File No. S360-32
Form Y¥28-6614-5

Program Logic

IBM System/360 Operating System
Utilities

Program Logic Manual

Program Number 360S-UT-506

This publication describes the internal logic of
the utility programs provided for the IBM System/
360 Operating System:

e System utilities, which are executed under the
operating system to manipulate system data
sets such as catalogs.

e Data set utilities, which are executed under

the operating system to work with data sets at
the logical-record level.

e Independent utilities, which are executed out-
side of the operating system to dump, restore,
and recover data, and to initialize and assign
alternate tracks on direct access devices.

In addition to descriptive text, this publica-
tion contains flowcharts of the programs, figures
showing the formats of the major tables and rec-
ords, and an appendix that lists the modules of
the utility programs.

Program Logic Manuals are intended for use by
IBM customer engineers responsible for program
maintenance, and by system programmers involved in
altering the program design. Because program
logic information is not necessary for program
operation and use, distribution of this manual is
restricted to persons with program maintenance or
modification responsibilities.

Restricted Distribution

RESTRICTED DISTRIBUTION: This publication is intended pri-
marily for use by IBM personnel involved in program design
and maintenance. It may not be made available to others
without the approval of local IBM management.

Sixth Edition (July, 1969)

This is a major revision of Form Y28-6614-4. It contains the
following new or modified material.

e Changes have been made in the IEHPROGM, IEHMOVE, and IEH-
LIST utilities to eliminate specific unit entries from
the Device Mask and Device Name Tables. These changes
are indicated.

e The IEHLIST utility has been expanded to provide a list-
ing of the DSCBs in the VTOC.

e The list of EREP Machine-Dependent Modules now includes
modules for the Model 85.

e The facility for user totaling-exits has been added to
the IEBUPDTE and IERGENER utilities.

e The Data Generation Program has been modified to support
Indexed Sequential data sets. A new option has been
added to permit selection of specific ingput record
fields.

Other changes to text, and small changes to illustrations,
are indicated by a vertical line to the left of the change;
changed or added illustrations are denoted by the symbol e to
the left of the caption.

| This edition applies to release 18 of IBM System/360 Operat-
ing System and to all subsequent releases until otherwise
indicated in new editions or Technical Newsletters. Changes
are continually made to the specifications herein; before
using this publication in connection with the operation of
IBM systems, consult the latest IBM System/360 SRL News-
letter, Form N20-0360, for the editions that are applicable
and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming Systems Publica-
tions, Department D58, PO Box 390, Poughkeepsie, N. Y. 12602 Q

l © Copyright International Business Machines Corporation 1966,1967,1968,1969

The purpose of this publication is to
enable the reader to locate specific areas
of the utility programs provided for the
IBM System/360 Operating System, and to
relate those areas to the corresponding
program listings.

The publication is divided into three
major sections, corresponding to the three
major types of utility programs: system
utilities, data set utilities, and inde-
pendent utilities. Each section contains
descriptions of the programs of the corre-
sponding type; these descriptions consist
of text, flowcharts, and fiqures showing
record and table formats.

The introduction provides a brief
description of each utility program, and an
appendix lists the modules of the utility
programs.

To use this publication effectively, the
reader should have an understanding of the
material in the following publications:

Preface

IBM System/360 Operating System:

Principles of QOperation, Form A22-6821

Utilities, Form C28-6586

Concepts and Facilities, Form C28-6535

System Control Blocks, Form C28-6628

Introduction to Control Program Logic
Program Logic Manual, Form Y28-6605

IBM System/360 Component Descriptions-

2841 Storage Control

2302 Disk Storage, Models 3 and 4

2311 Disk Storage Drive, Model 1

2321 Data Cell Drive

2303 Drum Storage, Form A26-5988

Preface

3

Contents

INTRODUCTION o« o o o o o « o o s o o« « o 11 Program FIOW . ¢ « ¢ « o « « o « » s « 53
First Pass « « « « « o o« o« « =« « o« « 53
SYSTEM UTILITY PROGRAMS . « « « « « « o 12 Second Pass .« « « o e e« o« o« o « 53
Auxiliary Parameters P 1 S¥S1.LOGREC Record Format e o e o o o 54
Device Allocation and Volume Mount1ng Header Record e o « o o o 54
(IEHMVSSF and IEBMVXSF) . ¢« o o o« « « 12 Statistical Data Records e« o o o o o 54
‘ Control Card Scanner (RCCDRT) 15 Record Entry Area . « « « « « « « « 54
Modifying System Control Data Editing and Printing Environmental
(IEHPRCGM) ¢ « « « 2 o s o s s o« a =« « « 18 Records (IFCEREPO) . <« « « « o « « = « « 56
Program Structure . « « « « « « « « « 18 Overall FIOW « « o« « o ¢ « « « « « « 56
Control ILoad Modules . « « « o « « « « 20 SYS1.LOGREC INPUt =« « « « ¢« « o « « 56
The Root (IEHEBASE) « « . « 20 Accumulation Input -« « « « « &« « « « 57
The Parameter List Euilder Control Module Subroutines 58
(IEHEUP1, IEHEDC1, IEHEDC2) 20 Loading the 2821 Generator Storage
The Volume Mounter (IEHMOUNT, (IEHUCSLD) ¢« « 2 o « o « o« « =« « « =« « « 68
IEHVCLNMT, DEVMASKT) 21 Program Flow . . . - e e « » . 68
The SVC Return Analyzer (IEHEUPlA) . 21 Writing Tape Labels (IEHINITT) « e e e o 11
Sukordinate ILoad Modules 22 Program F1OW « ¢ « « o « o o o « « o« 711
The Auxiliary Parameter Analyzer Program Structure . . . - . . 71
(IEHINVOC) o 2 o o « o o o « = = o « 22 Dumping, Restoring, and Inltlallzing
The Message Writer (IEHEMSGX) . . . 22 Direct Access Volumes (IEHDASDR) 76
Volume Look-up (IEHDTTLU, DEVNAMET) 22 The Control Routine (IEHDASDS) . . . 76
Program FIOW . < o ¢ ¢ ¢ ¢ « o o o « o 22 Performing the Dump Function 80
Phas€ 1 . ¢ ¢ ¢ ¢ ¢ ¢ o e« o « « =« « 23 Performing the Restore Function . . 83
Fhase 2 . ¢« o« o ¢ o o o o » o« s « o« 23 Performing the Analyze and Format
Fhase 3 . ¢ ¢ ¢ o « o o o o « = » « 204 FUNCtionNS .« « ¢ o o « o « o « « « « 84
Moving and Copying Data (IEHMOVE) . . . 30 Performing the lLabel Function . . . 87
™ Overall FIOW « « « « « « o « o« =« « « o 30 Performing the GETALT Function . . . 88
Program Structure . . « « « « « « « « 30 IEHDASDR Service Routines 88

Program Set-up (IEHMOVE, IEHMVXSE,
IEHMVXSF) ¢ o o ¢ o« o o « o « « « = 30 DATA SET UTILITY PROGRAMS . . . « « 2103

Request Set-up (IEHMVEST, IEHMVESJ, Updating Partitioned and Sequentlal
IEHMVESS) <« « o « & e« o o o o « o 30 Data Sets (IEBUPDTE) . + « « « « « « « 103
Message Writing (IEHMVESA, Program Structure « « « « o 103
IEHMVESU) &« o o o o « o o o o @ « 32 The Root Segment . . . « o e . 103
DSGRCUP Set-up (IEHMVESI, IEHMVESC, The Control Card Analyzer Segment .104
IEHMVESH) ¢ o o o o o o s o = o o » 32 Initialization Routine Module . . .104
Data Set and Volume Set-up Program FIOW « <« ¢« ¢« ¢ o o o« o o « « 2104
(IEHMVESZ, IEHMVXSF, IEHMVESX, Processor Data FI1OW . « « « « « « « <105

IEHMVESV, IEHMVESY) . . « ¢ « « « - 32 Copying and Merging Partitioned Data
FDS Sukroutines (IEHMVESR, Set Members (IEBCOPY) . o o « o « =« - 2111
IEHMVETG, IEHMVXSF) . « « « « « » « 33 Program Structure . . « « ¢ o « o« « 111
Copying, Unloading, and Loading . . 34 The Root Segment111
. DSGROUF Wrap-up (IEHMVESH, The Control Card Analyzer Segment .111
IEHMVETA) .« o« o o o o e o o o o 37 The Processor Segment111
Data Set Wrap-up (IEHMVESN, Program Flow . - e o o o « <112

IEHMVESC, IEHMVESP, IEFHMVESQ, Copying Without Data Set
IEHMVESK) . .« - « & e e o o o - o 37 Compression . - . e e e o o o « 2113
Communication Area (IbHMVV) o o o - 37 Copylng With Data Set Compression .113
IEHMOVE Work Data Set Record Formats . 38 Comparing Records (IEBOCMPR)116
Cbtaining Space for a Work Data Set 38 Program Structure116
Releasing Space Used by a Work The Root Segment . « « « « o « & .116
Data Set « « « <« <« - . 38 The Control Card Analyzer Segment -116
Listing System Control Data (IEHLIST) . U5 The Processor Segment116
Program Structure . . « o e e .« - U5 Program Flow . « « « . . e o e e - £117
Updating XCTL Takles for OPEN, CLOSE, Copying and Modifying Records

and EOV (IEHICSUP) . « « « « o« o « = 50 (IEBGENER) . « « « « o =« @ o « « « « o« 120

Program F1OW . . « ¢« « ¢ o « o « « « « 50 Program Structure . « « « « ¢ « « « o120

Finding the lIoad Module 50 The Root Segment . « « « « « . . « 120

: ‘i# Updating the XCTL Table . . « - 50 The Control Card Analyzer Segment .120
4 Initializing the SYS1.LOGREC Data Set The Processor Segment . . « « « « 2120

(IFCDIPOO) o o o« o o o o o o o o o « « » 53

Contents 5

Printing and Funching Records Service Aids e e o o o <172
(IEBFTPCH) . o« o o o o o o ¢ « o « « « 2125 Tables and Work Areas Used by
Program Structure « « o . . o125 Modules of Data Generator Program .180
The Root Segment e o o 125
The Control Card Analyzer Segment 125 INDEPENDENT UTILITY PRCGRAMS198
The Processor Segment125 Supervisory Routines of the Independent

Program FIOW . « « « « « « « « « o « 126 Utilities . v ¢ o o o o o o o o = « » 198
Operating on an Indexed Sequential Checking the Input Device198
Data Set (IEBISAM) . . « o« « « o « « » «129 Data Input Routine . . . « « « « . . .198

Initializing IERISAM . « « « + « « « <129 Control Statement Analysis198

Corying an Indexed Sequential Data Volume Label Checking . . « « .« . . .199

Set -129 Message Output Routine199

Unloading an Indexed Sequentlal Data write to Operator Routine199

SEt . . e ¢ e e e o e o o o o e o o 2130 I/0 Control Routine199

Cbtaining Indexed Sequential 170 Interruption Analysis200

Records . ¢« o o o o o o o« o « « o 2130 Initializing and Assigning Alternate
Building the Cutput Data Set130 Tracks on Direct Access Volumes

Loading an Indexed Sequential Data (IBCDASDI) « 2 = « = o o o« = = « = « =« 2202
SEt ¢ ¢ e e e o o o o o o e s o o o 2133 Program F1OW . « « = o o« o o o s « o 2202
Printing Logical Records of an Initializing a Volume203
Indexed Sequential Data Set133 Oktaining Alternate Tracks204
Terminating the IEBISAM Program . . .134 Dumping and Restoring a Direct Access
Updating Symkolic Libraries (IEBUPDAT) .144 Volume (IBCDMPRS) =« « o o o « « « « « 206
Program Structure 1844 Dumped Data Format « « « « o « « « « 206
Initialization « &« « - . . J144 Program FIOW . « « ¢ o « « « o o o« « 2207
Member PYOCESSOX . « « o« « o« « « « <1U4b4 DUMPING o+ 2 ¢ o o « « s-s o = o « 2207
Within Member Processor145 Restoring . « « ¢« « « « =« « « « « 2208
Program Flow . . . e « « o « o« « 2146 Recovering and Replacing a Track
Creating a Modified Input Stream (IBCRCVRP) ¢ o ¢ « o« o« o o o« o o o« =« « 2211
(IEBEDIT) =« « o o o « o = = =« o « « « <149 Overall FI1OW . ¢« ¢ ¢ ¢ o o o o o« o o211
Program Structure « « « « . <149 Recovering « « « o« ¢ o o o o o o o« 2212
The Initializing Routine149 Replacing . ¢ « o o o o o« o o o« o 2212
The Main Routine149
The Post Processing Routine151 APPENDIX A: MODULES OF UTILITY ("
IEBEDIT Subroutines . . . e o « 2151 PROGRAMS ¢ ¢ ¢ « o o » o o o o o o« « « 2219
The Data Generator (IEBDG) Program e o <157 TEBCOMPR ¢ ¢ ¢ « o o o o o « o o « 2219
Program Functions . . « « « = « - 157 TEBPTPCH . ¢ o ¢ =2 o ¢ o o o « o « <219
Control Card Scanning158 JEBCOPY « ¢ « « o o o o o« o o o« « 2219
The Base Module (IEBDG) Charts JEBEDIT . o o « « o o o o « = « o 2219
60,61,62 < ¢« « « o « ¢ o « « « o« o « 2158 IEBGENER « « « o « o « o o o « = & 219
Initialization « « ¢« « ¢« « « ¢« « . .158 JEHUCSID o « « = « o o o« o o o o o« 2220
Cpening Data Sets158 JEHIOSUP « o« « o o o o o o o =« o » 220
MESSagesS . .« o« - - e = s« o = =« « «159 IEHINITT . 2 2 o « o o « o « « « « 2220
Reading Control Cards e« o o « o o 2159 JEHDASDR « o o o « o o« o« « o « « o 220
Base Module Card-Processing160 JEHMOVE . © o o o « o = o =« = o o 2221
The Clean-up Module (IEEDGCUP) Chart IJEBISAM &« 2 o « « o o o o = o o o 2222
63 o « o <160 TJEHPROGM ¢ ¢ « © o o o o o o = o o 0222
The FD Analysls Module (IEEFDANL) JEHLIST =« « o o o o o s o« o o o« o 2222
Charts 64,65 ¢« ¢ ¢ ¢« o o « o« o « « « o161 JEBUPDAT « « « © « o o « « o o o o« 2223
FD Card Scanning . « « . « « « « « .161 JEBUPDTIE . 2 o o « o o = o o « o o 223
The FD Table Module (IEBFDTBL) IBCDMPRS ¢ ¢ o « « « o o a o« o o« o 223
Charts 66,67 . . « « o « « o « « « o« 162 IBCRCVRP <« 2 =« o « o « a « o« o o o« 2223
FD Pattern Constrxuction162 IBCDASDI -« « « « = o s« « o o « o o 223
The Create Analysis Module (IEBCRANL) TEBDG 4« o o o o o o o o o o = o o 2223
Charts 68,69,70,71,72 « - « .165
Table Construction . . . « - « « « .165 APPENDIX B: USER LABEL-PROCESSING AND
Module Entries . . « « <« « o . « <165 TOTALING <« o o o o = 2 o o o o o o s o o224
Module Subroutines <« <166 Parameter LiSt . .« . ¢« o o o « « o « » 226
Keyword Processing . . e o . -167 Parameter List Modification226
The Create Module (IEBCREAT) Return Codes . . . e e = o ° e o o o <227
73,78 . @ ¢ ¢ ¢ 4 o o o o o - « <170 Return Code Mod1f1cat10ns e o o o o 2227

.170
.170 APPENDIX C: DSCB FORMATS FOR THE
IEHLIST PROGRAM =« « « « « o o o « « « <230

INDEX <« o o o o o « o « o « o o = « « =231 o

Cutput Record Mod1f1catlons -
Updating the FD Table . . .
The Message Module (IERDGMSG) Cha

TS5 ¢ o o o o a a o o o o a o o @

]
uHAon('fnuo
(2]

« <171

-

Figures

Figure 1. Auxiliary Parameter Format
for IEHPRCGM, IEHMOVE, IEHLIST,
IEHICSUP, IEHUCSLD, IEHINITT, and
IEHDASDR e o & o o o e o s o o o e e
Figure 2. 1Internal Table Header . .
Figure 3. Volume Mounting Request .
Figure 4. Internal Table Maintained
Ey IEHVCIMT « o« o « o o o o o o« o o
Figure 5. The General Design of
the IEHPRCGM Program o .
Figure 6. The Overlay Structure of
the IEHFROGM Program (Each block
represents one control section) . . .
Figure 7. The Structural Flow of

IEHPROGM Program (Each block represents

one load module) e o o o o o o = o o
Figure 8. Linkage Procedure Used by
the IEHPRCGM Program to Invoke a
Subordinate Load Module <« . .
Figure 9. IEHECHAR, the
Communication Table for

FNDECCDE, KCDECCDE, IEHESCAN, and IEHEILU

Figure 10. The CATALOG Routing Table
Figure 11. Parameter Lists Built by
IEHPROGM for Data Management Routines
Figure 12. The Return-Indexing Entry
(for the cCatalog SVC) of the Catalog
Operation . « ¢ ¢ ¢« ¢ o ¢ ¢ o o o o

Figure 13. The Design of the IEHMOVE
PrOgram . « « « « « o o o = « = « o =
Figure 14. SYSUT1 Record Format (for

a PDS request only) . . « « « « o o &
Figure 15. SYSUT2 Record Format (for
a PDS Request only) . . . « « « « . .
Figure 16. SYSUT3 Record Format .- .
Figure 17. Load Module Groupings for
Copying, Unloading, and Loading . . .
Figure 18. SYSUT1 and SYSUT2 Record
Formats for DSGROUP; SYSUT1 Record
Formats for CATALOG . « « « « « o « «
Figure 19. Label Save Area Pointers
Figure 20. Where to Find Record
FOXrmatsS o« o« o o« o o ¢ e @ o o o o « o
Figure 21. The Overlay Structure of
the IEHLIST Program .« « « « o « o o
Figure 22. The Structural Flow of the
IEHLIST Program . « « « « « - .
Figure 23. Embedded XCTL Table Format
Figqure 24.

Second Passes of IFCD1POO0
Figure 25. Control Flow Between
MOAULlES .« ¢ « o « o o ¢ o a o o o o
Figure 26. EREP Machine-Dependent
MOAUlES =« o o o o = o o o o o o = = o

Figure 27. Writing Tape Labels . . .
Figure 28. IEHDASDR Common Work Area
Figure 29. IEHDASDR Function Block .
Figure 30. IEHDASDR Copy Block . . .
Figure 31. IEHDASDR Control Routine
Processing at Functional Routine

Return a 2 o o @ @ s e e o o s = ® @

SYSl.LOGREC After First and

13
14
15

18

19

19

20

23

24
25

26
31
32

32
34

35

36
38

38
45
46
50
53
56
57
77

78
79

80

Illustrations

Figure 32. IEHDASDR Function Block --
Dump/Restore Area . . . « « « o« .

Figure 33. 24-Byte Limits Record .« .
Figure 34. Restore Tape Format . . .
Figure 35. IEdDASDR Function Block =--

Analyze/Format Area . . o«« e
Figure 36. Analyze/Format Channel

Programs e e 2 s s a e e s e s o o &
Figure 37. Format of Track 0, Records
Oand 1 . & ¢« ¢« o « o © o o o o « = =
Figure 38. IEHDASDR Function Block --
Lzabel Area e e e 8 s e e e = o o o o
Figure 39. IEHDASDR Function Block --
GETALT AY€A <« o o =« o a o = o o = o =

Figure 40. SVC 82 Parameter Lists .
Figure 41. IEBUPDTE Overall Flow . .
Figure 42. IEBUPDTE Principle of

Operation . ¢ ¢ o o o o o o o o = « &
Figure 43. Overlay Structure of the .
Figure 44. Overlay Structure of the
IEBCOMPR Program e o @ @ o o e o o o
Figure 45. Overlay Structure of the
IEBGENER Program - . B .
Figure 46. Overlay Structure of the ~
IEBPTPCH Program . o “« o o o s e o
Figure 47. Work Area Settlngs for
Support of Variable Spanned Records
Figure 48. Module Directory, Summary,
and Chart IDs for IEBISAM Program . .
Figure 49. Unloading and lLoading an
Indexed Sequential Data Set
Figure 50. Functional Structure of
the IEBUPDAT Program e o o o o e o @
Figure 51. EXEC Statement
Includes/Exclude Processing e e e o @
Figure 52.
Table ENtIY <« « o o o o o o o o o o &
Figure 53. Scan Routine Parameter
Table Entry . « o « o o o o ¢ o o o @
Figure 54. Scan Routine Fixed Operand
Table ENtrYy .« « o o o o o o o o« « o &
Figure 55. Information Summary and
Overall Flow of Data Generator Program
Figure 56. Storage Area Obtained by
Base Module for Current DCB . . « . .
Figure 57. FD Table Constructed by FD
Analysis Module and FD Table Module .
Figure 58. Create Table Constructed
by Create Analysis Module
Figure 59. FD Address Table
Cconstructed by Create Analysis Module
Figure 60. User Exit Name Table
Constructed by Create Analysis Module
Figure 61. Picture Table Constructed
by Create Analysis Module
Figure 62. The Use of UCBs in the
Independent Utilities
Figure 63. Track Zero « e o o o @
Figure 64. Dumping and Restoring a
Direct Access Track . . « « « « o &
Figure 65. Main Storage Management
for Recover Replace . . < « « « « « &

Scan Routine Operation Code

. 81
. 81
. 83
. 85
. 85
. 87
. 88
. 88
. 89
.105

- 107
<112

.117
.121
125
126
.130
.132
.145
150
.151
.152
.152

156
160
.163
.166
-167
.168
.169

. 200
202

.208

.211

Illustrations 7

Figure 66.
Tape - - - - - - - - L] - - - - -
Fiqure 67. An Example of the

Recover-Replace Cycle .
Figure 68. i
Program With User Label-Processing
Routine Exits e e e o o o s o

Tables

Table 1. Access Methods Used for
Comparing Records . « « « « « « o
Table 2. FD Control Card Keyword
Parameter Processing, and Default

Values Assigned, if
Table 3.
Fields in the FD Table
Table 4.

ReCOXdS .« v o o 2 2 o« 2 « a o o =

Changes Made to FD Table
Values as Create Module Builds Output

Format of Recovery Output

General Logic of Utility

. 2212

« «213

. <225

. <116

. -164

Values of Increment-Restore -

. <171

. «172

Figure 69. Parameter List Passed to
User-Label Exit Routine
Figure 70. Return Code Modification
for IEBCOMPR Program « o o o
Figure 71. Description of Fields in
Data Set Control Block Formats 1-6 on
Print-out by IEHLIST Program230

«226
.229

Table 5. Common Communication Area

(Part 1 0of 3) . ¢ ¢ ¢ ¢ ¢ o o o« o o« « <178
Table 6. Data Control Block177
Table 7. Defined Constants for

Modules of the Data Generator Program .178
Table 8. Equated Symbols for Modules

of the Data Generator Program . « « . .179
Table 9. Data Generator Modules
Information Tables and Areas180
Table 10. Module Inputs and Outputs . .181

Charts

Chart 01. IEHVOLMT - Volume Mounting
LOGiC o o o ¢ ¢ o o o o o o o o =« o @
Chart 02. IEHPROGM Phase 1 -
Modifying System Control Data
Chart 03. IEHPROGM Phase 2 -
Modifying System Control Data
Chart O4. IEHPROGM Phase 3 -
Modifying System Control Data -

Chart 05. IEHMOVE Overall Loglc « o .
Chart 06. IEHMOVE DSGROUP Logic . . .
Chart 07. IEHMOVE VOLUME Logic . . .
Chart 08. IEHMOVE PDS Logic
Chart 09. IEHMOVE DSNAME Logic . . .
Chart 10. IEHMOVE CATALOG Logic . . .
Chart 11. IEHLIST - Listing System

Control Data =« . . . © e e e e e e
Chart 12. IEHIOSUP - Updatlng 1/0
Support XCTL Tables . « « o« « o« « « =
Chart 13. IFCDIPO0 - Initializing the
SYS1.LOGREC Data Set . .« .« .« « . -
Chart 14. IFCEREPO In1t1allzat10n and
Linkage to Editing Modules
Chart 15. EREP - Input From
SYS1.LOGREC Data Set « « ¢ ¢ o o« o« « &

Chart 16. EREP - Input From
Accumulation Data Set
Chart 17. EREP - Accumulation Input -
End of Data . . . ¢« ¢« &« ¢ ¢ ¢« o o &
Chart 18. EREP Termination
Chart 19. IFCSDRO0 - Editing SDRs . .
Chart 20. IFCOBRO0 - Editing OBRs .
Chart 21. IFCMCHO00 - Editing Inboard

and CPU Records (Part 1 of 2) -
Chart 22. IFCMCHOO - Editing Inboard
and CPU Records (Part 2 o0f 2)
Chart 23. IEHUCSLD - Loading the 2821
Generator Storage . . « . . . « o .

Chart 24. IEHINITT (Part 1 of 2) o o
Chart 25. IEHINITT (Part 2 of 2) . .
Chart 26. SVC 39 Tape Label Routine .
Chart 27. IEHDASDR Overall Flow . . .
Chart 28. IEHDASDR Control Routine

(Part 1 of 2) - - - e

Chart 29. IEHDASDR Control Routlne

(Part 2 O0f 2) . 4 @ ¢ o e o o o o o

Chart 30. IEHDASDR Dump Routine - .
Chart 31. IEHDASDR EXCP Routine e o
Chart 32. I£HDASDR Restore Routine .
Chart 33. IEHDASDR Rnalysis Routine

Chart 34. IEHDASDR VTOC Routine . . .
Chart 35. IEHDASDR Data Cell Analysis

ROUtine . o o o 2 o o o o o o a o o o

Chart 36. IEHDASDR Label Routine . .
Chart 37. IEHDASDR GETALT Routine . .
Chart 38. IEHDASDR Password

Protection Routine . . . « o = .

Chart 39. IEHDASDR SVC 82 Routlne - .
Chart 40. IEBUPDTE (Part 1 of 3) « .
Chart 41. IEBUPDTE (Part 2 of 3) -

| chart 41.1. IEBUPDTE (Part 3 of 3)

s & o 2 3 e
-]
&

-101

.108
-109
.110

Chart 42. IEBCOPY - Copying and
Merging Partitioned Data Set Members
(Part 1 0f 2) . & ¢ o o ¢ ¢ ¢ o o « @
Chart 43. IEBCOPY - Copying and
Merging Partitioned Data Set Members
(Part 2 0f 2) . ¢ ¢« ¢ ¢ ¢ ¢ o« o o o & 2115

.114

Chart 44. IEBCOMPR - Comparing Records 119
Chart 45. IEBGENER - Copying and

Mcdifying Records (Part 1 of 2)123
Chart 46. IEBGENER - Copying and

Modifying Records (Part 2 of 2)124
Chart 47. IEBPTPCH - Printing and

Punching Records « . « « « « « « o« « - .128
Chart 48. IEBISAM - Overall Flow . . .135
Chart 49. IEBISAM - Initialize

JEBISAM Program <« « « « « « « « « « « 2136
Chart 50. IEBISAM - Copy Indexed
Sequential Records (IEBISC)137
Chart 51. IEBISAM - Retrieve Indexed
Sequential Records (IEBISU)138

Chart 52. IEBISAM - Unload Fhysical
Sequential Records (IEBISSO) . . « . « .139
Chart 53. IEBISAM - Reconstruct
Indexed Sequential Records (IEBISL) .
Chart 54. IEBISAM - Retrieve Physical
Sequential Records (IEBISSI)
Chart 55. IEBISAM - Print logical
Records (IEBISPL) =« « « o « o o o « o
Chart 56. IEBISAM - Terminate IEBISAM
Program (IEBISF) <« o ¢ o ¢ ¢ ¢ o o o« =
Chart 57. IEBUPDAT - Updating
Symbolic Libraries . . ¢« ¢« o« ¢« ¢« o « »
Chart 58. IEBEDIT Main Routine (Part
1 0f 2) o v 4 ¢ a4 o o o« o o o o o o
Chart 59. IEBEDIT Main routine (Part
20f 2) 4 4 i 4 e e e e e e e e e e e
Chart 60. IEBDG Base Module (pPart 1
Of 3) & ¢ 4 v 4 @ @ e o o o o o o @
Chart 61. IEBDG Base Module (Part 2
3

.140
<141
.142
.143
.148
.154
.155
.« +182
Of 3) & v ¢ ¢ o o o o o o o o o . . -183
Chart 62. IEBDG Base Module (FPart

Of 3) & 4 4 i e e e e e e e e e e e
Chart 63. IEBDG Clean-Up Module,
IEBDGCUP « <« <« o « © o « o « o« s o o =
Chart 64. IEBDG FD-Analysis Module,
IFBFDANL (Part 1 of 2) «
Chart 65. IEBDG FD-Analysis Module,
IEBFDANL (Part 2 of 2) . . . « <« « . .
Chart 66. IEBDG FD-Table Module,
IEBFDIBL (Part 1 of 2) - o .
Chart 67. IEBDG FD-Table Module,
IEBFDIBL (Part 2 0of 2) . ¢ o ¢« ¢ « « &
Chart 68. IEBDG Create Analysis
Mcdule, IEBCRANL (Part 1 of 5)
Chart 69. IEBDG Create Analysis
Module, IEBCRANL (Part 2 of 5)
Cnart 70. IEBDG Create Analysis
Module, IEBCRANL (Part 3 of 5)
Chart 71. IEBDG Create Analysis
Mcdule, IEBCRANL (Part 4 of 5)

Chart 72. IEBDG Create Analysis
Module, IEBCRANL (Part 5 of 5)

.184
-185
.186
-187
.188
.189
.190
.191
.192
.193

.194

Illustrations 9

Chart 73. IEBDG Create Module,

IEBCREAT (Part 1 0f 2) « . - .« 195
Chart 74. IEBDG Create Module,

IEBCREAT (Part 2 0f 2) « « . .« .196
Chart 75. IEBDG Message Module,

IEBDGMSG o o« o o o o « o o o o « o =« « 2197
Chart 76. IBCDASDI - Initializing and
Assigning Alternate Tracks on Direct

AccesSsS VOlUmES « .« o ¢« o o o« o o o o « 2205

Chart 77. IBCDMPRS - Dumping and

. Restoring a Direct Access Volume210

Chart 78. IBCRCVRP Overall Logic . . .214
Chart 79. IBCRCVRP Recover Logic . . .215
Chart 80. IBCRCVRP Recover Data Check
ROUtINE . ¢ ¢ 4 4 o o o o o o o o « o 216
Chart 81. IBCRCVRP Recover Count

Check and End-of-Track Routines217
Chart 82. IBCRCVRP Replace logic . . .218

9

IBM System/360 Operating System provides
the user with utility programs that perform
tasic operations. These programs are
grouped in three categories: system utili-
ties, data set utilities, and independent
utilities.

System utilities are executed under the
operating system; these programs treat data
associated with the structure of the opera-
ting system. They are:

e IEHPROGM, a program that modifies con-
trol data contained in catalog and
volume structures.

e IEHMCVE, a program that duplicates
collections of data sets to produce
extra copies or rearrange existing
ones.

e IEHLIST, a program that lists a catalog
(or a portion thereof), a volume table
of contents, and the directory of a
partitioned data set.

e IEHICSUP, a program that updates the
Transfer Control (XCTL) tables embedded
within load modules and access executor
modules for the 1I/0 support functions
OPEN, CLCSE, and EOV.

e IFCDIP00, a program that writes the
SYS1.ICGREC data set in initialized
format.

e IFCEREPO, a program that edits and
prints environmental records from
SYS1 .LGGREC.

e IEHUCSLD, a program that loads the 2821
generator storage with user-supplied
character images.

e IEHINITT, a program that creates volume
labels on magnetic tape.

e IEHDASDR, a program that dumps,
restores, and initializes direct access
volumes.

Data set utilities are executed under
the operating system and perform operations
on data sets at the logical record level.
They are:

Introduction

e IEBCOPY, a program that copies all or a
specified portion of a partitioned data
set.

e IEBCOMPR, a program that compares two
data sets at the logical record level.

e IEBGENER, a program that copies or con-
verts a sequential data set to a parti-
tioned data set.

e IEBPTPOH, a program that prints or
punches all or selected portions of a
sequential data set, a partitioned data
set, or specified members of a parti-
tioned data set.

e IEBISAM, a program that copies,
unloads, loads and prints indexed
sequential data sets.

e IEBUPDAT, a program that modifies the
symbolic library.

e IEBUPDTE, a program that incorporates
source language modifications into
sequential and partitioned data sets.

e IEBEDIT, a program that produces an
edited input job stream data set from a
master input job stream data set.

e IEBDG, a program that produces test
data sets for use in program debugging
procedures.

Independent utilities are executed out-
side and in support of IBM System/360 Oper-
ating System. They are:

e IBCDASDI, a program that initializes
and assigns alternate tracks on direct
access volumes.

e IBCDMPRS, a program that dumps and
restores the data contents of a direct
access volume.

e IBCRCVRP, a program that recovers data
from a track on direct access storage,
replaces defective records with data
supplied by the user, and writes the
composite data on an operative track of
the original volume.

Introduction 11

System Utility Programs

System utility programs are executed under
the operating system in the problem program
mode. These utilities treat data asso-
ciated with the structure of the operating
system. They are:

e IEHPROGM, a program that modifies con-
trol data in volume and catalog
structures.

e IEHMCVE, a program that duplicates
collections of data sets to provide
kackup copies or to rearrange existing
ones.

e IEHLIST, a program that lists the cata-
log or a portion thereof, a volume
table contents, and the directories of
partitioned data sets.

e IEHICSUP, a program that updates the
transfer control (XCTL) tables con-
tained within the I/0 support routines
OPEN, CLCSE, and EOV.

e IFCD1P00, a program that writes the
SYS1.LCGREC data set in initialized
format.

e IFCEREPO, a program that edits and
prints environmental records from
SYS1 .LCGREC.

e IEHUCSID, a program that loads the 2821
generator storage with user-supplied
character images.

e IEHINITT, a program that creates volume
labels on magnetic tape.

e IEHDASDR, a program that dumps,
restores, and initializes direct access
volumes.

The system utility programs IEHPROGM,
IEHMOVE, IEHLIST, IEHIOSUP, IEHUCSLD, and
IEHINITT use the queued sequential access
method (CSAM) to read and write the SYSIN
and/or SYSPRINT data sets or their (user-
designated) equivalents. For these pro-
grams, SYSIN and SYSPRINT data sets also
may have a blocking factor that is other
than one.

AUXILIARY PARAMETERS

IEHPROGM, IEHMOVE, IEHLIST, IEHIOSUP,
IEHUCSLD, IEHINITT, and IEHDASDR may be
invoked by a problem program. In this
case, the calling program provides the u-
tility program with certain auxiliary pa-
rameters in main storage, as shown in
Figure 1. If the utility program is
invoked ky jok scheduler, only the pointer
to the EXEC statement parameters is
present.

12

DEVICE ALLOCATION AND VOLUME MOUNTING
(IEHMVSSF AND IEHMVXSF)

IEHPROGM, IEHMOVE, and IEHLIST require that
volumes be mounted dynamically. However,
the serial numbers and device types of
these volumes are not necessarily known to
the user at the time the job is submitted.
For example, in moving a group of data
sets, the names of individual data sets in
the group and their corresponding volume
information are not known to the IEHMOVE
Frogram until it scans the catalog for the
information. Once this information is
known, data control blocks may be con-
structed within the program itself contain-
ing ddnames associated with units on which
the appropriate volumes may be mounted,
using the OPEN (type=J) routine.

In order to ensure that necessary
volumes are mounted or mountable, two rou-
tines reside on LINKLIB:

e IEHMVSSF, which is used by IEHFRCGM and
IEHLIST.
o IEHMVXSF, which is used by IEHMCVE.

Each contains the control section
IEHVOLMT. The difference between the two
routines is that linkage to the first is
via branch-and-link, whereas linkage to the
second is via transfer control (XCTI).

The logical flow of IEHVOIMT is shown in
Chart 01. Figures 2 and 3 show the format
of data supplied to IEHVCLMT by the calling
routine. Figure 4 shows the format of an
internal table maintained by IEHVCIMT in
allocated main storage; the internal table
is built once for each execution of IEHMOVE
and IEHLIST, and once for each time
IEHPROGM gives control to the volume
mounter.

For each volume mounting request,
IEHVOLMT returns to the calling routine a
pointer to a ddname associated with a unit
on which the desired volume may be mounted.
The daname is inserted into a field of the
DCB and the desired volume is mounted by
the open routine (type J). Actual mounting
is accomplished by either IEHVOLMT or the
calling routine, as indicated by Field 3 of
the internal table header (Figure 2).

The essential processing in IEHVOLMT
lies in the comparison of two masks: the
first is obtained from the device mask
table, using the device type supplied by
the calling routine; the second is con-
structed by IEHVOLMT, using the UCBs allo-

P

cated to the current task.® In each mask,
each bit represents a unit: in the first
mask, an "on" condition means that the unit
will accept the device type under consi-
deration; in the second, an "on" condition

iThe UCBs are found as follows: location
16 in main storage points to the communica-
tions vector table, which in turn contains
a pointer to a list of UCB pointers. The
task I/0 table (TIOT) is then used to dis-
tinguish the appropriate UCBs.

means that the unit has been allocated to
the current task. When both conditions
occur for a given unit, IEHVOLMT checks to
see if the desired volume is already
mounted; if it is, an indication to that
effect is returned. If the volume is not
already mounted, the ddname associated with
that unit (as found in the TIOT) can be
used by the open routine (type J) to mount
the desired volume on the allocated unit.
As explained earlier, the open routine may
be invoked by either IEHVOLMT or the cal-
ling routine.

:

. e o e e e e st e s ey
&

pon e e e e e
Q Q
o] o]
Qi
o 1)
s e e e e e o

code=x"'80"
| for last entry
| and x'00'" otherwise

2

T 1
count | EXEC statement parameters |
L 1 J
2 max. 40
2 8
1 T
count |ddname
L L
4
| ddname
t
r
| ddname
L
v
| ddname
L

LB
|alternative SYSIN ddname

alternative SYSPRINT ddname

| ddname

alternative SYSUT1 ddname

= o oy

alternative SYSUT2 ddname

e e e e e w— ke a— B s e an— adey e— ke —

r

L

T 1
count |first output page number|
1 d

|
|
I
I
|
I
I
|
|
|
I
|
i
|
|
|
i
i
|
|
|
I
|
|
|
|
|
|
|
|
L

b s ot o . — ——— ——— — — — —— ——— ——— - —— —— ———— — —— — — — — — —— — — — {——— —— ——— —{— o, 1]

Figure 1.

IEHUCSLD, IEHINITT,

Auxiliary Parameter Format for IEHPROGM, IEHMOVE, IEHLIST, IEHIOSUP,
and IEHDASDR

System Utility Programs 13

-
—r

T 1

T
| | |

-—d

——————— e e — —]

L + 1 +

| L——-1-byte count of volume

| mounting requests

|
b 1-byte count of internal
table entries

S %

2 bytes unused

f—————— e P ¥

3-byte pointer to internal
table

e

1-byte indicator

3-byte pointer to list of
volumes not to be dis-
mounted (e.g. SYSIN)

I
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
I
|
|
|
| Legend:
L

* denotes field is set by IEHVOLMT

1-byte count of volumes
not to be dismounted

Figure 2.

Internal Table Header

o e o e e . o S ————— ——— — ————— — — o o s ot s oo

——— e e e e — —

T

O 5-byte unit name if
specified.
Otherwise, field
is all zeros

e

2-byte relative
pointer to
internal table
entry.

6~-byte volume
serial

I
|
|
|
|
|
|
]
I
I
|
|
|
|
|
|
|
|
|
|
|
| Legend:
i

* denotes field is set by IEHVOLM1

4-byte device type

h e o e o . s o — - — —— ——— — —————)

*Figure 3.

14

Volume Mounting Request

Indicator Settings: Field 3 of the intern-
al table header (Fiqure 2) may have the
following settings:

Bit Value Meaning
0 0 No mounting is to be done.
1 Mounting is to be done.
1 0 No dismounting.

1 Volume mounting requests having
the high-order bit of the rela-
tive table address set to 1 are
to be dismounted (the units
made available).

2 0 Ignore old requests (ignore
usage code, Figure 4).
1 0Old requests are valid.
3 0 Build internal table.
1 Internal table is already
built.
4 Unused.
5 Unused.
6-7 01 All volume mounting requests
accomplished.
10 No volume mounting requests
accomplished.
11 Some volume mounting requests
accomplished: those volume

mounting requests having a
relative table address of zero
were not accomplished.

CONTROL CARD SCANNER (RDCDRT)

IEHMOVE and IEHLIST contain copies of a
control card scan routine, RDCDRT. Each
call to RDCDRT results in the return of the
item scanned, together with an indication
of the type (operation, keyword, or parame-
ter). In IEHMOVE, the routine has the load
module name IEHMVESJ; in IEHLIST, it has
the name RDCDRT.

This routine reads control cards (using
QSAM), checks syntax, and returns to the
calling routine a command word, a keyword,
or a parameter.

The calling routine supplies a 192-byte
work area (on a fullword boundary) followed
by the DCB for the control card data set.

The calling routine must open this data
set. The control card routine inserts the
address of the end-of-file routine KECF in
the DCB.

The calling sequence for RDCDRT is as
fcllows:

e Register 13 points to the first byte of
the work area.

e Register 14 points to the return
address in the calling routine.

e Register 15 points to the entry point

RDCDRT.
{~==---2 bytes > < 2 bytes————— >
r 1 1
| internal | displacement |
| table length | to mask |
i L
] T “
| usage | pointer to ddname |
| code | |
1 4 1
r T X
| usage | pointer to ddname |
| code | |
L i i
| T
k } - i
| usage | pointer to ddname |
| code | |
b L 1
| mask length? |
| I
L i |
r . A
| device mask?® |
1 |
1
| *Device mask length, in bytes, is equal |
| to the number of UCB pointers in the UCB |
| pointer table. |
L 1

Figure 4. Internal Table Maintained by

IEHVOLMT

Upon returning control to the calling
routine, the control card routine returns
the following information:

e Register 1 points to the starting
address of the item scanned.

e Register 2 contains the length of the
item scanned.

e The first byte of the 192-byte work

area is labeled SWITCHRD; its bits have
the following meanings when set to 1:

System Utility Programs 15

o
[
ﬁ

Meaning

Syntax error

Bypass switch
End-of-file

Initial entry
Command word
Keyword

Parameter

Parameter or keyword
delimited by a right
parenthesis.

SNounmEsEwNE O I

The control card routine contains the

following subroutines:

RDCARD

16

resets switches and saves registers
3-14.

KGICD

reads a card into the work area, using .
QSAM. \

KIRT

saves the "start" address of the scan,
and scans for a delimiter.

KPPARQ
stores the address and length (of the
item scanned) in registers 1 and 2.

KINVAL

is entered when an invalid delimiter
is found.

E

o

Chart 01.

IEHVOLMT - Volume Mounting Logic

Internal
Table to be

For IEHPROGM, IEHMOVE, 1EHLIST

B2

Issue
GETMAIN for

Generic

Internal
Table

Cc2

DDONAME to
'\b‘ Excluded

oY

No

84

Place
Generic DDNAME

in Internal
Table

Adjust Volume
Usoge
Indicator
D2
Adjust Volume
- Usage
fo be Freed Indicator
No
£l
Search Device
Mask Table with
Device Type
F2
Scan UCBs for
Device Mas Device Type, Bld.
in Table Mgk Indg. UCBs

Compare
Device Mask
Found to Inter-
nal Table Mask
Constructed

Indicate
Volume Not
Mounted

43

Indicate Volume
M d and Rin.

ed on Correct

DDNAME
Pointer

there an-
other Generic
DDNAME,

C5

Prepare to
Construct Mask
Reflecting
DDNAMEs in Tab.

D5

Select a
DDNAME from
Internal Table

Set Bit in
Internal
Table Mask

Indicate Volume
is Mountable
ond Return
DDNAME
Pointer

J4

Prepare to Open
Using DDNAME
Corresponding

to Matching Bit
in Two Mask

K4

OPEN

(Type Eq. 4)

System Utility Programs

Availoble

Modifying System Control Data
IEHPROGM

The IEHPROGM program is a convenient inter-
face between the user and data management
routines which modify volume and catalog
structures. By means of utility control
statements, the user may request the
IEHPROGM program to:

e Scratch, rename, catalog, or uncatalog
a data set.

e Scratch or rename a PDS member.

e Scratch a data set assigned by the op-
erating system.

e Build or delete an index level, index
alias, or generation data group.

e Connect or release a control volume.

The general design of the program is
shown in Figure 5. For each request listed
above, the program issues one or more
supervisor calls (SVCs) for data management
routines which perform the requested ser-
vice; the IEHPROGM program interfaces with
these routines by building parameter 1lists
for them, invoking them, and analyzing
their returns.

Following the return from a data manage-
ment routine, further processing by the
IEHPROGM program may include additional
calls to data management routines, as in
the case, for instance, of supplying the
catalog with index levels needed to catalog
a data set by its specified, fully-
qualified name.

PROGRAM STRUCTURE

The program consists of seven load modules
and a dynamically allocated work area:

e The Root resides in main storage
throughout the program's execution. It
contains V-type address constants
needed by the overlay supervisor.

e The Parameter List Builder initializes
the program, obtains and analyzes
requests, and builds a parameter list
for the appropriate data management
routine.

e The Volume Mounter ensures that all
volumes needed to service the request
are mounted or mountable.

e The SVC Return Analyzer issues the
appropriate SVC and analyzes its
return. In some instances, additional
SVCs may be issued by this module.

18

ENTRY

Get a request;

set up a major
routing table to
handle the request

!

Build a parameter
list by decoding
the routing

table

Issue SVC to
data managemen
routine, and pass
parameter
list

Analyze the return
from dato manage- _J
ment and prepare }— —— —— —

to issue another
SVC if necessary

Is
there another
request

Yes

No

RETURN

The General Design of the
IEHPROGM Program

Figure 5.

e The Auxiliary Parameter Analyzer ana-
lyzes auxiliary parameters supplied to
the IEHPROGM program by a calling pro-
gram, and also opens SYSIN and
SYSPRINT.

e The Message Writer writes all diagnos-
tic messages and operator instructions
issued by the program.

o The Volume Look-up obtains volume
information from the device name table
when the keyword parameter VOL occurs
in a request.

e The Work Area is obtained dynamically
by the Parameter List Builder.

The overlay structure of the program is
shown in Figure 6; each block represents a
control section (CSECT).

The structural flow of the program is
shown in Figure 7. The Auxiliary Parameter
Analyzer, Message Writer, and Volume Lookup
are subordinate load modules; the others
are control load modules.

Jd

IEHEBASE

DSECT

Root

Work Area

IEHEUP1

Parameter
List
Builder

IEHEDCI

Control
Tables

IEHEDC2

Control
Tables

IEHEMSGX

Message
Writer

IEHINVOC

Auxiliary
Parameter
Analyzer

IEHVOLMT

IEHMOUNT

Volume
Mount
Initiator

DEVMASKT

Device
Mask Table

Volume
Mounter

IEHEUP1A

SVC Return
Analyzer

IEHDTTLU

Volume
Look-up

DEVNAMET

Device
Name
Table

Figure 6. The Overlay Structure of the IEHPROGM Program (Each block represents one con-

{EHRESET

trol section)

IEHEBASE

Root

IEHEUP] 4

Parameter
List

Builder

IEHMOUNT ¢

Volume

Mounter
{with
Initiator)

IEHEUPTA

svC
Return
Analyzer

Figure 7.

IEHINVOC

R — .

‘*\\\\\\\\\

Auxiliary
Parameter
Analyzer

IEHEMSGX

.

Message
\ Writer

IEHDTTLY

—_—

\

Volume
Look-up

IEHEMSGX

—

Message
\ Writer

The linkage procedure used to execute a

subor

dinate load module and shown in

Figure 8 is as follows:

1.

2.

The Structural Flow of IEHPROGM 5.

Program (Each block represents
one load module)

Module A loads the address (coded as a
V-type address constant) of an entry
point, B1l, to module B in register 15;
A branch-and-link instruction is then
issued by module A, resulting in the
following action:

a. The address of the next sequential
instruction is loaded into
register 14, and

b. A branch is made to the overlay
supervisor.

The overlay supervisor then causes

module B to be loaded and gives con-

trol to entry point Bl. The return
address in register 14 is now meaning-
less, since module B has overlaid

module A.

Module B returns control (indirectly)
to module A by loading the address of
an entry point to module A in register
15 and branching to it, resulting in a
branch to the overlay supervisor.

The overlay supervisor then causes
module A to be loaded and gives con-
trol to entry point Al. Since module
A has now overlaid module B, the
return address in register 14 is
re-established.

The instruction at entry point Al
gives control to the instruction at
the return address.

System Utility Programs: IEHPROGM 19

Module A Module B
BI| o
.

. L]

L]

L]

L15, B1

’ Overla
BALR 14, 15 @ Supervi);Or
L]

L]

L]

L]

. L15, Al
Al BR 14 BR 15

Figure 8. Linkage Procedure Used by the
IEHPROGM Program to Invoke a
Subordinate Load Module

CONTROL LOAD MODULES

The Root, the Parameter List Builder, the
Volume Mounter, and the SVC Return Analyzer
are control load modules.

The Root (IEHEBASE)

The Root consists of one CSECT, IEHEBASE.
It contains V-type address constants needed
by the overlay supervisor, and a branch
instruction to the Parameter List Builder.

The Parameter List Builder (IEHEUP1,
IEHEDC1, IEHEDC2)

The Parameter List Builder contains three
CSECTS: IEHEUPl1, IEHEDC1, and IEHEDC2.

IEHEUP1
builds the parameter list for the ini-
tial SVC to the appropriate data man-
agement routine. It contains seven
routines: COMMENCE, IEHRESET, FNDE-
CODE, FDLD, KODECODE, IEHESCAN, and
IEHETLU. The parameter list (Figure
11) is built at location IEHEMAC1 in
the work area.

COMMENCE
initializes the program by estab-
lishing addressability and obtaining
a work area of 4416 bytes in main
storage.

IEHRESET
initializes for a new request by
resetting switches.

FNDECODE
determines the operation (e.g.
SCRATCH) requested, and stores the
address of its routing table at
location FINUSE in the work area.
The use and format of the routing
tables are discussed under "Program
Flow.*”

20

FDLD
decodes the routing table in use.
Each routing table indicates a Q
sequence of operations to be per-
formed; FDID effects these opera-
tions by decoding the routing table.

KODECODE
causes keyword parameters to be
scanned from a utility control
statement, and successively directs
control to subroutines which move
parameter data to the parameter list
for the data management SVC. The
list is at location IEHMACl1 in the
work area.

IEHESCAN
scans a control statement for an
operation or an operand.

IEHETLU

performs a table look-up for the
address of a routine or a routing
table: if the search argument used
is an operation, a routing table
address is retrieved; if the search
argument used is an operand, a rou-
tine address is retrieved.

TIEHEDC1

7 g
contains seven tables: TABLEN3, 0
TABLENY4, TABLEN5, TABLEN6, TABLEN7,
CATALOG, and UNCATIG.

Each of the tables TABLENn consists
of a variable number of entries: the
first n bytes of each entry is an
operation or keyword operand, and the
last four bytes of each entry is the
address of a routing table (for an
operation) or a routine (for a keyword
operand). As an example, TABLEN6 con-
tains as typical entries

C'RENAME’
C'DSNAME'

AL4 (RENAME)
AL4 (DSNAME)

where RENAME is the symbolic location
of the RENAME routing table, and
DSNAME is the symbolic location of the
routine given control when the data
set name is scanned.

The tables CATALOG and UNCATLG are
major routing tables for the catalog
and uncatalog operations.

IEJEDC2

contains the major routing tables
DELETEX, CONNECT, RELEASE, BUILDA,
DELETEA, SCRATCH, BIDX, and RENAME.

The use and format of all routing 0
tables are discussed under " Program
Flow."

The Volume Mounter (IEHMOUNT, IEHVOLMT,
DEVMASKT)

This segment ensures that all volumes
needed by the data management routine are
mounted or mountable. Three CSECTs are
present: IEHMOUNT, IEHVOLMT, and DEVMASKT.

IEHMOUNT ,
is entered from IEHEUP1 when the pa-
rameter list for the initial data man-
agement SVC has been built. IEHMOUNT
then calls IEHVOLMT, if necessary, to
ensure that a needed volume is already
mounted or is mountable. IEHVOLMT is
called in the following cases:

1. For a SCRATCH or RENAME request,
the volume ID from the control
statement is passed to IEHVOLMT,
together with an indication that
the volume is not to be mounted.
(The scratch and rename data man-
agement routines themselves per-
form volume mounting.) The call
to IEHVOLMT serves as a check
that the volume is mountable.

2. For any other request, if CVOL is
specified, IEHVOLMT is passed the
volume ID, together with an indi-
cation that the volume is to be
mounted. IEHVOLMT is not called
otherwise.

For cases (1) and (2) above,
IEHVOLMT normally returns a pointer to
a ddname associated with a channel-
unit on which the volume is mounted or
can be mounted. IEHMOUNT then inserts
the ddname into the data control block
(DCB) needed to perform I/0 operations
on the volume. Control is then given
to IEHEUP1A.

If the volume is not mountable, as
indicated by the return from IERVOLMT,
IEHMOUNT aborts the request, giving
control to IEHEUP1 to honor the next
request.

IEHVCLMT and DEVMASKT are discussed under

the heading "Volume Mounting and Device
Allocation."

The SVC Return Analyzer (IEHEUP1A)

This segment issues, and analyzes the
returns of, all data management SVCs used
by IEHPROGM to perform a requested opera-~
tion. The SVC Return Analyzer segment con-
sists of a single control section, IEHEUP-
1A, which contains ten routines: LATAB,
FDLD, OPENVTCC, GETADSCB, SVCRET, SVC26RET,
INDEX8, NEEDINDX, SCANIY, and VTOCRET.

LATAB
stores the address of the routing
table in use at location FINUSE in the
work area.

FDLD
decodes the routing table, directing
control to the routines indicated by

the table. (This is the same FDID
present in IEHEUP1, the Parameter List
Builder.)

OPENVTOC

constructs a DCB for the VTOC to be
opened for a Scratch VTCC request, and
then opens the VTCC.

GETADSCB
reads the VTOC and scratches the fol-
lowing DSCBs for a Scratch VTCC
request:

1. If the SYS keyword was specified,
each system-assigned data set (a
data set having a name beginning
either with the 36 characters
AAAAAAAA .AAAAAARAA.AAAAAAAA. O
with the characters SYSnnnnn.T
and containing one of the charac-
ters P,F, or V in the nineteenth
position) 1is scratched. (Note:
Each character n represents a
digit from 0 to 9.)

2. If the SYS keyword was not speci-
fied, each Format 1 DSCB is
scratched.

The VIOC is closed when an EOF is
detected in reading it.

SVCRET
interprets the returns from the
scratch (SVC 29) and rename (SVC 30)
routines. The return is used as an
indexing factor on the branch table
BRANTAB, giving control to an appro-
priate diagnostic routine.

SVC26RET
interprets returns from the catalog
and index (SVC 26) routines. SVC26RET
uses BRANTAB in the same manner as
SVCRET; the difference between the two
routines is that SVC26RET also inter-
prets the return from the locate rou-
tine (locate is used by both catalog
and index).

INDEXS8
gives control to SVC26RET to interpret
an error return from the Locate
routine.

NEEDINDX
is entered the first time SVC26RET
detects tnat an index level supplied
in a utility control statement was not
found in the catalog. NEEDINDX passes
the index name to SCANIT.

System Utility Programs: IEHPRCGM 21

SCANIT
constructs a parameter list for an SVC
to the index routine each time a
return shows that an index level was
absent.

VTOCRET
effects the writing of diagnostic mes-
sages following a return from the
scratch routine on a SCRATCH VTOC
request.

SUBORDINATE LOAD MODULES
The subordinate load modules of the program

are the Auxiliary Parameter Analyzer, the
Message Writer, and the Volume Look-up.

The Auxiliary Parameter Analyzer (IEHINVOC)

The Auxiliary Parameter Analyzer (IEBINVOC)
analyzes any auxiliary parameters passed to
the IEHPROGM program by a calling program
and moves the DCBs for the data sets SYSIN
and SYSPRINT (or their substitutes) to the
work area and opens them.

The Message Writer (IEHEMSGX)

The Message Writer (IEHEMSGX) writes all
messages issued by the program. Messages
are written on the SYSPRINT data set unless
a calling program specifies otherwise; con-
sole messages are written using the job
management WTC routine.

Input to the message writer consists of
a full word in register 0:

Byte O is unused.

Byte 1 Bits 0-5 are unused.
Bit 6 is set to one if the message
to be written is to be placed at
the next available location in the
output buffer; otherwise it is set
to zero.
Bit 7 is set to zero if the mes-
sage is to be written during the
current execution of the message
writer, and to one otherwise.

Byte 2 contains the relative position in
the buffer of the message.

Byte 3 contains the message number.

Volume Look-up (IEHDTTLU, DEVNAMET)

This segment obtains volume information for
use by IEHVOLMT and data management. It is
called only when information specified by

22

the VOL keyword is encountered by IEHESCAN.
The segment consists of two CSECTs: IEHDT-
TLU, a table look-up, and DEVNAMET, the
device name table maintained at the instal-
lation. At the time IEHDTTLU is entered,
register 2 points to a 28-byte field in the
work area consisting of the following
supfields:

1. (Bytes 0-7) contain the value supplied
to the keyword operand VCL (left-
justitied and padded with blanks), as
scanned from a utility control
statement.

2. (Bytes 8-11) are initially blank.

3. (Bytes 12-15) contain the return
address (coded as a V-type address
constant).

4. (bytes 16-27) are initially blank.

IEHDTTLU then stores registers 3-5 in
subfield 4, and performs a table look-up in
DEVNAMET, using subfield 1 as a search
argument. The table value of the argument
is moved to subfield 2, and control is
returned to the location specified by sub-
field 3.

Supfield 2, the table value of the
search argument, is of the following
format:

Byte 8 contains a bit configuration used
by the I/0 Supervisor.

Byte 9 contains a device option code.

Byte 10 contains a device class code.

Byte 11 contains a device type code.

PROGRAM FLOW

The logical flow of the program proceeds
in three phases:

e Phase 1 (Chart 02), during which a
major routing table is established for
the operation to be performed.

e Phase 2 (Chart 03), during which the
major routing table is decoded, causing
the parameter list to be built for the
SVC to a data management routine, and
causing appropriate volumes to be
mounted. The parameter list (Figure
11) is built at location IEHEMAC1 in
the work area.

e Phase 3 (Chart 04), during which the
initial sV is issued, its return ana-
lyzed, and any additional SVCs issued
in order to complete the request.

Jd

Phase 1

The program receives control of the CPU
when the keyword operand PGM=IEHPROGM is
encountered in an EXEC statement, or when
the program is invoked by a calling pro-
gram. The Root segment immediately gives
control to the Parameter List Builder seg-
ment. The registers are saved and the work
area is obtained. Any auxiliary parameters
are analyzed, and SYSIN and SYSPRINT are
opened. A new request is initialized for,
and then obtained (using BSAM).

FNDECODE then directs control to IEHES-
CAN to scan the operation name (e.g.,
SCRATCH) from the utility control statement
image. IEHETLU then uses the name thus
obtained to look up the address of the
major routing table corresponding to the
given operation. FNDECODE then places this
address at location FINUSE in the work
area, for use in Phase 2.

Communication between FNDECODE, IEHES-
CAN, and IEHETLU is effected through the
use of the communication table IEBECHAR (in
the work area), shown in Figure 9. IEHE-
CHAR is also used in Phase 2 in scanning
keyword operands.

Phase 2

This phase of the program decodes the major
routing table established during Phase 1.
Decoding of the routing table results in
the scanning of keyword operands, the
volume look-up, the building of the parame-
ter list for the data management routine to

Major routing tables appear in CSECTs
IEHEDC1 and IEHEDC2 in the Parameter List
Builder segment. There is one major rout-
ing table for each operation of the
IEHPROGM program; the symbolic name of the
routing table is the same as the name of
the operation it supports. Each major
routing table consists of a variable number
of entries; the first byte of each entry
contains a routine code, and the remaining
bytes of the entry contain information use-
ful to the routine. Figure 10 shows tne
format of the routing table for the Catalog
operation.

As indicated on Chart 03, FDLD decodes
the successive entries of the major routing
table in use, directing control to the
indicated routines.

Note: It is possible for the sequence of
operations indicated by a routing table to
be interrupted, possibly even broken. For
example, if a syntax error on a control
statement is encountered, the address of
the major routing table will be replaced by
the address of a routing table which will
effect the writing of appropriate messages.
FDLD would then decode this table, causing
IEHEMSGX to write the selected messages.
The last entry in tables of this nature
will then either cause the address of the
original major routing table to be
restored, or will cause the request to be
aborted, depending on the severity of the
situation.

The scanning of keyword operands takes
place when a routine code of hexadecimal 01
is encountered. KODECODE directs control

be used, and the mounting of volumes. to IEHESCAN to scan a keyword or keyword
1 1
I I
|Format Contents |
}{—--—} 1-byte character for which to scan =
:r—--~} 1-byte condition code on which scan should stop =
:r----1 1-byte code for last character scanned {
1-byte length of item scanned =
j 4-byte address of where to begin scan {
Ii i 4-byte address of where to end scan if condition not found{
|{ 4-byte address of last item scanned }
f } 4-byte address of table (for IEHETLU; otherwise zero) {
i{-- i 4-byte address found in table by IEHETLU (or zero) i
!]
Figure 9. IEHECHAR, the Communication Table for FNDECODE,KODECODE,IEHESCAN, and IEHETLU

System Utility Programs: IEHPROGM 23

— e .

o e e e

¥ T

| The CATALOG Routing Table | Explanation of Table Entries

k +

| |

I ¥ L L) T T L | 1 I

| | 01 | 00 | 70 | 00 | 24 | 00 | 00 | 00 | | DSNAME, CVOL, and VOL are acceptable
|t p-———p-———p--—-i———do———i—__J | parameters. |
| | 02 00 | 50 | ocC | | DSNAME and VOL are required.

| b e S|

| | ou x | x | x | xxx = address of error routine.

I e B e S |

1oy |y |y | yyy is unused.

B et St S S o _

| | oA | 00 | 00 | 01 | | The number of this major routing table

l L L L L y] l iS 1.

| Routine Code |

| |

L L

Figure 10. The CATALOG Routing Table

value. If VCL is present as a keyword, the given to IEHRESET; otherwise, control is

value supplied to it in the control state-
ment is passed to IEHDTTLU, the Volume
Look-up, and the device information re-
trieved from the look-up is saved for the
Volume Mounter and data management rou-
tines. When a value supplied to another
keyword is detected, a look-up is performed
by IEHETLU, using the keyword (e.g.,
DSNAME), to retrieve the address of a key-
word routine, which is then given control.
(The symbolic address of a keyword routine
is identical to the keyword name. For
example, the symbolic address of the DSNAME
routine is DSNAME.) The keyword routine
then enters the keyword value information
into the parameter list for the data man-
agement routine. <Control is then given
back to IEHESCAN to scan the next keyword
parameter, and the cycle continues until an
EOF condition is detected in reading SYSIN
(or its substitute).

When the control statement has been
scanned, control is given back to FDLD to
decode the next entry in the major routing
table. Successive entries in the major
routing table may test for the presence of
minimum allowable parameters (TESTDUP),
estaklish a temporary routing table to
write messages (LINKSAVE), restore the
major routing table (DCRETURN), or read and
log the remaining cards (RERDALL). If an
error has been found in the utility control
statement, the request is aborted, and con-
trol is given to IEHRESET to honor the next
request.

If no error has been found, the last
entry of the major routing table will have
been decoded. The last entry of each major
routing takle causes FDLD to give control
to GETAVOL, which places the number of the
major routing table at location FINUSE in
the work area, and then gives control to
the Volume Mounter. If any required volume
is not mounted or mountable, control is

24

given to the SVC Return Analyzer (IEHEU-
PIA), and Phase 3 is entered.

At the completion of Phase 2, the param-
eter list for the initial SVC to a data
management routine has been built at loca-
tion IEHEMAC1 in the work area. The for-
mats of the various parameter lists for the
data management routines are shown in
Figure 11.

Phase 3

Phase 3 issues, and analyzes the returns
of, all SVCs to data management routines
used to accomplish IEHPRCGM functions. At
the time Phase 3 is entered, the parameter
list for the initial SVC has been built,
and all volumes are mounted or mountable.

Using the routing table number placed at
FINUSE (in Ithe work area) during Phase 2 by
routine GETAVOL, routine LATAB replaces the
routing table number with the address of a
carry-over routing table, to be decoded by
FDLD. If the current request is a SCRATCH
VIOC request, the carry-over routing table
will cause itself to be replaced with the
routing table VTOCDCS. Ctherwise, the
carry-over routing table will simply cause
the SVC to be issued, by means of the entry

X'00°* AL3(SVC instruction)

FDLD then decodes the carry-over routing

table, establishing the VTOCDCS routing

table only if the request is to scratch a
VIOoC.

SVCRET and SVC26RET decode the return
from the data management routine used,
directing control through the branch table
BRANTAB to diagnostic routines (NEEDINDX,
SCANIT, INDEX8), or to message-effecting
routines.

