
OS Release 21. 7

IBM System/360 Operating System

MVT Supervisor

Program Number 360S-CI-535

GY28-6659-7
File No. 5360-36

Program Logic

This publication describes the internal logic of the
MVT supervisor. The MVT supervisor is one part of the
control program of the IBM System/360 Operating System.
The supervisor controls the basic computing system and
programming resources needed to perform several data
processing tasks concurrently:

• Handle interruptions
• Supervise tasks
o Control programs in main storage
• Control main storage itself
• Supervise the timer
• supervise console communications and the system log
• Handle checkpoint restarts
• Supervise exiting procedures
• Supervise termination procedures

Program Logic Manuals are intended for use by per
sonnel involved in program maintenance, and by system
programmers involved in altering the program design.
Program logic information is not necessary for program
operation and use.

The information in this publication applies only to
systems capable of multiprogramming with a variable
number of tasks (MVT).

Eighth Edition (May, 1973)

This edition corresponds to Release 21.7 of System/360
Operating System. It incorporates changes added by
Technical Newsletter No. GN27-1379 and replaces GY28-
6659-6, which is now obsolete. This edition contains
information pertaining to the TCAM ABDUMP modules, and
cor~ection and improvements to Sections 2 and 3 that
describe interruption and task supervision. The sum
mary of major changes for Release 21 is retained for
your information.

Significant changes or additions to the specifications
contained in this publication are continually being
made. When using this publication in connection with
the operation of IBM equipment, check the latest SRL
Newsletter for revisions or contact the local IBM
branch office.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. page impre
ssions for photo-offset printing were obtained from an IBM 1403 Print
er using a special print chain.

copies of this and other IBM publications can be obtained through IBM
branch offices.

A form for reader's comments appears at the back of this publication.
Address any additional comments concerning the contents of this publi
cation to IBM Corporation, Programming Publications, Department 636,
Neighborhood Road, Kingston, New York 12401

©Copyright International Business Machines Corporation 1967, 1968,
1969, 1971, 1972

PREFACE

The information in this publication is
organized to enable you to read selective
ly: for an overview of a function per
formed by the MVT Supervisor, or for the
details of how that function is performed.
The "Introductionn section describes the
general operation of the MVT Supervisor.
The following sections: nInterruption Han
dling,n "Task Supervision," "contents
Supervision," and so on, describe functions
first in general terms, and then in detail.

Your reading of this PLM will be aided
by the reference information that appears
in the sections at the back of the book.
The sections consist of "Control Blocks and
Tables,n "Program Organization,n and nFlow
Charts. n The tables in the "Program
Organization" section tabulate varied
information about each supervisor routine:
entry point name, routine name, module
name, library name, invoking macro instruc
tion, etc.

Note: The area of main storage used exclu
sively by system routines is called, in
this manual. nsupervisor queue area" or
"supervisor queue space." In MVT Guide it
is called "system queue area."

PREREQUISITE PUBLICATIONS

IBM System/360 Operating System:
MVT Guide, GC28-6720

Supervisor Services and Macro Instruc
tions, GC28-6646

Data Management Macro Instructions,
GC26-3794

Messages and Codes, GC28-6631 (useful
for the formats and meanings of messages
and codes)

PUBLICATIONS TO WHICH THE TEXT REFERS

IBM Systeml360 Principles of Operation,
GA22-6821 (referred to in "Interruption
Handling")

IBM Systeml360 Operating System:
Job Control Language Reference, GC28-
6704 (referred to in "Checkpoint/
Restart" and "Abnormal Termination")

Linkage Editor, Program Logic Manual,
GY28-6610 (referred to in "contents
Supervisionn)

Linkage Editor and Loader, GC28-6538
(referred to in "Contents Supervision")

MVT Job Management, Program Logic Manu
al, GY28-6660 (referred to in nTask
supervision" and nCheckpoint/Restart")

I/O Supervisor, Program Logic Manual,
GY28-6616 (referred to in the descrip
tion of the Program Fetch routine in
"contents Supervision," in the descrip
tion of the rollout/rollin Start Transf
er routine in "Main Storage supervi
sion, n and in "Interruption Handling")

Machine-Check Handler for the Model 65
Program LogiC Manual, GY27-7155
(referred to in nInterruption Handling")

Machine-Check Handler for the Model 85
Program Logic Manual, GY27-7184
(referred to in nlnterruption Handlingn)

Machine-Check Handler for the System/370
Models 135 and 145, GY27-7237 (referred
to in "Interruption Handling")

Machine-Check Handler for the Systeml370
Models 155 and 165, GY27-7198 (referred
to in "Interruption Handlingn)

Online Test Executive Program, Proqram
Logic Manual, GY28-6651 (referred to in
"Termination Procedures")

Service Aids Logic, Program Logic Manu
al, GY28-6721 (referred to in nInterrup
tion Handling" and "Special Features")

system Generation, GC28-6554
(referred to in "Interruption Handling")

OTHER PUBLICATIONS

TSO Control Program, GY27-7199
(describes the logic of the Time sharing
Option which is accessed by the MVT
Supervisor) •

iii

SUMMARY OF MAJOR CHANGES -- RELEASE 21

r---------------T---T-----------------,
I I ,Sections I
,Item I Des.cription ,Affected I
~---------------+---+-----------------~
I Generalized INew facility that monitors and records system events. 11, 2, 10, 11, 12, I
I Trace Facility I 113, 14 I
~---------------+---+-----------------~
IExtended SVC INew routines that provide linkage to Supervisor 12, 13, 14 I
I Router I Service routines. I 1
~---------------+---t-----------------~
ISystem/370 IThis CPU performs processing identical to the 12, 11, 13, 14 1
IModel 195 ISystem/360 Model 195. I 1
~---------------+---t-----------------~
IMachine Check INew record containing information collected by SERO 12, 12 1
I Record I and SER1. 'I
~--------------+---+-----------------~
IIFCEREPO IA service aid that formats and writes SYS1.LOGREC 12 1
1 1 records. 'I
.---------------+---t-----------------i
IShared DASD 1 The restriction on Shared DASD Support by the Model 11 1
1 165 Multiprocessing System has been removed. I 1
.---------------+---+-----------------~
I Inter-Part- IThe Post routine checks for Post parameters in the 13, 13 1
lition Post luser parameter list. I 1
.---------------+---t-----------------~
I Multi ple-Line INew routines to process multiple-line WTOs in systemsl7, 12, 13, 14 1
IWrite to Oper- Iboth with and without MCS. I 1
1 ator routines 1 'I
~---------------+---+-----------------~
IGraphic ConsolelNew routine that initializes display console 17, 13, 14 1
1 Initialization 1 configuration. 1 1
1 Module 1 I I
~---------------+---+-----------------~
IConsole SupportlNew routines to process multiple-line WTOs. 17, 13, 14 I
I routines I I I
~---------------+---+----------------~
IDIDOCS rou- INew routines that provide an interface between DIDOCSI7, 12, 13, 14 I
I tines 1 and MCS, and process console requests. I 1
.---------------+---t-----------------~
1 Restart INew routines to process TCAM, SYSIN, ISAM, BDAM, and 18, 13, 14 1
1 routines 1 DOS data sets. I 1
~---------------+---t-----------------i
IABDUMP INew modules to display trace data. 110, 13, 14 1
1 routine I I 1
~---------------+---+-----------------~
IAbnormal Term- IThe ABEND modules have been reorganized according to 110, 12, 13, 14 1
lination rou- Ifunctional processing. I 1
I tine (ABEND) I I 1
~---------------+---+-----------------~
IDamage Assess- IThe DAR modules have been reorganized according to 110, 12, 13, 14 1
Iment routine I functional processing. I 1
I (DAR) 1 1 1
~---------------+---..:.---+-----------------~
IABEND/STAE IThe ASIR modules have been reorganized according to 110, 12, 13, 14 I
I Interface Ifunctional processing. I 1
I routine (ASIR) 1 I 1
~---------------+---+-----------------~
I Diagnostic I Debugging aids. I Appendix A I
I Aids in ABEND I I 1
I Processing I I I L _______________ ~ ___ ~ _________________ J

iv

CONTENTS

SECTION 1: INTRODUCTION •
Task Supervision
Contents Supervision • • • •
Main Storage Supervision
Timer Supervision • • • •
Console Communications and System Log
Recording and Using Checkpoints
Exiting Procedures
Task Termination
Special Features

Time Slicing
Time Sharing Option •
Shared Direct Access Device •
Rollout/Rollin • • • • • •
MVT with Model 65 Multiprocessing •
Main Storage Hierarchy Support • • • •
System Management Facilities • • • •
Tracing Facilities

Summary • • • • • • • • • • • •

1
3
4
5
5
6
6
6
6
6
6
7
7
7
7
8
8
8
8

SECTION 2: INTERRUPTION HANDLING • • •• • • • 10
Saving the Current PSW • • • • • • • • • • • 10

SVC Interruption Handling • • • • • • • • • • • • • 10
Main Functions • • • • • • • • 10
Types of SVC Routines • • • • • • • • 11
SVC FLIH (IEAQNUOO): Saving the Registers. • • • • • • • •• 12
Ensuring That Both CPUs in a Model 65 Multiprocessing System Do
Not Perform Supervisor Routines Simultaneously • 12
SVC FLIH: Recording the Interruption • • • • • • • •
SVC FLIH: Determing Whether a supervisor Request Block is Needed
SVC SLIH (IEAQTROO): Building, Initializing, and Queueing the

• 13
13

SVRB •
SVC SLIH: Determining if the SVC Routine is Resident
Extended SVC Router (ESR) • • • • •
The Transient Area Handler
Deferring the Request • • •
Restarting Deferred Requests

• 13
• 14

14
• 15

• • 19
• 20

Minor Functions of SVC Interruption Handling
Summary of SVC processing • • • • • • • • •

• • • • • • • 20
• • 20

• 21
• 21

• • 22

Program Interruptions • • • • • • • • • • • • • • •
Multiprocessing Program Interruption Handler ••••
Models 91 and 195 Program Interruption Handler

Handling Decimal Instructions • • •
Entry from the TESTRAN Interpreter

• • • • • 22
. • • • . 23

External Interruptions • • • • • • • • • • • • •
Uniprocessing System • • • • • • • • • • • • • •
MVT with Model 65 Multiprocessing • • • • •

Input/Output Interruptions
Machine Interruptions • • • • •

System Environment Recording
SERO • • • • • • • • • • •
SERl • • . • • • • • • • •
System Environment Recording with Multiple Console Support

Machine-Check Handler (MCH) •

SECTION 3: TASK SUPERVISION • • • •
Services Directly Related to a Task Control Block •

Attaching a Subtask • • • • • • •
Obtaining Storage Space • • • • • • • •
Initializing the IQE, IRB, and TCB
Propagating Fields from the TCB of the Attaching Program
Placing Parameter Information in the Fields of the Subtask TeB

• 23
• 23
• 23
• 24
• 25

• • 26
• • 27

27
• 29
• 29

· 31
• 31
• 31
• 32
• 33
• 34
• 34

v

Special Processing for Time Slicing • • • • • • • •
Allocating Subpools of Main Storage to the Subtask
Placing the Subtask TCB on Its Queues • • • • • • • • • • • •
Indicating to the Dispatcher the Need for a Task Switch.
Preparation for the Dispatching of the Caller and the Fetching
of the Specified Program • • • • • • • • • • • •

changing the priority of a Tas k • • • • • • • • • • • • • •
Extracting Information from a Task Control Block • • • •
Detaching a Subtask •

Services Indirectly Related to a Task Control Block • • • • •
Specifying a Program Interruption Exit Routine
Synchronizing a Program with One or Io1ore Events •

causing a Program to Wait for One or More Events
Processing a List of ECBs (Multiple-Event Wait) •••••
Testing the Wait and Completion Bits
Processing a Single ECB • • • • • • • . .
Processing Common to Single and Multiple ECBs • • • • • • •
Indicating the Occurrence of an Event and Restarting a Waiting
Program • • • • • • • • • • • • •

serializing the Use of a Resource
Types of Resource Requests
Description of the Resource Queues
Requesting One or More Resources
Signaling that the Use of One or More Resources is Complete

Scheduling a User Exit Routine • • • •
The Stage 1 Exit Effector (CIRB Routine)
The Stage 2 Exit Effector • • • • •
The Stage 3 Exit Effector •

• • 34
• 35

• • 36
• 36

• 36
• 37
• 40
• 41
• 43
• 44

45
45

• • 46
• 46

• • 47
47

• 48
51

• 51
51

• • 54
• 60
• 64

65
• 66
• 66

TSO Processing • • • • • •
The Exit Routine ••.••

• 67
• • • 68

Services Internal to the Supervisor •
Testing and Indicating the Need for a Task Switch •
Testing the Validity of User-Supplied Addresses • •
changing the Status of Tasks • • • • • • • • • •

setting or Resetting the Nonrolloutable Status
Setting or Resetting the "Must Complete" Status
Setting or Resetting Nondispatchability • • •

Determining the Relative Dispatching Priorities of Tasks

• • • • • 70
• • •• 70

• • 71
• 71
• 72

• • • • • 72
• 72

Testing the Dispatchability of Tasks • • • • • • • • •
• • 72

73
Initiating an External Interruption in a Second CPU of the Model
65 Multiprocessing System • • • • •••••••••

SECTION 4: CONTENTS SUPERVISION •••••
The Common Functions of contents Supervision

General Description of the Common Functions
Allocation of an Available Module • • • • •
Deferring the Request for an Unavailable Module
preparing to Fetch a Module . .
Fetching the Module • • • • • • •
Updating the Contents Directory
Restarting Deferred Requests

Detailed Descriptions of the Common Functions
Searching for the Module
Creating a Contents Directory Entry
Testing Module Status • • •
Fetching the Module • . • •
performing Alias Processing •
Deferring a Request •.• • .
Restarting Deferred Requests
Scheduling Execution of the Module

Special Functions of Contents supervision

vi

Final LOAD Processing . . • • • • • • .• ••••
Special XCTL Processing • • • • • • • • • • • •

Processing if the Requester Is a User Program or a User Exit
Routine • • • • • • • • . • • • • . • • • . • • • • • •
Processing if the Requester Is an SVC Routine • • • • • •

Informing the Supervisor of an Embedded Module Entry Point

• 73

• 75
• 75
• 75

76
• 76

76
• • 76

• 77
• 77

• • 77
77

• 78
• 79
• 79

• • 80
• • • 80

• • 81
• 81

• • 82
82

• • 82

• 82
• 83
• 87

Informing the Supervisor of a Module Loaded Directly into Main
Storage • • . • . • . . • • • . • • • • • • • • • • 89

Processing a Minor CDE Request • • • . • • . • • • • . • • 89
Processing a Major CDE Request • . . • . • • 89

Informing the Supervisor that a Loaded Module Is No Longer Needed
in Main storage . . • . • • • • • • • • • • 901
Supervising the Loading of Segments of an Overlay Module

Preparatory Linkage Editor Functions ••••
Functions of the Overlay Supervisor •
Linkage to the Overlay supervisor • • • • • •
Types of Processing • • . • • • • . .• ••••••
Determining the Segments that Must Be Loaded

• 91
• 91
• 92

• • 92
92

• • 94
Controlling the Loading of Needed Segments • • • • •
Preparation for an Unassisted Branch to the Loaded Segment
Passing of Control • . . • • • • . • • • •

• 96
96

• 96
Fetching Routines and Modules to Main Storage •

Fetching SVC and I/O Error-Handling Routines
Fetching Nonresident Modules

SECTION 5: MAIN STORAGE SUPERVISION

• 97
• • 97

• 97

.107
Interruption Handling for Main Storage Supervision • • • • • • .108
Allocating Main Storage . • • • • • • • • •

Allocating a Region • • • . • • • • • . • . • • •
.Allocating Space within a Region • . • • • • • •

Processing if the Requested Space Is Availaqle
Processing if the Requested Space Is Not Available

Allocating a Borrowed Region through Rollout .•••
Determining whether Rollout Should Be Performed • • •
Obtaining the Needed Space from Unassigned Storage
Obtaining a Job Step Suitable to be Rolled out
Processing if a Job Step Suitable for Rollout Cannot be
Processing if a Suitable Job Step Can be Found

• .108
.109
.113

• .113
.114

• • • .119
• .119

.120
• .121

Found •• 122
.123

Transferring the contents of the Selected Region to the Rollout
Data Set •• • . • . • • • . • • • • . • • • • • • •• 126
Allocating the Borrowed Region to the Requestor's Job Step ••• 129
Processing if I/O Error Occurred During Rollout. • ••••• 129
Exiting from the Rollout/Rollin Module ••• 130

Allocating Space in the System Queue Area and Local System Queue
Area • • • • • • • • • • • ••• 130

Subpool 243 or 253 Allocation • • • • • • .131
Subpool 244 or 254 Allocation • • • • • .131
Subpool 245 or 255 Allocation • • • • • .131

Freemain Routine • . • • • . • • • • • • • • • • .131
Freeing Space Assigned to a Region • • •• ••••• .131
Freeing Space within a Region • • • .••. • .132
Freeing One or More Borrowed Regions through Rollin. • • •• • .133

Freeing the Borrowing Job Step's PQE • • • • • • • • ••• 133
Determining Whether the Rolled-Out Job Step Should Be Rolled In .133
Transferring the Rolled-Out Job Step to Main Storage •••••• 134
Restarting Deferred I/O Requests for the Rolled-In Job Step ••• 134
Restarting Deferred Operator Replies for the Rolled-In Job Step .135
Making Dispatchable the Tasks of the Rolled-In Job Step ••••• 136
Performing Final Common Housekeeping • • • • • . • • .136
Scheduling Deferred Rollout Requests •••••••• .136

Freeing Space in the System Queue Area and Local System Queue Area 137

SECTION 6: TIMER SUPERVISION •
System/360 Timer Supervision • • • • • • • •
System/370 Timer Supervision • • • •
Timer SVC Interruption Handling •
The TIME Routine in System/360
The TIME Routine in System/370
STIMER Routine • • • • • •

The Timer Queue in System/360 •
The Timer Queue in System/370 •
Determining Interval Values in System/360
Determining Interval Values in System/370
Building Timer Queue Elements • • • • • •

.138
• ••• 138
• ••• 138

· .139
• ••• 139

.140

.140

.141
• •. 141

•••••• 142
• • • • • • • • .142

••••••• 142

vii

Timer Interruption Handling • • . • • • • • • • • • • • • • • •
Determining What Actions Are To Be Performed in System/360
Determining What Actions Are To Be Performed in System/370
Returning 6-Hour and Midnight Elements to the Queue in

• •• 142
• •• 143

.144

Systern/ 360 • • • • • • • • • • • • • • •
Returning 6-Hour and Midnight Elements to the Queue in
Systern/ 370 • • • • • • • • • • • •

.145

.145
SMF Processing • • • • • • • • • • • • •

SMF Time/Output Limit Expiration Routine (IEATLEXT)
• .145

• • • • .145
TTIlVlER Routine . • • • • • • • • .

Determining Remaining Time in System/360
Determining Remaining Time in Systern/370 ••••
Canceling an Interval • • • . • • • • • •

SECTION 7: CONSOLE COMMUNICATIONS AND SYSTEM LOG
supporting Console Communications • . . • .

Reply Processing • • • . • • • • • . • • •
Multiple-line Write to Operator Routines

Multiple-Line Write to Operator, Load 1 •
Multiple-Line Write to Operator, Load 2
Multiple-Line Write to Operator, Load 3 •

write to Programmer Processing • • • • •
Supporting Multiple Console Communications

Console Initialization Hodule (IEECVINT)
Graphic Console Initialization Module (IEECVGCI)
Mini-Router Module (IEECMCTR) • • • • • • •

• .145
• ••• 146

.146
.146

• ••• 147
.147

• .150
.150

• ••• 150
.151
.151

• •• 151
• ••• 151

.153

.155
.155

Router Module (IEECMQWR) •••••••••
Console Switch Modules (IEECLCTX, IEECMCTX,

.155
IEECNCTX, IEECOCTX) .155

• • • .156 Device Interface Module (IEECMDSV) ••••
Multiple-Line Write to Operator Routines (MCS)
Multiple-Line Write to Operator, Load 1 •••••••
Multiple-Line Write to Operator, Load 2
Multiple-Line Write to Operator, Load 3 •
Multiple-Line Write to Operator, Load 4 ••••••
WTO(R) Service Module (IEECfvMSV)
DOM Service Module (IEECMDOM) • • • • •
NIP Message Buffer Writer Module (IEECMWTL) •

•••••• 157
• •• 157

.157
• .158
• .158
• .158

.158

.158
Reply Processing • • • • • • • • • • • • .158

Console Support • • • • . • • • .158
.158
.159
.159

Unit Control Module • • • • •
Console Support Routines

1052 Console Support Routines (MCS Optional)
Printer Device Support Routines • • • • •
Card Reader Device Support Routines • • •
2740 Console Support Routines (MCS Only)
3284/3286 Processor Routine (MCS Only)

• ••• 160
.160

• • • • • • .160
.161

Device Independent Display Operator Console Support (DIDOCS)
Routines (Optional) • • • • • • • • . • •• .161

viii

Display Console Support Routine Descriptions
DIDOCS Processor Routines • • • • • • •
DIDOCS Processor 0, Load 1 • • • • • • • • • • • • •

• • .164
• •• 164

• .165
DIDOCS Processor 0, Load 2 ••••• • •• 165

.165
.165

DIDOCS Processor 1, Load 1 • • • • •
DIDOCS Processor 1, Load 2 • • • • • • • • •
Open/Close Routine • • • •
2250 I/O 1 Routine • • • • • • •
2250 I/O 2 Routine • • • • • • • •
2260 I/O 1 Routine • • • • • • • • •
2260 I/O 2 Routine
3277 I/O 1 and 2 Routines •
Model 85 I/O Routine
Asynchronous Error Routine

• .165
• ••• 166

.167

.167
• .167

• ••• 167
.168
.168

• .168 Message 1 Routine •
Message 2 Routine • • • • • • • .168
Message 3 Routine •
Display 1 Routine •
Display 2 Routine •
Display 3 Routine •

.169
• • • • • • • • • • .169

• • • • • .169
• • • • • • • .169

Roll Mode Routine •
Command Routine . • • • • •
Options Routine • •
Delete 1 Routine
Delete 2 Routine
Delete 3 Routine
Delete 4 Routine
Light Pen/Cursor Service Routine
PFK 1 Routine • • • • • • • • • . • •
PFK 2 Routine • • • • • • • . . .
Status Display Interface 1 Routine
Status Display Interface 2 Routine
Status Display Interface 3 Routine • • • • •
Status Display Interface 4 Routine
Status Display Interface 5 H.outine
status Display Interface 6 H.outine
Status Display Interface 7 Routine
Cleanup Routine • . . • . •
Timer Interpreter Routine •

supporting the System Log . . •

••• 169
• .170

.170
• .171

.171

.171
• .171

.171

.172
• .172

.172
• .172

• • • .173
.173
.173
.173
.113
.174
.174
.175

SECTION 8: CHECKPOINT /RESTART • . 178
Checkpoint (SVC 63) • • • • . • •••.••••. 178

Parameter and Environment Check. • • •• 179
Parameter Ch~ck (IGC0006C) ••• 179
Environment Check (IGC0106C) • • • . .180
JCT Processing (IGC0206C) • • .180
CANCEL Processing • . • • • • • .180

purging I/O Requests •••• • .181
Describing Data Set Status • • • • • • • • .181

Writing Out the CHR (IGCOA06C) • • • • .181
Building and Writing DSDRs (IGCOD06C) ••• 181

Copying the Region • • • • • • • • . .182
Writing CIRs (IGCOF06C) . • • • • • • • ••••••••. 182
Building and Writing SURs (IGCOG06C and IGCOH06C) • • •• 183

Restoring I/O Requests ••••••• 183
Checkpoint Exit Routine. . .183

General Clean-up (IGCOQ06C) ••••••••• 183
Message Module (IGCOS06C) • .183

Restart (SVC 52) ••••.•• • .183
obtaining and Formatting Storage •• 185

Obtaining Storage (IGC0105B) .185
Checkpoint Data Set Initialization (IGC0205B) .185

Restoring the Step to Main Storage • . • • • • .185
Restoring Main Storage (IGC0505B) • . • • • • • • • • • • • .185
SUR Processing (IGC0605B, IGC0705B, IGC0805B, IGC0905B) • .185

JFCB Processing. . • . . • • • • • • • .185
Table Build Module (IGCOG05B) • • • • • • • • • .186
Table Build Module (IGCOG95B) • • . .186
TCAM Data Set Processor Module (IGCOJ05B) •• 186
Table Complete Module (IGCOI05B) • • • • • .186
Dummy Data Set Processor (IGCOH05B) • • • • • • • • ••• 186

Mounting and Verifying Volumes •• • . • .186
Non-Direct Access Processing (IGCOK05B) ••••• 187
Direct Access Mount/Verify Module (IGCOM05B) .187
SYSIN/SYSOUT Non-Direct Access Data Set Processor (IGCOL05B) •• 187

Positioning Open Data Sets ••.••••.•••••••••••• 187
SYSIN/SYSOUT Data Set Processor 1 (IGCON05B) • . • • •• .187
SYSIN/SYSOUT Data Set Processor 2 (Direct Access) (IGCOQ05B) •• 188
Data Set Processor 1 (IGCOP05B) • • •• 188
Data Set Processor 1A (IGCOS05B) .188
DOS Tape Data Set Processor (IGCOU05B) •••••••• 188
Data Set Processor 2 (IGCOR05B) • . .• • ••••••••••• 188
IS~i and BDAM Data Set Processor (IGCOW05B) •••• 189

Restarting I/O Requests .189
Restart Exit Routine • . . . • • • • • .189

SECTION 9: EXITING PROCEDURES .190

ix

Handling Return from Type-1 SVC Routines •••••••••••••• 190
Preparing for Return from Programs other than Type-1 SVC Routines •• 190

Preparing for Return from a User Program Check Routine .191
Preparing for Return from Prograrrs Controlled by RBs ••• 191

If the Returning Routine Is an SVC Routine .192
If the Returning Routine Is a User Program •• 192
If the Returning Program Is a User Exit Routine ••• 195
Common Processing. • • • • • • . . . • • • . • • • ••••• 195

The Transient Area Refresh Routine • • • • • . • .195
Dispatching (Performing the Actual Return of Control) .196

Determining and Giving Control to the Current Routine of the Task
Next To Be Dispatched • • • • • • • • • • • • . • • • • .197

.197
.198

Normal Dispatcher Processing (Without Time-Slicing) • • • •
Dispatcher Processing with Time-Slicing (Differences)

Completing the Scheduling of User Exit Routines .
Handling Task and Job-Step Timing . • • • • •

Handling Task Timing • • • • • • • •
Handling Job-Step Timing • • •• ••• • • • • • • •

.199
•• 200

.200
•••• 201

SECTION 10: TERMINATION PROCEDURES • • •••• .203
.203

••• 207
Normal Termination (EO'I Routine) ••••••••
Abnormal Terroination ••••• • • • • • • • • . • • •

x

Scheduling an Abnormal Terrrination (ABTERM) • • • •
Processing if Specified Task Has Already Eeen Terrrinated
Processing if the Task Has Already Been Scheduled for Abnormal

• .208
.209

Termination • •• • • • • • • • •• • • • • • • • • • • .209
Processing if the Specified Task is the Jot Step Task •••••• 211
Processing if the specified Task Is Not the Job Step Task •••• 214
Preparation for ABTERM Processing after a Frograrr Interruption
(ABTERM prologue) • • • • • • • • • • • • • . • • • .214

Dumping Selected Areas of Main Storage (ABDUMP) • • • • .216
SVC DUMP (Entry Point IGC0005A) • • • • • • • • • • .218'
Processing during ABDUMP1 (Entry Point IGCOL05A> •••••••• 219
Processing during ABDUMP1.5 (Entry Point IGCOC05A) ••••••• 220
Processing during ABDUMP2 (Entry Point IGC0105A) •••• .220
Processing during ABDUMP3 (Entry Pcint IGC0205A) •••••••• 220
Processing during ABDUMPQ (Entry Point IGCOC05A) .220
Processing during ABDUMP4 (Entry peint IGC0305A) •••• ..221
Processing during ABDUMP5 (Entry Point IGC0405A) •••• .221
Processing during ABDUMP6 {Entry peint IGC0505A) ••••• .222
Processing during ABDUMP11 (Entry Foint IGCOB05A) .223
Processing during ABDUMP7 (Entry Peint IGC0605A) •••••••• 223
Processing during ABDUMP8 (Entry Point IGC0705A) •••• .224
Processing during ABDUMP9 (Entry peint IGC0805A) ••••• 225
Processing during ABD,UMP12 (Entry Foint IGCOJ05A> • • • • • .225
Processing during ABDUMP13 (Entry Point IGCOR05A) • • • • • .225
Processing during ABDUMP14 (Entry Point IGCOM05A) .225
Processing during ABDUMP15 (Entry Point IGCON05A) • • .225
Processing during ABDUMP16 (Entry Point IGCOP05A) • • •••• 226
Processing during ABDUMPH (Entry Peint IGCOH05A) •••••••• 226
Processing during ABDUMPI (Entry Peint IGCOI05A) .226
TCAM AEDUMP1 (Entry Point IGCOD05A) • • • • • .226
TCAM ABDUMP2 (Entry Point IGCOE05A) • • • • • .226
TCAM AEDUMP3 (Entry Point IGCOF05A) • .226
TCAM ABDUMP4 (Entry Point IGCOG05A) • • • • • • • • • .226
TCAM AEDUMP5 (Entry Point IGCOR05A) • .226
TCAM ABDUMP6 (Entry Point IGCOS05A>. • • • • • • .226
Cleanup in the Where-to-Go Routine • • • • .227

Performing Abnormal Terrr.ination (ABEND Routine) • • • • • • • .227
Recursions • • • • • • • • • • • • • • • • • • • .228
Communications • • • • • • • • • • • •• .228
Issuing A Conditional Freemain ••••••• 228
ABEND Processing • • • • • • .229
AEEND Modules.. •• • • • • • • • • .229
Processing during AEENDO (Entry Point IGC0001C) .230
Processing during ABEND1 (Entry Point IGC0101C) • • • • • .232
Processing during AEEND3 (Entry Point IGC0301C) • • • • • .235
Processing during ABEND4 (Entry Point IGC0401C) • • • • .236

Processing during ABENI;5 (Entry Point IGC0501C) · · · · · .237
processing during ABEND7 (Entry Point IGC0701C) · .237
Processing during ABENI;8 (Entry Point IGC0801C) .238
Processing during ABEND9 (Entry Point IGC0901C) · · · · · · .241
Processing during ABENI;ll (Entry Point IGCOB01C) · · · · .243
Processing during ABEND12 (Entry Point IGCOC01C) .247
processing during ABEND13 (Entry Pcint IGCOD01C) · · · · · · · .248
Processing during ABEND15 (Entry Point IGCOF01C) · · · · · .249
Processing during ABENI:16 (Entry Point IGCOG01C) .251
Processing during ABEND20 (Entry Point IGCOK01C) · .255

Performing Damage Assessrrent (DAR) · · · · · · · · .255
Processing during DARl (Entry Point IGCOL01C) · · · · .255
Processing during I:AR2 (Entry Point IGCOM01C) · · · · · · · .256
Processing during I:AR3 (Entry Point IGCON01C) · .256
Processing during DAR4 (Entry Point IGCOP01C) · · · .257

Specifying a Task Asynchronous Exit Routine · · · · .257
Processing Curing the STAE Service Routine (Entry Point
IGCOO060+) · · · · · · .258
processing Curing ASIRO (Entry Point IGCOR01C) · · · · .259
Processing During ASIR1 (Entry Point IGCOS01C) · .259
Processing Curing ASIR2 (Entry Point IGCO'I01C) · · · .260
Processing During ASIR3 (Entry Point IGCOU01C) · .260
processing During ASIR4 (Entry Point IGCOV01C) .261
Processing curing AS'IR5 (Entry Point IGCOW01C) · · · .261

SECTICN 11. SPECIAL FEATURES •••••••• • .263
• .263 Model 91 Decimal Simulator (IEAXDSOO) Routine

Relationship to the Operating Systerr
Simulator Organization • • • • • • • • • •

• • • • • .263

Simulator Control (DECENT) Routine • • • •
Simulator Routine for Add, Subtract, Zero-and-Add Decimal
Instruction (CECASP) •••••.••••••••••••
Simulator Routine for ~ultiply Decimal Instruction (DECMP)
Simulator Routine for Divide Decimal Instruction (CECDP)
Simulator Routine for Corrpare Cecirral Instructicn (DECCP)
Analyzer/End Routine • • • • • • • • • • • • • •

Extended Precision Floating Point Sirrulator • • • • • •
Relationship to the Operating System • • • • • •

IEAXPSIM processing • • • • • • • • • • • • • •
IEAXPALL Processing • • • • • • • • • • • • • • • •
IEAXPDXR processing • . • • • • • • •••• • •

Systerr Management Facility • • • • • • • •
Recording System wait Tirre
Handling Time/Output Limit Expiration
Counting References to User Data sets •
Controlling Cut put Limit for SYSOUT • •
Recording storage Blocks Assigned to User Prcgrarrs

.263
.263

.267

.267

.270
• .271

.271
• .273

.273

.273
• .273
• .274

.274

.274
.274

• .275
.275
.275

SMF Routines •••••••• • • • • • • • • • • • • • 275
SMF Wait Time Collection Routine (IEAQwAIT) • • • •
S~F EXCP Counting Routine (IEASMFEX) •••••••••
SMF Output Limit Expiration Routine (IEA'ILEXT)

Tracing Facilities • • .. . ••..•••••
Trace Tatle Facility •••• • • • •

Trace Routine (IEAQTR) • • • •
Generalized ~race Facility • • • • • • • •

SECTION 12: CCNTROL BLOCKS AND TAELES ••••
SVC Table • • • • • • • • • • •
Communications Vector Table (CVT) • • • • • • •

Task Control Block • • • • • • • • • • • • •
Supervisor Request Block (SVRB) -- for Resident Routine
Supervisor Request Block (SVRB) -- For Nonresident Routine
Interruption Request Block (IRE) •••• • • • •
System Interruption Request Block (SIRE) •••••••
Program Request Block (PRB) • • • •• •• • • • • • •
Trace Table (Uniprocessing Systems) •
Trace Table (Multiprocessing Systems) • • • •
Transient Area Control Table (TACT) •

• .275
• •••• 275

.276
.276

• •••• 276
• .277
• .277

• .279
.282

• .283
• ••• 287

• .296
• •••• 297

• .298
.300
.301

• ••• 303
.304

• .305

xi

Program Interruption Element (PIE) • • • • .306
Program Interruption Control Area (PICA) •• 306
STAE Control Block (SCE) •• 307
STAE Parameter List. • • • • • • • • • • ••• • • .307
Event Control Block (ECB) • • • • • • • • . •• 308
Parameter List Elerrent (For the ENQ/DEQ routines) • • • • • •• 309
Major Queue Control Block (QCB) • • • • • .310
Minor Queue Control Block (QCB) • • • • • • • .310
Queue Element (QED • • • • • •. ••• • •• • • • • • .311
Interruption Queue Element (IQE) • • • • • .312
Message Information List (For Ty~e-l SVC Rcutines) .313
Request Queue Element (RQE) • • • • • • • • • • • • .314
Contents Directory Elerrent (CDE) •••••• 315
Load List Element (LLE) • • • • • • • • • • • • • • • • • .316
Partitioned Data Set Directory Entry • • • • • .316
Scatter Extent List. • • • • • • •••••••••• 319
Block Extent List and Note List. • .320
Scatter/Translation Record • • • • • .321
Program Fetch Work Area • • •••• • • • • • • • • • • • .322
Program Fetch Euffer Table • • • • • •• 323
Control Record • • • • • • • • • • • • •••••••••• 324
Relocation Dictionary (RLD) Record •• 325
Control and Relocation Dictionary Record •••• 326
Segment Table. • • • • • • • • • • • • • • •••••••• 327
Entry Table • .329
subpool Queue Element (SPQE) •••• • • • • • • •• 330
Descriptor Queue Element (DQE) .330
Free Queue Elerrent (FQE) • • • • • • • • • .331
Allocated Queue Element (AQE) • • • • • • ••• • • ••••• 331
GOVRFLB (Origin List for Main storage Queues) • • • • • • • .332
Partition Queue Element (PQE) • • • • • • • • • • • • • .333
Dummy Partition Queue Element (DPQE) ••••• • .334

Relationship of Dummy PQE to TCB and PQE Chain .334
Free Block Queue Element (FBQE) • • • • • • • .334
Rollout I/O Queue Element (RIQE) •••• • • • • • • •• 334
Reply Queue Element (Non-MCS) • • .335
Reply Queue Element (MCS) • • • • •• 335
SVC Purge Parameter List ••• 336
Timer Queue Element (TQE) • • • • ••• 337
Secondary Communications Vector Table (SCVT) •••• 339
ABBUMP Parameter List. • • • • • ••.•• 341
SDUMP Parameter List • . • • • .342
Time-Slice Control Element (TSCE) • • • ••••• 343
Display Control Module (OCM) •••• • • • • • • .344
Resident Dis~lay Control Module (RDCM) ••••••••• • ••• 344
Transient Bisplay Control Module (TDCM) • • ••••• 347
Multiprocessing Communications Vector Table (MPCVT) ••••••••• 353
Vary Queue Element (VQE) ••••••••• .354
Fail Soft Storage Element Map (FSSEMAP) • • • • • • • •• 354
Unit Control Module (UCM) Base ••• • • • • • • • • • ••••• 355
UCM Extension Prefix to Unit Control Module (UCM) Base ••••••• 356
Multiple Console Support Prefix to Unit Control Module (UCM) Base •• 356
UCM Entry Individual Device Map • • • • • • • • • • • • • • • • .358
UCM Message Text and Event Indication List (ElL) Areas360
Write Queue Element (WQE) Format for Multiple Console Support
(Single-Line WTO) • • • • • • • • • • ••••• • •
Major Write Queue Element (Non-MCS) • • • • •
Major Write Queue Element (MCS) • • •
Minor Write Queue Element (Non-MCS) •
MINOR Write Queue Element (MCS) • • •
WTO/R Macro Ex~ansion • • • • • •
Multiple-line WTO Macro Ex~ansion
Machine Check Record for SERO and SERl
storage Utilization Block (SUB) • • • • •
Sample Dump • • • •

SECTION 13: CHARTS

xii

• .361
· •• 363
• •• 364

• ••• 366
.367

• •• 368
.369

• .371
• .373

.375

• .401

SECTION 14: PROGRAM ORGANIZATION •
Module Directory
Routine Synopses •• • • • • • • •

APPENDIX A: DIAGNOSTIC AIDS IN ABEND PROCESSING •
Internal ABEND Debugging Features •

INDEX • • • • • • • • • • • • • •

.725

.725
• •• 759

•• 170
.770

•• 772

xiii

ILLUSTRATIONS

Figure 1-1. Overall Flow of the Supervisor • • • • • • • • • • • • 1
Figure 1-2. Flow of Control After the ATTACH Macro Instruction is
Issued ••••••••••••••.••••.•••• 3
Figure 1-3. Processing After an SVC Interruption • • • • • 9
Figure 2-1. Status Saving by the SVC Interruption Handlers ..•• 11
Figure 2-2. A Request Block Queue • • • • • . • • • • 14
Figure 2-3. The Transient Area Queues. • • • . • • • • • • . 17
Figure 2-4. Availability of Machine-Check Programs •••• • • 25
Figure 3-1. Queue Relationships among a TCB, IQE, IRB, and End-Of-
Task Exit Routine • • • • • • • • • • . • • • • • • • • • . • • • 33
Figure 3-2. Initialization of the Interruption Queue Element • • • 33
Figure 3-3. TSCB Pointers • . • • • • • • • • • • • . •• • •• 38
Figure 3-4. The Task Control Block Queue • • • • • • • • • • • 39
Figure 3-5. The Handling of Shared and Exclusive Requests • • 52
Figure 3- 6. The Resource Queues • • . • • • • • • • • . • 53
Figure 3-7. Processing if a Requested Resource Is Not in Use • 55
Figure 3-8. Processing if a Requested Resource Is in Use ••• 55
Figure 3-9. Return Codes for the ENQ Routine • • • • • • • • 56
Figure 3-10. TCB Flags that are Set if a Task Is in "Must
Complete" Status •••••• • • • ••••••••••••••• 58
Figure 3-11. Determining if the Next waiting Requester Should be
Readied • • • • • • • • • •• • • • • • • • • • • • • • 61
Figure 3-12. Error Conditions when Use of a Resource is Signaled
Complet e • • • • • . • 63
Figure 4-13. scheduling of Asynchronous Exit Routines ••••••• 65
Figure 3-14. Mask Bit Numbers Used in the STATUS Macro Instruction. 74
Figure 4-1. Subroutine CDSEARCH Uses the Load List and the Job
Pack Queue in its Search for the Module's Name ••••••••••• 78
Figure 4-2. Further Search by the Common Subroutines of Contents
supervision if the Module'S CDE Is Not in the Job Pack Queue · 79
Figure 4-3. Manipulation of the Caller's RB Queue During
Servicing of an XCTL Request • • • • • • • • • • • • • • 84
Figure 4-4. The Transient Area Queues • • • • •
Figure 4-5. Finding an Extent List by Searching the Job Pack
Queue or the Load List • • • • • • . • • •
Figure 4-6. Organization of an Overlay Module •
Figure 4-7. Functional Flow of Overlay Supervision
Figure 4-8. Use of the Caller's ENTAB to Branch to a Segment·
Figure 4-9. Types of Processing During Overlay Supervision
Figure 4-10. Organization of SEGTAB Entries for a Single-Region

• 85

• 88
• 91
• 93

94
• 95

Overlay Structure •• 96
Figure 4-11. Processing of Segment Table Entries •••••••••• 98
Figure 4-12. Relationships of Program Fetch Routine to Other
Routines for the Fetch of an SVC Routine or an I/O Error Routine • • 99
Figure 4-13. Control Blocks and Tables Used by the Program Fetch
Routine • • . • • • • • • • • • . • • • • • • • • • • • • • • • • • .100
Figure 4-14. Relationship of Program Fetch Routine to Other
Routines for the Fetch of a Module or Overlay Segment •••••••• 101
Figure 4-15. Extent List •••••••••••••••••••••• 101
Figure 4-16. Note List as it Exists in Main Storage •••••••• 102
Figure 4-17. Typical Load-Module Logical Format on Direct Access
Device •.. • • • • • • • • • • •• • ••••••••••• 103
Figure 4-18. Overall Control Flow During the Loading of a Module
or Segment ••••••.••••••• • • • • • • • • • • • .104
Figure 4-19. Channel-Program Switching After a Program-Controlled
Interruption • . •
Figure 4-20. Program Fetch Return Codes •••••••
Figure 4-21. Termination Processing According to Module Type •
Figure 5-1. GET~AIN/FREE~~IN SVC Instructions ••••••
Figure 5-2. Main Storage Supervision Interruption Handling
Figure 5-3. Subpool Numbers Used for Requesting Space
Figure 5-4. Element Relationships: Region Allocation

xiv

.105
• • .106
• • • 106

.108

.108

.110
•• 111

Figure 5-5. Subpool Use for List and Register Forms of GErMAIN
(GETPART l"Jodule)112
Figure 5-6. List Structure for List Form of GETMAIN (GETPART
Modu1e) • . . • • • • • • • • • . • • • • • • • • . • . • • • .112
Figure 5-7. Element Relationships for Intra-Region Allocation. • .113
Figure 5-8. position of Rollout/Rollin TCB on TCB Queue •••• • .116
Figure 5-9. Relationship of the Rollout/Rollin TCB, PRB, and IRB
During Scheduling of the Rollout/Rollin Task • • • • • • • • .116
Figure 5-10. scheduling of Rollout: Overall Flow. • • • • • •• .117
Figure 5-11. Steps in the Scheduling of the Rollout/Rollin Task •• 118
E'igure 5-12. Interfaces Between Rollout Module and SVC Purge
Routine • . . • . • • • • • . • •••••••••••••• 124
Figure 5-13. How lOBs for Deferred I/O Requests Are Queued .•••• 126
Figure 5-14. Element Relationships for System Queue Area Allocation 131
Figure 6-1. Timer SVC Interruption Handling •.•.•••.•.•. 139
Figure 6-2. Positioning of Elements on the Timer Queue •••••• 141
Figure 6-3. Timer Interruption Handling •.••••••••.••• 143
Figure 6-4. Timer Second-Level Interruption Handler Module Name -
Determina tion • . • • • • . . • . • . • • • • • • • • • • .143
Figure 6-5. Actions Taken After Timer Expiration .144
Figure 7-1. Conso1e Support: Input.. • • • • .148
Figure 7-2. Console Support: Output . • . • • . ••. 149
Figure 7-3. Communication Task with MCS • . • • .152
Figure 7-4. System and Console Output Queues • • • . • • .154
Figure 7-5. Console Switch Parameter List • • • • ••• 156
Figure 7-6. 1052 and 2740 Console Support Routines with MCS •••• 159
Figure 7-7. CRT Console Support (High Level) •••• • ••• 162
Figure 7-8. Variable Sized Fields of the TDCM • • .164
Figure 7-9. DlDOCS Processor Routine Entries •••• 166
Figure 7-10. Log Function . • • • • • • • • • • • • • • .177
Figure 8-1. Checkpoint Processing Routines • • • • • • .179
Figure 8-2. CHECKPOINT Header Record (CHR) •• 181
Figure 8-3. Data Set Descriptor Records (DSDRs) .•..•••••. 182
Figure 8-4. Restart Processing Routines •••••••••••••• 184
Figure 9-1. The Transient Area Queues. • • • • • ••••• 193
Figure 9-2. Locating the Initiator TCB Associated with the Task
Next to be Dispatched • • • . • • • . • • • • • • • •
Figure 10-1. Scheduling of the ABENt Routine ty the ABTERM
Figure 10-2. ABTERM Processing . • • • • • • • • • • • • •
Figure 10-3. A ~ree of Subtasks and a Possitle Sequence of

• .201
Routine .208

.•• 210

Examination • • . • • • • • • • • • • • • • • • • • . • .
Figure 10-4. ~he ~CB Nondisfatchatility Flags •••••
Figure 10-5. Format of the Completion Code and the Dump Option
Flag in the Parameter Register • • • • • • • • • • • • •
Figure 10-6. Pointers Used During the Save Area Trace ••••
Figure 10-7. Valid ABEND Recursion Configurations ••••
Figure 10-8. Task Relationshi~s During an Atnormal Termination
Figure 10-9. Preparation for the Dispatching of ABEND11 for the

• .211
• .212

.216
• • • 223

.228
.242

Selected Task • • • • • • • • • • • . • ••••••••••••••• 245

• .264
Figure 11-1. Relationship of the Decimal Simulator Routine
(IEAXDSOO) to the Operating System • • • • • • • • • • • • •
Figure 11-2. Decimal Simulator (IEAXDSOO) Routine Organization and
Flow of Control • • • • • • . • ••••••••••••••••• 265
Figure 11-3. Crganization of the Decimal Simulator (IEAXDSOO)
Routine • .266
Figure 11-4. Storage Protection Checking •••••••••••••• 268
Figure 11-5. Exam~le of Mu1ti~1icaticn ty Decimal Simulation • .270
Figure 11-6. Examfle of Division ty Decimal Simulator ••• 272
Figure 11-7. Exam~le of ~C~ Pointers Used b~ EXCP counting Routine .278
Figure 14-1. Module Directory ••• • • • • • • • • • • • • • .726
Figure 14-2. Directory of Entry Point Names and Flowchart
Identifications. • .743
Figure 14-3. ~atle of Routines Invoked by SVC Instructions (Part 1
of 2 ••• . • • • • • • • • • • • . • • • • • • • • • • • • • • • .758

xv

CHARTS

Chart 00. Overall Control Flow of MVT Su~ervisor • • • • • • • .402
Chart AA. SVC First-Level Interruption Handler ••••••••••• 403
Chart AB. SVC Second-Level Interrupticn Handler •••••••••• 404
Chart AC. Extended SVC Router ••• • • • • • • • • •• • •• 405
Chart AD. Transient Area Availability Check Rcutine • • • • • .406
Chart AE. Transient Area Fetch Routine • • • • • • .407
Chart AF. Program Check First-Level Interruption Handler •• 408
Chart AG. Program Check First-Level Interru~ion Handler -- Models
91 and 195 • .410
Chart AH. External First-Level Interrupticn Handler --
Uniprocessing • .411
Chart AI. External First-Level Interrupticn Handler --
Multi~rocessing •• • • • • • • • • • • • • • • • .412
Chart AJ. Input/Output First-Level Interrupticn Handler •••• 413
Chart AK. SERO Routine ••••••••••••••••••••••• 414
Chart AL. SER1 Routine -- Models 40, 50, 65, and 75 •• 415
Chart AM. SER1 Routine -- System/360 Models 91, 95, and 195 and
system/370 Model 195 .416
Chart EA. Attach Routine • • • • • • • • • • • • • • • .418
Chart BB. Chap Routine. • • • • • • • • • • • • • • • • .422
Chart EC. Cha~ Routine with Time-Slicing. • • •••••••• 423
Chart BD. Extract Routine • • • • • • ..426
Chart EE. Detach Routine. • • • • • • • .427
Chart BF. SPIE Routine • • • • • • • • • • • • .428
Chart EG. Wait Routine. • • • • .429
Chart BI. ENQ Routine • • • • • • • • • • .432
Chart EJ. DEQ Routine • • • • • • • • .434
Chart BK. Stage 1 Exit Effector •••••••••••••• 436
Chart BL. Stage 2 Exit Effector .437
Chart BM. Stage 3 Exit Effector •• 438
Chart BN. Task Switching Routine -- Uniprocessing •• 440
Chart BO. Task switching Routine -- Y-ultifrocessing • • • • .441
Chart BP. STAE Service Routine. • • • • • • • • • • • • • .442
Chart BQ. AEEND/STAE Interface 0 Routine (ASIRO) • • • • • .443
Chart BR. ABEND/STAE Interface 1 Routine (ASIR1) .445
Chart BS. AEEND/STAE Interface 2 Routine (ASIR2) •• 447
Chart BT. ABEND/STAE Interface 3 Routine (ASIR3) •• 448
Chart EU. AEEND/STAE Interface 4 Routine (ASIR4) .451
Chart BV. ABEND/STAE Interface 5 Routine (ASIR5) •• 455
Chart EW. Set Status Service Routine. • • • • • • • • • .456
Chart CA. Link, Load, XCTL, and SYNCH Processing •••••••••• 458
Chart CB. Identify Routine • • • • • • • • • • • • .461
Chart CC. Delete Routine • • • • • • • • • .463
Chart CD. Program Fetch Routine • • • • • .464
Chart CEo Overlay supervision •••• 467
Chart DA. GETMAIN/FREEY-AIN -- SMF Storage Routine .468
Chart DB. GETPART/FREEPART Routine. • • • • • • ••••••• 471
Chart DC. Rollout/Rollin Criterion Routine •• 473
Chart ~D. Rollout/Rollin I/O Routine •••• • •••••• 475

}.
a:rt DE. SVC Purge Interface • • • • • • • • • • • • • • .476

'hart DF. SVC Restore Interface •• • • • ••••••••••• 477
Chart DG. Rollout/Rollin GETSTEP Routine. • .478
Chart DH. Rollout/Rollin TESTSTEP Routine ••••••• 479
Chart DI. Rollout/Rollin Re~ly Restore Routine. • .480
Chart EA. TIME Routine • • • • • • • • • • • • • .481
Chart EB. STIMER Routine • • • • • • • • • • • • • .482
Chart EC. TTIMER Routine • • • • • • • • . .•••••• 483
Chart ED. Timer Second-Level Interru~ticn Handler •• 484
Chart EE. TIME Routine with Systerr/370 Tirre-cf-Day Clock •••••• 486
Chart EF. STIMER Routine with System/370 Time-of-Day Clock. • .487
Chart EG. TTIMER Routine with System/370 Tirr.e-of-I:ay Clock ••••• 488

xvi

Chart EH. Timer Second-Level Interruption Handler with System/370
Time-of-Day Clcck • . . • • • • • • . . . • • • • • • • • •
Chart FA. External Interruption and I/O Attention Handlers •
Chart FB. Write-To-Operator • • • • . • • • • . • • •
Chart FC. Write-To-Operator with Reply ••••••.••
Chart FD. Communications Task Initialization Routine ••
Chart FE. Graphic Console Initialization Routine • . • • • • •
Chart FF. wait -- Communications Task without ~ultiple Console

.489
• .490

.491

.49"2

.493

.498

Support • • • . . . • .499
Chart FG. Router -- Communications Task without Multiple Console
Support • . • . . . • • . • • • . • • • • • • • • . • • • • • • . .500
Chart FH. Console Switch -- Communications Task without Multiple
Console Support • • • • • • • • . . . • . • • • • • . • • • • • • .501
Chart Flo Router -- Communications Task wi th Multiple Console
Support. . • . . . • • • • • • • • . • • • • • . • • • • ••• 502
Chart FJ. Console Switch Load 1 -- Communications Task with
Multiple Console Support • • • • • • • • • • .503
Chart FK. Console Switch Loads 2 and 3 -- Communications Task with
Multiple Console Support • • • • . • • . • • • • • • • • ••• 506
Chart FL. Console Switch Load 4 -- Communications Task with
Multiple Console Support •.••••.••••••••
Chart FM. Device Interface -- Corrrr.unicaticns Task with Multiple
Console Support . • . • . . . • • . • • . • • • • • • • •
Chart FN. WTO/R Processor -- Corrmunications Task with Multiple
Console Support • . . • • • • • . • . • • • • • . • • •
Chart FO. Delete-Operator-Message (DOM) Processor -
Communications Task with Multiple Console Support • • •

.508

.509

.512

• .515
Chart FP. NIP Message Buffer Writer -- Corrmunications Task with
Multiple Console Support •.•••.•••••••••••••.•• 516
Chart FQ. 1052 Processor 1 -- Comrrunications Task without Multiple
Console Support. . . .• • •••.•••••••••••••••• 517
Chart FR. 1052 Processor 1 -- Corrrr.unicaticns Task with ~ultiple
Console Support •.••••••.•.•••••••••.•••••• 519
Chart FS. 1052 Processor 2 -- Corrrrunications Task with Multiple
Console Support. . • • . • • • . • . • •. • .•••••••••. 521
Chart FT. 1052 Open/Close ••••.•••••.•••••.•••• 523
Chart FU. 2540 Processor -- Communications
Console Support . • • • • • • • • • • • • •
Caart FV. 2540 Processor -- Communications
Console Support • • . • • • • • . • • . • •
Chart FW. 2740 Processor -- Communications
Console Support . • • • • . • . . • . • • •

Task

· · Task

· · Task

· ·

·
·
·

without lVlulti pIe

· · · · · · · · · .524
with Multiple

· · · · · · · .525
with Multiple

· · · · · · · · · .526
Chart FX. 3284/3286 Processor -- Corrrrunications Task with Multiple
Console Support . . • • • • • • • • . • • • • • • •
Chart GA. Log Writer . . • . . • . . • . . •.•
Chart GB. LOG, Write-to-Log -- Load 1 •••••
Chart GC. LOG, write-to-Log -- Load 2
Chart GD. Multiple-Line Write-to-Operator
Chart GE. Multiple-Line write-to-operatcr
Chart GF. Multiple-Line write-to-Operator
Chart GG. Multiple-Line Write-to-Operator
Chart HA. DIDOCS Processor 0, Load 1 •
Chart HB. DIDOCS Processor 0, Load 2
Chart HC. DIDOCS Processor 1, Load 1 •
Chart HD. DIDOCS Processor 1, Load 2
Chart HE. DIDOCS Open/Close Routine
Chart HF. DIDOCS 2250 1/0-1 Routine
Chart HG. DIDOCS 2250 1/0-2 Routine
Chart HH. DIDOCS 2260 1/0-1 Routine
Chart HI. DIDOCS 2260 1/0-2 Routine
Chart HJ. DIDOCS Model 85 I/O Routine
Chart HK. DIDOCS Asynchronous Error Rcutine
Chart HL. DIDOCS ~essage 1 Routine ••••

Load 1
load 2
Load 3
load 4

Chart HN. DIDOCS Message 3 Routine •••••••••

.528
• • •• .529

• ••• 530
• • • • • • .531

.532
.533
.534

• • • • • .535
.536
.538

• .540
• .542

• • • • • • .543
• .544
• .546

.547
• • • • • • .548

• .549
• • .550

.553
• •• 556

Chart HO. DIDoes Display 1 Routine • • • • •• • • • .557
.559 Chart HP. DIDOCS Display 2 Routine

Chart HQ. DIDOCS Display 3 Routine • • • • • •
Chart HR. DIDOCS Roll Mode Routine

• • • • • • • • • • .561
• • • • • • • .563

xvii

Chart HS. DIDOCS Command Routine. • • • • • • • • • .564
Chart HT. DIDOCS options Routine. • • ••••••••• 565
Chart HU, DIDOCS 3277 1/0-1 Routine • • • • .567
Chart HV. DIDOCS 3277 1/0-2 Routine .569
Chart IA. DIDOCS Delete 1 Routine • • • • • • • • • .570
Chart lB. DIDOCS Delete 2 Routine • • • • • • ••• 572
Chart IC. DIDOCS Delete 3 Routine • • • • .573
Chart ID. DIDOCS Delete 4 Routine • • • • • • • • ••• 575
Chart IE. DIDOCS Light Pen/Cursor Routine .576
Chart IF. DIDOCS Timer Interpreter ••••••••••••••••• 577
Chart IG. DIDOCS PFK 1 Routine. • • • • • • • • .579
Chart IH. DIDOCS PFK 2 Routine. • • • • • • • • • • .581
Chart II. DIDOCS Cleanu~ • • • • • • • • • • .582
Chart IJ. Status Display Interface 1 Routine. • • ••• 584
Chart IK. status Display Interface 2 Routine. .585
Chart IL. Status Display Interface 3 Routine • .587
Chart 1M. Status Display Interface 4 Routine •••••• 589
Chart IN. Status Display Interface 5 Routine .590
Chart 10. Status Display Interface 6 Routine. • • • • • • •• 593
Chart IP. Status Display Interface 7 Routine •••••••••• 595
Chart JA. Check~oint Housekee~ing 1 Rcutine .596
Chart JB. Checkfoint Housekeeping 2 Routine • • • • • .597
Chart JC. Check~oint Housekee~ing 3 Rcutine • • • • • ••• 598
Chart JD. Checkfoint Check I/O Routine. • • • • • • • .599
Chart JE. Checkpoint Preserve 1 and 2 Routines. ••• • • .600
Chart JF. Checkfoint Checkmain 1 and 2 Routines •••••••••• 601
Chart JG. Check~oint Checkmain 3 Routine. • • • • •••••• 603
Chart JH. Checkfoint Resume I/O and Exit Routines • • • • • • .604
Chart JI. Check~oint ~essage Routine. • • • • • • • ••••• 605
Chart JJ. Restart Housekeeping 1 and 2 Routines • • • • • .606
Chart JK. Restart Reprrain 1 Routine • • • • • ••••••••• 607
Chart JL. Restart Repmain 2 Routine • • • • • .608
Chart JM. Restart Reprrain 3 and 4 Routines. .609
Chart IN. Restart Repmain 5 Routine •• 610
Chart JO. Restart JFCE Processors 1, lA, and 2 • • • • • • •• 612
Chart JP. Restart Dummy Data Set Processor. • • • • • .613
Chart JQ. Restart Mount Verify 1 Routine (Ncn-Direct Access) •••• 614
Chart JR. Restart Mount Verify 2 Routine (Direct Access) • • .615
Chart JS. Restart SYSIN/SYSOUT Data Set Processors 1 and 2
(Non-Direct Access) •• •••• • • • • • • • • • • • • •
Chart JT. Restart Data Set Processor 1 (Ncn-Direct Access) •
Chart JU. Restart Data Set Processor 1A (Non-Direct Access)
Chart JV. Restart Data Set Processor 2 (Direct Access) •
Chart JW. Rest9rt Access Method Dis~ositicn and Exit • •
Chart JX. TCAM Data Set Processor

• .616
.617

• .618
• •• 620

• ••• 621
• •• 622

• .624 Chart JY. DOS Tape Data Set Processor
Chart KA. Ty~e-1 SVC Exit •• • • • • • • • • • • • • .626

.627 Chart KB. Exit Routine ••••••••
Chart KC. Transient Area Exit Routine
Chart KD. Transient Area Refresh Routine •
Chart KE. CDEXIT and CDDESTRY Subroutines
Chart KF. Dis~tcher -- Unifrocessing

• • • • .630
• • • • • • • • • • .631
• • • • • • • • .632

. • • • • • .633
Chart KG. Disfatcher with Job Stef and Task Timing •
Chart KH. DJSEARCH Sutroutine • • • • • • • • • • •

• • • • • .634

Chart KI. Dis~atcher with Time Slicing •••••••••••
Chart KJ. Disfatcher with Multiprocessing ••••••••
Chart KK. DJSEARCH Subroutine with Multifrocessing •
Chart KL. Disfatcher with Multiprocessing and Time Slicing •

.636
• ••• 637

.640
• .642

.643
Chart LA. End-Of-Task (EOT) •••••••••• • • • • • • •• 652

.653

.654

.655

Chart LB. Terrr.inal Attention Exit Element Purge • • • •
Chart LC. TCE Dequeue •• • • •• • • • • • • • • • • • •
Chart LD. Purge Timer • • • • • •••
Chart LE. Release Main Storage and Release Loaded Programs
Chart LF. ABTERM • • • • • • • • •
Chart LG. AETERM Setsubs Sutroutine • • • •
Chart LH. ABTERM Prologue • • • •
Chart LI. AEDUMP Modules • • • •
Chart LJ. TCAM ABDUMP Modules

xviii

.656
• .657

• ••• 658
.659

••••• 660
.662

Chart lK. AbnorIlial 'Ierrrination Modular overview · · · · .664
Chart LL. AEENDO · · · · · · · .665
Chart LM. ABEND1 · · · · · · · · · · · · · · · .668
Chart LN. ABEND3 · · · · · · · · · · .673
Chart LO. AEENI:4 · · · · · · · .675
Chart LP. ABEND5 · · · · · · · · .677
Chart LQ. AEENI:7 · · · · · · · · · · · · · · .679
Chart LR. ABEND8 · · · · · .681
Chart LS. AEEND9 · · · · · · · · · · · · · · · · .685
Chart LT. ABEND11 · · · · · · · · · · · · · · · · · · .687
Chart LU. AEENI:12 · · · · · · · · · · · .691
Chart LV. ABEND13 · · · · · · · .694
Chart LW. AEENI:15 · · · · · · .697
Chart LX. ABEND16 · · · · · · · · · .702
Chart LY. AEEND20 · · · · · · .704
Chart MA. DAR1 · · · · · · · · · · .705
Chart ME. DAR2 · · · · .706
Chart MC. DAR3 · · · · · · .707
Chart MD. DAR4 · · · · · .710
Chart ME. SVC DUMP 1 · · · · · · · · · · · · · · · .711
Chart MF. SVC DUMP 2 · · · · .713
Chart ~G. Model 91 Sirrulator Control Routine · · · · · · .714
Chart MH. Model 91 Compare Decimal Routine · · · · · · .715
Chart MI. Model 91 Add/Subtract/Zero-and-Add I:ecirral Routine · .716
Chart MJ. Model 91 Multiply Decimal Routine · · .718
Chart MK. Model 91 Divide Decimal Routine · · · · · · .719
Chart ML. Model 91 Analyzer/End Routine · · · · · · · · · .720
Chart MM. system Managerrent Facility EXCP Counter Routine · .721
Chart MN. System Management Facility Tirre/Out~ut Limit Expiration
Routine · .723
Chart MO. system ManageIl'ent Facility Wait TiIl'€ Collection Routine .724

xix

The MVT supervisor is one part of the
control program of IBM System/360 Operating
System; it controls the basic computing
system and programming resources needed to
perform several data processing tasks con
currently. The entire control program is
introduced in the MVT Guide.

Job steps, designated by the job manage
ment routines as tasks, are carried out
under the control of the supervisor, which
allocates needed resourCES on the basis of
priorities. The supervisor assigns the
resources to perform tasks, keeps track of
all such assignments, and ensures that the
resources are freed upon task completion.
If one resource is required for the perfor
mance of several tasks, queuing of requests
may be required. The supervisor thus main
tains control of resources that can be
shared. This enables more efficient use of
the central processing unit, main storage,
system and user programs, and the interval
timer.

All supervisor activity begins with an
interruption. In IBM System/360 the inter
ruption is a machine characteristic; it is
the means by which the supervisor gets con
trol of the CPU to provide resources for
the performance of tasks. An interruption
may be planned (specifically requested in
the program currently being executed by the
CPU) or unplanned (caused by an event that
may be either related or unrelated to the
task currently being performed).

There are five types of interruptions:

• Supervisor call (SVC) interruption: a
request for a particular supervisor
service.

• Timer/external interruption: an atten
tion signal from the System/360 interv
al timer, the console interrupt key, or
the direct control feature.

• Input/output interruption: the signal
that an input/output event has
occurred.

• Program interruption: a signal that a
program has attempted an invalid
action.

• Machine-check interruption: the signal
that a machine error has occurred.

Overall operation of the supervisor is
shown in Figure 1-1. The program being

SECTION 1: IN'l'RODUCTION

executed in the performance of task A has
been interrupted, rossibly because it con
tained a request for a supervisor service,
possibly because an input/output operation
has been completed for an entirely dif
ferent task.

The interruption-handling portion of the
supervi~or (represented by the top box in
Figure 1-1) analyzes the interruption,
based on control information passed to it
at the time of the interruption. Each of
the five interruption types has associated
with it two program status words (PSWs)
called "old" (OPSW) and "new" (NPSW). The

Program Being Exe
for Task A

Program Being Exe
for Task B

Machine loads
New P5W

cuted

Any
Interruption

'-
"-

"-
\

\
\

cuted \
\
\
\
\

~ - \
'- \ "-

"- \\
.~

Load Old PSW

Interruption Handling

0 Analyze the interruption

0 Determine control program action
required

a Route control to appropriate port of
control program

Bronch ../ ,,--
Performing the Service

0 Establish, alter, or end a tosk

a Establish linkage to a program in main
storage or on auxiliary s.toroge

0 Allocote or free moin storage

0 Supervise use of interval timer

0 Handle console communications

0 Supervise input/output operations

0 Provide program monitoring service
(TESTRAN)

a Provide system environment recording
and/or attempted recovery

Note: (Some of these services may require
another service, and may thus cause
the supervisor cycle to be restarted
with another interruption)

Branch .J
rf

Dispatching

0 Servi ce requests for asynchronous exits

0 Determine which task that can be
performed has highest priority

0 Route control to a routine that performs
the task

Note: The dispatcher may determine that the
interrupted task should be resumed, or
that a different task should be
performed.

/
Figure 1-1. Overall Flow of the

Supervisor

Section 1: Introduction 1

OPSW contains the information needed by the
supervisor to analyze the interruption.
The NPSW contains the address of the appro

'priate interruption handling routine.

When an interruption occurs, the CPU
stores the contents of the current PSW in
the OPSW for that type of interruption, and
loads the NPSW. By loading the NPSW, the
CPU places itself in supervisor state and
passes control to the interruption handling
portion of the supervisor. The supervisor
then passes control to those parts of the
control program that perform the services
required as a result of the interruption.

The supervisor itself performs many of
the services that are requested through an
interruption (these services are repre
sented by the middle box in Figure 1-1).
Services that the supervisor provides may
be grouped into these general categories:

2

• Task supervision. The supervisor
creates tasks at the request of the jOb
management routines or in response to a
request to attach a subtask to an
already existing task. The supervisor
determines in what order tasks are to
be performed.

• Contents supervision. The supervisor
keeps records of all programs in main
storage, and assigns these prog'rams to
perform tasks. The Program Fetch rou
tine brings requested programs into
main storage from secondary storage.

• Main storage supervision. The supervi
sor assigns main storage needed to per
form job steps and tasks within job
steps.

• Timer supervision. The supervisor con
trols the use of the Systern/360 interv
al timer.

• Console communications and the system
log and hard copy log. The supervisor
provides the means for the operator to
directly communicate with the system,
and for a program to write a message to
the operator or programmer. It also
supports the system log, which records
statistical information about system
usage. When using the Multiple Console
Support (MCS) option, a hard copy log
can be specified to record operator
commands, system messages and commands,
and application program messages. The
hard copy log can be either a console,
or the system log.

• Recording and using checkpoints. On
request, the supervisor writes records
of a task's main storage region and the
necessary task control information so

that the task may be restarted from
that point at a later time.

• Exiting procedures. The supervisor
provides routines that prepare for the
return of control from a completed
program.

• Task termination. The supervisor pro
vides for normal and abnormal termina
tion of tasks.

• Recovery management. The optional ser
vice routines SERO and SER1 provide for
the recording of information related to
a machine malfunction. The Machine
Check Handler (MCH), optional program
ming support for Model 65 (MCH/65) and
standard programming support for Model
65 Multiprocessor, the Model 85 (MCH/
85), and the System/370 Models 145
(MCH/145), 155 (MCH/155), and 165 (MCH/
165), performs the following functions:
(1) records envirpnmental data, and (2)
attempts to analyze the malfunction and
restore the system to normal operation.

The Channel-Check Handler (CCH) pro
vides programming support for models
using the 2860/2870/2880 and System/370
Models 145 or 155 integrated channels.
CCH aids the device-dependent error
recovery procedures in recovering from
channel errors by providing them with
channel logout information. CCH also
builds inboard record entries to be
written on SYS1.LOGREC.

Alternate Path Retry (APR) allows an
I/O operation that has developed an
error on one channel to be retried on
another channel (if another channel is
assigned to the device performing the
I/O operation). APR also provides the
capability to VARY a path to a device
online or offline. The selective retry
function of APR is optional for MVT and
standard for M65MP. The VARY PATH
function of APR is standard for both
MVT and M65MP.

Dynamic Device Reconfiguration (DDR),
optional programming support that is
not model-dependent but is automatical
ly included for M65MP, allows a
demountable volume to be moved from one
device to another, and repositioned if
necessary, without abnormally terminat
ing the affected job or reperforming
IPL. A request to move a volume may be
initiated by either the operator or the
system, for SYSRES or non-SYSRES
devices.

After a control program service has been
performed, the supervisor determines what
task is to be performed next. The supervi
sor Dispatcher routine (represented by the

Dottom block in Figure 1-1) returns control
to a processing program (or possibly to a
supervisor routine). As seen in Figure
1-1, the program to which control passes
need not be the one that was interrupted.
The Dispatcher may determine that as a
result of the interruption, task B, which
has a higher priority than task A, should
be performed next.

TASK SUPERVISION

Each task to be performed by the system
is represented by a task control block
(TeB). The TeB contains control and status
information related to the task, and point
ers to systeni resources assigned to perform
the task.

When the operating system is generated,
certain key TeEs are built into the system.
These TCBs represent: the master scheduler
task of job management, the system error
task, tne rollout/rollin task,1 the com
munications task, and one transient area
fetch task tor each transient area. All
other task control blocks are constructed
by the supervisor Attach routine, at the
request of either the control program or a
user program. The Master Scheduler can
attach up to fifteen Initiator/Terminator
tasks, one for each storage protection key
available. Initiator/Terminator routines

Program Performing
Task A

5VC Interruption
Handler

attach job step tasks and subtasks. An
entire tree structure of related tasks may
thus be formed.

All the TCBs in the system are chained
together, according to dispatching priori
ty, to form the TCB queue. The transient
area fetch TCBs are at the top of the
queue, followed in order by the system
error TCB, the rollout/rollin TCB,1 the
communications TCB, and the master sched
uler TCB. The dispatching priorities of
other tasks are assigned by the supervisor
according to the parameters given in ATTACH
rr,acro instructions. When several TCBs with
the same priority appear in the TCB queue,
they are ordered first-in, first-out.

Figure 1-2 shews the flow of control
that results from the issuance of the
ATTACH macro instruction. This flow is
typical of the processing that might follow
a supervisor macro instruction.

The Attach routine, like other SVC rou
tines, is entered as a result of an SVC
interruption. The SVC interruption han
aling routines analyze the interruption,
determine what service is required, and
then branch to the Attach routine. The

1This is included if the rollout feature is
selected at system generation.

Branch to Attach Routine

Attach Task B -----,

Program that Performs
the New Task B

" \
\
\
\
\
\

---_-...." \
" \
'~

~
GETMAIN Macro
instruction

Nested 5VC

~Dispatcher)

~Dispatch~

Load P5W to Program that Performs
Highest Priority Ready Task

5VC Interruption
Handler

Branch to GETMAIN Routine

Return to Caller

Figure 1-2. Flow of Control After the ATTACH Macro Instruction is Issued

Section 1: Introduction 3

o

Attach routine obtains main storage space
for a TCB by issuing the G£TMAIN macro
instruc"tion. This causes another SVC
interruption, called a nested interruption
because it is an interruption to the pro
cessing of an interruption. The nested
interruption is handled by the supervisor
in exactly the same way as the original
interruption for the ATTACH macro instruc
tion, except that this time the interrup
tion handler branches to the GETMAIN rou
tine. When the required storage has been
allocated, the Attach routine regains con
trol. It initializes certain fields in the
TCB and places it on the TCB queue.

After the Attach routine has initialized
the control block that represents the new
task, it branches to the Dispatcher. The
Dispatcher examines the TCB queue to find
the highest-priority task that is ready to
be performed. This task mayor may not be
the one that was being performed at the
time of the original SVC interruption. For
example, if task B has been attached as a
subtask of task A, and if B has a higher
dispatching priority than A, then task B
will be performed before task A is resumed.

The supervisor controls the order in
which tasks are performed. This control is
accomplished by the Dispatcher, working
through the TCB queue. The highest
priority task represented on the TCB queue
may not be the one to be performed; it may
be waiting for some event (through the WAIT
macro instruction, for example) or for a
resource that has been serialized (through
the BNQ macro instruction). The TCB queue
serves as a record of the status of every
task in the system.

When the time-slicing feature is
included in the system, the dispatcher will
contain special code for time-slicing
implementation. The dispatcher controls
time sliCing through the time-slice control
element (TSCE); there is one TSCE,
assembled at system generation, for each
time-slice group.

CONTENTS SUPERVISION

Contents Supervision is accomplished
through a structure of queues that are very
closely related to the TCB queue. These
are the request block queues.

Request blocks (RBs) represent levels of
control within a task. Contents Supervi
sion routines construct an RB for the first
level of control in the performance of a
new task; this RB and RBs for subsequent
levels are chained on the TeB's RB queue.
FOI" example, if program A issues a LINK
niacro instruction specifying program B, the
contents Supervision routines will con-

4

struct a new RB to represent program B's
level of control. When program B has com
pleted its processing, control can pass
back to program A. The supervisor uses the
RB queue as a record of control levels; it
can pass control to succeeding levels and,
as the routines complete their operation,
pass control back up the line, regardless
of the number of times a task is
interrupted.

There are four types of RBs:

• Program request blocks (PRBs), which
represent nonsupervisory routines that
must be executed in the performance of
a task. PRBs are created by the Con
tents Supervision routines that perform
the Attach, Link, or XCTL functions.

• Interruption request blocks (IRBs),
which control routines that must be
executed in the event of asynchronous
interruptions. IRBs are created in
advance of an interruption by the CIRB
routine at the user's request, but not
placed on an RB queue until an inter
ruption actually occurs.

• System interruption request block
(SIRB), which is used only for the sys
tem error task. There is only one SIRB
in the system.

• Supervisor request blocks (SVRBS),
which represent supervisor routines.
SVRBs are created by the svc interrup
tion handling routines. They are
queued just as PRBs are.

Contents supervision routines construct
only one type of RB: namely, the PRB.

The supervisor maintains a record of all
programs in main storage -- their attrib
utes, locations, and use statuses. This
record is called the contents directory.
The contents directory is made up of three
separate queues (1) the link pack area con
trol queue (LPACQ); (2) the job pack area
control queue (JPACQ); (3) the load list.

The LPACQ is a record of every program
in the system link pack area. This area
contains reenterable routines specified by
the control program or by the user. It is
loaded by the nucleus initialization pro
gram. The routines in th~ system link pack
area can be used repeatedly to perform any
task of any job step in the system. In
systems containing IBM 2361 Core Storage
and Main Storage Hierarchy Support, a
secondary link pack area may be constructed
in hierarchy 1.

The entries in the LPACQ are contents
directory entries (CDEs). When a program
represented in the LPACQ is requested for

atask, it will be represented in that
task's RB queue by a PRB; the address of
this PRE will be inserted in the CDE.

There is a JPACQ for each job step in
the system that uses a program not in the
link pack area. The JPACQ, like the LPACQ,
is made up of CDEs. It describes routines
in a job-step region brought into main
storage by contents supervision routines to
perform a task in the job step. The rou
tines in the job pack area can be either
reenterable or not reenterable. Routines
in the job pack area cannot be used to per
form a task that is not part of the job
step.

The load list represents routines that
are brought into a job pack area or found
in the link pack area by the contents
supervision routines that perform the Load
function. The entries in the load list are
load list elements, not CDEs. Each load
list element is associated with a CDE in
the JPACQ or LPACQ; the programs repre
sented in the load list are thus also
represented in one of the other contents
directory queues.

~~IN STORAGE SUPERVISION

The MVT supervisor controls tasks
through the TCB queue and the RB queues; it
controls programs through the RB queues and
the contents directory. A third major
function, controlling main storage, is
accomplished through a system of main
storage queues.

When the job management routines desig
nate a job step as a task, they request a
region of main storage to be used in per
forming that task. The size of the region
is specified by the user; the region con
tains the job pack area for the step, and
all additional working space needed.

All requests for main storage are
handled by the GETMAIN SVC routine. The
supervisor maintains main storage queues to
reflect storage assignments; the GETMAIN
routine simply adjusts these queues to
reflect new assignments.

When there are no job steps in the sys
tem, all of the dynamic area of main
storage is treated as one region. It is
represented to the supervisor by a free
block queue element (FBQE) at the beginning
of the area and a partition queue element
(PQE) in supervisor queue space. The PQE
contains the address of the FBQE, and
therefore the address of the beginning of
the free area; the FBQE contains the extent
of the free area. When space is requested
for a job step, the GETMAIN routine sub
tracts the requested area from the free

area and builds a new FBQE and PQE for the
new region. The address of the PQE is
placed in the TCB of the job-step task.

After job-step initialization, a program
performing a task may request main storage
by issuing the GET MAIN macro instruction.
The GETMAIN SVC routine allocates the
storage only within the region1 assigned to
the job step being performed or within the
supervisor queue area. 2 The supervisor
maintains a separate chain of queue ele
ments for allocation within a region. This
chain keeps track of subpools within the
region. A sUDpool is all of the main
storage requested under a label called a
subpool number. The storage in a subpool
does not need to be contiguous. The chief
advantages of subpools are that the storage
is shared between tasks, and that all of
the storage identified by a subpool number
can be released with one FREEMAIN macro
instruction.

The supervisor FREEMAIN service routine
is used to free main storage space when it
is no longer needed to perform a task.
Space aSSigned to a job step, space within
a region, and space within the supervisor
queue space are all freed by the FREEMAIN
routine. The routine makes space available
by adding elements to chains in which are
recorded all free areas in main storage,
and by adjusting the queues of allocated
space.

Main storage may be expanded by includ
ing IBM 2361 Core Storage in the system
(excluding the Model 65 Multiprocessing
System). Main Storage Hierarchy Support
for IBM 2361 Models 1 and 2 permits selec
tive access to either the processor storage
(hierarchy 0) or 2361 Core Storage (hierar
chy 1) portions of main storage. If 2361
Core Storage is not included and a region
is defined to exist in two hierarchies, a
two-part region is established within pro
cessor storage. The two parts are not
necessarily contiguous. A hierarchy param
eter (HIARCHY=) in the GETMAIN and GETPOOL
macro instructions permits specification of
either hierarchy as desired.

TIMER SUPERVISION

The system/360 interval timer is a 32-
bit word in lower main storage, that auto-

1If the rollout feature is in the system
and rollout can be performed, the GETMAIN
routine can allocate space to the job step
from a temporary region obtained through
rollout.

2Storage is allocated in the supervisor
queue area only if the requester is a
supervisor routine.

Section 1: Introduction 5

mati cally keeps decrementing as long as the
system is running and the interval timer
switch is on. The supervisor timer service
routines enable the programmer to obtain
the date and time of day, measure periods
of time, or schedule activity for a specif
ic time of day. These routines, performed
as a result of the macro instructions TIME,
STIMER, and TTIMER, are handled just like
any other SVC routines.

The timer queue is a chain of timer
queue elements; each element represents an
interval request. These queue elements are
constructed by the STIMER service routine.
The chain is ordered' so that the request
for the next interval to expire is at the
top of the queue. When a requested interv
al expires, a timer interruption occurs.

The Timer Interruption Handler routine
of the supervisor removes the top element
from the timer queue and determines what
action is to be taken. Examples are sche
duling a timer exit or making a task ready
to be performed.

CONSOLE COMMUNICATIONS AND SYSTEM LOG

The console communications service rou
tines handle messages from a program to the
operator or programmer, as well as messages
from the operator to the system. The SVC
routines WTO and WTOR (Write to Operator
and Write to Operator with Reply) process
the output messages from the system to the
operator or to the prograrnn,er. Input comes
from an ext.ernal interruption, caused by
operator intervention at the console.

The system log consists of two data sets
used by the system for recording statisti
cal information. The supervisor log sup
port routines perform input and output ser
vices related to the log.

Multiple Console Support (MCS), a system
generation option, allows the selective
I.·outing of messages (WTO andWTOR) to one
or more cons oles, us ing routing codes
assigned to each message and each console.
When a graphic console or more than one
non-graphic console is included with MCS in
the system, a hard copy log is mandatory.
The system log or any non-graphic device
may be specified as the hard copy log.

RECORDING AND USING CHECKPOINTS

The supervisor provides routines to
allow a job to be restarted after an
abnormal termination. The Checkpoint rou
tine creates a series of records at points
in the problem program where the programmer
wishes a reexecution to begin. These rec
ords include a copy of the task's main

6

storage region, descriptions of data sets,
and system control information. The
Restart routine uses these records to
restore the task to main storage, mount,
verify and position its data sets, and give
it control at the point where the check
point entry was written.

EXITING PROCEDURES

The supervisor provides routines that
prepare for the return of control from a
completed program and perform the actual
return of control. Control may return to a
main-line program or to a supervisor rou
tine. The exiting procedures determine
what type of program has completed its
execution, and perform different clean-up
operations for the different types.

The Dispatcher routine is entered to
return control to a program belonging to
the highest priority ready task. The Dis
patcher, as we have previously noted, works
through the TCB queue. {There is one case
in which the Dispatcher is not entered to
return control: when the completed program
is a type-l SVC routine that has not indi
cated the need for a task switch.}

TASK TERMINATION

The supervisor performs the processing
needed when a task is terminated, either
normally or abnormally. The termination
processing includes releasing system
resources that were assigned to perform the
task.

The End of Task (EOT) routine performs
normal termination processing. Abnormal
termination processing is performed by the
ABTERM, ASIR, DAR, and ABEND routines. The
ABDUMP routine provides a dump of TCBs and
main storage related to the terminating
task.

SPECIAL FEATURES

Time Slicing

The time-slicing mechanism operates
within the dispatcher. A priority is
assigned to a group of tasks which are to
be time-sliced; time-slicing occurs only
among the tasks in the group and only when
the priority level of the group is the
highest priority level that has a ready
task. Each task in the qroup is dispatched
for the specified time slice. The dis
patching of tasks within the group con
tinues until all the tasks are waiting, or
a task of higher priority than that of the
group tecomes ready.

The group of tasks to be time-sliced,
the length of the time slice, and the
priority of the time-sliced tasks, will be
specified by the installation. Any task in
the system that is not defined within the
group to be time sliced will be dispatched
under the current priority structure, i.e.,
when it is the highest priority ready task,
and until it either waits or a task of
hig'her pr ior i ty become s active.

Time Sharing Option

The Time Sharing Option (TSO) adds gen
eral purpose time sharing to the facilities
currently available with the I>1VT control
program by enabling users at remote ter
IT~nals to execute programs concurrently and
to interact with those programs during
execution. The installation can dedicate
its system to time-sharing operations or it
can run concurrent time-sharing and batch
processing operations. Including TSO in
the control program does not restrict or
limit batch operations.

The Time Sharing Option consists of a
control program (containing IBM-supplied
service routines and command processors)
and a number of IBM Program Products
(available from IBJV! for a license fee).
The TSO control program, an extension of
the MVT control program, accomplishes the
following functions:

• Identifies and verifies the time
sharing user.

~ Defines the user job.

ti Assigns the user job an amount of
execution time (as determined by the
installation-selected scheduling
algorithm) .

• Ensures a specified percentage of
execution time for batch processing
operations (when required).

• Transfers the user job between main
storage and a direct access device
(swapping) •

• Logically reconnects the user job to
the operating system when the job is
swapped into main storage (called
"restoring" the job); logically discon
nects the user job from the operating
system before swapping out the user job
(called "quiescing" the job).

• Establishes and maintains communica
tions between the terminal user, his
programs, and the TSO control program.

• Handles attention interruptions from
the terminal user.

• provides an optional set of SlYlF records
for the TSO system, job and data mana
gement information, and optional system
control task exits to installation
supplied routines.

• Provides an optional record of the
information that is passed to the Time
Sharing Driver via the Time sharing
Interface Program from such TSO system
routines as the Region Control Task,
the Time Sharing Control Task, and the
Time Sharing Dispatcher.

Shared Direct Access Device

The Shared Direct Access Device (Shared
DASD) feature enables independently operat
ing data processing systems to share direct
access storage devices. The two channel
switch and its control commands, device
reserve and device release, are the basis
for control of direct access storage device
sharing between systems. The shared DASD
feature provides the control program fUnc
tions needed to control device reservation
and release. Essentially this feature con
trols the use of a serially reusable
resource, the shared data and device.

Rollout/Rollin

Rollout/rollin allows the temporary,
dynamic expansion of a particular job step
beyond its originally specified region
size. A job step's region size can be
based on a minimum requirement, rather than
a maximum. When a job step needs more main
storage, this feature attempts to obtain
unassigned storage; failing that, another
job step is rolled out, that is, its entire
region is transferred to secondary storage,
and its storage is made available to the
first job step. When released by the first
job step, the additional storage is again
available as unassigned storage, if that
was its source, or to receive the job step
to be transferred back into main storage
(rolled in).

MVT with Model 65 Multiprocessing

The multiprocessing feature, available
with the Model 65, enables a single control
program to use the productive capability of
two CPUs (CPU A and CPU B) so that two
tasks can be executed simultaneously.

MVT with Model 65 multiprocessing can
operate in two modes: multisystem mode and
partitioned mode. In multisystem mode, all
tasks are run under one control program.
Both CPUs have access to all main storage
and all I/O devices, except those devices
that are supported asymmetrically. Each
CPU has its own 4K-byte prefixed storage
area (PSA) and can interrupt the other CPU
through a direct hardware connection.

Section 1: Introduction 7

In partitioned mode, the two CPUs oper
ate as two independent systems. Each CPU
must have its own copy of the MVT with
Model 65 multiprocessing control program,
main storage units, and I/O devices.

Main storage Hierarchy Support

Main storage may be expanded by includ
ing IBM 2361 Core Storage in the system
(excluding the Model 65 Multiprocessing
System) • Main Storage Hierarchy Support
for IBM 2361 Models 1 and 2, is a control
program option that permits selective
access to either the processor storage
(iaentified as hierarchy 0) or 2361 Core
Storage (identified as hierarchy 1) por
tions of main storage. If 2361 Core
Storage is not included in the system and a
region is defined to exist in two hierar
chies, a two-part region is established
within processor storage. The two parts
are not necessarily contiguous. Normally,
all storage requested by programs of a
given step or task is assigned from its
region, although the rollout/rollin feature
does provide the capability of acquiring
temporary additional storage. If the Main
storage Hierarchy Support option has been
selected, a region may be defined to con
sist of two parts: the first located in
hierarchy 0 and the second located in
hierarchy 1.

System Management Facilities

System Management Facilities (SMF) is an
optional feature of the control program.
This feature can be selected at system
generation. System ~Bnagement Facilities
gather and record information used to eval
uate system, data set, and direct access
volume usage. SMF functions are performed
by job management, input/output support,
DADSM, and supervisor routines. The super
visor performs the following SMF functions:

• Maintains a record of system wait time.

• Assists in handling time limit
expira tions.

• Counts and records references to user
data sets.

• Controls the output limit for SYSOUT
data sets.

• Records the number of 2048-byte blocks
of storage assigned to a user program.

For a detailed description of the implemen
tation of these functions, see Section 11,
"Special Features."

8

Tracing Facilities

Two facilities, the Trace Table and the
Generalized Trace Facility (GTF), are pro
vided to assist in tracing program flow by
monitoring and recording system events.

Trace Table: The Trace Table facility is
an optional feature specified during system
generation. The Trace Table routines place
entries, each of which is associated with a
certain type of event, in a trace table.
The size of the table is also a system
generation option; when the table is
filled, the routine overlays old entries
with new entries beginning at the top of
the table. Trace Table entries are for
matted and printed out on SNAP dumps and
stand-alone dumps.

Generalized Trace Facility: The Genera
lized Trace Facility (GTF) is invoked as a
system task when the operator issues the
START command. When GTF is started, the
operator selects specific events to be
traced and may select to record the trace
data either in main storage or on an
external device. When the internal storage
option is selected, the recorded data is
comparable to that provided by the optional
Trace Table facility. When the external
device storage option is selected, the
recorded data is more comprehensive. When
GTF is active, the optional Trace Table
facility, if present, is disabled. When
the trace records are maintained in main
storage, ABDUMP provides formatted trace
data to abnormally terminated users when a
SYSABEND DD statement has been included.
When trace records are stored on an extern
al device, a trace EDIT function of
IMDPRDMP can be used to provide the output
of selected data.

SUMMARY

The supervisor is a collection of pro
grams for handling interruptions and pro
viding services for them. These interrup
tions are the basic method by which the
control program manages data processing
tasks. The supervisor fUnctions are large
ly performed by routines that manipulate a
network of control queues -- the TCB queue,
the RB queues, the contents directory, the
main storage queues, and the timer queue.

The processing after a timer/external,
input/output, program, or machine interrup
tion is generally straightforward. Figure
1-1 reflects what happens after one of
these interruptions. The processing after
an SVC interruption is a little more com
plicated. Figure 1-3 provides a more
detailed, although still simplified, pic
ture of this processing.

SVC Interruption

j

SVC Interruption Handlers

Saves reg i ster contents
of interrupted routine
(caller) and determines
type of SVC routine

~ Resident SVC Non-Resident

Type

Program Fetch Routine

Fetches transient (non-
resident) SVC routine .

•
Resident SVC Routine Performs Transient SVC Routine

Requested
Service

~ SVC

Yes

't
Type 1 Exit Routine Prepares for Exit Routine EOT Routine

return to caller.
Removes Performs terminating
SVC procedures for norma I
Routines end of task.
SVRB.

'Y' End Yes
Switch of Task

No No

t I

Dispatcher

~ Re,to,", '"9;""" ood
N T k returns control to

o as b I . . h program e ongm9 to
SWI tc h' h t . . t d 19 es priOri y rea y

task

Return to caller Yes

Legend:

0= routine To current routi ne of

- = control flow
Return

highest priority ready task

Figure 1-3. Processing After an SVC Interruption

Section 1: Introduction 9

SECTION 2: INTERRUPTION HANDLING

The supervisor handles all five types of
interruptions.

• For SVC interruptions, the supervisor
determines what SVC service is
required, and routes control to the
appropriate service routine.

• For timer/external interruptions, the
supervisor determines the cause of the
interruption and branches either to a
timer service routine or to an external
service routine.

• For input/output interruptions, the
supervisor branches to the Input/Output
Supervisor, which performs input/output
error handling and services.

• For program interruptions, the supervi
sor determines whether the interruption
is a monitor call request, or a program
check. On monitor call requests, con
trol is returned directly to the user's
program after GTF processing; on pro
gram checks, the supervisor either ter
minates the task in which the interrup
tion occurred, or branches to a user
error handling routine.

• For zr.achine interruptions, the supervi
sor either places the machine in the
wait state, or branches to. an optional
recovery management program.

Saving the Current PSW

The hardware maintains a Program Status
Word (PSW), called the current PSW, that
contains system status information and the
address of the next instruction to be
executed. (Refer to Principles of Opera
tion, section entitled nInterruptions. n)
When an interruption occurs, the current
PSW is stored by the hardware in one of
five contiguous doublewords, depending on
the type of interruption. (Figure 2-1,
part A shows the saving of the current PSW
for an SVC interruption.) This allows the
interruption handling routines to restore
the original status and to return control,
when desireable, to the interrupted pro
gram. The hardware then loads one of the
five new PSWs, again depending on the type
of interruption, which causes the appropri
ate interruption handling routine to gain
control.

SVC INTERRUPTION HANDLING

When a system or user program issues a
macro instruction, the last machine

10

instruction of the resulting macro
expansion at execution time is often an SVC
instruction. The SVC instruction causes
the computer to produce an SVC interrup
tion. The part of the supervisor that
receives immediate control is called the
SVC interruption handler.

Main FUnctions

The SVC interruption handlers perform
the following main fUnctions:

• Save the register contents and SVC old
PSW for the interrupted calling program
or routine.

• Requests the Generalized Trace Facility
(GTF), if GTF is active, or the option
al Trace Table facility (a system
generation option) to record the
interruption.

• In MVT with Model 65 multiprocessing,
ensure that both CPUs do not perform
disacled supervisor routines simul
taneOUSly.

• Determine whether a supervisor request
block (SVRB) should be constructed to
restart the needed SVC routine if it is
interrupted or if it must wait.

• If necessary, construct an SVRB, place
in it information about the routine,
and queue the SVRB to the request block
queue for the current task.

• Determine if the needed SVC routine is
normally resident in main storage.

• Pass control to a resident SVC routine.

• Fetch a nonresident routine from auxil
iary storage and prepare for the pass
ing of contro1.

• Defer a request for a routine that can
not be fetched.

• When possible, restart deferred re
quests.

In addition, the SVC interruption han
dlers perform two minor functions. They
place in the so-called "environmental"
registers the addresses of three control
blocks needed by all SVC routines -- the
communications vector table, the current
task control block, and the current request
block. They also set up the return address
to which the SVC routine will return con
trol when it is complete.

SVC First-Level Interruption Handler SVC Second-Level Interruption Handler

SVC Interruption

Current PSW

Lower
Main
Storage
(Location 20)

Legend:

c=:::>; Information flow

General Registers

Caller's
Register
Contents

Lower Main Storage
(SVC Register Save
Area, IEASCSAV)

TCB SVRB Caller's RB

D Reg Save RBOPSW

Note: The caller's register contents and SVC old
PSW are moved by the SVC Second-Level
Interruption Handler to the appropriate RBs.

Figure 2-1. Status Saving by the SVCInterruption Handlers

The SVC interruption handlers are
divided physically and functionally into
two parts, the SVC First-Level Interruption
Handler, (SVC FLIH), and the SVC Second
Level Interruption Handler, (SVC SLIH).
The SVC First-Level Interruption Handler
saves register contents and determines the
type and location of the needed SVC rou
tine. For certain commonly used SVC rou
tines, the SVC FLIH also branches directly
to the routine to begin its execution. For
other SVC routines, further processing by
the SVC SLIH is needed. This processing
includes the construction of a supervisor
request block (SVRB) to control an inter
ruptable routine, and the fetching of the
routine if it is nonresident.

Types of SVC Routines

There are four types of SVC routines
that are entered as the result of an SVC
interruption. The type of the routine is

indicated by its entry in the SVC Table and
determines the processinq performed in pre
paration for entering the routine. The
characteristics of the routines are:

Type-1 -- Resident in main storage.
These routines cannot issue
SVC instructions and are
entered directly from the SVC
FLIH.

Type-2 -- Resident in main storage.
These routines can issue SVC
instructions. They execute
under a supervisor request
block (SVRB) placed at the top
of the TeB RB queue of the
interrupted task.

Type-3 -- Normally nonresident. These
routines have only one load
module and must be loaded into
a 1K transient area for execu-

Section 2: Interruption Handling 11

tion. They can issue SVC
instructions, and they execute
under an SVRB placed at the
top of the TCB RB queue of the
interrupted task.

Type-4 -- Normally nonresident. These
routines have more than one
load module, each of which
must be loaded into one of the
transient areas for execution.
They can issue SVC instruc
tions, and they execute under
an SVRB placed at the top of
the TCB RB queue of the inter
rupted task.

T~~e-3 and type-4 SVC routines can be
made resident in the nucleus by preloading
them during the Nucleus Initialization Pro
gram processing. In this case, the resi
dent type-3 and type-4 routines assume all
of the attributes of a type-2 SVC routine.

SVC FLIH (IEAQNUOO): Saving the Registers

Because the general registers are used
by the interruption handling routines and
the requested SVC routine, the contents of
the registers must be saved so that they
can be restored to their original values
before returning control to the interrupted
routine. Registers 0 through 15 are saved
in the 16-word save area, labeled IEASCSAV,
within the SVC FLIH. Because the contents
of IEASCSAV are overlaid on each entry to
the SVC FLIH, either (1) additional entries
to the SVC FLIH must not occur until after
the register contents have been restored
and control returned to the calling rou
tine, or (2) the contents of IEASCSAV must
be moved to another area that is not
affected by another entry to the SVC FLIH.

For type-1 SVC requests, additional
entries to the SVC FLIH will not occur
because type-1 SVC routines cannot issue
SVC instructions. However, because types
2, 3, and 4 SVC routines can issue SVC
instructions (causing reentry to the SVC
E'LIH>, or can be interrupted and lose con
trol to a higher priority task, the con
tents of IEASCSAV must be moved to an area
not modified by the SVC FLIH. This area is
provided by the svc SLIH when it creates a
supervisor request block (SVRB). The SVC
old psw, stored in main storage by the har
dware at the time of the interruption, is
also subject to being overlaid by another
entry to the SVC FLIH. This will be saved
by the svc SLIH in the RBOPSW field of the
calling program's request block (see Figure
2-1, parts Band C>.

12

Ensuring That Both CPUs in a Model 65
Multiprocessing System Do Not Perform
Supervisor Routines Simultaneously

In a multiprocessing system, the SVC
FLIH routine determines whether the second
CPU is performing a disabled supervisor
routine by testing the supervisor lock and
CPU affinity bytes in the multiprocessing
CVT. If the lock byte is not set, neither
CPU is performing a disabled supervisor
routine. When one CPU obtains possession
of disabled Supervisor code, the SVC FLIH
routine sets the supervisor lock byte and
places the CPUID in the CPU affinity byte.
If one CPU tries to get possession of dis
abled Supervisor code, but finds the super
visor lock byte is set, the CPU tests the
CPU affinity byte to determine which CPU
set the byte. If set by the testing CPU,
the SVC routine proceeds: if not, the SVC
old PSW is set (that is, the SVC old
instruction address is decremented by two
or four) to reissue the SVc* instruction.

If the SVC old PSW is enabled for
external interruptions, the SVc* instruc
tion is reissued via the Type-1 SVC Exit
routine, which restores registers and loads
the SVC old PSW. The SVC* instruction is
thus reexecuted until the CPU in possession
of the lock byte releases it.

If the svc old PSW is disabled for
external interruptions, the CPU that is
executing disabled Supervisor code branches
to the External FLIH routine so that
external signals (such as a malfunction
alert> from the other CPU can be received.
The SVc* instruction will be reissued when
the calling task is next dispatched.
Before the External F'LIH routine is
entered, the status of the task that issued
the SVC is saved. The registers are stored
in the TCB, the current RB is set from the
svc old PSW to reissue the svc instruction,
the External FLIH bit is set in FLRETFLG to
indicate that the registers have been
saved, and the External old PSW is set
equal to the SVC old PSW. The External
FLIH routine tests the supervisor lock byte
until the byte is unlocked. Between
repeated tests of the lock byte, the CPU
that is testing the byte is enabled for
external interruptions. After the supervi
s'or lock byte has been unlocked and any
external interruptions which may have
occurred have been processed, the External
FLIH routine branches to the Dispatcher.
When the calling task is dispatched, the
SVc* instruction is reissued.

*Either an SVC instruction or an EXECUTE
instruction that executes an SVC
instruction.

./

SVC FLIH: Recording the Interruption

The SVC FLIH contains a Monitor Call
instruction followed by a Branch and Link
instruction to the OS Trace routine. The
Honitor Call instruction causes the Genera
lized Trace Facility (GTF) to record the
SVC interruption. (Refer to Service Aids
Logic for a description of GTF.) If GTF is
not active, no operation is performed and
the interruption is recorded by the OS
Trace routine. Upon entry, the os Trace
routine returns control to the svc FLIH if
GTF is active because GTF will have already
reoorded the interruption. otherwise, os
Trace records the interruption.

SVC FLIH: Determing Whether a Supervisor
Request Block is Needed

A supervisor request block (SVRB) is
associated with each SVc routine that can
be interrupted or can cause (by issuing an
SVC instruction) an interruption. The SVRB
is a record of the processing of the svc
routine and allows the Dispatcher to return
control to the interrupted SVC routine when
appropriate. Thus, the decision to create
an SVRB is based on whether the SVC routine
can lose control to another program l.vithin
the task, or to another, higher priority
task. Because only type-2, 3, and 4 SVC
routines can be interrupted, the SVC FLIH
can make the determination by examining the
SVC Table entry corresponding to the
requested SVC routine.

There are two parts in the svc table,
one oontaining entries for IBM-supplied SVC
routines, the other containing entries for
user-supplied SVC routines. The number and
type of routines specified in the two parts
depends on the particular system that the
user generates at system generation time.
There is one entry for each SVC routine.
Each entry contains descriptive informa
tion, including a code showing SVc type,
and the main storage or disk address of the
SVC routine.

If the requested SVC routine is type-1
(cannot issue an SVC instruction), the SVC

FLIH branches to the address found for the
SVC routine in the SVC Table. Note that
the address of the type-1 SVC exit routine
(IEAOXEOO) is loaded into register 14
before branching to the SVC routine. If
the requested SVC routine is a type-2,
type-3, or type-4, an SVRB must be built,
initialized and queued to the TCB of the
requesting task by the SVC SLIH.

The SVRB will contain status information
about the SVC routine so the routine may
begin or resume execution after anyone of
the following conditions has stopped or
delayed its execution:

• The routine issues an SVC instruction,
thus causing an SVC interruption.

• The routine is not resident and cannot
be loaded; its request must therefore
be deferred.

~ The routine is overlaid in a transient
area block of main storage before it
can be executed.

.. The routine may request a resource that
is not irmr,ediately available, and is
therefore placed in a wait condition
pending the availability of the
resource.

In any of these cases, restart information
old PSW, wait count, etc. -- is stored

in the supervisor request block (SVRB)
created for the routine by the SVC Second
Level Interruption Handler.

SVC SLIH (IEAQTROO): Building,
Initializing, and Queueing the SVRB

The SVC SLIH uses the BLDSVRB subroutine
to obtain space for, partially initialize,
and queue the SVRB. BLDSVRB moves the SVC
old PSW from its main storage location to
the RB of the requesting routine and
branches to GETMAIN to obtain a 144-byte
SVRB from subpool 255. The branch entry to
GETMAIN avoids SVC FLIH processing and the
overlaying of IEASCSAV (the register save
area in the svc FLIH). BLDSVRB then moves
the saved register contents from IEASCSAV
in the svc FLIH to the register save area
in the SVRB just obtained by GETMAIN. The
SVRB size is set (RBSIZE), and the SVRB is
indicated as nonresident (even though it
may later be found to be resident) and
dynamically obtained (RBSTAB). Finally,
BLDSVRB places the SVRB at the top of the
RB queue pointed to by the TCBRBP field in
the TCB.

The order of request blocks on the RB
queue determines the order in which the
supervisor places into execution routines
started or requested for the given task.
The request block at the head of the RB
queue represents the routine that is next
to be executed for its task. The SVC rou
tine represented by the SVRB will be
executed next for the current task. Then,
when the supervisor's Exit routine has
removed this SVRB from its RB queue, the
new head or ncurrentn RB will represent the
interrupted routine or caller. The Dis
patcher will then restore the caller to
execution, providing that there is no other
ready task of higher priority.

Section 2: Interruption Handling 13

Order in which control is returned by the supervisor

(TCB SVRB Caller's RB PRB

v) ------ ------- r--- - -f--

TCBRBP RBLI NK RBLI NK RBLI NK

Task Control
Block

Request block
for the currently
executing type 2,
3, or 4 SVC
routine

Request block for onterrupted rout, ne
(This RB was the current RB before the
SVC interruption.)

Request block for the forst executed
main line program or routine
associated with this TeB

Legend:
~=pointer

Figure 2-2. A Request Block Queue

The SVC SLIH queues the SVRB to its RB
queue by setting two pointers, one in the
TCB, the other in the SVRB. The pointer in
the TCB (TCBRBP) points to the SVRB which
is the ncurrentn or head RB on the queue.
The other pointer (RBLINK) in the SVRB
points to the previously current RB, which
represents the caller of the SVC routine.
(Refer to Figure 2-2.)

The TCBATT flag in the current TCB is
set to indicate that a system routine is
executing and requires that this task not
be interrupted by an attention exit for a
tillie sharing task or by the STATUS SVC
routine.

So far toe SLIH has saved registers and
the SVC old PSW in the appropriate RBs, and
queued the SVRB to the TCB and to the pre
viously current RB. Toe SLIH next sets
certain status Dits in the SVRB (RBFTP and
RBFNSVRB) to indicate that the request
block is an SVRB and indicate that the
associated SVC routine is nonresident, even
though a later test may prove that the rou
tine is really resident. (The initial
assumption is that the routine is nonresi
dent.) The type of request block, as indi
cated by the status bits, determines the
processing to be performed during the exit
ing procedure after the SVC routine has
been executed.

SVC SLIH: Determining if the SVC Routine
is Resident

The SVC SLIH determines whether the
requested SVC routine is resident in main
storage and can be branched to directly, or
whether it is nonresident and must be
loaded from the SY31.SVCLIB into one of the
transient areas before it can be branched
to.

The SLIH makes the determination by
testing the ntype n bits of the SVC table
entry that was passed by the SVC FLIH. A
type- 2 routine is resident in the nucleus;
a type-3 or 4 routine is nonresident and is

located in the SVC library, unless it has
been preloaded into main storage by the
Nucleus Initialization Program at IPL time.
If a type 3 or type 4 SVc routine has been
made resident, its entry in the SVc table
is the same as that of a type 2 routine,
and is accessed in the same manner. If the
test of the SVC table entry reveals that
the needed routine is resident in the nuc
leus, or is a type 3 or the first load of a
type 4 routine pre loaded into the link pack
area, the SVC SLIH sets the RBFNSVRB flag
to zero, indicating that this is a resident
routine. This later informs the supervisor
Exit routine that it need not perform exit
processing for a nonresident routine, the
restoring of standard input registers that
the SLIH has altered, and the loading of a
return address for use by the SVC routine
wnen its execution is complete. The SLIH
then branches to the routine address con
tained in the svc table entry.

But if the test of the SVC table entry
indicates a routine not resident in the
nucleus, the SLIH branches to an internal
subroutine called the Transient Area Han
dler. The transient area handler's purpose
is to determine the location of the routine
and, if necessary, attenpt to fetch the
routine to a transient area block of main
storage.

Extended SVC Router (ESR?,

The primary function of the :t:xtended SVC
Router (ESR) is to provide linkage to
sUFervisor Service routines by logically
extending the routing capability of the SVC
Interruption Handlers. ESR accomplishes
this via a secondary routing algorithm
based on a parameter established prior to
issuance of one of the ESrt SVcs (116, 117,
or 109). The interface provided to the
Supervisor Service routines invoked by ESR
is identical to that provided by the svc
Interruption Handlers to Type 1, 2, 3, and
4 SVC routines except for an additional
parameter used by ESR for its routing.

hSR processing for Type 1 and 2 SupervisoI
SeIvice Routines: The Type 1 and Type 2
ESR Supervisor Routers are invoked via
issuance of the 'I'ype 1 SVC 116 and Type 2
SVC 117 respectively. Upon entry to SVC
116 (Entry Point IGC1l6) or SVC 117 (Entry
Point IGC117), the ESR code in register 15
is checked to insure that a corresponding
fUnction exists. If the ESR code does not
represent a supported fUnction, the invok
ing task is abnormally terminated. If the
ESR code is valid, linkage to the appropri
ate resident supervisor service routine is
accomplished by converting the ESR code
received in register 15 to an index value
into an internal branch table of V-type
address constants. The appropriate V-con
is loaded into register 15 and control is
passed to the routine via a branch instruc
tion. Except for the use of register 15
for input of an ESR code, these SVCs (116
and 117) are identical to any other SVC
routine. The same interface is presented
to the Supervisor service routines to which
ESR is routing control as would have been
presented to them by the SVC Interruption
Handlers had they been invoked directly by
an SVC number.

ESR processing for Type 3 and 4 Supervisor
Service Routines: The Type 3 and Type 4
ESR Supervisor Service Router is invoked
via issuance of SVC 109 (Entry Point
IGC109). The ESR code in register 15 is
checked to ensure that it is not greater
than the highest assigned number. If the
ESR code is not valid, the invoker is
abnormally terminated. Otherwise, the lin
kage to the appropriate supervisor service
routine is accomplished by an XCTL to that
routine. The XCTL parameters are developed
by converting the ESR code passed in
register 15 to a 3-character EBCDIC number
which is appended to a prefix (IGXOO) to
form an ESR name. For example, if the
binary value in register 15 is 89, the
resultant ESR name would be IGX00089. This
ESR name represents the first load of an
SVC and is used as input to the XCTL SVC.
Control is now transferred to the module
represented by the ESR name via an XCTL.
Any subsequent loads of the Type 4 routine
O.re named by incrementing the third and
fourth characters of the original name.
For example, several loads would be named
IGX00089, IGX01089, and IGX02089.

'l'he Transient Area Handler

Introduction: The purpose of the transient
area handler of the svc SLIH is to monitor
the transient areas of the nucleus and to
fetch nonresident SVC routines from auxil
iary storage. If the desired routine is
not in one of the transient areas, the
transient area handler fetches the routine
from the svc library (SYSRES volume) and
gives the routine control. If there is no

available space in one of the transient
areas for the desired routine, the tran
sient area handler makes the associated
SVRB non-ready until space becomes
available.

The Transient Area Blocks and the Transient
Area Control Table: Each nonresident SVC
routine must be brought into main storage
before it can begin execution. The system
pI:ovides at least two areas, called tran
sient area blocks (TABs), in the nucleus
into which these routines can be loaded for
execution. Additional TABs can be speci
fied during system generation via the ADD
TRAN parameter of the CTRLPROG macro
instruction. Each TAB is preceded by and
is contiguous with a 72-byte control area
which contains a work area, an IOB, and a
channel pr,ogram used to bring the specified
SVC routine into the TAB.

A record of the TABs is maintained in
the Transient Area Control Table (TACT),
which is also created during system genera
tion. The TACT contains a pointer to a
queue of SVRBs for programs waiting to be
loaded into a TAB, a count of the number of
TABs in the system, and one four-word
descriptive entry for each TAB. The TACT
and the TABs are contiquous in main storage
in the following order: (1) TACT, (2) con
trol area for the first TAB, (3) the first
TAB, (4) the control area for the second
TAB, (5) the second TAB, etc. See "Section
12: Control Blocks and Tables" for a
description of the TACT.

processing the Transient Areas: As
described above, the transient areas are 1K
blocks of main storage in the nucleus into
which nonresident routines are temporarily
loaded for execution. Loading of nonresi
dent routines into a transient area by the
control program is initiated by the Tran
sient Area Handler (TAH), which runs as an
extension of the SLIH. The TAH determines
whether a required nonresident SVC routine
is already in a transient area, determines
whether a transient area is available for
use, defers the request if no transient
area is available or causes a task switch
to a Transient Area Fetch Task if a tran
sient area is available for loading.

A Transient Area Fetch Task does the
actual loading of a nonresident SVc rou
tine. Although there are several Transient
Area Fetch Tasks (the number is specified
during system generation), each task
executes the same control program routine
-- the Transient Area Fetch routine. Each
Transient Area Fetch TCB has its own per
manent SVRB, also created during system
generation. The RBOPSW field in each of
these SVRBs is initially set to the address
of the Transient Area Fetch routine, and

Section 2: Interruption Handling 15

the register save area in each is preloaded
with the fcllowing contents:

Register 2 -- Address of tile TACT entry
for the TAB.

Register 3

Register 4

Register 5 --

Register 7 --

Register 9 --

Address of the CVT.

Address of the Transient
Area Fetch TCB for this
TAB.

Address of the SVRB
queued to the TCB pointed
to by register 4.

Address of the Fetch Work
Area.

Address of the Program
Fetch routine.

Register 10 -- Address of the TACT.

Determining if the Routine is Already in a
Transient Area Block of Main Storage: The
transient area handler (TAR) first initia
lizes the SVRB by storing in it the length
of the requested SVC routine (RNRTLNTH),
the TTR of the requested routine
CRBSVTTRW), and the name of the routine
(RBABOPSW). The TAH then detennines if the
routine is already in a transient area
block. If the routine is in a transient
area block, it need not be fetched. There
are at least two transient area blocks,
each capable of containing one SVC routine.
The number of transient area blocks, and
thus the number of nonresident SVC routines
that may be contained in the nucleus at one
time, is specified during system genera
tion. The transient area handler deter
Inines whether the desired routine is in any
of the transient area blocks by comparing
the TTR in each TACT entry with the TTR of
the requested routine. (See Figure 2-3.)
During its search, the transient area han
dler bypasses any TACT entry that indicates
its transient area block is being loaded.

The TACT (see Section 12, "Control
Blocks and Tables") contains one entry for
each transient area block. Each entry con
tains four words: the address of the tran
sient area block, the address of a "user
queue" of SVRBs representing nonresident
routines currently sharing a transient
area, the relative track and record address
(TTR) for the routine currently residing in
the transient area block, and lastly the
address of a TCB for a transient area fetch
task (to be described later).

Processing if the Routine is Already in a
Transient Area Block: If the transient
area handler determines from its search of

16

the TACT entries that the desired routine
is already in a transient area block, it
queues the SVRB for the requested routine
to the user queue for the transient area
block that contains the routine. The SVRB
is now a part of two queues, the RB queue
belonging to the caller'S TCB and the user
queue (also called the transient queue) for
a particular transient area block. Within
the SVRB two different pointer fields are
used for the two queues. The RBLINK field
points to the next RB on the TCBs RB queue;
the RBSVTQN field points to the next SVRB
on the user queue.

Each user queue contains SVRBs whose
routines are or have been in a particular
transient area block. There is one user
queue for each block. Thus, if there are
two transient area blocks, there are two
user queues. The queues are built in the
order in which routine requests are
received. The requests are then serviced
on a task priority basis. The purpose of
each user queue is to permit the transient
area handler to keep track of SVRBs whose
routines are in a transient area block or
have been overlaid in that block.

After queuing the SVRB to a user queue,
the transient area handler sets up the
address of the transient area block as an
entry point for a branch to the SVC rou
tine. It then loads the input registers,
and branches to the transient area block to
begin execution of the routine.

Processing if the Routine is not Already in
a Transient Area Block: If the search of
the TACT entries indicates that the desired
routine is not already in a transient area
block, the transient area handler rechecks
the TACT entries to find a transient area
block that can be "used" (overlaid) by the
requested routine. A transient area block
can be "used" or overlaid in any of three
cases: if it is "free," if all of the user
SVRBs for the transient area block are not
"ready," or if the caller's task is of
higher priority than that of the tasks
whose SVRBs are "using" the transient area.

A transient area is "free" if the rou
tine residing therein is not being executed
for any task. A "user" SVRB for a tran
sient area is not "ready" if one or more
nondispatchability bits are set in its TCB,
thus preventing the dispatching of the rou
tine for this task. The user SVRB is also
not ready if it is not the top RB in the RB
queue of its task. The top RB is always
pointed to directly by its TCB.

Request Queue

T ransi ent Area
Fetch SVRB

TA Fetch
TCB 1

Used for
transient
area fetch
task to
load TAB 1

Transient Area Control Table

A of Request Queue

No. of TACT Entries

(TACT)

~--~--~-----/---~--~
Addr Addr /'

Transient Area
Fetch SVRB

Flag of
TAB 1

Addr

of User
Queue 1

Addr

TA Fetch
TCB 2

Used for
transient
area fetch
task to
load TAB 2

-----.. = Pointer

c:==:) = Information Flow

NOTES: 1. User queue 1 contains SVRBs whose SVC routine is in TAB 1,
or was overlaid in TAB 1.

User queue 2 contains SVRBs whose SVC routine is in TAB 2,
or was overlaid in TAB 2.

2. The request queue contains SVRBs awaiting an available TAB.

Figure 2-3. The Transient Area Queues

Section 2:

User Queue 1

Transient Area Block 1 (TAB 1)

Transient Area Block 2 (TAB 2)

User Queue 2

Interruption Handling 17

Preparation for the Overlaying of a Tran
sient Area: If the transient area handler
finds a transient area block that can be
"used" or overlaid, it prepares for over
laying the area. It first places into a
wait condition all using SVRBs whose rou
tine is in the transient area block. It
does this for each SVRB by saving the cur
rent wait count, subtracting the current
wait count from X'FF,' and storing the
resulting value in the wait count field of
the SVRB. This is done for each SVRB on
the user queue whose TTR field (RBSVTTR)
equals the TTR field of the associated
entry in the transient area control table.
The saved wait counts, corrected for any
intervening POST macro instructions, are
later restored by the Transient Area Fetch
routine during exiting procedures. (See
"Loading the Routine.") If the routine in
the located transient area block is not
being executed, there are no using SVRBs,
and therefore no need to place them into a
wait condition.

The transient area handler next prepares
for the loading of the requested routine.
It stores in the newly created SVRB (RBTAB
NO) the displacement of the TACT entry,
thus avoiding a new search of the TACT. It
also stores in this SVRB an RB old PSW
pointing to the transient area block. This
PSW will later be used by the Dispatcher to
begin execution of the routine. The tran
sient area handler then sets up the input
registers for the SVC routine and stores
them in the caller's TCB (TCBGRS), in pre
paration for later restoration by the Dis
patcher when it causes entry to the desired
routine. Pending the loading of the rou
tine into the available transient area
block, the transient area handler places
the new SVRB into a wait condition (sets a
wait count into its wait count field
RBWCF). The wait condition prevents the
Dispatcher from starting execution of the
routine supposedly in the transient area
block but not yet loaded. The transient
area handler also queues the new SVRB to
the user queue for tne transient area block
in order to keep track of the request for
use of the block.

The transient area handler determines
the address of the next TACT entry after
the one for the transient area block (TAB)
to be loaded. It saves the address in a
word, called TACTNEXT, in the transient
area-handler module. The TACTNEXT location
will be used to start the search for a TAB
for the next-requested transient routine.
TACT NEXT originally contained the address
of the first TACT entry. Its contents are
modified each time a TAB is loaded for a
new SVC request or for an XCTL request
issued by a type-4 SVC routine. Because a
type-4 SVC routine is a nonresident routine
that has more than one load module, it uses

18

an XCTL macro instruction to cause linkage
from one module to the next.

Next, the transient area handler indi
cates to the Dispatcher that a task switch
must occur. This is necessary because the
loading of the SVC routine will be per
formed under the control of a transient
area fetch TCB to load the desired routine
from the SVC library. Although there is
only one Transient Area Fetch routine, it
may operate under the control of any of
several high-priority transient area fetch
TCBs. There is one such permanent TCB for
each transient area defined during system
generation. The minimum number is two.

The task-switch indication to the Dis
patcher is necessary because the Dispatcher
cannot otherwise dispatch the routine for a
task of higher priority than the current
task. The transient area handler indicates
the need for a task switch by placing the
address of the transient area fetch TCB in
the "new" TCB pointer (IEATCBP) in the nuc
leus. The transient area handler then
branches to the Dispatcher, which restores
registers and gives control to the Tran
sient Area Fetch Task to load the desired
SVC routine. During the loading process,
although the Transient Area Fetch Task is
of extremely high priority, other lower
priority tasks can be performed while the
Transient Area Fetch Task is waiting for
the completion of an I/O operation.

Loading the Routine: When the Transient
Area Fetch routine (hereafter called the TA
Fetch routine) is given control, a tran
sient area block is now "free" or able to
be overlaid, as determined by previous pro
cessing. All SVRBs in the user queue for
the transient area block are in a wait con
dition, including the SVRB which will soon
control the awaited routine. The TA Fetch
routine extracts the relative disk address
(RBSVTTR) and length (RBSIZ~) of the SVC
routine from the caller's SVRB, and places
them in the control area for use by the
supervisor's Program Fetch routine. The
control area consists of a work area, an
input/output block (lOB), and a channel
program. The Program Fetch routine con
verts the relative track and record address
to an absolu~e disk address from which the
SVC routine may be fetched. By use of the
channel program, the Proqram Fetch routine
transfers the desired routine from the SVC
library to the available transient area
block. If the BLDL or FETCH routine
encounters a permanent I/O error, the TA
FETCH routine recycles the BLDL or FETCH
operation up to five times. The recycle
count is kept in the high order byte of the
Fetch TCB address field of the TACT entry
corresponding to the Transient Area Block;
it is reinitialized after each use of the
TA Fetch routine. If the permanent I/O

error persists after five recycles of the
BLDL or FETCH operation, the TA Fetch rou
tine passes control to the Dynamic Device
Reconfiguration SYSRES Effector, if DDR
SYSRES support is in the system. DDR SYS
RES returns control to the TA FETCH routine
with a return code of 0 or 4. If the
return code is 0, the BLDL or FETCH opera
tion is recycled again once. If the return
code is 4, the task which requested the SVC
routine is scheduled for ABEND with a com
pletion code of C06. If the renewed
attempt to recycle the BLDL or FETCH opera
tion results in a permanent error, DDR SYS
RES is not invoked again. Instead, per
nenent error processing takes place; the
task which requested the SVC routine is
scheduled for ABEND with a completion code
of C06.

If the time sharing option is operation
al in the the system, a TSEVb~T macro
instruction with the DONTSWAP operand is
issued prior to FETCH or BLDL and FETCH
processing. This indicates to the time
sharing driver that a time sharing task
cannot be swapped out of this time sharing
region until FETCH or BLDL and FETCH pro
cessing is complete. When FETCH or 3LDL
and FETCH processing is complete (either
successful or unsuccessful), a TSEVENT
macro instruction with the OK SWAP operand
is issued to permit the time sharing driver
to resume swapping as necessary.

If no I/O error has occurred during the
fetch process, the TA Fetch routine makes
ready all user SVRBs representing requests
for the loaded SVC routine. The purpose is
to allow the Dispatcher to eventually place
the routine into execution under the con
trol of the user SVRB belonging to the
highest priority ready task. In order to
find all using SVRBs for the newly loaded
routine, the TA Fetch routine searches the
user queue belonging to the transient area
block just loaded. The user SVRBS include
both the SVRB associated with the current
caller's task and SVRBs for other tasks.
The copies of the SVC routine represented
by the older SVRBs had previously been in
execution and had been overlaid before
their execution was complete. When the TA
Fetch routine locates the using SVRBs for
the currently loaded routine, it tries to
remove the SVRBs from the wait condition.
It does this by restoring the saved wait
count, corrected for any POST macro
instructions that have been executed while
the SVRBs were waiting for the transient
routine to be reloaded.

The TA Fetch routine next dequeues and
makes ready each SVRB on the request queue.
This action later permits the transient
area handler to determine if these SVRBS,
whose requests had previously been
deferred, may now be serviced. That is,

the SVC routine just loaded may be the rou
tine needed for one or more of the deferred
requests.

To prevent redispatching of the TA Fetch
routine, the TA Fetch routine places its
own SVRB in a wait condition. This action
is necessary, since the transient area
fetch tasks have the highest priority in
the system. The Dispatcher is thus pre
vented at its next execution from redis
patching the TA Fetch routine.

In a Multiprocessing system the TA Fetch
routine sets the "new" TCB pointers
(IEATCBP) in both CPUs to zero and branches
to the Dispatcher.

In a non-multiprocessing system the TA
Fetch routine then branches to the Dis
patcher, which passes control to the cur
rent routine of the highest priority ready
task. This routine is represented and con
trolled by the RB to which the TCB points,
called the "current" RB. The SVC routine
just loaded will receive control when one
of its user SVRBs or a deferred-request
3VRB is the current RB for the highest
priority ready task. The reader should
note that the SVRB that controls the next
execution of the loaded routine is not
necessarily the SVRB most recently created.
Task priority and readiness are the cri
teria that determine the order in which
requests are serviced.

Deferring the Reguest

During its search of the TACT and the
user queues, the Transient Area Handler
routine may find that there is no available
transient area block. That is, all tran
sient area blocks contain routines that are
being executed; at least one user SVRB for
each transient area block is ready; and the
caller's task is not of higher priority
than that of the tasks whose SVRBs are
"using" the transient area blocks. With no
transient area block available, the tran
sient area handler defers the current re
quest for the SVC routine. It does this by
enqueuing the new SVRB to a special waiting
queue called the request queue. The re
quest queue is a queue of SVRBs that are
waiting for a transient area block to
become available. The request queue has a
preassembled address called IEAQTAQ (this
is the address of the first fullword in the
TACT) •

The reader should note that an SVRB in a
user queue or in the request queue is also
in the RB queue belonging to the TCB of the
calling or interrupted program. However,
the pointer field of tile SVRB is different
in the two cases.

Section 2: Interruption Handling 19

The transient area handler defers the
current request by queuing the new SVRB to
the request queue (RBSVTQN) and by placing
the SVRB into a wait condition (setting its
RB wait count field greater than zero). It
places in the SVRB an RB old PSW that
points to a deferred-request restart point
(TARESTRT) within the transient area handl
er. A branch is then made to the Dispatch
er to give control to the current routine
of the next highest priority ready task.

Restarting Deferred Requests

Deferred requests are restarted when the
loading of an SVC routine is complete, or
when the routine in a transient area block
is no longer executed (becomes "free").
When either condition occurs, the SVRBs for
deferred requests are dequeued from the re
quest queue and their wait condition reset
(each RB wait count field is cleared to
zero). When one of the TCBs associated
with the restarted SVRBs has the highest
priority among the ready TCBs, the Dis
patcher returns control to the deferred
request restart point to begin the search
of the TACT entries. The first check
determines if the requested routine is
already in a transient area block. Thus, a
restarted deferred request is processed
exactly like an original request.

Minor Functions of SVC Interruption
Handling

Besides the major functions already
described, the SVC interruption handlers
perform two minor fUnctions. One function
consists of making available the addresses
of three important control blocks for use
by other supervisor routines during later
processing of the SVC interruption. The
other function is the loading of the return
register with the address of the appropri
ate exit routine so that the SVC routine,
when complete, can begin the return of con
trol to the caller by means of a simple
branch, without the need for tests.

Making Available Control Block Addresses:
The SVC First-Level Interruption Handler
makes available to other supervisor rou
tines the addresses of three important con
trol blocks. It does this by placing in
general registers 3, 4, and 5, respective
ly, the addresses of the communications
vector table (CVT), the caller's TCB, and
the current RB. The communications vector
table contains addresses of resident con
trol routines and addresses of certain
tables. These addresses are used by non
resident SVC routines.

Preparing the Return Address for the SVC
Routine: The return address is placed in
the return register, general register 14,
and depends on the type of SVC routine that

20

will be executed. Type-l routines, which
are a commonly used non-SVC-issuing type,
return control to the caller via the Type-l
EXit routine. Other types of routines
return control via the Exit routine. Since
most SVC routines are type-l, the SVC FLIH
initially assumes that the needed routine
is type-l, and places in the return regis
ter the address of the Type-l Exit routine.
If the FLIH later determines from the SVC
table that the needed routine is not type-
1, it branches to the SVC SLIH, which
reloads the return register with a dif
ferent return address. If the SVC routine
is type-2, or if it is a type-3 or type-4
routine that has already been found in one
of the transient areas, the SVC SLIH issues
a BALR instruction to the SVC routine. The
instruction following the BALR is an SVC 3
which causes control to be passed to the
Exit routine (IEAQETOO). If the requested
SVC routine is a type-3 or type-4 routine
that must be loaded into a transient area
by Program Fetch, the dispatcher, which
gains control from the TAH Fetch routine,
loads register 14 with the address of an
SVC 3 instruction in the communications
vector table (CVT). The SVC 3 instruction,
when executed, causes a new SVC interrup
tion and resultant linkage to the supervi
sor Exit routine. (For further information
on the two supervisor Exit routines, refer
to section 9, "Exiting Procedures.")

Summary of SVC Processing

For a type-l SVC routine request, the
SVC FLIH branches directly to the resident
routine.

For a type-2 SVC routine request and for
a type-3 or type-4 SVC routine request when
the routine already exists in a transient
area, the SVC SLIH builds and queues an
SVRB and branches to the routine.

For a type-3 or type-4 SVC routine re
quest where the module is not in a tran
sient area and there is a transient area
available, the SVC SLIH Transient Area
Handler builds and queues an SVRB, initia
lizes the Transient Area Fetch Task, and
passes control to the dispatcher. The dis
patcher passes control to the Transient
Area Fetch Task which loads the requested
SVC routine and returns control to the dis
patcher which then passes control to the
now loaded SVC routine.

For a type-3 or type-4 SVC routine re
quest when the module is not in the tran
sient area and their is no transient area
block available, the SVC SLIH builds and
queues an SVRB, and the Transient Area
Handler queues the SVRB to the TAB wait
queue originating in the first word of the
TACT.

PROGRAM INTERRUPTIONS

If the program being executed attempts
an invalid action, a program interruption
occurs and a code describing the attempt is
stored in the program OPSW. Invalid
actions causing program interruptions
include using incorrect addresses, issuing
invalid operation codes, and attempting to
execute privileged instructions. Addition
al causes of program interruptions are
fixed-point overflow, decimal overflow,
exponent underflow, loss of significance
and monitoring. With the exception of mon
itoring, these events may be masked out.

The program interruption handler is
automatically given control after any pro
gram interruption. An immediate branch is
made to a Monitor Call Interrupt Handler
routine to determine if the interruption
was from either a System/370 or a System/
360 simulated Monitor Call instruction. If
it is, the Generalized Trace Facility (GTF)
routines are used to record the event and
control is returned directly to the user's
program. otherwise, the interruption is a
valid program check and GTF is used to
record the interruption and return control
to the Program Check E'LIH to continue pro
cessing. Upon return, it tests whether the
interruption occurred in the supervisor or
in user code, by examining the program old
PSW (PIOPSW). If the interruption occurred
in the supervisor, control is passed to the
ABTE~l Prologue routine, which schedules
abnormal termination of the task being per
formed at the time of the interru1:ltion.

If the interruption occurred in user
code, the supervisor tests the TCB for a
program interruption element (PIE) address.
A PIE is a control block associated with a
user's error handling routine. If the user
anticipates a program interruption and
wishes to perform his own error handling,
he issues a SPI~ (set program interruption
element) macro instruction. Tne SPIE ser
vice routine constructs a PIE and inserts
its address in the TCB.

If the supervisor finds no PIE address,
that means that the user does not wish to
perform error handling; the ABTERM Prologue
routine is entered, as above. If the
supervisor finds a PIE address in the TCB,
it tests the high-order bit in the address.
This bit is set to one whenever control is
given to the user's error handling routine;
if the supervisor finds it on when handling
a program interruption, then a second pro
gram interruption has occurred in the error
routine, and the task must be terminated.

If a PIE exists and its high-order bit
is zero, the supervisor tests whether the
particular kind of program interruption
that has occurred was specified by the user

in the SPIE macro instruction. If it was,
the program interruption handler stores the
address of the user's error handling rou
tine in the program old PSW and loads this
PSW to pass control to the user's error
handling routine. In a multiprocessing
system, control is passed to the error rou
tine via the Dispatcher, so that the error
routine can be bypassed if the task has
been set nondispatchable by the second CPU.
If it was not, control is passed to the
ABTERM Prologue routine which, with the
ABTERM routine, schedules the abnormal ter
mination of the task. Before passing con
trol to the user's error handling routine,
the program interruption handler loads reg
ister 14 with the address of an SVC 3
instruction within IEAQNUOO. Control is
thus returned from the error handling rou
tine to the supervisor Exit routine
CIEAQETOO) •

MULTIPROCESSING PROGRAM INTERRUPTION
HANDLER

If the Model 65 Multiprocessing System
is in multisystem mode, the SSM instruction
causes a program interruption. The system
mask to te set is examined. If complete
enablement is indicated, the supervisor
lock and CPU affinity bytes in the mUlti
processing CVT are reset to zero only if
originally set by the CPU that is executing
the Program First-Level Interruption Handl
er. The interruption is recorded by GTF
(if active), before control is returned to
the interrupted program with the system
mas k ena!::l ed.

If complete enablement is not indicated,
the supervisor lock and CPU affinity bytes
are tested to determine which CPU is
executing disabled Supervisor code. If
neither CPU is performinq a disabled rou
tine, the testing CPU sets the supervisor
lock byte, and that CPU's ID is placed in
the CPU affinity byte. The interruption is
then recorded by GTF (if active), and con
trol is passed to the interrupted routine
with the system mask set as indicated. If
the other CPU (not the testing CPU) is per
forming a disabled routine (supervisor lock
byte set by other CPU), the program inter
ruption old PSW is set (address is decre
mented) for reexecution of the SSM*
instruction, and the system mask of the
program interruption old PSW is examined.

If the program interruption old PSW is
enabled for external interruptions, regis
ters are restored, and the program inter-

*Either an SSM instruction or an EXECUTE
instruction that executes an SSM
instruction.

Section 2: Interruption Handling 21

ruption old PSW is loaded. The SSM*
instruction is thus reexecuted until the
second CPU releases the supervisor lock
byte.

If the program interruption old PSW is
disabled for external interruptions, the
executing CPU branches to the External FLIH
routine so that external signals (such as a
malfunction alert) from the other CPU can
be received. The SSM* instruction will be
reissued when the calling task is dis
patched. Before the External FLIH routine
is entered, the status of the task that
issued the SSM instruction is saved. The
registers are stored in the TCB, the cur
rent RB is set from the program interrup
tion OPSW to reissue the SSM* instruction,
the External FLIH bit is set in FLRETFLG to
indicate that the registers have been saved
and the External old PSW is set equal to
the program interruption old PSW. The
External FLIH routine tests the supervisor
lock byte until the byte is unlocked by the
second CPU. Between repeated tests of the
lock byte the CPU is enabled for external
interruptions. After the supervisor lock
byte has been unlocked and any external
interruptions which may have occurred have
been processed, the External FLIH routine
branches to the Dispatcher. When the cal
ling task is dispatched, it reissues the
SSM* instruction.

If the interruption was not caused by an
SSM instruction, the program FLIH routine
determines if the second CPU is performing
a disabled supervisor routine by testing
the Supervisor lock and CPU affinity bytes
in the multiprocessing CVT. If the lock
byte is not set, the program FLIH routine
sets the lock byte, places the CPUID in the
CPU affinity byte, and the program FLIH
routine proceeds as in MVT. If the lock
byte was set by the testing CPU, the pro
gram FLIH routine proceeds. If the lock
byte was set by the other CPU, it is tested
until reset. Between repeated tests of the
lock byte, the testing CPU is enabled for
external interruptions by loading an
enabled PSW so that the CPU can respond if
the second CPU experiences a machine check
and cannot reset the lock. Before the
enabled PSW is loaded, a bit is set in a
one-byte entry (FLRETFLG) in the prefixed
storage area (PSA) to indicate that, if an
external interruption occurs, the External
FLIH routine is to return control to the
program FLIH routine. This bit is reset
when the prograul FLIH routine is able to
set the supervisor lock byte and proceed.

*Either an SSM instruction or an EXECUTE
instruction that executes an SSM
instruction.

22

MODELS 91 AND 195 PROGRAM INTERRUPTION
HANDLER

For Systern/360 Models 91 and 195, and
System/370 Model 195, the Program First
Level Interruption Handler (PFLIH) routine
has been expanded to recognize decimal
instructions, the TESTRAN interpreter, and
imprecise interruptions. Depending on
options selected at system generation time,
the PFLIH routine may also include one or
more of the following sections:

• A section to handle interruptions due
to the presence of a decimal instruc
tion.

• A section to provide for return to the
TESTRAN interpreter if necessary. In
the case of multiple-imprecise inter
ruptions, it is necessary that the SPIE
macro instruction specify all possible
types of interruption conditions.

Handling Decimal Instructions

On a Systern/360 Model 91, an operation
exception program interruption occurs when
a decimal instruction is encountered in the
execution of either a problem program or
the TESTRAN interpreter. If the Decimal
Simulator (IEAXDSOO) routine has been
included in the operating system at system
generation time, the PFLIH routine gives
control to the simulator to carry out the
indicated operation.**

If an error condition arises during the
instruction-processing operations of the
Decimal Simulator routine, control is
returned to the PFLIH routine for deter
mination of how the condition is to be
handled.

If the Decimal Simulator routine is not
in the operating system when a decimal in
struction interruption occurs, the PFLIH
routine considers this to be an error con
dition and passes control to an appropriate
error-handling routine (for example, to a
user exit, to the TESTRAN interpreter, or
to a system task-terminating routine).

**A program interruption may be caused by
an EXECUTE instruction that makes
reference to a decimal instruction. If
this is the case, the PFLIH routine con
structs, in a work area, a decimal in
struction that is equivalent to the orig
inal instruction as it would be seen by
the hardware.

Entry from the TESTRAN Interpreter

On a Systeml360 Model 91, when the TES
TRAN interpreter is operating in either the
ntrace" or the "go-back" mode, it gives
control to the PFLIH routine whenever a
program interruption for a decimal instruc
tion is encountered. Prior to giving con
trol to the PFLIH routine, the TEST RAN "
interpreter sets a flag bit (the "return
to-TESTRAN" flag) to indicate that the
interpreter is in use. The action that is
taken by the PFLIH routine if the Decimal
Simulator routine is not in the system has
been described in the section, "Handling
Decimal Instructions."

If, because of an error, the Decimal
Simulator routine returns control to the
PFLIH routine (and the TESTRAN interpreter
had caused the PFLIH routine to be
entered), the "return-to-TESTRAN" flag is
checked to verify the presence of the
interpreter in the system, and control is
returned to the TESTRAN interpreter for the
handling of the error condition.

EXTERNAL INTERRUPTIONS

External interruptions are handled dif
ferently in uniprocessing and multiprocess
ing systems. In a uniprocessing system,
the External First-Level Interruption
Handler (FLIH) receives control after an
external interruption. In a Model 65
Multiprocessing System, if the two CPUs are
operating in multisystem mode, the Second
CPU Interruption AnalysiS routine receives
control. Otherwise, the Second CPU Inter
ruption Analysis routine is bypassed, and
the External FLIH routine receives control
directly.

UNIPROCESSING SYSTEM

In a uniprocessing system, the External
FLIH routine saves the registers in the
current TCB. If the System lo1anagement
Facility is included in the system, control
is then passed to the SMF Wait Time Collec
tion routine (described in Section 11).
This routine returns control to the Exter
nal FLIH routine.

Tne External FLIH routine saves the ex
ternal old PSW in the current RB, and
determines the cause of the interruption
from the old PSW. If GTF is active, or if
the Trace Table facility is present, the
interruption is recorded by the tracing
facilities. Control is then passed to the
Timer Second-Level Interruption Handler if
it is a timer interruption, or to the resi
dent External routine if it is an operator
key interruption.

MVT WITH MODEL 65 MULTIPROCESSING

The Second CPU Interruption Analysis
routine determines if the interruption was
caused by one of the following conditions
in the second CPU which requires immediate
processing:

• A machine-check interruption

• An unrecoverable channel failure

• A request to halt I/O that was started
on the first CPU

If a malfunction alert signal (issued by
the CPU on which a machine check occurs to
the other CPU) has caused the external
interruption (determined from the external
old PSW),the Second CPU Recovery Manage
ment System Interface routine is entered.
This routine tests a recovery management
"time-out" flag in the PSA of the receiving
CPU to determine whether both CPUs are mal
functioning. If so, the receiving CPU
enters the wait state. Otherwise, the
recovery management ntime-outn flag is set
in the PSA of this CPU, and an External
Start (via a WRITE DIRECT instruction) is
issued to the malfunctioning CPU, causing
it to execute the Recovery Management Sup
port (RMS) routines. Before the External
Start is issued, the supervisor lock byte
is set for the malfunctioning CPU so that
supervisor routines may be performed on
that CPU. While that CPU performs the RMS
routines, a completion flag (set when the
malfunctioning CPU completes RMS) is
tested. If the completion flag has not
been set after a period of testing, the CPU
waiting for the CPU to complete RMS enters
the wait state. If the malfunctioning CPU
is not in the wait state (that is, RMS was
completed successfully), control is
returned to the Second CPU Interruption
Analysis routine.

If the external interruption was
initiated by an RMS routine because of an
unrecoverable channel failure on the second
CPU (bit 3 of STMASK=l), the Second CPU
Recovery Management System Interface rou
tine is entered. This routine operates as
described above except that (1) an External
Start is not issued since the RMS routine
is already in process, and (2) the supervi
sor lock byte is not set since the RMS rou
tine has already set it.

If a routine on either CPU requests a
Halt I/O for I/O that was started on the
other CPU, an external interruption is
issued to the CPU on which the I/O was
begun (via the First CPU Signal routine)
with an indication in STMASK (bit 7 = 1)
that the Second CPU Halt I/O routine shOUld
be entered. The Second CPU Halt I/O rou
tine scans the UCB table to find each

Section 2: Interruption Handling 23

device which has been flagged for this CPU
to perform Halt I/O and branches to the
resident lOS routine. When Halt I/O has
been completed, the UCB flag is turned off
and the Halt I/O request flag in STMASK of
the CPU on which the Halt I/O was requested
is turned off. Control is returned to the
Second CPU Analysis routine.

If there are any other external inter
ruptions, the External FLIH routine
receives control via a LOAD PSW instruc
tion. otherwise, control is returned to
the interrupted program.

In addition to testing for operator key
and timer interruptions, the External FLIH
routine in MVT with Model 65 multiprocess
ing processes external interruptions which
(1) occur during FLIH supervisor lock
testing routines when the CPU is enabled
for external interruptions and (2) are
caused by the second CPU (via a WRITE
DIRECT instruction).

The External FLIH routine first deter
mines if a FLIH routine was interrupted by
examining the PSA byte FLRETFLG. If a FLIH
routine, other than External FLIH, was
interrupted, registers are saved, and the
interruption code is saved in a PSA byte
RNEXCODE. Control is then returned to the
interrupted FLIH routine. The I/O and Pro
gram Check FLIH routines exit to the Dis
patcher which tests FLRETFLG for unpro
cessed external interruptions and, if there
are any, gives control to the External FLIH
routine. If (1) the External FLIH routine
is entered because of an unprocessed exter
nal interruption or (2) if the External
FLIH routine was in process at the time of
interruption, .the registers are not saved
(having already been saved by External
FLIH), and the supervisor lock byte is
tested and set. If a FLIH routine was not
interrupted by the external interruption,
registers are saved before the supervisor
lock byte is tested.

Prior to testing for timer, key or
second CPU interruptions, the External FLIH
routine tests the supervisor lock byte. If
the lock byte is not already set, it is
set, the CPUID is placed in the affinity
byte, and the interruption is recorded by
the Generalized Trace Facility (GTF). If
the lock has been set by the CPU that is
executing FLIH, the FLIH routine continues.
If set by the other CPU, the lock byte is
tested until it is unlocked. Before each
test, the testing CPU is enabled for exter
nal interruptions, and a bit in FLRETFLG is
set to indicate that the interruption
occurred during the External FLIH routine.

In multisystem mode, the External FLIH
routine also tests for external interrup
tions caused by the second CPU. The word

24

STMASK in the PSA of the second CPU is
examined, and control is given to the
appropriate routine as follows:

Bit set to 1 Indication
1 Enter Dispatcher

16 QUIESCE
17 VARY CPU offline
24 start I/O on Channel 0
25 Start I/O on Channel 1
26 Start I/O on Channel 2
27 Start I/O on Channel 3
28 Start I/O on Channel 4
29 Start I/O on Channel 5
30 Start I/O on Channel 6

In each case except VARY CPU offline,
the STI'lASK bit is reset after execution of
the appropriate routine, and the external
FLIH is resumed. When all bits have been
accounted for, control is passed to the
Dispatcher.

INPUT/OUTPUT INTERRUPTIONS

The basic function of the supervisor in
handling input/output interruptions is to
branch to the Input/Output Supervisor. All
input/output services and error handling
are performed within the Input/Output
Supervisor.

When an input/output interruption
occurs, the Input/Output First-Level Inter
ruption Handler is automatically entered.
Because the system may become enabled for
inp~t/output interruptions during the in
terruption handling, the Input/Output
First-LeVel Interruption Handler may be
entered again before the completion of the
original interruption. To identify such a
second entry, the original entry sets the
I/O switch (IORGSW>, which is tested
whenever the interruption handler is
entered. Only the first entry causes reg
ister saving and other initializing
instructions; subsequent entries bypass
these functions.

If the System Management Facility (SMF)
is included in the system, the input/output
FLIH routine passes control to the SMF Wait
Time Collection routine (described in Sec
tion 11). This routine returns control to
the Input/Output FLIH routine.

In a Model 65 Multiprocessing System
operating in mUltisystem mode, the supervi
sor lock and CPU affinity bytes are tested
before the interruption is processed. If
the lock byte is not already set, it is set
by the CPU that is executing FLIH. This
CPU also sets the CPU affinity byte. In
terruption processing continues. If the
lock has been set by the other CPU, it is
repeatedly tested until it is unlocked.
Between repeated tests of the lock byte,

the system is enabled for external inter
ruptions by loading an enabled PSW. Before
loading of the enabled PSW, a bit is set in
FLRETFLG to indicate to the External FLIH
that control is to be returned to the
Input/Output FLIH routine. This bit is
reset after the lock byte has been set.

Upon return from the Input/Output Super
visor, the pseudo-disable switch is tested.
If off, control is passed to the Dispatch
er. If on, registers are restored and con
trol is returned to the interrupted routine
by loading the input/output old PSW. In
the multisystem mode, zeros are placed in
the lock and CPU identity bytes if the sys
tem mask of the input/output old PSW is
completely enabled.

l~CHINE INTERRUPTIONS

There are three machine-check recovery
programs and one channel error recovery
program in OS/360 and OS/370. The availa
bility of each is dependent upon the CPU
and the other recovery management pro
gram(s) selected. Figure 2-4 indicates the
availability of each of these programs.

r------s---------T-----T-----T-----------' I CPU Option I I I I
I Model I MCH I CCH I SERO/SER1 I
~--------- -------+-----+-----+-----------~
I 40 NA I NA I 0 I
I I I I
I 50 NA I NA I 0 I
I I I I
I 65 0 I 0 I 0 1 I
I I I I
I 65MP M I M I NA I
I I I I
I 75 NA I 0 I 0 I
I I I
I 85 M I A I NA
I I I
I 91 NA I 0 I M2
I I I
I 145 M I A I NA
I I I
I 155 M I A I NA
I I I
I 165 M I A I NA
I I I
I 195 NA I A I M2
~-----------------~-----~-----~-----------~
I 1MCH cannot be used with SERO or SERlo I
I 2SER1 only. I
~---~
I Key: A automatically included I
I M must be included I
I NA = not available I
I 0 = optional I L-__ J

Figure 2-4. Availability of Machine-Check
Programs

The following two input/output recovery
programs are not model dependent:

• The Alternate Path Retry (APR) o~tion.*
which consists of two functions: sele
ctive retry, which is optional for MVT
and standard for M65MP; and VARY PATH,
which is standard for both MVT and
M65IvlP.

• The Dynamic Device Reconfiguration
<nDR) option, which is not model
dependent but is automatically included
for M65MP.

When a machine check occurs, the pro
cessing varies according to the recovery
option that the user has selected, as
follows:

o If no recovery program has been
selected, the machine loads the machine
check new PSW, and the CPU enters the
wait state.**

o If the SERO routine has been selected,
the machine loads the machine check new
PSW, and control is given to the resi
dent portion of the SERO routine to re
cord environmental data. When its
function is complete, the SERO routine
places the CPU in the wait state.**

o If the SER1 routine has been selected,
the machine loads the machine check new
PSW, and control is given to the SER1
routine. This routine records environ
mental data, and either abnormally ter
minates the job step affected by the
machine check and causes the resumption
of processing, or places the CPU in the
wait state. **

o If the Machine-Check Handler has been
selected, the machine loads the machine
check new PSW, and control is given to
the Machine-Check Handler. This pro
gram records environmental data and
attempts to recover from the machine
check. If recovery is not possible,
the Machine-Check Handler places the
CPU in the wait state.**

*While it is not model-dependent, APR only
performs its function usefully in a system
with alternate paths and with the Channel
Check Handler.

**The operator may then load the System
Environment Recording, Editing, and
Printing (SEREP) program to format and
print the CPU logout area. The SEREP
programs are model-dependent stand-alone
diagnostic programs available for the
Model 30 and for each higher numbered
model.

Section 2: Interruption Handling 25

SERO, SER1, and the Machine-Check Handl
er format the information they collect in
machine check records which they then re
cord on the SYS1.LOGREC data set. A
description of the format and contents of
the machine-check record for SERO and SErll
is offered in section 12.

If the Model 65 Multiprocessing System
is operating in multisystem mode, a machine
check causes one CPU to send a malfunction
alert signal to the other CPU. The sending
CPU entez·s the wait state via the machine
check new PSW. When the malfunction alert
signal is received by the other CPU, the
Second CPU Recovery Management System
Interface routine (see "External Interrup
tions") gets control on the receiving CPU
and issues an External Start to the mal
functioning CPU. The External Start causes
the malfunctioning CPU to execute thp. RMS
routines.

When a channel failure occurs, the I/O
supervisor passes control to the selected
recovery program. Processing varies,
depending on the recovery option that the
user has selected, as follows:

• If no recovery program has been
selected, the I/O Supervisor loads the
machine check new psw, and the CPU
enters the wait state.*

• If a SER routine or the Machine-Check
Handler has been selected, the I/O
Supervisor loads the machine check new
PSW and control is given to the select
ed recovery program. The selected pro
gram records environmental data and
then places the CPU in the wait state.*

• If the Channel-Check Handler for models
using the 2860, 2870, 2880, or System/
370 Models 145 or 155 integrated chan
nels has been selected, the I/O Super
visor branches to it for possible re
covery from the channel error condi
tion. This program performs two main
fUnctions. It provides an analysis of
the channel logout information in the
error recovery procedure interface
block (ERPIB) to aid the appropriate
deVice-dependent error recovery proce
dure in setting up for a retry of the
failing operation by the I/O supervi
sor. CCH also records environmental
data about the channel error in a chan
nel error inboard record entry. This

*The operator may then load the System
Environment Recording, Editing, and print
ing (SEREP) program in order to format and
print the CPU logout area. The SEREP pro
grams are model-dependent stand-alone dia
gnostic programs available for the Model
30 and for each higher numbered model.

26

record entry is later written onto
SYS1.LOGREC by the outboard recorder
routine (OBR) of the I/O Supervisor.
An operator awareness message is issued
each time a channel error is recorded.
(For a full description of the Channel
Check Handler, refer to the Input/
output Supervisor PLM.

When a permanent I/O error occurs, OBR
passes control to Dynamic Device Reconfi
guration, if DDR is in the system. When a
permanent I/O error occurs on a system
fetch operation, TA FETCH, the error fetch
sequence, or the DASD ERP passes control to
DDR SYSRES, if DDR SYSRES is in the system.
Both DDR and DDR SYSRES enable the operator
to swap volumes on devices on which per
manent I/O errors have occurred. (The
operator may also reguest.a swap at any
time with the SWAP command.)

Alternate Path Retry also aids in the
recovery from 1/0 errors, indirectly, by
allowing an I/O operation that has devel
oped an error on one channel to be retried
on another channel. APR also allows the
operator to VARY a path to a device online
or offline.

For a full description of Dynamic Device
Reconfiguration and Alternate path Retry,
refer to the Input/Output Supervisor PLM.

SYSTEM ENVIRONMENT RECORDING

System Environment Recording (SER) is a
set of control program routines which re
cord hardware malfunctions of the Central
Processing Unit and channels. There are
two versions of SER, called SERO and SERlo
At system generation the user may select
one of these two versions. If he selects
neither, the default option is used. The
version which is used as the default option
depends on the model (or models) specified
and the size of the system. See System
Generation.

When a machine-check interruption occurs
control is given to SER if that is the re
covery option selected. SER may also be
entered by the SER interface of the I/O
Supervisor if a channel error occurs.

The less complex version of system
environment recording, SERO, determines the
type of malfunction and, if possible,
writes a machine check record describing
the error on a data set called SYS1.LOGREC.
This data set resides on the primary system
residence volume. If SERO cannot write the
record, the CPU is placed in a wait state
and a message is printed to the operator to
use SEREP. If the recording is partially
or fully completed, the CPU is placed in a
wait state and a message is printed to the

operator requesting him to reload the
operating system.

The more complex version of System
~nvironment Recording, SERi, also collects
and writes out hardware environment data,
but in addition, it performs selective ter
rr~nation analysis which attempts to associ
ate the error with a specific taSK. If the
error can be associated with a specific
task and if ~he control program has not
been damaged by the error, the task is ter
minated abnormally; if not, the CPU is
placed in the wait state.

When the SYS1.LOGREC data set is 90%
full, a message is issued to the operator.
'Ihe opera tor .:mould then run the environ
ment recording edit and print (IFCEREPO)
service aid. IFCEREPO formats the SYS1.
LOGREC records, and then IVl:ites the records
onto printer, tape, or disk, according to
user specifications. IFCEREPO is described
in the service Aids Logic PLM. If the
operator delays in recording the contents
of the SYS1.LOGREC data set, it will even
tually become fulli when it does, a message
will be issueJ to the operator. He must
then run IFCEREFO immediately, or system
performance may be degraded.

SERO

SERO collects, formats, and writes error
information resulting from a machine check
or from a channel error. The program is
divided into two modules: the load nucleus
resident module IFBSROOO, and the link
library resident module, IFBSROXX (where XX
is the model number -- 40, 50, 65, or 75).

LOAD NUCLEUS RESIDENT MODULF. -- IFBSROOO:
'l'he resident portion of SERO is nonreusable
dnd does not require Operating System/360
facili ties. The primary functions of this
llodule are to halt all I/O activity and to
read the first text record of the non
Iesident portion of SERO into an area which
Degins 32 bytes past the nucleus.

If a machine check occurs, the resident
module gains control directly from the
machine-check new PSW. If a channel error
is detected, the rr,odule is entered from the
I/O supervisor \>O'hich loads the machine
check new PSW.

This module saves information to be used
later by the non-resident portion of SERO
in a 22-byte field in lower storage. After
it has halted I/O on all devices, the
fi,odule reads tne first 1024 bytes of
IFBSROXX into storage. If after ten re
tries, the resident module is not able to
read IFBSROXX into main storage, it sets up
the lOS wait state code OOOFOA and branches
to the Bell Ring/wait State module which
sounds the console alarm and places the CPU

in the wait state. The code OOOFOA is dis
played in the instruction counter.

LINK LIBRARY RESIDENT MODULE -- IFBSROXX:
like IFBSROOO, the IFBSROXX module does not
require any operating system faciiities.
There is an IFBSROXX module for each
System/360 Model; the appropriate module is
selected at SYSGEN time.

After the module loads the remainder of
itself into main storage, it checks loca
tion 50 to determine which type of error
has occurred. This location is preas
sembled to X' FF' • If the error is a
rrachine check, location 50 is overlaid by
the mdchine-check old PSW; a channel error
does not change location 50. Once the type
of error is established, the routine sets
IIp the aFpropriate kind of record entry in
which to place information about the error.

The routine enables itself fer machine
check interruptions. If it is already
collecting error data and receives a
wachine-check interruption, the routine
stops all data collection and writes out
v;hat it has accumulated up to that point.
If a third error occurs, the routine cannot
continue; it prints out an error message.

If IFBSROXX was entered because of a
machine-check interruption, the general
purpose registers are checked for valid
parity on all models except Model 40.
parity indicators are available for all
registers except 13, 14, and 15 on Models
50 and 75. Floating point registers are
also checked for valid parity if the model
is equipped with floating point.

Tne routine checks the busy bit in each
unit control block (UCB) to determine which
I/O units were busy when the error
occurred. The addresses of up to ten busy
I/O devices are collected. The routine
then fills in a record with the program
identification, day, and time. After
examining the seek address obtained from
the header record of the SYS1.LOGREC data
set, the routine writes on that data set
the machine check record it has just
created and an end-of-file record.

If the routine records a partial or com
plete error record, it informs the operator
by printing a message or displaying a code
in the instruction counter.

If the routine does not write an error
record, it issues a message identifying the
error.

Like SERO, SERl collects, formats, and
writes error information resulting from a
machine check or a channel failure. SER1,

Section 2: Interruption Handling 27

unlike SERO, is a single, serially reusable
module that resides in the nucleus. In
addition to writing error records, it
attempts to identify the error with a spe
cific task. If a task/error relationship
can be established, and if the control pro
gram is in no way damaged by the error, the
task is terminated abnormally, but system
operation continues. If, however, the
error cannot be associated with a task, or
if the control program is affected by the
error, the system must be reloaded.

SERl is entered in the same manner as
the resident portion of SERO. It is
entered as the result of either of the fol
lowing errors:

1. A machine-check interruption. (The
machine-check new PSW points to SER1.)

2. A channel check (inboard). (lOS loads
the machine-check new PSW.)

3. An external machine-check interruption
on the Model 91, 95, and 195.*

SERl checks location 50 to determine
which type of error occurred. Location 50
initially contains X'FF', which is overlaid
by the machine-check old PSW if the error
is a machine check. Location 50 is not
changed if SERl is entered because of a
channel error.

SERl gathers error data into either a
machine-check record entry or a channel
check record entry and writes the record on
SYS1.LOGRBC. SERl fUnctions within the
framework of the operating system; all I/O
communication with the SYS1.LOGREC data set
is via the EXCP macro instruction unless
the control program was affected by the
error. If the control program is damaged,
SERl uses its own I/O routines. The DEB
and DCB required when EXCP is used reside
in the nucleus and are opened at IPL time
by the nucleus initialization program
(NIP).

If SERl is able to associate the error
with a task and the control program has not
been damaged, SERl terminates that task by
branching to the abnormal termination ser
vice routine, ABTERM. When control returns
from ABTERM, SERl re-initializes itself and
branches to the Dispatcher so that the sys
tem can continue.

If the SERl routine determines that only
a job step need be terminated, it performs
the following processing: SERl sets all
TeBs in the system nondispatchable, except
certain system TCBs, and sets the "system

*The 195 applies to both System/360 and
System/370 models.

28

KUst complete" flag in the current TCE.
The system tasks that remain dispatchable
are: the communications task, the rollout/
rollin task (if that feature is present),
the system error task, and the transient
area fetch task. The SERl routine then
halts all input/output activity associated
with the curreht TCE. It writes the error
environment data on the SYS1.LOGREC data
set and writes 'an error message to the
operator. The TCBs are then made dispatch
a.ble and the ABTERM routine is entered for
the job step that was affected by the fai
lure. When control returns from the ABTERM
routine, the SERl routine branches to the
Dispatcher.

Thus, the requirements for system con
tinuation are task/error relationship, a
complete record of the error, and success
ful termination of the task. In the fol
lowing cases, these requirements are not
met, so the system must be reloaded.

1. An additional machine-check occurs
while SERl is handling an error. Data
collection on the original error
stops, and SERl attempts to write a
partial record on SYS1.LOGREC. The
partial record contains the informa
tion gathered up to the time the
second error occurred.

2. A complete record was written, but the
error could not be associated with a
specific task.

3. A complete record was written, but the
control program was affected by the
error.

4. The control program was damaged by the
error and a complete record could not
be written.

In any of these cases, a message is printed
on the primary output device instructing
the operator to reload the operating sys
tem, and SERl places the system in the wait
state.

Models 91, 95, and 195 can be inter
rupted by a special machine check called an
external machine check. The SERl routine
for these models is given control when an
external machine check occurs. If the sys
tem mask in the machine-check old PSW is
not all ones, the data (record) associated
with the machine failure is saved in the
SERl buffer area, and an internal indicator
that a record has been saved is set. Con
trol is then returned to the point of in
terruption. The record that SERl saves is
recorded on the SYS1.LOGREC data set if the
next SERl entry is caused by either a chan
nel failure or a CPU (normal machine check)
failure.

• If this next entry is due to a channel
failure, the channel-failure record and
the saved external machine-failure rec
ord are processed as one record on the
SYS1.LOGREC data set, and the operating
system causes a termination of the pro
blem program as for a channel failure.

• If, instead, the next entry is due to a
CPU failure, the CPU-failure record is
recorded first on the SYS1.LOGREC data
set, and then the external machine
check record is recorded on the same
data set. The normal SER1 techniques
of handling a CPU failure are then per
formed. That is, either the task or
the system is terminated.

However, if the next entry to SER1 is
due to an external machine check, the data
associated with the first failure is lost,
and an entry is made in the count of the
number of consecutive external machine
checks experienced. If the count reaches a
value of ten, a record with the count value
is written on SYS1.LOGREC, and the system
is terminated.

If the initial check of the system mask
in the old PSW (see preceding) showed that
the mask was all ones, the SER1 routine is
placed in a waiting loop until all input/
output interruptions in the system have
been serviced. If a channel failure
occurs, the SER1 routine processes both the
channel failure and the external (I/O) fai
lure as a single record and terminates the
system in the manner normally done for
channel failures. If there are no channel
failures and all the I/O interruptions are
taken care of, the SER1 routine processes
the external machine-check record and the
system continues from the point of
interruption.

System Environment Recording with Multiple
Console Support

The SER routines use WTO (SVC 35) macro
instructions and SIO instructions to write
messages to operator consoles. When
operating with MeS, a WTO macro instruction
(SER1 only) contains a routing code of 1 in
the expansion, and the message is routed to
the master console.

When using an SIO instruction, the mas
ter console is located using the communica
tion task control tables. When the master
console is a composite, a list of CCws is
constructed to write a message to the con
sole. When the master console is a 1052 or
a display device, a CCW to ring the console
alarm is added to the list. If the master
console is not a 1052, 2250, 2740, or a
composite console, no message is written.

After the SIO instruction has been
issued, the device for the hard copy log is
located. If it is the SYSLOG or a 2250, no
message is written. If it is a 1052 or a
2740, the message is written but the alarm
is not rung. For either case, the appro
priate WAIT code is loaded into register 0
and an LPSW instruction puts the system
into a wait state •

MACHINE-CHECK HANDLER (MCH)

This program is optional for the System/
360 Model 65 and standard for the Model 65
Multiprocessor, the Model 85, and for all
IT.odels of System/37 0. The Machine-Check
Handler consists of a resident routine
~hich al~ays remains in main storage and of
transient modules which reside in the SYS1.
SVCLIB data set. The program attempts to
recover from the cause of the machine-check
interruption and record as much information
as possicle about the malfunction.

For the Model 65, MCH first determines
if the instruction that was being executed
when the machine check occurred can be
retried, and, if this is possible, retries
it. This step is handled by machine recov
ery facilities in the System/360 Model 85
and the System/370 Models 145, 155 and 165.

If, however, instruction retry is not
possible, MCH tries to repair program
damage. The program damage may be asso
ciated with either a defective storage pro
tection feature (SPF) key or a defective
main storage location. In some models, the
Machine-Check Handler is able to correct
defective SPF keys or damaged code in main
storage.

If program damage can be repaired, the
Machine-Check Handler attempts to retry the
interrupted instruction. If the retry is
successful, the Machine-Check Handler has
recovered completely from the machine-check
interruption.

If program damage cannot be repaired or
instruction retry is unsuccessful, the
Machine-Check Handler can either continue
partial system operation or place the CPU
in the wait state. The choice depends on
the type of task that was current at the
time of the machine interruption, the num
ber of tasks that are affected, and the
extent of the program damage. If limited
system operation is possible, it either
abnormally terminates the current job step
or sets the current task nondispatchable.
However, in the Model 65 Multiprocessing
System, the current task is not set nondis
patchable in the event of a solid storage
failure. Instead, the Storage Reconfigura-

Section 2: Interruption Handling 29

tion facility schedules a selective ABEND*
for that task, and logically removes the
failing storage from the system. If possi
ble, system operation is resumed.

If even limited system operation is not
~ossible because a critical system task is
permanently damaged, the Machine-Check
Handler issues an error message and places
the CPU in the wait state. The operator
may then load the SEREP program to format
and print diagnostic information from the
CPU logout area.

*A selective ABEND may result in unclosed
data sets.

30

For a complete description of the
Machine-Check Handler program consult the
manual afpropriate for the model being
considered.

• Machine-Check Handler for the Model 65
PLM.

• Machine-Check Handler for the Model 85
PLM.

• Machine-Check Handler for the System/
370 Models 135 and 145.

• Machine-Check Handler for the system/
370 Models 155 and 165 PLM.

Task supervision consists of allocating
a requested service for a particular task.
Task Supervision may be divided into three
categories: services directly related to a
task control block, services indirectly
related to a task control block, and ser
vices internal to the supervisor.

Services directly related to a task con
trol block (TCB) involve the creation,
nanipulation, or elimination of a TCB.
'!'hese services consist of:

• Attaching a subtask.

o Changing the dispatching priority of a
task.

• Extracting information from a task con
trol block.

• Detaching a subtask.

Services indirectly related to a task
control block consist of:

• Specifying a program interruption exit
routine.

• Synchronizing a program with one or
more events.

• Serializing the use of a resource.

• Scheduling an asynchronous exit rou
tine.

Services internal to the supervisor con
sist of:

• Testing and indicating the need for a
task switch.

• Testing the validity of user-supplied
addresses.

SERVICES DIRECTLY RELATED TO A TASK CONTROL
BLOCK

The attaching of a subtask, requested
via the ATTACH macro instruction, consists
of the creation of a TCB to represent th~
subtask, the placing of control information
in the new TCE, the allocation of main
storage to the subtask, the placing of the
new TeB on two TCB queues, and the sched
Uling of linkage to contents supervision to
obtain the program to be first executed for
the new task. When the new TCB is highest
priority among the ready TCBs, the speci
fied program is given control.

SECTION 3: TASK SUPERVISION

The caller may request, via the CHAP
macro instruction, that the dispatching
~riority of its own TCB or of one of its
subtask TCBs be changed. The dispatching
priority determines the order in which the
supervisor's Dispatcher places into execu
tion routines for competing tasks. The
CHAP routine computes a new dispatching
priority, tests the legality of the result,
~laces a dispatching priority value in the
specified TCE, queues the TCB to a new
position in the TCB queue, and tests wheth
er the current routine of the priority
altered TCB should receive control in place
of the caller.

Specified information may be extracted
from a particular TCB. The TCB is the cal
ler's or one of its subtask TeBs. The con
trol information, obtained via the Extract
routine, is placed in a table whose address
is provided as an operand of the EXTRACT
macro instruction.

The detaching of a subtask TCB from its
parent TCB's subtask queue is the final
step of normal or abnormal termination of
the subtask. The Detach routine also frees
storage areas belonging to the subtask.
The storage areas include the subtask TCB
itself and any associated problem-program
register save area.

ATTACHING A SUBTASK

A user or system routine issues an
ATTACH macro instruction to cause the
supervisor to begin the execution of a spe
cified program as a subtask of the caller's
task. As a subtask, the specified program,
and other programs later invoked via LINK
and XCTL macro instructions, can compete
for CPU time and can use resources already
allocated to the caller's task. The ATTACH
macro instruction, when executed as a
macro-expansion, causes an SVC interrup
tion. The interruption handling routines
branch to the Attach SVC routine to perform
the requested service.

The Attach routine performs the follow
ing main functions:

• Obtains storage space for a new TCB.

• Places in the new TCB information
needed to control the subtask.

• Allocates to the subtask subpools of
main storage belonging to its parent
task.

Section 3: Task Supervision 31

" Places the address of the new TeB on
two lists:

- the subtasK queue of its parent task.
- the TCB queue used by the Dispatcher.

• Schedules linkage to contents supervl
sion to locate the first program to be
executed for tne new subtask, fetch the
program if necessary, and scheJule its
execution.

While performing the main functions, the
Attach routine also performs certain minor
functions:

• If the ATTACH macro instruction .con
tains the ETXR operand, storage space
is obtained f or one or two control
blocks (IQE, IRE) to be used for the
scheduling and controlling of an end
of-task exit routine.

• Places control information in these
control blocks.

• Decides whether the parent task or the
new subtask will receive control next
from the Dispatcher. In a Model 65
Multiprocessing System, the new subtask
may receive control on either cpu.

The TCB tnat is created will be initial
ized by the Attach routine to contain sta
tus information and list origins for queues
needed by program being executed for the
subtask. For example, the TCB will contain
a pointer to the top RB on the RB queue,
representing the currently executing pro
gram for this TCB. (See Section 12, "Con
trol Blocks and Tables," for a detailed
description of the TCB fields.)

Obtaining storage Space

The Attach routine first tests the
recursion bit in the TCBNSTAE field. If
the recursion bit is on, an ATTACH macro
lnstruction has been issued in tne Specify
Task Abnormal Exit (STAE) exit routine.
This is an invalid action, and a four is
placed in register 15 to indicate that the
ATTACH request has not been serviced. The
Attach routine exits by returning control
to the Dispatcher.

If the ATTACB was not issued by the STAE
exit routine, the Attach routine next
determines the amount of storage needed for
the new task.

The storage rr,ust include space for the
new TCB, and optionally space for one or
two control blocks used to schedule and
control an end-of-task exit routine for the
subtask. The control blocks are an inter
ruption request block (IRB), used to con
trol the execution of the exit routine, and

32

an interruption queue element (IQ'E), which
helps schedule the execution of the rou
tine. (See the section "Scheduling User
Exit Routines.")

The amount of storage space that the
Attacn routine must allocate depends on two
factors: whether the ETXR (end-of-task
exit request) operand has been specified in
the AT7ACH macro instruction, and whether
an interruption request block (IRB) already
exists for the specified exit routine. If
the ETXR operand is not specified, the
Attach routine needs space only for a new
TCB. For this purpose it issues a GE'l'MAIN
macro instruction for 224 bytes from sub
~ool 253, system queue area. If the ETXR
operand has been specified and an interrup
tion request block (IRB) already exits for
the exit routine, space for a TCB and for
an interruption queue element (IQE) -- a
total of 240 bytes -- is similarly obtained
from subpool 253. But if the ETXR o~erand
has been specified, and an IRB does not
already exist for the desired exit routine,
the Attach routine obtains space for an
IRB, a TCB, and an IQE. It does this by
issuing a eIRB (Ccnstruct IRB) macro
instruction with the WKARElI.=30 I?arameter,
which requests the eIRE routine to obtain a
work area of 30 doublewords in addition to
space for an IRB. The additional space is
used for the TCB and the IQE. The CIRB
routine is also called stage one of the
exit effector (refer to "Scheduling User
Exit Routines.")

The Attach routine determines in the
following manner whether an interruption
request block (IRB) already exists, and
therefore whether it should, via the CIRB
routine, create a new IRB. (Refer to
Figure 3-1.) The Attach routine searches
the subtask queue belonging to the caller's
TCB, looking for a subtask TCB which
indirectly points to the same end-of-task
exit address as that specified in the cal
ler's ATTACH macro instruction. A sub
task's exit-routine address is determined
indirectly via the TCBIQE field of the sub
task's TCB. The TCBIQE field points to an
interruption queue element (IQE), if one
has been created for the subtask. If the
TCBIQE field is zero, this subtask has no
IQE, and thus no end-of-task exit routine
has been requested for the subtask. The
next subtask TCB on the subtask queue is
then examined. If a subtask's TCBIQE field
is not zero, it points to an IQE, which
points to an IRE, which points to an end
of-task exit routine for the sUbtask. If
the exit-routine address in the subtask's
IRB is equal to the end-of-task exit
address specified in the caller's ATTACH
macro instruction, an IRB for the desired
exit routine already exists. In this case
the Attach routine need not create a new
IRB.

Subtask Queue: TCB1s Belonging to Subtasks of the Callerls Task

JOE

End-of-Task
Exit Routine

Figure 3-1. Queue Relationships among a
TCB, IQE, IRB, and End-Of
Task Exit Routine

If the Attach routine finds that an IRB
does not already exist for the specifiea
exit routine, it issues a CIRB macro
instruction to cause a branch to the CIRE.
(Construct IRE) routine. This routine
obtains space for an IRB, initializes the
IRB, and obtains a register save area for
the end-of-task exit. routine. Space for
the new subtask's TCB and for the interrap
tion queue element (IQE) is obtained as an
extended save area belonging to the IRB.
After control is returned to the Attach
routine, it reduces the size of the IRB and
uses the extended save area to build the
TCB and the IQE.

Initializing the IQE, IRB, and TCB

The Attach routine initializes the newly
created subtask TeB by first clearing all
areas except the register save area, then
placing needed information in the TCB. If
the ETXR operand was included in the call
er's ATTACH macro instruction, the address
of the IQE is placed in the TCB (TCBIQE
field), and a flag is set to indicate that
an end-of-task exit routine has been
requested.

If storage for an IQE was obtained, the
Attach routine initializes the fields of
IQE as shown in Figure 3-2.

Besides initializing the IQE, the Attach
routine increases by a count of one a "use"
count (RBUSE). This use COllilt indicates
the number of subtasks that use the same
IRB to schedule and control an end-of-task
exit routine. The supervisor Exit routine
decreases the use count by a count of one
each time that the end-of-task exit routine
completes its execution. When the use
count becomes zero, the supervisor Exit
routine frees the storage space occupied by
the IRB.

The Attach routine then issues a GETMAIN
macro instruction to obtain a 32-byte dummy
PRB in subpool 255 (SQA). This PRB is
queued to the RB queue of the newly crea ted
TCB. Thus, should any task in the region
abnormally terminate, including this task
if Attach processing encounters an error,
ABEND will not find a TCB without an RB on
its queue.

Note: I f the ATTACH rr.acro instruction was
issued with the STAI operand, a subtask
ABEl~D intercept (STAn SCB is created, and
any STAr SCBs queued to the TCB of the
requesting program are propagated to the
new subtask TCB.

r------------T------------------------------------T-------------------------------------,
I Field Name I Type of Information in Field I Initialization of Field I
t------------t------------------------------------t-------------------------------------~
I IQELINK I Address of next IQE in a queue of I Zero I
I I IQE's I I
t------------+------------------------------------+-------------------------------------~
I IQEPARAM I Parameter to be passed to the end- I Address of newly created subtask TCBI
I I of-task exit routine I I
t------------t------------------------------------t-------------------------------------~
I IQEIRB I Address of the IRB I Address of the IRE just created, or I
I I I the address of the IRB found during I
I I I the search of the subtask queue I
~------------+------------------------------------+-------------------------------------~
I IQETCB I Address of lCB to which the IRB is I Address of caller's TCB I
I I to be queued I I L ____________ i ____________________________________ i _____________________________________ J

Figure 3-2. Initialization of the Interruption Queue Element

Section 3: Task Supervision 33

propagating Fields from the TCB of the
Attaching Program

After initializing the newly created
subtask TCB, the Attach routine transfers
(propagates) from the caller's TCB to the
new TeB certain fields that are the same
inall TCBs within a job step. These fields
include a pointer to the partition queue
element (TCBPQE) (s ee Section 5, "J.Ylain
Storage supervision"), a pointer to the
task I/O table (TCBTIO), and a pointer to
the DCB for the job library (TCBJLB). The
Attach routine does not propagate the JOB
LIB field if TASKLIB=dcb address was speci
fied. Instead, the TASKLIB dcb address is
placed in the JOBLIB field. If the System
Management Facility is included in the sys
tem, a pointer to the timing control table
(TCBTCT) is also propagated.

Placing Parameter Information in the Fields
of the Subtask TCB

After unchanged information from the
caller's (attaching) TCB has been trans
ferred to the new subtask TCB, information
from the input parameters of the ATTACH
macro instruction is placed in the subtask
TCB. This information includes the super
visor mode bit, if needed; the address of
an event control block (ECB), if specified;
the limit and dispatching priorities for
the new subtask; the "nonrolloutable count"
field (TCBNROC); the TCBFRA flag; the
initialization of the TCBJSTCB field; the
initialization of the TCBJPQ field; the
initialization of the protect key field
(TCBPKF), if needed; the initialization of
the save area pointer (TCBFSA), if needed;
the initialization of the pointer to the
SPQE chain (TCBMSS), if needed; and the
address of a job step control block (JSCB).

If the ROLL parameter is ROLL=(NO,X),
the Attach routine initializes to '01' the
TCBNROC field. This marks the job step not
eligible to be rolled out. If, however,
the parameter is ROLL=(YES,X), the Attach
routine initializes the TCBNROC field to
'00'. This marks the job step eligible to
be rolled out. (The 'l'CBNROC field is later
altered by the ENQ and DEQ routines to make
the job step ineligible to be rolled out
while one of its tasks is enqueued for a
system resource.) If the parameter is
ROLL=(X,Y~S), the Attach routine sets the
TCBFRA flag in the new TCE to indicate that
the job step is able to cause rollout. If,
however, the parameter is ROLL=(X,NO), the
TCBFRA flag is cleared to indicate that the
job step cannot cause rollout. If the ROLL
parameter is not specified, both the
TCBNROC field and the TCBFRA flag are
cleared to indicate that the new job step
can be rolled out but cannot cause rollout.
(The TCBFRA flag is later tested by the
GET~~IN routine, if the new job step

34

requests more storage space than can be
allocated from its region and if the roll
out feature is in the system. The TCBNROC
field is later tested by the rollout/rollin
module, during an attempted rollout, to
determine if the new job step is eligible
to be rolled out.)

If thE event control block (ECB) parame
ter has been specified, the Attach routine
checks the validity of the ECB address, and
if valid, places the ECB address in the
TCBECB field of the new TCB. If the ECb
address is invalid -- does not specify a
fullword boundary or violates storage pro
tection -- the Attach routine initializes
the new TCB for the attached task, places
it on the TCB ready queue, and branches to
ABTERM to schedule abnormal termination of
the partially attached task. Upon return
from ABTERM, the Attach routine issues an
SVC 13 instruction to abnormally terminate
the requesting task with a completion code
of X' 42A. '

The Attach routine next determines the
limit and dispatching priorities from input
parameters and stores the priorities in the
new TCB. The limit priority of the subtask
is set according to the input parameter but
not higher than the limit priority of the
caller's task. The dispatching priority of
the subtask is similarly set according to
the input parameter but not higher than its
own limit priority. If the priority param
eters have not been specified by the call
er, the Attach routine sets the subtask
priorities equal to the limit and dispatch
ing priorities of the caller's task. If
the ATTACH macro instruction was issued by
a time sharing task, the real limit and
dispatching priorities and the time sharing
limit and dispatching priorities are propa
gated to their respective fields in the
subtask TCB. The time sharing priorities
will be adjusted by the input parameters,
if any, before the resulting values are
stored in the subtask TCB.

Special processing for Time Slicing

When the time-slicing feature is
included in the system, the ATTACH routine
tests whether the new TCB represents a
time-sliced task. ATTACH locates the first
time-slice control element (TSCE) through a
pointer in the CVT, then compares the dis
patching priority of the new task with that
of each TSCE until a match is found or the
last TSCE is checked. If no match is
found, the new task is not a member of a
time-sliced group and further time-slice
processing is bypassed.

If a match is found, the new task is a
member of a time-sliced group. The ATTACH
routine sets the time-slice bit (TCBFTS) in
the TCB and updates the TSCE pointers in

the matched TSCE. If the new TCB repre
sents the only task in the group, its
address will be placed in the nFirst",
"Last", and "Next to be Dispatchedn fields
of the TSCE. If the new task is not the
only one in the group, its TCB is lowest
onthe TCB queue; the ATTACH routine places
the address of the TCB in the Last field of
the TSCE.

Allocating Subpools of Main Storage
to the Subtask

The Attach routine allocates subpools of
main storage to the attached TCB's programs
according to parameters passed in the
supervisor parameter list. These parame
ters were specified in the ATTACH macro
instruction. The "give" parameter causes
the allocation of specified subpools of
main storage to the programs of the
attached subtask for their exclusive use.
The "share" parameter permits the programs
of the subtask and the programs of the
parent task to share access to the same
subpools of main storage. The Attach rou
tine manipulates ownership of the subpools
by manipulating special Main Storage Super
visor queue elements, each representing a
subpool of main storage. Each subpool
queue element, originally queued to the
parent TCB, rroay be either dequeued and
placed on the subtask TCB's subpool queue
("give" parameter specified), or placed on
the subtask TCB's subpool queue as dupli
cate queue elements ("share" parameter
specified) •

For each subpool specified in a "give"
parameter, the Attach routine searches the
subpool queue belonging to the caller's
task. The queue starts at the address con
tained in the TCBMSS field of the call
er's TCB. If a subpool queue element
(SPQE) for the specified subpool is found
on the queue, it is dequeued and placed on
the new subtask's subpool queue. If the
subpool queue element is not found, a new
element for the subpool is created, placed
on the subpool queue belonging to the sub
task, and flagged as an "owned" subpool.

For ~ach subpool specified in a nsharen
parameter, the Attach routine similarly
searches the subpool queue chained from the
parent, or caller's, TCB. In this case,
however, if the subpool queue element is
found, a new subpool queue element for the
same subpool is created and placed on the
subtask's subpool queue. The elements
representing the same subpool (that is, the
original queue element and its duplicate)
are both flagged as nshared n subpools. But
if an original subpool queue element is not
found on the parent task's subpool queue,
two queue elements are created. One is
flagged "ownedn and nshared" and is queued
to the parent task's subpool queue. The

other element is flagged nsharedn and is
queued to the subtask's subpool queue.

There are two errors associated with the
allocation of main storaqe to an attached
subtask. Either error, when detected,
causes the Attach routine to abnormally
terminate the caller's task by issuing an
ABEND macro instruction and specifying an
error code. One error consists of the spe
cification of the "given or nsharen parame
ter with a subpool number greater than 127,
the maximum number for a subpool belonging
to a user program. Such an error produces
an abnormal termination of the caller's
task and an error code of 22A. The other
error occurs if the "given parameter speci
fies a subpool whose queue element, when
found, contains both the nowned n and
"sharedn attributes. In this case, the
subpool cannot be "given" to the subtask.
The resulting abnormal termination of the
caller's task includes the error code 12A.

A special subpool of main storage, sub
pool zero, is processed separately. If
subpool zero is specified with the ngive n
or "share" parameters, the specification is
ignored.

The Attach routine tests the SZERO pa
rameter to determine whether subpool zero
is to be shared. If not, the Attach rou
tine has completed main storage allocation
for the subtask and proceeds to its next
function. However, if subpool zero is to
be shared, the Attach routine searches the
subpool queue of the parent task and
creates the needed subpool queue elements,
which are then chained from the parent and/
or subtask TCB.

Programs operating with a PSW protect
key of zero may specify whether the job
step pointer is to be propagated and wheth
er the job pack queue is to be given to the
subtask. The Attach routine tests the
input parameters to determine the follow
ing: if the TCBJSTCB pointer should be
copied from the task's TCB or made to point
to the attached TCB; if the TCBJSCB field
should be copied from the requesting task's
TCE or made to point to a new JSCB whose
address is given as input; and if the job
fack queue is to be given to the subtask.

If the program operating with a PSW pro
tect key of zero requests that the job pack
queue be given to the subtask, the job pack
queue cannot contain CDEs with use counts
greater than zero -- for these represent
active programs. If such CDEs are found,
the Attach routine abnormally terminates
the caller'S task by issuing an ABEND macro
instruction with a n32An error code.
Otherwise, the TCBJPQ field is copied from
the attaching task's TCB to the attached
task's TCB, and then zeroed in the attach-

Section 3: Task Supervision 35

ing task's TCB. Also, the chain of SPQEs
on the attaching task's TCE is searched for
subpools 251 and 252. If an SPQE is found
for either or both of these subpools, it is
dequeued from the attaching task's TCB and
queued on the attached task's TCB.

Placing the Subtask TCB on Its Queues

The new TCB for the attached subtask is
placed by the Attach routine on two TCB
queues: the subtask queue for the parent
TCB, and the main TCB queue. The subtask
queue indicates the order in which TCBs
were created, and is used by the supervisor
ABEND routine duri~g abnormal termination
to establish the order in which a job
step's resources are freed. The main TCB
queue, or siffiply the TCB queue, is the
queue of TCBs arranged in order of priori
ty. This queue is manipulated by the CHAP
SVC routine when it changes the dispatching
priority of a TCB. The TCB queue is also
used by the supervisor's Dispatcher routine
when it tests which program should next be
dispatched. The Dispatcher sometimes scans
down this queue to determine the highest
priority ready TCB. Both queues, the sub
task queue for the parent TCB, and the TCB
queue, consist of the same physical TCBs.
The queues are created and manipulated by
means of different sets of pointers within
each TCB. (Refer to Section 12, "Control
Blocks and Tables," to note the meaning of
each pointer within the TCB).

If the ATTACH macro instruction was
issued by a time sharing task, the new sub
task TCB is placed on the queue using the
time sharing dispatching priority. The
Attach routine uses the time sharing job
block extension (TJBX) to locate the user's
subgroup on the queue. The Attach routine
also determines whether there are enough
entries in the quiesce parameter list for
all active TCBs. If not, the current QPL
is freed and a GETMAIN macro instruction is
issued to obtain area for a new QPL that is
twice as large as the QPL that was freed.

Indicating to the Dispatcher the Need for a
Task Switch

The Attach routine passes control to the
Task Switch routine to determine if the
parent TCB's current program or the subtask
TCB's current program will receive control
when the Dispatcher gives control to a main
line program. The Task Switch routine
examines the dispatching priorities of the
two TeBS, parent and subtask, and stores
the address of the higher priority TCB in a
"new" TCB pOinter (IEATCBP) to be later
tested by the Dispatcher, when it receives
control during the exiting procedure.

In a Model 65 Multiprocessing System,
the parent and subtask TCBs may both have

36

higher dispatching priorities than the cur
rent TCB on one CPU, so the Task Switching
routine examines the dispatching priorities
of three TCBs: the subtask TeB and the two
"new" TCBs. If the "new" TCB pointer of
either CPU contains zero. the Task Switch
routine sets the "new" pointer of the CPU
on which the task switch must be made to
zero so the Dispatcher will search the TCB
queue to determine the highest priority
tasks.

Preparation for the Dispatching of the
Caller and the Fetching of the Specified
Program

To prepare for return of control to the
caller, the Attach routine moves the call
er's register contents, saved in the SVRB
by the SVC Second-Level Interruption Han
dler, to the save area of the caller's TCB.
It also stores the address of the new sub
task TCB in the register 1 save area loca
tion (TCBGRS) in the caller's TCB. These
values will be loaded into the general
registers by the Dispatcher when it next
returns control to the caller, or attaching
program. When the attaching program is
redispatched, it regains control at the
instruction immediately after the ATTACH
macro instruction. The address of the new
subtask TCB in register 1 is the return pa
rameter from the Attach routine.

In order to obtain execution of the pro
gram specified in the ATTACH macro instruc
tion, the Attach routine must obtain the
assistance of one of the functions of con
tents supervision, called the Link fUnc
tion. The Link function will locate the
desired program in main storage or in one
of the auxiliary storage libraries, fetch
the program to main storage, and cause
linkage to the program for the newly
crea ted subtask.

The Attach routine determines the input
register values for Contents Supervision
and stores them in the new TCB. It also
moves the entry point parameter -- either
an entry point name or a partitioned data
set directory entry -- from the input pa
rameter list to the SVRB. The purpose is
to prepare the SVRB for the control of Con
tents SuperviSion when it has been dis
patched under the control of the new TCB.
Another purpose of moving the entry point
parameter is to permit the attaching pro
gram to reuse the parameter-list area if
the program is redispatched before the Link
function is complete.

The Attach routine dequeues its SVRB
from the caller's TCB, queues it as the
current RB for the new subtask, and
releases (via FREEMAIN) the dummy PRB pre
viously queued to the TCB. If a save area
is not to be provided for the subtask. the

Attach routine alters the old PSW in the
SVRB so that it points to the special entry
point in the Link function (IEAQCS01). The
Link function is thus made the first rou
tine to be executed for the newly created
subtask when it becomes active. If a save
area is to be provided for the subtask, the
Attach routine alters the old PSW in the
SVRB so that it points to a return pOint in
the Attach routine where a save area is
obtained when the newly created subtask
becomes active.

By manipulating the register save areas,
the Attach routine has established environ
ments for the two TCBs. Also, the TCB and
RB queues have been modified so that both
TCBs are ready to be dispatched. The
Attach routine branches directly to the
Dispatcher to give control to the current
routine of the higher priority of the two
tasks, the attaching task or its newly
created subtask. Note that the Attach rou
tine branches directly to the Dispatcher,
without the typical intermediate step of
the supervisor Exit routine. The reason is
that the Attach routine has already per
formed or made unnecessary the functions
which the supervisor Exit routine normally
performs. For example, the Exit routine
normally removes the current RB from the
TCB of the exiting program. Since the
Attach routine has already removed its 3VRB
from the caller's TCB, it cannot branch to
the Exit routine.

When a save area is to be provided, the
Attach routine goes to the Dispatcher only
once; that is, before the subtask's Attach
routine gets the save area. Then, instead
of delaying the task by going to the Dis
patcher again, the Attach routine branches
directly to the special entry point in the
Link function (IEAQCS01).

CHANGING THE PRIORITY OF A TASK

The CHAP SVC routine permits a problem
or system program to alter the dispatching
priority of its own TCB or the dispatching
priority of one of its subtask TCBs. The
subtask TCB must belong to the issuer's
TCB; that is, be attached by a routine
belonging to the caller's task, and there
fore reside on its subtask queue. A pro
gram issuing the CHAP macro instruction may
change the dispatching priority of a speci
fied TCB to any value between zero and the
limit priority of the issuer's TCB. The
distinction beb]een dispatching and limit
priorities is as follows. Although both
priorities are specified as parameters of
the ATTACH macro instruction, they serve
different functions. The dispatching
priority determines the appropriate posi
tion of a 'l'CB in the TCB queue, and
indirectly the routine to be next placed in

execution ctfter an interruption. The Dis
patchex" places in execution the current
program belonging to the ready TCB of high
est dispatching priority. In contrast, the
limit priority of a TeB is used by the CHAP
SVC routine to determine the maximum value
to which it may L~crease the dispatching
priority of the TCB.

The CHAP routine can receive control as
a type-l SVC routine from the SVC FLIH, or
serve as a subroutine via a branch entry
from a supervisor routine. If it receives
control through the branch entry, or if the
caller is a system routine (protection
key=O), the CHAP routine bypasses the usual
validity checking of the input parameters.
The assumption in this case is that the
input parameters are valid and will not
cause a program check when they are used by
the CHAP routine.

After the CHAP routine has determined
the type of requestor, it checks the input
parameter for zero. If it is zero, the
caller's TCB is the TCB whose dispatching
priority is to be changed, and there is no
parameter whose validity need be checked.
But if the input parameter is not zero, it
is the address of a word in main storage
pointing to the TCB whose priority is to be
changed. In this case, the CHAP routine
branches to the validity check subroutine
IEAOVLOl used by many SVC routines to test
an input parameter. It determines if the
parameter is a valid address and does not
violate storage protection. If the address
is not valid, the CHAP routine sets up an
error code (22C), and branches to the
ABTERM routine of the sUpervisor to sched
'].le the abnormal termination of the call
task. If the address is valid, the CHAP
routine searches the subtask queue of the
caller'S task, comparing subtask TCB
addresses with the address of the TCE spe
cified in the parameter list. This ensures
that the specified TCB is for a subtask of
the calling task. If the specified TCB is
not for a subtask of the caller, or if the
TCB is for a subtask of the calling task
but the subtask has completed processing.
the CHAP routine sets an error code of
X'12C' and branches to ABTERl!! to schedule
abnormal termination of the calling task.

If the time-slicing feature is included
in the system, the CHAP routine determines
whether the specified TCB represents a
time-sliced task by testing the time-slice
bit (TCBFTS) in the TCB. If the bit is
set, the task is time-sliced; the CHAP rou
tine then resets the bit, and finds the
time-slice control element (TSCE) that
corresponds to the task's dispatching
priority. If the address of the TCB is not
the same as the First, Last, or Next fields
in the TSCE, the new dispatching priority
is determined; no change is required in the

Section 3: Task Supervision 37

TSCE. (See Figure 3-3 for TSCE pointers.)
If the address of the specified TCE appears
as one of the above fields, the CHAP rou
tine modifies the pOinters as follows:

Field Containing
TeE Address
First, Last,

and Next

First but not
Last

Last and Next
(not First)

Last but not
Next

TSCE

FIRST

Meaning and CHAP
Processing
Specified task is the
only one in the group.
CHAP sets all fields to
zero to indicate the
group is now empty.

Specified task is not
the only one in the
group. CHAP places
address of next lower
task on TCE queue into
First.

Specified task is last
in group and next to be
dispatched. CHAP places
address from First into
Next and address of next
higher TCE on TCE queue
into Last.

CHAP places address of
next higher TCE on TCE
queue into Last.

TCB QUEUE

r---i--
:
I
I

LAST I-- I I

--,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
NEXT

I

~I
I Length of
I I Time-Slice

I
TSCE pointers after first I time-sliced task has completed
its time-slice interval. I

I J
I
I

TIME-SLICE I t
GROUP L___ _ __ -1

Figure 3-3. TSCE Pointers

38

If the issuer is a time sharing task,
the time sharing dispatching and limit
priorities in the TCEs are used instead of
the real dispatching and limit priorities.
Only tasks within a user's subgroup, as
defined ty the time sharing job block
extension, can be affected by CHAP. The
changed TCE is placed on the TCE queue
immediately preceding the TCB with the next
lower dispatching priority.

The remainder of the CHAP routine con
tains several tests to determine the extent
of the priority change that can be per
mitted. The first test checks whether the
result of the change in dispatching priori
ty is zero or negative. In either case the
CHAP routine sets the dispatching priority
field (TCBDSP) of the specified TCB to
zero. (A negative dispatching priority is
meaningless and is treated as a request for
a change to zero priority.)

The remaining tests will be discussed as
separate cases, as follows:

Case 1: The result of the requested change
would be a dispatching priority greater
than zero, but equal to or less than the
TeE. The CHAP routine algebraically adds
the desired change to the original dis
patching priority of the specified TCE and
places the result in the dispatching
priority field (TCBDSP) of the TCE. The
request is thus satisfied.

Note: The rema~n~ng cases consider condi
tions in which the result of the change is
greater than the limit priority (TCELMP) of
the specified TCE.

Case 2: The specified TCE represents a
subtask of the issuer's TeE, and the
desired change would make the dispatching
priority of the subtask TCE greater than
the limit priority of its parent (issuer's)
TCE. In this case, the CHAP routine cannot
quite satisfy the request. It sets both
the dispatching priority (TCEDSP) and the
limit priority (TCELMP) of the specified
TCE equal to the limit priority of the
parent TCE. The request is thus satisfied
within the limits of the system.

Case 3: The specified TCE represents a
subtask of the issuer's TCE, and the
desired change would not make the dispatch
ing priority of the subtask TCE greater
than the limit priority of its parent TeB.
In this case the CHAP routine sets both the
dispatching priority and limit priority of
the specified TCB to the value produced by
the change. This time the request can be
completely satisfied without any compro
mises.

Case ~: The specified TCB is the issuer's
TCB. In thi~ case, since the result of the
desired change would be a dispatching
priority that exceeds the limit priority of
the issuer's TCB, the request cannot be
completely satisfied. The CHAP routine
sets the dis~atching priority of the
issuer's TCB equal to its limit priority.

If the time-slicing feature is included
in the system, the CHAP routine tests
whether the new dispatching priority is
time-sliced. If there is a TSCE for the
~riority, the CHAP routine sets the time
slice bit (TCBFTS) in the TCB. The CHAP
routine tests the Next field in the TSCEi
if it contains zero, the specified task is
the only member of the time-sliced group,
and the CHAP routine places its TCB address
in toe First, Next, and Last fields in the
TSCE. Otherwise, the new TCB address is
stored in the last field.

Having changed the dispatching priority
of the TCB, the CHAP routine must next
realign the TCB queue so that it is ordered
from high to low dispatching priority.
This queue is sometimes used by the Dis
patcher during the exiting procedure to
determine the highest priority ready task
whose current routine it should dispatch.

To reorder the TCI:! queue, the CH1IP rou
tine searches the TCB queue for two TCBs.
One is tne specified TCB whose dispatching
priority it has just changedi the other is
the first TCB that has a lower dispatching
priori ty than the nE'.'l priority of the spe
cified TCB. The CHAP routine begins its
sea.rch at the highest priority TeB, located
at address IEAHEAD. [See Figure 3-4.) The
address of IEAHEAD is contained in a field
(CVTHEAD) of the communications vector
table. This table, also called the CVT,
contains pOinters to major control blocks
used by the control program.

Note on Figure 3-4 that the pointer
('rCBTCB) in each TeB points to the next
lower priority TeB on the queue. (Refer to
the TCB description in Section 12, "Control
Blocks and Tables," for the positions of
the permanent system TCBs on the TCB
queue.)

When the CHAP routine finds the two TCBs
(the specified TCB and the next lower
priority TCB) it rearranges pointers so
that the specified TCB is removed from its
current position on the queue and rein
serted just above the next lower priority
TCB. If other 'l'CBs on the queue have a
priority equal to the new dispatching
priority of the specified TCB, it is placed
below them on the queue.

I

Location CVTH EAD
in Communications
Vector Table

Pointer to
Addr IEAHEAD

TCB A (Addr I EAHEAD)

r-- TCBTCB

DP = 10

lTCBC
TCBTCB

DP = 8

CTCBD
TCBTCB

DP = 2

lTCBE
TCBTCB
(Contains Zero)

DP = I

TCB B

TCBTCB

DP = 8

Legend: DP = dispatching priority value

)

D
D

~: Each TCBTCB field points to the TCB of next lower dispatching priority.

Figure 3-4. The Task Control Block Queue

During its search of the TCB queue, the
CHAP routine branches to the Task Switching
routine to determine if there is a ready
TCB whose dispatching priority is now high
er than that of the caller's TCB. This
situation can occur in two different ways.
The caller may have chanqed one of its sub
tasks to a priority higher than that of its
own tasks, or the caller may have changed
its own tasks to a lower priority. T"hen
the TCB queue is reordered, a TCB previous
ly of lower priority than the caller's now
exceeds the caller's priority. In a multi
processing system, there also may be a
ready TCB whose dispatching priority is
higher than that of the current task on the
second CPU.

If the Task Switching routine finds a
ready TCB with a higher dispatching priori
ty, it indicates to the Dispatcher the need
for a task switch. The indication, also
performeo by other supervisor routines,
consists of storing the address of the
higher priority TCB in a one-word nnew n TCB
pointer at address lEATCBP. During the

Section 3: Task Supervision 39

exiting procedure that follows the execu
tion of an SVC routine, the Dispatcner
inspects the "new" TCB pOinter to determine
if it should redispatch the interrupted
routine or the current routine belonging to
another ready task.

After the CHAP routine has realigned the
position of the specified TCB in the TCB
queue, it returns control either to the
caller or the current routine of another
rtady task. If the CHAP routine was
entered via a branch from a supervisor rou
tine, it returns control directly to the
caller, deferring any indicated task switch
tu the next time the Dispatcher is entered.
But if the CHAP routine was entered from
the SVC FLIH, via an SVC interruption, it
branches to the Type-l Exit routine. The
Type-l Exit rout:ine tests whether the CHAP
routine has indicated the need for a task
switch. If it has, the Type-l Exit routine
branches to the Dispatcher to give control
to the current routine of the higher
priority task. But if the need for a task
switch has not been indicated, the Type-l
Exit routine returns control directly to
the caller.

EXTRACTING INFORMATION FROM A TASK CONTROL
BLOCK

The Extract SVC routine permits the
macro-issuing or calling program to obtain
the information contained in one to ten
fields of a specified TCB and its subsi
diary control blocks. The specified TCB
must be either the TCB of the calling pro
gram or the TCB of one of the subtasks of
the calling program. The information may
be extracted from any combination of the
ten fields or from all ten of the fields.
When extracted, the information is placed
in a user-specified list. The fields from
wnich information may te extracted and the
lnformation contained in each field are
descr·ibed in the Supervisor Services and
Macro Instructions, under the heading of
"Extract. n

Besides extracting information from a
specified TCB or a subsidiary control
block, the Extract routine performs several
checks to determine if the input parameters
passed by a problem program are valid.
Tnis validity checking prevents the extrac
tion of meaningless data, or the later
occurrence of a program interruption whose
cause may be difficult to interpret. Input
parameters, if incorrectly specified by the
using program, cause the routine to gener
ate an error code and cause an abnormal
termination of the offending task.

Like certain other type-l SVC routines,
the Extract routine may be entered either

40

from the SVC FLIH during an SVC interrup
tion, or via a branch from a Supervisor
routine. The routine first tests the type
of entry and sets indicators accordingly.
It also determines whether information is
to be extracted from the current TCB (call
er's TCD) or from the TCB of one of its
subtasks. If information is to be
extracted from the current TCB, its address
is set up, and the following test and pre
cautionary measure for a subtask is
bypassed.

If the specified TCB represents a sub
task of the caller's TCB, the Extract rou
tine prevents a possible program interrup
tion by forcing the TCB pointer (second
word. of the input "9arametel.- list) to a ful
Iword boundary. The routine then scans the
subtask queue of the caller's TCB. Its
purpose is to determine if the specified
TCB address truly represents a subtask of
the caller's 'rCB. If no match of TCB
addresses can be obtained, the caller must
have incorrectly specified the TCB address.
Since useful information cannot be obtained
from the specified TCB, the Extract routine
schedules an abnormal termination similar
to that previously discussed. An error
code (328) defining ~~e incorrect address
specification is passed to the ABTERM
routine.

The Extract routine next determines
whether it should check the validity of the
input parameters supplied by the calling
program. If the caller is a system rou
tine, as indicated by a protection key of
zero in the SVC old PSW, the assumption is
that the caller has checked its parameters
before passing them to the Extract routine.
In this case no linkage to the Validity
Check routine occurs, and the Extract rou
tine immediately obtains the desired infor
uation. The validity Check routine is used
by SVC routines to check the validity of
input parameters passed to the routines by
a user program. If the caller is not a
system routine, its input parameters must
be checked. Accordingly, the Extract rou
tine passes control to the supervisor's Va
lilHty Check routine to perform the needed
checking.

The Validity Check routine performs
three tests to determine the correctness of
the extract list address. The extract list
is the user-specified table in which the
Extract routine places the requested TCB
information. One test determines if the
list address lies on a fullword boundary,
as required. Another test checks whether
the list address lies within the boundaries
of main storage. The remaining test deter
mines if the list address specifies a
storage area whose storage protection key
matches the protection key in the caller's
TCB. If any of these tests fail, indica-

ting that the calling program has incor
rectly specified the extract list address,
the Extract routine branches to the ABTERM
routine, passing to it an error code (128)
indicating the type of incorrect specifica
tion. The ABTERM routine will schedule
linkage to the ABEND routine, which will
abnormally terminate the caller's task.

The validity checking detects an invalid
list address that could cause a program
check if it were used by the Extract rou
tine. More important, the validity check
ing detects whether the caller has passed a
list address pointing to a storage area
which is not owned by the caller. There
fore, Extract can avoid storing into loca
tions specified by the list. If the
Extract routine used the list address
without validity checking, it could store
anywhere in storage, destroying data or
programs belonging to another job step or
to the supervisor. It could do this, since
it operates with a storage protection key
of zero. Note that validity checking does
not prevent the caller from passing an
invalid list address which causes the
Extract routine to destroy the caller's
data or program or the data or programs of
another task in the caller's job step.

If input parameters have been specified
correctly, as indicated by the several va
lidity checks, or if validity checks have
been bypassed, normal processing of the
requested TCB information continues. The
bxtract routine tests each bit of an
extraction byte, a part of the parameter
list, which represents the FIELDS parameter
of the EXTRACT macro instruction (see
"Extract" in Supervisor Services and Macro
Instructions) • For each bit that is set,
the Extract routine places the appropriate
information from the specified TCB into the
user list. If a bit is not set, the rou
tine makes no entry in the list for the
field represented by that bit. The result
ing list is of variable length and packed
in a standard order.

Note that some of the fields that may be
requested are not directly contained in the
specified TCB. These fields are those
requested by the following parameters: GRS
(general register save area), FRS
(floating-point register save area), the

AETX (end-of-task exit routine), and COMM
(CSCB cOIT~unications list), PSB (protected
storage control block), and the TJID (TSO
terminal job identifier). For the first
two parameters the returned value is the
address of the appropriate save area. The
value is calculated from the address of the
specified TCB. The returned value points
to the save areas which are in the TCB.
For the third parameter, AETX, the returned
value (address of the exit routine) is
obtained indirectly from the TCB. The

TCBIQE field in the TCB points indirectly
to the end-of-task exit routine, via poin
ters in two other control blocks, an inter
ruption queue element (IQE) and an inter
ruption request block (IRB). The address
of the end-of-task exit routine is obtained
from the IRB. (See Figure 3-1.> For the
next two parameters, the returned values
(addresses of the communications list and
the protected storage control block) are
also obtained indirectly. The TCB points
to the JSCB, which contains the address of
the CSCB communications list and the PSB.
The TJID field contains the TSO terminal
job identifier value.

