group of data
sets, the names of individual data sets in
the group and their corresponding volume
information are not known to the IEHMOVE
pxogram until it scans the catalog for the
information. once this information is
known, data control blocks may be con­
structed within the program itself contain­
ing ddnames associated with units on which
the appropriate volumes may be mounted,
using the OPEN (type=J) routine.

In order to ensure that necessary
volumes are mounted or mountable, two rou­
tines reside on LINKLIB:

• IEHMVSSF, which is used by IEHFRCGM and
IEHLIS'I •

• IEHMVXSF, which is used by IEHMCVE.

Each contains the control section
IEHVOLMT. 'Ihe difference between the two
routines is that linkage to the first is
via branch-and-link, whereas linkage to the
second is via transfer control CXCTL).

The logical flow of IEHVOlM.I' is shown in
Chart 01. Figures 2 and 3 show the format
of data supplied to IEHVCLMT by the calling
routine. Figure 4 shows the format of an
internal table maintained by IEHVCLMT in
allocated main storage; the internal table
is built once for each execution of IEHMOVE
and IEHLIS'I, and once for each time
IEHPROGM gives control to the volume
mounter.

For each volume mounting request,
IEHVOLM'I returns to the calling routine a
pointer to a ddname associated with a unit
on which the desired volume may be mounted.
'Ihe dciname is inserted into a field of the
DCB and the desired volume is mounted by
the open routine (type J). Actual mounting
is accomplished by either IEHVOLMT or the
calling routine, as indicated by Field 3 of
the internal table header (Figure 2).

The essential processing in IEHVOL~
lies in the comparison of two masks: the
first is obtained from the device mask
table, using the device type supplied by
the calling routine; the second is con­
structed by IEHVOLMT, using the UCEs allo-

cated to the current task.~ In each mask,
each bit represents a unit: in the first
mask, an •on• condition means that the unit
will accept the device type under consi­
deration; in the. second, an •on• condition

~The UCBs are found as follows: location
16 in main storage points to the communica­
tions vector table, which in turn contains
a pointer to a list of UCB pointers. The
task I/O table (TIOT) is then used to dis­
tinguish the appropriate UCBs •

means that the unit has been allocated to
the current task. When both conditions
occur for a given unit, IEHVOLMT checks to
see if the desired volume is already
mounted; if it is, an indication to that
effect is returned. If the volume is not
already mounted, the ddname associated with
that unit (as found in the TIOT) can be
used by the open routine <type J) to mount
the desired volume on the allocated unit.
As explained earlier, the open routine may
be invoked by either IEHVOLMT or the cal­
ling routine.

.---1 I Reg.1

11-------1~
L------~

----T---~-------1
I code I
~----+-----------i
I code I
1----+------i
I code I
L----i-----------J
code=x'80'
for last entry
and x'OO' otherwise

.-----T-------------------------------------1
countl EXEC statement parameters I
L-----i---------------------------------------J

2 max.40

2 8

.-----T-----------------------------1
countlddname I
L-----f------------------------------i

lddname I
1------------------------------i
lddname I
~-----------------------------~
lddname I
!---------------------------~
!alternative SYSIN ddname I
~------------------------------i !alternative SYSPRINT ddname I
1------------------------------i
lddname I
~------------------------------i !alternative SYSUTl ddname I
1------------------------------i
!alternative SYSUT2 ddname I
L------------------------------J

2

r-----T------------------------1
countlfirst output page number!
L-----.L.----------------------J

Figure 1. Auxiliary Parameter Format for IEHPROGM, IEBNOVE, IEHLIST, IEBIOSUP,
IEHUCSLD, IEHINITT, and IEHDASDR

System Utility Programs 13

r---1
r----T------------T----T------------T--------T----T----1
I I I * I * I I I I
Lf---~-f----------i-+ __ i_f __________ i_t ______ i_f __ i_t __ J

I I I L---1-byte count of volume
I I I mounting requests
I I I
I I L--------1-byte count of internal
I I table entries
I I
I L-----------------2 bytes unused
I
L------------------------------3-byte pointer to internal

table

-----------------------------------1-byte indicator

--3-byte pointer to list of
volumes not to be dis­
mounted (e.g. SYSIN)

--1-byte count of volumes
not to be dismounted

Legend: * denotes field is set by IEHVOLM~

Figure 2. Internal Table Header

r---1
r------------T--------------------------------T--------T--------------1
I I I * I I
L-f----------~-f------------------------------i-f ______ i_f ___________ _.

I
I
I
I
I

I I L------5-byte unit name if I
I I specified.
I I Otherwise, field
I I is all zeros
I I
I L---------------2-byte relative
I pointer to
I internal table
I entry.
I
L--6-byte volume

serial

---4-byte device type

Legend: * denotes field is set by IEHVOLM1 .

I
I

---J
•Figure 3. Volwne .Mounting Request

14

Indicator settinqs: Field 3 of the intern­
al table header (Figure 2) may have the
following settings:

0

1

2

3

4

5

6-7

Meaning

0 No mounting is to be done.

1 Mounting is to be done.

0

1

0

No dismounting.

Volume mounting requests having
the high-order bit of the rela­
tive table address set to 1 are
to be dismounted (the units
made available).

Ignore old requests (ignore
usage code, Figure 4).

1 Old requests are valid.

0

1

01

Build internal table.

Internal table is already
built.

Unused.

Unused.

All volume mounting requests
accompl is bed.

10 No volume mounting requests
accomplished.

11 some volume mounting requests
accomplished: those volume
mounting requests having a
relative table address of zero
were not accomplished.

CONTROL CARD SCANNER (RDCDRT)

IEHMOVE and IEHLIST contain copies of a
control card scan routine, RDCDRT. Each
call to RDCDRT results in the return of the
item scanned, together with an indication
of the type (operation, keyword, or parame­
ter). In IEHMOVE, the routine has the load
module name IEHMVESJ; in IEHLIST, it has
the name RDCDRT.

This routine reads control cards <using
QSAM), checks syntax, and returns to the
calling routine a command word, a keyword,
or a parameter.

The calling routine supplies a 192-byte
work area (on a fullword boundary> followed
by the DCB for the control card data set.

~he calling routine must open this data
set. !he control card routine inserts the
address of the end-of-file routine KECF in
the DCB.

!he calling sequence for RDCDRT is as
fellows:

• Register 13 points to the first byte of
the work area.

• Register 14 points to the return
address in the calling routine.

• Register 15 points to the entry point
RDCDRT.

<~----2 bytes------> <------2 bytes------>
r--------------------,---------------------1
I internal I displacement I
I table length I to mask I
~---------T----------~--------------------~
I usage I pointer to ddname I
I code I I
~---------+-------------------------------~
I usage I pointer to ddname I
I code I I
r---------+-------------------------------~

r~-------+-------------------------------~
I usage I pointer to ddname I
I code I I
~---------~-------------------------------~
I mask length1 I
I I
r---~
I device mask1 I
r-----------------------------~----------~ l 1Device mask length, in bytes, is equal I
I to the number of UCB pointers in the UCB I
I pointer table. I
L~---------------------------------------J
Figure 4. Internal Table Maintained by

IEHVOLMT

Upon returning control to the calling
routine, the control card routine returns
the following information:

• Register 1 points to the starting
address of the item scanned.

• Register 2 contains the length of the
item scanned.

• The first byte of the 192-byte work
area is labeled SWITCHRD; its bits have
the following meanings when set to 1:

System Utility Programs 15

Bit Meaning

0 Syntax error
1 Bypass switch
2 End-of-file
3 Initial entry
4 Command word
5 Keyword
6 Parameter
1 Parameter or keyword

delimited by a right
parenthesis.

The control card routine contains the
following subroutines:

RD CARD

16

resets switches and saves registers
3-14.

KGTCD

K'IRT

reads a card into the work area, using
QSAM.

saves the •start" address of the scan,
and scans for a delimiter.

KPPARQ
stores the address and length (of the
item scanned) in registers 1 and 2.

I<INVAL
is entered when an invalid delimiter
is found.

Chart 01. IEBVOLMT - Volume Mounting Logic

Entry

Search Device
Mask Table with

Device Type

Compare

For IEHPROGM,IEHMOVE, IEHLIST

B2

Yes

Yes

Yes

Issue
GETMAIN for

Internal
Table

C2

Adjust Volume
Usage

Indicator

Adjust Volume
Usage

Indicator

02

F2
Scan UC& for

Device Type,Bld.
Mosk lndg. UC& 1---....--..c­

Correspond. to
Ace t Devices

Device Mask Yes
Found to Inter-
nal Table Mask

Indicate
Volume Not

Mounted

H2

84

Place
~N-'o ____ Generic DDNAME !----.--~

J3

Indicate Volume
Mounted and Rtn.

DD NAME
Pointer

in Internal
Table

F4

Return

Prepare to Open
Using DDNAME

Corresponding
to Matching Bit

in Two Mask

Issue
OPEN

(Type Eq. 4)

K4

No

Prepare to
Construct Mask

Reflecting
DDNAMEs in Tab.

05

Select o
DDNAME from
Internal Tobie

Set Bit in
Internal

Tobie Mask

Indicate Volume
is Mountable
and Return

DD NAME

System Utility Programs 17

Modifying System Control Data
IEHPROGM
The IEHPROGM program is a convenient inter­
face between the user and data management
routines which modify volume and catalog
structures. By means of utility control
statements, the user may request the
IEHPROGM program to:

• Scratch, rename, catalog, or uncatalog
a data set.

• Scratch or rename a PDS member.

• Scratch a data set assigned by the op­
erating system.

• Build or delete an index level, index
alias, or generation data group.

• Connect or release a control volume.

The general design of the program is
shown in Figure 5. For each request listed
above, the program issues one or more
supervisor calls (SVCs) for data management
routines which perform the requested ser­
vice; the IEHPROGM program interfaces with
these routines by building parameter lists
for them, invoking them, and analyzing
their returns.

Following the return from a data manage­
ment routine, further processing by the
IEHPROGM program may include additional
calls to data management routines, as in
the case, for instance, of supplying the
catalog with index levels needed to catalog
a data set by its specified, fully­
qualified name.

PROGRAM STRUCTURE

The program consists of seven load modules
and a dynamically allocated work area:

18

• The Root resides in main storage
throughout the program's execution. It
contains V-type address constants
needed by the overlay supervisor.

• The Parameter List Builder initializes
the program, obtains and analyzes
requests, and builds a parameter list
for the appropriate data management
routine.

• The Volume Mounter ensures that all
volumes needed to service the request
are mounted or mountable.

• The SVC Return Analyzer issues the
appropriate SVC and analyzes its
return. In some instances, additional
svcs may be issued by this module.

ENTRY

Get a request;

.----------... set up a major
routing table to

Yes

handle the request

Build a parameter
list by decoding
the routing
table

Analyze the return
from data manage­
ment and prepare
to issue another
SVC if necessary

RETURN

---1
I

___ _J

Figure 5. The General Design of the
IEHPROGM Program

• The Auxiliary Parameter Analyzer ana­
lyzes auxiliary parameters supplied to
the IEHPROGM program by a calling pro­
gram, and also opens SYSIN and
SY SPRINT.

• The Message Writer writes all diagnos­
tic messages and operator instructions
issued by the program.

• The Volume Look-up obtains volume
information from the device name table
when the keyword parameter VOL occurs
in a request.

• The work Area is obtained dynamically
by the Parameter List Builder.

The overlay structure of the program is
shown in Figure 6; each block represents a
control section (CSECT).

The structural flow of the program is
shown in Figure 7. The Auxiliary Parameter
Analyzer, Message Writer, and Volwne Lookup
are subordinate load modules; the others
are control load modules.

IEHEBASE DSECT

Root I WoU<eo I

IEHEUPl

Parameter
list
Builder

IEHEDCl

Control
Tables

IEHEDC2

Control
Tables

IEHEMSGX

Message
Writer

IEHINVOC

Auxiliary
Parameter
Analyzer

IEHMOUNT

Volume
Mount
Initiator

DEV MAS KT

Device
Mask Table

IEHVOLMT

Volume
Mounter

IEHEUPlA

SVC Return
Analyzer

IEHDTTLU-----
Volume
Look-up

DEVNAMET

Device
Name
Table

Figure 6. The Overlay Structure of the IEHPROGM Program (Each block represents one con­
trol section>

IEHEBASE

Root

IEHEUPl •

IEHRESET _. Parameter
~ list

Builder

IEHMOUNT•
Volume
Mounter
(with
Initiator}_

IEHEUPlAt

SVC
Return
Analyzer

IEHINVOC

Auxiliary
Parameter
Analyzer

IEHEMSGX

Message
Writer

IEHDTTLU

Volume
Look-up

IEHEMSGX

Message
Writer

Figure 7. The Structural Flow of IEHPROGM
Program (Each block represents
one load module)

The linkage procedure used to execute a
subordinate load module and shown in
Figure 8 is as follows:

1. Module A loads the address (coded as a
V-type address constant> of an entry
point, Bl, to module B in register 15:
A branch-and-link instruction is then
issued by module A, resulting in the
following action:

a. The address of the next sequential
instruction is loaded into
register 14, and

b. A branch is made to the overlay
supervisor.

2. The overlay supervisor then causes
module B to be loaded and qives con­
trol to entry point BL The return
address in register 14 is now meaning­
less, since module B has overlaid
module A.

3. Module B returns control (indirectly)
to module A by loading the address of
an entry point to module A in register
15 and branching to it, resulting in a
branch to the overlay supervisor.

4. The overlay supervisor then ca uses
module A to be loaded and gives con­
trol to entry point Al. Since module
A has now overlaid module B, the
return address in register 14 is
re-established.

5. The instruction at entry point Al
gives control to the instruction at
the return address.

System Utility Programs: IEBPROGM 19

Module A Module B

•
• ,l

......

•

•

L 15, Bl
BALR 14, 15 ~Overlay

v~N;~,\ •

•
L 15, Al

Al BR 14 BR 15

Figure 8. Linkage Procedure Used by the
IEHPROGM Program to Invoke a
Subordinate Load Module

CONI'ROL LOAD MODULF.s

The Root, the Parameter List Builder, the
Volume Mounter, and the SVC Return Analyzer
are control load modules.

The Root (IEHEBASE)

The Root consists of one CSECT, IEBEBASE.
It contains V-type address constants needed
by the overlay supervisor, and a branch
instruction to the Parameter List Builder.

The Parameter List Builder (IEHEUPl,
IEHEDCl, IEBEDC2)

The Parameter List Builder contains three
CSECTS: IEHEUPl, IEHEDCl, and IEHEDC2.

IEHEUPl

20

builds the parameter list for the ini­
tial SVC to the appropriate data man­
agement routine. It contains seven
routines: COMMENCE, IEBRESET, FNDE­
CODE, FDLD, KODECODE, IEHESCAN, and
IEHETLU. The parameter list (Figure
11) is built at location IEHEMACl in
the work area.

COMMENCE
initializes the program by estab­
lishing addressability and obtaining
a work area of 4416 bytes in main
storage.

IEHRESET
initializes for a new request by
resetting switches.

FNDECODE
determines the operation (e.g.
SCRATCH) requested, and stores the
address of its routing table at
location FINUSE in the work area.
The use and format of the routing
tables are discussed under "Program
Flow."

FDLD
decodes the routing table in use.
Each routing table indicates a
sequence of operations to be per­
formed; FDLD effects these opera­
tions by decoding the routing table •

KODECODE
causes keyword parameters to be
scanned from a utility control
statement, and successively directs
control to subroutines which move
parameter data to the parameter list
for the data management SVC. The
list is at location IEHNACl in the
work area.

IEBESCAN
scans a control statement for an
operation or an operand.

IEBETLU
performs a table look-up for the
address of a routine or a routing
table: if the search argument used
is an operation, a routing table
address is retrieved; if the search
argument used is an operand, a rou­
tine address is retrieved.

IEBEDCl
contains seven tables: TABLEN3,
TABLEN4, TABLE NS, TABLEN6 , TABLEN7 ,
CATALOG, and UNCATLG.

Each of the tables TABLENn consists
of a variable number of entries: the
first ~ bytes of each entry is an
operation or keyword operand, and the
last four bytes of each entry is the
address of a routing table (for an
operation> or a routine Cf or a keyword
operand). As an example, TABLEN6 con­
tains as typical entries

C 'RENA.ME'
C 'DSNAME'

AL4 (I<ENAME)
AL4 (DSNAME)

where RENAME is the symbolic location
of the RENAME routing table, and
DSNAME is the symbolic location of the
routine given control when the data
set name is scanned.

~he tables CATALOG and UNCATLG are
major routing tables for the catalog
and uncatalog operations.

IE.tiEDC2
contains the major routing tables
D~LETEX, CONNECT, RELEASE, BUILDA,
DELETEA, SC.RATCH, BLDX, and RENAME.
The use and format of all routing
tables are discussed under "Program
Flow."

'!he Volume Mounter <IEHMOUNT, IEHVOLMT,
DEV MAS KT)

This segment ensures that all volumes
needed by the data management routine are
mounted or mountable. Three CSECTs are
present: IEHMOONI', IEHVOLMT, and DEVMASKT.

IEHMOONI',
is entered from IEHEUPl when the pa­
rameter list for the initial data man­
agement SVC has been built. IEHMOUNT
then calls IEHVOLMT, if necessary, to
ensure that a needed volume is already
mounted or is mountable. IEHVOLMT is
called in the following cases:

1. For a SCRATCH or RENAME request,
the volume ID from the control
statement is passed to IEHVOLMT,
together with an indication that
the volume is not to be mounted.
(The scratch and rename data man­
agement routines themselves per­
form volume mounting.> The call
to IEHVOLMT serves as a check
that the volume is mountable.

2. For any other request, if CVOL is
specified, IEHVOLMT is passed the
volwne ID, together with an indi­
cation that the volume is to be
mounted. IEHVOLMT is not called
otherwise.

For cases Cl) and (2) above,
IEHVOLMT normally returns a pointer to
a ddname associated with a channel­
unit on which the volume is mounted or
can be mounted. IEHMOUNT then inserts
the ddname into the data control block
(DCB) needed to perform I/O operations
on the volwne. Control is then given
to IEHEUPlA.

If the volume is not mountable, as
indicated by the return from IEHVOLMT,
IEHMOUN!' aborts the request, giving
control to IEHEUPl to honor the next
request.

IEHVCLMI' and D~VMASKT are discussed under
the heading •volume Mounting and Device
Allocation.•

The SVC Return Analyzer (IEHEUPlA)

This segment issues, and analyzes the
returns of, all data management svcs used
by IEHPROGM to perform a requested opera­
tion. The SVC Return Analyzer segment con­
sists of a single control section, IEHEUP­
lA, which contains ten routines : LATAB,
FOLD, OPENVTCC, GETADSCB, SVCR~'T, SVC26RET,
INDEX8, NEEDINDX, SCANIT, and VTOCRET.

LATAB

FDLD

stores the address of the routing
table in use at location FINUSE in the
work area.

decodes the routing table, directing
control to the routines indicated by
the tab1e. (This is the same FDLD
present in IEHEUP1, the Parameter List
Builder.>

OPENVTOC
constructs a DCB for the VTOC to be
opened for a Scratch VTCC request, and
then opens the VTOC.

GETADSCB
reads the VTOC and scratches the fol­
lowing DSCBs for a Scratch VTCC
request:

1. If the SYS keyword was specified,
each system-assigned data set (a
data set having a name beginning
either with the 36 characters
AAAAAAAA.AAAAAAAA.AAAAAAAA. or
with the characters SYSnnnnn.T
and containing one of the charac­
ters P,F, or V in the nineteenth
position) is scratched. (Note:
Each character n represents a
digit from 0 to 9.)

2. If the SYS keyword was not speci­
fied, each Format 1 DSCB is
scratched.

The V'IOC is closed when an EOF is
detected in reading it.

SVCRE'I'
interprets the returns from the
scratch (SVC 29) and rename (SVC 30)
routines. The return is used as an
indexing factor on the branch table
BRANTAB, giving control to an appro­
priate diagnostic routine.

SVC2t>RE'I'
interprets returns from the catalog
and index (SVC 26) routines. SVC26RET
uses BRANTAB in the same manner as
SVCHET: the difference between the two
routines is that SVC26RET also inter­
prets the return from the locate rou­
tine (locate is used by both catalog
and index).

INDE>i:8
gives control to SVC2t>RET to interpret
an error return from the Locate
routine.

NE.EDINDX
is entered the first time SVC26RET
detects tnat an index level supplied
in a utility control statement was not
found in the catalog. NEEDINDX passes
the index name to SCANIT.

System Utility Programs: IEHPROG~ 21

SCA NIT
constructs a parameter list for an SVC
to the index routine each time a
return shows that an index level was
absent.

VTOCRET
effects the writing of diagnostic mes­
sages following a return from the
scratch routine on a SCRATCH VTOC
request.

SUBORDINATE LOAD MODULES

The subordinate load modules of the program
are the Auxiliary·Parameter Analyzer, the
Message Writer, and the Volume Look-up.

The Auxiliary Parameter Analyzer CIEHINVOC)

The Auxiliary Parameter Analyzer CIEHINVOC)
analyzes any auxiliary parameters passed to
the IEHPROGM program by a callill9 program
and moves the DCBs for the data sets SYSIN
and SYSPRINI' Cor their substitutes) to the
work area and opens them.

The Message Writer CIEHEMSGX)

The Message Writer CIEHEMSGX) writes all
messages issued by the program. Messages
are written on the SYSPRINT data set unless
a calling program specifies otherwise; con­
sole messages are written using the job
management WTO routine.

Input to the message writer consists of
a full word in register O:

Byte 0

Byte 1

Byte 2

Byte 3

is unused.

Bits 0-5 are unused.

Bit 6 is set to one if the message
to be written is to be placed at
the next available location in the
output buffer; otherwise it is set
to zero.

Bit 7 is set to zero if the mes­
sage is to be written during the
current execution of the message
writer, and to one otherwise.

contains the relative position in
the buffer of the message.

contains the message number.

Volume Look-up CIEHD'l'TLU, DEVNAMET)

This segment obtains volume information for
use by IEBVOLMl' and data management. It is
called only when information specified by

22

the VOL keyword is encountered by IEHESCAN.
~he segment consists of two CSECTs: IEHIYr­
~LU, a table look-up, and DEVNAMET, the
device name table maintained at the instal­
lation. At the time IEHDTTLU is entered,
register 2 points to a 28-byte field in the
work area consisting of the following
suofields:

1. (Bytes 0-7) contain the value supplied
to the keyword operand VCL Cleft­
justified and padded with blanks>, as
scanned from a utility control
statement.

2. (Bytes 8-11) are initially blank.

3. (Bytes 12-15) contain the return
address (coded as a V-type address
constant).

4. (bytes 16-27) are initially blank.

IEBDTTLU then stores registers 3-5 in
subfield 4, and performs a table look-up in
DEVNA1'1E'I, using subfield 1 as a search
argument. The table value of the argument
is moved to subfield 2, and control is
returned to the location specified by sub­
field 3.

Subfield 2, the table value of the
search argument, is of the following
f o.z:mat:

Byte 8 contains a bit configuration
by the I/O Supervisor.

used

Byte 9 contains a device option code.

Byte 10 contains a device class code.

Byte 11 contains a device type code.

PROGRAM FLOW

The logical flow of the program proceeds
in three phases:

•Phase 1 (Chart 02), during which a
major routing table is established for
the operation to be performed.

•Phase 2 (Chart 03), during which the
major routing table is decoded, causing
the parameter list to be built for the
SVC to a data management routine, and
causing appropriate volumes to be
mounted. The parameter list (Figure
11) is built at location IEHEMACl in
the work area.

•Phase 3 (Chart 04), during which the
initial SVC is issued, its return ana­
lyzed, and any additional svcs issued
in order to complete the request.

Phase 1

The program receives control of the CPU
when the keyword operand PGM=IEHPROGM is
encountered in an EXEC statement, or when
the program is invoked by a calling pro­
gram. The Root segment immediately gives
control to the Parameter List Builder seg­
ment. The registers are saved and the work
area is obtained. Any auxiliary parameters
are analyzed, and SYSIN and SYSPRINT are
opened. A new request is initialized for,
and then obtained (using BS.AM).

FNDECODE then directs control to IEHES­
CAN to scan the operation name <e.g.,
SCRATCH) from the utility control statement
image. IEHETLU then uses the name thus
obtained to look up the address of the
major routing table corresponding to the
given operation. FNDECODE then places this
address at location FINUSE in the work
area, for use in Phase 2.

Communication between FNDECODE, IEHES­
CAN, and IEHETLU is effected through the
use of the communication table IEHECHAR (in
the work area), shown in Figure 9. IEHE­
CHAR is also used in Phase 2 in scanning
keyword operands.

Phase 2

This phase of the program decodes the major
routing table established during Phase 1.
Decoding of the routing table results in
the scanning of keyword operands, the
volume look-up, the building of the parame­
ter list for the data management routine to
be used, and the mounting of volumes.

Major routing tables appear in CSECI's
IEHEDCl and IEHEDC2 in the Parameter List
Builder segment. There is one major rout­
ing table for each operation of the
IEHPROGM program; the symbolic name of the
routing table is the same as the name of
the operation it supports. Ea.ch major
routing table consists of a variable number
of entries; the first byte of each entry
contains a routine code, and the remaining
bytes of the entry contain information use­
ful to the routine. Figure 10 shows tne
format of the routing table for the cataloq
operation. -

As indicated on Chart 03, FOLD decodes
the successive entries of the major routing
table in use, directing control to the
indicated routines.

Note: It is possible for the sequence of
operations indicated by a routing table to
be interrupted, possibly even broken. For
example, if a syntax error on a control
statement is encountered, the address of
the major routing table will be replaced by
the address of a routing table which will
effect the writing of appropriate messages.
FDLD would then decode this table, causing
IE.tlEMSGX to write the selected messages.
'!he last entry in tables of this nature
will then either cause the address of the
original major routing table to be
restored, or will cause the request to be
aborted, depending on the severity of the
situation.

The scanning of keyword operands takes
place when a routine code of hexadecimal 01
is encountered. KODECODE directs control
to IEHESCAN to scan a keyword or keyword

r---1
I
Format Contents
r----1
I I 1-byte character for which to scan
~----~
I I 1-byte condition code on which scan should stop
~----~
I I 1-byte code for last character scanned
~----~
I I 1-byte length of item scanned
~----L------------, I I 4-byte address of where to begin scan
~-----------------i I I 4-byte address of where to end scan if condition not found
~-----------------i I I 4-byte address of last item scanned
~-----------------i II I 4-byte address of table (for IEHETLU; otherwise zero)
l~-----------------i II I 4-byte address found in table by IEHETLU <or zero>
IL-----------------'
I
L---J
Figure 9. IEHECBAR, the Communication Table for FNDECODE,KODECODE,IEHESCAN, and IEHETLU

System Utility Programs: IEHPROGM 23

,---------------------------~--~----------T--~-------------~------------~--------~1

~---------:~~-=~:~~:-~~~:~:_:~~~~---------i--~---~~~~~~~~~-~=-=~~~~-~n~~~~--------~ ~
r----T----T----T----T----r----r----r----1
I 01 I oo I 10 I oo I 24 I oo I oo I oo I

~----t----t----t----+----~~--J._---~----J
I 02 I oo I so I oc I

t----t----t----+----i
I 04 I x I x I x I

t----t----t----+----i
I oa I y I y I Y I

t----+----+----t----i
I OA I 00 I 00 I 01 I
L----L----L----L---_J

Routine code

DSNAME, CVOL, and VOL are acceptable
parameters.
DSNAME and VOL are required.

xxx = address of error routine.

yyy is unused.

~he number of this major routing table
is 1.

---i--~---------------------------~----------J
Figure 10. The CATALOG Routing Table

value. If VCL is present as a keyword, the
value supplied to it in the control state­
ment is passed to IEHDTTLU, the Volume
Look-up, and the device information re­
trieved from the look-up is saved for the
Volume Mounter and data management rou­
tines. When a value supplied to another
keyword is detected, a look-up is performed
by IEHETLU, using the keyword <e.g.,
DSNAME), to retrieve the address of a key­
word routine, which is then given control.
(The symbolic address of a keyword routine
is identical to the keyword name. For
example, the symbolic address of the DSNAME
routine is DSNAME. > The keyword routine
then enters the keyword value information
into the parameter list for the data man­
agement routine. Control is then given
back to IEHESCAN to scan the next keyword
parameter, and the cycle continues until an
EOF condition is detected in reading SYSIN
<or its substitute).

When the control statement has been
scanned, control is given back to FDLD to
decode the next entry in the major routing
table. successive entries in the major
routing table may test for the presence of
minimum allowable parameters (TESTDUP),
establish a temporary routing table to
write messages (LINKSAVE), restore the
major routing table (DCRETURN), or read and
log the remaining cards (READALL >. If an
error has been found in the utility control
statement, the request is aborted, and con­
trol is given to IEHRESET to honor the next
request.

If no error has been found, the last
entry of the major routing table will have
been decoded. The last entry of each major
routing table causes FDLD to give control
to GETAVOL, which places the number of the
major routing table at location FINUSE in
the work area, and then gives control to
the Volume Mounter. If any required volume
is not mounted or mountable, control is

24

given to IEHRESET; otherwise, control is
given to the SVC Return Analyzer (IEHEU­
PIA), and Phase 3 is entered.

At the completion of Phase 2, the param­
eter list for the initial SVC to a data
management routine has been built at loca­
tion IEHEMACl in the work area. The for­
mats of the various parameter lists for the
data management routines are shown in
Figure 11.

Phase 3

Phase 3 issues, and analyzes the returns
of, all svcs to data management routines
used to accomplish IEHPROGM functions. At
the time Phase 3 is entered, the parameter
list for the initial SVC has been built,
and all volumes are mounted or mountable.

Using the routing table number placed at
FINUSE <inlthe work area) during Phase 2 by
routine GE'IAVOL, routine LATAB replaces the
routing table number with the address of a
carry-over routing table, to be decoded by
FOLD. If the current request is a SCRATCH
v~oc request, the carry-over routing table
will cause itself to be replaced with the
routing table VTOCDCS. Otherwise, the
carry-over routing table will simply cause
the SVC to be issued, by means of the entry

X'OO' AL3 (SVC instruction)

FDLD then decodes the carry-over routing
table, establishing the VTOCDCS routing
table only if the request is to scratch a
v~oc.

SVCRET and SVC26RET decode the return
from the data management routine used,
directing control through the branch table
BRANTAB to diagnostic routines (NEEDINDX,
SCANIT, INDEX8), or to message-effecting
routines.

r---1

I
I
I
I
I

SCRATCH (SVC 29) RENAME (SVC 30) CATALOO (SVC 26)

r---------------------, r---------------------1 r---------------------1 1svc bit configuration! ISVC bit configuration! ISVC bit configuration!
~---------------------1 ·---------------------i ·---------------------~ I tDSNAME I I tDSNAME I I tDSNA.ME I
~---------------------1 ·---------------------i ·---------------------~ I UNUSED I I tNEWNAME I I tCVOL I
~---------------------1 ·---------------------i ·---------------------~ I tVOLLIST I I tVOLLIST I I tVOLLIST I
L---------------------1 L---------------------J L---------------------J
UNCATALOG (SVC 26) BUILD INDEX (SVC 26) DEtETE INDEX (SVC 26)
r---------------------, r---------------------1 r---------------------1 1svc bit configurationl ISVC bit configurationf 1svc bit configuration!
~---------------------1 ·---------------------i ·---------------------~
I tDSNAME I I tINDEX I I tINDEX I
~---------------------1 ·---------------------i ·---------------------~
I tCVOL I I tCVOL I I tCVOL I
~---------------------1 ·---------------------i ·---------------------~
I UNUSED I I UNUSED I I UNUSED I
L---------------------1 L---------------------J L---------------------J
BUILD ALIAS (SVC 26) DELETE ALIAS (.EVC 26) BUILD GENERATION (SVC 26)
r---------------------, r---------------------1 r---------------------1
1svc bit configuration! 1svc bit configurationf ISVC bit configuration!
~---------------------1 ·---------------------i ·---------------------~
I tINDEX I I tALIAS I I tINDEX I
~---------------------1 ·---------------------i ·---------------------~
I tCVOL I I tCVOL I I tCVOL I
~---------------------1 ·---------------------i ·---------------------~
I tALIAS I I UNUSED I I UNUSED I
L---------------------1 L---------------------J L---------------------J
CONNECT (SVC 26) RELEASE (SVC 2 b)

r---------------------, r---------------------1
ISVC bit configuration! 1svc bit configuration!
~---------------------1 ·---------------------i
I tINDEX I I tINDEX I
~---------------------1 ·---------------------i
I tCVCL I I tCVOL I
~---------------------1 ·---------------------i
I tVOL I I UNUSED I
L---------------------1 L---------------------J

r---~
I Notes: I

• At time of SVC, register 1 contains the address of the parameter list.

• Each parameter list is constructed at IEHEiviACl in DS~CT, the work area.

• The addresses in the above parameter lists point to the following items:

DSNAME
NEWNAIV'ili
INDEX
ALIAS
VOL
CVOL
VOLLIST

44-byte data set name
44-byte new name 0£ data set
44-byte index name
8-byte alias
b-byte volume ID
b-byte volume ID
2-byte count followed by a variable number of fields of the following
format:

4-byte table value from DEVNAME~
6-byte volume ID
2-byte sequence number (for taped volumes)

I
I

---J
Figure 11. Parameter Lists Built by IEHPROGM for Data ~anagement Routines

System Utility Programs: IEHFRCGM 25

Control is directed in the following
way:

1. The return code <in register 15) is
used by routine SVCRET or SVC26RET
(depending on the SVC) as an indexing
factor to retrieve a code number f rorn
the current entry of the active rout­
ing table. (The current entry is tne
entry following that entry designating
the SVC.)

2. The code number thus retrieved is used
as an indexing factor to give control
to the appropriate IEHPROGM diagnostic
routine to treat the type of return.
Control is given to a diagnostic rou­
tine by means of a branch table,
BRANI'AB.

Example: Figure 12 shows the return­
indexing entry of the CATALOG routing
table. This entry is at location CATALOG+
28, immediately following the SVC entry.
Following the return of control to the pro-

26

gram from the catalog routine (SVC 26),
routine SVC26RET would use the contents of
register 15 to retrieve a code number from
tnis i::eturn-indexing entry. If the return
code from the catalog routine were 28, for
example, a code number of eight would be
retrieved. Routine SVC26RET would then
give control <via the branch table BRANI'AB)
to the diagnostic routine indicated by a
code number of eight.

r---------------------------~~----------,
ICATALOG+28 I
I r--T--T--T--T--T--T--r--T--r--T--T--1 I
I 101102103104100106107I08IOOIOOIOOIOOI I
I L--~--~--i--~--~--i-_i __ .J.__.J.__.J.__.J.__J I
I o 4 a 12 16 20 24 2a 32 36 40 44 I
I Return code from Catalog (Reg.15) I
I Indexing factor for BRANI'AB I
L---J
Figure 12. The Return-Indexing Entry (for

the Catalog SVC) of the Catalog
Operation

Chart 02. IEHPROGM Phase 1 - Modifying System Control Data

Al

Entry

IEHEMSGX

Write
Appropriate

Message

Gl

IEHEBASE A2

Branch
to

IEHEUP 1

COMMENCE

Save
Registers.

Issue
GET MAIN

IEHIN

Open
SYSIN and
SYSPRINT

Initialize
fC4' a New
Request

Get a Control
Statement
from SYSIN

FNOECOOE

IEHESCAN

Scan
Operation

Name

IEHffiU

Na

Look Up Addr-
of Major

Routing Table

Place Routing
Tobie Address
in Work Area

A3

C3

03

E3

F3

EOOAO

SYSINENO 04

Close SYSIN and
SYSPRINT, laue

FREEMAIN, .,._ __ ____..,.
Restore

R isten.

05
Return

ta
ervisor

system Utility Programs: IEHPROG.M 27

•Chart 03. IEHPROGM Phase 2 - Modifying System Control Data

28

FOLD Al -------
Examine Routine

Code of
Entry in

Routine Table

Bl

GotoAdG-­
in Lost 3 Bytes
of Tobie Entry

TES TD UP Cl

T .. t to See
if Mlnumum
Par9M.-
Pr•ent

LINKSAVE

GetaN­
Routing

Table (for
Mmsagm)

DC RETURN

Restore Pointer
to Routine

Table

01

El

GETAMSG Fl

Print
Indicated
M-age

(IEHfMSGX)

Enter Alias
Parameter

into Deletea

READALL H2

Read and Log
Remaining

Cards

Abort the
Request

Place Number
of Table in

Use at Finuse

Yes

LISTECll

Set Up to
Analyze

Operands

NOTE - Routines
Indicated by o
Routine Code are
Not Neceuarily
Executed in this
Order. Order of
Execution is
Determine by the
Mojor Routing
Table in Use.

Interface
with Volume

Mount Routine
OEHVOLMT)

A3

J3

KODECODE

Set Up Poram.
for Scan and
Table Look-Up

IEHESCAN 84

Scon an Operoncl
Field from
Control

Statements

Parameter
Routine

(See Note
Below)

NOTE - There Is One Parameter
Routine for Each Allowable
Parameter. Each Routine Moves
Parameter Information from the
Control Statement or from the
Look-Up Table to the Parameter List.
The Symbolic Name of Each Routine
is Identical to its Corr•ponding
Keywork Parameter, e.g., DSNAME,
NEWNAME, Etc.

Abort the Request

Continue
Decoding
Table

05

Perform
Volume Lookup

in DEVNAMET
and UCBs

Look Up
Address Of
Parameter

Routine

ES

•Chart 04. IEHPROGM Phase 3 - Modifying System Control Data

LAT_A_B _ ___..__ __ A_l

Activate
Routing

Table

The RENAME
Routine Should
Have Mounted

the Proper
Volume

Stow (with
Chante
Option)

FOLD

Decode
Routing
Table

~
the PDS

Using ih Own
Name

Print
Appropriate

M.aage

A2.

82

INDEX~B,__ _ _... ___ J2_

Prepare to
Analyze Locate

SVC Retum1
Reg. 1

Yes

Scratch
a Data
Set

SVC 30

SVCRET F3

Analyze
Return Code
In Reg. 15

SVC26RET G3

Yes

____ __ _
Analyze Return
Code in Reg. 15

or Reg. 1

IEHEMSGX K3

Print
Appropriate

Meuage

Yes

Modify
the
Catalog

E3

OPENVTOC_ C4

Open VTOC
of Selected
Volume

04

SVC 26

NOTE - The Name
of a System-Assigned
Data Set Begins Either with
the 36 Characters
AA.A.MAAA. AAAAA.A.M.
AAAAAAAA. AAAAAAAA.

J4

SCAN IT
Scan an Index

Level Name
from Statement
and Prepare to

l•ue SVC

K4

GETADSCB C5

Reod
a DSCB

SVCSCR G5

SVC
29

(SCRATCH)

Reset Pointer,
Analyze

Return Code
in Reg. 15

VTOCRET JS

Write,
Reset Pointer
to Diagnostic
Routine Table

IEHEMSGX

Write
Appropriate
Message for
DSCB Handled

K5

System Utility Programs: IEHFROGM 29

Moving and Copying Data
(IEHMOVE)
The IEHMOVE utility program reproduces one
or more data sets. The move operation
relocates a collection of data and
scratches the source data; the copy opera­
tion produces a replica of the source data,
and leaves the source data intact.
Throughout this discussion, the word "copy"
will ref er to both the MOVE operation and
the COPY operation.

The program is serially reusable. It
copies the following collections of data:

• A data set
• A volume
• A group of data sets related by a

catalog
• A catalog

Depending on the compatibility of the
source and receiving volumes, the movabili­
ty of the source data set, and the alloca­
tion of space on the receiving volume, an
attempt to copy a data set may result in an
"unloaded" version of the data set. This
version of the data set is in a tormat
recognizable to the IEHJ.~OVE program, but is
not directly usable by other programs. An
attempt to copy an unloaded data set onto a
volurr.e that would have originally supported
a successful operation results in the
"loading" of the unloaded data set, that
is, the reconstruction of the original data
set.

If a user has requested the processing
of input/output header/trailer labels, this
program will handle the direct moving or
copying of such laoels as they exist on the
data sets to be moved or copied.

OVERALL FLCW

Figure 13 shows the design of the IEHMOV£
program; each of the smaller nlocks repre­
sents a load module, while each of the
larger blocks represents a grouping of load
modules by function:

• Program Set-up
• Request set-up
• Message Writing
• Data set Group (DSGROUP) Set-up
• Data Set and Volume Set-up
• Partitioned Data Set CPDS) Subroutines
• Copying, Unloading, and Loading
• Data set Wrap-up
• DSGROUP Wrap-up

Charts 05 through 10 show the logical
flow of the program as follows:

30

overall Flow
DSGROUP Logic

Chart 05
Chart Ob

VOLUME Logic
PDS Logic
DSNAME Logic
CATALOG Logic

Chart 07
Chart 08
Chart 09
Chart 10

Control is passed between loads almost
always by means of Transfer Control (XCTL) ,
with the following exceptions:

1. The stem, IEHMOVE, links to IEHMVXSE.
The corresponding return to the stem
is issued at the conclusion of the
program by IEHMVESK.

2. 1he message writer, IEHMVESU, is
always linked to.

3. IEHMVESR, a PDS subroutine which
retrieves directory entries from a
work data set, is always linked to.

PROGRAM STRUCTURE

Program Set-up (IEHMOVE, IEHMVXSE,
IEHMVXSF)

The function of initializing the program
for a job is performed by three loads:
1EHMOVE, IEHMVXSE, and IEHMVXSE.

I EH.MOVE
is the stem, which is present during
the entire execution of tn.e program.
It obtains main storage for a work
area (IEHMVV) to be used by the rest
of the program.

IEHMVXSE
allocates space for the work data sets
and opens them, clears the work area,
and sets up an initial call to
I.EHMVXSF.

IEHMVXSF
is the volume mounter, described under
the heading, "Device Allocation and
Volume Mounting." The first-time
entry of this routine builds the
internal table used by the volume
mounter.

Request set-up (IEHMVEST, IEHMVESJ,
IEHMVESS)

The program is initialized to handle a
single request by three loads: IEHMVEST,
IEHMVESJ, and IEHMVESS.

I.EHMV.EST
initializes the work area for a re­
quest and sets up an initial call to
IEHMVESJ.

IEHMVESJ
is the control statement scanner,
described under the heading •control
Card Scanner."

ENTRY

Copy BSAM or
PDS - Na
reblocking

PDS Sub-
1

1

f Routines

L- ---'
I
L-

I
L-

Copy, unload,
or load
BDAM

.D!lt11 S.t Wtop-up

Load
Catolog

Reod catalog,
write on
SYSUT2

IEHMVETA

Copy, unload,
or lood
catalog

No More
!tequests

Another
Dato set

'O~ROtlfJ Wmp""'P
IEHMVESH

Copy IEHMVESN ...-1-EH_M_V_E_S_O ___ Permanent
.... ..+-----..-D_SG_RO_U_P-+--lt--C-lo-se-"F-RO_M_" ---it--Err_or _________ 1--C-he_c_k_e-rro-r---1 f/O on $'i'Sl'RINT

Note 2

Gtoup~

IEHMVETA

Read SYSUT2,
catalog on •ro·
volume.

No More
Requests

Another

Request

1. XCTL from IEHMVXSE, IEHMVEST, or IEHMVESS

2. Write 'TO' data set info an SYSUT2. When group
has been moved, set up to catalog.

and "TO" dato abort. job or
sets request

OpiR!t on
Wos Mt:Ne

Move IEHMVESQ
DSG ROUP

"-----1--i Do cataloging or
uncataloging for

-.---1~-1 data set moved

Opeiotion
Was Copy

IEHMVESP

Do cataloging or
uncataloging for
data set copied

Another
Request

IEHMVESK

------.-..i Close SYSIN,
SYSPRINT; close
and scratch
work files

Figure 13. The Design of the IE.HMOVE Program

Another
Request

system Utility Programs: IEHMOVE 31

IEHMVESS
analyzes the information scanned by
IEHMVESJ. For a PDS request, IEHMVESS
writes the following information:

KEY

• Member names to be included or to
replace on SYSUTl <the format is
shown in Figure 14 >.

• Member names to be excluded or to
be replaced on SYSUT2 <the format
is shown in Figure 15).

DATA
r-------1 r---T-------,
I I
L-------J • I
L--8-byte

member

Figure 15.

I I I L-.-4-.-----'
I I
I I

name I L--9 bytes unused
I
L--1-byte indicator

E=excluded member
R=replaced member

SYSUT2 Record Format (for a PDS
Request only)

Message Writing (IEHMVESA, IEHMVESU)

All messages are written by IEHMVESU.
Whenever I~H.MVESS effects a message, it
first interfaces through IEHMVESA, which
contains messages and linkage to IEH.MVESU.

DSGROUP Set-up (IEHMVESI, IEHMVESC,
IEHMVESH)

Preliminary operations needed to copy a
group of data sets are performed by three
loads: IEHMVESI, IEHMVESC, and IEHMVESH.

KEY DATA

IEHMVESI
opens the catalog and sets up a call
to IEHMVESC •

IEHMVESC
reads the catalog and writes data set
information on SYSUTl (see Figure 18).

IEHMVESH
closes the catalog and sets up a re­
quest to copy a single data set, using
data from SYSUTl.

Data Set and Volume Set-up (IEHMVESZ,
IEHMVXSF, IEHMVESX, IEHMVESV, IEHMVESY)

Preliminary operations needed to copy a
single data set are performed by five
loads: IEHMVESZ, IEHMVXSF, IEHMVESX, IEHM­
VESV, and IEHMVESY.

IE.HMVESZ
examines the request and sets up a
call to IEHMVXSF. For a VOLUME re­
quest, IErlMVESZ reads the VTOC and
obtains a DSCB; if a ca ta log is
detected on the volume, its presence
is noted, but no request to copy it is
set up until the data sets are copied.

If an abnormal termination is indi­
cated as the result of an error in
either this module or a called subrou­
tine, this module initiates termina­
tion of the program. User label exits
are not processed at this time.

IE.HMVXSF
is the volume mounter, described under
the heading "Device Allocation and
Volume Mounting." This execution of
the volume mounter effects volume
mounting.

r---T-------T---1 r---T-----------T------T---T------T---T-------T---1
I I I I L---L-------l.---J

I I I
I I L--2-byte
I I sequence number
I I
I L--------6-byte volume ID
I
L--------------4-oyte device type

I I I I I I I I I
L---L-----------L------+---L------L---t-------~--J

.+. • .. I same as I<ey I 4- ...
I I I I I
I I I 8-byte member name--J I
I I I or new name I
I I I I
I I I 4 oytes unused------------J
I I I
I I L---8-oyte member name
I I
I L---------------44-byte data set name
I
L-------------------1-byte indicator

!=include this member
R=this member will replace a

member
S=select this member

Figure 14. SYSUTl Record Format (for a PDS request only)

32

IEHMVESX
performs tests on the data set to be
copied. Tests include movability,
unload or load, access method type,
compatible block size, and compatible
receiving device. If a catalog had
been detected in IEHMVESZ, space is
allocated for it on the 'TO' volume.

When user-label processing has been
specified, this module processes the
input header labels as it opens the
input data set. If storage in which
to save the labels is required, it is
obtained in this module.

IEHMVESV
causes space to be allocated for the
'TO' data set. If user labels exist
in the 'TO' data set and user-label
processing has been requested, an
additional track will be allocated for
the user labels. The DS1EXT1 field of
the DSCB is modified for this purpose.
(For a preallocated 'TO' data set,
(i.e., one that has been allocated
before the execution of the IEHMOVE
program) the user must provide a user­
label track to permit the labels to be
moved.) If the 'FROM' data set is a
PDS, the directory entries of members
to be copied are written on SYSUT3.
During abnormal terminations that are
handled by this module, no user-label
exits are processed. If a user-label
track has not been allocated, the mes­
sage text in this load module informs
the user that labels cannot be moved
or copied.

IEHMVESY
builds, using DCB and label inf orma­
tion specified by FROMDD and TODD (if
given in an operation involving 7-
track or 9-track unlabeled tape), the
DCBs for the 'FROM' and 'TO' data sets
and directs control to the appropriate
module to copy, unload, or load the
data set.

When user-label processing has been
specified, this module processes the
output of the user header labels that
have been saved by the program, as it
opens the output DCB.

If this module encounters errors such
that an abnormal termination is indicated,
the module initiates termination of the
program. If user-label processing has been

specified, the processing operations are
not performed during the abnormal termina­
tion procedures.

If variable spanned records are indi­
cated, this module will identify the
record format and determine to which
module control is to be given for pro­
cessing each record. If logical
copies involving changes in the record
format (RECFM), the block size
(BLKSIZE), or the logical record
length (LRECL) of data set records are
attempted, an error is indic~ted and a
message is printed. The program will
then attempt to move the rest of the
data sets as requested.

This module also writes the first rec­
ords of an unloaded data set and
determines the module that next
receives control to perform the actual
move/copy operation.

PDS Subroutines (IEHMVESR, IEH~VETG,
IEHMVXSF)

If a partitioned data set is being copied
or unloaded, IEHMVESR is always used by the
copying module, whereas IEHMVETG (which
uses IEHMVXSF, the volume mounter) is used
if the request specifies PDS. Figure 13
shows which loads use PDS subroutines.

IEHMVESR
is used to obtain a directory entry
from the work data set SYSUT3. If the
directory entry is from the PDS being
copied, it was placed on SYSUT3 by
IEHMVESV (Data Set and Volume Set-up);
if the directory entry is from an
INCLUDE or REPLACE option, it was
placed on SYSUT3 by IEHMVETG. The
format of a directory entry on SYSUT3
is shown in Figure 16.

IEHMVETG
places directory entries of members
from INCLUDE, REPLACE, or SELECT
options on SYSUT3. Each execution of
IEHMVETG places the directory entries
to be included from one PDS. When
there are no more members to be
included in the copy, IEHMVETG gives
control to IEHMVESN. IEHtvNXSF, the
volume mounter, is used as needed.
The logic of IEHMVXSF is described
under the heading "Device Allocation
and Volume Mounting. n

System Utility Programs: IEHMOVE 33

KEY DATA
r-------, r------.,--------------------~-------1
I I I I I I
L-------J L-------i-------------------i-------J • • • • I I I 8-byte new I
L--8-byte mem.ber name I I memner name

I I or, if none, old member name
I I
I L-- maximum 74-oyte directory entry
L--5-byte CCHHR of this record on SYSUT3

Figure 16. SYSUT3 Record Format

Copying, Unloading, and Loading

The load modules used to copy, unload,
and load data are grouped according to the
type of data set and format condition as
shown in Figure 17. The modules are
described below:

IEBMVETA
copies, unloads, or loads a catalog.
If the catalog is to be loaded, it is
in the format shown in Figure 18. 'Ihe
entries are then cataloged on the
receiving volume. If the catalog is
to be unloaded or copied, IEHMVESC
first writes catalog entries on SYSUTl
as shown in Figure 18; IEHMVETA then
catalogs them on the receiving volume
Cfor a copy> or else simply writes
them in the same format (for an
unload).

IEHMVETL
copies, unloads, or loads a BDAM data
set. The data set is copiea using
BDAM read and BSAM write <load mode>
routines. If the input data set rec­
ord format is type U, the block length
of each physical record is read and
calculated and then passed to BSAM
write. This calculation is unneces­
sary for types F and V and is
bypassed.

If user-label processing bas been spe­
cified, this module obtains any neces­
sary storage in which to save the
labels. This is done when either the
end of a data set has been reached or
a switch to another volume is to be
made. The saved labels will be passed
to the data set wrap-up routines.

IEHMVETJ

34

copies a BSAM data set or a PDS. A
BSAM data set is copied using BS.AM in
a simple read-write loop. When either
the end of a data set or the end of a
volume has been reached in reading,
storage will be obtained, if neces­
sary, for saving any labels for which
processing has been requested. The
saved labels will be passed to the

data set wrap-up routines. For a PDS,
at the time IEHMVETJ receives control,
the directory entries of members (bar­
ring any EXCLUDES or REPLACES) of the
'FROM' PDS are on SYSUT3, where they
were written by IEHMVESV (Data set and
Volume Set-up). The 'FROM' PDS is
then copied as follows:

1. IEHMVETJ directs control to IEHM­
VESR, which reads from SYSUT3 one
directory entry of the PDS.

2. If tne entry indicates a note
list is present, IEHMVETJ reads
the note list. Using BSAM, IEHM­
VETJ then reads and writes member
records up to the note list. The
note list is then updated and
written with the new TTRs of the
members.

3. when all note lists and member
records have been written, the
directory entry is updated with
the new note list addresses and
then stowed. This process is
repeated for each directory entry
on SYSUT3. When the 'FRCM' PDS
has been copied, control is given
to IEHMVETG to write on SYSUT3
the directory entries for all
members to be included, selected,
or to replace from another PDS.
IEHMVETJ then copies these mem­
bers as outlined. IEHMVXSF (the
volume mounter> is given control
by IEHMVETG as needed.

IEHMVESL and IEHMVESM
copy partitioned and BSAM data sets if
the 'TO' data set has been pre­
allocated <that is, before execution
of IEHMOVE) and the 'FROM' and 'TO'
DSCBs indicate that reblocking is
necessary in order to perform copying.

IEHMVESL
copies <with reblocking) a PDS or BSAM
data set having type F record format.
Blocks are read (using BSAM) until the
output block size is surpassed, and
then logical records are sectioned

from the high-order end of the buff er
until the output block size is
reached. The block is then written,
using BSAM. The last block (of a BSAM
data set or of a member of a PDS) is
written as a truncated block if neces­
sary. For a PDS, any user 'ITRs are
ignored.

If user-label processing has been
requested, this module will, when
reaching either the end of a data set
or the end of a volume, obtain neces­
sary storage in which to save the
labels. When the module passes con­
trol to the data set wrap-up routines,
the saved labels are passed to the
routine that receives control.

IEHMVESM
copies (with reblocking) a PDS or BSAM
data set having type V record format.
The operation is similar to that of
IEHMVESL: blocks are read using BSAM
until the maximum output block size is
surpassed, and then logical records
are sectioned from the high-order end
of the buffer until the size of the
output buff er is not greater than the
maximwn block size. As with IEHMVESL,
any user TTRs are ignored in a PDS.

If user-label processing has been
requested, this module will, when
reaching either the end of a data set
or the end of a volume, obtain neces­
sary storage in which to save the
labels. When the module passes con­
trol to the data set wrap-up routines,
the saved labels are passed to the
routine that receives control.

IEHMVERD
unloads a PDS or a ESAM data set. For
a BSAM data set, the data set is read
one tlock at a time. After each read,
the block is prefixed by three-to-six
bytes of control information, and then
deblocked into 78-byte sections. Each
section is then prefixed with a 2-byte
physical sequence number. The resul­
tant 80-byte blocks are then written,
or, if the receiving device perrr.its,
are reblocked in groups of ten to be
written out as 800-byte blocks. The
last block written is padded with
blanks. For a PDS, the directory
entry of a member is first read into
the buffer. Each note list is read
and followed by member records which
precede it in the PDS. Aliases are

read last. The buffer is sectioned
and control information inserted. The
process is repeated for each directory
entry and its member blocks. Directo­
ry entries are read from SYSUT3 by
IEHMVESR. ~he options INCLUDE,
REPLACE and SELECT are ignored in
unloading; the option EXCLUDE is not
ignored.

If user-label processing has been
requested, this module will, ~hen
reaching either the end of a data set
or the end of a volume, obtain neces­
sary storage in which to save the
labels. When the module passes con­
trol to the data set wrap-up routines,
the saved labels are passed to the
routine that receives control.

r--------T------------------T-------------1
l~ype of I !Load ~odules I
f Data Seti Format condition I Used I
t--------+------------------t-------------~
!Catalog !Normal IIEHMVETA withl
I I I IEHWESC I
t--------+------------------t-------------~
!Catalog !Previously IIEHMVETA I
I I unloaded I I
~--------+------------------+-------------~
I I I I
I EDAM !Any IIEHMVETL I
~--------+------------------+-------------~
jPDS or !Normal, copiable IIEHMVETJ with I
jBSAM I no reblocking I IEH~VETG I
I I I CPDS only> I
I I I IEHr.NESR I
I I I IEHWXSF I
~--------+------------------+-------------~
IPDS or !Type F, copiable IIEHMVESL with I
I BSAM I with reblocking I IEHWETG I
I I I CPDS only) I
I I I IEHWESR I
I I I (PCS only) I
I I I IEHWXSF I
~--------+------------------+-------------~
IPDS or l'Iype V, copiable IIEHMVESM with I
IBSAM I with reblocking I IEH.f.NETG I
I I I CPDS cnly> I
I I I IEHMVESR I
I I I IEHWXSR I
t--------+------------------t-------------~
IPDS or !Normal, uncopiablelIEHMVERD with I
IBSAM I must be unloaded I IEHWESR I
I I I IEHWXSF I
~--------+------------------+-------------~
IPDS or !Previously IIEHMVERA I
IESAM I unloaded I I
L--------~------------------i-------------J
Figure 17. Load Module Groupings for Copy-

ing, Unloading, and Loading

System Utility Programs: IEHMCVE 35

KEY DATA
r------------, r--T~---------------------------------------,

I I I I I DEPENDEN1 ON CODE <see below> I
L------------J L __ i_i---------------------------------------1
t t t
L--12 l:ytes I L--1-byte code (0,4,8,C)

unused L-----2-byte length

CODE=O (DATA SE1 EN1RY)
r--~-r-----------------------------T--T------------------- ... --1
I I I I I I L ___ i_i-----------------------------i--J-------------------... --J

t t t
I I up to 50 12-byte
I I volume entries
I L---2-byte number of
I volume entries
L-------------------------------44-byte data set name

CODE=4 (ALIAS ENTRY)
r---T-T--------T--------1
I I I I I L---i-i ________ i ________ J

t t
I L--8-byte alias
L-----------8-byte name

CODE=8 (CVOL EN1RY)
r---r-T--------T--------1
I I I I I L---i-i ________ i ________ J

t t
I L--6-byte volume ID
L-----------8-byte name

CODE=C (GDG EN1RY)
r---T-T-------------------T-T-T-----------1
I I I I I I I L ___ i_i ___________________ i_i_i ___________ J

t ttt
I I I L---Model DSCB
I I L-----maximum generation nurrber
I L-------current generation nurrber
L--------------------------35-byte name

Figure 18. SYSUTl and SYSUT2 Record Formats for DSGROUP; SYSU11 Record Formats for
CATALOG

IEHMVERA

36

loads a PDS or BSAM data set. Fer a
BSA~ data set, a block is read, the
control information is removed and
analyzed, and successive blocks are
read until a block from the original
data set is reconstructed. The block
is then written, and the process is
repeated lllltil the original data set
is loaded. For a PDS, the process is
similar: the directory entry is first
reconstructed, but is not stowed until
memter blocks have been written and
note lists updated and written. At

the time the data set was unloaded, an
entry was written, followed by roerober
blocks (in unloaded format).

If user-label processing has been
requested, this module will, ~hen
reaching either the end of a data set
or the end of a volume, obtain neces­
sary storage in which to save the
labels. when the module passes con­
trol to the data set wrap-up routines,
the saved labels are passed tc the
routine that receives control.

DSGROUP Wrap-up (IEHMVESH, IEHMVETA)

After each data set of a DSGROUP has
been copied, control is given to IEHMVESN
of the Data Set Wrap-up portion of the pro­
gram. If scratching of the 'FROM' data set
is necessary (for a MOVE DSGROUP, for
example), control is given to IEHMVESQ,
which scratches the 'FROM' data set, and
then gives control to IEHMVESH. If
scratching is not necessary, control goes
directly from IEHMVESN to IEHMVESH.

IEHMVESH
'TO' data set writes 'FROM' data set
information on SYSUT2 in the same for­
mat in which the information was orig­
inally written on SYSUT1 (see Figure
18). This information is written so
that the catalog can be updated as
needed. If there is another data set
in the group to be copied, IEHMVESH
gives control to IEHMVESZ to set up
the next copy; if all the data sets
have been copied, IEHMVESH sets up a
request to catalog the updated data
set information on SYSUT2 and gives
control to IEHMVETA.

IEHMVETA
reads SYSUT2 and catalogs the inf orma­
tion. The process is the same as that
followed by IEHMVETA in copying a
catalog.

Data Set Wrap-up (IEHMV~SN, IEHMVESO,
IEH.MVESP, IEHMVESC, IEHMVESK)

Load modules in this group perfor~ ter­
minal operations following the copying,
unloading, or loading of a data set pro­
cessed for a PDS, DATA SET, or VOLUME re­
quest. In addition, when all requests have
been serviced, control is given to
IEHMVESl<.

IEHMVESN
completes the moving or copyin9 of a
data set and closes the 'TO' and
'FRCM' data sets.

If user labels have been specified,
and if output trailer labels have been
saved in storage, these labels are
written out and the storage area is
released. If a user-label track has
not been allocated, the message text
in this load module informs the user
that labels cannot be moved or copied.

IEHMVESO
is entered following an unsuccessful
copying, unloading, or loading opera­
tion, or following a test ((Data Set
and Volume Set-up) indicating a re­
quest could not be honored. IEHMVESO
prints a diagnostic message and
scratches the 'TO' data set.

IEHMVESP
performs terminal operations following
a COPY request, including any speci­
fied or implied cataloging, uncatalog­
ing, and scratching.

IEHMVESQ
performs terminal operations following
a MOVE request, including any speci­
fied or implied cataloging, recatalog­
ing, and scratching.

IE.HMVESK
is entered when all requests have been
serviced, or when a permanent I/C
error has been detected on the print­
er. IEHMVESK closes SYSIN and SYS­
PRINT, closes and scratches the work
data sets, frees main storage, and
returns control to the stem, IEHMOVE.
During abnormal termination handled by
this module, user-label exits are not
processed.

COMMUNICATION AREA (IEH~VV)

The communication area for the program
is defined at assembly time by the roacro
instruction IEHMVV, which is internal to
the IEHMOVE program. Register 12 contains
a pointer to tne communication area whenev­
er a request for a module is issued.

The macro instruction IEH~VV generates a
dummy section (also IEHMVV) containing work
areas and control data for all object
modules of the program. ~ain storage for
the dummy section IEHMVV is obtained dynam­
ically by the stem.

'l'he communication area consists of the
following parts:

•A work area of 512 bytes (IEHMVOO).

• ~he addresses of the beginning and end
of an 800-byte work area (IEH?<N\710).

• A table of switches controlling the
flow of the program (IEHMVV20).

• A control table containing the return
codes of the control statement scan
routine (IEHMVESJ).

• A table of control data for volurr.e
lists and include-exclude-replace lists
(IEHMVV21-IEHMVV26).

• A table of addresses of the FRC~ data
set's DCB, DSCB, DECB and ddname
(IEHMVV30) and the TC data set's DCB,
DECB and ddname (IEH~VV31). Each
address is stored in a fullword.

System Utility Programs: IEHMCVE 37

• A table of the addresses of the DCBs
and DECBs of SYSPRINT (IEHMVV33), SYSIN
(IEH1'!VV32), and SYSLIE (IEHMVV34).

• A table of work data set control data
(IEHMVV39).

• A tatle of addresses of work areas for
loading, unloading, including, replac­
ing, and copying a PDS.

• The DCB exit list (for user-label pro­
cessing) defined by the macro instruc­
tion IEHDCBXL. This list is found in
the 40-byte section IEHMVV70 of the
communication area. Included in the
list are symbolic names for the input
and output header-label processing sub­
routines, the input and output trailer­
label processing subroutines, the DCB
exit, and the OPENJ JFCB exit.

• An area containing pointers both to the
storage area (the label save area)
obtained for user labels and to the
current label being processed. These
pointers are in the 20-byte section
IEHMVV72. For the first label being
processed, both pointers will indicate
the same address. .E .. igure 19 indicates
these relationships.