6;'

SCRATCH (SVC 29)

p—

I
|svC bit configuration

RENAME (SVC 30)

r
|sVC bit configuration

b
% T ,!
| tDSNAME | | tDSNAME |
F - t {
| UNUSED | | tNEWNAME |
F i i {
| tVOLLIST | | #VOLLIST |
L | L 3

UNCATALOG (SVC 26)

pr—

3
|SVC bit configuration

BUILD INDEX (SVC 26)

L A
[B Ll
| tDSNAME |
F -
| tcvoL 1
k -
| UNUSED |
L -

r 1
| SVC bit configuration|
k i
| ¢INDEX |
t i
| tcvoL |
t 1
| UNUSED |
t d

BUILD ALIAS (SVC 26)

DELETE ALIAS (&VC 26)

pe—"

r
|SVC bit configuration

L N |
r L
| tINDEX |
3 -
| tcvoL |
F -
| tALIAS |
L 1

CATALOG (SVC 26)

r 1
| SVC bit configuration|
t 1
| tDSNAME |
s 1
v a
| tcvor |
L d
[3 1
| tVOLLIST |
L 4

DELETE INDEX (SVC 26)

r 1
| SVC bit configuration|
k i
{ tINDEX |
L y
r a
| tCcvoL |
'_ d

4
| UNUSED |
L]

BUILD GENERATION (SVC 26)

r 3
iSVC bit configuration|
t i
| tALIAS |
b 1
| tcCvoL |
b i
| UNUSED |
L J

CONNECT (SVC 26)

RELEASE (SVC 20)

e e e e e e e s s — e e — e e e e e e e e

r 1
| sVC bit configuration]|
b 1
| tINDEX |
t i
| tcvoL |
i |
T 3
| UNUSED |
L J

VCL o—byte volume ID

P o s s e e e S S S . — —— G—" — S——— —T—

r L r 1
|sVC bit configuration| |SVC bit configuration|
k - b {
| ¢INDEX | | ¢INDEX |
L - | I J
T 1 [] 1
| tcveL | | tCVOL |
k- - b 1
| tvoL | | UNUSED |
L] L J
Notes:

DS NAME 44-pyte data set name
NEWNAME U4U4-byte new name of data set
INDEX 44-byte index name

ALIAS 8-byte alias

e At time of SVC, register 1 contains the address of the parameter list.
e Each parameter list is constructed at IEHEMAC1 in DSECT, the work area.

e The addresses in the above parameter lists point to the following items:

CVOL b-byte volume ID
VOLLIST 2-byte count followed by a variable number of fields of the following
format:
4-byte table value from DEVNAMET
6-byte volume ID
2-byte sequence number (for taped volumes)
Figure 11. Parameter Lists Puilt by IEHPROGM for Data Management Routines

System Utility Programs:

e e e e e e e e e e e e e e e e et e s e, e el . ot i " s w— — ——— —— ——— —— — —— ——— —— —— —— ———— S— — —— — — — — a— — — — —— vo— w—]

IEHFRCGM 25

Ccontrol is directed in the following
way:

1. The return code (in register 15) is
used by routine SVCRET or SVC26RET
(depending on the SVC) as an indexing
factor to retrieve a code number from
the current entry of the active rout-
ing table. (The current entry is the
entry following that entry designating
the svc.)

2. The code number thus retrieved is used
as an indexing factor to give control
to the appropriate IEHPROGM diagnostic
routine to treat the type of return.
Control is given to a diagnostic rou-
tine by means of a branch table,
BRANTAB.

Example: Figure 12 shows the return-
indexing entry of the CATALOG routing
table. This entry is at location CATALOG+
28, immediately following the SVC entry.
Following the return of control to the pro-

26

gram from the catalog routine (SVC 26),
routine SVC26RET would use the contents of
register 15 to retrieve a code number from
tnis return-indexing entry. 1If the return
code from the catalog routine were 28, for
example, a code number of eight would be
retrieved. Routine SVC26RET would then
give control (via the branch table BRANTAB)
to the diagnostic routine indicated by a
code number of eight.

CATALOG+28

3
|
' I L T T L] 1 1 1 Ll L] T Ll 1
| 101]/02{03{04}00|06]|07]|08[00|00|00{00]|
| L . N 4L L 4 1 1 L A L A 1 J
|
|
|
L

0 4 8 12 1o 20 24 28 32 36 40 44
Return code from Catalog (Reg.15)
Indexing factor for BRANTAB

[= — S

Figure 12. The Return-Indexing Entry (for

the Catalog SVC) of the Catalog
Operation

1 Chart 02. IEHPROGM Phase 1 - Modifying System Control Data

a |EHEBASE A2 COMMENCE A3
Al Branch Save
to Registers,
Entry 1EHEUP 1 Issve
GETMAIN

IEHINYOC 83

Open
SYSIN and
SYSPRINT

o
c c3

tnitialize
for a New
Request

D3 SYSINEND D4
j Get a Control EODAD Close SYSIN ond

SYSPRINT, Issue
FREEMAIN ,
Restore
Registers,

Statement
from SYSIN

FNDECODE
IEHESCAN E3

Scan

"; - Operation

IEHETLU F3

Look Up Address
of Major
Routing Table

1EHEMSGX G

Write Is
No o

Appropriate peration in
Message \,ble

Yes

H3

Place Routing
Table Address
in Work Area

E Al]

System Utility Programs: IEHPROGM 27

eChart 03. IEHPROGM Phase 2 - Modifying System Contrxol Data

&

FDLD Al LISTECII A3 KODECODE A4
ExumgI:dRo:fﬁm Set Up to Set Up Param.
Enn; in Analy for Scan and
Routine Table Operands Table Look-Up
81 |EHESCAN B4
Go to Addres
h Scan an Operond
in Lest 3 Bytes Field from
of Table Entry Control
" Statements
NOTE =~ Routines
Indicated by o
Routine Code are
TESTDUP €l Not Necessarily
Test to See Executed in this
if Mi Order. Ol:der of Continue
Params. are Execution is Decodin
Present Determine by the Table 9
Major Routing
Table in Use.
LINKSAVE D} L]
Get a New
. Perform
Routing Volume Lookup
Table (for in DEVNAMET
Messages) and UCBs
DCRETURN 3] IEHETLU L.@
E5
Restore Pointer Look Up
to Routine A;:::’ : Address Of
Table Ne; d "' Parameter
; Routine
No I
®
GETAMSG F1 N
Print Parameter
Indicated Routine
Massage (See Note
(IEHEMSGX) Below)
EXECUTE Gl
NOTE = There is One Parameter
Enter Alias Routine for Each Allowable
P Parameter. Each Routine Moves
into Deletea Parameter Information from the
Control Statement or from the
Look-Up Table to the Parameter List.
The Symbolic Name of Each Routine
READALL H2 is ldentical to its Corresponding
Keywork Parameter, e.g., DSNAME,
Renad a?d. Log NEWNAME, Etc.
Cards
J3
Interfoce
with Volume
Mount Routine
(EHVOLMT)
Abort the
Request
Place Number Go to |EHEUPDA
of Table in
Use at Finuse Abort the Request

28

e Chart 04.

LATAB Al A2

Activate Decode

Routing Routing

Toble Table

The RENAME
foutine Should proiginl
Have Using its Own
Name
Is

the PDS on své 29

the Vol,

Print
Appropricte
Massage
SVC26RET G3
Analyze Return
Code in Reg. 15
or Reg. 1
a New In<
dex Level
Prepare to
Analyze Locate Yer
SVC Retums
Reg. 1
IEHEMSGX
Print
Appropriate
Message

%y

IEHPROGM Phase 3 - Modifying System Control Data

GETADSCSB

C5

Reod
a DSCB

Issue SVC

NOTE - The Name SVCSCR G5
of a System-Assigned
Data Set Begins Either with SVC
the 36 Characters 29
AAAAAAAA, AAAAAAAA, (SCRATCH)
AAAAAAAA, AAAAAAAA
or with the Characters
SYSnnnnn,T (See text),
SVCRET H5
H Reset Pointer,
we Built a Analyze
New index Return Code
in Reg. 15
J4 VTOCRET 15
First=Time Wrih.
Entry for Index Reur' Pointer
Level Building to Diagnastic
Routine Table
SCANIT K4 ASGX K5
Scan an Index Write
Level Name A riote
from Statement PProp!
and Prepare to Message for
4 DSCB Hendled

System Utility Programs:

[

IEHFROGM 29

Moving and Copying Data
(IEHMOVE)

The IEHMOVE utility program reproduces one
or more data sets. The move operation
relocates a collection of data and
scratches the source data; the copy opera-
tion produces a replica of the source data,
and leaves the source data intact.
Throughout this discussion, the word "copy"
will refer to both the MOVE operation and
the COPY operation.

The program is serially reusable. It
copies the following collections of data:

¢ A data set

A volume

e A group of data sets related by a
catalog

e A catalog

Depending on the compatibility of the
source and receiving volumes, the movabili-
ty of the source data set, and the alloca-
tion of space on the receiving volume, an
attempt to copy a data set may result in an
"unloaded"” version of the data set. This
version of the data set is in a format
recognizable to the IEHMOVE program, but is
not directly usable by other programs. An
attempt to copy an unloaded data set onto a
volume that would have originally supported
a successful operation results in the
"loading"™ of the unloaded data set, that
is, the reconstruction of the original data
set.

If a user has requested the processing
of inputs/output header/trailer labels, this
program will handle the direct moving or
copying of such lapels as they exist on the
data sets to be moved or copied.

OVERALL FLCW

Figure 13 shows the design of the IEHMOVi
program; each of the smaller nlocks repre-
sents a load module, while each of the
larger blocks represents a grouping of load
modules by function:

Program Set-up

Request Set-up

Message Writing

Data Set Group (DSGROUP) Set-up

Data Set and Volume Set-up

Fartitioned Data Set (PDS) Subroutines
Copying, Unloading, and Loading

Data Set Wrap-up

DSGROUP Wrap-up

Charts 05 through 10 show the logical
flow of the program as follows:

Overall Flow
DSGROUP Logic

Chart 05
Chart 0o

30

VOLUME Logic Chart 07

PDS Logic Chart 08 -
DSNAME Logic chart 09 @
CATALOG Logic Chart 10

Control is passed between loads almost
always by means of Transfer Control (XCTL),
with the following exceptions:

1. The stem, IEHMOVE, links to IEHMVXSE.
The corresponding return to the stem
is issued at the conclusion of the
program by IEHMVESK.

2. 1The message writer, IEHMVESU, is
always linked to.

3. IEHMVESR, a PDS subroutine which
retrieves directory entries from a
work data set, is always linked to.

PROGRAM STRUCTURE

Program Set-up (IEHMOVE, IEHMVXSE,
IEHMVXSF)

The function of initializing the program
for a job is performed by three loads:
1FHMOVE, IEHMVXSE, and IEHMVXSE.

IEHMOVE
is the stem, which is present during
the entire execution of the program.
It obtains main storage for a work
area (IEHMVV) to be used by the rest
of the program.

IEHMVXSE
allocates space for the work data sets
and opens them, clears the work area,
and sets up an initial call to
IEHMVXSF.

IEHMVXSF
is the volume mounter, described under
the heading, "Device Allocation and
Volume Mounting." The first-time
entry of this routine builds the
internal table used by the volume
mounter.

Request Set-up (IEHMVEST, IEHMVESJ,

IEHMVESS)

The program is initialized to handle a
single request by three loads: IEHMVEST,
IEHMVESJ, and IEHMVESS.

IEBMVEST
initializes the work area for a re-
guest and sets up an initial call to
IEHMVESJ.

IEHMVESJ
is the control statement scanner,
described under the heading "Control
Card Scanner."

IEHMOVE

ENTRY

GETMAIN for
work area

(IEHMVV)

IEHMVXSE

First-time

Allocate space
entry builds

for work data
sefs

area, and initialize}’
for a request

IEHMVES)

Scan a field
from control
statement

scanned

All but

internal table

IEHMVESS g

Analyze field

RETURN

IEHMVES]

Open catalog

JERMVESC
Read catalog;

write on
SYSUT1

Close catalog;
set up request
for a data set

Contains linkage
and messages

LINK from
other loads

IEHMVESU

Writes Messages

RETURN to
calling load

TEAMVESZ

DSGROUP

IEHMVETG

Get directory
entry from
SYSUT3

entries of

on SYSUT3

Write directory

ncluded members

for PDS of

Mount volume

included member

Set up to copy
a single data
set

IEHMVXSF

Mount Volumes

{EHMVESX

Test for
feasibility
of copying

IEHMVESY

Allocate
for "TO" data set

IEHMVESY

Build DCBs
for "FROM" and
“TO" data sets

1z

TERMVET) TEHMVESL TEHMVESM TEHMVERD IEHMVERA TERMVETL “IEAMVESC
Copy BSAM or Copy Type F Copy type V Unload Load Copy, unload, Read catalog,
PDS - No BSAM or PDS- BSAM or PD5- or load write on
reblocking B Reblock -: Reblock . | BSAMor PDS BSAM or PDS BDAM SYSUT2
T DS Sub- | T o sub- | DS Sub- | ; | pos s f- ‘
| Routines § Routines | Routines Routines
| BEETRS SOOI [S AQCapI | ——tm - | RS AENE Lood IEHMVETA Another
B B . Catalog Request
L Copy, unload,
or load
catalog :@
No More
Requests
| - Dato Set Wrag=up
ERMVESH Copy JEHMVESN : S =7 Permanent
Another IEHMVESH DSGROUP Error | EHMVESO /O on SYSPRINT
Data st Close "FROM" et cgul Check error p
and "TO" data ~ abort job or
] sets . request
¢ s —==.. Operation
L WaE [: I " “Was Copy b
IEHMVETA Move : IEHMVESQ :
DeoROUP IEHMVESP
Read SYSUT2, ¢ Do cotaloging or Do cataloging or
"] catalog on *TO" ‘| Another Another loging for taloging for
sy volume. - ‘m‘ data set moved data set copied
g {Roquest” __J Request -]
No More 0
Requests . IEHMVESK
- Unfinished Close SYSIN,
L ' ‘ SYSPRINT; close
i WWCBPY and scratch
e DA work files
~ i No More Requests .
Notes B

1. XCTL from IEHMVXSE, IEHMVEST, or IEHMVESS

2. Write 'TO' data set info on SYSUT2. When group
has been moved, set up to catalog.

Figure 13.

The Design of the IEHMOVE Program

System Utility Programs:

Return to Stem
y

z

IEHMOVE 31

IEHMVESS
analyzes the information scanned by
IEHMVESJ. For a PDS request, IEHMVESS
writes the following information:

e Member names to be included or to
replace on SYSUT1 (the format is
shown in Figure 14).

e Member names to be excluded or to
be replaced on SYSUT2 (the format
is shown in Figure 15).

KEY DATA

[—) r===tr======7

| | | |

Ll ______ Jd L—K.L.;—_--—J
| | |
L--8-Dbyte |

member name L--9 bytes unused

!
|
L--1-byte indicator
E=excluded member
R=replaced member

Figure 15. SYSUT2 Record Format (for a PDS

Request only)

Messaqge Writing (IEHMVESA, IEHMVESU)

All messages are written by IEHMVESU.
Whenever ILHMVESS effects a message, it
first interfaces through IEHMVESA, which
contains messages and linkage to IEHMVESU.

DSGROUP Set-up (IEHMVESI, IEHMVESC,
IEHMVESH)

Preliminary operations needed to copy a
group of data sets are performed by three

IEAIMVESI
opens the catalog and sets up a call
to IEHMVESC.

IEHMVESC
reads the catalog and writes data set
information on SYSUT1 (see Figure 18).

IEHMVESH
closes the catalog and sets up a re-
quest to copy a single data set, using
data from SYSUT1.

Data Set and Volume Set-up (IEHMVESZ,

IFHMVXSF, IFHMVESX, IEHMVESV, IEHMVESY)

Preliminary operations needed to copy a
single data set are performed by five
loads: IEHMVESZ, IEHMVXSF, IEHMVESX, IEHM-
VESV, and IEHMVESY.

IEHMVESZ
examines the request and sets up a
call to IEHMVXSF. For a VOLUME re-
quest, IEHMVESZ reads the VTOC and
obtains a DSCB; if a catalog is
detected on the volume, its presence
is noted, but no request to copy it is
set up until the data sets are copied.

If an abnormal termination is indi-
cated as the result of an error in
either this module or a called subrou-
tine, this module initiates termina-
tion of the program. User label exits
are not processed at this time.

IEHMVXSF
is the volume mounter, described under
the heading "Device Allocation and
Volume Mounting.® This execution of
the volume mounter effects volume

loads: IEHMVESI, IEHMVESC, and IEHMVESH. mounting.
KEY DATA
[T | | T-=TTTTTTTTT T-—°T T——7"1
I S - [I T N R
“““““““““ e T T
A A A A A A | same as Key | A *
I (I | | I
| | L._2-byte | } | 8-pyte member name-—-1 |
| | seguence number i | | Or new name |
b I | |
| leeewseerb6-byte volume ID | | | 4 pytes unused 4
| [|
L 4-pyte device type | | L——-8-pyte member name
P
| L 44-byte data set name
|
L

Figure 14.

32

1-byte indicator

I=include this member

R=this member will replace a
member

S=select this miember

SYSUT1 Record Format (for a PDS request only)

9

IEHMVESX

performs tests on the data set to be
copied. Tests include movability,
unload or load, access method type,
compatible block size, and compatible
receiving device. If a catalog had
been detected in IEHMVESZ, space is
allocated for it on the 'TO' volume.

When user-label processing has been
specified, this module processes the
input header labels as it opens the
input data set. If storage in which
to save the labels is required, it is
obtained in this module.

IEHMVESV

causes space to be allocated for the
'TO' data set. If user labels exist
in the 'TO' data set and user-label
processing has been requested, an
additional track will be allocated for
the user labels. The DS1EXT1 field of
the DSCB is modified for this purpose.
(For a preallocated 'TO' data set,
(i.e., one that has been allocated
before the execution of the IEHMOVE
program) the user must provide a user-
label track to permit the labels to be
moved.) If the 'FROM' data set is a
PDS, the directory entries of members
to be copied are written on SYSUT3.
During abnormal terminations that are
handled by this module, no user-1label
exits are processed. If a user-label
track has not been allocated, the mes-
sage text in this load module informs
the user that labels cannot be moved
or copied.

IEHMVESY

builds, using DCB and label informa-
tion specified by FROMDD and TODD (if
given in an operation involving 7-
track or 9-track unlabeled tape), the
DCBs for the 'FROM' and "TO' data sets
and directs control to the appropriate
module to copy, unload, oxr load the
data set.

When user-label processing has been
specified, this module processes the
output of the user header labels that
have been saved by the program, as it
opens the output DCE.

If this module encounters errors such

specified, the processing operations are
not performed during the abnormal termina-
tion procedures.

If variable spanned records are indi-
cated, this module will identify the
record format and determine to which
module control is to be given for pro-
~cessing each record. 1If logical
copies involving changes in the record
format (RECFM), the block size
(BLKSIZE), or the logical record
length (LRECL) of data set records are
attempted, an error is indicated and a
message is printed. The program will
then attempt to move the rest of the
data sets as requested. .
This module also writes the first rec-
ords of an unloaded data set and
determines the module that next
receives control to perform the actual
move/copy operation.

PDS Subroutines (IEHMVESR, IEHMVETG,

IEHMVXSF)

If a partitioned data set is being copied
or unloaded, IEHMVESR is always used by the
copying module, whereas IEHMVETG (which
uses 1IEHMVXSF, the volume mounter) is used
if the request specifies PDS. Figure 13
shows which loads use PDS subroutines.

IEHMVESR
is used to obtain a directory entry
from the work data set SYSUT3. If the
directory entry is from the PDS being
copied, it was placed on SYSUT3 by
IEHMVESV (Data Set and Volume Set-up);
if the directory entry is from an
INCLUDE or REPLACE option, it was
placed on SYSUT3 by IEHMVETG. The
format of a directory entry on SYSUT3
is shown in Figure 16.

IEHMVETG
places directory entries of members
from INCLUDE, REPIACE, or SELECT
options on SYSUT3. Each execution of
IEHMVETG places the directory entries
to be included from one PDS. When
there are no more members to be
included in the copy, IEHMVETG gives
control to IEHMVESN. IEHMVXSF, the
volume mounter, is used as needed.

that an abnormal termination is indicated,
the module initiates termination of the
program. If user-label processing has been

The logic of IEHMVXSF is described
under the heading "Device Allocation
and Volume Mounting."”

System Utility Programs: IEHMCVE 33

L--8-byte member name

KEY DATA

-
—-—

e e o

A A
| |
| |
| |
|

8-byte new
memper name
or, if none, old member name

i
|

L—— maximum 74-pyte directory entry
L--5-byte CCHHR of this record on SYSUT3

Figure 16. SYSUT3 Record Format

Copying, Unloading, and Loading

The load modules used to copy, unload,

and load data are grouped according to the
type of data set and format condition as
shown in Figure 17. The modules are
described below:

IEHMVETA

copies, unloads, or loads a catalog.
If the catalog is to be loaded, it is
in the format shown in Figure 18. The
entries are then cataloged on the
receiving volume. If the catalog is
to be unloaded or copied, IEAMVESC
first writes catalog entries on SYSUT1
as shown in Figure 18; IEHMVETA then
catalogs them on the receiving volume
(for a copy) or else simply writes
them in the same format (for an
unload).

IEBEMVETL

copies, unloads, or loads a BDAM data
set. The data set is copiea using
BDAM read and BSAM write (load mode)
routines. If the input data set rec-
ord format is type U, the block length
of each physical record is read and
calculated and then passed to BSAM
write. This calculation is unneces-
sary for types F and V and is
bypassed.

If user-label processing has been spe-
cified, this module obtains any neces-
sary storage in which to save the
labels. This is done when either the
end of a data set has been reached or
a switch to another volume is to be
made. The saved labels will be passed
to the data set wrap-up routines.

IEHMVETJ

34

copies a BSAM data set or a PDS. A
BSAM data set is copied using BSAM in
a simple read-write loop. When either
the end of a data set or the end of a
volume has been reached in reading,
storage will be obtained, if neces-
sary, for saving any labels for which
processing has been requested. The
saved labels will be passed to the

data set wrap-up routines. For a PDS,
at the time IEHMVETJ receives control,
the directory entries of members (bar-
ring any EXCLUDEs or REPLACEs) of the
‘FROM' PDS are on SYSUT3, where they
were written by IEHMVESV (Data Set and
Volume Set-up). The 'FRCM' PDS is
then copied as follows:

1. IEHMVETJ directs control to IEHM-
VESR, which reads from SYSUT3 one
directory entry of the PDS.

2. If tne entry indicates a note
list is present, IEHMVETJ reads
the note list. Using BSAM, IEHM-
VETJ then reads and writes member
records up to the note list. The
note list is then updated and
written with the new TTRs of the
members.

3. Wwhen all note lists and member
records have been written, the
directory entry is updated with
the new note list addresses and
then stowed. This process is
repeated for each directory entry
on SYSUT3. When the °'FRCM' PDS
has been copied, control is given
to IEHMVETG to write on SYSUT3
the directory entries for all
members to be included, selected,
or to replace from another PDS.
IEHMVETJ then copies these mem-
bers as outlined. IEHMVXSF (the
volume mounter) is given control
by IEHMVETG as needed.

IEHMVESL and IEHMVESM

copy partitioned and BSAM data sets if
the 'TO' data set has been pre-
allocated (that is, before execution
of IEHMOVE) and the 'FROM' and °*TO'
DsSCBs indicate that reblocking is
necessary in order to perform copying.

IEHMVESL

copies (with reblocking) a PDS or BSAM
data set having type F record format.
Blocks are read (using BSAM) until the
output block size is surpassed, and
then logical records are sectioned

from the high-order end of the buffer
until the output block size is
reached. The block is then written,
using BSAM. The last block (cf a BSAM
data set or of a member of a PDS) is
written as a truncated block if neces-
sary. For a PDS, any user TTRs are
ignored.

If user-label processing has been
requested, this module will, when
reaching either the end of a data set
or the end of a volume, obtain neces-
sary storage in which to save the
lakels. When the module passes con-
trol to the data set wrap-up routines,
the saved labels are passed to the
routine that receives control.

read last. The buffer is sectioned
and control information inserted. The
process is repeated for each directcry
entry and its member blocks. Directo-
ry entries are read from SYSUT3 by
IEHMVESR. The options INCLUDE,
REPLACE and SELECT are ignored in
unloading; the option EXCLUDE is not
ignored.

If user-label processing has been
requested, this module will, when
reaching either the end of a data set
or the end of a volume, obtain neces-
sary storage in which to save the
labels. Wwhen the module passes con-
trol to the data set wrap-up routines,
the saved labels are passed to the

routine that receives control.

IEHMVESM

copies (with reblocking) a PDS or BSAM r T T 1
data set having type V record format. | Type of | |Load Nodules |
The operation is similar to that of |pata Set| Format Condition | Used |
IEHMVESL: blocks are read using BSAM F } + q
until the maximum output block size is |Catalog |Normal |IEAMVETA with]|
surpassed, and then logical records | | | IEHNVESC |
are sectioned from the high-order end k + + 4
of the Lbuffer until the size of the |catalog |Previously |IEHMVETA |
output buffer is not greater than the | | unloaded | |
maximum klock size. BAs with IEHMVESL, b + + i
any user TTRs are ignored in a PDS. | | | [
| EDAM |Any | IEHMVETL |
If user-label processing has been b + + q
requested, this module will, when |PDS or |Normal, copiable |IEHMVETJ with |
reaching either the end of a data set | BSAM | no reblocking | IEHNVETG |
or the end of a volume, obtain neces- | | | (PDS only) |
sary storage in which to save the | | | IEHMVESR |
labels. When the module passes con- | | | IEHNVXSF |
trol to the data set wrap-up routines, k + + 4
the saved labels are passed to the |PDS or |TIype F, copiable |IEHMVESL with|
routine that receives control. | ESAM | with reblocking | IEHNVETG |
{ I | | (PDS only) |
IEHMVERD | | | IEHNVESR |
unloads a PDS or a BESAM data set. For i | | (PCS only) |
a BSAM data set, the data set is read | | | IEHNMVXSF |
one klock at a time. After each read, I } 4 i
the block is prefixed by three-to-six |PDS or |TIype V, copiable |IEHMVESNM with|

bytes of control information, and then | BSAM | with reblocking | IEHMVETG
deblocked into 78-byte sections. Each | | | (PDS cnly) |
1 section is then prefixed with a 2-byte | | | IEHMVESR |
physical sequence number. The resul- | | | IEHMVXSR |
tant 80-byte blocks are then written, k + + 9
or, if the receiving device perrwits, | PDS or |Normal, uncopiable|IEHMVERD with |
are reklocked in groups of ten to be | BSAM | must be unloaded | IEHMVESR |
written out as 800-byte blocks. The | | | IEHMVXSF |
last klock written is padded with k 4 + q
blanks. For a PDS, the directory | PDS or |Previously | IEEMVERA |
entry of a member is first read into | BSAM | unloaded i |
the buffer. Each note list is read L i 1 4
and followed by member records which Figure 17. Load Module Groupings for Copy-

precede it in the PDS. Aliases are ing, Unloading, and Loading

System Utility Programs: IEHMCVE 35

KEY DATA
13 1 r T T 1 a
| | | | DEPENDENT ON CODE (see below) |
L d L 1L J
1
L--12 Lkytes | t--1-byte code (0,4,8,C)
unused S 2-byte length
CODE=0 (DATA SET ENTRY)
r T T T T e
[[|
L_L L3 ..‘__J
f 1
] | up to 50 12-byte
| | volume entries
| L——-2-byte number of
i volume entries
L 44-pyte data set name
CODE=4 (ALIAS ENTRY)
r T T T 1
| I | |
L A1 1 J
|
| Lt--8-byte alias
b 8-byte name
CODF=8 (CVOL ENTRY)
r T T Al D |
| Il | I
L 1_1 R 4
| L—-6-byte volume ID
e 8-byte name
CODE=C (GDG ENTRY)
r L RJ 1 1
| | Il |
L | 11 i J
t 1
| | | t-—-Model DSCB
| | t————— maximum generation nurber
| b current generation nunber
L 35-byte name
Figure 18. SYSUT1 and SYSUT2 Record Formats for DSGROUP; SYSUT1l Record Formats for
CATALCG
IEHMVERA the time the data set was unloaded, an
loads a PDS or BSAM data set. Fcr a entry was written, followed by member
BSANMN data set, a block is read, the klocks (in unloaded format).

control information is removed and
analyzed, and successive blocks are
read until a block from the original
data set is reconstructed. The block
is then written, and the process is
repeated until the original data set
is loaded. For a PDS, the process 1is
similar: the directory entry is first
reconstructed, but is not stowed until
-memker klocks have been written and
note lists updated and written. At

36

If user-label processing has been
requested, this module will, when
reaching either the end of a data set
or the end of a volume, obtain neces-
sary storage in which to save the
labels. When the module passes con-
trol to the data set wrap-up routines,
the saved labels are passed tc the
routine that receives control.

Q|

DSGROUP Wrap-up (IEHMVESH, IEHMVETA)

After each data set of a DSGROUP has
keen copied, control is given to IEHMVESN
of the Data Set Wrap-up portion of the pro-
gram. If scratching of the "FROM' data set
is necessary (for a MOVE DSGROUP, for
example), control is given to IEHMVESQ,
which scratches the 'FROM' data set, and
then gives control to IEHMVESH. If
scratching is not necessary, control goes
directly from IEHMVESN to IEBMVESH.

IEHMVESH
'TO' data set writes °'FROM' data set
information on SYSUT2 in the same for-
mat in which the information was orig-
inally written on SYSUT1 (see Figure
18). This information is written so
that the catalog can be updated as
needed. If there is another data set
in the group to be copied, IEBMVESH
gives control to IEHMVESZ to set up
the next copy; if all the data sets
have keen copied, IEHMVESH sets up a
request to catalog the updated data
set information on SYSUT2 and gives
control to IEHMVETA.

IEHMVETA
reads SYSUT2 and catalogs the informa-
tion. The process is the same as that
followed by IEHMVETA in copying a
catalog.

Data Set Wrap—up (IEHMVESN, IEHMVESO,
IEHMVESP, IEHMVESC, IEHMVESK)

Load modules in this group perform ter-
minal operations following the copying,
unloading, or loading of a data set pro-
cessed for a PDS, DATA SET, or VOLUME re-
quest. In addition, when all requests have
been serviced, control is given to
IEHMVESK.

IEHMVESR
completes the moving or copying of a
data set and closes the "TO' and
*FRCM' data sets.

If user labels have been specified,
and if output trailer labels have been
saved in storage, these labels are
written out and the storage area is
released. If a user-label track has
not keen allocated, the message text
in this load module informs the user
that lakels cannot be moved or copied.

IEHMVESO
is entered following an unsuccessful
copying, unloading, or loading opera-
tion, or following a test ((Data Set
and Volume Set-up) indicating a re-
quest could not be honored. IEHMVESO
prints a diagnostic message and
scratches the 'TO' data set.

IEHMVESP
performs terminal operations following
a COPY request, including any speci-
fied or implied cataloging, uncatalog-
ing, and scratching.

IEHMVESQ
performs terminal operations following
a MOVE request, including any speci-
fied or implied cataloging, recatalog-
ing, and scratching.

IEHMVESK
is entered when all requests have been
serviced, or when a permanent I/C
error has been detected on the print-
er. IEHMVESK closes SYSIN and SYS-
PRINT, closes and scratches the work
data sets, frees main storage, and
returns control to the stem, IEHMOVE.
During abnormal termination handled by
this module, user-label exits are not
processed.

COMMUNICATION AREA (IEHMVV)

The communication area for the program
is defined at assembly time by the macro
instruction IEHdMVV, which is internal to
the IEHMOVE program. Register 12 contains
a pointer to the communication area whenev-
er a request for a module is issued.

The macro instruction IEHNVV generates a
dummy section (also IEHMVV) containing work
areas and control data for all object
modules of the program. Main storage for
the dummy section IEHMVV is obtained dynam-
ically by the stem.

The communication area consists of the
following parts:

e A work area of 512 bytes (IEHMVO0O0).

e The addresses of the beginning and end
of an 800-byte work area (IEHMVV1O).

e A takle of switches controlling the
flow of the program (IEHNVV20).

e A control table containing the return
codes of the control statement scan
routine (IEHMVESJ).

e A table of control data for volure
lists and include-exclude-replace lists
(IEHMVV21-IEHMVV26).

e A takle of addresses of the FRCNM data
set's DCB, DSCB, DECB and ddname
(IEHMVV30) and the TC data set's DCB,
DECB and ddname (IEHNVV31). Each
address is stored in a fullword.

System Utility Programs: IEHMCVE 37

A table of the addresses of the DCBs
and DECBs of SYSPRINT (IEHMVV33), SYSIN
(IEHMVV32), and SYSLIB (IEHMVV3d4).

A table of work data set control data
(IEHMVV39).

A takle of addresses of work areas for
loading, unloading, including, rerlac-
ing, and copying a PDS.

e The DCB exit list (for user-label pro-
cessing) defined by the macro instruc-
tion IEHDCBXL. This list is found in
the 40-byte section IEHMVV70 of the
communication area. Included in the
list are symbolic names for the input
and output header-label processing sub-
routines, the input and output trailer-
label processing subroutines, the DCB
exit, and the OPENJ JFCB exit.

e An area containing pointers both to the
storage area (the label save area)
obtained for user labels and to the
current label being processed. These
rointers are in the 20-byte section
IEHMVV72. For the first label being
processed, both pointers will indicate
the same address. Figure 19 indicates
these relationships.

IEHMVV72 Label Save Area

0 0
Pointer to Label Label 1

Save Area +80

il Label 2
Pointer to Current L-"_ - +160

l.abel Lobel 3
+240

Label 4

+320

Etc.

Etc., \rm e

Example of pointers when third label is being processed

Figure 19. Label Save Area Pointers

IEHMOVE WORK DATA SET RECORD FORMATS

The program uses three work data sets:
SYSUT1, SYSUT2, and SYSUT3. How a work
data set is used depends on the function
being performed by the program. The fol-
lowing takle (Figure 20) shows where record
formats may be found. A blank entry indi-
cates that the work data set is not used
for the indicated function. The entry 16%
indicates that SYSUT3 is used for any par-
titioned data sets found within a group of
data sets or a volume.

38

Function SYSUT1 SYSUT2 SYSUT3
I . L v Ll]
| Single Data sSet} | | |
| (not a PDS) | | |]
[R 4 1 | 1
L B R T T L} A
| Single Data Set| | | i
| (PDS) |Fig. 14|Fig. 15|Fig. 16 |
L i R 1 {
] T 1 T .
| vVolume | | |Fig. 16%|
L 4 1 i ,‘
] 1 . T . R .
| DSGroup |Fig. 18|Fig. 18|Fig. 16%*|
: t-———-——t 1 1
| Catalog |Fig. 18] | |
L 1 4 4 3
Figure 20. Where to Find Record Formats

The device on which the work data sets
reside is allocated by job management and
is associated with the ddname SYSUT1. The
spaces occupied by the work data sets spe-
cified by the names SYSUT1, SYSUT2, and
SYSUT3 are dynamically allocated.

Obtaining Space for a Work Data Set

Space for a work data set (e.g., SYSUT3) is
obtained from DADSM in the following way:

1. The first time space is requested, it
is requested for the data set
**SYSUT3.

2. If the return from DADSM indicates
that a DSCB for the requested data set
space already exists on the VTCC, the
name previously submitted to DADSM is
qualified by the index name consisting
of the single character * and the
modified request is submitted to
DADSM.

Step 2 is repeated until space is allo-
cated or until 44 bytes have been used with
no success. Thus, the first request for
srace for SYSUT3 either results in space
being allocated for the 8-byte name
**8YSUT3 or an indication that a data set
of the name **SYSUT3 already resides on the
subject volume. If the latter, space is
requested for the data set **SYSUT3.*. The
third request, if necessary, would specify
the name **SYSUT3.*.*. A count of the
number of times the name has been qualified
is maintained in the communication area,
IEHMVV.

After space has been allocated for the
work data sets, they are opened in the
order: SYSUT1, SYSUT2, SYSUT3.

Releasing Space Used by a Work Data Set

The work data sets are not closed until
final wrap-up. At this time, SYSUT3 is
first closed and scratched, then SYSUT2 is
renamed to SYSUT3 and closed and scratched,
and then SYSUT1 is renamed to SYSUT3 and
closed and scratched. :

Q

Chart 05.

IEHMOVE Overall Logic

A2 A3
Issue GETMAIN, Open SYSIN,
Enter nitialize SYSPRINT, and
Get Work Work Dato Sets
Data Sets
B3 BS
Get a Request. Allocate for
Set Up Catalég,
Parameters in Indi that a
Work Area Catalog is Pres,
" on this Volume
@ 2
y 2 C4
Read Catalog,
Write Info. on DSGP Obtain a DSCB.
SYSUTI, Set Up Set Up for
for One One Data Set
Data Set
Con
Request be
Serviced
NOTE: If User Labels Are
Present, Exit from
this Block to Process
them. Return to this
Open 'to' and Block,
‘from' Data
Sets, Go to
Proper Routine
K F1 4 F2 1 F4
C Unload
or Load PDS Copy, Unload Copy, Uniood
or BSAM Data or Load BDAM or Load
Set Data Set Catalog
NOTE
Close 't0' and | G2
'from' Data
Sets, Catalog,
Uncatalog,
Scrgtch as Nec
1s H4
there another
Data Set Info Request
2
FREEMAIN, Close
fa SYSIN ond S5YS-
in Group been PRINT. Close and
roc, Scratch Work
Data_Sets
K3
Update Catalog K4
as Necessary Copy the Return to
with SYSUT2 Catalog 1 Supervisor
Information
System Utility Programs: IEHMOVE 39

Chart 06. IEHMOVE DSGROUP Logic

A2

(Enter ’

B2 l B4

Open Get an
Catalog Entry from
SYSUTI
C Cc4
Write Entries Set Up Work
on SYSUTI for Area (TEHMVV)
Data Sets to to Treat
be included Data Set
NOTE
Read a Catalog o D4
pen
Entry for a 'to' and 'from'
Data Set in Data Sets
the Group
E4
fre Data CHART 09
Set to be Ex- Copy, Unload
cluded or Load the e
Data Set 0
£2 F4
H
— e e
Entry on Reflect New
sysum Status, Write
Entry on SYSUT2

NOTE

G4
Close the
"to' and 'from'
Daota Sets

NOTE: If User Labels are Present,
Exit from this Block to
Process them,
Return to this Block,

Manipulate
the Catalog
as Necessary

40

chart 07. IEHMOVE VOLUME Logic

¢

A3

‘ Enter ’
1 83

Set Up
Work Area

J (IEHMVV) to

Treat Data Sets

c3

Open
the
VTOC

D3

: Set Up Work
£ | Area {IEHMVV)
Obtain DSCB
Data Sets

E2

E3

Allocate for
Catalog. Indicate
that Catalog is

Present on

‘ o Volume

Is
the DSCB
Sor a Catalog

F3

Chart 09

Copy, Unload,
or Load the
Data Sets

NOTE: |f user labels are present, exit from this
block to process them. Return to this block.

NOTE

G3
Close the
'to* and 'from'
Data Sets

H3

Manipulate
Catalog as
Necessary -

K4
C::::y Close
Catalog vioc

Q)

System Utility Programs: IEHMOVE 41

Chart 08. IEHMOVE PDS Logic

Al

Enter

B1

Scan Control
Statement for
PDS Option

of
Statement

this a 'SE~
LECT* Option

this an 'EX=
CLUDE' Op-

tion

42

A2

Open the 'from'
and 'to’ PDS

D2

Write Member

Names and PDS

of Members to
be Replaced
on SYSUT2

F2

Write Member

Names and Vol
Ids. of Members
to be Processed

on SYSUT!

G2

Write Member
Names and Vol,
Ids. of Members
to be Excluded

SYSUT2

Specified

Cc3

Read a

Directory
Entry

Write
Directory Entry
on SYSUT3

Get on Entry

Search on
Key in SYSUT)
for Vol . Id.

this the First
‘from' PDS

BLDL

Get Directory
Entry

F4

Write DIR,
Entry on
SYSUT3

NOTE: The Record Pending
Was Not Processed During
Lost Poss Because of a 'Yes'
in Block D4

Close Old
'from' PDS

E5

Open New
'from' PDS

from SYSUT3

H3

Copy Member
(Find, Read,
Write, Stow)

Chart 09.

IEHMOVE DSNAME Logic

Enter
B1
Mount
Proper
Volumes
NOTE C5
c3 c4
R JEHMVESL
Space for 'to Format Tyne F Build DCBs,
Data Set Pre- ormat Type Open 'to' and Copy and Reblk,
Allocated or Type V ‘from" Data Set Type F BSAM or
PDS
NOTE C
D4 D5
Build DCBs Open IEHMVESM
'to' and ‘from' Copy and Reblk.,
Data Set Type V BSAM or
PDS
Must
Data Set be
Unloadeg
NOTE
Fl F3 F4
Build DCBs. Build DCBs. Build DCBs, Build DCBs.
Open 'to' and Open 'to' and Open 'to' ond Open 'to' and
'from’ Data Sets 'from' Data Sets 'from' Data Sets 'from* Data Sets
Gl G2 G3 G4
|EHMVETL |EHMVERD |EHMVERA |EHMETJ
c°'z7°;dut’,‘,',°:;' or U;:;:“SSQM Load BSAM Data Copy BSAM Data
Data Sets PDS Set or PDS Set or PDS
© *
NOTE H4
IEHMVESN [IEHMVESO
Close 'to’ and ERROR Analyze Error
'from' Data Severity. Abort
Sets if Necessary
12 :
IEHMVESQ Tyee 3 IEHMVESP | 14 35
Petform of Operation Perform any SR:f :rrv"i::r
Scratching . and Scratching and P
Cataloging Cataloging
‘ K3 }]
K4 K5
K3 IEHMVESK IEHMOVE
there another Issue FREEMAIN,
equest Close SYSIN, Stem
SYSPRINT

NOTE: If User Labels are Present, Exit
from this Block to Process them.
Retum to this Block.

System Utility Programs: IEHMOVE

Chart 10.

Enter

IEHMOVE CATALOG Logic

Al

B1

4y

C4
Should <3 Copy & Reblock
Catalog be Reblockin the Unloaded
an Unloaded 9 Catalog onto
State Loaded Nacessa the 'ro'gVol.
b2 03 Ty
JEHMVESC Get a Rebuilt Copy Unloaded
Scan Catalog. Cat. Entry from Catalog onto
Write Entries 'from' Vol the 'to' Vol
on SYSUT!
E2 _ SVC 26
Reod [[moexsve [|®
Catalog Entry BLDX on
from SYSUT! o' Volume
F4
Read o INDEX SVC
Catalog Entry
LNKX on
from SYSUTI o' Volume
Gl G4
Write the Entry ” INDEX SVC
in Unloaded
Format on ‘to'
Vol,

BLDA on
'to' Volume

Data Set Name

H4
CATALOG SYC

Try to Cata-
log the DSNAME
on 'to' Vol,

INDEX SVC

BLDX on
'to' Volume

oading or
Copying Being
Done

Listing System Control Data
(IEHLIST)

The IEHLIST utility program performs three
functions:
e It prints a catalog or partial catalog.

e It prints a volume table of contents
(VToc).

e It prints the directories of up to ten
partitioned data sets (PDSs).

The program is serially reusable, but
not reenterakle.

PROGRAM STRUCTURE

The overlay structure of the program is
shown in Figure 21. The program consists
of the following control sections (CSECTs):

e IEHRCCT performs basic program initial-
ization. It is resident in main
storage throughout the program's execu-
tion, unlike the other CSECTS. IEHROOT
contains V-type address constants
needed by the overlay supervisor.

e IEHMSG contains only messages.
e TEHPSEG analyzes requests.

e RDCDRT scans control statements.

e DEVNAMET is the device name table.

e IEHINSEG interprets parameters supplied
by a calling program.

e IEHQSEG scans and prints cataloged
data.

e TEHRSEG scans and prints VTOC data.

e IEHSSEG scans and prints PDS directory
data.

e IEHDSEG processes and formats the DSCBs
in the VTOC.

e IEAVOLMT mounts necessary volumes. It
is described under the heading "Device
Allocation and Volume Mounting."

e DEVMASKT is a device mask table used by
IEHVOLMT.

Chart 11 shows the logical flow of con-
trol through the program. Figure 22 shows
the structural flow of the program, includ-
ing the successive phases of the contents
of main storage during the program's execu-
tion. The logic of each control section
(CSECT) of the program is described in the
following paragraphs.

IEHROOT
contains miscellaneous routines needed
in main storage throughout the pro-
gram's execution (PERRPR, WCRKERR,
PTERM, LINEPR, DCPOINT, and PRBEGIN),

IEHROOT

Initialization

IEHMSG IEHVOLMT
Me Volume
ssages Mounter
f* l I [DEVMASKT
Device
Mask Table
IEHPSEG JHINSEG IEHQSEG IEHRSEG IEHSSEG EHDsee
Request uxilfary Catalog VvTOC PDS Directory ormatte
Parameter . . . vTOC
3 Analyzer Printer Printer Printer .
4 Analyzer Printer
RDCDRT DEVNAMET
Control Device
Statement Name
Table

i‘ . Scan

eFigure 21. The Overlay Structure of the IEHLIET Program

System Utility Programs: IEHLIST 45

IEHROOT JEHROOT IEHROOT IEHROOT IEHROOT IEHROOT IEHROOT IEHROOT IEHROOT ia
IEHMSG IEHMSG IEHMSG 1EHMSG IEHVOLMT IEHMSG IEHMSG IEHMSG
IEHQSEG,
IEHINSEG IEHPSEG IEHPSEG IEHPSEG DEVMASKT IEHPSEG IEHRSEG,, IEHPSEG
IEHSSEG
or
] IEHDSEG
RDCDRT DEVNAMET
The root is load- Abranch to a The request The control The device name The volume The message The oppropriate The request
ed. Subsequent V-type address analyzer statement scanner table mounter table and the information analyzer
loading is constant causes (IEHPSEG) is (RDCDRT) is (DEVNAMET) (IEHVOLMT) request printing routine* overlays the
caused by the overlay loaded as in@. loaded. Control overlays the and the device analyzer overlays the segment loaded
branching to a supervisor to cycles between scanner by means mask table overlay all but request analyzer. in . The
branch table in load the message the request of the tegwait (DEVMASKT) the root. program
the root. table (IEHMSG) analyzer and routine. overlay all * [EHQSEG terminates or @
and the the scanner but the root. prints the new request is
auxiliary para=- until all catalog. analyzed, as
meter decoder parameters are IEHRSEG in é
(IEHINSEG). analyzed. prints a
VTOC.
IEHSSEG
LEGEND: prints a PDS
directory.
—» specifies flow of control IEHDSEG
formats all
e DSCBs in
specifies a . the VIOC.
IEHSSEG control section
(CSECT)
@ specifies a phase of
main storage contents

e Figure 22.

together with several communication
areas (CARDIN, PRINTOUT, WORKIN, and
RONTAB) .

PERRPR
causes any invalid control statement
to be printed, and gives control to
PTERM or PBEGIN, depending on wheth-
er there are any more control
statements.

WORKERR
treats all SYNAD exits.

PTERM
receives control when all job
requests have been serviced or
aborted, and ends the job.

LINEPR
prints all program output.

DOPOINT
issues all POINT supervisor calls
used by the program.

46

The Structural Flow of the IEHLIST Program

PBEGIN
directs control to the segments by
means of a branch table of V-type
address constants.

The following areas are located in the
root:

CARDIN
is the DCB for reading control
statements.

PRINTOUT
is the DCB for printing the catalog,
VvIOC, or PDS.

WORKIN
is the DCB for reading the catalog,
VTOC, or PDS directory.

RONTAB
is the parameter list for the volume
mounting routine.

IEHPSEG
analyzes requests and directs control
to the appropriate routine to print
the requested information. It con-
tains the following subroutines:

9

PBEGIN
directs control to IEHINSEG to
intexpret calling program parame-
ters, and to open SYSIN and
SYSPRINT.

PON
directs control to RDCDRT to obtain
control card information.

PKEY
is given control when a keyword is
returned by RDCDRT.

PPARAM
is given control when a parameter is
returned by RDCDRT. When the raram-
eter supplied to the (optional) VOL
keyword is returned, the parameter
is used as a search argument in the
device name table. The value re-
trieved is used by PWORKIN.

PWCRKIN
constructs the calling sequence for
IEHVOLMT.

PHEAD
prints a header and gives control to
the appropriate routine to print
catalog, VTOC, or PDS directory
information.

PTERM
receives control following the
printing of catalog, VTOC, or PDS
directory information. If there is
another request, PTERM directs con-
trol to PON; otherwise, PTERM closes
SYSIN and SYSPRINT, and returns con-
trol to the supervisor.

RDCDRT
scans utility control statements. It
is described under the heading "Con-
trol Card Scanner" at the beginning of
this publication (see the Table of
Contents).

IEHINSEG

interprets auxiliary parameters sup-
plied by a calling program (these pa-
rameters are described under the head-
ing "Auxiliary Parameters®), and also
opens SYSIN and SYSPRINT or their sub-
stitutes, as specified in the calling
sequence to the program.

IEHQSEG
prints the catalog. It gaimns control
indirectly from the request analyzer,
IEHPSEG, by means of a branch to a
branch table in the root. IEHQSEG
contains the following routines:

QCHECK1
scans the catalog for general infor-

mation and prints it. Actual print-
ing is done via a branch-and-link to
LINEPR in the root.

QHEAD
prints a catalog header after the
general information is printed.
Actual printing is done via a
branch-and-1link to LINEER.

QALL
scans high-level node points in the
catalog and passes them to (CLCCATE.
QALL is used only in the case of an
entire catalog printout.

QLOCATE
scans from a node point to succes-
sive index levels until a data set
pointer is found. A fully qualified
data set name is placed at location
INDXNAME for routine IPRDATA.

LPRDATA
prints information pertinent to a
data set.

QCATREAD
performs all the reading of a cata-
log for the catalog function of the
program.

IFHRSEG
prints a VIOC. Control is gained
indirectly from IEHPSEG by means of a
kranch to a branch table in the root.
IEHRSEG contains the following
routines:

RPARTIAL
treats requests for partial VTCC
printouts. Successive DSCBs are
printed by linking to RPRDSCE.

RENTIRE
treats requests for entire VTCC
printouts and differs from RPARTIAL
in that the VTOC must be opened.

REODAD
calculates and prints volume space
information for an entire VTOC
printout.

RPRDSCB
prints a DSCB that has been read by
RPARTIAL or RENTIRE.

RREAD
reads the VTIOC.

IEHSSEG
prints PDS directories. Control is
gained indirectly from IEHPSEG by
means of a branch to a branch table in
the root. IEHSSEG contains the fol-
lowing routines:

System Utility Programs: IEHLIST 47

SSTART
oktains the directory of a given
PDS.

SRESCAN
prints the member names of the di-
rectory. Actual printing is done by
linking to LINEPR.

IEHDSEG

48

formats the DSCBs in the VTOC (See
Appendix C). This CSECT gains control
indirectly from CSECT IEHPSEG by means
of kranching to a branch table in the
root segment. CSECT IEBDSEG contains
the following routines:

DPARTIAL
handles requests for a partial VTOC
printout. The routine reads the
Format 1 DSCB by using the OBTAIN
macro instruction and links to the
DFORMAT1 routine for printing of the
DSCB. The DPARTIAL routine then
links to the DFORMAT2 and DFORMAT3
routines for printing, respectively,
the Format 2 and/or Format 3 DSCBs.

DENTIRE
handles requests for the printout of
an entire VTOC. This routine is
similar to the DPARTIAL routine.
However, for an entire VTOC print-
out, the DCB for the VTCC must be
opened and all forms of DSCBs are
formatted.

DFORMAT1
handles the formatting of the Format
1 DSCB.

DFORMAT2
handles the formatting of the Format
2 DSCB.

DFORMAT3
handles the formatting of the Format
3 DSCB.

DFORMATY
handles the formatting of the Format
4 DSCB.

DFMT56
handles the formatting of Format 5
and Format 6 DSCBs.

eChart 11. IEHLIST - Listing System Control Data

()

IEHINSEG A2 RDCDRT A3
Al
Scan
Enter Initialize Control
Statements
PKEY B3
Analyze
Parameters
IEHVOLMT c3
Mount
Proper
Volumes
QSTART D2 SRESCAN D4 SUNPKPDS D5
N2 Print Obtain @ Edit and
Partial Entire General PDS | Print
or Catalog Directory Member
Partial Information Names
Entire
QALL l £l
IEHRSEG
Scan .
High-Level or Entire
Nodes Ean
J |
° Partial
QLOCATE F1 RREAD F2 DPARTIAL F4 RREAD F5
1
Scan from Read a ng':tml Read a
a Node DSCB DSCB DsCB
|
Partial
LPRDATA Gl RPRDSCB ‘G2 RPARTIAL G3 DFORMAT! | G4 G5
Print . Format
Dot Edit and Obtain and v
. Print DSCB a Print Formgt t
Infi t
nformation DSCB Dsce ¢t DSCB
RPROSCE H3 5
Last . d
Data Set Edi::i::d No
Printed DSCB
Yes
RECORD J2 g J5
Calculate Obtain Calculate
and Print Format 2 ang/or and Print
Space Format Space
Information DSCBs,and Edit Information
] \
PTERM
Terminate
the Job
System Utlility Programs: IEHLIST

u9

Updating XCTL Tables for OPEN,
CLOSE, and EOV (IEHIOSUP)

The IEHIOSUP program updates the XCTL
tables emkedded within various load modules
of the I/0 support functions OPEN, CLGCSE,
and EOV. The program is executed as a
result of jok control statements in the job
stream at the time of system generation.
The program is not serially reusable. It
consists of one load module, IEHIOSUP.

The name of the load module for the
first phase of each of the 1I/0 support
functions listed above is of the form
IGCOOnnn, where nnn is the decimal SVC code
for the data management function. The
names of subsequent locad modules are of the
form IGGnnnxx, where nnn is the deciral SVC
code for the data management function, and
xx is a load module identifier. If the
seventh character of the load module name
is alphaketic, the load module contains no
XCTL takle.

An XCTL takle is always present in the
first type of load module, but not always
present in the second. If present, the
table may be embedded anywhere within the
load module (see Figure 23). The last byte
of the load module is a relative pointer
(in double words) to the table.

IGCOOnnn
or
IGGnnnxx

[3

doubleword boundary

T

T
ID | TTR | L
XCTL takle 4 +
(variable | |
length) } 4
| |
+ +
00 | |
L i

f_indicates end of table

e e e e s wd — ke e ke —— ke ——adve w——— —]

(o e e . — g — S S g S— - — S G— — —

| 3 L}
| svc | P
1 L

ID = 2-byte entry identifier of a subse-
quent load

TTR = 3-byte relative track address of the
subsequent load

L = 1-byte length (double-words) of the
suksequent load

SVC = 3-byte decimal SVC number of support
function

P = 1-byte relative pointer (double-
words) to XCTL table

Figure 23. Embedded XCTL Table Format

50

Each entry within an XCTL table consists
of the identifier of a subsequent load
module, the location of the load module
(ITR), and the length (in double words) of
the load module.

PROGRAM FLOW
The flow of the IEHIOSUP program is shown

in Chart 12.

Finding the Load Module

Load modules of the first type (IGCO0nnn)
are updated first. If a load module of
this type is not found, an appropriate mes-
sage is printed and the program is aborted.
Load modules of the second type are pro-
cessed only after successful processing of
the first type; during this processing, the
program ends normally if either all load
module XCTL tables are updated or the end
of the directory is reached in searching
for a load module entry.

Entries for load modules are sought for
in order of increasing binary value (in
accordance with the organization of the
directory) by reading a directory record
and comparing the record key to the name of
the desired load module. When the record
key compares higher than or equal to the
load module name, the entry is sought for
(sequentially) in the record. If the load
module is of the first type (IGCO00nnn) and
no entry is found for it in the record, the
program aborts. Load module names whose
seventh character is alphabetic are
ignored, since the load modules they name
have no XCTL tables.

When the entry for the load module is
found in a directory record, the location
(TTR) of the load module is extracted from
the entry and converted to an absolute
address (MBBCCHHR). The conversion is
effected via the execution of the program
IECPCNVT, which is passed the TTR to be
converted and the address of the appropri-
ate DEB. The address of the IECPCNVT pro-
gram is found in the Communications Vector
Table at absolute (decimal) location &44.

Updating the XCTL Table

The absolute address of the load module
desired is then used to read the load
module into the buffer BUFFER. Reading of
the load module is done via the EXCP macro
instruction; the channel program is at
location CCWREAD, and the DCB is at loca-
tion EXCPDCB. When the load module has
been read into main storage, the address of
its last byte is determined using the count
field of the CCW and the residual count of

Jd

i

the CSW and is used to calculate the
address of the beginning of the XCTL table
within the load module. Up to 40 entry
identifiers are then moved from the XCTL
table and sorted in the area SORTAREA. If
more than 40 entries are in the XCTL table,
a switch (SWITCH + 1) is set. After the
entry IDs are sorted, each is expanded to
its full 8-byte form (i.e., IGGnnnxx). The
sorted, expanded IDs are then passed to the
BLDL macro instruction, which returns in
BLDLAREA the new entry values (TTR and
length) for each ID. The values are then
moved to XCTL table. Any remaining entry
IDs in the takle are sorted, expanded, and

passed to BIDL, 40 at a time, and updated
in the same manner.

The entire load module containing the
updated XCTIL table is then written at its
original location. If there are nc more
lcad modules to be processed, the SVCILIB
data set is closed and the program ter-
minates. Otherwise, control cycles as
indicated in Chart 12 until all load
modules are processed or an error condition
is returned by BIDL or EXCF. Such an error
condition results in abnormal termination
of the program.

System Utility Programs: IEHICSUP 51

Chart 12. IEHIOSUP - Updating 1/0 Surport XCIL Tables

A2 READMORE A3
Al
Reod o
Entry Initiolize Directory
Record

Examine
Next Entry
in Record

Record the
Name

FOUND
IECPCNVT

Convert TTR
in Entry to
MBBCCHR

MBBCCHHR E3
EXCP

Read the
Module

I1D F3
Move
Appropriate
XCTL Table
Entry ID's to
Sort Area |

STEPUP G3

Sort and Expand
Up to 40 1D's
from XCTL Table

GOJOBLDL, He H4
BLDL fncrement to
Obtain New Name of Next
' Module
TTR's and to b
Length , . 7
TRYNEXT1 J3 J5
P|u:dh|l.ew T":;R's Yes Close
. XE??T bl Been Processed the SVCLIB
info adle Data Set
CH K4
EXCP
Left in Table Write Out the Ret
Updated eturn
Module

52

Initializing the SYS1.LOGREC Data
Set (IFCDIPOO)

The IFCDIP00 program is executed during
system generation to initialize the SsY¥Ysl.
LOGREC data set (a data set used by systems
environment recording modules to record
CPU, channel, and I1/0 device errors).

This program is executed as a result of
job control statements provided by the GEN-
ERATE macro instruction during the SYSGEN
process. Input to the program (as speci-
fied in the EXEC statement) consists of the
(decimal) number? of unit control blocks
(UCBs) in the system, and the system resi-
dent device type code (for an explanation
of the code, see "SYS1.LOGREC Record
Format").

The output of this program at normal
completion is of three types:

e The initialized data set SYS1.LOGREC.
(See the section "SYS1.LOGREC Record
Format.”)

e Information to be used as parameters
for executing the environment recording
edit and print (EREP) program.

e Information to be used for recording
CPU, channel, and I/0 device errors by
the systems environment recording
modules.

PROGRAM FLCW

Chart 13 shows the flow of the program,
which consists of one load module (IFC-
DIP00). The data set SYS1.LOGREC to be
written consists of three subsets:

e A header record, written by this
program.

e A variakle number of statistical data
records (STAT/RECs), written by this
program with data fields of zeros.

e A record entry area beginning on the
first track following the STAT/RECs,
not written by this program.

SYS1.LCGREC records are written using
BSAM WRITE. Diagnostic messages are writ-
ten using the WTO macro instruction.

The program is executed in two passes:
the first pass (see Figure 24) initializes
the program, writes a dummy header record,

1This number is equal to the number of
uniquely addressable 1/0 devices in the
system.

and writes as many statistical data records
as there are UCBs for the system; the
second pass (see Figure 24) uses the data
obtained in the first pass to write a
genuine header record over the dummy, and
then writes as many statistical data rec-
ords (over and following those written dur-
ing the first pass) as are necessary to
fill out the track occupied by the last
statistical data record written during the
first pass.

SYS1.LOGREC After First Pass of IFCD1F00

I L] i} T AL
| DUMMY | STAT. | STAT. | STAT. |
| HEADER | REC. | REC. | REC. |
L 1 1 1 1
r T |] 1
| sTAT. | STAT. | I
| REC. | REC. | |
L L L 4
r 1
| |
| |
L J
SY¥S1.LOGREC After Second Pass of IFCD1P00

r T T T h]
| GENUINE |REWRITTEN|REWRITTEN|REWRITTEN |
| HEADER |STAT.REC.|STAT.REC.|STAT.REC. |
L 1 1 1 3
r T T T]
| REWRITTEN |REWRITTEN|] STAT. | STAT.]
| SIAT.REC. |STAT.REC. | REC. | REC. |
L 1 1 1 1
r b
| CDNWRITTEN |
| (RECORD ENTRY ARER) |
L J

SYS1.LCGREC After First and
Second Passes of IFCD1EOQOO

Figure 24.

First Pass

Program initialization consists of saving
registers and analyzing the input from the
EXEC statement. The dummy neader is then
initialized and written. The location (in
TIR format) of the dummy header is saved
for the second pass. The first pass sta-
tistical data records are then written,
each of which consists of a 2-byte key
(ascending sequence) and a 38-byte data
field of zeros. The location of the last
statistical data record written during the
first pass is saved for the second pass,
where it will be used to compute informa-
tion necessary to complete the genuine
header record. The program then enters the
second pass.

Second Pass

A switch (PASS) is set, indicating that the
program has entered the second pass. This
switch will be interrogated following the
rewriting of the statistical data records

System Utility Programs: IFCDIF0O0 53

in this pass. First, however, data neces-
sary to the genuine header record is com-
puted. A description of the fields of the
header record may be found under "S¥YsSl.
LOGREC Record Format."™ The values supplied
to these fields are computed using the
track number oktained by the NOTE routine
following the writing of the last statisti-
cal data record written during the first
pass.

The genuine header is then written.
Following this, the original statistical
data records are rewritten. The switch
PASS is interrogated, and indicates that
the second pass has been entered. The
track containing the last statistical data
record is then padded with additional sta-
tistical data records. SYS1.LOGREC is
closed, and IFCD1P00 returns control to the
supervisor.

SYS1.LOGREC RECORD FORMAT

The SYS1.LCGREC data set consists of three
subsets:

¢ A header record, written by this
program.

e A variable number of statistical data
records (STAT/RECs), written by this
program and initialized to zero.

e A record entry area (RE), not written
bty this program.

Header Record

The header record is a 38-byte data field
preceded by a 2-byte key of hexadecimal
FFFF. The header record contains the fol-
lowing fields:

1. A four-kyte field containing the
address (CCHH) of the first track in
the SY¥S1.LOGREC extent.

2. A four-kyte field containing the
address (CCHH) of the last track in
the SYS1.LOGREC extent.

3. A one-byte constant containing the
highest address of a track on a
cylinder of the system resident
device.

54

4., A seven-byte field containing the
address and ID (BBCCHHR) of the first
track of the RE area. The ID is set
to zero.

5. A two-byte field containing the number
of remaining bytes on the last RE
track written. This field is initial-
ly identical to field 6.

6. A two-byte constant equal to the track
byte capacity for the system resident
device.

7. A seven-byte field containing the
address and 1D (BBCCHHR) of the last
track written in the RE area. This is
initially identical to field 4.

8. A two-byte field containing the numrber
of UCBs in the system.

9. A two-byte field containing the number
of tracks occupied by the SYS1.IOGREC
data set.

10. A one-byte code for the type of system
resident device:

DEVICE CCDE
2311 Xx'o1"
2301 X*02°"
2302 X*0ur

11. A five-byte expansion field.

12. A one-byte field of hexadecimal FF
used to detect a previous overrun con-
dition caused by a machine check or
channel inboard failure while writing
the header record.

Statistical Data Records

This program writes each statistical data
record with a 2-byte key field and a 38-
byte data field of zeros.

Record Entry Area

This area begins on the first available
track following the last track on which a
statistical data record is written. Noth-
ing is written in this area by this pro-
gram. The address of this track is written
by this program in field 4 of the header
record.

Chart 13.

IFC

D00 A2

Initialize

Set Up
Dummy

Header

p B3

Open
SYS1 .LOGREC

Point to
Header
Record

K2

Gather Data for
Genuine Header

DWRITE Cc3

Write
Header

Note
(for Later
Point)

|
¥ B
Set Up st
Stat/Rec
Key

WRSTAT F3

IFCDIPOO0 - Initializing the SYS1.LOGREC Data Set

Write
a
Stat/Rec

Written

Note
(for Header
Data)

Set Second

Record

Pass Flag

H4

Get Number of
Additional
Stat/Rec's
from Table

CKPASS2

Stat/Rec's
Writte

No
Are
Additional Yes

DONE J5
Close
SYS1 . LOGREC’
K5
Return
IFCDIPOO

‘System Utiiity Programs:

55

Editing and Printing Environmental

Records (IFCEREPO)

The IFCEREPO ("EREP") program edits and
prints records from the SYS1.LOGREC data
set. (These records were originally writ-
ten by systems environment recording pro-
grams and provide the error environment of
CPU, channel, and device errors.) EREP
opticnally saves certain SYS1.LOGREC error
records on an accumulation (history) data
set to provide comprehensive error statis-
tics. The accumulation data set may then
be used as input to EREP. Records from
SYS1.LOGREC (except SDRs) or from an accu-
mulation data set are printed in summarized
form when the summary option is selected.

EREP operates in the problem state and
is serially reusable. It consists of the
following machine-independent modules:

e IFCEREPO and IFCEREP1 (Charts 14-18),
the control modules.

e IFCMSGO00, the message module.

e IFCSDRO0 (Chart 19), which edits sta-
tistical data records (SDRs).

e IFCOER00 (Chart 20), which edits 1/0
outboard records (OBRs).

e IFCOBRSM, which edits the outboard
record summary.

e IFCMCHO0 (Charts 21 and 22), which per-
forms preliminary editing of channel
inboard records and machine check
records.

Figure 25 illustrates the communication
between modules of the EREP program.
Figure 26 lists the machine-dependent
modules of the EREP program.

. LOAD

1 1
| IFCEREPO f—==——— IFCEREP1 |
| (Model | (Model |
| Independent | Dependent |

|

|control Module) |&~--——-p{Control Module)
1 J

zWmcHED

z
<>

1
Process and Edit|
Modules |

J

P — oy

Figure 25. Control Flow Between Mcdules

56

All communication between record
processing/editing modules and control
modules is through IFCEREPO, the model-
independent control module. This module
then may communicate with IFCEREP1, which
is model dependent, to handle summary/
process/edit requests.

Overall Flow

The control module first scans and analyzes
parameters from the execute statement, and
then performs basic initialization, such as
loading the second control module and the
message module. Module IFCEREP0O also
determines the input and output data sets
to be used and opens their associated DCBs.
When the parameters specify the summary
option, the control module obtains via a
GETMAIN macro instruction from 1.7 to 4K
bytes of storage. (The size of obtained
storage depends on the amount of free
storage.)

The record-processing path determined by
the control module depends on whether the
input data set is S¥S1.LOGREC or an accumu-
lation data set. When the input is an
accumulation data set, program flow also
depends on whether a record data summary is
requested. (The control modules indicate
program flow by setting bits or bit-
combinations in four switch bytes.)