'~hen the Extract routine has placed all
the requested information in the user
specified list, it either returns control
directly to the caller, or prepares for a
return to a program by branching to the
Type-l Exit routine. The Type-l Exit rou
tine, after making certain tests, will
either return control directly to the call
er, or branch to the Dispatcher to return
control to the current routine belonging to
another TCB. If, however, entry to the
Extract routine occurred from a supervisor
routine via a branch, the Extract routine
returns control directly to the caller.

DETACHING A SUBTASK

The Detach SVC routine permits a program
being executed for a "parent" task to
detach its subtask if the subtask has been
normally or abnormally terminated. The
Detach routine checks that the address of
the subtask's TCB passed to the Detach rou
tine is valid, and that the subtask has
been terminated. It dequeues the subtask
TCB from the subtask queue of its parent
TCB and frees storage areas belonging to
the subtask, including the subtask TCB
itself. If the caller specifies an invalid
subtask TCB address, the Detach routine
abnormally terminates the caller's task.
But, if the subtask has not been normally
or abnormally terminated previously, it is
now abnormally terminated.

The Detach routine is entered from the
SVC SLIH. To determine if the caller has
passed a valid TCB pointer, the Detach rou
tine first branches to the supervisor's Va
lidity Check routine to test the supposed
subtas~ TCB address. The Validity Check
routine does not determine if the address
belongs to a TCB but only that i t ,~ill not
later cause a program check. If any valid
ity check fails, the check routine informs
the Detach routine by supplying a return
code. In this case, the Detach routine
sets up an error code (0023EOOO) and issues
an ABEND macro instruction to obtain super-

Section 3: Task Supervision 41

visor linkage to the ABEND routine to
abnormally terminate the caller's task. If
the input address is valid, the Detach rou
tine proceeds as follows.

The routine next determines if the call
er belongs to the parent task of the speci
fied subtask. It does this by searching
the subtask queue of the caller's TCB for
the specified TCB address. 'The list origin
for the parent task's subtask queue is the
TCBLTC field of the parent's TCB. If the
subtask TCB address is not found,1 the
Detach routine sets up the same error code
(0023EOOO) as that for an invalid TCB
address, and obtains linkage, via an ABEND
macro instruction, to the ABEND routine to
abnormally terminate the caller's task.
But if the specified subtask TCE address is
found in the subtask queue, processing
continues.

The Detach routine next determines if
the subtask is complete, that is, whether
the task has been terminated by either the
EOT routine or the ABEND routine. The
Detach routine makes this determination by
testing the "completion" indicator TCBFC in
the TCBFLGS field of the subtask TCE. This
indicator bit is set by the EOT routine or
by the ABEND routine. If the subtask has
not terminated, normally or abnormally,
detaching cannot occur. In this case, the
Detach routine performs processing to
abnormally terminate the subtask. (This
processing will be described later in this
discussion.) But if the subtask has been
terminated, normally or abnormally, the
Detach routine proceeds with its process
ing, as .follows.

Since the subtask is terminated, the
routine must remove the subtask TCB from
the subtask queue of the caller's TCB.
This is necessary since the ABEND or EOT
routines during a later termination of the
caller's task will try to release resources
supposedly belonging to its subtasks.

After removing the subtask TCB from its
subtask queue, t~e Detach routine frees
storage areas belonging to the subtask that
were not freed during the termination pro
cess. These storage areas include a
problem-program register save area, if the
subtask has such an area, and the space
occupied by the subtask's TCB. The save
area consists of 72 l:;ytes in subpool 250;
the TCB contains 192 bytes in subpool 253,
supervisor queue space. If the subtask has

1The subtask TCE is not found if neither an
ECB nor an ETXR was specified when the
subtask was attached, and the subtask has
been terminated, normally or abnormally.
In this case, the subtask TCB has been
purged.

42

a problem-program register save area, its
address is contained in the TCBFSA field of
its TCB. After freeing the sUbtask's
storage areas for reuse, the Detach routine
returns control to the caller.

If the specified subtask has not com
pleted processing, Detach determines if the
requester has specified STAE=YES as an
operand of thp. DETACH macro instruction.
This will allow the STAE exit routine to be
entered during subsequent ABEND processing.
If STAE=YES was specified and the subtask
is not already being terminated by ABEND,
Detach loads the error code 0033EOOO,
resets the stop/start nondispatchability
flag, and, if no secondary nondispatchabi
lity flags are set, clears the primary non
dispatchability flag. Detach branches to
ABTERM to schedule abnormal termination of
the subtask and then returns control to the
caller.

If the requester had specified STAE=NO,
or if STAE=YES was specified but the sub
task is already being terminated by ABEND,
Getach loads the error code 0013EOOO. If
the subtask is not being terminated by
ABEND, Detach resets the stop/start nondis
patchability flag and branches to ABTERM to
schedule abnormal termination of the
subtask.

The Detach routine next saves in its
SVRB the address of the subtask's event
control tlock (ECB), if one was specified
when the subtask was attached. (The ECB
address is contained in the sUbtask's
TCBECB field.) The Detach routine then
obtains four bytes of space (subpool 250)
for a new ECB in which the ABEND routine2
can post the subtask's termination. The
Detach routine initializes the new ECB to
zero and places its address in the subtask
TCB (TCBECB field).

Detach determines if an IQE is pointed
to by the subtask TCB. If so, the IQE is
freed and, if the use count in the IRB is
not greater than 1, the IRB is also freed.
If the use count is greater than 1, it is
decremented but the IRB is not freed. The
routine also clears the IQE pointer
(TCBIQE) in the subtask TCB, so that an
end-of-task exit routine (if one exists)
will not be scheduled by the EOT routine
when the subtask is terminated. (The
TCBIQE field contains an indirect pointer
to an end-of-task exit routine (ETXR), if
the caller specified the ETXR operand when
it attached the subtask.)

2The actual posting is performed for the
EOT routine, which is invoked by the ABEND
routine when the termination is complete.

The Detach routine then waits (issues a
WAIT macro instruction) for the ABEND rou
tine to complete the abnormal termination
of the subtask. The abnormal termination
of the subtask is signaled by the release
of the Detach routine from its wait condi
tion via the posting of the new ECB by the
EOT routine. The Detach routine then frees
the storage occupied by the special ECB it
had created and tests whether the subtask
has its own ECB. (The Detach routine saved
the subtask's ECB address -- if it had an
ECB -- in the current SVRB.)

If the subtask does not have an ECB
which the Detach rqutine can post to inform
the caller of the subtask termination, the
Detach routine resumes normal processing by
removing the subtask TCB from the subtask
queue originating in the TCB of the requ
esting task.

If, however, the subtask has an ECB,
Detach branches to tne entry point in the
Post routine that provides validity check
ing for the ECB, and, if the ECB is valid,
posts the ECB. Upon return from the Post
routine, Detach resumes processing by
removing the subtask TCB from the subtask
queue.

SERVICES INDIRECTLY RELATED TO A TASK
CONTROL BLOCK

These varied services consist of:

• Specifying a program interruption exit
routine.

• Sychronizing a program with one or more
events.

• Serializing the use of a resource.

• Scheduling an asynchronous exit
routine.

• Specifying a task asynchronous exit
routine.

A user program may specify a program
interruption exit routine which will handle
program interruptions occurring during any
program executed for the user's task. The
supervisor must be able to test for the
existence of a user routine. The SPIE rou
tine therefore places in the TCB of the
macro-issuing program an indirect pointer
to the user routine. If after a program
interruption has occurred, the program
Interruption First-Level Interruption Han
dler finds an address in the pointer field,
it passes control to the user routine to
handle the interruption. otherwise, the
FLIH uses the ABTERM routine t.o schedule an
abnormal termination of the task whose
error caused the interruption.

By use of the Wait and Post routines, a
user or system program may synchronize its
execution with the occurrence of one or
more events, such as the completion of an
I/O operation. The Wait routine stops the
execution of the requester until the speci
fied events have occurred. When they have
occurred, the Post routine indicates their
occurrence by altering bits in one or more
event control blocks. It then makes ready
the waiting requester so that it may be
placed into execution by the Dispatcher.

By serializing the use of resources, the
ENQ and DEQ routines permit requesters
representing different tasks to gain one
at-a-time access to a resource or set of
resources. The resources may include one
or more data sets, records within a data
set, programs, or work areas within main
storage. If the resource is available,
control is returned to the requester,
optionally with a return code indicating
the availability of the resource. If the
resource is not available, either of two
functions are performed, depending on the
RET parameter that is supplied by the requ
ester. The requester is placed in a wait
condition, pending the availability of the
resource, or control is returned to the
requester with a code indicating that the
resource is not available. When a routine
has issued a DEQ macro instruction to sig
nal that it is no longer using the
resource, the DEQ routine reduces the wait
count of a waiting requester and tests it
for readiness. If the requester is now
ready, the DEQ routine determines if the
requester can be executed in place of the
DEQ-issuing routine.

An asynchronous exit routine is sched
uled by the supervisor to provide special
handling of an unpredictable event, such as
an end-of-task condition or the expiration
of a timer interval. The scheduling of the
exit routine, begun when the event actually
occurs, is a multipart procedure interwoven
with the performance of different tasks.
Preparation for the event takes place when
a system routine issues a CIRB macro
instruction to cause the Exit Effector,
stage 1, to construct an interruption re
quest block or IRB. The IRB will control
the future execution of the asynchronous
exit routine when it is schedUled. When
the unpredictable event occurs, the super
visor invokes stage 2 of the Exit Effector
to begin ~he scheduling by placing an
interruption queue element on a push-down
exit queue. Final scheduling, performed by
stage 3 of the Exit Effector, moves the
interruption queue element to a queue
belonging to the IRB. The IRB is then
queued to the "head" position on the RB
queue belonging to the requester's TCB.
When the TCB to which the IRB is queued is
the highest priority ready TCB, the Dis-

Section 3: Task Supervision 43

patcher places the asynchronous exit rou
tine in eX8cution for its assigned task.
When the asynchronous exit routine is
finished, the supervisor's Exit routine
rafioves the old scheduling and prepares for
new scheduling. That is, it updates queue
elements and prepares to queue the IRB to
the RB queue of another TCB, if there are
other requests for the exit routine. If
there are no other requests, the supervi
sor's Exit routine dequeues the IRB from
its TCB, and if the IRB was dynamically
acquired, frees the storage space it
occupies.

An asynchronous (user) exit routine can
also be specified to receive control when a
task is scheduled for ABEND processing;
however, the processing to handle this exit
routine is considerably different. The
STAE macro instruction prepares the task to
intercept abnormal termination processing
through the STAE service routine, which
receives control via an SVC 60 when the
STAE macro instruction is issued. When the
task has entered ABEND processing, the
ABEND/STAE interface routine is invoked,
which schedules a user-written STAE exit
routine via the SYNCH macro instruction.
If the STAE exit routine indicates that a
retry routine should be scheduled, the
ABEND/STAE interface routine sets the
:r-esume PSW to point to the address of the
STAE retry routine. The ABEND/STAE inter
face routine then exits, giving control to
the Dispatcher. (See Section 10, "Termina
tion Procedures," for a detailed descrip
tion of the STAE service routine and the
ABEND/STAE Interface routines.)

SPECIFYING A PROGRAM INTERRUPTION EXIT
ROUTINE

Before reading the following discussion,
the reader should carefully study "Program
Interruption Processing" in Supervisor Ser
vices and Macro Instructions.

The SPIE routine completes the process
ing needed for a user to specify a program
interruption exit routine. The initial
processing -- creating and initializing the
fields of a program interruption control
area (PICA) -- is performed by executable
code produced by the expansion of the SPIE
macro during an assembly of the source pro
gram. The execution of the instructions of
the macro expansion places in the fields of
~he PICA a program mask, the address of the
user program-interruption exit routine, and
an interruption mask. If after the execu
tion of the SPIE routine a program check
occurs in a program being executed for the
issuer's task, the information contained in
the PICA will determine the resultant pro
cessing of the program interruption. In
order for the supervisor to pass centrol to

44

the correct error handling routine, the
supervisor must be able to test for the
existence of a user routine. The main
function of the SPIE routine is to place in
the TCB of the macro-issuing program an
indirect pointer to the user routine. If
after a program interruption has occurred,
the supervisor finds an address in the
pointer field, it will pass control to the
user routine to handle the interruption.
Otherwise, the supervisor's Program FLIH
will schedule an abnormal termination of
the task whose error caused the program
interruption.

After the user program has issued a SPIE
mac:r'o instruction, and the resulting macro
expansion has constructed and initializes a
PICA, an SVC interruption gives control to
the supervisor. The First and Second-Level
SVC Interruption Handlers pass control to
the SPIE routine to complete the prepara
tion for user processing of a possible pro
gram interruption. The SPIE routine first
determines whether to create a program
interruption element (PIE). The supervisor
will store in the PIE, when a program
interruption occurs, the information needed
by a user-specified exit routine to handle
the interruption. This information con
sists of the program check old PSW, general
registers 14 through 2, and the address of
the current PICA. The question of whether
to construct a new PIE hinges on whether
the current SPIE is the first issued for
the current task. Although there can be
several PICAs, one for each issuance of the
SPIE macro instruction for a given task,
only the last specified PICA is active.
The SPIE routine places the address of the
newly created PICA in the PIE for the task.
But the problem is first to determine if a
PIE already exists for the current task.

The SPIE routine tests for the existence
of a PIE by examining the PIE pointer
(TCBPIE) in the current TCB. If there is
no PIE for the task, the current SPIE macro
instruction must be the first issued for
this task. In this case, the routine
issues a GET MAIN macro instruction fer the
needed storage1 and places the address of
the new PIE into the current TCB. The
GETMAIN routine assigns to the storage area
the task's storage protection key so that
the user-specified program check routine,
when given control, can modify the data
stored in the PIE.

After locating or creating the PIE, the
SPIE routine obtains the address of the
previous PICA from the PIE. If the PIE is
newly created, this address is zero. The
previous PICA address is returned to the
caller in general register 1. If this

1Space is allocated in subpool zero.

register contains zero, no previous SPIE
macro instruction was issued for the cur
rent task. The caller may use the old PICA
address in a later SPIE macro instruction
to restore to use the ~revious PICA.

The SPIE routine places in the PIE,
·whether newly created or old, the address
of the new PICA that the macro expansion
provided as input. The PICA with its user
program-check routine address is then
available to the supervisor in the event of
a program interruption. The PIE may al
ready contain tne address of a PICA, the
one created by the last issuance of the
SPIE macro instruction for the current
task.

As a last major function, the routine
moves the program mask field of the "PICA to
the RB old PSW. If the PICA address in the
PIE is zero, the current program mask field
of the RB old PSW is saved in the first
byte of the TCEPlE field of the current
TCB. The new program mask, supplied as an
input parameter, is then placed in the RB
old PSW. By placing the program mask in
the RB old PSW, which the Dispatcher will
use to return control to the caller, the
SPIE routine is effectively issuing a Set
Program Mask instruction for the caller.

Finally, to begin the exiting procedure
that will complete the processing of the
SVC interruption, the SPIE routine requests
a supervisor-assisted linkage to the super
visor Exit routine. It obtains the linkage
to the Exit routine by branching to an SVC
3 instruction in the communications vector
table. The SVC 3 instruction causes an SVC
interruption which ultimately passes con
trol to the Exit routine.

If the PICA address provided as input is
zero, the SPIE routine performs the pre
viously described functions. However,
since the PICA address stored in the PIE is
zero, if a program interruption occurs, the
Program-Check First-Level Interruption
Handler recognizes that a user program
check routine has not been requested. It
therefore branches to the ABTERM routine to
schedule an abnormal termination of the
task in which the program check occurred.

SYNCHRONIZING A PROGRAM WITH ONE OR MORE
·ENENTS

Synchronizing a program with external
events consists of two actions:

1. Causing a program or routine to wait
for one or more events.

2. Indicating the occurrence of an event
and restarting the waiting program or
routine.

Causing a Program to Wait for
One or More Events

The purpose of the Wait svc routine is
to permit a user or system prog.ram to stop
its execution until a specified number of
events have occurred, such as the comple
tion of one or more I/O operations. When
the specified events have occurred, the use
of the Post svc routine will indicate the
occurrence of the awaited event or events
and make the progran· ready (no longer wait
ing), so that its execution way continue.

The Wait routine performs the following
main functions:

u Places the program that issued the WAIT
macro instruction into a wait condition
so that it cannot be executed until the
awaited event or events have occurred.

• Recognizes those events that have al
ready occurred and reduces the number
of awaited events accordingly.

• Places in one or more special communi
cations areas, called event control
blocks (ECBs), an indication that one
or more events are awaited by the issu
ing program. Each ECB represents a
unique event that is awaited.

• Performs job-step wait limit timing for
the step under examination.

Like other type-1 (resident and non
reentrant) SVC routines, the Wait routine
is entered from the SVC FLIH after an SVC
interruption. The Wait routine first sets
the system mask field of the SVC old PSW to
all ones. It does this so that when the
SVC old PSW is loaned to redispatch the
caller, the caller will be enabled for I/O
and external interruptions. This is done
to prevent those supervisor routines that
operate disatled and use the Wait routine
from placing the caller into a disabled
wait state.

The Wait routine then determines whether
a wait count has been specified; the wait
count is the number of events that must
occur before the calling program regains
control. If the user haa not specified a
wait count in the macro instruction, the
assembly of the macro expansion defaults to
a wait count of one. If a wait count of
zero is found is register 1 (the user spec
ified a wait count of zero), the wait rou
tine ignores the request represented by the
macro instruction and branches to the Type-
1 Exit routine to return control to the
caller or macro-issuing program. If a wait
count has been specified, the Wait routine
continues normal processing.

Section 3: Task Supervision 45

The wait routine next determines if a
list of ECBs was specified in the WAIT
macro instruction. If only one ECB was
specified, processing continues as
described by "Processing a Single ECB"
below.

Processing a List of ECBS (Multiple-Event
Wait)

If the WAIT macro instruction was issued
by a system routine (indicated by a zero in
the protection key field of the SVC old
PSW), the assumption is that the ECB
addresses are valid. However, if the call
ing routine is a user program, the Wait
routine branches to the Validity Check rou
tine (IEAOVL01) to determine the validity
of the address of the list of ECB
addresses. If the address of the list is
invalid, the Wait routine passes control to
ABTERM to schedule. abnormal termination of
the calling task. If the address is valid,
processing continues.

The Wait routine next compares the num
ber of awaited events, represented by the
wait count, with the number of event con
trol blocks (ECBs) that the caller has
specified. The caller has passed to the
Wait routine, via the coding of the macro
expansion, the address of either a single
event control block (for a single awaited
event) or the address of a list of event
control blocks if it awaits more than one
event. The wait routine checks the valid
ity of the list address and then counts
thenumber of specified ECBs. If the caller
has specified a larger wait count than the
number of ECBs, the WAIT request cannot be
processed. The caller has made a serious
error. In this case, the routine sets up
an error code of 101 and branches to the
ABTERM routine to schedule an abnormal ter
mination of the calling task. If the num
ber of awaited events, as indicated by the
wait count, is equal to the number of spec
ified ECES, the Wait routine can perform
the next main step of its processing -
testing the wait and completion bits in
each ECB. But if the wait count is less
than the number of specified ECBs, the rou
tine sets a "search" flag in the request
block (RB) of the caller.

The reason for the setting of the search
flag (RBECBWT bit in RBSTAB field) in the
~B of the caller is as follows. The call
ing program has specified a smaller wait
count than the number of ECBs. This means
that the caller awaits fewer events than
the maximum number that can occur. For
example, the caller ooay await the comple
tion of anyone of three possible I/O
operations. In this case, the wait count
would be one, and the number of ECBs would
ne three. When an awaited event (in this

46

example, a single I/O completion) has
occurred, the Post SVC routin~ will post
the event in the ECB specified by the call
er of the Post routine. Part of the post
ing action consists of clearing the wait
bit that was set previously by the Wait
routine. Since the WAIT request has now
been fulfilled, that is, the single awaited
completion of three possible I/O operations
has occurred, the wait bit remaining set in
each of the two ECBs not yet posted is now
misleading, and may cause later incorrect
processing by the Post routine. The Post
routine examines the search bit in the RB
of the waiting program. If the search bit
(RBECBWT) is set, the Post routine clears
the wait bit in each of the ECBs not yet
posted and also clears the search bit. The
misleading indication is thus removed.

Testing the Wait and Completion Bits

The Wait routine next tests the wait and
completion bits in the ECB (this processing
occurs in a loop for each ECB). A comple
tion bit that is set indicates that the
awaited event represented by the ECB has
already occurred and has been posted by the
Post routine. In this case, the Wait rou
tine reduces by one the specified wait
count. This is necessary because the call
er should wait only for those events that
have not yet occurred. When the routine
has subtracted one from the wait count, it
tests the remainder to determine if the
wait count has been reduced to zero. If
the wait count is now zero, all awaited
events have occurred (such as one I/O com
pletion out of a possible three comple
tions). If the RB Search flag is set, the
Wait routine clears the search flag and all
wait flags in any unposted ECBs. The wait
routine then passes control to the Type 1
SVC Exit routine.

If the wait count is not zero, the Wait
routine examines the completion flag in the
next ECB.

If the completion flag is not set, the
Wait routine next tests the wait flag in
the ECB. If the wait bit is already set in
any specified ECB, an error condition
exists. One possible cause of such an
error condition is that two programs being
executed under the control of two different
TCBs have specified the same ECB as an
operand (that is, the two programs are
awaiting the same event). If a wait bit is
already set in one of the ECBs, the Wait
routine sets up an error code (301) and
branches to the ABTERM routine to schedule
abnormal termination of the caller's task.

If the wait flag in the ECB is not set,
the Wait routine determines whether the
specified ECB address must be checked for
validity. If a system routine is the call-

er, as determined by a zero in the protec
tion key field of the SVC old PSW, the
assumption is that the ECB addresses are
correct and need no validity checking. If
the protection key is not zero, the Wait
routine branches to the supervisor's Vali
dity check routine (IEAOVL01) to test each
ECB address that the user has specified.

The Validity check routine determines if
the address lies on a fullword boundary,
exists within the boundaries of main
storage, and designates a storage area
whose storage protection key matches the
protection key in the caller's TCB. If any
of these tests fail, indicating that the
caller has incorrectly specified an ECB
address, the Wait routine further tests the
ECB to determine if it is a communications
ECB (which is in storage with a protection
key of zero). If so, normal Wait proces
sing continues. If a communications ECB
was not specified, the Wait routine
.branches to the ABTERM routine to schedule
abnormal termination of the caller's task.

If the specified ECB address is valid,
or if the address was not checked for vali
dity, the Wait routine sets the wait flag
in the ECB and stores the address of the
request block for the calling program in
the ECB. If there are more ECBs to pro
cess, processing continues with testing the
completion bit in the next ECE in the list.

Processing a Single ECB

If only one ECB was specified in the
WAIT macro instruction, the Wait routine
examines the wait and completion flags in
the ECB. If the completion flag is set,
control is passed to the Type 1 SVC Exit
routine. If the wait flag is set, control
is passed to the ABTERM routine to schedule
abnormal termination (code 301) of the cal
ling task. If the calling routine is not a
system task (does not have a protection key
of 0), the ECB address is passed to the
Validity Check routine IEAOVL01.

The Validity check routine determines if
the address lies on a fullword boundary,
exists within the boundaries of main
storage, and designates a storage area
whose storage protection key matches the
protection key in the caller's TCB. If any
of these tests fail, indicating that the
caller has incorrectly specified an ECB
address, the Wait routine further tests the
ECB to determine if it is a communications
ECB (which is in storage with a protection
key of zero). If so, normal Wait proces
Sing continues. If a communications ECB
was not specified, the Wait routine
branches to the ABTERM routine to schedule
abnormal termination of the caller's task.

If the specified ECB address is valid,
or if the address was not checked for vali
dity, the Wait routine sets the wait flag
in the ECB and stores the address of the
request block for the calling program in
the ECB.

Processing Common to Single and Multiple
ECBs

When the Wait routine has processed all
ECBs specified in the input parameter list,
it inserts the final wait count in the wait
count field (RBWCF) of the caller's RB. If
the wait count is greater than zero, the
caller is now in the wait condition, or
just "waiting," and cannot be dispatched.
In this case, the Wait routine must indi
cate to the Type-l Exit routine and to the
Gispatcher that the Dispatcher must perform
a task switch; that is, the Dispatcher must
search the TCB queue for the next highest
priority ready TCB, and dispatch the cur
rent program associated with that TCB. The
Wait routine indicates the need for a task
switch by clearing the nnewn TCB pointer at
location IEATCBP. The Wait routine also
turns on the nWait pending n flag (RBWAITP)
in the current RB. If the final wait
count, placed in the wait count field of
the caller's RB is zero, the awaited events
have already occurred and the caller must
not wait. Therefore the wait routine does
not indicate to the Dispatcher the need for
a task switch.

After the routine has placed the wait
count in the caller's RB, and has or has
not indicated the need for a task switch,
it must determine if the step under inspec
tion is being job-step timed. It does this
by determining if there is a job-step TQE,
and by testing the TCBTME field of the
initiator TCB for a non-zero value. If the
field is zero, Wait branches to the Type-1
Exit routine, because the step under
inspection has not requested job-step tim
ing. If the field is non-zero, indicating
that the step has requested job-step tim
ing, the entire tree of tasks must be
examined to determine if the entire step is
in an SVC wait. Wait uses the task select
routine to examine all the TCB's in the
tree of tasks, beginning with the job-step
TCB. When a TCB is found by the task
select routine, Wait determines if the TCB
which was just located is the TeB which
originated the wait. If this is the case,
the svc old PSW is examined to determine if
the Wait routine was entered because of the
issuance of an SVC Wait (as opposed to a
branch entry to Wait). If an SVC Wait was
issued, the task select routine is entered
again to find another TeB. If an SVC Wait
was not issued, and the TCB is that which
originated the wait, the Wait Routine
branches to the Type-l Exit routine. If
the TeB located by the task select routine

Section 3: Task Supervision 47

is not the TCB which originated the wait,
the Wait routine tests the task ended bit
in the TCBFLGS bytes of the TCE. If the
ended bit is on, the task select routine is
entered once again to find another TCB. If
the ended bit is not on, the Wait routine
selects the top RB on the TCB's RB chain,
and examines the wait count field (RBWCF).
If this field is zero (indicating the task
is not waiting on any events), the Wait
routine branches to the Type-l Exit rou
tine. If the RBWTCF field is not zero, the
Wait routine examines the RB old PSW field
in the TCB's top~. If the last instruc
tion executed by the task currently under
inspection (as indicated by the address
contained in the right half of the RB old
PSW, minus two) is an SVC Wait, the task
select routine is entered to locate another
TCB. If the last instruction executed was
not an SVC Wait, the Wait routine branches
to the Type-l Exit routine.

When the task select routine can find no
more TCBs in the tree of tasks (indicating
that the entire tree of tasks is in an SVC
Wait), the Wait routine uses the Dequeue
TQE (entry point IEAQTD01) routine in the
Timer Second Level Interruption Handler to
remove the job-step TQE from the timer
queue. The Wait routine next converts the
job-step TQE from a task TQE to a 30-minute
wait limit TQE while saving the CPU remain
ing time in the reserved slot of the TQE.
If the System Management Facility is
included in the system, the Wait routine
checks the initiator TCE for the address of
a timing control table (TCT). If there is
a TCT, the job-step wait time limit, not
the 30-minute wait limit, is placed in the
TQE. The job-step wait time limit appears
in the TCTWLMT field of the TCT. If there
is no TCT, the 30 minute value is used.

The TQE is then enqueued on the timer
queue by the Enqueue TQE routine (entry
pOint IEAQTEOO). The job-step timing
algorithm necessitates job-step TQE
manipulation.

When a tree of tasks is in an SVC wait,
the step is not CPU timed. But because of
the possibility of a wait on an ECB which
will never be posted, job-step timing
requires that a wait limit TQE be imposed
on a step. The effect of the wait limit
TQE would be to abnormally terminate a step
which has waited on an event(s) for more
than a specified amount of time (30
Iunutes), without having the event(s)
occur.

After the routine has or has not con
verted the job-step TQE, it branches to the
Type-l Exit routine to start the return to
a main-line program. The Type-l Exit rou
tine tests the TCB pointers, IEATCBP and
IEATCBP+4. If the need for a task switch

48

has teen indicated by the inequality of the
two TCB pointers, the Type-l Exit routine
branches to the Dispatcher to perform a
search of the TCB queue, and to return con
trol to the current program of another
task. If a task switch has not been indi
cated, the Type-l Exit routine loads the
SVC old PSW to give control directly to the
caller. Since in this case all specified
events have already occurred, the caller
does not wait, except for supervisor
processing.

Indicating the Occurrence of an Event and
Restarting a Waiting Program

The Post SVC routine permits a program
(the "posting" program or caller) to signal
the occurrence of an event, such as the
completion of an I/O operation, awaited by
a waiting program. The routine signals
(posts) the event's occurrence by altering
one of two bits in a specified event con
trol block (ECB) shared by both waiting and
posting programs. The Post routine places
in the event control block a "post code"
supplied by the posting program. The post
code may later be inspected by the waiting
program, after it resumes execution, to
determine the type of event that occurred.
The Post routine determines if the program
that is awaiting the posted event can be
made ready (that is, whether all awaited
events have occurred).

If the waiting program can be made
ready, and belongs to a task of higher dis
patching priority than that of the posting
program, the Post routine indicates to the
Dispatcher that a task switch is needed
(that is, a ready program whose TCB is of
higher priority than that of the caller
should be dispatched). The Post routine
determines if the initiator TCB of the TCB
being posted has a TQE (the job-step TQE)
which indicates the step is being job step
timed. If a job-step TQE does exist, and
it is a 30 minute wait limit TQE, the Post
routine dequeues the TQE from the timer
queue and converts the element to a task
TQE.

There are three branch entry points to
the Post routine. One (IGC002+6) is used
exclusively by supervisor routines. A
second (IEAOPT01) is used exclusively by
the I/O Supervisor. The third (IEAOPT02)
is used by both the I/O Supervisor and
supervisor routines when they need to check
the validity of user-specified ECBs. The
I/O Supervisor's branch entry permits the
I/O Supervisor to pass parameters in regis
ters different from the standard registers,
and also permits the saving of registers
across the Post routine.

On branch entry from the I/O Supervisor,
the Post routine saves the input registers,

places the input parameters in the standard
registers, and branches to the main-line
part of the Post routine. On return from
the main-line part of the Post routine, the
saved registers are restored and control is
returned to the I/O supervisor. In this
case, any task switch whose need is indi
cated by the Post routine does not occur
until the I/O Supervisor branches to the
Dispatcher, via the I/O FLIH.

On branch entry from a supervisor rou
tine, the Post routine assumes that the
input parameters are in the standard regis
ters. This entry allows a supervisor rou
tine to post an event without causing a
task switch until the caller of the Post
routine exits, instead of occurring when
the Post routine exits.

With any branch entry, the Post routine
returns control to the calling routine.
But if the Post routine is entered via an
SVC interruption, it exits via the Type-1
:i:.xi t routine.

If the TJID is specified for a time
sharing task and the TJBINCOR flag in the
terminal job block indicates that the task
is not in main storage, an Inter-partition
Post block is created to record the
requested post. The Post routine then
issues a TSEVENT macro instruction specify
ing that the task whose ECB is to be posted
be brought into main storage (swapped-in).

The main-line part of the Post routine
first determines if validity checking is
necessary. Validity checking is bypassed
if either of the exclusive branch entries
is used, or if the entry is from the SVC
FLIH and the calling program is a system
routine. (A system routine operates with
protection key of zero.) In these cases,
the assumption is that the calling routine
has passed a valid ECB address. If validi
ty checking is necessary, the Post routine
branches to the supervisor's Validity Check
routine to perform the needed address
checking.

The Validity Check routine, as indicated
in the discussion of the Wait routine, per
forms three checks of an ECB address. It
determines if the address lies on a full
word boundary, exists within the boundaries
of main storage, and designates a storage
area whose storage protection key matches
the protection key in the caller's TCB. If
any of these tests fails, indicating that
the caller has incorrectly specified an ECB
address, the Post routine sets up an error
code (102) and exits to the ABTERM routine
to schedule an abnormal termination of the
caller's task. If the ECB address is not
checked for validity and this is a request
for an Inter-Partition post, the Post rou
tine makes the following tests:

1. A positive TJID value exists.

2. TSO is active.

3. The ECB to be posted is not in main
storage.

If all of these qualifications are met, the
Post routine uses GETMAIN to obtain a 16-
byte Inter-Partition Post Block, stores the
Post Code and ECB address in the IPPB, and
queues the IPPB to the end of the chain of
IPPBs. The Post routine then branches to
the TSIP routine to brinq the required task
into main storage and returns control to
the calling routine via register 14.

If this is not an Inter-Partition Post
request, or if any of the above tests
failed, the Post routine continues
processing.

The next step is to check the completion
bit in the specified ECB. If the comple
tion bit is set, indicating that the event
now being posted has already been posted,
there is no need for further processing.
The Post routine treats this condition as a
no-operation, and branches to the Type-1
Exit routine or to the caller.

If the Post routine was entered at a
branch entry, it branches to the calling
routine instead of to the Type-1 Exit rou
tine. This is done without special tests.
The Post routine branches to the address in
the return register, general register 14.
If the routine was entered from the SVC
FLIH, general register 14 contains the
address of the Type-1 Exit routine. But if
the routine was entered at a branch entry
point, general register 14 contains the
return address of the caller.

If the completion bit is not set, the
event represented by the ECB has not pre
viously been posted, and processing can
continue.

The Post routine next tests the wait bit
in the specified ECB. If the wait flag is
not set, indicating that the specified
event is not yet awaited, the Post routine
stores the post code in the ECB, sets the
completion flag, and passes control to the
caller or the type-1 Exit routine (IEAO
XEOO). If the wait bit is set, the Post
routine must check the validity of the RB
address contained in the ECB. (Validity
checking is bypassed if either branch entry
is used or if the request is from a routine
with a protection key of O.) This is the
address of the RB for the program that
awaits the event now being posted. The RB
address was placed in the ECB by the Wait
routine when it serviced the WAIT macro
instruction issued by the now-waitjng pro
gram. Since the ECB is part of user-

Section 3: Task Supervision 49

specified storage, and may have been modi
fied by a user program after the Wait rou
tine stored the RB address of the waiting
program, the Post routine must now check
the RB address.

The Post routine performs the check by
making four tests. The first test deter
mines whether the RB address is on a full
word boundary and is within machine
specified storage. The second test checks
whether the old PSW field (RBOPSW) of the
RB specified by the address is enabled for
system interruptions. The third test com
pares the protection key in the RB old PSW
of the specified RB with the protection key
in the RB old PSW of the waiting program's
RB. The fourth test determines whether the
last-executed instruction of the waiting
program, located via its RB old PSW field,
was a WAIT macro instruction (SVC-l). If
any of these tests fail, indicating that
the RB address has been altered, the Post
routine sets up an error code (202) and
branches to the ABTERM routine to schedule
an abnormal termination of the caller's
task. If, however, the RB address appears
valid, the Post routine continues
processing.

The Post routine places in the specified
ECB information useful to the waiting pro
gram and to the Wait and Post routines.
The routine stores in the ECB a Post code
specified as an operand of the POST macro
instruction. The post code can supply to
the waiting program, when it resumes execu
tion, information about the event's occur
rence. Besides storing the post code in
the ECB, the Post routine sets the comple
tion bit and clears the wait bit. These
bits now indicate to both the Wait and Post
routines, and also to a user program if it
inspects the ECB, that the event repre
sented by the ECB has occurred and is not
now awaited.

The Post routine must next determine
whether to decrease the wait count stored
in a waiting program's RE. The wait count,
stored in the RBWCF field of a waiting pro
gram's RB, indicates the number of awaited
events that must occur before the program
can resume execution. As long as the wait
count stored in an RB is greater than zero,
the program represented by the RB may not
be dispatched.

The Post routine tests if the wait count
in the waiting program's RB is already
zero. This can occur in the special case
in which the waiting program's task was
abnormally terminated, via ABTERM, because
of an event asynchronous to the waiting
program. The ABTERM routine resets to zero
the wait count in the top RB on the RB
queue of the TCB for which it is scheduling
an abnormal termination. In this case, the

50

Post routin~ returns control to the caller
without changing the wait count in the
waiting program's RB.

If the event is awaited, as indicated by
a nonzero wait count, the routine subtracts
one from the wait count field (RBWCF) of
the waiting program's RB. It then tests
the remaining wait count to determine if
the waiting program can be made ready (that
is, whether the new wait count is now
zero). If the new wait count is not zero,
all events awaited by the program have not
yet occurred, and further processing is not
possible. In this case the Post routine
returns control to the caller, or posting
program, either directly if the caller is
the I/O supervisor, or via the Type-l Exit
routine. If, however, the new wait count
is zero, indicating that the posted event
is the last needed by the waiting program,
the Post routine turns off the "Wait pend
ing" flag (RBWAITP) and further processing
occurs.

The Post routine next determines if the
posted ECB is part of a list of ECBs. In
other words, is the minimum number of
awaited events (the wait count) less than
the number of specified ECBs (for example,
one needed I/O completion among three poss
ible I/O completions)? If the answer is
yes, one or more unposted ECBs exist whose
wait bits remain set. These ECBs will
cause error in future processing by the
Post routine. The wait bits must be
cleared. To determine if there are remain
ing unposted ECBs associated with the pro
gram whose wait count is now zero, the Post
routine tests the "search" bit (RBECBWT) in
the RB of the waiting program. If the bit
is set (see discussion of Wait), the Post
routine assumes that the number of awaited
events is less than the number of specified
ECBs. It obtains the address of the ECB
list belonging to the waiting program,
checks the validity of the list, and clears
the wait bit in each outstanding ECB of the
list.

After all unposted wait bits have been
cleared, or if no unposted wait bits
remained, the Post routine tests the TCBTME
field of the initiator TCB of the task
which is being posted. If the field is
zero, it indicates that job-step timing is
not being performed for this step, and the
Post routine determines whether the program
may be dispatched. If the field is non
zero, the Post routine examines the TQE
type -- REAL or TASK. If the TQE is TASK
type, it indicates that the entire tree of
tasks was not in an SVC wait, and the Post
routine then determines whether the program
may be dispatched. If the TQE is REAL and
on the timer queue, it indicates that a
30-minute wait limit TQE had been placed on
the timer queue. If such is the case, the

Post routine branches to the Dequeue TQE
routine (entry point IEAQTD01) in the Timer
Second-Level Interruption Handler to remove
the element from the queue. The Post rou
tine reinstates the actual CPU time remain
ing value in the TQEVAL field of the TQE.
It then marks the TQE as TASK type. This
processing allows the Dispatcher to once
again calculate the CPU time used by this
job step.

After the Post routine had or had not
manipulated the job-step TQE, it passes
control to the Task Switch routine
(IEAODS02) which causes a task switch, if
necessary, by placing in the "new" TCB
~ointer (IEATCBP) the address of the
highest-priority ready task in the system.
Upon return from the Task Switch routine,
control is returned to the caller (for a
branch entry) or the type-1 Exit routine
(IEAOXEOO).

SERIALIZING THE USE OF A RESOURCE

The ENQ routine, working with the DEQ
routine, permits programs issuing the ENQ
macro instruction (or, in systems that
include the shared DASD feature, the
RESERVE macro instruction) to gain one-at
a-time access to a resource or set of
resources. The requested resource may
include one or more data sets, records
within a data set, programs, or work areas
within main storage. The routine places in
a resource queue all resource requests
specified in the caller's macro instruc
tion. If no other ENQ-issuing program is
using any of the requeated resources, the
ENQ routine, via the Exit routine and the
Dispatcher, returns control to the caller,
which then gains access to its resource(s).
But if any of the caller's resources are
already in use by another ENQ-issuing pro
gram, being executed for another task, the
ENQ routine places the caller in a wait
condition until the resource becomes avail
able. When the program that is using the
resource(s) completes its use, it issues a
DEQ macro instruction that causes the DEQ
routine to remove one or more elements from
the request queue, and reduce the wait
count for the waiting program. If the wait
count is now zero, the DEQ routine, via the
Exit routine and the Dispatcher, may return
control to the previously waiting (now
ready) program. The program then gains
access to its resource (s).

Separate although related functions are
needed when 0. resource is requested and
when the use of the resource is signaled
complete. The fUnctions may be listed
under the headings of major and minor func
tions. Major functions are those which,

satisfy the principal purpose of the ENQ
and DEQ macro instruction. Minor func
tions, although also important, are not
related to the central purpose of the macro
instructions. For example, the validity
checking of input addresses may be consid
ered a minor function.

Types of Resource Reguests

There are two types of resource requests
which may be specified by the ENQ-issuing
program: an "exclusive" (E) request or a
"shared" (S) request. The ENQ routine
handles these two types of requests dif
ferently. An exclusive request is treated
strictly on a first-in, first-out basis.
That is, an exclusive request in the queue
may not be serviced until all earlier
requests of either type have been serviced.
Also, later requests of either type may not
be serviced until a previously entered
exclusive request has been handled. A
"group" of shared requests, however, if
placed consecutively in the queue, may be
serviced as a group, if one of the shared
requests is at the top of the queue. That
is, the group of shared requests is honored
strictly on a task-priority basis. Figure
3-5 illustrates the handling of typical
combinations of shared and exclusive
resource requests.

Description of the Resource Queues

Before the discussion can proceed, the
reader must become familiar with the con
struction of the resource queues and the
nature of the search for already existing
resource requests. Each resource request
contained in the ENQ macro instruction spe
cifies a Qname, which names a set of
resources, and an Rname which names a
single resource within the set identified
bi the Qname. The Qname, specifying a set
of resources, is represented on the
resource queues by a major queue control
block, or major QCB. Each major QCB con
tains, besides pointers to other control
blocks, the Qname for a set of resources,
for example, the name of a data set. A
major QCB thus represents a set of
resources.

Each major QCB points to a minor QCB,
which represents a particular resource
within the set of resources, for example, a
specific record within a data set. As the
reader may expect, a minor QCB contains,
besides pointers, an Rname which is the
name of the particular resource that has
been requested. Each minor QCB, if another
resource within the set has been requested,
points to another minor QCB. Thus, each
minor QCB represents a particular resource
that has been requested within a set of
resources represented by a major QCB.

Section 3: Task supervision 51

r--,
I
I Condi tion 1: r-----------------, 1/
I I shared request I I I A group of shared L _________________ J I
I requests is at the top I
I of the resource queue. r-----------------, I
I I shared request I I , L _________________ J I

I I
, r-----------------, I
I I exclusive request I I , , L _________________ J , ,

The resources are used by
the shared requesters on
a task-priority basis.
The exclusive requester
waits until the shared
requesters have completed
their use of the resource
and have removed their
requests from the queue.

~---~ , ,
, Condition 2: r-----------------, The exclusive requester ,
, ,exclusive request I has access to the re- ,
, An exclusive request L _________________ J source. The shared re- I
, at the top of the queue questers wait until the ,
I is followed by a group r-----------------, resource is free. They I
I of shared requests. I shared request, then share the resource ,
I L __________ . _______ J on a task-priority basis. ,
, I
I r-----------------, I
I I shared request I I I I L _________________ J I I

I I
~---~
I I
I Condition 3: r-----------------, The first (top) exclusvie I
I lexclusive request I requester uses the re- I
I An exclusive request L _________________ J source while the second I
I at the top of the queue exclusive requester waits. I
I is followed by a second r-----------------, When the first requester I
I exclusive request. I exclusive request I has completed its use of I I L _________________ J the resource, the second I
I requester can proceed. I
I I
~---~
I
I Condition 4:
I
I
I
I
I
I
I ,
I ,
I
I
I ,
I
I
I ,
I ,

A group of shared
requests is at the top
of the queue, followed
by an exclusive request.
The exclusive request
is followed by a group
of shared requests.

r-----------------,
I shared request I L _________________ J

r-----------------,
I shared request I L _________________ J

r-----------------,
I exclusive requestl L _________________ J

r-----------------,
I shared request I L _________________ J

r-----------------,
I shared request , L _________________ J

The resource is first
shared on a task-priority
basis by the shared
requesters whose requests
are at the top of the
queue. The exclusive
requester waits until the
shared requesters have
completed their use of the
resource and have removed
their requests from the
queue. The exclusive
requester then has
exclusive access to the
resource. The shared
requesters lower on the
queue wait until the re
source is available. They
then share the resource on
a task-priority basis.

L __ _

Figure 3-5. The Handling of Shared and Exclusive Requests

52

Module IEAQCBOI

0 • First QCB " I save area

B / save area

16

T
(;0'OC81

Major
QCB
Queue

1
xt
r

Qname 1

-
Major QCB 2

Points to ne
or last majo
QCB on the
(if one exist

queue
s)

"HEADQCB"

~
Minor QCB 1

~r
. /
/

/

(0'"

Rname 1

" 0

-
/

Points to
another
minor
QCB queue
(if one
exists)

TCB A

1

Minor QCB Queue

Minor QCB 2

/ ./
./

/

Rname 2

QEL 2

/
/

/
L T

QEL
QEL 3 Queues

~

C
l I

L-______ p_r_og_r_om __ x ________ ~IIL ________ pr_o_gr_a_m_y ________ ~
NOTES: 1. Arrows represent pointers.

2. Each combination of a major QCB, a minor QCB, and a QEL represents a resource requested for a particular task,
3. Program Xis usi n9 resources Rname 1 and Rname 2.
4. Program Y awaits resource Rname 2.

Figure 3-6. The Resource Queues

Each minor QCB contains the list origin
for a queue of one or more queue elements,
or QELs. Each QEL represents a request for
a single resource by a program belonging to
a specific task. If a program requests
more than one resource, the ENQ routine
constructs two or more QELs, each repre
senting a request. If all the QELs that
represent resource requests by a program
are at the top of their respective QEL
queues, the program may use the resources.
That is, the program is not waiting and can
gain access to the resources as soon as it
is dispatched. But if all the QELs that
represent requests by a program are not at
the top of tneir respective QEL queues, the
requesting program must wait. The using
program must complete its use and issue a
DEQ macro instruction. The DEQ routine
moves the next QEL to the top of the queue.
The task may be dispatched when all of its
Q£Ls are at the top of their respective
queues, or in a group of shared requests at
the top of the queue.

Figure 3-6 illustrates the resource
queues. In Figure 3-6, program X is using,

or is about to use, the resources repre
sented by wajor QCB 1 and minor QCBs 1 and
2. Its requests are at the top of the
queues, represented by QELs 1 and 2. Pro
gram Y has requested one of the resources,
represented by major QCBl and minor QCB2,
teing used by program X. Since the
resource desired by program Y is already in
use, the program must wait, its request
remaining on the queue as QEL 3.

Note that each requested resource is
represented by a combination of one major
QCB and one of its associated minor QCBs.
Each request is represented by a queue ele
IIlent (QEL), which points to the TCB asso
ciated with the requesting program. If
there is not at least one QEL for a pre
viously requested resource, the DEQ rou
tine, when the DEQ macro instruction is
issued, removes the associated minor QCB.
(Under certain conditions the DEQ routine
also removes a major QCB.) Thus, if there
are control blocks -- major QCB, minor QCB,
and QEL -- on the resource queues, there
must be at least one request for a resource
whose use has not yet been completed.

Section 3: Task Supervision 53

Requesting One or More Resources

The functions needed when a resource is
requested may be listed under the headings
of major and minor functions. Major func
tions are those which satisfy the principal
purpose of the ENQ macro instruction.
Minor functions, although also important,
are not related to the central purpose of
the macro instruction. For example, vali
dity checking of input addresses may be
considered a minor function.

MAJOR FUNCTIONS: When one or more
resources are requested, via the ENQ macro
instruction, the major functions are:

• If necessary, creation of one or more
queue control blocks (QCBS) to repre
sent the requested resource, and the
placing of these queue control blocks
on the resource queues.

• Depending on the RET parameter, the
creation of a queue element (QEL) to
represent the request, and the place
ment of the QEL on a QEL queue.

• If the resource is available, the
returning of control to the requester,
with or without a return code that
indicates the availability of the
resource, depending on the RFT
parameter.

• If the requested resource is not avail
able, either of two fUnctions are per
formed, depending on the RFT parameter:

- The requester is placed in a wait
condition, pending the availability
of the resource, or

- Control is returned to the requester
with a code that indicates that the
resource is unavailable.

The first major function, performed by
the ENQ routine, is to search the resource
queues to determine if the requested
resource is already in use. The ENQ rou
tine searches the major QCB queue for a
major QCB that contains the specified
Qname. If it finds the Qname, at least one
resource in the set of resources is in use,
and the routine then searches the asso
ciated minor QCB queue for the Rname.

When the time sharing option is included
in the system, step enqueue for a time
sharing task causes the TJID to be placed
in the minor QCB, in the first byte of the

54

first QEL, and in the first byte of the
previous minor QCB field.

PROCESSING IF THE REQUESTED RESOURCE IS NOT
IN USE: If the requested resource is not
in use, as indicated by the absence of QCBs
with the specified Qname and Rname, control
is returned to the caller. Depending on
the RET code supplied by the caller, a
return code mayor may not be issued, and a
QEL mayor may not be constructed and
placed on the resource queues. (Refer to
Figure 3-7 for the various results.)

PROCESSING IF THE REQUESTED RESOURCE IS IN
USE: If another requester has access to
the resource, as indicated by a major and
minor QCB containing the resource names,
the resultant processing varies. It
depends on the particular RET option that
the caller has specified, on the type of
request -- shared (S) or exclusive (E) -
and on the types of QEL's already on the
queue. (The RET-parameter formats and the
QEL formats appear in Section 12 of this
manual.) Figure 3-8 lists the different
forms of resultant processing.

Note in Figure 3-8 that a QEL is con
structed and placed on a QEL queue if the
requester wants access to the resource and
is willing to wait for it. The requester's
willingness to wait for the resource is
indicated by a RET option of HAVE, NONE, or
the omission of the RET operand. The RET
option of TEST or CHNG never causes crea
tion of a QEL, only the generation of a
return code (see Figure 3-9) indicating
whether the resource is available. If RET
is USE, a QEL is created only if the re
quester can have immediate access to the
resource (Part 2 of Figure 3-8).

Note that if all previous QELs on the
queue and the present request are both for
ftshared- resources, there is no need for
the caller to wait. The new requester and
those represented by the -sharedft previous
QELS on the queue may share the resource on
a task-priority basis. Thus, a requester
need not have its QEL at the top of the
"shared- group of QELs. Any requester
represented in the shared group may be
executed if other requesters represented in
the group are waiting for an event, such as
an I/O completion, provided at least one
member of the group is at the top of the
queue.

r-------------T---------------------------------T---------------T-----------T-----------,
I I I IControl is I I
I I IQCB and/or QEL IReturned tol I
I I IConstructed andlcaller WithlMeaning of I
IRET Parameterl Mea.ning of RET Parameter I Queued I Code of: IReturn Codel
~-------------+---------------------------------+---------------+-----------+-----------~
I TEST ITests the queues to determine if I no I 0 IResource isl
I Ithe caller can have immediate usel I I available I
I lof the resource. Never con- I I I I
I Istructs control blocks. I I I I
~-------------+---------------------------------+---------------+-----------+-----------~
ICHNG IRequests a change of attribute I no I 8 ICaller not I
I I from shared to exclusive on a I I I enqueued I
I Iresource for which the caller is I I Ifor re- I
I I enqueued. Never constructs I I Isource I
I Icontrol blocks. I I I I
~-------------+---------------------------------+---------------+-----------+-----------~
IUSE IPlaces QCB and/or QEL on queues I yes I 0 IResource isl
I lonly if caller can have immediate I I I available I
I laccess ~o the resource. I I I I
~-------------+---------------------------------+---------------+-----------+-----------~
I HAVE IDelay can be tolerated. Places I yes I 0 IResource isl
I IQCB and/or QEL on queues. I I I available I
~-------------+---------------------------------+---------------+-----------+-----------~
INONE or ISame as HAVE but produces no I yes I no code I I
I omitted I return code. I I I I L _____________ ~ _________________________________ ~ _______________ ~ ___________ ~ ___________ J

F'igure 3-7. Processing if a Requested Resource Is Not in Use

r---------------------------T---------------T---,
I Type of Previous QEL IRET parameter I I
I and Present Request lis: I Resultant Processing I
~---------------------------+---------------+---~
11. The previous QEL on thelUSE or TEST ISets return code equal to 4 and, via the I
I queue is " exclusive," I I Exit routine and the Dispatcher, returns I
I or the present request I Icontrol to the caller. A QEL is not con- I
I is "exclusive." I I structed to represent the request. I
I ~---------------+---i
I IHAVE, NONE or IPlaces requester into wait condition by in-I
I I omitted Icreasing SVRB wait count, constructs a QEL I
I I land places it on a QEL queue, indicates I
I I I that a task switch is needed, branches to I
I I Ithe Dispatcher to perform a task switch. I
I I IIf RET is HAVE, a return code of 0 is also I
I I I produced.:!. I
~---------------------------+---------------+---~
2. The previous QELs and I TEST ISets return code equal to 0 and, via the I

the present request are I IExit routine and the Dispatcher, returns I
both "shared," or I Icontrol to the caller. No QEL is con- I

I Istructed. I
There is no previous ~---------------t---~
QEL for the resource INONE or omittedlconstructs a new QEL, places it on a QEL I
(that is, the QEL queue I Iqueue, and via the Exit routine and the I
is empty). I I Dispatcher, returns control to the caller. I

~---------------+---~
I USE or HAVE I Sets return code equal to 0, constructs a I
I Inew QEL, places it on a QEL queue, and via I
I I the Exit routine and the Dispatcher, I
I Ireturns control to the caller. I

t---------------------------~-------------~-~---~
11This return code is passed to the requester only after the resource becomes available. I L ___ J

Figure 3-8. Processing if a Requested Resource Is in Use

Section 3: Task Supervision 55

r-------T---,
I Code I Meaning I
r-------t-------------------T-------------------T-------------------T-------------------~
I I RET = TEST I RET = USE I RET = HAVE I RET = CHNG I

t-------------------+-------------------~-------------------t------------------~ o The resource is Control of the resource has been IControl of the
immediately avail- assigned to the active task. Iresource has been
able. lassigned to the

I active task. Either
Ithe user was al
Iready enqueued for
Ithe resource with
Ithe exclusive
lattribute or the
Irequested change
I f rom shared to
I exclusive was
I honored.

t-------+-------------------~-------------------T-------------------+-------------------~
I 4 IThe Resource is not immediately I N/A IRequested change inl
I I available. I lattribute cannot bel
I I I I honored at this I
I I I I time. I
~-------+---------------------------------------~-------------------t-------------------~
I 8 IA previous request for control of the same resource has IThe requesting taskl
I Ibeen made for the same task. Iwas not enqueued I
I I I for the resource I
I I Iwhen the attribute I
I I I change from shared I
I I Ito exclusive was I
I I I requested. I L _______ L ___ ~ ___________________ J

F'igure 3-9. Return Codes for the ENQ Routine

RETURNING CONTROL: Control is returned to
the caller if the requested resource or
resources are available, or to the current
routine of the next highest priority ready
task if the caller must wait because the
requested resource is in use. If the call
er is to receive control, the return path
is via the Exit routine and the Dispatcher.
But if the current routine of another task
is to receive control, the return path is
via the Dispatcher only. To determine the
appropriate return path, the ENQ routine
tests the RB wait count field in the cur
rent SVRB. If the RB wait count is zero,
all requested resources are available and
the caller can receive control. But if the
RB wait count is greater than zero, the
caller is effectively in a wait condition
and cannot be given control.

If the caller can receive control, the
ENQ routine branches to the Exit routine to
remove the SVRB from its RB queue and free
the storage area it occupies. The Dis
patcher then returns control to the caller
by loading the RB old PSW contained in the
caller's RB.

If the caller cannot be given control,
the ENQ routine prepares for the caller's
future restart. It does this by changing
the SVRB old PSW to point to the SVC 3
instruction in the Communications Vector
Table. When in the future the DEQ routine

56

permits the caller's task to regain con
trol, the first instruction to be executed
will be the SVC 3, which causes supervisor
linkage to the Exit routine to remove the
SVRB.

After preparing for the caller's future
restart, the ENQ routine indicates to the
Dispatcher that it should search the TCB
queue for the next highest priority ready
TCB. The indication to the Dispatcher is
the setting of the n new n TCB pointer .
(IEATCBP) to zero. Then the routine
branches to the Dispatcher to search down
the TCB queue to find the next highest
priority ready TCB. When it finds the TCB,
the Dispatcher places in execution the cur
rent routine of the associated task, by
loading the RB old PSW contained in the
current RB.

MINOR FUNCTIONS: When one or more
resources are requested, the minor func
tions are the:

• setting of the caller"s task in nmust
complete" status, if specified, and if
the caller is a system task.

• Detection of abnormal conditions that
can cause the generation of an error
code or the abnormal termination of the
caller I s task.

• Purge of QELs from the resource queues
for an abnormally terminated task.

• Increasing of the "enqueue count" in
the requestor's TCB.

• Increasing by a count of one the "non
rolloutable count" (TCBNROC) in the
caller's job step TCB.

If the "set must complete" parameter is
specified, the ENQ routine permits accel
erated completion of the caller's task by
setting nondispatchable all other tasks in
the job step or system. To prevent schedu
ling of an abnormal termination of the cal
ler's task, the ENQ routine places a spe
cial "must complete" flag in the TCB for
the caller's task to serve as an indicator
to the ABTERM and ABEND routines.

If a time sharing task has requested
"set must complete" processing, a TSEVENT
macro instruction with the REQSTMC operand
is issued to indicate to the time sharing
ariver that ENQ processing is not to be
interrupted.

Invalid input-list addresses and duplic
ate resource requests for the same task are
detected. A duplicate resource request is
caused by two ENQ macro instructions for
the same resource and task without an
intervening DEQ macro instruction. (If
RET=CHNG, an error condition does not exist
since the caller must be previously
enqueued in order to request a change in
attribute.) These error conditions result
in either a return code and return of con
trol to the caller. or an error code and
the abnormal termination of the caller's
task via the supervisor linkage to the
ABEND routine.

The AUTOPRG subroutine is used when the
ABEND routine. or a routine invoked by
ABEND. issues an ENQ macro instruction dur
ing an abnormal task termination. It con
sists of a purge of resource requests
(QELS). and. if necessary. QCBs belonging
to tasks that are being abnormally ter
minated. Since the QELs cannot be removed
by their original requester via the DEQ
macro instruction. they are removed from
the resource queues by the AUTOPRG subrou
tine to make the requested resource avail
able to the ABEND routine.

An "enqueue count" is maintained in the
requester's TCB. The enqueue count is
stored in TCBQEL, the high-order byte of
the TCBFSA field. The count is increased
by the ENQ routine for each resource requ
est and decreased by the DEQ routine when
the use of the resource is signaled com
plete. The enqueue count is tested by the
supervisor's EOT routine when the reques
ter's task is terminated normally. The

test determines if all resource requests
previously created for the task via ENQ
macro instructions have been removed via
corresponding DEQ macro instructions.

Placing the Caller's Task in "Must Com
Flete" Status: The "set must complete"
function is used by a program with a pro
tection key of zero to allow the programs
of one task to be executed while the pro
grams of other tasks in the job step (STEP
option) or other tasks in the system (SYS
TEM option) are held nondispatchable.
unable to be executed. The purpose is to
prevent the abnor~mal termination of the
"must complete" task by a routine belonging
to another task in the job step or in the
system. If a routine being executed for
the "must complete" task produces a program
check. the ABEND routine allows (via WTOR)
the operator to specify whether the task is
critical (C) or whether ABEND should con
tinue (N). If N is specified. ABEND ter
minates the task by setting it and its
related tasks nondispatchable. A message
is issued to the operator indicating that a
CPU wait state has been averted and that no
more jobs should be scheduled. Jobs that
are already scheduled are allowed to reach
normal termination. (See the description
of ABEND1 in nTermination Procedures.")

The ENQ routine makes several checks to
determine if the requester's task should be
set in "must complete" status (see Figure
3-10). The ENQ routine tests whether the
following requirements have been met:

• The requester has a zero protection key
(in the requester's RB old PSW).

• The RET operand of the ENQ macro
instruction is not TEST.

o The SMC ("set must complete") operand
of the ENQ macro instruction has been
specified.

o The current SVRB is in a ready condi
tion. (A ready condition is indicated
by a RBWCF field of zero.)

The processing varies. depending on the
outcome of the tests. If all requirements
have been met, the ENQ routine performs
"set must complete" processing. To perform
"set must complete" processing the ENQ rou
tine invokes the Set Status routine
(IGC079) via the STATUS macro instruction.
If the request is for step "must complete"
status. it sets the "step must complete"
nondispatchability flag (TCBSTP) in all
TCBs of the job step except the requester's
TCB. (The job-step's Initiator is also set
nondispatchable.) If the request is for
system "must complete" status, the ENQ rou
tine sets the "system must complete" non
dispatchability flag (TCBSYS) in all TCBs

Section 3: Task Supervision 57

r---------------T--------r-------------T----------------------~------------------------,
I ISymboliclDisplacement I TCB(s} in Which Flag I I
I Common Name I Name I in TCB I is Set I Purpose of Flag When Set I
~---------------+--------+-------------+----------------------+-------------------------~
I"Must Complete"ITCBSYS I 33.4 IAll TCBs in system, IIndicates to the Dis- I
I nondispa tch- I I lexcept "must complete-Ipatcher that it may not I
lability flag I I ITCB and certain system I place into execution any I
I (system or job I I I TCBs1 Iroutine associated with I
Istep) ~--------+-------------+----------------------~this TCB. I
I I TCBSTP I 33.5 IAll TCBS in job step I I
I I I I except "must complete-I I
I I I ITCB I I
~---------------+--------+-------------+----------------------+-------------------------i
I -Must Complete" I TCBFSMC I 30.3 I "Must complete" TCB I If this task is in error, I
Iflag (system orl I I lindicates to the ABEND I
I job step) ~--------+-------------~ I routine that the task I
I ITCBFJMC I 30.4 I Ishould be terminated and I
I I I I I the system be allowed I
I I I I I to quiesce via the I
I I I I Isystem Quiesce routine. I
~---------------+--------+-------------+----------------------+-------------------------i
IProhibit asyn- ITCBFX I 29.7 I"Must complete" TCB IIndicates to the Stage 3 I
Ichronous exits I I I IExit Effector that it I
I flag I I I I should not schedule a I
I I I I luser exit routine for I
I I I I Ithis task. I
~---------------~--------~-------------~----------------------~------------------------~
11The system TCBs that are not flagged nondispatchable are the communications TCB, the I
I rollout/rollin TCB, the system error TCB, and the transient area fetch TCBs. I L ___ J

Figure 3-10. TCB Flags that are Set if a Task Is in "Must Complete" Status

of the system, except the requester's TCB
and the TCBs of certain system tasks. The
system tasks that remain dispatchable are
the communications task, the rollout/rollin
task (if the rollout feature is included),
the system error task, and the transient
area fetch tasks. The "must complete" non
dispatchability flags indicate to the Dis
patcher that it may not place in execution
the routines controlled by these TCBs.

As part of "set must complete" process
ing, the ENQ routine also sets two flags in
the requester's TCB. One flag, when set,
prevents the Stage 3 Exit Effector from
scheduling user exit routines for the
requester's task. This precaution prevents
the initiation of an abnormal termination
in a user exit routine while the task is in
"must complete" status. The other flag,
when set, causes the ABEND routine to
branch to the system quiesce routine if an
abnormal termination is initiated during
performance of the "must complete" task.
The system quiesce routine terminates the
"must complete" task and its subtasks and
issues a message to the operator indicating
that a CPU wait state has been averted and
that the system should be allowed to
quiesce (that is, no more jobs should be
scheduled and the jobs that are already
scheduled should be allowed to reach normal
termination) •

58

If all requirements have not been met,
the ENQ routine processes as follows. If
the requester does not have a zero protec
tion key, it sets up an error code (338)
and invokes the ABEND routine to abnormally
terminate the requester's task. If the RET
operand is TEST, or if the SMC operand has
not been specified, the ENQ routine
bypasses "set must complete" processing.
If the current SVRB is in a wait condition,
meaning that the requested resource is not
available, the ENQ routine temporarily
bypasses "set must complete" processing.
Later, however, before exiting, the ENQ
routine points the SVRB old PSW to a
restart point in the "set must complete"
coding. When the requester's task is
redispatched, after the resource becomes
available, the restarted ENQ routine will
set the requester's task in "must complete"
status.

Detecting Abnormal Conditions: The detec
tion of abnormal conditions consists of
checking the validity of input addresses,
and checking for duplicate requests issued
for the same task.

Checking the validity of Input Addresses:
The ENQ routine checks the validity of
input parameters supplied by the caller.
The parameters are a list of main storage
addresses that point to names of resources
or sets of resources. The check is
designed to prevent a program check during

later processing when the resource queues
are being updated. The queues might be
seriously disrupted, thus interfering with
the performance of other tasks.

The ENQ routine must first determine if
it is necessary to check the validity of
the input parameters. If the caller has a
zero protection key (in the caller's RB old
PSW), the assumption is that the input
parameters are valid. In this case, the
ENQ routine bypasses a validity check of
the input parameter list. But if entry is
from a program with a nonzero protection
key (in the RB old PSW), the ENQ routine
uses the supervisor'S Validity Check rou
tine to test the attributes of each input
address. (For details see "Testing the
Validity of User-supplied Addresses.") If
anyone of the tests fails, indicating that
the caller has incorrectly specified the
address of a resource, the ENQ routine sets
an error code (438) and issues an ABEND
macro instruction. The ABEND macro
instruction causes supervisor linkage to
the ABEND routine to abnormally terminate
the caller's task. Thus, the cause of the
abnormal termination is pinpointed, avoid
ing the chance of a later program check
during queue manipulation.

Checking for Duplicate Requests Issued for
the Same Task: The ENQ routine determines
if the caller, or another routine within
the same task, has previously requested the
same resource and has not dequeued the
request from the queue. If the ENQ routine
finds QCBs on the queues containing the
same resource names as those requested by
the caller and an associated QEL containing
the caller's TCB address, the caller has
made a program error. According to the RET
option that the caller has specified, the
caller's task is abnormally terminated, or
the caller is given control with a return
code indicating that the requested resource
is already enqueued for the caller's task.
If the RET option is NONE, or has been
omitted, the ENQ routine sets up an error
code (138), and by issuing the ABEND macro
instruction, causes supervisor linkage to
the ABEND routine to abnormally terminate
the caller's task. If the RET option is
CHNG, an error condition does not exist
since the caller must be enqueued for the
resource if he is requesting a change in
attribute. If the RET option is neither
NONE nor CHNG, the ENQ routine sets up a
return code (8) that indicates that the
desired resource is already enqueued for
the caller's task, and after processing
other parameter-list elements, returns con
trol to the caller. The caller can then
optionally gain access to its requested
resource.

Purging Reguests Previously Enqueued for an
Abnormally Terminating Task: If the

requested resource is already enqueued, and
if the caller's task is being abnormally
terminated, the ENQ routine performs a spe
cial service for the ninth load module of
the ABEND routine. It allows the ABEND
routine to gain access to the abnormal dump
data set, SYSABEND (or SYSUDUMP).

If the caller is the ABEND routine, it
has issued an ENQ macro instruction to gain
exclusive use of the dump data set, on
which the terminated task's resources will
be dumped. But the data set may already be
enqueued for a subtask of the caller's
task. The subtask may have been set in
abnormal wait state (nondispatchable), as
part of a higher level termination, before
a DEQ macro instruction could be issued and
the data set dequeued. In this case, the
data set may be needlessly unavailable.

The ENQ routine, via its Autopurge sub
routine, makes available the dump data set
by releasing the QELS that represent pre
vious requests for its use. It does this
by removing from the resource queues all
QELs belonging to the current task and its
subtasks. The current ENQ request for the
dump data set can then be serviced. (For
information on the need for enqueuing the
dump data set, refer to "Processing During
ABEND9" in the chapter entitled "Termina~
tion Procedures.")

Increasing the Nonrolloutable Count: The
ENQ routine increases by a count of one the
"nonrolloutable count" (TCBNROC) in the
caller's job step TCB. It does this for
each reSOurce for which the ENQ macro
instruction is issued. To increase the
count, the ENQ routine invokes the Set Sta
tus routine (IGC079), via the STATUS macro
instruction. The "nonrolloutable count,"
when greater than zero, makes the job step
ineligible to be rolled out.

PROCESSING IN SYSTEMS WITH SHARED DASD:
When the shared DASD feature is included in
the system, the ENQ routine performs device
reservation functions in addition to its
normal functions. This section describes
the device reservation functions.

The RESERVE macro instruction must spec
ify a valid UCB address for a shared direct
access device. The ENQ routine checks the
UCB address, and if it is not valid issues
an ABEND macro instruction. This test fol
lows the verification of input addresses
that is a normal part of ENQ processing.

The QEL initialization function of the
ENQ routine is expanded for a reserve re
quest. When control of the requested
resource can be assigned to a task, the ENQ
routine places the UCB address in the QEL
and sets the QEL reserve flag. The reser-

Section 3: Task supervision 59

vecount in the specified UCB is then incre
mented by one.

The requested resource cannot be
assigned to perform a new task when the
following conditions occur:

• Resource is in use.

• Previous QEL on the queue is exclusive,
or the present request is exclusive.

• RET operand of the RESERVE macro
instruction specifies HAVE, NONE, or is
omitted.

Under these conditions, the ENQ routine
prepares for a task switch. It increments
the SVRB wait count by one, thus placing
the task for which the resource was
requested in a wait condition. The ENQ
routine places the address of the SVRB in
the QEL for subsequent use by the DEQ rou
tine. The need for a task switch is indi
cated and control is given to the
Dispatcher.

When the requested resource becomes
available because it is no longer needed in
the performance of another task, the DEQ
routine will remove the top QEL and deter
mine whether the task associated with the
new top QEL should be made ready. If it
should, the DEQ routine decrements the wait
count in the SVRB whose address is in the
new top QEL. When the wait count becomes
zero, the waiting task can be dispatched;
the ENQ routine then regains control. The
nreserve restartn subroutine of the ENQ
routine inserts the UCB address in the QEL,
sets the reserve flag, and increments the
reserve count in the UCB by one.

Signaling that the Use of One or More
Resources is Complete

When a program that previously issued an
ENQ macro instruction (or, in systems which
include the shared DASD feature, a program
which issued a RESERVE macro instruction)
and has been using an enqueued resource
completes its use, it issues a DEQ macro
instruction. The DEQ macro instruction,
via an SVC interruption (SVC 48), obtains
supervisor-assisted linkage to the DEQ rou
tine. This routine removes one or more
QELs, a minor QCB, or a major QCB from the
resource queues. It also reduces the RB
wait count for the waiting program whose
QELs are at the top of one or more QEL
queues. If the RB wait count becomes zero,
thus making ready the waiting program, the
DEQ routine invokes the Task Switching rou
tine. The Task Switching routine tests the
need for a possible task switch, and
branches to the Exit routine and the Dis
patcher to return control. The program
that receives control is either the caller

60

or the previously waitinq program, depend
ing on relative task priority. An addi
tional function of the DEQ routine, used
only by a supervisor routine, is to reset a
task in nmust complete n status, set pre
viously by an ENQ macro instruction issued
by the caller.

MAJOR FUNCTIONS: When the use of one or
more resources is signaled complete, via
the DEQ macro instruction, the major func
tions are:

• Updating the resource queues by dequeu
ing and freeing the queue element (QEL)
that represents the request for the
resource whose use is now complete. If
there are no more requests for the
resource, one or more queue control
blocks (QCBs) that represent the
resource are dequeued and their space
is freed.

• For the next requester represented on
the QEL queue, reduction of the wait
count in its SVRB, and testing if the
requester is ready to resume execution.

• Determining if a readied requester can
replace the caller as the next-to-be
executed routine. This involves a com
parison of TCB dispatching priorities
by the Task Switching routine.

• Returning control to the caller if no
readied requester's task is of higher
priority than the caller's. If a
readied requester's task is of higher
priority than the caller's, control is
returned to the requester instead of to
the caller.

Updating the Resource Queues: To update
the resource queues, the DEQ routine
searches for the QEL that represents a re
quest that should now be dequeued. It
first finds both a major QCB and a minor
QCB containing the specified resource
names. The routine then examines the QEL
queue associated with the specified
resource. If the caller's TCB address
matches that stored in one of the QELs log
ically at the top of its queue, the DEQ
routine dequeues the QEL and, via supervi
sor linkage to the FREEMAIN routine, frees
the space that the QEL occupies.

The DEQ routine examines the QCB queues
to determine if any QCE may be released.
If there are no more QELs queued to the
minor QCB for the resource, there are no
further requests for the resource, and the
minor QCE can be released. In this case,
the routine dequeues the minor QCB from its
queue and frees the space that it occupies.
It then examines the minor QCB queue to
decide whether the major QCB is no longer
needed and can be similarly eliminated. If

there are no minor QCBs queued to the major
QCB, there are no outstanding requests for
the entire set of resources. In this case,
the DEQ routine removes the major QCB from
its queue and frees its space. The routine
then processes in a similar manner any
other input parameters which represent QELs
to be dequeued.

Determining if the Next Waiting Reguester
Should be Readied: After the old top QEL
is dequeued, the DEQ routine determines if
the next waiting requester, represented by
the new top QEL, should be readied. The
decision is based on the type of new top
QEL, shared or exclusive, and on the type
of dequeued QEL. According to the result
of the decision, the SVRB wait count for
the waiting requester mayor may not be
reduced and tested for readiness (zero wait
count). The criteria and results for three
different situations are described in
E'igure 3-11.

If the new top QEL is associated with a
time sharing task that is not in main

storage (swapped-out), a TSEVENT macro
instruction with the USERRDY operand is
issued to indicate to the time sharing
driver that the time sharing task is to be
brought into main storage (swapped-in).

Determining if a Readied Reguester Should
Be Dispatched: For each SVRB whose awaited
resources are available, as indicated by a
zero RB wait count, the DEQ routine tests
whether the associated requester can be
dispatched. If the requester's task is of
higher dispatching priority than the call
er's, the requester may be dispatched in
place of the caller. E'or each SVRB that
has a zero wait count, the DEQ routine
invokes the supervisor's Task Switching
routine to compare dispatching priorities.
If the readied requester's TCB has a higher
priority than the caller's, the Task
Switching routine indicates this fact to
the Dispatcher by placing the requester's
TCB address in the "new" TCB pointer,
IEATCBP.

r-----------------------T-------------------------T-------------------------------------,
I Conditions I Status of QEL Queue I Resultant Processing I
~-----------------------~-------------------------A---__________________________________ ~
I Condition A I
I I
I dequeued QEL "shared" QEL Routine does not reduce I
I ------------------- wait count in ~equester's I
I new top QEL "shared" QEL RB. (Requester already I
I ------------------- has access to the resource.) I
I I
I ------------------- I
I I
I I ------------------- I I
I I
~---~
I Condition B I
I I
I dequeued QEL QEL of either type I Routine reduces wait count I

I ------------------- I in requester's RB and if I
I new top QEL "exclusive" QEL I new wait count is zero, it I
I ------------------- I invokes the Task switching I
I I routine to test whether the I
I ------------------- I requester may be dispatched I
I I instead of the caller. I
I I ------------------- I I
I I
~---~
I Condition C I
I I
I dequeued QEL "exclusive" QEL Routine reduces wait count I
I ------------------- in requester's RB and if I
I new top QEL "shared" QEL new wait count is zero, it I
I ------------------- invokes the Task Switching I
I routine. Since new top QEL I
I ------------------- is the first QEL of a I
I "shared" group, the routine I
I ------------------- repeats this procedure for I
I I I the other QELs of the group. I l ___ J

Figure 3-11. Determining if the Next Waiting Requester Should be Readied

Section 3: Task Supervision 61

Returning Control: The DEQ routine returns
control to the caller or a readied request
er, via the Exit routine and the Dispatch
er. The Exit routine dequeues the SVRB
from its RB queue and frees the space that
the SVRB occupies. The Dispatcher decides
whether to return control to the caller or
to a readied requester, depending on the
contents of the "new" TCB pointer, IEATCBP.
If the "new" TCB pointer contains the
address of the current TCB, the Dispatcher
returns control to the caller. Otherwise,
the Dispatcher returns control to the requ
ester whose TCB address is in the pointer.
In this case a task switch has occurred.

MINOR FUNCTIONS: When the use of one or
more resources is signaled complete, via a
DEQ macro instruction, the minor functions
are:

• If the "reset must complete" parameter
is present, the clearing of the "must
complete" status of the caller's task.

• Checking the validity of input address
es.

• Checking if a specified resource was
originally requested for any task.

• Checking if the caller has access to a
specified resource.

• Reducing the "enqueue count" in the
caller's TCB. The enqueue count is
tested during normal task termination
by the EOT routine to determine if all
resource requests for the task have
been dequeued. (See "Termination Pro
cedures.")

• Decreasing b¥ a count of one the "non
rolloutable count" (TCBNROC) in the
caller's job step TCB.

The Clearing of "Must Complete" Task Sta
tus: If the "reset must complete" parame
ter has been specified, the DEQ routine
restores multitask operation to the job
step or system, which temporarily had been
performing only the caller's task. This
restoration is done only if the caller is a
system routine (uses zero protection key).
If the caller is not a system routine, the
DEQ routine sets up an error code (330) and
inVOkes the ABEND routine to abnormally
terminate the caller'S task.

If "reset must complete" processing has
been performed during DEQ, a TSEVENT macro
instruction with the RELMC operand is
issued to indicate to the time sharing
driver that this processing has been
performed.

62

The DEQ routine clears the "must com
plete" nondispatchability flag (see Figure
3-10) in each TCB of the job step or sys
tem, depending on the scope. This action
allows the Dispatcher to restart routines
for previously nondispatchable tasks. The
DEQ routine also clears two flags in the
caller'S TCB. One flag, when cleared,
allows the Stage 3 Exit Effector to resume
the scheduling of user exit routines for
the caller's task. The other flag, when
cleared, permits the ABEND routine to
abnormally terminate the caller'S task, if
the need arises, instead of placing the CPU
in a disabled wait state (see Figure 3-10).
To clear the "must complete" status, the
DEQ routine invokes the Set Status routine
(IGC079), via the STATUS macro instruction.

Checking the Validity of User-Supplied Ad
dresses: The DEQ routine must check the
validity of a list of main storage address
es supplied by a user program. The ad
dresses point to names of resources or sets
of resources. But if entry is from a sys
tem routine, the assumption is that the
input parameters are valid, and no validity
check is made.

If entry is from a user program, as
indicated by a nonzero protection key in
the caller'S RB old PSW, the DEQ routine
checks input parameters via the supervi
sor's Validity Check routine. The Validity
Check routine tests the typical three
attributes of each input address. (For
details, see "Testing the Validity of User
Supplied Addresses.") If any of the validi
ty Checks fails, indicating that the caller
has incorrectly specified the address of a
resource, the DEQ routine sets an error
code (430) and issues an ABEND macro
instruction. The ABEND macro instruction
causes supervisor-assisted linkage to the
ABEND routine to abnormally terminate the
caller's task.

Determining if a Specified Resource Was
Originally Reguested for Any Task: If the
input parameters are valid, the DEQ routine
searches the QCB queues to determine if the
specified resource was originally requested
for any task. The resource may be dequeued
only if it was previously enqueued. If the
resource was enqueued, the resource names
are represented on the QCB queues, con
tained in a major and a minor QCB. But if
the two QCBS representing the resource can
not be found, a DEQ macro instruction has
been issued for a resource that was not
enqueued, or which has already been
dequeued. The DEQ routine recognizes an
error condition and reacts according to the
RET option, as shown in Figure 3-12. /

"

r-----------------------------------T---------------T-----------------------------------,
I IRET Operand of I I
I IDEQ Macro I I
I Condi tion I Instruction Is: I Resul tant Processing I
~-----------------------------------+---------------+-----------------------------------~
IResource names are not found in thel HAVE 1(1) Sets up return code of 8, in- I
IQCB queues, or a QEL containing the I Idicating that the resource is not I
Icaller's TCB address is not found. I I enqueued, and after processing I
I I lother parameter-list elements, I
I I Ireturns control to the caller, via I
I I I the Exit routine and the Dispatcher I
I ~---------------+-----------------------------------~
I I omitted 1(2) Sets up an error code of 130 I
I I or NONE land obtains supervisor linkage to I
I I I the ABEND routine to abnormally I
I I Iterminate the caller's task I
~-----------------------------------+---------------+-----------------------------------~
IQEL containing caller's TCB addressl HAVE ISame as (1) but return code is 4, I
lis found, but is not at the logical I I indicating that the caller's task I
Itop of the QEL queue, nor is it onel Idoes not have access to the I
lof a "shared" group of QELs at the I I resource. I
Ilogical top of the queue. ~---------------+-----------------------------------~
I I omitted ISame as (2) except that the error I
I I or NONE I code is 230. I L ___________________________________ L _______________ L ___________________________________ J

Figure 3-12. Error Conditions when Use of a Resource is Signaled Complete

Determining if the Caller Has Access to a
Specified Resource: The caller can right
fully dequeue a resource only if it has
access to it. To determine if the caller
has such access, the DEQ routine examines
the QEL queue associated with the resource.
The QEL containing the caller's TCB address
should be at the logical top of the queue,
or be one of a "shared" group of QELs at
the logical top of the queue. If neither
condition exists, the DEQ routine recog
nizes an error condition, as shown in
Figure 3-12.

Decreasing the "Nonrolloutable Count": The
DEQ routine decreases by a count of one the
"nonrolloutable count" (TCBNROC) in the
caller's job-step TCB. It does this for
each resource for whicn a DEQ macro
instruction is issued by a routine of the
job step. To decrease the count, the DEQ
routine invokes the Set Status routine
(IGC079), via the STATUS macro instruction.
When the "nonrolloutable count" is zero,
the job step is eligible to be rolled out
to satisfy an unconditional storage request
from a job step of another job.

PROCESSING IN SYSTEMS WITH SHARED DASD:
When the shared DASD feature is included in
the system, the DEQ routine performs device
release functions in addition to its normal
functions. This section describes the
device release functions.

A release request (a DEQ macro instruc
tion associated with a RESERVE macro
instruction) is indicated when the reserve
flag in the QEL is set. The DEQ routine
decrements by one the reserve count in the

UCB whose address is in the QEL; if this
reduces the count to zero, the associated
direct access device must be released. The
EXCP Interface subroutine of the DEQ rou
tine issues a GETMAIN macro instruction to
obtain space for the control blocks
required for the EXCP macro. When all con
trol blocks (lOB, DCB, ECB, DEB, CCW, AVT)
have been initialized, the EXCP Interface
subroutine issues an EXCP macro, followed
by a WAIT macro instruction.

The effect of the execution of the EXCP
Interface subroutine is that I/O activity
is initiated at the specified direct access
device. Because the reserve count was
reduced to zero before the I/O activity
started, lOS will phYSically release the
device.

When the WAIT macro instruction has been
satisfied, the EXCP Interface subroutine
regains control to remove the control
blocks it initialized. Normal DEQ process
ing then resumes.

The ABEND13 routine must also terminate
device reservations acquired through the
RESERVE macro instruction and not released
through a subsequent DEQ macro instruction.
These device reservations occur only in
systems with the shared DASD option.

Outstanding reservations are reflected
in the TCB enqueue count (offset 112 in the
TCB); the enqueue count indicates the num
ber of outstanding ENQ requests (that is,
it is not directly related to outstanding
reservations). When the enqueue count is
not zero, the ABEND13 routine branches to

Section 3: Task Supervision 63

the ENQ/DEQ Purge subroutine in the ENQ/DEQ
module. If shared DASD is included in the
system, this routine determines whether the
terminating task has outstanding device
reservations. The QEL indicates whether it
was created as a result of a RESERVE or an
ENQ macro instruction. If the result of
RESERVE, the device is released.

SCHEDULING A USER EXIT ROUTINE

A user program may request the future
execution of its exit routine to handle an
unpredictable event, such as an end-of-task
condition, expiration of a timer interval,
or special I/O handling (for example, tape
label checking or I/O error checking). The
scheduling of user exit routines (sometimes
called asynchronous exit routines> is han
dled by several supervisor routines: the
Stage 1 Exit Effector, the Stage 2 Exit
Effector, the stage 3 Exit Effector, and
the Exit routine. Note that these routines
do not schedule the execution of user pro
gram check routines. ABEND processing that
results from a program interruption can be
intercepted by a SPIE macro instruction or,
in the absence of SPIE, by a STAE macro
instruction. See "Specifying a Program
Interruption Exit Routine" for a descrip
tion of the SPIE routine. See "Specifying
a Task Asynchronous Exit Routine" in Sec
tion 10 for a description of the STAE
routine.

As shown in Figure 3-13, the handling of
a request for the future execution of a
user exit routine is a multipart procedure,
interwoven with the execution of programs
executed for other tasks. The procedure
begins when the user program originally
issues a request for an exit routine. The
user program makes the request via operands
in such macro instructions as ATTACH (ETXR
operand), STIMER, and DCB. A system rou
tine (for example, the Attach routine) then
issues a special system macro instruction
(CIRB). The CIRB macro instruction causes
the Stage 1 Exit Effector to construct an
interruption request block (IRB) to handle
future scheduling of the user exit routine.
In addition, the system routine constructs
an interruption queue element (IQE), which
stages 2 and 3 of the Exit Effector and the
Exit routine later manipulate to schedule
the execution of the user exit routine.
Data management routines, however, do not
construct IQES, since I/O queue elements
already exist. These elements are called
request queue elements (RQES) and are made
available h¥ the I/O Supervisor.

After the Stage 1 Exit Effector con
structs the IRB to represent the user rou
tine, no scheduling occurs until the unpre
dictable event takes place that requires
the exit routine. The Stage 2 Exit Effec-

64

tor, a supervisor subroutine, performs ini
tial scheduling of the user exit routine by
placing the previously constructed queue
element, an IQE or RQE, on its appropriate
exit queue. There are two such queues
whose elements represent requests to use a
particular exit routine. One queue con
tains IQES and represents requests to use a
routine such as a timer exit routine or an
end-of-task routine. The other queue
represents requests for data management
exits and contains only RQEs. These RQEs
are the same elements that the I/O supervi
sor uses to schedule I/O requests. Both
exit queues operate in first-in, first-out
order, with no regard to the task priority
of each program requesting the same exit
routine. When an element is placed on
either exit queue, the IRB that represents
an exit routine is not yet on a task's RB
queue and cannot yet be executed. The
placing of a queue element on an exit queue
by the Stage 2 Exit Effector is therefore
only a "bookkeeping" manipulation.

The Stage 3 Exit Effector completes the
scheduling of the user exit routine. Stage
3, a subroutine of the Dispatcher, removes
queue elements from either of the two exit
queues and places them on another queue
whose list origin is the IRB representing
the exit routine. The transferred queue
elements are thus queued for a specific
exit routine. Stage 3 completes the sched
uling of the user exit routine by placing
the IRB on the RB queue of the requesting
program's task. The exit routine, so
scheduled, can compete for CPU time with
programs being executed for other tasks.
When the requesting program's TCB, which
points to the IRB, has highest priority
among the ready TCBs, the Dispatcher loads
the IRB's old PSW to place the user exit
routine in execution.

When the user exit routine is complete,
it invokes supervisor-assisted linkage to
the supervisor Exit routine. The supervi
sor Exit routine removes the top queue ele
ment from the IRB's queue of request ele
ments. The removed element represents the
satisfied request for the user exit
routine.

After removal from the IRB's queue, the
queue element is returned to a free list.
If there are more elements on the IRB's
queue, representing other requests for the
routine, the Exit routine prepares for
later rescheduling of the IRB on the RB
queue of a different task. If there are no
more queue elements on the IRB's exit
queue, the Exit routine dequeues the IRB
from the TCB's RB queue and, if the IRB is
dynamic and not a system RB, frees the
storage occupied by the IRB. Thus, the
scheduling process, which began with the
construction of an IRB at macro-execution

User program requests, via macro-instruction,
the use of on exit routine (e.g., STIMER or
ATTACH).

~

System routine constructs queue element
(lOE), if needed, and if interruption request
block (lRB) does not already exist, issues
ClRB macro-instruction to create IRB.

{ SVC Interruption

Exit Effector, Stage 1

Constructs an IRB to be later used in
scheduling the execution of the user exit
routine

I

f Occurrence of the event
~/requiring the user exit

/ routine (e.g., expiration
;i of preset timer interval

I or an end-of-task)

+
Exit Effector, Stage 2

Performs initial schedul ing of user exit
routine by placing the queue element (lOE)
on its appropriate exit queue.

oIJ

Dispatcher

Recognizes that stage 2 has placed a queue
element on One of the exit queues. Passes
control to stage 3.

•
Exit Effector, Stage 3

Completes scheduling of user exit routine
by transferring the queue element
(representing request for the routine) from
an exit queue to a queue whose list origin
is the IRB for the routine. Places IRB on
the RB queue belonging to the requestor's
TCB.

~

Execution of
Programs for
Task A

Execution of
Supervisor
Routine

Execution of
Programs in
System, Based
on Task Priority

Execution of
Supervisor
Routines

Dispatcher

Returns control to a program belonging to a
task other than task A

i

..
Dispatcher

Gives control to the user exit routine
requested for task A

II
User Exit Routine

,
Exit Routine

Removes top queue el ement from I RB 's queue
and returns it to available list of queue
elements (If queue element is ROE, the
transfer to available list is done by the I/O
Supervisor; If queue element is an IOE for
rollout/roll in, the transfer to the avail abl e
list is done by the rollout/rollin module.)
If there is another element On IRB's queue,
prepares for later rescheduling of IRB on
RB queue of another TCB. If there are no
more queue elements on the IRBls queue,
removes IRB from its task's RB queue. If
IRB was dynamically acquired, frees
storage occupied by the IRB.

•
Dispatcher

Either passes control to an exit routine
requested for another task or returns control
to the current program of task A or another
ready task.

Execution of
Programs in
System, Based
on Task Priorit~

Execution of
Supervisor
Routine

}

Execution of
User Exit
Routine for
Task A

Execution of
Supervisor
Routines

Figure 3-13. scheduling of Asynchronous Exit Routines

time, ends with the possible release of the
IRB after the user exit routine is
complete.

The stage 1 Exit Effector (eIRB Routine)

The Stage 1 Exit Effector is a resident,
disabled, reenterable SVC routine that may
be called by a supervisor routine, such as
the Attach routine, or by a data management
routine. Its purpose is to create and
initialize, according to input parameters,
an interruption request block or IRE to
control a user exit routine whose future
use is requested by the caller. The rou-

tine obtains a work area, in which the
caller may construct interruption queue
elements (IQES), and optionally a 72-byte
register save area in which the user exit
routine may later save the registers of the
requesting program. The Attach SVC rou
tine, when it is executed, uses the work
area to construct both the new TCB for the
subtask and the IQE for the ETXR or end-of
task exit routine. The Stage 1 Exit Effec
tor obtains space for the IRE and the work
area, if requested, from supervisor queue
space, subpool 253. The work area follows
and is immediately contiguous to the IRB.
The register save area, if requested, is

section 3: Task Supervision 65

obtained from subpool zero of the user pro
gram's region of storage, and is therefore
not contiguous to the IRB and its work
area. After obtaining the needed storage
for the IRB and optional work and save
areas, the Stage 1 Exit Effector initial
izes the IRB, as shown in section 12. The
initialization is done according to flag
bits passed to the routine in register 1.
The information placed in the IRB during
the initialization includes the save area
address, the size of the IRB, the entry
point address of the user exit routine, and
the PSW to be loaded to start execution of
the user exit routine. When the Stage 1
Exit Effector completes the ~nitialization
of the IRB, it returns control to the cal
ling program via the supervisor Exit rou
tine and the Dispatcher.

The Stage 2 Exit Effector

When Stage 2 is entered, Stage 1 has
already created and initialized the IRB,
and the requesting system routine has
created and initialized the IQE. Stage 2
is entered as a subroutine by any supervi
sor routine wishing to schedule a user exit
routine. Two typical callers are the
supervisor EOT routine, during end-of-task
processing, and the Timer Second-Level
Interruption Handler, when a preset timer
interval has expired. Stage 2 places the
input queue element, whose address is
passed in register 1, onto either of two
exit queues. The queue element is queued
at the bottom of the appropriate queue. If
the input address appears in true form (a
positive address), Stage 2 places the queue
element on the queue of RQEs, (called AEQA)
used for scheduling data management exits.
If, however, the input address is in com
plement form, Stage 2 interprets the input
queue element as an IQE and places it at
the end of the IQE list (AEQJ), whose ele
ments are used to schedule non-data
management exits. (See section 12, "Con
'trol Blocks and Tables" for the format and
content of IQEs and RQES.) Stage 2 then
sets a Stage-3 switch (IEAODS01), which the
Dispatcher will test later to determine
whether to call Stage 3 to complete the
scheduling begun by Stage 2.

The Stage 3 Exit Effector

The Stage 3 Exit Effector operates as a
subroutine of the Dispatcher. Its purpose
is twofold: to transfer IQEs and RQEs from
their exit queues to queues belonging to
particular IRBs (and thus specific to a
particular user exit routine), and if pos
sible, to place these IRBs on the RB queues
of the attaching programs' TCBs. As soon
as an IRB is on an RB queue, the exit rou
tine represented by the IRB may (if task
priority permits) be placed in execution by
the Dispatcher. An additional function of

66

Stage 3 is to schedule a request (RQE) for
an I/O error routine by placing its system
interruption request block (SIRE) on a spe
cial high-priority system TCB.

Stage 3 is entered from the Dispatcher
if the Stage-3 switch (IEAODS01) has been
set by Stage 2, indicating that at least
one IQE or RQE is on an exit queue. (There
are two exit queues, one for IQES, the
other for RQEs.) Stage 3 begins by pro
cessing the IQE queue. If there are no
elements on the IQE queue, the routine then
processes the RQE queue.

If there is at least one IQE, Stage 3
performs some tests to determine if each
IQE on the queue may be removed from the
exit queue and placed on a queue belonging
to an IRB (which represents a particular
user exit routine). If any of the tests
indicates that an IQE should not be trans
ferred to an IRE queue, Stage 3 obtains the
next IQE on the list and repeats the tests.
One of the tests asks whether the IQE's
intended IRB is "active." (The IQE con
tains a pointer to its "intended" IRB.
(See Section 12, "Control Blocks and
Tables.") An IRB is considered "active" if
the IRB is already queued to a TCB. This
condition is indicated by the RBFACTV bit
in the RBSTAB field of the IRB. If the
IQE's intended IRB is already queued to a
TCB, that is, is "active", the routine ~hen
tests if the same TCB is specified by this
IQE. (The IQE contains a pointer to the
TCE for the task that needs the user exit
routine.) In other words, this test asks
whether the IRB that is already scheduled
(queued) is the intended IRB for this IQE.
If the IRB is queued to the correct TCB, or
if the IRB is inactive (not queued to any
TCE), Stage 3 removes the IQE from its exit
queue and queues it to the bottom of the
IRE's queue. (The list origin for the
IRB'S IQE queue is in the IRE and is called
the RBIQE field. See Section 12.) After
placing the IQE on the IRB's list of queue
elements, Stage 3 proceeds to initialize
the IRB as follows, in preparation for
entry to the user (asynchronous) exit
routine.

If the IRB is not already on the RB
queue of a TCB (as indicated by the pre
vious test of the RBFACTV bit in the IRB
status field), the routine places the IRB
on the appropriate task's RB queue. The
TCB then points to this IRB as the current
RB representing the routine next to be
executed for this task. Stage 3 then saves
register contents stored in the TCB (that
could later be overlaid and thus lost) by
moving the contents to the register save
area of the IRB. It initializes the PSW
and standard register settings for the user
exit routine. Then, to determine if the
newly queued IRB's task is of higher

priority than the current task, stage 3
invokes the Task Switching routine to test
if a task switch is needed. If a task
switch is needed, the Task switching rou
tine indicates this need to the Dispatcher.
It does this by placing the address of the
higher priority TCB in the nnewn TCB point
er (IEATCBP). The address of the nnewn TCB
pointer is contained in the CVT at location
CVTTCBP.

If there are one or more IQEs remaining
unprocessed on the IQE exit queue, Stage 3
processes these IQES in a manner similar to
that just described.

When all elements on the IQE queue have
been processed, Stage 3 processes the queue
of RQEs in a similar fashion. The reader
may recall that the RQEs, supplied by the
I/O Supervisor, are used to schedule I/O
exit routines. One feature of RQE process
ing is different from IQE processing, and
deserves special mention.

One or more of the RQEs may represent a
request by an I/O routine for the use of a
system error handling routine. When Stage
3 examines each element on the RQE queue,
it tests if the queue element represents a
request to use an error routine. The "F"
bit in each RQE indicates whether the RQE
represents such a request. (See format of
an RQE in Section 12.> If one or more RQES
represents requests for the use of an error
routine, Stage 3 performs special process
ing for these RQEs. Other RQES, not repre
senting requests for error routines, are
processed in a manner very similar to IQE
processing.

For each RQE representing a request to
use an error routine, Stage 3 tests first
whether a special system request block is
"active," that is, already queued to its
system error TCB. The system error TCB is
a permanent TCB of high priority whose cur
rent "dummy" RB is normally in a wait con
dition. The request block that represents
a system error handling routine is called a
system interruption request block, or SIRB.

If the SIRB is already queued to the
system error TCB, the "active n bit
(RBFACTV) is set in the SIRB's status
field. In this case, the error routine has
already been scheduled for another request.
The new request must then be deferred and
await the next execution of Stage 3, when
the Dispatcher is next entered.

If the SIRB is not "active," that is,
not queued to the system error TCB, Stage 3
clears the I/O error flag or 'F' bit in the
RQE. It removes the RQE from its asynchro
nous exit queue and queues it to the SIRB.
Stage 3 then initializes the SIRB. As part
of this initialization, it sets the RB old

psw to provide reentry to the "error fetch
sequence" (ERFETCH) of Stage 3.

Besides altering the RB old PSW, Stage 3
queues the SIRB to the system error TCB.
The error TCB now points directly to the
SIRB, instead of to its permanent dummy RB.
When all RQEs on the asynchronous exit
queue have been processed, the Dispatcher
will cause reentry to Stage 3 at entry
point ERFETCH, under control of the system
error TCB.

If Stage 3 did not complete the process
ing of RQEs at the time it discovered a re
quest for a system error routine, it now
completes the processing of other RQEs.
<If an RQE represents a request for an I/O
error routine, the 'F' flag appears set in
the RQE.) After Stage 3 queues the SIRB to
the system error TCB, it defers subsequent
error requests on the RQE queue. These
requests are not processed until the SIRB
becomes "inactive," removed from its TCB
during Exit routine processing.

In MVT with Model 65 multiprocessing,
the TCB indicated by the IQE or RQE may be
the current TCB on the second cpu. If it
is, control is passed to the SHOLDTAP rou
tine which interrupts the second cpu with
an indication that the Dispatcher is to
gain control on the second cpu and place
the IRB on the appropriate RB Queue.

After processing the two lists, IQEs and
RQES, Stage 3 returns control to the Dis
patcher. The Dispatcher passes control to
the interrupted program belonging to the
current task, or to a user exit routine
belonging to another task, or to the Stage
3 Exit Effector at entry point ERFETCH to
begin the loading of an error routine.

TSO processing

If an IQE exists, the Stage 3 Exit Effe
ctor determines the type of IRB associated
with it. If the IRB is not an inactive
attention IRB, processing continues as
described above. If it is an inactive
attention IRB, the TCB associated with this
IRB and all lower tasks in this user's task
structure are checked to determine whether
attention exits and asynchronous exits are
permitted. If not, processing continues as
described above. If these exits are per
mitted, the IQE is scheduled by queueing
the IQE to the IRB in first-in first-out
order.

FETCHING AN ERROR ROUTINE: ERFETCH is the
entry point to a so-called "error fetch
sequence" that performs for error routines
the function that the Transient Area Fetch
routine performs for transient SVC rou
tines. That is, the nerror fetch sequencen
searches for the desired error routine and,

Section 3: Task Supervision 67

if necessary, fetches it to the I/O Super
visor transient area.

The error fetch sequence first compares
the SIRB name field, which contains the
name of the previously executed error rou
tine, to the name field of the currently
required error routine. If the names
match, the error fetch sequence links to
the previously determined entry point for
the error routine.

If the names do not match and if the
resident error recovery procedure option
was selected during system generation, the
name of the required error routine is com
pared with the name of the error routine
last fetched into the I/O supervisor error
transient area. If these names match, the
error fetch sequence links to the start of
the I/O supervisor transient area. If the
names do not match, the chain of CDEs that
describe the error routines made resident
during nucleus initialization is searched.
If the name field in one of the CDEs on
this chain matches the name of the required
error routine, the error fetch sequence
obtains the entry point address for the
resident error routine and links to this
address.

If the resident error recovery option
was not selected during system generation
or if the required error routine is not
resident, the error fetch sequence invokes
the BLDL routine to get data set directory
information in preparation for fetching the
I/O error module.

If the BLDL routine encounters a per
manent I/O error, the error fetch sequence
recycles the BLDL operation up to five
times. The total count of recycles of BLDL
and FETCH operations (see below) for one
use of the error fetch sequence cannot
exceed five. The recycle count is kept in
the error fetch sequence's work area; it is
reinitialized after each use of the error
fetch sequence. If the permanent I/O error
persists after five recycles of the BLDL
operation, the error fetch sequence passes
control to the Dynamic Device Reconfigura
tion SYSRES Effector, if DDR SYSRES support
is in the system. DDR SYSRES returns con
trol to the error fetch sequence with a
return code of 0 or 4. If the return code
is 0, the BLDL operation is recycled again
once. If the return code is 4, the error
fetch sequence sets up an error code (806)
and branches to the ABTERM routine. If the
renewed attempt to recycle the BLDL opera
tion results in a permanent error, DDR SYS
RES is not invoked again. Instead, per
manent error processing takes place; the
error fetch sequence sets up an error code
(806) and branches to the ABTERM routine.
The ABTERM routine schedules abnormal ter
mination of the task for which the error

68

routine was requested. The error fetch
sequence then returns control to the cur
rent routine of the highest priority ready
task, via the Exit routine and the
Dispatcher.

If there is no error during execution of
the BLDL routine, the error fetch sequence
branches to the supervisor's Program Fetch
routine to load the error routine. If no
error is detected during the fetch process,
the error fetch sequence links to the entry
point address of the I/O supervisor tran
sient area. If, however, the FETCH routine
encounters a permanent I/O error, process
ing continues as for BLDL (see above),
except that the error fetch sequence posts
a completion code of B06 when control must
be passed to ABEND.

The Exit Routine

This discussion of the Exit routine
includes only that part of its processing
that affects the scheduling of user (asyn
chronous) exit routines. Other aspects of
its processing are described later in the
topic entitled nExiting Procedures. n

The Exit routine, among its other func
tions, deletes the scheduling performed by
the three Exit Effectors. The Exit routine
is given control by the SVC FLIH after a
user exit routine has issued a RETURN macro
instruction. For both types of RBs -- SIRB
and IRB -- if there are no other requests
(queue elements) for the user exit routine,
the Exit routine removes the RB from its
TCB. If the RB is an IRB, and therefore
was dynamically acquired by a GETMAIN macro
instruction, the Exit routine frees the
storage occupied by the IRB. The top IQE
or RQE, representing a request for the user
exit routine, is removed from the IRB's
list of queue elements, since the request
has been satisfied and is no longer needed.
If there is a list of available unscheduled
queue elements, the Exit routine returns
the removed element to the "availablen
list. If, however, another element remains
on the RB's queue, representing an addi
tional request to use the asynchronous exit
routine for another task, the Exit routine
prepares for future reentry to the exit
routine and does not remove the RB from its
TCB. In all cases except the last, the
Exit routine branches to the Transient Area
Refresh routine. If the asynchronous exit
routine must be reentered for another re
quest, the Exit routine branches to the
Dispatcher.

The above discussion is an overview of
the Exit routine's role in the scheduling
of user (asynchronous) exit routines. A
more detailed description of the same pro
ceSSing follows.

The Exit routine first determines the
type of RE under which the caller (RETURN
issuing program) is operating. If the type
is either SIRE or IRB (as indicated by the
RBFTP bits in the RBSTAB field), the Exit
routine assumes that the RETURN-issuing
program, or caller, is a user exit routine.
If the caller's RB is an SIRB, which means
that the RETURN-issuing program is a system
error routine, the Exit routine branches to
the routine that removes an RB from its TCB
and tests whether to free the RB's storage
space. Since the SIRB is a permanent RB,
its space is not freed. But the SIRB is
removed from the system error TCB. since
there are no further requests for the error
routine (no RQEs queued to the SIRB). the
Exit routine branches to the Dispatcher to
return control to the current routine of
another task.

If the caller's RB is an IRB, the
returning program is a user exit routine
and not a system error handling routine.
In this case the Exit routine performs more
elaborate proceSsing. It first checks the
type of queue element at the top of the
IRB'S queue to determine if the element is
an IQE or an RQE. (A queue can contain
only one type, not both.) The Exit routine
makes this check by testing the RBSTAB sub
field called RBFIQETP, which indicates the
type of elements queued to the IRE: RQES
or IQES. (Refer to Section 12 for the for
mats of this RB field.)

If the IRE's queue contains one or more
RQES, the Exit routine removes the top RQE
(no longer needed) and places the RQE on a
list of available RQES for use by the I/O
supervisor. The Exit routine obtains this
requeuing by branching to an entry point
(INT02S) to a section of the I/O supervisor
that returns RQEs to an available list for
future use. The Exit routine then tests
whether another RQE is on the IRB's queue,
representing an outstanding request for use
of the I/O exit routine by a program
belonging to the same task. If another RQE
is on the queue, the Exit routine initial
izes registers to prepare for future reen
try to the user exit routine and branches
to the Dispatcher.

If in its test of the RQE queue, the
Exit routine finds that there are no other
RQEs on the IRB's queue, it performs pro
cessing somewhat similar to that performed
for an SIRB. The routine transfers the
contents of the caller's registers from the
IRB to the TCB's save area and removes the
IRE from the RE queue belonging to its TCB,
since there are no further requests for the
Exit routine and the IRB is no longer
needed. The Exit routine then tests wheth
er the space occupied by the IRB may be
freed. The test consists of checking the
RBFDYN bit in the IRB. If the bit shows

that the IRB was dynamically acquired and
is not a permanent RB (such as the SIRE)
the block may be freed. If the IRB was
dynamically acquired, the Exit routine
frees its storage area by invoking the
FREEMAIN routine, and branches to the Tran
sient Area Refresh routine. The Dispatcher
returns control to the current program
belonging to the user exit routine's task,
when that task next becomes the highest
priority ready task. The PSW for this pro
gram is contained in the next RB on the
TCB's RB queue, after the IRB has been
removed from the RB queue.

If the previous test of the type of
queue element on the IRE's queue indicated
an IQE, a request for a non-I/O exit rou
tine, the Exit routine tests for a zero
"use count. n The use count (stored in the
2Sth byte of the IRB) indicates to the Exit
routine the number of outstanding requests
to execute the same user exit routine. For
example, successive ATTACH macro instruc
tions issued for a parent task may have
specified in the ETXR operand the use of
the same end-of-task routine for different
subtasks. If the IRE use count is not
zero, the Exit routine decreases by one the
use count to indicate the remaining number
of requests, not yet scheduled, for the
user exit routine.

After decreasing the use count, or if
the use count is already zero (indicating
no outstanding requests for the user exit
routine), the Exit routine removes the top
IQE from the IRB. This is done because the
represented request has been serviced. The
Exit routine then tests whether the user
program has provided a work area at the end
of the IRB. It also tests whether the user
program wants the IQE to be queued on a
"next available" list. The IQE may be
queued in the work area as an "available n

element for use by the stage 2 Exit Effec
tor in scheduling a new request.

The Exit routine tests for the existence
of the work area by determining the size of
the IRB. A work area exists if the size
exceeds 93 bytes (12 doublewords, as indi
cated by the RBSIZE field of the IRB). The
exit routine then determines whether to
queue the IQE to the "next available" list
(RBNEXAV). If the RBFIQETP field is '11',
it queues the IQE to the "next available"
list. Otherwise, the routine continues
processing.

The Exit routine next tests for another
IQE on the IRB's queue of IQES. The pro
cessing from this point is similar to that
for RQES, previously discussed.

Finally, after either initializing reg
isters far reentry to the user exit rou
tine, or removing the IRB and freeing its

Section 3: Task Supervision 69

storage, the Exit routine branches to the
Transient Area Refresh routine. The Tran
sient Area Refresh routine determines that
the exiting routine is not a transient SVC
routine. It then returns control to the
Dispatcher. The Dispatcher returns control
to either the user exit routine or another
routine. The other routine may be the rou
tine that was interrupted by the timer, if
a timer interruption had occurred; or it
may be the current routine belonging to
another task.

SERVICES INTERNAL TO THE SUPERVISOR

Supervisor internal services consist of
testing and indicating the need for a task
switch, testing the validity of user
supplied addresses, and changing the status
of tasks. In a multiprocessing system,
additional supervisor internal services
include determining the relative priority
of tasks, testing the dispatchability of
tasks, and initiating an external interrup
tion in a second CPU.

TESTING AND INDICATING THE NEED FOR A TASK
SWITCH

The Task switching routine is one of the
subroutines used by a number of supervisor
routines. The routine determines whether a
newly readied task, which may be of higher
priority than that of the caller's, should
be dispatched in place of the caller's
task.

The routine is entered if a supervisor
routine has reduced to zero a program's RB
wait count, or has cleared a non
dispatchability flag in a TeB. For
example, the Post routine may make ready a
program that was awaiting the completion of
an I/O operation, or the DEQ routine may
make ready a program that was awaiting a
serially reusable resource. In either
case, the supervisor routine does not know
if the readied routine belongs to a task of
higher priority than that of the caller,
and whether it should replace the caller as
the currently dispatchable program.

To answer this question, the supervisor
routine branches to the Task Switching rou
tine. The Task Switching routine compares
the dispatching priority of the readied
routine'S TCB with that of another TCB.
The other TCB is either the caller's TeB or
the TeB for another readied routine,if more
than one routine has just been readied (for
example, during DEQ processing). According
to the result of the comparison, the Task
Switching routine places the address of the
higher priority TCB in the "new" TCB point-

70

er IEATCBP.1 Later the Dispatcher
references this TCB pointer to determine
the task and routine it should dispatch.

A detailed discussion of the operation
of the Task Switching routine follows.

Upon branch entry from the calling
supervisor routine, the Task Switching rou
tine compares the dispatching priority of
the readied routine'S TCB, passed as an
input parameter, with the dispatching
~riority of another TeB. The address of
the other TCB -- either the current TCB or
the TCB of a recently readied routine -- is
stored in either half of the doubleword TCB
pointer at location IEATCBP. The address
stored in the first word, the "new" TCB
pointer, has two possible values: zero, or
the address of a TCB for a previously
readied task.

If the first word of the TCB pointer
contains zero, the Task Switching routine
compares the dispatching priority of the
current TCB with that of the TCB for the
newly readied routine. But if the first
word of the TCB pointer is not zero, the
routine compares the dispatching priority
of a previously readied task, whose TCB
address is in the "new" TCB pointer, with
the dispatching priority of the TCB for the
newly readied routine. (In this case, the
Task switching routine has been invoked
more than once after the same interrup
tion.) If the priority of the newly
readied task is higher than that of the
other, the Task Switching routine stores
the address of the readied TCB in the "new"
TCB pointer (IEATCBP) and returns control
to the invoking routine. Later the Dis
patcher dispatches the current routine
whose TCB address has been placed in the
"new" TCB pointer. But if the priority of
the readied (input) TCB is lower than that
of the other TCB, the Task Switching rou
tine does not change the TCB pointer. It
merely returns control to the calling
supervisor routine. In this case, the Dis
patcher, when it gains control, dispatches
the current routine for any of three possi
ble ready tasks: the current task, if the
"new" TCB pointer (IEATCBP) points to the
current TCB; a previously readied task, if
a previous use of the Task Switching rou
tine has placed the TCB address in IEATCBP;
or another task found by a scan of the TCB
queue, if IEATCBP contains zero.

A special case exists in which the Task
Switching routine cannot make a comparison
between TCB priorities. This is the case
if the two TCBs have the same dispatching

1The address of the "new"TCB pointer is in
the communications vector table (CVT) at
location CVTTCBP.

priority. If the time-slicing feature is
included in the system, the Task Switching
routine tests the time-slice bit (TCBFTS)
in the TCE. If the bit is set, the Task
switching routine returns control to the
calling supervisor routine without changing
the TCB pointer. In this case, the Task
switching routine must search down the TCE
queue to discover which TCB is at a higher
relative position on the queue. It begins
its search with the TCB pointed to by
IEATCBP or, if this location contains zero,
with the current TCB. The address of the
input or newly readied TCB is stored in the
"new" TCB pointer only if the input TCB is
not found below the other TCB on the queue.
Otherwise, the routine does not change the
TCE pointer.

In IvlVT with i-lodel 65 multiprocessing,
the Task Switching routine also determines
if the newly readied task should be dis
patched in place of the current task on the
second cpu.

If the first word of the TCB pointer of
either cpu contains zeros, zeros are also
placed in the first word of the second
CPU's TCE pointer. -Later, the Dispatcher
searches from the top of the TCB queue to
find the two highest priority ready tasks.

If the first word of the TCB pOinter of
neither cpu contains zeros, control is
passed to the Relative Priority routine
(RELPRIOR) to compare the dispatching
priorities of the two TCBs whose addresses
are in the first words of the TCB pointers.
'l'he TCB with the lower dispatching priority
is compared with the newly readied TCB. If
the priority of the newly readied task is
higher, the address of the readied TCB
replaces the address of the other TCB in
the first word of the TCB pointer.

The Task switching routine then deter
mines if the TCB to be dispatched on the
executing cpu is the current TCB on the
second cpu or vice versa. If so, the ad
dresses in the first word of each TCB
pointer are interchanged.

The Task Switching routine then returns
control to the calling supervisor routine.
Later the Dispatcher decides the program to
be executed, as described above.

TESTING THE VALIDITY OF USER-SUPPLIED
ADDRESSES

Supervisor routines use the Validity
Check routine as a subroutine to check main
storage addresses passed as input parame
ters by user programs. The Validity Check
routine tests the following attributes of
each input address: fullword boundary
alignment (optional), whether the address

lies within the boundaries of main storage,
and if the address specified a storage area
whose storage protection key matches the
protection key in the TCB of the calling
main line program. If any of these tests
fails, the routine informs the invoking
supervisor routine by altering the condi
tion code of the current PSW. Since the
calling main line program has made a
serious error, the invoking supervisor rou
tine abnormally terminates the current
task. Thus, the source of programming
error is indicated at its point of occur
rence, avoiding a program check during
later processing. such a program check
might be difficult to diagnose. If it
occurred during queue manipulation, the
queues might be seriously disrupted, thus
interfering with the performance of the
other tasks.

CHANGING THE STATUS OF TASKS

The Set Status routine is invoked, via
supervisor linkage (SVC 79), through use of
the STATUS macro instruction. The routine
is entered either from the SVC First-LeVel
Interruption Handler, or via a branch from
a Type-1 SVC routine. (A Type-l SVC rou
tine may not cause an SVC interruption.)

When a user issues a STATUS macro
instruction with the START or STOP operand,
the Set status routine determines if the
specified subtask of the current task or
all subtasks of the current task are to be
modified. When START is specified, the
stop/start count is decremented in the sub
task TCB(s) and the nondispatchability
flags are cleared if the count is zero.
When STOP is specified, the stop/start
count is incremented in the subtask TCB(s)
and the nondispatchability flags are set.
Any option other than START or STOP must be
specified by a caller running with a pro
tection key of zero. A task is set nondis
patchable only if no system routines are
executing for it as indicated by the TCBATT
flag. If a system routine is executing for
the task, the TCBSTPPR flag is set to ind
icate that this task should be made nondis
patchable when it no longer has a system
routine executing.

Routines with a protect key of zero can
use the Set Status routine (IGC079) to set
or reset the status of particular tasks.
The affected task status can be either the
"nonrolloutable" status, the "must com
plete" status, or the "nondispatchability"
status.

The Set Status routine sets (or resets)
the following conditions for a task or a
group of tasks:

Section 3: Task supervision 71

• "Nonrolloutable" status, so that the
tasks of the job step are ineligible
(or eligible) to be rolled out.

• "Must complete" status, so that other
tasks of the job step or system are
made nondispatchable (or dispatchable)
while the current task is being
performed.

• "Nondispatchability" status, so that
the routines of the tasks cannot (or
can) be restarted by the Dispatcher.

setting or Resetting the Nonrolloutable
status

When entered via the macro instruction
STATUS SET, NR, the set status routine adds
'one' to the nonrolloutable count (TCBNROC)
in the job-step TCB. The step TCB is eith
er that associated with the specified TCB,
or that associated with the caller's TCB
(if'S' or no TCB address is specified).
The nonrolloutable count is later tested by
the rollout/rollin module to determine if
the job step is eligible to be rolled out.
A job step is eligible to be rolled out if
its nonrolloutable count is zero.

When entered via the macro instruction
STATUS RESET, NR, the routine subtracts
'one' from the nonrolloutable count in the
job-step TCB. (The particular job step is
defined in the previous paragraph.) The
Set Status routine schedules linkage to the
rollout/rollin module to restart deferred
rollout requests, if the nonrolloutable
count becomes zero while there is at least
one element on the rollout request queue
(IEAROQUE). If such scheduling is needed,
the routine obtains an interruption queue
element (IQE), via the GETIQE routine in
module IEAQPRTO, and branches to the Stage-
2 Exit Effector to place the IQE on the
asynchronous exit queue (AEQJ).

Setting or Resetting the "Must Complete"
Status

When entered via the macro instruction
STATUS SET, MC, [STEP] [SYSTEM], the Set
Status routine sets the caller's task in
"step" or "system" must complete status.
(If the RESET operand is specified, the
"must complete" status that was previously
set is cleared.) The routine sets the must
complete flag in the current TCB, the "pro
hibi t asynchronous exits" flag in the cur
rent TCB, and the step or system must com
plete nondispatchability flag in other TCBs
of the job step or system. (For the names
and meanings of these flags, see Figure
3-10 in "Serializing the Use of a
Resource. ")

In MVT with Model 65 multiprocessing,
after the caller's task has been set in

72

must complete status, control is passed to
the Task Removal subroutine. The Task
Removal routine (TESTDSP) determines wheth
er the current task on the second CPU has
been set nondispatchable, and, if it has,
interrupts the second CPU with an indica
tion (in STMASK) that the Dispatcher rou
tine must gain control. If the RESET
operand is specified, after the must com
plete status is cleared, the Set Status
routine indicates to the Dispatcher that
the TCB queue must be searched from the top
to find the two highest priority ready
TCBs. This is done by setting the "new"
TCB pointer (IEATCBP) of both CPUs to zero.

Setting or Resetting Nondispatchability

When entered via the macro instruction
STATUS SET, ND, [STEP] [SYSTEM] [tcbloc
addrx],(nn), the Set Status routine sets
the specified nondispatchability flag or
flags in the specified set of TCBs. (If
RESET is specified, the specified nondis
patchability flag or flags are cleared in
the specified set of TCBs.) Three sets of
tasks can be specified: the system, the
job step, or a specified task and its
descendants. If SYSTEM is specified, all
tasks of the system are set nondispatchable
except the current task and the permanent
system task.~ If STEP is specified, all
tasks of the job step are set nondispatch
able except the current task and the job
step's initiator. If a TCB address
(tcbloc-addrx) is specified, the task and
its descendants are set nondispatchable.

The particular nondispatchability flag
or flags that are set (or cleared) in each
TCB depend on the mask bit number (nn)
specified in the STATUS macro instruction.
(See Figure 3-14.)

In MVT with Model 65 multiprocessing,
after the nondispatchability flags have
been set, control is passed to the Task
Removal (TESTDSP) subroutine which deter
mines whether the current task on the
second CPU has been set nondispatchable.
If it has, the second CPU is interrupted
with an indication (in STMASK) that the
Dispatcher routine should gain control.

DETERMINING THE RELATIVE DISPATCHING
PRIORITIES OF TASKS

The Relative Priority subroutine (entry
~oint RELPRIOR) is used by the Task Switch
ing and Dispatcher routines in MVT with

1The permanent system tasks are: the tran
sient area fetch tasks, the system error
task, the rollout/rollin task (if the rol
lout feature is present), the communica
tions task, and the master scheduler task.

Model 65 multiprocessing to determine which
of two TCBs has the higher dispatching
priority. Condition codes indicate the
results as follows:

Code
-0-

1
2

Indication
They are the same TCB.
Second TCB has higher priority.
First TCB has higher priority.

If the dispatching priority of both TCBs
is equal, the RELPRIOR routine searches
down the TCB queue, starting with the first
TCB being compared, to determine which TCB
is at a higher position on the queue. The
TCB nigher on the queue has the higher dis
patching priority.

TESTING THE DISPATCHABILITY OF TASKS

The Task Removal subroutine (entry point
TESTDSP) ensures, in MVT with Model 65 mul
tiprocessing, that a task which has been
set nondispatchable by a routine on one CPU
does not continue to run on the second cpu.
The address of TESTDSP is contained in the
multiprocessing CVT.

The Task Removal routine first deter
mines if the TCB whose address is in the
"old" TCB pointer (IEATCBP+4) for the
second cpu has been set nondispatchable.
If it has, the First cpu Signal routine is
invoked to cause the Dispatcher routine to
gain control on the second CPU. After the
Dispatcher on the second CPU has stored the
status of the "old" TCB, the Task Removal
routine determines if the "old" TCB for
this CPU or the "new" TCB for either CPU
has been set nondispatchable. If so, the
"new" TCB pointers (IEATCBP) for both CPUs
are set to zero. This causes the Dispatch
er to search from the top of the TCB queue
to find the two highest ready tasks.

INITIATING AN EXTERNAL INTERRUPTION IN A
SECOND CPU OF THE MODEL 65 MULTIPROCESSING
SYSTEM

The First CPU Signal and SHOLDTAP sub
routines are used by supervisor routines in
MVT with Model 65 multiprocessing to cause
one CPU to externally interrupt the other
cpu. As a result of the external interrup
tion, a routine specified in the word
STMASK receives control on the interrupted
CPU (see description of External FLIH rou~
tine). The word STMASK is located in the
PSA, and the bit designating the routine to
receive control on the interrupted CPU is
set in STMASK by the calling routine. The
address of the SHOLDTAP routine is con
tained in the multiprocessing CVT.

The SHOLDTAP routine first tests the
pending bit, bit 0 in the STMASK byte, to
determine if the previous external inter
ruption has been processed and the bit
reset to zero by the External FLIH routine.
If it is set to 1, the interruption has not
been processed, and control is returned to
the calling routine. Otherwise, bit 0 is
set to 1, and a WRITE DIRECT instruction is
issued. This instruction causes an exter
nal interruption in the other CPU.

The First CPU Signal routine (entry
point FLASH) is used when the interrupted
CPU must perform an immediate service for
the first cpu. After issuing a WRITE
DIRECT instruction, the First CPU Signal
routine tests the word STMASK to determine
if the external interruption has been pro
cessed and the immediate service performed.
(The appropriate bit in STMASK is cleared
by the External FLIH routine after the ser
vice has been performed.) Control is
returned to the calling routine only after
the immediately requested service has been
performed.

Section 3: Task Supervision 73

r--------T---------T-------r--,
I I IOffset I I
IMask Bitl lof Flag I I
I Number IFlag Namelin TCB I Meaning of Flag I
r--------+---------+-------+--~

I
I
I
I
I
I
I
I
I
I
I
I

1 I TCBNDUMPI 32.0 I This task is nondispatchable while the resources of a task I
I I I in this job step are being dumped. I
I I I I

2 I TCBSER I 32.1 I This task is nondispatchable while the SER1 routine is I
I I I being executed for this task. I
I I I

3-6 I I Reserved. I
I I I

7 I 32.6 I This task is nondispatchabl,ewhile VARY or QUIESCE process-I
I I ing is being performed in a Model 65 Multiprocessing System.

I
8 TCBONDSP 32.7 I This task is nondispatchable while the dump data set is

9 TCBFC 33.0

10 TCBABWF 33.1

11 TCBWFC 33.2

12 TCBFRO 33.3

13 TCBSYS 33.4

14 TCBSTP 33.5

15 TCBFCD1 33.6

being opened for another task in the same job step.

This task is nondispatchable because it has been normally
or abnormally terminated.

This task is nondispatchable as part of a tree of tasks
that is being abnormally terminated.

This task is nondis pat chabl e because it is waiting for
requested storage space.

This task is nondispatchable because it is part of a rolled
out job step.

This task is nondispatchable while another task in the sys
tem is in "system must complete" status.

This task is nondispatchable while another task in the same
job step is in "step must complete" status.

This task is nondispatchable because it is an initiator
that is waiting for a requested region of main storage.

I 16 I Reserved. I L ________ ~ _________ ~ _______ ~ __ J

Figure 3-14. Mask Bit Numbers Used in the STATUS Macro Instruction

74

The contents superv~s~on feature of the
supervisor determines the location of
requested programs, fetches the programs to
main storage if necessary, and schedules
the execution of these programs·fortheir
tasks. As a byproduct of these functions,
records are kept of all programs in main
storage.

Contents Supervision consists of two
types of functions: common functions and
special functions. The cornmon fUnctions
satisfy requests for linkage to a module or
requests to fetch a module to main storage
for future use. These common functions are
requested by the LINK, LOAD, XCTL, SYNCH,
and ATTACH macro instructions. These func
tions are performed by a group of subrou
tines called the "cornmon subroutines." The
special functions satisfy a particular
request from a system or user routine, or
assist one of the cornmon functions.
bxamples of special functions are the iden
tification of an embedded module entry
point, or the loading of a segment of a
module in overlay mode.

The cornmon functions consist of:

• Searching for the requested module in
the contents directory.

• Creating, if necessary, a contents
directory entry (CDE) to describe the
requested module, placing descriptive
information in the CDE from the input
parameters of the request, and queuing
the CDE on the appropriate contents
directory queue.

D Testing the module's status to deter
mine if it is available for use. The
module's status is tested if a CDE is
found in one of the contents directory
queues or if a BLDL procedure is per
formed for the module.

• Causing the fetching of a module that
is not in main storage or that is not
reusable.

G Determining the relocated alias entry
point and updating the appropriate con
tents directory queue if the module re
quest specifies an alias entry point.

• Deferring the request if the module is
not available.

• Restarting a deferred request when the
module becomes available.

SECTION 4: CONTENTS SUPERVISION

D Scheduling execution of the module by
creating a program request block (PRB),
and placing it behind the current SVRB
on the caller'S RB queue.

The special functions are used to assist
one of the common functi ons or to perform a
specialized service. Special processing is
performed for a LOAD request, and for an
XCTL request issued by an SVC routine.
Through the servicing of an IDENTIFY re
quest, the supervisor is informed of an
embedded entry point within a specified
module. Through the servicing of a DELETE
request, the supervisor is informed that a
module fetched because of a LOAD request is
no longer needed in main storage. If a
module must be loaded in overlay mode, the
Overlay supervisor is invoked to prepare
for and control the loading of the appro
priate segments. Lastly, the actual load
ing of a module, although requested by
other contents supervision components, is
performed by the Program Fetch routine.
This routine acts as a loader for Contents
Supervision, the Transient Area Fetch rou
tine, the Overlay supervisor, and the Stage
3 Exit Effector.

THE COMMON FUNCTIONS OF CONTENTS
SUPERVISION

The first part of this section describes
the cornmon functions in the sequence in
which they are performed by the supervisor.
The second part of the section describes
each major function in greater detail in
the logical order previously listed.

GENERAL DESCRIPTION OF THE COMMON FUNCTIONS

The cornmon subroutines are entered from
the svc SLIH because of a LINK, LOAD, XCTL,
or ATTACH request. If the entry is because
of an ATTACH request, the program for which
linkage is desired is the first program to
be executed for the new subtask, as speci
fied by the ATTACH macro instruction. (See
"Attaching a Subtask" in Section 3, "Task
Supervision.")

Contents Supervision performs initiali
zation and input processing peculiar to the
type of module request. Then the request
is serviced by a group of common subrou
tines which locate the requested module,
determine its status, and test whether it
is available. A module is available if it
is in main storage and is either reenter
able, or serially reusable but not in use,

Section 4: Contents Supervision 75

or is nonreusable but not yet used. If the
lllodule is available, its execution is
scheduled. If it is not available, it is
fetched from auxiliary storage and then
scheduled. If, however, the module cannot
be fetched, the request is deferred.

In systems that include Main storage
Hierarchy Support, contents supervision
service routines for LINK, LOAD, XCTL, and
ATTACH requests direct program loading into
the appropriate hierarchy in main storage.
These service routines, upon entry from the
SVC SLIH, extract the hierarchy number from
the parameter list and, if a copy of the
requested program is to be loaded, pass the
number to the Program Fetch routine. The
GETMAIN request later uses the number when
it allocates storage for program loading.

If hierarchy is not specified in the
LINK, LOAD, XCTL, or ATTACH request, the
Program Fetch routine loads the program
into the hierarchy or hierarchies as stated
in the scatter table. The hierarchy number
(0 or 1) is included in the GET MAIN request
issued for each CSECT of the requested
module.

Allocation of an Available Module

If a module is available for immediate
allocation, the "use/responsibility" count,
which records the number of outstanding
requests for the module, is increased and
the module is "allocated" to the requester.
The expression "allocated" means different
things, depending on the type of request.
For a LOAD request, allocation means ensur
ing that a load-list element exists for the
request. <A load-list element represents
one or more LOAD requests for the module.
It contains a "responsibility count" of the
number of outstanding LOAD requests for the
module, and a pointer to the contents dire
ctory entry which describes the module.
For other types of requests, allocation (in
this case scheduling) means creating a pro
gram request block (PRB) which will control
the module's execution, then placing the
PRB on the caller's RB queue, and initia
lizing the PRB's fields. After either type
of allocation is complete, the appropriate
subroutine, via the Exit routine and the
Dispatcher, passes control to either the
requested module or the caller.

Deferring the Request for an
Unavailable Module

If a module is unavailable, it cannot be
immediately allocated to its requester. A
module is unavailable if it is being
fetched because of a previous request, or
if it is a serially reusable module that is
in use. In either case, the SVRB under
whose control the supervisor is operating
is placed on a list of waiting SVRBs. This

76

list represents requests for the module
which cannot yet be serviced. Subroutine
CDQUECTL places the SVRB in a wait condi
tion, ensures a task switch (since process
ing for the current task cannot proceed),
and branches to the Dispatcher to give con
trol to the current routine of another
task.

Preparing to Fetch a Module

If a module is not in the link pack area
or in the job pack area for the requester's
job step, or is nonreusable and has already
been used, a new copy must be fetched from
auxiliary storage. The search of the
appropriate library requires the retrieval
of the data set directory entry, whose
location may be indicated by parameters in
the caller's macro instruction. The data
set directory is obtained via the BLDL rou
tine of data management. When the module
is located, its attributes are recorded in
a contents directory entry (CDE) that was
built and initialized before the execution
of the BLDL routine.

If the data set directory entry indi
cates that the caller has specified an
alias entry point, special processing is
performed. This processing includes:

• Determining if the module is already in
main storage.

• Calculating a relocated entry point
address.

• Ensuring that there are two CDEs for
the module, one containing the main
entry point name, the other containing
the alias entry point name.

In systems generated with storage
hierarchies, the expansions of the LINK,
LOAD, XCTL, and ATTACH macro instructions
include a one-byte "hierarchy ID" value.
This value is derived as follows:

Value
Q()

01
02

Derivation
No hierarchy specified
Hierarchy 0 specified (HIARCHY=O)
Hierarchy 1 specified (HIARCHY=l)

For LINK, XCTL, and ATTACH, the hierar
chy identification appears as the high
order byte of the second fullword of the
parameter list pointed to by register 15.
For LOAD, the hierarchy ID is passed in the
high-order byte of register 1. When the
Program Fetch routine is entered, the ID is
placed into the high-order byte of register
5, which points to the address of BLDL.

Fetching the Module

After preparation for fetching the
module is complete, control is passed to

the program Fetch routine to load the
module into main storage. The hierarchy
identification is checked. The Program
Fetch routine then computes the module's
relocated entry paint address. A common
sUbroutine stores the address in the mod
ule's CDE for use in future linkage to the
module. If the data set directory informa
tion obtained from the BLDL procedure indi
cates that the module is in overlay mode or
contains TESTRAN symbol records, other rou
tines are invoked. If the module is in
overlay mode, Contents supervision issues a
LOAD macro instruction to load nonresident
routines of the Overlay supervisor (IEWS
ZOVR), if they are not already in storage.
These routines are needed for later link
age. If the module contains TESTRAN symbol
records, the TESTRAN routines are invoked
via an SVC 61 instruction.

Updating the Contents Directory

Next, a check is made to determine if
the relocated entry pOint returned by the
Program Fetch routine is an alias entry
paint, and therefore has been stored in a
"minor" contents directory entry (CDE). If
this is so, the relocated main entry point
is calculated and stored in the "majorR
CDE. In addition, if there are other minor
CDEs for the module (meaning that there are
other alias entry points), relocated entry
pOints are calculated for all minor CDEs
pertaining to the module. Thus, all per
tinent CDEs pertaining to the module are
updated to contain relocated entry points.

TSO Processing: If the time sharing link
pack area modules have been loaded by the
nucleus initialization program, minor CDEs
must be queued off the major CDEs; the
rr.ajor CDEs are obtained from SQA.

Restarting Deferred Requests

After calculating relocated entry points
for the contents directory, the subroutines
prepare deferred requests to compete for a
new search for their desired module. Any
other request blocks (RBs) queued to the
module's CDE are removed and made ready.
The RB belonging to the highest priority
ready TCB will control the resumed search
for the module, beginning at entry point
CDCONTRL.

After the REs are made ready, a branch
to the Task Switching routine occurs in
order to test if any of the readied RBs
may, the next time the Dispatcher is
entered, replace the current RB as the con
troller of the module. The cornman subrou
tines later test whether the Task switching
routine has indicated the need for a task

switch. This test occurs just before a PRE
is constructed to schedule the execution of
the module for the current task. For a
LOAD request, the test occurs in the
Dispatcher.

DETAILED DESCRIPTIONS OF THE COMMON
FUNCTIONS

Thus far, the general discussion of
"Contents Supervision" has followed the
sequence of processing used by the supervi
sor. This section describes each major
function in greater detail, but not neces
sarily in the exact sequence in which it
occurs. For an aid in visualizing the time
relationships between the major functions,
the reader may refer to the flowcharts for
LINK, LOAD, XCTL, and SYNCH processing in
Section 13.

Searching for the Module

The first function of Contents Supervi
sion is to search for the desired module.
The module may be in any of several loca
tions: the job-step's region of main
storage, one of the libraries of auxiliary
storage, or the link pack area of main
storage. Contents Supervision first
searches the job-step's region, then (if
appropriate) the libraries of auxiliary
storage, and lastly the link pack area of
main storage.

For a SYNCH request, the supervisor
assumes that the module is in main storage,
and does not search for the module. SYNCH
processing is described under "Scheduling
Execution of a Module" (below) starting
with the CDEPILOG subroutine.

Initially, for all module requests
except SYNCH. subroutine CDSEARCH searches
the job-step's region. In the region, mod
ules are assigned to subpools loosely
called a "job pack area." Subroutine
CDSEARCH searches for the module in the job
pack area by examining a contents directory
queue called a job pack area control queue.
Each job step in the system has its own job
pack area control queue (JPACQ).1 Each
JPACQ contains contents directory entries
(CDEs) that represent user modules in the
region's job pack area. These modules may
be used only by the job step in whose
region they are stored. Subroutine
CDSEARCH examines each CDE in the job
step's JPACQ, seeking a match between the
module name supplied as an input parameter
and the module name contained in the CDE.

1The list origin for the JPACQ is the
TCBJPQ field of the job step TCB.

Section 4: Contents Supervision 77

For a LOAD request, before the examina
tion of the JPACQ, another subroutine
(CDLLSRCH) searches the load list for the
caller's task. The load list contains ele
ments, each of which points to a CDE for a
If!odule that was loaded for the task, via a
LOAD macro instruction. The subroutine
examines each CDE pointed to by a load list
element, looking for a name match, as
described above. (See Figure 4-1.) There
are thus initially two ways to find a modu
le's CDE: a search of the job pack area
control queue, or a search of the task's
load list.

If a CDE is found whose entry point name
matches that supplied as an input parame
ter, the module must be in the job step's
region of wain storage. Control is then
given subroutine CDALLOC to test the status
of the "found" module. The module is eith
er immediately available, not immediately
available, or is not available at all
(meaning that a new copy must be fetched).

If SUbroutine CDSEARCH cannot find the
required CDE in the JPACQ, it recognizes
that the desired module is not in the job
pack area, and branches to subroutine
CDSETUP to continue the search for the
IiloduJ.e. (See Figure 4-2.)

Job Step TCB

rCB for Caller's Task

I CDEs

Load list
Elements

1
Legend:
----- = pointer

EiI = represents a module loaded for the caller IS task

Figure 4-1. Subroutine CDSEARCH Uses the
Load List and the Job Pack
Queue in its Search for the
Module's Name

78

Note: If the time sharing option is
included in the system, CDSEARCH searches
the time sharing link pack area for a time
sharing module entry point name.

According to the contents of the DCB pa
rameter, an operand of the requesting macro
instruction, the directory of the appropri
ate library is searched by IEAQLKOO.
Supervisor linkage to the BLDL routine of
data management causes the loading of a di
rectory entry from the specified data set
for examination by a subroutine of contents
Supervision. If the DCB parameter is zero,
meaning that a library is not specified,
the directory of the task library, if one
is present, is searched. If the module is
not found or if a task library is not spe
cified, each higher task's (parent tasks in
subtask's hierarchical structure) task
library is searched until the job-step task
is reached, at which point the job library,
if one is present, for the job-step task is
searched. Otherwise, the directory of the
library specified by the DCB parameter is
searched. If the desired modUle (actually
the entry point name of the module) is
still not fOUnd, SUbroutine CDSEARCH
examines the other contents directory
queue, called the link pack area control
queue (LPACQ).

The LPACQ contains CDEs describing the
modules normally resident in the link pack
area of main storage. In systems contain
ing IBM 2361 Core Storage and Main Storage
Hierarchy Support, a secondary link pack
area may be constructed in hierarchy 1.
Modules in this area are loaded by the nuc
leus initialization program (NIP). They
may be shared by various job steps in the
system. If the search of the LPACQ does
not locate the module's name, the next step
is to search, via the BLDL procedure, the
directory of the link library. If the
entry point name is not found in this di
rectory, the assumption is that the caller
has made an incorrect request. According
ly, one of the common subroutines sets up
an error code (806) and issues an ABEND
macro instruction to obtain linkage to the
ABEND SVC routine to abnormally terminate
the caller's task.

Creating a Contents Directory Entry

During the search for the module, just
before the preparation for the BLDL proce
dure, subroutine CDSETUP determines if a
CDE exists. It does this by testing wheth
er a BLDL work area was created during a
previous request for the module. If the
module's CDE does not exist, space is
obtained by the GETMAIN SVC routine. The
CDE is then initialized and placed on the
JPACQ. The "attributes" field (CDATTR) is
initialized so that all bits are set.
Later, after the BLDL routine has obtained

Examine link

No

BLDL Routine

Search specified
library

BLDL Routine

Search job library

CDALLOC Subroutine

Test status of module

Allocate or
fetch module,
or defer request

Set up error code
(806) and invoke
ABEND routine Examine link library

F'igure 4-2. Further Search by the Common Subroutines of Contents Supervision if the
Module's CDE Is Not in the Job Pack Queue

the module's data set directory entry, the
cowmon subroutines clear the bits that are
not applicable to the module's status. The
entry point address field and the extent
list address field are initialized to zero.
(The extent list describes the entry point
and size of each loadable section.) See
Section 12, "Controls Blocks and Tables"
for a description of the CDE fields.

Testing l']odule Status

There are two distinct times that the
attributes of a n!odule may be checked to
determine its status. One time is after a
CDE is found in the JPACQ or the LPACQ. In
this, case, the status-checking subroutine
(CDALLOC) checks the bits in the attributes
field of the CDE. Its purpose is to deter
mine if' the module can be immediately allo
cated; whether the request must be deferred
and placed on a queue of waiting reques
ters; or whether a new copy of the module

should be fetched to main storage. The
other time that the module's attributes may
be tested is after the execution of the
BLDL routine has found a data-set directory
entry for the module. The attributes in
the directory entry are tested to determine
if the module is in main storage, recorded
under another entry point name, or whether
the module must be fetched.

Fetching the Module

After the BLDL routine has located the
module on auxiliary storage, and if no
abnormal condition has been detected, the
appropriate subpool of main storage into
which the module should be loaded is deter-'
mined. The module's attributes, indicated
in the data-set directory entry, are tested
to decide the appropriate subpool. Subpool
252 is selected if the module is reenter
able, and is in either the link library or
the SVC library. Subpool 252 is a

Section 4: Contents Supervision 79

supervisor-protected area within the call
er's region of main storage. Otherwise,
subpool 251 is chosen. This subpool
belongs to the job pack area for the cal
ler's job step.

Interruptions are enabled, and the
module is loaded into the chosen subpool by
the Program Fetch routine. If there is no
I/O error, interruptions are again dis
abled, and the relocated module entry
point, returned by the Program Fetch rou
tine, is stored in the CDENTPT field of the
previously created CDE. The module's
attributes, as indicated in the partitioned
oata set directory entry, are next tested.
If the module is in overlay mode, the Over
lay Supervisor (IEWSZOVR) is loaded from
the link library, via a LOAD macro instruc
tion. If the module contains TESTRAN sym
bol records, the TESTRAN routines are
invoked via an SVC 61 instruction. To ind
icate that the module is not being loaded,
the "not in storage" bit (NIC) is cleared.
If the module is refreshable (eligible to
be reloaded by the Machine-Check Handler on
the Model 65~), the "refreshable" indicator
REFR is set. This bit is tested by the
Machine-Check Handler, if this recovery
program is included in the system, when a
machine check occurs. To indicate that the
module is in use, the common subroutines
set the "non-functional" flag (NFN). These
three bits belong to the attributes fields
(CDATTR and CDATTR2) of the CDE represent
ing the module.

performing Alias processing

If the module request specifies an alias
entry point, two types of special process
ing occur: one after the BLDL routine has
obtained the data-set directory entry, the
other after the Program Fetch routine has
loaded the module.

If the module request specifies an alias
entry point name, two types of alias pro
cessing can occur, depending on whether the
module is already in main storage. The
first type determines if the requested
module is in main storage, recorded under
its major entry point name. This deter
mination is now pOSSible, since the data
set directory entry is available for
examination. The second type of processing
ensures that all relocated module entry
point addresses have been recorded, both
main and alias, even though the current re-

~The Machine-Check Handler is optional sys
tem generation programming support for the
System/360 Model 65 (MCH/65), and standard
programming support for the Model 65 Mul
tiprocessor, the Model 85 (MCH/85) and
System/370. Refer to Section 2, -Inter
ruption Handling."

80

quest may specify only one alias entry
point name.

In the first type of processing, the
common subroutines determine if the module
is in main storage, recorded under its
major entry point name. A new search is
now necessary, since the original search
was made under the assumption that the spe
cified entry point name was a major name.
The major entry point name is obtained from
the data-set directory entry, and the JPACQ
is searched for this name. If the name is
found, the JPACQ is updated to include the
alias entry point name, and the Program
Fetch routine is not invoked. If, however,
the major entry point name is not found,
the Program Fetch routine is invoked to
load the module. If the module is already
being fetched, the current request is
deferred.

Note: If a build entry for a time sharing
task is marked as an alias, the time shar
ing link pack area is searched for the
entry.

In the second type of processing, the
subroutines ensure that all relocated entry
point addresses are recorded in the con
tents directory. The relocated major entry
point address is calculated and placed in
the module's major CDE. If there is at
least one minor CDE queued to the major CDE
(meaning that an alias or identified entry
point was previously requested), the relo
cated entry point address for each alias is
calculated and stored in its related minor
CDE. (There is one minor CDE for each
alias or identified entry point.)

The calculation of the relocated entry
points is performed by the Relocate subrou
tine, which is provided with certain
inputs. The input includes the relative
alias entry pOint address, obtained from
the data-set directory entry and currently
in the minor CDE, and the address of the
extent list for the module, contained in
the major CDE. The extent list, created by
the Program Fetch routine when it loaded
the module, contains the starting address
of each block of main storage occupied by
the module and the length of each block.

Deferring a Request

A request for a module may be deferred
if the module is in main storage and is
serially reusable and in use, or if the
module is in the process of being fetched
to main storage. In either case, the com
mon subroutines (entered at CDQUECTL) place
the SVRB for the current request on a list
of waiting SVRBs, whose list origin is the
CDRBP field of the major CDE for the
module. Each SVRB on the list is queued to
the next waiting RB via its RBPGMQ field.

(' ..

A new SVRB is placed on the list according
to the dispatching priority of its TCB.
After joining the list of waiting SVRBs,
the SVRB for the current request is placed
in a wait condition, its RBWCF field set
greater than zero. Since processing of
thecurrent request cannot proceed, the need
for a task switch is indicated to the Dis
patcher. The indication is the setting of
the first word of the TCB pOinter (IEATCBP)
to zero.

Just before the current SVRB is placed
on the list of waiting SVRBs, the list is
searched for an SVRB representing a pre
vious request from the caller's task for
the same module. If such an SVRB is found,
the module is permanently unavailable, and
an error code (A06) is set up. The reques
ter's task is then abnormally terminated by
the ABEND routine.

Restarting Deferred Reguests

Periodically a deferred request may be
restarted. The purpose of such restart is
to give control of the module to the requ
ester representing the highest priority
ready task. When a module is available, an
SVRB that was previously waiting for the
module may compete with the current SVRB
for access to the module. According to the
relative task dispatching priorities, the
current request is serviced, or a deferred
request is restarted.

The restart procedure consists of two
parts: preparation for restart, and the
performance of a task switch. Preparation
for restart can occur at two different
times during the execution of the common
subroutines. It can occur after the BLDL
routine has found a data-set directory
entry for the module. It can also occur
after the Program Fetch routine has loaded
the module into main storage. The task
switch, if needed, is performed by the Dis
patcher after the scheduling subroutine of
Contents Supervision (CDEPILOG) has been
entered.

PREPARATION FOR RESTART: During the prepa
ration for restart, the DQLOAD subroutine
makes ready the SVRBs on the waiting list,
and determines if one of these SVRBs may
replace the current SVRB as the controller
of Contents Supervision.

The DQLOAD subroutine removes from the
waiting list any SVRBs queued to the cur
rent SVRB. (The current SVRB is the one
currently controlling the execution of the
subroutines of Contents Supervision.) For
each SVRB on the list, the subroutine
clears the wait bit (RBWCF), and sets the
RB old PSW to restart future execution at
the beginning of the search phase of Con
tents Supervision (location CDCONTRL).

This is the point at which restart occurs,
if a task switch is performed.

Subroutine DQLOAD determines if any
deferred-request SVRB can replace the cur
rent SVRB by comparing task dispatching
priorities. The subroutine invokes the
supervisor's Task switching routine to com
pare the dispatching priority of each
deferred-request TCB with that of the cur
rent TCB. The result of the series of
invocations of the Task Switching routine
is that the TCB pointer (IEATCBP) contains
the address of the TCB whose current rou
tine will next be dispatched (see nTesting
and Indicating the Need for a Task
Switchn). The current task gains initial
control of the module.

PERFORMANCE OF A TASK SWITCH: If the prep
aration for restart has altered the TCB
pointer, a future branch to the Dispatcher
causes the restart of contents Supervision
at its search phase, under the control of
one of its deferred-request SVRBs.

CDEPILOG (entry point IEAQCS03) tests if
an available module should be allocated to
the current requester, or whether the Dis
patcher should be entered to perform a task
switch. If the two words of the TCB point
er, IEATCBP and IEATCBP+4, are unequal, the
need for a task switch has been indicated
by the Task Switching routine. CDEPILOG
prepares the current requester for restart
by pointing the RB old PSW in the current
SVRB to the beginning of CDEPILOG. The
task switch will be effected when the dis
patcher is next entered (after IEAQLKOO
exits). The Dispatcher restarts Contents
Supervision at entry point CDCONTRL, under
control of the selected TeB and its
deferred-request SVRB. A new search for
the desired module then begins, as if the
restarted request had just been issued.

Scheduling Execution of the Module

When the desired module is in main
storage and is immediately usable, as indi
cated by the test of the CDE attributes,
the allocation subroutine CDALLOC recog
nizes the need for the immediate allocation
of the module to a requester. CDALLOC
clears the nreleasen flag in the CDATTR2
field of the major CDE for the module. The
major CDE contains the main entry point of
the module and a field (CDATTR) describing
its attributes, for example, reentrant,
nload only,n etc. The nreleasen flag
(CDATTR2), when cleared, indicates to the
GETMAIN SVC routine that the space reserved
for the module may not be reused to satisfy
a later request for space.

Subroutine CDALLOC branches to two other
subroutines, CDMOPUP and CDEPILOG, to per
form the allocation or scheduling of the

section 4: Contents supervision 81

linkage to the module. The first step,
performed by CDMOPUP, is to increase the
"use/responsibility" count in the major
CDE. The use/responsibility count is a
record of the number of outstanding
requests for the module issued by LINK,
LOAD, XCTL, or ATTACH macro instructions.
The count is decreased by the Delete SVC
routine or by the Exit routine when each
execution of the module has been completed.

For ATTACH, LINK, SYNCH, and XCTL
requests, CDEPlLOG gets space for and
initializes a program request block (PRB)
to schedule and control the execution of
the requested module. CDEPILOG obtains the
information for initializing the PRB from
information contained in the fields of the
current SVRB. It places in the RB old PSW
(RBOPSW field) of the PRB the relocated
module entry point that was stored in the
CDE. For an ATTACH or SYNCH request, the
mode bit and protection key of the RB old
PSW are duplicated from the requester's
TeB. But for an XCTL or LINK request, the
first word of the old PSW is obtained from
the caller's RB. For an XCTL request, the
first word of the caller's old PSW was
saved in the register-zero save location of
the caller's SVRB, before Contents Supervi
sion was entered.

CDEPILOG places the newly created PRB on
the current task's RB queue behind the SVRB
used by contents Supervision. Later, when
the Exit routine is entered, the SVRB is
removed and freed, leaving the PRB as the
current RB for the requester's task. After
queuing and initializing the newly created
PRB, which controls the module's execution,
CDEPILOG passes control to the module or to
a restarted requester, via the Exit routine
and the Dispatcher.

SPECIAL FUNCTIONS OF CONTENTS SUPERVISION

The special functions are used to assist
one of the common functions or to perform a
specialized service for a requester. These
functions consist of:

82

• Final processing for a LOAD request.

• Special processing for an XCTL request.

• Informing the supervisor of an embedded
module entry point (IDENTIFY).

• Informing the supervisor that a module
fetched via a LOAD macro instruction is
no longer needed in main storage
(DELETE) .

• Supervising the loading of segments of
an overlay module.

• Fetching a module to main storage.

FINAL LOAD PROCESSING

Final processing for a LOAD request is
performed after the desired module is in
main storage and is available. It consists
of checking the load list for the caller's
task to determine if a load-list element
exists for the requested module.

The load list indirectly points to mod
ules requested for a task via the LOAD
macro instruction. If a module was loaded
by an alias entry point name, the load-list
element pOints to a minor CDEi otherwise
the load-list element contains a pointer to
a module's major CDE. It also contains a
"responsibility" count (LLCOUNT)of the
number of LOAD requests for the module.

If a load-list element does not exist
for the module, a new element is con
structed, initialized, and placed on the
load list for the caller's task. It is
queued from the load-list pointer (TCBLLS)
in the caller'S TCB.

After the load-list element is created,
or if a determination is made that it
already exists, the responsibility count is
increased to include the current request.
Control is then returned to the requester
or to the current program of the highest
priority ready task, via the Exit routine
and the Dispatcher.

SPECIAL XCTL PROCESSING

Special processing is performed when a
caller has issued an XCTL macro instruc
tion. If the macro instruction is issued
by a user program or a user exit routine,
processing is performed before control is
passed to the common subroutines. If,
however, an XCTL macro instruction is
issued by an SVC routine, special process
ing is done by the transient area handler.
The transient area handler schedules link
age to the desired SVC routine, and does
not use the common subroutines of Contents
Supervision. The simpler XCTL processing
will be discussed first.

Processing if the Requester Is a User
Program or a User Exit Routine

For both types of requesters (a user
program or a user exit routine> the reques
ter's RB must be eliminated, since an XCTL
request does not permit return of control
to the requester. The Exit routine is used
to dequeue and free the RB of the exiting
program or routine. Depending on the type
of requester, the RB is removed immediately
or is removed after the requested module
has heen executed.

If the requester is a user program,
operating under control of a program re
quest block (PRB), the requester's PRB is
removed immediately, before the requested
module is obtained. This arrangement
allows the requested program to overlay the
requesting program, if necessary. To pre
pare for PRE removal, the positions of the
caller's PRE and the SVRB for Contents
supervision are interchanged on the RB
queue, so that the PRB is at the "head" of
the queue (see Figure 4-3, part B).
Restart of Contents Supervision is sched
uled by pointing the RB old PSW in the SVRB
to the search phase of the common subrou
tines (location CDADVANS). The Exit rou
tine is then invoked to remove and free the
caller's PRE (see Figure 4-3, part C).
After eliminating the PRB, the Exit routine
branches to the Dispatcher to restart Con
tents supervision at CDADVANS, to begin the
search for the requested module.

If the requester is a user exit routine,
operating under the control of an IRB, the
requester's IRE is removed from its RB
queue only after the requested module has
been obtained and executed. This delay is
necessary because the-IRB contains register
contents belonging to the program that was
interrupted by the asynchronous event. The
register contents remain in the IRB until
the Exit routine is entered after the
requested module has been executed.

The Exit routine is scheduled (but not
invoked) by placing in the RB old PSW of
the requester's IRB the address of an SVC 3
instruction. A branch is then made to the
common subroutines (location CDADVANS) to
search for the requested module. When the
module has been obtained and executed, the
Dispatcher gives control to the SVC 3
instruction. The instruction causes super
visor linkage to the Exit routine to
dequeue and free the requester's IRB (see
Figure 4-3, part El).

Processing if the Requester Is an SVC
Routine

If the requester is an SVC routine
operating under the control of an SVRB, the
transient area handler's XCTL routine
(entry point IEAQTR03) performs special
processing. The request is handled very
similarly to any SVC request that reaches
the SVC Second-Level Interruption Handler.
The following discussion will first provide
an overview of the transient area XCTL
function, then a more detailed coverage.

After initial housekeeping, the Tran
sient Area XCTL routine performs the fol
lowing functions:

• Updates the transient area queue by
removing the requester's SVRB.

• Tests for and passes control to a
requested routine in the link pack area
of main storage.

• Determines if the requested routine is
in a transient area block.

• Prepares for linkage to the routine if
it is in a transient area block.

• Performs special processing to locate
an available transient area block
(TAB), if the routine is not already in
a TAB.

• Defers the request if a TAB is not
available.

• Prepares for overlaying a transient
area block, if one is available.

• Loads the routine into an available
TAB.

The Transient Area XCTL routine tests if
the requester is a resident or nonresident
SVC routine. It tests the status bit
(RBFNSVRB) in the requester's SVRB.

UPDATING THE TRANSIENT AREA QUEUE: If the
requester is nonresident, the TAXEXIT sub
routine removes the requester's SVRB from
the user queue for the TAB that contains
the requesting routine. (The user queues
are described in "Fetching a Nonresident
Routine from Auxil~ary storage" in Section
2, "Interruption Handling." (See Figure
4-4.)

The removing of the requester's SVRE
from the user queue is necessary because
control is not returned to the requester.
The requesting routine is no longer a
"user" of a transient area block. If the
requesting routine is resident in the link
pack area, the TAXEXIT subroutine is
bypassed, since the requester's SVRB is not
on a user queue.

TESTING FOR AND PASSING CONTROL TO A ROU
TINE IN THE LINK PACK AREA: The Transient
Area XCTL routine (hereafter called the TA
XCTL routine) next tests if the requested
routine is in the link pack area. The test
consists of a search of the contents direc
tory entries on the LPACQ. If the desired
routine is in the link pack area, the
requester's SVRB is flagged as "resident"
(the RBFNSVRB bit in the RBSTAB field is
cleared). The requester's SVRB, rather
than the SVRB created by the SLIH after the
current SVC interruption, will control the
execution of the requested routine when it
is finally dispatched.

Section 4: Contents Supervision 83

A. Condition of RB queue before XCTL processing.

B. Caller's PRB and SVRB are switched during
XCTL processing.

C. Caller's PRB is removed by first execution
of Exit routine.

D. New PRB for requested module is created
by CDEPILOG subroutine.

E. SVRB is removed by next execution of Exit routine.

A 1. Condition of RB queue before XCTL processing.

B 1. New PRB for requested module is created
by CDEPI LOG subroutine.

Cl. SVRB is removed by Exit routine when execution
of Contents Supervision is complete.

Dl. PRB for requested module is removed by the Exit
routine after the requested module is executed.

El. Caller's IRB is removed by the Exit routine after
the Dispatcher tries to restart the user exit routine.

SVRB is far Contents Supervision.
PRB - 1 is for calling user program.
PRB - 2 is new PRB for requested module.
IRB is for calling user exit routine.

User Program Issues XCTL Request

TCB

~
TCB

SVRB

SVRB PRB - 2

User Exit Routine Issues XCTL Request

TCB * RB for routine being
SVRB I RB RB executed when asynch.

~~,o<O"" ••

TCB

Figure 4-3. Manipulation of the Caller's RB Queue During Servicing of an XCTL Request

84

./ ,

Transient Area
Fetch SYRB

Transient Area
Fetch SYRB

Flog

TA Fetch
TCB 1

Used for
transient
area fetch
task to
load TAB 1

Addr Addr
of
TAB 1

Addr

of User
Queue 1

Addr

TA Fetch
iCB 2

- = Pointer

c::::::> = Information Flow

NOTES: 1. User queue 1 contains SYRBs whose SYC routine is in TAB 1,
or was overlaid in TAB 1.

User queue 2 contains SYRBs whose SYC routine is in TAB 2,
or was overlaid in TAB 2.

2. The request queue contains SYRBs awaiting an available TAB.

Figure 4-4. The Transient Area Queues

User Queue 1

Transient Area Block 1 (TAB 1)

Transient Area Block 2 (TAB 2)

User Queue 2

Section 4: Contents supervision 85

The TA XCTL routine prepares for the
passing of control to the routine as fol
lows. It sets up registers, and points the
RB old PSW in the requester's SVRB to the
address of the desired routine. This is
the PSW that is loaded by the Dispatcher to
give control to the routine. The TA XCTL
routine then uses an SVC 3 instruction to
gain linkage to the Exit routine. The Exit
routine removes from the RB queue and free
the SVRB created for the current XCTL re
quest, since it is no longer needed. Con
trol is then passed to the desired routine,
via the Dispatcher.

DETERMINING IF THE ROUTINE IS IN A TRAN
SIENT AREA BLOCK: If the requested routine
is not in the link pack area, as indicated
by the search of the LPACQ, the assumption
is that the routine is nonresident. The
TAXCTL routine then determines if the SVC
routine is in one of the transient area
blocks (TABs) of main storage into which
nonresident routines are loaded. If the
routine's name is in the permanent SVRB for
a TA fetch task, the routine is currently
in a TAB. (See "Fetching a Nonresident
Routine From Auxiliary Storage- in Section:
2, "Interruption Handling.") Accordingly,
the TA XCTL routine prepares for linkage to
the SVC routine.

PROCESSING IF THE ROUTINE IS IN A TRANSIENT
AREA BLOCK: The TA XCTL routine then
stores data in the requester's SVRB that is
needed to nrefresh" the routine in case it
is overlaid in the TAB before its execution
is complete. This data includes the rela
tive track and record address of the rou
tine on auxiliary storage (obtained from
the TACT entry), the routine length, the
right half of the routine name, and the
displacement of the TACT entry for the TAB
in which the routine currently resides.
The routine's name and length are obtained
from the permanent SVRB belonging to the
transient area fetch task associated with
the TAB. The displacement of the TACT
entry is calculated from the TACT address.

The TA XCTL routine then increases the
"user" count for the transient area blocks.
This count of the total number of user
SVRBs of all TABs is examined during the
execution of the TA Refresh routine when
the Dispatcher is next entered. After
increasing the user count, the TA XCTL rou
tine places the requester's SVRB on TAB's
user queue, in order to keep track of the
users of the TAB (see Figure 4-4).

The preparation for the passing of con
trol to the nonresident routine is identi
cal to that previously described for a rou
tine resident in the link pack area.

86

PROCESSING IF THE ROUTINE· IS NOT IN A TRAN
SIENT AREA BLOCK: If the name of the SVC
routine is not in the permanent SVRB for a
TA fetch task, the routine is not already
in a TAB. The TA XCTL routine then tries
to obtain a TAB into which it may place the
routine. It examines the transient area
control table and the user queues to find a
TAB that is available. (See Figure 4-4 and
Section 12, "Control Blocks and Tables.") A
TAB is available in any of the following
cases:

• The TAB is not being used.

• The TAB has no using SVRBs that are
ready.

• The TAB may be overlaid by the
requested routine. It may be overlaid
if the task dispatching priority of its
current user is lower than that of the
requester.

If a TAB is not available, the request
is deferred. If, however, a TAB is avail
able, the requested routine is 10aded into
it. When the fetch process is complete,
control is passed to the routine, via the
Dispatcher:.;- "

DEFERRING.THE REQUEST: This discussion
will first consider the case in which an
available TAB cannot be found. If a TAB is
not available, the TA XCTL routine defers
the current request by placing the current
SVRBon the transient area request queue
(see Figure 4-4). The request queue is a
list of SVRBs whose routines cannot be
immediately scheduled for execution. The
TA XCTL routine places the current SVRB
into a wait condition, since execution of
the current request cannot continue. To
schedule the restart of this request, the
TA XCTL routine points the RB old PSW in
the SVRB to the "retryn entry point, called
TAXRETRY. Then, to permit the Dispatcher
to pass control to the current routine of
another task, the TA XCTL routine indicates
the need for a task .. switch (sets location
IEATCBP equal to zero) and branches to the
Dispatcher.

PREPARATION FOR THE OVERLAYING OF A TRAN
SIENT AREA BLOCK: If an available TAB is
found, the TA XCTL routine prepares to
fetch the SVC~routine to the TAB. It sets
into a wait condition the SVRBs on the
TAB's user queue, which represent active
requests for the routine currently in the
TAB. Then, to delay attempted execution of
the requested routine until it is fetched,
the TA XCTL routine sets the requester's
SVRB in a wait condition. Then, to permit
entry to the routine after it has been
fetched, the TA XCTL routine points the RB
old PSW in the SVRB to the address of the
TAB. This address is the entry point of

the routine when the fetch is complete. To
prevent accidental overlay of the'.·TAB dur
ing the fetch process, the,bransi~nt area
control table (TACT) entry is 'flagged to
indicate that the TAB is being loaded.

The extent of fetch processing (that is,
whether a BLDL macro instruction must be
issued) is determined by whether the DE
operand was specified in the XCTL macro
instruction. If the DE operand was speci
fied, the TA XCTL routine sets the RB old
PSW in the transient area fetch SVRB
(queued to a transient area fetch TCB) to
bypass the BLDL procedure. (See Figure
4-4.) But if the DE operand was not speci
fied, the RB old PSW in the transient area
fetch SVRB is set to enter the BLDL
fJrocedure.

In either case, the TA XCTL routine
invokes the supervisor's Task Switching
routine to prepare for a switch to a tran
sient area fetch task, under which the
fetch is performed. Then, to schedule
removal of the SVRB for Contents ~upervi
sion, the RB old PSW in that SVRB is set
for future entry to the Exit routine. The
Exit routine is entered when the Transient
Area Fetch routine waits for I/O completion
and the requester's task again receives
control. A branch is made to the Dispatch
er, which passes control to the Transient
Area Fetch routine to load the requested
SVC ro utine •

INFORMING THE SUPERVISOR OF AN EMBEDDED
NODULE ENTRY POINT

The Identify SVC routine informs the
supervisor of a module'S embedded entry
pOint name that was not established by the
Linkage Editor. The routine informs the
supervisor by creating a CDE to represent
the embedded entry-point name. The Identi
fy routine is a type-2 SVC routine (resi
dent, SVC-issuing, disabled). It is
entered from the SVC Second-Level Interrup
tion Handler after an SVC 41 instruction
has been issued.

The Identify routine searches the con
tents directory queues (JPACQ and LPACQ)
for the specified entr}'-point name. The
name can be the major name of a module, an
alias name of a module, or a name specified
in a previous IDENTIFY macro instruction.
If the specified entry-point name cannot be
found, the routine then determines if the
specified entry-point address is valid.
The entry-point address is valid if it
exists in either the caller's module, or in
a module which was loaded for the caller's
task.

If the entry-point name cannot be found
in the contents directory, and if the
entry-point address is valid, the routine
creates a minor CDE, which defines the
identified entry point, and queues it to
the module's major CDE. The Identify rou
tine then sets up a return code indicating
the result of its search, and returns con
trol to the caller, via the Exit routine
and the Dispatcher.

Upon entry (at location IGC041) the
Identify routine first tests if the caller
is a valid user program. The routine
determines if the caller is valid by test
ing the type of RB under which the caller
is operating. (The test is of the RBFTP
subfield in the RBSTAB field.) If the RB
is not a PRB, the caller is invalid.
Accordingly, the Identify routine sets up a
return code of X'10', and via the Exit rou
tine and the Dispatcher, returns control to
the caller. If the test of RB type indi
cates that the caller is valid, the Identi
fy routine begins its search for a contents
directory entry (CDE) that may contain the
desired entry-point name.

The Identify routine prepares to search
both the link pack area queue and the job
pack area queue for the caller's job step.
(Each job step has its job pack area within
its own region of main storage.) The rou
tine searches the CDES of the queues for a
match between the input entry name, supp
lied as an operand of the IDENTIFY macro
instruction, and the entry name in a CDE.

If a CDE is found whose entry-paint name
agrees with the requested name, the Identi
fy routine determines if the CDE is a minor
CDE by testing the MIN flag of its CDATTR
field. A minor CDE contains either an
alias entry-point name (established by the
linkage editor), or an entry-point name
provided by a previous execution of the
Identify routine.

If the CDE is not a minor CDE, it repre
sents a major entry-point name for the
module. Since the located entry point is
not an alias, the Identify routine sets up
an error code of X'08', indicating that the
specified entry-point name is the same as
the major name of a module currently in
storage. The routine then returns control
to the caller, via the Exit routine and the
Dispatcher.

If, however, the CDE is a minor CDE, the
Identify routine compares the requested
entry-point address with the address con
tained in the CDE. If these addresses are
the same, a previous IDENTIFY macro
instruction specifying the same entry-point
address was issued. A return code of X'04'
is used to inform the caller. But if the
two entry-point addresses are unequal, a

Section 4: Contents Supervision 87

previously issued IDENTIFY macro instruc
tion specified the same entry-point name
but a different address. In this case, the
routine informs the caller with a return
code, of X'14', and returns control, via
the Exit routine and the Dispatcher.

If in its search of either of the CDE
queues, the Identify routine does not find
a CDE containing the specified entry-point
name, it makes an initial assumption that
the entry point lies within the caller's
module. The routine then examines the
extent list for the caller'S module to
determine if the desired entry-point
address is in the module. The extent list
for a module contains the starting address
and length in bytes for each control sec
tion of the module. (The Identify routine
obtains the address of the extent list for
the caller'S module from the module's CDE
CDXLMJP field). See Figure 4-5. The
extent-list pointer was placed in the CDE

TCB for Caller's Task -

by the Program Fetch routine. The address
of the CDE for the current module, in turn,
is contained in the caller's PRB (RBCDE
field).

If the entry-point address is found, the
Identify routine creates and initializes a
minor CDE. If, however, the entry-point
address is not found, the routine continues
its search for a module that contains the
address. The continued search is made via
the load list for the caller's task. This
list represents the LOAD requests for
modules made for this task. (See "Load
List" in Section 12, "Control Blocks and
Tables.")

For each load-list element, the routine
first obtains the CDE pointer in that ele
ment (LLCDPTR) to gain access to the
related CDE (see Figure 4-5). Each CDE, as
stated before, contains a pointer to an
associated extent list. The Identify rou-

- ~aller's RB Queue

Legend:

Load Li st for
Caller's Task

- - - = Queue
--+ = Pointer

$ = CDE for madule
loaded for caller's task

..............

-SVRB for the Identify Routine-
.......... ---Caller's PRB -.......... '---------' -----... ----

.......... -

Extent List

Entry-Point
Addresses

o 0

Extent List

Entry-Point
Addresses

0000

Extent List for
Caller's Module

Entry-Poi nt
Addresses

000

Extent List

Entry-Poi nt
Addresses

000

Figure 4-5. Finding an Extent List by searching the Job Pack Queue or the Load List

SB

tine then examines the extent list in the
same way it had examined the extent list
for the caller's module. The routine
examines the extent list indirectly pointed
to by all elements in the load list belong
ing to the caller's task. If a module con
taining the specified entry-point address
is not found, the Identify routine indi
cates this result by a return code of
X'OC'. It then returns control to the
caller, via the Exit routine and the
Dispatcher.

If the desired entry-point address is
found, the Identify routine next creates a
minor CDE to represent the desired entry
point name. It issues a GETMAIN macro
instruction to obtain space for the new CDE
(24 bytes from subpool 255, supervisor
queue area). The routine then initializes
the subfields of the CDE (MIN, REN, SER,
and NLR) to indicate that the CDE repre
sents a minor entry point and to indicate
the module's attributes. (See Section 12,
"Control Blocks and Tables" for a descrip
tion of these subfields.) After initializ
ing the new CDE, the routine queues it to
the appropriate CDE queue.

Then, setting up a return code of X'OO'
to indicate successful completion of the
lDENTIFY request, the routine returns con
trol to the caller, via the Exit routine
and the Dispatcher.

INFORMING THE SUPERVISOR OF A MODULE LOADED
DIREC~LY INTO MAIN STORAGE

The Identify SVC routine may be used to
create a major CDE and extent list for a
module brought directly into main storage
by the loader. This allows the supervisor
to identify the module.

The caller provides the Identify routine
with the address and lengths of the modu
Ie's extents, the entry point, and module
name. If the entry point is not already in
the link pack or the caller's job pack
queue, and the entry point is within one of
the specified extents, the Identify routine
creates a major CDE and queues it on the
user's job pack area control queue. It
flags the CDE as "not loadable onlyn, in
subpool zero, and "with no backup copy,"
and builds the extent list. The routine
y", then moves the extent list into sub pool
255.

Upon entry (at location IGC041) the
Identify routine determines whether the
caller is a valid user program by testing
the type of RB under which the caller is
operating. (The test is of the RBFTP sub
field in the RBSTAB field.) If the RB is
not a PRB, the caller is invalid. Accor
dingly, the Identify routine sets up a

return code of X'10', and returns control
to the caller via the Exit routine and the
Dispatcher. If the test of RB type indi
cates that the caller is valid, the Identi
fy routine next determines if the request
is to create a major CDE. This request is
made by the OS Loader; other Identify
requests cause the creation of a minor CDE.

processing a Minor CDE Reguest

The Identify routine searches the CDEs
in the job pack area queue and the extent
of the current module to determine whether
the entry-point name specified in this
request is a duplicate and whether the
entry-paint address is within the module.
(For a more detailed description of the
search procedure and possible error condi
tions, see "Processing a Major CDE Requ
est," below.) If the entry-point name is
not a duplicate and the entry-point address
is within the module, the Identify routine
issues a GETMAIN macro instruction to
obtain space in the SQA (subpool 245 or
255) for a minor CDE. The routine then
initializes the subfields of the CDE (MIN,
REN, SER, and NLC) and queues the minor CDE
ahead of the major CDE on the queue. The
Identify routines sets a return code of
X'OO' and returns control to the calling
routine via the Exit routine and the
Dispatcher.

Processing a Major CDE Request

If the request is for a major CDE, the
Identify routine checks the caller's para
meter list. If the parameter list is not
on a double word boundary, or if the first
byte of the parameter list is not zero, the
Identify routine sets up a return code of
X'18' and returns control to the caller via
the Exit routine and the Dispatcher.
Otherwise, the Identify routine checks the
extent list length (EXLLNTH) and extent
length addresses. If the extent list
length is not positive or not a multiple of
eight, or if the extent addresses are not
on doubleword boundaries, the Identify rou
tine returns control to the caller via the
Exit routine and the Dispatcher with a
return code of X'lC'. If the extents are
on doubleword boundaries, the routine
checks that they are in subpool zero. If
they are not, Identify returns control to
the caller with a return code of X'20'.

If the extents are in subpool zero, the
Identify routine searches the job pack area
queue and the link pack area queue for the
caller's job step. (Each job step has its
job pack area within its own region of main
storage.) The routine first searches the
CDEs of the job pack area queue for a match
between the input entry name, supplied in
the parameter list for the IDENTIFY macro
instruction, and the entry name in a CDE.

Section 4: Contents Supervision 89

If a CDE is found whose entry-point name
agrees with the requested name, the Identi
fy routine determines if the CDE is a minor
CDE by testing the MIN flag of its CDATTR
field. A minor CDE contains either an
alias entry-point name (established by the
linkage editor), or an entry-point name
provided by a previous execution of the
Identify routine.

If the CDE is not a minor CDE, it repre
sents a major entry-point name for the
module. Since the located entry point is
not an alias, the Identify routine sets up
an error code (a), indicating that the spe
cified entry-point name is the same as the
major name of a module currently in
storage, and returns control to the caller,
via the Exit routine and the Dispatcher.

If, however, the CDE is a minor CDE, the
Identify routine compares the requested
entry-point address with the address con
tained in the CDE. If these addresses are
the same, a previous IDENTIFY macro
instruction specifying the same entry-point
address was issued. A return code of X'04'
is used to inform the caller. But if the
two entry-point addresses are unequal, a
previously issued IDENTIFY macro instruc
tion specified the same entry-point name
but a different address. In this case, the
routine informs the caller with a return
code of X'14', and returns control to the
caller via the Exit routine and the
Dispatcher.

If, during its search of either of the
CDE queues, the Identify routine does not
find a CDE containing the specified entry
point name, it examines the extent list
specified in the parameter list supplied by
the calling routine to determine if the
disired entry-point address is in the
module. The extent list for a module con
tains the starting address and length in
bytes for each control section of the
module.

If an extent containing the specified
entry-point address is not found, the Iden
tify routine indicates this with a return
code of X'OC'. It then returns control to
the caller, via the Exit routine and the
Dispatcher. If the entry-point address is
found, the Identify routine creates and
initializes a major CDE and extent list.

Identify issues a GETMAIN macro instruc
tion to obtain space for the new CDE and
extent list (from subpool 255, supervisor
queue area). The routine then initializes
the subfields of the CDE (SPZ, XLE, and
NLR) to indicate that the CDE represents a
major entry point and to indicate the modu
Ie's attributes. (See Section 12, "Control
Blocks and Tables" for a description of
these subfields.) After initializing the

90

new CDE, the routine queues it to the cal
ler's job pack area control queue. Then,
setting up a return code of X'OO' to indic
ate successful completion of the request,
the routine returns control to the caller,
via the Exit routine and the Dispatcher.

INFORMING THE SUPERVISOR THAT A LOADED
MODULE IS NO LONGER NEEDED IN MAIN STORAGE

The Delete SVC routine is used by a sys
tem or user program to indicate to the
supervisor that a module previously fetched
via a LOAD macro instruction is no longer
needed in main storage. The routine
searches the current task's load list in
order to find the contents directory entry
(CDE) representing the module to be
deleted. If the routine does not find the
CDE, it returns control to the caller, via
the Exit routine and the Dispatcher, with a
return code indicating that no record of
the module can be found. If the routine
finds a record of the specified module, it
reduces a "responsibility" count of the
number of LOAD requests. In addition, if
the module is not in use and there are no
outstanding requests for its use, the
Delete routine, via subroutine CDHKEEP,
frees the space occupied by the module, its
extent list, and its CDEs, thus removing
all traces of the module from main storage.
The Delete routine then returns control to
the caller, via the Exit routine and the
Dis pat cher.

Upon entry (at address IGC009) the
Delete routine first searches the load list
for the caller'S task in order to find a
contents directory entry (CDE) containing
the specified entry-point name. If such a
CDE can be found, processing of the request
can continue. Otherwise, the routine sets
up a return code (4) and returns control to
the caller, via the Exit routine and the
Dispatcher. The Delete routine obtains the
load-list origin from the TCBLLS field of
the current TCB (see Section 12, "Control
Blocks and Tables"). It searches the ele
ments of the load list, examining each CDE
pointed to by each load list element. If
it does not find a match between the speci
fied entry-point name, supplied as an input
parameter of the macro instruction, and the
name in any of the CDEs indicated by the
load list, the return code is set up and
control is returned to the caller, as
stated previously. If the routine finds a
match, processing continues as follows.

The Delete routine subtracts one from
the "responsibility" count (LLCOUNT) in the
load list element for the specified module.
This count is a record of the number of
outstanding LOAD requests for the module.
(See Section 12, "Control Blocks and
Tables.") Each execution of the Delete rou-

tine similarly decreases the responsibility
count until the count reaches zero. The
routine next checks whether this count has
reached zero. A responsibility count of
~ero indicates that there are no outstand
ing LOAD requests, that is, t.here have been
as many delete requests for the module as
there have been I,OAD requests. If the
responsibility count in the load list ele
ment is zero, the routine removes the ele
ment from the "load list, and issues a FREE
~~IN macro instruction to free its space.
This action is appropriate, since a load
list element merely indicates an outstand
ing LOAD request for a module, not whether
the module has been fetched via another
type of macro instruction, or whether the
module is still being used.

The Delete routine next subtracts one
from the "use/responsibility" count in the
major CDE that it has found. This count,
unlike the responsibility count in a load
list element, records the total number of
requests for a module, via ATTACH, LINK,
LOAD, or XCTL macro instructions. The
count is increased for each such request
and decreased for each DELETE or SVC 3
instruction.

The routine tests the use/responsibility
count in the major CDE to determine if the
Ir.odule· s storage areas may be freed. These
areas include the space occupied by the
module, its CDES, and its extent list. If
the count is not zero, at least one requ
esting program within the current task has
not cORlpleteLi its use of the module. That
is, the module has not yet issued a RETURN
macro instruction, nor has a DELETE macro
instruction been issued for it. Since the
module'S storage areas cannot be freed, the
routine returns control to the caller, via
the Exit routine and the Dispatcher.

If, however, the use/responsibility
count is zero, the Delete routine turns off
bits in the CDATTR field to indicate that
the module is neither reentrant nor reus
able and then branches to subroutine
CDHKEEP to free the storage space occupied
by the module, its extent list, and its
CDBs (both major and minor CDEs, if both
types exist). The address of the extent
list for the module is obtained from its
major CDE. After freeing the module's
storage space, the Delete routine returns
control to the caller, via the Exit routine
and the Dispatcher, with a return code of
zero.

SUPERVISING THE LOADING OF SEGMENTS OF AN
OVERLAY lvlODULE

The Overlay Supervisor directs the load
ing of segments of an overlay module.
Before the execution of an overlay module,

the linkage editor builds two sets of
tables, the segment table and the entry
tables, which it places in the overlay
module. Later, during execution of the
nodule, the Overlay Supervisor uses and
alters information in the tables to perform
its functions.

Preparatory Linkage Editor Functions

Before execution of an overlay module,
the linkage editor builds, from information
in the relocation list dictionary (RLD) and
the user's control statements, a segment
table and one or more entry tables. These
tables are made a part of the overlay
module and are used by the Overlay Supervi
sor during module execution.

There is only one segment table (SEGTAB)
in an overlay module, as shown in Figure
4-6. The segment table is used to keep
track of the relationship of the segments
in the module, and to determine which seg
ments are in main storage or are being
loaded.

The linkage editor builds an entry table
for each segment that contains V-type
address constants. (See Figure 4-6.) A
table entry is made for each constant that
refers to a symbol whose segment must be
fetched via a CALL or branch instruction.
The linkage editor saves in each entry the
value it assigns to the constant. It
places in the value field of the constant
the address of the EN TAB entry.

ESD

SEGTAB

TXT

ENTAB

TXT

ENTAB

TXT

RLD

Figure 4-6. Organization of an Overlay
Module

section 4: Contents Supervision 91

Durinq module execution, when the branch
instruction that uses the address constant
is executed, the branch gives control to an
instruction in the associated ENTAB entry.
Instructions in the ENTAB provide supervi
sor linkage to the Overlay Supervisor if
the desired segment is not in main storage.
If the segment has been fetched by the
Overlay Supervisor, instructions in the
ENTAB provide a branch to the segment.

If Main Storage Hierarchy Support is
included in the system, the loading of
overlay structure programs can be directed
into hierarchy 0 or hierarchy 1 by the
parameter HIARCHY=, but segments of a pro
gram written in overlay mode cannot be
loaded into different hierarchies. When
hierarchy is not specified, the overlay
structure exists in hierarchy o.

Functions of the Overlay Supervisor

The Overlay Supervisor receives control
either when an overlay segment issues a
SEGLD or SEGWT request for another segment,
or when a segment issues a CALL or branch
instruction to an external address in
another segment not in main storage. In
both cases, the Overlay supervisor examines
the segment table to determine whether the
requested segment is already in main
storage, and whether all segments in its
path have been loaded. It then causes the
loading of the requested segment, if not
already in main storage, and any needed
segments in its path. The actual loading
is performed by the Program Fetch routine.

When loading is complete, and the caller
has issued a CALL or branch instruction,
the Overlay Supervisor alters the entry
tables of the loaded segments. The modi
fied entry tables permit future branches to
the same points in the loaded segments
without help from the Overlay Supervisor.

Lastly, depending on the type of invok
ing macro instruction, control is given to
the:

• Caller before loading is complete
(SEGLD) •

• Caller after loading is complete
(SEGWT).

• Branch address in the requested segment
after it is loaded (CALL or branch
instruction) •

Linkage to the Overlay Supervisor

Linkage to the Overlay Supervisor is
initiated directly for a SEGLD or a SEGWT

92

macro instruction. It is initiated
indirectly for a CALL or branch
instruction.

DIRECT SUPERVISOR LINKAGE: When the expan
sion of a SEGLD or SEGWT macro instruction
is issued, an SVC (37) interruption occurs
and control is given, in turn, to the SVC
First-Level Interruption Handle~, the SVC
Second-Level Interruption Handler, and to
resident module IGC037 of the Overlay
supervisor. If direct branch entry to the
requested segment, via the caller's ENTAB,
has teen prepared through a previous branch
or CALL, control is returned to the caller
(see Figure 4-7). In this case, further
processing of the current request is not
needed. But if a direct branch entry has
not been prepared, module IGC037, after
performing initialization, issues a LINK
macro instruction to obtain supervisor
linkage to the nonresident module IEWSZOVR.
This module processes the request, as
described in "Types of processing."

SUPERVISOR LINKAGE VIA THE CALLER'S ENTRY
TABLE: When a branch instruction or CALL
macro instruction in an overlay segment is
executed, specifying a V-type address con
stant, a branch is made to the associated
ENTAB entry, which branches to an SVC 45
instruction in the last ENTAB entry. The
SVC 45 instruction causes supervisor link
age, via the SVC First-Level and Second
Level Interruption Handlers, to resident
module IGC037 of the Overlay Supervisor
(see Figure 4-8, A, B, and C). After per
forming initialization, module IGC037
issues a LINK macro instruction to obtain
supervisor linkage to the nonresident
module IEWSZOVR. This module processes the
branch request, as described in "Types of
Processing."

Types of Processing

During execution of an overlay module,
the loading of a requested segment and the
passing of control depend on the type of
instruction that the caller has issued and
whether:

• The requested segment is in main
storage.

• A SEGLD request is being processed.

• A CALL or branch instruction was pre
viously issued specifying the same
external address.

The type of processing for each set of
conditions is summarized in Figure 4-9.

r--
I
I

'N'M {.-__ _

-- ..

~ I

SEGTAB

SEG 1 (Root Segment)

SEGWT or SEGLD

BR 15

B DISP (15, 0)
Address of Fox
SVC 45
L 15,4(0,15)
BR 15

I 1 GC037

I
I
I
I
I

I
I
I
I
t.

I r------r----
I I
I I
I I
~------+-- - ---
I I

!Supervisor
IExit from

I Supervisor
I Exit from
1 S?C 37

~
I
I
I
I
I
1

I
I

I
1
1

V45

~ t
1 1

I :
: 1
L--1 -- ...J

1
I

Update SEGTAB and
ENTABs for segls to
be overlaid. Mark

I No 1.. __________ 1-__ -<

SVC (37) InterrupHon ----...,

SVC (45) Interruption

lGC037

I
I

I

I
I

IG~~ ____ -,

Attach Routine

Attach SEGLD
Processor routi ne

1

1
I
1

1
1

:
I
I
1

I

I
I

_J

Wait for posting of ECB
by SEGlD Processor
routine

SEGn

-------------.
I

L-____ -+ _____ ---.j Load requested segment

r------
I
I
I
I
I
1 _____ ...J

Legend:

ABEND Routi""

Abnormally terminate
caller's task

-- -.. = Supervisor Linkage

~ = Repeated Invocation
of Subroutine

Figure 4-7. Functional Flow of Overlay Supervision

section 4: Contents Supervision 93

SEGTAB

R SEGI CSECT
o ENTRY
o L

j+--T-- ------ BR
I •
IS.

EASY
15,ADCON1
15

I E EASY SR 1,1

I G • ADCONI DC
Step A V(FOX)

SEG2

I
I L __ _

B DISP(15,0)

E
N
T r--StePB-T---J
A Step B-1
B

r-----StepC---

I
L 15,4(0,15)

I

CSECT
ENTRY

I
I

--- - -Step D-------..J

FOX

Address of FOX

I
I
I
I
I
I
I
I
I
I
I

SEG3

ADCON2

Legend:

Address of SEGTAB

CSECT

•
•
L 15,ADCON2
BR 15

•
•
DC V(EASy)

\---------StepE--------- __ J •
FOX AR 1,2 - - - ~ = control flow

• .. • = loop processing with
• a subroutine
•

Figure 4-8. Use of the Caller's ENTAB to Branch to a Seqment

Determining the segments that Must Be
Loaded

The nonresident module (IEWSZOVR) of the
Overlay Supervisor determines which seg
ments should be loaded. It does this by
scanning the segment table of the overlay
module, which was loaded with the root seg
ment.It examines status indicators in the
segment table, previously set by the link
age editor or the Overlay Supervisor, to
determine which, if any, segments in the
path of the requested segment must be
loaded. For each segment that must be
loaded, Ih~SZOVR sets indicators to control
a subsequent fetch process.

The segment table, a part of the root
segment, was built by the linkage editor.
It contains one entry for each segment of

94

the overlay module. The entries are
ordered to correspond to the segment num
bers of the overlay structure. Each entry
contains the number of the preceding seg
ment in the path and a field of status
indicators. The segment table entries form
a tatular representation of the overlay
tree structure. Figure 4-10 illustrates a
typical segment table for a "single-region"
overlay structure. (An overlay program can
be designed in single or multiple regions
of main storage -- not to be confused with
job-step regions. (See the Linkage Editor
publication for further information.)

During the scan of the segment table,
the entry for the requested segment is
located and its status indicators are
examined. The resultant processing is
tabulated in Figure 4-11.

r--------T--------------------------------------T---------------------------------------,
I Instruc-I 1 I
I tion 1 Condi tions I Major Processing I

r--------f--------------------------------------f---------------------------------------~
SEGLD 11. Requested segment and/or segments 11. Loading of needed segments is start-I

(SVC 31)1 in its path are not in main stor- I ed. The caller's entry table is notl
I age, and are not in process of 1 altered to prepare for a branch to I
1 being loaded. I the requested segment. Control is I
I I returned to the caller while the I
I I segment or segments are being I
I I loaded. The requested segment is I
I I not entered. I

~--------------------------------------+---------------------------------------~
12. Requested segment is in main stor- 12. Control is returned to the caller. I
I age or is being loaded. I 1
I 1 I
I I I

r--------+--------------------------------------f---------------------------------------~
I SEGWT 13. Same conditions as in (1). 13. Needed segments are loaded. The I
I (SVC 31}1 I caller's entry table is not altered I
I I I to prepare f or a branch to the I
I I I requested segment, control is I
I I I returned to the caller only after I
I I I the requested segment and any needed I
I I I segments in its path have been I
I I I loaded. The requested segment is I
I I I not entered. I
I r--------------------------------------f---------------------------------------~
I 14. Requested segment is being loaded 14. processing of the SEGWT request I
I I for a SEGLD request. . I waits until loading is complete. Nol
I I I new loading occurs" Remaining pro- I
I I I cessing is as in (3). I
I r--------------------------------------+---------------------------------------~
I 15. Requested segment is in main stor- 15. Control is returned to the caller. I

" I I age. I I
I I I I
I I I I
r--------f--------------------------------------+-----~---------------------------------~
I CALL 16. Segment was requested via SEGLD or 16. The caller's entry table is altered I
I or I SEGWT and is in main storage. I to prepare for a future branch to I
I branch I I the same external address without I
I (SVC 45}1 I entry to the Overlay Supervisor. I
I I I Control is then given to the I
1 I I requested segment at the specified I
I I I address. I
I ~--------------------------------------+---------------------------------------~
I 11 . Segment was requested via a SEGLD 11. processing of the CALL or branch I
I I and loading is not complete I request waits until loading is com- I
I I I plete. No new loadi ng occurs. I

I I Remaining processing is as in (6). I
~--------------------------------------+---------------------------------------~
18. Requested segment is not in main 18. Needed segments are loaded. When I
I storage, nor is it being loaded. I loading is complete, the remaining I
I I processing is the same as in (6). I
I I I
~--------------------------------------+---------------------------------------~
19. Caller previously issued a CALL or 19. Overlay Supervisor is not entered. I
I branch instruction specifying same I The caller's entry table, previously I
I external address. I altered as in (6), provides a direct I
I I branch to the requested segment. I _~ ______ k ______________________________________ k _______________________________________ J

Figure 4-9. Types of Processing During Overlay Supervision

Section 4: Contents Supervision 95

Segment 1

2

3

4

5

6

7

No. -of-Preceding
Field

2

2

5

5

2

4

1

3

5

6 7

Figure 4-10. Organization of SEGTAB
Entries for a Single-Region
Overlay structure

Controlling the Loading of Needed Segments

The loading of needed segments is per
formed in two different ways, depending on
whether the current request is made via a
SEGWT or a SEGLD macro instruction.

For a SEGWT request, IEWSZOVR, as part
of the caller's task, directly invokes the
Program Fetch routine to load each segment
whose SEGTAB entry is marked 01 ("loading
scheduled"). The caller is given control
only after all such segments have been
loaded.

For a SEGLD request, IEWSZOVR attaches
as a subtask the SEGLD Processor routine
(OVLAID02) which, under control of the sub
task TCB, invokes the Program Fetch routine
to load each segment. As with a SEGWT
request, each segment is loaded whose SEG
TAB entry is marked 01 ("loading sche
duled"). riowever, at the first I/O wait
interval, control is returned to the issuer
of the SEGLD macro instruction, although
the needed segments have not yet been
loaded. Later, if the caller tries to
branch to the requested segment before
loading is complete, its task is forced to
wait. While the caller's task waits, the

96

SEGLD Processor routine completes the load
ing of the needed segments, and then posts
an event control block to ready the waiting
task.

Preparation for an Unassisted Branch to the
Loaded Segment

When the requested segment and any
needed segments in its path have been
loaded, it is desirable to permit the call
er to branch to the requested segment via
its ENTAB, without help from the Overlay
Supervisor. Such an unassisted branch
would bypass the SVC 45 instruction in the
caller'S ENTAB (see steps A, B-1, and E of
Figure 4-7).

The alteration of the caller's ENTAB
occurs after the caller has issued its
first CALL or branch instruction to obtain
linkage to the requested segment. The CALL
or branch instruction may itself cause the
loading of the segment (see Figures 4-7 and
4-9).

When module IEWSZOVR is entered after an
SVC (45) interruption, it alters the call
er's ENTAB when it has determined that the
requested segment is in main storage, or
when it has loaded the segment. It adds 2
to the displacement (DISP) field of the
ENTAB entry through which the branch to the
svc 45 instruction was routed (see Figure
4-8, Step B). When the caller executes
another branch to this ENTAB entry, the SVC
45 instruction will be bypassed, and con
trol will be given to the second field of
the last ENTAB entry (see Figure 4-8, Step
B1). Execution of the instruction in this
field will cause general register 15 to be
loaded with the value assigned to the
address constant (in the example, the
address of FOX). A branch to that location
in the requested segment will then be
executed.

All entry tables in the same overlay
region that have been altered to bypass the
SVC 45 instruction are chained together in
a "caller chain." A pointer to the last
altered entry table is placed in the seg
Ir.ent table. When a segment is to be over
laid, module IEWSZOVR uses the appropriate
caller chain to reset all modified entry
tables that refer to the segment to be
overlaid. Thus, an unassisted branch can
not occur to a segment no longer in main
storage. The resetting of ENTAB entries in
a caller chain accompanies the processing
shown for condition 4 of Figure 4-11.

Passing of Control

The last function of the Overlay Super
visor is to pass control. control is given
to the requested segment or returned to the
calling segment, depending on the type of

/

invoking instruction (SEGLD, SEGWT, CALL,
or branch). See Figures 4-7 and 4-9.

F~TCHING ROUTINES AND MODULES TO MAIN
STORAGE

The Program Fetch routine loads SVC rou
tines, I/O error-handling routines, and
other modules. As part of the loading pro
cess, the Program Fetch routine obtains
needed storage space, performs I/O opera
tions, and relocates address constants when
necessary.

The Program Fetch routine is invoked,
via a branch instruction, by any of several
supervisor routines, depending on the type
of module or routine that is requested, as
follows:

r--------------------------r--------------,
I I Routine I
I Type of Requested IThat Invokes I
IModule or Routine IProgram Fetch I
~--------------------------+--------------~
INonresident SVC routine ITransient Areal
I IFetch routine I
I I I
II/O error handling routine Stage 3 I
I Exit Effector I
I I
INonoverlay module that Common sub- I
lis not available in main routines of I
Istorage, or the root seg- Contents I
Iment of an overlay module Supervision I
Ithat is not available in I
Imain storage I
I I
IA segment of an overlay Overlay I
Imodule (except the root Supervisor I
I segment) I L __________________________ ~ ______________ J

Fetching SVC and I/O Error-Handling
Routines

Either the SVC Second-Level Interruption
Handler or the Stage 3 Exit Effector deter
mines if a usable copy of the desired rou
tine is in a transient area block (TAB) of
main storage. If a usable copy is in a
TAB, control is given to the routine.
Otherwise, the Program Fetch routine is
invoked to load the requested routine into
a TAB. A nonresident SVC routine is placed
in an SVC transient area block; an I/O
error-handling routine is placed in the I/O
Supervisor transient area block (see Figure
4-12).

If the Program Fetch routine must be
invoked, the caller places in a fetch work
area the relative disk address and the size
of the routine to be loaded. The caller
obtains this information from the data-set
directory entry belonging to the SYS1.
SVCLIB data set.

Note: A separate fetch work area precedes
each transient area block. Each work area
contains 68 bytes of space and is con
structed during system generation. (See
"Program Fetch Work Area" in section 12.)
The work area contains an input/output
block (IOB), an event control block (ECB),
and a channel program. (See Figure 4-13.)

The Program Fetch routine determines the
absolute disk address of the requested rou
tine and causes the loading of the routine.
It converts the relative disk address of
the routine to an absolute address by means
of a resident "convert" routine. It then
issues an EXCP macro instruction and a WAIT
macro instruction. The EXCP macro instruc
tion causes the I/O supervisor to be
invoked to fetch the desired routine from
the SYS1.SVCLIB data set to the appropriate
TAB. The routine's entry point address is
the same as the address of the TAB. No
relocation is needed, since a transient SVC
routine contains no relocatable address
constants.

When the requested routine has been
loaded, the Program Fetch routine checks
for I/O errors, places a return code in
register 15 to indicate that the fetch has
been successful or that I/O error or inva
lid information has been detected, and
returns control to the calling routine.

Fetching Nonresident Modules

The Program Fetch routine is invoked
either by the common subroutines of Con
tents Supervision or by the Overlay
Supervisor.

It is invoked by the common subroutines
of Contents Supervision after a LINK,
ATTACH, LOAD, or XCTL macro instruction has
been issued, if a usable copy of the needed
module is not in main storage. It is
invoked cy the Overlay supervisor after a
SEGWT, SEGLD, or CALL macro instruction, or
a branch instruction has been issued, if
the needed segment of an overlay module is
not in main storage. The relationship of
the Program Fetch routine to other routines
for the fetch of a module or overlay seg
ment is depicted in Figure 4-14.

The major functions of the Program Fetch
routine for the loading of a nonresident
module or an overlay segment are:

Initialization
initializes a fetch work area, builds
an extent list, and (if the module is
in overlay mode) fetches the module's
note list. If the module is to be
scatter-loaded, the routine fetches
the scatter/translation table.

Section 4: Contents Supervision 97

r---------------------------------T---,
I Conditions 1 Resultant Processing by IEWSZOVR 1
~---------------------------------t---~
11. Requested segment is in main I If entry is for a SEGWT or SEGLD request, control I
I storage. (indicator 10) I is returned to caller. If entry is for CALL or I
I I branch, ENTAB entries are altered to provide future I
1 I branch entry to segment. 1
r---------------------------------+---~ 12. Requested segment is not in I Sets indicator to show "loading scheduled" (01) and I
I main storage. (indicator 11) I continues to scan. I
I I Determines if the preceding entry is for a segment I
I I in the path of the requested segment. I

r---------------------------------+---~
13. The preceding entry is for I Checks status indicator of preceding entry to I
I a segment in the path of the I determine if its segment is in main storage. (Next I
I requested segment. I step is 5 or 6.) I

r---------------------------------+---~ 14. The preceding entry is for a 1 Sets status indicator of preceding entry to "not in I
I segment not in the path of I main storage n (11) in preparation for overlaying 1
I the requested segment. I the segment. Continues scan. I
r---------------------------------+---~
15. Preceding entry is for a seg- 1 Scan is stopped. The assumption is that all seg- I
I ment in the path, and indi- I ments in the path of the requested segment are in 1
I cates its segment is in main 1 main storage (except the requested segment itself). I
1 storage. 1 1
r---------------------------------+---~ 16. preceding entry is for a seg- 1 Sets the status indicator of the entry whose segment 1
I ment in the path, and indi- I is in the path to "loading scheduled" (01) and I
1 cates its segment is not in I continues the scan. I
I main storage. I I l _________________________________ ~ ___ J

Figure 4-11. Processing of Segment Table Entries

Loading
transfers text records and relocation
list dictionary (RLD) records from
auxiliary storage to main storage.
The text records constitute the pro
gram that is loaded. The RLD records
are used for relocation.

Relocation
changes the values of address con
stants in the loaded program from
relative addresses to absolute
addresses.

Termination
checks the completion of I/O opera
tions, calculates the relocated module
entry-point address, initializes the
segments table (if the module is in
overlay mode), sets up a return code,
and returns control to the caller.

INITIALI ZA'I'I ON: The Program Fetch routine
can make available three areas or tables
for later use. They are the program fetch
work area, the extent list, and the note
list. The fetch work area is used by the
Program Fetch routine to load module re
cords. The extent list is used by the com
mon subroutines of Contents Supervision to
prepare linkage to the module; it is used
by the CDEXIT routine to free the module's
storage areas during end-of-task and
abnormal termination procedures. The note

98

list is part of an overlay module; it con
tains the relative disk address of each
segment and, after main storage has been
obtained, contains the module'S relocation
factor.

Initializing the Fetch Work Area: The Pro
gram Fetch routine initializes a work area
whose address is furnished by the caller.
It places in the work area information that
it will use to load the requested module.
This information consists of:

• An input/output block (lOB). The lOB
provides information that is needed by
the I/O Supervisor.

• Two event control blocks (ECBS). One
ECB is posted by the I/O Supervisor
when a channel-end condition occurs.
The other is posted by a PCI Appendage
routine when a program-controlled
interruption occurs in a channel pro
gram. The posting of either ECB per
mits the restarting of the Program
Fetch routine after an I/O wait
interval.

• Three channel proqrams. The channel
programs are similar. They are used to
overlap the reading of one or more
module records with the relocation of
address constants pointed to by a pre
viously loaded RLD record.

SVC

SVC Interruption

SVC First- Level
Interruption
Handler

I/O Error Interruption

I/o Supervisor

reu tine is
in a TAB.

XCTLmacro-instr.
was issued by Nonresident SVC Routine

1/ a Superv isor
Transient Area Block

Exit Routine

Contents
Supervision
(IEAOTR03)

SVC routine.

Transient Area
Fetch Routine

SVC Second- Leve I
Interruption
Handler

Needed
SVC
routine
is in a
TAB.

Request fetch~
of routine .,

Error routine
is not in

I/o Sup. TAB

Program Fetch
Routine

EXCP
macro-instr.

I/o Error
Routine

I/O Supvsr

Transient
Area Refresh
Routine

Fetch is complete

SVC routine is not in a TAB, and no TAB
can be overlaid.

Legend:

TAB = transient area
block

--..= CPU control flow

c:::;:> = information flow

Dispatcher

Current routine of
highest priority
task that can be
performed

SVC Transient
Area Block

SVC Routine

Figure 4-12. Relationships of Program Fetch Routine to Other Routines for the Fetch of
an SVC Routine or an I/O Error Routine

o Three RLD buffers. Each buffer is 260
bytes in length, and is capable of
holding an RLD record, a control rec
ord, or a composite control and RLD
record.

o A buffer table. This table contains a
12-byte entry for each RLD buffer.
Each entry contains:

• A pointer to the next entry.

• The address of an RLD buffer.

• The address of a channel program.

Building an Extent List: The extent list,
Whffil completed, contains the main storage
address and length of each loadable section
of a module (see Figure 4-15). The size of

the extent list and the procedures for con
structing it depend on whether the module
is to be block-loaded or scatter-loaded.
During the construction of the extent list,
main storage is obtained in preparation for
loading the module.

If the module is to be block-loaded, the
Program Fetch routine obtains space for an
extent list, and if necessary, a note list.
The routine places in the "length" field of
the extent list the total size of the
module, as shown in the data-set directory
entry. Next, the Program Fetch routine
issues a GETMAIN macro instruction to
obtain space for the module. The assigned
main storage address returned by the GET
MAIN routine is then placed in the address
field of the extent list.

Section 4: contents Supervision 99

r------------
I r--
I I
I I

I -1
1

I -1
1

1

1

DeB for library that
contains the module
to be looded

E vent Control 810ck

Channel Program{s}

Doto Set on
Direct Access Device

r----
1 Scatter/Translation Record

I
I I I 4- Fi rst Text Record
1 L __
1
I
I
1
1 I I
1 1 1
1 I 1
I 1 I

t .. I 1
L_ I Segment Table

Note -- 1------
Segment 1

List I
(in main -- ----- Segment 2
storage) --- Segment 3 I

---1- ---- Segment 4
~ 1

L_
Note list

Legend: .
__ -.:::: pOinter

~ = information flow

I

l
Non-Overlay
Module in
Auxiliary
Storage

J

-1
Overlay
Module in
Auxiliary

]
Figure 4-13. Control Blocks and Tables

Used by the Program Fetch
Routine

In systems generated with storage
hierarcrlies, a GETloilAIN request is issued
for the creation of the block extent list,
followed by an unconditional GETMAIN re
quest using the specified hierarchy. If no
hierarchy is specified, the request is
satisfied from hierarchy O. If the uncon
ditional request made by Program Fetch can
not be fulfilled, the GETMAIN routine
determines whether to invoke ABEND or
.l{ollout/Rollin functions.

If the module is to be scatter-loaded,
the Program Fetch routine builds an extent
list and obtains space for the module, as
follows:

1. Determines the needed space for the
extent list. It does this by calcu
lating the size of the scatter list/
translation table from information

100

2.

3.

4.

contained in the data-set directory
entry. The scatter list and transla
tion table are placed by the Linkage
Editor in a module that can be
scatter-loaded (see Linkage Editor
PLM) •

Issues a GETMAIN macro instruction for
space for the combined extent list and
scatter list/translation table.

Obtains the relative disk address of
the first scatter list/translation
table record from the data-set direc
tory entry and converts it to an abso
lute disk address. The routine
ottains the size of the scatter list/
translation table from the data-set
directory entry. It then issues an
EXCP macro instruction to read the
record(s). The scatter list/
translation record(s) are read from
auxiliary storage to the lower part of
the space allocated to the extent
list.

Initializes the extent list with the
length of the extent list itself, the
number of scatterable control sec
tions, and the length of each control
section of the module. The routine
determines the length of the extent
list from the number of entries in the
scatter list. It calculates the
length of each control section from
the relative addresses of the control
sections, recorded in the scatter
list/translation table.

5. Obtains space for each control section
by the issuance of a GETMAIN macro
instruction that specifies the list of
control-section lenqths just calcu
lated (step 4). The GETMAIN routine
returns to the Program Fetch routine
the allocated address for each control
section.

6. calculates the relocated address for
each control section from its allo
cated address (obtained from the GET
MAIN routine) and its relative address
(obtained from the scatter list/
translation table>.

When a request is made for a specific
hierarchy, a conditional GETMAIN request is
issued for the specified hierarchy. If
sufficient contiguous storage is not avail
able, Program Fetch builds a list of
lengths in preparation for the scatter
attempt for each CSECT. The GETMAIN re
quest is then issued for the specified
hierarchy.