IEHMVV72 Label Save Area

0 if:: Pointer to Label Label l
Save Area

+4
Pointer to Current ~+160

Label 2

Label Label 3
+240

Label 4
+320

Etc.
Etc. -~ - --

Example of pointers when third label is being processed

Figure 19. Label Save Area Pointers

IEHMOVE WORK DATA SET RECORD FORMATS

The program uses three work data sets:
SYSUT1, SYSUT2, and SYSUT3. How a work
data set is used depends on the function
being performed by the program. The fol­
lowing table (Figure 20) shows where record
formats may be found. A blank entry indi­
cates that the work data set is not used
for the indicated function. The entry 16*
indicates that SYSUT3 is used for any par­
titioned data sets found within a group of
data sets or a volume.

38

Function SYSUT1 SYSUT2 SYSUT3
r----------------T-------T-------r--------1
I Single Data Seti I I I
l (not a PDS) I I I I
t----------------+-------+-------i--------~
I Single Data Seti I I I
l (PDS) IFig. 141Fig. 151Fig. 16 I
t----------------+-------+-------i--------~
l Volmne I I !Fig. 16* I
t----------------+-------+-------i--------~
I DSGroup !Fig. 181Fig. 181Fig. 16*1
t----------------+-------+-------i--------~
I Catalog IFig. 18 I I I
L----------------i-------i-------~--------J
Figure 20. Where to Find Record Formats

~he device on which the work data sets
reside is allocated by job management and
is associated with the ddname SYSUTl. The
soaces occupied by the work data sets spe­
cified by the narees SYSUTl, SYSUT2, and
SYSUT3 are dynamically allocated.

Obtaining Space for a work Data Set

Sface for a work data set (e.g., SYSUT3) is
obtained from DADSM in the following way:

1. The first time space is requested, it
is requested for the data set
**SYSUT3.

2. If the return from DADSM indicates
that a DSCB for the requested data set
space already exists on the VTCC, the
name previously submitted to DADSM is
qualified by the index name consisting
of the single character * and the
modified request is submitted to
DAD SM.

Step 2 is repeated until space is allo­
cated or until 44 bytes have been used with
no success. Thus, the first request for
space for SYSUT3 either results in space
being allocated for the 8-byte name
**SYSUT3 or an indication that a data set
of the name **SYSUT3 already resides on the
subject volume. If the latter, space is
requested for the data set **SYSUT3.*. The
third request, if necessary, would specify
the name **SYSUT3.*.*· A count of the
number of times the name has been qualified
is maintained in the communication area,
IEHMVV.

After space has been allocated for the
work data sets, they are opened in the
order: SYSUT1, SYSUT2, SYSUT3.

Releasing Space Used by a Work Data Set

~he work data sets are not closed until
final wrap-up. At this time, SYSUT3 is
first closed and scratched, then SYSUT2 is
renamed to SYSUT3 and closed and scratched,
and then SYSUT1 is renamed to SYSUT3 and
closed and scratched.

Chart 05. IEHMOVE overall Logic

Enter

Copy, Unload
or Load PDS

or BSAM Data
Set

Fl

Note
CIOM to & from Hl

Sets, Write
Up-dated 'to'

Data Set Info
SYSUT 2

Update Catalog
as Neceaary

with SYSUT2
Information

A2

lssueGETMAIN.
Initialize
GetWoil<

Data Sets

Open SYSIN,
1-----... SYSPRINT, and

Work Data Sets

A3

83

Get a Request.

Read Catalog,
Write lnfa. on
SYSUTl , Set Up

for One
Data Set

F2

Copy, Unload
or Load BDAM

Data Set

NOTE

Close 'to' and G2
'fram' Data

Sets, Catalog,
Uncatalog,

S r ch as Nee.

Set Up
Parameten in

Woil< Area

Open 'to' and
'from' Data

Sets, Go to
P"'fMI' Routine

Copy the
Catalog

K3

C4

Obtain a DSCB.
Set Up for

One Data Set

Copy, Unload
or Load
Catalog

F4

FREEMAIN. CIOM
SYSIN and SYS­
PRINT. CIOM and

Scratch Work
Data Sets

K4

Return to
Supervisor

Allocate for
Catalig.

BS

Indicate that a
Catalog is Pres,

on this Volume

NOTE: If User Labels Are
Present, Exit from
this Black to Process
them, Return to this
Block,

System Utility Programs: IEHMOVE 39

Chart 06. IEHMOVE DSGROUP Logic

40

NOTE: If User Labels are Present,
Exit from this Block to
Process them.
Return to this Block.

A2

Enter

Open
Catalog

B2

Write Entries
on SYSUTl for
Data Sets to
be included

Read a Catalog
Entry for a

Data Set in
the Group

Write the
Entry on
SYSUTl

Get an
Entry from
SYSUTl

B4

C4
Set Up Work

Area (lEHMVV)
to Treat

Data Set

NOTE

Open
'to' and 'from'

Data Sets

E4

CHART 09

Copy, Unlood
or Load the
Data Set

F4
Update the

Entry to
Reflect New
Status, Write

Ent on SYSUT2

NOTE

Close the
'to' and 'from'

Data Sets

Manipulate
the Catalog
as Necessary

D4

G4

Chart 07. IEHMOVE VOLUME Logic

E2

Allocate for
Catalog. Indicate Yes

that Catalog is
Present on

Volume

Copy
the

Catalog

K2

Yes

A3

Enter

83

Set Up
Work Areo
(IEHMVV) to

Treat Data Sets

C3

Open
the

VTOC

D3

Set Up Work
Area (IEHMVV)
Obtain DSCB

Dato Sets

Copy, Unload,
or Lood the

Data Sets

NOTE

Close the
'to' and 'from'

Data Sets

Manipulate
Catalog as
Necessary

H3

G3

Close
VTOC

K4

NOTE: If user labels are present, exit from thi'
block to process them. Return to this block.

0i3

System Utility Programs: I EH MOVE 41

Chart 08.

42

IEHMOVE PDS Logic

Al

Enter

Scan Control
Statement for

PDS Option

A2

Open the 'from'
and 'to' PDS

Write Member
Names and PDS
of Memben to

be Replaced
on SYSUT2

D2

F2

Write Member
Names and Vol.

Ids. of Memben
to be Exe I uded
SY 2

Close
the
'to'

PDS

K2

No

C3

Read a
Directory

Entry

Write
Directory Entry

on SYSUT3

Get an Entry
from SYSUT3

H3

Copy Member
{Find, Read,

Write, Stow)

Search on
Key in SYSUTl
for Vol. Id.

81.Dl

Get Directory
Entry

F-4

Write DIR.
Entry on
SYSUT3

NOTE: The Record Pending
Wm Not Proc-ed During
lost Pms Because oJ a 'Yes'
in Block D-4

DS

Cla1e Old
'from' PDS

ES

Open N-
'from' PDS

Chart 09. IEHMOVE DSNAME Logic

Enter

Mount
Proper

Volumes

Allocate
Spac'! for 'to'

Data Set

Build DCl!s.
Open 'to' and

'from' Data Sets

Bl

Gl

IEHMVETL

Copy, Unload, or
Load BDAM
Data Sets

Fl

NOTE: If User Labels are Present, Exit
from this Block to Process them.
Retum to this Block.

Build DCBI.
Open 'to' and
'from' Data Sets

IEHMVERD

Unload BSAM
Data Set or

PDS

IEHMVESQ

Perform
Scratching ond

Cataloging

G2

F2
Build DCBs.

Open 'to' and
'from' Data Sets

G3

IEHMVERA

Load BSAM Data
Set or PDS

NOTE

IEHMVESN
Close 'to' and

'from' Data
Sets

F3

H3
ERROR

Copy

NOTE
C4

Build DCBs,
Open 'to' and

'from' Data Set

NOTE
D4

Bui Id DC Bs Open
'to' and 'from'

Dota Set

NOTE

Build DCBs.
Open 'to' and

'from' Data Sets

G4

IEHMETJ

Copy BSAM Data
Set or PDS

H4

IEHMVESO

Analyze Error
Severity. Abort

if Necessary

IEHMVESP ______
Perform any

Scratching and
Cataloging

K4

IEHMVESK

F4

J4

~N""'o;.__ __ 91 Issue FREEMAIN,
Close SYSIN,

SYSPRINT

C5

IEHMVESL

Copy ond Rebik.
Type F BSAM or

PDS

IEHMVESM

Copy and Rebik.
Type V BSAM or

PDS

J5

Return to
Supervisor

IEHMOVE

Stem

K5

D5

System Utility Programs: IEBMOVE 43

Chart 10.

44

IEHMOVE CATALOG Logic

Al

Enter

IEHMVXSF

Mount
Necessary
Volumes

IEHMVESC

Scan Catalo~
Write Entries

on SYSUT!

Read a
Catalog Entry

from SYSUTI

81

Gl

Write the Entry
1n Unloaded

Format on 'to'
Vol.

Get a Rebuilt
Cat. Entry from

'from' Vol.

E2

Read a
Catalog Entry

from SYSUTI

Copy Unloaded
Catalog onto

the 'to' Vol.

C4

Copy & Reblock
Yes the Unloaded

Catalog onto
the 'to' Vol.

Y•

Yes

Alias

INDEX SVC

BLDX on
'to' Volume

INDEX SVC

LNKX on
'to' Volume

INDEX SVC

BLDAon
'to' Volume

SVC 26
E4

F4

G4

Data S.t Name

CATALOG SVC

Try to Cata­
log the DSNAME

on 'to' Vol.

INDEX SVC

BLDX on
'to' Volume

Listing System Control Data
(IEHLIST)
The IEHLIST utility program performs three
functions:

• It prints a catalog or partial catalog.

• It prints a volume table of contents
(VTOC).

• It prints the directories of up to ten
partitioned data sets (PDSs).

The program is serially reusable, but
not reenterable.

PROGRAM STRUCTURE

The overlay structure of the program is
shown in Figure 21. The program consists
of the following control sections (CSECTs):

• IEHRCCT performs basic program initial­
ization. It is resident in main
storage throughout the program's execu­
tion, unlike the other CSECTS. IEHROOT
contains V-type address constants
needed by the overlay supervisor.

• IEHMSG contains only messages.

• IEHPSEG analyzes requests.

• RDCDRT scans control statements.

• DEVNAMET is the device name table.

• IEHINSEG interprets parameters supplied
by a calling program.

• IEHQSEG scans and prints cataloged
data.

• IEHRSEG scans and prints VTOC data.

• IEHSSEG scans and prints PDS directory
data.

• IEHDSEG processes and formats the DSCBs
in the VTOC.

• IEHVOLMT mounts necessary volumes. It
is described under the heading "Device
Allocation and Volume Mounting."

• DEVMASRT is a device mask table used by
IEHVOLMT.

Chart 11 shows the logical flow of con­
trol through the program. Figure 22 shows
the structural flow of the program, includ­
ing the successive phases of the contents
of main storage during the program's execu­
tion. The logic of each control section
(CSEC~) of the program is described in the
following paragraphs.

IEHROOT
contains miscellaneous routines needed
in main storage throughout the pro­
gram's execution (PERRPR, WCRRERR,
P~ERM, LINEPR, DCPOINT, and PEEGIN),

IEHROOT
Initialization

I
l

IEHMSG
IEHVOLMT
Volume

Messages Mounter

DEV MAS KT 1 I I I l Device

IEHINSEG IEHDSEG Mask Table
IEHPSEG

Auxiliary
IEHQSEG IEHRSEG IEHSSEG

Formatted
Request

Parameter
Catalog VTOC PDS Directory

VTOC
Analyzer Analyzer

Printer Printer Printer
Printer

I
l l

RDCDRT DEVNAMET
Control Device
Statement Name
Scan Table

•Figure 21. The Overlay Structure of the IEHLIE~ Program

System Utility Programs: IEHLIST 45

I EH ROOT IEHROOT

I~ r+-

IEHMSG

L...., ~
IEHINSEG

I-'

8 0
The root is load- A branch to a
ed. Subsequent V-type address
loading is constant causes
caused by the overlay
branching to a supervisor to
branch table in load the message
the root. table (IEHMSG)

and the
auxiliary para-
meter decoder
(IEHINSEG).

LEGEND:

- specifies flow of control

specifies a
control section
(CSECT)

specifies a phase of
main storage contents

IEHROOT IEHROOT IEHROOT

~ ~
IEHMSG IEHMSG IEHMSG

IEHPSEG IEHPSEG IEHPSEG

o~ t-

I+

RD CD RT DEVNAMET

I--'

0 0 0
The request The control The device name
analyzer statement scanner table
(IEHPSEG) is (RDCDRT) is (DEVNAMET)

loaded as in<]). loaded. Control overlays the
cycles between scanner by means
the request of the segwo it
analyzer and routine.
the scanner
until all
parameters ore
analyzed.

IEHROOT IEHROOT IEHROOT I EH ROOT

~ ~ ~

IEHVOLMT IEHMSG IEHMSG IEHMSG

L-1 IEHQSEG, ~
DEVMASKT IEHPSEG IEHRSEG, IEHPSEG

L.,
IEHSSEG

or
IEHDSEG

8 0 0 0
The volume The message The appropriate The request
mounter table and the information analyzer
(IEHVOLMT) request printing routine* overlays the

analyzer overlays the segment loaded
overlay all but request analyzer. in@. The

and the device
mask table
(DEVMASKT) the root. program

overlay all * IEHQSEG terrni notes or a
but the root. prints the new request is

catalog. on~zed, as
IEHRSEG in 3.
prints a
VTOC.
IEHSSEG
prints a PDS
directory.

IEHDSEG
formats all
DSCBs in
the VTOC.

•Figure 22. The Structural Flow of the IEHLIS'I Program

46

together with several communication
areas (CARDIN, PRINTOUT, WORKIN, and
RONl'AB).

PERR PR
causes any invalid control statement
to be printed, and gives control to
PTERM or PBEGIN, depending on wheth­
er there are any more control
statements.

WORKERR
treats all SYNAD exits.

PT ERM
receives control when all job
requests have been serviced or
aborted, and ends the job.

LINEPR
prints all program output.

DOPOINI'
issues all POINT supervisor calls
used by the program.

PBEGIN
directs control to the segments by
means of a branch table of v-type
address constants.

The following areas are located in the
root:

CARDIN
is the DCB for reading control
statements .•

PRINTOUT
is the DCB for printing the catalog,
VTOC, or PDS.

WORKIN
is the DCB for reading the catalog,
VTOC, or PDS directory.

RON TAB
is the parameter list for the volume
mounting routine.

IEHPSEG
analyzes requests and directs control
to the appropriate routine to print
the requested information. It con­
tains the following subroutines:

PBEGIN
directs control to IEHINSEG to
interpret calling program parame­
ters, and to open SYSIN and
SYSPRINI'.

PON
directs control to RDCDRT to obtain
control card information.

PKEY
is given control when a keyword is
returned by RDCDRT.

PPARAM
is given control when a parameter is
returned by RDCDRT. When the param­
eter supplied to the <optional) VOL
keyword is returned, the parameter
is used as a search argument in the
device name table. The value re­
trieved is used by PWORKIN.

PWCRIUN
constructs the calling sequence for
IEHVOLMT.

PHEAD
prints a header and gives control to
the appropriate routine to print
catalog, VTOC, or PDS directory
information.

PT ERM

RDCDRT

receives control following the
printing of catalog, VTOC, or PDS
directory information. If there is
another request, PTERM directs con­
trol to PON; otherwise, PTERM closes
SYSIN and SYSPRINT, and returns con­
trol to the supervisor.

scans utility control statements. It
is described under the heading •con­
trol card Scanner• at the beginning of
this publication <see the Table of
Contents).

IEHINSEG
interprets auxiliary parameters sup­
plied by a calling program (these pa­
rameters are described under the head­
ing •Auxiliary Parameters•), and also
opens SYSIN and SYSPRINT or their sub­
stitutes, as specified in the calling
sequence to the program.

IEHQSEG
prints the catalog. It gains control
indirectly from the request analyzer,
IEBPSEG, by means of a branch to a
branch table in the root. IEHQSEG
contains the following routines:

QCBECXl.
scans the catalog for general inf or-

mation and prints it. Actual print­
ing is done via a branch-and-link to
LINEPR in the root.

QHEAD
prints a catalog header after the
general information is printed.
Actual printing is done via a
branch-and-link to lINEFR.

QALL
scans high-level node points in the
catalog and passes them to ~lCCATE.
QALL is used only in the case of an
entire catalog printout.

QLOCA'IE
scans from a node point to succes­
sive index levels until a data set
pointer is found. A fully qualified
data set name is placed at location
INDANAME for routine lPRDATA.

LPRDATA
prints information pertinent to a
data set.

QCA'IREAD
performs all the reading of a cata­
log for the catalog function of the
program.

IEHRSEG
prints a VTOC. Control is gained
indirectly from IEHPSEG by means of a
branch to a branch table in the root.
IEHRSEG contains the following
routines:

RPARTIAL
treats requests for partial VTCC
printouts. successive DSCBs are
printed by linking to RPRDSCB.

REN'IIRE
treats requests for entire VTCC
printouts and differs from RPARTIAL
in that the VTOC must be opened.

REODAD
calculates and prints volume space
information for an entire VTOC
printout.

RPRDSCB
prints a DSCB that has been read by
RPARTIAL or RENTIRE.

RREAD
reads the V'IOC.

IEHSSEG
prints PDS directories. control is
gained. indirectly from IEHPSEG by
means of a branch to a branch table in
the root. IEBSSEG contains the fol­
lowing routines:

System Utility Programs: IEHLIST 47

SSTART
obtains the directory of a given
PDS.

SRESCAN
prints the member names of the di­
rectory. Actual printing is done by
linking to LINEPR.

IEHDSEG

48

formats the DSCBS in the VTOC (See
Appendix C). This CSECT gains control
indirectly from CSECT IEHPSEG by means
of branching to a branch table in the
root segment. CSECT IEHDSEG contains
the following routines:

DPARTIAL
handles requests for a partial VTOC
printout. The routine reads the
Format 1 DSCB by using the OBTAIN
macro instruction and links to the
DFORMATl routine for printing of the
DSCB. The DPARTIAL routine then
links to the DFORMAT2 and DFORMAT3
routines for printing, respectively,
the Format 2 and/or Format 3 DSCBs.

DEN TIRE
handles requests for the printout of
an entire VTOC. This routine is
similar to the DPARTIAL routine.
However, for an entire VTOC print­
out, the DCB for the VTCC must be
opened and all forms of DSCBs are
formatted.

DFORMATl
handles the formatting of the Format
1 DSCB.

DFORMAT2
handles the formatting of the Format
2 DSCB.

DFORMAT3
handles the formatting of tne Format
3 DSCB.

DFORMAT4
handles the formatting of the Format
4 DSCB.

DFM'I56
handles the formatting of Format 5
and Format 6 DSCBs.

•Chart 11. IEHLIST - Listing System Control Data

Al

Enter

Yes

Kl
Return to

Supervisor

IEHINSEG A2

Initialize

QSTART 02 -------
Print

General
Catalog

Information

Calculate
and Print

Space
Information

PTE;;;RM.;.;.... ____ _.K.-.2

Terminate

the Job

RDCDRT

Scan
Control

Statements

A3

PKEY~------83...,

Analyze
Parameters

IEHVOLMT

CAT

Mount
Proper

Volumes

Edit and
Print
DSCB

C3

PDS

SRESCAN

Obtain a
PDS I

Directary

D-4

No

Edit and
Print

Member
Names

Calculate
and Print

Space
Information

System Utlility Programs: IEHI.IS'l' 49

Updating XCTL Tables for OPEN,
CLOSE, and EOV (IEHIOSUP)

The IEBIOSUP program updates the XCTL
tables emtedded within various load modules
of the I/O support functions OPEN, CLOSE,
and EOV. The program is executed as a
result of jot control statements in the job
stream at the time of system generation.
The program is not serially reusable. It
consists of one load module, IEHIOSUP.

The name of the load module for the
first phase of each of the I/O support
functions listed above is of the form
IGCOOnnn, where nnn is the decimal SVC code
for the data management function. The
names of subsequent load modules are of the
form IGGnnnxx, where nnn is the decinal SVC
code for the data management function, and
xx is a load module identifier. If the
seventh character of the load module name
is alphatetic, the load module contains no
XCTL table.

An XCTL table is always present in the
first type of load module, but not always
present in the second. If present, the
table may be embedded anywhere within the
load module Csee Figure 23). The last byte
of the load module is a relative pointer
Cin double words) to the table.

IGCOOnnn
or

IGGnnnxx
r-------------------------------1
I I
I I
I doubleword boundary I
1----------T--------------T-----i
I ID I TTR I L I

XCTL table~----------+--------------+-----i
(variable I I I I

length) 1----------+--------------+-----i
I I I I
~----------+--------------+-----i
I oo I I I
~----------i--------------i-----i
I l.indicates end of table I
I I
I r--------------T-----i
I I SVC I p I ._ _________ i ______________ i _____ J

ID = 2-byte entry identifier of a subse-
quent load

TTR = 3-byte relative track address of the
subsequent load

L = 1-byte length (double-words> of the
subsequent load

SVC = 3-byte decimal SVC number of support
function

p = 1-byte relative pointer (double-
words) to XCTL table

Figure 23. Embedded XCTL Table Format

50

Each entry within an XCTL table consists
of the identifier of a subsequent load
module, the location of the load module
CTTR>, and the length Cin double words) of
the load module.

PROGRAM F'LOW

The flow of the IEHIOSUP program is shown
in Chart 12.

Finding the Load Module

Load modules of the first type CIGCOOnnn>
are updated first. If a load module of
this type is not found, an appropriate mes­
sage is printed and the program is aborted.
Load modules of the second type are pro­
cessed only after successful processing of
the first type; during this processing, the
program ends normally if either all load
module XCTL tables are updated or the end
of the directory is reached in searching
for a load module entry.

Entries for load modules are sought for
in order of increasing binary value Cin
accordance with the organization of the
directory> by reading a directory record
and comparing the record key to the name of
the desired load module. When the record
key compares higher than or equal to the
load module name, the entry is sought for
(sequentially) in the record. If the load
module is of the first type CIGCOOnnn> and
no entry is found for it in the record, the
program aborts. Load module names whose
seventh character is alphabetic are
ignored, since the load modules they name
have no XCTL tables.

When the entry for the load module is
found in a directory record, the location
<TTR) of the 1oad module is extracted from
the entry and converted to an absolute
address CMBBCCHHR). The conversion is
effected via the execution of the program
IECPCNVT, which is passed the TTR to be
converted and the address of the appropri­
ate DEB. The address Of the IECPCNVT pro­
gram is found in the Communications Vector
Table at absolute (decimal> location 44.

Updating the XCTL Table

The absolute address of the load module
desired is then used to read the load
module into the buff er BUFFER. Reading of
the load module is done via the EXCP macro
instruction; the channel program is at
location CCWREAD, and the DCB is at loca­
tion EXCPDCB. When the load module has
been read into main storage, the address of
its last byte is determined using the count
field of the ccw and the residual count of

the CSW and is used to calculate the
address of the beginning of the XCTL table
within the load module. Up to 40 entry
identifiers are then moved from the XCTL
table and sorted in the area SORTAREA. If
more than 40 entries are in the ~CTL table,
a switch (SWITCH + 1) is set. After the
entry IDs are sorted, each is expanded to
its full 8-byte form (i.e., IGGnnnxx). ~he
sorted, expanded IDs are then passed to the
BLDL macro instruction, which returns in
BLDLAREA the new entry values (TTR and
length> for each ID. The values are then
moved to XCTL table. Any remaining entry
IDs in the table are sorted, expanded, and

~assed to BLDL, 40 at a time, and updated
in the same manner.

The entire load module containing the
u~dated XC~L table is then written at its
original location. If there are nc reore
load modules to be processed, the SVClIB
data set is closed and the program ter­
minates. Otherwise, control cycles as
indicated in Chart 12 until all load
modules are processed or an error condition
is returned by BIDL or EXCF. such an error
condition results in abnormal termination
of the program.

System Utility Programs: IEHICSUP 51

Chart 12.

52

IEHIOSUP - Updating I/O Su~port XCTL Tables

Entry Initialize

READ MORE A3

Read a
Directory

Record

FOUND D3

IECPCNVT

Convert TTR
in Entry to

MBBCCHR

MBBCCHHR E3

EXCP

Read the
Module

N F3
Move

Appropriate
XCTL Tobie

Entry ID's to
Sort Area

STEPUP G3

Sort and Expand
Up to 40 ID's
from XCTL Table

H3

BLDL

Obtain New
TTR's and
Len th

TRVNEXTl J3

Plug New TTR's
and Lengths

into XCTL Tobie

No

Examine
Next Entry

in Record

Increment to
Name of Next

Module
to be

EXCP

84

H4

Write Out the
Updated
Module

Yes Close
the SVCLIB

Dato Set

JS

Initializing the SYS l .LOGREC Data
Set (IFCDIPOO)

The IFCDIPOO program is executed during
system generation to initialize the SYSl.
LOGREC data set (a data set used by systems
environment recording modules to record
CPU, channel, and I/O device errors).

This program is executed as a result of
job control statements provided by the GEN­
ERATE macro instruction during the SYSGEN
process. Input to the program (as speci­
fied in the EXEC statement) consists of the
(decimal) number1 of unit control blocks
CUCBs) in the system, and the system resi­
dent device type code (for an explanation
of the code, see •sYSl.LOGREC Record
Format•>.

The output of this program at normal
completion is of three types:

• The initialized data set SYSl.LOGREC.
(See the section •sYSl.LOGREC Record
Format.•)

• Information to be used as parameters
for executing the environment recording
edit and print (EREP) program.

• Information to be used for recording
CPU, channel, and I/O device errors by
the systems environment recording
modules.

PROGRAM FLCW

Chart 13 shows the flow of the program,
which consists of one load module CIFC­
DIPOO). The data set SYSl.LOGREC to be
written consists of three subsets:

• A header record, written by this
program.

• A variable number 0£ statistical data
records (STAT/RECs), written by this
program with data fields of zeros.

• A record entry area beginning on the
first track following the STAT/RECs,
not written by this program.

SYSl.LCGREC records are written using
BSAM WRITE. Diagnostic messages are writ­
ten using the WTO macro instruction.

The program is executed in two passes:
the first pass (see Figure 24) initializes
the program, writes a dummy header record,

1This number is equal to the number of
uniquely addressable I/O devices in the
system.

and writes as many statistical data records
as there are UCBs for the system; the
second pass (see Figure 24) uses the data
obtained in the first pass to write a
genuine header record over the dumn:y, and
then writes as many statistical data rec­
ords (over and following those written dur­
ing the first pass) as are necessary to
fill out the track occupied by the last
statistical data record written during the
first pass.

SYS1.LOGREC After First Pass of IFCDlPOO
r~--------T---------T------~-r~--------1
I DUMMY I STAT. I STAT. I STAT. I
I HEADER I REC. I REC. I REC. I
L----------L---------L---------..1.----------J
r----------T---------r--------------------1
I S'IA'I. I S'IA'I. I I
I REC. I REC • I I
L----------L---------i--------------------J
r---1
I I
I I
L---J
SYSl.LOGREC After Second Pass of IFCDlPOO
r----------T---------T---------T----------1
I GENUINE IREWRIT'IENIREWRITTENIREwRITTEN I
I HEADER IS'IAT.REC.ISTAT.REC.ISTAT.REC. I
L----------L---------i---------..1.----------J
r----------T---------r---------T----------1
IREWRI'ITEN IREWRITTENI STAT. I STAT. I
l~'IA'I.REC. IS'IA'I.REC.I REC. I REC. I
L----------i---------i---------..1.----------J
r---1
jtNWRI'ITEN I
I (RECORD ENTRY AREA) I
L-----------------------------~~--------J
Figure 24. SYSl.LCGREC After First and

Second Passes of IFCDlFOO

First Pass

Program initialization consists of saving
registers and analyzing the input f rorn the
E~EC statement. The dummy neader is then
initialized and written. The location Cin
~'IR format) of the dummy header is saved
for the ·second pass. The first pass sta­
tistical data records are then written,
each of which consists of a 2-byte key
(ascending sequence) and a 38-byte data
field of zeros. The location of the last
statistical data record written during the
first pass is saved for the second pass,
where it will be used to compute informa­
tion necessary to complete the genuine
header record. ~he program then enters the
second pass.

Eecond Pass

A switch (PASS) is set, indicating that the
program has entered the second pass. This
switch will be interrogated following the
rewriting of the statistical data records

System Utility Programs: IFCDIFOO 53

in this pass. First, however, data neces­
sary to the genuine header record is com­
puted. A description of the fields of the
header record may be found under nsys1.
LOGREC Record Format.w The values supplied
to these fields are computed using the
track number obtained by the NOTE routine
following the writing of the last statisti­
cal data record written during the first
pass.

The genuine header is then written.
Following this, the original statistical
data records are rewritten. The switch
PASS is interrogated, and indicates that
the second pass has been entered. The
track containing the last statistical data
record is then padded with additional sta­
tistical data records. SYSl.LOGREC is
closed, and IFCDlPOO returns control to the
supervisor.

SYSl.LOGREC RECORD FORMAT

The SYSl.LCGREC data set consists of three
subsets:

• A header record, written by this
program.

• A variable number of statistical data
records CSTAT/RECs), written by this
program and initialized to zero.

• A record entry area (RE), not written
l::y this program.

Header Record

The header record is a 38-byte data field
preceded by a 2-byte key of hexadecimal
FFFF. The header record contains the fol­
lowing fields:

1. A four-byte field containing the
address (CCHH) of the first track in
the SYSl.LOGREC extent.

2. A four-byte field containing the
address CCCHH) of the last track in
the SYSl.LOGREC extent.

3. A one-byte constant containing the
highest address of a track on a
cylinder of the system resident
device.

54

4. A seven-byte field containing the
address and ID CBBCCHHR) of the first
track of the RE area. The ID is set
to zero.

5. A two-byte field containing the nu~ber
of remaining bytes on the last RE
track written. This field is initial­
ly identical to field 6.

b. A two-byte constant equal to the track
byte capacity for the system resident
device.

7. A seven-byte field containing the
address and ID CBBCCHHR) of the last
track written in the RE area. This is
initially identical to field 4.

8. A two-byte field containing the number
of UCBs in the system.

9. A two-byte field containing the number
of tracks occupied by the SYSl.LOGREC
data set.

10. A one-byte code for the type of system
resident device:

11.

DEVICE
2311
2301
2302

CCDE
X'Ol'
X'02'
X'04'

A five-byte expansion field.

12. A one-byte field of hexadecimal FF
used to detect a previous overrun con­
dition caused by a machine check or
channel inboard failure while writing
the header record.

Statistical Data Records

~his program writes each statistical data
record with a 2-byte key field and a 38-
byte data field of zeros.

Record Entry Area

~his area begins on the first available
track following the last track on which a
statistical data record is written. Noth­
ing is written in this area by this pro­
gram. The address of this track is written
by this program in field 4 of the header
record.

t~ ..

Chart 13.

'-

IFCDIPOO - Initializing the SYSl.LOGREC Data Set

Entry

IFCIDOO A2

Initialize

J2

Paint ta
Header
Record

Gather Data far
Genuine Header

Record

K2

Set Up
Dummy
Header

Open
SYSl • LOGREC

DWRITE

Write
Header

Nate
(for Later

Paint)

Set Up 1st
Stat/Rec

Key

WRSTAT

Write
a

Stat/Rec

Nate
(far Header

Data)

Set Second
Pass Flag

A3

83

C3

D

E3

Get Number of
Additional

Stat/Ree's
from Table

H4

Close
SYSl .LOGREC

JS

KS

Return

System Utility Programs: IFCDIPOO 55

Editing and Printing Environmental
Records (IFCEREPO)

The IFCEREPO ("EREP") program edits and
prints records from the SYS1.LOGREC data
set. (These records were originally writ­
ten by systems environment recording pro­
grams and provide the error environment of
CPU, channel, and device errors.) EREP
optionally saves certain SYS1 .• LOGREC error
records on an accumulation (history) data
set to provide comprehensive error statis­
tics. The accumulation data set may then
be used as input to EREP. Records from
SYS1.LOGREC (except SDRs) or from an accu­
mulation data set are printed in sUilimarized
form when the summary option is selected.

EREP operates in the problem state and
is serially reusable. It consists of the
following machine-independent modules:

• IFCEREPO and IFCEREP1 (Charts 14-18),
the control modules.

• IFCMSGOO, the message module.

• IFCSDROO (Chart 19), which edits sta­
tistical data records (SDRs).

• IFCOEROO (Chart 20), which edits I/O
outboard records (OBRs>.

• IFCOBRSM, which edits the outboard
record summary.

• IFCMCBOO (Charts 21 and 22), which per­
forms preliminary editing of channel
inboard records and machine check
records.

Figure 25 illustrates the communication
between modules of the EREP program.
Figure 26 lists the machine-dependent
modules of the EREP program.

r----------------, LOAD r---------------1
I IFCEREPO 1------~ IFCEREPl
ICModel I j(Model
I Independent I I Dependent I
!Control Module) ~----->-fControl Module> I
LT---------------J L---------------J
LI t Rt
II I El
NI I Tl
Kl I u I

I I RI

t t NI
r----------------,
IProcess and Editl
I Modules I
L----------------J
Figure 25. Control Flow Between Modules

56

All communication between record
processing/editing modules and control
modules is through IFCEREPO, the model­
independent control module. This module
then may communicate with IFCEREP1, which
is model dependent, to handle summary/
process/edit requests.

overall Flow

The control module first scans and analyzes
parameters from the execute statement, and
then performs basic initialization, such as
loading the second control module and the
message module. Module IFCEREPO also
determines the input and output data sets
to be used and opens their associated DCBs.
When the parameters specify the summary
option, the control module obtains via a
GETMAIN macro instruction from 1.7 to 4K
bytes of storage. (The size of obtained
storage depends on the amount of free
storage.)

The record-processing path determined by
the control module depends on whether the
input data set is SYSl.LOGREC or an accumu­
lation data set. When the input is an
accumulation data set, program flow also
depends on whether a record data summary is
requested. (The control modules indicate
program flow by setting bits or bit­
combinations in four switch bytes.)

SYSl.LCGREC Input

When SYSl.LOGREC is the input data set,
EREP processes all records of a type before
processing another type. The program reads
a record from SYSl.LOGREC and the appropri­
ate editing module is given control by
means of the Link routine. When all rec­
ords of the selected type have been read
and the appropriate ones edited and writ­
ten, the options are checked to see if
another type of record is to be processed;
if so, all the records of this type are
read and the appropriate ones edited and
written. For record types other than SDR,
optioned summary and accumulation functions
are performed before EREP begins processing
another record type. (Unlike other record
types, OBRs are written into the accumula­
tion data set in blocks of ten. Space for
record blocking is reserved in the message
module.)

When all records of the selected types
have been processed, the SYSl.LOGREC header
record is checked by the control module to
see if any additional records were stored
in SYSl.LOGREC while EREP was processing.
If any were stored, the program enters a
second pass and the additional records are
edited and written regardless of the
options selected. No sumrr.ary of these rec­
ords is performed.

,------------T-------------.,------------T---1
IMACHINE I MODULE ID I MODLIB ID I FUNC'IION I
I I I <***> I I
~------------+--------------+-----------+---~
!Model 40 I IFCMC140 I IFCEP400 I Edits CPU records. I
I I IFCMC340 I IFCEP401 I Completes editing of CPU records. I
I I IFCSUM40 I IFCEP104 I summarizes CPU and inboard records. I
I I IFCMCS40 I IFCEP041 I Edits the CPU records summary. I
I I IFCINS40 I IFCEP072 I Edits the inboard records summary. I
r------------+--------------+-----------+---~
!Model 50 I IFCMC150 I IFCEP500 I Edits CPU records. I
I I IFCMC250 I IFCEP501 I Completes editing of CPU records and edits I
I I I I inboard records. I
I I IFCSUM50 I IFCEP105 I summarizes CPU inboard records. I
I I IFCHCS50 I IFCEP051 I Edits the CPU records summary. I
I I IFCINSSO I IFCEP052 I Edits the inboard records summary. I
~-----------+--------------+-----------+---~
jModel 65/67 I IFCMC165 I IFCEP650 I Edits CPU records. I
I <*> I IFCMC265 I IFCEP752 I Edits inboard records. I
I I IFCMC365 I IFCEP651 I Continues editing CPU records. I
I I IFCMC465 I IFCEP652 I Completes editing CPU records. I
I I IFCSUM65 I IFCEP106 I suw~arizes CPU and inboard records. I
I I IFCMCS65 I IFCEP061 I Edits CPU records summary. I
I I IFCINS65 I IFCEP072 I Edits inboard records summary. I
I I IFCASROO<**> I IFCEP655 I Edits machine-check handler portion of CPU I
I I I I records. I
I I IFCASROl(**> I IFCEP656 I Edits channel-check handler portion of inboard!
I I I I records. I
r------------t--------------+-----------+---~
!Model 75 I IFCMC175 I IFCEP751 I Edits CPU records. I
I I IFCMC275 I IFCEP752 I Edits inboard records. I
I I IFCMC375 I IFCEP753 I Completes editing CPU records. I
I I IFCSUM75 I IFCEP107 I summarizes CPU and inboard records. I
I I IFCMCS75 I IFCEP071 I Edits CPU records summary. I
I I IFCINS75 I IFCEP072 I Edits inboard records summary. I
~-----------t--------------+-----------+---~
jModel 85 I IFCMC185 I IFCEP850 I Edits CPU records. I
I I IFCMC385 I IFCEP851 I Completes editing of CPU records. I
I I IFCMC485 I IFCEP852 I Edits inboard records. I
I I IFCSUM85 I IFCEP108 I summarizes machine-check handler records. I
I I IFCMCS85 I IFCEP081 I Edits and prints summary counters. I
I I IFCMC585 I IFCEP853 I Edits CPU record summary. I
r------------t--------------+-----------+---~
!Model 91 I IFCMC191 I IFCEP950 I Edits CPU records. I
I I IFCMC291 I IFCEP952 I Edits inboard records. I
I I IFCMC391 I IFCEP951 I Continues editing CPU records. I
I I IFCMC491 I IFCEP953 I Completes editing inboard records. I
I I -IFCSUM91 I IFCEP109 I Summarizes CPU and inboard records. I
I I IFCMCS91 I IFCEP091 I Edits CPU records summary. I
I I IFCINS91 I IFCEP072 I Edits inboard records summary. I r------------4-_____________ i ___________ i ___________________________________ ~----------~

!<*>Except for modules IFCASROO and IFCASROl, all modules in this group have aliases of I
I IFCxxx67, where xxx represent the fourth, fi£th, and sixth characters in the module I
I ID. I
!<**}These modules occur only in systems having the machine-check handler and the chan- I
I nel check handler feature. I
l<***>This is the module identification before it is link-edited onto the Link Library. I
l---J

•Figure 26. EREP Machine-Dependent Modules

Accumulation Input

When an accumulation data set is the input,
EREP minimizes the number of access cycles
by processing more than one record type on
a pass if a summary was not requested or if
the maximum 4K bytes of storage for a

requested summary was obtained fro~ the
GETMAIN routine.

If the summary was requested or maximum
storage was unavailable, the program first
edits and prints OBRs, if requested. Since
available space may be insufficient for an

System Utility Programs: IFCEREPO 57

OBR summary, more than one summary pass may
be necessary. After OBR processing is com­
~lete, INB and machine check records are
processed in a single pass each.

Control Module Subroutines

The control module and the editing modules
make use of the following subroutines,
located in the control module, to perform
I/O operations:

XWRTPRT

58

writes edited data, using BSAM, on the
specified output device. Records are
written in 120-byte blocks from the
buffer XPRTBUF, also in the control
module.

XRDDISK
reads, using EXCP, a record from SYSl.
LOGREC into the buffer XDADBUF, also
in the control module.

XWR'IDISK
writes, using EXCP, a record of zeros
on SYSl.LOGREC. The buffer XDADEUF is
zeroed out by the editing module. If
disk writing is prohibited, this rou­
tine returns control immediately.

XWR~OP

writes, using ~TC, messages to the
operator.

XACCSUM
accumulates and summarizes records, if
necessary.

Chart 14. IFCEREPO Initialization and Linkage to Editing Modules

IFCEREPO

Bl

Scan
and Analyze

EX EC Statement
Parameters

Cl cs
Load IFCMSGOO Set 'Skip

and Store OBR Processing'
Address NOP Active

Dl

Load IFCEREPl
and Store
Address

E2

Open
Accumulation

"
Output Data

Set

F2 F3

Open
Write

Print Output
Output Header

Data Set

G2 G5

Open Set 'INB
Accumu I ation Only' NOP

Input Data Active
Set

H2

Free 4K
Main Storage No

Set 'OBR

for Link Only' NOP

Modules Active

Read Get4K
SYSI .LOGREC Main Storage

Header for Link
Record Modules

Kl K3 K5
Determine Get 1.5K to

if Hdr Record 4K Main Set 'INB
is Correct-- J2 Storage for Only' NOP

if Not, Write Summary Active
to Operator Counters

"'
System Utility Programs: IFCEREFO 59

Chart 15.

60

EREP - Input From SYSl.LOGREC Data Set

Dl

from
SYS 1 • LOGREC

IFCSDROO

Select, Edit
and Print

Sdrs.

IFCOBRSM

Edit Summary
of Obrs.

El

Set Print
Switch On

Read a Record
from

A2

SYS 1 • LOG REC

IFCOBROO

Process Obr.

Yes

Read a Record
from

C3

SYS l . LOGREC

IFCMCHOO

Start
Processing

Record

Link to
Necessary

Module

No

Set
First Pass
Switch On

IFCINBSM

F.-!it and Print
Summary of
lnb. Records

A4

IFCMCHSM
Edit and Print

Summary of
Mch. Records

Yes

Determine
Start of

Record Entry
Area in

SYS 1 • LOG REC

Read a Record
from

SYS 1 • LOGREC

IFCMCHOO
Start

Processing
Record

Link to
Necessary

Module

•Chart 16. EREP - Input From Accumulation Data Set

Al

Read a
Record from

Accumulation
Data Set

'------4W A I

Set
First Read
Switch on

Process
Obr, Record

C2

F2

'------4W A 1

Write ta
Operatar­
lncorrect

Input

Yes

.__ ___ _...,18

IFCMCHOO

Start

Link ta
Correct
Module

Al

H3

System Utility Programs: IFCEREFO 61

Chart 17.

62

EREP - Accumulation Input - End of Data

Set
Skip OBR' NOP

Active

No

IFCOBRSM

Edit and Print
Summary of
Obr.Records

IFCINBSM

Edit and Print
Summary of
lnb. Records

02

F2

G2

IFCOBRSM

Edit and Print
Summary of
Obr. Records

Set 'INB
only' NOP

Active

K2

Active. Set
'Skip INB'
NOP Active

N

IFCOBRSM

Edit and Print
Summary of
Obr .Records

IFCINBSM

Edit and Print
Summary of
lnb. Records

Set

F4

'Skip INB' NOP ---+--... 1

Active

JS

IFCMCHSM

Edit and Print
Summary of

Mch. Chk. Reds.

CLS (Type=T)
Input Data

Set ta Repoa.
Vol. ta Start
of Data Set

Chart 18. EREP Termination

Close
SYSI • LOG REC

Data Set

Return to

Supervisor

Yes

Yes

Close
Accumulation

Input
Data Set

A2

C2

Close
Accumulation

Output
Data Set

D2

Close
Output Data Set

System Utility Programs: IFCEREPO 63

Chart 19. IFCSDROO - Editing SDRs

64

Save Registers

EN1---...L..-'"""""'I-.
Com. No. of "Ent

in Devc •. Type
lbl.Com. Key

for Last
Stat/Rec

Search
Device Type

Table for
Device Type

Code

Save Device
Type, Print
Message

Print
Message, No

Device Type

No

Hl

Reod
the Next Record

Update
Expected Key

Value

Print
STAT Reg

Source, Type,
CUA, Device

T e

No

No

No

Yes

Move
Statistical

Data Record to
Editing Area

LFTDEC

Print all
Counten in

Decimal

Print

Yes

J3

K3

~e, None 11-----W

Edited

Set
Last Record

Switch

D4

J4
Zero Out

Statistical
Datn Record and
Rstore Proper

K

WRTSDR

Write
Red Back in

Same Area of
SYSI • LOG REC

J5

Return to Control Module

Chart 20. IFCOBROO - Editing OBRs

Convert EBCDIC
Dates

(low-High) to
Hex.,Save. Print

Convert EBCDIC
CUA's to

Hex.,Save. Print

Summary
and

'rlnt
Outboard Red.

Hdgs. MoHI,
Source, Type
CUA Device

Print the
Remaining

Fields of the
Outboard
Record

J2

Zero
Out the Record

JS

Write the
Record Back

in Same Area of
SYSI • LOGREC

Return SVC

Return to
Control
Module

System Utility Programs:

.__ ____ 15

D2

IFCEREFO 65

•Chart 21.

66

IFCMCHOO - Editing Inboard and CPU Records (Part 1 of 2)

IECMCHOO

Save
Registers

Print
Appropriate

Header
Inboard or CPU

82

Convert EBCDIC
Dates (Low-Hi)
to Hex, Save,
Print Message

Summary and
Accumulation

if Needed

No

No

Print
Message
'Not

Complete'

Print CPU
Red. Heading­

Madel, Source,
Type

G4

Print
Prog ld.,Date,

Time, Channel
Confj b Active

Inboard

SER;.;.1 __ _._ _ __..F.._,5

Print Inboard
Red .Heading•

Madel, Source,
Type

GS
Print

Prog Id., Date,
Time, CCW,

CSW Time
CCW SW

Chart 22. IFCMCHOO - Editing Inboard and CPU Records (Part 2 of 2)

NOTE 1 - Includes Modules IFCMCHOl and IFCMCH03

No

Print IFCASOO

Message- No
'No Channel Edit and Print

log' MCH Data

22
F2 F2

Zero Out
Print

Record
ERPIB Yes

Area
(CCH)

"
Analysts

No

NOTE I
Rewrite GS

Red. in Same
SYS! .LOGREC Complete

Area if MCH. Check
Needed~ Edit & Print

H2 H3

Indicate Set Up to Call IFCMCHSM
Edit of Next Edit

this Red, Module for Edit & Print

Ended Channel Log Mach. Red.
IFCMCHO 2) Summary

J3

SVC Inboard CPU SVC
Return Return

System Utility Programs: IFCEREPO 67

Loading the 2821 Generator
Storage (IEHUCSLD)

The IEHUCSLD program reads records that
contain user-specified character images,
requests the operator to change the print
chain or train, loads the images into 2821
generator storage, and prints the images so
that the operator can verify the operation.
Options allow the user to specify folding
or non-folding mode, permit him to use non­
standard ddnames and to bypass the verif i­
cation procedure.

The IEHUCSLD program may be executed as
an independent job step or it may be
entered via the LINK or ATTACH macro
instruction. In either case the user may
specify alternate ddnames and bypass veri­
fication procedures. Program flow is shown
in Chart 23.

PROGRAM FLCW

When IEHUCSLD is given control it examines
the parameter list to determine which (if
any> option has been specified. If no
option has been specified it assumes the
VERIFY option.

The next step is to determine whether an
alternate ddanme is specified for either
the input or printer data set. If an
alternate name is specified, IEBUCSLD moves
the specified name to the DCE; otherwise it
moves the standard names.

The program then initializes the printer
DCB for use with the EXCP macro instruc­
tion, and opens the input and printer DCBs.
It checks to see that both DCBs are proper­
ly open, then inspects the printer UCB to
insure that the universal character set
feature is available.

If either DCB is not properly open, or
if the universal character set feature is
not available on the requested printer, the
ddname specification (or other inforrration
in the DD statement> is incorrect. In
either case, IEHUCSLD closes both DCBs and
returns with a return code of 8.

If both DCBs are properly open and the
universal character set feature is avail­
able, the IEHUCSLD program copies the
printer unit name from the UCB into the
operator message and print line texts, and
prepares to read the four control records.

IEHUCSLD uses the Read routine four
times to bring the control records into
main storage. When the first record has
been read, there is some initial processing
done before the normal processing takes
place.

68

The initial processing includes a check
for an asterisk in position 1 and a com­
parison of the two type ID fields. The
type ID is then copied into the operator
message and print line texts, the mode
option field is inspected, and the printer
ccw is initialized (to folding or non­
folding mode) accordingly.

The normal processing is done for all
four records. The images field is moved to
an internal buffer, the record is sequence
checked and its format is verified. Then,
unless four records have been read, a
branch is executed to the expansion of the
READ macro instruction.

If it finds an error in a control rec­
ord, IEHUCSLD uses the WTO macro instruc­
tion to issue message IEH503I, the control
card error message. It closes the DCBs,
loads return code 8, and returns.

When IEHUCSLD has processed all four
records, it closes the input DCB and checks
for the LOADONLY option. If the LOADONLY
option is specified, the program branches
to the EXCP macro expansion; otherwise it
requests the operator to change the print
chain or train. It issues message IEHSOOA
and waits for the operator to reply with
the type ID or 'SKIP'.

If the operator replies 'SKIP', the
IEHUCSLD program issues the no action mes­
sage, IEH506I, closes the printer DCB and
returns with code o.

If the reply specifies the type ID
requested, IEHUCSLD uses the EXCP macro
instruction to load the character images
into 2821 generator storage, and waits for
completion 0£ the channel program.

When completion of the channel prograrr
is posted in the ECB, the IEHUCSLD program
inspects the completion code bits to deter­
mine whether a permanent error has occured.
If so, and the error is a parity error,
IEBUCSLD closes and reopens the printer DCE
and retries the channel prograrr..

If the error is a permanent error, but
not a parity error, the program closes the
printer DCB and returns with code 12.

If the error is not a perrranent error,
but completion is not norrr.al, or if the
retry fails, IEHUCSLD closes the printer
DCB and returns ~ith code 12.

If the channel program is successfully
completed, the IEHUCSLD program closes the
printer DCB and checks for the LOADONiY or
NOVERIFY option. If either option is spe­
cified, the program writes message IEH502I
to the operator to tell him that the images

have been loaded, issues return code 0 and
returns.

If neither the LOADONLY or NOVERIFY
option is specified, IEHUCSLD opens the
printer DCB for BSAM. It skips the printer
to the next page and prints a header line
that specifies the wiit, type ID, and mode
(folding or non-folding). Then IEHUCSLD
spaces two lines and prints two 120
character lines to display the images it
has loaded into the 2821 generator storage.

If the header line requires images that
were not supplied by the user, and the
reset block data check mode is specified in
the printer DD statement, the IEBUCSLD pro­
gram does not space two lines after the
header. If the user does not specify reset
block data check mode in his printer DD

statement, the space will occur; in either
case the images that were not supplied will
print as blanks.

When the three lines have been printed,
IEHUCSLD skips the printer to the next page
and tells the operator to check the images,
using message IEH501A.

The operator must reply, 'OK' or 'NG'.
If the reply is 'NG' the images are printed
once more, and the operator is again
requested to check the images. A second
'NG' reply causes the program to close the
printer DCB and return with code 4.

If the reply is 'OK', IEHUCSLD closes
the printer DCB, loads return code O, and
returns.

System Utility Programs: IEHUCSLD 69

Chart 23. IEHUCSLD - Loading the 2821 Generator Storage

70

Al
Entry from

Scheduler
II

Bl

Analyze Param.
and Set Option

Switches

DDCH~EC_l __ _......_ __ C_l~

Move
DDNAMEs to

DC B's

SETUP.rl __ _.,_--:D;.;1._

Open Input
and Printer

DC&

Read Input

MOVEDATA

Move
Images to

Output Area

Gl

Close Input DCB

WTOR
I EHSOOA Change

Chain

Issue
EXCP to

Load Generator
Storage

WTO
IEH5031

ConlTol Card
Error

Close Input
and Printer

DC&

J2

K2

Return with
Code B

SKIP

83

Close Printer
DCB

MC HERR C3

Return
with Code 12

SKIPMSG

WTO
IEH5061 No
Action Taken

Close Printer
DCB

Open Printer
DCB

E3

SKI PPR 04
---...&..--~

WTO
I EH5021 I mag•

loaded

Close Printer
DCB

CLOS El 85

Close Printer
DCB

Write Header
line and Two
Image Lin•

F5

WTOR
IEHSOlA Check

I mag•

Close Printer
DCB

Return
with

Code 4

KS

Writing Tape Labels (IEHINITT)

The IEHINITT program provides the user with
a convenient means of writing volume label
sets on tapes to conform to Operating
System/360 specifications. The program
reads control cards, builds a parameter
list, calls an SVC routine to write a tape
volume label set, and informs the user of
the result of the labeling attempt.

Program Flow

The general flow of
relationship to the
shown in Figure 27.
more detailed flow.
logic of SVC 39, the
routine.

Program Structure

the program and its
operating system are

Charts 24 and 25 show
Chart 26 shows the
tape-labeling SVC

The program consists of four modules:
IEHINITT. the control module; IGC0003I, the
SVC 39 routine; IEHSCAN, the control state­
ment scan routine; and IEHPRNT, the message
writer.

The Control Module (IEHINITT): The control
module builds two DCBS (SYSIN and SYSOUT)
for the tape-labeling operation and moves

TIOT

Figure 27. Writing Tape Labels

the DCBs to the work area. It then links
to the message writer (IEHPRNT) to write a
header, and links to the control statement
scan (IEHSCAN) to read a control statement
into main storage. IEHPRNT then prints the
control statement. Control cycles between
IEBINITT and IEHSCAN until the parameters
are analyzed or an error is detected. If
there are no errors, IEHINITT builds an
image of the tape label in main storage,
and then builds a parameter list for the
tape-labeling SVC by referring to the JFCB,
~IOT, and UCBs for DD statement informa­
tion. The symbolic link needed by the pro­
gram to gain access to this information is
the ddname, supplied in both the DD state­
ment and the utility control statement.
IEBINI~T then issues the SVC 39, invoking
the tape-labeling routine. When control is
returned, IEHINITT analyzes the return code
and links to IEHPRNT to print the label or
an error message. The process of building
the parameter list, issuing the SVC, and
interpreting the return code is repeated
for each tape to be labeled. When the last
tape has been labeled, IEHINITT returns
control to the supervisor.

~he SVC 39 Routine (IGC0003I): The SVC
routine writes the specified volume label,
a dummy header label (HDRl followed by 76
EBCDIC zeros), and a tapemark on a desig-

Before IEHINITT has gained control, information
from the data definition (DD) statements has been
entered in the task 1/0 table (TIOT) and job
file control blocks (JFCB)

IEHINITT gains control and reads a control
statement. The dd name from the control
statement indicates which collection of tape
drives to use from the TIOT

A drive is selected and its relative position in
the TIOT is described in the parameter list for
the tape-labelling SVC. The parameter list
is built by extracting:
a) the device type (dual-density, 7-track, or

9-track) from the UCB
b) the density for dual-density or 7-track frcm

the JFCB

The SVC is issued and the tape label is written

The return from the SVC is analyzed and the result is
logged. If the request being processed shows more
tapes to be labeled, go to @. If another control
statement is to be read, go to @.

System Utility Programs: IEBINITT 71

nated drive. By issuing a GETMAIN, the
routine obtains 204 + X bytes, where X is
the amount by which the volume label
exceeds the standard length of 80 bytes.
This area is used for building a DCB, DEB,
ECB, IOB, and a channel program, and also
holds messages and labels • Upon entry to
the SVC routine, register one contains the
address of a 4-word parameter list:

0

1

2

3

0-1
2

3

0-3

0-3

0-1

2
3

Contents

x•cooo•
X'04' to rewind tape
X'06' to unload tape
a binary number from 0 to n-1,
where n is the number of UCB
addresses in the DD entry por­
tion of the TIOT indicating
which device to use for volume
mounting

a pointer to an 8-byte area
containing the ddname corre­
sponding to the ddname in the
DD entry portion of the TIO'I;
the ddname is left-justified
and padded with blanks

a pointer to one volume label
image to be written on the
tape

the binary length of a volume
label
the binary number one
command code for the control
ccw to set mode

The SVC routine extracts the UCB address
froro the DD entry portion of the TIO'I.
This UCB is checked to verify that the tape
is not SYSIN or SYSOUT, that the tape is
online and not scheduled to go offline,
that the tape is not reserved, and that the
data management count is zero. If a tape
is already mounted on the device and its
volume serial number is in the UCB, it is
unloaded. After the volume label has been
written and verified, the dummy header
label and tape mark are written. If the
tape is not to be unloaded, its volume
serial number is left in the UCB. If a
non-standard label was written, the pseudo
volume serial number LGLOOO is left in the
UCB. If an I/C error or a file-protected
tape is encountered in the labeling pro­
cess, the operator is given one attempt to
correct the situation. (He may strip off a
few feet of tape or add the file protect
ring.) When returning control to IEHINI'IT,
the SVC routine issues a FREEMAIN to free
the work area, and loads register 15 with
one of the following return codes:

72

Code Meaning

00 labeling successful
04 operator has cancelled labeling
08 unacceptable parameter list
OC permanent I/O error

'Ihe Control Statement Scan Routine (IEHS­
CAN) : This routine reads, using QSAM, con­
trol statements, checks syntax, and returns
to IEHINI'IT an indication of the item
scanned. IEHINI'IT supplies a work area <on
a fullword boundary) containing the DCB for
the control statement data set, which is
opened by IEHINI'IT before calling IEHSCAN.
IEHSCAN inserts the address of the end-of­
file routine KEOF in the DCB and the EOF
routine for IEHINI'IT is restored when con­
trol is returned to IEHINITT. After scan­
ning a field from the control statement,
IEHSCAN returns to IEBINITT the fallowing
information:

• Register 1 points to the starting
address of the field.

• Register 2 contains the length of the
field •

• A setting of a byte, SWITCHRD, in the
work area, as follows:

0
1
2
3
4
5
6
7

Meaning

Syntax error
Bypass switch
EOF
Initial entry
Command word
Keyword
Parameter
Not used

Unlike other control statement fields,
the owner name field <when enclosed in a­
postrophes) is moved from the control
statement image to the label image by the
control statement scan routine. The owner
name is considered to begin at the first
byte following the first apostrophe; two
consecutive apostrophes are considered a
single embedded apostrophe and counted as
one byte of a maximum of ten for the field.
'!he scan is terminated when the count is
exceeded or when a single (i.e., not fol­
lowed immediately by another) apostrophe is
encountered.

'Ihe Message Writer CIEHPRNT): This routine
writes, using QSAM, page numbers, headings,
and messages. Upon entry to the message
writer, register 3 contains the address of
the message minus one. If a permanent I/C
error is detected in writing the message,
the one-byte switch SWITCH2 is set to X'Ol'
before control is returned and a code of 4
is returned to IEHINITT in register 15.

Chart 24. IEBINITT (Part 1 of 2)

Al

Entry

I FHI ;..;Nc:...I T'--_....__......::.B I'--

24

Save
Registers,
Establish

Addressability

INVOC CJ

Issue
GET MAIN

and Move DCBs
into Work Area

SEEK ___ ..._ __ D_J

Analyze and
Process any

Parameters in
Main Storage

OUT El

Open Data Sets

Fl

I EH PR NT

Print
Header

GI REDO Gl

Initialize
Work Area

to Default
Options

SCAN I Hl
Set

Up Parameters
to Pass
to Scan
Routine

ERR

IEHSCAN

Scan Card
Image and

Return a Field

A2

83

IEHPRNT

Print Out

Error dv Message

._______,C3 H4

Move
DDNAME to Work f----..----~

Area

Turn on Bit in
Byte for

Keyword Found

(See NOTE)

NOTE - Keywords are Checked as Follows - DISP, OWNER, NUMBTAPE.

Pick Up
Pointer to

UCBs

H3

Set Up for
VC Routine

Skip to
Next Cord
without

H4

JS

Close Data
Yes Sets, Pick Up

Return Code,
Issue FREEMAIN,
and Restore Rgst.

KS

Return

System Utility Programs: IEHINITT 73

Chart 25. IEHINITT (Part 2 of 2)

FINISH A2 A4
Determine No. Move in
of UCB's and

No Constant for
See if DD 9 Track
Card was Density &
Specified Mode

82

Read JFCB
and Extract

Density to 'or'
with Constant

Mode

FILL C2 C4

Set Up
Parameter Increment

List Serial Number
for SVC by One

D2

SVC 39
Write Tape

Label

GOOD E3 Set Up
for Next

IEHPRNT
Yes

Print Out
Label

" F4 RETURN

No Skip to Next
label to be

Written

G4
GS

Zero IEHPRNT
Out UCB Yes No

Pointer
Print Out Return

Appropriate
Error Message

Hl

IEHPRNT

Print Out
No

Error
Message

IEHPRNT

Print Out
Error

Message

74

Chart 26. SVC 39 Tape Label Routine

Al

Calculate Work
Area Siz:e

Dl

Getmain
fOI' Work Area

Determine if-
1. DDNAME is in TIOT
2. UCB Addr is in TIOT
3. UCB is for Tape

El

4. UCB is not for SYSIN or
SYSOUT

5, Drive is On-Line
6. Drive is not Scheduled

f°' Off-Line
7. UCB is not Reserved

1-
FREEMAIN

Return

Build
Control Blocks

in Work Area

...
EXCP to

Rewind and
Unload Tape

A2

Insert Volume
Serial Number

into UCB

WTOR

Set
Error Cade = 04

A3

Build
Channel Program

Issue
EXCPto label

and Read
Back label

WTO 'Tape
is File

Protected'

Set
Second-Time
logic Switch

Set

43

K3

Error Code 12

No

NOTE:

Construct
Dummy Header

label

WTO
'labels
Cannot be
Verified'

H4

WTO = Write to Operator.

A5

Set Error Code
= 0

cs

ES

Modify Channel
Program to

Write Tape Mark
and

Unload Ta

WTOR = Write to Operator---Reply Requested.

System Utility Programs: IEBINITT 75

Dumping, Restoring, and Initializing
Direct Access Volumes (IEHDASDR)

The IEHDASDR program dumps, restores, and
initializes direct access volumes according
to parameters specified in control state­
ments. The functions that may be specified
are:

• Dump. Wben the DUMP operation is spe­
cified, the IEHDASDR program creates a
copy (or copies) of the direct access
volume on one or more tape or direct
access volumes, or as a system output
data set.

• Restore. When the RESTORE operation is
specified, the program copies •dumped•
data from a tape volume to one or more
direct access volumes, thus making one
or more copies of the dumped volume.

• Initialize. There are four initial­
izing functions that may be specified:

1. Specifying ANALYZE causes the pro­
gram to perform a complete initial­
ization of one or more direct
access volumes. The program per­
forms a surface analysis by
inspecting each volume for defec­
tive tracks, it obtains alternate
tracks for all defective tracks, it
formats acceptable tracks., and it
constructs a volume label, volume
table of contents (VTOC), and
(optionally) an IPL program for
each volume.

2. Specifying FORMAT causes the pro­
gram to perform all of the initial­
izing functions (except surface
analysis) for one or more volumes.

3. Specifying LAEEL causes the program
to write a new volume serial (and
optionally an owner name) on a
direct access volume.

4. Specifying GETALT causes the pro­
gram to assign an alternate for the
specified disk or data cell track.

The user specifies the functions to be
performed by writing control statements and
placing them in the input stream data set.
He must also supply DD statements defining
the data sets, devices, and volumes
required for the program, and may also spe­
cify program parameters either in the EXEC
statement PARM field or in a parameter area
(see the section •Auxiliary Parameters• in
this publication).

76

The IEHDASDR program can perform certain
functions concurrently on several volumes
of the same type. The user can specify
more than one volume in a DUMP, RESTORE,
ANALYZE, or FORMAT statement; the program
processes the volumes concurrently in the
sense that I/O operations are overlapped.
'Ibis type of concurrent processing is known
as •making copies•; in the case of a dump
or restore, there c3n be only one input
volume, and the output volumes are copies
of one another. In the case of an analysis
or format, all volumes specified in the
control statement are processed the same
way, and if a new serial is specified all
are given the same volume serial. In eith­
er case, the program uses only one set of
buffers and internal tables.