S¥S1.LCGREC Input

when SYS1.LOGREC is the input data set,
EREP processes all records of a type before
processing another type. The program reads
a record from SYS1.LOGREC and the appropri-
ate editing module is given control by
means of the Link routine. When all rec-
ords of the selected type have been read
and the appropriate ones edited and writ-
ten, the options are checked to see if
another type of record is to be processed;
if so, all the records of this type are
read and the appropriate ones edited and
written. For record types other than SDR,
optioned summary and accumulation functions
are performed before EREP begins processing
another record type. (Unlike other record
types, OBRs are written into the accumula-
tion data set in blocks of ten. Space for
record blocking is reserved in the message
module.)

When all records of the selected types
have been processed, the SYS1l.LOGREC header
record is checked by the control module to
see if any additional records were stored
in SYS1.LOGREC while EREP was processing.
If any were stored, the program enters a
second pass and the additional records are
edited and written regardless of the
options selected. No sunmary of these rec-
ords is performed.

9

r T L L) 1
‘.’ | MACHINE | MODULE ID { MODLIB ID | FUNCTION |
I | | (xx¥) | I

L L 4 L
] T T T {
| Model 40 | IFCMC140 | IFCEP400 | Edits CPU records. |
| | IFCMC340 | IFCEP401 | Completes editing of CPU records. |
| | IFCSUM4O | IFCEP104 | Summarizes CPU and inboard records. i
| | IFCMCS40 | IFCEPO41 | Edits the CPU records summary. |
| | IFCINSu40 ! IFCEP072 1 Edits the inboard records summary. |

IS L

] L 1 1
| Model 50 | IFCMC150 | IFCEP500 | Edits CPU records. 1
| | IFCMC250 | IFCEP501 | Completes editing of CPU records and edits |
; | | | | inboard records. |
1 | | IFCSUM5S0 | IFCEP105 | Summarizes CPU inboard records. |
| | IFCHCS50 | IFCEP051 | Edits the CPU records summary. |
| | IFCINS50 | IFCEP052 | Edits the inboard records summary. |

L L] i

L 3 1} L ¥
: |Model 65/67 | IFCMCl1l65 | IFCEP650 | Edits CPU records. 1
. | (*) | IFCMC265 | IFCEP752 | Edits inboard records. |
;3 | | IFCMC365 | IFCEP651 | Continues editing CPU records. |
3 | | IFCMCU465 | IFCEP652 | Completes editing CPU records. |
| | IFCSUM65 | IFCEP106 | Summarizes CPU and inboard records. |
: | | IFCMCS65 | IFCEP061 | Edits CPU records summary. |
1 | | IFCINS65 | IFCEP072 | Edits inboard records summary. |
; | | IFCASROO (**) | IFCEP655 | Edits machine-check handler portion of CPU |
			recoxds.
	IFCASRO1(**)	IFCEP656	Edits channel-check handler portion of inboard
			records.
F t + t i			
Model 75	IFCMC175	IFCEP751	Edits CPU records.
]	IFCMC275	IFCEP752	Edits inboard records.
	IFCMC375	IFCEP753	Comgletes editing CPU records.
)		IFCSUM75	IFCEP107
")		IFCMCS75	IFCEP071
	IFCINS75	IFCEP072	Edits inboard records summary.
F t + + 4			
[Model 85	IFCMC185	IFCEP850	Edits CPU records. 1
	IFCMC385	IFCEP851	Completes editing of CPU records.
	IFCMCuU85	IFCEP852	Edits inboard records.
	IFCSUMS85	IFCEP108	Summarizes machine-check handler records.
	IFCMCS85	IFCEP081	Edits and prints summary counters.
	IFCMC585	IFCEP853	Edits CPU record summary.
L L %, % 4			
[Model 91	IFCMC191	IFCEP950	Edits CPU records. i
] IFCMC291	IFCEP952	Edits inboard records.	
]	IFCMC391	IFCEP951	Continues editing CPU records.
	IFCMC491	IFCEP953	Completes editing inboard records.
	-IFCSUM91	IFCEP109	Surmarizes CPU and inboard records.
	IFCMCS91	IFCEP091	Edits CPU records summary.
	IFCINS91	IFCEP072	Edits inkoard records summary.
L L ey L 1
{(*)Except for modules IFCASROO and IFCASRO1l, all modules in this group have aliases of }
l IFCxxx67, where xxx represent the fourth, fifth, and sixth characters in the module |

ID.
:(**)These modules occur only in systems having the machine-check handler and the chan- l
| nel check handler feature. |
| (¥**)This is the module identification before it is link-edited onto the ILink Library. |
L _—]
eFigure 26. EREP Machine-Dependent Modules

Accunmulation Input requested summary was obtained from the

GETMAIN routine.

When an accumulation data set is the input,

¢

EREP minimizes the number of access cycles
Ly processing more than one record tyre on
a pass if a summary was not requested or if
the maximum 4K bytes of storage for a

If the summary was requested or maximum
storage was unavailable, the program first
edits and prints OBRs, if requested. Since
available space may be insufficient for an

System Utility Programs: IFCEREP0 57

OBR summary, more than one summary pass may
be necessary. After OBR processing is com-
plete, INB and machine check records are
processed in a single pass each.

control Module Subroutines

The control module and the editing modules
make use of the following subroutines,
located in the control module, to perform
I/0 operations:

XWRTPRT
writes edited data, using BSAM, on the
specified output device. Records are
written in 120-byte blocks from the
buffer XPRTBUF, also in the control
module.

58

XRDDISK
reads, using EXCP, a record from SYS1.
LOGREC into the buffer XDADBUF, also
in the control module.

XWRIDISK
writes, using EXCP, a record of zeros
on SYS1.LCGREC. The buffer XDADEUF is
zeroed out by the editing moduvle. If
disk writing is prohibited, this rou-
tine returns control inmediately.

XWRTOP
writes, using WTC, messages to the
operator.

XACCSUM
accumulates and summarizes records, if
necessary.

N Chart 14. IFCEREPO Initialization and Linkage to Editing Modules

IFCEREPO

81
Scan
and Analyze
EXEC Statement
Parameters
C]
Load IFCMSGO00 Set 'Ski
| N P
and Store ss e(:‘i,;iod OBR P ing*
Address P NOP Active
D1
Load IFCEREP f VSVcs ANG
and Store K Storage 'y
Address Received Specified
E2
Open Is Was
Accumulation Accumulation Selection 4K Storage
o Requested Output Data by CUA's Received
0 Set
F2 F3
Open
. Write
Print Output
r;a ata ::‘: Ovutput Header o
No
G G5
Open Set 'INB
Accumulation ok Only' NOP
Input Data P Active
Set
H2
Free 4K Is .
Open b Set 'OBR
Main Storage Summary '
$YS1.LOGREC for Link it Only' NOP
Data Set Modules q Active
Al Jd
Read 2 Get 4K w
SYSI.LOGREC nput an Accu= Main Storage
Header qulation Datg for Link
Record Modules
K1 K K5
) Determine Get 1.5K to Set 'INB
if Hdr Record 4K Main . et !
is' Correcr-'- ®’_— Storage for _‘L§_<hkf.-,b|:’:’,° :ﬁ:‘_)No__. Only' 'NOP
if Not, Write Summary Ned together Active
to Operator Counters ~

‘ . 1651

System Utility Programs: IFCEREPO 59

Chart 15.

60

EREP - Input From SYS1.LOGREC Data Set

Read
Sdr,
from
SYS 1.LOGREC

Summary
Requested

Were
Any Obrs.
Processed

K1

IFCOBRSM

E1
IFCSDROO Read a Record
Select, Edit from
and Print SYS 1.LOGREC
Sdrs.
F2
@
Yes
G2
IFCOBROO
. Process Obr.
H1

Edit Summary
of Obrs.

A2

Set Print

Switch On Yes

Summary Switch
Off

Are Obrs.
Selected

Determine
Start of
Record Entry
Area in
SYS 1 .LOGREC

oy \D?

More Record
Entries

Any’
Entries in
SYS1.LOGREC
During EREP

Are Inb.

No

Set
First Pass

Switch On

Selected

C3

Determine
Start of
Record Entry
Area in

SYS 1.LOGREC

Any
More
Record Entries,

Read a Record
from
SYS 1. LOGREC

IFCMCHO0

Start
Processing
Record

IFCINBSM

Fdit and Print

Summary of
Inb. Records

Editing
Needed

Requested

Any H4
Mch.Chk?

Records
Processed

Yes
3 4
Link to |.FCMC HS.M
Necessary Edit and Print
Module Summary of
Mch, Records

This the
First Pass

Determine
Start of
Record Entry

Area in
SYS 1,LOGREC

D5
Any
No More Recor:
Entries

Yes
| o

Read a Record
from
SYS 1.LOGREC

®

IFCMCHO0
Start
Processing
Record

Editing
Neede:

J5

Link to
Necessary
Module

e Chart 16. EREP - Input From Accumulation Data Set
Al
Read a
Record from
Accumulation
Data Set
Bl
End
of Yes
Data
C2
\ Cc3
>t fecord Read
First Read ecorc Red
Switch on Correct Id,
D1 Write to
Yes 'Skip OBR' Operator-
NOP Active Incorrect
Input
- —D
El E2
Is Is
this Record Yes Obr, No
Obr. Selected
No Yes
y F2
% tFCOBROO
OBR only Yes
NOP Active Process
Obr., Record
No _l
Gl
Yes "Skip INB!
NOP Active
No
H3
1N\ N2 IFCMCHOO
this Record Yes Inb, Yes
inb. Selected Prots:::ng
Record
No No
. ® o~
:: 'INB only’ Yes . No
; NOP Active ° M‘";E:‘;;:S Al
Ne Yes
K3
K2
this Record Yes Mch, Chk. Yes R
Mch. Chk., Selected CL;:I;::
Module

No

No

System Utility Programs: IFCEREF0 61

Chart

62

17.

EREP - Accumulation Input - End of Data

B1

kip INB*
NOP Active

'INB
only' NOP

Is Obr,
Selectea

IFCOBRSM

IFCMCHSM

Edit and Print
Summoary of
Mch, Chk, Reds.

A Edit and Print
Active Som of
Obr .Records
D2
IFCOBRSM
Edit and Print
Summary of
Obr Records
OBR only’ Is Inb.
NOP Active Selected
F2 F4
75 Obr IFCINBSM IFCINBSM
Selected Edit and Print any Inb, Records Edit and Print
Summary of Processed Summary of
Inb, Records Inb. Records
G2
Any IFCOBRSM
Obr.Records
Processed Edit and Print
Summary of
Obr. Records
Set 'Skip
OBR' NOP
Active. Set
*Skip INB'
NOP Active
Set
Skip OBR' NOP
Active W
K2 K4
K3
Set ‘INB Is Set
only' NOP Inb, Selected *Skip INB* NOP
Active Active

K
CLS (Type=T)
Input Data
Set to Repos.
Vel, to Start
of Data Set

Ly

Chart 18. EREP Termination

A2

Close
Accumulation
Input
Data Set

Accumulation

Bl

Close

SYS1,LOGREC
Data Set

C2

Close
Accumulation
Output
Data Set

l

Close
Output Data Set

El

Retum to)
Supervisor

System Utility Programs: IFCEREP0 63

Chart 19.

IFCSDROO A

IFCSDRO0 - Editing SDRs

O,

Save Registers

EN

Bl

COo

Com. No. of Ent
in Devc.. Type
Tbi, Com. Key

for Last

Stat/Rec

NVRT

PR.STAT. Editor
Hdr. if CUA
Optn was Selec.
Conv, CUAs to

Search
Device Type
Table for
Device Type
Code

Device Type
in Table

Save Device

RDSDR

Is
Last Record

Switch
on

B2

Read
the Next Record

Type, Print
Message

Hl

Print

64

Message, No
Device Type

Was <
CUA Option
Selected

Data Record to
Editing Area

D4

ey
° Updo'e_. Record Equal Set
Exp Key to Last Key Lest Record

Valye \ Switch
No I
XAA E3
Move
Statistical

Was Device
Type Option

Device Type'
of Re}ch%r;io?:ual

LFTDEC J3 J4 WRTSDR J5
Print . Zero Out Write
STAT Reg Print all Statistical Red Back in
Source, Type, CW""‘" n Dato Record and Same Area of
CUA, Device Decimal Restore Proper SYS1,LOGREC
Type Key
K3 FIN
FINISH K2
Print
Any STAT Reci No M None Return SVC
been Edited Edited \

@ Return to Control Module

Chart 20.

&y

IFC
Save Registers

B}
No
Yes
Cl

Print
Outboard Editor
Heading

EN D1

Compute
Number of
Entries in
Device Type

Table

Selected

Convert EBCDIC
Dates
(Low-High) to
Hex.,Save. Print

Mg,

Convert EBCDIC
CUA's to

IFCOBROO - Editing OBRs

ENTRY] A3
Search
Device Type
Table for
Device Type

Print
M » No
Device Type

Save Device
Type Code,
Print Message

Accumulation if
Needed

Hex.,Save, Print
Mag.

Print

Outboard Red.
Hdgs. Model,

Source, Type

ice

CUA Dev

12

Print the

Remaining
Fields of the
Outboard

Record

OBROUT

Record Con-
tain Label of

as
Date Option
Seiected

Was
CUA Option
Selected

Device Type
Option Select,
ed

OBRI1 FINISH J5
Write the
Zero Record Back
Out the Record in Same Area of Return SVC
SYS1.LOGREC
Return to
Control
Module

System Utility Programs: IFCEREFO 65

eChart 21.

66

IFCMCHOO0 - Editing Inboard and CPU

IECMCHO00

Save
Registers

Print
Appropriate
Header
Inboard or CPU

Convert EBCDIC
Dates {Low-Hi)
to Hex, Save,
Print Message

Summary and
Accumulation
if Needed

Records

Record
Complete

Print

Message
'Not
Complete'

Type
Other of Record

SERC

Print CPU
Red. Heading=
Model, Source,
Type

G4

Print
Prog Id.,Date,
Time, Channel
Config, Active
175

(Ppart 1 of 2)

Inboard

SERI

F5,

Print Inboard
Red.Heading=-
Model, Source,
Type

Print
Progld., Date,
Time, CCW,

CSW Time

Chart 22.

Was
Record Editing
Started

IFCMCHOO - Editing Inboard and

this a CPU Yes

CPU Records (Part 2 of 2)

NOTE 1 - Includes Modules IFCMCHOT and IFCMCHO3

Chan. Ctel
of Ch:r:\ne ‘/F

Bit on

22
F2

Print IFCAS00
Message-
‘No Channel Edit and Print
Log' MCH Data
F2
Z
ero Out ERPIB Record from
Record (ccH)
Area Model 30 or,
Analysis
NOTE 1
Rewrite G5
Red, in Same
SYS! ,LOGREC Complete
Area if MCH. Check
Needed, Edit & Print
H2 H3 H4
Indicate Set Up to Call IFCMCHSM
Edit of Next Edir
. Module for Edit & Print
this Red.
Ended Channel Log Mach. Red.
(IFCMCHO 2) Summary
svC
Return

System Utility Programs:

IFCEREPO 67

Loading the 2821 Generator
Storage (IEHUCSLD)

The IEHUCSLD program reads records that
contain user-specified character images,
requests the operator to change the print
chain or train, loads the images into 2821
generator storage, and prints the images so
that the operator can verify the operation.
Options allow the user to specify folding
or non-folding mode, permit him to use non-
standard ddnames and to bypass the verifi-
cation procedure.

The IEHUCSLD program may be executed as
an independent job step or it may be
entered via the LINK or ATTACH macro
instruction. In either case the user may
specify alternate ddnames and bypass veri-
fication procedures. Program flow is shown
in chart 23.

PROGRAM FLCW

When IEHUCSLD is given control it examines
the parameter list to determine which (if
any) opticn has been specified. If no
option has been specified it assumes the
VERIFY option.

The next step is to determine whether an
alternate ddanme is specified for either
the input or printer data set. If an
alternate name is specified, IEHUCSLD moves
the specified name to the DCR; otherwise it
moves the standard names.

The program then initializes the printer
DCB for use with the EXCP macro instruc-
tion, and opens the input and printer DCBs.
It checks to see that both DCBs are proper-
ly open, then inspects the printer UCB to
insure that the universal character set
feature is available.

If either DCB is not properly open, or
if the universal character set feature is
not available on the requested printer, the
ddname specification (or other information
in the DD statement) 1is incorrect. 1In
either case, IEHUCSLD closes both DCBs and
returns with a return code of 8.

If both DCBs are properly open and the
universal character set feature is avail-
able, the IEHUCSLD program copies the
printer unit name from the UCB into the
operator message and print line texts, and
prepares to read the four control records.

IEHUCSID uses the Read routine four
times to bring the control records into
main storage. When the first record has
been read, there is some initial processing
done before the normal processing takes
rlace.

68

The initial processing includes a check
for an asterisk in position 1 and a com-
parison of the two type ID fields. The
type ID is then copied into the operator
message and print line texts, the mode
ortion field is inspected, and the printer
CCW is initialized (to folding or non-
folding mode) accordingly.

)

The normal processing is done for all
four records. The images field is moved to
an internal buffer, the record is sequence
checked and its format is verified. Then,
unless four records have been read, a
branch is executed to the expansion of the
READ macro instruction.

If it finds an error in a control rec-
ord, IEHUCSLD uses the WTC macro instruc-
tion to issue message IEH503I, the control
card error message. It closes the DCBs,
loads return code 8, and returns.

When IEHUCSLD has processed all four
records, it closes the input DCB and checks
for the LOADONLY option. If the LOADONLY
orption is specified, the program branches
to the EXCP macro expansion; otherwise it
requests the operator to change the print
chain or train. It issues message IEH500A
and waits for the operator to reply with
the type ID or *SKIP'.

If the operator replies 'SKiP', the
IEHUCSLD program issues the no action mes-
sage, IEH506I, closes the printer LCCB and
returns with code 0.

If the reply specifies the type ID
requested, IEHUCSLD uses the EXCP macro
instruction to load the character images
into 2821 generator storage, and waits for
ccmpletion of the channel program.

When completion of the channel program
is posted in the ECB, the IEHUCSLD program
inspects the completion code bits to deter-
mine whether a permanent error has occured.
It so, and the error is a parity error,
IFHAUCSLD closes and reopens the printer DCR
and retries the channel program.

If the error is a permanent error, but
not a parity error, the program clcses the
printer DCB and returns with code 12.

If the error is not a permranent error,
but completion is not normal, or if the
retry fails, IEHUCSID closes the printer
DCB and returns with code 12.

If the channel program is successfully
completed, the IEHUCSID program closes the
printer DCB and checks for the LOADONLY or
NOVERIFY option. If either option is spe-
cified, the program writes message IEH502I
tc the operator to tell him that the images

have been loaded, issues return code 0 and
returns.

If neither the LOADONLY or NOVERIFY
option is specified, IEHUCSLD opens the
printer DCB for BSAM. It skips the printer
to the next page and prints a header line
that specifies the unit, type ID, and mode
(folding or non-folding). Then IEHUCSLD
spaces two lines and prints two 120
character lines to display the images it
has loaded into the 2821 generator storage.

If the header line requires images that
were not supplied by the user, and the
reset block data check mode is specified in
the printer DD statement, the IEHUCSLD pro-
gram does not space two lines after the
header. If the user does not specify reset
block data check mode in his printer DD

statement, the space will occur; in either
case the images that were not supplied will
print as blanks.

When the three lines have been printed,
IEHUCSLD skips the printer to the next page
and tells the operator to check the images,
using message IEH501A.

The operator must reply, °*OK' or °NG'.
If the reply is 'NG' the images are printed
once more, and the operator is again
requested to check the images. A second
NG® reply causes the program to close the
printer DCB and return with code 4.

If the reply is 'OK', IEHUCSLD closes
the printer DCB, loads return code 0, and
returns.

System Utility Programs: IEHUCSLD 69

Chart 23. IEHUCSLD - Loading the 2821 Generator Storage

Al
Eniry from
Scheduler
or Caller

Analyze Param,
and Set Option
Switches

DDCHEC! Cl

Move

DDNAMEs to
DCB's

SETUP1 D1

Open Input
and Printer

DCBs

both \EF!

Open and
UCS Avail=
able

READATAI

Read Input

MOVEDATA Gl

Move
Images to
Output Area

WTOR
1EH500A Change
Chain

Issue
EXCP to
Load Generator
Storage

Normal
Completion

(=)

B3

Close Printer
DCB

MCHERR [ok]

Return
with Code 12

SKIPMSG E3

WTO
1EH5061 No

SKIPPR

WTO
1EH5021 images
Loaded

Action Taken

Entry from
Synad Routine

WTO
1EH5031

as
This Fourth
Read

CLOSE2

Close input DCB

70

Control Card
Ervor

OnllF

Close Input
and Printer
DCBs

K2

Return with
Code B

ERRORS G3

H4

Close Printer

J4

Return
with Code 0

Close Printer
DCB

Open
Printer DCB
(BSAM)

PRINT @_’ E5

Write Heoder
Line and Two
Image Lines

F5

WTOR
IEH501A Check
Images

Is
Reply 'NG' o
IOKI

Close Printer
DCB

o

o

Writing Tape Liabels IEHINITT)

The IEHINITT program provides the user with
a convenient means of writing volume label
sets on tapes to conform to Operating
System/360 specifications. The program
reads control cards, builds a parameter
list, calls an SVC routine to write a tape
volume lakel set, and informs the user of
the result of the labeling attempt.

Program Flow

The general flow of the program and its
relationship to the operating system are
shown in Figure 27. Charts 24 and 25 show
more detailed flow. Chart 26 shows the
logic of svC 39, the tape-labeling SVC
routine.

Program Structure

The program consists of four modules:
IEHINITT, the control module; IGC0003I, the
SVC 39 routine; IEHSCAN, the contrcl state-
ment scan routine; and IEHPRNT, the message
writer.

The Control Module (IEHINITT): The control
module builds two DCBs (SYSIN and SYSOUT)
for the tape-labeling operation and moves

IEHINITT
Control
Statement

—

DD Statements

Main Storage @

74 TIoT
IEHINITT

‘!' A4

d

Writing Tape Labels

Figure 27.

the DCBs to the work area. It then links
to the message writer (IEHPRNT) to write a
header, and links to the control statement
scan (IEHSCAN) to read a control statement
into main storage. IEHPRNT then prints the
control statement. Control cycles between
IEHINITT and IEHSCAN until the parameters
are analyzed or an error is detected. 1If
there are no errors, IEHINITT builds an
image of the tape label in main storage,
and then builds a parameter list for the
tape-labeling SVC by referring to the JFCB,
1I0T, and UCBs for DD statement informa-
tion. The symbolic link needed by the pro-
gram to gain access to this information is
the ddname, supplied in both the DD state-
ment and the utility control statement.
IEAINITIT then issues the SVC 39, invoking
the tape-labeling routine. Wwhen control is
returned, IEHINITT analyzes the return code
and links to IEHPRNT to print the label or
an error message. The process of building
the parameter list, issuing the SvVC, and
interpreting the return code is repeated
for each tape to be labeled. When the last
tape has been labeled, IEHINITT returns
centrol to the supervisor.

The SVC 39 Routine (IGC0003I): The SVC

routine writes the specified volume label,
a dummy header label (HDR1 followed by 76
EBCDIC zeros), and a tapemark on a desig-

©

Before IEHINITT has gained control, information
from the data definition {DD) statements has been
entered in the task |/O table (TIOT) and job

file control blocks (JFCB)

®

IEHINITT gains control and reads a control
statement. The dd name from the control
statement indicates which collection of tape
drives to use from the TIOT

@

A drive is selected and its relative position in

the TIOT is described in the parameter list for

the tape-labelling SVC. The parameter list

is built by extracting:

a) the device type (dual-density, 7-track, or
9-track) from the UCB

b) the density for dual-density or 7-track frem
the JFCB '

©

The SVC is issued and the tape label is written

©

The return from the SVC is analyzed and the result is
logged. If the request being processed shows more
tapes to be labeled, go to If another control
statement is to be read, go to @

System Utility Programs: IEHINITT 71

nated drive. By issuing a GETMAIN, the
routine obtains 204 + X bytes, where X is
the amount by which the volume label
exceeds the standard length of 80 bytes.
This area is used for building a DCB, DEB,
ECB, IOB, and a channel program, and also
holds messages and labels. Upon entry to
the SVC routine, register one contains the
address of a 4-word parameter 1list:

Word Bytes Contents

0 0-1 X*'coo0"

2 X'04' to rewind tape
X'06"' to unload tape

3 a binary number from 0 to n-1,
where n is the number of UCB
addresses in the DD entry por-
tion of the TIOT indicating
which device to use for volume
mounting

a pointer to an 8-byte area
containing the ddname corre-
sponding to the ddname in the
DD entry portion of the TIOT;
the ddname is left-justified
and padded with blanks

a pointer to one volume label
image to be written on the
tape

the binary length of a volume
label

2 the binary number one

3 command code for the control
CCW to set mode

The SVC routine extracts the UCB address
from the DD entry portion of the TIOT.
This UCB is checked to verify that the tape
is not SYSIN or SYSOUT, that the tape is
online and not scheduled to go offline,
that the tape is not reserved, and that the
data management count is zero. If a tape
is already mounted on the device and its
volume serial number is in the UCB, it is
unloaded. After the volume label has been
written and verified, the dummy header
label and tape mark are written. If the
tape is not to be unloaded, its volume
serial numker is left in the UCB. If a
non-standard label was written, the pseudo
volume serial number LGLO0O is left in the
UCB. If an I/C error or a file-protected
tape is encountered in the labeling pro-
cess, the operator is given one attempt to
correct the situation. (He may strip off a
few feet of tape or add the file protect
ring.) When returning control to IERINIIT,
the SVC routine issues a FREEMAIN to free
the work area, and loads register 15 with
one of the following return codes:

72

Code Meaning

00 labeling successful

04 operator has cancelled labeling
08 unacceptable parameter list

oc permanent I/0 error

The Control Statement Scan Routine (IEHS-

CAN) : This routine reads, using QSAM, con-
trol statements, checks syntax, and returns
to IEHINITIT an indication of the item
scanned. IEHINIIT supplies a work area (on
a fullword boundary) containing the DCB for
the control statement data set, which is
orened by IEHINITT before calling IEHSCAN.
IEHSCAN inserts the address of the end-of-
file routine KEOF in the DCB and the EOF
routine for IEHINIIT is restored when con-
trol is returned to IEHINITT. After scan-
ning a field from the control statement,
IEHSCAN returns to IEHINITT the following
information:

e Register 1 points to the starting
address of the field.

e Register 2 contains the length of the
field.

e A setting of a byte, SWITCHRD, in the
work area, as follows:

Bit=1 Meaning
Syntax error
Bypass switch
EOF
Initial entry
Command word
Keyword
Parameter
Not used

~NousEWwNRO

Unlike other control statement fields,
the owner name field (when enclosed in a-
postrophes) is moved from the control
statement image to the label image by the
control statement scan routine. The owner
name is considered to begin at the first
byte following the first apostrophe; two
consecutive apostrophes are considered a
single embedded apostrophe and counted as
one kyte of a maximum of ten for the field.
The scan is terminated when the count is
exceeded or when a single (i.e., not fol-
lowed immediately by another) apostrophe is
encountered.

The Message Writer (IEHPRNT): This routine

writes, using (QSAM, page numbers, headings,
and messages. Upon entry to the message
writer, register 3 contains the address of
the message minus one. If a permanent I/C
error is detected in writing the message,
the one-byte switch SWITCH2 is set to X'01°'
before control is returned and a code of 4
is returned to IEHINITT in register 15.

Chart 24.

Al

Entry

IFHINIT B1

IEHINITT (Part 1 of 2)

A2

IEHSCAN

Scan Card

Save
Registers,
Establish
Addressability

INVOC Cl

Issue
GETMAIN.
and Move DCBs
into Work Area

SEEK D1
Analyze and
Process any
Parameters in
Main Storage
out El

Open Data Sets

F1

IEHPRNT

Print
Header

REDO Gl

Initialize
Work Area

to Default

Options

SCAN 1 H1

Set
Up Parameters
to Pass

to Scan

Routine

ERR

Image and
Return a Field

Is
Error Bit
On

THRU

No

Keyword Bit
On

No

Parameter Bit
On

Yes

G2

Check for
Keyword and
Fill in
Area to go
with Keyword

this End of
Card Image

No

83

IEHPRNT

Print Out L.
Error
Message

C3

Move
DDNAME to Work

Area

s D3

ommand Word (_ Yes
INITT

")

E3

Turn on Bit in
Byte for

Keyword Found
(See NOTE)

NOTE - Keywerds are Checked as Follows - DISP, OWNER, NUMBTAPE.

G3
Is EOF

Bit On

&
H3

1EHPRNT

Print Out

H4

Error
Message

Pick Up
Pointer to
UCBs

Set Up for
VC Routine

System Utility Programs:

Skip to
Next Card
without

Continuation in

Col, 72

J5

Close Data
Sets, Pick Up

Retum Code,
Issue FREEMAIN,
and Restore Rgst.

K5

‘ Return ’

IEHINITT 73

Chart 25.

IEHINITT (Part 2 of 2)

g

FINISH

A2

of UCB's and
See if DD
Card was
Specified

Determine No.

¢

B2

Read JFCB
and Extract
Density to 'or'
with Constant
Mode

A4

Move in
Constant for
9 Track
Censity &
Mode

FILL

c2

Set Up

P

List
for SVC

C4

D2

SVC 39
Write Tape
Label

Was
svC
Successful

PERIO

DDTIOT

E2

Zero
Out UCB
Pointer

|EHPRNT

Print Out
Error
Messoge

IEHPRNT

Print Out
Error
Message

&

GOQOD

Increment
Serial Number
by One

IEHPRNT

Print Out
Label

Invalid
Device

all Tapes been
Labeled

£4

Skip to Next
Label to be
Written

G4

1EHPRNT

Print Out

Appropriate
Error Message

Set Up
for Next
Request
No

EOF

RETURN
Close Data Sets,
Issue FREEMAIN,
Pick Up Return
Code, Restore
Registers

G5

Return

Chart 26. SVC 39 Tape Label Routine

= 2 A4 AS
Build . Was
Control Blocks c a";': Tape Mark Set Error Code
in Work Area annel Frogram Written =

Zero

Length Labels Dummy)

Written

Issue Set Up
Calculate Work EXCP to Chor\t;c.l Pr;;grum
Area Si: Rewind ond to Write Tope
= Unload Tope Mark and Rewind
Tape

D1
; Issue
Getmain EXCP to Lobel
for Work Area and Read
Back Lobel
El
Determine if- Modify Channel
1. DDNAME is in TIOT Constroct p,:,gymm ':“e
2. UCB Addr is in TIOT | Wri k
. Dummy Header rite Tape Ma
3. UCB is for Tape Label and
4. UCB is not for SYSIN or ° Unload Ta
SouT £
5, Drive is On-Line ‘]
Drive is not Scheduled
for Off-Line
7. UCB is not Reserved
Insert Volume
Serial Number
into UCB
m
WTOR WTO 'Tape
"Mount Vol See is File
to be NOTE, Protected' *
H3 H4
Set WTO
Set E:ror Secon:»Time ‘Labels
Code =8 Logic Switch Cannot be
Verified'
O J
NOTE:
e ° WTO = Write to Operator.
R = Write to Operator---Reply Requested.
FREEMAIN WTOR = Write to Op Py Teau
K3
K1
Set Set
Return Error Code = 04 Error Code = 12

System Utility Programs: IEHINITT

Dumping, Restoring, and Initializing
Direct Access Volumes (IEHDASDR)

The IEHDASDR program dumps, restores, and
initializes direct access volumes according
to parameters specified in control state-

ments. The functions that may be specified
are:
e Dump. When the DUMP operation is spe-

cified, the IEHDASDR program creates a
copy (or copies) of the direct access
volume on one or more tape or direct
access volumes, or as a system output
data set.

e Restore. When the RESTORE operation is
specified, the program copies "dumped"®
data from a tape volume to one or more
direct access volumes, thus making one
or more copies of the dumped volume.

e Initialize. There are four initial-
izing functions that may be specified:

1. sSpecifying ANALYZE causes the pro-
gram to perform a complete initial-
ization of one or more direct
access volumes. The program per-
forms a surface analysis by
inspecting each volume for defec-
tive tracks, it obtains alternate
tracks for all defective tracks, it
formats acceptable tracks, and it
constructs a volume label, volume
table of contents (VTOC), and
(optionally) an IPL program for
each volume.

2. Specifying FORMAT causes the pro-
gram to perform all of the initial-
izing functions (except surface
analysis) for one or more volumes.

3. Specifying LABEL causes the program
to write a new volume serial (and
optionally an owner name) on a
direct access volume.

4. sSpecifying GETALT causes the pro-
gram to assign an altermate for the
specified disk or data cell track.

The user specifies the functions to be
performed by writing control statements and
rlacing them in the input stream data set.
He must also supply DD statements defining
the data sets, devices, and volumwes
required for the program, and may also sge-
cify program parameters either in the EXEC
statement PARM field or in a parameter area
(see the section "Auxiliary Parameters® in
this publication).

76

The IEHDASDR program can perform certain
functions concurrently on several volumes
of the same type. The user can specify
more than one volume in a DUMP, RESTORE,
ANALYZE, or FORMAT statement; the program
processes the volumes concurrently in the
sense that I/0 operations are overlapped.
This type of concurrent processing is known
as "making copies®™; in the case of a dump
or restore, there can be only one input
volume, and the output volumes are copies
of one another. In the case of an analysis
or format, all volumes specified in the
control statement are processed the same
way, and if a new serial is specified all
are given the same volume serial. In eith-
er case, the program uses only one set of
buffers and internal tables.

The IEHDASDR program can also perform a
Dump, Restore, Analyze or Format function
concurrently on several volumes which may
be of different types. The user specifies
the same operation (e.g. DUMP,) on several
successive control statements; if enough
main storage is available for buffers and
internal tables (a set is required for each
statement), and if enough I/0 devices are
available, the volumes will be processed
concurrently. Concurrent in this sense
(and as it is used in the remainder of this
section) means that a processing routine
will be reentered to process a different
set of volumes when it waits for the com-
pletion of certain I/O operations, as well
as when its processing of one set of
volumes is completed.

The IEHDASDR program may be executed as
a job step, or it may be executed as a part
of a program performing a job step. The
user invokes the program by using IEHDASDR
as the program name parameter in an EXEC
statement, or by using it in the orerand of
an LINK or ATTACH macro instruction. The
IEHDASDR program, which consists of an ini-
tialization routine, a control routine and
a set of functional routines, is entered at
the Initialization routine (module IEH-
DASDR). The Initialization routine obtains
main storage for the common work area
(Figure 28), initializes it according to
any parameters passed from the caller, then
uses the XCTL macro instruction to pass
control to the Control routine (module IEH-
DASDS). When it has performed the speci-
fied functions, the Control routine returns
control to the caller.

The Control Routine (IEHDASDS)

The Control routine is entered via an XCTL
or ATTIACH macro instruction issued in the
Initialization routine. The Control rou-

tine uses the Scan routine to read control
statements, and based on the specifications
in the statements, the Control routine
passes control to the appropriate function-
al routine. (Control flow among the
modules of the IEHDASDR program is shown in
Chart 27.) When all statements have been
processed, the Control routine issues a
RETURN macro instruction.

Initialization

When the Control routine (Charts 28 and
29) is entered, it uses the OPEN (type J)
macro instruction to open the SYSIN (con-
trol) and SYSCUT (message) data sets. It
uses the LINK macro instruction to pass
control to the Print routine (module IEHD-
PRINT) which places a header record in the
message data set, then uses the LINK macro
instruction to pass control to the Scan
routine (module IEHDSCAN).

0 128] 8

oy

Output (Message) Buffer S

L3

=

3

128 | SWITCHRD ! 80| C

Input (Control Statement) Buffer 5

D 59| 8

Scan Routine Work Area &z

2681 Switch1 ! Pointer fo Current Function Block 311
272 |Queue Code 11 Pointer to First Function Block 3
= Queve Codes and Pointers to Second - Fifth Function Blocks -

288 |Queve Code 6]! Pointer to Sixth Function Block 3

292 Pointer to Last Available Queue Slot 4 y
296 Page Switch]Jijeservec” | Number of Function Blocks Enqueued 2
300 Pointer to IPL Program Text 4
304 Address of SYSOUT DCB 4
308 Address of SYSIN DCB 4
312 8

DDNAME of Input Data Set
320 8
DDNAME of Output Data Set

Figure 28. IEHDASDR Common Work Area

Notes: The common work area resides in an
area of main storage obtained via a GETMAIN
macro instruction in the Initialization
routine (module IEHDASDR). Although the
names of most fields are self-explanatory,
the following fields require further
description:

e SWITCHRD indicates the result of scan-

ning a field of a control statement.
when set to 1, the bits have the fol-
lowing meanings:

Bit 0 sSyntax Error

Bit 1 Bypass Switch

Bit 2 End-of-Data, SYSIN Data Set
Bit 3 Initial Entry

Bit 4 Operation Field

Bit 5 Keyword Field

Bit 6 Parameter Field

Bit 7 Reserved

Switch 1 indicates the status of the
function queue. The bits have the fol-
lowing meanings when set to 1:

Bit

Reserved

Bit

0

Bit 1 Parameter processed
2 Multiple parameter possible
3

Bit Looking for IPL text
Bit 4 Reserved
Bit 5 TODD=cuu
Bit 6 Concurrent processing

Bit 7 Looking for operation field

e Queue Code indicates the status of the

function block. The bits have the fol-
lowing meanings when set to 1:

Bit 0 Entry active (this slot not

available)
Bit 1 Processing complete
Bit 2 Processing includes copies
Bit 3 Processing interrupted
Bit 4 Processing started
Bit 5 Reserved
Bit 6 Reserved

Bit 7 No main storage available

Processing and Control

The Control routine uses a scan routine
to read and check the syntax of the control
statements. Each time the Scan routine is

System Utility Programs: IEHDASDR 77

entered it checks one field; on the return,
the Control routine validates the scanned
field.

If either the Control routine or the
Scan routine encounters an error, the Con-
trol routine places a message in the mes-
sage data set, and starts to scan the next
control statement.

If the operation field (which specifies
the function to be performed) is valid, the
control routine obtains main storage and
constructs a function block (Figure 29).
The function block specifies the function
to be performed on a set of volumes, speci-
fies the volumes, and contains Control
information. If the statement specifies
multiple volumes, the Control routine con-
structs a copy block (Figure 30) for each
additional volume. The copy blocks are
chained to the function block; they contain
specifications for the additional volumes
in the set.

DDNAME (FROMDD)

DDNAME (TODD)

2| Dump Output 1
Device

Function ! SEQSW

20 Pointer to First Copy Block

24 Return Point Address 4

28 Device Constants Address

32
Pointer to Input Device UCB 4

36 Function Block Size 2 Reserved 2
40 Pointer to Output Device UCB 4
44

L Function = Dependent Area: ~L

Size and Format Variable

Figure 29. IEHDASDR Function Block

Notes: A function block is created, and
enqueued in the function queue, each time
the Control routine processes a control
statement. The function block, which con-
tains the information necessary to perform
the function, is degueued (and its main
storage released) when performance of the
function is terminated.

Although the names of most of the fields
of the function block are self-explanatory,
the following fields require further
explanation:

78

e Function is a 1-byte field containing a
code that represents the function to be
performed. The codes (in hexadecimal)
are:

DUMP 10
RESTORE 20
GETALT 30
LABEL 40
ANALYZE 50
FORMAT 60

e SEQSW is a 2-byte field that indicates
which keywords were present in the con-
trol statement. If a bit is on, its
meaning is as described below:

Byte 1: Bit 0: FRCMDD, TRACK, NEWVOLID
Bit 1: TODD
Bit 2: CPYVOLID, EXTENT
Bit 3: BEGIN, VTCC
Bit 4: END, IPIDD
Bit 5: OWNERID
Bit 6: FLAGTEST
Bit 7: PASSES

Byte 2: Bit O0: PURGE
Bits 1-7: Reserved

e Dump Output is a 1l-byte field used dur-
ing the performance of the DUMF func-
tion to indicate the type of output
device. The codes (in hexadecimal)
are:

Tape 00
System Output FO
Direct Access FF

e Return Point Address is a 4-byte field
used during concurrent processing to
contain the address at which the func-

tional routine is to continue
processing.

e Device Constants Address is a 4-byte
field that initially contains the
address of the control section IEHD-
CONS. This control section contains
information about each type of direct
access device, and the field is updated
to point to the IEHDCCNS entry pertain-
ing to the device type involved in per-
forming the function.

e Function Dependent Area is a field
whose format and size depend on the
function to be performed. The format
used in each case is shown with the
description of the way the function is
performed.

Q

9

8
° DDNAME (Copy Device)

Pointer to Previous Block in Chqin4 Address of Next Block in Chain 4

16 Address of UCB 4 Trailer Label Control 4
24| Error Retry Coun? ﬁ:r:; d] Altemnate Track Information
2 6 I Home Address Buffer 5] Reserved 2
40 16
:L DCB, 108, and ECB for Copy Device T
156 Reserved 4J 120
- Channel Program T

——) L
X

l

IEHDASDR Copy Block

Figure 30.

When it has constructed the function
block and any necessary copy blocks, the
Control routine enqueues the function block
in the function queue by creating a func-
tion queue entry for the block. The func-
tion queue is a FIFO queue; each entry
points to a function block, and the Control
routine attempts to initiate performance of
functions in the order in which they are
enqueued. When performance of a function
on a set of volumes has terminated, the
Control routine deletes the corresponding
entry from the function queue, and pushes
all lower priority entries toward the top
of the queue.

when it has enqueued the function block
corresponding to the first control state-

ment, the Control routine initiates per-
formance of the function. The routine
locads the appropriate functional routine,
loads registers with pointers to the common
work area and the function block, then
branches to the functional routine.

Suksequently, when the Control routine
initiates performance of a function, it
must first determine whether the correct
functional routine is loaded. If so, it
loads the pointers and branches to the
functional routine; if not, the Control
routine deletes the old functional routine
and loads the new one before branching to
it‘

Once a functional routine has been
entered, it may return to the Control rou-
tine under the following circumstances:

e The required main storage is not
available.

e An I/O operation has been started but
not completed, and concurrent opera-
tions can take place.

o Performance of the function has been
terminated, either because processing
is complete or because an unrecoverable
error has been encountered. In the
latter case, the functional routine
passes a return code greater than zero.
The Control routine stores the highest
return code and passes it to the user
at the end of the run.

The logic and processing performed in
the Control routine when a functional rou-
tine returns control to it is shown in
Figure 31.

System Utility Programs: IEHDASDR 79

T . 1
| Functional Routine Returns to Control Routine |
lf_ . IIIU‘TTTTIPIITITI‘II“.I
| Main Storage Not Available Yl Y|Y|Y|Y | |
L. Ll _4 4 1 d4-Jd It _1_d_1._1
[] . LB) T L L L L L L
Processing Interrupted | | | 1Ylyjyj O O
: + 1 1 +-4-1
Processing Complete | | YIY|{Y(|Y|Y|Y|Y|Y]
1 4
L) T
Current Entry is at Top of Queue NjY|Y|Y|Y| | |Y|Y|Y|Y|N|N|N|N
1 WY IR IO W [N T I I 4. ([
|) . . T T T rTTTYTT ¥ ¥
| Current Entry is Last in Queue | 1YJYININ] | | |Y|Y|N|N|Y|Y|N|N}
L Y I TP S I W Iy I TGN W S | I G W W P |
1] Y . . . L L L D D D e L L | LR L L]
| Additional Queue Space is Available S T T T T O 4 T I [I |
I e e vt vt i S S R
| Next Entry Can be Processed O T T T T T T T I N
L L1 i IO TG (G N WS W [GNNS GE B §
] L) T VT rrrrrTrTTTT T
| End-of-Data on SYSIN YINJY|INjYY] |Y|N|Y|N|Y|N|Y|N
L 41 T T T I N | S G - |
LI) L L L L) L L L)
| DO ACTION NUMBER 41719181911)212]7}9|8]|9|8]|9]819
% Lt L A _A_ i A _A1_ 1 1.4 4 L 4 L 1
| 1. Initiate the function specified in the function block corresponding to the next
| queue entry.
I
| 2. Initiate the function specified in the function block corresponding to the entry
| at the top of the queue.
I
] 3. Release the main storage obtained in the Control routine, close the SYSIN and SYS-
| OUT data sets, and return control to the caller.
I
| 4. Mark the entry ®"No Main Storage Available®™ and do Action 2.
|
| 5. Free the main storage occupied by the function block and delete the entry from the
| function queue.
I
| 6. Scan, and enqueue a function block for the next control statement.
I .
| 7. Do Actions 5 and 3.
|
| 8. Do Actions 5 and 2.
|
| 9. Do Actions 5, 6, and 2.
|
|Note: The next entry can be processed if the functions are the same, the devices are
|available, and main storage is available.
L

Figure 31.

Performing the Dump Function

When the Dump function is specified, the
Control routine passes control to the Dump
routine (module IEHDDUMP). This routine
(see Chart 30) initializes the input device
and the output devices, then passes control
to the I/C routine (module IEHDEXCP).
Module IEHDEXCP performs the I/0 opera-
tions, except that when the output is a
SYSOUT data set, it uses module IEHDAOUT as
a sukroutine to format and write the dumped
information.

The dump routine returns control to the
Control routine whenever processing is
interrupted to await completion of an I/0
operation, and when the function is ter-
minated, either because the dump is com-

80

IEHDASDR Control Routine Processing at Functional Routine Return

plete or because an uncorrectable 1I/C error
makes it impossible to continue.

wWhen it is entered, the Dump routine
verifies that the input device is a direct
access device, then issues a conditional
GEIMAIN macro instruction to obtain main
storage for a buffer and a work area. If
enough storage is not available, the rou-
tine returns control to the Control
routine.

If the Dump routine is able to obtain
the required main storage, it constructs an
ECB, I0B, and DCB for the input device, and
stores them in the function-dependent area
of the function block (see Figure 32). It
uses the RDJFCB and OPEN (type J) macro
instructions to read the JFCB and open the

e s e e e o — ——— —— — — ——— —————— —— ——— —— o it

VToC data set, then sets the dump extents
to correspond to the tracks specified in
the function block by converting the track
specifications to CCHH format and storing
them in the limits record (Figure 33). If
no dump extents are specified, the routine
stores the CCHH of the first and last
tracks on the volumes.

44 4 4
CCHH of First Track CCHH+1 of Last Track

52

CCHH of First Track on This Vol. Restore Tape Identifier

contain the number of alternate tracks
available.

e The field containing the pointer to the
first RESTORE buffer may also contain
X*FF' in the high order byte. 1If so,
it indicates that there are two RESTORE
buffers, and the next field points to
the second buffer.

e The last 16 bytes of the area are pre-
sent only for the Dump function.

o 5 T ;1 0 CCHH of First Track Dumped 4
Restore Tape Identifier (con't.) Dump Device R d
> ' Switch | Type e 4 CCHH#1 of Last Track Dumped 4
68 4
Reel Check Alternate Track Information 8 CCHH of First Track of Volume 4
76 6| Dump 1 1 256 12 8
Alt. Trk. Info (con't) |Formatted [Reserved

Switch

Output and Input ECBs, 10Bs, DCBs, and
Channel Programs to Write and Read Tape

Pointer to Read CCWs (Dump), or

to First Restore Buffer

340 4 4
Ptr. to Write and Read CCWs (Dump) . .

or fo Second Restore Buffer Pointer to Dump Count Field Buffer

348 4

Pointer to Data Buffer

Pointer to Unused Track Table

356 4
Temporary Work Area

Figure 32. IEHDASDR Function Block --
Dump/Restore Area
Notes: This figure shows the format of the

function-dependent area of the function
block as it is used in the performance of
the DUMP and RESTORE functions. Although
most of the field names are self-
explanatory, the following fields require
further explanation:

e The first seven fields in the area are
the 24-byte limits record.

e The reel check field contains the first
4-bytes of the restore tape trailer
lakel; it indicates whether the reel is
the last reel required to complete the
restore.

e The Alternate Track Information field
is extracted from the Format 4 DSCB of
the primary output volume and contains
two subfields: the first four bytes
contain the CCHH of the next alternate
track available, and the last two bytes

Restore Tape Identifier
(X'F4006Q1663824D")

20 Dump Switch ! Device Type ! Reserved 2

Notes: 1. Dump Switch settings:
X'FO' = Fyll Dump
X'00' - Partial Dump

2, Device Type Codes:

0=2321
1=231
2=2314
3=2302
4 =2303
5 =2301

Figure 33. 24-Byte Limits Record

If the output is a SYSOUT data set, it
is the only output permitted; the Dump rou-
tine performs no further initialization,
but passes control to the I/0 routine. If
the output is to tape or direct access,
there may be multiple output volumes, and
further initialization must be performed
for each of the output volumes.

The routine constructs an ECB, I0B, and
DCB for the first output volume, and stores
them in the function block. If the volume
is a tape volume, the routine opens the
tape, and uses the EXCP macro instruction
to write the limits record. If the volume
is a direct access volume, the routine
verifies that it is not System Residence,
then uses the RDJFCB and OPEN (type J)
macro instructions to read the JFCE and
open the VIOC data set. The routine then
reads the Format 4 DSCB and saves the
alternate track information so that it can
be placed in the VTOC of the output volume
when the dump is complete.

System Utility Programs: IEHDASDR 81

When it has initialized the first output
volume, the Dump routine determines whether
additional volumes have been specified. If
so, it verifies that the next volume is of
the same type, then initializes it. The
procedure is the same as that used for ini-
tializing the first volume, except that the
IOB, ECB, and DCB are stored in the copy
block associated with the volume. Any
other output volumes are then initialized,
one at a time.

When all of the output volumes have been
initialized, the routine passes control
(via a LINK macro instruction) to module
IEHDPASS to have the required security
checks made. On the return, the Dump rou-
tine reads and inspects the Format 5 DSCB
from the input device. The routine
extracts the available extent information,
converts it to CCHH form, and builds a
table of unused tracks. The I/0 routine
uses the table to insure that (unless the
output is a SYSOUT data set), only those
tracks that are in use (listed in the DSCB
as "not available for allocation®) will be
dumped. When it has built the table, it
passes control to the I/0 routine.

The function of the 1/0 routine is to
read information from the input volume and
(if the output volume is a tape or direct
access volume) to write the information
out. If the output is a SYSOUT data set,
the I/0 routine uses module IEHDAOUT as a
subroutine to format and write the data.

When the I/0 routine has determined that
a track is within the specified 1limits, and
that it is either in use or that the output
is a SYSCUT data set, it issues the EXCP
macro instruction to execute a channel pro-
gram that reads the data field of record 0,
the count, key and data fields of record 1
(if it exists), and the count fields of any
additional records on the track. When it
has issued the EXCP, the I/0 routine
returns control to the Dump routine, which
in turn returns control to the Control rou-
tine. When it is re-entered to continue
pexrforming the function, the I/0 routine
waits for the channel program to be
completed.

When the channel program is complete,
the I/0 routine determines whether the
track contains a home address and only one
record (RO), a home address and two recoxds
(RO and R1), or a home address and more
than two records:

e If the track contains only a home
address and record 0, the routine

82

determines the output device type,
writes out the contents of the record,
and erases the remainder of the track.

Q

e If the track contains a home address,
record 0, and record 1, the I/C routine
determines the output device type, and
writes out the contents of the records.

e If the track contains a home address,
record 0, record 1, and additional rec-
ords, the I/0 routine reads the key and
data fields of record 2 and the count,
key, and data fields of the additional
records. It then determines the output
device type, and writes out the con-
tents of the records.

If the output is a SYSOUT data set, the
I/0 routine passes control to module IEH-
DAOUT, which formats and writes the track
contents.

If the output volume is a direct access
volume, the I/0 routine writes to every
(primary) track on the volume. Those
tracks on the input volume that are in use
are copied onto the output volume; each
track corresponding to an unused input
volume track is formatted with a home
address and record 0. The remainder of the
track is cleared.

J

If the output volume is a tape volume,
the I/0 routine writes a control record for
each track on the input volume. The con-
trol record contains the channel program
used by the Restore routine to write one
track; it is followed by the track image
record, which contains the data field of
record 0, and all fields of any other rec-
ords on the track.

At end-of-volume, a trailer record is
written following the tapemark. The first
4 bytes of this 24-byte record indicate
whether this volume is the last volume of
the restore data set.

The I/0 routine (module IEHDEXCP)
returns control to the Dump routine under
two conditions:

If the Dump routine is performing func-
tions concurrently, module IEHDEXCFPF returns
control to it whenever processing is inter-
rupted to wait for the completion of an I/0
operation on a track that contains a homwe
address and more than two records. In this
case, the Dump routine returns control to
the Control routine; when it is re-entered
to perform the same function, the Dump rou~
tine again passes control to the I/0
routine.

o

If the 1I/0 routine has terminated its
processing, either because the dump is com-
plete or because of an unrecoverable 1/0
error, it returns control to the Dump rou-
tine. 1In this case the Dump routine closes
the input and output data sets, releases
the main storage it obtained for buffers,
places a completion message in the message
data set, and returns control to the Con-
trol routine.

Performing the Restore Function

When the restore function is specified, the
Control routine passes control to the
Restore routine (module IEHDREST), which is
shown in Chart 32. The input to the
Restore routine is a restore tape, which
may have keen created by performing the
Dump function in this program, or in the
IBCDMPRS program. A restore tape (see
Figure 34) contains the information neces-
sary to make a copy of the direct access

volume used to create it; the Restore rou-
tine makes one or more such copies. The
Restore routine returns control to the Con-
trol routine when the restore is complete,
when an uncorrectable error makes it
impossible to continue processing, or when
processing is interrupted while awaiting
campletion of an output operation.

When it is first entered, the Restore
routine attempts to obtain main storage for
two buffers. If it is able to obtain
enough storage for at least one buffer,
processing continues; if not, the routine
sets a switch and returns control to the
Control routine.

If storage is available for at least one
buffer, the routine determines the validity
of the output volume specifications. The
output volumes must all be of the same
type, but the system residence volume (s)
may not be specified.

TAPE MARK
24-BYTE CONTROL RC
IRG D.
(O;TA\%%LAL) IRG LIMITS RCD. (TRACK 1)
I

CONTROL RCD.

cK 3)
TRACK 3 IMAGE (TRACK 3)

TRACK n IMAGE IRG

|

24-BYTE 1IRG IRG

IRG TRAILER RCD.

Limits Record:

TAPE MARK

A 24-byte record containing extent limits and restore tape identifier,

located after the initial tape mark on the first volume of the restore

tape.

Control Record:

A variable-length record containing the channe! program required to

write the associated track, located immediately before the track image

record for the track.

Track Image Record: A variable-length record containing the count, key, and data fields
of the records on the track.

Track Record:

Figure 34. Restore Tape Format

A 24-byte record containing, in the first 4 bytes, the reel number
and termination code.

System Utility Programs: IEHRDASDR 83

If the output volume specifications are
valid and the volumes are available, the
routine opens the input tape, checks the
limits record to insure that the tape is a
restore tape and that the volume used to
create it is the same type as that speci-
fied for output.

If so, the routine builds an ECB, IOB,
and DCB for each output volume. If there
are multiple output volumes, the control
blocks for the first are stored in the
function block, and those for the addition-
al devices are stored in the copy blocks.

When it has constructed the control
blocks, the routine uses the RDIJFCB and
OPEN (type J) macro instructions to read
the JFCB and open the VTOC data set on each
output volume, and uses the Password Pro-
tection routine (IEHDPASS) to make the
required security checks on the volume's
data sets.

The Restore routine uses the EXCP macro
instruction to read the Format 4 DSCB from
each output volume, then extracts and saves
the alternate track information. Since the
VTOC will be replaced with the VTOC from
the volume used to create the restore tape,
the alternate track information from the
output volume must be placed in the new
vVTOCC.

When initialization is complete, the
Restore routine uses the EXCP macro
instruction to read a control record and a
track image record from the restore tape.
The control record contains the channel
program necessary to write the track image
record to the output volumes. The Restore
routine updates the channel program with
the correct data addresses, then issues the

EXCP macro instruction for each output
volume.

When it has issued the EXCP, the routine
returns control to the Control routine.
When it is re-entered to continue perform-
ing the function, the routine waits for the
output operations to be completed. When
the operations are completed, the routine
again reads from the restore tape and
repeats the procedure.

At end-of-volume, the routine reads the
trailer record from the restore tape and
determines whether there are additional
tape volumes to process. If the first foux
bytes of the trailer record contain
X*'FFFFFFFE', the restore is complete. The
routine updates the Format 4 DSCBs in the
output volumes, places a completion message
in the message data set, releases the main
storage it oktained, closes the input and
ocutput DCBs, and returns control to the
Control routine. If the trailer record
does not indicate that the restore is com-

84

plete, the return issues the EOV macro
instruction to have the next volume
mounted, and continues processing.

Performing the Analyze and Format Functions

when the Analyze or Format function is spe-
cified, the Control routine passes control
to the Analyze/Format routine (module IEH-
DANAL). This routine (shown in Chart 33)
performs surface analysis and formatting
functions for disk and drum volumes (or
passes control to module IEHDCELL to per-
form these functions if the device is a
data cell drive) and passes control to
module IEHDVTOC to construct and write IPL,
volume label, and VTOC records. When pro-
cessing is terminated, either because the
function has been completed or because a
computing system error has made it imposs-
ible to continue, the routine returns con-
trol to the Control routine. The routine
also returns control to the Control routine
during concurrent operations when proces-
sing is interrupted for an I/C wait.

Initialization

when the Analyze/Format routine is first
entered, it is given the address of the
function block specifying the function to
be performed.

Note: The format of the function-dependent
area of the function block, as is used in
the performance of the Analyze and Format
routines, is shown in Figure 35.

If the function is to be performed on
more than one device, copy blocks have been
chained to the function block; the routine
constructs an I0OB, ECB, and DCB for each
volume. It stores the blocks for the first
volume in the function block, and stores
the klocks for the additional volumes i
the copy blocks. If a volume is new (unla-
beled) the routine makes sure that the
device containing that volume is offline,
then uses the SVC routine to construct a
DEB in protected storage, but performs no
open. Otherwise, the routine uses the
RDJFCB and OPEN (type J) macro instructions
to read the JFCBs and open the VTOC data
sets.

when it has performed the open or con-
structed the DEB, the routine uses the Pas-
sword Protection routine to make security
checks on the volume. Cn the return, it
initializes a channel program to analyze
and format or to format each device, then
stores the channel program in the arpropri-
ate function or copy block. If the devices
are 2321 Data Cell Drives, the construction
and storing of the channel program, as well
as the execution of the surface analysis

and formatting procedures is performed in
module IEHDCELL; if the devices are disks
or drums, these functions are performed in 48 10
module IEHDANAL.

Owner Ildentification

Surface Analysis and Formatting Procedures
-- Disk and Drum Volumes 60

Volume Serial

64

Alternate Track Information

The nature of the channel program used
depends on whether a surface analysis or
formatting operation is being performed, 72 5
whether a flag test has been specified, Relative Track Address of VTOC
whether multiple passes are to be made on 76
each track, and whether the volume is a
disk or drum. The sequence of commands in 8
each case is shown in Figure 36. Note that a4
the two Analyze/Format channel programs are Pointer to IPL Text (In Main Storage)
virtually identical, except for the first 88 . 4
two comminds, as are the two Format Only CCHH of End of Function
channel programs. The first two commands 92
are different because an unused disk has no %
home addresses, and no successful search
could be made. BAlso, since defective
tracks on a drum are not flagged, rewriting
the home address will not destroy any pre- 104 114
viously written flags.

Number of Tracks for VTOC

Pointer to ANALYZE Bit Pattern Buffer or to FORMAT Work Area4
4

2

Number of Passes Specified 2 | Number of Passes Made

Home Address Buffer 3

[Error Switch | I Number of Retries Made 2

-~ Output DCB, 108 and ECB =

The first part of the Analyze/Format
channel program is executed on each gpass; 218
maximum length ROs are written twice and - Channel Program ' -
read back twice, and the home addresses are I;;
read twice. If a flag test is to be done,
Figure 35.

the data is transferred on the second home
address read, and the field is checked for
the presence of a defective track flag.

IEHDASDR Function Block --
Analyze/Format Area

r 1 L 1
| | Analyze/Format | Format only |
| F T t T i
| | Drum or | | | |
| | Disk (no flag test) | Disk (flag test) | Drum | Disk i
! b + t 1 4
| | Write Ha | Search Ha | | |
I | TIC *+8 | TIC *-8 | | |
I | Write RO | Write RO2 | | |
	Read Ha	Read Ha		
All	Read RO	Read RO		
Passes	Search Ha	Search Ha		
	TIC *-812	TIC *-8		
	Write RO	Write RO		
	Read Ha	Read Ha2		
	Read RO	Read RO		
L IR R 4 i 4				
4 L T T $ 4				
	Search Ha	Search Ha	Write Ha	Search Ha
Last	TIC *-8	TIC *-8	TIC *+8	TIC *-8
Pass	Write RO3	Write RO3	Write RO3®	Write RO?3
] Only	Read Ha	Read Ha2	Read Ha	Read Haz2
	Read RO	Read kO	Read RO	Read RO
I'_ L 4 1 4 ‘				
tWrite maximum length possible (full track).				
2Transfer Ha into main storage and test for flags (no data transferred on other reads).				
2Write standard (8-byte) RO.				
L J

Figure 36.

Analyze/Format Channel Programs

System Utility Programs: IEHDASDR 85

The second part of the Analyze/Format
channel program (which duplicates the For-
mat Cnly channel program for the corre-
sponding device type) is executed only on
the last pass. A standard (8-byte) RO is
written, and in the case of a disk device,
the home address is tested for flags.

During concurrent operations, the rou-
tine returns control to the Control routine
when the EXCP macro instruction for each
device has been issued; it is eventually
reentered to wait for completion of a chan-
nel program.

When a channel program is completed, the
Analyze/Format routine determines whether
any errors have occurred. If not, and if
there are other channel programs that have
not teen completed, the routine enters the
wait again. It repeats this procedure
until either an error occurs, or until all
channel programs have been completed.

When all channel programs have been com-
pleted, the routine determines whether
additional passes have been specified. If
so, it re-issues the EXCP macro instruction
for each device and repeats the procedure
until all required passes have been made.

When the last pass has been made, the
routine reinitializes the channel programs
for each device so that they apply to the
next track, and repeats the entire
analysis/format procedure.

Error Procedures -- Disk and Drum Volumes

There are two classes of errors that can
occur during a surface analysis operation:
errors that indicate a failure of the com-
puting system, and errors that indicate a
defect in the volume being analyzed. Those
errors that indicate machine malfunctions
are handled ky the normal I/0 Supervisor
error routines. If such an error cannot be
corrected, the Analyze/Format routine ter-
minates the function, closes the volumes,
and returns control to the Control routine.
If the function being performed is the for-
mat function, all errors arehandled in this
manner. .

When a surface analysis is being per-
formed, however, a distinction is made
between the two types of errors. The
errors that indicate that a track is defec-
tive, and are handled by the Analyze/Format
routine, are Data Check and (for the 2314
Direct Access Storage Facility only) Track
overflow.? When such an error is encoun-

10n the last "READ RO", the routine also
handles a No Record Found/Missing Address
Markers condition.

86

tered, the Analyze/Format routine retries
the channel program until an error is
encountered again or until the channel pro-
gram has been retried ten times with no
errors. If an error occurs the track is
declared defective, and the routine places
a message describing the defective track in
the message data set. If the device is a
drum, no alternate track can be assigned by
the program, and the IBM Field Engineer
should be notified. If the device is a
disk, the Analysis/Format routine issues
SVC 82 and the Alternate Track Assignment
routine is used to assign an alternate
track. If the track is in the alternate
track area, however, no alternate will be
assigned; the track will be flagged defec-
tive to prevent its future assignment.

When an alternate track is assigned, the
Analyze/Format routine places a message
describing the alternate track in the mes-
sage data set.

Surface Analysis and Formatting Procedures
-- Data Cell Volumes

The surface analysis and formatting of a
data cell volume is performed by module
IEADCELL, which is used as a subroutine by
the Analyze/Format routine. Module IEHD-
CELL writes a home address, a standard
length (8-byte) RO, and a maximum length R1
on each track of a cylinder, then reads
each home address, RO, and R1 back to check
for errors. The channel programs used for
writing and reading are as follows:

kriting Reading
write HA Read HA
write RO Read RO

Write Count-Key-Data Read Count-Key-Data
The routine repeats the procedure,
cylinder by cylinder, until each track on
the volume has been read and verified.
When the analysis of a strip, subcell or
cell is complete, the routine makes addi-
tional (address compare) checks to verify
correct positioning.

Exrror Recovery Procedures -- Data Cell
Volumes

Most of the errors that may be encoun-
tered while performing the surface analysis
of a data cell volume are handled by normal
I1/0 Supervisor error procedures, and if
they cannot be corrected, the function is
terminated. There are two exceptions to
this procedure:

e No Record Found and Missing Address
Markers: The I/0 Supervisor error
recovery routine is used, but if the
errors occur together, and no recovery

is possikle, module IEHDCELL places a
message describing the defective track
in the message data set, and causes an
alternate track to be assigned.

e Data Check: If this error occurs,
module IEHDCELL retries the channel
program up to 113 times. If the chan-
nel program is executed successfully
once, the track is considered good. If
no successful execution occurs the
track is considered defective. In that
case a message describing the defective
track is placed in the message data
set, and an alternate track is
assigned.

The alternate track assignment procedure
is the same as that used for disk volumes.
The alternate track area of the volume is
checked first, and defective tracks found
in that area are flagged. No alternate
tracks are assigned to defective tracks in
the alternate track area. If the defective
track is not in the alternate track area,
module IEHDCELL places a message describing
the defective track in the message data
set, issues SVC 82 to have an alternate
track assigned, then places a message
describing the alternate in the message
data set.

Supplying a VTOC and IPL Records

When the last track on each device has
been analyzed or formatted, the Analyze/
Format routine passes control to module
IEHDVTOC (see Chart 34). This module con-
structs and writes the IPL Bootstrap, IPL
Text, VTOC, and Volume Label records.

When it is entered, module IEHDVTOC
determines whether it is to write an IPL
record on the output volumes. If so, and
if the IPL text is on external storage, the
routine opens the appropriate data set and
reads the text into main storage.?