SVC Interruption

1
SVC First-Level
Interruption
Handler

Assigned Program Area
af Main Storage

Attach
Routine

Attach macro
instruction
was issued

SVC Second-Level
Interruption
Handler

SEGLD, SEGWT, CALL macro
instruction or branch instruction
was issued.

Overlay
Supervisor

LINK,
LOAD,
XCTL, or SYNCH
macro instr issued

Segment not
in main ~
storage.

Fetch is

Dispatcher

Module is not in main
storage but can be fetched.

Jte.

EXCP

Contents
Supervision

Fetch is complete. Program Fetch
Routine Vo Supvsr.

~
~

Module~ Segment(s) are loaded.
main storage ~---------+------.;;;....--:..;...------~
and is usable

Any
Library

~

XCTL macro
instruction was
issued by an SVC
routine (see
Fig. 4-12).

Exit Routine
Module is being
loaded or is
serially reusable
and is in use.

Transient Area
Refresh Routine

Task Switch
Routine

~= CPU control
flow

~ = information
flow

Dispatcher

Current routine
of highest priority
task tha t can be
performed

Figure 4-14. Relationship of Program Fetch Routine to Other Routines for the Fetch of a
Module or Overlay Segment

r---,
INO. of Bytes in Extent List I
~---~
INO. of Relocation Factors I
t---~
I Length of First Storage Block I l ___ J

r---,
ILength of Last Storage Block I
t---~
IAddress of First Storage Block I l ___ J

r---,
IAddress of Last Storage Block I l ___ J

Figure 4-15. Extent List

If the request is made without specify
ing a hierarchy in a system generated with
storage hierarchies, initiation for hierar
chy loading is performed. The size of the
extent list for scatter and the size of the
scatter list/translation table record are
determined before the GETMAIN request is
issued. The scatter list/translation table
record is processed to determine the link
age editor hierarchy designator. If all
designators reference the same hierarchy,
an attempt is made to block load the
module. If this is unsuccessful, Program
Fetch builds a list of lengths for each
CSECT and an unconditional GETMAIN request
is issued for the proper hierarchy.

When the scatter list/translation table
record indicates that the module had been
link edited to utilize multiple hierar-

Section 4: Contents Supervision 101

chies, Program Fetch builds a list of
lengths for each CSECT and appends the
appropriate hierarchy designator to each
CSECT. An unconditional GETMAIN request is
then issued and space is obtained from both
hierarchies 0 and 1.

obtaining the Note List: If the module to
be loaded is in overlay mode, the Program
Fetch routine must load the note list
before it fetches the root segment of the
module. The note list, placed in an over
lay module, by the linkage editor, contains
the relative disk address (TTR) of each
segment of the module. When the root seg
ment has been loaded, the Program Fetch
routine stores in the note list the address
of the segment table (SEGTAB), and the
relocation factor for the module. The note
list remains in main storage throughout the
module's execution. (See Figure 4-16.)

To load the note list, the Program Fetch
routine follows a procedure similar to that
just described in steps 1, 2, and 3 in
"Building an Extent List."

LOADING OF MODULE RECORDS: The program
Fetch routine loads module records of sev
eral types: control records, text records,
RLD records, and composite control/RLD re
cords. A typical logical sequence is shown
in Figure 4-17. Their formats are
des.cribed in Section 12, "Control Blocks
and Tables." (For a discussion of each
type, see the Linkage Editor PLM.)

r----------T------------------------------,
I IRelocation factor for module I
~----------~-------------_r---------------~
I I Concatenation I
I I Number I
~-------------------------~---------------~
ITTR - relative (to beginning of data I
Iset) disk address of segment 1 I
~---~
ITRR - relative (to beginning of data I
Iset) disk address of segment 2 I L ___ J

r---,
ITTR - relative (to beginning of data I
Iset) disk address of segment N I L ___ J

Note: Concatenation Number- This is
a-value specifying this data set's
sequential position within a group of
concatenated data sets.

Figure 4-16. Note List as it Exists in
Main Storage

102

The loading of module records consists
broadly of four functions:

• Preparing for the execution of a chan
nel program. An absolute disk seek
address is computed and made available
to the I/O Supervisor.

• Starting a channel program. The I/O
Supervisor is invoked to start the I/O
operation at the specified disk
address.

• Reading of module records. Text and
RLD or control records are read to main
storage blocks or to buffers.

• SWitching of channel programs. Three
channel programs are switched to follow
the sequence of module records on the
direct access device.

Preparing for Execution of a Channel Pro
gram: The Program Fetch routine, to obtain
the execution of a channel program, must
furnish to the I/O Supervisor an absolute
disk address at which the first I/O opera
tion will begin. The routine accomplishes
this objective by:

• Obtaining the relative track and record
address (TTR) of the first text record
from the data set directory entry, or
obtaining the TTR of the needed segment
from the note list.

• Converting the relative address to an
absolute address, via a branch to a
"convert" routine that is resident in
the nucleus.

• Placing the absolute disk seek address
in the program fetch input/output block
(lOB), for later use by the I/O
Supervisor.

Starting a Channel Program: The Program
Fetch routine starts a channel program by
issuing an EXCP macro instruction to obtain
supervisor linkage to the I/O Supervisor.
The lOB address is provided as an operand
of the macro instruction.

The EXCP Supervisor, part of the I/O
supervisor, obtains control from the I/O
First-Level Interruption Handler (I/O
FLIH). The EXCP supervisor issues a Start
I/O instruction for a Stand-Alone Seek com
mand. The Stand-Alone Seek command moves
the access arm of the direct access device
to the seek address contained in the lOB.
The I/O Supervisor, via a Transfer in Chan
nel command, then passes control to a fetch
channel program, whose address the Program
Fetch routine placed in its lOB. The fetch
channel program causes the first text rec
ord to be read into main storage, beginning

r----------, r---------, r---------, r----------, r---------, r------------, r----------,
1 Record 1 1 IRecord 2 I IRecord 3 I 1 Record ~ 1 IRecord 5 I 1 Record 6 1 1 Record 7 1

I Text 1 1 Control 1 1 Text I I Control I 1 Text 1 I RLD I I Control-RLD-I
1 I I I I I 1 I 1 I 1 End -of - Seg • 1 1 I
1 20 bytes I 1500 bytes 1 120 bytes 1 1102~ bytes I 1260 bytes 1 1 200 bytes I 1 15 bytes I L __________ J L _________ J L _________ J L __________ J L _________ J L ____________ J L __________ J

Figure ~-17. Typical Load-r.:lodule Logical Format on Direct Access Device

at the first assigned main storage address
contained in the extent list.

After the channel program has been
started, the 1/0 supervisor returns control
to the Program Fetch routine to await post
ing of an event control block by the 1/0
Supervisor or an appendage routine. Such
posting indicates that one or two records
have been rEad and that further processing
can occur in the Program Fetch routine.

Reading of Module Records: The channel
program causes the reading of two records,
a text record and an RLD or control record,
if the RLD or control record follows the
text record. The text record is placed in
its appropriate block Qf main storage. The
RLD or control record is placed in an RLD
buffer.

Switching of Channel programs: If an RLD
and control record, or a control record
alone, does not follow a text record, con
trol must be passed to another channel pro
gram to read a single record. The record
must then be tested for control informa
tion. The Program Fetch PCI Appendage rou
tine tests a record in the current RLD
buffer and, >.hen necessary, causes a
channel-program switch between two-record
mode and single-record mode. The PCI.
Appendage routine obtains control from the
1/0 Supervisor during the execution of any
of the three fetch channel programs. (For
overall control flow, see Figure 4-18.)

A channel command word in each channel
program causes a program-controlled inter
ruption (PCI). The PCI (a type of 1/0
interruption) causes supervisor linkage to
the 1/0 Supervisor, which determines the
cause of the interruption, and branches to
the PCI Appendage routine. The PCI Appen
dage routine tests the buffer table and the
current RLD buffer to determine the
channel-program switching that is required.
The processing that results from these
tests is described in Figure 4-19.

The 1/0 Supervisor processes a channel
end interruption, if the No-Operation com
mand in a channel program is not altered
before the channel program finishes. The
1/0 Supervisor gives control to the Program
Fetch Channel-End Appendage routine. This
routine tests if the entire module or seg
ment has been loaded.

If the entire module or segment has been
loaded, the Channel-End Appendage routine
returns control to the 1/0 supervisor to
post the 1/0 event control block (ECB), in
preparation for the restarting of the Pro
gram Fetch routine. Control is passed from
the 1/0 Supervisor to the Program Fetch
routine, via the 1/0 First-Level Interrup
tion Handler and the Dispatcher (see Figure
4-13). The Program Fetch routine then per
forms termination procedures.

If, however, the entire module or seg
went has not been loaded, the Channel-End
Appendage routine returns control to the
1/0 Supervisor to restart the channel
program.

RELOCATING ADDRESS CONSTANTS IN RELOCATION
LIST DICTIONARY (RLD) RECORDS: The Program
Fetch routine is restarted after the PCI
Appendage routine or the 1/0 Supervisor has
posted an ECB. The Relocation subroutine
of the Program Fetch routine then examines
the buffer table to determine whether an
RLD record, containing relocatable address
constants, is in an RLD buffer. The sub
routine searches for a buffer table entry
whose "busy" indicator is set. The indica
tion means that the associated buffer con
tains an RLD record. When such a buffer is
found, the Relocation subroutine relocates
each address constant specified in the rec
ord. When RLD records in all "busy" buf
fers have been processed, the Program Fetch
routine either restarts a channel program,
if a buffer is empty, or issues a WAIT
macro instruction to await the loading of
another record.

The Relocation subroutine adjusts the
value of an address constant by combining
(adding or subtracting) a relocation factor
with the value of the constant. Each RLD
record contains the linkage-editor assigned
address of the constant and a flag that
indicates addition or subtraction of the
relocation factor. (See "Relocation List
Dictionary Record" in Section 12, "Control
Blocks and Tables.")

For a block-loaded module, the reloca
tion factor is the difference between its
linkage-editor assigned address (usually
zero) and the first byte of main storage
into which the module has been loaded. The
relocation factor is either added to or
subtracted from the value field of each
relocatable address constant. As an

Section 4: Contents supervision 103

LINK, LOAD, XCTL, or
ATTACH Macro-instruction

f>vc '"""0";,,

SVC Int. Handlers

Contents Supervision

Return
Program Fetch Routine

of
Control Initialize
to +
COI~ EXCP

WAIT

RLD Yes
Buffer

Busy

No I
All

No RLD Buffers
Full

Yes

Yes
Module

No
BCR 14~ I-- Terminate or Segment

Loaded

l
Do I
Relocation

SEGLD, SEGWT, CALL,
or Branch Instruction + 'VC '"'""0''''"

SVC Int. Handlers

Overlay Supvsr.

Assigned Storage Space for
Module, or RLD Buffer

~
EXCP
Supvsr.

f--

I
I
I
I
I
I
I

Jl I
I

!
1------0

I/O I/O
Channel Device

f4-----

_______ .:1

I/O Interruption (PCI, Channel-End, I/O Error, etc.)

I/O FLiH

~
I/O Interruption Program Fetch

Supervisor PCI Appendage
Routine

(I ssues POS T)

Load PSW

Dispatcher

I
4---

Channel-End
Appendage Routine

Legend:

- = CPU control flow
- - .. = Control flow to or from the I/O channel
-ct----ta- = Loop processing with a subroutine
==:> = Information flow

Figure 4-18. Overall Control Flow During the loading of a Module or Segment

104

Post Routj ne

r-------------------------T---1
I Conditions I Resultant Processing by PCI Appendage Routine I
~-------------------------+---~
11. The next RLD buffer isll. Indicates in buffer table that all buffers are filled I
I filled (busy>' I ("busy"). Does not alter current channel program, which I
I I continues in execution. Performs Step 7. I
~------------------------+---~
12. The last record (in 12. Initializes the next channel program to read a pair of I
I current buffer) was 1 records, starting with a text record. Alters the No- 1
1 either an RLD and 1 operation (NOP) command in the current channel program to I
I control record, or a 1 transfer-in-channel (TIC) to the next channel program to I
I control record alone. I read a pair of records. Tests the last record (control I
I I information) to determine if the next text record is the I
I I last text record of the module or segment. (See step 6.) I
~-------------------------+---~
13. The last record was 13. If the entire module or segment has not been loaded (see 1
I not an RLD record. I step 5), alters the NOP command in the current channel I
I I program to transfer-in-channel (TIC) to the next channel I
I I program to read a single RLD or control record. Performs I
I I Step 7. I
~-------------------------+---~
14. An extent boundary wasl4. Obtains from the data extent block for the library the I
I crossed on the direct I initial extent boundary for the next part of the module. 1
I access device. I Places the extent boundary into the appropriate unit con- I
I I trol block. Computes new absolute seek address and places I
I 1 it in the IOBSEEK field of the IOB. These actions are in I
I I preparation for the issuance of another EXCP macro I
I I instruction. I
~-------------------------+---~
15. The entire module or 15. Sets appropriate "end" flag and performs Step 7. I
I segment has been I I
I loaded. I I
~-------------------------+---~
16. The next text record 16. Prepares for the reading of a single text record by clear-I
I is the last text 1 ing the command chaining flag in the First Read Channel I
I record of the module I command word of the next channel program. I
I or segment (as indi- I I
I cated by end-of- I I
I segment (EOS) or end- I I
I of-module (EOM) flag I I
1 in the previous 1 1
I control record). 1 1
~------------------------+---~
17. Processing described 17. Posts the fetch event control block (ECB) to prepare the 1
1 in Step 1, 3, or 5 hasl Program Fetch routine for restart by the Dispatcher. Re- I
I been performed. I start occurs at the instruction after the WAIT macro I
I I instruction. I L _________________________ ~ ___ J

Figure 4-19. Channel-Program Switching After a Program-Controlled Interruption

example, assume that a module is block
loaded into main storage, beginning at
address 4000. If the flag bit in the RLD
record is positive, a relocation factor of
4000 is added to the value field of each
address constant. If, however, the flag
bit in the RLD record is negative, 4000 is
subtracted from the value fie.ld of the
constant.

For an overlay module, relocation is
similar to that just described, since an
overlay module is effectively block-loaded.
The root segment's relocation factor is
used to adjust the address constants of all
segments of the module. The Program Fetch
routine stores the relocation factor in the

note list, so that it is available in main
storage throughout the module's execution
(see Figure 4-16).

For a scatter-loaded module, each entry
of an RLD record contains the linkage
editor assigned address of an address con
stant, a relocation pointer, and a position
pointer. The position pointer is used to
locate the address constant. The reloca
tion pointer is used to find the relocation
factor by which the address constant will
be adjusted.

The position pointer is used to index
the translation table to obtain a value
that indicates the control section in which

Section 4: Contents Supervision 105

the address constant is located. The tran
slation table value is then used to obtain
a. relocation factor from the scatter list.
'l'he relocation factor, when combined with
the linkage-editor assigned address of the
constant, yields the location of the
address constant. (For more information on
the translation table and scatter list, see
the Linkage Editor PLM.)

The relocation pointer is similarly used
as an index to obtain the relocation factor
for the control section to which the
address constant refers. This relocation
factor is combined with the linkage-editor
assigned value of the constant. The resul
tant relocated value is then placed in the
value field of the constant.

TER~llNATION: If the control record before
the last text record contains an "end"
indicator, the PCI Appendage routine sets
an "end" flag to inform the Termination
subroutine. After relocation has been per
formed, a test of the "end" flag causes the
subroutine to be entered.

The Termination subroutine performs its
processing or waits, according to whether

all I/O operations have been completed.
When all I/O operations have been com
pleted, the subroutine places a completion
code in the return register. The comple
tion code informs the caller of the result
of the attempted loading (see Figure 4-20).

The rest of the termination procedure
depends on the type of module that has been
loaded (see Figure 4-21). When termination
is complete, the Program Fetch routine
returns control to the caller.

r---------T-------------------------------,
I Code I Meaning I
~---------+-------------------------------~
I x'oo' , Successful Load I
I I I
, X'OC' I Invalid Scatter Information I
I I I
I X'OD' I Invalid Record Type I
I I I
I X'OE' I Invalid Address Encountered I
I I ,
I X'OF' I Permanent I/O Error I L _________ ~ _______________________________ J

Figure 4-20. Program Fetch ~eturn Codes

r-------------------T---,
IType of Module I Processing by the Program Fetch Routine ,
~-------------------+---~
IBlock-loaded module I Computes relocated entry-point address for the module, and places I
I I it in the fetch parameter list for use by the caller. I
~-------------------+---~-------------~
,scatter-loaded I Computes the relocation factor for the entry-point address and I
I module I places it in the fetch parameter list. The subroutines of Con- I
I I tents Supervision use this relocation factor to compute relocated I
I I entry-point addresses. Frees the space occupied by the scatter I
I I list/translation table. I
t----~--------------+---~
IRoot segment of I Places in the segment table the main storage address of the data I
loverlay module I control block (DCB) and of the note list for use by the Overlay I
I I Supervisor. I L ___________________ ~ ___ J

Figure 4-21. Termination Processing According to Module Type

106

Main storage space is a resource and,
like other resources, is shared by many
users. Allocation of space must be con
trolled, and space must be requested when
it is needed and be freed when it is no
longer needed. Control over space alloca
tion is exercised by the routines of Main
storage supervision and by the routines of
the optional rollin/rollout module. The
Main Storage Supervision routines service
two macro instructions: GETMAIN, which is
used to allocate space; and FREEMAIN, which
is used to free space that was previously
allocated. Each macro instruction results
in an SVC interruption and entry to a
corresponding service routine.

Requests for allocation of main storage
space are serviced by Main Storage Supervi
sion elements collectively called the
GETMAIN routine. This routine services all
requests for space, including requests for
a region, space within an existing region,
or space in the system queue area. By
keeping and continually updating control
blocks that record where space is avail
able, the GETMAIN routine can determine
where and how a request may be satisfied.

Requests to free main storage space are
serviced by Main Storage Supervision ele
ments collectively called the FREEMAIN rou
tine. This routine updates control blocks
to reflect the change of status of the
freed space, thereby making the space
available for reallocation by the GETMAIN
routine.

An unconditional request for the alloca
tion of main storage space in an existing
region, if unsatisfied by the GETMAIN rou
tine, can cause the GETMAIN routine to
schedule linkage to the rollout/rollin
module. This extra effort to obtain the
requested space is possible if the rollout
feature is included in the system and if
the requester belongs to a job step eligi
ole to cause rollout. The rollout/rollin
module is not scheduled if the requester is
a system routine, if the request is for
space in the system queue area, or if the
request is for a region in which to start a
new job step.

The rollout/rollin module, when executed
for the GETMAIN routine, tries to obtain a
temporary additional region for use by the
requester's .task and other tasks of its job
step. This is necessary since the request
ing job step needs more space than is
available in its existing region. The
rollout/rollin module first tries to allo-

SECTION 5: MAIN STORAGE SUPERVISION

cate the temporary region from unassigned
space in the dynamic area. If sufficient
unassigned space is not available, the
rollout/rollin module then searches for a
suitable job step of another job that it
may rollout. A job step is suitable to be
rolled out if its dispatching priority is
lower than that of the requester's job
step, its job step TCB is flagged eligible
to be rolled out, and if it is not using or
waiting for a system resource for which it
has issued an ENQ macro instruction.

If the rollout/rollin module finds a
suitable job step whose region is large
enough to satisfy the current request, it
waits for completion of active I/O com
mands, suspends pending I/O commands,
defers pending operator replies, and trans
fers (rolls out) to auxiliary storage the
contents of the selected job step's region.
It then builds and initializes control
blocks to allocate the rolled out region to
the requester's job step. The rollout/
rollin module returns control to the requ
ester, which reissues its original GETMAIN
macro instruction, causing supervisor link
age to the GETMAIN routine. The GETMAIN
routine then services the request from the
region just obtained through rollout.

At key decision points in the rollout
processing there are dummy user routines
whiCh the user may replace with his own
optional appendages. The user-written
appendages may do the following:

• Determine whether more than one job
step can concurrently obtain space
through rollout of other job steps'
regions. Such an option is called
nmultiple rollouts."

• Decide whether a region belonging to a
job step of higher dispatching priority
than the requester's job step should be
rolled out.

• Decide if a job step should be abnor
mally terminated,· if there is no job
step suitable to be rolled out.
Abnormal termination could be selected
in place of the standard alternative of
placing the requester's job step on a
wait queue, pending a new attempt at
rollout.

• Specify additional criteria that must
be met by a job step before it can be
rolled out.

Section 5: Main Storage supervision 107

After the requester's job step has com
pleted its use of the borrowed region (sig
naled by issuance of a FREEMAIN macro
instruction), the FREEMAIN routine sched
ules linkage to the rollout/rollin module.
Tnis time the module transfers (rolls in)
the contents of the rolled out job step's
region from auxiliary storage to its origi
nally assigned location in main storage.
Deferred I/O commands and deferred operator
replies are then restored to the job step.
The rollout/rollin module returns control
to the current routine of the highest
priority ready task, via the Exit routine
and the Dispatcher.

INTERRUPTION HANDLING FOR MAIN STORAGE
SUPERVISION

Both the GETMAIN and FRE~~IN macro
instructions may be expressed by program
mers in two forms. S (storage) type macro
instructions are used when parameters are
supplied in a parameter list, and R
(register) type macro instructions are used
when parameters are supplied in general
registers. Figure 5-1 shows the SVC
instructions contained in expansions for
each type.

When any SVC instruction is executed, an
SVC interruption occurs and control is
given to the SVC First-Level Interruption
Handler, which saves a record of the inter
rupted environment and routes control to an
appropriate SVC service routine. A
description of SVC first-level interruption
handling is contained in the section "SVC
Interruption Handling". Figure 5-2 shows
the handling of interruptions resulting
from issuance of GETMAIN and FREEMAIN macro
instructions •

For SVC 4 and SVC 5 instructions, the
SVC First-Level Interruption Handler gives
control to the GET~~IN and FREEMAIN rou
tines, respectively. For SVC 10 instruc
tions, it gives control to the REGMAIN rou
tine, which examines register 1 to deter
mine whether a GETMAIN or FREEMAIN macro
instruction was given, and routes control
accordingly.

r-----------------T-------T---------------,
l1"lacro Instruction I Type ISVC Instruction I
r-----------------+-------+---------------1
I GETMAIN I S I svc 4 I
I I R I SVC 10* I
~-----------------+-------+---------------~
I FREE~IN I S I SVC 5 I
I I R I svc 10* I
~-----------------L-------L---------------~
I*High-order bit of register 1 will con- I
I tain 1 for GETMAIN; 0 for FREEI4AIN. I l ___ J

Figure 5-1. GET~JAIN/FREEMAIN SVC
Instructions

108

SVC Interruption

SVC
First-Level
Interruption
Handler

Type I SVC
Routine

Current routine
of highest
priority task
that can be
performed

Figure 5-2. Main Storaqe Supervision
Interruption Handling

The GETMAIN, FREEMAIN, and REGMAIN rou
tines are type 1 SVC routines. After the
GETMAIN and FREEMAIN routines have com
pleted their processing, they give control
to the Type-1 Exit routine. The Type-1
Exit routine determines whether the task
for which the SVC instruction was executed
is to be reinstated. If so, it restores
the saved contents of reqisters and returns
control to the routine in which the SVc
instruction was encountered. If, however,
a different task is to gain control, the
Type-l Exit routine saves register contents
in the current TCB, saves the SVC old PSW
in the current request block, and branches
to the Dispatcher. The Dispatcher routes
control to the current routine of the high
est priority ready task.

ALLOCATING MAIN STORAGE

All requests for space are handled by
the GETMAIN routine. These include
requests for regions, space within regions,
and space in the supervisor queue area of
main storage. Basically, the GETMAIN rou
tine scans queues of elements that repre
sent available space to locate the amount
of space of the type requested. When the

space is found, the GETMAIN routine updates
the affected queues to reflect its subse
quent unavailability and returns the
address of the space to the requester. If
the requested space is not available, the
GETMAIN routine responds according to the
type of storage that is requested: a new
region, space within an existing region,
space in the system queue area, or space in
the local system queue area.

If requested space for a new region is
not available, and the request is condi
tional, the GETMAIN routine sets up a
return code and returns control to the re
quester, via the Type-1 Exit routine. If,
however, the request is unconditional, the
GETMAIN routine makes the requester's task
nondispatchable, pending the availability
of sufficient free space in the dynamic
area, and causes control to be given to the
current routine of the highest priority
ready task.

If requested space within an existing
region is not available, the GETMAIN rou
tine tries to find space that may be freed
and allocated to the requester's task. It
first searches for unused modules in the
requester's region that may be purged. If
sufficient space cannot be made available
by the module purge, and the request is
conditional, the GETMAIN routine sets up a
return code and returns control to the re
quester, via the Type-1 Exit routine. If,
however, the request is unconditional, and
if the rollout feature cannot be used, the
GETMAIN routine causes the abnormal ter
mination of the requester's task. If,
however, the rollout feature is part of the
system and the requester's task is eligible
to cause rollout, the GETMAIN routine
schedules linkage to the rollout/rollin
module. The rollout/rollin module tries to
obtain temporary allocation of an addition
al region for use by the requester's job
step. The additional region may be
obtained either from free space in the
dynamic area or by temporary reallocation
of a region previously allocated to a job
step of another job. If the rollout/rollin
module cannot find the needed region, it
either causes the abnormal termination of
the requester's job step or another job
step, or makes the requester's job step
temporarily nondispatchable pending the
availability of the needed region. The
choice depends on the option specified in a
user-written appendage.

If the requested space in the system
queue area is not available, the GETMAIN
routine purges and frees CDEs within the
system queue area. If this does not make
sufficient system queue area available, the
GETMAIN routine attempts to expand the sys-

tern queue area by assigning to it 2K blocks
of adjacent free dynamic area storage. If
the system queue area cannot be expanded
(because the adjacent dynamic area is
assigned to a region), or if the system
queue area is expanded but still cannot
satisfy the request, the GETMAIN routine
determines if 144 bytes of system queue
area are available. If not, the GETMAIN
routine places a completion code of E04 in
the TCB of the requester, sets the TCB non
dispatchable, and causes the CPU to be
placed in an enabled wait state with a wait
code of E04. If 144 bytes of system queue
area are available, the GETMAIN routine
uses ABTERM to schedule the requester for
abnormal termination with a completion code
of E04. The 144 bytes are necessary to
build the SVRB for ABEND which terminate
the requester. In a Model 65 Multiproces
sing System, if the system queue area is
expanded, the new size and origin of the
dynamic area is placed in the PQE.

If requested space in LSQA is not avail
able, the GETMAIN routine causes abnormal
termination of the requester's task unless
the task is already in abnormal termination
processing. In this case, the request is
changed to a request for space in SQA.

Following entry to the GETMAIN routine,
the Subpool Check (CSPCHK) subroutine is
entered to determine what type of space is
requested. Figure 5-3 shows the subpool
numbers associated with each type of
request.

ALLOCATING A REGION

Space for regions is obtained from the
dynamic area of main storage (see Figure
5-4). The PQEPTR field at offset 8 in
location GOVRFLB contains the address of a
two-word dummy partition queue element
(DPQE) less 8 bytes. Word one of the DPQE
contains the address of a partition queue
element (PQE) that describes unassigned
processor storage not assigned to any
region. Word two of the DPQE contains the
address of the last PQE constructed by NIP.

In a system with Main Storage Hierarchy
Support, word three of the PQE for hierar
chy 0 contains the address of the PQE that
describes unassigned IBM 2361 Core Storage
not belonging to any reg'i'on. If IBM 2361
Core Storage was off-line at IPL, this word
contains zeros and any requests for hierar
chy 1 storage are logically satisfied from
processor storage. If Main Storage Hierar
chy Support is not included in the system,
or if Main Storage Hierarchy support is
included but IBM 2361 Core Storage is not
on-line at IPL, only one PQE, describing
allocatable storage, is constructed.

Section 5: Main Storage Supervision 109

r-----------T----------------------T----------------------T-----------------------------,
ISubpool No. 1 Signifies Request for:IStorage Key Assignment I Notes 1

r-----------+----------------------+----------------------+-----------------------------~
I 246 I Region I ISignifies request to free I
I I I lexisting region and assign I
I I I Inew region. 1

~-----------+----------------------+----------------------+-----------------------------~
I 247 I Region I ISignifies request to assign I
I I I I new region or free existing I
I I I I region. I
r-----------+----------------------+----------------------+-----------------------------~
I 248 I Region I ISignifies request from I
I I I IRollout/Rollin routine to I
I I I lassign a region I
~----------+----------------------+----------------------+-----------------------------~
I 0-127 ISpace within region IJob-step's storage IWhen subpools 0-127 are re- I
I I Iprotection key (reset Iquested by programs executing I
I I I to 0 when space is I in supervisor mode and key 0,1
I I I freed) Isubpool 252 is assigned. I
~----------+----------------------+----------------------+-----------------------------~
I 250 ISpace within region IJob-step's storage IWhen requested by programs I
I I Iprotection key (reset lexecuting in supervisor I
I I Ito 0 when space is Imode or key 0, subpool 0 is I
I I I freed) lassigned. I
~-----------+----------------------+----------------------+-----------------------------~
I 251 ISpace within region IJob-step's storage I Nonreenterable modules in the I
I I I protection key (reset IJob Pack Area. I
I I Ito 0 when space is I I
I I I freed) I I
~-----------+----------------------+----------------------+-----------------------------~ I 252 ISpace within region 10 storage ~rotection IReenterable modules in the I
I I Ikey IJob Pack Area. I
~-----------+----------------------+----------------------+-----------------------------~
I 243 ISpace within system 10 storage protection IAssigned space is freed when I
I . Iqueue area Ikey Itask terminates. I
~-----------+----------------------+----------------------+-----------------------------~
I 244 ISpace within system 10 storage ~rotection IAssigned space is freed when 1
I I queue area I key I job step terminates. I
~-----------t----------------------t----------------------+-----------------------------~
I 245 ISpace within system 10 storage protection IAssigned space must be I
I I queue area I key I explici tly freed. I
~-----------+----------------------+----------------------+-----------------------------~
I 253 INon-TSO task -- 10 storage protection IAssigned space is freed when I
I I space within system IKey Itask terminates. I
I I queue area I I I
I I I I I
I ITSO task -- 10 storage protection IAssigned space is freed when I
I I space within local IKey Itask terminates. I
I I system queue area I I I
r-----------+----------------------+----------------------+-----------------------------~
I 254 INon-TSO task -- 10 storage protection IAssigned space is freed when 1
1 I space within system IKey Ijob step terminates. I
I I queue area I 1 I
1 I 1 1 I
I ITSO task -- 10 storage protection IAssigned space is freed when I
I I space within local IKey Ijob step terminates. I
I I system queue area I I I
r-----------t----------------------t----------------------+-----------------------------~
I 255 INon-TSO task -- 10 storage protection IAssigned space must be I
I I space within system IKey lexplicitly freed. I
I I queue area I I I
I I I 1 I
1 ITSO task -- 10 storage protection IAssigned space must be I
I I space within local IKey lexplicitly freed. I
I I system queue area I I I L ___________ ~ ______________________ ~ ______________________ ~ _____________________________ J

Figure 5-3. Subpool Numbers Used for Requesting Space

110

Location GOVRFLB

') Nucleus

Dummy POE-S....,./'

I Dummy POE -')
Dummy POE-S

I TeB d:> Supervisor
Queue Area

1 POE

1 FBOE

1 FBOE

-') 1 Dummy POE J,
P

/
1 Region

'I POE 1]

Dynamic
Area

Link Pack
Area

Figure 5-4. Element Relationships:
Region Allocation

Words one and two of the PQE point to
the first and last, respectively, free
block queue elements (FBQEs) associated
with the area of storage described by the
PQE. FBQEs occupy the first three words of
each free block of each type of storage and
contain a count of the number of free bytes
available in that block of storage. FBQES
are forward and backward chained in address
order so that main storage supervision rou
tines may scan them from either high to low
address or low to high address.

To assign a region, the GETMAIN routine
searches for the highest block of free
storage in the dynamic area that is large
enough to satisfy the request. It then
determines the beginning address of the
region:

Beginning
Address

the size of Free Block of
storage + the address of the
FBQE (for that block of free
storage) - the size of Region
Requested

The GETMAIN routine then subtracts the
number of bytes to be occupied by the
region from the number of bytes in the FBQE
that represents the block of free storage.

For each region, the GET MAIN routine
builds a free block queue element (FBQE) at
the beginning of the region and a dummy
partition queue element and a partition
queue element (PQE) in the system queue
area (see Figure 5-4). The GETMAIN routine
places in the free block queue element a
count of the number of contiguous free
bytes that can be allocated in the region.
The dummy partition queue element is made
to point to the partition queue element,
which in turn is given a pointer to the
free block queue element. The GETMAIN rou
tine places in the PQE the size of the
region and the region address. It places
the address of the dummy PQE less 8 bytes
in the TCBPQE field of the TCB of the job
step task for which the region was
requested. If Main Storage Hierarchy Sup
fort is included in the system, regions may
be requested in either hierarchy, or a
region may be requested with segments in
both hierarchies. A PQE is constructed for
each region segment and both PQEs are
chained (by way of a dummy PQE) to the TCB
that represents the task for which the
region was requested. (For the formats of
the dummy PQE, PQE, and FBQE, see Section
12, "Control Blocks and Tables.")

The GETMAIN routines additionally sup
fort obtaining a region at a specific
storage address and quiescing the system if
a valid request for a region at a specific
address cannot be satisfied.

The function of obtaining a region is
performed by the GET PART module, invoked by
expansion of the GETMAIN macro instruction.

To obtain a region at a specific main
storage address, the list form of the
macro instruction must be used. The list
contains an address pointer and a length
pointer; the address pointer indicates the
location of a list containing the addresses
at which storage is to be obtained, the
length pointer points to a corresponding
list of lengths specifying the size of each
of the requested regions. In the list
form, the address entries must contain the
hierarchy identification in the high order
byte if the system includes Main Storage
Hierarchy Support. Figure 5-5 shows the
subpool use for list and register forms of
GETMAIN requests for region allocation;
Figure 5-6 shows the lists and pointers.

Section 5: Main Storage Supervision 111

r-------------T----------------------------------T--------------------------------------,
I Subpool No. I List Request I Register Request I

~-------------+----------------------------------+--------------------------------------~
I 246 I Free, then get Region I Free, then get region segment in samel
I I Address = 0, get region anywhere I hierarchy (if HO or H1 only) or in I
I I Address * 0, get region at I hierarchy 0 (if region has segments I
I I specified address I in both hierarchies) I
~-------------+----------------------------------+--------------------------------------~
I 247 I Address = 0, get region anywhere I Register 1 negative, get region I
I I Address * 0, get region I Register 1 zero or positive, free I
I I specified address I region I
~------------+----------------------------------+--------------------------------------~ I 248 I Request from Rollout/Rollin I Request from Rollout/Rollin I L _____________ ~ __________________________________ ~ _____________________________________ -J

Figure 5-5. Subpool Use for List and Register Forms of GETMAIN (GETPART Module)

If a request contains a specific address
which is not in either the dynamic area
(between the system queue area and the link
pack area) or within hierarchy one in sys
tems with Main Storage Hierarchy Support,
the GETPART module returns with a code of
X'08' in register 15. If the address is
valid, but not enough storage is available,
the requester is placed in a wait condition
and no further requests, except for subpool
248 (from Rollout/Rollin), are accepted
until the first specific address request is
satisfied.

In a Model 65 Multiprocessing System, if
the :t"equested storage area is not avail
able, GETPART determines from FSSEMAP
whether any of the storage has been logi
cally removed from the system. (See Sec
tion 12 "Control Blocks and Tables" for a
description of FSSEMAP.) A storage area
may be marked offline in FSSEMAP if (1) a
VARY STORAGE OFFLINE command has been
issued, (2) the storage address range is
set disabled (determined by the Multi-

t Length List

-,-,

processing NIP routine) or (3) the storage
area is malfunctioning (determined by
Storage Reconfiguration or Multiprocessing
NIP routines). If any of the requested
storage area is marked offline in FSSEMAP,
GETPART returns with a code of X'08' in
register 15, a message is issued that main
storage is not available, and the job is
abnormally terminated. If the storage is
not marked offline, the requester is placed
in a wait condition until the request can
be satisfied.

If a list request with more than one
entry cannot be completely satisfied, all
storage already obtained for the request is
returned to the system.

A FREEPART/GETPART (EXCHANGE) request
for a specific address must be issued using
the list form and must specify sub pool 246.
GETPART frees the region and replaces it
with one at the address specified. In sys
tems with Main Storage Hierarchy Support,
only the segment in hierarchy 0 is freed if

Length

-,-, t Address List r--
I

X'80'

JA "1";" h;9h_ocd.:·~:t:"'ka .. ' e"' af,}
I Code Subpool I

ID

High-order bit
indicates request
for multiple
hierarchies. - Hierarchy

ID

Hierarchy
ID

-,-,

T

Address

Address

-...

T

A "0" Address indicates
normal GETPART for region

A non-zero Address indicates
specific region start address
for GETPART

Figure 5-6. List Structure for List Form of GETMAIN (GETPART Module)

112

a region consists of both hierarchy 0 and
hierarchy 1 segments (see Figure 5-5). The
region segment described by the FREEPART/
GE'l'PART request must lie wholly wi thin the
dynamic area. All FREEPART/GETPART
requests for specific addresses are assumed
to be within the boundaries of the original
region; no provision is made to handle an
invalid request.

If the dynamic area does not contain
sufficient free space for the requested
region, the GETMAIN routine rtsponds
according to whether the GET~ffiIN request is
conditional or unconditional. If the re
quest is conditional, the GETMAIN routine
places a return code (4) in register 15 to
inform the requester that space cannot be
allocated. It then returns control to the
requester, via the Type-l Exit routine.
If, however, the request is unconditional,
the GETMAIN routine makes the requester's
task nondispatchable, prepares for future
reissuance of the request, and causes con
trol to be routed to the current routine of
the highest priority ready task. It does
this by:

• Setting the TCBFCDl nondispatchability
flag in the requester's TCB.

o POinting the SVC old PSW to the invok
ing GETMAIN macro instruction, and
storing this restart address in the
requtster's RB old PSW.

o Indicating to the Dispatcher that a
task switch is needed. (It does this
by placing zero in the "new" TCB point
er IEATCBP.)

o Branching to the Type-l Exit routine,
which detects the task switch indica
tion of the "new" TCB pointer. The
Type-l Exit routine then branches to
the Dispatcher to locate the highest
priority ready task whose current rou
tine will be given control.

ALLOCATING SPACE WITHIN A REGION

Any GETMAIN macro instruction in which
subpools 0-127, 250, 251, or 252 are speci
fied indicates that space within an exist
ing region is desired. If Main Storage
Hierarchy Support is included in the sys
tem, a region may consist of segments in
both hierarchies, or may be contained
entirely within either hierarchy 0 or
hierarchy 1. If only a single-hierarchy
region exists, all GET.l~AIN requests for
tasks operating in that region will be
directed to that hierarchy regardless of
any hierarchy designation in the request.
If a region consists of segments in both
hierarchies, a GETMAIN request may specify
the hierarchy from which storage is to be

obtained. If hierarchy is not specified,
allocation is made from hierarchy O.

Processing if the Reguested Space Is
Available

When the initial request for a subpool
is received, the GETMAIN routine builds a
subpool queue element (SPQE) in the super
visor qUEue area (see Figure 5-7). The
SPQE contains the subpool number and, if
other subpools exist, a pointer to another
SPQE. (Each time a request is received,
the chain of SPQES is scanned by the
GETMAIN routine to determine whether the
requested subpool exists.)

The GETMAIN routine also builds a
descriptor queue element (DQE) in the
supervisor queue area, and places the
address of the DQE into the subpool queue
element. The DQE contains a count of the
number of bytes of main storage allocated
to a block in the subpool (space within
regions is assigned to subpools in mul
tiples of 2048-byte blocks). For each sub
sequent request for space in the same sub
pool that cannot be satisfied with space
defined by existing DQEs. the GETMAIN rou
tine builds another DQE. For each subse
quent request for space in the same subpool
that cannot be satisfied from space
described by existing DQEs, additional
space is allocated (in mUltiples of 2048-

~
TeB I

(- SPOE ~ 25 I
~

"I SPOE Sp. 30 I

I FOE Sp. 25 V
L FOE Sp. 30 I

I DOE Sp. 25

~ I DOE Sp. 30

Region

} Nucleus

} Supervisor
Queue Area

}

Dynamic
Area

Link Pack
Area

Figure 5-7. Element Relationships for
Intra-Region Allocation

Section 5: Main Storage Supervision 113

byte blocks) to the subpool. The space is
obtained from the free area of storage
described by FBQEs, and a DQE is con
structed to describe the new block. The
number of bytes allocated is subtracted
from the FBQE for the area from which
storage was obtained, and the FBQE is relo
cated if necessary. All DQEs representing
space in the same subpool are chained
together. After each 2048-byte block is
assigned, it is given a storage protection
key (see Figure 5-3). Then, when each
block is, freed, its storage protection key
is reset to zero.

If any free space exists within the
2048-byte blocks defined by a DQE, the
GETMAIN routine builds a free queue element
(FQE) within the 2048-byte block that con
tains the free space, and places into it a
count of the number of bytes available.
All such FQEs within one contiguous area
are chained together; the GETMAIN routine
places the address of the first such FQE
into the associated DQE. FQES built in
space assigned to subpools 0-127, 250, or
251 are exposed to accidental damage by job
steps, as the space is assigned the storage
protection keys of the steps. These FQEs
are the only supervisor queue elements so
exposed. All others are built in areas
that are assigned the supervisor storage
protection key.

To locate free space in an existing sub
pool, the GETMAIN routine first locates the
subpool by scanning the chain of SPQEs. It
then determines the address of the first
DQE and scans the chain of DQEs to locate
an FQE containing sufficient space to sat
isfy the request. If sufficient space
exists, the GETMAIN routine decrements the
count of available bytes in the FQE. If
sufficient free space to satisfy the re
quest does not exist in the requested sub
pool, the GETMAIN routine locates space not
yet assigned to any subpool, and adds the
space to the requested subpool by building
a DQE.

If the System Management Facility (SMF)
feature is present in the system, the
GETMAIN routine passes control to its SMF
Storage subroutine (GMSMFCRE). This rou
tine maintains storage usage information in
the timing control table (TCT). (If Main
Storage Hierarchy Support is included in
the system and IBM 2361 Core Storage is
on-line at IPL, storage information is
maintained for both processor storage and
2361 storage.)

The SMF Storage routine checks the TCB
for the address of the TCT. If there is no
TCT, SMF storage information is not being
recorded for this user program. If there
is a TCT, the SMF Storage routine performs

114

the following functions for subpools 0-127
and 250-252:

• It determines whether the newly allo
cated storage exceeds either the "low
water mark" (LWM) or the "high water
mark" (HWM) for the region. The LWM is
the address of the highest storage
address allocated from the bottom of
the region, and the HWM is the address
of the lowest storage address allocated
from the top of the region. If either
is exceeded, the SMF Storage routine
stores a new value in the TCT.

• It calculates the difference, in terms
of 2048-byte blocks, between the LWM
and HWM. A record of the minimum value
for this difference is kept in the TCT.
If the new allocation creates a new
minimum, the SMF Storage routine re
cords the new minimum difference in the
TCT.

• If the rollout feature is included in
the system and the current allocation
is for borrowed storage, the SMF
Storage routine records the current
amount of borrowed storage. It also
records the maximum amount of borrowed
storage associated with this user at
anyone time.

The SMF Storage routine returns control
to the GETMAIN routine.

After space is assigned, the GETMAIN
routine places the address of the assigned
space into register 1 if an SVC 10 instruc
tion caused entry, or places the address
into the location specified by the pro
grammer if an SVC 4 instruction caused
entry.

Processing if the Requested Space Is Not
Available

If there is not enough free space in the
region to satisfy the request, the GETMAIN
routine enlarges the scope of its search
by:

• Purging unused modules in the region.

• Examining a region previously borrowed
by the requester's job step through
rollout, if the rollout feature is part
of the system.

• Testing whether to schedule linkage to
the rollout/rollin module to "borrow"
an additional region.

ATTEMPTING TO FREE SPACE BY PURGING UNUSED
MODULES: The GETMAIN routine branches to
its CDPURGE routine to attempt to purge one
or more unused modules in the requester's
region. The space freed by this purge may

be sufficient to satisfy the current
storage request. If the purge flag is set
(hex. 'SO') in the TCBJPQ field of the job
step TCB, the CDPURGE routine examines all
contents directory entries (CDEs) in the
job pack queue. Each CDE that has its
"release" flag (REL) set in its attributes
field represents a module in the region
that is no longer needed. That is, there
are no outstanding requests for the module
by any routine in the job step. For each
such module the CDPURGE routine branches to
the CDDESTRY routine (in CDEXIT) to dequeue
the CDE and free the associated module and
its extent list. After all CDEs in the
region's job pack queue have been examined
and all unused modules purged, the CDPURGE
routine returns control to the main line of
the GETMAIN routine.

If the module purge has freed enough
space to satisfy the request, the GETMAIN
routine alloca~es the needed space to the
requester's task. It then returns control
to the requester, via the Type-l Exit
routine.

EXAMINING A PREVIOUSLY BORROWED REGION: If
sufficient space cannot be freed by the
module purge, the GETMAIN routine deter
mines if there is a possibility of satisfy
ing the: storage request from space outside
the requester's region. The requester's
job step may previously have "borrowed" an
additional region through the action of the
rollout feature. If so, the borrowed
region is searched, via a branch to the
GMCOMMON routine. If the request is condi
tional and there is no borrowed region or
the borrowed region is searched to no
avail, the GETMAIN routine sets up a return
code (4) and returns control to the re
quester, via the Type-l Exit routine. If,
however, the request is unconditional and
the rollout feature is not part of the sys
tem, the GETMAIN routine must cause the
abnormal termination of the requester's
task. It sets up a condition code (hex.
'804')~ and branches to the ABTERM routine
to schedUle the abnormal termination.

DETERMINING WHETHER TO SCHEDULE LINKAGE TO
THE ROLLOUT/ROLLIN MODULE: If requested
space in an owned or borrowed region is not
available, the GETMAIN routine determines
if it can schedule the rollout/rollin
module to borrow, if possible, an addition
al region for use by the job step. The
GETMAIN routine schedules linkage to the
rollout/rollin module only if the following
requirements are met:

• The request is unconditional.

~Condition Code S04 is set up for SVC 4.
Condition Code BOA is set up for SVC 10.

• The rollout feature is part of the
system.

• The request is made by a problem pro
gram or by a system routine in behalf
of a problem program.

• The requester's task belongs to a job
step that is eligible to cause rollout.
(The eligibility is indicated by the
'set' condition of the TCBFRA flag ~n
the job-step TCB. Such eligibility was
established by a JOB or EXEC statement
parameter (ROLL) when the job entered
the input stream. The eligibility was
recorded in the job-step TCB by the
Attach routine when an initiator
attached the job step.)

Unless all of the above requirements are
met, the GETMAIN routine cannot make space
available to satisfy the storage request.
It therefore sets up a condition code (hex.
'804')~ to indicate that storage is
unavailable, and branches to the ABTERM
routine to schedule the abnormal termina
tion of the requester's task.

SCHEDULING LINKAGE TO THE ROLLOUT/ROLLIN
MODULE: The GETMAIN routine schedules
linkage to the rollout/rollin module (here
after called the RO/RI module) by means of
the asynchronous exit mechanism. (This
mechanism is described in "Scheduling a
User Exit Routine" in Section 3, nTask
supervision.") Like the scheduling of other
asynchronous exit routines, the scheduling
of the RO/RI module involves the Stage 1
Exit Effector, the Stage 2 Exit Effector,
and the Stage 3 Exit Effector. Only stages
2 and 3, however, are involved directly in
the GETMAIN routine's attempt to schedule
the RO/RI module. The Stage 1 Exit Effec
tor is used by the Nucleus Initialization
Program during system initialization.

If the rollout feature is to be part of
the system, the Nucleus Initialization Pro
gram (NIP) uses the CIRB macro instruction
to invoke the Stage 1 Exit Effector. Stage
1 then gets space for and initializes a
special permanent system IRB and a 240-byte
work area. The IRB is called the rollout/
rollin IRB and is used by the supervisor to
schedule and control the RO/RI module. 'rhe
NIP formats the 240-byte work area into ten
combined interruption queue elements (IQEs)
and rollout/rollin parameter lists. Each
IQE is used in scheduling linkage to the
RO/RI module. Each associated parameter
list provides input information, such as
the requester's TCB address, needed by the
RO/RI module. (See the IQE format in Sec
tion 12, "Control Blocks and Tables" for
the format of a rollout/rollin IQE parame
ter list.)

Section 5: Main Storage Supervision 115

CVTHEAD IEAHEAD

C omm un i cat i cns
Vector Table

Note: The TCBs are queued
in descending order
of dispatching priority

Legend:

_=pointer

Transient Area TCB I

Transient Area TCB2

Transient Area TCBn

System Error TCB

System Lag Task TCB

Rollout/Rail in TCB

Communications TCB

Dynamic Device
Reconfiguration TCB

Master Scheduler TCB

Figure 5-8. Position of Rollout/Rollin
TCB on TCB Queue

Execution of the RO/RI module occurs
under control of a special permanent system
TeB of high dispatching priority. This
TCB, called the rollout/rollin TCB, is
created during the nucleus initialization
procedure, if the rollout feature is to be
part of the system. The position of the
RO/RI TCB on the TCB queue, and therefore
its dispatching priority relative to the
other permanent system TCBs, is shown in
Figure 5-8.

Rollout and rollin processing are per
formed as part of the rollout/rollin task
(hereafter called the RO/RI task). This
task is held nondispatchable when linkage
to the RO/RI module is not needed. The
task is nondispatchable because its TCB
points directly to a permanent rollout/
rollin PRB that is kept in a wait condi
tion. When linkage to the RO/RI module is
needed, tne scheduling process positions
the IRB on the RO/RI task's RB queue. (See
part 2 of Figure 5-9.) Since the RO/RI IRB

116

is usually in a ready condition (its wait
count equal to zero), it makes the RO/RI
task dispatchable.

Scheduling of the RO/RI module occurs in
two phases. Initial scheduling is done by
the SHEDRO routine, a subroutine of the
GETMAIN routine. Final scheduling is per
formed by the Stage 3 Exit Effector, after
the GETMAIN routine has exited and the Dis
patcher has been entered. The Stage 3 Exit
Effector is a subroutine of the Dispatcher.
The Stage 3 Exit Effector readies the RO/RI
task, which is then given control by the
Dispatcher. The processing is described in
the next two topics. (See Figure 5-10 for
the overall flow and Figure 5-11 for a pic
torial summary of the processing.)

Initial Scheduling of the Rollout/Rollin
Module: The GETMAIN routine uses its sub
routine, the SHEDRO routine, to perform the
following main functions:

• Obtains an interruption queue element
(IQE) and rollout/rollin parameter
list. Initializes both the IQE and the
parameter list.

• Places the IQE on the asynchronous exit
queue (AEQJ), via a branch to the Stage
2 Exit Effector.

• Prepares for a task switch and for
eventual return of control to the
requester. o The rollout/rollin task is nondispatchable.

Rollout/Rollin TCB Roliout/Roll in PRB Rollout/Rollin IRB

D
RB Wait Count = 01 RB Wait Count = 00

o The rollout/rollin task is dispatchable.

Rollout/Rollin TCB

Figure 5-9.

Roll out/Roll in IRB Roll out/Roll in PRB

RB Wait Count = 00 RB Wait Count = 01

Relationship of the Rollout/
Rollin TCB, PRB, and IRB Dur
ing Scheduling of the
Rollout/Rollin Task

() From a user routine that issues the GETMAIN macro instruction
ENTRY as an unconditional request fer space.

~
Type - I
Exit routine

GETMAIN routine

Determines that

rollout is needed ~ ---c RETURN) and is possible. Switch
Needed

SHEORO routine T a requestor

Yes
Obtains JOE.
Initializes JOE and t parameter list fa rollout.

Dispatcher

~
Stage - 2

~ Exit Effectoc

Places JOE on Stage 3

asynchronous Exit Effectcr

exit queue.
Completes schedul ing

~ of RO/RI mooule.

Indicates the need Readies the RO/RI

for a task switch. task.

~
Task-Switching
routine

Determines that
RO/RI TCB ;s of

RO/RI Mooule Load RB old PSW higher priority then
of RO/RI IRB requestor's TeB.

Places address of
ROiRl TeB ;n
II new" TCB pointer

fer use by
dispatcher.

Figure 5-10. scheduling of Rollout: Over
all Flow

Obtaining a Rollout IQE and Parameter List:
The SHEDRO routine obtains an IQB and pa
rameter list to keep track of the rollout
request, and to schedule and control the
execution of the RO/RI module. It obtains
the IQE and parameter list by means of its
GETIQE routine (invoked at location
IQERCUT). The GETIQE routine obtains them,
if possible, from a "next available" list
(RBNEXAV) queued from the RO/RI IRB. If
there are no more available IQES, the
GETIQE routine obtains the needed space (24
bytes, subpool 255), via a branch to the
GETMAIN routine. If it obtains space, the
routine initializes the IQE and parameter
list. After the GETI~E routine has
obtained the IQE and parameter list, it
returns control to the SHEDRO routine. The
SHEDRO routine then initializes the IQE to
indicate a rollout request, and places in
the parameter list the address of the
requester's TCB and the size of the
requested space.

Placing the IQE on the Asynchronous Exit
Queue: The SHEDRO routine uses its SCHE
DIRB subroutine to invoke the Stage 2 Exit
Effector. The Stage 2 Exit Effector then
places the IQE representing the rollout re-

quest onto the asynchronous exit queue.
(See Figure 5-11.) This is the same queue
on which the Stage 2 Exit Effector places
IQEs that represent requests for an end-of
task exit routine (ETXR) or a timer exit
routine. The Stage 3 Exit Effector, when
the Dispatcher is next entered, completes
the scheduling of the exit routines whose
IRBs are represented on the queue.
Although the IQES are placed on the asyn
chronous exit queue in first-in, first-out
order, the represented requests are ser
viced by the stage 3 Exit Effector on a
task-priority basis.

Preparing for a Task Switch and for Eventu
al Return of Control to the Requester: The
SHEDRO routine does three things to prepare
for a task switch and to provide for even
tual return of control to the requester:

• Indicates to the Type-1 Exit routine
that a task switch is needed.

• Makes the requester's task nondispatch
able (sets the TCBWFC flag).

• Points the SVC old PSW to a restart
address in the requester's task.

The SHEDRO routine indicates the need
for a task switch by storing zero in the
"new" TCB pointer CIEATCBP). Without such
an indication, the Type-1 Exit routine,
when entered during the exiting procedure
from GETMAIN, would return control to the
routine that had issued the GETMAIN macro
instruction. With the task switch indica
tion, the Type-1 Exit routine branches to
the Dispatcher, which then determine the
task to which it will give control.

The SHEDRO routine makes the requester's
task nondispatchable to prevent accidental
redispatching of the requester's task
before its needed storage space has been
allocated.

The SHEDRO routine points the SVC old
PSW to the GET MAIN macro instruction issued
by the requester. (This procedure is
described in the program listing as "back
ing up the PSW," since it causes the
restart address to be two bytes earlier in
the requesting routine than the normal
address in the SVC old PSW.) The old PSW
is altered so that when rollout is success
ful, the requester can be redispatched to
reissue its GETMAIN macro instruction. The
GETMAIN routine is then entered, via super
visor linkage, to satisfy the request from
the ne\,lly borrowed region.

Final scheduling of the Rollout/Rollin
Module: During the exiting procedure from
the GETMAIN routine, the Type-1 Exit rou
tine is entered, detects that a task switch
is needed, and branches to the Dispatcher.

Section 5: Main Storage Supervision 117

STEP 1 STEP 2 STEP 3

Queue origin RO/RI TCB RO/RI IRB

'------v--'
RO/RIIRB RB Oueue of

RBNEXAV

the Rollout/Rollin
Task.

"Next_
available"
list of
IOEs

RB Oueue of the
Rollout/Rollin Task

RO/RIIOE

IEAORORI

}
Rollout/Rollin

---- Module -------

The SHEDRO routine obtains a rollout/rollin
IOE either from an available I ist or by getting
space and initializing a new IOE. The SHEDRO
routine then invokes the Stage 2 Exit Effector to
place the IOE on the queue.

IOE for rollout/rollin is removed from the asyn
chronous exit queue and is queued from the rollout/
rollin IRB by the Stage 3 Exit Effector when the
Dispatcher is next entered.

The rollout/rollin TCB is readied by the Stage 3
Exit Effector by placing the IRB on the task's
RB queue. The rollout/rollin TCB now points to
the rollout/rollin IRB, which is ready. Since
the rollout/roll in task is now ready and of very
high dispatching priority, the Dispatcher gives
control to this task at location IEAORORI in the
rollout/rollin madule.

Legend:

RO/RI = rollout/rollin
RBOPSW = RB old PSW
------+- = pointer

Figure 5-11. steps in the Scheduling of the Rollout/Rollin Task

The Dispatcher, finding that there is at
least one IQE on the asynchronous exit
queues, enters the Stage 3 Exit Effector to
complete the scheduling of the appropriate
asynchronous exit routine. In this case
the appropriate exit routine is the RO/RI
module. To complete the scheduling of the
RO/RI module, the Stage 3 Exit Effector
performs the following main functions:

• Removes the RO/RI IQE from the asyn
chronous exit queue and places it on
the list of IQES queued from the RO/RI
IRB. (The IRB's list origin for IQEs
is RBIQE.) (See Figure 5-11.)

• Readies the RO/RI task.

• Indicates to the Dispatcher that it
should next dispatch the RO/RI task.

• Moves the address of the RO/RI parame
ter list from the IQE to register 1 to
serve as input information for the
RO/RI module.

The queuing of the IQE to the RO/RI IRB
is recognition by the stage 3 Exit Effector
that the IQE represents a request for
execution of the RO/RI module under control

118

of the RO/RI TCB. The IQE remains queued
from the IRB throughout rollout processing.
When the RO/RI module completes its proces
sing of the rollout request, it dequeues
the IQE from the IRB'S active queue and
returns it to the IRB's "next available"
list (RBNEXAV).

The Stage 3 Exit Effector readies the
RO/RI task by placing the IRE on the RO/RI
task's RB queue, as illustrated in Figures
5-9 and 5-11. Since the IRB is normally
ready and the RO/RI TeB has no nondis
patchability flag set, the task is dis
patchable as soon as its RB queue is
changed.

The Stage 3 Exit Effector then indicates
to the Dispatcher that it should next dis
patch the RO/RI task. Stage 3 does this by
invoking the supervisor's Task Switching
routine and passing to it the address of
the RO/RI TeB. The Task Switching routine
compares the dispatching priority of the
RO/RI TeB with that of the requester's
task, and determines that the RO/RI task is
ready. Since the RO/RI task is of extreme
ly high dispatching priority and is ready,
the Task switching routine selects the
RO/RI TCB and places its address in the

"new" TCB pOinter as information for the
Dispatcher. The invoking of the Task
Switching routine is necessary, since
otherwise the Dispatcher would remain
unaware that a task is ready that is
higherin priority than the current task.
The Dispatcher can never discover a higher
priority ready task by searching the TCB
queue. When it searches the TCB queue, it
searches in a downward-priority direction,
beginning with the current TCB.

The address of the RO/RI parameter list,
when moved from the IQE to register 1,
serves an important purpose. It indicates
to the RO/RI module the type of service
that it should perform. If the address is
positive, the request is for rollout. If,
however, the address is negative, the re
quest is for rollin. Lastly, if the
address is zero, the request is to resched
ule rollout processing for deferred rollout
requests. These requests had earlier
caused entry to the RO/RI module, but a job
step suitable to be rolled out could not be
found. (The handling of deferred rollout
requests will be described later in "Pro
cessing If a Job Step Suitable for Rollout
Ca.nnot Be Found" and "Performing Final Com
mon Processing.")

ALLOCATING A BORROWED REGION THROUGH
ROLLOUT

Rollout is an attempt to allocate tem
porarily an extra region for a job step
that needs more space than is available in
its existing region or regions. The RO/RI
module first tries to allocate the extra
region from free space in the dynamic area.
If, however, there is not enough contiguous
free space, the RO/RI module writes the
contents of another job-step's region from
main storage to auxiliary storage. The
"borrowed" region is then allocated to the
requester's job step.

The RO/RI modUle consists of a central
routine, called the Rollout/Rollin criteri
on routine, and various subroutines. The
RO/RI Criterion routine coordinates the
rollout activities of the subroutines.
These activities include deferring I/O
requests for the job step to be rolled out,
deferring its operator replies, setting its
tasks nondispatchable, and causing the
transfer of the contents of the selected
region to the rollout data set.

The main functions performed during
rollout are:

o Determining whether rollout should be
performed.

G Obtaining the needed space from unas
signed storage.

• Finding a job step and region suitable
to be rolled out.

• Processing if a suitable job step and
region cannot be found.

o Processing if a suitable job step can
be found. This processing includes
allocating the selected region if its
contents are already rolled out but the
region is not in use. If the contents
of the region are not already rolled
out, the processing includes setting
nondispatchable the tasks of the job
step to be rolled out, deferring its
I/O requests, and deferring its opera
tor replies.

e Transferring the contents of the
selected region to the rollout data
set.

a Allocating the borrowed region to the
requester's job step.

a Processing if there was an unrecover
able I/O error during the rollout.

a Preparing for exit from the rollout/
rollin module.

Determining whether Rollout Should Be
Performed

The RO/RI Criterion routine, when dis
patched at entry point IEAQRORI, determines
first whether rollout is being requested,
then whether rollout should be performed.
If rollout should not be performed, the
RO/RI criterion routine defers the current
rollout request and branches to the
Rollout/Rollin Exit subroutine to prepare
for exit from the RO/RI module. If rollout
should be performed, the RO/RI Criterion
routine continues processing. In determin
ing whether rollout should be performed,
the routine does the following:

a Determines whether the current request
is for rollout, rollin, or restart of
deferred rollout requests. Routes con
trol to the appropriate part of the
RO/RI Criterion routine to service the
request.

• Determines whether another job step has
caused a rollout that is still in
effect.

a Defers the current rollout request, if
"multiple rollouts" are prohibited and
if another job step has caused a roll
out that is still in effect.

a Continues processing the current roll
out request if no other job step has
caused a rollout that is still in
effect, or if another rollout is still

Section 5: Main Storage Supervision 119

in effect but a user-written appendage
permits multiple rollouts.

DETERMINING WHETHER THE CURRENT REQUEST IS
FOR ROLLOUT: The RO/RI Criterion routine
determines the type of request by testing
the parameter list address passed to the
RO/RI module in register 1. If the address
is positive, the request is for rollout.
(The polarity of the parameter list address
in the RO/RI IQE was set by the GETMAIN
routine's SHEDRO or SCHEDRRI routine when
it scheduled linkage to the RO/RI module.
The parameter list address was placed in
register 1 by the Stage 3 Exit Effector
during the final phase of scheduling.)

DETERMINING WHETHER ANCYrHER JOB STEP HAS
CAUSED A ROLLOUT THAT IS STILL IN EFFECT:
The RO/RI Criterion routine tests the
"rollouts invoked" counter and, if neces
sary, examines the TCB queue to determine
if a job step other than the requester's
has caused a rollout that is still in
effect. These tests are made because con
current rollouts for different requesting
job steps are not allowed, unless permitted
by the choice of a user-written Coincident
Rollout appendage (IEAQAPG1). Such "mul
tiple rollouts" are not normally permitted
because concurrent requesting job steps
could each attempt to rollout more than
half of the main storage space available
for rollout. In that case, the competing
job steps would be placed on the deferred
request queue, awaiting main storage space
that would never be available. The system
would thus be in an "interlock," unable to
continue processing.

DEFERRING THE CURRENT ROLLOUT REQUEST: The
RO/RI Criterion routine defers the current
rollout request, if multiple rollouts are
prohibited, and if another job step has
caused a rollout that is still in effect.
The routine defers the rollout request by
transferring the requester's IQE from the
RO/RI IRE's queue of active IQEs to wait
queue called the "rollout request queue."
(The origin of the. rollout request queue is
defined in the secondary communications
vector table as IEAROQUE.) The IQES on the
rollout queue are rescheduled for new link
age to the RO/RI module after either of two
events has occurred: a region's contents
have been rolled in, or the DEQ routine has
marked a job-step TCB as eligible to be
rolled out (TCBNROC equals zero). Either
event means that another region is avail
able for possible rollout. (For further
information on the restart of deferred
rollout requests, see "Performing Final
Common Processing.")

DETERMINING IF PROCESSING OF THE CURRENT
ROLLOUT REQUEST SHOULD BE CONTINUED: The
RO/RI Criterion routine continues process
ing the current rollout request if no other

120

job step has caused a rollout that is still
in effect, or if another competing rollout
is still in effect but a user-written
appendage permits such multiple rollouts.
Without a user appendage, the RO/RI Crite
rion routine continues the processing of
the current request only if no other job
step has caused a rollout that is still in
effect. A user-written appendage, if pro
vided, can be substituted for the IBM
provided decision. Decisions made in the
user appendage can provide flexible control
of the number of job steps that can concur
rently invoke rollout.

Note: If the user appendage allows more
than one job step to invoke rollout concur
rently, it is responsible for preventing
interlocks.

Obtaining the Needed Space from Unassigned
Storage

If the RO/RI Criterion routine decides
that rollout should be performed, it tries
to obtain a new region from unallocated
space in the dynamic area via a conditional
GETMAIN macro instruction that specifies
subpool 248. The result is supervisor
linkage to the GETMAIN routine. If there
is insufficient space, the GETMAIN routine
returns a code of '4', and the RO/RI Crite
rion routine then tries to find a job step
and region suitable to be rolled out. If,
however, the GETMAIN routine can allocate a
new region, it builds a partition queue
element (PQE) and a free block queue ele
ment (FBQE), and queues the PQE from the
RO/RI TCB. The GETMAIN routine in this
case supplies the RO/RI criterion routine
with a code of '0', indicating that the
region has been allocated, and provides the
address of the PQE representing the new
region. (The PQE address is returned in a
parameter list.)

When the RO/RI Criterion routine detects
that a new region has been allocated, it
does the following:

• Removes the newly created PQE from the
RO/RI task's PQE queue and places it on
the PQE queue of the requester's job
step TCB. The routine reorders the PQE
queue, if necessary, so that the PQEs
are queued according to ascending order
of region addresses.

• Initializes the TCB address (PQETCB) in
the new PQE to zero to indicate that
the region was allocated from free
space. This field is tested during
rollin to determine whether the region
should be freed.

• Increases the "rollouts invoked" count
er (IEAROICT) by a count of 'one', to
indicate that a rollout has been

invoked and is still in effect. This
counter is tested each time that the
RO/RI Criterion routine is entered for
rollout, to determine whether rollout
should be performed. (See "Determining
Whether Rollout Should Be Performed.")

.. Sets the "borrowed" flag (PQEBOR) in
the rollout flags field of the new PQE.
This flag, when set, indicates that the
region described by the PQE is not
"owned" by the job step to which it is
allocated.

.. Sets the nrollout invoked n flag
(TCBFRI) in the requester's job-step
TCB. This flag, when set, indicates
that the job step has invoked one or
more rollouts that are still in effect.

.. t-lakes the requester's task dispatchable
by clearing the "core wait" nondis
patchability flag (TCBWFC). This is
done in preparation for the redispatch
ing of the requester's task.

• Branches to the RO/RI module's Retexit
routine to prepare for exiting from the
RO/RI module. (See "Preparation for
Exit from the Rollout/Rollin Module.")

Obtaining a Job Step Suitable to be Rolled
Out

If a new region cannot be allocated from
free space, the RO/RI Criterion routine
tries to obtain a job step that is suitable
to be rolled out. A job step is suitable
if:

Q It has not caused a rollout which is
still in effect.

.. Its TCB is marked eligible to be rolled
out.

.. It owns a region that is large enough
to satisfy the current storage request
and that is not already in use by a
borrower.

The process of obtaining a job step
suitable to be rolled out consists of two
functional parts: finding a job step, and
testing the selected job step to see that
is meets the above requirements.

FINDING A JOB STEP: The RO/RI Criterion
routine branches to the GE'I'STEP routine to
find a job step whose suitability can be
tested. The GETSTEP routine receives as
input parameters the address of the reques
ter's job step TCB and the address of the
rollout parameter list. The parameter list
contains the size of the requested storage.
The GETSTEP routine performs the following
functions:

e Determines if the requester's job step
has previously caused a rollout that is
still in effect. (The routine tests
the TCBFRI flag in the requester's job
step TCB.) A requesting job step may
invoke successive rollouts which are
concurrently in effect •

• If so, invokes the TESTSTEP' routine to
test if one or more regions previously
torrowed by the requester's job step
contain enough free space to satisfy
the current request.

.. Searches the TCB queue for a lower
priority job step which may be tested
for suitability, if the current request
cannot be satisfied from a previously
borrowed region. The TCB queue is
searched in a downward priority direc
tion, starting with the requester's job
step TCB and ending with the last TCB
on the queue. The routine saves the
address of the lowest priority job step
TCB that it finds.

.. Branches to the TESTSTEP routine to
test the suitability of the selected
job step. If the job step is not suit
able, the GETSTEP routine repeats its
search of the TCE queue. This time,
however, the search ends with the pre
viously selected TCE. The search is
finished when a suitable job step has
been found, or when all jOb steps lower
in priority than the requester's have
been examined and none has proved
suitable.

.. Branches to an optional user-written
appendage (IEAQAPG2), if it cannot find
a jot step which is suitable to be
rolled out. The user (High Priority
pass) appendage, if present, dynamical
ly determines whether the GETSTEP rou
tine should make a new search of the
TCE queue, this time examining job
steps that are higher in priority than
the requester's.

e Searches the TCE queue for a higher
priority job step which may be tested
for suitability, if the High Priority
Pass appendage so decides. The TCB
queue is searched in a downward priori
ty direction, starting with the master
scheduler TCE and ending with the
requester's job step TCB. The search
and examination of job steps is similar
to the low priority search previously
described.

e Returns control to either of two return
points in the RO/RI criterion routine,
after completing its examination of job
steps that were candidates for rollout.
The particular return point depends on
whether a job step suitable for rollout

Section 5: Main Storage Supervision 121

has been found. If the GETSTEP routine
finds a suitable job step, it places in
register 0 the address of the PQE
belonging to the job step.

TESTING THE SELECTED JOB STEP: Each job
step selected by the GETSTEP routine is
further tested for suitability by the TEST
STEP routine. The TESTSTEP routine deter
mines that a selected job step is suitable
to be rolled out if:

• The job step has not invoked a rollout
which is still in effect. (Although
concurrent rollouts may be permitted by
a user appendage (IEAQAPG1), nested
rollouts are never permitted. A nested
rollout is the rollout of a job step
that has itself caused a rollout that
is still in effect.)

• The job step is eligible to be rolled
out. The step is eligible if the "non
rolloutable count" (TCBNROC) is zero in
its TCB. A zero count means that the
job step was initialized as eligible
when it was attached and is not cur
rently using or waiting to use a system
resource that requires the ENQ macro
instruction. The nonrolloutable count
was initialized to either zero or one
by the Attach routine when an initiator
attached the job step. The initializa
tion reflects the job step's eligibili
ty to be rolled out, as specified by
the ROLL operand of the JOB or EXEC
statement when the job was placed in
the input stream. The nonrolloutable
count, after initialization, is
increased by one by the ENQ routine for
each system resource for which an ENQ
macro instruction is issued by the job
step. The count is similarly decreased
by the DEQ routine for each issuance of
the DEQ macro instruction by the job
step.

• The job-step's region is large enough
to satisfy the current storage request.

• The region is not being used by a job
step that has invoked rollout. Such a
borrower could be either the current
requester's job step, if it has pre
viously invoked rollout, or another
requesting job step if concurrent roll
outs are permitted. If the region is
not being used by a borrower, its "in
use" flag (PQEUSE) in the PQERFLGS
field is zero.

• The job step and its region are
approved by a user-written appendage,
if such an appendage has been provided.
The Criterion Selection appendage
(IEAQAPG4) can be provided by the

122

installation to make further tests of a
job step already approved by the TESTS
TEP routine.

• Returns control to the caller (usually
the GETSTEP routine), with the PQE
address in register 0 if it has
approved the job step and region.

Processing if a Job Step Suitable for
Rollout Cannot be Found

If the GETSTEP routine cannot find a job
step suitable to be rolled out, the RO/RI
Criterion routine can follow either of two
possible courses of action. If can cause
the abnormal termination of a job step, or
it can defer the current rollout request by
placing the requester's IQE on a wait queue
called the "rollout queue." The particular
choice depends on the decision of a user
written ABEND appendage (IEAQAPG3), if the
appendage is present. If the appendage is
not present, the current rollout request is
deferred.

CAUSING THE ABNORMAL TERMINATION OF A JOB
STEP: The ABEND appendage, if present, can
request the abnormal termination of either
the requester's job step or another job
step in the system. The appendage provides
the address of the selected job step TCB in
a register. Termination of the requester's
job step removes it from the system if it
cannot wait for storage to become avail
able. Termination of another job step
results in the freeing of a region. After
such termination is complete, the RO/RI
module is reentered twice: first to per
form rollin, then to make a new attempt at
rollout for the deferred request. (See
"Scheduling Deferred Rollout Requests.")

If the requester's job-step task is to
be terminated, the RO/RI criterion routine
branches to the ABTERM routine, providing
the address of the requester's job step
TCB. The ABTERM routine schedules the
abnormal termination of the job step, then
returns control to the RO/RI criterion rou
tine. The RO/RI criterion routine sets the
requester's task dispatchable (clears the
TCBWFC flag), and branches to the RETEXIT
routine. The RETEXIT routine prepares for
exiting from the RO/RI module and eventual
dispatching of a task of an another job
step. (See "Exiting from the Rollout/
Rollin Module.")

If a job step other then the requester's
is to be terminated, the RO/RI Criterion
routine first determines that the TCB spec
ified by the ABEND appendage is really a
job step TCB. If the TCB is really a job
step TCB, the routine branches to the
ABTERM routine to schedule the abnormal
termination of the specified job step. It
then defers the current rollout request, by

placing the requester's IQE on the rollout
queue. If, however, the TCB specified for
abnonual termination is not really a job
step TCB, the RO/RI criterion routine
defers the current rollout request without
scheduling an abnormal termination.

DEFERRING THE CURRENT ROLLOUT REQUEST: The
RO/RI Criterion routine defers the current
rollout request if the ABEND appendage
(IEAQAPG3) decides against a termination
(or if there is no ABEND appendage). The
rollout request is deferred until space is
freed or until an ineligible job step is
made eligible to be rolled out. (The
method of deferring a rollout request is
described in "Determining Whether Rollout
Should Be Performed." The restart of
deferred rollout requests is described in
nperforming Final Common processing. n)
After deferring the current rollout re
quest, the RO/RI Criterion routine branches
to the Rollout Exit routine to prepare for
a task switch and for return of control to
another task. (See nExiting from the
Rollout/Rollin Module. n)

Processing if a Suitable Job Step
Can be Found

If the GETSTEP routine finds a suitable
job step to be rolled out, it returns con
trol to the main line of the RO/RI Criter
ion routine, providing the address of the
selected PQE. This PQE describes the
region that is allocated to the requester's
job step. The region's contents can be in
either of two conditions: already rolled
out for a requester but not in use. or not
already rolled out.

If the contents of the selected region
have already been rolled out, the RO/RI
routine does not attempt a second rollout.
In this case, the routine merely allocates
the selected region to the requester's job
step.

If, however. the contents of the
selected region have not already been
rolled out, the RO/RI Criterion routine
prepares to rollout the region's contents
to the rollout data set. (See "Preparing
to RollOut the Contents of the Selected
Region. n)

If Main Storage Hierarchy Support is
included in the system, and a task whose
region is selected for rollout has another
region in either hierarchy 0 or 1, this
remaining region is not affected by
rollout.

ALLOCATING THE SELECTED REGION: The
selected region is allocated to the reques
ter's job step if two conditions are met:
the region's contents have already been

rolled out, and the region is not being
used. The RO/RI Criterion routine tests
only whether the region's contents have
been rolled out. The TESTSTEP routine pre
viously tested whether the region is in
use.

If the conditions are met, the RO/RI
Criterion routine allocates the selected
region to the requester's job step by per
forming the following functions:

• Sets the "rollout" flag (PQERO) and the
"in usen flag (PQEUSE) in the owner's
PQE to indicate that the contents of
the region have been rolled out and
that the region is being used by a bor
rowing job step.

• Branches to the BUILDPQE subroutine to
obtain space for and initialize a new
PQE to describe the borrowed region.
The RO/RI Criterion routine will later
place this PQE on the PQE queue of the
requester's job step. The new PQE is
initialized to point to a free block
queue element (FBQE) that describes as
free the entire borrowed region. The
last four words of the new PQE are
copied from the corresponding fields of
the owner's PQE. (These fields contain
the owning job step's TCB address, the
region size, the region address, and
flags. See Section 12, "Control Blocks
and Tables," .for additional format
information.) There are thus two PQEs
describing the same region: the owner's
PQE and the borrower's PQE, associated
with different job step TCBs. The
owner's PQE is flagged "owned," "rolled
out," and nin use." The borrower's PQE
is flagged "borrowed."

• Branches to the SETKEYS subroutine to
set to zero the storage key of all 2K
blocks in the region. This is done so
that no·user routine can store informa
tion in the region before the GETMAIN
routine has been reentered to allocate
the region's space to the current
requester.

• Branches to location RR004 to:
increase the "rollouts invokedn count
er, set the "borrowed" flag1 (PQEBOR)
in the new PQE, place the new PQE on
the PQE queue of the requester's job
step. set the nrollout invokedn flag
(TCBFRI) in the requester's job step
TCB, and clear the ncore wait n nondis
patchability flag (TCBWFC) in the
requester's TeB. (See nObtaining the

1The "borrowedn flag is set in the new PQE
to indicate that the represented region is
not owned by the job step to which it is
allocated.

Section 5: Main Storage Supervision 123

Needed Space from Unassigned storage"
for a discussion of these actions.)

• Branches to the RErEXIT routine to pre
pare for exit from the RO/RI module and
return control to the requester's task.
(See "Exiting from the Rollout/Rollin
Module.")

PREPARING TO ROLLOUT THE CONTENT::; OF THE
SELECTED REGION: The RO/RI Criterion rou
tine prepares to rollout the contents of
the selected region, if they have not al
ready been rolled out. Preparation con
sists of the following functions, performed
for the job step to be rolled out:

• setting nondispatchable the tasks of
the job step. This is done to prevent
the restart of these tasks by the Dis
patcher while the job step is not in
main storage.

• Deferring the job-step's I/O requests.
I/O commands that are executed for the
job step after it has been rolled out
could cause information to be read into
or written frow main storage areas that
no longer belong to the job step. To
prevent this, queued I/O request ele
ments, which represent channel programs
not yet executed, are purged. Pointers
to I/O blocks (lOBS) associated with
these request elements however, are
saved to permit restart. The purged
request elements are reinstated when
the rolled out job step has been rolled
in. Active I/O requests however, which
represent channel programs being cur
rently executed, are allowed to com
plete before the job step is rolled
out. (Figure 5-12 illustrates the
overall functional flow).

• Deferring the job-step's operator
replies. Replies received while the
job step is rolled out must not be read
into main storage areas that no longer
belong to the job step for which they
were issued. These replies are there
fore saved in temporary buffers, and
are later transferred to the appropri
ate user buffers when the rolled out
step has been rolled in.

Setting Nondispatchable the Tasks of the
Job Step: The RO/RI Criterion routine
issues the STATUS macro instruction to
cause supervisor linkage to the Set status
routine (IGC079). This routine sets non
dispatchable all tasks of the specified job
step by setting the TCBFRO flag in each
TCB.

124

Ret
to
Cal

urn

ler

r

(ENTRY

~
RO SVC Purge
Interface Routine

Builds and Initial izes RIOE.
Issues PURGE.

Are All Yes (
Tasks of Job Step -\ EXIT

Processed
Continue RO
Processing

No

~ PURGE macro instruction

SVC Purge Routine
(5)

Removes queued 1/0 requests.

Determines that there are active
requests for I/O that have not

quiesced.

~ WAIT macro issued,

Wait Routine
(5)

Wait for posting of purge ECB
by Purge Completion Subroutine.

~
Type - 1 Exit Routine

+
Dispatcher

0-- Operation of other lower priority tasks.

SVC Purge Routine

Complete purge of ROEs.

I

~i I/O Int 5 upvsr I
I

I/O Complete I
~

Purge Completion Subr

Check count of incomplete
I/O requests to be quiesced.

<$?N" Return to 1/0
Count = 0

Int Supervisor

Yes

~ POST

Post Routine

Post purge ECB and
make RO task ready.

~
Dispatcher

Figure 5-12. Interfaces Between Rollout
Module and SVC Purge Routine

The operands of the STATUS macro
instruction, as used above, have these
meanings:

STATUS I SET ND, I (i) I (12)
------+----------+-----------+-------------

I Causes I Indicates IThis mask
Isetting of It hat the Inumber indi
Inondis- ITCB whose Icates that
lpatchabil-Iaddress is Ithe "rolled
lity flag lin register I out" nondis
Ispecified 11 and its Ipatchability
Iby mask Idescendantslflag (TCBFRO)
I operand Ishould be Ishould be
1(12). Iset as Iset.
I I specified. I

Deferring the Job-Step's I/O Requests: The
RO/RI criterion routine branches to the SVC
Purge Interface routine (PRGIO) to defer
the job-step's I/O requests. The SVC Purge
Interface routine performs the following
functions for each task of the job step:

• Obtains space for and initializes a
rollout I/O queue element (RIQE)1.
Each RIQE serves as a list origin for a
queue of I/O blocks (lOBs) that repre
sent the task's deferred channel pro
grams. The lOBs are used to restart
the channel programs after the job step
has been rolled in.

• Stores in the SVC purge parameter list1
the address of the TCB whose queued re
quest elements are to be purged. Also
places in the purge parameter list a
pointer to the lOB list origin in the
RIQE. The I/O Supervisor's SVC Purge
routine uses this parameter list during
its purge of the task's request
elements.

o Issues a PURGE macro instruction to
gain supervisor linkage to the I/O
supervisor's SVC Purge routine
(IGC016). Flags (X'02') in the purge
parameter list specify the "purge by
TCB" and "quiesce" options. The
address of the purge parameter list is
provided in register 1. (See the pub
lication I/O supervisor PLM for
detailed information on the svc Purge
routine.)

The SVC Purge routine searches the sys
tem queues for I/O request elements
belonging to the specified task. It
removes from the logical channel queues
and the seek queues the request ele
ments that are not yet active. It
returns these request elements to the
free list in the lOS. It queues their
associated lOBs from the list origin in

1See Section 12, nControl Blocks and
Tables."

the input RIQE, so that the lOBs would
be available when I/O operations are
resumed. (See Figure 5-13.)

The routine then waits for completion
of active I/O requests. Such requests
represent I/O operations in process.
The routine waits by issuing a wait
macro instruction specifying the purge
ECB and a wait count equal to the numb
er of I/O requests that must complete.
(The address of the purge ECB is in the
SVC purge parameter list.)

During the subsequent wait period, con
trol is given to lower priority tasks
in the system. When each active I/O
request completes, the I/O Interruption
Supervisor received control and
branches to the Purge completion sub
routine. This subroutine, part of the
SVC Purge routine, decreases and tests
the count of I/O requests awaiting cOm
pletion. (This count is kept at offset
8 in the SVC purge parameter list.)
When the count reaches zero, the Purge
Completion subroutine posts the purge
ECB complete, and the Dispatcher
returns control to the main line of the
SVC Purge routine. The SVC Purge rou
tine then completes the purge of queued
request elements, and returns control
to the RO/RI module's SVC Purge Inter
face routine.

• Returns control to the RO/RI Criterion
routine to continue the preparation for
rollout, after the SVC purge routine
has been inVOked for all tasks of the
job step.

Deferring the Job-Step's Operator Replies:
The RO/RI Criterion routine branches to the
Reply Purge routine (PRGRQE). This routine
sets the nrolloutn flag in reply queue ele
ments belonging to the job step to be
rolled out. The reply queue elements
represent operator replies not yet received
by the job step. If a reply is received
while the job step is rolled out, the com
munications task Reply Processor routine
(IGC1203D) determines that the rollout flag
is set in the reply queue element, and
saves the reply in a temporary buffer until
the job step is rolled in. (See nReply
Processing" in Section 7, nConsole Communi
cations and System Log.n)

To flag outstanding replies, the Reply
Purge routine:

• Finds each reply queue element belong
ing to the job step being rolled out.
It recognizes the element by its TCB
pointer (RQETCB) and the job-step TCB
pointer in the specified TCB. (See
Section 12, "Control Blocks and

Section 5: Main Storage Supervision 125

IEAROIOQ

Legend:

List Origin for
RIQE Queue

RIQE for TCB I

0 4

RIQE for TCB2

t Next
RIQE jJSTCB

0 4

RIQE = Rollout I/O Queue Element
numerals =. offset in bytes
-=pointer

8

t
8

12

i Last lOB
TCB2 of lOB

Queue
12

lOB

TCBLTC

TCB1

Job Step TCB for Step
to be Rolled/Out

TCB2

o

Parameter List for SVC Purge Routine

Points to 10BRESTR Field
of Last-Queued lOB

Figure 5-13. How lOBs for Deferred I/O Requests Are Queued

Tables," for the format of a reply
queue element.)

• Ignores reply queue elements belonging
to other rolled out steps (meaningful
only if concurrent rollouts are per
mitted). Also ignores reply queue ele
ments flagged for purge. These latter
elements were flagged by the WTOR Purge
routine (IEECVPRG) because of a normal
or abnormal task termination and are
purged by the Reply Processor routine
(IGC1203D) •

• Sets the rollout flag (RQERO) in the
selected reply queue element as an

126

indication for the Reply Processor
routine.

• Returns control to the RO/RI Criterion
routine when all reply queue elements
on the queue have been examined, and
elements belonging to the job step have
been flagged.

Transferring the Contents of the Selected
Region to the Rollout Data Set

When preparation for rollout is com
plete, the RO/RI Criterion routine branches
to the Start Transfer routine (STARTIO),
passing the address of the PQE for the

selected region. This routine starts and
controls the transfer of the selected
region's contents to the rollout data set.
It is also used during rollin to transfer
the rolled out job step from the rollout
data set to its region of main storage.

The Start Transfer routine does the
following:

• Initializes the channel programs.

• Starts the channel programs.

• Reinitializes the channel programs.

m Handles a normal channel-end condition.

• Handles an end-of-cylinder condition.

• Responds to the type of completion,
normal or abnormal.

INITIALIZING THE CHANNEL PROGRAMS: The
Start Transfer routine first issues an SSM
instruction. This instruction sets the
system mask in the current PSW to permit
I/O interruptions on all channels. This is
necessary because the standard PSW under
which the RO/RI module operates does not
permit external and I/O interruptions.
(The normally disabled mode of operation is
typical of most supervisor routines.)

The Start Transfer routine next branches
to the Channel program Initialization sub
routine (CPINIT). This subroutine initial
izes two channel programs and prepares for
the starting of the I/O device by the I/O
Supervisor. The subroutine's functions are
as follows:

• Determines from the polarity of the
input PQE address whether rollout or
rollin is needed.

• Calculates and saves the address of the
region's upper boundary, for use by the
PCI appendage routine and the Channel
End Appendage routine in determining
when the last record has been trans
ferred. (Both appendages are part of
the Start Transfer routine.)

• Places the data address (the starting
address of the region) in the Read/
Write channel command word (CCW) of
each channel program.

• sets the command code to "Write" in the
Read/Write channel command word (CCW)
of each channel program. (If the start
Transfer routine had been entered for
rollin, the command code would be set
to "Read".)

• Stores in the IOBSTART field of the
rollout input/output block (lOB) the

address of the Search ID Equal corrmand
of the first channel program. (The I/O
Supervisor uses this address in a
Transfer in Channel (TIC) to the Search
command to start the channel program.)

• Sets the NOP command code in the NOP/
TIC command in both channel programs.
(The PCI Appendage routine will later
change one of these commands to a TIC.)

• Calculates the relative disk address
(TTR) at which writing (or reading)
will begin in the rollout data set.
This address, when converted to an
absolute address, will be used in the
Seek command to be issued by the I/O
Supervisor. The following formula is
used to calculate the relative disk
address:

where:

R the address of the region whose
contents are to be rolled out (or
rolled in).

the address of the last byte of
the system queue area plus one.
(This address was stored in the
GOVRFLB table by the Nucleus
Initialization Program (NIP).

R1 record size in bytes.

N number of records per track on the
direct access device.

• Branches to a convert routine
(IECPCNVT) whose address is in the com
munications vector table. This routine
converts the relative disk address
(TTR) to an absolute disk address
(MBBCCHHR).

• Places the absolute disk address in the
IOBSEEK field of the rollout lOB for
use by the I/O Supervisor in its Seek
command.

STARTING THE CHANNEL PROGRAMS: The Start
Transfer routine starts execution of the
channel programs by issuing an EXCP macro
instruction which specifies the rollout
lOB. The EXCP macro instruction causes
supervisor linkage to the EXCP supervisor,
~hich starts the first channel program.

After the first channel program has been
started, the I/O Supervisor returns control
to the Start Transfer routine, via the I/O
First-Level Interruption Handler and the
Dispatcher. The Start Transfer routine
then issues a WAIT macro instruction, spec
ifying the rollout event control block
(ECB). The macro instruction causes super-

Section 5: Main Storaqe Supervision 127

visor linkage to the Wait routine, which
places the Start Transfer routine and the
RO/RI IRE in a wait condition. They await
the posting of the rollout ECB by the I/O
supervisor. The posting will indicate
either that the channel programs have com
pleted the data transfer or that an I/O
error has occurred. Until the rollout ECB
is posted, control is given to other lower
priority tasks, via the Dispatcher.

REINITIALIZING THE CHANNEL PROGRAMS: When
the channel fetches the Read/Write command,
it detects that the program-controlled
interruption (PCI) flag is set in the com
mand. (The PCI flag is bit 36 in the 64-
Dit CCW.) The channel then interrupts the
cPU, although continuing the execution of
the channel command. The PCI Interruption
causes supervisor linkage to the I/O Super
visor. The I/O Supervisor determines the
cause of the interruption and branches to
the RO/RI module's PCI Appendage routine
(PCIAPG) .

The PCI Appendage routine determines
whether the last record is being trans
ferred. If so, the routine returns control
immediately to the I/O Supervisor to await
the channel-end interruption, when the last
ccw is fetched by the channel. If, how
ever, the last record is not being trans
ferred, the routine prepares for a TIC to
the next channel program to continue the
transfer. The PCI Appendage routine:

• Computes the data address for the Read/
Write CCW of the next channel program.
It does this by adding the record size
(1024) to the address field of the CCW.

• If the sum is greater than the upper
boundary of the region, the last record
is being transferred. In this case,
returns control to the I/O Supervisor.
Control is then routed to a lower
priority ready task, via the I/O First
Level Interruption Handler and the
Dispatcher.

• If the sum is not greater than the
upper boundary of the region, stores
the computed data address in the Read/
Write CCW of the next channel program,
and continues processing.

• Places a NOP command code (hex. '03')
in the NOP/TIC CCW of the next channel
program. This is necessary because the
next record could be the last record.
In that case, the channel's detection
of no more CCW's would cause a needed
channel-end interruption.

• Updates by 1024 bytes the address field
of the Search ID Equal CCW in the next

128

channel program. The search identifies
the record to be transferred by the
Read/Write command that follows the
Search command.

• Places the TIC command code (hex.
'08') in the NOP/TIC CCW of the current
channel program. It does this to con
tinue channel program execution, since
the current record is not the last.

• Switches the contents of the ncurrent"
and "next" initialization pointers, so
that channel-program switching can
continue.

• Returns control to the I/O Supervisor,
which then gives control to a lower
priority ready task, via the I/O First
Level Interruption Handler and the Dis
patcher. Performance of the ready task
continues, overlapping the data trans
fer, until it is interrupted by the
next I/O interruption.

HANDLING A CHANNEL-END CONDITION: A
channel-end interruption occurs after the
channel executes a NOP/TIC command that has
not been changed to a TIC by the PCI appen
dage. The interruption causes supervisor
linkage to the I/O Supervisor, which deter
mines the cause of the interruption, and
branches to the RO/RI module's Channel End
AJ;:pendage.

The Channel End Appendage determines if
the last record has been transferred. If
so, the appendage returns control to the
I/O Supervisor. The I/O supervisor then
posts the rollout ECB, indicating in the
completion code whether the transfer has
completed normally or with error.

The POST macroinstruction causes super
visor linkage to the Post routine (IGC002),
which places the completion code in the ECB
and readies the waiting RO/RI IRE. The
Post routine also alters the "new" TCB
pointer <IEATCBP), via the Task switching
routine, to indicate the need for a task
switch. Then, the Post routine returns
control to the RO/RI task's Start Transfer
routine, via the Dispatcher.

If however, the last record has not been
transferred, the Channel End Appendage
resets flags and an error count in the rol
lout lOB, and returns control to the I/O
Supervisor to restart the channel programs.

HANDLING AN END-OF-CYLINDER CONDITION: If
an abnormal condition occurs at the direct
access device, the I/O Supervisor gains
control via supervisor linkage, determines
the cause, and branches to the RO/RI modu
le'S Abnormal End Appendage routine. This
routine (ABEAPG) determines if an end-of
cylinder condition exists. It does this

bychecking error indicators in the rollout
10B. If an end-of-cylinder condition does
not exist, the routine returns control to
the I/O supervisor for further error han
dling. If, however, an end-of-cylinder
condition does exist, the routine obtains
the address of a previously executed CCW,
stores the address in the IOBSTART field of
the lOB, and returns control to the I/O
Supervisor. The I/O Supervisor then
restarts the channel programs, beginning
with the specified CCW.

RESPONDING TO THE TYPE OF COMPLETION:
start Transfer routine regains control

The
from
has the Dispatcher when the I/O supervisor

posted the rollout ECB. control is
returned to the instruction immediately
following the WAIT macro instruction. The
ECB is posted when any of the following
conditions has occurred:

• The region's contents have been trans
ferred without error.

• An error has occurred after a channel
end interruption. This type of error
may be recoverable.

• An unrecoverable error has occurred.

The Start Transfer routine determines
the type of completion by examining the
completion code in the rollout ECB. (See
section 12, "Control Blocks and Tables,"
for the ECB completion codes.)

If the region's contents have been
transferred without error, the routine
returns control to the RO/RI criterion rou
tine. The RO/RI criterion routine then
allocates to the requester's job step the
region whose contents have been rolled out.

If an error has occurred after a
channel-end interruption,1 the Start Trans
fer routine branches to the Channel Program
Initialization routine (CPINIT) to rein
itialize the channel programs. The Start
Transfer routine then reissues the EXCP
macro instruction to restart the channel
programs. It thus makes a new attempt to
transfer the region's contents.

If an unrecoverable error has occurred,
the Start Transfer routine issues an output
message (IEA1001 jobname stepname). It
then branches to do special processing that
depends on whether rollout or rollin is
being performed. If rollout is being per
formed, deferred I/O requests and deferred
operator replies are restarted and the
region is reallocated to its owning job

1For this type of error the "lOB intercept"
code appears in the completion code field
of the ECB.

step. A new attempt is then made to find a
job step suitable to be rolled out. (See
"Processing If I/O Error Occurred During
Rollout.") If rollin is being performed,
the job step that could not be rolled in is
scheduled for abnormal termination, and
queued rollout requests are restarted.

Allocating the Borrowed Region to the
Reguestor's Job Step

If the Start Transfer routine (STARTIO)
determines that there was no permanent
error during rollout, it returns control to
the RO/RI criterion routine. The RO/RI
Criterion routine then does the following:

• Issues a message to the operator in the
form "IEA4051 jobname, stepname, R/O of
jobname, stepname". The routine issues
the message by means of a WTO macro
instruction and resulting supervisor
linkage to the Write-to-Operator rou
tine (IGC0003E).

• Disables I/O interruptions to prevent
delay in returning control to the
requester's task.

G Reallocates to the requester's job step
the region owned by the rolled-out job
step. (The reallocation is done at
symbolic location RR03.~ The process
ing is similar to that previously
described. (See "processing If a Suit
able Job Step Can Be Found.")

processing if I/O Error Occurred During
Rollout

If the Start Transfer routine (STARTIO)
determines that a permanent I/O error
occurred during the attempted rollout, it
branches to the Rollout Retry routine
(RETRY). The Rollout Retry routine
restores to readiness the partially rolled
out job step. It does this by:

o Restarting the job-step's deferred I/O
requests and operator replies, via the
RSTRIO and RSTRQE routines. (See
"Restarting Deferred I/O Requests for
the Rolled-In Job Step" and "Restarting
Deferred Operator Replies for the
Rolled-In Job Step.")

• Sets the "nonrolloutable" count
(TCBNROC> for the job step, so that a
new attempt to rollout the step will
not be made.

• Invokes the Set Status routine (IGC079)
to reset the "rollout nondispatchabili
ty" flag (TCBRFO) in each TCB of the
job step. The Set Status routine is
invoked via the STATUS macro
instruction.

Section 5: Main Storage Supervision 129

• Branches to the TESTSTEP routine to
resume the search for a job step suit
able to be rolled out. The TESTSTEP
routine gives control to the GETSTEP
routine to search the TCB queue, as
previously explained. (See "Obtaining
a Job Step suitable to Be Rolled Out.")
If the GETSTEP routine can obtain a
suitable step, the RO/RI criterion rou
tine rolls out the selected step. If,
however, the GETSTEP routine cannot
obtain a suitable step, the RO/RI Cri
terion routine either schedules a job
step for abnormal termination or places
the current request on the rollout re
quest queue. (See "Processing If a Job
Step Suitable for Rollout Cannot Be
Found.")

Exiting from the Rollout/Rollin Module

The RETEXIT routine provides an exit
from the RO/RI Module. It performs the
following functions:

• Places on the "next available" list the
interruption queue element (IQE) that
represents the current RO/HI request.
The IQE is queued from the RBNEXAV
field of the RO/RI IRB. This is done
after the RO/RI module has been
executed for any of its major func
tions: rollout, rollin, or scheduling
of deferred rollout requests (IQES).
This procedure is bypassed if rollout
cannot be performed and the rollout re
quest is deferred. (See "Deferring the
Current Rollout Request" in "Processing
If a Job Step suitable for Rollout Can
not Be Found.")

• Ensures a task switch by placing zero
in the "new" TCB pointer (IEATCBP).
This indication will cause the Dis
patcher to search the TCB queue for a
ready task.

• Issues an SVC 3 instruction to invoke
the supervisor Exit routine (IGC003).
The Exit routine dequeues the RO/RI IRB
from the RO/RI TCB. This action makes
the RO/RI task nondispatchable. The
supervisor Exit routine then gains
linkage to the Dispatcher, via the
Transient Area Refresh routine. The
Dispatcher searches down the TCB queue,
starting with the RO/RI TCB, and dis
patches the current routine of the
highest priority ready task.

ALLOCATING SpACE IN THE SYSTEM QUEUE AREA
AND LOCAL SYSTEM QUEUE AREA

The system queue area is restricted to
control program routines. Only those rou
tines that operate under a storage protec
tion key of zero can use space in this

130

area. SQA can be requested by any task
using subpools 243, 244 and 245 and by non
time sharing tasks using subpools 253, 254
and 255.

The local system queue area is also
restricted to control program routines and
serves the same purpose as SQA except that
it is swapped with a time sharing user job.
Only time sharing tasks can obtain LSQA
space. Requests by time sharing tasks for
sUbpools 253, 254, and 255 are allocated
from LSQA by the GETMAIN routine. Time
sharing tasks must request subpools 243,
244 or 245 to obtain space in SQA.

In addition to determining whiCh area
(SQA or LSQA) the space is allocated from,
the subpool numbers also indicate which of
the following characteristics should apply
to the space:

• Space within subpools 243 and 253,
unless explicitly freed, is automatic
ally released when the task for which
it is being used is terminated.

• Space within subpools 244 and 254,
unless explicitly freed, is released
automatically when the job step for
which it is being used is completed.

• Space within subpools 245 and 255 must
be freed explicitly with a FREEMAIN
macro instruction.

Before the system is qenerated, users of
System/360 Operating System must specify
the amount of space needed for a system
queue area. During execution of the nucle
us initialization program, a descriptor
queue element (DQE) containing a record of
the number of 2048~byte blocks assigned to
the system queue area is built within the
area (see Figure 5-14). Also built, adja
cent to the DQE, is a free queue element
(FQE) that contains the number of bytes of
available space (initially, all space is
available) in the system queue area. Loca
tion GOVRFLB in the nucleus (pointed to by
the secondary CVT) contains a pointer to
the descriptor queue element; the descrip
tor queue element contains a pointer to the
free queue element.

The local system queue area is obtained
and initialized when a time sharing region
is started. The size of LSQA for each
region is specified in the time sharing
member of SYS1.PARMLIB. LSQA is contained
within each time sharing region and is
defined by the PQE for the region. An
SPQE, DQE and FQE are built in the first 32
bytes of LSQA and are initialized to define
the available space in LSQA.

Lacotian GOVRFLB

\

:d AOE

~ ~

DOE I FOE I

1

Nucleus

System
Queue Area

Dynamic

roo
t--------llLinkPack

. Area

Figure 5-14. Element Relationships for
System Queue Area Allocation

subpool 243 or 253 Allocation

When subpool 243 or 253 is specified in
the GETMAIN macro instruction, 8 bytes are
added to the size requested, and tne loca
tion of the beginning of the available
space is determined. In the first 8 bytes
of the requested area, the GETMAIN routine
builds an allocated queue element (AQE),
into which it places the number of
requested bytes, plus eight. It then chains
the AQE to an AQE queue whose origin is in
the TCB (TCBAQE field) of the task for
which the space was requested. When that
task is terminated, supervisor termination
routines scan the AQE queue and give a
FREEMAIN macro instruction to free all
space associated with subpool 243 or 253.

subpool 244 or 254 Allocation

When subpool 244 or 254 is specified in
a GETMAIN macro instruction, the GETMAIN
routine builds an allocated queue element
as it does for subpool 243 or 253, but
chains the AQE to an AQE queue whose origin
is in the job step TCB. When that job step
is completed, supervisor termination rou
tines scan the AQE queue and give a
FREEl;]AIN macro instruction to free all
space associated with subpool 244 or 254.

Subpool 245 or 255 Allocation

Wnen subpool 245 or 255 is specified in
a GETMAIN macro instruction, the GETMAIN

routine passes the address of a free area
to the requesting routine in general
register 1 if an SVC 10 instruction caused
entry, or in a prespecified location if an
SVC 4 instruction caused entry. No allo
cated queue element (AQE) is built. An AQE
is not required, as it is the responsibili
ty of the requester to ensure that the
space is freed with a FREEMAIN macro
instruction.

FREE MAIN ROUTINE

The FREEMAIN routine services the
FREEMAIN macro instruction, which is used
to free space when it is no longer needed.
Space assigned to a region, space within a
region, space assigned to one or more bor
rowed regions, space in the system queue
area, or space in the local system queue
area may be freed. Basically, the FREEMAIN
routine returns the allocated space to
availability by adding queue elements
representing the space to chains in which
are recorded all free areas in main
storage.

FREEING SPACE ASSIGNED TO A REGION

To free a region, the TCBPQE field of
the TCE that represents the task for which
the region is being used is checked to
determine the address of the partition
queue element of the appropriate region.
The space occupied by that partition queue
element is then released (see the section
"Freeing Space in Supervisor Queue Area").
Next, if the region to be freed is adjacent
to an existing free area, it is combined
with that area. This is done by adding the
number of bytes in the region being freed
to the size field of the free block queue
element for the existing free area and, if
necessary, relocating the FBQE to the
beginning of the newly enlarged free area.

If a region being freed is not adjacent
to a free area, the FREEMAIN routine builds
an FBQE for the area and adds it to the
chain of FBQEs that represents all space
available for allocation as regions.

In a Model 65 Multiprocessing System,
after a region has been freed, control is
passed to the Vary Storage Offline routine
(IFSVRYOF) which determines whether any of
the freed region has been scheduled to be
logically removed from the system because a
VARY STORAGE OFFLINE command has been
issued. The Vary Storage Offline routine
checks for vary queue elements (VQEs) which
are created when a VARY command is issued.
If there are none, control is returned.
Otherwise, the area of main storage speci
fied by each VQE is compared with that spe
cified by the freed PQE. For each VQE

Section 5: Main Storage Supervision 131

which applies to the freed area, the
FBQE(s) and FSSEMAP are modified to indi
cate the area of main storage that has been
made unavailable. (See Section 12, "Con
trol Blocks and Tables" for a description
of FSSEMAP). The VARY task ECB is POSTed
in each applicable VQE to indicate that a
region within the range of that VQE has
been processed.

If the region being freed is not owned
by the requester, it may be possible to
roll in the job step that owns the region.
In this case, the FREEMAIN routine branches
to the FREBRF routine. This routine tests
the region's attributes, and if possible,
releases the region from the current job
step and schedules linkage to the RO/RI
module (IEAQRORI). (For a description of
the FREBRF routine, see "Freeing Space
Within a Region.")

FREEING SPACE WITHIN A REGION

To free space within a region, the
CSPCHK subroutine is used by the FREEMAIN
routine to locate the subpool queue element
(SPQE) representing the subpool from which
space is to be freed. The address of the
SPQE queue is contained in the TCBMSS field
of the task control block associated with
the task to which the space is assigned.
The CSPCHK subroutine then determines
whether any task(s) has been set non
dispatchable because of the limit on queue
space. If any task(s) has been, it
branches to the GETPART routine which
attempts to reset the task(s) dispatchable.
If not, the descriptor queue element that
represents the area in which the space is
to be freed is located. Next, the two free
queue elements between which the space
exists are located and a new free queue
element (FQE) to represent the newly freed
space is constructed. This FQE is either
added to the chain of FQEs or, if the space
lies adjacent to another free area, is com
bined with the FQE of the adjacent free
area.

A test is then made to determine if the
resulting free area contains any free 2048-
byte blocks of space that begin on a 2048-
byte boundary. If it does, and the block
is adjacent to an existing free 2048-byte
block, the number of bytes to be freed are
added to the count field in the FBQE repre
senting the existing free space and, if
necessary, the FBQE is relocated. If the
block being freed is not adjacent to any
existing free 2048-byte block, a new FBQE
is constructed. The number-of-bytes count
in the appropriate DQE is then decremented
to reflect the number of blocks being
removed from the subpool. When this count
reaches zero, the DQE is eliminated.

132

If the System Management Facility (SMF)
feature is present in the system, the
FREEMAIN routine passes control to its SMF
Storage subroutine (FMSMFCRE). This rou
tine maintains storage usage information in
the timing control table (TCT). (If IBM
2361 Core Storage is included in the sys
tem, storage information is maintained both
for processor storage and for 2361 Core
Storage.)

The SMF Storage routine checks the TCB
for the address of the TCT. If there is no
TCT, SMF Storage information is not being
recorded for this user program. If there
is a TCT, the SMF Storage routine performs
the following functions:

• It determines whether the newly
released storage causes a change in the
"low water mark" (LWM) or the "high
water mark" (HWM) for the region. The
LWM is the address of the highest
storage address allocated from the bot
tom of the region, and the HWM is the
address of the lowest storage address
allocated from the top of the region.
If either is changed, the SMF Storage
routine stores the new value in the
TCT.

• If the rollout feature is included in
the system and the storage being
released is borrowed storage, the SMF
Storage routine subtracts the amount of
released storage from the record in the
TCT of the current amount of borrowed
storage.

The SMF Storage routine returns control
to the FREEMAIN routine.

The freeing of space in the region may
permit a rollin to occur, if the region was
obtained through rollout. If the rollout
feature is included in the system, the
FREEMAIN routine branches to the FREBRF
routine. This routine tests the region's
attributes, and if possible, releases the
region from the current job step and sched
ules linkage to the RO/RI module
(IEAQRORI) •

The FREBRF routine performs the follow
ing functions for the job step whose space
is being freed:

• Examines the partition queue element
(PQE) that describes each region allo
cated to the job step.

• Determines if the region is "borrowed"
and "free." The region is borrowed if
its PQEBOR flag is set, indicating that
the region is not owned by the job
step. The region is "free" if none of
its space is assigned to a subpocl.

o If the region is borrowed and free,
does the following:

1. Releases the region from the cur
rent (borrowing) job step. It does
this by removing the PQE from the
current job-step's PQE queue.

2. Schedules linkage to the RO/RI
module to attempt the rollin of the
job step that owns the region.
This is done via a branch to the
SCHEDRRI routine.

3. Determines if the region was allo
cated from unassigned space in the
dynamic area. (Such a condition is
indicated by zero in the PQETCB
field.)

4. Frees the region, if it was allo
cated from unassigned space, via a
branch to the MRELEASE routine.

5. If the multiprocessing feature was
selected, and the region was allo
cated from unassigned space, deter
mines if any part of the region is
to be removed from available main
storage via a branch to the Vary
Storage Offline routine (IFSVRYOF).
(For a description of the Va~y
Storage Offline routine, see "Free
ing Space Assigned to a Region.")

If rollin is warranted, the SCHEDRRI
routine schedules linkage to the RO/RI
module. The routine's processing is simu
lar to that of the SHEDRO routine, which
schedules the RO/RI module to perform roll
out. (See "scheduling Linkage to the
Rollout/Rollin Module" in "Processing If
the Requested Space Is Not Available.")

FREEING ONE OR MORE BORROWED REGIONS
THROUGH ROLLIN

The RO/RI module is entered at location
IEAQRORI from the Dispatcher, when it dis
patches the RO/RI task via a Load PSW
instruction. The RO/RI module determines
that rollin is needed by observing that the
input parameter-list address is negative.
Accordingly, it branches to the RO/RI Cri
terion routine.

The RO/RI routine (ROLLIN) coordinates
all functions performed during rollin.
These functions consist of:

• Freeing the space occupied by the bor
rowing job-step's PQE.

• Determining whether the rolled out job
step should be rolled in.

• Transferring the rolled out job step to
main storage, if the step should be
rolled in. Performs special processing
if I/O error occurred during the
transfer. The processing consists of
reconstructing free block queue ele
ments (FBQEs) and scheduling the
abnormal termination of the partially
rolled-in step.

• Restarting deferred I/O requests for
the rolled-in step.

• Restarting deferred operator replies
for the rolled-in step.

• Making dispatchable the tasks of the
rolled-in step.

o performing final common housekeeping,
primarily for the borrowing job step.

o Scheduling rollout for deferred rollout
requests.

Freeing the Borrowing Job Step's PQE

The RO/RI Criterion routine first saves
from the borrower's PQE the addresses of
the region and the owner's job step TCB.
It then invokes the FREEI~IN routine
(IGC01D), via supervisor linkage. The
FREEMAIN routine frees the space occupied
by the borrower's PQE, since this PQE is no
longer needed. There is now only one PQE
that describes the region, the owner's PQE.

Determining Whether the Rolled-Out Job Step
Should Be Rolled In

To determine whether the rolled out step
should be rolled in, the RO/RI criterion
routine does the following:

• Determines if the region was allocated
to the borrower by means of a rollout,
or whether the region was allocated
from free space in the dynamic area.
(If the region was allocated from free
space, the owner's TCB address in the
PQE (PQETCB) is zero.)

• Branches to location RIND8 to do final
housekeeping, bypassing rollin, if the
region was allocated from free space.
(See "Performing Final Common
Housekeeping. ")

• Determines if any of the owner's PQEs
represent the region that is being
freed. 1 If so, clears the "in use" flag
(PQEUSE) in the PQE to indicate that

1A rolled out step normally has only one
PQE and region, since rollout of a step
that has itself caused rollout is
fortidden.

Section 5: Main Storage supervision 133

the region is not being used by a
borrower.

• Bypasses rollin if the owning job step
has any borrowed region that is still
in use. In this case, the RO/RI Crite
rion routine branches to location RIN08
to perform final housekeeping. If,
however, the owning step has no bor
rowed region that is still in use, the
routine begins the rollin of the step.

Transferring the Rolled-Out Jot step to
Main Storage

The RO/RI Criterion routine transfers to
main storage the contents of the job-step's
region(s). It also does some housekeeping.
For each region whose contents are to be
rolled in, the routine does the following:

• changes the storage protection key of
all 2K blocks from the borrower's key
to that of the owner, except subpools
which are given their protection key
(subpool 252 protection key is zero).
This is done via a branch to location
SETKEYS1.

• Branches to the start Transfer routine
(STARTIO) to enable I/O interruptions
and transfer the region's contents to
main storage. (See "Transferring the
contents of the selected Region to the
Rollout Data set.n)

• Writes the rollin message "IEA4061 job
name, stepname, ROLLIN," if permanent
I/O error did not occur during the
transfer and if RO/RI messages were
requested in response to message IEA40-
2A. The message is written via the
Write-to-operator routine (IGC003E).

• Disables I/O interruptions and tests
for I/O error during the transfer. If
there was permanent I/O error, the job
step cannot be returned to its region.
The RI/RO Criterion routine, in this
case, reconstructs the free block queue
elements (FBQEs) of the region, so that
invalid FBQEs will not cause an ABEND
recursion when the job step is abnor
mally terminated. The reconstruction
is accomplished through the use of the
MRELEASE routine in module IEAQMOO.

• Resets the "rollout" flag (PQERO) in
the owner's PQE to indicate that the
region's contents are not rolled out.

• Sets the free 2K blocks of the region
to zero protection key. This is done
so that the blocks may not be used by
the job step until they have been allo
cated by the GET MAIN routine. (Sets
zero protection key by branching to
location SETKEYS.)

134

• If there was permanent I/O error during
the transfer, branches to location
ERRIN to invoke the supervisor's ABTERM
routine. This routine schedules the
abnormal termination of the partially
rolled-in job step. As part of the
abnormal termination, the ABEND routine
(ABEND16) frees the region's space, via
the Release Main Storage routine (IEAQ
SPET). The ABTERM routine returns con
trol to location RIN06 in the RO/RI
module. (See "Makinq Dispatchable the
Tasks of the Rolled-In Job Step.")

• Calls the TCAM Post Pending routine
(IGG019RQ) when there is an os Post
pending for a task that is currently
being rolled in.

Restarting Deferred I/O Reguests for the
Rolled-In Job Step

The RO/RI criterion routine uses its SVC
Restore Interface routine (RSTRIO) to
restart I/O requests belonging to the
rolled-in job step. These I/O requests
were deferred when the job step was rolled
out. (See "Processing If a Suitable Job
Step Can Be Found.")

For each task of the rolled-in step, the
SVC Restore Interface routine does the
following:

• Selects the task's TCB address from a
rollout I/O queue element (RIQE) on the
RIQE queue. (See Section 12, "Control
Blocks and Tables," for the RIQE
format.)

• Prepares for the redispatching of the
SVC Restore Interface routine under
control of the selected TCB. The I/O
Supervisor associates the restored I/O
requests with the TCB under which the
RESTORE macro instruction is issued.
The preparation consists of:

1. Dequeuing the RO/RI IRB from the
RO/RI TCB (or from a previously
selected TCB), and placing it at
the head of the RB queue of the
selected task. The shifting of the
IRB makes the RO/RI task
nondispatchable.

2. Sets the "prevent asynchronous
exits" flag (TCBFX) in the selected
TCB. The purpose is to prevent the
scheduling of an asynchronous exit
routine by the Stage 3 Exit Effec
tor when the Dispatcher is entered.
Such scheduling would interfere
with the issuance of the RESTORE
macro instruction.

3. Places in the IRB old PSW the reen
try address (RSTRI04) of the SVC

Restore Interface routine. This
address is the point at which the
routine is redispatched to issue
the macro instruction.

4. Makes the selected task temporarily
dispatchable by clearing nondis
patchability flags in its TCB.
(The TCBFRO flag was set in each
TCB of the job step during rollout
processing.) The flags are saved
so that they may later be restored.

5. Saves the register contents that
were stored in the selected TCB.
Stores the RO/RI module's register
contents in the selected TCB. This
is necessary because the Dispatcher
always loads registers from the TCB
whose task it will dispatch.

6. Indicates to the Dispatcher that it
should dispatch the selected task.
The routine does this by zeroing
the "new" TCB pointer (IEATCBP) and
invoking the supervisor's Task
Switching routine. The Task
Switching routine, detecting that
the RO/RI task is nonready, places
the selected TCB address in the
"new" TCB pointer.

• Branches to the Dispatcher to redis
patch the SVC Restore Interface routine
at location RSTRI04.

o Issues the RESTORE macro instruction,
specifying the list origin (RIQEIOB) of
a chain of lOBs. The lOBs represent
channel programs deferred during roll
out. The RESTORE macro instruction
causes supervisor linkage to the I/O
Supervisor, which sets I/O request ele
ments to schedule the channel programs.

• Dequeues the RIQE for the selected task
and frees its storage space (via the
FREEMAIN routine), since the RIQE is no
longer needed.

o Restores the selected task to its pre
vious status by restoring its saved
"prevent asynchronous exits" flag and
its nondispatchability flags. Places
the task's saved general register con
tents in the selected TCB.

When it has issued the RESTORE macro
instruction for all tasks of· the job step,
the SVC Restore Interface routine causes
the redispatching of the RO/RI task, as
follows:

• Dequeues the RO/RI IRB from the last
selected TCB and queues it from the
RO/RI TCB. This action makes the RO/RI
task ready.

• Places the return address (RSTRI06) of
the SVC Restore Interface routine in
the IRB old PSW, in preparation for the
redispatching of the RO/RI task.

• Places the RO/RI module's saved regis
ter contents in the RO/RI TCB. The
Dispatcher loads the registers from
this TCB.

• Branches to the Task Switching routine
with the address of the RO/RI TCB. It
does this to indicate to the Dispatcher
that it should next dispatch the RO/RI
task instead of the last-selected task.

o Branches to the Dispatcher to redis
patch the RO/RI task. When redis
patched (at location RSTRI06), the SVC
Restore Interface routine returns con
trol to the RO/RI Criterion routine.

Restarting Deferred Operator Replies for
the Rolled-In Job Step

The RO/RI Criterion routine branches to
the Reply Restore routine (RSTRQE) to
restart operator replies that were received
While the step was rolled out. The Reply
Restore routine examines each reply queue
element on the reply queue. Each element
represents an operator reply that either
was received or will be received. (The
origin of the reply queue is UCMRPYQ in the
unit control module.) The Reply Restore
routine performs as follows for each reply
queue element that is flagged "rolled out"
and which belongs to the rolled-in step:

o Clears the "rolled out" flag (RQERO) in
the reply queue element. (This flag
was set by the Reply Purge routine
(PRGRQE) when the step was rolled out.)
The cleared flag indicates to the com
munications task Reply Processor rou
tine (IGC1203D) that it may move the
reply to the user's buffer.

• Tests the "temporary-buffer" pointer
(RQEXB) in the reply queue element.
(In the program listing, it is called
the "purging message address.") If the
pointer is nonzero, the Reply Processor
routine received a reply and placed it
in the temporary buffer, while the job
step was rolled out.

• Issues an MGCR macro instruction to
restart· the reply, if it was received
while the job step was rolled out. The
macro instruction causes supervisor
linkage to the Reply Processor routine
(IGC1203D), via the Command Processing
routine and the MGCR Router routine.
The Reply Processor routine determines
that the temporary buffer is full
(RQEXB is nonzero), moves the reply to
the user's buffer, frees the temporary

section 5: Main Storage Supervision 135

buffer, and completes the processing of
the reply. (See" Reply Processing" in
Section 7, "Console Communications and
System Log.")

• Continues the examination of the reply
queue until all reply queue elements
that belong to the rolled-in step have
been processed. The routine begins
each new scan at the reply queue ori
gin, because the Reply Processor rou
tine reorders the queue each time that
it is entered.

• Returns control to location RIN06 in
the RO/RI Criterion routine.

Naking Dispatchable the Tasks of the
Rolled-In Job Step

The RO/RI Criterion routine next makes
dispatchable the tasks of the rolled-in job
step if all the regions, in both hierarchy
o and 1, belonging to the task are in
storage. (These tasks were set nondis
patchable during rollout by the RO/RI Cri
terion routine, just before it deferred the
job step's I/O requests.)

The RO/RI Criterion routine (at location
RIN06) issues the STATUS macro instruction
to cause supervisor linkage to the Set Sta
tus routine (IGC079). This routine clears
the "rolled out" nondispatchability flag
(TCBFRO) in each TCB of the step.

The operands of the STATUS macro
instruction, as used above, have these
meanings:

IRESET, ND I (6) I (12) I
t------------+--------------+-------------~
ICauses the IIndicates thatlThis mask I
I clearing of Ithe TCB whose Inumber indi- I
Ithe nondis- laddress is in I cates that I
Ipatchabilitylregister 6 Ithe "rolled I
Iflag speci- I(JSTREG) and lout" nondis- I
Ified by the lits descen- Ipatchability I
Imask operandldants are to Iflag (TCBFRO)1
1(12). Ibe reset as Ishould be 1
I I specified. I cleared. 1

Performing Final Common Housekeeping

The RO/RI Criterion routine next per
forms final common housekeeping, primarily
for the borrower's job step. The house
keeping, begun at location RIN08, is common
to three types of rollin:

1. A rollin of a job step that is com
pleted without I/O error.

2. An attempted rollin of a job step that
has produced a permanent I/O error.

136

3. A rollin to a region that was allo
cated from free space in the dynamic
area.

The common housekeeping consists of:

• Decreasing by a count of one the "roll
outs invoked" counter (ROICTR) to indi
cate that the current rollout is no
longer in effect. The RO/RI Criterion
routine tests the count each time a
rollout is requested. Unless permitted
by a user appendage (IEAQAPG1) the
RO/RI criterion routine will prevent
another rollout (defer the request) if
the count equals one.

• Clearing the "rOllout invoked" flag
(TCBFRI) in the borrower's job step
TCB, if the job step has no other bor
rowed regions. The flag is tested by
the TESTSTEP routine during rollout
processing, to determine if a selected
job step has invoked rollout. A job
step is not suitable to be rolled out
if it has itself invoked rollout.

The RO/RI Criterion routine then
branches to its Dequeue routine to schedule
rollout for deferred rollout requests.

Scheduling Deferred Rollout Requests

A rollout request (IQE) was deferred
during rollout and placed on the rollout
request queue for either of two reasons:
another rollout was in effect and concur
rent rollouts were prohibited, or a job
step suitable to be rolled out could not be
found.

Deferred rollout requests are scheduled
by the RO/RI module's Dequeue routine
(DEQUEUE). This routine is entered either
from the RO/RI Criterion routine, via a
branch, or from the Set Status routine
(IGC079), during scheduling of the RO/RI
module. In either case, a new region is
available for rollout.

The Dequeue routine schedules deferred
rollout requests as follows:

• Stores zero in the pointer to the roll
out request queue (IEAROQUE). It does
this because the queue is being tem
porarily eliminated.

• Places zero in the count of deferred
rollout requests (IEAROQCT). During
rollout this count can be used by an
optional user appendage (IEAQAPG3) to
determine whether to abnormally termi
nate a job step, if a step suitable for
rollout cannot be found.

• If there are no IQEs on the rollout
request queue, branches to the RETEXIT

routine to queue the current IQE to the
"next available list" (RBNEXAV) and
exit from the RO/RI module. (See
"Exiting from the Rollout/Rollin
Module. ")

• If there is at least one IQE on the
rollout request queue, does the follow
ing for each IQE:

1. complements the IQE address to
serve as an input parameter for the
Stage 2 Exit Effector. This indi
cates to Stage 2 that the element
is an IQE, not an I/O request ele
ment. (stage 2 handles both types
of elements.)

2. Clears the "wait for core" nondis
patchability flag (TCBWFC) in the
requestor's TCB. (This TCB is the
one whose address is contained in
the IQE.) The flag is cleared
because the task's main storage
request is being reactivated.

3. Branches to the stage 2 Exit Effec
tor (IEAOEFOO) with the comple
mented IQE address. stage 2 sched
ules linkage to the RO/RI module
for the request. It does this by
placing the IQE on one of the asyn
chronous exit queues (AEQJ). (See
"Scheduling Linkage to the Rollout/
Rollin Module" in "Processing If
the Requested Space Is Not
Available.")

• Branches to the RETEXIT routine, when
all I,QEs on the rollout request queue
have been scheduled. (See "Exiting
from the Rollout/Rollin Module.")

FREEING SPACE IN THE SYSTEM QUEUE AREA AND
LOCAL SYSTEM QUEUE AREA

To free space in the system queue area
or in the local system queue area, the
FREE MAIN routine determines whether space
within subpools 243 or 253 and 244 or 254
is to be freed. If so, 8 bytes are added
to the size of the area to be freed (to
include the AQE that is contained in the
area), and 8 bytes are subtracted from the
address of the space.

For subpools 243, 244, 253 and 254, the
address of the appropriate AQE is obtained
from the TCBAQE field of the associated
TCB. If the entire area defined by the AQE
is to be freed, the AQE is simply removed
from the AQE queue. Otherwise, it is
altered by changing its byte count.

When address correction has been com
pleted or if the FREEMAIN request is for
subpools 245 or 255, a check is made to
ensure that the specified area falls within
the bounds of SQA or LSQA as applicable.

The DQE for the area is then obtained
and an FQE is built for the area being
freed and is placed on the DQE FQE chain.
Any resulting contiguous free areas are
combined by combining FQEs.

For non-time sharing tasks, subpools
243, 244, 245, 253, 254, and 255 all free
SQA space. For time sharing tasks, sub
pools 243, 244 and 245 free SQA space and
subpools 253, 254, and 255 free LSQA space
(or SQA space if LSQA has overflowed into
SQA).

Section 5: Main Storage supervision 137

SECTION 6: TIMER SUPERVISION

SYSTEMV360 TIMER SUPERVISION

The Timer Supervision routines extend
the capabilities of the IBM System/360
interval timer feature. By using the
timer, these routines service the macro
instructions by which programmers can
obtain the date and time of day, measure
periods of time, or schedule activity for a
specific time of day.

The need for timer services is always
signaled by an interruption, after which
control is automatically given to an appro
priate timer supervision routine. SVC
interruptions occur when a TIME, STIMER, or
TTIMER macro instruction is executed, and
timer interruptions occur when a value in
the interval timer expires. After an SVC
interruption, one of three macro service
routines is given control.

The TIME routine supplies the current
date and time of day. The operator ini
tially gives a starting date and time of
day with a SET command. Thereafter, Timer
Supervision routines change the date at
midnight and keep track of elapsed time.
The TIME routine obtains the current date,
adds elapsed time to the starting time
given by the operator, and returns both
values in general registers.

The STIMER routine processes requests
for timed intervals by scheduling their
placement into the interval timer to cause
interruptions at requested times. For each
STIMER macro instruction, this routine
builds a queue element and places into it a
summary of the information in the STIMER
macro instruction, including the informa
tion that will be needed when the interval
expires. It then positions the element in
the timer queue by its time of expiration.
When a timer interruption occurs (a value
in the timer expires), timer interruption
handling routines perform any requested
actions and obtain new intervals to be
placed into the timer from elements in the
timer queue.

The TTIMER routine supplies the time
remaining in a previously requested inter
valor it cancels previous requests for
remaining time. To determine remaining
time, the TTIMER routine subtracts elapsed
time from the time of expiration of the in
terval. To cancel previous requests, the
TTlMER routine removes corresponding ele
ments from the timer queue.

138

In a Model 65 Multiprocessing System,
each CPU has an interval timer located in
its prefixed storage area (PSA). One timer
is designated as active and is used by tim
ing routines; the second, or alternate,
timer is always set to a value X'80000000'
greater than the active timer and thus
never expires. If the CPU is in partioned
mode, or is the only online CPU in a Model
65 Multiprocessing System, the alternate
timer is set, but does not decrement.
Timer routines access the interval timer by
adding the PSA displacement value of the
timer to the value in PREFTMRA, an index to
the PSA that contains the active timer.
PREFTMRA is a PSA word which contains zeros
if the active timer is in the same PSA, or
the address of the other PSA if the timer
is located in the other PSA.

SYSTEMV370 TIMER SUPERVISION

Control programs executing on System/370
CPUs use the interval timer feature and the
Time-of-Day (TOD) Clock, a standard feature
on these CPUs which provides timing resolu
tion to one microsecond. In the following
description of timer supervision, dif
ferences with the System/370 Time-of-Day
Clock, if any, are discussed immediately
after the descriptions of each timer rou
tine or function.

The operator need reset the clock only
when the current date and time of day are
incorrect, not at each IPL. The TOD Clock
runs continuously while power is on.

Because the TOD Clock maintains elapsed
time automatically (using 0000 hours,
January 1, 1960 as the base), the TIME rou
tine uses the TOD Clock to update, when
necessary, the current date and to deter
mine the time of day. The current date and
time of day are returned to the caller in
the manner specified in the TIME macro
instruction.

When the requested interval is greater
than one hour, the STIMER routine uses the
TOD Clock to determine the value expected
to be in the TOD Clock at expiration. When
the requested interval is less than or
equal to one hour, System/360 processing is
used.

To determine the time remaining in an
interval, the TTIMER routine subtracts the
value in the TOD Clock from the value
expected to be in the TOD Clock at
expira tion.

TIMER SVC INTERRUPTION HANDLING

The handling of interruptions resulting
from issuance of timer-related macro
instructions, is shown in Figure 6-1.

The expansions of the TIME, STIMER, and
TTlMER macro instructions contain SVC 11,
SVC 47, and SVC 46 instructions, respec
tively. When these SVC instructions are
executed, SVC interruptions occur and con
trol is given to the SVC First-Level Inter
ruption Handler, which saves information
about the interrupted program and routes
control accordingly.

Both the TIME and TTl MER routines are
type-l SVC routines, and control is given
directly to them by the SVC First-Level
Interruption Handler. The STIMER routine,
however, is a type-2 SVC routine, and con
trol is first given to the SVC Second-Level
Interruption Handler, which creates a
supervisor request block, places into it
the information about the interrupted pro
gram, and then gives control to the STIMER
routine. (For a complete description of

SVC Interruption

lSVC 11
(TIME)

TIME
Routine

Interrupted
Routine

SVC
Fi rst - Leve I
Interruption
Handler

Type 1
Routine

Type 1
Exit
Routine

SVC
1-_-,-,Ty,-"pc::.e-=2,--R;..:.0.::.cut..:..:in.:..:e_-.j Second - Level

Interruption
Handler

lSVC 46
(TTiMER)

TTlMER
Routine

Dispatcher

Current routine
of highest
priority task
that can be
performed

SVC 47
(STIMER)

STIMER
Routine

Exit
Routine

Transient
Area
Refresh
Routine

Figure 6-1. Timer SVC Interruption
Handling

SVC first-level and second-level interrup
tion handling, see "svc Interruption Han
dling" in Section 2.>

After type-1 SVC routines have been
executed, control is given to the Type-1
Exit routine, which determines whether the
task for which the SVC instruction was
given should be resumed. If so, the Type 1
Exit routine restores the saved contents of
registers and returns control to the rou
tine in which the SVC instruction was
encountered. If another task is to be per
formed, the Type-l Exit routine saves
register contents in the appropriate TCB,
saves the contents of the old PSW in the
appropriate request block, and gives con
trol to the Dispatcher.

After type-2 SVC routines have been
executed, control is given to the Exit rou
tine, which performs functions similar to
the Type-1 Exit routine and also gives con
trol to the Dispatcher.

The Dispatcher routes control to the
highest priority task that can be
performed.

THE TIME ROUTINE IN SYSTEM/360

The TIME routine determines the current
date and time of day and returns both
values to requesting routines in general
registers. It obtains the date from a
location in the communication vector table,
into which it was placed by the JoL Manage
ment SET Command routine. (Each day at
reidnight, the date is changed by the Timer
Second-Level Interruption Handler.) To
determine the time of day, however, the
TIME routine must first determine how much
time has elapsed since the operator gave
the SET command.

After the operator gives a starting
time, the interval timer must be kept con
tinually operating, so that an elapsed time
can be measured. The interval timer auto
matically decrements any value placed into
it and causes an interruption when the
value becomes negative. For timekeeping
purposes, 6-hour intervals are used. Dur
ing initial program loading (IPL), a 6-hour
value is placed into the interval timer,
and, when this value expires, another 6-
hour interval is placed into the timer by
the Timer Second-Level Interruption Han
dler.

To measure elapsed time, t"10 pseudo
clocks are used with the interval timer.
Each time a 6-hour value is placed into the
timer, one is also placed into a 6-hour
pseudo clock. However, the value in the
timer decrements, while that in the 6-hour
pseudo clock does not. Thus, an elapsed

section 6: Timer Supervision 139

time of up to 6 hours can be determined by
subtracting the value in the timer from
that in the 6-hour pseudo clock.

To measure intervals longer than 6
hours, a 6-hour value is added into a 24-
hour pseudo clock each time one is placed
into the 6-hour pseudo clock except for the
first 6-hour interval. (Each time a 24-
hour period elapses, the 24-hour pseudo
clock is reset to 0.) The TIME routine
determines elapsed time by subtracting the
value in the timer from the sum of the
values in the 6-hour pseudo clock (SHPC)
and the 24-hour pseudo clock (T4PC):

Elapsed Time = (SHPC + T4PC) - Timer

Elapsed time is added to the starting time
given by the operator to arrive at the cur
rent time of day.

The values used in the timer are timer
units equalling 13 microseconds; the values
used in the pseudo clocks are timer units
equalling 26.04166 microseconds. Timer
values are converted to units of 26.04166
microseconds for calculations. The TIME
routine converts the time of day to packed
decimal form if the decimal (DEC) option
was specified in the TIME macro instruction
or to an unsigned binary value if the
binary (BIN) option was specified. If the
timer units (TU) option was given, no conv
ersion is performed. The current time of
day is returned to requesters in general
register 0, and the date is returned in
general register 1.

THE TIME ROUTINE IN SYSTEM/370

with the TOO Clock, an additional para
meter (MIC,address) is used to obtain the
time of day in microseconds. The date is
obtained from the CVT, as in System/360
processing, but all calculations to deter
mine the time of day are performed in
microseconds.

Each time that the TIME routine
(IEAORT01) is entered, the current date is
verified using the value in the TOO Clock.
The MNIGHT field in the nonexecutable timer
module IEACVTPC contains the value that is
expected to be in the TOO Clock at midnight
of that. day. From the MNIGHT value, the
TIME routine subtracts the current value in
the TOO Clock. If the result is positive,
midnight of that day has not been reached
and the current date is correct. If the
result is 0 or negative, midnight of that
day has been passed. The current date in
the CVT is incremented by one day, the
~mIGHT value is incremented by 24 hours (in
microseconds), and the synchronization
indicator in the midnight element is set
on. Because the variance in the current

140

date may have been more than one day, the
procedure described above is repeated until
the result of the subtraction is positive.

The TIME routine does not calculate the
time of day in a manner similar to the TIME
routine in System/360. Instead, the TIME
routine uses the TOO Clock and the follow
ing algorithm to calCUlate the time of day
in microseconds:

TOO =

where

86.4 X 109 - (MNIGHT - CLOCK)

86.4 x 109 is the number of micro-
seconds in one day.

MNIGHT is the value expected to be
in the TOO Clock at midnight
of the current day.

CLOCK is the current value of the
TOO Clock

(MNIGHT - CLOCK) yields the number
of microseconds remaining
until midnight of the cur
rent day.

For a time of day request specifying the
MIC operand, the user-specified address is
checked for validity. If the address is
invalid, register 0 is set to 0, register 1
contains the date, the specified location
is unchanged, and control is returned to
the caller with a code of 4 in register 15.
For a valid address, register 15 is set to
0, the current date is returned in register
1, and the time of day is returned in the
doubleword field specified by the caller;
register 0 is set to o.

If the TU operand was specified, the
calculated time is converted to timer units
by dividing the microsecond value by
26.04166. If the BIN or DEC operands were
specified, the calculated time is divided
by 10000 and the result is returned if BIN.
If DEC was specified, the result is con
verted to HHMMSSth format.

Note: If the TIME routine is entered
before nucleus initialization is complete,
the date is returned as X'OOOOOOOF' and the
time is returned as O.

STIMER ROUTINE

The STIMER routine builds and positions
on the timer queue the elements that repre
sent time intervals requested with STIMER
macro instructions. If necessary, this
routine first converts requested time from
hours, minutes, and seconds to timer units.
Then, using either an existing element or
creating a new one, it places into the ele
ment information specified in the STIMER

macro instruction. Finally, it uses the
Timer Enqueue subroutine to position the
elements on the timer queue.

The Timer Queue in System/360

The timer queue provides a means of
scheduling values representing time inter
vals for placement into the interval timer
to cause interruptions to occur at appro
priate times.

All elements in the timer queue are
arranged by a time of expiration. After a
timer interruption, the topmost element
always represents the expired interval.
This element is removed from the queue and
used to determine what action is to be
taken. Meanwhile, the interval represented
by the next element is placed into the in
terval timer, and the procedure begins
again.

The time of expiration, by which ele
ments are ordered on the timer queue, is
based on a 6-hour cycle. The STIMER rou
tine places the interval requested in the
element and uses the timer enqueue routine
in the Timer SLIH to convert the interval
to a time of expiration and to place the
element on the timer queue. The timer
enqueue routine subtracts the value in the
interval timer from the value in the 6-hour
pseudo clock (SHPC) and adds the interval
requested:

TaX = (SHPC - Timer) + interval requested

For example, assume that no requests are
pending and that 3 hours have elapsed since
the operator issued a SET command. Figure
6-2 shows the timer queue and the values in
both the timer and the 6-hour pseudo clock
at this time. Assume now that an STIMER
macro instruction requests a timer inter
ruption in 5 hours. The time of expiration
(TaX) is determined:

TaX
8

(SHPC
(6

Timer) + interval requested
3 } + 5

The element representing the 5-hour
request is positioned on the timer queue
between the 6-hour and midnight elements.
Both the 6-hour and midnight elements
always exist on the queue. When the 6-hour
element expires, the Timer Second-Level
Interruption Handler subtracts 6 hours from
the times of expiration of all other ele
ments on the timer queue and repositions
the 6 hour element. Thus the element
representing the request then becomes the
topmost element, and its 2-hour time of
expiration is placed into the interval
timer. A timer interruption occurs on

6 - Hour TOX

Midnight TOX

Dummy Element*

6 Hour TOX

8 Hour TOX

Midnight Element

Dummy Element*

Timer SHPC

3

6 Hours 6 Hours
~~

I " I I I II I I I I I
------~}
Interruption scheduled to occur
after 2 hours of the second 6 -
hour cycle. (A 2 - hour interval
will be placed into the timer.)

*Dummy element signifies end of timer queue.

Figure 6-2. Positioning of Elements on
the Timer Queue

schedule -- 5 hours after receipt of the
request. When the midnight element
expires, the Timer Second-Level Interrup
tion Handler changes the date given by the
operator and repositions the midnight
element.

The Timer Queue in System/370

The timer queue in System/370 is similar
to that in System/360. However, the STIMER
routine uses the TOO Clock to process REAL
and WAIT type requests when the interval
specified is greater than one hour. (REAL
and WAIT type requests for intervals less
than or equal to one hour and TASK type
requests are processed as in System/360.)
STIMER converts the requested interval from
timer units to 1.048576-second units and
adds the resulting value to the current
value in the TOO Clock. (Bit 31 in the TOO
Clock is incremented every 1.048576
seconds. Microsecond values are indicated
by bit 51.) This yields the expected value
of the TOO Clock at the time of expiration
of the specified interval. This value is
saved in the TQEWORK field in the element
and will be used by the timer SLIH each
time that the one-hour interval for this
element expires (see "Determining What
Actions Are to be Performed in System/370"
below). STIMER places an interval of one

Section 6: Timer Supervision 141

hour (in timer units) in the field TQEVAL
in the element, sets on the synchronization
indicator in the element, and uses the
timer enqueue routine in the timer SLIH to
convert the interval from timer units to a
time of expiration and to place the element
on the timer queue. Although the interval
specified was greater than one hour, a
timer interruption occurs in one hour and
the element is examined by the timer SLIH
for further processing (see "Timer Inter
ruption Handling" below).

Determining Interval Values in System/360

The STIMER macro instruction allows the
user to specify the time interval in one of
four ways: decimal form (DINTVL), binary
form (BINTVL), timer units (TUINTVL), and
time of expiration (TOO). When decimal or
binary form is given, the STIMER routine
converts the value to timer units (one
timer unit = 26.04166667 microseconds),
before using the timer enqueue routine.
When timer units are given, no conversion
is necessary.

When time of expiration (TOD) is speci
fied in the STIMER macro instruction, STIM
ER converts the time to an interval by sub
tracting the current time of day from the
specified time of expiration. The interval
is converted to timer units before using
the timer enqueue routine. The current
time of day is determined using the follow
ing algorithm:

Current Time of Day
Timer)

where:

LTPC + T4PC + (SHPC -

LTPC = starting time given by the operator
in the SET command.

T4PC Value in the 24-hour pseudo clock.

SHPC = Value in the 6-hour pseudo clock.

Timer Value in the timer.

If the specified time of expiration is the
same as the current time or has already
passed, the calculation of the time of
expiration results in either zero or a
negative number. To this calculated
expiration time (zero or a negative num
ber), the STIMER routine adds 24 hours.

Because no interval that exceeds 24
hours is valid, the STIMER routine replaces
any interval that exceeds 24 hours with a
24-hour interval.

Determining Interval Values in System/370

The DINTVL, BINTVL, and TUINTVL operands
are processed in a manner identical with

142

System/360. When a time of expiration
(TOD) is specified as the operand in a
STIMER macro instruction, the STIMER rou
tine uses the TOO Clock to determine the
interval. STIMER first converts the time
of expiration to a value in timer units
that represents the interval between the
beginning of that day (0000 hours) and the
specified time of expiration. From this
value, STIMER then subtracts the current
time of day in timer units. The current
time of day in timer units is calculated
using the following algorithm:

TOO = (82397 - [MNIGHT - CLOCK]) x 40265

where MNIGHT is the value expected to be
in the TOO Clock at midnight
of that day.

CLOCK is the current value of the
TOO Clock.

If the specified time of expiration has
already been passed (the interval value is
negative), STIMER adds the number of timer
units in one day to the interval so that
the time of expiration will occur at the
specified time on the next day.

Building Timer Queue Elements

The STIMER routine builds queue elements
using information provided by the program
mer in the STIMER macro instruction. It
first checks to determine if an existing
element can be used. A usable element may
be available if an STIMER macro instruction
has been given for the same task in which
the current STIMER macro instruction was
encountered. This element could be an
expired element, an element in the timer
queue, or one that was changed to an inter
ruption request block by the Timer Second
Level Interruption Handler. The STIMER
routine reuses expired elements and removes
and reuses elements that are on the timer
queue. If the existing element has been
changed to an interruption request block
that is being used, or if no usable element
exists, the STIMER routine obtains space
for and builds a new element. It places in
the current TCB a pointer (TCBTME) to the
timer queue element that it has created.
The STIMER routine then uses the Timer
Enqueue subroutine to position the com
pleted element on the timer queue. See the
format of the timer queue element (TQE) in
Section 12, "Control Blocks and Tables".

TIMER INTERRUPTION HANDLING

When a time interval that was placed
into the timer expires, an external inter
ruption occurs and control is automatically
given to the External First-LeVel Interrup
tion Handler (see Figure 6-3).

External Interruption

+ Timer - Caused Interruption
External Timer
First - Level Second - Level
Interrupt i on Interruption
Handler Handler

Real

Type or
Wait

of Interval Task

Reg

.-----
Dispatcher

1
Stage 2
Exit
Effector

Highest priority
task that can be Post
performed Routine

Figure 6-3. Timer Interruption Handling

Basically, the External First Level
Interruption Handler saves information
about the interrupted program, distin
guishes between timer and other types of
external interruptions, and, for timer
caused interruptions, gives control to the
Timer Second-Level Interruption Handler.

The Timer Second-Level Interruption
Handler takes any actions the programmer
specified (in the STIMER macro instruction)
to be performed upon expiration, and places
another interval into the timer.

The module name of the Time Second-Level
Interruption Handler depends on the options
included at system generation. Figure 6-4
indicates these module names.

Determining What Actions Are To Be
Performed in System/360

When a timer interruption occurs, the
topmost element in the timer queue repre
sents the expired interval. The Timer
Second-Level Interruption Handler obtains
the address of the topmost element from
r;~ain storage location TQPTR, removes the
element from the timer queue, and to deter
mine what action to take, examines bits 6
and 7 of the first word in the element (see
Figure 6-5).

Note: When the time sharing option is
included in the system and the expired TQE
is for the time sharing driver, the Timer
SLIH issues a TSEVENT macro instruction
with the TSLICE parameter. If the expired
TQE is for a time sharing user not in main
storage, a TSEVENT macro instruction is
issued with the USERRDY parameter to indic-

r--------~--------T-----T---T---T---'
, OPTION"'"
,Module Name ,MP65*,SMF,TSOITODI
~------------- ---+-----+---+---+---~
, IEAQTIOO , I N IN' N ,
I IEAQTIOl , , Y , N IN'
, IEAQTI02 , I N I N I Y ,
I IEAQTI03 I I YIN I Y I
, IEAQTIMP '* IN' N I N I
I IEAQTIMl I * I YIN I N I
, IKJEATIO , , N I Y , N ,
, IKJEATIl , , Y , Y , N I
, IKJEATI2 I , N , Y , Y I
, IKJEATI3 , , y , Y I Y I L __________________ L _____ L ___ L ___ L ___ J

Figure 6-4. Timer Second-Level Interrup
tion Handler Module Name
Determination

ate to the driver that the time sharing
user is to be brought into main storage
(swapped-in) •

If the TASK or REAL parameter was given
in the S~IMER macro instruction, and if an
asynchronous exit routine was specified in
the STIMER macro instruction, the Timer
Second-Level Interruption Handler ('rSLIH)
must make further tests to determine what
action should be taken. If no entry to an
asynchronous exit routine is desired, the
queue element is given an expired status.
If an exit is specified and the timer queue
element (TQE) is TASK type, the TSLIH
changes the TQE to an interruption request"
block (IRB) containing an interruption
queue element (IQE), and gives control to
the Stage 2 Exit Effector. If an exit is
specified and the TQE is REAL, the TSLIH
determines if the issuer of the STIMER was
an initiator. If an initiator did not
issue the STIMER macro instruction, the
TSLIH proceeds as if an exit was specified
and the TQE was TASK type. If an initiator
did issue the STIMER macro instruction,
further processing must be performed.

If the TQE is REAL, if an exit is speCi
fied, and if an initiator issued the STIMER
macro instruction, it indicates that the
30-minute wait limit (imposed by job-step
timing) has expired. When this case
occurs, the problem program must be abnorm
ally terminated while the timer queue ele
ment must be reinstated as TASK type with
the actual CPU time remaining value. The
Timer Second-Level Interruption Handler
accomplishes this by branching to ABTERM
with the address of the problem program
job-step TCB (TCBLTC field of initiator
TCB) to schedule the step for ABEND. The
TSLIH also passes ABTERM a unique ABEND
code (522) which indicates that the 30-
minute wait limit expired. Upon return
from ABTERM, the TSLIH marks the timer
queue element as TASK type and off the
queue, and moves the CPU time remaining

Section 6: Timer Supervision 143

r------T--------------------------Tr------------------------T---------------------------,
I Bits I I I Action Taken by Timer I
16 & 7 I I i I Second-Level Interruption I
lof TQEI Indicate That: I Elapsed Time Represents: I Handler I
r------+--------------------------+~------------------------+---------------------------~
I 00 ITASK parameter was used inlTime used to perform tasklChecks bit 5. which con- I
I ISTIMER macro instruction. I for which the STIMER Itains a 1 if an asynchro- I
I I Imacro instruction was Inous exit routine is to be I
I I I given. I entered. If so. passes I
I I I Icontrol to Stage 2 Exit I
I I I I Effector. I
r------+--------------------------+-------------------------+---------------------------~
I 01 IWAIT parameter was used inlTotal elapsed time. IGives POST macro instruc- I
I ISTIMER macro instruction. Imeasured from time that Ition. (Performance of I
I I linterval was placed into Itask for which macro I
I I I timer. linstruction was issued I
I I I I cannot be resumed until I
I I I IPOST is given.) I
r------+--------------------------+-------------------------+---------------------------~
I 10 IInterval that expired was ITotal elapsed time. IChecks bit 5. which will I
I la 6-hour supervisor inter-Imeasured from time that Icontain a 1 if a 24-hour I
I I val. linterval was placed into Iperiod has passed. If so. I
I I I timer. lincrements date by one. I
r------+--------------------------+-------------------------+---------------------------~
I 11 IREAL parameter was used inlTotal elapsed time. IChecks bit 5. which will I
I ISTIMER macro instruction. Imeasured from time that Icontain a 1 if an asynchro-I
1 1 linterval was placed into Inous exit routine is to be I
I I I timer. I entered. If so. gives con-I
1 I I I trol to Stage 2 Exit I
I I I I Effector. * I
r------~--------------------------~-------------------------~---------------------------~
I*If an Initiator issued the STIMER macro instruction, the TQE will be converted to TASK I
I type. and control will be passed to ABTERM. I l ___ J

Figure 6-5. Actions Taken After Timer Expiration

value from its save slot (TQESAV) to the
time of expiration/time remaining slot
(TQEVAL) within the TQE.

If a WAIT parameter was given in the
STIMER macro instruction. the Timer Second
Level Interruption Handler gives control to
the Post routine. directing it to post an
appropriate event control block (contained
within the timer queue element) and thus
signal expiration of the interval.

After either of the above actions has
been completed. the time of expiration
(TOX) value of the topmost element is
placed into the 6-hour pseudo clock. The
TOX value minus the last value in the 6HPC
is placed in the interval timer. (The ele
ment representing the recently expired
interval has been removed from the queue.)

Determining What Actions Are To Be
Performed in System/370

When the element at the top of the timer
queue is removed by the timer SLIH. the
synchronization indicator is checked to
determine if this element is the 24-hour
element or represents a REAL or WAIT type
request that requires special processing by
the timer SLIH. This indicator will have

144

been set by the STIMER routine when the
original interval requested was greater
than one hour. Interim processing by the
timer SLIH may have cleared this indicator.

If special processing is not required.
System/360 processing continues. If the
indicator is set. the timer SLIH,subtracts
the value in the TOD Clock from the value
in the TQEWORK field. If the result is 0
or negative. the interval being timed has
elapsed and processing continues as in
System/360. If the result is positive but
less than one hour. the synchronization
indicator is cleared. and the remaining
interval is converted from 1.048576-second
units to timer units and placed in the
TQEVAL field. The timer enqueue routine is
used to convert the timer units to time of
expiration and to place the element on the
timer queue.

If the result of the calculation is
positive and greater than one hour. the
timer SLIH again sets the TQEVAL field to
one hour. and uses the timer enqueue rou
tine to convert the timer units to a time
of expiration. and to place the element on
the timer queue.

Returning 6-Hour and Midnight Elements to
the Queue in system/360

When intervals represented by either the
6-hour or midnight supervisor queue ele
ments expire, the elements must be returned
to the timer queue. Before it returns the
6-hour supervisor element, the Timer
Second-Level Interruption Handler subtracts
6 hours from the times of expiration of all
elements in the timer queue to reflect the
passing of 6 hours since the elements were
queued. It also adds 6 hours to the 24-
hour pseudo clock unless its value is 18
hours, in which case it resets the 24-hour
pseudo clock to O. The Timer Second-Level
Interruption Handler then uses the Enqueue
subroutine to position and queue the 6-hour
element on the timer queue.

Note: When the time sharing option is
included in the system and the midnight
element expires, a TSEVENT macro instruc
tion is issued with the CHGTOD operand so
that the time sharing driver updates the
time of day in its internal control blocks.

Before the Timer Second-Level Interrup
tion Handler returns the midnight element
to the timer queue, it changes the date in
the communications vector table.

Returning 6-Hour and Midnight Elements to
the Queue in Systerr~370

This processing is identical with
System/360 except that the 24-hour pseudo
clock is not used in System/370. This is
replaced by the MNIGHT field in module
IEACVTPC which is used with the TOD Clock.

SMF Processing

When the System Management Facility
(SMF) has been included in the system, the
Timer SLIH may be required to perform addi
tional processing.

If the timer interruption is recognized
as following from the expiration of a
supervisor 10-minute interval, the Timer
SLIH obtains the accumulated system wait
time for the 10 minutes from the second
word of the save area SYSWSAVE. This value
is added to the SMCAWAIT + 4 field in the
system management control area. Each time
that step termination is entered, this
field is checked. If it is non-zero, a
system 10-minute wait record is generated.

The Timer SLIH then zeros the accumu
lated wait time field, places a value of 10
minutes in the 10-minute TQE, and returns
the TQE to the timer queue.

If the timer interruption is recognized
as a job, step, or wait time expiration,
the Timer SLIH checks the timing control

table (TCT) for the address of a user time
limit expiration routine (IEFUTL). If such
a routine is present, and if the expired
TQE belongs to the initiator, the Timer
SLIH initializes an IRB/IQE representing
the SMF Time/output Limit Expiration rou
tine (IEATLEXT). The Stage 2 Exit Effector
is then entered to schedule the execution
of the SMF Time Limit Expiration routine.

SMF TIME/OUTPUT LIMIT EXPIRATION ROUTINE
(IEATLEXT)

This routine, which is resident in the
nucleus, provides an interface with a user
time limit expiration routine (IEFUTL).

The routine receives control after a
job-step, or wait time limit has expired
(see above>. After setting all tasks in
the job step nondispatchable and the TCB of
the expired task to must complete status,
it passes control to the user time limit
routine, indicating the type of expiration
in Register 15. It also passes the address
of a 72-byte register save area and the
contents of the user data field (TCTUDATA)
in the TCT.

The user routine determines whether or
not a time extension will be granted. It
returns control to the SMF Time/Output
Limit Expiration routine with a return code
of 0 for no time extension, 4 for time
extension granted. If the return code is
4, Register 1 contains the number of timer
units to be granted.

If an extension is granted, the SMF
Time/Output Limit Expiration routine places
the value of the extension into the expired
TQE and places the TQE back on the timer
queue.

If no extension is to be granted, the
action taken depends on the type of time
limit that has expired:

o If wait time expired, the problem pro
gram is abnormally terminated with an
error code of 522.

• If job-step time expired, the step is
terminated. The SMF Wait Time Expira
tion routine converts the TQE into an
IRB/IQE for standard linkage to the
Stage 2 Exit Effector.

Note: This routine (IEATLEXT) also handles
output limit processing for SYSOUT data
set. See Section 11, "Special Features".

TTIMER ROUTINE

The TTIMER routine performs the two
functions that can be requested with the

Section 6: Timer Supervision 145

TTIMER macro instruction. These are to
provide the time remaining in a previously
requested time interval or to cancel a pre
viously requested interval.

Determining Remaining Time in System/360

Before the TTIMER routine can determine
remaining time, it must first locate the
queue element that represents the affected
interval. It obtains the address of the
element from the TCB of the task being per
formed when the TTIMER macro instruction
was given. If no element exists, or if the
interval represented by the element has
expired, this routine places 0 time into
general register o. If an unexpired
interval exists, the TTIMER routine deter
mines remaining time by using the following
formula:

Remaining Time = TOX - (SHPC - Timer)

where:

TOX = Time of expiration of the element.
SHPC Value in the 6-hour pseudo clock.
Timer Value in the interval timer.

The interval may have expired while the
TTIMER routine was being executed, in which

146

case the above calculation would yield a
negative remaining time value. If so, a 0
value is returned in general register o.
~f a positive remaining time value is
obtained, it is placed unaltered (in timer
units) into general register o.

Determining Remaining Time in System/370

When a TTIMER request specifies an ele
ment that has the synchronization indicator
set, the TTIMER routine determines the
remaining time by subtracting the value in
the TOD Clock from the value in the TQEWORK
field in the element. A 0 or negative
value indicates that the interval has
elapsed, and TTIMER returns a 0 in register
O. A positive value is converted to timer
units and returned to the requester in
register o.

Canceling an Interval

If the CANCEL option was used in the
TTIMER macro instruction, the TTIMER rou
tine uses the Timer Dequeue subroutine to
remove the corresponding element from the
timer queue. The TTIMER routine also
clears the TQE pointer (TCBTME) in the cur
rent TCB. The current task thus no longer
has a timer queue element.

SECTION 1: CONSOLE COMMUNICATIONS AND SYSTEM LOG

SUPPORTING CONSOLE COMMUNICATIONS

The supervisor console support routines
provide for input and output for one or
more console devices. Input results from
an unplanned interruption from an external
device or from the main console; output
results from the macro instructions WTO
(Write to Operator) and WTOR (Write to
Operator with Reply).

The operator causes an I/O interruption
by pressing the REQUEST key on the 1052
Printer-Keyboard, or the START key on a
card reader. The I/O FiI:st-Level Interrup
tion Handler passes control to the I/O
supervisor, which determines that an opera
tor interruption service has been
requested. control then passes to the
resident Attention routine.

When the operator presses the INTERRUPT
key on the operator control panel (OCP), he
causes an external interruption. In this
case, control passes from the External
First-Level Interruption Handler to the
communications task resident External
Interruption Handler routine (IEEBC1PE).

The basic function of both the Attention
routine and the External Interruption
Handler routine is to prepare for the per
formance of the communications task. This
task is represented by a task control block
(TCB) built into the nucleus at system
generation. Routines operating under this
TCB perform all input/output functions
related to console communications. The
communications task without Multiple Con
sole Support (MCS) is performed by three
resident modules in the nucleus (Initiali
zation module IEECVINT, Unit Control Module
IEECVUCM, and the Wait module IEECVCTW) by
the nonresident Graphic Console Initializa
tion Module (IEECVGCI), and by the follow
ing nonresident SVC 12 modules: the Router
(IEECVCTR), the External Interruption
Handler (IEECVCTX), and the device proces
sor modules with their associated open/
close modules. The Initialization module
is linked to by the Master Scheduler and
sets up control blocks when the nucleus is
initialized. The unit control module (UCM)
is set up by the Initialization routine,
and is the primary control table for con
sole communications. The Wait module
receives control when the communications
task becomes active.

The Wait module issues a WAIT macro
instruction, specifying a list of event
control block addresses (this list is

called the event indication list). The
address of this list is contained in the
UCM. When one of the event control blocks
(ECBS) is posted, the communications task
becomes a ready task. When it becomes the
active task, the Wait module issues an SVC
12 instruction. This SVC includes a common
module, the Router module, and four service
modules. The processing services per
formed, in order of priority, are: extern
al interruption, attention, input/output
completion, and WTO(R).

The Router routine selects the service
to be performed and passes control to one
of four process modules. One of the pro
cess modules provides external interruption
services. The other three provide console
input/output services: one handles input/
output for the 1052 printer-Keyboard; the
second handles input from unit record
devices; and the third, output to unit
record devices. Each of the three input/
output process modules is associated with
an Open/Close support module, which pro
vides control blocks for Data Management
and the I/O Supervisor.

The flow of control following an exter
nal or input/output interruption from a
console is shown in Figure 7-1. This
figure also serves as a module directory
for console input services.

Console output is initiated when a user
or system program issues the WTO or WTOR
macro instruction. Both macro instructions
result in the performance of the transient
SVC 35 routine. This routine adjusts the
console queues and prepares for the perfor
mance of the communications task.

There are two console queues, the buffer
queue and the reply queue. The buffer
queue points to messages that are to be
written to the operator as a result of the
WTO or WTOR macro instruction. The reply
queue points to buffers for operator
replies to the WTOR macro instruction. The
SVC 35 service routine queues messages on
the appropriate queue.

The extent of both queues may be limited
when the system is generated. An attempt
to exceed the limit results in an ENQ macro
instruction for the requesting task. Due
to possible ENQ interlocks, and ENQ macro
instruction is not issued for the Communi
cations Task, SYSLOG (in MCS), a task in
DAR, and SIRB, or any TCB that is higher

Section 1: Console Communications and System Log 141

than the Communications Task on the TCB
ready queue. Instead, an additional buffer
is obtained. The task receives control
again when the number of el~nents in the
queue falls below the limit.

The flow of control for console support
output is similar to that for input. The
Router module has the additional responsi
bility of selecting an output device. The
process modules issue the EXCP corr.mand for
the 1052 Printer-Keyboard, or the WRITE
macro instruction for a printer. For an

Interruption Supervision

operator reply (to the WTOR macro instruc
tion), the I/O Completion Process module
issues an SVC 34 instruction (Command Pro
cessing). The Comwand Processing service
routine determines that the incoming com
mand is a response to the WTOR macro
instruction, and passes control to the
Reply Processor routine.

Control flow for console support output
is shown in Figure 7-2, which also serves
as a routine directory.

External Interruption) (I/o Interruption
from Conso I e

IEAQEXOO IEAQIOOO

IEAQNUOO IEAQNUOO I/O Supervisor

~-
Externa I FLiH I/O FLIH I

Re;id.,nt Communication Tas-k - ------r---~~~~....L.--~~--_ -_ -, I ~r--_~~_-....... t-,--_ -_~-_:- - --

IEECVCRX I IEAODS IEECVCRA

External (Post Com I -'Dispatcher) 11 Attention (Post
Task ECB) Com Task ECB)

L __ t--_~
IEECVCTI

IEECVINT

Initialization
(Performed at NIP)

IEECVCTW

IEECVCTB

Wait Routine (Wait t- - -.
on ECBs in UCM)

IEECUCM

Unit Control
Module

----- ---- -- -- ---- 1---- ---- -- -r-.--- ---- - -- -- ----
Nonresident Communication Task (SVC 72)

l
IEECVCTX

IEECVGCI

Graphic Console
Initialization

External Interruption -Processor

IEECVPMl

1052/Printer I--
Processor 2

Figure 7-1. Console Support: Input

148

+
IEECVPMX

1052
Processor 1

t
IEECVOCX

Open/Close
Support

IEECVCTR IEECVPMl

Router 1052/printer
Processor 2

1 1
IEECVPMC IEECVPMP

Unit Record Unit Record
Input Processor Output Processor

1 1
IEECVOCC IEECVOCP

Open/Close Open/Clase
Support Support

"

Interruption Supervision I Communication Task Resident

I
I

WTO or WTOR SVC 35 I
I

IEAQSCOO I IGCOOO3E IGC0103E

IEAQNUOO I IEENVWTO IEEVWTOR
I

SVC FLIH I Buffer Mgmt (Post Prepare for Reply
Com Task ECB)

I
I I

!
IGC0603E

IEECVMLl

MLWTO
load 1

IGC0703E

IEECVML2

MLWTO
load 2

IGCOB03E

IEAODS IEECVML4

Dispatcher '\ I
MLWTO ./ I load 3

I
I IEECVCTW
I

IEECVCTB IEECUCM
I
I Wait Routine (Wait ------- Unit Control

I on ECBs in UCM) Module

I
1..-------- r--------------------Nonresident (SVC 72)

IEECVCTR

Router r----- -------
I
I

IEECVPM I SVC 34
I

Device I Command
Processor I Processing

I
I

IEECVOC I

Open/Close
I
I Support

Figure 7-2. Console Support: Output

Section 7: Console Communications and System Log 149

REPLY PROCESSING

The WTOR macro instruction causes a mes
sage to the operator to be written on a
console device, and permits a reply from
the operator to be returned to the request
ing routine. A WAIT macro instruction is
also issued by the requester, specifying
the ECB address contained in the WTOR macro
instruction. When the operator enters his
reply on a console device, the reply is
placed in a buffer in the requester's
region, and the specified ECB, also in the
requester's region, is posted.

An operator reply is processed by the
communications task Reply Processor routine
(IEE1203D). The routine is entered when a
reply is received, or when the Rollin Reply
Processing routine (RSTRQE) restarts
replies that were deferred during rollout
of a job step. (See "Freeing One or More
Borrowed Regions Through Rollin" in Section
5, "l4ain Storage Supervision.")

The Reply Processor routine first edits
the reply for proper format and length,
then finds the reply queue element that
represents the specified reply. subsequent
processing depends on whether the job step
for which the reply was issued is currently
rolled or swapped out.

If the job step is currently rolled or
swapped out (RQERO flag set), the Reply
Processor routine invokes the GETMAIN rou
tine to obtain 144 bytes from the system
queue area. This space provides a tem
porary buffer in which the Reply Processor
routine saves the reply until the job step
is rolled in. The address of the temporary
buffer, provided by the GETMAIN routine in
register 1, is stored in the RQEXB field of
the reply queue element. The Reply Proces
sor routine then moves the current reply to
the temporary buffer. Since further reply
processing is not possible while the job
step is rolled out, the routine returns
control to the highest priority ready task,
via the Exit routine and the Dispatcher.

If the job step is not currently rolled
out (RQERO flag not set), the Reply Proces
sor routine examines the RQEXB (" temporary
buffer") pointer in the reply queue ele
ment. (In the program listing this pointer
is called the "purging message address.")
If the RQEXB pointer is zero, there is no
temporary buffer. This means either that
the reply was not received during a pre
vious period when the job step was rolled
out, or that the job step was not rolled
out. In this case, the routine moves the
reply from the system buffer to the user's
buffer. It then returns control to the
routine's main line to complete the pro
cessing of the reply. If, however, the

150

RQEXB pointer is not zero, there is a tem
porary buffer in which the routine placed a
reply during a previous period when the job
step was rolled out. In this case, the
routine moves the reply from the temporary
buffer to the user's buffer, then clears
the pointer to the temporary buffer, and
invokes the FREEMAIN routine to free the
buffer's space. It then returns control to
the routine's main line to complete the
processing of the reply.

The Reply Processor routine completes
the processing of the reply by:

• Removing the reply queue element from
the reply queue and freeing its storage
space.

• Returning (queuing) the reply identifi
cation to the identification assignment
pattern (UCMRPYI) in the unit control
module. The reply identification is
then available for reuse when a new
WTOR macro instruction is issued.

• Decreasing by one the RPQE count in the
unit control module. This count indi
cates the number of reply buffers that
are in use.

• Invoking the Post routine to post the
message-issuing routine's ECB.

• Returning control to the highest
priority ready task, via the Exit rou
tine and the Dispatcher.

TSO Processing: When the time sharing
option is included in the system, the Reply
Processor routine determines from the RQET
JIDO and RQETJIDl fields if the user who
issued the WTOR macro instruction is in
main storage. If not, a TSEVENT macro
instruction with the USERRDY operand is
issued to inform the time sharing driver
that this user is to be brought into main
storage (swapped-in).

MULTIPLE-LINE WRITE TO OPERATOR ROUTINES

Multiple-line Write to Operator (MLWTO)
routines process multiple-line WTO requests
by building write queue elements (WQEs).
When all write queue elements have been
built, the WTO ECB in the UCM is posted and
control is returned to the calling routine.

Multiple-Line Write to operator, Load 1

Multiple-line Write to Operator, Load 1
(IGC0603E) is entered from the Write-to
Operator routine (IEENVWTO) to process
multiple-line WTO requests. IGC0603E
builds the major WQE for the multiple-line

WTO. Upon initial entry, the routine
determines if the entry has been made to
add additional lines to an existing WTO.
If so, the major WQE has already been
built, and control passes to Load 2
(IGC0703E) •

If IGC0603E is entered to build a major
WQE, the first line passed is checked to
enSure that it is within the user's
storage. The number of lines passed is
also resolved; this number determines the
setting of the line number field in the
WQE:

Number of lines passed
Zero or less
Greater than 10 for a

problem program
Greater than 255 for a

supervisor mode or
protect key 0 program

Line number
field in WQE

1

10

1

If no error conditions are found,
IGC0603E attempts to obtain buffer space
for the major WQE. If space is not avail
able, and the routine issuing the ML'i-1TO
request is (1) the communications task, (2)
the Damage Assessment routine (DAR), or (3)
a system interruption request block (SIRB),
buffer space innmain storage is immediately
obtained by the GETMAIN macro instruction.
otherwise, IGC0603E issues an ENQ macro
instruction and then a WAIT macro instruc
tion, specifying the WQE message buffer
request ECB in the UCM. When a buffer
becomes available, it is obtained by means
of a GETMAIN macro instruction.

When the buffer has been obtained, the
text fields are filled in, and exit is made
to Load 3 (IGC0803E).

Multiple-Line Write to Operator, Load 2

Multiple-line Write to Operator, Load 2
(IGC0703E) is entered to build minor WQEs.
Upon entry, IGC0703E checks for available
buffer space for the minor WQE. If none is
available, and the routine issuing the
MLWTO request is the communications task,
DAR, or an SIRE, a GET~AIN macro instruc
tion is issued immediately for the required
main storage. Otherwise, IGC0703E issues
an ENQ macro instruction and a WAIT macro
instruction, specifying the WQE buffer
request ECB in the UCM.

When a buffer is obtained, the text
fields are filled in. If more lines remain
to be written out, processing continues.
When the end line is reached and all lines
have been placed on the system output
queue, IGC0703E posts the WTO ECB and exits
to the calling routine.

Multiple-Line Write to Operator, Load 3

Multiple-line Write to Operator, Load 3
(IGC0803E) completes building the major
WQE. Upon entry, IGC0803E stores the MLWTO
identification number in the appropriate
areas of the major WQE. If there are minor
WQES to be built, or if additional lines
are to be added to an existing WTO requir
ing minor WQES, control passes to Load 2
(IGC0703E). Otherwise, the WTO ECB in the
UCM is posted and exit is made to the cal
ling routine.

WRITE TO PROGRAMMER PROCESSING

An extension of the WTO/WTOR function
allows the system to communicate with the
programmer instead of, or in addition to,
the operator. When a WTO or WTOR macro
instruction is coded with the ROUTCDE=ll
parameter, the message is written to the
system message class output data set. The
message may also be written to the console,
depending upon other conditions. For a
detailed explanation, refer to the MVT Job
Management PLM.

SUPPORTING MULTIPLE CONSOLE COMMUNICATIONS

The Multiple Console Support (MCS) rou
tines handle I/O for up to 32 system opera
tor consoles. Input results from an atten
tion (I/O interruption) from an active con
sole. Output results from a WTO(R) macro
instruction being issued in a problem pro
gram or in a system task. MCS also handles
external interruptions from the operator
control panel, I/O complete conditions,
Delete Operator Message (DOM) macro
instructions, console switching, and system
and console output queue management.

As in systems without MCS, control is
routed by the External First-Level Inter
ruption Handler for external interruptions,
and by the I/O First-Level Interruption
Handler for console device attentions and
I/O complete interruptions (see Figure
7-3). WTO(R) and DOM macro instructions
are handled by SVC 35 and SVC 87 respec
tively. The routing results in the posting
of one of the 4 ECBs (external, attention,
WTO(R), DOM) in the Unit Control Module
(UCM), or the posting of one of the I/O
ECBs pointed to by the event indication
list (ElL) within the UCM. The communica
tions task TCB, created within the nucleus
at system generation, is then indicated as
ready. The dispatcher passes control to
the communications task when its TeB is the
highest priority TCB on the queue.

Section 7: Console Communications and System Log 151

EXTERNAL) I/O SVC 35
n errup Ion

IEECVML3 (ATTENTION
INTERRUPT INTERRUPT WTO(R) Handling INTERRUPT

I t IGC0603E

r- MLWTO

IEAQEXOO IEAQIOOO
LOAD I IEAQIOOO

IEAQNUOO IEAQNUOO IEEMVWTO IEEVWTOR IEAQNUOO
IGC0703E

EXTERNAL FLIH I/o FLIH POST WTO ECB
XCTL I/o FliH IEECVML5

I I MLWTO
LOAD 2

IEECVCR.X (SVC 87 DOM IEECVCRA
IGC0803E

POST
POST EXTERNAL ECB IEECVML6 ATTENTION

IEECXDOM
ECB

POST WTO
ECB

POST DOM ECB

---------- --------------------
Dispatcher

IEAODS

DISPATCH HIGHEST
PRIORITY JOB

----------- ---------------------
Resident Communications Task

IEECVINT IEECMQWR IEECVUCM

COMMUNICATIONS WAIT ON ECB, UNIT
TASK ROUTE TO CONTROL
INITIALIZATION MODULES MODULE

l
IEECMDOM IEEC2740 IEECMDSV IEECMWSV

MARK 2740 CONSOlE PUT WQfs
MESSAGES FOR PROCESSOR I- DEVICE l- ON CONSOlE
DELETION INTERFACE OUTPUT QUEUE

----------- -------------------
SVC 72 Nonresident Communications Task

IEECMCTR

MINI ROUTER

XCTL

f I
IEECMPMI IEECMPM IGC5107B IEECLCTX IEECMCTX IEECMWTL

1052 NONGRAPHIC DIDOCS
SWITCH TO

XC~
ISSUE WRITE NIP

PROCESSOR - CONSOLE f-r ALTERNATE INDICATIVE MESSAGE
2 PROCESSOR

PROCESSOR CONSOlE MESSAGES BUFFER

lXCTL I XCTL XCTL lXCTl
IEECVOC IEECOCTX IEECNCTX

DIDOCS
SWITCH ADJUST NONGRAPHIC ROUTINES

CONSOLE HARD COPY CONSOLE
OPEN/CLOSE LOG OUTPUT QUEUE

I I I

RETURN
/

Figure 7-3. Communication Task with MCS

152

In addition to the ECBs and the pointer
to the ElL, the UCM also contains pointers
to the system output queue, the reply queue
elements, and the UCM entries (see Figure
7-4). At system generation, a UCM entry is
constructed for each console device speci
fied by the SCHEDULR and SECONSLE macro
instructions (a composite console has 2 UCM
entries). Each UCM entry contains pointers
to the processor module for that device, to
the console output queue, and to the
alternate console, and contains the rQuting
codes and command authority codes assigned
to the device. The console output queue is
a series of pointers to selected WQEs on
the system output queue. The first byte of
each pointer contains indicators reflecting
the status of the corresponding WQE in
relation to the device.

The communications task for MCS consists
of 8 modules in the nucleus, the Console
switch, Mini-Router, and NIP Message Buffer
writer modules in the SVCLIB, and the
Graphic Console Initialization module in
the LINKLIB. These modules are:

o Console Initialization Module (IEEC
VINT), which is loaded by the Master
Scheduler, initializes the console
configuration.

o Graphic Console Initialization Module
(IEECVGCI), which initializes the dis
play console configuration.

• unit Control Module (IEECVUCM), which
is a non-executable module containing
pointers and indicators. This is the
primary control table for console
communica tions.

o Router Module (IEECMQWR), which
receives control when the communica
tions task is entered. It passes con
trol to the service modules for ECB
po stings and for queue management.

• Console Switch Modules (IEECLCTX,
IEECMCTX, IEECNCTX, IEECOCTX), which
switch consoles as a result of an ex
ternal interruption, an unrecoverable
I/O error, or a VARY command.

• Device Interface Module (IEECMDSV),
which passes control to appropriate
device support routines when there is
I/O to be performed, or consolidates
system and console output queues.

• WTO(R) Service Module (IEECMWSV), which
queues WQES to appropriate console out
put queues.

• DOM Service Module (IEECMDOM), which
marks specified operator messages as

deletable from CRT (Cathode Ray Tube)
consoles only.

• Mini-Router Module (IEECMCTR), which
passes control from the resident com
munications task module to the appro
priate nonresident communications task
modules.

• NIP Message Buffer Writer Module
(IEECMWTL), which writes messages from
the buffer created by the Nucleus
Initialization program.

• Attention Handler Module (IEECVCRA),
whiCh receives control from the I/O
Interrupt Handler to post the attention
ECB.

• External Interruption Handler
(IEECVCRX), which receives control from
the External First-Level Interruption
Handler to post the external ECB.

The following paragraphs describe the
executable communications task modules.
Unless otherwise stated, all returns are to
the calling routine or module.

Console Initialization Module (IEECVINT)

The Console Initialization module is
loaded by the Master Scheduler to initia
lize the operator consoles. If the hard
copy log is a console, the NIP Message
Buffer ECB in the UCM is posted. If the
hard copy log is SYSLOG, the ECB posting is
bypassed, permitting the System Log Initia
lization routine to print the buffer. The
.Console Initialization module then searches
the UCM, changing the UCB name of each
device to an address and setting the open
pending flag. If an address cannot be
determined for a UCB name, a message is
issued to the master console and the search
continues with the next UCB name. The con
sole performing the IPL was assigned as the
master console by NIP, and the Console
Initialization routine only prepares secon
dary consoles. A message is written to
each MCS console advising the operator of
its unit address, its alternate's address,
its console identification number, its dis
play area configuration, its command code
and routing code authorization, its status
(active or inactive), and whether it is the
master console, a secondary console, or the
hard copy log. If the system includes dis
play consoles, control passes to the Graph
ic Console Initialization Module (IEECVG
CI). Upon return fronl IEECVGCI, the Con
sole Initialization module returns control
to the Master Scheduler IPL routine.

Section 7: Console Communications and System Log 153

UCM Entry Map

+36
Output Queue pointer

1',

'
" "

UCM

+ 24 First WQE pointer

+ 60 Last WQE pointer

"" ~----~ ~----------------~
UCM Entry

",,'

System Output Queue
- WQE

,----+----1 use ct.
.' ",,'

,,""
WQE

+196 Pointer to last queue ~
entry selViced "

~------------------~~'

Console Output Queue
(s i x 4-byte entri es) - 02 WQE pointer

02 WQE pointer

02 WQE pointer

01 WQE pointer

01 WQE pointer

CO Poi nter to next block

,,' ",,'

,," ,," ,," " "" ,,"
Flags:

X'OO' - Null entry
X'OI' - Message to be displayed
X'02' - Message to be purged
X'04' - Multiple-line message
X'08' - Multiple-line message queued for hard copy

~

X'lO' - Processor should start with first minor WQE for MLWTO
X'8l' -
X'82' -
X'85' -
X'86' -
X'80' -
X'8E' -
X'95' -
X'90' - J

End of queue

X'CO' - Pointer to next block

Figure 7-4. System and Console Output Queues

154

~----+---------------,

r--~---~ WQE WQE
use ct. _,
~--~----~------~

L..-__ ~ WQE

use ct.

01

01

01

00

01

CO

... 01

01

81

00

00

CO

WQE pointer

/

" /
\

Next Block pointer -

WQE pointer

WQE pointer

WQE pointer

Zero

Zero

Zero

Graphic Console Initialization Module
(IEECVGCr>

The Graphic Console Initialization
module is entered from the Console Initia
lization Module when that r9utine deter
mines that console initialization is
required for one or more display consoles.
IEECVGCI first searches for a UCM repre
senting a display console. If none are
found, control is returned to the Console
Initialization routine. If one is found,
the routine issues a LOCATE macro instruc
tion to search for SYS1.DCMLIB. When SYS1.
DCMLIB is found, the routine issues an OPEN
macro to open SYS1.DCMLIB. If either the
LOCATE or the OPEN fail, an error message
is written to the operator's console, and
one console in each transient group is made
resident (the console whose TDCM was ini
tially placed in the transient area). If
SYS1.DCMLIB is successfully opened, IEECVG
CI attempts to read a copy of the PFK
definitions for each console into main
storaqe. If the read is unsuccessful, a
message is issued to the operator. When
all display consoles in the system have
been initialized, control returns to the
Console Initialization Module.

Mini-Router Module (IEECMCTR)

This module is entered as a result of an
SVC 72 instruction issued by a resident
communications task routine. An SVRB is
created as a result of the SVC instruction
for the execution of this module and the
other nonresident communications task and
device processor modules. IEECMCTR issues
an XCTL macro instruction to pass control
to the appropriate device processor module.

Router Module (IEECMQWR)

The Router module contains a WAIT macro
instruction and a series of ECB and status
tests in the following order:

1. RMS Processing

2. External Interruption

3. Attention Interruption

4. I/O completion Interruption

5. Output Processing

6. WTQ(R) Processing

7. Queue Management

8. DOM Processing

9. NIP Message Buffer Writing

When one of the ECBs specified by the
WAIT macro instruction is posted, the com-

rounications task becomes a ready task. On
becoming an active task, the Router module
determines the service needed and passes
control to the appropriate module to pro
cess the interruption. When control
returns, the Router module retests all ECBs
and status indicators that may have changed
while the first interruption was being pro
cessed. To allow for the servicing of
higher-level interruptions, output process
ing returns to the Router after each con
sole output queue is processed (see
IEECMDSV below). When no further process
ing can be done, the WAIT macro instruction
is re-issued and control returns to the
dis pat ch er •

Console Switch Modules (IEECLCTX, IEECMCTX,
IEECNCTX, IEECOCTX)

These modules receive control from:

• Router module to switch master consoles
as a result of an external interrup
tion.

• Device support routines to switch to
the alternate console when there is an
unrecoverable I/O error on a console.

o SVC 34 to switch to the alternate of
the master console as a result of a
VARY MSTCONS command.

• IEECMDSV to switch the hard copy func
tion from the SYSLOG to the master con
sole when SYSLOG is inoperative.

IEECLCTX uses the parameter list passed
by the calling routine to determine the
type of function required (see Figure 7-5).
If entered because of a VARY MSTCONS com
mand, IEECLCTX adds the routing and command
codes of the master console to those of its
alternate. IEECLCTX passes control to IEE
COCTX if the master console was the hard
copy log and its alternate is a graphic
console. Otherwise, control is passed to
IEECMCTX to issue indicative messages.

If IEECLCTX was entered because of hard
copy failure on SYSLOG, control is passed
to IEECOCTX.

If IEECLCTX was entered because of an
external interruption or for a failing con
sole, the routing and command codes of the
master or failing console are added to
those of its alternate. If the new console
is a graphics console and the old console
was also the hard copy log, control is
passed to IEECOCTX. Otilerwise, for a suc
cessful console switch, control is passed
to IEECMCTX.

Section 7: Console Communications and System Log 155

r--------------------------------------,
o I I

I I
I I
~--------------------------------------~

8 I I
I Name of Console Switch Routine I
~-------T------------------------------~

16 I I I
I Flags I UCM entry address of failing I
I I console, or New master UCM I
I I entry address (VARY MSTCONS> I
~-------~------------------------------~

20 I I
I UCM entry of issuing console, or I
I zero (for VARY MSTCONS) I L ______________________________________ J

Flags: X'80' - Reserved
X, 40' - Reserved
X'20' - Reserved
X' 10' - Reserved
X'08' - VARY MSTCONS command
X'04' - External interruption
X' 02' - Switch hard copy from

SYSLOG to master console
X' 01' - Reserved
X'OO' - Console switch

Figure 7-5. Console Switch Parameter List

If the alternate of a failing console is
a graphics console in output-only status,
IEECLCTX may force a status switch so that
the alternate can handle the functions of
the failing console.

If a primary console does not have an
active alternate, the routing and command
codes are added to those of the master con
sole. If the master console does not have
an active alternate, a message is issued to
all active consoles requesting a VARY
,STCONS command from any console. If there
are no active consoles and a console device
is included that has an audible alarm, an
OPEN macro instruction is issued for the
device and the alarm is sounded three
times. For all cases where a console
switch cannot be successfully made,
IEECLCTX returns control to the calling
routine.

IEECMCTX constructs two messages to ind
icate to the operator that a console switch
has occurred and the attributes of the new
console. IEECMWSV is used to queue the
WQEs to the console output queue of the new
console. IEECMCTX passes control to
IEECNCTX to adjust the output queues of the
new console.

IEECNCTX places the WQES that were on
the output queue of the old console on the
console output queue of the new console,
deleting duplicate messages. If the WQE
represents a system status display, the WQE

156

is deleted. Multiple-line WTO messages,
other than status displays, are passed to
the new console if the end line of the mes
sage is on the old console's message queue
at the time of the console switch. The
close pending indicator is set and the
device busy flag is set off in the UCM
entry of the old console, and IERCNCTX
returns control to the calling routine.

IEECOCTX switches tlre hard copy log to
the alternate of a new console when the new
console is a graphic device and the old
console was performing the hard copy func
tion. If the alternate console is also a
graphics device, IEECOCTX searches all
active consoles starting with the master
console for an active, nongraphic device.
If none is found, the master console is
specified as the hard copy device. When
the hard copy log has been assigned to a
console, a message indicating this is
placed on the console output queue of that
console, the WQEs for the hard copy log are
placed on the console output queue. IEE
COCTX passes control to IEECMCTX. If the
WQE represents a system status display, the
WQE is deleted. Multiple-line WTO mes
sages, other than status displays, are
passed to the new console if the end line
of the message is on the old condole's mes
sage queue at the time of the console
switch.

IEECOCTX also switches the hard copy log
from SYSLOG to the master console when
there is a SYSLOG failure. If the master
console is a graphic console, IEECOCTX
searches for an active, nongraphic device
as previously described, but does not
requeue WQES, and returns control to the
calling routine instead of IEECMCTX.

Device Interface Module (IEECMDSV)

This module consists of 4 subroutines
that control the interface with the device
support processor routines and manage the
output queues for the devices. It receives
control from the Router module when an
attention or I/O ECB has been posted, when
it has been processing output and there is
more output to process (see DEVSERVA), or
when an output queue needs consolidating.
It also receives control from the WTO(R)
processing routine IEECMWSV when there is
output to be processed.

DEVSERVB receives control when an atten
tion or I/O ECB has been posted. After
satisfactorily testing console conditions,
control is passed to DEVSERV to interface
with the appropriate device support
routine.

DEVSERVA receives control when there is
more output to be processed. When it is
first entered, it searches from the first

UCM entry for a UCM entry of an active con
sole whose output queue can be processed.
When it is subsequently entered from the
Router, the search starts with the next
entry after the last UCM entry processed.
The search ends when an output queue is
found that can be processed, or when the
last UCM entry has been inspected. If an
output queue is found, control is passed to
DEVSERVA to interface with the appropriate
device support routine.

Note: Because one WQE may be placed on
several device output queues, and because
DEVSERVA handles only one UCM entry each
time it is entered, DEVSERVA may be re
entered from the Router module to finish
processing output queues. DEVSERVA must
return to the Router after processing each
output queue to allow for the servicing of
the higher priority external, attention,
and I/O ECBs which may have been posted
while DEVSERVA was processing.

DEVSERV is entered from DEVSERVA or
DEVSERVB to branch to the appropriate
device support routine. Upon return, if
entries on the console output queue have
been processed and marked as no longer
needed, control is passed to the DEQ
subroutine.

DEQ receives control when DEVSERV or
CLEANUP need console output queues ser
viced. DEQ inspects the console output
queue for WQE pointers marked as no longer
needed. Each WQE pointer so flagged is
marked as a null entry and the use count of
the WQE is decremented by one. If this
decrementing results in the use count
reaching zero (all specified consoles have
received the message), and DEQ determines
that the message is to go to hard copy,
control is passed to IEECMQCN (in IEECMWSV)
to put the WQE pointer on the hard copy
device'S output queue, or a WTL is issued
to SYSLOG. If the message is not to go to
hard copy and there is no reply queue ele
ment associated with the WQE, the WQE is
freed or marked as available. If a major
WQE, representing a multiple-line WTO, is
flagged as having one of its related minor
WQEs with a use count of zero (which indi
cates that the minor WQE's message has been
passed to all consoles), the remainder of
the WQE chain is searched, and the storage
of any available minor WQEs is returned to
the system. If a major WQE is flagged as
no longer needed, the entire major/minor
chain is returned to the system. Return is
made when the last WQE pointer on the con
sole output queue has been examined.

CLEANUP receives control when system
output queues need consolidation. It
examines each WQE on the system output
queue and control is passed to DEQ for each
WQE that has been serviced and is to be

sent to hard copy. If it isn't to be sent
to hard copy, DEQ frees the WQE. Control
returns to CLEANUP to process all WQEs on
the system output queue.

Multiple-Line Write to Operator Routines
(MCS)

Multiple-Line Write to Operator (MLWTO)
routines process multiple-line WTO requests
in systems with multiple console support
(MCS).

Multiple-Line Write to Operator, Load 1

Multiple-Line Write to Operator, Load 1
(IGC0603E) is entered when the Write-to
Operator routine (IEEMVWTO) determines that
a multiple-line WTO request has been
entered. IGC0603E builds a major WQE for a
lo1LWTO request.

Upon entry, IGC0603E checks if a major
WQE already exists for the request. If so,
the request is to build a minor WQE, and
control passes to Load 2 (IGC0703E) to con
nect minor WQES to the existing major WQE.

If the request is to build a major WQE,
IGC0603E attempts to obtain WQE buffer
space in main storage for t~e major WQE.
If space is not available, and the MLWTO
request is from the communications task,
DAR, or an SIRB, and ENQ macro instruction
and a WAIT macro instruction are issued
upon the WQE ECB. When buffer space has
been obtained, the text fields are filled
in. Control then passes to Load 2.

Multiple-Line Write to Operator, Load 2

Multiple-Line Write to Operator, Load 2
(IGC0703E) completes processing of the
major WQE and begins processing of the
minor WQES. If entry is to complete a
major WQE, the MCS and hard copy fields of
the major WQE are filled in. If no minor
WQES are to be chained to the major WQE,
control is passed to Load 3 (IGC0803E) to
chain the major WQE to the system output
queue.

If entry is made to connect minor WQEs
to a major WQE, or if, upon completion of a
major WQE, minor WQEs are ready to be con
nected to it, buffer space for the minor
WQEs is obtained in the same way as for a
major WQE. On subsequent entries to build
minor WQEs, a check is made to determine if
any minor WQEs previously connected to the
major WQE have become available for re-use
by having been written to all the consoles
required by their routing indicators. If
so, the buffer space obtained earlier is
re-used for another minor WQE.

section 7: Console Communications and System Log 157

As each minor WQE is completed, control
passes to Load 3 to chain the MLWTO request
to the system output queue.

Multiple-Line Write to Operator, Load 3

Multiple-Line Write to operator, Load 3
(IGC0803E) is entered to chain MLWTO
requests to the system output queue. If a
major WQE is to be chained, the MLWTO iden
tification number is placed in the appro
priate areas of the major WQE.

If entry is to chain mainor WQEs to the
major WQE, the minor WQEs are chained and
appropriate use count information is moved
into them from the major WQE. When there
are additional minor WQES to be processed,
control is returned to Load 2 (IGC0703E).
Otherwise, control passes to Load 4
(IGC0903E) •

Multiple-Line Write to Operator, Load 4

Multiple-Line Write to operator, Load 4
(IGC0903E) receives control from Load 3
(IGC0803E). IGC0903E dequeues the WQE from
the WTO resource if necessary. It then
sets the appropriate return code in regist
er 15 and returns control to the routine
that issued the MLWTO request.

WTO(R) Service Module (IEECMWSV)

This module gains control from the Rout
er when the WTO ECB is posted. WQES that
have been queued to the system output queue
and have not been serviced by this routine
are processed at this time. If a user exit
routine is provided, a parameter list con
taining the text, routing codes, and
descriptor codes is passed to it. If the
routing codes have not been modified or
suppressed, if the WQE is for a WTOR, or if
there is no user exit routine, control is
passed to the subroutine IEECMENQ which
compares routine codes, IDs, and hardcopy
requirements, and places the WQE on the
appropriate console output queues. If the
WQE represents a multiple-line WTO, the
routine sets an output-pending flag in the
console to which the request has been
queued. When all WQEs have been examined,
control passes to IEECMDSV (DEVSERVA) to
initiate output queue processing. Upon
return, control is returned to the Router.

DOM Service Module (IEECMDOM)

This module gains control from the Rout
er when the DOM ECB is posted (by the DOM
macro instruction being issued in a problem
program or system task). It may also be
entered directly from the system purge rou
tine (IEECMED2) at the end of a job step.
When entered from the Router, message IDs
in the DOM element list are compared with
the WQEs on the system output queue. The

158

matching WQEs are marked for deletion
unless the WQE is to go only to hard copy,
or unless the WTOR has not been replied to.
If a Model 85 Operator Console is active,
control passes to the processor routine for
that device for deleting messages from the
console screen. Upon return, the DOM ele
ment list is freed by a FREEMAIN macro
instruction and the DOM ECB is cleared.
Note that at job step end for TSO tasks,
messages will not be marked for deletion.
They must be specifically removed by the
operator.

When entered from the system purge rou
tines, IEECMDOM compares WQEs with a pro
tect key. A request for purge of protec
tion key zero in ignored. Those that match
are marked for deletion unless they are to
go only to hard copy. If any graphic con
soles exist, the messages in each device's
Display Control Module are similarly com-
Fared and marked for deletion.

NIP l-Iessage Buffer Writerl40dule (IEECMWTL)

This module issues an SVC 36 if the SYS
LOG has teen specified as the hard copy log
and has been initialized. Otherwise, an
SVC 35 is issued to write the NIP messages
to the opera tor.

REPLY PROCESSING

MCS reply processing, a function of SVC
34, differs from non-MCS reply processing
in that when a WTOR is issued to more than
one console, a reply is accepted from any
console that received the WTOR. The first
reply accepted is broadcast to all consoles
that received the WTOR.

CONSOLE SUPPORT

Console support is part of the communi
cations Task. The following modifications
are made to the Communications Task:

• Pointer to the console support proces
sor.is added to the UCM Entry for the
2740 only.

• Pointer to the master DCM is added to
the UCM Entry for every CRT console.

UNIT CONTROL MODULE

The Unit Control Module (UCM) is the
primary control table for console communi
cation. It is a non-executable module con
taining ECBs used in the WAIT/POST
mechanism in the Write-to-operator and Con
sole Support routines.

Communi cati ons Task

IEECMDSV IEECLCTX

Route to Console Console ---
Support Routines Switch

t l
------------ ---- -- -- - -T--1--- -- ---- ----
Console Support

I
IGCOI07B IGC0107B IGC0207B I IEEC2740 BTAM Modules

XCTL I- IGG019MA r-- 1052 -- 1052 2740 OPEN/CLOSE
PROCESSOR PROCESSOR

I
PROCESSOR I- IGG019MB

1 2 I IGG019MO

t 1 I
I

SVC 34 I
I

COMMAND I PROCESSOR

1052 2740

Figure 7-6. 1052 and 2740 Console Support Routines with MCS

CONSOLE SUPPORT ROUTINES

This section describes the logic flow of
the support routines for the IBN 1052
Printer-Keyboard, the IBM 1403, 1443, 3284,
3286, and 3211 Printers, the IBM 2540 Card
Read Punch, and the IBM 2740 communications
Terminal Model 1. The 1052, 1403/1443, and
2540 may operate with O.t" without Multiple
Console Support CHCS). Changes to module
operation resulting from the inclusion of
MCS are noted. The 2740, 3284, and 3286
are available only in systems that include
MCS (See Figure 7-6).

1,0'52 Console Support Routines (MCS
optional)

The console support routines for the IBM
1052 Printer-Keyboard perform Read, Write,

Open, and close functions, as well as buff
er management.

g 1052 Console Processor 1 (IEECVPMX):
Provides I/O buffer management and con
structs channel programs to perform
read and write operations in systems
wi thout MC§.

• 1052 Console Processor 1 (IEECMPMX):
Contains MCS modifications to IEECVPMX
processing. IEECMPMX does not perform
tuffer management. This function is
performed by IEECMDSV and IEECMWSV •

• 1052 Console Processor 2 (IEECMPM1):
Provides the processing necessary to
present multiple-line WTO messages,
including system status displays, on
the 1052 operator console and printer

Section 7: Console Communications and System Log 159

consoles in systems with MCS. It also
rings the audible alarm on the 1052
when a permanent I/O error occurs.

• 1052 Open/Close routine (IEECVOCX):
Provides open and close functions for
the console device.

Printer Device Support Routines

The device support routines for printers
are similar to those for the 1052 in that
they provide Write, Open, and Close func
tions, and buffer management.

• Printer Processor (IEECVPMP): Provides
I/O buffer management and issues a
WRITE macro instruction to write to the
printer. This routine operates in sys
tems without MCS.

• Printer Processor (IEECMPMP): Contains
MCS modifications to IEECVPMP proces
sing. This routine does not perform
buffer management.

• 1052/Printer Processor 2 (IEECVPM1):
Processes multiple-line WTOs for 1052
Printer-Keyboards and printer consoles
in systems without MCS.

• Printer open/Close routine (IEECVOCP):
Provides open and close functions for
the console device.

Card Reader Device Support Routines

The device support routines for the card
reader are similar to those for the 1052 in
that they provide Read, Open, and Close
fUnctions and buffer management.

• Card Reader Processor (IEECVPMC): Pro
vides I/O buffer management and issues
a READ macro instruction to bring input
from the card reader into a WQE in sys
tems without MCS.

• Card Reader Processor (IEECMPMC): Con
tains MCS modifications to IEECVPMC
processing. This module does not per
form buffer management.

• Card Reader Open/Close Module (IEEC
VOCC): Provides open and close func
tions for the console device.

2740 Console Support Routines (MCS Only)

The 2740 Processor routine (IEEC2740) is
created at System Generation by the macro
SGIHBOOO. It performs OPEN and CLOSE func
tions. The READ and WRITE functions are
performed by the following unchanged BTAM
modules:

• IGG019MA, BTAM Read/Write routine

160

• IGG019MB, BTAM Channel End and Abnormal
End appendages

• IGG019MO. BTAM Device I/O module (table
used by IGG019MA)

OPEN is performed when the open pending
flag in the Unit Control Module (UCM) entry
is on and the UCM entry is not already
open. A LOAD is issued to obtain the
addresses of the BTAM modules. The address
of the 2740 ECB is placed in the UCM entry
and Event Indication List. The DEB is
initialized from the Communication Task
TCB. and placed at the head of the TCB DEB
queue. The Appendage Vector Table is
initialized. and the line to the 2740 is
initialized via the LOPEN macro instruc
tion. The open flag of the DCB and UCM
entry is turned on. and the open pending
flag is turned off.

CLOSE is performed when the close pend
ing flag in the UCM entry is on. the output
queue is empty, and the console is not
busy. The address of the ECB in the event
indication list is replaced with the
address of the UCM entry. The address of
the ECB in the UCM entry is zeroed. The
DEB is removed from the TCB DEB queue. The
UCB is set to indicate that it can be allo
cated. A DELETE macro instruction is
issued on the BTAM modules. The active
flags in the UCM entry and the control
blocks are set to indicate that the device
is closed.

READ is performed when the 2740 is not
busy and a message has been sent to the
terminal, or a READ I/O complete has been
successfully processed and the output queue
is empty. The BTAM module, IGG019MA is
given control to perform this function.
and, if the READ is successful, the busy
flag is set in the UCM entry.

WRITE is performed when the output pend
ing flag in the UCM entry is set, the 2740
is not busy, and the output queue is not
empty. WQE pointers on the console output
queue are examined. When a WQE is found
that can be written, control is passed to
the BTAM module, IGG019MA. If the WRITE is
successful, the busy flaq is set in the UCM
entry.

I/O complete conditions cause the busy
flag in the UCM entry to be turned off. If
the complete is for a successful READ, the
message text is translated from 2740 code
to EBCDIC and searched for backspace and
cancel codes. If the message is to be
ignored, control is passed to the BTAM
~odule, IGG019MA for another READ opera
tion. If the message is to be accepted, as
SVC 34 is issued so the Command Processor
routines of the Master Scheduler can pro
cess the REPLY command. Upon return from

the Master Scheduler, the processor
attempts to perform output if the 2740 is
not busy and there is output on the console
output queue. If the 2740 is busy, control
is returned to the Communications Task
module (IEECMDSV). If the I/O complete
condition is for a successful WRITE, the
WQE pointer on the console output queue is
marked as no longer needed, and control is
returned to IEECMDSV.

If a condition code of 0 is returned by
a BTAM module, the 2740 processor retries
the I/O operation, or passes control to the
Console Switch routine (IEECMCSW) in the
Communications Task.

3284/3286 Processor Routine (MCS Only)

The 3284/3286 Processor routine
(IGC5W07B) performs output operations for
3284 and 3286 Printers (Models 1 and 2),
that are used as hard-copy operator con
soles. When entered, IGC5W07B determines
the reason for entry and takes action as
follows:

• CLOSE request: The routine first com
pletes any output that is pending.
When all output is complete, the rou
tine issues a FREEMAIN macro instruc
tion to free the DCB and related con
trol blocks, clears the ECB address and
DCB address fields in the UCM, indi
cates in the UCM that the device is
closed, and returns control to the cal
ling rout ine •

" OPEN request: The routine issues a
GETMAIN macro instruction to obtain a
storage area for the DCB, DEB, lOB, and
the CCws. The routine then processes
the pending output (if any), and
returns control to the calling routine.

• output pending: The routine sets up
the message for output. For hard-copy
log messages, the routine adjusts the
text pointer and length to accommodate
the hard-copy time stamp. When the
message is ready for output, the rou
tine issues an EXCP macro instruction
to accomplish the I/O operation.

• I/O complete: The routine determines
if I/O was successful. If not, control
is passed to the Console switch, Load 1
routine (IEECLCTX) to process a console
switch, if necessary. If the I/O was
successful, the routine decrements the
minor use count (in the WQE) if appro
priate, and initiates I/O for any
remaining lines. If all of the I/O
required by the message is complete,

the routine dequeues the message and
returns control to the calling routine.

DEVICE INDEPENDENT DISPLAY OPERATOR CONSOLE
SUPPORT (DIDOCS) ROUTINES (OPTIONAL)

Device Independent Display Operator Con
sole Support (DIDOCS) support, also
referred to in this publication as Display
Console Support, provides uniform operator
console support for the following display
console devices:

• 2250 Display Unit, Models 1 or 3

• 2260 Display Station, Model 1 with 2848
Display Control, Model 3

• ~odel 85 CRT Display (Feature 5450)

• Model 165 Display Console

" Model 91 Displa}' Console

• Model 195* Display Console

• 3277 Display Console, Models 1 and 2

Note: The Model 91 and Model 195 Display
Consoles are functionally equivalent to
2250 Display unit, Modell.

The Display Console Support takes advan
tage of device-dependent features of each
display device (such as the use of the
light pen on the 2250 for message dele
tion). This section describes the logic
flow of the Display Console Support rou
tines (See Figure 7-7).

The Display Console Support routines
receive control from MCS when one of the
following events occurs for a display
console:

• An attention caused by the operator

• Console switching

• I/O completion

• A WTO, WTOR, or command

• A Delete Operator Messages (DOM)
request

• A Timer Interruption

• Status Display on the Queue

*The Model 195 applies to both System/360
and System/370 mOdels.

Section 7: Console Communications and System Log 161

COMMUNICATIONS
TASK

~
~ ~ l l

DIDOCS
2740 PROCESSOR 1052 1443
PROCESSOR (O-TRANSIENT DCM) PROCESSOR PROCESSOR

(l-RESIDENT DCM)

~
Open/Close Attention I/O Complete Inline K Command Out-of-Line DOM Timer Roll

Message on Queue Message Interrupt Needed
Output Output

MLWTO
TIMER

OPEN/CLOSE DISPLAY OUT -OF-LINE ROLL MODE
INTERFACE

INTERPRETER

Inline
MLWTO r::ROR

Display
MLWTO

MLWTO CONTROL
INLINE Control INTERFACE

NO INTERFACE

ASYNCHRONOUS K N,
ERROR

I/O PFK PFK
Needed Entry ROUTINE 2

Area
Read

DEVICE
COMMAND I-

DEPENDENT
I/O K S

OPTIONS

t I/o result
of LP or Message

Any module which Cursor Deletion
requires I/O Detect LIGHT PEN/ or

CURSOR Numbering
DELETE I-

PFK
Attention PFK

ROUTINE 1

From any Routme when a
message is to be written MESSAGE

ROUTINE

To either Processor
or I/O Routine

Figure 7-7. CRT Console Support (High Level)

The following routines comprise the Dis
play Console Support:

• DIDOCS Processor Routines (IGCS107B,
IGCSZ07B, IGC6107B, and IGC6Z07B) -
provide an interface between Display
Console Support and MCS. The Processor
routines receive control from MCS when
an operator or system request is
entered that requires processing by the
DIDOCS routines. If the console
involved in the request has a transient
DCM, Processor 0, Load 1 (IGC6107B)

162

receives control. Processor 0, Loads 1
and 2, (IGC6107B, IGC6207B) provide
transient DCM swapping support and per
manent program function keyboard (PFK)
update support, and then pass control
to Processor 1, Load 1 (IGCS107B) for
continued processing. Processor 1,
Load 1 receives control either from
Processor 0, or directly from MCS (when
the request involves a console that has
a resident DCM). Processor 1, Loads 1
and 2 (IGCS107B, IGC5Z07B) route con-

trol to other display console routines
as required to process the request.

• Open/Close routine (IGC5G07B) - opens
and closes display console device.

o 2250 I/O 1 and 2 routines (IGC5P07B,
IGC5Q07B) - handle input/output opera
tions for the 2250 Display Unit.

• 2260 I/O 1 and 2 routines (IGC5R07B,
IGC6R07B) - handle input/output opera
tions for the 2260 Display Station.

• 3277 I/O 1 and 2 routines (IGC5U07B,
IGC5V07B) - handle input/output opera
tions for the 3277 Display Console,
Models 1 and 2.

• Model 85 I/O routine (IGC5H07B) -
handles input/output operations for the
Model 85 CRT Display used as an opera
tor console, and the Model 165 Operator
Console.

o Asynchronous Error routine (IGC5C07B) -
initializes DCM on an OPEN; blanks the
screen and displays an appropriate
error message for the operator. If a
permanent error occurs, it passes con
trol to MCS for console switching.

o Message 1, 2 and 3 routines (IGC5D07B,
IGC5E01B, IGC6D01B) - contain all mes
sages used for Display Console Support.

o Display 1, 2 and 3 routines (IGC5201B,
IGC5301B, IGC6207B) - write all mes
sages from the Operating System to the
operator except those to be deleted and
status display messages and mark mes
sages according to their descriptor
codes.

o Roll Mode routine (IGC5J07B) - removes
messages from the screen at interval
specified by the operator.

o Command routine (IGC5407B) - analyzes
type of command in entry area and takes
appropriate action, or passes control
to another Display Console Support rou
tine for action.