The IEHDASDR program can also perform a
Dump, Restore, Analyze or Format function
concurrently on several volumes which may
be of different types. The user specifies
the same operation (e.g. DUMP,> on several
successive control statements; if enough
main storage is available for buffers and
internal tables (a set is required for each
statement>, and if enough I/O devices are
available, the volumes will be processed
concurrently. Concurrent in this sense
(and as it is used in the remainder of this
section) means that a processing routine
will be reentered to process a different
set of volumes when it waits for the com­
pletion of certain I/O operations, as well
as when its processing of one set of
volumes is completed.

The IEHDASDR program may be executed as
a job step, or it may be executed as a part
of a program performing a job step. The
user invokes the program by using IEHDASDR
as the program name parameter in an EXEC
statement, or by using it in the operand of
an LINK or A'I'IACH macro instruction. The
IEHDASDR program, which consists of an ini­
tialization routine, a control routine and
a set of functional routines, is entered at
the Initialization routine <module IEH­
DASDR). The Initialization routine obtains
main storage for the common work area
(Figure 28), initializes it according to
any parameters passed from the caller, then
uses the XCTL macro instruction to pass
control to the Control routine (module IEH­
DASDS). When it has performed the speci­
fied functions, the Control routine returns
control to the caller.

'Ihe Control Routine (IEHDASDS)

'Ihe Control routine is entered via an XCTL
or A'I'IACH macro instruction issued in the
Initialization routine. The Control rou-

tine uses the Scan routine to read control
statements., and based on the specifications
in the statements, the Control routine
passes control to the appropriate function­
al routine. (Control flow among the
modules of the IEBDASDR program is shown in
Chart 27.) When all statements have been
processed, the Control routine issues a
RETURN macro instruction.

Initialization

When the Control routine (Charts 28 and
29) is entered, it uses the OPEN <type J)
macro instruction to open the SYSIN (con­
trol) and SYSCUT (message) data sets. It
uses the LINK macro instruction to pass
control to the Print routine (module IEHD­
PRINT) which places a header record in the
message data set, then uses the LINK macro
instruction to pass control to the Scan
routine (module IEHDSCAN).

0 128 1

128

268

272

SWITCHRD 11

J

Switch 1 1}

Queue Code 1 ~

Output (Message) Buffer

Input (Control Statement) Buffer

Scan Routine Work Area

Pointer to Current Function Block

Pointer to First Function Block

::;: Queue Codes and Pointers to Second- Fifth Function Blocks

288

292

296

300

304

308

312

320

Queue Code 611 Pointer to Sixth Function Block

Pointer to Last Available Queue Slot

Page Switch
1
}eserved

1T Number of Function Blocks Enqueued

Pointer to IPL Program Text

Address of SYSOUT DCB

Address of SYSIN DCB

DDNAME of Input Data Set

DDNAME of Outpllt Data Set

Figure 28. IEHDASDR Common Work Area

>..
..0

a
QI
::>
QI
::>

80 0
c

,Q

59
0 c
::> u..

3 ...

3

~
3

4 ...

2

4

4

4

8

8

Notes: The common work area resides in an
area of main storage obtained via a GETMAIN
macro instruction in the Initialization
routine (module IEHDASDR). Although the
names of most fields are self-explanatory,
the following fields require further
description:

• S~ITCHRD indicates the result of scan­
ning a field of a control statement.
When set to 1,, the bits have the fol­
lowing meanings:

Bit 0 Syntax Error

Bit 1 Bypass Switch

Bit 2 End-of-Data, SYSIN Data Set

Bit 3 Initial Entry

Bit 4 Operation Field

Bit 5 Keyword Field

Bit 6 Parameter Field

Bit 7 Reserved

• switch 1 indicates the status of the
function queue. The bits have the fol­
lowing meanings when set to 1:

Bit O Reserved

Bit 1 Parameter processed

Bit 2 Multiple parameter possible

Bit 3 Looking for IPL text

Bit 4 Reserved

Bit 5 TODD=cuu

Bit 6 Concurrent processing

Bit 7 Looking for operation field

• Queue Code indicates the status of the
function block. The bi ts have the f al­
lowing meanings when set to 1:

Bit 0 Entry active (this slot not
available)

Bit 1 Processing complete

Bit 2 Processing includes copies

Bit 3 Processing interrupted

Bit 4 Processing started

Bit 5 Reserved

Bit 6 Reserved

Bit 7 No main storage available

Processing and Control

The Control routine uses a scan routine
to read and check the syntax of the control
statements. Each time the Scan routine is

System Utility Programs: IEHDASDR 77

entered it checks one field; on the return,
the Control routine validates the scanned
field.

If either the Control routine or the
Scan routine encounters an error, the Con­
trol routine places a message in the mes­
sage data set, and starts to scan the next
control statement.

If the operation field <which specifies
the function to be performed) is valid, the
Control routine obtains main storage and
constructs a function block (Figure 29).
The function block specifies the function
to be performed on a set of volumes, speci­
fies the volumes, and contains control
information. If the statement specifies
multiple volumes, the Control routine con­
structs a copy block (Figure 30) for each
additional volume. The copy blocks are
chained to the function block; they contain
specifications for the additional volumes
in the set.

0

8

16

20

24

28

32

36

40

44

-L

1

8

DDNAME (FROMDD)

8
DDNAME (TODD)

Function 11 SEQSW 21 Dump Output 1
Device

Pointer to First Copy Block 4

Return Point Address 4

Device Constants Address 4

Pointer to Input Device UCB
4

Function Block Size 21 Reserved 2
Pointer to Output Device UCB 4

Function - De endent Area:_ p
Size and Fonnat Variable 1

Figure 29. IEHDASDR Function Block

Notes: A function block is created, and
enqueued in the function queue, each time
the Control routine processes a control
statement. The function block, which con­
tains the information necessary to perform
the function~ is dequeued <and its main
storage released) when performance of the
function is terminated.

Although the names of most of the fields
of the function block are self-explanatory,
the following fields require further
explanation:

78

• Function is a 1-byte field containing a
code that represents the function to be
performed. The codes (in hexadecimal)
are:

DUMP

RESTORE

GETALT

LABEL

ANALYZE

FORMAT

10

20

30

40

50

60

• SEQSW is a 2-byte field that indicates
which keywords were present in the con­
trol statement. If a bit is on, its
meaning is as described below:

Byte 1: Bit 0: FRCMDD, TRACK, NEWVOLID
Bit 1: TODD
Bit 2: CPYVOLID, EXTENT
Bit 3: BEGIN, VTOC
Bit 4: END, IPLDD
Bit 5: OW NE RID
Bit 6: FLAGTEST
Bit 7: PASSES

Byte 2: Bit 0: PURGE
Bits 1-7: Reserved

• Dump output is a 1-byte field used dur­
ing the performance of the DUMF f unc­
tion to indicate the type of output
device. The codes (in hexadecimal)
are:

'Iape 00

system output FO

Direct Access FF

• Return Point Address is a 4-byte field
used during concurrent processing to
contain the address at which the func­
tional routine is to continue
processing.

• Device constants Address is a 4-byte
field that initially contains the
address of the control section IEHD­
CONS. This control section contains
information about each type of direct
access device, and the field is updated
to point to the IEHDCCNS entry pertain­
ing to the device type involved in per­
forming the function.

• Function Dependent Area is a field
whose format and size depend on the
function to be performed. The format
used in each case is shown with the
description of the way the function is
performed.

0 DDNAME (Copy Device)

8 Pointer to Previous Block in Chain4 Address of Next Block in Chain

Address of UCB 4 Trailer Label Control 16

24

32

40

~ 1 Error 11 Error Retry Count Found Alternate Track Information

61 Home Address Buffer 5I Reserved

~L.. DCB, 108, and ECB for Copy Device

156 Reserved
4

1
Channel Program

Figure 30. IEHDASDR Copy Block

8

4

4

2

116

:i..

120

]

When it has constructed the function
block and any necessary copy blocks, the
Control routine enqueues the function block
in the function queue by creating a func­
tion queue entry for the block. The func­
tion queue is a FIFO queue; each entry
points to a function block, and the Control
routine attempts to initiate performance of
functions in the order in which they are
enqueued. When performance of a function
on a set of volumes has terminated, the
Cqntrol routine deletes the corresponding
entry from the function queue, and pushes
all lower priority entries toward the top
of the queue.

When it has enqueued the function block
corresponding to the first control state-

ment, the control routine initiates per­
formance of the function. The routine
loads the appropriate functional routine,
loads registers with pointers to the common
work area and the function block, then
branches to the functional routine.

sutsequently, when the control routine
initiates performance of a function, it
must first determine whether the correct
functional routine is loaded. If so, it
loads the pointers and branches to the
functional routine; if not, the Control
routine deletes the old functional routine
and loads the new one before branching to
it.

Once a functional routine has been
entered, it may return to the Control rou­
tine under the following circumstances:

• 'Ihe required main storage is not
available.

• An I/O operation has been started but
not completed., and concurrent opera­
tions can take place.

• Performance of the function has been
terminated, either because processing
is complete or because an unrecoverable
error has been encountered. In the
latter case, the functional routine
passes a return code greater than zero.
The control routine stores the highest
return code and passes it to the user
at the end of the run.

The logic and processing performed in
the Control routine when a functional rou­
tine returns control to it is shown in
Figure 31.

SystE!ll Utility Programs: IEHDASDR 79

.--~---------------------------------------,
I Functional Routine Returns to Control Routine I
~--~------T-T-T_,..,--T-r-r-r-ir-r-T-T-T~-.-i
I Main Storage Not Available IYIYIYIYIYI I I I I I I I I I I I
~--~-------+-+-+-+-+-+-+-+-+-+-t-+-+-+-+-+-~
I Processing Interrupted I I I I I IYIYIYI I I I I I I I I
~---~-------+-+-+-+-+-+-+-+-+-+-t-+-+-t-t-+-i
I Processing Complete I I I I I I I I IYIYIYIYIYIYIYIYI
~--+-+-+-+-+-+-+-+-+-+-+-+-t-t-t-+-i
I Current Entry is at Top of Queue INIYIYIYIYI I I IYIYIYIYININININI
~---~-------+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-~
I Current Entry is Last in Queue I IYIYININI I I IYIYININIYIYININI
~--+-+-+-+-+-+-+-+-+-t-+-+-+-t-t-+-i
I Additional Queue Space is Available I I I I I I IYI I I I I I I I I I
~---~-------+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-t-i
I Next Entry Can be Processed I I I I I IYININI I I I I I I I I
~---+-+-+-+-+-+-+-+-+-+-+-t-t-t-t-+-i
I End-of-Data on SYSIN I IYINIYINIYIYI IYINIYINIYINIYINI
~--+-+-+-+-+-+-+-+-+-+-+-t-+-+-t-+-i
I DO ACTION NUMBER 141719181911121217191819181918191
~---i-i-i-i_i_i_i_i_i_.J.-.J._.J....J.....L...L...L.i

1. Initiate the function specified in the function block corresponding to the next I
queue entry. I

2. Initiate the function specified in the function block corresponding to the entry
at the top of the queue.

I
I
I
I

3. Release the main storage obtained in the Control routine, close the SYSIN and SYS-I
OUT data sets, and return control to the caller. I

4. Mark the entry •No Main Storage Available• and do Action 2.
I
I
I

5. Free the main storage occupied by the function block and delete the entry from the
function queue.

6. Scan, and enqueue a function block for the next control statement.

7. Do Actions 5 and 3.

8. Do Actions 5 and 2.

9. Do Actions 5, 6, and 2.

Note: The next entry can be processed if the functions are the same, the devices are
I available, and main storage is available.
L---
F igure 31. IEHDASDR Control Routine Processing at Functional Routine Return

Performing the Dump Function

When the Dump function is specified, the
Control routine passes control to the Dump
routine (module IEBDDUMP). This routine
Csee Chart 30) initializes the input device
and the output devices, then passes control
to the I/O routine (module IEHDEXCP).
Module IEBDEXCP performs the I/O opera­
tions, except that when the output is a
SYSOUT data set, it uses module IEBDAOUT as
a subroutine to format and write the dumped
information.

The dump routine returns control to the
Control routine whenever processing is
interrupted to await completion of an I/O
operation, and when the function is ter­
minated, either because the dump is com-

80

plete or because an uncorrectable I/C error
makes it impossible to continue.

When it is entered, the Dump routine
verifies that the input device is a direct
access device, then issues a conditional
GE'IMAIN macro instruction to obtain main
storage for a buffer and a work area. If
enough storage is not available, the rou­
tine returns control to the control
routine.

If the Dump routine is able to obtain
the required main storage, it constructs an
ECB, IOB, and DCB for the input device, and
stores them in the function-dependent area
of the function block Csee Figure 32). It
uses the RDJFCB and OPEN (type J) rracro
instructions to read the JFCB and open the

VTOC data set, then sets the dump extents
to correspond to the tracks specified in
the function block by converting the track
specifications to CCHH format and storing
them in the limits record (Figure 33). If
no dump extents are specified, the routine
stores the CCBH of the first and last
tracks on the vol um es •

44

52

60

68

76

340

348

356

4
CCHH of First Track CCHH+I af Last Track

4
CCHH af First Track on This Vol. Restore Tape Identifier

Dump 1 Device 1 Restore Tape Identifier (con't.)
Switch Type

Reserved

4
Reel Check Alternate Track Information

61 Dump 11 1 Alt. Trk. Info (con't) Formatted Reserved
Switch

Output and Input ECBs, IOBs, DCBs, and
Channel Programs to Write and Read Tape

4

256

Pointer to Read CCWs (Dump), or 4

Ptr. to Write and Read CCWs (Dump)
or to Second Restore Buffer

Pointer to Data Buffer

Temporary Work Area

4

4

to First Restore Buffer

4
Pointer to Dump Count Field Buffer

4
Pointer to Unused Track Table

Figure 32. IEBDASDR Function Block -­
Dump/Restore Area

Notes: This figure shows the format of the
function-dependent area of the function
block as it is used in the performance of
the DUMP and RESTORE functions • Although
most of the field names are s~lf­
explanatory, the following fields require
further explanation:

• The first seven fields in the area are
the 24-byte limits record.

• The reel check field contains the first
4-bytes of the restore tape trailer
label; it indicates whether the reel is
the last reel required to complete the
restore.

• The Alternate Track Information field
is extracted from the Format 4 DSCB of
the primary output volume and contains
two subfields: the first four bytes
contain the CCHB of the next alternate
track available, and the last two bytes

0

4

8

12

20

contain the number of alternate tracks
available.

• The field containing the pointer to the
first RESTORE buffer may also contain
x•pp• in the high order byte. If so,
it indicates that there are two RESTORE
bUff ers, and the next field points to
the second buffer.

• 'Ihe last 16 bytes of the area are pre­
sent only for the Dump function.

CCHH of First Track Dumped

CCHH+ 1 of Last Track Dumped

CCHH of First Track of Volume

Restore Tape Identifier
(X' F4006Q 1663 B24D')

Dump Switch
1
} Device Type

1 j Reserved

4

8

2

Notes: 1 • Dump Switch settings:
X'FO' =Full Dump
X'OO' - Partial Dump

2. Device Type Codes:
0 = 2321
1 =2311
2 = 2314
3 = 2302
4 = 2303
5 = 2301

Figure 33. 24-Byte Limits Record

If the output is a SYSOUT data set, it
is the only output permitted; the Dump rou­
tine performs no further initialization,
but passes control to the I/O routine. If
the output is to tape or direct access,
there may be multiple output volumes., and
further initialization must be performed
for each of the output volumes.

The routine constructs an ECB, IOB, and
DCB for the first output volume, and stores
them in the function block. If the volume
is a tape volume, the routine opens the
tape, and uses the EXCP macro instruction
to write the 1 imi ts record. If the volume
is a direct access volume, the routine
verifies that it is not System Residence,
then uses the RDJFCB and OPEN (type J)
macro instructions to read the JFCB and
O,E:en the V'IOC data set. The routine then
reads the Format 4 DSCB and saves the
alternate track information so that it can
be placed in the VTOC of the output volume
when the dump is complete.

System Utility Programs: IEBDASDR 81

When it has initialized the first output
volume, the Dump routine determines whether
additional volumes have been specified. If
so, it verifies that the next volume is of
the same type, then initializes it. The
procedure is the same as that used for ini­
tializing the first volume, except that the
IOB, ECB, and DCB are stored in the copy
block associated with the volume. Any
other output volumes are then initialized,
one at a time.

When all of the output volumes have been
initialized., the routine passes control
(via a LINK macro instruction> to module
IEHDPASS to have the required security
checks made. on the return, the Dump rou­
tine reads and inspects the Format 5 DSCB
from the input device. The routine
extracts the available extent information,
converts it to CCHH form, and builds a
table of unused tracks. The I/O routine
uses the table to insure that <unless the
output is a SYSOUT data set>, only those
tracks that are in use (listed in the DSCB
as "not available for allocation"> will be
dumped. When it has built the table, it
passes control to the I/O routine.

The function of the I/O routine is to
read information from the input volume and
(if the output volume is a tape or direct
access volume) to write the information
out. If the output is a SYSOUT data set,
the I/O routine uses module IEHDAOUT as a
subroutine to format and write the data.

When the I/O routine has determined that
a track is within the specified limits, and
that it is either in use or that the output
is a SYSOUT data set, it issues the EXCP
macro instruction to execute a channel pro­
gram that reads the data field of record O,
the count, key and data fields of record 1
(if it exists>, and the count fields of any
additional records on the track. When it
has issued the EXCP, the I/O routine
returns control to the Dump routine, which
in turn returns control to the Control rou­
tine. When it is re-entered to continue
performing the function, the I/O routine
waits for the channel program to be
completed.

When the channel program is complete,
the I/O routine determines whether the
track contains a home address and only one
record (RO), a home address and two records
(RO and R1 >, or a home address and more
than two records:

82

• If the track contains only a home
address and record O, the routine

determines the output device type,
writes out the contents of tbe record,
and erases the remainder of the track.

• If the track contains a home address,
record O, and record 1, the I/C routine
determines the output device type, and
writes out the contents of the records.

• If the track contains a home address,
record O, record 1, and additional rec­
ords, the I/O routine reads the key and
data fields of record 2 and the count,
key, and data fields of the additional
records. It then determines the output
device type, and writes out the con­
tents of the records.

If the output is a SYSOUT data set, the
I/O routine passes control to module IEH­
DAOU~, which formats and writes the track
contents.

If the output volume is a direct access
volume, the I/O routine writes to every
(primary> track on the volume. Those
tracks on the input volume that are in use
are copied onto the output volume1 each
track corresponding to an unused input
volume track is formatted with a home
address and record o. The remainder of the
track is cleared.

If the output volume is a tape volume,
the I/O routine writes a control record for
each track on the input volume. The con­
trol record contains the channel program
used by the Restore routine to write one
track; it is £ollowed by the track image
record, which contains the data field of
record o, and all fields of any other rec­
ords on the track .•

At end-of-volume, a trailer record is
written following the tapemark. The first
4 bytes of this 24-byte record indicate
whether this volume is the last volume of
the restore data set.

The I/O routine (module .IEBDEXCP)
returns control to the Dump routine under
two conditions:

If the Dump routine is performing func­
tions concurrently, module IEBDEXCP returns
control to it whenever processing is inter­
rupted to wait for the completion of an I/O
operation on a track tba t contains a home
address and more than two records. In this
case, the Danp routine returns control to
the Control routine; when it is re-entered
to perform the same function, the D1,U11p rou­
tine again passes control to the .I/O
routine.

If the I/O routine has terminated its
processing, either because the dump is com­
plete or because of an unrecoverable I/O
error, it returns control to the Dump rou­
tine. In this case the Dump routine closes
the input and output data sets, releases
the main storage it obtained for buffers,
places a completion message in the message
data set, and returns control to the Con­
trol routine.

Perf orminq the Restore Function

When the restore function is specified, the
Control routine passes control to the
Restore routine (module IEHDREST), which is
shown in Chart 32. The input to the
Restore routine is a restore tape, which
may have been created by performing the
Dump function in this program, or in the
IBCDMPRS program. A restore tape <see
Figure 34) contains the information neces­
sacy to make a copy of the direct access

volume used to create it; the Restore rou­
tine makes one or more such copies. The
Restore routine returns control to the Con­
trol routine when the restore is complete,
when an uncorrectable error makes it
impossible to continue processing., or when
processing is interrupted while awaiting
completion of an output operation.

When it is first entered, the Restore
routine attempts to obtain main storage for
two buffers. If it is able to obtain
enough storage for at least one buffer,
processing continues; if not, the routine
sets a switch and returns control to the
control routine.

If storage is available for at least one
buff er,, the routine determines the validity
of the output volume specifications. The
output volumes must all be of the same
type., but the system residence volume <s>
may not be specified.

LABEL
(OPTIONAL)

IRG IRG
24- BYTE

LIMITS RCD.
IRG CONTROL RCD.

(TRACK 1 J IRG

CONTROL RCD. IRG
(TRACK 3)

TRACK n IMAGE IRG 24-BYTE
TRAILER RCO.

Limits Record: A 24-byte record containing extent limits and restore tape identifier,
located after the initia I tape mark on the first volume of the restore
tape.

Control Record: A variable-length record containing the channel program required to
write the associated track, located immediately before the track image
record for the track.

Track Image Record: A variable-length record containing the count, key, and data fields
of the records on the track.

Track Record:

Figure 34 • Restore Tape Format

A 24-byte record containing, in the first 4 bytes, the reel number
and termination code.

System Utility Programs: IEBDASDR 83

If the output volume specifications are
valid and the volumes are available, the
routine opens the input tape, checks the
limits record to insure that the tape is a
restore tape and that the volume used to
create it is the same type as that speci­
fied for output.

If so, the routine builds an ECB, IOB,
and DCB for each output volume. If there
are multiple output volumes, the control
blocks for the first are stored in the
function block, and those for the addition­
al devices are stored in the copy blocks.

When it has constructed the control
blocks, the routine uses the RDJFCB and
OPEN <type J) macro instructions to read
the JFCB and open the VTOC data set on each
output volume, and uses the Password Pro­
tection routine (IEHDPASS) to make the
required security checks on the volume's
data sets.

The Restore routine uses the EXCP macro
instruction to read the Format 4 DSCB from
each output volume, then extracts and saves
the alternate track information. Since the
VTOC will be replaced with the VTOC from
the volume used to create the restore tape,
the alternate track information from the
output volume must be placed in the new
VTOC.

When initialization is complete, the
Restore routine uses the EXCP macro
instruction to read a control record and a
track image record from the restore tape.
The control record contains the channel
program necessary to write the track image
record to the output volumes. The Restore
routine updates the channel program with
the correct data addresses, then issues the
EXCP macro instruction for each output
vo1ume.

When it has issued the EXCP, the routine
returns control to the Control routine.
When it is re-entered to continue perform­
ing the function, the routine waits for the
output operations to be completed. When
the operations are completed, the routine
again reads from the restore tape and
repeats the procedure.

At end-of-volume, the routine reads the
trailer record from the restore tape and
determines whether there are additional
tape volumes to process. If the first four
bytes of the trailer record contain
X'FFFFFFFE', the restore is complete. The
routine updates the Format 4 DSCBs in the
output volmnes, places a completion message
in the message data set, releases the main
storage it obtained, closes the input and
output DCBs, and returns control to the
Control routine. If the trailer record
does not indicate that the restore is com-

84

plete,, the return issues the EOV macro
instruction to have the next volume
mounted, and continues processing.

Performing the Analyze and Format Functions

when the Analyze or Format function is spe­
cified, the control routine passes control
to the Analyze/Format routine (module IEH­
DANAL). This routine (shown in Chart 33)
performs surface analysis and formatting
functions for disk and drum volumes <or
passes control to module IEHDCELL to per­
form these functions if the device is a
data cell drive> and passes control to
module IEHDVTOC to construct and write IPL,
volume label, and VTOC records. When pro­
cessing is terminated, either because the
function has been completed or because a
computing system error has made it imposs­
ible to continue, the routine returns con­
trol to the control routine. The routine
also returns control to the Control routine
during concurrent operations when proces­
sing is interrupted for an I/C wait.

Initialization

When the Analyze/Format routine is first
entered, it is given the address of the
function block specifying the function to
be performed.

Note: The format of the function-dependent
area of the function block, as is used in
the performance of the Analyze and Format
routines, is shown in Figure 35.

If the function is to be perf orn.ed on
more than one device, copy blocks have been
chained to the function block; the routine
constructs an IOB, ECB, and DCB for each
volume. It stores the blocks for the first
volume in the function block, and stores
the blocks for the additional volumes in
the copy blocks. If a volmne is new <unla­
beled) the routine makes sure that the
device containing that volume is offline,
then uses the SVC routine to construct a
DEB in protected storage, but performs no
open. Otherwise, the routine uses the
RDJFCB and OPEN <type J) macro instructions
to read the JFCBs and open the VTOC data
sets.

When it has performed the open or con­
structed the DEB, the routine uses the Pas­
sword Protection routine to make security
checks on the volmne. On the return, it
initializes a channel program to analyze
and format or to format each device, then
stores the channel program in the appropri­
ate function or copy block. If the devices
are 2321 Data Cell Drives, the construction
and storing of the channel program, as well
as the execution of the surface analysis

and formatting procedures is performed in
module IEBDCELL; if the devices are disks
or drums., these functions are performed in
module IEBDANAL.

surf ace Analysis and Formatting Procedures

48 10

Owner Identification

6

-- Disk and Drum Volumes 60
J

The nature of the channel program used
depends on whether a surf ace analysis or
formatting operation is being performed,
whether a flag test has been specified,
whether multiple passes are to be made on
each track, and whether the volume is a
disk or drum. The sequence of commands in
each case is shown in Figure 36. Note that
the two Analyze/Format channel programs are
virtually identical, except for the first
two commands, as are the two Format Only
channel programs. The first two commands
are different because an unused disk has no
home addresses, and no successful search
could be made. Also, since defective
tracks on a drum are not flagged, rewriting
the home address will not destroy any pre­
viously written flags.

The first part of the Analyze/Format
channel program is executed on each pass;
maximum length ROs are written twice and
read back twice, and the home addresses are
read twice. If a flag test is to be done,
the data is transferred on the second home
address read, and the field is checked for
the presence of a defective track flag.

Volume Serial

64 Alternate T rock Information 6

J
5

72
Relative Track Address of VTOC J 5

76
Number of Tracks for VTOC

80
Pointer to ANALYZE Bit Pattern Buffer or to FORMAT Work Area4

84 Pointer to IPL Text (In Main Storage) 4

88
CCHH of End of Function 4

92 Number of Posses Specified 21 Number of Posses Made 2

96
Home Address Buffer 5

l Error Switch 1 J Number of Retries Mode 2

104 114

......_
-L...

218~~~~~~~~0-u-tp_u_t_D_C_B,~IO_B_a_n_d_EC~B~~~~~~-1~
T Channel Program J

Figure 35. IEHDASDR Function Block
Analyze/Format Area

r-----------T--T--------------------------1
I Analyze/Format I Format only I
r------------------------~----------------------t------------T-------------~
I Drum or I I I I
I Disk Cno flag test) I Disk (flag test) I Drum I Disk I
r-------------------------+----------------------+------------t-------------~
I Write Ha I Search Ha I I I
I TIC *+8 I TIC *-8 I I I
I Write R0 1 I Write R01 I I I
I Read Ha I Read Ba I I I

All I Read R0 1 I Read RO I I I
Passes I Search Ha I Search Ha I I I

I TIC *-8 1 I TIC *-8 I I I
I Write RO I write RO I I I
I Read Ha I Read Ha2 I I I
I Read RO I Read RO I I I

r-----------t-------------------------+----------------------+------------t-------------~
I I Search Ha l Search Ha I write Ha I Search Ha I
I Last I TIC *-8 I TIC *-8 I TIC *+8 I TIC *-8 I
I Pass I Write R0 3 I Write R0 3 I write R0 3 I Write R0 3 I
I Only I Read Ha I Read Ha 2 I Read Ha I Read Ha 2 I
I I Read RO I Read RO I Read RO I Read RO I r-----------4-------------------------i ______________________ i ____________ i_ ____________ ~

11 write maximum length possible (full track). I
j 2 Transfer Ha into main storage and test for flags (no data transferred on other reads). I
l 3 Write standard (8-byte) RO. I
L---J
Figure 36. Analyze/Format Channel Programs

System Utility Programs: IEHDASDR 85

The second part of the Analyze/F·ormat
channel program <which duplicates the For­
mat Cnly channel program for the corre­
sponding device type) is executed only on
the last pass. A standard (8-byte) RO is
written, and in the case of a disk device,
the home address is tested for flags.

During concurrent operations, the rou­
tine returns control to the Control routine
when the EXCP macro instruction for each
device has been issued; it is eventually
reentered to wait for completion of a chan­
nel program.

When a channel program is completed, the
Analyze/Format routine determines whether
any errors have occurred. If not, and if
there are other channel programs that have
not teen completed, the routine enters the
wait again. It repeats this procedure
until either an error occurs, or until all
channel programs have been completed.

When all channel programs have been com­
pleted, the routine determines whether
additional passes have been specified. If
so, it re-issues the EXCP macro instruction
for each device and repeats the procedure
until all required passes have been made.

When the last pass has been made, the
routine reinitializes the channel programs
for each device so that they apply to the
next track, and repeats the entire
analysis/format procedure.

Error Procedures -- Disk and Drum Volumes

There are two classes of errors that can
occur during a surface analysis operation:
errors that indicate a failure of the com­
puting system, and errors that indicate a
defect in the volume being analyzed. Those
errors that indicate machine malfunctions
are handled ty the normal I/O Supervisor
error routines. If such an error cannot be
corrected, the Analyze/Format routine ter­
minates the function, closes the volumes,
and returns control to the Control routine.
If the function being performed is the for­
mat function, all errors arehandled in this
manner.

When a surface analysis is being per­
formed, however., a distinction is made
between the two types of errors. The
errors that indicate that a track is def ec­
tive, and are handled by the Analyze/Format
routine, are Data Check and (for the 2314
Direct Access storage Facility only> Track
overflow •1 When such an error is encoun-

1on the last •READ Ro•, the routine also
handles a No Record Found/Missing Address
Markers condition.

86

tered, the Analyze/Format routine retries
the channel program until an error is
encountered again or until the channel pro­
gram has been retried ten times with no
errors. If an error occurs the track is
declared defective, and the routine places
a message describing the defective track in
the message data set. If the device is a
drum, no alternate track can be assigned by
the program, and the IBM Field Engineer
should be notified. If the device is a
disk, the Analysis/Format routine issues
SVC 82 and the Alternate Track Assignment
routine is used to assign an alternate
track. If the track is in the alternate
track area, however, no alternate ~ill be
assigned; the track will be flagged def ec­
ti ve to prevent its future assignment.

When an alternate track is assigned, the
Analyze/Format routine places a message
describing the alternate track in the mes­
s age data set.

Surf ace Analysis and Formatting Procedures
Data Cell Volumes

~he surface analysis and formatting of a
data cell volume is performed by module
IEHDCELL, which is used as a subroutine by
the Analyze/Format routine. Module IEBD­
CELL writes a home address, a standard
length C 8-byte> RO, and a maximum length Rl
on each track of a cylinder, then reads
each home address, RO, and R1 back to check
for errors. The channel programs used for
writing and reading are as follows:

~ritinq
~rite BA
~rite RO
~rite count-Rey-Data

Reading
Read HA
Read RO
Read Count-Rey-Data

The routine repeats the procedure,
cylinder by cylinder, until each track on
the volume has been read and verified.
When the analysis of a strip, subcell or
cell is complete, the routine makes addi­
tional <address compare> checks to verify
correct positioning.

Error Recovery Procedures -- Data Cell
Volumes

Most of the errors that may be encoun­
tered while performing the surface analysis
of a data cell volume are handled by normal
I/O Supervisor error procedures, and if
they cannot be corrected, the function is
terminated. There are two exceptions to
this procedure:

• No Record Found and Missing Address
Markers: The I/O supervisor error
recovery routine is used, but if the
errors occur together, and no recovery

is possitle, module IEHDCELL places a
message describing the defective track
in the message data set, and causes an
alternate track to be assigned.

• Data Check: If this error occurs,
module IEHDCELL retries the channel
program up to 113 times. If the chan­
nel program is executed successfully
once, the track is considered good. If
no successful execution occurs the
track is considered defective. In that
case a message describing the defective
track is placed in the message data
set, and an alternate track is
assigned.

The alternate track assignment procedure
is the same as that used for disk volumes.
The alternate track area of the volume is
checked first, and defective tracks found
in that area are flagged. No alternate
tracks are assigned to defective tracks in
the alternate track area. If the defective
track is not in the alternate track area,
module IEHDCELL places a message describing
the defective track in the message data
set, issues SVC 82 to have an alternate
track assigned, then places a message
describing the alternate in the message
data set.

Supplying a VTOC and IPL Records

When the last track on each device has
been analyzed or formatted, the Analyze/
Format routine passes control to module
IEHDVTOC (see Chart 34). This module con­
structs and writes the IPL Bootstrap, IPL
Text, VTOC, and Volume Label records.

When it is entered, module IEHDVTOC
determines whether it is to write an IPL
record on the output volumes. If so, and
if the IPL text is on external storage, the
routine opens the appropriate data set and
reads the text into main storage. 1

If it is to write an IPL program, the
routine constructs two IPL Bootstrap rec­
ords and writes them to records 1 and 2 on
track 0 of each output volume. The IPL
program itself is written on track 1 before
the bootstrap records are written (if the
devices are 2303s or 2311s) or on record 4
of track O, with the same channel program
used to write the bootstrap records (if the
devices are 2301s or 2314s).

1Tbe IPL program may be supplied in the
input stream (in which case it is in main
storage when IEHDVTOC is entered), it may
be in a sequential data set, or it may be
a member of a partitioned data set, e.g.,
member IEAIPLOO of SYS1.SAMPLIB.

If no IPL program is to be written,
module IEHDVTOC writes a program on record
1 of track 0 that will cause the computing
system to enter the wait state if an
attempt is made to execute the IPL proce­
dure using that volume. The format of the
records is shown in Figure 37.

Whether it writes an IPL prograrr or not,
module IEHDV'IOC constructs and writes a
standard volume label and a VTCC. The
standard volume label is written on record
3 of track O: it contains the volume serial
provided by the user or (if none was pro­
vided) the original volume serial. If an
owner name has been supplied, the routine
flaces it in the label: if not, the field
remains blank. ~he VTCC constructed and
written by IEHDVTOC consists of a Forroat 4
DSCB, a Format 5 DSCB, and enough dumrroy
(Format 0) DSCBs to fill out the VTCC.

Perf orminq the Label Function

when the label function is specified, the
Control routine passes control to the Label
routine (module IEHDLABL). The Label rou­
tine (Chart 36) replaces the volume serial
and, optionally,, the owner identification
fields of the volume label.

RO II
[Track

Descriptor
Record

R3 II I
[Standard

Volume
Label

Note: Rl for a non-IPL volume is a 24-byte record having the following
format:

PSW X'000600000000000F'
CCWl X'03000000000000001'
ccw2 x·ooooooooooooooooo•

(NOP)
(Dummy CCW)

Rl for a volume that can be loaded contains a 24-byte IPL bootstrap
record having the following format:

PSW x•oooooooooooooooo•
CCWl X'06003A9860000060'
CCW2 X'08003A9800000000'

(Read Record 2)
(Transfer to Record 2)

R2 is always a 144-byte record having the following format:

CCWl X'07003AB840000006'
CCW2 X'31003ABE40000005'
CCW3 X'08003AAOOOOOOOOO'
CCW4 X'0600000020000E29'
Seek x•ooooooooooo'
Search X'OOOOOOOl 01'
101 bytes of zeros for padding

Seek IPL Track
Search for I PL Record
Repeat until found
Read IPL Program
Seek Address
Search Address

Figure 37. Format of Track O, Records 0
and 1

When it is entered, the routine identi­
fies the device to be labeled and verifies
that the device is a direct access device.

System Utility Programs: IEBDASDR 87

It uses the RDJFCB macro instruction to
read the JFCB into a buff er in the
function-dependent area of the function
block (Figure 38). It then uses the OPEN
(type J) macro instruction to open the v~oc
data set.

48
Owner Identification

J
58 Volume Serial

64

Buffer for JFCB and Volume Label

Figure 38. IEHDASDR Function Block -­
Label Area

10

6

176

~

'")-

The routine reads the volume label (the
data portion of record 3 of track 0) by
issuing an EXCP macro instruction. The
initial request causes the special End-of­
Extent appendage to be entered; the appen­
dage changes the extent limits in the DEB
to permit access to track 0, and the volume
label is brought into main storage.

When the I/O operation is complete, the
Label routine stores the new volume serial
and, if one is provided, it stores the
owner name. It uses the EXCP macro
instruction to write the label, uses the
SVC 82 routine to place the new volume
serial in the UCB, places a message in the
output data set, and returns control to the
Contro1 routine.

Perf orminq the GETALT Function

When the GETALT function is specified, the
Control routine passes control to the
GETALT routine (module IEHDGETA). This
routine <which is shown in Chart 37) uses
the Alternate Track Assignment routine (SVC
82) to assign an alternate track for the
specified disk or data cell track. If the
specified track is an assigned alternate
track, another alternate track will be
assigned in its place. No records will be
transferred from the specified track to its
alternate. If the specified track is an
unused track in the alternate track area,
however, no alternate will be assigned; the
specified track will be flagged to prevent
its future use.

When module IEHDGETA is entered, it
verifies that the specified volume is a
disk or data cell volume, then uses the
RDJFCB and OFEN (type J) macro instructions

88

to read the JFCB into the function­
dependent area of the £unction block
(Figure 39) and open the VTOC data set. If
the open is su9cessful, the routine checks
to see that the specified track is not
track 0 or does not contain system data
such as a volume label or VTCC.

CCHH of Specified Track
4

8
RESERVED

176

Buffer for

r JFCB and Format 4 DSCB

J
Figure 39. IEHDASDR Function Block -­

GETALT Area

If the volume is not a disk or data cell
volume, if the open was not successful, or
if the specified track is either track 0 or
the first track of the VTOC , the routine
places an error message in the message data
set, terminates the performance of the
function, and returns control to the con­
trol routine. If the specified track is a
part of the VTOC (other than the first
track), the routine issues a warning mes­
sage and assigns an alternate track.

If the specified track does not contain
a volume label or VTOC, the Control routine
places a message describing the specified
track in the message data set, and issues
Svc 82 to execute the Alternate Track
Assignment routine.

On the return from the Alternate Track
Assignment routine (SVC 82) the GETALT rou­
tine places a message describing the
alternate track assignment in the message
data set, closes the VTOC data set, and
returns control to the Control routine.

IEHDASDR Service Routines

~here are several service routines used by
the IEHDASDR program in the perf orroance of
its functions:

• IEHDMSGB, the Message Builder routine,
is entered with a pointer to the corrrron
work area and a number corresponding to
the message. The routine selects the
message from the message CSECT.
CIEHDMSGS), then moves the message to
the output buffer in the common work

area. Certain messages contain "empty"
areas that must be filled in by the caller
of the .Message Builder routine: when this
is the case. the .Message Builder routine
loads a pointer to the empty area, and
passes the pointer to its caller.

• IEHDPRINT, the Message Writer routine
is entered with a pointer to the common
work area <which contains the output
buff er and the address of the SYSOUT
DCB). The routine uses QSAM to write a
header record at the beginning of each
page, a copy of each control statement,
completion messages, error messages,
and (optionally) the contents of a
direct access device.

• IEHDDATE, the Date routine. is entered
via a CALL macro instruction from the
Message Writer routine. The Date rou­
tine uses the TIME macro instruction to
determine the date, and stores the date
(in the form MM/DD/YY) in an 8-byte
area furnished by the Message Writer
routine.

• IEHDSCAN, the Scan routine, is entered
via a LINK macro instruction issued in
the Control routine. It reads a con­
trol statement (if necessary) and per­
forms a syntax check on one field, then
stores the result of the scan in a 1-
l::yte field CSWITCHRD) in the common
work area. On the return, it passes
the control routine the length of the
field and a pointer to the beginning
address of the field.

• IEHDPASS, the Password Protection rou­
tine (Chart 38), is entered with: 1)
an indication of the operation being
performed, 2) an indication of whether
the purge option was specified in the
control statement, 3) a pointer to the
function block, and 4) a pointer to a
tuffer area for reading DSCBs. It uses
the Cpen or Scratch routine to check
the password required for access to
each security protected data set
against the password supplied by the
operator. If an incorrect password is
issued, or if no password is issued,
the routine returns a condition code to
its caller, which then terminates the
function. In addition, the Password
Protection routine determines whether
there are any data sets on the output
volumes whose expiration dates have not
passed. If so, and if the PURGE param­
eter is specified, it gives the opera­
tor the opportunity to terminate the
function or to override the expiration
dates of all unexpired data sets and

continue processing. If the PURGE pa­
rameter is not specified. and if an
unexpired data set is encountered, the
function in terminated.

• IGG019P8, the End-of-Extent Appendage
routine is entered from the Input/
Output Supervisor. The routine modi­
fies the extent limits and file masks
in the DEBs for each direct access
volume to be processed, to permit
access to the entire volume.

• IGG019P9, the Abnormal-End Appendage
routine, is entered from the Input/
Output Supervisor. It is used during
performance of the Analysis function to
bypass normal IOS Error routine proces­
sing of Data Checks for all direct
access devices.

• IGC0008B, the Alternate Track routine
(SVC 82), is entered with a pointer to
the parameter list shown in Figure 40.
~he routine has three basic functions:

(1) It builds a DEB for handling new
direct access volumes,

(2) It assigns an alternate track for a
specified (defective) track, and

(3) It updates UCBs to reflect new
volume serials or VTCC location
changes.

Build DEB for New Volume

Assign Alternate Track

Update UCB

Figure 40. SVC 82

system Utility

8F UCB Address

80 DCB Address

Function UCB Address

p

CCHH of Defective Track

80

08

Ptr. to Alternate Track
Information (GETALT)

UCB Address

New Volume Serial (or Zero)

MBCCHHR of VTOC 80
(if new volume)

arameter Lists

Programs: IEHDASDR 89

Chart 27. IEHDASDR overall Flow

ENTRY

90

Chart 28. IEHDASDR Control Routine (Part 1 of 2)

Al

Entry

IEHDASDR

Initializing
Routine

XCTL

Bl

to
iEHDASDS

Open
SYS IN and

SYSOUT

IEHDPRNT

Write
Header

DI

El

GI

IEHDMSGB

Assemble
Error

Meuage

Hl

IEHDPRNT

Write
Error

Message

Jl

Store
Return
Code

IEHDSCAN

Scan
Control Record

82

NOTE: Entry from Caller is to Initializing Routine
(IEHDASDR), Which Transfers to Control
Routine (I EHDASDS)

Yes

Yes

Yes

04

Build and
Enqueue

Function Block

Process
Keyword

Find
First
Entry

Store
Parameter

E4

F4

Build
Copy Block,
Chain it to

Function Block

System Utility Programs: IEHDASDR 91

Chart 29.

92

IEHDASDR control Routine (Part 2 of 2)

Delete
Previous

Load

NOTE 1

Execute

Fl

Gl

B3

Dequeue
Function Block

Issue
FREEMAIN (Work
Area)

Close
SYSIN and
SYSOUT

Return

E3

F3

NOTE l: The Functional Routines ore -

IEHDUMP
IEHDREST
IEHDANAL
IEHDLABL
IEHDGETA

IEHDMSGB

Assemble
Message

IEHDPRNT

Write
Message

E4

Find
First Function

Q Entry

D5

Chart 30. IEBDASDR Dump Routine

A4
Al IEHDPASS

Entry Check
Password

Protection

B2 84 BS

Read IEHDMSGB
Open (EXCP) Format S

Output Tape DSCB Assemble
Message

C2 C4 cs

Write Open (Type J) Set Up Close
(EXCP) Control Output D/A Table of Unused Input and

Record Device Tracks Output

D3 D4 DS

Issue IEHDEXCP Issue
GETMAIN for Read (EXCP) FREEMAI N for

Buffer Format 4 Dump Buffer
DSCB Requested

Tracks

E3 E5

Store Alternate
IEHDPRINT

Track
Write

Information
Message

FS

Open Close Set Return Code
(Type J) Input Input and = 8

Output

Gl G4

Issue
Set FREEMAIN for

Dump Extents Buffer

H3

Set No Storage
& Waiting
Switches

J3 JS

IEHDMSGB
Set Return Code Assemble Set Return Code

= 4 Message = 0

K4

IEHDPRNT KS

Write Return
Message

System Utility Programs: IEHDASDR 93

Chart 31.

94

IEHDASDR EXCP Routine

Al

Entry

Load
lEHDAOUT and
lfHDPRNT if

Build
Read Count

CCW's

Dl

Write
(EXCP)

CCW's and Data
to Tape (s)

Update
Track

Address

Hl

Jl

Write
Data

on D/A Vols

Execute
Read Count

CCWs

IGG019P8

Update
DEB

Wait on
EXCP at

D2

IEHDAOUT

Format
and Print

Track

B2

D2

E2

B3

Execute
Read Count/Key

and Data
CCWs

Build
Write/Read/

Count Key
and Data

Write
(EXCP)

CCW RecOt"d
to Tape (s)

Wait on
EXCPs at
83 and F3

Write
(EXCP)

Data to
Tape (s)

J3

NOTE 1: At Subsequent Entries, go
to Return Point Saved
in Block BS.

Wait on
EXCP

at
83

C4

Execute
Write/Read/

Count Key and/
Data CCWs

Wait on
EXCJ!s at

C4 and J3

Update
Track

Address

Wait on
EXCP at

83

BS

Save
Return Point.

Set
Ret. Code= 0

Update
Format 4
DSCBs

IGCOOOBB

Pa1t UCBs
(if CPYVOLID

Specified)

Set
Return Code

= 0

F5

G5

H5

Return

EXCP
Write

Trailer
Record

K5

Chart 32. IEHDASDR Restore Routine

B2 B4

Save
EXCP

Alternate Trk. Read

Information Trailer
Label

C2 cs
Issue NOTE 1 EXCP

GETMAIN Read Ctl. Wait No
far and Trk. Image for Read EOV

Buffers Reds. into Buffer 2
Buff. 1

D2

Wait for Update

Read Format 4 DSCBs

Buffer 1 for Output
Volume (SJ

E2 ES

Set Up Set Up Set
CCWs for CCWs for No Storage
Output Output and Waiting
Devices Devices Switches

"' F2 F3 F5

Open Issue EXCP EXCP IGCOOOBB
Input Tape Write Buffer 1 Write Buffer 2 Set

and Read to Output to Output Post Return Cade

Limits Red. Volume (1) Volume (s) UCBs =4

G3 G4

EXCP IEHDMSG
Read Ctl.

Assemble
Message

NOTE 1: At Subsequent Entries
go to Return Point Saved on

H4
Exit. The Possible Return

EXCP
Points Are at Blocks K2 and J3.

Open IEHDPRNT
(Type=J) Read Ctl.

Output and Trk. Image Write
Volume(a) Reds. to Message Buffer 2

Jl J4

IEHDPASS Wait Set
Check for Read Return

P-ord
Buf. 1 and Cade

Protection
Write Buf. 2

Kl K4
EXCP Wait Issue FREEMAIN KS

for for Buffers
Write and

Return

Buffer 1 Close DCBs

System Utility Programs: IEBDASDR 95

chart 33.

96

IEBDASDR Analysis Routine

Al

Entry

See NOTE 1

Initialize

IGCOOBB

Build DEB
for E"ch
Volume

iEHDCELL

Andyze/Format
Date Cell

Volumes

Update CCWs
Per FLAGTEST
ond Dev. type
Parms.and

Function Code

C2

Initialize
Pan Count

and
Track Address

EXCP

Store
Return
Point

Issue RDJFCB
and

Open (Type=J)
Each

Volume

IEHDPASS
Check

Paaword
Protection

Wait
for on 1/0
Request to
Complete

IEHDVTOL

B3

Build IPL, Vol
label, ond VTOC

Records

Initialize
to Retry
10 Times

IEHDMSGB

Assemble
Message

IEHDPRNT

Write
Message

Set
Return
Code

B5

cs

D5

E-4 E5

IEHDMSGB

Assemble
Bad Track
Message

IEli>PRNT

Write
Message

Assign Alt.
Trk. (Disk

Vols. only)

IEHDMSGB

Assanble
Alt. Track

IEHOPRNT

Write
Message

Close
Volume (s)

F-4
F5

Return

NOTE 1-lnitializing Includes
Validating TODEV Specs,
Converting Extents to CCHH
Format and Validating
Extents, and Requesting
Main Storage for o Buffer.
If an Error is Found,
Branch to B5.

J-4

~

Chart 34.

'-'

IEHDASDR VTOC Routine

Al

Entry

Open
Data Set
Containing
IPL Text

Read
IPL Text
(BO-Byte

Reds.)

Gl

Build
IPL Record
for Record 1
of Track 0

Jl

Build CCWs
to Write

Reds. 1-3

Build
non-I Pl
Red.I for

Track 0

Build
Record 2

for Track 0

B2

D2

Store VTOC Ptr.
Vol Serial

and Owner Id
in Vol label

Build CCWs
to Write

Reds .1-3 and
IPL Text Red.

G2

Write
Track 0 of

All Copies

H2

Wait
Completion

of 1/0

Build Format 4,
Format 5, and

Format 0 DSCBs

D3

Write
VTOC Track

of all
Copies

E3

Wait
for Completion

of 1/0

Build o
Full Track
of Format 0

DSCBs

Yes

B4 B5

Write IEHDMSGB
IPL Text on

Assemble
Track 1 of
All Copies

Error
Msg.

C4 C5

Wait IEHDMSGS

for Completion Write
of J/O Error

Msg.

NOTE 1

IEHDMSGB Set

Build Return Code
Error
Msg.

F4

IEHDPRNT

Write

G4

Set
Return Code

= 8

H4

Return

NOTE 1: If IP~ Text Data Set Open is Not
OK, a Return Code of 8, Not 0,
is Set.

= 0

F5

Return

B5

System Utility Programs: IEHDASDR 97

Chart 35.

WRTCYL

RDCYL

98

IEHDASDR Data Cell Analysis Routine

Al

Entry

Bl

Set Up
CCWs in

Function Block

Set Up
for

Fint Alt.
Track

Dl

Write
All Tracks

of a
Cylinder

Read
All Trades of

Cylinder

Modify for
Next Cylinder

El

HDPOSCK

Perform
Head

Position
Check

Modify
for Next

Srrip

B2

Perform
Strip
Test

Set Up for
First Primary

Track

Modify for
Next Subcell

83 SUBCHK 84

Perfo""
Subcell
Test

Chart 36. IEHOASDR Label Routine

A2

Entry

B3

Update
Serial and

Owner Fields

C3

Read in Write
JFCB (EXCP)

(RDJFCB) New
Val. Label

D2 D3 D4

Modify Wait IEHDMSGB

Doto Set Completion
Assemble Name Field of EXCP

Error
Messa e

E2 E4

Issue IEHDPRNT
OPEN

(Type J) Write

'-"
Message

F2 F4

Read IEHDMSGB
Set

(EXCP)
Assemble Return Code

Vol. Label Completion = 8
Mess e

G2 G3

IGG019P8 IEHDPRNT

Modify Write
DEB Message

Extents

H2 H3

Wait Set
Completion of Return Code

EXCP = 0

J3

Issue
CLOSE

K3

Return

System Oti1ity Programs: IEHDASDR 99

Chart 37. IEHDASDR GETALT Routine

Entry

82 83 84

IGCOOBB IEHDMSGB IEHDMSGB

Assign Assemble Assemble
Alternate Error Writing

Track Message Message

CJ C4

Read in
IEHDPRNT IEHDPRNT

JFCB Write Write
(RDJFCB) Message Message

03

IEHDMSGB Set
Modify Assemble Return Code

OS NAME Alt. Track = 8
Message

El E2

IEHDPRNT

Issue OPEN
Write

(Type J) Message

F2

Issue
CLOSE

G2

Set
Return Code

= 0

H2

IEHDMSGB IEHDMSGB

Assemble Trk. Assemble
Description Completion
Messa e Message

J2

IEHDPRNT IEHDPRNT

Write Write
Message Message

K2

Return

100

Chart 38. IEBDASDR Password Protection Routine

Entry

Issue
GETMAIN

for
DSNAME

Table

Al

El
Build Table of
DDNAMEs from

TIOT and
DSNAMEs from

JFCBs

Read
(EXCP)

Format l
DSCBs

Open
(Type=J)
Protected

Data

Close
and Set

Security
Switch On

Issue
FREEMAIN

for
DSNAME

Table

F2 ------ F2

Set
Return Code

= 8

IEHDMSGB

Assemble
Message

IEHDPRNT

Write
Message

H2

J2

Return

Read
(EXCP)

Format l
DSCBs

Issue
WTOR for
Unexpired
Data Sets

Scratch
(SVC 29)
Protected
Data Sets

E4 1------

Set
Return Code
= 8

E4

F4

Return

Set
Return Code

= 0

ES

NOTE - Conditional GETMAIN. If
Main Storage Not Available,
Set Return Cede = 4 and Return.

System Utility Programs: IEHDASDR 101

Chart 39.

102

IEHDASDR SVC 82 Routine

Al

Entry

Read
(EXCP)
Format 4

DSCB

Flag the
Track

Defective

Read (EXCP)
HA of Next
Avail. Alt.

Write
(EXCP)

HA and RO on
Prt. Trk.

Write
(EXCP)

Alt. Trk.

B2

Write

Update
Alt. Trk.

Information

B3

J3

Build
DEB in
Protected
Storage

Place Serial
Nos. & TTR
of VTOC in

UCBs if
Necessary

Set
Return Code

= 12

Set
Return Code

= 16

84

D4

F4

H4

This section of the manual describes the
nine data set utility programs: IEBCOPY,
IEBCOMPR, IEBGENER, IEBPTPCH, IEBUPDAT,
IEBUPDTE, IEBISAM, IEBEDIT, and IEBDG.
These programs are executed under the Oper­
ating System/360. For their operation,
however, they require user-supplied control
statements in the input job stream.

IEBCOPY, IEBCOMPR, IEBGENER, and
IEBPTPCH are designed as overlay programs,
each consisting of three segments: the
root segment, the control card analyzer
segment, and the processor segment. The
root segment alone is loaded initially; it
links to the control card analyzer segment.
When the control statements have been ana­
lyzed, control is returned to the root,
which links to the processor segment.

The data set utility programs use QSAM
for both reading the SYSIN data set and
putting out the SYSPRINT data set. Both
data sets may have a blocking factor that
is other than one.

The storage requirements for buffers and
tables are dynamically determined at execu­
tion time to optimize space allocation and
thus permit the data set utility program to
take full advantage of any storage that is
available. If more storage is requested
than can be supplied by the Main Storage
supervisor routines, the task is automati­
cally terminated. If, however, the request
cannot be filled immediately because of
priority scheduling within a multi-tasking
environment, the execution of the utility
program can be delayed until its storage
requirements are met.

Updating Partitioned and Sequential
Data Sets (IEBUPDTE)

The IEBUPDTE utility program incorporates
both IBM and user-generated source language
modifications into sequential data sets or
into partitioned data sets. The input and
output data sets contain blocked or
unblocked logical records of 80 bytes or
less.

The program can:

• Add, copy, and replace members of data
sets.

• Add, delete, replace, and renumber the
records within an existing member or
data set.

Data Set Utility Programs

• Assign sequence numbers to the records
of a member or data set.

• Create a sequential master data set
from an input partitioned data set, and
vice versa.

At the completion or termination of the
program, the highest return code encoun­
tered within the program is passed to the
calling program. The utility program can
also produce a message data set containing
a listing of the contents of the output
data set, the control statements submitted
to the utility program, and, if applicable,
error messages.

Data definition (DD) statements needed
to run the program are as follows:

• SYSUT1, which defines the old roaster
data set (sequential or partitioned).

• SYSUT2, which defines the new (updated)
master data set (sequential or
partitioned).

• SYSIN, which defines a sequential data
set containing the transactions to be
applied to the old master data set.

• SYSPRINT, which defines a sequential
data set containing either changes to
the old master or contents of the new
master, as well as utility control
statements used and any error messages
generated.

PROGRAM STRUCTURE

The program consists of three segments (or
load modules): the root segment
(IEBUPD'IE), the control card analyzer seg-

1
ment (IEBASCAN and IEBBSCAN), and the ini­
tialization module (IEBUPNIT).

The Root segment

The main functions of the root segment are
the processing of records and the printing

I of messages. The segment contains four
control sections (CSECTs): IEBUPDTE, IEBU­
PLOG, IEBUPDT2 and IEBUPXIT. The following
text discusses the functions of each CSECT.

• IEBUPDTE receives initial control from
the supervisor, obtains storage for the
conununication region IEBUPCON, opens
the SYSIN data set, and passes control
to module IEBUPNIT for initialization.
For writing a header message on the

Data Set Utility Programs: IEBUFDTE 103

SYSPRINI' output device. CSECT IEBUPD'IE
passes control to CSECT IEBUPLOG.
After the return (of control) from
CSECT IEBUPLOG. CSECT IEEUPDTE gives
control to CSECT IEBUPDT2 to begin the
actual processing of records.

• IEBUPLCG is a closed subroutine. which
writes messages and records on SYS­
PRINT. The first execution of IEBUPLOG
opens SYSPRINT and the last closes it
and returns control to the supervisor.

• IEBUPDT2. the heart of the program,
opens the old and new master data sets.
reads. processes. formats and writes
the output records. and stows member
names if the new master is partitioned.
(Note: Prior to each writing of a rec­
ord on SYSUT2. module IEEUPDT2 checks
the field TOTALSW in the region IEBUP­
CON to determine if a user-totaling
exit is to be taken. If so. a parame­
ter list address is loaded into regist­
er 1, and an exit is made to the user
routine. When the user routine returns
control to module IEBUPDT2. a return
code established by the user routine is
checked, and the action taken is as
described in Appendix B.) If user
labels are to be processed on either
SYSUTl or SYSUT2, CSECT IEEUPDT2 passes
control to module IEEUPXIT through data
management routines during open, close,
or end of volume processing. CSECT
IEBUPDT2 passes control to the segment
IEBASCAN to scan and analyze control
statements, and to CSECT IEBUPLOG to
log messages and records on SYSPRINT.

• IEBUPXIT is the module containing the
program's exit routines. For each of
the three DCBs (SYSIN, SYSUTl. and SYS­
UT2), this module contains an entry
fOint £or each 0£ the £allowing closed
subroutines: DCE exit, header-label
exit. trailer-label exit, SYNAD exit,
and end-of-data exit (there is no end­
of-data exit for the SYSUT2 data set).

The Control Card Analyzer Segment

The main functions in analyzing control
cards are performed by two CSECTs in this

104

segment: IEBASCAN and IEBBSCAN. The fol­
lowing text discusses the functions of each
CSECT.

• IEBASCAN scans and analyzes control
statements and sets appropriate flags
in the region IEBUPCCN. CSECT IEBASCAN
gives control to CSECT IEBUPLOG to
print a copy of the control statement.
To scan the individual parameters of
each control statement, CSECT IEBASCAN
gives control to CSECT IEBBSCAN with a
doubleword parameter list, located at
address STOREG in the communication
region. For the reading of a control
statement continuation card, CSECT IEB­
BSCAN gives control to CSECT IEBUPDT2.
'!he first word in the list is the
length of the last parameter analyzed
by CSECT IEBBSCAN. The last word con­
tains a pointer to the same parameter's
location in a buffer area. SWITCHRD.

• IEBBSCAN. which is a closed subroutine,
receives control from CSECT IEEASCAN
and returns control either to CSECT
IEBASCAN or to CSECT IEBUPDT2 (for
reading another control card). CSECT
IEBBSCAN scans the individual parame­
ters on each control statement. If di­
agnostic messages are required as a
result of the scanning, control is
given to CSECT IEBUPLCG.

I Initialization Routine Module

'!here is one module in this group. It is
described in the following text.

• IEBUPNIT is the initialization module.
'Ibis module is a closed subroutine that
receives control from CSECT IEEUPDTE
for the purpose of initializing the
region IEBUPCON, analyzing the parame­
ters on the EXEC card.

PROGRAM FLOW

Figure 41 shows the overall flow of the
frogram; more detailed flow is sho~n in
Charts 40, 41, and 41.1.

c Entry

IEBUPDTE
Get IEBUPCON
Storage using GETMAIN
macro instruction.
Open SYSIN. i4"

_j

IEBUPXIT IEBUPDT2

Program exits --
(DCB, labels, EOD, Open data sets.

SYNAD). Process requests. --.
,

IEBUPLOG IEBASCAN

--Print copy of
Analyzes Control --statements. Sets

Contro I statement. __.. flags in IEBUPCON.

•
_j

IEBUPLOG IEBBSCAN

Scan card parameters. Write Parameter
Diagnostic messages. Sets switches in

__... SWITCHRD.

•Figure 41. IEBUPDTE Overall Flow

PROCESSOR DATA FLOW

Figure 42 indicates the paths taken by data
from SYSUTl and SYSIN. The following is a
breakdown of data flow within the ~rocessor
(IEBUPDT2) according to the type of run:
NEW or MCD.

NEW: This type of transaction involves
reading data from SYSIN and writing it on
SYSUT2 and (if specified) on SYSPRINT.
Logical records are read in turn f roro SYSIN
into the input buffer at SWITCHRD+l; rec­
ords are then stacked in the SYSUT2 output
buff er at N.MWRITEP until the desired block­
ing factor is reached. A physical record
is then written on the new master (SYSUT2).
This process is repeated until SYSIN has
been exhausted. If the SYSUT2 data set is
rartitioned (as indicated by the NAME key­
word) the member name is stowed.

MOD: This type of transaction involves
reading data from SYSUTl (the old master
data set) and SYSIN, merging them as indi­
cated on function and detail statements,
and writing the resultant data on SYSUT2.
The updated master is written on SYSUTl
only when UPDATE=INPLACE is specified.

IEBUPNIT IEBUPLOG
_... - Initialize IEBUPCON. Open SYSPRINT.

Analyze EXEC Card.
Write header

~ message.

IEBUPLOG .. Write Records,
and messages.
Close SYSPRINT.

,
(Return

IEBUPDT2

Read continuation of
Control statement.

• For a REPRO run, a physical record is
read from SYSUTl into the buff er
OMREADP, logical records are then moved
individually to OMINAREA for inspection
and then to the output buff er N.MWRITEP
until the desired output blocking f ac­
tor is reached; the output record is
then written on SYSUT2.

• For an ADD run, records are read from
SYSIN and are stacked in the output
buff er NMWRITEP until the desired
blocking factor is reached. The output
record is then written on SYSUT2. If
the data set is partitioned, the member
name specified is stowed in the direc­
tory of the new master. If nurrbering
of records is specified, it is per­
formed in the input buffer, SWITCHRD+l.

• For a REPL run, the flow is similar,
except that the new data from SYSIN
replaces the member specified. Number­
ing, if specified, is performed in the
input buffer SwITCHRD+l.

• For a CHANGE run, which operates within
a data set or member of a partitioned
data set, records may be changed,

Data Set Utility Programs: IEBUFDTE 105

106

deleted, numbered or added, depending
on the detail statements and data cards
following the change statement. When
one of these types of statements
(DELETE, NUMBER, or data) has been
read from SYSIN into the buffer
SWITCHRD+l, a record is read from the
old master (SYSUTl) into the buffer
OMREADP and is processed as follows
(see also Figure 42).

1. A logical old master record is
moved from the buff er OMREADP to
CMINAREA, and its sequence number
CCM) is compared against SEQl, if
number or delete is in effect, and
otherwise against the SYSIN record
sequence number.