If it is to write an IPL program, the
routine constructs two IPL Bootstrap rec-
ords and writes them to records 1 and 2 on
track 0 of each output volume. The IPL
program itself is written on track 1 before
the kootstrap records are written (if the
devices are 2303s or 2311s) or on record 4
of track 0, with the same channel program
used to write the bootstrap records (if the
devices are 2301s or 2314s).

iThe IPL program may be supplied in the
input stream (in which case it is in main
storage when IEHDVTOC is entered), it may
be in a sequential data set, or it may be
a member of a partitioned data set, e.g.,
member IEAIPLOO0 of SYS1.SAMPLIB.

If no IPL program is to be written,
module IEHDVTOC writes a program on record
1 of track 0 that will cause the computing
system to enter the wait state if an
attempt is made to execute the IPL proce-
dure using that volume. The format of the
records is shown in Figure 37.

wWhether it writes an IPL program or not,
module IEHDVIOC constructs and writes a
standard volume label and a VICC. The
standard volume label is written on record
3 of track 0; it contains the volume serial
provided by the user or (if none was pro-
vided) the original volume serial. If an
owner name has been supplied, the routine
places it in the label; if not, the field
remains blank. The VTCC constructed and
written by IEHDVTOC consists of a Format 4
DSCB, a Format 5 DSCB, and enough durmy
(Format 0) DSCBs to fill out the VTCC.

Performing the Label Function

When the label function is specified, the
Control routine passes control to the Label
routine (module IEHDIABL). The lLabel rou-
tine (Chart 36) replaces the volume serial
and, optionally, the owner identification
fields of the volume label.

T 1 o 7 %] & 17
Track Standard
Descriptor Volume
Record Label

Note: R1 for a non-IPL volume is a 24-byte record having the following
format:

PSW X'000600000000000F"
CCW1 X'03000000000000001"
CCw2 X'00000000000000000"

(NOP)
(Dummy CCW)

R1 for a volume that can be loaded contains a 24-byte IPL bootstrap
record having the following format:

PSW X'0000000000000000*
CCW1 X'06003A9860000060"
CCW2 X'08003A9800000000'

(Read Record 2)
(Transfer to Record 2)

R2 is always a 144-byte record having the following format:

CCW1 X*'07003AB840000006'
CCW2 X'31003ABE40000005*
CCW3 X'08003AA000000000*
CCW4 X*'0600000020000E29"
Seek X'00000000000'
Search X'0000000101"

101 bytes of zeros for padding

Seek {PL Track
Search for IPL Record
Repeat until found
Read IPL Program
Seek Address

Search Address

Figure 37. Format of Track 0, Records 0

and 1

when it is entered, the routine identi-
fies the device to be labeled and verifies
that the device is a direct access device.

System Utility Programs: IEHDASDR 87

It uses the RDJFCB macro instruction to
read the JFCB into a buffer in the
function-dependent area of the function
block (Figure 38). It then uses the OPEN
(type J) macro instruction to open the VTOC
data set.

48 10
Owner Identification

8 Volume Serial

o4 176
L L
T Buffer for JFCB and Volume Label T

Figure 38. IEHDASDR Function Block --

Label Area

The routine reads the volume label (the
data portion of record 3 of track 0) by
issuing an EXCP macro instruction. The
initial request causes the special End-of-
Extent appendage to be entered; the appen-
dage changes the extent limits in the DEB
to permit access to track 0, and the volume
label is krought into main storage.

When the I/0 operation is complete, the
Label routine stores the new volume serial
and, if one is provided, it stores the
owner name. It uses the EXCP macro
instruction to write the label, uses the
SVC 82 routine to place the new volume
serial in the UCB, places a message in the
output data set, and returns control to the
Control routine.

Performing the GETALT Function

When the GETALT function is specified, the
Control routine passes control to the
GETALT routine (module IEHDGETA). This
routine (which is shown in Chart 37) uses
the Alternate Track Assignment routine (SVC
82) to assign an alternate track for the
specified disk or data cell track. If the
specified track is an assigned alternate
track, another alternate track will be
assigned in its place. No records will be
transferred from the specified track to its
alternate. If the specified track is an
unused track in the alternate track area,
however, no alternate will be assigned; the
specified track will be flagged to prevent
its future use.

When module IEHDGETA is entered, it
verifies that the specified volume is a
disk or data cell volume, then uses the
RDJFCB and OFEN (type J) macro instructions

88

)1

to read the JFCB into the function-
dependent area of the function block
(Figure 39) and open the VTOC data set. If
the open is successful, the routine checks
to see that the specified track is not
track 0 or does not contain system data
such as a volume label or VTCC.

CCHH of Specified Track

RESERVED

176

Buffer for
- JFCB and Format 4 DSCB X

IEHDASDR Function Block --
GETALT Area

Figure 39.

If the volume is not a disk or data cell
volume, if the open was not successful, or
if the specified track is either track 0 or
the first track of the VTOC , the routine
rlaces an error message in the message data
set, terminates the performance of the
function, and returns control to the Con-
trol routine. If the specified track is a
part of the VIOC (other than the first
track), the routine issues a warning mes-
sage and assigns an alternate track.

If the specified track does not contain
a volume label or VTOC, the Control routine
rlaces a message describing the specified
track in the message data set, and issues
SVC 82 to execute the Alternate Track
Assignment routine.

On the return from the Alternate Track
Assignment routine (SVC 82) the GETALT rou-
tine places a message describing the
alternate track assignment in the message
data set, closes the VTOC data set, and
returns control to the Control routine.

IEHDASDR Service Routines

There are several service routines used by
the IEHDASDR program in the performance of
its functions:

e IEHDMSGB, the Message Builder routine,
is entered with a pointer to the cormron
work area and a number corresponding to
the message. The routine selects the
message from the message CSECT.
(IEEDMSGS), then moves the message to
the output buffer in the common work

area. Certain messages contain "empty"
areas that must be filled in by the caller

Q of the Message Builder routine; when this
is the case, the Message Builder routine
loads a pointer to the empty area, and
passes the pointer to its caller.

continue processing. If the PURGE pa-
rameter is not specified, and if an
unexpired data set is encountered, the
function in terminated.

e IGG019P8, the End-of-Extent Appendage
routine is entered from the Input/
Output Supervisor. The routine modi-

e IEHDPRINT, the Message Writer routine
is entered with a pointer to the common

work area (which contains the output
ktuffer and the address of the SYSOUT
DCB). The routine uses QSAM to write a
header record at the beginning of each
page, a copy of each control statement,
completion messages, error messages,
and (optionally) the contents of a
direct access device.

IEHDDATE, the Date routine, is entered
via a CALL macro instruction from the
Message Writer routine. The Date rou-
tine uses the TIME macrxo instruction to
determine the date, and stores the date
(in the form MM/DD/YY) in an 8-byte
area furnished by the Message Writer
routine.

IEHDSCAN, the Scan routine, is entered
via a LINK macro instruction issued in
the Control routine. It reads a con-
trol statement (if necessary) and per-
forms a syntax check on one field, then
stores the result of the scan in a 1-
kyte field (SWITCHRD) in the common
work area. On the return, it passes
the control routine the length of the
field and a pointer to the beginning
address of the field.

IEHDPASS, the Password Protection rou-
tine (Chart 38), is entered with: 1)
an indication of the operation being
performed, 2) an indication of whether
the purge option was specified in the
control statement, 3) a pointer to the
function block, and 4) a pointer to a
rtuffer area for reading DSCBs. It uses
the Cpen or Scratch routine to check
the password required for access to
each security protected data set
against the password supplied by the
operator. If an incorrect password is
issued, or if no password is issued,
the routine returns a condition code to
its caller, which then terminates the
function. In addition, the Password
Protection routine determines whether
there are any data sets on the output
volumes whose expiration dates have not
passed. If so, and if the PURGE param-
eter is specified, it gives the opera-
tor the opportunity to terminate the
function oxr to override the exgpiration
dates of all unexpired data sets and

fies the extent limits and file masks
in the DEBs for each direct access
volume to be processed, to permit
access to the entire volume.

IGG019P9, the Abnormal-End Appendage
routine, is entered from the Input/
Output Supervisor. It is used during
pexrformance of the Analysis function to
bypass normal I0S Error routine proces-
sing of Data Checks for all direct
access devices.

IGC0008B, the Alternate Track routine

(svc 82), is entered with a pointer to
the parameter list shown in Figure 40.
The routine has three basic functions:

(1) It builds a DEB for handling new
direct access volumes,

(2) It assigns an alternate track for a
specified (defective) track, and

(3) It updates UCBs to reflect new
volume serials or VTCC location

changes.
Build DEB for New Volume 8F UCB Address
80 DCB Address
Assign Alternate Track Function | UCB Address
CCHH of Defective Track
80 Ptr. to Alternate Track
Information {(GETALT)
Update UCB 08 | UCB Address
New Volume Serial (or Zero)
80 l MBCCHHR of VTOC
(if new volume)

Figure 40. SVC 82 Parameter Lists

System Utility Programs: IEHDASDR 89

Chart 27. IEHDASDR Overall Flow

LINK OR ATTACH

IEHDSCAN

=
=3

1GG019P9 |

920

Chart 28.

Al

Entry

Bl

IEHDASDR

Initializing
Routine

XCTL
to

{EHDASDS

D1

Open
SYSINand
SYsouT

El

1EHDPRNT

Write
Header

Gl
|EHDMSGB

Assemble
Error

Message

H1

LEHDPRNT
Write

Message

Store
Return
Code

IEHDASDR Control Routine (Part 1 of 2)

82

Routine (IEHDASDS)

IEHDSCAN

Scan
Control Record

c2
Yes
No

D2

Yes Yes

Function Spec-

E2 E3
Valid
Yes Keyword Yes

Blocks in
Queue

Parameter
Valid

Required
Keys Present

System Utility Programs:

NOTE: Entry from Caller is to Initializing Routine
(IEHDASDR), Which Transfers to Control

6

B

D4
Build and
Enqueve
Function Block
£4
Process
Keyword
F4
Find
First
Entry
G4
Store
Parameter
H4

Additional
Parameters

Build
Copy Block,
Chain it to

Function Block

IEHDASDR 91

Chart 29.

IEHDASDR Control Routine (Part 2 of 2)

&)

Is Bl
Req'd. Routine

Loaded

Is
the Routine
Waiting

Delete
Previous
Load

O

Load
Required
Routine

@

NOTE 1

92

Execute
Function
Routine

Function
Completed

More

Function Q

Entries

82

Not
Enough Main
Storage

Degueve
Function Block

C4

Concurrent
Processing

D4

Jssve |IEHDMSGB
FREEMAIN (Work Assemble
Area) Message

E3 E4
Close {EHDPRNT
SYSIN and .

SYSOUT Write

Message

: ®)

Return

NOTE 1: The Functional Routines are -

IEHDUMP
IEHDREST
IEHDANAL
|EHDLABL
IEHDGETA

No

®

D05

Find
First Function
Q Entry

Chart 30.

issue
GETMAIN for
Buffer

Storage
Available

Open
(Type J) Input

Gl

Set
Dump Extents

Is
TODEV o
D/A Device

Is
TODEV
SYSOUT

IEHDASDR Dump Routine

Open
Output Tape

C2

Write
(EXCP) Control

Same
Device Type

Output
to a D/A
Device

No

Open (Type J)
Output D/A
Device

D3

Read (EXCP)
Format 4
DSCB

E3

Store Alternate
Track
Information

H3

Set No Storage
& Waiting
Switches

J3

Set Return Code

|EHDPASS

Check
Password
Protection

B4

Read
(EXCP) Format 5
DSCB

C4

Set Up
Table of Unused
Tracks

O .

IEHDEXCP

Dump
Requested
Tracks

Processing
Complete

Close

Input and
Output

G4

Issue
FREEMAIN for
Buffer

IEHDMSGB

Assemble
Message

K4

IEHDPRNT

Write
Message

System Utility Programs:

85

|EHDMSGB

Assemble
Message

C5

Close
Input and
Output

D5

Issue
FREEMAIN for
Buffer

E5

1EHDPRINT

Write
Message

Ol

Set Return Code

J5

Set Return Code
=0

Retumn

IEHDASDR

93

Chart 31. IEHDASDR EXCP Routine

(=)) O)

B2 B3 B4 B5
. Execute
Writ 7 Save
Dato, Read Count/Key B Return Point .
on D/A Vols aond Data at Set
CCWs B3 Ret. Code =0
C4
Load Execute
IEHDAOUT and Write/Read/
IEHDPRNT if Count Key and/
Dumping to @ Data CCWs
SYSOUT
D1
D1 D2
Build Execute
Read Count Read Count Write/Read/
CCW's CCWs Count Key
and Data
E2
1GG019P8
Wait on Update
Update EXCPs ot Format 4
DEB C4and J3 DsCes
Extents
F4 F5
P2 Wi - 1GC00088
rite
Concurrent (EXCP) Update
o . Track Post UCBs
perations CCW Record Address (if CPYVOLID
to Tape {s) Specified)
c3 o4 G5
\(’gé:p) Waiton Concurrent Yes R S'z: od
CCW's and Data EX%';Q' Operations ew:“() *
to Tape (s)
() e
H1
Wait on More Wait on @
EXCP at than One EXCPs ot Return
G1or B2 Record B3 and F3 QP
: J J J4
Update Write Wai
Track (EXCP) EX(.PI;'::
Address Data to 83
Tape (s)
K5
IEHDAOUT EXCP
Format Write
and Print Trailer
Track Record

NOTE 1: At Subsequent Entries, go
to Return Point Saved
in Block B5,

9%

Chart 32. IEHDASDR Restore Routine

B2

Save
Alternate Trk.
Information

lssue
GETMAIN
for
Buffers

D1

Storage
Available

and Trk. Imoge
Reds. into
Buff. 1

D2

Wait for
Read
Buffer 1

B3
No
Ty @
Cc3

Wait
for Read
Buffer 2

Set Up
CCWs for
Output
Devices

F2

Input Tape
and Read
Limits Red.

Issue EXCP
Write Buffer 1
to Output

Volume ()

Open
(Type=J)
O

utput
Volume{s)

EXCP
Reod Ctl.
and Trk. Image
Reds. to

Buffer 2

J1

|EHDPASS

Check
Password
Protection

K

EXCP
Read Format 4
DSCBs from
Output

Volume (s)

()

J2

Concurrent
Processing

Wait
for
Write
Buffer 1

(=)

D3
Yes
. ®
E3

Set Up
CCWs for
Output

Devices

£3

EXCP
Write Buffer 2
to Output
Volume (s}

G3

EXCP

Read Ctl.
and Trk. Imoges
Reds. to
Buffer 2

H3

Concurrent

Processing

Wait

for Read
Buf. 1 and
Write 8uf. 2

System Utility Programs:

()

EXCP
Read
Trailer
Label

C5
Is
Restore
Complete Eov
D4
Update @
Format 4 DSCBs
for Output
Volume (S)
E5
Set
No Storage
and Waiting
Switches
F5
1GC00088 Set
Post Return Code
UCBs =4
G4
|EHDMSG
Assemble
Message NOTE 1: At Subsequent Entries
go to Return Point Saved on
HA Exit. The Possible Return
Points Are at Blocks K2 and J3.
{EHDPRNT
Write
Message
J4
Set
Return
Code
() K4

Issue FREEMAIN
for Buffers

K5

and

Close DCBs

‘{ Return '

IEHDASDR 95

Chart 33.

See NOTE 1

Initialize

1GC008B

Build DEB
for Each
Volume

{EHDCELL

Anclyze/Format
Datc Cell
Volumes

H1

Concurren
Processing

Operation
Successful

96

Update CCWs

Per FLAGTEST

ond Dev. type
Parms.and

Function Code

Cc2

fnitialize
Pass Count

Store

Point

)

Volume

IEHDPASS
C

Password
Protection

IEHDASDR Analysis Routine

Wait
for an I/O
Request to
Complete

Posses on thi
Troek Req'd.

IEHDVTOL

Build IPL, Vol
Label, ond VTOC
Records

()

B5
|EHDMSGB
Assemble
Message
C5
A |EHDPRNT
Initialize
to Retry Write
10 Times Message
D5
() ‘o
Return
Code
E4 E5
IEHDMSGB
Close
Assemble
Bod Track Volume (s)
Message
F4
heroprnT Fs
Write Return
Message
NOTE 1-Initializing Includes
G4 Validating TODEV Specs,
Converting Extents to CCHH
Format and Validating
Assign Alt, Extents, and Requesting
Trk. (Disk Main Storage for a Buffer.
Vols, only) If an Error is Found,
Branch to B5.
H4
|EHDMSG 8
Assemble
Alt. Track
Message
J4
IEHOPRNT
Write
Message

o

Chart 34.

Al

B1

Is |
IPL Text
Required

the Text in
Main Stor-

Open
Data Set
Containing
1PL Text

Read
IPL Text
(80-Byte

Reds.)

@1

Build
iPL Record
for Record 1
of Track 0

kLl

Build CCWs
to Write
Reds. 1-3

IEHDASDR VTOC Routine

B2

Build
non-|PL
Red.1 for

Track 0

@4 .

Build
Record 2
for Track 0

D2

Store VTCC Ptr.
Vol Serial
and Owner |d
in Vol Label

E2
IPL' able
2301 or
2314

Build CCWs
to Write
Reds.1-3 and
1PL Text Red.

Cu il

Write
Track 0 of
All Copies

Wait
Completion
of 1/0

J2

No

Yes

Cc3

Build Format 4,
Format 5, and
Format 0 DSCBs

Ol

Write
VTOC Track
of all
Copies

E3

Wait
for Completion
of 1/O

this the Last
VTOC Track

Build a
Full Track
of Format O

DsSCBs

B4 Y B5
LWri te |EHDMSGB
IPL Text on
Track 1 of Assemble
Al Copies Error
Msg.
C4 C5
Wait |EHDMSGS
for Completion Write
of 1/0 Error
Msg.
w ©
No
@
E4 NOTE 1
IEHDMSGB Set B5
Build Retumn Code
Error =0
Msg.
F4
IEHDPRNT 5
Write Return
Error
Msg.
G4
Set
Return Code
-8
H4

‘ Return ’

NOTE 1: If IPL Text Data Set Open is Not
OK, a Return Code of 8, Not 0,

is Set,

System Utility Programs:

IEHDASDR 97

Chart 35.

IEHDASDR Data Cell Analysis Routine

Al
Entry
81
Set Up
CCWs: in

Function Block

Cl

Set Up
for
Finst Alt.
Track

WRTCYL

Ox il

Write
All Tracks

of a
Cylinder

RD

Read
All Tracks of
Cylinder

98

F1

Modify for
Next Cylinder

HDPOSCK ’ B2

Perform
Head
Position

Check

Cc2
Yes

FNGERCH 83 SUBCHK B4
Perform Perform
Strip Subcell
Test Test
Cc3 4

End of
Alternates

Return

Set Up for
First Primary
Track

End of
Primary
Tracks

Modify for
Next Subcell

Chart 36. IEHDASDR Label Routine

83
Update
Serial and
Owner Fields
C3
Read in Write
JFCB (EXCP)
: (RDJFCB) New
’ Vol. Label @
V D2 D3 D4
1 Modify Wait IEHDMSGB
; Data Set Completion Assembl
Nome Field of EXCP semble
Eeror
Message
E2 E4
E3
Issue |EHDPRNT
OPEN Yes
: (Type J) Write
; ’ Message
v - ®
F2 F3 F4
Read IEHDMSGB Set
(EXCP) Return Code
Vol. Label Assemble -8
G2
1GGO19P8 |EHDPRNT
Modify Write
DEB Message
Extents ssog
H2 H3
Wait Set
Completion of Return Code
EXCP =0
J3
32
Yes Issue
CLOSE
@
(%) -
Return

System Utility Programs: IEHDASDR 99

Chart 37.

100

IEHDASDR GETALT Routine

Read in
JFCB
(RDJFCB)

Dl

Modify
DSNAME

El

Issue OPEN
(Type J)

IEHDMSGB

Assemble Trk.
Description

| EHDPRNT

()

1GC0088

Assign
Alternate
Track

C2
Assignment
Successful

IEHDMSGB

Assemble
Alt. Track
Message

E2

IEHDPRNT

Write

Write
Message

F2

Issue

CLOSE

G2

Set
Return Code
=0

H2

|EHDMSGB

Assemble
Completion
Message

J2

|EHDPRNT

Write

Message

(=)

Message

@_- K2

)

()

B3 B4
IEHDMSGB [EHDMSGB
Assemble Assemble
Error Writing
Message Message
C3 C4
1EHDPRNT IEHDPRNT
Write Write
Message Message
D3
Set
Return Code
=8

9

Chart 38. IEHDASDR Password Protection Routine

Output
to Direct
Access

Output
to
Printer

El E5
Build Table of Issue Issue
DDNAMEs from FREEMAIN WTOR for Set Set
TIOT and for Unexpired
R
DSNAMEs from DSNAME Data Sets Return Code eturn Code
JFCBs Table Message
Fl C F2
Read F4
Set
(EXCP) Return
Format 1 Re;um Code
DSCBs
Yes
IEHDMSGB Scratch
(SVC 29)
a‘“"’ble Protected
essoge Data Sets
H2
(TOpenJ) \EHDPRNT
ype= N
Protected Write
Data Message
NOTE - Conditional GETMAIN, If

Main Storage Not Available,
Set Return Cede = 4 and Return.

J2
‘ Return ’

Close

and Set
Security
Switch On

System Utility Programs: IEHDASDR 101

Chart 39.

102

Read
(EXCP)
Format 4

DsCB

Track an As-

Specified

igned Alf

Flag the
Track
Defective

IEHDASDR SVC 82 Routine

—®

B2 B3
Write
Read (EXCP)
HA of Next (EXCP)
Avail. Alt. Updated
Format 4
DSCB
c3

Yes @ No
D2 ' D3
Write
(EXCP) Set
HA and RO on Return Code
Prt. Trk, =0

Specified
Track an As-
igned Alt

Yes

Build
DEB in
Protected
Storage

O

?

E3

Return

Write
(EXCP)
Alt, Trk,

Alternate
Track

J3

Update
Alt, Trk,
Information

(=)

Place Serial

Nos. & TTR

of VTOC in
UCBs if
Necessary

?.

Set
Return Code
2

=1
i H4
Set

Return Code

:

v

This section of the manual describes the
nine data set utility programs: IEBCOPY,
IEBCOMPR, IEBGENER, IEBPTPCH, IEBUPDAT,
IEBUPDTE, IEBISAM, IEBEDIT, and IEBDG.
These programs are executed under the Oper-
ating System/360. For their operation,
however, they require user-supplied control
statements in the input job stream.

IEBCOPY, IEBCOMPR, IEBGENFR, and
IEBPTPCH are designed as overlay programs,
each consisting of three segments: the
root segment, the control card analyzer
segment, and the processor segment. The
root segment alone is loaded initially; it
links to the control card analyzer segment.
When the control statements have been ana-
lyzed, control is returned to the root,
which links to the processor segment.

The data set utility programs use QSAM
for both reading the SYSIN data set and
putting out the SYSPRINT data set. Both
data sets may have a blocking factor that
is other than one.

The storage requirements for buffers and
tables are dynamically determined at execu-
tion time to optimize space allocation and
thus permit the data set utility program to
take full advantage of any storage that is
availakle. If more storage is requested
than can be supplied by the Main Storage
Supervisor routines, the task is automati-
cally terminated. 1If, however, the request
cannot ke filled immediately because of
priority scheduling within a multi-tasking
environment, the execution of the utility
program can be delayed until its storage
requirements are met.

Updating Partitioned and Sequential
Data Sets (IEBUPDTE)

The IEBUPDTE utility program incorporates
both IBM and user-generated source language
modifications into sequential data sets or
into partitioned data sets. The input and
output data sets contain blocked or
unblocked logical records of 80 bytes or
less.

The program can:

e Add, copy, and replace members of data
sets.

e Add, delete, replace, and renumber the
records within an existing member or
data set.

Data Set Utility Programs

e Assign sequence numbers to the records
of a member or data set.

e Create a sequential master data set
from an input partitioned data set, and
vice versa.

At the completion or termination of the
program, the highest return code encoun-
tered within the program is passed to the
calling program. The utility program can
also produce a message data set containing
a listing of the contents of the output
data set, the control statements submitted
to the utility program, and, if applicable,
error messages.

Data definition (DD) statements needed
to run the program are as follows:

e SYSUT1, which defines the o0ld master
data set (sequential or partitioned).

e SYSUT2, which defines the new (updated)
master data set (sequential or
partitioned).

e SYSIN, which defines a sequential data
set containing the transactions to be
applied to the o0ld master data set.

e SYSPRINT, which defines a sequential
data set containing either changes to
the 0ld master or contents of the new
master, as well as utility control
statements used and any error messages
generated.

PROGRAM STRUCTURE

The program consists of three segments (or
load modules): the root segment
(IEBUPDTE), the control card analyzer seg-
ment (IEBASCAN and IEBBSCAN), and the ini-
tialization module (IEBUPNIT).

The Root Segment

The main functions of the root segment are
the processing of records and the printing
of messages. The segment contains four

control sections (CSECTs): IEBUPDTE, IEBU-
PLOG, IEBUPDT2 and IEBUPXIT. The following
text discusses the functions of each CSECT.

e IEBUPDTE receives initial control from
the supervisor, obtains storage for the
communication region IEBUPCON, opens
the SYSIN data set, and passes control
to module IEBUPNIT for initialization.
For writing a header message on the

Data Set Utility Programs: IEBUFDTE 103

SYSPRINT output device, CSECT IEBUPDIE segment: IEBASCAN and IEBBSCAN. The fol-

passes control to CSECT IEBUPLOG. lowing text discusses the functions of each o
After the return (of control) from CSECT. e
CSECT IEBUPLOG, CSECT IEBRUPDTE gives

control to CSECT IEBUPDT2 to begin the e IEBASCAN scans and analyzes control

actual processing of records.

IEBUPLCG is a closed subroutine, which
writes messages and records on SYS-
PRINT. The first execution of IEBUPLOG
opens SYSPRINT and the last closes it
and returns control to the supervisor.

IEBUPDT2, the heart of the program,
opens the old and new master data sets,
reads, processes, formats and writes
the output records, and stows member
names if the new master is partitioned.
(Note: Prior to each writing of a rec-
ord on SYSUT2, module IERBUPDT2 checks
the field TOTALSW in the region I1EBUP-
CON to determine if a user-totaling
exit is to be taken. If so, a parame-
ter list address is loaded into regist-
er 1, and an exit is made to the user
routine. When the user routine returns
control to module IERUPDT2, a return
code estaklished by the user routine is
checked, and the action taken is as
described in Appendix B.) If user
labels are to be processed on either
SYSUT1 or SYSUT2, CSECT IERUPDT2 passes
control to module IERUPXIT through data
management routines during open, close,
or end of volume processing. CSECT
IEBUPDT2 passes control to the segment
IEBASCAN to scan and analyze control
statements, and to CSECT IEBUPLOG to
log messages and records on SYSPRINT.

IEBUPXIT is the module containing the
program's exit routines. For each of
the three DCBs (SYSIN, SYSUT1, and SYS-
UT2), this module contains an entry
point for each of the following closed
subroutines: DCRB exit, header-label
exit, trailer-label exit, SYNAD exit,
and end-of-data exit (there is no end-
of-data exit for the SYSUT2 data set).

statements and sets appropriate flags
in the region IEBUPCCN. CSECT IEBASCAN
gives control to CSECT IEBUPLOG to
print a copy of the control statement.
To scan the individual parameters of
each control statement, CSECT IEBASCAN
gives control to CSECT IEBBSCAN with a
doubleword parameter list, located at
address STOREG in the communication
region. For the reading of a control
statement continuation card, CSECT IEB-
BSCAN gives control to CSECT I1EBUPDT2.
The first word in the list is the
length of the last parameter analyzed
by CSECT IEBBSCAN. The last word con-
tains a pointer to the same parameter's
location in a buffer area, SWITCHRD.

IEBBSCAN, which is a closed subroutine,
receives control from CSECT IEBASCAN
and returns control either to CSECT
IEBASCAN or to CSECT IEBUPDT2 (for
reading another control card). CSECT
IEBBSCAN scans the individual parame-
ters on each control statement. If di-
agnostic messages are required as a
result of the scanning, control is
given to CSECT IEBUPLOG.

Initialization Routine Module

There is one module in this group. It is
described in the following text.

e TEBUPNIT is the initialization module.

This module is a closed subroutine that
receives control from CSECT IERUFDTE
for the purpose of initializing the
region IEBUPCON, analyzing the parame-
ters on the EXEC card.

PROGRAM FILOW
The Control Card Analyzer Segment

Figure 41 shows the overall flow of the
program; more detailed flow is shown in
Charts 40, 41, and 41.1.

The main functions in analyzing control
cards are performed by two CSECTs in this

104

< Entry >

IEBUPDTE
Get IEBUPCON

IEBUPNIT IEBUPLOG

Storage using GETMAIN
macro instruction.

Open SYSPRINT.
Write header
message.

Initialize IEBUPCON,
Analyze EXEC Card.

IEBUPLOG

Write Records,
and messages.
Close SYSPRINT.

Return

Open SYSIN.
IEBUPXIT IEBUPDT2
Program exits
(DCB, labels, EOD, Open data sets.
SYNAD). Process requests.
IEBUPLOG IEBASCAN
Frine copy of erenents. S
Control statement. flags in IEBUPCON.

IEBUPDT2

IEBUPLOG IEBBSCAN
Write Parameter Scan c?rd par.amefers.
Diagnostic messages. Sefs switches in
SWITCHRD.

eFigure 41. IEBUPDTE Overall Flow

PROCESSOR DATA FLOW

Figure 42 indicates the paths taken by data
from SYSUT1 and SYSIN. The following is a
breakdown of data flow within the processor
(IEBUPDT2) according to the type of run:
NEW or MCD.

NEW: This type of transaction involves
reading data from SYSIN and writing it on
SYSUT2 and (if specified) on SYSPRINT.
Logical records are read in turn from SYSIN
into the input buffer at SWITCHRD+1l; rec-
ords are then stacked in the SYSUT2 output
kuffer at NMWRITEP until the desired block-
ing factor is reached. A physical record
is then written on the new master (SYSUT2).
This process is repeated until SYSIN has
been exhausted. If the SYSUT2 data set is
partitioned (as indicated by the NAME key-
word) the memker name is stowed.

MOD: This type of transaction invclves
reading data from SYSUT1 (the old master
data set) and SYSIN, merging them as indi-
cated on function and detail statements,
and writing the resultant data on SYSUT2.
The updated master is written on SYSUT1
only when UPDATE=INPLACE is specified.

Read continuation of
Control statement.

s For a REPRO run, a physical record is

read from SYSUT1 into the buffer
OMREADP, logical records are then moved
individually to OMINAREA for inspection
and then to the output buffer NMWRITEP
until the desired output blocking fac-
tor is reached; the output record is
then written on SYSUT2.

For an ADD run, records are read from
SYSIN and are stacked in the output
buffer NMWRITEP until the desired
blocking factor is reached. The output
record is then written on SYSUT2. If
the data set is partitioned, the member
name specified is stowed in the direc-
tory of the new master. If numbering
of records is specified, it is per-
formed in the input buffer, SWITCHRD+1.

For a REPL run, the flow is similar,
except that the new data from SYSIN
replaces the member specified. Number-
ing, if specified, is performed in the
input buffer SWITCHRD+1.

For a CHANGE run, which operates within
a data set or member of a partitioned
data set, records may be changed,

Data Set Utility Programs: IEBUEDTE 105

deleted, numbered or added, derending
on the detail statements and data cards
following the change statement. When
one of these types of statements
(DELETE, NUMBRER, or data) has been
read from SYSIN into the buffer
SWITCHRD+1, a record is read from the
0ld master (SYSUT1) into the buffer
OMREADP and is processed as follows
(see alsoc Figure 42).

1. A logical old master record is
moved from the buffer OMREALP to
CMINAREA, and its sequence number
(CM) is compared against SEQ1, if
numker or delete is in effect, and
otherwise against the SYSIN record
sequence number.

2. If CM is less than SEQ1, the old
master logical record is moved to
the output buffer NMWRITEP, and
the next o0ld master record is
moved into OMINAREA.

3. If SEQl is less than or equal to
CM, and CM is less than or equal
to SEG2, the 0ld master is
updated: 4.

e If the 0ld master logical recoxd
is to be deleted, the next old
master logical record is moved
to overlay it in OMINAREA.

e If data is to be inserted, (if
the SYSIN sequence number is
less than OM) the SYSIN data
statement in SWITCHRD+1 is re-
numbered if necessary and moved
to the output buffer NMWRITEP,

and the next SYSIN record is
read. If OM equals the SYSIN
sequence number, the SYSIN rec-
ord replaces the o0ld master
record.

e If the SYSIN sequence number
equals CM and COLUMN UPDATE was
specified, the portion of the
record in OMINAREA not to be
updated is moved to its corre-
sponding relative position in
the buffer SWITCHRD+1, this
updated record is renumbered if
necessary and then moved to the
output buffer NMWRITEP, and the
next SYSIN and old master rec-
ords are read.

e If the old master record is to
be numbered, the indicated
sequence number is stored in it,
and the updated master record is
moved to the output buffer
NMWRITEP. The next old master
logical record is then moved
into OMINAREA.

when OM is greater than SEQ2,
IEBUPDTE checks to see that record
SEQ1 was actually processed
(deleted or numbered), if it was
not, an error message is written
and the member update terminates.
If it was, the next record from
the o0ld master is moved into
OMINAREA, and the next record from
SYSIN is read into SWITCHRD+1.
Processing of the previous number
or delete statement is considered
finished.

Pre-Processing

Initialization (IEBUPDTE,
IEBUPNIT)

Control Statement Analys

These modules analyze [
parameters from

/SYSIN (changes to master)

(&SPRINT (messages and
statements)
/SYSUT2 (new master)
[SYSUTI (old master)
EXEC PGM=IEBUPDTE

NEW, MOD
INHDR

PARM=

Function or detail

EXEC statement, get
main for IEBUPCON
work area, clear
switches, prepare to
open data sets

|EBUPCON
DSECT

INTIR

)

statement from SYSIN

[./ ADD NEW=PO |

is (IEBASCAN)

1EBBSCAN scans
a command word
or keyword

SWITCHRD+1
./ ADD NEW=PO

Keyword or
command word

primes work area

analysis routine
\ for transaction

Processor (IEBUPDT2)

(MOD run only)

READOM OMREADP
reads old
master

Buffer

OPENCHK checks
for open errors -
DSORG, blocking
blocksize, user
header label, return
code; also gets main
for buffers

NOTSHORT
moves logical
record to
temporary area

image to buffer for

when SWITCHRD+
< OMINAREA

NMLSTWRT

writes the
updated

\ record

Buffer
SWITCHRD+1 OMINAREA
Data Card ' '
(SYSIN) !
(If NEW run, SYSIN
is sole input) For COLUMN
UPDATE,
WRITEREP moves
unupdated part of

record onto data
card image when

SWITCHRD+1

equals OMINAREA

TESTLIST moves card

T

INSERT or REPLACE

1

Buffer

NMWRITEP

Q

TESTLIST moves old
record directly to
buffer if no update
needed; OMINAREA
< SWITCHRD+1

OPRLUP uses
keyword or
command word
to look up
address of
analysis routine

|
|

COMDTAB

ADD

KEYTAB

NEW

48-»-[-‘-4»

Program exits as required (IEBUPXIT)

N

Messages are buil
and branching to

Message Log = also opens SYSPRINT DCB, spaces, prints
header, etc. (IEBUPLOG)

t by passing a message number (3 here)
MSGSTART

— MSGSTART

BAL GR6 ,MSGTEST |

(MSGO3BLD here)
sets up message
text address and
size from tables

LOGOUTAR

1 {D1
MSGTEST 2 | D2
;cans toble 3 |D3 When message number
or :essage (3) is found, its address
nemoer (MSGSTART+8) is
added to displacement
- factor (D3) to form
address of message
MSGnnBLD builder

Message Table
Al
MSGWRTE tacks 03 | Text
message number
on text, moves
to buffer
SYSPRINT
WRITELOG Header
writes message e —
or header —_—

eFigure 42.

IEBUPDTE Principle of Operation

Data

Set Utility Programs: IEBUFDTE 107

e Chart 40.

From:
41,
41,
4,
4,
41/13
41/K2

108

Al
Entry
from Caller

LEBUPOTE
Bl

Get
Storage

IEBUPDTE (Part 1 of 3)

|EBUPNIT
Set Up Work | €1

Area. Set First
Entry Switch.

Analyze Exec
Parameters

From:
41/A1

D1

Reinitialize
Switches,
Open SYSIN

1/K4
1/03
1/K2
1/HY

Gl F
rom:
READRT1 41/C5
Read o
Record
from SYSIN

Function
Statement

From:
41/82
TEST4OM BA
Set Up DCB
for PS or
PDS from Data
on Initial
Function Card

NOTE 1
M = Includes Exit o
old :nd/or See Subroutine | EBUXIT
New Master NOTE | {See NOTE 1 on Chart 41)
Data Sets
(SYSUT1/SYSUT2) See NOTE 2:
B4 1EBUPDT2
1EBUPLOG READCC NMLSTWRT
Set List Switch If Do not Have Number Record
Write the a Card, Read and/or Write
SYSOUT Record one from SYSIN New Master
CHKIDENT C3 _._ | IEBASCAN
SCANTB| for this Sot 5
SEQFLD funcﬁon, Command
Porameter Substitute 1d, Pending
Size and Loc Switch
for 73-80
REPLADD D3

Set Add or Repl

Switch. If PDS:

Add, if SYSUTI sumber

Name Not Found;

Rep!, if Found

Change

Function

INGEAN

Set
Change
Switch

if
‘NOTE 2: Box E5 Entered from:|Exit to:

Repro
Function

NUMBRANL

Yes
|EBASCAN

Set E4
Number Switch
ond Establish

Start and
Increment

F4

IEPUPLOG

Write
Message

Totaling
Specified

See NOTE 2

G4

User Totaling
Routine

H5
Print
Message
J5
Return Action Exit to
Code . Deactivate
16 Decctivate User Label | 41.1/H4 Totaling
and Totaling Exits its
8 None 41.1/H4
4 None See NOT
2
i li NOTE!
0 Deactivate Totaling Exits) See A See NOTE 2
Then

Chart 40 Box D5 | Chart 40 Box B5

Chart 41
Chart 41.1

Box C3 | Chart 41 Box E3
Box F1 | Chart 41.1 Box H1
or Box F2

eChart 41. IEBUPDTE (Part 2 of 3)

From: From:
40/31 40/F3
IEBUPDT2 OPENOM ™ PDT? __p NOTE: Includes Exit to Subroutine 1EBUXIT
Al + Initially Open |A3 {See NOTE 1 on this Chart).
Old and/or New
SYSiN Statement Master Data
Sets (SYSUT1/
SYSUT2)
IEBUPLOG Movecep
s Function Delete
totement Statement Statement
Sequence
Error
From:
41.1/65 | :) ev—
FLUSHALL C Q2 5
DELETANL
EBUP! IEBUPLOG Set Delete
Initial Guide No Switch and
Establish
Flush Flush Sean Delete Size
Message Message ® z
Updating Set Delete
Physical Seq. o
Data Set From: Pending Switch
40/NOTE 2
El } |EBUPDT2 |EBUPDT2
E3 E4
1EBUPLOG NMLSTWRT Set
Cannot Updote Block/Write Read-No-More-
Multiple PS Record onto SYSIN
Per Job Step New Master Swi tch
From:
From: 40/61
40/83 4a.1/81
41,1/G3
41.1/85
ENDFLUSH G IEBASCAN a ://g;
Clear Control &2 -
Cord Switches. of-File (/*)
Set Flush on SYSIN
Switch
C H] ERR H3 (
Set End-of-Old
L
READCC Alias ERUPLOD Master Switch,
Read Next Statement Statement . | Read-No-More-
Control Sequence Old-Master
Error i
—-©
Partitioned Ignore
Data Set Alias
Statement
NOTE1: Between these Two Blocks, Subroutine 1EBUPXIT

Performs Trailer-Label Processing for the SYSIN
Data Set.

Set
Alias re
Switch

. Data Set Utility Programs: IEBUFDTE 109

eChart 41.1. IEBUPDTE (Part 3 of 3) -

1EBUPDT2
A4

Valid
Function
Statem

BS
IEBASCAN REALEOF Set Command-
B3 Ignore- Pending Switch
EOF Switch and Read-
No-More-SYSIN
Switch

JMBNORM Cc2

TESTIT

Lood Register SYSIN Switch
with Pointer and Read-No-
to Data Record

More- SYSIN
i

RETRINST D2
Load Register Save Old $et Number
to Point to Master Record.
Data Set Read-No- R Yes
Record Mc"S:vsircsllN Increment
‘ El ;]
TESTLIST E2 E4 SCANERR €5
Renumber @ Reset EOF 1EBUPLOG
Record Switch, Reset -
Pointed to by DCBIFLGS to Invalid
Register Read More Control
Cords, Statement
F2 F3 F4
F1 v |EBUPLOG N:,:Lef_ Load Register
e Write Record Pending to /*
on SYSPRINT Switch Data Record
N
°] I I
IEBUPT 2 cd G5
G3 |
s« = e]
Read-No- Set R od-N. - with Pointer
From: More-SYSIN MoreSYSIN to Old
From: 40/Cs Switch ore-SYSI Master Record
40/Note 2 41/¢3 Switch
HY |EBUPDT2 ___@ LASTLEG H4 _ EmroG
NMLSTWRT From: Free Main Print Final H5
Partitioned H2 41/E1 Storage, Close Messages
Block/Write HHione: No 40/H4 oges.
Data Set SYSIN and Old Close
Record or ond New Master SYSPRINT
New Master (SYSUT1/SYSUT2)
NOTE 1: Between these
two blocks, subroutine
J2 |EBUPXIT performs
trailer-labeling process- s
@ STO\;I::ME ing for the SYSIN Data NOTE 1 PR
Member Set. Caller
Name H
K3 Yes
STOWNAME EOF

on SYSIN

Stow
Alias
Name

110

Copying and Merging Partitioned
Data Set Members (IEBCOPY)

The IEBCOPY program reproduces all or
selected memkers of a partitioned data set.
During the copy operation, physical data
set compression (in-place recovery of unus-
able partitioned data set space) can occur
since only the currently active members are
processed. In addition, this program may
be used to merge members from one data set
into an already existing data set.

Input to the IEBCOPY program must be a
partitioned data set. The data set must
reside on a direct access device and be
contained within one physical volume. The
input records can be U, F, or V format. If
F or V format, they can be blocked or
unblocked. Keys, relative track address
pointers (TTRNs) within the directory, and
note lists are permitted.

The output of the IEBCOPY program is
also a partitioned data set. It must
reside on a direct access device and be
contained within one physical volume.

PROGRAM STRUCTURE

The program (Figure 43) consists of three
segments: the root segment, the control
card analyzer segment, and the processor
segment.

The Root Segment

The root segment initializes the program.
It consists of routine IEBCOPYA.

IEBCOPYA
stores optionally specified data
definition (DD) names in a common
table area for later insertion into
their corresponding data control
blocks (DCB) and inserts an optionally
supplied initial page number into the
page line to be written on the system
print (SYSPRINT) data set.

The Control Card Analyzer Segment

The control card analyzer segment,
IEBCOPYC, reads and processes the control
cards. It consists of two routines: ANALY
and ACTCCS.

ANALY
calls ACTCCS to process the control
cards. Based on the parameters sup-
plied in the control cards the ANALYZ-
ER sets switches and builds parameter
tables.

ACICCS
opens SYSIN; reads the control cards
and passes the location, length, and
identification of the parameters to
the ANALY routine; and then closes
SYSIN.

The Processor Segment

The processor segment, IEBCOFYD, performs
the copying operation. It consists of nine
routines: MAIN, BDIF, REJECT, TOTAL,
FIRST, REBLOCK, SETOPSW0, EOD, and CCMREAD.

MAIN
saves the length of the member name
table and performs initialization to
force the reading of the entire input
directory if member exclusion is
requested. This routine also opens
the input data set (SYSUT1) for read-
ing by means of BPAM and determines,
during the DCB exit, whether a total
or a selective copy is requested. If
a total copy is requested, the DCB pa-
rameters are saved and the accessing
method (BPAM) is changed to BSAM to
allow the directory to be read.

BDIF
employs user-supplied member names and
aliases to extract the corresponding
entries from the input directory when
an inclusive copy is requested.

REJECT
compares all the names in the input
directory against the list of user-
supplied names when an exclusive copy
is requested. If a match is obtained,
the corresponding member is not
processed.

TOTAL
reads the input directory a block at a
time into a buffer, calculates the
length of the table required to store
the directory entries, requests
storage for the table, and rereads the
input directory (exclusive of user
data) into the table. At the conclu-
sion of TOTAL, the input buffer is
released and the address and length of
the table is saved.

FIRST
tests for TIRNs in the user data field
of the directory and reads the note
list, (if one exists) into the note
list buffers. (See the publication,
IBM System/360 Operating System:
Supervisor and Data Management Ser-
vices, Form C28-6646 for a description
of note lists.) Then, except for the
compress function, the routine reads a
normal record. For the compress func-
tion, this routine then gives control
to the COMREAD routine.

Data Set Utility Programs: IEBCOPY 111

REBLOCK
initiates read and write operations as
required by the status of the in/out
buffer and supplies the move (HMOVE)
subroutine with the logical record
length and the "from" and "to"
addresses.

SETOPSWO
writes the member record (in original
form, reblocked, or as an update note
list) on the output data set (SYSUT2).
(For the compress function, this rou-
tine is not used. The COMREAD routine
does the writing of records in this
case.)

EOD
stores the required data in the output
directory (member names, aliases, user
data, etc.).

COMREAD
performs the reading and writing
operations when the compress function
is specified. If note lists (records
which contain pointers to blocks
within a given member of a partitioned
data set) are present, this routine
will update them. The routine also
reads and writes the member recoxds
(of a PDS) one track at a time and
updates the TTRNs of a user data field
when necessary.

r 1 r 1
| Control | i |
| card |
| Analyzer|

[4 b —— J

[e o . e G S e v S . S g
-
b e e e e e — — — — ——]

Figure 43. Overlay Structure of the

IEBCOPY Program

PROGRAM FICW

Charts 42 and 43 show the flow of control
through the program. After the program is
entered, it sets switches, assigns data
areas, and opens SYSPRINT. The header line
is written on SYSPRINT at this time using
the optionally supplied initial page
menmber.

The control card analyzer routine picks
up the control statements from SYSIN and
places them in tables within the IFBCOPY
program.

112

A test is then made to determine if an
exclusive copy was requested. For an
exclusive copy, the user lists the names of
the members that are not to be copied. The
input data set directory is then read to
determine the names of the members that are
to be copied. If an inclusive copy is spe-
cified, all members listed are copied.

Next, the input data set (SYSUT1) is
opened. If a total, an exclusive, or a
compress copy is to be performed, the DCB
parameters are saved and the basic sequen-
tial access method (BSAM) is used to read
the directory. For the compress function,
storage areas will also be allocated for
use as buffers. Once the directory is read
and all the entries are stored in a table,
the access functions are performed either
by using BPAM (for all but the compress
function) or by using the XDAP (execute
direct access program) macro instruction
(for the compress function). For a
description of the XDAP macro instruction,
see the publication IBM System/360 Opera-
ting System: System Programmer's Guide,

Form C28-6550.

The output data set is then opened and,
during the DCB exit, the DCBs of the input
(SYSUT1) and output (SYSUT2) data sets are
checked for valid reblocking requests.

For a valid reblocking request, switches
are set to establish a linkage to the
reblocking routine. Space for the in/out
buffer is also allocated at this time. If
there is to be reblocking, a second buffer
(in/out) is obtained. The length of the
insout buffer is equal to the input block
size plus the key length.

The program is now ready for the names
of the members that are to be copied. 1If
the copy is to be either total, exclusive,
or compress, the entire directory has
already been read and saved. If the copy
is inclusive, however, the member names and
aliases which were provided by the user in
the control statements and the correspond-
ing entries are extracted from the directo-
ry at this time.

Directory entries, related to the mem-
bers that are to be copied, are sorted and
grouped by member name and physical disk
address (TTIR). A member name precedes all
its aliases. If member exclusion is
requested, the names in the directory are
compared against the user-supplied names.
wWhen a match occurs, that member is not
processed.

The user data field for the member name
extracted from the input directory is
interrogated. If the user data field con-
tains note list pointers, a note list buff-

er is allocated and the note list is read
to determine its length.

After the note list (if one exists) is
read, the next processing steps depend upon
whether the compress function has been
specified.

Copying Without Data Set Compression

If data sets are to be copied without com-
pression, a physical record is read into
the in/out buffer. If reblocking is
requested, a reblocking routine affects the
new klock size. The HMOVE subroutine is
used to transfer logical records from the
in/out buffer to the reblocking buffer from
which the new block is written. When
reblocking is not requested, physical rec-
ords are written directly from the in/out
buffer.

Before writing records for which
reblocking has not been requested, the
track address (TTR) for each physical rec-
ord is compared to the entries within the
note list. If a match occurs, a switch is
set to indicate that pointers have been
found that will require updating. After
each physical record is written, the track
address pointer (TTRN) for the output rec-
ord is noted. This new (output) pointer
replaces the former (input) pointer in
either the directory entry or the note list
(or koth) depending on where it appeared in
the input.

when the end-of-data for a member is
reached, the member name and all aliases
pertaining to that member are stored in the
output directory. If the member name table
indicates that more members remain to be
copied, the copying process resumes. If
the member name table is exhausted, job
termination is initiated; registers are
restored, a termination (normal or abnor-
mal) message is written onto SYSPRINT, the
proper return code is set, and control is
returned to the control program.

Copying With Data Set Compression

When data set compression has been speci-
fied (by the PARM = COMPRESS parameter on
the EXEC control card), the COMREAD routine
first uses a subroutine to convert the
relative track address of a member record
to an actual track address. Then the util-
ity program obtains the blocksize (from the
data set parameters) and uses the XDAP
macro instruction to read the record into a
buffer. The actual number of bytes read
into the buffer is calculated from the
residual byte count appearing in the chan-
nel command word. If the record contains
TIRNs or is a note list, an indicating
switch in the buffer table is set. Aafter
all records on a track have been read and
inspected, they are written on the output
data set (SYSUT2). When all the records of
a memker have been written, any TTRNs in
the directory and any note lists are
updated. Processing then continues as
described for copying without the compress
specification.

Data Set Utility Programs: IEBCOPFY 113

Chart 42. IEBCOPY - Copying and Merging Partitioned Data Set Members (Part 1 of 2)

9

Entry
IEBCOPYA Al
Set Switches, A3
Assign Data ompres:
Areas, Analyzer FU"¢_'E°"‘
Linkage Specified 4%
Parameters 4
IEBCOPYC Bl 83 SETOC B4
ANALYZER NOsETv Compre Allocate Retor T 85
urn to
Read & Process Function Storage fw Call
e Reblocking Error 9
Control Cards Specified . Program
Buffer Routine 2
Open SYSPRINT .
Via 1EBCOPYA and

See NOTE 1

the Supervisor
(IEBCOPYA) at Right

C2

IF Analyzer a Allocate NOTE 1-
Finds Error, Storagefor | 0 7 Y N v 000\ ...
Ret.to Caller. in}dg' © Test Switch
Otherwise go to oV
Buffer Set by
|EBCOPYD Analyzer When

Error Oceurs.

EXLST D4
D2 Determine
Compres Members not
Function to be Copied.
Specified Set Up Table
of Same
Save Length Get Maximum For Members
of Member Track Capacity to be Copied,
Name Table, of Device Specified. Extract Entries
Prepare to Caleulate Size of From Input
Read Directory Internal Buffer Table. Director
Get Buffer Require-
ments.
OPEN F1 EG1 F4 NOTE 2:
Open Sortthe |
fnput Directory Processing on Records is
Data Set Entries (See Done According to Nu-
(SYSUTY) NOTE 2 merical Sequence on a
Right) Track Rather than the
Alphabetic Sequence in
4 the Directo
TOTAL G2 g G4 4
Read Input From Input TVAL G4
Directory. Calc Directory, No Reject
Size of Buffer Extract User this
Table, Set Up Data for this Member
Directory Table Member
Yes
H4
TOTEST
Skip this
During Member . |
A Get Next
Extraction Member.
OPE| J4
Open . 5
Output &S:'I: :;::‘: Note List
Bata Sef of TTRNs Fresent
(SYSUT2)

GETNL | K4

Read the
Note List

Function
Specified

When bompress Function
is Specified, a Total
Copy is Automatic.

114

Chart 43. IEBCOPY - Copying and Merging Partitioned Data Set Members (Part 2 of 2)

COMREAD A2 €oF1 A5
Get Actual .
Track Address Set :n;ilCakl:r
of Record in anfemo
from Convert T:bleer
@ Routine

Using XDAP,
Read a
Physical Physical Bo” f\:embersd
Record een Processe
Record

' c3

Update
of Input TTRs and Nexv-l"al\ceembe
9 Note List

Alias

i Calculate s
; ReR:dc:rZy ;:::.I Actual Bytes This Last
1 Input Data Read and Record in
; Set Place No. in Member
(Sysum Buffer Table

Update Error Stow the
. the During Directory
Directory Update Information

Are
all Records

Written
Reblocking Indicator in This a
Specified Internal Note List
pe Buffer Record
Table
H1
Set
Perform Indicator in Pres;ure
Reblocking Internal to :d
Buffer Table Tasl

VTYPESW n SETOPSW 2 @_’ 53

Indicate any Write Update Buffer
Track Address Physical Address Return ¢
Pointer (TTRN) Record on Update TTR e to
d Control Program
That Requires Output to Point to
Updating Datg Set Next Record Via IEBCOPYA and

the Supervisor.

K3

NONOTE

K4
Update Track

Address
Pointers

More
Pointers

Data Set Utility Programs: IEBCOPY 115

Comparing Records (IEBCOMPR)

The IEBCOMPR program compares either two
sequential or two partitioned data sets at
the logical record level. With one excep-
tion, data sets containing records greater
than 32,756 bytes in length are compared at
the physical record level. The records
being compared can be U, F, V, or VS for-
mat. F, V, and VS format records may be
either klocked or unblocked. For parti-
tioned data sets, VS format records are not
compared. If keys are present they are
compared.

The utility program will use either QSAM
(move mode) or BSAM processing to compare
the records, depending on the following pa-
rameters describing the records of the data

set: RECFM, logical record length, pre-
sence of record keys. (See Table 1 for
details.)

All user header and trailer labels are
compared unless control statements indicate
otherwise. The program prints the labels
if they are unequal. Optional user exits
are provided so that the user can process
his own labels.

PROGRAM STRUCTURE

The IEBCCMPR program (Figure 44) consists
of three segments: the root segment, the
control card analyzer segment, and the pro-
cessor segment.

The Root Segment

The root segment consists of two control
sections (CSECTS): IEBCOMPM and IEBCROOT.
CSECT IEBCOMFM contains the standard@ mes-
sages for the IEBCOMPR utility program.

CSECT IEBCROOT consists of the two routines
COMPARE, and LLEORI.

COMPARE
sets all switches and tables to their
starting or original values.

LLEORI
opens SYSPRINT, writes the header 1line
using the optionally supplied initial
page number on SYSPRINT.

The Control Card Analyzer Segment

The control card analyzer segment reads and
processes the control cards. It consists
of two routines: IEBCANAL (containing con-
trol section ANALY) and IEBCCS02 (contain-
ing control section ACTCCS).

ANALY
calls ACTCCS to process the control
cards and then, based on the parame-
ters supplied in the control cards,
sets switches and creates parameter
tables.

ACTCCS
opens SYSIN, reads the control cards,
and passes the location, length, and
identification of the parameters to
ANALY.

The Processor Segment

The processor segment performs the actual
compare operation. It consists of the rou-
tines IEBCMAIN, IEBCQSAM, and IEBCULET.

The routine IEBCMAIN contains six subrou-
tines: DIRBUFF1, STARTBSA, SDSOBEG, READ-
SET1, COMPAR, and BLPRT.

DIRBUFF1
compares the directories of the input
data sets if they are partitioned by

Table 1. Access Methods Used for Comparing Records
Logical
Level of Data Set Records RECFM Record oered
Comparison Have Keys Length etho
Physical { SYSUTI Yes ' } Not a factor { BSAM
Block SYSUT2 Yes Vs
Greater than
Physical f SYSUTI No Vs 32,756 bytes BSAM
Block 1 SYSUT2 No VS in at least
one data set.
Logical SYSUTI No Vs VS§ \ Less than 32,756 (
Record { SYSUT2 No 'S \ 'S } bytes for both QSAM
data sets. 1
Logical 1 SYSUTI Not a 1 F U \ Less than 32,756
Record 1 SYSUT2 } Factor 1 F U \ bytes for both BSAM
data sets.

116

¢

v

reading the directories and compares
the member names.

STARTBSA
uses BSAM to open the data sets, SYS-
UT1 and SYSUT2, being compared, and
obtains the necessary DCB information
from each: block size, record length,
record format, and key length. If
user input header or trailer labels
are saved to be compared as data when
user input header or trailer label
exits are taken during Open or End-of-
Data processing, this routine compares
the user header labels from both data
sets and prints the labels if they are
unequal.

SDSOBEG
examines the key lengths, the logical
record lengths (F and VS formats
only), and record formats of both data
sets. Any discrepancy in the data
sets results in an error message and
termination of the task. If this rou-
tine determines that QSAM is required
to process variable spanned (VS) rec-
ords, it closes the data sets SYSUT1
and SYSUT2 and gives control to the
routine IEBCCSAM to perform the
processing.

READSET1
reads and deblocks physical records.
Note: Deblocking on data sets with VS
records is not done when comparing
records whose length is greater than
32,756 bytes.

COMPAR
compares logical records. Unequal
records are identified and printed.
If a user routine is not provided and
ten consecutive records fail to com-
pare equally, this routine skips to
the next member in each partitiocned
data set or terminates the task if the
data sets are sequential.

BLPRT
prints internal hexadecimal data in
Extended Binary-Coded-Decimal Inter-
change Code (EBCDIC) characters.

The routine IEBCCSAM contains the control
section CSAM and processes data sets con-
taining records that: do not have keys,
are less than 32,756 bytes long, and are of
format VS (see Table 1). 1In effect, this
routine functions as a closed subroutine
for routine IEBCMAIN, and it uses the sub-
routines CCMFAR and BLPRT.

The routine IEBCULET contains the control
section USERLAB. This routine, which func-
tions as a closed subroutine of routine
IEBCMAIN, saves, in main storage, the input
header and trailer labels for both the SYs-

UT1 and SYSUT2 data sets. Routine IEBCULET
is entered during the opening of, and when
reaching the end of, the data sets SYSUT1
and SYSUT2. Exits to user input header and
trailer label processing routines are taken
from this routine.

r |
| r-—————-= -

| | I

| | Root |]
| | |

| SRS |

| r 1 1 |
| o=ty |
| | control | | |

| | card | | Processor |

| | Analyzer| | |

| b J [U —— | |
L dJ
Figure 44. Overlay Structure of the IEB-

COMPR Program

PROGRAM FLOW

Chart 44 shows the flow of control through
the IEBCOMPR program. After this program
is entered, it sets switches and tables to
their original or starting valuves and opens
SYSPRINT. A header is written on SYSPRINT
at this time, using the optionally supplied
initial page number.

The control card analyzer, ANALY, picks
up the control statements from SYSIN and
places them in tables within the IEBCCMPR
program.

The ddnames for each data set are picked
ur from the ddname list and saved for later
in the messages. Switches are also set at
this time for each user exit that is
specified.

The organization of the input data sets
SYSUT1 and SYSUT2, can be either sequential
or partitioned. If it is partitioned,
storage must be allocated for tables. To
determine the amount of storage needed, the
program opens SYSUT1 with BSAM, reads the
directory, and scans the user data field
for memker names, aliases, track address
pointers, and note lists. When this is
done, SYSUT1 is closed.

If SYSUT1 and SYSUT2 are partitioned,
they are opened with BSAM and the direc-
tories are compared. MNember names that
compare equally are stored in the TNSET
table. Member names that do not compare
cause the member name with the lower binary
value to be printed and assumed missing
from the other data set. Also, user data
fields for either member names or aliases
that do not compare are printed.

Data Set Utility Programs: IEBCCMFR 117

Note list pointers associated with memb-
er names that compare equally are stored in
tables TTRSET1 and TTRSET2 for SYSUT1 and
SYSUT2, respectively. When the directory
comparison is complete, SYSUT1 and SYSUT2
are closed.

At this point the program begins to com-
pare logical records. The input data sets
are opened and the necessary information is
extracted from each DCB; i.e., block size,
record length, record format, and key
length. If a user exit is taken to com-
pare, as data, the user input header labels
from two sequential data sets, this routine
performs the comparison of the approrriate
labels. If the input data sets are sequen-
tially organized, the user header labels
from both data sets are compared unless
control statements indicate otherwise. The
program prints the labels if they are
unequal.

The record formats, the key lengths, and
the logical record length (F and VS format
records only) of the input data sets are
compared. If there is any inconsistency, a
message is printed and processing is
terminated.

A physical record is read from each
input data set and deblocked. (Note:

118

Deblocking is not done when the data sets
being compared have records whose lengths
are greater than 32,756 bytes.) If there
is no user pre-compare routine, a record
from each data set is compared a character
at a time until all the records are
compared.

J

Records that do not compare are identi-
fied and printed. If a user error routine
is provided, control is transferred to it.
If a user error routine is not provided and
this is the tenth consecutive error, pro-
cessing either terminates if the input data
sets are sequential or skips to the next
member if the input data sets are
partitioned.

After the last record is processed, the
input data sets are closed; the total num-
ber of records compared is printed. 1If a
user exit is taken to compare, as data, the
user input trailer labels from two sequen-
tial data sets, this routine performs the
comparison of the appropriate labels. If
the input data sets are sequentially
organized, the user trailer labels from
both input data sets are compared unless
control statements indicate otherwise. The
program prints the labels if they are
unequal.

Chart 44.

1EBC

IEBCOMFR -

Entry

OMPR B1

Set
Switches and
Tables to
Starting

Valves

D1

JANY

Reod ond
Process Control
Cards

BEGINI El

Save DDNAMEs
for Message
Writer and Ser

User Exit
Switch

DIRBUFF1 H1

Scan
Directory for
Purpose of
Allocating
Storage

Compare
the
Directories

STA

Comparing Records

!

C2

ZZPR

Print User
Header
Labels

SO

RTBSA J1

Prepare to
Reod Data Set 1
and Data Set 2

()

SOBEG C3
Check Key
Length, Logical
Record Length,
and Record
Formats

No

READSET1 E3

Reod and
Deblock a
Physical Record
from both Data
Sets

User 3
Pre-Compare
Data Set

Collect
and Save

User's

Labels for
Comparison

End of
Data for
SYSUTI or

SYSUT2

Are
Labels to be
Compared

F4

User
Pre-Compare
Routine

|

ERRCOMP

Error Routine

Yes

User
Error
_Routine

Data Set Utility Programs:

ZZPR

Print
Trailer
Labels

On

Return

K4

Header Label
Routine

C5

Pracess User
Requests and
Return Code

Collect and
Save Labels
for Comparison

FS

Is
ere a User
Trailer

Routin

G5

User's
Trailer Label
Routine

Process User
R ts and
Return Code

IEBCCMPR

119

Copying and Modifying Records
(IEBGENER)

The IEBGENER program copies a sequential
data set, or converts a sequential data set
into a partitioned data set, or adds mem-
bers to an existing partitioned data set.
Editing facilities are available with all
operations of this program.

The input to the IEBGENER program must
be a sequential data set. The data set can
reside on any device. The input records
can ke U, F, V, or VS format. If F, V, oOr
VS format, they can be blocked or
unklocked.

The output of the IEBGENER program can
be either a sequential or a partitioned
data set. If the output data set is parti-
tioned, it must reside on a direct access
device and note lists will not be
permitted.

PROGRAM STRUCTURE

The IEBGENER program (Figure 45) consists
of three segments: the root segment, the
control card analyzer segment, and the pro-

cessor segment.

The Root Segment

The root segment initializes the program

and writes messages on SYSPRINT. It con-
sists of three routines (IEBGENER, HWRMSG,
and HCDWR) and a message module, IEBDGMSG.

IEBGENER
sets switches, assigns data areas,
opens SYSPRINT, and writes the header
line with a user supplied initial page
numker (if any) on SYSPRINT.

HWRMSG
writes error messages on SYSPRINT.

HCDWR
writes, on SYSPRINT, the control cards
that are read by the control card
scanner (IEBGSCAN) routine.

IEBGMESG
contains the text of error messages
that are written by HWRMSG.

The Control Card Analyzer Segment

The control card analyzer segment reads and
processes the control cards. It consists
of two routines: IEBGSCAN and IEBCCSO02.

IEBGSCAN
calls IEBCCS02 to process the control
cards and then, based on an analysis
of the parameters supplied in the con-
trol cards, IEBGSCAN sets switches and

120

creates parameter tables for use by
the processing modules IEBGENR3, IEB-
GENS3, and IEBGENQO3. The addresses of
the tables are in a list to which gen-
eral register 1 points when this rou-
tine has finished its processing.

J

IEBCCS02
opens SYSIN, reads the control cards
and then passes the location, length,
and identification of the parameters
to IEBGSCAN.

The Processor Segment

The processor segment consists of a root
module, IEBGENR3, and two processing
modules, IEBGENS3 and IEBGENO3. The root
module opens and closes the data sets and
performs all label processing. It gives
control to either of the other two modules
(IEBGENS3 and IEBGENO3) for editing and
copying functions. Module IEBGENS3 is used
for variable spanned records and IEBGENO3
is used for all other record formats. The
entire segment consists of these three
modules and the following routines: IEBE-
DIT2, IEBLENP2, IEBMOVE2, IEBCCNH2, IEB-
CONP2, and IEBCONZ2.

IEBGENS3
for variable spanned records, this
processing module either gets and puts
logical records or reads and writes
physical blocks, depending on DD card
parameters and/or information in the
data set control block. The module
links to editing and/or conversion
subroutines as required by control
statements. It returns control to the
root module.

IEBGENO3
for all but variable spanned records,
this module reads the input from the
SYSUT1 data set, deblocks the records,
edits them if required, and writes the
output on SYSUT2 with proper blocking.
The module links to editing and/or
conversion subroutines as required by
control statements. It returns con-
trol to the root module.

IEBEDIT?2
moves the logical records from the
input buffer to the output buffer with
field editing. One field is moved at
a time, and converted if necessary.

IEBLENP2
calculates the total length of the
output records based on the lengths of
the fields to be moved. Conversion is
then performed on each.
IEBMOVE2 @
moves bytes of data from one area of
main storage to another.

Root Segment

Control Card
Analyzer Segment

Processor Root
Segment (IERGENR3)

Processing for

User Labels

Spanned Record
Processor (IEBGENS3)

Figure 45.