• Options routine (IGC5A07B) - analyzes
CONTROL command entries specifying the
S operand to determine their legitima
cy. If legitimate, this routine
changes the screen options as requested
by the operator and routes control to
another Display Console Support routine
as required.

o Delete 1, 2, 3, and 4 routines
(IGC5607B, IGC5707B, IGC5807B,
IGC5907B) - erase answered WTOR mes
sages from the screen as well as mes
sages specified for deletion by the

operator (CONTROL command, light pen,
and cursor), or by the system (DOM
macro instruction).

• light Pen-Cursor Service routine
(IGC5F07B) - analyzes the type of func
tion indicated by light pen or cursor
operations and routes control to the
appropriate Display Console Support
routine.

o PFK 1 and 2 routines (IGC6A07B,
IGC6B07B) - analyze and enter corrmands
requested by the depression of a PFK
key or by light pen selection of a dis
played PFK key number. These routines
also process requests to define or
redefine the commands associated with
PFK keys.

o Multiple-Line Write to Operator rou
tines (IGC0603E, IGC0103E, IGC0803E,
IGC0903E) - process multiple-line WTO
requests by building the necessary
write queue element (WQE), and chaining
the MLWTO requests to the system output
queue.

o status Display Interface routines
(IGC6L07B, IGC6M01B, IGC6N07B, IGC-
6007B, IGC6P07B, IGC6Q07B, IGC6T07B) -
process inline and out-of-line MLWTOs,
and handle control of out-of-line
displays.

o Cleanup routine (IGC6G07B) - removes
status displays from the message
queues, and reinitializes the Screen
Area Control Blocks (SACBs).

o Timer Interpreter routine (IGC5K07B) -
analyzes timer intervals and passes
indicators to the Processor routine to
notify it as to which, if any, of the
display consoles are ready to be
rolled, assuming roll mode has been
specified for one or more consoles.

The following control blocks (including
content description) are used by Display
Console Support routines:

o Communication Task Extended Save Area
(CXSA) - transfer control block with
the address of the UCM entry. MCS
places the address of this control
tlock into Register 1 when it passes
control to the Display Console Support
routines.

o UCM entry - control area in Unit Con
trol Module (UCM) with the addresses of
a block of WQE pointers, UCB, DCM, and
I/O Blocks. The UCM entry provides
access to all information required by a
display.

Section 7: Console Communications and System Log 163

.-Write Queue Element (WQE) - messages on
the output queue to be written.

• Unit control Block (UCB> - attention
information.

• Display control Module (DCM) - console
screen and support interface
information.

• I/O Blocks - status of device.

• Storage Utilization Block (SUB) -- con
trol information used by DIDOCS, RMS
channel programs, and (if transient
DCMs or PFK definitions are included in
the system, direct access I/O informa
tion. There is only one SUB in the
system.

Each unit DCM is divided into two sec
tions: a resident section and a section
that mayor may not be resident, at the
user's option. The resident portion of the
DCM (the RDCM) contains screen control
information and the address of the main
storage area assigned to the optionally
transient portion of the DCM (the TDCM).
(If the optionally transient portion of the

DCM is actually transient, the main storage
area addressed by the RDCM may be used by
the transient DCMs of several consoles.)

The RDCM may also contain one or more
screen area control blocks (SACBS), which
contain information about each status dis
play area defined for the console's screen.

The optionally transient portion of the
DCM (the TDCM) contains two sections: the
device independent section and the device
dependent section. The device independent
section contains:

• DOM address es

• CCW area

• Input area

• Delete request buffer

• Processor name

• Option values

• Communication bits

• Field sizes for dependent section

The dependent section includes the
fields shown in Figure 7-8.

Display Console Support Routine
Des criptions

This section contains a description of
each of the Display Console Support rou
tines. These descriptions provide a gener
al explanation of each routine.

DIDOCS Processor Routines

The DIDOCS Processor routines (IGC5107B,
IGC5Z07B, IGC6107B, and IGC6Z07B) receive
control from MCS when any of the following
operator or system requests is entered that
requires processing by the DIDOCS routines:

• Open/Close request

• Attention

• Enter (command input)

• Cancel

• Light Pen (message deletion)

• PFK or Light Pen (command input)

• I/O Complete

• DOM request

• Hard copy went down

• Hard copy came back up

• Messages to be displayed

• Timer interruption

• Roll needed

r-----------------------------------T--------T--------T-------,-------,--------T--------,
I Field I 2260 1 I 2260 2 I 2250 I MS5 I 32771 I 3277 2 I
~-----------------------------------+--------+--------+-------+-------+--------+--------~
I Buffer Address Table I 0 I 0 I 10 I 8 I 0 I 0 I
I CCW Area I SO I SO I 112 I 72 I 96 I 152 I
I Screen Image Buffer I 960 I 960 I 3866 I 2800 I 528 I 2016 I
I DOM ID Numbers I 44 I 44 I 188 I 120 I 44 I 92 I
I Screen Control Table I 22 I 22 I 94 I 60 I 23 I 47 I
I Secondary Screen Control Table I 11 I 11 I 47 I 30 I 12 I 24 I
~-----------------------------------~--------~--------~-------~-------~--------~--------~
I 1 input-output I
I 2 output-only I L ___ J

Figure 7-S. Variable Sized Fields of the TDCM

164

DIDOCS Processor 0, Load 1

Processor 0, Load 1 (IGC6107B), receives
control from Processor 1, Load 1 (IGC5107B)
to begin processing of a request involving
a display console with a transient DCM.
The Processor 0 Load 1 routine queues the
request and then determines if the tran
sient portion of the DCM (the TDCM) is
required to process the request. If the
transient DCM is required and is not alrea
dy in main storage, this routine brings it
into main storage. Control then passes to
the Processor 1, Load 1 routine to continue
processing of the request.

Processor 0, Load 1, also checks for a
request for a permanent PFK update. Per
manent copies of PFK definitions are main
tained on SYS1.DCMLIBi the operator may
make permanent changes to the definitions.
If a request for a permanent change to a
PFK definition is encountered, Processor 0,
Load 1, builds the appropriate channel pro
gram and issues an EXCP macro instruction
to accomplish the change. When I/O is com
plete for a PFK update, Processor 0, Load
1, passes control to Processor 0, Load 2
(IGC6Z07B), to check for successful I/O.

When Processor 0, Load 1 is entered
because an I/O operation is complete, con
trol passes to Processor 0, Load 2, to
determine if an I/O error occurred or if
additional I/O processing is required.

When Processor 0, Load 1, is entered
from Processor 0, Load 2, (indicating that
I/O is satisfactorily completed), control
passes to Processor 1 Load 1.

DIDOCS Processor 0, Load 2

Processor 0, Load 2 (IGC6Z07B), receives
control from Processor 0, Load 1,
(IGC6107B) when I/O processing is complete.
Load 2 determines if any additional I/O
~rocessing is required and if any I/O
errors occurred. Action is taken as
follows:

o I/O Error -- Writes an error message to
the operator's console and passes con
trol back to MCS with an indication
that console switch is required.

• Additional I/O Necessary -- Updates and
executes the channel program.

• I/O Complete -- passes control back to
Processor 0, Load 1.

DIDOCS Processor 1, Load 1

Processor 1, Load 1 (IGC5107B), receives
control to begin processing of an operator
or system request (as listed above). Con
trol is received either directly from MCS

(when the console involved in the request
does not have a transient DCM), or from the
Processor 0, Load 1 routine (when the con
sole ~as a transient DCM that has been
brought into main storage).

The Processor 1 routine determines the
reason for entry and passes control to the
appropriate Display Console Support rou
tine. Figure 7-9 summarizes the reasons
for entry to the DIDOCS Processor routine,
the resulting exit, and the reasons for
exit.

DIDOCS Processor 1, Load 2

DIDOCS Processor 1, Load 2 (IGC5Z07B)
receives control from Processor 1, Load 1
(IGC5107B) for processinq of close
requests, and for continued processing of
request parameter lists.

If entry has been made for processing of
a close request, Processor 1, Load 2,
determines whether or not the screen has
been erased. If it has not been erased,
flags are set in the DCM and control is
passed to the device dependent I/O routine
to erase the screen. If the screen has
been erased, control passes to the Open/
Close routine (IGC5G07B) to complete pro
cessing of the close request.

If entry is made for processing of a
request parameter list, the type of request
is determined and control is passed to the
appropriate Display Console Support rou
tine. This process is a continuation of
the request-handling process begun in Pro
cessor 1, Load 1. If the request in the
parameter list has already been processed,
control is returned to Processor 1, Load 1.

Open/Close Routine

The Open/Close routine (IGC5G07B) opens
and closes the DCB for the display console
devices. It decides whether to open or
close a device by checking a parameter
passed to it in the communication task
extended save area (CXSA). It may be
entered to open with a special exit to the
MCS Console Switch routine (IEECLCTX) to
sound the alarm three times indicating that
no console is available.

After a successful open, control returns
to either the Processor 1, Load 1 routine
(IGC5107B), if a console exists, or the MCS
External Interruption routine" if the no
console condition is met. Following a suc
cessful close, control returns to the MCS
Console Switch routine (IEECLCTX) via a
branch on register 14.

Section 7: Console Communications and System Log 165

2250 I/O 1 Routine

2250 I/O 1 routine (IGCSP07B) performs
requested 2250 input/output (I/O) opera
tions in proper screen format. It checks
the communication bytes in the DCM (I/O
communication bytes 1, 2, and 3 and message
communication byte 1) against pre-

established bit settings to determine the
type and format of I/O requested.

Each I/O request is checked in this
manner and, if applicable, the appropriate
CCWs are built until all the I/O requests
are set up in the channel program. This
routine builds CCWs for the following I/O
requests:

r----------------------T-----------------------------T----------------------------------,
I Reason for Entry I Exit I Reason for Exit I
~----------------------+-----------------------------+----------------------------------~

I
I

Open/Close
Open

Close

Reopen

I/O Error

Attention
RMI Request

CANCEL, or
Pen (LP)

I I/O busy
I

ENTER,
Light

I Light Pen or PFK
I Command Entry
I
I I/O Complete
I RMI: CANCEL
I
I Read
I
I In-line Status
I Display
I
I Out-of line Status
I Display
I
I Blanking to be Done
I
I PFK Attention
I
I Transient DCM no
I Longer Required
I
I LP, or cursor not
I in entry area
I
I Hard Copy Down
I
I Hard Copy Recovered
I
I DOM Request
I
I Messages to be
I Displayed
I
I Timer Interruption
I

Open/Close routine

Open/Close routine

Asynchronous Error routine

Asynchronous Error routine

I/O routine

MCS (BR 14)

PFK routine 1

Command routine

Command routine

Status Display Interface 1

Status Display Interface 2

Status Display Interface 5

PFK routine 1

Processor 0 routine

LP-Cursor Service routine

Message 1 routine

Message 1 routine

Delete 2 routine

Display 1 routine

Timer Interpreter

Open I/O blocks

Close I/O blocks

Initialize DCM

Handle error

Read Manual Input

wait on I/O

Process commands

Perform CANCEL

Analyze command

Display status display

Display status display

Blanks unused display area lines

Handle PFK command entry

Transfer Transient DCM to
secondary storage

Interpret desired function

Provide no hard copy message

Remove no hard copy message

Marks messages for deletion

Display message(s}

Analyze timer interval

I Roll needed I Roll Mode routine I Perform roll I L ______________________ ~ _____________________________ ~ __________________________________ J

Figure 7-9. DIDOCS Processor Routine Entries

166

• Perform Read Manual Input (RMI)

• READ entry area

• WRITE message area

• WRITE instruction line

• WRITE entry area

o WRITE warning line

o Insert cursor

This routine also blanks the instruction
line, entry area, and warning line as
requested prior to performing I/O in these
areas.

If a light pen interruption occurs, con
trol passes to the Light Pen/Cursor Service
routine (IGC5F07B). If one of the follow
ing I/O operations is requested, control
passes to the 2250 I/O 2 routine
(IGC5Q07B) :

o WRITE asynchronous error message

o WRITE message; message waiting

o WRITE status display

o Erase screen

• Sound alarm

For all other cases, control passes to the
Processor 1, Load 1 routine (IGC5107B).

2250 I/O 2 Routine

2250 I/O 2 Routine (IGC5Q07B) performs
its input/output operations in an identical
manner to that of 2250 I/O 1 routine
whenever it is called by the latter to pro
cess one or more of the following I/O
requests via the building of CCWs:

• WRITE asynchronous error message

• WRITE message waiting message

o WRITE status display

• Erase screen

• Sound alarm

This routine also picks up the channel pro
gram address from DCMDSAV. The only exit
from this routine, however, is tq Processor
1, Load 1 (IGC5107B).

2260 I/O 1 Routine

The 2260 I/O 1 routine (IGC5R07B) per
forms 2260 input/output (I/O) operations in
~roper screen format. The module first
tests for a status switch request. If this
request is present, exit is made to the
2260 I/O 2 routine (IGC6R07B). It checks
hits set in the DCM to determine which I/O
operation is to be performed. One of three
~ossible I/O operations may be requested:
(1) perform Read Manual Input (RMI) in
order to find cursor (2) WRITE screen, or
(3) READ entry area. This routine normally
exits to the Processor 1, Load 1 routine
(IGC5107B) unless the cursor is determined
to be located adjacent to the Start of Mes
sage (SOM) symbol and the screen is in
"holdn mode. In the latter case, the CAN
CEL function is to be performed and the
2260 I/O 1 routine exits to the Command
routine (IGC5407B). If the cursor is
located other than in the entry area, the
line and character posititioning is com
puted and exit is to the Light Pen/Cursor
Service routine (IGC5F07B).

2260 I/O 2 Routine

The 2260 I/O 2 routine (IGC6R07B) is
entered from the 2260 I/O 1 routine
(IGC5R07B) when a change in a 2260 conso
le's operating mode is requested by the
operator or required by the system.
IGC6R07B is called twice during each con
sole switch. On the first pass, the rou
tine determines the new console operating
mode (full-capability or output-only) and
passes control to the Cleanup routine
(IGC6G07B) to continue processing of the
console mode switch.

When IGC6R07B receives control for the
second time during a console switch, the
routine determines if nmessage stream" mode
has been requested. If so, the routine
sets a "roll delete" mode indicator in the
DCM (this places the console in nroll
deletahlen mode for message deletion) and
exits to the Timer Interpreter routine
(IGC5K07B) to continue processing of the
console mode switch. If message stream
mode was not requested, control is returned
to the 2260 I/O 1 routine (IGC5R07B) to
complete processing of the console mode
switch request.

3277 I/O 1 and 2 Routines

The 3277 I/O routines (IGC5U07B and
IGC5V07B) perform input and output opera
tions for the 3277 Display Console, Models
1 and 2. They check the communication byte
in the DCM to determine which I/O opera
tions are to be performed. The I/O opera
tion may be one of the following:

Section 7: Console Communications and System Log 167

• Blank the entry area

• Blank the warning line

• Erase the screen

• Initialize the instruction line

• Read the entry area

• Write an informational display

• write an error message

• Write the PFK display line

The routines set up the appropriate channel
program and issue an EXCP macro instruction
to initiate the I/O operation. When pro
cessing is complete, control is returned to
Processor 1, Load 1 (IGC5107B).

Model 85 I/O Routine

The Model 85 I/O routine (IGC5H07B) per
forms Model 85 input/output (I/O) opera
tions in proper screen format. It checks
the communication bytes in the DCM (I/O
communication bytes 1, 2, and 3 and message
communication byte 1) against pre
established bit settings to determine the
type and format of I/O requested. The
module first tests for a status switch
request. If this request is present, exit
is made immediately to the Cleanup routine
(IGC6G07B) •

Each I/O request is checked in this
manner, and, if applicable, the appropriate
CCws are built until all the I/O requests
are set up in the channel program. This
routine builds CCws for the following I/O
requests:

• Read Manual Input (RMI)

• READ entry area

• WRITE message area

• WRITE asynchronous error message

• WRITE message waiting message

• WRITE status display

• WRITE instruction line

• WRITE entry area

• WRITE warning line

• Insert cursor

• Blank warning line

• Blank instruction line

168

• Blank entry area

• Erase screen

• Sound alarm

Control returns to the Processor 1, Load 1
routine (IGC5107B).

Asynchronous Error Routine

The Asynchronous Error routine
(IGC5C07B) handles asynchronous errors and
reopen conditions. In the case of per
manent synchronous or asynchronous errors,
this routine performs console switching by
exiting to the MCS routine, Console Switch,
Load 1 (IEECLCTX).

When a asynchronous error occurs, the
Asynchronous Error routine sets indicators
in the OCM to erase the screen and display
an appropriate error message. These indi
cators are set for Messaqe 2 (IGC5E07B)
which moves the appropriate error message
into the DCM, and the a~propriate device
I/O routine which erases the screen and
writes the error message. Control passes
to Message 2.

When a reopen condition is met, this
routine initializes the DCM and passes con
trol to the appropriate device I/O routine
to write the screen.

Message 1 Routine

The Message 1 routine (IGC5D07B) con
tains messages used by Display Console Sup
port. It tests bit settings in the DCM to
determine which message to move into the
screen image buffer while distinguishing
between error and warning messages. This
routine then sets indicators in the DCM to
write the screen. Message 1 sets the sound
alarm bit unless an "Unviewable Message" or
"Deletion Requested" warning message is
written. If the bit settings in the DCM
indicate that a message is to be written,
the Message routine moves the message into
the DCM and exits to the appropriate device
I/O routine. Otherwise, control passes to
the Processor 1, Load 1 routine (IGC5107B).

Message 2 Routine

The Message 2 routine (IGC5E07B) con
tains the asynchronous error and deletion
request error messages used by the Display
Console Support. It tests bit settings in
the OCM to determine which messages to move
into the screen image buffer. This routine
then sets indicators in the DCM to write
the screen, sets the sound alarm bit, and
exits to the appropriate device I/O
routine.

Message 3 Routine

The Message 3 routine (IGC6D07B) con
tains the PFK support error messages used
by Display Console Support. It tests bit
settings in the DCI<1 to determine which mes
sages to move into the screen image buffer
(in the DCM). The routine then sets indi
cators in the DCM to write the screen, sets
the sound alarm bit, and exits to the
appropriate device I/O routine.

Display 1 Routine

The Display 1 routine (IGC5207B) dis
plays all Operating System messages except
those to be deleted (unless DEL=N) and sta
tus display messages. It searches the out
put queue for write queue elements (WQEs)
to be displayed. If this search is suc
cessful, control is passed to Display 3
(IGC6207B) which places the message(s) into
the next available line in the screen image
buffer of the DC~ and marks the message(s)
according to its descriptor code as pro
vided by MCS.

If a status display is overlaying mes
sages on the screen, Display 1 exits to
either Delete 2 (IGC5707B), in case an
intervention required action message(s) is
on the screen, or Delete 4 (IGC5907B), if
there are no action messages and automatic
deletion is specified and not yet tried.
If automatic deletion is not specified or
has been tried, this routine exits to eith
er Message 1 (IGC5D07B) to display an
aUnviewable Message n message, or the appro
priate device I/O routine to display a
aMessage Waitingn message. If roll mode is
specified, Display 1 exits to Display 2
(IGC5307B) to set the timer as required.
If a message is greater in length than the
maximum text for a line in the screen image
buffer, or an accepted reply is on the
screen, Display 1 exits to Display 2. When
no messages are added to the DCM, Display 1
returns control to MCS via a branch on
register 14.

Display 2 Routine

The Display 2 routine (IGC5307B) checks
bit settings in the DCM to determine wheth
er the splitting of messages or the marking
or replies is to be performed. It then
either splits messages greater in length
than 72 characters (70 for the 2250), or
marks all accepted replies and associated
WTORs as automatically deletable in the
screen image buffer. In the latter case,
Display 2 sets the timer as required. If
splitting is performed, Display 2 exits to
Display 1 (IGC5207B). It exits to whichev
er of the following routines is appropri
ate, if marking accepted replies is
performed:

• Delete 2 routine (IGC5707B) - to delete
intervention required action messages

• Delete 4 routine (IGC5907B) - to per
form automatic deletion

• Device-dependent I/O routine - to per
form input/output (I/O)

• Message 1 routine (IGC5D07B) - to write
"Unviewable Message" warning

• Processor 1, Load 1 (IGC5107B) - to
continue processing

Display 3 Routine

The Display 3 routine (IGC6207B)
receives control initially from Display 1
(IGC5207B) to dequeue, mark, and move mes
sages into the message area of the display
control module (DCM) from the console out
put queue.

Display 3 searches the console output
queue for messages to be displayed. When
one is found, Display 3 takes the following
action according to the message type:

Q In-line multiple-line WTOs - control
passes to Status Display Interface 1
(IGC6L07B) to process these messages.
Upon return from Status Display Inter
face 1, processing continues if other
messages are on the queue. otherwise,
control passes to Display 2 (IGC5307B)
to continue processing.

• out-of-line multiple-line WTOs - these
messages are not processed by this rou
tine: if encountered the routine
ignores them. Out-of-line multiple
line WTOs will eventually be processed
by the Status Display Interface rou
tines which receive control from the
Processor routines.

• Single-line WTOs and WTORs - Display 3
places the message in the first avail
able line in the screen image buffer
(in the DCM), and marks the message
according to the descriptor code pro
vided by MCS.

After Display 3 has processed all mes
sages in the queue, control passes to Dis
play 2 for processing of split messages and
for marking of replies.

Roll Mode Routine

The Roll Mode routine (IGC5J07B) per
forms the roll function when messages are
on the WQE and the time specified for roll
is satisfied. When messages on a display
console are ready to be rolled, the routine
rolls the messages in the screen image
buffer. If the CONTROL command operand DEL

Section 7: Console communications and System Log 169

is set to roll deletable (RD) mode, the
specified number of deletable messages are
removed. If DEL is set to roll (R) mode,
the specified number of messages, including
action messages, are removed. It also
stores the information for inserting the
number of message lines remaining on the
output queue into the first two character
positions of the first new message to be
displayed following a roll. Control passes
to the Timer Interpreter (IGC5K07B) unless
DEL=RD and no deletable messages are on the
visible portion of the screen, in which
case control passes to the appropriate
device I/O routine to write the message
waiting message.

The RNUM value specified in the CONTROL
S command determines the number of lines
the Roll Mode routine removes, unless one
of the following exceptions exists:

• :E'ewer lines on the output queue than
RNUM value (less lines rolled)

• Number of lines displaced by a status
display is smaller than RNUM value
(less lines rolled)

• Roll Deletable (RD) mode specified and
number of deletable lines on screen is
smaller than RNUM value (less lines
rolled)

~ Top line en screen following roll is
continuation line (one more line
rolled)

Command Routine

The Command routine (IGC5407B) analyzes
the commands in the entry area, processes
CANCEL attentions, and processes requests
to remove message numbers. According to
the reason for entry, the routine takes the
following action:

• CANCEL attention: the Command routine
sets flags, alters the DCM as appropri
ate, and then passes control to the
appropriate I/O routine.

• CONTROL command (with no other
operands): the Command routine passes
control to the Delete 3 routine
(IGC5807B) to erase a segment of mes
sages from the screen.

• Delete verification: the Command rou
tine passes control to the Delete 4
routine (IGC5907B) to process the dele
tion verification.

• CONTROL commands: the Command routine
issues an SVC 34 to pass the command to
the system's command processing rou
tines. When control returns, the Com
mand routine determines if a parameter

170

list was provided by the SVC 34 rou
tines. If not, the Command routine
blanks the entry area and passes con
trol to the appropriate I/O routine.
If a parameter list was provided, and
the command in the entry area was CON
TROL E,N, the Command routine erases
the message numbers from the screen and
passes control to the appropriate I/O
routine. For all other commands, the
Command routine passes control to the
routine indicated in the SVC 34 para
meter list.

• All other commands: the Command rou
tine issues an SVC 35 to write the com
mand to the message area of the console
screen; it then issues an SVC 34 to
pass the command to the system's com
mand processing routines. When control
returns from the SVC 34 routines, the
Command routine determines if a para
meter list was provided. If not, the
Command routine blanks the entry area
and passes control to the appropriate
I/O routine. If a parameter list was
provided, the Command routine passes
control to the routine indicated in the
parameter list.

Options Routine

The Options routine (IGC5A07B) receives
control from the Command routine to analyze
the minor operand values (DEL, CON, SEG,
RNUM, RTME) of the CONTROL command specifi
cation (S) operand and to determine their
legitimacy. If these minor operands and
their respective values are legitimate, the
Options routine changes the current values
accordingly and indicates the screen
options currently in effect. If these
minor operands and/or their values are not
legitimate, this routine exits to the
appropriate device I/O routine with
instructions to write the appropriate mes
sage from the Message routine. The Options
routine also displays all the current
screen option values when requested by the
CONTROL S[,REF] command.

• CON=N and no hard copy

• DEL=R or RD and no hard copy

• DEL=R or RD and no timer

If a warning message is required, this rou
tine sets the appropriate indicators and
continues processing. If, however, an
error message is required, the Options rou
tine exits to Message 1 (IGC5D07B).

Upon preparing to exit, the Options rou
tine indicates the proper location of the
cursor. If a warning message is to be dis
played, this routine transfers control to

Message 1. If the value of DEL is changed
to or from R or RD, or if the RTME operand
has been changed, the Options routine sets
an indicator bit in the DCM and exits to
the Timer Interpreter routine (IGC5K07B).
If a warning or error message is required,
and a return to the Timer Interpreter rou
tine is also indicated, the Options routine
exits to the Timer Interpreter with
instructions to pass control to Message 1
when finished.

Delete 1 Routine

The Delete 1 routine (IGC5607B) handles
the erase commands, CONTROL E,F and CONTROL
E,nn[,nnJ. If conversational mode is in
effect, Delete 1 updates the screen image
buffer by marking and numbering those mes
sages selected for deletion, and passes
control to Message 1 (IGC5D07B) to write
the "Deletion Requested" message. If non
conversational mode is in effect, Delete 1
updates the screen image buffer by marking
and numbering those messages to be deleted,
and passes control to Delete 4 (IGC5907B)
for immediate deletion. Delete 1 exits to
Message 2 (IGC5E07B) if the erase command
is inconsistent, or if it has an invalid
operand.

Delete 2 Routine

The Delete 2 routine (IGC5707B) handles
the deletion of intervention required
action messages and messages indicated for
deletion by the DOM macro instruction.
Delete 2 marks as automatically deletable
those messages successfully acted upon or
indicated for deletion by the DOM macro
instruction, provided the display device is
not busy or a delete request is pending.
If the device is busy or a delete request
is pending, Delete 2 passes control to the
MCS Router routine (IEECMQWR). Delete 2
marks all intervention required action mes
sages as automatically deletable and passes
control to the Processor 1, Load 1 routine
(IGC5107B) if a delete request is pending.
Otherwise, Delete 2 passes control to eith
er Delete 4 (IGC5907B) if automatic dele
tion is desired, or to the appropriate
device I/O routine to write the message
area when automatic message deletion is not
specified.

Delete 3 Routine

The Delete 3 routine (IGC5807B) handles
the erase command, CONTROL [E,SEG], and
deletion by cursor or light pen. It
updates the screen image buffer by marking
and numbering the message area segment for
deletion. If conversational mode is in
effect, Delete 3 passes control to Message
1 (IGC5D07B) to write the appropriate mes
sage on the instruction line requesting
operator verification of the messages

marked for deletion. If nonconversational
mode is in effect, Delete 3 passes control
to Delete 4 (IGC5907B) for immediate dele
tion. If the value of SEG is equal to
zero, or if there are no deletable messages
within the message area segment, Delete 3
exits to Message 2 (IGC5E07B) to display
the appropriate error message.

Delete 4 Routine

The Delete 4 routine (IGC5907B) examines
the message indicators in the screen con
trol table in the DCM and blanks those
lines in the screen image buffer marked for
automatic or regular deletion while it
moves non-deletable lines up to the first
available message line. This routine also
handles the command, CONTROL D,N[,HOLDl ty
numbering all visible message lines.

If the deletion of messages is success
ful when a status display is not on the
screen and a full screen condition exists,
Delete 4 returns control to Display 1
(IGC5207B). Otherwise, Delete 4 exits to
either Message 1 (IGC5D07B) to display a
warning message informing the operator that
unviewable messages are on the output queue
if the screen is not yet full, or to the
appropriate device I/O routine to display
the "Message Waiting" warning message and
write the entire screen.

Light Pen/Cursor Service Routine

The Light Pen/Cursor Service routine
(IGC5F07B) handles light pen and cursor
interruptions. If a light pen or cursor
delete request occurs on the message line
of a non-action message or on the asterisk
of an action message, the routine transfers
control to Delete 4 (IGC5907B) or Delete 3
(IGC5807B) depending on whether delete
verification is or is not indicated. If a
light pen detect or cursor placement is on
ENTER in the instruction line, this rou
tine passes control to the appropriate
device I/O routine to perform a READ opera
tion. When the light pen or cursor is
positioned on *CANCEL* in the instruction
line (to cancel a request) or on *E* in the
status display title line (to erase a sta
tus display), the Light Pen/Cursor Service
routine passes control to the Command rou
tine (IGC5407B). When the light pen or
cursor is positioned on *D C,K* in the
instruction line or *F* in the status dis
play title line, control passes to the Com
mand routine. If the light pen is posi
tioned on a key number in the PFK display
line, control is passed to the PFK 1 rou
tine (IGC6A07B). If the light pen or cur
sor is positioned on any other location
than mentioned above, it is considered an
error. Control passes to Message 1
(IGC5D07B) or Message 2 (IGC5E07B) to dis
play the appropriate error message.

section 7: Console Communications and System Log 171

PFK 1 Routine

The PFK 1 routine (IGC6A07B) receives
control from Processor 1, Load 1 (IGC5107B)
when a PFK is pressed, or when a PFK key is
to be verified or redefined. It also
receives control from the Light Pen/Cursor
routine (IGCSF07B) when a light pen inter
ruption occurs for a number displayed in
the PFK display line.

Upon entry, this routine determines the
reason for entry. If entry has been made
to cancel a PFK request, the commands asso
ciated with the canceled PFK key are
removed from the entry area of the DCM.
Also, control information is removed from
the PFK area of the DCM so that later use
of the same PFK key will cause new copies
of the definitions to be used. If entry
has been made to enter a command, the numb
er of the key is placed in the DCMPFKNM
field of the DCM, and the routine checks to
see that the key is valid. If it is not,
exit is made to Message 1 (IGC5D07B) so
that an error message can be issued.
Otherwise, a check is made to see if the
key is already in process. A key may have
several commands associated with it, each
of which must be processed separately. If
the key is not in process, it is flagged as
in process now, and a check is made to see
if the key is defined as a list of key num
bers. If it is, control returns to the
entry pOint of the routine so that each key
number in the list can be processed
separately.

When the routine determines that a key
number is associated with a command to be
processed, the command is moved to the
entry area buffer in the DCM. If the key
is in conversational mode, the command is
written to the screen where the operator
may cancel or enter it. If the key is not
in conversational mode, the command is
executed by simulating an operator ENTER
action.

After all commands have been processed,
the PFK work area is cleaned up and control
is returned to the Processor 1, Load 1
routine.

PFK 2 Routine

The PFK 2 routine (IGC6B07B) receives
control from the Processor 1 Load 1
(IGC5107B) routine when entry is made to
redefine a PFK or to write or erase the PFK
display line (the line of the display con
sole screen containing PFK key numbers
which may be entered by light selection).

The routine first determines which func
tion was requested. If the request is to
erase or display the PFK display line, exit
is to the I/O routine for the device for

172

which the display is requested. If the re
quest is to redefine a PFK, the routine
scans the new command and, if no errors are
encountered, replaces the old definition
with the new. Control is then returned to
the Processor 1, Load 1 routine.

Status Display Interface 1 Routine

The Status Display Interface 1 routine
(IGC6L07B) receives control from the Pro
cessor 1, Load 1 routine (IGC5107B) or Dis
play 3 (IGC6207B) to process multiple-line
WTO messages that do not have descriptor
codes 8 and 9. Descriptor codes 8 and 9
indicate that a display is a response to an
operator's request and is to be presented
out-of-line, in a display area of a display
console.

Upon initial entry, IGC6L07B sets a flag
in the UCM indicating that a status display
is in progress. This flag insures that all
of the lines of the status display will be
displayed contiguously to prevent inter
leaving of other messages with the lines of
the status display. The routine then moves
lines of the WTO into the DCM until a suf
ficient number of lines have been passed to
fill the screen or until the last line is
encountered. If the screen becomes full
before the last line is encountered, exit
is made to the device dependent I/O routine
to issue a MESSAGE WAITING message. When
the last line is passed to the DCM, the WQE
turns off the multiple-line WTO flag in the
UCM and checks the WQE buffer for addition
al messages to be processed. If any are
found, control passes to the Display 1 rou
tine (IGC5207B) for further processing.
Otherwise, control is passed to the I/O
routine to display the messages that were
moved to the DCM.

Status Display Interface 2 Routine

The status Display Interface 2 routine
(IGC6M07B) receives control from the Pro
cessor 1, Load 1 routine (IGC5107B) to pro
cess requests for multiple-line WTO mes
sages that have descriptor codes 8 and 9.
These codes indicate that the message is a
status display requested by the operator,
and that the display is to be presented
out-of-line in a display area on a display
console screen.

Upon initial entry, IGC6M07B searches
the console output queue for a WQE repre
senting a multiple-line WTO. When one is
found, the routine locates in the DCM the
screen area control block (SACB) for the
display area in which the display a~pears.
If the WQE represents a new display, the
SACB is initialized, and any status display
in the area is dequeued. If the display
area is now empty (that is, it contains no
other operator messages), cont~ol passes to

the status Display Interface 6 routine
(IGC6Q07B), which puts the message into the
screen image buffer (in the DCM) three
lines at a time. If the display will over
lay other operator messages, control passes
to Status Display Interface 4, (IGC6007B)
which sets up a write-area. This separate
write-area will be used by the I/O routines
to write the display to the screen. (This
avoids using the DCM screen image buffer as
a write-area, which would destroy the over
laid operator messages). If message area
lines below the display area in use require
blanking, control passes to the status Dis
play Interface 7 routine (IGC6T07B). If
the display area lines contain non-status
display messages, a three line write-area
is constructed. The status display is then
written to the display area from the write
area by the device dependent I/O routine,
leaving the messages in the DCM buffer
intact.

status Display Interface 3 Routine

The Status Display Interface 3 routine
(IGC6N07B) receives control from the Pro
cessor 1, Load 1 routine (IGC5107B) to pro
cess CONTROL commands affecting out-of-line
status displays (K D,H; K D,U; K D,F).

If entry has been made for processing
CONTROL commands, IGC6N07B takes action
according to the operands of the command:

o K D,H an internal PM A is issued to
stop the time interval updating of the
display. The display remains in the
screen but the routine rewrites the
control line to contain frame and upd
ate options.

• K D,U -- an internal MN A is issued to
continue updating the display. The
control line is rewritten to contain
stop and hold options.

• K D,F -- a control line containing the
new frame nun~er is built in the write
area and control passes to the I/O rou
tine to write the new frame.

status Display Interface 4 Routine

The Status Display Interface 4 routine
(IGC6007B) receives control from the Status
Display Interface 2 routine (IGC6M07B) to
move lines of a status display from the WQE
into a temporary write-area in the DCM.
This routine is entered only for status
displays that overlay other operator mes
sages on a display console screen.

IGC6007B uses the instruction line and
the two lines of the entry area as the tem
porary write-area. It moves three lines of
the message into this temporary write-area,
and then exits to the I/O routine to write

the lines to the screen. When the last
line of the display is put into the tem
porary work area, the routine blanks any
remaining display area lines and puts the
FRAME LAST indicator in the control line.

Status Display Interface 5 Routine

The Status Display Interface 5 routine
(IGC6P07B) is entered from the Processor 1,
Load 1 routine (IGC5107B) to process CON
TROL commands affecting out-of-line status
displays (K E, D; PM Al.

Upon entry, IGC6P07B determines which
command has been entered, and action is
taken as follows:

• K E,D -- the appropriate major and
minor WQEs are removed from the queue,
and control is passed by means of the
XCTL macro instruction to the I/O rou
tine, which erases the display from the
screen.

• PM A -- the dynamic display indicator
in the DCM is turned off, the appropri
ate WQEs are removed from the queue,
and control passes to the I/O routine,
which erases the display from the
screen.

IGC6P07B also receives control from Sta
tus Display Interface 2 (IGC6M07B) when
blanking of lines below a display area is
required. control passes to status Display
Interface 7 (IGC6T07B) to perform the
required blanking.

Status Display Interface 6 Routine

The Status Display Interface 6 routine
(IGC6Q07B) is entered from the status Dis
play Interface 2 routine (IGC6M07B) to
movelines of a status display from the WQE
into the appropriate message area lines of
the screen image buffer (in the DCM). This
routine is entered only if the status dis
play does not overlay any other operator
messages.

Upon entry, IGC6Q07B moves lines from
the WQE into the screen image buffer until
the display area is filled. When all lines
of the display have been moved, any lines
remaining in the display area are blanked,
and the control line is rewritten to indic
ate FRAME LAST.

Status Display Interface 7 Routine

The status Display Interface 7 routine
(IGC6T07B) receives control from Status
Display Interface 5 (IGC6P07B) to blank
message area lines below a status display
that is being displayed in a display area.

Section 7: Console Communications and System Log 173

Upon entry, IGC6T07B determines the
number of lines that require blanking and
locates the first line to be blanked. It
then fills the instruction line and the
entry area (in the DCM) with blanks. After
these lines are blanked, control passes to
the device dependent I/O routine to blank
the first three lines that require blank
ing. The I/O routine uses the three lines
as a write-area to write blanks to the
screen. This procedure prevents the mes
sage area from being broken up into blocks
of general message traffic and blocks of
status displays. It also allows any mes
sages that were overlayed with blanks to
remain untouched in the DCM screen image
buffer. When the status display is erased,
the screen is again written from the screen
image buffer, and the messages reappear.

Cleanup Routine

The Cleanup routine (IGC6G07B) receives
control from the Open/Close routine when a
request for closing a device has been
entered; it also receives control from the
Asynchronous Error routine when a request
to vary console status has been entered or
when a device is recovering from an asynch
ronous error. This routine removes status
displays from the message queues, and rein
itializes the Screen Area Control Blocks
(SACBs) •

Upon entry, IGC6G07B determines the
reason for entry and then determines if the
console involved in the entry has a MONITOR
Active display in "update" mode. If so,
the display is stopped (STOPMN). The rou
tine then searches the consoles SACBs for
partially output status displays. If any
are found, they are freed. The Cleanup
routine then takes the following action
according to the reason for entry:

• CLOSE -- the SACB configuration is
reinitialized to the value specified
during system generation, all messages
are removed from the queue, and control
passes to Processor 1 Load 1
(IGCSI07B) •

• Change in status to SD -- inline mes
sages are freed, the SACBs are rein
itialized to the values specified dur
ing system generation, and control
passes to the Asynchronous Error rou
tine (IGCSC07B).

• Change in status to MS -- the SACB con
figuration is reinitialized to the
values specified during system genera
tion, all SACBs are marked as unused,
and control passes to the Asynchronous
Error routine.

• Change in status to FC -- the SACB con
figuration is reinitialized to the

174

values specified during system genera
tion, and control passes to the Asynch
ronous Error routine.

• Asynchronous Error recovery -- out-of
line displays in progress and on the
output queue are freed, the SACB confi
guration is retained, and control
passes to the Asynchronous Error
routine.

Timer Interpreter Routine

The Timer Interpreter routine (IGCSK07B)
analyzes the timer intervals at which each
of the display console devices specifying
roll mode is scheduled to be rolled, and
sets indicators to notify the Roll Mode
routine (IGCSJ07B) whenever the timer
interval has elapsed for one or more of the
display console devices.

The routine initially stores the timer
interval (RTME if roll mode is specified,
zero if not) for each display console
device in its respective DCM. The greatest
common divisor (GCD) of all the non-zero
timer intervals is constantly updated as
new devices are added as display consoles.
The Timer Interpreter routine sets the
timer equal to the GCD.

Whenever the timer elapses, this routine
adds the GCD to the time counter of each of
the display console devices whose timer
interval is not equal to zero. If the new
total equals or exceeds the timer interval
for one or more display console devices,
the Timer Interpreter routine notifies the
Processor 1, Load 1 routine (IGCSI07B) that
the messages on each of these devices are
ready to be rolled.

The Timer Interpreter gets control for
one of three reasons. First, if control is
~assed from the Processor routine, the
timer has elapsed, in which case it returns
to the Processor 1, Load 1 routine.
Secondly, if the routine gets control from
the options routine, the Open-Close rou
tine, or the Asynchronous Error routine,
the GCD needs to be updated for a new set
of intervals. Control is passed from the
Options routine when a display device is
put into or taken out of roll mode, or the
value of RTME is changed, in which case an
exit is taken to the appropriate device I/O
routine or one of the message routines.
Entry is from the Open/Close routine when a
display device in roll mode is removed as
an operator's console and control returns
to the Open/Close routine (IGCSG07B).
Entry is from the Asynchronous Error rou
tine to set a single timer interval of 30
seconds for the removal of the error mes
sage and an exit is taken to Message 2
(IGCSE07B). Thirdly, the routine gets con
trol from the Roll Mode routine to insert

in the first two character positions of the
first new message the number of message
lines remaining on the output queue. The
Timer Interpreter then exits to the appro
priate device I/O routine if the warning
message bit is on. otherwise, the Timer
Interpreter passes control to the Display 1
routine (IGC5207B).

SUPPORTING THE SYSTEM LOG

The system log, an optional feature for
systems with MVT or Model 65 multiprocess
ing, consists of two data sets cataloged at
system generation on which critical system
information is recorded. The existence of
two data sets allows one (the primary data
set) to receive data from the system, pro
blem programs and/or operators, while the
other (the alternate data set) is being
written to an output device.

The log is initialized by IEEVLIN1 (see
Figure 7-10), which locates the log data
sets and establishes the Log Control Area
and log buffers, and IEEVLIN01, which
writes the log JFCBs to the job queue,
creates log DCBs, attaches the Log Writer
routine (IEELWAIT), and posts the log ECB.
If the log data sets are not located by
IEEVLIN1, the operator is notified that the
log option is not supported. consequently,
WTL macro instructions are re-issued as WTO
macro instructions to the primary/master
console. LOG and WRITELOG operator com
mands are treated as NOPs by the control
program and a message is sent to the issu
ing console informing the operator that the
system log is not supported. If log
initialization is unsuccessful, IEEVLINl
returns control to IEEVWAIT (or to the Sys
tem Management Facility initialization rou
tine if that feature is included in the
system) •

Users communicate with the log through
the WTL macro instruction and the operator
commands LOG and WRITELOG. The WTL rou
tines (SVC 36) schedule the entering of
information into the system log. The LOG
command is used to enter information into
the system log from an operator's console.
The WRITELOG command is used to request
that the currently recording log data set
be closed and queued to a SYSOUT writer of
a particular class. If no class name is
specified with the WRITELOG command, the
data set will be scheduled for queueing to
a SYSOUT writer of the class specified at
system generation. When the system log is
performing the functions of the hard copy
log (a log function of the multiple console
support option), WTO and WTOR messages, as
well as operator and system commands and
their responses, may be entered on the sys
tem log by converting them to a WTL macro
instruction. WTO and WTOR conversion is

done in the MCS communications task module
IEECMDSV. Conversion of the LOG command is
done in the Command Scheduler (SVC 34)
routines.

The log support routines function under
their own TCB in a manner similar to the
Communications Task routines. The module
IEELWAIT is attached as part of the initia
lization process and issues a WAIT macro
instruction specifying the log ECB. Upon
initial entry to IEELWAIT, SVC 36 is issued
to open the log data sets.

subsequent entries to IEELWAIT are
caused when the log ECB is posted. The
events which cause the log ECB to be posted
are:

• A WRITELOG {CLOSE} command has been
issued or HALT processing has occurred.

o The log buffer is full.

If IEELWAIT is entered because a WRITE
LOG command was issued, an SVC 36 is issued
to cause data set switching. The recording
data set (primary> is closed and the other
data set (alternate) is opened for input.

If IEELWAIT determines that the log
buffer is full, it ensures that the size of
the log buffer to be written does not
exceed the amount of space specified in the
data extent block (DEB). If the log buffer
is equal to or less than the space remain
ing on the data set, the buffer ECB is
posted, the log buffer is written to the
data set, and a WAIT is again issued on the
log ECB. Had the space remaining on the
data set been insufficient, an SVC 36 would
have been issued to simulate a WRITELOG
command.

When a WRITELOG CLOSE command is
entered, the process of writing the remain
ing text in the log buffer to the data set
is the same as mentioned above for a full
buffer condition. Then the currently re
cording data set is closed and the log
function is deleted from the system.

An SVC 34 must be issued to process the
LOG and WRITELOG commands. The SVC 34
module IEE1603D issues a WTL macro instruc
tion. For the WRITELOG command, IEE1603D
posts the log ECB and the WRITELOG indica
tor is set in the Log Control Area.

The WTL macro instruction results in an
SVC 36. The module IEE0303F moves the mes
sage into the log buffer. If an additional
message would overflow the buffer, the log
ECB is posted, the buffer ECB is cleared,
and control returns to the Master Schedul
er. When IEELWAIT receives control, it
switches buffer pointers, thereby indicat
ing that the other (alternate) buffer is

Section 7: Console Communications and System Log 175

available for input. It then posts the
buffer ECB, and proceeds to write the full
buffer (primary) onto the data set. Since
the buffer ECB has been posted, IEE0303F
can now move a new message into the alter
nate buffer. When IEE0303F is entered from
IEELWAIT because a WRITELOG was issued (SVC
36 is issued in IEELWAIT), control is
passed directly to the second load of SVC
36 IEE0403F.

When IEE0403F is entered initially, the
log data sets are opened and control blocks
initialized. Upon subsequent entry, the
currently recording data set (primary) is
closed and scheduled for queuing to the
SYSOUT writer. The other data set becomes
the primary data set and pointers are
adjusted accordingly. Messages are written
to the operator indicating the switch of
data sets, or the failure of a data set to
be opened. When an alternate data set is
not available (usually because the data set
is still being written by the system output

176

writer), the system log is temporarily made
inactive. During the time that the log
function is inactive, the buffer remains
undisturbed and all incoming WTL macro
instructions are reissued as WTO macro
instructions to the primary/master console.

Anytime the operating system enters step
initiation and a log data set has been
scheduled for queueing, the step initiation
module IEFSD162 passes control to the Log
Dispatcher IEEVLDSP. IEEVLDSP enqueues the
log data set to a system output queue of a
particular class and issues a corresponding
message to the operator.

After the log data set has been written,
control is returned to the routine IEEV
LOUT, which opens and immediately closes
the data set to reinitialize the TTRLL
field (a field that describes the space
available on the data set). IEEVLOUT
returns control to the SYSOUT Writer rou
tine that called it.

/"--.

Initialization
Unsuccessfu I

From Master Scheduler
Initialization (IEEVIPU

IEEVLlNl

Locate Log Data Se",
Create Log Control
Area

r---.--.-.--..... '--~--~--~
I
I

IEEVLlN01

Write JFCB, Create

Master Task
Initialization

Test for SMF I
I DCBs, POST IPL, 1----,.-------,

POST Log ECB ...------+_------"------.....1
IEEVWAIT

Master Wait Routine
Test for SMF

IEELWAIT

WAIT on Log ECB

1---------
Issue SVC 36 for
Initial Entry, Data
Set Close or Switch

...-------+----------
Write to Data Set

---------------~---------------

SVC 34 Halt
---~~------~ Command

LOG or---+~

IEEI403D

HALT-Simulate
WRITELOG CLOSE,
POST Log ECB

IEE0503D

ISSUE EOD MESSAGE ~~_+_~

IEEI603D
WRITE LOG I--LO- G-_ -ISS-U-E---;

Command SVC 36 WRITELOG
r--- - - -----+ 1---'

SVC 36

IEE0303F

Entry from IEELWAIT

Move Msg
to Log Buffer

IEE0403F

IPL - Open
both Data Se" r----------
Normal - Close
Primary, Open
AI ternate Set

POST Log ECB 1--+----.... -1---------

(Return to Caller

Close - Close
and Quiesce

Transient
Log Routines

----------------.---------------Termination I SYSOUT

IEFSD162 V IEEVLDSP

_.J~e..!!'!.!!~~ __ Write JCBs
Locate Data and DSB to
Set to Queue SYSOUT Queue

Figure 7-10. Log Function

Load I Writer Task

I
I
I
I

IEFSDI71

When Log Data
Set Written

V IEEVLOUT

OPEN and CLOSE
Date Set to Zero
TTRLL Field

Section 7: Console communications and system Log 117

SECTION 8: CHECKPOINT/RESTART

The Checkpoint/Restart facility allows a
job to be restarted after an abnormal ter
mination. The retry can begin at the start
of a job step, or within a job step, and
prior steps and portions of a step can be
skipped if they executed successfully
before the termination. The supervisor
provides the following two type-4 SVC rou
tines to handle restart within a job step
(called a checkpoint restart):

• The Checkpoint routine, called by the
CHKPT macro instruction (SVC 63) in the
problem program at points where the
programmer wishes a reexecution to
begin.

• The Restart routine (SVC 52), called by
a job management routine when the
restarting step is scheduled.

Restart at the beginning of a step (a
step restart) is handled by job management,
and is documented in the MVT Job Management
PLM.

The Checkpoint routine creates a series
of records (a checkpoint entry) in a data
set provided by the calling task. The
recordsiinclude a copy of the task's main

- storage region, descriptions of data sets,
and system control information. The
Restart routine interprets the information
in the checkpoint entry and uses it to
restore the task to main storage, mount,
verify and position its data sets, and give
it control at the point where the check-

,point entry was written.

CHECKPOINT (SVC 63)

The Checkpoint routine is called by a
problem program with the CHKPT macro
instruction to create a checkpoint entry •

. The calling program supplies a DCB for the
'.checkpoint data set and, optionally, a name

(CHECKID) for the entry. The Checkpoint
rQutine writes four types of records in the
checkpoint entry:

• A Checkpoint Header Record (CHR). The
CHR describes a checkpoint and contains
checkpoint/restart tables and flags.

• Data Set Descriptor Records (DSDRs).

178

Each DSDR describes a data set and con
tains a job file control block (JFCB),
a JFCB extension, or the generation
data group bias count table (GDGBCT).

• Core Image Records (CIRs). The CIRs
contain a copy of the caller's main
storage region at the time he issued
CHKPT.

• Supervisor Records (SURS~. The SURs
contain the supervisor control blocks
that will be needed to restart the
task.

The Checkpoint routine is logically
divided into severalifunctions, which are
listed below with -the'-names of load modules
that implement ~~em~

• Checking parameters and system environ
ment (IGC0006C, IGCOI06C, and
IGC0206C). The Housekeeping routine
tests the CHKPT operands for validity,
and ensures that the task is eligible
for a checkpoint. A work area is
obtained and formatted, the Job Control
Table (JCT) is read in, and the CHR is
built.

• Purging I/O reguests (IGC0506C). The
Check I/O routine removes the caller'S
pending I/O requests from the logical
channel queues, and allows any active
requests to complete.

• Describing the caller's data set status
(IGCOA06C and IGCOD06C). The Preserve
routine writes out the CHR, and then
builds and writes out a DSDR for each
data set.

• copying the caller's region (IGCOF06C,
IGCOG06C, and IGCOH06C). The Checkmain
routine creates the CIRs by copying the
caller's region(s), except for the
checkpoint work area, into the check
point entry, and then builds and writes
out the SORs from information in system
control blocks.

• Reissuing the I/O reguests (IGCON06C).
The Resume I/O routine returns the cal
ler's pending I/O requests to the log
ical channel queues.

• Clean up, report, and exit (IGCOQ06C
and IGCOS06C). The Checkpoint Exit
routine returns the storage obtained
with GETMAIN, returns the JCT to the
input queue, writes a console message
noting success .or failure to write a
checkpoint, clos.es the checkpoint data
set if checkpoint opened it, and
returns to the caller with an SVC 3
(EXIT) instruction.

The first module of the Checkpoint rou
tine is loaded by the SVC SLIH, and subse
quent modules are called into the SVC tran
sient area by XCTL. Figure 8-1 shows the
order in which the routines are executed,
and the information each routine processes.

If an error is detected at any point
during checkpoint processing, the Check
~oint Exit routine is called. An error
message is written, and an error code is
returned to the caller, so that execution
may continue without the checkpoint.

PARAMETER AND ENVIRONMENT CHECK

The first three load modules of the
Checkpoint routine test the calling parame
ters and system environment for conditions
that would prevent successful checkpoint
processing. If no errors are detected, a
work area is obtained and formatted, and
the JCT is read. A CHR is built in the
output buffer, and the Check I/O routine is
called.

Parameter Check (IGC0006C)

The first module sets the system mask to
allow all interruptions, then inspects the
checkpoint flag in the TCB to determine if
checkpoint entries have been suppressed by
the RD parameter of the job control state
ments. If they have been suppressed, SVC 3
(EXIT) is issued to return to the caller.
A test is also made for the CANCEL operand
of the CHKPT macro instruction. CANCEL
processing is discussed below.

For normal checkpoint processing, the
first housekeeping module calls the super
visor's Validity Check routine (IEAOVLOO)
to ensure that the addresses supplied for
the checkpoint DCB and CHECKID field are
within the problem program region. An
invalid address prevents further process
ing, and the Checkpoint Exit routine is
called.

The checkpoint DCB, supplied by the
caller, shows whether the checkpoint data
set has been opened. If it has not, an
OPEN is issued for it, and a flag is set
indicating it must be closed before exit.

(I Main Storage Region 13
System
Control
Blocks

SVC SLiH :)

G

'-.

Legend

Storage
Supervisor
Blocks G~B

, ________ J I L_ --+-~
: [____ J [__ .J :

t , t j j t t
Housekeeping Check I/o Preserve Checkmain

Check and

~ =) p :) Initialize,
Purge I/o Write CHR, Build and

GETMAIN, Build and Write CIRs
Read JCT, Requests

Write DSDRs and SURs
Build CHR

~ I J
OPEN

~

~ ~ Checkpoint Data Set Core Image
Header Descriptor

~
Records

(Record (CHR) Records (DSDRs) (CIRs)

.. CHECKPOINT ENTRY

from Process to

Figure 8-1. Checkpoint Processing Routines

Contents
Directory

Resume I/o

Restore
I/o Requests

Supervisor
Records
(SURs)

:)

Exit

p Replace JCT,
WTO, CLOSE,
Exit

L
CLOSE"

.......,

\
~C

o
V>
."
l>
-i
n
I
m

'"

Section 8: Checkpoint/Restart 179

Then the size of the checkpoint work area
is calculated by the following formula:

WA = TIOT + 1108 + 48 (DEBs - 2)

• Blocksize specified in the DCB is not
zero or not greater than 600.

• The data set was not opened for output.

• Physical sequential or partitioned
where: organization was not specified.

TIOT • A timer interval is pending.

1108

is the length of the Task I/O Table
(dependent on the number of DD
entries) •

is a fixed table area.

48 (DEBs - 2)
is the number of Data Extent Blocks
less two, times 48.

A conditional GET MAIN, specifying sub
pool 250, is issued for this area. If the
GETMAIN is not successful, the Checkpoint
Exit routine is called •• If an area is
returned, its upper and lower boundaries
are checked to see that it does not come
within 18 bytes of the region limits.
(Because the work area is not copied into
the checkpoint entry with the rest of the
region, a 17-byte or smaller "leftover"
would be too small to write as a tape reco
rd.) If the work area is too close to the
upper region boundary, all but the invalid
part is released with FREEMAIN, and a
second GRTMAIN is issued. If the second
GETMAIN is successful, the invalid portion
of the first area is released. If the
second GETMAIN is not successful, or if the
first area returned is too close to the
lower region boundary, the Checkpoint Exit
routine is called, and no checkpoint entry
is written.

When the work area is obtained, the
region boundaries, the address of the
checkpoint DCB, and offsets to input buff
ers are stored in it, and the second house
keeping module is called.

Environment Check (IGC0106C)

The second housekeeping module tests
characteristics of the checkpoint data set
and the calling task for checkpoint suit
ability. If any error is detected, the
CheckpOint Exit routine is called and no
checkpoint is written. The invalid condi
tions, in the order tested, are:

• Checkpoint data set not on a direct
access or magnetic tape device.

• Key length not equal to zero when the
checkpoint data set is on a direct
access device.

• Record format is not "undefined."

180

• An IRB or SIRB is pending on the RB
chain.

• A Type 3 or 4 SVRB is pending (other
than IGG0551A, EOV.)

• Rollout is being invoked.

• The calling task is or has a subtask.

• A WTOR is pending.

• The CHECKID is missing, is too long, or
contains invalid characters.

In addition to these tests, a check is
made for active ENQs. If any are pending,
a warning message is issued, at completion
of processing, informing the programmer it
is the program's responsibility to reestab
lish the ENQs on a restart.

If the caller has not specified the
checkpoint entry blocksize in the DCB. a
DEVTYPE macro instruction is issued to
obtain the maximum blocksize for the
deVice, which is entered in the DCB. (The
blocksize will be reset to zero before
return to the caller.) Normal exit from
this module is to IGC0206C, for JCT
processing.

JCT Processing (IGC0206C)

The third housekeeping module constructs
a channel program and I/O control blocks in
the work area, and reads in the JCT from
the input queue. The Checkpoint Exit rou
tine is called if an I/O error occurs.

The count of the number of checkpoints
taken for the current job is incremented in
the JCT, and, if no CHECKID was supplied by
the caller, one is generated (C'C' plus the
seven-digit number of checkpoints taken).

A Checkpoint Header Record (CHR), shown
in Figure 8-2, is constructed in the work
area and padded to 400 bytes with binary
l's. The CHR is left in the output buffer
and written later. Normal exit is to the
Check I/O routine.

CANCEL Processing

The CANCEL operand of the CHKPT macro
instruction indicates that the caller does
not want a checkpoint entry to be created,

\
,

o r-------------------T-------------------,
dec hex I Number of CHKPTS I CHECKID Length I

4 4 r---------------------------------------~-------------------~-------------------~
I CHECKID (left justified) I
I (Checkpoint Entry Identification) I

20 14 ~---~
I DDNAME of CHECKPOINT Data Set I

28 lC ~---------------------------------------T---------------------------------------~ I Lower Boundary of Problem I Upper Boundary of Problem I
I Program storage I Program Storage I

36 24 ~-------------------T-------------------+---------------------------------------~ I CHKPT Blocksize I TIOT Length I CHECKPOINT Work Area Size I
44 2C ~-------------------~-------------------+---------------------------------------~

I CHECKPOINl' Work Area Address I CHECKPOINT SVRB Address I
52 34 ~---------------------------------------+---------------------------------------~ I Lower Boundary of IBM 2361 Core I Upper Boundary of IBM 2361 Core I

I Storage Area (Hierarchy 1) I Storage Area (Hierarchy 1) I L _______________________________________ ~ _______________________________________ J

Figure 8-2. CHECKPOINT Header Record (CHR)

but wants to suppress an automatic restart
at any preceding checkpoints. If CANCEL is
specified, IGC0006C issues a GETMAIN for a
small work area, and calls IGC0206C module
to read the JCT. Control is then passed to
the Checkpoint Exit module (IGCOQ06C),
where the checkpoint taken flag is set off,
the JCT is returned to the input queue, and
control is returned to the caller. In case
of a subsequent abnormal termination, there
is no indication in the JCT that checkpoint
entries exist for the failing step, and no
checkpoint restart is performed. The
entries are retained in the checkpoint data
set; the programmer may restart the step
from one of these entries h¥ submitting the
proper restart Job Control Language at a
later time.

PURGING I/O REQUESTS

The Check I/O routine consists of one
module, IGC0506C, which intercepts pending
I/O requests initiated by the caller.
Check I/O obtains a pointer to the chain of
DEBs from the caller's TCB, and issues the
PURGE macro instruction, specifying the
QUIESCE option, for each DEB in the chain.
The SVC Purge routine removes any I/O
requests associated with the specified DEB
from the Logical Channel Queues of the I/O
Supervisor. If a request has already been
started, SVC Purge allows it to complete
normally before returning to Check I/O.

If an error occurs in compieting an
active I/O request for a QSAM or QISAM data
set, Check I/O tests if the user has speci
fied the QSAM ACC option ("accept errors")
in the DCB. If ACC is specified, the error
is ignored. otherwise, the Resume I/O rou
tine is called, and no checkpoint is writ
ten. An error message (IHJOOOI) is written
to the operator indicating unsuccessful
completion because of an I/O error. Data
sets with other organizations are not

checked for I/O errors. When all of the
caller's I/O activity has subsided, the
Preserve routine is called.

DESCRIBING DATA SET STATUS

The Preserve routine consists of two
load modules, IGCOA06C and IGCOD06C. The
first writes out the CHR already built (by
IGC0206C) in the output buffer; the second
builds and writes out Data Set Descriptor
Records (DSDRs) for each data set. If
either module detects an end-of-volume for
the checkpoint data set on tape, IGC0206C
is called to reprocess with a new tape. If
the checkpoint data set is on a direct
access device, or if end-of-volume is
reached a second time on tape, the Resume
I/O routine is called, and no further pro
cessing takes place.

Writing Out the CHR (IGCOA06C)

The Preserve routine writes out the CHR,
which is always 400 bytes long. If the
checkpoint data set is a partitioned data
set, a NOTE macro instructi.on is issued,
and the relative track address returned is
saved in the work area. Control is passed
to the second module.

Building and Writing DSDRs (IGCOD06C)

The second module of the Preserve rou
tine reads JFCBs from the input queue,
obtaining the track addresses from the
TIOT. For each JFCB, a Type 1 DSDR, con
sisting of a 2-byte identification
(X'OOOO'), the 176-byte JFCB, the DDNAME,
and the UCBTYP field from the UCB, is con
structed in the output buffer. If JFCB
extensions are associated with the JFCB,
they are read in, and a Type 2 DSDR is con
structed for each, consisting of the iden
tification X'0004', and the 176-byte JFCB
extension. Whenever the 400-byte buffer is

Section 8: Checkpoint/Restart 181

filled, it is written out to the checkpoint
data set. When the end of the TIOT is
reached, Preserve checks for the existence
of a Generation Data Group Bias Count Table
(GDGBCT). If one exists, as many Type 3
DSDRs as necessary to contain it are built
and written. A Type-3 DSDR has the identi
fication code X'0008' and a 176-byte seg
ment of the GDGBCT. The format of the
DSDRs is shown in Figure 8-3. Normal exit
is to Checkmain.

COPYING THE REGION

The Checkmain routine consists of three
load modules, IGCOF06C, IGCOG06C, and
IGCOH06C. The first copies the caller's
region into the Checkpoint data set as
CIRS, and the second and third create SURs
from the main storage supervision and con
tents supervision control blocks. Any I/O
error within these modules causes the
Resume I/O routine to be called, with an
error code returned to the caller. If end
of-volume is detected on tape for the first
time, control is transferred to IG0206C to
attempt reprocessing with a new tape. If
end-of-volume is detected on tape for a

Type 1 DSDR

second time, or on a direct access device,
Resume I/O is called with an error code.

writing CIRs (IGCOF06C)

The first checkmain module determines
the limits of the checkpoint work area,
which is the only portion of the caller's
main storage region which is not written in
the checkpoint entry. The first area
copied is the portion of the region extend
ing from the top of the checkpoint work
area to the upper limit of the region. The
next portion copied is from the lower limit
of the region up to the lower boundary of
the work area. If necessary, storage
assigned to the task in hierarchy one is
copied last. Blocks are written out
according to the blocksize supplied by the
caller, or the maximum blocksize of the
device, if the caller did not specify
blocksize. Data is not moved to a buffer
for writing, but is copied from its loca
tion in the region. The last record writ
ten out for each of the three storage areas
is normally shorter than the specified
blocksize. Such short records are extended
to at least 18 bytes.

o 2 1 78 1 86 1 90
~I-------Tj------------~?rl------------~----------------------------~---.--------------~

I X'OOOO' I
I

Type 1 DSDR
Identifier
(2 bytes)

Type 2 DSDR

o 2

JFCB

III
Job File
Control Block
(176 bytes)

178

DDNAME

DDNAME of the
Data Set
(8 bytes)

Type 3 DSDR

o 2

UCBTYP

Unit Control Block
Type Field
(4 bytes)

~X_'OI~_0_4_'~ ________ J_FC __ B-TE~;r7_n_si_on ________ ~ I~X_'_OO~O_8_' ~ ________ G_D~~llBCT
I

Type 2 DSDR Job File Control Type 3 DSDR Generation Data Group
Identifier Block Extension Identifier Bias Count Table
(2 bytes) (176 bytes) (2 bytes) (176 bytes)

Special Identifiers

o 2 o 2

B Indicates that the
X'0010' previous DSDR is the

last one.
B Indicates that the

X'0014' previous DSDR is the
last one in the block.

Figure 8-3. Data Set Descriptor Records (DSDRs)

182

178

Building and Writing SURs (IGCOG06C and
IGCOH06C)

The SURs are constructed in a 200-byte
output buffer in the work area, which is
written out whenever it is full. The
fields within the SUR may vary in content
and length, so each is prefixed by a one
byte type code.and one-byte length field as
it is placed .in ~he .buffer. IGCOG06C first
inserts the PQEs .associated with the pro
blem program TCB, then the SPQEs and DQEs
associated ·with the TCBs of the system task
control routine, the initiator, and the
problem program. Next the SVRBS and PRBs
are added in the order they are found on
the RB chain, and the LLEs are added last.
IGCOH06C adds CDEs, the address of the PIE,
the address of the first problem program
save area from the TCB, the address of the
pointer to the problem program save area
from the TQE, the general registers from
the checkpoint SVRB, each problem program
DEB, any IRBs attached to these DEBS, the
floating-point registers, the checkpoint
DCB, the address of the SYNAD routine in
the checkpoint DCB, and the TIOT. Normal
exit is to the Resume I/O routine.

RESTORING I/O REQUESTS

The Resume I/O routine (IGCON06C)
searches through the chain of DEBs from the
caller's TCB. If a DEB has an entry in the
DEBUSRPG field, it indicates I/O requests
were purged for that data set. Resume I/O
issues a RESTORE macro instruction for each
DEB with such an entry. The Restore rou
tine returns the purged I/O requests to the
Logical Channel Queues of the I/O Supervi
sor. When all the DEBs have been checked,
the Checkpoint Exit routine is called.

CHECKPOINT EXIT ROUTINE

The Checkpoint Exit routine is normally
entered from the Resume I/O routine, but
may be called from prior modules if an
error is detected. The routine consists of
two modules: IGCOQ06C, a general clean-up
procedure, and IGCOS06C, a message routine.

General Clean-up (IGCOQ06C)

The first exit module checks to see if a
checkpoint work area was obtained. If no
work area exists, processing did not begin,
and the message module is called to report
the error and return to the caller. A test
is also made for the CHKPT CANCEL operand.
Processing for CANCEL was discussed above
under "·Parameter and Environment Check."

If the checkpoint entry was written, and
the checkpoint data set has partitioned
organization, a STOW macro instruction,

specifying the CHECKID as member name, is
issued to add the entry to the data set
directory. If no checkpoint entry was
written because of an error, a FREEMAIN is
issued for the checkpoint work area, and
control is passed to the message module.

The CHECKID is placed in the JCT to
identify the most recent checkpoint entry
for the job, and the checkpoint volume
serial number or track address is placed in
the appropriate JCT fields. (If automatic
restarts have been suppressed by job con
trol statements, only the CHECKID is moved
to the JCT.) The updated JCT is written
out to the input queue, the checkpoint work
area is returned via FREEMAIN, and the mes
sage module is called.

Message Module (IGCOS06C)

The last checkpoint module issues a GET
MAIN for a message buffer and small work
area, and determines the type of message to
be issued from the return code and error
code passed in the extended SVRB save area.
One of the following messages may be writ
ten: IHJOOOI, IHJ001I, IHJ002I, IHJ004I,
or IHJ005I. The jobname, checkpoint
DDNAME, and, if a checkpoint entry was
created, the volume serial number, unit
name, and CHECKID of the entry, are moved
into the message area, and a WTO macro
instruction is issued.

If the Housekeeping routine opened the
checkpoint data set, a CLOSE is issued.
The message area is released via FREEMAIN,
and one of the £oliLowing return codes is
placed in Register 1'5:

X'OO' Valid CHECKPOINT entry written.

X'OS' No CHECKPOINT written, calling
error.

X'OC' Permanent I/O error.

X'10' A valid CHECKPOINT entry was writ
ten, but there were outstanding
ENQs. It is the responsibility of
the user to restore these ENQs at
RESTART.

SVC 3 (EXIT) is then issued to return to
the Dispatcher.

RESTART (SVC ·52)

Restart of a program within a job step
is accomplished by using the information
stored in a checkpoint entry to recreate
the conditions that existed when CHKPT was
issued. Interpretation of the checkpoint
entry is done by both job management and
supervisor routines. When the step to be
restarted is scheduled, job management

S~ction S: Checkpoint/Restart 183

inserts an extra job step (IEFDSDRP) in
front of it, which adjusts the input queue,
and reads the DfDRs to build JFCBs for the
restarting step's data sets. IEFDSDRP also
ensures device allocations that are compat
ible witn those that existed at CHKPT time.
Just before e~it, IEFDSDRP changes the name
of the restarting step to IEFRSTRT. When
this program is brought into storage .and
given control, it issues SVC 52, causing
the first load module of the Restart rou
tine to be brought into an SVC transient
area. The first load of the restart rou
tine is used by job management routines.
During the actual restart, it transfers
control to the housekeeping routines.
Restart uses the TCB and other control
blocks assigned to IEFRSTRT to recreate the
system environment for the restarting step.

The major functions of restart, and
their relationship to the job management
routines and the checkpoint entry, are
shown in Figure 8-4. The functions are
listed below, with the names of the load
modules implementing them:

• Obtaining and formatting storage
(IGC0105B and IGC0205B). The House
keeping routine issues a GETMAIN for
storage in the problem program region,
builds work tables and buffers for the
following routines, and positions the
checkpoint entry to the first CIR.

• Restoring the step to main storaqe
(IGC0505B, IGC0605B, IGC0705B,
IGC0805B, and :'-GC0905B). The Repmain
routine reads the CIRs to restore the
St8P to its region in main storage, and
processes the SURs to rebuild the task
supervision control blocks and queues.

• JFCB Processing (IGCOG05B, IGCOG95B,
IGCOI05B, and IGCOH05B). The JFCB pro
cessor interprets the JFCBs (already
rebuilt by IEFDSDRP) and builds tables
describing each open data set in the
restart work area.

• TCAM Processing (IGCOJ05B). The TCAM
Data Set Processor initializes the TCAM
region, sets up TCAM control blocks,
and queues for each TCAM data set that
is to be restarted.

• Mounting and verifying volumes
(IGCOK05B and IGCOM05B). The Mount/
Verify routine processes volume labels
(calling a user label routine if neces
sary), and requests the operator to
mount misSing volumes.

• Processing SYSIN/SYSOUT non-DASD data
sets (IGCOL05B). The SYSIN/SYSOUT Non
Direct Access Data Set Processor primes
the buffers for a SYSIN data set from
the card reader, or writes header
labels on a SYSOUT tape data set with
deferred restart.

CHECKPOINT ENTRY

Checkpoint
Header
Record (CHR)

Data Set
Descriptor
Records (DSDRs)

Records
(SURs)

"' Supervisor UJ
, ______ J ~:

System
Control
Blocks

Legend

- - +1 Processing ~
Info Info
from to

_------------- __ J
I

Main Storage Region

Figure 8-4. Restart Processing Routines

184

Exit

WTO,
Restart User

o Positioning open data sets (IGCON05B,
IGCOQ05B, IGCOP05B, IGCOR05B, IGCOS05B,
and IGCOU05B). The Data Set Processor
adjusts the problem program's data sets
to the record being processed when
CHKPT was issued.

o Processing ISAM or BDAM data sets
(IGCOW05B). The ISAM and BDAM Data Set
Processors prepare ISAM and BDAM data
sets for restart processing.

• Restarting I/O reguests (IGCOT05B). If
the problem program had I/O requests
pending when CHKPT was issued, the
Access Method-Disposition routine
returns these requests to the Logical
Channel Queues to be restarted. This
routine also adjusts Partitioned Data
Set directories.

o Returning control to the step
(IGCOV05B). The Restart Exit routine
frees the restart work area, writes a
message to the console, and returns
control to the restarting step through
the Dispatcher.

OBTAINING AND FORMATTING STORAGE

The Housekeeping routine consists of two
load modules, IGC0105B and IGC0205B. The
first obtains storage, transfers informa
tion into it, and opens the checkpoint data
set. The second constructs the I/O blocks
and channel programs needed to read the
checkpoint entry.

Obtaining Storage (IGC0105B)

The first load module of Restart House
keeping receives a parameter list in the
extended SVRB save area containing informa
tion from the checkpoint header record and
DSDRs, processed by IEFDSDRP. From this
parameter list, the Housekeeping routine
obtains the limits of the restarting step's
region, and issues a GETMAIN for all of it.
The parameter list also contains a pointer
to the checkpoint work area within the
region, and Restart Housekeeping sets up
the same area as a work area. A BSAM DCB
for the checkpoint data set is constructed
in the work area, and an OPEN is issued.
Part of the problem program region is tem
porarily freed with FREEMAIN for the OPEN
routine. The second module of the House
keeping routine is called after the OPEN.

Checkpoint Data Set Initialization
(IGC0205B)

The second Housekeeping routine module
moves the checkpoint data set lOB and chan
nel program to the work area. If the data
set is on a tape device, successive records
are read until the tape is positioned at

the first CIR. If the data set is on a
direct access device,
instruction is issued
set at the first CIR.
Repmain routine.

a POINT macro
to position the data
Exit is to the

RESTORING THE STEP TO MAIN STORAGE

The Repmain routine consists of five
modules (IGC0505B, IGC0605B, IGC0705B,
IGC0805B, and IGC0905B). The first copies
the CIRs into their original positions in
the step's region; the other four read and
process the SURs to recreate the system
control blocks and queues that existed for
the restarting task at CHKPT time. An I/O
error or end-of-volume in any of the
modules causes transfer to the Restart Exit
routine for termination.

Restoring Main Storage (IGC0505B)

The first module of the Repmain routine
reads CIRs into the areas of main storage
from which they were written. The first
CIRs are read into the area between the
upper limit of the restart work area (which
corresponds to the checkpoint work area)
and the top of the region. The second area
copied is from the lower limit of the
region to the bottom of the restart work
area. Hierarchy 1 is restored last, if
present. The first Repmain module also
restores the PQEs, the SPQEs and the DQEs
for the TCBs of the initiator, the system
task control routine, and the restarting
task. These elements are the first fields
in the SURs.

SUR Processing (IGC0605B, IGC0705B,
IGC0805B, IGC0905B)

The other Repmain modules continue the
processing of the SURs. The contents
supervision blocks are replaced with the
saved CDEs, Extent List, and LLEs. The
contents supervision blocks are then freed.
Internal queue pointers within these blocks
are adjusted as they are returned to system
queue space. Finally the current TCB
(originally assigned to IEFRSTRT) is
updated with the information saved from the
restarting task's TCB. The TIOT is the
last control block read in, before control
is passed to the JFCB Processing routine.
If an I/O error or EOV occurs, control
passes to IGC0905B which frees all partial
ly restored chains.

JFCB PROCESSING

This routine counts the data sets that
were open at CHKPT time, and builds a data
set description table in the restart work
area for each data set. In another part of
the work area, a set of I/O control blocks

Section 8: Checkpoint/Restart 185

(DCB, lOB, DEB, and a channel program) is
constructed for each data set. The JFCBs
processed were constructed from the DSDRs
in the checkpoint entry by IEFDSDRP. The
first two modules of the JFCB Processing
routine (IGCOG05B and IGCOG95B) build the
tables and control blocks, the third (IGC
OI05B) makes adjustments for data sets
residing on more than five volumes. If
there are TCAM data sets, IGCOJ05B is
executed before IGCOI05B. IGCOH05B
receives control if any data set descrip
tion tables correspond to a dummy data set.

Table Build Module (IGCOG05B)

This JFCB Processing module assigns a
304-byte section within the restart work
area to each DEB chained to the restarting
task's TCB. Then the nnew" TIOT is
searched for the DDNAME corresponding to
each open data set.

Table Build Module (IGCOG95B)

This JFCB processing module obtains the
disk addresses from the TIOT, and the JFCBs
are read in. If an I/O error occurs, or a
DDNAME is missing, control is passed to the
Restart Exit routine. When all JFCBs have
been read in, a DCB, DEB, lOB, ECB, and
channel program are constructed for each
data set. For non-TCAl·1 data Gets, up to
five volume identifications are moved from
the JFCB to the associated data set
description table, and a flag is set if it
will be necessary to read JFCB extensions
later for additional volumes.

For TCAM data sets, the queue name is
saved in the associated data set descrip
tion table and the TCAM flag is set to in
dicate that TCAM processing is required.
If the TCAM flag is set, IGCOG95B passes
control to the TCAM Data Set Processor
(IGCOJ05B). otherwise, it passes control
to IGCOI05B.

TCAM Data Set Processor Module (IGCOJ05B)

If there are any TCAM data sets to be
restarted, the TCAM data set processor
receives control from IGCOG95B. It initia
lizes the TCAM region and sets up TCAM con
trol blocks and queues for each data set.
Control passes to the Restart Error routine
(IGCOV05B) if the TCAM message control pro
gram is not active in the system, the data
set's QNAME parameter is not known to TCAM,
the process entry defined by QNAME is
already being used, or a GETMAIN by TCAM
was unsuccessful. If IGCOJ05B executes
normally, control passes to the last JFCB
Processor (IGCOI05B).

186

Table Complete Module (IGCOI05B)

The last JFCB processing module reads
the JFCB extension for those data sets
residing on more than five volumes. For
non-concatenated partitioned data sets and
sequential data sets, the volume in use at
CHKPT time is placed at the top of the
description table list of volumes, and it
is the only one mounted later. A flag is
set for multi-volume ISAM, BDAM, and conca
tenated partitioned data sets to indicate
that all volumes on which they reside will
have to be mounted.

Dummy Data Set Processor (IGCOH05B)

This module receives control from IGC
OI05B if any of the data set description
tables correspond to a dummy data set.
(For a discussion of dummy data sets, refer
to Job Control Language Reference.)

For each dummy data set encountered, a
check is made to determine if the data set
was a dummy data set when the checkpoint
was made. If it was, no further proceSSing
is done.

For each dummy data set that was not a
dummy data set when the checkpoint was
taken, IGCOH05B (1) deletes the subroutine
loaded by the OPEN macro instruction, and
(2) unchains and frees the DEB associated
with the data set. If (1) the data set ~QS
being processed by the queued sequential or
basic sequential access methods and (2) the
checkpoint was not made during an end-of
volume exit for the data set, then IGCOH05B
frees the lOBs created by the OPEN macro
instruction, creates a dummy DEB and adds
it to th.e DEB chain, loads the dummy access
method (IGC019AV), and sets pointers to it
in the DCB associated with the data set.

An error condition exists if (1) a data
set that has been made a dummy is not being
processed by either the basic sequential or
the queued sequential access methods at the
time the checkpoint was made or (2) the
checkpoint was made during an end-of-volume
exit. When an error occurs, an error code
of 79 is placed in the restart work area.

If no errors are detected, control is
passed to the mount verification portion of
the Restart routine once all of the table
entries have been processed.

If an error has been detected, control
is passed to the Restart Error routine
(IGCOV05B) •

MOUNTING AND VERIFYING VOLUMES

The Mount/Verify routine ensures that
the correct volumes are mounted for the

user's data sets, and requests the operator
to mount any that are missing. The user's
non-standard tape label routine is called
to verify data sets with non-standard
labels. The routine consists of two
modules: IGCOOK05B, which processes all
data sets not on a direct access device,
and IGCOM05B, for direct access device data
sets.

Non-Direct Access Processing (IGCOK05B)

The non-direct access Mount/Verify
module checks each of the data sets
description tables, and processes all
except those for direct access data sets
and null data sets. For SYSIN, SYSOUT,
unit record, and graphic data sets, the DEB
is adjusted, and no mount verification is
performed.

For data sets on magnetic tape, the
volume serial number in the data set's
description table (the nvmber saved at
CHKPT time) is compared to the volume seri
al number in the primary UCB specified by
the data set's TIOT entry. If the volume
serial numbers do not match, the secondary
UCBs, if any are checked. If no match is
found, a suitable UCB is selected from the
TIOT list, and the operator is requested to
mount the volume.

When the volume serial number is
located, or when the volume is mounted, the
tape label is read and checked, and the
tape is rewound. If it is not the correct
volume, or if a standard label is present
and the JFCB indicates it should not be, a
message is written to the operator, and the
tape is unloaded. If it is the correct
volume, the UCB and DEB are adjusted, and
the UCB becomes the primary UCB in the TIOT
entry.

When the end of the description tables
is reached, a second pass is made through,
checking for input volumes with non
standard labels. A user-supplied label
verification routine is called if any are
present. On completion, the direct access
Mount/Verify module is called, unless there
are no direct access data sets. In this
case the first Position I/O module is
called.

Direct Access Mount/Verify Module
(IGCOM05B)

The second module of the Mount/Verify
routine compares the volume serial number
in the data set description table (saved at
CHKPT) with the volume serial number in the
primary UCB listed in the TIOT entry for
each direct access data set. If the num
bers match, the DEB and UCB are adjusted.
If the numbers do not match, the secondary
UCBs listed in the TIOT are checked. If no

match is found, a suitable UCB is selected,
and the operator is requested to mount the
volume.

For sequential and single partitioned
data sets, only the volume in use at CHKPT
time is mounted. All volumes on which
ISAM, BDAM, or concatenated partitioned
data sets reside are mounted. If neces
sary, JFCB extensions are read to find the
volume identifications.

If an error occurs in either of the
Mount/Verify modules, Restart is terminated
by calling the Exit routine. If no error
occurs, control is passed to the Data set
Processor routine. The tape module is
called first, unless all data sets are on
direct access devices.

SYSIN/SYSOUT Non-Direct AccesS Data Set
Processor (IGCOL05B)

This receives control from module
IGCOK05B or IGCOM05B for certain SYSIN or
SYSOUT data sets. It primes the buffers
for a SYSIN data set from the card reader,
or writes header labels on a SYSOUT tape
data set with deferred restart. If an
ASCII latel is used for a SYSOUT tape or an
error occurs in writing the SYSOUT header
labels, control goes to the Restart Exit
routine (IGCOV05B). otherwise control goes
to IGCON05B (for SYSIN/SYSOUT data sets on
direct access) or IGCOP05B.

POSITIONING OPEN DATA SETS

SYSIN/SYSOUT Data Set Processor 1
(IGCON05B)

This module adjusts the DCB, DEB and
channel programs for SYSIN or SYSOUT direct
access data sets on a deferred restart.
These data sets which existed at the time
checkpoint was issued have been deleted,
and new SYSIN or SYSOUT data sets have been
allocated at restart time. The name of the
reallocated data set is obtained from the
JFCB, and the VTOC is searched for the
DSCB. Extents from the DSCB are used to
construct a new DEB. If the number of
extents in the DSCB equal the number of
extents in the old DEB in use at checkpoint
time, the new DEB is constructed in the
same space as the old DEB. Otherwise, GET
MAIN is issued to obtain space for the new
DEB, and the old DEB space is freed.

For SYSIN data sets, the following abso
lute disk addresses (MBBCCHHR) that point
to the old data set are changed to absolute
disk addresses that point to the same posi
tions in the new data set:

1. Full disk address in the DCB - This
address is changed to point to the

Section 8: Checkpoint/Restart 187

next record to be read from SYSIN in
the new data set.

2. lOB seek addresses of the current and
next lOB - At Restart time, these
addresses point to the old data set
(because the channel program for the
next read is built during the current
read) and now are changed to point to
the new data set.

The old disk addresses (MBBCCHHR) are con
verted into TTR form using the old DEB~
after the new DEB is constructed, the
addresses are converted back into MBBCCHHR
form using the new DEB. The TTR to
MBBCCHHR conversion is performed in the
next module, IGCOQ05B.

SYSIN/SYSOUT Data Set Processor 2 (Direct
Access) (IGCOQ05B)

This module calculates the number of
tracks in each extent in each SYSIN or SYS
OUT DEB and places the number in the DEB.
For SYSOUT data sets, the lower limit of
the first extent is placed in the full disk
address field of the DCB~ the track capaci
ty for the device is also placed in the
DCB. For SYSIN data sets, the absolute
disk addresses which were converted to TTR
form in IGCON05B are now converted back to
MBBCCHHR form using the new DEB. Control
is then passed to Data Set Processor 1
(IGCOP05B) if there are any non-direct
access data sets. Otherwise, control
passes to Data Set Processor 2 (IGCOR05B).

Data Set Processor 1 (IGCOP05B)

IGCOP05B is the non-direct access table
reformatting module. There is a table ele
ment entry in the Restart work area for
each data set that is open when a CHKPT
macro instruction was issued.. There are at
least two areas of 304 bytes each, located
after the table elements, which contain a
DEB, DCB, ECB, lOB, Channel Program, and
JFCB. IGCOP05B counts the number of tape
data sets, indicated by the table elements,
and tries to reformat the 304-byte areas to
contain 128 bytes for each tape data set
(eliminating the JFCB). If more space is
needed for 128-byte areas than is contained
in the area occupied by the 304-byte areas,
IGCOP05B issues a conditional GETMAIN macro
instruction for additional storage. If
this storage is not available, all tape
data sets cannot be repositioned simul
taneously. Control then passes to
IGCOS05B.

Data Set Processor 1A (IGCOS05B)

This module works from the data set
description tables, processing all magnetic
tape data sets except those tapes created
under DOS which contain either embedded

188

checkpoint records or possibly a leading
tapemark. On entry, all but two types of
tape volumes are positioned at the load
point. The exceptions are SYSIN data sets,
which are positioned to read the first user
input record, and non-standard labeled
tapes, which are positioned at the first
data record by the user label routine.

Data Set Processor lA first advances the
tape past the label, if necessary, to the
correct data set, using the file sequence
number. Then the DCB block count field
(DCBBLKCT), saved at CHKPT, is used to
advance the data set to the correct record.
If the BLKCT field is zero or negative, the
data set is positioned at the first record
or end-of-file, dependinq whether the for
ward or backward processing was taking
place at CHKPT time. An I/O error in repo
sitioning causes Restart termination.
IGCOS05B passes control to the DOS Tape
Data Set Processor (IGCOU05B) if any data
sets are open at CHKPT time for which eith
er a leading tapemark or embedded DOS
checkpoint record is indicated.

DOS Tape Data Set Processor (IGCOU05B)

This module is called to position tapes
created under DOS which contain either a
leading tapemark or embedded checkpoint
record. Positioning of these tapes occurs
similarly as in IGCOS05B with two
.o'V',...o""'+-';"T'Io~. _ _-1:' ~-.... - .
1. For the indication of a leading tape

mark, a read is issued and the result
ing status is tested for indication of
a unit exception. If a tapemark is
not sensed, the tape is repositioned
to the load point prior to performing
record positioning.

2. To perform record positioning of data
sets containing DOS embedded check
point records requires the reading of
the first 20 bytes of every block.
During record positioning, the
embedded checkpoint records encoun
tered are spaced over and are not
reflected in the block count.

Data Set Processor 2 (IGCOR05B)

This module is called from IGCOS05B
except when the above described DOS tape
volumes require pbsitioning. If either of
these tape volumes requires positioning,
Data Set Processor 2 is called from IGC
OU05B. If there are no direct access data
sets, the Access Method-Disposition module
(IGCOT05B) gains control.

Data Set Processor 2 (IGCOR05B) checks
each data set residing on a direct access
device for a difference in the space allo
cation limits in the DEB saved at CHKPT

time, and the space allocation limits in
current data set control blocks (DSCBs) in
the volume table of contents (VTOC). Any
discrepency between a DEB and the asso
ciated DSCB for input data sets causes
Restart termination, since the data set has
been modified since CHKPT.

For output data sets, the smaller of the
two space allocations is placed in both the
DEB and the DSCB. If the DSCB extents are
reduced, the Partial Release module of the
CLOSE routine is called to return the
released space to the free area on the
volume. ENQ and DEQ are used to protect
the VTOC from other users during any modi
fication. When all direct access data sets
have been checked, the Access Method
Disposition module is called.

ISAM and BDAM Data Set Processor (IGCOW05B)

If there are any ISAz.I or BDAM data sets
to be restarted, this module receives con
trol from Data Set Processor 2 (IGCOR05B).
For ISAM data sets, it reads the Format 2
DSCB and then transfers control to ISAM
Open (IGG01920 or IGG01950) to validate
certain pointers in the DSCB. If an I/O
error occurs in the ISAM open module it
sets a return code and IGCOW05B gives con
trol to the Restart Exit routine
(IGCOV05B). For BDAM data sets, IGCOW05B
reinitializes addresses within reentrant
BDAM access method modules. It passes con
trol to the I/O Restart routine (IGCOT05B).

RESTARTING I/O REQUESTS

The Access Method-Disposition module
(IGCOT05B) checks each output partitioned
data set for members added since CHKPT was
issued. The partitioned data set directory
is read, and if the relative track and
record address of any member is greater

than that of the member being processed at
CHKPT, it is deleted, using the STOW macro
instruction.

After all partitioned data sets have
been checked, the chain of DEBs associated
with the problem program TCB is inspected
for entries in the DEBUSRPG field. These
entries point to a chain of lOBs for user
I/O requests which were pending at CHKPT
time. The RESTORE macro instruction is
issued for each DEB with intercepted
requests. This returns the I/O requests to
the I/O Supervisor's logical channel
queues, where they are staT-ted. Control
then passes to the Exit module.

RESTART EXIT ROUTINE

The Restart exit module (IGCOV05B) tests
the error code field in the restart work
area to determine if entry was caused by an
error in one of the earlier modules. If an
error code is present the exit routine
places it in the nnnn field of the console
message IHJ007I. The message is written
with WTO, and ABEND is issued to return to
the Dispatcher.

If no error code is found, WTO is used
to write console message IHJ008I. The
restart work area is released with FREE
MAIN, and if the checkpoint routine opened
the checkpoint data set, the restart exit
routine issues a CLOSE for it.

The exit routine places a return code of
X' 04' in register 15 to inform the restart
ing program that a restart has taken place,
and exits with an SVC 3 (EXIT). Since the
TCB and SVRB have been updated with infor
mation saved at CHKPT time, the problem
program will be started as though CHKPT had
just been issued.

section 8: Checkpoint/Restart 189

SECTION 9: EXITING PROCEDURES

Exiting procedures consist of the prepa
ration for return and the actual return of
control from a completed program or rou
tine. The program may be a user or system
program that has issued a RETURN macro
instruction, a completed SVC routine, or a
user (asynchronous) exit routine. Control
may pass to a user program or fo a supervi
sor termination routine that performs nor
mal termination of the completed program's
task. Exiting procedures fall into three
main classes:

• Preparing for return from a type-l SVC
routine. This class of exiting proce
dure is performed by the Type-l Exit
routine.

• Preparing for return from all other
types of programs. This class of exit
ing procedure is performed by the Exit
routine.

• Performing the actual return of con
trol. This class of exiting procedure
is performed by the Dispatcher (except
when the return is from a type-l SVC
routine that returns control directly
to the caller).

HANDLING RETURN FROM TYPE-l SVC ROUTINES

The Type-1 Exit routine handles the
return to a user program from a completed
type-l SVC routine. It determines whether
control should be returned directly to the
caller of the SVC routine, or to the Dis
patcher. Control passes to the Dispatcher
if the completed SVC routine has indicated
the need for a task switch by altering the
"new" TCB pOinter, IEATCBP.

The Type-l Exit routine is entered from
any type-l SVC routine via a branch. Its
first step, a housekeeping step, is to
reset the "type-l switch" to indicate that
registers are no longer stored in the lower
main storage save area. The ABTERM routine
tests this switch during an abnormal task
termination to determine whether the rou
tine that called the ABTERM routine is a
type-l SVC routine.

The Type-1 Exit routine then determines
whether to return control directly to the
caller or to branch to the Dispatcher; it
does this by testing if the exiting SVC
routine has indicated the need for a task
switch. Type-l Exit branches to the Dis
patcher to effect a task switch for each of
the following conditions:

190

• The fields IEATCBP and IEATCBP+4 do not
contain the same TCB address.

• The TCB pointed to by IEATCBP+4 is set
nondispatchable.

• The Type-l SVC processing just com
pleted was for POST (SVC 2).

• The program issuing the svc is fully
enabled for interruptions.

Before branching, the Type-1 Exit routine
saves the SVC old PSW in the current requ
est block, and the contents of the caller's
registers in the current TCB; this is for
eventual return to the caller. Otherwise,
no task switch is required; the Type-l Exit
routine restores registers from lower main
storage and returns control to the caller.

In MVT with Model 65 multiprocessing,
the Type-l Exit inspects the doubleword TCB
pointers of both CPOs. If the TCB pointers
for a CPO are unequal, a task switch is
required, and the Dispatcher must be
entered. The Dispatcher is also entered if
the External FLIH bit in FLRETFLG is set,
indicating that an external interruption
has not been processed (in which case the
Dispatcher passes control to External
FLIH). In addition, the Dispatcher places
zeros in the supervisor lock and CPU
affinity bytes before returning control to
the caller to show that neither CPU con
t~ols disabled Supervisor code if the SVC
old PSW is completely enabled for interrup
tions. A completely enabled SVC old PSW
indicates that the system was unlocked dur
ing the calling routine and must be
returned to an unlocked state after comple
tion of the Type-l SVC routine.

PREPARING FOR RETURN FROM PROGRAMS OTHER
THAN TYPE-l SVC ROUTINES

The Exit routine, itself a type-1 SVC
routine, handles the exiting procedures for
all programs other than type-l SVC rou
tines. User or system programs gain
supervisor-assisted Linkage to the Exit
routine by issuing a RETURN macro instruc
tion; SVC routines obtain a similar result
by using an SVC-3 instruction. The Exit
routine determines the type of program that
is exiting. The program can be a user
program-check exit routine, a user asyn
chronous exit routine, an SVC routine, or a
user program. For each type of exiting
program, some special processing is
performed.

If the completed program was the first
executed program of its task, and therefore
is considered to be at the "highest control
level" within that task, the Exit routine
recognizes an end-of-task condition, and
branches to the End-of-task routine (EOT)
to perform normal termination of the call
er's task.

Upon receiving control back from EOT, or
if an End-of-task condition does not exist,
the Exit routine dequeues the RB under
which the completed program was operating
for all types of completed programs except
user program check routines, which have no
RBs. If the RB had been dynamically
acquired via a GETMAIN macro instruction,
the Exit routine frees the space occupied
by the RB.

When it has completed its processing,
the Exit routine branches to the Transient
Area Refresh routine, which determines
whether an SVC routine that was overlaid in
its transient area block (TAB) may be
restored to the block. The process of
restoring an overiaid SVC routine is called
"refreshing" the TAB. If a TAB may be
refreshed, the Transient Area Refresh rou
tine initiates the refresh process before
branching to the Dispatcher. If no SVC
routines were using a TAB, no processing
occurs, and the Transient Area Refresh rou
tine branches to the Dispatcher.

PREPARING FOR RETURN FROM A USER PROGRAM
CHECK ROUTINE

The Exit routine tests whether to per
form special processing needed during the
return from a user program check routine.
When a user program check routine issues a
RETURN macro instruction, a branch to an
SVC-3 instruction results. The SVC
instruction is located in lower main
storage, just before the entry point to the
Program Interruption FLIH. When the SVC
interruption occurs, the address of the
next executable instruction (the entry
point of the Program Interruption FLIH) is
placed by the CPU in the SVC old PSW. The
Exit routine compares the address in the
SVC old PSW with the address in the program
interruption new PSW; if the two addresses
are equal, the return is from a user pro
gram check routine.

The Exit routine clears the "first-time
logic· switch in the user's program inter
ruption element (PIE). The first execution
of the SPIE routine for the current task
had created a PIE, in which the program old
PSW and certain registers are stored during
a program interruption. The" first-time
logic· switch must be cleared to indicate
to the Program Interruption FLIH that the
PIE is not active; without such a resetting

of the switch, the FLIH would interpret a
second program interruption as occurring in
the program check routine, and would cause
abnormal termination of the current task.

The Exit routine then transfers register
contents and the RB old PSW, belonging to
the user program that had been interrupted
by the program check, to the current RB.
The Exit routine sets up the-right half of
the RB old PSW in the program's RB from
information stored in the PIE. It sets up
the left half of the PSW by transferring
information from the left half of the SVC
old psw, which was stored when the user
program check routine issued a RETURN macro
instruction. The reason for constructing
the RB old PSW from these two different
sources is that (1) the user program check
routine has the option of specifying a
return point in the interrupted program
that is different from the point of inter
ruption, and therefore may store this
return address in the right half of the
program old PSW in the PIE; and (2) the
user program check routine may have acci
dently altered the left hali of the program
old PSW stored in the PIE.

After transferring register contents to
the TCB and setting up the RB old PSW in
the RB, the Exit routine branches to the
Dispatcher, which returns control to the
interrupted user program. The Dispatcher
loads the user's register contents from the
current TCB and loads the RB old PSW set up
by the Exit routine in the RB. This branch
to the Dispatcher is an exception to the
normal procedure of branching to the Tran
sient Area Refresh routine.

PREPARING FOR RETURN FROM PROGRAMS
CONTROLLED BY RBS

If the returning program is not a user
program check routine, the Exit routine
examines the STAE control block (SCE) queue
pointed to by the TCENSTAE field in the
TCE. If there are no SCBs or if AEEND is
in progress, the SCE processing is bypassed
and Exit determines the RE type as
described below. Exit removes from the
queue and frees all SCEs for the exiting
program except those SCEs for which the
exiting program issued a STAE (Specify Task
Abnormal Exit) macro instruction with the
XCTL option. The search of the queue ter
minates when an SCE is found for an RE
other than the RE for the exiting program.
When the RE that is exiting is the last PRE
(EDT condition), Exit frees all SCEs
including STAI SCEs.

If there are no SVREs (except possibly
the exiting RB) queued to the TCE, the
"prevent terminal attention exits" bit in
the TCE is turned off.

Section 9: Exiting Procedures 191

The Exit routine then determines the
type of program that is exiting by examin
ing the RBSTAB field of its associated
request block. This RB is always first on
the RB queue when the Exit routine is
entered. Depending on the type of RB, the
Exit routine performs one of three general
types of processing.

• If the RB is an SVRB, representing a
type 2, 3, or 4 SVC routine, the Exit
routine branches to the SVC Second
Level Interruption Handler to perform
special handling for transient
routines.

• If the RB is an SIRB or an IRB, repre
senting a user exit routine, the Exit
routine performs special processing for
exit routines.

• If the RB is a PRB, representing a user
program, the Exit rqutine performs an
exiting procedure needed for contents
supervision.

If the Returning Routine Is an SVC Routine

For an SVC routine, the Exit routine
branches to the TAHEXIT subroutine (entry
point IEAQTR01). The TAHEXIT subroutine
performs two functions. (1) It moves saved
registers from the SVRB to its TCB, and
stores registers 0, 1, and 15 in the TCB.
It does this so that the caller of the SVC
routine will be redispatched with the prop
er register values. (2) It removes the
SVRB for an exiting transient routine from
the transient area queues. Both functions
are performed if the exiting program is a
transient SVC routine.

The TAHEXIT subroutine manipulates the
register save areas so that when the caller
of the exiting SVC routine is reentered,
its registers 2-14 contain the same values
they had when the SVC was issued. RegiS
ters 15, 0, and 1 contain the values which
the SVC routine provided -- normally para
meters passed back to the caller.

If the exiting routine is resident (type
2), the TAHEXIT subroutine returns control
to the Exit routine. But if the exiting
routine is nonresident, TAHEXIT performs
additional processing to remove the SVRB
from the transient area queues. To do
this, the TAHEXIT routine determines the
address of the TACT entry for the transient
area occupied by the exiting routine. This
address is obtained by adding the displace
ment of the TACT entry (contained in the
exiting SVRB) to the address of the tran-

192

sient area control table (IEAQ~AQ). (See
Figure 9-1.) The TAHEXIT subroutine then
searches the user queue associated with the
TACT entry, looking for an SVRB which is
"using" the ex~ting routine. (An SVRB is
"using" the exiting routine if the TTR
address in the SVRB is the same as the TTR
address in the TACT entry.)

When an SVRB that is using the exiting
routine is found, the TAHEXIT subroutine
checks if it is the SVRB that was control
iing the exiting routine. If it is, it is
dequeued. If it is not, the SVRB repre
sents another request for the routine, and
the TAHEXIT subroutine cannot flag the
transient area as free. In either case,
the entire queue is checked.

When the end of the queue is reached,
the TAHEXIT subroutine decreases by one the
count of the total number of users of all
the transient areas. This count is used by
the Transient Area Refresh routine to
determine if a search for a routine that
should be refreshed is necessary.

The TAHEXIT subroutine flags the asso
ciated TACT entry either "in use" or
"free," according to whether or not another
SVRB for the exiting routine is still in
the user queue. The TAHEXIT subroutine
then returns control to the Exit routine.

Before branching to the TAHEXIT subrou
tine, the RB queue is searched for SVRBs.
If none are found, the TCBATT flag is reset
to zero.

If the Returning Routine Is a User Program

If the test of the RB type indicates a
PRB, meaning that a user program is return
ing control, the Exit routine first moves
the user's register contents from their
save area in lower main storage, where they
had been saved by the SVC FLIH, to the save
area in the current TCB. This action is in
preparation for the Dispatcher's restoring
of registers just before it returns control
to the caller's task.

If the returning program is the last to
be executed for its task, the Exit routine
branches to the End-of-Task (EOT) routine
to perform normal task termination. The
Exit routine determines this condition by
testing the RBTCBNXT flag of the PRB. This
flag, if set, indicates that the RBLINK
field points directly to the TCB. In this
case, the PRB represents the last executed
routine of its task.

Request Queue

Transient Area
Fetch SVRB

TA Fetch
TCB I

Used for
transient
area fetch
task to
load TAB I

No. of TACT Entries

Addr Addr
Flag of of User

TAB I Queue I

Addr Addr

Transient Area
Fetch SVRB

TA Fetch
TCB 2

_______ ::::; Pointer

~ = Information Flow

NOTES: I. User queue I contains SVRBs whose SVC routine is in TAB I,
or was overlaid in TAB I.

User queue 2 contains SVRBs whose SVC routine is in TAB 2,
or was overlaid in TAB 2.

2. The request queue contains SVRBs awaiting an available TAB.

Figure 9-1. The Transient Area Queues

:;:/-
TTR I

User Queue I

(TACT)

Transient Area Block I (TAB 1)

Transient Area Block 2 (TAB 2)

User Queue 2

section 9: Exiting Procedures 193

If the returning program is not the last
to be executed for its task, the Exit rou
tine branches to the CDEXIT subroutine to
determine if there are other requests for
the use of the completed program, and to
prepare for reentry to the program if there
are such requests. The CDEXIT routine
tests if the exiting program has a contents
directory entry (CDE); the existence of a
CDE is indicated in the CDE field of the
PRB. If there is no CDE, the exiting pro
gram was entered via use of the SYNCH macro
instruction, which does not build a CDE; in
this case, the CDEXIT routine returns con
trol to the Exit routine. If there is a
CDE, the CDEXIT routine continues
processing.

The CDEXIT routine determines the type
of CDE. There are two types of CDE -- a
major CDE, which is associated with the
major entry-point of its program; and a
minor CDE, which is associated with an
alias or with an entry point set up by the
execution of an IDENTIFY macro instruction.
If the CDE pointed to by the PRB is a minor
CDE, the CDEXIT routine finds the asso
ciated major CDE. It then reduces the use/
responsibility count in the major CDE.

The use/responsibility count is the
number of times the ATTACH, LINK, XCTL, or
LOAD macro instructions have been issued
for the module. It is used to keep track
of the number of outstanding requests for a
completed load module or program.

If the exiting program is serially reus
able and there is at least one outstanding
request for its use (indicated by a nonzero
RBPGMQ field in the PRB), the CDEXIT rou
tine updates the RB address in the CDE so
it points to the next PRB that controls the
program. This next PRB is associated with
a task different from that of the caller.
The address of the next PRB is obtained via
the RBPGMQ field of the PRB. The CDEXIT
routine makes the new PRB ready by placing
zero in its wait count field; the Dispatch
er tests this field before dispatching the
program. The CDEXIT routine also sets the
right half of the old PSW field in the new
PRB, in preparation for later entry to the
Contents Supervision subroutine CDEPILOG.

The CDEPILOG subroutine is executed when
the Dispatcher recognizes the new PRB's
task as the highest priority ready task.
(The CDEPILOG subroutine performs final
preparation for linkage to the requested
program.)

After preparing the next PRB to control
the program, the CDEXIT routine branches to
the Task Switching routine. This routine
tests whether the TCB for the previously
waiting PRB may replace the current TCB.
It does this by comparing dispatching

194

priorities. If a task switch is needed,
the Task switching routine places the
address of the new TCB in the "new" TCB
pOinter. This pointer is later tested by
the Dispatcher. The Task Switching routine
returns control to the CDEXIT routine,
which in turn returns control to the Exit
routine.

If there are no other requests for the
exiting program, the CDEXIT routine uses
its subroutine, the CDHKEEP routine. The
CDHKEEP routine sets the "non-functional"
flag in the CDE to indicate that the pro
gram has been executed. Although this flag
is meaningful only for nonreusable pro
grams, it is always set at this point in
the processing.

The CDHKEEP routine tests the use/
responsibility count in the CDE to deter
mine if there are other requests for the
exiting program. (This test is necessary,
since CDHKEEP can be invoked separately by
other parts of the supervisor.) If the
use/responsibility count is not zero, there
is at least one outstanding request for the
program, and CDHKEEP returns control to the
Exit routine (or to CDHKEEP's caller). If,
however, the use/responsibility count is
zero, there is no outstanding request for
the program. In this case, the routine
tests the program's attributes. If the
program is in the link pack area, control
is immediately returned to the caller,
since the program must not be purged. If
the program is not in the link pack area
and is either serially reusable or reenter
able, the routine sets the "release" flag
(CDATTR2 field) in the program's CDE and
the "purge" flag.1. for the job pack queue.
These flags will be tested by the GETMAIN
routine (CDPURGE subroutine) to determine
which program's space should be freed, if
space is requested and is otherwise
Unavailable. If the program is neither
serially reusable nor reenterable, or was
fetched2 by a job step that has invoked
rollout, the CDHKEEP routine branches to
another subroutine of CDEXIT, the CDDESTRY
routine. The CDDESTRY routine frees the
storage areas used by the program and cer
tain related control blocks.

The CDDESTRY routine uses the extent
list for the exiting program to set up
input parameters to be passed to the FREE
MAIN routine. The extent list is a control
block set up by routines of contents super-

.1.The "purge" flag is the high order bit of
the TCBJPQ field of the current TCB.

2If the program was fetched via the LOAD
macro instruction, the CDHKEEP routine
returns control to the caller, and does
not bran~h to the CDDESTRY routine to
purge the program.

vision; it contains the length of the
module (program) and its starting address,
or the length and address of each separate
ly loaded control section of a module that
was scatter loaded. After setting up the
parameters, the CDDESTRY routine branches
to the FREEMAIN routine, which then frees
the storage space occupied by the exiting
program.

When control returns from the FREEMAIN
routine, the CDDESTRY routine branches to
the ORDERCDQ routine. This routine locates
the contents directory queue on which the
CDE resides, searches for the CDE, and
dequeues the major CDE and any minor CDEs
that may have been created for the program.
Such dequeuing is necessary so that the job
pack queue of the contents directory
reflects the freeing of the space occupied
Dy the program. The ORDERCDQ routine
returns control to the CDDESTRY routine,
which again branches to the FREEMAIN rou
tine to free the space occupied by the
dequeued CDEs and their associated extent
list. After this operation has been per
formed, the CDDESTRY routine returns con
trol to the Exit routine (or to CDDESTRY's
caller).

If the Returning Program Is a User Exit
Routine

If the exiting program was controlled by
an SIRB, special processing is not
required; control passes to the IRB
handling portion of the Exit routine, then
right back to a user program. If the pro
gram was controlled by an IRB, special pro
cessing is required.

When the time sharing option is included
in the system, the Exit routine checks for
an attention IRB. If one is found, the
following special processing is performed
by subroutine IKJATTNX:

Q Start all subtasks via a branch entry
to IEAQSETS.

• If this is not an exit from ABEND or a
STAE exit routine, use the terminal
attention interruption element (TAlE)
to set up registers and resume PSW.

• Free the TAlE.

The Exit routine checks whether the use
count in the IRB is zero. The use count
may indicate that the parent task has
requested multiple use of the same end-of
task exit routine (ETXR) for different sub
tasks. If the use count is not zero, indi
cating an additional need for the exiting
user routine, the Exit routine branches to
the Transient Area Refresh routine. But if
the use count is zero, indicating that the
IRB is no longer needed, the Exit routine

tests whether there is a register save area
that the requester of the user Exit routine
had originally reserved, that may now be
freed for reuse. If there is such an area,
which is indicated by a nonzero RBPPSAV
field in the IRB, the Exit routine branches
to the FREEMAIN routine to free it. When
return is made from the FREEMAIN routine,
the area occupied by the RB is freed.

Common Processing

Unless the Exit routine has branched to
the dispatcher, control is passed from the
RB-dependent processing to common Exit pro
cessing at label EDTNX. If the exiting
program is represented by the last RB on
the RB queue, the Exit routine removes the
current TCB from the TCB queue because it
is no longer needed. The Exit routine also
sets the termination flag (TCBFE) which is
later used by the Detach routine. This
avoids an incorrect branch to ABTERM when
the subtask is eventually detached. Exit
then forces a task switch as described
below.

If the TCBSTPPR flag is set, indicating
that a task is to be set nondispatchable
when no longer executing a privileged pro
gram, the TCBATT flag is not set, and the
task is not abnormally terminating, Exit
clears the TCBSTPPR flag and begins a
search of the RB queue. This search is
terminated when an SVRB or an RB with a
protection key of zero is found. If an
attention RB is found or if the entire
queue is searched without finding an atten
tion RB, the TCB is set nondispatchable and
the stop flag in the TCB (set by the STATUS
macro instruction) is set to zero.

If the next RB on the queue has the wait
bit on and the "new" pointer contains the
address of the current TCB, "new" is set to
zero to force a task switch when Exit
passes control to the dispatcher. The Exit
routine then sets the RB for the exiting
program inactive and removes it from the RB
queue and frees, if possible, the RB area.
If the exiting RB is an IRB with a problem
program save area, the save area is also
freed. The Exit routine then branches
directly to the Transient Area Refresh
routine •

THE TRANSIENT AREA REFRESH ROUTINE

The Transient Area (TA) Refresh routine
is contained in the Transient Area Handler
module at entry point lEAQTR02). It deter
mines if it is necessary to reload an over
laid SVC routine in a transient area. If
reloading (refreshing) is necessary, the
routine initiates a task switch to the
appropriate transient area fetch task to
reload the needed routine.

section 9: Exiting Procedures 195

The TA Refresh routine first checks if
there are any "user" SVRBs for the tran
sient areas by checking the user count for
the transient area. If the count is zero,
the TA Refresh routine branches. to the Dis
patcher, since there are no users for any
transient area. If the count is not zero,
the TA Refresh routine searches the user
queue associated with each entry of the
transient area control table (TACT). The
routine searches for indication of a rou
tine that needs to be refreshed (see Figure
9-1) •

If a flag in the TACT entry indicates
that the associated transient area is in
process of being loaded, the user queue for
that TACT entry is not searched. Other
wise, the queue is searched for the highest
priority "ready user" SVRB. A user SVRB is
an SVRB that was created when the asso
ciated SVC routine was requested. It is
ready if it is the top RB on its RB queue
and its TCB is not set nondispatchable. If
a ready user SVRB is found, the TA Refresh
routine checks if the associated routine is
already in the transient area. If the TTR
field in the SVRB is the same as that in
the TACT entry, the routine is in the tran
sient area. If the routine is not in the
area, the TA Refresh routine prepares to
overlay the routine that is currently in
the area.

The TA Refresh' routine saves the RB wait
count of the current RB and sets a new wait
count of 'FF' (decimal 255) in each user
SVRB. The routine readies the TA Fetch TCB
pointed to by the TACT entry. It then
branches to the Task Switching routine to
prepare for a task switch to the TA Fetch
task by the Dispatcher. The TA Fetch TCB
controls the TA Fetch routine. (See "Load
ing the Routine" in "Fetching a Nonresident
Routine from Auxiliary storage" in Section
2.)

The TA Refresh routine then tests the
next TACT entry.

If no ready user SVRB is found for a
transient area, either the transient area
is free or all user SVRBs are waiting. The
TA Refresh routine indicates that deferred
requests can be removed from the request
queue, and then checks the next TACT entry.

When all TACT entries have been checked,
the TA Refresh routine tests whether it has
indicated that deferred requests can be
removed. If they cannot, the routine
branches to the Dispatcher. If they can,
the routine removes all SVRBs on the re
quest queue, clears the wait count field in
each SVRB, and invokes the Task Switching
routine to determine if the associated task
is of higher priority than the current
task. If the selected task is of higher

196

priority, the Task Switching routine indi
cates to the Dispatcher the need for a task
switch, by placing in the nnew" TCB pointer
the address of the selected TCB. The TA
Refresh routine then branches to the
Dis pat cher.

DISPATCHING (PERFORMING THE ACTUAL RETURN
OF CONTROL)

The Dispatcher is entered via a branch
at the end of most interruption processing
sequences. It receives control from any of
the following supervisor routines, depend
ing on the type of routine that is return
ing control and/or the type of processing
that should next be performed:

• Type-1 Exit routine, when a type-1 SVC
routine has been completed and the need
for a task switch has been indicated.

• Exit routine, when a user program-check
routine has been completed.

• Transient Area Refresh routine, when
the return is from any routine except a
type-1 SVC routine, a user program
check routine, or the I/O Supervisor.

• I/O First-Level Interruption Handler,
when the return is from the I/O
Supervisor.

• External First-Level Interruption
Handler, when an external interruption
has been serviced.

• Program Check First-Level Interruption
Handler, when the multiprocessing fea
ture has been selected.

• ABTERM, when entered from a type-1 SVC
which was entered by a branch entry.

• SVC Second-Level Interruption Handler,
when a transient area fetch task is to
te given control to load a transient
SVC routine.

• Transient Area Fetch routine, when a
transient SVC routine has been loaded
and no error has been detected by the
Program Fetch routine.·

• ABEND11, when it has selected another
terminating task whose resources are to
be purged.

• DAR4, when the job-step region has been
set nondispatchable.

In MVT with Model 65 multiprocessing,
the first operation of the Dispatcher is a
test for external interruptions that have
occurred during program check or I/O FLIH
routines and have not been processed. If

there are any (FLRETFLG is not equal to
zero), control is passed to the External
FLIH routine.

The main function of the Dispatcher is
to determine the next task whose current
routine is to be given control, and to pass
control to that routine.

Other functions of the Dispatcher are:

• Completing the scheduling of user
(asynchronous) exit routines.

o Handling task and job-step timing.

o Recognizing that a priority level is
time-sliced, determining which task
within the group to dispatch, and dis
patching the task for the maximum time
interval (if time-slicing is included
in the system).

DETERMINING AND GIVING CONTROl.· TO THE
CURRENT ROUTINE OF THE TASK NEXT TO BE
DISPATCHED

The Dispatcher decides the task next to
be dispatched and passes control to the
current routine of that task. The task
next to be dispatched is one of the
following:

$ The current task, whose performance is
being resumed.

o Another ready task of higher priority
than the current task.

$ Another ready task of lower priority
than the current task, if the current
task is waiting or is nondispatchable.

a Another task in the same time-sliced
group (if time-slicing is included in
the system).

The interrupted routine of the current
task is given control if no supervisor rou
tine has indicated the need for a task
switch. If, however, a task switch has
been indicated, the Dispatcher gives con
trol to the current routine of the highest
priority ready task. This task may be of
higher or lower prio~ity than the current
task. The address of the "new" task's TCB
is found either in the "new" TCB pointer
(IEATCBP), or through a search of the TCB
queue.

If the Dispatcher does not find a ready
TCB whose current routine it may dispatch,
it dispatches a special pseudo, or dummy,
task Which is part of the nucleus. The
pseudo task has no associated routines, and
places the CPU in an enabled wait state.
After a future interruption, one of the

nonready tasks may be readied by an inter
ruption handler, and CPU execution can
continue.

Normal Dispatcher Processing (Without
Time-Slicing)

The Dispatcher determines which task
should be performed next: the current task
or another ready task. It does this by
comparing the contents of the "old" and
"new" TCB pOinters, IEATCBP+4 and IEATCBP.
These locations are obtained via a pointer
in the communications vector table, called
CVTTCBP. They contain the addresses of the
current ("old") TCB and the "new" TCB for
the task next to be dispatched.

If the two TCB pointers are equal, no
supervisor routine has indicated the need
for a task switch since the Dispatcher was
last executed. The Dispatcher restores
registers from the save area of the current
TCB, and returns control to the interrupted
routine by loading the RB old PSW from the
routine's RB.

If the two TCB pointers are not equal, a
task switch is required. If the emulator
option and the Model 85 were specified at
system generation, the Dispatcher checks
the TCB (bit 3 in the TCBTRN field) to see
if the old task is the 7094 emulator pro
gram. If it is, the Dispatcher issues a
Diagnose instruction to save emulator sta
tus and leave emulator mode. The Dispatch
er then saves the floating point register
contents in the floating point register
save area of the current TCB. The general
register contents were previously saved in
the current TCB by one of the following
routines, depending on the linkage path to
the Dispatcher:

a Type-1 Exit Routine.

o Exit routine.

o Transient Area Exit rout~ne.

• ABTERM.

• SVC Second-Level Interruption Handler.

• External First-Level Interruption Han
dler.

• I/O First-Level Interruption Handler.

• ABEND11.

• DAR4.

The Dispatcher then determines the next
task which receives control.

If the two TCB pointers are not equal
and the "new" TCB pointer (IEATCBP) does

Section 9: Exiting Procedures 197

not contain zero, it points to the "new"
TCB whose current routine is given control.
This condition is usually the result of
recognition by the Task switching routine
that a task higher in priority than the
current task is ready. The Dispatcher
restores registers, both general and float
ing point, from the "new" TCB. If the emu
lator option and the Model 85 were speci
fied at system generation, the Dispatcher
checks the TCE (bit 3 in the TCBTRN field)
to see if the new task is the 7094 emulator
program. If it is, the Dispatcher issues a
Diagnose instruction to restore emulator
status and enter emulator mode. It then
gives control to the new task's current
routine by loading the RB old PSW from the
task's current RB. (The TCBRBP field of
the TCB points to the task's current RB.)

In MVT with Model 65 multiprocessing, if
the two TCB pointers are not equal, and the
"new" TCB pointer does nq,t contain zero,
the Dispatcher searches down the TCB queue.
The search begins with the TCB whose
address is in the "new" TCB pointer of the
executing cpu. The address of the next
highest priority ready task is placed in
the "new" TCB pOinter of the second cpu.

If the two TCB pOinters are unequal and
the "new" TCB pointer contains zero, then
the current task has been placed in a wait
condition. In this case, the Dispatcher
must determine the next highest priority
ready task. The Dispatcher searches down
the TCB queue, starting from the current
TCB. It locates each successive TCB
through the TCB link field (TCBTCB). The
current routine associated with the first
TCB that meets the following conditions is
given control, via a Load PSW instruction:

1. The TCB's current RB must not be in
wait condition (that is, the RBWCF
field must contain zero).

2. The nondispatchability flags in the
TCB must not be set (see Table 2 in
"Termination Procedures", Section 10).

In either of the two cases in which the
two TCB pOinters are not equal, the Dis
patcher sets both pOinters equal to the
address of the "new" TCB. Thus, for future
processing, the TCB pointers no longer in
dicate the need for a task switch.

In MVT with Model 65 multiprocessing, if
the two TCB pointers are unequal and the
"new" TCB pointer for the executing TCB
contains zero, the Dispatcher searches down
the TCB queue to determine the two highest
priority ready tasks. The search begins
from the top of the queue when the "new"
TCB pointer of both CPUs contains zero;
otherwise, the Relative Priority routine
determines whether the current TCB on the

198

executing CPU, or the TCB whose address is
in the "new" TCB pointer of the second CPU,
is higher on the TCB queue, and the search
begins from the higher TCB. The highest
priority ready task that is not the current
task on the second CPU becomes the new TCB
on the executing CPU. If the highest
priority ready task is not the ,current TCB
on the second CPU and the "new" TCB pointer
for that CPU is not set, the search con
tinues down the TCB queue for the next
ready TCB. The address of this TCB is
placed in the "new" TCB pointer of the
second CPU.

If the Dispatcher in its search of the
TCB queue finds no ready task, it selects a
special TCB that represents a pseudo task.
The Dispatcher then loads the RB old PSW
from the permanent RB that is part of the
pseudo TCB. This RB old PSW, when loaded,
places the CPU in an enabled wait state.
After a future interruption, one of the
nonready tasks may be made ready by an
interruption handler, and CPU processing
can continue.

If the system includes the System Man
agement Facility (SMF), the Dispatcher
records the beginning of a system wait
before loading the RB old PSW to dispatch
the pseudo task. It reads the interval
timer and stores its value in the first
word of a special save area, SYSWSAVE. The
value is later saved by the SMF Wait Time
Collection routine and used to calculate
elapsed wait time.

In MVT with Model 65 mUltiprocessing, if
the two TCB pointers of the second CPU are
not equal (after the TCB queue has been
searched) control is given to the SHOLDTAP
routine which interrupts the second CPU
with an indication (in STMASK) that the
Dispatcher routine must gain control.
Before dispatching the next task on the
executing CPU, the old PSW is examined,
and, if it is completely enabled, zeros are
placed in the supervisor lock and CPU
affinity bytes. An enabled old PSW indi
cates that the supervisor lock byte was not
set l::y the task that is to be dispatched,
and therefore the lock byte is cleared
before this task receives control.

Dispatcher Processing with Time-Slicing
(Differences)

When the "new" and "old" TCB pointers
are equal, the Dispatcher tests whether
"old" represents a time-sliced task. If it
does not, normal dispatcher processing con
tinues. If it does the Dispatcher tests
whether the time-slice interval has
expired; it has expired if the time-slice
TQE is off the timer queue. When this is
the case, a task switch (to the next ready
TCB in the time-slice group) is indicated,

and the Dispatcher sets "new" to zero to
force the task switch. If the interval has
not expired, special processing is not
required.

When the "new" TCB pOinter contains
zero, it indicates the current task has
been forced to wait and no higher-priority
task is dispatchable. The Dispatcher again
must test "old" for time-slicing; if it
represents a time-sliced task, the next
ready task in the time-slice group should
be dispatched.

When "new" contains an address not equal
to the TCB address in "old," it indicates
(1) a higher-priority task has become ready
to be dispatched, or (2) another task in
the same time-slice group has become ready.
The Dispatcher tests to determine the case.
If the task represented by "new" is in the
same time-slice group as the one repre
sented by "old", the Dispatcher ignores the
requested task switch; the new task must
wait its turn.

When the next task to be dispatched is a
time-sliced task (whether or not it is in
the same time-slice group as the previous
task), the Dispatcher updates the TSCE
pointers for the new task's group. The
Dispatcher finds the next TCB in the time
slice group on the TCB queue and places its
address in the Next field of the TSCE. It
also enqueues the time-slice TQE.

When time-slicing is included in the
Model 65 Multiprocessing System, extensions
to the logic of both MVT and MVT with Model
65 multiprocessing must be made. A basic
change to MVT time-slicing logic is needed
so that two time-sliced tasks of either the
same or different dispatching priorities
can run simultaneously. The logic for MVT
with Model 65 multiprocessing is changed in
only one way--time-slicing logic is added.
A fundamental modification of MVT with
Model 65 multiprocessing logic is the
restriction on the definition of the "new"
TCB pointers in terms of queue position in
the following cases:

1. If the highest-priority ready task is
the only ready task of its TCB dis
patching priority (TCBDSP), and the
next highest-priority task is in a
lower-priority time-slice group (TSG),
the next highest-priority task is not
"new" on the second CPU if it is not
the current, the next-to-run, or the
only ready member of that TSG.

2. If the two highest-priority tasks are
members of the same TSG, both tasks
become the two "new" tasks if they are
the two current, the next-to-run mem
bers, or the only ready members of the
TSG.

These restrictions are important
because, if either "new" task on both CPUs
is time-sliced but is not runni~g currently
or is not entitled to resume (does not
satisfy the conditions that "new = old" and
the TSTQEis on the queue), that task is
replaced by the next eligible task of the
same TCBDSP. If both "new" TCB pointers
are not current members of the same TSG, a
search is made for the next two eligible
tasks, the first of which becomes "new1"
(unless it happens to be "01d2", which
indicates that the current task on the
other CPU is entitled to resume).

The search loop for TCBDSPs considers
the existence of "01d2" (the current task
on the other CPU) and the possibility that
either "new" may have been determined
already.

A shoulder-tap is issued if "new2 =
01d2 " but TSTQE2 is off the queue (indicat
ing that the task on the other CPU has lost
its turn). No shoulder-tap is issued if
.. new 2" and "01d2" are members of the same
TSG, and TSTQE2 is on the queue (indicating
that .. 01d2" is entitled to continue). In
this case, "new2 " is set equal to "01d2 ".

TSO processing: Prior to comparing the
"new" and "old" pointers, the dispatcher
passes control to the time sharing dis
patcher to re-order the ready queue if
required. Control returns to the test of
the "new" and "old" pointers.

The time sharing dispatcher also
receives control after a task switch has
occurred so that the time sharing driver
can provide its monitoring function with
appropriate data.

COMPLETING THE SCHEDULING OF USER EXIT
ROUTINES

A minor function of the Dispatcher is to
ensure that user (asynchronous) exit rou
tines, partially scheduled by the Stage 2
Exit Effector, are completely scheduled.
The Dispatcher tests the stage 3 switch
(IEAODS01) to determine whether there is at
least one queue element (interruption queue
element or request queue element) on a user
(asynchronous) exit queue. (The switch is
set by the Stage 2 Exit Effector when it
places a queue element on either of the
exit queues.) If the stage 3 switch is
set, the Dispatcher branches to its subrou
tine, the Stage 3 Exit Effector (IEAOEF03),
to complete the scheduling of the user exit
routine(s). (See "Scheduling a User Exit
Routine" in Section 3, Task supervision.)

Section 9: Exiting Procedures 199

HANDLING TASK AND JOB-STEP TIMING

If a task switch is to occur, the Dis
patcher updates the timer queue, and if
necessary, the timer itself. The purpose
is to alter the timing of task intervals
because a different task is about to con
trol the CPU. The processing is different
for the two types of timing handled by the
Dispatcher, task timing and job-step
timing.

Task timing is requested by a routine of
a task, via an STIMER macro instruction
that specifies the TASK operand. If a task
switch is needed, the Dispatcher tests
whether the current task has an unexpired
task-type1 interval. If it has, the Dis
patcher stops the timing of the current
("old") task's interval. If the ("new")
task to be dispatched has requested the
timing of a task-type interval, the Dis
patcher restarts the timing of the "new"
task's interval.

Job-step timing is requested by a job
step's initiator, via an STIMER macro
instruction that specifies the TASK
operand. The Dispatcher handles job step
timing if two conditions are met: a task
switch is needed, and the job-step timing
option was specified during system genera
tion. If these conditions are met, the
Dispatcher suspends timing of the job step
whose task has given up control and
restarts timing of the job step whose task
is next to be dispatched.

Handling Task Timing

If a task switch is needed, the Dis
patcher performs task timing. The need for
a task switch is indicated by the inequali
ty of the two TCB pOinters, IEATCBP and
IEATCBP+4. (The address of these pointers
is in the CVTTCBP field of the communica
tions vector table.)

If the task that is relinquishing con
trol (the "old" or current task) requested
task timing, the Dispatcher branches to the
Timer Second-Level Interruption Handler
(entry pOint IEAQTD01) to stop the timing
of the requested interval. The "old" task
requested task timing if it has a timer
queue element (TQE) and if a task-type
request is indicated in its TQE. The task
has a TQE if the TCBTME field of its TCB

1The type of interval request is indicated
in the TQEFLGS field of the task's timer
queue element.

200

does not contain zero. 1

The Timer Second-Level Interruption Han
dler tests whether the "old" task's TQE is
on the timer queue. If the TQE is not on
the queue, the "old" task's interval is not
being timed, and the Timer Second-Level
Interruption Handler (hereafter called the
Timer SLIH) returns control to the Dis
patcher. If, however, the "old" task's TQE
is on the timer queue, an interval is being
timed for this task. In this case, the
Timer SLIH determines the absolute time
remaining in the requested interval, stores
this time in the TQE for future use, and
removes the TQE from the timer queue. If
the removed TQE was at the top of the timer
queue, the Timer SLIH updates the interval
timer. It places the time of expiration
(TOX) value of the new top TQE in both the
interval timer and the six-hour pseudo
clock. The Timer SLIH then returns control
to the Dispatcher.

If the "new" task to be given control
requested interval timing, the Dispatcher
branches to the Timer SLIH (entry point
IEAQTEOO) to restart timing of the inter
val. The "new" task requested interval
timing if it has a TQE, as indicated by a
nonzero TCBTME field in its TCB. The Timer
SLIH tests whether the TQE for the "new"
task is on the timer queue. (The TQEFLGS
field of the TQE indicates if the TQE is on
the timer queue.) If it is, the requested
time interval is already being timed. In
this case, the Timer SLIH immediately
returns control to the Dispatcher. If,
however, the "new" task's TQE is not on the
timer queue, processing is needed to
restart the timing of the requested
interval.

The Timer SLIH computes a new time of
expiration (TOX) for the requested interval
and places the recomputed TOX value in the
"new" task's TQE. (See Section 6, "Timer
Supervision" for information on the compu
tation of the TOX.) If the recomputed TOX
value is smaller than the current value in
the interval timer, the Timer SLIH places
the new value in the timer. It then places
the TQE on the timer queue in the relative
position that is appropriate for the new
TOX value. (TQEs are ordered on the queue
according to their relative times of
expiration.) When the TQE is on the timer

1The TCBTME field is set by the STIMER rou
tine when it services a "set timer" requ
est. It contains zero in any of the fol
lowing cases: no STIMER macro instruction
has been issued for this task; or the
TTIMER routine has serviced a TTlMER macro
instruction for this task that specifies
the CANCEL operand; or the task has been
terminated, normally or abnormally.

queue, timing of the "new" task I s requested
interval is resumed. The Timer SLIH then
returns control to the Dispatcher.

Handling Job-Step Timing

The Dispatcher performs the following
main functions for job-step timing, if the
need for a task switch is indicated, and if
the job-step timing option was specified
during system generation:

• Removes from the timer queue the TQE
for the initiator of the job step asso
ciated with the "old" task if the TQE
is TASK type.

• Places on the timer queue the TQE for
the initiator of the job step asso
ciated with the Anew" task to be dis
patched if the TQE is TASK type. If
the TQE is REAL and off the timer
queue, it must be converted to TASK
type and placed on the timer queue.
If the TQE is REAL and on the timer
queue, it must be removed from the
queue, converted to a TASK TQE and
placed on the queue.

When job step timing has been included in
the system, the control program passes a
parameter called CPU time to the user
accounting routine or the SMF routines.
CPU time represents the elapsed time less
the unoverlapped wait time. Subsequent
runs of the same job may have different CPU
times for the following reasons:

• The frequency with which a task is
interrupted.

• The amount of code executed for each
interruption before timing is inhibited
for the interrupted task.

• Varying execution times for SVCS issued
by the job.

REMOVING FROM THE TIMER QUEUE THE TQE FOR
THE INITIATOR OF THE JOB STEP ASSOCIATED
WITH THE TASK WHICH HAS GIVEN UP CONTROL:
The Dispatcher must determine whether the
"old" task was the dummy (pseudo) task.
For the meaning of the dummy (pseudo) task,
see "Normal Dispatcher Processing (Without
Time SlicingR). It does this by comparing
the Rold" TCB address to the RB pointer
(TCBRBP) in the "old" TCB. If they are
equal the dummy task had previously been
dispatched, and there is no TQE to be
removed from the timer queue. If the "old"
TCB was not the dummy task, the Dispatcher
finds the address of the TCB for the
initiator of the job step whose task has
just given up control. It finds this
initiator TCB by following the TCB pointers
illustrated in Figure 9-2. The Dispatcher
then determines if the step requested tim
ing by testing for the presence of a TQE

Legend: -.. = pointer

TCB for Task Next
to Be Dispatched

TCBJS~CB

o

Initiator TCB

D

Figure 9-2. Locating the Initiator TCB
Associated with the Task Next
to be Dispatched

pointer (TCBTME) in the initiator TCB. If
the field is zero, the user has specified
that job-step timing is not to be applied
to this job and there is no TQE. If there
is a TQE, the Dispatcher tests it for non
expired TASK type TQE. If the TQE is REAL,
it should not be removed from the timer
queue because it represents a 30-minute
interval enqueued by WAIT and dequeued by
POST. When the Dispatcher finds an unex
pired TASK type TQE as the initiator's TQE,
it branches to the Timer Second-Level
Interruption Handler (entry point IEAQTD01)
to suspend job-step timing for the "old"
task.

In MVT with Model 65 multiprocessing,
when two tasks of the same job step are
running simultaneously, the tirne-to
expiration value of the job is halved.
Therefore, when job-step timing is sus
pended for a task, the Dispatcher must
determine if the task on both CPUs belong
to the same job step. If so, the Dispatch
er must double the time to expiration value
of the job-step TQE to restore nonconcur
rent timing. The Dispatcher branches to a
subroutine (entry point DJSOO) to obtain
the address of the job step TQE for the
task on the second cPU. If this is the
same TQE scheduled for removal from the
timer queue, because it is associated with
the "old" task on the first CPU, the TQE is
not removed, and the time-to-expiration
value is doubled.

PLACING ON THE TIMER QUEUE THE TQE FOR THE
INITIATOR OF THE JOB STEP ASSOCIATED WITH
THE TASK TO BE DISPATCHED: The Dispatcher
finds the address of the TCB for the
initiator of the job step whose task is to

Section 9: Exiting Procedures 201

be dispatched. It then determines whether
job-step timing was suppressed by testing
the pointer to the TQE in the initiator TCB
(TCBTME). If the field contains zero, no
job-step timing is done. If the field is
non-zero, the Dispatcher examines the TQE
type for a non-expired TASK TQE. If the
TQE is this type, the Dispatcher branches
to the Timer SLIH (entry point IEAQTEOO) to
restart job-step timing for the task it is
about to dispatch. If the TQE is REAL, it
indicates that a user's asynchronous exit
is to be given control and it should be
job-step timed. Therefore, the Dispatcher
branches to the Timer SLIH (entry point
IEAQTD01) to remove the element from the
timer queue. Next, the dispatcher moves
the job-step time remaining value from the
saved field to the TQEVAL field, and
changes the TQE type from REAL to TASK by

202

setting to an off position the two low
order bits (bits 6 and 7) in the flag byte
in the TQE (TQEFLGS). The Dispatcher then
branches to the Timer SLIH (entry point
IEAQTEOO) to restart job step timing for
the task it is about to dispatch.

In MVT with Model 65 multiprocessing,
the Dispatcher branches to a subroutine
(entry pOint DJSOO) to obtain the address
of the job step TQE for the task on the
second cpu. If this is the TQE scheduled
for placement on the timer queue, because
the task to be dispatched on this cpu
belongs to the same job step as the task on
the other CPU, the time-to-expiration value
of the TQE is halved. In this way, the
execution time of the job step is the same
as if two tasks were not running
simultaneously.

Termination procedures free the
resources and control blocks belonging to
the terminating task. The freed resources
include exclusively used programs in main
storage, enqueued resource requests, unex
pired timer requests, incomplete operator
communications, exclusively used data sets,
and unshared subpools of main storage. The
control blocks that are removed from their
queues and freed include one or more:

• Task control blocks (TCBs).

• Request blocks (RBs).

• Interruption queue elements (IQES).

• Queue elements (QELS).

• Queue control blocks (QCBs).

• Subpool queue elements (SPQEs).

e Contents directory elements (CDEs).

• Timer queue elements (TQEs).

o The program interruption element (PIE)
for the task, if one exists.

There are two types of termination pro
cedures, normal and abnormal. Normal ter
mination occurs when a task is complete;
that is, when the last program to be
executed for the task has completed its
execution. Abnormal termination occurs
when some type of unrecoverable error, such
as a machine check, I/O error, or program
check, has taken place. The task rrust be
terminated to prevent waste of system
resources.

Normal and abnormal termination differ
in their scope of action. Normal termina
tion frees resources only for the completed
task, not for its subtasks or higher level
tasks. Abnormal termination allows two
options, task and step termination. In
task termination the resources of only the
malfunctioning task and its incomplete sub
tasks are freed. This option permits a
program belonging to a higher level task in
the job step to decide whether to continue
the job step. But in step terrrination the
resources used for the entire job step are
freed, and the Job Scheduler ignores later
steps of the same job. A task termination
of the job-step task, the highest level
task in the job step, produces the same
result as a step termination.

SECTION 10: TERMINATION PROCEDURES

NORMAL TERMINATION (EOT ROUTINE)

Normal task termination is perforrred by
the End-of-Task (EOT) routine, which
receives control from the Exit routine when
it detects an end-of-task condition. The
EOT routine is strictly an internal super
visor routine; that is, it does not receive
control directly via an SVC. It frees the
previously mentioned resources and their
control blocks. If an event control block
(ECB) had been specified when the terminat
ing task was attached, the EOT routine
posts the ECB with a completion code for
examination by a program belonging to the
parent task. ~o allow other prograrrs to
continue execution, the EOT routine modi
fies the TCB pointer to ensure a task
switch, and then branches to the Dispatcher
to return control to the current routine of
the highest ~riority ready task.

The EOT routine releases resources no
longer needed when a task is completed.
Its functions include:

• purging the operator coremunication
queUES.

o Closing data sets opened for the com
~leted task.

• Releasing unexpired timer elements.

o Releasing the program interruption ele
ment (PIE), if one exists.

• Freeing storage acquired for this task.

• Releasing prograrrs loaded for the task.

o Removing the task's deferred rollout
requEsts (if any) from the rollout
request queue.

o Dequeuing the TCB for the task from the
TCB qUEue and (conditionally) from the
subtask queue and freeing its s~ace.

• Ensuring that the need for a task
switch has been indicated.

Note: If the time sharing option is
included in the system, terminal attention
exit elements (TAXES) are ~urged for the
terminating TCB.

After performing these functions, the
EOT routine returns control to the Exit
routine to free the RB for the last
executed program of the task. Then, via
the Dispatcher, control is given to the

Section 10: Terreination Procedures 203

current program of the highest priarity
ready task.

The EOT routine receives contral, via a
branch, from the Exit routine when it
detects an end-of-task conditian. The Exit
routine recognizes that the PRE far an
exiting user program paints to. its TCB
instead of to another RB. (The RETCBNXT
status bit in the PRB, when set, indicates
that the RBLINK field points to. a TCB.)

The first step of EOT processing is to.
check whether there are any subtasks of the
completed task that have nat been detached.
All subtasks should have been previously
removed for the completed task. If there
is at least one subtask that has not been
detached (as indicated in the TCB by the
subtask pointer TCBLTC), the EOT routine
sets up an error code (hexadecimal
80A03000). It then issues an ABEND macro
instruction to produce supervisor linkage
to the ABEND routine in arder to. abnarmally
terminate the completed task.

If there are no remaining subtasks, the
EOT routine stores in the task's TCB the
completion code that is provided to its
parent task in the return cade register.
The parent task examines the completion
code to determine the status of its sub
task. (The status af the subtask is
examined by the parent task anly if the
subtask was attached with either the ECB or
the ETXR operand specified.)

After storing the campletion cade, the
EOT routine tests whether a pragram inter
ruption element (PIE) exists and shauld be
freed. If a PIE exists, its address
appears in the TCBPIE field af the TCB,
placed there earlier when the SPIE routine
created the program interrupti an element.
If the PIE exists, the EOT routine makes
its space available for reuse by branching
to the FREEMAIN SVC routine to. release the
space.

After freeing the PIE, or if no PIE
existed for the task, the EOT rautine
branches to. the Purge Timer subrautine.
The subroutine's purpose is to test for and
remove any remaining timer queue elements.
Such an element represents a request far a
timer interval that has not yet expired.
If a timer element exists (queued fram the
TCBTME field af the TCB), the subroutine
cancels the timer request and frees, via
the FREEMAIN routine, the space accupied by
the timer queue element (TQE) and any asso
ciated problem-program register save area.

If the terminating task is a ti~e shar
ing task, the Purge Timer subrautine uses
the Purge TAXE routine (IEAKJXP) to. remove
terminal attention exit elements.

204

The EOT rautine next tests for any seri
ally reusable resources that were enqueued
and nat later dequeued. If there is such a
resource, the "enqueue" caunt (TCBQEL) in
the TCB is nat zero. (The enqueue caunt in
the TCE is increased by the ENQ routine and
decreased by the DEQ rautine. The count is
stared in the high-order byte of the TCBFSA
field.) If the enqueue count indicates
that a resaurce was not dequeued, the EOT
routine sets up an error code (hexadecimal
80D03000), and issues an ABEND macro
instruction to. abnarmally terminate the
task.

If the EOT routine was not entered from
AEENr, a branch is made to. the "WTOR Purge"
routine (IEECVED2). If the terminating
task is not a time sharing task, IEECVED2
remaves fram the buffer queue and the reply
queue those elements that are assaciated
with the campleted task. The elements
represent messages to. the operatar and the
operatar's replies. The "WTOR Purge" rou
tine issues a "vaiding" message telling the
operatar to cancel outstanding replies.

If the terminating task is a time shar
ing task that is not in main storage, the
"WTOR Purge" rautine daes nat purge the
reply queue elements and write queue
elements.

To. ensure that all data sets used far
the task have been closed, the EOT routine
next branches to the "clase data sets" sub
routine. This subroutine checks the TCBDEB
field af the TCB. If the field is nat
zero, it cantains the address of a data
extent block, or DEB. The subroutine uses
the DEB to obtain the address of a data
control block, or DCB, which it supplies as
an input parameter to the Close routine af
data management. The subroutine then
issues a CLOSE macro instruction to. gain
supervisar linkage to the Close rautine.
As part af its pracessing, the Close rau
tine updates the DEB address in the TCBDEE
field. The "clase data sets" subroutine
repeats the CLCSE macro. instruction for
each DEB on the queue. When the DEB chain
has been exhausted, all data sets far the
task have been clased.

After each executian of the Clase rau
tine, the "clase data sets n subrautine
checks far an errar that might have
occurred during executian af the Clase rau
tine. It daes this by nating whether the
'ICBDEB field has been updated. If the
field has nat been updated, the subrautine
recagnizes that incarrect DEB infarmatian
has teen supplied. The subrautine sets up
an errar cade (hexadecimal 80C03000) and
issues an ABEND macro. instruction to.
abriormally terminate the task.

After closing data sets, a check is made
to determine if the terminating task has a
parent (originating) task which is acnorm
ally terminating. If the parent task is
abnormally terminating, the ABEND bit
(TCBFA) is on. Because the parent task
purges both itself and any subtasks, there
is no need to go to the EaT routine for the
terminating task. Instead, the task is set
nondispatchacle, and the parent task con
tinues abnormal processing.

If there is no error detected during the
clOSing of data sets, and there is no ter
minating parent task, the EaT routine
branches to the CDEXIT subroutine. The
CDEXIT subroutine either frees the task's
last executed program, or schedules the
program's execution for a waiting request
er. (For a detailed discussion, see nlf
the Returning Routine Is a User Program" in
Section 9, "Exiting Procedures.")

The EaT routine next releases ~odules
that were loaded for the task (via the LOAD
macro instruction) and are no longer needed
for other tasks. It does this by cranching
to the "release loaded programs n subroutine
(IEAQABL).

This subroutine releases modules that
were loaded for the task, via a LOAD macro
instruction, but which were not released
via a DELETE macro instruction.

To determine the number of outstanding
requests for each module, the nrelease
loaded programs" subroutine examines, in
turn, each load list element in the task's
load list. Each load list elenent repre
sents a module that was loaded for the
task, via a LOAD macro instruction. (The
list origin of the load list is the TCBLLS
field of the TCB.) To determine the number
of outstanding requests for the module, the
subroutine subtracts the responsibility
count from the use/responsibility count.
The responsibility count in the module'S
load list element records the number of
load requests for the module. The use/
responsibility count in the module's con
tents directory entry records the total
number of requests for the module. (Each
load list element points to an associated
contents directory entry.)

The nrelease loaded programs" subroutine
then branches to subroutine CDHKEEP to test
the number of outstanding requests for the
module. If there is a least one outstand
ing request for the module, CDHKEEP immedi
ately returns control to the "release
loaded programs" subroutine. If, however,
there are no outstanding requests for the
module, CDHKEEP either frees the module and
its control blocks, or sets flags to inforn,
Main Storage Supervision that space may be
purged, depending on the attributes of the

n,odule. If a tine sharing task is the
requester, the program is freed uncondi
tionally. (For further details, see "If
the Returning Routine Is a User Prcgrarr" in
Section 9, "Exiting Procedures. n)

On return fron, the CDHKEEP subroutine,
the nrelease loaded programs" subroutine
frees the load list element for the nodule
just tested and perhaps freed. The process
is repeated until all the load list ele
rrents, and possitly their associated
modules, have been freed.

The EaT routine next branches tc the
"release main storage" subroutine
(IEAQSPET) to release space that was
ebtained for the task via a macro instruc
tion. This subroutine performs an addi
tional function if the completed task is
the jot-step task (the highest level task
in the job step). The subroutine ensures
that programs remaining in the job pack
area are freed. Such programs are reen
trant or serially reusable programs that
were used during the execution of the jot
step. Their release was previously
invoked, but since they were still needed
for ether tasks of the job step, their
storage space was not freed.

For any terminating task, the "release
rrain storagen sutroutine frees unshared
subpools of nain storage allocated to the
task. The subpools are represented by sub
pool queue elements (SPQEs), which have
their list origin in the TCBMSS field of
the TCB. The subroutine examines each SPQE
en the main storage queue. If an SPQE
represents a subpool net shared with anoth
er task, the subpool and the SPQE are
freed, via a branch to the FREEMAIN SVC
routine. The main storage queue is
updated, and the next element is examined.
If, however, an SPQE represents a shared
subpool, that subpool cannet be freed.
When all elements have been examined, sub
pool 253 (supervisor queue area) is expli
citly freed, since there is no SPQE for
this subpool. As a minor additional func
tion, the sutroutine frees space occupied
by a parameter list created during the
execution of the nclose data sets"
subroutine.

If the completed task is the job-step
task, any remaining modules in the job pack
area must be freed. A check is made of the
jot pack area queue (whose list origin is
the TCBJPQ field) to discover if there is
at least one contents directory entry (CDE)
on the queue. If there is at least cne
CDE, the "release main storage" subroutine
branches to entry point CDDESTRY in the
CDEXIT routine to free remaining modules,
CDEs, and extent lists. (For further
information, see "If the Returning Routine

Section 10: Termination Procedures 205

Is a User Program" in Section 9, "Exiting
Procedures.")

After freeing unshared subpools of main
storage, the EOT routine initiates the
scheduling of an end-of-task exit routine
(ETXR), if one had been originally
requested by the ETXR operand ~hen the task
was attached. If the use of the ETXR rou
tine had been requested, the Attach routine
would have created an interruption request
block (IRB) and an interruption queue ele
ment (IQE). The IRB provides future con
trol of the ETXR routine and aids in its
scheduling, while the IQE represents the
queued request. In addition, the Attach
routine would have placed the address of
the IQE in the newly created TCB, and set
the TCBFETXR flag in the TCBFLGS field to
indicate the presence of the ETXR request.
Now, during end-of-task processing, the EOT
routine checks the TCBFETXR flag to learn
whether the use of an ETXR routine had been
requested when the task was attached. If
the flag is set, the EOT routine initiates
scheduling of the ETXR by passing the
address of the IQE to the Stage 2 Exit Ef
fector. (See nScheduling User Exit Rou
tines" in Section 3, "Task Supervision.")
The Stage 2 Exit Effector places the IQE
representing the ETXR request on a queue of
requests for user exit routines. Later,
during the execution of the Dispatcher, the
stage 3 Exit Effector completes the ETXR
scheduling. It places the IQE on a queue
of IQEs belonging to the IRB, and place the
IRE as the "current" RB on the RB queue of
the attaching task. The ETXR routine is
thus scheduled as the next program to be
executed for the parent of the terrrinating
task.

If the time sharing option is included
in the system, the time sharing EOT is
entered. If the logon task is terminating
and the user is to be assigned to a new
region, the logon flags in the TJB and
TSCVT are set, the TSC relogon flag is set,
the TSEVENT macro instruction is issued for
logoff, and the TSC ECE is posted. If the
logon task is terminating and the user is
to be disconnected, the disconnect flags in
the TJB and TSCVT are set, the TSC discon
nect flag is set, the TSEVENT macro
instruction is issued for logoff, and the
TSC ECB is posted. If the terminating task
is not logon, the TCB is removed from the
TCB queue and the terminal job block exten
sion (TJBX) is updated.,

The EOT routine, via its "dequeue TCB n

SUbroutine, removes the TCB of the ter
minating task from the TCB queue. Since
the current task is now terminated, its TCB
must be removed from consideration by the
Dispatcher.

206

If the time-slicing feature is included
in the system, the EOT routine tests the
time-slice bit (TCBFTS) in the TCB. If it
is not set, normal EOT processing con
tinues. If it is set, indicating that the
terminating task is a member of a time
sliced group, the EOT routine locates the
TSCE for the group. The address fields
(First, Last, and Next) in the TSCE are

'compared to the address of the terrrinating
TCB.

• If none of the address fields match the
TCB, the EOT routine turns off the
time-slice bit and normal EOT process
ing continues.

• If all of the address fields match the
TCB, the ECT routine places zercs in
them to indicate that the time-sliced
group is without members. Norrral EOT
processing then continues.

• If the First field matches, the EOT
routine places the address of the next
lower TCB on the TCB queue in First.

• If the Next field matches and Last does
not, the EOT routine places the address
of the next lower TCE on the TCB queue
in Next.

• If the Last field matches, the address
of the next higher TCB on the TeE queue
is placed in Last, ·and the address of
the First TCB is placed in Next.

Normal EOT precessing continues after
each case.

The ECT routine next sets two completion
flags in the TCB: the "normal completion"
flag (TCBFE) and the "nondispatchal:le COl£.

pletion" flag (TCBFC). The "normal comple
tion" flag is of significance only during
completion of the job-step task. If the
terminating task is the job-step task, the
"norrr.al completion" flag indicates to an
initiator of the Job Scheduler that the job
step has been normally terminated. The
"nondispatchable completion" flag is tested
l:y the Detach SVC routine to determine
~hether to remove the subtask TCB from the
TCB queue, or to abnormally terminate the
subtask. If this flag is not set, the
Detach routine assumes that the subtask to
l:e detached is incomplete, and therefore
schedules it for abnormal termination.

If the attaching routine of the parent
task had specified an e,,!,ent control block
(ECB), the EOT routine must now post the
normal completion of the subtask for
examination by a routine of the parent
task. If no ECB was specified, posting is
bypassed. For any terminating task except
the jol:-step task, the "EOT posting" sub
routine checks for an ECB address in the

TCBECB field cf the current TCB. If an ECE
address exists, the subroutine tests its
validity by determining if the ECE contains
a valid RE address. This is necessary,
since the Post routine does not check the
ECB address. The ECE resides in a user
storage area and therefore is subject to
alteration by a user program. If the job
step task is being terminated, the validity
of the ECE address is not checked, since
this ECE resides in system-protected
storage and cannot be altered by a user
program. Validity checking, performed by a
check subroutine, consists of a series of
tests that reasonably ensure that the spec
ified ECB address is valid and will not
produce a program check during Post pro
cessing. The EOT routine branches to the
Post SVC routine to place in the ECB of the
parent task the completion code that was
stored in the subtask TCE.

The EbT routine next determines whether
to remove the TCB for the terminating task
from its parent's subtask queue, and free
the TCB's storage space. If neither an ECB
nor an ETXR routine was specified when the
task was attached, information in the sub
task's TCB is not needed by any program of
the parent task. In this case, the "erase
phase" subroutine removes the TCB from its
parent task's subtask queue and frees its
storage space. But if either an ETXR rou
tine or an ECB was specified when the task
was attached, a program belonging to its
parent task may later examine information
in the terminating task's TCB. In this
case, the TCE and the pointers needed to
gain access to it must be retained. The
Detach SVC routine, later invoked for the
parent task, removes the TCB frorr its
parent's subtask queue and frees its space.

The EOT routine next ensures that the
need for a task switch is indicated. The
routine sets the "new" TCB pointer
(IEATCBP) equal to zero, as an indication
to the Dispatcher that it must search down
the TCB queue to find the highest priority
ready task. Control is returned to the
Exit routine to free the space occupied by
the last RB of the terrrinating task.

The Exit routine then branches to the
Transient Area Refresh routine to "refresh"
a transient area block that may have been
overlaid by the terminating task. (See
"The Transient Area Refresh Routine" in
Section 9, "Exiting Procedures. n) The Tran
sient Area Refresh routine branches to the
Bispatcher which gives control to the cur
rent routine of the highest priority ready
task.

ABNORMAL TERMINATION

Atnorrr.al termination is implemented pri
marily by four supervisor routines: the
ABTERM routine, the ABENt routine, the
tamage Assessment Routine (DAR), and the
ABDUlo1P routine.

The ABTERM routine schedules the execu
tion of the ABEND routine. It does this
for system routines that detect an error
but cannot themselves issue an ABENt macro
instruction. The ABTERM routine ensures
that, after redispatching, the first
instruction to be executed for the defec
tive task is an SVC 13 (ABENB) instruction.
Thus, the ABTERM routine indirectly issues
an ABEND macro instruction for the task
specified for termination. (See Figure
10-1.)

The ABEND routine frees resources for
the terminating task and its incomplete
subtasks. The resources include programs,
rrain storage, data sets, queued requests
for serially reusable resources, and the
control tlocks that implement the alloca
tion of these resources to the task.

The ABEND routine, if the terminating
task is the jot-step task, frees the
resources belonging to all tasks of the job
step. The job-step task is terminated in
any of the following cases:

• The invoking ABEND macro instruction
specifies the STEP o~tion.

• The operator has issued a CANCEL com
rrand.

• All tasks in the job step are in a 30-
minute wait.

• The job-step timer interval has ex
pired.

• SYSCUT data exceeded the limit speci
fied by the OU'ILIM parameter cf the
associated DD staterrent.

• The lo1achine-Check Handler1 is unable to
recover from a machine check that
occurs during the job step, but deter
rrines that the failure is not
permanent.

1The Machine-Check Handler is optional sys
tem generation prograrrrring support for the
System/360 lo1odel 65 (MCH/65), and standard
programming support for the Model 65 Mul
tiprocessor, the Model 85 (MCH/85), and
the System/370 Models 145 (MCH/145), 155
(lo1CH/155), and 165 (MCH/165). Refer to
Section 2: "Interruption Handling."

Section 10: Termination Procedures 207

Dispatcher return control.

IExecution of
IChonnel Program

SVC library

legend:

-----r ::: control flow

~::: information flow

Routine)

Figure 10-1. Scheduling of the ABEND Rou
tine by the ABTERM Routine

The Damage Assessment Routine (DAR)
receives contrcl frou, various ABEND
modules. DAR attempts to ~rite a dump of
rrain storage, and reinstates, or initiates
reinstatement of a failing task. DAR
informs the operator if reinstatement is
impossible so that the operator may halt
system processing.

The ABDUMP routine may be invoked by the
ABEND routine as part of an abnormal ter
mination, or it rr,ay be invoked at any time
to perform a dynamic dump for a normal
task. When invoked by the ABEND routine,
the ABDUMP routine displays programs and
control blocks belonging to the terminating
task, and control blccks belonging to the
task's descendants and direct ancestors.
The ABDUMP routine is always invoked via a
SNAP macro instruction.

SCHEDULING AN ABNORMAL TERMINATION (ABTERM)

The ABTERM routine is a disabled, seri
ally reusable, resident non-SVC routine.
It schedules the execution of the ABEND

208

routine. It does this for the follcwing
types of callers:

• First-level interruption handlers.

• Type-l SVC routines, which cannot issue
an SVC instruction.

• System routines that must terminate a
task other than the current task.

• The SERl Systerr Environment Reccrding
routine or the Machine-Check Handler.

• The Program-Check First-Level Interrup
tion Handler. Since it has special
reguirements, it cannot branch to the
ABTERM routine directly, but rrust enter
via a preliminary routine called the
ABTERM Prologue routine. This routine
perfcrms housekeeping functions for the
ABTERM routine.

In scheduling the execution of the ABEND
routine, the ABTERM routine perforrrs the
follcwing major functions:

• Refreshes the CVT address.

• Interrogates flags to decide if the
specified task should be scheduled for
ABEND processing and/or if its subtasks
should be set nondispatchable.

~ Saves the address of the next execut
able instruction at the time of the
last interruption (contained in either
the SVC old PSW or in the RB cld PSW of
the current RB) for display by ABDUMP
during ABEND processing.

• Stores the completion code and dump
opticn in the TCB of the terrrinating
task, for use by the ABEND routine.

• If the time sharing option is included
in the system, a time sharing task in
terminal I/O wait will be set
dispatchable.

• Schedules abnormal termination of the
specified task by pointing either the
RB old PSW of the current RB or the SVC
old PSW to an SVC 13 (SVC ABENB)
instruction, in the communication vec
tor table. Conditionally indicates to
the Bispatcher that a task switch to
the scheduled task is needed.

• Sets nondispatchable incomplete sub
tasks of the terminating task, except
for subtasks that are either being ter
rrinated cr are in "must complete"
status.

• In a Model 65 Multiprocessing System,
determines, through a branch to the
Task Removal routine, whether the cur-

rent task on the second CPU has been
set nondispatchatle. If it has, the
second CPU is interrupted with an indi
cation (in STMASK) that the Dispatcher
routine must gain control.

• Returns control to an address specified
by the caller.

There are two entry points to the ABTERM
routine: one (IEAOAB01) is for the SVC
FLIH and IBM type-1 SVC routines; the other
(IEAOABOO) is for all other system routines
that wish to schedule an abnorrral
termination.

For entry at IEAOAB01, the ABTERM rou
tine assumes that the address of the TCB to
be scheduled for termination is contained
in register 4 and the system completion
code is contained in the low order 12 bits
of register 1. The dump option flag is
added to the completion code passed. The
dump option flag indicates that ABEND must
invoke the ABDUMP routine during ABEND
processing.

The ABTERM routine, when entered at
IEAOABOO, first refreshes the CVT address
in case it has been overlaid during prior
processing. Then it saves the caller's
register contents and obtains and validity
checks the TCB address. If the TCE address
is invalid (the TCB is not one of the TCBs
on the priority queue), control is passed
to entry point DISMISS in the I/O FLIH. At
DISMISS, the I/O original entry switch
(IORGSW) is set to zero and a branch is

made to the Dispatcher.

If the TCB address is valid, the ABTERM
routine interrogates flags to determine if
the specified task should be scheduled for
ABEND processing, and/or if its subtasks
should be set nondispatchable.

If the time sharing option is included
in the system, a task that is nondispatch
able due to terminal I/O wait is set dis
patchable. Various combinations of ABTERM
processing are possible, depending on the
condition of the task specified fcr ter
mination. The following discussion
describes each condition of the specified
task and the resultant processing, as out
lined in Figure 10-2.

Processing if Specified ~ask Has Already
Been Terminated

(See Figure 10-2, condition 1.) In this
case, the ABTERM routine does not schedule
entry to the ABEND routine, nor does it
attempt to set subtasks nondispatchable.
Instead, the ABTERM routine simply restores
the caller's register contents, and returns
control to the routine whose address the
caller had placed in the return register.

A terminating task can be specified for
abnormal termination if an operator's
CANCEL corrmand or the ex):iration of a job
step timer interval occurs concurrently
~ith the execution of the EOT routine or
the ABENt routine for the task •

Processing if the Task Has Already_Been
Scheduled for Abnormal Terrrinaticn

(See Figure 10-2, condition 2.) If the
specified task has already been scheduled
for abnormal terrrination but the AEENt rou
tine has not yet been entered, the ABTERY.
routine does not reschedule ABENt process
ing for the task. It conditionally sets
incomplete subtasks nondispatchable to pre
vent their competing for system resources
for the terminating parent task. This con
diticn, wherein the task has been scheduled
for abnormal terrrinaticn but has net yet
teen terrrinated, can readily occur. The
Dispatcher can allow other tasks tc te per
formed after AETERM processing, before it
dispatches the ABEND rcutine for the given
task.

If the specified task has at least one
subtask (TCEL~C is not equal to zero), the
AETERM routine tranches to its SETSUES sub
routine to deterrrine which subtasks should
te set ncndispatchable.

The SETSUES subroutine uses its SCANTREE
subroutine to find each TCE that represents
a suttask or descendant (subtask of a sub
task) of the specified task. (See Figure
10-3.) For each such TCE that the SCANTREE
subroutine finds, the SE~SUBS subroutine
tests if the associated subtask or descen
dant should be set nondispatchable. The
tests are repeated for each subtask or
descendant in the nsubtask tree. n

A subtask or descendant is set nondis
patchable if none of the fcllowing ccndi
tions exists:

• Suttask is complete (thus no need for
setting the subtask nondispatchable).

• Subtask is in the process of abncrrral
termination (the AEENt routine is being
executed for the sUbtask). In this
case, nondispatchability would prevent
the further execution of the ABEND rou
tine for the subtask.

• Specified task is nondispatchable, but
its subtask is dispatchable. This sub
task may be in "must completen status
and should net be terminated or set
nondispatchable. (For further discus
sion of the nmust complete" status,
refer to "Serializing the Use of a
Resource" in Section 3, "Task Supervi
sicn. n)

Secticn 10: Termination Procedures 209

r---T---,
I Conditions I Resultant Processing I
r---t---~
11. Specified task1 has already been termi-INc prccessing beyond the restoring of the I
I nated, normally or abnormally (TCBFC Icaller's register contents .and return of I
I flag is set). Icontrcl tc an address specified by the I
I I caller. 2 I
~---+---~
12. Specified task has already been sched- IAETERM conditionally sets the incomplete I
I uled for abnormal termination. Isubtasks of the specified task nondispatch-I
I latle. I
r---t---~
3. Specified task is the jot-step task

and is:
a. Not already in the process

of abnormal termination (TCBFA
is not set).

Prepares for scheduling of the termination
by clearing nondispatchability flags
(except "must complete" and "open in pro
cess" nondispatchability) in the specified
task's TCB. Stores pararreters (dump option
flag and completion code) in the TCE.
Saves old PSW and wait count (if applic
able). Schedules the task for entry to
ABEND. Conditionally sets incomplete sut
tasks nondispatchable.

r---t---~
I b. Already being atnormally termi- ISchedules the task for entry to ABEND. I
I nated, and the Initiator is not thelCcnditionally sets incomplete subtasks non-I
I caller. Idispatchable. I
~---t---~
I c. Already being abnormally termi- I I
I nat ed, and the Initiator is the I I
I caller and: I I
I (1) Dump option flag specifies a IABTER~ assumes that a CANCEL ccrrmand hasl
I dump. loccurred or jot-step timer has expired, I
I Iconcurrently with AEEND execution. The I
I Iprocessing is the same as in step 2. I
r---+---~
I (2) No dump is specified. IABTER~ assumes that a CANCEL corrmand has I
I Ibeen issued to stop a prolonged dump (pos- I
I Isible infinite loop). Sets flags in the I
I Itask's TCE to give the appearance of a I
I Ifirst-time entry to AEENt. Remainder of I
I Iprocessing is the same as in step 3a, I
I lexcept that parameters are not stored in I
I Ithe TCB and the old PSW and wait count are I
I Inot saved during scheduling of the I
I I tern:ination. I
r---t---~
14. Specified task is not the job-step taskl I
I and: I I
I a. Specified task was previously set ISame processing as in ste~ 2. I
I nondispatchable by AB'IERM or I I
I ABEND (TCBABWF is "set"). I I
~---+---~
I b. specified task is not in the pro- ISame processing as in step 3a, except that I
I cess of termination by ABEND. Inondispatchability flags, if previcusly I
I I set, are not cleared. I
r---+---~
I c. Specified task is in the process oflSame processing as in ste~ 3b. I
I termination by ABEND. I I
t---~---~
11 The "specified" task is the one whose TCB address is passed by the caller to ABTERM. I
12All processing options include the processing perfcrrred under condition 1. I L ___ J

Figure 10-2. ABTERM Processing

210

I
I

I

I
I

I
I

I
I

/
I

I E

(------~-)
E is Second Subtask of A ,

I

A is Task Specified for Termination

\
\ B is First Subtask of A

\

\
\

-I D C '\ C is First Subtask of B
(. ___________ j ("Descendant" of A)

D is Second Sub task af B
Legend: ("Descandent" of A) o =a task

-----+-= a pointer

-----~= a possible sequence of subtask examination by the SCANTREE
subroutine

Figure 10-3. A Tree of Subtasks and a Pos
sible Sequence of Examination

The SETSUBS subroutine sets a subtask
nondispatchable by setting the TCBABWF flag
in the TCBFLGS field of the subtask's TCB.
The subroutine also prevents the scheduling
of asynchronous exits for the suttask. The
Dispatcher tests the nondispatchability
flags and does not dispatch any routine for
the subtask, until the AEEND routine later
clears the flags in preparation for ter
minating the subtask.

processing if the Specified Task is the Job
step Task

(See Figure 10-2, condition 3.) A job
step task is a task attached by an Initia
tor of the job scheduler and is the highest
level task within the family of tasks of a
job step. The entry to the ABTERM routine
may be the result of a direct branch from
tpe Initiator because of either an opera
tor's CANCEL command or the expiraticn of
the job-step timer interval. Another pos
sibility is that an error has occurred in a
routine operating for the job-step task.
The type of ABTERM processing depends on
the particular condition of the task. Pro
ceSSing for each of the following condi
tions is discussed separately:

• The task is not already in the process
of abnormal termination.

• The task is already being abnormally
terminated and the Initiator is not the
caller.

• ~he task is already being abnormally
terminated and the Initiator is the
caller.

~HE ~ASK IS NOT ALREADY IN THE PROCESS OF
ABNORMAL TERMINATICN: (See Figure 10-2,
conditicn 3a.) In this case, the AETERM
routine proceeds to schedule the task for
abnormal terrrination. (The clear state of
the TCBFA flag in the job-step TCB indi
cates that the job-step TCB is not being
terminated.> The ABTERM routine schedules
the termination by:

• Ensuring that the task is dispatchable.

• storing parameters for use by the ABEND
routine.

• Scheduling the dispatching of the ABEND
routine.

• conditionally setting incomplete sub
tasks of the specified task nondis
patchatle.

• Returning control to the preloaded
return address.

The AETERM routine ensures that the
ABEND routine can be dispatched for the
terminating task. It does this by clearing
all nondispatchability flags in the terrri
nating task's TCB, except the "must com
plete" and "open in progress" ncndispatch
ability flags (TCBSYS and TCBSTP). The
Dispatcher later exarrines all these flags
to deterrrine that they are clear before
dispatching the ABEND routine as the "cur
rent" routine for the terminating task.

Note: The nondispatchability flags are set
by the supervisor for reasons such as: the
resources of a task in the job step are
teing dumped by the AEDUMP routine, or the
SER1 routine is in progress, or another
task is in "must complete" status. (For
further information on the TCB nondispatch
ability flags, refer to Figure 10-4.)

The AETERM routine next stores in the
specified task's TCB the parameters that
are needed by the ABEND routine. These
pararreters consist of the dump option flag,
if a dump has been requested, and the corr
pletion code supplied by the caller. The
parameters are stored in the "completion
code" field of the TCB, called TCBCMP. The
dump option flag, if set, later causes the
ABENL routine to invoke the ABDUMP routine
to display the programs and control blocks
of the terminating task. The completion
code is displayed during the dump as part
of the TCB, and is made available to the
parent task, via the AEEND routine. (The
parent of the jot-step task is the
Ini tia tor.)

Section 10: Terrrination Procedures 211

r------------T---------------------T--,
IName of FlaglOffset of Flag in TCEI ~eaning of Flag I
t------------+---------------------+-----------------~----------------------------------~
I TCBNDUMP I 32.0 This task is nondispatchable while the resources I
I I of a task in this jot step are teing dumped. I
I I I

TCBSER I 32.1 This task is nondispatchatle while the SER1 rou- I
I tine is being executed for this task. I
I I

TCBMPCVQ I 32.5 This task is nondispatchable while VARY or QUIESCE I

TCBONDSP 32.6

TCBFC 33.0

TCBABWF 33.1

processing is being performed in a multiprocessing I
system. I

This task is nondispatchable while the Open rou
tine is being executed for another task as part of
ABEND processing.

This task is nondispatchable because it has been
normally cr atnorually terminated.

This task is nondispatchable as part of a tree of
tasks being abnormally terminated.

I
I

I TCBWFC
I

33.2 This task is nondispatchable because it has issued
an unconditional GETMAIN not yet satisfied by
rollout. I

I
I TCBFRO 33.3 This task is nondispatchable because it has been

rolled out. (Meaningful in all TCBs except system
task 'ICBs.)

I
I
I
I TCBSYS
I
I
I TCBSTP
I
I
I
I TCBFCD1
I
I
I
I TCBNDISP

33.4

33.5

33.6

33.7

This task is nondispatchable while another task in
the systerr is in "system must complete" status.

This task is nondispatchatle while another task
the same job step is in "step must complete"
status.

This task is nondispatchable because it is an
initiator task that is waiting for a requested
region of rr.ain storage.

in

This task is nondispatchatle. See bytes 173, 174
I I and 175 of the TCB for the cause. I L ____________ ~ _____________________ ~ __ J

Figure 10-4. The TCB Nondispatchability Flags

The ABTERM routine next schedules the
dispatching of the ABEND routine for the
specified task. In essence, the scheduling
consists of:

• Determining if the caller of the ABTERM
routine is a type-1 SVC routine.

• Modifying the old PSW for the current
routine so that it points to an SVC 13
instruction in the communication vector
table (CV'!). The old PSW rray be either
the RB old PSW of the task's "top" RB,
or the SVC old PSW in lower main
storage (if the task's current routine
has no SVRB).

• Removing an RB wait condition (if it
exists).

212

• Permitting the Dispatcher, on a task
priority basis, to cause execution of
the SVC 13 instruction.

When the SVC instruction is eventually
executed, the SVC Second-Level Interruption
Handler fetches the ABEND routine from
auxiliary storage (if it is not already in
a transient area of main storage) and
passes control to it. The ABEND routine is
controlled during its execution as a part
of the terminating task.

As a first step in the "scheduling" of
the ABEND routine, the ABTERM routine
determines which of two possible paths of
processing will be followed. One path is
used if the caller of the ABTERM routine is
a type-1 SVC routine, and therefore is not
controlled by an RB. The other path is

followed if the caller is not a ty~e-1 SVC
routine, and therefore is controlled by an
RB. This discussion first considers the
case in which the caller is not a ty~e-1
SVC routine, as determined by a test of the
"type-1" switch, IEATYPEl.

The Caller is not a TYEe-1 SVC Routine: If
the caller is not a ty~e-1 SVC routine, the
RB old PSW and the wait count to be altered
are in the "top" or current RB for the
specified task. (The current RB is the one
~ointed to directly by the TCB.) Before
altering these fields, the ABTERM routine
must first save the existing RE old PSW and
the wait count, for display during ABDUMP
frocessing. The second word of the RB old
psw, which contains the restart address, is
saved in the RBABOPSW field of the current
RB. For the same reascn, the RB wait
count, which the ABTERM routine clears, is
also saved in the current RB. (If the cur
rent RB is an IRB, however, the wait count
is not saved.) The RB wait count is
cleared to prepare for su~ervisor linkage
to the AEEND routine.

To permit the Dispatcher to ~lace in
execution an SVC-13 instruction for the
terminating task, the AETERM routine
branches to the su~ervisor's Task Switching
routine. The AETERM routine passes to the
Task switching routine the TCB address of
the specified task. The Task Switching
routine compares the dispatching fricrity
of the task to be terminated with the dis
patching priority of the current task. If
the task to be terminated is of higher
priority than the current task, the Task
Switching routine informs the Dispatcher by
placing the higher priority TCE address in
the nnew" TCB ~ointer, IEATCBP. Without an
alteration of the "new" TCB ~ointer, the
~ispatcher would dispatch a routine belong
ing to either the current task or a lower
~riority ready task.

After control is returned frorr the Task
Switching routine, the ABTERM routine com
pletes the scheduling of entry to the ABENr
routine by pointing the previously men
tioned RB old PSW to the SVC-13 instruc
tion. It then sets the ABTERM flag
(TCBABTRM) in the specified task's TCB, as
an indication to both the ABTERM and ABEND
routines that this task has been scheduled
via the ABTERM routine. This indication,
as described previously, limits ABTERM pro
cessing if a second branch to the ABTERM
routine occurs for the same task.

In addition, the routine sets the "pre
vent asynchronous exits" flag (TCBFX) in
the s~ecified task's TCB. Its purpose is
to prevent the scheduling of a user exit
routine for the task by the Stage 3 Exit
Effector during Dispatcher processing,
before entry to the ABEND routine occurs.

The execution cf a user exit routine would
be a waste of CPU time fcr a task that is
no longer productive, and is potentially
harmful. Before returning control tc the
caller, the AETERM routine conditionally
sets incomplete subtasks of the s~ecified
task ncndis~atchable, as discussed in "Pro
cessing if the Task Has Already Been Sched
uled for Termination."

The Caller is a TYEe-l SVC Routine: If the
caller has been a type-1 SVC routine, the
processing is sirrilar to the foregcing.
Instead cf saving and altering the RE old
PSW in the "to~" RE of the specified task,
the ABTERM routine does the saving in the
"to~" RE and the altering in the SVC old
FSW in lower main storage. This variaticn
is necessary, since type-l SVC routines do
not operate under the control of an RB. In
addition, the Task Switching routine is not
invoked, since the caller's register con
tents are still in their lower main-storage
save area (IEASCSAV), and rr.ay be lcst by
ancther SVC interruption following a task
Switch.

THE TASK IS ALREADY EEING ABNORMALLY TER
~INATED AND THE INITATOR IS NOT THE CALLER:
(See Figure 10-2, condition 3b.) If the
job step task is in the frocess of abncrmal
termination by the AEENr routine and the
Initiator is not the caller, an attempt is
being made to refeat an abnormal terrrina
tion for the same task. This means that an
error condition has occurred during AEENC
frocessing, which leads to a new request
for abnormal terminaticn of the task that
is already being terminated. A new entry
to the AEEND routine must be scheduled so
that it can try, if possible, to complete
termination ~rocedures. Such a reentry to
the ABEND routine for the same task is
called a recursion. If the recursion is
valid, the AEEND routine continues the ter
mination procedures. If, however, the
recursion is invalid, the AEENr rcutine
XCTLs to the Damage Assessment routine,
~hich averts a CPU wait state by abncrmally
terminating only the failing task and its
subtasks and by permitting the system to
continue operating.

Because the original AEEND parameters
(completion code and the dump oftion flag)
rrust be used by the AEENr routine, new
parameters are ignored and are not placed
in the s~ecified TCB. The scheduling of
the ABENr routine and the flagging of
incomplete tasks as nondis~atchable are
performed, as described in the topic "The
Task is Not Already in the Process cf
Abnormal Termination." Similar also is the
return of control. There are, hcwever, two
differences. The old PSW and the RE wait
count, if applicable, are not saved, since
en a recursion to ABEND, a dump is not
~rovided.

Section 10: Termination Prccedures 213

THE TASK IS ALREADY BEING ABNORMALLY TER
MINATED AND THE INITIATOR IS THE CALLER:
(See Figure 10-2, condition 3c.) There are
several possible causes of an ABEND request
by the Initiator while the job-step task is
already being abnormally terminated:

• The job-step timer expired for this
task.

• The operator issued a CANCEL conmand
for this task.

• All tasks in the job step are in a 30-
minute wait (completion code 522).

• SYSOUT data exceeded the limit sFeci
fied by the OUTLIM parameter of the
associated DD statement (completion
code 722).

The processing varies, depending on
whether a dump is specified. If a dump is
specified, the ABTERM routine does not
schedule entry to the ABENB routine, since
the ABEND routine is already in execution
to terminate the same task. It then re
stores registers and returns control to the
caller.

If a dump option is not specified, a
CANCEL command was issued, probably to stop
a prolonged dump that may be in an infinite
loop. In this case (indicated by TCB
flags), entry to the ABEND routine is
urgent. In order to stop the dump, the
ABTERM routine gives the appearance of a
first-time request for termination, this
time with a dump not requested.

The ABTERM routine gives the appearance
of a first-time request for termination by
clearing those flags in the TCB of the ter
minating task that indicate ABEND process
ing. After clearing the flags, the ABTERM
routine clears all nondispatchability
flags, except the nmust coxr,pleten , nopen in
progress", and Recovery Management Support
(RMS) nondispatchability flags, that may be
set in the job-step TCB. The purpose is to
force the dispatching of ABEND for the job
step task to end the prolonged dump. The
ABTERM routine does not save the RB old PSW
and the wait count of the current RB, since
the new termination request will not cause
a dump.

The remainder of ABTERM processing is
similar to that previously described: the
Task Switching routine is invoked, the
ABEND routine is scheduled (RB old PSW and
wait count are altered), the ABTERM flag
and the ·prohibit asynchronous exits" flag
are set, and control is returned as speci
fied by the caller.

214

Processing if the Specified Task Is Not the
Job Step Task

If the task specified for abnormal ter
nination is not the job-step task, as indi
cated by the TCBJSTCB field in its TCB,
there are three possible paths of process
ing. The path taken depends on whether the
specified task had been previously set non
dispatchable by either the ABTERM or ABENC
routine, and on whether the branch to the
ABTERM routine represents an attempted
recursion. The following discussion will
consider each case separately.

THE TASK WAS PREVIOUSLY SET NONDISPATCHAELE
BY ABTER~ OR ABEND: (See Figure 10-2, con
dition 4a.) In this case, entry to the
ABENr routine is not scheduled. The reason
is that an ancestor of the specified task
is already in the process of abnormal ter
mination. There is no need for an explicit
request for termination of the specified
task, since its resources will be released
as part of the termination of its ancestor.

The processing for this condition con
sists of setting subtasks of the sFecified
task ncndispatchable (TCEABWF flag set), if
they were not all previously placed in this
condition. This prevents any use of system
resources by a subtask of the terminating
task. Possibly during a previous entry to
the ABTERM routine, a subtask was not set
nondispatchatle tecause it was in "must
complete" status. If a routine of the sub
task has reset the nmust complete" status,
the subtask can now be set nondispatchable.
The ABTERM routine then restores the cal
ler's register contents from the TCB, and
returns control to an address the caller
specified.

THE TASK IS NOT IN THE PROCESS OF TERMINA
TION BY ABENB: (See Figure 10-2, ccndition
4b.) For this condition (indicated by the
clear state of the TCBFA flag), the pro
cessing is similar to that performed if the
caller specified the job-step task. The
cnly difference is that in this case the
ABTERM routine does not clear nondisFatch
ability flags in the TCB of the specified
task. These flags must be cleared by the
routine that set them, before the AEENB
routine can be executed for the task.

THE TASK IS IN THE PROCESS OF TERMINATION
EY AEEND: (See Figure 10-2, conditicn 4c.)
In this case, it is necessary to schedule
reentry to the ABEND routine to test for
valid recursion.

Preparation for ABTERM Processing after a
Program Interruption (ABTERM ProlOgue)

After a program interruption, the
Program-Check First Level Interruption
Handler (PC FLIH) cannot branch directly to

the main entry point of the AB~ERM routine
(IEAOABOO). First, certain housekeeping
functions needed by the AB~ERM routine must
be performed. These functions are ~er
formed by a routine of ABTERM, called the
ABTERM Prologue routine.

Note: If a program check occurs in a user
program, the Program Check FLIH does not
branch to the ABTERM Prologue routine if
both of the following conditions exist:

• A ~rogram interruption element (PIE)
has been specified, and

o The program interruption control area
(PICA) specifies this ~articular inter
ru~tion type to be handled by a user
routine.

The ABTERM Prologue routine performs six
IIiain functions:

• Refreshes the CVT address.

o Obtains the TCB address of the task to
be terminated and ~laces it in a param
eter register for use by the ABTERM
routine.

" Sets up a completion code (system error
code) that indicates the type of pro
gram check and places the error code in
a ~arameter register for initial use by
the ABTERM routine and ultimate use by
the ABEND routine.

a Conditionally saves the program
interruption old PSW for later dis~lay
by the ABDUMP routine.

a Places the address of the Dispatcher in
the return register.

• Sets up the dump o~tion flag as an
indication to the ABENB routine that it
should invoke the ABDUMP SVC routine.

The ABTERM Prologue routine (hereafter
called the Prologue routine) first
refreShes the CVT address at absolute loca
tion 16 (decimal> in case it has been over
laid during prior processing. Then it gets
the current TCB address. ~he ~CB address
specifies the task to be scheduled for
abnormal termination. If the ~rogram check
occurred in the I/O Su~ervisor, as indi
cated by the "set" condition of the "I/O
original interruption" switch (IORGSW), or
if the program check occurred in SVC 0
(EXCP) or in SVC 15 (ERREXCP), the Prologue
routine passes control to the lOS Program
Interruption Handler routine (IECCPLOO).
If the program check did not occur in the
I/O Su~ervisor or in SVC 0 or SVC 15, the
Prologue routine obtains the TCB address
from the "current" TCB pointer (IEATCBP+4).

After the determinaticn of the TeE
address, there are two streams of process
ing, depending on the source of the ~rcgram
check: a system or user program, or a
type-1 SVC routine (or the SVC FLIH). The
source of the ~rogram check is determined
by a test of the nty~e-1" switch. This
discussicn will first consider the path
followed if the ~rograrr check occurred in a
routine of a system or user ~rograrr.

The first strearr of ~rocessing is for a
system rcutine (exce~t a ty~e-1 SVC rou
tine) or for a user program. The Prologue
routine saves the registers and the address
cf the next executable instruction of the
interrupted routine. ~his infcrrration is
dis~layed during the dump that later occurs
as part of AEEND processing. The Prclogue
routine saves the address of the instruc
tion by storing the ~rcgrarr interru~tion
cld PSW in the RB old PSW field of the cur
rent RE. This RE is the nto~n RE cn the RB
queue for the current TCE. The old PSW, so
saved, cannot be lost by a new ~rcgram
check occurring before the original infor
mation can be displayed by ABDUMP. The
register contents belonging to the inter
rupted program are moved frorr, the "frcgrarr
interru~tion save area in lower main
storage to the register save area cf the
current ~CB (TCBGRS field). They are even
tually placed in the AEENt routine's SVRE.

The Prologue routine next sets u~ a ccm
~letion code (system error code) and a
return address for later use by the ABTERM
routine. The completion code indicates the
type of interruption and suggests the
source of the error, for example, OC6 =
specification error. (See the publicaticn
~essaqes and Codes.) The AETERM routine
stores the ccm~letion code in the TCE for
the task to be terrrinated. It then "flaces
in the return register the address of the
Dispatcher, to which the AETERM rcutine
returns control when its processing is
complete.

For a systerr corrpleticn code of X'OCO',
denoting an im"frecise interruption on a
~odel 91 or 195, AETERM places the systerr
completicn code in bits 8-19 of the TCBCMP.
The imprecise interruption configuration
bits are copied from bits 16-27 of the pro
gram old PSW into bits 20-31 of the TCBC~P
field. (Bits 20-31 contain the user com
pletion code when ABEND is entered directly
via an AEEND macro instruction.) For more
information abcut imprecise interruption
configurations, see Supervisor Services and
~acrc Instructions.

If the program check has occurred in a
ty~e-1 SVC routine other the SVC 0 or SVC
15 (or in the SVC First-Level Interruption
Handler), as indicated by the "ty~e-1"
switch (IEATYPE1>, the Prologue routine

section 10: ~ermination Procedures 215

sets up a completion code and a return
address for use ty the AETERM routine.
~his processing is similar to that fre
viously descrited, exceft that the error
code is OF2, indicating that a program
check occurred in a tYfe-1 SVC routine (or
in the SVC FLIH). The purpose is still the
sarre: to indicate to the programmer, via a
later dump, the type of prograrr in which
the error occurred. The ABTERM routine
stores the completion code in the TCB
belonging to the task to te terminated.
After setting the completion code, the Pro
logue routine flaces in a register the
address of the Type-1 Exit routine, to
which the ABTERM routine returns control.

Regardless of the scurCE of the program
check, the Prologue routine sets the dump
option flag and places the flag and the
completicn code in the parameter register.
~he dump option flag causes the ABEN~ rou
tine to invoke the AEDUMP SVC routine. The
position of the completion code in the pa
rameter register indicates to the ABDUMP
routine whether a system error or a user
error has occurred (see Figure 10-5).

The Prologue routine next branches to
the main entry point of the ABTERM routine
CIEAOABOO) .

~UMPING SELECTED AREAS OF MAIN STORAGE
(ABDUMP)

ABDUMP is an SVC routine which nay be
invoked through issuance of a SNAP macro
instruction, either by the ABEND routine
during an abnormal terrr.ination, or at any
time by a user program. It can therefore
frovide an abnormal dump or a dynamic dump.
If it is invoked by the ABEND routine, it
displays major control tlocks telonging to
the terminating task, its subtasks, and its
direct ancestors, and dynamically acquired
storage and programs belonging to the ter
minating task.

In systems with Main Storage Hierarchy
Support, ABDUMP dumps nain storage in each
hierarchy associated with the terminating
job step. Storage limits are determined by
examining the PQE chain.

The SNAP macro instruction (whose expan
sion contains an SVC 51 instruction) causes
the SVC Second-Level Interruption Handler
(SLIH) to search for and fetch the first
load of SVC DUMP. Only those rrodules of
the dump routines whose functions are
requested are then fetched and executed.

216

Dump Step

~
tion Option

og Fla~
Not UsedTSystem Completion CodeTUser Completion Code --1

Ba 0 1 2 7 8 19 20 31

Figure 10-5. Format of the Corrpleticn Ccde
and the Dump option Flag in
the Parameter Register

The AEDUMP routine consists of nonresi
dent modules that are separately fetched
and executed, and one "resident" module
that remains in rrain storage for the entire
durrf frocedure. The multiprocessing ABDUMP
routine includes one additional nonresident
nodule. The resident module (IEAQA~OA),
loaded by the first segment of the ABDUMP
routine, contains several format and output
subroutines used by the cther modules. The
AEDU~P rcutine provides either a formatted
printed display, or a series of blccked
records cn tape or on a direct access
medium, such as disk. In either case, the
cut put ccnsists of a group of control
tlocks, followed by the frograrrs and/or
dynarrically acquired storage of the task,
depending on the areas requested.

The first module, SVC DUMP 1, deternines
if an SDUMP rracro instruction had teen
issued. If not, control is passed tc
ABDU~P 1. Otherwise, SVC DUMP 1 sets all
non-system tasks ncndispatchable, cttains
the date and time of day and places these
in the header record, and perforrrs the dump
to a direct access device. If the dump
data set resides on a tape device, ccntrcl
is passed to SVC DUMP 2 to perform the
dump. After the selected areas are durrped,
SVC DUMP sets all tasks dispatchable and
issues an SVC 3 instruction.

AEDUMP1 ensures that a dump data set has
teen ofened for ESAM, frovides a wcrk area
for use by the entire routine, loads the
so-called "resident" module (format and
cutfut routines), and conditionally gets
storage space for freserving the trace
table and tlccking the records.

AEDU~P 1.5 displays the identification
code (if specified), job name, stef narre,
tirre, and date. If the ABEND routine is
the caller, ABDUMP 1.5 displays the corrfle
tion ccde from the specified task's TCE.

If the old PSW is requested as an operand
of the SNAP macro instruction, it is also
displayed.

AEDUMP2 forrr,ats and displays the old
PSW, if requested, the TCE for the speci
fied task, the request blocks on its RB
queue, and the load list for the task.
Optionally, it displays the TCE register
save area.

ABDUMP3 formats and displays contents
directory entries, and their extent lists
(one for each major CDE).

ABDUMPQ formats and displays data extent
blocks (DEEs) and the task I/O table
(TIOT).

AEDUMP4 identifies, formats, and dis
plays the control blocks of main storage
supervision: subpool queue elements
(SPQES), descriptor queue elements (DQES),
free queue elements (FQEs), the dunmy par
tition queue element, the partition queue
elements (PQES), and the free block queue
elements (FBQEs).

ABDUMP5 formats and displays the control
blocks that schedule serially reusable
resources -- queue oontrol blocks (QCES)
and queue elements (QELS) -- and register
save areas belonging to interruption re
quest blocks (IRES).

AEDUMP6 formats and displays the regis
ter save areas for each user program of the
task. For each save area the following
information is displayed: the address of
the save area, the contents of the save
area, the type of linkage (LINK or CALL),
the entry point identification, and a
"oall" identification (if the CALL nacro
instruction was used to obtain linkage).

If the dump request is for TCAM or a
time sharing task, TCAM ABDUMP 1-4 for TeAM
or ABDUMP H-I for a time sharing task are
processed next.

AEDUMP7 formats and displays the nucleus
of main storage, the register contents of
the user program at entry to ABDUMP, and
dynamically acquired storage (if STORAGE is
a keyword operand included with the SNAP
macro instruction).

ABDUMP8 formats and displays load
ITodules represented ty contents directory
entries. Each module fetched to main
storage for the terminating or requesting
task is displayed.

ABDUMP9 formats and displays storage
obtained dynamically by user programs
within the task. Each block of nain
storage is identified ty a search of the
subpool queue element (SPQE) queue.

ABDU~F11, executed in a multiprocessing
system, displays the prefixed storage area
in the nucleus. If the ITulti-systen roode
is oferating, the prefixed storage area at
upper main storage is also displayed.

AEDU~F12, executed only in a uniproces
sing system, form.ats and displays the GTF
trace data if GTF is active, and if the
internal storage and forrratting opticns
were selected. If GTF tracing is dis
played, the optional supervisor trace tatle
display is typassed.

AEDU~F13, executed only in a nUlti
processing system, performs the same func
tions as AEDUMP12.

ABDUMF14 forrrats and displays GTF con
trol and error records. AE~UMP14 receives
control from, and returns control tc
ABDU~P12 (AEtU~P13 in a multiprocessing
system) •

AEDUMP15, executed only in a uniproces
sing system, forrrats and displays the
cpticnal supervisor trace table if
requested.

ABDUMP16, executed only in a multi
processing system, formats and displays the
optional supervisor trace table f
requested.

AEDUMPH formats and displays the pro
tected storage control block (PSCB), the
user profile tatle (UPT), and the data set
extension (DSE) for a durrp request of a
time sharing task.

AEDU~FI formats and displays the termin
al job block (TJE) and the terrrinal jot
tlock extension (TJBX) for a dump request
of a time sharing task.

TCAM ABDUMP1 formats and prints the
header line, address veotor table (AVT),
and the basic section of the terminal name
tatle (TNT) for TelecorrITunications Access
Method (TCAM) Message Control Programs
(MCPs).

TCA~ ABDUMP2 dunps the entries in the
TNT and their associated terminal table
(TRM) entries.

TCAM ABDUMP3 durrps the TCAM destination
queue control tlooks associated with the
TRM entries.

TCAM ABDUMP4 duups open TeAM DeBs and
the line control tlocks associated with
each line group ~CE.

TCAM ABDUMP5 duups the 3705 line group
~CBS, LCEs, and Resource It Tables.

Secticn 10: Termination Procedures 217

TCAM ABDUMP6 dumps the BTU Trace Table
and the pseudo LCBs.

SVC DUMP (Entry Point IGC0005A)

SVC DUMP provides a dump of selected
areas of main storage to either tape or a
direct access device. When invoked ty DAR
or SVC 34, it ~rites the dump of main
storage to the SYS1.DUMP data set. When
invoked by any other supervisor routine,
the dump is written to a user defined data
set.

SVC DUMP 1 (IEAQADOY) is entered at
entry point IGC0005A when the caller issues
an SVC 51. Initially, SVC DUMP 1 checks
the ABDUMP parameter list to determine if
the request is for a SNAP or an SVC DUMP
(X'80' at offset +8 indicates SVC DUMP).
If the request is for a SNAP, control
passes to ABDUMP1 (IEAQADOO). other~ise,

SVC DUMP1 checks the highest level RB of
the inVOking task to ensure it is operating
with a protection key of zero. If it is
not, the dump exits ~ith a return code.

The lock byte is then tested to deter
mine whether a dump is already in progress.
If it is, the dump exits with a return
code. If it is not, the lock byte is set
to prevent simultaneous access to dump data
sets. Next all tasks, except the Communi
cations, Fetch, System Error, and current
tasks, are set nondispatchable and the dump
invoked bit in the TCB is turned on.

If the caller does not supply a DCB
address, the SYS1.DUMP data set is used.
If the data set, user-supplied or
SYS1.DUMP, is not open, SVC Durrp 1 exits
~ith a return code.

SVC DUMP 1 then issues the TIME DEC
macro instruction to obtain the date and
time. These are stored in the header
record.

The UCB representing the device upon
~hich the dump data set resides is checked
to ensure that it is in the "ready" state.
If it is not, a return code is set and the
routine exits after resetting dispatchabi
lity bits and the lock byte. The device
type, either tape or direct access, is then
determined and initialization of the con
trol blockS is completed as required.

The optional trace table (if present),
or GTF (if active), are made inoperative
for the duration of the dump so that
entries leading up to the failure are pre
served. Prior to exiting, the supervisor
trace table or GTF is reactivated.

If the device is direct access, a test
is required to determine if the data set is
available to receive a dump of main

218

storage. A channel program is initialized
to READ the first record on the data set.
If ECF is not detected, the data set alrea
dy ccntains a dump of main storage, in
~hich case a return code is set and the
routine exits. Other~ise, the data set is
empty and availatle to receive a dump of
main storage. The user supplied header
record is the first data block written.
After this the channel programs are rein
itialized to perform the actual ~riting of
the dump of main storage.

Abnormal end, channel end, and program
controlled interrupt appendages are pro
vided. The ~riting of the dump is per
formed via EXCP and WAIT. The PCI appen
dage performs the updating of the channel
programs required to ~rite the dump. The
channel end and abnormal end appendages are
provided to restart the channel pregram if
end cf cylinder or I/O errors are encoun
tered. Standard ERPs are used while writ
ing the durrlp except if SVC DUMP was invoked
due to a failure of the system Error Task.

An unrecoverable error condition causes
the writing of the dump to be terminated
and a return code set prior to exiting.
Upon completion of the dump, a norrral corr
pletion return code is set. For SYS1.DUMP
and EOF record is written after the dump is
completed (ncrmally or abnormally). For
user DASD data sets, the DCBFDAD field in
the user's DeB is filled in with the
address of the last blcck written. The
DCBTRBAI field is set to zero if the last
record written filled a track. Otherwise,
it is set to 1024. These steps are
required to present a standard DCB inter
face to close. All tasks are set dispatch
able prier to exiting, the lock byte is
reset, and the "durrp invcked- bit is turned
eff. Control then returns to the caller.

If the device is tape, control passes to
SVC DU1'(P 2 CIEAQADOZ) at entry point
IGCOZ05A. When writing to tape, proceSSing
is basically the same as direct access with
the exception that the PCI and CE appen
dages are not used. A tapemark is written
cnly for a NIP allocated tape unit. If the
tape is user-supplied, nc taperrark is writ
ten. The user must close the DCB. The
"LEAVE- option may be specified thus allow
ing multiple dumps on tape.

SVC DUMP 2 checks for unit exception
after data is written to tape. If a unit
exception occurs, the durr.p is terminated
for lack of space. In this case, a tape
mark is written and the tape unloaded. A
special return code is provided. If a
channel data check occurs, the dump is ccn
tinued at the next storage address to be
displayed.

If dump storage boundaries are indicated
in the parameter list, the dump routine
durrps storage from the addresses specified.
Beginning addresses are rounded down to a
2K boundary; ending addresses are rounded
up to a 2K boundary. If the parameter
lists indicate that nucleus and SQA are to
be dumped, this is done first. All parame
ters are validity checked. If invalid, the
dump is terminated with an error return
code.

Upon completion of the last WRITE, SVC
~UMP 2 returns to the caller after setting
all tasks dispatchable, turning off the
lock byte and dump invoked bit, and reacti
vating the optional trace table or GTF
tracing.

Processing during ABDUMP1
(Entry Point IGCOL05A)

After having teen fetched by the first
load of SVC DUMP, ABDUMP1 first tests two
input parameters: the DCB for the dump
data set, and the TCB for the task whose
resources are to be displayed. (See Sec
tion 12, "Control Blocks and Tables," for
the content and format of the ABDUMP para
meter list.) The DCB is associated with
the data set on which the dump will appear.
The caller -- either the AEEND routine or a
user program -- must previously have opened
the DCB for the dump data set. If the DCB
has not been opened, ABDUMP1 sets up an
error return code (4) and, via the Exit
routine and the Dispatcher, returns control
to the caller. Otherwise, processing con
tinues. If a TCB address is provided as an
input parameter, the resources of a task
other than the current task are to be
dumped. To a void a prograrr, check, AEDUMP1
checks the validity of the TCB address. If
the address is invalid, the routine sets up
an error code (8), and returns control to
the caller, via the Exit routine and the
Dispatcher. If the test suggests a valid
TCB address, processing continues.

If the task whose resources are to be
dumped is not the current task (as indi
cated by the TCB address), ABDUMP1 sets all
tasks of the job step nondispatchable
except the current task. It does this to
prevent concurrent dump requests issued by
programs belonging to different tasks of
the same job step from causing a possible
"interlock" if one of the tasks abnormally
terminates. Later, during ABDUMP9, when
dynamically acquired storage has been dis
played, the tasks will again be set dis
patchable. If the multiprocessing feature
was selected, control is passed to the Task
Removal subroutine, which determines wheth
er the current task on the second CPU has
been set nondispatchable. If it has, the
second CPU is interrupted with an indica-

tion (in S'IMASK) that the Dispatcher must
gain control.

To provide a work area for use by all
load modules of the ABDUMP routine, ABDU~Pl
next obtains storage space. This area is
later used to save registers, to serve as
an output buffer and as a work area, and to
hold pointers and flags. Later, after
ABDUMP9, the Where-tc-Go routine cf the
"resident" module frees the space obtained
by ABDUMP1.

AEDUMPl, via a LOAD macro instruction,
next causes the fetching of the "resident"
module of the ABDUMP routine (IGCOA05A) to
the jot-step's region of main storage. If
the "resident" module is resident in the
link pack area, its execution is scheduled
ty the corman sul:routines of contents
Supervision. This module consists of for
rrat and output routines that are used dur
ing the entire dump. Included are three
format routines, an Output routine, a
Where-to-Go routine, and a "TCE selection"
routine.

One format routine determines the posi
tion a labeled field occupies on a print
line. Another format routine determines
the number of 32-byte lines of print needed
to fcrrrat a tlock of storage, and the nurr
ber of bytes to be placed in the last
incomplete print line. The third format
routine unpacks a l:lock of main storage and
formats it in 4-byte fields in preparation
for printout.

The Cut put routine issues the WRITE and
CHECK macro instructions to print a line on
a printer or write a block of storage on
tape or a direct access device.

The Where-to-Go routine tests the flags
in the input parameter list to determine
~hich of several possible transient load
rrodules of the AEDUMP routine should next
receive control, after a given module's
processing is complete. It also performs
final housekeeping before control is
returned to the caller of the ABDUMP
routine.

The "TCB selection" routine perrrits cer
tain modules of the ABDUMP routine to scan
the TCBs of the job step in order tc set
the tasks nondispatchable or dispatchable.
It is necessary to set tasks other than the
current task nondispatchable. This pre
vents routines for other tasks from alter
ing control blocks while the blocks are
l:eing displayed. If the multiprocessing
feature was selected, control is passed to
the 'Iask Removal subroutine, which deter
mines whether the current task on the
second CPU has teen set nondispatchatle.
If it has, the second CPU is interrupted
with an indication (in STMASK) that the

Section 10: Termination Procedures 219

Dispatcher must gain centrol. After load
ing the resident module, if entry is not
from the ABEND routine, ABDUMPl determines
if GTF is active and if the GTF trace data
is to be formatted. If these conditions
are met, GTF tracing is suspended to ensure
the validity of the GTF trace data.
ABDUMPl then issues an ENQ macro instruc
tion for the dump data set. (The ABEND
routine suspends GTF tracing and issues its
own ENQ macro instruction for the durrp data
set.) It does this to prevent a program
belonging to a task in the same job step
from concurrently causing a ne~ dump to the
same data set. This could occur during a
period of dispatchability, before the cur
rent dump is complete.

If GTF is active, processing for the
optional supervisor trace table is
bypassed. Ho~ever, if GTF is inactive, and
if a display of the trace table ~as
requested as an option of the SNAP Racro
instruction, ABDUMPl issues a conditional
GETMAIN macro instruction for space so that
it can move the contents of the table. The
purpose is to prevent the table's further
alteration during the ABCUMP and ABEND rou
tines. If the table is moved, AEDUMPl sets
an indicator for ABDUMF15. If no space is
available to ~hich the trace table can be
n,oved, the message "NO SPACE FCR TRACE
TABLER is issued. In this case, during
ABDUMP15, the trace table ~ill not be
displayed.

If the output device for the dump data
set is not a printer, records rrust be
blocked. ABDUMP1 issues a conditional
GETMAIN macro instruction to obtain space
for the blocking of records. If space is
not available, the processing continues
without the setup for the blocking of
records.

ABDUMP1 enables interruptions and
initializes the work area it previously
obtained. It then invokes AEDUMP1.5 by
issuing an XCTL macro instruction.

Processing during ABDUMP1.5
(Entry Point IGCOCOSA)

AEDUMP1.5 displays, via a fornat routine
and the output routine, the identificatien
code (if specified), the job name, step
name, time, and date. (See sarrple dump in
Section 12, "Control Blocks.") If the ABEND
routine is the caller, AEDUMF1.S displays
the completion code from the TCB for the
specified task. Then this module displays
(via the format and output routines) the
old PSW stored when the AEDUMP routine was
entered. The old PSW is displayed if it
~as requested as an operand of the SNAP
macro instruction. Control is then passed
to the next applicable module of the ABDUMP
routine, via a branch to theWhere-to-Go

220

routine. This routine, by testing the dump
cpticn flags in the parameter list, deter
mines the next module of the ABDUMP routine
needed tc satisfy the caller's dump
options. The Where-to-Go routine ebtains
the needed mcdule by issuing an XCTLrracro
instruction. The XCTL request, via the SVC
SLIH, fetches and passes control te the
selected module of the ABDUMP routine.

Processing during ABDUMP2
(Entry Point IGC0105A)

AEDUMF2 displays all labeled fields of
the task's TCB except its register save
area. The register save area is displayed
only if the caller requests the durrp of
task resources other than its own.

ABDUMF2 scans the request blocks of the
RE queue for the specified task to display
the labeled fields of each request block
(RE). If any RB contains more than 32
bytes, as indicated by a test of the RBSIZE
field, its register save area and extended
save area, if they exist, are also
displayed.

After all REs on the RE queue have been
displayed, ABDUMP2 displays the load list
for the task, if the TCE (TCBLLS field)
indicates that a load list exists. The
load list contains pointers to contents
directory entries for all modules that were
fetched for the task via the LCAD rracro
instruction. After all the load list ele
ments have been displayed, or if there was
no lcad list for the task, ABDUMP2 invokes
the next module, ABDUMP3, via an XCTI nacro
inst:ruction.

processing during ABDUMP3
(Entry Point IGC020SA)

AEDUMP3 displays the contents directo:ry
entries for the task, and their extent
lists (one for each rr.ajor CDE). The con
tents di:rectory entries and their asso
ciated extent lists are obtained via two
searches. The first search consists of a
scan of the RB queue to find PRBS, each of
~hich may point to a CDE. The second
search examines the load list for the task.
Each load list elerrent alsc pcints to a
CDE. Each major CDE points to its asso
ciated extent list.

When all CDEs and their extent lists
have been displayed, AECUMP3 processing is
complete. ABDUMP3 invokes ABDUMPQ via an
XCTL mac:ro instruction.

P:rocessing during ABDUMPQ (Entry Point
IGCOQ05A)

AEDUMPQ fcrnats and displays the data
extent tlocks (DEBs) chained fron the
TCEDEB field, and the task I/O table

(TIOT). DEBs chained from the OLTEP TCB
are not formatted or disp1ayed. When pro
cessing is complete, ABDUMPQ invokes
ABtUMP4 via an XCTL macro instruction.

Processing during ABDUMP4
(Entry Point IGC0305A)

ABDUMP4 displays all main storage con
trol blocks associated with the specified
task, if two conditions are rret: the task
is not complete (TCBFC flag is not set> and
there is at least one subpool queue element
(TCBMSS pointer is not zero). If these
conditions exist, the following control
blocks are displayed:

For the Specified Task:
Subpool queue elements (SPQES).
Descriptor queue elements (DQEs).
Free queue elements (FQEs).