2. If CM is less than SEQ1, the old
master logical record is moved to
the output buffer NMWRITEP, and
the next old master record is
moved into OMINAREA.

3. If SEQl is less than or equal to
CM, and OM is less than or equal
to SEQ2, the old master is
updated:

• If the old master logical record
is to be deleted, the next old
master logical record is moved
to overlay it in OMINAREA.

• If data is to be inserted, (if
the SYSIN sequence number is
less than OM) the SYSIN data
statement in SWITCHRD+l is re­
numbered if necessary and moved
to the output buffer NMWRITEP,

and the next SYSIN record is
read. If OM equals the SYSIN
sequence number, the SYSIN rec­
ord replaces the old master
record.

• If the SYSIN sequence number
equals CM and COLUMN UPDATE was
specified, the portion of the
record in OMINAREA not to be
updated is moved to its corre­
sponding relative position in
the buffer SWITCHRD+l, this
updated record is renumbered if
necessary and then moved to the
output buffer NMWRITEP, and the
next SYSIN and old master rec­
ords are read.

• If the old master record is to
be numbered, the indicated
sequence number is stored in it,
and the updated master record is
moved to the output buffer
NMWRITEP. The next old master
logical record is then moved
into OMINAREA.

4. When OM is greater than SEQ2,
IEBUPDTE checks to see that record
SEQ1 was actually processed
(deleted or numbered), if it was
not, an error message is written
and the member update terminates.
If it was, the next record from
the old master is moved into
OMINAREA, and the next record from
SYSIN is read into SWITCHRD+l.
Processing of the previous number
or delete statement is considered
finished.

Pre-Processing Initialization (IEBUPDTE,
IEBUPNIT)

These modules analyze
parameters from

SYSIN (changes ta master)

SYSPRINT (messages and

EXEC statement, get
main for IEBUPCON
work area, clear
switches, prepare to
open data sets

statements)

EXEC PGM=IEBUPDTE IEBUPCON

DSECT

I NEW,MOD
PARM; INHDR 1--+--1~~~~~--1--+~~---i

INTLR

Processor (IEBUPDT2)

(MOD run only)

Data Card
(SYSIN)

READ OM
reads old
master

(If NEW run, SYSIN
is sole input)

Buffer
OMREADP

(

OPENCHK checks
for open errors -
DSORG, blocking
blocksize, user
header lobe I, return
code; also gets main
for buffers

(

NOTSHORT l
moves logical
record to
temporary area

OMINAREA ,.........__ __ _
For COLUMN
UPDATE,
WRITEREP moves
unupdated part of
record onto data
card image when
SWITCHRD+l
equals OMINAREA

(

TESTLIST moves cord)
image to buffer for
INSERT or REPLACE
when SWITCHRD+l
~ OMINAREA

(

TESTLIST moves old)
record directly to
buffer if no update
needed; OMINAREA
< SWITCH RD+ 1

New
Moster
(SYSUT2)

NMLSTWRT
writes the

\

updated
record

Buffer
NMWRITEP

•Figure 42. IEBUPDTE Principle of Operation

Control Statement Analysis (IEBASCAN)

Function or detail
statement from SYSIN

./ADD NEW=PO

Keyword or
command word
analysis routine
primes work area
for transaction

(

OPRLUP uses
keyword or
command word
to look up
address of
analysis routine

SWITCHRD+l

(

I EBBSCA N scansl
a command word
or keyword

./ADD NEW=PO

COMDTAB

ADD

8 4

KEYT AB

NEW

Program exits as required (IEBUPXIT)

Message Log - also opens SYSPRINT DCB, spaces, prints
header, etc. {IEBUPLOG)

Messages are built by passing a message number (3 here)

and branching to MSGSTART

(

MSGTEST
scans table
for message
nember

_____.. MSGSTART

When message number
(3) is found, its address
(MSGSTART+8) is
added to displacement
factor (D3) to form
address of message

I
MSGnnBLD -------1 builder

(MS.G03BLD here)
sets up message
text address and
size from tables

LOGOUT AR
MSGWRTE tacks
message number
on text, moves
to buffer

writes message
or header

Messa e Table

03 Text

Data Set Utility Programs: IEBUPDTE 107

•Chart 40.

From:
41.1/K4
41.1/1)3
41.1/1<2
41.1/Hl
41/J3
41/K2

108

Fram·
41/B2

TEST40M

IEBUPDTE (Part 1 of 3)

Entry
from Caller

Al

---~....i.i.M.llllP.l(TE
Bl

Get
Storage

IEBUPNIT
Cl Set Up Work

Area. Set First
Entry Switch.

Analyze Exec
Parameters

Dl

READRTl

Read a
Record

from SYSIN

Set Up DCB
for PS or

PDS from Data
on Initial
Function Card

From:
41/Al

IEBUPLOG

Set List Switch
Write the

SYSOUT Record

Set
Chonge

Switch

for this
Function,

Substitute Id,
Size and Loe

for 73-80

REPLADD D3
Set Add or Rep I
Switch. If PDS:
Add, if SYSUTl
Name Not Found;
Repl, if Found

Set
Repro

Switch

If Then

Return
Code

16

NOTE 2: Box ES Ent•ed from: Exit to:

Chart 40 Box D5 Chart 40 Box 85
Chart 41 Box C3 Chart 41 Box E3
Chart 41. 1 Box Fl Chart 41. 1 Box Hl

or Box F2

OPEN OM I EBUPDT2
lnitia y Open M

Old and/or s ..
New Master NOTE 1

O<Jta Set•
(SYSUT1/SYSUT2)

84

REA DCC

If Do not Have
a Card, Read

one from SYSIN

Number Switch
and Establish

Start and
Increment

IEPUPLOG

Write
Message

G4

User Totaling
Routine

Action

No

Exit to

Deactivate User Label 41.1/H.4
and Totali Exits
None 41.1 H4
None eeNOTE

Deactivate Totaling Exits See NOTE
2

NOTE 1

Includes Exit to
Subroutine IEBUXIT
(SH NOTE 1 on Chart 41)

See NOTE 2:

IEBUPDT2
85 NMLSTWRT

Number Record
and/or Write
New Master

IEBASCAN

C5

Print
Me•age

Deactivate
Totaling

Exits

HS

JS

See NOTE 2

.chart 41.

From:
41.1/ES

IEBUPDTE (Part 2 of 3)

IEBUPLOG

Statement
Sequence

Error

Initial
Flush

IEBUPLOG

Cannot Update
Multiple PS

Per Job Step

IEBUPLOG

Guide
Flush Scan

ENDFLUSH Gl

Clear Control
Card Switches.

Set Flush
Switch

READCC

Read Next
Control

Set
Alias
Switch

From:

OPENOM 40/_F_3_--lL.L!i~~z.

READ OM

Read
Old Master

Record

From:
40/NOTE 2

IEB PDT2
E3

NMLSTWRT

ABS

Block/Write
Record onto
New Master

ERR

IEBUPLOG

Stat-t
Sequence

&ror

Ignore
Alias

Statement

H3

J3
Cl

lncludm Exit to Subroutine I EBUXIT
(See NOTE 1 on this Chart).

Set Delete
Pending Switch

IEBUPDT2
E4

Set
Read-No-More­

SYSl N
Switch

READ OM

Read a
Record from
Old Master

v.

Set Delete
Switch and
Establis'1
Delete Size

From:
40/El
41.1/Bl
41.1/G3
41.1/85
41.1/04
41.1/DS

OMEO;;;.D::;;,:X""'----~HS:;..
Set End-of-Old
Master Switch,
Read-No-More­

Old-Master

NOTEl: Between these Two Blocks, Subroutine IEBUPXIT
Performs Trailer-Label Processing for the SYSIN
Data Set.

Data Set Utility Programs: IEBUFDTE 109

•Chart 41.1. IEBUPDTE (Part 3 of 3)

110

RETRli-'N.,.,ST..._ ___ ...::;D-,1

Load Register
to Point to

Data
Record

NMLSlWRT

Block/Write
Record or

New Master

Yes

Yes

C2

Load Register
with Pointer

to Data Record

D2

Save Old
Master Record.
Set Read-No­

More-SYSl N
Switch

TESTLIST

Renumber
Record

Pointed to by
Register

IEBUPLOG

Write Record
on SYSPRINT

STOWNAME
Stow

Member
Name

E2

F2

Set Number
Range and

EstciDlish
Increment

Set
Number­
Pending
Switch

F3

IEBUPT 2

Set
Read-No­
Mor~YSIN

Switch

NOTE l • Betwee" these
two blocks, subroutine
IEBUPXIT performs
trailer-labeling process­
ing for the SYSIN Data
Set.

Yes
STOWNAME

Stow
Alias
Name

K3

G3

Switch. R•et
DCBIFLGS to

Read More
CCl'ds.

F4

Load Register
to/*

Data Record

'------El
G4

Save SYSIN
Data Record.
Set Read-No­
More-SYSIN

Switch

H4
Free Main

Storage, Clase
SYSIN and Old
and New Master

SYSUT1/SYSUT2)

See
NOTE 1

Yes

Pending Switch
and Read­

No-More-SYSI N
Switch

Invalid
Control

Statement

Load Register
with Pointer

GS

to Old
Master Record

IEBUPLOG
Print Final
Messag•.

Close
SYSPRINT

Return to
Caller

HS

Copying and Merging Partitioned
Data Set Members (IEBCOPY)

The IEBCOPY program reproduces all or
selected members of a partitioned data set.
During the copy operation, physical data
set compression <in-place recovery of unus­
able partitioned data set space) can occur
since only the currently active mewhers are
processed. In addition, this program may
be used to merge members from one data set
into an already existing data set.

Input to the IEBCOPY program must be a
partitioned data set. The data set must
reside on a direct access device and be
contained within one physical volume. The
input records can be U, F, or V format. If
F or V format, they can be blocked or
unblocked. Keys, relative track address
pointers CTTRNs) within the directory, and
note lists are permitted.

The output of the IEBCOPY program is
also a partitioned data set. It must
reside on a direct access device and be
contained within one physical volume.

PROGRAM STRUCTURE

The program (Figure 43) consists of three
segments: the root segment, the control
card analyzer segment, and the processor
segment.

The Root Segment

The root segment initializes the program.
It consists of routine IEBCOPYA.

IEBCOPYA
stores optionally specified data
definition CDD) names in a common
table area for later insertion into
their corresponding data control
blocks (DCB) and inserts an optionally
supplied initial page number into the
page line to be written on the system
print (SYSPRINT) data set.

The Control Card Analyzer Segment

The control card analyzer segment,
IEBCOPYC, reads and processes the control
cards. It consists of two routines: ANALY
and ACTCCS.

ANALY
calls ACTCCS to process the control
cards. Based on the parameters sup­
plied in the control cards the ANALYZ­
ER sets switches and builds parameter
tables.

AC'ICCS
opens SYSIN; reads the control cards
and passes the location, length, and
identification of the parameters to
the ANALY routine; and then closes
SY SIN.

'!he Processor Segment

'!he processor segment, IEBCOFYD, performs
the copying operation. It consists of nine
routines: MAIN., BDIF, REJECT, TOT AI.,
FIRST, REBLOCK, SETOPSWO, EOD, and CCMREAD.

MAIN

BDIF

saves the length of the member name
table and performs initialization to
force the reading of the entire input
directory if member exclusion is
requested. This routine also opens
the input data set CSYSUTl) for read­
ing by means of BPAM and determines,
during the DCB exit, whether a total
or a selective copy is requested. If
a total copy is requested, the DCB pa­
rameters are saved and the accessing
method CBPAM) is changed to BSAM to
allow the directory to be read.

employs user-supplied member names and
aliases to extract the corresponding
entries from the input directory when
an inclusive copy is requested.

REJECT

'IO'IAL

compares all the names in the input
directory against the list of user­
supplied names when an exclusive copy
is requested. If a match is obtained,
the corresponding member is not
processed.

reads the input directory a block at a
time into a buffer, calculates the
length of the table required to store
the directory entries, requests
storage for the table, and rereads the
input directory <exclusive of user
data) into the table. At the conclu­
sion of TOTAL, the input buff er is
released and the address and length of
the table is saved.

FIRST
tests for 'I'IRNs in the user data field
of the directory and reads the note
list, (if one exists) into the note
list buffers. (See the publication,
IBM System/360 Operating System:
Supervisor and Data Management Ser­
vices, Form C28-6646 for a description
of note lists.> Then, except for the
compress function, the routine reads a
normal record. For the compress func­
tion, this routine then gives control
to the COMREAD routine.

Data Set Utility Programs: IEBCOPY 111

RE BLOCK
initiates read and write operations as
required by the status of the in/out
buffer and supplies the move (BMOVE)
subroutine with the logical record
length and the "from" and •to"
addresses.

SETOPSWO

EOD

writes the member record <in original
form, reblocked, or as an update note
list> on the output data set (SYSUT2).
(For the compress function, this rou­
tine is not used. The COMREAD routine
does the writing of records in this
case.)

stores the required data in the output
directory (member names, aliases, user
data, etc.).

COMREAD
performs the reading and writing
operations when the compress function
is specified. If note lists <records
which contain pointers to blocks
within a given member of a partitioned
data set) are present, this routine
will update them. The routine also
reads and writes the member records
(of a PDS) one track at a time and
updates the TTRNs of a user data field
when necessary.

r---1 r---------,
I I
I Root I
I I l ____ T ___ _i

r-----------~-----------,
r----4----, r----i----,
I Control I I I
I card I IProcessorl
I Analyzer! I I l _________ J l _________ J

Figure 43. overlay structure of the
IEBCOPY Program

PROGRAM FI..QW

Charts 42 and 43 show the flow of control
through the program. After the program is
entered, it sets switches, assigns data
areas, and opens SYSPRINT. The header line
is written on SYSPRINT at this time using
the optionally supplied initial page
member.

The control card analyzer routine picks
up the control statements from SYSIN and
places them in tables within the IEBCOPY
program.

112

A test is then made to determine if an
exclusive copy was requested. For an
exclusive copy, the user lists the names of
the members that are not to be copied. The
input data set directory is then read to
determine the names of the members that are
to be copied. If an inclusive copy is spe­
cified, all members listed are copied.

Next, the input data set (SYSUTl) is
OFened. If a total,, an exclusive, or a
compress copy is to be performed, the DCB
parameters are saved and the basic sequen­
tial access method (BSAM) is used to read
the directory. For the compress function,
storage areas will also be allocated for
use as buffers. Once the directory is read
and all the entries are stored in a table,
the access functions are performed either
by using BPAM (for all but the compress
function) or by using the XDAP <execute
direct access program) macro instruction
(for the compress function). For a
description of the XDAP macro instruction,
see the publication IB~ System/360 Opera­
ting System: System Programmer's Guide,
Form c 28-6550.

The output data set is then opened and,
during the DCB exit, the DCBs of the input
(SYSUTl) and output (SYSUT2) data sets are
checked for valid reblocking requests.

For a valid reblocking request, switches
are set to establish a linkage to the
reblocking routine. Space for the in/out
buffer is also allocated at this time. If
there is to be reblocking, a second buffer
(in/out) is obtained. The length of the
in/out buff er is equal to the input block
size plus the key length.

The program is now ready for the names
of the members that are to be copied. If
the copy is to be either total, exclusive,
or compress, the entire directory has
already been read and saved. If the copy
is inclusive, however, the member names and
aliases which were provided by the user in
the control statements and the correspond­
ing entries are extracted from the directo­
ry at this time.

Directory entries, related to the rrem­
bers that are to be copied, are sorted and
grouped by member name and physical disk
address (TTR). A member name precedes all
its aliases. If member exclusion is
requested, the names in the directory are
compared against the user-supplied names.
~hen a match occurs, that member is not
processed.

The user data field for the member name
extracted from the input directory is
interrogated. If the user data field con­
tains note list pointers, a note list buff-

er is allocated and the note list is read
to determine its length.

After the note list (if one exists) is
read, the next processing steps depend upon
whether the canpress function has been
specified.

Copying Without Data Set Compression

If data sets are to be copied without com­
pression, a physical record is read into
the in/out buffer. If reblocking is
requested, a reblocking routine affects the
new block size. The HMOVE subroutine is
used to transfer logical records from the
in/out buffer to the reblocking buffer from
which the new block is written. When
reblocking is not requested, physical rec­
ords are written directly from the in/out
buffer.

Before writing records for which
reblocking has not been requested, the
track address CTTR) for each physical rec­
ord is compared to the entries within the
note list. If a match occurs, a switch is
set to indicate that pointers have been
found that will require updating. After
each physical record is written, the track
address pointer CTTRN) for the output rec­
ord is noted. This new (output> pointer
replaces the former <input) pointer in
either the directory entry or the note list
(or both) depending on where it appeared in
the input.

When the end-of-data for a member is
reached, the member name and all aliases
pertaining to that member are stored in the
output directory. If the member name table
indicates that more members remain to be
copied, the copying process resumes. If
the member name table is exhausted, job
termination is initiated; registers are
restored, a termination (normal or abnor­
mal) message is written onto SYSPRINT, the
proper return code is set, and control is
returned to the control program.

Copying With Data Set Compression

When data set compression has been speci­
fied (by the PARM = COMPRESS parameter on
the EXEC control card), the COMREAD routine
first uses a subroutine to convert the
relative track address of a member record
to an actual track address. Then the util­
ity program obtains the blocksize (from the
data set parameters) and uses the XDAP
macro instruction to read the record into a
buffer. 'Ihe actual number of bytes read
into the buffer is calculated from the
residual byte count appearing in the chan­
nel command word. If the record contains
'I'IRNs or is a note list, an indicating
switch in the buffer table is set. After
all records on a track have been read and
inspected, they are written on the output
data set CSYSU'I2). When all the records of
a member have been written, any TTRNs in
the directory and any note lists are
updated. Processing then continues as
described for copying without the compress
specification.

Data Set Utility Programs: IEBCOPY 113

Chart 42. IEBCOPY ~ copying and Merging Partitioned Data Set Members (Part 1 of 2)

114

Entry

IEBCOPYA Al
Set Switches,
Assign Data

Areas, Analyzer
Linkage
Parameters

IEBCOPYC Bl

ANALYZER

Read & Process
Control Cords

Open SYSPRINT

See NOTE 1
(I EBCOPY A) at Right

If Analyzer Cl
Finds &ror,

Ret. to Caller.
Otherwise go to

IEBCOPYD

Save Length
of Member

Name Table,

Open
Input

Data Set
(SYSUTl)

Open
Output

Data Set
(SYSUT2)

Allocate
Storage for
in/out

Buffer

Get Maximum
Track Capacity
of Device Specified.
Calculate Size of
Internal Buffer Table.
Get Buffer Require­
ments.

G2

Read Input
Directory. Cale
Size of Buffer
Table. Set Up

Directory Tobie

NOTE 3:

When Compress Function
is Specified, a Total
Copy is Automatic.

83

Storage for
Reblocking

Buffer

For Members
to be Copied,
Extract Entries

From Input
Di recto

No

From Input
Directory,
Extract User

Data for this
Member

43 4:01

SfTOC B4
BS

Return to

Error Calling

Routine Pr ram

Via IEBCOPYA and
the Supervisor

NOTE 1·

Test Switch
Set by
Analyzer When
Error Occurs.

EXLST D4
Determine

Members not
to be Copied.
Set Up Table

of Same

F4 NOTE 2:
Sort the

Processing on Records is
Done According to Nu-
merical Sequence on a
Track Rather than the
Alphabetic Sequence in
the Directory.

No

Skip this
Member.
Get Next
Member.

J4

Set Switch
for Number

of TTRNs

Yes

GETNL K4

Read the
Note list

£ .,. ...

Chart 43. IEBCOPY - Copying and Merging Partitioned Data Set Members (Part 2 of 2)

Perform
Reblocking

VTYPESW

Indicate any
Track Address

Pointer (TTRN)
That Requires

U atin

Jl

COM READ

Get Actual
Track Address

of Record

Calculate
Actual Bytes
Read and

Place No. in
Buffer Table

Set
Indicator in

Internal
Buffer
Table

A2

B2

G2

J2

No

Update
TTRs and
Note List

Set
Indicator in

Internal
Buffer Table

Update Buffer
Address

Update TTR
to Point to
Next Record

Update Track
Address

Pointers

C3

J3

K3

A5

Set Indicator
in Internal

Buffer
Table

Stow the
Directory

Information

Prepare
ta End
Task

J5

Return to
Control Program

E5

Vio IEBCOPYA and
the Supervisor.

Data Set Utility Programs: IEBCOPY 115

Comparing Records (IEBCOMPR)

The IEBCOMPR program compares either two
sequential or two partitioned data sets at
the logical record level. With one excep­
tion, data sets containing records greater
than 32,756 bytes in length are compared at
the physical record level. The records
being compared can be u, F, v, or vs for­
mat. F, V, and VS format records may be
either blocked or unblocked. For parti­
tioned data sets, vs format records are not
compared. If keys are present they are
compared.

The utility program will use either QSAM
(move mode) or BSAM processing to compare
the records, depending on the following pa­
rameters describing the records of the data
set: RECFM, logical record length, pre­
sence of record keys. (See Table 1 for
details.)

All user header and trailer labels are
compared unless control statements indicate
otherwise. The program prints the labels
if they are unequal. Optional user exits
are provided so that the user can process
his own labels.

PROGRAM STRUCTURE

The IEBCCMPR program (Figure 44) consists
of three segments: the root segment, the
control card analyzer segment, and the pro­
cessor segment.

The Root Segment

The root segment consists of two control
sections (CSECTS): IEECOMPM and IEBCROO'I.
CSECT IEBCOMFM contains the standard mes­
s ages for the IEBCOMPR utility program.

CSECT IEBCROOT consists of the two routines
COMPARE, and LLEORI •

COMPARE
sets all switches and tables to their
starting or original values.

LLEORI
op~s SYSPRINT, writes the header line
using the optionally supplied initial
page number on SYSPRINT.

'Ihe Control card Analyzer Segment

'Ihe control card analyzer segment reads and
processes the control cards. It consists
of two routines: IEBCANAL <containing con­
trol section ANALY) and IEBCCS02 (contain­
ing control section ACTCCS).

ANALY
calls ACTCCS to process the control
cards and then, based on the parame­
ters supplied in the control cards,
sets switches and creates parameter
tables.

AC'ICCS
opens SYSIN, reads the control cards,
and passes the location, length, and
identification of the parameters to
ANALY.

'Ihe Processor Segment

'Ihe processor segment performs the actual
compare operation. It consists of the rou­
tines IEBCMAIN, IEBCQSAM, and IEBCULET.
'Ihe routine IEBCMAIN contains six subrou­
tines: DIRBUFF1, STARTBSA, SDSOBEG, READ­
SE'I1, COMPAR, and BLPRT.

DIRBUFF1
compares the directories of the input
data sets if they are partitioned by

Table 1. Access Methods Used for Comparing Records

Level of Records
Logical

Access
Data Set RECFM Record

Comparison Have Keys Le rig th
Method

Physical { SYSUTl Yes vs } Not a factor { BSAM
Block SYSUT2 Yes vs

!
Greater than

~ Physical I SYSUTl No vs 32,756 bytes BSAM

Block 'l, SYSUT2 No vs in at least
one data set.

Logical { SYSUTl No vs vs v } Less than 32,756 I
Record SYSUT2 No vs v vs bytes for both l

QSAM
data sets.

Logical I SYSUTl } Not a { F u v } Less than 32,756 {
Record ' SYSUT2 Factor F u v bytes for both BSAM

data sets.

116

reading the directories and compares
the member names •

STARTBSA
uses BSAM to open the data sets, SYS­
UTl and SYSUT2, being compared, and
obtains the necessary DCB information
from each: block size, record length,
record format, and key length. If
user input header or trailer labels
are saved to be compared as data when
user input header or trailer label
exits are taken during Open or End-of­
Data processing, this routine compares
the user header labels from both data
sets and prints the labels if they are
unequal.

SDSOBEG
examines the key lengths, the logical
record lengths (F and vs formats
only), and record formats of both data
sets. Any discrepancy in the data
sets results in an er.ror message and
termination of the task. If this rou­
tine determines that QSAM is required
to process variable spanned (VS) rec­
ords, it closes the data sets SYSUTl
and SYSUT2 and gives control to the
routine IEBCQSAM to perform the
processing.

READSETl
reads and deblocks physical records.
Note: Deblocking on data sets with VS
re"COrds is not done when comparing
records whose length is greater than
32,756 bytes.

COMPAR

BLPRT

compares logical records. Unequal
records are identified and printed.
If a user routine is not provided and
ten consecutive records fail to com­
pare equally, this routine skips to
the next member in each partitioned
data set or terminates the task if the
data sets are sequential.

prints internal hexadecimal data in
Extended Binary-Coded-Decimal Inter­
change Code (EBCDIC} characters.

The routine IEBCQSAM contains the control
section QSAM and processes data sets con­
taining records that: do not have keys,
are less than 32,756 bytes long, and are of
format vs (see Table 1). In effect, this
routine functions as a closed subroutine
for routine IEBCMAIN, and it uses the sub­
routines CCMPAR and ELPRT.

The routine IEBCULET contains the control
section USERLAB. This routine, which func­
tions as a closed subroutine of routine
IEBCMAIN, saves, in main storage, the input
header and trailer labels for both the SYS-

011 and SYSUT2 data sets. Routine IEBCULET
is entered during the opening of, and when
reaching the end of, the data sets SYSUTl
and SYSUT2. Exits to user input header and
trailer label processing routines are taken
from this routine.

r~--------------------------------------1 r---------,
I I
I Root I
I I
L---~---_J

r-----------i-----------1 r---i----1 r ____ .i_ ___ ,

I control I I I
I card I IProcessorl
I Analyzer! I I

I
I
I
I
I
I
I
I
I
I L _________ J L--------J I

___ J

Figure 44. overlay Structure of the IEB­
COMPR Program

PROGRAM FLOW

Chart 44 shows the flow of control through
the IEBCOMPR program. After this program
is entered, it sets switches and tables to
their original or starting values and opens
SYSPRINT. A header is written on SYSPRINI'
at this time, using the optionally supplied
initial page number.

The control card analyzer, ANALY, picks
up the control statements from SYSIN and
places them in tables within the IEBCCMPR
program.

The ddnames for each data set are picked
up from the ddname list and saved for later
in the messages. Switches are also set at
this time for each user exit that is
specified.

The organization of the input data sets
SYSUTl and SYSU~2, can be either sequential
or partitioned. If it is partitioned,
storage must be allocated for tables. To
determine the amount of storage needed, the
program opens SYSU'Il with BSAM, reads the
directory, and scans the user data field
for member names, aliases, track address
pointers, and note lists. When this is
done, SYSUTl is closed.

If SYSUT1 and SYSUT2 are partitioned,
they are opened with BSAM and the direc­
tories are compared. ~ember names that
compare equally are stored in the TNSET
table. Member names that do not compare
cause the member name with the lower binary
value to be printed and assumed missing
from the other data set. Also, user data
fields for either member names or aliases
that do not compare are printed.

Data Set Utility Programs: IEBCCMFR 117

Note list pointers associated with memb­
er names that compare equally are stored in
tables TTRSET1 and TTRSET2 for SYSUT1 and
SYSUT2, respectively. When the directory
comparison is complete, SYSUT1 and SYSUT2
are closed.

At this point the program begins to com­
pare logical records. The input data sets
are opened and the necessary information is
extracted from each DCB; i.e., block size,
record length, record format, and key
length. If a user exit is taken to com­
pare, as data, the user input header labels
from two sequential data sets, this routine
performs the comparison of the appro~riate
labels. If the input data sets are sequen­
tially organized, the user header labels
from both data sets are compared unless
control statements indicate otherwise. The
program prints the labels if they are
unequal.

The record formats, the key lengths, and
the logical record length CF and vs format
records only) of the input data sets are
compared. If there is any inconsistency, a
message is printed and processing is
terminated.

A physical record is read from each
input data set and deblocked. (Note:

118

Deblocking is not done when the data sets
being compared have records whose lengths
are greater than 32,756 bytes.) If there
is no user pre-compare routine, a record
from each data set is compared a character
at a time until all the records are
compared.

Records that do not compare are identi­
fied and printed. If a user error routine
is provided, control is transferred to it.
If a user error routine is not provided and
this is the tenth consecutive error, pro­
cessing either terminates if the input data
sets are sequential or skips to the next
member if the input data sets are
partitioned.

After the last record is processed, the
input data sets are closed; the total num­
ber of records compared is printed. If a
user exit is taken to compare, as data, the
user input trailer labels from two sequen­
tial data sets, this routine performs the
comparison of the appropriate labels. If
the input data sets are sequentially
organized, the user trailer labels from
both input data sets are compared unless
control statements indicate otherwise. The
program prints the labels if they are
unequal.

Chart 44. IEBCOMPR - Comparing Records

Entry

IEBCOMPR

Set
Switches and
Tables to
Starting

Values

Bl

Dl

ANY

Read and
Process Control

Cords

BEGINl El

Save DDNAMEs

Scan
Directory for

Purpose of
Allocating

Storage

DIRBUFFl

Compare
the

Directories

STARTBSA

Prepare to
Read Doto Set 1
and Doto Set 2

Hl

Jl

ZZPR

Print User
Header
Labels

Open
SYSUTl

and

Check Key
Length, Logical
Record Length,

and Record
Formats

READSETl E3

Read and
Deblock a

Physical Record
from both Doto

Sets

ERRCOMP

Error Routine

User
Error

--,

No

Yes

Collect
and Save
Labels for
Comparison

User's
Header Lobel

Routine

Process User
Requests and

Return Code

C5

--------- -- -----------------J

End of
Doto for

SYSUTl or
SYSUT2

User
Pre-Compare

Routine

ZZPR

Print
Trailer
Labels

K4

D4

Collect and
Save Labels

for Comparison

User's
Trailer Lobel

Routine

Process User
Requests and
Return Code

H5

Data Set Utility Programs: IEBCCMPR 119

Copying and Modifying Records
(IEBGENER)
The IEBGENER program copies a sequential
data set, or converts a sequential data set
into a partitioned data set, or adds mem­
bers to an existing partitioned data set.
Editing facilities are available with all
operations of this program.

The input to the IEBGENER program must
be a sequential data set. The data set can
reside on any device. The input records
can te u, F, v, or VS format. If F, V, or
VS format, they can be blocked or
unblocked.

The output of the IEEGENER program can
be either a sequential or a partitioned
data set. If the output data set is parti­
tioned, it must reside on a direct access
device and note lists will not be
permitted.

PROGRAM STRUCl'URE

The IEBGENER program (Figure 45) consists
of three segments: the root segment, the
control card analyzer segment, and the pro­
cessor segment.

The Root Segment

The root segment initializes the program
and writes messages on SYSPRINT. It con­
sists of three routines CIEEGENER, HWRMSG,
and HCDWR) and a message module, IEBDGMSG.

IEBGENER
sets switches, assigns data areas,
opens SYSPRINT, and writes the header
line with a user supplied initial page
number (if any) on SYSPRINT.

HWRMSG
writes error messages on SYSPRINT.

HCDWR
writes, on SYSPRINT, the control cards
that are read by the control card
scanner CIEBGSCAN) routine.

IEBGMESG
contains the text of error messages
that are written by HWRMSG.

The Control Card Analyzer Segment

The control card analyzer segment reads and
processes the control cards. It consists
of two routines: IEBGSCAN and IEBCCS02.

IEBGSCAN

120

calls IEECCS02 to process the control
cards and then, based on an analysis
of the parameters supplied in the con­
trol cards, IEBGSCAN sets switches and

creates parameter tables for use by
the processing modules IEBGENR3, IEB­
GENS3, and IEBGEN03. The addresses of
the tables are in a list to which gen­
eral register 1 points when this rou­
tine has finished its processing.

IEBCCS02
opens SYSIN, reads the control cards
and then passes the location, length,
and identification of the parameters
to IEBGSCAN.

~he Processor Segment

~he processor segment consists of a root
module, IEBGENR3, and two processing
modules, IEBGENS3 and IEBGEN03. The root
module opens and closes the data sets and
~erforms all label processing. It gives
control to either of the other two modules
(IEBGENS3 and IEBGEN03) for editing and
copying functions. Module IEBGENS3 is used
f cr variable spanned records and IEBGEN03
is used for all other record formats. The
entire segment consists of these three
modules and the following routines: IEBE­
DI~2, IEBLENP2, IEBMOVE2, IEBCCNH2, IEB­
CONP2, and IEBCONZ2.

IEBGENS3
for variable spanned records, this
processing module either gets and puts
logical records or reads and writes
physical blocks, depending on DD card
parameters and/or information in the
data set control block. The module
links to editing and/or conversion
subroutines as required by control
statements. It returns control to the
root module.

IEBGEN03
for all but variable spanned records,
this module reads the input from the
SYSUTl data set, deblocks the records,
edits them if required, and writes the
output on SYSUT2 with proper blocking.
~he module links to editing and/or
conversion subroutines as required by
control statements. It returns con­
trol to the root module.

IEBEDI'I2
moves the logical records from the
input buffer to the output buffer with
field editing. One field is moved at
a time, and converted if necessary.

IEBLENP2
calculates the total length of the
output records based on the lengths of
the fields to be moved. Conversion is
then performed on each.

IEBMOVE2
moves bytes of data from one area of
main storage to another.

l
Control Card
Analyzer Segment

Root Segment

l

I

Processor Root
Segment (IERGENR3)

Processing for
User Labels

Non-Spanned Record
Processor (IEBGEN03)

Figure 45. Overlay Structure of the IEBGENER Program

IEBCONH2
converts the data from H-set BCD to
EBCDIC characters.

IEBCONP2
converts the data from packed to zoned
decimal format.

IEBCONZ2
converts the data from zoned to packed
decimal format.

Charts 45 and 46 show the flow of con­
trol through the IEBGENER program. After
the program is entered, it sets switches,
assigns data areas, analyzes linkage param­
eters, and opens SYSPRINT. A header line
with user initial page number (if any) is
written on SYSPRINT at this time.

The control card analyzer, IEBGSCAN,
picks up the control statements from SYSIN
and places them within the IEBGENER
program.

The DD name for each data set is picked
up from the DD name list and stored in the
HDDNAMES table. Then the input (SYSUT1)
and the output (SYSUT2) data sets are
opened. A user exit may be taken at this
point to process user header labels.

Next, a physical record is read into the
read buff er and then moved to the input
work area for deblocking and processing.
At this point, the record is available to
the user via a user exit.

The program reads the next physical rec­
ord from the input data set to refill the
vacated input buffer.

Logical records are moved one at a time
to the output work area. If editing is
requested by the user, the requested con­
version of each field of each logical rec­
ord is performed.

A test is performed before a record is
moved from the input work area to the out­
put work area to determine whether space is
available in the output work area. If
space is not available or if the output
work area contains the last record of a
partitioned data set, records in the output
work area are moved to the output buffer.
If a user totaling routine has been speci­
fied, the processing module <either IEB­
GENS3 or IEBGEN03) gives control to that
routine at an exit immediately preceding
each WRITE or PUT macro instruction issued
by the utility. At the same time, register
1 contains the address of a parameter list
(see Appendix B) that includes:

• The address of either a physical block
(if control comes from module IEBGEN03)
or a logical record (if control comes
from module IEBGENS3 and spanned rec­
ords are processed with reformatting.)

• The address of the data control block
describing the data to be placed on the
output device.

• The address of an area to contain sta­
tus information describing an uncor­
rectable I/O error.

• The address of a storage area in which
the user collects totaling information.

Data Set Utility Programs: IEBGENER 121

After control returns from the user's rou­
tine, the utility places the record(s) on
the output data set.

In the case of an uncorrectable I/O
error occurring when the utility places
records on the output data set, the utility
passes control back to the user's totaling
routine with bit 0 of byte eight of the pa­
rameter list now set to 1 to indicate the
error. The first word of the parameter
list contains no meaningful information in
this case. (This return to the user total­
ing routine is taken before any specified
user IOERRCR exit is taken.) After control
returns to the utility from either the to­
taling routine or, if one is specified, an
IOERROR exit routine, the utility program
terminates the processing without taking
any user trailer-label exits.

Note: For the processing modules IEBGENS3
and IEBGEN03, a user's specified IOERROR
exit is taken from the SYNAD routine on the
occurrence of a permanent I/O error during
either input or output processing.

122

~he utility will terminate processing after
control is returned from the user's exit
routine.

If a user totaling routine has not been
Sfecified, the utility writes the record(s)
directly on the output data set.

If the output contains keys, the keys
are also written out. A user exit permits
tne user to insert keys.

A test follows the movement of each rec­
ord from the input to the output work areas
tc determine whether the output data set is
partitioned or sequential. If the output
data set is partitioned and the last record
for a member was previously written, the
member name and aliases are stored in the
directory.

After the last record is processed and
written, the input and output data sets are
closed. During the closing a user exit ~ay
be taken to process user trailer labels.
Control is then returned to the invoker.

•Chart 45. IEBGENER - Copying and Modifying Records (Part 1 of 2)

IEBGENR A2

Set Switches.

Entry
Assign Data
Areas. Open
SYSPRINT

HROOT9 Bl B2

IEBGSCAN
Analyze Control
Parameters Card

Analyzer

Exit if

IEBGENR3 CJ
SUL is C2
Specified

Open
on DD Card Save

Label
Input Information
DCB --,

if Necessary I
I
I
I
I
I
I
I

L------------------

Exit it

___ _._ __ E_l .. ~~;c:~ied E2

Open
Output
DCB

on DD Card

--1
I
I
I
I
I
I

I

Move Label
Information
into Buffer

if Necessary

L----------------

B4

Move
Buffer to
Work Area

A3

A3

User Data
Routine

User Input
Reader

Routine.

User Output
Header

Routine

User
Routine

D3

Move
Key to
Output

84

A5

User Totaling
Routine

User Totaling
Routine

User
Key

Routine

J5

Data Set Utility Programs: IEBGENER 123

•Chart 46.

124

IEBGENER - Copying and Modifying Records (Part 2 of 2)

User Totaling
Routine

User
Routine

Mave
and
Edit

Stow
the

Member

E2

From:
45/CS

Move
and
Edit

Stow
Name
and

Aliases

Close
Input &
Output
DCBs

Return

K4

84

Move Label
Information
into Buffer

if Necessary

User Trailer
Label

Routine

NOTE 1

Exit if

GS

Sul is
Specified on
DD Card

Printing and Punching Records
(IEBPTPCH)
The IEBPl'PCH program prints or punches all
or selected portions of a sequential data
set, a partitioned data set, or specified
members of a partitioned data set.

The input to the IEBPTPCH program can be
either a sequential or a partitioned data
set. The input records can be u, F, or V
format. If F or v format, they can be
blocked or unblocked.

The output of the IEBPTPCH program is
put on a printer or a card punch. Note
lists are permitted in the output only when
the standard format is used.

PROGRAM STRUCTURE

The program (Figure 46) consists of three
segments: the root segment, the control
card analyzer segment, and the processor
segment.

.---,
I r---------, I
I I I I
I I Root I I I L----T ___ _. I
I r-----------L-----------, I
I r----L----, r----.J.----, I
I I Control I I I I
I I card I I Process or I I
I I Analyzer! I I I
I L---------J L---------' I L---J
Figure 46. overlay structure of the

IEBPTPCH Program

The Root Segment

The root segment initializes the pro­
gram, and consists of one routine, PRPCH,
which 1inks to PPANAL.

The control Card .Analyzer Segment

The control card analyzer segment reads and
processes the control cards. It consists
of two routines: PPANAL and ACTCCS.

PPANAL
calls ACTCCS to process the control
cards and then, based on the parame­
ters supplied in the control cards,
sets switches and creates parameter
tables.

AC TC CS
opens SYSIN, reads the control cards
and then passes the location, length,
and identification of the parameters
to PPANAL.

The Processor Segment

The processor segment performs the printing
and punching operations. It consists of
twelve routines: PRPUN, TOTAL, MEMELCC,
PPSDSl, RDCH, PREFORM, RECDLCCl, RECPROC,
RECPREP, FORMS, FORMU, and CLOSEIO.

PRPUN
examines the parameters supplied by
the PPANL routine in the control card
analyzer segment and performs initial­
ization based on these parameters.

TOTAL
reads the directory, extracts the name
and location of each entry, and sorts
the entries by TTR and alias indicator
so that members can be written in the
order of their physical occurrence in
the data set and la"itten only once.

MEMBLOC
obtains the name and location of the
next partitioned data set member to be
written and then positions the data
set so that the member can be read.

PPSDSl

RDCH

determines whether there are user
written record groups. If no editing
is indicated, it prepares to write the
sequential data set or the member in
the standard format. It also prepares
to skip logical records within the
member or the sequential data set.

reads a physical record. If note
lists are to be omitted and the cur­
rent record is a note list, another
physical record is read.

PREFORM
deblocks and writes out the records if
PREFORM is specified.

RECDLOC1
deblocks the physical record.

RECPROC
initiates logical record processing,
examines the identification (ID) of
the record to determine if it is last
record in a group, examines the logi­
cal record count to determine if the
record should be skipped, and provides
the user access to the input record.

RECPREP

FORMS

tests for the end of page on printed
output and determines the f orrr.at for
the current logical record.

writes a logical record in the stan­
dard format. If necessary, it seg-

Data Set Utility Programs: IEBPTPCH 125

FORMU

ments the input record into multiple
output records.

edits a logical record in accordance
with user specifications. Before the
record is written, the user can again
access the output record.

CLOSEIO
prepares to end the task and relin­
quish control to the control program
or the invoker.

PROGRAM FLQJ

Chart 47 shows the flow of control
through the IEBPl'PCH program. After the
program is entered, it sets switches,
assigns data areas, and analyzes the
internal system-provided parameters. A
header is written on SYSPRINT at this time,
using the optionally supplied initial page
number.

The control card analyzer routine (PPAN­
AL) picks up the control statements from
SYSIN and places them in tables within the
IEBPTPCH program. The output data set,
CSYSt11'2) is then opened for printing or
punching.

If the input data set, SYSUT1, is parti­
tioned and the entire data set is to be
read and processed, the program reads the
directory and extracts the name and loca­
tion of each entry. The entries are then
sorted by TTR and alias so that members can
be written in the order of their physical
occurrence on the direct access device.

Next, initialization is performed to
enable the input data set to be read. A
user exit can be taken at this point to
process the user header label on the input
data set if it is sequentially organized.

If the user•s routine returns an action
code of 16, the utility program will com­
plete the opening of the input data set,
print and punch Cif so specified) any bead-

er labels that have already been read (up
to the point for which the action code was
set>, close the input data set, and termi­
nate the processing. The utility will then
return control to the supervisor.

If the input data set contains variable
spanned records, the DCB exit routine, dur­
ing the opening of the SYSUT1 data set,
tests the record length and the record for­
mat parameters. The action taken is indi­
cated in Figure 47.

After the data set has been opened, the
access method indicator field in the DCB is
set to indicate the use of the QSA~ MOVE
mode.

If the input data set is partitioned,
the name and location of the member that is
to be processed is obtained and the data
set is positioned so that the member can be
read.

Any user-supplied titles are written at
this time. If the input is partitioned,
the member currently being processed is
identified. A new page is started for
printed output or a new sequence number is
initiated for punched output. The program
then determines whether there are user
written record groups and performs initial­
ization accordingly. If there is no edit­
ing, initialization is performed to process
the sequential data set or member in the
standard format.

The RDCH routine reads a physical record
and determines whether a note list is pre­
sent. If the physical record is a note
list and it is to be omitted, the routine
reads the next physical record when the
basic sequential access method is being
used. iU!en the queued sequential access
method (QSAM) is used, the routine gets a
logical record. QSAM is used only for a
sequential data set having both a logical
record length that does not exceed 32,756
bytes and variable spanned records.

The PREFORM routine deblocks and writes
out records if the user has control charac-

,-----------------------------------T---1
I DCB Parameter I Action Taken I
io----------T------------------------t---~
IRECFM ILRECL IWork Area for IEBPTPCH I
i-----------t------------------------+---~
IVS or VBS !Greater than 32,756 IRECFM field in utility work area is set to u. I
I I ILRECL field in utility work area is filled with the I
I I I DCB block size. I
I I I I
IVS or VBS IEqual to or less than IRECFM field in utility work area is set to v. I
I 132,756 IBLKSIZE field in utility work area is filled with I l __________ 1 ________________________ 1:~=-~:~-~~gi~~-~~~~~-~~::~: _____________________ J ~
Figure 47. Work Area Settings for Support of Variable Spanned Records

126

ters in the input data set and specifies
the keyword PREFORM. All other control
statement requests are ignored, but are
checked for validity.

The RECDLOCl routine deblocks the phys­
ical record and obtains the length and
location of the next logical record. When
no logical records remain in a block, the
RECDLOCl routine returns to the RDCH rou­
tine, and another physical record is read.

A user exit can be taken at this point
to process a logical record before it is
processed by the program.

The processing of a logical record
includes checking the record ID to deter­
mine whether it is the last record in a
record group and testing the record count
to see if the record should be skipped. If
the record is the last record of a record
group, a switch is set for subsequent test­
ing. If the record is to be skipped, con­
trol is passed to the end of record group
test.

Next, the output format of the logical
record is tested to determine if it is to
be standard or user defined. The FORMS

routine writes a logical record in the
standard format; and when necessary, seg­
ments the input record into multiple output
records. The FORMU routine edits a logical
record a according to user specifications.
A user exit may be taken before the record
is written to allow the user to perform
additional editing.

After the last record in each record
group is written, the NEXTGR routine per­
forms reinitialization to allow the next
record group to be processed.

When the end of data is reached on an
input partitioned data set, the name and
location of the next member is obtained and
the data set is positioned to the next
member. 'When the end of data for the last
member or for a sequential data set is
reached, the input data set is closed. A
user exit can be taken at this point to
process the user trailer on the input data
set if it is sequentially organized.

The processing of trailer labels employs
the same use of return action code 16 as
described in this section for header label
processing.

Data Set Utility Programs: IEBPrPCH 127

Chart 47. IEEPTPCH - Printing and Punching Records

128

Al

Entry

PP ENTRY Bl

Cl

PP ANAL

Read and
Analyze the
Control Cords

PREPRPUN Dl

Analyze the
Print or Punch

Output

PPOPEN

Prepare to
Print or Punch

the Output

Prepare to
Read the Input

Data Set

Write Any
User Supp Ii ed

Headers

El

PREFORM C2

Deb lock
and Write Out

the
Preformotted

Record

No

TOTAL F2 --------.
Read

Yes Directory and

Yes

Yes

Sort Entries by
TTR or Aliases

User Routine

User
Header Lobel

Routine

MEMBLOCK

G2

H2

J2

Locate the
Next Member

PPSDSl

Prepare to
Write One or
More Record

Groups

RDCH

Locate the
Next Physical

RECLOCl

Record

Locate the
Next Logical

Record

Process
a Logical

Record

B3

CJ

EJ

FORMS A4

No

Write Logical
Record in the

Standard Format

User Routine

C4

NEXTGR

Prepare for
Next Record

Group

User
Trailer Label

Exit

J4

Yes

Yes

Yes

Write
the Logical

Record

Prepare to
End the Task

Return

HS

Operating on an Indexed Sequential
Data Set (IEBISAM)

The IEBISAM program is executed under the
operating system to copy, unload, load, or
print an indexed sequential data set. As
examples, this program can be used to cre­
ate a back~up copy of a data set, or to
improve the accessibility of a data set by
eliminating wasted track space and overflow
areas. The program, which may be either
executed as a job step or called by an
executing program, consists of six load
modules (see Chart 48) that reside in the
linkage library, LINKLIE.

The Initializing routine determines
which function has been specified, then
passes control to one of four functional
(or processing> modules. The selected pro­
cessing module performs its specified func­
tion, then passes control to the TerRinat­
ing routine, which writes messages, ter­
minates processing, and returns control to
the calling routine. (Note: If invalid
specifications or parameters have been spe­
cified, the Initializing routine sets the
appropriate message and completion code
indications and gives control directly to
the Terminating routine.>

The IEBISAM program may be executed as a
job step, or it may be called by a program
executing a job step. If it is to be
executed as a job step, the step's EXEC
statement specifies the program IEBISAM,
and the EXEC statement's PARM field speci­
fies the function to be performed as a pa­
rameter (COPY, UNLOAD, LOAD, or PRINTL).
If the IEBISAM program is to be called by a
program executing a job step, the calling
program must specify the function by pro­
viding 'EXEC statement parameters' and
ddnames as shown in this publication in the
section •Auxiliary Parameters.• In either
case, the job control language statements
that describe the step during which IEBISAM
is to be executed must include DD state­
ments to define the input, output, and mes­
sage data sets.

Figure 48 gives a module directory and
summary for the IEBISAM program, and Charts
49-56 outline the individual routines of
the program. For more information regard­
ing the use of the program, refer to the
SRL publication IBM System/360 Operating
system: Utilities, Form C28-6586.

INITIALIZING IEBISAM

The Initializing routine is in the load
module (IEBISAM) that is entered whenever
the IEBISAM program is requested. This
routine (Chart 49) obtains main storage for

a work area, then inspects the specifica­
tions under which the program is to run.

If no options have been specified in the
PARM field of the EXEC statement, the pro­
gram assumes the (default) option to unload
the data set. If a function specification
is not valid, this routine stores a comple­
tion code, assembles a message, and uses
the XCTL macro instruction to pass control
to the Terminating routine, IEBISF.

In all other situations (i.e., those in
which correct procedures have been fol­
lowed), the Initializing routine asserobles
the necessary information and gives control
to the appropriate module.

COPYING AN INDEXED SEQUENTIAL DATA SET

If the copy function was specified, control
is passed to the Copy routine in module
IEBISC. This routine creates an output
data set containing the same records as the
input data set, but with newly built index­
es and empty overflow areas. The Copy rou­
tine (Chart 50) opens the input data set
(SYSUTl) and the output data set (SYSUT2)
for use by QISAM and checks the DCE
parameters:

• The DCBLRECL parameters must be the
same for both the input and the output
data sets.

• ~he DCBRECFM parameters must be the
same (F or V) for both the input and
the output data sets.

• For the output data set, the DCBBLKSI
parameter must be a multiple of the
DCBLRECL parameter if the record format
(RECFM) is fixed (F). For variable
length records (RECFM=V), the DCEELKSI
parameter must be equal to or greater
than the logical record length CLRECL)
+ 4.

• The DCBRKP parameter must be smaller
than the DCBRECL parameter minus the
DCBREYLE parameters.

If the input and output data sets are
opened successfully, and the DCB parameters
are valid, the Copy routine uses the PUT
<locate mode) and the GET (move mode) macro
instructions to read the records in logical
sequence from the input data set and write
them into the output data set.

If the data sets are not opened success­
fully, if the DCB parameters are not valid,
or if an unrecoverable input/output error
is encountered, the routine stores both a
canpletion code and a message code. Pro­
cessing on the data set is terminated; the