IEBCONH2
converts the data from H-set BCD to
EBCDIC characters.

IEBCONP2
converts the data from packed to zoned
decimal format.

IEBCONZ2
converts the data from zoned to packed
decimal format.

Charts 45 and 46 show the flow of con-
trol through the IEBGENER program. After
the program is entered, it sets switches,
assigns data areas, analyzes linkage param-
eters, and opens SYSPRINT. A header line
with user initial page number (if any) is
written on SYSPRINT at this time.

The control card analyzer, IEBGSCAN,
picks up the control statements from SYSIN
and places them within the IEBGENER
programe.

The DD name for each data set is picked
up from the DD name list and stored in the
HDDNAMES table. Then the input (SYSUT1)
and the output (SYSUT2) data sets are
opened. A user exit may be taken at this
point to process user header labels.

Next, a physical record is read into the
read buffer and then moved to the input
work area for deblocking and processing.

At this point, the record is available to
the user via a user exit.

The program reads the next physical rec-
ord from the input data set to refill the
vacated input puffer.

These modules are mutually exclusive

Non-Spanned Record
Processor (IEBGENO3)

Overlay Structure of the IEBGENER Program

Logical records are moved one at a time
to the output work area. If editing is
requested by the user, the requested con-
version of each field of each logical rec-
oxrd is performed.

A test is performed before a record is
moved from the input work area to the out-
put work area to determine whether space is
available in the output work area. 1If
space is not available or if the output
work area contains the last record of a
partitioned data set, records in the output
work area are moved to the output buffer.
If a user totaling routine has been speci-
fied, the processing module (either IEB-
GENS3 or IEBGENO3) gives control to that
routine at an exit immediately preceding
each WRITE or PUT macro instruction issued
by the utility. At the same time, register
1 contains the address of a parameter list
(see Appendix B) that includes:

e The address of either a physical block
(if control comes from module IEBGENO3)
or a logical record (if control comes
from module IEBGENS3 and spanned rec-
ords are processed with reformatting.)

e The address of the data control block
describing the data to be placed on the
output device.

e The address of an area to contain sta-
tus information describing an uncor-
rectable I/0 error.

o The address of a storage area in which
the user collects totaling information.

Data Set Utility Programs: IEBGENER 121

After control returns from the user's rou-
tine, the utility places the record(s) on
the output data set.

In the case of an uncorrectable I1I/0
error occurring when the utility places
records on the output data set, the utility
passes control back to the user's totaling
routine with bit 0 of byte eight of the fa-
rameter list now set to 1 to indicate the
error. The first word of the parameter
list contains no meaningful information in
this case. (This return to the user total-
ing routine is taken before any specified
user ICERRCR exit is taken.) After control
returns to the utility from either the toc-
taling routine or, if one is specified, an
IOERROR exit routine, the utility program
terminates the processing without taking
any user trailer-label exits.

Note: For the processing modules IEBGENS3
and IEBGENO3, a user's specified IOERROR
exit is taken from the SYNAD routine on the
occurrence of a permanent I/0 error during
either input or output processing.

122

The utility will terminate processing after
control is returned from the user's exit
routine.

If a user totaling routine has not been
specified, the utility writes the reccrd (s)
directly on the output data set.

If the output contains keys, the keys
are also written out. A user exit permits
the user to insert keys.

A test follows the movement of each rec-
ord from the input to the output work areas
tc determine whether the output data set is
partitioned or sequential. If the output
data set is partitioned and the last record
for a member was previously written, the
member name and aliases are stored in the
directory.

After the last record is processed and
written, the input and output data sets are
closed. During the closing a user exit may
be taken to process user trailer labels.
Ccntrol is then returned to the invoker.

¢

eChart 45.

|EBGENR A2
A Set Switches.
Assign Data
Entry Areas. Open
SYSPRINT
HROOT? 81 B2
IEBGSCAN
:nalyze Control
arameters Card
Anclyzer
Exit if
SUL is
IEBGENR3 €l Soecitiod [e
o | on DD Card Save
N T Label
Dng:' a— — 'Informaﬁon
| if Necessary
I
[}
i
|
|
|
|
S S AR
Exit it
SUL is
3 Specified l E2
o, on DD Card Move Label
o pen - -—- Information
Dggu' e —— into Buffer
-: if Necessary
|
1
|
|
|
I

IEBGENER - Copying and Modifying Records (Part 1 of 2)

A3

User Data
Routine

Totaling
Exit

A5

User Totaling
Routine

User Input
Reader
Routine.

Partitioned
Data Set

From
46/F4

Initial

Read

Move
Buffer to
Work Area

K2

© &

Move

== User Output
Header
Routine

Output
Work IAreu
to Buffer

Totaling
Exit

User Totaling
Routine

Move
Key to
Output

Routine

i

&

User
Routine

Data Set Utility Programs:

IEBGENER

123

eChart 46.

124

User
Totaling
Exit

From:

45/G3
S

User
Routine

E2

Move
and
Edit

El

User Totaling
Routine

Put Out
a
Record

Partitioned
Data Set

No

IEBGENER - Copying and Modifying Records (Part 2 of 2)

From:

45/)4
45/D4
45/E4
45/H5

B4

Move
and
Edit

Dota Set

Last
Record of
Member

Stow
Name

and
Aliases

Close

G5

Input &
Qutput

DC8s

K4

< Return >

Move Label
Information
into Buffer
if Necessary

User
Trailer Label
Exit

User Trailer
Label
Routine

NOTE 1
Exit if
Sul is

Specified on
0D Card

‘!25

“

Printing and Punching Records
(IEBPTPCH)

The IEBPTPCH program prints or punches all
or selected portions of a sequential data
set, a partitioned data set, or specified
members of a partitioned data set.

The input to the IEBRPTPCH program can be
either a sequential or a partitioned data
set. The input records can be U, F, or V
format. If F or V format, they can be
blocked or unblocked.

The output of the IEBPTPCH program is
put on a printer or a card punch. Note
lists are permitted in the output only when
the standard format is used.

PROGRAM STRUCTURE

The program (Figure 46) consists of three
segments: the root segment, the control
card analyzer segment, and the processor
segment.

1} ¥
| ———————- - |
| | |
I | Root | |
| teeoopeed |
| r L 1 |
| oot r————t-—- |
| | control | | I
| | card | |Processor| |
| | Analyzer| | I
| I J b —J |
L J

Cverlay Structure of the
IEBPTPCH Program

Figure 46.

The Root Segment

The root segment initializes the pro-
gram, and consists of one routine, PRPCH,
which links to PPANAL.

The Control Card Analyzer Segment

The control card analyzer segment reads and
processes the control cards. It consists
of two routines: PPANAL and ACTCCS.

PPANAL
calls ACTCCS to process the control
cards and then, based on the parame-
ters supplied in the control cards,
sets switches and creates parameter
takles.

ACTCCS
opens SYSIN, reads the control cards
and then passes the location, length,
and identification of the parameters
to PPANAL.

The Processor Segment

The processor segment performs the printing
and punching operations. It consists of
twelve routines: PRPUN, TCTAL, MEMELCC,
PPSDS1, RDCH, PREFCRM, RECDLCC1l, RECPROC,
RECPREP, FORMS, FORMU, and CLCSEIO.

PRPUN
examines the parameters supplied by
the PPANL routine in the control card
analyzer segment and performs initial-
ization based on these parameters.

TOTAL
reads the directory, extracts the name
and location of each entry, and sorts
the entries by TTR and alias indicator
so that members can be written in the
order of their physical occurrence in
the data set and written only once.

MEMBLOC N
obtains the name and location of the
next partitioned data set member to be
written and then positions the data
set so that the member can be read.

PPSDS1

determines whether there are user
written record groups. If no editing
is indicated, it prepares to write the
sequential data set or the member in
the standard format. It also prepares
to skip logical records within the
member or the sequential data set.

RLCCH
reads a physical record. If note
lists are to be omitted and the cur-
rent record is a note list, another
physical record is read.

PREFORM
deblocks and writes out the records if
PREFORM is specified.

RECDLOC1
deblocks the physical record.

RECPROC

initiates logical record processing,
examines the identification (ID) of
the record to determine if it is last
record in a group, examines the logi-
cal record count to determine if the
record should be skipped, and provides
the user access to the input record.

RECPREP
tests for the end of page on printed
output and determines the format for
the current logical record.

FORMS
writes a logical record in the stan-
dard format. If necessary, it seg-

Data Set Utility Programs: IEBPTPCH 125

ments the input record into multiple
output records.

FORMU
edits a logical record in accordance
with user specifications. Before the
record is written, the user can again
access the output record.

CLOSEIOQ
prepares to end the task and relin-
quish control to the control program
or the invoker.

PROGRAM F1GW

Chart 47 shows the flow of control
through the IEBPTPCH program. After the
Frogram is entered, it sets switches,
assigns data areas, and analyzes the
internal system-provided parameters. A
header is written on SYSPRINT at this time,
using the optionally supplied initial page
number.

The control card analyzer routine (PPAN-
AL) picks up the control statements from
SYSIN and places them in tables within the
IEBPTPCH program. The output data set,
(SYSUT2) is then opened for printing or
punching.

If the input data set, SYSUT1, is parti-
tioned and the entire data set is to be
read and processed, the program reads the
directory and extracts the name and loca-
tion of each entry. The entries are then
sorted by TTR and alias so that members can
be written in the order of their physical
occurrence on the direct access device.

Next, initialization is performed to
enable the input data set to be read. A
user exit can be taken at this point to
process the user header label on the input
data set if it is sequentially organized.

If the user's routine returns an action
code of 16, the utility program will com-
Plete the opening of the input data set,
print and punch (if so specified) any head-

er lakels that have already been read (up
to the point for which the action code was
set), close the input data set, and termi-
nate the processing. The utility will then
return control to the supervisor.

If the input data set contains variable
sranned records, the DCB exit routine, dur-
ing the opening of the SYSUT1 data set,
tests the record length and the record for-
mat parameters. The action taken is indi-
cated in Figqure 47.

After the data set has been opened, the
access method indicator field in the DCE is
set to indicate the use of the QSAN MCOVE
mode.

If the input data set is partitioned,
the name and location of the member that is
to be processed is obtained and the data
set is positioned so that the member can be
read.

Any user-supplied titles are written at
this time. If the input is partitioned,
the member currently being processed is
identified. A new page is started for
printed output or a new sequence number is
initiated for punched output. The program
then determines whether there are user
written record groups and performs initial-
ization accordingly. If there is no edit-
ing, initialization is performed toc process
the sequential data set or member in the
standard format.

The RDCH routine reads a physical record
and determines whether a note list is pre-
sent. If the physical record is a note
list and it is to be omitted, the routine
reads the next physical record when the
basic sequential access method is being
used. When the queued sequential access
method (QSAM) is used, the routine gets a
logical record. QSAM is used only for a
sequential data set having both a logical
record length that does not exceed 32,756
bytes and variable spanned records.

The PREFORM routine deblocks and writes
out records if the user has control charac-

DCB Parameterx

Action Taken

RECFM

-y —— oy
o e e o

v
| LRECL
L

Work Area for IEBPTPCH

L
VS or VBS |Greater than 32,756

|
VS or VBS |Equal to or less than
132,756

e

L

|RECFM field in utility work area is set to U.
| |LRECL field in utility work area is filled with the
| | DCB blocksize.

|RECFM field in utility work area is set to V.
|BLKSIZE field in utility work area is filled with
| |the DCB logical record length.

L

L e L PR

Figure 47.

126

Work Area Settings for Support of Variable Spanned Records

ters in the input data set and specifies
the keyword PREFORM. All other control
statement requests are ignored, but are
checked for validity.

The RECDLOCl1 routine deblocks the phys-
ical record and obtains the length and
location of the next logical record. When
no logical records remain in a block, the
RECDLOC1 routine returns to the RDCH rou-
tine, and another physical record is read.

A user exit can be taken at this point
to process a logical record before it is
processed ky the program.

The processing of a logical record
includes checking the record ID to deter-
mine whether it is the last record in a
record group and testing the record count
to see if the record should be skipped. If
the record is the last record of a record
group, a switch is set for subsequent test-
ing. If the record is to be skipped, con-
trol is passed to the end of record grougp
test.

Next, the output format of the logical
record is tested to determine if it is to
be standard or user defined. The FORMS

routine writes a logical record in the
standard format; and when necessary, seg-
ments the input record into multiple output
records. The FORMU routine edits a logical
record a according to user specifications.
A user exit may be taken before the record
is written to allow the user to perform
additional editing.

After the last record in each record
group is written, the NEXTGR routine per-
forms reinitialization to allow the next
record group to be processed.

When the end of data is reached on an
input partitioned data set, the name and
location of the next member is obtained and
the data set is positioned to the next
member. When the end of data for the last
member or for a sequential data set is
reached, the input data set is closed. A
user exit can be taken at this point to
process the user trailer on the input data
set if it is sequentially organized.

The processing of trailer labels employs
the same use of return action code 16 as
described in this section for header label
processing.

Data Set Utility Programs: IEBPTPCH 127

Chart 47. IEBPTPCH - Printing and Punching Records

FORMS Ad
Al Write Logical
E Record in the
nfry @ Standard Format
PPENTRY B1 . PPSDS1 B3
Prepare to "
L Write One or Ed".
Initialize the Logical
More Record
Record
Groups

<l PREFORM Cc2 RDCH C3 C4
PPANAL Deblock Locate the 5
and Write Out Next Physical Yes
Read and the Recz d User Exit
Analyze the Preformatted User Routine
Control Cards Record '
No

L

PREPRPUN D1 D5
Analyze the .
Print or Punch Input W"".e
Qutput Preformatted End of Data the Logical
Record
PPOPEN £l RECLOCI @
L h E5
Prepare to ocate the
Print or Punch Next Logical No End
the Output Record of Output
Yes

TOTAL F2

Read F3
Directory and E“d. of More
Total PDS Sort Entries by Physical Record
TTR or Aliases Record Groups
No
PPOPENIN Gl G2 NEXTGR
G5
Prepare to Prepare for
Read the Input Next Record Yes l:\"e:iers
Data Set User Routine Group
No
H2 RECPROC H3
Process Prepare to
User a Logical End the Task
Header Label Record
Routine
MEMBLOCK J2 4
J5
. User
Locate the Skip N
Next Member This Record . User Trailer E.abel
Trailer Labe! Exit
Exit

PPHEAD K1

Write Any
User Supplied Return
Headers

128

Operating on an Indexed Sequential
Data Set (IEBISAM)

The IEBISAM program is executed under the
operating system to copy, unload, load, or
print an indexed sequential data set. As
examples, this program can be used to cre-
ate a back-up copy of a data set, or to
improve the accessibility of a data set by
eliminating wasted track space and overflow
areas. The program, which may be either
executed as a job step or called by an
executing program, consists of six load
modules (see Chart 48) that reside in the
linkage library, LINKLIE.

The Initializing routine determines
which function has been specified, then
passes control to one of four functional
(or processing) modules. The selected pro-
cessing module performs its specified func-
tion, then passes control to the Terminat-
ing routine, which writes messages, ter-
minates processing, and returns control to
the calling routine. (Note: If invalid
specifications or parameters have been spe-
cified, the Initializing routine sets the
appropriate message and completion code
indications and gives control directly to
the Terminating routine.)

The IEBISAM program may be executed as a
job step, or it may be called by a program
executing a job step. If it is to be
executed as a job step, the step's EXEC
statement specifies the program IEBISAM,
and the EXEC statement's PARM field speci-
fies the function to be performed as a pa-
rameter (COPY, UNLOAD, LOALC, or PRINTL).

If the IEBISAM program is to be called by a
program executing a job step, the calling
program must specify the function by pro-
viding 'EXEC statement parameters®' and
ddnames as shown in this publication in the
section "Auxiliary Parameters."™ In either
case, the job control language statements
that describe the step during which IEBISAM
is to be executed must include DD state-
ments to define the input, output, and mes-
sage data sets.

Figure 48 gives a module directory and
summary for the IEBISAM program, and Charts
49-56 outline the individual routines of
the program. For more information regard-
ing the use of the program, refer to the
SRL publication IBM System/360 Operating
System: Utilities, Form C28-6586.

INITIALIZING IEBISAM

The Initializing routine is in the 1lcad
module (IEBISAM) that is entered whenever
the IEBISAM program is requested. This
routine (Chart 49) obtains main storage for

a work area, then inspects the specifica-
tions under which the program is to run.

If no options have been specified in the
PARM field of the EXEC statement, the pro-
gram assumes the (default) option to unload
the data set. If a function specification
is not valid, this routine stores a comple-
tion code, assembles a message, and uses
the XCTL macro instruction to pass control
to the Terminating routine, IEBISF.

In all other situations (i.e., those in
which correct procedures have been fol-
lowed), the Initializing routine asserbles
the necessary information and gives control
to the appropriate module.

COPYING AN INDEXED SEQUENTIAL DATA SET

If the copy function was specified, control
is passed to the Copy routine in module
IEBISC. This routine creates an output
data set containing the same records as the
input data set, but with newly built index-
es and empty overflow areas. The Copy rou-
tine (Chart 50) opens the input data set
(SYSUT1) and the output data set (SYSUT2)
for use by QISAM and checks the DCR
parameters:

e The DCBLRECL parameters must be the
same for both the input and the output
data sets.

e The DCBRECFM parameters must be the
same (F or V) for both the input and
the output data sets.

e For the output data set, the DCBBLKSI
parameter must be a multiple of the
DCBLRECL parameter if the record format
(RECFM) is fixed (F). For variable
length records (RECFM=V), the DCBBLKSI
parameter must be equal to or greater

than the logical record length (LRECL)
+ 4.

e The DCBRKP parameter must be smaller
than the DCBRECL parameter minus the
DCBKEYLE parameters.

If the input and output data sets are
orened successfully, and the DCB parameters
are valid, the Copy routine uses the PUT
(locate mode) and the GET (move mode) macro
instructions to read the records in logical
sequence from the input data set and write
them into the output data set.

If the data sets are not opened success-
fully, if the DCB parameters are not valid,
or if an unrecoverable input/output error
is encountered, the routine stores both a
campletion code and a message code. Pro-
cessing on the data set is terminated; the

Data Set Utility Programs: IEBISAM 129

1] T L} | h
|Module ID|jCSECT | Summary {Chart ID|
I b t - 3 '
IEBISAM	IEBISAM	Receives control from calling routine.	49
		Gets work area used by processing modules.	
		Gets program parameters, alternate ddnames, page number.	
		Passes control to appropriate module.	
b t + ' + :			
IEBISC	IERISC	pProduces copy of input data set with new indexes.	50
(Cogy)		Uses PUT and GET racro instructions. i	
I t ¢ : 4			
IEBISU	IEBISU	Retrieves an indexed sequential record and passes its length	51
(Unload)		and address to IRISSO.	
		Analyzes return code from IEBISSO and sets success or error	
i	indication for IEBISF.		
3 t 4 4			
	IEBISSO	Unloads the indexed sequential record(s) into physically	52
		sequential 80-byte card irages.	
5 t t + 1			
IEBISL	IEBISL	Reconstructs an indexed sequential record from °'unloaded®	53
(Load) i	data passed by IEBISSI.		
		Checks DCE parameters OPTCD, RECFM, LRECL, BLKSIZE, RKE,	
		NTM, KEYLEN, and CYLOFL against corresponding DD statement	
		information.	
i t : :			
	IEBISSI	Retrieves unlocaded (80-byte card images) records	54
		Maintains pointer to current input area.	
		Maintains number of bytes remaining to be processed on a	
		given card image.)	
]		Checks each card image for proper sequence.	
I t t 1 :			
IEBISPL	IEBISPL	Produces printed copy of input data set.	55
(Print)		Provides for user exit and/or suppression of data	
		conversion.	i
b t + 1 :			
IEBISF	IEBISF	Receives control from initializing or processing module.	56
		Prints appropriate message and returns completion code to i	
		calling routine.	
L L 4L o J
Figure 48. Module Directory, Summary, and Chart IDs for IEBISAM Program

data sets are closed; and control is given
to the Terminating routine.

UNLOADING AN INDEXED SEQUENTIAL DATA SET

If the unload function was specified, con-
trol is passed from the Initializing rou-
tine to the Unload routine (in module IEBI-
SU) to create a physical sequential data
set containing the information from the
input (indexed sequential) data set. This
information is put in 80-byte card images
on either a magnetic tape volume or a
direct access volume. Figure 49 illus-
trates the data flow and format during
unloading operations.

Module IEBISU contains two control sec-
tions (CSECTs): IEBISU (Chart 51), which
reads records in logical sequence from an
indexed sequential data set; and IEBISSO
(Chart 52), which reblocks the records and
writes them into a physical sequential data
set.

130

Oktaining Indexed Sequential Records

After module IEBISU is entered at CSECT
IEBISU, the Unload routine opens the input
data set and determines the format of the
records. (If the relative key position is
the high-order byte of the record (i.e.,
DKBRKP equals zero), the key field is
treated separately when the records are put
into the output data set.)

CSECT IEBISU uses CSECT IEBISSO as a
subroutine; initially, IEBISU passes con-
trol to IEBISSO to open the output
(unloaded) data set, then again to write
the input (indexed sequential) DCB into the
output data set. After the DCB has been
written, IEBISU uses the GET (locate mode)
macro instruction to obtain a record from
the input data set, then passes control to
CSECT IEBISSO.

Building the Output Data Set

CSECT IEBISSO performs the reblocking and
writing of the input indexed sequential

‘Es

<

records into the output data set. The out-
put data set is a physical sequential data
set consisting of 80-byte logical records.
The 80-kyte records contain the key and
data fields of the indexed sequential data
set, together with length indicators and
sequence numkers (see Figure 49).

The first 154 bytes of DCE information
for the indexed sequential data set are
written in the first two physically sequen-
tial records (those with sequence nunbers
zerc and one) of the output data set. The
first 80-kyte logical record contains the
rhysical sequence number zero, followed by
the length indicator 154. (The length
indicator represents the number of bytes
between one length indicator field and the
succeeding length indicator field.) The
first 76 bytes of the DCE for the ingut
data set complete the first logical recorxd.
The second 80-byte logical record contains
the sequence number one, followed by the
next 78 Lytes of the input data set's DCB.
The information in the first 154 bytes of
the input DCB includes the following
fields: OPTCD, RECFM, LRECL, ELKSIZE, RKP,
NTM, KEYLEN, and CYLOFL. (See Figure 47,
and the section "Data Control Block--ISAM"
in the puklication IEM System/360 Operating

System: System Control Blocks, Form C28-
6628.) The remaining 80-byte logical rec-

ords (beginning with sequence number two)
contain the images of the records in the

input data set. The last 80-byte logical
record of the unloaded (physical sequen-

tial) data set contains from zero to two

bytes of zeros following the last byte of
input record data.

At the first entry to CSECT IEBISSO, the
Unload routine opens the output DCE and
checks the DSORG and BLKSIZE parameters:
the DSORG parameter must be ES, and the
BLKSIZE parameter must be multiple of 80.
If the opening is successful and the param-
eters are valid, the routine issues a EUT
(locate mode) macro instruction to write
the DCB in the output data set. This
information and control of the Unlocad rou-
tine are then returned to CSECT IEEISU.

On suksequent entries to CSECT IERISSC,
the output buffer is filled with indexed
sequential records obtained by CSECT IEBI-
SU. The routine stores the record length
indicator first, then it stores the record
key and data fields. Wwhen the routine
finds the end of an input record, it
returns control to CSECT IEBISU to obtain
another record; when it has filled the
input buffer, the routine issues a PUT
(locate mode) macro instruction to write
the contents of the buffer into the output
data set. The physical sequence number for
the output data set records is then
updated.

If CSECT IEBISSO encounters an error
cendition (e.g., unsuccessful open, invalid
DCB parameters, or an uncorrectable I/C
error), it closes the output data set, sets
the appropriate return code (see Chart 51),
and returns control to CSECT IEBISU. IEBI-
SU then sets both a message and a comple-
tion code, closes the input data set, and
passes control to the Terminating routine.

Data Set Utility Programs: IEBISAM 131

Direct-Access Storage

ISAM

Record

:\\G)

y4

Unloaded ISAM Record
(Physical Sequential)

O o

Main Storage /2\
O/
See Nore]

L 2-byte LRECL

SEE
*DETAIL

2-byte sequence number

BELOW

LRECL=0
(end of record)

©

Using successive GETs,
an indexed sequential
record is read. Each
logical record is prefixed
with a 2-byte LRECL
(Logical Record Length)

®

The prefixed ISAM
logical records are
reblocked into 78-byte
logical record images,
each of which is
prefixed with a 2-byte
physical sequence
number

®

The 80-byte unloaded
records are written
using successive PUTs

®

During a subsequent
LOAD execution,
unloaded records are
read (using GET) in
sequence until an
ISAM record can be

®

The sequence numbers
are stripped and the
record is rebuilt

®

The record is written
using successive PUTs

rebuilt

L 80 Bytes >l
I (logical record length) 1
S ipts indi ber of byt
Sequence 2 154 2 Input DCB Data 7‘6 A i:’::e:i::rh indicate number of bytes
Number 0 (Beginning through DCBMSHI) -
Sequence 2 Input DCB Data 78
Number 1 (DCBSETL through DCBRORG3)
Sequence 2 Length
Number 2 Indicatory First Input Record Keya
2 Note: A complete record consisting
Sequence Length . of data and key is included
Number 3 Indicator 2 Second In between successive length
2 indicators.
;e:“':;::: put Record Key 2
Sequence 2 Length
i K
Number 5 Indicator 3 Third Input Record ey3
=~ = i
Sequence 2
E f Record Zero Byte:
Nomber N Key m nd of Last Input Reco ero Bytes

IHlustration of M indexed sequential input records
contained in (N-1) unloaded output records.

eFigure 49.

132

\ Last record indicator

Unloading and Loading an Indexed Sequential Data Set

LOADING AN INDEXED SEQUENTIAL DATA SET

The load routine is used to reconstruct an
indexed sequential data set from an
unloaded copy of the physical sequential
data set. The output data set resulting
from the locading function is placed on a
direct access volume. If the original
indexed sequential data set contained rec-
ords in an overflow area, these records
will appear sequentially arranged with the
records from the original primary area when
the unloaded data set is reloaded.

To perform the load function, the Ini-
tializing routine gives control to CSECT
IEBISL of module IEBISL (see Chart 53).

The lLoad routine performs its own initial-
izing functions, then branches to CSECT
IEHISSI of the same load module to get the
length and address of an input record from
the unloaded data set. If the return to
CSECT IEBISL from CSECT IEHISSI indicates a
return code other than zero, the appropri-
ate message number and/or completion code
are estaklished, the output data set (if it
had keen opened as described later on) is
closed, and control is given to the Termi-
nating routine.

If CSECT IEHISSI returns the requested
information and a return code of zerc when
it gives control fkack to CSECT IEBISL,
CSECT IEBISL opens the output data set and
checks the validity of the DCB fields. An
inconsistency (or error) detected during
either of the latter operations leads to
procedures for closing the data set as pre-
viously described. Otherwise, if no error
is detected, the PUT macro instruction is
used to place the record information in the
new indexed sequential (output) data set.

When all records from the unloaded (o0l1d)
data set have been transferred tc the new
data set, the old data set is closed and
control is given to the Terminating
routine.

In reconstructing the new data set, the
information in the first two logical rec-
ords of the unloaded data set is used in
estaklishing the DCB for the new data set.
The last 78 kytes of each subsequent 80-
kyte logical record are used to build the
records of the new data set.

CSECT IEBISSI (Chart 54) opens the input
(unloaded) data set and checks for the
validity of the DCB parameters for that
data set. Should either the opening be
unsuccessful or a DCE parameter be invalid,
the data set is closed and return is mrade
to CSECT IEBISL. Ctherwise, CSECT IEBISSI
proceeds to get information from the logi-
cal records of the unlocaded data set and to
transmit it to CSECT IERISL so that it may
ke placed in the new indexed sequential

data set. The GET and PUT macro instruc-
tions are used for these operations. The
preceding procedures continue until either
the end of the input data set is reached or
a terminating error condition is reached.
For both situations, the input data set is
then closed, and control is returned to
CEECT IEBISL.

PRINTING LOGICAL RECCRDS OF AN INDEXED
SEQUENTIAL DATA SET

In order to obtain a printed copy of an
indexed sequential data set, a user speci-
fies the keyword PRINTL in the PARM field
of an EXEC statement. The queuved indexed
sequential access method (QISAM) is used to
cbtain the records from the input data set.
The records are selected in logical
sequence from both the prime and the over-
flow areas of the input data set. To write
the records, the queued sequential access
method (QSAM) uses a PUT macro instruction.
Record conversion (to hexadecimal notation)
and/or user exits before record printing
may ke specified as options.

After module IEBISAM gives control to
the print module IEBISPL (Chart 55), both
the input and the output data sets are
orened, the success of the openings is
determined, and the DCB parameters are
checked for validity. If an error is
encountered in any of the preceding opera-
tions, steps are taken to close the data
sets and give control to the Terminating
routine.

If the data sets have been opened suc-
cessfully and the DCB parameters are valid,
the Print routine proceeds to place a rec-
ord in a buffer area prior to printing it.
At this point, a user's routine may gain
access to the record if the proper specifi-
cation has been given on the EXEC state-
ment. Upon return from the user's routine
with a return code of either 0 or 4 (see
the return code table on Chart 55), or if
nc user exit was taken, the data in the
buffer is converted to hexadecimal notation
unless the no-conversion option has been
srecified. The PUT macro instruction is
then issued to print the record on a SYSCUT
device. After all input data records have
been printed, or if the routine encounters
an unrecoverable error, the input and out-
put data sets are closed and the Terminat-
ing routine is given control.

Note: A more complete interpretation of
tne codes returned to the print module
1EBISPL ky a user's exit routine is given
below:

Code 0: The record currently in the
buffer is to be printed, and prccessing
of the input data set is to continue.

Data Set Utility Programs: IEBISAM 133

Code U4: The record currently in the
kuffer is to be printed, but processing
of the input data set is to be ter-
minated after the printing.

Code 8: The record currently in the
kuffer is not to be printed. Processing
of the input data set is to continue.

Code 12: The record currently in the
tuffer is not to be printed, and proces-
sing of the input data set is to be
terminated.

TERMINATING THE IEBISAM PROGRAM

Each of the other routines of the IERISAM
program may give control and a completion
code to the Terminating routine (in wrodule
IEBISF). The basic function of the Termi-
nating routine is to write an appropriate
message on the SYSPRINT data set. This
message indicates the result of the use of
the IEBISAM program.

134

when module IEBISF (see Chart 56) gains
ccntrol, it opens the output (SYSPRINT)
data set. If the opening is unsuccessful,
the approriate completion code (16) is set,
the SYSPRINT data set is closed, and con-
trol is returned to the source fror which
the IEBISAM program was initially given
ccntrol.

After a successful opening of the output
data set, the PUT macro instruction is used
to write the message concerning the pro-
gram®s result. If an error is encountered
during writing, a completion code of 8 is
set and returned to the caller of the
IEBISAM program. (The completion codes
shown on Chart 56 are those resulting from
rrocessing actvity by module IEBISF.) If
nc error is encountered during writing, the
Terminating routine established a conple-
tion code based upon the results of the
routine from which the Terminating routine
received control. This code, and prograr
ccentrol, are then given to the caller of
the IEBISAM program.

Chart 48. IEBISAM - Overall Flow

€3
@
C3
1EBISAM 49
Initialize
Program
N S ¥ D2 § o] o5
IEBISU 51 1EBISL 53 1EBISC 50 | EBISPL 5!
Create Load Cor Print
Py .
Unloaded Logical
Data Set Recards Data Set Records
1 5
|1EBISF 56
Terminate
; Program

F3
Return
! to Caller

Data Set Utility Programs: IEBISAM 135

Chart 49.

136

CONAME

A2

82

Establish
Register
Addressabi ity

C2

SVC 10,
Issue GETMAIN
(Work Area
for

Pjram)
n2

Program
Initialization

E2

Options
Specified

IEBISAM - Initialize IEBISAM Program

LABELUN E3

Assume

Unload Option

Reflect

Options
by Settings

in Work

DDNAMEs

TE

()

SUPPLY1 B4

Use Page
Number
Supplied or
Assume One

C4

Update and
Restore

Page Number
for Caller

DAQOO D4

Check the Date

ONWARD1 E4

Prepare
for Proper Exit
Via XCTL

ASSUMECY

Set Message

Number and

Completion
Code

o]

Prepare
for XCTL
Exit to
Terminate

F4
SVC 7. XCTL
to Required

NOTE 1:

Message Number = 8
Completion Code = 16

See NOTE 1

B5

Chart 50.

IEBISAM - Copy Indexed Sequential Records (IEBISC)

Entry is Via
XCTL from
Module 1EBISAM
(Chart 49)

CeD

This is CSECT [EBISC

of Module 1EBISC
IEBISC B2
Establish
Base Register
Address
Cc2
Move DCBs to
Work Area, Load
DDNAMEs .
D2
SVC 19.
Open
Input and
Output DCBs
GETPTR €3 SYNADOUT €4
|]
Open Issue PUT
Successful (Locate Buffer
Address)
No
SETSW F2 GETREC F3 SYNADIN 4
SVC 68
Set Message lssue GET .
Number ond (Place | ERROR Set Memage
Completion Code Record in .
Buffer) Covzplohon
E IN G3
End of
tnput Data.
Last Buffer to
Be Purged,
H3
SVC 20,
Close
Input and
Output DCBs
J3
Prepare for
XCTL Exit to
Terminate
K3
XCTL to
Module 1EBISF
Chert 56)

Data Set Utility Programs:

IEBISAM 137

138

eChart 51.

IEBISAM - Retrieve Indexed Sequential Records (IEBISU)

Entry is Via XCTL

A2
from Module 1EBISAM Entry
(Chart 49)

|EBISU B2
Initialize
C2
SVC 19.
Open
Input
DC8

Is
DCB RECFM
=8

Successful

This is CSECT 1EBISU
of Load Module |EBISU

OBTAIN1

E3

Record Addr.

Record Length

Store

and

Analyze Return
Code and Set
Message and

Completion

Codes

NOTE 2

B4

COMPLY

SVC 20

NOTE 3
Store F4
1SAM DCB Addr.
and
ISAM DCB
Length
Save DCBKEYLE, |G2 Store
Indicate Key Key Address,
Needed, and Add Key Length
Set ‘Format' to Red. Length
=X
H2
EBISSO
Rebiock and
Write Phys. Seq.
Records

(=)

NOTE - ‘Format' X '11' is Fixed Unblocked Records with
the Key in the High - Order Positions

NOTE2 - Record Completion Messages Meanings
Code Code Number
4 8 2 1/0 Error
8 16 7 Bad Open
12 8 1 Bad DCB Params .
NOTE 3 - The First Two (Phys. Seq.) Records Written Contain the DCB for the
input (ISAM) Data Set

Close '

Input
DCs

XCTL to

Mofule |EBISF
(Chart 56)

Chart 52.

COMPRE A2

Store
Record

Length

This is CSECT IEBISSO
of Lood Module IEBISU

IEBISAM - Unload Physical Sequential Records (IEBISSO)

ONE B3 BS
IEBISSO Store High Store
Order Byte of Red. 'gth.
Red. Lgth. Fld. in
Fld. in Output
Buffer Buffer
C3 @___. C5
SvC 19. OPERTN 52 G4 OPERTN 52 G4 R 3ro[e) Fill
Open cd. Lgth. Output
Output Ph Purs Ph Pufs in Buffer with
DCa ys. Seq. ys. d"l- Output Red. Key
Record Recor Buffer and Data
D2 D3 KACTION D4 D5
Store Low
St Order Byte OPERTN 52 G4 OPERTN 52 G4
ISAVE' = of Red. Put Put
VE' =78 Lgth. Fld. Phys. Seq. Phys. Seq.
in Buffer Record Record
E3 E4 MORE E5
DSORS Update Red. Set Update Red.
and BLKSIZE Address and SAVE' Address, Rcd.
Valid Set 'Save' - 78 Lgth. ud
=77 Set 'SAVE'
I = 78
ALRITE
Initialize
Seq. No.
To O,
'SAVE' Output
to 78 Buffer
Gl EASYMVE G2 G3
Store Decrement
OPERTN 52 C4 OPERTN -
RCD. K'ey 'SAVE' By Subroutine of
Put Phys. and Data in Record Entry CSECT IEBISSO
Seq. Record Output Length
(Input DCB) Buffer + 2
H1 CHECK H2 OPERTN H4 NOTE 2
H5
SVC 20.
Close Pad Buffer PUT SYNAD Set
with up to Return
Output Two Z (Locate) Cod
DCB ‘wo Zeros e
NOTOK NOTE 2 READ 14 5
n Uodate and
SvC 20.
Rsa NOTE 1 - The Field 'SAVE' Contains the Number Store Seq. cfm
eturn of Bytes Left in the (Uutput) Buffer. Number,
Code umbe Output
NOTE 2 - Return Code Settings are Described in Pointers DCB
chart 51,
Only Return Codes 0 are Set at ‘NOTOK.*
K1 K4
3 Return to Return
~7 Return 1EBISSO as to |EBISU
Al riate Chart 51

Data Set Utility Programs: IEBISAM 139

Chart 53.

Al

Entry is
Ent Via XCTL
k4 from Module

This is CSECT IEBISL
of Module IEBISL

IEBISAM - Reconstruct Indexed Sequential Records (IEBISL)

1EBISAM
(Chart 49)
1EBISL B RESUMET B4 B5
Set Up Base TSTALL 83 Put
Register. Output (Locate) . Load
Establish Data Set Load Limit
Pointers and Open Record Address
Other Registers Length
Ct
Orowmzo C | C2
1EBISSI 54 Set Reg.0 for SVC 19
Limit Value Open DCB Exit
Get Input Lood QUISAM Output |[--==-~=--==---- 1
Record Length Address. Set Data :
and Address Output Unopened Sot H
H
f
H
ISLEXT + D4
Move Some
DCB Fields
REG’W? ZCOde from Unloaded
qual Lero Data Set to
New Data Set
SETA, SETAS,
SETAL, SETALI @
El I SETAL2 See NOTE 1 LRECL E4
. any -
Successively Test Set E2 DCB C:‘“: |dO|dd
Check for Positive Appropriate Fields all (.U" °‘7 eO) an
Return Codes Message Right New' (Output)
of 4, 8,12, 16 Number Record Lengths
and Formats
If all Tests
Negative SETSW F2
Set Completion
Code and Mess~
age. (DD Cord
Missing or Open
Unsuccessful)
Check Size
of Record Key
Length and
Relative Key
Position
SETALZ NOTE 1
Set M 3 Return
Numb:r“:g Code Meaning Messoge No,
(No Errors) 0 Normal (No Error) Return. -
4 Synchronous Error at Input 2
8 End of Input Data 20
7 2 12 Character Transmission Limit Exceeded 4
FInt L MITE 2 33 16 Input Out of Sequence 6
Store Ve 20. Prepane for 2 Invalid DCB Parameter 1
ose repar
Messag: Output Exit to
Number Data Teminate
Set
K3

140

issue XCTL to
Module IEBISF
1)

Chart 54.

IEBISAM - Retrieve Physical Sequential Records (IEBISSI)

This is CSECT
IEBISSI of
Module 1EBISL

Al Entry is
() Via BALR
Entry from CSECT
IEBISL

1EBISSt Bl Comp B2 FINI B4
Place Set Return
S‘f"e Information Code Equal
Registers in Registers 8. (End
for Reference of Input)
Ci
Initial Check
Entry Bytes to
(Reg.0=0) Be Processed
D1 EXCEED D5
Poi PROC 54 H4 Set Return
Gf: V;:I:er Record Code Equal
Area Geta Too 12. (Length
Record Long Exceeds Limit)
SKIP El :
Set Pointers Check E4
and Addresses PROC 54 H4 ee Entire Move Bytes.
for Work Geta Record of Card Increment
and Save Record Image Pointer.
Areas
F4 F5
Move PROC 54 H4
Record
for Output Geta
Record
G3
G4
PROC 544 Tk (=)
Get a Module IEBISL
Record (Chart 53)
INVALD H3 PROC H4 PROC-
Set Retum Subroutine
Open Code Equal Serc l:rurn |Ge: of CSECT
Successful 24, (DCB E |eo R::’: o 1EBISSI
Fields lnvalid) qua
NOTOK NOTSEQ J5
Set Return Set Return
Code Equal Return to Code Equal
20. (Not Module 1EBISL 16. (Out
Opened) (Chort 53 of Sequence)

OUT: K

svC 20, K2
Close Return to Return to
Input Module IEBISL Point of
Data (Chart 53 Departure
Set

Data Set Utility FPrograms:

IEBISAM 141

Chart 55. IEBISAM - Print logical Records (IEBISPL)

Al Entry is This is CSECT 1EBISPL
6 Via XCTL of Module IEBISPL
try from Module
|EBISAM Q
(Chart 49)
IEBISPL B! SYNADOUT B4
Establish Spe 8.
Base | | GetOutput |77~ ™ Analysi:
Register s
Cl C2 GETNEXT o] SYNADIN C4
Load DCB SVvC 19, lssue GET (Move). SVC 68
Pointers Open Place Next Error .
Imputand |l N Record IFT -+ Error
Move DDNAMEs "gumw hwr:' Analysis
to DCBS. DCh Work Area
D3
D2
DCB o Check Out
Parameters Succ::ful Record
Valid Characteristics
E2 SETUPEX E4
TESTEXIT
Set Message
Number and (f:e:a
Completion Code Routine
Fl @ EODADIN F2 i CHEKNEXT
Check Format Check Return More
and Length Move Codes and Take Input Data to
of Records . Message Appropriate be Moved
Set Pogfng Action
CLOSEQUT G2 TESTCVRT
SVC 20,
Close . Reset
Input and C;::: i:::ﬂ Buffer Pointers
Ou&u'
DCBs

H2 CONVERT H3
svC 8. svC 10
Load Issue FREEMAIN .
Bring i for Area Obtained o ﬁ::::cgz? NOTE 1: Codes and Message Numbers
User for Record
Routine h
Return Completion Code |Messag
DOGET 1 COMEBCK 12 13 Code |Meaning {Hexidecimal) Number
svco. Issue PUT 0 | Print and Continve - -
Issue Getmain, Prepare Error (Locate). 4 | Print, Close 4 5
(Buffer Area for for XCTL Exit =77 Write Record 8 | No Print; Continue - -
to Terminate ! from 12 No Print; Close 4 5
Buffer
DCB Error 8 1
DD Statement 0 7
Missing or
@ Unsuccessfu! Open
lssue XCTL to SYNAD Error 8 2
Module 1EDISF Invalid Return [} 6
Code Issued.

142

Chart 56. IEBISAM - Terminate IEBISAM Program (IEBISF)

Entry is Via A2
EXTL from any
1EBISAM program Entry
Module
IEBISF B2
Prepare

Sysprint Data
Set

SETSWOT D1 D3 D4
s Issue
et Set PUT (Move).
Completion Code Su(c)::sful Up for Header Write Header __E'.",‘l' —_——
=16 Line Line I !
@cc.oseouv €& B | B {5
svc 2. o II SYNAD
© Routine f
SYSPRINT Data Up for Message | SYSPRINT
Set
|
l Completion
Fl PUTOUT F4 : Code =8
lssue PUT]
Reset Pointers . (b;\vovc) . I
rite Error
Message
Gl G2

svec 10, Prepcre for
Issue FREEMAIN Return (Es-
for Progrom tablish Com-
Work pletion Code
or Caller

H2
Return to Caller
of 1EBISAM

Data Set Utility Programs: IEBISAM 143

Updating Symbolic Libraries
(IEBUPDAT)

The IEBUPDAT program modifies a symbolic
library. The program can:

e Add, copy, and replace members.

e Add, delete, replace, and renumber the
records within an existing member.

e Assign sequence numbers to the records
of a new member.

The input to the IEBUPLAT program con-
sists of two data sets: the old master
data set (SYSUT1) and the current transac-
tion data set (SYSIN). The o0ld master is a
partitioned data set that contains all of
the library members; the current transac-
tion is a sequential data set that contains
all of the transactions that are to be ap-
plied to the library members. The logical
record length for both data sets is 80
bytes, klocked or unblocked.

The output of the IERUPLCAT program con-
sists of two data sets: the new master
(SYSUT2) and the log (SYSPRINT). The new
master is a partitioned data set that con-
tains the updated version of the symbolic
library; the log is a sequential data set
that contains the latest changes to the old
master or, optionally the currently updated
version of the old master. The logical
record length on the new master is 80
bytes, klocked or unblocked; on the log it
is 120 kytes, unklocked. The blocking fac-
tors of the old and new masters may be
different.

The program obtains main storage for
buffers ty means of the getmain routine,
which is called once for each buffer; the
amount of storage requested is the same as
the klock size specified by the utility
keyword parameter BLKSIZE. If the amount
of storage requested is not available, the
program terminates.

The current transaction is the control-
ling data set. Only those members of the
old master for which there are current
transaction entries will be processed. ©01d
master memkers without current transaction
entries will not appear in the new master.

PROGRAM STRUCTURE

The IEBUEDAT program (Figure 50) can be
logically divided into three parts: ini-
tialization, member processor, and within-
member processor.

Initialization

Initialization sets switches, assigns work
areas, and opens the input and output data

144

sets. It consists of four functions:
AHEAD, ANALPRAM, OPEN1l, and OPENINFT.

ABEAD
initializes switches, work areas, and
DCBs so that they can be reused.

ANALPARM
analyzes input specifications and user
header and trailer label exit routine
name specifications. Errors cause
termination of the program with a
message.

OPEN1
opens output data sets.

OPENINPT
opens one or two input data sets
according to optional parameter input
specifications.

Member Processor

The member processor updates whole members
at a time. It reads the current transac-
tion data set and does preliminary proces-
sing of all headers: ADD, REPL, REPRC, and
CHNGE. Further processing of the CHNGE
header is done by the Within Member Proces-
sor. The ADD, REPL, and REPRC headers and
their associated current transaction rec-
ords are processed by the Member Processor.

A new-master is created by the Nember-
Level Processor for ADDs, REPLs, and REPRC
headers. A REPRO header will cause the
new-master to be written from the cld-
master instead of from the current transac-
tion data set as is done for ADD and REPL
headers. Processing of the current tran-
saction header includes sequence checking
of member names, determination of proper
directory entry (or lack of), stowing of
ALIASes, sequencing of ADDs and REPLs
(through presence of NUMBR), and detecticn
of invalid transactions (i.e., transacticns
that logically are out of sequence or are
incorrectly prepared). The member proces-
sor consists of eight routines: READCT,
SCURCECK, MAINBODY, SOURCERT, OMREADRT,
LOGROUTE, NUMBRRTE, and STCWNAME.

READCT
reads the current transaction data set
and deblocks if necessary. It then
checks for two illegal headers in a
row (ADD, REPL, or CHNGE).

SCURCECK
determines the type of transaction.

MAINBODY
processes headers. It checks the
memker name of the current transaction
header stream for proper sequence and
sets up the STOWAREA area with the di-

9

rectory image. If the header is an
ADD, MAINBODY ensures that there is no
directory entry on the old master;
conversely, if the header is a REPL,
REPRO, or CHNGE, a directory entry
must already be on the old master.

SOURCERT
processes all source line transactions
in a memker following an ADD or REPL
header.

OMREADRT
processes the source line transactions
in a memker following a REPRO header.

LOGRCUTE
writes headers, ALIAS and NUMBR trans-
actions, and error messages, on
SYSPRINT.

NUMBRRTE
processes NUMBR transaction following
either a REPL or ALCD header.

Within Member Processor

The wWithin Member Processor updates the
records within a member. It inserts,

deletes, reproduces, replaces and/or rese-

quences source code images. Control is
given to the Within Member Processor when

the Member Level Processor detects a CHNGE

transaction and verifies the existence of
the named member on the 0ld master data
set. The Within Member Processor retains
control, processing a member of the old
master as specified by the record of the

current transaction data set until another
header record or the ENDUP record is read.

Cecntrol is then returned to the Menber
Level Processor.

The within member processor consists of

four routines: RRFINDCM, RRSCURCE, RRDE-
LET, and RRNUMBER.

RRFINDOM
reads the first record of the old
master member being changed; then
reads and checks the

current transac-

STOWNAME : tion for the type of transaction.
stores a member name in the outgut Control is passed to the appropriate
directory. transaction routine.

r b

| |

| r 1 o . l

| | | Initialize Switches and DCBs (AHEAD) |

| | Initialization } T |
| | | |Analyze option parameters (ANAL:rRAM) |
| L T 1] b |
| | |Oren data sets (OPEN1) |
| | L [
| ¢ L 1 , _ |
		Determine Type of Transaction (SCURCECK)	
	Memker	T	
	Processor		Process headers (MAINBCDY)

| L T ! t I

| | Pxrocess source lines-ADD,REPL (SCURCERT) |

| | - |
| | | Process source lines-REFRC (CMRLEADRT) |

i | k |

| | |write log (ZZPR) |

| | | |
| | | Sequence members (NUMBRRTE) |

I | k I

| I | Stow directory names (STCWNANME) |

| | t |
| r -L—- 1 |
	Within	Read o0ld master (FINDCM)	
	Member 3 T		
	Processor		Change records per transactions (CRCMSW)

I L ¥ Il' |

| |write in log (ZZPR) |

i F |

| | wxrite in memker (NMWRITE) |

| L [
| |

L 3

Figure 50. Functional Structure of the IEBUPCAT Program

Data Set Utility Programs:

IEBUPDAT 145

RRSQOURCE
compares the sequence numbers of the
0ld master record and the source
transaction record to determine wheth-
er the source record is an insertion
or a replacement.

RRDELET
deletes old master records whose
sequence numkers are within the range
of numkers on the DELET transaction.

RRNUMBR :
provides the sequence numbers for old
master records and inserted source
transaction records that follow a
NUMBR transaction.

PROGRAM FICW

Chart 57 shows the flow of control through
the IEBUFDAT program. After the program is
entered, it sets switches, assigns work
areas, and checks DCBs for reusability.

The output data sets SYSPRINT (log) and
SYSUT2 (new master) are opened. The log
header is written, using the optionally
specified initial page number, and messages
indicating error conditions found during
ddname or initial page number interrogation
are issued. Cption parameters supplied by
the user via the EXEC statement are
analyzed.

Next, the current transaction data set
(SYSIN) and the old master data set (SYS-
UT1) are opened. (the DCE exit is taken to
determine the block size so that a buffer
area can be dynamically obtained for the
SYSIN data set. A user header label exit
may ke taken at this point to process user
header labels.

The READCT routine is the starting point
for the Memker Processor part of the pro-
gram, and is executed each time processing
is completed on a current transaction and a
new current transaction is needed. READCT
passes control to the READCTA subroutine
which reads and deblocks a record from
SYSIN. The record can be one of the fol-
lowing: a header record, a source record,
a NUMBR record, or an ALIAS record. A
header record is processed by the HEADERCK
routine; a source record is processed by
the SOURCERT routine; a NUMER record is
processed by the NUMBRRTE routine; and an
ALIAS record is processed by the STOWNAME
routine.

The HEADERCK routine determines whether
the header is valid and then sets aprpropri-
ate switches depending on the type of head-
er. If the header is not valid, an error
message is logged and control is passed to
the READCT routine. Valid headers are pro-
cessed by MAINBODY.

146

The SOURCERT routine processes all
source line transactions that are in a
member whose header is either an ALD or
REPL. A check is made to see if the source
is in its proper place by checking the
ALREPOSW switch which is turned on when
either an ALIAS or REPRO is encountered.

If the AILREPOSW switch is on, the source is
cut of sequence and a message is logged via
the LOGROUTE. Control is then passed to
the READCT routine. If the ALREPCSW is
off, the CIINAREA area which contains the
source image, is moved to the OMINAREA
area. Then, if the NSW switch is off (no
NUMBR preceding the source), the current
transaction is written on the new master.
The full list switch, FLLISTSW is checked
and if it is on, the record is logged and
ccntrol is returned to READCT.

The NUMBRRIE routine processes the NUMBR
transaction which may have followed either
a REPL or an ADD header. A check is made
of the ADDREPSW switch, which will be on if
the previous transaction was an ADD or
KEPL. If ADDREPSW is off, an error message
is logged and control is passed to the
READCT routine. If ADDREPSW is on, the
NUMBR transaction is checked for its rroper
sequence within the stream of current tran-
saction records referencing a member.
Sequence numbers are converted and placed
in the proper work areas. The NUMBER tran-
saction is logged after which control is
passed to the READCT routine.

The STOWNAME routine causes the previous
member name or alias to be stored in the
directory with the system status indicator
(£SI) kytes (if any) via the STOWREFL sub-
routine. If the current transaction in
CTINAREA is an alias, the alias, TTR, and
user information are moved to STCWAREA.

The alias is logged via the LOGROUTE rou-
tine and control is passed to the READCT
routine which reads the next transaction.
If the current transaction is not an alias,
control is passed to the HEADERCK routine.

By reaching MAINBODY, it has been deter-
nmined that the header is in proper sequence
with a memker. The member name, however,
is compared with the previous member name
tc determine if the member is in sequence.
If the member is out of sequence, an error
message is logged and control is passed to
the READCT routine. If the member is in
sequence, the directories from the old
master and the new master are compared.
There should be entries in both directories
for REPL, REPRO, or CHNGE headers but no
entry in the old master for an ADD header.
In the event of an error, an error message
is logged, the entire member is rejected,
and control returns to the READCT routine.
If there are no errors, the header is

logged.

If the header is a REPRO, the old master
is read into CMINAREA; the record is logged
if the full 1list switch (FLLISTSW) is on;
and the record is then written on the new
master. If the header is an ADD or REPL,
control is passed to the REARDCT routine.

If the header is a CHNGE, control is passed
to the within member processor RRFINDOM.

Beginning at RRFINDOM, the within member
processor handles the transactions follow-
ing a CHNGE header; i.e., source, DELET,
and NUMBER. The member being changed is
located on the o0ld master data set and the
first record is read. The current transac-
tion file is also read and checked fcr the
tyre of transaction.

If the transaction is a source, the
sequence numker of the new master record
and of the current transaction record are
compared. When the old master is low, it
is rewritten onto the new master and the
next record on the old master is read and
compared. When the o0ld master is equal to
the source transaction, the current trans-
action is written on the new master.

If the transaction is a DELET, the
sequence number of the old master record is
compared to the 'start' sequence number of
the DELET transaction. When the old master
is low, it is written onto the new master
and the next record on the old master is
read and compared. When the old master is
equal to or greater than the ‘start®
sequence number, the old master records are
read and deleted until a record is read
whose sequence number is higher than the
'end' sequence number in the DELET
transaction.

If the transaction is a NUMBR, the old
master is read and resequenced according to
the range of sequence numbers in the NUMER
transaction. The current transacticn is
also read and any DELET or source transac-
tion is processed as described above.
source transaction may also be numbered
sequentially.

As the current transactions are read and
processed, each current transaction detail
record is logged as is the record or rec-
ords it referenced. If a complete log is
requested, all records placed in the new
master data set are logged. Any errors
detected during processing are also logged.

Utilizing the EODAD exits, the end of
member on the old master and the end of
data on the current transaction data set
are determined. Processing continues until
the new master member is completed. BAll
switches are reset and work areas are
cleared before returning to the merber
level processor at STOWNAME.

After the last member is processed, as
indicated by a /ENDUP or EOD exit cn SYSIN,
the 0l1ld master, the new master, and SYSIN
data sets are closed. A user trailer label
exit, if one was specified by the user via
the EXEC card may be taken at this point to
process user trailer labels. When this is
dcne, a final message is logged indicating
the highest concode obtained in the pro-
gram. The SYSPRINT data set is closed and
control is returned to the invoker.

Data Set Utility Programs: IEBUPDAT 147

Chart 57.

G

IEB

Al

DAT Bl

IEBUPDAT

Set Switches.
Assign Work
Areas, Open
SYSPRINT ond
SYSUT2

AN

ALPRAM Ci

Analyzer
Option
Parameters

D1

El

Open
Current
Transaction
Data Set

Updating Symbolic Libraries

(e

READCT E2

Read, Deblock
and Check
Current

{SYSINK)

READCT

User
Header Label

SOURCECK

H1

New
Specified

Open the Old
Master Data Set
(SYsSuT1)

148

SOURCECK

Transaction
Data Set

®

STOWNAM A3

Stow Previous
Member Name or
Alias

LOGROUTE

Log Routine

SOURCERT

Apply
Sequencing if
Required

WRITENM H2

Write
New Master

13

LOGROUTE

Log the Record

Yes

EOJROUTE

Read Old Master
and Write New
Master

RRFINDOM BS

Read Old Master

C5

READCTA

Read Current
Tronsaction
Data Set

D5

Write
the New Master

EQJ Routine

Yes

User
Trailer Label
Routine

k-
.
k.

Creating a Modified Input Stream
(IEBEDIT)

The IEBEDIT program creates a sequential
data set containing Job Control Language
(JCL) statements and system input data by
extracting sets of statements representing
jobs or jok steps from a master file. The
input to the program is in two data sets:

e SYSIN, which contains control state-
ments that allow the user to control
the editing of the master file of JCL
statements and data.

e SYSUT1, which contains the master file
of JCL statements and data.

The output of the program is in two data
sets:

e SYSUT2, which is the primary outrut
data set. It is composed of 80-
character logical records containing
the JCL statements and data records
extracted from the master file.

e SYSPRINT, which contains a listing of
the control statements, and (optional-
ly) a listing of the contents of the
SYSUT2 data set.

The IEBEDIT program is executed as a job
step; the EXEC statement used to call it
specifies the program IEBEDIT.

PROGRAM STRUCTURE

The IEBEDIT program is contained in one
load module whose entry point name is IEBE-
DIT. The module contains three major pro-
gram sections as well as a number of sub-
routines. The three major sections of the
program are€:

e The Initializing routine, which obtains
main storage for tables and work areas,
initializes them, and opens the pro-
gram's data sets.

e The Main routine, which passes control
among the subroutines to analyze con-
trol statements, to inspect master file
records, to determine which records
should ke written out, and to write
cutput records.

e The Fost Processing routine, which
stores condition codes, frees main
storage, closes the program's data
sets, and returns control to the
supervisor.

The Initializing Routine

The entry point for the IEBEDIT program is
the Initializing routine. When it is
entered, the routine obtains main storage

for an active save area and a work area,
and opens the SYSPRINT, SYSUT1, SYSUT2, and
SYSIN data sets.

The Initializing routine checks the
block size specification of each data set
except SYSPRINT to insure that it is a mul-
tiple of 80 characters. If the SYSUT2
blocksize specification is not a multiple
of 80 characters, it is changed to match
the SYSUT1 specification, and a message is
written to SYSPRINT. If the SYSUT1 data
set is not a multiple of 80 characters, a
message is written to the SYSPRINT data set
and the step is terminated.

If any data set cannot be opened, the
Initializing routine passes control (via a
branch instruction) to the Post Processing
routine. Otherwise, it uses the GET macro
instruction (locate mode) to obtain the
first SYSUT1 record, and brancnes to the
Main routine.

The Main Routine

The Main routine (Charts 58 and 59) passes
control among subroutines that analyze con-
trol statements from the SYSIN data set and
master file records from the SYSUT1 data
set. Based on the specifications in the
centrol statements, the Main routine deter-
mines which records are to be extracted
from the master file, and uses the Update
subroutine to write those records to the
SYSUTZ2 and (optionally) to the SYSFRINT
data sets.

When the Main routine is entered (via a
branch from the Initializing routine), the
first record from the SYSUT1 data set is in
main storage. The Main routine uses the
Scan subroutine to obtain a record from the
SYSIN data set, and to analyze the record.

If there are no control statements in
the SYSIN data set, the Scan subroutine
encounters an end-of-data condition, indi-
cating that a total copy of the master file
is to be performed. Control is passed to
the Update subroutine to write the record
to the output data sets, then back to the
Main routine to get the next master file
record. When the master file has been com-
rletely copied, the Main routine passes
control to the Post Processing routine.

If the Scan subroutine obtains a control
statement, a selective copy is performed,
based on the specifications in the control
statement. The Main routine passes control
tc the Startjob subroutine, which gets
master file records until it finds the pro-
per JOB statement:

Data Set Utility Programs: IEBEDIT 149

e If the parameter START=jobname was used
in the control statement, the Startjob
sukroutine searches the master file for
a JCB statement with the specified
name.

e If no jok name was specified, the
Startjok subroutine searches the master
file for the next JOB statement.

When the proper JOR statement has been
found, the Startjok subroutine passes ccn-
trol to the Update subroutine, which writes
the statement to the SYSUT2 and, optional-
ly, to the SYSPRINT data set. When control
is returned to it, the Startjob subroutine
reads th'e next record and uses the Cardtype
sukroutine to determine whether the record
is a JCBLIB DD statement.

If the record is a JORLIE DD statement,
the Update sukroutine writes it to the out-
put data sets. The Startjob subroutine
then obtains another master file reccrd
from the SYSUT1 data set and returns con-
trol to the Main routine.

On the return from the Cardtype subrou-
tine, the Main routine analyzes the
switches set ky the Cardtype subroutine and
performs the processing indicated by the
record type and control statement
specifications.

If the record is an EXEC statement, its
disposition depends on the use of the TYPE
and STEPNAME parameters in the control
statement.

If TYPE=POSITICN, and no stepname was
specified, the Main routine passes ccntrol
to the Update subroutine, and the record is
written to the output data sets. If a
stepname was specified, and the correspond-
ing EXEC statement is found, the Main rou-
tine passes control to the Update subrou-
tine, and the record is written to the out-
rut data sets.

If TYPE=INCLUDE or EXCILUDE, the Main
routine must determine whether the current
record represents a step within an inclu-
sive set, and if not, whether it rerresents
a step whose name was specified singly.

The routine does this with the aid of two
taples (the inclusive stepnames table and
the single stepnames table) and the
inclusive/exclusive switches.

Each entry in the inclusive stepnames
table contains the names of the first and
last steps in a set as specified in the
STZPNAME parameter; each entry in the
single stepnames table contains the name of
a step specified singly. The include/
exclude switches indicate whether inclusive
or exclusive processing is taking rlace.

The decisions made in the program, and

the resultant processing, are shown in
Figure 51. The upper section of the table
shows the conditions that may exist; the
lower section shows the action that is
taken as a result of each set of condi-
tions. The action "Write" means that the
Main routine uses the Update routine to
write the record containing the EXEC state-
ment, and the remaining records rerresent-
ing that step, to the output data sets.
The action, "No Write" means that the Main
routine searches for the end of the current
step, but does not write the records to the
output data sets.

The end of the current step is indicated
by the presence of a JCB statement, another
EXEC statement, or an end-of-data condi-
tion. If a DD DATA statement is encoun-
tered, a switch is set; subsequent records,
although they may appear to be JCL state-
ments, are treated as data in the input
stream. When a delimiter statement is
encountered, the DD DATA switch is set off;
and if the other records in the step wvere
written out, so is the delimiter statement.

When a JOB statement is encountered, or
when an end-of-data condition exists in the

Include/Exclude Switch is On
Include/Exclude Switch is Off

No Match in Inclusive Stepnames Table
Match in Single Stepnames Table

No Match in Single Stepnames Table
TYPE=INCLUDE

TYPE=EXCLUDE

Match 1st Name in Inclusive Stepnames Table
Match 2nd Name in Inclusive Stepnames Table

e

E

Write

No Write

Set Includes/Exclude Switch On
Set Includes/Exclude Switch Off

[e s e e g — — — —— — — — —

MM M M

X

o e e e e e e e e s s e e e e
o]

o e e e o s — — — ——————]

o e e e . e e e s e S . e e e 2]
>

T Sy ——

L

o e o e e e e s e i e e e e e

T SRS

o e s — o e — e, s . st anoen.
b

e e s e e s e — — — —— — —— —
>

e e e e e s o . — o —————

b e e

Figure 51.

150

EXEC Statement Include/Exclude Processing

9

SYSUT1 data set, the Main routine scans the
list of step names constructed from the
control statement. If any of the names in
the list were not found, a message ccntain-
ing the step name is written to the SYS-
PRINT data set for each missing step. 1If a
JOB statement was encountered, the Main
routine then passes control to the Scan
subroutine to analyze the next contrcl
statement; if there was an end-of-data con-
dition, the Main routine passes control to
the Post Processing routine.

The Post Processing Routine

The Post Processing routine is entered when
no more processing is to be performed; at
end-of-data in the SYSUT1 data set, when
all SYSIN statements have been processed,
or when an unrecoverable I/0 error oOcCcurs.
When it is entered, it determines whether
an end-of-data condition exists for the
SYSIN data set; if not, it uses the Scan
subroutine to process the remaining control
statements.

When all records in the SYSIN data set
have been processed, the Post Processing
routine uses the Update subroutine tc write
a terminal message (including the condition
code) to the SYSPRINT data set. It then
closes the program's data sets, frees the
main storage that had been obtained, and
returns control to the supervisor.

IEBEDIT Sukroutines

The IEBEDIT program contains four major
subroutines: Scan, Startjob, Cardtype, and
Update. Linkage to each subroutine is via
a BAL instruction; return is via a BR
instruction.

The Scan Subroutine

The Scan subroutine is entered to obtain
and analyze a complete control statement:
the initial record and any continuation
records. When the Main routine is first
entered, the Scan subroutine determines
whether a total copy is required; if not,
and when a jok has been processed, it
determines the processing required for the
next job; and when an end-of-data condition
occurs on the SYSUT1 data set, it is
entered to scan the remaining SYSIN
records.

When the Scan subroutine is entered, it
attempts to oktain a record from the SYSIN
data set. If it obtains a record, it scans
the record, converting the control state-
ment parameters to switch settings that can
be tested by the Main routine, and when it
has processed the entire statement, it
returns control to its caller. If it
encounters an end-of-data condition, and no
statements have previously been processed,

the routine sets a switch indicating that a
tctal copy is to be performed, and returns
ccntrol to its caller. If it encounters an
end-of-data condition, and statements have
previously been processed, it passes con-
trol to the Post Processing routine.

When the routine is entered, it uses a
search routine to set pointers to the
fields in the statement, then scans the
tield. The Scan routine has five rhases:
Initialization, Name/Cperator Handling,
Operand Handling, Cperand Value Handling,
and Scan Post Processing.

The Initialization phase clears switches
and resets pointers; the search routine
finds the Name and Operator fields, and
ccntrol passes to the Name/Cperator Han-
dling phase.

In the Name/Operator Handling phase of
the Scan subroutine, the name field of the
statement is checked for validity (it must
be 8 characters long or less). Then, the
ccntents of the Cperator field is used as a
search argument in a search of the Cpera-
tion Code Table (see Figure 52). When a
match is found, the Turn-Cn Box of the
table is used to set the appropriate
switches in the IEBEDIT work area, and
pcinters to the operator and to the appro-
priate Parameter Table (see Figure 53) are
rlaced in the work area.