For the Job Step's Region(s}:
Partition queue elements (PQEs).
Free block queue eleroents (FBQEs).

If the specified task is complete or
there are no subpool queue elerrents,
ABDUMP4 displays only the PQES and the
FBQEs for the job-step's region(s).

AEDUMP4 then branches to the Where-to-Go
routine of the resident module to determine
the next applicable module of the ABDUMP
routine.

The display of main storage control
blocks is implemented as follows. The
first step is to set nondispatchable all
tasks in the job step except the current
task. This is accomplished via a branch to
the Task Select routine of the resident
module. (This action may already have been
done in ABDUMP1 if the specified task is
not the current task.) ~he purpose is to
prevent any program belonging to another
task in the job step from being executed
during an I/O wait condition of the current
task. During such execution the program of
the other task could issue a GETMAIN or
FREEMAIN macro instruction, changing the
main storage queues that are being dis
played for the specified task. If the mul
tiprocessing feature was selected, control
is passed to the Task Removal SUbroutine,
which determines whether the current task
on the second CPU has been set nondispatch
able. If it has, the second CPU is inter
rupted with an indication (in STMASK) that
the Dispatcher must gain control.

AEDUMP4 then formats and displays each
SPQE in the SPQE queue and its associated
DQES and FQEs. If a subpool is shared,
both the owner's and the sharer's SPQEs are
displayed. When all SPQES and their asso
ciated DQEs and FQEs have been displayed,
if the current task is the one specified

for the dump, ABDUMP4 branches to the Task
Select routine to rrake dispatchable cther
tasks in the job step. Dispatchability is
now feasible, since all rrain-storage cen
trol blocks that are readily alterable have
been displayed. But if the task specified
for the dump is not the cu~rent task, the
cther tasks ef the job step rerrain ncndis
patchable, as set by ABDUMP1, and the
branch to the Task Select routine is
bypassed.

After making other tasks dispatch able
(if necessary), the partition queue ele
rrents (PQEs) and the free block queue ele
ments (FEQEs) for the job-step's region(s}
are displayed. ABDU~P4 then branches to
the resident module's Where-to-Go rcutine
to deterroine the next applicable module of
the ABDU~P routine needed to satisfy the
current dump request.

processing during ABDUMP5
(Entry Point IGC0405A)

AEDU~P5 displays queue control blocks
(QCEs) and queue eleroents (QELs) for the
entire jcb step, and/or save areas belong
ing to interruption request blocks (IRBs),
depending on the dump options requested, as
indicated by the option flags of the param
eter list. If the AEDUMP routine was
invoked by the ABEND routine, all these
items are displayed.

If a display ef QCBs and QELs fer the
job step is requested, the first step is to
obtain the QCB origin address in the nu
cleus. Then, if the current task is the
one specified for the dump, all other tasks
in the job step are (via the Task Select
routine) set nendispatchable. The purpose,
as with the display of the rrain storage
queues, is te prevent alteration of the QCB
queues and QEL queues by prograros belonging
to other tasks while these control blocks
are being displayed. If the task specified
for the dump is not the current task, all
tasks but the current task have been nen
dispatchable since the execution of
ABDUMP1. If the multiprecessing is active,
control passes to the Task Removal subrou
tine, which determines whether the current
task on the second CPU has been set nondis
patchable. If it has, the seccnd CPU is
interrupted with an indication (in STMASK)
that the Dispatcher roust gain control.

The QEL queue chained from each rriner
QCB is searched to find QELs that belong to
either the specified taSk's job step, or to
its Initiator. For the first QEL that
schedules a given job-step resource,
ABDU~P5 displays both the QEL and its asso
ciated QCB. For each other QEL for the
resource, only the QEL is displayed.
AEDU~P5 compares two PQE pointers to deter
mine whether a given QEL belongs tc the

Section 10: ~errrination Procedures 221

current job step (including its Initiator).
One of the PQE pointers ('ICBPQE) is in the
'ICB whose address is contained in the QEL.
The other PQE ~ointer is in the current TCB
under whose control the ABDUMP routine is
operating. If the two PQE pointers are
equal, both TCBs belong to the sarre job
step (or one represents the Initiator),
since they both refer to the same region of
rrain storage. In this case, the QEL is
displayed. The examination and dis~lay of
QELs belonging to the jot step continue
until all QELS have been exarrined, as indi
cated by a major-QCB chain address of zero.

If the current task is the one specified
for the dump, all other tasks are next set
dispatchable. But if the specified task is
not the current task r other tasks are still
nondis~atchatle as set by ABDUMP1, and this
step is bypassed.

The next ste~ is to display user-program
save areas belonging to IRBS, if a save
area trace has been requested. If a save
area trace has not been requested, nc
further ~rocessing occurs in ABDUMP5, and a
branch is made to the Where-to-Go routine
of the resident module to determine the
next module of ABDUMP to be invoked.

If a save-area trace has been requested
as an option of the SNAP macro instruction,
ABDUMP5 examines each RB on the RB queue of
the specified TCB. For each IRB on the
queue, the register save area is displayed.
When the save areas of all IRBs on the RE
queue have been displayed, ABDUMP5 process
ing is complete. ABDUMP6 is invoked, via
an XCTL macro instruction, to continue the
display of save-area inforrraticn.

Processing during ABCUMP6
(Entry Point IGC0505A)

ABDUMP6 prcvides the heading line "SAVE
AREA TRACE." The heading identifies the
following lines as a trace of the ~rogram
~rovided register save areas for the task
being dumped. Each save area is dis~layed
in three ~rintable lines, starting with the
supervisor-provided save area for the first
user routine of the task.

Save areas are displayed initially in a
"forward" order, the order in which the
associated routines were invoked by LINK or
CALL macro instructions. The forward trace
continues until all ~rcgram-provided save
areas have been displayed, or until incor
rect forward or back chaining of save areas
is discovered. Then, ABDU~P6 ~erforms a
~artial "backward" trace, displaying the
save areas for the two most recently
executed user routines.

222

In addition to the address and contents
of each save area, AEDUMP6 dis~lays the
follcwing messages:

• An ninterruptionn message, giving the
address of the next executable instruc
ticn of the newest user routine of the
task.

• A message stating the ty~e of linkage
nacrc instruction (LINK or CALL) that
~as first used for the task.

• A message identifying the dis~lay of
the backward trace.

The save area trace is now descrited in
greater detail. (See Figure 10-6.)

The forward trace begins as AEDUMP6
obtains the address of the su~ervisor
~rovided save area for the first executed
user routine of the task. This save area
is ~ointed tc by the TCBFSA field of the
TCB. ABDUMP6 checks the validity cf the
save area address. If the address is in
valid (zero or not on a fullword bcundary),
most of the save area trace is bypassed and
only the save areas for the two last
executed routines of the task are dis
~layed. But if the address of the
su~ervisor-su~~lied save area is valid,
information for the first-executed routine
cf the task is displayed (Figure 10-6, ~art
1). The inforrration includes the type of
linkage (LINK or CALL), the module name
(ottained from the module's CDE), and the
entry point identifier (if it was s~ecified
as an o~erand of the LINK or CALL macro
instruction) •

AEDUMP6 tries to corr~lete the forward
save area trace by performing the following
steps:

• It obtains the forward chain ~cinter
fran the third word of the su~ervisor
~rovided save area and checks the
~ointer for validity (Figure 10-6, part
1, block F).

• If the forward chain ~ointer is valid,
it obtains the backward chain pointer
from the second word of the next save
area and checks the pointer for validi
ty (Figure 10-6, part 2, block B).

• If the backward chain ~ointer is valid,
it displays the save area and its
address (Figure 10-6, ~art 2).

These steps are repeated for each save
area until all save areas have been dis
~layed, as indicated by a forward chain
~ointer cf zero, or until an invalid for
~ard chain pointer or backward chain ~oint
er has been detected. If ABDUMP6 detects
an invalid backward chain ~ointer, it

TeB ABDUMP's SVRB SVRB PRB

x
I RBOPSW I

1+------------- Task's RB Queue ------'>.,o:__----------_+!

GJ
B B F B F

o
Supervisor-provided
save area for the
first-executed
routine of the task

Save area for
second-executed
routine of the
task

Save area for
third-executed
routine of the
task

Save area for
last-executed
rauti ne of the
task

Legend:

- = painter

B = backward chain pointer

F = forward chain pointer

Figure 10-6. Pointers Used During the Save Area Trace

issues an error message nINCORRECT BACK
CHAIN" and displays the associated save
area.

ABDUMP6 next prepares for the partial
backward trace that displays the register
save areas for the two most recently
executed user routines. It first obtains
the address of the newest PRB on the task's
RB queue (see Figure 10-6, part 5). This
PRB represents the last executed user rou
tine. ABDUMP6 then writes the interruption
message consisting of the words "INTERRUPT
AT,n followed by the second half (address
word) of the RB old PSW in the PRB. As a
heading for the backward trace, AB~UMP6
issues the message "PROCEEDING BACK VIA REG
13. n

ABDUMP6 then perforrrs the partial back
ward trace. It first obtains the address
of the save area for the last executed user
routine of the task. This address is in
the register 13 save location in the SVRB
that precedes the newest PRB on the task's
RB queue (Figure 10-6, part 6, block X).
This save area address and the associated
backward chain pointer (Figure 10-6, part
4, block B) are validity checked, and the
two save areas and their addresses are dis
played (Figure 10-6, parts 3 and 4).
ABDUMP6 then branches to the Where-to-Go
routine of the resident module to determine
the next transient module of the AEDUMP

routine to be invoked. The Where-to-Go
routine makes the decision on the basis of
the durrp options specified by the AE~UMP
routine's caller (as indicated by the
cpticn flags in the dump parameter list).

Processing during ABDUMPll (Entry Point
IGCOE05A)

AEDU~Pl1 displays the prefixed storage
area (s) in the nucleus of Ir'ain storage. If
the partitioned mode is operating, only the
prefixed storage areas at the lower end of
Irain storage is displayed, preceded by the
heading nCPU A PSA" or nCPU B PSA. n If the
multisystem mode is operating, both pre
fixed storage areas are displayed, preceded
by the headings nCPU A PSA" and ncPU E
PSA. n AEDUMP11 invokes ABDUMP7 via an XCTL
maoro instruction.

In a multiprocessing system, ABDU~P7
omits the prefixed storage area from the
display of the nucleus, and ABDUMP15 does
not display the trace table.

Processing during ABDUMP7
(Entry Point IGC0605A)

ABDUMP7 displays any corrbination cr all
cf the following resources of the specified
task, depending on the options requested by
the caller.

Section 10: Termination Procedures 223

• The nucleus of main storage.

• The register contents when the ABEND
routine was entered, or when the SNAP
macro instruction was issued.

• Selected blocks of main storage (if
STORAGE is included as a keyword
operand of the SNAP macro instruction).

If the caller has requested a dump of
the nucleus of main storage, ABDUMP7 dis
~lays the nucleus, preceded by the heading
NUCLEUS. If there is a trace table in the
system, and it lies in the nucleus, only
the part of the nucleus below the trace
table is displayed (see ABDUMPl for a dis
cussion of the trace table). Then the
heading NUCLEUS CONT and the rest of the
nucleus above the trace table are dis
played. ABDUMP7 bypasses the current co~y
of the trace table because the table now
contains misleading information. This
information was inserted after SVC inter
ruptions, I/O interruptions, and entries to
the Dispatcher, during execution of the
ABDUMP routine. The original copy of the
trace table was saved by ABDUMP1, if space
was available, and is displayed by
ABDUMP15.

In a multiprocessing system, the ~re
fixed storage area(s) are displayed by
ABDUMP11 (IGCOB05A). iherefore, AEDUMP7
displays the nucleus starting at location
X'1000. '

ABDUMP7 next displays the register con
tents as they appeared when the SNAP macro
instruction was issued. If the ABEND rou
tine was the caller, the register contents
are obtained from the ABEND routine's SVRB.
Otherwise, the register contents saved in
the ABDUMP routine's SVRE are used for the
display. The display is preceded by either
of two messages: "REGS AT ENTRY TO ABEND"
or "REGS AT ENTRY TO SNAP."

If a SNAP macro instruction was issued
with the keyword STORAGE, the areas of main
storage requested by the caller are for
matted and displayed. To protect private
information, storage is displayed only if
it lies within the caller's region. Each
eight words of storage is preceded by its
starting address. AEDUMP7, its processing
now complete, branches to the Where-to-Go
routine of the resident module to determine
the next transient module of the ABDUMP
routine to be invoked.

Processing during ABDUMP8
(Entry Point IGC0705A)

ABDUMP8 dis~lays load modules for the
task whose resources are being dumped. The
information needed to display each load
module is obtained from the contents direc-

224

tory entry (CDE) for the module and from
the associated extent list.

There are two possible sources cf infer
matien needed to dump load modules. One
source is the group of CDEs pointed to by
PREs belonging to the task. These CDEs
represent modules requested by an AiTACH,
lINK, or XCTl macro instruction. The other
source is the group of CDEs pointed to by
elements of the load list for the task.
These CDEs represent modules requested by a
lOAD macro instruction. (For a review of
the contents directory and the load lists,
see Section 4, "Contents Supervisicn.") If
the task specified for the dump has already
been terminated, either normally er abnor
mally, as indicated by the "set" condition
of the TCBFC flag, all PRBs have been
removed from the task's RB queue and have
been freed. Te determine if the RB queue
still exists and can be examined, AEDUMP8
examines the TCBFC flag to test for pre
vious task termination. If the task was
not terminated, both the RB queue and the
load list are scanned for pointers te CDEs.
(For the content and format of a PRE, a
CDE, a load list element, and an extent
list, see Section 12, "Control Blocks and
Tables.")

AEDUMF8 obtains the following informa
tion from the CDEs:

• Whether the module is already in main
storage or in the process of being
fetched.

• The address of the module's extent
list. The extent list contains the
main storage address and length of each
loadable section of the module.

• ihe nodule's entry point name.

• Whether the module is in the area of
main storage specified by the caller
(job pack area or link pack area).

If the module is in the specified main
storage area, ABDUMP8 displays a heading
line, containing "LOAD MODULE" and the
medule's name, followed by the contents of
the module itself. The normal line of the
display contains eight words of sterage
~receded by their starting address.

When the load modules described by all
CDEs haVE been displayed, ABDUMP8 branches
to the Where-to-Go routine of the resident
module. This routine determines whether
ABDU~P9 should be inVOked, or whether cen
trel should be returned to the caller of
the ABDU~P routine.

Processing during ABCU~P9
(Entry Point IGC0805A)

ABDUMP9 displays user subpools cf main
storage that have sutpool numbers net
greater than 127. When all user subpools
have been displayed, ABDUMP9 branches to
the Where-to-Go routine of the resident
module (IEAQADOA), to prepare for and
return control to the caller of the ABDUMP
routine.

ABDUMP9 displays user-obtained nain
storage if two conditions exist: there is
at least one subpool queue element (SPQE)
on the task's main storage queues (TCBMSS
flag is not zero), and the SPLS operand was
specified in the SNAP macro instruction.
Otherwise, ABDUMP9 branches to the Where
to-Go routine in the resident module (IEA
QADOM to end the durrp and return control
to the caller.

If user main storage is to be displayed,
the job step is set temporarily nondis
patchable to prevent alteration of the rrain
storage queues during the display. If the
multiprocessing feature was selected, con
trol is passed to the TESTDSP subroutine
which determines whether the current task
on the second CPU has been set nondispatch
able. If it has, the second CPU is inter
rupted with an indication (in STMASK) that
the Dispatcher must gain control.

For each subpool queue element (SPQE),
ABDUMP9 checks that the subpool number is
for a user area of storage, as indicated by
a subpool number not greater than 127, and
that the SPQE does not represent a shared
area of storage. (For the content and for
mat of an SPQE see Section 12, "Control
Blocks and Tables.") If the SPQE indicates
that the area is shared, the "owner" SPQE
is obtained via an SPQE pointer in the DQE
pointer field of the SPQE. The "owner"
SPQE is the element created by the GETMAIN
routine when the block of storage was first
requested.

ABDUMP9 obtains from the descriptor
queue element (DQE), pointed to by the
SPQE, the starting address of the block of
main storage for the original GET~AIN re
quest and the number of bytes allocated for
the request. ABDUMP9 displays a header
line giving the subpool and block number.
The subpool number is obtained from the
SPQE, the block number from the DQE. It
then formats the block, normally eight
words to a line, and displays it. There
may be one or more free areas in the block
to be displayed, as indicated by the exis
tence of a free queue element (FQE) pointed
to by the DQE. In this case, ABDUMP9
divides the block into sections separated
by free areas. It then formats and dis
plays the block, bypassing each free area,

so that free areas do not appear in the
dump output. The process is repeated for
each DQE belonging to an SPQE and for each
SPQE in the queue. When all SPQEs have
been processed, ABDUMP9 sets all other
tasks of the job step dispatchable. Since
the display cf user-acquired main storage
is finished, GETMAIN requests will net ncw
affect the dump. ABDUMP9 then branches to
the Where-to-Go routine cf the resident
nodule (IEAQADOA) to prepare for return of
control to the caller: the ABEND rcutine
cr the issuer of the SNAP nacrc
instruction.

Processing during ABDUMP12 (Entry Pcint
IGCOJ05A)

ABDUMP12 displays the GTF trace data if
it e~ists in rrain storage and is requested
as part cf the dump. A header record is
printed first. Then, the cldest reccrd in
the GTE trace buffer is obtained and the
data forrratted and printed. Ecrrratting
Froceeds from the oldest record to the most
current. Control is transferred tc
ABDUMP14 (IGCO~05A) when a control record
(time records and lost-event-ceunt records)
er error records are encountered.

When all records have been formatted and
printed, GTF tracing is resurred and control
is transferred to the ABDUMP resident
module (IEAQADOA).

Processing during ABDUMP13 (Entry Peint
IGCOK05A)

AEDU~P13 displays the GTF trace data in
a multiprocessing systerr if it exists in
rrain storage and is requested as part of
the dump. 'The fUnction ef this module is
very similar to ABDUMP12.

Processing during ABDUMP14 (Entry Point
IGCOM05A)

ABDUMP14 formats and prints GTF central
and errcr records. The control records
consist of the time record (created if the
keywcrd TIME=YES was used in the START com
mand) and the lost-eve nt-count reccrd.
When an error record is encountered,
ABDUMP14 selects the appropriate message
and dunps the error record in hexadecimal.

Ccntrcl is returned to ABDUMP 12 or
ABDUMP 14.

processing during ABDUMP15 (Entry Pcint
IGCON05A)

AEDUMF15 displays the optional supervi
sor trace table if it exists in the systerr
and was requested as part of the dump, and
if the table was saved during ABDUMP1. In
a rrultiprocessing system, the trace table

Secticn 10: Termination Procedures 225

is disflayed ty ABtUMP16 (IGCOP05A) and,
therefore, is not displayed by ABDUMP15.

ABDUMP15 displays the trace table in twc
farts. (The frog ram listing calls this
procedure "unfolding" the trace table.)
ABDUMP15 starts the display at the trace
table entry immediately after the current
entry, and proceeds to the end of the
table. It then displays the rest of the
table by starting at the first entry and
proceeding to the current entry. Pointers
to the trace table exist in a triple word
whose address is obtained from the secon
dary communication vector table (see Sec
tion 12, "Control Blocks and Tables"). The
first word points to the address of the
current entry of the trace table; the
second word foints to the start of the
table; the third word foints to the end of
the table.

After displaying the trace table,
ABDUMP15 frees the sface previously
obtained for the table and then branches tc
the resident module (IEAQADOA).

Processing during ABDUMP16 (Entry Point
IGCOP05A)

ABDUMP16 is executed only in a mUlti
processing system. It disflays the trace
table if it exists in the system, was
requested as part of the dump, and was
saved during AEDUMP1. The character A or E
is printed on each line/entry to identify
the CPU to which the line/entry applies.
The trace table is disflayed as in a
uniprocessing system (see Processing During
ABBUMP15).

Processing during ABDU~PH (Entry Point
IGCOH05A)

If the dump request is for a tirre shar
ing task, ABDUMPH formats and displays the
protected storage control block (PSCB), the
user profile table (UPT), and the data set
extension (DSE). ABDUMPE then passes con
trol to ABDUMP9.

Processing during ABDUMPI (Entry Point
IGCOIOSA)

If the dump request is for a tirre shar
ing task, ABDUMPI formats and displays the
terminal job block (TJB) and the terminal
job block extension (TJBX). AEDUMPI then
passes control to the Where-to-Go routine.

TCAM ABDUMP1 (Entry Point IGCODOSA)

TCAM ABDUMP1 receives control from the
resident ABDUMP module (IEAQADOA) when the
program being dumped is the Telecommunica
tions Access Method Message Control Pro
gram. TCAM ABDUMP1 formats and prints the
header line, the address vector table

226

(AVT), and the basic section of the terrrin
al name tatle (TNT). The AVT is dumped in
three parts -- the basic secticn, the
stcrage gueue section, and the disk sec
ticn. Then the TNT section is dumped and
control is passed to TCAM ABDUMP2.

TCAM AEDUMP2 (Entry Point IGCOE05A)

TCAM ABDUMP2 dumps the entries in the
TNT and their associated terminal table
(TRM) entries. First, the TNT entry is
formatted and immediately after, its asso
ciated TRM entry is also formatted. This
is refeated for every TNT entry. Ccntrol
is then fassed to TCAM ABDUMP3.

TCA~ ABDUMP3 (Entry Point IGCOF05A)

TCAM ABDUMP3 durrfs the TCAM destination
gueue ccntrol blocks associated with the
TRM entries. They are lccated thrcugh the
TNT entries, and are formatted in the order
of ascending storage lccations. After all
the QCBS have teen dumped, control is
passed to TCAM ABDUMP4.

TCA~ ABDUMP4 (Entry Point IGCOG05A)

TCAM ABDUMP4 durrps the three types of
TCA~ DCBs (line group, message queue, and
checkpoint) and the line ccntrcl tlccks
associated with each line group BCE. Only
open TCAM DCBs are dumped. The order in
~hich they are dumfed de~ends cn the order
in which their corresponding DEBs are
chained. The line contrel tlocks fer each
line group DCB are ferrratted irrrrediately
after their associated DCBs.

When all DCBs have been printed, control
is passed to TCAM ABBUMP 5 if there are
TCAM Line Grcuf DCBs to dump. If the user
has not requested trace data, contrcl is
fassed tc the "Where-to-Go" routine in the
resident ABDUMP routine.

TCAM ABDUMP5 (Entry Point IGCOR05A)

TCAM ABDUMPS formats and prints the TCAM
3705 line Grcuf DCEs, the LCE asseciated
with each DCB, and the Resource ID Tables
associated with each LCE. When prccessing
is cemflete control is passed to TCAM
ABDUMP 6.

TCA~ ABDUMP6 (Entry Point IGCOS05A)

TCA~ ABDU~P6 formats and prints, if one
exists, the BTU Trace Table. The pseudo
LCBs in the fseudo LCB fecI are fcrrratted
and frinted. Control is passed to the
"Where-to-Go" routine in the resident
ABDU~P rcutine.

Cleanup in the Where-to-Go Routine

The cleanuf procedure of the Where-to-Go
routine of the resident module (IGCOA05A)
ends the dump and prepares for return of
control to the caller ty:

• Displaying message "EN~ OF DUMP."

• Freeing all areas obtained during the
execution of ABDUMP1 (that is, the work
area and the optional area for the
blocking of records).

o Issuing a ~EQ macro instruction for the
dump data set, if the ABDU~P routine
was invoked by a user routine. If the
ABDUMP routine was invoked by the ABEN~
routine, the ABEND routine issues the
DEQ macro instruction, specifying the
dump data set. The data set can then
be used by the ABDUMP routine for
another caller specifying the same data
set.

o Deletes the resident module and returns
control to the caller, via the Exit
routine and the Dispatcher. It does
this by moving a DELE~E macro instruc
tion and an SVC-3 instruction to the
extended save area of the ABDUMP rou
tine's SVRB, and then executing these
instructions. In the program listing
this process is called "self delete. n

PERFORMING ABNORMAL TERMINATION
(ABEND ROUTINE)

Abnormal termination occurs when some
type of unrecoveratle error, such as a
machine check, I/O error, or prograrr. check
has taken place. It may also be initiated
by a system or user program that detects an
abnormal condition that could cause a pro
gram check or incorrect processing. The
task whose program or I/O operation has
malfunctioned is abnorrrally terminated
because reliable results can no longer be
obtained. The task must be terminated to
prevent waste of system resources, such as
CPU time or main storage.

The purpose of abnormal termination is
to free the resources of the malfunctioning
task so that they can be made available to
other tasks in the system. The freed
resources include programs in main storage,
enqueued resource requests, unexpired tirr.er
requests, incomplete operator communica
tions, exclusively used data sets, and
unshared subpools of main storage (if
dynamically acquired). These .resources
belong to the specified task itself and its
previously unterminated descendants. In
addition, control blocks used by the ter
minating task and its descendants are
dequeued from their lists and in rrcst cases

freed. ~hese control tlocks include:
~CBs, RBs, IQEs, QELS, QCBs, SPQES, C~Es,

TQEs, SCBs, and PIEs (if they exist).

Atnormal terrrination allows two opticns:
task and job-step termination. These are
normally user opticns, specified by an
cperand of the ABEND macro instruction.
This option permits a prcgram telonging to
a higher level task in the job step to
decide whether to continue or terrrinate the
cther tasks of the job step. In task ter
rrinaticn the resources of only the malfunc
tioning task and its previously unter
ninated descendants are released. But in
step terrr,ination the rescurces used by all
tasks of the job step are freed. stef ter
nination may be elected by a user prograrr
(via the STEP operand of the ABEND macro
instruction), or caused by internal ABENt
frocessing in the case of a nsteal coren or
a DAR (Damage Assessrrent Routine)
conversicn.

The termination procedure is perfcrrred
by the AEEND routine. As stated before,
the ABEND routine frees resources and con
trol blocks belonging to the malfunctioning
task and its previously unterminated
descendants (subtasks, and subtasks of sub
tasks). For several unusual conditicns (a
task in "must complete" status, a terminat
ing system task, or an invalid recursion),
the ABENt routine exits to the Damage
Assessment Routine (DAR), which alters the
environment so ABEND or system processing
can attempt to continue, or .sets all tasks
in the jcb step nondispatachable.

If the dump option had been selected
(either by the user prcgram or by the
ABTERM routine), the AEENt routine causes
the loading and execution of the ABDUMP SVC
routine. The AB~UMP routine displays the
programs, control blocks, and dynarrically
acquired storage of the terminating task,
its descendants, and its ancestors, includ
ing the job-stef task.

The ABEND routine may be invoked direct
ly or indirectly. The invocation is direct
~hen a systerr or user routine issues an
ABENt macro instruction to terminate the
current task. The invocation is indirect
when a system routine, after detecting an
abnormal conditicn, branches to the ABTERM
routine. The ABTERM routine schedules the
execution of an SVC 13 (ABEND rracrc
instruction) for the task to be terminated.
The SVC 13 instruction, executed ~hen the
task to be terrrinated is next disfatched,
causes supervisor linkage to the ABEND
routine.

The entry is indirect in the following
situations:

Secticn 10: Termination Procedures 227

• A type-l SVC routine, which is net per
mitted to issue an SVC instruction,
decides to terminate the current task.

• A supervisor routine decides to termi
nate a task other than the current
task.

• The I/O Supervisor, whose execution is
asynchronous with task performance,
decides to terminate a task for which
an unrecoverable I/O error has
occurred.

• A program check occurs during the per
formance of any task.

• A OF3 machine check for some task in
the job step.

Recursions

An error condition may occur during
ABEND processing that results in a new re
quest for abnormal terrrination of the task
that is already being terminated. A new
entry to the AEEND rcutine must te sche
duled so ABEND can try, if possible, to
complete terminaticn procedures. Such a
reentry to the ABEND rcutine for the same
task is called a recursion. Certain recur
sions are valid (ABEND expects the possiti
lity of an ABEND at that point), and the
module continues normal processing with any
special handling necessary. Invalid recur
sions, when detected, are handled ty pas
sing control to DAR which takes a dump and
attempts to continue the terrr,ination if
possible.

The task control tleek (TCB) contains a
TCBRECDE field which specifies ccnfigura
tions for valid ABEND recursions. This
field is checked for the particular type of
recursion, and ABEND processing continues
tased on the configurations. ABEND3 checks
this field and routes control to the proper
rrodules to handle it. The valid recursion
configuration flags are set prior to any
processing during which a possitle ABEND is
expected. They are then cleared irrmediate
ly after completion of that particular pro
cessing. This is done so that ABEND does
not misinterpret a future invalid recursion
as valid. Following is a list of the
TCBRECDE flags and the valid recursions
they indicate. The TCBREC flag indicates
that a valid recursion exists; this bit is
checked in ABENDO and ABEND1. For a first
time entry this bit is zero; for a valid
recursion this tit is cne. For a valid
recursion, ABENDl turns this bit off and
processing continues based on the status of
the right-most bits of the TCBRECDE field.
These remaining bits, shown in Figure 10-7,
indicate the specific recursion.

228

r---------T-------------------------------l
IBit FieldlRecursion Resulting from an: I
t---------+-------------------------------~
TCBOPEN Error in the Open routine for

the durrp data set.
TCBCLOSD Error in the Close routine for

Direct SYSOUT on tape.
TCBCLOSE Error in the Close routine for

open data sets.
TCBCLOSF Error in the Force Close rou

TCEGREC

TCEADUMP
TCBfTAXE
TCBDYNA~

TCBQTIP

tine for graphics jcbs.
Error in the Graphics Debug
routine.
Error in the ABDUMP routine.
Errcr in the Purge TAXE reutine
Error in the TIOT Check routine
fcr dynamic DD entries.
Error during the purge of TSO
Inter-Partiticn Posts.

TCBTCA~f Errcr during the pruge cf TCAM
Posts.

TCBTCAMR Errcr in the TCA~ Message Con
trol Program (MCP) Reinitiali
zation routine.

TCBSAVCD Error in the ABEND/STAE Inter-
face routines (ASIR).

ITCBTYP1W Error in the Write-to-
I Programmer routine for type-l
I messages. L _________ ~ _______________________________ J

Figure 10-7. Valid ABEND Recursion
Configurations

Communications

The TCERECDE field is also used for
parameter type information in comrrunicating
tetween varicus modules. When used for
communications, the TCEREC bit is always
zero. The following is a list of the com
munication configuration flags used tetween
ABEND/ASIR/DAR modules:

TCBNCSTA --

TCBSTRET

TCBCCNVR

TCBDARET
TCBNEWRB

Indicates that STAE/STAI
(Specify T'ask Abnormal Exi t/
Suttask ABEND Intercept) net
to be honored.
Indicates a return frorr the
"steal core" routine.
Indicates a conversicn to a
jot-step AEEND is necessary.
Indicates a return frorr DAR.
Indicates that ABEND issued
an SVC 13 to pass control,
via an XCTI, to a non-AEEND
module.

Iss~inq A Conditional Freemain

Because certain AEEND modules must not
be interrupted by other abnormal termina
tion ccnditicns, and to typass excessive
recursion processing, special linkage is
provided within several AEEND rrodules and
AETERM to handle error conditions that may
occur within a FREEMAIN. An AEEND ccndi
tion may result during a FREEMAIN tecause
of the following two cases: (1) the user

nay have freed up system control tlocks in
his storage area; the task abnornally ter
minates when it attercpts to free these same
control blocks; or (2) the user nay have
destroyed a free queue element (FQE) near
the area being freed; FREEMAIN detects the
invalid FQE when ABEND attempts to free the
FQE.

The ABEND modules set the first byte in
the SCVTFMSA field to X'SO' tefore invoking
a conditional FREEMAIN across a branch
entry. The tranch itself prohibits ABEND
from losing control to the SVC FLIH and the
Dispatcher. If an error condition occurs
within FREEMAIN, AETERM is entered to sche
dule abnormal termination of the task.
However, when ABTERM encounters the X'SO'
in the first byte of SCV'IFSMA, ncrrral
ABTERM processing is typassed, and AETERM
loads registers 2 - 14 from the FREEMAIN
save area, and returns control to the ABEND
module using a BR 14 instruction. ABEND
then resets the SCVTFSMA field, and proces
sing continues even though the specified
area was not freed.

Often the ABEND routine must branch to
subroutines within the Exit/End-of-Task
routine to fulfill certain necessary func
tions. If these subroutines may free areas
in unprotected storage, ABEND sets the
SCVTFMSA field to X'40'. ~his indicates to
the subroutine that, tecause the entry is a
tranch entry from ABEND, a conditional
FREEMAIN should te performed.

ABEND ProceSSing

ABEND processing follows a logical,
functional sequence. Certain actions must
precede others. The following is a general
list of the types of functions included in
ABEND, arranged in the order in which they
should occur. If a new function were to be
added which did not fit into any of these
ten classes, a new class of functions would
be incorporated into its proper place.

1. Functions that must be performed prior
to deciding whether the AEEND should
continue.

2. Functions that must te performed for a
real ABEND prior to losing control via
an XCTL.

3. Functions that seriously degrade the
performance of other tasks until they
are performed.

4. Functions that must be performed prior
to routing control to DAR.

5. Functions that must be perforned (a)
for all non-DAR entries, (b) prior to
providing diagnostic aids to the pro
blem programmer, and (c) while the

originally terninating task is in
control.

6. Functions that must te performed only
once per AEEND, regardless cf recur
siens, and must te performed prior to
providing diagnostic aids.

7. Functions that provide diagncstic aids
to the protlem programmer (for
example, a SYSUDUMP/SYSABEND dunp).

S. Functions that HUSt be perforned under
control of each terminating task.

9. Functions that may be performed under
control of the top terninating task's
TCB.

10. Final proceSSing for the top task that
must te performed at a time in which
ABEND will not lose contrcl.

AEENI: J)(odules

The AEEND routine is conposed of several
transient modules. Some modules are
entered only once per AEENI:, and scn.e cn
every recursion. All modules, except
ABEND16 and ABEND20, must issue an XCTI
nacrc instruction at the end of processing
to cause supervisor linkage to the Tran
sient Area Handler which fetches and passes
control to the next nodule.

Fcllowing is a list of the ABEND nodules
and a trief description of their functions.

ABENDO gains control after an SVC 13
instruction is issued either by the caller,
or indirectly by the AETERM routine. It
handles initial interfaces for SVC DUMP,
Generalized Trace Facility, STAE/STAI, TSO,
and ABDUMP. AEENDO also purges I/O for the
current task, prevents asynchrcnous exits,
t:erfcrms AEEND/AETERM housekeeping func
tions, and routes control to DAR for inva
lid recursions.

ABENDl purges I/O and AEQS for each
entry into the ABEND routine. Timer and
W'ICR requests are purged for first-time
entries only. ABENDl performs conversion
to a job-step ABEND, sets subtasks ncndis
t:atchatle, validity checks the FQE,
releases the PIE, and routes serious errcrs
to DAR.

AEEND3 releases partially loaded pro
grams, purges type-l message list elements
(on recursion), and routes control for
valid recursions.

AEEND 4 writes type-l messages, purges
nessage list elements, and frees type-l
message WTP buffers.

Section 10: 'lernination Procedures 229

ABEND5 furges Rollout requests.

AEEND7 frovides an interface with the
Graphics Debug routine, and the Direct SYS
CUT writer.

AEEND8 opens the dump data set, and
saves and restores both the load list ele
ment (LLE) pointer, and the current TCBMSS
pointer (pointer to SPQEs for the current
task).

AEEND9 processing is concerned mainly
with providing diagnostic aids. It loads
ABDUMP's resident module, enqueues on the
dump data set, and gives an ABDUMP via SNAP
(SVC 51). After comfleting these fUnc
tions, AEEND9 dequeues on the dump data set
and deletes the ABDU~P module.

ABEND11 provides the following data
rr.anagement interfaces and related purges
erases complete subtasks, moves the ABEND
SVRB around the terminating tree and dis
patches under each TCB, checks fcr storage
for the Close routine and routes to the
"steal core" routine, closes open data
sets, and frees the PIE.

ABEND12 performs the "steal core" func
tions for the Close routine.

ABEND13 performs data management and
subsystem interfaces and purges. It rein
itializes some queues for the TCAM task,
cancels pending Inter-partition Posts for
user and TSO tasks, and frees SCBs.
ABEND13 also purges QELs, transient SVRBs,
and routes for TIOT cleanuf.

ABEND15 purges CDEs, associated pro
grams, and extent lists.

AEEND16 purges IRBs, PRBs, resident
SVRBS, the load list, and main storage. It
also dequeues and erases subtask TCBs.
ABEND16 then returns control to the current
routine of the highest friority ready task
by exiting to the Normal Termination rou
tine and the Disfatcher (via an SVC 3
instruction) •

ABEND20 performs Storage Reconfiguration
in a Model 65 Multiprocessing System.

Processing during ABENDO (Entry Point
IGC0001C)

The SVC SLIH fetches the first module of
the ABEND routine (ABENDO) from the SVC
library. The SVC SLIH then gives control
to AEENDO, via the Dispatcher.

AEENDO handles the interfaces between
ABEND and the following functions:

• SVC DUMP

230

• GTF (Generalized Trace Facility)

• STAE/STAI (Specify Task Abnormal Exit/
Subtask ABEND Interceft)

• TSC (Time Sharing Oftion)

• ABDU~P

AEENDO first tests if this entry to
AEEND is a return from a STAI exit routine
through ASIR1 (AEEND/STAE Interface Routine
1). If so, ABENDO sets the TCEFX flag to
prevent asynchronous exits, and turns off
the ABEND corrmunication configuraticn indi
cator. Processing continues with the Purge
I/C routine.

For a normal entry to ABEND, the AEEND
SVRB extended save area is zeroed out and
'ABEND' is moved to its end. ABENDO then
sets the TCBFX flag, preventing asynch
ronous exits.

If the TCBNEWRB flag is on, a new SVRB
has teen created by an SVC 13 issued by
AEENI:. This new SVRB is used to give con
trol to a non-ABEND module via XCTL. When
the non-AEEND rrodule is finished, it exits
and the frevious AEEND mcdule gains control
irrrr.ediately following the SVC it issued.
The name of the rrodule tc get control is in
tytes 8-15 of the previous ABEND's SVRB
extended save area; the recursion ccnfi
guration to be used is in byte 16.

ABENDO next determines if this is a non
recursive entry from ABTERM. If sc, the RB
cld FSW is restored from the field in which
it was saved by ABTERM. If this entry is
not through ABTERM and is nonrecursive, the
comfleticn code in register 1 is stored
into the terminating task's TCE. At this
time diagnostic information is also saved
in the SVRB.

ABENDO determines if SVC DUMP is in fro
gress. If so, all tasks that were set non
dispatchable by SVC DUMP are set dispatch
atle and the Task Switch routine (IEAODS02)
is entered to switch tasks if necessary.
The CVT lock tit is set off and GTF (if
active) or the trace table (if present) is
reactivated. If GTF was started, the stcf
count is reduced.

Fcr a first-time entry into AEEND,
ABENDO issues the BCOK rracro instruction to
allow the Generalized Trace Facility (GTF)
to determine if it is being terminated. If
it is., it ferforms cleanup to prevent any
resulting systerr damage.

STAE/STAI INTERFACE: ABENDO bypasses ASIR
processing performed if any of the fcllo~
ing conditions exist:

• An ABEND recursion condition exists.

• In a Model 65 Multiprocessing System,
entry to ABEND was caused by the
Machine-Check Handler of Recovery Mana
gement (indicated by TCBNSTAE field) to
logically remove failing main storage
(storage Reconfiguration).

• No STAE environment exists.

• The job-step timer expired for this
task (except for the OLTEP task1).

• The operator issued a CANCEL command
for this task (except for the OLTEP
task) •

• A STAE recursion exists, and there is
no STAE control block for a STAI
request.

• A DETACH macro instruction was issued
for a subtask that had not completed
processing (completion code 13E). This
is nct applicable for DETACH with STAE=
YES (completion code 33E.)

• All tasks in the job step are in a 30-
minute wait (completion code 522).

a SYSOUT data exceeded the limit speci
fied by the OUTLIM parameter of the
associated DD statement (completion
code 722).

• Control was returned to ABENDO from
ASIR2, specifying that no further STAI
exits should be honored.

• This task was previously terminating
abnormally (close failure froIT a
subtask).

If any of these conditons exist, proces
sing continues with the Purge I/O routine.

If the STAE address is present, bit one
of the address field is tested for a Purge
I/O with the QUIESCE option. If bit one is
on, all SVRBs existing between the ourrent
SVRB and the Purge SVRB are forced through
the Exit routine to remove them from their
RB queues. The exit is accomplished by
storing the address of SVC 3 in the right
half of the REOPSW location of the SVRB.
~he Purge SVRB, which is also forced
through the Exit routine, points to the
previous ABEND's SVRE (distinquished by the
word 'ABENCO' in the extended save area).
By removing all intervening SVRBs, control
is returned to the RB level at which ASIR
invoked Purge. ASIR then detects that the

1Information on OLTEP tasks may be found in
the publication Online Test Executive
Program.

purge routine has abnormally terminated,
and takes appropriate action.

If a STAE or STAI environment is in
effect and none of these conditicns exists,
~BENCO passes control to ASIRO (IGCOR01C)
to process the S~AE/STAI.

PURGING I/O: If I/O operations are active
at this time, another ABEND condition rright
cccur as soon as ABEND next loses control
to the system such as across the XCTI to
the next load of ABEND. Any outstanding
I/O could terminate abnormally, or hinder
normal processing. The Purge I/O rcutine
is entered at this time to avoid ABEND pro
cessing for a recursion resulting frorr an
I/O abnormal termination. After this ini
tial ABEND, later ~BENC processing of a
valid recursion may also need to purge I/O.
To accomplish this and avoid an ABEND/Purge
loop, the Purge routine is skipped if both
the ABENC bit (TCBFA) and the TCBREC flag
indicate that an invalid recursion condi
tion exists. ~he ABEND bit is on, and the
~CBREC flag is off.

Before purging a first-time (nonrecur
sive) entry, an internal switch is set to
indicate normal entry. The TCBFA bit is
turned on, and the Purge routine is
invoked. After the Purge routine has com
pleted processing, the internal switch is
tested. If a normal, first-tirre entry
exists, the ~CBFA bit is turned off and
ABEND processing continues.

For a valid recursive entry, the intern
al switch is set to indicate this condi
tion. The TCBREC flag is turned off, the
TCBF~ tit is turned on, and the Purge rou
tine is invoked. If the internal switch
(tested after Purge processing) indicates a
valid recursion, the TCBREC flag is turned
cn prior to continuation of ABEND
processing.

The Purge rcutine is not supposed to te
able to abnormally terminate; if it does,
due to a systerr error, DAR should be
entered to set the job step nondispatch
able. The TCBFA bit is turned on before
calling the Purge routine to ensure that an
abnormal termination condition will be
treated as an invalid recursion. Control
then passes to DAR without attempting
another purge.

DETERMINING IF TERMINAL ATTENTION EXI~ EIE
~ENTS (TAXE) ARE TO BE PURGED: ABENDO
determines frorr the TCBREC and TCBPTAXE
flags in the TCBRECDE if this is a time
sharing option (TSO) task and this entry to
ABEND is not due to a TAXE purge recursion.
If so, the TAXE recursion flag (TCBPTAXE)
flag is set and the routine IEAKJXP is
entered to purge the TAXEs for the ter-

Section 10: ~ermination Procedures 231

minating TSO task. Upon return, the recur
sion configuration flag is turned off.

CLEARING THE ABDUMP NONDISPATCHAEILITY
FLAG: ABENDO clears the nondispatchability
flag (TCBNDUMP) in the TCB and branches to
the Task Switch routine for every task in
the job step. ABDUMP may have previously
set these flags to prevent alteration of
dynamic queues during their display.
ABENDO clears these flags so that the Dis
patcher may restart normal (non
terminating) tasks of the job step.

The following example illustrates this
point. Assume the normal task A has
requested a dynamic dump of task B's
resources. The ABDU~P routine, when it
gets control, sets all tasks in the job
step nondispatchable to prevent alteration
of dynamic queues during the dump. While
the dump is in progress and before the
ABDUMP routine can reset nondispatchabili
ty, an error occurs that abnornally ter
rr~nates task A. All tasks of the job step
would remain nondispatchable if the ABENtO
routine did not clear ABDUMP nondispatcha
bility soon after it gained control.

EXITING FROM ABENDO: If ABENDO had not
been previously entered for this task (no
recursion) or if this entry is a valid
recursion, control passes to AEENDl. ASIRO
(IGCOROlC) gains control if a valid STAE/
STAI or I/O purge recursion is present.

Under the following conditions, exit
from ABENDO is to DARl:

• Invalid ABEND recursion.

• Valid ABEND recursion in "must com
plete" status.

• Valid or invalid DAR recursion.

Processing during ABENDl (Entry Point
IGCOlOlC)

ABENDl performs the following fUnctions:

Q Clears the "valid recursion" flags in
the task' s TCB.

• Recognizes whether a serious program
error condition has occurred (such as a
termination of a system task). If such
a condition exists, ABENDl passes con
trol to the Damage Assessment routine
(DAR) via an XCTL macro instruction,
after purging asynchronous exit queues
(AEQs) •

• Defines the tree structure of the ter
minating task and performs housekeeping
functions for the tasks in that tree.

232

• Releases the program interruption ele
ment (PIE) if it exists.

• Checks the validity of free queue ele
nents (FQEs) in the main storage queues
of the tree structure of the termina
ting task to avoid recursions during
later execution of the GETMAIN and
FREEMAIN functions.

• Purges those resources of the termina
ting task and its descendants that can
operate asynchronously with those tasks
and can cause needless processing dur
ing the course of the termination. The
resources include unexpired tirrer
intervals, I/O requests and I/O opera
tions that are in process, outstanding
WTCR requests, and unscheduled requests
for user (asynchronous) exit rcutines.
When the Storage Reconfiguration bit is
on in a Model 65 Multiprocessing sys
tem, ABENDl does not perform the I/O
Purge and Tirrer Purge functicns.

• Converts AEEND to job-step ABEND if
necessary. The entry to AEENtl is
treated as a first-time entry after
conversion.

• Passes centrol to ABEND3 which tests
for specific valid recursions and
routes control accordingly via an XCTL
nacro instruction.

AEENtl first clears the "valid recur
sion" flag in the TCE for the current task.
The "valid recursion" flag (TCBREC), if set
during a previcus partial termination of
the task, must be cleared so that AEENtl
does not misinterpret as valid a future in
valid recursion. The only valid recursions
are those which ABEND expects to be poss
ible, and which are handled via special
ABEND processing.

PROCESSI~G FCR A VALID RECURSION: After
determining that a valid recursion condi
tion exists, the next step is tc purge
requests for asynchronous exit routines
that were possibly generated during the
previous entry to the AEENt routine. Older
requests of the same type, initiated by
system or user programs of the task, were
purged during earlier ABENDl execution.
New queue elements which were created for
ABENt-initiated functions such as OPEN,
DU~P, or CLOSE, rrust be elirrinated. This
is done to prevent waste of system
resources.

AEENDl then passes ccntrol to ABEND3
which eventually routes control for valid
recursions.

RECOGNIZING A SEVERE ERROR CONDITION:
After clearing the AEENt recursion flag
(TCBREC), ABENDl tests whether the current

entry to the AEEND routine represents an
error condition serious enough to warrant
transfer of ccntrol to the Damage Assess
ment Routine (DAR). 'I'he two conditions
which ABEND may not te able to handle are:

1. The attempted atnormal terrrination of
any systelli task.

2. The attempted abnormal terrrination of
a task in "must complete" status. A
task in nmust complete" status must be
completed for the system or step to
remain intact. It should not be
abnormally terminated.

If such a condition exists, AEEND1 flags
the current task as the top task in the
tree structure of terminating tasks and
removes requests for asynchronous exit rou
tines before transferring control to the
Damage Assessilient Routine (DAR).

If neither of those conditions exists
(as indicated by flags in the current TCB),
ABEND1 continues processing.

PROCESSING FOR A FIRST-TI~E ENTRY

Determining the Scope of the Terrrination
Reguest: The termination request rr,ay be
for a Single task and its unterminated
descendants or for the entire jot step.
The choice, an option of the ABEND macro
instruction, is indicated in the input
parameter list. The tree of tasks to be
terminated originates with the current
task, unless the STEP option has been spec
ified in the ABEND IlIacro instruction. If
the STEP option has been specified or if a
conversion was made to a step ABEND for a
subtask of the job step, the terminating
tree of tasks must originate with the job
step task.

An "alternate TCB" pointer is preloaded
with the address of the job-step TCB, on
the initial assumption that the caller has
specified the STEP option or belongs to the
job-step task. If the assumption is incor
rect, ABEND1 places in the "alternate TCB"
painter, the address of the current or cal
ler's TCE. In this case, the "alternate
TCB" pointer specifies the current task as
the "top" task of the tree of tasks to be
terminated. The "top" or specified task
and all its previously unterminated descen
dants are terminated during the course of
ABEND processing.

Setting Descendants NondisEatchable and
Preventing Asynchronous Exits: AEEND1 sets
nondispatchable all incomplete descendants
of the specified task, and prevents asyn
chronous exits for these descendants. The
rr,ain purpose is to avoid the possibility of
a subtask gaining control during an I/O
wait period and causing a new abnormal ter-

roination. Such a new terrrination wculd be
interpreted by AEENDO as an invalid recur
sion, and would cause an entry to DAR. A
secondary purpose is tc prevent the waste
cf systerr resources for subtasks that are
planned for terrrination but are not yet
terrrinated.

Tc accorrplish these objectives, and tc
indicate that the tasks of the tree are in
the process of abnorrral terrrinaticn, AEEND1
sets the following three flags in the TCB
of each descendant:

" "Abnormal wait" flag ('I'CBABWF), which
indicates to the Dispatcher that it may
not place any routine of the task into
execution.

o "Prevent asynChronous exits" flag
(TCEFX), which indicates to the Stage 3
Exit Effector that it IlIay not transfer
interruption queue elements frcm an
asynchronous exit queue to a queue
belonging to an IRB. It also prevents
Stage 3 from queuing an IRB to a TCB,
and thus prevents the scheduling of an
asynchronous exit routine.

• "Terrrination in process flag" (TCBFA),
which indicates to AEENDO, on later
reentry for the same task, that a
recursion has occurred. TCBFA is also
an indicator to other system functions
that an ABEND condition exists.

To obtain the address of eaoh TCB whose
flags rrust be set, AEEND1 uses a "task
select" subroutine. This subroutine, used
in various modules of the ABEND routine,
and in the AETERM and ABDUMP routines,
scans the tree of TCEs whose tasks are to
te terrrinated. It starts with the newest
descendant of the "top" TCE. It then
examines the tree of TCBs from the newest
descendant to the top TCE. For each
selected TCE, the three aforementioned
flags are set.

If the current TCE is being prccessed,
the "al:ncrmal wait flag" (TCBABWF) in the
current TCB rerrains cleared, so that the
next module of the AEEND routine may be
dispatched for the current task when ABEND1
is ccmplete. The "top" flag (TCBFT) is
also set in the TCB for the top or oldest
task of the tree, to indicate to the ABEND
routine that this task and all its incom
plete descendants are to be terrrinated.

In a Model 65 Multiprocessing SysteIll,
control is passed to the Task Removal rou
tine, which deterrrines whether the current
task on the second CPU has been set nondis
patchable. If it has, the second CPU is
interrupted with an indication (in STMASK)
that the Dispatcher rrust gain contrcl.

Section 10: Terrrination Procedures 233

Checking the Validity of the Main Storage
Queues: ABEND! next checks the validity of
the addresses of free queue elements
(FQES), and checks the correctness of their
length fields. It does this for all unpro
tected subpools belonging to or shared by
the job step. Then it checks unprotected
subpools of the task currently selected by
the "task select" subroutine. (The "task
select II sul:;routine selects in turn each
task in the tree of tasks being ter
rrinated.) The purpose of checking the FQEs
is to prevent abnormal terrrinations, with
resulting recursions to the ABENB routine,
during the later use of the GETMAIN and
FREEMAIN functions.

Since FQEs are not in protected areas of
main storage, they may be altered by a user
program. When the GETMAIN or FREEMAIN rou
tine tries to gain access to an altered FQE
to satisfy a request, the result is an
ABENB. The need for the validity check of
FQES is thus apparent.

ABEND!, via the MSSLOOP subroutine,
scans the suJ::pool queue for a selected
task, searching for descriptor queue ele
ments (DQES). ABEND! examines all FQEs for
each DQE for an owned sutpool. It makes
three general checks for each FQE:

!. AEENBl first verifies that the free
area length specified in the FQE
length field does not exceed the
length described by the associated
DQE.

2. AEENB! next examines the validity of
the free-area address in the FQE. It
determines if the address specifies a
location that is on a doublewcrd boun
dary, is within the tounds of main
storage, and specifies a location that
is in the area described by the asso
ciated DQE.

3. As a last test, ABEND! verifies that
the next FQE (painted to by the FQE
being examined) is at a lower main
storage location than the FQE under
examination.

ABENDl nullifies the effect of an inval
id FQE by setting the FQE address to zero
in the DQE which des crites the block. The
entire space described by this BQE thus
appears allocated. When all FQEs telonging
to all subpool queue elerrents of the
selected task have been examined (and
altered if necessary), the validity check
of the rrain storage queues is complete.
After the check of main storage queues,
ABEND! can safely purge the resources for
the speoified task.

234

Purging Resources for the Specified Task
and Its Bescendants: ABEND! (via separate
routines) purges for the tree of tasks the
program interruption elerrent (PIE) if one
has teen specified, the timer queue, I/O
requests and I/C operaticns in process, the
WTOR queues, and the asynchronous exit
queue for non-I/O requests. Using the
"task select" sutroutine, and starting with
the newest descendant task of the specified
cr "top" task, AEEND! purges the resources
and resource requests for each task in the
tree. During the scan of the tree of
tasks, only resources telonging to pre
viously unterminated descendant tasks are
released. Tasks that were previously ter
minated, either normally or abnorrrally as
indicated ty the "completion" flag (TCBFC),
are ignored and the next task is selected
for FQE validity check and release of
resources.

Releasi~1h~prograrr Interruption Elerrent
(PIE): ABENDl tests whether a prcgrarr
interruption elerrent (PIE) exists for the
task. (If a PIE exists, its address
appears in the TeBPIE field of the TCB,
placed there earlier when the SPIE routine
created the program interruption element.)
If the PIE exists, AEENB! branches to the
FREEMAIN SVC routine to free the storage
space. Subpool 250 is specified in the
FREH!AIN parameter list to free subpool O.

Since an ABENB condition can occur while
trying to free a PIE which was inadvertent
ly freed ty the user, ABEND! sets the
pointer to the PIE (TCEPIE) to zerc and the
PIE is ccnditionally freed. Any part of
the PIE not freed now is released when the
jot step is terminated.

purging the Timer Queue: The first group
of resource requeststc be purged fcr each
task is contained in the tirrer queue. The
Timer Purge routine removes from the timer
queue those elements that represent unex
pired tirr.er requests for the task. It also
frees the space occupied by these elements.
The purpose is to minimize the number of
external interruptions fcr tasks that are
terrrinating. The Timer Purge routine also
frees the problem pragrarr register save
area associated with each user (asynchro
nous) exit routine. (The associated save
area is pointed to by its TQE.) Before
ABEND! branches to the Timer Purge rcutine,
it sets the valid recursion flag TCEREC.
This flag stays on when the Timer Purge
routine enters the TAXE Purge routine via a
tranch and link. A TAXE purge of all
tasks in the terminating tree (except the
current task which was purged earlier) is
perfcrrred at this time.

Purging I/O Requests and I/O Operaticns in
Process: ABEND! purges I/O requests and
I/O cperations to avoid errors that can

cause recursion to the AEEND routine.
Since the ABEND routine frees main storage,
an I/O operation that is not halted can
cause information to be read into nain
storage that rray have been reallocated.
This could cause data or prograns tc be
destroyed. Furthermore, an event control
block may be posted in reallocated main
storage, thus causing an additional error.
ABEND1 removes (via the SVC Purge routine)
I/O requests (RQEs) that have not yet been
serviced. By Halt I/O instructions, the
SVC Purge routine stops I/O operations in
frocess for each task of the tree. RQEs
removed from the request queue are returned
to a list of available RQEs for reuse by
the I/O supervisor. Besides purging I/O
operations in process and outstanding I/O
requests, the SVC Purge routine dequeues,
from the SIRE, elements refresenting sche
duled requests for the use of I/O error
handling routines.

purging the Operator communication Queues:
After removing I/O requests and halting
current I/O operations for a task, AEEND1
branches to the resident WTOR Purge rou
tine. This routine removes elements from
the buffer queue and from the reply queue
that represent both messages to the opera
tor and the operator"s replies associated
with the terminating task. The purpose of
purging these elements from the queues is
threefold: to save processing time, to
prevent errors, and to prevent posting of
meaningless ECBs for the communications
task. These ECBs may not exist after
ABEND16 frees dynamically acquired main
storage.

Removing Requests for User (Asynchronous)
Exit Routines: After purging the operator
communication queues, ABENI:1 branches to
another subroutine to remove asynchronous
exit requests. Those IQES on the asynchro
nous exit queue that represent exit
requests for the terminating task are
dequeued. The elements are freed later
during ABEND16 when subpools of nain
storage are released. Note that IQEs are
removed from the asynohronous exit queue
but not from an IRB's queue if they have
already been scheduled by the Stage 3 Exit
Effector. The purpose of removing the IQES
from the queue is to minimize the schedu
ling of asynchronous exit routines that can
occur after the "prevent asynchronous
exits n flag is cleared at the end of
ABEND3. The execution of an asynchronous
exit routine, before ABEND processing is
oomplete, can cause an invalid recursion if
the Exit routine abnormally terminates.
Such execution can also slow up the ter
mination processing. After the TCEFX flag
is cleared, the Stage 3 Exit Effector can
schedule asynchronous exit routines for
system functions that may be needed during
I/O operations for Open, Close, and ABI:UMP

processing. (See "Scheduling of User Exit
Routines" in Section 3, nTask
Supervision.")

Processin~during ABEND3 (Entry Point
IGC0301C)

AEENr3 performs the following main
functions:

• Releases partially lcaded nodules.

• For any recursion other than a type-1
ness age recursion, AEENr3 purges any
entries in the infornation list for the
TCE that just terminated.

• Allows asynchronous exits.

o Routes valid recursions.

RELEASING PARTIAllY LOADED MODULES: AEENr3
releases "partially loaded" modules for
terninating tasks. Such modules are in the
process of being loaded for the current
task or for other tasks that are being
abnormally terrrinated (TCEAEWF flag set).

When a task is set permanently nondis
patchable (TCBAEWF flag set), the contents
Supervision routines do not complete the
loading of a module requested for the task.
The routines also do not begin a new fetch
of a module whose loading process has
started. Other requesters waiting for the
module cannot gain aocess to it. Of pri
nary interest are the modules containing
the ABDUMF and BSAM routines, needed by
ABENra and AEEND9. These modules may have
been requested by a subtask of a task that
is now terminating. Since ABEND1 nay have
placed the subtask in the abnormal wait
state (TCBABWF flag set), the routines may
be pernanently unavailable. The problem of
"frozen" partially loaded nodules is solved
by the "release" routine of ABEND3, called
FARRLSE.

For each Ir.odule in prccess of being
loaded for a terminating task, the PARRLSE
routine perforIrs the following purge
functions:

• Frees the module's program area and, if
this is not a job-step task, the extent
list.

• Removes from the job paok area queue
cne or more contents direotory entries
(CDES), which represent the partially
loaded module, and frees the space they
occupy.

• If there are other requesters which are
awaiting the loading of the module,
prepares one or Irore RBS for reentry to
Contents Supervision (IEAQLKOO) at

Secticn 10: Termination Procedures 235

CDCONTRL to ref etch the module for
another task.

The PARRLSE routine searches the job
fack area queue for CDEs whose modules are
in the frocess of being loaded for a termi
nating task. (The C£ENIC flag was set in
each CDE whose module is being loaded.)
Each CDE whose module is being loaded is
purged if either of two requirerrents is
Iliet:

• The loading was initiated for the cur
rent task. In this case, the current
task is being terminated and its I/O
operations have already been purged by
ABENDO.

• The loading was initiated for another
task which is being abnormally ter
minated and is nendispatchable (TCBABWF
flag set), and whose 1/0 oferatiens,
initiated for loading, have already
been purged by ABENDl (TCBFA flag set).

The CDE, its extent list, and ~rogram
area may not be freed until the task's I/O
operations have been purged by ABENDl.
Otherwise, the Main Sterage SUfervision
routines may reallocate the freed frog ram
area for another task. The requested
rr,odule may later arrive in main storage,
overlaying the reallocated prograrr. area,
which now belongs to another task.

PURGING TYPE-l MESSAGES eN RECURSION: On
recursive entry to AEEND for any recursion
other than the type-l message recursion, a
new entry might have been rr,ade in the list
as part of the recursion. Therefore,
ABEND3 purges any entries in the tYfe-l
information list which are for the TCB that
recursively terminated.

~ECIDING THE NEXT PART OF ABEN£ TO BE
INVOKED: After allowing the scheduling of
I/O exit routines, AEEN£3 determines which
fart of the ABEND routine it should invoke:

• ABEND4 - current entry is a first-tirre
entry, or a type-l message WTP
recursion.

• ABEND7 - recursion due to an error in
the Graphics Debug routine, or in clos
ing the Direct SYSCUT data set.

• ABEND8 - recursion due to a failure in
the Open routine.

• ABEND9 - recursion due to an error
detected in the ABDUMP routine.

• ABENDll - recursion due to an error in
the Close routine.

236

• ABENDl3 - given contrel if any ether
valid recursions are indicated in the
TCBRECDE field.

Processing during ABEND4 (Entry Peint
IGC040lC)

AEEND 4 has three main purposes:

• Write type-l SVC Iliessages.

• Furge message list entries.

• Free type-l rressage WTP buffers.

WRITE TYPE-l SVC MESSAGES: Ty~e-l SVC reu
tines run in a disabled state and thus are
unable tc issue WTP messages as a result of
an abnormal terIliination. Instead, a Ilies
sage information list is maintained in the
nucleus in which type-l SVC routines can
store data. The list is located by a
~ointer in the CVTQMSGA field of the CVT.

If the entry to ABEND4 is a message
recursion (the TCETYPlW flag is set), pro
cessing continues with the furging ef rres
sage list entries. ctherwise~ a check is
made for an un~rocessed entry in the mes
sage information list for the currently
terrrinating task's TCB. If an entry is
fresent, a cenditional GETMAIN is issued to
ebtain storage from which to write mes
sages. If the fifth word in the extended
save area (ESA) is zero, there is no
storage available to fulfill the GETMAIN
request. No message list elements are for
rratted, and ~rocessing continues with the
purging of the list elements.

If storage is available, the fifth word
in the ESA centains the address of the
storage area allocated for the WTP buffer.
AEENJ:4 fcrmats the list elements to be
written. The following items are flaced
into the message:

• Reasen code

• Job narre or branch address if the rou
tine causing the AEENJ: conditien was
entered via a branch entry

• Stef name

• Flag characters

• Message text (maximum of 16 bytes)

After formatting has been completed, the
descri~tcr, routing codes, and message
recursion flags are set. A WTO nacre
instruction is then issued to write the
message. After the message has been writ
ten, the valid recursion flags (TCERECJ:E)
are turned off, and any remaining list
entries are processed.

PURGING OF MESSAGE LIST ELEMENTS: When all
messages have been written, a check is made
of the information list for entries corres
fonding to other tasks in the terminating
tree. Such entries are furged so the ele
ments can be used again.

FREEING OF TYPE-l SVC MESSAGE WTP BUFFERS:
A lower level task may have terminated ear
lier which was processing a tYfe-l SVC mes
sage for that task when the current ABENt
condition occurred. If so, a previous
entry into ABEND4 may have already obtained
storage for a WTP buffer. ABEND4 checks
the fifth word in the ESA for a storage
address. If there is a buffer for any task
in the terminating tree, it is freed.

EXITING FROM ABEND4: When all entries have
been purged, ABEND4 determines where to
route control, and issues an XCTL instruc
tion to the proper module. If the rollout/
rollin feature is in the system, ABEND5
gains control. Otherwise, AEENC7 receives
control if a dump was requested, and
AEENDll if it was not.

Processing during ABEND5 (Entry Point
IGC0501C)

The main purpose of ABEND5 processing is
to purge queues related to the rollout/
rollin feature. The Rollout Purge routine
(ROLLPRG) is an internal routine used to
remove the appropriate IQES from the rol
lout queues.

When a request for rollout cannot be
satisfied, the IQE representing that re
quest may be added on a FIFO basis to a
queue to defer the request until a later
time when it can be satisfied. While a
task has an IQE on the rollout queue
(IEAROQUE), it is set nondispatchable. It

may be abnormally terminated, however, and
the IQE must be removed from the rollout
queue because the task no longer needs the
rollout request. This abnormal terrrination
rray be the result of issuing the CANCEL
command, a time expiration, or a higher
level task ABEND.

REMOVING IQES FROM THEIR QUEUES: IQEs are
removed from the rollout queue and from the
asynchronous exit queue by the Rollout
Purge routine. Input to this routine con
sists successively of the address 0f each
TeB in the terminating task tree.

IQEs on the rollout queue are examined
first. If the TCB address in the first
word of the parameter list addressed by an
IQE on the rollout queue is equal to the
TCE address passed to this routine, the
count of queued rollout requests is decre
mented by one, and the IQE is rerroved from
the queue and returned to the available
list (whose origin is the rollout IRE).

If a ~CB match is not made against an
IQE on the rollout queue, or if the queue
is empty, IQEs on the asynchronous exit
queue (AEQE) are examined. If a match is
made against the TCB address in the para
rreter list addressed by an IQE on this
queue, the IQE is removed £rom the queue
and returned to the available list.

If no match is obtained against an IQE
cn the AEQE or if the queue is empty, the
queue of IQEs originating from the rcllout
IRE is examined. If a match is obtained
against the ~CE address in the pararreter
list addressed by an IQE on this queue, and
the IQE is net at the head of the queue
(nct addressed by the REIQE field and
therefore not currently being prccessed by
Rollcut), the IQE is removed from the queue
and returned to the available list. If a
match is made and the IQE is at the head of
the queue (currently being processed by
Rollout), a flag is set in the parameter
list addressed by the IQE to indicate to
the Rollout routine that the task is in the
process cf terminating abnormally.

EXITING FROM AEEND5: ABEND5 passes control
to AEENt7 if a dump is requested and
allowed. Otherwise exit is to ABENDll.

Processing during ABEND7 (Entry point
IGC07.01C)

AEENt7 is entered only if an AEENt dump
is requested and allowed. It does any
feature-dependent processing necessary
prior to the opening of the durrp data set.
The two main functions are:

e processing for graphics jobs.

• Closing the Direct SYSOUT Writer if it
has been started to tape.

PROCESSING FOR GRAPHICS JOBS: The Grafhics
Debug routine is entered for fcreground
jobs and the Graphics Job Processor. It is
not entered for a Storage Reconfiguration
ABEND condition. For a graphics recursion,
the recursion flag is turned off, and con
trol passes to the routine that checks fcr
a Cirect SYSOU~ Writer.

Before calling the Graphics Debug rou
tine, ABEND7 checks whether a dump is
allOwed for the terrrinating task. If a
dump is allowed, a GETMAIN macro instruc
tion is issued tc test if there is suffi
cient storage available in subpool 252 for
ABDUMP's resident rrodule, IEAQADOA. If
there is either insufficient storage or a
dump is not permitted, a parameter is
passed tc the Graphics routine indicating
that the user rray not request a durrp.

In the event of a successful GETMAIN re
quest, a FREE~AIN macro instruction is

Secticn 10: Termination Procedures 237

issued to free the storage. The parameter
passed to the Graphics routine indicates
that a dum~ is available to the user.

AEEND7 then turns on the recursion con
figuration flags and passes contrcl to the
Graphics Debug routine. If the dump para
meter is on, the user has the opticn of
accepting or bypassing the dump. The
Graphics routine queries the user, sets the
parameter to indicate the user response,
and returns to ABEND7. If the dunp is
requested, ABEND7 processing continues. If
the user indicated that he wished tc bypass
the dump, ABEND7 turns off the high-order
bit of the ccmpletion code field in the TCE
and issues an XCTL to ABEND11.

DETERMINING IF A DIRECT SYSOUT WRITER HAS
EEEN STARTED: If a dump is requested,
ABEND7 tests to determine if the SYSUDUMP/
SYSABEND dump data set is allocated to a
tape device to which a Direct SYSOUT Writer
has been started.

If the dump is requested for a subtask
ABEND, the dump is bypassed to prevent a
later attempt to use the tape device. Such
an attempt would cause another ABEND. The
ABEND dump data set remains open for the
entire jot step. Thus if a subtask were
allowed to take a dump, the direct SYSOUT
device would remain open needlessly for the
ent.ire job step. Any cther user attempting
to use the direct SYSOUT device. even after
the subtask had completed, would be unable
to do so.

If the dump is requested for a job-step
ABEND, and the SYSOUT data set is already
open for the user requesting the dump, the
SYSOUT data set is closed so that it can be
reopened as an ABEND dump data set. After
ABEND9 processing has completed, AEEND11
closes the data·· set.

If a recursion occurs when attempting to
close the SYSOUT data set, the "prevent
dump" indicator (TCBPDUMP) is set, and
ABEND7 exits. ABEND7 passes control via an
XCTL to (1) ABEND8 if a dump is requested
and can be given at this point, or (2)
ABENDll if the dump is not requested or
must be bypassed.

Processing during ABEND8 (Entry Point
IGC0801C)

ABENDB processing deals with the follow
ing dump-related functions:

• Processing for recursive entry due to
an open failure.

• Determining if the "prevent dun.p" indi
cator is set.

238

• Determining if there is a durrp data set
to te opened.

• Determining if the dump data set is
already open.

• Cpening the data set.

• Ensuring that the dunp data set rerrain
cpen for the duration of the job step.

• Indicating if the dump data set has
been opened.

DETERMINING IF THE ENTRY TO ABENDB IS DUE
TO RECURSION: If the entry to ABEND8 is
due to recursicn, the TCBREC and TCBCPEN
configuration flags were set in the current
TCE by previcus ABEND8 processing. A pre
vicus execution of the Open routine cf data
rranagerrent for this task produced an errcr.
The error caused a reentry to the AEEND
rcutine. Since the previous attempt to
open the dump data set fcr the current task
failed, AEEND8 does not try again. Instead
it performs the following functions:

• Resets the Open recursion indicators in
the current task.

• locates the previous SVRB under which
ABEN[8 was operating, and extracts the
saved load list elements and TCEMSS
pointer.

o Indicates an internal "no durrp ncw"
condition.

• Updates the load list queue on the cur
rent TCB.

• Restores the current TCBMSS pointer and
sets ncn-terminating tasks of the job
step dispatchable.

• Fasses control, via an XCTL, tc
ABEND11.

DETERlHNING IF THE "PREVENT DUMP" INDICATOR
IS SET: If the entry is not a recursion,
ABEND8 next tests if the "prevent dump"
indicator (TCBPDUMP) is set in the jcb-step
TCB. The indicator nay have been set at
this tine because of a Direct SYSOUT recur
sion. This indicator rray also be set at a
later point in ABEND processing for either
of the following two cenditions:

• "Steal core" situation exists.

• The "dump data set open" bit is on, but
the data set cannot be found. This is
the result of a dump data set which was
opened (thus accounting for the bit
setting), tut later reelosed as part of
~ormal Ternination fer the jcb-step
task, which then terminated abnormally •
Because the close eccurred befere

ABENt8 gained control, ABEND8 searches
for the dumf data set which it is
unable to locate.

If the "prevent dumf" indicator is set,
ABEND8 cannot prepare for dUrr.ps. It there
fore bYfasses the rest of its processing
and passes control to ABEND11 to close the
data sets used by the terminating tasks.

DETERMINING IF THE DUMP DATA SET IS TO BE
QPENED: ABENt8 ferforms tests to determine
if it should epen the dump data set (SYS
ABEND or SYSUDU~P) for use during AEENt9.
These tests determine:

• Whether the caller of the ABEND routine
has requested a durr:p.

• Whether the SYSUDUMP data set was allo
cated by means of a DD card.

• Whether the SYSABEND data set was allo
cated ty means of a DD card.

o Whether the dump data set was previous
ly opened for another task in the jot
step.

TESTING THE DUMP REQUES~ AND THE S~A~US OF
THE DUMP DATA SET: ABEND8 makes three
tests to determine whether it should of en
the dumf data set, or whether it should
invoke ABEND9 or ABEND11 immediately. Two
of these tests check whether a dUITp cannct
or should not occur. ~he third test deter
mines if the dump data set has already been
cpened for another task of the job step.

One test determines if a dump was
requested by the caller of the AEEND rou
tine. AEEND8 tests the high-order bit of
the completion code in the TCBCMP field cf
the current TeB. If the caller did not re
quest a dump, or if neither data set was
allocated, AEEND8 invokes ABEND11.

Another test examines the task I/O table
(TIOT) to determine if a SYSABEND er SYS
UDUMP DD card was recognized by the Reader/
Interpreter of the Job Scheduler, and thus
whether the SYSABEND or SYSUDUMP data set
was allocated by the Job Scheduler.

The remaining test determines if the
dump data set (SYSABEND or SYSUDUMP) has
already been opened for another task of the
job step, and therefore if the Open func
tion may be bypassed. (~he test checks the
~CBFDSOP flag in the job-step ~CE.)

The DD card could be missing ncw, but
defined later if dynamic device allocation
is being used. In this case, ABEND8 skips
the dump now, but allows an ABENE durrp of a
future terminating task.

EETERMINING IF ~HE DUMP DATA SET IS ALREADY
OPEN: If the durrp data set was previcusly
opened, ABEND8 obtains the DCB address by
searching the DEE queue of the job-step
task for the DEB belonging to the data set.
(When opening the durrp data set originally,
ABENE8 lccated the DEB belonging to the
data set and set a special identifier.) It
then extracts the DCB address from the DEB
for use during I/O operations of the durrp
procedure of AEEND9. After obtaining the
ECB address, ABEND8 passes control tc
ABENE9 to take the durrp.

It is possible that the durr,p data set
was previously opened but is no longer on
the EEB chain. Consider the following
case: The dump data set was previcusly
cpened fer an abnormally terminating sub
task of the job step. Then it was closed
in normal termination for the job step.
subsequently, the job step was abncrrrally
terminated. The dump data set cannot be
reopened because that would overlay infor
rratien in the dump for the subtask. In
this case, ABEND8 sets on the frevent durrp
indicator and passes control to AEENE9.

CPENING THE DU~P DATA SET: After all tests
have been made to ensure that the dump data
set should be opened, AEENE8 performs the
necessary Open functions. The field in the
extended save area in which the load list
pointer will be saved after the GETMAIN for
the DCB rrust be zeroed out. This pointer
is added to the present load list chain if
the GET~AIN fails and there is a recursion.
If this were not done, there wculd be an
invalid recursion later when AEEND8
attempts to free the load list.

All tasks (except the current task) in
the task tree of the job step are set non
dispatchable, and the TCEMSS pointer for
the current task is saved in the extended
save area. The TCEMSS pointer from the job
step TCB is fut into the TCBMSS field of
the current task. This ensures that the
lOBs for the dump data set will come from
the job-step task's subpool O.

ABEND8 issues a GETMAIN rracro instruc
tion to obtain storage for the tCE, which
is then moved into the newly acquired area.
~he ABEND dump data set is then opened to
perform one of two durr,ping fUnctions. One
cf two DD cards may be specified for the
ABEND dun:p data set. Although both Kay be
specified in a JCl procedure, the last one
found in the ~IO~ is used across the job
stef. For a SYSABEND ED card, a dump of
the nuoleus, control blocks, and job-step
region is given. A SYSUEUMP Dt card
results in a dump of only the control
blocks and job-step regicn.

Section 10: Terrrination Procedures 239

ENSURING THAT THE DU~P DATA SET RE~AINS
OPEN: Both before issuing the OPEN macro
instruction, and after the execution of the
Open routine (if the open request has been
successful), ABEND8 tries to ensure that
the dump data set remains "open" for the
remainder of the job step. "Open" rreans
the retention of BSAM access method rou
tines in main storage, and the retention of
the DEB and DCE for the dump data set.
Special efforts are needed to keep the dump
data set open, since AEEND11 closes data
sets belonging to the terminating tree of
tasks, and ABEND16 frees the load lists
belonging to these tasks and the associated
program areas (if there are no outstanding
requests for the programs). Unless special
precautions are taken, the DEB for the dump
data set is removed and freed froIT its DEB
list during ABEND11, and the BSAM routines
possibly released during ABEND16. With the
dump data set no longer "open", further
abnormal dumps during the remaining life of
the job step would not be possible.
Repeated opening of the data set, after it
has been initially opened, is avoided for
two reascns: such repetition would waste
time, and each reissue of the OPEN macro
instruction (if acted ,upon) could possibly
reposition the data set volurre undesirably
(depending on the DISP operand of the
user's DD card -- see Job Control Language
Reference publication).

ABEND8 does two things to preserve the
Ropen" status of the dump data set:

1. It prevents the deletion of the BSAM
routines by forcing the creation of
new load list elements for them. It
queues the new load list elerrent to
the load list for the job-step TCB.

2. It places the DEB for the dmnp data
set on the DEB queue belonging to the
job-step TCB.

AEEND8 prevents deletion of the BSAM
routines from main storage by saving the
load list pointer (TCBLLS) for the current
task and replacing the pointer with zeros.
When AEEND8 issues the OPEN macro instruc
tion, the Open routine requests the loading
of the BSAM module. Since the Contents
Supervision routines cannot find load list
elements representing the BSAM routines on
the current task's load list (the zeroed
load list pointer indicates that there is
no load list), they create new load list
elements for the BSAM routines, and place
the load list pointer (7CBLLS) in the cur
rent TCB. New CDES are not created if the
BSAM routines are already in rrain storage.
After ABEND8 issues the OPEN macro instruc
tion, it places the newly created load list
elements for BSAM on the load list belong
ing to the job-step TCB. 7hereafter, the
BSAM routines cannot be deleted frorr main

240

storage by the Close routine of data mana
gement, until data sets belonging to the
job-step TCB are closed at normal or
abnormal step termination. AEEND8 then
issues the OPEN macro instruction. Regard
less of whether the data set is actually
"opened," ABEND8 restores the original load
list pointer (7CBLLS) to the current TeB.
If a recursive entry to the ABEND routine
occurs because of an error during the
executicn of the Open routine, the load
list pointer is also restored.

If the open attempt is successful (as
indicated by a flag in the DeB of the dump
data set), AEEND8 uniquely labels the data
extent block (DEE) associated with the dump
data set so that it can later find the DEB,
and cbtain frorr it the associated DCE
address. AEEND8 passes the DeB address to
ABEND9. The position of the DEB in the DEB
queue can vary because of processing by the
End-of-Volume (EOV) data management rou
tine.

AEEND8 then places the DEB on the job
step task's DEE queue. It does this to
prevent ABEND11 from closing the dump data
set, when it closes data sets belonging to
the terrrinating tree of tasks.

INDICATING IF THE DUMP DATA SET EAS EEEN
CPENED: When the request to open the durrp
data set has been issued and the Open rou
tine of data management has been executed,
ABEND8 tests the appropriate flag cf the
DCE to learn if the data set has been actu
ally opened. According to the results of
the test, ABEND8 indicates, via a flag bit
in the job-step TCE if the open request has
been successful.

If the data set could not be opened, and
therefore abnormal dumps are not pcssible,
ABEND8 passes control to ABEND11.

If the durrp data set was actually
opened, ABEND8 sets an indicatcr in the
job-step TCB. It sets the "data set open"
indicator (TCBFDSOP) so that in a later
AEEND within the job step, it may bypass
much of ABEND8 processing and invcke
ABEND9.

Regardless of whether the dump data set
could be opened, ABEND8 clears the "open"
and "recursion" indicators (TCEOPEN and
TCEREC) in the current TCB. It does this
to indicate that any new recursion is not
due to open processing and is invalid.

CONCIUSICN OF AEEND8: AEEND8 processing is
corrpleted according to the results of tests
already described in the topic "Determining
if the Dump Data Set is to be Opened."
Control passes to ABEND9 for dump proces
sing or, if no dump is required, tc
ABEND11.

Processing during ABEND9
(Entry Point IGC0901C)

ABEND9 performs ABDUMP processing. This
includes the dump of resources belonging to
the terminating tasks of the tree (that is,
the specified task and its descendants).

AEEND9 uses a number of SVC routines to
ferform its fUnctions. Of primary impor
tance are the ABDUMP routines. For each
invocation, ABDUMP displays the resources
of the selected task. ABEND9 invokes the
ABDUMP routine separately for the "top"
task, its descendants, and its direct
ancestors.

There are -two types of entries to
ABEND9: first-time entries and recursive
entries. A first-time entry represents a
first-time request for the aenormal ter
mination of a task. It occurs via an XCTL
rracro instruction from ABEr:m8. A recursive
entry represents a request for abncrrral
termination generated ty ABDUMP tecause of
an error detected during its processing. A
recursive entry to ABEND9 is always made
directly from ABEND3, via an XCTL macro
instruction.

The scope of ABEND9 processing varies,
depending on the particular type of entry.
A first-time entry permits AEEND9 to per
form the dump fUnction. A recursion
ceca use of an ABDUMP error causes the
bypassing of the dump fUnction, tut permits
ABDUMP-related cleanup functions to be per
formed. A storage Reconfiguration ABEND
also causes the bypassing of the dump
function.

DETERMINING THE SCOPE CF PROCESSING:
Before ABEND9 can perform any of its major
functions, it must test certain indicators
to learn the type of processing that it
IWSt perform. It first tests for a recur
sion because of an error during AEDUMP pro
cessing (the AEDUMP routine can request a
reentry to ABEND if it discovers an error).

If a recursion has cccurred from the
ABDUMP routine (as indicated by the "set"
condition of the "ABDUMP recursion" confi
guration flag TCBADUMP in the current TCB),
ABEND9 issues a DEQ rracrc instruction spe
cifying the dump data set.

If no recursion from the ABDUMP routine
has occurred, ABEND9 makes two other tests
before performing ABDUMP processing.
Either of these tests can cause the bypas
sing of ABDUMP processing. The fizst test
examines the "prevent dump" indicator
(TCBPDUMP) in the jot-step TCB to learn if

ABEND7 or ABEND8 had discovered an abnormal
condition. ABEND7 sets the indicator if
there ~as a Direct SYSOUT Close failure.
ABEND8 sets the indicator if the durrp data

set ~as closed ty normal termination of the
jot-step task.

If the "prevent dump" indicatcr is not
set, ABEND9 tests the DCB address passed by
ABEND8 in a register. If the address is
zero, the caller of the AEEND routine has
not requested a durrp. Accordingly, ABEND9
typasses the AEDUMP processing and passes
control, via an XCTL, to ABEND11. But if
the address is not zerc, the DCE register
contains the address of the DCB that ABEND8
used to open the dump data set.

If the "prevent-dump" indicatcr is set,
cr if the DCB address is zero, dumps for
the current tree of term.inating tasks are
typassed. There is, ho~ever, an important
distinction between the rreaning of the two
indicators. If the DCE address is zero,
abnormal dumps are bypassed only fcr the
processing of the current AEEND request,
since the ABEND routine's caller has not
requested durrps or the Open or previous
dump failed for the terrrinating task tree.
The error condition rright te corrected ty
successful termination of this tree (if
there was not enough main storage avail
aCle). Therefcre, a later dump could be
possible. But if the "prevent durr,p" indi
cator is set, no atnormal dump will ee per
formed for the rerrainder of the current joe
step, since a permanent error exists.

For Storage Reconfiguration, the "pre
vent dump" has already been set as a result
cf ~achine-Check Handler processing.

If the "prevent dump" indicator is not
set, and the DCE address passed to AEEND9
is nct zero, AEDUMP processing is perforrred
as described in the follo~ing section.

PERFCRMING ABDUMP PROCESSING: The AEDUMP
processing consists of three functional
parts: preparation for the durrps, perfor
rrance of the dUmps, and a cleanup procedure
after the durrps.

Preparation for the DurrFs: Before ABEND9
can issue a SNAP macro instruction to
invoke ABDUMP for each task to be dumped,
it must take certain precautions. Tc pre
vent repetitious loading, it ensures that
the ABDUMP routine's "resident" module
(IEACADOA) remains in rrain storage through
out the series of dumps for the current
task, its descendants, and its ancestors.
Cther~ise, the ABDUMP routine would load
its resident module before each durrp, and
delete the module after each dump. AEEND9
issues a LOAD rracro instruction to load the
resident module tefore it invokes the
AEDUMP routine for the first task, and
deletes the rrodule after the AEDUMP routine
has teen executed for the last task of the
tree. ABEND9 thus prevents the aotual
reloading and deletion of the resident

Secticn 10: Termination Procedures 241

module by the ABDUMP routine each time that
it is entered. (Although the ABDU~P rou
tine issues a LOAD macro instruction to
load the resident rrodule, no loading occurs
since the module is already in main
storage.)

As another precaution, ABENr9 ensures
that the dumfs associated with one ABEND
request will appear consecutively on the
durrp data set, not intErsfersed with dumps
for a concurrently terrrinating tree in the
same jcb stef. To frevent such interleaved
dumps, ABEND9 issues an ENQ rr.acro instruc
tion (with the "exclusive" Oftion) for the
dump data resource set before the first
ABDUMP execution and issues a DEQ macro
instruction after the last AEDUMP execution

The ENQ routine, tesides its normal pro
cessing, performs a special service for
ABEND9. It makes possitle the servicing of
the currently issued ENQ request for the
dump data set. Such action is necessary if
a subtask of the. current task was previous
ly abnormally terminated. The data set nay
still be enqueued for the previously
requested dump of the subtask's resources.
In this case, the servicing of the current
ENQ request ~ould await the issuance of a
rEQ macro instruction ty ABEND9, when the
dump of the subtask's resources is com
flete. Eut since the suttask is now non
dispatchable (its TCBAEWF flag set during
ABEND1), the DEQ macro instruction cannot
be issued by ABEND9 for the subtask.

When the ENQ routine detects that the
ABEND routine is the caller, it rerroves
from the resource queues, via its "auto
purge" subroutine, all queue elements for
that resource belonging to the tOf ter
rrinating task and any of its subtasks. The
current ENQ request issued by ABENr9 can
then be serviced.

Performing the Dumps: Dumps of the ter
minating tasks of the tree are rrade if the
following conditions have teen met, tested
by both ABEND8 and ABEND9:

1. A dump data set has been frovided (as
indicated by a search of the TIOT by
ABEND8) •

2. A preassembled DCB can be opened (also
by ABEND8).

3. The caller of ABEND has requested
dumps.

If the user has provided a SYSAEEND rr
statement, and if GTF is active to format
(in internal mode), GTF is sus fended for
the dump by issuing a HOOK macro instruc
tion. This stops GTF trace entries until
the trace is dumped.

242

Via issuance of the SNAP macro instruc
tion (SVC 51). ABEND9 invokes the ABDU~P
routine separately for each task whose
resources are to be displayed. The current
task is dumped first. then its descendants,
then its direct ancestors. including the
job-step task (see Figure 10-8).

/
,..--<
, E I

'- ./

/

I

/ ,

/
I

/
I

(G)+------{

legend:

o Represents a task -- Represents a pointer

Notes: 1. Tasks shown by dashed
lines are not direct
ancestors of task D.

D Represents the direct line of
ancestors and descendants

2. The job step consists of all
the tasks shown in the
figure.

for task D within the job step.

/'\ Represents a 11tree II of

/ \ terminating tosks whose
l __ J top task is D.

3. The figure shows a tree of
tasks during a IItask II

terminatLon, as opposed to
a "step II termination.
During a step termination
the job step task is, the top
task of the tree,and,,11
tasks of the job step ,belong
to the tree.

Figure 10-8. Task Relationships ruring an
Abnorrral Terrrinaticn

Each task of the tree of tasks (D, G.
and F in Figure 10-8) is selected by means
of the "task select" (TASKSEL) subroutine.
As each task is selected by the subroutine,
ABEI\D9 tests the usn flag CTCBFS) in its
TCB to determine if the task's resources
have already been durrped. If the OS" flag
is set, the resources have already been
dumped, and the next task is selected. For
each task that has not already been dumped,
l\EENJ:9 issues a SNAP rr,acro instruction (SVC

51) to dum~ the task's resources. The
operands of the macro instruction include
the address of the selected TCE, the DCB
address received from ABENDB, and the fact
that the ABEND routine is the caller (via a
bit that is set in the ABDUMP parameter
list provided by ABEND in its SVRB ESA. On
each return of control from the ABDUMP rou
tine for a subtask, ABEND9 sets the nsn
flag in the surtask TCB to indicate that
the subtask's resources have been durrped.

The ABDUMP routine displays fcr the cur
rent task the following resources: job
name, step name, date, time, ccrr~letion
code, PSW at entry to ABEND, TCB, RBS, load
list, CDES, extent lists, ~IOT, DEBs,
SPQES, DQEs, FQEs, PQES, FBQEs, save area
trace, QCBS, address of the last point of
interruption (old PSW), register ccntents
at entry to AEEND, the nucleus (skipped if
the DD card was the SYSUDU~P), load
modules, and the subpool blocks. If GTF is
active and in internal mode, the GTF trace
is also formatted by ABDUMP for a SYSABEND
data set even though ABEND9 does nct speci
fy a trace in the SNAP request.

The resources displayed for the subtasks
and ancestors of the current task do not
include the following items: PSW at entry
to AEEND, register contents at entry to
ABEND, the nucleus, load modules, and the
subpool blocks. A subtask dump is identi
fied by the number 001, that of an ancestor
by the number 002.

Cleanup after the Dumps: After the dumps
of the ancestors, ABEND9 performs several
cleanup steps. It first dequeues the dump
data set1 resource so that is is available
for use by the next requester of the ABEND
routine. The parameters of the DEQ rracro
instruction are obtained from the extended
save area of the ABEND routine's SVRB,
where they were stored when the ENQ macro
instruction was issued. Next, ABEND9
deletes the resident module of ABDUMP
(IEAQADOA), so that its space, nc longer
needed for the current dumps, may be freed
for other use. (Although the ABDUMP rou
tine has already issued a DEIETE macro
instruction for the same module, it is
ineffective in releasing it, since the
ABEND routine's request for the module is
still outstanding.) When ABEND9 issues the
DELETE macro instruction, the Delete rou
tine decreases the CDE use/responsibility
coUnt. If the count is now zero, the
DeTete routine releases the space cccupied
by the module, its load list elerrent, CDE,
and extent list.

1The dump data set can be specified as SYS
ABEND or SYSUDUMP.

After dequeuing the durr.p data set
resource and issuing a DELETE rracrc
instruction for ABDUMP's resident module,
ABEND9 clears the ABDUMP and recursicn
flags in the current TCB. These had been
set to indicate a valid recursicn if an
error had occurred during AEDUMP process
ing. Since this processing is finished,
the tits are reset. This action completes
the post-dump cleanup prccedure, and ABEND9
~asses ccntro1 to ABENDll.

proceSSing during ABENDll (Entry Point
IGCOE01C)

ABENDll performs the foilowing
fUnctions:

• ~urn on the Generalized Trace Facility
(GTF) for each task in the tree which
had ~reviously turned it off.

• Purges ECBs awaited by programs asso
ciated with tasks in the terrrinating
tree.

• Erases com~lete subtasks.

• checks fcr storage to close and routes
to steal.

• Clcses open data sets.

• Frees the PIE.

AEENDll calls the ntask selectn subrou
tine to select each task of the terrrinating
tree, cne task at a time. ABENDll then
examines each task to see if a GTF trace
suspensicn is still outstanding against the
TCE. This is determined by examining the
'ICBG'IOFM bit in the selected TCB. If set,
a HOOK rracro instruction is issued to
resume the GTF trace. The TCBGTOFM tit is
then reset, and the next task is selected.

AEENDll next purges any ECBs that are
awaited by programs associated with tasks
in the terminating tree. The task select
subroutine is called for each task; the
nwait pending n flag (RBWAITP) in each RE
associated with the selected task is then
examined. If the RBWAITP flag is set
(indicating that the RB is waiting on one
or more ECBS), ABENDll locates the awaited
ECBs by cbtaining the contents of register
1 at the time the WAIT nacro instructicn
was issued. ABENDll marks the EeBs as com
pleted, and turns off the RBWAITP flag in
the RE. This processing has the effect cf
causing any subsequent POST macro instruc
tion against the ECBs to be treated as a
no-operation condition.

AEENDll uses the Close routine of data
management to close the data sets and purge
the DEB queues. For a first-time entry
ABENDll closes all data sets, and purges

Section 10: Ternination Procedures 243

all DEBs. A recursive entry resumes Close
processing from the point of the error. If
a recursion has occurred from the Close
routine (as indicated ty the "Close recur
sion" flag TCBCLOSE in the current TCB),
ABENC!! performs special processing to con
tinue closing data sets and purging CEBs.
This processing is described under "Special
Handling of a Recursion" below.

CLOSING DATA SETS THAT BELONG TO THE TER
MINATING TASKS: Data sets that are opened
during task operation are normally closed
(if they are not already closed) by the
End-of-Task (EaT) routine. But since ter
minating tasks cannot reach the end-of-task
condition, the ABEND routine must close all
their data sets that are still open.

The closing of data sets is perfcrmed
separately for each task of the tree while
the task is currently active. The "task
select" subroutine selects the tasks, one
at a time, starting with the newest descen
dant of the task specified for termination.
The previously active task is set ncndis
patchable, the newly selected task is made
ready, the ABEND routine's SVRB is gueued
to the selected task's RB gueue, a task
switch is invoked, and a branch is made to
the Dispatcher. When ABENC11 is dispatched
for the selected task it closes data sets,
and purges DEBs. When all DEBs have been
purged, the "task select" subroutine
selects the next higher level task in the
tree, and the process is repeated.

Selecting Each Task of the Tree: On each
iteration of the loop in which data sets
are closed, the "task select" subrcutine
selects another task of the terminating
tree. Its first selection is the newest
descendant of the task specified fcr ter
minaticn. For example, in Figure !0-8 the
newest descendant is task G, and the task
specified for termination is task D. On
each iteration, the next higher level task
is selected. The next higher level task is
F. On the final iteration of the loop, the
highest level or "top" task of the tree is
selected. The top task of the tree is D.
'I'he direction of selection is thus from
bottom to top of the tree.

For each selection, the "task select"
subroutine tests the "completicn" flag
(TCBFC) to learn whether the task has
already been terminated (either norrrally or
abnormally). If the selected task has
already been terminated, and its TCE is
thus nc longer needed, ABEND!1 branches to
the resident "erase" routine (part cf the
EOT routine) with the address of the ter
minated TCE. The "erase" routine degueues
the selected TCB from the subtask queues
(whose pointers are 'ICBL'IC and TCBNTC in
each TCB) and frees the space it cccupies.
When ccntrol returns from: the "erase" rou-

244

tine, the "task select" subroutine makes
another selection and again Checks the
"com{:letion" flag. When an incomplete or
not-already terminated task has been
selected, the next part of ABEND!! is pre
pared for dispatching under contrcl cf the
selected TCB.

PreFaration for the Dispatching of AEENC!1
Under Ccntrol of the Selected Task: As
stated tefore, cloSing data sets is done
under the control of the task to which
these resources telong. For this {:urpose,
the ABENC routine's SVRB must be queued to
the selected task's RE queue. The selected
task must then tecome the active task,
replacing that which was previously cur
rent. Under control of the newly selected
TCB, ABEND!! is redispatched (at lccation
EN'IRY2) to begin execution of its "close
data sets" fUnction.

Preparation for the redispatching of
ABEND11 cccurs as follows. First, the cur
rent task is set ncndis{:atchable ('ICBABWF
flag is set) so that AEENC1! temporarily
cannot be redispatched for this task. The
task selected by the "task select" subrou
tine is then made dispatchable (two bytes
of non-dispatchability flags are cleared in
its TCE) in preparation for the branch to
the Dispatcher. ABEND!! stores in the RB
cld FSW field (REOPSW) of AEENC's SVRE the
entry point (EN'IRY2) tc its "close data
sets" function, for later use by the Cis
patcher. Then, to permit ABEND1! to con
trol processing for the selected task, the
ABENC routine's SVRB is placed at the head
of the selected task's RB queue. 'Ihe
'ICBREP field of the selected TCE is altered
to pcint to the ABEND routine'S SVRB, and
the ABENC routine's SVRE points tc the pre
viously "top" RB of the queue. (Refer to
Figure !0-9.) The ABEND routine's SVRB is
then removed from the RE qu,eue aT the PH=
viously current 'ICB, si~ce ABEND11 can ser
vice only one task at a time.

To ensure that the registers contain the
correct values when ABEND11 is redisratched
for the selected task, the address of the
selected TCE is placed in the TeB register
(register 4), and the current general
register contents are stored in the regist
er save area (TCEGRS) o£ the selected TCE.
The Cispatcher, when invoked, loads the
registers from this TCE save area.

AEEND!1 next branches to the Task Switch
routine, making available the add~ess of
the selected TCB. ~The Task Switch rcutine
corr.pares the dispat6bing priority of the
input 'ICE with the di$~atching prierity of
the last disratched (previously current)
TCE. If the selected task is of higher
priority, the Task Switch routine {:laces
the selected TCB address in the "new" TCE
pointer (IEA'ICEP) as an indication to the

Previously
Selected TeB

TCB A

Legend:
--P = pointer

Not,,: ABEND's SVRB is shifted to the RB queue of the currently selected task.

ABEND 11

Entry 2

PRB

Figure 10-9. Preparation for the Dispatching of ABENDll for the Selected Task

Lispatcher. Otherwise, the Dispatcher
would try to select either the previously
current task (now nondispatchatle), or
another lower priority task by a search of
the TCB queue in a dcwnward-priority
direction.

Finally, ABENDll branches to the Dis
fatcher which fasses ccntrol to ABEND'S
"close data sets" function for the selected
task. When this task has highest priority
among the ready tasks (perhaps after a
delay in which other tasks are active),
ABENDll is redispatched (at locaticn
ENTRY2) to purge data sets for the selected
task.

CloSing Data Sets for a Selected Task: The
cloSing of data sets for a selected task
consists of issuing a CLCSE macro instruc
tion (with resulting supervisor linkage to
the Close routine of data rranagerrent) for
each data set opened for the task. Each
data set is specified by a DCB; the address
of the DCB is contained in a DEB whose
queue belongs to the task. After a data
set is closed, its associated LEE is
removed from the task's DEE queue, and its
space is freed. If a recursion to the
ABEND routine occurs because of a defective
DCB, or an incorrect DEB address in a DCB,
the DEB is dequeued and freed, although its
data set is not closed. After each DEB has
been freed, ABENDll frees the program
interruption element (PIE), which rray have
been created ty a SPIE macro instruction in
a user tape label routine.

Prior to cloSing data sets, ABENDll
issues a GETMAIN instruction tc test wheth
er there is sufficient storage for the

Close routine. If the GETMAIN shculd fail,
an XCTI is issued to link to AEENL12, which
attempts to free ("steal") the necessary
storage. Cnce storage has been obtained,
ABENDll closes data sets and purges DEBs.

If the pointer to the task's DEB queue
(TCEDEE) is not zero, there are data sets
telonging to the task that rrust be closed.
Eefore issuing CLOSE macro instructions,
AEEND11 stores the flag byte, and the DCB
address that was ottained from the first
DEE, in the pararreter list for the Close
routine. The pararreter list is the seccnd
word of the extended save area of the ABEND
routine's SVRE. (See SVRB forrrat in Sec
tion 12, "Ccntrol Blocks and Tables.") The
high-order bit of the parameter list is set
to indicate to the Close routine that the
specified data set is the last in a list of
data sets. (See Data Management Macro
Instructions.)

After setting up parameters for the
Close routine, ABEND11 saves the current
DEB address in the extended save area of
the ABEND routine's SVRB. The purpose is
to check whether the Close routine is atle
to perform its secondary functions: updat
ing the LEB pointer (TCBLEB), and freeing
the current LEE. After regaining control
from the Close routine, ABEND11 corrpares
the DEB pointer with the saved DEB address
to deterrrine if the Clcse routine has both
removed the current LEB from the DEE queue
and freed its space.

Next, tefore invoking the Close routine,
ABEND11 sets the "close" and "recursion"
flags (TCECLOSE and TCBREC) in the selected
TCB. If an error occurs during the Close

Section 10: Terrrination Prccedures 245

Ioutine (possibly caused ty an invalid
~CB), the set condition of these flags
indicates a valid recursion to the AEEND
Ioutine, and causes Ieentry to ABEND11 from
ABEND3 to continue the DEB processing.

ABEND11 invokes the Close routine data
u,anagement by issuing a CLCSE macro
instruction specifying the paraIT.eters it
had pIeviously stored in its SVRE. The
resultant SVC interruption causes the SVC
Second-Level Interruption Handler to create
an SVRE fOI the Close routine and to place
the SVRB on the RB queue of the selected
task. When the Close routine finishes its
processing, the resultant SVC inteIIupticn
causes supervisor linkage to the Exit rou
tine, which removes the Close routine's
SVRB from the RB queue, and frees its
space. The ABEND routine'S SVRB is then
left as the current RB for the task.

AfteI the execution of the Close rou
tine, the Dispatcher returns control to
ABEND11 as the current routine fOI the
still-active current task. ABEND11 resets
the "close" and "recursion" flags in the
selected TCB to indicate that a recursion
(if it now occurs) is net valid. These
flags are set again just tefore the
issuance of the CLOSE macro instruction fOI
the next data set.

The TCBDEB pointer is compared with the
saved DEB address to determine if the cur
rent DEB was dequeued and freed ty the
Close routine. If the two DEB addresses
are unequal, the curIent DEB has been
freed. ABEND11 then branches to free the
PIE.

If the two DEB addresses are equal, the
Close routine did not process the current
DEB. Accordingly, ABEND11 provides a
pseudo-link (via an SVC 13) to the GAM
module IGGIFF01. This link results in a
reentry into ABENDO, which issues an XCTL
to link to IGGIFF01, thus giving the GAM
u,odule its own SVRB. ABEND uses a reentry
configuration across the pseudo-link, and a
valid recursion configuration (TCBCLOSE)
across GAM processing. 'Ihe valid recursion
configuration across GAM processing is
necessary should IGGIFF01 itself abncrmally
teIminate such as for an invalid DEB or UCE
data. (Note that ABENB does not ensure the
validity of the DEB which GAM is process
ing. The DEB is the one addressed ty the
current TCBDEB field.) If IGGIFF01 ter
IT.inates abnormally, contIol passes through
ABEND to the module that invoked the GAM
routine; processing continues as if the
interface had been normal.

After GAM has completed processing, it
issues an SVC 3 (EXIT) which causes its
SVRB to be dequeued, and control returned
to ABEND11. AEEND11 fiIst resets the

246

recursion configuration flag. It then
dequeues the DEB frou the BEB queue, deter
uines its size, and frees the space it
occupies. If the TCE points to a PIE, the
pointeI is cleared and the PIE is freed.
After the PIE has been fIeed, ABEND11
branches to repeat the processing for the
next DEB. The GAM module IGGIFF01 is
enteIed for each DEB that has not been
dequeued by the Close routine.

Special Handling of a RecuIsion: An error
can CCCUI during the execution of the Close
routine, causing a recursion to ABEND.
Such an eIIOI can be caused by cveIlaying
cne or more DCBs tecause of the "steal
core" fUnction of ABENB12. Regardless of
the cause, a recursion because of an error
during the Close routine needs special han
dling to permit continued closing of data
sets after the point of erIor.

If a recursion to the ABEND routine
occurs because of an error during the Close
Ioutine, ABEND3 invokes ABEND11 directly to
continue closing data sets and purging
DEBs. A test at the beginning of AEEND11
recognizes the set condition of the "close"
indicater in the selected TCB, and branches
to perform special handling.

AEEND11 first locates the DEB on which
the Close routine was operating when the
erIor occurred. It locates the DEE address
ty searching the RB queue to find the SVRB
that was used during the previous execution
cf the AEEND routine. This SVRB holds the
last used DEB address in its extended save
aIea. The DEB address was placed in the
extended save area by ABEND11 during its
previous execution, just before it issued
the last CLOSE uacro instruction. The last
used DEB address, when found, is saved in
the extended save area of the SVRB used for
the current execution of the ABEND routine.

ABEND11 continues processing as if con
trol had just teen returned from the Close
routine after normal DEB processing. The
"close" and "recursion" flags are cleared,
and the current DEB (since it was not freed
by the Close routine) is dequeued froIT the
rEB queue and freed. Normal DEB processing
for the next DEB then continues, as pIe
viously oescriteo.

When all DEBs have been closed, ABEND11
determines where to transfer control. If
the current task is the top task in a tIee
which is atnorually terminating, ABEND13
receives control. Otherwise, a subtask is
selected for termination via redispatching
to this ABEND module.

processing during ABEND12 (Entry Point
IGCOC01C)

ABEND12 has two main fur~oses:

.. Deterrr,ines whether the storage required
by the Close routine is available.

• Attemftes to obtain storage if the
ABEND is a job-stef ABEND.

ABEND12 tests whether storage is avail
able for use by the Close routine during
ABEND11 frocessing. If sufficient storage
is available (552 bytes), control is passed
back to ABEND11 to continue the terrrination
:frocedures.

If the required storage area cannot be
obtained, ABEND12 follows either of two
faths, defending on whether the current
termination is for the entire job ste:f or
only for the specified task and its descen
dants. If the current terrrination is for
the job step, ABEND12 "steals" (frees) pre
viously allocated main storage for the
Close routine, preferably from space allo
cated to the job-step task. This space is
in subpool 252.

If the current termination is not for
the job-step task, the task terrrination
rrust be converted to a job-step terrrina
tion. This is because the "stealing" of
allocated main storage has made irr,possible
the normal continuation of the job step.
ABEND12 prepares for a job-stef terrrina
tion. It does this by putting the comple
tion code in the ESA, and setting the conv
ersion configuration flag (TCBCONVR). It
then passes control to AEEND1 which extends
the ABEND to include the entire job step.
When the "check for core" subroutine in
ABEND11 is entered for the second time, the
test for available main storage, and the
"stealing" of needed storage (if necessary)
occur just as they would for an original
job-step termination.

DETERMINING WHETHER STCRAGE IS AVAILABLE:
The "steal core" subroutine, used by
ABEND12, tests for the availabliity of main
storage for the Close routine. It issues a
conditional GETMAIN macro instruction for
552 bytes of main storage. The availabili
ty or unavailability of this amount of
storage is indicated by the code returned
by the GETMAIN routine in the return code
register. If the space is available, it is
immediately freed, since the purpose of the
GETMAIN macro instruction is merely to test
availability. In this case, AEEND12 passes
control back to ABEND11.

ATTEMPTING '10 "S'IEAL CORE": If rrain
storage is not available, the "steal core"
subroutine tests if the current termination
is for the entire job stef. If it is not,
conversion to step termination and purging
resources for the enlarged tree of tasks
occurs as freviously described. But if the
termination is for the entire job ste:f, the
subroutine tries to obtain main storage for
the Close routine of AEEND11 by atterr:fting
to "steal" allocated storage from one of
the tasks of the job stef.

The "steal core" subroutine next sets
the "prevent dump" indicator (TCEPDUMP) in
the job-stef TCE. This flag is set only to
indicate that storage has been stolen.

The "steal core" subroutine tries to
find previously allocated sub~ool 252 s~ace
belonging to the jot-step task. It tries
to locate this sface in ~reference tc other
subfools, since subpool 252 within a region
ordinarily does not hold data contrcl
blocks (DCES). Thus, the "stealing" of
allocated space from this subpcol will fro
bably nct cause recursions to the AEEND
routine when AEEND11 refers to the DCBs to
close data sets. The subroutine searches
the subpcol queue of the job-stef TCB,
looking for a subpool queue element (SPQE)
for subpool 252. If it finds such an SPQE
before it exhausts the SPQE queue, it
issues a FREEMAIN macro instruction to free
the entire subfool, and tests for the avai
lability of main storage. It makes this
test by issuing a rracro instruction condi
tional GET~AIN for 552 bytes, followed by a
FREEMAIN macro instruction. If stcrage is
now available (as indicated by the condi
tion code returned by the GETMAIN rcutine),
the work of the subroutine is finished.

If the "steal ccre" subroutine cannot
find an area assigned to subpool 252 that
belongs to the job-ste:f task, it then looks
for any allocated subpool that belongs to
any task of the job ste:f. Ey use of the
"task select" subroutine and the MSSLOOP
subroutine, the rrain stcrage queues cf each
task in the job step are searched for a
descriptor queue elerrent (DQE). If a DQE
exists, rrain sto+age is already allocated
to the associated subpool. The "steal
core" subroutine places zero in the "free
queue element" fointer in the DQE. It does
this to simulate an absence of free storage
in the blocks described by the DQE. The
purpose is to frevent the error of trying
to free an area that is already free. To
make storage available for the Clcse rou
tine, the subroutine frees (via a branch to
the FREEMAIN SVC routine) a blcck of 2K
bytes of the area described by the DQE. If
the SPQE is for subpool 0, the FREE~AIN
:fararreters must specify subpool 250.

Section 10: Termination Procedures 241

EXITING FROM ABEND12: ABEND12 passes con
trol, via an XCTL, to ABEND1 if conversion
to a job step ABEND is necessary. ABEND11
receives control if storage is available
for the closing of data sets. In the
situation in which the "steal core" subrou
tine fails to obtain storage, control
passes to DAR1 because this is an invalid
system condition.

processing during ABEND13 (Entry Point
IGCOD01C)

ABEND13 ferforus the following:

• Passes control to the TCAM close
module.

• Frees SCBs.

• Cancels Inter-partition Posts for TCAM
and TSO tasks.

• Purges QELs.

• Purges transient SVRBs.

• Purges dynamic LD entries (in the TIOT)
invalidly marked tusy.

ABEND13 first checks whether entry to
this module is a recursion or a first-time
entry. If the recursion is due to an error
in the furge routines of TSO or TCAM Inter
Partition Posts, the resfective routines
are not reentered. If the recursion is due
to an error in the TIOT Check routine, pro
cessing continues with the remcval of tran
sient SVRBs. For a first-time time entry,
the "task select" subroutine is called to
select a task to be furged. If one is
found, normal processing takes place. If a
task is not selected to te purged, ABEND13
performs its exit processing.

TCAM CLOSE MODULE INTERFACE: ABEND13 gives
control to the TCAM Close module which per
forms closing functions for TCAM if they
have been bypassed in normal close process
ing or close recursion. The interface of
ABEND13 with the TCAM Close module is via a
pseudo SVC with a recursion configuration
set across TCAM Close frocessing.

CANCELLATION OF PENDING INTER-PARTITION
POSTS FOR TCAM: In a TCAM environment,
there may be a pending request to fost this
task by another task. SVC 102 is an SVC
instruction which effectively cancels such
pending requests. If those requests ere
not canceled, this task could terminate and
another task, possibly having the same
TJID, TCE address, and RB address, could be
fasted by mistake.

248

FREEING OF STAE CONTROL BLOCRS: If an SCB
exists, as indicated by an address in the
TCBNSTAP field, the SCE chain is updated
and a FREEMAIN instruction is issued to
free each SCE.

CANCEIIATICN OF PENDING INTER-PARTITION
POSTS FCR TSC: In a TSO environment, there
rray te a fending request to post this task
ty another task, possibly swaffed cut at
this tirre. CTIP is a rracro which will
effectively cancel all such pending
requests. If those requests were not can
celed, this task could terminate and anoth
er task, possibly having the same TJID, TCB
address, and RB address as this task, could
te posted by mistake.

If TSC is active, this Itacro rrust te
called even if this is not a TSO task.
This task could be a fcreground initiated
tackground task, and thus pending requests
must be canceled.

This rracro call is rrade for each task in
the tree of terminating tasks. Because
QTIP may be called mcre than once fer a
terrrinating task without complications, no
special precautions are necessary tc avoid
a second call during recursive precessing.
However, if entry to ABEND13 is due to a
CTIP recursion, CTIP processing is
tYfassed.

ENQ/DEQ PURGE: If the selected task is not
the top task in the tree, ABEND13 enters
the resident ENQ/DEQ Purge routine (at
entry fcint IEAOEQ01) to remove resource
requests generated by issuing the ENC rracro
instruction for the selected task. This is
the task selected by the "taSk select" sut
routine from those telonging to the ter
minating tree. The queue elements (QELs),
refresenting resource requests, must be
removed. This is done sc that routines
telonging to other tasks can gain access to
the enqueued resource, if the atncrrral ter
rrinaticn occurred tefore the DEQ routine
could be executed for the selected task.
Ctherwise, the resource would rerrain
inaccessible.

The ENQ/DEQ Purge routine searches the
system CCB chain for QELs that were con
structed ty the ENQ routine for the
selected task. Each QEL contains a fointer
to the TCB under whose control it ~as con
structed. Each QEL belonging to the
selected task is removed from its QEL
queue, and its sface is freed, via a tranch
to the FREEMAIN routine. If all QELs
queued tc a rrinor QCB are removed, the
minor QCB is also dequeued frorr its rrajcr
QCE and its sface is freed. If the majo~
QCB has no minor QCB, it is also reIToved
froIt its queue and its space is freed.
When all the task's enqueued requests have
teen remcved from the system QCE chain and

its related queues, the ENQ/DEQ Purge rou
tine returns to ABEND13 which must reestab
lish addressability.

The ABEND13 routine must also terminate
device reservations acquired through the
RESERVE macro instruction and not released
through a subsequent DEQ macro instruction.
These device reservaticns occur only in
systems with the shared DASD o~tion.

Outstanding reservations are reflected
in the TCB enqueue count. When such a
reservation is detected, the ENQ/DEQ Purge
routine tranches to the EXCP ~nterface sub
routine in the ENQ/DEQ module. This sub
routine ~repares control tlocks for an EXCP
command and issues the EXCP command that
results in the release of the reserved
device. For this reason it is essential
that the ENQ/DEQ Purge be done in an ABEND
rr,odule which runs Fartially enal::led.

When all QELs and QCBs for the selected
task have been purged, the ntask selectn
(TASKSEL) routine is invcked to select the
next higher level task of the tree.

REMOVAL OF REQUEST BLOCKS FeR TRANSIENT SVC
ROUTINES: ABEND13 locates SVREs for tran
sient routines by searching the RB queue
belonging to the selected task. (Each next
RB is ~ointed to by the RBLINK field of the
previous RB, beginning with the ABEND rou
tine's SVRB.) Each RB is examined to
determine that it is an SVRB and that it
represents a transient routine, as indi
cated ty the tit settings in the RBSTAB
field. Each SVRB for a transient routine
is removed from the task's RB queue. Then
ABEND13 l::ranches to sul::rcutine TAHABEND to
remove the SVRE from the transient area
queues.

The TAHABENt subroutine first tests the
transient area block numter (RBTABNO field)
of the SVRB to deterrr.ine if the represented
routine is currently in a transient area
block (TAB). If this field is zero, the
SVC routine is not in a TAB. In this case,
the sutroutine searches the transient area
request (deferred) queue for a pointer to
the SVRB. If the SVRB address is found, it
is removed from the request queue and the
purge of the transient area is complete.

If, however, the TAE nurrber (RBTABNO) in
the specified SVRB is not zero, the SVRB
address is on a user queue and the asso
ciated routine is either in a TAB or was
overlaid tefore it could l::e completed. In
this case, the transient area user count is
decreased by one to indicate one less out
standing request for the routine in the
TAB. Then, by use of the TAB nurrber as a
displacement, the associated entry in the
transient area control table (TACT) is
found. By means of the TACT entry, the

a~~rcpriate user queue is located and
searched for the SVRB address. When the
specified SVRB address is found, it is
dequeued frorr the user queue, since the
requester that originally generated the
SVRB is teing terminated. The user queue
for the TAB is then searched to determine
if there are other users of the routine in
the TAB. (The relative track and record
address--TTR--in the TACT entry, represent
ing the routine now in the TAB, is ccrrFared
with the TTR in the remaining SVREs on the
user queue.) If the search indicates that
there are cther users of the routine, the
purge of the transient area queues is com
plete. But if it indicates that there are
no other users of the routine in the TAB,
the associated TACT entry is flagged to in
dicate a free TAE.

When control returns from the TAHAEENt
subroutine, ABEND13 determines the size cf
the SVRB just Frocessed (from its RESIZE
field) and frees the space it occu~ies,
s~ecifying sul::pool 255 (one of the subpools
of supervisor queue space).

TIOT CLEANUP: After processing has l::een
completed for each task in the terrrinating
tree, a check is made to determine if the
terminating task is a time-sharing subtask
that did not reenter AEEND13 because of a
TIOT recursion (TCBDYNAM). If this is the
case, the TICT Check module is entered to
perfcrrr cleanup processing for dynamic DD
entries in the TIOT.

EXIT PROCESSING: ABEND13 passes control to
1\EENt15:----

Processing during ABEND15 (Entry Point
IGCOF01C)

AEEND15 Furges CDEs, associated pro
grams, and extent lists.

AEEND15 selects each task by rreans of
the previously described ntask selectn sub
routine, starting with the newest descen
dant of the specified task and ending with
the sFecified or "topn task itself. But
unlike the processing Of ABENDll, in which
each task was redispatched under the con
trol of ABEND's SVRB to ~urge its own
resources, all of ABENt15's processing is
done under the control of one task, the
specified or top task of the terminating
tree. This task remains dispatchatle
throughout the execution of ABEND fcr the
current request.

purging the contents Directory fora PRE:
1\ check is made of the RE chain of the
selected TCB. If the RB examined is a PRB,
there is an associated contents directory
entry (CEE) which rrust be examined, and if
necessary, purged from the contents direc
tory. To examine the CDE, which represents

Section 10: Termination Procedures 249

a load module, a branch is Il1ade to the sub
routine C~TERM to test the C~E and possibly
update the associated queues.

If the CDE pointer (RECDE) in the PRB is
zero, there is no CDE associated with the
PRE. There is, therefore, no need for
CDTERM to update the contents directory.
The search of the RB chain continues.

If the CDE pointer (RECCE) in the PRB is
not zero, there is a CDE, which Il1eans that
a load module is associated with the PRB.
The load Il10dule may be in the process of
being loaded, or Il1ay already be residing in
main storage. The status of the rr-odule may
be deterldned by a test of the CDE' s CDATTR
flags. For the format and contents of a
CDE, see section 12, "Control Blocks and
'Iables."

If the module described by the CDE is in
the process of being lcaded (as indicated
by the "set" condition of its NIC flag) the
FREEFWA subroutine frees the fetch work
area, obtains the major CDE if the current
ly examined CDE is a minor (since altera
tions are always made in the major CDE),
and processes according to two possible
situations:

1. The module is being loaded under con
trol of another PRB, not the selected
PRB. A test of the CDERB field shows
that it does not point to the selected
PRB. The selected PRB is on a queue1
of PRBs waiting for the Il10dule to be
loaded for another task in the job
step. In this case, the rerroval of
the selected PRB from the waiting
queue has no effect on other tasks
whose PRBs are waiting. Accordingly,
CDTERM branches to its DQRBS subrou
tine to reIl10ve the selected PRE from
the queue of waiting PRBs. CDTERM
then returns control to the RBREMOVE
subroutine to remove the selected PRB
from its task's RB queue and free its
storage area.

2. The module is being loaded under con
trol of the selected PRE. (The test
of the CLERB field shows that it
points to the selected PRE.) In this
case, the processing depends on wheth
er there are other PREs queued1 to the
selected PRB.

purging the Mcdule and Related storage
Areas: If a test of the REPGMQ field indi
cates that no other PREs in the job step
are waiting for the rr-odule to be loaded,
the CDE and its related areas can be
removed without adversely affecting other
tasks. Accordingly, AEEND15 branches to

1Queuing field is RBPG~Q.

250

the FREEMAIN routine to free the module's
storage area (conditionally) and its asso
ciated extent list (if it exists). It then
dequeues the major CDE for the module and
any minor CDEs and, via the FREEMAIN rou
tine, frees the space they occupy.

PreEaration for Refetching the Module: If
PRBs fcr other tasks of the job step are
queued, waiting for the rrcdule to be
loaded, the loading process cannot be
stopped without ensuring that the module is
loaded under control of one of the waiting
PREs. Otherwise, the tasks whose PREs are
waiting would be perrranently ncndispatch
able, waiting for a resource that is never
available. Accordingly, AEEND15 prepares
for the refetching of the module by the
routines of contents Supervision. It then
frees the prograrr area and extent list, if
they exist, and dequeues and frees the
rrajor CDE and any rrinors.

Preparaticn for the refetching of the
module consists of making the waiting PRBs
ready to enter the CDSEARCH routine of Con
tents Supervision at entry point CDCONTRI.
'Ihis rcutine initializes the request for
the rrodule. Other routines of Contents
Supervision perfcrrr the fetch and update
the contents directory. ABEND15 prepares
the waiting PREs. for entry to locaticn
CDCONTRL by performing the following steps
for each queued PRE, using the subroutine
ceRES:

1. Frees the fetch work area, if one has
been allocated. (This action has
already been done for the selected
PRE.)

2. stores the address CDCONTRL in the old
PSW field .of the PRE, in preparation
for the dispatching of the CD SEARCH
routine, rrentioned above.

3. Reinitializes the RE by: placing zero
in its wait count field CREWCF), thus
removing it from the wait condition;
placing zero in the CDE pointer
CRBCDE), since Contents Supervision
stores a new CDE pointer in this
field; and placing zero in the queuing
field CREPGMQ), since the RE is no
longer in the waiting queue. Ccntents
Supervision creates a new waiting
queue of requesting SVREs during the
reinitialized fetch process.

4. Decreases by a count of one the use/
responsibility count in the rr-ajor CLE,
in crder to indicate that there is one
less outstanding request for the
module.

5. Locates the address of the TCE asso
ciated with the waiting PRB by chain
ing thrcugh the RE queue, following

the RBLINK fields, and tranches to the
supervisor's Task S~itching routine
~ith this TCB address. The Task
S~itching routine may alter the "ne~"
TCB pointer (IEATCBP) to ~errrit the
Dis~atcher to eventually pass control
to location CDCCN~RL for a task ~hich
is of higher priority than the current
task.

The reinitialized request for the rrodule
causes execution as soon as one of the
tasks ~hose REs have been readied is next
dispatched.

After ABEND15 has reinitialized the
rr,odule request, it frees the program area
and extent lists, if they have been
acquired. It dequeues and frees the major
CDE and any minors from the Job Pack Area
Queue (JPAQ). When Contents supervision is
eventually dispatched, it does not find a
CDE for the module, since the CDE has been
removed from the contents directory. Con
tents Su~ervision, therefore, begins the
process of fetching the module.

ProceSSing if the Module Is Already in Main
Storage: If the module descrited ty the
CDE is already in main storage, AEENC15
~erforms ~rocessing roughly parallel to
that which it ~erforms if the module is in
the process of being loaded. There are,
ho~ever, several differences:

• No fetch ~ork areas are freed, since
Contents Supervision has already freed
these areas.

• Preparation for the ref etching of the
module occurs only if the module is
serially reusable. The reascning is
that the module may now not be reus
able, either because of a ~rogram check
during its executicn or because it
could not finish and therefore could
not reinitialize itself. In either
case, ~aiting queued PREs are rrade
ready and pointed to location CDCONTRL,
as previously described. But to force
refetch by contents supervision,
ABEND15 clears the "serially reusable"
flag and sets the "nonreusatle" flag in
the CDE. If the module was not reus
able, this flag ~as already set.

• Instead of freeing the program area,
extent list, and the CCE unconditional
ly if the selected PRE is in control of
the module, ABENr15 branches to entry
point HKPPROC, a sutroutine of the Exit
routine, to test the CLE use/
responsibility count. If this count is
zero, indicating that there are no out
standing requests for the nodule,
ABENr15 branches to the CDHKEEP subrou
tine and to t~o other subroutines of
the Exit routine (CCCESTRY and

ORrERC[Q) to free the ~rogram area,
extent list, and the CLE. (For further
inforrration about CDHKEEP, CDDES~RY,

and CRDERCLQ, see Section 9 "Exiting
Procedures.")

If ccntents directory processing by the
crHKEEP subroutine is not needed because
the selected PRE is not in control of the
Il!odule, the selected PRB is renoved from
the RB n~ait" queue1 that originates in the
CLE. The use/responsibility count is then
decreased by a count of one to indicate
that there is one less outstanding request
for the lwdule.

The result of the processing by AEENr15
is that the selected PRE has been removed
from the CLE's RE queue of ~aiting request
ers, or the request for the module has been
reinitialized and, if necessary, the pro
gram area, extent list, and CDE have been
freed.

EXITING FROM AEEND15: After ABEND15 has
completed processing all PRBs for all tasks
cf the terninating tree, it exits to
AEEN[16 to continue task purges.

Processing during ABEND16
(Entry Point IGCOG01C)

AEEN[16 performs the following
functions:

• Purges IRBs. PREs, and resident SVREs.

8 Purges the load list.

• Purges dynamically acquired main
storage.

• Releases the task control block.

• Provides final processing for the to~
task of the tree.

ABENt16 purges the remaining resources
of the specified task and its descendants.
~hese resources include: IRBs, PREs, and
resident SVREs; the load lists; and dynam
ically acquired main storage if exclusively
c~ned. AEENL16 selects the tasks ~hose
resources are to be purged in a nanner
sinilar to that of ABEND15.

After ABEND16 has purged all rescurces
telonging to a selected task, it rerrcves
the task's TCE from the TCB queue and from
the subtask queues, and frees the rrain
storage that the TCB occupies.

As a last function, ABEND16 loads the
return register ~ith the ccmpleticn ccde
cbtained fron the top TCB. This completion

1Queuing field is RBPGMQ.

Section 10: Termination Procedures 251

code is then available tc the tOf task's
parent, the next higher level task, for its
examination.

AEEND16 twice causes supervisor linkage
to the Exit routine. The Exit routine dur
ing its first execution ufdates the tran
sient area control table and the transient
area queues, via its TAXEXIT subroutine.
It does this because AEEND16, a transient
SVC routine, is finished. During its first
execution the Exit routine also removes the
AEEND routine's SVRE from the top task's RB
queue and frees its storage space. During
its second execution the Exit routine,
detecting an end-of-task condition,
branches to the EOT routine.

The EOT routine performs final termina
tion procedures for the top task of the
tree. These procedures consist of:

• Passing ccntrol to an end-of-task exit
routine (ETXR), if one has been
specified.

• Posting an event control block (ECB)
for the parent task, if an ECB has been
specified.

• Removing the top TCB from its queues
and freeing its storage space.

When control returns from the EOT rou
tine, the Exit routine removes the last RB
from the top task's RB queue and frees its
storage space. The Exit routine then
branches to the Transient Area Refresh rou
tine to refresh (if necessary) a transient
area. The transient area may have been
overlaid by the modules of the ABEND
routine.

The Transient Area Refresh routine, when
its processing is corrplete, l:ranches to the
Dispatcher. The Dispatcher then gives con
trol to the current routine of the highest
priority ready task.

AEEND16 purges resources for and removes
the TCB of each lower task in the tree
structure beginning with the lowest task
and moving upward. ~he process continues
until the top task of the tree has been
selected and its resources purged. This
tirre the TCB is not rerroved from its
queues, nor is its space freed, since this
TCB is still needed after ABEND16 exits.

PURGING REQUEST ELOCKS: The resources
first purged by AEEND16 for a selected task
are the request blocks (RBs). The RBs are
processed by a subroutine called RBREMOVE.
The processing varies according to the type
of RB: SVRBs for resident routines, IRBS,
and PRBs. The type of RE is deterrrined by
a test of the RBFTP bits of the RBSTAB
field. For the format and contents of each

252

type of RB, see Section 12, "Control Blocks
and ~ables."

Furging an IRE: If the REREMOVE subroutine
finds an IRE that represents a user or sys
tem exit routine, it dequeues all IQEs or
RQEs that are queued to it. The subroutine
then decreases the "use count" in the IRB,
according to the number of IQEs or RQEs
that it rerroved. (The use count, stored in
the IRB when the user exit routine was
first requested, indicates multiple use of
the same exit routine for different
sul:tasks.>

The RERE~CVE subroutine removes the IRE
from the task's RB queue, and resets the
"active" flag (REFACTV) in the IRE to indi
cate to the Stage 3 Exit Effector that the
IRE is net on a task's RE queue.

Then two tests are made to deterrrine if
space belonging to the IRB may be freed.
If the IRB's storage sface was not dynarric
ally acquired (as indicated by a test of
the REFDYN flag in the RESTAE field), the
RB is a fermanent system interruption re
quest block and rray not be freed. Or if
the IRE's use count is greater than zero,
it is still needed, and should not be
freed. In either case, the RBREMOVE sub
routine processes the next RE on the
selected task's RB queue, or if there is no
other RE on the queue, fasses contrcl to
ABEND16's load list Purge routine. Eut if
the IRE is not a systerr RB and contains a
use count of zero, it is no longer needed
and its space is freed. If it has a user
register save area, originally reserved by
the requestor of the user exit routine, the
save area space is freed. (Existence of
the save area is indicated by a nonzero
RBPPSAV field in the IRB.) The 72-byte
save area is oonditionally freed from sub
pool 250 by a branch to the FREEMAIN rcu
tine (address F~ERANCH>. If the IRE is a
TAXE, (in a system with TSO), the TAlE
(terminal attention interruftion elerrent)
is similarly freed. The REREMOVE subrou
tine then branches to the FREEMAIN routine
to free the IRE'S space from subpool 253.
If there is another RE on the selected
task's RE queue. the subroutine processes
it. Otherwise, it passes coptrol tc
ABEND16's load list Purge routine.

Rerroving the PRE: If the RE is found to be
a PRB, the RERE~CVE subroutine removes the
PRE f~om its task's RB queue and frees its
storage area. The freeing of the PRE's
storage area is sirrilar to that for any
other RE's storage area except that there
is nc user register save area to be freed,
and the RE size and subpool number pertain
to a PRB. The REREMOVE subroutine l:ranches
to the FREEMAIN routine at entry point
FMBRANCH to free the PRE's storage sface
frorr sul:fcol 255. Then. if there is anoth-

er RB on the selected task's RB queue, the
RBREMOVE subroutine ~urges that RB in the
manner previously described. But if there
are no more RB's belonging to the selected
task, the RBREMOVE subroutine ~asses con
trol to the Load List Furge.

purging an SVRB: Since SVRBs for transient
routines have already been released by
ABEND13 any SVRB detected by the RBREMOVE
subroutine must re~resent a resident SVC
routine. If the SVRE is not the last RB of
the ntopn TCB, the RBREMOVE subroutine
removes the SVRB frore the task's RB queue,
determines its size from its RESIZE field,
sets u~ the subpool o~erand (255) for a
branch entry to FREE~AIN, and frees the
space occu~ied by the SVRB. If the SVRB is
not the last RB on the selected task's RB
queue, the next RB is cbtained and RE pro
cessing for the task continues.

If the SVRE is the last RB on the top
task's RB queue, the REREMCVE subrcutine
does nct release the SVRE. This last SVRB,
used for the ABEND routine, is released by
the Exit routine after AEEND16 is finished.

Special Processing for the Last RB of the
nTOp" Task: If the RB just prccessed is
the last RE of the "to~" task cf the ter
reinating tree, the RBREMOVE subroutine per
forms special processing for this last RB.
(The last RB is not the ABENC routine's
SVRB but is the RB pointed to by its RBLINK
field.) The last RB needs special ~rocess
ing to satisfy the needs of the supervi
sor's Exit routine, which purges all
resources after the con.~letion of ABEND16.
~he Exit routine expects that the last RE
belonging to a com~leted task is a PRB.
The RBREMOVE subroutine therefore converts
its last-processed RE into a PRB and
ensures linkage to the Exit routine by alt
ering certain RB fields. It converts the
HB into a PRB by clearing the RBFTP sub
field of the RBSTAE field. To avoid mani
pulation of the contents directory by the
CDEXIT subroutine of the Exit routine, the
RBREMOVE subroutine clears the CDE ~cinter
(RBCCE). To ~ermit dispatching of the Exit
routine for the top task when ABEND16 pro
cessing is com~lete, the RBREMCVE subrou
tine removes any existing wait condition by
clearing the RBWCF field. Alsc for this
~urpose it ~oints the RB cld PSW (second
word of the RBOPSW field) to an SVC 3
instruction in the comnunications vector
table (CVT) at location CV~EXIT. The SVC 3
instruction, when ~laced in execution by
the Dispatcher, causes supervisor linkage
to the Exit routine.

PURGING THE LOAD LIS~: The resident Load
List Purge routine (entered at location
IEAQABL) releases load list elements and
modules that were loaded for the selected
task and are now no longer needed. This is

the sane routine that performs a similar
function for the EOT routine during a nor
mal task ternination. The Load List Purge
routine releases modules that were loaded
for the selected task, but which were nct
released before the task was abnormally
terminated. The modules would nornally
have been released by either the Delete SVC
routine or the CCEXIT subroutine of the
Exit routine.

The Lcad List Purge routine examines
each load list elenent in the load list,
re~resenting all modules that were loaded
for the selected task. (The list origin
for the load list is in the TCEILS field of
the TCE.) The routine subtracts the
res~cnsibility count (number of load
requests for each nodule) stored in its
load list element, fran the use/
responsibility count (total number of
requests for the module) stored in the CCE
for the nodule. Each load list element
~oints to its associated CCE. The pur~ose
cf subtracting the res~onsibility count
from the use/res~onsibility count is to
determine the nuwber of outstanding
requests for the loaded reodule.

The Lead List Purge routine branches to
the CDEXIT subroutine (location CCHKEEP).
The subroutine tests the number of out
standing requests for the module. If there
is nc outstanding request for the module,
the routine tests the nodule's attributes.
If the nodule is in the link pack area,
control is returned inmediately to the
caller. If the module is not in the link
pack area, is either reenterable or reus
able, and rollout has not been invoked, the
routine sets the "releasen flag in the
nodule's CCE and the n~urge" flag for the
job pack queue. (~hese flags are tested by
the GET~AIN routine to determine which
module's space reay be freed, if needed
s~ace is otherwise unavailable.) If the
wodule is neither serially reusable nor
reenteratle, or if the current job step has
invoked rollout, CDEXIT (via its CDDESTRY
subrcutine) renoves the reodule's C~E fron
the job Fack queue, and frees the space
occu~ied by the nodule, its extent list,
and its CDEs (major and minor).

In a Model 65 Multi~rocessing Systen,
CCDESTRY tests the TCB, and, if it finds
the Storage Reconfiguration corrpleticn
code, bypasses the freeing of space occu
pied by the nodule.

Cn return of control frore the CCHKEEP
sUbrcutine, the load List Purge routine
frees the load list element. The process
is repeated until all load list elenents
have been examined.

Secticn 10: Termination Procedures 253

PURGING DYNAMICALLY ACQUIRED MAIN STORAGE:
After control is returned from the Load
List Purge routine, ABEND16 tranches to the
Subpool End-of-Task routine (SPEOT), whose
entry point is IEAQSPET. In a Model 65
Multiprocessing System, the SPEOT routine
is bypassed in the case of a Storage Recon
figuration entry. SPEOT is part of the EOT
routine. The SPEOT routine releases sub
fools exclusively "owned" ty the selected
task and frees the associated subpool queue
elements (SPQEs).

The SPEOT routine frees unshared sub
pools of main storage allocated to the
selected task. The subpools are repre
sented by SPQES, which have as their list
origin the TCBMSS field of the selected
TCB. The routine examines each SPQE on the
queue. If an SPQE represents a shared sub
pool that may not yet te freed, the queue
is updated (the "shared" SPQE is freed) to
reflect the new unshared ownership of the
subpool. If, however, an SPQE represents a
subpool not shared with another task of the
job step, the subpool and its SPQE are
freed, via a branch to the FREH1AIN rou
tine. The SPQE list is ufdated, and the
next element is examined. When all ele
ments have been examined, sutpool 253, one
of the numbers assigned to supervisor queue
space, is explicitly freed since there is
no SPQE for this subpool.

If the selected task is the job-step
task, a job~step ternination must be occur
ring. In this case, besides freeing sub
pools and SPQEs, the SPEOT routine dequeues
and frees CDEs and extent lists that
describe modules in the job pack area (sub
pool peals 251 and 252). Note that only
reentrant modules (subpool 252) are left at
this time if it is a jet-step ABEND. These
CDEs and extent lists are released during
termination of the job-step task because
the SPQES for these two sutpools are queued
to the job step TCB and have net previously
been released. The SPEOT routine checks
the job pack area control queue (JOBPACQ),
whose list origin is the TCBJQF field in
the TeB, to discover if there is at least
one CDE. If there is at least one CtE, the
SPEOT routine branches to a part of the
CDEXIT subroutine of the Exit routine
(CtDESTRY) to free the remaining CDEs and
their associated extent lists.

RELEASING THE TASK CONTROL BLOCK (TeB):
After freeing main storage and SPQES for
the selected task, ABEND16 follows either
of two paths of processing, depending on
whether the selected task is the top task
of the tree. If the selected task is the
top task, final processing is performed, as
described in "Final Processing for the Top
Task." But if the selected task is not the
top task, ABEND16 sets the "completion"
flag (TCBFC) in the selected TeE, to indic-

254

ate that the task has teen terninated,
re~oves the TCE from its queues, and frees
its space.

The dequeuing and freeing of the
selected TCB is perforned by two resident
routines belonging to EOT: the "dequeue
TCB" routine (tQTCE), whose address is
IEADQTCE, and the "erase" routine (address
IEAQERA). The "dequeue TCB" routine
renoves the address of the selected TeE
from the TeB queue. The reader may recall
that the TeB queue consists of pointers
connecting the TCBs of the system in the
order of their dispatching priorities. The
[ispatcher may examine this queue to deter
mine the next task whose current routine
should te dispatched. Since the selected
task is now terninated, its TCB nust te
renoved from ccnsideration by the
[ispatcher.

The AEEND routine does not contain spe
cial ccde in systens with the time-slicing
feature. The EOT routine contains special
code for time-slicing, and this cede per
forns the preceding fUnctions for ABEND16.

The "erase" routine removes the selected
TCB from its subtask queues, updating the
TCEITC and TCBNTC pointers in the next
higher TeE of the tree. The first save
area for the TCE is freed conditionally.
The "erase" routine then branches te the
FREEY.AIN routine to free the space cccupied
ty the selected TeB. After the release of
a selected TCB, ABENt16 returns control to
the "task select" subroutine to select the
next higher level task of the tree ef ter
ninating tasks. The resources of the newly
selected task are released in a nanner
sinilar to that described.

FINAL PReCESSING FOR THE TOP TASK: When
the resources of the "top" task of the tree
have been released, as indicated by a test
after the SPEOT routine has returned con
trol, ABENt16 begins final processing for
the top task. It loads the return register
with a completion code that it obtains from
the TCBCY.P field of the top TCB. The
parent of the top task may examine the com
fletion code, via an end-of-task exit rou
tine or a posted EeB, when its current rou
tine is dispatched. After placing the oom
pletion code in the return register,
ABEND16 causes linkage to the sUfervisor
Exit routine by issuing an SVC 3 instruc
tion or, if the Storage Reeonfiguration bit
is set in a Model 65 Multiprocessing Sys
ten, invokes the Storage Reconfiguration
ABEN[nodule, AEENt20, via an XCTL.

The supervisor Exit routine and the EOT
routine provide final cleanup of the top
task. The Exit routine removes the AEEN[
routine's SVRB fron the top task's RB queue
and frees its space. The Exit routine then

tranches to the Dispatcher to return con
trol to the current routine of the highest
priority ready task. When the top task of
the terminating tree is next dispatched,
its RB old PSW causes control to be passed
to an SVC 3 instruction in the connunica
tion vector table (address CVTEXIT). Con
trol is passed to the Exit routine, via
supervisor linkage, this time to remove the
last RB from the top task's RB queue. This
RB is the one that was converted to a PRB
by the RBREMOVE subroutine (see "Special
Processing for the Last RB"). The Exit
routine, after removing the "durrrried" PRE,
detects an end-of-task condition and
branches to the EOT routine.

The EOT routine, via its DQTCE and
"erase" routines, removes the top TCB from
the TCB queue and its subtask queues and
frees its space. (If, however, an end-of
task exit routine (ETXR) or an ECE was
specified when the top task was attached,
the top TCB is not removed fron its subtask
queues.) TheEOT routine next clears the
"new" TCB pointer (IEATCEP) to zero, indi
cating to the Bispatcher that it must
search the TCB queue to find the highest
priority ready task frcm among those that
remain in the system. A task switch is
thus ensured. The EOT routine returns con
trol to the Exit routine to free the space
occupied by the last RB (the "dummied" PRB)
of the top task. The Exit routine then
branches to its Transient Area Refresh rou
tine to refresh (if necessary) a transient
area block that was overlaid by the various
modules of the ABEND rcutine. The Tran
sient Area Refresh routine, after perform
ing its processing, branches to the Dis
patcher to return control to the current
routine of the highest priority task of
those that remain in the systen.

Processing during ABEND20 (Entry Point
IGCOK01C)

In a Model 65 Multiprocessing System,
ABENB20 performs Storage Reconfiguration
when a solid storage failure has occurred.
It is invoked by ABEND16 if the Storage
Reconfiguration bit, set by a Recovery
Management Support routine, is on in the
TCE. ABENB20 has two functions:

• To execute a "dummy freepart" for the
job step currently being processed by
ABEND. This is done by inspecting the
two bit indicator in the FSSEMAP for
each 2K block within the boundaries of
the current region. (See Section 12,
"Control Blocks and Tables" for a
description of FSSEMAP.) Only those
blocks which are not marked sclidly
failing are added to the dynamic FBQE
chain. Those blocks which are not on
the chain becone lcgically unavailable
to the system.

• To dequeue and free the partition queue
elen.ent (PQE) which described the
regicn being processed, and tc issue a
conditional GETPART for 52K. If
storage is available, the new regicn is
chained to the PQE of the already
existing job step TCE by GETPART.
ABENr20 then issues an SVC 3 instruc
tion which causes linkage to the super
visor exit routine. If storage is not
available, this is indicated tc the
cperator by a console message. ABENr20
then issues an unccnditional GETPART
which places the task in a wait state
until the storage becones available.

PERFORMING DAMAGE ASSESSMENT (DAR)

The ranage Assessment Routine (EAR)
receives control fron ABEND when one cf the
follcwing conditions occurs:

o The termination of a task in "must com
plete" status.

• The termination of a systerr task.

• An invalid recursion.

DAR alters the environrrent so that the
ABEND rcutine or system processing can
attempt to continue. Under certain circurr
stances processing cannot continue; DAR
then sets all tasks in the job step
nondispatchable.

The first module, DAR1, gains ccntrcl
frorr AEEND1 to test for recursions. If
there are no recurSions, DAR1 attenpts to
write a dunp of main storage; failing that,
a message is issued to the operator, and
control passes to the next module.

DAR2 processes tasks in "must complete"
status.

DAR3 attempts to reinstate tasks that
are not in "rrust complete" status.

DAR4 is entered for the sale purpcse of
setting tasks nondispatchable. After com
pleting processing, control passes tc the
Dispatcher.

Processing dur~DAR1 (EntfY-Point
IGCOI01C)

Damage Assessnent Routine (DAR) Lcad 1
receives control from ABEND1 in the event
of either an invalid AEEND recursion, a
system taslc failure, or the failure of a
task in "must conplete" status.

DAR1 first tests the TeB for a DAR
recursion. In the event of a secondary DAR
recursion, indicating that a dump cf nain
storage nay have been written but the fail-

Secticn 10: Ter~ination Procedures 255

ing task has not been reinstated, control
fasses to DAR4.

In the event of a primary DAR recursion,
indicating that the LAR fUnction failed
during the writing of a durr.p, a further
attemft to write a dumf is bypassed. The
operator is notified that the durrf has
failed, and central is fassed to the appro
priate module, as described later.

If there is no evidence of recursion,
LARl sets a tit in the TCE of the failing
task as a notification in case of future
frimary recursion.

DARl then attempts to write a dump of
main storage onto the SYS1.DUMP data set.
If SYS1.EUMP is not availatle, the writing
of the dump is bypassed and control fasses
to the next module. Otherwise, LARl issues
an SVC 51 to pass control to the SVC DUMP
routines.

Exiting From LAR1: After either writing a
dump of storage or an of era tor rressage as
needed, DARl determines if further DAR pro
cessing is necessary or if control should
be returned to ABEND:

• DAR2 - The terminating task is in "must
cOIEplete" status.

• DAR3 - A system task is atnormally ter
minating. DAR3 determines if the task
is eligible for reinstatement.

• DAR4 - The failing task's ~CE is the
job-step TCB, or a subtask whose job
step is terminating. LAR4 sets the
task permanently nondispatchable.

• AEENEl - In all other cases, ABENDl
gains control, via an XCTL, to convert
a subtask ABENL to a job-step ABEND.

Processing during DAR2 (Entry Point
IGCOM01C)

DAR2 is entered for tasks in "rrust com
flete" status. It searches the CEls to
find the major and minor names of resources
associated with the failing task. These
names become input to the operator, who is
requested to reply whether or not the
resources are critical. When control is
returned from the operator, the task is
enabled. EAR2 must disable interruptions
before continuing processing.

If the resources are specified as crit
ical, control is passed to DAR4 which sets
the failing task and subtasks nondispatch
able. They remain in this state for the
duration of the current IPI after the
operator has been informed that the ter
minating task failed tc be reinstated.

256

If the resources are not recorded as
critical, EAR2 releases the task from "must
complete" status. The secondary EAR recur
sicn bit is turned off to allow a chance
for true DAR reinstatement. The wcrd
"AEEND" is put in the extended save area,
and control returns to ABENDl to ccntinue
ncrrral prccessing.

Prccessing during DAR3 (Entry Point
lGCON01C)

DAR3 receives ccntrol from DARl when the
latter recognizes that the failing task is
either the Master Scheduler or a subtask,
and the task is not in "must complete" sta
tus. Task reinstaterrents are accorrplished
for system tasks as follows:

MASTER SCHEDULER TASK: The resume PSWs
of all REs queued off the failing Master
Scheduler Task are pointed to the SVC 3
(EXIT) instruction in the CVT. The
resume PSW of the highest level RE is
redirected to an entry point within
AETERM (SCEDWAIT), where an SVC 6 (LINK)
instruction is executed to provide lin
kage to the Scheduler Wait routine, IEE
VWAIT. The ECEs on which the Scheduler
Wait routine waits are cleared. The
operator is informed by a WTO message
that the task has been reinstated. All
inforrraticn list entries for the task to
be reinstated are purged. DAR3 then
exits via an SVC 3 to reinstate the
Master Scheduler task.

TRANSIENT AREA FETCH TASK: The resurr,e
PSWs cf all request blocks queued off
the failing Transient Area Fetch 'ICE are
pointed to the SVC 3 (EXIT) instruction
in the CVT, while the highest level RB
is modified to give control at entry
point TENOTFND in the Transient Area
Fetch routine (IEAQTR33). A reinstate
ment rressage is written to the operator,
and all inforrration list entries are
purged. LAR3 exits via an SVC 3 to
reinstate the task.

SYSTEM ERROR TASK: The error flags in
the SVCLIE DCB are cleared. If an RQE
exists, the failing task's TCB is sche
duled for a "B06" ABEND completion code.
The REOPSW of the SIRE is set to point
to an SVC 3 instruction. If an RQE does
not exist, only the latter action is
taken. DAR3 then issues a WTO instruc
tion to write the reinstatement rressage.
All inforrration list entries pertaining
to this task are purged, and exit is via
SVC 3.

COMMUNICATIONS TASK: The resume PSWs of
all RBs queued off the failing Communi
cations Task 'ICE are pointed to th.e SVC
3 (EXIT) instruction in the CVT, while
the highest level RE is mOdified to give

control to the Communications Task Wait
routine, IEECVC~B. A message is written
to the operator, all information list
entries for this task are purged, and
DAR3 exits via an SVC 3.

I/O RECOVERY MANAGEY.ENT SUPPORT TASK:
The PSWs of all RBs queued off the IORMS
TCB are set to pOint to an SVC 3
instruction in the CVT. The PSW cf the
top RE is modified to pass control to
the entry point IOR~SSVC in the RY.S SVC.
A reinstaterr:ent message is written to
the operator, and all entries in the
information list pertaining to the task
to be reinstated are purged. An SVC 3
instruction is issued to begin the rein
statement process.

ROLLOUT/ROLLIN TASK: The rcllout/rollin
request is turned off and the task on
whose behalf the rollout task is cperat
ing is scheduled for abnormal terrrina
tion with a "DOA" completion code. DAR3
then passes control to DAR4 te set the
rollout task nondispatchable.

If the failing task is a non-system
task, the extended save area of the SVRB is
cleared and the valid recursion flag is
turned off. DAR3 then exits to AEEND1, via
an XCTL, to continue termination
processing.

Processing during DAR4 (Entry Point
IGCOP01C)

DAR4 is entered solely for the purpose
ef setting tasks permanently ncndispatch
able. Entry to DAR4 is from any DAR
module. If entry is from DAR1, the ter
rrinating task rrust be set nondispatchable
because of the existence of one cf the fol
lowing conditions:

• Task recursed invalidly through DAR.

• Task failed reinstatement.

• Task is a subtask whose job step is
abnormally terminated.

• Task is a job-step task which has
recursed invalidly through the ABEND
module, and is neither a special systerr
task or a task in "must complete"
status.

Entry from DAR2 is caused by a terlrinating
task that is in "must complete" status, and
the systems operator has indicated that the
resources are critical. Entry from DAR3 is
caused by a rollout task that rrust be set
nondispatchable.

Upon entry, DAR4 sets a recursion indi
cater and issues a WTO message to inform
the operator that the terminating task

failed to be reinstated. If the indicator
was already set when DAR4 was entered, the
WTO rressage is bypassed to avoid a WTO/
ABEND recursion locp. The Subsysterr Purge
routine is entered to perform any necessary
subsystem eleanup before the task is set
perrranently nondispatchable. If the GTF
subsysterr is the failing task, monitor call
interruptions are disabled by the Subsysterr
Purge routine to prevent further system
damage.

The jeb-step TCE address of each ready
task on the TCE queue is then obtained, and
the failing task, together with every task
in the terrrinating tree, is set nondis
patchable. However, if the Master Sched
uler is failing, its subtasks are allOwed
to continue processing because they are
tasks critical to the operation of the
system.

If the GTF trace function has been sus
pended, it is resurred via a HOOK rracrc
instruction. This is done to ensure that
tracing is resurred when ABEND has bypassed
the ABDU~P function.

The inforrration list entries for each
task in the terrrinating tree are purged.
If the failing task is the Master Sched
uler, hOwever, cnly its informaticn list
entries are purged.

After setting all tasks in the terminat
ing tree nondispatchable, a branch entry is
made to the Dispatcher.

SPECIFYI~G A TASK ASYNCHRONOUS EXIT ROUTINE

The STAE (Specify Task Abnorrral Exit)
nacrc instruction enables the user to spe
cify a STAE exit routine that is entered
asynchronously if the task enters abnormal
termination processing. The functicns of
the STAE service routine and the five
ABEND/S~AE interface rcutine (ASIR) rrodules
are:

The STAE Service Routine receives con
trol via an SVC 60 when the STAE nacre
instruction is issued. It checks the vali
dity of the STAE request, and creates, can
cels, cr modifies a STAE control block
(SCB).

ASIRO receives control from ABENDO to
halt I(C operations that are in progress
for the terminating task.

ASIRl receives control from ASIRO.
ASIRl establishes a work area and schedules
the user-written STAE exit routine.

ASIR2 receives contrcl from ASIR1.
ASIR2 returns to ABEND processing if a STAE
retry routine is nct requested. If a STAE

Section 10: Terrrination Procedures 257

retry routine is requested, ASIR2 invokes
ASIR3. If the program using STAE is in
supervisor mode and requests a STAE retry
routine without a purge of the RB chain,
ASIR2 invokes ASIR5.

ASIR3 receives control from ASIR2.
ASIR3 closes the data sets allocated to the
RB of the RBs positioned between the STAE
issuer up to and including the RB of the
task scheduled for AEENB, and invokes the
wTOR Purge routine. If any of the DCBs
examined by ASIR3 is using BTAM, QTAM for a
line group, BISAM, or QISA~, ASIR3 invokes
ASIR4. If none of the above access methods
are indicated, ASIR3 invokes ASIR5.

ASIR4 receives control from ASIR3.
ASIR4 repeats the search for open data sets
represented by DCBs using ETAM, QTAM for a
line group, EISAM, or QISA~, closes these
data sets, and invokes ASIR5.

ASIR5 receives control from ASIR2,
ASIR3, or ASIR4. ASIR5 sets dispatchable
the subtasks related to the task using
STAE, frees the storage occupied by the
STAE control block, and schedules the STAE
retry routine so that it is the next pro
gram executed.

When the STAE macro instruction is
issued, the resulting rracra expansion
places in register 0 a code indicating the
desired option (create, cancel, or over
lay), and, in register 1, the address of a
parameter list. (See section 12: "Control
Elocks and Tables" for a description of
this parameter list.) The last instruction
of the macro expansion is an SVC 60, which
invokes the STAE service routine.

ProceSSing During the STAE Service Routine
(Entry Point IGC00060+)

The STAE service routine first examines
the contents of the TCENSTAE field of the
TCE (displacerrent dec. 160). If the STAE
has been issued in the STAE exit routine or
in a STAE (subtask AEENr intercept) retry
after a STAE or STAI exit AEEN[(the high
order bit if the first byte of TCBNSTAE is
on), an error code of eight is placed in
register 15, and control is returned to the
user. The STAE request is not serviced
since STAE exit routine processing is
already atte~pting to deal with an error
situation.

The routine then determines whether the
STAE macro instruction was issued with the
TCB operand (only the ATTACH service rou
tine may use the TCB option). If so, the
STAE service routine recognizes a subtask
ABEND intercept (STAI) ccndition and pro
cessing continues with the test cf exit and
parameter list addresses below.

258

The STAE service routine next tests the
contents of register 0 to deterrrine the
cpticn of the STAE request -- to create,
cancel, or overlay a STAE control blcck
(SCE). If register 0 contains a zero (the
create option), the STAE exit routine
address and the parameter list address
specified in the ST'AE rracro instruction are
checked for validity. If either address is
invalid an error code of twelve is placed
in register 15, and contrcl is returned to
the user.

The STAE service routine issues a ccndi
tional GET~AIN ~acro instruction to obtain
16 bytes of storage for the SCB. The first
word of the extended save area of the STAE
SVRE is passed to GETMAIN to be used for
the address cf the storage that is
obtained. If storage is not available,
control is returned to the caller with a
return ccde cf four. If storage is avail
able, the STAE or STAI control block is
created and placed on the SCB queue. A
STAE SCB is placed irrmediately before the
last STAE SCE created or, if there is no
previous STAE SCE, after the last STAI SCB
en the queue. A STAI SCB is always placed
at the top of the SCB queue and will be
propagated to all lower-level subtask TCEs.
The address of the previous SCB and its
STAE flag tyte (zero if this is the first
SCE created for the task) are placed in the
first word, the address of the STAE exit
routine is placed in the second werd, and
the address of the STAE exit routine para
ITeter list is placed in the third word.
For STAE requests, the address of the
user's RE is placed in the fourth word; for
STAI requests, the address of the new sub
task's 'ICE is placed in the fourth word and
the STAI indicator is set. This allows an
exit to be scheduled for a parent task when
one of its subtasks is scheduled for
abnormal terrrination.

If the XCTL option is requested in the
STAE macro instruction (the high order bit
of register 1 is on) and the TCB cperand
was not specified, the STAE service routine
turns on the XCTL flag in the TCBNSTAE
field. If this is a STAI request (the TCB
operand is specified), the XCTL option is
ignored.

If the contents of register 0 are not
zerc, cr if register 0 contains a zero but
the STAE exit routine address is zerc,
either the cancel or the overlay option is
being specified. The STAE service rcutine
tests the TCENSTAE field to determine if an
SCE already exists. If it is zere, an
error code of eight is placed in register
15, and contrcl is returned to the user
since an SCB that does net exist cannot be
canceled or overlayed.

The STAE service routine next compares
the RB address of the current SCB with the
RB address of the program that is request
ing that the SCB be canceled or overlayed.
If the RB addresses are not the sa~e, a
return code of sixteen is placed in regist
er 15, and control is returned to the user.
This test prevents the unintentional
destruction of another prograw's SCB.

The STAE service routine now determines
whether the STAE request is the cancel or
overlay option. If register 0 either con
tains a four or a zero with a STAE exit
routine address of zero (the cancel
option), the address of the previous SCB
and the TCB STAE flag tyte (which are con
tained in the first word of the current
SCB) are moved into the TCBNSTAE field. A
FREEMAIN macro instruction is then issued
to free the storage occupied by the can
celed SCB.

If register 0 contains an eight (the
overlay option), the STAE exit routine
address and the STAE parameter list address
are obtained and ohecked for validity. If
either address is invalid, an error code of
twelve is placed in register 15, and con
trol is returned to the user. If the STAE
exit routine address and the pararr,eter list
address are valid, they are moved into the
second and third words respectively of the
current SCB. If the XCTL option is speci
fied, the XCTL option flag in the TCENSTAE
field is turned on.

When the SCB has been successfully
created, canceled, or overlayed, the STAE
service routine returns control to the user
with a return code of zero in register 15.

Processing During ASIRO (Entry Point
IGCOR01C)

The ABEND/STAE Interface routine, load 0
receives control from ABEN£O when ABENDO
determines that an SCB exists, or from
ASIR2 when no retry is specified. ASIRO
first branches to FREE~AIN to free the PIE
if one is pointed to by the TCB. ASIRO
tests the recursion bit of the TCBNSTAE
field to determine if a STAE or STAI recur
sion has occurred. If this is not a STAE
or STAI recursion, the current STAE SCB is
located, and the STAE recursion flag is
set.

If the STAE user is in nmust completen
status but is not a supervisor program,
control is returned to ABENDO and abnormal
termination processing continues. If the
RB address in the current SCB cannct be
found on the RB chain, that SCE is canceled
and the next SCB on the chain is tested.
If none of the RB addresses in any of the
SCBS are on the RB chains, ASIRO returns
control to ABENDO. If an SCB is found that

contains an RE address on the RB chain,
that SCB is used for ncrrral processing.

If the STAE user is a supervisor rou
tine, ASIRO sets a bit in the TCBNSTAE
field. This bit is later referenced ty
SYNCH to ensure that the STAE exit routine
will be scheduled iI) the same trode as that
cf the user. Asynchronous exits are
allOwed if the STAE user requested therr.
Frocessing continues with the determination
of 1/0 in progress below.

If ASIRO determines that this is a STAE
or STAI recursion or if no STAE SCE is
found, ASIRO searches the SCB queue for a
STAI SCB that is indicated as not previous
ly processed by ASIRO. (If no unused STAI
SCB is found or if a STAE SCB is fcund,
ASIRO passes control to ABEN£O to continue
processing.)

ASIRO processing of the valid STAE SCB
cr unused STAI SCB continues by determining
if any I/O operations are in progress for
the task that was scheduled for ABEN£ pro
cessing. If the TCBDEB field in the TCB
contains a zero, ne I/O operations are in
~rogress. If the TCBDEB field is not zero,
indicating that one or mere data sets are
cpen, and if a purge was requested by the
user, ASIRO determines what type ef purge
was requested. If a purge with quiesce ~as
requested, ASIRO sets the purge-quiesoe
flag in the TCENSTAE field and invokes the
Purge I/O routine with the quiesce I/O
cptien. If the Purge I/O routine encoun
ters an ABEN£ situation while attempting to
quiesee I/O, AEENDO is reentered. AEEN£O
tests the purge-quiesce bit and returns
control to ASIRO. If the Purge I/O routine
did not successfully quiesce I/O, or if a
purge with halt was requested by the user,
the halt I/C bit in the TCENSTlIE field is
set to indicate that I/O is not restcrable,
and the purge I/O routine is reinvoked with
the halt I/O option. Upcn return frctr the
Purge I/O routine, if I/O operations were
halted, or if the Purge I/O routine was net
called, the first word in the extended save
area (ESA) of the SVRB i~ set to zerc. If
the Furge I/C routine has successfully
quiesced I/O, the address of the first I/C
tlock (ICB) en the lOB restore chain is
placed in the first word of the ESA by the
Furge I/C routine for later restoration ef
I/O ty the user.

ASIRO passes control to ASIR1 fcr nerrral
exit processing.

processing During ASTR1 (Entry Point
IGCOS01C)

The AEEND/STAE Interface routine, load 1
estatlishes a work area and schedules the
STAE exit routine. ASIR1 atterrpts tc get
176 tytes of storage in subpool 250(0) for

Secticn 10: Termination Procedures 259

a register save and work area ty issuing a
conditional GET~AIN macro instruction. The
request is conditional tecause the STAE
processing can continue if storage cannot
be obtained. If storage is not available,
registers 0, 1, and 2 are initialized as
farameter registers. A twelve is placed in
register 0, the ABENB completion code that
appears in the TCBCMP field in register 1,
and the address of the S~AE exit routine
parameter list in register 2.

If storage for the work area is
obtained, the starting address of this area
is placed in the ESA of the SVRB and in
register 1 to te passed to the STAE exit
routine. ASIRl initializes the work area
with system status information at the tirre
the ABENB was scheduled. ~he address of
the STAE exit routine fararneter list is
flaced in word 1: the ABENB completion code
found in the TCBCMP field in word 2: the
PSW at the time of the ABEND in words 3 and
4: and the problem program PSW before the
ABEND occurred, or zero if the task is a
supervisor task, in words 5 and 6. Words 7
through 22 contain the user's registers at
the time of the ABEND. If the S~AE user is
a sUfervisor task, the RE address of the
terminating program is placed in word 23,
and zeros in words 24 through 26. If the
STAE user is a protlem frogram, the program
name, or zero if the name cannet be found,
is moved into words 23 and 24, the address
of the entry point of the terminating pro
gram into word 25, and zero into word 26.
The starting address of the re[{aining 72
bytes of the work area is placed in regist
er 13, to be passed to the S~AE exit rou
tine and used as a register save area.

Based on the results of the Purge I/O
routine, ASIRl places in register 0 a zero
if I/O oferations have teen quiesced, a
four if active I/O operations were halted,
an eight if no I/O operations were in pro
gress at the time of the ABEND, or a six
teen if I/O intervention was typassed.

ASIRl effects the scheduling of the STAE
exit routine by issuing a SYNCH [{aero
instruction, whieh creates a PRE for the
STAE exit routine.

When STAE exit routine processing is
finished, control is returned to ASIRl
unless the STAE exit rcutine has requested,
or encounters, an ABEND situation. ASIRl
frohibits asynchronous interruptions and
passes control to ASIR2.

Frocessing During ASIR2 (Entry Pcint
IGCOT01C)

The ABEND/STAE Interface routine, load 2
first frees the last 76 tytes of the work
area attained ty ASIRl (the user's register
save area) via a FREEMAIN macro instruc-

260

tion. Register 3 is then examined tc
determine if the user indicated that all
other STAI requests are to be igncred and
ABEND prccessing is to te continued (com
pletion code of sixteen). If so, the work
area acquired ty ASIRl is freed and contrcl
is passed to ABENDO via the XC~L macro
instruction. If nct, register 3 is
exarrined to determine if the STAE user
indicated that a S~AE retry routine te
scheduled. If the STAE user has not pro
vided a S~AE retry routine (return ccde=
zero), ASIR2 frees the work area ottained
ty ASIR1. ASIR2 returns ccntrol tc ASIRO.

If register 3 ccntains a four or a
twelve, the STAE user has requested that a
retry routine te scheduled. The address of
the STAE retry routine, ~assed to ASIR2 is
register 10, and the address of the STAE
retry routine pararreter list, placed in the
first wcrd of the work area by the STAE
exit routine, are checked for validity. If
either is invalid, control is returned to
ABENrO. If both addresses are valid, ASIR2
passes information contained in the ESA to
the cther ASIR modules ty placing the
address of the first lOB on the restore
chain cr zerc in register 7, the addre~s of
the work area or zero in register 8, the
address cf the STAE retry routine in
register 10, and, if the S~AE user is a
protle[{ prograrr, the name of the program
scheduled for AEEND in registers 11 and 12,
and the entry point address of that program
in register 13. ASIR2 then passes ccntrcl
to ASIR3 if retry with RE purge (return
code=four) is specified or if a STAI retry
(return code=twelve) is specified.

If register 3 contains an eight, the
STAE user has requested that a retry rou
tine te scheduled and that the RB chain not
te purged. If the STAE user is not a
sUferviscr program, as indicated ty the
supervisor flag in the TCBNSTAE field, and
the USEr has supplied a work area, ASIR2
frees the work area and returns contrel to
ASIRO. If nc work area is provided, ASIR2
sets the RE old PSw to the address cf an
SVC 13 (ABEND) instruction and issues an
SVC 3 (EXIT) instruction. Further S~AE
prccessing is not perfcrrred since the
cpticn cf nct purging the RB chain is
reserved only for a superviscr prograrr.

If the S~AE user is in superviscr rrode,
information is stored in the parameter
registers, as described above. ASIR2 then
sets the NOREPG flag in the TCENSTAE field
and invokes ASIR5 via the XCTL macro
instruction.

Processing During ASIR3 (Entry Point
IGCOU01C)

The AEEND/S~AE Interface routine, lcad 3
receives control from ASIR2 when ASIR2

determines that the RE chain rrust be purged
and the S~AE retry rcutine scheduled. Upon
entry, ASIR3 stores the contents of the
~ararreter registers 7, 8, 10, 11, 12, and
13 in the ESA.

ASIR3 determines whether the exit rou
tine is a STAI. If it is, the closing of
data sets can be bypassed and the WTOR
Purge routine can be called irrrrediately
because STAI SCBs are always associated
with the first RB on the RE queue. If the
exit routine is not a STAI, ASIR3 deter
mines if the RB address of the terrrinating
program is the same as the RE address of
the program that issued the STAE macro
instruction. If the RE addresses are
equal, the terminating program is the pro
gram that issued STAE, and no intervening
RBs exist. In this case also, the routine
that closes open data sets can be bYfassed.
To deterrrine if any I/O operations are in
progress for tasks represented by REs that
are between the RE of the program issuing
STAE and the RB of the program scheduled
for ABEND, the TCBDEB field is tested. If
the TCBDEB field is zero, no I/O is in pro
gress, and the WTOR Purge routine can be
called irrmediately.

If the TCBDEB field is not zero and the
RB addresses of the STAE issuer and the
terminating task are not equal, ASIR3 must
determine if any open data sets are asso
ciated with any of the intervening RBs.
~he search is accoffplished l:y determining
if the addresses of any of the DCBs on the
related DEB chains are contained in the
boundaries of a program represented by one
of the intervening RBs. The first inter
vening RE tested is that of the program
scheduled for ABEND. If an open DCB asso
ciated with one of the intervening REs is
found, ASIR3 determines from the DCBDSORG
field if the access method being used is
BTAM, QTAM for a line group, BISAM, or
QISAM. If the DCB is using one of these
access methods, the ISAM/TAM switch is set
to indicate that ASIR4 must be the next
rr,odule invoked to complete the close DCB
processing. ASIR3 continues the search by
examining the next DCB.

If an access method other than BTAM,
QTAM for a line group, BISAM, or QISAM is
used for the DCB to be closed, ASIR3 must
ensure that the user will not attempt to
restore I/O events associated with this
DCB. If no I/O operations were in progress
when the Purge I/O routine was called in
ASIRO, or if I/O operations were halted by
the purge I/O routine, I/O is net restor
able, and the DCB in question is closed
without further processing. If the I/O
operations are restorable, an I/C event
related to the DCB to be closed rray be
queued on the lOB restore chain that was
created by the Purge I/O routine. Depend-

ing en the access method used, ASIR3 deter
mines the addresses of the lOBs related to
the DCE and corrpares them with the
addresses of the lOBs on the restore chain.
If the} are equal, the ICBs on the restore
chain are dequeued. The DCB is then closed
via the CLOSE rracro instruction. The
search continues until all DCBs associated
~ith intervening RBs have been clcsed and
all IOEs related to these DCBs have been
removed from the lOB restore chain.

When the DCE search reaches the RB of
the STAE issuer, or if this search was nct
necessary, ASIR3 invokes the W~OR purge
routine. The address of this routine is
cbtained from the secondary CVT. Upon
return from the WTCR Purge routine, para
rreter registers 7, 8, 10, 11, 12. and 13
are initialized as previously described.
If the ISA~/TA~ switch is on, indicating
that ASIR3 found one or more DCBs using
BTAM, Q~AM fcr a line group, BISAM, or
QISAM during the DCB search, ASIR3 invckes
ASIR4 which repeats the DCB search. If the
switch has not been set, ASIR3 invokes
ASIR5 via the XCTL macro instructicn.

Processing During ASIR4 (Entry Point
IGCOV01C)

The AEEND/S~AE Interface routine, load 4
receives control from ASIR3 when ASIR3 has
set the ISAM/TAM switch, indicating that,
during the DCB search, cne or nore DCEs
using E'l'AM, QTAM for a line group, BISAr(,
or QISAM were found. ASIR4 repeats the
search made by ASIR3 and closes the DCBs
that are related tc RBs that exist l:etween
the RE of the STAE issuer and the RE of the
program scheduled for ABEND processing. As
in ASIR3, the RB of the program scheduled
for ABEND is exanined first. The access
nethcd of all DCEs on the DEB chains
related to that RB are tested. If the
related DCBDSORG field indicates that the
DCE is using B~AM, QTAM for a line group,
BISA~, or QISA~, ASIR4 deterrrines if that
DCB is related to the intervening RB. If
it is, any I/O events related to that DCB
are rerr.oved fron the IOE restore chain.
The DCE is then closed. The search con
tinues until all DCEs associated with
intervening RBs have been tested, the
related lOBs have been removed fran the lOB
restcre chain, and the associated DCBs have
been closed. The search ends when the RE
cf the STAE issuer is reached. ASIR4
initializes the parameter registers and
invokes ASIR5 via the XCTL macro
instruction.

Frocessin~uring ASIR5 (Entry Point
IGCOWOIC>

The ABEND/STAE Interface routine, load 5
receives control frorr cne cf the following
ASIR modules:

Secticn 10: Termination Prccedures 261

• ASIR2 when STAE or STAI exit routine
has requested that a S1AE retry routine
be scheduled but that the BB chain not
be purged. (The user of S1AE rrust be a
supervisor program.)

• ASIR3 when all DCBs associated with RBs
that exist between the RB of the STAE
issuer and the RB of the task scheduled
for ABEND have been closed.

• ASIR4 when all DCBs (using BTAM, QTAM
for a line group, BISAM, or QISAM)
associated with RBs that exist between
the RB of the STAE issuer and the RB of
the task scheduled for ABEND have been
closed.

If the parent (originating) task is the
Master Scheduler, all subtasks associated
with the task must be set dispatchable.
The ABENL wait flag (TCBABWF) is turned
off. This flag was set earlier by ABTERM
for all tasks which were to be terminated.
The TCELTC field, which contains the
address of the last TCB on the subtask
queue, is referenced to identify the asso
ciated subtasks. If the TCELTC field is
zero, no associated suttasks exist. If the
field contains the address of a TCE, the
Set Status routine is used to set all sub
tasks dispatchable. After all subtasks
have been set dispatchable, the "task
select" subroutine is called to select each
subtask in the terrrinating job step in
order. The ABDUMP nondispatchability flag
(TCBNDUMP) is turned off, and the next sub
task is selected.

If the NORBPG flag (set by ASIR2) in the
TCBNSTAE field is not en, indicating that
the user of STAE requested a purge of the
RB chain, ASIR5 must purge the REs on the
chain that exist between the RB of the STAE
issuer and the RB of the prograrr. scheduled
for ABENL. The purge is accomplished by
setting the RBOPSW of these REs to point to
an SVC 3 instruction lecated in the CVT.
Since the STAE retry routine executes under
the RB of the STAE user, a new RB need not
be created. The RBOPSW of the STAE user is
set to point to the address of the STAE/
STAI retry routine.

262

If the NORBPG flag is on, the user has
not requested a purge of the RE chain. An
RE must be built for the S1AE retry rou
tine. ASIR5 issues an unconditicnal requ
est for 32 bytes of storage via the GET~AIN
macro instruction. The PSW is set tc
reflect the sarre mode as that of the STAE
user, and the pointer fields in the RE and
the TCE are set so that the STAE retry rou
tine is the next program executed after
ASIR5 exits. The user's register 14 is set
to point to an SVC 3 instruction in the
CVT.

To determine if a work area was ottained
by ASIR1, the work area address in the ESA
of the SVRB is tested. If the address is
zero, a work area was not obtained, and
ASIR5 must initialize parameter registers
to be passed to the STAE/STAI retry rou
tine. A twelve is placed in register 0,
the ABEND corrpletion code is register 1,
and the address of the first lOB on the
restcre chain, or zero, in. register 2. If
a work area was established by ASIR1, it is
reinitialized with system status inforrra
tion as it was in ASIR1 except that the
second word of the work area now oontains
the address of the first lOB on the restore
chain, and the last word now contains an
address to be passed to the Restore routine
for restoring purged I/O.

Before scheduling a STAE retry routine,
the current SCE is removed from the queue
ef SCBs eriginating in the TCBNSTAE field.
The address of the next SCB on the queue,
er zero if there is no other SCB, is placed
in the TCENSTAE field or in the STAI SCB
that immediately precedes the current SCE
en the queue. ASIR5 then issues a FREE MAIN
rr,acro instruction to free the rerroved SCE.

The AETERM and prevent asynchronous exit
flags in the TCB are oleared. The message
Information List for Type-1 SVC routines is
checked to see if it contains any entries
for this TCE. If so, the entries are
deleted. ASIR5 issues an SVC 3 instruction
and gives control to the Dispatcher which
schedules the STAE/STAI retry routine.

MODEL 91 DECIMAL SIMULATOR (IEAXDSOO)
ROUTINE

The Decimal Simulator (IEAXDSOO) routine
is provided to perform decimal arithmetic
instructions since the decimal feature on
the Model 91 includes only the "EDIT" and
"EDMK" instructions.

Note: In this publication, the Decimal
Simulator routine is also referred to as
the sireulator.

The execution of the following instruc
tions is simulated by the Decimal Simulator
routine:

Instruction

Add Decimal
Subtract Decimal
Zero-and-Add Decimal
Multiply Decireal
Divide Decimal
Compare Decimal

Assemtler
Mnemonic

AP
SP
ZAP
MP
DP
CP

Operation
Code

X'FA'
X'FB'
X'FS'
X'FC'
X' FD'
X'F9'

RELATIONSHIP TO THE OPERATING SYSTEM

Figure 11-1 indicates the relationship
of the Decimal Simulator routines to the
operating system. On the Model 91, the
attempted execution of a decimal instruc
tion causes a precise interruption. This
interruption causes control of the CPU to
be given to the Program First-Level Inter
ruption Handler (PFLIH) routine.

After determining that the cause of an
interruption was due either to a decimal
instruction or to an EXECU~E instruction
that addresses a decimal instruction, the
PFLIH routine transfers control to the
Decimal Sireulator (IEAXDSOO) routine. The
Decimal Simulator routine, operating in the
supervisor state with all interruptions
masked, interprets the instruction, checks
it for validity, and performs operations
that simulate the execution of the instruc
tion. At the completicn of the simulation,
control is given back to the CPU until
another decimal instruction is encountered.

A decimal instructicn that causes an
interruption may have been fetched directly
from a problem program, or fetched remotely
while the TESTRAN interpreter routine was
attempting to execute the instruction
indirectly. If the simulation of the
instruction execution is completed without

SECTION 11. SPECIAL FEATURES

error, the Decimal Simulator routine refers
to the task control block (TCB) of the cur
rent task to determine where control is to
te given. The possibilities are tc return
control to either the TESTRAN interpreter
or the problem program containing the
decirral instruction.

If an error has occurred during the
simulated execution of an instructicn, the
Decirral Sirrulator routine gives control
tack to the PFLIH routine indicated in
Figure 11-2.

SIMULATOR ORGANIZATION

Figures 11-2 and 11-3 indicate the
organization and flow of the Decimal Sirru
latcr routine. A discussicn of the rrajcr
routines in the simulator is given in the
sections which follow.

Simulator Control (DECENT) Routine

The Simulator control routine
(hereinafter referred to as the control
routine) perforres the initialization of the
Deoirral Simulator routine. The control
routine is entered fraIl' the Prograrr First
level Interruption Handler (PFLIH) routine
~hen it is deterrrined that a decirral
instruction is to te simulated. The func
tions of this control routine are to:

• Simulate address checking and prctec
ticn checking.

• Sirrulate data checking, except for a
decireal divide exception and a specifi
cation exception.

• Direct the processinq to the appropri
ate arithmetic routine.

In perforrring the preceding functions,
the control routine first obtains the size
cf rrain storage from the communications
vector table. The rrain storage addresses
cf tcth the first operand and the second
operand of the decireal instructicn are
determined, the length (in bytes) of each
operand is computed, and the Decimal Sirru
lator routine'S work area is cleared.

With the addresses estatlished, the con
trol routine carries out the following
sirrulated hardware checks in the order
given.

Section 11. Special Features 263

MAIN STORAGE FOR MODELS 91 AND 195

PFLIH

3c }------'~

The Program First-Level Interruption Handler (PFLlH)
routine is given control when an attempt is made to
execute a decimal instruction by either the problem
program (1a) or the TESTRAN interpreter (lb).

The PFLIH routine analyzes the interruption, and, if
a valid decimal instruction exists, control is given to the
Decimal Simulator routine (2a).

Nucleus

Decimal Simulatar

If an error exists, control is returned to
the PFLIH routine (3c). Otherwise, after
processing the instruction, the Decimal
Simulator routine refers to the TCB (3) to
determine if control should be returned to:

(3a) the problem prog ram
(normal return) or

(3b) the TESTRAN interpreter.

If there has been an error, (entrance from (3e)) the PFLIH routine refers to the
TCB (3) to determine if control should be returned to the TESTRAN interpreter (2b)
or to other error-handling procedures.

Supervi sor Que ue Area

~~ _____ TC_B _____ -J

Dynamic Area

3a 1+----1

3b }+---I

3c ~----'

TESTRAN Interpreter Problem Program

EX (AP) AP OP1, OP2

Link Pack Area I
T

Figure 11-1. Relationship of the Decimal Sirr.ulatcr Routine (IEAXDSOO) to the Oferating
System

264

TESTRAN
Interpreter

PFLIH

Problem
Program

DECIMAL SIMULATOR ROUTINE r--------------I------------------,

DECASP

Add/Subtract
Decimal.
Zero and Add

A

1-___ ~CEN.!... ___ _

DECMP

Multiply
Decimal

Monitor Simulator.
Error Checking:
a. Protection
b. Addressing
d. Data

Error

A

Error

ANAL YZER/END --------
}------l~ Analyzer

End

Error

DECDP

Divide
Decimal

A

DECCP

Compare
Decimal

Normal L _________ -, End rE;:;:;-E~-------------.J

I I t

Problem
Program I~ntry I I Point I

L __ -1

TESTRAN
Interpreter

PFLIH

Figure 11-2. ~eciffal Simulator (IEAXDSOO) Routine Organization and Flc~ ef Centrel

sectien 11. Special Features 265

r------------------T----------------------,
I Routine I Function I
~-----------------+----------------------~

Simulator Main routine of the
control (DECENT) simulator:

• Monitors overall
operation.

• Directs control
to sinulating
routine once per
execution of the
simulator.

• Checks for errors
in aata valiaity,
protection, and
overlap.

~------------------+----------------------~
I Add/Subtract I Simulates execution I
I Decimal and I of the following I
I Zero-and-Add I instructions: I
I Decinal (DECASP) I • Ada Decimal I
I I • Subtract Decimal I
I I • Zero-and-Add I
I I Decimal I
~------------------+----------------------~
I Multiply Decimal I Simulates execution I
I (DECMP) I of the Multiply I
I I Decimal instruction. I
~------------------+----------------------~ I Divide Decimal I simulates execution I
I CDECJ::P) I of the Divide I
I I Decimal instruction. I
~------------------+----------------------~
I Compare ~ecimal I Simulates execution I
I CDECCP) I of the Corrpare I
I I Decimal instruction. I
~------------------+----------------------~ I Analyzer and End I Deterrrines where I
I I control is to be I
I I returned after I
I I simulating a decimal I
I I instructicn. I L __________________ ~ ______________________ J

Figure 11-3. Organization of the Decimal
Simulator (IEAXDSOO) Routine

1. The operand addresses are exarrined to
determine if either (or both) is
within the available storage limita
tions for the installation. If an
address is outside the storage limit,
an addressing exception occurs.

2. Using the data addresses and the
length of the data fields, a check is
made to determine if invalid overlap
ping has occurred. If it has, a data
check exception results. This check
is not made for a Zero-and-Add Decimal
(ZAP) instruction.

3. If the prograro old PSW protection key
is zero, a protecticn check is not
maae. Otherwise, the addresses of the
left-most and the right-most bytes of

266

the data are checked for fetch and/cr
stcre protection violations. This is
to ensure that boundary violaticns cf
restricted storage do not occur. (See
belcw for details of protection
check). Since the results cf rrcst
decirral operations are always placed
in the storage location given by the
first operand add~ess of an instruc
tion, the check a~plied to a second
operand address is only for a fetch of
protection violation. Except fcr a
Ccrrpare Decimal instruction, the first
operand address of a decirral instruc
ticn is checked for both a fetch and a
store violation before the data is
mcved to the simulator's work area.
With a Compare Decimal instruotion,
the first operand address is checked
only for a fetch type of protection
violaticn. If a viclation occurs as a
result cf any of the preceding checks,
a protection exception results.

4. The operands addressed in the instruc
tion are then moved into the wcrk
area. (In the case of a Zero-and-Add
Decimal instruction, only the second
operand is moved into the work area,
and the first operand is set to a plus
zero.)

Note: For all arithmetic operations,
all aata;' handling and movement is dcne
in and/or between the operand wcrk
ar·eas.

5. Each operand is checked for a valid
sign code (that is, decimai values
10-15). An invalid sign code results
in a data-check exception.

Note: If the instruction is a ZAP
instruction, the sign code check is
made for the first operand by ccrrpar
ing against the value that has been
pre-set to prevent an error ccnditicn.

6. The digit oodes of both the first and
seccnd operands are ch~cked against
the perrrissible codes for nurreric-type
infcrrration. Invalid digit codes
result in a data-check exception.
Only the second operand of a ZAP
instruction is checked for validity.

After perforrring the preceding checks
for decirral arithmetic exceptions, the con
trol routine forces the sign oode (in the
work area) of both the first and second
operands to EBCDIC format. These sign
codes, tcgether with the EBCDIC sign code
for the result of the decimal operation are
recorded in the work area of the Decirral
Sirrulatcr routine.

If, during the simulated hardware
checks, an error condition (that is, a ccn-

dition that wculd have caused an operation
exception to occur) is detected, further
checking by the control routine is ter
minated and control is irrmediately given to
the Analyzer/End routine. Operands one and
two of the decimal instruction are not
changed. The old PSW indicates the appro
priate error condition as if the condition
had been detected by the hardware itself.

PROTEC'IION CHECK FEATURE: ·To ensure
against boundary violaticns,lthe complete
storage areas occupied by both~operand 1
and operand 2 are checked in the order (1)
through (4) as indicated in Figure 11-4.

Simulator Routine for Add, Subtract,
Zero-and-Add tecimal Instructicn (DECASP)

The DECASP routine is invoked by the
Simulator Control (DECENT) routine if eith
er the Add Decimal, the Subtract Decimal,
or the Zero-and-Add Decirr.al instruction has
been enccuntered and if the DECENT routine
has detected no error. Whenever it is
given control, this routine sinulates the
processing of one of the three mentioned
instructicns.

If the instruction is a Subtract Decimal
instruction, the sign of the second operand
is reversed to permit the processing to be
carried out in the same manner as for an
Add tecimal instruction. Then, for all
three instructions, depending on whether
neither, one, or both of the operands of
the instruction are zero, the processing is
performed with the following considerations

• If the first operand is not zero, then
each operand is converted to binary
format. The two operands are added
together if their signs are alike
(after the reversal of the sign of the
second operand as previously indi
cated). If the signs are unlike, the
smaller operand is subtracted from the
larger operand.

In the preceding processes, if the
actual length of either operand is
greater than five bytes (that is, the
length code L2 or 11 is greater than
four), the addition or subtraction is
done in groups of four bytes at a tine.

At the completion of the arithrr.etic
operations, the condition code is set
in the PSW. If overflow has occurred
in addition (as, for example, a result
of an indicated operation to add two
numbers of like signs), an exit is made
to the analyzer section of the
Analyzer/End routine. Otherwise, the
exit is to the end section of the
Analyzer/End routine.

• If the absolute values of the twc
cperands are equal and the signs cf the
cperands are opposite, a plus zero
result is supplied.

• If the first operand is zero, the
seccnd cperand is moved to the first
operand wcrk area, and the ccnditicn
code in the old PSW is set. If over
flow has occurred, an exit is nade tc
the analyzer section of the Analyzer/
End routine. Otherwise an exit is made
to the end section of the Analyzer/End
routine. If the instruction is a Zero
and-Add tecinal (ZAP) instructicn, the
first operand has been previously
forced tc zero (see Sirr.ulator Ccntrol
section). Therefore, the ZAP instruc
tion is treated at this point as an Add
Decinal instruction.

• If both operands are zero, the first
cperand is given a positive sign, and
the condition code in the PSW is set to
zerc.

Sirrulatcr Routine for ~ultiply Decimal
Instruction (DEC~P)

The Simulator Control routine (DECENT)
gives ccntrol to the DEC~P routine if eith
er a Multiply tecirral or a Divide Decinal
instructicn has ·been encountered. If a
specification exception exists for either
cf the fcllowing conditions, control is
given to the Analyzer-End routine:

o The actual length cf the seccnd cperand
is greater than eight bytes (that is,
instruction length field, dencted by
12 , is greater than seven) •

• The actual length of the second operand
is equal tc cr greater than the actual
length of the first operand.

After perforrr.ing the preceding specifi
cation checks, ccntrol either is given tc
the divide decimal routine {DECDP), which
is discussed in the next secticn, if the
instruction is a Divide Decimal instruc
tion, or remains in the tECMP routine for a
Multiply Decimal instruction.

The first operand of the Multiply teci
mal instruction is exarrined to see if it
has at least as many bytes of leading zeros
as there are bytes in the second cferand.
If it dces net have the required zeros,
control is given tc the data-check pcrticn
cf the Analyzer/End routine. Otherwise,
multiplication is perforned according to
cne cf the three following conditions:

• If either operand is zero, the product
field is cleared tc zeros (if the first
cperand was not already zero), and the
proper sign is inserted.

Secticn 11. Special Features 267

(l) The address of the last byte specified
in operand 1 is checked for both fetch and
store protection. * (For a Compare Decimal
instruction, only a fetch protection check
is made.) If the check is satisfactory, step
(2) is performed. Otherwise, a protection
exception resul ts.

MAIN STORAGE AREA CONTAINING
OPERAND 1 AND OPERAND 2

fi rst
Operond 1

byte

(3) The oddress of the last byte specified in
operand 2 is checked against the address of the
first byte specified in operond 1 to see if both
bytes are in the same 2K-byte storage black.
If they are, a protection check is not made since
the storage block has already been checked in
either step (1) or step (2). Step (4) is then
performed. If a different 2K-byte storage block is
indicated, a fetch protection check is made. *
If the check is satisfactory, step (4) is performed.
Otherwise, a protection exception resul ts.

last

byte

(2) The address of the first byte specified in operand 1
is checked agoinst the address of the last byte specified in
operand 1 to see if both bytes are in the same 2K-byte
storage block. If they are, a protection check is not made since
the storage block has already been checked in step (1). Step
(3) is then performed. If a different 2K-byte storage block
is indicated, a complete fetch and store protection check is
made. * (For a Compare Decimal instruction, only a fetch
protection check is made.) If the check is satisfoctory,
step (3) is performed. Otherwise, a protection exception
results.

fi st last
Operand 2

byte byte

(4) The address of the first byte specified in operond 2 is
checked against the address of the last byte specified in
operand 2 to see if both bytes ore in the same 2K-byte
storage black. If they are, a protection check is nat made
since the storage block has already been checked in either
step (l), step (2), or step (3). If 0 different 2K-byte storage
block is indicated, a fetch protection check is made. * If
the check is satisfactory, the protection checking procedure
is through, and the sign code checking is initiated.
Otherwise, a protection exception results.

* In the performance of the protection check, the protection key in the old PSW is compared with the protection key for the
2K-byte block of main storage in which the address (of the data) is located. The 2K-byte storage block oddress is determined
by setting to zero the eleven low-order bits of the address of the byte that is being checked. The remaining bits of the address
indicote the storage block address.

Figure 11-4. Storage Protecticn Checking

268

'-

• If the multiplicand (the first operand)
does not exceed five bytes, both the
multiplicand and the multiflier are
changed to binary format (since the
multiplicand may then be contained in a
general register), and the multiplica
tion is carried out using binary
rr:ulti flication.

• For all other cases (that is, bcth
operands non-zero and multiplicand size
over five bytes), both the multiplier
and the multiplicand are Sflit into
groufs of four digits starting with the
low-order sign positions. Initially,
the 'lcwest-order' group actually con
sists of three digits and a sign, but
the sign is replaced by a zero for the
actual processing. For rrultiflication
purposes, each fcur-digit group is con
sidered to have a fositive sign. The
algebraically-determined sign for the
final product is saved and affixed to
the result.

Each four-digit grcu~ is converted to a
binary format, and all possible combi
nation of products of the four-digit
groups are formed. (Note that each
combination consists of one group from
the multiplicand and one group from the
multiplier.) From these products, par
tial sums are then formed according to
the relative positions of the original
four-digit groups. Beginning with the
low-order partial sum, each partial sum
is converted to decimal, and the low
order four digits (five digits for the
first partial sum) of the surr are
flaced in the product field to the left
of the digits already there. The
remaining digits of the partial sum
constitute a carry-over that is added
to the next partial sum, the addition
being performed in binary. In the case
of the first (low-order) partial sum,
the two zeros that had replaced the
initial sign digits are truncated (that
is, only three digits are rroved to the
product field).

After the last partial sum has been
converted to decimal and moved into the
product field, the sign of the product
is inserted, and the multiplication is
finished. Control is then transferred
to the Analyzer/End routine.

EXAMPLE OF MULTIPLICATION BY DECI~AL SIMU
LATOR: Assume a 7-byte multiplicand
(operand 1) of 0000000099999C and a 4-byte
multiplier (operand 2) of 9999999C. The
four bytes of leading zeros in the multi
plicand satisfies the requirement of pro
viding space to contain the corrplete an
swer. The low-order hexadecimal character
('C') of operand 1 is replaced by a 0, and
the resulting low-order four decimal digits

(9990) are ccnverted to binary format
(27061). [Note: In this exarr.~le, all
tinary fcrrr.atted numbers are expressed in
hexadecinal notation.] The next four digits
(0099) of operand 1 are also converted to
binary forrr.at (0063 1). The rerra1n1ng
bytes in o~erand 1 remain as zeros.

In a similar manner, for operand 2, the
sign is re~laced by a 0, and each group of
four digits is converted tc binary fcrrrat.
~his results in the two groups of four
digits: 270F (high-order) and 2706 (low
crder). See Figure 11-5.

The pertinent groups of digits frorr both
o~erands can be arranged in the following
manner for describing the next ste~s.

The formation of the final product frc
ceeds in the following manner:

• Surr A is ccnverted to decimal with a
plus sign: (05F2D42416 =099800100C10).

• The two low-order hexadecirral charac
ters (OC) are dropped, and the next
three digits (010) are stored in the
cperand 1 work area as the three low
order digits of the answer.

• The remaining digits (09980) are con
verted back to binary (26FC) and are
added to the initial Sum B to fern a
new Sum B,
(06034AAC16+26FC16=060371A816>.

• Sum E (060371A816) is converted to dec
imal with a plus sign: (100889000C10).

• The sign ('C') is dropped, and the low
order four digits (9000) are placed in
the eperand 1 work area as part of the
final product. The product (at this
point) is 9000010.

o ~he remaining digits (10088) are con
verted to binary (2768) and are added
to the initial Sum C to form a new Sum
C, (000F1ACD16 +2768 16 =000F423516).

• Sum C (000F423516) is converted to dec
imal with a plus sign: (0999989C10).
Since this is the last partial surr in
this exarrfle, the entire number
(without the sign) is placed in the
cperand 1 area as the rest of the final
product. ~hus the final value in the
operand 1 work area is
09999899000010 10 •

• ~he sign of the product is deterrrined
by the usual rules of multiplication
and replaces the low-order digit in the
cperand 1 work area~ In this example,
the sign is plus ('C').

Section 11. Special Features 269

r--T----------------------T---------------------,
I I E I A I
~--+----------------------+---------------------~
I Operand 1 (OP!) I 0063 I 2706 I
~--+----------------------+---------------------~
I Operand 2 (OF2) I 270F I 2706 I L __ ~ ______________________ ~ _____________________ J

The partial products are formed and stored as the indicated partial su~s:

OP2(A) x OPl(A) 2706 x 2706 = Partial Sun A.

OP2 (A) x OPl(B) 2706 x 0063 = Partial Sun E1.

OP2(B) x OP1(A) = 270F x 2706 = Partial Sum E2.
Partial Sum B1 + Partial Sun B2 equals Fartial Sum B.

OP2(B) x OP1(B) = 270F x 0063 Partial Sun C.

If a storage dump is taken at this point in the protlen;, the partial sums would appear
as the values shown in the boxes that follow.

Partial Sum C partial Sun E = (partial E2 + Fartial E1) Partial Sum A
r----------, r----------, r----------,
1000F1ACt:16 I I 06034AAC16 I I 05F2I:42416 I L __________ J L __________ J L __________ J

Figure 11-5. Example of Multiplication ty Decinal SiRulation

• The answer that is returned to the
operand 1 area of the protlem program
is the 7-byte value 0999989900001C1o '

Simulator Routine for Divide Decin.al
Instruction (DECDP)

Routine DECt:P simulates the decimal
divide feature for the Decimal Si~ulator.
For a t:ivide Decimal instruction, the Mul
tiply Decimal (DECDMP) routine gives con
trol to the DECDP routine if the specifica
tion checks performed by the DEC~P routine
do not result in an error exit.

Preceding the actual division, if the
second operand is found to be zero, a
divide check exception occurs, and the
error section of the Analyzer/End routine
is given control.

To determine if the quotient will fit
into the area (that is, the nunber of
bytes, that is alloted to it, the divisor
(the second operand) is aligned with the
next to the left-most digit of the dividend
(the first operand). When so aligned, the
divisor must te larger than the 'aligned'
portion of the dividend if the quotient is
to fit. If the quotient cannot fit, a
divide-check exception occurs, and control
is given to the error ~ortion of the
Analyzer/End routine.

If the maximum length of the first
operand is five tytes or less, the operands
are converted to binary format and the
division is perfor~ed in a general regis-

270

ter, using the fixed-point division
instruction. Otherwise, the division is
carried cut ty repeated suttraction of mul
tiples of the divisor. Before the actual
suttraction ~rocess tegins, the divisor is
left-aligned with the third digit from the
left of the dividend. The divisor mul
tiples have the values, respectively, cf 8,
4, 2, and 1 tines the divisor, and they are
subtracted fron the dividend at various
stages in the ~rocess. Each multiple of
the divisor corresponds to an appropriate
tit to te entered in each 4-bit ECL quo
tient digit that is formed. If a nultiple
can te suttracted, its corresponding tit in
the appropriate quotient digit is set to 1.

After each quotient digit is formed, the
divisor and its nultiples are shifted right
cne digit, and the suttractions are per
formed again to form the next quctient
digit. After each set of four divisor mul
tiples has been subtracted (or at least
checked to see if it can te suttracted)
from the dividend, the fortion of the divi
dend that renains is referred to as a 'par
tial4ividend.' When the last quotient
digit has teen formed (as indicated ty the
divisor and its nultiples teing right
adjusted in their fields and the partial
dividend being less than the diviscr), the
renaining contents of the dividend field
are Roved to the re~ainder field of the an
swer. The a~propriate signs of the quo
tient and the renainder are inserted, and
control is given to the end portion of the
Analyzer/End routine.

EXAMPLE OF DIVISION BY DECIMAL SIMULATOR:
Assume a six-tyte dividend (operand 1) of
00097000000C, and a four-byte divisor
(operand 2) of 1000000D. The dividend has
£een prefaced by leading zeros so that the
pre-division check will indicate that the
quotient can fit in the alloted area. When
this check is perforrred, the alignment of
dividend and quotient appears as follows:

Dividend 00097000000C
Divisor 01000aaaaaaC

where the divisor appears with a leading
zero and three low-order zeros for purposes
of alignrroent. For comparison purposes dur
ing simulation, all signs are set positive.
When aligned as shown, the divisor is
greater than the dividend. This indicates
that the quotient will fit in the alloted
number of bytes.

To begin the actual simulated division,
the divisor is again shifted one digit
place to the right (toward the low-order
end), and multiples of the divisor are for
Ked. The alignment then looks like this:
(The divisor and its multiples are given a
plus (·C·) sign.)

Dividend (D) aaa97aOOaOac
Divisor First Multiple (DiM) 001aOOOaOaoc
I:ivisor Second Multiple (D2M) aa2aOaOOOoac
Divisor Fourth Multiple (D4M) a04aOOOOOoOC
I:ivisor Eighth tJJultiple (r: 8M) aa8aOaaaaooc

The divisor multiples are compared
against the dividend in one of the three
orders:

• Fourth followed ty Eighth followed by
First if the eighth rrultiple is less
than or equal to the dividend.

• Fourth followed by Eighth if the fourth
multiple is less than or equal to the
dividend, followed ty Second if the
eighth multiple is greater than the
diVidend, followed ty the First.

• Fourth followed by Second if the fourth
multiple is greater than dividend, fol
lowed by First.

If the dividend is less than the first
multiple, a zero (a) is entered as the
corresponding quotient digit and all divi
sor multiples are shifted one place toward
the low-order side (to the right), and a
new round of comparisons is undertaken.

For each multiple that can be sub
tracted, the appropriate tit in the quo
tient digit is set to 1. Each round of
comparisons seeks to locate the largest
multiple(s) than can be subtracted from the
dividend.

Steps 1 through 3b in Figure 11-6
illustrate the compare and shifting opera
tions that are performed and the forrration
cf the quotient and remainder digits.

Simulator Routine for CorrEare Decirral
Instruction (DECCP)

The ccmparison of the two decimal
operands is rrade by the r:ECCP routine. If
toth operands are zero, they are considered
equal regardless of their signs. If cne
cperand is ncn-zero and the other one is
zero, the non-zero operand is considered
greater if it is positive, and it is con
sidered less if it is negative.

If two non-zero operands are to te corr
pared, each is extended in the work area
(by adding leading zeros) to 31 digits plus
the sign tefore comparison. The atsolute
values of the operands are than corrpared
logically. The operand that is greater in
absolute value is considered to be greater
if it is positive but less if it is
negative.

If both operands have the same at solute
value and sign, they are equal. If the
absolute values are equal but the signs are
different, the positive operand is ccnsid
ered to te the greater.

Contrcl is given to the end portion of
the Analyzer/End routine after the result
of the ccmparison has teen determined.

Analyzer/End Routine

'The Analyzer/End routine is given con
trol to handle the terrrination procedures
for the recirral Simulator routine. If
errors have been recognized by any cf the
preceding sirrulation routines; control is
given to the analyzer (or error-handling)
section cf the routine. When the simula
tion of an instruction is completed
successfully, or after the error-handling
section has perforrred certain functicns,
control is given to the end section of the
Analyzer/End routine.

The analyzer section establishes the
apprcpriate interruption code and places
this code in the old PSW. In the case of a
decirral cverflow exception, bit 37 of the
PSW is checked to determine whether the
user or the operating system is to handle
the error. If the decimal overflow is tc
te handled as a system error, the analyzer
section retains control. Otherwise, ccn
trol is given to the end section.

If there exists data that is not to be
returned to the user, register addresses
are rroved to preclude the transfer of this
data to the user's result area.

Secticn 11. Special Features 271

r-----------------------------T-----------------------T----------------------~-----------------------,
I IStep 1 IStep 2 IStep 2a I
I ~-----------------------+-----------------------+-----------------------i
I Dividend (D) I00097000000C 100097000000C 100017000000C I
IDivisor First Multiple (D1M)I00100000000C 3rd compo 100010000000C 100010000000C 3rd compo I
IDivisor Second Multiple (D2M)100200000000C 2nd compo 100020000000C 100020000000C I
IDivisor Fourth Multiple (D4M)I00400000000C 1st compo I00040000000C 1st compo I00040000000C I
Divisor Eighth Multiple (D8M)I00800000000C 100080000000C 2nd compo I00080000000C I

I I I I
ISince D1M>D, a zero is ISince D8M<D, the secondlSince a given quotient I
lentered as the first Iquotient digit's "8- Idigit cannot be greater I
Iquotient digit. All Ibit" is set to 1. Ithan 9 and the second I
Imultiples are shifted (The D8M is subtract- Idigit's "8-bit" is set I
lone digit to the right,led from D to form a Ito 1, the only compar- I
land step 2 is per- Inew D (value) for lison that can be made I
formed. step 2a. I is with the DiM (corre-I

Isponding to a "i-bit"). I
ISince D1M<D, the second I
Idigit's "i-bit" is set I
Ito 1. Thus the second I
Idigit is 9 as a result I
lof both the "8-bit" andl
Ithe "i-bit" being set I
Ito 1. The DiM is sub- I
Itracted from D to form I
la new D (value) for I
Istep 3. All multiples I
lare shifted one digit I

I I to the right. I l _____________________________ L _______________________ ~ _______________________ L _______________________ J

r----------------------------~-----------------------T-----------------------T-----------------------,
I IStep 3 IStep 3a IStep 3b I
I ~-----------------------+-----------------------+------------------~----~
I Dividend (D) 100007000000C I00003000000C 100001000000C
IDivisor First Multiple (D1M)I00001000000C 100001000000c 100001000000C 4th compo
IDivisor Second Multiple (D2M)I00002000000C 100002000000C 3rd compo (00002000000C
IDivisor Fourth Multiple (D4M)I00004000000C 1st compo 100004000000C 100004000000C
Divisor Eighth Multiple (D8M) 100008000000C 2nd compo 100008000000 100008000000C

I I I
ISince D4M<D, and ISince D2M<D, the ISince both the "4-bit"
ID8M>D, the third quo- Ithird digit's "2-bitD land the "2-bit" have
Itient digit's "4-bit" lis set to 1. The D2M (been set for this quo
lis set to 1. The D4M lis subtracted from D Itient digit, the only
lis subtracted from D Ito form a new D (value) Icomparison that can be
Ito form a new D (value) for step 3b. Imade is with the DiM
for step 3a. I (see step 2a). Becausel

Ithe D1M=D, the "i-bit" I
Ifor this digit can be I
Iset to 1. Thus, the I
Ithird digit is 7 as a I
Iresult of the ·4-bit," I
Ithe "2-bit," and the I
l"l-bit" all being set I
Ito 1. The DiM is sub- I
Itracted from D to give I
Ithe value zero, which I
Ibecomes the remainder I
lin this example. (Both I
Ithe dividend and the I
Idivisor multiples are I
Inow right-adjusted so (
Ino further shifting I
loccurs and the division I
I is complete.) I

t-----------------------------~-----------------------L-----------------------~----------------~-----~
IAfter step 3b in the preceding process has been completed, the three quotient digits that were formedl
lare 097, and the remainder is zero. The sign of the remainder becomes the same as the sign of I
loperand 1 (the dividend). In this example, the sign is plus ('C'). The sign of the quotient is plusl
lif both operands have the same sign. Otherwise, the quotient sign is minus. In this example, the I
Iquotient Sign is minus ('D'). The final result is 091DOOOOOOOC. I l __ ~-~~--J

Figure 11-6. Example of Division by Decimal Simulator

272

The end section of the Analyzer/End rou
tine handles the return cf control to the
source from which the Decimal Sirrulator
routine received contrcl. For a successful
simulation, the result obtained from the
appropriate simulation routine is moved to
the user's area. In the case of a decimal
overflow condition which the user chooses
to ignore, a result truncated to the length
specified in the instruction is moved to
the user's area.

The end section gives control to the
PFLIH routine if an error condition arises
during the simulation frocess. (Note: If
a decimal overflow condition is to be
ignored, the Analyzer/End routine does not
consider the overflow as an error condi
tion.) Otherwise, by testing the 'return
to-TESTRAN' flag bit in the task control
block, the end section determines the rou
tine (for example, problem program or TES
TRAN) to which control is to be returned.

EXTENDED PRECISION FLOATING POINT SIMULATOR

The extended precision floating foint
simulator provides each System/360 and
System/370 CPU with the capability of pro
cessing all of the eight extended precision
floating point arithmetic instructions.
The System/360 Models 85 and 195 and the
System/370 models with the extended preci
sion feature provide hardware support for
all of the extended Frecision floating
point instructions except the divide. The
other System/360 models provide no hardware
support of these instructions. Depending
on the CPU, the supervisor simulates execu
tion of the divide instruction or all of
the extended precision floating point
instructions:

Instruction
Add Normalized

(extended)
Divide

(extended)
Load Rounded

(extended to long)
Load Rounded

(long to short)
Multiply

(long/extended)
Multiply

(long/extended)
Multiply

(extended)
Subtract Normalized

(extended)

Assembler
It!nemonic

AXR

*
LRDR

LRER

~XD

MXDR

MXR

SXR

Operation
Code

36

25

35

67

27

26

37

*The divide instruction is simulated by the
DXR macro instruction. See the publica
tion SUFervisor Services and Macro
Instructions.