Data Set Utility Programs: IEBISAM 129

r---------T-------T--T--------1
~~~~~==-=~i=:~::--t------------------------~~~~::: _____________________________ ~=~~=~-~~~ ~ 
IIEBISAM jIEBISAMjReceives control from calling routine. I 49 I 
I I jGets work area used by processing modules. I I 
I I I Gets program parameters, alternate ddnames, page number. I I 
I I I Passes control to appropriate module. I I 
~---------t-------t--------------------~---------------------------------------i--------~ 
IIEBISC IIEEISC l~roduces copy of input data set with new indexes. I 50 I 
j(Copy) I jUses PUT and GET ~aero instructions. I I 
~---------t-------t------------------------------------------------------------i--------~ 
IIEBISU IIEBISU !Retrieves an indexed sequential record and passes its length! 51 I 
I <unload) I I and address to IBISSO. I I 
I I !Analyzes return code from IEEISSO and sets success or error I I 
I I lindication for IEBISF. I I 
I ~-------+-----------------------------------------------------------~--------~ 
I jIEBISSOIUnloads the indexed sequential record(s) into physically I 52 I 
I I tsequential 80-byte card irrages. I I 
~---------t-------t------------------------------------------------------------i--------~ 
IIEBISL IIEBISL !Reconstructs an indexed sequential record from 'unloaded' I 53 I 
I (Load) I I data passed by IEBISSI. I I 
I I !Checks DCE parameters OPTCD, RECFM, LRECL, BLRSIZE, RKF, I I 
I I INTM, KEYLEN, and CYLOFL against corresponding DD statement I I 
I I I information. I I 
I ~-------+------------------------------------------------------------~--------~ 
I IIEBISSIIRetrieves unloaded (80-byte card images) records I 54 I 
I I !Maintains pointer to current input area. I I 
I I I Maintains number of bytes remaining to be processed on a I I 
I I I given card image. 1 I I 
I I !Checks each card image for ~roper sequence. I I 
~---------t-------t------------------------------------------------------------i--------~ 
IIEBISPL IIEBISPLIProduces printed copy of input data set. I 55 I 
!<Print) I !Provides for user exit and/or suppression of data I I 

~---------t-------t~~~~=:=~~~-------------------------------------------------~--------~ ~ IIEBISF IIEBISF !Receives control from initializing or processing module. I 56 I 
I I I Prints appropriate message and returns completion code to I I 
I I tcalling routine. I I 
L---------~-------~------------------------------------------------------------..L.-------J 
Figure 48. Module Directory, summary, and Chart IDs for IEBISAM Program 

data sets are closed; and control is given 
to the Terminating routine. 

UNLOADING AN INDEXED SEQUENTIAL DATA SET 

If the unload function was specified, con­
trol is passed from the Initializing rou­
tine to the Unload routine (in module IEBI­
SU) to create a physical sequential data 
set containing the information from the 
input (indexed sequential) data set. This 
information is put in 80-byte card images 
on either a magnetic tape volume or a 
direct access volume. Figure 49 illus­
trates the data flow and format during 
unloading operations. 

Module IEBISU contains two control sec­
tions (CSECTs): IEBISU (Chart 51), which 
reads records in logical sequence from an 
indexed sequential data set; and IEBISSO 
(Chart 52), which reblocks the records and 
writes them into a physical sequential data 
set. 

130 

Obtaining Indexed Sequential Records 

After module IEBISU is entered at CSECT 
IEBISU, the Unload routine opens the input 
data set and determines the format of the 
records. (If the relative key position is 
the high-order byte of the record (i.e., 
DKBRKP equals zero>, the key field is 
treated separately when the records are put 
into the output data set.) 

CSECT IEBISU uses CSECT IEBISSO as a 
subroutine; initially, IEBISU passes con­
trol to IEBISSO to open the output 
(unloaded) data set, then again to write 
the input (indexed sequential) DCB into the 
output data set. After the DCB has been 
written, IEBISU uses the GET <locate mode) 
macro instruction to obtain a record from 
the input data set, then passes control to 
C~ECT IEBISSO. 

Building the output Data Set 

C~ECT IEBISSO performs the reblocking and 
writing of the input indexed sequential 



records into the output data set. The out­
put data set is a physical sequential data 
set consisting of 80-byte logical records. 
The 80-byte records contain the key and 
data fields of the indexed sequential data 
set, together with length indicators and 
sequence numbers <see Figure 49). 

The first 154 bytes of DCE information 
for the indexed sequential data set are 
written in the first two physically sequen­
tial records (those with sequence numbers 
zero and one) of the output data set. ~he 
first 80-byte logical record contains the 
physical sequence number zero, followed by 
the length indicator 154. (The length 
indicator represents the number of bytes 
between one length indicator field and the 
succeeding length indicator field.) The 
first 76 bytes of the DCE for the input 
data set complete the first logical record. 
The second 80-byte logical record contains 
the sequence number one, followed by the 
next 78 bytes of the input data set's DCB. 
The information in the first 154 bytes of 
the input DCB includes the following 
fields: OPl'CD, RECFM, LRECL, ELKSIZE, RKP, 
Nl'M, :KEYLEN, and CYLOFL. <See Figure 4 7, 
and the section •Data Control Block--IsAM• 
in the publication IBM System/360 Operating 
System: System Control Elocks, Form C28-
6628.) The remaining 80-byte logical rec­
ords (beginning with sequence number two> 
contain the images of the records in the 
input data set. The last 80-byte logical 
record of the wiloaded (physical sequen­
tial) data set contains from zero to two 
bytes of zeros following the last byte of 
input record data. 

At the first entry to CSECT IEBISSO, the 
Unload routine opens the output DCE and 
checks the DSORG and BIKSIZE parameters: 
the DSORG parameter must be FS, and the 
BLKSIZE parameter must be multiple of 80. 
If the opening is successful and the param­
eters are valid, the routine issues a PUT 
(locate mode) macro instruction to write 
the DCB in the output data set. This 
information and control of the Unload rou­
tine are then returned to CSECT IEEISU. 

On subsequent entries to CSECT IEEISSC, 
the output buffer is filled with indexed 
sequential records obtained by CSECT IEBI­
su. ~he routine stores the record length 
indicator first, then it stores the record 
key and data fields. When the routine 
finds the end of an input record, it 
returns control to CSECT IEBISU to obtain 
another record; when it has filled the 
input buffer, the routine issues a PUT 
<locate mode) macro instruction to write 
the contents of the buffer into the output 
data set. The physical sequence number for 
the output data set records is then 
Ufdated. 

If CSECT IEBISSO encounters an error 
condition (e.g., unsuccessful open, invalid 
DCB parameters, or an uncorrectable I/C 
error), it closes the output data set, sets 
the appropriate return code (see Chart 51), 
and returns control to CSECT IEBISU. IEBI­
su then sets both a message and a comple­
tion code, closes the input data set, and 
passes control to the Terminating routine. 

Data Set Utility Programs: IEBISAM 131 



Using successive GETs, 
an indexed sequential 
record is read. Each 
logical record is prefixed 
with a 2-byte LREC L 
(Logical Record Length) 

""'loo 

Sequence 
Number 0 

Sequence 
Number 1 

Sequence 
Number 2 

Sequence 
Number 3 

Sequence 
Number 4 

Sequence 
Number 5 

Sequence 
Number N 

2 

2 

2 

2 

2 

2 

.-4.,. 

Main Storage 

<-----' 0 

L 

/ 
Unloaded ISAM Record 
(Physical Sequential) 

2-byte sequence number 

0 
The prefixed ISAM 
logical records are 
reblocked into 78-byte 
logical record images, 
each of which is 
prefixed with a 2-byte 
physical sequence 
number 

The 80-byte unloaded 
records are written 
using successive PUTs 

During a subsequent 
LOAD execution, 
unloaded records are 
read (using GET) in 
sequence until an 
ISAM record can be 
rebuilt 

80 Bytes 
(logical record length) 

21 Input DCB Data 
154 (Beginning through DC BMS HI) 

Input DCB Data 
(DCBSETL through DCBRORG3) 

21 l l Length Fint Input Record Keyl 
lndicator1 

The sequence numben 
are stripped and the 
record is rebui It 

The record is written 
using successive PUTs 

76 • 
.A. Supencripts indicate number of bytes 

in afield. 

78 

I length 21 
lndicator2 

Second In-

Note: A complete record consisting 
of data and key is included 
between successive length 
indicators. 

put Record I Key2 I 
1 Length 

21 
Indicator 3 

Third Input Record 1 Key3 I 
_._ 

KeyM End of Last Input Record 

Illustration of M indexed sequential input records 
contained in (N-1) unloaded output records. 

•Figure 49. Unloading and Loading an Indexed Sequential Data set 

132 



LOADING AN INDEXED SEQUENTIAL DATA SIT 

The Load routine is used to reconstruct an 
indexed sequential data set from an 
unloaded copy of the physical sequential 
data set. The output data set resulting 
from the loading function is placed on a 
direct access volume. If the original 
indexed sequential data set contained rec­
o~ds in an overflow area, these records 
will appear sequentially arranged with the 
records from the original primary area when 
the unloaded data set is reloaded. 

To perform the load function, the Ini­
tializing routine gives control to CSECT 
IEBISL of module IEBISL (see Chart 53). 
The Load routine performs its own initial­
izing functions, then branches to CSECT 
IEHISSI of the same load module to get the 
length and address of an input record from 
the unloaded data set. If the return to 
CSECT IEBISL from CSECT IEHISSI indicates a 
return code other than zero, the appropri­
ate message number and/or completion code 
are established, the output data set Cif it 
had been opened as described later on) is 
closed, and control is given to the ~ermi­
nating routine. 

If CSECT IEHISSI returns the requested 
information and a return code of zero when 
it gives control back to CSECT IEBISL, 
CSECT IEBISL opens the output data set and 
checks the validity of the DCB fields. An 
inconsistency (or error) detected during 
either of the latter operations leads to 
procedures for closing the data set as pre­
viously described. Otherwise, if no error 
is detected, the PUT macro instruction is 
used to place the record information in the 
new indexed sequential (output) data set. 

When all records from the unloaded (old) 
data set have been transferred to the new 
data set, the old data set is closed and 
control is given to the Terminating 
routine. 

In reconstructing the new data set, the 
information in the first two logical rec­
ords of the unloaded data set is used in 
establishing the DCB for the new data set. 
The last 78 bytes of each subsequent 80-
byte logical record are used to build the 
records of the new data set. 

CSECT IEBISSI (Chart 54) opens the input 
(unloaded) data set and checks for the 
validity of the DCB pararoeters for that 
data set. Should either the opening be 
unsuccessful or a DCE parameter be invalid, 
the data set is closed and return is rrade 
to CSECT IEBISL. Ctherwise, CSECT IEBISSI 
proceeds to get information fron; the logi­
cal records of the unloaded data set and to 
transmit it to CSECT IEEISL so that it may 
be placed in the new indexed sequential 

data set. The GET and PUT macro instruc­
tions are used for these operations. The 
preceding procedures continue until either 
the end of the input data set is reached or 
a terminating error condition is reached. 
For both situations, the input data set is 
then closed, and control is returned to 
CEECT IEBISL. 

PRINUNG LOGICAL RECORDS OF AN INDEXED 
SEQUENTIAL DATA SET 

In order to obtain a printed copy of an 
indexed sequential data set, a user speci­
fies the keyword PRINTL in the PARM field 
of an EXEC statement. The queued indexed 
sequential access method (QISAM) is used to 
obtain the records from the input data set. 
~he records are selected in logical 
sequence from both the prime and the over­
flow areas of the input data set. To write 
the records, the queued sequential access 
method (QSAM) uses a PUT macro instruction. 
Record conversion (to hexadecimal notation) 
and/or user exits before record printing 
may be specified as options. 

After module IEBISAM gives control to 
the print module IEBISPL (Chart 55), both 
the input and the output data sets are 
Ofened, the success of the openings is 
determined, and the DCB parameters are 
checked for validity. If an error is 
encountered in any of the preceding opera­
tions, steps are taken to close the data 
sets and give control to the Terminating 
routine. 

If the data sets have been opened suc­
cessfully and the DCB parameters are valid, 
the Print routine proceeds to place a rec­
ord in a buffer area prior to printing it. 
At this point, a user's routine may gain 
access to the record if the proper specifi­
cation has been given on the EXEC state­
ment. Upon return from the user's routine 
with a return code of either 0 or 4 (see 
the return code table on Chart 55) , or if 
no user exit was taken, the data in the 
buffer is converted to hexadecimal notation 
unless the no-conversion option has been 
Sfecified. The PU~ macro instruction is 
then issued to print the record on a SYSCUT 
device. After all input data records have 
been printed, or if the routine encounters 
an unrecoverable error, the input and out­
put data sets are closed and the Terminat­
ing routine is given control. 

Note: A more complete interpretation of 
tne codes returned to the print module 
IEBISPL ty a user's exit routine is given 
below: 

code 0: ~he record currently in the 
buffer is to be printed, and precessing 
of the input data set is to continue. 

Data Set Utility Programs: IEBISAM 133 



Code 4: The record currently in the 
buffer is to be printed, but processing 
of the input data set is to be ter­
minated after the printing. 

Code 8: The record currently in the 
buffer is not to be printed. Processing 
of the input data set is to continue. 

Code 12: The record currently in the 
buffer is not to be printed, and proces­
sing of the input data set is to be 
terminated. 

TERMINATING THE IEEISAM PROGRAM 

Each of the other routines of the IEEISAM 
program may give control and a completion 
code to the Terminating routine (in roodule 
IEBISF). The basic function of the Termi­
nating routine is to write an appropriate 
message on the SYSPRINT data set. This 
message indicates the result of the use of 
the IEBISAM program. 

134 

~hen module IEBISF (see chart 56) gains 
central, it opens the output (SYSPRINT) 
data set. If the opening is unsuccessful, 
the approriate completion code (16) is set, 
the SYSPRINT data set is closed, and con­
trol is returned to the source f rorr: which 
the IEBISAM program was initially given 
ccntrol. 

After a successful opening of the output 
aata set, the PUT macro instruction is used 
to write the message concerning the pro­
gram's result. If an error is encountered 
during writing, a completion code of 8 is 
set and returned to the caller of the 
IEBISAM program. <The completion codes 
shown on Chart 56 are those resulting from 
~rocessing actvity by module IEBISF.) If 
nc error is encountered during writing, the 
Terminating routine established a comple­
tion code based upon the results of the 
routine from which the Terminating routine 
received control. This code, and prograrr 
central, are then given to the caller of 
the IEBISAM program. 



Chart 48. IEBISAM - Overall Flow 

E3 c Entry 

CJ 

IEBISAM 49 

Initialize 
Program 

J 01 T 02 l 04 l OS 

IEBISU Sl IEBISL 53 IEBISC sq IEBISPL SS 

Create Load Copy 
Print 

Unloaded Records Data Set 
Logical 

Data Set Records 

1 I _.I 1 J 
E3 

IEBISF 56 

Terminate 
Program 

F3 

Return 
to Caller 

Data Set Utility Programs: IEBISAM 135 



Chart 49. IEEISAM - Initialize IEBISAM Program 

136 

CONAME 

Use 
Standard 

DDNAMEs 

IE 

Hl 

A2 

Entry 

Establish 
Register 

Addressability 

SVC 10. 
Issue GETMAIN 

{Work Area 
for 

Pr ram 

Program 
Initialization 

Reflect 
Options 

by Settings 
in Work 

Use 
DD NAM Es 

Provided 

82 

C2 

No 

LA El N E3 

Assume 
Unload Option 

SUPPLVl 84 

Use Page 
Number 

Supplied or 
Assume One 

C4 

Update and 
Restore 

Page Number 
for Caller 

DAOOO 04 

Check the Date 

ONWARDl 

Prepare 
for Proper Exit 

Via XCTL 

NOTE 1: 

E4 

Message Number= 8 
Completion Code = 16 

ASSUMECV See NOTE 1 
85 Set Message 

Number and 
Completion 

Code 

Prepare 
for XCTL 

Exit to 
Terminate 

cs 



Chart 50. IEBISAM - Copy Indexed Sequential Records (IEBISC) 

Entry is Via 
XCTL from 
Module IEBISAM 
(Chart 49) 

Entry 

IEBIS,..C...._ _____ B_2.,. 

Establish 
Base Register 

Addr-

C2 

Move DCBs to 
Work Area. Load 

DDNAMEs. 

02 

SVC 19. 
Open 

Input and 
Output DCBs 

Set M-age 
Number and 

Completion Code 

This is CSECT IEBISC 
cJ Module IEBISC 

laue PUT 
(Locate Buffer 

Addrm) 

luue GET 
(Place 
Record in 

Buffer) 

End of 
Input Dato. 

Last Buffer to 
Be Purged. 

SVC 20, 
Close 

Input and 
Output DCBs 

Prepare for 
XCTL Exit to 

T•minate 

E3 SYNADOUT E4 

SVC 68. 

.E.~~~--
Set Menage 

and 
Completlan 

F3 SYNADIN F4 

SVC 68. 
ERROR SetM.-ge 

and 
Completion 

G3 

H3 

J3 

K3 

XCTL to 
Module IEBISF 

Chart 56 

Data Set Utility Programs: IEBISAM 137 



.chart 51. 

138 

IEBISAM - Retrieve Indexed Sequential Records (IEBISU) 

Entry is Via XCTL 
from Module IEBISAM 
(Chart 49) 

Yes 

IEBISU 

Entry 

Initialize 

SVC 19. 
Open 
Input 

DCB 

A2 

B2 

C2 

Save DCBKEYLE, G2 
Indicate Key 
Needed, and 
Set 'Format' 
= x '11' 

IEBISSO 

Reblock and 
Write Phys. Seq. 

Records 

This is CSECT IEBISU 
of Lood Module I EBISU 

No 

NOTE 2 

Analyze Return 
Code and Set 
Message and 
Completion 

Codes 

B4 
COMPLY 

SVC 20. 
Close 
Input 
DCB 

BS 

cs 

Get 
Record 
(Locate 

Mode) 

E3 

Store 
Record Addr. 

and 
Record Length 

Yes 

NOTE 3 

XCTL to 
Module I EBISF 

(Chart 56) 

Store F4 

Store 
Key Address, 
Add Key Length 
to Red. Length 

ISAM DCB Addr. 
and 

ISAM DCB 
Len th 

NOTE 1 - 'Format' X '11' is Fixed Unblocked Records with 
the Key in the High - Order Positions 

NOTE2 -
Record Completion Messages 
Code Code Number 

4 

8 16 7 

12 

Meanings 

1/0 Error 

Bod Open 

Bod DCB Params. 

NOTE 3 - The Fint Two (Phys. Seq.) Records Written Contain the DCB for the 
Input (ISAM) Data Set 



Chart 52. IEBISAM - Unload Physical Sequential Records (IEBISSO) 

Al 

Entry 

SVC 19. 
Open 

Output 
DCB 

Initialize 
Seq. No. 

To 0, 
'SAVE' 
to 78 

Gl 

OPERTN S2 G4 

Put Phys. 
Seq. Record 
(Input DCB) 

SVC 20. 
Close 
Output 

DCB 

Hl 

NOTOK NOTE 2 

Set 
Return 
Code 

Return 

Jl 

Kl 

COM PRE A2 

Store 
Record 
length 

This is CSECT IEBISSO 
of load Module IEBISU 

OPERTN S2 G4 

Put 
Phys. Seq. 

Record 

ONE 

Store High 
Order Byte of 
Red, lgth. 

Fld. in 
Buffer 

B3 

C3 

OPERTN S2 G4 

Put 
Phys. Seq. 

Record 

D2 D3 

Set 
'SAVE' = 78 

EASYMVE 

Store 
RCD. lgth. 

in 
Output 
Buffer 

Stare 
RCD. Key 

and Data in 
Output 
Buffer 

G2 

CHECK H2 

Pad Buffer 
with up to 
Two Zeros 

Store Low 
Order Byte 

of Red. 
lgth. Fld. 
in Buffer 

Updote Red. 
Address and 
Set 'Save' 

= 77 

Decrement 
'SAVE' By 

Record 
length 
+ 2 

NOTE 1 - The Field 'SAVE' Contains the Number 
of Bytes left in the (vutput) Buffer. 

NOTE 2 - Return Code Settings are Described in 
chart Sl. 
Only Return Codes 0 are Set at 'NOTOK.' 

E3 

G3 

SAVE 

Less 

KACI N 

Store 
Red. Lgth. 

in 
Output 
Buffer 

D4 

OPERTN S2 G4 

Put 
Phys. Seq. 

Record 

Set 
'SAVE' 
= 78 

PUT 
(Locate) 

E4 

REArD~~--"'--~~J4..;.., 
Uodate and 
Store Seq. 
Number, 

Reset 
Pointers 

SAVE 

lv\ore 

MORE 

SYN AD 

Store 
Red, 1.gth. 

Fld, in 
Output 
Buffer 

Fill 
Output 

Buffer with 
Red. Key 

and Data 

85 

cs 

DS 

OPERTN S2 G4 

Put 
Phys. Seq. 

Record 

Update Red. 
Address, Red. 

Lgth ...... J 
Set 'SAVE' 

= 78 

OPERTN -
Subroutine nf 
CSECT IEBISSO 

NOTE 2 

Set 
Return 

Code 

SVC 20. 
Close 

Output 
DCB 

Return 
to IEBISU 
Chart Sl 

JS 

KS 

HS 

Data Set Utility Programs: IEBISAM 139 



Chart 53. IEBISAM - Reconstruct Indexed Sequential Records (IEBISL) 

Jl 

140 

Successively 
Check far 

Return Codes 
of 4, 8, 12, 16 

Set Message 
Number= 0 
(No Errors) 

FINI Jl 

Store 
Message 
Number 

Set Reg.O far 
Limit Value 

Load QUISAM 

C2 

See NOTE 1 

SETSW 

Set 
Appropriate 

Message 
Number 

Set Completion 
Code and Mess­

age. (DD Card 
Missing ar Open 

Unsuccessful) 

MITE J2 

SVC 20. 
Clase 
Output 
Data 
Set 

E2 

This is CSECT IEBISL 
of Module I EBISL 

SVC 19 

RESU;.;.M;.;:E.:..1 ____ .:..B4p. 
Put 

(Locate). 
Load 

Record 
Length 

Load 
Limit 

Address 

Open DCB Exit 

---~-~ ... ':'a_u_t _ ..... - ------- --------1 

Prepare far 
Exit to 

Terminate 

J3 

ISLE~X .. T.;_ _ __,.. ___ D_,4 

Move Some 
DCB Fields 

Return 

0 
4 
8 

12 
16 
24 

from Unloaded 
Data Set to 

New Data Set 

E4 

Check 'Old' 
(Unloaded) and 
'New' (Output) 
Record Lengths 

and Formats 

G4 
Check Size 

of Record Key 
Length and 

Relative Key 
Position 

Meani 

Normal (No Error) Return 
Synchronous Error at Input 
End of Input Oata 
Character Transmission Limit Exceeded 
Input Out of Sequence 
Invalid DCB Parameter 

BS 

Message No. 

2 
20 
4 



'-' 

"' 

Chart 54. IEBISAM - Retrieve Physical Sequential Records (IEBISSI) 

Al 

Entry 

I EBI S"'S"""I __ ......._ _ __:B;..:.,I 

SKIP 

OUT 

Save 
Registers 

Get Pointer 
to Work 

Area 

Set Pointers 
and Addresses 

for Work 
and Save 

Areas 

SVC 19. 
Open 
Input 
Data 
Set 

Set Return 
Code Equal 
20. (Not 
Opened) 

SVC 20. 
Close 
Input 
Data 
Set 

El 

Kl 

Entry is 
Via BALR 
from CSECT 
IEBISL 

COMP B2 ....------...... 
Place 

Information 
in Registers 
for Reference 

PROC 54 H4 

Get a 
Record 

Set Retum 
Code Equol 
24. (DCB 

Fields Invalid) 

K2 
Return to 

Module IEBISL 
Chart 53) 

Yes 

This is CSECT 
IEBISSI of 
Module I EBISL 

No 

Check 
Bytes to 

Be Processed 

E3 

Get a 
Record 

G3 

PROC 54 H4 

Get a 
Record 

H3 

Set Return 
Code 

Equal O. 

J3 
Return to 

Module IEBISL 
Chart 53 

FINI B4 ....----------. 

PROC 

Set Return 
Code Equal 

8. (End 
of Input) 

Move 
Record 

for Output 

G4 
Return to 

Module IEBISL 
(Chart 53) 

Get 
Input 

Record 

F4 

H4 

EXCEED D5 

Set Return 

Yes Code Equal 
12. (Length 

Exceeds Limit) 

ES 

MOie Bytes. 
No 

Increment 
Pointer. 

F5 

PROC 54 H4 

Geta 
Record 

PROC-
Subroutine 
of CSECT 
IEBISSI 

NOTSEQ JS 

Set Return 
No Code Equal 

16. (Out 
of Sequence) 

Data Set Utility Programs: IEBISA~ 141 



Chart 55. IEBISAM - Print logical Records (IEBISPL) 

142 

Al 

Entry 

IEBISPL Bl 

Establish 
Base 

Register 

Load DCB 
Pointers 

Move DDNAMEs 
to DCBS. 

Fl 

Check Format 
and Length 
of Records. 

SVC 8. 
Load 

(Bring i~ 
User 

Routine 

DOG ET Jl 

SVC 10. 
lssueGetmain. 

(Buffer Area for 
Input Dato 

Entry is 
This is CSECT IEBISPL 
of Module IEBISPL 

Via XCTL 
from Module 
IEBISAM 
(Chort 49) 

C2 

SVC 19. 
Open 

Input and 
Output 
DCBs 

SETSW E2 

Set Meuage 
Number and 

Completion Code 

F2 
EODADIN F2 

Move 
Message 

SVC 10 
luue FREEMAIN 
for Area Obtai 

for Record 

COMEBCK J2 

Prepare 
for XCTL Exit 

to Terminate 

K2 

Error 
r--
I 

4 

83 

luue PUT 
(Locate). 
Get Output 

Buffer 

C3 

luue GET (Move). 

Place Next 
Record 

Work Area 

D3 

Check Out 
Record 

Characteristics 

Check Return 
Codes and Take 

Appropriate 
Action 

Convert Data 
to Hexadecimal 

luue PUT 
(Locate). 

Write Record 
from 

J3 

SVC 68, Error 
Error 

Analysis 

SYNADIN 

Error SVC 68. 
Error 

Analysis 

Go to 
User 

Routine 

84 

E4 

R•et 
Buffer Pointers 

~-----c3 

NOTE 1: Codes and Message Numbers 

Return Completion Code Menage 
Code Meaning (Hexidecimal) Number 

0 Print and Continue 
4 Print, Close 4 5 
8 No Print; Continue 

12 No Print· Close 4 

DCB Error 8 1 
DD Statement 10 7 

Missing or 
Unsuccessful Open 

SYNAD Error 8 2 
Invalid Return 0 6 

Code Issued. 

~ 



Chart 56. IEBISAM - Terminate IEBISAM Program (IEBISF) 

Entry is Via 
EXTL from any 
IEBISAM program 
Module 

SETSW~O..._ ____ ~D-.1 

IEBISF 

Set No 
Completion Code------< 

"' 16 

El 

SVC 20. 
Close 

SYSPRINT Data 
Set 

R•et Poi nten 

Fl 

Gl 

SVC 10. 
l•ue FREEMAI N 

for Program n-----..,. 
Wort< 

A2 

Entry 

82 

Prepare 
to Open Output 

DCB 

SVC 19. 
Open 

Sysprint Data 
Set 

Prepare for 
Return (Es­

tablish Com­
pletion Code 
for Caller 

C2 

G2 

H2 
eturn to Caller 
of IEBISAM 

Yes Set 
Up for Header 

Line 

D3 D4 
Issue 

PUT (Move). 
Write Header 

line 

Set 

E4 

Up for Message 

PUTOUT F4 ----------
Issue PUT 

(Move). 
Write 

Message 

Error --,------., 
I I 

I ! 
I 
I 
I 

Error 

SYN AD 
Routine for 
SYSPRINT 

ES 

I 
I 
I 
I 
I 
I 

Completion 
Code= 8 

_ _j 

Error 

Data Set Utility Programs: IEBISAM 143 



Updating Symbolic Libraries 
(IEBUPDAT) 
The IEBUPDAT program modifies a symbolic 
library. The program can: 

• Add, copy, and replace members. 
• Add, delete, replace, and renumber the 

records within an existing member. 
• Assign sequence numbers to the records 

of a new member. 

The input to the IEBUPI:AT program con­
sists of two data sets: the old master 
data set CSYSUTl) and the current transac­
tion data set (SYSIN). The old master is a 
partitioned data set that contains all of 
the library members; the current transac­
tion is a sequential data set that contains 
all .of the transactions that are to be ap­
plied to the library members. The logical 
record length for both data sets is 80 
bytes, plocked or unblocked. 

The output of the IEEUPI:AT prograw con­
sists of two data sets: the new master 
(SYSUT2) and the log (SYSPRINT). The new 
master is a partitioned data set that con­
tains the updated version of the symbolic 
library; the log is a sequential data set 
that contains the latest changes to the old 
master or, optionally the currently updated 
version of the old master. The logical 
record length on the new master is 80 
bytes, blocked or unblocked; on the log it 
is 120 bytes, unblocked. The blocking fac­
tors of the old and new masters may be 
different. 

The program obtains main storage for 
buffers ty means of the getmain routine, 
which is called once for each buffer; the 
amount of storage requested is the same as 
the tlock size specified by the utility 
keyword parameter BLKSIZE. If the aroount 
of storage requested is not available, the 
program terminates. 

The current transaction is the control­
ling data set. Only those members of the 
old master for which there are current 
transaction entries will be processed. Old 
master memters without current transaction 
entries will not appear in the new master. 

PROGRAM STRUCTURE 

The IEBUFDAT program (Figure 50) can be 
logically divided into three parts: ini­
tialization, member processor, and within­
member processor. 

Initialization 

Initialization sets switches, assigns work 
areas, and opens the input and output data 

144 

sets. It consists of four functions: 
AHEAD, ANALPRAM, OPENl, and OPENINFT. 

AHEAD 
initializes switches, work areas, and 
DCBs so that they can be reused. 

ANALPARM 
analyzes input specifications and user 
header and trailer label exit routine 
name specifications. Errors cause 
termination of the program with a 
message. 

OPENl 
opens output data sets. 

OPENINPT 
opens one or two input data sets 
according to optional parameter input 
specifications. 

Member Processor 

~he member processor updates whole merobers 
at a time. It reads the current transac­
tion data set and does preliminary proces­
sing of all headers: ADD, REPL, REPRC, and 
CBNGE. Further processing of the CHNGE 
header is done by the Within Member Proces­
sor. The ADD, REPL, and REPRC headers and 
their associated current transaction rec­
ords are processed by the ~ember Processor. 

A new-master is created by the ~errber­
Level Processor for ADDs, REPLs, and REPRC 
headers. A REPRO header will cause the 
new-master to be written from the old­
master instead of from the current transac­
tion data set as is done for ADD and REPL 
headers. Processing of the current tran­
saction header includes sequence checking 
of member names, determination of proper 
directory entry Cor lack of), stowing of 
ALIASes, sequencing of ADDs and REPLs 
(through presence of NU~BR), and detection 
of invalid transactions <i.e., transactions 
that logically are out of sequence or are 
incorrectly prepared). The member proces­
sor consists of eight routines: READCT, 
SCURCECK, MAINBODY, SOURCERT, OMREADRT, 
LOGROU~E, NU!'iBRRTE, and STCWNAME. 

READC'I 
reads the current transaction data set 
and deblocks if necessary. It then 
checks for two illegal headers in a 
row (ADD, REPL, or CHNGE). 

SOURCECK 
determines the type of transaction. 

MA INBODY 
processes headers. It checks the 
member name of the current transaction 
header stream for proper sequence and 
sets up the S'IOWAREA area with the di -



rectory image. If the header is an 
ADD, MAINBODY ensures that there is no 
directory entry on the old master; 
conversely, if the header is a REPL, 
REPRO, or CHNGE, a directory entry 
must already be on the old master. 

SOURCERT 
processes all source line transactions 
in a member following an ADD or REPL 
header. 

OMREADRT 
processes the source line transactions 
in a member following a REPRO header. 

LOGRCUTE 
writes headers, ALIAS and NUMBR trans­
actions, and error messages, on 
SYSPRINT. 

NUMBRRTE 
processes NUMBR transaction following 
either a REPL or ADD header. 

STOW NAME 
stores a member name in the out~ut 
directory. 

Within Member Processor 

ihe within Member Processor updates the 
records within a member. It inserts, 
deletes, reproduces, replaces and/or rese­
quences source code images. control is 
given to the Within Member Processor when 
the Member Level Processor detects a CHNGE 
transaction and verifies the existence of 
the named member on the old master data 
set. The Within Member Processor retains 
control, processing a member of the old 
master as specified by the record of the 
current transaction data set until another 
header record or the ENDUP record is read. 
Centro! is then returned to the Merrher 
Level Processor. 

!he within member processor consists of 
four routines: RRFINDCM, RRSCURCE, RRDE­
LE!, and RRNUMBER. 

RRFINDOM 
reads the first record of the old 
master member being changed; then 
reads and checks the current transac­
tion for the type of transaction. 
Control is passed to the appropriate 
transaction routine. 

r---------------------------------------------------------------------------------------1 
r----------------, 
I . . . . I Initialize Switches and DCBs (AHEAD) 
I In1t1al1zat1on t----------------------T----------------------------------------
1 I !Analyze option parameters (ANA1~RAM) 

L-------T--------J ~----------------------------------------
! !Open data sets COPENl) 
I L----------------------------------------

r-------~--------, 
I I Determine type of Transaction (SOURCECK) 
I Member l----------------------T----------------------------------------
1 Processor I !Process headers (MAINBCDY) 
L-------T--------J ~----------------------------------------

! !Process source lines-ADD,REP1 (SCURCERT) 
I ~----------------------------------------
! !Process source lines-REFRC CC~R~ADRT} 

I ~----------------------------------------
! I ~rite log C ZZPR) 
I ~----------------------------------------
! !Sequence members CNUMBRRTE) 
I ~----------------------------------------
! I Stow directory names CS'ICWNA~E) 

I L----------------------------------------
r-------~--------, 
I Within I Read old master CFINDCM) 
I Member t----------------------T----------------------------------------
1 Processor I !Change records per transactions (CKC~SW) 

L----------------J ~----------------------------------------
!~rite in log CZZPR) 
~----------------------------------------
1~r i te in member CNM~RITE) 

L----------------------------------------
---------------------------------------------------------------------------------------J 

Figure 50. Functional Structure of the IEBUPDA~ Program 

Data Set Utility Programs: IEBUPDAT 145 



RRSOURCE 
compares the sequence numbers of the 
old master record and the source 
transaction record to determine wheth­
er the source record is an insertion 
or a replacement. 

RRDELET 
deletes old master records whose 
sequence numbers are within the range 
of numbers on the DELFI' transaction. 

RRNUMBR 
provides the sequence numbers for old 
master records and inserted source 
transaction records that follow a 
NUMBR transaction. 

PROGRAM FLOW 

Chart 57 shows the flow of control through 
the IEBUPDAT program. After the program is 
entered, it sets switches, assigns work 
areas, and checks DCBs for reusability. 
The output data sets SYSPRINT Clog) and 
SYSUT2 <new master) are opened. The log 
header is written, using the optionally 
specified initial page number, and messages 
indicating error conditions found during 
ddname or initial page number interrogation 
are issued. Option parameters supplied by 
the user via the EXEC statement are 
analyzed. 

Next, the current transaction data set 
(SYSIN) and the old master data set (SYS­
UTl) are opened. <the DCE exit is taken to 
determine the block size so that a buffer 
area can be dynamically obtained for the 
SYSIN data set. A user header label exit 
may be taken at this point to process user 
header labels. 

The READCT routine is the starting point 
for the Memter Processor part of the pro­
gram, and is executed each time processing 
is completed on a current transaction and a 
new current transaction is needed. READCT 
passes control to the READCTA subroutine 
which reads and deblocks a record from 
SYSIN. The record can be one of the fol­
lowing: a header record, a source record, 
a NUMBR record, or an ALIAS record. A 
header record is processed by the HEADERCK 
routine; a source record is processed by 
the SOURCERT routine; a NUMER record is 
processed by the NUMBRRTE routine; and an 
ALIAS record is processed by the STOWNAME 
routine. 

The HEADERCK routine determines whether 
the header is valid and then sets appropri­
ate switches depending on the type of head­
er. If the header is not valid, an error 
message is logged and control is passed to 
the READCT routine. Valid headers are pro­
cessed by ~.AINBODY. 

146 

The SOURCERT routine processes all 
source line transactions that are in a 
member whose header is either an A~D or 
REPL. A check is made to see if the source 
is in its proper place by checking the 
ALREPOSw switch which is turned on when 
either an ALIAS or REPRO is encountered. 
If the ALkEPOSW switch is on, the source is 
out of sequence and a message is logged via 
the LOGROU'IE. Control is then passed to 
the READCT routine. If the ALREPOSW is 
off, the CTINAREA area which contains the 
source image, is moved to the OMINAREA 
area. Then, if the NSw switch is off (no 
Nll'1BR preceding the source), the current 
transaction is written on the new rraster. 
The full list switch, FLLISTSW is checked 
and if it is on, the record is logged and 
central is returned to READCT. 

The NUMBRRTE routine processes the NUMBR 
transaction which may have followed either 
a REPL or an ADD header. A check is made 
of the ADDREPSw switch, which will be on if 
the previous transaction was an ADD or 
REPL. If ADDREPSW is off, an error message 
is logged and control is passed to the 
READCT routine. If ADDREPSW is on, the 
~tMBR transaction is checked for its proper 
sequence within the stream of current tran­
saction records referencing a member. 
Sequence nmnbers are converted and placed 
in the proper work areas. The NUMBR tran­
saction is logged after which control is 
passed to the READCT routine. 

The S'IOwNAME routine causes the previous 
member name or alias to be stored in the 
directory with the system status indicator 
( ESI) bytes (if any) via the STOWREFL sub­
routine. If the current transaction in 
C'IINAREA is an alias, the alias, TTR, and 
user information are moved to STCWABEA. 
'Ihe alias is logged via the LOGROUTE rou­
tine and control is passed to the READCT 
routine which reads the next transaction. 
If the current transaction is not an alias, 
control is passed to the HEADERCK routine. 

By reaching MAINBODY, it has been deter­
mined that the header is in proper sequence 
with a member. The member name, however, 
is compared with the previous member name 
to determine if the member is in sequence. 
If the member is out of sequence, an error 
message is logged and control is passed to 
the READCT routine. If the member is in 
sequence, the directories from the old 
master and the new master are compared. 
'!here should be entries in both directories 
for REPL, REPRO, or CHNGE headers but no 
entry in the old master for an ADD header. 
In the event of an error, an error message 
is logged, the entire member is rejected, 
and control returns to the READCT routine. 
If there are no errors, the header is 
logged. 



If the header is a REPRO, the old master 
is read into CMINAREA; the record is logged 
if the full list switch (FLLISTSW) is on; 
and the record is then written on the new 
master. If the header is an ADD or REPL, 
control is passed to the READCT routine. 
If the header is a CHNGE, control is passed 
to the within member processor RRFINDOM. 

Beginning at RRFINDOM, the within member 
processor handles the transactions follow­
ing a CHNGE header; i.e., source, DELET, 
and NUMBER. The member being changed is 
located on the old master data set and the 
first record is read. The current transac­
tion file is also read and checked fer the 
type of transaction. 

If the transaction is a source, the 
sequence number of the new master record 
and of the current transaction record are 
compared. When the old master is low, it 
is rewritten onto the new master and the 
next record on the old master is read and 
compared. When the old master is equal to 
the source transaction, the current trans­
action is written on the new master. 

If the transaction is a DELET, the 
sequence number of the old master record is 
compared to the 'start' sequence number of 
the DELET transaction. When the old master 
is low, it is written onto the new master 
and the next record on the old master is 
read and compared. When the old master is 
equal to or greater than the •start' 
sequence number, the old master records are 
read and deleted until a record is read 
whose sequence number is higher than the 
'end' sequence number in the DELET 
transaction. 

If the transaction is a NU~BR, the old 
master is read and resequenced according to 
the range of sequence numbers in the ~1JMER 
transaction. ~he current transactien is 
also read and any DELET or source transac­
tion is processed as described above. 
Source transaction may also be numbered 
sequentially. 

As the current transactions are read and 
processed, each current transaction detail 
record is logged as is the record or rec­
ords it referenced. If a complete log is 
requested, all records placed in the new 
master data set are logged. Any errors 
detected during processing are also logged. 

Utilizing the EODAD exits, the end of 
member on the old master and the end of 
data on the current transaction data set 
are determined. Processing continues until 
the new master member is completed. All 
switches are reset and work areas are 
cleared before returning to the merr.ber 
level processor at STOWNAME. 

After the last member is processed, as 
indicated by a /ENDUP or EOD exit en SYSIN, 
the old master, the new master, and SYSIN 
data sets are closed. A user trailer label 
exit, if one was specified by the user via 
the EXEC card may be taken at this point to 
process user trailer labels. When this is 
done, a final message is logged indicating 
the highest concede obtained in the pro­
gram. The SYSPRINT data set is closed and 
control is returned to the invoker. 

Data Set Utility Programs: IEBUPDAT 14'7 



Chart 57. IEBUPDAT - Updating Symbolic Libraries 

148 

Al 

Entry 

IEBUDAT Bl 
Set Switches. 
Assign Work 
Areas, Open 
SYSPRI NT and 

SYSUT2 

ANAL PRAM 

Analyzer 
Option 

Parameten 

Transaction 
Data Set 
(SYSINK) 

User 
Header Label 

Cl 

Open the Old 
Mcater Data Set 

(SYSUTl) 

Current 
T ransactian 

Data Set 

Apply 
Sequencing if 

Required 

WRITE NM 

Write 
New Master 

E2 

No 

Yes 

A3 

Stow Previous 
Member Name or 

Alias 

Move 
Alias to 

Stowarea 

LOG ROUTE 

Log Routine 

D3 

Convert 
Sequence 
Numbers and 

Save 

J3 

LOG ROUTE 

Log the Record 

No 

Read Old Mast• 
and Write New 

Master 

Read Old Master 

READCTA 

Read Current 
Transaction 
Data Set 

Write 

cs 

DS 

the New Master 

EOJ Routine 

u... 
Trailer Label 

Routine 

Return 

KS 

GS 



Creating a Modified Input Stream 
(IEBEDIT) 
The IEBEDIT program creates a sequential 
data set containing Job control Language 
(JCL) statements and system input data by 
extracting sets of statements representing 
jobs or job steps from a master file. The 
input to the program is in two data sets: 

• SYSIN, which contains control state­
ments that allow the user to control 
the editing of the master file of JCL 
statements and data. 

• SYSUT1, which contains the master file 
of JCL statements and data. 

The output of the program is in two data 
sets: 

• SYSUT2, which is the primary output 
data set. It is composed of 80-
character logical records containing 
the JCL statements and data records 
extracted from the master file. 

• SYSPRINT, which contains a listing of 
the control statements, and (optional­
ly) a listing of the contents of the 
SYSUT2 data set. 

The IEBEDIT program is executed as a job 
step; the EXEC statement used to call it 
specifies the program IEEEDIT. 

PROGRAM STRUCTURE 

The IEBEDIT program is contained in one 
load module whose entry point name is IEBE­
DIT. The module contains three major pro­
gram sections as well as a number of sub­
routines. The three major sections of the 
program are: 

• The Initializing routine, which obtains 
main storage for tables and work areas, 
initializes them, and opens the pro­
gram's data sets. 

• The Main routine, which passes control 
among the subroutines to analyze con­
trol statements, to inspect master file 
records, to determine which records 
should be written out, and to write 
output records. 

• The Post Processing routine, which 
stores condition codes, frees main 
storage, closes the program's data 
sets, and returns control to the 
supervisor. 

The Initializing Routine 

The entry point for the IEEEDIT program is 
the Initializing routine. When it is 
entered, the routine obtains main storage 

for an active save area and a work area, 
and opens the SYSPRINT, SYSUT1, SYSUT2, and 
SYSIN data sets. 

The Initializing routine checks the 
block size specification of each data set 
except SYSPRINT to insure that it is a mul­
tiple of 80 characters. If the SYSUT2 
blocksize specification is not a multiple 
of 80 characters, it is changed to match 
the SYSU~1 specification, and a message is 
written to SYSPRINT. If the SYSUTl data 
set is not a multiple of 80 characters, a 
message is written to the SYSPRINT data set 
and the step is terminated. 

If any data set cannot be opened, the 
Initializing routine passes control Cvia a 
branch instruction) to the Post Processing 
routine. Otherwise, it uses the GET macro 
instruction (locate mode) to obtain the 
first SYSU~1 record, and branches to the 
Main routine. 

'!he Main Routine 

~he Main routine (Charts 58 and 59) passes 
control among subroutines that analyze con­
trol statements from the SYSIN data set and 
master file records from the SYSUTl data 
set. Based on the specifications in the 
central statements, the ~ain routine deter­
mines which records are to be extracted 
from the master file, and uses the Update 
subroutine to write those records to the 
SYSU~2 and (optionally) to the SYSFRINT 
data sets. 

When the Main routine is entered Cvia a 
branch from the Initializing routine>, the 
first record from the SYSUTl data set is in 
main storage. The Main routine uses the 
Scan subroutine to obtain a record from the 
SYSIN data set, and to analyze the record. 

If there are no control statements in 
the SYSIN data set, the Scan subroutine 
encounters an end-of-data condition, indi­
cating that a total copy of the master file 
is to be performed. Control is passed tc 
the Update subroutine to write the record 
to the output data sets, then back to the 
Main routine to get the next master file 
record. When the master file has been com­
pletely copied, the Main routine passes 
control to the Post Processing routine. 

If the Scan subroutine obtains a contrcl 
statement, a selective copy is performed, 
based on the specifications in the control 
statement. The Main routine passes control 
tc the Startjob subroutine, which gets 
master file records until it finds the pro­
per JOB statement: 

Data Set Utility Programs: IEBEDIT 149 



• If the parameter START=jobname was used 
in the control statement, the Startjob 
subroutine searches the master file for 
a JOE statement with the specified 
name. 

• If no jot name was specified, the 
Startjot subroutine searches the master 
file for the next JOE statement. 

When the proper JOE staten;ent has been 
found, the Startjob subroutine passes con­
trol to the Update subroutine, which writes 
the statement to the SYSUT2 and, optional­
ly, to the SYSERINT data set. When control 
is returned to it, the Startjob subroutine 
reads th~ next record and uses the Cardtype 
subroutine to determine whether the record 
is a JOELIE DD statement. 

If the record is a JOELIE DD statereent, 
the Update subroutine writes it to the out­
put data sets. The Startjob subroutine 
then obtains another master file record 
from the SYSUTl data set and returns con­
trol to the Main routine. 

On the return from the Cardtype subrou­
tine, the Main routine analyzes the 
switches set ty the Cardtype subroutine and 
performs the processing indicated by the 
record type and control statement 
specifications. 

If the record is an EXEC statement, its 
disposition depends on the use of the TYPE 
and STEPNA~E parameters in the control 
statement. 

If TYPE=POSITION, and no stepname was 
specified, the Main routine passes control 
to the Update subroutine, and the record is 
written to the output data sets. If a 
stepname was specified, and the correspond­
ing EXEC statement is found, the Main rou­
tine passes control to the Update subrou­
tine, and the record is written to the out­
put data sets. 

If TYPE=INCLUDE or EXCLUDE, the Main 
routine must determine whether the current 
record represents a step within an inclu­
sive set, and if not, whether it represents 
a step whose name was specified singly. 
1he routine does this with the aid of two 
tanles (the inclusive stepnames table and 
the single stepnames table) and the 
inclusive/exclusive switches. 

Each entry in the inclusive stepnames 
table contains the names of the first and 
last steps in a set as specified in the 
s~~PNAME parameter; each entry in the 
single stepnames table contains the name of 
a step specified singly. The include/ 
exclude switches indicate whether inclusive 
or exclusive processing is taking flace. 

The decisions made in the program, and 
the resultant processing, are shown in 
Figure 51. The upper section of the table 
shows the conditions that may exist; the 
lower section shows the action that is 
taken as a result of each set of condi­
tions. The action "Write• means that the 
Main routine uses the Update routine to 
write the record containing the EXEC state­
ment, and the remaining records represent­
ing that step, to the output data sets. 
The action, "No write" means that the Main 
routine searches for the end of the current 
step, but does not write the records to the 
output data sets. 

The end of the current step is indicated 
by the presence of a JCB statement, another 
EAEC statement, or an end-of-data condi­
tion. If a DD DATA statement is encoun­
tered, a switch is set; subsequent records, 
although they may appear to be JCL state­
ments, are treated as data in the input 
stream. ~hen a delimiter statement is 
encountered, the DD DATA switch is set off; 
and if the other records in the step were 
written out, so is the delimiter statement. 

When a JOB statement is encountered, or 
when an end-of-data condition exists in the 

r-----------------------------------------------T ___ T ___ T ___ T ___ T ___ T ___ T---r-~T---T---1 
I Include/Exclude switch is 0n I x I x I x I x I I I I I I I 
I Include/Exclude switch is Off I I I I I X I X I X I X I I I 
I Match 1st Name in Inclusive Stepnames ~able I I I I I I I X I X I I I 
I Match 2nd Name in Inclusive Stepnames Table I X I X I I I I I I I I I 
I No Match in Inclusive Stepnames Table I I I X I X I X I X I I I X I X I 
I Match in Single Stepnames Table I I I I I I I I I X I X I 
I No Match in Single Stepnames Table I I X I X I X I X I X I X I X I I I 
I TYPE=INCLUDE I x I I x I I x I I x I I x I I 
I TYPE=EXCLUDE I I x I I x I I x I I x I I x I 
~-----------------------------------------------+---+---+---+---+---+---f---t---t---t---~ 
I write I x I I x I I I x I x I I x I I 
I No write I I x I I x I x I I I x I I x I 
I Set Include/Exclude Switch On I I I I I I I X I X I I I L~ 
I Set Include/Exclude Switch Off I X I X I I I I I I I I I ... 
L-----------------------------------------------.1.---i ___ i ___ i ___ i ___ i ___ i ___ J._~.L---.L---J 
Figure 51. EXEC Statement Include/Exclude Processing 

150 



SYSUTl data set, the Main routine scans the 
list of step names constructed from the 
control statement. If any of the names in 
the list were not found, a message contain­
ing the step name is written to the SYS­
PRINT data set for each missing step. If a 
JOB statement was encountered, the Main 
routine then passes control to the Scan 
subroutine to analyze the next control 
statement; if there was an end-of-data con­
dition, the Main routine passes control to 
the Post Processing routine. 

The Post Processing Routine 

The Post Processing routine is entered when 
no more processing is to be performed; at 
end-of-data in the SYSUTl data set, when 
all SYSIN statements have been processed, 
or when an unrecoverable 1/0 error occurs. 
When it is entered, it determines whether 
an end-of-data condition exists for the 
SYSIN data set; if not, it uses the Scan 
subroutine to process the remaining control 
statements. 

When all records in the SYSIN data set 
have been processed, the Post Processing 
routine uses the Update subroutine to write 
a terminal message (including the condition 
code) to the SYSPRINT data set. It then 
closes the program's data sets, frees the 
main storage that had been obtained, and 
returns control to the supervisor. 

IEBEDIT sutroutines 

The IEBEDIT program contains four major 
subroutines: Scan, Startjob, cardtype, and 
Update. Linkage to each subroutine is via 
a BAL instruction; return is via a BR 
instruction. 

The Scan Subroutine 

The scan subroutine is entered to obtain 
and analyze a complete control statement: 
the initial record and any continuation 
records. When the Main routine is first 
entered, the Scan subroutine determines 
whether a total copy is required; if not, 
and when a job has been processed, it 
determines the processing required for the 
next job; and when an end-of-data condition 
occurs on the SYSUT1 data set, it is 
entered to scan the remaining SYSIN 
records. 

When the Scan subroutine is entered, it 
attempts to obtain a record from the SYSIN 
data set. If it obtains a record, it scans 
the record, converting the control state­
ment parameters to switch settings that can 
be tested by the Main routine, and when it 
has processed the entire statement, it 
returns control to its caller. If it 
encounters an end-of-data condition, and no 
statements have previously been processed, 

the routine sets a switch indicating that a 
total copy is to be performed, and returns 
control to its caller. If it encounters an 
end-of-data condition, and statements have 
~reviously been processed, it passes con­
trol to the Post Processing routine. 

~hen the routine is entered, it uses a 
search routine to set pointers to the 
fields in the statement, then scans the 
field. ~he scan routine has five fhases: 
Initialization, Name/Cperator Handling, 
0Ferand Handling, Cperand Value Handling, 
and scan Post Processing. 

~he Initialization phase clears switches 
and resets pointers; the search routine 
finds the Name and Operator fields, and 
control passes to the Name/Cperator Han­
dling phase. 

In the Name/Operator Handling phase of 
the Scan subroutine, the name field of the 
statement is checked for validity Cit must 
be 8 characters long or less>. Then, the 
ccntents of the Operator field is used as a 
search argument in a search of the Opera­
tion Code ~able (see Figure 52). when a 
match is found, the Turn-en Box of the 
table is used to set the appropriate 
switches in the IEBEDIT work area, and 
pcinters to the operator and to the appro­
priate Parameter Table (see Figure 53) are 
placed in the work area. 

0 

Operation Code 

21 Turn-On Box Required Box 
8 

12 
Information Box 

11 Parameter Table Address 

16 
Reserved 

11 Reserved Diagnostic Routine Address 
20 

Figure 52. Scan Routine Cperation Code 
Table Entry 

8 

2 

3 

4 

3 

Operation Code: This field contains the 
Operation Code, left justified, and padded 
with blanks. 

~urn-On Box: ~his field contains the dis­
placement Cbyte 1) in the IEBEDIT work Area 
and the bit pattern (byte 2) to be set at 
that displacement. 

Required Box: 'Ibis field contains a dis­
placement Cbyte 1) in the IEBEDIT Work 
Azea, and a bit pattern (byte 2) to be 
fcund at that displacement. This bit pat­
tern is required for processing of this 
statement. 

Data Set Utility Programs: IEBEDIT 151 



0 

8 

12 

Information Box: If bit O of this field is 
set to 1, this entry is the last entry in 
the table. 

Parameter Table Address: This field con­
tains the address of the Parameter Table 
that corresponds to this operation. 

Diagnostic Routine Address: This field 
contains the address of a routine used to 
perform additional processing on the 
statement. 

8 

Operand Value 

41 4 
Turn-On Box Assume Box 

Information Box l I 3 
Address of Fixed Operand Table or Action Routine 

Figure 53. Scan Routine Parameter Table 
Entry 

Operand Value: This field contains the 
value of the operand, left justified, and 
padded with blanks. 

Turn-On Box: Byte 1 of this field contains 
a displacement in the IEEEDIT Work Area; 
byte 2 contains a bit pattern to be set at 
that displacement as a result of encounter­
ing this parameter. 

Assume Box: Byte 1 of this field contains 
a displacement in the IEEEDIT Work Area; 
byte 2 contains a bit pattern to be set at 
that displacement if this parameter is 
omitted. 

Address of Fixed Operand Table or Action 
Routine: If the operand is a fixed 
operand, this field contains the address of 
the appropriate Fixed Operand Table entry, 
if the operand is a variable operand, this 
field contains the address of the routine 
that is to process the operand. 

Information Box: The bits in this field 
have the indicated meanings when set to 1: 

Bit Meaning 
~-0 Last entry in table 

1 Fixed operand 
2 Variable operand 
3 Reserved 
4 Allow subparameters 
5 Keyword-only operand 

6-7 Reserved 

Each operand in turn is used as a search 
argument, in the Operand Handlin<J phase, to 
scan the Parameter Table. When a match is 
found, the Turn-on Bo~ of the Parameter 
Table is used to set the appropriate 
switches in the IEBEDIT work area, and a 

152 

0 

8 

pointer to the Parameter Table entry is 
placed in the work area. If the operand is 
a keyword-only operand, and there are addi­
tional operand fields, the routine pro­
cesses the next field. If there are no 
additional operands, the routine passes 
control to the Scan Post Processing phase. 

If there are parameters associated with 
the keyword, the routine passes control to 
the Operand Value Handling phase. In this 
phase, the Scan subroutine inspects the Pa­
rameter table entry to determine whether 
the parameter has a fixed value, or whether 
the value may vary. If the parameter is a 
variatle value parameter, the Action Rou­
tine Address field of the Parameter Table 
entry contains the address of the routine 
that is to process the parameter, and a 
branch is executed to give that routine 
control. If the parameter is a fixed value 
parameter, the routine uses the value spe­
cified as a search argument in a search of 
the Fixed Operand Table (see Figure 54). 
~hen a match is found, the Turn-en Box 
field of the table is used to set the 
afpropriate switches in the work area. 

Fixed Operand Value 

2 
Tum-On Box Reserved 

8 

1 
Information Box 

Figure 54. Scan Routine Fixed Operand 
Table Entry 

Fixed Operand Value: This field contains 
the value of the operand, left justified, 
and padded with blanks. 

~urn-on Box: Byte 1 of this field contains 
a displacement in the IEBEDIT Work Area; 
byte 2 contains the bit pattern to be set 
at that displacement when this operand is 
encountered. 

Information Box: If bit 0 of this field is 
set on, it indicates that this entry is the 
last entry in the table. 

When the parameters associated with a 
keyword have been processed, control is 
passed to the Operand Handling phase to 
process the next operand; if there are no 
more operands to process, control is passed 
to the Scan Post Processing phase. 

When a complete statement has been pro­
cessed, the Scan Post Frocessing phase 
scans the Parameter Table for the current 
operator, then sets the assumed (default) 
value switches for any parameters not sup­
plied. the current Operation Code Table 
entry is then inspected to determine wheth­
er any diagnostic routine has been sup-



plied. If so, the diagnostic routine is 
given control, and when its processing is 
complete, the Scan routine returns control 
to its caller. 

The Startjob Subroutine 

The Startjob subroutine is entered from 
the Main routine with the first record of a 
master file statement in the buffer. It 
uses ·the cardtype subroutine to determine 
the statement type, and it uses the Update 
subroutine to write a JOE statement and a 
JOBLIB DD statement to the output data 
sets. 

If the first statement encountered by 
the Startjob subroutine is not a JOB state­
ment, the routine gets records fron the 
master file until it finds a JOB statement. 
The Startjob subroutine then determines 
whether the START=jobname parameter was 
used, and if not, it uses the Update sub­
routine to write the statement <including 
its continuations> to the output data setr. 

If START=jobname was specified, the rou­
tine compares the specified job name to the 
name in the JOB statement. If they are not 
equal, the routine searches the master file 
until the proper JOB statement is found. 
In either case, the JOE statement having 
the specified name is written to the output 
data sets, and the startjob subroutine 
reads the next master file record. 

Once a JOB statement has been written 
out, the Startjob routine looks for a JOB­
LIB DD statement. If it encounters one, 
the routine uses the Update subroutine to 
write the statement to the output data 
sets; if the next statement is not a JOELIE 
DD statement, the Startjob subroutine 
returns control to its caller. 

The cardtype Subroutine 

The Cardtype subroutine classifies 80-
character records by type. It stores a 
code for each type except system input data 
records, and if the record is a JOB or EXEC 
statement, it stores the statement name. 
When it has analyzed a record, it returns 
control to its caller. 

The routine first examines the fi.rst two 
positions of the record. The characters // 
indicate that the record is a JCL state­
ment, and the routine performs further ana­
lysis. The characters /* indicate that the 
record is a delimiter statement; the rou­
tine determines whether the statement is 
continued by checking for a nonblank 
character in position 72, then returns to 
its caller. 

If the statement is a JCL statement, the 
routine classifies it as one of the follow­
ing types: 

• JOBLIB DD Statement: A statement is a 
JOBLIB DD statement if the name field 
contains JOBLIB and the operation 
field contains DD. 

• JOB Statement: The statement is a JOB 
statement if the operation field con­
tains JOB. 

• EXEC Statement: The statement is an 
EXEC statement if the operation field 
contains EXEC. 

• DD Statement: The statement is an DD 
statement if the operation field con­
tains DD. 

• DD DATA Statement: A statement is a DD 
DATA statement if it is a DD statement, 
and the first operand field contains 
DATA. 

• Continued Statement: A statement is a 
continued statement if it is a JCL 
statement or a delimiter (/*) state­
ment, and if it has a nonblank 
character in position 72. 

'Ibe Update Subroutine 

The Update subroutine is a control rou­
tine for the output functions of the IEEE­
DI'I program. It contains the Put routine, . 
which writes records to the SYSUT2 data 
set, and the Print routine, which writes 
records to the SYSPRINT data set. There 
are two entry points to the Update 
subroutine: 

• UPDA'IE is the entry point used to write 
records to the SYSUT1 and, optionally, 
to the SYSPRINT data set. 

• PRIN'I is the entry point used to write 
records to the SYSPRINT data set. 

When it is entered at the UPDATE entry 
point, the routine inspects the first three 
positions of the record in the buffer. If 
it finds the characters period, period, 
asterisk ( •• *>, it substitutes the charac-

1 ters slash, asterisk (/*); in either case, 
it branches to the Put routine. 

The Put routine contains the PUT macro 
instruction, which causes the record to be 
written to the SYSUT2 data set. When the 
P~'I macro instruction has been executed, 
the routine determines whether NCPRINT was 
specified, and if so, it returns control to 
the caller. If NOPRINT was not specified, 
the routine branches to the PRINT entry 
point of the routine. 

When it is entered at the PRINI' entry 
pcint, the routine is given the address of 
a record or a message code. It issues the 
Pt~ macro instruction to write the record 
or message to the SYSPRINT data set, then 
returns control to the caller. 

Data Set Utility Programs: IEBEDIT 153 



•Chart 58. 

154 

IEBEDIT Main Routine (Part 1 of 2) 

Al 

Entry 

A2 

SCAN 
Totol 

Analyze 
Control 
Stmt. 

Copy 

SELECTIVE 
COPY 

82 

START JOB 

Find & Write 
Proper JOB and 
JOBLIB Stmts. 

SB 
C2 C2 

Get Next 
SYSUTl 
Record 

CARDTYPE 

D2 

Anoylze Stmt. 
and 

Store Codes 

Normal 

EOF 

A3 

UPDATE 

Put Record 
to SYSUT 1 

and SYSPRI NT 

Get 
Next 

Record 

83 

F3 

K3 

Put Record 
to SYSUTI 

ond SYSPRINT 

EOF 

A4 

Set 
EOF Switch 

On 

84 

Print 
Names of 

Any Specified 
Steps Not 

Set DD 
Data Switch 

Off 

E4 

H4 

UPDATE 

Put Record 
to SYSUTI 

and SYSPRI NT 

Get Next 
SYSUT 1 

Record 

K4 

BS 

UPDATE 

Put Red. 
to SYSUT 1 

and SYSPRINT 

cs 

Exit 

To Post Processing Routine 

CARD TYPE 

Analyze 
Stmt. and 

Store Codes 

KS 



eChart 59. IEBEDIT Main routine (Part 2 of 2) 

Set 
Include/Exclude 

Switch Off 

Get 
Next Master 

Record 

Other 

Set 
Include/ Exclude 

Switch on 

CARO TYPE 

Analyze 
Stmt. & Store 

Codes 

J3 

Yes 

POiiti on 

Set 
Inclusive 
Switch Off 

E4 

Set 
Position Copy 

Swl tch on 

First 

Of Set 

04 
Set 

Inclusive 
Switch on 

05 

Data Set Utility Programs: IEBEDIT 155 



156 

FD ANALYSIS MODULE (IEBFDANL) Charts 65, 66 

Entry Points: IEBFDANL (via LINK from IEBDG). 
Also, on return from module IEBFDTBL. 

Functions: 

Get storage for FD table. 
Analyze FD card keywords and 

parameters. 
Place FD card keyword parameter 

values in FD table entry. 
Place FD picture in a temporary · 

storage area, 

Macro Instructions Used: 

LINK (SVC 6) 
FREEMAIN (SVC 5) 
GETMAIN (SVC 4) 

Exits Token: 

FD table module 
Bose module 

Subroutines Used: 

Validity check; EP = VALCHECK. 
Convert decimal to binary; 

EP"' CONVB. 
/W:Jve characters; 

EP = MOVER OUT. 

Messages (Numbers) Used: 

3, 5, 6, 10, 11, 12, 13, 15, 21. 

FD TABLE MODULE (IEBFDTBL) Charts 67, 68 

Entry Point: IEBFDTBL (via LINK from IEBFOANL). 

• Fune lions' 

Complete the construction of 
on FD table entry. 

Assign defaults for FD keyword 
parameters if necessary. 

Place picture or format pattern 
in storage. 

Macro Instructions Used: 

GETMAIN (SVC 4) 
FREEMAIN (SVC 5) 

Note: EP = Entry Paint 

Exit Token: 

FD analysis module 

Subroutines Used: 

Convert EBCDIC to binary; 
EP=CONVB. 

/W:Jve characters; EP =MOVER OUT. 
Validity check; EP = VALCHECK. 

Messages (Numbers) Used: 

3, 6, 8, 10, 21. 

( CALLING PROGRAM 
"'-----r---~ 

Job Control } 
Language 

Invocation } 

EXEC 

LINK 
ATTACH 

Return 

BASE MODULE (IEBDG) Charts61, 62, 63 
LINK LINK 

Entry Pc>ints: IEBOG (from Calling Program). 
Also, on return from modules I EBFOANL, 