Operation Code

8 2 2
Turn-On Box Required Box

Information Box ! Parameter Table Address

Reserved

20 1 3

Reserved Diagnostic Routine Address

Figure 52. Scan Routine Cperation Code

Table Entry

Oreration Code: This field contains the
Operation Code, left justified, and padded
with klanks.

Turn-On Box: This field contains the dis-
rlacement (byte 1) in the IEBEDIT Work Area
and the bit pattern (byte 2) to be set at
that displacement.

Required Box: This field contains a dis-
placement (byte 1) in the IEBEDIT Work
Area, and a bit pattern (byte 2) to be
fcund at that displacement. This bit pat-
tern is required for processing of this
statement.

Data Set Utility Programs: IEBEDIT 151

Information Box: If bit 0 of this field is
set to 1, this entry is the last entry in
the table.

Parameter Takle Address: This field con-
tains the address of the Parameter Table
that corresponds to this operation.

Diagnostic Routine Address: This field
contains the address of a routine used to
perform additional processing on the
statement.

Operand Value

Turn-On Box Assume Box

1 3

Information Box Address of Fixed Operand Table or Action Routine

Scan Routine Parameter Table
Entry

Figure 53.

Operand Value: This field contains the
value of the operand, left justified, and
padded with blanks.

Turn-On Box: Byte 1 of this field contains
a displacement in the IEREDIT Work Area;
byte 2 contains a bit pattern to be set at
that displacement as a result of encounter-
ing this parameter.

Assume Box: Byte 1 of this field contains
a displacement in the IEREDIT Work Area;
byte 2 contains a bit pattern to be set at
that displacement if this parameter is
cmitted.

Address of Fixed Operand Table or Action
Routine: If the operand is a fixed
operand, this field contains the address of
the appropriate Fixed Operand Table entry,
if the operand is a variable operand, this
field contains the address of the routine
that is to process the operand.

Information Box: The bits in this field
have the indicated meanings when set to 1:

Bit Meaning

Last entry in table
Fixed operand
Variable operand
Reserved

Allow subparameters
Keyword-only operand
Reserved

S~SoueEsEWwoRo

6-

Each operand in turn is used as a search
argument, in the Operand Handling phase, to
scan the Parameter Table. When a match is
found, the Turn-On Box of the Parameter
Table is used to set the appropriate
switches in the IEBEDIT work area, and a

152

pointer to the Parameter Table entry is
placed in the work area. If the operand is
a keyword-only operand, and there are addi-
tional operand fields, the routine gro-
cesses the next field. If there are no
additional operands, the routine passes
control to the Scan Post Processing phase.

If there are parameters associated with
the keyword, the routine passes control to
the Operand Value Handling phase. 1In this
phase, the Scan subroutine inspects the Pa-
rameter Table entry to determine whether
the parameter has a fixed value, or whether
the value may vary. If the parameter is a
variakle value parameter, the Action Rou-
tine Address field of the Parameter Table
entry contains the address of the routine
that is to process the parameter, and a
branch is executed to give that routine
ccentrol. If the parameter is a fixed value
parameter, the routine uses the value sge-
cified as a search argument in a search of
the Fixed Operand Table (see Figure 54).
when a match is found, the Turn-Cn Box
field of the table is used to set the
arpropriate switches in the work area.

Fixed Operand Value

1
Tum=-On Box Reserved Information Box

Figure 54. Scan Routine Fixed Operand

Table Entry

Fixed Operand Value: This field contains

Turn-On Box:

the value of the operand, left justified,
and padded with blanks.

Byte 1 of this field contains
a displacement in the IEBEDIT Work Area;
byte 2 contains the bit pattern to be set
at that displacement when this operand is
encountered.

Information Box: If bit 0 of this field is

set on, it indicates that this entry is the
last entry in the table.

when the parameters associated with a
keyword have been processed, control is
passed to the Operand Handling phase to
process the next operand; if there are no
more operands to process, control is passed
tc the Scan Post Processing phase.

When a complete statement has been pro-
cessed, the Scan Post Frocessing phase
scans the Parameter Table for the current
operator, then sets the assumed (default)
value switches for any parameters not sup-
plied. The current Operation Code Table
entry is then inspected to determine wheth-
er any diagnostic routine has been sup-

plied. If so, the diagnostic routine is
given control, and when its processing is
complete, the Scan routine returns control
to its caller.

The Startjob Subroutine

The Startjob subroutine is entered from
the Main routine with the first record of a
master file statement in the buffer. It
uses ‘the Cardtype subroutine to determine
the statement type, and it uses the Update
subroutine to write a JOR statement and a
JOBLIB DD statement to the output data
sets.

If the first statement encountered by
the Startjob subroutine is not a JOB state-
ment, the routine gets records from the
master file until it finds a JOB statement.
The Startjob subroutine then determines
whether the START=jobname parameter was
used, and if not, it uses the Update sub-
routine to write the statement (including
its continuations) to the output data sets

I1f START=jobname was specified, the rou-
tine compares the specified job name to the
name in the JCB statement. If they are not
equal, the routine searches the master file
until the proper JOB statement is found.

In either case, the JOB statement having
the specified name is written to the output
data sets, and the Startjob subroutine
reads the next master file record.

Once a JOB statement has been written
out, the Startjob routine looks for a JOB-
LIB DD statement. If it encounters cne,
the routine uses the Update subroutine to
write the statement to the ocutput data
sets; if the next statement is not a JOBLIB
DD statement, the Startjob subroutine
returns control to its caller.

The Cardtype Subroutine

The Cardtype sukroutine classifies 80-
character records by type. It stores a
code for each type except system input data
records, and if the record is a JOB or EXEC
statement, it stores the statement name.
When it has analyzed a record, it returns
control to its caller.

The routine first examines the first two
positions of the record. The characters //
indicate that the record is a JCL state-
ment, and the routine performs further ana-
lysis. The characters /* indicate that the
record is a delimiter statement; the rou-
tine determines whether the statement is
continued by checking for a nonblank
character in position 72, then returmns to
its caller.

If the statement is a JCL statement, the
routine classifies it as one of the follow-
ing types:

¢ JOBLIB DD Statement: A statement is a
JOBLIB DD statement if the name field
contains JOBLIB and the operation
field contains DD.

e JOB Statement: The statement is a JOB
statement if the operation field con-
tains JOB.

e EXEC Statement: The statement is an
EXEC statement if the operation field
contains EXEC.

e DD Statement: The statement is an DD
statement if the operation field con-
tains DD.

e DD DATA Statement: A statement is a DD
DATA statement if it is a DD statement,
and the first operand field contains
DATA.

e Continued
continued
statement
ment, and
character

Statement: A statement is a
statement if it is a JCL

or a delimiter (/*) state-
if it has a nonblank

in position 72.

The Update Subroutine

The Update subroutine is a control rou-
tine for the output functions of the IEEE-
DIT program. It contains the Put routine,
which writes records to the SYSUT2 data
set, and the Print routine, which writes
records to the SYSPRINT data set. There
are two entry points to the Update
subroutine:

e UPDATE is the entry point used to write
records to the SYSUT1 and, optionally,
to the SYSPRINT data set.

e PRINT is the entry point used to write
records to the SYSPFRINT data set.

When it is entered at the UPDATE entry
point, the routine inspects the first three
rositions of the record in the buffer. If
it finds the characters period, period,
asterisk (..*), it substitutes the charac-
ters slash, asterisk (/*); in either case,
it branches to the Put routine.

The Put routine contains the PUT macro
instruction, which causes the record to be
written to the SYSUT2 data set. When the
PUT macro instruction has been executed,
the routine determines whether NCPRINT was
specified, and if so, it returns control to
the caller. If NOPRINT was not specified,
the routine branches to the PRINT entry
point of the routine.

when it is entered at the PRINT entry
rcint, the routine is given the address of
a record or a message code. It issues the
PUT macro instruction to write the record
or message to the SYSPRINT data set, then
returns control to the caller.

Data Set Utility Programs: IEBEDIT 153

eChart 58.

154

IEBEDIT Main Routine (Part 1 of 2)

Al

‘ Entry ;

B5

UPDATE

A2 A3 A4
SCAN UPDATE
Total Set
Anal Put Record 3
té
Control Copy to SYSUT 1 EOFoSrw:vlfch
Stmt. and SYSPRINT
SELECTIVE
®
B2 B3 B4
STARTJOB Print
i i Get Names of
Find & Write of
Next EOF Any Specified
Proper JOB and Normal
JOBLIB Stmts. Record Steps Not
58
C2 c2
Get Next EOF
SYSUTI
Record
D2
CARDTYPE
Anaylze Stmt.
and
Store Codes

DD Data

limiter State~

Set DD

E4

Set DD
Data Switch
Off

Data Switch
on

G3
Is
this a JCL No
Stmt .

Yes

H3
Has
a DD Data Yes

H4

UPDATE
Put Record

Stmt. been
Fou

No
J3
Is B

this statemen! No
Continued

Yes

UPDATE
Put Record

to SYSUT1
and SYSPRINT

K4

Get Next

Put Red .
to SYSUT§
and SYSPRINT

To Post Processing Routine

K5

CARDTYPE

Analyze

to SYSUTI
and SYSPRINT

SYSUT 1
Record

Stmt. and
Store Codes

eChart 59.

IEBEDIT Main routine (Part 2 of 2)

Was
Stepname
Specified

Is D3

his Stepname
Specified

C4
Current
Stepname

Set
Inclusive

Switch Off

!

First

D4

D5

Set
Inclusive
Switch on

Set

tnelude/Exelud

Switch Off

E4

Set
Position Copy
Swi tch on

Set
Include/ Exelud
Switch on
J3
Get CARDTYPE
Next Master Analyze
Record Stmt. & Store
Codes

@;

Data Set Utility Programs:

IEBEDIT 155

FD ANALYSIS MODULE (IEBFDANL) Charts 65, 66

Entry Points: |EBFDANL (via LINK from IEBDG).
Also, on return from module IEBFDTBL.

Get storage for FD table.

Analyze FD card keywords and
parameters.

Place FD card keyword parameter

Exits Taken:

FD table module
Base module

Subroutines Used:

C CALLING PROGRAM)

Job Control } EXEC
Language)

LINK
ATTACH

Invocation

Return

BASE MODULE (IEBDG) Charts 61, 62, 63

CREATE ANALYSIS MODULE (IEBCRANL) Charts 69, 70, 71, 72, 73

Entry Points: |EBCRANL (via LINK from IEBDG).
Also, on return from module IEBCREAT.

Functions:

Analyze create card keywords
and parameters.
Build create table entries.

Exits Taken:

Create Module.
Base module.

values in FD table entry. LINK LINK Get storage for create tables. Subroutines Used:
Place FD picture in a temporary - Validity check; EP = VALCHECK. Entry Points: IEBDG (from Calling Program). Build picture table. —_—
sforcgeF;rea. porery Convegdecimél to binary; Also, on return from modules IEBFDANL, Build FD address table. Convert; EP = CONVDB.
EP = CONVB. IEBCRANL, IEBDGMSG, AND IEBDGCUP. Build exit name table. FD name search; EP = FDSRCH.
Macro Instructions Used: Move characters; Give control to create module. Parameter scan; EP = SPSCAN.
EP = MOVEROUT. Return Functions: Exits Taken: Return

LINK (SVC é)
FREEMAIN (SVC 5)
GETMAIN (SVC 4)

Messages (Numbers) Used:

3,5,6,10, 11,12, 13, 15, 21.

LINK

Return

Get storage for common work area.
Initialize work area.
Assign defaults
Get storage for input and output DCBs.
Get storage for work areas for input and
output records.
Open input and message data sets.
Get storage for output work area.
Scan all control cards:

Process DSD, REPEAT, DUMP,

and END cards.

Pass control to process FD

and CREATE cards.

Pass control to other modules as required.

Cause display of error messages.
Macro Instructions Used:

Message Module

FD Analysis Module
Create Analysis Module
Clean-up Module
Calling Program

Subroutines Used:

Convert decimal to binary;
EP = CONVERTB.
DCB exit (at open time);
EPs = DCBROUT1, DCBROUT2,
and DCBROUT3.
Synchronous error;
EP = ERRORS.

Messages (Numbers) Used:

Macro Instructions Used:

GETMAIN (SVC 4)
LINK (SVC 6)
LOAD (SVC 8)

Messages (Numbers) Used:

3,4,5,6,7,8,10, 12, 20, 21

LINK

Return

GET *
GETMAIN (SVC 4) 2, 3,5, 10, 12, 14, 15, 18,
. LINK (SVC 6) 20, 21, 24, 25, 26, 28, 30.

FD TABLE MODULE (IEBFDTBL) Charts 67, 68

Entry Point: IEBFDTBL (via LINK from IEBFDANL).

_ Functions:

Complete the construction of
an FD table entry.

Assign defaults for FD keyword
parameters if necessary .

Place picture or format pattern

FD analysis module

Convert EBCDIC to binary;

OPEN (SVC 19)
SYNADF (SVC 68}
SYNADRLS (SVC 68)

LINK ’ Return

LINK Return

MESSAGE MODULE (IEBDGMSG) Chart 76

Entry Point: IEBDGMSG (via LINK from IEBDG)

CLEAN-UP MODULE (IEBDGCUP) Chart 64 _
Entry Point: IEBDGCUP (via LINK from IEBDG)

Functions: Exit Taken:

CREATE MODULE (IEBCREAT) Charts 74, 75

Entry Point: 1EBCREAT (via LINK from IEBCRANL).
Also, on return from user exit routine.

Functions:

Read records from input data sets.
Generate output records (test data).

Permit user to modify output records.

Release storage used for following
tables:

Exits Taken:

Create Analysis Module.
User Exit Routine

Macro Instructions Used:

in storage. EP = CONVS. cl output and input Create FREEMAIN (SVC 5
Move characters; EP = MOVEROUT. Functions: Exit Taken: ;sgBl:s'er viput and tnpy Base Module Picture GET ()
Macro Instructions Used: Validity check; EP = VALCHECK. -) Close data generator input FD Address GETMAIN (SVC 10)
Print heading information. Bus.o Module and message DCBs. Macro Instructions Delete user routine from storage. PUT

GETMAIN (SVC 4)
FREEMAIN (SVC 5)

Messages (Numbers) Used:

3, 6, 8,10, 21,

Print control card images.
Print program messages.

Print error flags. Used:
Keep page count. .

Macro Instruction

PUT

Free storage for DCBs, Used:
buffer pools, and work
areas for input and
output records.

For "field select, "
invalidate FD name(s).

CLOSE (SVC 20)
FREEMAIN (SVC 5)
FREEPOOL (SVC 10)

Messages (Numbers) Used:

9,10, 16, 17, 29, 30.

SYNADF (SVC 68)
SYNADRLS (SVC 68)

Note: EP = Entry Point

eFigure 55. Information Summary and Overall Flow of Data Generator Program

156 .

The Data Generator (IEBDG)

Program

The data generator program (IEBDG) provides
test data that can be used in program
debugging procedures. The program will
construct multiple data sets within a job
that uses either the physical sequential,
the indexed sequential, or the partitioned
access method. The records within these
output data sets may consist of fields that
are defined by any one of seven IBM
character formats, each of which may be
modified by any one of eight types of
action. Alternatively, a user may elect to
provide his own output pattern in the form
of a ‘'picture' instead of an IBM format.

If desired, a user may also inspect and/or
modify the output records before the rec-
ords are written in the test data set.

The IEBDG program acts as a problem pro-
gram, which may be executed as a job step
by use of the job control language, or
which may ke invoked by a calling program
using either the LINK or the ATTACH macro
instruction. Specification of either the
rrogram name (IEBDG) or the procedure name
on the EXEC statement causes control to be
given to the data generator program. In
the case of invocation of the IEBDG pro-
gram, the entry point (EP) parameter in the
macro instruction operand specifies the
pFrogram®s symkolic name. Job control
statements or parameter list information,
and the IEBDG utility control statements,
maintain control of the program and
describe or specify the functions to be
performed. They also describe or define
the input and output data sets to be used.
Depending on the specifications of the
user, the records of the input data set may
Le either klocked or unblocked.

In the case of output records, the
fields within a record may be repeated as
desired, and the output records may be a
part of a logical block, which may also be
repeated. If an existing data set is used
as the input data to the program, the
fields within the individual records of the
data set may be retained, modified, or
replaced as desired. BAlso, the IEBDC pro-
gram may generate output records that can
be imbedded within the records of an exist-
ing (input) data set. The contents of the
output (test data) records are defined by
the utility program control statements.

The data generator program has a "field-
select™ capability that permits specific
fields from an input data record to be
placed in the output record at a given
starting point in that record. This capa-
rility is applicable to all data sets sup-
ported ky the program.

Program Functions

The functions of the IEBDG program are per-
formed by seven modules, which reside in
the link library, SYS1.LINKLIB. At any
given time, at least two modules (the con-
trol module and one or more other modules)
will reside in the region assigned to the
program. (If the region has enough space,
all seven of the modules may be resident at
the same time in the region.) The program
contains a control module, a message
module, two analysis modules, a table-
building module, an output record genera-
ting module, and a clean-up module. Con-
trol passes within the modules of the pro-
gram ky means of the LINK macro instruc-
tion. If an exit to a user routine is spe-
cified, a branch-and-link procedure is
used. Figure 55 indicates how control is
rassed between the modules of the IEBDG

program.

The control (or base) module receives
initial program control from the calling
program and returns control to the calling
program at the completion of the IEBDG pro-
gram. This module scans the utility con-
trol cards for the function (e.g., FD card
analysis, REPEAT card analysis) to be per-
formmed and passes control to the appropri-
ate module that performs the function.

The message module (IEBDGMSG) has the
prime function of putting out the images of
the control cards, and of putting out the
messages required as a result of program
operation. It receives control fror, and
passes control to, the base module.

The message module places information
about the operation of the data generator
on the system output (SYSOUT) device. This
information includes processed control
cards, heading and paging information, and
normal completion messages. Error messages
caused by abnormal conditions encountered
by the data generator program also appear
on the SYSOUT device. Incorrect control
card parameters cause messages that will be
printed immediately below the printout of
the control card. Messages begin at print
position one, and the printout of controcl
cards starts at print position ten.

Both the create analysis (IEBCRANI) and
the FD analysis (IEBFDANL) modules analyze
the parameters found on one of the two
field- or record-defining control cards.
Using the parameters found, these modules
construct tables for use by subsequent
modules that may require the information in
the takles. In the case of the FD analysis
module, control is given to the FD table
building module, IEBFDTBIL, to complete the
ccnstruction of the table.

Data Set Utility Programs: IEBDG 157

The output record generating mwodule, cr
create module, IEBCREAT, controls the
generation of the test (output) data rec-
ords for the user. This module also passes
control to a user exit routine if cutput
record modification is to be performed.

The clean-up module (IEBDGCUP) receives
control from the kase module to close the
input and output data sets and tc release
the storage areas that were used by the
program. If the field select feature is
specified, the module invalidates the
transfer of a given FD control card across
DSD card groups ky replacing an entry in
the FD takle kuilt for the parameters on
the FD card. This moduie returns control
to the kase module.

Control Card Scanning

Whenever any control card scanning is to be
done, all modules within the IEBDG program
employ the same general scanning tech-
niques. The information to be scanned is
rlaced in an input work area to which a
register points. Information within this
work area is scanned one byte at a time as
the scan method looks for a non-blank
character in a given column. If a ncnblank
character is encountered in column cne of a
card image, a control card name has been
found. This name is of no significance to
the program, and it may be up to 8 bytes in
length; kut it must be followed by a blank
column. The card type (DSD, FD, END, etc.)
is then determined. If the type is not
valid, the program is terminated.

Following the card type and blank
column, the finding of a nonblank indicates
the presence of a keyword. As the scan
encounters a keyword, an attempt is made to
match the keyword with valid keywords in
the program. If a match is made, a branch
is made to the appropriate routine tc pro-
cess the keyword. If no match is made, or
if incorrect parameters are associated with
a given valid keyword, an error is indi-
cated and a message is printed. A comma or
a klank signifies the end of a parameter.

A continuation card is to follow when eith-
er a nonklank character in column 72 of a
card, or a comma followed by a blank column
is encountered. The scan of a continuation
card kegins in column 4 of the card.

Except for the continuation of the scan
of a PICTURE parameter, the first nonblank
character in a continuation card indicates
the presence of a keyword. In the case of
the PICTURE parameter scan continuation,
the character (or blank) in column 4 and
any succeeding column(s) are recognized as
kelonging to the PICTURE parameter. This
rermits the presence of imbedded blanks and
delimiter characters in the PICTURE
Farameter.

158

THE BASE MODULE (IEBDG) CHARTS 60,61,62

Module IEBDG is the first module of the
data generator program to be placed in main
storage. It is entered from a calling gro-
gram and returns control to the calling
program at the completion of the data
generator program. Depending on the
requirements encountered during the proces-
sing performed by this module, it will give
control to (and receive control from) one
of the following modules: the message
module, the clean-up module, the FD analy-
sis module, or the create analysis mcdule.
The primary functions of the base module
are:

e T0 get storage for a work area (the
common communication area).

e To open the input, output, and message
data sets.

e To read the utility control cards.

e To cause error messages to be
displayed.

e To pass control to the appropriate
module as required.

Initialization

Upon entry to this module, registers are
saved for a later return to the caller. By
use of an SVC 10 instruction, storage is
oktained for a common communication area.
This area is then given initial (default)
values for ddnames, line count (for printer
centrol), and paging information. To pro-
vide for the specification of a random
binary number format for the output data
set, an initial multiplier value is estab-
lished for a random number generator and
rlaced in the communication area.

If a calling program has invoked the

IEBDG program by means of a ILINK or an
ATTACH macro instruction, the previously
assigned default values in the communica-
tion area are replaced by the values speci-
fied in the parameter 1list for the invoca-
tion. The assigned names of SYSIN for the
utility input control data set and SYSFRINT
for the utility output control data set may
be changed as a result of an invocation.
If so, the changed names are effective for
the duration of the job. After invocation,
the input and output control data sets are
then opened.

Opening Data Sets

If the IEBDG program is called by use of
the job control language statements, the
input (SYSIN) and message (SYSPRINT) data
sets are opened and default values assigned
as required.

Each time a data set is opened, a DCB
exit routine in the base module is entered.
The entry points to this routine are deter-
mined by the function (input, output,
SYSIN, or SYSCUT) of the data set being
opened. At each entry, the routine estabp-
lishes default values for the record for-
mat, the logical record length, and the
klocksize for the data set.

A common section of the DCB exit rocutine
is then entered to inspect the actual
values of record format, logical record
length, and tklocksize. These values nor-
mally have already been placed in the
respective fields of the CCE by the cpen
routine.

For data sets having a fixed record for-
mat, the common routine determines if the
klock size is an integral multiple of the
logical record length. BAn integral mul-
tiple is required; otherwise, default
values are assigned (if not previously
assigned) so that an integral multirple is
assured.

As the DCB exit routine evaluates the
preceding record parameters for input or
output data sets, it sets the FLUSHSW
switch (at COMMON + 572)%1 to one if default
values are assigned. (If the switch is
set, then, when the base module again
receives control, it flushes the control
cards and procedes to terminate the job.)
The exit routine then returns control to
the open routine to complete the opening of
the data set.

In testing for a successful data set
opening, only the input (SYSIN) data set is
tested Ly the base module. PRecause a user
may not desire any messages, or may not
have enough space available for an output
data set for messages, the testing fcr a
successful opening of the output (SYSPRINT)
data set is done by the message module when
the module is first needed.

Messages

When messages are required during the pro-
cessing ky the base module, a linkage is
made to the message module. Upon return
from the message module, processing will

1In the discussion of the modules of the
data generator program, references to
locations in the common communicaticn area
are indicated by giving the decimal value
of the displacement, or offset, from the
start of the area. As an example, the
offset of the field CONDCODE (condition
code setting) would be given as COMMON +
4o4.

ccntinue or, depending on the severity of
the situation causing the message, a return
is made to the calling program. (When any
of the modules of the data generator pro-
gram require the printing of an error mes-
sage, control is returned from the module
in command to the base module, which will
then l1link to the message module. Depending
on the severity of the error causing the
message, control may or may not be returned
from the base module to the module that was
in command.j A condition code, CCNLCCDE,
(at the field CCMMCN+404), is set prior to
giving control to the message module. Ugon
return from the message module, this code
is checked to determine the severity of the
situation. The base module returns control
to the calling program by freeing the
storage space for the common communication
area, restoring the calling progran's
environment (registers), and issuing a BRCR
instruction.

After the input data set has been
orened, a program heading message and an
indication of any PARNM field (on the EXEC
card for the program) errors that ray be
present are placed on the SYSFRINT data
set.

Reading Control Cards

The GET macro instruction is used to place
a control card in the input work area. The
card image is printed on the SYSPRINT data
set, and tests are made to determine the
type of card in the input area. For either
an FD control card or a CREATE control
card, the base module will give control to
the appropriate processing module.

For any new group of data generator ccn-
trol cards, the first nonblank card must be
a DSD control card. (If a blank card is
present, it is merely flushed through and
the next card is checked.j In order to in-
dicate when a DSD control card is detected,
a switch, DSDSW (at CONMON+550), is set to
1. This switch is tested for all but the
DsD card in a group of control cards. If
the first card in a group is not a DSD
card, the syntax of the other control cards
may ke checked, but the program will not be
executed. An error message will indicate
the reason.

Following the test for a DSD card, the
other utility control cards are checked for
card types. The finding of a particular
type causes the base module to give control
to the proper module for processing of that
control card. If a continuation card
belonging to a given control card, is
encountered, the base module gives control
to the appropriate control card processing
module to scan the card. Should a DSD con-
trol card have no CREATE control card(s)
between it and either an END card or a /%

Data Set Utility Programs: IEBDG 159

card, the resulting output data set that is
created will be a null data set (i.e., no
picture or pattern will be produced).

As the kase module continues its scan, a
check is wade for a blank following the
carxd type (DSD, FD, etc.) as well as for
improper control card names or name length.
Exrrors in one of these areas will cause a
message to be printed and the program will
not ke executed.

Included within the routines of the base
module is a SYNAD routine for the SYSIN
data set. The SYNAD routine obtains unre-
coverakle I/C error information that is to
ke printed on the SYSPRINT data set. (The
message module contains a SYNAD routine for
the SYSPRINT data set; the create module
contains a SYNAD routine for input and out-
put data sets.) After the informaticn is
printed, control is given to the clean-ug
module.

Base Module Card-Processing

The following data generator contrcl cards
are processed by the base module: The DSD
card, the REPEAT card, the END card, and
the DUMF card.

DSD_CARD PRCCESSING: In obtaining storage
for a user's DCB, the base module requests
enough space (280 bytes to contain a DCB
for an indexed sequential (ISAM) data set.
For a non-ISAM data set, much of this space
is unused. See Figure 56.

A storage area is obtained as required for
each of the data sets described by the
CCnames on the DSD control card. In the
case of storage for the last data set's
DCB, the four-byte field beginning at loca-
tion 256 (hex. 100) is zero.

After initializing the open list for the
appropriate DCB (input or output), the base
module sets the DSCRG field of the DCE to
zero. When the data set is opened, the
open routine can then place the data set
organization parameter from the job file
ccntrol klock into a blank field in the
DCB. (The data set organization parameter
is oktained from a DD card describing the
data set and placed in the JFCB by a job
management routine.)

REPEAT CARD PROCESSING: When the base

module scans the parameters of the REPEAT
card, it sets an indicator, CUANSW (at
COMMON+576), to record the finding of the
required keyword. After each valid keyword
is found, the numerical value of its param-
eter is packed and converted to binary.
€ince 65,535 is the largest number that can
be held in a 2-byte storage field, any pa-
rameter value that is greater than that
results in a message to the programmer.
Acceptable values for the CUANTITY and the
CREATE parameters are stored for use by the
create analysis module.

END CARD PROCESSING: When an END control

Hex Dec - 4 bytes >
] o]
Data Control Block
60 % —— — — — — — — — — — — — —]
This Area Used Only for Fields
in an ISAM Data Control Block
100 256 - — — — — — —
Address of next DCB DDname for ...
108 264
..+ Current DCB (8 bytes) Switches
110 272
Address of Work Area for Input Record
114 276
Size of Input Field Select Not Used
118 280 Record Work Area Switch

eFigure 56. Storage Area Cbtained by Base

Module for Current DCB

160

card is encountered, the base module gives
control directly to the clean-up module if
all of the required number of entries spe-
cified on the REPEAT control card have been
processed. Otherwise, a message is printed
and then control is given to the clean-up
module. Upon return from the clean-up
module, the base module reads the next con-
trol card (which may be either a data
generator control card or a s/* delimiter
card). There may be one or more additicnal
groups of data generator control cards
before a /* card.

DUMP CARD PROCESSING: The reading of a
DUMP control card causes a printout of the
user's program and/or storage areas
assigned 0 to nis program. When the DUMP
ccntrol card is encountered, the base
module places a zero in register 15 and
forces an ABEND dump by branching to that
register. Further description of the use
of a DUMP control card is given in the sec-
tion Service Aids.

THE CLEAN-UP MODULE (IEBDGCUP) CHART 63

when either an END control card, indicating
the end of a group of data generator con-
trol cards, or a /* delimiter card, indi-
cating the end of a job, is encountered,
the base module gives control to the clean-
ur module.

All user input and output data control
klocks (DCBs) that have been opened are
closed. For each of these DCBs, any buffer
pools that data management routines had
obtained for use by the data generator pro-
gram, as well as the 280-byte storage area
obtained by the base module, are released
to the system.

When the field-select capability has
been used, it is necessary to prevent pos-
sible errors that might arise from an inad-
vertent specification (on a CREATE control
card) of an FD name associated with a
closed input data set. Therefore, this
module replaces the FDNAME field in the FD
table with eight bytes of hexadecimal 'FF'
to prevent further access to the table. 1In
order to use the selected data across DSD
groups, a user must include a duplicate of
the FD card in question in each DSD group
where the data is desired.

If the entry to this module was the
result of encountering an END control card,
this module returns control to the base
module for the purpose of checking for
another group of control cards.

If the entry to this module resulted
from encountering a /* delimiter card, this
module will close both the system input
(SYSIN) and the system output (SYSPRINT)
DCBs of the data generator program, and
free any related buffer pools for these
data sets.

The storage area that was obtained for
the data generator program's input and out-
put DCBs (96 Lytes each) was initially
oktained as a part of the common cormunica-
tion area ky the kase module. Therefore,
the rase module will release this area
after it receives control from the cleanup
module.

THE FD ANALYSIS MODULE (IERFCANL) CHARTS
64,65

This module scans and analyzes the rarame-
ters on the FD control card. Module IEBF-
DANL is initially entered from the base
module. If module IERFLANL does not
encounter a condition that causes termina-
tion of the job, it will use the FLC table
module (described later on) as a subrou-
tine. After the FD table module returns
control to the FD analysis module, the
latter module returns control to the base
mcdule.

The FD analysis module begins the
assignment of information to a table called
the FD takle. This table is used by both
the create analysis module and the create
module. The FD takle module completes the
construction of the table.

An FD table entry has 64 bytes. Storage
for the FD table is obtained in increments
of 512 bytes (enough for eight table
entries) by the FD analysis module. Each
entry contains most of the parameter infor-
mation (or a processed version of the
information) from one FD control card. If
a PICTURE keyword has been specified cn the
FD control card, the picture information is
placed in another area of main storage.

The FD table is shown in Figure 57.

Upon entry to the FD analysis module,
tests are made to determine whether or not
the entry is due to a continuvation card.
Such an entry may be due to the continua-
tion of the parameter string on a card, or
tc the continuvation of the PICTURE parame-
ter on a card. If the entry is due to
either a continuation card or a picture
continuation, storage for an FD table entry
may already be available as the result of
processing a previous FD control card in
the same set of data generator control
cards. If the entry is not due to a con-
tinuation card, an FD table entry is to be
constructed. A GETMAIN macro instruction
is issued to obtain storage for an FD
table.

FD Card Scanning

The scan of the actual FD card keywords and
their associated parameters is then per-
formed. As each keyword is encountered,
its parameter is scanned, validated and/or
converted if required, and then placed in a
reserved spot in the FD table. If a key-
wcrd error or a parameter error is encoun-
tered, an appropriate message will be
printed on the system output device. The
severity of the error determines whether
the program is terminated at that point or
whether modified processing (e.g., syntax
checking only) will continue. Control and
storage tables are constructed even for
syntax checking procedures.

A user may specify either the FCRMAT orx
the PICTURE keyword, but not both, on the
same control card. The FD analysis module
sets a switch, either FDFMTSW (at COMMON+
539) or FDPLSW (at COMMON+540), when it
encounters one of these keywords. If the
other keyword is then encountered in the
scan of the same card, a test of the
previously-mentioned switch for the keyword
first encountered reveals the error.

A user specifies the field-select capa-
bility by including the INPUT = keyword and
parameter either with or without the FRCM-
LOC = keyword and parameter on a control
card. If the INPUT = keyword's parameter
does not match a name that has been sreci-
fied on a DSD card, or is not 'SYSIN', a

Data Set Utility Programs: IEBDG 161

message is issued and the program will be
terminated. If a match is found, the
module sets the FIELDSEL switch (in the
DCB) to hexadecimal FF.

For later use by the create module, the
FD analysis module initializes the address
(at location FDFROMAD in the FD table) from
which the input record will be selected.
The FD analysis module uses the FROMLOC
keyword's parameter if it has been sgeci-
fied. If the FROMLOC keyword and/or its
parameter have been omitted from the FD
control card, the module sets the FDFROMAD
field value to the start of the input rec-
ord (which is either at the location INBUFA
if the input name is SYSIN or at the loca-
tion INREC if the input name is other than
SYSIN).

Table 2 lists the keywords of the FD
control card and indicates the processing
done on the parameters of the keywords by
the FD analysis module.

After the keyword parameters on the FD
control card have been scanned and placed
in the FD takle, the FD analysis module
gives control to the FD table module to
complete the construction of the FLC table
entry. The FD analysis module assigned
only the initially specified values of pa-
rameters to the FD table. If any keyword
except LENGTH and NAME was omitted from the
FD control card, the FD analysis module
does not perform processing for the keyword
and does not fill in the appropriate space
in the FD takle entry. Default values, if

any, for keyword parameters are assigned by’

either the FD analysis module or the FD
table module.

THE FD TAEBLE MODULE (IEBRFDTBL) CHARTS 66,67

This module completes the constructicn of
the FD takle, which was begun by the FD
analysis module, At the time of entry into
this module, an FD card has been completely
scanned and initial values from the card
have been placed in the FL table. The FD
analysis module uses a LINK macro instruc-
tion to give control to the FD table
module, which is then used as a subroutine
by the FD analysis module. The FD table
module returns control to the FD analysis
module.

FD Pattern Construction

Initially, module IERFDTPL determines the
type of picture or format specified in an

162

FL control card. (This field will be used

by the create module when it constructs the
output records.) If neither a picture nor

a format is specified, the FD table module

assigns a default value to the field.

Before further processing is done on a
ncn-EBCDIC picture, the picture nurbers are
checked for validity by comparing the zone
bits of the numbers against a hexadecimal
"F". An incorrect value results in an
error message indication, and control is
returned to the calling module. (A picture
having a packed decimal specification must
have a lenath specification that is less
than or equal to 16 since the Pack instruc-
tion can handle up to 16 bytes.] Ctherwise,
the numbers are converted to the specified
form, storage is obtained for the gicture,
and the picture is moved into the storage
area (from the temporary storage area into
which the picture had been placed by the FD
analysis module). The temporary storage
area is then released and the FD table
module gives control back to the FD analy-
sis module.

Except for the NAME, 1LENGTH, INFUT, and
FROMLOC keywords, the FD table module
assigns default parameter values for each
keyword that is omitted from an FD contrcl
card. The values assigned are shown in
Table 2, and they are placed in the FD
taple.

For a pattern, which may be either a
user EBCDIC picture specification cr an IBM
fcrmat specification, module IEBFDTEL
determines the action that is specified on
the FD control card. Based on this deter-
mination (including a possible default
determination), the module makes an entry
in the FDACTION field of the approrriate FD
table and sets the appropriate bit in the
FDSWITCH field of the table to one.

The module then determines the amount of
storage required to hold the pattern. The
arount of storage required depends on the
action which the create module will later
apply to the pattern. By means of the GET-
MAIN macro instruction, the FD table module
oktains the necessary storage. To provide
for a wave or a ripple type of action, the
storage area must contain two contiguous
copies of the pattern. If the action is a
roll, three contiguous copies of the pat-
tern must fit in the storage area. The
create module requires the repeated pat-
terns when it generates the output records.

Hex Dec § bytes
0 0 8
FDNAME (FD Field Name)
8 8 P
FDREPNM (Input Data Set Name for Field Select Option)
10 116 4 4
Unused at Present FDINDNUM (index number)
18 24 2 2 2 2
FDLGTH FDCYCLE FDACTION FDFORMAT One FD
(FD Field Length) (Cycle Number) (Action) (Format Patterns) table
20 32 ((-324fry
FoswitcH '| ForL '| FpsiGN '] FpcHAR ! FDRANGE 1 Byres)
(Action * (EBCDIC or (Decimal or (Starting Char. (Range Number)
Switches) Hex Char.) Binary Field) |of field) One
28 40 2 2 P FD
FDOBUF FDFRINC table
(Starting Location in ("From' Address (‘From' Add FDI:.RO;W:;D Picture) 520
Qutput Record) Increment Counter) rom ress for Fattern or Ficture Bytes
30 48 2
| FDMLGTH FDTOINC FDCYCCNT FDSLGTH
: (Move Length Counter) ('To" Address Increment Counter) (Cycle Count) (Sequence Length)
38 56 1 2 2
FDSLGTHR FDFRINCR FDTDINCR LTDFREE
] (Sequence Length ('"From' Increment| ('To' Increment (Length of Storage Unused
; Restore Value) Restore Value) Restore Value) to Free)
i 0 6
‘ -~ Room For Seven More 64-Byte FD Table Entries (as above) ~
1 200 512 2 n
; Unused NXTFDTAB
Y Address of Next FD Table. (If none, value is Zero)
208 520
*OFFSET 32(10) BIT 0 1 2 3 4 5 6 7
SWITCH INDBYNAM PASS FXACTION RPACTION RDACTION WVACTION STACTION NUACTION
eFigure 57. FD Table Constructed by FD Analysis Module and FD Table Module

Data Set Utility Programs: IEEDG 163

sTable 2. FD Control Card Keyword Parameter Processing, and Default Values Assigned, if
Required *

| FD | Processing Applied to Keyword Parameter | Default value |
I IL T T 1' l
| Keyword |validity| Value | Other Processing] (If any) ** |
| |Checked |Converted| | |
i L 4 1 4
¥ T T 1) R . T {
| NAME * | Yes | No |Length checked for maximum of eight |None. |
| | | |characters. | |
[N L I 4 L
] T T L) T "
| LENGTH * | Yes | Yes |None. | None. |
b b + t t 1
INPUT	Yes	No	Check for value 'SYSIN' or for match-	None
			ing name on DSD card. Set action	
			switch for *fixed'. i	
¥ t t : _ : 1 1				
FROMLOC	Yes	Yes	{Value is temporarily placed at	Start of Recoxd
	i	FDMLGTH in FC table. It is used in		
			deterrining the "from" address for	
	i	field-select ortion.]	
L R i 1 4 {				
3 T T L) h) . .				
STARTLOC	Yes] Yes	Subtract one from value.	First available	
		[byte in record.	
L —d 4 4 1 1				
3 T T T v)				
PICTURE	Yes	Yes	Check for occurrence of FORMAT	None.
(Length)			keyword.	
I t - t 4 1				
PICTURE	No	No	Get storage for picture.	Fill character.
(field)			Determrine tyre of picture.	
]			Move picture to storage.	
			(Include continuation	
			carxds.)	
" 4 4+ + 4 _l H 4P				
r T T T v ;				
FORMAT	No	No	Check for occurrence of PICTURE	Fill character.
l	[keyword.	[
			Check for two-character pattern.	
b t t + 1 1				
ACTION	No	No	Check for twc-character type.	FX (Fizxed)
L L 4 4 4				
1) T T T L) {				
FILL	No	Yes {Check for EBCLIC or Hex type with	Binary zeros.	
i] (Hex	two digits.			
I		only)		
F t + + + 1				
CYCLE	Yes	Yes	None.	Cne.
N ——	t 1 + i			
RANGE	Yes	Yes	None.	None.
F t-—- t + + 1				
CHARACTER	©No	No	None.	A (for alphabetic
(of FCORNAT)				and alphamreric).
]				"blank®' (fcr
				collating).
F - b———- + + -1				
SIGN	No	No	Deterwrine if sign value is valid.	Flus.
k t + t -—= + 1				
INDEX	Yes	Yes	None.	None.
l'_ 4 L 4 Y _‘				
* These keywords are required to be present in the FD control card. If not present,				
the program will be terminated.				
** Default values, except for FROMLOC, are assigned by FD table module.				
L _— 1

164

After storage is obtained to accommodate
the desired pattern action, the module
places the specified fill character or a
default fill character in each byte of the
area. It then moves the pattern into the
storage area the required number of times.
BAny leftover space (due to differences in
field length and picture length specifica-
tions) contains the fill character.

If a PICTURE keyword had been specified,
the temporary storage area that the FD ana-
lysis module had used to hold the picture
is released kefore the FD table module
returns control to the FD analysis module.
If a FORMAT keyword had been specified, the
starting character for an alphabetic,
alphameric, or a collating sequence field
is resolved before control is returned to
the FD analysis module. For other formats,
the storage field is initialized to a value
that depends on the format specified. (For
binary format, the value is a binary 1; for
racked decimal, the value is a packed
decimal 1; for zoned decimal, the value is
a zoned decimal 1.)

For the FD table module, a 63-byte
sequence of characters resides in storage
at location CCPAT. The 28th byte cof this
sequence is at location ALPAT. After
resolving the starting character for an AL,
AN, or CC format, the module fills the pat-
tern field using the characters of this
sequence. If the starting location value
is a default value, a collating sequence
pattern kegins at location COPAT, and an AL
or AN pattern kegins at location ALPAT.

The pattern field is filled only in
increments that are equal to or less than
the length of the sequence that is being
used for the format pattern. If the length
of the field (given at decimal offset 24 in
the FD table) to be moved is less than the
indicated sequence length, the number of
characters moved will be equal to the
FDLGTH field value. If the length of the
field to be moved is greater than but not
an integral multiple of the indicated
sequence length, the number of characters
moved for all moves but the last will be
equal to the sequence length. The last
move will contain the characters remaining
after an integral number of moves have been
made, each move containing the number of
characters in the given sequence. If the
FDLGTH value is equal to an integral mul-
tiple of the sequence length, the nurber of
moves is equal to the integral number.

THE CREATE ANALYSIS MODULE (IEBCRANL)
CHARTS 68,69,70,71,72

This module scans and analyzes the parame-
ters on the CREATE control card. The ini-
tial entry to module IEBCRANL is from base

module when a CREATE card is encountered.
Other entries to the module occur when cre-
ate continuation cards or create card com-
ments cards are encountered. If the create
analysis module does not encounter a condi-
tion that suppresses the creation of output
records, it will use the create module as a
subroutine to generate output records. The
create module will return control to the
create analysis module, which will, in
turn, return control to the base module.

Table Construction

The create analysis module constructs four
types of tables that are used by the create
module:

e The create table
s The picture table
e The FD address table

e The exit name table

The create table is the largest of the
four. It may contain one or more create
entries. Module IEBCRANL establishes a
28-byte create entry for each CREATE con-
trol card that it processes. (See Figure
58.) One create table may contain up to 18
create entries. These entries contain
pointers to picture tables and FD address
tables. More than one create table may be
constructed.

The picture table contains information
about, as well as the actual, picture
string that may be specified on a CREATE
card.

The FD address table contains the
addresses of the FD table that have been

ccnstructed to contain information from FD
cards.

The fourth type of table that the create
analysis module constructs is the exit name
table. This table contains the nares of
any user exit routines that have been sgpe-
cified. Wwhen a user's exit routine is
lcaded into main storage, the storage
address of the routine is placed in the
create table.

Module Entries

Since the create anaysis module may have
been entered before in processing a given
group data generator control cards, the
initial analysis performed upon entry to
the module consists of determining the
cause for the module‘'s receiving control.

Data Set Utility Programs: IEBDG 165

The create continue switch, CRCSW (at
COMMCN+564), is tested for this purgose.

If the entry to the module is the first one
for a given CREATE control card, storage
for a create entry is obtained either from
an existing create table or by the issuance
of a GETMAIN macro instruction for sgace
for another 512-byte create table. (As
each new create table space is obtained, it
is 'chained' to the previous space and ini-
tialized to all zeros.) Then, the module
scans the control card keywords one at a
time. If an invalid keyword is encoun-
tered, the create analysis module indicates
a message, sets the NOGOSW switch (at
COMMCN+551) to suppress the creation of
output records, and gives control back to
the kase module to continue the checking of
syntax on other control cards.

If the entry to the create analysis
module is due to a continuation of a CREATE
control card, a check is made to determine
if the parameters of either the NAME key-
word or the PICTURE keyword were interx-
rupted. (Except for the NAME and PICTURE
keyword parameters of the CREATE card, all
other CREATE card parameters must be on the
same card as their associated keywords.

The picture string parameter of the PICTURE
keyword is the only one that may in itself

ke continued to another card.) The name
continue switches, NAMCSW1 and NAMCSW2 (at
COMMON + 561), and the picture continue
switches, PICCSW1l, PICCSW2, and PICCSW3 (at
COMMON + 562), are tested to determine if a
parameter may be on a continvation card.
Fcr a continuation card, the scan begins in
column 4.

If the entry to the create analysis
module is because of a comments continua-
tion, control is given to the base module,
I1EBDG, to process the comments, and to read
the next control card.

Module Subroutines

As the create analysis module processes
each valid keyword, it may branch toc sub-
rcutines within the module. These subrou-
tines perform functions of parameter scan-
ning (SPSCAN routine), packing and/or conv-
ersion (CONVDB routine), and table search-
ing (FDSRCH routine). When the processing
fcr a given keyword is completed, the key-
word scanning section of the module scans
the next keyword unless a continuation card
has keen indicated. If the latter action
has occured, module IEBCRANL gives control
to the base module to read the next control
card.

Hex Dec |« 8 bytes »
*
4 \
Address of Next Create Table
4 4 y) 7}
NXTCRTE QUAN
(Address of next create entry in this table) (Quantity value for this entry)
c 12 4 4
IDCBPTR EXITADDR On
(Address of input DCB for this DSD group) (User's exit routine address for this entry) Cr;te
14 20 Entry
41 much ! 3 | s
PICPTR Fill character byt
Picture table address for this entry for f;is :\fry (Not used) ytes) One
1C 28 % Create
table
FDADTAB (512
(Address of FD Address table) (begin next create entry) bytes)
24 36 —_—]
oy space for 17 more create entries :L-:
(476 bytes)
4 S0 F——————— — — — — T T ——"____———————4—
(last FDADTAB in Create Table)
1FC 508 "
(Zeros)
Y

* Physical displacement from start of 512 byte area.

esFigure 58.

166

Create Table Constructed by Create Analysis Module

éﬁ'

THE SPSCAN SUBROUTINE: The function of the
SPSCAN subroutine is to check the validity
of a keyword parameter. The routine moves
a pointer across each character in the pa-
rameter and checks for commas, blanks, and
parentheses. It also determines whether a
parameter has keen extended into column 72
of a control card. If so, an error ressage
is indicated and control is given back to
the kase module.

After a comma or a blank is encountered,
the parameter length is determined and
checked for an invalid length of zerc, and
the routine returns control to the calling
section of the module. (2An invalid rarame-
ter length causes the module to indicate a
message and return control to the base
module.)

THE CONVDB _SUBROUTINE: The convert subrou-
tine, CCNVDB, performs two functicns: it
converts a decimal number to a packed
decimal number, and it converts a decimal
number to a kinary number. The subroutine
is used in processing the parameters of the
CUANTITY, the NAME, and the PICTURE key-
words. The convert subroutine processes a
number that can be contained in 4 bytes or
less. Therefore, a decimal value that is
greater than 2,147,483,647 will not be pro-
cessed, and a message will be indicated.
Module IEBCRANL then returns control to the
kase module.

In order to determine if a parameter to
be converted is numeric, the zones of its
characters are compared against a hexadeci-
mal *F.' Valid numeric characters are then
converted to a packed decimal format and
placed in the storage area Q (at COMMON+
216). For all cases except a packed decim-
al picture specification, the parameter
value is then converted to a binary value
and placed in a general register.

ThHE FDSRCH SUBROUTINE: Module IEBCRANL
cecntains and uses the FDSRCH subroutine in
processing the NAME keyword parameter. The
subroutine places a valid nare from the
CREATE control card into storage and tnen
ccmpares this name against the names of the
FL takles (which have been established by
the FD analysis module). If the list of FO
tables does not contain a name that matches
the name on the CREATE card, a message is
indicated and the create analysis module
returns control to the base module.

wWhen an FD table name that compares with
a CREATE card name parameter is found, the
address of the FD table bearing that nare
is placed in an FD address table. (See
Figure 59.) If there is no room in an
existing FD address table, the FDSKCH sub-
routine will obtain storage for a new
table. The current create entry, whose
address is given at CURCRTE (COMNMOK + 316)
ccntains the address of the first FD
address table. All FD address tables are
chained together by pointers in the tabples
themselves.

Keyword Processing

To determine if all keywords on a given
CREATE card have been processed, module
IEBCRANL tests the column after the last
parameter of each keyword. 1If this column
is blank and if column 72 of the ccntrol
card is blank, the last parameter on the
card has been processed. The module then
establishes a default value for the CUANTI-
TY keyword parameter if a value has not
already been supplied on a CREATE contrcl
card.

If there are no more continuvation cards
for a given CREATE control card and if the
create value (from a preceding REPEAT con-
trol card group) is equal to one, module
IEBCRANL gives control to the create

Hex Dec 8 bytes
0 0
4 4
ADDRESS OF NEXT TABLE FD TABLE ADDRESS
8 8
4 4
FD TABLE ADDRESS FD TABLE ADDRESS
10 16
! !
b
' et space for 16 more FD table addresses -~
) 1
)]
b
! : 4 4
E : FD TABLE ADDRESS 0000
! !
58 88
Figure 59. FD Address Table Constructed by Create Analysis Module

Data Set Utility Programs: IEEDG 167

module, IEBCREAT. Otherwise, if the create
value (determined by testing the field
CREATENO at COMMON + 18) is greater than
one, the create analysis module gives con-
trol to the kase module to read the next
CREATE control card. (The field CREATENO
is initially set to one in case a CREATE
card is not part of a REPEAT card group.)

If the column after the last parameter
contains a comma, the next card colurn is
checked. If this next column either is
column 72 or contains a blank, the module
gives control to the base module tc read a
continuation card. Otherwise, either a
message would have been indicated and con-
trol returned to the base module or the
sukroutine for scanning the next keyword
will be entered.

When the create analysis module pro-
cesses the parameter of the DDNAME keyword,
it tests the number of characters in the
DDNAME and determines whether the parameter
value is SYSIN. If the name length is
valid and the name is SYSIN, the address of
the SYSIN data control block (at COMMON +
116) is placed in the create entry (whose
address is given at COMMCN + 316) for the
CREATE card keing processed. If the name
is not SY¥YSIN, the input LCE(s) are scanned
to find a name equal to the CREATIE card's
ddname. In doing the scanning, the address
of the first input DCE is placed in the DCB
pointer (at CCMMCN + 300). The nare of the
DCB (at DCED + 260) is compared to the
ddname given on the CREATE card. Unless an
equal name is found, the process repeats
with the next input DCE until there are no
more input DCBs to check. If a successful

DCB name comparison is made, the input DCB
address is placed in the create entry.
Otherwise, a message is indicated and the
create analysis module gives control to the
base module.

If the ddname search was successful,
either the given delimiter or a default
delimiter is placed in the DELIM field (at
COMMON + 344), or a message signifying an
invalid delimiter is indicated and the cre-
ate analysis module returns control to the
kbase module.

When the EXIT keyword is encountered,
the length of the user's exit routine name
is checked for validity. If the length is
valid, the name is placed in a table called
the exit name table (see Figure 60). The
user's routine is then placed (via a ICAD
macro instruction) into main storage, and
the storage address of the routine is
rlaced in the create entry.

THE NAME KEYWORD: In processing the param-
eters of the NAME keyword, module IEBCRANL
searches for multiple names, for ‘copy'
groups (kased on the CCPY keyword), and for
treaks or interruptions in series of names
within outer and/or inner parentheses. If
tne COPY keyword is not present and if mul-
tiple names have been indicated (by
encountering a left parenthesis in the
scan), a default value of one is assigned
to the COPYVAL field (COMMON + 6u40).

The complete processing of the NANME key-
wcrd parameter (s) includes the use of the
suproutines FDSRCH, SPSCAN, and, if the
CCPY keyword is present, the CONVDE supbrou-

Hex Dec 8 bytes
0 0
4
Address of next exit name table user exit routine. ..
8 8
®)
...name user exit routine...
10 16 ®
...name
18 24
1 I
| |
! : Space for 6 more user exit routine names
, 1
I
: : 4
Do 0000
H 1
)

Figure 60.

User Exit Name Taple Ccnstructed by Create BRnalysis NModule

J

tine. If multiple names are present, the
SPSCAN and FDSRCH subroutines are used for
each name that is encountered. The create
analysis module indicates that there is a
continuation in the parameters of the NAME
keyword Ly setting switches in the NAMCSW
field (CCMMCN + 561) of the communication
area. If the continuation occurs after a
'name' subparameter within only the cuter
set of parentheses, the high-order bit (bit
0) of the NANCSW field is set to one. For
a continuation indication that occurs after
either the CCPY keyword or a 'name' sub-
parameter within the inner set of paren-
theses, the second bit (bit 1) of the
NAMCSW field is set to one.

If an inner group of names is to be
copied more than once, the create analysis
module checks the current FD address table
for enough space each time a name is to be
copied. If space is not available, storage
for a new 88-byte FD address table is
oktained, and the new table is chained to
the previous one ky the first word in the
current FD address table located at the
address given in the CURFDGM field (COMMON
+ 632).

THE FICTURE KEYWORD: This section
describes the processing of the PICTURE
keyword parameters. The PICTURE length pa-
rameter is processed first; the start loca-
tion of the picture string is then pro-
cessed; and the actual picture processing
is done last. 1In the case of the PICTURE
keyword parameters, there are three ways in
which a continuation card may be
encountered.

1. The PICTURE parameter list may be
interrupted after the length parame-
ter. In this case, the first (high-
order) kit of the PICCSW field (COMMON
+ 562) is set to one.

2. The FICTURE parameter list may be
interrupted after the startloc garame-
ter. 1In this case, the second bit of
the FICCSW field is set to one.

Hex Dec

3. The actual picture string may be
interrupted. 1In this case, the third
kit of the PICCSW field is set to one.

Chart 70 indicates the entry points to the
section of the module in which processing
fcr the continuation card relating to each
of the above ways of interruption takes
rlace.

In processing the length parameter, the
mcdule first scans the length and then
ccverts the length value to a binary equiv-
alent. Based on this length, the rodule
oktains a storage area called the gpicture
table. (See Figure 61.) The binary length
value is then placed in the field FICIGTH,
which kegins at the fifth byte of the asso-
ciated picture table. The picture table is
lccated at an address given in the FICEBASE
field (at COMMCN + 664) of the communica-
tion area. This same picture table address
is also placed in the create entry for the
current CREATE card.

The start location (startloc) parameter
is scanned; if valid, it is converted to a
binary value; and the value is then placed
in the associated create entry. BAs it does
after the length parameter, the module then
checks to see if the next parameter is on
the same or a continuation card. If a con-
tinuation card is indicated, the module
returns controi to the base module to read
the next card. Ctherwise, the picture
string will be processed.

If the picture string is specified as
being in EBCDIC (character), the string
characters are moved directly from the card
to the picture table. If the picture
string is to be continued, the continuation
switch (second bit of the fielda PICCSW) is
set to one, and control is returned to the
base module to read the next card.

If the picture string is specified as
being in either packed decimal or binary,
the complete string must be cn one card.
Tne card format is checked, and if valid,
the string value is converted either to a

0 0

Start-of-Picture offset from
beginning of record

PICTURE LE(N)GTH (Bytes) PICTURE STRING
L

——— -
D)
L§

e e — = -0

&
&

- PICTURE STRING (Continued) =~

Note: L is equal to the value specified as the length subparameter of the PICTURE keyword on the related CREATE control card.

Figure 61.

Picture Table Constructed by Create Analysis Module

Data Set Utility Programs: IEEDG 169

packed decimal value or to a binary value
as specified on the control card. The con-
verted value is then placed in the gicture
takle for use by the create module.

After each parameter on the CREATE ccn-
trol card has been processed, the create
analysis module checks for a valid delimit-
ing character and for an indication cf a
continuation card.

THE CREATE MCDULE (IEBCREAT) CHARTS 73,74

The create module maintains control cver
the generation of output records. This
module receives control from the create
analysis module after create entries (in
one or more create tables) and related
takles have keen constructed. If, ugon
entry to this module, the switch, NOGOSW
(at COMMCN + 551), is on as the result or
the action of a previous module, the
generation of output records will be sup-
pressed and the create module will perform
only its clean-up functions. Module IEB-
CREAT always returns control to the create
analysis module, which then returns ccntrol
to the kase module for the printing of mes-
sages and/or the reading of the next con-
trel card.

Cutput Record Modifications

Upon entry to the create module, the NOGOSW
switch is tested to determine whether to
continue processing or whether to immedi-
ately release storage areas and return con-
trol to the create analysis module. If
processing is to continue, the record
characteristics (length, format) are deter-
mined; a counter, RECREM (at COMMON + 348),
is initialized with the quantity value from
the create entry; and the input record size
(if present) is compared to the ocutput rec-
ord size. The output record field is then
filled with the create entry fill character
Frior to reading in a record from an input
DCB.

FD TABLE MCDIFICATION: If there is no
input DCE, modifications based on values in
the FD table(s) are made directly to the
output area containing the fill character.
Otherwise, the modifications are made to
the input record that has overlaid the f£fill
characters in the output area.

The modifications based on the FD table
values involve the action, index, cycle,
and range parameters from the FD control
card. Initially, an FD pattern at the
storage address given in the field FDFROMAD
of an FD takle is moved to the output area,
which, at this point, contains either a
£ill character or an input record. The
create module then inspects other FD tables
that may have been indicated by the CREATE

170

ccntrol card as belonging to the current
create entry and moves the patterns frorx
these takles into the output area. The
output record starting location for each FD
pattern is given in the field FDCRUF cf the
FC takle. ©Note, that as each modification
is made to the output record, it may over-
lap part or all of a previous modification
depending on the starting location specifi-
cations involved.

J

PICTURE AND USER MCDIFICATICNS: After the

create module moves the FD pattern(s) to
the output record area, the module moves in
the picture string from the CREATE control
card, if the PICTURE parameter has been
srecified. Otherwise, or after the picture
string has been moved, module IEBCKEAT
determines if a user exit routine is rre-
sent. If so, it indicates that a user ray
desire to inspect and/or modify the record
before it is placed on the output device.
An exit is taken to permit user modifica-
tion if this is the case. After the user
rcutine (if one is used) gives control back
tc the create module, the create mcdule
checks the return code that has been rlaced
in register 6 by the user's routine. If
the job is not to be terminated at this
pcint, the create module places in the out-
put data set the record that is in the out-
put area. If termination is to take glace,
an indicating switch (FLUSHSW or FILUSHSW1
depending on the return code) is set,
storage areas are released, and control is
given to the create analysis module, which
then gives control to the base module.

o+

Updating the FD Table

After each record is placed in the output
data set, certain values in each arrlicable
FL takle are updated to prepare for the
next output record that is to be created.
Multiple references, by the same create
entry, to the same FD table are indicated
by the setting of a ‘'pass' switch (bit one
of the FDSWITCH field). 1If this occurs,
the FD table is processed (and updated)
only once.

For the binary, packed decimal, and
zcned decimal patterns, the create module
rerforms the following actions by using FD
table values:

e The cycle count field (FDCYCCNT) value
is incremented if the cycle value
(FDCYCLE) is other than zero.

e The pattern values are then converted
to a binary equivalent, if not already
kinary, and placed in a work area
(register 4). The module then incre-
ments the binary-equivalent pattern
value by using the index number
(FDINDNUM) .

9

¢

e The incremented pattern value is then
tested against the range value given in
the field FDRANGE. If the range value
has keen exceeded, the current pattern
value in the storage area to which the
FD takle refers is not changed. Other-
wise, the indexed binary value is
reconverted to a decimal form if neces-
sary and placed in the storage area.

For a random number format, the random
generator routine of the create module pro-
vides another value to be used for the next
recoxd and places the value in the pattern
storage area to which the FD table refers.

For alphaketic or character patterns,
the generation of the pattern to be placed
in the output area for the next record
requires that values of the 'from' address
in the FD takle and the 'to' (or outgut
work area) address be changed. These
addresses are used in moving the pattern
(or a part of it) from the pattern storage
area to the output record area. In the FD
takle, there are two fields (FDFRINC and
FDTOINC) that contain the increment values
used to modify the 'from' and the 'to’
addresses. These fields initially contain
a value of zero for the first output rec-
ord. For suksequent records, the values
may be incremented by values given in the
increment restore fields (FDFRINCR and
FDTOINCR) of the FD table.

The FD takle module established the
values of the increment-restore fields
after the specified action had been deter-
mined. Table 3 lists the values of the
increment-restore fields for the various
actions that may be specified.

Table 3. Values of Increment-Restore
Fields in the FD Table

] 1 T 1

| | FDFRINCR | FDTOINCR

| | ("From®" Incre- | (*To' Incre-

|Pattern |ment Restore) | ment Restore) |

b= + + {

|shift | 1 | (1] [

| Left | |

|shift | (4] | 1

IRight | |

|Truncate | 1 | 1

|Left | |

| Truncate | 0 | 0

|Right | I

|RoO11 | +1 (*) | 0

I I -1 |

|Ripple | 1 | 0

|Wave | 1 | 0 |

jFixed | o | 0

L 1

| *This value will alternate between +1 and

| -1 as the roll pattern is developed in

| £irst one direction and then the other.

L

4

Depending on the action specified in the
FD takle, the create module may vary the
values of the move length counter field,
FDMLGTH, and the sequence length counter
field, FDSLGTH, to prepare for the next
output record. Table 4 summarizes the
changes that may occur to values of fields
in the FD table as the create module
generates output records.

After all FD tables to which a given
create entry refer have been updated, the
create module inspects the NXTCRTE field
(in the create table) to determine the
address, if any, of the next create entry
to be processed. (When there are no rore
create entries to be processed, the NXTCRTE
field of the current create entry contains
zeros.) If there is another to be pro-
cessed, the create module will process the
entry in the manner already described.

If there is a repeat function to per-
form, the entire list of create entries
must be processed as many times as neces-
sary to satisfy the repeat requirerment.
When that is done, the clean-up functions
of the create module will be performed. If
there is no REPEAT card function to perform
for the current set of data generator con-
trol cards, the field REPEATNC (at COMMCN +
16) contains zeros.

After the last create entry has been
processed, the create module will release
the storage areas that have been obtained
for create tables, FD address tables, and
the CREATE card picture string. The module
then resets switches and communication area
field values for an initial entry to the
create analysis module, and returns control
to the create analysis module.

THE MESSAGE MODULE (IEBDGMSG) CHART 75

Message module IEBDGMSG is entered from the
base module whenever there is an indication
of a message to be printed, or placed on
the output device. To indicate the need
for a message, the other modules of the
data generator program set a message number
in the Ms field (at COMMON + 406) of the
communication area.

This module places four types of mes-
sages on the output device: heading mes-
sages, control card images, error messages,
and error flags (messages). The messages
used for headings and errors exist as 121-
byte entries within the message module.

The location of each message within the
module is contained in a #4-byte address
entry in a message pointer table.

Before any messages are placed on the
output device, module IEBDGMSG determines
if the output data set has been successful-
ly opened. If it has not been opened, con-

Data Set Utility Programs: IEBDG 171

Table 4.

Changes Made to FD Table Values as Create Module Builds Cutput Records

T X T T 1
| Field | Format | Change {
L 'S IR

[§ T T i
|FDCYCCNT | Numeric | Increase by 1. When = FDCYCLE value, set to O. |
|8 ' 4 4
L} T T 1
FDMLGTH	Alphaketic	Initially = FDLGTH value. If FDMLGTIH > 1, decrease by 1. When
	(shift or	FDMLGTH < 1, set = FDLGTH value.
	Truncate)	
L L Il

T T T 4
FDFRINC	Alphaketic	If FDMLGTH > 1, increase by value in FDFRINCR field. When
	(shift or	FDMLGTHE < 1, set = 0.
	Truncate)	
t $ 4

T T T - "
|FDTOINC |Alphaketic|If FDMLGTH > 1, increase ky value in FDTOINCR field. When |
| | (shift or |FDMLGTH < 1, SET = 0. |
] |Truncate) | |
[4 4+

r T T 4
|FDSLGTH |ARlphabetic|Initially = FDSLGTHR. If FDSLGTH > 1, decrease by 1. When |
| | (Ripple) |FDSLGTH < 1, set = FDSLGIHR value. |
L + +

1 } T T - "
|FDFRINC |Alphabetic|If FDSLGTH > 1, increase by 1. Wwhen FDSIGTIH < 1, set to 0. |
| | (Ripple) | |
b + _— 4
] L]

|[FDFRINC |Alphaketic|If FDSLGTH > 1, increase ky 1. Wwhen FDSIGTH < 1, restore to 0. |
| | (Wave) | |
L + i {
v ¥ T

| FDMLGTH |Alphabetic{When FDSLGTH < 1, restore to FDLGTH value. |
| | (Wave) | |
[N $ $ 4
T T A
|FDFRINC |Alphaketic|Increase by 1 for roll to left. Decrease by 1 for roll to right. |
| | (Roll) | |
L L L J

trol is returned to the base module and the
jok is terminated. If the data set is
open, the value in the MS field is checked
to determine the reason for requesting the
module.

Initially, the module is requested to
print a heading message (MS field value =
1). Thereafter, a heading message is
printed when the module finds an indication
of either a channel 12 printer carriage
tape or the correct line count. All head-
ing messages will begin at position one on
the cutput device. After each heading mes-
sage printout, the line count value is
reset to either the user-specified value or
the default value, and the page number
value is incremented. Eefore printing a
heading message, a printer will skip to
channel one to set up a new page. When any
other message is to be printed, a rrinter
will space one line before printing the
message.