RElATICNSHIP TC THE OPERATING SYSTEM

The attemfted execution of any of the
eight extended frecision floating Foint
instructions that are not supported by CPU
hardware causes a program interruption.
The failing instruction is simulated by the
supervisor if the user has provided the
necessary linkage to the extended preoision
floating point simulatcr via the SPIE rracro
instruction (see Supervisor Servioes and
Maoro Instructions). The three modules
which corrprise the simulator are:

• IEAXPSIM, whioh must be entered first
to determine whioh of the other twa
rrodules is appropriate for the CPU.

• IEAXPAlL, which sirrulates the 8
extended precision floating point
instructions on System/360 CPUs that do
not have hardware support for the
instructions.

• IEAXPDXP, which sirrulates only the DXR
instruction on the System/360 Models 85
and 195 and Systerr/370 models.

IEAXFSI~ Processing

The SPIE user routine Fasses in register
1 the address of a pointer to a doubleword
area. IEAXPSIM determines from the field
CVTOFTA (offset X'182.7') in the CVT wheth
er the extended precision floating point
feature is supported by CPU hardware. If
so, IEAXPSIM moves the name of the module
IEAXFDXR into the doubleword area~ if not,
the module name IEAXPAlL is moved into the
area. The user routine uses this name to
bring the appropriate processing module
into main storage.

IEAXPALL Processing

The user SPIE routine passes in register
1 the address of a parameter list contain
ing the address of the PIE, the address of
the register save area (containing the con
tents of the registers at the time of the
interruption), a pointer to 400-byte work
area, and a pointer to a byte of rrain
storage. If the byte of main storage is
not zero, the validity of the low crder bit
cf the result cf the DXR instruction has
not been ensured. IEAXPALL examines the
cperation code and register specifications
of the failing instruction pointed tc by
the program check Cld PSW. If any of these
are invalid, an appropriate code and error
indicator are returned to the caller. Fcr
the MXC instruction, IEAXPALL also issues a
SPIE macro instruction to intercept any
interruptions caused by invalid addressing.

IEAXPALL then performs the necessary
computation and indicates any exceptional
conditions encountered during corrputation.
For AXR and SXR instructions, the condition

Section 11. Special Features 273

code is set in the Old PSW in the PIE. A
code in register 15 and an indicatcr in
bits 28-31 of the PSW in the PIE are
returned to the caller.

Code
00

FF

Indicator
unchanged

1

4

Meaning
O~eration successful; no
exceptional ccnditions.

Operation code did not
specify an extended preci
sion operation to be pro
cessed ty this module; no
simulation attenpted.

Protection exception
encountered during simula
tion cf an MXB instruc
tion; operation
suppressed.

5 Addressing exception
encountered during simula
tion cf an MXB instruc
tion; operation
suppressed.

6 Specification exception
encountered during simula
tion of an MXB instruc
tion; 'o~eration
suppressed.

C Exponent overflow encoun
tered; operation
completed.

D Exponent underflow encoun
tered; operation
completed.

E Significance exce~tion
encountered; operation
completed.

F Floating point divide
exception encountered;
operation is completed.

IEAXPDXR Processing

The user SPIE routine passes a ~arameter
list identical to that passed to IEAXPALL
except that the work area is 240 tytes.
IEAXPDXR processing for the DXR instruction
is identical to that in IEAXPAIL except
that only the divide instruction is
handled. Any other operation code causes
control to return to the caller with a code
of X'FF' in register 15 and an interruption
code of 1 in the PSW.

If IEAXPDXR is used on a CPU without the
floating ~oint feature. an OC1 AEEND code
will result when an attempt is made to
simulate an extended precision divide
instructicn.

274

SYSTEM ~ANAGE~ENT FACILITY

The supervisor performs the follcwing
functicns if the System ~anagement Facility
(SMF) feature has been selected at systen
generaticn:

• ~aintains a record of systen wait tine.

• Assists in handling time limit expira
tions.

• Counts and reccrds the number of refer
ences to user data sets.

• Controls the output limit for SYSOUT
data sets.

• Records the nunber of 204B-byte blocks
of storage assigned to a user program.

RECORDING SYSTE~ WAIT TIME

Whenever the Bispatcher puts the systen
in the wait state, it places the contents
of the interval tiner in the first wcrd of
a s~ecial save area, SYSWSAVE. When an
external or input/output interrupti en ends
the wait state, the interruption handlers
call the SMF wait Time Collection routine.
This routine reads the interval timer again
and compares its value with the value
stored ty the Bispatcher to determine the
elapsed system wait tine. It then adds
this ela~sed time to the value in the
second word of SYSWSAVE. giving the accunu
lated wait time for the system.

When a su~ervisor 10-minute timer
interval expires. the Tiner SLIH rcutine
reads out the value in the second word of
SYSWSAVE. which represents the total systen
wait tine for the 10-minute interval. This
value is added to a field in the system
nanagenent control area. SMCAWAIT + 4.

Each time the Step Termination rcutine
cf Jet Management is entered. the total
~ait time recorded in the systen nanagement
control area is checked. If it is nonzero.
a system 10-ninute wait record is
generated.

HANDLING TIME/OUTPUT LIMIT EXPIRATION

Whenever a jot, step, or wait time limit
expires. the SMF Tirr.e Lini t Ex~iraticn sut
routine cf the Timer SLIB routine passes
control to a user tirr.e lin:i t expiration
routine. The user routine determines
~hether or not to grant a time limit exten
sion. If an extension is granted, the SMF
Tine/Out~ut Linit Expiration routine resets
the TQE. If no extension is granted, the
routine ~repares for step termination in
case of job/step tirr.e ex~iration. for

./

abnormal termination in case of wait time
expiration. (The SMF 'Iime/outfut Lirrit
EXfiration routine is described in Section
6, "Timer Supervision.")

COUNTING REFERENCES TO USER DATA SETS

Whenever a reference is made to a user
data set, the EXCPCounting routine records
the referenoe in an EXCP counter. There is
a counter for each data set/device combina
tion. The counters are fart of the TCT I/O
Table segment of the timing control table.

CONTROLLING OUTPUT LIMIT FOR SYSOU'I

Whenever a referenoe is made to a SYSOUT
data set, the EXCP Counting Routine checks
for an output limit in the TCT 1/0 Table
segment of the timing ccntrol table. If an
output limit is specified, it is ccrrfared
to the ufdated EXCP counters.

If the output limit is exceeded, the SMF
output Lirr.it Expiration routine gives con
trol to a user output limit routine. The
user routine determines whether or not to
increase the limit. If the increase is
granted, the SMF Outfut Limit Expiration
routine increases the output lirrit Sfeci
fied in the TCT I/O Table. Otherwise, the
routine prepares for abnormal terrrination.

RECORDING STORAGE BLOCKS ASSIGNED TO USER
PROGRAMS

Whenever the main storage supervision
routines allocate or release 2048-byte
blocks of storage within a region assigned
to a user program, the following infcrma
tion is recorded in the timing control
table:

• The highest address currently allocated
from the bottom of the region. This
address is called the "low water mark,"
or LWM.

• The lowest address currently allocated
from the top of the region (the HWM-
"high water mark").

• The smallest amount of space within the
region that has been available tc this
program at anyone time (the minimum
difference between the LWM and the
HWM).

• The size of the region.

o The number of borrowed 2048-byte blocks
currently assigned to the frogram (if
the rollout feature is present).

• The highest nunber of 2048-byte tlocks
that have teen assigned to the the fro
gram at any cne time (if the rollout
feature is present).

If IB~ 2361 Core Storage is included in
the system, storage infornation is nain
tained beth for frocessor storage and for
2361 Core Storage.

The infornation is maintained by the SMF
Storage routines, GMSMFCRE and FMSMFCRE.
'Ihese rcutines are subroutines of the
GETMAIN/FREEMAIN routine, and they are
described in Section 5, "Main Storage
Supervision."

SMF ROUTINES

A discussion of the two major SMF rou
tines, which perform the functions
described abcve, follows.

SMF Wait Time Collection Routine (IEAQWAIT)

This routine, which resides in the nu
cleus, records system wait time. It is
entered from the first-level interruftion
handlers whenever an external or inputl
output interruption occurs.

If the current TCB re~resents the system
wait pseudo task, the system has been in
wait condition. (Otherwise, control is
sirrply returned to the calling interruption
handler.) The SMF Wait Time Collection
routine reads the interval timer. The
timer value is compared with the value in
the first word of a special save area, SYS
WSAVE. The value in SYSWSAVE was placed
there by the Dispatcher when the system
entered the wait condition. The cerrfarison
yields the elafsed system wait time. It is
added to the value in the second word of
SYSWSAVE, which gives the accumulated sys
tem wait time.

After recording the accumulated systerr
wait tine, the routine returns control to
the interruption handler that called it.

SMF EXCP Counting Routine (IEASMFEX)

This routine, which resides in the nu
cleus, counts and records the nurrber of
EXCPs associated with user data sets. The
count is increrrented for each channel pro
gram executed for a user; that is, the tcp
RE is nct an SVRB. Channel programs for
Cpen, Close, and ECV are also recorded even
though an SVRB is at the top of the queue.
It inclUdes both direct EXCPs (SVC 0) and
indirect EXCPs (those resulting from chan
nel end/abnormal end conditions or
progranrrer-ccntrolled interruptions).

Section 11. Special Features 275

Upon entry from lOS the EXCP Counting
routine performs the following tests; if
any test fails, control returns to the
caller.

• The TCBTCT field of the TCE is checked
for the existence of a timing control
table (TCT).

• The TCTIOTEL field of the ~C~ is
checked for the existence of an I/O
extension of the ~CT.

• The DCEOFLGS field of the DCB is
checked to assure that the DCB is eith
er open or in the process of being
opened or closed.

If all tests are successful, the routine
searches the TCT I/O table segment of the
~CT to find the correct EXCP counter
(TCTDCTR). There is a ccunter for each
combination of DCB and UCB. counts are
accumulated on a data set/device basis.
(See Figure 11-7.)

When the correct EXCP counter has been
found, the routine adds 1 to the ccunter.
Then, if the data set is not SYSOUT, the
routine returns to the caller.

If the reference was made to a SYSOUT
data set, the routine checks the TCTOUTLM
field of the TCT I/O table to determine if
an output limit is specified. If an output
limit is found, it is compared to the total
of the EXCP count fields for each device
associated with the data set. If the out
put limit is not exceeded, or if none was
specified, the routine returns to the
caller.

Whenever an output limit is exceeded,
one of the following actions is taken:

• If exits are not allowed, the prograrr.
is abnormally terminated with an error
code of 722.

• If exits are allowed, the routine
creates an IRB/IQE representing the SMF
Output Limit Expiration routine (IEAT
LEXT). The Stage 2 Exit Effector is
then entered to schedule the execution
of IEATLEXT.

SMF Output LiR'it Expiration Routine
(IEATLEXT)

This routine, which is resident in the
nucleus, provides an interface with a user
output limit routine (IEFUSO).

The routine (IEATLEXT) receives control
from the EXCP Counting routine when the
output limit has been exceeded for a SYSOU~

276

data set. The routine passes control to
the user output limit routine. It also
passes a two-word parameter list ccntaining
the address cf the JMR (job management
region) and the address of the DCB.

The user routine determines whether or
not to grant an increase to the output
limit. It returns control to the S~F cut
fut Limit Expiration routine with a return
code of 0 for no increase, or 4 for an
increase. If the return code is 4, regis
ter 1 contains the amount of increase to be
granted.

If an increase is granted, the SMF Out
fut Linit EXfiration routine adds the value
of the increase to the outfut lin it speci
fied in the ~C~ I/O table. If an increase
is not granted, the routine schedules an
al::normal ternination of the program with an
error code of 722.

Note: This routine (IEATLEXT) also handles
time limit expirations. See Section 6,
RTimer Supervision. R

TRACING FACILI!IES

TRACE TAELE FACILI!Y

The Trace Table facility is an c~tional
feature that may be specified during system
generation. If the Generalized Trace Faci
lity (GTF) is active, the Trace Tal::le faci
lity is inhibited. ~he facility prcvides a
record of system conditions at the time of
the following systerr events:

• SVC interruptions

• External interruptions

• frogram interrupticns

• I/C interruptions

• Start I/O operations

• Dispatcher task switches

Each of the above events is reccrded in
the supervisor trace tal::le that is built in
the nucleus by Trace routine IEAQTR. Most
entries contain the old PSW, the contents
of registers 0, 1, and 15, the current TCB
address, and the time of the interruption.
when the supervisor trace table is filled,
the ~race routine overlays old entries with
new entries beginning with the oldest
entries. For the format of the supervisor
traoe table, refer to Section 12, RCcntrol
Elocks and Tables. R

Trace Routine (IEAQTR)

The Trace routine is resident in the nu
cleus and is loaded during nucleus initia
lization. The Trace routine is invoked by
the SVC First-Level Interrupt Handler (SVC
FLIH), the External FLIH, the program Check
FLIH, the I/O FLIH, and the Dispatcher.
When entered, the routine records the event
in the supervisor trace tatle.

GENERALIZED TRACE FACILITY

The Generalized Trace Facility (GTF) is
invoked as a systere task when the operator
issues the START command. When GTF is
active, the supervisor Trace Tatle facility
(a system generation option) is inhibited
until GTF is stopped. When starting the
GTF task, the operator may select to record
the trace data either in main storage or in
the SYS1.TRACE data set on an external
device (specified on the IEFRDER DD
statement).

When the internal storage option has
been selected, the data recorded for each
event class is comparable to that recorded
by the supervisor Trace Table facility.
The event classes recorded are:

Event
Class
-2-

3
4
5
D

I/O interruptions
SVC interruptions
Dispatcher task switches
Start I/O operations
External and Program Check
interruptions

When the external storage option has
teen selected, the data recorded is rrore
corrprehensive and may include user supplied
trace data. Also, the operator rray specify
events within an event class, such as: I/O
interruptions from specific devices, only
certain SVCs, etc. In a multiprocessing
system, SSM (Set Systerr Mask) interrupticns
(Event Class D) are also recorded.

The G~F routines are entered frorr the
interruption handlers and the Dispatcher
~hen a HOCK «acro instruction is issued.
This instruction specifies the event to be
recorded. The terrrination routines use the
HOOK macro instruction to temporarily sus
pend GTF tracing, or to terminate G~F
frocessing.

For a more ccrrprehensive discussicn cf
the Generalized Trace Facility, refer to
the publication Service Aids Logic PL~.

Section 11. Sfecial Features 277

TCT
~------------------------------------~ 0(0)

4(4)

8(8)

12(C)
TCTIOTBL

TCT 1/0
TABLE

DCB TlOT
DD Displacements

UCB Address

UCB Address

Output Limit

Extents Released
Tracks Released

UCB Address

4(4)

8(8) TCTDCBTD

12(C) TCTDCBTD

TCTSCTR

TCTDCTR

TCTUCBP

TCTDCTR (EXCP counter)

TCTOUTLM

TCTEXRLD TCTTKRLD

TCTUCBP TCTSCTR

TCTDCTR (EXCP counter)

Address of
TCT I/O Table

Poi nters to EXC P
counters

SEE NOTE BELOW

Number of UCBs
associated with data
set (two in th is
example)

NOTE: The end of the first section of the TCT I/O Table segment is marked by
on entry of all zeros. The second section follows immediately.

Figure 11-7. Example cf TCT Pointers Used by EXCP Counting Routine

278

SEC'I ION 12: CONTROL ELOCKS ANL TAELES

The following control blocks, tables, and related areas are included in this section.

Name of Tatle, Control Block, or Related Area

ABDUMP Parameter List ••••••••••••••••••••••••••••

Allocated Queue Element (AQE) .• , .•••••••••••••

Block Extent List and Note List ••••••••••••

Communications Vector Table (CVT) ••••••••••

Contents Directory Element (CDE) •••••••••••••••••

Control and Relocation Dictionary Record •••••••••

Control Record •••••••••••••••••••••••••••••••••••

Descriptor Queue Element (DQE) ••

Display Control Module (DCM) ••

Dummy Partition Queue Element (DPQE) ••

Entry Table •••••••••••••••••••••••••.•••

Event Control Block (ECB) •••

Fail Soft storage Element Map (FSSEMAP)

Free Block Queue Element (FEQE) •••

Free Queue Element (FQE) ••

GOVRFLB (Origin List for Main Storage Queues) •••••••••••••••••••••••••••••••

Interruption Request Block (IRB) ••

Interruption Queue Element (IQE) ••

Load List Element (LLE) •••

Page

341

331

320

283

315

326

3.24

330

344

334

329

308

354

334

331

332

298

312

316

Machine Check Record For SERO and SER1 •• 371

Major Queue Control Block (QCB) ••• 310

Major Write Queue Element (WQE) (MCS) •••••• 364

Major Write Queue Element (WQE) (Non-MCS) ••••••••••••••••••••••••••••••••••••• 363

Message Information List •• 313

310 Minor Queue Control Block (QCE) ••••••••••••

Minor Write Queue Element (WQE) (MCS) ••• 367

Minor Write Queue Element t~E) (Non-MCS) ••••••••••••••••••••••••••••••••••••• 366

Mul tiple-Line WTO Macro Expansion........................... •.• • • • • • • • • • • • • • • •• 369

Multiprocessing Communications Vector Table (MPCVT) ••••••••••••••••••••••••••• 353

section 12: Control Blocks and Tatles 279

280

Name of Tatle, Control Block, or Related Area (Continued)

Parameter List Element for the ENQ/DEQ Routines •••••••••••••••••••••••••••••••

Partition Queue Elen,ent (PQE) ••••••••••••••••••

Partitioned Data Set Birectory Entry •••••••

Program Fetch Buffer Table •••••••••••••••••

Page

309

333

316

323

Program Fetch 'Work Area... 322

Program Interru~tion Control Area (PICA) •••••••••••••••••••••••••••••••••••••• 306

Program Interruption Element (PIE) •• 306

Program Request Block (PRB) ••••••••••.••••••••••••••••••••••••••••••••••••.••• 301

Queue Element (QEL)... 311

Relocation Bictionary (RLD) Record •• 325

Reply Queue Element... 335'

Reply Queue Element for MCS ••• 335

Request Queue Element (RQE) ••• 314

Resident Display Control Module (RDCM) •• 344

Rollout I/O Queue Element (RIQE) •• 334

Sampl e Dump... 375

Sca tte r Ext ent List ••••••••••••••••••.•••••••••••••••••••••••

Scatter Translation Record •••••••••••••••••••••••

319

321

Secondary Communications Vector Table (SCVT) •••••••••••••••••••••••••••••••••• 339

Segment Table... 327

S'IAE Control Block (SCB).. 307

STAE Parameter List ••••••••••••••••••••••••••••••

Storage Utilization Block (SUB) ••••••••••••

subpool Queue Element (SPQE) •••••••••••••••

307

373

330

Supervisor Request Block (SVRE)

Supervisor Request Elock (SVRB)

for Nonresident Routine •••••••••••••••••••• 297

for Resident Routine ••••••••••••••••••••••• 296

SVC Purge Parameter List.. 336

SVC Table•........

System Interruption Request Block

Task Control Block (TCB) ••••••••••

(SIRE) ••••••••••••••••••••••••••••••••••••••

Time-Slice Control Element (TSCE) ••••••••••••••

282

300

287

343

Timer Queue Elemen~ (TQE) ••••.•• 337

Name of Table, Control Elock, or Related Area (Continued)

Trace Table (Uniprocessing Systells) ..••••..••.•••..•.••.•••••.•.•••••.•••••••. 303

Trace Table (Multiprocessing Systems) .•• 304

Transient Area Control ~able (TACT) .•••.•••.••.•.•...••.........•..•..•..•••.• 305

Transient Display Control Module (TDCM) ••.•.•.•....••.•...••..••••..•••••••.•. 347

Unit Control Module (UC~) Base ••••••••.•.•..•.••••.••••••••••••••••••••••••••• 355

Unit Control Module (Prefix for Multiple Console support) ••....•..•••.•••.•.•. 356

Unit Control Module (Prefix for ueM Extension) .••••••••••••••••••••••••••••••• 3.56

Unit Control Module Text and ElL Areas •••••••.••••.••.•••••••••••••••.•.•••••• 360

Unit control Module Entry Individual Device Map .•..••..•.•••..•.•..•..••.••••. 358

Vary Queue Element (VQE).. 354

Write Queue Element (WQE) for Multiple Console Support (Single-line WTO) •.••.. 361

WTO/R Macro Expansion.. 368

Section 12: Control Blocks and Tables 281

SVC TABLE

1 byte . fool-------- 3 bytes --------11
Entries for
resident SVC
routines -
TYPE 1

~

4

~I,.

00000000
See Note 1

MAl N STORAGE ADDRESS

".

""I~_------ 3 bytes -------I~~I

Entries for
resident SVC
routines -
TYPE 2

¢

4

~~

¢

10000000
See Note 1

- 12 b

2

MAl N STORAGE ADDRESS

~

its 18 b its -
14
RELATIVE TRACK AND Entries for

transient SVC
routines -
TYPE 3 and 4

11 LENGTH
RECORD ADDRESS See Note 2

4

~

Note 1:

'00' flag in two high-order bits indicates resident type-1 routine.

'10' flag in two high-order bits indicates resident type-2, type-3,
or type-4 routine made resident by NI P.

'11' flag in two high-order bits indicates transient (non-resident)
type-3 and type-4 routines.

Note 2:

Six bits of zero are positioned to precede the low-order 18 bits
to form the HR.

282

~".

COMMUNICATIONS VECTOR TABLE (CVT)

The Communications Vector Table ~rovides the Eeans whereby nonresident routines may
refer to information in the nucleus of the control program. The CVT is ~art of the resi
dent nucleus.

The symbolic displacements telow are generated in nonresident routines by use of the
CVT macro instruction. The address cf the first location of the CVT is flaced in rrain
storage location hexadecimal 10 during nucleus initialization.

Offset
Dec Hex

-8 -8

-6 -6

-4 -4

o o

4 4

8 8

12 C

16 10

20 14

24 18

28 lC

32 20

36 24

40 28

44 2C

48 30

52 34

56 38

60 3C

64 40

68 44

72 48

76 4C

Bytes and
Bit Pattern

2

2

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

Field
Narre

CVTM:CL

CVTRELNO

CVTTCBP

CV'IOEFOO

CVTLINK

CVTJOB

CV'IBUF

CVTXAPG

CVTOVLOO

CV'IPCNVT

CVTPRLTV

CVTIU<l

CVTILK2

CV'IXTLER

CVTSYSAD

CVTBTERM

CVTDATE

CVTMSLT

CVTZDTAB

CVTXITP

CVTDAR

CVTOFNOO

Field BescriEtion, Contents, Meaning

Reserved.

CPU model nurrter in decimal.

Release number in EBCDIC.

Pointer to addresses for next and current 'ICE.

Address of Stage 2 Exit Effector.

Address of DCE for SYS1.LINKLIB.

Address of work queue control blocks.

Address of buffer for Resident Console Interruf
tion rcutine.

Address of lOS appendage table.

Entry-point address of Validity Check routine.

EntrY-foint address of routine for converting
relative track address to absolute.

Entry-point address of routine for converting
absolute track address to relative.

Address of channel and control unit section in
UCB lockuf tatle.

Address of UCE address list section in UCB lookup
table.

EntrY-foint address to Stage 3 Exit Effector for
system error routines.

Address of system residence volume entry in UCE
lookuf taJ:le.

Entry-~oint address of ABTERM routine.

Current date in ~acked decimal.

Address of master corrmon area.

Address of I/O device characteristic table.

Address of Error Inter~reter rcutine.

Address of I-/O control blocks used by DAR; zerc
if function inc~erative.

Reserved.

Section 12: Control Blocks and Tables 283

Offset
Dec Hex

80 50

82 52

84 54

88 58

92 5C

96 60

100 64

104 68

108 6C

112 70

116 74

117 75

120 78

124 7C

128 80

132 84

136 88

140 8C

144 90

148 94

152 98

156 9C

160

164

168 A8

172 AC

176 BO

180 B4

284

Bytes and
Bit Pattern

2

2

4

4

4

4

4

4

4

4

1

. • . 1
• 1 •.

xxx. x.xx

3

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

2

Field
NaIIle

CVTEXIT

CVTBRET

CVTSVDCB

CV'ITPC

CVTPBLDL

CV'ISJQ

CVTCUCB

CVTQTEOO

CVTQTDOO

CVTSTB

CVTDCB

CVT4P.S1
CVT4MPS

CVTDCBA

CVTIOQET

CVTIXAVL

CVTNUCB

CVTFBOSV

CVTO.cS

CVTI1.CH

CVTIER1.C

CVTMSER

CVTOPTOl

CVTTRMTB

CVTHEAD

CVTMZOO

CVTIEFOO

CVTQOCR

CVTQMWR

CVTSNCTR

Field rescriFtion, Contents, Meaning

An SVC 3 instruction.

A ECR 14,15 instruction.

Address of DCB for SYS1.SVCLIB data set.

Address of pseudo clocks for Timer routine (SHPC
first).

Branch and link entry-point address to B1.DL
routine.

Reserved.

Address of ta~le with console UCB addresses.

Address of Timer Enqueue routine (IEAQTEOO) in
Timer S1.IH.

Address of Timer .cequeue routine <IEAQTDOO) in
Timer S1.IH.

Address of I/O device statistics table.

Operating system ccnfiguration.

Uniprocessing •
Multiprocessing •
Reserved.

Address of DCB for SYS1.I.OGREC data set.

Address of I/O request element table.

Address of lOS Freelist pointer.

Lowest storage address not in nucleus.

Address of Program Fetch routine.

Entry-point address of Dispatcher.

Address of logical channel word table.

Address of logical channel error queue.

Address of Master Scheduler resident data area.

Branch entry-peint address of Fast routine.

Address of QTAM terminal table.

Address of highest priority TCB on TCB queue.

Highest storage address in machine.

Reserved.

Address of a pCinter to the Graphics Job Proces
sor parameter list.

Address of SYSOUT CDA area.

Data set sequence num~er.

Offset
Dec Hex

182

183

184

188

192

196

200

204

208

212

214

216

220

224

228

229

232

236

237

B6

E7

E8

BC

co

C4

C8

CC

DO

D4

D6

D8

DC

EO

E4

E4

E8

EC

ED

Bytes and
Bit Pattern

1

1 .•.
.1 ..
. • 1.
. • • 1

1

•• 1.

. 1 ..
· .1.
X •• x

xX.x xxxx

4

4

4

4

4

4

4

2

2

4

4

4

1

1 ••.
• xxx xxxx

3

4

1

00 ••
01..
10 ••
11 ••
• • 1.
••• 1

3

1 ••.
.1 •.
· .1.
• •• x

Field
Name

CVTOPTA

CVTCCH
CV'IAPR
CVTDDR
CV'INIP
CVTHIAR
CV'IASCII

CVTOPTB

CV'I'IOD

CVTQCDSR

CV'IQLPAQ

CV'IMPCVT

CVTS~CA

CVTABEND

CVTUSER

CVTMJ:IDS

CVTQABS'I

CV'ILNKSC

CVTTSCE

CV'IPATCH

CVTR~S

CVTTSFLG

CVTTSRDY

CVTTSCVE

CV'IOSCRl

CVTGTFST

CVTGTFIN
CV'IGTFSR
CVTGTFSP
CV'IG'IFAC
CVTSTATE
CVTMODE
CVTFOR~
CVTUSR
CVTMCTYP

CVTCMT

Field J:escription. Contents. Meaninq

Flags.

CCH option present.
APR fresent •
DDR present.
NIP frccessing •
Main storage hierarchy sU~fort operative •
ASCII cfticn ~resent.
Reserved.

Flags.

CPU has Time-of-Day clock •
Reserved.

Address of Cr:E search routine.

Address of first CDE in IPA queue.

Address of M65~P secondary CVT.

Address of system rranagement facilities control
area.

Address of seccndary CVT.

Field availa£le to user.

Reserved.

An SVC 13 instruction.

Reserved.

Address of first time-slice control element
(TSCE).

Address of 200-tyte patch area in the nucleus.

Address of RMS work area.

Time sharing option flags.

'ISO ready and initialized.
Reserved •

Address of time sharing CVT.

Address of Sector Calculation routine for RPS.

GTF status indicator flags.

GTF inactive.
GTF starting.
GTF stcpping.
GTF active.
GTF in contrel •
GTF in external mode •
ABDUMP to format trace data.
USR trace.
MC instructicn valid.
Reserved.

Address of class mask tatle.

Section 12: Control Blocks and Tatles 285

Offset Bytes and Field
Dec Hex Bit Pattern Narre Field DescriEtion! Contents! Meaning

240 FO 1 CV'ITCMFG 'ICAM flags.

1 ••• CV'ITCRI:Y 'ICAM running.
• xxx xxxx Reserved •

241 F1 3 CV'IAQAVT Pointer to address of TCAM vector table.

244 F4 17 Reserved.

261 105 3 CVTPURGA Address of Subsystem Purge routine.

264 108 5 Reserved.

269 100 3 CV'IQMSGA Address of type-l svc corrmunication area.

272 110 1 Reserved.

273 111 3 CVTDMSRA Address cf °fen/Close/EOV supervisory routine.

286

TASK CONTROL BLOCK

Offset
Dec Hex

-32 -20

-24 -18

-16 -10

-8 -8

o o

1 1

4 4

5 5

8 8

9 9

12 C

13 D

16 io

16 10

17 11

20 14

21 15

Bytes and
Bit Pattern

8

8

8

8

1

3

1

3

1

3

1

3

4

1

1 .•.
• 1 ..

3

1

1 •..

. 1 .•
•• 1.

1 ••.
.1 ..

. . 1.
• •• x ••• x

3

Field
Narre

TCBFRSO

TCEFRS2

TCEFRS4

TCBFRS6

TCEREP

TCEPIE

TCEDEB

'ICBTIO

TCECMP

TCECMPF

TCBCREQ
'ICECSTEP

TCECMPC

TCETRN

TCEMOD91

TCENOCHK
TCBGRPH

TCBTCPP
TCETCP

TCBTRNB

Field [escriEtion~ontents, Meaning

Save area for floating point register o.

Save area for floating point register 2.

Save area for floating point register 4.

Save area for floating point register 6.

Zero.

Address of the RB for the executing program (RE
on RB queue).

Zero.

Address of the program interruption element
(PIE).

Zero.

Address of beginning of the DEB queue.

Zero.

Address of task I/O tatle.

Task ccmpletion code.

Task completion flags.

Dump requested.
Step AEEND requested •

Systerr (first 12 bits) and user (last 12 bits)
completion codes.

Flags.

Both TESTRAN and decimal simulator programs are
being used on a Model 91.
Suppress taking checkpoints for this step •
Jot-step TCB: this "is a graphics foreground jot
or the Graphics Jot Processor.
Task to be posted but currently rolled out.
Tirre-shared task under control of TEST command
processor •
OLTEP cleanup.
Reserved •

1. If this task is not operating under TSO and
SVC 61 has been issued, this field contains
the address of the control core table for
TESTRAN.

2. If this task is operating under TSO and SVC
61 has teen issued, this field contains one
of the following:

Section 12: Control Blocks and Tatles 287

Offset
Dec Hex

24 18

25 19

28 lC

29 lD

30 lE

288

Bytes and
Bit Pattern

1

0000 0000
nonzero

3

1

xxxx
0000

5

Byte 0
1 •••

.1 ••

•• 1.

... 1
1 .•.

.1 ..

•• 1.

••• 1

Byte 1
1 ••.

.1 •.

Field
Narre

TCENROC

TCEMSS

TCBPFK

TCEFLGS

TCEFA

TCEFE

TCEFERA

TCEG'IOFM
TCEPDUlo(P

TCEFT

TCEFS

TCEFX

TCEFOINP

TCEFSTI

Field DescriFtion, Contents, Meaning

a) The address of an SVC infor~atien tleck
(if the task is not a subtask of the TEST
command processor).

b) The address of the test communication
table ('ICOM'IAE) in the TEST corrrrand ~ro
cessor (if the task is a subtask of the
TEST corrmand processor).

3. If this task is the Test Tlo(P task operating
under 'ISO, and TEST INITIALIZATION has been
executed, this field contains, the test com
munication table (TCOMTAE) in the TEST corr
rrand processor. In this case, the test com
munication table may point to one er Rere SVC
inforreatien blocks.

Job-step TCE. rollout eligibility. Initialized
by Attach routine frorr input parameters prcvided
by job-step's initiator. Count increased by ENQ
routine. decreased by DEQ routine. tested ty TES
TSTEP routine cf rollout module.

Job step may be rolled out.
Job step may nct be rolled out.

Address of last SPQE on SPQE queue.

Storage protection key.

storage protection key.
Must be zeros.

Flags.

Indicates that abnerrral termination, performed by
the AEEND routine, is in progress for this task.
Indicates that norItal termination, performed by
the EO'I routine, is in progress for this task.
Indicates that the Erase Phase routine is to be
entered when the AEEND routine is again executed
for this task.
Indicates that GTF trace is suspended •
Indicates that no abnormal termination dumps are
to be taken for any task within the job step.
Set in the jot-ste~ TCE.
Indicates that this task is currently the top
task of a tree of tasks teing abnormally
terminated.
Indicates that an abnormal termination dump has
been performed for this task.
Prohibits asynchronous exits from being scheduled
for this task.

Indicates that the dump data set for the jeb step
is being opened.
Indicates that a job step interval requested by
an initiatcr has expired or the job step has been
cancelled ty the operator. (Set in the jot-step
TCE.)

Offset
Dec Hex

31 iF

32 20

33 21

Bytes and
Bit Pattern

· .x.

• •• 1

1 .••

.1 ..

·1.

. . . 1

Eyte 2
1 ••.

· x..

· .1. • ...

· .• 1

xxx.
••• 1

Eyte 3
1 ...

.1 ..

· .1.

· .. 1

· • .. .1 ..

• . •. •. 1.

• . •. . •• 1

Eyte 4
1 ...

.1 ..

Field
Nane

TCBFRA

TCEFSMC

TCEFJMC

TCEFDSCP

TCEFETXR

TCEFTS

TCEFSM

TCEFRI

TCEAETRM

TCESXPKO

'ICBDWSTA

TCENJ:UMP

TCESER

TCBRQENA

TCBUXNDV

TCEMPCVQ

TCEMPCND

TCECNDSP

TCEFC

TCEABWF

Field DescriFtion, Contents, Meaning

Meaningful only in a job-ste~ TCE. Initialized
by the Attach routine from input parameters pro
vided ty job step's initiator.
o = jot step cannot' cause rollout.
1 = jot step can cause rollout.
Indicates that this task is in "system must com
plete" status.
Indicates that this task is in "job step must
complete" status.
Indicates that the AEEND routine has previously
opened the dum~ data set for this job ste~. (Set
in the jot-ste~ TCE.)
Indicates that an end-of-task exit (ETXR) routine
is to te scheduled for the task that attached
this task.
Indicates nenter of time-slice group •

Indicates that the RB old PSW for all programs
executed as part of this task should be set to
su~ervisor state.
"Rollout Invoked" flag. Meaningful only in a
job-ste~ TCB.
o = jot step has not invoked rcllout.
1 = jot step has had one or more main storage
requests satisfied fron outside its region (via
the rollout nechanisn). "Borrowed" space is
still allocated to the step.
Prevents multifle scheduling of the ABEND routine
ty the ABTERM routine. Also indicates that the
operands of the ABENJ: macro instruction have been
saved in the T'CBCMP field.
RB issued ty STAE exit routine was in protection
key O.
Reserved.
Indicates that this task was detached with the
STAE=YES ofticn.

Indicates that the ABDUMP routine has made this
task nondispatchable while it is displaying
dynamic queues.
Indicates that this task is nondis~atchatle while
the SER1 rcutine is teing executed for this task.
Indicates to the I/O supervisor that there are nc
more request queue elenents.
Indicates that this task is ncndis~atchatle due
to SMF time linit ex~iration. User exit routine
is attempting to extend tine limit.
This task is ncndis~atchable because VARY or
QUIESCE processing is being done in a ITulti
~rocessing systen.
Indicates that this task is nondispatchable
because VARY or QUIESCE processing is being done
in a multiprocessing system.
Indicates that the current task is nondispatch
able while the'dump data set is being ofened fcr
anether task in the same job step.

Indicates that this task has terminated, normally
or abnormally, and is nondis~atchable.
Indicates that this task is nondispatchable
because it is to be terminated by the ABENJ:
routine.

Section 12: Centrol Blocks and Tatles 289

Offset
Dec Hex

34

35

36

37

40

41

44

45

48

52

56

60

64

68

72

76

80

84

88

290

22

23

24

25

28

29

2C

2D

30

34

38

3C

40

44

48

4C

50

54

58

Bytes and
Bit Pattern

· .1. • •..

· .. 1

· . .. 1 ...

• • •• • 1 ••

·1.

· • .. • .. 1

1

1

1

3

1

3

1

1 •••
• xxx xxxx

3

4

4

4

4

4

4

4

4

4

4

Field
Name

TCEWFC

TCBFRO

TCESYS

TCBS'IP

TCEFCr:1

TCBPNDSP

TCBLMP

TCEDSP

TCELLS

TCBJLB

TCEJPQ

TCBGRSO

'ICBGRSl

TCEGRS2

TCEGRS3

TCBGRS4

TCBGRS5

TCEGRS6

TCEGRS7

TCBGRS8

'ICBGRS9

TCEGRSI0

Field rescription, contents, Meaning

"Wait for Core" nondis~atchatility flag. If set,
indicates that this task is waiting for a s~ace
request to te satisfied ty the rollout mechanism.
Meaningful in all 'ICEs except those for ~ernanent
systen tasks.
"Rolled Out" nondispatchability flag. If set,
indicates that this task is nondispatchatle
tecause it has been rolled out. This flag is set
in all TCEs cf a rolled-out jot step, including
the TCB of the associated initiator.
Indicates that this task is nondispatchatle
tecause another task is in "system must cCIrplete"
status.
Indicates that this task is nondispatchatle
because ancther task in the same job step is in
"step must complete" status.
Indicates that this task is nondispatchatle
because it is an initiator task that is waiting
for a requested region of main storage.
Indicates that this task has been set nondis
patchatle. See tytes 173, 174, and 175 for the
specific reason.

Linit Friority.

Dispatching ~riority.

Zero.

Address of last load list element in the lcad
list.

Zero.

Address of jot library DCB.

JPQ purge flag.

Purge flag.
Zero •

Address of last CDE for job pack area •.

Save area for general register o.

Save area for general register 1.

Save area for general register 2.

Save area for general register 3.

Save area for general register 4.

Save area for general register 5.

Save area for general register 6.

Save area for general register 7.

Save area for general register 8.

Save area for general register 9.

Save area for general register 10.

Offset
Dec Hex

92 5C

96 60

100 64

104 68

108 6C

112 70

113 71

116 74

117 75

120 78

121 79

124 7C

125 7D

128 80

129 81

132 84

133 85

136 88

137 89

140 8C

141 8D

144 90

145 91

148 94

Bytes and
Bit Pattern

4

4

4

4

4

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

1 ••.
. 1 ..

.. 1. . .•.

Field
Name

TCEGRS11

TCBGRS12

TCBGRS13

'ICEGRS14

TCEGRS15

TCBQEL

'ICBFSA

TCBTCB

TCETI-'E

TCBJSTCB

TCENTC

TCEOTC

TCBL'IC

TCBIQE

TCEECB

TCETSFLG

TCBTSTSK
TCESTPPR

TCEATT

Field rescription, Contents, Meaning

Save area for general register 11.

Save area for general register 12.

Save area for general register 13.

Save area for general register 14.

Save area for general register 15.

Enqueue count.

Address of first probleIT ~rogram save area fer
this task.

Zero.

Address of next TCB en TCB queue. (In rellout
TCE, ccntains address of first transient area
TCB.)

Zero.

Address of timer queue element for this task.

Zero.

Address of the jot-stef TCE.

Zero.

Address of next TCE attached by originating task.
(Always 0 in rellout TCB.)

Zero.

Address of originating or parent TCB.

Zero.

Address of last 'ICE on subtask queue. (Always 0
in rollout TeE.)

Zero.

Address of the IQE for scheduling an end-ef-task
Exit reutine.

Zero.

Address ef ECB to te ~osted when this task is
corrplete.

Time sharing flags.

Indicates a time sharing task.
Indicates that this task should te made nondis
patchatle when it is no longer executing a ~rivi
leged I=regrarr.
Indicates that a systerr routine is executing and
requires that this task not te interrupted by an
attention exit or by the STATUS SVC routine.

Section 12: Control Blocks and Tatles 291

Offset
Dec Hex

149 95

150 96

151 97

152 98

153 99

156 9C

157 9D

160 AO

161 A1

164 A4

165 A5

168 A8

172 AC

292

Bytes and
Bit Pattern

· .. 1

1

1

1

1

3

1

3

1

1 ••.
.1 ..

· . 1.
· .. 1

3

1

3

4

1

1 ...

.1 ..

• .. 1

· .1.

· .• 1

1 ••.

. 1 ..
· .1.

· .. 1

1 ...
.1 ..

· .. 1
· .x. ..x.

Field
Narre

TCETIOTG

TCEDYDSP

TCECPUEN

TCESTPCT

TCESIP

TCETSDP

'ICBPQE

TCEAQE

'ICENSTAE

TCESTABE
TCEQUIES

TCEXCTL
TCESCAT

TCEHAIT

TCESUPER
'ICERETRY

TCBVALID

TCBSTAEB

TCBTCT

TCEUSER

TCEDAR

TCBDARP

TCBDARS

TCBDARMC

TCBDAROL
TCEDARWT

TCEEXSVC

Field r:escrir:tion, Contents, Meaning

Indicates that TGET/TPUT should te purged due to
an attention.
Model 195: this task is a memter of a dynamic
dispatching group.
Model 195: this task is CPU tound.

Number of STATUS starts which rrust be issued
tefore the task tecorres dispatchahle.

Lirrit rriority of time sharing task.

Dispatching priority of time sharing task.

Zero.

Address of durrrry PQE-8 (first element on PQE list
for jot step).

Zero.

List origin of allocated queue elements for this
task.

STAE flags.

ASIR routines were entered.
STAE routine invoked the Purge I/O routine with
the quiesce I/O option.
Current SCE has the XCTl=YES option.
SCE was created ty a program that is scatter
loaded.
Purge I/O routine did not successfully quiesce
I/O, but IIO was halted.
Prograrr using STAE is in supervisor mode •
STAE user requested that a retry routine ce
scheduled tut that the RB chain not be purged.
Retry routine and parameter list addresses are
both valid. This tit also set by RMS to indioate
that Storage Reconfiguration is necessary tecause
of a sclid machine failure.

Address of STAE control block (SCB).

Zero.

Address of tirring control tal:le (SMF only).

Field to te used ty users.

Flags.

Primary (valid) DAR recursion. (Always set for
current task in a DAR dump.)
Secondary (invalid) DAR recursion. (Set prior to
task reinstaterrent.)
DAR has been entered to handle a valid recursion
in "Rust ccmrlete" status through ABEND.
Reserved.
WTO in process for 'Reinstatement Failure'
message.
SVC durrp is executing for this task.
Reserved.

Offset
Dec Hex

173 AD

176 BO

180 B4

Bytes and
Bit Pattern

3

Byte 0
1 ...
. 1 •.
• .1.

• .. 1

1 ...

.1 ..

Byte 1
. 1 •.
· .1.

• •. 1

1 •••

.1 ..

Byte 2

4

1

lxxx xxxx
xOOO 0001

xOOO 0010

xOOO 0011

xOOO 0100

xOOO 0101

xOOO 0110
xOOO 0111
xOOO 1000

xOOO 1001
xOOO 1010

xOOO 1011
xOOO 1100

xOOO 1101
xOOO 1110

xOOO 1111

xOOl 0000

Field
Name

TCENDSP

TCENDSPl
TCBDARTN
TCEGARPN
TCBRSTND

TCBRSPND

TCEDDRND

TCBTPSP

TCENI:SP2
TCESTPP
TCBNDSVC

TCBNDTS

TCBIWAIT

'!'CBOWAIT

TCENDSP3

TCEMDIDS

TCBRECDE

TCBREC
TCEOPEN

TCECI.OSD

TCBCLOSE

TCBCLOSF

'ICBGREC

TCEADU~P

'ICBP'IAXE

TCEMESG
TCEDYNAM

TCEQTIP

TCETCAl-(P
'ICBTCAMR

TCBSAVCD

'ICBTYP1W

Field Iescription, Contents, Meaning

Flags.

Flags.
The task is terrperarily nondispatehatle.
The task is permanently nondispatchatle •
RMS or SER has set the task tewporarily
nondis~atchatle.
RMS or SER has set the task permanently
nondis~atchatle.
DDR has set the task under ~hich allecaticn is
running terrperarily nondispatchatle.
Dispatching of the TCAl-(task must be delayed
until 'ICAM I/O appendage or SVC routine has com
pleted execution.

This task is nendispatchable because of SE'ITASK •
This task is ncndispatchatle tecause SVC Durr~ is
executing for another task.
This task is nondispatchable because it is teing
s~apped cut.
This task is nondispatchable because it is ~ait
ing fer in~ut.
This task is nondispatchable because it is ~ait
ing for eutput.

Reserved.

Reserved.

Flags.
Recursion Configuration Flags:

Valid recursion flag.
OPEN «aero instruction has been issued ty ABEND
for the dump data set for this task.
CLOSE rracre instruction has teen issued ty ABEND
for the direct SYSCU'I data set on tape fer the
jot step.
CLOSE macro instruction has peen issued ty AEEND
for an o~en data set for this task.
Force Close routine has been given contrel ty
ABEND for gra~hics jets.
Graphics Debug routine has been given control ty
ABENI.
Reserved.
ABDUMP is in frogress for this task.
Purge 'IAXE routine in EOT given contrel fer cur
rent task.
Reserved.
Data rranagement module to check TIOT for dynamic
DD entries invalidly marked busy has been given
control.
Reserved.
ABEND is purging TSO Inter-partition POST
requests.
ABEND is purging TCAM POST requests.
TCAM l-(essage Control Program (MCP) Reinitializa
tien reutine bas teen given control.
Save old TCB completion code. (ABEND during ASIR
processing.)
Invalid ABEND recursion from ty~e-1 SVC ~TP
message.

Section 12: Control Blecks and Tatles 293

Offset
Dec Hex

181 BS

184 B8

188 BC

294

Bytes and
Bit Pattern

x001 0001

x010 1111

0011 0000
0011 0001
0011 0010
0011 0011
0011 0100
0011 0101

0011 0110

0011 1111
0100 0000

0111 1111

3

4

4

Field
Narre

TCENCSTA
TCBS'IRET
TCECCNVR
TCBDARET
TCETYP1R
TCBNEWRB

TCBJSCBB

'ICEICBRC

Field [escriFtionL-£ontents, Meaning

Reserved fcr recursions.

Communication Configuration Flags:
STAE/STAI not to be honored.
Return from "steal core" routine.
Convert to jot ste~ ABEND.
Return from DAR.
Reserved.
ABEND initiated SVC 13 to XCTL to non-ABEN[
routine.

Reserved fcr ccrrrrunications.

Reserved.

Address of job-step control blcck.

Reserved.

Address of ICE restore chain for I/O queued by
End-of-Task.

Positions of Permanent System TeEs on TeE Queue

CVTHEAD IEAHEAD

Communi cati ons
Vector Table

Note: The TCBs are queued
in descending order
of dispatching priority

Legend:

_=pointer

Transient Area TCB1

Transient Area TCB2

Transient Area TCB
n

System Error TCB

System Log Task TCB

Rollout/Rollin TCB

Communications TCB

Dynamic Device
Reconfigurotion TCB

Moster Scheduler TCB

Figure 5-8. Position of Rollout/Rollin
TeB on TeB Queue

Section 12: Control Blocks and Tatles 295

SUPERVISOR REQUEST BLOCK (SVRB) -- FOR RESIDENT ROUTINE

Offset
Dec Hex

o o

4 4

8 8

9 9

10 A

12 C

13 D

16 10

24 18

25 19

28 1C

29 1D

32 20

96 60

296

Bytes and
Bit Pattern

4

4

1

1

2

Byte 0
xx ••

· •. 1
1 ••.

• • x. • xxx

Eyte 1
1 .•.
.1 ..
· .1.
· .. 1

1

xxxx

3

8

1

3

1

3

64

48

xx ..
•• 1.
• •• x

1 .••
• 1 ••
• .1.
• •• 1

Field
Name

RBABOPSW

RBWCSA

RBSIZE

RBSTAB

RBFTP

RBFNSVRB
RBWAITP

RBTCENXT
RBFACTV
RBAT'IN
RBUSIQE

RBIQETP
RBFDYN
RBECBWT

RBCDFLGS

WAE
RBCDSYNC
RBCDXCTL
RBCDI.D

RBCDE

RBCPSW

RBPGMQ

REWCF

RBI.INK

RBGRSAVE

RBEXSAVE

Field Description, Contents, Meaning

Reserved.

Bits 32-63 of user's PSW at time system detected
abnormal termination conditien.

Wait count save area.

Size, in deutlewords, of RE.

status and attritute bits.

RB ty};:e: 00 =
01 =
10
11

PRB.
IRB.
SIRE.
SVRB.

SVRB fer a transient SVC routine.
RB waiting on one or more ECEs.
Reserved.

RBLINK field };:cints to a TCB.
IRB or SIRB queued to a TCB.
Meaningful only for an IRB.
ATTACH created IRB for a user asynchroneus exit
routine. IQE rrust be freed by asynchrcneus exit
routine.
Meaningful only for an IRB or SIRB.
RB s};:ace can te freed at exit •
o = wait for single event or n of n events.
1 = wait fer IT. of n events (where m is less than

n).

contents contrel flags.

Reserved.
Work area exists.
SYNCH rracre instruction issued •
XCTL macro instruction issued.
I.OAD nacro instruction issued.

Address of CDE used by Link routine when ferrring
a PRB.

RB old PSW.

Zero.

Queue field for serially reusable prograrrs.

Wait ceunt.

Address of next RB on RB queue.

General register save area, in the sequence 0
through 15.

Extended save area for SVC routines.

SUPERVISOR REQUEST BLOCK (SVRB) -- FOR NCNRESI[ENT ROU~INE

Offset
Gec Hex

o o

2 2

4 4

8 8

9 9

10 A

12 C

16 10

24 18

25 19

28 lC

29 lD

32 20

96 60

Bytes and
Bit Pattern

2

2

4

1

1

2

Byte 0
xx •.

· .. 1
1 ...

• .x. • xxx

Byte 1
1 •..
. 1 ..
· . 1.
· •. 1

4

8

1

3

1

3

64

48

xx •.
. . 1.
••• x

Field
Nan;e

RBTAENC

RBRTINTH

RBABOPSW

RBWCSA

RBSIZE

RBS~AE

RBFTP

RBFNSVRB
RBWAITP

RB~CBNXT

RBFACTV
RBATTN
RBUSIQE

RBIQETP
RBFDYN
REECEWT

RESVTON

RBOPSW

RE~AWCSA

RESVTTR

REWCF

RBLINK

REGRSAVE

REEXSAVE

Field Description, Contents, Meaning

Gisplaceroent of ~ACT entry.

length, in bytes, of SVC routine.

Bits 32-63 of user's PSW at time systerr detected
abnorrral terminatien ccndition.

Wait count save area.

Size, in doullewords, of RE.

Status and attritute tits.

RB type: 00
01
10
11

PRB.
IRE.
SIRE.
SVRE.

SVRB for a transient SVC routine.
RE waiting on cne er n;ore ECBs.
Reserved.

RBIINK field points to a TCB.
IRE or SIRE queued te a TCE •
Meaningful only for an IRB.
A~~ACH created the IRB for a user asynchronous
exit routine. IQE must be freed by asynchronous
exit rcutine.
Meaningful only for an IRB or SIRB.
RB space can be freed at exit .
o wait fcr single event or for n or n events.
1 = wait for ro of n events (where ill is less than

n) •

Address of next RB on transient area queue.

RB old PSW.

Wait ccunt save area fer transient area handling.

TTR for SVC reutine.

Wait count.

Address of next RB on RB queue for task.

General register save area, in the sequence 0
through 15.

Extended save area fer SVC reutines.

Section 12: Centrol Blocks and Tatles 297

INTERRUPTION REQUEST BLOCK (IRB)

Offset
Dec Hex

o o

1 1

4 4

8 8

9 9

10 A

298

Bytes and
Bit Pattern

1
1 .••
.1 ..
• • xx

3

4

1

1

2

Byte
xx ••

• .. 1

1 .•.
.1 ..
•• xx

0

1 ...
• • x. . xxx

Byte 1
1 ••.
. 1 ..
· .1.
· .. 1

• • •• xx •.

Field
Narr.e

RB'lMFLD
RBTMI:;UE
RB'lM'lOD
RBT~IND1

RETr-:C~P

RETMIND2
RBTMIND3

RBPPSAV

REAEOPSW

RBwCSA

RBSIZE

RBSTAE

RBFTP

RBFNSVRB
RBWAITP

RBTCENXT
RBFACTV
RBATTN
RBUSIQE

RBIQETP

Field rescriEtionL-Contents, Meaning

'lirrer routine flags.
Tirrer element not cn queue.
Local 'lOD option used.
00 TUINTVL requested.
01 = BINTVI requested.
10 = reserved.
11 = DECIN'lVL requested.
Interval is corr~lete.
Midnight supervisory timer elerrent.
00 task request.
01 wait request.
10 su~ervisory elerrent.
11 = RBAL request.

Address of ~rotlem ~rogram register save area.

Eits 32-63 of user's PSW at the time system
detected abnormal termination condition.

Wait ccunt save area.

Size, in dcutlewords, of RB.

Status and attribute bits.

RB tn;e: 00 =
01
10
11

PRB.
IRB.
SIRE.
SVRE.

SVRB fcr a transient SVC routine.
RB waiting on one or more ECBs.
Reserved.

RBLINK field foints to a TCB.
IRB or SIRB queued to a TCB •
Exiting ~rcgrarr is an attention exit.
ATTACH created the IRB for a user asynchrcnous
exit rcutine. The IQE must te freed by the asyn
chronous exit routine.
Asynchronous exit queue element ty~e.
00 = RCE nct tc be. queued to "next available"

list (IECNXAVL) by the Exit routine. (Since
the RE is an SIRB, the RQE has already been
queued ty the error exit routine.)

01 IRB has asynchronous exit queue elements
that are RQEs.

10 ICE nct tc be queued to "next available"
list (RENEXAV) by the Exit routine. (These
bit settings are used with the rollout IRB.)

11 IRB has asynchronous exit queue elerrents
that are IQEs. IQE is to be queued to "next
available" list by the Exit routine.

Note: If rollcut is included during systerr
generation, NIF issues the CIRB macro instruction
to create and initialize the rollout IRB.

Offset
I:ec Hex

12 C

16 10

24 18

25 19

24 18

26 1A

28 1C

29 1D

32 20

96 60

100 64

Bytes and
Bit Pattern

4

8

1

3

2

2

1

3

64

4

. . 1.
••• x

Variable

Field
Narre

RBFDYN
RBECBW'I

RBEP

RBOPSW

RBUSE

RBIQE

RBIQE

RBWCF

RBLINK

RBGRSAVE

RBNEXAV

Field I:escriFtion, Contents, Meaning

RB space can be freed at exit •
o wait fcr single event or for n of n events.
1 = wait for m of n events (where m is less than

n).

Entry-~oint address.

Old PSV;.

THREE-BYTE LINK-FIELI: SEG~ENT
Attach use count. Used only when the IRE sche
dules an end-of-task exit (ETXR) routine.

List origin for IQEs.

TWO-BYTE LINK-FIELI: SEGMENT
Reserved.

List origin for RQEs.

Wait count.

Address of next RB or RE queue.

General register save area, in the sequence 0-15.

Address of next availatle IQE. The RBNEXAV field
and the IQE work s~ace are available only in IREs
for which this work s~ace was requested via a
CIRB macro instruction.

IQE work sFace.

Section 12: Control Blocks and Tatles 299

SYSTEM INTERRUPTION REQUES~ BLOCK (SIRB)

Offset
Dec Hex

o o

8 8

9 9

10 A

12 C

16 10

24 18

300

Bytes and
Bit Pattern

8

1

1

2

Byte 0
xx ••

· .. 1
1 ...

• . x. . xxx

Eyte 1
1 ...
. 1 .•
· .1.
• •• 1

• • •• xx •.

4

8

2

. . 1.
••• x

Field
Narr.e

REEXRTNM

RBWCSA

RBSIZE

RBSTAE

RBFTP

RBFNSVRB
RBWAITP

RBTCBNXT
REFACTV
RBA~TN

RBUSIQE

RBIQETP

RBFDYN
RBECEWT

RBEP

RBOPSW

Field rescriEtion, Contents, Meaning

1-8 character narre of error exit routine. First
4 characters are IGEO. Last 4 are unpacked
decimal characters, or REAEOPSW (bits 32-63 of
user's PSW at time system detected abnormal ter
mination condition).

Wait ccunt save area.

Size, in dcublewords, of RB.

Status and attribute bits.

RB ty~e: 00 PRE.
01 IRB.
10 SIRE.
11 SVRE.

SVRB fcr a transient SVC routine.
RB waiting on one or more ECEs.
Reserved.

RBLINK field ~cints to a TCE.
IRB or SIRE queued to a TCB •
Meaningful only for an IRE.
ATTACH created IRE for a user asynchronous exit
routine. IQE rrust be freed by asynchrcncus exit
routine.
Asynchronous exit queue element type.
00 = RCE nct tc be queued to "next available"

list (IECNXAVI) by the Exit routine. (Since
the RE is an SIRB, the RQE has already been
queued by the error exit routine.)

01 = IRE has asynchronous exit queue elements
that are BQES.

10* = IQE not to be queued to "next available"
list (RBNEXAV) by the Exit routine. (These
bit settings are used with the rollout
IRE.)

11* IRE has asynchronous exit queue elements
that are ICES. ICE to be queued to "next
available" list by Exit routine.

instruction
= YES, '11'

(If the

*The RETIQE operand of the CIRB rracro
deterrrines these settings. If RETIQE
is set. If RETIQE = NO, '10' is set.
operand is not specified, '11' is set.)

Note: If rollcut is included during system
generation, NIF issues the CIRE macro instruction
to create and initialize the rcllout IRB.

RB
o
1 =

space
wait
wait
n) •

can be freed at exit •
fcr single event or for n of n events.
for m of n events (where m is less than

Entry-point address.

RE old PSW.

Reserved.

Offset
Dec Hex

26 lA

28 lC

29 10

32 20

Bytes and
Bit Pattern

2

1

3

64

PROGRAM REQUEST BLOCK (PRB)

Offset
Dec Hex

o o

4 4

8 8

9 9

10 A

12 C

Bytes and
Bit Pattern

4

4

1

1

2

Byte 0
xx ••

· .. 1
1 ...

• .x. . xxx

Byte 1
1 ...
. 1 ..
· .1.
· .. 1

1

xxxx

xx ••
· .1.
• •• x

1 ...
. 1 ..
· .1.
• .. 1

Field
Name

RBI~E

:ijEWCF

RBLINK

RBGRSAVE

Field
Name

RBABOPSW

RBWCSA

RBSIZE

RBS'TAE

RBFTP

RBFNSVRB
RBWAITP

RBTCBNXT
RBFACTV
RBATTN
RBUSIQE

RBIQETP
RBFDYN
RBECBWT

RBCDFIGS

WAE
RBCDSYNC
RBCDXCTL
RBCDLD

Field rescription, contents, Meaning

List origin fer RQEs.

Wait count.

Address of next RB on RB queue.

General register save area, in the sequence 0
through 15.

Field Description, Contents, MeaniQq

Reserved.

Bits 32-63 of user's PSW at tirre systerr detected
abnormal terrrination condition.

Wait count save area.

Size, in doublewords, of RE.

status and attritute tits.

RB type: 00
01
10
11

PRB.
IRE.
SIRB.
SVRE.

SVRB for a transient SVC routine.
RB waiting on cne or more ECBs.
Reserved.

RBIINK field points to a TCB.
IRE or SIRE is queued to a TCE •
Attentions deferred by requests at this RB level.
ATTACH created the IRB for a user asynchronous
exit routine. IQE must be freed by the asynch
ronous exit routine.
Meaningful only with an IRB or SIRB.
RB space can be freed at exit.
o wait fcr single event or for n of n events.
1 = wait for m of n events (where m is less than

n) •

Contents control flags.

Reserved.
Work area exists.
SYNCH macro instruction issued •
XCTL rracro instruction issued.
LOAD macro instruction issued.

Section 12: Control Blocks and Tatles 301

Offset Eytes and Field
Dec Hex Bit Pattern Narre Field LescriEtio~ontents, Meaning

13 D 3 RECDE Address of ccntents directory entry.

16 10 8 RBCPSW Old PS~.

24 18 1 Zero.

25 19 3 RBPGMQ Queue field for serially reusable prograrrs.

28 lC 1 REWCF Wait ccunt.

29 lD 3 REI.INK Address of next RE on RB queue.

302

TRACE TABLE (UNIPROCESSING SYS~EMS)

Words

Words

Words

Words

Words

Words

Bytes

NOTE: Each entry is eight words

510 Instruction:

a
Channel
Address

(See Below)
Word

First Word of SIO Entry:

va Interruption:

I/O Old PSW

SVC Interruption:

a
Bit 13 = 1
Bits 16-19 =

0010
,

v

sve Old PSW

Program Interruption:

a

Bit 13 = 1 I
Bits 16-19=

0011
,

v

Program OPSW

External Interruption:

a
Bit 13 = I
Bits 16-19 =

0001

21

,

I ,

2

I , J
v

External Old PSW

Dispatcher:

o
Bit 13 = 1
Bits 16-9=

1101

4

I
Channel STUS Word Reserved a

31

Device I
Address "

4

Reg. 15 Reg. 0 Reg. I 0

3 4 5

Reg. 15 Reg. a
I

Reg. 1

I
a

3 4

Reg. 15 Reg. 0 Reg. I a

The addresses of the trace table are contoined in a 12 - byte field whose address is at
hex loc 54. The format of the field is:

a 3 4 7 B

Address of last Entry I Address of Table Beginning I Address of Table End

Section 12:

6 7

TeB Timer
found in ROE Contents

6 7

Timer
TeB

Contents

6 7

I
Timer

TCB
Contents

6 7

TOE if Timer
Interrupti on Timer

Otherwise, Zero
Contents

Control Blocks and Tatles 303

~RACE TABLE (~ULTIPROCESSING SYS~E~S)

TRACE TABLE (Multiprocessing Systems)
NOTE: Each entry is eight words
SIO Instruction:

Words 0

Words

Words

Words

Channel
(See Below) Address

Word

First Word of SIO Entry:
o 2 3 13

0 ,
l .. SIO Condlhon Code

I/o Interruption:
o

Bit 13 = 1
Bits 16 - 19 =

0101

I/O Old PSW

SVC Interruption:
o

Bit 13 = 1
Bits 16 - 19 =

0010

Program Interruption:
o 1

Bit 13= 1
Bits 16 - 19 =

0011

Program Old PSW

I
Channel Status Word

I
21 31

Device
Address

Reg 15 Reg 0

Reg 15 Reg 0

Reg 15 Reg 0

SSM Program Interruption (Multisystem Mode)
Words

Words

Words

o 1 2

Bit 13 = 1
Bits 16 - 19 =

0100

Program Old PSW

External Interruption:
o 1

Bit 13 = 1
Bits 16 - 19 =

0001

External Old PSW

Dispatcher:
o

Bit 13 = 1
Bits 16 - 19 =

1101

Reg 15 Reg 0

Reg 15 Reg 0

Reg 15 Reg 0

The addresses of the trace table are contained in a 12-byte field whose
address is at hex loc 54. The format of the field is:

4

4

4

4

4

4

4

Byte, 0 34 78

Address of Lost Entry Address of Table Beginning

304

5 6

C

'Old'TCB 'Old' TCB Timer
P

TCB U
of CPUA of CPUB Contents I

0

C

'Old'TCB 'Old'TCB Timer P
Reg 1 U of CPUA of CPUB Contents

I
0

C

'Old'TCB 'Old'TCB Timer P
Reg 1 of CPUA of CPUB Contents U

I
0

5 6

C

'Old'TCB 'Old'TCB
P

Reg 1 Timer li
of CPUA of CPUB Contents I

0

6 7

C

'Old'TCB 'Old' TCB Timer
P

Reg 1 of CPUA of CPUB Contents
U
I

j 0

L CPUID of lockong CPU

6 7

TQE if timer C
STMASK interruption Timer P

Reg 1 of other U
CPU

otherwise, Contents
I zero
0

6

C

'New'TeB 'New' reB Timer P
Reg 1 of CPUA of CPUB Contents U

I
0

Address of Table End

TRANSIENT AREA CONTROL ~ABLE (~AC~)

The TACT (entry point IEAQTAQ) consists of a four-~ord entry for each transient area
block (TAB) in the system. The first entry is ~receeded by a two-word prefix. Each
entry has the format described below:

Offset
Dec Hex

-8 -8

-4 -4

Entry 1

0 0

1 1

4 4

8 8

12 C

13 D

Bytes and
Bit Pattern

4

4

1

. 1 •.

. . 1.
0000 0000

3

4

3

1

3

Field
Name

Entry 2 begins at location 16(10).

Field LescriptionL Contents, Meaning

Address of chain of SVRBs for requesters ~ho
could not find a usable TAE.

Nurrber of ~ACT entries.

Flags.

1AB is being loaded •
TAE is free (unoccu~iEd) .
1AB is being used.

Address of associated TAE.

SVRB chain of users overlayed by a task.

Track addrEss in SVC library of the routine cur
rently in the ~AB. This address used to identify
routine.

Count of recycles of BLDL and FETCH operations
after re~ort of ~ermanent I/C error by BIDI and
FETCH - area used by Transient Area Fetch.

Address of transient area fetch TCB under whose
control routines are fEtched to the TAB.

Section 12: Control Blocks and Tables 305

PROGRAM INTERRUPTION EIE~ENT (PIE)

Offset
Lec Hex

o o

1 1

4 4

12 C

16 10

20 14

24 18

28 1C

PROGRAM

Offset
Lec Hex

0 0

1 1

4 4

306

Bytes and
Bit Pattern

1

x •••

. xxx xxxx

3

8

4

4

4

4

4

Field
Name

PIEPICA

PIEPSW

PIEGR14

PIEGR15

PIEGRO

PIEGR1

PIEGR2

INTERRUPTION CONTROL AREA (PICA)

Bytes and
Bit Pattern

1

xxxx
xxxx

3

2

Byte 0, bit 0
Remaining
bits

Field
Name

PICAPRMK

PICAEXIT

PICAITMK

Field Description, Contents, Meaning

The PIE must begin on a doubleword boundary.

First-time logic switch. If set to one, indi
cates that the task cannot accept further program
interruptions. (This bit is set whenever a user
PI exit routine is entered. It is reset by the
SVC Exit routine.)
Reserved •

Address of current PICA.

Program interrupticn old PSW stored at tirre of
prcgrarr interrupticn.

Save area for register 14.

Save area for register 15.

Save area for register o.

Save area for register 1.

Save area for register 2.

Field Description, Contents, Meaning

7he PICA must begin on a fullwcrd boundary.

Zero.
Program mask to be used in the PSW when the prc
grams cf the task are executing.

Address of the user's program interrupticn exit
routine to te given control when a prograrr inter
ruption of specified type occurs.

Program interruption types.

Reserved.

Mask that indicates cn which program interruption
types the exit routine is to be used. The tits
are nurrbered 1 through 15, left to right. A bit
set to one indicates user interest in that type.

STAE CONTROL BLOCK (SCB)

Offset
I:ec Hex

o o

1 1

4 4

8 8

9 9

12 C

13 D

Bytes and
Bit Pattern

1

3

4

1

:xxxx x •••
• 1 ••
• • x:x

3

1

1 •••

• 1 •.
• • 1.
• • • 1

x:xx.
• •. 1

3

STAE PARAMETER LIST

Field
Name Field Description, Contents, Meaning

TCE STAE flag tyte for the previous SCB for this
task, or zero if this is the first SCB for this
task.

Address of previous SCB for this task, or zero if
this is the first SCE created for this task.

Address of user-written STAE exit routine as spe
cified in STAE macro instruction.

Flags.

Reserved.
Allow asynchronous interruptions .
00 guiesce I/O.
01 halt I/O.
10 bypass I/C intervention.

Address cf parameter list to te passed to STAE
exit routine as specified in STAE macro
instructicn.

STAE flags.

SCB will not te canceled by E:xit routine when
XCTL is issued.
ISAM/TAM Switch •
STAI seE.
SCB previously used •
Reserved.
STAI issuer is in supervisor mcde.

Address of RB cf task issuing STAE macro
instruction.

The STAE parameter list is pointed to by the STAE control tlock.

Offset Bytes and Field
I:ec Hex Bit Pattern Narre Field DescriEtion(Ccntents(Meaning

0 0 1 Flags.

1 ••• STAI I;arameter list.
• xxx x ••• Reserved •

• 1 •. Allow asynchrcnous interruptions •
• .xx 00 = quiesce I/O.

01 = halt I/C.
10 bypass I/O processing.

1 1 3 Address of STAE or STAI exit routine.

4 4 4 Address of STAE exit routine parameter list, or
zero.

8 8 4 Address of attached TCE.

Section 12: Control Blocks and Tatles 307

EVENT CONTROL BLOCK (ECB)

Offset
Dec Hex

o o

308

Bytes and
Bit Pattern

Bits 0-1
W C

o o

o 1

1 o

1 1

Bits .2-7

111111

000001

000010

000100

001000

001111

Bits 8-31

Field
Nailie Field Description, Contents, Meaning

W = bit 0; C = bit 1.
W = wait flag; C = corrpletion flag.

Event has not been allojai.ted and has not been post
ed corr~lete. Eits 2-31 may contain meaningless
information.

Event has teen posted complete, but it has not
yet been allojaited. Bits 2-31 ccntain the comple
ticn ccde in the high-order ~ositions; zercs in
the IOlloj-crder ~ositicns.

Event has been awaited, but has not yet been
posted com~lete. Bits 2-7 are zero, and tits
8-31 contain the address of the BB under which
the WAIT rracro instruction was issued.

Task lIojaiting for an event abnormally terrrinated
before the event was pcsted. ABEND will purge
the ECE. Eits 0-7 are zero, and bits 8-31 con
tain the address of the RB under which the WAIT
macro instruction lIojas issued.

Completion code.

Normal com~letion (nc errors).

I/O perrranent error code.

Extent permanent error code. Indicates that the
seek address s~ecified in the lOB is out of the
extent specified in the DEB.

lOB intercept code. Whenever an error cccurs
after a channel end interruption for a device,
the I/C request for that device has already teen
posted ccm~lete and the request element returned
to the freelist. To handle the error, the I/O
supervisor sets the UCB intercept flag to indic
ate that the next I/O request for that device
must be intercepted. When intercepted, the lOB
for the new I/C request and the CSW and sense
data fcr the error are passed to the error reco
very procedures for the device. If a perrranent
error exists, the ECB for the intercepted lOB is
posted complete with the ICB intercept cede.

Not started or purged. Either the I/O request
has not been started, or it has been purged.

Error could not be retried. Heme address and/cr
RO could nct te read during error recovery
procedures.

Address of the RB under which the WAIT macro
instruction was issued.

PARAMETER LIST EIE~ENT (FOR THE ENQ/DEQ ROUTINES)

Offset
Lee Hex

a a

1 1

2 2

3 3

4 4

8 8

Bytes and
Bit Pattern

1

1

1

x •••

• x ••

· .1.
· .. 1

x •••
• xxx

1

4

4

Field
Narre

lIST END

I~INCR

PARMCDS

Field Description, Contents, Meaning
i

Last element in pararreter list. Last element
must have ~'FF' in field; all cther elerrents have
any other value.

Length of minor name ~hose address is at cffset
8, or zero. If zero, the length of the minor
name is assumed to be in the first byte of the
narre field whcse address is at offset 8. In this
case, length tyte does not include its own
length.

ENQ/DEQ r:ararr.eters.

a exclusive reguest.
1 shared reguest.
a rrinor narre known cnly to jot step.
1 scope of minor name SYSTEM.
"Set Must Corf]~:leten SYSTEM.
"Set ~ust Complete" = S~EP.
Reserved.
111 RET TEST •
all RE~ USE.
001 RET HAVE.
000 RET NCNE.

Return code field for codes returned to the issu
er of the ENQ cr DEQ macro instruction.

Address of majcr resource name (Qname).

Address of minor resource name (Rname).

Section 12: Control Blocks and Tatles 309

~AJOR QUEUE CONTROL ELOCK (QCB)

Offset Bytes and Field
Lec Hex Bit Pattern Name

0 0 4

4 4 4

8 8 4

12 C 4

16 10 4

MINOR QUEUE CONTROL BLeCK (QCE)

Offset
Lec Hex

o o

4 4

8 8

12 C

13 D

14 E

310

Bytes and
Bit Pattern

4

4

4

1

1

Variable

Field
Name

QCBPKF

Field Description, Contents, Meaning

Address of next major QCE (if last, equals zero).

Address cf ~revicus rrajor QCE (if first, equals
IEAQQCE).

Address of first minor QCB on queue of rr.incrs.

Major QCB narre (first four characters).

Major QCE narre (last four characters).

Field LescriptioDL-Ccntents, Meaning

Address cf first QEL on QEL queue.

Address of previous rrinor QCB (if first, equals
rrajor QCB).

Address of next rrinor QCB (if last, equalS zero).

Length of QCE name.

'FF' = name known to entire system.
'00', '10', '20', '30', or 'FO' = protection key
of TCB under which request was enqueued. Narre
known cnly tc jot step.

Minor QCE name (variable in length froIT 1-255
characters) •

QUEUE ELEMENT (QELl

Offset Bytes and
Dec Hex Bit Pattern

0 0 1

0010 0000
0001 0000
0000 0000

1 1 3

4 4 1

x ...

.1 ..

.. 1.

5 5 3

8 8 1

9 9 3

12 C 1

13 D 3

Field
Narre

SMC

COtE

QELTJIDl

QELTCB

QELTJID2

QELSVRB

Field tescriEtienL-fentents, Meaning

Request status refresented by QEL.

"Systerr must ccmflete" request.
"Stef rrust ccrrflete" request.
"Must complete" status net requested.

Address ef next QEL (zero if last QEL).

o = exclusive request.
1 = shared request.
If shared DASD is included in system, indicates
that a UCB address affears at byte 12 of QEL, and
that QEL is associated with a RESERVE rather than
an ENQ rracro instruction.
~his QEL is for a TSO task that has been swaffed
out.

Address of previous QEL on queue. In first QEL,
address ef miner QCB.

First half ef ~SO user ID when user not in main
storage (high order bit set to 1 indicates fre
sence cf TJIr;).

Address of TCE under which ENQ macro instructicn
issued.

Second half of TSO user ID when user net in rrain
storage.

Address of SVRE under which the ENQ routine is
operating. In systerrs with shared DASD, if the
QEL represents a RESERVE request that has been
satisfied, this field contains the address cf the
UCE of the direct access device on which the
requested resource resides.

Section 12: Contrel Blocks and Tables 311

INTERRUPTION QUEUE ElE~ENT (IQE)

Offset
Dec Hex

o

1

4

8

9

12

13

o

1

4

8

9

C

D

Bytes and
Bit Pattern

1

3

4

1

3

1

3

Field
Name

IQELNK

IQEPARAM

IQEIRB

IQETCB

Field Description, Contents, Meaning

Reserved.

Address of the next IQE on the IQE queue.

Parameter list to te passed to the asynchrcnous
exit routine.

Reserved.

Address of the IRB that is to te scheduled
tecause of this request.

Reserved.

Address of the TCB with which this request is
associated.

The following constitutes the optional Rollout/Rollin Fararreter list:

16 10

20 14

21 15

312

4 RPITCB

1

3 RPlSZPQE

Address of the TCB for the task requiring or
releasing an extensicn to a region.

Reserved.

Size of regicn requested (rollout request), or
address of PQE describing area (rollin request).

MESSAGE INFORMATION LIST (FOR TYPE-1 SVC ROUTI~ES)

The Message Information List contains inforrration stored b~ t~pe-1 SVC routines. Each
entry consists of seven words; the first entry is ~receeded ty a one-word prefix. The
format of each entry is descrited below:

Offset
Dec Hex

-4 -4

Entry 1

o o

4 4

8 8

9 9

10 A

12 C

Bytes and
Bit Pattern

4

4

4

1

xxx.

•.. x xxxx

1

1 ...

. xxx xxxx

2

16

Field
Name

INFTCB

INFBADDR

INFRCL

INFFLG

INFCC

INFVAR

Entry 2 begins at location 28(lC).

Field I:escription, Contents, Meaning

Address of end of list.

Address of the TCB for which the information is
pertinent.

Return address (branch addres~) of the calling
routine frcn; register 14 if entry to the type-1
SVC routine was via a branch instructicn.

Reason code fer messages having multiple causes
(0 = no reason code).
Nurrber of tytes of varia tIe data contained in the
INFVAR field.

Signifies that the INFBADDR field contains a
valid branch address.
Reserved •

System completion code.

Information to be provided to the user. U~ to
four wcrds of data may be included.

Section 12: Control Blocks and Tables 313

REQUEST QUEUE ELEMENT (RQE)

Offset
Bec Hex

o o

2 2

4 4

5 5

8 8

9 9

12 C

13 D

314

Bytes and
Bit Pattern

2

2

1

3

1

3

1

3

Field
Naroe

RQELNK

RQEUCB

RQEIOB

RQEPRI
(RQE'IJIDl>

RQEDEB

RQETCB

Field Bescription, Ccntents, Meaning

Pointer to next RQE on RQE queue.

Pointer to UCB. If the low-crder bit is 1, the
RQE re~resents a request for a system error rou
tine that operates under an SIRB.

contains 'FF' if RQE is on free list; otherwise,
contains zero.

Address of asscciated IOE.

First half of 'ISO user ID (when user not
in main storage).

Address cf asscciated BEE.

Protection key of requestor's task or RQETJID2
(second half of TSC user IB).

Address of TCB with. which I/C request is
associated.

£QNTENTS DIRECTORY ELEMENT (CDE)

Offset
Dec Hex

o o

1 1

4 4

5 5

8 8

16 10

17 11

20 14

21 15

Bytes and
Bit Pattern

1

1 •••
• 1 •.
• .1.
• •• 1

3

1

3

8

1

3

1

1 ..•

.1 •.

• .1.
· .• 1

3

1 •..

• 1 •.
· • x.

· .. 1

1 ••.
• 1 •.
· .xx

Field
Nane

CDA1:~R

NIP
NIC
REN
SER
NFN

MIN
JPA

NI.R

CDCHAIN

CDROI.I.

CDRBP

CBNA~E

CDUSE

CDEN1:PT

CDATTR2

SPZ

REI.

XLE
RLC

REFR
CDCLY

CDXLMJP

Field LescriEtionL Contents, Meaning

Attritute field.

Module was lcaded ty NIP.
Module is in process of being loaded .
Module is reenteratle.
Module is serially reusable.
Module nay nct te reused. (Meaningless if REN or
SER is set.)
~his is a winor CDE •
o = module in sutpool 252.
1 = module in subpool 251.
Module is not loadatle-only.

Address of next CBE in queue (either the JPACQ or
the LPACQ).

Reserved.

RB address. If the nodule is reenterable, this
field contains the address of the last RE that
requested the nodule. If the module is serially
reusatle, this field contains the address cf the
RB at the tOf of the waiting (RBPGMQ) queue. If
the module was requested only through LOAB nacro
instructions, contains zero.

Module name, alias nane, or a name that has teen
identified via an IDENTIFY macro instructicn.

use/responsitility count - the number of out
standing requests for the module's use.

EntrY-foint address.

Second attritute field.

Module is loaded in subpool 0 by the loader, and
there is nc tackup copy'. The second entry in the
extent list is the address of a condensed symtol
taUe.
Module is inactive and may te released by the
GE1:MAIN routine (CBPURGE) subroutine.
Extent list has teen'tuilt for the moduleA.
CDE contains a minor entry-point address~:bha:t has
been relocated ty the Program Fetch routine'.'
Module is refreshable.
Module is in overlay form •
Reserved.

Extent list address, or major CDE address if this
CDE is a minor. (If this CDE is a minor, ~IN
field is also set.)

Section.12: Control Blocks and Tatles 315

LOAD LIS'I ELEMENT (LLE)

Offset Bytes and
Cec Hex Bit Pattern

0 0 1

1 1 3

4 4 1

5 5 3

Field
Name

LLCHAIN

LLCOUNT

LLCDPTR

Field Description, Contents, Meaning

Zero.

Address of first byte of the next .elenent cn the
load list.

Responsibility count - nunber cf requests for the
module, via the LOAD macro instruction.

Address cf the CBE for the module.

PARTITIONED DATA SET DIRECTORY ENTRY

Bytes 0

8

12

16

20

24

28

32

36

40

44

52

316

Name of load module (Member or alias name)

Alias indicator and
Relative (to beginning of data set) disk address of module (TTR) miscellaneous information

11

Relative (to beginning of data set) disk address of first text record (TTR)
Byte of binary zeroes

15

Relative (to beginning of data set) disk address of NOTE list or Scatter/ Number of entries in
translation record (TTR) 19 NOTE List *

Module Attributes (see description of attributes) 0,1, Total contiguous main storage required for the
2,3,4,5,6,7,8,9,10,11,12,13,R,R

22..24
module.

Length (in bytes) of first text record Module's linkage

25 27

Editor assigned entry point address Linkage editor assigned origin of first text record
30-32

For load modu les in scatter format, add:

Length of scatter list (in bytes) Length of translation table

33 35-36 (in bytes)

ESDID (CESD entry number of control section
ESDID (CESD entry number of

name) for fi rst text record
control section name) cont-
aining entry point

37

41

41

39-40

For load modules WIth RENT or REUS attribute and
Alias names add:

Entry paint address of the member name

Member name

SS I Bytes - Aligned an a ha If-word boundary at the end of the PDS record

Offset
Lee Hex

o o

8 8

11 B

12 c

15 F

16 10

19 13

20 14

Eytes and
Eit Pattern

8

3

1

x •••

.xx.

• •. x xxxx

3

1

3

1

2

Byte 0
x •••

· x. •. . •..

· .x.

• •• x

x ••.

• x ••

· . x.

• •• x

Byte 1
x •••

• x.. . •••

• • x. . ••.

• •• x •••.

Field
Narre Field Descrirtion, contents, Meaninq

Load module name.

Relative disk address of module (TTR).

Alias indicator and rriscellaneous information.

o = no alias indicator.
1 = alias indicator.
Number of relative disk addresses in user data
field.
Length of user data field in halfwords.

Relative disk address of first text record (TTR).

Eyte of tinary zercs.

Relative disk address of NOTE list or scatter/
translation record (TTR).

Number of entries in NOTE list.

Module attributes.

RENT: 0
1

REUS: 0
1

OVLY: 0
1

TEST: 0
1 =

LOAD: 0
1

not reenterable.
reenteral:le.
not reusable.
reusable.
not an overlay rrodule.
overlay module.
not under test.
under test.
not loadable-only.
lcadal:le-cnly. (Module can be loaded
only with the LOAC rracro instructicn.
When the module is in main storage, it
will be entered directly, and nct
thrcugh the use of an XCTL, LINK, or
ATTACH rracro instruction.)

Format: 0
1

Executable:

tlock format.
scatter forrrat.
o = nct executal:le.
1 = executable.

Format: 0

1

ITcdule contains more than one text
record and/or RLC record(s).
IT.cdule contains only one text record
and no RLD record.

Compatability: 0 = module can be processed by
all levels of linkage editor.

1 module cannot be reprccessed
l:y Linkage Editor-E.

Format: 0 linkage editor assigned origin of
first text record is not zero.

1 linkage editor assigned origin of
first text record is zero.

Format: 0 = linkage editor assigned entry point
is not zero.

1 linkage editor aSSigned entry point
is zero.

Format: 0 = module contains RLD record(s).
1 module does not contain an RLD

record.

Section 12: Control Blocks and Tables 317

Offset
Dec Hex

22 16

25 19

27 lB

30 lE

For load

33 21

35 23

37 25

39 27

For load

41 29

44 2C

52 34

Bytes and
Bit Pattern

• • •• x •••

• • •. • x ••

• • x.
• • • x

3

2

3

3

Field
Name

modules in scatter format,

2

2

2

2

modules with RENT or REUS

3

8

4

add:

Field Description, Contents, Meaning

Edita1: ili t y : 0 = module can be reprocessed 1::y
linkage editor.

1 = module cannot be reprocessed 1:y
linkage editor.

Format: 0 = module does not contain TES'IRAN syrr-
tcl records.

1 = module contains TESTRAN syrr1::cl
records •.

Reserved •
Refreshatility: o = module is not refreshable •

1 = module is refreshable.

~otal contiguous main storage required for the
module.

Length (in 1:ytes) of first text record.

Module's linkage editor assigned entry-point
address.

Linkage editor assigned origin of first text
record.

Length (in bytes) of scatter list.

Length (in bytes) of translaticn table.

ESDID for first text record.

ESI:II: containing entry point.

attril::ute and alias name, add:

Entry-point address of rrember narre.

Merrber nall'e.

SSI bytes - aligned on a halfword boundary at the
end of the PDS record.

The following list contains PDS directory record sizes.

Block format

Block format with alias name

Scatter format

Scatter format with alias nane

34 bytes (when rounded to a halfword boundary).

44 bytes.

42 bytes.

52 bytes.

Note: For SSI, add 4 l::ytes to sizes given al::ove.

318

SCATTER EXTENT LIST

EXLLNTH (Total size of extent list)

Bytes 0

Number of relocation factors

4

8
Length of first non-contiguous block

12
Length of second non-contiguous block

16
Length of third non-contiguous block

-- I byte ~11If 3 bytes

Hex. 80* Length of last non-contiguous block

0 Address of first non-contiguous block

0 Address of second non-contiguous block

0 Address of th i rd non-contiguous block

• 0 · • · · ;..

• • •
• • 0

0 Address of last non-contiguous block

* Indi.cates·the end of the immediately preceding length-of-block
.list.ll1lsed by the GETMAI N routine.

Section 12:

'"

::

Central Blocks and Tatles 319

BLOCK EXTENT LIST ANt NOTE LIS~

r�·.---4bytes--~·~I

0(0)
EXllNTH

Total Size of Block Extent list

4(4)
Number of Relocation Factors

8(8)

X'80' length of First Main Storage Block

-

X'80' length of last Main Storage Block

X'QQ' Address of First Main Storage Block

~~

X'OQ' Address of last Main Storage Block

X'QQ' Relocation Factor

Relative Disk Address (TTR) of First Segment of Module

Relative Disk Address (TTR) of Second Segment of Module

Relative Disk Address (TTR) of Third Segment of Module

.i.-

Relative Disk Address (TTR) of last Segment of Module

*Concatenation number is a value that specifies this data set's sequential position
in a group of concatenated data sets.

320

~~

r-

Concatenation Number*

Zera

Zero

Zero

I...

Zero

Block
Extent
list

Note list
(overlay
madules only)

SCA~TER/TRANSLATION RECORD

\ Up to and inc luding 1020 bytes

Data - may contain translation table, translation table and scatter table or scatter table only

Count - in bytes, of data field

Zero - one byte of binary zeros

Identification - identifies this as a scatter-translation record - bit configuration is: 0001 0000

Translation Table

\ I TIT I TIT I Tn I P I
[Podding (2 bytes) - if necessary, to force full

word boundary alignment of scatter table.

Pointer (2 bytes) - to the scatter table entry that contains the address of the control section
containing this CESD entry.
Number of translation table entries = number of CESD entries + 1.
Pointer will be zero if its corresponding CESD entry is not SD, PC, CM or LR.

Zero - 2 bytes of binary zeros

NOTE: (One 2-byte entry for each external symbol)

~ I
(4 bytes) - of a control section (SD, PC or CM) (one entry for each CSECT)

--------------~--

Zero - 4 bytes of binary zeros

~ I
Padding (2 bytes) if necessary to align scatter table to a full-word boundary.

Translation data

NOTE: Translation table follows extent list in main storage.

Translation table entries are two bytes in length, scatter table entries four bytes in length.

Legend for Types of Entries in Composite External Symbol Dictionary (CESD)

SD = section definition
LR = label reference
PC = private code
CM = common

Section 12: Control Blocks and Tatles 321

PROGRAM FETCH WORK AREA

Offset Bytes and
Cec Hex Bit Pattern

0 0 32

32 20 8

40 28 48

88 58 24

112 70 264

376 178 40

416 lAO 264

680 2A8 40

720 2DO 264

984 3C8 40

1024 400 4

1028 404 4

1032 408 8

1040 410 36

1076 434 64

1140 474 4

1144 478 4

1148 47C 4

1152 480 4

1156 484 4

1160 488 8

Byte 0

Byte 1

Byte 2

Byte 3

322

Field
Name Field Description, Contents, Meaning

IOE - 8 fullwords.

lOB seek address - 2 fullwords.

SEEK BUFFERS (4) - 12 FUIIWORDS.

Search and TIC CCWs - 3 doutlewords.

RLD buffer 1 - 33 doublewords.

Channel prograK 1 - 5 doublewords.

RID buffer 2 - 33 doutlewords.

Channel prcgrarr 2 - 5 doutlewords.

RLD buffer 3 - 33 doublewords.

Channel program 3 - 5 doublewords.

I/O ECB - 1 fullword.

ECE - 1 fullword.

Buffer table pointer - 2 fullwcrds.

Buffer table - 9 fullwords.

Register save area - 16 fullwords.

Address of translation tatle - 1 fullword.

Address of scatter list - 1 fullword.

Address of R-pointer - 1 fullwcrd.

Address of P-Fcinter - 1 fullword.

Boundary wcrd for relocation - 1 fullword.

Fetch flags - 2 fullwords.

Reserved.

FF = Frogram is teing scatter-loaded.
00 = program is being block-loaded.

FF = all cuffers are full.
OF = Channel-End AFpendage routine is unatle tc

restart a channel Frogram tecause all buf
fers were full when the channel-end inter
ruption occurred.

00 = ncrrral condition. There is at least one
erepty buffer.

FF = end condition. Only termination processing
ty the Prograrr Fetch routine is needed.

OF = end ccndition. Buffer processing is needed.

Offset
Dec Hex

1168 490

1176 498

PROGRAM

Offset
Dec Hex

0 0

1 1

4 4

5 5

8 8

9 9

12 C

13 D

16 10

17 11

20 14

21 15

24 18

25 19

28 1C

29 1D

32 20

33 21

Eytes and
Bit Pattern

Bytes 4-7

8

4

FETCH BUFFER TABlE

Bytes and
Bit Pattern

1

0000 0000

1000 0000

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

Field
Name

Field
NaIlie

Field rescription, Ccntents, Meaning

o = a read oferation was just completed. A text
record, followed by an RLt or contrel record,
was just read. The restart tuffer is the
last one to be filled.

Address = a read oferation was just completed.
An RID or control record was read. The
contents of the restart-seek address
tuffer are saved to be used when
channel-prograrr restart is needed.

ECE list - 2 fullwords.

last table entry - 1 fullword.

Field Description l contents I Meaning

Euffer code.

Buffer empty.

Buffer full.

Pointer to next entry (tyte 12).

TIC cOIlimand.

Address of channel program 2.

Zero.

Address of buffer 1-

Buffer code (same as byte O).

Pointer to next entry O:yte 24}.

TIC comrand.

Address of channel program 3.

Zero.

Address of buffer 2.

Buffer code (saKe as tyte O).

Pointer to first entry (byte O).

TIC corrmand.

Address of channel program 1.

Zero.

Address of buffer 3.

Section 12: Control Blocks and Tatles 323

CONTROL RECORr::

a 1- 3 4, 6, 8-15
5 7 \ \

Record length is 20 bytes L----___ _

L-___ Length of control section - specifies the length of the control section (in bytes)
that the text in the following record belongs to (2 bytes)

'----- CESD entry number - specifies the. composite external symbol dictionary entry
that contains the control section names of the control section that this
text is part of (2 bytes)

'----- Channel Command Word (CCW) - that could be used to read the text record that follows.
The data address field contains the linkage editor assigned address of the first
byte of text in the text record that follows. (8 bytes)

L--- Count - contains two bytes of binary zeros. The count field contains the length of the record.

'--Count - in bytes of the control information (CESD ID, length of control section) following the CCW
fie Id (2 bytes)

'--- Spare - contains three bytes of binary zeros

'----- IdentificatIon - specifies that thIS IS: (1 byte)

.- A control record - 0000 0001

• The control record that precedes the last text record of this overlay segment - 0000 OlOl

• The control record that precedes the last text record of the module - 0000 1101

324

RELOCATION DICTIONARY (RLD) RECORD

o 1 - 3 4,
5

6,
7

8-15 16 - 255
J

)

L RLD data -- see below

'-- Spare - contains 8 bytes of binary zeroes

Record length can be between 24 and
256 bytes

~ Count - in bytes of the relocation dictionary information following the spare 8 byte field (2 bytes)

- Count - contains two bytes of binary zeroes

'--Spare - contains three bytes of binary zeroes

-Identification - specifies that this IS. (1 byte)

RLD Data

R P F A

A relocation dictionary record - 0000 0010
The last record of the segment - 0000 0110
The last record of the modu Ie - 0000 1110

F A

'-- Flag -

F A R P F A R P F A

L Address - Linkage ed I tor assi gned
address of the address
constant (3 bytes)

specifies miscellaneous information as follows: (1 byte) when byte format is xxxxLlST:
xxxx specifies the type of this RLD item (address constant)
0000 -- nan-branch type in assembler language, a DC A (name)
0001 -- branch type (in assembler language, a DC V (name)
0010 -- pseudo register displacement value
0011 -- pseudo register cumu lative displacement value
1000 and 1001 -- this address constant is not to be relocated, because it refers to an
unresolved symbol.
LL specifies the length of the address constant
01 -- two byte
10 -- three byte
11 -- four byte
S specifies the direction of relocation
o -- position
1 -- negative
T specifies the type of RLD item following this one
o -- the following RLD item has a different relocation and/or position pointer
1 -- the following RLD item has the same relocation and position pointers as this one,
and therefore is omi tted

'-- Position pointer - contains the entry number of the CESD entry (or translation table entry) that indicates which
section the address constant is in (2 bytes) control

Relocation pOInter - contains the entry number of the CESD entry (ar translation table entry) that indicates which symbol's
value is to be used in the computation of the address constant's value (2 bytes)

Section 12: Control Blocks and Tatles 325

CONTROL AND RELOCATION DIC~IONARY RECORD

326

)
J

L "'09th of ,oolroi '" Hoo (2 byt~)
CESD entry number (2 bytes)

Address (3 bytes)

Flag (1 byte)

Position pointer (2 bytes)

Relocation pointer (2 bytes)

Channel Command Word (8 bytes)

Count of RLD information (2 bytes)

Count of control information (2 bytes) - the control information contains the
ID and length of control sections in the following text record.

Spare (3 bytes)

Identification (1 byte) - specifies that this record is:

• A control and RLD record - 0000 0011

• A control ·and RLD record that is followed by the
last text record of a segment - 0000 0111

• A control and RLD record that is followed by the
last text record of a modu Ie - 0000 1111

Note: For detailed descriptions of the data fields see:

Relocation Dictionary Record
Control Record

The record length wi II vary from 20 to 260 bytes.

SEGMENT TABLE

Bytes 0

TEST Bit 1 = 0: Not in Test
indo Bi t 1 = 1 : In Test Address of data control block (DCB) used to load module *

1

0 Address of note list *
4

Last segment number of Highest segment no. in Last segmen t Highest segment no. in

region 1 storage-region 1 number of region 2 storage-region 2
9 10 11 8

Last segment number of Highest segment no. in Last segmen t Highest segment no. in

region 3 storage-region 3 number of region 4 storage-region 4
13 14 15 12

Address of ECB to be posted when SEGLD request has been serviced *
16

20

Previous segment
number for segment 1

24

Previous segment
number for segment 2

28

Previous segment number
for segment N

Offset
Dec Hex

Bytes and
Bit Pattern

o o 1

x •••

• x ••

1 1 3

4 4 1

5 5 3

8 8 1

9 9 1

10 A 1

11 B 1

*

Reserved *

Status

25
Indctr

Address of entry table entry (when caller chain exists) * Status
Indictr 29

Status Address of entry table entry (when caller chain exists) * Indctr

Field
Name

4 bytes

Field Description, Contents, Meaning

TEST indicators.

Module is "under test" using TESTRAN.
lized ty Program Fetch routine.
o nct in Test •
1 = in Test.

Address of DCB used to load module.

Zero.

Address of note list.

Last segment number of region 1.

Initia-

Highest segment nurrter in storage-region 1.
(Initially set to 01 by linkage editor.)

Last segment number of region 2.

Highest segment nurrter in storage-region 2.
(Initially set to 00.>

~I

Section 12: Control Blocks and Tatles 327

Offset Bytes and Field
Dec Hex Bit Pattern Narre

12 C 1

13 D 1

14 E 1

15 F 1

16 10 4

20 14 4

24 18 1

25 19 3

28 lC 1

29 lD 3

Variable 1

Variable 3

*Set to zero by linkage editor.

Field rescriEtion, Contents, Meaning

Last segrrent nu~ber of region 3.

Highest setment nurrber in storage-region 3.
(Initially set to 00.)

Last segment number of region 4.

Highest segment nurrber in storage-regicn 4.
(Initially set to 00.)

Address of ECE to be fosted when SEGLD reguest
has been serviced.

Reserved.

Previous segment number for segment 1.

Address of entry table entry. Last two bits ind
icate status of segment:
00 segment is in main storage as a result of a

branch to the segrrent.
01 segrrent is not in main storage, but is

scheduled to be loaded.
10 segrrent is in rrain storage, no caller chain

e:xists.
11 segrrent is not in main storage. (Initially

set to 10.)

Previous segrrent number for segment 2.

Address of entry table entry. status bits
initialized to 11.

Previous segrrent number for segment n.

Address of entry table entry. status bits
initialized to 11.

Note: "Region" refers to the regicns of a multiregicn overlay structure, not to a .job
step's region of main storage (see Linkage Editor SRL).

328

ENTRY TABLE

Last
Entry

Unconditiona I branch to last entry- Address of referred to symbo I II to" seg Previous Caller

BC 15, DISP (15,0) number (zero initially)
0 4 8 9

Unconditiona I branch to last entry- Address of referred to sym bo I "to 'l seg Previous Caller

BC 15, DISP (15,0) number (zero initially)
12 16 20 21 22 23

I

Unconditional branch to last entry- Address of referred to symbol 11 to" seg Previous Caller
BC 15, DIPS (15,0) number (zero initially)

SVC 45 L 15,4(0,15) Loads GR15 with BCR 15,15 11 from II Address of segment

ins truc tion the value of the ADCON. seg no. table (SEGTAB)

2 bytes ------yl- 2 bytes -l- 2 bytes ~ 2 bytes ----Jl byte ,..11..:14:---- 3 bytes ~
NOTE: DISP = is the displacement, in bytes, of this entry from the last entry.

"to" segment number -- is the number of the segment containing the symbol being referred to.

"from" segment number -- is the number of the segment that contains this entry table.

Section 12: Control Blocks and Tatles 329

SUBPOOL QUEUE ELE~ENT (SPCE)

Offset
Cec Hex

o o

1 1

4 4

5 5

CESCRIPTOR

Offset
Dec Hex

0 0

1 1

4 4

5 5

8 8

9 9

12 C

13 D

330

Bytes and
Bit Pattern

1

x ...

.1 ..

•• 1.

••• x xxx x

3

1

3

QUEUE ELE~ENT

Bytes and
Bit Pattern

1

3

1

3

1

xxxx xxx.
••• x

3

1

3

Field
Name

SPQEPTR

SPID

CQEP'IR

U:QE)

Field
Nane

FQEP'IR

DQEPTR

CQEHRID

Field Description, Contents, Meaning

Flags.

o = sutpool telongs to associated task.
1 = sutpool is shared; owned ty another task.
Element is last SPQE on queue. This bit is usu
ally zero.
Sutpool shared with another task; owned ty this
task.
Reserved •

Pointer to next SPQE. When zero, this element is
last SPQE cn queue.

Identifying nunber of subpool.

Pointer to first DQE for sutpool. If sutpool
shared, field points to "owning" SPQE.

Field rescriFtion~ontents, Meaning

Reserved.

Pointer to first free area (first FQE), or zero
if entire tlock is allocated.

Reserved.

Pointer to next CQE. Zero in last DQE.

Flags.

Zero.
0 = DQE des crites storage ottained from hierarchy

o.
1 = CQE descrites storage obtained from hierarchy

1.

Address of the first 2K tlock descrited ty this
CQE.

Reserved.

Length in tytes descrited ty this DQE. (Always a
multiple of 2K bytes.)

FREE QUEUE ELE~ENT (FQE)

Offset Bytes and Field
I;ec Hex Bit Pattern Name Field DescriEtion! Contents! Meaning

0 0 1 Reserved.

1 1 3 FQEPTR Pointer to next lo~er free area.

4 4 1 Reserved.

5 5 3 LENGTH Nurrber of l::ytes in free area.

ALLOCATED QUEUE ELEMENT (AgE)

Offset Bytes and Field
:Cec Hex Bit Pattern Name Field DescriEtion! contents! Meani!!9

0 0 1 Reserved.

1 1 3 AQEPTR pointer to next allocated area.

4 4 1 Reserved.

5 5 3 LENGTH Nurrber cf l::ytes in allocated areas.

Section 12: Contrcl Blocks and Tal::les 331

GOVRFLB (ORIGIN LIST FOR MAIN STORAGE QUEUES)

Offset
Dec Hex

o

1

4

5

8

9

12

13

16

17

20

21

24

332

o

1

4

5

8

9

C

D

10

11

14

15

18

Bytes and
Bit Pattern

1

3

1

3

1

3

1

3

1

3

1

3

4

Field
Nane

SQEOUND

DQESQES

PQEP'IR

SZr::PRS

szr::I.CS

COUNT

VQEP'IR

NIPSQSBD

Field rescriEtionL-fontents, Meaning

X'80' = 2K of SQA not availatle to initiate a job
in a region.

Address of first byte teyond system queue area.

Reserved.

Address of the DQE describing the systen queue
area.

Reserved.

Address of a dunmy PQE minus 8 bytes. The dunny
PQE Foints to the PQE descriting unassigned main
storage (storage not assigned to any regicn).

Reserved.

Amount of storage availatle in hierarchy 0 after
NIP.

Reserved.

sreount of storage availatle in hierarchy 1 after
NIP.

Nunber of "VARY STCRAGE, OFFLINE" commands in
master scheduler region.

(M65MP only) address of the first VQE describing
storage areas scheduled for renoval in a nulti
Frocessing system. Zero if no VQEs exist.

Address of first tyte teyond system queue area
(used only by Rollout/Rollin).

PARTITION QUEUE ELEMENT (PQE)

Offset
Bec Hex

o o

4 4

8 8

12 C

16 10

20 14

24 18

28 lC

29 lD

30 lE

Bytes and
Bit Pattern

4

4

4

4

4

4

4

1

x •••

.1 ••

.• 1.

••• 1

xxxx

1

xxxx xxx.
• • • x

2

Field
Name

PQEFFBQE

PQEBFBQE

PQEFPQE

PQEBPQE

PQETCB

PQESIZE

PQEREGN

PQERFI.GS

PQEHRID

Field DescriFtion, Contents, Meaning

Address of first FEQE in region described by this
PQE. If there are no FEQEs, contains the PQE
address.

Address of last FEQE in region described by this
PQE. If there are no FBQEs, contains the PQE
address.

Address of next PQE on queue. Contains zeros in
last P<;';E.

Address of preceding P<;';E on queue. Contains
zeros in first PQE.

Address of TCE for the job ste~ to ~hich the
space telongs. Contains zeros if the space ~as
obtained from unassigned free space.

Size of region described by this PQE.
multiple cf 2048.}

(AI~ays a

Address of first byte of region described by this
PQE.

Rollout flags.

o = space described by this PQE is o~ned.
1 = space is tcrro~ed.
Region has been rolled out. Meaningful only if
bit 0 = O.
Region is in use by borro~er. Meaningful cnly if
bit 0 = O.
Region cannot be rolled in due to a machine
check.
Reserved.

Hierarchy identifier.

Zero.
o = PQE describes region in hierarchy o •
1 = PQE describes region in hierarchy 1.

Reserved.

Section 12: Control Blocks and Tables 333

DUMMY PAR'I'ITION QUEUE ELEt-:ENT (DPQE)

Offset
tec Hex

o o

4 4

Bytes and
Bit Pattern

4

4

Field
Name Field Description, Contents, Meaning

Address of first PQE on chain.

Address of last PQE on chain.

Relationship of Dummy PQ] to TCE and PQE Chain

TCB

Dummy POE-8

Dummy POE

TCBPOE

FREE BLOCK QUEUE ELEMENT (FBQ£2

Offset
Dec Hex

o o

1 1

4 4

5 5

8 8

9 9

ROLLOUT

Offset
Dec Hex

0 0

4 4

8 8

12 C

334

I/O

Bytes and
Bit Pattern

1

3

1

3

1

3

QUEUE ELEMENT

Bytes and
Bit Pattern

4

4

4

4

Field
Narre

FWtP'IR

BCKPTR

SIZE

(RIQE)

Field
Narre

POE POE POE

Field IescriEtionL-contents, Meaning

Reserved.

Pointer to the next higher address FEQE in the
region. In the highest address FBQE, contains
the address ef the PQE.

Reserved.

Pointer to the next lo~er FBQE in the regicn. In
the lowest FBQE, ccntains the address of,the PQE.

Reserved.

Number of tytes in the set of 2K blocks.

Field IescriEtionL Contents, Meaning

Address ef next RIQE.

Address of relIed-out jot step's TCB.

Address of I/O-purged 'ICB.

Beginning of address of lOB chain.

REPLY QUEUE ELEMENT (NON-MCS)

Offset
Dec Hex

o o

4 4

6 6

8 8

9 9

u C

16 10

17 11

20 14

21 15

Bytes and
Bit Pattern

4

2

2

Byte 0
1 .••
• .1.
. x.x xxxx

Byte 1

1

3

4

1

3

1

3

REPLY QUEUE ELEMENT (MCS)

Offset
Dec Hex

o o

4 4

6 6

7 7

8 8

9 9

12 C

Bytes and
Bit Pattern

4

2

1

1 ...
• .1.
• x.x xxxx

1

1 •..
. 1 ..
· .. 1

1 ...
• • x. . xxx

1

3

4

Field
Narre

RQERQE

RQEI.D

RQEXA

RE'IJID1

RQETCB

RQEXB

RQELNTE

RQERPTR

RQETJID2

RQEECB

Field
Narre

RQELKP

RQEID

RQEXA

RQEAVAIL

RQEBUFA
RQEBUFB
RQEBUFD
RQEBUFE

RETJID1

RQETCB

RQEXB

Field LescriFticn, Contents, Meaning

Address cf next re~ly queue element.

Re~ly identificaticn number.

Flags.

Associated re~ly will be purged.
Associated task has been rolled out.
Reserved •

Reserved.

First half of 'ISO user ID for swa~ped-out task.

Address cf TCE fcr task that issued message for
which this RPQE represents a reply.

Address of purging messag~ buffer, or terr~crary
buffer if re~ly was deferred by rollout.

Maximum length of reply.

Address of user's buffer.

Second half cf TSO user ID for swapped-out task.

Address cf user's ECB.

Field LescriFtion, Contents, Meaning

Address of next re~ly queue element.

Reply identificaticn number.

Purge flags.

Associated reply will be purged.
Associated task has been rolled out.
Reserved •

Buffer flags.

Buffer is free.
Buffer is in use •
Buffer has been obtained dynamically.
Buffer has been serviced.
Reserved.

First half of 'ISO user ID for s~apped-out task.

Address of TCB for task that issued rressage for
which this RPQE represents a reply.

Address of communications task emergency rressage
to cancel re~lies.

Section 12: Control Blocks and Tables 335

Offset Eytes and
Dec Hex Bit Pattern

16 10 1

17 11 3

20 14 1

21 15 3

SVC PURGE PARAMETER I.IST

Offset
J:ec Hex

o o

1 1

4 4

5 5

8 8

9 9

12 C

13 D

336

Bytes and
Bit Pattern

1

3

1

3

1

3

1

x •••

• x ••

· .x.

· •• x xxxx

3

Field
Narre

RQELNGTH

RQEPTR

RETJID2

RQEECB

Field
NaIlle

PURGCPT

PURGJ:EB

PURGTCB

PURGECB

PURGIOB

FRGFGI.

PRGQPI.

Field IescriEtionL-fontents, Meaning

Maxirrurr length of refly.

Address cf user's tuffer.

Second half of TSO user ID for swapped-out task.

Address of user's ECE.

Field Description, Contents, Meaning

Purge options (always X'02' for rollout, request
ing 'TCB' and 'quiesce' opticns).

Address of DEE (not used for rollout).

Completion ccde to be flaced in ECB.

During input: address of TCB whose request ele
Illents are to te furged.
During output: address of ECB to be pcsted when
furge is cCIllflete.

Count field for quiesce opticn. NUIllber cf requ
est elerrents whose I/O 0ferations have not yet
completed.

Address of an lOB chain field. The lOBs queued
from the chain field represent channel prcgrams
to be restarted ty the SVC Restore routine after
rollin has occurred. These lOBs telong to the
task whose TCB address is recorded in the PURGTCB
field.

Purge flags.

o purge entry.
1 = wait entry.
o return before wait.
1 purge and wait.
o DEC tefore wait.
1 no DEQ tefcre wait (set tefore system DEB

purged) •
Reserved.

Address of quiesce I/O parameter list.

TIMER QUEUE ELEMENT (TQE)

Offset
Dec Hex

o o

1 1

4 4

5 5

8 8

9 9

12 C

16 10

20 14

24 18

25 19

28 lC

29 lD

32 20

Bytes and
Bit Pattern

1

1 ...
. 1 ..
• • xx

3

1

3

1

3

4

4

4

1

3

1

3

64

1 ...
. 1 ..
• . xx

Field
Narre

TQEFLGS

*5-7

TQETCB

TQEFLNK

TQEBLNK

TQEVAL

'IQEPSW

TQESAV

TQETJIDl

TQESAADR

TQETJID2

TQEEXIT

'IQEGRS

Field [escriEtion, Contents, Meaning

Flags.

'Iirrer elerrent is nct on timer queue.
Local TaD option used •
00 TUINTVL requested •
01 EINTVL requested.
10 reserved.
11 DECIN'IVL requested.
Interval is ccrrflete.
Exit sfecified.*
00 task request .
01 wait request.
10 sUfervisory request.*
11 real request.
110 = rridnight sUfervisory timer element.

Address of the TCE for the task for which this
tirrer elerrent is teing used.

Zero.

Forward link field. Contains the address cf the
first tyte of the next TQE on the timer queue.

Zero.

Backward link field. Contains address cf first
tyte of frevious TQE on timer queue.

Interval value. If the element is on the timer
queue, this field refresents the time cf eXfira
tion ('lOX) of the interval relative to the 6-hour
interval. If the elerrent is off the tirrer queue,
this field refresents the remaining time in the
interval. The value of the interval in rricrose
conds can te calculated ty multiplying ty 26 the
decimal value represented by the field.

First word cf current FSW - used when TQE serves
as IRE.

Used to save contents of TQEVAL when TQE is con
verted frorr TASK tc REAL.

First half of 'ISO user ID (when user not in rrain
storage).

Address of the problem program register save
area.

Second half of TSO user ID (when user not in rrain
storage).

Exit routine address. Contains the address of
the tirrer exit routine if one was specified by
the user in the calling sequence of the S'IIMER
rracro instruction. Ctherwise, the field is zerc.

General register save area. This field tecomes
the general register save area when the 'IQE is
used as an IRE for the scheduling of a timer exit
routine.

Section 12: control Blocks and 'Iatles 337

Offset
Bec Hex

96 60

Bytes and
Bit Pattern

16

Field
Name

TQEECB

TQEIQE

Field Description, Contents, Meaning

Event control tlock to be posted for a "wait"
type interval. Used fer ECB when WAIT pararreter
given in STIMER nacrc instruction.
Interruption queue elenent passed to Stage 2 Exit
Effectcr tc schedule a timer exit routine. Used
for interruption queue elenent when TQE serves as
IRE.

A TQE is required in systems with the time-slicing feature. It is used by the Dis
patcher to set the time interval te the specified tine-slice length when a time-sliced
task is dispatched. The first 16 tytes of the TQE are used in this application.

338

SECONDARY COr.1r.1UNICATIONS VECTOR TABLE (SCVT)

This table appears in module IEAQETOO, teginning at syretolic location IEABEND. It
consists of a list of address constants that point to routine entry Faints or systen cen
tral blocks.

Offset
Dec Hex

o o

4 4

8 8

12 C

16 10

20 14

24 18

28 1C

32 20

36 24

40 28

44 2C

48 30

52 34

56 38

60 3C

64 40

68 44

72 48

76 4C

80 50

84 54

88 58

92 5C

96 60

100 64

Bytes and
Bit Pattern

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

Field
Narre

SCVTPG'IM

SCVTPGWR

SCVTSPET

SCVTACT

SCVTERAS

SCVTQCBO

SCVTPGEQ

SCVTRMBR

SCVTPGIO

SCVTRACE

SCV'ITASW

SCVTCDCL

SCVTLFRM

SCVTPABL

SCVTr:QTC

SCVTHSKP

SCVTRPTR

SCVTGMBR

SCVTAUCT

SCVTROCT

SCVTROQ

SCVTRIRB

SCVTRTCB

SCVTCOMM

SCVTABLK

SCVTNFND

Field DescriEtion, Contents, Meaning

Address of ECT Purge Tiner reutine (IEAQPG'IM).

Address of WTC~ Purge routine (IEECVPRG).

Address of Release Main Storage routine
(IEAQSPET).

Address of TAC'I (IEAQTAQ).

Address of EOT Erase Phase routine (IEAQERA).

Address of QCE origin (IEAQQCBO).

Address of E~Q/DEQ Purge routine (IEAOEQ01).

Address of REG~AIN traneh entry (RMBRANCH).

Address of SVC Purge routine (IGC016).

Address of Trace reutine switch (IECXTRA).

Address of Task Switching routine (IEAODS02).

Address of CDCCNTRL in conmon sutroutines ef Con
tents Supervision (IEAQCS02).

Branch entry-point to FREEMAIN routine
(Fr.1BRANCH) •

Address of Release Loaded Programs routine (IEA
QABL) in ECT.

Address of Dequeue TCB routine (IEADQTCE) in EOT.

Address of CDHKEEP (CDHKEEP) in CDEXIT routine.

Address of trace table pointers (TRPTR).

List format GE'Ir.1AIN branch entrY-Foint
(GMERANCH).

Transient area user count (TAUSERCT).

Address of rollout counters (IEARCTRS).

Address of rollout queue (IEAROQUE).

Address of rollout IRE (IEAROIRB).

Address of rollout 'ICE (IEAROTCB).

Address of cororrunications Task routine (IEECVCTW)
for DAR.

Entry to ABTERM routine (SCEDWAIT) for DAR.

Entry to Transient Area Handler routine
(TBNOTFND) for DAR.

Section 12: Control Blocks and Tatles 339

Offset
Dec Hex

104 68

108 6C

112 70

116 74

120 78

124 7C

128 80

132 84

136 88

140 8C

144 90

148 94

152 98

340

Bytes and
Bit Pattern

4

4

4

4

4

4

4

4

4

4

4

4

4

Byte 0
1 ...
.1 ..

.. 1.

• • • x xxxx

Bytes 1-3

Field
Narre

SCVTRMTC

SCVTto1SSQ

SCVTCTCE

SCVTETCE

SCVTRXLQ

SCVTRQND

SCVTTAR

SCVTSVCT

SCVTSTXP

SCVTTQE

SCVTRMSV

SCVTFMSA

SCVTSWl
SCVTSW2

SCVTSW3

Field IescriEtion-L-fontents, Meaning

Address cf Rto1S TCB (IGFRto1TCE).

Address of GOVRFLB.

Address of Comrrunications Task TCB (IEECVTCB).

Address of System Error TCE (IEARTCB).

Address of reccvery extent list.

Address of end of I/O RQE table (IECITSAR).

Address of Transient Area Refresh routine.

Address of SVC table (IBMORG).

Address of STAX Purge routine (IEAKJXP).

Address of TSO subsystem TQE (IEATSELM).

Address of SVC 85 instruction (IORMSSVC).

Reserved.

Conditional branch entry to FREEMAIN.
Eranch entry tc IGC003 from ABEND. requires use of
conditional FREEMAIN for unprotected stcrage.
Branch entry to svc 5 tYFe FREEMAIN (internal to
IGC003).
Reserved •

Address of FREEMAIN register (2-14) save area
(IEA10FS) •

ABDUMP PARAMETER LIS~

Offset
Dec Hex

o o

1 1

2 2

4 4

5 5

8 8

9 9

12 C

13 D

Bytes and
Bit Pattern

1

1

2

Byte 0
x ...

. 1 •.
· .1.
· .. 1

1 ...
. 1 ..
· .1.
· .. 1

Byte 1
1 ••.
• x •.

· .1.
· .. 1

1

3

1

1 .•.
· 1 ..
· .1.
• •• x

xxxx xxx.
· .. 1

3

1

3

Field
Narre

FFAEENI:

PFTCB
PFSUPDAT
PFTRACE
PFNUC
PFSNAP
PFID
PFQCE

PFSAVE
PFSAVE2

PFREGS
PFI.PA
PFJPA
PFPSW
PFSPAI.L

Field IescriEtionL-Contents, Meaning

ID.

Zero.

Option flags.

o = AEENC request
1 = SNAP request.
TCE address is given •
Display all su~erviscr data.
Dis~lay trace tatle (if ~ossible).
Display the nucleus.
Snapshct list is given •
ID given.
Display the QCEs.

Save area (see next flag).
o = display entire save area.
1 = disflay headings only.
Display registers on entry tc AEEND or SNAP.
Display link fack area.
Display jot ~ack area.
Display PSW cn entry to ABEND or SNAP.
Display all subpools less than subpool 128.
Reserved.

Zero.

Pointer to DCE.

Zero.
SDUMP request.

Pointer tc TCE.

Zero.

Pointer tc storage list.

Section 12: Control Blocks and Tables 341

SDUMP PARAMETER LIST

Offset Bytes and Field
Dec Hex Bit Pattern Name Field DescriQtion l contents, Meaning

0 (0) 2 Reserved.

2 (2) 1 Attritute field.

1 .•. Durrp all rrain storage •
. 1 •. :Co not durrr: SQA.
• . 1. Do not dump Nucleus •

3 (3) 1 Reserved.

4 (4) 1 Reserved.

5 (5) 3 DCBADDR Address of DCE for Lump Data Set or O.

8 (8) 1 Attritute field.

1 .•• SVC Durrr: request.

9 (9) 3 HDRAJ::CR Address of header record.

12 (C) 1 Reserved.

13 (:c) 3 STRADDR Address cf storage list or O.

342

TIME-SLICE CONTROL EIE~ENT (TSCE)

There is one TSCE for each friority that is tirre-sliced. The address of the first
TSCE is in the CVTTSCE field of the CVT. All TSCEs are contiguous.

Offset
Dec Hex

0 0

1 1

4 4

5 5

8 8

9 9

12 C

13 D

Eytes and
Bit Pattern

1

3

1

3

1

3

1

1 . ..
• xxx xxxx

3

Field
Narre Field tescription, Centents, Meaning

Dispatching friority ef time-slice group.

Address of first TCB en TCE queue that is a ReRt
er of the tiRe-slice group.

Zero.

Address of last TCE en TCE queue that is a ReRter
of the tiRe-slice greuf.

Zero.

Address of next TCE to be disfatched when the
friority ettains contrel.

TSCE flags.

Last TSCE.
Reserved •

Length of tiRe-slice. In milliseconds tefore
NIP; in timer units after (26.04166 Ricrc-seconds
fer tiRer unit).

Section 12: Centrol Blocks and Tatles 343

DISPLAY CONTROL MODULE (DC~)

The DCM is composed of a resident porticn (RDCM) and a transient portion mDCM) which
Ray be resident or transient at the user's option.

RESIDENT DISPLAY CON~ROL MODULE (RDCM)

The RDCM ccntains screen control information and the address of the main storage area
assigned to the TDCM. If the TDC~ is transient, this Rain storage area may te used for
the TDCMs of several ccnsoles.

The RDCM may also contain one or wore soreen area ccntrol tlocks. These contrcl
blocks contain informaticn atout each status dis~lay area defined for the screen.

Offset
Dec Hex

o 0

4 4

5 5

6 6

8 8

12 C

13 D

14 E

15 F

16 10

20 14

344

Eytes and
Bit Pattern

4

1

1

1 •.. ·
. 1 ..
· .1.
· .. 1

1 ...
• .1.
· .. 1

2

II

1

1

1

1 ...
.1 ..
• .xx xxxx

1

1 ••.
.1 ..
•• xx xxxx

4

1

Field
NaRe

DCMAD'IRN

DCMINDEX

DC~RFLGS

DCMREAD
DC~TYPE

DCMWRI~E

DC~DO~

DCMNIPP
DC~FRSRD

DCMSRCH

DCMLEN

DC~ADKP

DC~TOPAR

DC~TCPDS

DC~RESTA

r:C~ATTN

r:CMOPNSV

r:CMDEVTY

r:CMTY60
DC~TY50

DC~Ar:SDS

r:C~R~S

Field r:escriFtionL contents, Meaning

Address of the rrain storage area assigned to the
Tr:CM.

Display console identification number assigned ty
the Graphic Console Initialization routine.

Display console status flags.

DC~ read in prooess.
Console uses transient DCMs.
DC~ write in process.
DOM rrust te tried.
DC~ was used by NIP.
First read of r:CM.
Processor 0 routing flag.

Length of the transient portion of the DCM.

Address of routed K oorrmand parameter list.

Address of the top-most display area defined for
the soreen.

Address of the top-most display area that is in
use (contains a display).

Flags for attention and open requests.

Attention status has been saved.
Open status has teen saved.
Reserved.

Device type flags.

Devioe is a 2260.
Device is a 2250.
Reserved •

Pointer to the first screen area control tlock.
Zero if no display areas are defined for the
screen.

Recovery management support (RMS) inforrration.

Offset
Dec Hex

21 15

24 18

28 1C

30 1E

32 20

36 24

40 28

42 2A

44 2C

45 2.D

46 2E

Bytes and
Bit Pattern

3

4

2

2

4

4

2

2

1

1 ••.
· 1 ..
· .1.
· .. 1

1

1 .•.
. 1 ..
· .1.
· .. 1

2

1 •..
• 1 •.
. . 1.
. . . 1

xxxx

Field
Name

DClo1ADRlo1S

DClo1WI.AST

DClo1Rlo1SAL

CCMMSGSV

CCMADPFK

DClo1INTVL

DClo1Tlo1CTR

CCMR2FLG

DCMRXSFL
DClo1RXUNV
DCMRXTMR
CClo1RXRI.I.
CCMRXDEL

DCMRXTIM
DClo1RXDCM

DClo1R3FI.G

r;CMS'ISWT
DClo1KVIP
DCMCLPR

Field cescriEtion, Contents, Meaning

Address cf RMS channel programs.

Address of last console queue entry to be
displayed.

Nurrber of lines in rressage area.

Reserved.

Address of a list of saved NIP messages.

Address cf the resident PFK area.

'lirre interval fer the r;clo1.

Time counter fer the DCM.

Timer flags.

Full screen.
Unviewable message displayed.
'Iimer flag.
Ready to rell.
Pending delete request.
Entry ",as frem options •
'Iimer elapsed for this display •
TDCM is in sterage •

Flags.

Changing status of output-only console.
Entry for K VARY corrrrand •
Close in process.
Asynchronous errer message on screen.
Reserved.

Reserved.

Screen Area Central Bleck <SACE) - one complete SACB is created for each display area
defined for the screen; if no display areas are defined, no SACBs are created. SACEs rray
be contiguous with the RDClo1, or rray be chained te the RDCM ty pointers.

Offset
Dec Hex

48 30

50 32

52 34

56 38

57 39

58 3A

60 3C

Bytes and
Bit Pattern

2

2

4

1

1

1 •••
• 1 .•
• .xx xxxx

2

1

Field
Narre

DCMPLN

DCMPLNPR

DClo1ACBNX

r;C~AID

DC~ASACB

r;CMAUSE
DC~AGM

DCMALN

DClo1ATOP

Field DescriEtion, Contents, Meaning

I.ength of the display area in bytes.

I.ength of the SACB in tytes.

Address ef the next SACB.

Alphabetic identifier assigned to the display
area.

SACB flags.

SACB in use.
SACB space attained ty GETMAIN •
Reserved.

Length of the display area in tytes.

Line nUITter of the top line of the display area.

Section 12: Control Blocks and Tatles 345

Offset Bytes and Field
Dec Hex Bit Pattern Narre Field rescriFtion, contents, Meaning ,

61 3D 1 r:CMAROW Line nuIt1:er of the line to 1:e written next.

62 3E 2 r:C~AFR Frame nUIt1:er cf the frame 1:eing displayed.

64 40 4 DC~A~JWC Address of the console queue entry for the major
WQE.

68 44 4 r:CMAMIN Address of the console queue entry for the minor
WQE being ~ritten.

72 48 4 r:CMATIME Time indicator ~ritten in the control line cf the
display 1:eing written.

74 4C 2 r:C~A~T Message type flag.

.. 1. r:CMAMTC Monitor active •
xx.x xxxx Reserved.

76' 4E 1 r:Clo!AFI.Gl Displall area flags.

1 ... Display corring to area.
.1 .. r:Clo!ADISP Display in area.
· .1. r:CMADEND End of display on screen.
· •• 1 r:C~AFRPR Framing in prccess.

1 ... DCMAFULL Frame full.
.1 .. r:C~AEI. Elanking tc 1:e done.
• • xx Reserved •

77 4F 1 DCMAFLG2 Display area status flags.

1 ... DC~AI.lo!IN Saved pointer to last minor output.
. 1 .. r:CMAWCON Write control line •
· .1. DC~ARCCN Re~rite contrcl line.
· •. 1 DCMAMJFR Major iiQE has 1:een found.

xxxx Reserved.

78 50 1 r:Clo!ADFI.G Display flags.

1 ... r:CMADD Dynamic display.
.1 •• r:Clo!AHCI.D DynaItic display in hold mode.
.. 1. DCMACSIB Dynamic display ~ith control line in SlE •
• •• x xxxx Reserved.

79 51 3 Reserved.

346

TRANSIENT DISPLAY CONTROL MOBULE (TDCM)

The TCCM contains
dependent" section.
display devices: the
suppo:rting.

two sections: the "device independent" section and the "device
The device inde~endent section is the same size and form for all
device de~endent section varies acoording to the device it is

Device Independent Section: These areas comprise save areas, work areas and communica
tions task information.

Offset
Dec Hex

o o

2 2

4 4

5 5

8 8

12; -, C

16. 10

20 14

24 18

25 19' .

26 lA

28 1C

32 20

36 '+" 24

40 28

44 2C

48 30

52

56 38

Bytes and
Bit Pattern

2

2

1

· .. 1
• • 1.

xxx. xx.x

3

4

4

4

4

1

1 ...
. 1 ..
· .1.
· .. 1

1 •••
• 1 ..
• • 1.
••• 1

1

2

4

4

4

4

4

4

4

4

Field
Name

BCMFLGl

BCMQUE
DCI1CUTFT

DCMWTINT

DC~PACK

DCI1CVBIN

DCMTIMER
DCI10FTTI
I:::CMGROLL
DC!!OTTI1M
BCMS'ITMR
DCI1ASYN
BCMOC'ITI
DCI1RI1TTI

BCMELGN

BCMBUFAD

DCI1DCMPK

CCMADSEC

BC~ACCRL

BCMASCRN

DCMLSCRN

CCI1WTBUF

Field Bescription, Contents, Meaning

Length of 'IDCM.

Reserved.

'IDCM flags.

Queue this DC!! for WRITE.
DCM updated for output only •
Reserved.

Reserved.

Initial value for BCMW'IBUF.

Reserved.

Area used for ~acking decimal digits.

Area used for conversion to tinary.

Timer routine flags.

Time elapsed for this display.
Options to Tirrer routine •
Display ready to roll.
option to 'Iirrer routine to message module.
STIMER should be issued.
Timer set for asynchronous error message •
OPEN-CLOSE to Timer routine •
Roll rrcde to Timer routine •

Reserved.

Pointer to the last character in the entry

Address of tuffer address tatle.

Address cf first COM numter.

area.

Address of first screen control table entry.

Address of first secondary screen contrcl tatle
entry.

Address of last screen control table entry.

Address of screen image buffer.

Address of last screen ireage tuffer line.

Address of the PFK numter line (or the tlank line
tetween the message area and the instructicn line
on dis~lay consoles that do not support light pen
command entry) in the screen irrage buffer.

Section 12: Control Blocks and Tatles 347

Offset
Dec Hex

60 3C

64 40

68 44

72 48

76 4C

80 50

84 54

88 58

108 6C

110 6E

112 70

240 FO

248 F8

250 FA

252 FC

254 FE

256 100

258 102

260 104

262 106

264 108

266 lOA

268 10C

270 10E

272 110

273 111

274 112

276 114

277 115

348

Bytes and
Bit Pattern

4

4

4

4

4

4

4

20

2

2

128

8

2

2

2

2

2

2

2

2

2

2

2

2

1

1

2

1

1

Field
Name

DCMAINS

DC!!AENTR

DC!!AWARN

DC~ADCHP

r::CMPFKLN

DCMCXSVE

DC!!Ar::OPN

DC~DSAV

DCMINLGN

DCMMCSFL

DC~INPUT

DC!!RQDEL

DCMLGN'IH

r::CMBAINC

DC~IRCTR

DC!!BADLN

DCMBY'ICT

DCMADNUM

DC!!AXLGN

DC!!MSGAL

DCMRMINC

DCMSCTCN

DC~CORLN

DCMPFKNM

DCMPFKKN

DCMDEL

DCMCON

DC~SEG

Field Description, Contents, Meaning

Address of the instructicn line in the screen
image tuffer.

Address of the entry area in the screen irrage
buffer.

Address of the warning line in the screen irrage
buffer.

Address of the channel program area.

Reserved.

CXSA save area.

Address cf the corrrrand operand.

Command save area and work area.

Input length.

Space for ~CS flags.

Space for in~ut rressage text.

Buffer for pending delete requests.

Length of a line.

positicn of cursor in screen image buffer.

Interventicn requested message counter.

Location in buffer to begin writing rressage.

Number of bytes to write.

'Ihe line number to be assigned to the next line.

Maxirrurr line length.

Number of lines in the rressage area.

RMI information.

Length of cne SCT entry.

Length of rCM line in rrain storage.

Reserved.

Number of the PFK key being ~rocessed.

Nurrber of the PFK key, in a list of PFK keys,
that is being processed.

contains the current value of the DEL parameter
of the CONTROL S corrrrand (Y or N).

Contains the current value of the CON pararreter
of the CON'IROL S comrand (Y or N).

Contains the current value of the SEG pararreter
of the CON'IRCL S comrrand (numerical value).

Offset
Cec Hex

278 116

279 117

280 118

282 11A

283 11B

284 11C

286 11E

287 11F

288 120

289 121

290 122

291 123

292 124

293 125

294 126

295 127

296 128

Bytes and
Bit Pattern

1

1

2

1

1

2

1

1

1

1

1

1

1 .•.
· 1 •.
· .1.
• .. 1

1

1 .••
. 1 ..

xxxx

• .xx xxxx

1

1

1 .••
• 1 •.
· .1.
• •• 1

1

1 ••.
. 1 •.

1 ...
• 1 •.
• • xx

· .1.
· .. 1

• .xx xx ••

1

1 ...
• 1 ..

Field
Narre

r:CMDL

CCrmNUy.

CCY.RTY.E

r:CMSEGDF

DCY.RNUY.C

CCY.RTY.ED

r:CMASKEN

CCMASKCN

CCY.ASKCR

r:CY.ASKIP

r:CMASKPF

r;CMOPTST

r;Cy.OPTVR
r;CMOPTAD
DCY.OPTSG
r;CMOPRIL

CCY.CS

r;c~csc

CCMCSO

CCMUTILT

r;C~CSTAT

r:C~CSTFL

r:CMUNVW
CC~DSTNM

r:CMDSTNH
CC~DSINR

r;CMDSAUT

r;C~~CSST

r:CMDUSE
CC~NCHRD

:CCMOOMSS
r:C~CCSDS

:CCMIOUNQ

DC~IC226

:CCMRPCUR

Field Descrirtion, Ccntents, Meaning

contains tbe current value of tbe DL ~ararreter of
the CONTROL S corrrrand (numerical value).

contains tbe current value of the RNUM parameter
of the CCNTRCI S comrrand (numerical value).

contains tbe current value of the RT~E parameter
of tbe CONTROL S comrrand (numerical value).

The default value for SEG.

The default value for RNUM.

The default value for RTME.

The ENTER mask.

The CA1CEL mask.

The curscr mask.

The light pen rrask.

The PFK mask.

Screen control o~tion flags.

:celete verification (Y=1i N=O).
Automatic deletion (Y=1i N=O).
r;efault SEG specified.
Roll mode specified.
Reserved.

Open/Clese request.

Close requested.
Open requested •
Reserved.

Reserved.

Current display status flags.

Full screen.
UNVIEWABIE MESSAGE written to screen •
Messages are nurrtered.
Messages numtered -- HOLD opticn.
Interventicn requested deletion tried.
Automatic deletion tried .
Reserved.

MCS Interface flags.

Status Display Support.
No hardcopy rressage written •
Message stream entry.
Status display entry.
Reserved.

Device I/C infcrrration flags.

(2260) RMI performed.
(2260) Advance cursor to blanks.

Section 12: Central Blocks and Tatles 349

Offset
I:ec Hex

297 129

298 12A

299 12B

300 12C

301 120

302 12E

303 12F

304 130

350

Bytes and
Eit Pattern

· .1.
• .. 1

1

1 ...
. 1 ..
• .1.
•.• 1

1

1 ••.
. 1 ..
• .1.
.•. 1

1

1 ...
• 1 .•
• • x.
••• 1

1

1

1

1

1 ...
. 1 •.
.. 1.
· •. 1

1

1 ...
. 1 ..
.. 1.
· .. 1

1 ...
.1 ..
· .1.
· .. x

1 .. .
• 1 .. .
· .1.
• .. 1

1 •••
. 1 ..
•• 1.
• .• 1

1 .•.
.1 ..
• .1.
.•. 1

1 ...
• xxx

1 ...

Field
NaJlle

I:C!!FRSCN
I:CMRDARM
DC!!W2250
I;CMINNOR
DC!!INERR

DCMIOCM1

r:C!(DCR!(I
DCMSOUNO
DC!!WRWRN
DCMWRMSG
DC!!WRPAR
DCMWRINS
r:C!!WRENT
DCMINSC

r:CMIOCM2

r:C!!ElENT
r:CMBLWRL
DC!!BlWRR
DCMINSSH
r:C!!WINFD
r:CMERASE
DCUCCRD
DCMWRASY

DCMIOCM3

DC!!OFRU
r:CMSSRG

DCMWRPFK
DC!!PFKAT
r:CMRDPFK
DC!!ACPFK
r:CML'IPFK

J:)CMLINEN

DC!!CULNC

DC!!PCSCU

DCMASYNC

DCMASCAN
DC!!ASDA
DCMASIN
DC!!ASEA
r:CMASLOG

DCMCO!!l

r:CMLPENT
I;C!!ICPRr:
DCMCOMRM
DC!!CCNAU.
DCMCOMRO

Field Description, Contents, Meaning

(2260) Put out~ut in hold JIIode.
(2250) PerforJII read after RMI.
(2250) Device is a 2250.
(2250) NorJllal instruction line.
(2250) Errcr instruction line.
Reserved.

I/O Connunications byte 1.

Issue RMI •
Sound alarJII.
write warning line.
Write full JIIessage area •
write fartial nessage area.
Write instruction line •
Write entry area.
Insert cursor.

I/O Connunications byte 2.

Elank entry area.
Blank left half of warning line •
Blank right half of warning line.
Initialize and shift instruction line •
write inforJllational display.
Perforn erase •
Perforn read •
Write asynchronous error JIIessage to Rid-screen.

I/O ConRunications byte 3.

RMI after OPEN to unlock keyboard.
Suppress start regeneration •
Reserved.
Write PFK area •
PFK attention.
PFK area read.
Turn active PFK lights on.
Turn all PFK lights on •

Line nUJllcers tc tegin write.

line in entry area to insert cursor.

Position to insert cursor.

Asynchronous error retry flags.

Asynchronous error JIIessage on screen.
Retry cit •
Retry tit •
Retry cit.
Log asynchronous error.
Reserved •

communications byte 1.

Enter ty light pen or cursor.
Read ferforJlled •
RMI perforJlled •
Perforn autonatic deletion.
PerforJII regular deletion.

Offset
Dec Hex

305 131

306 132

307 133

30B 134

309 135

310 136

Bytes and
Bit Pattern

1

1 ••.
. 1 ••
• .1.
• •• 1

1

1 •••
• 1 •.
•• 1.
• •• 1

1

1 •••
• 1 ••
· .. 1

1

1 ...

• 1 •.
• • x.
• •. 1

1 ••.
.1 ..
· .1.
· .• 1

1 ...
. 1 •.
· .x.
· •. 1

1 ••.
. 1 •.
• .1.
• •• 1

.1.
• .1.
• .. 1

1

1 ...
.1 ••
· .1.
•.•• 1

1

1 ...
. 1 ..
· .1.
· .. 1

1 ...
• 1 ••
•• 1.
• •. 1

1 ...
.1 ••
.. 1.
· .• 1

xxxx

Field
Name
DCb1COb1Nb1

DCb1CANCL

DCMCOM2

DCMCM2I
DCr.1SPLIT
r;CMCOMAR
DCb1CI0SE
r:CMERPF
r:Cb1Cb1IN5
r;CMBLNK
DCJ.I(AE

r;Cb1C0r.13

DCMCDSP3
r;CJ.I(RTPFK
r;CMVLPFK
DCr.1XINT1
DCMOLUNV
r:Cb1PFKWR

DCb1Cb1IN7

DCb1Cb1SG1

r:CMMSGWT
DCb1UNb1SG
DCMCBOPT
DCMELONG
DCb1WRCDL
r;CMDELNT
DCb1MNHRD

r;CMCMSG2

r;CMDLREQ
DCb1RQINC
DCMMSGCR
DCb1INVOP
r:CMCILLP
DCb1DEIRI
r;CMASYRT
DCb1ASYCD

DCb1Cb1SG3

r:CMCNRLL
r:Cb1CDLR1
r:CMCDLR2
DCJ.I(CDLR3
DCMCDLRII
DCb1CI:LR5
r:CMNBCIN
r:CMDTBSY

DCI(CJ.I(SGII

I:Cb1PFKNA
r:CMPFKND
r:CJ.I(PFKNO
DCMPFKIP

Field Lescription, Contents, Meaning
Number messages •
Reserved.
Indicate CANCEL to Co~rrand routine.

communications byte 2.

In~ut to te frocessed.
Message to be split •
Accefted refly.
Cleanu~ for close.
Erase ferfcrrred; close device.
Return tc Interface 5 for tlanking.
Blanking required.
cleanuf for asynchronous error.

Communications byte 3.

Display 3 work com~lete.
Return tc PFK routine •
Verifying last corrrrand •
Entry for Interface 1 routine.
out-of-line message caused UNVIEWAELE MESSAGE.
Write PFK u~dates to library •
Reserved.
Return to Interface 7 for tlanking.

Message Module Co~rrunications byte 1.

Move in MESSAGE WAITING.
Move in UNVIEWAEIE MESSAGE •
Move in CHANGE OPTIONS.
Move in ENTRY TOO lONG.
Move in CON=N,DEL=Y •
Move in DEI UNCHANGEr:,NO TIMER.
Move in NO HARDCOPY.

Message b10dule Communications byte 2.

Move in DEIETICN REQUESTED.
Move in REQUEST INCONSISTENT.
Move in INVALID CURSOR OPERATION.
Move in INVALID OPERANr:.
Move in ILLEGAL LIGHT PEN OPERATION.
Move in DELETE REQUEST INCONSISTENT •
Move in ASYNCHRONOUS ERROR RETRYAELE •
Move in ASYNCHRONOUS ERROR MAY BE RETRYABIE.

Message Module Comrrunications byte 3.

Move in ROIL MODE.
Move in NO r:ELETABLE MESSAGES.
Move in INVALID RANGE.
SEG equal to zero.
Display not on screen.
Invalid c~erand.
Move NC HARDCOPY message to instruction line.
COJ.l(MAND REJECTED -- TASK BUSY.

Message Module Comrr.unications l:yte II.

Move in PFK NOT ALLOCATED.
Move in PFK NOT DEFINED •
Move in NO PFK ALLOCATION.
Move in PFK IN PROCESS.
Reserved.

Section 12: Control Blocks and Tables 351

Offset
r:ec Hex

311 137

312 138

313 139

314 13A

316 13C

318 13E

320 140

322 142

324 144

326 146

Bytes and
Bit Pattern

1

1 •••
.1 ..
•• 1.
••• x xxxx

1

1

1

2

2

2

2

2

2

Field
Name

DC!!SVC34

r:CMMYCMD
r:C!!INVLD
r:C!!TYPE1

r:CMIORTN

r:C!!TEST

r:CMBASRT

r:C!!EA!!I

r:C!!BAPFK

r:C!!EAINS

DCMBAENT

r:CMBAWRN

Field Description, Contents, Meaning

SVC 34 Communications byte.

Command to be handled by this console.
Invalid K corrrrand.
K command is not routable.
Reserved •

Reserved.

Indicates which I/O routine handles I/O fcr the
console.

Reserved for testing.

Location in buffer for start of the channel ~rc
gram regeneration crders.

Location of first rressage line fer use ty the
channel ~rcgrarr.

Location of the PFK display line in the tuffer
for use ty the channel program.

Location of the instruction line in the tuffer
for use by the channel program.

Locaticn cf the entry area in the buffer for use
by the channel program.

Locaticn of the warning line in the buffer for
use by the channel prograrr.

Device Dependent Section: The following areas vary in size according to the type of dis
play device that the DCM is su~porting.

Offset
Dec Hex

328 148

Variable

Variable

Variable

Variable

352

Bytes and
Bit Pattern

Variable

Variable

Variable

Variable

Varia tIe

Byte 0
1 •••
. 1 •.
• . 1.
••• 1

1 ••.
• 1 ..
•• 1.
• . . 1

Field
Narre

r:CMMSGWR
r:C!!lo!SGIN
r:;C!!I'(SGCN
r:CMMSGJK
r:;CI'(!!SGAD
r;Clo!MSGRD
DC!!!!SGIF
r:CMMSGS'I

Field r::escriFtion, Contents, Meaning

Buffer Address Tatle: contains addresses cf the
tuffers for the various display screen fields.

Channel Program Area - work area for channel
~rograrrs.

Screen Immage Euffer - contains a copy cf the
display screen. It is from this area that the
screen is written and information of the screen
is mani~ulated.

r:OM Identification Numters Area - contains infor
mation pertaining to delete-o~erator-message
rr.essages.

Screen Centrel Tatle - flags for each line in the
screen image buffer.

WTOR message display in-line.
Message r:;is~lay in-line •
Message continued on next line •
To write out-of-line display •
Message can te deleted automatically.
Request has s~ecified this message be rerrcved •
Inforrratienal rressage displayed in-line •
End of table indicatcr •

Offset
I:ec Hex

Variable

Bytes and
Bit Pattern

By_te 1
1 •••
.1 .•
· .1.
.•• 1

1 ...
• 1 ••
· .1.
• .• 1

Variable

1 .•.
• 1 ••
• .1.
· .. 1

xx ••
• .1.
• •• 1

Field
Narre

DC~MSGAC

r;CMMSGC7
r;C~MSGDlo1

r;C~lo1SGAR

DCMMSGIR
r;C~lo1SGCT

r;CMMSGPP
r;C!!MSGCL

r;C~SECCL

DCMSECLL
DC~SEcr;L

r;CMSECBL

r;CMSECDD
I:C~SECST

Field DescriFtion, Contents, Meaning

Action rressage.
Descriptor code 7 rressage.
DO~ issued fer this rressage.
Message is an accepted reply •
Interventicn required message.
Continuation line •
Message issued by problem program.
Control line of MLWTO.

Secondary Screen Control Table - Flags fcr out
of-line display area messages.

Control line of out-of-line qisplay.
Label line of cut-of-line display •
Data line of out-of-line display.
~his line is blanked.
Reserved.
Line reserved for dynarric display.
End of table indicatcr.

MULTIPROCESSING COMMUNICATIONS VECTOR TABLE (!!PCVT)

The MPCVT is part of the resident nucleus and begins at symbolic location IEAMPCV~.
'Ihe address of the first location of the MPCVT is contained in the CVTMPCVT entry of the
CVT and also in the MPCVTPTR field of the Prefixed Storage Area.

Offset
Dec Hex

o o

1 1

2 2

4 4

8 8

12 C

16 10

20 14

24 18

28 lC

32 20

Bytes and
Bit Pattern

1

1100 0001
1100 0010
0000 0000

1

1111 1111
0000 0000

2

4

4

4

4

4

4

4

4

Field
Narre

CVTAFFLK

CVTSTPTR

CVTWTTCB

CV~TKRM

CV~GCV

CVTICTIC

CVTICTCH

CV~S~OR

CV~VRYOF

Field rescriFtion, Contents, Meanigg

CPU identity.

CPU A.
CPU B.
Neither.

Supervisor lock.

Set.
Not set.

Reserved.

Address of SHOLDTAP routine.

Address of Dispatcher Wait Task.

Address ef Task Rerroval (TESTI:SP)

Address of GCVBFLB table.

routine.

Address of Multiprocessing Unit TIO routine
lOS.

in

Address of Multiprocessing Channel TCH routine in
lOS.

Address of Netify Storage Inline routine
(IEAMPSTR).

Address of Deferred Vary Storage routine
(IFSVRYOF) •

Section 12: Control Blocks and ~ables 353

VARY QUEUE ELEMENT (VQE)

The VQE
processing
Element is

Offset
Dec Hex

0 0

1 1

4 4

5 5

8 8

9 9

12 C

13 D

describes the roain storage area to te logically removed fron a Model 65 ~ulti
system due to a VARY S'ICRAGE offline corrrrand. The address of the Vary Queue
located in the GOVRFLB tatle.

Bytes and
Bit Pattern

1

3

1

3

1

3

1

3

Field
Name Field [escription~ontents, Meaning

Zero.

Address of next VQE cn vary queue.

Zero.

Lower address cf area specified in VARY command.

Zero.

Length of area specified in VARY corrrrand.

Zero.

ECE posted by FREEFART.

FAIL SOFT STORAGE ELE~ENT ~AF (FSSE~AP)

The FSSEMAP is a 128-byte (1024 bits) field lccated at hex location 300 in a multi
processing system. Each 2K tlock of main storage is described by two bits which can have
the following values:'

Setting
00

01
10
11

Indication
Normal-descrited ty an FBQE
or PQE
Reserved
Reserved
Logically remcved from the
system - not described by an
FEQE or PQE

Given a main storage address (X), the correspcnding 2K tlock (t) is:

x (disregard rerrainder).
b =

2048

The number (n) of the first of the two bits which describes the 2K block is: n = 2*t.

354

UNIT CONTROL ~ODULE (UCM) BASE

Offset
Lec Hex

-8 -8

-4 -4

o o

4 4

8 8

12 C

16 10

20 14

24 18

28 1C

32 20

45 2D

46 2E

48 30

52 34

56 38

58 3A

60 3C

64 40

68 44

69 45

70 46

71 47

72 48

76 4C

80 50

84 54

140 8C

204 CC

Bytes and
Bit Pattern

4

4

4

4

4

4

4

4

4

4

13

1

2

4

4

2

2

4

4

1

1 ...

. 1 ..

. . 1.
0000 0000

1

1

1

4

4

4

56

64

4

Field
Name

UCMXECB

UC~AECE

UClo(OECB

UCMDECB

UCMRECB

UC~LSTP

UC~WTCQ

UCMRPYQ

UCMRPYI

UCMRQLM

UClo(WQLlo(

UClo(RQECB

UCMWQECB

UCMRQNR

UClo(WQNR

UC~WQEND

UCMPXA

UCMMODE

UC~OGCE

UCMMCS
UC~FIX

UClo(CCRE

UCMMODEL

UCMINCR

UCMVEA

UClo(VEZ

UCMVEL

UCMSAVE3

UCMSAVE4

UClo(R9SV

Field Description, Contents, Meaning

Address of UCM extensicn prefix.

Address of MCS prefix.

External interru~tion ECE.

Attention interru~ticn ECB.

WTC/R request ECE.

DOlo(request ECE.

RMS request ECE.

Address cf event indication list (UCMEIL).

Address of first WQE (system out~ut queue).

Address of first RQE (reply queue element).

Reply ID assignrrent ~attern (100 ~it positions
used).

ID assigmr.ent limit.

WQE buffer lirrit.

Reply request waiting ECB.

Buffer request waiting ECB.

Current RQE count.

Current WQE count.

Address of last WQE, or zero.

Address of corrrrunications task ECB (IEECVTCE).

Mode flags.

Accept VARY corrrrand with MSTCONS operand from any
MCS secondary console.
Only graphics consoles exist •
MCS generated with systerr •
MVT rr,ode.

WTC Purge routine s\~i tches 0

System model number.

Used ~y Console Initialization routine for error
handling.

Address of first UCM entry.

Size of UCM entry.

Address of last UCM entry.

Save area for ED2 (refreshability).

Save area for CRA (refreshatility).

save area for Ee2 (refresha~ility).

seotion 12: Control Blocks and Ta~les 355

UCM EXTENSION PREFIX TO UNIT CONTROL MODULE (UCM) EASE

Offset Bytes and Field
Dec Hex Bit Pattern Narre Field res criEtion! Contents! Meaning

-12 -12 2 UCf.!2WID Terrr.inal jcl:: II: cf task for UCMWQECB.

-10 -10 2 UCM2RIC Terminal job II: of task for UCMRQECB.

-8 -8 4 UCM2PST Address of PCST validity checking.

MULTIPLE CONSOLE SUPPORT PREFIX TO UNIT CONTRCl MCCUIE cucro!> BASE

Offset
Dec Hex

o o

4 4

76 4C

80 50

84 54

86 56

88 58

92 5C

96 60

97 61

100 64

102 66

104 68

356

Bytes and
Bit Pattern

4

72

4

4

2

Byte 0
x •••
. 1 •.
· .1.
••• 1

1 ...
. 1 ..
•• 1.
• •• 1

Byte 1
1 ...
.1 ..
· .1.
• •• 1

2

4

4

1

3

2

2

24

1 ...
• 1 ••
· .1.
• •• x

Field
Narre

UCMMCENT

UCf.!SAVEO

UCf.!CCl-:E

UCMWTOX

UCMFLGS

UCMSYSA
UCf.!SYSB
UCl-:SYSC
UCMSYSD
UCf.!SYSE
UCMSYSF
UCf.!SYSG
UCMSYSH

UCMSYSI
UCf.!SYSJ
UCf.!SYSK
UCMSYSL
UCl-:SYSl-:
UCMSYSN
UCl-:SYSO

UCf.!OWTCR

UCl-:Cl-:ID

UCMHCUCM

UCMXCT

UCf.!UEXIT

UCl-:HRCRT

UCMXSA

Field [escriEtion~ontents! Meaning

Address cf Master Console UCM entry.

Resident and ccrrrrunications save area.

Address of first COM element.

Address of WTO/R Exit routine (IEECVXIT).

System control flags.

Reserved.
Hard cCfY sUffcrt required •
Commands to hard cOfY.
Console switch for master •
No consoles exist.
Graphic consoles exist •
Hard oopy device SYSLOG •
Tirrer rresent and operative.

WQE housekeeping needed.
Hard cCfY to te written.
New console corrposite.
OPEN teing issued to ring console tell.
Failing console corrpcsite.
Model 85 Orerator Console with CRT Display •
Dummy attention by WTL.
Reserved.

Cefault values for old WTOR macros.

Current rressage identification numter.

Address of hard cOfY UCM entry, or zero.

External request count.

Address of user exit data, or zero.

Hard copy routing code assignments.

Reserved.

Pararr.eter list a"rea for SVC 72.

Offset Bytes and Field
Cec Hex Bit Pattern Narre Field DescriEtion E Contents E Meaning

128 80 4 UCMQRTN Address of ENQ entry point (IEECMENQ) •

132 84 4 UCMRUTCK Route checking field.

136 88 4 UCb1DCMRT Address of DOM routine entry point.

140 8C 4 UCb1TPPTR Address of save area for 2740 device suppcrt r;ro-
cessor, or zerc.

144 90 4 UCb1NPECB NIP ECE (posted when NIP routine's hard ccpy can
be written).

148 94 4 UCb1I.CGAD Address of MCS Log.

152 98 4 UCMDTINT Dynamic display tirre interval.

156 9C 1 UCMSDSl Status display flags.

1 ••• UCb1Sr;SlA STCMDS tc hard cor;y.
.1 •• UCMSDS1B INCMDS to hard copy.
• • xx xxxx Reserved •

157 9D 3 Reserved.

160 AO 4 UCM2EXT Address of UCM extension.

164 A4 4 UCMMCENT Address of MCS r;refix.

Section 12: Ccntrol Blocks and Tatles 357

UCM ENTRY INDIVIDUAL DEVICE MAP

Offset
Dec Hex

o o

4 4

8 8

12 C

16 10

24 18

25 19

26 lA

27 IB

28 lC

32 20

34 22

36 24

40 28

42 2A

358

Eytes and
Bit Pattern

4

4

4

4

8

1

1 •..
. 1 ..
• .1.
• •• 1

1

1 ...
. 1 ..
· .1.
· .. 1

1

1

4

2

2

2

2

1 •••
.1 ..
· .x.
· .. 1

1 .•.
.1 ..
• .xx

Eyte 0
1 ...
.1 •.
· .1.
• •• x xxx x

Byte 1

2

Byte 0
1 ...
. 1 ..
· .1.
· .. 1

1 ...
. 1 ..

Field
Narre

I,lCMECB

UCMSRB

UCMDCB

UCMUCB

UCMNAME

UCMSTS

UCMAF
UCMPF
UCMBF
UCMCF
UCM'IA
UCMTE

UCMTC

UCr.!ATR

UCMOF
UCMIF
UCMXF
UCr.!UF
UCMLF
UCMAT04

UCMID

UCr.!XB

UCMR'ICD

UCr.!OUTQ

UCMAUTH

UCr.!AUTHl
UCMAUTH2
UCMAUTH3

UCMDISP

UCMDISPA
UCMDISPB
UCMI::ISPC
UCr.!I::ISPI::
UCMDISPE
UCr.!I::ISPF

Field [escri&tionL Contents, Meaning

I/O corr~leticn ECB, cr address of I/C corr~leticn
ECE for 2740.

Address of resident ~rocessor module.

Address of DCE.

Address of UCE.

Processing mcdule naroe.

status flags.

Attention ~ending.
Output ~ending •
Device busy.
Close fending.
Open pending.
Dequeue a~fro~riate output queue entries.
Reserved.
working cn in-line status dis~lay.

Attritute flags.

WTO support.
Attention sUffcrt •
External interruption sUFPcrt.
Device active.
Load flag.
Device status to change.
Reserved.

Unique entry ID.

Reserved.

Address of DCM (Graphics), or zero.

Routing codes assigned to this console.

Reserved.

Address of outfut queue.

Command code authorizaticn.

Corrmand grcuf 1 (Systerr).
Command group 2 (I/O).
Corrrnand grcuf 3 (CONS).
Reserved.

Reserved.

Disposition flags.

Master console.
Hard copy device/console •
Graphics.
Output only.
Console has full I/O capatility.
Console is in rressage stream only •

Offset
Lec Hex

44 2C

48 30

52 34

56 38

60 3C

62 3D

63 3E

64 40

68 44

69 45

Bytes and
Bit Pattern

· .1.
· •• 1

Byte 1

4

4

4

4

2

Eyte 0
1 ...
• 1 •.
.. 1.
· •• x

1 ••.
. 1 ..
· • x.
• •• x

Eyte 1

1

1

1 ••.
. 1 ..
· .1.
· .. 1

4

1

1 •••
.1 ..
•• 1.
• .• 1

3

1 •••
• 1 •.
· .1.
• •• x

1 .•.
.1 ..
· .1.
• •• x

Field
Narre

UCMDISPG
UC~LISFH

UCMAL'IEN

UCMOAOEN

UC~WIAST

UCMCOMPC

UC~~SG

UC~MSGA

UCz,(MSGB
UCMMSGC
UC~MSGD

UCz,(MSGE
UC~~SGF

UCMMSGG
UC~MSGH

UCMXOR

UC~DEVC

UCKCEVA
UCMDEVB
UC~DEVCC

UCMDEVD
LC~DEVE

r:CMDEVF
l::C~DEVG

r:CMDEVH

UCMMLAST

UC~SLS5

UC~SDS5A

UCMSDS5B
UC~SLS5C

UCMSDS5D
UC~Sr:S5E

UCMSDS5F
UC~SDS5G

UC~SDS5H

UCMRCT

Field DescriFtion, Ccntents, Meaning

Console is in status dis~lay only.
MCS.

Reserved.

Address of alternate input UCM entry.

Address cf alternate out~ut.

Address of last WQE entry serviced in output
queue.

Address of other device if console is composite.

Message flags.

Monitcr JOENAMES requested.
Monitor STATUS requested •
Monitcr ACTIVE.
Reserved.
SHOW requested.
Monitor SESS requested •
Reserved.
Reserved.

Reserved.

Zero.

Device ccntrel flags.

Full screen on graphics console.
Prepare corrmand issued .
Tested for console switch.
DOM issued.
I/O corrplete.
Modified DCM for DOM •
Halt I/O issued cn 2740.
Reserved.

Address of last rrinor WQE serviced.

status dis~lay flags.

MLWTO line: need to keep writing.
In~line cut~ut ~ending.
Out-of-line output pending.
Transient CCM tlocked.
Transient r:CM locked.
For CRT, UCM~lAST valid.
I/O hardware in output only.
Reserved.

Address of message routing ccntrol table.

Section 12: Contrcl Blocks and Tatles 359

UCM MESSAGE TEXT AND EVENT INDICATION LIST (EII.) AREAS

'Ihe following fields are used cnly if a user exit was s~ecified.

Offset Bytes and Field
Lec Hex Bit Pattern Narre Field Descriftion, Ccntents, Meaning

0 0 128 UCMMS'IX'I Message text (128 characters).

128 80 4 UCMROU'IC Routing cedes.

132 84 4 UC~DESCD Message descri~tor cedes.

136 88 64 UC~XTSAV Save area for IEECMWSV interface.

The following fields eenstitute the event indication list.

o o

1 1

2 2

3 3

4 4

8 8

12 C

16 10

20 14

24 18

28 lC

1 UCMEIL

1 UC~RPYI.

1 UC~RTCT

1

4

4

4

4

4

4

Variable

Length in doutlewords.

Last assigned re~ly IC.

Route count.

Reserved.

Address ef 2K NIP rressage tuffer.

Address cf external ECB.

Address of attention ECB.

Address of W'IO/R ECB.

Address of DOM ECB.

Address of RMS ECB.

List of all I/O ECE addresses. One word fcr each
console device srecified at system generation,
with a minimum of 2 entries. 'Ihe list is vari
able at SYSGEN only. Last entry has a high-crder
tyte = X'80'. (Maxirrurr of 128 bytes.)

The following field is only rresent when a 2740 is used as the system console.

Variable 72 UCMTPSAV Save area for 2740 Device SUffort Processcr.

360

WRITE QUEUE ELEMENT (WQE) FORMAT FCR MULTIPLE CONSOLE SUPPORT (SINGLE-LINE WTO)

The Write Queue Elewent (WQE) is a control tlcck re~resenting a message to ce written
to an operator's console. There are three forrrs of the WQE: the WQE (representing a
single-line write-to-operator (WTO) message), the ~ajcr WQE (representing the first line
of a multiple-line WTO message), and the Minor WQE (representing one cr rrore lines fol
lowing the first line of a multiple-line WTO rressage).

Offset
Lec Hex

o o

1 1

4 4

8 8

136 88

137 89

139 8B

140 8C

144 90

145 91

148 94

Bytes and
Eit Pattern

1

3

4

Variacle

1

1 ...
.1 ..
· .1.
· .. 1

2

1

1 ...
. 1 ..
•.. 1

1 ...
. xxx

1 ...
• .x. • xxx

4

1

3

2

Byte 0
1 .•.
. 1 •.
· .1.
• •• 1

1 .•.
• 1 •.
· .1.
· •. 1

Eyte 1
1 .•.

• 1 ••
· .1.
· .. 1

• xxx x •••

Field
Narre

WQEUSE

WQELKPTR

WQENER

WQETXT

WQEXA

WQEPURGE
WQEQFHC
WQERQE
WQEQCFHC
WQEXWTOR

WQETJID1

WQEAVAIL

RQEBUFA
RQEBUFB
RQEBUFD
RQEBUFE

WQEXE

WQERTCT

WQESEQN

wQEMCSF

WQEMCSA
WQEJ.I(CSE
WQEMCSC
WQEMCSD

WQEMCSE
WQEMCSF
WQEMCSG
WQEMCSH

WQEMCSI
WQEMCSN
WQEMCSC
WQEMCSP

Field Description, Contents, Meaning

WQE use count.

Address cf next WQE.

r<:essage l.ength.

Message text (rraxirrurr of 128 bytes).

Disposition flags.

Purge.
Queue for hard copy.
RQE exists fcr this WQE.
Queued for hard co~y.
WQE created for WTCR.
Reserved •

Time sharing user ID for swapped-out task.

Buffer flags.

Buffer is free.
Buffer is in use •
Buffer ottained dynarrically .
Euffer has been serviced.
Reserved.

Reserved fcr rcllout/rollin.

Routed WQE count.

24-bit ID sequence nurrber.

MCS flags.

Routing or descriptor codes exist.
UCM entry identifier passed in register O •
command response (includes hard copy).
WQE WQEMSGTP field to te used for message
identification.
Accepted reply to a WTOR.
Broadcast to all active conscles •
Queue for hard copy only.
Queue to UCM entry passed in register O.

Tirre starrp exists in message text.
Bypass hard copy queuing .
Reserved fer COM function.
Reserved for Graphics.
Reserved •

Section 12: Control Blocks and Tal::les 361

Offset Bytes and Field
Dec Hex Bit Pattern NaIlie Field rescriEtion l Contents I Meaning:

150 96 2 WQEMSGTP Message flags.

Eyte 0
1 ••• WQEMSGTA Monitor JOENAMES.
.1 •• WQEMSGTB Monitor STATUS.

1 ••• WQEMSG'IE r;isplay SHCW.
.1 •• WQEMSGTF Monitor SESSa

•• xx •• xx Reserved •

Byte 1 Reserved.

152 98 2 WQERCUT Routing codes.

154 9A 2 Reserved.

156 9C 1 WQECMIL Unique UCM entry ID.

157 9D 1 WQEPKE TCE key of WTO issuer.

158 9E 2 Reserved.

160 AO 2 WQEDESCD Descriptor codes.

162 A2 2 Reserved.

164 A4 4 WQETIME Tirrer elerrent.

362

MAJOR WRITE QUEUE ELEMENT (NCN-MCS)

Offset
Bec Hex

o

1

4

5

6

8

80

120

122

124

128

132

136

137

139

140

o

1

4

5

6

8

50

78

7A

7C

80

84

88

89

8E

8C

Bytes and
Bit Pattern

1

3

1

1 ...
• 1 ••
· .1.
• •• 1

1 ...
• ••...• 1.

. . . 1

1

2

72

40

2

2

. x ..

Eyte 0
1 .••
. 1 ••
•• 1.
• •• 1

xxxx

Eyte 1

4

4

4

1

1 .•.
. 1 •.
• .1.
• .. 1

2

1

1 ••.
.1 •.
• .1.
• .. 1

4

1 ••.
• xxx

1 ••.
• xxx

Field
Narre

W~JUC

wMJNXT

wMJMLW

WMJIHWA
W~JMlWB
"WMJMlWC
W~JlUWD
WMJMlWE
W~JMlWG

WMJMLWH

WMJAREA

WMJTXTI

WMJ'IXT

WIo!JRES

WMJSER

WMJLTYP

WMJlTYPA
WMJL'IYPB
W}1JlTYPC
WMJL'IYPD

WMJNXTM

WMJTCB

WMJMSGN

WMJDISP

WMJDISPA
WMJDISPE
WMJDISPC
WIv:JDISPD
WMJDISPE

W~JTJID

WMJBUF

WMJBUFA
WMJEUFB
WMJBUFC
WMJEUFD
WMJBUFE

WMJRCRI

Field Description, contents, Meaning

Use count for WQE.

Address of next WQE.

~LwTO flags.

Message disflayed.
Major •
Minor.
Chain altered.
WTl issued.
Chain to be serviced.
Minor queued has nc text •
Reserved •

Identifier of the display area te which the rres
sage is te te reuted.

Text length.

'Iext.

Reserved.

Previous line tYfes for error checking.

line type of message in text field.

Control line.
Latel line •
Data line •
End indicator.
Reserved.

Reserved.

Address of first miner WQE associated with this
IT.a jor WQE.

Address of the TCE that issued the MLWTO.

Message identification nUITber assigned tc the
MLWTO.

Disposition flags.

Purge this WeE.
Queue for hard cOfY •
'Ihis wQE has an RQE.
Queued for hard copy.
WQE is for a W'ICR.
Reserved •

TSC user identifier.

Buffer status flags.

Buffer space availatle.
Euffer space in use.
Reserved.
Buffer sface acquired ty GETMAIN.
WQE serviced.
Reserved •

Information pertaining to rellout/rollin.

Section 12: Control Blocks and Tatles 363

MAJOR WRITE QUEUE ELEMENT (MCS)

Offset
Lec Hex

o

1

4

5

6

8

14

15

19

20

92

110

112

120

122

124

128

132

136

364

o

1

4

5

6

8

E

F

13

14

5C

6E

70

78

7A

7C

80

84

88

Bytes and
Bit Pattern

1

3

1

1 .••
.1 •.
· .1.
• •• 1

1

2

6

1

4

1

72

18

2

8

2

2

1 .•.
.1 •.
•. 1.
. . . 1

Byte 0
1 •..
• 1 ••
· .1.
· •• 1

xxx x

Byte 1

4

4

4

1

1 •••
• 1 ••
•• 1.
••. 1

Field
NaIlie

WMJ1WC

wMJMNXT

wMJMMLW

WMJz.1z.1LWA
wMJMMLWB
Wz.1J~MLWC

WMJz.1z.1LWD
WMJMMLWE
WMJz.1z.1LWF
wMJMMLwG
WMJ~z.1LWH

WMJMAREA

WMJ~TXTL

wMJMTS

wMJMPAD

WMJMRR

WMJ~PAD1

WMJMTXT

WMJMRESA

WMJMSER

W~Jz.1CONS

WMJMRESB

WMJMLTYP

wMJMLTYPA
W~JMLTYPB

W~J~ITYPC

WMJMLTYPD

wMJMMIN

WMJMTCB

WMJMMSGN

W~JMDSP

W~JMDSPA

WMJMDSPB
Wz.1J~LSPC

WMJMDSPD

Field Description, Contents, Meaning

WQE use count.

Address of next WQE.

z.1LwTO flags.

Entire first rrinor availatle.
Major.
Minor.
Chain altered.
WTI issued.
(For IEECMWSV) start at tOf cf chain.
Chain to te serviced.
Minor queued has nc text •

Identifier of the disflay area to which the dis
flay is tc te routed.

Text length.

Time stamp for hard cOfY messages.

Reserved.

Routing codes for hard copy messages.

Break for hard cOfY text.

Text of the message to be fassed to the Cferatcr.

Reserved.

Previous line tYfes for error Checking.

Frarring indicators (for display consoles).

Reserved.

Line tjpe of line in text field.

Control line.
Latel line •
Data line.
End indicator.
Reserved.

Reserved.

Address of first minor WQE chained to the major
WQE.

Address of the TCB that issued the MLWTO.

Message nurrter assigned to the MLWTO.

Dispositicn flags.

Purge the WQE.
Queue for hard cOfY •
This WQE has an RQE •
Queued fcr hard cOfY.

Offset
Bec Hex

137 89

139 8E

140 8C

144 90

145 91

148 94

149 95

150 96

151 97

152 98

156 9C

157 9D

158 9E

160 AO

164 A4

Bytes and
Bit Pattern

2

1

1 ••.
· 1 ..
· .1.
· .. 1

4

1

3

1

1 ...
• 1 •.
· .1.
• •• 1

1

1 ...
.1 ..

1 ...
. xxx

1 ...
• xxx

1 .•.
.1 ..
• .1.
· •• 1

.1 ..
· .1.
· •. 1

• • xx x ••.

1

1 ...
.1 •.
· .1.
· .. 1

1

4

1

1

2

4

4

1 ...
• 1 ••
• • xx

Field
Narre

wMJMI:SPE

w~JMTJID

WMJMBUF

wMJMBUFA
w~J~EUFB

wMJMBUFC
wMJMEUFD
WMJMBUFE

WMJMRCRI

WMJMR'ICT

WMJMSEQ

W~J~CSl

WMJMCS1A
wMJMCS1B
WMJMCS1C
WMJMCS1D
W~JMCS1E

wMJMCS1F
W~J~CS1G

WMJMCS1H

WMJMCS2

WMJMCS2A
wMJMCS2B
W~JMCS2F
WMJMCS2G
W~JMCS2H

WMJMM'Il

WMJM~T1A

wMJMMT1B
WMJMMT1C
wMJMM'I1D
WMJMTT1E
WMJM'IT1F

WMJMR'IC

wMJMUID

WMJMTID

W~JMRESC

WMJMDEC

WMJM'IIM

Field DescriEtion, Contents, Meaning

WQE is for W'ICI<.
Reserved •

'ISO user identifier.

Status flags of the buffer used by the WQE.

Buffer s~ace available.
Euffer in use.
Reserved.
Buffer acguired by GE'IMAIN.
WQE serviced.
Reserved .

Information fertaining to rollout/rollin.

Routed wQE count.

Sequence number assigned to message.

MCS flags.

Routing or descriptor codes exist.
UCM entry ID ~assed in register o •
Command response (hard co~y).
WMJMM'Il field indicates rressage type.
Accepted reply to wTOR.
Queue to all active consoles.
Queue to hard co~y only.
Queue to UCM entry passed in register o.

MCS flags.

Tirre starrp in rressage text.
WQE represents a multi~le-line message.
Ey~ass hard cCfY gueuing.
Reserved for DCM.
Reserved fcr gra~hics.
Reserved.

'Iy~es cf rressages the WQE represents.

Display JOENAMES.
Display S'IATUS.
Monitcr ACTIVE.
Reserved.
SHOW requested.
Monitor SESS •
Reserved.

Reserved.

Routing codes assigned to message.

UCM entry ID.

TCE key of the task that issued the WTO/R.

Reserved.

Descri~tor codes assigned to message.

'Iirrer elerrent.

section 12: Control Blocks and Tables 365

MINOR WRITE QUEUE ELEMENT (NCN-MCS>

Offset
Cec Hex

o o

1 1

4 4

5 5

7 7

8 8

12 C

84 54

136 88

137 89

139 8B

140 86

366

Bytes and
Bit Pattern

1

3

1

1 ••.
. 1 ..
•• 1.
• •. 1

2

1 •••
· .1.
· .. 1
• x ••

Eyte 0
1 ••.
. 1 ..
· .1.
· •• 1

xxxx

Byte 1

1

4

72

52

1

1 •..
. 1 ..
• .1.
· .. 1

2

1

1 ...
. 1 •.
• .1.
• .. 1

4

1 ...
• xxx

1 ...
• xxx

Field
Name

W~NUC

WMNEXT

WMNMLW

WMNMI.WA
WMNMLWB
Wl'!Nl'!I.WC
WMNMI.WD
W~NMI.WE

WMNMLWG
WMNMI.WH

WMNLT

WMNI.TA
WMNLTB
WMNI.'IC
WMNI.TD

WMNTXL

WMNHC'I

WMN'IXT

WMNRESA

WMNDISP

WMNDISPA
WMNCISPE
WMNDISPC
WMNDISPC
WMNDISPE

WMNTJIC

WMNBUF

WMNBUFA
WMNBUFB
WMNBUFC
WMNBUFD
WMNBUFE

WMNRCRI

Field Description, Ccntents, Meaning

Use count for the rrinor WQE. This use count is
set equal to the use count of the major WQE when
the MLWTO is queued. As each console finishes
with the line represented by the mincr WQE, the
use count is decrerrented by 1. When the use
count equals zero, the WQE is ready to be rerrcved
frcm the systerr.

Address of the next rrinor WQE.

Flags pertaining to the rressage represented by
the rrinor WQE.

Message displayed.
Major •
Minor •
Chain altered.
WTL issued.
Chain tc be serviced.
GETMAIN issued for minor.
Reserved.

Flags indicating the line type of the text field.

Control line.
Label line •
Data line.
End indicator.
Reserved.

Reserved.

Length of message in text field.

Hard copy identifier.

Message to be ~assed to operator.

Reserved.

Disposition flags.

Purge this queue.
Queue for hard ccpy •
This WQE has an RQE.
Queued fcr hard ccpy.
This WQE is for a WTCR.
Reserved •

TSO user identifier.

Flags indicating the status of the buffer used by
the WQE.

Euffer available.
Buffer in use •
Reserved.
Buffer acquired by GETMAIN.
WQE serviced.
Reserved •

Inforrration ~ertaining to rollout/rollin.

MINOR WRITE QUEUE ELEMENT (MCS)

Offset
Dec Hex

o o

1 1

4 4

5 5

7 7

8 8

12 C

84 54

85 55

88 58

89 59

91. 5E

92 5C

96 60

Bytes and
Bit Pattern

1

3:

1

.1 •.
· .1.
· .. 1

1 ...
· .1.
• •. 1

x. •• • x ••

2

Eyte 0
1 ...
• 1 ..
· .1.
•.• 1

xxxx

Byte 1

1t

4

72

1

3

1

.1 ..
• .1.
· .. 1

1 .•.
· .1.
· .. 1

x. •• • x ••

2

Byte 0
1 ••.
. 1 ..
· .1.
· .• 1

xxxx

Eyte 1

1

4

72

Field
Narre

WMNMUCl

WMNMNX1

WMNMMLl

WMNMML1B
WMNMML1C
WMNMML1D
W~NMIU1E
WMNMML1G
WMN~~L1H

WMN~LT1

WMNMLT1A
WMNMLT1B
WMNMLT1C
WMN~lT1D

W~NMTL1

WMNMHCT1

WMNM'IX'I1

WMNMUC2

WMNMNX2

WMN~~L2

W~N~ML2B

WMNMML2C
WMNMIU2D
WMNMML2E
WI'm~~L2G
WMNMML2H

WMNMlT2

WMNMLT2A
WMNML'I2B
WMNMLT2C
WMNML'I2D

WMNM'IL2

WMNHCT2

WMNMTXT2

Field rescri~tion. contents. Meaning

Use ceunt for the rressage in the Text 1 field.

Address ef the secend half of the WQE (address of
WMNMUC2) •

MLWTO flags fer the rressage in the Text 1 field.

Major.
Minor.
Chain altered.
WTL issued.
Chain te te serviced.
GETMAIN issued for miner.
Reserved.

Line tYfe ef rressage in the Text 1 field.

Contrel line.
latel line •
Data line.
End indicator.
Reserved.

Reserved.

Length of message in the Text 1 field.

Hard copy ID fer the rressage in the Text 1 field.

Text ef the first rressage fassed to the operator
ty this WQE.

Use count for the rressage in the Text 2 field.

Address ef the next «inor WQE.

MLWTO flags fer the rressage in the Text 2 field.

Major.
Minor.
Chain altered.
WTI issued.
Chain to te serviced.
GETMAIN issued for minor.
Reserved.

Line type of message in the Text 2 field.

Contrel line.
.Latel line •
Lata line.
End indicator.
Reserved.

Reserved.

length of message in the Text 2 field.

Hard cCfy ID fer the rressage in the Text 2 field.

Text of the second rressage passed to the of era tor
ty this WQE.

Section 12: Contrel Elecks and Tatles 367

WTO/R MACRO EXPANSION

Offset
Bec Hex

ViTOR Prefix

-8 -8

-1 -1

-4 -4

a a

1 1

2 2

4 4

n n

n n

n n

n n

n n

368

Bytes and
Bit Pattern

1

3

4

1

1

2

Byte a
1 ...

. 1 •.
· .1.
· .• 1

1 .•.
• 1 ••
· .1.
•• . 1

0000 0000

Byte 1
1 ...

.1 ••

· .1.
· .. 1

• xxx x •••

Variable

2

2

1

1 ••.
. 1 •.

1 ...
• 1 ..

• .xx •• xx

1

2

Field
Narr,e Field Description, Contents, Meaning

Length of reply.

Address of requestor's reply buffer.

Address cf requester's reply ECB.

Zero.

Output message length + 4.

MCS flags.

Routing and descri~tcr fields exist. (New WTOR/R
Expansion.)
UCM entry identificaticn passed in register o .
Corrmand respcnse.
Message Type Flags field exists.
This WTO is a reply to a WTOR.
Broadcast to all active consoles •
Queue for hard ccpy cnly.
Queue to UCM entry passed in register O •
No routing or descriptor fields exist.

Time stamp exists in rressage text.
Bypass hard ccpy queuing (protect key zero users
only).
Reserved fer BOM function.
Reserved for graphics.
Reserved •

Message ID and message text area (maxirrurr cf 128
bytes).

16-bit descriptor code.

16-bit routing code.

Message Type Flags.

Monitor JOENAMES.
Monitor STATUS •
Bisplay SHOW.
Monitor SESS •
Reserved.

Reserved.'

SVC 35.

~UlTIPLE-LINE WTO MACRO EXPANSION

Offset
Dec Hex

o o

1 1

2 2

4 4

Variable

Variable

Eytes and
Bit Pattern

1

2

2

Byte 0
1 ...
. 1 ..
• .1.
· .. 1

1 ...
. 1 ..
· . 1 .
• •• 1

Byte 1
1 •••
. 1 ••

· 1 •.

• .1.
• •. 1

• .xx x ••.

Variable

2

Byte 0
1 •••
• 1 ••
• .1.
• •• 1

1 •••

• 1 •.
· .1.

• •• 1

Byte 1
1 .•.
. xxx xxxx

2

Eyte 0
1 •••
. 1 . .
· .1.
· .. 1

1 ••.
• 1 •.
• .1.
• •• 1

Field
Nane

wTOMK1

WTOLNT1

wTOMCSF

WTOTXT1

WTCDESC

WTCRCUT

Field Iescriftig~ccntents, Meaning

One-tyte flag set to zeros. It signifies the
start cf a new text field.

Length of Text 1 + 4.

MCS flags.

Route and descriptor fields exist.
UC~ entry identification passed in register o •
command response.
Message tYfe flag field exists.
This WTO represents a reply to a WTOR.
Broadcast to all active consoles.
Queue for hard copy only.
No route or descriftor code field exists.

Tine stamp exists in nessage text.
Multiple-line WTO •
Bypass hard copy queuing (protect key zerc users
only).
Reserved for DCM function.
Reserved fcr graphics.
Reserved.

First line of wTC text.

Descriptor codes.

Systen failure - another IPL is required.
Immediate operator action is required •
Eventual acticn required.
System status is indicated by the message.
Innediate conn and response - for error and non
error messages that are written as a result of an
operatcr or system conm~nd.
Jot status indicated by the nessage •
Apflicaticn prcgran/processor - for messages
issued by a problen progran and processors
executed as prctlen programs.
Operator request for status information.

Out-of-line message.
Reserved .

Routing codes.

Master console.
Master console infornational •
Tape pcol conscle.
Direct access pool console.
Tape litrary pcol console.
Disk library pool console.
Unit reccrd pccl ccnsole.
Teleprocessing control.

Section 12: Control Blocks and Tatles 369

Offset
Dec Hex

Variable

Variable

Variable

Variable

Variable

Variable

Variable

Variable

Variable

Variable

Variable

Variable

Eytes and
Bit Pattern

Eyte 1
1 ...
. 1 ..
.. 1.
• •• x ••• x

xxx.

2

Eyte 0
1 ...
. 1 ..
· .1.

. 1 ..

. . 1 .
• •• x x •• x

Eyte 1

2

1

1

1

1

2

Varial::le

1

1

2

Varial::le

Each subsequent text field

370

Field
Narre

WTCMSGT

"WTOL'Il

WTCAID

WTCLCT

WTOMK2

"WTOLNT2

WTCLT2

WTCTXT2

WTOMK3

WTOLNT3

WTCLT3

WTCTXT3

is ~receeded

Field rescri}:::tion, Contents, Meaning

System security.
System error/maintenance •
Pregrarrrrer infcrrratien console •
Reserved.
User rcuting cedes.

Message ty~e flags.

Bisplay JOENAMES.
Display STATUS •
Moniter ACTIVE.
Display SHCW •
Moniter SESS •
Reserved.

Reserved.

Line ty~e cf Text 1.

Area identifier for routin~ of the out-of-line
status dis~lay represented by the multiple-line
WTO.

Number of lines in list.

Next line lI'arker.

Length of Text 2 + 4.

Line tn:e cf Text 2.

Second line of WTO text.

Next line rr,arker.

Length of Text 3 + 4.

Line ty~e cf Texi;. 3.

Third line of WTO text.

l::y four bytes of inforrration.

MACHINE CHECK RECORD FeR SERO ANI: SER1

SERO and SER1 produce two ty~es of record entries ccrres~ending to the two types of
errors ~rocessed: machine-check and channel errors. Record size varies with the tYfe of
record and the machine model.

Offset
I:ec Hex

o o

1 1

2 2

6

7 7

8 8

12 C

16 10

17 11

20 14

Bytes and
Bit Pattern

1

1 ••.
xxxx
X1CX:X •• 1.
xxxx 1 •••
xxxx 1 •• 1
xxxx 1.1.
xxxx 1.11

1

· •• x xxxx
•• 1x xxxx

Bits 3-7
O-lF

4

Byte 0
1 ...
0 •••
. 1 ..
· .1.

1 ••.
••• x • xxx

Byte 1
1 •••
. 1 ..
• .1.
· .. 1

1 ...
. 1 •.
• . 1.
• • • x

Bytes 2-3

11

xxxx

1

4

4

1

3

2

xxxx

Field
Narre

CLASRC

SYSREI.

SWI'ICHES

RCr:CNT

J:ATE

Tlfo!E

CPUSER

CPUII:

Field DescriFtion, Ccntents, Meaning

Machine check recerd.
MCH.
Converted fo(CH.
SER1.
SERO.
Converted SER1.
Cenverted SERO.

as.
I:OS.

Release level 0-31.

More records fellow.
I.ast recerd.
'Iime-of-day cleek •
Extended ccntrel ffcde.
'Iime macro used (HHfo(fo(SS).
Reserved •

Shert ferrr of record.
Record incomplete •
Systerr terrrinated.
First record of twe record recording.
Channel record included.
Portion of data overlayed •
External rrachine check •
Reserved •

Reserved.

Sequence num~er of a physical record.
'Iotal nurrter cf ~hysical records in this logical
record.

Reserved.

The systerr date the record was made.

The system time the record was rrade.

Reserved.

CPU serial nuu:ter (System/370 only).

CPU identifier.

section 12: Control Blocks and Ta~les 371

Offset
Dec Hex

22

24

32

40

48

16

18

20

28

30

Variable

372

Bytes and
Bit Pattern

2

8

8

8

Variable

Variable

Field
Narre

MCEILNG

PROGID

JOEID

PSw

LOGOUT

I;AMAGE

Field rescriFtion, Contents, Meaning

Maxirrurr rrachine check extended log length
(Systerr/370 cnly>.

The module name of the program being processed
and/or requesting service at the time of the
error.

~he narre assigned to the job being executed at
the time of the failure.

~he machine check old Psw.

Register ccntents and hardware logout inforrra
tion. Logout size and format is model dependent.

Recovery ~anagement Support's assessrrent cf
darrage to the system.

STORAGE UTILIZATION BLCCK (SUE)

The storage utilization block (SUB) contains infornaticn fertaining to graphics con
soles that have been designated system operator's consoles. ~he SUB also contains R~S
and SER channel programs used in system recovery frocedures.

Offset
I:ec Hex

o o

1 1

2 2

Bytes and
Eit Pattern

1

1 ...
• 1 .•
. . 1.
• • • 1

1

1 ••.
• 1 •.

2

1 •••

1 ••.
. 1 •.

Field
Narre

SUBDAIO

SUEFLGS

SUENU~

The following address constants are

4 4 4 SUBDOM

8 8 4 SUEPEASE

12 C 4 SUETIOT

16 10 4 SUESPACE

Field DescriFtion, Contents, Meaning

Status flags of the I/C routine.

I/O routine in use.
Read in process •
Write in frocess •
Expecting control record •
PFK write in frocess.

Routing flags.

Exit to Processor 1 routine •
Initialize SUE on first entry.
Write FFK updates.
PFK keys are sUfforted •

Nunber of transient consoles.

always generated:

Address of the SUBKEY field of the SUB.

Address of the tase DC~.

Address of the task I/O tatle (in the transient
DC~ control tlcck of the SUB).

Address of the SUB wcrk area (SUBAREA field of
the SUE).

The following address constants are only generated if transient DC~s have been defined
for the system:

20 14 4 SUEQUE

24 18 4 SUEBIDI

28 lC 4 SUEBLK

32 20 4 SUBPFKAD

36 24 Variable SUEAREA

n n Variable SUEKEY

n n Varial:le SUEREQ

n n Variable SUETTR

Address of the r;CM request queue (SUBREQ field of
the SUB).

Address cf the r;CM ELDL list (SUB~TR field of the
SUB) •

Address of the DCB (in the transient DCM control
1:lock of the SUE).

Address of the PFK area.

Work areas required 1:y the SUB including a CXSA
save area, a wcrk area, and two register save
areas.

Delete-operator-message (DOM) elerrents. Each DOM
element is two bytes in length: there is cne ele
ment for each display console in the system.

DCM request elements. Each element is twc full
words in length; there is one element for each
console in the systen that has a transient DCM.
~he first word contains the address of the conso
le's UCMENTRY; the second word contains the
address of the DCM in auxiliary storage.

Marks the end cf the request queue.

Section 12: Control Blocks and ~atles 373

Offset
I:ec Hex

Bytes and
Bit Pattern

Field
Nan·e Field rescriFtiQ!!.L Contents, Meanigg:

~he following areas contain RMS/SER channel ~rcgrans used in system recovery procedures.
The only areas ex~anded are those areas that su~port the ty~e of dis~lay consoles in the
systems.

n n

n n

n n

n n

n n

374

Variable

Variable

Variable

Variable

Variable

SUE2260

SUE5450

SUE2250

RMS/SER channel ~regrans for 2260 display con
soles. ~his area is expanded only if the systen
includes ene er nore 2260 dis~lay consoles.

RMS/SER channel pregrans fer the Model 85 and
Model 165 c~erator cens9les. This area is
expanded only if the systen includes a Model 85
or Model 165 display o~erator console.

RMS/SER channel ~regrans for the 2250, Models 91
and 195 display operator consoles. ~his area is
ex~anded enly if the system includes one or more
of these consoles.

~ransient DC~ Control Elocks - contain informa
tion pertaining to reading and writing transient
DC~s. ~his area is ex~anded only if transient
r;CMs are included in the system.

BASE DCM - executable code which gains ccntrol
whenever an S~I~ER interval elapses. This rou
tine sets flags in the DCM and ~osts the DCM fcr
the Tiner Inter~reter routine.

rll
(1)
n
rt
o
::s
....
N

()
o
::s
rt
Ii
o
I-'

tIl
I-'
o
(')
~ en
III
::s
Q.

t-3
III
IT
I-'
(1)
en

w
~
VI

JOB SlIIPLDIIP

COIIPLETIOI CODE

STEP GO

OSER = 0100

TIllE 001030

PSI .Ar EURl! TO ABEID FFF5000D 4005AFD6

TCB 03D340 RBP 0003BC68 PIE 00000000 DEE
ass 01040268 PK-FLG 1'0850400 FLG
FSA 010681'68 TCB 0003B740 T!lE

DATE 99366 PAGE 0001

0):>3B5D4 TIO 00030850 CMP 80)00064 TRN 00000000
0»01B1B LLS 0003E2DO JLB 00000000 JPQ 0003D948
0(00)0)0 JST 0003D340 NTC 00)00000 OT: 0003D170

LTC 0003B660 IQE 00000000 ECB 0003DCF4 STA 20000000 D-PQE 00040258 SQS 0003 B460
ISTAE 00000000 TCT 0003BDOO USER 0»0)0)0 DAR 00000000 RESV 00)00000 JSCB 8703D538

ACTIVE RBS

PRB 03E7BO RESV 00000000 APSW 00000000 WC-SZ-STAB 00040082 FL-CDE 0003FEBO PSK FFF50)OD 4005AFD6
QlTTR 00000000 IIT-LNK 0003D340

SVl!B 03D418 UB-LH 00180220 APSIl F9FOF1C3 WC-SZ-STAB 00120002 rQN 00000000 PSK 00040033 5001902A
Q/TTB 00011113 i/T-LNK 0003E7BO
RG 0-7 00000030 80000064 0003E368 0)000001 00030968 00030770 0003D8BC 0003E108
RG 8-15 0003DCDO 0003BDOO 0003DCF8 0)000000 40070482 0105A050 0001MCA OO)OOOOC
EITSA 000029BE 8F068E70 00000000 0)000000 FF030)00 0003D4F4 0003D4FC E2E8E2C9

C5C1POF 1· C9C5C140 C1C2C5D5 CIIF90000

SVBB 03BC68 TAB-LI 005803C8 APSW F1FOF5C1 wc-sz-srAB 00120002 rQN 00000000 PSi FF04000: 5005BFA6
Q/TTR 00010BOD WT-LNK 0003D478
RG 0-7 001058BO 00030408 80018F42 0)01A880 0003034::1 00030478 0403D340 00030478
RG 8-15 0003D340 40018E8A 00030340 8F068E70 0)030894 0003MFC 400HH8 00000000
EITSA E2E8E2C9 C5C1FOF1 00000000 0::1000000 00000000 OOOOOJOO 0000)::100 00000000

00000000 00000000 000C1901 8JOOOC18

LOlD LIST

HE 0003E488 RSP-CDE 0103D948 HE 0003E75) RSP-CDE 01:l3E650 HE 0003E898 RSP-CDE J103FB58
HE 0003E8AO RSP-CDE 0103FA98 HE 0003EBEO RSP-CDE 0103FA68 HE 00038BE8 RSP-CDE 0103FA38
HE 00000000 BSP-CDE 01031'908

CDE

031EBO &TB1 OB NCDE 03ECA8 ROC-RB 0003E668 NK GO USE 03 EPA 05A050 ATR2 20 XL/KJ 03FEAO
03D9118 ATII1 03 NCOE 03E650 ROC-BB 00000»0 Nil IGCOA05A USE 01 EPA 05B858 ATR2 20 XL/KJ 030838
03E650 ATR1 03 NCDE 03FEBO ROC-RB 00000»0 Nil IGCOA05A USE 01 EPA 05B058 ATR2 20 XL/IIJ 038490
031B68 ATR1 BO NCDE 03FBA8 ROC-RB 00000»0 NK IGG019CD USE 02 EPA)1CC90 UR2 20 XL/KJ 03FB58
03FA98 &TR1 BO NCDE 03FAD8 ROC-RB 00000») Nil IGG019CJ USE 02 EPA nC3BO ATR2 20 XL/KJ 03FA88
03FA68 ATB1 BO NCDE 03FA98 ROC-RB ooooono NIl IGG019BA USE 02 EPA :>1C208 ATR2 20 XL/KJ 03FA58
03FA38 ATR1 BO HCDE 03FA68 ROC-RB 00000)00 NK IGG019BB USE 02 EPA 01C828 ATR2 20 XL/KJ 03FA28
031908 ATR1 BO HCDE 03F938 ROC-RB 00000)00 NK IGG019AV USE 01 EPA J1BBBO ATR2 20 XL/KJ 03F8F8

. ! d.~

IL LN ADR LN ADR LH AOR

03FEAO SZ 00000010 NO 00000001 80000280 0)05A050

iCll
~
~
I'd
t-t
t>::I

t:1
C
3:
I'd

--I'd
III
Ii
rt

I-'

o
HI

N

'"

W
..J
0'1

03D838 SZ 00000010 NO 00000001 800007A8 0)05B858
03E490 SZ 00000010 NO 00000001 800001A8 0)05B058
03PB58 SZ 00000010 NO 00000001 80000210 0001CC90
03FA88 SZ 00000010 NO 00000001 80000220 0)01C3BO
03FA58 SZ 00000010 NO 00000001 80000118 0)07C208
03FA28 SZ 00000010 NO 00000001 80000128 0)07C828
03P8P8 SZ 00000010 NO 00000001 80000080 0:>01BBBO

DEB

03B510 0000651~ 00:>06518 00006518 0001C3BO
03B5CO 00006518 00000000 00000106 00002BEO 11000000 04)3D340 1003D67B BBOOOOOO
03B5EO 8pOOOOOO 01000000 1BOOOOOO PP068E10 0403B5B:> 1BJ0206C 00000003 0005000D
038600 00040064 00010001 00000000 00000000 0000007D C2:2C2C1 C3D1:3C4 00000000
03B620 00000000 00000000 00000000 00000000 0000000:> 002307DO

DEB

03D66:> 00000000 00000000 00003BEO 07JOOOOO 0003D340 00000000
03D680 08000000 00000000 00000000 00000000 OF05AE9J)0)00000 0000»)00)0000000

fIOf JOB SAIIPLDI!P STEP GO PROC TEsr
DD 14040140 PGII=*.DD 00011400 BOO02818
DD 14000040 SNAPPER 00011800 0000)000
DD 14040140 SYS1BEND OOOBOFOO 30J0206C
DD 14040100 DELETE 000B1100 80002818

I!SS ************ SPOE ************ *************** DOE ***************
PLGS NSPOE SPID DOE BLK PQE LN NDQE

040268 00 040398 251 03ED08 00051800 00051800 00000800 0003DC10
00058:>00)005BOOO 00000800 0003D828
00058800 :>005B800 00000800 00000000

040398 00 0401B8 252 0401CO 0006900))0069000 00000800 00000000
0401B8 CO 000000 000 040210
040210 60 000000 000 03FF18 0006330))0068800 0000080) 0003D650

00063000)0068000 00000800 00000000

D-POE 00040258 FIRST 00040218 L1Sf 00040218
POE 040218 PFB 0005COOO LPB 0005COOO NPQ 000000» PPQ 00000000

fCB 0003D170 RSI OOOOFOOO RID 00051800 FLG 0000

PBQE 05COOO NPB 00040218 PPB 00040218 SZ OOOOCOOO

OCB fR1CE

IlAJ 03DC88 NI!IJ 00000000 P1UJ 0001ECB8 FI!IN 0003J):28 NI! SISIEA)1

IIIN 03DC28 PQEL 0003DC18 PI!IN 0003DC88 NI!IN 00000000 NI! PO lEA

NQEL 00000000 PQEL 0003DC28 TCB 0003D34) SVRB 0003BC68

'. ,

P1GE 0002

., 0 " ••••• 0 •••••••• c.
*. , , , ! , ~ ! ! t , , ! ! , e. ,. 'II! ,. J. •• o. ! , , ., ~
* " ". " *
*. , " ! , !I. , , ! , ! , t ,. , II! , • ~B BACJCD. , ! I! ~
* , , ,. , I! ,. ,~ " ,~ • -.: , , ,~*

* .•• "!I~_.!""'.'.'t!'~'!'.J, .!!.~
$: •••• It ••••••••••• " ••••••••••••••• *

******* F~E ********
NFQE LN

00000000 00000550
00000000 00000058
00000000 00000058
00000000 000001F8

00000000 00000538
00000000 00000110

en
:too
~
'"d
t-I
t<1

g
:s:
'"d

I'd
III

::l-
I'\.l

o
HI

I'\.l
0'1

en
m
(')
rt
0
t::!

f->
r0

()
0
t::!
rt
Ii
0
I-'

tIl
I-'
0
(')
:0;-
en
III ::s
a.
to=!
III
IT
I-'
m
Ul

w
-.I
-.I

SAVE AREA TRACE

INTERRUPT AT 05AFD6

PROCEEDING BACK VIA REG 13

SA 05AD50 iD1 90ECDOOC
R1 12FFq780
R7 D038q7FO

HSA 18DF4500
R2 D02E0700
R8 F0243088

LSA D012E2EIl
R3 1I7FOD028
R9 0005ADAli

RET C21101l0qO
Rl B0000065
a10 00000000

EPA 1I01l0q110
R5 5B10002q
R11 00000000

NUCLEUS

000000 00000000 00000000 00000000 00000000 0001A83~ OOJOOOOO 010110080 B00755CE
000020 FFOQ0001 Q002645C 00000000 00000000 OOOOFFOO 00000000 FF060233 80000000
0000110 00018A38 OCOOOOOO 00006E90 0001A880 083C2CD5 00~OF19B OOOQOOOO ~0016EEO
000060 OOOQOOOO 00017690 00040000 00016FDE 00000000 000229E8 OOOQOOOO 00016F6A
OOOOBO 000229EO 00000000 00000000 00000000 OOOOOOOJ 00)00000 00000000 JOOOOOOO
OOOOAO 00000000 00000000 10000060 000311148 FFOOOOOO 00000000 00000000 00000000
OOOOCO 00000000 00000000 00000000 00000000 00000000 (0)00000 00000000 00000000

LINES 0000EO-000140 SAME AS ABOVE
000160 00000000 00000000 00000000 82000170 OOOQOOOO OOJ7110CO 00000000 00000000
000180 OOOQOOOC 5005BFA6 0000018A 018A01BA FF000190 FF)00190 0006BBOO 0006B038
000110 OOOOOOCO 0005BB1C 000303QO 9005B9A8 0005B85B 3003B1I68 0003B501 00DFQ500
0001CO 0000078A A005B99C Q0018AQ2 000680QC 1I005BB3B 0007C828 00000000 00000000
0001EO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

LINE 000200 SAllE AS ABOVE
000220 000068FO 00000000 07000700 07000700 07000700 07)00700 0700~700 07J00700
0002QO 07000700 07000700 OOOOFFOO 00000008 07010000 OOFOFOFO 10000808 00003000
000260 OOOOFFOO 00010010 2B020000 00FOFOF1 56904092 00000000 0008FFOO 0002001B
000280 06030000 00FOFOF2 10800809 00000000 06007CFa 00J07000 0008FFOO 30030018
0002AO 08040000 00FOFOF3 1000080B 00000000 06007010 00J07D18 OOOOFFOO 00050010
0002CO 2B050000 00FOFOF5 56904092 00000000 OOOOFFOO 00)60010 2B060000 00FOFOF6
0002EO 56904092 00000000 OOOOFFOO 00070010 2B070000 OOFOFOF7 569~4092 00000000
000300 OOOOFFOO 00080010 2B080000 00FOFOF8 56904092 00000000 0000FF82 0009000B
000320 OQ090004 00FOFOF9 10000820 520COOOO 0000FF30 30)COOOB OOOAOOOO OOFOFOC3
000340 10000801 52CCOOOO 0000FF80 000DOO08 ODOBOOOO OOFOFOC4 10000802 00000000
000360 0000FFB8 000E0008 070COOOO 00FOFOC5 1000080B 52DCOOOO 0008FFOO 000F0020
o 003BO 070DOOOO 00FOFOC6 10800808 00000000 0200033E 30)07D20 OOOOFFOO 00100008
0003AO 070EOOOO 00FOP1FO 10000808 00000000 0008FFOO 00120018 OBOFOOOO OOFOF1F2
0003CO 10010806 00000000 06007030 00007038 0008FFOO 0013001B OB100000 JOFOF1F3
0003EO 10010BOC 00000000 06007D48 00007050 OOOOFFOO 001BOOOB 07110000 00FOF1F8
000400 10000808 00000000 OOOOFFOO 00190008 OD120000 00FOF1F9 10000B01 00000000
000420 OOOOFFOO 001A0008 OD130000 00FOF1C1 10000B02 00)00000 OOOOFFOO)01FOOOB
000440 OQ1QOOOO 00POF1C6 10000820 00000000 OOOOFFOO 00210010 29150000)OFOF2F1
000460 55114011 00000000 OOOOFFOO 00220010 29160000 00FOF2F2 511111051 00000000
000480 OOOOFPOO 00230010 29170000 00FOF2F3 55114011 00)00000 OOOOFFOO 00240010
OOOQAO 29180000 00FOF2F4 55114011 00000000 OOOOFFOO 00250010 29190000 00FOF2F5
0004CO 55114011 00000000 OOOOFFOO 00260010 291AOOOo OOPOF2F6 511111)11 00000000
0004EO OOOOFFOO 00270010 291BOOOO 00FOF2F7 55114011 00000000 OOOOFFOO)028000B
000500 071COOOO 00FOF2F8 10000808 00000000 OOOOFFOO 00290008 00100000 OOFOF2F9

RO 02860A29
R6 OAOOQWO
R12 00000000

PAGE 0003

*.!." ,. *
*. , ~! - •• ~ ! "'!! , , ,. ,. !I -: ,Io ,! ,. , ~ , , 'II!! ~
* •••••••••••••••••••••• 1 ••••••••• *
*.,~!!'~'!"'" ,.,~,~,~,J •. ,~"'~~ * " *
*"!'! ,II. II II!! ,. II!.,! ~. ~. , ••••••••••••• *
*.,.!!' •• "'!!!'.,~,.,.'!' .. ,.'!'.!