IEBCRANL, IEBDGMSG, ANO IEBOGCUP. 

Return Functions: 

Get storage for common work area. 
Initialize work area. 
Assign defaults 
Get storage far input and output DCBs. 
Get storage far work areas for input and 
output records, 
Open input and message data sets. 
Get storage far output work area. 
Scan all control cards: 

Process DSD, REPEAT, DUMP, 
and ENO cards. 
Pass control to process FD 
and CREA TE cards. 

Pass control to other modules as required. 
Cause display of error messages. 

Macro Instructions Used: 

GET 
GET MAIN (SVC ~ 
LINK (SVC 6) 
OPEN (SVC 19) 
SYNADF (SVC 68) 
SYNADRLS (SVC 68) 

LINK Return 

MESSAGE MODULE (IEBDGMSG) Chart 76 

Entry Point: IEBOGMSG (via LINK from IEBDG) 

!'unctions: 

Print heading information. 
Print control card images. 
Print program messages. 
Print error flags. 
Keep page count. 

Exit Taken: 

Bose Module 

Macro Instruction 
Used: 

PU~ 

Exits Taken: 

Message Module 
FD Analysis Module 
Create Analysis Module 
Clean-up Module 
Calling Program 

Subroutines Used: 

Convert decimal to binary; 
EP"' CONVERTS. 

DCB exit (at open time); 

Return 

EPs = DCBROUTI, DCBROUT2, 
and DCBROUT3. 

Synchronous error; 
EP =ERRORS. 

Messages (Numbers) Used: 

1, 2, 3, 5, 10, 12, 14, 15, 18, 
20, 21, 24, 25, 26, 28, 30. 

LINK Return 

t 

CLEAN-UP MODULE (IEBDGCUP) Chart 64 • 

Entry Paint: IEBDGCUP (via LINK from IEBOG) 

Functions: 

Close user output and input 
DCBs. 

Close data generator input 
and message DCBs. 

Free storage for DCBs, 
buffer pools, and work 
areas far input and 
output records. 

For "field select, " 
invalidate FD name(s). 

Exit Taken: 

Base Module 

Macro Instructions 
Used: 

CLOSE (SVC 20) 
FREEMAIN (SVC 5) 
FREEPOOL (SVC 10) 

•Figure !>5. Info:nnation summary and overall Flow of Data Generator Program 

CREATE ANALYSIS MODULE (IEBCRANL) Charts 69, 70, 71, 72, 73 

Entry Points: IEBCRANL (via LINK from IEBDG). 
Also, on return from module IEBCREAT. 

Functions: 

Analyze create card keywords 
and parameters. 

Build create table entries. 
Get storage for create tables. 
Build picture table, 
Build FD address table. 
Build exit name table. 
Give control to create module. 

Macro Instructions Used: 

GETMAIN (SVC 4) 
LINK (SVC 6) 
LOAD (SVC 8) 

LINK 

Exits Taken: 

Create Module. 
Base module, 

Subroutines Used: 

Convert; EP = CONVDB. 
FD name search; EP = FDSRCH. 
Parameter scan; EP = SPSCAN. 

Messages (Numbers) Used: 

3, 4, 5, 6, 7, 8, 10, 12, 20, 21 

Return 

CREATE MODULE (IEBCREAT) Charts 74, 75 

Entry Point: IEBCREAT (via LINK from IEBCRANL). 
Also, on return from user exit routine. 

Functions: 

Read records from input data sets. 
Generate output records (test data). 
Permit user to modify output records. 
Release storage used for fol lowing 

tables: 
Create 
Picture 
FD Address 

Delete user routine from storage, 

Messages (Numbers) Used: 

9, 10, 16, 17, 29, 30. 

Exits Taken: 

Create Analysis Module. 
User Exit Routine 

Macro Instructions Used: 

FREEMAIN (SVC 5) 
GET 
GETMAIN (SVC 10) 
PUT 
SYNADF (SVC 68) 
SYNADRLS (SVC 68) 



The Data Generator (IEBDG) 
Program 
The data generator program (IEBDG) provides 
test data that can be used in program 
debugging procedures. The program will 
construct multiple data sets within a job 

I that uses either the physical sequential, 
the indexed sequential, or the partitioned 
access method. The records within these 
output data sets may consist of fields that 
are defined by any one of seven IBM 
character formats, each of which may be 
modified by any one of eight types of 
action. Alternatively, a user may elect to 
provide his own output pattern in the form 
of a 'picture' instead of an IBM format. 
If desired, a user may also inspect and/or 
modify the output records before the rec­
ords are written in the test data set. 

The IEBDG program acts as a problem pro­
gram, which may be executed as a job step 
by use of the job control language, or 
which may te invoked by a calling program 
using either the LINK or the ATTACH macro 
instruction. Specification of either the 
program name CIEBDG) or the procedure name 
on the EXEC statement causes controi to be 
given to the data generator program. In 
the case of invocation of the IEBDG pro­
gram, the entry point (EP) parameter in the 
macro instruction operand specifies the 
program•s symbolic name. Job control 
statements or parameter list information, 
and the IEBDG utility control statements, 
maintain control of the program and 
describe or specify the functions to be 
performed. They also describe or define 
the input and output data sets to be used. 
Depending on the specifications of the 
user, the records of the input data set may 
be either tlocked or unblocked. 

In the case of output records, the 
fields within a record may be repeated as 
desired, and the output records may be a 
part of a logical block, which may also be 
repeated. If an existing data set is used 
as the input data to the program, the 
fields within the individual records of the 
data set may be retained, modified, or 
replaced as desired. Al.so, the IEBDG pro­
gram may generate output records that can 
be imbedded within the records of an exist­
ing (input) data set. The contents of the 
output (test data) records are defined by 
the utility program control statements. 

The data generator program bas a •field­
select• capability that permits specific 
fields from an input data record to be 
placed in the output record at a given 
starting point in that record. This capa­
bility is applicable to all data sets sup­
ported ty the program. 

Program Fllllctions 

~he f llllctions of the IEBDG program are per­
formed by seven modules, which reside in 
the link library, SYSl.LINKLIB. At any 
given time, at least two modules (the con­
trol module and one or more other modules) 
will reside in the region assigned to the 
program. (If the region has enough space, 
all seven of the modules may be resident at 
the same time in the region.) The program 

I contains a control module, a message 
module, two analysis modules, a table­
building module, an output record genera-

l ting module, and a clean-up module. Con­
trol passes within the modules of the pro­
gram by means of the LINK macro instruc­
tion. If an exit to a user routine is spe­
cified, a branch-and-link procedure is 
used. Figure 55 indicates how control is 
passed between the modules of the IEBDG 
program. 

The control (or base) module receives 
initial program control from the calling 
program and returns control to the calling 
program at the completion of the IEBDG pro­
gram. This module scans the utility con­
trol cards for the function (e.g., FD card 
analysis, REPEAT card analysis) to be per­
formed and passes control to the appropri­
ate module that performs the function. 

The message module CIEBDGMSG) has the 
prime function of putting out the images of 
the control cards, and of putting out the 
messages required as a result of program 
operation. It receives control frore, and 
passes control to, the base module. 

The message module places inform.ation 
about the operation of the data generator 
on the system output CSYSOUT) device. This 
information includes processed control 
cards, heading and paging information, and 
normal completion messages. Error messages 
caused by abnorma1 conditions encountered 
by the data generator program a1so appear 
on the SYSOUT device. Incorrect control 
card parameters cause messages that will be 
printed immediately below the printout of 
the control card. Messages begin at print 
position one, and the printout of control 
cards starts at print position ten. 

Both the create analysis (IEBCRANL) and 
the FD analysis CIEBFDANL) modules analyze 
the parameters found on one of the two 
field- or record-defining control cards. 
Using the parameters found, these modules 
construct tables for use by subsequent 
modules that may require the information in 
the tables. In the case of the FD analysis 
module, control is given to the FD table 
building module, IEBFDTBl, to complete the 
construction of the table. 

Data Set Utility Programs: IEBDG 157 



The output record generating module, er 
create module, IEECREAT, controls the 
generation of the test (output) data rec­
ords for the user. This module also passes 
control to a user exit routine if eutput 
record modification is to be performed. 

The clean-up module CIEEDGCUP) receives 
control from the base module to close the 
input and output data sets and tc release 
the storage areas that were used by the 
program. If the field select feature is 
specified, the module invalidates the 
transfer of a given FD control card across 
DSD card groups by replacing an entry in 
the FD table built for the parameters on 
the FD card. This module returns control 
to the base module. 

Control card Scanning 

Whenever any control card scanning is to be 
done, all modules within the IEBDG program 
employ the same general scanning tech­
niques. The information to be scanned is 
placed in an input work area to which a 
register points. Information within this 
work area is scanned one byte at a time as 
the scan method looks for a non-blank 
character in a given column. If a ncnblank 
character is encountered in column one of a 
card image, a control card name has been 
found. This name is of no significance to 
the program, and it may be up to 8 bytes in 
length; tut it must be followed by a blank 
column. The card type (DSD, FD, END, etc.) 
is then determined. If the type is not 
valid, the program is terminated. 

Following the card type and blank 
column, the finding of a nonblank indicates 
the presence of a keyword. As the scan 
encounters a keyword, an attempt is ~ade to 
match the keyword with valid keywords in 
the program. If a match is made, a branch 
is made to the appropriate routine to pro­
cess the keyword. If no match is made, or 
if incorrect parameters are associated with 
a given valid keyword, an error is indi­
cated and a message is printed. A corr-ma or 
a blank signifies the end of a parameter. 
A continuation card is to follow when eith­
er a nontlank character in column 72 of a 
card, or a comma followed by a blank column 
is encountered. The scan of a continuation 
card begins in colmcm 4 of the card. 

Except for the continuation of the scan 
of a PICTURE parameter, the first nonblank 
character in a continuation card indicates 
the presence of a keyword. In the case of 
the PICTURE parameter scan continuation, 
the character <or blank) in column 4 and 
any succeeding colmcm(s) are recognized as 
belonging to the PICI'URE parameter. This 
permits the presence of imbedded blanks and 
delimiter characters in the PICTURE 
parameter. 

158 

~HE BASE MODULE (IEBDG) CHARTS 60,61,62 

Module IEBDG is the first module of the 
data generator program to be placed in rrain 
storage. It is entered from a calling pro­
gram and returns control to the calling 
program at the completion of the data 
generator program. Depending on the 
requirements encountered during the proces­
sing performed by this module, it ~ill give 
control to (and receive control from> one 
of the following modules: the message 
module, the clean-up module, the FD analy­
sis module, or the create analysis module. 
The primary functions of the base nodule 
are: 

• 10 get storage for a work area (the 
common communication area). 

• To open the input, output, and message 
data sets. 

• 10 read the utility control cards. 

• ~o cause error messages to be 
displayed. 

• To pass control to the appropriate 
module as required. 

Initialization 

Ufon entry to this module, registers are 
saved for a later return to the caller. By 
use of an SVC 10 instruction, storage is 
obtained for a common communication area. 
1his area is then given initial (default) 
values for ddnames, line count (for printer 
central), and paging information. To pro­
vide for the specification of a random 
binary number format for the output data 
set, an initial multiplier value is estab­
lished for a random number generator and 
Flaced in the communication area. 

If a calling program has invoked the 
IEBDG program by means of a I.INK or an 
A~~CH macro instruction, the previously 
assigned default values in the communica­
tion area are replaced by the values speci­
fied in the parameter list for the invoca­
tion. The assigned names of SYSIN for the 
utility input control data set and SYSFRINT 
for the utility output control data set rray 
be changed as a result of an invocation. 
If so, the changed names are effective for 
the duration of the job. After invocation, 
the input and output control data sets are 
then opened. 

Opening Data Sets 

If the IEBDG program is called by use of 
the job control language statements, the 
input CSYSIN) and message CSYSPRINT) data 
sets are opened and default values assigned 
as required. 



Each time a data set is opened, a DCB 
exit routine in the base module is entered. 
The entry points to this routine are deter­
mined by the function (input, output, 
SYSIN, or SYSCUT) of the data set being 
opened. At each entry, the routine estan­
lishes default values for the record for­
mat, the logical record length, and the 
blocksize for the data set. 

A common section of the DCB exit routine 
is then entered to inspect the actual 
values of record format, logical record 
length, and blocksize. These values nor­
mally have already been placed in the 
respective fields of the ~CE by the open 
routine. 

For data sets having a fixed record for­
mat, the common routine determines if the 
block size is an integral multiple of the 
logical record length. An integral mul­
tiple is required; otherwise, default 
values are assigned (if not previously 
assigned) so that an integral Jrultiple is 
assured. 

As the DCB exit routine evaluates the 
preceding record parameters for input or 
output data sets, it sets the FLUSHSw 
switch (at COMMON + 572) 1 to one if default 
values are assigned. (If the switch is 
set, then, when the base module again 
receives control, it flushes the control 
cards and procedes to terminate the job.) 
The exit routine then returns control to 
the open routine to complete the opening of 
the data set. 

In testing for a successful data set 
opening, only the input (SYSIN) data set is 
tested ty the base module. Eecause a user 
may not desire any messages, or may not 
have enough space available for an output 
data set for messages, the testing fer a 
successful opening of the output (SYSPRINT) 
data set is done by the message module when 
the module is first needed. 

Messages 

When messages are required during the pro­
cessing £y the base module, a linkage is 
made to the message module. Upon return 
from the message module, processing will 

~In the discussion of the modules of the 
data generator program, references to 
locations in the common conununicaticn area 
are indicated by giving the decimal value 
of the displacement, or offset, from the 
start of the area. As an example, the 
off set of the field CONDCODE <condition 
code setting) would be given as COMMON + 
404. 

ccntinue or, depending on the severity of 
the situation causing the messaqe, a return 
is made to the calling program. [when any 
of the modules of the data generator pro­
gram require the printing of an error mes­
sage, control is returned from the module 
in command to the base module, which will 
then link to the message module. Depending 
on the severity of the error causing the 
message, control may or may not be returned 
from the base module to the module that was 
in command.] A condition code, CCN~CCDE, 
(at the field COMMCN+404), is set friar to 
giving control to the message module. Upon 
return from the message module, this code 
is checked to determine the severity of the 
situation. The base module returns control 
to the calling program by freeing the 
storage space for the common communication 
area, restoring the calling prograrr's 
environment (registers), and issuing a ECR 
instruction. 

After the input data set has been 
Ofened, a program heading message and an 
indication of any PAR~ field (on the EXEC 
card for the program) errors that rray be 
present are placed on the SYSFRINT data 
set. 

Reading Control cards 

The GET macro instruction is used to place 
a control card in the input work area. The 
card image is printed on the SYSPRINT data 
set, and tests are made to determine the 
type of card in the input area. For either 
an FD control card or a CREATE control 
card, the base module will give control to 
the appropriate processing module. 

For any new group of data generator con­
trol cards, the first nonblank card must be 
a DSD control card. [If a blank card is 
present, it is merely flushed through and 
the next card is checked.] In order to in­
dicate when a DSD control card is detected, 
a switch, DSDSw (at co~~ON+550), is set to 
1. 'Ibis switch is tested for all but the 
D~D card in a group of control cards. If 
the first card in a group is not a DSD 
card, the syntax of the other control cards 
may be checked, but the program will not be 
executed. An error message will indicate 
the reason. 

Following the test for a DSD card, the 
other utility control cards are checked for 
card types. The finding of a particular 
type causes the base module to give control 
to the proper module for processing of that 
control card. If a continuation card 
belonging to a given control card, is 
encountered, the base module gives control 
to the appropriate control card processing 
module to scan the card. Should a DSD con­
trol card have no CREATE control card Cs> 
between it and either an END card or a /* 

Data Set Utility Programs: IEBDG 159 



card, the resulting output data set that is 
created will be a null data set (i.e., no 
picture or pattern will be produced). 

As the base module continues its scan, a 
check is made for a blank following the 
card type (DSD, FD, etc.) as well as for 
improper control card names or name length. 
Errors in one of these areas will cause a 
message to be printed and the program will 
not 1:e executed. 

Included within the routines of the base 
module is a SYNAD routine for the SYSIN 
data set. The SYNAD routine obtains unre­
coverable I/C error information that is to 
be printed on the SYSPRINT data set. C'Ihe 
message module contains a SYNAD routine for 
the SYSPRINT data set; the create module 
contains a SYNAD routine for input and out­
put data sets.) After the informaticn is 
printed, control is given to the clean-up 
module. 

Base Module Card-Processing 

The following data generator control cards 
are processed by the base module: The DSD 
card, the REPEAT card, the END card, and 
the DUMP card. 

DSD CARD PROCESSING: In obtaining storage 
for a user's DCB, the base module requests 
enough space C280 bytes to contain a DCB 
for an indexed sequential (ISAM) data set. 
For a non-ISA~ data set, much of this space 
is unused. See Figure 56. 

Hex Dec--------- 4 bytes ----------l~ 

0 0 

Data Control Block 

60 96 t------ ------ -- ---

This Area Used Only for Fields 
in an ISAM Data Control Block 

100 256 r-------
Address of next DCB DDname for ••• 

108 264 

••• Current DCB (8 bytes) Switches 

110 272 

Address of Work Area for Input Record 

Size of Input Field Select I Not Used 
Record Work Area Switch 

114 276 

118 280 

•Figure 56. Storage Area Obtained by Base 
Module for current DCB 

160 

A storage area is obtained as required for 
each of the data sets described by the 
DCnames on the DSD control card. In the 
case of storage for the last data set's 
DCB, the four-byte field beginning at loca­
tion 256 Chex. 100) is zero. 

After initializing the open list for the 
afpropriate DCB (input or output), the base 
module sets the DSORG field of the DCE to 
zero. When the data set is opened, the 
open routine can then place the data set 
organization parameter from the job file 
central block into a blank field in the 
DCB. (The data set organization parameter 
is ol:tained from a DD card describing the 
data set and placed in the JFCB by a job 
management routine.) 

REPEA'I CARD PROCESSING: When the base 
module scans the parameters of the REPEAT 
card, it sets an indicator, CUANSW (at 
COMMON+576), to record the finding of the 
required keyword. After each valid keyword 
is found, the numerical value of its para~­
eter is packed and converted to binary. 
Since 65,535 is the largest number that can 
be held in a 2-byte storage field, any pa­
rameter value that is greater than that 
results in a message to the prograrrmer. 
Acceptable values for the QUANTITY and the 
CREA'IE parameters are stored for use by the 
create analysis module. 

END CARD PROCESSING: when an END control 
card is encountered, the base module gives 
control directly to the clean-up ~odule if 
all of the required number of entries spe­
cified on the REPEAT control card have been 
processed. Otherwise, a message is printed 
and then control is given to the clean-up 
module. Upon return from the clean-up 
module, the base module reads the next con­
trol card <which may be either a data 
generator control card or a /* delirr.iter 
card). ~here may be one or more additicnal 
groups of data generator control cards 
before a /* card. 

DUMP CARD PROCESSING: The readina of a 
DUMP control card causes a printout of the 
user's program and/or storage areas 
assigned 0 to his program. When the DUMP 
ccntrol card is encountered, the base 
moJule places a zero in register 15 and 
forces an ABEND dump by branching to that 
register. Further description of the use 
of a DUMP control card is given in the sec­
tion Service Aids. 

THE CLEAN-UP MODULE (IEBDGCUP) CHART 63 

~hen either an END control card, indicating 
the end of a group of data generator con­
trol cards, or a /* delimiter card, indi­
cating the end of a job, is encountered, 
the base module gives control to the clean­
Uf module. 



All user input and output data control 
blocks (DCBs) that have been opened are 
closed. For each of these DCBs, any buffer 
pools that data management routines had 
obtained for use by the data generator pro­
gram, as well as the 280-byte storage area 
obtained by the base module, are released 
to the system. 

When the field-select capability has 
been used, it is necessary to prevent pos­
sible errors that might arise from an inad­
vertent specification (on a CREATE control 
card) of an FD name associated with a 
closed input data set. Therefore, this 
module replaces the FDNAME field in the FD 
table with eight bytes of hexadecimal 'FF' 
to prevent further access to the table. In 
order to use the selected data across DSD 
groups, a user must include a duplicate of 
the FD card in question in each DSD group 
where the data is desired. 

If the entry to this module was the 
result of encountering an END control card, 
this module returns control to the base 
module for the purpose of checking for 
another group of control cards. 

If the entry to this module resulted 
from encountering a /* delimiter card, this 
module will close both the system in~ut 
(SYSIN) and the system output (SYSPRINT) 
DCBs of the data generator program, and 
free any related buffer pools for these 
data sets. 

The storage area that was obtained for 
the data generator program's input and out­
put DCBs (96 tytes each) was initially 
obtained as a part of the common coRmunica­
tion area ty the case module. Therefore, 
the tase module will release this area 
after it receives control from the cleanup 
module. 

THE FD ANALYSIS MODULE (IEEFCANL) CHARTS 
64,65 

This module scans and analyzes the parame­
ters on the FD control card. Module IEBF­
DANL is initially entered from the base 
module. If module IEEFDANL does not 
encounter a condition that causes termina­
tion of the job, it will use the FD table 
module (described later on) as a subrou­
tine. After the ED table module returns 
control to the FD analysis module, the 
latter module returns control to the base 
module. 

The FD analysis module begins the 
assignment of information to a table called 
the FD tatle. This table is used by both 
the create analysis module and the create 
module. The FD table module completes the 
construction of the table. 

An FD table entry has 64 bytes. Storage 
for the FD table is obtained in increments 
of 512 bytes (enough for eight table 
entries> by the FD analysis module. Each 
entry contains most of the parameter inf or­
mation (or a processed version of the 
information) from one FD control card. If 
a PIC~URE keyword has been specified en the 
FD control card, the picture inforrr.ation is 
placed in another area of main storage. 
~he FD table is shown in Figure 57. 

Upon entry to the FD analysis module, 
tests are made to determine whether or not 
the entry is due to a continuation card. 
Such an entry may be due to the continua­
tion of the parameter string on a card, or 
to the continuation of the PICTURE parame­
ter on a card. If the entry is due to 
either a continuation card or a picture 
continuation, storage for an FD table entry 
may already be available as the result of 
processing a previous FD control card in 
the same set of data generator control 
cards. If the entry is not due to a con­
tinuation card, an FD table entry is to be 
constructed. A GETMAIN macro instruction 
is issued to obtain storage for an FD 
table. 

FD card scanning 

~he scan of the actual FD card keywords and 
their associated parameters is then per­
formed. As each keyword is encountered, 
its parameter is scanned, validated and/or 
converted if required, and then placed in a 
reserved spot in the FD table. If a key­
wcrd error or a parameter error is encoun­
tered, an appropriate message will be 
printed on the system output device. The 
severity of the error determines whether 
the program is terminated at that point or 
whether modified processing (e.g., syntax 
checking only) will continue. Control and 
storage tables are constructed even for 
syntax checking procedures. 

A user may specify either the FCR~AT or 
the PICTURE keyword, but not both, on the 
same control card. The FD analysis module 
sets a switch, either FDFMTSW (at COMMON+ 
539) or FDPLSW (at COMMON+540), when it 
encounters one of these keywords. If the 
other keyword is then encountered in the 
scan of the same card, a test of the 
previously-mentioned switch for the keyword 
first encountered reveals the error. 

A user specifies the field-select capa­
bility by including the INPUT = keyword and 
parameter either with or without the FRCM­
LOC = keyword and parameter on a contror-­
card. If the INPUT = keyword's parameter 
does not match a name that has been speci­
fied on a DSD card, or is not 'SYSIN', a 

Data Set Utility Programs: IEBDG 161 



message is issued and the program will be 
terminated. If a match is found, the 
module sets the FIELDSEL switch (in the 
DCB) to hexadecimal FF. 

For later use by the create ~odule, the 
FD analysis module initializes the address 
(at location FDFROMAD in the FD table) from 
which the input record will be selected. 
The FD analysis module uses the FROMLOC 
keyword's parameter if it has been speci­
fied. If the FROMLOC keyword and/or its 
parameter have been omitted from the FD 
control card, the module sets the FDFROMAD 
field value to the start of the input rec­
ord (which is either at the location INBUFA 
if the input name is SYSIN or at the loca­
tion INREC if the input name is other than 
SYSIN). 

Table 2 lists the keywords of the FD 
control card and indicates the processing 
done on the parameters of the keywords by 
the FD analysis module. 

After the keyword parameters on the FD 
control card have been scanned and placed 
in the FD table, the FD analysis module 
gives control to the FD table rr.odule to 
complete the construction of the F~ table 
entry. The FD analysis module assigned 
only the initially specified values of pa­
rameters to the FD table. If any keyword 
except LENGTH and NAME was omitted from the 
FD control card, the FD analysis module 
does not perform processing for the keyword 
and does not fill in the appropriate space 
in the FD table entry. Default values, if 
any, for keyword parameters are assigned by· 
either the FD analysis module or the FD 
table module. 

THE FD TABLE .MODULE CIEEF'DTBL) CH.ARTS 66, 67 

This module completes the construction of 
the FD table, which was begun by the FD 
analysis module, At the time of entry into 
this module, an FD card has been com~letely 
scanned and initial values from the card 
have been placed in the FD table. The FD 
analysis module uses a LINK macro instruc­
tion to give control to the FD table 
module, which is then used as a subroutine 
by the FD analysis module. The FD table 
module returns control to the FD analysis 
module. 

FD Pattern Construction 

Initially, module IEEFDTEL determines the 
type of picture or format specified in an 

162 

FL control card. (This field will be used 
by the create module when it constructs the 
output records.) If neither a picture nor 
a format is specified, the FD table reodule 
assigns a default value to the field. 

Before further processing is done on a 
non-EBCDIC picture, the picture nurrbers are 
checked for validity by comparing the zone 
bits of the numbers against a hexadecinal 
•F•. An incorrect value results in an 
error message indication, and control is 
rEturned to the calling module. [A picture 
having a packed decimal specification must 
have a length specification that is less 
than or equal to 16 since the Pack instruc­
tion can handle up to 16 bytes.] Ctherwise, 
the numbers are converted to the specified 
form, storage is obtained for the picture, 
and the picture is moved into the storage 
area (from the temporary storage area into 
which the picture had been placed by the FD 
analysis module). The temporary storage 
area is then released and the FD table 
module gives control back to the FD analy­
sis module. 

I Except for the NAME, LENGTH, INPUT, and 
FROMLOC keywords, the FD table module 
assigns default parameter values for each 
keyword that is omitted from an FD control 
card. ~he values assigned are sho~n in 
~able 2, and they are placed in the FD 
tanle. 

For a pattern, which may be either a 
user EBCDIC picture specification er an IEM 
fcrmat specification, module IEBFDTEL 
determines the action that is specified on 
the FD control card. Based on this deter­
mination (including a possible default 
determination), the module makes an entry 
in the FDACTION field of the appropriate FD 
table and sets the appropriate bit in the 
FDSWI~CH field of the table to one. 

~he module then determines the amount of 
storage required to hold the pattern. The 
a~ount of storage required depends on the 
action which the create module will later 
aFply to the pattern. By means of the GE,-1'­
MAIN macro instruction, the FD table module 
obtains the necessary storage. To provide 
for a wave or a ripple type of action, the 
storage area must contain two contiguous 
copies of the pattern. If the action is a 
roll, three contiguous copies of the pat­
tern must fit in the storage area. The 
create module requires the repeated pat­
terns when it generates the output records. 



Hex Dec 
0 0 

8 8 

10 16 

18 24 

20 32 

28 40 

30 48 

38 56 

40 64 

200 512 

208 520 

--

..-c... 

S bytes 

FDNAME (FD Field Name) 

FDREPNM (Input Data Set Name for Field Select Option) 

4 

Unused at Present FDINDNUM (index number) 

2 2 2 
FDLGTH FDCYCLE FDACTION FDFORMAT 

(FD Field Length) (Cycle Number) (Action) (Format Patterns) 

FDSWITCH 1 FDFILL 1 FDSIGN 1 FDCHAR 1 
FDRANGE 

(Action * (EBCDIC or (Decimal or (Starting Char. (Range Number) 
Switches) Hex Char.) Binary Field) of field) 

FDOBUF 
2 

FDFRINC 
2 

FDFROMAD (Starting Location in ('From' Address 
('From' Address for Pattern or Picture) Output Record) Increment Counter) 

2 2 2 
FDMLGTH FDTOINC FDCYCCNT FDSLGTH 

(Move Length Counter) ('To' Address Increment Counter) (Cycle Count) (Sequence Length) 

2 1 1 2 
FDSLGTHR FDFRINCR FDTDINCR LTDFREE 

(Sequence Length ('From' Increment ('To' Increment (Length of Storage Unused 
Restore Value) Restore Value) Restore Value) to Free) 

-Room For Seven More 64 Byte FD Table Entries (as above) 

4 

Unused NXTFDTAB 
Address of Next FD Table. (If none, value is Zero) 

*OFFSET 32(lO) BIT 0 1 2 3 4 5 6 7 
SWITCH INDBYNAM PASS FXACTION RPACTION RDACTION WVACTION STACTION NUACTION 

•Figure 57. FD Table Constructed by FD Analysis Module and FD iable ~odule 

... 
8 

8 

4 

2 

4 

4 

2 

2 

~ 

4 

One 
table 
entry 
(64 
Bytes 

; 

FD 

One 
FD 
table 
520 
Bytes 

Data Set Utility Programs: IEBDG 163 



•Table 2. FD Control card Keyword Parameter Processing, and Default Values Assigned, if 
Required 

r-----------T--------------------------------------------------------T------------------1 
I FD I Processing Applied to Keyword Parameter I Default Value I 
I ~--------T--------~-------------------------------------. I 
!Keyword !Validity! Value I Other Processing I (If any) ** I 
I !Checked jConvertedj I I 
r-----------t--------+---------+-------------------------------------+------------------~ 
!NAME * I Yes I No !Length checked for maximum of eight !None. I 
I I I I characters. I I 
r-----------t--------+---------+-------------------------------------+------------------~ 
!LENGTH * I Yes I Yes !None. !None. I 
r-----------t--------+---------+-------------------------------------+------------------~ 
!INPUT I Yes I No !Check for value 'SYSIN' or for match-INone I 
I I I ling name on DSD card. set action I I 
I I I I switch for 'fixed'. I I 
~-----------t--------+---------+--~----------------------------------+------------------~ 
IFROMLOC I Yes I Yes jValue is temporarily placed at !Start of Record I 
I I I IFDMLGTH in FD table. It is used in I I 
I I I jdeterrr.ining the "from" address for I I 
I I I !field-select option. I I 
~-----------t--------+---------+-------------------------------------+------------------~ 
ISTARTLOC I Yes I Yes !Subtract one from value. !First available I 
I I I I !byte in record. I 
~-----------+--------+---------+-------------------------------------+------------------~ 
!PICTURE I Yes I Yes !Check for occurrence of FORMAT jNone. I 
I C length> I I I keyword. I I 
~-----------t--------+---------+-------------------------------------+------------------~ 
!PICTURE I No I No !Get storage for picture. !Fill character. I 
!<field) I I IDeterroine ty~e of picture. I I 
I I I !Move picture to storage. I I 
I I I I (Include continuation I I 
I I I I cards • > I I 
r-----------t--------+---------+-------------------------------------+------------------~ 
!FORMAT I No I No !Check for occurrence of PICTURE !Fill character. I 
I I I I keyword. I I 
I I I !Check for two-character pattern. I I 
~-----------t--------+---------+-------------------------------------+------------------~ 
!ACTION I No I No !Check for two-character type. IFX (Fixed) I 
r-----------t--------+---------+-------------------------------------+------------------~ 
IFILL I No I Yes !Check for EBCDIC or Hex type with !Binary zeros. I 
I I I <Hex I two digits. I I 
I I I only> I I I 
~-----------t--------+---------+-------------------------------------+------------------~ 
ICYCLE I Yes I Yes jNone. ICne. I 
~-----------t--------+---------+-------------------------------------+------------------~ 
!RANGE I Yes I Yes lNone. !None. l 
~-----------+--------+---------+-------------------------------------+------------------~ 
!CHARACTER I No I No !None. IA (for alphabetic I 
I Cof FCRZV:AT) I I I land alpharneric). I 
I I I I l'blank' <fer I 
I I I I !collating>. I 
~-----------+--------+---------+-------------------------------------+------------------~ 
jSIGN I No I No jDeterroine if sign value is valid. !Flus. I 
~-----------+--------+---------+-------------------------------------+------------------~ 
I INDEX I Yes I Yes I None. I None. I 
~-----------L--------L---------i-------------------------------------i------------------~ 
I* These keywords are required to be Fresent in the FD control card. If not present, I 
I the program will be terminated. I 
I** Default values, except for FROMLOC, are assigned by FD table module. I 
L---------------------------------------------------------------------------------------J 

164 



After storage is obtained to accommodate 
the desired pattern action, the module 
places the specified fill character or a 
default fill character in each byte of the 
area. It then moves the pattern into the 
storage area the required number of times. 
Any leftover space (due to differences in 
field length and picture length specif ica­
tions) contains the fill character. 

If a PICTURE keyword had been specified, 
the temporary storage 'area that the FD ana­
lysis module had used to hold the picture 
is released tefore the FD table module 
returns control to the FD analysis module. 
If a FORMAT keyword had been specified, the 
starting character for an alphabetic, 
alphameric, or a collating sequence field 
is resolved before control is returned to 
the FD analysis module. For other formats, 
the storage field is initialized to a value 
that depends on the format specified. (For 
binary format, the value is a binary 1; for 
packed decimal, the value is a packed 
decimal 1; for zoned decimal, the value is 
a zoned decimal 1.) 

For the FD table module, a 63-byte 
sequence of characters resides in storage 
at location CCPAT. The 28th byte of this 
sequence is at location ALPAT. After 
resolving the starting character for an AL, 
AN, or cc format, the module fills the pat­
tern field using the characters of this 
sequence. If the starting location value 
is a default value, a collating sequence 
pattern tegins at location COPAT, and an AL 
or AN pattern begins at location ALPAT. 

The pattern field is filled only in 
increments that are equal to or less than 
the length of the sequence that is being 
used for the format pattern. If the length 
of the field (given at decimal offset 24 in 
the FD table) to be moved is less than the 
indicated sequence length, the number of 
characters moved will be equal to the 
FDLGTH field value. If the length of the 
field to be moved is greater than but not 
an integral multiple of the indicated 
sequence length, the number of characters 
moved for all moves but the last will be 
equal to the sequence length. The last 
move will contain the characters remaining 
after an integral number of moves have been 
made, each move containing the number of 
characters in the given sequence. If the 
FDLGTH value is equal to an integral mul­
tiple of the sequence length, the nu~ber of 
moves is equal to the integral number. 

THE CREATE ANALYSIS MODULE (IEBCRANL) 
CHARTS 68,69,70,71,72 

This module scans and analyzes the parame­
ters on the CREATE control card. The ini­
tial entry to module IEBCRANL is from base 

module when a CREATE card is encountered. 
Other entries to the module occur ~hen cre­
ate continuation cards or create card com­
ments cards are encountered. If the create 
analysis module does not encounter a condi­
tion that suppresses the creation of output 
records, it will use the create module as a 
subroutine to generate output records. The 
create module will return control to the 
create analysis module, which will, in 
turn, return control to the base module. 

~able construction 

~he create analysis module constru~ts four 
types of tables that are used by the create 
module: 

• The create table 

• 'Ihe picture table 

• The FD address table 

• The exit name table 

The create table is the largest of the 
four. It may contain one or more create 
entries. Module IEBCRANL establishes a 
28-byte create entry for each CREATE con­
trol card that it processes. (See Figure 
58.) One create table may contain up to 18 
create entries. These entries contain 
pointers to picture tables and FD address 
tables. More than one create table may be 
constructed. 

The picture table contains information 
about, as well as the actual, picture 
string that may be specified on a CREATE 
card. 

The FD address table contains the 
addresses of the FD table that have been 
ccnstructed to contain information from FD 
cards. 

'Ihe fourth type of table that the create 
analysis module constructs is the exit name 
table. This table contains the nanes of 
any user exit routines that have been spe­
cified. When a user's exit routine is 
loaded into main storage, the storage 
address of the routine is placed in the 
create table. 

Module Entries 

Since the create anaysis module may have 
been entered before in processing a given 
group data generator control cards, the 
initial analysis performed upon entry to 
the module consists of determining the 
cause for the module's receiving control. 

Data Set Utility Programs: IEBDG 165 



The create continue switch, CRCSW (at 
CO~MCN+564), is tested for this pur~ose. 
If the entry to the module is the first one 
for a given CREATE control card, storage 
for a create entry is obtained either from 
an existing create table or by the issuance 
of a GET~AIN macro instruction for s~ace 
for another 512-byte create table. (As 
each new create table space is obtained, it 
is 'chained' to the previous space and ini­
tialized to all zeros.) Then, the module 
scans the control card keywords one at a 
time. If an invalid keyword is encoun­
tered, the create analysis module indicates 
a message, sets the NOGOSW switch Cat 
CO~MCN+551) to suppress the creation of 
output records, and gives control back to 
the tase module to continue the checking of 
syntax on other control cards. 

If the entry to the create analysis 
module is due to a continuation of a CREATE 
control card, a check is made to determine 
if the parameters of either the NAME key­
word or the PICTURE keyword were inter­
rupted. (Except for the NAME and PICTURE 
keyword parameters of the CREATE card, all 
other CREATE card parameters must be on the 
same card as their associated keywords. 
The picture string parameter of the PICTURE 
keyword is the only one that may in itself 

be continued to another card.) The name 
continue switches, NA~CSW1 and NAMCSW2 Cat 
COMMON+ 561), and the picture continue 
Switches, PICC~Wl, PICCSW2, and PICCSW3 (at 
COMMON+ 562), are tested to determine if a 
Farameter may be on a continuation card. 
Fer a continuation card, the scan begins in 
column 4. 

If the entry to the create analysis 
module is because of a comments continua­
tion, control is given to the base module, 
I£BDG, to process the comments, and to read 
the next control card. 

~odule Subroutines 

As the create analysis module processes 
each valid keyword, it may branch to sub­
routines within the module. These subrou­
tines perform functions of parameter scan­
ning (SPSCAN routine), packing and/or conv­
ersion CCONVDB routine), and table search­
ing CFDSRCH routine). When the processing 
fer a given keyword is completed, the key­
word scanning section of the module scans 
the next keyword unless a continuation card 
has been indicated. If the latter action 
has occured, module IEBCRANL gives control 
to the base module to read the next control 
card. 

I~ 
8 bytes ...... ,. Hex Dec 

4 4 
4 

NXTCRTE 
(Address of next create entry in this table) 

c 12 
4 

IDCBPTR 
(Address of input DCB for this DSD group) 

14 20 4 
PICPTR 

Picture table address for this entry 

lC 28 
4 

FDADTAB 
(Address of FD Address table) 

Address of Next Create Table 

QUAN 
{Quantity value for this entry) 

EXITADDR 
(User's exit routine address for this entry) 

FILLCH 
1 

Fill character 
for this entry 

(Not used) 

(begin next create entry) 

4 

4 

4 

3 

T 
One 
Create 
Entry 
(28 

l
bytes) One 

Create 
table 
(512 
bytes) 

24 36 ---------------

..>--

1F4 500 

space for 17 more create entries 
(476 bytes) 

----------------,--------. -------
4 I 4 

I (last FDADTAB in Create Table) 
I 

(Zeros) 

*Physical displacement from start of 512 byte area. 

•Figure 58. Create Table Constructed by Create Analysis Module 

166 

..>--



l 

•• 
•: 

"' 

~ 

THE SPSCAN SUBROUTINE: The function of the 
SPSCAN subroutine is to check the validity 
of a keyword parameter. The routine moves 
a pointer across each character in the pa­
rameter and checks for commas, blanks, and 
parentheses. It also determines whether a 
parameter has teen extended into column 72 
of a control card. If so, an error rressage 
is indicated and control is given back to 
the tase module. 

After a comma or a blank is encountered, 
the parameter length is determined and 
checked for an invalid length of zero, and 
the routine returns control to the calling 
section of the module. (An invalid parame­
ter length causes the module to indicate a 
message and return control to the base 
module.) 

THE CONVDB SUBROUTINE: The convert subrou­
tine, CCNVDB, performs two functions: it 
converts a decimal number to a packed 
decimal number, and it converts a decimal 
number to a binary number. The subroutine 
is used in processing the parameters of the 
QUANTITY, the NAME, and the PICTURE key­
words. The convert subroutine processes a 
number that can be contained in 4 bytes or 
less. Therefore, a decimal value that is 
greater than 2,147,483,647 will not be pro­
cessed, and a message will be indicated. 
Module IEBCRANL then returns control to the 
base module. 

In order to determine if a parameter to 
be converted is numeric, the zones of its 
characters are compared against a hexadeci­
mal •F.' Valid numeric characters are then 
converted to a packed decimal format and 
placed in the storage area Q (at COMMON+ 
216). For all cases except a packed decim­
al picture specification, the parameter 
value is then converted to a binary value 
and placed in a general register. 

Hex Dec -. 
0 0 

ADDRESS OF NEXT TABLE 

8 8 

FD TABLE ADDRESS 

10 16 
I 
I 

I 

~BE FDSRCH SUBROUTINE: ~odule IEBCRANL 
contains and uses the FDSRCH subroutine in 
processing the NAME keyword parameter. The 
subroutine places a valid narr.e f rorr the 
CREA~~ control card into storage and tnen 
compares this name against the names of the 
FL tables (which have been established by 
the FD analysis module). If the list of FD 
tables does not contain a narr.e that matches 
the name on the CREATE card, a message is 
indicated and the create analysis rrodule 
returns control to the base module. 

When an FD table name that compares with 
a CREA~E card name parameter is found, the 
address of the FD table bearing that narre 
is placed in an FD address table. (See 
Figure 59.) If there is no rooro in an 
existing FD address table, the FDSFCH sub­
routine will obtain storage for a new 
table. 1he current create entry, whose 
address is given at CURCRTE (COMMO~ + 316) 
ccntains the address of the first FD 
address table. All FD address tables are 
chained together by pointers in the tables 
themselves. 

Keyword Processing 

10 determine if all keywords on a given 
CREA~E card have been processed, module 
IEBCRANL tests the column after the last 
parameter of each keyword. If this column 
is blank and if column 72 of the central 
card is blank, the last parameter on the 
card has been processed. The module then 
establishes a default value for the CUA~"'TI­
~Y keyword parameter if a value has not 
already been supplied on a CREATE contrcl 
card. 

If there are no more continuation cards 
for a given CREATE control card and if the 
create value (from a preceding REPEAT con­
trol card group) is equal to one, ~odule 
IEBCRANL gives control to the create 

8 bytes 

4 4 

F D TABLE ADDRESS 

4 4 

F D TABLE ADDRESS 

I 

J 
space for 16 more FD table addresses I 

4j 
I 
I 
I 

I 
I 

41 
I 
I 
I 

FD TABLE ADDRESS 0000 I 

: ss 
Figure 59. FD Address Table Constructed by Create Analysis Mod ule 

Data Set Ut ili ty Programs: IEEDG 167 



module, IEBCREAT. otherwise, if the create 
value (determined by testing the field 
CREATENO at COMMON + 18) is greater than 
one, the create analysis module gives con­
trol to the tase module to read the next 
CREATE control card. (The field CREATENO 
is initially set to one in case a CREATE 
card is not part of a REPEAT card group.) 

If the column after the last parameter 
contains a comma, the next card coluwn is 
checked. If this next column either is 
column 72 or contains a blank, the module 
gives control to the base module tc read a 
continuation card. Otherwise, either a 
message would have been indicated and con­
trol returned to the base module or the 
sutroutine for scanning the next keyword 
will be entered. 

When the create analysis module pro­
cesses the parameter of the DDNAftt"E keyword, 
it tests the number of characters in the 
DDNAME ·and determines whether the parameter 
value is SYSIN. If the name length is 
valid and the name is SYSIN, the address of 
the SYSIN data control block Cat COMMON + 
116) is placed in the create entry (whose 
address is given at COMMON + 316) for the 
CREATE card teing processed. If the name 
is not SYSIN, the input CCE(s) are scanned 
to find a name equal to the CRE.A'I'E card's 
ddname. In doing the scanning, the address 
of the first input DCE is placed in the DCB 
~ointer Cat CCMMCN + 300). The na~e of the 
DCB Cat DCBD + 260) is compared to the 
ddname given on the CREATE card. Unless an 
equal name is found, the process repeats 
with the next input DCE until there are no 
roore input DCBs to check. If a successful 

Hex Dec 
0 0 

8 8 

10 16 

18 24 

Address of next exit name table 

• . . name 

••• name 

DCB name comparison is made, the input DCB 
address is placed in the create entry. 
Otherwise, a message is indicated and the 
create analysis module gives control to the 
base module. 

If the ddname search was successful, 
either the given delimiter or a default 
delimiter is placed in the DELIM field Cat 
COMMON+ 344), or a message signifying an 
invalid delimiter is indicated and the cre­
ate analysis module returns control to the 
base module. 

When the EXIT keyword is encountered, 
the length of the user's exit routine narre 
is checked for validity. If the length is 
valid, the name is placed in a table called 
the exit name table (see Figure 60). The 
user's routine is then placed Cvia a ICAD 
macro instruction) into main storage, and 
the storage address of the routine is 
~laced in the create entry. 

lBE NAME KEYwORD: In processing the param­
eters of the NAME keyword, module IEBCRANL 
searches for multiple names, for 'copy' 
groups Ctased on the CCPY keyword), and for 
breaks or interruptions in series of names 
within outer and/or inner parentheses. If 
tne COPY keyword is not present and if ~ul­
tiple names have been indicated Chy 
encountering a left parenthesis in the 
scan), a default value of one is assigned 
to the COPYVAL field (COMMON+ 640). 

~he complete processing of the ~A~E key­
wcrd paraweter(s) includes the use of the 
subroutines FDSRCH, SPSCAN, and, if the 
COPY keyword is present, the CONVDE sunrou-

8 byte<- .. 
4 

user exit routine ••. 

(8) 

user exit routine •.. 

(8) 

Space for 6 more user exit routine names 

4 

0000 

8 72 

Figure 60. User Exit Name Taole Ccnstructed by Create Analysis ~odule 

168 



tine. If multiple names are present, the 
SPSCAN and FDSRCH subroutines are used for 
each name that is encountered. The create 
analysis module indicates that there is a 
continuation in the parameters of the NAME 
keyword ty setting switches in the NAMCSw 
field (CC~MCN + 561) of the communication 
area. If the continuation occurs after a 
'nam€' subparameter within only the cuter 
set of parentheses, the high-order bit (bit 
0) of the NA~CSW field is set to one. For 
a continuation indication that occurs after 
either the CCPY keyword or a 'name' sub­
parameter within the inner set of paren­
theses, the second bit (bit 1) of the 
NAMCSW field is set to one. 

If an inner group of names is to be 
copied more than once, the create analysis 
module checks the current FD address table 
for enough space each time a name is to be 
copied. If space is not available, storage 
for a new 88-byte FD address table is 
obtained, and the new table is chained to 
the previous one by the first word in the 
current FD address table located at the 
address given in the CURFDGM field (COMMON 
+ 632). 

THE PicrURE KEYWORD: This section 
describes the processing of the PICTURE 
keyword parameters. The PICTURE length fa­
rameter is processed first; the start loca­
tion of the picture string is then pro­
cessed; and the actual picture processing 
is done last. In the case of the PIC~UR~ 
keyword parameters, there are three ways in 
which a continuation card may be 
encountered. 

1. The PICTURE parameter list may be 
interrupted after the length parame­
ter. In this case, tbe first Chigh­
order> bit of the PICCSW field (COMMON 
+ 562) is set to one. 

2. The PICTURE parameter list may be 
interrupted after the startloc fararne­
ter. In this case, the second bit of 
the FICCSW field is set to one. 

3. ~he actual picture string may be 
interrupted. In this case, the third 
tit of the PICCSW field is set to one. 

Chart 70 indicates the entry points to the 
section of the module in which processing 
f cr the continuation card relating to each 
of the above ways of interruption takes 
place. 

In processing the length parameter, the 
module first scans the length and then 
coverts the length value to a binary equiv­
alent. Based on this length, the module 
obtains a storage area called the picture 
table. (See Figure 61.) The binary length 
value is then placed in the field FIClGTH, 
which begins at the fifth byte of the asso­
ciated picture table. The picture table is 
lccated at an address given in the FICBASE 
field (at COMMON + 664) of the comrrunica­
tion area. ~his same picture table address 
is also placed in the create entry for the 
current CREA~E card. 

~he start location (startloc) parameter 
is scanned; if valid, it is converted to a 
binary value; and the value is then placed 
in the associated create entry. As it does 
after the length parameter, the module then 
checks to see if the next parameter is on 
the same or a continuation card. If a con­
tinuation card is indicated, the module 
returns control to the base module to read 
the next card. Otherwise, the picture 
string will be processed. 

If the picture string is specified as 
being in EBCDIC (character), the string 
characters are moved directly from the card 
to the picture table. If the picture 
string is to be continued, the continuation 
switch (second bit of the fiela PICCSW) is 
set to one, and control is returned to the 
base module to read the next card. 

If the picture string is specified as 
being in either packed decimal or binary. 
the complete string must be en one card. 
~he card format is checked, and if valid. 
the string value is converted either to a 

Hex Dec 
0 0 

.,._~~~~~~~~~~~~~~~~~~~~~Sbytes~~~~~~~~~~~~~~~~~~~~----

~ 
I 

I 

I 

I 
I 
I 

L+6 

8 
I 
I 
I 

!l L +6 

Start-of-Picture offset from 
beginning of record 

4 

PICTURE LENGTH (Bytes) 
(L) 

PICTURE STRING (Continued) 

2 

PICTURE STRING 

Note: L is equal to the value specified as the length subparameter of the PICTURE keyword on the related CREATE control card. 

2 

Figure 61. Picture Table Constructed by Create Analysis Module 

Data Set Utility Programs: IEEDG 169 



packed decimal value or to a binary value 
as specified on the control card. 'Ihe con­
verted value is then placed in the picture 
table for use by the create rrodule. 

After each parameter on the CR~ATE con­
trol card has been processed, the create 
analysis module checks for a valid delimit­
ing character and for an indication cf a 
continuation card. 

THE CREATE MCDULE (IEBCRE~T) CHARTS 73,74 

The create module maintains control ever 
the generation bf output records. This 
module receives control from the create 
analysis module after create entries (in 
one or more create tables) and related 
tables have teen constructed. If, upon 
entry to this module, the switch, NOGOSw 
(at COMMCN + 5~1), is on as the result of 
the action of a previous module, the 
generation of output records will be sup­
pressed and the create module will perform 
only its clean-up functions. Module IEB­
CREAT always returns control to the create 
analysis module, which then returns control 
to the base module for the printing of mes­
sages and/or the reading of the next con­
trol card. 

Output Record Modifications 

Upon entry to the create module, the NOGOSW 
switch is tested to determine whether to 
continue processing or whether to immedi­
ately release storage areas and return con­
trol to the create analysis module. If 
processing is to continue, the record 
characteristics <length, format) are deter­
mined; a counter, RECREM (at COMMON + 348), 
is initialized with the quantity value from 
the create entry; and the input record size 
Cif present) is compared to the output rec­
ord size. The output record field is then 
filled with the create entry fill character 
prior to reading in a record fro~ an input 
DCB. 

FD TABLE ~CDIFICATION: If there is no 
input DCE, modifications based on values in 
the FD table(s) are made directly to the 
output area containing the fill character. 
Otherwise, the modifications are made to 
the input record that has overlaid the fill 
characters in the output area. 

The modifications based on the FD table 
values involve the action, index, cycle, 
and range parameters from the FD control 
card. Initially, an FD pattern at the 
storage address given in the field FDFROMAD 
of an FD table is moved to the output area, 
which, at this point, contains either a 
fill character or an input record. The 
create module then inspects other FD tables 
that may have been indicated by the CREATE 

170 

control card as belonging to the current 
create entry and moves the patterns f rorr 
these tables into the output area. The 
output record starting location for each FD 
pattern is given in the field FDCBUF cf the 
FC table. Note, that as each modification 
is made to the output record, it may over­
lap part or all of a previous modification 
depending on the starting location specifi­
cations involved. 

PICTURE AND US~R MCDIFICATICNS: After the 
create module moves the FD pattern(s) to 
the output record area, the module moves in 
the picture string from the CREATE control 
card, if the PIC1URE parameter has been 
Sfecified. Otherwise, or after the picture 
string has been moved, module IEBCREAT 
determines if a user exit routine is Fre­
sent. If so, it indicates that a user rray 
desire to inspect and/or modify the record 
before it is placed on the output device. 
An exit is taken to permit user modifica­
tion if this is the case. After the user 
routine (if one is used) gives control back 
tc the create module, the create mcdule 
checks the return code that has been placed 
in register 6 by the user's routine. If 
the job is not to be terminated at this 
Feint, the create module places in the out­
fUt data set the record that is in the out­
put area. If termination is to take ~lace, 
an indicating switch (FLUSHSW or FlUSHSWl 
depending on the return code) is set, 
storage areas are released, and control is 
given to the create analysis module, which 
then gives control to the base module. 

UFdatinq the FD ~able 

After each record is placed in the output 
data set, certain values in each a~plicable 
FD tab1e are updated to prepare for the 
next output record that is to be created. 
~ultiple references, by the same create 
entry, to the same FD table are indicated 
by the setting of a 'pass' switch (bit one 
of the FDS~ITCH field). If this occurs, 
the FD table is processed (and updated) 
only once. 

For the binary, packed decirral, and 
zoned decimal patterns, the create module 
performs the following actions by using FD 
ta.ble values: 

• The cycle count field (FDCYCCNT) value 
is incremented if the cycle value 
(FDCYCLE) is other than zero. 

• The pattern values are then converted 
to a binary equivalent, if not already 
binary, and placed in a work area 
<register 4). The module then incre­
ments the binary-equivalent pattern 
value by using the index nl.Ullber 
(FDINDNUM). 



• The incremented pattern value is then 
tested against the range value given in 
the field FDRANGE. If the range value 
has been exceeded, the current pattern 
value in the storage area to which the 
FD table refers is not changed. Other­
wise, the indexed binary value is 
reconverted to a decimal form if neces­
sary and placed in the storage area. 

For a random number format, the random 
generator routine of the create module pro­
vides another value to be used for the next 
record and places the value in the pattern 
storage area to which the FD table refers. 

For alphabetic or character patterns, 
the generation of the pattern to be Flaced 
in the output area for the next record 
requires that values of the •from' address 
in the FD table and the •to' <or outFut 
work area) address be changed. These 
addresses are used in moving the pattern 
Cor a part of it) from the pattern storage 
area to the output record area. In the .F'D 
table, there are two fields CFDFRINC and 
FDTOINC) that contain the increment values 
used to modify the 'from• and the 'to' 
addresses. These fields initially contain 
a value of zero for the first output rec­
ord. For subsequent records, the values 
may be incremented by values given in the 
increment restore fields <FDFRINCR and 
FDTOINCR) of the FD table. 

The FD table module established the 
values of the increment-restore fields 
after the specified action had been deter­
mined. Table 3 lists the values of the 
increment-restore fields for the various 
actions that may be specified. 

Table 3. Values of Increment-Restore 
Fields in the FD Table 

r---------T--------------._----------------, 
I IFDFRINCR I FDTOINCR I 
I l<'From' Incre- I <'To' Incre- I 
f Pattern fment Restore) I ment Restore> I 
~---------t---------------+---------------i I Shift 1 0 
I Left 
I Shift 0 1 
I Right 
f Truncate 1 1 
I Left 
I Truncate 0 0 
I Right 
IRoll +1 <*> O 
I -1 
I Ripple 1 0 
I Wave 1 O 
I Fixed O O 
~--------L---------------i---------------i 
l*This value will alternate between +1 andl 
I -1 as the roll pattern is developed in I 
I first one direction and then the other. I 
L-----------------------------------------J 

Depending on the action specified in the 
FD table, the create module may vary the 
values of the move length counter field, 
FDMLG!H, and the sequence length counter 
field, FDSLGTH, to prepare for the next 
output record. ~able 4 smr.marizes the 
changes that may occur to values of fields 
in the FD table as the create module 
generates output records. 

After all FD tables to which a given 
create entry refer have been updated, the 
create module inspects the NXTCRTE field 
(in the create table) to determine the 
address, if any, of the next create entry 
to be processed. <When there are no wore 
create entries to be processed, the NXTCRl'E 
field of the current create entry contains 
zeros.) If there is another to be pro­
cessed, the create module will process the 
entry in the manner already described. 

If there is a repeat function to per­
form, the entire list of create entries 
must be processed as many times as neces­
sary to satisfy the repeat requireroent. 
when that is done, the clean-up £unctions 
of the create module will be performed. If 
there is no REPEAT card function to perform 
for the current set of data generator con­
trol cards, the field REPEATNC (at CO~MCN + 
16) contains zeros. 

After the last create entry has peen 
Frocessed, the create module will release 
the storage areas that have been obtained 
for create tables, FD address tables, and 
the CREA~ card picture string. The module 
then resets switches and communication area 
field values for an initial entry to the 
create analysis module, and returns control 
to the create analysis module. 

tHE MESSAGE MODULE CIEBDGMSG) CHART 75 

Message module IEBDGMSG is entered from the 
base module whenever there is an indication 
of a message to be printed, or placed on 
the output device. To indicate the need 
for a message, the other modules of the 
data generator program set a message number 
in the MS field (at COMMON + 406) of the 
communication area. 

This module places four types of mes­
sages on the output device: heading mes­
sages., control card images, error messages, 
and error flags <messages). The messages 
used for headings and errors exist as 121-
byte entries within the message module. 
~he location of each message within the 
module is contained in a 4-byte address 
entry in a message pointer table. 

Before any messages are placed on the 
output device, module IEBDGMSG determines 
if the output data set bas been successful­
ly opened. If it has not been opened, con-

Data set Utility Programs: IEBDG 171 



Table 4. Changes Made to FD Table Values as Create Module Builds cutput Records 
r---------T----------T------------------------------------------------------------------1 (~ 
I Field I Format I Change I 'I' 
r---------t----------+------------------------------------------------------------------~ 
IFDCYCCNT I Numeric I Increase by 1. When= FDCYCLE value, set to o. I 