If the MS field value is not 1, the
module determines if the carriage control
tare indication is 12 and, if the indica-
tion is not 12, if the line count value has
reached its maximum value. If either
situation has occurred, a heading message
will be printed, the line count will be
reset, and the page number will be
incremented

172

Otherwise, the module tests the Ms field
tc determine if a control card image is to
be printed from the input buffer. If this
is the case, the image is printed at posi-
tion ten on the output device. If a card
image is not printed, the module tests for
a regular error message indication from the
processing modules. These messages have
message numbers from 2-28. For each mes-
sage to ke printed, the printer is placed
at position one to receive the message.

The message module places a flag message
(consisting of the word ERRCR) in the mes-
sage data set when onée of the other modules
of the data generator program requests an
error flag. This message begins on the
line kelow the corresponding control card
image and in the column corresponding to
the card column that is in error.

After a message has been placed on the
output device, the message module incre-
ments the line count value, determines if a
heading message has just been placed cn the
device, and either continues processing or
returns control to the base module.

SERVICE AIDS

A customer or systems engineer can
obtain useful information for use in debug-

ging a (non-executed) run of the data
generator program by re-running the program
with a DUMP control card inserted in the
group of control cards. When the base
module recognizes a DUMP control card, it
takes the action described in the micro-
fiche copy of the base module code.

The publication IBM Systemv 360 Operating
System, Programmer's Guide to Debugging,
Form C28-6670, describes both types of
dumps that may be obtained when one uses a
DUMP card. An indicative dump is a limited
dump that results from an incorrect, or
from a lack of a proper, SYSABEND DD state-
ment. For a complete storage dump, a
correct SYSABEND DD statement to define a
dump data set must be included in the con-
trol cards for the program.

In using the contents of a dump, you
will find that register 5 contains the
address of the common communication area
(common area). This area contains pointers
to control blocks and to tables constructed
by the data generator program; and it con-
tains parameter values that the modules of
the program (1) have obtained from control
cards, (2) have assigned as default values,
or (3) have arrived at through computation
and/or conversion. Table 5 indicates the
contents of the fields corresponding to the
more frequently used labels in the common
area.

Certain debugging information is avail-
able as the result of processing the con-
trol card(s) preceding a DUMP control card.

In the following text, the information
given for a specific location of the DUMP
card is in addition to any information
resulting from processing any control cards
that may have preceded the specified
location.

1. DUMP card preceding a DSD card:
The common area contains values for
printer action.
The open list is initialized.
The input DCB is open.
Much of the common area contains
Zeros.

2. DUMP card follows a DSD card:
Addresses of DCBs have been
determined.

Work area for output record has been
established and the area's address is
located in common area.

3. DUMP card follows an FD card:
Storage area dump contains the FD
table entry relating to that FD card.
If other FD cards have been processed,
the corresponding FD table entries are
also included in the dump.

4. DUMP card follows a CREATE card:
Storage area dump contains tables
created by the corresponding CREATE
card. An updated copy of any related
FD tables is also included. The most
recent create table is contained in
the dump and the CURCRTE field of the
common communication area contains the
address of this table.

Data Set Utility Programs: IEBDG 173

The following sections contain information that summarizes or further explains materi-

al appearing in the program listings for the data generator program.

supplements the overal

Table 5 lists the entr

1l view of the program as supplied by Figure 55.

This information

ies in the Common Communication Area. This area is used by all
modules of the data generator utility program.

eTable 5. Common Communication Area (Part 1 of 3)

T T A
Ooffset From	
start of	
Common Area	
l_ T Jf T "	
Deci-	Hex.
mal	
L i i <4 ,1
] T L) T

| 0 | 0 |ccMMON | I
0	O	PAGENO	Number of next page tc be printed.
4	4	LINECT	Number of lines to print on a page.
8	8	LINECTR	Number of lines already printed on current page.
12	C	PARM	Used during invocation. Also used by Create module to save SYNAD
			addresses. i
16	10	REPEATNO	'Quantity' value from REPEAT card.
18	12	CREATENC	'Create' value from REPEAT card.
20	14	SYsp	pata Generator SYSPRINT DCB.
116	74	S¥sI	Data Generator SYSIN LDCB.
226	D8	Q	Work. Area
216	D8	QFILL	
223	DF	QSIGN	
224	E0O	QFILL1	*
] 231	E7	gSIGNl1	
232	E8	COUNTER	Used in scanning for continuations.
236	EC	CPENLIST	Used during CCB open processing.
236	EC	OPTBYTE1	
240	FO	CPTEYTE2	
244	F4	EXLST	
244	F4	INHDR	
245	F5	INHDR1]
248	F8	OUTHDR]
249	F9	CUTHDR1	
252	FC	INTRL	
253	FD	INTRL1	
256 100	CUTTRL		
257 101	CUTTRL1		
260 104	EXITDCE	i	
261 }105	EXITDCB1		
264	108	TCTAL	
265 109	TOTAL1		
268	10C	EXLST1	
268	10Cc	EDCE1L	
269	10D	EDCB2	
272	110	EXLST2	
272 110	EDCB3		
273	111	EDCB4	
276	114	EXLST3	
276	114	EDCBS j \	
277	115	EDCB6	/
280	118	DLRECL	Default value of record length for DCB opening.
282	11A	DBLKSI	Default value of block size for DCB opening.
284	11C	DRECFM	Default value of record format for DCB opening.
288	120	LEFTOVER	
292	124	OFFSET	
296	128	LPTR	
] 300	12C	DCBPTR	Address of current DCB.
304	130	COMMON1	
304	130	SAVEMS	Save area for message number if more than one message.
306	132	CONCODE	Condition code to be returned to caller. }
L L L L d

174

eTable 5.

Common Commpunication Area (Part 2 of 3)

1) T 1
| Cffset From| |
| start of | |
| Common Area| |
L + {
] T T T

| Deci-|Hex. | Label | Notes i
| mal | | I |
L 4 IR 4 ‘!
r 1 T T

| 308 134 |CUTREC |Address of cutput work area. |
] 312 138 |CRTABPT |Address of first create takle. |
| 316 |13C |CURCRTE |Address of current create entry. |
] 320 140 |CURCRGM |Address of current create talkle. |
| 324 144 |CURPIC |Address where next porticn of picture is to be placed in gicture |
| | | jtable.

| 328 |148 |FICCTR |Counter to keep track c¢f length of picture remaining to be moved.{
332	j1i4C	EXITTAB	Address of first exit nawe table.
336	150	EXITGM	Address of current exit name takle.
380	154	CUREXIT	Address of current exit name in exit name table.
344	158	DELIM	Celimiter for SYSIN records.
] 348	15C	RECREM	[Counter for 'Record' quantity.
352	160	CURFD	Address of current FD takle (in FD address table).
356	164	CURCUT	Current location in output record being constructed.
360 168	SAVEl14	Contents of register 14 saved here.	
364	16C	GETMLIST	Parameter list for GEIMAIN macro instruction.
364	16C	GLENGTH	i
368	170	ADRLIST	
372 174	IND		
372	174	GCCDE	
373	175	SPOCL	[
374	176	CCODE	
376	178	GCACDR	Address of last storage obtained by a GETMAIN macro instruction.
{ 380	17C	FIRSTGMO	Address of first output LCB storage area.
384	180	CURRGMO	Address of current output DCB storage area.
388 {184	LASTGMO	Address of last output LCs storage area.]	
392 {188	FIRSTGMI	Address of first input DCB storage area.	
] 396	(18C	CURRGMI	Address of current input OCB storage area.
] 400 }190	LASTGMI	Address of last input DCR storage area.	
404	194	CCNCCDE	
406	[196	Ms	Current message number.
408	198	INBUFAl	Starting address of input work area (121 bytes).
408	198	INFILL	(10 Bytes) I
418	1A2	INBUFA	[Control card is read intc this (111-byte) section of INBUFAL.
532	214	DDPTR	
536	218	CCMMON2	
536	218	SWITCH	Start of 52-switch area.
536	218	FDCSW	FC-card continuation switch.
537	219	FDNAMESW	
538	212	FDPCSW	FD picture-continuaticn switch.
539	21B	FDFMTSW	FD format switch. only one of these
540	(21C	FDPLSW	FD picture switch. should ke on.
541	21D	RANGESW	
542	21E	FILLSW	i
543	21F	REPSW	}FD card keyword indicator switches.
544	220	INDEXSW	
545	221	INDNMSW	
546	222	BQUOCTESW	Rinary picture indicator. I
547	223	PQUOTESW	Packed decimal picture indicator.
548	224	ECUCTESW	EBCDIC (character-string) picture indicator.
549	225	FDSW	
550	226	DSDSW)	
551	227	NOGCSW	'No-execution® switch. (Indicates syntax checking only.)
552	228	CREATESW	First CREATE-card switch.
553	229	DSDCSW (DSD continuation card switch.	
554	22A	CRCSW	CREATE continuation card switch.
555	22B	EXITSW	Indicator that an initial exit-name table exists.
556	22C	ECDSTOP	Switch to stop generation on input end-of-data.
L L L L ¥

Data Set Utility Frograms: IRBDG 175

eTable 5. Common Communication Area (Part 3 of 3)

1]
Offset From|
Start of |
Common Areal

T
Deci-|Hex. Lakel

mal |
L

Notes

T—

LD T
557 |22D |DSDNULSW |
558 |22E |DSDORGSW| | Not used.
559 |22F |DSDDDSW |
560 230 |CRTBLK |Indicator for a blank CREATE card.
561 |231 |NAMECSW |Name continuation switch.
562 |232 |PICCSW |CREATE card picture-continuation switch.
563 |233 |BUFPSW
564 |234 |ENDSW
565 |235 |COMCSW
566 |236 |FLAGSW
567 |237 |PAGESW
568 |238 |EPSW
569 |239 |SYSISW
570 |232 |SYSPSW
571 |23B | OLDNEWSW | Input/output data set indicator.
572 |23C |FLUSHSW |
573 |23D |FLUSHSW1|
574 |23E |DSDOSW |
575 |23F |DSDISW
576 |240 |QUANSW |CREATE card 'quantity' switch.
577 |241 |PARENSW |Indicates detection of a left parenthesis.

[}
|
|
|
L
]
|
|
F
|
|
|
|
|
|
|
|
| Comments continue switch.
|
|
|
|
|
|
|
|
|
|
=
| 578 |242 |REPEATSW|Used to test if a REPEA1T card remains to be processed.
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L

579 |243 |SYSINEOD|Address of end of SYSIN data.

588 |24C |FDPLGTH |FD-picture length.

592 |250 |SGCADDR |Save Area for address of storage obtained by GETMAIN macro
| |instruction.

596 |254 |FDPTR |Address of current FD-takle entry.

600 |258 |FDPTR1 |Address of first FD takle.

604 |25C |FDPTR2 |Address of current FD takle.

608 |260 |COMMCN3 |

608 |260 |FDCTR |Count of number of entries in current FD table.

612 |264 |LREMAIN |Length of FD picture remaining at end of scanning an FD card.

616 |268 |COMPCTR |

620 |26C |LMOVED |

624 |270 |U jCurrent random number value.

628 |274 |PICEND |Location cf end of picture in output record.

632 |278 |[CURFDGM |Address of current FD-address table.

636 |27C |SWTCH |

636 |27C |SYSINSEL|Field-select indicator switch.

637 |27D |FIRSTSW |

638 |27E |FRSTSW |

639 |27F |STOESW |

640 |280 |COPYVAL |Value of COPY parameter from a CREATE card.

644 |284 |CCFYFD |Pointer to FD address used in copying a *name' group.

648 |288 |[COPYFDGM|Address of FD-address takle.

652 |28C |NAMCTR |Wumber of FD addresses to be copied for a 'name®' group.

654 |28£ |NAMCTR1 |Counter used in copying a 'name"' group.

656 |290 |INRECSZ |Logical record length of an input record.

658 |292 |CUTRECSZ|Logical record length of an output record.

660 |294 |INRECFM |Input record format.

661 |295 |RECOFFST|Offset to start of data in output record.

662 |296 |OUTRECFM|Ouput record format.

664 |298 |PICEASE |Address of start of picture table.

668 |29C |MESSAGE |
L L L

e e e e o o e e e e o o S —— ——— ——— — — —— - S — —— — —— ——— — —— — — — — — —— — {— t— e s7727, S, s s, s s,) e et et e i st &

176

Table 6 lists the fields of the Data Con-
" trol Block (DCB). The labels, as given in

0 this dummy section, may vary in name from
the levels for the DCE fields as given in
the System Control Blocks publication.
However, the offsets from zero corresgond
in meaning with those given in the System
control Blocks publication.

eTable 6. Data Control EBlock

I 1
| CFFSET FROM START OF DCB |
F T T 2|
| DECIMAL | HEX | LABEL |
F + + 2!
| 0 | 0] DCBD |
I 0 | 0 | FILL |
I 17 I 11 | DEVT |
18	12	FILL1
26	1A	DSORG1
26	1A i DSORG	
28	ic	FILLER
28	1c	IOBAD i
32	20	BFTEK I
33	21 i EODAD	
36	24	RECFM
I 37	25	EXLIST
40 I 28	DDNAME	
40 I 28 i DEBAD		
I 40	28 I IFLCS	
48	30	GETAD
[u8 [30	OFLGS	
u i 49	31	OFLGS1
i 50	32	MACRF
52	34	FILL2
i 56	38 i SYNAD	
60	3c i CIND	
62	3E	BLKSI I
64 I 40	FILL3	
82	52	LRECL
84	54	FILLU
] 256	100	NEXTDCB
I 260	104	DCNAME1
268	10cC i FOLSW	
269	10D	DCBSW1
I 270	10E i DCBSW2	
271	10F	DCBSW3
: I 272	110	INREC
1	276	114
278	116	FIELDSEL
279	117 i SPARE I	
L L 1 J

Data Set Utility Frograms: IEBDG 177

Takle 7 lists the defined constants (DCs) that are used by the

data generator program.

various modules of the

Takle 7. Defined Constants for Modules of the Data Generator Program
Label e Clean-up FD Analysis FD Table Create Analysis Create
'Cl C'FX
'c2 cst
'c3 T
'c4 C'sR
'cs C'NAME=' C'TR! C'QUANTITY='
'Cé C'LINECT=' C'LENGTH=' C'NAME=' C' (see 'C30 for base)
'c7 C'STARTLOC=' C'PICTURE="
'c8 C'PICTURE=' cre! C'FILL=" C'RAY
'co C'FORMAT=" cot CUINPUT= c'zp'
'c1o C'ACTION=' c'wy! CEXIT=' C'PD’
cn CFILL=" C'BI'
12 C'CYCLE=' cBlI'
'C13 C'END' C'RANGE=' c'o'
'Cl4 C'FD! C'CHARACTER=' C'AL' crcopy=
'C15 C'GREATE' C'SIGN=" C'AN!
'Cl6 C'REPEAT C'INDEX=' c'co’ P
17 C'DUMP* C'REPLACE=' cre
'cig CrouTPUT=(¢
19 C'INPUT=(*
'C20 C'RA!
‘€22 C'Z0°
'C24 C'SYSIN
'C25 C'QUANTYITY=' C'3E'
'C26 C'CREATE='
'c28 c'™
'C29 crp
'C30 C' IEB7291 PERMANENT
I/O ERROR!
D1 H256' H'-64' Wl H-1' Fo!
D2 F'123456' H'32767' H2S' Fo H-1'
‘D3 F'65535' H'256' H2' H'256! H'g'
D4 H-2 HT H'#'
D5 HY H'16' F'524291"
D6 H'~4' (31 Hiaq'
‘D7 H-3 H'256'
'D8 H337¢7
X2 X'FOFOFOFY'
'X5 X'0008' X'0000"
X7 X*0030" X'0000’
'X8 X'0000000000000000"
‘X9 X'0028'
X17 X'001A’
Ix‘s xlm‘l
x19 X'003F'
X23 X5000'
'X26 X'02147483647F'
X30 X"0000"
'X31 X*0000000000000000" X'0004'
X32 X'000002147483647F X'0003"
*X36 X*000002147483647F'
FOXZEROS X* FOFOFOFOFOFOFOFO! X*FOFOFOFOFOFOFOFQ'
NO XG07
OFF x*00* X'00* X*00* X'00" X00'
ON X'FF* X'FF X'FF* XFF* X'FF'
ONE FL4'0"
'siZoot A('DATEND-'DATD)
il Fo’ Fo’
"TEMP4 F'o’ Fo' Fo! F'o'
YES X'FF*

178

Table 8 lists the equated symbols (EQUs) that are used by the various modules of the data
"] generator programe.

Table 8. Equated Symbols for Modules of the Data Generator Program

Module

Label
Base Clean-up FD Analysis FD Table Create Analysis Create

E A2J7 'ELO1
1 F6D3 F8B4
" 1 1 1 1 1
RET 'ELOY

'9CE ©'ELOY
'9D4 A7A12
'9D7 CARDSCAN
'9EC FAGT
'9EF 'ELO1
'9E2 A2B3
9E9 "ELO2
9FC PDDNAMER
'9FD PDDNAMER
'9F0 A6C5
'9F2 'ELO2 A7A18
'9F3 LABEL1
'9F4 SCAN]1 AbAT
'9F5 F9ES5
'9F7 KEYSCAN

Data Set Utility Programs: IEBDG 179

Tables and Work Areas Used by Modules of Data_ Generator Program

Table 9 is a grid indicating the modules that establish, use, and modify the major work
areas and information tables of the data generator program. Mnemonic names for the
tables or area are placed in parentheses and correspond with the names given in the
module cross-references on microfiche listings.

Table 9. Data Generator Modules Information Tables and Areas

Modules BASE FDANL FDTAB CRANL CREAT MSG [CLNUP J

Module Action Code: B = Module gets storage for, and/or enters data into.
Table/Area U = Module uses or modifies the area.

Common Comm, Area

(COMMON) B u U U U [} U

Create Table
(CRTAB)

Exit Nome Table
(EXITTAB)

FD Table
(FDTBL)

FD Address Table
(FDADTAB)

Input Buffer
(INBUF)

Input/ Output "
DCB B U U

Message Table U
(MESSAGE)

Message Pointer Table 8 U
(MSGPTR)

Create Picture Table
(CRPICT)

* Closes and releases storage for:

180

Table 10 contains a summary of the input and output information to be found on microfiche
‘ ; listings of the data generator program.

e Table 10. Module Inputs and Outputs

F

INPUTS OUTPUTS

[

r
BASE MODULE

Data Generator Control Cards. | Reg. 5, pointina to a common communication

DD cards for all data sets used. area.

Either: Parameter List Address for Message indicator in the common area.

|

| invocation | Reg. 9, pointing to a data generator

| or Job Control Language EXEC | control card operation field in an input

| card parameters. | Buffer--this is for output to an analysis|
| module.

| CLEAN-UP MOLULE |

Reg. 5 and other pointers (in the commun- | DCB storage areas and associated buffer

| ication area) indicating, respectively, | areas, and the input record work area, |
|
|

| the addresses of the communication area are released to the system.
| and control tables.

MESSAGE MODULE

|Reg. 5, pointing to the communication

| area.

|Message numker indicator.

Actual or default values for linecount
and page number.

|output DCB name.

|Indicators for: Output DCE open or not.

| Channel 9 carriage con-
trol.

Channel 12 carriage con-
trol.

Heading and paging information.
Program messages.

Exror return codes.

Control card images. |

——— ———— ——- G—— — —

FD ANALYS MODULE |

One or more FD tables...520 bytes each.
FD table entry with some parameter values. |
Temporary storage with a picture or format
pattern.

Reg. 9, pointing to a control card image
in an input kuffer.

|
I
|
|
I I1s
I |

I |

[|

I]

! I

|

I

FD TABLE MODULE
Completed FD table entry...64 bytes.

|FD table entry. |
|Reg. 5, pointing to communication area. |
| SGCADDR pointer to picture temporary |
| storage. |
|Sswitch indicating picture type, if any. |

CREATE ANALYSIS MODULE

AL
|
Reg. 5, pointing to communication area. | One or more create tables..512 bytes each.
Reg. 9, pointing to control card image |] Create table entry...28 bytes.
in input buffer. | Picture table...(L + 6)* bytes.
| FLD address table(s)...88 bytes each.
| Exit name table(s)...72 bytes each.
|
|

*Note: See Figure 61 for definition of L.

o e e o e s e e o . o A —— o — — i — — — —— d—

CREATE MOCULE
|Reg. 5, pointing to communication area. | Records written on an output device as
|create takles(s). | specified by DD name on a DSD control
| Picture table(s). | card.
u |FD address takle(s). |
|Exit name takle(s). |
L L

Data Set Utility Programs: IEBDG 181

eChart 60.

IEBDG Base Module (Part 1 of 3)

From: 64/)5

CONTROL CARD SCAN

|EBDG En For a given control card type, check for the initial card,
Al Program . "7. a conti ion card, and a card,
Point Switch
0
On The first control card of a set of control cards for this utility
progrom must be a DSD card. In the following table, the
indicated switches are tested, or the indicated tests are
preformed. The action taken depends on whether a switch
Bl B2 is "on" (= 1) or “off" (= 0), or whether a test result is "yes"
Register and IEBDGMSG 75C2 or "no",
Common Area Print
itialization. "
:::i:nllb.;;:‘"" Indicated Switch or Switch or "On" or "Yes" "Off" or "No"
Message Test No. Test Name Action (%) Action
Swi Comments Continue| Test SW 2 or go to | Test SW 2
W Chart 60, Box H1,
Ccl
Execution X Sw2 FD Continve SW Go to Chart 64, Test SW 3
or Execution Box Al
Invocation
SW3 Create Continve Go to Chart 68, Test Sw 4
SW Box A2
Dl I ti
PLINECTR rvecanen SW4 DSD Continve Go to Chart 62, Test SW5
Options: sw Box C3
Process Line Count, .
P ter List DD Names, SW5 ED l:!ch:resw DGOC:(':lChoﬂ 64, Test SW 6
Options Page Number ontinue
SW 6 Create Picture Go to Chart 68, Test for DSD
Continve SW Box A2 Control Card
El
AFTER SVC 19 E2 Test 1 DSD Control Go to Chart 62, Test for FD
Card Box B3 Control Card
Open SYSIN __ DCBEXIT 6184
(input) and N Check DCB From: Test 2 FD Control Go to Chart 64, Test for CREATE
SYSPRINT (message) J Parameter 72/F2 Card Box Al Control Card
Data Sets A Validity 71/G3
68/C1 Test 3 CREATE Control Go to Chart 68, Test for REPEAT
69/H2 Card Box Al Control Card
F2 65/G3
68/12 Test 4 | REPEAT Control | Go to Chart 62, | Test for END
Is Input Set Condition 70/K3 Card Box B1 Control Card
Data Set Code 12
Test 5 END Control Go to Chart 61, Test for DUMP
for User
Card Box Bl Control Cord
Test 6 DUMP Control Terminate the Return to
Gl 2;5521 G2 SVC & From: Card Job Supervisor
IEBOGMSG 75C2 61/H1 IEBDGMSG 75C2 62/82
78 §2/cs
Place Heading 62/15 . To Point Indicated
on SYSPRINT s Print Message san2 in Above Table.
" @ 62/F2
82/F4 (*) Chart Designations:
62/G4
H1 68-72 Create Analysis Module
A2B3 60-62 Base Module

N

Get Next 64,65 FD Analysis Module
Card from <12 Test 75 Message Module
SYSIN Condition

Oata Set

SVC é

IEBDGMSG 75C2
i Load Condition
2":: Sontrel Code for User
S;SP!:I"NT in Register 15

0 K2

To Control Card Scan

182

'ELOY

Return to
Caller

{By way of the Supervisor)

eChart 61. IEBDG Base Module (Part 2 of 3)

End Routine SYNAD Routine DCBEXIT Routine
Entered on: Entered on: Entered ot Every DC8 Open Time
(1) Reading END Cord. Permanent Ewors to Test for Invatid Conditions,
2 End of SYSIN Data (/*). Encountered During .
Processing of SYSIN, Entered For |Entry Point

SYSIN DC8 DCBROUTY
SYSPRINT DCB | DCBROUT2
SYSUT (User) DCHDCBROUT3

From:

60/test 5

ERRORS B2
B
Initiali- £
zotion of ntry f'“'“'
Registers Open Routine
NOTE
1909 SYC ¢ c4
Analyze Place Default BKS{ZE) Default
Turn on 1/0 Errors Valye in LRECL Values
End Switch Put Information Common Ares. RECFM
in Buffer (See NOTE.)
SvG 6 D3
JEBOGMSG 75C2 D2 Assign DCBEXIT D4 Test for Velidity of:
Befault Values Invalid Blocksize,
Print Buffer o DCB_ if User Lagicsl Reverd Length.
Information DCB, Set Flush Sw Fired Rovord Format.
Retio of Blocksize
] Valid to Legical Reword Length.
SvC &8
1EBDGMSG 75C2 Release e
Message
Print Buffer and
Message f 14 Save Areas
SVC é USER F2
o Fl
IEBCLUP 65B2 Lood Retorn
Close DCBs Code for
and User
Free Storoge

Switches

<

'ELO1 K1
Retumn to
Caller

Program Finished

Data Set Utility Programs: IEBDG 183

from:

60/Test

A3B3

Test Error
(NOGO) and
Continuation

eChart 62. IEBDG Base Module (Part 3 of 3)
REPEAT Card Scan
from
% 60/Test 4
SVC 6
A3C14 B1 B2

IEBDGMSG 75C2
Operation No = "

Format ¥

Message 7 20
. or f 21

Required
Keyword
Present

Valid
Parameter
Present

No

Resolve 1E8DGMsG 75¢2|02
Repeat Card .
Parameter Print ’Messuge
CONVERTB 3 @

Convert Eon I
Packed Decimal
Parameter Value

to Binary

SVC 6

F1

T
IEBDGMSG 75C2

Number
Too Large

Print
Message f6

Another
Keyword to
Scan

Check for
Comments
Continuation

&y

184

NOTE:

280 Bytes Requested

-—

Switches

A3C3 (]

Advance Scan
Pointer and
Test for

Keywords

A3C44 D3

Scan Out
DDNAME, (input
or Output as
Appropriate)

Get Storage
(Conditionally)
for User
DCB

H3

Copy DCB.
Initialize the
Open List

13

Zero the
DSORG Field
in the DCB

A3C77 svC 19

Open the
User DCB for
Input or Output

as Needed

DSD Card Scan

1

Open
Successful

SVC 6
Scan 1EBDGMsG 75c2| IEBDGMSG 75C2|C5
| Eors__ »{ Print Message Print
5, #19, or 20 Message 124
Accordingly
SVC 6 { SVC 4
E4 E5
IEBDGMSG 75C2 Get Storage
for Input
Print
Message #21 Record
60
H2 SVC 6 F5
IEBOGMSG _ 75C2|F4 Place Storage
Address in
Print Work Area.
Message 3 (See NOTE 1)
SVC 6 G5
G3 4
If Not IEBDGMSG 75C2| G Scan Out
————— Print Rest of DSD
Successful Messoge #10 Card
NOTE 1 (See Block F5):
For Input Data Set, Work
Area is at INREC. For Ouput
Data Set, Work Area is at
OUTREC.
K3

eChart 63.

IEBDG Clean-Up Module, IEBDGCUP

From
Chart 61
Box F1

IEBDGCUP 82

Entry

A2J3 SVC 20
Cc2

Close an
Open Output
DCB if One
Exists

SVC 10 ond
SVC

Free DCB
Buffers ond
Storage Area

for DCB

More £
Output DCBs
to Close

No

A214 SVC 20
F2

Close an
Open Input
DCB if One

Exists

SVC 10 and
SVC 5

G2
Free DCB
Buffers and
Storage Area
for DCB

More

Input DCBs
to Close

for Cleonup

Close SYSIN
and SYSPRINT
Data Sets. Free
Buffers After
ach Closing

'ELOY

Check for @
FDREPNM in
Ha FD Table

Yes

D4

Return

To End Routine,
Chart 61
Box F1

H4

Place Hex 'FF*
in FDNAME
Field of FD

Table

TE: Base Module,

IEBDG, Frees
Storage for
SYSIN and

SYSPRINT Data

Sets,

Data Set Utility Programs:

IEBDG 185

Chart 6é8. IERDG FD-Analysis Module, IEBFDANL (Part 1 of 2)

From 1EBDG
Chart &0 Test 2)
Al
Entry
4] 1] SCANOUT 83 F4A SVC 4
Check Picture Switches Set Scan Keyword . - 85
@l Continue FDPLSW: | Picture Parameter Invalid Not Get
Switches, FDFMTSW: If Format Valve. Set Parameter Successful Storage for
Srench as Appropriate (Msg. 3) (Msg. 10) Picture
Required Switch
[4 SYC 4 C2 F4B5 C5
:'ﬂ(.s"::s “ VALCHECK 6583 Picture Types: Cl}eck Pi;:lure
512-byte FD Check Binary Aype. m:
Table, If Paremeter Packed on Appropriate
Necessary Validity Character Switch
D2 FAG4 D5
CONVS 6585 Scan Characters
in Picture
Length, Picture (Columns 4-71).
pe, Cycle Move Characters
Startloc, Index Yo Storage
Block E5
. Place Value Used if
(Msg. 5) in FD Table, Pictore Contin-
Increment uation Card
Parameter is Encountered
Pointer
Move Rest
(. 13) of Picture to
Storage
G4
Set for
Message 21
SVC 5
Free H4
Storage
From: Obtained for
65/C5 Picture
65/D5 From:
& i —
A3 F1841
'ELOT J5

Return to

Set "
. Entry Point

Appropriate Switeh. Clear Cha:Eéa:Sox A
Message FD Switches

186

eChart 65. IEEDG FD-RAnalysis Module, IEBFDANL (Part 2 of 2)
From 64/G3
F5D2 Bl quired Validity Routine Conversion Routine
Check for vedeanns B3 BS
Required Length Entry to
Parameters. | Name Validity Check
Determine Routin

Point of
Departure

VALCHECK C
a ;M]«‘)‘(i Z:;Ui: Check Field
ear 147, 647 | & Length: Put
Work Area ’ Vuglue inu _Ego_r]
to Zero Packed |
Decimal |
I
i
D3 '9E7 D5 :
Move Numb: MAX. VALUE: Check for |
Set for Z:\ees ,:m ol 32,737 Maximum Error !
Message 15 Work Area Valve, Convert [~ “’
to Binary)
1
i
|
|
|
Return to :
I
|
|
|
|
|
)
]
'
)

'?:;IEP}:D Set for
Field Select Mogos
Option Msg.6) |
1
. %
IEBFDTBL 66A! F1

Return to

Ti:;n'pz::y FD Base Module

Assignments

'ELOT
Return to
IEBDG

Data Set Utility Programs: IEBDG 187

e Chart 66.

188

Entered from
FD Analysis Module
(Chart 65 Box G1)

IEBFDTBL Al

IEBDG FD-Table Module,

F6AY

F5G3

VALCHECK 67E5

Check Picture
Number
Validity

B
Type
El

Convert
Picture Value
to Binary

F5H4 F1

Pack the
Decimal Number

in Storage

FéF4 SVC 4

Gl
Get

Storage for

Picture (Msg.
10)

Not Successful

F6F2

TR Action

No

Test for
Action
Specified

Set FD Switch.

Set 'from Inc.

Restore’ and/or 'to

Inc. Rest.' Value(s)
tol

Set FD
Switch for
Action

Default
to Fixed Action

to Fixed Action

Default

F6K2

_AppientB
either fion, EBCDIC . Picture

N ion,
Picture, or
Neither.

Ripple

Set ‘from
Inc Restore'
Value to 1.

IEBFDTBL (Part 1 of 2)

F7A1 C4
Put Fill Character
In Storage.
Max of 256
Bytes Per
Por8 F7as b4
Picture Picture

or Format

EBCDIC
Picture

from:
67/C2
67/D1

Get Storage
for Triple
Field Length

Cc5
Storage
Obtained

No

F5
Move Picture .
Neither Twice into ltoneSPlcture
Storage Area ano (;: '°g;
(Box BS) rea {Box B5)
@ from:
67/H3
&6
£7¢3 e Fe M SVC 5
Move Picture Free Picture
Three Times Storoge (Chart 64,
into Storage Box B3). Clear
Area (Box B5) Switches

Return to
1EBFDANL
Chart 65 Box G

(Msg. 10)

H5

eChart 67. IEBDG FD-Table Module, IEBFDTIBL (Part 2 of 2)

¥ _.

F9A A4 F9A3 A5
From Chart 66 Resolve Use Specified
Box D4 Starting Char- Character to
acter for Al, Initialize the
AN or CO Field Format Field

tart="
ing Character
Specified

F4 SVC 4 F8H2 C4 F9C4 Cc5
Get Storage || C2 Resolve Field fo) Use First Set Up for
for Length Valuves and/or Charocter of Moving
Action Value Required Signs as Reqd. Format Characters
;’o Hold (o Nothing Sequence to Field

F885 ¥ D MOVEROUT i D4
Get Storage . Fill Field
Set Action .
for T»‘Mce the Switch, Clear with
Required Field D Characters
Length Volue Switches from
For Pattern (Msg. 10} Sequence

VALCHECK E5
& 'ELOY £
Retumn to Clear
: |EBFDANL L Work Area
% () Switches to Zeros
M B Fs
Get Length to Move Number
Move, Obtain Zones from
Addresses Storage to
Set Sign Work Area

'9ED G5

Get Length to Set Format

Move, Obtain Indicator and Zones Check
Addresses . Action Against FO
Set Sign Switches
(Msg, 3
F10H2 = iy H3 66/C5 I-ZS
love Numbers to 66/G1
Resolve NOTE 1 Storage for 4 Set for
Final Field FD Picture Appropriate
Length Field. Set Message
Field Address.
NOTE 1:
SYC 4 i i
Get N . . N
Storage for Format Resolution of Final Field Return fo
Field Length AL Length Set to Field Length Specified (FL) 1EBFDANL
Value AN If FL Sequence Length (SL) in Storage, or
to FL Plus SLIFFL SL,
RA None.
Bl Negative or Positive Binary 1.
PD Negative or Positive Packed Decimal 1.
ZD Zoned Decimal 1.

Data Set Utility Programs: IEBDG - 189

eChart 68. IEBDG Create Analysis Module, IEBCRANL (Part 1 of 5)

From IEBDG
Chart 60/Test 3 IEBCRANL A2
Al
Initialization
ABAY5 81 ASAT 82 '9FD

CREATE

Valid
Continve

Card Format

Type
of Card

CREATE

Subpurameter
Continved

Comments
Continue

ERRORF

Further
Continuation
Indicated

Retum to
Base Module
Chart 60 Box G2

To Print Message

PICTURE
Subparameter
Continued

String Cont, No

Card

Return to
Base Module

hart 60 Box H

For Next Card

3] CREAIE I E2

Continuation
Indicated

ABA10
Determine Set Default
If this is Values for
First CREATE QUANTITY and
Card in FILL if o rrord
DSD Group Necessary Charts 69,70,71
AsATT SVC 4 CARDSCAN F3
Get Storage || F1 Card Test for Last
of 512 Bytes Dar * Keyword. ¢ +
for Create Test for omments
Table if Continuation
Necessary Comments
o e O
C ts ee
KEYSCAN Gl o2 ommen XXX G5
Scan CREATE IEBCREAT _ 73A1 Goto
Card for Write Seon a
Next Keyword. 9;:'3::4, Keyword
See NOTE 1.

NOTE 1.

Microfiche Listing Label XXXX .nd
the Off-Page Connector ZZ/YY
Have the Appropriute Value Tuken
from the Table Below.

Keyword Being Vclve of | “‘alue of
Processed XXXX zzZ/NNY

z QUANTITY A8BI1 71/81
e"X"‘ '|° NAME A6CY 89/A1
Base 3““ e PICTURE A6D1 70781
Chort 60Box G FILL AGET 71/83
To Print Message DDNAME ASF1 69/84
EXIT ASG1 71/85

190

‘i’

eChart 69.

NAME Processing

! From:

68/G5

A6C2 Ct
SPSCAN 7281

Scan
Next
Name

D1
FDSRCH 7285

SearchfD
Tables for
Equal Names

4]
Continu-
ation
Indicated

Yes

No

G

To Cord Scan

AsCs

Copy
Parameter After
Second (

Scan, Convert,
and Store
Copy Value.
(Use SPSCAN
and CONVDB;

IEBDG Create RAnalysis Module, IEBCRANL (Part 2 of 5)

DDNAME Processing

A2
SPSCAN 7281
Scan Name
Parameter From: 68/G5
B.
B2 AGF1 B4
FDSRCH 7285 ABCET o\ SPSCAN 7281
ontinua=
Search FD tion Card In- Scan Out
Tables for dicated DDNAME
Equal Name
% A6C8 Cc3 Cc4
If Invalid
Al 72 :
To Covd Scan AN T e Check (Msg. 12)
Scan Next DDNAME
Name in Length
Copy List
D3 a '
08 D4
FDSRCH 7285
Search FD Yes
Tables for
Equal Names
No
E4
'ELOY E2 Al
Ret: 1 . Scan
Baee l;\rd’::dgle gqm‘:.m input DCBs
Chart 60 Box H1 opy List for Equal.
For Next Card

Set for
Message

Retum to
Base Module
Chart 60 Box G

To Print Message

Repeat FD
Name List as
Required by
Copy Value

SVC 4
Get G3
Storage for
FD Address
Toble as
Needed

To Card Scan

Data Set Utility Programs: IEBDG 191

Assign
Default
Delimiter

F5

Store Input
{or SYSIN)
DCB Address

in Create

Entry

G5

SYSIN
Delimiter
Found

Delimiter

Chart 70.

192

from 68/G5
)
Aé6D1 Bl

SPSCAN 72B1
Scan for
Picture

Length

C1
CONVDB 7283

Convert
Length to
Binary

SVC 4

Get Storage

for Picture Not

Table, Put

Length Value
in Toble

Done

(Msg. 10)

El

Store Table
Addr. in
Create Table.
Check
Delimiters

—®

Invalid
Delimiters

B3

Store Start
Location Value

in Create
Table Entry

Delimiter

Picture
Continuation
Indicated,

IEBDG Create Analysis Module, IEBCRANL (Part 3 of 5)

'9E1 B4
Clear Picture
String Area in
Picture Table

to Zeros

A6D87 C4
Convert
String Valves

to Binary or
Packed Decimal
as Nec

D4

Store
String Value
in Picture
Table

A v

Determine Type
of String.
Process
Accordingly

to Card Scan

Decimal

B5

String
Continuation
indicated

A6D68 Cs5

Move Picture
String from

SPSCAN 7281
Scan Start
Location
Value
H1
CONvVDB 7283 Set for
Convert Start Appropriate
Location Value Message
to Binary (3, 8, or 21) :
®)
Set for
Message
'ELOT K2 ERRORF K3
Return to eturn fo
Base Module Base Module
Chart 60 Box H1 Chart 60 Box G2

for Next Card

to Print Message

Card to
Picture Table

Continuation
Switch

Invalid
Delimiters

to Card Scan

A6D71 G5
Move all of
Picture String
from Card
to Picture
Table

eChart 71.

IEBDG Create Analysis Module, IEBCRANL (Part 4 of 5)

QUANTITY Processing FILL Processing

EXIT Processing

From /G5

From_68/G5
A6BI Bl A6GI B5
SPSCAN 7281 SPSCAN 7281
Scan .
Sci
QUANTITY Ex.""kou’f' :
Parameter it Routine
Name
Cl
CONVDB 7283
Convert
QUANTITY Valve
to Binary
D1
Store Place Place Get Sfov.oge D5
Converted for Exit
Valve i Characters Character Table if
alve in in Create in Create avle |
Create Entry of Entry Ent Necessary
e Y (72 Bytes)
E5
Adjust Exit
Name Table
Pointers
F3 A6G5 F5
% Set Place User's
Appropriate Exit Name in
To Card Scan Message Exit Table
SVC 8
Lood User's G5
Exit Routine
and Store
Addr. in
To Print Message

F3
To Card Sean

Data Set Utility Programs: IEBDG 193

Chart 72. IEBDG Create Analysis Module, IEBCRANL (Part 5 of 5)
PARAMETER SCAN CONVERT FD TABLE SEARCH
SUBROUTINE SUBROUTINE SUBROUTINE
SPSCAN Bl FDSRCH B5
NOTE: 16 Bytes Permits
Check for a Decimal Value of Move Create
Parameter 2,147,483,647. Name to
Column Value Storage
¥ A6C3_ (o]
Test Zones Compare
of Character FD ';"::h
to be Converted . Nomes with
__Name on
Valid No
limi
Delimiters (Msg. 3
o £2 A6C SYQ
P ot Set Put Packed ‘ (ieDt 2';:09.
arameter it Decimal Value or ress
Length OK P omoge. in Storage Toble if
Not Successful Required
F5
imal Store FD
Packed Decimal Toble A
Picture in FD Address
to Print Message Table
G5
Return to
Caller

194

Convert Packed
Decimal to
Binary Value

J3

Return to
Caller

eChart 73. IEBDG Create Module, IEBCREAT (Part 1 of 2)

From: 68/G2

1EBCREAT

O

From:
74788 A7AI8 8
AZAl Initialize for
Next FD Addr,
Test for This Entry,
NOGOSW # There are From: 74/G1
Switch More
A7ANN
Initialize for A7AS Stop-
First Entry ‘ 0 Field Too Generation Tables to
Through (Msg.16) Large Switch on be Processed
Module
D1 '9EF
Determine
o and PMovc FD
j attern to
Input Record Output Record
Characteristics P!
'9F9 El
Initialize
Record Counter
with QUANTITY
, Value, or Set
‘ W Stop Switch

Process Next

Create
Entry in Table
A7A2 y G
Put Fill Call User
Character Routine to
in Output Process Oytput
Record Record
H5
Analyze
Test User Return
IDCBPTR Code. Branch
Accordingly.
2 Action Return | Go to
Field Yes Set Up Move Picture Code |Chart/Box |
Select Option Work Area, to Output Put Out Record 0 73/B5
(See NOTE 1) Record Skip Record 4 73/83
DSD End 12 73/84
No Job Step End 16 73/84
I Set Msg.9 Invalid 73/F2

From Either a SYSIN
or a Non-SYSIN Data Set.

NOTE 1:

° IF Input = SYSIN Work Area = INBUF

If Input = SYSIN,Work Area = INREC

Data Set Utility Programs: IEBDG 195

Chart 74.

&

From 73/C5

A7) Al

Process
Next
Unprocessed FD
Name

Determine
Index and Cycle
Values

A7RI D1
Determine
Format. If
Decimal,
Convert to
Binary

A7R3

Adjust for
Index and
Range
Values

A7)

Reconvert
to Decimal form
as Required

©

See NOTE 2 cmmmemclipe
F1

See
NOTE 1

Generate Rondom
Numbers

Process any

Non-Numeric

Format Except
Random

ABCD Gl
Any
More FD
Test Tables
fD
Address
Table Yes
Al
NOTE 1
Format | Process Label
Truncate
Ripple ABCD1
Wave ABCD5
Roll ABCD2

196

No

<

Put Binary

Value in
Storage
Area Q

IEBDG Create Module, IEBCREAT (Part 2 of 2)

From 73/E4

Repeat B3
Function to
Fulfill

I E2

NOTE 2:
Processing in Biock
F1 is Exponded

=

Convert to
Packed Decimal

in Register

‘ack J3
Decimal
Format Re-

vired

Yes

A7 K3

Move Valve
from Q Area

From 73/C1
73/F2
73/H5

&)

A7Ab B4

Fluh Out
SYSIN

DCB if
any Exists

SVC 5

Free C4
Picture

Table
Storoge

Ar

Free
FD Address
Table (S)

E4

Delete User
Exit Routine
from Storage

‘9CF SVC 5
F4

Free
Create Table
Storage
Areas

J4

Unpack to
Zoned Decimal.
Place in FD

Field Address

to FD Field
Area

®

()

B85

Reinitialize

for Create
Analysis
Module

To Read Next Cord

¢

eChart 75. IEBDG Message Module, IEBDGMSG

'ELOY

NOTE 1: If Not
Chonnel 12 and
Linecount not
Max, Skip Next
Block (F2).

Entered from IEBDG
to put Out Headings,
Control Card Images,
Error Messages, and
Error Flogs.

IEBDGMSG B2

C2

Test
SYSPRINT DCBOFLGS
(Output) Data .
Set Ope (4th Bit)

Test
FLAGSW
(2nd Bit)

Check for
Channel 12
and Linecount
Maximum

(NOTE 1)

MSG03 F2

Reset Line
Counter, Get
Heading Addr.

MSG02 G2
Check for Is There a
Control Card Control Card

Image, Image to be
Error Message, Printed.

or Error Flay (Msg, 30)
MSGO4 or MSGO5 I H2

Get Appro-
priate
Message
Address

MSG06

Write Out
Message, Using
SYSPRINT
and DCB
Addr

J2 Uses Move
Mode of
PUT Macro
Instruction

MSGO07 C4

Increment
Page Number
Counter

D4

Increment
Counters. Test
Flog Switches

Return to
{EBDG

NOTE 2: Eror Flag Must be
Turned Off.
Go Test for o
Channel 12 Indication.

NOTE 3: Heading Message has
been put on SYSPRINT.
Go to Test for Control
Card Image.

NOTE 4: No Error Flag has
been Set and Either
1. Heading Switch is
off, or
2. Heading Switch is
off and Heading
Message is Indicated.

Data Set Utility Programs: IEBDG 197

Independent Utility Programs

Independent utility programs are executed
outside and in support of IEM System/360
Cperating System. They are:

e IBCDASDI, which initializes a direct
access volume and obtains alternate
tracks on initialized disk storage.

e IBCDMPRS (dump-restore), which dumps
and restores the data contents of a
direct access volume.

e IBCRCVRP (recover-replace), which reco-
vers data from a track on direct access
storage, replaces defective records
with data supplied by the user, and
writes the composite data on an opera-
tive track of the original volume.

Independent utilities are discussed in
four parts:

e Supervisory Routines of the Independent
Utilities

e IBCDASDI
e IBCDMPRS

e IBCRCVRP

Supervisory Routines of the

Independent Utilities

The independent utility programs contain
copies of supervisory routines to check the
input device, read control statements, ana-
lyze control statements, check volume
labels, print diagnostic messages, type
diagnostic messages to the operator, con-
trol I/0, and analyze 1/0 interruptions.

CHECKING THE INPUT DEVICE

The entry point to this routine is CKINPUT.
The routine is entered immediately after
IBCDASDI, IBCDMPRS, or IBCRCVRP is loaded.
The program assumes a WAIT state (by means
of LPSW) until the input device is defined
by the operator. The operator then enters
a code by means of typewriter or console.
This routine then checks the code to verify
that the input device is 1442, 1402, 2400,
or 2540 (or 1052 for IBCRCVRP) and that the
channel number is not greater than six. If
these conditions are satisfied, the appro-
priate UCB is selected and control is given
to the control statement analysis routine

198

at location CLRSCAN. If an error is
detected in the coded information, an error
message is printed or displayed and the
WAIT state is entered with E's disglayed on
the console lights.

DATA INPUT ROUTINE

The entry point to this routine is SYSIN.
Linkage to the routine is by a BAL LINK15,
SYSIN. Register GR2 contains the address
of the calling routine's buffer. This sub-
routine stores the buffer address in the
channel command word SYICCW, sets a read
command and 1links to subroutine STAR-
TIO via a BAL LINK9, STARTIC. Reading is
then performed by the defined input device.
when control is returned to this routine,
it in turn returns control to the calling
routine via a BR LINK15.

CONTROL STATEMENT ANALYSIS

The entry point to this routine is CLRSCAN.
Housekeeping functions are first performed
on program switches and buffer areas
required by the routine. This routine then
links to the control statement scan routine
at RDCARD. RDCARD returns a pointer to a
field and the length of the field in regis-
ters SCANADR and LENGTH, respectively, and
an indication of the field type in location
SWITCHRD. SWITCHRD is a one-byte switch
with the following settings:

Bit Value

Meaning

control statement error
bypass

first control statement has
been read

operator found

keyword found

parameter found

cuE wWkrRoO
RPRE R

vValidity checks are then performed on
the scanned data. If an error is detected
in the input data, an attempt is made to
print a message on the defined message out-
put device. If the message output device
is not defined, an attempt is made to issue
the message using the Write to Operator
routine. If neither device is defined, the
WAIT state is entered. 1If the message is
successfully issued, the WAIT state is
entered, and the program must be reiniti-
ated and the corrected statement submitted.

Following completion of control state-
ment analysis, control is given to the
appropriate routine in IBCDASDI, IBCDMPRS,
or IBCRCVRP.

VOLUME LABEL CHECKING

The IBCDASDI program compares the volume
serial number of the object volume to that
specified ky the VOLID parameter, if both
numkers are present. If the VOLID parame-
ter specifies SCRATCH, no comparison
occurs. If a serial number is specified,
and it is not equal to that in the volume
label, or if the volume label is not pre-
sent, this routine causes an appropriate
message to be printed and terminates the
program.

The IBCDMERS program compares the volume
serial numker of the TO volume to that spe-
cified by the VCLID parameter, if both num-
bers are present. If the TO device is
tape, and there is no volume label present,
there must be a tape mark at load point, or
SCRATCH must be specified, in order for the
program to continue. If the TO device is
tape and a volume label is present and
VOLID does not specify SCRATCH, the volume
serial number in the label must equal that
specified by VOLID in order for the rrogram
to continue. If the TO device is direct
access storage, VOLID must be specified and
an equal comparison of serial numbers must
occur in order for the program to continue.

The IBCRCVRP program compares the serial
number of the direct access volume to that
specified by the VOLID parameter. If there
is no volume label, or if the serial num-
bers are not equal, a message is written
and the request is aborted.

Entry point to the volume label checking
routine in all three of the independent
utility programs is at location CKVOLLBL.

MESSAGE COUTPUT ROUTINE

The entry point to this routine is SYSOUT.
This routine writes messages using the mes-
sage output device as defined by the MSG
control statement. The address of the
fixed-length message to be printed is
passed to this routine in register GR2.

The appropriate CCW is then constructed,
and its address is passed in register GR2

Independent Utilities:

to routine STARTIO. Upon regaining con-
trol, this routine returns to the calling
routine.

WRITE TO OPERATOR ROUTINE

The entry point to this routine is CEPRNT.
This routine writes messages which need to
be brought to the immediate attention of
the operator. The message is given on the
console typewriter if one is available.

I/0 CONTROL ROUTINE

This routine controls every I/C operation
performed by the independent utility pro-
grams. It is entered at STARTIO, at which
time register UCBREG contains the address
of the appropriate UCB, and register CSR3
ccntains the address of the CCW to be
executed. The channel-unit number is
loaded into register CSR4. This routine
stores the CCW address in the CAW and
issues the SIO instruction. If the unit is
unavailable, the WAIT state is entered and
the program is terminated. If the unit is
busy, the SIO is issued until the command
is accepted, at which time the TIO instruc-
tion is issued repeatedly until the unit is
not busy. At this time control is given to
CKCSW, the entry point to the I/C interrup-
tion analysis routine. The IBCDMPRS pro-
gram returns control to the calling rou-
tine, however, to continue processing as
scon as the I/0 is started.

UNIT CONTROL BLOCKS: The independent util-
ity programs each contain one unit control

block (UCB) for each device in use. Figure
62 lists the UCBs and their uses. UCBs for
the independent utilities have the follow-

ing format:

Byte Function

00 unit reference number

01 used only by IBCRCVRF; set to X'FF'
if the UCB is for a tape drive, set
to zero when label is checked

02-03 channel-unit

04 CAW protect

05-07 CAW

08-15 interruption PSW

16-23 interruption Csw

24-31 sense bytes

Supervisory Routines 199

1] T L |
| UCB Lakel | Use in IBCDASDI | Use in IBCDMPRS Use in IBCRCVRP |
L. ' 4 J
[] T T 1
| UCBTO | *TO" device | *TO" devicel 'TO" devicet |
UCBFRM unused *FROM' device?l *FROM' devicel
UCBSYI control statement input |control statement input jcontrol statement input
device device device
L i
LB
| ucBsYo |message output device message cutput device message output device
L 4 i
v T T
| UCBOPR |operator message device |operator message device |operator message device |
i L L 4 d
r T H 1 1
| UCBLIST | unused unused record data listing
| | device
b t t t 1
UCBSERT {unused unused	'DATA® replace state-	
	jments input device	
		(REPLACE only)
% L L 4 __ll		
**TO* and *FRCM' are relative to the operation being performed by the programs. For a		
dump from 2311 disk storage to tape, for example, *'TO' refers to tape and 'FROM'		
refers to 2311; whereas for the companion restore, °'TO' refers to 2311 and °'FRCM'		
refers to tape. A parallel situation exists for recovering and replacing.		
L d
Figure 62. The Use of UCBs in the Independent Utilities

I/0 INTERRUPTICN ANALYSIS

All I/0 interruptions cause control to be
given to the I/0 interruption analysis rou-
tine, whose entry point is CKCSW. Register
UCBREG contains the address of the applica-
ble UCB. This routine checks the nature of
the I/0 interruption:

1. Error: control is given to IOERR.

2. Attention: control is given to ATTN.
3. Busy: the SIO is reissued.

4. Device end:
IORTRN.

control is given to

5. Unit end: the SIO is reissued.

6. Channel end:
device end.

the TIO is reissued for

IOERR: The CSW, PSW, and CAW are saved,
and control is given to SENCHK (in case of
a unit check) or TYPECHK (otherwise).
ATTN: The request is honored.

IORTRN: If a surface check is indicated,
control is given to the appropriate
(device-dependent) surface check routine;
othexrwise, control is returned to the rou-
tine which first issued the call to SIAR-
TIO. In the case of IBCDMPRS, the UCB is
posted complete and control is returned to

the routine which first issued the call to
STARTIC.

200

SENCHK: The device address is entered in
€I0 and TIO0 instructions, a sense CCW
address is stored in the CAW, and the SIC
is issued until it is accepted, at which
time the TIO is issued. The TIO is reis-
sued until it is accepted, at which time
centrol is given to TYFECHK.

TYPECHK: The device type causing the
interruption is determined by interrogating
the UCB, whose address is in register
UCBREG. Control is then given to one of
the following locations:

Device Type Location
2302, 2303,2311,2314 ERR100
1442 ERR200
2400 series tape units ERR300
1403 ERR400
1052, 2150 ERR500
1402 ERR600
2301 ERR700
1443 ERR800
2321 ERR900

At each of the locations - ERR100, ERR200,
««. IER900 - is the instruction

BAL ERRLINK,ERRTEST

followed by a table of two-byte entries.
The instruction loads the address of tne
table into register ERRLINK and then gives
control to routine ERRTEST, which uses the
indicated table to interrogate status and/
or sense bits.

Each two-byte entry in the indicated
table consists of a one-byte relative
pointer to a status or sense bit and a one-
byte relative pointer to a routine. Rou-
tine ERRTEST successively interrogates the
bit indicated by the first byte of the
table entry; if the bit is on, ERRTEST
directs control to the routine indicated by
the second byte of the table entry; if not,
ERRTEST processes the next entry in the
table.

The settings of the first byte of each
table entry are as follows:

Bits Setting Meaning
Case 1: 0-3 X'1* The bit to be tested
is a status bit.
4-7 X'y' y = the bit position

(hexadecimal) of the
bit to be tested,
relative to bit 32
of the CSwW.

Independent Utilities:

Bits Setting Meaning
Case 2: 0-3 X*'0* The bit to be tested
is a sense bit.
4-7 X'y" y = the bit position

(hexadecimal) of the
bit to be tested,
relative to bit 0 of
sense byte 0.

If the tested half-byte is found to be
on, ERRTEST directs control to location
A*B,

where:

A = the address of the first byte of the
current table entry;

B = the value of the second byte of the
current table entry.

Supervisory Routines 201

Initializing and Assigning Alternate
Tracks on Direct Access Volumes
(IBCDASDI)

The direct access storage device initiali-
zation (IBCDASDI) program performs one of
two functions during a single execution:

e Initializes a direct access volure to
conform to Operating System/ 360
specifications.

® Cbtains alternate tracks for specified
defective tracks on an already initial-
ized disk storage volume.

The current version of this program
initializes a volume on:

2301
2302
2303
2311
2314
2321

drum
disk
drum
disk
disk
data

storage
storage
storage
storage
storage
cell storage

The program obtains alternate tracks for
a volume on:

2302 disk
2311 disk
2314 disk
2321 data

storage
storage
storage
cell storage

Initializing a direct access volume con-
sists of the following:

e Detecting defective tracks.

e Assigning alternates to defective pri-
mary tracks (on disk storage only).

e Writing the standard home address and
record zero on each track.

e Writing track zero, consisting of two
IPL records, a standard volume label,
and space for seven additiomal volume
labels (see Figure 63).

e Writing a standard volume table of con-
tents (VTOC) at a user-specified
location.

e COptionally writing the IPL initializa-
tion program.

Obtaining an alternate track for a user-
specified defective primary (i.e., nonal-
ternate) track on disk storage consists of
the following:

9

1. Selecting the first available opera-
tive alternate track from those indi-
cated in the VIOC of the specified
volume.

2. Writing the address (CCHHR) of the
primary track in the count field of
the selected alternate track, and
writing the address (CCHHR) of the al-
ternate track in the count field of
the primary track.

3. Modifying fields five and six of the
VIOC DSCB to reflect the new status of
available alternate tracks.

PROGRAM FLOW

Chart 76 shows the logical flow of the
DASDI program. This section describes the
operations performed by the IBCDASDI pro-
gram relative to its functions: initializ-
ing a volume and obtaining alternate
tracks.

Descriptions of the following supervi-
sory routines of the IBCDASDI program may
be found in this publication in the section
entitled "Supervisory Routines of the Inde-
pendent Utilities.”

s Input Device Check (CKINFEUT)

e Data Input (SYSIN)

Ccontrol Statement Analysis (CLRSCAN)

Message Output (SYSCUT)

® Write to Operator (CFPRNT)

e I/0 Control (STARTIO)

e I/0 Interruption Analysis (CKCSW)

After the input device has been defined
by the operator and checked for validity by
the IBCDASDI program (see "Checking the
Input Device®), control statements are read
and analyzed (see "Control Statement Analy-
sis") and control is given to the appropri-
ate initialization or GETALT section of the
program.

T iRg T ARE T Tt LI} s)]
| HA || RO I R1 I R2] R3 I R4 L |{ RO |
L il il 1L il F N 411 LA d
HOME TRACK IPL IPL STANDARD ADDITIONAL ADDITIONAL
ADDRESS DESCRIPTOR RECORD BOOTSTRAP VOLUME VOLUME VOLUME
RECORD (OR DUMMY) LABEL LABEL LABEL Q
(OPTIONAL) (OPTIONAL)
Figure 63. Track Zero

202

Initializing a Volume 1. Wwhen the flag test has been sup-
’ pressed, the home address (HA) is
‘h’ The following routines are executed to written followed by a maximum-
initialize a volume: length record zero consisting of

INTALT, which initializes a track for
disk and drum devices.

WRITECT1, which initializes a track for
data cell storage.

CONSTR1, which builds an image of track
zero in main storage.

YESUSER, which places additional volume
labels in the track zero format.

CONSTR2, which writes track zero.

WRTIPL, which writes the IPL initiali-
zation program, if requested.

FMTVTOC, which builds the VTOC.

WRTVTOC, which writes the VTOC.

data field of identical bytes of
hexadecimal 55.

2. The track is read and checked.

3. A maximum-length record zero is
again written, this time consist-
ing of data field of identical
bytes of hexadecimal 00.

4. The track is read and checked.

5. If no data error has occurred in
steps 2 to 4 and no additional
passes are requested, record zero
is rewritten (see step 8). If
additional passes are requested
on this track, repeat steps 1 to
4.

6. If either step 2 or step 4 have
indicated a data error, steps 1
to 4 are repeated ten more times,

Following execution of WRTVTOC, the pro-
gram initiates normal end-of-job and the
CPU assumes the WAIT state. 7. If any other data error occurs

during step 6, the track is

unless a data error occurs.

<

initializes a track for disk and drum
devices. When the device is disk,
INTALT first checks the track for hav-
ing been previously flagged as defec-
tive. (This test can be suppressed
for the first initialization on that
volume.) Alternate tracks are immedi-
ately assigned for tracks flagged as
defective.

Disk and drum track initialization may
or may not include surface analysis.
When the recording surface is to be
checked, the alternate tracks are
checked first. (The alternmate track
concept is not defined for drum
storage.) If an alternate track is
found to be defective, it is flagged
as such (later, FMTVTOC adjusts field
six of the VTOC DSCE to indicate the
nunber of available alternate tracks).
If a primary track is found to be
defective, it is assigned an alternate
by ASGNALT, which is the same routine
used to assign alternate tracks for a
GETALT execution of IBCDASDI. After
the track is assigned by ASGNALT and a
message printed, control is returned
to the initialization section of the
program, at which time the next track
is checked, or, if all tracks have
been checked, track zero is con-
structed. Tracks are checked for a
good recording surface in the follow-
ing way:

INTALT flagged as defective. An alter-

nate track is assigned when the
device is disk. For drum
devices, a message is given indi-
cating the address of the defec-
tive track. If the HA-RO area is
defective on a 2314 disk storage
volume, an attempt is made to
move the HA-RO fields down the
track approximately 800 bytes.

8. A track descriptor record (RO) is
then written and verified as an
8-byte count field followed by an
8-byte data field of zeros.

9. when all tracks have been ini-
tialized, control is given to
CONSTR1. oOtherwise, the sequence
is repeated for each track.

(When initialization without sur-
face analysis is requested, only
steps 8 and 9, are repeated for
each track.)

WRITECT1

performs data cell track analysis in
the following way:

1. A home address (HA), track
descriptor record (RO), and a
maximum length record one (R1)
are written on each of 20 tracks
of a cylinder. The data field of
R1 consists of identical bytes,
containing hexadecimal ES.

Independent Utilities: IBCDASDI 203

2. BAn address compare is made on
each of the tracks written in
step 1, and record one is veri-
fied for each track.

3. Record one is erased for each
track written above.

4. If no errors occur in step 2,
steps 1 to 3 are repeated for
each cylinder with additional
address compares made after the
completion of each strip, sub-
cell, and cell.

5. If an error (i.e., data check or
missing address marker) has
occurred during step 2, the track
is rewritten and reread until
either a successful pass is
obtained or 113 errors have
occurred. If this track is in
the alternate area, it is flagged
to prevent its future use.
Ctherwise, an alternate track is
assigned by ASGNALT, and a mes-
sage is printed.

6. When all tracks have been ini-
tialized, control is given to
CONSTR1.

CONSTR1
constructs track zero. If the IPL
function is selected, records one and
two are written as an IPL bocotstrap
program and a program to load the IPL
initialization program. If the IPL
function is not selected, record one
is written as a program to set the
WAIT state in the CPU in case the
volume is loaded for execution.

Regardless of whether the IPL function
is selected, record two is written as an
IPL kootstrap. (Since record one will set
the WAIT state in the CPU in case a non-IPL
volume is loaded for execution, there is no
danger of executing record two.)

YESUSER
writes up to seven user-supplied addi-
tional volume labels as records 4-10.
Space is allocated for those volume
lakels not supplied.

CONSTR2
writes track zero, consisting of two
IPL records (or a dummy IPL record), a
standard volume label and up to seven
additional lakels.

204

WRTIPL
writes the user-supplied IPL initiali-
zation program, if requested. The
program is written on the first track
preceding the alternate track area
(track 1999 on 2311), or, if that
track is defective, on its assigned
alternate.

FMTVTOC
constructs the DSCBs needed for the
VIOC. They are the VTOC DSCB (format
4) and the DADSM DSCB (format 5).

WRTVTOC
writes at the user-specified location
of the VTOC the DSCBs constructed by
FMTVTOC.

Obtaining Alternate Tracks

If the IBCDASDI program is executed under
the GETALT option, control is given to
location GETALT following control card ana-
lysis. Routine GETALT performs a track
check on the user-specified track if the
track check bypass is not selected. If the
track is found to be operative, a message
to that effect is printed (or displayed)
and the next GETALT request is processed.
If the track check bypass is selected, or
if the track is found to be defective, the
following routines are executed in the
order in which they appear.

ASGNALT
flags the given track as defective and
assigns it an alternate as described,
if it is a primary track. If the
given track is an alternate, it is
flagged as defective; if the given al-
ternate track had been assigned to a

primary, an operative alternate is
assigned to the primary.

TRKPRNT
causes a message to be printed stating
the addresses of the defective track
and its assigned alternate.

GETALTY
decrements field six of the VTOC to
reflect the fact that one less alter-
nate track is available, and incre-
ments field five to point to the next
available alternate track.

control is then given to location GETALT
tc repeat the process for the next user-
sgecified track, or, if none exists,
initiates normal end-of-job and sets the
CPU to the WAIT state.

Chart 76.

IBCDASDI - Initializing and Assigning Alternate Tracks on Direct Access Volumes

A2

INTALT or WRITECT 1

Initialize

a
Track

c2

Init,

CKINPUT A3

Define Input
Device and
Perform Setup

RDCARD CLRSCAN

Read, Scan
and Analyze
Control
Statements

ALTANL

Construct Track
Zero-Add IPLY,
IPL2 Recs. if IPL
Requested, Else
Add Dummy (PL

F1

Add Additional
(User) Volume
Labels to
Format if
Requested

CONSTR2 G1

WRTIPL

If IPL is
Requested ,
Write IPL
Initialization
Program

FMTVTOC J1

Construct
VTOC DSCBs;
VTOC, and DADSM

K3
EQJ

Getalt

GETALTX C5

GETALT

Perform Track
Check on

Specified Track

GETALT2 D4
Print 'Track

Check
Indicates

ASGNAL

Flag Original
Track and
Assign
Altemate

Getalf
or
Initialize

Perform VTOC
DSCB Alternate
Track Update

Is I5

here Anothei
Getalt
Request,

Yes

No

“‘ (Wait) J*

Independent Utilities: IBCDASDI 205

Dumping and Restoring a Direct
Access Volume (IBCDMPRS)

The direct access storage device dump-
restore program performs one of two func-
tions during a single execution:

e Dumping (copying) data from a direct
access volume to 2311 or 2314 disk
storage or magnetic tape, in a format
recognizakle to the restore portion of
the program.

e Restoring (recopying) data which has
keen dumped by this program. Data is
restored only to a volume residing on a
device of the same model number from
which it was dumped.

There is no provision to restore from
2311 to 2311 or from 2314 to 2314.
Instead, another dump of the same type may
ke performed.

A dump may ke either partial (a set of
contiguous tracks is dumped) or entire (the
entire volume is dumped).