*. 'II! , '!! #J. , ! '" II!! , t ,. ,,, '" '". ,. '" '" II!! ! '" *
*" " " " " " " " " " " " " " "" ,," "" "" " " " " " " " " " " *
*"!"'.111"~ .t'.'.'.''''~· · .. *
*.'111"' •• " 'II! , , ,,, • " ,,, '" til, II! "II!.' ! "" *
*" " " " " " " " " " " " " " "" " " " " "" " " " " "" " " " " *
* ... 0 ••••...•••••••••...••• ,.,'!.*
* ••••••••••••••••••••. 000 •••••••. *
*" , " , II!! , " II! , , , ! , Q 01 "" . " " " , <I) "" , • ! ! ~ • ~
* ••••• 002 .•••••••••• B •••••••••••• *
*. , ~ ! ,003. , ~ ~ ! ! ,,, ,. ,. !I'. , ! " ••••••• *
., ~ ~! 005.,." t, """!II"! , ••• ,006
* •• •• ••••••••••• tI •••• 007 •. • •••• *
*. , . , ! , '. ~ ~ , , ~ , ~ DB •• .• ,. , , , • I!' ~ ! , , • ~
* ••••• 009 ••••••••••••.•••••.•• 00:*
* ••••• , •••••••••• , •••• OOD •••••••• *
*. , 'II! , , ,. ! 'II! , , " , Q OE •• ,. ,. , , " • ., • , , , • !
* OOP " .•................. *
.,,!,,1)10.,,!.,,.,.,.,.,,,.,.,p12
"'!'II!!,,,~,!!!,!,·.~~,!,.,!, ••• ,013
"' ••••••••••••••••••••••••••••• 01 B*
*., ~""'I!!!! ~'! 'If , •. , •• Q 19 •• , •• ",,!
* ••.•••••••••• 01ft. •••••••••••••••• *
."." 91F.,. ~" ,. ," 021
*. , _ . ~ ,. " ! , ! , , , ,. ,. ''II!. ! 0 22." _ • , , , II! ~
* ••••••••••••• 023 •• ••••• " • " •• II! •• *
*. , " 'II! ! 024. ! .• II! ! ,. ,. , • ,. , , '" , II! , 0 25 *
* •• •••••••..•••• " •.. . 026." • , ! , II! !
* ••••••••••••• 027 •• ••••••••••••• *
. , .. , 028" , •• , • ,. ,. ,. ,. , , •• ,. ! 029

en
:J>I
~
I'd
t-<
tTl

t'::!
C
~
I'd

I'd
QJ

~
w
o
I-h

r0
0\

(.oJ Ifg
-..I PAGE 0009 co :<::

002780 00000000 00000000 00000000 00009798 0000FFOO 02154058 01E40200 OOF2F1F5 *. , . ~ II! •• II! , ! ~ • , ! ." .. '. ~ ~ , .. _ • ,0 •• ! ~ 15* 'tl

0027AO 30C02008 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * .. * r<
tIl

0027CO 00000000 00000000 00000000 000097E8 OOOOFFOO 02164058 01E40200)OF2F1F6 * .. ! .. ~ ! , .. , ! !! .. ! , ,Y ,,, "0 ... ,Q' , ~ 16* t:J
0027E0 30C02008 00000000 00000000 00000000 00000000 00000000 00000)00 00000000 *'!'!""'!''''!!''J'''~'.'!''.''!!!'* c::
002800 00000000 00000000 00000000 00009838 OOOOFFOO 02174058 01E40200 OOF2F1F7 * , • • U •.• 217* !;::

002820 30C02008 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *. ! Ii ,,! 'Ii! , !,,! ! ! ,. , .. ! Ii'" !! ,. !.'!! " .. !
'tl

002840 00000000 00000000 00000000 00009888 OOOOFPOO 021F0008 04ED0200 OOF2F1C6 * ••••••••••••••••••••••••••••• 21F* 'tl
002860 10000820 00000000 0001FF88 02300048 01EE0300 04F2F3FO 30E02008 52ECOOOO * .. ! -~ ! ! , Ii ! ! , .. , .. ! .. ,~30 , .. , ! ! .. * Pl

002880 00000000 F7F7F7F7 F7F70800 00040100 00000000 00000000 00000000 00000000 *.",777117 •• ",.,.,.,.",.,." •• * t"j

0028AO 01000000 000098D8 F001FF88 02310048 01EE0300 04F2F3F1 30E02)08 52ECOOOO * ••••••• QO ••.•••••.••• 231 ••••••.• *
rt

0028CO 00000000 F9F9F9F9 F9F90801 00010100 00000000 00000000 00000000 15000007 * .. ! .. ! 999999 ! ! , .. , , ! Ii ~ .j::

0028EO 02000000 00009928 0001FFOO 02324048 01EE0300 00F2F3F2 30E02008 00000000 * ••••••..••••.• ••••• . 232 •••••••• * a
002900 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *., ... , .. , * t-n

002920 00000000 00009978 F001FF86 02330048 01EE0300 00F2F3F3 30E02008 52EC0020 * .. ! ! Q. ! .. ! ! ... ~ .. ! .. • 233 ! Ii * I\.J

002940 00400000 E2E8E2D9 C5E20800 00040100 OOOOOOJO 00)33F74 00000000 OFOO0805 * • • • SYSRES ••••••••••••••••••••.• * 0\

002960 00000000 000099c8 F001FF84 02340048 01EE0300 04F2F3F4 30E02008 52ECOO04 *. ! ! , .. HO .. ! .. !! , .. ,. ! .. ,234 , .. , , , .. *
002980 00400100 E2E8E2D3 C9C20801 00040100 00000000 00)5A564 00000000 24000BOF * • •• SYSLIB •••••••.••••.••••.•••• *
0029AO 00000000 00009A18 0001FFOO 02354048 01EE0300 00F2F3F5 30E02008 00000000 * .••••••••••••• .••••• 235 •••••••• *
0029CO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *. , .. " , ! ! ! , , .. , '. ! ! ! .. , .. ! ! , .. *
0029EO 00000000 00009A68 0001FFOO 02364048 01EE0300 00F2F3F6 30E02008 00000000 * • ••••• 236 •••••••• *
002AOO 00000000 00000000 00000000 00000000 00000000 00)00000 00000000 00000000 *. , .. , .. " , " ~ , , .. !'. '''' ,. ! , !' ••• , • ,,~ ~
002A20 00000000 00009AB8 0001FFOO 02374048 01EE0300)OF2F3F7 30E02308 30000000 * ,.,.,~37 •• ,.,.,.~
002140 00000000 00000000 00000000 00000000 00000000 00)00000 0000)300 00000000 * •••••••••••••••••••••••••••••.•• *
002A60 00000000 00009B08 OOOOFFOO 02404060 01F70200 00F2F4FO 30E02008 00000000 *.,.", .. !",!. • !l7 •• • 240 •••• ,. ,.!
o 02A80 00000000 00000000 00000000 00000000 00000000 00)00000 0000000) 00000000 * " *
002AAO 00000000 00009B58 OOOOFFOO 02414060 01F70200 OOF2F4F1 30E02008 00000000 *.! .. ~, .• ~".!!. .• ~7.~,241 •• ,.!.,.~
002ACO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *.,.,' ,"!" ,. !'. " ... !! •• ,., ••• *
002AEO 00000000 00009BA8 OOOOFFOO 02424060 01F70200 DOF2F4F2 30E02J08 00000000 * •••••••.•••••• • .7 ••• 242 •••••••• *
002BOO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *.,.,',., ,',.!'.,.,.,,,,.,.,.,.*
002B20 00000000 00009BF8 OOOOPPOO 02434060 D1F70200 DOF2F4F3 30E02008 33003000 * .•••••• 8 •••••• • .7 ••• 243 •••••••• *
002B40 00000000 00000000 00000000 00000000 00000000 00)00000 00000000 00000000 *.,.!"', ... ! *
002B60 00000000 00009C48 OOOOFFOO 02444060 01F70200 00F2F4F4 30E02008 00000000 *.,"'!", .. ,.,.!! • ,7 •• ,2l.J4 •• ,.,' ,.~
002B80 00000000 00000000 00000000 00000000 00000000 OOJOOOOO 00000000 00000000 * *
o 02BAO 00000000 00009C98 OOOOFFOO 02454060 01F70200 00F2F4P5 30E02008 00000000 * .•. , " , • , . , , II! , , ~ • ,7 •• ,~45 •• !'. , , •• ~

002BCO 00000000 00000000 00000000 00000000 00000000 00)00000 00000000 00000000 * , .. p.,.,',.,.,",.!
002BEO 00000000 00009CE8 OOOOFFOO 02464060 01F70200 00F2F4P6 30E02008)0000000 * .•••.•• Y •••••• •• 7 ••• 2q6 •••••••• *
002COO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *., .. " ,.,"" .. ,,' .. !II. , ••• ,,, •••• ,,. ,. *
002C20 00000000 00009D38 OOOOPFOO 02474060 01F70200 JOF2F4F7 30E02008)0000000 * • .7 ••• 247 •.••.•••• *
002C40 00000000 00000000 00000000 00000000 00000000 00)00000 00000000 00000000 *." ... , ... "".," ,. ,. ,.". '''".,." ~ .. *
002C60 00000000 00009D88 0008FFOO 02504068 01000200 00F2F5FO 30502009 00000000 *.,." , .. ,' • ,. , • • 250 •• !'. , , ,. ~

002C80 18009E40 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * ••• *
o 02CAO 00000000 00009E08 0008FFOO 02514068 01000200 00F2F5P1 30502009 00000000 *., .. '!' •••••• '111! .• !'.,.,~51 •••• ,,'.~
002CCO 18009EE8 00000000 00000000 00000000 00000000 00)00000 00000000 00000000 * ••• Y •••••••••••••••••••••••••••• *
002CEO 00000000 00009EBO 0008FFOO 02524068 01000200 00F2F5F2 30502009 00000000 * , • •.••• 252 •••••••• *
002DOO 18009F90 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *.,., !.,.",.,.,., .. ,,,, .•. !.,.*
002D20 00000000 00009F58 0008FFOO 02534068 01000200 00F2F5F3 30502009 00000000 * •••••• 253 •••.•••• *
002D40 1800A038 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *." II! •• ' •• '."."~.!I. , !" •••• ,," ,. *
002D60 00000000 OOOOAOOO 0008FFOO 02544068 01000200 00F2F5F4 30502009 00000000 * 254 •••• " •• *
002D80 1800AOEO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
002DAO 00000000 0000AOA8 0008FFOO 02554068 01000200 00F2F5F5 30502009 00000000 *. , , , , , , , .. !II. ,. ,~55 •• , . , • ,. ~
002DCO 1800A188 00000000 00000000 00000000 00000000 00300000 00000000 00000000 * .•••••••..•••••••••••••••••••••• *
o 02DEO 00000000 0000A150 0008FFOO 02564068 01000200 00F2F5F6 30502009 00000000 *., ••. ,.,""." . . ,~,.,a56•.•. *
002EOO 18001230 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *.!"' •• , •• , .'."!I.!I. ,. ,.,' ,. !I.'. ,.*
002E20 00000000 0000A1F8 0008FFOO 02574068 01000200 00F2F5F7 30502009 00000000 * ••••••• 8 •••••• •••••• 257 •••••••• *
002E40 1800A2D8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * ... Q ••• " •• , • , ,. ,. ,. , •. '" •••• , ! ,. ~

PAGE 0015 I~
0050CO 00000000 00000000 0000CE98 OOOOPPOO 05504070 01700600 00F5P5PO 30C02008 *. , . '" ! !I' • ! ! ••• ! !I' f' .••• ! , ,550. ! , • ~ ttl

t-<
0050BO 00000000 00000000 00000000 00000000 00000000 00)00000 OOOOO~OO 00000000 * _ * tr1
005100 00000000 00000000 0000CEE8 OOOOPPOO 05514070 01700600 00P5F5P1 30C02008 *., •. ! , ... , ,.f."., 1 ,t ,551., .~~ tJ
005120 00000000 00000000 00000000 00000000 00000000 OOlOOOOO 00000000 00000000 *.,.!.!I .. !!!.!!!I.,.,.,.!! •••• , ••• ~ C
005140 00000000 00000000 0000CP38 OOOOPPOO 05524070 01700600 00P5P5P2 30C02008 *•......• • 552 •• " • * ~

005160 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *'! II II .. ,I",,, ,." t,I'I'1 ,I,!' ,. ,I!" 'II!: ~
"d

005180 00000000 00000000 0000CP88 OOOOPPOO 05534070 01700600 00P5P5P3 30C02008 * e- ••••••••• •••••• 553 •••• *
005110 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *. ,. II' ,. 'I' , 'II!:' t f' ,. II!: ! .. !. "'. ,10 " !' ~

"d
IlJ

0051CO 6000000~ 00000000 0000CPD8 OOOOPPOO 05544070 01700600 00P5P5F4 30C02008 * Q •••• ,. ~ • '" • , , • 5 Sq ... , • ~ H

0051EO 00000000 00000000 00000000 00000000 00000000 00)00000 00000000 00000000 * * rt

005200 00000000 00000000 0000D028 OOOOFPOO 05554070 01700600 00P5P5P5 30C02008 *. , " II , , •• , , •• , , ,. , •.••• , , !I 555 •• , • ~ U1

005220 00000000 00000000 00000000 00000000 00000000 00000000 00000300 00000000 *•........•........ * 0
005240 00000000 00000000 0000D078 OOOOPPOO 05564070 01700600 00F5P5P6 30C02008 *. , • , . ,. II! , , t .. , II! ,. , ••••• , .. , 556. , , .. ~ HI

005260 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *. , . , , ,. '" , . , . , , ,. ,. , ... ! , , •• I." t ,. ~ rv
005280 00000000 00000000 0000DOC8 OOOOPPOO 05574070 01700600 00P5F5P7 30C02008 * H •• fl'" •••••• 557 •••• * C'>

0052AO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *.,,,,,, II'''!'!''! t ,. ~. ,. ~." ~., ••• , ~ ~
o 052CO 00000000 00000000 0000D118 531C2928 FF01A3A8 30l33P74 00018380 52PC2928 * J ••••• ,. ••••••••••••••• *
0052EO PP0196DO 00033P74 00017PCO 52DC206C PF068E20 1Bl3B5Dij F003D340 530C2868 *.'.~".I!I!'~~ nO.L •••• *
005300 FP059FOO 0003D334 P003D3CO 52CC2498 FF03E318 PF03DBC4 000186C8 532COOOO *. , ~ ! ! pL. Q • ~. , ! ,. ~. ~. p. t tl •• , R •• , It ~
005320 PPOOOOOO 00000000 00000000 533COOOO FPOOOOOO 00)00000 00000000 534COOOO *•......... *
005340 PFOOOOOO 00000000 00000000 535COOOO FPOOOOOO 00000000 00000000 536COOOO *. , .• ! , •• It".,. " ~. ,. ,. ,. ,! ,. ,~'" p" ~
005360 PFOOOOOO 00000000 00000000 537COOOO FFOOOOOD 00)00000 00000000 538COOOO * ,!,.!t.,.,.,',.,,, •. ,.'!
005380 PPOOOOOO 00000000 00000000 539COOOO FFeooooo 00)00000 00000000 53ACOOOO * ••...•......••...••..•........•. *
0053AO PPOOOOOO 00000000 00000000 53BCOOOO FFOOOOOO 00000000 00000000 53CCOOOO * .• " .• , .. ",.,',.,.,.,11:" •• ,.,',.*
0053CO PPOOOOOO 00000000 00000000 53DCOOOO FFOOOOOO 00)00000 00000000 53ECOOOO *•........•.• *
0053EO PPOOOOOO 00000000'00000000 53PCOOOO FFOOOOOO 00000000 00000000 540COOOO *.,,, •.•. ,,,,,, .•.................. *
005400 PPOOOOOO 00000000 00000000 541COOOO FFOOOOOO 00000000 00000000 542COOOO *., .. '''.''.''.''''.'.' ... '1'.'.!''''!
005420 PPOOOOOO 00000000 00000000 543COOOO PFOOOOOO OOlOOOOO 00000000 544COOOO * .•.•............•.......••...... *

en 005440 PPOOOOOO 00000000 00000000 545COOOO FFOOOOOO OOJOOOOO 00000000 546COOOO *. ! .!! ,. .• ! , !. " ,. ,. p. ,. '" p. ,. , ! ! II!!!
m 005460 PPOOOOOO 00000000 00000000 547COOOO FPOOOOOO 00)00000 00000000 548COOOO * ,! .. ,.. ,. ,.,' ,. ,.,'"'' ~
n 005480 PPOOOOOO 00000000 00000000 549COOOO FFOOOOOO 00)00000 00000)00 54ACOOOO *•.......•..•............... * rt 005410 PPOOOOOO 00000000 00000000 54BCOOOO FPOOOOOO 00000000 00000000 54CCOOOO *.,.,! , .. ,',.!, ,.,.,. ,.," , ... ,' ,.!
0 0054CO PPOOOOOO 00000000 00000000 5ijDCOOOO FFOOOOOO 00)00000 00000000 54ECOOOO * ~ •.. .- ..•.•......... * l:l

0054EO PPOOOOOO 00000000 00000000 54PCOOOO FFOOOOOO 00000000 00000000 550COOOO *.,.,., ... " *
I-" 005500 PFOOOOOO 00000000 00000000 551COOOO FFOOOOOO 00000000 00000000 552COOOO *.!II!!.!" •. I!!"!.'!'.~.'.'.''''.''''''''! rv

005520 PPOOOOOO 00000000 00000000 553COOOO FFOOOOOO 00)00000 00000000 554COOOO *. " *
005540 PPOOOOOO 00000000 00000000 555COOOO FFOOOOOO 00000000 00000000 556COOOO *. , ,. . , ,. , ! , '" , , p. ,. 'II!! ,. , , !'. ,. , , ,. ~

(') 005560 PPOOOOOO 00000000 00000000 557COOOO FFOOOOOO 00)00000 00000)00 55BCOOOO * ,. ,. ,. , ... '" ". ,. , , ." *
0 005580 PPOOOOOO 00000000 00000000 559COOOO PFOOOOOO 00)00000 OOOOO~OO 55ACOOOO * * ::s
rt 0055AO PPOOOOOO 00000000 00000000 55BCOOOO FPOOOOOO 00000000 00000000 55CCOOOO *.,.," , .• ,',.,'". ,. ,. ,." ,. 'I!" ,.~
H 0055CO PPOOOOOO 00000000 00000000 55DCOOOO FFOOOOOO 00)00000 00000000 55ECOOOO * ••.••••••.•• , .•••......•••••.•.• * 0
I-' 0055EO PPOOOOOO 00000000 00000000 55PCOOOO FFOOOOOO OOlOOOOO 00000000 560COOOO *.,.,., .. ,', *
txl 005600 PFOOOOOO 00000000 00000000 561COOOO PFOOOOOO 00000000 00000000 562COOOO *., ..• , .• ,.,I!",.,.,.,"', ,.,.!
.... 005620 PPOOOOOO 00000000 00000000 563COOOO FFOOOOOO 00000000 00000000 564COOOO * ... ~ ,•...............•..... *
0 o 056ijO PPOOOOOO 00000000 00000000 565COOOO PPOOOOOO oooooono 00000000 566COOOO *. " ,,, , .. , "!, , ,. ,,, , .•. t, , •••• , ,,! n
~ 005660 PPOOOOOO 00000000 00000000 567COOOO PFOOOOOO 00)00000 OOOOlOOO 568COOOO *•.•...• "!!'.,.,.,." •• ,.''''.~
en 005680 PFOOOOOO 00000000 00000000 569COOOO FFOOOOO~ 00)00000 00000)00 56ACOOOO *•...•.......•... *
IlJ 005610 PPOOOOOO 00000000 00000000 56BCOOOO PFOOOOOO 00)00000 00000000 56CCOOOO *.,.''''~ .• , •• !''.~., '' .. ,.'''.~ ::s 0056CO PFOOOOOO 00000000 00000000 56DCOOOO PPOOOOOO 00)00000 00000000 56ECOOOO *•...•..•...•....... *
0.

0056EO FPOOOOOO 00000000 00000000 56PCOOOO PFOOOOOO 00000000 00000000 570COOOO *.,.,", .•• " *
1-3 005700 PPOOOOOO 00000000 00000000 571COOOO PFOOOOOO 00000000 00000000 572COOOO *. '!II •• , ,.", , •• , ••• ,. , ... ,,'" " ••• " ". * IlJ
no 005720 FFOOOOOO 00000000 00000000 573COOOO FFOOOOOO 00)00000 00000000 574COOOO * * 005740 PFOOOOOO 00000000 00000000 575COOOO PFOOOOOO 00000000 00000000 576COOOO *.,.,~,.~!'!'!" •• ,.,.,."'.,."'~* m
en 005760 PFOOOOOO 00000000 00000000 577COOOO FPOOOOOO 00)00000 00000000 578COOOO * ,! ,. ,. ,. ,.,! .. ,.,' ,.~

005780 PPOOOOOO 00000000 00000000 579COOOO PFOOOOOO 00)00000 00000000 57ACOOOO *•.......................... *
tAl
..,J
\0

w
00
o

00E320
00E340
00E360
00E380
o OE3AO
00E3CO
00E3EO
00E400
00E420
OOE440
00E460
00E480
00E4AO
OOE4CO
OOE4EO
OOE500
OOE520
OOE540
OOE560
00E580
OOE5AO
00E5CO
OOE5EO
OOE600
00E620
00E640
o OE660
00E680
00E6AO
00E6CO
o OE6EO
00E100
00E120
o OE140
00E160
o OE180
00E1AO
00E1CO
OOE1EO
00E800
00E820
o OE840
00E860
o OE880
00E8AO
00E8CO
00E8EO
OOE900
00E920
o OE940
00E960
00E980
00E9AO
00E9CO
00E9EO

D203D04C 101041FO F2BE9180 F6994180
F1A4D100 DOOODOOO 9640F698 1BDD47F8
F2E647FO F35E41FO F37647FO F3C69680
F4C89106 00454780 F3029180 F6914710
F6EA41CO 000847FO F3DA9104 F6984710
50005000 50750000 96015004 9140F698
F3DA94FB 50049601 500447FO F34A9680
000047FO F3DA9640 F69A45AO F4C89102
70064790 F39A9602 00449108 F6984780
F6994710 F3BE41CO 000447FO F3DA41CO
F4C841CO 000047FO F3DA1BAA 9140F698
489BOOOO 12994780 F4104720 F4689180
D0074740 F4384780 F4325840 F66C58AO
F438D217 0130D058 18EC980C F6E85AEO
FOOC9620 DOOB920F 00738200 001058DO
41BB0002 41FOF3FO 18468840 00084839
12AA4780 F3FE4130 D0280501 30009004
F49A0201 E0009004 41EE0002 06A012AA
4780F4E4 95073000 4780F4E4 91060045
5010F690 5880F128 54830000 4780F580
05A39110 F6994780 F5524130 F6705880
F53E9507 30004180 F53E47FO F54A5483
F5229106 00454780 F5B091CO F6914710
9140F69A 4710F58E 9680F699 47FOF59C
F704F104 9640F699 9602F698 9610F698
9140F698 4110F61A D2030048 F69458AO
00454110 F50E9104 F69647EO F61A58AO
1BAB59AO 90A44720 F61A42AO F6CC9107
4780F61A D702D041 D0419110 F6984710
F13819A6 4770F63E D2075000 F6909108
004498AC F6D007FA 07000700 07004000
010343E8 030343E8 030343E8 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00C90000 00017AEO 00003FFF 00000000
F31096FO F3F30203 0010F3E2 58300010
4710FOB4 18045880 F3CA91FO 80004770
D2074028 002847FO F05E0207 50100028
00284111 00C058EO 30885610 F3DE8910
00041612 41FOF006 01FF9500 00234180
F3CE41FO F078940F F3F358FO F3E607FF
47FOF016 0000EB54 05F041FO F0160000
940FF31B 4700F298 960FF31B 900FF2AA
20984780 F04A5840 2098982E 400094FO
58A030AO 18204122 000019A2 4780F078
P2209180 A0214110 P2209180 AOA04110
4180FOCC 9140A021 4710F220 41POF110
9200A095 D40200AD F2A64180 F1109601
47FOFOA6 41200001 8920001F 14214170
FOFC9601 A0219200 AOB4947F A010947F
F124950F AOB44780 F1245010 A0105850
A01D4710 F1849120 A01F4710 F1840203

F2B858BO F6581BDB 06B044BO F2B241PO
F2C247FO F35E47PO F36647PO F20E41FO
F69A47FO F2EA9620 F69A9610 F69845AO
F31A48AO F6EA12AA 4180F31A 06A04DAO
F3529106 00454780 F34A9604 20000707
4710F34A D2030048 500441CO OOOC47FO
F69A47FO F36A9620 P69A45AO F4C841CO
F6984710 F39A9120 70124780 F39A9106
F3AE9180 F6994710 F3AE94F9 00459140
001047FO F3DA9610 F69A9610 F69845AO
4710F3FE 41A00008 41E00028 58B09028
F69947EO F4389140 F6984710 F4389566
401012AA 4780F438 D26FAOOO 005847FO
F7209180 F69947EO F45E9140 F6984710
F71C9200 007307PE 91809006 4710F478
00048930 00108830 00181734 4770F470
4780F470 193E41BO F4B24133 000247FO
4780F3FE 47FOF470 90ACF6DO 95083000
4780F5BO D2)OF694 F69A0200 F694F69A
9604F694 9612F696 58330000 4180F690
F72891FF 30004710 F5529508 30004780
00004780 F54A47FO F5084133 000447FO
F5789101 F69641EO F5101277 4770F5AO
12DD4780 F5789610 DOOB47FO F578D703
9180F69A 4780F5BO 94FBF696 94FDF694
004841AA 00009140 F69A47EO F5F29108
004041AA 00)012AA 4780F61A 41B00008
F6CC4750 F61AD207 D038AOOO 9180F69A
F6529120 70)64780 P63E48A7 000454AO
F6964710 F6529180 F6994710 F6529200
00012345 014500CO OOOOOOB: 00025B48
00000000 00)00000 00000000 FFOOOOOO
00000000 00000000 00000000 00000000
00000000 00000000 FFOOOOOO 00000000
3A3FOOOO C5:10000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 OO)OFFFF OOFFFFOO 00002000
05F091FO F3F34700 F370910F F3F34700
58403000 58440004 5880F3C2 91F08001
F0985850 40001945 4700F370 4770F058
5810F3D6 D23F4030 10004110 000F5410
000C4120 OFFF8920 00045420 00288820
FOB4950F 00234780 FOB44110 00F258EO
05F04140 40001804 5610F31E 8910000C
0000F12C OODOEEBO OOOOEBBC DOOOEBC2
02030010 F30A5830 00105820 30:89180
F31B01FE 948F2098 58403000 58440004
58AA0074 41AAOOOO 12AA4770 F06047FO
F0909120 A01F4710 F2205890 A07C199A
9180A010 4110FODA 9401A020 940CA021
A02147FO F1105880 A0841984 4770F09A
F220D701 A020A020 040200AO F2A64780
A0105850 AOD047FO F1849180 A01D4710
A0005880 F2F291FO 80004770 F15C9180
50045014 91:0500A 4140F158 02005008

PAGE 0026
K •••••• 02 ••• 6 ••• 2 ••• 6 •.••••• 2 •• 0
* 1 • P ••••••. 6. , •• 8 2B • 03. , 03 •• 02. ,0 *
*211.03 •• 03 •• 03F •• 6 •• 02 ••• 6 ••• 1') ••• *
*4H •••••• 3 ••• 6. G' 3 .•• 6 ••••• 3 •••• *
* 6 •••• !'. Q 3 • , ~ ~. !II. 3. !' • , ••• 3 •• .I: •• 1? ~
* 6 ... 3.K 0*
*3. II! •••• II! ••• 03. ,. 9- !II 0 3. !II ! 6. " . ~ H •• ~
*.,.03 .. 6 ••• g.H •• ~.,.3.! ••••• ~ ••• ~
* •••• 3 ••••••• 6 ... 3 ••• 6 ••• 3 •• 9 ••• *
* 5 ••• ~ •••• !II. 03 ••• !II • ,0 3. !' II! 6. ,. ~. , • ~
*4H ••••• 03 •••• 6 ••• 3 •••.••••••••• *
* 4 ••• ':1- ••• 6 .•• 4 .• 6 •.• 4 •.• *
*. ! • _ q ••• If •• 6. ~ •.• ,. ~ • 9. l'\. , • ! , ~ Q *
*4.K •••••.••• 6Y •• 7 ••• 6 ••• q •• 6 ••• *
*0.,. , ~. , '! , !, , '! •• 7. ~. ,. ! ! , ••• '!, ~. ~
* 030. .. • ••• ,., ~ , •• ! ~. , • , '!' 9. ~
* ••.• 3 •.•.• N ••••••• 4 ••••• q •••••• 0*
* q. • Is: •• , •• , • , • , , !'. ,. ~. ,04. ,. • 6 •• , •• ~
* •• 4U •••••• 4U ••..•• 5.K.6.6.K.6.6.*
* .• 6 •• , 7 • , , , , ! '! ;> • .•• 6. •• 6. • ••••• 6. *
*. ! •• f? ••• -? • , • 9 7. !'. ,. !' , 5. " • t ••• !
5 ••••••• 5 •• 05 ••••.•• 5 •• 05 •••••• 0
*5 ... , ,' .. 5.,.9. ,.~. ,.~.""~ ... ,, '!~. ~
. 6 ••• 5 ••• 6 •• 05 ••••• 5 •••••• 05.P.
7.7 •• 6 •.• 6 ••• 6 ••• 6 ••• 5 ••• 6 ••• 6.
*. 6.,!.6.Is:.!~Q.!.,.! ••• , 6 ••• 52 •• *
* 5 ••• 6 ••• 6 •••••••••••• 6 ••••• *
*. '! • '! '! , •• 9. '! , 9 ..•• ~. ,._ 6. ~ .•••• '! • 6. *
*. ,,6. J? •••• ,. • (5. ,. 9. !'. ".0 !' • 6 •••• '! !'. *
*7 ••••• 6.K ••• 6 ••• 6 ••• 6 ••• 6 ••. 6 ••• *
*. ! •• 6 •• '! '!. '! '! '! '! _. J. ,., •• '! ,. ,.., '! ,. *
* ... Y ••• Y ••• Y.. • ••••••••••••••• *
* ... ,., *
*.' .. " .. "''!t'!'.!I. ~.'.II'!" ••• ''!'.~ * EA •••••••••• *
*.! ... " .. '! '!. II!! '! ,.. ,. ,. ,._,! •• ,.., '!,. *
* *
*. I ••••••..••.•... 0 .033 .• 3 ••• 33 •• *
*3 •• 033K.,!,~S."., •••• !" •• ~B.O •• ~
* •• 0 ••••• 3 •• 0 •••• 0 •••••••• 3 ••• 0.*
* K. • '! ,. 00. K. ,. , ,. ,.. ~O K. • ••••• , •• *
*. , . '! • 1. .. !'. !' ••• '! '! •• • -. , • ,. • *
* 000 •••••••• 0 ••••••• 0 •••• 2 •• *
*3 •• 00 •• ,~3.03W ... 0 •• , ••• 3 *
.00 •••••• 0.00 ••.•. 1 •••••••••••• B
*. ,3 ••• 2 ••• 3 ••• 2. K ••• 3 •••••••• H •• *
~ •••• 0 • • . • • 0 3. !' ••• , '!. •• '! , ,. • *
* .•••••.••••••• 0 •.••••.•••••• 0 •• 0*
*2 •.•.••• z ... '! , ,. 9. ,. ,. ,. , 2. ,. '! • ,. *
* .. 0 .• 2.,01.!'.,.,.O ••••• ''!'.~
* •••. 11 ••• 2 ..• 1 ••.••• 01 •.•.••.•• 0.*
* . 0 o ••••••• , •• , •• ;2. ~ ••• , • M ••• ~. ,. • ~
*0.... ••••.•.•• • •••••• 01 ••••••• *
* 1 •••• , •• 1. • • • • " •• •• 22 . 0 .••• 1 ••• *
*. , .. 1 ••• , , '!' '! J • fe •.•• , ••• , '! 1 • ~. ,. • ~

-I~
~
'd
rt
tx:I

t:J
c:
~
'd

'd
Il!
I"i
rt

0\

o
Hl

N
0\

Ul
(J)
C'l
rt-
f-'.
o
t:!

1-'
N

(')
()
t:!
rt
H
o
I-'

tJj
I-'
o
C'l
:>;"
en
SlJ
:::l
0..

H
SlJ
tT
I-'
m
en

w
00
p

OOEIOO
00E120
o OE140
00E160
00E180
OOEllO
OOEICO
OOEAEO
OOEBOO
00EB20
o OEB40
o OEB60
o OEB80
OOEBIO
OOEBCO
OOEBEO
OOECOO
00EC20
OOEC40
00EC60
00EC80
OOECAO
OOECCO
OOECEO
OOEDOO
00ED20
00ED40
00ED60
00ED80
OOEDAO
OOEDCO
OOEDEO
OOEEOO
00EE20
00EE40
00EE60
00EE80
OOEEAO
OOEECO
OOEEEO
OOEFOO
00EF20
00EF40
00EF60
00EF80
OOEFlO
OOEFCO
OOEFEO
OOFOOO
00F020
00F040
00F060
00F080
OOFOIO
OOFOCO

501C47FO F1849180 A01D4710 F161D203
00245810 F3029801 100047FO F1BED503
30D45020 501491DO 500147EO F1B495FF
501C58BO F2FA05EB 9620A01F 9601A01D
4780F220 18B14570 F27847FO F1E847FO
F1DC91FF 10204770 F20891BF 10214780
F1DC9640 B02147FO F1DC5880 F2F291FO
58E03088 982DF2B2 94FOF31B 07FE982E
982EF2B2 94FOF31B 07FE0700 45FOF276
010618CB 58BOC088 12BB0777 58BOC080
F28205FO 8200F004 00060000 00000D01
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
0001714C 000170E4 000001D8 00000198
OA01010D 000091F3 200C475E 000891FF
20D4471E 00089108 20EC411E 00085810
41B020EO 50B020CO 920820CO 9648BOOC
45DOF462 D202B009 20499203 B01047FO
58B020CO 589BOOOO D202B009 204945DO
F09C45DO F44C47FE 0008917F 200447EO
4720F026 581020CO 94F7AOOC 47FEOO08
20E047FO F04041BO 20C89180 21154710
200D47EE 00089120 2114471E 000858Cl
41FE0008 96802115 50A020CO 94F7BOOC
47FOF054 581020CO 58B10000 96882114
41440000 19B4077E 58B020CO 91082114
A02A41BO 20E050BO 20C0589B 00009208
A09247FO 104E47FO A04E58BO 20C0589B
202741BB 000142BO 900447FO A076589B
922020CC 96802114 1B9941FE 00089648
19CD4780 F01E41DD 000819CD 4780F01E
94F720EC 94F720D4 07FE9108 20D44190
20E041CO 20D89108 20D44710 F06A94DF
20D445DO F11E47FE 000047FO F08847FO
50BCOOOO 47FOF098 50ACOOOO 501020CO
C00045DO F25E07FE 0590981B 204841AA
901E9690 211407FD 58C02118 9180t004
50C02118 981BCOOO 901B2048 1B9907FD
30484710 804894DF A01ED402 AOIDIOID
186E05EB 18E65810 A07419A4 47808034
A02147FO 80349180 30484710 80809110
OA0301FD 58103034 58110008 92001001
9110401D 071DAF01 OA024701 01029610
07FD5080 20500580 D5002027 211C47BO
000142BO 202741BB 000142BO 90045880
806643BO 202641BB 000142BO 900342BO
92019004 58802050 1B9947FD 000443BO
90039400 2026D503 20233021 47B08090
1BCC09CA 88C00003 50109008 42C09008
21309208 20C007FD D2032023 cOO04390
50BOA13C 4510AOEA D207COOO 00209620
10DOD207 C0000038 9650C002 D207C008
9102506c 000042AC 00009430 COOOD203
41F090F2 50BOAOD8 45101086 58FOAOEO
001B4780 10BC58EO AOE858EE 000CD203

50040024 19144770 F1944120 30D45020
F2E2F2F6 4770F194 D203F2E2 30884120
501C4770 F1849200 501847FO F1B89400
58BOAOS4 128B4780 F22058BO A08812BB
F2209190 B0214710 F1DC9180 B01D4110
F21891FF B0204770 F21891FF 80214780
80004770 F244D502 F2E3F2F7 4770F256
F2B294FO F31B58FO F30259FF 003C07FE
0000EB18 00000000 c9C5:5E5 E6C4C1D9
12BB0777 58:0C084 19C14787 000447FO
10000000 OOlOOOO~ 00000000 ~OOOOOOO
00000000 00000000 00000000 00000000
00000000 00J16F70 00016F48 00017B90
00C80000 00~11880 000069FE OAOF0103
200D475E 00089180 21144710 F1549108
20C041AA 00J041BO 20C8191B 4770F03E
91802115 47EOF06C 941F2115 58COBOOO
F09C45DO F2A21B99 91902114 4710F154
F43A45DO F3~C47FO F1E847FO F09C41FO
F0914110 20:858BO 200841BB 000015B1
41A020E3 15B14720 F03C41AO 20C841BO
F0819108 AOOC41l0 F01A94F7 AOOC9108
00009620 C0081BCC 50COA008 921DA008
45DOF3A8 58:0AOO~ 45DOF3BE 9203A010
9120B008 071E960& 211405AO 41B0205c
47101072 41~BOOOO 41B02DC8 19B9477~
20C09508 70134770 105145DO A24647FO
000047FO A07643BO 202741BB 000142BO
00004180 202850BO 301CD702 90059005
211407FE 58:00040 41CCOOOO 58D02130
07FE45DO FOB41B99 91902114 47EOF036
2104471~ F0464190 20F845DO F24C41AO
211441AO 20C841CO 20F094F7 20EC94F1
F08241FO FO~49680 2115~7FE 41B020BO
9648AOOC D2021009 20499203 A0109208
040019AB 50A02048 074D9101 21144710
47109018 41:C0008 9140C004 47109022
058058AO 30A05810 108447FO 80389180
47708034 94FE1021 58B030C8 58BB0028
12AA4780 805447FO 800C9620 A01E9601
401D47EO 807294EF 401DAF01 OA034701
07FD91:0 30EC47EO 80129108 30EC07ED
401D07FD 58F03034 58FF0008 92FOF001
8030D203 90)02023 1BBB43BO 202741BB
20501B99 47FDOOOC D5002026 211D47BO
2026D503 2023302A 47B08090 92002027
202441BB DD~142BO 900142BO 2~249400
41DD0004 47F08054 58802050 1B9907FD
01FD58BD 213058CO 213450BO 213450cO
:OC40690 42~02027 1B9907FD 00000000
C00241AD AO~241FO AOOA50BO A1224510
004047FO A106901B 910245AO 90B458AO
C00400ij8 D2J1C008 0040D203 C018100c
9CF1C008 D207COOO 00189610 C0029180
C018EO~0 47FOAOBC 50BOIOA4 45101052

PAGE 0021
* ... 01 ••••••• 1. K 1 •••• "' •••
* •••• ~ •••••• Q 1. Jj. ;2S 26 • '. J. !{. 2S •• , • '!'
*.M •• 4Il •••• ~ •• 1. , .••.. 1 •••••• 01 ••• *
*. ~ ~ !' ~ •• ~ ! ! , It'll I. ,. , II , II! , " ~. ~ II! ! , , • ~
*. I! 4: • ! , II! ! ~ • I!! 0 1 Y .0 2. , ~ , e. f tj ~. ,. , II , • !
*1 ••••••• 2 ••••••• 2 ••••••• 2 ••••••• *
*1 •• • .•• 0 1 • , • :j! 2 • 0 • ' .•• 2. If. ;i!T 27 •• 2. *
* 2 •• 03 ••••• 2 •• 03 •• Q3 ••••••• *
* •• 2 •• 03 •••••• 02 ••••••••• IEEV.WD1R*
*. ! II! • 4 ,II. II! , ! , II! ! ! ,. ,. , • , e. , II 'II! ! • , II ,0 *
*2 •• 0 •• 0 •• '" •••••• ftlll •••••••••••••••

*. 'II!'! , ... !!,!",. ,III.,. ,ill.",. ,.,' 'II!~ *•... " .•...•......... *
*.,.!!,.Q ... Q •••• ,. ••••• '! ••••••••• *
*. , If , " , .:3" II! "II! , ! ,. , eo,. '". , ! ,. !II III. ~. ,. !
.K •••••••••••••• , •••••••• H •••• O.
* ... ''!,."!,!",.,., .. , .. O.,.,.,,,.~
*'" " 4 " K " • " _ ••••• ,,00. ,," ~. , t ,e .• t! , • ~. *
* •••••••• K ••••••• 4 ••• 3 •• 01Y.00 •• 0*
* o. t! • ~ •• , , ! , • , ! ,. P. , '! ,a. , '" ,~ , ! ~ t! !
* •• 0 •••••• 1 •••••••••••••• 0 •••• R •• *
*. , • Q 0 • II! , ij •• ! , ,. p. , II! 'II! ! , 9 •• 7. ! ~ ~ *
*." .. 1 •• '!! ,t".! ,.~. II! '!I"." ,. ,.,' ,.! * 7 •••• 3 ••••••• 3 ••••• *
*.QO.~,.I!I!!'.I!'!!'.,.,~,.,.,.,.'!'I!~
*. " . " .. " " " " "" ". ". " " .. " .. R •••• *
.,.,,!' .•....................... o
*.,.O.,.Q.,.I!'!'.,..,Q.~'!!I ••• " •• !
.""",, •• ,,"" .0." •••••••• ,," •• P."" •• '
*. , I) II! , ,,, II! ! , II! ! , , '" ,." 'II! '''.' . "" '" , ! .. II! !
*" " " " 0 "" " " " "" " " o. ,,, ".0 O. , , '" • II! , " 9. !
*.7 ••• 7.!!I ••••• K •••••• 0 •••• 8 •• 2 ••• *
*" ! " ! , Q. " , {i.. " 0" I" !'.o PI!' H" ! "0,, 7" , , 7 *
*.!!I •• 1 •••••• 00 •• 00 •• 00 ••••••••••• *
*. !" ",90. II! , 'II! , , ,." ," "" K. " " "" "" " " "" *
*. "II!" ~"" II! , ! II!! , !, ,,, ,." '" '" " "" '" ! • ' ''!
*" " " " " " " " " " " " " " "" "" "" "" " " " *
.,.,', .. " •. ,.,.1' ••• "., •••• 0 •• 4 .
* 11. •••••••••••••••• EI •••• *
* ••.•• w ••••••••••••••••• 0 •••••••• *
*. ! II! O. ,.,," ! •• , I! ,. _ • ,,, '''0' ~ o. !." " '" ~
* ••••••••••••• ~ *
*. ! • " , •• , , , ~ , ! ~. _ • ,. ,,0. , ". ,. , 9 o. *
*. , . '" !II •• ~ • , II! ! " ,.. 1'. J:{. "·0 ! • , ••• , • , • ~
*•......•...•....... N ••••••• *
*. , . , , ,. , . ! "" , ! ,. ,. t:l ••••••••••••• *
* *
*.,.," .liN •••••••••••••• 0 •••••••••• *
* .. ""!'."'!".!'~.,., , ,.~ * K ••••••••••••••••••••••• *
*. !. ,,! , •• t{.". " ! ,. ,. ,. t B. () •••• ! , ." ~
* .. K •••• "''' " ,,,l.{.!II.' .o •. ,,, •• ,,.,,,.~
* K ••••• K •••• K ••••• *
*. (). ~. ~. Q. ! , • , 0 •• , 1 •• J{. " ! ,. '.0 ! , , • ~
* Y •••• K •••••• O •••••••••• *

Ul
:l:'
~
'tj

t-I
t:tJ

tj
c::
~
'tj

'tj
SlJ

:+
-..J

o
H'\

N
0\

w 'I~ 00 PAGE 0028

""
:;:

OOFOEO 58DOAOAO D207COOO D01096DO C00250EC 001858DE 006C98BF E03090DF C008q7FO *. , ~ . ({ .. ~! "~ ,t ,. ,. , II!: ,. ,~ , e. ,. , , ,Q* I'd

00F100 A08850BO A07Aq5AO A028D207 COOOO028 9630C002 58FOA082 90F1C008 58EOA086 * K ••• tie ••••• 0 ••• 1 •••••• * I:"'
to::!

00F120 D203C018 EOOqq7FO A05E05BO q700BOqq 90CFB054 58F00010 91COFOEC q710B03C *K."" ,.Q.!,~.t'. ,. ,. ,Q., •• 0 ••••••
t:1 00F1qO 58COB06C q1CC0020 55COB07q q7AOB02C 50COB06C q7FOB03q 58COB070 q7FOB02q *.,~,,! ,.,"''',. f.'. ,tI!:'O., ,ot! ,.,Q •• ! 0

00F160 D203C01C 005007FA 05A098BF A01207FB 98ABBOqC 07FBOOOO OOOOOOqO q00171CA *K ••• III •••••••••••••••••••••• I~ 00F180 0003BC68 00068D4C 0003D3qO 00000000 00017BDq 00~203B8 00015DOO 0000F1EO •••••••• " , • t. ."., II!: , ~. I! ,f •• , til , , ~. ~
00F110 00016EEO 00000000 00000000 00000000 OOOOOOO~ 00000000 OOOOOOO~ lOOOOOOO *••...... ~.,..tI ••••••••••••• ,.~
00F1CO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *•.......... "' .••.....••...•. ~ I'd

III
11
rt

NUCLEUS CONT. 00

016EEO 90EF0218 05E058FO ECF2900D F030q5BO EOC6D207 F0680218 58FOFOOO D207F010
0

*.!tI!:! ~ •• 0.2 •• 0 •••• PK.D •••• OO.K.O •• HI

016FOO 0018AFOD OFFEq70D OFFE58AO E05E05BA 91q0001B q790E038 58AOE056 052A05EO *. , " . ! ,. I! , , , , • t ,., •• , II!: ! ! ., II!: ,. , , , • ~ "" 016F20 9180001B q780EOOE 58AOE020 052A05EO 58600050 5050EqE8 q7FOE25C lO028BBO * ,. III ••• "' ••••• OY .OS •••••• 0\

016FqO 0001E198 OOOOFOAq 9qOFA029 q700AOOC q7FOA24q 58EOAC90 58DOEOOO D2070038 *." ... ,.O.",.",.,Q •• ,,,!,,.,.~.,tI!:~
016F60 D010980F E0308200 003890EF 021805FO 4700F024 95FOF001 58EOFC68 ~JODE030 *•..... 0 •• p. ,00. ,. , eo , , , • *
016F80 q5BOF03C D207E068 021858DO EOOOD207 D010003B 5810F038 05BA9856 F03007F6 * •• O.K ••••••••• K ••••••• 0 ••••• 0 •• 6*
o 16FAO 00001000 000060EO 0000F05A 05A058qO AC2A5850 A02A19q5 077B5860 00509878 *.",,,,,,!,,,Q.,., ... , ... ,.,.,.".".
016PCO Aq6A1277 q780A026 1B761A87 5080Aq6E 5060Aq5A 07FBOOOO 00017A60 OA03900F * ,." *
016FEO 01D805BO 58FOBOB8 05EF58FO BOBC051F q70DOFFD 98~101D8 58F0021q 58AOBOBQ •• Q •• !O.~! ,.O.".~.,.,~ :-0.0 *
017000 05BA98CD 00289101 0029Q780 B05858AO BBD658AO AOlQ12AA Q7COB052 181A58AO * •• 41 •• ~.'41'''''''. ,O •• ~. 'f ,. ,.,' ""~
017020 A00012AA Q7COB052 92801000 90C2100Q D203101B 01DC98FO A0008900 COO01200 *•.. B •• K •••••• O •••• ~ ••• *
o 170QO Q7AOB052 50F0002C 58EOB092 98AD0200 82000028 58EOB08E 07FE9500 002BQ780 *.,,.,,O.,,,,'!.,,.,.,'!,'!t,,.,e:,,,.*
017060 B052Q1DD 000055DO B08AQ780 B07Q50DO B08AQ7FO B0325890 B08696FO 90011B99 * " 0 ••••••• 0 •••• *
017080 5090B08A Q7FOB052 0000F12C 00000000 0000E7DO 00l16FDC 0000F102 00028BF8 *.,.,.Q.",1.",. ,.X .•.•••• 1 •••• 8*
o 170AO 00028D1C 50B00220 05B01211 Q7QOB022 Q8A0018C D2J11000 A0004010 AOOOQ010 *. ! • , • , •• , ! • , , - •• ,. , III! ~. , , ,. _ ••• .*
onoco 018C92FO BOB558BO 022007FE 131158AO 019QD203 1000AOOO 5010AOOO 5010019Q * ... O.v •••••••••••• K ••••••••••••• *
o 170EO Q7FOB018 50C00220 05C058BO CAEA12BB Q770COOE 58BOCAEE D500B023 A023Q720 *. o •• , ,. ,. • , ! , , , ~. ,. , ••• , , lI. ,. , , , ~ *
017100 C05CQ7QO COQ29101 A01EQ770 C05C58BO B07Q12BB 47BOCOQ2 D500B023 A023Q770 *•.•••..•• ". ~. " .•.• , lI. ". , , , • ~
017120 COQ219BA Q770C02Q Q7FOC05C Q8BOA020 12BBQ770 C03C58BO A0009500 801CQ77~ *•... 0 •••••••••••••••••••••• *
0171QO C05C50AO CAEA58CO 022007FE 05E09200 EAQ2582~ EA8A5920 EA86Q770 E018982E *.,." .. 111!"!."'.,.,.,."' •••• , •• ~
017160 01A08200 00205850 2000983Q 0020903Q 5010983E 01AQ900F 2030D203 203801AO * " K ••••• *
017180 05EOQ7FO EOOAOOOO 00017Q18 05EOQ700 E2FA98AB EA4615AB Q770E15Q 9101B01E *. ,,0. ~ .• , , •. ! , ,. ~. ,. 'f! *
017110 Q780E022 5860E9CE 91806000 Q710E076 58COAOOO D2J70180 C010AFOQ OFE7470Q * . , , , ~ ~ ~. III! , •• ! , ,. ,. !'. ~. , , •• , • , lC • , !
0171CO OFE758AO EA0618EB 05BA980F E0308200 01805860 E9:E9180 6000Q710 E07658CO * . X •••••••••••••••• •• z *
0171EO B00091FF C01CQ710 E066Q8CO B02012CC 4780E06C 1BA1Q7FO E16E18AB 90ABEAQ6 *.,'" ,.,",.,',.,. If!,· ,Q ••• ," ,.~
017200 Q7FOE022 D703EAQ6 EAQ69QF7 60001BAA 47FOE188 5810E9CE 50AOEAQ6 58FOE9BE *.0 .• I? ••••• 7 •..•• 0 .•.. z f! ,0 z. ~
017220 052F58AO 29B258EO 2932Q7FO E1F018DA 58700010 587070D8 D500700~ D023Q780 * 0. 0 ••••••••• ON ••••••• *
o 172QO EOBCQ177 0010Q7FO EOAA58AO 700812AA 4780E262 58:0AOOO 91FF:01C 4770E122 *. , , .. ,. 0 • ! II! ! , , ,. ,. ~. , •. , , , f! •• , , •• ~

017260 Q8cOA020 12CCQ770 E1225860 E9CE9180 6000Q770 E1J650AO EA465810 E9CE58FO * .•.•.•...•.. z ... , .•.... ., z .. o*
017280 E9BA1896 1807052F 58E028CC 18691810 58AOEA46 92J0600C D202600D 700D55AO * z •• , " ,. , ! ! , , , ! ,. ,. , • ,. , , ~. ,. !' ••• *
o 172AO 700QQ770 E13ED202 70097001 Q7POE1E2 55A0700Q 4730E1Q8 58AA0074 55A07008 * •• , • , ,K. , , • , , Q .5 •• !I. , •. , , ,. ,. , , , f! ~

o 172CO Q770EOC6 58D0700Q Q7FOE262 D2027009 A075Q7FO E1E258AO 700041AA 0000Q7FO * ••• F OS.K 0.5 0*
0172EO E12E9101 B01EQ780 E18812AA Q780E16E D500B023 k023Q780 EOQQ18DA 5810E9cE *. , . , , p. " ! , • , ! ! ~. Ji. , • ,. , , •• , • ! , ~. ~
017300 50AOEAQ6 58FOE9BA 1807052F 58E028Q8 187058A~ EA~658DO E9CA1ADB 6~00DOOO * OZ •••••••.•••••••••• z ~
017320 6020D008 60QOD010 6060D018 5810B078 18071211 Q780E1CQ 918B1~00 4750E1CQ * ••••••••••••••••• D •••••• • D*

o 173QO 50AOEAQ6 58FOE9BA 052F58EO 280A58AO EAQ658PO E9BA188B Q5COE292 58AOEAQ6 *. " ... , OZ. , ". !, ,. ,. , OZ. , , •• ~. ! , ,,!
017360 187012AA Q780E23C 9101A01E Q710EOAO 18BA90A8 EA469101 A01E4710 E0865810 * 5 *
017380 A0781211 Q780E20C 50AOBAQ6 58FOE9BE 052F58EO 27:258AO EAQ61B07 5~AOEAQ6 *. , .• , , s. , • , " ! Q Z. ,. , • , a. , , , , . ~
0173AO 188158FO E9BEQ5CO E29258AO EAQ61870 58DOE9:A 1ADA6800 D0006820 D0086840 * ... oz ... s Z ••• ,.,.,.,., *
o 173CO D0106860 D018Q7FO E02218DB 58CODOOO 9101D01E ~710EOA2 91FFCJ1: 4770E262 * 0 ...•.••.•.•...•••••.•. 5.*
o 173EO Q8COD020 12CCQ770 E26218AD Q7FOE1E2 58DOD07Q 12DDQ770 E23EQ1CO E8D218BC * ••• , •••• s ... ,0. ~ •• , •••. , • s. ,. fK •• ~
o 17QOO 90BCEAQ6 58A00050 50AOE28A 58COE286 07FCOOOG ~Ol1B666 10817959 G23Q21A8 * s ... s *
017Q20 59808000 078C58DO 808812DD Q170E2AQ 18D858DO D07C58DO D08412DD 078C91FO *. ~'" ..• !"., .. ~. ,0 ••....••••••• 0*

PAGE 0030 I~
'"d

o 17B40 00016801 68000000 0001E130 0001E4B8 000188B8 0001118E FFFFFFEO 0001A858 *. , .. , !II. , , , , • ! '! !J. , .. , .. ! .. , , , .. , .. , '" , .. * t-<
o 17B60 00011COO 00018380 000110E4 OOOOOOFF 00020148 OOJ001B8 00000324 ~0020304 * (J " * t<1

o 17B80 0001114C 0001B4CO 0000E8&8 0000E890 00000000 0000F008 0000F040 0001A3FO * .. , .. ~ , ~ , ! Y .. ! , J. , .. , .. , .. 00 0 .. ",0 * t:J

017B&0 0001793E 00021410 00017B24 0001&7C8 00026423 0001A3A8 0001718C)001791C * !,!lH •• ,.~.'!'!I.,.""~
c:::
~

o 17BCO 00025C40 80806000 80B06000 FFOOOOOO OA030000 00)30340 0003D34~ 00000000 * L •• L ••••• '"d

o 17BEO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *.'.'I!I' .. """'.'.'.'."!la'."'I!*
011COO 00011CB8 00000000 00000000 00000000 00000000 00)00000 010DOOOO 00000080 * " .. " * '"d

017C20 OOOOFFFF 00000000 00000000 00000000 00000000 OOlOOOO~ 00018998 0001A880 *. , .. II , , .. ! , '! , , , .. , .. , .. 'I! * ru
tot

o 17C40 00011COO 00017CB8 00000000 000189F8 00000000 00126428 00018990 00030340 *., .. "."".",8 •• ,.!."~ ... ,,t. * rT

o 17C60 0001B4CO 0003BC68 00000000 00000000 00000000 00111040 00000000 00017COO * .. •••••••• * '" o 17C80 00000000 000188B8 00000000 00000000 00000000 00000000 00000000 00000000 *. , , , .. , , '" ,'! ,eo, .. , , " , .. " , *
o 17C&O 00000000 00000000 00000000 00000000 00000000 OOlOOOOO 00000308 F6FOF5C1 * •.•••••••••••••••••••••••••• 605ft.* ()

HI
011CCO 0000C080 00000000 00040000 0001BB1C 00000000 01011COO 00000000 00000000 * " *
o 17CEO 00018998 0001&880 00017COO 00011CB8 00000000 00~189F8 00000000 00026428 *.,.,.,." ... ,."".,., ... ,EJ •••• " •• * rv

0\
017DOO 00018990 0003D340 0001B4CO 0003BC68 00000000 OOlOOOOO C9C1C3FO F6FOF5C1 * •••••• L •••••••••••••••• IGC0605ft.*
o 11D20 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *. , .. " , .. , ", .. " , .. , .. !II" , .. " , .. , .. '" ,4! *
017040 000110F8 00000000 00000000 00000000 00000000 00)00000 01000000 00000080 * 8 ,.,'" ,. ,., " •••• , I!'. *
017D60 OOOOFFFF 00000000 00000000 00000000 00000000 00)00000 000189A8 0001A880 * " . ,. *
o 17D80 00017040 000170F8 00000000 00018E40 00000000 00026428 00018990 00030340 *. , . .,.e ,," •• ".,." ••••• ,.L *
o 11DAO 0001B4CO 00030478 00000000 00000000 00000000 00l11E80 OOOOOlOO 00011D40 * •••••• K *
017DCO 00000000 000188B8 00000000 00000000 00000000 OO~OOOOO 00000000 00000000 *.'.I!'I!' ".I!~I!I".t.··.· *
o 11DEO 00000000 00000000 00000000 00000000 00000000 00000000 00000220 F9FOF1C3 *.,."', •• ,', •• , •• ,.,.,.,, •••• 901C*
011E00 0000C080 00000000 00040000 0001BB1C 00000000 01)17D40 00000300 00000000 * *
017E20 000189A8 0001&880 00011040 00011DF8 00000000 00~18E40 00000000 00026428 *".I!'II!!"II!'.' .,~B •• ,., •• •••• " •• *
o l1E40 00018990 00030340 0001B4CO 00030478 00000000 00)00000 c9C1C3FO F9FOF1C3 * •••••• L •••••• M ••••••••• IGC0901C*
o 17E60 0000000000000000 00000000 00000000 00000000 00000000 OOOOOJOO 00000000 * " .•.. " *
o 11E80 00011F38 00000000 00000000 00000000 00000000 OO~OOOOO 01000000 00000080 *" ••• '.II!"II!I.""."' •• "" •• "'.'*
011EAO OOOOFFFF 00000000 00000000 00000000 00000000 03)00000 000189B8 0001A880 * •••••••••••••••••••••••••••••••• *

CIl 017ECO 00011E80 00011F38 00000000 00019288 00000000 00J26428 00018990 0003D340 *.'I!.!' !I!'.'!'."., ••• "!I.,.!I!!~ *
m o 17EEO 0001B4CO 0003BC68 00000000 00000000 00000000 00J11FCO 00000000 00011E80 * '.I!!' •• " ,. ,.~. ,.,,, •• ,." •• ~
()

017FOO 00000000 000188B8 00000000 00000000 00000000 00)00000 OOOOO~OO 00000000 * •••••••••••••••••••••••••••••••• * rT
~. 011F20 00000000 00000000 00000000 00000000 00000000 00000000 00000220 D8FOF5C1 * ~ •.. , .. , , ". ". ,. ,. , , ,. ,. QO 5A*
0 o 17F40 0000c080 00000000 00040000 0001BB1C 00000000 01)11E80 00000)00 JOOOOOOO * " * !:j

.... 011F60 000189B8 0001A880 00017E80 00011F38 00000000 00019288 00000000 00026428 *. , .. ! , •• " •. ,',., •••...••.•••... *
rv o 17F80 00018990 00030340 0001B4CO 0003BC68 00000000 OO~OOOOO C9C7C3FO 08FOF5C1 *., .. ,.L .".,!".~., ... "IGCOQ05A*

011nO 00000000 00000000 00000000 00000000 00000000 00)00000 00000000 00000000 * *
011FCO 00018078 00000000 00000000 00000000 00000000 00000000 01000000 00000080 * , " .. " .. ,.,. "., ... ,.,.,., ... ~

n o 17FEO OOOOFFFF 00000000 00000000 00000000 00000000 00)00000 000189C8 J001A880 * " ".B •••• *
0 018000 00017FCO 00018018 00000000 00019600 00000000 00026428 00018990 0003D340 *•......................... L * !:j
rT 018020 0001B4CO 0003BC68 00000000 00000000 00000000 00)18100 00000000 ~0017FCO *'! •• ".""'II!!""" ••• " •• '.""~ tot 018040 00000000 000188B8 00000000 00000000 00000000 00)00000 00000000 JOOOOOOO * * 0 018060 00000000 00000000 00000000 00000000 00000000 00000000 000003C8 F3FOF5C1 *. " . , " " .. , ... , , ,. ,. , ... , . , . . H3 0 SA *
tJj 018080 0000C080 00000000 00040000 0001BB7C 000000)0 01)17FCO 00000000 ~OOOOOOO * * 0180AO 000189C8 0001A880 00011FCO 00018018 00000000 00019600 00000000 00026428 *. ,. H. , •• " " •• ,. ". " ••••••••••••••• *
0 0180CO 00018990 00030340 0001B4CO 0003BC68 00000000 00000000 C9C1C3FO F3FOF5C1 *. ! •• , ,L •••• ,',.,., ••• ,' JGCO 3 0 SA * ()
~ 0180EO 00000000 00000000 00000000 00000000 00000000 00)00000 00000300 00000000 * *
III

018100 000181B8 00000000 00000000 00000000 00000000 00000000 01000000 00000080 *. ". " " ,. " If ". ~. , ••• , ••••• " ".!
ru 018120 OOOOFFFF 00000000 00000000 00000000 00000000 OOlOOOOO 0001B9DB 0001A880 * ~ .. Q., •• ~ ::s

018140 00018100 000181B8 00000000 00019B18 00000000 00026428 00018993 ~0030340 * L * 0.

1-3 018160 0001B4CO 0003BC68 00000000 00000000 00000000 00018240 00000000 00018100 * .•...•.. I!' ••• "~.!'.,., II!I •• ~
ru 018180 00000000 000188B8 00000000 00000000 OOCOOOOO 00)00000 00000000 00000000 * *
h' 0181A0 00000000 00000000 00000000 00000000 00000000 00000000 00000358 F4FOF5C1 *. , ... , " . I!' , , •• , , ". ,. , ••• , , " ••• 9 0 5A *

0181CO 0000C080 00000000 00040000 0001BB7C 00000000 01018100 00000000 00000000 *. ,. ,. "." , ". " ,. ". " ... , , .. , .•... * m
III 018UO 000189D8 0001A880 00018100 000181B8 00000000 00J19B18 00000000 00026428 * ••• Q •••••••••••••••••••••••••••• *

018200 00018990 00030340 0001B4CO 0003BC68 00000000 00000000 C9C1:3FO F4FOF5C1 * ... ",L .'."II!!, ••• , ••• , .. IGCOQ.05A*
w
(Xl

w

w

1,18-:~0
Cfl

<Xl PAGE 0031 ~
.j:"

~
00000000 00000000 00000000 00000000 00000000 00)00000 00000000 00000000 * * 'tf

018240 000182P8 00000000 00000000 00000000 00000000 00000000 01000000 00000080 *.,.S I!.,',.,. ,-,.,! 'I!.II!~ ~
tz:!

018260 OOOOFFPP 00000000 00000000 00000000 00000000 00)00000 000189ES)001A880 * y •••• *
018280 00018240 000182P8 00000000 00019P60 00000000 00J26428 00018990 00030340 *.! .. ,.e., .. "" .. ··············L * t::I

c:::
018210 0001B4CO 0003BC68 00000000 00000000 00000000 00J18380 00000000 000182~0 *.!."'.II!!! •• !'!'.,~!., .. "' ... !'. * Il§
0182CO 00000000 000188B8 00000000 00000000 00000000 00)00000 0000)000 00000000 * *
0182EO 00000000 00000000 00000000 00000000 00000000 00000000 00000378 F5POP5Cl * .•.. ! , •• ! , , • ! , II. , e. , ••• , • , ••• ~ 0 5A *
018300 0000C080 00000000 00040000 0001BB7C 0000000) 01J182~0 00000000 00000000 * -- ...•...... • ••••••• * 'tf

PJ
018320 000189E8 00011880 00018240 000182P8 00000000 00019P60 00000000 00026428 *.!.Y. ,_._,ell! .• , ,8 •...............• 11

018340 00018990 00030340 0001B4CO 0003BC68 00000000 00000000 C9C7C3PO P5POP5C1 *. , . , , . L .'!.!' ... '.'.'.!" IG CO 5 0 SA * rt"

018360 00000000 00000000 00000000 00000000 00000000 OOJOOOOO 00000000 00000000 *•............... * I-'

018380 00018438 00000000 00000000 00000000 00000000 00000000 01000000 00000080 *. , .. , ,. , , .. , , ! ,. ~ II! , ! , ". ,. " , ,. ~
0

018310 OOOOPPPP 00000000 00000000 00000000 00000001 00)113E8 0001A3C8 00011405 * ••••••••••••••••••••••• Y ••• fI ••• IJ* 0

0183CO 00000000 00000012 0001791C 00011318 4001799E 4002644E 00000000 00000000 *., "." " * Hl

0183EO 00021112 00033P74 40026448 600101El OOOOOOOJ 00018478 00000000)0018380 *. , .• ! !.. .,.!!, , II: ,. , ! , ... , ! ,. ~ ~

018400 00000000 000188B8 00000000 00000000 00000000 OOJOOOOO 00000000 00000000 *•.......................... * 0\

018420 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *. "." ~ ~. II! '! ." '! !! !II. ,. !I ••• "! " ••• " 'II! ~
018440 00040080 00000000 00040000 00000000 OOOOOOJO Jl)18380 00000000 00000000 * *
018460 00000000 00000000 00000000 00000000 00000000 00000000 00018530 00000000 *. ~ ~ .. !I. ~ ~ •• I '! ~ ~. ~. !I ••• ~. , •. ". !'" ". ~
018480 00000000 00000000 00000000 00000000 01000000 00J00080 OOOOPPPF 00000000 * *
018410 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *. " .. " !I •• ! ."., ! !'. ,. ,. ,I, '! , ••• , " ,. ~
0184CO 00000000 00000000 00000000 00000000 00018990 OOJOOOOO 00000000 00000000 * ,.!I.,.'!!I ...• '!'.~
0184EO 00000000 00000000 00000000 000186C8 00000000 00018478 00000000 000188B8 * H •••••••••••••••• *
018500 00000000 00000000 00000000 00000000 00034490 00000000 00000000 00000000 *. !II •••••• ! II!'.! ••• !I. ,. ,. " •• , ••••• *
018520 00000000 00000000 00000000 00000000 00000000 00000000 00040080 00000000 * *
018540 00040000 00000000 00000000 01018478 00000000 OOJOOOOO 002B4008 00021138 *.,." !" •.• ""II!~
018560 00000000 00000000 00000000 00000000 00000000 00)00000 00000000 00000000 *•...................•....... *

LIlJa 018580 SlftE 15 lBOVE
018510 00000000 00000000 00000000 00000000 000185B3 00)00000 000185DO 00000000 * 41"." •• ,I ,-:,.",. 'I',!'''~
0185CO 00018550 00018478 00000000 00000000 000185E3 JOJOOOOO 00018550 00018478 * y •••• I *
0185EO 00000000 00000000 00018600 00000000 00018550 00018478 00000000 00000000 *.,.,. , .. ,',.,',. ,. ,I ,I ,I !I.'.'II! ,.~
018600 00018618 00000000 00018550 00018478 00000000 00000000 00018630 00000000 * *
018620, 00018550 00018478 00000000 00000000 00018648 00000000 00018550 00018478 *. , ...•. I , ! .. , , , I ~ .. !I I ,I " •. 'I' " ,. ~
018640 00000000 00000000 00018660 00000000 00018550 00018478 00000000 00000000 * I. I *
018660 00018678 00000000 00018550 00018478 00000000 00000000 00018690 00000000 *.!II." , •• , "'" !'. ,. !I ••• , , •• ,I:, • "I *
018680 00018550 00018478 00000000 00000000 00000000 00)00000 00018550 00018478 * *
018610 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *1' , , , [I. II! , , II! II! , , ,. ,. 'II!". " ,. , ••• ,. ~
0186CO 00000000 00000000 00018780 00000000 0003DB:~ 00000000 00000000 00000000 *•• ,.,D •• " •• ~.!"'.~
0186EO 0103PE48 00000080 OOOOPPPP 00000000 00000000 00000000 00000001 FFPOBBOO * *
018700 00024428 00024628 00024380 000243CC 00024554 80024118 000244P8 ~001PP92 *."."•.• I1!,.,., ••• ,', •• e, ., ••
018120 00021E28 000241PO 00000048 00024118 400200BC 600101El 00000000 000187CO * 0 •••••••• *
018740 00000000 000186C8 00000000 000188B8 00000000 00000000 00000000 00000000 *. ,II!'" , -: H. '" II! , ! , .•. , *
018760 00034490 0003DB98 00000000 00000000 00000000 00000000 00000000 00000000 *.'.I!'."!!""'.!'.'.~.'''!!I.'.'' .. *
018780 00000000 00000000 00040081 00000000 PF040001 50J1FPE2 00000000 010186C8 * 5 •••.••• 8*
018710 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *. , II! • , ,.! ! ! ! , ! ! ,. ,. ,. ,. , " !II' !I. " " ,. ~
o 187CO 00018878 00000000 00025COC 00000000 00000000 JOOOOOOO 01000000 00000080- * *
0187EO OOOOPPFP 00000000 00000000 00000000 00000000 00000000 00000000 00011880 *., .. , .. "",, *
018800 000187CO 00018878 00000000 00000000 00000000 OOJOOOOO 00018990 00025B48 *."., , .. ".,",. ,I '.'II! P' '.'II!" 'II!.
018820 000204PO 00000000 000204PO 00025C40 00000000 00J188B8 00000000 000187CO * ... O. I ••••• 0 ••••••••••••••••••• *
018840 00000000 000188B8 00000000 00000000 00000000 00000000 00000000 00000000 *., I,! , •• ,!"!, ,. ,. ,. ,. ,! 'I ~.",. ~
018860 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
018880 00040080 00000000 00040000 000204Pl 00000000 010187CO 00000000 00000000 * .•.• ! , ••.. !. ! ! ". ,. ,. ,. ! , ,. ,. ! .• ,~~

016810 00000000 00000000 00000000 00000000 OOOOOOJO 00)00000 00040650)0000000 *•.......•
0188CO 0003E434 0003E200 00000000 00000000 0103PE98 00000080 OOOOFFPP 0003EC78 *.,[J., ,$.,.,.! •... ,. *
0188EO 00000000 80040690 00000001 00027160 00000004 0006P3BO 00000000 00030400 *. , .. ! , • ~ ! • , ~ ! , ,. ,. ,t! •• ~. !II. , I'll! ". *

Ul
(1)
('l
rt-
1-'.
o
tl

f-'
N

()
('l

t:S
rt-
1-1
o
to-'

ttl
to-'
o
('l
7i'
en

III
t:S
0.

1-3
III
rr
to-'
(1)
en

VJ
co
U"1

018FEO 5810!004 50AOFOOO OA0718A7 5870A088
019000 58AOft084 47F09166 18A707F2 92621002
019020 4770919E 94E71002 OA3307F2 00200000
019040 C2FOF1C3 F9FOF1C3 FOOOOOOO FEOOOOOO
019060 C9C5C1Cl C2C505C4 F9000000 00000000
019080 00000000 00000000 00000000 00000000
0190AO 00000000 0000BOA8 000495F2 202C4770
0190CO 41000001 0205F010 F00041FO F01047FO
0190EO 02011015 B0245827 00009180 202A4780
019100 32929102 201A4710 32929102 20344780
019120 33EC4180 80084170 70040501 800032E8
019140 60209500 80004770 32CC4180 80084170
019160 800241FO 41C85060 F0009280 FOOOOA07
019180 00000000 00000000 00000000 00000000

LINES 0191AO-019240 SAME AS ABOVE
019260 00000000 00000000 00000000 00000000
019280 00000000 FOF1F970 02000000 7F0192C8
0192AO 00000000 00000000 00000000 OFOOOFOC
0192CO 060192DO 00000220 7FOOOOOO 00000000
0192EO 40144770 C08458AO 400847FO C02058AO
019300 180A4BOO C1F01820 41220014 1Bl14312
019320 C1AC1890 188E1871 D2030098 c2014550
019340 C002190E 4780CG7C 41090014 18174550
019360 0098C205 0207DOA5 6000D203 DOBOC210
019380 00C7C214 D207DOCD 60104550 C19c41BO
0193AO 1BAA43A6 001842AO 006888AO 00024126
0193CO 4122000C 4180DOC4 41000003 1BA047CO
0193EO COC041AO Cl1E41FO 006850AO FOOOOA07
019400 D069D069 OC07D069 COBED207 8000D069
019420 41220004 4188000C 198B4740 C1404550
019440 C1404180 DOAC47FO C1405060 D1245860
019460 60105060 D1245860 D12847FO 60825060
019480 FOF1F2F3 F4F5F6F7 F8F9C1C2 C3C4C5C6
0194AO 00000000 00000000 00000000 00000000
0194CO 00000024 D3D54040 40404040 40404040
0194EO D6c2E2E3 C5D707D9 D6c3C4C4 C030BOA8
019500 704D30A5 91043074 47EOC258 58B03034
019520 70485ABO 705450BO 70489102 711441AO
019540 71045010 70C850AO 70E058AO 20081BBB
019560 89AOOOOA 88B00016 50A070DO 40B07102
019580 70CC920C 70CF921D 70D09248 70D44110
0195AO 401070D6 92037008 922070DC 921D70EO
0195CO 41100002 OAOB5860 20089001 60089620
0195EO 58A070CO 58AAOOOO D2049008 AOOOD500
019600 901241FO 001C9120 71144710 C09C41FO
019620 4710C09C 41F00020 47FOC09C 92427000
019640 70904110 10004100 00010AOl 8000C37B
019660 OA07F008 406040E2 C9C7C3FO 03FOF5Cl
019680 58B03034 58BBOOOC 07FBOOOO 00FFF800
0196AO 00000000 F6D4008A 01800000 00000000
0196CO 00000000 00000000 00000000 FOF1F96A
0196EO 400196F8 0001A7C8 00000000 00000000
019700 080196F8 40000001 06019718 000003C8
019720 C1C4D203 D098C362 925cDOA8 D25DDOA9
019740 DOOAC371 D204DOEE C36CD204 DOFAC376

12774770 917E5870 A08019A8 47802004
92801003 50101008 50B01004 95D7C007
00000004 C9C7C3FO C1FOF5Cl C9C7c3FO
FFOOOOOO FF030000 E2E8E2C9 c5C1FOFl
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
322C5822 008C18B2 41202004 41A00004
30A84110 00091BOO 47F0323A 5810B01C
32709200 800047FO 3298910E 70004780
3292D204 800033E6 47F03298 02048000
0783D501 80)032E6 47703298 18754180
700447FO 3288D201 60068000 0202600E
FOE2F1D5 00000000 00000000 00000000
00000000 00)00000 00000000 00000000

F1E8009E 0330F1C2 008E1580 00000000
000192c8 OcOOOOOO 400192BO 0001A7c8
310192A8 60000005 080192BO 40000001
05C01B56 41560001 18768000 C1AD9102
A0044670 C01C41AA 000012AA 4780C084
000C8910 00D358EO A01C41EE 00008000
C19C92FO D0981809 18E81817 12114780
C19047FO C0028000 C1AC5860 400CD20A
D207DOB5 60089540 60104780 COB8D203
01039500 60184780 Cl100201 009EC218
00184130 C1A84550 C1780207 DOB82004
Cl104570 C1401B99 4390D068 lA6947FO
C9c7c3FO F3FOF5Cl D2030069 2000F384
07F54550 C12646AO C14E4550 C19C07F7
C19C9110 D1124710 C1704180 00C747FO
D12847FO 60005060 01245860 D12847FO
01245860 012847FO 620A1203 D040FFOO
00000000 00000000 00000000 00000000
00000000 00300000 00000000 00000000
C1C4D960 C4C5C260 E3C9D6E3 40404001
C23258AO 705450AO 704850AO 7050D202
58BB0013 450B0004 12FF4770 C25858BO
C39E4710 C3869200 704C4110 70F841AO
416A0400 596030A4 4740C296 8CAOOOOA
07017100 71009680 7100921D 70C89280
04004010 70FE9204 70F00202 710970FD
41B070D3 41A070FO 50B07130 50A07134
711445DO C35A41AO 705c19A9 4780C330
7027711C 41100400 4780C32C lBAA40AO
00189104 71144710 C09clBFF 91107114
07067009 70099200 70901817 01004110
07FDC084 41AOC396 501070C8 41F070C8
C9C7C3FO E9FOF5C1 C9C5C5F5 F1FOF3C4
1613c2C2 00120125 F7C70000 0000F7C8
OCOOOOOO 00000000 00000000 00000000
02000000 7F)19710 00019710 OcOOOOOO
00000000 OF000801 310196F3 60000005
7FCOOOoO 00000000 05C09180 40214710
DOA8D205 D064C366 020400c6 C36CD204
4550C2A8 021BDOA8 c37B021E 00cDc397

PAGE 0033
* O ••••••••••••••••••••••••• *
*. I!I I!I ! '! O. II! , , '! 2. ! !t. ,. , •••. , '! •• ,. ,P •• ~
* .•••• X ••••• 2 •••.•••• IGCOA05A1GCO*
* B 01 C 9 0 1 C •••••••••••••••• SY S1 E A 01 *
*IEAABEND9 ••• '! '! •• f' , ••• ,,~. ,.". ,.~
* *
., .. ,'.IIl"'4.' ••.•• ,.,.",.,.,,,.
* K.O.O •• OO • • O •• , ••• ".O •• ,.,.~
*K •• ~ •••••••••••••••••••• 0 •••••••• *
*. '" , , . , . III '! , • II! , ! ,. ,. J(•• '0 , ~ • O •• K. , • *
* N •••• y •• N •••• II •••••••• *
*. , . , " ,. II! , ! •• , " ,. !'. ,0 •• K ••••• K ••• *
*. , . O. tI •• 0 • ! • O. ,. pS 1 N •• , , •••• , ! •• ~
* *
* 1Y •••• 1 B •••• , • , • ~
* 019 ••.•.••• H ••• H •••••••••• fl*
*. , .. , , '! • , , ,. !'. ,. , '0 , '! •• ,. • •• !
* A ••• *
* ... " ... a,Q."., •. ,,,, •• ,,, ••• ,.,.*
*.,. II! .llO •• , !'" '! ,. ~. ,a!' ! '" '.!'" .. ~
*A •.•.••• K • •• B ••• A •• O ••••• Y •••••• *
*. ! ••• , •• , ! " • ! , ,. ~. ,0 •• ! , ~. ,"! • te. *
* .• B.K ••••• K ••• B.K ...••••••••• K.*
*. I? B • K •••• , •• fl.. ~ •• J. • ••..• A. K ••• B. *
*. '! , •• , • II! , • '! • '! " ~. ,. ,. A. , , ~. K. , '" •• ~
* ••••••• D •••••••• A ••• A ••••••••• 0*
*., •• A •• 0., •• 9. ,. ;I:GC03D 5AK ••••• 3. *
* ••.•••.••• K ••..•• 5 •• A.,. A ••• fl. •• 7*
* ••••.••••.• A •• A ••• J ••• A •••• G.D*
A ."",.OA •• ~.,.;J.,O •• ''!J ••• J.,O
* J ••• J •• O J ••• J •• O *
*0123455789ABCDEF .. , ••• " •••••••• *
*.'!' •. , ""''!IIl''! ,. , ••••••••• •••••• ~
* LN AOR. DEB. T10T J*
*OBSTEPPROCDO B K. *
* B ••••••••••••••••• e ... *
* C ••• C •••••••• 8 •• *
* ,H ,.!.,.!'.,.,.", B.,,!,.!
* P •••••••••••• H •• *
*.,. '" ""'!""! ~ •. , .••• , '! ,. K ••••• *
* .. D.!.Q •••• " •• ,.,Q .. ,O •••• ".'!*
* •••••••••••••••••••• C ••••••••• C.*
*. , .. " , . II! ~ •• , • , ~. ,. , ••• ! , •• G. , • .• *
* .•• 0 ••••••••••• 0 •••••••••••••••• *
* O ••• O •••••• P ••••••••••••••• *
. ! ••• , •• '! '" ~ , , , ~ •. " , • •• C •••• H. 0 • H
* .• 0 •• SIGCOL05A1GCOZ05A1EE5103D*
.!" "'. , •• , "" '" t!~' ." ~B •• " 7G •• ,. 7H
* ... • 6 M ••• , , •• ! ... II' !II' •• '" , •• !II' • '" , • ~
* 019 .•••••.•••••••••. *
* .. e.,.H ,'!' , ••• !".,3., .. ~
* ... 8 H *
AOK ••• C., ••• ~ ••••• K .•. C.K •• FC.K.
:(t:; •• C. 1:\ ••• C. K •• , c ... B. K ••• ~. fe ••• ~. ~

Ul
!:l:'
~
'd
r<
tr1

t::J
C

I~

'd
III
1-1
rt-

f-'
f-'

o
Ml

N
0\

w

1- 01A520

CIl
!J:I

co PAGE 0036 t;:
0\ OA034397 000A8990 000358B4 008C4159 B0001B99 47F08076 410004E7 58E4002C *. ! I!' •• , •• ! • ~. , , ~. ,. ,. ~ q. It ~. '!I X. fJ •• ~ "d

t-<
01A540 07FE4100 OCB558EO 402C07FE 48000000 OOFFFFFF FF20104E C18892C1 C3929233 * •••••••• ••••••••••••••• A •• AC ••• * t>:I
01A560 C3610203 C389C3A8 9103C3A7 4780C188 92c2c392 89800002 91013001 48703004 *:. K. C. C.!! C.,! ~. ~BC. I!'. f'" !f ••••••• * t:l o U580 4780C1B2 43705001 5470C30C 19874770 :1E44870 500091FO 50014750 C1B24370 *. , ~ .. , . " ! , <;. , , !II. ~U •• "'. ~ Q •• ! • ~. , • * C
01A5AO 30058870 00044270 C37BF321 C37BC37B OC01C37B C2A79240 C37D1881 4110C360 * •••••••• C.3.C.C ••• C.8 •• C ••••• C.* t;:

01A5CO 96202000 911040B6 4710C10E OA231818 OAOFOA03 41505002 47FOC194 5880407C *. , .. '!II .! '" ~. , • ,. ,. , ••• , , '" 0 A. , , .• ~
"d

o 1A5EO 1B664360 80185870 80189101 70004780 :05691FE 70)04710 C23A0501 30147002 * B.N ••••• *
"d

o U.600 4770C23A 0400300C 700196FE 70004360 30045460 :30C5870 C3108870 60005670 *.,B.M •• ~, .•..... ~ ••• C ••• C ••••••• * PJ
01A620 80145070 801447FO C13E4170 70044660 C20247FO C0569101 300141BO 30044150 * '" !I. 0 A • ! • , , !I. 13. ,0 •• , , •• , • ! , " • ~ 11

01A640 30064170 000A4780 C29E5850 408C1B77 4370300A 89700003 48575006 5450c314 * •••••••• B ••• ••••••••••••••••• C. *
if"

01A660 06500650 43705001 5470c30C 91144074 4710c292 4380300C 5480C30C 197847FO * e. '" • , , !II. , ., , <;:. , , _ • , e. 13. '" • , , ,. G. , , ,0 * I-'

01 A6 80 C04A4170 000F4180 000418B5 1BB84190 02A058AO 02801AA9 1B004380 80005480 * ,.,.",.", ... , .•. * r-v

01A6AO C30C1A88 41089000 18F945EO C2E04108 A00018FA 45EOC2EO 41808002 19854740 *C •••• Q ••• 9 •• 8 •• Q •••••• 8 •••••••• * 0

o 1A6CO C2AA4380 300C5480 C30C1680 47FOc28C 9170DOOO 078E9101 30014160 00084780 *8 ••• " ,. ,C. I!I • ,0 B. , eo!'. ,. ,! ,. ,. ,,! ,. ~ t-h

01A6EO C2FA4360 B0015460 C30C95C1 F0184780 C3068860 00)21606 07FE4770 OOOOOOOF *B ••••••• C •• AO ••• c ••••••••••••••• * r-v

OU 700 80000000 OOOOFFFF 00080000 8000C9C5 C1FOFOFO C140c3E4 C16BC905 E340D9C5 *. ! :rE AD 00 A CU A. IN T RE * 0\

o 1A 720 086B6BC3 C37EF361 05064007 C1E3C8E2 40C1E5C1 C903C1C2 03c56B6B 6BE5D6D3 *Q •• CC.3.~O PATHS AVAILABLE •• ,VOL*
01A740 E2C5096B D106C2D5 40404040 40001000 00298000 :9:5C1FO FOF1C940 E4D5C9E3 *SER.JOBN ••••••• IEA0011 UNIT*
o U 760 40F2F3FO 6B4007C1 E3C840F5 F340C905 06D7C5D9 C1E3C9E5 c5100010 4040C307 * 230. PATH 53 INOPERAl'IVE •••. cp*
01A780 E440E710 001040FO F1F2F3F4 F5F6F7F8 F9C1c2:3 C4:5C604 40C6D5D9 J8022010 * [J X... 0 1 23456 78 9A BC DE F. FOR •••• *
01A7AO 40018020 20009502 41E0960C 58B0800C 47F0960: 41E0950A 47F095CA 58008010 * •••••• K ••••••••• 0 ••••••• 0 •••••. *
01A7CO 4AOOBOOE 06004870 00045A70 80140670 9120B016 478095FE C9C7:5FO FOFOFOC1 * .. '" . It •• ! , , •• , , ,. !II. ,., •• , • IG EO 0 00 A *
o U 7EO 60F2F006 4710961A 40404040 00000000 00033FC8 00033F74 0003F5B8 00000000 *.20 ••••• ••••••• H ••.••• 5 ••••. *
01A800 3BOOOOOO 00000000 00000000 00001EOC 5BOOOOOO 00000000 00000000 0005DE40 *.'."!'.'''''.!'!I.'.'.'.!!~.~.!!' *
011820 6BOOOOOO 00000000 00000000 00020DD7 7BOOOOOO 00)00000 00000000)0012C7B * ~P •• ,.~.!" ,. ,.!. ,.'!'
01A840 ABOOOOOO 00000000 00000000 80001EOC 00000000 00)00000 80000000 00000000 * •••••••••••••.•••••••••••••••••• *
01A860 00000000 00000000 00000000 00000000 00000000 00000000 00000065 F2F1FOFO * , ... , , •. , " .. ~. ,. ,._ , , ~ ~ 100 *
01A880 00017B04 000170A4 0001A7C4 000270CO 00000000 00006BB4 000179E6 000218AO * ••• M ••••••• D ••••••••••••••• w •••• *
01A8AO 00021704 0000700C 00007170 000175F8 00002928 0000E8A8 0099366F 00027158 * ... K. , ••• " •• ! ,8 •• ,. ~.Y .•••••••• *
o 1A8CO 000219BE 00027220 00034C10 00000000 OA0307FE 00)1A7C8 000203E8 00021410 *. ,. II! , ~. II! '! '! .• , '! ,. ,. ,. ~. ,~ •• "Y." •• *
01A8EO 00000000 00024428 0001E4B8 0001E164 000001DO 10)27280 000052CC 00006B3C * •••••••••. U ••••••• J ••••••••••••• *
01A900 00040800 0002646E 0001718C 000070A4 00000181 00027158 0001DOOE 00000000 *.~."~'.""!'!!'.!l.'.'."' ... '!"~
01A920 00017COO 0007E7FF 00000000 00000000 00027308 0000E700 0001003E 0001A7F8 * •••••• X •••••••••••• Q •• X •••••••• 8*
01A940 00000000 0003COC8 0001B424 00000000 00000000 OAODOA06 0001A800 000273E8 * H •••••••••••••••••••••• • y*
01A960 00000000 00000000 000274BO 00000224 00000000 00000000 00000000 00000000 *.,.", .• ",.",.,.!I' ••• " •••• , ••• !
01A980 00000000 00027550 00000000 00020510 00027558 00017A14 00000000 00000000 *••...•............. *
01A9AO 00000000 00000000 05205880 29CA9200 8000D502 0025006D 478021E2 9180401D *. , ... , . ! , , , ! ! ! ". ". li •••. ! '! ,. , S. , .• ~
o 1A9CO 47102076 186F4190 40A05879 00001277 4780~074 9120700C 47802044 9180500B * •••••••• ,-".,.,":",. ,.,""!
01A9EO 47102056 18975877 000047FO 2024D502 4001700D 47702074 9180700C 4710206E * ••••••.••.• 0 •• N. ••••••••••••••• *
01AAOO 41170000 D2039000 70005800 29A65880 29C605E8 47F02020 189747FO 202018F6 *. ! •• ~ •• , ! ! •• , .. ". l' F. Y • 0 • '! , •• 0. , , ~*
011A20 91C0500A 47402210 58C02996 471020A6 58802992 023F4030 80009180 500B4710 * ••••• • ••••••••••••• K. ~ ... *
01AA40 25285860 501C0203 40686014 41C022F2 95125009 477020BC 05045088 29AE4770 *. ! ! • , ,K. _ • '! • , , ,,2 •• , ••••• N ••••••• *
01AA60 20BC925C 508C1865 9180600B 47102006 5860601C 91:0600A 471020DA 47F020BE *."", •.• ",,,.,,O •• ,.,.,,,., •• O.,!
01AA80 940F4094 05EC05EO 5820E8BO 9180500B 47102106 91404094 4780214E 91804010 * •• •••••• "Y •••••••• 0.*
01AAAO 4710210A 9120401F 4710210A 918040AO 47802112 948F4094 47F0214E 5860501C *.,.,'!' .".!f!~.1'·_'.'._.'O •• !".*
01AACO 91C0600A 4710214E 9120600B 4710213E 91F06011 4730214E 9180500B 4770213E * ~ !II •• O •••••••••••• ,.!
o UAEO 5860601C 47F02116 96014021 964040AE 94BF4094 47F0215A 58605)1C 91FF601C * ••••• O •••• •• 0 •••••••••• *
o lABOO 4780216C 58703000 59407000 4770216C 1B885080 70D094BF 500B0202 40015010 *. ! , • " , • , • , •• " ! !'. 1' ••• ,., ! ! •• K • . •.. *
011B20 58C029CE 9102500B 078C91CO 500A4790 21AE9500 5018077C 58105000 41101000 * !II ••••••••••••••• *
01AB40 12114780 21A65800 29125880 29C605E8 48005008 47F021B4 1B004300 50091815 *., ... ,., •• ,.,f.Y .. , .. Q •• '.'."'II!=
01AB60 89000003 5600299E 91C0500A 479021CA 5400299A 588029C6 05E858CO 29CE07FC *. , ! ". ". ,. ~._ , ~ • y •••• ! 'I ~
o lAB80 45E027EE 96804021 47F0215A 58604004 947F6000 987C6008 50705014 90894068 *. O ••••*
01ABAO 90AC4030 58E02992 D22B403C EOOCD201 50100020 58E03088 07FE910: 500B4780 *. , ... , .. {{. _ . , ! J{. ". , • ,. , , ! " , II ~
01ABCO 20E25860 50184166 00004710 223C9108 500B4780 229A5806 00009110 500B4710 * . S ••••.••••••••••••••••••••••••• *
01ABEO 223C47FO 22C41B11 43105018 12114780 224A0610 58006000 18705000 50184210 * ... 0. p. 'I •• 'II! "'!I • .•••••••••••••••• *

en
~

PAGE 0038 ~

01B2EO EOOE58FO 29F218C4 47FOF004 58004084 58102A6E 58002A6A 05ED47FO 25D60580 * .•• 0.2.D.00 ••• ••••••••••• • 0.0 •• * "d
t"'

01B300 50E08034 914081BC 47808010 968081BC 912081B: 47808024 94DF81BC 58F0806C *'!'~~-""I1111"!~""I! •• ,..~.,.,Q •• * t>:I
o 1B320 47P08028 58F08070 05EF947F E19258EO EOOA07FE 9DJ1AE58 D001A9AA 00000198 *.0 ••• 0 •••••••••••••••••••••••••• * t:1
01B340 0001B604 FDFFFFFF FFOOOOOO FAOOO048 FF000010 FDJ00010 C1C2:5D5 :4000000 *.! ! ,II!!!" ABEND * c:::
01B360 00001000 OOOOOOOD 00006286 0001e4A8 0001BEEA 00017B90 0001B666 000170E4 * .. ~ ! .. I! ,. .. III! ., III , , p. !II" , , III! [II .. ! .. , .. ! IJ * ;,::

"d
01B380 0001CF64 0001D42C FF000018 0003FF80 0003FF84 80FBOOOO FA000020 D001DCE2 * •••••• M ••..•••••••••••••••••••• S*
01B3AO 80D03000 0001E018 80C03000 0001AD72 FF000008 80A03000 FDOOOOD8 00000020 *, ., III .. " !II" !II" , .. ~ .. ! • ~ .. ,. Q ... ,., ~

....
"d

o lB3CO 0001E132 F3000070 0001B004 00000000 00000000 OOJOOOOO 00000000 00000000 * 3 !".,.,.,.!'!!'.!."'.~ OJ
01B3EO 00000000 00000000 00000000 00000000 00000000 OOJOOOOO 00000000 00000000 * .. * ti

rt
01B400 00000000 00000000 00000000 FDOOOOOO 0001AE22 00JOE8A8 80103000 00000002 *""""!"11:"""""!"'.""'.~
01B420 OOOOOAOl 0001B002 0001E7B8 0001BOB2 00018990 00)lB134 0001ECB8 J001EF94 * •••••••••• X ••••••••••.•••••••••. * f-'

w
01B440 0001BEEA 0001F9BO 0000F12c 000170E4 0001CF64 0001C4A8 0001B05A 0001B198 * .. , .. , t .. 9 J.. U " D *
01B460 0001AD72 0000F198 0001BE40 0001BCEO 0001A998 0001A99C 00018550 00018478 *'!1!1"11,,, I""',., .. ", ... ",.! 0

Hl
01B480 0001FF90 OOOOEBOA 0001BB74 000187CO 0001CE80 00J186e8 00018380 00000000 * ••••••••••••••••••••••• H •••••••• *
01B4AO 000058BC 0001B666 00020148 0001BOB2 00020468 000204FA 00020510 0001e514 * .. , ": , ., , .. III! ! , III! III! , , !II" !II" ,. .. ,. .. , , ,. .. , .. , , E. ~ N

0\
01B4CO 4520C404 96204094 5E60C7DO 4710e022 92CODOOA 98J1D020 185D98DF D05405E6 * .• D ••• G. , , ,. , !, , w*
01B4EO OA034815 00124El0 C7B8F332 C7BOc7BD 9801c7A: 45EOC4A4 47FO:048 50FDOOOC * ••••••.• G .3. G. G. " G ••• D •• 0 •••••• *
01 B500 586F0010 47FOC010 18768870 0012407D 00025460 :7:C506D 0018501D 00045890 * .. , , .. '! 0 ... , , , .• ,. .. , • G. , , ,. .. , • , , *
01B520 C7845889 00044129 00089140 20004710 :07A5962 00384780 COC04122 00104690 *G ••.••••••• •••••.••.••••••.•••. *
01B540 e06A5810 C82845BO C4C85830 00105890 C7841222 4770eOD6 D202DOOO 900150D9 *., •• !:! ... pH •••••• G .•••.• OK •••.•• R*
01B560 000092FF D01CD207 D010C7FO 900F4030 58A30000 lB11501A 000058AO C79007FA * .. , .. ~ .. ,. K. , [II GO .. " .• ,. .. ,. II! ,. .. !' , •• \I' C; ••• *
01B580 92002000 45EOC476 58620000 1B29402D 000047FO C01445BO C45245BO C48E92FF * •••.•• D ••••••• •••. 0 •••• D ••• D ••• *
01B5AO D01C45EO C4769801 D020185D 98DFD054 41EOC020 90054030 90DF4064 02045010 * •••• D •••• !II • '! ! ! !. ~. ~. !. 0 • !II ••• ~. !II ~ ~
o lB5CO C7F8D202 50152001 18621B69 40650000 5872000: 58570000 D2076060 C7AC5872 * G 8 K • • • • • • • •• • •• ,., • ! • ~ ~ K. ,. G. , • *
01B5EO 000C5863 00005076 00005867 00009200 601C9240 20305047 005c5057 006458AO * .••.••.•.•••••••••• • ••••••••••• *
01B600 C79007FA 58COC6A8 D2334038 50289001 403050F4 006C91DO 500A07EE 5890C784 *:; ••• , !!I F. t<. 0 • ! , ••.• !!I 4 •• , ., , ••••• G. ~
o lB620 48650000 41269000 1B004162 000458D6 000012DD 4730C19c 19D54780 c188180D * •••••••••.••••• 0 •••••• A •• N •• A ••• *
01B640 416DOOOC 47FOc16E D2026001 DOOD5860 :8200660 5060C820 47FOC180 1200077E * .. ~ , , 0 A. tc ••• ! ! !!I • ft. , ••• !I. !II 0 A. , , , • *

en 01B660 92202000 07FE58CO C6461B11 5910C820 4780c25A 5830C784 58890004 41290008 * •••••••• F ••• ! '! ~. ,. ~ ••• t;; ••• !II. ! ! •• ~
CD 01B680 91402000 4710C212 4150C578 4590C538 12FF4780 C256585F 0000D502 20095019 *. •••• B .•• E .•• E ••.•• B .•••• N ••••• *
()

01B6AO 4780C212 45BOC452 58300010 5872000C 58670000 02076060 C83050F7 005C5057 *. ! B ••• D. , !II , • ! , !I'. ,. !II • ~ ••• fI. , 7 •• , • * rt
f-'. 01B6CO 00649200 601C58BO C7A018A7 05EB9240 20004122 00104680 C1C01211 4780C25A * .•••••.• G •...•• ••••••.• A ••••• B. *
0 01B6EO lB005890 C78441EO C2325879 00005009 000012A7 4780C25A 9200701: 587AOOOC *.!'.(? •• ~., .•••••.•.•. B ••••••••• * tj

01B700 500AOOOC 9180AOOB 58AA001C 4780C244 58BOc7AO 07FB4510 C21258EO C79007FE * .. II! •• , •• ! ! I!' I!' '" ! B. !'. ~'"' ,. , '! B ••• ~ ••• *
f-' 01B720 58COC58C 9110800A 4780c276 18751858 45EOC15: 1857580F 00000207 C7B8DOOO * .• E •••.••• B •••.••• A ••••••• K.G ••• * N

01B740 9801C7B8 45EOc4A4 47FOC2AE 92c0800A 07078000 8000D702 80198019 58FF0010 *. I!' G •• ,D.! OB." ,. ~. !!I '!: ••. .r. '"' .•. "!II. ~
01B760 41FFOOOO 50F80014 98015020 OA03900F 40301B77 5078000q 9200300A 50180004 * ••••• 8 •••••• "!!I •.• !!I ••• !II' •••• ~.,.*

(J 01B780 5890C784 58790004 41990008 91409000 4710C2F3 5829000c 58220JOO D5032004 * .• G •••••••••• •••• BO •••••••. N ••• *
0 o lB7AO 20644770 C2FOD507 20604030 4780c336 41990010 4670c2CC 5810:828 45BOC4C8 * .•.. BON. ! !II 0 • , • ~. 11 • •• !II. ~ ••• H •• ! DH* tj
rt 01B7CO 12224720 C36C5854 00005890 C784D202 500D9001 50590000 9201501e D2075010 * .••• C •..•..• G.K .•.••••.••.•• K .•• *
ti 01B7EO C81858EO 001058EO E0001BOO 5000EOOO 58EOc790 07FED202 80199009 02018002 *B. •• !".II!"!II'~ •••••• G ••• K ••••• K ••• * 0
I-' 01B800 200258FO C82041FF 000150FO C820D202 800D9005 50890004 92009000 58F90000 *. !II • 0 H •••• , • Q H. ~. !II. , • !II. , , •• ,. , 9 • '"' *
tJj 01B820 5B90C784 40980000 47FOC2AO 45BOC452 45BOC48E 18ED58D4 00005850 001C9201 * •• G. •••• OB ••• D ••• D •••• M •••••••• *
I-' 01B840 501C58F2 000041FF 000050F5 00145862 000C5866 0000D207 60604030 0207D010 * '"' , . 4! '"' , •• ! !' • S. , ! '"' ,. !!I' It. !{. ''"' .• ~. '" • ~
0 01B860 C800D202 500D2005 50520004 5860C820 41660001 5060C820 12EE4720 C3E60202 * H. K ••••••••• , ! a. !!I •• a: , • a ... , . c;:: if K. * ()
:>I"" 01B880 5019EOOE D2015002 E01B1892 5B90C784 40950000 023B4030 D02050F4 006c5830 * •••• K ••••.•.•• G. .•• K. •••• 4 ..•• *
UJ 01B8AO 001047FO cllE5872 000c5867 0000D207 . 6010C810 D2076060 EOOOD702 20092009 *. , '"' 0 A • '"' •••• II! ! , K. !'. ~. ~ •• , ,. ~ •• , ,. *
OJ 01B8CO 47FOC3CA D2075010 00209801 C7A458FO C7E405EF 1801D23F 00207000 D71FDOOO *. DC. K ••••••• G •• OGU ••• JK ••••• P ••• *
::l 01B8EO D0009212 D00992DO DOOA9202 DOOB505D 001c50D4 000007F2 lB77507A 00009200 *. , . , , , .. , '" II! '"'0 ! ! 0.. • •• M. ••• 2 •••••••• * 0.

1-'1
01B900 601C5816 000C5076 000C1261 4770C43E 07FB5872 00041277 078BD502 20097019 *. !II • , • !II •••• ! , ! ! D. !'. , '"' ,. , , •• 'ti. , ! !II. ~

OJ 01B920 4770C46E D2007018 701c92FF 701c5877 000c47FO C456D202 DOOD2005 50D20004 * •• D.K ••••••••.•••.• OD.K •••••• K •• *
n- o lB940 5860C820 41660001 5060C820 07FE4162 00105960 :82C4770 CQ9E5860 C8245060 *. , H. ! !' •• , , a. , , ,. ,. ,. H. , • D. !.o ~. , ~ ~
I-' 01B960 C82807FB 58FOC79C 41FFOOOO 12FF078E 590F0009 4770C4CO 591F030C Q78EOO04 *H •••• OG ••••••••••••••• p., ••• !".* CD
UJ 01B980 58FFOOOO 47FOC4A8 lBOO1821 lB331B88 91402000 4710C500 91202300 077B4150 * ••••. OD •.•..••.•• •••• E •••••••.• *

o lB9AD C57E4590 c53812EF 4780C52C 12F34780 C4FC4190 :50045AO c59207F9 183E1882 * E ••• ~ ••••• E •• ~ •• D. !' • E. , • E •• 9 •• , • ~
w
co
-..J

w
co
co

01E9EO
01EAOO
01EA20
01EA40
01EA60
01EA80
o lEAAO
01EACO
01EAEO
01EBOO
01EB20
01EB40
01EB60
01EB80
01EBAO
o lEBCO
01EBEO
01ECOO
01EC20
01EC40
o lEC60
01EC80
01ECAO
o lECCO
01ECEO
01EDOO
01ED20
01ED40
01ED60
01ED80
01EDAO
o lEDCO
01EDEO
01EEOO
01EE20
01EE40
01EE60
01EE80
o lEEAO
o lEECO
01EEEO
01EFOO
o lEF20
01EF40
01EF60
01EF80
01EFAO
01EFCO
01EFEO
o UOOO
01F020
01F040
01F06o
01F080
o UOAO

12114780 42CA9680 108894DF 108818D3
10904770 425294BF 10881277 47D04266
18134Bl0 44C45811 00009104 10554780
477042cA 5812000c D300l000 D09DD202
000058FO D04C50Fl 00005010 D04C12CC
00001816 58601000 18D00700 47F042DC
48103038 06104010 303847FO 40EC1277
0690924B 90005890 30181299 4770431C
43301B77 47F041E6 58703018 12774780
9180c094 47E043DO D5017089 30924770
707A4710 43D89610 707A9610 700447FO
90007000 D7029001 90019210 90059200
471043D8 19894770 43BCD500 90007000
58909000 47F0439A 59C07080 4780435A
70009224 70609210 70614180 705C5680
9180C094 47104444 59CC007C 47704444
D0881BOO 430C001c 12004780 444005EF
12004780 64621BAA 41B0300c 58C03040
58C03040 58F00010 58FOF098 05EFD500
64F816BD 18D34BDO 64C658DD 000048DO
981E308C 58300010 18F007FE 97001000
OFOF20F5 00F09180 40C9C5C5 F4FOFOC9
C3C1D5C3 C5D3D3C5 C4406040 00007FFF
0001ECB8 00000000 5001EDOA 00000000
0003DC88 0003DC28 0003D4E8 E2E8E2C9
C8C5C1C4 D8C3C201 052018A1 186145DO
290E1288 474024E2 45D02948 12774740
90044780 24F25899 00004199 00001299
47802508 91409004 4780206A 5839000C
45D02498 18B918C9 91809004 47802088
58D70000 41DODOOO 190D4780 20D85897
45D02116 58990000 12994780 21009180
210045DO 28EA45DO 247C1801 181745DO
41000018 181845DO 24BC91FF A00041AA
lBCC58F9 000C9500 F01C078D 43CF001C
000858CC 005050C9 000C1BBB 43BC0028
58A90008 58B02C8E 18FE05EB 18AC18EF
06B042B3 002807FD 95003029 47802176
OAOA18FC 06B042B3 002818B1 D763BOOO
B050B01C 58C00010 58CC0014 50COB054
303192FF B062D202 B063B062 41C00001
41COB030 50COB014 50BOB018 D203B025
B03492EE B03718CF 4110B004 OA004110
00644111 OOOOOAOA 18FC07FD 91306002
00000002 80000000 58002256 1B115610
80000000 58002272 1B115610 22760A4F
2CA24180 30005508 0000078E 58880000
lBBB5897 00004190 90005549 00081869
23DA07F3 0700189C 55490008 477022cA
18F35839 000C91FF 300247EO 231095CO
45D023DA 47F023F6 12FF4770 23F612BB
47F023F6 12FF4770 23F658FC 000C41DO
42AF001C 91409004 4780237E 58A90008
000142BC 002818C9 9500F01C 077D58AC
900418F3 5839000c 45D02168 1896183F

4BD044Cij 580DOOOO 9680D054 D5001000
91801094 47304266 D6017098 109818D1
42CA4110 00)85012 00001812 OA0412FF
1005D091 92801004 18D34BDO 44C458DD
478042:2 D2001000 c01C4110 00A85012
F5000018 580042D8 41110000 OAOA180D
47D04324 18A941FO 70P81BAF 50A07004
5070303: 50907000 50703018 12664780
44029500 70044780 43D812CC 47804350
43D85890 707C1B88 12994770 437A9110
43D89101 70)44780 439A94FE 7004D200
9007D402 90019001 477043C4 91109005
477043E4 96109005 47F04372 41809054
58707000 41770000 47F04334 D20B705C
90005080 900047FO 437212C: 47804444
900D3054 18034BDO 44C458DD 000058FO
5830001J 58303064 980D3054 1864184C
58F00010 58FOF098 05EF1BAA 41B03008
30393020 47B064A8 1BAA41BO 303058DO
000258:0 304058FO 001058Fo F09805EF
F5000090 0001BEEA 0001BE40 00040008
40E3c8:5 E2:540D4 c5E2E2c1 C7C5E240
80000000 919C59AO 0003DC88 5001B4EO
0003D34J OOJ3BC68 0003D4E8 0003DC28
00000002 A001F2F8 5001B4EO J00304FC
2A4847FO 2C4247FO 2C3A47FO 2C3245DO
24E25897 00005549 00084780 205A9180
478024E2 55490008 47702034 91809004
45D02168 91016002 47802076 9200A003
13C94500 245c4100 00101B19 45D024BC
00009180 90044780 20D012CC 47402100
90044710 20B647FO 210045DO 211647FO
24BC5508 00084770 210018B8 4500245c
000C47EO 201445DO 224218A6 47F028BO
06C042CF 001C9140 90044780 214E58C9
41BB0001 42BC0028 9500F01C 077D18CA
07FD1BBB 43B30028 95013028 4780217E
18CF0700 45102192 00000064 58010000
B0009202 BOij850BO B050920F B050D300
9204B05~ 5030B058 9218B058 D201B05C
40COB066 9202B004 9200B005 50BOB008
303141:0 B03850CO B02C9203 B0309220
B0004100 o0010A01 8000222F 181B410o
078D183E 91206002 4780226E 47F0225E
225AOA4F 47F02286 47F0227A 00000001
47F02110 052041FO 028C1B2F 1B005830
55080008 47802444 4130240E 58780008
ij780238: 91309004 477022D4 05B045Do
186912BB 477023F6 91409004 47802316
300D4700 231045DO 21681896 183F1BBB
ij7702332 91309004 471023F6 45D023DA
2332189C 9500F01C 078D43AF 001C06AO
58CA0050 50:9000C 1BBB43BC 002841BB
000847FO 215A9140 90044780 23A694BF
91809004 471023C8 450023DA 47F023F6

PAGE 0046
* L ••• D •••••••• N ••• *
*. '!' ! " • , • e , • ! • ! • ~. ,. , •• " !II , O. !II " , • ! J *
* D •••••••••••••••••••••• 11; ••• *
* L ••••• K •••••••••• L ••• D •• *
*. ! • 0" • '0 1 • , 01) II!. ! ! !II' ~. !l B K. , 01) '" , • ! ! " • ~
* 0 •• 5 •••••• Q •••••••• *
*., .. ", .".0 . .f."., ••. !9 ••••.• !'.~
* !.! II"" "!I' ,. '-:, II) •••• !!! '. ~
* O.II ••••••••••••••••• Q •••••• *
.! ~.!!'.,. ,Q , ••• !.!.!.
* ••••• Q ••••••••• O.Q •••••••••••• K.*
* I;> ••• ",'!' •••••• M •••••••• D •••• •
*. ! • Q. , •• , ~ N. , • ,. ~ •• [J •• ,. , • 0 •• , • "'. ~
* 0 ••••••••••••••••••• O •• K ••• *
*. , .. 4! !II' 4! , , 4! ! ! , ". ~. ,. ,. ~ Q •• "'. , ! •• ~
* " ,. ,. , .. ~., .D •• " •• O*
*. *
'''~''''''''''!'' .0 ••• 00., ••• ,.,. * O ••. OO •.• N ••••••••••••••••• *
*. e ••• ~. , . f •• , ! ,. ,. fI •• .0 ••• 00 ••• *
*. , ! O •• ! , •• 5. , ... ,~ ... "!II'!
* ... 5. 0 •• IEE400I THESE KESSA.GES *
* CAN CELL ED. . • , ~. !'. , • ,. , • , ••• , , ! • ~
* L •••••• KY •••• *
* KYSYSI •••••• 28 •••••• K. *
* H E A D Q CB. '" , •• ! ! •. ,. ,0 I. ,0 ••• 0. , , • !
* S •••••••• S •••••••••••••• *
* ;2 •••••• !".,.,s .. !''' ... ~ ... *
* "'."."'., .. "."., ..•.. !' •• ~ * I ••....••• I ••..•.•....•.. *
*.~ ... "'!"'! Q •• ~. ,. ,.,! , .. I ~
* O ••••• ,~O*
* *
*., .. ", ...•.. !.,.,., ... " o .• !
* ••• 9 •••• 0 ••••••••••••••••••••• I*
*.",." ••• I •• , •• """ , ... , ••• 9. , ... *
*. ! ••• ,I .•... '" . ,. ,. , . ! • , • ,_ ••• , , , • *
* : *
* ... I •••••••• ~. ,. !II' ~ ••• " !II' •• ! • L. ~
* " .. K ••• *
* K. • • • • • • •• • •••••••••••••• *
*., .. " ..• !!.~. ,., ••• " •••• , ••• ~
* *
*. '" " , .. , , .. " ! ". ,. ,. "0' , •• ,. ,0 .. *
*.,., "",!,.,., .. Q ••• O""'I~
* 0 ••••• 0 •••••••• *
., .. ,•. !! ,.,., ... ,', ... ",,,.
* K •••• *
* ... 3 ••••••••••••••••••• 6 ••••••• *
*.3 .. " .. ".,.",. ,. ,.,." , ... *
* 0.6 ••••• 6 ••••••••••••• 6 •••• *
*.9.6., •• ,6."",.,., .•. 9"",!",~
* ,.,'!.I."•. ~.!
* I •• 0 •••••••• 0 ••••••••••• *
.,.3.,.".,.",.,., .•. ,H .•.• ,O.6

CIl
:J:> :s:
I'd
~
trI

H o :s:
I'd

I'd
III
Ii
rt

f-'
+=
o
H1

tv
ct-

rJl
3>

PAGE 0057 3:

0236CO F3E04160 F3E05060 00489COO 10004710 F3BC4780 F36E9104 00444780 F3BC9634 *3 •.• 3 •••.•••••.. 3 ••. 3 ••••••• 3 •.• * 'tJ
t-<

0236EO 200647FO F34A9DOO 10004710 F3BC4720 F36E4780 F3869106 00444780 F36E4122 *. ~. 03 Q 11!'~' p. ~. ,.~. ,. ~ ••• ~. ~. * trI

023700 000A4910 F4244780 F3B29611 F45F47FO F2CC4540 F3A64122 000A47FO F3B2D207 * •••• 4 ••. 3 .•. 4 •• 02 .• 3 ...•.. 03.K.* t:1
023720 2002F3DO 40120000 07F492FF 20005860 FC8807F6 41000A10 D20FF029 F4485830 *. '!' 3 •.••• • I:l. '! , ~ , •. ' • ,6 •• , I!' K. , • ~ ••• != c

3:
023740 FC8C07F3 00000000 00000000 00000000 00000000 00300000 04000000 20000006 * ... 3 .••.•.•••••••• , •••• , •••• " •• * 'tJ
023760 00000000 60000006 00000000 20000006 00000000 20300006 00000000 00000000 * .•.•••••.•.••••••••••••••..•.••• *
023780 FOF1F2F3 F4F5F6F7 F8F9C1C2 C3C4C5c6 00000000 00000000 00005000 00000000 *0123456189ABCOEF •••••• , ••• , ••••• * 'tJ
0237AO 00000000 000000F8 000007FF 00000000 00000000 00300000 00000000 00000000 * .••.••• 8 .•....• , •• " •.••.•..••.• * ~

'"' 0237CO C9C7C6FO FOF6E240 c961D640 C5D9D940 00000000 00000000 00000000 00000000 *IGF006S 1.0 ERR " •••..••• * r1"
0237EO 00000000 00000000 00000000 00000000 00000000 00300000 00000000 00000000 *.,.,., .. , ... '!'.~.,.,." .. ,." .. * P

LINES 023800-023F40 SAME AS ABOVE U1

023F60 00000000 00000000 00000000 00000000 00000000 00000000 00000000 OEOOOA07 *.,." """'!'! ,. ,. "."" "",!.,.~ 0
023F80 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * •••••••.•••.•••••••••.•..•.••••• * HI

023FAO 00000000 00016F70 00000000 00000000 00000000 00000000 00000000 00000000 * ...• '!! ••••••••••••••••••••••••••• *
023FCO 00000000 00000000 00000000 00000000 0001A880 000229EO 00000000 FF07E604 *., ,' ". ~, " ,. ,. " ,! •.•. ,.~.!

N
0\

023FEO 00000000 0003EEB8 0001A3A8 00000000 00017AEO 00)00000 005EOOOB 0900006C * " *
024000 OOAOOOOO 005EOOOB 02028170 02900000 005EOOOa 03028038 01380000 005EOOOB *., .. , ,. II" •• ,. ,. ,. , ••• " , ••• " •• *
024020 0401E130 06880000 005EOOOB 05025A90 00600000 005EOOOB 0601FF90 01B80000 * '!".,."'.~
024040 005EOOOB 07028BBO 00480000 005EOOOB 0801E7B8 05000000 00000000 FFFFFFFF * .•••••••..•••••••• x ••..•.••.•..• *
024060 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * . ., !'. ~ •••• Ii" ,. " ,. ,'o,! • '0" "'. ,. ~

LINES 024080-024340 SAME AS ABOVE
024360 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00010026 *. !, .. ,. , ! , " , ! ,. ,. ,. ,. '" ! , •••• , •• *
024380 00024628 400200BC 00024380 000243CC 00000000 80024AA8 000244F8 4001FF92 *., "'."'.,.!' ... ,~~._'!"8 ••• ~
0243AO 0002AE28 00024AFO 00000048 00024AA8 4002B048 00024628 00024380 000243CC * •..•.•. 0 •••••••. • " •...•••••.•• *
0243cO 00000318 0003EOD8 00000000 00000000 0002B590 67040000 0000005F 00000000 * II: !I' Q. II! • ': '!I ~ '!". '!". '!" ••• ! '!" •••• '!" ••• ~
0243EO 00024558 FFFFOOOO C9C7C3F5 F1FOF7C2 C9C7C3FO F1FOF7c2 00024528 00024428 * .••••••• IGC5107BIGC0107B •••••••. *
024400 0002B04E 00000000 0002B368 00000000 00000000 0003c170 00000BB8 00000000 * ~ *
024420 00024378 00024380 80018780 80018780 80018780 80018780 80018780 000244F8 *. ~ !t '!I ... II: • !I" ~. ~ ••• , '!" •••• ! •• ~*

rJl 024440 0003CDB8 00000000 00000000 00000000 00000000 00530064 40000000 40000000 * " *
(1) 024460 00000019 0003BACO 000186C8 02000005 00024628 00000048 00024A~8 000000A8 *. ~ !t._ 0 '!I ! .. H. '!I" ~. !'. !' , , !'. !' ! II: !I" ~
() 024480 00024488 20F5007C 00024428 0001E7B8 00024444 00000000 00000000 00030340 * •••.• 5 ..•.•••• X ••••••••••••••• L *
r1" 0244AO 00024378 0001F9BO 000401B8 0003D340 00017B04 00017B04 80018:58 00024428 * ... !o!'9"!I' •• ,'!"L ",!,M ••. ,~ •••••••• *
0 0244CO 0003B740 0003D478 0001E7B8 00000000 0003B740 40018A42 0001F9BO 0003EOOO *. ! •.• , M. '!' ! l. , ! ,. ,. f .,.~.9.!.,.~:
tj

0244EO 0003D4EO 0001FAD6 70018C64 70006590 00024428 00030CBO 1802000D 00000000 * •• M ..•• 0 •••••••.•••..•.••••••••• *
p 024500 00024428 0002442C 00024430 00024434 00024438 00024628 00024670 000246B8 *. ! • ! • , " " ,. !I' !I" , • ! , !' , • ! ! , • ~:
N

024520 00024700 00024748 00024790 000247D8 00024820 00024868 000248BO 000248F8 * .•••••.•.•••.•• Q ••••••••••••••• 8~'
024540 00024940 00024988 000249DO 00024A18 00024A60 80024AA8 00000000 00000000 * , ., ~,

() 024560 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * . ., .. I! !I" II: II: "., .. !I" ,. !I II. '!I' ••• , •• " .. .,.~:
0 LINES 024580-024600 SAME AS ABOVE
t:l
r1" 024620 00000000 00000000 80018780 00000000 0003ED88 00000318 C9C7:3FO F1FOF7C2 *. ! • " " , ••• '!I • " '!I .. !I" !I" !' • '!I' , ! :;t:G CO 10 1B~:

'"' 024640 00F00100 00000000 FFFFOOOO 0003EOD8 E0008800 00024708 00000000 00000000 *. 9 f' '!I , '!I , • ! '!I ,Q •••• ". , Q •• , • ! , , • ~:
0
I-' 024660 00000000 80000000 0003E488 40000000 80018730 00)00000 00000000 00000330 * •.•••••••• u. .. , ~,
t:rl 024680 C9C7C3F1 F1FOF7C2 00600200 00000000 00000000 00000000 E0000800 00024628 *IGc11 078., ... 1:, •• !' !'. '!'. ,., !I" ' ~c

I-' 0246AO 00000000 00000000 000246B8 00000000 00000000 00000000 80018780 00000000 * ,• '
0 0246CO 00000000 00000360 C9C7C3F2 F1FOF7c2 00A00300 00000000 00000000 0003E038 * •••• , , •• I GC 210 7B .•.•..•••••..•••• '
()
7;' 0246EO 00000800 00024628 00000000 00000000 00024670 00000000 00000000 40000000 *. , • '! !I 11 • , ••• ! 4! ~. !' ••••• ! ••• ~c

Ul 024700 80018780 00000000 00000000 00000378 C9C7C3F2 F1FOF7C2 00A00400 00000000 * ••••••.•••..•••. IGC2107B •....•.• *
~ 024720 08000000 00000000 00001800 00024628 00000000 00000000 00000000 00000000 *. '!' ... II: !I""'" II!!! ,. ,. '!'. '!'. '!" .. ,. ,. '!" .. ,. ~
t:l 024740 00000000 00000000 80018780 00000000 00000000 OO)003FO C9C7C3F2 F1FOF7C2 * ••..•• , .•.•.••••••...•. 0 IG c21 0 7B"
Q,

024760 00A00500 00000000 08000000 00000000 00001800 00024628 00000000 00000000 * 1;'

I-'l 024780 00000000 00000000 00000000 00000000 80018780 00000000 00000000 000004F8 *. , ... ' ... II: , , ,. !'. !' ••• !I" •••• , •• 8*
~
h' 0247AO C9C7C3F2 F1FOF7C2 00A00600 00000000 08000000 00000000 00001800 00024628 *IGC21 07B •••••••.•.•••••••••••••. ,~
I-' 0247CO 00000000 00000000 00000000 00000000 00000000 00000000 80018780 00000000 *. 11'" !I" ,. ,. ,. !! ,. !I"" II!'I!'~
(1)
Ul 0247E0 00000000 00000438 C9C7C3FO F1FOF7C2 00E00700 00300000 00000000 00000000 *•.. I G C 0 1 0 1B •• !II • ,. , .. !'. !I' • ! .. , • l!

024800 E0000800 00024628 00000000 00000000 00000000 00)00000 00000000 00000000 * ':c
(.oJ

co
\0

UJ
1.0
o

02B720 00000000 00000000 000E0004 00000000
02B740 00000000 00000000 00000000 00000000
02B760 0002B784 0302CC08 00000000 002FOOOO
02B780 000E0004 00000000 C180000E 22000000
02B7AO 00000000 00000000 0002B928 09101228
02B7CO 00000000 002FOOOO 00000000 0002E83B
02B7EO C180000E 22000000 00000000 00000000
02B800 000336A8 034005A8 00000000 C1000080
02B820 00000000 00000000 00000000 00000000
02B840 00000000 00000000 00000000 00000000
02B860 00000000 C1000080 0002B88C 0302CBEO
02B880 00000000 00000000 00080004 00000000

, 02B8AO 00000000 00000000 00000000 00000000
02B8CO 0002B8E4 0302CBEO 00000000 00080000
02B8EO 00080004 00000000 C1800008 00000000
02B900 00000000 00000000 00000000 00000000
02B920 0002CB50 00000000 12280000 00000000
02B940 00000070 0002BA64 0002CA04 0002CACO
02B960 0002C916 0002C8CA 0002C916 0002C9AC
02B980 0002BAOO 00000000 00024900 00000000
02B9AO 40404040 40404040 40404040 40404040

LINES 02B9CO-02B9EO SAME AS ABOVE
02BAOO 40404040 40404040 40404040 40404040
02BA20 004A4E36 00000000 00940000 0047002F
02BA40 005E232F 005E2010 000040EO 00008000
02BA60 00070000 4000400A 40A040EA 4E364ECC
02BA80 2702BA64 20000002 00000000 00000000
02BAAO 00000000 00000000 00000000 00000000

LINE 02BACO SAME AS ABOVE
02BAEO 2A822A02 40000FFF 2A444040 4040C9C5
02BBOO E20603C5 E2000000 00000000 00000000
02BB20 00000000 00000000 00000000 00000000
02BB40 C561C103 E34040C3 0605C440 C1E4E3C8
02BB60 E4E3C3C4 00000000 00000000 00000000
02BB80 40404040 4040E2E8 E20306C7 40404040
02BBAO 40404040 40404040 C1030300 00000000
02BBCO 00000000 00000015 40404040 40404040
02BBEO C1030340 40404040 40FOF140 40404040
02BCOO 00000000 00000000 00000000 00000000
02BC20 F9404040 4040C140 4040C103 03404040
02BC40 00000000 00000000 00000000 00000000
02BC60 40404040 FOFOC661 FOFOF940 40404040
02BC80 40404040 4040F500 00000000 00000000
02BCAO 00000000 00154040 40404040 4040FOF1
02BCCO 05c54040 404040FO F5404040 40404040
02BCEO 00000000 00000000 00000000 00000015
02BOOO 40404040 05404040 050605C5 40404040
02B020 00000000 00000000 00000000 00000000
02B040 4040FOF1 C661FOFO F9404040 40400540
02B060 40404040 050605C5 00000000 00000000
02B080 00000015 40404040 40404040 F3C5F061
02BOAO 40404040 40FOF840 E96BC140 40400506
02BOCO 00000000 00000000 00000000 00154040
02BOEO 40400540 4040C103 03404040 404040FO
02BEOO 00000000 00000000 00000000 00000000

C180000E 00)00000 00000000 00000000
0002E088 02401228 00000000 :1000040
00000000 00J2E312 00000000)0000000
00000000 00000000 00000000 00000000
00000000 C1000040 0002B70C 0302CC08
00000000 80000000 000E0004 00000000
00000000 00000000 00000000 00000000
0002B834 0302CBEO 00000000 00080000
00080004 00000000 C1800008 00000000
00000000 00000000 000336A8 044005A8
00000000 00080000 00000000 00000000
:1800008 00000000 00000000 00000000
000336A8 054005A8 00000000 C1000080
00000000 00)00000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
0002C916 00000000 00000000 00000000
0002CB1F 0002CB1C 0002BAEA 0002C836
0002BA70 0002C880 00030358 00000000
00000000 00000000 40404040 40404040
40404040 40404040 40404040 40404040

40404040 40400000 40404040 40404040
00000002 004AOOOO FFFFE840 E823082F
OCOOOOOO 2E010100 00000000 00000000
0702BA64 60000002 0102BAEO 60000E36
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

C5F1F4FO C940E2E8 E2E3C504 40C30605
00000000 00000000 00000000 00000000
00000015 40404040 4040C3D6 05E206D3
40404040 40:9C440 C109:5C1 40400906
00000000 00)00000 00000000 00154040
4040C840 4040c304 C4E24040 40404040
00000000 00000000 00000000 00000000
FOFOF961 FOF1C640 40404040 04404040
4040c103 03000000 00000000 00000000
00154040 4040FOFO c36BFOFO C561FOFO
404040FO F3404040 40404040 050605C5
00000000 00000000 00000015 40404040
05404040 050605C5 40404040 4)FOF440
00000000 00000000 00000000 00000000
F861FOFO F9404040 40400540 40400506
F5000000 00000000 00000000 00000000
40404040 40404040 FOF2F861 FOFOF940
40FOF64D 40404040 4040F500 00000000
00000000 00)00000 00154040 40404040
4040c103 03404040 404040FO F7404040
00000000 00000000 00000000 00000000
FOFOF940 40404040 05404040 C1030340
05C50000 00000000 00000000 00000000
40404040 4040F2C4 F261F2C4 F3404040
F940E96B C1404040 c1030300 00000000
00000000 00)00015 40404040 40404040

PAGE 0074
* A ••••••••••••••• *
."'!.!t.~!'! •• !'!,., .. !,,~ ." ••• ~.,.
* " ... T ••••••••• *
*.! •• " .. A •• '! •••••••••••••••••••• *
*. , . '! II! 0 •• ~ • '! , • ! ! !I. !I. ,. ~. , .•• , .. II ! •• ~
* Y ••••••••••••••••• *
*A •• !!!t.'!!!!.!'~.,., ••• '!'., .. !! •• * *• ~.'a ,a.,. ,a 'iI! ,a.,.!, ,.!
* , A ••••••• *
*.'."'.'!"."""."'."'.'" •. ! * A •••••••• '" •••••••••••••••••• *
*.,.!., .. ,''!! A ••••••••••••••• *
*. , . ~ . , .. ~ .. ~ , ~ ~. !'. ,. ~ .• ~ , ••• ~ ••• !
* ... U •••••••••••••••••••••••••••• *
*. , .. ~ ,. III! ~. ~ • , ! ". ' .. ,~ !t •. , , ,. !. '! '! ! • ~
* ! ~ ,. ,. ,. ,., ~ ,. ,. ~! •• ~

* I ••.•...•••••. *
*. , ... , .. , , ~ . III! , !. , ••• ,. , , •• ! • ! ~ H. ~
* .. 1 ••• H ••• 1 ••• I ••••••• H ••• L ••••• *
*., .. '!!I' •• !'.~ *

* *
* * * ...•.......• ,',.,.'.' •. 'IIII'.J Y.,.* *. *
*. P. • • '! ,,,. , , .•• !'. !'. !. , , ,. ,. !. ,.. ~
*. *
*., .. , ... " *
. , . , IEE1401 SYSTEI'! CON
*SOLES ••. III! , , • III! , , ,. ,. ' •• ,.. , , ,. ' •. " , ". *
. • • • • •• • • • • • • • •• •• CONSOL
E.ALT COND AUTH 10 AREA RO
*[JTCD •••••••• '!! t ,. !'. ,. ' •. '" , •• II! , ,,_ *
* SYSLOG H CI'!OS *
* ALL. , , ~. ,. ,. , II. , , ,. ! • , • , • ~

*..... 009.01F I'! *
*A.LL 01 ALL •.••••••••• *
., !~,.!".,. OOC.OOE.OO
9 A ALL 03 NONE
*., .. ".,,~, .. '!'.,., ... '!!.,.. *
* 0 OF. 009 N NO NE 04 *
* 5 ••••••••••••••••••••••••• *
...... 018.p09 N NO
*NE 05 5 ••••••••.•• *
* .•.••••• , .•• ! ! !II' 028. 009 *
* N NONE 06 5. ~ ••• ~
*. *
* 01F.009 N ALL 07 *
* NONE ••••••••••••••••••••.••• * *.... 3EO,(l09 N ALL *
* 08 Z. A NO NE •• III' , , ,. , ••••• *
*..... ••••••••• 202.203 *
* N ALL 09 Z. A AL L ••••• *
*. *

len

I~

I~
I~

'tj
PJ
I-j
rt

I-'
(j\

o
H\

"->
(j\

CfJ
~

PAGE 0098 ~
I'd

03B710 4007D482 00068F20 0001D4CA 6001DAEA 00068F20 00)3B660 00000300 0003D343 * .K ••••••• 8.lI:a •••••••••••••••• L * i:"I
03B7CO 00000000 0003D340 00000000 00000000 00000000 00000000 00040258 00000000 *.,.~"L .!!.!!'.1'.,.,.",., .• ".~ t<J

03B7E0 00000000 0003BDOO 00000000 00000000 00000000 00~3D538 0103BACO 00000026 *•...... ~., lJ •••••• !'III!!~ t:l

03B800 40C9C5C1 FOFOF1C9 40E4D5C9 E340F2F3 F16B40D7 C1E3C840 F5F340C9 D5D6D7C5 * IEAO 01I UNIT 231. P1TH 53 INOPE* c
~

03B820 D9C1E3C9 E5C50000 00000000 00000000 00000000 00000000 00000000 00000000 *RATIVE.~!!'!!" '-1'- ,. ,~'! ,. '.'.!III!!! I'd

03B840 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * .•.............................. *
LINE 03B860 SAME AS ABOVE I'd

03B880 40000058 00000000 0200005D 80000000 10400000 01000000 10000000 00100078 * ······4'!"·"',·11 •• '!I •. "'.'."'II!~
III
H

03B810 0103D6AO 0000001A 40C9C5C6 F1F6F1C9 40FOFOC3 60D9C5C1 C4C5D940 C3D3D6E2 * •• 0 ••••• IEF161I OOC.READER CLOS* rt
03B8CO C5C40000 00000000 00000000 00000000 00000000 OO~OOOOO 00000000 00000000 *ED. " , ,., '! ! , ,. , ! ,. ,. ,. ,! , ! , ••• , , 'II! ~ I-'
03B8EO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * -.I

LINE 03B900 SAME AS ABOVE 0
03B920 00000000 00000000 40000058 00000000 02000052 EO)OOOOO 40000~00 00000000 * '! .• 'III!! , , ,. ,. 'II! ,. " •• -:,a,.! HI

03B940 18000000 00091343 0003B518 00000078 0012D002 00000000 00040007 00018A40 *. *
'" 03B960 00001216 0003B9D8 0003BA50 0003BA38 00G3B138 0001A880 0003D770 0003B9D8 *. , II! •• , • Q •• , ~ ! , ,. ~. , • ,. ,', ". ~. , , ,Q* 0\

03B980 0005B7C8 00000000 40055786 000SB7C8 00000024 400192D2 00000000 FFFFFFFE * ••• H •••• • •• " •• H •••• •• K •••••••• ~ '""
03B9AO 0001B4EO 00000000 0003B9BO 00000000 C9C7C3FS F4FOF3C4 00038908 60010AEA *.,III!!."III!!I11!!",! •••• IGC5403D ••• Q •••• *
03B9CO 0103B7F8 00000025 5CC9C5C6 F2F3F3C1 40D440F2 F3F16BE2 C3D9E3C3 C86B6BE2 * ••• e ••••• JEF233A!'I231.SCRTCH.,$*
03B9EO C1D407D3 C4D4D76B D3D2CSC4 40000000 00000000 00000000 00000000 00000000 *AMPLOMP.LKEO ••••••••••••••••••• *
03BAOO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *. ,. ". ,.! , " "" " !'. ,. ~. , •. , ~ !'. ,. ! '! ,~~

LINE 03BA20 SAME AS ABOVE
03B140 00000000 00000000 80000058 00000000 02000058 80000000 14000000 1COOOOOO * ...•• ~ ~
03BA60 40000000 00092859 00000000 00080408 E2C1n407 D3~404D7 E2C104D7 D3C4D4D7 * •••• , •••••••••• ~AMPLDMPSA!'IPLO!'lP*
03BA8:) 40404000 FOOOOOOO 0003BA98 00000000 00000000 00)00000 00000000 80040238 * .0 ••••••••••••••••••••••••••• *
03BAAO 00000000 00000000 0003B948 00000018 00000000 00000000 00000000 00000000 *.! ••• ,.~.,."'!I!I'.~.'''''''II!!!'.,.!!!'I!=!'
03BACO 01000000 00000026 40C9C5C1 FOFOF1C9 40E4n5:9 E3~OF2F3 F06B40D7 C1E3C840 * •••••••• IEAOO 1I UNIT 230 •. PATH *
03BAEO FSF340C9 DSD6D7cS D9C1E3c9 E5CSOOOO 00000000 00)00000 0000)000 00000000 *53 INOPERATIVE •••••••••••••••••• *
03BBOO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * .•. ~ ~ !I' •• ~ ••• '! !'. ". ,. ". , , , ••• ! ! •• '*

rn LI NE 03BB20 SAME AS ABOVE
m 03BB40 00000000 00000000 40000058 00000000 0200005E 80aOOOOo 10400000 01000000 *., ..• ,•• " •••••• *
0 03BB60 10000000 00100999 0003BAA8 00000088 00006SA8 000065A8 000065A8 0007c3BO *. ! •• '! , •• , ! , , , , ,. ,. ". , • , ! ,. , II! " ! C. ! rt 03BB80 000065A8 00000000 00000106 00002BEO 10000000 04J30340 1003D578 88000000 * L •• 0 ••••• *
0 03BBAO 8FOOOOOO 02000000 1BOOOOOO FF068E70 0403BB70 1800206C 00000003 OOOSOOOD *. '! '! •• , •• ! , , • ! ! !'. !'. ,. ,. , , ,. ,. , " ". ~ t:l

03BBCO 00040064 1800206C 00000001 00050002 00G4000A 00010001 00000000 00000000 * *
I-' 03BBEO 0000007D C2C2C2C1 C301C3C4 00000000 0003D318 00000078 14030770 00020400 * •••• I3BBACJCO •••••• L ••••••• P ••••• *
'" 03BCOO 000203FO OSlD3DD6 FF05002F 040B1A7A 00C68FBO D007D7C2 40404040 4040000A *. ! • Q. !I • O. , • " " , ,. ,. , " ,. J?B .. *

03BC20 OF66COOO 00000000 F11000D8 4C99366F 00000000 20000000 00000000 00000000 * 1 •• Q •••••••••••••••••••• *
(j 03BC40 00000000 00000000 0003BB68 OOOOOOBO 00000004 000A1500 00000000 00000000 *. , .. " , .• , , II! II! , , ,. ,. ". ", " ,. ,II. , , ,. ~
0 03BC60 000B1100 000C1900 00080308 F6FOF5C1 0012D002 00000000 0004000C 5005BFA6 * , (i0 SA •• " •• , • I!I ", " " , •• ~ t:l
rt 03BC80 00010C05 0003D478 0010S8BO 0003D4D8 80C18F~2 0031A880 00030340 0003n478 * •••••• M ••••••• MQ •••••••••• L •• 1'1.*
H 03BCAO 0403D340 0003D478 0003D340 40018E8A 00C3D340 8F068E70 00030894 000304FC * .. ~ ."M.,,~ • ,. l' J. .,' '! ,. Q. , '! K. ~ 0
~ 03BCCO 4001A1A8 00000000 E2E8E2C9 C5C1FOF1 OOCOOOOO OOJOOOOO 00000:)00 00000000 * ••••••• SYSIEA01 •••••••••••••••• *
tJj 03BCEO 00000000 00000000 00000000 00000000 000C1901 80JOOC18 000305CO 00000088 *. !' " ".,' " ~ N ••••• *
~ 03BDOO 00000000 0003D770 0003B038 0003DB38 FDCOOOBO 00000000 0003B07C 0003B058 * ... , '! ,,~. , '! ! " " , ,. ,. , ••• , , •••• , , ,. ~
0 03BD20 00000000 00000000 00000000 0840C1F2 00000000 00000000 0000F1S8 0000FS21 * A2 •••••••••• 1 ••• 5. * 0
;.; 03BD40 000SA800 00069000 0010001E 00000000 00000000 OOJOOOOO E2C104D7 03C4D4D7 * .. ", II"'!""""'" "." ~AKPLDMP* en 03BD60 0000D43C 0099366F 06E2F6FS 40404040 404040ijO 01:00000 OOOOODO~)003B058 * •• 1'1 ••••• 0565 .. " .. ,.",.*
III 03B080 0103B8AO 00000024 40C9C5C6 F2F3F7C9 40FOFO~3 404040C1 D30306C3 C1E3c5C4 * •••••••• IEF237I OOC ALLOCATEO*
::l 03BDAO 40E3D640 C9C5C6D9 C4CSD940 00000000 00000000 00000000 00000000 00000000 * TO IEFRDER ."., ••• ,.",.,.,., •• 0..

8
03BOCO 00000000 00000000 00000000 00000000 00000000 OOJOOOOO 00000000 00000000 * .•....••.....••. , ...•....•..•••. *

III LINE 03BDEO SAME AS ABOVE
M' 03BEOO 00000000 00000000 40000058 00000000 02COOG51 B0300000 4200~000 00000000 * ,.,.,.,.,.,.!', ".*
~ 03BE20 04000000 00085988 0103B080 0000002E 40c9c5c5 F2F3F6C9 40C103D3 06C34B40 * •••••••••••••••• IEF236I ALLO:. * m
en 03BE40 C6D6D940 D9C4D940 40404040 40FOFOC3 40404040 40404040 40404040 40400000 *FOR RDR ooc •• *

03BE60 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
W
\0
I-'

!.oJ
10

'" 03CC60 40404040 40404040 40404040 40404040
03CC80 40404040 40404040 40404040 40404040
03CCAO 40FOFOFO F040C9C5 C1F2FOF8 C94040E2
03CCCO 40404040 C6E4D5C3 E3C9D6D5 40C9D5D6
03CCEO FOFOF5F4 F840POFO FOF040D9 40FOP1GB
03CDOO FOFOF040 E540F1P5 FOGBDGCG C6D3C9D5
03CD20 F040C9C5 C5F3FOP8 C940C4C9 E2D7D3C1
03CD40 D9D9D6D9 F416B004 4FCOF410 42cOA001
03CD60 50004660 F1BA92PF 50004150 50015050
03CD80 F4474770 F1F641AO 010050AO 00AC41AO
03CDAO F4084780 F29C49AO F40A4770 F2165850
03CDCO 40E2E8E2 D3C9C240 D6D540F2 F3F40000
03CDEO 00000000 00000000 00000000 00000000

LINES 03CEOO-03CE20 SAKE AS ABOVE
03CE40 40000058 00000000 02000016 80000000
03CE60 0003BB68 00000060 002803C8 FOFOF2C8
03CE80 0000B916 0003D248 00000000 00002928
03CEAO 00067C08 00067AA8 0003D374 00000003
03CECO 0103C020 00000029 40C9C5CG F5FOF3C9
03CEEO D940C9D5 C3D6D9D9 C5C3E340 D3C1C2C5
03crOO 00000000 00000000 00000000 00000000

LINE 03CF20 SAKE AS ABOVE
03CF40 00000000 00000000 40000058 00000000
03cr60 10000000 00085506 0103CECO OOOOOOOF
03CF80 00000000 00000000 00000000 00000000

LINES 03CFAO-03CFCO SAKE AS ABOVE
03CFEO 00000000 00000000 00000000 00000000
03DOOO 20000000 70000000 20000000 00085451
03D020 40E6D9D6 D5c740C4 c5D5E2C9 E3E840D6
03D040 D3000000 00000000 00000000 00000000
03D060 00000000 00000000 00000000 00000000
03D080 00000000 00000000 00000000 00000000
03DOAO 0200004A 80000000 20000000 50000000
03DOCO 0003D690 0003D248 00000000 0003E360
03DOEO 0103D010 00000037 40C9C5C1 FOFOFOC9
03Dl00 6BFOF8F5 F2FOF3F8 FOFOF06B 6B6BD9C4
03D120 00000000 00000000 00000000 00000000

LINE 03D140 SAKE AS ABOVE
03D160 00000000 00000000 40000058 00000000
03D180 10000000 00085322 0003DOB8 00000060
03D1AO 0003DOB8 00000048 40FOFOFO F7F5F440
03D1CO 00000000 06FEF3F3 00000000 00000000
03D1EO 00000000 00018780 0103BF78 0103BEDO
03D200 0003D188 00000038 0003BEDO 0003BE28
03D220 00000000 0003D2EO 00000000 06FEF3F3
03D240 5CC9C5C6 F2F3F3C1 40D440F2 F3F06BE2
03D260 D3D2c5C4 40000000 00000000 00000000
03D280 00000000 00000000 00000000 00000000

LINE 03D2AO SAKE AS ABOVE
03D2CO 80000058 00000000 02000057 80000000
03D2EO 0003D200 00000038 00000000 E2E8E2E5
03D300 00040002 04000000 FFF50001 4007C850
03D320 00000000 0003D478 FE000088 0003BBF8
03D340 0003BC68 00000000 0003B354 0003D850
03D360 00001B1B 0003E2DO 00000000 0003D948

40404040 40404040 40404040 40404040
40404040 40004502 8040POFO FOF1FOFO
E8E2F14B C4E4D4D7 40404040 40404040
D7C5D9C1 E3:9E5C5 40400019 028040FO
7DE47DOO 1E028040 POFOFOF5 F5F340FO
C50033EO 8040FOFO FOF5F4F9 40FOFOFO
E84040E3 C509D440 D3C505C7 E3C840C5
D200AOOO F4454160 00034480 F4504158
100041AO 001018B4 1BBA4810 80049518
001647FO F2909509 F4474780 F28C49AO
00AC47FO F23E49AO 010402FO 0000001A
404DD761 D960D7E4 C25DOOOO 00000000
00000000 OOlOOOOO 00000000 00000000

50000000 OOlOOOOO 10000000 00050998
0012D002 00000000 FF040001 600195E8
0003D508 0001A880 40018E8C 0003D218
00067C2A 00102928 00067AAD 00069668
40E6D9D6 D5:740C4 C5D5E2C9 E3E840D6
D3000000 OOlOOOOO 00000000 00000000
00000000 OOlOOOOO 00000000 00000000

0200004C BOJOOOOO 20000000 51000000
40C9C5C5 F2F3F4C5 40C440F2 F8F04000
00000000 00000000 00000000 00000000

40000058 00000000 02000048 BOOOOOOO
0103CF68 00000029 40C9C5c6 F5FOF3C9
D940C9D5 C306D909 C5C3E340 D3C1C2C5
00000000 00000000 00000000 00000000
00000000 OOJOOOOO 00000000 00000000
00000000 00000000 40000058 00000000
10000000 00085429 0003CE60 00000028
00000000 02FFD8F8 0003DOBB 00000008
40F2F8FO 6B:4C3D2 6BFOF268 FOC5FOFO
09404040 40406BFO F04BFOF8 4BF5F200
00000000 OOlOOOOO 00000000 00000000

02000049 BOJOOOOO 20600000 98000000
0003D010 0003CF68 0003:ECO C003D200
FOFOFOFO 40C9C5C6 OOOOlOOO 0003D1DO
00040002 04)00000 FF050000 0002B590
0103BE28 0103BD80 0103B8AO :003E798
0003BDBO C003D650 0003D188 000000C8
F3F3F3F3 60042C88 010389CO 00000025
:3D9E3:3 C86B6BE2 C1D407D3 c4D4D76B
00000000 OOlOOOOO 00000000 00000000
00000000 00000000 00000000 00000000

14000000 11000000 40000000 00092855
E3D6C340 0005C248 00000000 00000000
00000000 00J3BC68 0003DB30 OOOOOOEO
00043004 40073402 040515DO 07027568
80000064 JO)OOOOO 01040268 F0840400
00068800 00068D38 000302EO 0005BB1C

*
*

PAGE 0101

. , , '" * 000100*
* 0000 IEA208I SYS1.DUMP *
* FUNCTION INOPERATIVE 0*
00548 0000 R 01 •• U •••••. 000553 0
000 V 150.0FFLINE •••• 000549 000
0 IEE30BI DISPLAY TERM LENGTH E
*RROR4 ••••• 4 ••••• K ••• 4 ••••••• 4 ••• *
* 1 .. *
* lI 1 6 '! " .. ! ! ~ .. ~ .. ,02. , , ~. "' .. ~ .. ! I! !
*4 ••• 2 ••• 4 ••• 2 •••••• 02 •••••• 0 •••• *
* SYSLIB ON 234 ••.• p.~. ~UB ••• !O •• !
* "~.!'.,.,.,~''!'.,.'' •. ~
*• I!.,."'.,.'II!'.-"'.,.!"~!
* ••••••••••• !J002H ••••••••••••••• Y*
* .. , ... , '" K. , , ! , , . "' .. , .. N. ,~ " " l{. ~
* L .. *
* ••••••••. IEF503I WRONG DENSITY 0*
*R INCORRECT L1BEL ••• , ••••••••••• *
* *
* , .•. !~~ ••••• ,.~
* •••••••••••••• ,. IEF234E D 280 .*
., •. , , .. !.,~,! ,.,. ,.,.!, .. ,." ,.

*. , .. ~ , .. !,,!!~ , •.••••••••••••••• *
. , , •• ". ~ , , ! .. , , ,. ,., , • ,., , ! . I EF5 0 31
* WRONG DENSITY OR INCORRECT L1BE*
*L ••• ! ,.,. ! ! , , ! ! ,. ,. ". !. , ! •• ~. ! • , • !
*•............ " *
*., .•• , .. ! *
., .. " .. "",.".,.,.,.",.,.!!!.
* .. 0 ••• K ••••••• T ••••••• Q8 •••••••• *
* ••••••••. IEAOOOI280.DCK.Q2.0EOO*
.Q852038000 ••• RDR .00.08.52.
* *
*. *
*. , ... , .. , , , , , , ~. ,. , .• tI! , • , ••• ! , It. ~
* •••••••• 000754 0000 IEF •• •••• ol.!
* 33 •••••••••••••••••••••••• *
*. ! •• ! , ••• ! • , , • ,. ~. " •• ~ " , •• ! • , , J. *
* •• J ••••••••••••••••••• 0 ••• J •••• R*
* .•..•• K •••••• • 33 33 33 •••••••••••• *
*.l:EF233A M 230~SCRTCH •• SAMPLDMP.!
*LKED ••••••••••••••••••••••••••• *
*.,.,. , .. ,',.,' ,. ,. ,. , ... ,. "" ,.~

*.".,•.............. *
*.,K.", •• ",.~rSVTOC •• ~., ••• ,!,.~
* 5 ••• H • •••••••••••••••• ~
*. , ... , M. , ! , . ! ! ,8 •• , •.• , , •••• , ! , • ~
* Q ••••••••••••• O."~
* S ••••••• R ••••••••••• K ••••• *

en
il>'
~
'"d
t-t
t.I

o o
~
'"d

....
'"d
III
Ii
rt

i->
(Xl

o
Hl

'" 0\

Ul
(1)
(l
rt
f-'.
o
::s
....
IV

n
o
::s
rt
H
o
I-'

IJj
I-'
o
o
;;0;
en
III
::s
0.

t-3
III
h'
I-'
(1)

en

w
'" W

03D380 0003D340 9005B9A8 0005B858 8003B468
03D3AO 40018A42 00068D4C 5005BFA6 0007C828
03D3CO 00000000 00030770 0003B660 00000000
03D3EO 00000000 0003BDOO 00000000 00000000
03D400 000065A8 000065A8 000065A8 000065A8
03D420 OFOOOOOO 00030770 00000000 A8000000
03D440 04026D94 580028A8 00000015 00000015
03D460 00000000 00000000 00000000 00000000
030480 00120002 00000000 00040033 5001902A
0304AO 0003E368 00000001 00030968 0003D770
0304CO 00030CF8 00000000 40070482 0105A050
0304EO 00000000 00000000 FF030000 000304F4
030500 C1C2C505 C4F90000 01030238 0000001F
030520 F9F9F9F9 F96BE2C1 040703C4 04074000
030540 00000000 00000000 00000000 00000000

LINE 030560 SA~E AS ABOVE
030580 00000000 00000000 00000000 00000000
03D5AO 10000000 58000000 20000000 00092850
0305CO 0003D620 00000060 F0000058 7FOOOOOO
03D5EO 4003D600 000270CO 00009A80 00000000
03D600 310305F3 40000005 0803D600 00000000
030620 0003D8C8 00000030 OOOCOEOO 00030A60
03D640 00000000 00000000 80040238 C3C30000
03D660 0003B638 00000040 00000000 00000000
03D680 08000000 00000000 00000000 00000000
03D6AO 01030508 0000001F 40C9C5C6 F2F3F4C5
03D6CO 040703C4 D4D74000 00000000 00000000
0306EO 00000000 00000000 00000000 00000000

LINE 030700 SA~E AS ABOVE
030720 00000000 00000000 40000058 00000000
03D740 20000000 00092842 0003E3AO OOOOOOEO
03D76o 00000000 00000000 00000000 00000000
03D780 00000000 00000000 01040258 FOOOOOOO
03D7AO 00000001 FFFC2318 0003BA9C 0103BA68
03D7CO 0003DCOO 0003BDOO 000309BC 00030340
o307EO 00000000 00030340 0003BBF8 00030770
030800 0003E11c 00000000 00040258 0003BBFO
03D820 00000000 0003E720 0005B800 00000000
030840 800007A8 0005B858 0003BCF8 00000080
030860 E3C5E2E3 40404040 14040140 07C7047E
03D880 E205C107 07C50940 000A1800 00000000
0308AO 8000206C 14040100 C4C503C5 E3C54040
0308CO 0000006C 404007FE 000308EO 00000018
0308EO 0003E758 00000060 F0000058 7FOOOOOO
030900 40030920 000270CO 00009A80 00000000
030920 31030913 40000005 08030920 00000000
030940 000305BO 00000008 0303E650 00000000
030960 0003E700 00000188 0103BA68 00007170
030980 000A1900 00027308 00000000 00000000
0309AO 00A00200 00000000 00000000 00030A84
0309CO 00000000 00000094 00000000 00030B30
03D9EO 0003BDOO 0840C1F2 0003D8BC 0103BA68
03DAOO 00030538 00030COO 00FFFFF8 00030CF8
03DA20 0003BC48 000A1900 OOOOOOAO 00000023
03DA40 70061226 00067080 00030968 00030A10

0003B501 000F4500 000001AA A005B99C
01068F68 0003B740 00000000 00030340
0003DCF4 20000000 00040258 D003B328
00000000 8703D538 00038360 00000080
000065A8 00000000 00000105 000007EO
00000000 01000000 FBOOOOOO FF03E368
00080009 00000000 00000000 00000000
00000000 0003D538 00180220 F9FOF1c3
00011113 00D3E7BO 00000030 80000064
00C3D8B~ 0003E108 00030:00 0003BOOO
0001D4:A oo)OOOOC 000029BE 8F068E70
000304F~ E2E8E2c9 c5C1FOF1 c9c5c140
40C9C5:6 F2F3F4C5 400940F2 F3F16BF9
00000000 00)00000 00000000 00000000
00000000 00000000 00000000 00000000

40000058 00000000 02000056 80000000
000302EO 00000010 00030340 0000206C
42000000 7F0305CC 000599C8 OCOOOOOO
00000000 24000C15 23030618 40000001
OD030A84 00000014 00000000 68000000
0003DA84 00030800 0003BA68 OOOOOAOA
00068000 00000000 00068000 00000800
00003BEO 07000000 00030340 00000000
OF05AE94 00000000 00000000 00000000
400940F2 F3F06BF7 F7F7F7F7 F76BE2C1
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

02000055 80000000 10000000 98000000
F06B7DE4 7DOOOOOO 00000000 00000000
00040238 00000000 00030424 0003E108
OOOOFFFB 00000000 00000000 00000000
0003D958 00030770 00000000 00000000
40070482 0003098C 10000000 60010AEA
00000000 00030058 00030340 00000000
00000000 0003BDOO 00000000 00000000
0005B800 00000800 00000010 00000001
E2C10407 03:40407 C7064040 40404040
5C4BC4:4 000A1400 800028A8 14000040
14040140 E2E8E2C1 C2C505C4 OOOBOFOO
000B1AOO 800028A8 00000000 00030850
000C1920 00030A84 00000000 00000C1A
42000000 7F0308EC 000691C8 OCOOOOOO
00000000 24000AOA 23030938 40000001
0003BB98 OOOOOOBO 08030930 00000000
C9c7C3FO C1FOF5C1 0105B858 20030838
00030770 00030B48 OOOAOAOO 000A1900
00000000 00000000 00000000 00030900
000104cA 0005BB80 00000094 0002BF20
00000004 00030A60 00000020 40070520
5c030CF8 00030968 00030770 0003BB98
00000000 40070482 0003B898 OOOAOAOO
00000089 00067c58 00067E48 OOOBOEOO
400612B: 00000000 00000000 00000000

PAGE 0102
* .. L •••••••••••••••••••••••••••• *
* .•• ~ ~ ..• ! ••• • H. • ••• ,.. • ••••• L *
* P •••••••••••• 4 ••••• _ ,.~~ , •. ~
*•... N ••• T ••••• *
., ... , ... ".",.,.,.,.,', !".
*• P ••••••••••••••••••••••• T. *
*. ,., , !'. '! , ! , , 'II! ,. !'. , •• If. , , •••• ! ... *
.!.'!" •• ,.!!.~,.~., ... ~ ... ~.901C
* X ••••••••• *
*. ~ T •• ! •• ! • It. ~ ! J? ~. Q. !' ! Q •• !II' ! ~ ! • ~
* ... 8 ••••• M ••••••• ~ ••••••••••••• *
* ••••• , ••••..•• ~4 •• ~. SY S1 EA 0 1 I E A *
ABEND9 •••• «'''''. 1EF234E R 231.9
*99999 • SAMPLO~P ••••••..••••..••• *
*. ~ .. ~ "'!"'!" ~ !' ,. !' "!! •• :"'!'!' *
*.! .. , *
* ... , , ~ !' ~. !'C. !' ! , !'. ~ •• ,. ~
* .. 0 ••••••••••••••••••• N •••• R •••• *
* .0 •• ,. ~ ! ! ••• ! !' :'" •••• ! ! •• o. _ ... ~
* .. N3 •••• !O.!.!I.~.!'.!'.,!! •••••• ,.*
* .. QR •••••••••••••••••• Q ••••••••• *
*. ! •••••• ! ! ! • !;:C •• ,. ! ••• !II ••••••• ,. !
* L *
* .•.. ! •••••••• !!'.~.!!I ••• -•••••••••• *
* •• N •••••. 1EF234E R 230.777777.SA*
*!!.PLO~P ••••.•••.••••.•.•••••.••• *
*. !' ••• !'. ! • ! '! , ! !'. !'. ,. ". , ! !II' !II' ! • !'.!=

* '" *
*. ~ ! • ~ ~ •• , ~ ~. ! , !'. p. !II U •• , ! !II' !II • , , , • !=
* •••••••••••••••• , ••••••••• ~ •••• Q*
*., 0.,.,., ... " .. ,." .. *
* R ••• P ••••••••• *
* , .. ~.R ••• L .M ••• R ••••••••• *
*. ! • , • ,L ." a. ! :J? ,. , • ,. , ! •• L ., •• ~
* 0 •••••••••••••••• *
* .•.• ! • X ••• , • , • ~. ,. , • ! ! ! • !'. , •• , !' • *
* .••.•••.••• 8 •••• SA~PLOMPGO *
*TEST PGM ... DO *
*SNAPPER ,., SYSABENO .. ,. *
* ..•••••• DELETE •••.•••.•.•.•• Q. *
*. !' • • • • ! • Q. !' , !'. ,. , ••• !t , , ••• '!II ••• *
* .. x " ,.,. , .•. Q'!I' .B •• ,.*
* .R R *
*. , R. • •• ". R. , • " ~ ••••• , , •• R. , ••• ~
* .• N ••••••• W ••••• 1GCOA05A •••••. Q. *
*. ,,~. ~ , .. ! !I ••• ! !PI' !'. J? •••••••••••• *
*. , . !I , !' • Q. ! !' • , ! ,.. !'. , ••• ! •••••• • R. ~
* II ••••••••••••• *
*.,.!~!' •• ~!"."!'.,.!'.!'.'!'!I'.!' •• N.~
* A2 •. Q B .. R ... P *
* .. N.,!I,.!' •• 8 ••• 8 ••••• M ••••••••• *
*.!' •..•... " .. ,,!' ,. !'. , ••• ,,!' , ••• ,!' ,. ~
* R *

I~
I:"Ij

t:I
c:
~
'd

'd
III
H
rt-

....
'"
o
H\

IV
0\

w Ifg \0 PAGE 0103
-'=' ~

03D160 00000000 0003D994 0000E811 00000228 04210000 01120000 0003D118 0003D8EC * .•. ~ ~ ,R. ,. ~ T. ! ., ,. ,. , ••• , I!! ,. , • , • Q. ~ 'tI

030180 0003D118 00000000 00000000 0100FD07 00000203 00200000 01270000 0003D118 * " . " " .• " "•... " " * ~
trJ

03DAAO 0003D5CC 20067E40 01000000 0103B170 0003E764 C9D5C9E3 40404040 00000000 *. ! N. t , •.•• ! • ! '! ~. ~. J:. IN IT • , p ~ ~

03D1CO 00000000 DBOOFBOO 0003E7D8 00030B08 0003D538 00)00000 00000000 00000000 *" ••• " •• " • , ¥J •• ~. ,. If. ,. , ! ,. , . , . , . * tJ
C

03D1EO 00000000 0003D4BO 0003B168 04084000 C9D5C9E3 40404040 C9D5:9E3 40404040 * " • K •••• " " • • INIT INIT * :s:
03DBOO 40404001 00010000 0003DB18 00000000 40404040 40404040 0003E7BO 800401DO * •• J. , , ~ • ~ 'tI _""a,_,_,!,",
03DB20 40404040 40404040 0003D940 00000008 0003D3F8 00000068 FD00005C 00200000 * •• R ."" ••• La " .. " ." •.•.•. *
03DB40 0018001C 002C002C 0040003C 0054004C OOOOOCOO 28180100 00000000 00000000 *., ..• ,." .. ~ .. " * 'tI

III
03DB60 00000000 00000100 00000000 00000000 00000000 206C0100 000001B4 00000000 *.'."' .. '!'."!!'.'.'.~."'.'.'!""~ Ii

03DB80 00000000 28180100 00000000 00000000 00000000 00)00000 0003DE10 00000080 *" ••••••••• " • III • "" ". " •••• " •• " ••••• * rt

03DB10 00006518 00006518 00006518 00006518 00006518 00000000 00000000 000007EO *. , ., • '! , •• , ". , , ,. ,. '" ,. , , ,. ,. , , ,III! ~ tv

03DBCO OFOOOOOO 000186C8 1003DE3C 08000000 03000000 01)00000 FFOOOOOO lF03E2D8 *. " H. " •• , , ,. ,. , ., •• , , , •• II. , , ~Q* 0

03DBEO 0203Dnl0 33002498 00000000 00000000 00000000 00)00000 00000000 00000000 *" ••••• " • " ••• " • " •••• " " •••••••••• " * 0

03DCOO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0003DC28 *. , . , ! , •• , , " • , ! ,. ,. , • '0. , , •• , ., , ! , ., ! Hl

03DC20 0003D340 0003BC68 0003DC18 0003DC88 00000000 03FOC9C5 C1042800 00000000 * .. t ."."""".",, OIEA ••••••• * tv

03DC40 0003E170 00000040 00068FF8 0003DAE8 00068FFO 0003DB38 00030:80 80030C60 *., .• " ... ,.e.",y •• "o * 0-

03DC60 00200000 0003EB18 C080C9C5 C5E5C9C3 00000000 00000000 00000000 00000000 *. ! ~ ~ • , ~ I! f .lEEV Ie ••. , • ,. , ! I!' • !II .. , ~ , • ~
03DC80 0003DB28 00000008 00000000 0001ECB8 00030C28 E2E8E2C9 C5C1FOF1 0003EC18 * SYSIEA01 •••• *
03DC10 0005BOOO 00030828 0005BOOO 00000800 8103BACO 00000000 00000000 00000000 *.".,,~!lQ."'~"'.,.,.,~,~!I.'II!!"'~!
03DCCO 00000000 COOOOOOO 0003D848 00000068 0003D340 0003E368 5C03DCF8 0003D968 * Q ••••• ,.t .. T.,.,8 •• Jl.~
03DCEO 0003D770 0003D8BC 0003DCF4 0003BA9C 8003D648 80040238 00030014 0103E368 * .. P Q •••• 4 •••••• 0•. T.*
03DDOO 0003DCF4 00000000 00000000 02000000 FF2EE462 :7064040 40404040 00030538 * • , • 4-. !II' ~ , _ , , ~ , ~ .. ,. p. GO ." lI. ~
03D020 00000000 00000000 00000000 40051C31 00040030 OO)OOOEO 00027158 000198EF * .•.......... • •• !II' •••••••••••••• *
03DD40 0003DDE4 00024428 6001B4EO 0003DDEO 00040260 00000000 000401DO 00000000 *.,,0'. , .. ~'!'~!! ,. f' ,. ,.,' ,. ,~''! ,~~
03DD60 00000000 0003E17C 00000000 00000000 01040210 00000000 OOOOFFFF 00000000 * ~""~. ,.,.,." .'I!'."'.'~
030080 00000000 00000000 00000001 FFFC1EFO 00C3DB1C OB)3D1E8 00030968 00030D58 *• o y .. R ••••• *
03DD10 0003E318 00000001 0003EOF8 00000000 000309a: 0003D770 40070482 0003E318 * • ! T. , ,. ~ ! , • e. , ,. ~. ~. ! • I? _ • ". " ~ ~. '!'
0.3DOCO 4007D520 6001D1El 00000000 0003DEB8 00000000 00J30058 00040058 000188B8 * . N •• ,. •••••••••••••••••••••••••• *
03DDEO 00030770 00000000 00000000 00000000 00040390 0003D748 00000000 00000000 *.,P.! ,.",,~•..... P•
03DEOO 00000000 00000000 00000000 0003E830 00000000 00000080 00006518 00006518 *. , .. , ,. , " !II , , , ! Y. ,. , , , ,. , • , , !' *
03DE20 00006518 00006518 00006518 00000000 00000000 000007EO OFOOOOOO 000186C8 * ft*
03DE40 10000000 08000000 03000000 01000000 FFOOOOOO OF03ED88 02030E18 33000318 * .• ,,! !II"" !!'" • ,. ,.. ,. ,. " !'. ,.,,! ,. ~
03DE60 00000000 00000000 00000000 00000000 00000000 00)00000 00000000 00000000 * *
03DE80 00000000 00000000 00000000 00000000 0003EC08 OOOOOOEO 0003DE10 00000080 * " *
03DE10 00006518 0007D808 00006518 00006518 00006518 00000000 000401FO 00000000 *.,. ,. ,Q"I!I!'" ,. ,.,_ ,.,', •• 0., '!I.~
03DECO 0003E974 0003E718 00000000 00000000 010406B8 00000000 OOOOFFFB 00040580 * .. Z ••• X ••••••••••••••••••••••••• *
03DEEO 00000000 800404F8 00000001 FFF9230C 0006DEFC 0003FF08 80060CFC 00060CF8 *.".,.,.8., •. ,9 .. ,., ••. ", ... , •• 8*
03DFOO 0006DEFC 0006DCF4 E2C4F7F9 5006AF8A 0006AF88 00000003 00060:FC 0006DFA8 * 4SD79 •••••••••••••••• , ••• ~
03DP20 5006ADCO 6001D1El 0006DF18 0003D770 00000000 0003DEB8 00000000 00040058 *•....... . P ••••••••••••••••• *
03Di40 00000000 00000000 0003E6D4 00000000 000406:8 0003E948 00000000 00000000 *. ! • '" •• " • • WM. ~ •• ,. ,H •• ~ ••• ,. , , ! .. ~

030F60 00000000 00000000 00000000 00040188 0103DOEO 00000024 40C9C5C6 F2F3F7C9 * •••••••••••••••••••••••• IEF237I*
03DF80 40FOFOC5 404040C1 D3D3D6C3 C1E3C5C4 40E3D640 C9:5C6D9 C4c5D940 00000000 * OOE ALLOCATEO TO IEFRDER ., •• *
03DF10 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *• " .• "".f.' •.. "'.,.'''' .. ~

LINE 03DFCO SUE lS ABOVE
03DFEO 00000000 00000000 00000000 00000000 00000000 00000000 40000058 00000000 * ,',.,",.,.,., " ... ~
03EOOO 02000043 80000000 42000000 58000000 04000000 00)71687 01030F70 0000002E * *
03E020 40C9C5C6 F2F3F6C9 40C1D3D3 D6C34B40 C6D6D940 E6E30940 40404040 40FOFOC5 * IEF2361 ALLOC. FOR WTR OOE*
03E040 40404040 40404040 40404040 40400000 00000000 00000000 00000000 00000000 * *
03E060 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *.,.",.",,,.,,,.,, •. , ••. ,,,,.,.,, •. *

LiNE 03E080 SAKE lS lBOVE
03E010 40000058 00000000 02000042 80000000 42000000 01000000 04000000 00071684 * .. ".~•............... ,.*
03EOCO 0003CE60 0103CDB8 010402FO 0103EB38 01040110 C003EAF8 8003BACO 00000000 *. , . , , ,. , • , , O. ! ~. !'. !' • ,. , e: •• ~ • ! • ~ • *
03EOEO 00000000 00000000 00000000 COOOOOOO 0003E100 00000068 0003D770 00000000 * P ••••• *
03E100 5C03E120 0003D968 0003DD58 0003E1F4 0003E11: 0003DB1C 8003E830 800401DO * ... , .. R.,.~~!!,Lf •• ".,., ••• r."".,,*
03E120 0003E13C 01000000 0003E11C 00000000 00000000 02000000 FFFC0062 C9C5C6C9 * !,,,., ~ ~. ,.. ~"'!!'." ~EFI*

C/l
:J:o

PAGE 01011 ;.::
'tl

03E140 C9C34040 0003E720 00000000 00000000 00000000 4005AC3A 00000000 0006F6A2 *IC x. , , !" ! ! '" '" "'. " ! ! '" ,~ , ! ~. ~ ~

03E160 00000000 0003FE78 00000068 0003E200 000005e8 0003C228 E2E8E2D9 C5E221F2 * •••••••••••••• S •••• H •• B. SYSRES.2* t:1

03E180 F3F3E800 000716B8 E2E8E2D9 C5E221F2 F3F3E700 00071728 00000000 40000000 *33Y.! ,.!$YSRES.233X •••• ! , •••••• * 0

03E110 00000000 29282928 00000901 00000000 0003E1B8 00000000 C9C7e3FO F4FOF3C6 *" ~ ~ '! , '" " " ! " , , , !II" '" , , • ~ , , ::rG CO 4 0 3F*
c::
~

03E1CO 10000000 00D30000 00000000 00000000 0003E4AO 00J00030 C9D5C9E3 40404040 * ••••• L •••••••••••• U ••••• INIT * 'tl

03E1EO E2C1D4D7 D3C4D4D7 40404040 40404040 00000000 0003E1D8 0000001e 02FFD8F4 *SAKPLDMP "" '" , ' , Q" , , , ! , Qf.I. *
03E200 D4C1E2E3 C5D94040 E2C3C8C5 C4E4D3D9 401104040 40~04040 14000000 C9C5C6D9 *!!ASTER seHEDULR •••• IEFR* 'tl

03E220 C4C5D940 00000000 80000000 14000000 e9c5c6~4 C1E3C140 00000000 80000000 *OER ., IEFDATA * III
H

03E240 14000000 C9C5C6D7 C4E2C940 00000000 80002928 14000080 E2E8E2Dl D6C2D8C5 * ••• ,IEFPOSI •• , ••• , ••• ,. SYSJOBQE* rt

03E260 00000000 80002968 14000040 C9C5C5D3 06C7E740 00~11900 80002928 140000CO * • • • • • ... • • •• IE EL OG X •••••••••••• * ~

03E280 C9C5C5D3 D6c7E840 00011AOO 80002928 14000000 E204C604 Cl05E740 00000000 *IEELO GY •••• !.,.,.,. 5K FM ANX •••• ! t->

03E2AO 80000000 14000000 E204C6D4 C1D5E840 00000000 80000000 00000000 4~000060 * SMPM.ANY •• ,. ,.,' , ••• o. ,.! 0
03E2CO 1203E390 00000008 7FOOOOOO 42010000 0003E488 0103D948 00000000 00000000 * •• T ••••••••••••••• U ••• R ••••••••• * HI

03E2EO 00000000 00000000 00000000 00000001 00004000 0003E318 04000001 00000000 *., ... , .. !.!,!"., ... ,.~ ... ,.!!,.~ ~

03E300 0018D008 0003DBC4 1200D008 00000000 00000000 00000000 42008000 7F0249DO *" , , , , "" D" , , , , , "" "" "" "" , , "" "" , , , , * '" 03E320 0002BA78 OCOOOOOO 4002BA70 0003E2D8 00000000 00000100 00000000 60000001 *" ! ! ' ! '" ! . ' .. '! , ! sa"" , , "" , , "" o· , , , , , *
03E340 0803&350 00000000 09000000 60000001 03000000 20000001 OBOOOOOO 20000001 *.,T., """'f! ,.,. ,.,~,. ".'-!' ,.*
03E360 0003DCC8 00000040 00000000 00000000 00000000 00J21A12 00280000 00000001 * ••• H ... , , , , , , "" ,." , , "" " .. "" "" .. " ... *
03E380 00000200 00000001 04000001 COOOOOOO 0018D008 0003D424 1200D008 0003D838 *" ! " , , '" " ! , ! " ! ! '" ,,, , " , '0 ". '" , " .. ! Q. *
03E3AO 0003EOFO 00000068 0003E3A8 00061408 00000000 00)00000 0100DOOO 00030AFO * ... 0 •••••. T •••••••••••••••••••• 0*
03E3CO 00000000 40404040 03007FOF 00000128 046BOOOO 007FOOOO 0003E3B8 0003E844 * •••••••• , ••••••••• T ••• Y.*
03E3EO 0103DA18 00000000 00000000 01009406 00000100 00200000 00940000 0003E3B8 * .. ! .. ! ! !II" , ! , .. " " ! , .. , .. , , ! , .. '" ! , 'r. ~
03E400 0003&4AC 20067E40 0003EE10 00000080 000065A8 00J065A8 000065A8 000065A8 * •• U *
03E420 000065A8 00000000 0000040B 000003EO OFOOOOOO 000188B8 0803EE3e 68000000 *. , ..•... , , ~ I! " ,. ~. !' ,~ " ,. ~. ~ •• II!!
03E440 03000000 01000000 FFOOOOOO OF02CC48 01l03E410 10002968 00000054 00000054 * , . ! • , , ,. ,.9. ,. t· , ••• lip , •• *
03E460 00130014 00000000 00000000 00000000 00000000 OO~OOOOO 00000000 00000000 * ... *
03E480 00000000 00000000 0003E750 0103E650 00000010 00000001 800007A8 0005B058 *. , .. ! , • ~ • , J. , , }I. ~. , ••• , , •• , • , , , • *
03E410 0003&808 00000060 FD000058 00000000 42000000 00~3E4AC 00000000 00000000 * .. Y ••••••••••••••••••• u *

C/l 03E4CO 0003E4&0 000270CO 00000000 00000000 00000000 00000000 2305B53C 40000001 *.,U., , .. ,IIp,.'!!''' •••.••••••.. *
m 03E4EO 3103E4D3 40000005 0803E4EO 00000000 OEOOOOOO 00000000 00000000 00000000 *.,Q'L •••• ,Q'.'II!'.,.,.,.'!'.,.'!~.~
n 03E500 0103FF88 00000036 40C9C5C6 F2F4F4C9 40E6E309 40~04040 404BFOFO C5404040 * IEF244I IITR • ODE * rt 03E520 40404BC9 C5C6D9C4 C5D94040 E4D5C1C2 D3C540E3 D6~OC1D3 D3D6~3Cl E3C50000 * • IEFRDER UN ABLE TO ALLOCATE .. !
0 03E540 00000000 00000000 00000000 00000000 OOOOOOOOOO~OOOOO OOOOO~OO 00000000 * ,.,.'II!~ :l

LINE 03E560 SAME AS ABOVE
t-> 03E580 00000000 00000000 40000058 00000000 0200003B 80000000 42000000 40000000 * ~
IV .. ,.,,',.,.,.,.,',

03E5AO 04000000 00063787 0103E500 00000025 ~OC9C5C5 F2f8F1C9 40F1F5FO ~04040D5 * V. • • •• I EF 28 1 I 1 50 N*
03E5CO D6E640D6 C6C660D3 C9D5C540 40404040 40404040 40000000 00000000 00000000 *011 OFF. LINE ." .. ,.,.,.*

() 03E5EO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * ... *
0 LINE 03E600 SAME AS ABOVE :::l
rt 03E620 00000000 00000000 00000000 00000000 ~0000058 00000000 0200003A 80000000 * ".,."' ... , .•. "'.,.,.,.~
H 03E640 50000000 80000000 10000000 00063619 0303FEBO OO~OOOOO C9C7C3FO elFOF5Cl * •••••••••••••• o ••••••••• IGCOA05A*
0
I-' 03E660 0105B058 2003E490 00000000 00000000 000110082 0003ECA8 FFF50001 4005AFFO *.!"" ",Q'. lip!,,,,,,,.,., ••• ,, .5 ,Q*
tJj 03E680 00000000 0103B660 00000000 00000000 00040082 00l3ECA8 FFF50001 4005AFFO * .. 5 •• 0*
I-' 03E6AO 00000000 0103B740 0003E710 00000068 0003DEB8 00000000 5C03E6D8 0003E758 *." .. ,. •• X ••••••••••••••• lIQ •• X.*
0 03E6CO 00040058 0003E748 0003E6D4 0003FFOC 80040298 80~40610 0003E6F4 01000000 *'!II!.!,X.,.WM.".,.,,,:,,,:,, •• ~4 •• ,.! n
~ 03E6EO 0003E6D4 00000000 00000000 00000000 FFFC0062 e9~5C6E2 C4FOF8FO 00040188 * •• II !! •••••••••••••••• IE F S DO 80 •••• *
!Il 03E700 00000000 00000000 00000000 4005FC3A 0003E050 00000040 E6E3D940 40404040 *. ,.!! ,. ~ ~ !!. _ • ,. t'. ~. ! tI! ! . IITR *
IlJ 03E720 FOFOC540 40404040 40404040 40404040 14040140 C9~5C609 C4C5D940 ~0040100 *OOE ... IEFRDER *
:::l 03E740 80000360 00000000 0003E718 00000030 0003E898 0103FB68 00030960 00000020 * ... ~, , x ".Y ••••••• R ••••••
0..

t-3
03E760 FD000014 0003DB18 8003E76C 40000000 28000000 00070500 00200000 00000000 *. ! ••• t'. " ~ ! x . .. ,. ,. , . ,tI! ! ! ,. ,. ~ " ,. ~

III 03E780 C9D5C9E3 40404040 C9D5C9E3 404040110 01000000 00000000 0103D6AO 0103D508 *INIT INIT 0 ••• N.*
r-r 03E7A0 0103D238 0103B9CO 0103B7F8 C003DCBO 00000000 00000000 00040082 0003FEBO *.~K."'.I!'!~~.~!.'.! .• ~!".'.!~'II!:~
I-' 03E7CO FFF5000D 4005AFD6 00000000 0003D340 00000000 00)00038 80068FEE 00000000 *.5 •• •• O •••••• L •• ' ••• !~'.'.I!'!II!:* m
!Il 03E7EO 0003E7FO 00000000 00000000 8003E7F8 00080000 OOlOOOOO 00100000 00030B08 * •• XO •••••••••• X8 •••••••••••••••• *

03E800 00000000 00000000 0003FE50 00000030 00000000 0003E3CO 0003E3E4 0003FE58 * .•.• ~ , . I! • , , II! , " ,. ,. ,. , • ~ • •• T(J. , ! . *
W
\0
U1

en
w 3:0
\0 PAGE 0106 ts:
0- 03EFOO C9C6C7FO F2FOF2D3 01072COO 2803EEE8 0003EF40 0103EF28 00000010 00000001 *I PG 0 2 02L. , • 41: , ! ~ Y •• , _ • ~ , ! ,., , ~ , , , ~ ! 't:I

I-'
03EF20 80000400 00073000 B103EF68 00000000 C9C6C7FO F2FOF2D1 01073000 2803EF18 *.,,""" """"" .. """ •• IFG0202J"""",,""" * M
03EF40 0003EF80 0103EF68 00000000 0003EED8 00073000 00000800 00000010 00000001 *. ! ~ ! tJ! ,,, ! ! , ! "- , ! ,Q"" ,,, ,,, , , !" ,It,! ,~ ! t::I
03EF60 80000400 00073400 B103EF98 00000000 C9C6C7FO F2~OF2D2 01073400 2803EF58 *" " " " " ." tJ! , ! ! It , , ,,, J'P GO 20 2K" ~ , II: , , • 'I ! C
03EF80 0003EFBO 0103EF98 00000010 00000001 80000400 00~73800 B103EFD8 00000000 *" " " " " • " " " " " " • " "" "" " " "" " " "" .Q" " " " * ts:

03EFAO C9C6C7FO F2FOF2C5 01073800 2803EF88 0003EFFO 0103EFD8 00000000 0003EF48 *IFG0202E., •• t t, ••• ,0 ••. , Q •••••••• ~
't:I

03EFCO 00073800 00000800 00000010 00000001 80000400 00073COO B103F008 00000000 * ~ O ••••• * ""' 't:I
OlEFEO C9C7C7FO F2FOF1E9 01073COO 2803EFC8 0003F020 0103F008 00000010 00000001 *IGG0201z ••• , ••• R •• 0 ••• O ••••••••• * III

03FOOO 80000400 00074000 B103F048 00000000 C9C7C7FO F2~OF1E8 01074000 2003EFF8 * ••••••••• 0 •• , ,. ;J:GG020 1Y ••.•• , .e* Ii

03F020 0003F060 0103F048 00000000 0003EFB8 00074000 00000800 00000010 00000001 * •• 0 ••• 0 ••••••••••• " "" " " "" "" " " " " *
cT

03F040 80000400 00074400 B103F078 00000000 C9C6C7FO F2FOFOE8 01074400 2803F038 *" , ~ , , ,,, 19 • , Q" ! , ,,, ;IF GO 20 0 Y "" ~ " , ., 0" ~ IV

03F060 0003F090 0103F078 00000010 00000001 80000400 00074800 B103FOB8 00000000 * .. 0 ••• O.<t ••••• ,. ,. ••••••••• 0 ••••• * IV

03F080 C9C6C7FO F2FOFOE6 01074800 2803F068 0003FODO 0103FOB8 00000000 0003F028 *IFG020011' •••••• O. f' 0 ••• 0 ••••••• 0. * 0
t-h

03FOAO 00074800 00000800 00000010 00000001 80000400 00074COO B103FOE8 00000000 *" • I! ! , II e . ., ! , , II: , , ,,, ,,, , " '" , , ,,, or" , '" ~
03FOCO C9C6C7FO F2FOPOE5 01074COO 2803FOA8 0003F100 0103FOE8 00000010 00000001 *IFG0200V •••••• O ••• 1 ... OY * IV

03POEO 80000400 00075000 B103F128 00000000 C9C6C7FO F1F9F8D5 01075000 2803FOD8 * .•. ,' , .. "~.,,,. JPG0198H •• 'II!:,,9Q*
0-

03F100 0003F140 0103F128 00000000 0003F098 00075000 00000800 00000010 00000001 *" ,,1 "" 1 " " ! , , , , (). , eo ,,, , II!: , , , "0 ~ " , , , " ~
03F120 80000400 00075400 B103F158 00000000 C9C6C7PO P1F9F6E6 01075400 2803F118 *" " " " " " " " " " 1. " " .. " IF GO 196 if "" " " " " 1 " *
03F140 0003F170 0103F158 00000010 00000001 80000400 00075800 B103F198 00000000 *.,1., ,1., "I!!! ~~,.~. ,. '.'~ ,." ,..*
03F160 C9C6C7FO F1F9F6E5 01C75800 2803F148 0003F1BO 0103F198 OOOO~OOO 0003F108 *IFG0196V •••••• 1 ••• 1 ••• 1 ••••••• 1.*
03F180 00075800 00000800 00000010 00000001 8000040~ 00075COO B103F1C8 00000000 *. , f! ~! ,. III ! !' ~ III!' ,. ~ •••••••• •• 18 •..• *
03F1AO c9c6e7FO F1F9F6D4 01075COO 2803F188 0003F1EO 01~3F1C8 00000010 00000001 * I FG 01 96 II •••• , • J. ". ~. ,. 'R •••• , ••• *
03F1CO 80000400 00076000 B103F208 00000000 Cge6c7FO F1~9F6D3 01076000 2803F1B8 * 2 IFG0196L 1.*
03F1EO 0003F220 0103F208 00000000 0003F178 00076000 00000800 00000010 00000001 *.,~ .. '2.!!1II"11~.'.'.,.'!'.,.!·11'.*
03F200 80000400 00076400 B103F238 00000000 C9C6C7FO F1F9F6D1 01076400 2803F1F8 * •••••••••• 2 ••••• lFG0196J •• 'f!'1II ~8*

03F220 0003F250 0103F238 00000010 00000001 80000400 00076800 B103F278 00000000 * •• 2 ••• 2 ••••••••••••••••••• 2 ••.••• *
03F240 C9C7C7FO F1F9F6C2 01076800 2803F228 0003F290 0103F278 00000000 0003F1E8 *IGG0196B •••••• ~.,.~ ••• ? 1Y*
03F260 00076800 00000800 00000010 00000001 80000400 00076COO B103F2A8 00000000 * 2 ••••• *
03F280 C9C7C7FO F1F9F6C1 01076COO 2803F268 00C3F2CO 0103F2A8 00000010 00000001 *IGG0196A. 111111111' 111;2.,.2 •••. ~e ,e!lf!'! 'fI!*
03F2AO 80000400 00071000 B103F2E8 00000000 C9C6C7F~ F1~9F5D1 01077000 2803F298 *. , ~ III III !t. III III III ~Y. ! 1. JP GO 19 5J •• III III III , ? *
03F2CO 0003F300 0103F2E8 00000000 0003F258 00077000 00000800 00000010 00000001 * .. 3 ••• 2Y •••••• 2 ••••••••••••••••• *
03F2EO 80000400 00077400 B103F318 00000000 C9C6C7FO F1F9F5e1 01077400 2803F2D8 *. , . , III •• III , , 3. ! III ,. ;IF GO 195 A •• , • III ! ;2Q*
03F300 0003F330 0103F318 00000010 00000001 80000400 00077800 B103F358 00000000 * .. 3 ••• 3 ••.••••••••••••••••• 3 ••••• *
03F320 C9C6C7FO F1F9F4e5 01077800 2803F308 0003F370 0103F358 00000000 0003F2C8 *IFGO 194E •••••• 3. e' 3 ... 3 2R*
03F340 00077800 00000800 00000010 00000001 80000400 00077COO B103F388 00000000 *. III II! III III , •• III , • III • III ,. !II. ,. ,. , III ,. 3. , III , III *
03F360 C9C6C7FO F1F9F3C1 01C77eOO 2803F348 0003F3AO 0103F388 00000010 00000001 *IFG0193A •••••• 3 ••• 3 ••• 3 ••••••••• *
03F380 80000400 00078000 B103F3C8 00000000 C9c7C7FO FU9F1F7 010780'00 2803F378 * ••••• "0 •• JR. , ,. ;J:G GO 19 11 •••••• 3. *
03F3AO 0003F3EO 0103F3C8 00000000 0003F338 00018000 00J00800 00000010 00000001 * .. 3 ••• 3 H III! III III • , III ~. ,. , ••• , III ~. , • III ! III ~ *
03F3CO 80000400 00078400 B003F3F8 00000000 C9C7C7FO F1F9F1F1 01078400 2003F3B8 * 38 IGG01911 3.*
03F3EO 0003F410 0103F3F8 00000010 00000001 80000400 00018800 B003F438 00000000 * .. 4., ,38. III 111111' III'.'.' ••• ' III ,.4. III II!' •• *
03F400 C9C7C7FO F1F9F1FO 01C78800 2003F3E8 0003F450 01J3F438 00000000 0003F3A8 *IGG01910 •••••• 3Y •• 4 ••• 4 ••••••• 3. *
03F420 00078800 00000800 00000010 00000001 80000400 00078COO B003F468 00000000 *.,',. '."'111111" , •. ' ••••••••• 4 ••.•• *
03F440 C9C7C7FO F1F9F1C4 01C78COO 2003F428 0003F480 0103F468 00000010 00000001 * I GG 0 191 D. , , III , III 9. ,. 9 ••• 9- ••••• , III ~ • !
03F460 80000400 00079000 B003F4A8 00000000 C9C7c7FO F1F9F1e2 01079000 2003F458 * •••••••••• 4 ••••• IGG0191B •••••• 4.*
03F480 0003F4CO 0103F4A8 00000000 0003F418 00079000 00000800 00000010 00000001 *. III 4 • III , q. • ! , • III • ! 9. ,. ,. , . , , ,. , f! , III , f! ~

03F4AO 80000400 00079400 B003F4D8 00000000 C9C7C7FO F1F9F1C1 01079400 2003F498 * •••••••••• 4Q •••• IG GO 19 1 A •••••• 9. ~
03F4CO 0003F4FO 0103F4D8 00000010 00000001 80000400 00079800 B103F518 00000000 * .. 40 •• 4Q •••••••• , ••••••••• 5 ••••• *
03F4EO C9c7e3FO FOFOF5C5 01079800 2003F4C8 0003F530 0103F518 00000000 0003F488 *IGC0005E •• 0 0" !lR .. 5 ••• ? 0 4. ~
03F500 00079800 00000800 00000010 00000001 80000400 00079COO B103F548 00000000 *•........... 5 ••••• *
03F520 C9C7C3FO FOFOF2eO 01079COO 2803F508 0003F560 0103F548 00000010 00000001 *I Geo 0 02. " , • III , ! ~. ,. ~. ,. ~. !'. ,. ! III III • ~

03F540 800002A8 0007A278 B103F588 00000000 C9c7c3FO FOFOF2e2 0107A278 2803F538 *. , . , III !II • III III III ~. , ! !II. ;£G CO 00 2B •• ! III , , 5. ~
03F560 0003F5AO 0103F588 00C7AOOO 0003F4F8 0007AOOO 00J00800 00000010 00000001 * .. 5 ••• 5 ••••• , • 48 •• • ••••••••••••• *
03F580 800002EO 0007A520 B1000000 00000000 C9C7C3FO FOFOF1C9 0107A520 2803F578 *. III II!! III III , •• ! , , • , III ,. ;IS CO 00 1 I •• , • ! III ~. *
03F5AO 0003F5DO 0103F5B8 00000010 00000001 800001D3 0007A918 B103F5E8 00000000 * .. S ••• 5 ••••••••• , •• Q •••• •• Sf •••• *
03F5eo C9C7C7FO F1F9C5D2 0101A918 2003F5A8 00C3F600 0103F5E8 00000010 00000001 *IGG019EK •••••• 5 ... 6 ... 5Y *

(f)

CD
()

rt
f-'.
o
::s
...
tv

(J
o
::s
rt
Ii
o
f-'

b:I
f-'
o
()

~
Ul

OJ
::s
0..

H
OJ
t"!'
f-'
CD
Ul

W
1.0
-..l

0403AO 0003E8D8 00000018 00041600 0003EC4C
0403CO 00069800 00002000 00000010 00000001
Oq03EO 000065A8 00006SA8 000065A8 0007C3BO
040400 11000000 OQ03C170 10040494 88000000
040Q20 040403EO 18002928 00000CQ4 00010045
040440 00000000 C2C2C2C1 C3D1C3C4 00000000
040460 00000000 0001B4EO 0003C148 00000090
OQ0480 00006518 00000000 00000408 000023E2
0404AO 4FOOOOOO 01000000 FFOOOOOO OF071728
0404CO 00000014 00010001 00000000 00000000
0404EO 00000000 00000000 00000000 00000000
040500 C9C5C6E2 C4FOF7F9 0106AE60 200403C8
040520 0003FED8 0006DD90 0004052C 00100000
0405QO 00000000 00000030 00000000 00000000
040560 00000000 00000000 00000000 0003EBEO
040580 00040SBB 0103F9A8 00000000 00000000
0405AO 0006F388 00040650 000405BO 0203FA68
0405CO 000405EO 0103FA08 00000010 00000001
0405EO 00000000 0103FBA8 39000000 00000000
040600 0006D800 00000000 0006D800 00000800
040620 FF050001 5007D632 00000000 01040058
040640 00040058 00005000 00069800 00000000
040660 FF000001 5006EABC 00000000 01018970
040680 00000010 00000001 80000SF8 0006EA08
0406AO 0106EA08 28040680 000406BO FC0406CO
0406CO 0006E2F8 00000000 0006EOOO 00000800
0406EO 0007D800 0003FD78 0007D800 00000800
040700 BF040748 0003FE48 C9CSC5D9 C7D54040
040720 C9CSCSD7 D9E3D540 01C7DF60 200406FO
040740 80000078 0007E088 B9000000 00000000
040760 0007E100 000406EO 0007EOOO 00000800
040780 00000000 00000000 00000000 00000000

LINES 0407AO-0407EO SAME AS ABOVE

REGS AT ENTRY TO ABEND

00000000 00)00419 00069800 00000000
80001C80 00069B80 00040468 00000090
000065A8 00)00000 00000409)00023E2
4FOOOOOO 01FFFFFF FFOOOOOO OF0716B8
00000014 00010001 00000000 00000000
00000000 00)00000 00000000 00000000
000065A8 000065A8 000065A8 0007C3BO
11000000 04)3C170 10000000 A8000000
04040470 18002928 00000043 00010044
00000000 c2:2C2c1 C3D1C3C4 00000000
00000000 40021614 OB040SEB 000401FO
00040540 00000030 000403BO 000403B8
00000000 C030C9C5 C5D9C7D5 00000000
00000000 00)405B8 00000000 00000000
00040578 0203FB68 00040SA8 0203FA98
00000000 00)00000 00000000 0006EF28
00000000 02D3FA3B 00040SCO 0103F93B
8000027B 0006E080 60000000 00040600
C9c5C6E2 C4FOF7F8 0006E080 680405C8
00000000 00000000 00040083 0003FD9B
0006B800 00)6B800 00000000 00000000
00000000 00000000 00040002 00040690
0006E800 00000000 0006E800 OOOOOBOO
OB03EC90 00040650 C9C5CSE5 E6C1C9E3
COOOOOOO 000405D8 000406A8 FB0403B8
00040630)0)40630 40000000 FC040760
00000010 00000001 800000AO 0007DF60
0007DF60 18040718 B9040700 00000000
00000000 01340748 00000010 00000001
:9C5c5D7 D9E6C9F2 0107E088 2B04073B
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

PAGE 0109
* .. YQ. , •••••••••••••••••••••.•••• *
*. '!I'!' , ... ~. '!I'!' !'. ~. ~ ,,, ,. !II'!' '1_ ~
* .•.••.......•• C •••••••••••••••• s*
* ...• , . A •••••••• , •••••••••••••••• *
*••.. ~.,.'! .. ,.!" ••••••••••••• *
* B BBACJCD ••••••••••.••••••••• *
*. !" •• , ~ , ~. , .. !". !II • ~ , , !" •• '0 ! ! t;:. *
* 5 •••••• A ••••••••• *
* " *
* " .. !" .. !II' !II • BB SA CJ CD. , ... *
* Y ••• 0*
* I E F S D 079 • , •• ! , • H ... " ... ,! !,!II. *
* ... Q...... 'II! ,I J:EERGN •• ,.*
* *
* .•.•• , .. , .•. '! •••• !l' ••• !' ..•.• , •• ~
* .•.... 9 ••••••••••••••••••••••••• *
.,3.!, ,!'I., ••••• " 9.
*""''!''''!''!'''!'''!I'''!'''!'!'''~ * IEFSD078 •••.••• H*
*. ! Q ... !II ... ! .. Q. ! II! !II" , .. , ! , •• , .. , .. , • !
* 0 ••••••••••••••••••••••••• *
*'!"""II!"~""" •••••••••••••• *
*.,. '1!!l1""''''!!I'!l1 "I. ,. ~'!I.l.!.,. *
* .•.•••••.•. 8 ••••••••••.. IEEVWAIT*
*., .. , """'! ~ !'. ,. , ••• ! Q •••• '!, !'. ~
* .. S8 •••••••••••• ,.~ ••• !" '!I""'~
* .. Q ••••••• Q ••••••••••••••••••••• *
*., ... ~ .. ~EERGN •••••• ''!!' ••••••• ~
*IEEPRTN .•••••• 0 ••...•..•.•.•... *
*. , .. , ~ .. , , , . , , ", ~E EP RW I2 •••••••• *
* , .. , , .. , '! !'. ,. !' ••• " •••••••• !
* *

FLTR 0-6 000000000003D478 FE0000880003BBF8 0004300440073402 0405A5DO 07 02 7568

REGS 0-7
REGS 8-15

LOAD MODULE GO

05AD40
OSAD60
OSAD80
o SADAO
OSADCO
OSADEO
05AEOO
05AE20
OSAE40
OSAE60
o SAE80

40404110
D03847FO
00000000
00000000
4510D098
000SAE04
0005AF68
0005AFA8
000SAF60
8005AF58

00000030
0003DCDO

D2860A29
F0243088
E2E4C240
00000000
8F05AE94
0005AF30
0005AF30
0005AF30
0005AF30
42310000

80000064
0003BDOO

0003E368
0003DCF8

00000001
00000000

12FF4780
0005ADA4
40404040
00000000
OA 134130
0005AF50
0005AFAO
0005AF48
0005AF40
9280108C

D02E0700
00000000
OA2A41FO
02000000
00010700
0005AF38
0005AF30
0005AF38
0005AF38
OA3347FO

90ECDOOC
47FOD02B
00000000
006847FO
00000000
4510D134
000SAFS8
0005AFA8
0005AFSO
000SAF4B
02784780

1BDF4500
80)00065
00000000
F024E7E7
E2E4C240
0100B7BE
OOOSAF40
00D5AF38
00)5AF40
0005AF40
00000000

0003D968
4007D482

0003D770
0105A050

0003D8BC
0001D4CA

0003E1D8
OOOOOOOC

D012E2E4
S810D024
00000000
0005ADD4
40404040
0005AE94
000SAF60
OOOSAFAO
0005AF58
0005AF53
00000000

C2404040
OAOD41FO
02000000
00000000
OA2A0700
00000000
0005AF48
000SAF38
0005AF48
0005AF48
00000000

* !'K ••• , ••••• !'., .•. " •. SIJB *
* .. K 0 0*
* ... 00 •••• "'!' •••• !'. ,. " .• a. " ,. ~
* .••• SUB .•• 0 ... OO.XX ... M •••• *
* SU B ••.• *
*. , .. , ... '! , •• !I , •• ,. J ••• , '! !II' ••• , • tI * *.... *
* .. a • , " •• , ••• ! , !I' !II' ,. ,. 'II ,. , ••• ,. '?=
*, !I.,.!'., •••• , ••.•. *
* *
*•...•. ! • • 0 K. , •• '0 !' , !'. !' • , , , • *

(f)

:J>o
3:
"d
t-<
I:lj

tJ
C
;.::
"d

"d
OJ
Ii
rt

tv
W

o
t-h

tv
0\

UJ
\0
ex> 05AEAO

05AECO
05AEEO
05AFOO
05AF20
05AF40
05AF60
05AF80
05AFAO
05AFCO
05AFEO

00000000 00000000 00000001 00004000
0003D678 9207BBF6 0007BBDE 00000001
00000001 0000007D 0007BBBO C010D503
40404040 40404040 40404040 404040E2
40404040 40404040 40404040 40404040
33333333 33333333 44444444 44444444
77777777 77771777 88888888 88888888
BBBBBBBB BBBBBBBB CCCCCCCC CCCCCCCC
FFFFFFFF FFFFFFFF 40404040 40404040
40404040 40404040 41FOD280 80000064
D7071000 10004110 10004100 00010A01

LOAO MODULE IGCOA05A

05B840
05B860
05B880
05B8AO
05B8CO
05B8EO
05B900
05B920
05B940
05B960
05B980
05B9AO
05B9CO
05B9EO
05BAOO
05BA20
05BA40
05BA60
05BA80
05BAAO
05BACO
05BAEO
05BBOO
05BB20
05BB40
05BB60
05BB80
05BBAO
05BBCO
05BBEO
05BCOO
05BC20
05BC40
05BC60
05BC80
05BCAO
05BCCO
05BCEO
05BDOO
05BD20
05B040

00001A81 41330001 95FF3000 47806068
8CE00004 88F0001c 8C000004 8810001C
F384D069 0069DC07 D06962C6 41FFF001
41330001 47F060E2 D2008000 3002D200
D12094FC 01235BOO D1201A10 58000120
D06C1810 54006290 19014780 60BC1B10
66804000 006A1211 4770611C 4810006A
4120D121 45B06236 5820D120 413062C4
46A06104 9640D112 455062DA 94BF0112
D0704120 007145BO 62364810 D06C8810
9640D112 455062DA 94BFD112 4810006C
47B061A6 18125Bl0 6680051F 10002000
41220020 5020D120 46A0615E 47F061BO
D06E1211 4180619E 5810D120 4800D06E
D06E0610 12114770 6202D203 D09F629D
D1124550 62DA94BF D112D701 D06E006E
41306291 45B0623E 9260DOAB 58100120
45B0623E D20DDOB2 62A247FO 61E64130
627c1BOO 43030000 1B114313 00011A80
41111001 4410628A 41330002 41220004
2000D200 8000D070 FFFFFFEO OB02FFOC
C1E240C1 C2D6E5C5 0002FF09 0312031B
03FF1B03 FF2403FF 3003FF39 03FF4203
D09441FF 007D50FO D084411F 007D1910
41FE0004 50FOD084 41F06722 92201005
100858FO E03405EF OA030700 47F06770
1A019240 D098D277 D099D098 41100038
47F060E2 4810D05E 41110001 4010D05E
D10AD07C 96FOD10D D201D05C 63B247FO
078547FO 62FCD7C1 C7C5FFFF 01FEFOFl
D1384710 64C69101 D1384710 668C9180
D1394710 64D29118 D1394750 64E29110
007C13EE 45506504 47F06418 47F06434
188E18AE 47F06694 4700640C 94FE401D
4550639A 9879D080 12174780 646A1B91
OAOA47FO 67589180 E0024180 64A24110
41FF0004 41300004 92FF1000 42301001
6568181D 41110000 OAOA4100 6560D205
D13841AO 653847FO 64FA94F3 D13894DF
655047FO 64FA94FD D13994EF D13841AO

00000001 04)00001 54000000 002C0020
00000000 00000000 0007BBEO 00000001
40404040 40404040 40404040 40404040
E3D6D9~1 c7:540E3 C5E2E340 C1D9C5C1
11111111 11111111 22222222 22222222
55555555 55555555 66666665 56666666
99999999 99999999 AAAAAAAA AAAAAAAA
DDDDODDD DOODODOO EEEEEEEE EEEEEEEE
40404040 40404040 40404040 40404040
5810D27~ OAOD4100 00084510 F0080AOA
47FOF022 80)00066 5810F01E oAOD102o

4180D099 1B114313
lBEE1BFF lBJ01B11 43E3D30~ 43030001
1A2044Eo 50701A1E 41818001 44F06076
44F0607C 47F066F8 413E3003 47F06010
00692000 02008000 D0695050 D08C5000
41110003 5010D064 94FC0067 D703D06C
4010D05C 5810D064 4Al0D06C lB005DOO
12114770 60E85850 D08C5860 D12407F5
48AOD05A 4BA0006C 88A00002 45B0623E
47F060DE 18A15810 01204B1o 006C5010
00011A31 5820D120 45B0623E 50200120
12114770 51984700 615E411o 0001191A
477061A6 4810006E 41110001 4010006E
1B114010 006C46AO 611E47FO 60044810
89000005 lBl05010 D0704120 D0714810
41306294 4580623E D20DOOAA 62A29640
12AA4780 60D447FO 619ED204 D09F629D
5Bl0668o 50100070 41200071 4130629A
62B047FO 55744180 D09995FF 30004780
44106284 F334D070 00700C07 D07062C6
47F0623E 41330001 07FBE2E2 D200D070
02FF1302 FFD3C9D5 C5E240E2 C1D4C540
03240330 03390342 034B03FF 0903FF12
FF0098EO D08012EE 41806310 027CFOOO
47D06332 lBFE40FO D090D203 EOOOD090
58Fl0008 58FOF030 05EF5817 000058EO
9560D098 47406348 47206346 lA011A01
190147BO 535C4000 005C9140 Dl120715
92F1D098 D203D105 63AE4E1o 0078F333
62DA98EO D03012EE 0785411E D004191F
F2F3F4F5 F5F7F8F9 C1C2C3C4 C5c69120
D13947FO 6616910C D1384750 64D29120
D1384710 66:69102 D1394710 64EE58E4
947FE020 58100010 58B010C8 58BB0028
D20BD098 652CD203 D1240128 455062DA
410000FA 89300018 16091817 41110000
D070D70B 10001000 41E0656C 58F00060
50E01004 50F01008 OA3058AO D1305800
A06064~0 47FA0060 OA091BFF OA0394DF
D13941AO 654847FO 64FA94E7 013941AO
655841FO D07050AO FOOOOA07 12EE47AO

PAGE 0110
*. *
*. ~ o. ~ •. 6 •• ~ ~ '! ! !t' !'. ,. ,. " ,. , ••• ,. ~
* N. *
* STORAGE TEST AREA*

* """"!,,,.!,!.,* *•............. *
*'!I!''!!'''!!!'!!''''''''''!!''''''''~ * "," !'. ,. , ••• ,! ~. ,. !, ~. *
* ,. .. * * . 0 K. , , ,. p. ~ ••• , , !' ••• O. , • !
*P •••••••••••••••• 00 ••••••• 0 ••••• *

*87I OIRECT SYSOUT.~Y •••••••••••• *
* T •••••• *
*. , , , . O •• , , •• , • ,. ,. , • ". ! ~ •• !'. , 0 •• *
*3 ••••••.••• F •• O •• 0 ••• 0.8 ••••• 0 •• *
*., .. ,O.SK ••••• K ••••• K ••••••••••• *
*J., . t;T ••• .:J. ". ,. ~. 1" , ••• , , !'. ,..:p. ,. *
* *
., .'!~"!.~!!'.,.,..,.y.'! ••• J.,5
* .. J ••••••• J •••• 0 ••.••••• ,., ••• ,.*
* J ••••••• J •• 0 •••••• J ••••••• *
'!'.' """'!'!"!" ,. ••• .} ••••• "J. *. J ••••••• J ••••••••••••••••••••• *
*. , II! • ! ,. •• , , N. ! ! •• ,. ,., , '. ! ! ,. • ,.. • •• *
*'!"! ,.J.".~~O •• , •.••• , •••• O.M •• *
* J ••••••••••••••••••••• *
*. ! , ! • !' • ! , • ~. , , , • 1" , •• '. , '! J{. , ~ , " *
*J ••••••• J.P •••••••••• !1.0 •• K ••••• *
* ... ,', ... ,', .. J ••••••••••••••••• *
*.,. .. ~ ••• ", O. ~ •• ,. ,O ••. " !" .. ~
* •••••••••••••••••••• 3 •••••••••• F*
*.,. ~"". '!'!!" '!,. ,0 •••• '! '!!I' ~SK ••• ~
* .. K ••••••••• OI!'!'.,..,.,~INES SAME *
*AS ABOVE •••••••••••••••••••••••• *
* .•... , .. , , ,. . , ! ,. !'. ,. ,.., , , •• , • ~. O. *
* 0. ••••••• O •• K ••••• *
*., ... 0 •. ,9 1 •.• 00 ••.•....• *
."0.,.,.,,.,0 .. , ,.,.,.,..
* K ••••••••••••••••••• J ••• *
* . o. s ••••• , •• _ • , • ,. , •• ~ • .;r ••• ,. • , , 3. *
* J ••• • OJ. K •••• , !' 0 •• , ••• , ••••• , ! ,. . *
* ••• O •• PAGE •••• 0123456789ABCDEF .• *
* J •••• f •• J. , • , , II!" ~. ,0 •• , , J ••• ! K •• *
* J •••• K •• J •••• S •• J •••• F •• J •••••• u*
*., ... ,.!,O'0I!.9 ••••••..••.•. R •••• *
*. , ... O •• , , , , • ! _ • :f:. ,. , • ~. ~. J •• , ,. .. *
* *
*. , . O. l' •• , , , •• , !' •. " ? •. !' , •• , • '" O •• *
* O •••• ,.J.,.~
* K ••••••••••••• ' •••• *
J •••• ,.0. ,,~J •.. ~. , •••. 0 ••. XJ. ,.
* ... O •••• J ••• J •••••• 0 •••• 0 ••••••• *

CIl
!l:>
;.::
'1:1
t-'
t<:I

t:l
c:::
~
'1:1

'1:1
SlJ
1'1
rt

N
+:

o
H1

N

'"

CJ)

m
(')
cT
o
i:j

I-'

'"
(')
(')
i:j
cT
Ii
o
I-'

tIl
I-'
o
(')
~
en
SlI ::s
a.
1-'3
SlI
no
I-'
m
en

W
\0
\0

05B420
05B440
05B460
05B480
05B4AO
05B4CO
05B4EO
05B500
05B520
05B540
05B560
05B580
05B5AO
05B5CO
05B5EO
05B600
05B620
05B640
05B660
05B680
05B6AO
05B6CO
05B6EO
05B100
05B120
05B140
05B160
05B180
05B1AO
05B1CO
05B1EO

D1384110 64C69101
D1394110 64D29118
001C13EE 45506504
188E18AE 41F06694
4550639A 9819D080
OAOA41FO 61589180
41FF0004 41300004
6568181D 41110000
D13841AO 653841FO
655041FO 64FA94FD
650E13EE 01F518FE
41F06514 FOC505C4
C9C1C3FO F6FOF5Cl
F000013D E2E8E2C9
0005D21F 1051AOOO
411065B8 95401051
D09CD213 D09CD09B
D4D5D6D1 D8D94B4B
F4F5F6F1 F8F94B4B
662E41FO 64FAC9C1
64FAC9C1 C3FOC8FO
D13841EO 63DE94F1
c2FOF5Cl 41A06540
58A00010 91COAOEC
001094EF D13891CO
41A06190 41F064FA
9200D13C D200D13D
0000D403 D080D080
41FO~314 OAOC18D1
58EOD060 41F0646E
C9C1C3FO D2FOF5Cl

D1384110
D1394150
41F06418
4100640C
12114780
E0024180
92FF1000
OAOA4100
64FA94F3
D13994EF
58EF0088
40D6C640
C9C1C3FO
C5C1FOFl
4181001F
418065BC
41F0623E
4B4B4B4B
4B4B4B4B
C3FOC4FO
F5C158AO
D13894DF
41F064FA
41E066FO
AOEC41EO
41106198
D13B9401
41106142
581D0008
41100001
C9C1C3FO

668C9180
64E29110
41F06434
94FE401D
646A1B91
64A24110
42301001
65600205
D13894DF
01384110
12EE0115
C4E404D1
F1FOF5Cl
41800099
4191001F
920F1051
4BC1C2C3
4B4BE2E3
40004110
F5C19140
00109104
D13941AO
800061AO
9108AOEC
66E89108
41F064FA
013D4A80
4111005C
41F06332
4800D05C
D5FOF5C1

LOAD MODOLE IGG019CD

01CC80
01CCAO
01CCCO
01CCEO
01CDOO
01CD20
01C040
01C060
01CD80
01CDAO
01CDCO
01CDEO
01CEOO
01CE20
01CE40
01CE60
01CE80
01CEAO
01CECO
01CEEO

5810202C 48613006 9101203C 4180F024
180491D8 A00941EO F03E4800 A0064340
4110F05A lE0641FO F08C1B44 43401010
4140F09C 41120000 11110A19 4890402C
41COF1B6 4900A004 41COFOAE 4810FOAC
41208005 42130004 183F184E 185B186C
32685E90 32645590 80004110 30E65000
05EF12FF 41803100 96202031 41F0315A
lB991BAA lBBB1BCC 43920000 89900004
313819BC 41B0315A 18081BBA 58902001
58F00010 58FOF01C 05EF18F3 41900005
lB114313 000418B5 18C618E4 48613006
4180F1A8 9620203C 96013014 5843000C
A0049200 200C1846 4850AOOA lC448E40
A0061E54 1B444340 20041F54 48402012
200C4144 00014240 200C9140 30004110
1A544340 20418940 00031A54 D2045000
50001B44 43402010 1B644065 00081266
lB444040 20124143 00081814 OA00989A

LOAD I!ODOLE IGG019CJ

D13941FO
D1384110
941FE020
D20BD098
410000FA
0010D10B
50E01004
A06064:0
D1394110
655841FO
58EF008C
C9C1C3FO
C9C1C3FO
9011D09C
41800001
943F1051
C4C5C6:7
E4E5E6E7
668C9180
D13A4180
A07441EO
668441FO
05EB8000
41E06666
AOEC41EO
9180D 13B
D13C418F
5011000:
581DOOOO
41F06338
C9C1C3FO

6616910C
66:69102
58100010
652CD203
89000018
10101000
50F01008
41FA0060
65~841FO

D01050AO
59FF001C
FHOF5Cl
F8FOF5Cl
187858AO
925C1056
817865Ali
C8:94B4B
E8E94BliB
D13A4180
66529liBF
63DE9110
64FA9060
61A118E8
41106188
63FE1B88
li1106108
80l1li7FO
D2811000
5800611C
FAOOOOEO
D1FOF5Cl

D1384750
D139li710
58B010C8
D1240128
16091811
41E0656C
OA3058AO
OA091BFF
64FA9liE7
FOOOOA01
li18500011
C9C1:3FO
C9C1C3FO
D12088AO
925C1017
DC1F7037
liBliBIIB4B
liaqaqaqB
66369li7F
D13AlilAO
D138li110
00000020
41F06liOC
lB88li7FO
41A06780
418F800li
60605010
00901810
18114111
c9C1C3FO
OOFFBOOC

64D29120
64EE58E4
58BB0028
li550620A
lil110000
58FOD060
01305800
OA039liDF
0139li1AO
12EEli7A0
58FF008li
FliFOF5C 1
C1FOF5Cl
000589AO
91C01051
65D49811
liBD1D2D3
FOF1F2F3
013AlilAO
664Ali1FO
66Ali9108
C9C1C3FO
9liEFD138
6liFA58AO
Li7F064FA
41F06060
~008581D
580DOOOli
OOOOOAOA
01FOF5Cl
12AA4180

909AD040 9120203C li110F194 58A0200C
48602051 12664140 F09C1B4li 113liOA001
20041BOII .91~82024 li1EOF054 91403000
89400004 1A414890 402C1299 li720F08A
12994100 F09C5810 202C1E09 li9002012
li1000080 89100018 16100100 20001882
181D58FO 001058FO F02005EF 18905EOO
80009201 80J21880 58F00010 5BFOF01C
95002000 4770315A 910li1008 117E0315A
li3A91029 43B9102D 43C20006 19CA474J
li3A09003 lBABli6AO 314A89AO 00101EOA
lB295880 20305830 204458AO 200C18D1
9101203: 47BOF1BC 4860205A 9120203C
92404000 41FOF25E 58A0200C 02012012
00094340 A006910B A00947EO F1D248liO
lB45li04D 2012D201 30282005 lBli44340
F20A42li3 002F41FO F2564340 20li01853
20084B50 F25C9180 20344180 F2324060
4110F256 48402012 06401244 4720F252
D04001FE 00000100 00010000 00020100

PAGE 0112
*J •••• F •• J ••••••• J •• O •••• J •••• K •• *
* J • '! , ~ IC. '! ~ • , • ! ~ •• ~. ,. ! ~. '! J. ! • , ~ ~ q *
* O ••• O •••••••• ~ •••• a •• ~.*
* ••••• 0 ••••••••• K ••••• K.J.J ••••• *
.,~." .• !"."' •. J.f.!.'!!'.,.'!'. * ... 0 •••••••• l1li ••••• P •••••••••• O •• *
., ..• !'~t!IIII''!.'!'.,.,.,O.!'., .. y.,~
*. ! • ! • , • " ! , " ! ! , 1'\. ,. ,eo , • ! II ,. !. " ! , II! *
*J •••••• 0 ••• 3J ••• J •••••• 0 ••• XJ ••• *
*. " . Q. , •• ~ ••• ;J. ,. , e. ,0. e. , , 9 •• II. " •• II. *
* 5 •••••• III. ••••••••••••••••••• *
.O •• OENO OF OOMPIGC0105AIGCOli05A
IGC06 05AIGCO 10 5A !GCO 80 5AIGCO AO 5A
* SYSIEA01 •••••••••••• J
*. !~. '! !'. II! " .".0" ~. ,. , ••• ,! , • •• , II! , • *
*.,."" _ •• " ~ II!'''! ,I II !II ,.," ,I,., ~ .. *
* •• K •••••• O ••• A BC DE FG HI ••••••• J KL*
MNOPQR ••• e"" ?TOVWXYZ.! •• e. 0123
*456789 ••••••••••••• J ••••••• J ••• *
* ••• O •• IGCOD05A. J ••••••• J •••••• O*
*. ! IGC 0 HO 5 A. ! " " ,. !' ••• , • , , .;I. ,. , II! ,~ *
J •••••• 1J ••• J •••••• 0 •.•••••• IGCO
BOSA., •• Q'",",',',I,l.O'II! •• J.
* 0 •••••• ,I.I,II! 'I .0." 'II!*
* J •••••••• Y ••••••••••••••• 0 •• *
* •• II! • II! O. II! " , •• ! Q •• !'. ;I. ,. , , •• ,. , 0 •• *
* •• J.K.J.J ••• J ••• J •••••• 0 •••••••• *
*.,~ .. ,I",.", ,I ,. "K ••••••••••• *
* • O. , " ,. 1? , , • , Q •• ,. ,. , II! , , ,. ,. , " , • *
* 0 ••••••••••• 0 •••••• IGCOJ05A*
*IGCOK05AIGCON05AIGCOP05A •••• " e. *

*. 1
*. , .. " , .. ! , II , ! , p. ~. , •• '0 , • O. , II! , .•• *
* 0 .••••••••••••••• 0 •••• *
.,O., •• OO •• ,,_ •• ~ ••••. , •.•• ",0.
*. o ,,"!,! .• ,.,. O. , II!! , •••• " , II! *
* .. 1 ••••••• 0 ••• 0 ••••••••••••••••• *
*. , .. , , .. , .. III!: , , •• ,. ,0 •• ,Q O. , •• " , • *
* ••••••••••••• 11 ••••••••••• 0 ••• 00.*
*. , , . " ,." " , .. ,,0 •• ,. , ••••••••••••• *
*.'II!."."'~II:"~.,.,.~.,!!"B ••. , •• * *•..................... *
. o. ! 11 90. , ,! 3 •• ,. ,. ,. !. " " ••• " ,p
* F.O •••••••••• 1 •••. ~II:"'.~
* .. 1 •••••••••••••••• 02 ••••• K ••• *
*.""'.~""'" •• , •. t, ..•. 'K. * *. K. •• • • • •• *
*. , " , , ,. ." ... !,.~.,.,., () 2. , .. *
*. ,. ., .. .",. ~. !II. ,. ,. ~. , , , • , • ~. • *
..... • •••••• 2 ••••••••• 2.
., .,.,",.,',., .. '.f".'."'.