r---------t----------+------------------------------------------------------------------~ 
IFDMLGTH jAlphateticjinitially = FDLGTH value. If FDMLGTH > 1, decrease by 1. When I 
I I (Shift or I FDMLGTH ~ 1, set = FDLG'IE value. I 
I !Truncate) I I 
r---------t----------+------------------------------------------------------------------~ 
IFDFRINC IAlphabeticjif FDMLGTH > 1, increase by value in FDFRINCR field. When I 
I !<Shift or jFDMLGTH ~ 1, set= O. I 
I I Truncate) I I 
r---------t----------+------------------------------------------------------------------~ 
IFDTOINC IAlphabeticjif FDMLGTH > 1, increase by value in FD'IOINCR field. When I 
I j(Shift or IFDMLGTH ~ 1, SET= O. I 
I !Truncate) I I 
r---------t----------+------------------------------------------------------------------~ 
IFDSLGTH IAlphabeticlinitially = FDSLG'IHR. If FDSLGTH > 1, decrease by 1. When I 
I I (Ripple) IFDSLGTH ~ 1, set = FDSLG'IHR value. I 
r---------t----------+------------------------------------------------------------------~ 
jFDFRINC IAlphabeticjif FDSLGTH > 1, increase by 1. ~hen FDSLG'IH ~ 1, set to O. I 
I I <Ripple> I I 
r---------t----------t------------------------------------------------------------------~ 
jFDFRINC IAlphabeticjif FDSLGTH > 1, increase ty 1. ~hen FDSLG'IH ~ 1, restore to o. I 
I I <wave> I I 
r---------t----------+------------------------------------------------------------------~ 
jFDMLGTH jAlphabeticjWhen FDSLGTH ~ 1, restore to FDLG'IH value. I 
I I <wave> I I 
r---------t----------+------------------------------------------------------------------~ 
IFDFRINC IAlphabeticlincrease by 1 for roll to left. Decrease by 1 for roll to right. I 
I I <Roll> I I 
L---------L----------L------------------------------------------------------------------J 

trol is returned to the base module and the 
job is terminated. If the data set is 
open, the value in the MS field is checked 
to determine the reason for requesting the 
module. 

Initially, the module is requested to 
print a heading message (MS field value = 
1). Thereafter, a heading message is 
printed when the module finds an indication 
of either a channel 12 printer carriage 
tape or the correct line count. All head­
ing messages will begin at position one on 
the output device. After each heading mes­
sage printout, the line count value is 
reset to either the user-specified value or 
the default value, and the page number 
value is incremented. Eefore printing a 
heading message, a printer will skip to 
channel one to set up a new page. when any 
other message is to be printed, a ~rinter 
will space one line before printing the 
message. 

If the ~s field value is not 1, the 
module determines if the carriage central 
tape indication is 12 and, if the indica­
tion is not 12, if the line count value has 
reached its maximum value. If either 
situation has occurred, a heading message 
will be printed, the line count will be 
reset, and the page nwnber will be 
incremented 

172 

Otherwise, the module tests the MS field 
tc determine if a control card image is to 
be printed from the input buffer. If this 
is the case, the image is printed at ~osi­
tion ten on the output device. If a card 
iroage is not printed, the module tests for 
a regular error message indication from the 
processing modules. These messages have 
message numbers from 2-28. For each rr.es­
sage to be printed, the printer is placed 
at position one to receive the message. 

'Ihe message module places a flag message 
(consisting of the word ERRCR) in the mes­
sage data set when one of the other modules 
of the data generator program requests an 
error flag. '!his message begins on the 
line telow the corresponding control card 
image and in the column corresponding to 
tne card column that is in error. 

After a message has been placed on the 
output device, the message module incre­
ments the line count value, determines if a 
heading message has just been placed en the 
device, and either continues processing or 
returns control to the base module. 

SERVICE AIDS 

A customer or systems engineer can 
obtain useful information for use in debug-



ging a (non-executed) run of the data 
generator program by re-running the program 
with a DUMP control card inserted in the 
group of control cards. When the base 
module recognizes a DUMP control card, it 
takes the action described in the micro­
fiche copy of the base module code. 

The publication IBM System/360 Operating 
System, Progranuner's Guide to Debugging, 
Form C28-6670, describes both types of 
dumps that may be obtained when one uses a 
DUMP card. An indicative dump is a limited 
dump that results from an incorrect, or 
from a lack of a proper, SYSABEND DD state­
ment. For a complete storage dump, a 
correct SYSABEND DD statement to define a 
dump data set must be included in the con­
trol cards for the program. 

In using the contents of a dump, you 
will find that register 5 contains the 
address of the common communication area 
(common area). This area contains pointers 
to control blocks and to tables constructed 
by the data generator program; and it con­
tains parameter values that the modules of 
the program (1) have obtained from control 
cards, (2) have assigned as default values, 
or (3) have arrived at through computation 
and/or conversion. Table 5 indicates the 
contents of the fields corresponding to the 
more frequently used labels in the common 
area. 

Certain debugging information is avail­
able as the result of processing the con­
trol card(s) preceding a DUMP control card. 

In the following text, the information 
given for a specific location of the DUMP 
card is in addition to any information 
resulting from processing any control cards 
that may have preceded the specified 
location. 

1. DUMP card preceding a DSD card: 
'!be common area contains values for 
printer action. 
The open list is initialized. 
'!be input DCB is open. 
Much of the common area contains 
zeros. 

2. DUMP card follows a DSD card: 
Addresses of DCBs have been 
determined. 
Work area for output record has been 
established and the area's address is 
located in common area. 

3. DUMP card follows an FD card: 
Storage area dump contains the FD 
table entry relating to that FD card. 
If other FD cards have been processed, 
the corresponding FD table entries are 
also included in the dump. 

4. DUMP card follows a CREATE card: 
Storage area dump contains tables 
created by the corresponding CREATE 
card. An updated copy of any related 
FD tables is also included. The most 
recent create table is contained in 
the dump and the CURCRTE field of the 
common communication area contains the 
address of this table. 

Data Set Utility Programs: IEBDG 173 



The following sections contain information that summarizes or further explains materi-
al appearing in the program listings for the data generator program. This infornation ~ 
supplements the overall view of the frogram as supplied by Figure 55. ,_., 

Table 5 lists the entries in the comrrion Communication Area. ~his area is used by all 
modules of the data generator utility program. 

•Table 5. Common Communication Area (Part 1 of 3) 

r------------T--------------------------------------------------------------------------1 
I Offset Froml I 
I Start of I I 
I Common Areal I 
~------T-----t--------T------------------~----------------------------------------------~ 
I Deci-IHex. I Label I Notes I 
I mal I I I I 
~------t-----t--------+-----------------------------------------------------------------~ 

0 0 !COMMON I 
0 0 IPAGENO !Number of next page to be printed. 
4 4 ILINECT !Number of lines to print on a page. 
8 8 f LINECTR jNumber of lines already printed on current page. 

12 c IPARM !Used during invocation. A1so used by create module to save SYNAD 
I I address es • 

16 10 IREPEATNOf 'Quantity' value from REPEA~ card. 
18 12 ICREATENOl'Create' value from REPEA~ card. 
20 14 ISYSP !Data Generator SYSPRIN~ DCB. 

116 74 SYSI jData Generator SYSIN DCB. 
216 DB Q IWork. Area 
216 D8 QFILL I t 
223 DF QSIGN I 
224 EO QFILLl I 
231 E7 QSIGNl I 
232 E8 COUNTER !Used in scanning for continuations. 
236 EC CPENLISTIUsed during DCB open processing. 
236 EC OP'I'BYTEll ~ 
240 FO CP'I'EYTE21 
244 F4 EXLST I 
244 F4 INHDR 
245 F5 INHDRl 
248 F8 OUTHDR 
249 F9 OUTHDRl 
252 FC INTRL 
253 FD INTRLl 
256 100 CUTTRL 
257 101 CUTTRL1 
260 104 EXITDCB 
261 105 EXITDCB1 
264 108 TOTAL 
265 109 ITOTALl 
268 lOC IEXLSTl 
268 lOC IEDCEl 
269 lOD IEDCB2 
272 110 IEXLST2 
272 110 IEDCE3 
273 111 IEDCE4 
276 114 IEXLST3 
276 114 IEDCB5 
277 115 IEDCB6 
280 118 IDLRECL Default value of record length for DCB opening. 
282 11A IDBLKSI !Default value of block size for DCB opening. 
284 11C IDRECFM !Default value of record format for DCB opening. 
288 120 ILEFI'OVERI 
292 124 IOFFSE'T I 
296 128 ILP'I'R I 
300 12C IDCBP'I'R !Address of current DCB. 
304 130 ICOMMON1 I '·~· ... ' 304 130 ISAVEMS !Save area for message number if more than one message. ~ 
306 132 ICONCODE !Condition code to be returned to caller. 

L------L-----L--------L-----------------------------------------------------------------J 
174 



•Table 5. Common communication Area (Part 2 of 3) 
r------------T--------------------------------------------------------------------------1 I Offset E'romj I 
I Start of I I 
I Common Areal I 
~------T-----t--------T-----------------------------------------------------------------~ 
I Deci-1 Hex. I Label I Notes I 
I mal I I I I 
~------t-----t--------+-----------------------------------------------------------------~ I 308 134 CUTREC !Address ot cutfut work area. 
I 312 138 CRTABPT !Address of first create table. 
I 316 13C CURCRTE !Address of current create entry. 
I 320 140 CURCRGM !Address of current create table. 
I 324 144 CURPIC !Address where next porticn of picture is to be placed in ficture 
I jtable. 
I 328 148 PICCTR I Counter to keep track of length of picture remaining to be •ioved. 
I 332 14C EXITTAB !Address of first exit naroe table. 
I 336 150 EXITGM !Address of current exit name table. 
I 340 154 CUREXIT !Address of current exit name in exit nilme table. 
I 344 158 DELIM !Delimiter for SYSIN records. 
I 348 15C RECREM !Counter for 'Record' quantity. 

352 160 CURFD !Address of current FD ta£le (in FD address table). 
356 164 CURCUT jCurrent location in output record being constructeJ. 
360 168 SAVE14 jContents of register 14 saved here. 
364 16C GETMLIST I Parameter list for GE'H'JAIN macro instruction. 
364 16C GLENGTE I l 
368 170 ADRLIST I 
372 174 IND I 
372 174 GCODE I 
373 175 SPOOL I 
374 176 CCODE I 
376 178 GCADDR !Address of last storage ontained by a GET~AIN macro instruction. 
380 17C FIRSTGMOjAddress of first output ~CB storage area. 
384 180 CURRGMO !Address of current outfut DCB storage area. 
388 184 LASTGMO jAddress of last output LCo storage area. 
392 188 FIRSTGMIIAddress of first input DCB storage area. 
396 18C CURRGMI !Address of current input DCB storage area. 
400 190 LASTGMI jAddress of last input DCE storage area. 
404 194 CCNCCDE I 
406 196 MS !Current message nuwher. 
408 198 INBUFAl IStarting address of input work area (121 bytes). 
408 198 INFILL 1<10 Eytes) 
418 1A2 INBUFA jControl card is read into this (111-byte) section of INaUIAl. 
532 214 DDPI'R I 
536 218 CCMMON2 I 
536 218 SWITCH start of 52-switch area. 
536 218 FDCSW FD-card continuation switch. 
537 219 FDNAMESW 
538 21A FDPCSW FD picture-continuaticn switch. 
539 21E FDFMTSW FD format switch. only one of these 
540 21C FDPLSW FD picture switch. should be on. 
541 21D RANGESW 
542 21E FILLSW 
543 21F REPSW FD card keyword indicator switches. 
544 220 INDEXSW 
545 221 INDNMSW 
546 222 BQUOTESW Binary picture indicator. 
547 223 PQUOTESW Packed decilrlill picture indicator. 
548 224 EQUCTESWIEECDIC (character-string) picture indicator. 
549 225 FDSW I 
550 226 DSDSW I 
551 227 NOGCSW !'No-execution' switch. (Indicates syntax checking only.) 
552 228 CREATESWjFirst CREATI-card switch. 
553 229 DSDCSW jDSD continuation card switch. 
554 22A CRCSW jCREATE continuation card switch. 
555 22E EXITSW IIndicator that an initial exit-name table exists. 
556 22C EODSTOP jSwitcb to stof generation on input end-of-data. 

------L-----L--------L-----------------------------------------------------~----------

Data set Utility Frogramaa Il•DG 175 



•Table 5. common communication Area (Part 3 of 3) 
r------------T---------------------------------~--------------------------~-----------1 ~ 
I Offset Froml I ,._, 
I Start of I I 
I Common Areal I 
~------T-----r--------T-----------------------------------------------------~~--------~ 
I Deci-IHex. I Label I Notes I 
I mal I I I I 
~-----r-----r--------+-----------------------------------------------------~~--------~ 

557 1220 DSDNULSWI I 
558 l22E DSDORGSWI Not used. 
559 22F DSDDDSW I 
56 0 230 CRTBLK I Indicator for a blank CREATE card. 
561 231 NAMECSW !Name continuation switch. 
562 232 PICCSW !CREATE card picture-continuation switch. 
563 233 BUFPSW I 
564 234 ENDSW I 
565 235 COMCSW Comments continue switch. 
566 236 FLAGSW 
567 237 PAGESW 
568 238 EPSW 
569 239 SYSISW 
570 23A SYSPSW 
571 23B OLDNEWSW Input/output data set indicator. 
572 23C FLUSBSW 
573 23D FLUSHSW1 
574 23E IDSDOSW 
575 23F IDSDISW 
576 240 IQUANSW CREATE card 'quantity' switch. 
577 241 IPARENSW Indicates detection of a left parenthesis. 
578 242 IREPEATSWIUsed to test if a REPEA1 card remains to be processed. 
579 243 ISYSINEODIAddress of end of SYSIN data. 
588 24C IFDPLGTH !FD-picture length. 
592 250 SGCADDR !Save Area for address of storage obtained by GET~.AIN macro ,~.,. 

I instruction. ~ 
596 254 FDPTR !Address of current FD-table entry. 
600 258 FDPTRl !Address of first FD table. 
604 25C FDPTR2 !Address of current FD table. 
608 260 COMMON3 I 
608 260 FDCTR !Count of nu~ber of entries in current FD table. 
612 264 LREMAIN !Length of FD picture remaining at end of scanning an FD card. 
616 268 COMPCTR I 
620 26C LMOVED I 
624 270 U !Current random number value. 
628 274 PICENO !Location of end of picture in output record. 
632 278 CURFDGM !Address of current FD-address table. 
636 27C SWTCH I 
636 27C SYSINSELjField-select indicator switch. 
637 270 FIRSTSW I 
638 27~ FRSTSW I 
639 27F STOFSW I 
640 280 COPYVAL jValue of COPY parameter from a CREA~E card. 
644 284 COFYFD !Pointer to FD address used in copying a 'name' group. 
648 1288 COFYFDGMjAddress of FD-address tatle. 
652 j28C NAMCTR !Number of FD addresses to be copied for a 'name• group. 
654 128£ NAMCTRl !Counter used in copying a 'name' group. 
656 1290 INRECSZ !Logical record length of an input record. 
658 1292 CUTRECSZILogical record length of an output record. 
660 1294 INRECFM !Input record format. 
661 1295 .RECOFFSTIOffset to start of data in output record. 
662 1296 OUTRECFMIOuput record format. 
664 1298 PICEASE !Address of start of picture table. 
668 j29C MESSAGE I 

L------L-----L--------L-----------------------------------------------------------------J 

176 



Table 6 lists the fields of the Data Con­
trol Block (DCB). The labels, as given in 
this dummy section, may vary in name from 
the levels for the DCE fields as given in 
the System Control Blocks publication. 
However, the offsets from zero correspond 
in meaning with those given in the system 
Control Blocks publication. 

•Table 6. Data Control Elock 
r-----------------------------------------1 
I OFFSET FROM START OF DCB I 
~-------------T-------------T-------------i 
I DECIMAL I HEX I LABEL I 
~-------------t-------------+-------------i 

0 0 DCBD 
0 0 FILL 

17 11 DEVT 
18 12 FILLl 
26 lA DSORGl 
26 lA DSORG 
28 lC FILLER 
28 lC IOBAD 
32 20 BFTEK 
33 21 EODAD 
36 24 REC FM 
37 25 EXLIST 
40 28 DDNAME 
40 28 DEBAD 
40 28 IFLGS 
48 30 GETAD 
48 30 OFLGS 
49 31 OFLGSl 
SO 32 MACRF 
52 34 FILL2 
56 38 SYN AD 
60 3C CIND 
62 3E BLKSI 
64 40 FILL3 
82 I 52 LRECL 
84 I 54 FILL4 

256 I 100 NEXTDCB 
260 I 104 DDNAMEl 
268 I lOC EODSW 
269 I 10D DCBSWl 
270 I 10E DCBSW2 
271 I lOF DCBSW3 
272 I 110 INREC 
276 I 114 GMLGTH 
278 I 116 FIELDSEL 
279 I 117 SPARE 

-------------L-------------i-------------

Data Set Utility Frograms: IEBDG 177 



Table 7 lists the defined constants <Des> tnat are used by the various modules of the 
data generator progr.-. 

Table 7. Define4 Constants for Modules of the ~t• Generator Program 

Label I!!! Cleon-up FD Analysis Ft> Tarble Create Anali::sis Create 

'Cl C'fX' 
'C2 C'Sl' 
'C3 C'Tl' 
'C4 C'SR' 
'CS C'NAME=' C'TR' C'QUANTITY=' 
'C6 C'LINECT=' C'LENGTH=' C'NAME=' C' (see 'C30 for base) 
'C7 C'ST.ARTLOC=' C' PICTURE=' 
'CB C'PICTURE=' C'RP' C'FILL=' C'R.A' 
'C9 C'FORMAT=' C'RO' C'INPUT=' C'ZD' 
'ClO C'ACTION=' C'WV' C'EXIT=' C'PD' 
'Cll C'FILL=' C'BI' 
'C12 C'CYCLE=' C'BI' 
'Cl3 C'END' C'RANGE=' C'PO' 
'Cl4 C'FD' C 'CHARACTER=' C'.AL' C'COPY=' 
'C15 _C'_C_REAJI' C'SIGN=' ~AN' 
'Cl6 C'REPEAT' C'INDEX=' C'CO' C'P"' 
'Cl7 C'DUMP' C'REPLACE=' C'B'" 
'Cl8 C'OUTPUT=C 
'Cl9 C'INPUT=(' 
'C20 C'R.A' 
'C22 CZ-OT 
'C24 C'SYSIN 
'C25 C'QUANTITY=' C'$$$E' 
'C26 C'CREATE=' 
'C28 C'B'" 
'C29 C'P"' 
'C30 C' IEB72tt llERMANENT 

VO ERROii' 
'Dl H'256' H'-64' .... ,. H'-1' F'O' 
'02 F'123456' H'32767' H'2~' F'O' H'-1' 
'03 F'65535' H'256' H'2' H'256' H'S' 
'04 H'·?' H'l' H'4' 
'05 H'1' H'l6' F'524291' 
'06 H'.-4' F'l' H'-4' 
'07 H'-3' H'256' 
'08 H'~ 
'X2 X'FOFOfOfl' 
'XS X'OOOI' X'OOOO' 
'X7 X'OOJO' X'i>OOO' 
'XB x·~· 
'X9 X'0028' 
'X17 X'OOl.A' 
'X18 X'0024' 
'Xl9 X'OOJf' 
'X23 XSOOO' 
'X26 X'02l47483647F' 
'X30 X'OOOO' 
'X31 X' 0000000000000000' X'0004' 
'X32 X'000002147483647f' X'0003' 
'X36 X'()()()Qm 147413647F' 

FOXZEROS X' FOFOFOFOfOFOFOFO' X' FOFOFOFOFOFOFOFO' 
NO X'OO' 
OFF X'OO' X'OO' X'OO' X'OO' X'OO' 
ON X'FF' X'FF' X'FF' X'FF' X'FF' 
ONE FL4'0' 

'SIZOOl' A _fOA TEN0-'0.ATDl 
'Tl F'O' F'O' 

'TEMP4 F'O' f'O' F'O' F'O' 
YES X'FF' 

178 



Table 8 lists the equated symbols (EQUs) that are used by the various modules of the data 
generator program. 

Table 8. Equated Symbols for Modules of the Data Generator Program 

Module 
Label 

Base Clean-up FD Analysis FD Table Create Analysis Create - --

A2J7 'ELOl 
F6D3 F884 
'L 1 1 1 1 1 
RET 'ELOl 
'9CE 'ELOl 
'9D4 A7A12 
'9D7 CARD SCAN 
'9EC F4G11 
'9EF 'ELOl 
'9E2 A283 
'9E9 'EL02 
'9FC PDDNAMER 
'9FD PDDNAMER 
'9FO A6C5 
'9F2 'EL02 A7A18 
'9F3 LABELl 
'9F4 SCANl A6A11 
'9F5 F9E5 
'9F7 KEYSCAN 

Data Set Utility Programs: IEBDG 179 



Tables and Work Areas Used by Modules of Data Generator Program 

Table 9 is a grid indicating the modules that establish, use, and modify the major work 
areas and information tables of the data generator program. Mnemonic names for the 
tables or area are placed in parentheses and correspond with the names given in the 
module cross-references on microfiche listings. 

Table 9. Data Generator Modules Information '!ables and Areas 

Modules •• .. BASE FDANL FDTAB CRANL CREAT MSG CLNUP 

Table/Area 
Module Action Code: B =Module gets storage for, and/or enters data into. 

U = Ntodule uses or modifies the area. 

Common Comm. Area B u u u u u u 
(COMMON) 

Create Table B 
(CRT AB) 

Exit Name Table B u 
(EX ITT AB) 

FD Table B B u 
(FDTBL) 

FD Address Table B u 
(FDADTAB) 

Input Buffer B, U u u 
(INBUF) 

Input/Output B u U* 
DCB 

Message Tab le u 
(MESSAGE) 

Message Pointer Table B u 
(MSGPTR) 

Create Picture Table B u 
(CR PICT) 

* Closes and releases storage for: 

180 



Table 10 contains a summary of the input and output information to be found on microfiche 
listings of the data generator program. 

•Table 10. Module Inputs and outputs 

.---------------------------------------------------------------------------------------, 
I INPUTS OUTPUTS I 
..-------------------------------------------------- ----------------- 1 
I BASE MODULE 
IData Generator Control Cards. I Reg. Sr pointina to a common c0111111unication 
IDD cards for all data sets used. I area. 
Either: Parameter List Address for I Message indicator in the common area. 

invocation I Reg. 9r pointing to a data generator 
or Job control Language EXEC I control card operation field in an input 

card parameters. I Buffer--tbis is for output to an analysis 
I module. 

CLEAN-UP 

Reg. 5 and other pointers (in the commun­
ication area) indicating, respectively, 
the addresses of the communication area 
and control tables. 

MODULE 

DCB storage areas and associated buffer 
areas, and the input record work area, 
are released to the system. 

MESSAGE MODULE 

Reg. 5, pointing to the communication 
area. 

Message number indicator. 
IActual or default values for linecount 
I and page number. 
!Output DCB name. 
Indicators for: Output DCE open or not. 

Channel 9 carriage con­
trol. 

Channel 12 carriage con­
trol. 

FD ANALYSIS 
I 

Reg. 9, pointing to a control card image I 
in an input buffer. I 

I 
I 

FD TABLE 
IFD table entry. 
IReg. 5, pointing to communication area. 
ISGCADDR pointer to picture temporary 
I storage. 
!Switch indicating picture type, if any. 

Heading and paging information. 
Program messages. 
Error return codes. 
Control card images. 

MODULE 

One or more FD tables ••• 520 bytes each. 
FD table entry with some parameter values. 
~emporary storage with a picture or format 
pattern. 

MODULE 
Completed FD table entry ••• 64 bytes. 

I 
I 
I 

CREATE ANALYSIS MODULE 

jReg. S, pointing to communication area. 
jReg. 9, pointing to control card image 
I in input buffer. 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

One or more create tables •• 512 bytes 
create table entry ••• 28 bytes. 
Picture table ••• CL+ 6)* bytes. 
FD address table(s) ••• 88 bytes each. 
Exit name tableCs) ••• 72 bytes each. 

each. 

I *Note: See Figure 61 for definition of L. 

I _C_R_E_A_T_E_M_O_D_UL_E 
jReg. 5, pointing to communication area. I Records written on an output device as 
jCreate tables(s). I specified by DD name on a DSD control 
!Picture table(s). I card. 
IFD address table(s). I 
I Exit narr.e tat:le Cs). I 
L------------------------------------------~--------------------------------------------J 

Data Set Utility Programs: IEEDG 181 



•Chart 60. IEEDG Base Module (Part 1 of 3) 

From: 64/J5 8--------• CONTROL CARD SCAN 

182 

~~D._,Go...-Pro_g_rom __ 

Bl 

Register and 
Common Area 
Initialization. 
Assign Defaults 

B2 

IEBDGMSG 75C2 

Print 
Indicated 
Message 

Execution 

Process 
Parameter List 
Options 

El 
AFTER SVC 19 

Open SYSIN 
(input) and 

SYSPRINT (message) 
Data Sets 

Place Heading 
on SYSPRINT 

IEBDGMSG 75C2 

Print Control 
Card on 
SYSPRINT 

To Control Card Scan 

Options: 
Line Count, 
DD Nomes, 
Page Number 

-------..._ _____ / 

No 

(Msg. 24) 

E2 

DCBEXIT 61B4 

F2 

Check DCB 
Parameter 
Validity 

Set Condition 
Cade 12 
for User 

Load Condition 
Cade for User 
in Register 15 

'ELOl 
K2 -R-e-tu"-rn-to-

Caller 

(By way of the Supervisor) 

From: 
72/F2 
7l/G3 
68/Cl 
69/H2 
65/G3 
68/J2 
70IK3 

From: 
62/B2 
62/C-4 
62/C5 
62/02 
62/E-4 
62/F2 
62/F-4 
62/G-4 

Far a given control card type, check for the initial cord, 
a continuation cord, and a comments card. 

The first control card of a set of control cards for this utility 
program must be a DSD card. In the following table, the 
indicated switches are tested, or the indicated tests are 
preformed. The action taken depends on whether a switch 
is "on" (= l) or "off"(= O), or whether a test result is "yes" 
or 11no 11

• 

Switch or 
Test No. 

SWl 

SW2 

SW3 

SW4 

SW5 

SW6 

Test l 

Test 2 

Test 3 

Test 4 

Test 5 

Test 6 

Switch or 110n 11 or "Yes 11 

Test Nome Action (*) 

Comments Continue Test SW 2 or go to 
SW Chart 60, Box HI, 

FD Continue SW Go to Chart 64, 
Box Al 

Create Continue Go to Chart 68 , 
SW Box A2 

DSD Continue Go to Chart 62, 
SW Box C3 

FD Picture Go to Chart 64, 
Continue SW Box Al 

Create Picture Go to Chart 68, 
Continue SW Box A2 

DSD Control Go to Chart 62, 
Card Sox B3 

FD Control Go to Chart 64 , 
Card Box Al 

CREA TE Control Go to Chart 68 , 
Card Box Al 

REPEAT Control Go to Chart 62, 
Card Box Bl 

END Control Go to Chart 61, 
Card Box Bl 

DUMP Control Terminate the 
Cord Job 

To Point Indicated 
in Above Tobie. 

(*) Chart Designations: 

68-72 Create Analysis Module 
60-62 Bose Module 
64,65 FD Analysis Module 

75 Message Module 

"Off" or "No" 
Action 

Test SW 2 

Test SW 3 

Test Sw 4 

Test SW 5 

Test SW 6 

Test for DSD 
Control Card 

Test for FD 
Control Card 

Test for CREA TE 
Control Card 

Test for REPEAT 
Control Card 

Test for END 
Control Card 

Test for DUMP 
Control Card 

Return to 
Supervisor 



•Chart 61. IEBDG Base Module (Part 2 of 3) 

End Routine 

Entered on: 
(1) Reading END Car,:!. 
(2) End of SYSIN Data(/*). 

El 

IEBDGMSG 75C2 

Print 
Message I 14 

SVC 6 

IEBCLUP 6SB2 
Fl 

Close DCB. 

'ELOl .--_ __..._....-K-.1~ 

Return to 
Caller 

Program Finished 

SYNAD Routine 

Entered on: 
Permanent ElfOrs 
Encountered Durin1 
Processing of SYSIN. 

ERRORS 12 

lnltiali-
zation of 
Registers 

'909 SVC61 

Analyze Cl 

1/0 Errors 
Put Information 

in Buffer 

• 02 

Print Buffer 
Information 

.. 
Rel-e 

E2 

Meaage 
Buffer and 
Save Areas 

USER F2 

Load Return 
Code for 

User 

D3 

Assign 
9tf9Ult Values Invalid 

.. OCI. if User 
OCI, Set Flush Sw 

DCBEXIT Routine 

Entered ot Every DCB Open Tine 
to Test for Invalid Conclitlon1. 

Entered For 

SYSIN DCI 
SYSNINT DCB 
SYSUT (User) D 

Enrry ,.oint 

OClltOUTl 
DCBltOUT2 
DCtltOUT3 

Entry frc:JWI 
Open Routine 

NOTE 

Place O.fault 
Value in 

Common Aree. 
(See NOTE.) 

llk54ZE J Default 
LftCL Velues 
~ECJIM 

Test for V.li4ity of: 

Alocksize, 
l•i~I 11-d Length. 
fiRM ~Format. 
R•io ef ltecksize 
to L .. iC411 lt~rd Length. 

Data Set Utility ..... r .. e: IEBDG 183 



•Chart 62. IEBDG Base Module (Part 3 of 3) 

REPEAT Card Scan DSD Cord Scan 

184 

A3Cl4 

Resolve 
Repeat Card 

Parameter 

Dl 

CONVERTB El 

Con-;ert 
Packed Decimal 
Parameter Value 

to Binary 

Check for 
Comments 

Continuation 

SVC 6 

SVC 6 

IEBDGMSG 75C2 D
2 

Print Message 
lls 

SVC 6 
.------ F2 

IEBDGMSG 7SC2 

Print 
Message fl6 

NOTE: 
280 Bytes Requested 

from: 
60/Test l 

A383 83 

Test Error 
(NOGO) and 
Continuation 

Switches 

A3C3 C3 

Advance Scan Scan 
Pointer and 

Test for 
Keywords 

A3C44 D3 

Scan Out 
DDNAME, (Input 

or Output as 
Appropriate) 

Get Storage 
(Conditionally) 

for User 
DCB 

Copy DCB. 
Initialize the 

Open List 

H3 

J3 

Zero the 
DSORGField 

in the DCB 

No 

Yes 

G3 

If Not 

Successful 

A3C77 SVC 19 
. K3 

Open the 
User DCB for 

Input or Output 
os Needed 

SVC 6 

I EBDGMSG 7SC2 C
4 

Print Message 
Is 119 or *20 

Accordingly 

SVC 6 

IEBDGMSG 7SC2 

Print 
Message *21 

SVC 6 

E4 

IEBDGMSG 7SC2 F4 

Print 
Message #3 

SVC 6 

IEBDGMSG 7SC2 G4 

Print 
Message *10 

NOTE 1 {See Block FS): 

For Input Data Set, Work 
Area is at INREC. For Ouput 
Data Set, Work Area is at 
OUTREC. 

I EBDGMSG 7SC2 CS 

Print 
Message 124 

SVC 4 

Get Storage 
for Input 

Record 

FS 

Place Storage 
Address in 
Work Area. 

(See NOTE 1) 

GS 

Scan Out 
Rest of DSD 

Card 

ES 

~ 



.chart 63. IEBDG Clean-Up Module, IEBDGCUP 

From 
Chart 61 
Box Fl 

IEBDGCUP B2 

A2J3 

Entry 

....------.... SVC 20 
C2 

Close an 
Open Output 
DCB if One 

Exists 

SVC 10 and 
sv 

Free DCB 
Buffers and 
Storage Area 

for DCB 

Close an 
Open Input 
DCB if One 

Exists 

SVC 10 and 
SVC 5 

Free DCB 
Buffers and 
Storage Area 

for DCB 

G2 

'ELOl 

Check for a 
FDREPNM in 
FD Table 

Yes 

SVC 20 and 
SVC 10 

...--C-l-ose ..... S-Y-Sl_N_..,C4 

and SYSPRINT 
Data Sets. Free 

Buffers After 
h losin 

D4 

Return 

To End Routine, 
Chart 61 
Box Fl 

Place Hex 'FF' 
in FDNAME 
Field of FD 

Table 

H4 

N01E: Base Module, 
IEBDG, Frees 
Storage for 
SYSIN and 
SYSPRINT Data 
Sets. 

Data Set Utility Programs: IEBDG 185 



Chart ••· 

116 

IEEDG FD-Analysis Module, IEBFDANL (Part 1 of 2) 

from IEIK>G 
~htrt 60 Test 2) 

Al 

Entry 

Get Storate Cl 
for (910th•) 
512-lyte FD 

Table, If 
Nee 

l'icture 

Switches Set 
FDl'l.SW: If l'icture 
FDfMTSW: If Fonnot 

C2 

VALCHfCK 6583 

Check , ..... 
Vali41 

D2 

CONVB 6585 

lqth, l'icture 
R..te, Cycle 

Stwtloc, Index 

Yes 

From: 
65/C5 
65/05 

Yes 

B3 
Scan KeywOf'd 

Invalid Parameter 
Value. Set 

Appropriate 
Switch 

Place Value 
in FD Table. 

Increment 
Parameter 
Pointer 

Set 
Appropriate 

Message 

l'Cll'-t« 
(Msg. 3) 

E3 

From: 
65/Dl 

Not 
Successful 

(Msg. 10) 

Picture T~pes: 
Binary 
Packed 
Charocter 

Block E5 
Used if 
Picture Contin-
uation Card 
is Encountered 

Set far 
Message 21 

G4 

SVC 5 
Free H4 

Storage 
Obtained for 

Picture 

F4Al SVC 4 
85 

Get 
Storage for 

Picture 

F4B5 cs 
Check Picture 

Type. Turn 
on Appropriate 

Switch 

F4G4 D5 

Scan Characters 
in Picture 

(Columns 4-71). 
Move Chcracters 

to Storage 

Move Rest 
of Picture to 

Storage 

JS 
Return to 
IEBDG 

C hcrt 60 Box A 



•Chart 65. IEEDG F·D-Analysis Module, IEBF'DANL (Part 2 of 2) 

From 64/G3 

Fso2 ___ ...._ __ a_1_ Required: 

Check fot" 
Required length 

Parameten. Name 

Set for 
Message lS 

Set Up FD 
Table for 

Field Select 
Option 

Gl 

IEBFDTBL 66A1 

Complete FD 
Table Entry 
Assignments 

Validity Routine 
83 

Entry to 
Validity Check 

Ro tine 

VALCHECK C3 

Clear 
Work Area 
to Zero 

D3 

Move Number 
Zones to 
Work Area 

Set for 
Message 

3 

MAX. VALUE: 
2, 147,483,647 

'9E7 

MAX. VALUE: 
32,737 

Conversion Routine 
BS 

Entry to 
Convert 

cs 
Check Field 

e length: Put 
Volue in 
Packed 
Decimal 

DS 

Check for 
Maximum 

Value. Convert 
ta Binory 

ES 

Return to 
Point of 

De arture 

Error 
--1 

I 
I 
I 
I 
I 
I 
I 

Er rot" I 

- -~ 

r i_~g-~)- - - _J 

I 

~ 

Data Set Utility Programs: IEBDG 187 



•Chart 66. IEBDG FD-Table Module, IEBFDTBL (Part 1 of 2) 

188 

Entered from 
FD Analysis Module 
(Chart 65 Box Gl) 

IEBFDTBL Al 

F5H4 

-------
Entry 

VALCHECK 

Check Picture 
Number 
Validity 

Convert 
Picture Value 

to Binary 

Fl -------
Pack the 

Decimal Number 
in Storage 

F6F4 ,__ __ ...__..;;.S..:..VC;:;.,.;4 
Gl 

No 

Get 
Storage for 

Picture 

Not Successful 

F6F2 

Default 
to Fixed Action 

F6AI 

'9FF 

Fixed 

H2 

Neither 

A3 -------.... 
Test for 
Action 

Specified 

Set FD Switch. 
Set 'from Inc. 

Restore' and/or 'to 
Inc. Rest.' Value(s) 

to 1 

D3 

Set FD 
Switch for 

Action 

Default 
to Fixed Action 

F7A1 

/Ripple~3 

tion, EBC~DIC Picture 
Picture, or 

Neither 

Ripple 
AS 

Set 'from 
Inc Restore' 
Value to 1. 

F7C3 

Move Picture 
Twice into 

Storage Area 
(Box 85) 

Move Picture 
Three Times 
into Storage 

Area (Box BS) 

H4 

from: 
67/C2 
67/01 
67/JI 

Yes 

F7G3 

Get Storage 
for Triple 

Field Length 

Move Picture 
into Storage 

Area (Box 85) 

from: 
67/H3 

F5 

SVCS 

Free Picture HS 
Storage (Chart 64, 

1-----... I Box 83). Clear 
Switches 

Return to 
IEBFDANL 

Chart 65 Box G 



•Chart 67. 

From: 
66/C3 
66/D3 

IEBDG FD-Table Module, IEBFDTBL (Part 2 of 2) 

Get Storage 
for Twice the 
Required Field 
Length Volue 

For Pattern 

Resolve 
Final Field 

Length 

Get 
Storage for 

Field Length 
Volue 

NOTE 1 

From Chart 66 
Box 04 

i.:i..-----.oi~ 4 F8H2 NOTE 1 
Get Storage C2 Resolve Field C3 

Values and/or for Length 
Value Required 

to Hold 

Get Length to 
Move. Obtain 

Addi--es. 
Set Sign 

'ELOl 

F10A4 

Binary 

Signs as Reqd. 
(Do Nothing 

for RA 

Get Length to 
Move. Obtain 

Addresses 
Set Sign 

F3 

F10H2 H3 

NOTE 1: 

Format 

AL 
AN 

it.solution of Final Field 

Move Numbers to 
Storage for 

FD Picture 
Field. Set 

Field.Address. 

Length Set to Field Length Specified (FL) 
If FL Sequence Length (SL) in Storage, or 
to FL Plus SL IF FL SL. 

RA None. 
81 Negative or Positive Binary I. 
PD Negative or Positive Packed Decimal I. 
ZD Zoned Decimal 1. 

F9A;.:.1 ____ --'A"'-4._, 

Resolve 
Starting Char­

acter for Al, 
AN or CO Field 

Use First 
Character of 

Fonnot 
Sequence 

MOVE ROUT 04 
Fill Field 

with 
Characters 

from 

From: 
66/AS 
66/CS 
66/GI 

Use Specified 
Character to 
Initialize the 
Format Field 

F9C4 CS 

Set Up for 
Moving 

Characters 
to Field 

VALCHECK 

Clear 
Work Area 
to Zeros 

E5 

F5 

Fl 84 

Move Number 
Zones from 
Storage to 
Work Area 

Set for 
Appropriate 

Message 

Data Set Utility Programs: IEBDG 189 



•Chart 68. IEBDG create Analysis Module, IEBCRANL (Part 1 of 5) 

A6A11 

190 

From IEBDG 
Chart60/Test 3 

Al 

IEBCRANL A2 

Entry Initialization 

Get Storage 
of 512 Bytes 

for Create 
Table if 

SVC 4 
Fl 

Scan CREATE 
Card for 

Next Keyword. 

IEBCREAT 

Write 
Output 
Records 

SVC 6 

73Al 

To Print Message 

CARDSCAN~~~.L.,.~~F~3-
Test for Last 

Keyword. 
Test for 

Continuation 

G2 

NOTE l. 
Microfiche Listing Label XXXX ~nd 
the Off-Page Connector ZZ/YY 
Have the Approprhte Vulue T ~ken 
from the Table Below. 

Keyword Being Vdue of '!alue of 
Processed xxxx ZZ/VY 

QUANTITY A681 71/81 
NAME A6C1 69/Al 
PICTURE A601 70181 
FILL A6E1 71183 
DD NAME A6F1 69/IW 
EXIT A6G1 71/85 

Go to 
Scan a 
Keyword 

GS 

See NOTE 1. 



•Chart 69. IEBDG Create Analysis Module, IEBCRANL (Part 2 of 5) 

NAME Processing DDNAME Proceuing 

A6Fl 84 

SPSCAN nBl 

Scan Out 
DD NAME 

C4 

SP SCAN ns1 If Invalid 
Check (Mag. 12) 

Scan Next DD NAME 
Length 

FDSRCH nss 
Search FD Yes 

Tables for 
Equal Names 

Scon All 
Input DCBs 
for Equal. 

F3 A6F2 FS 

Repeat FD Store Input 

Name List as Yes (or SYSIN) 

Required by DCBAclclreu 

Copy Value 

SVC 4 

G3 

To Card 

H4 
Scan 

Assign Yes Default 
Delimiter 

To Print Message 

To Card Scan 

Data Set Utility Programs: IEBDG 191 



Chart 70. IEBDG Create Analysis Module, IEBCRANL (Part 3 of 5) 

192 

A6Dl Bl 

SPSCAN nBl 
can or 

Picture 
Length 

Cl 

CONVDB 7283 

Convert 
Length to 

Binary 

SVC 4 

Get Storage 
for Picture 
Table. Put 

Length Value 
in Table (Msg. 10) 

Store Table 
Addr. in 

Create Table. 
Check 

El 

Delimiters Invalid 

Scan Start 
Location 

Value 

Hl 

CONVDB 7283 

Convert Start 
location Value 

to Binary 

Delimiters 
(Msg. 3) 

Set for 
Appropriate 

Message 
(3, 8, or 21) 

I EL0~1 _____ K_2_ 
Return to 

Base Module 
Chart 60 Box H 1 

for Next Card 

Decimal 

83 

Store Start 
Location Value 

in Create 
Table Entry 

Determine Type 
of String. 

Process 
Accordingly 

Neither 
(Msg. 3) 

Set for 
Message 

J3 

E RRORF __ __.._,.._K_3 .... 
eturn to 

Base Module 
Chart 60 Box G 2 

to Print Message 

Clear Picture 
String Area in 
Picture Table 

to Zeros 

A6D87 

B4 

C4 

Convert 
String Values 
to Binary or 

Packed Decimal 
as Necessa 

Store 
String Value 
in Picture 

Table 

to Card Scan 

D4 

A6D71 

Move Picture 
String from 

Card to 
Picture Table 

to Card Scan 

Move all of 
Picture String 

from Card 
to Picture 

Table 

GS 



•Chart 71. IEBDG Create Analysis Module, IEBCRANL (Part 4 of 5) 

QUANTITY Processing 

A68;.;l __ __., __ 8;.;1,.. 

SPSCAN 7281 

Scan 
QUANTITY 

Parameter 

CONVD8 7283 

Convert 
QUANTITY Value 

to Binary 

Store 
Converted 
Value in 

Create Entry of 
ble 

01 

Place 
Characters 
in Create 

Entry 

To Cord Scan 

No 

(Msg. 21) 

Fill Processing 

Place 
Character 

in Create 
Entry 

Set 
Appropriate 

Message 

F3 

To Print Message 

EXIT Processing 

A6GI 

SPSCAN 

85 

7281 

A6G5 

Scan User's 
Exit Routine 

SVC 4 
Get Storage 05 

for Exit 
Table if 
Necessary 

(72 Bytes) 

E5 

Adjust Exit 
Nome Table 

Pointers 

Place User's 
Exit Nome in 

Exit Tobie 

FS 

load User's 
Exit Routine 

and Store 
Addr. in 

SVC 8 
GS 

To Card Scan 

Data Set Utility Programs: IEBDG 193 



Chart 72. IEBDG Create Analysis Module, IEBCRANL (Part 5 of 5) 

PARAMETER SCAN 
SUBROUTINE 

SPSCAN 

194 

Check for 
Parameter 

Column Value 

Return to 
Caller 

Bl 

Yes 

(Msg. 21) 

No 

(Msg. 3) 

No 

(Msg. 3) 

Set 
Appropriate 

Message 

E2 

F2 
Retumto 

S.Se Module 
Chart 61 Box G 

to Print Message 

CONVERT 
SUBROUTINE 

No 

(Msg. 3) 

Test Zones 
of Character 

to be Converted 

Put Packed 
Decimal Value 

in Storage 

Convert Packed 
Decimal to 

Binary Value 

Return to 
Caller 

J3 

NOTE: 16 Bytes Permits 
a Decimal Value of 
2, 1-47,483,6"7. 

Packed Decimal 

Picture 

FD TABLE SEARCH 
SUBROUTINE 

FDSRCH 

Ma<1e Create 
Name to 
Storage 

85 

cs 
Compare 
FD Table 

A6C~---11-...u.~ ES 
Get Storage 

for FD Address 
Table if 
Required 

ADCP98--~ .... ~~-F-.s 

Store FD 
Table Address 
in FD Address 

Table 

Return to 
Caller 

GS 



" 

.chart 73. IEBDG create Module, IEBCREAT (Part 1 of 2) 

73A From: 68/G2 

IEBCREAT Al 

From: 
74/83 

Switch 

A7A11 

'9F9 

A7A12 

T•t 
IDCBPTR 

From Either a SYSI N 
or a Nan-SYSI N Data Set. 

NOTE 1: 

Initialize for 
Fint Entry 

Through 
Module 

Dl 

Determine 
Output and 
Input Record 

Characteristics 

El 
Initialize 

Record Counter 
with QUANTITY 

Value, or Set 
Stop Switch 

Gl 

Put Fill 
Character 
in Output 

Record 

If Input = SYSI N ,Work Area = IN BUF 
If Input =SYSIN,Work Area= INREC 

F2 

Set Message 
Print 
Switch 

(EPSW) 

A7A;.:.1.:::.8 __ .._ __ B3=,. 
Initialize for 
Next FD Addr. 

for This Entry, 
if There are 

More 

Move FD 
Pattern to 

Output Record 

Move Picture 
to Output 

Record 

Fram: 74/Gl 

Process Next 
Create 

Entry in Table 

Action 

Put Out Record 
Skip Record 
DSD End 
Job Step End 
Set Ms .9 

Call User 
Routine to 

Process Output 
Record 

Analyze 
User Return 

Code. Branch 
Accordingly. 

H5 

Return 
Code 

Go to 
Chart/Box 

0 
4 

12 
16 

Invalid 

73/85 
73/83 
73/84 
73/84 

Data Set Utility Programs: IEBDG 195 



Chart 74. IEBDG Create Module, IEBCREAT (Part 2 of 2) 

196 

73/C5 

A7Jl Al 

A7Rl 

Process 
Next 

Unprocessed FD 
Name 

Determine 
Index and Cycle 

Values 

DI 
r--D""'e_t .... erm.__in-e---, 

NOTE 1: 

Format 

Shift or 1 
Truncate 
Ripple 
Wave 
Roll 

Format. If 
Decimal, 

Convert to 
Binary 

Process Label 

A748 

ABCDl 
ABCD5 
ABCD2 

Generate Random 
Numbers 

See 
NOTE! 

Process any 
Nan.Numeric 
Format Except 

Random 

E2 

H2 

Put Binary 
Value in 

Storage 
AreaQ 

From 73/E4 

NOTE 2: 
Processing in Block 
Fl is Expanded 
Bel-. 

Convert to 
Packed Decimal 

in Register 

Move Value 
from Q Area 
to FD Field 

Area 

A7A6 

No 

A7A7 

'901 

'9CF 

No 

From 73/Cl 
73/F2 
73/HS 

Fl111h Out 
SYSIN 

DCB if 
any Exiats 

B4 

SVC 5 

Free 
Picture 
Table 

Storage 

D4 

Free 
FD Addr-
Table (S) 

E4 

Delete User 
Exit Routine 
from Storage 

SVC 5 

Free 
Create Table 

Storage 
Areoa 

J4 

Unpack to 
Zoned Decimal, 

Place in FD 
Field Address 

C4 

F4 

B5 

Reinitialize 
for Create 
Analysis 
Module 

'El01 

To Read Next Card 



•Chart 75. IEBDG Message Module, IEBDGMSG 

'ELOl,_ ____ C-.1, 

Return to 
IEBDG 

NOTE 1: If Not 
Channel 12 and 
Linecount not 
Max, Skip Next 
Block (F2). 

Entered from I EBDG 
to put Out Headings, 
Control Card Images, 
Error Messages, and 
Error Flags. 

IEBDGMSG 82 

Entry 

Check for 
Channel 12 

and Linecount 
Maximum 

F2 

Reset Lil"e 
Counter. Get 

Heading Addr. 

G2 

Check for 
Control Card 

Image, 
Error Message, 
or Error Fla 

MSGo.4 ar MSG05 H2 

Get Appro­
priate 
Message 
Address 

Test 
DCBOFLGS 
(4th Bit) 

J2 

Is There a 
Control Card 
Image to be 
Printed. 
(Msg,30) 

Uses Mave 
Mode of 
PUT Macro 
Instruction 

MSG07 C4 

Increment 
Page Number 

Counter 

Increment 
Counters. Test 
Flag Switches 

Return to 
IEBDG 

04 

NOTE 2: Error Flag Must be 
Turned Off. 
Go Test for a 
Channel 12 Indication. 

NOTE 3: Heading Message has 
been put on SYSPRINT. 
Go to Test for Control 
Card Image. 

NOTE 4: No Error Flag has 
been Set and Either 
1. Heading Switch is 

off, or 

2. Heading Switch is 
off and Heading 
Message is Indicated. 

Data Set Utility Programs: IEEDG 197 



Independent Utility Programs 

Independent utility programs are executed 
outside and in support of IBM System/360 
Operating System. They are: 

• IBCDASDI, which initializes a direct 
access volume and obtains alternate 
tracks on initialized disk storage. 

• IBCDMPRS (dump-restore>, which dumps 
and restores the data contents of a 
direct access volume. 

• IBCRCVRP <recover-replace), which reco­
vers data from a track on direct access 
storage, replaces defective records 
with data supplied by the user, and 
writes the composite data on an opera­
tive track of the original volume. 

Independent utilities are discussed in 
four parts: 

• Supervisory Routines of the Independent 
Utilities 

• IBCDASDI 

• IBCDMPRS 

• IBCRCVRP 

Supervisory Routines of the 
Independent Utilities 
The independent utility programs contain 
copies of supervisory routines to check the 
input device, read control statements, ana­
lyze control statements, check volume 
labels, print diagnostic messages, type 
diagnostic messages to the operator, con­
trol I/O, and analyze I/O interruptions. 

CHECKING THE INPUT DEVICE 

The entry point to this routine is CKINPUT. 
The routine is entered immediately after 
IBCDASDI, IBCDMPRS, or IECRCVRP is loaded. 
The program assumes a WAIT state <by means 
of LPSW) until the input device is defined 
by the operator. The operator then enters 
a code by means of typewriter or console. 
This routine then checks the code to verify 
that the input device is 1442, 1402, 2400, 
or 2540 <or 1052 for IBCRCVRP) and that the 
channel number is not greater than six. If 
these conditions are satisfied, the appro­
priate UCB is selected and control is given 
to the control statement analysis routine 

198 

at location CLRSCAN. 
detected in the coded 
message is printed or 
wAI~ state is entered 
the console lights. 

If an error is 
information, an error 
displayed and the 
with E's displayed on 

DATA INPU~ ROU~INE 

~he entry point to this routine is SYSIN. 
Linkage to the routine is by a BAL LINK15, 
SYSIN. Register GR2 contains the address 
of the calling routine's buffer. This sub­
routine stores the buffer address in the 
channel command word SYICCW, sets a read 
command and links to subroutine STAR­
~IO via a BAL LINK9, STARTIC. Reading is 
then performed by the defined input device. 
~hen control is returned to this routine, 
it in turn returns control to the calling 
routine via a BR LINK15. 

CONTROL STATEMENT ANALYSIS 

~he entry point to this routine is CLRSCAN. 
Housekeeping functions are first performed 
on program switches and buffer areas 
required by the routine. This routine then 
links to the control statement scan routine 
at RDCARD. RDCARD returns a pointer to a 
field and the length of the field in regis­
ters SCANADR and LENGTH, respectively, and 
an indication of the field type in location 
SftITCHRD. SWITCHRD is a one-byte switch 
with the following settings: 

Bit Value Meaning 

0 1 control statement error 
1 1 bypass 
3 1 fir st control statement has 

been read 
4 1 operator found 
5 1 keyword found 
6 1 parameter found 

Validity checks are then perfor~ed on 
the scanned data. If an error is detected 
in the input data, an attempt is made to 
print a message on the defined message out­
put device. If the message output device 
is not defined, an attempt is made to issue 
the message using the Write to Operator 
routine. If neither device is defined, the 
WAIT state is entered. If the message is 
successfully issued, the WAIT state is 
entered, and the program must be reiniti­
ated and the corrected statement submitted. 



Following completion of control state~ 
ment analysis, control is given to the 
appropriate routine in IECDASDI, IBCD~PRS, 
or IBCRCVRP. 

VOLU~JE LABEL CHECKING 

The IBCDASDI program compares the volume 
serial number of the object volume to that 
specified ty the VOLID parameter, if both 
numbers are present. If the VOLID parame­
ter specifies SCRATCH, no comparison 
occurs. If a serial number is specified, 
and it is not equal to that in the volume 
label, or if the volume label is not pre­
sent, this routine causes an appropriate 
message to be printed and terminates the 
program. 

The IBCDMPRS program compares the volume 
serial number of the TO volume to that spe­
cified by the VCLID parameter, if both num­
bers are present. If the TO device is 
tape, and there is no volume label present, 
there must be a tape mark at load point, or 
SCRATCH must be specified, in order for the 
program to continue. If the TO device is 
tape and a volume label is present and 
VOLID does not specify SCRATCH, the volume 
serial number in the label must equal that 
specified by VOLID in order for the ~rogram 
to continue. If the TO device is direct 
access storage, VOLID must be specified and 
an equal comparison of serial numbers must 
occur in order for the program to continue. 

The IBCRCVRP program compares the serial 
number of the direct access volume to that 
specified by the VOLID parameter. If there 
is no volume label, or if the serial num­
bers are not equal, a message is written 
and the request is aborted. 

Entry point to the vo1wne 1abe1 checking 
routine in all three of the independent 
utility programs is at location CKVOLLBL. 

MESSAGE OUTPUT ROUTINE 

The entry point to this routine is SYSOUT. 
This routine writes messages using the mes­
sage output device as defined by the MSG 
control statement. The address of the 
fixed-length message to be printed is 
passed to this routine in register GR2. 
The appropriate ccw is then constructed, 
and its address is passed in register GR2 

to routine STARTIO. Upon regaining con­
trol, this routine returns to the calling 
routine. 

wRITE ~o OPERATOR ROUTINE 

~he entry point to this routine is CFPRNT. 
~his routine writes messages which need to 
be brought to the immediate attention of 
the operator. The message is given on the 
console typewriter if one is available. 

I/O CONTROL ROUTINE 

~his routine controls every I/C operation 
performed by the independent utility pro­
grams. It is entered at STARTIO, at which 
time register UCBREG contains the address 
of the appropriate UCB, and register CSR3 
contains the address of the CCW to be 
executed. The.channel-unit number is 
loaded into register CSR4. This routine 
stores the ccw address in the CAW and 
issues the SIO instruction. If the unit is 
unavailable, the WAIT state is entered and 
the program is terminated. If the unit is 
busy, the SIO is issued until the command 
is accepted, at which time the TIO instruc­
tion is issued repeatedly until the unit is 
not busy. At this time control is given to 
CKCSW, the entry point to the I/O interrup­
tion analysis routine. The IBCDMPRS pro­
gram returns control to the calling rou­
tine, however, to continue processing as 
scan as the I/O is started. 

UNIT CON'IROL BLOCKS: The independent util­
ity programs each contain one unit control 
block (UCB) for each device in use. Figure 
62 lists the UCBs and their uses. UCBs for 
the independent utilities have the follow­
ing format: 

Function 

00 unit reference number 

01 

02-03 

used only by IBCRCVRP~ set to x•pp• 
if the UCB is for a tape drive, set 
to zero when label is checked 

channel-unit 

04 CAW protect 

05-07 

08-15 

16-23 

24-31 

CAW 

interruption PSW 

interruption CSW 

sense bytes 

Independent Utilities: Supervisory Routines 199 



r------------T------------------------.-------------------------.-------------------------1 
~~:~-:~~=~--i----~~=-~-==:~~~~~-----i-----~~=-in_IB:~~~~----i----~~~-~~-=BCR~~:-----~ (ii 
I UCBTO l'TO' device l''IO' device1 l'TO' device1 I 
i-------------t------------------------+------------------------+------------------------i I UCBFI™ I unused I 'FROM' device1 I 'FROM• device1 I 
i-------------t~-----------------------+------------------------+------------------------i 
I UCBSYI !control statement input !control statement input !control statement input I 
I I device I device I device I 
~------------t------------------------+------------------------+------------------------i I UCBSYO !message output device !message output device !message output device I 
~------------t------------------------+------------------------+------------------------i I UCBOPR !operator message device !operator message device !operator message device I 
~------------t------------------------+------------------------+------------------------i 
I UCBLIST !unused tunused !record data listing I 
I I I jdevice I 
i-------------t------------------------+------------------------+------------------------i I UCBSERT I unused I unused I ·'DATA• replace state- I 
I I I lments input device I 
I I I I (REP1ACE only> I 
~------------~------------------------L------------------------L------------------------i l 1 'TC' and 'FROM' are relative to the operation being performed by the programs. For a I 
I dump from 2311 disk storage to tape, for examfle, 'TO' refers to tape and 'FRO~' I 
I refers to 2311; whereas for the corrpanion restore, ''IO' refers to 2311 and 'FRCM' I 
I refers to tape. A parallel situation exists for recovering and replacing. I 
L---------------------------------------------------------------------------------------J 
Figure 62. The Use of UCEs in the Independent Utilities 

I/O INTERRUPTION ANALYSIS 

All I/O interruptions cause control to be 
given to the I/O interruption analysis rou­
tine, whose entry point is CKCSW. Register 
UCBREG contains the address of the applica­
ble UCB. This routine checks the nature of 
the I/O interruption: 

1. Error: control is given to IOERR. 

2. Attention: control is given to ATTN. 

3. Busy: the SIO is reissued. 

4. Device end: control is given to 
IORTRN. 

5. Unit end: the SIO is reissued. 

6. Channel end: the TIO is reissued for 
device end. 

IOERR: The csw, PSW, and CAW are saved, 
and control is given to SENCHK (in case of 
a unit check) or TYPECHK (otherwise). 

ATTN: The request is honored. 

IORTRN: If a surface check is indicated, 
control is given to the appropriate 
(device-dependent) surface check routine; 
otherwise, control is returned to the rou­
tine which first issued the call to S'IAR­
TIO. In the case of IECDMPRS, the UCB is 
posted complete and control is returned to 
the routine which first issued the call to 
STARTIO. 

200 

SENCHK: '!he device address is entered in 
SIO and '!IO instructions, a sense ccw 
address is stored in the CAW, and the SIC 
is issued until it is accepted, at which 
time the TIO is issued. The TIO is reis­
sued until it is accepted, at which time 
ccntrol is given to TYFECHK. 

'IYPECHK: The device type causing the 
interruption is determined by interrogating 
the UCB, whose address is in register 
UCBREG. Control is then given to one of 
the following locations: 

Device 'Iype 

2302,2303,2311,2314 
1442 
2400 series tape units 
1403 
1052,2150 
1402 
2301 
1443 
2321 

Location 

ERR100 
ERR200 
ERR300 
ERR400 
ERR500 
ERR600 
ERR700 
ERR800 
ERR900 

At each of the locations - ERR100, ERR200, 
IER900 - is the instruction 

BAL ERRLINK,ERR'IEST 

followed by a table of two-byte entries. 
'!he instruction loads the address of tae 
table into register ERRLINK and then gives 
control to routine ERRTEST, which uses the 
indicated table to interrogate status and/ 
or sense bi ts. 



Each two-byte entry in the indicated 
table consists of a one-byte relative 
pointer to a status or sense bit and a one­
byte relative pointer to a routine. Rou­
tine ERRTF.ST successively interrogates the 
bit indicated by the first byte of the 
table entry; if the bit is on, ERRTEST 
directs control to the routine indicated by 
the second byte of the table entry; if not, 
ERRTEST processes the next entry in the 
table. 

The settings of the first byte of each 
table entry are as follows: 

Bits setting 

case 1: 0-3 X'1' 

4-7 X'y' 

Meaning 

The bit to be tested 
is a status bit. 
y = the bit position 
<hexadecimal) of the 
bit to be tested, 
relative to bit 32 
of the csw. 

Bits Setting Meaning 

case 2: 0-3 X'O' The bit to be tested 
is a sense bit. 

4-7 X'y' y = the bit position 
(hexadecimal> of the 
bit to be tested, 
relative to bit O of 
sense byte o. 

If the tested half-byte is found to be 
on, ERRTEST directs control to location 
Affi, 

where: 

A = the address of the first byte of the 
current table entry; 

B = the value of the second byte of the 
current table entry. 

Indefendent Utilities: Supervisory Routines 201 



Initializing and Assigning Alternate 
Tracks on Direct Access Volumes 
(IBCDASDI) 
The direct access storage device initiali­
zation (IECDASDI) program performs one of 
two functions during a single execution: 

• Initializes a direct access volurre to 
conform to Operating System/360 
specifications. 

• Cbtains alternate tracks for specified 
defective tracks on an already initial­
ized disk storage volume. 

The current version of this program 
initializes a volume on: 

• 2301 drum storage 
• 2302 disk storage 
• 2303 drum storage 
• 2311 disk storage 
• 2314 disk storage 
• 2321 data cell storage 

The program obtains alternate tracks for 
a volume on: 

• 2302 disk storage 
• 2311 disk storage 
• 2314 disk storage 
• 2321 data cell storage 

Initializing a direct access voluKie con­
sists of the following: 

• Detecting defective tracks. 

• Assigning alternates to defective pri­
mary tracks Con disk storage only). 

• Writing the standard home address and 
record zero on each track. 

• Writing track zero. consisting of two 
IPL records.. a standard volume label. 
and space for seven additional volume 
labels (see Figure 63). 

• Writing a standard volume table of con­
tents CVTOC) at a user-specified 
location. 

• Optionally writing the IPL initializa­
tion program. 

Obtaining an alternate track for a user­
SFecified defective primary Ci.e •• nonal­
ternate) track on disk storage consists of 
the following: 

1. Selecting the first available opera­
tive alternate track from those indi­
cated in the VTOC of the specified 
volume. 

2. ~riting the address (CCHHR) of the 
primary track in the count field of 
the selected alternate track, and 
writing the address (CCHHR) of the al­
ternate track in the count field of 
the primary track. 

3. Modifying fields five and six of the 
v~oc DSCB to reflect the new status of 
available alternate tracks. 

PROGRAM FLOW 

Chart 76 shows the logical flow of the 
DASDI program. 'Ibis section describes the 
operations performed by the IBCDASDI pro­
gram relative to its functions: initializ­
ing a volume and obtaining alternate 
tracks. 

Descriptions of the following supervi­
sory routines of the IBCDASDI program may 
be found in this publication in the section 
entitled "Supervisory Routines of the Inde­
pendent Utilities." 

• Input Device Check (CIUNPUT) 

• Data Input (SYSIN) 

• control Statement Analysis CCLRSCAN) 

• Message Output (SYSCUT) 

• Write to Operator (OPPRNT) 

• I/O Control (S~ARTIO) 

• I/O Interruption Analysis (CKCSW) 

After the input device has been defined 
by the operator and checked for validity by 
the IBCDASDI program (see "checking the 
Input Device">. control statements are read 
and analyzed (see "Control Statement Analy­
sis•) and control is given to the appropri­
ate initialization or GETALT section of the 
program • 

..-----TT---------TT---------rT-----------TT---------TT-----------rT-- -TT-------1 
1 HA II RO II Rl II R2 II R3 II R4 II 
L-----LL---------LL---------J..L-----------LL---------L.1-----------LL--

HOME TRACK IPL IPL STANDARD ADDITIONAL 
ADDRESS DESCRIPI'OR RECORD BOOTSTRAP VOLUME VOLUME 

RECORD (OR DUMMY) LABEL LABEL 
(OPTIONAL) 

Figure 63. TracJt Zero 

202 

11 Rl.O I _,.L.1,_ _____ J 

ADDITIONAL 
VOLUME 
LABEL 

( OPI'I ONAL) 



Initializing a Volume 

The following routines are executed to 
initialize a volume: 

• INTALT, which initializes a track for 
disk and drum devices. 

• WRITECTl, which initializes a track for 
data cell storage. 

• CONSTRl, which builds an image of track 
zero in main storage. 

• YESUSER, which places additional volume 
labels in the track zero format. 

• CONSTR2, which writes track zero. 

• WRTIPL, which writes the IPL initiali­
zation program, if requested. 

• FMTVTOC, which builds the VTOC. 

• WRTVTOC, which writes the VTOC. 

Following execution of WRTVTOC, the pro­
gram initiates normal end-of-job and the 
CPU assumes the WAIT state. 

INTALT 
initializes a track for disk and drum 
devices. When the device is disk, 
INTALT first checks the track for hav­
ing been previously flagged as def ec­
ti ve. (This test can be suppressed 
for the first initialization on that 
volume.) Alternate tracks are immedi­
ately assigned for tracks flagged as 
defective. 

Disk and drum track initialization may 
or may not include surface analysis. 
When the recording surface is to be 
checked, the alternate tracks are 
checked first. (The alternate track 
concept is not defined for drum 
storage.) If an alternate track is 
found to be defective, it is flagged 
as such Clater, FMTVTOC adjusts field 
six of the VTOC DSCE to indicate the 
number of available alternate tracks). 
If a primary track is found to be 
defective, it is assigned an alternate 
by ASGNALT, which is the same routine 
used to assign alternate tracks for a 
GETALT execution of IECDASDI. After 
the track is assigned by ASGNALT and a 
message printed, control is returned 
to the initialization section of the 
program, at which time the next track 
is checked, or, if all tracks have 
been checked, track zero is con­
structed. Tracks are checked for a 
good recording surf ace in the follow­
ing way: 

1. When the flag test has been sup­
pressed, the home address (HA) is 
written followed by a maximum­
length record zero consisting of 
data field of identical bytes of 
hexadecimal 55. 

2. The track is read and checked. 

3. A maximum-length record zero is 
again written, this time consist­
ing of data field of identical 
bytes of hexadecimal 00. 

4. The track is read and checked. 

5. If no data error has occurred in 
steps 2 to 4 and no additional 
passes are requested, record zero 
is rewritten (see step 8). If 
additional passes are requested 
on this track, repeat steps 1 to 
4. 

6. If either step 2 or step 4 have 
indicated a data error, steps 1 
to 4 are repeated ten more times, 
unless a data error occurs. 

7. If any other data error occurs 
during step 6, the track is 
flagged as defective. An alter­
nate track is assigned when the 
device is disk. For drum 
devices, a message is given indi­
cating the address of the def ec­
ti ve track. If the HA-RO area is 
defective on a 2314 disk storage 
volume, an attempt is made to 
move the HA-RO fields down the 
track approximately 800 bytes. 

8. A track descriptor record (RO) is 
then written and verified as an 
8-byte count field followed by an 
8-byte data field of zeros. 

9. TNhen all tracks have been ini­
tialized, control is given to 
CONS'I-Rl. Otherwise, the sequence 
is repeated for each track. 

WRITECTl 

(When initialization without sur­
face analysis is requested, only 
steps 8 and 9, are repeated for 
each track .• > 

performs data cell track analysis in 
the following way: 

1. A home address CHA), track 
descriptor record (RO), and a 
maximum length record one (Rl) 
are written on each of 20 tracks 
of a cylinder. The data field of 
Rl consists of identical bytes, 
containing hexadecimal E5. 

Independent Utilities: IBCDASDI 203 



2. An address compare is made on 
each of the tracks written in 
step 1, and record one is veri­
fied for each track. 

3. Record one is erased for each 
track written above. 

4. If no errors occur in step 2, 
steps 1 to 3 are repeated for 
each cylinder with additional 
address compares made after the 
completion of each strip, sub­
cell, and cell. 

5. If an error (i.e., data check or 
missing address marker) has 
occurred during step 2, the track 
is rewritten and reread until 
either a successful pass is 
obtained or 113 errors have 
occurred. If this track is in 
the alternate area, it is flagged 
to prevent its future use. 
Otherwise, an alternate track is 
assigned by ASGNALT, and a mes­
sage is printed. 

6. When all tracks have been ini­
tialized, control is given to 
CONSTRl. 

CONSTRl 
constructs track zero. If the IPL 
function is selected, records one and 
two are written as an IPL bootstrap 
program and a program to load the IPL 
initialization program. If the IPL 
function is not selected, record one 
is written as a program to set the 
WAIT state in the CPU in case the 
volume is loaded for execution. 

Regardless of whether the IPL function 
is selected, record two is written as an 
IPL bootstrap. (Since record one will set 
the WAIT state in the CPU in case a non-IPL 
volume is loaded for execution, there is no 
danger of executing record two.) 

YES USER 
writes up to seven user-supplied addi­
tional volume labels as records 4-10. 
space is allocated for those volume 
labels not supplied. 

CONSTR2 

204 

writes track zero, consisting of two 
IPL records <or a dummy IPL record), a 
standard volume label and up to seven 
additional labels. 

WRTIPL 
writes the user-supplied IPL initiali­
zation program, if requested.. The 
program is written on the first track 
preceding the alternate track area 
(track 1999 on 2311), or, if that 
track is defective, on its assigned 
alternate. 

FM'IVTOC 
constructs the DSCBs needed for the 
VTOC. They are the VTOC DSCB (format 
4) and the DADSM DSCB (format 5). 

wR'IVTOC 
writes at the user-specified location 
of the VTOC the DSCBs constructed by 
FMTVTOC. 

Obtaining Alternate Tracks 

If the IBCDASDI program is executed under 
the GETALT option, control is given to 
location GETAL'I following control card ana­
lysis. Routine GETALT performs a track 
check on the user-specified track if the 
track check bypass is not selected. If the 
track is found to be operative, a message 
to that effect is printed <or displayed) 
and the next GETALT request is processed. 
If the track check bypass is selected, or 
if the track is found to be defective, the 
following routines are executed in the 
order in which they appear. 

ASGNAL'I 
flags the given track as defective and 
assigns it an alternate as described, 
if it is a primary track. If the 
given track is an alternate, it is 
flagged as defective; if the given al­
ternate track had been assigned to a 
primary, an operative alternate is 
assigned to the primary. 

'IRKPRNT 
causes a message to be printed stating 
the addresses of the defective track 
and its assigned alternate. 

GE'IAL'I4 
decrements field six of the VTOC to 
reflect the fact that one less alter­
nate track is available, and incre­
ments field five to point to the next 
available alternate track. 

control is then given to location GETALT 
tc repeat the process for the next user­
Sfecif ied track, or, if none exists, 
initiates normal end-of-job and sets the 
CPU to the 'WAIT state. 



Chart 76. IBCDASDI - Initializing and Assigning Alternate Tracks on Direct Access Volumes 

Construct T rock 
Zero-Add IPLl, 

IPL2 Recs. if IPL 

Format if 
Requested 

FMTVTOC 

Gl 

Jl 

Construct 
VTOC DSCBs; 

VTOC, and DADS 

Write 
VTOC 

DSCBs 

No 

A2 

Start 

INT ALT or WRITECT 1 

Initialize 
a 

Track 

C2 

CK INPUT A3 

Define Input 
Device and 

Perform Setup 

RIKARD CLRSCAN 

EOJ 
(Wait) 

K3 

B3 

Indicates 
Good 

Track' 

GETALTX cs 

Perform Track 
Check on 

Specified Track 

Perform VTOC 
DSCB Alternate 

Track Update 

Independent Utilities: IBCDASDI 205 



Dumping and Restoring a Direct 
Access Volume (IBCDMPRS) 

The direct access storage device dumF­
restore program performs one of two f unc­
tions during a single execution: 

• Dumping (copying) data from a direct 
access volume to 2311 or 2314 disk 
storage or magnetic tape, in a format 
recognizable to the restore portion of 
the program. 

• Restoring (recopying) data which has 
been dumped by this program. Data is 
restored only to a volume residing on a 
device of the same model number from 
which it was dumped. 

There is no provision to restore from 
2311 to 2311 or from 2314 to 2314. 
Instead, another dump of the same type may 
l::e performed. 

A dump may be either partial Ca set of 
contiguous tracks is dumped) or entire Cthe 
entire volume is dumped). 

The current version of this program 
dumps the data contents of a volume from: 

• 2301 drum storage to magnetic tape or 
2311 disk storage or 2314 disk storage. 

• 2302 disk storage to magnetic tape or 
2311 disk storage or 2314 disk storage. 

• 2303 drum storage to magnetic tape or 
2311 disk storage or 2314 disk storage. 

• 2311 disk storage to magnetic tape or 
2311 disk storage or 2314 disk storage. 

• 2314 disk storage to magnetic tape or 
2311 disk storage or 2314 disk storage. 

• 2321 data cell storage to magnetic tape 
or 2311 disk storage or 2314 disk 
storage. 

DUMPED DATA FORMAT 

The format of dumped data depends on the 
device configuration of the dump: 2311 to 
2311 Cor 2314 to 2314), direct access to 
tape, or non-2311 direct access to 2311 <or 
non-2314 to 2314). 

2311 TO 2311 (OR 2314 TO 2314): Data from 
the input 2311 (or 2314) is copied record­
for-record and track-for-track. For this 
reason a restore from 2311 to 2311 Cor 2314 
to 2314) is not provided, but can be 
effected by another dump. 

206 

DIRECT ACCESS TO TAPE: The following rec­
ords are written on tape for a direct 
access-to-tape dump Csee Figure 64): 

• A limits record is written as the first 
record (following any labels) on each 
volume of tape. This record contains 
the addresses of the first track 
dumped, the last track dumped, and the 
the first track dumped on this volume 
of tape. 