The current version of this program
dumps the data contents of a volume from:

e 2301 drum storage to magnetic tape or
2311 disk storage or 2314 disk storage.

e 2302 disk storage to magnetic tarpe or
2311 disk storage or 2314 disk storage.

e 2303 drum storage to magnetic tape or
2311 disk storage or 2314 disk storage.

e 2311 disk storage to magnetic tage or
2311 disk storage or 2314 disk storage.

e 2314 disk storage to magnetic tape or
2311 disk storage or 2314 disk storage.

e 2321 data cell storage to magnetic tape
or 2311 disk storage or 2314 disk
storage.

DUMPED DATA FORMAT

The format of dumped data depends on the
device configuration of the dump: 2311 to
2311 (or 2314 to 2314), direct access to
tape, or non-2311 direct access to 2311 (or
non-2314 to 2314).

2311 TO 2311 (CR 2314 TO 2314): Data from
the input 2311 (or 2314) is copied record-
for-record and track-for-track. For this
reason a restore from 2311 to 2311 (or 2314
to 2314) is not provided, but can be
effected ky another dump.

206

DIRECT ACCESS TO TAPE: The following rec-
ords are written on tape for a direct
access-to-tape dump (see Figure 64):

e A limits record is written as the first
record (following any labels) on each
volume of tape. This record contains
the addresses of the first track
dumped, the last track dumped, and the
the first track dumped on this volume
of tape.

e A control record is written for each
track dumped, immediately preceding the
dumped data from the track. The con-
trol record contains a channel program
to be used by a subsequent restore to
write one track.

e A dumped track image is written as a
maximum-length physical record. A
track image is not split between tapes.

e A trailer label is written at the end
of each tape volume, immediately fol-
lowing the tape mark. During a
restore, successive oring of trailer
labels indicates whether another FROM
volume is to be mounted. The mounting
of FROM volumes during a restore is
thus order-independent.

NCN-2311 TO 2311 (OR NON-2314 TO 2314):

The records written as record one of track
one of each 2311 (or 2314) volume needed
for the dump are similar to those for tape,
but with the following differences:

e The limits record is written as record
one of track one of each 2311 (or 2314)
volume needed for the dump. The limits
record contains (as with tape) the
addresses of the first track dumped,
the last track dumped, and the first
track dumped onto this 2311 (or 2314)
volume.

e The control record is written immedi-
ately preceding each dumped track
image. The first control record on a
volume is written as record one of
track two; subsequent control records
are each written as record one of the
first track following the image of the
last track dumped. The control record
consists of two subsets: (1) eight
two-byte fields, each containing the
number of bytes of the original
(dumped) track written on a track of
the 2311 (or 2314) and (2) a channel
program to be used by a subsequent
restore to write one track.

e A dumped track image is written in
maximum-length physical records on as
many 2311 (or 2314) tracks as are
necessary. The number of bytes of the

dumped non-2311 (or non-2314) track
written on each 2311 (or 2314) track is
recorded in the control record for the
track image. A dumped track image is
not split between disk packs.

e The trailer label is written as record
one on the last available track of each
2311 (or 2314) disk pack used. The
contents of the trailer label for 2311
(or 2314) are identical to those for
tape.

PROGRAM FLCW

The flow of the direct access storage
device dump/restore program is shown in
Chart 77. Descriptions of the following
supervisory routines of the direct access
storage device dump/restore program may be
found in this publication in the section
entitled "Supervisory Routines of the Sup-
port Utilities."

Input Device Check (CKINPUT)

Control Statement Analysis (CLRSCAN)
Message Cutput (SYSOUT)

Write to Operator (OPPRNT)

I1/0 Control (STARTIO)

I/0 Interruption Analysis (CKCSW)

After the input device has been defined
by the operator and checked for validity by
this program, control statements are read
and analyzed and control is given to the
appropriate dump or restore section of the
program.

Dumping

If the program is dumping, the following
routines are executed in the order listed.

TOTAPE
ensures that the TO volume is mounted,
whether tape or not. If the dump is
not from 2311 to 2311 (or not from
2314 to 2314), this routine also
writes the limits record.

MODTKADF
reads the count fields on one track of
the FROM volume and at the same time,
if two channels are used, writes head-
er or data records on tape from loca-
tion DTABUFF.

ANALSENS
uses the information obtained from
reading the count field of one track
to construct a channel program capable
of reading the count, key, and data
fields of the track.

READCCWSs
moves the channel program to a higher
area in main storage and executes the

channel program constructed by ANAL-
SENS, reading one track of the FROM
volume into the buffer DTABUFF. (In
the buffer, record images are
klocked.)

TETWRISP
converts the channel program at loca-
tion DTALENG to a channel program cap-
able of writing the buffer (with read-
kack check) onto a track of the same
device from which it was read in its
original format.

If the dump is 2311-2311 (or 2314-
2314), the channel program is
executed, thus writing one track on to
the 2311 (or 2314).

If the dump is not 2311-2311 (or not
2314-2314), the converted channel pro-
gram is not executed during dumping,
kut will be executed during a future
restore. After converting the channel
program, this routine gives control to
DMPDASD if the TO device is tape, or
to STRTDSK if the TC device is 2311
(or 2314).

DMPDASD
writes the control record, comnsisting
of the channel program at location
DTALENG on the tape. Control is then
given to MODTRADF, EOJ1, EOJAA, or the
program terminates (see Chart 77).

STRTDSK
writes the control record and the
kbuffer on 2311 (or 2314) disk storage.
The function performed is similar to
that of DMPDASD (writing on tape), but
with the following exceptions (see
Figure 64).

e The control record for dumping
from non-2311 to 2311 (or non-2314
to 2314) consists of a 16-byte
field beginning at DTALENG pre-
fixed to the channel program at
location CCWLIST.

e Several 2311 (or 2314) tracks may
be needed to contain the data in
the buffer at DTABUFF. If so, the
buffer is written in maximum-~ :
length physical records on as many
tracks as are needed. A buffer
image is not split between disk
packs. Any remaining space on the
last track needed to contain the
buffer image is not used. (The
next control record begins on the
next available track.)

control is then given to MCDTKADF, EOJ1,
EOJAA, or the program is terminated (see
Chart 77).

Independent Utilities: IBCDMPRS 207

2311 or 2302 Home
Disk Storage Address RO R1 R2 R3
Main Storage A
DTALENG DTABUFF
Control
Data Track Image (No Gaps)
DUMP RESTORE
Magnetic Tape
Header 77 3R7 Limi c I 7 ‘Next / | / . L AEUVAE
| o imits ontro D d Track 1 trol mage of Next / Trailer
$ (Lg;etional) /,'F //Record % Data umped Track Image % CD:?am / Dumped Track / EOF é Label ?//(F)
Figure 64. Dumping and Restoring a Direct Access Track
EO0J1 (or 2314) disk storage. Wwhen the

is given control when a new TO volume
is needed. EOJ1 writes the trailer
lakel on the current TO volume and
then gives control to routine TOTAPE
to insure that a new volume is
mounted. (See "Dumped Data Format"
for a description of the trailer label
and its location for tape or disk.)

EOJAA

is given control at the conclusion of
an entire 2311-2311 (or 2314-2314)
dump. EOJAA updates field six of the
VTCC DSCB to reflect any alternate
track assignments necessitated during
the dump. A WAIT state is then set in
the CPU and the program terminates.

Restoring

After the input device has been verified
and control statements have been analyzed

(see
dent

"Supervisory Routines of the Indepen-
Utilities"), control is given to the

restore section of the program, consisting
of the following routines, which are
executed in the order indicated.

FRMTAPE

208

ensures that a FROM volume is mounted,
whether tape or disk. The order of
volume mounting is imwaterial. After
a FRCM volume is mounted, this routine
reads the limits record (record one).
control is then given to RSTRTAPE, if
the FRCM device is tape, and to
STRTDSK, if the FROM device is 2311

device is not the 2301 drum and if
there is at least 64K of main storage,
buffers are built in upper storage for
the data records and the channel
programs.

RETRTAPE

reads the control record into location
DTALENG1, when storage is available.
(The control record consists of a
channel program capable of restoring
the dumped track.) From DTALENG1l, the
record is moved to DTALENG. The image
of the dumped track (in blocked record
format) is read into location DTA-
BUFF1, when storage is available, and
then is moved to DTABUFF. Control is
then given to MODTKADT.

STRTDSK

performs the same logical function as
RSTIRTAPE, but reads instead from 2311
(or 2314) disk storage. The control
record is first read into location
DTALENG (also causing the channel pro-
gram, the second field of the control
record, to be read into location
CCWLIST). The first field of the con-
trol record is then used to read as
many tracks as are necessary to "fill"
the buffer DTABUFF, that is, to com-
plete one dumped track image in the
buffer. Control is then given to rou-
tine MODTKADT.

¢

MODTKADT
executes the channel program at loca-
tion DTALENG, thus restoring one track

EOJA

in its original format. If the FROM
volume is not exhausted, control is
given to RSTRTAPE or STRTDSK, depend-
ing on whether the FROM device is tape
or disk, respectively. When the FROM
volume is exhausted, control is given
to EGJA to read the trailer label.

reads the trailer label (for a
description of the trailer label and
its location, see "Dumped Data For-
mat®). Successive oring of trailer
labels by this routine controls FROM
volume mounting. If another FROM

volume is to be processed, control is
given to FRMTAPE to insure that it is
mounted, whether tape or disk. If no
more FROM volumes are to be processed,
control is given to ECJAA (if the
restore is entire), or the program is
terminated (if the restore is par-
tial). Note: a restore is entire or
partial depending only on the 1limits
of the companion dump.

EOJaa

updates field six of the VTOC DSCB to
reflect any alternate track assign-
ments necessitated during the (entire)
restore. No such update is provided
for a partial restore.

Independent Utilities: IBCDMERS 209

Chart 77. IBCDMPRS - Dumping and Restoring a Direct Access Volume

CKINPUT A3

Define Input
Device and
Perform Setup

RDCARD 83

Read ond
Analyze Control
Statements

TOTAPE FRMTAPE Cc4
Mount to Volume
If Dump is not Mount from Vol.
2311-2311, Write and Read
Limits Limits Record
Record
NOTE:
MODTKADF D2 D4 For Block [?4
Read Count Read Control the Fol Iowulng
Fields of One Record into Labels Apply
Track to DTALENG .Read Read from ;gpe--lsiS;RTAPE
Construct Chan. Track Image Read from 2311--STRDSK
Prog,to Read TR into DTABUFF
ANALSENS E2 MODTKADT E4
Execute Channel Execute
Program Just Channel
Constructed, Program. Just
Reading a Track Read in to
info DTABUFF Write a Track
TSTWRTSP F2
Change Chon Prog |
Just Executed
to a Write Prog .
(to be Written)
in Cont . Ret.)
NOTE:
G2 For Block G2,
. the Following
w;'::::’;;”' Labels Apply: Read
Necessary. erfe on Tape~-DMPDASD Trailer
Write DTABUFF . Write on 2311-=STRTDSK Label)
Are
Dump Limits

Satisfied

EOJAA J3

J2 Update VTOC
onto Volume
to Reflect any
Alternate Track
Assignments

EOJ1

Write Trailer
Lobel (Last Trk.
on DASD, After

EOF on Tape)

is on Entir
2311-231
Dump

EOJ
(Wait)

210

Recovering and Replacing a
Track (IBCRCVRP)

The recover-replace program performs one of
two functions during a single execution:

e Recovering (reading) data from a track
on an initialized direct access volume;
listing defective records, or all rec-
orxds, if specified; and writing the
good data on a recovery output tape for
use Ly the replace portion of the pro-
gram during a future execution.

e Replacing a good track image on an
operative track by merging data from
the recovery output tape with replace-
ment data supplied by the user.

Requests may be stacked, but all must
specify the same function -- recover or
replace.

The current version of the program sug-
ports recovery and replacement of data on:

2302 disk storage
2303 drum storage
2311 disk storage
2314 disk storage
2321 data cell storage

As a stand-alone program, recover-
replace contains the following supervisory
routines, described under the heading,
"Supervisory Routines of the Independent
Utilities":

The logic of the recover and replace
portions of the program is shown in the
following charts:

Chart 78. Overall logic

Chart 79. Recover logic

Chart 80. Recover Data Check Routine

Chart 81. Recover Count Check and End-
of-track Routines

Chart 82. Replace Logic

Overall Flow

when the program gains control, it waits
for the operator to define the input device
from which utility control statements are
to be read. The program then verifies that
the input device definition is valid, and
begins to read, scan, and analyze utility
control statements.

Figure 65 suggests how main storage is
managed by the program. The space occupied
by the replace portion of the program after
initial loading is used as buffer for read-
ing the track to be recovered or replaced.
A recover run causes the replace coding to
be overlaid by the track image; for a
replace run the replace coding is first
moved to overlay the recover portion of the
program.

Depending on the request, the appropri-
ate recover or replace coding is then
executed. Following this, listing is per-
formed: for a recover run, if the LIST
ortion is specified all records on the
track are listed, or otherwise only the
defective records; for a replace run, if

e Input Device Check (CKINPUT) the LIST option is specified all records on
e Data Input Routine (SYSIN) the replacement track are listed, or other-
e Control Statement Analysis (CLRSCAN) wise only the replacement records. When
e Volume Lakel Check (CKVOLLEL) all requests have been serviced, the pro-
e Message Cutput Routine (SYSOUT) gram issues an end-of-job message, rewinds
e Write to Operator (OPPRNT) and unloads the tapes, and sets the wait
e 1/0 Control (STARTIO) state in the CPU with D's displayed on the
e I/0 Interruption Analysis (CKCSW) console lights.
IBCRCVRP IBCRCVRP IBCRCVRP
(low) (low)
Supervisory Routines Supervisory Routines Supervisory Routines
VRECOVR VRECOWR VRECOWR
Recovery Coding Recovery Coding Replace Coding
VRECTAB VRECTAB VRECTAB
Control Data Control Data Control Data
VGOODBUF VGOODBUF VGOODBUF
Replace Coding Buffer Buffer
(high) (high)
A. Program Listing B. Main Storage Contents for C. Main Storage Contents for
Recover Execution Replace Execution
Figure 65. Main Storage Management for Recover Replace

Independent Utilities: IBCRCVRP 211

Recovering

The recover portion of the program reads
the specified track of the direct access
volume, gathers control data to be used by
a future replace run, and records the con-
trol data and the successfully recovered
portion of the track on a recovery output
tape. Fiqure 66 shows the tape format.

Records are read into VGOODRUF. If a
data check is detected in the count field
of a record or an address marker is missing
from a record, the remaining bytes on the
track, including records and gaps, are read
into VGCCDBUF using the space count command
and are immediately listed on the message
device. After listing, the records and
gaps are cleared from VGOODBUF and the next
record is read into VGOODEUF immediately
following an 8-byte entry left in place of
the record which had the bad count or mis-
sing address marker. If the count field is
good and the address marker is present, any
key ands/or data fields read, whether good
or defective, will remain in VGOODBUF as
read. (See Figure 67.)

As each record is read into the buffer,
an entry is kuilt in the record control
table VRECTAB. Each entry consists of a
1-byte flag and a 3-byte pointer to the
record image. The settings of the flag
kyte in VRECTAR are as follows:

Bit=1 Meaning

Bad count field

Bad key field

Bad data field

Missing address marker
Last record flag
Recovery was aborted

ECF with key

ECF (with or without key)

6-

NSO EeEwoRo

After reading the track, recover builds
at location CCWLIST a channel prograr which
will be completed and executed by rerlace
in writing and read-back checking the data

put on the alternate track. Recover then
stores into VALTBUF the address of the
first doubleword boundary following the re-
ccvered data in VGCODBUF. This establishes
the area replace uses to receive data for
records with bad counts or missing address
markers. Recover then writes the recovery
output tape.

Replacing

The replace portion of the program, which
is moved to overlay the recover portion,
reads the recovery output tape, reads
replacement data supplied by the user,
assigns an alternate track (if the volume
resides on disk storage), and writes the
merged data on the track.

The header record on the recovery output
tape is first read and the serial number of
the direct access volume is checked. The
next two records (control record and recov-
ered data) are then read into the same
aksolute storage locations they occupied
during the companion recover run (VRECTAR
and VGOODBUF). Flag bytes in VRECTAB are
then interrogated, and replacement data is
read as needed. Replacement data is read
into the alternative buffer (pointed to by
VALTBUF) if the record@ to be replaced had a
missing address marker or a bad count
field; otherwise replacement data is read
into VGOODBUF, overlaying the corresponding
defective recovered key and/or data por-
tions. When all replacement data has been
read, an alternate track is obtained on the
volume (if it is non-drum storage), and the
merged recovery and-replacement data are
written on the track using the channel pro-
gram at location CCWLIST. If the HA-RO
fields are defective on 2314 disk or 2321
data cell storage, the program attempts to
move these fields approximately 800 bytes
down the track.

Example: Figure 67 illustrates a complete
cycle (two executions of the program) for
recovering and replacing a track.

(o:’;iizl) T P4 1o | vou [track|paTe| pap

CCWLIST
MARK Z

7
\
VALTBUF | VRECTAB MARK

7
VGOODBUF S g TAPE

ID = 4-byte constant "RECV"
VOL = 6-byte volume ID of
direct-access device
TRACK = 12-byte
BBBBCCCCHHHH
of recovered track
DATE = 8-byte date of
assembly MM/DD/YY
PAD = 50 bytes of zeros

Figure 66. Format of Recovery Output Tafge

212

CCWLIST = Channel program
to be used to
replace data on
volume
VALTBUF = Pointer to buffer
for replacement data
VRECTAB = Table of control
data for track

VGOODBUF = Buffer
containing
recovered data

®

During a recover execution,

the track containing defective
records is read into VGOODBUF;
for each record, a flag and
pointer are set in VRECTAB.

In this example, the given track
is found to be in the following
condition:

HA - Good

RO - Good

R1 - Bad count
R2 - Bad key
R3 - Bad data

R4 - Missing address marker
R5 - Last record, good

2311 Disk Storage

Figure 67.

@

The recovery output
tape is written,
consisting of a header
record, a control
record, and recovered
data. The recover
execution terminates.

®

During a subsequent
replace execution, the
recovery output tape is
read into the same
absolute storage
locations from which

it was written.

O

Using control data from
VRECTAB, replacement
data is read into

() VGOODBUF, or
(b) the buffer pointed
to by VALTBUF, in
case of bad count or
missing address marker.

Main Storal
~ N oforage o e e -
| I
: VRECTAB VGOODBUF :
00000000 HA Address HA and Blanks | I
00000000 RO Count Address RO Count and Data :
10000000 R1 Count Address R1 Count I
01000000 | R2 Count Address 4
R2 Count, Key and Data |
00100000 R3 Count Address 1
00010000 | R4 (8 Bytes) Address R3 Count, Key and Data <
00001000 R5 Count Address R4S Bytes |
Flag (1) Pointer (3) —-I |
R5 Count, Key and Data |
VALTBUF '
(Next Double-
Word Boundary) 1
1

An Example of the Recover-Rerlace Cycle

Independent Utilities:

®

Using the channel program
read from the recovery
output tape, the merged
(old ond new) data is
written on an alternate
track.

Replacement Data

New R2 Key

New R3 Data

New R1 Count,|
Key and Data

New R4 Count,
Key and Data

IBCRCVREF 213

Chart 78. IBCRCVRP Overall Logic

Start
CKINPUT 83
Wait for
Operator to
Define Input
Device
CLRSCAN Cc3
Read,
Scon, and
Analyze Control
Statements
VREPLBST D5]
D4
Recover Move Replace
Recover or Replace Code to Overlay
Recover Code
No l
E2 E4
CHART 79 CHART 82
Recover Replace
Data from Data on
Track Track
Was ™\ F3
List Option
Requested
VENTLIST G3 LIST! G4
List
Defective List
Records or all Records on
Replacement Track
Records

K3

EOJ
Wait)
Hex Ds in PSW.

214

o

Chart 79.

VRE

Renew CCWS,
Check Vol. Id.,
Clear Buffer

IBCRCVRP Recover Logic

A2

Issue Seek,
SFM, Read HA,

Read RO, Read
Count Rl
Multi-Track

|

VRET]

Determine RO
Size, Put HA
and RO Entries
in VRECTAB

.VLOOP D1

Update
Table Pointers,
Put Skip Bit On

in Previous
Read CCWS

Data Field
Absent (EOF)

VISSUERD

Error Message:
Abnormgl| EOQJ-
Hex E's (Wait)

Exit to

E2

F2

End-of-Track .
Routine E3

Bad
Home Address

i!»ﬁﬂﬁﬂ__'vﬁ c3

Flag
VRECTAB, Give

m____BT
Give Bad ROMsg. ,

Flag VRECTAB,
Replace Read RO
by Space Count

C5

Message, Try to
Read Rest of
Track

D3

Write
Message HA and
RO only on the
Track

Flog VRECTASB,
Reod Count with
Skip, Read

Count Next

Exit to Data
Check Routine

Issue CCW
Chain with Read Flag VRECTAB,
CKD and End Set Expect EOF
with Read CT Switch
Multi=Track
P o
Gl Update Table,
Permanent Reset EOF
Error Switch, Change
Read CKD to
Read Count

Expect EOF
Switch on

Exit to Data
Count Check
Routine

Seek, SFM,

Space Count,
Read Count

Multi-Track

Pick Up
Pointer to
Alternate from
RO Count Field

VPRNTALT F4
Write
Messoge Giving
Alt. Id., Put Alt.

Address in Seek
=] ©
VSPECOVR G4

Set Overflow

Switch, go fo

End-of -Track
Routine

Error Message

VMAM

Last Record
Overflow

Exit to
Count Check
Routine

Yes

Exit to
End-of-Track
Routine

H5

Missing
Address
Marker

J4
Abnormal EQJ
Hex E's (Woit)

Flag VRECTAB

K5

Reissue CCW
Chain with
Space Count for
Record without
Address Marker

Independent Utilities:

IBCRCVRP 215

Chart 80.

VDATACK

IBCRCVRP Recover Data Check Routine

Count Switch
on

Previous
Data Check on
Key Field

Set
Data-Check-
Occurred Switch
VBADDT

216

A2

Count. Go
VCNTCKS

Interrupt from
End of Space

to

82 w

End of Space

Interrupt from

Count. Go to

VAMCHK
VERRORBH C2 % VDATARD C3
Both Key and Put Space
Data Bad. Flag Count in for
VRECTAB Bad Record. Move]
RC to End. Reset
Switches
VERRORDT D2
Key Good,
Data Bad. Flag
VRECTAB

VCOMDMV

Does
Record Have a

Was K
Reod Without
Error

F5

Set
No VBADKEY Switch
to Signal Key

is Bad

.

G4

Set Expect
EOF Switch.
Make Next to

Last CCW a Read

Count

This is an EOF
Record

J2 13

Make Last

Command a Reod

Data Followed Chain
By Read Count
Multi-Track
K3
Clear Bad

Issue Command

Data Switch,
Read Data. Got
Record this

Time

14

Permanent
Error

Does
Record Have o
Bad Key

w VERRORKY KS

Flog Record
as Bad Key,
Good Data

&

<

Chart 81.

VCALCSZ D1

VCNTCKS Fl

Ry

VCNTCK Al

Set Bad-Count
Switch
VCOUNTED, Round
Up VRECTAB

Address

B1
RO Bod

No
C1

Flag
Record in
VRECTAB as Bad

Count Field

Move Count
Field as Read
into VGOODBUF,
Calculate Size
of

El

Set Up Space
Count Command.
Issue CCWs to

Read Remainer

of the Track

Set Up and
Write Message of |

&)

VAMCHK

F2

VREPCCW D3

Return
After Data

Bad Count or Miss-
ing Address Mark

Gl

Force
List of Bad
Record on

Message Device

Missing
Address Marker
Switch

J1

Reset
Bad Count

Count, Refer to
MAM

Check on Space

G2

H2

Reset
Missing Address
Marker Switch

Track
Flagged Bad
Original

B3

A3

Flag Last

Record in

VRECTAB,
Caleulate Top
of VGOODBUF

C3

Store Highest
Address in
VGOODBUF into
VALTBUF

Build CCW
List for
Replace to Use
to Write

IBCRCVRP Recover Count Check and End~of-Track Routines

E4

Make Op.
Code for Last
Record Written

a Write Supeciul

VRETRS J

2

Move Read
Count M/T to

Switch

Record Count

End of CCWs. Up

&)

VWRT2RD F3
Create Read
Back Check CCWs
for Write CCWs
Built
G RCVRTAPE G4 @
Ent Use
Write Recover TAPECHKS
Tape Routine at R°‘f':"° to
RCVRTAPE Position Tape
H3 H4
insert NOP Write Three
Command in CCW Records on the
List to Tape, WM,
Suppress MAM Rewind, Unload
for Record Tape

Gy

Independent Utilities:

IBCRCVRE 217

Chart 82. IBCRCVRP Replace Logic

Gy

VREPLACE Al

Reset
Switches.Clear
Buffer Area

CKVOLLBL

Check Volume

Label, Check
Date, Check

Track Defined,
al

TAPEREAD C3

Read in the
Next two Tape
Records

CKTABLE 03

Check
VRECTAB for
Record Entries

of this Track

this the Last
Record

VTOCREAD G3

Assign an
Alternate
Track if the
Device is Disk
Storoge

RDCARD ES

Another Insert
Card for the
Replacement
Data

Read
inand Process
the
Replacement

D

gtg

CKOVRLW H4

Change Last
CCW Code to
Write Special

Count-Key~-Data

I

MOREIO J3

Execute
the CCW List

Lost
Option

218

Write
Last Record
on Track

" Appendix A: Modules of Utility Programs

This appendix describes the modules of each
utility program. The module names given
are the SYS1.UT506 names. When these names
differ from equivalent SYS1.LINKLIB names,
the latter are given in parentheses. 1In
the case of the independent utilities
IBCDNMPRS, IBCRCVRP, and IBCDASDI, the pre-
vious statement is not applicable since
these programs are part of the SYSl1.SAMPLIB
data set.

IEBCCMPR

IEBCROQT
is the root segment; it opens and
closes SYSPRINT, writes messages, and
calls the proper modules.

IEBCOMPM
is the message module.

IEBCANAL
interprets returns from IEBCCS02.

IEBCMAIN
when the data sets are partitioned,
compares directories to determine
whether one is a subset of the other;
when the data sets are sequential, it
compares the data sets.

IEBPTPCH

IEBPPUN1
is the root segment; it opens and
closes SYSPRINT data set, calls proper
modules, and prints all messages and
control cards.

IEBPPMSG
is the message module.

IEBPPAL1
obtains storage for and then con-
structs tables and work areas, calls
and then interprets returns from
IEBCCS02, checks for valid parameters.

IEBCCS02
opens and closes SYSIN data set, reads
and scans cards, returns data to
IEBPPALl.

IEBPPCH1
is the processor module; it handles
sequential and partitioned data sets,
opens and closes SYSUT1 and SYSUT2
data sets, checks for valid control
cards, and examines tables built by
IEBPPALL.

Appendix A:

LEBCOPY

IEBCOPYA
is the root segment; it gives control
to the proper modules, and prints all
error messages and control cards.

IEBCOPYB
is the message module.

IEBCOPYC
opens and closes SYSPRINT data set,
obtains storage for and constructs
work areas and tables, calls and then
interprets returns from IEBCCS02, and
when control cards are present, checks
them for validity.

IEBCOPYD
is the processor module; it opens and
closes SYSUT1 and SYSUT2 data sets,
analyzes tables from CCFYC and: if
total copy, reads in directory and
sorts by TTRs; if exclusive copy,
sorts exclude table by NEMBER NAME
sequence, reads the data set direc-
tory, compares for excludes of direc-
tory names, and sorts directory names
ky TIRs; if inclusive copy, copies
included names and moves data from
input buffer to output buffer.

IEBEDIT

IEBEDIT
extracts records from a master file of
JCL statements to create an edited
input stream data set.

IEBGENER

IFBGENRT
is the root segment; it opens and
closes SYSPRINT, writes all messages
and control cards, and gives control
to proper modules.

IEBGMESG
is the message module.

IEBGSCAN
obtains storage for and then con-
structs tables, calls and then inter-
prets returns from IEBCCS02, analyzes
control cards.

IEBGENR3
is the processor segment root module;
it opens and closes input and output
data sets and performs label
processing.

Modules of Utility Frograms 219

IEBGENS3 (IEBGENR3)
performs 1/C operations for variable
spanned records.

IEBGENO3 (IEBGENR3)
performs I/0 operations for non-
variable spanned records.

IEBMCVE2
moves logical records from input to
output buffer.

IEBEDIT2
moves, with editing, logical records
from input to output buffer.

IEBCONH2
converts data from H set BCD to
EBCDIC.

IEBCONP2
converts data from packed to zoned
decimal .

IEBCONZ2
converts data from zoned to packed
decimal .

IEBLENP2
computes total output record whenever
an input record is encountered.

IEHUCSLD

IEHUCSLD
checks for type of operation, for
universal character printer, and fox
buffer load characters; issues WTOR to
mount proper chain; loads the buffer
and verifies it, if specified.

IEHIOSUP

IEHIOSUP
finds first load module of SVC routine
then loads succeeding modules, reads
in the member, and updates member's
XCT1L takle, if present.

IEHINITT

IEHINITT
is the root segment; it opens and
closes SYSIN and SYSOUT, builds tarpe
lakel image in main storage, extracts
information from the JFCB, and links
to SVC 39 to write the tape label.

IGC00031I (svc 39)
writes a tape volume label followed by
a dummy header label and a tapemark.

IEHSCAN
reads control statements and scans
them for INITT command and for
keywords.

IEHPRNT
is the message module.

220

IEHDA SDR

IEHDAOUT formats and writes dumped informa-
tion to the SYSOUT data set.

IEHDASDR
is the entry point for the program.
It performs initialization and passes
control to the Control routine.

IEHDASDS
is the Control routine. It processes
control statements and passes control
to the functional routines.

IEHDCELL
is the Data Cell Analysis routine. It
performs surface analysis of data cell
volumes.

I1EHDDATE
is the Date routine. It obtains the
day's date and passes it to the Print
routine, IEHDPRNT.

IEHDEXCP
is the I/0 subroutine of the Dump rou-
tine. It performs all I/C operations
during a dump except for those per-
formed by IEHDAOUT.

IEHDGETA
is the control routine for performing
alternate track assignment.

IEHDLABL
writes new volume serials and owner
names on direct access volumes.

IEHDMSGB
is the Message Builder routine. It
selects, constructs, and stores
messages.

IEHDMSGS
is the message CSECT. It contains the
messages used by the IEHDASDR program.

IEHDPASS
is the Password Protection routine.
It checks the passwords required for
security protected data sets, and
checks data set expiration dates.

IEHDPRNT
writes messages to the SYSOUT data
set.

IEHDREST
is the Restore routine. It reads
dumped information from a restore tape
and writes the information on direct
access volumes.

IEHDSCAN
is the Scan routine. It reads control
statements and scans them for syntax
errors, one field at a time.

IEHDVTOC
is used by the Analysis routine to
write system data on direct access
volumes.

IGC0008B
is the first load of the SVC 82 rou-
tine. It builds DEBs for new direct
access volumes and passes control,
when necessary, to one of the other
loads.

IGC0108B
is a load of the sSVC 82 routine. It
assigns an alternate track on a direct
access volume.

IGC0208B
is a load of the SVC 82 routine. It
updates UCBs to reflect new volume
serials or VTOC location changes.

1GG019P8
is the End-of-Extent appendage rou-
tine. It modifies extent limits and
file masks in DEBs.

IGG019P9
is the Abnormal End appendage routine.
It is used to bypass I/0 Supervisor
error processing.

IEHMOVE
IEHMCVE
is the root segment; it obtains a save
area.
IEHMVSRS
loads modules if required.
IEHMVXSE
gets three work files and a work area.
IEHMVXSF
is the first-time control module for
IEHMVSSF.

IEHMVSSF (IEHMVSF)
mounts volumes.

IEFWMSKA (IEHMVSF)
is the systems device mask table.

IEHMVEST
clears work areas and initializes for
a request.

IEHMVESJ
reads cards.

IEHMVSSS (IEHMVESS)
builds tables and sets switches.

IEHMVESI
opens the catalog for a data set group
operation.

Appendix A:

IEHMVESC
reads the catalog and writes it onto
SYSUT1 for a data set group operation,
or writes the catalog onto SYSUT2 for
a move or copy catalog.

IEHMVESH
closes the catalog and sets up for
following request.

IEHMVSSZ (IEHMVESZ)
checks for volume or data set.

IEHMVSSV (IEHMVESZ)
obtains *FROM®' DSCB, links to module
for mounting of °FRCM' volume.

IEHMVMRZ (IEHMVESZ)
writes messages.

IEHMVSRZ (IEHMVESX)
handles routing and errors.

IEHMVSRV (IEHMVESX)
allocates the catalog on two volumes
if necessary.

IEHMVSRK (IEHMVESX)
reads unloaded records.

TEHMVSRY (IEHMVEXV)
handles routing and errors.

IEHMVSSX (IEHMVEXV)
allocates two data sets.

IEAMVSTIC (IEHMVEXV)
reads "FROM' partitioned data set
directory.

IEHMVMRY (IEHMVEXV)
writes messages.

IEHMVSSY (IEHMVESY)
handles routing and errors.

IEHMVSRM (IEHMVESY)

writes first unloaded record when
applicable.

IFEHMVSRX (IEHMVESY)
kuilds *TO' and ‘FROM' DCBs, handles
"T0*' DD and 'FROM®' DD.

IEHMVMSY (IEHMVESY)
writes messages.

IEHMVMRZ (IEHMVESY)
writes messages.

IFHMVETJ
reads 'FROM' and writes "TO' sequen-
tial or partitioned data set without
performing reblocking.

IEFHMVESL
reads 'FROM' and writes 'TO' sequen-
tial or partitioned data set; reblocks
type F records.

Modules of Utility Frograms 221

IEHMVESM
reads 'FROM' and writes 'TO' sequen-
tial or partitioned data set; reblocks
type V records.

IEHMVSRD (IEHMVERD)
builds unloaded records.

IEHMVSRM (IEHMVERD)
writes unloaded recoxds.

IFHMVSRA (IEHMVERA)
recreates unloaded record in coriginal
state.

IEHMVSRK (IEHMVERA)
reads unloaded records.

IEHMVSTA (IEHMVETA)
builds unloaded record and creates
original record.

IEHMVSRM (IEHMVETR)
writes unloaded records.

IEHMVSRK (IEHMVETA)
reads unloaded records.

IEHMVMTA (IEHMVETA)
writes messages.

IEHMVESR
gets directory entries from SYSUT3
work file.

IEHMVETG
gets directory entries from SYSUT1 of
includes or selects.

IEHMVESU
writes messages.

IEHMVESN
closes "TC" and "FROM' data sets;
determines next module.

IEHMVMSN (IEHMVESN)
writes messages.

IEHMVESQ
catalogs and uncatalogs moved data
sets.

IEHMVMSQ (IEBMVESQ)
writes messages.

IEHMVESP
catalogs and uncatalogs copied data
sets.

IEHMVESO
checks errors - job abort or request.

IEHMVESK
closes SYSIN; scratches and closes
SYSUT1, SYSUT2, and SYSUT3.

222

IEBISAM

IEBISAM
is the root segment; it sets up a com-
mon work area, obtains input rarame-
ters, sets switches, and passes con-
trol to the required module.

IEBISC
copies records of an indexed sequen-
tial data set.

IEBISU
retrieves logical records sequentially
from an indexed-sequential data set.

IEBISSO (IEBISU)
creates 80-byte logical records with
fields as defined for 'unloaded®' data
sets.

IEBISL
reconstructs indexed-sequential data
set from 'unloaded' data.

IEBISSI (IEBISL)
retrieves logical records from an
'unloaded® data set.

IEBISPL
prints logical records of an indexed
sequential data set.

IEBISF
writes messages, prints error messages
if applicable, and returns completion
code to root segment.

IEHPROGM

IEHPROG1 (IEHPROGM)
gets work area, reads SYSIN, mounts
volumes if applicable.

IEHPROG2 (IEHPROGM)
issues SVCs for cataloging, uncatalog-
ing, deleting, connecting, releasing,
BLDA, DELET.

IEHPROG3 (IEHPROGM)
contains and writes messages.

IEHPROGY4 (IEHPROGM)
opens input and output DCBs.

IEHPROGS5 (IEHPROGM)
prepares for the volume mounting
module IEHMVSSF.

IEHLIST

IEHQSCAN (IEHLIST)
reads control cards.

IEHPRMSG (IEHLIST)
message module.

J

IEHPRINT (IEHLIST)
scans and prints requested data from
VTCCs, catalogs, and directories.

IEBUPDAT

IEBUFDAT
updates 80-character logical record
likraries.

IEBUPDTE

IEBUPDT2 (IEBUPDTE)
creates partitioned or sequential data
sets, sequences new data sets, rese-
quences old data sets, replaces or
reproduces data set members, or adds
memkers to a partitioned data set.

IEBUPLCG (IEBUPDTE)
opens SYSPRINT and writes messages.

IEBUPDTE
reads control cards, and opens SYSUI1
and SYSUT2.

IEBASCAN (IEBUPDTE)
scans and analyzes control statements
and sets appropriate flags.

IEBUPNIT (IEBUPDTE)
initializes the region IEBUPCON and
opens SYSIN data set.

IEBUPXIT (IEBUPDTE)
contains exit routines for the
program.

IBCDMPRS

IBCDMPRS
creates backup copies of direct access
volumes.

IBCRCVRP

IBCRCVRP
recovers usable data from a defective
track, assigns an alternate track, and
merges replacement data with the re-
covered data onto the altermate track.

Appendix A:

IBCDASDI

IECDASDI
initializes and assigns alternate
tracks to a direct access volume.

IFCEREPO
modules for this utility program are
summarized in Figure 25.

IEBDG

IEBDG
is the control module that is the
interface with a calling program. It
opens the input, output, and message
data sets, and it reads the program's
control cards.

IEBFDANL
analyzes the keywords and parameters
on an FD card and begins construction
of an entry in the FD table.

IEBFDIBL
completes the construction of the FD
entry that was begun by the FD analy-
sis module. It assigns FD card
default values if necessary.

IEBCRANL
analyzes the keywords and parameters
on a CREATE card and builds a create
table entry, a picture table, an FD
address table, and an exit name table.

IEBCREAT
generates output records by using
information from (1) input data sets,
and (2) tables built by previous
modules, as required. It permits user
modifications before final record out-
put. It releases storage obtained for
information tables.

IEBDGMSG
is the message module, and it controls
the paging on a message printer.

IEBDGCUP
is the clean-up module that closes
DCBs and frees storage for DCBs and
buffer pools.

Modules of Utility Programs 223

Appendix B: User Label-Processing and Totaling

With respect to the processing of user The following text discusses parameter
labels and the totaling functions performed information passed from a utility program
by user routines, Figure 68 shows the gen- to a user routine, and return code informa-
eral logic of the following utility gro- tion passed from a user routine to a utili-
grams: IEBCOMPR, IEBGENER, IEEPTPCH, and ty programe.

IEBUFDTE. :

224

VIA A3 A5
Al BALR) {1 yser exi
Entry from Yes Complete the
‘ Supervisor ’ Totali Data Set
(;e)e NOTE RZ;;:: Opening
No Yes (VIA DCREXIST)
o1 B2 03 84
Control Pwu"or TEIXXXXX TEBXXXXX
Card rite Check User's to Specific May be:
Scan @ Return Code Utilit IEBCOMPR,
Record p Y 1EBG ENER,
rogram IEBPTPCH, or
o (see NOTE 3.) (See NOTE 4,) IEBUPDTE.
a3 C4
Initialization. Continue . Label
Save Utility's Te;mm:f’l:';\ Processing
Data Processin Sques Requested,
i (See NOTE 1.)
Utility Exits Taken
Program for: D4
IEBCOMPR | Input Header. D3 Position
iler Terminate Save Labels Utility
IEBGENER | Input and Output Heoder, and Return in Storage Program at
Input and Output Trailer, to Supervisor Areo Data After
Label Totaling. Label Gro
1EBUPDTE Header and Trailer Label
El Exits for SYSIN, SYSUT 1,
Build DCB and SYSUT 2.
Exit List Totaling, for Data on
of User SYSUT 2. (For Update =
Routine Inplace, No Output
resses Trailer or Totaling Exits.)
[EBPTPCH Input Heoder.
F Input Trailer.
Get USER EXIT
Storage for User Label-
Labels and/ Processing
or Totals. Routine
G (See NOTE 4.) 63
Open One Entry to User Routine for Each Label Pro-
fnput See NOTE ¥. Check User's cessed.
Data Return Call Register Contents are as Follows:
Set GRY: Parameter List (See Figure 69).
GR14: Return Address to Utility Program:

(Must be Saved by User.)
GR15: Entry Point Address for User Routine.

H1

Termination
Requested

H3

Termination
Requested

NOTES:
33 1. For Closing the Data Set or
End-of-Volume, a Sequence
Terminate and Set Similar to that Beginning ot
Ret. to Caller Termination Box A4 and Ending at Box H1
or Supervisor Indicator Occurs.
2. GR1 Points to Parameter List

(Given in Figure 69).

—'—‘ K1 3. The Sequential Access Method

Saves an Image of the Totaling
Continue @ Area for Use by End-of-Volume
Utility's Processing Routines.
Intended 4. See Text for Return Code Description.
Function

Figure 68. General Logic of Utility Program With User Label-Processing Routine Exits

Appendix B: User Label-Processing and Totaling 225

Parameter List

When the utility gives control to a user's
label-processing or totaling routine, gen-
eral register 1 contains the address of a
parameter list whose format is given in
Figure 69.

lq-— 1 byte. —poig

Not Used

3 bytes ————————p]

Address of 80-byte label buffer area’

Flag byte Address of DCB being processed

Address of status information

Error flags
fror 7ot (for uncorrectable 1/O errors)

Address of totaling (image) area

3
For totaling exits, Address of the output buffer

Farameter List Passed to User-
Lakel Exit Routine

*Figure 69.

A description of the underlined fields
indicated ky the parameter list in Figure
69 is given Lelow.

e label kuffer area: prior to entering a
label routine, user header or trailer
labels are read into this area by the
operating system. When a user's label
routine constructs labels, the labels
are placed (one at a time) in this
area.

e status_information address: if an
uncorrectable I/0 error occurs during
the reading or writing of a user label,
the utility routine gives control to a
user label routine with bit 0 of the
high-order (error flags) byte of this
field is set to 1. 1If the totaling
facility has been specified and an
uncorrectable I/0 error occurs as the
utility is placing data on an output
data set, a user"s totaling routine is
given control with bit 0 of the high-
order (error flags) byte set to 1. The
three low-order bytes of this field
contain the address of the standard
status information for SYNAD routines.
(See the publication IBM System/ 360
Cperating System: Supervisor and Data
Management Services, Form C28-6646.)

e totaling image area: for a totaling
routine, a user may require an area to
contain record counters, totals, point-
ers, etc. A utility supporting the to-
taling facility obtains this area and
places its address in a DCB exit list
(for use by data management routines
such as the open routine and the end-
of-volume routine) and in this field of
the parameter list (for use by the to-
taling routine). The information that
the user saves in this area is synch-

226

ronized with the physical records writ-
ten prior to placing a given record on
an output data set. In an end-of-
volume situation, the updated totaling
information is kept as an 'image' whose
address (in the parameter list) is
given to a user label routine. This
insures an accurate transfer of total-
ing information from one volume to
another. The image area has meaning
only for output data sets and when the
user and the utility have called for
the totaling facility via an entry in
the DCB exit list.

Note: At volume switch time, the utility
routines use the information contained in
the flag byte of the second word to indi-
cate end of volume or end of data.

PARAMETER LIST MODIFICATION

For IEBUPDTE, the following modifica-
tions are made to the parameter list:

e When there are user label-processing
routines, the first meaningful field of
the parameter list passed to the user
output-label routine points to the
label buffer. This buffer, which con-
tains a label data record from the
SYSIN data set, is for the user to
inspect before the record is written as
a label.

e If the error status information in the
parameter list is established as a
result of a reading error, the user
routine must return one of the return
codes (described in the next section)
or the program will be terminated.

e If the error status information is
established as a result of a recording
error, bit 1 (of the error-flags byte)
is set to 1 to indicate that the error
occurred during an output operation.

In this case, the user routine must
return a code of either 0 or 4, or the
program will be terminated.

e For header labels only, a fifth entry
in the parameter list occurs under the
conditions given below. The first byte
of this entry is meaningless, and the
last three bytes contain the address of
the label that has been replaced from
the o0ld master data set (SYSUT1). The
conditions (all of which must be pre-
sent) for the occurrence of the entry
are:

1. B2An update of the o0ld master is
specified via the keyword
UPDATE=INPLACE.

2. A LABEL statement must be speci-
fied for header labels in the
input data set.

3. A user label-routine corresponding
to the LABEL statement is speci-
fied and user labels are encoun-
tered on SYSUT1.

Return Codes

‘L’ One of the following return codes must be placed in general register 15 when a user
(label-processing) exit routine gives control back to the utility program. An incorrect
(or no) code results in termination of the program.

Type of Routine Code System (Utility) Resgonse

Input header or 0 Resume normal processing. Ignore additional labels in the label
input trailer group .
lakel

4 Read next user label into buffer area. Return control to user-

exit routine. Resume normal processing if no more labels.

16 Request termination of label processing. Utility program per-
forms clean-up functions and terminates.
Output header or 0 Resume normal processing. No label is written from buffer area.
output trailer
lakel

4 Write label from buffer area. Resume normal processing.

8 Write label from buffer area. If less than eight labels
created, return to exit routine. Otherwise, resume normal
processing.

16 Request termrination of label processing. Utility program per-

forms clean-up functions and terminates.

RETURN CODE MCDIFICATIONS

1. For IEBUPDTE, the following modifications are made to the return codes when the key-
word UPDATE=INPLACE is specified.

‘iﬂ Type of Routine Code System (Utility) Response
Input header 0 Same as above.
4 Same as above.
8 Write label from buffer area. Resume normal processing.

12 Write label from buffer area. Read next label into buffer
area. Return control to user exit routine. Resume normal
processing if no more labels.

16 Request terminaticn of label processing. Utility program
performs clean-up functions and terminates.

Appendix B: User Label-Processing and Totaling 227

2. For IEBCCMPR, the following modifications are made to the return codes, depending

the operand in the LABELS statement:

Type of Routine

User Return Code

Input header or
trailer Labels

16

16

0%
o*

on
(see Figure 70)
LABELS Statement System (Utility) Response
DATA = ALL Return a code of 4 to
Open routine. Take no
additional label exits.
DATA # ALL Return a code of 0 to Cpen
routine.
Ignore rest of labels.
DATIA = ALL Same as for code 16.
DATA # ALL Same as for code 16.

*After SYSUT1 and SYSUT2 have been opened, the following conditions are tested and the

response indicated is taken.

0, with
a previous
code of 16

0, with
no previous
code of 16

DATA

DATA #

DATA
DATA #

ALL

ALL

ONLY
ONLY

compare the labels,
then terminate the
processing.

Terminate the processing.

Compare available
labels. Then check
LABELS statement
operand as follows:

Terminate the processing.

Compare the data of the
appropriate data sets.

3. For totaling exits, valid only fcr IEBUPDIE and IEBGENER programs, the normal ret

codes will be processed with the following modifications:

Code
0

4
8
16

Invalid Codes

under 16
over 16

228

Utility Response

No more exits will be taken.

is resumed.
Continue processing with totaling exits.

No more data processing or totaling exits.

Noxrmal processi

sets will ke closed and the requested output
trailer lakel exits (if any) are taken.
Program terminates all totaling and data proc
sing, and returns control to the supervisor.

Same as for code 0.

Same as for code 16.

urn

ng

Data

S~

From User
Routine

Set Flog
to Indicate
Code

Use General
Return Code

D2 D4 D5
Pass a Return Pass a Return
Code of 0 Back Code of 4 Back Read Rest
to Open to Open of Labels
Routine Routine
E2 E3 E5
Ignore Complete Toke No
Rest of Data Sf’ More Label
Labels Opening Exits
Procedure
F4
Resume
Processing
:,' G4
| there been a DATA=ALL Compare
Pr.vno%: C ofe 9 Statment Labels

Compare
any Existing . Terminate
Labels

J3
- DATA=ALL Compare Continue
s'arem.n' Da'u °f 'M
two Data Sets

Figure 70. Return Code Modification for IEBCOMPR Program

Appendix B: User lLabel-Processing and Totaling 229

Appendix C: DSCB Formats for the IEHLIST Program

The format of the DSCB's as printed by the IEHLIST utility program are given in Figure
71.

Note: Non-significant high-order (leading) zeros are not printed.

Print Position 1 1
1 2 3 4 5 6 7 8- 9 0 1

1
2

123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

Format 4 DSCB XXXXX XXX XXX XXXXX ccc hhh ccc hhh rrr, ccc hhh rrr ccc hhh ccc hhh, ccc hhh rrr
| il | | I I
No. of Max. No. Max. No. of No. of Address of Address of a Address of last VTOC VTOC Address of
available of DSCBs PDS directory alternate next avail- Format 6 DSCB, active Format 1 begin end this DSCB
DSCBs in per track blocks per tracks able alter- if applicable DsSCB address address
VTOC track available nate track

Format 5 DSCB 'A' represents the number of full tracks in addition to the number of full cylinders available at the extent's location.

XXXX XXX XXX / XXXX XXX XXX / XXXX XXX XxXx / ... etc.

[For each extent (separated by /), the value xxxx is the starting track address, relative to the beginning of the extent. The first xxx group in each case
is the number of full cylinders available at the extent's location. The second xxx group in each case is the 'A' value.

DSCB ADDR ccc hhh rrr

Format 6 DSCB Has same format as for a Format 5 DSCB, but the value of ‘A’ now represents the number of data sets sharing the extent.

(Format 1 DSCB)

[For each of the first three extents (of which only the first is shown here) of the data set, xx is the extent number, the first ccc hhh is the lower
(oddress) limit of the extent, and the second ccc hhh is the upper (address) limit of the extenr.]

(Format 3 DSCB)

XX ccc hhh ccc hhh / xx ccc hhh ccc hhh / ... etc.

[For each extent (separdted above by/), the value xx is the number of the extent (from 4-16), the first ccc hhh is the lower limit of the extent, and
the second ccc hhh is the upper limit of the same extent.

nnnn... 1 yyyyyy XXXX dddyy dddyy XX aaa aaaaaa aaa XX XXX
Format 1 Volume Volume Data Set Data Set No. of Organ- Record Option Data Set
Identifier Serial Sequence Creation Purge extents ization Format Code Blocksize
Number Number Date Date for this (DSORG) (RECFM) (OPTCD)
data set
XXXXX XXX aaaaa aaaaa XXXXX ttttt rrr 11111 XXX ccc hhh rrr ccc hhh rrr
[I |
Logical Key Initial Secondary Address of last No. of bytes Address of Address of
Record Length Allocation Allocation block in data set in last PDS next DSCB this DSCB
Length directory block
XX ccc hhh ccc hnh ... efc.

Legend
aag- ..aa Refers to Format 1 DSCB abbreviations for option code, record format, and organization given below:
Name of Format 1 Printout Abbreviation Appearing Meaning of
DSCB Printout Field Position on Printout Abbreviation
Initial Allocation Initial Allocation (on Direct Access)
29 ABSTR Absolute track address
TRKS Tracks
CYLS Cylinders
RECS Records
ROUND Request (in records) was rounded up to a cylinder
boundary.
35 CONTIG Contiguous extent requested
MXIG Maximum contiguous extent requested
ALX Five (or less) of the largest extents (each equal to ory
greater than the specified minimum) was requested.
DSORG Data Set Organization
920 PS Physical Sequential
IS Indexed Sequential
DA Direct Access
PO Partitioned Organization
UN Undefined Organization
92 U Unmovable Data Set.
RECFM Record Format
96 U Undefined
\ Variable
F Fixed
* Invalid format
97 B Blocked
98 T Track Overflow
99 N If RECFM is F: Standard Blocks (no truncated blocks or
unfilled tracks are embedded in the data set)
If RECFM is V: Spanned Records
100 A ASA Control Record
Machine control character
OPTCD Option Code
104 w Write validity check
105 u Allow data check for an invalid character on 1403
106 C ggi)ned scheduling using Program Controlled Interruption

(Format 2 DSCB)

mmm b ccc hhh, mmm b ccc hhh, ccc hhh rrr, ccc hhh rrr mmm b ccc hhh, gnmm b ccc hhh, mmm b ccc hhh, xxxxx XXX

I [
Address of Address of

ccc hhh rrr
dddyy
mmm b

nnnn...

cylinder, track, ond record number. !
day and year (digits from 00000 to 36699)
device identification

DSNAME for Format 1 DSCB

Address of the first Address of the first Identification of Identification of Address of No. of bytes Size
track of the second track of the third last active entry last active entry first track of first track of first track of of main stor- (in tracks) ttttt rrr 11111 digits from 00000 000 00000 to 99999 999 99999.
level master index level master index on second level on third level cylinder index lowest level highest level age required of highest .
master index master index master index master index for highest level KX...X digits from 00...0 to 99...9
level index index YYYYYy digits from 000000 to 999999 (except for Volume Serial Number in Format 1 DSCB).
1 o - - -
cce hhh rrr ccc hhh rrr ccc hhh rrr mmm b ccc hhh rrr xxx XXX xxx KAKKKKKKK KXXHK XHHAX For the 2321 data cell, the ccc hhh part of the identification follows the interpretation given below for addressing:
T Digits

Identification of Identification Identification of Address of last record No. of No. of No. of No. |of No.lof No. of)
last normal entry of last entry in last index entry in the prime data area index cylinder records records in records in full cee &2 Subcell value from 0-19
in track index cylinder index in master index levels overflow tagged the prime overflow cylinder Strip value from 0-9
on last cylinder tracks for data area area overflow

on each dele- areas { 1 Cylinder value from 0-4

. . hhh
cylinder tion 2&3 Track value from 0-19

Description of Fields in Data Set Control Block Formats 1-6 or Print-out by
IEHLIST Program

e Figure 71.

230

Alternate tracks,
assigning ofc..c..... 87,202-205,223
Auxiliary parameters for IEHPROGM, IEHMOVE,
IEHLIST, IEHIOSOP, IEHUCSLD, IEHINITIT, and
IEHDASDR ccccccccccccccaccccnncannnccas 12

Catalog

1iSting @ ceecececcccccncaccccnscnsa U5-49

modifying @ ecececceecccacccacaacas 18-29

moving Or Copying @ ec.ccecececcece... 30-44
Channel programs for IEHDASDR 85-86
Close

updating XCTL tables of 50-52
Communication area :

IEBDG ceveccacscaccccccaccnccaccses 174-176

IEHMOVE .cucccaccacscsaccascccacsacss 37-38
Comparing header and trailer labels ... 116
Comparing labels as data eccceese.. 117-118
Comparing records .cceecececcceccceaes.e 11U4-117
Control card scanner for IEHMOVE and
IEHLIST ccccecccccecccccccccncsnacacncss 15D
Copying and modifying records 120-124

DASDI ecciceccsccaacancccannncncsasaas 202-205
Data set
indexed sequential
COPYING cececeenecacccnccacnanase 129
loading ...ceeececcceccacaeas 133-134
printing ...ccccececcacccecas 133-134
unloading ..cccececececccesca.s 130-131
input Stream ..ccececececccecess 1U49-155
listing the directory of a
partitioned 45-49,230
members, copying and merging 111-115
moving Or copying ...cececceces.. 30-44
scratching @ cccececececccccccacesss 18-29
SYS1.I0GREC ccccscscsascccsscncces 33-67
Data set compressionecc.... 111-113
using XDAP macro instruction ... 112-113
Data set utility programs 103-197
DCB exit 1list
IEHMOVE .cccccvccccsccscccscsncsccacnccce 38
DCB exit routine
IEBDG ccaccccosssaccsnncccsaccceas 159-160
Debugging aids
IEBDG cceccacccansssncncseaasacse 173-181
Default values
IEBDG field definition (FD) 164
DENTIRE .cccccacacacscccccncnccacacasess U8
Device allocation and volume mounting for
IEHPROGM, IEHMOVE, and IEHLIST ...c.... 12
Device mask table .cccececceccccocccnnsceas 12
DFMT56 c.cccecanacnscscccacccccncaceccees U8
DFORMAT1 tO DFORMATU ..cccececcccncaccssa U8
Direct access storage device initialization
(see DASDI)
DPARTIAL ccceccccccaccccccccscaccaancacss U8
Dumping @ VOlUME .ccceccceccccsssasa 206~-208
Dumping direct access volumes 76,80-83

Index

EOV, updating XCTL tables of 50-52
Error procedures
data C€ll .c.cccecccccsccsncscacaces 86-87
disk and AXUm ..cccccecececccaccaaaass 86

Field select (IEBDG) 157,161-162,164
Formatting procedure ...cccccccececass. 84-87
IPL reCOrdS ceeccecccceacsccacsccncccascse 87
volume 1labels .cccecccvaccasaccccncaas 87
VIOC reCOrd ..cceeceascccscccccsssssaccecs 87

Generator storage (2821), loading of
user-supplied character images 68-75

IBCDASDYT cceccccccccaccccensass 202-205,223
IBCMPRS .ccccecocccceaanccssnesss 206-210,223
JBCRCVRP cccececscncccecacnsesss 211-218,223
TIEBCOMPR ccececevececanacnsesss 116-119,219
IEBCOPY cececevecsccsceccaceeses 111-115,219
IEBDG ccececoccacacancnanncanas 156-197,223
clean-up function <.cccceccecees. 160,161
FD pattern construction 162-165
FD table ,
coONStruction ececcecececcecccece.e 162-165
modification .c..ceececceccccaacaaas 170
updating ...cceecaccecccceass 170171
generalized module functions ... 157-158
invocation ...ccceccccccacccccacsass 158
modifying the output record 170-171
module residence .cccceccececcccccaes 157
output data set records ...cceceecc.. 157
processing control cards
CREATE .c.ceccecccccecsvsansesaecs 165-170
DSD cecceccccccncccoscccccccnccese 160
DUMP veececacccccccacccanasss 160,173
END ccccecvacocncccncnnncanscscceces 160
FD ccceeccceacccncsancassancenscsnes 161
REPEAT ...cecceccccccccnncncacnas 160
reading control cards e.ececece.. 159-160
scanning control cards ..ccececcceece. 158
tables used by create
module c.ccccecnne. cecceaces ececess 165-171
IFBEDIT cececceccocccncccccccesss 149-155,219
TEBGENER ccccecccccccccecses 120-124,219-220
IEBISAM ecvccesneneneces 129-143,222
intialization Of ...ccccvccscccccess 129
termination Of ...ccccecccncscnccass 138
IEBPTPCH eveeeoccacccecccsseces 125-128,219
IFBUPDAT ccccceccacacacacaaaass 1UU-148,223
IEBUPDTE <cccceccccccscccssssceeas 103-110,223
IEHDASDR ccccccccecccecccaees 76-103,220-221
concurrent processing, definition of 76
service routinesccecceccecccc... 88-89
abnormal end appendadge .ccccceces. 89
alternate track .ccccececceccececcescs 89
data@ ceccececncnccceccncncacccnces 89
end-of-extent appendage .cccccc... 89
message builder ...<.cccccec... 88,89
message Writer ..ccescecececscececasce 89
password protection ...cccecececses 89

SCAN <ccccccancanccsscsascscacssacsse 89

Index 231

IEHINITT cccccccccceccccaccasceaes 71-75,220
JEHICSUP cecececncccccncncnnensses 50-52,220
IEHLIST cccececccccasacscsee U5-49,222-223,230
JEHMCVE cccccccccccaccnaccees 30-44,221-222
IEHPROGM cccecccanccacnennsscesss 18-29,222
JEHUCSLD cceeccccccanccccncccseases 68-70,220
IFCDIPO0 cececeeccccceccnanncssnneecens 9355
JFCEREPO .cccccecccacsccacacccsccncnes 26-67
Independent utility programs 198-218
Initializing direct access volumes 76
analyze and formatcccccccece.. 84-87
channel programs .c.ccsccsecececececccece 86
GETALT ccccccvcccnccccccnacccncncaces 88
lab€l .eceeececenccccacnccannaeasas 87-88
Initializing SYS1.LOGREC ..cecceeeeee 53-55
Invoking system utilitiesccecececees 12
I/0 support, updating XCTL tables for 50-52

Libraries, updating symbolic 103-110
Listing system control data 45-49,230

"Making cCOpies™ ..cccecececccaccaccacnccce 76
Modifying system control data .c...... 18-29
Moving and copying data ..eeceeceeces.. 30-44

Null data set
IEBDG cccaccccaccasccncaconcscssccansees 160

Open, updating XCTL tables of 50-52

Parameters, auxiliary for IFHPROGM,
IEHMOVE, IEHLIST, and IEHUCSLD .ceeee.. 12
Partitioned data set
listing the directory of 45-49
members, copying and merging
IEBCCPY cccececcancneancaceaeas 111-115
IEHMCVE cccececccncccccccancass 30-44
modifying the directory of 18-29
moving or copying @ ee.eeccececec.. 30-44
updating @ .ccccccceccnasccceceas 103-110
Physical sequential data set
record format ...ceeec... eeeeses 130-131
Printing and punching records 125-128

RDCDRT ccccecceccccccnccsccccccscnnscscancsnceae 15
Record formats
and variakle spanned records for
IEBPTPCH cccceccccccecnccsasscnscss 126
CAtalOg ececveacccencnccccncccncannnceas 36
how to find .cccececececccaccaaaannaaaa 38
of DASDDR dumped data ..ccceceecceeae. 206
recovery output tapecceccececc.. 213
"SYS1.ICGREC ceccecccccccccsccnccccneaeas 53
SYSUTL eeeeeecceccccccacacacanenes 32,36
SYSUT2 eceeecccccccccncscsscscccaccnssee 32
SYSUT3 ccceccecccacscnccancncsccencossa 34
tXacCk ZErO cccececcccncsccccsccnanaes 202
Records
COMPAYring eceeeeececcccccacansncas 116-119
copying and modifying 120-124
printing and punching 125-128
Recovering and replacing a track .. 211-212
Restore a vOlUmMEe .cceeccecccnnancaan 76,83-84

232

Stand-alone utility programs

(see independent utility programs)
Supervisory routine

of independent utilities 198-201
Support utility programs

(see independent utility programs)
Surface analysis procedure

data cell ceceecacevcscsccccncncsceecs 86

disk and Arum cccecccecccccccscesecs 85-86
Symbolic libraries, updating 103-110
S¥S1.LOGREC .

initializing ...ccccececccccenccces 53-55

writing records from ...ccccecec.. 56-67
System control data

listing Of ®SeseeaceevceenGesccnsoee '45-”9

modification of .c.ciceccecccccecces 18-29
System utility programs .cccecceeceses 12-102

Totaling image area tectecccsccccaacees 226

Uncorrectable I/0 erxor
IEBGENER @es eesececencecscssnssnane 121-122
Updating symbolic libraries 103-110
User-label processing/exits e...... 224-229
IJEBCOMPR cccccccccccnccncnssccsses 117-118
IEBPTPCH @eoeevsecsscocancwsvssece 126-127
JEHMOVE cccceccecccnvecncccccccnaces 33-37
Return codesS cecececececcccccccnsess 227-228
User totaling exit routine
IEBGENER cccececcecccssccces 121-122,128
JEBUPDTE cccecesccocccccscccssses 104,228
Variable-length records for IEBISAV ... 129

Variable spanned records
IEBGENER ® ® © ¢ 99 OSSO OO0 ES OSSO Ge e e 120
JEBPTPCH cccceccccccacvosssccscccscncnee 126
JEHMOVE ccccccecccccccncsncccccccescees 33
Vclume
dumping Of c.eecececcceccceaceees 206-208
initializing Of cccecceccccceess 202-205
moving Or copying @ eceececececececcecsss 30-44
restoring of ...ciccccccccnccaas 208-210
scratching a data set from 18-29
table of contents, listing of 45-49
modifying of cececeecccecccccaces 18-29
writing of ...cccccecccccsaa. 202-205
Vclume mounting for
IEHPROGM, IEHMOVE, and IEHLIST eece.. 12
Volume table of contents
listing Of c.cececcecceccccccnnass U5-49
modifying Oof .ceecececcccccccccaces 18-29
writing of ..cceccececcceccceass 202-205
VIOC format routines ceccececsccccsccesas 48
VOIC fOormatting ceceececssccccccsccccccass U8

work data set record
formats for IEHMOVE cccecscacceases 32-36

XCTL tables, updating

for I/0 SUPPOXt cececceccccccccccas 50-52
XCAP macro instruction

used in data set compression ... 112-113

Indexes to program logic manuals are consolidated
in the publication IBM System/360 Operating
System: Program Logic Manual Master Index, Form
Y28-6717. For additional information about any
subject listed above, refer to other publications
listed for the same subject in the Master Index.

' Index 233

Y28-6614-5

JISIMC

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
{USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

09 /waishs Wai

W' S°N Ul pajulg

S-v199-8CTA

READER’'S COMMENT FORM

0 : IBM System/360 Operating System
. Utilities Form Y28-6614-5
Program Logic Manual

® Is the material: Yes No
Easy toread? . el 0O O
Well organized? O O
Complete? 0O 0O
Well illustrated? ... 0O O
AccurateP il O 0O
Suitable for its intended audience? SR O O

e How did you use this publication?
[0 As an introduction to the subject Other .
[For additional knowledge

® Please check the items that describe vour position:
] Customer personnel [0 Operator [J Sales Representative
O IBM personnel O Programmer [J Systems Engineer
[J Manager [Customer Engineer [Trainee
[] Systems Analyst] Instructor Other

e Please check specific criticism (s), give page number(s), and explain below:
O Clarification on page(s) O Deletion on page(s)
[Addition on page(s) , o] Error on page(s)

Explanation:

e Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

Y28-6614-5

YOUR COMMENTS, PLEASE . . .

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back
of this form, together with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material. All comments and suggestions become the property of IBM.

suyy Buojy 40D

Note: Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

— — —— s e i St — — — — — — — — — — — — — — ot it S S, S it St s —— — ——— — — — — — — — o——— —— o— — —

FIRST CLASS
PERMIT NO. 8)
POUGHKEEPSIE, N.Y.

I
BUSINESS REPLY MAIL
R
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES ——
]
POSTAGE WILL BE PAID BY ... T— ‘
)]
IBM Corporation EE—
P.O. Box 390 ———
Poughkeepsie, N.Y. 12602
@
Z
3
Attention: Programming Systems Publications g
Department D58 g
o
___ -
Fold Fold N
o
Q.
-
c
»
>
.<
' §
=
&y

EI

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only}

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

P o — — — — — —— — — —— — —— — —— — —— — —