• A control record is written for each 
track dumped, immediately preceding the 
dumped data from the track. The con­
trol record contains a channel program 
to be used by a subsequent restore to 
write one track. 

• A dumped track image is written as a 
maximum-length physical record. A 
track image is not split between tapes. 

• A trailer label is written at the end 
of each tape volume, immediately fol­
lowing the tape mark. During a 
restore, successive oring of trailer 
labels indicates whether another FROM 
volume is to be mounted. The mounting 
of FROM volumes during a restore is 
thus order-independent. 

NON-2311 TO 2311 (OR NON-2314 TO 2314): 
The records written as record one of track 
one of each 2311 Cor 2314) volllltle needed 
for the dump are similar to those for tape, 
but with the following differences: 

• The limits record is written as record 
one of track one of each 2311 (or 2314) 
volume needed for the dump. The limits 
record contains (as with tape) the 
addresses of the first track dumped, 
the last track dumped, and the first 
track dumped onto this 2311 Cor 2314) 
volume. 

• The control record is written immedi­
ately preceding each dumped track 
image. The first control record on a 
volume is written as record one of 
track two; subsequent control records 
are each written as record one of the 
first track following the image of the 
last track dumped. The control record 
consists of two subsets: (1) eight 
two-byte fields, each containing the 
number of bytes of the original 
(dumped) track written on a track of 
the 2311 (or 2314) and (2) a channel 
program to be used by a subsequent 
restore to write one track. 

• A dumped track image is written in 
maximum-length physical records on as 
many 2311 (or 2314) tracks as are 
necessary. The number of bytes of the 



dumped non-2311 <or non-2314) track 
written on each 2311 (or 2314) track is 
recorded in the control record for the 
track image. A dumped track image is 
not split between disk packs. 

• The trailer label is written as record 
one on the last available track of each 
2311 (or 2314) disk pack used. The 
contents of the trailer label for 2311 
(or 2314) are identical to those for 
tape. 

PROGRAM FLCW 

The flow of the direct access storage 
device dump/restore program is shown in 
Chart 77. Descriptions of the following 
supervisory routines of the direct access 
storage device dump/restore program may be 
found in this publication in the section 
entitled •supervisory Routines of the sup­
port Utilities.• 

• Input Device Check (CKINPUT) 
• Control Statement Analysis (CLRSCAN) 
• Message cutput (SYSOUT) 
• Write to Operator (OPPRNT) 
• I/O Control (STARTIO) 
• I/O Interruption Analysis (CKCSW) 

After the input device has been defined 
by the operator and checked for validity by 
this program, control statements are read 
and analyzed and control is given to the 
appropriate dump or restore section of the 
program. 

Dumping 

If the program is dumping, the following 
routines are executed in the order listed. 

TOTA PE 
ensures that the TO volume is mounted, 
whether tape or not. If the dump is 
not from 2311 to 2311 (or not from 
2314 to 2314), this routine also 
writes the limits record. 

MODTI<ADF 
reads the count fields on one track of 
the FROM volume and at the same time, 
if two channels are used, writes head­
er or data records on tape from loca­
tion DTABUFF. 

ANALSENS 
uses tbe information obtained from 
reading the count field of one track 
to construct a channel program capable 
of reading the count, key, and data 
fields of the track. 

READCCWs 
moves the channel program to a higher 
area in main storage and executes the 

channel program constructed by ANAL­
SENS, reading one track of the FRO~ 
volume into the buffer DTABUFF. (In 
the buffer, record images are 
Uocked. > 

'H:'IWR'ISP 
converts the channel program at loca­
tion DTALENG to a channel program cap­
able of writing the buffer <with read­
tack check> onto a track of the same 
device from which it was read in its 
original format. 

If the dump is 2311-2311 <or 2314-
2314>, the channel program is 
executed,· thus writing ·one track on to 
the 2311 (or 2314). 

If the dump is not 2311-2311 (or not 
2314-2314), the converted channel pro­
gram is not executed during dumping, 
tut will be executed during a future 
restore. After converting the channel 
program, this routine gives control to 
DMPDASD if the TO device is tape, or 
to S'IRTDSK if the TC device is 2311 
(or 2314). 

DMPDASD 
writes the control record, consisting 
of the channel program at location 
D'IALENG on the tape. Control is then 
given to MODTKADF, EOJl, EOJAA, or the 
program terminates (see Chart 77). 

S'IRTDSK 
writes the control record and the 
buffer on 2311 <or 2314) disk storage. 
'Ihe function performed is similar to 
that of DMPDASD <writing on tape>, but 
with the following exceptions (see 
Figure 64). 

• The control record for dU11ping 
from non-2311 to 2311 <or non-2314 
to 2314) consists of a 16-byte 
field beginning at DTALENG pre­
fixed to the channel proqram at 
location CCWLIST. 

• several 2311 <or 2314) tracks may 
be needed to contain the data in 
the buffer at DTABUFF. If so, the 
buffer is written in marlmum­
lengtb physical records on &s many 
tracks as are needed. A buff er 
image is not split between disk 
packs. Any remaining space on the 
last track needed. to contain the 
buffer image is not used. <The 
next control record begins on the 
next available track.) 

control is then given to MCDTJUtDP, EOJ1, 
EOJAA, or the proqram is terminated <see 
Chart 77). 

Independent Utilities: I8CDMPRS 207 



2311 or 2302 
Disk Storoge 

Main Storage 
DTALENG 

I 

Track Image (No Gaps) 

R3 

DUMP RESTORE 

Figure 64. Dmnping and Restorins a Direct Access Track 

EOJ1 
is given control when a new TO volume 
is needed. EOJl writes the trailer 
label on the current TO volume and 
then gives control to routine TO~APE 
to insure that a new volume is 
mounted. (See •oumped Data Format• 
for a description of the trailer label 
and its location for tape or disk.) 

EOJAA 
is given control at the conclusion of 
an entire 2311-2311 (or 2314-2314) 
dump. EOJAA updates field six of the 
VTOC DSCB to reflect any alternate 
track assignments necessitated during 
the dmnp. A WAIT state is then set in 
the CPU and the program terminates. 

Restoring 

After the input device has been verified 
and control statements have been analyzed 
<see •supervisory Routines of the Indepen­
dent Utilities•), control is given to the 
restore section of the program, consisting 
of the following routines, which are 
executed in the order indicated. 

FRMTAPE 

208 

ensures that a FROM volume is mounted, 
whether tape or disk. The order of 
vol mne mounting is immaterial. After 
a FRC~ volmne is mounted, this routine 
reads the limits record <record one). 
Control is then given to RSTRTAPE, if 
the FRC~ device is tape, and to 
STRTDSK, if the FROM device is 2311 

(or 2314) disk storage. When the 
device is not the 2301 drum and if 
there is at least 64K of main storage, 
buffers are built in upper storage for 
the data records and the channel 
programs. 

RETRTAPE 
reads the control record into location 
D'IALENG1, when storage is available. 
<~e control record consists of a 
channel program capable of restoring 
the dumped track.) From DTALENG1, the 
record is moved to DTALENG. The image 
of the dmnped track (in blocked record 
format) is read into location DTA­
BUFFl, when storage is available, and 
then is moved to DTABUFF. Control is 
then given to MODTKADT. 

S'IRTDSK 
performs the same logical function as 
RS~TAPE, but reads instead from 2311 
<or 2314) disk storage. The control 
record is first read into location 
D'IALENG (also causing the channel pro­
gram, the second field of the control 
record, to be read into location 
CCWLIST). The first field of the con­
trol record is then used to read as 
many tracks as are necessary to •fill" 
the buffer DTABUFF, that is, to co~­
plete one dumped track image in the 
buff er. Control is then given to rou­
tine MODTI<ADT. 



MODTKADT 

EOJA 

executes the channel program at loca­
tion DTALENG, thus restoring one track 
in its original format. If the FROM 
volume is not exhausted, control is 
given to RSTRTAPE or STRTDSK, depend­
ing on whether the FROM device is tape 
or disk, respectively. When the FROM 
volume is exhausted, control is given 
to EOJA to read the trailer label. 

reads the trailer label (for a 
description of the trailer label and 
its location, see •numped Data For­
mat•). successive oring of trailer 
labels by this routine controls FROM 
volume mounting. If another FROM 

volume is to be processed, control is 
given to FRMTAPE to insure that it is 
mounted, whether tape or disk. If no 
more FROM volumes are to be processed, 
control is given to ECJAA (if the 
restore is entire>, or the program is 
terminated (if the restore is par­
tial). Note: a restore is entire or 
partial depending only on the limits 
of the companion dump. 

EOJAA 
updates field six of the VTOC DSCB to 
reflect any alternate track assign­
ments necessitated during the (entire> 
restore. No such update is provided 
for a partial restore. 

Independent Utilities: IBCD~FRS 209 



Chart 77. IBCDMPRS - Dumping and Restoring a Direct Access Volume 

210 

EOJl Jl 

Write Trailer 
Lobel (Lost Trk. 
on DASO, After 

EOF on Tape) 

A2 
CKIN,..P-UT..__ ____ A..,.3 

Define Input 
Start Device and 

Mount to Volume 
If Dump is not 

2311-2311, Write 
Limits 
Record 

MOD KADF 02 
Read Count 

Fields of One 
Track to 

Construct Chan. 
Prog,to Read TR 

ANA LS ENS E2 

Execute Channel 
Program Jwt 
Constructed, 

Reading a Track 
into DTABUFF 

TSTWRTSP F2 
Change Chan Prog. 

Just Executed 
to a Write Prog. 
(to be Written) 
in Cont. Rct .) 

G2 

Write Control 
Record if 

Necessary. 
Write DTABUFF. 

Yes 

No 

Perform Setup 

RD CARD 13 

NOTE: 

Read and 
Analyze Contiol 

Statements 

For Block G2, 
the Fallowing 
Labels Apply: 
Write on Tope--DMPOASD 
Write on 2311--STRTDSI< 

EOJAA J3 

Update VTOC 
onto Volume 

to Reflect any 
Alternate Track 

EOJ 
(Wait) 

Ratr. 

FRMTAPE C4 

Mount from Vol • 
and Read 

Limits Record 

--~~0-4~~ ~;'~f~k04 
the Following 
Labels Apply Read Control 

Record into 
DTALENG.Read 

Track Image 
into OT ABUFF 

MODTKADT 

Execute 
Channel 

Piogram.Just 
Read in to 

Write a Track 

Read 
Trailer 
Label 

Na 

E4 

Read from Tape--RSTRTAPE 
Read from 2311--STRDSK 



" 

Recovering and Replacing a 
Track (IBCRCVRP) 
The recover-replace program performs one of 
two functions during a single execution: 

• Recovering <reading) data from a track 
on an initialized direct access volume; 
listing defective records, or all rec­
ords, if specified; and writing the 
good data on a recovery output tape for 
use by the replace portion of the pro­
gram during a future execution. 

• Replacing a good track image on an 
operative track by merging data from 
the recovery output tape with replace­
ment data supplied by the user. 

Requests may be stacked, but all must 
specify the same function -- recover or 
replace. 

The current version of the program sup­
ports recovery and replacement of data on: 

• 2302 disk storage 
• 2303 drum storage 
• 2311 disk storage 
• 2314 disk storage 
• 2321 data cell storage 

As a stand-alone program, recover­
replace contains the following supervisory 
routines, described under the heading, 
•supervisory Routines of the Independent 
Utilities•: 

• Input Device Check (CKINPUT) 
• Data Input Routine CSYSIN) 
• Control Statement Analysis CCLRSCAN) 
• Volume Label Check (CKVOLLEL) 
• Message Cutput Routine (SYSOUT) 
• Write to Operator (OPPRNT) 
• I/O Control (STARTIO) 
• I/O Interruption Analysis (CKCSW) 

IBCRCVRP (low) IBCRCVRP 

The logic of the recover and replace 
portions of the program is shown in the 
following charts: 

Chart 78. 
Chart 79. 
Chart 80. 
Chart 81. 

Chart 82. 

Overall Flow 

overall logic 
Recover logic 
Recover Data Check Routine 
Recover count Check and End­
of-track Routines 
Replace Logic 

~hen the program gains control, it waits 
for the operator to define the input device 
from which utility control statements are 
to be read. The program then verifies that 
the input device definition is valid, and 
begins to read, scan, and analyze utility 
control statements. 

Figure 65 suggests bow main storage is 
managed by the program. The space occupied 
by the replace portion of the program after 
initial loading is used as buffer for read­
ing the track to be recovered or replaced. 
A recover run causes the replace coding to 
be overlaid by the track image; for a 
replace run the replace coding is first 
moved to overlay the recover portion of the 
program. 

Depending on the request, the appropri­
ate recover or replace coding is then 
executed. Following this, listing is per­
formed: for a recover run, if the LIST 
option is specified all records on the 
track are listed, or otherwise only the 
defective records; for a replace run, if 
the LIST option is specified all records on 
the replacement track are listed, or other­
wise only the replacement records. When 
all requests have been serviced, the pro­
gram issues an end-of-job message, rewinds 
and unloads the tapes, and sets the wait 
state in the CPU with D's displayed on the 
console lights. 

(low) IBCRCVRP 

Supervisory Routines Supervisory Routines Supervisory Routines 

VRECOVR VRECOVR VRECOVR 

Recovery Coding Recovery Coding Replace Coding 

VRECTAB VRECTAB VRECTAB 
Control Data Control Data Control Data 

VGOODBUF VGOODBUF --, VGOODBUF 

Replace Coding Buffer Buffer 

(high) (high) 
A. Program Listing B. Main Storage Contents for c. Main Storage Contents for 

Recover Execution Replace Execution 

Figure 65. Main Storage Management for Recover Replace 

Independent Utilities: IBCRCVRP 211 



Recoverinq 

The recover portion of the program reads 
the specified track of the direct access 
volume, gathers control data to be used by 
a future replace run, and records the con­
trol data and the successfully recovered 
portion of the track on a recovery output 
tape. Figure 66 shows the tape format. 

Records are read into VGOODEUF. If a 
data check is detected in the count field 
of a record or an address marker is missing 
from a record, the remaining bytes on the 
track, including records and gaps, are read 
into VGCCDBUF using the space count command 
and are immediately listed on the message 
device. After listing, the records and 
gaps are cleared from VGOODBUF and the next 
record is read into VGOODEUF immediately 
following an 8-byte entry left in place of 
the record which had the bad count or mis­
sing address marker. If the count field is 
good and the address marker is present, any 
key and/or data fields read, whether good 
or defective, will remain in VGOODBUF as 
read. (See Figure 67.) 

As each record is read into the buffer, 
an entry is built in the record control 
table VRECTAB. Each entry consists of a 
1-byte flag and a 3-byte pointer to the 
record image. The settings of the flag 
byte in VRECTAE are as follows: 

Bit=l 
--0-

1 
2 
3 
4 
5 

6-7 
7 

Meaning 
Bad count field 
Bad key field 
Bad data field 
Missing address marker 
Last record flag 
Recovery was aborted 
ECF with key 
ECF (with or without key) 

After reading the track, recover builds 
at location CCWLIST a channel prograrr which 
will be completed and executed by replace 
in writing and read-back checking the data 

put on the alternate track. Recover then 
stores into VALTBUF the address of the 
first doubleword boundary following the re­
covered data in VGCODBUF. This establishes 
the area replace uses to receive data for 
records with bad counts or missing address 
markers. Recover then writes the recovery 
output tape. 

Replacing 

~he replace portion of the program, which 
is moved to overlay the recover portion, 
reads the recovery output tape, reads 
replacement data supplied by the user, 
assigns an alternate track (if the volume 
resides on disk storage), and writes the 
merged data on the track. 

The header record on the recovery output 
tape is first read and the serial number of 
the direct access volume is checked. The 
next two records (control record and recov­
ered data) are then read into the same 
absolute storage locations they occupied 
during the companion recover run (VRECTAE 
and VGOODBUF). Flag bytes in VRECTAB are 
then interrogated, and replacement data is 
read as needed. Replacement data is read 
into the alternative buffer (pointed to by 
VALTBUF) if the record to be replaced had a 
missing address marker or a bad count 
field; otherwise replacement data is read 
into VGOODBUF, overlaying the corresponding 
defective recovered key and/or data por­
tions. When all replacement data has been 
read, an alternate track is obtained on the 
volume (if it is non-drum storage), and the 
merged recovery and·replacement data are 
written on the track using the channel pro­
gram at location CCWLIST. If the HA-RO 
fields are defective on 2314 disk or 2321 
data cell storage, the program attempts to 
move these fields approximately 800 bytes 
down the track. 

Example: Figure 67 illustrates a complete 
cycle (two executions of the program) for 
recovering and replacing a track. 

LABEL 
(Optional) 

ID VOL TRACK DA TE PAD CCWLIST VALTBUF VRECTAB 
VGOODBUF )..__ _ _.~......-..M-TA_:_R~ __ I 

ID == 4-byte constant "RECV" 
VOL == 6-byte volume ID of 

direct-access device 
TRACK == 12-byte 

BBBBCCCCHHHH 
of recovered track 

DA TE == 8-byte date of 
assembly MM/DD/YY 

PAD == 50 bytes of zeros 

CCWLIST == Channel program 
to be used to 
replace data on 
volume 

VALTBUF = Pointer to buffer 
for replacement data 

VRECTAB ==Table of control 
data for track 

Figure 66. Format of Recovery Output Ta~e 

212 

VGOODBUF == Buffer 
containing 
recovered data 



During a recover execution, 
the track containing defective 
records is read into VGOODBUF; 
for each record, a flag and 
pointer are set in VRECTAB. 
In this example, the given track 
is found to be in the following 
condition: 

HA - Good 
RO - Good 
Rl - Bad count 
R2 - Bod key 
R3 - Bad data 
R4 - Missing address marker 
R5 - Last record, good 

The recovery output 
tape is written, 
consisting of a header 
record, a control 
record, and recovered 
data. The recover 
execution terminates. 

During a subsequent 
replace execution, the 
recovery output tape is 
read into the some 
absolute storage 
locations from which 
it was written. 

0 
Using control data from 
VRECTAB, replacement 
data is read into 
(a) VGOODBUF, or 
(b) the buffer pointed 
to by YALTBUF, in 
case of bod count or 
missing address marker. 

~o~~t~o~---- ___ ------------ -------, 
I I 

2311 Disk Storage : VRECTAB VGOODBUF : 

~ ! HA and Blanks I: 

Figure 67. 

00000000 HA Address 

~ RO Count and Doto 

I Rl Count 

00000000 RO Count Address 

10000000 R 1 Count Address 

I 01000000 R2 Count Address 

00100000 R3 Count Address 

00010000 R4 (8 Bytes) Address 

00001000 R5 Count Address 

Flog (1) Pointer (3) 

VALTBUF 

{Next Double­
Word Boundary) 

R2 Count, Key and Doto 

R3 Count, Key and Doto 

R4-8 Bytes 

R5 Count, Key and Doto 

An Example of the Recover-Re~lace Cycle 

0 
Using the channel program 
read from the recovery 
output tape, the merged 
(old and new) data is 
written on on alternate 
track. 

Replacement Doto 

New R2 Key 

New R 1 Count, 
Key and Dato 

Independent Utilities: IBCRCVRP 213 



Chart 78. 

214 

IBCRCVRP Overall Logic 

CHART 79 

Recover 
Data from 

Track 

E2 

Start 

CK INPUT 

Wait for 
Operatar ta 
Define Input 

Device 

83 

C3~---... 

Recover 

CLRSCAN C3 

Read, 
Scan, and 

Analyze Cantrol 
Statements 

List 
Defective 

Records or 
Replacement 

Records 

Give 
EOJ Message, 
R-ind and 

Unlaad Tapes 

K3 

IWait) 
Hex Os in PSW 

Yes 

OiART 82 

Replace 
Data an 

Trock 

List 
al I llacords on 

Trock 

Yes 

VREPLBST 05 

Mave Replace 
Code to Overlay 

Recover Code 



Chart 79. IBCRCVRP Recover Logic 

VRECOVR Al 

Renew CCWS, 
Check Vol. Id., 

Clear Buffer 

lJi::dote 
Tobie Pointers, 
Pvt Skip Bit On 

in Previous 
Read CCWS 

VISSUERD Fl 

Issue CCW 
Chain with Read 

A2 >-----~ 

A2 

Issue Seek, 
SFM, Read HA, 

Read RO, Read 
Count Rl 

Multi-Track 

Exit to 
End-of-T rock 

Yes 

F2 

CKD and End _____ ___, 
Flog VRECTAB, 
Set Expect EOF 

Switch with Read CT 
Multi-Track 

Exit to Dato 
Check Routine 

Exit to Doto 
Count Check 
Routine 

Flog 
VRECTAB, Give 
Message, Try to 
Read Rest of 

Track 

D3 

Write 
Message HA and 

RO only on the 
Track 

E3 

Flag VRECTAB. 
Read Count with 

Skip, Read 
Count Next 
R d 

Pick Up 
Pointer to 

Alternate from 
RO Count Field 

VPRNTALT F4 
Write 

Message Giving 
Alt. Id., Put Alt. 
Address in Seek 

Adclr. 

VSPECOVR G4 

Set Overflow 
Switch, go to 
End-of - T rock 

Routine 

H4 

Error Message 

J4 

Abnormal EOJ 
Hex E's (Wait) 

Gl 

85 

Give Bod ROMsg., 
Flag VRECTAB, 

lteftlcic:e ltead RO 
by Space Count 

Seek, SFM, 
Space Count, 

Read Count 
Multi-Track 

cs 

Flog VRECTAB 

KS 
Reissue CCW 
Chain with 

Space Count for 
RecOl"d without 

Address Marker 

Independent Utilities: IBCRCVRP 215 



Chart 80. 

216 

IBCRCVRP Recover Data Check Routine 

Set 
Dota.Check­

Occurred Switch 
VBADDT 

Yes 

Yes 

Yes 

Yes 

A2 

Interrupt from 
End of Space 
Count. Goto 
VCNTCKS 

Interrupt from 
End of Space 
Count. Go to 

VAMCHK 

VERRORBH 

Both Key and 
Doto Bod. Flag 

VRECTAB 

VERRORDT D2 

Key Good, 
Doto Bod. Flog 

VRECTAB 

VCOMDMV 

Make Lost 
Command a Read 

Data Followed 
By Read Count 

Multi-Track 

J2 

VDATARD C3 

Put Space 
Count in for 

Bod Record. Mov 
RC to End. Reset 

Switches 

J3 

Issue Command 
Chain 

K3 

Clear Bod 
Dato Switch, 

Read Data. Got ----~N-"o'-< 
Record this 

Time 

Set Expect 
EOF Switch. 

G4 

Make Next to 
Last CCW a Read 

Count 

No 

FS 

Set 
VBADK EY Switch 

to Signal Key 
is Bod 

VERRORKY 

Flag Record 
as Bod Key, 
Good Data 

KS 



Chart 81. IBCRCVRP Recover count Check and End-of-~rack Routines 

VCNTCK Al 

Set Sad-Count 
Switch 

VCOUNTED. Round 
Up VRECTAB 

Address 

Flag 
Record in 

VRECT AB as Bad 
Count Field 

VCALCSZ 01 

Move Count 
Field as Read 

into VGOODBUF. 
Calculate Size 

El 

Set Up Space 
Count Command. 
Issue CCWs to 

Fl 

Set Up and 

VAM K F2 

Write Message of ------1 
Bad Count or Miss-

Re tum 
After Data 

Check on Space 
Count, Refer to 

MAM 
ing Address Mark 

Gl 

Force 
List of Bod 

Record on 
Message Device 

Reset 
Bad Count 

Switch 

Yes 
Reset 

Missing Address 
Marker Switch 

2 

VRET;.;.RS.;;;._ ____ ;;..J2 ... 

Move Read 
Count M/T to 

End of CCWs • Up 
Record Count 

Flag Last 
Record in 
VRECTAB. 

Calculate Top 
of VGOODBUF 

C3 

Store Highest 
Address in 

VGOODBUF into 
VALTBUF 

VREPCCW 03 

Build CCW 

Create Read 
Back Check CCWs 

for Write CCWs 
Built 

Enter 
Write Recover 

Tape Routine at 
RCVRTAPE 

G3 

H3 
Insert NOP 

Command in CCW 
List to 

Suppress MAM 
for Record 

Yes 

E4 

Make Op. 
Cade for Last 
Record Written 

a Wri T<5Pecial 

RCVRTAPE 

Use 
TAPECHKS 
Routine to 
Position Tape 

H4 
Write Three 

Records on the 
Tape, WTM, 

Rewind, Unload 
Ta 

Independent Utilities: IBCRCVRF 217 



Chart 82. IBCRCVRP Replace Logic 

VREP:.i.clll.l..-..__ ... A=-, 

218 

Reset 
Switches.Clear 

Buffer Area 

Check Volume 
label, Check 

Date, Check 
Track Oefi ned , 
H It an ror 

CKTABLE 

Check 
VRECTAB far 
Record Entries 

of this Track 

Assign an 
Alternate 

C3 

D3 

Yes 

CKOVRLW H4 

Change Last 
CCW Code ta 
Write Special 

Count-Key-Data 

No 

Read 
Another Insert 

Card for the 
Replacement 

Data 



Appendix A: Modules of Utility Programs 

This appendix describes the modules of each 
utility program. The module names given 
are the SYS1.UT506 names. When these names 
differ from equivalent SYSl.LINKLIB names, 
the latter are given in parentheses. In 
the case of the independent utilities 
IBCDMPRS, IBCRCVRP, and IECDASDI, the pre­
vious statement is not applicable since 
these programs are part of the SYSl.SAMPLIB 
data set. 

IEBCCMPR 

IEBCROOT 
is the root segment; it opens and 
closes SYSPRINT, writes messages, and 
calls the proper modules. 

IEBCOMPM 
is the message module. 

IEBCANAL 
interprets returns from IEBCCS02. 

IEBCMAIN 
when the data sets are partitioned, 
compares directories to determine 
whether one is a subset of the other; 
when the data sets are sequential, it 
compares the data sets. 

IEBPTPCH 

IEBPPUNl 
is the root segment; it opens and 
closes SYSPRINT data set, calls proper 
modules, and prints all messages and 
control cards. 

IEBPPMSG 
is the message module. 

IEBPPAL1 
obtains storage for and then con­
structs tables and work areas, calls 
and then interprets returns from 
IEBCCS02, checks for valid parameters. 

IEBCCS02 
opens and closes SYSIN data set, reads 
and scans cards, returns data to 
IEBPPAL1. 

IEBPPCHl 
is the processor module1 it handles 
sequential and partitioned data sets, 
opens and closes SYSUT1 and SYSUT2 
data sets, checks for valid control 
cards, and examines tables built by 
IEBPPALl. 

IEBCOPY 

HBCOPYA 
is the root segment; it gives control 
to the proper modules, and prints all 
error messages and control cards. 

IEBCOPYB 
is the message module. 

IEBCOPYC 
opens and closes SYSPRINT data set, 
obtains storage for and constructs 
work areas and tables, calls and then 
interprets returns from IEBCCS02, and 
when control cards are present, checks 
them for validity. 

IEBCOPYD 
is the processor module; it opens and 
closes SYSUTl and SYSUT2 data sets, 
analyzes tables from CCFYC and: if 
total copy, reads in directory and 
sorts by 'ITRs; if exclusive copy, 
sorts exclude table by ~EMBER NAME 
sequence, reads the data set direc­
tory, compares for excludes of direc­
tory names, and sorts directory names 
by 'ITRs; if inclusive copy, copies 
included names and moves data from 
input buffer to output buffer. 

IEBEDI'I 

IEBEDI'I· 
extracts records from a master file of 
JCL statements to create an edited 
input stream data set. 

IEBGENER 

IEBGENRT 
is the root segment; it opens and 
closes SYSPRINT, writes all messages 
and control cards, and gives control 
to proper modules. 

IEBGMESG 
is the message module. 

IEBGSCAN 
obtains storage for and then con­
structs tables, calls and then inter­
prets returns from IEBCCS02, analyzes 
control cards. 

IEBGENR3 
is the processor segment root module; 
it opens and closes input and output 
data sets and performs label 
processing. 

Appendix A: Modules of Utility Frograms 219 



IEBGENS3 (IEBGENR3) 
performs I/C operations for variable 
spanned records. 

IEBGEN03 (IEBGENR3) 
performs I/0 operations for non­
variabl e spanned records. 

IEBMOVE2 
moves logical records from input to 
output buffer. 

IEBEDIT2 
moves, with editing, logical records 
from input to output buffer. 

IEBCONH2 
converts data from H set BCD to 
EBCDIC. 

IEBCONP2 
converts data from packed to zoned 
decimal. 

IEBCONZ2 
converts data from zoned to packed 
decimal. 

IEBLENP2 
computes total output record whenever 
an input record is encountered. 

IEHUCSLD 

IEHUCSLD 
checks for type of operation, for 
universal character printer, and for 
buffer load characters; issues WTOR to 
mount proper chain; loads the buff er 
and verifies it, if specified. 

IEHIOSUP 

IEHIOSUP 
finds first load module of SVC routine 
then loads succeeding modules, reads 
in the member, and updates member's 
XCTL tatle, if present. 

IEHINITT 

IEHINITT 
is the root segment; it opens and 
closes SYSIN and SYSOUT, builds tape 
label image in main storage, extracts 
information from the JFCB, and links 
to SVC 39 to write the tape label. 

IGC0003I (SVC 39) 
writes a tape volume label followed by 
a dummy header label and a tapemark. 

IEHSCAN 
reads control statements and scans 
them for INITT command and for 
keywords. 

IEHPRNT 
is the message module. 

220 

IEHDASDR 

IEHDAOUT· formats and writes dumped informa­
tion to the SYSOUT data set. 

IEHDASDR 
is the entry point for the program. 
It performs initialization and passes 
control to the control routine. 

IEHDASDS 
is the control routine. It processes 
control statements and passes control 
to the functional routines. 

IEHDCELL 
is the Data Cell Analysis routine. It 
performs surface analysis of data cell 
volumes. 

IEHDDATE 
is the Date routine. It obtains the 
day's date and passes it to the Print 
routine, IEHDPRNT. 

IEHDEXCP 
is the 
tine. 
during 
formed 

IEHDGE'IA 

I/O subroutine of the Dump rou­
It performs all I/C operations 
a dump except for those per-
by IEHDAOUT. 

is the control routine for performing 
alternate track assignment. 

IEHDLABL 
writes new volume serials and owner 
names on direct access volumes. 

IEHDMSGB 
is the Message Builder routine. It 
selects, constructs, and stores 
messages. 

IEHDMSGS 
is the message CSECT. It contains the 
messages used by the IEHDASDR program. 

IEHDPASS 
is the Password Protection routine. 
It checks the passwords required for 
security protected data sets, and 
checks data set expiration dates. 

IEHDPRNT 
writes messages to the SYSOUT data 
set. 

IEHDREST 
is the Restore routine. It reads 
dumped information from a restore tape 
and writes the information on direct 
access volumes. 

IEHDSCAN 
is the Scan routine. It reads control 
statements and scans them for syntax 
errors, one field at a time. 



IEHDVTOC 
is used by the Analysis routine to 
write system data on direct access 
volU1Des. 

IGC0008B 
is the first load of the SVC 82 rou­
tine. It builds DEEs for new direct 
access volU1Des and passes control, 
when necessary, to one of the other 
loads. 

IGC0108B 
is a load of the SVC 82 routine. It 
assigns an alternate track on a direct 
access volume. 

IGC0208B 
is a load of the SVC 82 routine. It 
updates UCBs to reflect new volume 
serials or VTOC location changes. 

IGG019P8 
is the End-of-Extent appendage rou­
tine. It modifies extent limits and 
file masks in DEBs. 

IGG019P9 
is the Abnormal End appendage routine. 
It is used to bypass I/O supervisor 
error processing. 

IEHMOVE 

IEHMCVE 
is the root segment; it obtains a save 
area. 

IEHMVSRS 
loads modules if required. 

IEHMVXSE 
gets three work files and a work area. 

IEHMVXSF 
is the first-time control module for 
IEHMVSSF. 

IEHMVSSF (IEHMVSF) 
mounts volumes. 

IEFWMSKA (IEHMVSF) 
is the systems device mask table. 

IEHMVEST 
clears work areas and initializes for 
a request. 

IEHMVESJ 
reads cards. 

IEHMVSSS (IEHMVESS) 
builds tables and sets switches. 

IEHMVESI 
opens the catalog for a data set group 
operat:ion. 

IEHMVESC 
reads the catalog and writes it onto 
SYSUT1 for a data set group operation, 
or writes the catalog onto SYSUT2 for 
a move or copy catalog. 

IEHMVESH 
closes the catalog and sets up for 
following request. 

IEHMVSSZ (IEHMVESZ) 
checks for volume or data set. 

I.EHMVSSV (IEHMVESZ) 
obtains 'FROM' DSCB, links to module 
for mounting of 'FRCM' volume. 

I.EHMVMR Z ( IEBMVESZ) 
writes messages. 

IEHMVSRZ (IEHMVESX) 
handles routing and errors. 

IE.HMVSRV (IEHMVESX) 
allocates the catalog on two volumes 
if necessary. 

IEHMVSRR (IEHMVESX) 
reads unloaded records. 

IE.HMVSRY <IEHMVEXV) 
handles routing and errors. 

IEHMVSSX (IEHMVEXV) 
allocates two data sets. 

IEHMVS~C (IEHMVEXV) 
reads 'FROM' partitioned data set 
directory. 

IEHMVMRY (IEHMVEXV) 
writes messages. 

IEHMVSSY (IEHMVESY) 
handles routing and errors. 

IEHMVSRM (IEHMVESY) 
writes first unloaded record ~hen 
applicable. 

I.EHMVSRX (IEHMVESY) 
tuilds 'TO' and ·FROM' DCBs, handles 
·~o· DD and 'FROM' DD. 

IEHMVMSY (IEHMVESY) 
writes messages. 

IEHMVMRZ (IEHMVESY) 
writes messages. 

I!HMVE~J 

reads 'FROM' and writes 'TO' sequen­
tial or partitioned data set ~ithout 
performing reblocking. 

IEHMVESL 
reads 'FROM' and writes 'TO' sequen­
tial or partitioned data set; reblocks 
type F records. 

Appendix A: Modules of Utility Frograms 221 



IEHMVESM 
reads 'FROM' and writes 'TO' sequen­
tial or partitioned data set; reblocks 
type V records • 

IEHMVSRD (IEHMVERD) 
builds unloaded records. 

IEHMVSRM (IEHMVERD) 
writes unloadEd records. 

IEHMVSRA (IEHMVERA) 
recreate$ unloaded record in original 
state. 

IEHMVSRR (IBHMVERA) 
reads unloaded records. 

IEHMVSTA (IEHMVETA) 
builds unloaded record and creates 
original record. 

IEH.MVS~ (IEH.MVETA) 
writes unloaded records. 

IEHMVSRR (IEHMVETA) 
reads unloaded records. 

IEHMVMl'A (IEHMVETA) 
writes messages. 

IEHMVESR 
gets directory entries from SYSUT3 
work file. 

IEHMVETG 
gets directory entries from SYSU71 of 
includes or selects. 

IEHMVESU 
writes messages. 

IEHMVESN 
closes 'TC' and 'FROM' data sets; 
determines next module. 

IEHMVMSN (IEHMVESN) 
writes messages. 

IEHMVESQ 
catalogs and uncatalogs moved data 
sets. 

IEHMVMSQ (IEH.MVESQ) 
writes messages. 

IEHMVESP 
catalogs and uncatalogs copied data 
sets. 

IEHMVESO 
checks errors - job abort or request. 

IEH.MVESR 

222 

closes SYSIN; scratches and closes 
SYSt1l'l., SYSUT2, and SYSUT3. 

I!BISAM 

I.EBISAM 
is the root segment; it sets up a com­
mon work area, obtains input parame­
ters, sets switches, and passes con­
trol to the required module. 

IE.BI SC 
copies records of an indexed sequen­
tial data set. 

IEBISU 
retrieves logical records sequentially 
from an indexed-sequential data set. 

IEBISSO (IEBISU) 
creates 80-byte logical records with 
fields as defined for •unloaded' data 
sets. 

IEBISL 
reconstructs indexed-sequential data 
set from 'unloaded' data. 

IEBISSI (IEBISL) 
retrieves logical records from an 
'unloaded' data set. 

IEBISPL 
prints logical records of an indexed 
sequential data set. 

IEBISF 
writes messages, prints error messages 
if applicable, and returns completion 
code to root segment. 

IEHPROGM 

IEHPROG1 (IEBPROGM) 
gets work area, reads SYSIN, reounts 
volumes if applicable. 

IEHPROG2 (IEHPROGM) 
issues svcs for cataloging, uncatalog­
ing, deleting, connecting, releasing, 
BI.DA, DELET. 

IEHPROG3 (IEHPROGM) 
contains and writes messages. 

IEHPROG4 (IEHPROGM) 
opens input and output DCBs. 

IEHPROG5 (IEBPROGM) 
prepares for the volume mounting 
module IEBMVSSF. 

IEHLIS7· 

IEHQSCAN (IEBLIST) 
reads control cards. 

IEHPRMSG (IEBLIST) 
message module. 



IEHPRINT (IEHLIST) 
scans and prints requested data from 
VTCCs, catalogs, and directories. 

IEBUPDAT 

IEBUFDAT 
updates SO-character logical record 
li.t:raries. 

IEBUPDTE 

IEBUPDT2 (IEBUPDTE) 
creates partitioned or sequential data 
sets, sequences new data sets, rese­
quences old data sets, replaces or 
reproduces data set members, or adds 
members to a partitioned data set. 

IEBUPLOG (IEBUPDTE) 
opens SYSPRINT and writes messages. 

IEBUPDTE 
reads control cards, and opens SYSU'Il 
and SYSUT2. 

IEBASCAN (IEBUPDTE) 
scans and analyzes control statements 
and sets appropriate flags. 

IEBUPNIT (IEBUPDTE) 
initializes the region IEBUPCON and 
opens SYSIN data set. 

IEBUPXIT (IEBUPDTE) 
contains exit routines for the 
program. 

IBCDMPRS 

IBCDMPRS 
creates backup copies of direct access 
volllitles. 

IBCRCVRP 

IBCRCVRP 
recovers usable data from a defective 
track, assigns an alternate track, and 
merges replacement data with the re­
covered data onto the alternate track. 

IECDASDI 

IECDASDI 
initializes and assigns alternate 
tracks to a direct access volume. 

HCEREPO 
modules for this utility program are 
summarized in Figure 25. 

IliBDG 

IEBDG 
is the control module that is the 
interface with a calling program. It 
opens the input, output, and message 
data sets, and it reads the program's 
control cards. 

IEBFDANL 
analyzes the keywords and parameters 
on an FD card and begins construction 
of an entry in the FD table. 

I.EBFD'IBL 
completes the construction of the FD 
entry that was begun by the FD analy­
sis module. It assigns FD card 
default values if necessary. 

IEBCRANL 
analyzes the keywords and parameters 
on a CREATE card and builds a create 
table entry, a picture table, an FD 
address table, and an exit name table. 

IEBCREA'I 
generates output records by using 
information from (1) input data sets, 
and (2) tables built by previous 
modules, as required. It permits user 
modifications before final record out­
put. It releases storage obtained for 
information tables. 

IEBDGMSG 
is the message module, and it controls 
the paging on a message printer. 

I:EBDGCUP 
is the clean-up module that closes 
DCBs and frees storage for DCBs and 
bu£fer pools .• 

Appendix A: Modules of Utility Programs 223 



Appendix B: User Label-Processing and Totaling 

With respect to the processing of user 
labels and the totaling functions performed 
by user routines, Figure 68 shows the gen­
eral logic of the following utility pro­
grams: IEBCOMPR, IEBGENER, IEBPTPCB, and 
IEBUFDTE. 

224 

The following text discusses parameter 
information passed from a utility program 
to a user routine, and return code inf orma­
tion passed from a user routine to a utili­
ty program. 



Figure 68. 

Al 
Entry from 

Supervisor 

31 

Control 
Card 
Scan 

Cl 

Initialization. 
Save 
Data 

Dl 

El 

Build DCB 
Exit List 
of User 
Routine 

Fl 

Get 
Storage for 
Labels and/ 
or Totals. 

Open 
Input 
Data 

Set 

Continue 
Utility's 
Intended 
Function 

GI 

Kl 

Utility 
Pr ram 
IEBCOMPR 

IEBGENER 

IEIUPDTE 

IEBPTPCH 

See NOTE 1. 

(VIA 
BALR) 

Yes 

(See NOTE 
2.) 

Continue 
Utility's 

Processin 

{See NOTE 1 .) 

Exits Taken 

Header and Trailer Label 

Exits for SYSIN, SYSUT 1, 
and SYSUT 2. 
Totaling, for Data on 
SYSUT 2. (For Update = 
lnplace, No Output 
Trailer or Totaling Exits.) 

Input Header. 
Input Trailer. 

A3 

USER EXIT 

Totalin3 
Routine 

C3 

Check User's 
Return Code 

Yes 

D3 
Terminate 

and Return 
to Su ervisor 

IE:::xxxxx 

to Specific 
Utility 

Program 

Save Labels 
in Storage 

Area 

USER EXIT 

User Label­
Processing 

Routine 

No Complete the 
Data Set 
Opening 

(VIA DGEXIST) 
[14 

IEBXXXXX 
May be: 
IEBCOMPR, 
IEBGENER, 
IEBPTPCH, or 
IEBUPDTE. 

No 

Position 
Utility 

Program at 
Data After 
Label Gro 

(See NOTE 4.) G3 

One Entry to User Routine for Each Label Pro-
Check User's cessed. 

Return Call Register Contents are as Follows: 

Set 
Termination 

Indicator 

G Rl: Parameter List (See Figure 69). 
GR14: Return Address to Utility Program: 

{Must be Saved by User.) 
GR15: Entry Point Address for User Routine. 

NOTES: 
1. For Closing the Data Set or 

End-of-Volume, a Sequencto 
Similar to that Beginning at 
!lox A4 and Ending at Box Hl 
Occurs. 

2. GRl Points to Parameter List 
(Given in Figure 69). 

3. The Sequential Access Method 
Saves an Image of the Totaling 
Area for Use by End-of-Volume 
Processing Routines. 

4. See Text for Return Code Description. 

AS 

D5 

General Logic of Utility Program ~ith User Label-Processing Routine Exits 

Appendix B: User Label-Processing and Totaling 225 



Parameter List 

When the utility gives control to a user's 
label-processing or totaling routine, gen­
eral register 1 contains the address of a 
parameter list whose format is given in 
Figure 69. 

1 byte 3 bytes 

0 

Not Used Address of 80-byte label buffer area 
l 

4 

Flag byte Address of DCB being processed 
8 

Error flags Address of status information 
(for uncorrectable VO errors) 

12 

Address of totaling \image) area 

1 
For totaling exits, Address of the output buffer 

•Figure 69. Parameter List Passed to User­
Label Exit Routine 

A description of the underlined fields 
indicated by the parameter list in Figure 
69 is given below. 

• label buffer area: prior to entering a 
label routine, user header or trailer 
labels are read into this area by the 
operating system. When a user's label 
routine constructs labels, the labels 
are placed (one at a time) in this 
area. 

• status information address: if an 
uncorrectable I/O error occurs during 
the reading or writing of a user label, 
the utility routine gives control to a 
user label routine with bit 0 of the 
high-order (error flags) byte of this 
field is set to 1. If the totaling 
facility has been specified and an 
uncorrectable I/O error occurs as the 
utility is placing data on an output 
data set, a user•s totaling routine is 
given control with bit 0 of the high­
order (error flags) byte set to 1. ~he 
three low-order bytes of this field 
contain the address of the standard 
status information for SYNAD routines. 
(See the publication IBM System/360 
Operating system: supervisor and Data 
Management Services, Form C28-6646.) 

• totaling image area: for a totaling 
routine, a user may require an area to 
contain record counters, totals, point­
ers, etc. A utility supporting the to­
taling facility obtains this area and 
places its address in a DCB exit list 
(for use by data management routines 
such as the open routine and the end­
of-volwne routine) and in this field of 
the parameter list (for use by the to­
taling routine). The information that 
the user saves in this area is synch-

226 

ronized with the physical records writ­
ten prior to placing a given record on 
an output data set. In an end-of­
volume situation, the updated totaling 
information is kept as an 'image' whose 
address (in the parameter list) is 
given to a user label routine. This 
insures an accurate transfer of total­
ing information from one volume to 
another. The image area has meaning 
only for output data sets and when the 
user and the utility have called for 
the totaling facility via an entry in 
the DCB exit list. 

Note: At volwne switch time, the utility 
routines use the information contained in 
the flag byte of the second word to indi­
cate end of volume or end of data. 

PARAMETER LIST MODIFICATION 

For IEBUPDTE, the following modifica­
tions are made to the parameter list: 

• When there are user label-processing 
routines, the first meaningful field of 
the parameter list passed to the user 
output-label routine points to the 
label buffer. This buffer, which con­
tains a label data record from the 
SYSIN data set, is for the user to 
inspect before the record is written as 
a label. 

• If the error status inf orma ti on in the 
parameter list is established as a 
result of a reading error, the user 
routine must return one of the return 
codes (described in the next section> 
or the program will be terminated. 

• If the error status information is 
established as a result of a recording 
error, bit 1 (of the error-flags byte) 
is set to 1 to indicate that the error 
occurred during an output operation. 
In this case, the user routine must 
return a code of either 0 or 4, or the 
program will be terminated. 

• For header labels only, a fifth entry 
in the parameter list occurs under the 
conditions given below. The first byte 
of this entry is meaningless, and the 
last three bytes contain the address of 
the label that has been replaced from 
the old master data set (SYSUTl). The 
conditions Call of which must be pre­
sent> for the occurrence of the entry 
are: 
1. An update of the old master is 

specified via the keyword 
UPDATE=INPLACE. 

2. A LABEL statement must be speci­
fied for header labels in the 
input data set. 

3. A user label-routine corresponding 
to the LABEL statement is speci­
fied and user labels are enc·oun­
tered on SYSUTl. 



Return Codes 

One of the following return codes wust be placed in general register 15 when a user 
(label-processing) exit routine gives control back to the utility program. An incorrect 
(or no) code results in termination of the program. 

Type of Routine 
Input header or 
input trailer 
label 

output header or 
output trailer 
label 

code 
-0-

System (Utility) Response 
Resume normal processing. Ignore additional labels in the label 
group. 

4 Read next user label into buffer area. Return control to user­
exit routine. Resume normal processing if no more labels. 

16 Request termination of label processing. Utility program per­
forms clean-up functions and terminates. 

0 Resume normal processing. No label is written from buffer area. 

4 Write label from buffer area. Resume normal processing. 

8 Write label from buffer area. If less than eight labels 
created, return to exit routine. Otherwise, resume normal 
processing. 

16 Request ter~ination of label processing. Utility program per­
forms clean-up functions and terminates. 

RETURN CODE MCDIFICATIONS 

1. For IEBUPDTE, the following modifications are made to the return codes when the key­
word UPDATE=INPLACE is specified. 

Type of Routine 
Input header 

code 
-0-

System (Utility) Response 
Same as above. 

4 Same as above. 

8 Write label from buffer area. Resume normal processing. 

12 Write label from buff er area. Read next label into buff er 
area. Return control to user exit routine. Resume norrr.al 
processing if no more labels. 

16 Request termination of label processing. Utility program 
performs clean-up functions and terminates. 

Appendix B: User Label-Processing and Totaling 227 



2. For IEBCOMPR, the following modifications are made to the return codes, depending on 
the operand in the LABELS statement: (See Figure 70) 

Ty12e of Routine User Return code LABELS Statement s stem (Utilit ) Res on 
Input header or 16 DA'IA = ALL Return a code of 4 to 
trailer Labels Open routine .• Take no 

additional label exits. 
16 DA'IA =I: ALL Return a code of O to c 

routine. 
Ignore rest of labels. 

O* DA'IA ALL same as for code 16. 
O* DA'IA =I: ALL Same as for code 16. 

*After SYSUT1 and SYSUT2 have been opened, the following conditions are tested and the 
response indicated is taken. 

O, with 
a previous 
code of 16 

O, with 
no previous 
code of 16 

DA'IA = ALL 

DA'IA =I: ALL 

DA'IA = ONLY 
DA'IA =I: ONLY 

Compare the labels, 
then terminate the 
processing. 
Terminate the processin • 
compare available 
labels. Then check 
LABELS statement 
operand as follows: 
Terminate the processin 
Compare the data of the 
appropriate data sets. 

3. For totaling exits, valid only fer IEBUPD'IE and IEBGENER programs, the normal ret 
codes will be processed with the following modifications: 

228 

Code 
-0-

4 
8 

16 

Inv al id Codes 
under 16 
over 16 

Utility Res12onse 
No more exits will be taken. Normal processi 
is resumed. 
Continue processing with totaling exits. 
No more data processing or totaling exits. D 
sets will be closed and the requested output 
trailer label exits (if any) are taken. 
Program terminates all totaling and data proc 
sing, and returns control to the supervisor. 

Same as for code O. 
Same as for code 16. 

n 



Figure 70. 

Pms a Return 
Code of 0 Back 

to Opon 
Routine 

Ignore 
Rest of 
Labels 

Terminate 

D2 

No 

E2 

Set Flag 
to Indicate 

Code 

Complete 
Data Set 

Opening 
Procedure 

Compare 
ony Existing 

Labels 

v .. 

E3 

No 

Return Code Modification for IEBCOMPR Program 

Use General 
Return Code 

Pan a Return 
Code of 4 Bock 

to Open 
Routine 

Compare 
Data of the 
two Data Sets 

D4 

RoM Reel 
of Labels 

Take No 
More Label 

Exits 

Compare 
Labels 

Terminate 

Continue 
Pracealng 

DS 

E5 

HS 

Appendix E: User Label-Processing and Totaling 229 



Appendix C: DSCB Formats for the IEHLIST Program 

The format of the DSCB's as printed by the IEHLIST utility program are given in Figure 
71. 

Note: Non-significant high-order (leading) zeros are not printed. 
Print Position 1 1 1 

1 2 3 4 5 6 7 8 9 0 1 2 
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890 

Format 4 DSCB ,xxjxx, 

No. of 
available 
DSCBs in 
VTOC 

~ ~ ,xxjxx, 

No. of 
alternate 
tracks 
available 

CCC hhh 

Address of 
next avail­
able alter­
nate track 

ccc hhh rrr ccc hhh rrr 

Addres~of last 
active Format 1 
DSCB 

CCC hhh CCC hhh ccc hhh rrr 

Max. No. 
of DSCBs 
per track 

Max. No. of 
PDS directory 
blocks per 
track 

·1 
Address of a 
Format 6 DSCB, 
if applicable 

vTbc vTbc 
begin 
address 

end 
address 

I 
Address of 
this DSCB 

Format 5 DSCB 'A' represents the number of full tracks in oddition to the number of full cylinders available at the extent's location. 

xxxx xxx xxx / xxxx xxx xxx I xxxx xxx xxx / • • • etc. • •• 

[For each extent (separated by/), the value xxxx is the starting track address, relative to the beginning of the extent. The first xxx group in each case 
is the number of full cylinders available at the extent's location. The second xxx group in each case is the 'A' value.] 

DSCB ADDR CCC hhh rrr 

Format 6 DSCB Has same format as for a Format 5 DSCB, but the value of 'A' now represents the number of data sets sharing the extent. 

(Forrna t 1 DSCB) 
---------------DATA SET NAME-------------------
nnnn. • . 1 ,YYYYY, dddyy dddyy 

~'-I 
xx xx 
'-I 

xx 

I 
aaa aaaaaa 

I I-' 
aaa xxxxx 

I '-I' 

~ 
Logical 
Record 
Length 

y 
Key 
Length 

xx 

aaaaa aaaaa 

lnitiall 
Allocation 

Format 1 Volume 
Identifier Serial 

Number 

'T' 
Secondary 
Allocation 

Volume 
Sequence 
Number 

Data Set Data Set 
Creation Purge 
Date Date 

No. of 
extents 
for this 
data set 

xxx 
I 

ttttt rrr 11111 

Address ~f last 
block in data set 

No. of bytes 
in last PDS 
directory block 

CCC hhh CCC hnh etc. 

Organ- Record 
ization Format 
(DSORG) (RECFM) 

Option Data Set 
Code Blocksize 
(OPTCD) 

~cc hhh rrr 

AddJss of 
next DSCB 

ccc hhh rrr 

Addrss of 
this DSCB 

[For each of the first three extents (of which only the first is shown here) of the data set, xx is the extent number, the first ccc hhh is the lower 
(oddress) limit af the extent, and the second ccc hhh is the upper (address) limit af the extent.] 

(Format 3 DSCB) 

xx CCC hhh CCC hhh I xx CCC hhh ccc hhh / • • . etc. 

[For each extent (separated above by/), the value xx is the number af the extent (from 4-16), the first ccc hhh is the lower limit of the extent, and 
the second ccc hhh is the upper limit af the same extent.] 

(Format 2 DSCB) 

,rnrnrn b CCC hhh, ,mrnrn b CCC hhh, 

I I 
Address af the first Address of the first 

,ccc hhh rrr, ,ccc hhh rrr, 

I I 
,rnrnrn b CCC hhh, ,rnrnrn b CCC hhh, 
~~,-~ I ,rnrnm b lcc hhh, ,xxjxx, T 

Address of Address of 
track of the second track of the third 

Identification of Identification of 
last active entry last active entry 
on second level on third level 

first track of first track of 
level master index level master index 

ccc hhh rrr ..._ccc hhh rrr 

ldentifiiation of ldentiJcation 
last normal entry of last entry in 
in track index cylinder index 
on last cylinder 

master index 

,ccc hhh rrr, 

I 
Identification of 
last index entry 
in master index 

master index 
cylinder index lowest level 

master index 

mrnrn b c~~ hhh rrr Y ~ ~ 
Address of last record No. af No. of No. of 
in the prime data area index 

levels 
cylinder records 
overflow tagged 
tracks for 
on each dele­
cylinder lion 

xxxxxxxxx 

No. 1of 
records in 
the prime 
data area 

Address of No. of bytes Size 
first track of of main star- (in tracks) 
highest level age required of highest 
master index for highest level 

level index index 

,xxjxx,~ 

No. of No. of 
records in fu 11 
overflow cylinder 
area overflow 

areas 

•Figure 71. Description of Fields in Data Set control Block Formats 1-6 on Print-out by 
IEHLIST Program 

230 

Legend 

aa ... aa 

Name of Format 1 
DSCB Printout Field 

Initial Allocation 

DSORG 

REC FM 

OPT CD 

ccc hhh rrr 

dddyy 

rnrnrn b 

nnnn ••• 

ttttt rrr 11111 

xx ..• x 

yyyyyy 

Refers to Format 1 DSCB abbreviations for option code, record format, and organization given below:. 

Printout 
Position 

29 

35 

90 

92 

96 

97 

98 

99 

100 

104 

105 

106 

Abbreviation Appearing 
on Printout 

ABS TR 

TRKS 

CYLS 

RECS 

ROUND 

CONTIG 

MXIG 

ALX 

PS 

IS 

DA 

PO 

UN 

u 

u 
v 
F 

B 

T 

s 

A 

M 

w 
u 

c 

cylinder, track, and record number. l 

day and year (digits from 00000 to 36699) 

device identification 

DSNAME for Format 1 DSCB 

Meaning of 
Abbreviation 

Initial Allocation (on Direct Access) 

Absolute track address 

Tracks 

Cylinders 

Records 

Request (in records) was rounded up to a cylinder 
boundary. 

Contiguous extent requested 

Maximum contiguous extenf requested 

Five (or less) of the largest extents (each equal to or 
greater than the specified minimum) was requested. 

Data Set Organization 

Physical Sequential 

Indexed Sequential 

Direct Access 

Partitioned Organization 

Undefined Organization 

Unmovable Data Set. 

Record Format 

Undefined 

Variable 

Fixed 

Invalid format 

Blocked 

Track Overflow 

If RECFM is F: Standard Blocks (no truncated blocks or 
unfi lied tracks are embedded in the data set) 

If RECF M is V: Spanned Records 

ASA Control Record 

Machine control character 

Option Code 

Write validity check 

Allow data check for an invalid character on 1403 

Chained scheduling using Program Controlled Interruption 
(PCI) 

digits from 00000 000 00000 to 99999 999 99999. 

digits from 00 .•• 0 to 99 ..• 9 

digits from 000000 to 999999 (except for Volume Serial Number in Format 1 DSCB). 

1 For the 2321 data eel I, the ccc hhh part of the identification follows the interpretation given below for addressing: 

CCC 

hhh 

{ 
{ 

Digits 

1&2 

3 

1 

2&3 

Subcell value from 0-19 

Strip value from 0-9 

Cylinder value from 0-4 

Track value from 0-19 

e 



Alternate tracks, 
assigning of •••••••••••••• 87,202-205,223 

Auxiliary parameters for IEHPROGM, IEHMOVE, 
IEHLIST, IEHIOSOP, IEHUCSLD, IEHINITT, and 
IEHDASDR •••••••••••••••••••••••••••••• 12 

Catalog 
listing a •••••••••••••••••••••••• 45-49 
modifying a •••••••••••••••••••••• 18-29 
moving or copying a •••••••••••••• 30-44 

Channel programs for IEHDASDR ••••••• 85-86 
Close 

updating XCTL tables of •••••••••• 50-52 
Communication area 

IEBDG •••••••••••••••••••••••••• 174-176 
IEHMOVE •••••••••••••••••••••••••• 37-38 

comparing header and trailer labels ••• 116 
comparing labels as data •••••••••• 117-118 
Comparing records ••••••••••••••••• 114-117 
Control card scanner for IEHMOVE and 

IEHLIST ••••••••••••••••••••••••••••••• 15 
Copying and modifying records ••••• 120-124 

DASDI ••••••••••••••••••••••••••••• 202-205 
Data set 

indexed sequential 
copying ••••••••••••••••••••••••• 129 
loading ••••••••••••••••••••• 133-134 
printing •••••••••••••••••••• 133-134 
unloading ••••••••••••••••••• 130-131 
input stream •••••••••••••••• 149-155 
listing the directory of a 
partitioned •••••••••••••• 45-49,230 

members, copying and merging 111-115 
moving or copying ••••••••••••• 30-44 

scratching a ••••••••••••••••••••• 18-29 
SYSl.LOGREC •••••••••••••••••••••• 53-67 

Data set compression •••••••••••••• 111-113 
using XDAP macro instruction ••• 112-113 

Data set utility programs ••••••••• 103-197 
DCB exit list 

IEHMOVE ••••••••••••••••••••••••••••• 38 
DCB exit routine 

IEBDG •••••••••••••••••••••••••• 159-160 
Debugging aids 

IEBDG •••••••••••••••••••••••••• 173-181 
Default values 

IEBDG field definition (FD) •••••••• 164 
DENTIRE •••••••••••••••••••••••••••••••• 48 
Device allocation and volume mounting for 

IEHPROGM, IEHMOVE, and IEHLIST •••••••• 12 
Device mask table •••••••••••••••••••••• 12 
DFMT56 ••••••••••••••••••••••••••••••••• 48 
DFOR~ATl to DFORMAT4 ••••••••••••••••••• 48 
Direct access storage device initialization 

(see DASDI) 
DPARTIAL ••••••••••••••••••••••••••••••• 48 
Dumping a volume •••••••••••••••••• 206-208 
Dumping direct access volumes •••• 76,80-83 

Index 

EOV, updating XCTL tables of •••••••• 50-52 
Error procedures 

data cell •••••••••••••••••••••••• 86-87 
disk and drum • • • • • • • • • • • .• • • • • • • • • • • • 8 6 

Field select (IEBDG) •••••• 157,161-162,164 
Formatting procedure •••••••••••.••••• 84-87 

IPL records • • • • • • .• • • • • .• • • • • • • • • • • • • • 87 
vol Uine labels • • • • • • • • • • • • • • • • .• • • • • • • 8 7 
VTOC record ••••••••••••••••••••••••• 87 

Generator storage (2821), loading of 
user-supplied character images 68-75 

IBCDASDI •••••••••••••••••••••• 202-205,223 
IBCMPRS •••••••••••••.•••••••••• 206-210 ,223 
IBCRCVRP •••••••••••.••••••••••• 211-218,223 
IEBCOMPR •••••••••••••••••••••• 116-119,219 
IEBCOPY •••••••••••••.•••••••••• 111-115,219 
IEBDG •••••••••••.•••••••••••••• 156-197 ,223 

clean-up function •••••••••••••• 160,161 
FD pattern construction •••••••• 162-165 
FD table 

construction •••••••••••••••• 162-165 
modification •••••••••••••••••••• 170 
updating •••••••••••••••••••• 170-171 

generalized module functions ••• 157-158 
invocation ••••••••••••••••••••••••• 158 
modifying the output record •••• 170-171 
module residence ••••••••••••••••••• 157 
output data set records •••••••••••• 157 
processing control cards 

CREA'l'E ••••••••••••••••.•••••• 165-170 
DSD ••••••••••••••••••••••••••••• 160 
DUMP • • • • • • • • • .• • • • • • • • • • • • • • • 160 ,173 
END • • • • • • • • • • • .• • • • • • • • • • • ,. • • • .• • • 16 0 
FD • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 161 
REPEAT•••••••••••••••••••••••••• 160 

reading control cards •••••••••• 159-160 
scanning control cards • • • • • • • • • • .• • • 158 
tables used by create 
module ••••••••••••••••••••••••• 165-171 

I.EBEDIT ••••••••••••••••••••••• 149-155,219 
IEBGENER •••••••••••••••••• 120-124,219-220 
IEBISAM ••••••••••••••.••••.••••• 129-143 ,222 

intialization of ••••••••••••••••••• 129 
termination of ••••••••••••••••••••• 134 

IEBPTPCH •••••••••••••••••••••• 125-128,219 
IE·BUPDAT •••••••••••••••••••••• 144-148 ,223 
IEBUPDTE •••••••••••••••••••••• 103-110,223 
IEHDASDR ••••••••••••••••••• 76-103,220-221 

concurrent processing, definition of 76 
service routines • • • • .• • • • • • • • • • • • .. 8 8 -8 9 

abnormal end appendage • • • • • • • .• • • • 8 9 
alternate track •••••••••••••••••• 89 
data ••••••••••••••••••••••••••••• 89 
end-of-extent appendage •••.••••••• 89 
message builder ••••••••••••••• 88,89 
message writer .. • .• • • • • • • • • • • • • • • • • 8 9 
password protection • • • • • • • • • • • .• • • 8 9 
scan ••••••••••••••••••••••••••••• 89 

Index 231 



IEHINITT •••••••••••••••••••••••• 71-75,220 
IEHICSUP •••••••••••••••••••••••• 50-52,220 
IEHLIST ••••••••••••••••• 45-49,222-223,230 
IEHMCVE ••••••••••••••••••••• 30-44,221-222 
IEHPROGM •••••••••••••••••••••••• 18-29,222 
IEHUCSLD •••••••••••••••••••••••• 68-70,220 
IFCDIPOO •••••••••••••••••••••••••••• 53-55 
IFCEREPO •••••••••••••••••••••••••••• 56-67 
Independent utility programs •••••• 198-218 
Initializing direct access volumes ••••• 76 

analyze and format ••••••••••••••• 84-87 
channel programs ••••••••••••••••• 86 

GE."I'ALT •••••••••••••••••••••••• ,. • • • • • 88 
label •••••••••••••••••••••••••••• 87-88 

Initializing SYSl.LOGREC •••••••••••• 53-55 
Invoking system utilities •••••••••••••• 12 
I/O support, updating XCTL tables for 50-52 

Libraries, updating symbolic •••••• 103-110 
Listing system control data 45-49,230 

•Making copies• •••••••••••••••••••••••• 76 
Modifying system control data ••••••• 18-29 
Moving and copying data ••••••••••••• 30-44 

Null data set 
IEBDG •••••••••••••••••••••••••••••• 160 

Open, updating XCTL tables of ••••••• 50-52 

Parameters, auxiliary for IEHPROGM, 
IEHMOVE, IEHLIST, and IEHUCSLD •••••••• 12 

Partitioned data set 
listing the directory of ••••••••• 45-49 
members, copying and merging 

IEECCPY ••••••••••••••••••••• 111-115 
IEHMCVE ••••••••••••••••••••••• 30-44 

modifying the directory of ••••••• 18-29 
moving or copying a •••••••••••••• 30-44 
updating a ••••••••••••••••••••• 103-110 

Physical sequential data set 
record format •••••••••••••••••• 130-131 

Printing and punching records ••••• 125-128 

RDCDR'I' • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 15 
Record formats 

and variable spanned records for 
IEBPTPCH •••••••••••••••••••••••••• 126 

catalog ••••••••••••••••••••••••••••• 36 
how to find • • • • • • • • • • .• • • • • • • • • • • • • • • 38 
of DASDDR dumped data •••••••••••••• 206 
recovery output tape ••••••••••••••• 213 
SYSl.LCGREC ••••••••••••••••••••••••• 53 
SYSUTl ••••••••••••••••••••••••••• 32,36 
SYSUT2 •••••••••••••••••••••••••••••• 32 
SYSUT3 •••••••••••••••••••••••••••••• 34 
track zero ••••••••••••••••••••••••• 202 

Records 
comparing •••••••••••••••••••••• 116-119 
copying and modifying •••••••••• 120-124 
printing arid punching •••••••••• 125-128 

Recovering and replacing a track •• 211-212 
Restore a volume ••••••••••••••••• 76,83-84 

232 

Stand-alone utility programs 
(see independent utility programs> 

supervisory routine 
of independent utilities ••••.••• 198-201 

Support utility programs 
<see independent utility programs> 

Surf ace analysis procedure 
data cell • . • . • . . • • • . . . . .• • . . .• .. .. • . .• • • • 8 6 
disk and drum • • • • • • • • • • • • • • • • • • • .• 85-86 

Symbolic libraries, updating ••••.•• 103-110 
SYSl.LOGREC 

initializing ••••••••••••••••••••• 53-55 
writing records from ••••••••••••• 56-67 

System control data 
listing of • • • • • .• • • • • • • • • .. • • • .• • • • .• 45-49 
modification of •••••••••••••••••• 18-29 

System utility programs •••••••••••• 12-102 

'Iotaling image area • • • • • • • • • • • • • • • • • • .• 226 

Uncorrectable I/O error 
IEBGE~ ••••••••••••••••••••••• 121-122 

Ufdating symbolic libraries ••••••• 103~110 
User-label processing/exits ••••••• 224-229 

IEBCOMPR ••••••••••••••••••••••• 117-118 
IEBPTPCH • • • • • • • • • • • • • • • • .• • • • • • • 126-127 
IEHMO'VE • • • • • • • .• • • • • • • • • • • • • • • • • • • 33-37 
Return codes • • • • • • • • • • .• • • • • • • • • 227-228 

User totaling exit routine 
IEBGENER ••••••••••••••••••• 121-122,128 
IEBUPDTE ••••••••••••••••••••••• 104,228 

Variable-length records for IEBISA~ ••• 129 

Variable spanned records 
IEBGENER ••••••••••••••••••••••••••• 120 
IEBPTPCH ••••••••••••••••••••••••••• 126 
IEHMO'VE • • • • • • .• • • • • • • • • • • • • • • • • • • • • • • 33 

Volume 
dumping of ••••••••••••••••••••• 206-208 
initializing of •••••••••••••••• 202-205 
moving or copying a •••••••••••••• 30-44 
restoring of ••••••••••••••••••• 208-210 
scratching a data set from ••••••• 18-29 
table of contents, listing of •••• 45-49 

modifying of •••••••••••••••••• 18-29 
writing of •••••••••••••••••• 202-205 

Volume mounting for 
IEHPROGM, IEHMOVE, and IEHLIST •••••• 12 

Volume table of contents 
listing of ················••4••·~ 45-49 
modifying of ••••••••••••••••••••• 18-29 
writing of ••••••••••••••••••••• 202-205 

V'IOC format routines ••••••••••••••••••• 48 
VO'IC formatting •••••••••••••••••••••••• 48 

~ork data set record 
formats for IEHMOVE •••••••••••••• 32-36 

XCTL tables, updating 
for I/O support •••••••••••••••••• 50-52 

XDAP macro instruction 
used in data set compression ••• 112-113 



' 

' ' 

Indexes to program logic manuals are consolidated 
in the publication IBM System/360 Operating 
System: . Program Logic Manual Master Index, Form 
Y28-6717. For additional information about any 
subject listed above, refer to other publications 
listed for the same subject in the Master Index. 

Index 233 



Y28-6614-5 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.10601 
(USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

f 
t 

;;; 
~ 
\/) 

~ 
Cll 

~ 
~ 
0 

::,0 
~ 
Cll 

' 
c... 
:;· 

i c 
i.n 
}> 

-< 
~ 
I 

8: 
:; 
I 

Ot 



I 

I 

READER'S COMMENT FORM 

IBM System/360 Operating System 
Utilities 
Program Logic Manual 

• Is the material: 
Easy to read? . 
Well organized? 
Complete? 
Well illustrated? 
Accurate? 
Suitable for its intended audience? 

• How did you use this publication? 
D As an introduction to the subject 
D For additional knowledge 

Other 

• Please check the items that describe your position: 
D Customer personnel D Operator 
D IBM personnel D Programmer 
D Manager D Customer Engineer 
D Systems Analyst D Instructor 

Form Y28-6614-5 

Yes No 

D D 
D D 
D D 
D D 
D D 
D D 

D Sales Representative 
D Systems Engineer 
D Trainee 
Other 

• Please check specific criticism ( s), give page number( s), and explain helow: 
D Clarification on page ( s) D Deletion on page ( s) 
D Addition on page ( s) D Error on page ( s) 

Explanation: 

• Thank you for your cooperation. No post~ge necessary if mailed in the U.S.A. 



Y28-6614-5 

YOUR COMMENTS, PLEASE .•• 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers and operators of IBM systems. Your answers to the questions on the back 
of this form, together with your comments, will help us produce better publications for 
your use. Each reply will be carefully reviewed by the persons responsible for writing 
and publishing this material. All comments and suggestions become the property of IBM. 

~: Please direct any requests for copies of publications, or for assistance in using your 
IBM system, to your IBM representative or to the IBM branch office serving your locality. 

Fold 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Attention: Programming Systems Publications 
Deportment D.58 

Fold 

POSTAGE Will BE PAID BY ••• 

IBM Corporation 

P.O. Box 390 

Poughkeepsie, N.Y. 12602 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.10601 
!USA Only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International) 

Fold 

FIRST CLASS 
PERMIT NO. 81 
POUGHKEEPSIE, N. Y. 

Fold 

I 

;; 
~ 
Vl 
~ 
iD 

t 
0 

::.0 :;· 

f 
;-
a.. 
:;· 
c 
i.n 
> 

-< 
~ 

& 
~ 
I 

lJ1 