I~
'"0
t-<
trI

o
C
~
"d

"d
SlI

:f
'" U1

o
til

'" 0\

*" o
o 07BCOO

07BC20
SP 252

0697EO
SP 000

068020

1BFF07FE 91011023 4710F03E 58F01020
8910000C 41000080 89000018 16100AOO

068040 8F068E70 000681AO 00068E20 00000000
068060 4005BB88 0007C828 00068800 00068038
068080 0005B858 0003B468 0003B501 00000000
0680AO 00000000 00000000 00000000 00000000

LINE 0680CO SAME AS ABOVE
0680EO 00000000 00000000 00000000 000B0103
068EOO 00000000 00000000 00080200 000A1800
068E20 00000000 7F068038 00068E68 OcOOOOOO
068E40 OFOOOOOO 1A000501 31068E43 40000005
068E60 000681AO 00000G50 001A0005 02000650
068E80 00210057 00000001 00004000 00000001
068EAO 9207C208 0007C828 08000001 00000660
068ECO 00000070 00000001 8003E668 00000000
068EEO 00000000 00000000 00000000 00000000
068FOO 00000000 00000000 00000000 00000000
068F20 00000000 00000000 00000000 00000000

LINE 068F40 SAME AS ABOVE
068F60 00000000 00000000 00000000 00000000
068F80 00068FF8 0003E368 5C030CF8 00030968
068FAO 0003BOOO 00030CF8 00000000 40070482
068FCO 00000000 0000C706 E2C5E340 40404040
068FEO 40404040 40404040 40404040 40404040

0681AO
0681CO
0681EO
068200
068220
068240
068260
068280
0682AO
0682CO
0682EO
068300
068320
068340
068360
068380
0683AO
0683CO
0683EO
068400
068420
068440

06500000 00700000 40FOF6F8 C5C1F040
F8F2F840 FOC2FOFO FOFOFOF1 40FOFOFO
F840F4F1 FOF6F8C5 F1F840FO F1FOF7C3
F840F4F1 FOF6F8c5 F1F840FO F1FOF7c3
5C007000 0040FOF6 F8F2FOFO 404040C6
40C6F1CG F8F4FOCG F040C6F1 C6FOC6F7
FOC6FOC6 FOC6F740 C3F3C3F3 C6F9C6FO
F1FOF6F8 C5F1F840 FOF1FOF7 C3C3F9FO
000040FO F6F8F2F2 F0404040 F5C3FOFO
C6F2C6FO C6F040F4 FOF4FOF4 FOC3F640
C6F1F4FO 40C3F6C6 FOC3F6C6 F640C3F6
FOF6F8F2 FOF04040 40C6F8F4 FOC6F4C6
FOF6F8F2 F4F04040 40F4FOC3 F6C6F1C3
F6C6F140 C3F6C6FO C3F6C6F7 40404040
F340C3F6 C6F9C3F6 CGF040C6 F4C6FOF4
40C6F1C6 FOC6F7C3 F3404040 40C3F3C6
F2F6F040 4040C6FO C3F6C6FO C3F640C6
40C3F6C6 F9C3F6C6 F0404040 40F4FOC6
F2F4FOF4 FOF4F040 F5C3C6F8 F4FOC6F4
CGF9C6FO 40F4FOF4 FOF4FOF4 C2404040
404040C6 F1C6FOC6 F6C6F840 C3F5C6F1
C6F5C3F6 C6F14040 4040C3F6 C6F8C6F4

41FPOOOO 12PP4780 F03E07FF 41100337

00000000 00000000

7FOOOOOO 01200000
00000000 00000000 00009400 00000000
00069800 0005881C 00030340 900589A8
00000001 00000000 00000000 00000000
00000000 00000000 00000000 00000000

E205C107 07:50940 00000000 00000000
00000000 00000000 41068E18 7F060650
40068E48 00068E70 00000000 00000000
08068E48 00000660 10068E68 A0000008
00000100 14oFOOOO 001A0005 o20219C8
04000001 54)00000 00400020 00038324
30040048 41068E18 0107:C90 0007CC90
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 8003E688 00000000
00000000 00000000 00000000 00000000

00000000 000104CA 0105A050 F0000008
00030770 00)3088C 0003E108 00030COO
00000000 00000000 00000000 00000000
40404040 40404040 40404040 40404040
40404040 40404040 80068FFE 00000000

4040F9F2 FOF7C3F2 FOF840FO FOFOF7C3
FOFOF6F6 FO~04040 40F3FOPO F4FOFOF4
C3F9F040 FOFOFOF7 C3C3F9PO 4040405c
C3F9F040 POFOFOF7 C3C3F9FO 40404048
F8F4FOC6 F4:6F140 C6FO:6F6 :6F8C3F5
:3F34040 4040C3F3 C6F9C6FO F4F040C6
40F4FOP4 POF4FOF4 C2404040 5CF840F4
40FOFOFO F7:3C3F9 F0404040 485C0070
F7C4FOFD 40FOFOF4 FOC6FOC6 F640C6F8
404040C6 F8C6F4C6 FOC3F640 C6F4C3F6
C6F8C3F3 C6F54040 405C4848 48484840
F140C6FO C6F6C6F8 C3F55COO 70000040
F640C6F8 C6F4c6FO c3F640C6 FOF4FOC3
C3F3C6F3 F4FOF4FO 40F4FOF4 FOC3F3C6
FOc3F640 40405C40 C6F1C6F8 F4FOC6FO
F9C6FOF4 F040C65C 00700000 40FOF6F8
FOc3F6:6 F7F4F040 C3F3C6F3 C3F3C6F3
F4c6FOC5 F4~OC6FO C6F4C6FO C6F440C3
4040405C FOC6FOC6 FOC6F740 C3F3C3F3
48F840F4 5C007000 0040FOF6 F8F2F8FO
C6F8F4FO 40:6FOC6 F1C6FOC6 F740C3F3
C6F040F4 FOC3F6C6 FOC3F640 c6F1C3F6

PAGE 0114
*.! ... , ...• Q.~O ••.•• , ••• ,~ P. '.'!I. ,~~
* 04 •••• *

333333 .. '."'.'.!'.'!

* '4I!'."'.!I •. !.,.~
* ~ *
* •. ".ij.'!!"!~.~.,.,":,.,.~ .• ,.~
* *
*., .. , !I.,"'.~" .. ' .. ' ... !'- •••••••• *
*. • . • SN AP PE R ••.•••••• *
*. ! '! !! '41!' ! , '!. !! ~. ,. ,. , .. , ill! ,. ,. , ! ,. '!=
*. *
*.,.,., .. " ... e,_,_, ••• ,. ,.,.",.~
.~• ! , .•. , ... ".".",H
*. *
*.,B., ,H .•• ,." '.'.'.'41!!".'.''!'.~ * iI ••••••••••••••••••••• *
*.,.II!,!I •• " •.•.•.•......•........ *
* .•.•• , .•. I!I.'!!'.~.,.,., ... W.!.,.~
* *
* ,. , . .. ~.~ . .. ,.. ~.~
* ... 8 •• T •••• 8 •• R ••• P ••• Q •••• Q •••• *
*. , . ~ , ~. e. , .. .~...!!' ... ~ *
* •••••• GDSET *
* *
* , ••• ,06BEAO 9207C208 0007C*
828 OB000001 00000660 3004004
8 41068E18 0107CC90 0007CC90 .
8 4106BE18 0107CC90 0007CC90 .
* ••••• 068200 F840F4F1 FOF6F8C5*
* F1F840FO FHO F7C3 C3F9F040 F*
OFOFOF7 C3C3F9FO 4040404B .B 4
*106BE18 0107CC90 0007CC90 •••• *
* •• 068220 5c007000 0040FOF6 FB*
F2FOFO 404040c6 F8F4FOC6 F4C6
*F140 C6FOC6F6 C6FBC3F5 *
*068200 F840F4F1 FOF6F8C5 ••••• *
068240 40C6F1C6 F8F4FOC6 F040C
6F1 c6FOC6F7 C3F34040 4040C3F
3 C6F9C6FO F4F040C6 • F1F840FO
* F1FOF7C3 C3F9F040 F ••••• ,06B*
260 FOC6FOc6 FOC6F740 C3F3C3F3
* C6F9C6FO 40F4FOF4 FOF4FOF4 C*
2404040 5CFB40F4 .OFOFOF7 C3C3
F9FO 40404048 .8 4 ••••• 068280
* F1FOF6F8 C5F1F840 FOF1FOF7 C3*
F5C6F1 C6F8F4FO 40C6FOC6 F1C6

CIl
::t>
:.::
'0
t-<
t>:I

t"J
c::
~
'0

'0
OJ
I"'!
rt

tv
~

o
Hl

I\.)

~

SECTION 13: CHARTS

The flowcharts are arranged, in general, in the order in which the routines are
described in this futlication. Each flowchart contains entry foint names, connon routine
names, and labels that afpear in the listings.

A subroutine block can contain as many as three names: the label from the listing
used when the subroutine was invoked, the subroutine's comnon nane used in both the list
ing and the manual, and the sutroutine's entry faint nane. 1he latel from the listing
appears at the top left of the block; the common name and the flowchart identificaticn
appear inside the block; the entry faint name affears at the top right of the block. An
(8) after the entry faint name means that the subroutine (or routine) is invoked via
supervisor linkage (the SVC interruftion handlers). The sUfervisor linkage path is not
shown on each flowchart. It is shown, however, in the overall control flow, Chart 00.

LISTING LABEL ENTRY POINT NAME
r--------------------------------~-------------------,
'ANY ROUTINE CIA2 (Flowchart ID)'
~--~ , , , ,
, , , , L __ J

Section 13: Charts 401

"" o
N

I

Type
1

• I ABTERM
Routine I

1

SVC
Interruption

SVC FlIH

• SVC SLIH

I

Program Check
I nterrupti on

Program Check FlI H

~ ~
Prologue
Routine

/ User - Written /1

I--- Needed SVC Routine
r D; ,,,,,,hoc if &ro, .• Hmo"",

Routine is not
in Main Storage

SVC Routines

Type I Type I Type
2 3 4

(XCTL)
To Dispatcher if SVC
Routine requests a I ABTERM

Task Switch Routine

I I

II

I

I Type. 1 Exit I' Exit Routine J Routine I The Exit Routine is a Type 1 • I Transient SVC Routine that Does not Pass II nterrupted I Area Refresh Control to the Type 1 Exit
Routine Routine Routine. It is Shown Separately

~
for" lustrative Purposes.

l Dispatcher

t
Routine Represented by

.~ t

External
Interruption

External FlI H

• t

I/O
Interruption

I I I/O FLIH

• t
Console

I I Ti mer FLI H I I yO. I Switch upervisor

Routine

I ABTERM I Routine

I 1
I SERO

Routine

wL
State

Machine Check
InterruBtion

1
II SER 1 Routine

wL
State

I ABTERM
Routine

I Highest - Priority "Ready" TCB I
Type 1 SVC Routines Type 2 SVC Routines Type 3 SVC Routines

CHAP Attach STAE Service
EXIT Delete WTO, WTOR,
EXTRACT DEQ WTL
FREEMAIN Detach
GETMAIN ENQ
POST Exit Effector, Stage 1 Type 4 SVC Routines
TIME Identify
TT1MER Link, Load, XCn. and ABDUMP
WAIT Synch ABEND

Overlay Supervisor Checkpoint
Spie Comm. Task Router
STIMER Log and Writelog Post

Restart
- ---------- - -- --- ---------- -- -- --- ---- - - - _ .. -

Retrieval of Library Routines

Link, Load,

lOveriay J XCTL, and Synch

Supervisor Routine

Segm
Over
Progr,

,nt of
ay
,m

jed ~Need

SVC
Library

,
,

Other
Routine
Needed

Program Fetch Routine

.. t
I/O Supervisor C

rlay Supervisor and the Link,
:TL and Synch Routine are

yp e 2 SVC Routines

~ --Link
Library,
Job
Library
or
Private
Library

.J

I

I

J

tf
QJ
Ii
rt

o
o

o
<:
m
~
I-'
I-'

(')
o
::J
rt
Ii
o
I-'

":1
I-'
o
€

o
HI

~
CIl
c::

't:!
m
Ii
c ...,.
en
o
Ii

Chart AA. SVC First-Level Interruption Handler

TYPE 1 SVC ROUTINES
CHAP BB

KB
BD
DA
DA
BH
EA
EC
BG

IEAQNUOO

0~~-:::=) I ENTERED FOLLOWING
svc INTERRUPTION

NOTE - THIS EXIT APPLIES
ONLY TO MODEL 65
MULTIPROCESSING
SYSTEMS

NOTE: REGISTER 14 SET TO
CAUSE ABTERM TO EXIT
TO THE DISPATCHER

>N;,:O ___ C:~

EP-IEAOABOO
CHART LF

YES

Section 13: Charts 403

Chart AB. svc Seccnd-Level Interruption Handler

IIi'AQTR33

0~~-:Lffi")

404

FROM svc FLIH
CHART AA

IGC004 (8)

TATABCK

EP=IGC003
CHART KB

TYPE 2 SVC ROUTINES

ATTACH
DELETE

g~~AciI
Ii'N

BA
CC
BJ
BIi'
BI

TYPE 3 SVC ROUTINES

STAE SERVICE • BP
WTO,WTOR ••• FB,FC
WTL ••••• GB

TYPE 4 SVC ROUTINES

ABDUMP ••.. LI
ABEND • • • • LL-LY
CHECKPOINT • • JA-JI
COMM TASK ROU-
TER •••••• FG
LOG AND WRITE-
LOG POST ••• -
RESTART. • • • J J -JW

EP-IEAODS
CHART KF

RB OLD PSW IS
SET FOR ENTRY TO
TAB FROM THE DISPATCHER

THE TRANSIENT AREA
FETCH ROUTINE

~5b~I2~U~~ ~~E~~8~~:TED

Chart AC.

SVCEXIT

Extended SVC Router

YES
INVALID 02~R 14 IS SET TO CAUSE ABTERM

AB~ TO EXIT TO
DISPATCHER

EP=IEAOABOO
CHART LF

....,......,...--:-. ~aGfI~~ ~y~VICE
A BRANCH

FLIH

Section 13: Charts 405

Chart AD. Transient Area Availatility Check Routine

·1 E3

0vc~
CHART AB/Jl

406

Chart AE. Transient Area Fetch Routine

ENTRY FOR TRANSIENT
ROUTINES OTHER THAN
FIRST LOAD

j-'
C~~m:=)

EP=IEAOABOl
CHART LF

IEAQTR33

ENTRY FOR FIRST LOAD
OF TRANSIENT ROUTINES

FROM DISPATCHER
CHART KF
VIA LPSW

NO

EP=IEAODS
CHART KF

Secticn 13: Charts 407

Chart AF.

408

Program Check First-Level Interruption Handler (Page 1 of 2)

jENTERED FOLLOWING
PROGRAM CHECK
INTERRUPTION

NOTE - THIS EXIT APPLIES
ONLY IN MODEL 65 MULTI
PROCESSING SYSTEMs

G
FJ

>--,--.---·CAB~
EP=IEAOABOO

TO USER-WRITTEN
ERROR-HANDLING
ROUTINE

85---.......

NOTE - THIS EXIT APPLIES
ONLY IN MODEL 65 MULTI
PROCESSING SYSTEMS

Chart AF. Program Check First-Level InterruFtion Handler -- ~ultiprocessing (Page 2 cf 2)

EP-IEAODS
CHART KJ

section 13: Charts 409

Chart AG. Program Check First-Level Interruftion Handler -- ~cdels 91 and 195

410

SEE NOTE C1

EP==DECENT
CHART HG

NOTE C1: BLOCKS Ol-Hl AND E2-J2 ARE USED
ONLY ft.,'HEN THE DECIMAL SIMULATOR
IS INCLUDED IN THE SYSTEM.
OTHERvHSE, BLOCK C1 CONNECTS TO
BLOCK A3.

YES

H

~EH4
IEAAPKSX I

>-Y_E_S __ "'CH:~

8~1 ""
J4---.......

EP=IEAOPLOO
CHART LH

EP=IGC014
CHART SF

NOTE H4: ARE ALL IMPRECISE INTERRUPTS,
THAT HAVE BEEN RECEIVED,
EXPECTED?

Chart AH. External First-Level Interrupticn Handler -- Uniprocessing

IEAQNUOO

C0:~::-Fill)

jENTERED FOLLOWING
EXTERNAL INTERRUPTION

IEAQEXOO B2,-,-__ --.

GTF

G~:c:ER)
EP-IEAOOS
CHART KF

section 13: Charts 411

chart AI.

412

External First-Level Interrupticn Handler -- Nultifrocessing

BIT IN
t"FLRETREG I S ON

E:TED 7-XT NO INTRPT

l·YES

YES

'-----_

TO INTERRUPTED
PROGRAM

I-::-'-"-,C;-':'::'==,..,,-i (OPTIONAL)

NOTE G4:
IF TO VARY CPU

gb~~~gr §6~s NOT
RETURN TO EX FLIH

~N_O ____ -.~~:~
EP-IEAODS
CHART KJ

Chart AJ. Input/Output First-level Interrupticn Handler

DISMISS

G~~
FROM ABTERM
ROUTINE

IEAQNUOO

C~~~
ENTERED FOLLOWING
I/O INTERRUPTION

NOTE: THIS EXIT APPLIES
'--------'ONLY TO HODEL 65 MULTI

PROCESSING SYSTEMS

SMF

YES

Section 13: Charts 413

Chart AK. SERO Routine

IEAI-tCHOO

CA~:=J

CHART AK/A2

414

IFBSEROO

CA~~

MACH

ENTERED WHEN
PS\>l IS LOADED
BY I EAl'lCHOQ

(0
i'~ 40,50 ~ODtL NO.

"'T" G

ADDITIONAL MACH CHK
SEeMer AND PROG CHK HANDLER

CH:~
ENTERED FOLLOWING
UNEXPECTED MACH CHK
OR PROG CHK INTRPTN
DURING EXECUTION OF
IFBSERDO

AN ATTEMPT TO CONTINUE WITH
THE NEXT LOGICAL I/O OPERATION
IS MADE HERE

1. READ REMAINDER OF IFBSEROO (BLOCK H2)
2. READ HEADER RECORD (BLOCK A4)
3. WRITE ENVIRONMENT RECORD, (BLOCK C4)
4, ALL I/O COMPLETE (BLOCK F4)

Chart AL. SER1 Routine -- Models 40, 50, 65, and 75

ENTERED FOLLOWING
MACHINE CHECK OR
CHANNEL CHECK
INTERRUPTION

EP=IEAODS
CHART KF

section 13: Charts 415

chart AM. SERl Routine -- Systerr/360 Models 91, 95, and 195 and System/370 Model 195
(Page 1 of 2)

,.-Al-...,.
~ER 1 FOR MODEL,
91, 95, AND 195

EXTERNAL MACHINE CHECK
CHANNEL CHECK jENTERED FOLLOWH~G
f'.lACHINE CHECK

81-'-----,

NO

416

--r
~~~~~ ~--~--~ 

H 

~XTENDED 
<IJIACHINE CHECK 

~YES t::\ 
l-+L!YJ 

EP==IEAODS 
CHART KF 



Chart AM. SERl RoutinE -- SystEm/360 Models 91, 95, and 195 and Systerr/370 Model 195 
(Page 2 of 2) 

CA:::-J 

1-1C12 

jENTERED FOLLOWING; 
SECOND lolACHINE CHECK 
SECOND EXTERNAL CHECK 
CHANNEL CHECK 

81-'----, 

G-j 
c::~~ 

LOAD Me OLD psw 

LIOT,'\. 
LY 

section 13: Charts 417 



chart EA. Attach Routine (page 1 cf 4) 

IEAQATOO 

C~:m:=) 

418 

FROM SVC SLIH 
CHART AS 



Chart EA. Attach RoutinE (PagE 2 of 4) 

J 
CAB~ 

EP=IGCOOO 1 C 
CHART LL 

NOTE1 : 

Lt:) 
ECB KEY=CALLER' S 
KEY OR CALLER'S 
KEY=O 

Secticn 13: Charts 419 



Chart EA. 

420 

Attach RoutinE (PagE 3 of 4) 

J~ES 
IS USE 

COUNT = 0 

4~ 
L/' 



Chart EA. Attach Routine (Page 4 of 4) 

"" j 
G:ATCHER) 

EP=IEAODS 
CHART KF 

EP-IEAODS 
CHART KF 

Section 13: Charts 421 



Chart EB. Char: Routine 

IEAQCHOO 

CA~::=J 

422 

FROM SVC FLIH 
CHART AA 

EP- IEAOABO 1 
CHART LF 



Chart BC. Cha~ Routine with Time-Slicing (Page 1 of 3) 

IEAQCHOO 

CA~~ 
FROM SVC FLIH 
CHART AA 

EP=IEAOABO 1 
CHART LF 

TIS = T~ME SLICING 

Section 13: Charts 423 



Chart BC. Chap Routine -- with ~ime-Slicing (Page 2 cf 3) 

424 



Chart BC. Chap Routine -- with Tirre Sharing C~tion (Page 3 of 3) 

r..K1
' 

_"-..... UT_y_PE_ .... E_X_IT ..... ) 

L,;::;"""::::::"""';'::':::....I EP-IEAOXEOO 
CHART KA 

section 13: Charts 425 



Chart BD. Extract Routine 

IEAQTBOO 

C:~~ 
jBRANCH ENTRY 

IGC040+8B1 ....:.. __ -, 

426 

IEAQTBOO 

C:~~ 

IGC040 

jFROM SVC FLIH 
CHART AA 

B2 ....... ---, 

EP-IEAOXEOO 
CHART KA 

>N-,O ___ C~~~ 

EP=IEAOAB01 
CHART LF 



Chart BE. Detach Routine 

EP=IGC003 
CHART KB 

SLIH 

0b 
EP=IGC0001C 
CHART LL 

section 13: Charts 427 



Chart BF. SPIE Routine 

NOTE-THIS ADDRESS WILL 
BE ZERO FOR THE 
FIRST EXECUTION OF 
SPIE. 

428 

IEAQTBOO 

CA~~ 

EP=IGC003 
CHART KB 

SLIH 



Chart EG. Wait Routine (Page 1 of 2) 

FLIH 

~------.~:~~ 
EP-IEAOABQl 
CHART LF 

EP-IEAOABO 1 
CHART LF 

~ 
roD 
~ 

~---,,-... ~~:~ 

EP-IEAOXEOO 
CHART KA 

EP-IEAOABOl 
CHART LF 

Section 13: Charts 429 



Chart BG. Wait Routine -- with Job Step Tining (Page 2 of 2) 

r ---:::-:=-::. 
t.::\J4 EP=IEAOXEOO Q CHART KA 

430 



Chart BH. Post Routine 

IEAQSY50 

CA~o:=J CA;o:=J----+< 
FROM SVC FLIH BRANCH ENTRY FROM lOS 

CHART AA AND SUPERVISOR ROUTINES 

Section 13: Charts 431 



Chart BI. ENQ Routine (Page 1 of 2) 

5L1H 

C-B2~ ~~~~~~~ERROR 
--.-- ABENDO 

L-__ ~--.....J EP=IGC0001C 
CHART LL 

SHARED DASD 

E~~ :ENQ/ 
rESERVE 

NOT 

VALID 

NOT 
FOUNDr-~~~~~~ 

~~~I 

432

~~~ ~ L-________________ ~ __ ~ 

B~YES 
RE~=NO/:] 

NO (0 

Q 
\. 1":' ) ---, SHARED DASD 



Chart EI. ENQ Routine (Page 2 of 2) 

NO ERR(---p.3~ 
'- ABENDO } 

EP,-IGCOQO lC 
CHART LL 

CB:~ __ =-< 

EP=IGC003 
CHART KB 

EP=IEAODS 
CHART KF 

Section 13: Charts 433 



Chart EJ. DEQ Routine -- with Time Sharing Option (Page 1 of 2) 

SLIH 

G 
B~ 

ERROR r:::::::---"\ 
------+~AB~ 

L-__ ...,. __ -J I EP=IGCQ001C 
CHART LL 

NO 

434 



Chart BJ. DEQ Routine -- with Shared DASD (page 2 of 2) 

section 13: Charts 435 



Chart BK. 

436 

Stage 1 Exit Effector 

EP=IGCOOJ 
CHART KB 



Chart BL. stage 2 Exit Effector 

SYSTEM 

section 13: Charts 437 



Chart BM. Stage 3 Exit Effector (Page 1 of 2) 

438 

LD PSW IS 
o ENTER 

FETCH 
NeE AT 
CH (02/A3) 

EP-IEAODS 
CHART KF 



Chart BM. Stage 3 Exit Effector (Page 2 of 2) 

JECXTLER 

CA~m:=J 

j!,gME~~OR ROUTINE 

B2"":"---. 

EP-IEAODS 
CHART KF 

ERFETCH 

CA~m:=J 
FROM DISPATCHER 
CHART KF 

EP-IEAOABOl 
CHART LF 

NOTE--

EP-IEAOOS 
CHART KF 

1 E~RMOO FOUND V 

E4:"":'--....., 

EP-IGC003 
CHART KB 

REENTRY AT ERFETCH 
WILL OCCUR WHEN 
OPERATOR PRESSES 
RESET AND START KEYS 

Section 13: Charts 439 



Chart EN. 

440 

Task Switching Routine -- Uniprocessing 

NOTE- THE SUBJECT TASK IS 
REPRESENTED BY THE 
TeB WHOSE ADDRESS IS 
PASSED TO THIS ROUTINE. 

/ 



Chart EO. Task switching Routine -- Multiprocessing 

SUBJ 
IS 

ROUTINE 

'NEW' ON 
1.:::;;;;;;~:-:;''':'';'~':-I_'rH_'_S_C_P_U ___ ---, 

IS LOW 

Secticn 13: Charts 441 



Chart EP. STAE Ser~ice Routine 

442 

STAE seB QUEUING: 

THE NEW seB IS 
BEFORE FIRST ST 
IF A STAI seB 
THE FI AE 
THE NEW S P 
BEFORE RST 
seB BUT THE 
LAST STAI SC . 



Chart BQ. ABEND/STAE Interface 0 Routine (ASIRO) (Page 1 of 2) 

IEAQ'fMOR 

CA~~ 

Secticn 13: Charts 443 



Chart EQ. ABEND/STAE Interface 0 Routine (ASIRO) (Page 2 of 2) 

/' 

444 



Chart ER. AEEND/STAE Interface 1 Routine (ASIR1) (Page 1 of 2) 

~ L/-+ 
NOPGM 

Section 13: Charts 445 



Chart BR. ABEND/STAE Interface 1 Routine (ASIRl) (page 2 of 2) 

446 



Chart BS. ABEND/STAE Interface 2 Routine (ASIR2) 

IEAQTMOT 

CA~SIRQ 

EP-IGCOOQlc 
CHART LL 

EP=IGCOU01C 
CHART BT 

EP=IGCOR01C 
CHART BQ 

EP-IGCOW01C 
CHART BV 

EP=IGC003 

Section 13: Charts 447 



chart BT. 

448 

ABEND/STAE Interface 3 Routine (ASIR3) (Page 1 of 3) 

>Yo.:Eo.:S __ +CB:~ 

EP=IGCOW01C 
CHART BV 

EP=IGCOV01C 
CHART BU 

IOD 
~ 



Chart BT. ABEND/STAE InterfaCE 3 Routine (ASIR3) (Page 2 of 3) 

Section 13: Charts 449 



Chart ET. ABEND/STAE Interface 3 Routine (ASIR3) (Page 3 of 3) 

450 



Chart EU. 

! 
roD 
~ 

ABEND/STAE Interface 4 Routine (ASIR4) (Page 1 of 4) 

Secticn 13: Charts 451 



Chart EU. ABEND/STAE Interface 4 Routine (ASIR4) (Page 2 of 4) 

CLo~-'!_~l ______ , E2 

452 



Chart EU. ABEND/STAE Interface 4 Routine (ASIR4) (Page 3 of 4) 

Section 13: Charts 453 



Chart EU. ABEND/STAE Interface 4 Routine (ASIR4) (Page 4 of 4) 

~
4 
A3 

IOBPROC 

CA!::=) 

J 

454 



Chart EV. AEEND/STAE Interface 5 Routine (ASIR5) 

J CAS--J 
EP=IGC0001C 
CHART LL 

Section 13: Charts 455 



Chart EW. Set Status Service Routine (Page 1 of 2) 

IEAQSETS 

. G;'STAruS) 

-c::ru:=) 
1...-___ ....1 

----) c3 
---->02A 1 
----)02A3 
---->02E2 
---->02A5 
----)02Jl 
----)0204 
---->0205 

456 



Chart BW. Set Status Service Routine (Page 2 cf 2) 

Section 13: Charts 457 



chart CA. Link, Load, XC'IL, and SYNCH Processing (Page 1 af 3) 

FROM DISPATCHER 
CHART KF 

TEST BLOL 

I/O ERROR 

EP-IGC003 
CHART K8 

RETURN STATUS 

I SET UP ERROR 
CODE (806) 
AND INVOKE 
ABEND 

IF LINKLIB 
JUST SEARCH-

~~RO~E~og~ 
(806) AND IN
VOKE ABEND 
ROUTINE 

MO~g&~D NOT "r-"p-"L"r"N':K':-L-=-r""B--1 
NOT JUST 
SEARCHED, RE
MOVE CDE FROM 

~~A§~AR~~T UP 

~~~~~A B TO AND 
CDCONTRL
(BLOCK 82)

MODULE I SET UP ERROR
EXECUTABLE CODE (706)

AND INVOKE
ABEND ROUTINE

MODULE IS
'LOADABLE
ONLY'

NO ERROR
IS
DETECTED

458

IF LOAD MACRO
INSTRUCTION
HAS NOT BEEN

b~S~~~6R S~6DE
(406) AND IN

VOKE ABEND
ROUTINE

I CONTROL PASS
ES TO BLOCK
H2

Chart CA.

rceD 12

Link, Lcad, XCTL, and SYNCH Processing (Page 2 of 3)

YES

EP-IGC003
CHART KB

secticn 13: Charts 459

Chart CA. Link, Lead, XCTL, and SYNCH Processing (Page 3 of 3)

IGCOQ7

460

CA~--J-__ -+<
WHEN XCTL MACRO
IS ISSUED

EP"IGC003
CHART KB-- (EXIT
ROUTINE WILL REMOVE
AND RELEASE PRB)

EP=IEAODS
CHART KF-- (REENTRY
WILL OCCUR LATER AT
TAXRETRY, BLOCK F2)

IGC008

CA:--J
j FROM SVC SLIH (CHART AS)

WHEN LOAD MACRO INSTRUCTION
IS ISSUED

B4-'---.......

LOADED

_CE:~
L.. _____ -.I EP-IGC003

NO

CHART KB

EP-IEAODS
CHART KF

Chart CEo Identify Routine (Page 1 of 2)

IEAQIDOO

C~~NTI:J
FROM SVC SLI H
CHART A8

EP=IGC003
CHART KB

section 13: Charts 461

chart CE.

462

Identify Routine (Page 2 of 2)

~ET E~p RETURN >----. CODE' 4 '

J
-CErn=)

EP=IGC003
CHART KB

Chart CC. Delete Routine

IEAQLKOO

C~~~

OTHER
FOR MODULE,

PURGE
OR FLAG

FOR OPTIONAL
RELEASE
AIN RTN.

SLIH

-c:x;=)
L.. _____ ..-I EP=IGC003

EP=IGC003
CHART KB

CHART KB

section 13: Charts 463

Chart CD.

464

Program Fetch Routine (Page 1 of 3)

NOTE 1: BRANCH A~PLIES
TO MAIN STORAGE
HIERARCHY SUPPORT

Chart CD. Program Fetch Routine -- pcr and Channel End Appendages (Page 2 of 3)

RELOCATION SUBROUTINE

FTCEOl

CHANNEL END
APPENDAGE

CF~~
FROM I/O
SUPERVISOR
(IECINT)

PCI APPENDAGE

FTPCIOl

CA~~

j FROB I/O SUPERVISOR

~~~~I~~i OCCURS 

RETURN TO I/O 
SUPERVISOR 

Section 13: Charts 465 



Chart CD. Program Fetch Routine -- with Main Storage Hierarchies (Page 3 of 3) 

466 



Chart CEo Overlay Su~ervision 

NOTE -- lJIEANS REPEATED 
BRANCHES TO SUBROUTINE 
DURING LOOP PROCESSING 

>-Y_E_S_-·C::--J 

IGC037 

CB:::-J-

FROM SVC SLIH 
-CHART A8- WHEN 
BRANCH INSTRUCTION 
OR CALL MACRO 
INSTRUCTION IS ISSUED 

~~~~R~V~B~L~~EN '---'-"'7.=:::::""7:". 
SEGLD OR SEGWT
MACRO INSTRUCTION
IS ISSUED

IGC037

IEWSZOVR

L
I
N
K

RESIDENT OVERLAY SUPERVISOR MODULE

NON-RESIDENT OVERLAY SUPERVISOR MODULE

EP-IGC003
CHART KB

RETURN -LINE

EP-IGC0001C
CHART LL

(QVLALD02}
SEGLD PROCESSOR RTN

Section 13: Charts 467

Chart DA. GETMAIN/FREEMAIN Routine (Page 1 of 3)

IGC004

C~~~
IGCC-A2:::j

REGMAIN

]t~~~TSX~

QMBRANCH B 1.....!..---,

FLIH

]t~~~TSXt..
RMBRANCHB2.....!.. __ -,

GETMAIN

'-----:=~---'I'-----:~

468

8-]
G~~3

EP-IEAOXEOO
CHART KA

IGCOOS

0::~

Chart DA. GETMAIN/FREEMAIN -- SMF Storage Routine (Page 2 of 3)

>N-,O __ -+C:~TURN"")

I APPLICABLE ONLY IN
SYSTEMS WITH Les

SYSTEMS

v

Section 13: Charts 469

Chart DA. GETMAIN/FREEMAIN -- SMF Storage Routine (page 3 of 3)

FSMFSTRT

FROM FREEMAIN
CHART OAll

<:, >-Y_E-,-S __ ·C:~W:=)

470

APPLICABLE ONLY IN SYSTENS
WITH LCS

ONLY IN SYSTEMS W!TH ROLLOUT

Chart DB. GETPART/FREEPART Routine (Page 1 of 2)

Section 13: Charts 471

Chart CE.

472

GETPART/FREEPART Routine (Page 2 of 2)

GERRQR2

>N::O'-....,...-+C:~~
EP=IEAOABO 1
CHART LF

CODE=OO
REQUEST SATISFIED

Chart DC. Rollout-Rollin Criterion Routine (Page 1 of 2)

Section 13: Charts 473

Chart DC. Rollout-Rollin criterion Routine (page 2 of 2)

~g6~FJ~EIS PASSED
IN COMPLEMENT
FORM AS INPUT
P.l\RAMETER

474

EF=IGC003
CHART KB

EXIT FROM ROLLOUT /
ROLLIN RESULTS IN
THE ROLLOUT TASK
BEING PLACED IN
THE WAIT STATE

Chart DD. Rcllout/Rcllin I/C Routine

j ENTERED FROM
ROLLOUT OR ROLLIN
CRITERIA ROUTINES

~6;S~E~~EI~ F~~gI§~~R

B31...:..---,

EP=EORIWTR
CHART DCj1/H3

EP=RETRY
CHART DC/l/F3

Secticn 13: Charts 475

Chart DE. SVC Purge Interface

PRGIO

0~~-:uRGR)

~~~j 
B2-'----, 

NO 

476 



Chart DF. SVC Restore Interface 

EP=IEAODS 
CHART KF 

EP-IEAODS 
CHART KF 

Section 13: Charts 477 



Chart DG. 

478 

Rollout/Rollin GETSTEP Routine 

C~!TSTEF") 
FROM ROLLOUT CRITERION 

CHART DC 

YES 



Chart CH. Rollout/Rollin TESTSTEP Routine 

YES 

NO 

RRAT,l,_---. r D3-I GET A PQE 

Section 13: Charts 479 



Chart Dr. Rollout/Rollin Reply Restore Routine 

480 

NOTE- INDICATE THAT 
REPLY MAY BE MOVED 
TO USER'S BUFFER 



Chart EA. TIME Routine 

IEAQRTOO 

CA~~ 

EP-IEAOXEOO 
CHART KA 

FLIH 

Secticn 13: Charts 481 



Chart EB. STIMER Routine 

IEAQSTOO 

C:~:;;-) 
j FROM SVC 

CHART AB 
SLIH 

482 

EP-IGC003 
CHART KB 



Chart EC. TTIMER Routine 

IEAQSTOO 

C~~~ 
FROM SVC FLIH 
CHART AA 

EP=IEAOXEOO 
CHART KA 

EP=IEAOXEOO 
CHART KA 

Section 13: Charts 483 



Chart ED. Tirrer Second-Level Interruption Handler (Page 1 of 2) 

IEAQTIOO 

G:~R:LiH) 

484 

FROM EXTERNAL FLIH 
(CHART AHF3) 



Chart ED. Timer Second-Level Interruption Handler -- Dequeue and Enqueue Subroutines 
(Page 2 of 2) 

FROM DISPATCHER 
CHART KF 

ENTRY) 

IEAQTDOO 

e~~ 

I 

~~ 
L.J 

Section 13: Charts 485 



Chart EE. 

486 

TIME Routine with System/370 Time-of-Bay Clock 

EP=IEAOXEOO 
CHART KA 

YES lSTOR~3 TOO VALUE >---+ SET RE!U~N CODE 

j 
EP=IEAOXEOO 
CHART KA 

E,:3 
EP=IEAOxEOO 
CHART KA 



Chart EF. STIMER Routine with System/370 Time-of-Cay Clock 

SLIH 

--~) 
EP=IGC003 
CHART KB 

Section 13: Charts 487 



Chart EG. 

488 

TTIMER Routine with system/370 Time-at-Cay Clock 

FLIH 

EP=IEAOXEOO 
CHART KA 

_EK~~ 
'-_____ ---1 EP'IEAOXEOO 

CHART KA 



Chart EH. 

f;;0 
IEA~;~j~ 
TSLIHLP 

IS TIMER 
VALUE 

POSITIVE 

NO 

Timer Seeend-Ievel Interruption Handler with System/370 Time-ef-Day Cleek 

Section 13: Charts 489 



Chart FA. External Interruption and I/O Attention Handlers 

FLIH 

. "' j .. Y_E_S ______________ ~ 

EER~ 
CHART AH' 

490 



Chart FB. Write-To-Operator 

IEENVWTOj 
IEEMVWTO 

CA1~ 

IGC0003E 
B 

FROM SVC SLIH 
CHART AS 

EP=-IEECVl-1L 1 
(NON-MCS) 
IEECVt-1L3 
(l'lC5) 

CHART GD 

WTO 

E 

~o FOR l-JTP 

\<JTORTEST 

~:TO A WTOR NO 

NOTE c3: \oJTO ISSUED BY 
cor'l TASK OR TASK 
HIGHER ON TCB QUEUE 

TESTWQE B 

EP=IGC203E 

~~NO 

1"0 
C~~ 

EP=IGC0103E 
CHART Fe 

section 13: Charts 491 



Chart FC. Writ2-To-Operator with ReFly 

IEEV\t·lTOR 

CA~~ 

ENQ 

492 

FROM \'lTO 
CHART FE 

~~----+~~~ 
EP"'ICGDOQ1C 
CHART LL 

YES 

RQSCAN 0 

>-N-O-----..C~:~ 

EP=IGC0003E 
CHART FB 

EP-IGCOOO 1 C 
CHART LL 



Chart FD. Communications 'Iask Initialization Routine (Page 1 of 5) 

lEECVINT 
....-A '.77:==:::-" 
~Ot'<lMUNIC1\TIONS 

TASK 
INITIALIZATION 

YES 

~ 
fO?J 
~ 

section 13: Charts 493 



Chart FD. Communications Task Initialization Routine (Page 2 of 5) 

494 

ROUTING CODES 
MAYBE TOO LONG 

E3 1 
CUT NOCHOS 1 N 

MESSAGE --



Chart FD. Communications ~ask Initialization Routine (Page 3 of 5) 

section 13: Charts 495 



Chart FD. communications Task Initialization Routine (Page 4 of 5) 

496 



Chart FD. Communications Task Initialization Routine (Page 5 of 5) 

i-H2 

NO 
>-~---l> BUILD ElL 

Section 13: Charts 497 



Chart FE. Graphic Console Initialization Routine 

TASK INIT. 

LOOPA 

j~~~~TC~~ 
IEECVGCI 

B1-'----, 

498 

e 
EXIT 1 

-c2---...... 
,,>,N:.:O'-__ COMt-1UNICATIONS 
.JI TASK 

INITIALIZATION 

EP=IEECUCTI 
CHART FD 

eJ~~ 
NO :ONS~ +_-------< USED BY? 

YES 

YES 



Chart FF. Wait -- Comrrunications Task without Multiple Conscle SUFPort 

Secticn 13: Charts 499 



Chart FG. Router -- Communications Task without Multiple Console Suppcrt 

IEECVCTR 
,.-A1----.... 

tCOM TASK ROUTEjR 
\ (NON-MCS 1 _ 

500 

FROM COM TASK WAIT 
CHART FF 

EP=IGCXL078 
CHART PH 



Chart FH. Console Switch -- Communications Task without Multi~le Conscle Su~port 

NO 

CHART FF 

Secticn 13: Charts 501 



Chart FI. Router -- Communications Task with Multiple Console Su~port 

502 



Chart FJ. Console Switch Load 1 -- Communications Task with Multiple Console Su~~ort 
(Page 1 of 3) 

FROM ROUTER CHART FI 
DEVICE INTERFACE CHART FM 

EP: IEECVCTW 
CHART FI 

Section 13: Charts 503 



Chart FJ. 

504 

Console Switch Load 1 -- communications Task with Multiple Console Suppcrt 
(Page 2 of 3) 



Chart FJ. Console Switch load 1 -- Communications Task with Multiple Console Su~~ort 
(Page 3 of 3) 

r'---____ a
H1 

EP: IGCXM07B V CHART FK 

EP: IEED 1 078 
VIA XCTL 

Section 13: Charts 505 



chart FK. Console Switch Loads 2 and 3 -- Cororrunicaticns Task with Multiple Console 
SUffort (Page 1 of 2) 

506 

EP=IGCXr-.;07S 
CHART FK 

IEECNcrx 
...--A2 
~ONSOLE SvJITCH 

LOAD 3 !I'i'ITH MCS 

SvJITCH j FROM CONSOLE 
FJ LOAD 2 CHART 
FL 

82-'-----, 

SWITCH 
FK 

°8 
NEXTENTR l,-'-__ --. 

D3-

! 
roT:l 
~ 

! 
roD 
~ 



Chart FK. Console Switch Load 3 -- Communications Task with ~ultiple Console SUfpcrt 
(Page 2 of 2) 

a KS RETURN TO 
------. CALLER uF 

ONSOLE SWITCH 

secticn 13: Charts 507 



Chart FL. 

508 

Console Switch Load 4 -- Communications Task with Multiple Console SUffcrt 

>-Y_E_S __ ·C::~ 

EP=IGCXM07B 
CHART FK 

TO CALLER OF 
CONSOLE SWITCH 



Chart FM. 

o ----> 01 
4 ----)0'281 
8 ---->0381 
12 ---->0383 

Device Interface -- Corrrrunications ~ask with Multiple Console Support 
(Page 1 of 3) 

DEVSERVA 
DEVSERVB 
noeLNUP 
DEQ 

PROM ROUTER CHART FI 
WTO/R PROCESSOR CHART FN/l 

section 13: Charts 509 



Chart FM. 

510 

Device Interface -- connunications ~ask with ~ultiple Console Support 
(Page 2 of 3) 

CE~~ 

NOTE: IEECMDSV ISSUES AN svc 72 TO 

FROM DEVSERVA 1/E4 
DEVSERVB 2/E1 

THE MINI-ROUTER (IEECMCTR) TO ACCESS 
THE DEVICE PROCESSORS. 



Chart FM. Device Interface -- Communications Task with Multiple Console Support 
(Page 3 of 3) 

>=--... c::ru:=) 
TO CALLER 

Secticn 13: Charts 511 



Chart FN. WTO/R Processor -- Communications Task with Multiple Console Su~port 
(Page 1 of 3) 

512 

j FROM ROUTER 
CHART FI 

81"":"'--, 



Chart FN. WTO/R Processor -- Communications Task ~ith Multiple Console Support 
(Page 2. of 3) 

section 13: Charts 513 



Chart FN. 

514 

WTO/R Processor -- Corrrrunications Task with Multi~le console Support 
(Page 3 of 3) 

IEECMWSV 

0:~CNSL£") 

X80 

j FROM WTO!R PROCESSOR 
CHART FN/2/J2 

B2~--...., 

TO WTO/R PROCESSOR 

5~e~~EF~~~f~~ACE 
CHART FM/3/G5 



Chart Fa. Delete-Operatcr-Message (DaM) Processor -- Co~munications Task with Multiple 
Console Support 

I EEC!·1DuI>1 
.,--Al-.. 

(ELETE (lPERATUj 
r'lESSI\GE 

FR01·l ROUTE.i~ 
CHART FI 

>----.. c~(~~ 
EP-I'iREXT 
CHART 1"1 

YES i-.TL'E TO GO 
~-------'-''-'< TI) f1i\RD COpy 

YES 

c'~~ 
CHART fI 1 
EP-dREXT 

Section 13: Charts 515 



Chart FP. NIP Message Buffer Writer -- Corrmunications Task with Multiple Console SUffcrt 

516 



Chart FQ. 1052 Processor 1 -- Ccrrrr.unications Task without Multiple console Support 
(Page 1 of 2) 

j FROM ROUTER 
CHART FG 

IGC01(l7B 
Bl-'----, 

EP=IGCOr07B 
CHART F'i' 

~~----~~~~ 
EP=IGC00078 
CHART FG 

Section 13: Charts 517 



Chart FQ. 

518 

1052 Processor 1 -- COITITunications 'Iask without Multiple Console Support 
(Page 2 of 2) 

rET ~~INTER TO >----+0 LA3~E~8E TO 

I 

~ IEE0303D 

YES 

>--,---+oc:~~ 

-

EP=IGC0007B 
CHART FG 

-c~~~ 
L-_____ ---I EP=IGC0007B 

CHART FG 



Chart FR. 1052 Processor 1 -- Communications Task with Multiple Console Support 
(page 1 of 2) 

EP=IGCOI07B 
CHART FT 

EP=IGC02Q78 
CHART FS 

-
EP=IGCXL07B 
CHART FJ 

Section 13: Charts 519 



Chart FR. 

PMAF 

Plo1.EXCP 

520 

1052 Processor 1 -- Ccrrrrunications ~ask with ~ultiFle Console Support 
(Page 2 of 2) 

EP=IEECMDSV 
CHART FM 

YES 



Chart FS. 1052 Processor 2 -- Communications Task with Multiple Console Support 
(Page 1 of 2) 

jFROIVI 1052 PROCESSOR 1 
CHART FR 
FROM DEVICE INTERFACE 
CHART FM 

IGC0207B 
82-'---....., 

EP=IGCQ1Q7B 
CHART l'~R 

Section 13: Charts 521 



Chart FS. 

522 

1052 Processor 2 -- Corrrrunicaticns Task with ~ultiFle Console Support 
(Page 2 of 2) 

~G NO 

END OF MLWTO 

YES f'O'IJ 
L~roT:\. ~ 

L'l 



Chart FT. 1052 Open/Close 

Section 13: Charts 523 



Chart FU. 2540 Processor -- Communications Task without Multi~le Conscle Su~port 

IGC11078 

j FROM ROUTER 
CHART FG 

81 ....... ---, 

EP""IGCl r078 

524 

0) 

>-No,---+cb 
EP=IGC0007B 
CHART FG 



Chart FV. 2540 Prccessor -- Communications Task with Multiple Console Su~port 

IEECMPMC 

~A'===, 12540 PROCESSOR 
\ (MeS) 

INTERFACE 

NO 

NO IS AN OPEN 
PENDING 

section 13: Charts 525 



Chart FW. 

DSPO 1 7 r:' 

526 

2740 Processor -- Corrrrunications Task with ~ultiple Console Support 
(Page 1 of 2) 

EP""IEECMDS'J 
CHART FM 

~:~E~60 A 

~YES 

DSPOXX -,-l_~ 
E2-

~ 
roD 
~ 

NO 

NO 

NO 

t 

~ 
LJ~ 

DSP095 
G 

ERROR 
INTER
VENTION 

REQUIRED 

e 
NO 

DSP02fi IEE0303F 



Chart FW. 

DSP()41 

2740 Processor 
(Page 2 of 2) 

YES 

Communications Task with Multiple Console Sur~ort 

section 13: Charts 527 



Chart FX. 3284/3286 Processor -- Coromunications Task with Multiple Console Support 

IGC5W07B 

cm:~~ 

528 

EP=IGCXL07B 
CHART FJ 



Chart GA. Log Writer 

IEELWAIT 

G~lWRITER) 

j FROM 

S"R~-+ IGCOOl 
WAITB1 ....... ......;~= 

IEEVLIN2 INITIALIZE 
lEE1603D WRITELOG 
1EE14030 HALT 
IEEU303F BUFFER FULL 

Section 13: Charts 529 



Chart GB. LOG, Write-to-Log -- Load 1 

530 



Chart GC. LOG, Write-to-Log -- Load 2 

LOAD' 

-

MSG IGC0003E 

- -

BK:T OFF 
>---+ INITIALIZATION 

SWITCH 

NO 

Section 13: Charts 531 



Chart GD. Multiple-Line write-tc-OFeratcr -- load 1 

532 



Chart GE. Multiple-Line Write-tc-Oferator -- load 2 

LOADS 1 AND 3 (r.1CS) 
GD AND GF 

~~6~~ss1~g 1~ 
FOR tvlCS ONLY 

Section 13: Charts 533 



Chart GF. Multiple-Line Write-tc-Oferator -- load 3 

GBB 

EP=I~~§~tl f~g~)MCS) 
CHART GD 

534 



Chart GG. Multiple-Line Write-tc-o~erator -- load 4 

Section 13: Charts 535 



ehart HA. 

536 

DIDoes Processor 0, Lcad 1 (Page 1 cf 2) 

SECOND 

FROM PROCESSOR 1 LOAD 1 
CHART He 

DCM
r3 

. 

.>00----1 :RO ECB 



Chart HA. DIDoes ProcEssor 0, Load 1 (PagE 2 of 2) 

Section 13: Charts 537 



ehart HE. 

538 

DIDoes Processor 0, Load 2 (Page 1 of 2) 

FROM PROCESSOR a LOAD 1 
CHART HA 

RETN 

EP=IEECVFT1 
CHART HA 



Chart HB. DIDICS Processor 0, Load 2 (Page 2 cf 2) 

Al ~
2 

EP=IEECVFTl 
CHART HA 

YES 

YES 

Section 13: Charts 539 



Chart HC. DltOCS Processor 1, Load 1 (Page 1 cf 2) 

IEECVETl 
B 

~:TE 

TESTOP 
D SETQPEN 

~:NG >----·0~~iCWSE) 

IQEXIT 

EP-IEECVETG 
CHART HE 

LYl 
>-Y_E_S __ ·G~2ROUTINE) 

"'~ 
~-l G 
G~~ 

540 

EP=!EECVET7 
CHART IB 

EP-IEECVETP (2250i 
IEECVETR 2260 
IEECVETH MOD 5) 

EP=IEECVETF 
CHART IE 

EP-!EECVET4 
CHART HS 

~-l 
CF:~ 

EP=IEECVFTA 
CHART IG 



Chart HC. DIDOCS Processor 1, Load 1 (Page 2 of 2) 

>----·0~~~ 
EP=IEECVETD 
CHART HL 

DEL4EXI'l' 

~~~.-__ ~NO~C 
EP-IEECVET9
CHART ID

0~~L":ODE)
EP-IEECVETJ
CHART HR

rn,~-l '
0::~

EP-IEECVET2
CHART HO

Section 13: Charts 541

Chart HD.

542

DIBOCS Processor 1, Lead 2

FINCLOSE I
G~~iCLOSE)

EP-IEECVE'l'G
CHART HE

IOEXIT

_G~5~
'--------' EP=IEECVETP 1225°1

EP=IEECVETR 2260
EP=IEECVETH MOD 5)

Chart HE. DIDOCS Open/Close Routine

IGCSG07B

G:~iCLOSE)

END

r---.. G:"RCUTER)
EP-IEECVCTW
CHART FI

EP-IEECVFTG
CHART II

J
G50~

EP=IEECVETP
CHART HF

section 13: Charts 543

ehart HF.

544

DIDoes 2250 1/0-1 Routine (page 1 of 2)

IGC5p07B

G~~~

BYTEl

!
fO?J
~

eLI'<

>---·C~E:UP")
EP-IEECVFTG
CHART I I

--
EP=IEECVETF
CHART IE

Chart HF. DIDoes 2250 1/0-1 Routine (Page 2 of 2)

EXCP j
[:....l...-.-...nXCP ~

J
C£6~

EP=IEECVETl
CHAR1' He

Section 13: Charts 545

Chart HG. D1BOCS 2250 1/0-2 Routine

EXl T

546

EP""IEECVET 1
CHART He

--

Chart HH. DICOCS 2260 1/0-1 Raub ne

IGC5R07B

G:~~

EP=:IEECVET4
CHART HS

TESTOO

EXIT

EP=IEECVET1
CIlART He

EXIT

EXIT

EP='IEECVET1
CHART He

EP:.IEECVETF
CHART IE

section 13: Charts 547

ehart HI. DIDoes 2260 I/O-2 Routine

548

IGC5H07B

E:~~

>---·c~~~
EP=IEECVFTG
CHART II

BLI~H2

>=---., BLANK IT

EXIT

EP=IEECVET1
CHART He

ENTRYBNK

YES r:~ >---.L=-:...J
I

BLAN"KLFTH5 I
YES >=--... BLANK IT

L(0

Section 13: Charts 549

Chart HK.

550

DltOcS Asynchronous Error Routine (Page 1 of 3)

MSG2EX

>N:.:o ___ 0:!~

EP=IEECVETK
CHART IF

EP=IEECVETE
CHART HM

fOT:\.l

IOEXIT

LJ-+l
G·~

Ep:::IEECVETP ! 2250~
IEECVETR 2260
IEECVETH MOD 5)

Chart HK. DIDOeS Asynchronous Error Routine (Page 2 of 3)

-~

NO

EP==IGCXL07E
CHART FJ

EP-IEECVETE
CHART HM

Secticn 13: Charts 551

Chart HK. CIDOCS Asynchrcnous Error Routine (Page 3 of 3)

552

Chart HL. DI~OCS Message 1 Routine

IGCSD07B

G:~~

XCTL r E4-"--
>---+~ I/O ROUTINE)

EP=IEECVET1
CHART He

section 13: Charts 553

ehart HM. DIDoes Message 2 Routine (Page 1 of 2)

IGC5E07B

c::~~

XCTL

_G~4~
L-._-:--_...J

554

Chart HM. DIDoes Message 2 Routine (page 2 of 2)

section 13: Charts 555

ehart HN. DIDoes Message 3 Routine

IGC6D07B

0:~~

I EECVFTD B 1...:.]----,

556

EP=IEECVETP i2250i
IEECVETR 2260
IEECVETH MOD 5)

Chart HO. DIDoes tisplay 1 Routine (Page 1 of 2)

IGc5207B

0:~~

""" j -3
YES ~ =-::--\

~------------------------'t~~ DIS~ -l

IOEXIT

>=_-... (?02ROOTI:)

."." I 0

G~lROUTER)
EP-IEECVCTW
CHART FI

(0 EP-IEECVET3
CHART HP

G3

Section 13: Charts 557

ehart BO.

558

DIDoes Dis~lay 1 Routine (Page 2 of 2)

DEL2EXIT

>N:.:o ___ 0:~~

EP-IEECVET7
CHART IB

~
DISP2

BDEL=R YES -0~:~
'------...... EP-IEECVET3 48 CHART HP

PEXIT

DELETE -0~~~
L.. _____ --I ~~A~¥EI6ET9

PEXIT

>---·0:~~
EP=IEECVE'l'D
CHART HL

chart HP. DICOCS Display 2 Routine (Page 1 of 2)

IGC5307B

0~:PL0)

MSGEXIT

~Y_ES ____ ~~:~~

DISPEX

EP=IEECVETl
CHART He

EP=IEECVETD
CHART HL

~
roD
~

~----~.~------------~-----=::;;::'~ ~YES
4fOf:\.
L/

Section 13: Charts 559

ehart HP.

560

DIDoes Display 2 Routine (Page 2 of 2)

DEL4EXIT

>,-=---.. 0:~m:J
EP=IEECVET
CHART IB

DISPEX

EP=IEECVET9
CHART ID

CHART HQ. DIDOCS Display 3 Routine (Page 1 of 2)

IGC62078

0~:PLAO)
FROM DISPLA.Y 1

CHART HO

EP= I EECVET 3
CHART HP

-
EP= I EECVFTL
CHART IJ

Secticn 13: Charts 561

Chart HQ. DIDoes DisFlay 3 Routine (Page 2 of 2)

562

Chart HR. DIGCCS Roll Mode Routine

IGc5J07B

0~~:-:D£)

50S

DEL

INT

UP

EP-!EECVET2
CHART HO

Section 13: Charts 563

ehart HS. DIDoes eorrmand Routine

IGC5407B

C~~::n-)

,=~. j 8' ---,

564

EP-IEECVETH !M202D50Bj51 IEECVETP
IEECVETR 2260

EP=IEF.CVETE
CHART HM

EP=IEECVETE
CHART HM

-0:~~

-

EP=IEECVET9
CHART ID

INDICATED IN
PARAMETER LIST

Chart HT. DltOCS Opticns Routine (Page 1 of 2)

IGCSA07B

C~~~

F1

&~RAND=DEL
~o

YES

NeON

OOEL RDEL

NO F~ NO
DEL=R OR RD

YES roT:l
~

Section 13: charts 565

Chart HT.

566

DI~OCS Options Routine (Page 2 of 2)

NM

>Yc::Ec::S __ .. G:~

,e" r
r:H3~
'- I/O ROUTINE)

EP=IEECVETP
IEECVETR
IEECVETH !2250i 2260

MOD 5)

EP=IEECVETD
CHART HL

Chart BU. DIDoes 3277 1/0-1 Routine (Page 1 of 2)

IGCSU07B

G~~~

CLNEXIT

NO

EP=IEECVFTG
CHART II

~
fO?J
~

EP=IEECVETK
CHART IF

Section 13: Charts 567

Chart BU.

568

DIDoes 3277 1/0-1 Routine (Page 2 of 2)

NO

PRQC

WRITE

">'=--·G~~~

EP= I EECVET 1
CHART He

EP=IEECVETV
CHART HV

NO

Chart HV. DIrocs 3277 I/0-2 Routine

IGC5V078

G~~~

Section 13: Charts 569

ehart IA. DIDoes Delete 1 Routine (Page 1 of 2)

IGC5607B

0:~~

570

"~"" j
0~~:::J

EP-IEECVETE
CHART HM

Chart IA. DIDoes Delete 1 Routine (Page 2 of 2)

DEL4EXIT

0:~En:")
EI?=IEECVET9
CHART ID

EP-IEECVETD
CHART HL

section 13: Charts 571

Chart lB.

OUT

572

DI~OCS ~elete 2 Routine

BR1i--cQ

~~ROUTER)

.... -----..... ~~~¥EHcTW

-0~~
L.. _____J EP-1EECVET9

CHART 1D

Chart IC. DIDOCS Delete 3 Routine (Page 1 of 2)

IGC58078

0:~ETE""3"J

C~"O
~-SEG=O YES

r~

~
~
~

Section 13: Charts 573

Chart IC.

574

DIDOCS Delete 3 Routine (Page 2 of 2)

EP~lEECVET9
CHART 10

EP=IEECVETD
CHART HL

OUT

-~" 1
G~~

EP=IEECVETE
CHART HM

ehart ID. DIDoes Delete 4 Routine

IGC5907B

0:~ETE:)

IEECVET9Bl_j~ __ ,

DISPEXIT J
G:~

EP-IEECVET2
CHART HO

Section 13: Charts 575

Chart IE. DIDOCS Light Pen/Cursor Routine

>= __ I-lNS .. LcO'::~m OO'~

] YES 8_]_.YES _ YES 8
ENTDCT CANDETCT

G2~ O~~
jEP_IEECVET4

CHART HS

YES
GOODETCTD~

>----K 0: .F/

SKIP

EP=IEECVFTA
CHART IG

~~--~~~~
EP-IEECVET8
CHART Ie

Os °8

,"" j
G~~

EP=IEECVETD
CHART HL

EP=IEECVETE
CHART HM

DEL4EXIT]

0~~~

576

EP-IEECVET9
CHART 1D

chart IF.

SET

DIGOCS Tiwer Inter~reter (Page 1 of 2)

10

C

foRNING MSG
I------i ... ~. BIT ON >-N_O ___ .~~~

EP-IEECVET2
CHART HO

Section 13: Charts 577

Chart IF.

578

DI~OCS Timer Interpreter (Page 2 of 2)

roa:\.
L/

XCTL

SHUT

EP=IEECVETl
CHART He

>=--+0~:iCLOSE)

10

EP= I EECVETG
CHART HE

>--'---·0::~

MSG2 1
G~~

EP=IEECVETE
CHART HM

EP=IEECVETD
CHART HL

Chart IG. DIDoes PFK 1 Routine (Page 1 of 2)

Section 13: Charts 579

Chart IG. DIDoes PFK 1 Routine (Page 2 of 2)

58-0

Chart IH. DIDoes PFK 2 Routine

IGC6B07B

CA~::-J

w,Q-j
G~lROOTI:)

EP=IEECVETP [222256 00 1
IEECVETR)
IEECVETH MOD 85)

EP-IEECVETD
CHART HL

END

NO

Section 13: Charts 581

Chart II. DIDoes eleanu~ (Page 1 of 2)

IGC6G078

C~~:N:"")

582

Chart II. DIDoes Cleanur (Page 2 of 2)

CLQSEEXT j
0:~

section 13: Charts 583

Chart IJ.

584

Status Lisplay Interface 1 Routine

PEXIT

>N;..:O ___ G~4ROUTINE)+-_--,N;..:O-<

J
0ISPLAD)

EP=IEECVFT2
CHART HQ

EP=IEECVETP
IEECVETR
IEECVETH

0:~
EP=IEECVETD
CHART HL

Chart IK. status Display Interface 2 Routine (Page 1 of 2)

ENDOFQ H3,-=--,

~URN OFF
OUT-OF-LINE >:.::....-t.----.. OUTPUT PENDING

FLAG

EP-IEECVFTP
CHART IN

Secticn 13: Charts 585

Chart IK. Status Display Interface 2 Routine (Page 2 of 2)

FINDNEXT

0;:~

586

Chart IL. Status Bisplay Interface 3 Routine (Page 1 of 2)

EP=IEECVETl
CHART He

Secticn 13: Charts 587

Chart IL.

588

status Display Interface 3 Routine (Page 2 of 2)

EP=IEECVETP !2250~
IEECVETR 2260
IEECVETH MOD 5)

./

Chart 1M. Status Display Interface 4 Routine

'0'''' j
C~2~

EP-IEECVETP 12250)
IEECVETR 2260)
IEECVETH MOD 85)

Secticn 13: Charts 589

Chart IN.

590

Status Display Interface 5 Routine (Page 1 of 3)

w,~-j
G~3~

EP-IEECVETP i2250i
I EECVETR 2260
IEECVETH MOD 5)

Chart IN. Status ~isplay Interface 5 Routine (Page 2 of 3)

[Y-
Loop2

J

""-ASSAGE IN
~, LINE

Q~ES

°1 K3-'----,

section 13: Charts 591

Chart IN.

592

!
IOiJ
~

Status Display Interface 5 Routine (Page 3 cf 3)

chart 10. Status cisplay Interface 6 Routine (page 1 cf 2)

YES

YES

Section 13: Charts 593

Chart 10.

594

Status Display Interface 6 Routine (Page 2 of 2)

,om' j
C:3:::E)

EP-IEECVETP !2250l
IEECVETR 2260
I EECVETH MOD 5)

Chart IP. Status Lisplay Interface 7 Routine

EP=IEECVETl
CHART He

.0"''' j
G 2ROOTIN:)

EP-IEECVETP 1225°1 IEECVETR 2260
IEECVETH MOD 5)

SKIPBLNK
F

~:CT

YES

YES

Section 13: Charts 595

Chart JA.

596

Checkpoint Housekee~ing 1 Routine

SLIH

>----'---·CB~~
EP=IGC003
CHART KB

EP=IGC0206C
CHART JC

YES

EP= rGCO 1 06C
CHART JB

chart JB. Checkpoint Eousekee~ing 2 Routine

EP=IGC0206C
CHART JC

NO

Section 13: Charts 597

Chart JC. Checkpoint Housekee~ing 3 Routine

598

J
0 HECOiO)

EP-IGC0506C
CHART JD

chart JD. Checkpoint Check I/O Routine

>Y_E..:.S __ +G~~
EP=IGCOA06C
CHART JE

.,l
(:Esu:-I"iO)
EP=IGCON06C
CHAR1' JH

CHKDC090G~O
YES

OUTPUT

j"G

Section 13: Charts 599

Chart JE. Checkpoint Preserve 1 and 2 Routines

IGCOA06C

G::~
jFROM CHECK I/O

CHART JD

[::TE CHR /

600

EP=IGC0206C
CHART JC

e~j
G~~
EP=IGCON06C
CHART JH

EP=IGCOF06C
CHART JF

chart JF. checkpoint Checkmain 1 and 2 Routines (Page 1 of 2)

IGCOF06C

0:~~
jFROM PRESERVE

CHART JE

CMINTW

0EC~
EP= IGCOG06C
CHART JF/A2

EP-IGCOH06c
CHART JG

"-------'~~"-------'
~G

~~
L-__ ~I YES ~

Section 13: Charts 601

chart JF. Check~oint Checkmain 2 Routine (Page 2 of 2)

602

Chart JG. Check~oint Checkmain 3 Routine

IGCOH06C

G~~:::?)

EP-IGCON06C
CHART JH

-

Section 13: Charts 603

Chart JH. Checkpoint Resume I/O and Exit Routines

IGCON06C

G:~ME""IiO)

604

jFROM CHECKMAIN 3
CHART JG
FROM CHECK I/O
CHART JD
FROM PRESERVE 1
CHART JE

EP=IGCOS06c
CHART Jl

I/O

FROM HOUSEKEEPING 1, 2, 3
CHART JA, JB, JC

--
~JERR: YES

~RS

L.G8
EP=IGC003
CHART KB

FRITE UPDATED n JeT

G

EP=IGCOS06C
CHART JI

Chart JI. Checkpoint ~essage Routine

EP=IGC003
CHART KB

Secticn 13: Charts 605

Chart JJ.

606

Restart Housekeeping 1 and 2 Routines

EP=IGC0205B
CHART JJ/A3

EP=IGCOS05B
CHART JK

HOUSEKEEPING

/

Chart JK. Restart Reprrain 1 Routine

IGC05058

C::::rn:)
FROM RESTART
HOUSEKEEPING2
CHART JJ

.r
C:EP~

EP=IGC0605B
CHART JL

Secticn 1,3: Charts 607

Chart JL.

608

Restart Repmain 2 Routine

IGc06058

(R:!:r:-2)
jFROM REPMAINl

CHART JK

83 --,

EP=IGC070SB
CHART JM

Chart JM. Restart Rep~ain 3 and 4 Routines

IGC0705B

0~~:i:!)

Section 13: Charts 609

Chart IN. Restart Repmain 5 Routine (Page 1 of 2)

IGCQ905s

0;~M:N:)

610

FROM REPMAIN4
CHAR.T JM

SPQE

!
ro?l
~

Chart .IN. Restart Repmain 5 Routine (page 2 of 2)

EP=IGCOG058
CHART JO

NOTE 1: FIRST OLD FREE
AREA EXT. TO START
OF OLD STORAGE

NOTE 2: LAST OLD FREE
AREA EXT. TO START
OF OLD STORAGE

Section 13: Charts 611

Chart JO.

612

Restart JFCE Processors 1, lA, and 2

ERROR CODE:: 20

>-N-=O __ -.(RES~~~
EP=IGCOv05s
CHART JW

FROM JFCB PROC 1
CHART JO/E2

FROM
CHART JO/K2

ERROR CQDE:t 24

>Y-=E-=S __ +G:~

YES

EP-IGCOV05S
CHART JW

EP"'IGCOJ05B
CHART JX

Chart JP. Restart Dummy Cata Set Processor

~:~~ ", E~
: ER~ EP-IGCov05B

a CHART JW

EP=IGCOK05B
CHART JQ

section 13: Charts 613

chart JQ. Restart Mount Verify 1 Rcutine (Non-Direct Access)

FROM JFCB
PROCESSOR 2
CHART JO

8-1
[~-W"'IN-D--""

614

e
ERROR 1

>'=-t'-"'E::~ e EP=IGCOVOSB
CHART JW/A5

83

88
E~ YES

LAST ENTRY

,l

EP=IGCOM058
CHART JR

0)

o,,:~
YES

Chart JR. Restart Mount Verify 2 Routine (Direct Access)

jEP=IGCOLOSB

YES

YES B~
C>C=--K N(}N-:ASD .7

~(8 '0

NO

~
RROR CODE=44

~:ST CCS YES C0~:~
'--------' ~ EP=IGCOVQSB L: 8 CHART J'N

Section 13: Charts 615

chart JS.

616

Restart SYSIN/SYSOUT Data Set Processors 1 and 2 (Non-Direct Access)

EP=IGCOROSB
CHART JV

Chart J'I. Restart Data set Processor 1 (Non-Direct Access)

EP=IGCOSOSB
CHART JU

Section 13: Charts 617

Chart JU. Restart Data Set Processor 1A -- Non-Direct Access (Page 1 of 2)

NO

~CTAPE

SET
1

):"
s:~gu:>

~~YES
~ SYSIN YES

~NO Q
o

618

Chart JU. Restart Data Set Processor 1A -- Non-Direct Access (Page 2 of 2)

8~YES
LA:TF~

o ~----~--~

>---"[X:P 8&F

YES f'::\

~
Q

L:ST RE;AD
BACK

YES

8-

!
roT:l
~

EP=IGCOR05B
CHART JV

Section 13: Charts 619

Chart JV.

620

Restart Data set Prccessor 2 (Direct Access)

rD2 >----. ~EQUEUE II

II

-1
E~g

ERROR

EP=IGCOV05B
CHART JW

E~!~----c:
EP""IGCOV05B
CHART JW

Chart JW. Restart Access ~ethod Disposition and Exit

jFROM DATA SET
PROCESSOR 1 A OR 2
CHART JU OR JV

81"":'---,

~"r >----·ETA~
EP-IGCOV05B
CHART JW/A5

EP-IGC0001C
CHART LL

IGCOVOSB

E~:~

EP-IGC003
CHART KB

Secticn 13: Charts 621

Chart JX. TCA~ Data Set Processor (Page 1 of 2)

622

Chart JX. TCAM Data Set Processor (Page 2 of 2)

ECB

EP=IGCOI05B
CHART JO/A3

Section 13: Charts 623

Chart JY. DOS Tape Data Set Processor (Page 1 of 2)

~
lOT]
'-CJ

624

Chart JY. DOS Tape Data Set Processor (Page 2 of 2)

j.
El

(RESTA~
EP-IGCOVOSB
CHART JW

L~
LJ

L~
LJ

Secticn 13: Charts 625

Chart KA. Type-l SVc Exit

IEAQNUOO

EA~~

IEAOXEOO
81

IFROM TYPE 1
SVC ROUTINES

..I GspATCHER)

626

EP=IEAOOS
CHART KF

MULTIPROCESSING

TYPE1RET

E:~:-ENTRY)
IFROM svc

CHART AA
FLIH

-c~~
L..-___ --'

TO INTERRUPTED
PROGRAM

Chart KB.

IGc003

Exit Routine (Page 1 of 3)

!
ro?:l
~

(0 ~o
G

YES <:::s
°8

Section 13: Charts 627

Chart KB. Exit Routine (Page 2 of 3)

628

Chart KB. Exit Routine (Page 3 of 3)

J Gsp:c:ER)
EP-IEAODS
CHART KF

TAXE:::TERMINAL ATTENTION
EXIT EL,EMENT

Section 13: Charts 629

Chart KC. Transient Area Exit Routine

FROM LINK, LOAD,

~~6~ts~~2GSYNCH
CHART Ci'-_________ _

630

IEAQTR01 IS USED BY THE EXIT ROUTINE
WHEN EXIT IS FROM A TYPE 2,
3, OR 4 SVC ROUTINE.

TAXEXIT IS USED
XCTL PR
WHEN AN
FROM A

EP=IGC003
CHART KB

E
NG ROUTINE
IS TO BE REMOVED

I ENT AREA QUEUE.

Chart KD. Transient Area Refresh Routine

ROUTINE

>-N_O ___ (N:!:c::J

YES

YES

EP-IEAODS
CHART KF

EP-IEAODS
CHART KF

Section 13: Charts 631

Chart KE. CDEXIT and CDDESTRY Subroutines

IEAQETOO

C~~~

632

FROM EXIT CHART KB
EDT ROUTINE
CHART LA

IEAQETOO

0~~ESTRY"J
t;;;\ -+jBRANCH ENTR Y

\J M65MP

Chart KF. Disfatcher -- UnifrocEssing

Secticn 13: Charts 633

Chart KG. Dispatcher with Jot Step and Task Timing (Page 1 cf 2)

634

Chart KG. Dispatcher with Job ste~ and Task Timing (Page 2 of 2)

I~

L.fOI'\.
L/

Section 13: Charts 635

Chart KH.

636

DJSEARCH Subroutine

DJSEARCH

CA~~
FROM DISPATCHER RTN.
WHEN JOB STEP TIMING
OPTION IS INCLUDED

Chart KI. Dispatcher with Time Slicing (Page 1 cf 3)

IKJEAI02

IKJEAI03

>Y_E-'.S __ ... CLT_S_I_P_2 ___ --'

Section 13: Charts 631

Chart KI.

638

Dispatcher with Time Slicing (Page 2 of 3)

?>o

THERE A
TQE

YES

~
JOIl
~

!
[OiJ
~

Chart KI. Dis~atcher with Time Slicing (Page 3 of 3)

SMF

4JO:J:\.
L.J

Section 13: Charts 639

Chart KJ.

640

Dis~atcher with Multiprocessing (Page 1 of 2)

">'=--"'E:~N:"F:H)
EP=IEAOEXOO
CHART AI

Chart KJ. Dispatcher with Multiprocessing (page 2 of 2)

L.~
L/

section 13: Charts 641

Chart KK.

642

DJSEARCE Subroutine with Multiprocessing

YES

YES

<E::POf TCB NO
AN INITIATOR :>----------+

TeB

~YES

')''''---------+

, 1 0

IS~NO
TASK T?P~

YES

Chart KL. Dispatcher with MultiFrocessing and Tirre Slicing (Page 1 of 9)

Section 13: Charts 643

chart KL. Dispatcher with Multifrocessing and Tiffie slicing (Page 2 of 9)

C~YES
~O YES

°8
YES

TSN~-'_l~ ____ , FE2

~'NEW1'

PDSENTOl _l~ ____ .,
E~:EW1' ,0 I

644

Chart KL. Dispatcher with Multiprocessing and Time Slicing (Page 3 of 9)

I .

M';:~~
~~r ~
'NEW'~~

TIM~-SL/ .-J
JO ~

~~----------~
48

Section 13: Charts 645

Chart KL. Dispatcher with Multiprocessing and Time Slicing (Page 4 of 9)

1. 0

DSCHTSN2

E~EW2'

646

Chart KL. Dispatcher with Multifrccessing and Ti~e Slicing (Page 50f 9)

F1 1
F'NEW2' = 0 I
L~
L/

YES

Section 13: Charts 647

Chart KL. Dispatcher with Multifrccessing and Ti~e Slicing (page 6 of 9)

648

Chart KL. Dispatcher with Multirrccessing and Time Slicing (page 7 of 9)

«:W2' "0
~YES

Dsc~-l
E~

DSP~-l r-::E 1-'-----,
I pICK TSCE

F2...;.1_-,
NO r-:: >--=---.... 1 sTEP TSCE

YES J'O§J 1 ~
~:~BP1?-
~YES

~
roIl
~

K2~ SET 'NEvJ2' =
, NEW 1 ' ----ilo-

Section 13: Charts 649

Chart KL. DisIeatcher with M u1tiprocess' lng

~
L/

TSNONEWl

C:~~,~;,-
~-

o

YES

~ ~ 0 0)

650

roD
~

<C~ r" t:;l
F2-

and T' lm€ Sl' . lClng (Page

t

'~~"'" 1--.
~~

1 '" r:9
E4-

L~
L/

8 of 9}

chart KL. Dispatcher with Multiprocessing and Time Slicing (Page 9 of 9)

L
Section 13: Charts 651

Chart LA.

652

End-O£-Task (EOT)

IEAQETOO

G~:OHASK)

EOT

FROM EXIT
ROUTINE
CHART KB

EP=IGC0001C
CHART LL

-CK:m==)
..... -----...... EP=EDFRB

CHART KB

Chart LB. Terrrinal Attention Exit Element Purge

IEAQETOO

c:~~~
FROM EDT
CHART LA

C~YES
IOE FOR

THIS TeB

ES

section 13: Charts 653

Chart LC. TCB Dequeue

654

Chart LD. Purge Timer

IEAQETOO

G:~~
FROM EOT ROUTINE CHART LA
ABEND1 ROUTINE CHART LM

>-N_O ___ CB!m==)
RETURN TO CALLER

YES

section 13: Charts 655

Chart LE.

656

Release Main Storage and Release Loaded Programs

FROM EDT RTN CHART LA
ABEND 1 6 CHART LX

IEAQETOO

FROM EOT RTN CHART LA
ABEND' 6 CHART LX

Chart LF. ABTERM

IEAQABOO

>""---·G~~:cHER)
EP=IEAODS
CHART KF

TO DISPATCHER

~~~T,K~fuT RTN 

i'~~L~ft' CHART AJ 
01< CALLING ROUTINE 

Section 13: Charts 657 



Chart LG. 

658 

ABTERM Setsubs Subroutine 

NOTE-' CO-TASK' MEANS ANOTHER SUBTASK OF 
THE GIVEN TASK I S PARENT 

SCANTREE 

CA:NTRY""J 
FROM SETSUBS 
SUSROUTINE 
THIS CHART, BLOCK 82 



Chart LB. ABTERM PrclcguE 

IEAOPLOO 

j FROM PROGRAM 
CHECK FLIH 
CHART AF 

B3-'---..., 

YES 

YES 

Secticn 13: Charts 659 



Chart LI. ABDUMP Modules (Page 1 of 2) 

C:~n:;=) 
FROM SVC DUMP 1 CHART ME 

660 

NOTE: THE WHERE- -
OF THE RES 

JH¥~~A~gSb 
GAINS CONTRO 

TINE 
ULE 
ES 



Chart LI. ABDUMP Modules (Page 2 of 2) 

MULTIPROCESSING 

..J 
CE~ 
EP=IGC003 
CHART KB 

Section 13: Charts 661 



Chart LJ. TCAM ABtUMP Modules (Page 1 of 2) 

IEAQADOD 

G'ABDUMP) 

662 

ABDUMP 
CHART LI 

EP=IGCOEOSA 
CHART LJ 

I EAQADO E I EAQADO F 

E~2ABDUMP) E~3ABDUMP) 
FROM TeAM ABDUMP 1 FROM TeAM ABDUMP 2 

CHART W CHART LJ 

e-l' 
E2ABDUMP) 

EP=IGCOF05A 
CHART LJ 

EP-IGCOG05A 
CHART LJ/2 



Chart LJ. TCAM ABCUMP Modules (Page 2 of 2) 

IEAQADOG 

G'ABDOO) E~2ABDOO) 
FROM TCAM ABDUMP 3 I EP=IGCOR05A 

CHART LJ/l CHART LJ/2 

YES 

EP=IGCOA05A 

IEAQADOR 

G 3ABDOO) 
j FROM TeAM ABDUMP 4 

CHART LJ/2 

EP=IGCOS05A 
CHART LJ/2 

FROM TeAM ABDUMP 5 
CHART LJ/2 

EP=IGCOA05A 

Section 13: Charts 663 



Chart LK. Abnormal Termination Modular Overview 

IEAQTM2KK4-___ .., 

~~-~----'-~~TL..-' ---ITC~ ) 

664 



Chart I.L. ABENDO (Page 1 of 3) 

IEAQTMOO 

C~~~ 
FROM SVC SLIH 
CHART AB 

Section 13: Charts 665 



Chart LL. ABENDO (Page 2 of 3) 

L..... ___ ....I 

666 

r-q 

----+LAS1R ) 

13E ---->01Fl 
522 ---->01F1 
722 ---->01F1 
OTHR----> F5 
33E -



Chart I.L. ABENDO (Page 3 of 3) 

Section 13: Charts 667 



Chart LM. ABENDl (Page 1 of 5) 

IEAQTMOl 

C::--J 
j FROM ABENOO CHART LL 

FROM ABEND 12 CHART LU 
FROM DAR 1 CHART MA 

IGC0101C B1 -,-__ -, 

668 

r-----------~LAST 

'---~=--'~ 
~ 



Chart LM. ABEND1 (Page 2 of 5) 

L.f:'\ o 

Secticn 13: Charts 669 



Chart LM. ABENDl (Page 3 of S) 

0-
SPQECHK1 

E 

>Y::E=S __ +C::~ 

670 



Chart LM. ABEND1 (Page 4 of 5) 

PURGE!O 

0~!~ 

Section 13: Charts 611 



Chart LM. ABENDl (Page 5 of 5) 

PURGEAEQ 

0:~-:uRGE) 

j 

j=H4 
GET MOTHER 

672 



Chart LN. ABEND3 (Page 1 of 2) 

IEAQTM03 

C:~~ 
j FROM ABEND1 

CHART LM 

IGC0301C B1 ..l. __ -. 

NONE---->02A 1 
OPEN---->02A2 
DSYS---->02A3 
CLOS---->02B3 
TCAM---->02A4 
GRPH---->02A5 
ADMP---->02E3 
TIOT---->02A4 
orIP---->02A4 
TCMP---->02A4 
TYP1---->02A 1 

section 13: Charts 673 



Chart LN. AEEND3 (Page 2 of 2) 

~~I+'------------------
XCTL 

674 



Chart LO. ABEND4 (Page 1 of 2) 

IEAQTM04 

C~:EN:"") 
j FROM ABEND 3 

CHAR'r LN 

IGC0401C B1-'-__ --, 

YES 

.---+ 

Section 13: Charts 675 



Chart LO. ABEND4 (Page 2 of 2) 

SELECTR 

>Y.:;E;:.S __ ·G~~RN:ONF) 

676 



Chart LP. ABEND5 (Page 1 of 2) 

IEAQTMOS 

C~:~ 
j FROM ABEND4 

CHART LO 

IGCOS01CS1 ....... __ -, 

NO 

Section 13: Charts 617 



Chart LP. ABENDS (Page 2 of 2) 

678 



Chart LQ. ABEND7 (Page 1 of 2) 

IEAQTM07 

C:~~ 
j FROM ABEND3. 

cft~~~~4 L~~t~~Ep 

IGC0701C 
81-'----, 

GOT~~j 
,..--D3~ 
\. ABENDB J 

EP-IGCOB01C 
CHART LR 

fOI\. LJ-+ 
SKIPDUMP 

~~----+C::~ 
EP=IGCOB01C 
CHART LT 

section 13: Charts 679 



Chart LQ. ABEND7 (Page 2 of 2) 

680 



chart LR. ABEND8 (Page 1 of 4) 

IEAQTMOB 

C:!~ 
j FROM ABEND3, ABEND7 

CHARTS LN, LQ 

IGCOB01CB2-l.. __ ...., 

-

section 13: Charts 681 



Chart LR. ABEND8 (Page 2 of 4) 

682 



Chart I.R. ABEND8 (Page 3 of 4) 

G-j...--. ---' 
C:~ru:=J 

Section 13: Charts 683 



Chart LR. ABEND8 (Page 4 of 4) 

LLERTN 

684 



Chart LS. ABEND9 (Page 1 of 2) 

IEAQTM09 

C::END0 
1 

FROM ABEND3 J ABENDB 
CHARTS LN, LR 

IGC0901CS1-'-__ -, 

EP-IGCOBO 1 C 
CHART LT 

Section 13: Charts 685 



Chart LS. ABEND9 (Page 2 of 2) 

686 



Chart LT. AEEND11 (Page 1 of 4) 

Chart LT. IEAQTMOB 

C~~~ 

Section 13: Charts 687 



Chart LT. ABEND11 (Page 2 of 4) 

688 

EP-IGCOCO 1 C 
CHART LV 

NONE 

",l 
CABENDD") 

EP-IGCOD01C 
CHART LV 



Chart LT. ABEND11 (page 3 of 4) 

DISP 

EP=IEAODS 
CHART KF 

>-N..:.O __ -C::ru;=) 

Section 13: Charts 689 



Chart LT. AEENDll (Page 4 of 4) 

690 



chart LU. ABEND12 (Page 1 of 3) 

IEAQTMOC 

C:~~ 
j FROM ABEND 1 1 

CHART LT 

IGCOC01C B1 ...:.. __ -, 

NO 

"'~e' ,I; "'" >=,-_ .... TO i~5~c~~~~CT 
(-TCB) 

T,\SKSEL 1 
F3...!.---, 

~S~E~L~E~C~T----~~LAST ---

NO 

Section 13: Charts 691 



Chart LU. ABEND12 (Page 2 of 3) 

SPQECHK2 ,-...1 __ --. ,02-
I GET DQE 

692 



Chart LU. AEEND12 (Page 3 of 3) 

Section 13: Charts 693 



Chart LV. ABEND13 (Page 1 of 3) 

IEAQTMOD 

C:~ENDD"J 

694 

j FROM ABEND3L ABEND11 
CHARTS LN, T 

~6~::::; 
TCAM----> 
NONE--



Chart LV. ABEND13 (Page 2 of 3) 

fOf,\. Dl 
TAHABEND 

CB~::=J 

1'8 
<'<:TA~ 
~YES t::\ 

V 

EP-IGCOF01C 
CHART LW 

Section 13: Charts 695 



Chart LV. AEEND13 (page 3 of 3) 

696 



Chart LW. ABEND15 (Page 1 of 5) 

IEAQTMOF 

C~!ENDlQ 
j FROM ABEND 1 3 

CHART LV 

IGCOF01CS2:....l. __ --. 

EP=IGCOGO 1 C 
CHART LX 

Section 13: ChaLts 697 



Chart LW. ABEND15 (Page 2 of 5) 

698 



Chart LW. ABEND15 (Page 3 of 5) 

Secticn 13: Charts 699 



Chart LW. ABEND15 (Page 4 of 5) 

YES 

700 



Chart LW. ABEND15 (Page 5 of 5) 

~
EQ 

YES ) >----.... R_E_T_U_RN __ N_O_N~E 

Section 13: Charts 701 



Chart LX. ABEND16 (Page 1 of 2) 

IEAQTMOG 

C~~END:) r 
jFROM ABEND1 1... __ ....,.. __ -..1 

CHART LW 

702 



Chart LX. ABEND16 (Page 2 of 2) 

RETURN2 55---........ r:NO--C svc ) 

C:END20 ) 

EP-IGCOK01C 
CHART LY 

section 13: Charts 703 



Chart LY. 

704 

AEEND20 

I EAQTM2K 

C~~~ 

CE~ 
EP=IGCOQ3 
CHART KB 



Chart MA. DAR1 

IEAQTMOL 

CA~~ I FROM ABENDO,ABEND12 
CHART LL,LU 

IGOL01C B1....!.---, 

IP-IGCOP01C 
CHART MD 

ch 
EP=IGCOMO 1 C 
CHART MB 

EP=IGC0101C 
CHART LM 

J 
Co::=-) 

EP-IGCOPO 1 C 
CHART MD 

Section 13: Charts 705 



Chart MB. DAR2 

IEACA~m=) 

I ~~~TD~l 
IGCOM01CS1 ..1. __ --. 

706 

EP-IGCOPO lc 
CHART MD 

EP-IGC0101C 
CHART LM 



Chart MC. DAR3 (page 1 of 3) 

IEAQTMON 

CA~~ 
CHART MA j FROM DARl 

! 
IO?J 
~ 

YES 

Section 13: Charts 707 



Chart MC. DAR3 (Page 2 of 3) 

J 
CD~ 

708 

EP=IGCOP01C 
CHART MD 

~3-;,l 
~ 



Chart MC. DAR3 (Page 3 cf 3) 

c:b 
EP=IGC0101C 
CHART LM 

Section 13: Charts 709 



Chart MD. DAR4 

IEACA~AR4"""") 

I g~JT~i. MB, Me 

IGCOP01CB2!...l. __ --, 

NOTIOT 

710 

TODISP 

G:~ATCHEi)----< 
EP=IEAODS 
CHART KF 



Chart ME. SVC DUMP 1 (Page 1 of 2) 

IEAQADOY 

0~~-:ool) 

EP=IGC003 
CHART KB 

[Y-
DMPD2321 

E41"":"'--, 

EP-IGC003 
CHART KB 

Section 13: Charts 711 



Chart ME. 

712 

SVC DUMP 1 (Page 2 of 2) 

WILL DUMP 
ONLY VALID 
PARTS 

>----... 0~~~ 
EP=IGCOZOSA 
CHART MF 

DUMP 
SUCCESSFUL 
OR 
UNSUCCESSFUL 



Chart MF. SVC DUMP 2 

IEAQADOZ 

0~~-wMnJ 

SLI 

FROM SVC DUMP 1 
CHART ME 

E 

~P. SYS YES 

'------'-. ~~ 
Q 

J C Em==) 
EP=IGC003 
CHART KB 

M65MP 

section 13: Charts 713 



Chart MG. Model 91 Simulator Centrel Routine 

91 

DECASP EP= CHART MI 

714 



Chart MH. Model 91 Compare Decirral Routine 

DECCP 

E~~ 
FROM SIMULATOR 
CONTROL RTN 
CHART MG 

EP-DECNEND 
CHART ML 

CHART MI 

>-Y_E_S __ .C=~:ZERiEND) 
EP-REE3 
CHART ML 

Section 13: Charts 715 



Chart MI. 

DECASP 

716 

Model 91 Add/Subtract/Zero-and-Add Decirral Routine (Page 1 of 2) 

NO 

>Y.::E::,S--"E~~ZERiEND) 
EP-MOVEEND 
CHART ML 



Chart loll. Model 91 Add/Suttract/Zero-and-Add recimal Routine (Page 2 of 2) 

FROM COMPARE 
DECIMAL ROUTINE 
CHART MH 

EP-DECNEND 
CHART ML 

NOTE: BORROW AND CARRY 
SWITCHES ARE RESET AT 
TIME OF TESTING. 

Secticn 13: Charts 717 



Chart MJ. Model 91 Multiply Decimal Routine 

DECMP 

718 

J I MULTIPLY AND 
CONVERT ANSWER 

TO DECIMAL 

>=--... E~:3 
EP=DECDP 
CHART MK 

>----·E~~ZERIENI) 
EP=DECDC 
CHART ML 

EP=MOVEEND 
CHART ML 



Chart MK. 

DECDP 

EP=MOVEEND 
CHART ML 

Model 91 Divide Decimal Routine 

EP=MOVEEND 
CHART ML 

Section 13: Charts 719 



Chart ML. Model 91 Analyzer/End Routine 

DECPT DECDD 

CA~~ CA!~ 
FROM SIMULATOR 
CONTROL ROUTINE 
CHART MG 

FROM DIVIDE 
DECIMAL RTN. 
CHART MK 

DECDO 
C2~ ANALYZER SECTION 

ENTRY 

FROM ADD/SUBTRACT I 
ZERO-AND-ADD RTN. 
CHART MI 

FROM ADD/SUBTRACT 
ZERO-AND-ADD DECIMAL 
CHART HI 
MULTIPLY DECIMAL 
CHART MJ 
DIVIDE DECIMAL 
CHART MK 

REE3 

DECDC 

DECr4~END SECTION 
ENTRY 

FROM COMPARE 
DECIMAL RTN 
CHART MH 

CA!~ 
FROM 
SIMULATOR 
CONTROL RTt.J 
CHART MG 
FROM MULTIPL 
DECIMAL RTN 
CHART MJ 

RETURN TO MODEL 91 
PFLIH RTN. (ENTRY2) 
CHART AG 

~!~-------.< 

720 

FROM COMPARE 
DECIMAL RTN 
CHART MH 

LOAD REGS AND 
RETURN TO 
PROBLEM PROG. 

RETURN TO TESTRAN 



Chart MM. System Management Facility EXCP Counter Routine (Page 1 of 2) 

NOTEXCPI\ 

>-----.t-C::w:-J 
G 

TO lOS 

Section 13: Charts 721 



chart MM. System Manageffent Facility EXCP counter Rcutine (Page 2 of 2) 

e j;~_j 0 

G!:~STORE >=---+ REGISTERS AND 
SET SWITCH 

Gb 
TO lOS 

YES 

722 



Chart MN. System Managerrent Facility Time/Outr:ut Iirrit Exr:iration Routine 

EP=IGC003 
CHART KB 

EP=IGC003 
CHART KB 

Section 13: Charts 723 



Chart MO. 

724 

System Management Facility Wait TiIr€ collection Routine 

NOTE: THIS EXIT IS TAKEN WHEN 
DISPATCHER HAS NOT YET DISPATCHED 
THE WAIT TeB. 



SECTION 14: PROGRAM ORGANIZATION 

This section is designed to help the reader understand the relationshifs arrong sUfer
visor routines and to aid the reader in locating the routines in the program listings. 
It includes a module directory, a directory of entry point names and flowchart IDs, a 
table of routines invoked by SVC instructions, and synopses of supervisor routines. 

MOCULE DIRECTORY 

The module directory contains structural information about each routine. The direc
tory is arranged in alfhameric order by entry ~oint narres. The directory should be used 
to locate modules and control sections for supervisor and related routines. 

r---------------------------------------------------------------------------------------, 
LEGEND: I 

LIBRARY CODES 

LINK 
NUC 
SVC 

= SYS1.LINKLIB Data Set 
= SYS1.NUCLEUS Data Set 
= SYS1.SVCLIE Data Set 

SECTION CODES 

CCSL 
CR 
CS 
EP 
IH 
MSS 
SF 
TMS 
TP 
TS 

= Console Corrmunications and System Log 
Checkpoint/Restart 

= Contents SUfervision 
Exiting Procedures 

= Interruption Handling 
Main Storage Supervision 
Special Features 

= Timer SUfervision 
Termination Procedures 
Task supervision 

Note 1: e.f. = entry point 

Note 2: Blank items in chart are not applicable. 

Section 14: Program Organization 725 



r--------y-------------------------------T--------y--------~-----------~---T----------------------_, 
I I I I I PLM I I I 
I Entry I I IControl I References I I If SVC Routine I 
I Point IName of Routine. Control Block. I Module Isection ~-------~----~Lib.~----T----------_y_----~ 
I Name I Table. Transient Area I Name I Name I I Chart I I I Macro I SVC I 
I I I I I Section I ID I I Type I InstructionlInstr.I 
~--------t-------------------------------t-------_+--------+__-----t-----t----t----t-----------t-----~ 
ICDADVANS I Contents Supervision common IEAQLKOOI IEAQLKOO CS ICA INUC 
I I subroutines (search phase) I I I 
I I I I I 
I CDCONTRLI Contents Supervision common IEAQLKOO I IEAQLKOO CS I CA I NUC 
lalso Isubroutines (seaJ;"ch phase) I I I 
I called I I I I 
I IEAQCS02 I I I I 
I I I I I 
ICDDESTRYICDEXIT routine IEAQETOOIIGC003 EP.TP IKE INUC 
I I I I I 
I CDEPILOG I Contents Supervision common IEAQLKOO IEAQLKOO CS ICA INUC 
I Isubroutines (scheduling phase) I I 
I I I I 
ICDEXIT ICDEXIT routine IEAQETOO IGC003 EP IKE INUC 
I I I I 
ICDHKEEP ICDEXIT routine IEAQETOO IGC003 EP.TP IKE INUC 
I I I I 
IEOT IEnd-of-Task (EOT) routine IEAQETOO IGC003 TP ILA INUC 
I I I I 
IERFETCH IStage 3 Exit Effector IEAQNUOO IEAQNUOO TS IBM INUC 
I I I I 
I FLASH IFirst CPU Signal routine IEAQFXOO IEAQFXOO TS I INUC 
I I I I 
IFMBRANCHIFREEMAIN routine (branch e.p.) IEAQGMOO IEAQGMOO MSS IDA INUC 1 
I I I I 
IFMSMFCREISMF Storage routine IEAQGMOO IEASMFGFI SF IDA INUC 
I I I I I 
IFTCEOl IProgram Fetch Channel-End IEWFETCHIIEWFETCHI CS ICD INUC 
I IAppendage routine I I I I 
I I I I I I 
IFTPCIOl IProgram Fetch PCI Appendage IEWFETCHIIEWFETCH CS ICD INUC 
I I routine I I I 
I I I I I 
IGETIQE IGETMAIN routine (branch e.p. IEAQPRTOI IEAQPRTO CS IDA INUC 
I Ito the GETIQE subroutine) I I I 
I I I I I 
IGETPART IGETMAIN routine (branch e.p. IEAQPRTOIIEAQPRTO MSS IDA INUC 1 
I I for request to allocate a I I I 
I I region) I I I 
I I I I I 
IGMBRANCHIGETMAIN routine (branch e.p.) IEAQGMOOIIEAQGMOO MSS IDA INUC 1 
I I I I I 
IGMSMFCREISMF Storage routine IEAQGMOOIIEASMFGFI SF IDA INUC 
I I I I I I 
IIBMORG ISVC Table (start of IBM- IEAQBKOOI IEAQBKOO I I INUC 
I I assigned SVC numbers) I I I I 
I I I I I I 
IIEAASPRGISubsystem purge IEAASPRGIIEAASPRG TP I INUC 
I I I I I 
IIEABEND ISecondary Communications VectorlIEAQETOOIIGC003 I INUC 
I ITable (used by the ABEND I I I I 
I I routine) I I I I 
I I I I I I 
I IEACVT I Communications Vector Table I lEAQBKOO I IEAQBKOO I I NUC 
I I I I I I 
IIEADQTCBIDequeue TCB routine IIEAQETOOIIGC003 TP ILC INUC 
I I I I I I 
I IEAERRTA I I/O block (LOB) for the I/O I IEAQBKOO I IEAQBKOO I I NUC 
I ISupervisor transient area I I I I 
I I I I I I 
IIEAERTCBITCB for the system error task IIEAQBKOOIIEAQBKOO TS I INUC 
I I (associated with the I/O Super-I I I I 
I I visor transient area) I I I I I 
~--------~-------------------------------~--------L--------L---____ L-___ -L-___ ~ ____ ~ ___________ L ______ ~ 
I*Routine discussed in I/O Supervisor PLM. GY28-6676. I L--___________________________________________________________________________________________ J 

Figure 14-1. Module Director:y (Part 1 of 17) (See legend on previcus page) 

726 



r--------T-------------------------------~--------T--------T-------------T----T-----------------------, 

I I I I I PH I I I 
I Ent:ry I I I cont:rol I Refe:rences I I If SVC Routine I 
I Point IName of Routine, Cont:rol Elcck,1 Module ISecticn ~-------T-----~Lit.r----T-----------T------~ 
I Name I ~atle, T:ransient A:rea I Name I Narre I ICha:rtl I I Y.acro I SVC I 
I I I I I section I ID I I ~ype I Inst:ruction I Inst:r. I 
r--------f-------------------------------+--------+--------+-------t-----+----+----+-----------+------~ 
IEAERWA I I/O Supervisor transient area I IEAQBKOO I IEAQEKOO I I I NUC I I I I 

I I I I I I I I I I 
IEAMCHOO I SERO routine (resident rrodule) I IFBSROOO I IFESROOO I IH I AK I NUC I I I I 

I I I I I I I I I I 
I SERI routine for System/360, IFBSR340 I IFESR340 I IH I AL I LINKI I I I 
I model 40 I I I I I I I I 
I I I I I I I I I 
ISERI :routine fo:r System/360, IFBSR350lIFBSR3501 IH IAL ILINKI I I I 
Imodel 50 I I I I I I I I 
I I I I I I I I I 
ISERI routine for System/360, IFBSR3651IFESR3651IH IAL ILINKI I I I 
I model 65 I I I I I I I 
I I I I I I I I 
ISERI :routine fo:r System/360, IFBSR3751IFBSR3751 IH IAI ILINKI I 
Imodel 75 I I I I I I 
I I I I I I I 
ISERI routine for System/360, IFBSR3951IFESR3951 IH lAM ILINKI I 
Imodel 91 I I I I I I 
I I I I I I I 
ISERI :routine fo:r System/360, IFBSR3A51 IFBSR3A51 IH lAY. ILINK I I 
I model 195 I I I I I I 
I I I I I I I 
ISERI routine for System/370, IFBSR3C31IFESR3C31 IH lAM ILINKI I 
Imodel 195 I I I I I I 
I I I I I I I 

IEAMSTCB ITCE for the Maste:r Schedule:r I I I I I I I 
Itask IIEAQBKOOIIEAQEKOOI I INUC I I 
I I I I I I I I 

IEANIP4 INucleus Initialization F:rograrr IIEANUCOnlIEAANIPOI I INUC I I 
I I I I I I I I 

IEAOPTOIIPost routine (branch e.p. frorr IIEAQSY50lIGCOOI I ~S IBH INUC 11 I 
Ithe I/O SUj:erviso:r) I I I I I I 
I I I I I I I 

IEAOPT021pcst :routine (tranch e.p. f:rom IIEAQSY50lIGCOOI I ~S BH INUC 11 I 
I the I/O Supervisor and frorr I I I I I 
I supervisor :routines) I I I I I 
I I I I I I 

IEAQABL IRelease Loaded P:rog:rarr.s routinel IEAQE~OOI IGC003 ~F IE INUC I I 
I I I I I I 

IEAQCSOIICcntents SUpervision common IIEAQLKOOIIEAQIKOO CS CA INUC I I 
I subroutines (e.p. for the I I I I I 
IATTACH rracro inst:ruction) I I I I I 
I I I I I I 

IEAQCS021 Ccntents Supervision common IIEAQLKOOIIEAQIKOO CS ICA INUC I I 
also I subroutines (search phase) I I I I I 
called I I I I I I 
CDCONTRLI I I I I I 

I I I I I I 
IEAQCS031Contents Supervision corrrr,on IIEAQLKOOIIEAQLKOO CS ICA INUC I 

I also I sub:routines (s cheduling phase) I I I I I I 
I call ed I I I I I I I 
ICDEPILOGI I I I I I I 
I I I I I I I I 
IIEAQEQOIIENQ/DEQ Purge :routine IIEAQENQ21IGC048 I ~F I INUC I 
I I I I I I I I 
IIEAQERA IErase Phase routine IIEAQE~OOIIGC003 I ~F I INUC I 
I I I I I I I I 
IIEAQEXOOIExternal First-Level Interrup- IIEAQNUOOIIEAQNUOOI IH IAH,AIINUC I 
I I tion Handler I I I I I I 
I I I I I I I I 
IIEAQIOOOII/O First-Level Interruption IIEAQNUOO I IEAQNUOO I IH IAJ INUC I 
I I Handler I I I I I I 
I I I I I I I I 
IIEAQIPAQILink pack area queue IIEAQBKOOIIEAQBKOOI I INUC I 
I I I I I I I I 
IIEAQPGTMIPurge Time:r routine IIEAQETOOIIGC003 I 1F Ire INUC I 
I I I I I I I I 
IIEAQPKOOIP:rogram Check First-Level IIEAQNUOOIIEAQNUOOI IH IAF,AGINUC I 
I I Interruption Handle:r I I I I I I I I I L ________ i _______________________________ ~ ________ i ________ ~ _______ ~ _____ ~ ____ ~ ____ ~ ___________ ~ ______ J 

Figure 14-1. Module Directory (Part 2 of 17) (See legend before Part 1) 

section 14: Program organization 727 



r--------T-------------------------------T-------~--------T-------------~---T----------------------_, 

I I I I I PLM I I I 
I Entry I I IControl I References I I If SVC Routine I 
I Point IName of Routine, Control Block, I Module ISection ~-------T-----~Lib.~----y_--------__y-----~ 
I Name I Table, Transient Area I Name I Name I I Chart I I I Macro I SVC I 
I I I I I section I ID I I Type I Instruction I Instr. I 
~--------+-------------------------------+--------+--------+-------~----+----+----+-----------+-----~ 
IIEAQQCBOIOrigin of QCB queues IEAQENQ21IGC048 I INUC I I 

I I I I I 
IEAQRORIIRollout/Rollin module IEAQRORIIIEAQRORI MSS IDC-DIINUC 

I I I I 
IEAQSCOOISVC First-Level Interruption IEAQNUOOIIEAQNUOO IH IAA INUC 

I Handler I I I 
I I I I 

IEAQSPETIRelease Main Storage routine IEAQETOOIIGC003 TP ILE INUC 
I I I I 

IEAQTAQ ITransient Area Control table IEAQBKOOIIEAQBKOO I INUC 
IEAQTAQ11 (TACT) I I I 

I I I I 
IEAQTDOOITimer Second-Level InterruptionlIEAQTIOOIIEAQTIOO TMS IED,EHINUC 

I IHandler (branch e.p.) I I I I 
I I I I I 

IEAQTD011Timer Second-Level InterruptionlIEAQTIOOIIEAQTIOO TMS lED INUC 
I Handler (e. p. for Dispatcher) I I I I 
I I I I I 

IEAQTEOOITimer Second-Level Interruption IEAQTIOOIIEAQTIOO TMS lED INUC 
IHandler (branch e.p.) I I I 
I I I I 

IEAQTROOISVC Second-Level Interruption IEAQTR331IEAQTROO IH lAB INUC 
I Handler I I I 
I I I I 

IEAQTR011Transient Area Exit routine IEAQTR331IEAQTROO EP IKC INUC 
I I I I 

IEAQTR021Transient Area Refresh routine IEAQTR331IEAQTROO EP IKD INUC 
I I I I 

IEAQTR031Transient Area XCTL routine IEAQTR331IEAQTROO CS ICA INUC 
I I I I 

IEAQWAITISMF Wait Time Collection IEAQNUOO I IEAQNUOO SF IMO INUC 
I routine I I I 
I I I I 

IEASMFEXISMF EXCP Counter routine IEAQNUOOIIEAQNUOO SF IMM INUC 
I I I I I 

IEATCB1 
IEATCB2 
IEATCBn 
IEATCBn 

ITransient Area Fetch TCBs IIEAQBKOOIIEAQBKOO I INUC 
I I IEAQBKO 0 I IEAQBK 00 I I NUC 
I I IEAQBKOO I IEAQBKOO I INUC 
I I IEAQBKOOIIEAQBKOO I INUC 

+1 I I I I I 
I I I I I 

IIEATLEXTISMF Time/Output Limit I IEAQTI011 IEAQTIOO SF IMN INUC 
I I Expiration routine I I I I 
I ISMF Time/Output Limit Expira- IIEAQTIMlIIEAQTIOO SF IMN INUC 
I I tion routine with Model 65 I I I I 
I I Multiprocessing I I I I 
I I I I I I 
IIEATYPElIType-1 SVC Switch I IEAQNUOOI IEAQNUOO I INUC 
I I I I I I I 
IIEAXDSOOIDecimal Simulator routine IEAXDSOOI IEAXDSOO I SF IMG-MLI 
I I (Models 91 and 195) I I I 
I I I I I 
IIEAXKALLIExtended Precision IEAXPALLIIEAXKALLI SF I LINK I 
I I Floating Point Simulator I I I I 
I I for System/360 models I I I I 
I I I I I I 
IIEAXKDXRIExtended Precision IEAXPDXRIIEAXKDXRI SF I LINK I 
I I Floating Point Simulator I I I I 
I I for System/360 Models 85, I I I I 
I 1195 and System/370 models I I I I 
I I I I I I 
IIEAXPALLIExtended Precision IEAXPALLIIEAXPALLI SF ILINKI 
I IFloating Point Simulator I I I I 
I I for System/360 models I I I I L ________ ~ _______________________________ ~ ________ ~ ________ ~ _______ ~ ____ -L ___ -L ____ ~ __________ _L_ _____ J 

Figure 14-1. Module Directory (Part 3 of 17) (See legend befcre Part 1) 

728 



r--------T-------------------------------T-------~--------T-------------T----T-----------------------, 

I I I I I PLM I I I 
I Entry I I IControl I References I I If SVC Routine I 
I Point IName of Routine, control Block, I Module ISection ~-------T-----~Lib.~----T-----------T-----_1 
I Name I Table, Transient Area I Name I Name I I Chart I I I Macro I SVC I 
I I I I I Section I ID I I Type I Instruction I Instr. I 
~--------+-------------------------------+--------+--------+-------+-----+----+----+-----------+-----_1 
IIEAXPDXRIExtended Precision IIEAXPDXRIIEAXPDXRI SF I I LINK I I 
I IFloating Point Simulator I I I I I I I 
I I for System/360 Models 85, I I I I I I I 
I 1195 , and System/370 models I I I I I I I 
I I I I I I I I I 
I IEAXPSIMI Extended Precision IIEAXPSIMIIEAXPSIM SF I ILINKI I 
I IFloating Point Simulator I I I I I I 
I I CPU Determination I I I I I I 
I I I I I I I 
IIEAOABOOIABTERM routine IIEAQABOOIIEAQABOO TP ILF INUC I 
IIEAOABOll I I I I I 
I I I I I I I 
IIEAODS I Dispatcher I IEAQNUOO I IEAQNUOO EP IKF-KLINUC I 
I I I I I I I 
IIEAODS021 Task Switching routine IIEAQNUOOIIEAQNUOO TS IBN,BOINUC I 
I I I I I I I 
IIEAOEFOOIStage 2 Exit Effector I I EAQNU 0 0 I IEAQNUOO TS IBL INUC I 
I I I I I I I 
IIEAOEF031 stage 3 Exit Effector I I EAQNU 0 0 I IEAQNUOO TS IBM INUC I 
I I I I I I I 
IIEAOPLOOIABTERM Prologue routine IIEAQABOOIIEAQABOO TP ILH INUC I 
I I I I I I 
IIEAOTIOOITimer Second-Level InterruptionllEAQTIOOIIEAQTIOO TMS IED,EHINUC 
I IHandler (e.p. for External I I I I 
I IFirst-Level Interruption Han- I I I I 
I I dler) I I I I 
I I I I I I 
IIEAOVLOOIValidity Check routine lEAQNUOOI IEAQNUOO I TS I INUC 
I I I I I I 
IIEAOXEOOIType-l Exit routine IEAQNUOOIIEAQNUOOI EP KA INUC 
I I I I I 
IECINT 11/0 Interruption Supervisor in IEAQFXOOIIEAQFXOO CS INUC 

I the I/O Supervisor (IEAQFX I I 
I ~d I I 
I IECIOS I I 
I I macros) I I 
I I I I 

IECPBLDL I BLDL routine I IECPFINDI IGC018 I NUC 2 BLDL SVC 18 
I I or I I 
I I IECPFND11 I 
I I (depends I I 
I I on I I 
I I SYSGEN I I 
I I option) I I 
I I I I 

IECXCP IEXCP Supervisor in the I/O I IEAQFXOOI IEAQFXOO CS INUC 1 EXCP SVC 0 
I Supervisor I (IEAQFX I I 
I I and I I 
I IIECIOS I I 
I macros) I I 
I I I I I 

IECXTLERIStage 3 Exit Effector IEAQNUOOIIEAQNUOO TS IBM INUC I 
I I I I I 

IEEBAl IAttention routine IEECVCRAIIEEBAl CCSL IFA INUC I 
I I I I I 

IIEEBC1PEICommunications Task External IEECVCRXIIEEBC1PEI CCSL IFA INUC I 
I Interruption Handler I I I I I 
I I I I I I 

IEECIR451Communications Task Wait IEECVCTBIIEECIR451 CCSL IFF INUC I 
I routine I I I I I 
I I I I I I 

IEECMDOMICommunications Task ooM IEECMDOMIIEECMDOMI CCSL IFO INUC 2 100M ISVC 871 
I Service Module (MCS) I I I I I I I 
I I I I I I I I 

IEECMDSVICommunications Task Device IEECMDSVIIEECMDSVI CCSL IFM INUC I I I 
I Interface Module (MCS) I I I I I I I 
I I I I I I I I I 

IEECMENQ I Communications Task Enqueue I IEECMWSVI IEECMWSV I CCSL I FN I I I I 
I Subroutine I I I I I I I I L-_______ A_ ______________________________ ~ ________ A ________ ~ _______ A_ ____ A_ ___ ~ ____ ~ ___________ ~ ____ -J 

Figure 14-1. Module Directory (Part 4 of 17) (See legend before Part 1) 

Section 14: Program Organization 729 



r-------T--------------------------T-----_y------y---------y----T-------------------, 
I I I I I PLM I I I 
I Entry I I Icontrol I References I I If SVC Routine I 
I Point IName of Routine, control Block,1 Module ISection ~-------T-----~Lib.~----T---------_y-----~ 
I Name I Table, Transient Area I Name I Name I IChartl I I Macro I SVC I 
I I I I I Section I ID I I Type I Instruction I Instr. I 
~--------+----------------------------+--------+-------+-------+-----+----+----+-----------+-----~ 
I IEECMQCN I Communication Tas k Console I IEECMWSV I IEECMWSV I CCSL I FN I I 
I 10utput Block Creation I I I I I I 
I I I I I I I I 
IIEECMWSVICommunications Task WTO(R) I IEECMWSVI IEECMWSVI CCSL IFN INUC I 
I IService Module (MCS) I I I I I I 
I I I I I I I I 
IIEECVCTIlcommunications Task Initializa-IIEECVINTIIEECVCTII CCSL IFD INUC I 
I Ition routine I I I I I I 
I I I I I I I I 
I IEECVCTW I communications Task Router I IEECMQWR I IEECVCTW I CCSL I FI I NUC I 
I IModule (MCS) I I I I I I 
I I I I I I I 
IIEECVETAIDIDOCS Options routine IIGCSA07BI I CCSL IHT ISVC 4 
I I I I I I I 
IEECVETCIDIDOCS Asynchronous Error IGCSC07BI I CCSL IHK ISVC 4 

I routine I I I I 
I I I I I 

IEECVETDIDIDOCS Message 1 routine IGCSD07BIIEECVETD CCSL IHL ISVC 4 
I I I I 

IEECVETEIDIDOCS Message 2 routine IGCSE07BI CCSL IBM ISVC 4 
I I I I 

IEECVETFIDIDOCS Light Pen/Cursor IGCSF07BI CCSL lIE ISVC 4 
IService routine I I I 
I I I I 

IEECVETGIDIDOCS Open/Close routine IGCSG07BI CCSL IHE ISVC 4 
I I I I 

IEECVETHIDIDOCS Model 8S I/O routine IIGCSH07BI CCSL IHJ ISVC 4 
I I I I 

IEECVETJIDIDOCS Roll Mode routine IGCSJ07BI CCSL IHR ISVC 4 
I I I I 

IEECVETKIDIDOCS Timer Interpreter IGCSK07BI CCSL IIF ISVC 4 
I routine I I I 
I I I I 

IEECVETPIDIDOCS 22S0 1/0-1 routine IHFSP07BI CCSL IHF ISVC 4 
I I I I 

IEECVETQIDIDOCS 2250 1/0-2 routine IGCSQ07BI CCSL IHG ISVC 4 
I I I I 

IIEECVETRIDIDOCS 2260 1/0-1 routine IGCSR07BI CCSL IHH ISVC 4 
I I I I I 
IEECVETUIDIDOCS 3277 I/O~l routine IGCSU07BIIEECVETUI CCSL IHU ISVC 4 

I I I I I 
IEECVETVIDIDOCS 3277 1/0-2 routine IGCSV07BIIEECVETVI CCSL IHV ISVC 4 

I I I I I 
IEECVETWICommunications Task 3284/3286 IGCSW07BIIEECVETW CCSL IFX ISVC 4 

I Processor routine I I I 
I I I I 

IEECVETZIDIDOCS Processor 1, Load 2 IGCSZ07BIIEECVETZ CCSL IHD ISVC 4 ISVC 72 
I I I I 

IEECVETllDIDOCS Processor 1, Load 1 IGCSI07BI CCSL IHC ISVC 4 
I I I I 

IEECVET21DIDOCS Display 1 routine IGCS207BI CCSL IHO ISVC 4 
I I I I 

IIEECVET31DIDOCS Display 2 routine IGCS307BI CCSL IHP ISVC 4 
I I I I I 
I IEECVET4I DIDOCS Command routine IGCS407BI CCSL HS ISVC 4 
I I I I 
I IEECVET61 DIDOCS Delete 1 routine IGCS607BI CCSL IA I SVC 4 
I I I I 
IEECVET71DIDOCS Delete 2 routine IGC5707BI CCSL IB ISVC 4 

I I I 
IEECVET81DIDOCS Delete 3 routine IIGCS807BI CCSL IC ISVC 4 

I I I I 
IEECVET91DIDOCS Delete 4 routine IIGC5907BI CCSL ID ISVC 4 

I I I I 
lEECVFTAIPFK 1 routine IIGC6A07BIIEECVFTAI CCSL IG ISVC 4 ISVC 72 

I I I I I I 
IEECVFTBIPFK 2 routine I IGC6B07BI IEECVFTBI CCSL IH ISVC 4 ISVC 721 

I I . I I I I I 
IEECVFTDIDIDOCS Message 3 routine IIGC6D07BIIEECVFTDI CCSL HN ISVC 4 ISVC 721 

IIEECVPTGIDIDOCS Cleanup routine IIGC6G07B/IEECVFTG/ CCSL III /SVC I 4 Isvc 721 L ______ L-______________________________ ~ _______ -L _______ ~ _______ L-____ L-___ ~ ____ ~ __________ _L_ _____ J 

Figure 14-1. Module Directory (Part 5 of 17) (See legend before Part 1) 

730 



r--------T-------------------------------T-------~-------~------------~---~-----------------------, 
I I I I I PLM I I I 
I Entry I I IControl I References I I If SVC Routine I 
I Point IName of Routine, Control Block, I Module ISection ~------~----~Lib.~----T-----------T------~ 
I Name I Table, Transient Area I Name I Name I I Chart I I I Macro I SVC I 
I I I I I Section I ID I I Type I Instruction I Instr.I 
~--------t-------------------------------t--------t--------t-------t-----t----t----t-----------t------~ 
IE;ECVFTLIStatus Display Interface 1 IGC6L07BIIEECVFTLI CCSL IIJ ISVC I II ISVC 721 

, I I I I I I I I 
IEECVFTMIStatus Display Interface 2 IGC6M07BIIEECVFTMI CCSL 11K ISVC I II ISVC 72 

I I I I I I 
IEECVFTNIStatus Display Interface 3 IGC6N07BIIEECVFTNI CCSL IlL ISVC II SVC 72 

I I I I I 
IEECVFTOIStatus Display Interface II IGC6007BIIEECVFTOI CCSL 11M ISVC II SVC 72 

I I I I I 
IEECVFTPIStatus Display Interface 5 IGC6P07BIIEECVFTPI CSSL lIN ISVC II SVC 72 

I I I I I 
IEECVFTQIStatus Display Interface 6 IGC6Q07BIIEECVFTQI CCSL 110 ISVC II SVC 72 

I I I I I 
IEECVFTRIDIDOCS 2260 1/0-2 routine IGC6R07BIIEECVFTRI CCSL IHI ISVC II SVC 72 

I I I I I 
IEECVFTTIStatus Display Interface 7 IGC6T07BIIEECVFTTI CCSL lIP ISVC II SVC 72 

I I I I I 
IEECVFTZIDIDOCS Processor 0, Load 2 IGC6Z07BIIEECVFTZI CCSL IRB ISVC II ISVC 72 

I I I I I I 
IEECVFT11DIDOCS Processor 0, Load 1 IGC6107BIIEECVFT11 CCSL IRA ISVC II t ISVC 72 

I I I I I I I 
IIEECVFT21DIDOCS Display 3 routine IGC6207BIIEECVFT21 CCSL IHQ ISVC II I ISVC 721 
I I I I I I I I I 
IIEECVGCIIGraphic Console Initialization IEECVGCIIIEECVGCII CCSL IFE I LINK I I I 
I I I I I I I I I 
IIEECVML11MLWTO (Non-MCS) Load 1 IGC0603EIIEECVML11 CCSL IGD ISVC II IWTO ISVC 351 
I I I I I I I I I 
IIEECVML21MLWTO (Non-MCS) Load 2 IGC0703EIIEECVML2 CCSL IGE ISVC II IWTO ISVC 351 
I I I I I I I I 
IIEECVML31MLWTO (MCS) Load 1 IGC0603EIIEECVML3 CCSL IGD ISVC II IWTO ISVC 351 
I I I I I I I I 
IEECVMLIIIMLWTO (Non-MeS) Load 3 IGC0803EIIEECVMLII CCSL IGF ISVC II IWTO ISVC 351 

I I I I I I I 
IEECVML51MLWTO (MCS) Load 2 IGC0703EIIEECVML5 CCSL IGE ISVc II IWTO ISVC 351 

I I I I I I I 
" IEECVML61MLWTO (MCS) Load 3 IGC0803EIIEECVML6 CCSL IGF ISVC II IWTO ISVC 351 

I I t I I I I 
lEECVML71MLWTO (MCS) Load II IGC0903EIIEECVML7 CCSL IGG ISVC II WTO ISVC 351 

I I I I I I 
IEECVPRGIWTOR purge routine (also called I IEECVED21 IEECVPRGI TP I INUC I I 

I the Reply PUrge routine) I I I I I I I 
I I I I I I I I 

IEECVUCMICommunications Task Unit IIEECVUCMIIEECVUCMI CCSL I (Fig·INUC I I 
IControl Module I I I I 7-1, I I I 
I I I I I 7-2) I I I 

IEEC2740127110 Processor Module I IEEC27 II 0 I IEEC27 110 I CCSL IFW ISVC II SVC 72 
I I I I I I 

IEEMSER IMaster Scheduler resident tablelIEEBASECIIEEMSER I I INUC 
I I I I I I 

IEEPLDSPIWRITELOG Get Region routine IIEEPLDSPIIEEPLDSPI CCSL I ILINKI 
I I I I I I I 

IEEVIPL IMaster Scheduler Initialization IEECVIPLIIEEVIPL I CCSL I (Fig. I LINK I 
I routine I I 17 -10) I I 
I I I I I I 

IIEEVLDSPIWRITELOG Dispatch routine IEEVLDSPIIEEVLDSPI CCSL I(Fig.ILINKI 
I I I I 11-10) I I 
I I I I I I I 
IIEEVLIN IWRITELOG Log Initialization IEEVLIN IIEEVLIN11 CCSL I (Fig. I LINK I 
1 1 routine 1 I 17-10) 1 I 
1 1 1 1 I 1 1 
IIEEVLOGJIJob File Control Blocks (JFCBs) lEEVLOGJIIEEVLOGJI CCSL 1 (Fig. 1 LINK 1 
1 1 for log data sets 1 1 17-10) 1 1 
1 1 1 1 1 1 I 
IIEEVLOPNIWRITELOG Open Device routine IEEVLOPNIIEEVLOPNI CCSL I (Fig. 1 LINK 1 
I 1 1 1 17-10) 1 1 
IIEEVLOUTIWRlTELOG Available Log Data IEEVLOUTIIEEVLOUTI CCSL 1 (Fig. 1 LINK 1 
1 ISet routine I I 17-10) 1 I L ________ .L ___________________________ .L ______ .L ________ .L _______ .L. ... ___ .L. __ -.L ____ .L. ________ .L _____ _ 

Figure 14-1. Module Directory (Part 6 of 17) (See legend before Part 1) 

Section 14: Program Organization ,;731 



r--------T-------------------------------T--------T--------T------------~--~-----------------------, 

I I I I I PLM I I I 
I Entry I I IControl I References I I If SVC Routine I 
I Point IName of Routine. Control Block. I Module ISection ~------~----~Lib.~----T-----------T------~ 
I Name I Table. Transient Area I Name I Name I IChartl I I Macro I SVC I 
I I I 1 I Section I ID I ITypelInstructionlInstr.1 
~--------t-------------------------------+--------+--------+-------t-----+----+----+-----------+------~ 
IIEEVLWTRIWRITELOG Log Writer routine IEEVLWTRIIEEVLWTRI CCSL I (Fig. I LINK I I I I 
I I I I 17-10) I I I I I 
I I I I I I I I I I 
IIEEVRFRXICommunications Task Misc. Look- IEEVRFRXIIEEVRFRXI CCSL I ILINKI I I 1 
I 1 up Services routine 1 I I I I I 1 I 
I I I I 1 1 I I I 1 
IEEVWAITIWRITELOG Master wait routine IEEVWAITIIEEVWAITI CCSL I(Fig.ILINK I I 1 

I 1 I 17-10) I I I I 
I I I I I I I 1 

IEE0303FIWrite-to-Log routine IGC0303FIIEE0303FI CCSL 1GB ISVC 4 WTL ISVC 361 
I I I 1 I I 1 

IEE0403FILog Data set Open/Close IEE0403FIIEE0403FI CCSL GC ISVC 4 ISVC 361 
I I I I I 1 

IEE1A03DICommunications Task MCS Reply IEE1A03DIIEE1A03DI CCSL ISVC 1 I 
I Processor routine I I I I 1 
1 I I I I I 

IEE1B03DICommunications Task Error IEE1B03DIIEE1B03DI CCSL ISVC I 1 
I Message routine I I 1 I I 
I I I I I I 

IEE1203DICommunications Task Reply IEE1203DIIEE1203DI CCSL ISVC I I 
1 I I I I I 

IEE1403DlHALT and WRITELOG CLOSE routinelIGC1403DIIEE1403DI CCSL (Fig.ISVC 4 ISVC 341 
I I I I 7-10) I I I 
I I 1 I I I I 

IEE1603DILOG and WRITELOG routine I IEE1603DI IEE1603DI CCSL (Fig.ISVC 4 SVC 341 
I I I I 17-10)1 
I I I I I I I 

IIEGHTOVLITESTRAN Interpreter I IEGTTRNOI IEGHTOVLI CS I I LINK 
I I I I I I I 
IIEWFBOSVIProgram Fetch routine (e.p. IEWFETCHIIEWFETCHI CS ICD INUC 
I I from the Overlay Supervisor) I I I I 
I I I I I I 
IIEWFTRANIProgram Fetch routine (e.p. IEWFETCHIIEWFETCHI CS ICD INUC 
I I from the TA Fetch routine) I I I I 
I I I I I I 
I IEWMSEPT I Program Fetch routine (e.p. IEWFETCHIIEWFETCHI CS ICD INUC 
I I from the common subroutines of I I I I 
I I Contents Supervis ion) I I I I 
I I I I I I 
IIEWSZOVRIOverlay Supervisor (non- IEWSWOVRIIEWSWOVR CS ICE ILINKI 
I I resident module) I I I I 
I I I I I I 
IFBSEROOISERO routine (System/360. IFBSR040lIFBSR040 IH IAR I LINK I 

IModel 40) I I I I 
I I I I I 

IFBSEROO I SERO routine (System/360. IFBSR050 I IFBSR050 IH IAR I LINK I 
Imodel 50) I I I I 
I I I I I 

IFBSEROOISERO routine (System/360. IFBSR0651IFBSR065 IH IAR ILINKI 
Imodel 65) I I I I 
I I I I I 

IFBSEROOISERO routine (System/360. IFBSR0751IFBSR075 IH IAR ILINKI 
Imodel 75) I I I I 
I I I I I 

IGCXI07BICommunications Task External IEECVCTXIIEECVCTXI CCSL IFE ISVC I 4 
I Processor I I I I I 
I I I I I I 

IIGCXL07BICommunications Task Console IIEECLCTXIIEECLCTXI CCSL IFJ ISVC I 4 
I I Switch (load 1) (MCS) I I I I I I 
I I I I I I I I 
IIGCXM07BIcommunications Task Console IIEECMCTXIIEECMCTXI CCSL IFK ISVC I 4 
I ISwitch (load 2) (MCS) I I I I I I 
I I I I I I I I 
IIGCXN07BICommunications Task Console IIEECNCTXIIEECNCTXI CCSL IFK ISVC I 4 
I ISwitch (load 3) (MCS) I I I I I I L ________ ~ _______________________________ ~ _______ _L ________ ~ _______ ~ _____ L-__ _L __ __ 

SVC 72 

ISVC 721 
I I 
I I 
ISVC 721 
I I 
I I 
ISVC 721 
I I __ _________ L-_____ J 

Figure 14-1. Module Cirectory (Part 7 of 17) (See legend before Part 1) 

732 



r--------T------------------------------~-------~--------T------------~---T-----------------------, 

I I I I I PLM I I I 
I Entry I I IControl I References I I If SVC Routine I 
I Point IName of Routine, Control Block, I Module ISection ~-------y----~Lib.~----T-----------T------~ 
I Name I Table. Transient Area I Name I Name I I Chart I I I Macro I SVC I 
I I I I I Section I ID I I Type I Instruction I Instr.I 
~--------t-------------------------------+--------+--------+-------t-----t----+----+-----------+------~ 
IGCX007BICommunications Task Console IEECOCTXIIEECOCTXI CCSL IFL ISVC 4 ISVC 721 

I Switch (load 4) (MCS) I I I I I I 
I I I I I I I 

IGCOA05AIABDUMP routine (-resident- lEAQADOAIIGCOA05AI TP ILl ISVC 4 ISVC 511 
I Module) I I I I I I 
I I I I I I I 

IGCOA06CIPreserve 1 IGCOA06CI IGCOA06C I CR IJE ISVC 4 ISVC 631 
I I I I I I I 

IGCOB01CIABEND routine (ABEND11> lEAQTMOBIIGCOB01CI TP ILT ISVC 4 ISVC 131 
I I I I I I I 

IGCOB05AIABDUMP routine (ABDUMPll) lEAQADOBIIGCOB05AI TP ILl ISVC 4 I I 
I I I I I I I 

IGCOC01CIABEND routine (ABEND12) lEAQTMOCIIGCOC01CI TP ILU ISVC I 4 ISVC 131 
I I I I I I I I 

IIGCOC05AIABDUMP routine (ABDUMP1.5) lEAQADOCIIGCOC05AI TP ILl ISVC I 4 I I 
I I I I I I I I I 
IIGCOD01CIABEND routine (ABEND13) lEAQTMODIIGCOD01CI TP ILV ISVC I 4 ISVC 131 
I I I I I I I I I 
IIGCOD05AITCAM ABDUMP 1 lEAQADODIIGCOD05AI TP ILJ ISVC I 4 I I 
I I I I I I I I I 
I IGCO D06C I Preserve 2 IGCOD06C I IGCOD06C I CR I JE I SVC I 4 I SVC 63 1 
I I I I I I I I I 
IIGCOE05AITCAM ABDUMP 2 lEAQADOEIIGCOE05AI TP ILJ ISVC I 4 I I 
I I I I I I I I I 
IIGCOF01CIABEND routine (ABEND15) IEAQTMOFIIGCOF01CI TP ILW ISVC I 4 SVC 131 
I I I I I I I I 
IIGCOF05AITCAM ABDUMP 3 IEAQADOFIIGCOF05AI TP ILJ ISVC 4 I 
I I I I I I I 
IIGCOF06CICheckmain 1 IGCOF06CIIGCOF06CI CR IJF ISVC 4 SVC 631 

I I I I I I 
IGCOG01CIABEND routine (ABEND16) IEAQTMOGIIGCOG01CI TP ILX ISVC 4 SVC 131 

I I I I I I 
IGCOG05AITCAM ABDUMP 4 lEAQADOGIIGCOG05AI TP ILJ ISVC 4 I 

I I I 1 1 I 
IGCOG05BIREP LlO-JFCB Processor 1 IGCOG05BIIGCOG05BI CR IJO ISVC 4 SVC 521 

I 1 1 I I I 
IGCOG06CICheckmain 2 IGCOG06CIIGCOG06CI CR IJF ISVC 4 ISVC 631 

1 1 1 I I I 1 
IGCOG95BIREP LlO-JFCB Processor 1A IGCOG95BIIGCOG95BI CR IJO ISVC 4 ISVC 521 

I I I I I I I 
IGCOH05AIABDUMP routine (ABDUMPH) lEAQADOHIIGCOH05AI TP I ISVC 4 I I 

I I I I I I I 
IGCOH05BIDummy Data Set Processor IGCOH05BIIGCOH05BI CR IJP ISVC 4 ISVC 521 

I I I I I I I 
IGCOH06CICheckmain 3 IGCOH06CIIGCOH06CI CR IJG ISVC 4 ISVC 631 

I I I I I I I 
IGCOI05AIABDUMP routine (ABDUMPI) lEAQADOIIIGCOI05AI TP I ISVC 4 I I 

I I I I I I I 
IGCOI05BIREP LlO-JFCB Processor 2 IGCOI05BIIGCOI05BI CR IJO ISVC 4 ISVC 521 

I I I I I I I 
IGCOI07BICommunications Task 1052 IEECVOCXIIEECVOC I CCSL 1FT ISVC 4 ISVC 721 

I Open/Close I I I I I I 
I I I I I I I 

IGCOJ05AIABDUMP routine (ABDUMP12) IEAQADOJIIGCOJ05AI TP ILl ISVC 4 ISVC 511 
I I I I I I I 

IGCOJ05BITCAM Data Set Processor IGCOJ05BIIGCOJOSBI CR IJX ISVC 4 ISVC 521 
I I I I I I I 

IGCOK01CIABEND routine (ABEND20) lEAQTM2KIIGCOK01CI TP ILY ISVC 4 I I 
I I I I I I I 

IGCOK05AIABDUMP routine (ABDUMP13) IEAQADOKIIGCOK05AI TP ILI ISVC 4 ISVC 511 
I I I I I I I 

IGCOK05BIREP I/O-Mount/Verify.l routine IGCOK05BIIGCOKOSBI CR IJQ ISVC 4 ISVC 521 
I I I I I I I 

IGCOL01CIDAR routine (DARl) IEAQTMOLI IGCOL01CI TP IMA ISVC 4 I I 
I I 1 1 I 1 I 

IIGCOL05AIABDUMP routine (ABDUMP1) IIEAQADOOIIGCOL05AI TP ILl ISVC 4 ISVC 511 L ______ --'--___________________________ .L ______ .L-_______ .L _____ ~ ____ .L__~ ____ .L__ _______ ~ ______ J 

Figure 14-1. Module Cirectory (Part 8 of 17) (See legend before Part 1) 

Section 14: Program Organization 733 



r--------T-------------------------------T--------T--------T-------------T----T-----------------------, 
1 1 I I I PI.z.! I I I 
I Entry I I I Control I References I I If SVC Routine I 
I Point IName of Routine, Control Block, I Module ISection .-------T-----~Lib.~----T-----------T------~ 
I Name I Table, Transient Area I Name I Narre I IChartl I I ~acro I SVC I 
I I I I I Section I ID I I Type I Instruction I Instr.1 
~--------t-------------------------------+--------+--------+-------+-----+----+----+-----------+------~ 

IGCOL05BISYSIN/SYSOUT Non-DASD Data Set IGCOL05BIIGCOI.05BI CR I ISVC I 4 ISVC 521 
I Processor I I I I I I I 
I I I I I I I I 

IGCOM01CIDAR routine (DAR2) lEAQTMOMIIGCOM01CI TP Iz.!E ISVC I 4 I I 
I I I I 1 I I I 

IGCOM05AIABDUMP routine (AEDUMP14) lEAQADOMI IGCOM05A I TP II.! ISVC I 4 ISVC 511 
I I I I I I I 

IGCO~05BIREP I/O-Mount/Verify 2 routine IGCOM05BIIGCOM05BI CR IJR ISVC I 4 SVC 52 
1 I I 1 I I 

IGCON01CIDAR routine (DAR3) lEAQTMONIIGCON01CI TP I~c ISVC I 4 
I I I I I 

IGCON05AIAEDUMP routine (AEDUMP15) lEAQADONIIGCON05AI TP II.! ISVC 4 SVC 51 
I I I I I 

IGCON05BIREP I/O-SYSIN/SYSOUT Lata Set IGCON05BIIGCON05BI CR IJS ISVC 4 SVC 52 
I Processor 1 I I I 
I I I I 

IGCON06cIResume I/O routine IGCON06CIIGCON06C CR IJH ISVC 4 SVC 63 
I I I I 

IGCOP01CIDAR routine (DAR4) IEAQTMOPIIGCOP01C TP IMD ISVC 4 
I I I I 

IGCOP05AIABDUMP routine (ABDU~F16) IEAQADOPIIGCOP05A TP ILL ISVC 4 SVC 51 
I I I I I 
IGCOP05BIREP I/O-Data set Processor 1 IGCOP05EIIGCOP05B CR IJT ISVC 1 4 SVC 52 

I I I I I 
IGCOQ05AIABDUMP routine (ABDUMPQ) IEAQALOQIIGCOQ05A TP ILL ISVC I 4 SVC 511 

I I I I I I 
IGCOQ05BIREP I/O-SYSIN/SYSCUT Data Set IGCOQ05EIIGCOQ05B CR IJS ISVC I 4 SVC 521 

IProcessor 2 I I I I I 
I I I I I I 

IGCOQ06CICheckfoint Exit routine IGCOQ06CIIGCOQ06CI CR IJH ISVC 4 ISVC 631 
I I I I I I I 

IGCOR01CIABEND/STAE Interface 0 routine lEAQTMORIIGCOR01CI TP IBQ ISVC 4 I I 
I I I I I I I 

IGCOR05AITCAM ABDUMP 5 lEAQADORIIGCOR05AI TP II.J SVC 4 ISVC 511 
I I I I I I 

IGCOR05BIREP I/O-Data Set Prccessor 2 IGCOR05BIIGCOR05BI CR IJV SVC 4 ISVC 521 
I I I 1 I I 

IIGCOS01CIABEND/STAE Interface 1 routine lEAQTMOSIIGCOS01CI TP IBR SVC 4 I I 
I I I I I I I 
IIGCOS05AITCAM ABI:UMP 6 IEAQADOSIIGCOS05A TP II.J SVC 4 ISVC 511 
I I I I I I 
IIGCOS05BIREP I/O-Data Set Processor 1A IGCOS05BIIGCOS05B CR IJU SVC 4 ISVC 521 
I I I I I I 
IIGCOS06Clcheckpoint Message Module IGCOS06CIIGCOS06C CR IJI SVC 4 ISVC 631 
I I I I I I I 
IIGCOT01CIAEEND/STAE Interface 2 routine lEAQTMOTIIGCOT01C TP IBS SVC 4 I I I 
I I I I I I I 
IIGCOT05BIREP I/O-Access Methcd- IGCOT05B IGCOT05B CR IJW ISVC 4 I ISVC 521 
I IDisposition routine I I I I I 
I I I I I I I 
IIGCOU01CIABEND/STAE Interface 3 routine IEAQTMOU IGCOU01C TP IBT ISVC Li I I I 
I I, I I I I I 
IIGCOU05BIDOS Tape Data Set Processor IGCOU05E IGCOU05B CR IJY ISVC 4 I ISVC 521 
I I I I I I I 
I IGCOV01C I ABEND/STAE Interface 4 routine I IEAQTMOV IGCOVO 1C TP I BU I SVC 4 I I I 
I I I I I I I I 
I IGCOV05B I Restart Exit routine IIGCOV05E IGCOV05B CR IJW ISVC 4 I ISVC 521 
I I I I I I I I 
IIGCOW01CIABEND/STAE Interface 5 routine IIEAQTMOW IGCOW01C TP IBV ISVC 4 I I I 
I I I I I I I I 
IIGCOW05BIISAM and BDAM Data Set IIGCOW05EIIGCOW05B CR I ISVC 4 I ISVC 521 
I I Process or I I I I I I I 
I I I I I I I I I 
IIGCOZ05AISVC DUMP 2 IIEAQADOZIIGCOZ05A TP Iz.!F ISVC 4 I I I 
I I I I I I I I I 
IIGC0001CIABEND routine (ABENDO) IIEAQTMOOIIGC0001C TP 111. ISVC 4 IAEEND ISVC 131 
I I I I I I I I I 
\ IGC0003EIWTO (MCS) IIEEMVWTOIIGC0003E CCSL IFB ISVC 4 IWTO ISVC 351 

I I I I I I I I 
IIGC0003EIWTO (Ncn-MCS) IIEENVWTOIIGC0003E CCSI. IFE ISVC 4 IWTO ISVC 351 
I 1 I I I I I I I 
IIGC0005AISVC DUMP 1 IIEAQADOYIIGC0005A TP Iz.!E ISVC 4 ISNAP ISVC 511 l ________ ~ _______________________________ ~ ________ ~ ________ ~ _______ ~ _____ ~ ____ ~ ____ ~ ___________ ~ ______ J 

Figure 14-1. Module Directory (Part 9 of 17) (See legend before Part 1) 

734 



~--------T-------------------------------T-------~--------T-------------~---T----------------------_, 

I I I I I PLM I I I 
I Entry I I IControl I References I I If SVC Routinedule I 
I Point IName of Routine, Control Block, I Module ISection r-------T-----iLib·~----T----------~-----~ 
I Name I Table, Transient Area I Name I Name I I Chart I I I Macro I SVC I 
I I I I I Section I 10 I I Type I Instruction I Instr. I 
~--------+-------------------------------+--------+--------+-------+-----+----+----+-----------+-----~ 
IGC00060lSTAE Service routine IlEAASTOOIlGC000601 TP IBP ISVC 3 STAE ISVC 60 1 

I I I I I I I I 
IGC0006CICheckpoint Housek~eping 1 IlGC0006CIIGC0006CI CR IJA ISVC 4 CHKPT ISVC 631 

I I I I I I I I 
IGC0007BICommunications Task Router IlEECVCTRIIEECVCTRI CCSL IFG ISVC 4 ISVC 721 

I routine I I I I I I I 
I I I I I I I I 

IGC0007BIcommunications Task Mini-Router I lEECMCTRI IEECMCTRI CCSL I(Fig.ISVC 4 ISVC 721 
I routine (MCS) I I I I 7-3) I I I 
I I I I I I I 

IGC0008EIDDR SVC Router, Initiator, IlGC0008EIIGC0008EI * I ISVC 4 SVC 85 1 
I Terminator I I I I I I 
I I I I I I I 

IGC0101CIABEND routine (ABEND1) IIEAQTM011IGC0101CI TP ILM ISVC 4 SVC 131 
I I I I I I I 

IGC0103EIWrite-to-Operator Reply routine lEEVWTORIIGC0103EI CCSL IFC ISVC 4 WTOR SVC 351 
I I I I I I 

IGC0105AIABDUMP routine (ABDUf.!P2) lEAQAD011IGC0105AI TP ILl ISVC 4 SVC 511 
I I I I I I 

IGC0105BIRestart Housekeeping 1 IGC0105BIIGC0105BI CR IJJ ISVC 4 SVC 521 
I I I I I I 

IGC0106Clcheckpoint Housekeeping 2 IGC0106CIlGC0106CI CR IJB ISVC 4 SVC 63 
I I I I I 

IGC0107BICommunications Task 1052 IEECVPMXIIEECVPM I CCSL FQ ISVC 4 SVC 72 
IConsole Processor 1 routine I I I 
I (non-MeS) I I I 
I I I I 

IGC0107BICommunications Task 1052 IEECMPMXIIEECVPM I CCSL FR ISVC 4 SVC 72 
I console Processor 1 routine I I I 
I (MCS) I I I 
I I I I I 

IGC0108EIOperator-Initiated DDR IGC0108EIIGC0108EI * ISVC 4 I SVC 85 
I I I I I 

IGC0203EIWrite-to-programmer IEFWTPOOIlGC0203EI CCSL ISVC 4 IWTO SVC 35 
I (initialization routine) I I I WTOR 
I I I I I 

IGC0205AIABDUMP routine (ABDUMP3) lEAQAD021IGC0205AI TP ILl ISVC 4 ISVC 511 
I I I I I I I 

IGC0205BIRestart Housekeeping 2 IGC0205BIIGC0205B\ CR \JJ \SVC 4 \SVC 521 
\ \ I I \ I I 

IGC0206C\Checkpoint Housekeeping 3 IGC0206CIIGC0206C\ CR IJC \SVC 4 \SVC 631 
I I I I I I \ 

IGC0207BIcommunications Task 1052/ IEECVPM1IIEECVPM1\ CCSL I (Fig. ISVC 4 ISVC 721 
\ Printer Processor 2 routine I \ I 7-1) I \ I 
I (non-MCS) I I \ I I \ 
I \ \ I \ I I 

IGC0207BICommunications Task 1052 IEECMPM1\IEECMPMlI CCSL \FS \SVC 4 \SVC 721 
I Processor 2 routine (MCS) I I I I I I 
I I \ \ \ \ \ 

IGC0208EISystem-Initiated DDR (Load 1) lGC0208EIlGC0208EI * \ \SVC 4 \ ISVC 851 
\ I I I I I I \ 

IGC0301CIABEND routine (ABEND3) lEAQTM03IIGC0301C\ TP \LN ISVC 4 I ISVC 131 
I I \ I I I I I 

IGC0303Elwrite-to-programm~r (processingllEFWTP01lIGC0303EI CCSL I ISVC 4 IWTO ISVC 351 
I routine) I I I I I IWTOR I I 
I I I I I I I I I 

IGC0305AIABDUMP routine (ABDUMP4) I lEAQAD031 lGC0305AI TP ILl ISVC 4 I ISVC 511 
I I I I I I I I I 

lGC0308EISystem-lnitiated DDR (Load 2) I lGC0308EI IGC0308EI * I ISVC 4 I ISVC 851 
I I I I I 1 I 1 I 

IGC0401CIABEND routine (ABEND4) IlEAQTM041lGC0401CI TP ILO ISVC 4 I ISVC 131 
I I I I I I I I I 

IGC0403EIWrite-to-programmer (error IIEFWTP021IGC0403EI CCSL I ISVC 4 IWTO ISVC 351 
\ routine) \ \ I \ \ \WTOR \ \ 
I \ \ I I I I \ I 

IGC0405AIABDUMP routine (ABDUMP5) \lEAQAD04IlGC0405AI TP ILl ISVC 4 I ISVC 511 
I I I I I I I I I 

IIGC0408E1DDR Tape Reposition (Load 1) I IGC0408E\ lGC0408EI * I ISVC 4 I ISVC 851 L ________ ~ _______________________________ ~ _______ _L ________ ~ _______ ~ ____ L-___ ~ ____ ~ __________ ~ _____ J 

Figure 14-1. Module Directory (Part 10 of 17) (See legend before Part 1) 

section 14: Program Organization 735 



r--------T-------------------------------T-------~--------y-------------T----T-----------------------, 

I I I I I PLM I I I 
I Entry 1 I IControl I References I I If SVC Routine I 
I Point IName of Routine, Control Block, I Module ISection ~-------T-----~Lib.r_---T---------__y-----~ 
I Name I Table, Transient Area I Name I Name I I Chart I I I Macro I SVC I 
I I I I I Section I ID I I Type I Instructionllnstr.I 
~--------+-------------------------------+--------+--------+-------+-----+----+----+-----------+-----~ 
IIGC0501CIABEND routine (ABEND5) lEAQTM051IGC0501CI TP ILP ISVC 4 ISVC 131 
I I I I I I I I 
IIGC0505AI~DUMP routine (ABDUMP6) lEAQAD051IGC0505AI TP ILl ISVC 4 ISVC 511 
I I I I I I I I 
IIGC0505BIRepmain 1 IGC0505BIIGC0505BI CR IJK ISVC 4 ISVC 521 
I I I I I I I I 
IIGC0506CICheck I/O routine IGC0506CIIGC0506CI CR IJD ISVC 4 ISVC 631 
I I I I I I I I 
IIGC0508EIDDRMSG MODU IGC0508EIIGC0508EI * I ISVC 4 ISVC 851 
I I I I I I I I 
IGC0605AIABDUMP routine (ABDUMP7) lEAQAD061IGC0605AI TP ILl ISVC 4 ISVC 511 

I I I I I I I 
IGC0605BIRepmain 2 IGC0605BI IGC0605B I CR IJL ISVC 4 ISVC 521 

I I I I I I I 
IGC0608EIDDR Tape Reposition (Load 2) IGC0608EIIGC0608EI * I ISVC 4 ISVC 851 

I I I I I I I 
IGC0701CIABEND routine (ABEND7) lEAQTM071 IGC0701C I TP ILQ ISVC 4 ISVC 131 

I I I I I I I 
IGC0705AIABDUMP routine (ABDUMP8) lEAQAD071IGC0705AI TP ILl ISVC 4 ISVC 511 

I I I I I I I 
IGC0705BIRepmain 3 IGC0705BIIGC0705BI CR IJM ISVC 4 ISVC 521 

I I I I I I 1 
IGC0708EIDDR Recording IGC0708EIIGC0708EI * I ISVC 4 ISVC S51 

I I 1 I I I I 
IGC0801CIABEND routine (ABENDS) lEAQTMOSIIGCOS01CI TP ILR ISVC 4 ISVC 131 

I I 1 I I I I 
IGCOS05AIABDUMP routine (ABDUMP9) lEAQADOSIIGC0805AI TP ILl ISVC 4 I I 

I I I I I I 1 
IGCOS05BIRepmain 4 IGCOS05BIIGCOS05BI CR IJM ISVC 4 ISVC 521 

I I I I I 1 1 
IGCOS08EIDDRMSG MOD#2 IGCOSOSEIIGC080SEI * 1 ISVC 4 ISVC 851 

I 1 1 I I 1 I 
IGC0901CIABEND routine (ABEND9) lEAQTM091 IGC0901C 1 TP ILS ISVC 4 ISVC 131 

I I 1 I I 1 I 
IIGC0905BIRepmain 5 IGC0905BIIGC0905BI CR IJN ISVC 4 ISVC 521 
I I 1 1 I I 1 1 
IIGC0907BICommunications Task IEECMWTLIIGC0907B CCSL IFP ISVC I 4 ISVC 721 
I 1 NIP Message Buffer Writer I 1 I 1 1 
I 1 I 1 I 1 1 
IIGC1I07BICommunications Task Card IEECVOCCIIEECVOC CCSL I(Fig.ISVC 4 ISVC 721 
I IReader Open/Close routine I 1 7-2) I 1 1 
I 1 1 1 1 I 1 
IGCll07BICommunications Task Card IEECVPMCIIEECVPM CCSL IFU ISVC 4 ISVC 721 

1 Reader Processor routine I I I 1 1 
1 1 1 I 1 1 

IGCll07BICommunications Task Card IEECMPMCIIEECVPM CCSL FV ISVC 4 ISVC 721 
IReader Processor (MCS) 1 1 1 1 
1 1 I 1 1 

IGC2 I07B I Communications Task IEECVOCP I IEECVOC CCSL (Fig. 1 SVC 4 1 SVC 721 
IPrinter Open/Close routine 1 7-1,1 1 1 
1 I 7-2) 1 1 I 
1 1 I 1 I 

IGC2107BICommunications Task IEECVPMPIIEECVPM CCSL (Fig.ISVC 4 1 1 
1 Printer Processor routine 1 7-1, I 1 I 
1 I 7-2) 1 1 1 
1 1 I I 1 

IGC2107BICommunications Task IIEECMPMPIIEECVPM CCSL ISVC 4 ISVC 721 
IPrinter Processor (MeS) 1 1 1 1 I 
1 1 I 1 I 1 

IIGCOOl IWait routine 1 lEAQSY50 1 IGCOOl TS IBG INUC 1 I WAIT ISVC 1 I 
1 I 1 1 I 1 1 I 1 
IIGC002 IPost routine IIEAQSY50lIGCOOl TS IBB INUC 1 I POST ISVC 2 I 
1 1 1 I I I I 1 I 
IIGC002+6IPost routine (branch e.p. from IIEAQSY50lIGCOOl TS IBB INUC 1 I I 1 
I I supervisor routines) I I I I I 1 1 
I I I I 1 I I 1 I 
IIGC003 IExit routine IIEAQETOOIIGC003 I EP IKB INUC 1 1 ISVC 3 1 L-------...,J. _________________________ -..L ______ -.1. ______ J. _____ J. _____ .1... ___ .1. ___ .1.-_______ .1... ____ ...1 

Figure 14-1. Module Directory (Part 11 of 17) (See legend before Part 1) 

736 



,-------T-----------------------------_,_------_,_--------T---------~-__r-----------------_, 
( ( ( ( (PLM ( ( ( 
( Entry ( ( (Control (References ( ( If SVC Routine ( 
(Point (Name of Routine, control Block, ( Module (Section ~-----~---~Lib.~---~--------_,_-----~ 
(Name ( Table, Transient Area (Name ( Name ( (Chart ( ( ( Macro (SVC ( 
( ( ( ( I Section I ID I ITypelInstructionlInstr.1 
~--------t--------------------------+------t--------+-----+----+----+----+----------+-----~ 
IGC004 IGETMAIN routine (IEAQGMOOIIEAQGMOO MSS IDA INUC I 1 IGETMAIN ISVC 4 

I I I I I I I I 
IGCOQ5 IFREEMAIN routine IIEAQGMOOIIEAQGMOO MSS IDA INUC I 1 IFREEMAIN ISVC 5 

I I I I I I I 
IGC006 IContents Supervision, common IIEAQLKOOIIEAQLKOO CS ICA INUC 2 I LINK ISVC 6 

I subroutines (e. p. for the LINK I I I I I I 
I macro instruction) I I I I I I 
I I I I I I I 

IGC007 IContents Supervision, common I IEAQLKOOI IEAQLKOO CS ICA INUC 2 IXCTL SVC 7 
I subroutines (e.p. for the XCTL I I I I I 
I macro instruction) I I I I I 
I I ( I I I 

IGC008 IContents SUpervision, common I I EAQ LK 0 0 I IEAQLKOO CS ICA INUC 2 ILOAD SVC 8 
I subroutines (e.p. for the LOAD I I I I I 
I macro instruction) I I I I I 
I I I I I I 

IGC009 IDelete routine I IEAQLKOOI IEAQLKOO CS ICC INUC 2 I DELETE SVC 9 
I I I I I I 

IGC010 IGETMAIN/FREEMAIN routines IEAQGMOOIIEAQGMOO MSS IDA INUC 1 IGETMAIN(R) SVC 101 
I 
1 
I 

I (e. p. for R-form macro I I I I FREEMAIN (R) 
I instructions) I I I I 
I I I I I 

IGC011 ITime routine IEAQRTOOIIGC011 TMS IEA,EEINUC 1 ITIME ISVC 
I 
ISVC 

111 
1 I I I I I 

IGC012 Icontents Supervision, common IEAQLKOOIIEAQLKOO CS ICA INUC 2 ISYNCH 121 
( 
I 
I 

I subroutines (e.p. for the ( I I I I 
I SYNCH macro instruction) I I I I I 
I I I I I 

IGC014 ISPIE routine IEAQTBOOIIGC014 TS IBF INUC 2 ISPIE 
1 
ISVC 141 

I I I I I 
IGC016 ISVC Purge routine IECIPR161IGC016 MSS I INUC 2 I PURGE 

I 
ISVC 

I 
16 

I macros I I I I 1 
I I I I I I 

IGC037 IOverlay Supervisor, resident IEWSUOVRIIGC037 CS ICE INUC 2 ISEGLD SVC 37 
I module (e. p. for a SEGLD or I I I I SEGWT 
I SEGWT macro instruction) I I I I 
I I I I I 

IGC040 IExtract routine IEAQTBOO IGC014 TS IBD INUC 1 IEXTRACT SVC 40 
IGC040+81Extract routine (branch e.p.) I I I 

I I I I 
IGC041 IIdentify routine IEAQIDOO IGC041 CS ICB INUC 2 IIDENTIFY SVC 41 

I I I I 
IGC042 IAttach routine IEAQATOO IGC042 TS IBA INUC 2 IATTACH SVC 421 

I I I I I 
IGC043 IStage 1 Exit Effector IEAQEFOO IGC043 TS IBK INUC 2 ICIRB SVC 431 

IGC044 
IGC044 
+12 

I I I I I 
ICHAP routine IEAQCHOO IGC044 TS IBB,BCINUC 1 I CHAP ISVC 441 
ICHAP routine (branch e.p.) I I I I I 
I I I I I I 
I I I I I I 

IGC045 IOverlay Supervisor, resident IEWSVOVRIIGC037 CS ICE INUC 2 I CALL ISVC 451 
Imodule (e. p. for branch I I I I I I 
I instruction or CALL macro I I I I I I 
I instruction) I I I I (I 
I I I I I I I 

IGC046 ITTIMER routine IEAQSTOOIIGC046 TMS IEC,EGINUC 1 ITTIMER ISVC 461 
I I I I I I ( 

IGC047 ISTIMER routine IEAQSTOOIIGC046 TMS IEB,EFINUC 2 ISTIMER ISVC 471 
I I I I I I I 

IGC048 IDequeue routine IEAQENQ21IGC048 TS IBJ INUC 2 IDEQ ISVC 481 
I I I I I I I 

IGC056 IEnqueue routine IEAQENQ21IGC048 TS IBI INUC 2 IENQ ISVC 561 
I I I I I I I 

IGC061 ITESTRAN interpreter IGC0006AIIEGHRSAVI CS I (SVC 3 ITTSAV ISVC 611 
I I I I I I I I 

IIGC062 IDetach routine I IEAQED021IGC062 1 TS (BE INUC 2 IDETACH ISVC 621 L ________ ~ ______________________________ ~ ______ ~ ______ ~ _______ ~ ____ L-___ _ ___ ~ _______ ~ _____ -J 

Figure 14-1. Module Directory (Part 12 of 17) (See legend before Part 1) 

Section 14: Program Organization 737 



r--------T-------------------------------T-------~--------T-------------y----T-----------------------, 

I I I I I PLM I I I 
I Entry I I IControl I References I I If SVC Routine I 
I Point . I Name of Routine. Control Block. I Module ISection ~------~----~Lib.~----T-----------T------~ 
I Name I Table. Transient Area I Name I Name I I Chart I I I Macro I SVC I 
I I I I I Section I ID I I Type I Instruction I Instr.I 
r--------t-------------------------------t--------t--------t-------t-----+----t----t-----------t------~ 
IIGC079 ISet Status routine IEAQSETSIIEAQSETSI TS IBW IMOC 1 STATUS ISVC 791 
I I I I I I I I 
IIGC109 IExtended SVC Router Types IGCl16 IIGCl16 I IH lAC ISVC 2 ISVC1091 
I 13 and 4 I I I I I I 
I I I I I I I I 
IIGC116 IExtended SVC Router Type 1 IGCl16 IIGC116 I IH lAC ISVC 1 I SVC116 I 
I I I I I I I I 
IIGCl17 IExtended SVC Router Type 2 IGCl16 IIGCl16 I IH lAC ISVC 2 SVCl17 
I I I I I I 
IIGE0660AIDDR Central IGE0660AIIGE0660AI * I ISVC 
I I I I I I 
IIGFASROBlcpU Analysis module IGFASROBIIGFASROBI I ISVC 
I I I I I I 
I IGFASROC I Instruction Retry Analysis IGFASROC I IGFASROC I I I svc 
I Imodule. phase 1 I I I I 
I I I I I I 
I IGFASRODI Storage Protection Feature IGFASRODI IGFASRODI I I SVC 
I ITest module I I I I 
I I I I I I 
IIGFASROOISystem Analysis module IGFASROOIIGFASROOI I ISVC 
I Ifor the Model 65 I I I I 
I I I I I 
IIGFASROllMCH Error Recorder module IGFASR011IGFASROli ISVC 
I I I I I 
IIGFASRlAlRefresh Clear Channel module IGFASR1AIIGFASRlAi ISVC 
I I I I I 
IIGFASR1ClInstruction Retry Analysis IGFASR1CIIGFASR1CI ISVC 
I I I I I 
IIGFASR1DIError Check Circuitry Verifi- IGFASR1DIIGFASR1DI ISVC 
I I cation module I I I 
I I I I I 
IIGFASRlOIRefresh Loader module IGFASR10lIGFASR101 ISVC 
I I I I I 
IGFASR2C I Instruction Retry Execution IGFASR2C I IGFASR2C I I SVC 

Imodule. phase 1 I I I 
I I I I 

IGFASR2DlMain Storage Scan module IGFASR2DIIGFASR2DI ISVC 
I I I I 

IGFASR20lPDAR Termination Analysis IGFASR201 IGFASR20 I ISVC 
I module I I I 
I I I I 

IGFASR3ClInstruction Retry Execution IIGFASR3CIIGFASR3C ISVC 
Imodule. phase 2 I I I 
I I I I 

IIGFCAT IChannel-Check Handler I IGFCATAPI IGFCAT IH IMOC 
I I Central (CCH> I I I 
I I I I I 
IIGFCCH481CCH 155 Analysis Module IIGFCCH481IGFCCH48 INUC 
I I I I I 
IIGFCCH60lCCH 2860 Analysis Module IIGFCCH60lIGFCCH60 INUC 
I I I I I 
IIGFCCH681CCH 145 Analysis Module IIGFCCH681IGFCCH68 INUC 
I I I I I 
IIGFCCH70ICCH 2870 Analysis Module IIGFCCH70lIGFCCH70 INUC 
I I I I I 
IIGFCCH80lCCH 2880 Analysis Module IIGFCCH80lIGFCCH80 INUC 
I I I I I 
IIGFDDRSRIDDR SYSRES Module I IGFDDR10 1 IGFDDRSRI * INUC 
I I I I I I 
I IGFDDROll DDR Resident Module I IGFDDRMVI IGFDDROll * I NUC 
I I I I I I 
IIGFDDR021DDR Channel End Appendage IIGFDDR021IGFDDR021 * INUC 
~------.L-----------------------------.L--------.L--------.L-------.L _____ .L--__ .L ____ .L-________ --'-_____ ~ 
I*Routine discussed in I/O Supervisor PLM. GY28-6676. I L ____________________________________________________________________________________ J 

Figure 14-1. Module Directory (Part 13 of 17) (See legend before Part 1) 

738 



r--------~------------------------------T-------_y------~-------------y----y-----------------------, 

I I I I I PLM I I I 
I Entry I I IControl I References I I If SVC Routine I 
I Point IName of Routine. Control Block. I l·lodule ISection .------_y-----tLib. ~---.. -----------.------~ 
I Name I Table. Transient Area I Name I Name I I Chart I I I Macro I SVC I 
I I I I I Section I ID I I Type I Instruction I Instr. I 
.--------t-------------------------------t--------t--------t-------+-----+----+----+-----------t------~ 

IGFDDR031DDR Abnormal End Appendage IGFDDR031IGFDDR031 * INnC I 
I I I I I 

IGFDDR051 DDR SYSRES Module IGFDDR10 I IGFDDRSR I * I NnC I 
I IGFDDROOIIGFDDRSRI I I 
I (without I I I I 
I MCS) I I I I 
I I I I I 

IGFMCHEO I MCH Nucleus IGFMCHEO I IGFMCHEO I I I 
I I I I I 

IGFMCHElI MCH Console Write Module IGFMCHEll IGFMCHEl I I SVC 
I for System/370 I I I 
I I I I 

IGFMCHE21MCH Error Recorder Module IGFMCHE21IGFMCHE2 ISVC 
I for System/370 I I 
I I I 

IGFMCHEJIMCH Emergency Error Recorder IGFMCHE31IGFMCHE3 ISVC 
I Module for System/370 I I 
I I I 

IGFMCHFOIMCB Initialization Module for IGFMCHFOI IGFMCHFO ISVC 
ISystem/360 Model 85 and I I 
I System/370 I I 
I I I 

IGFMCBF41Refresh Loader Module for IGFMCBF41IGFMCHF4 ISVC 
ISystem/360 Model 85 I I 
I I I 

IGFMCBF51PDAR Terminator Analysis IGFMCHF51IGFMCHF5 ISVC 
I for System/360 Model 85 I I I 
land System/370 I I 
I I I 

IGFMCBF61Subsystem Interface Module IGFMCHF61IGFMCHF61 ISVC 
I for System/370 Model 165 I I I 
I I I I 

IGFMCH131Preliminary Error Analysis IGFMCH13 I IGFMCH13 I ISVC 
IModule for System/360 Model 85 I I I 
I I I I 

IGFMCB14 I Repair Refresh Verification IGFMCH14I IGFMCH14I ISVC 
IModule for System/360 Model 85 I I I 
I I I I 

IGFMCH151Storage Protect Feature IGFMCH151 IGFMCH15 I ISVC 
I Analysis Module for I I I 
ISystem/360 Model 85 I I I 
I I I I 

IGFMCB161Buffer Control Module IGFMCH16 1IGFMCH16I ISVC 
I I I I 

IGFMCH171Error Recorder Module for IGFMCH17I IGFMCH17I ISVC 
ISystem/360 Model 85 I I I 
I I I I 

IGFMCB18 I Alternate Multiply Control IGFMCB18I IGFMCH18I ISVC 
IModule for System/360 Model 85 I I I 
I I I I I 

IGFMCB191Main Storage Analysis Module IGFMCB19I IGFMCH19I ISVC 
I for System/360 Model 85 \ I I 
I \ I I 

IGFMCB20 \ Soft Machine-Check Bandler IGFMCH20 \ IGFMCH20 I ISVC 
\ for System/370 Model 155 \ I I 
I \ I \ 

IGFMCB21\Main Storage Analysis Module IGFMCH21 \ IGFMCH21 I ISVC 
I for System/370 Model 155 \ \ I 
\ \ I \ 

IGFMCH22\Storage Protect Feature IGFMCH22\IGFMCB22I ISVC 
IAnalysis Module for I I I 
\ System/370 Model 155 \ I I I • ________ L ______________________________ -L _______ -L ________ L _______ ~ ____ ~ ___ L ____ L ___________ ~ _____ ~ 

I*Routine discussed in I/O Supervisor PLM. GY28-6676. I L _________________________________________________________________________________________ -J 

Figure 14-1. Module Directory (Part 14 of 17) (See legend befcre Part 1) 

Section 14: Program Organization 739 



r--------T------------------------------~-------T--------T------------~--~-----------------------, 

I I I I I PLM I I I 
I Entry I I IControl I References I I If SVC Routine I 

.1 Point IName of Routine, Control Block,1 Module ISection .------~----~Lib.~----T-----------T------~ 
I Name I Table, Transient Area I Name I Name I I Chart I I I Macro I SVC I 
I I I I I Section I ID I I Type iInstructionl Instr·1 
~--------t-------------------------------t--------+--------+-------+-----+----t----t-----------+------~ 
IGFMCH23lRepair/Refresh Verification I IGFMCH23 I IGFMCH23 I ISVC I 

I Module for System/370 Model 155 I I I I 
I I I I I 

IGFMCH30lSoft Machine-Check Handler IGFMCH301 IGFMCH30 I ISVC I 
I for System/370 Model 165 I I I I 
I I I I I 

IGFMCH311Preliminary Error Analysis IGFMCH311IGFMCH31I ISVC I 
I Module for System/370 Model 165 I I I I 
I I I I I 

IGFMCH331Main storage Analysis Module IGFMCH331IGFMCH33 ISVC I 
Ifor System/370 Model 165 I I 
I I I 

IGFMCH341Storage Protect Feature IGFMCH341IGFMCH34 ISVC 
IAnalysis Module for I I 
ISystem/370 Model 165 I I 
I I I 

IGFMCH35 I Repair/Refresh Verification IIGFMCH351IGFMCH35 ISVC 
I Module for System/370 I I 
IModel 165, Part 1 I I 
I I I 

IGFMCH36 I Repair/Refresh Verification IGFMCH361IGFMCH36 ISVC 
IModule for System/370 I I 
IModel 165, Part 2 I I 
I I I 

IGFMCH40lSoft Machine-Check Handler IGFMCH40lIGFMCH40 ISVC 
I for System/370 Model 145 I I 
I I I 

IGFMCH411Preliminary Error Analysis IGFMCH41 I IGFMCH41 I ISVC 
Ifor System/370 Model 145 I I I 
I I I I 

IGFMVTFlISystem Analysis Module for IGFMVTF11IGFMVTF11 ISVC 
ISystem/360 Model 85 and I I I 
ISystem/370 I I I 
I I I I 

IGFMVTF21System Analysis Module for IGFMVTF21IGFMVTF2 ISVC 
I System/360 Model 85 and I I 
ISystem/370 I I 
I I I 

IGFMVTF31System Analysis Module for IGFMVTF31IGFMVTF3 ISVC 
I System/36 0 Model 85 and I I 
I System/370 I I 
I I I 

IGFNOOOO I MCH Resident Nucleus for I I 
I System/360 Model 65 IGFNUCOO I IGFNUCOO I NUC 
ISystem/360 Model 85 IGFMCH10lIGFMCH10 INUC 
I System/370 IGFMCHEO I IGFMCHEO I LINK 
I I I 

IGFN0001IConsole/SYSRES Clear Channel I I 
I Module for I I 
ISystem/360 Model 65 IGFASROAIIGFASROAI ISVC 
ISystem/360 Model 85 IGFASR5AIIGFASR5AI ISVC 
I I I I 

IGFN00021MCH Termination Module for I I I 
ISystem/360 Model 65 IGFASROAIIGFASROAI ISVC 
ISystem/360 Model 85 IGFMCH12I IGFMCH12I ISVC 
I I I I 

IGF085011Machine status Control Module IGF085011IGF085011 ISVC 
IPart 1 for System/360 Model 85 I I I 
I I I I I 

IGF085021Machine status Control Module I IGF085021 IGF08502 I ISVC 
I Part 2 for System/360 Model 85 I I I I 
I I I I I 

IGF296011Machine status Control IIGF296011IGF296011 ISVC 
IModule for System/370 Model 1551 I I I l ________ ~ _______________________________ ~ ________ ~ ________ ~ _______ ~ _____ L-__ _ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I _ ___ ~ ___________ L-____ _ 

Figure 14-1. Module Directory (Part 15 of 17) (See legend before Part 1) 

740 



r--------T-------------------------------T--------T--------T-------------T----~---------------------_, 

I I I I I PLM I I I 
I Entry I I IControl I References I I If SVC Routine I 
I Point IName of Routine, Control Block, I Module Isection ~-------T-----~Lib·~----T-----------T-----~ 
I Name I Table, Transient Area I Name I Name I I Chart I I I Macro I SVC I 
I I I I ISectionl ID I I Type I Instruction I Instr.I 
~--------+-------------------------------+--------+--------+-------+-----+----+----+-----------+-----~ 
IIGF29701lMachine status Control I IGF297011 IGF297011 ISVC I 
I I for system/370 Model 145 I I I I I 
I I • I I I I I 
IIGF2403DIAPR VARY PATH Command Processor IGC2403D[IGF2403DI * ISVC I 
I I I I I I 
IIGF24MPDIAPR VARY PATH Command IGC2403DIIGF24MPDI * ISVC I 
I I Processor (Load 1 MP) I I I' 
I I I I I 
IIGF2503DIDDR SWAP Command Processor IGC2503DIIGF2503DI * ISVC 
I I I I I 
I IGF34MPD I APR VARY PATH Command IGC3403DIIGF34MPDI * ISVC 
I I Processor (Load 2 MP) I I I 
I I I I I 
IIGF553011Machine Status Control IGF29701 IGF297011 ISVC 
I I Module for System/370 Model 165 I I 
I I I I 
IINTEXTRNISecond CPU Interruption lEAQFXOO IEAQFXOOI IH INUC 
I I Analysis routine I I I 
I I I I I 
IINTMLFALISecond CPU Recovery Management IIEAQFXOO IEAQFXOOI IH INUC 
I I System Interface routine I I I 
I I I I 
IINT025A IRoutine in the I/O Supervisor IIEAQFXOO IEAQFXOO EP INUC 
I I that returns a request element I (IEAQFX I 
I I to the free list I and I 
I I IIECIOS I 
I I I macros) I 
I I I I I 
IIORGSW 11/0 Switch (in I/O First-Level IIEAQNU021IEAQNU02 IH I INUC 
I I Interruption Handler> I I I I 
I I I I I I 
ILINKDCB IData Control Block (DCB) for IIEAQBKOOIIEAQBKOO I INUC 
I I the SYS1. LINKLIB data set I I I I 
I I I I I I 
ILINKDEB IData Extent Block (DEB) for thelIEAQBKOOIIEAQBKOO I INUC 
I ISYS1.LINKLIB data set I I I I 
I I I I I I 
IOVLALD021SEGLD Processor routine IIEWSWOVRIIEWSWOVRI CS ICE ILINK 
I I I I I I I I 
IRMBRANCHIGETMAIN/FREEMAIN routines I lEAQGMOOI IEAQGMOO I MSS IDA INUC I 1 
I I(branche.p.) I I I I I I 
I I I I I I I I 
I SECMCI I SERO routine I I I I I I 
I I System/360, Model 40 IIFBSR040lIFBSR040 IH IAK I LINK I 
I I System/360, Model 50 IIFBSR050lIFBSR050 IH IAK I LINK I 
I I System/360, Model 65 I IFBSR0651 IFBSR065 IH IAK I LINK I 
I I System/360, Model 75 IIFBSR075 I IFBSR075 IH IAK ILINKI 
I I I I I I I 
I START I Initial Program Loading routinelIEAIPLOOIIEAIPL I I I 
I I I I I I I 
ISVCDCB IData control Block (DCB) for I lEAQBKOOI IEAQBKOO I INUC I 
I I the SYS1. SVCLIB data set I I I I 
I I I I I I 
I SVCDEB I Data Extent Block (DEB) for the I IEAQBKOO I IEAQBKOO I I NUC 
I I SYS1. SVCLIB data set I I I I 
I I I I I I 
ITABLDL ITransient Area Fetch routine IIEAQTR331IEAQTROO IH IAE INUC 
I TAHFETCHI I I I I 
I I I I I I 
ITAIOBl ITransient area I/O blocks IIEAQBKOOIIEAQBKOO I INUC 
ITAIOB2 I (lOBs) and associated transient I I I I I 
ITAIOBn I areas I I I I I 
ITAIOBn+11 I I I I I I I 
~--------~------------------------------~--------~--------~-------~----~----~----~-----------~------~ 
I*Routine discussed in I/O Supervisor PLM. GY28-6676. I L _____________________________________________________________________________________________________ J 

Figure 14-1. Module Directory (Part 16 of 17) (See legend before Part 1) 

Section 14: Program organization 741 



r--------T------------------------------~--------T--------T------------~----T-----------------------, 
I I I I I PLM I I I 
I Entry I I IControl I References I I If SVC Routine I 
I Point IName of Routine. Control Block. I Module ISection ~------~----~Lib.~---~-----------T------~ 
I Name I Table. Transient Area I Name I Name I I Chart I I I Macro I SVC I 
I I I I I section I ID I I Type I Instruction I Instr. I 
~--------+-------------------------------+--------+--------+-------+-----+----+----+-----------+------~ 
ITASEARCHITransient Area XCTL routine I IEAQTR33I IEAQTROOI CS ICA INUC 
I I I I I I I 
ITATABCK ITransient Area Availability I IEAQTR33 I IEAQTROO I IH lAD INUC 
I I Check routine I I I I I 
I I I I I I I 
ITAXEXIT ITransient Area Exit routine I IEAQTR33 I IEAQTROOI EP IKC INUC 
I I I I I I I 
ITAXRETRYITransient Area XCTL routine I IEAQTR33 I IEAQTROO I CS CA INUC 
I I I I I I 
ITESTDSP ITask Removal routine IEAQFXOOI IEAQFXOO I IH INUC 
I I I I I 
ITRDISP ITrace routine (e.p. for the IEAQTRCEIIEAQTRCEI INUC 
I I Dispatcher) I I I 
I I I I I 
ITREX ITrace routine (e.p. for Ext. IEAQTRCEIIEAQTRCEI INUC 
I I FLIH) I I I 
I I I I I 
I TRIO ITrace routine (e.p. for I/O IEAQTRCEIIEAQTRCEI INUC 
I I FLIH) I I I 
I I I I I 
ITRPI ITrace routine (e.p. for PC IEAQTRCEIIEAQTRCEI INUC 
I I FLIH) I I I 
I I I I I 
ITRSVC ITrace routine (e.p. for SVC IEAQTRCEIIEAQTRCEI INUC 
I I FLIH) I I I 
I I I I I 
IUSERORG ISVC table (start of user- IEAQBKOOIIEAQBKOOI IH INUC 
I I assigned SVC numbers) I I I L ________ ~ _______________________________ ~ ________ ~ ________ ~ _______ L_ ____ ~ ____ ~ ____ L_ __________ ~ _____ _ 

Figure 14-1. Module Directory (Part 17 of 17) (See legend before Part 1) 

742 



r---------------------------------------------------------------T------------T----------, 
I IEntry Point I I 
I Name of Routine, Control Block, Tatle, Transient Area I Name(s) I Chart lD I 
r---------------------------------------------------------------+------------+----------~ 
IABDUMP routines I 
I "resident n module lGCOA05A Ll I 
I I 
I ABDUMPl lGCOL05A Ll I 
I I 
I ABDUMP1.5 lGCOC05A Ll I 
I ! I 
I ABDUMP2 lGCOl05A Ll I 
I I 
I ABDUMP3 lGC0205A Ll I 
I I 
I ABDUMP4 lGC0305A Ll 
I 
I ABDUMP5 lGC0405A Ll 
I 
I ABDUMP6 IGC0505A Ll 
I 
I ABDUMP7 IGC0605A LI 
I 
I ABDUMP8 lGC0705A ILl 
I I 
I ABDUMP9 lGC0805A ILl 
I I 
I ABDUMPIO (resident routine) IGCOA05A ILl 
I I 
I ABDUMPll IIGCOB05A ILl 
I I 
I ABDUMP12 IGCOJ05A ILl 
I I 
I ABDUMP13 IGCOK05A ILl 
I I 
I ABDUMP14 IGCOM05A ILl 
I I 
I ABDUMP15 lGCON05A ILl 
I I 
I ABDUMP16 lGCOP05A ILl 
I 
I ABDUMPQ lGCOQ05A Ll 
I 
I TCAM ABDUMP 1 IGCOD05A LJ 
I 
I TCAM ABDUMP 2 IGCOE05A LJ 
I 
I TCAM AEDUMP 3 lGCOF05A LJ 
I 
I TCAM ABDUMP 4 lGCOG05A LJ 
I 
I TCAM ABDUMP 5 IGCOR05A LJ 
I I 
I TCAM AEDUMP 6 IlGCOS05A ILJ 
I I I 
I ABDUMPH IlGCOH05A INone 
I I I 
I ABDUMPl IlGCOl05A INane 
I I I 
I SVC DUMP 1 IlGC0005A IME 
I I I 
I SVC DUMP 2 I lGCO Z05A I MF 
I I I 
IABEND routine I I 
I Abnormal Termination Modular Cverview I ILK 
I I I 
I ABEND 0 IlGCOOOIC ILL 
I I I 
I ABENDl IIGCOI01C ILM I L _______________________________________________________________ ~ ____________ ~ __________ J 

Figure 14-2. Directory of Entry Point Names and Flowchart Identifications (Part 1 of 15) 

Section 14: Prograrr Organizaticn 743 



,--------------------------------------------------------------T------------T----------, 
I IEntry Pcint I I 
I Name of Routine, Control Block, Table, Transient Area I Name(s) I Chart Ir I 
~---------------------------------------------------------------+------------+----------~ 

ABEND3 IGC0301C LN 

ABEND4 

ABENI:5 

ABENt7 

ABEND8 

ABEND9 

ABEND11 

ABEND12 

ABEND13 

ABEND15 

ABEND16 

ABENt20 

ABTERM routine 

IABTERM Prologue routine 
I 
IABTERM Setsubs subroutine 
I 
IAlternate Multiply Control rr.odule 
I for System/360 Model 85 
I 
IAlternate Path Retry 
I APR VARY PATH Command Processor 
I 
I 
I 
IATTACH routine 
I 
IAttention routine 
I 
IBLDL routine 
I 
IBuffer Control module 
I 

IGC0401C 

IGC0501C 

IGC0701C 

IGC0801C 

IGC0901C 

IGCOE01C 

IGCOC01C 

IGCOD01C 

IGCOF01C 

IGCOG01C 

IGCOK01C 

IEAOABOO 
lEAOABOl 

lEAOPLOO 

SETSUBS 

IGFASR6F 
IGFMCH18 

IGF2403D 
IGF24MPD 
IGF34~PI: 

IGC042 

IEEBA1 

IECPBLDL 

IGFMCH16 

LO 

LP 

I.Q 

I.R 

LS 

I.T 

I.U 

LV 

I.W 

LX 

I.Y 

I.F 
LF 

LH 

LG 

None 
Ncne 

None 

BA 

FA 

None 

None 

ICDEXIT routine CDDESTRY KE 
I CI:EXIT KE 
I CDHKEEP I KE 
I I 
IChannel-Check Handler Central routine IGFCAT I None 
I I 
IChannel-Check Handler 155 Analysis routine IGFCCH48 I None 
I I 
IChannel-Check Handler 2860 Analysis routine IGFCCH60 I None 
I I 
IChannel-Check Handler 145 Analysis routine IGFCCH68 I None 
I I 
IChannel-Check Handler 2870 Analysis routine IGFCCH70 I None 
I I 
IChannel-Check Handler 2880 Analysis Routine IGFCCH80 I None 
I I 
ICHAP routine IGC044 IBB,BC 
I IGC044+12 I L-______________________________________________________________ ~ ____________ ~ __________ J 

Figure 14-2. Directory of Entry Point Names and Flowchart Identifications (Part 2 of 15) 

744 



r---------------------------------------------------------------T------------T----------, 
I I Entry Point I I 
I Narr,e of Routine, Control Block, Tat:le, Transient Area I Name (s) I Chart ID I 
~---------------------------------------------------------------+------------+----------~ 
Checkpoint routines I I 

Check~oint Housekee~ing 1 routine IIGC0006C IJA 
I I 

Check~oint Housekee~ing 2 routine IGC0106C IJE 
I 

Checkpoint Housekee~ing 3 routine IGC0206C IJC 
I 

Check I/O routine IGC0506C IJD 
I 

Preserve 1 routine IGCOA06C IJE 
I 

Preserve 2 routine IGCOC06C IJE 
I 

Checkmain 1 routine IGCOF06C JF 

Checkmain 2 routine 

Checkmain 3 routine 

Resuroe I/O routine 

Checkpoint Exit routine 

Checkpoint Message Module 

Communications Task Attention Interruption dandIer 

Communications Task Console Switch routine (f.1CS) 
Load 1 

I 
I 

Load 2 

Load 3 

Load 4 

I Communications 
I 
I Communications 
I 
I Communications 
I 
I Communications 
I 
I Communications 
I 
I Communications 
I 
I Communications 
I 
I Communications 
I 
I Communications 
I 
I Communications 
I 
I Communications 
I 
I Communications 
I 

Task Device Interface routine (MCS) 

Task DeM Service routine (MCS) 

Task External Interruption Handler routine 

Task External Processor routine (ncn-MeS) 

Task Initialization routine 

Task Mini-Router 

Task Misc. Looku~ Services routine 

Task NIP ~essage Buffer writer 

Task Reply Processor routine 

Task MCS Reply Processor routine 

Task Error Message routine 

Task Request Block (RB) 

IGCOG06C 

IGCOH06C 

IGCON06C 

IGCOQ06C 

IGCOS06C 

IEEEAl 

IGCXL07B 

IGCXM07B 

IGCXN07B 

IIGCX007B 

IEECMDSV 

IEECMDOM 

IEEBC1PE 

IGCXL07B 

IEECVCTI 

IGC0007B 

IEEVRFRX 

IGC0907B 

IEE1203D 

IEE1A03D 
I 
IIEE1B03D 
I 
IIEECVPRB 
I 

JF 

JG 

JH 

JH 

JI 

FA 

IFJ 
I 
IFK 
I 
IFK 
I 
IFL 
I 
IFf.1 
I 
IFO 
I 
IFA 
I 
IFH 
I 
IFD 
I 
I (Fig. 7-3) 
I 
INane 
I 
IFP 
I 
INane 
I 
INane 
I 
INane 
I 
INane 
I 

ICommunications Task Router routine (non-MCS) IIGC0007B IFG L _______________________________________________________________ ~ ____________ ~ _________ _ 

Figure 14-2. Cirectory of Entry Point Names and Flowchart Identifications (part 3 of 15) 

Section 14: Program Organizaticn 745 



r---------------------------------------------------------------T------------T----------, 
I IEntry Point I I 
I Narre of Routine, Control Block, Table, Transient Area I Name(s) I Chart ID I 
r---------------------------------------------------------------+------------+----------~ 
ICommunications Task Router routine (MCS) IEECVCTW IFI 
I I 
ICommunications Task TCB IEECVTCB I None 
I I 
ICommunications Task unit Control Tables IEECVUCM I None 
I I 
ICommunications Task Wait routine (ncn-MCS) IEECIR45 IFF 
I I 
ICommunications Task WTO Handler IGC0003E IFB 
I I 
ICommunications Task WTOR Handler IGC0103E IFC 
I I 
ICommunications Task WTO(R) Service routine (MCS) IEECMWSV IFN 
I I 
ICommunications Task 1052 Console C~en/Close rcutine IGCOI07B FT 
I 
ICommunications Task 1052 Console Processor 1 routine (non-MCS) IGC0107B 
I 
Icommunications Task 1052 Console Processor 1 routine (MCS) IGC0107B 
I 
ICommunications Task 1052 Console Processor 2 routine (MCS) IGC0207B 
I 
ICommunications Task 1052/Printer Processor 2 routine (non-MCS) IGC0207B 
I 
Icommunications Task Printer O~en/Close routine 
I 
I 
ICommunications Task Printer Processor routine 
I 
I 

IGC2I07B 

IGC2107B 

FQ 

FR 

FS 

(Fig. 7-1) 

(Fig. 7-1, 
7-2) 

(Fig. 7-1, 
7-2) 

I 
ICommunications Task Card Reader o~en/Close routine IGC1I07B (Fig. 7-2)1 
I 
ICommunications Task Card Reader Processor routine 
I 
ICommunications Task 2740 Console Processor 
I 
I Communications Task 3284/3286 Processor routine 
I 
ICommunications Vector Table (CVT) 
I 
IConsole/SYSRES Clear Channel routine 
I 
Contents Supervision Common Subroutines 

entry ~oints for search phase 

entry point for scheduling phase 

entry pOint for the ATTACH macro instructicn 

entry point for the lINK macro instruction 

entry pOint for the XCTL macro instruction 

entry point for the lOAD macro instruction 

entry point for the SYNCH nacro instruction 

IGCll07B 

I~EEC2740 

I 
IIEECVETW 
1 
IIEACVT 
I 
IIGFNOOOl 
I 
I 
ICDADVANS 
ICDCONTRL 
lalso called 
I IEAQCS02 
I 
ICDEPILOG 
also called 

IEAQCS03 

IEAQCSOl 

IGC006 

IGC007 

IGC008 

IGC012 

FU, FV 

FW 

IFX 
I 
I None 
I 
INone 
I 
I 
ICA 
ICA 
I 
I 
I 
ICA 
I 
I 
I 
ICA 
I 
ICA 
I 
ICA 
I 
ICA 
I 
ICA 
I 

I 
I 
I 
I 
I 
I 
I 
I 

ICPU Analysis module IGFASROB INone I L _______________________________________________________________ ~ ____________ ~ __________ J 

Figure 14-2. Directory cf Entry Point Names and Flowchart Identifications (part 4 of 15) 

746 



Decimal Simulator routines for ~odel 91 
Add/Subtract/Zero-and-Add Lecimal routine 

Analyzer/End routine 

Corrpare Decimal routine 

Divide Decimal rcutine 

Multiply Decimal rcutine 

Simulator Control routine 

IDelete routine 
I 
IDequeue routine 
I 
IDequeue TCB routine 
I 
IDetach routine 
I 
IDispatcher 
I 
IDynamic Device Reconfiguration 
I DDR Central 
I 
I DDR SVC Router, Initiator, Terrrinator 
I 
I DDR Operator-Initiated 
I 
1 DDR System-Initiated (Load 1) 

DDR System-Initiated (Load 2) 

DDR Tape Reposition (Load 1) 

DDRMSG MOD#1 

DDR Tape Reposition (Load 2) 

DDR Recording 

DDRMSG MOL#2 

DECASP MI 

DECLO ML 
DECNEND 

IDECCP IMH 
I I 
IDECDP IMK 
I I 
IDECMP IMJ 
I I 
I DECENT IMG 
I I 
I IGCOO9 ICC 

I 
IGC048 IBJ 

I 
lEADQTCB IIC 

I 
IGC062 IBE 

I 
lEAODS IKF-KI 

I 
I 

IGE0660A INone 
I 

IIGCOOO8E None 

IGC0108E None 

IGC0208E None 

IGC0308E None 

IGC0408E None 

IGC0508E None 

IGC0608E None 

IGC0708E None 

IGC0808E None 

DDR Resident Module IGFttR01 None 

--------~------------------------------------------------------~------------~----------
Figure 14-2. Directory of Entry Point Names and Flowchart Identifications (Part 5 of 15) 

Section 14: Program Organization 747 



r---------------------------------------------------------------T------------T----------, 
I I Entry Point I I 
I Name of Routine, Control Block, Table, Transient Area I Name(s) I Chart IO I 
~---------------------------------------------------------------+------------+----------~ I DDR Channel End Appendage IGFDDR02 I None 
I I 
I DDR Abnormal End Appendage IGFDDR03 I None 
I I 
I DDR SYSRES Routine IGFDDR05 I None 
I I 
I DDR SYSRES Routine IGFDDRSR I None 
I I 
I DDR SWAP Command Processor IGF2503D INone 
I I 
Device Independent Display Operator I 

Console Support (DIDOCS) routines 

Asynchronous Error routine IEECVETC HI< 

Cleanup routine IEECVFTG II 

Command routine IEECVET4 HS 

Delete 1 routine IEECVET6 IA 

Delete 2 routine IEECVET7 IB 

Delete 3 routine IEECVET8 IC 

Delete 4 routine IEECVET9 ID 

Display 1 routine IEECVET2 HO 

Display 2 routine IEECVET3 HP 

Display 3 routine IEECVFT2 HQ 

Light Pen/Cursor Service routine IEECVETF IE 

Message 1 routine IEECVETD HL 

Message 2 routine IEECVETE HM 

Message 3 routine IEECVFTD HN 

Multiple-Line WTO (Non-MCS) Load 1 IEECVML1 GD 

Multiple-Line WTO (Non-MCS) I.oad 2 IEECVML2 GE 

Multiple-Line WTO (MCS) I.oad 1 IEECVML3 GD 

Multiple-Line WTO (Non-MCS) Load 3 IEECVML4 GF 

Multiple-Line WTO (MCS) I.oad 2 IEECVML5 GE 

Multiple-Line WTO (MCS) I.oad 3 IEECVML6 GF 

Multiple-Line WTO (MCS) I.oad 4 IEECVML7 GG 

Model 85 I/O routine IEECVETH HJ 

Open/Close routine IEECVETG HE 
---------------------------------------------------------------~------------~----------

Figure 14-2. Birectory of Entry Point Names and FlOwchart Identifications (Part 6 of 15) 

748 



r---------------------------------------------------------------T------------T----------, 
I IEntry Point I I 
I Narre of Routine, Control Block, Tatle, Transient Area I Name(s) I Chart ID I 
~--------------~------------------------------------------------+------------+------~---~ 

Options routine IIEECVETA HT 
I 

PFK routine 1 IIEECVFTA IG 
I 

PFK routine 2 IEECVFTE IH 

Processor 0, Load 1 

Processor 0, Load 2 

Processor 1, Load 1 

Processor 1, Load 2 

Roll Mode routine 

Status Display Interface 1 

Status Display Interface 2 

Status Display Interface 3 

Status Display Interface 4 

Status Display Interface 5 

Status Display Interface 6 

Status Display Interface 7 

Timer Interpreter routine 

2250 I/O-l routine 

2250 1/0-2 routine 

2260 1/0-1 routine 

2260 1/0-2 routine 

3277 I/O-l routine 

3277 1/0-2 routine 

End-of-Task (EOT) routine 

Enqueue routine 

ENQ/DEQ Purge routine 

Erase Phase routine 

Error Check Circuitry Verification rrodule 

Error Recorder module for Systerr/370 
for Systere/360 Model 85 

IEECVFTl 

IEECVFTZ 

IEECVETl 

IEECV-ETZ 

IEECVETJ 

IEECVFTL 

IEECVFT~ 

IEECVFTN 

IEECVFTO 

IEECVFTP 

IEECVFTQ 

IEECVFTT 

IEECVETK 

IEECVETP 

IEECVETQ 

IEECVETR 

IEECVFTR 

IEECVETU 

IEECVETV 

EOT 

IGC056 

IEAQEQOl 

IEAQERA 

IGFASR1D 

IGFMCHE2 
IGFMCH17 

HA 

HB 

HC 

HD 
I 
IHR 
I 
IJ 

IK 

IL 

1M 

IN 

10 

IP 

IF 

HF 

HG 

IHH 

HI 

HU 

HV 

LA 

BI 

Ncne 
I 
INane 
I 
INane 
I 
INane 
INone 
I 

ESR Extended SVC Router I 
I I 
I Type 1 Router IGCl16 lAC 
I I 
I Type 2 Router IGC117 lAC 
I I 
I Type 3 and 4 Routers IGC109 lAC L _______________________________________________________________ L ____________ ~ __________ J 

Figure 14-2. Directory of Entry Point Names and Flowchart Identifications (Part 7 of 15) 

Section 14: Progra~ Organizaticn 749 



r---------------------------------------------------------------T------------T----------, 
I IEntry Point I I 
I Name of Routine, Control Block, Table, Transient Area I Name(s) I Chart IL I 
~--------------------------------------------------------------+------------+----------~ 
EXCP Counter routine IEASMFEX I~~ 

I 
EXCP Su~ervisor IECXCP INone 

I 
Exit routine IGC003 IKE 

I 
External First-Level Interruption Handler IEAQEXOO AH,AI 

Extraot routine 

branch entry point 

First CPU Signal routine 

FREEMAIN routine 

branoh entry point 

branoh entry point to free a region 

entry ~oint for S-form FREEMAIN macro instruction 

GET~AIN routine 

branch entry point to allocate a region 

branch entry point 

entry ~oint for S-form GETMAIN macro instruction 

GETMAIN/FREEMAIN routines 

IGC040 

IGC040+8 

FLASH 

FMERANCH 

FREEPART 

IGCOOS 

GETPART 

Gf.!BRANCH 

IGC004 

ED 

ED 

None 

LA 

DA 

DA 

I 
DA 

DA 

r::A 

entry pOint for R-form GETMAIN or FREE~AIN macro instruction IGCOI0 r::A 

branch entry point 

GETPART/FREEPART routine 

Gra~hio Console Initialization routine 

HALT and WRITELOG CLOSE routine 

Identify routine 

Initial Program Loading (IPL) routine 

Instruction Retry Analysis module, Phase 1 

Instruction Retry Analysis module, Phase 2 

Instruction Retry Execution module, Phase 1 

Instruction Retry Execution module, Phase 2 

I/O Blook (lOB) for the I/O Supervisor 'Iransient Area 

I/O First-Level Interru~tion Handler 

I/O Interruption Su~ervisor 

I/O Supervisor Transient Area 

RMERANCH 

IEAQPR 

IEECVGCI 

IEE1403D 

IGC041 

S'IART 

IGFASROC 

IGFASR1C 

IGFASR2C 

IGFASR3C 

IEAERRTA 

IEAQIOOO 

IECIN'I 

IIEAERWA 
I 

r::A 

DE 

FE 

(Fig.7-10) 

CE 

None 

None 

None 
I 
INone 
I 
INcne 
I 
INcne 
I 
IAJ 
I 
INcne 
I 
INone 
I 

11/0 Switch (in I/O FLIH) I IORGSW INone L _______________________________________________________________ .1 ________ ..; ___ .1 _________ _ 

Figure 14-2. Directory of Entry Point Names and Flowchart Identifications (part 8 of 15) 

750 



r---------------------------------------------------------------T------------T----------, 
I I Entry Point I I 
I Name of Routine, Control Block, Tatle, Transient Area I Name (s) I Chart ID I 
~---------------------------------------------------------------+------------+----------~ 
IJob File Control Blocks (JFCBs) for the log data sets IIEEVLCGJ I (Fig.7-10) 
I I I 
ILink Pack Area Queue IIEAQLPAQ I None 
I I I 
ILog and WRITELOG Post routine IIEE1603D I (Fig.7-10) 
I I I 
ILog Writer IIEELWAIT IGA 
I I I 
Log (Write-to-Log SVC 36) I I 

Load 1 IIEE0303F 1GB 

Load 2 - Log Data Set Open/Close 

Machine Status Control Module for 
System/360 Model 85 (Part 1) 

System/360 Model 85 (Part 2) 

System/370 Model 145 

System/370 Model 155 

System/370 Model 165 

IMain Storage Analysis ~odule for 
I 

I I 
IEE0403F IGC 

I 
I 

IGF08501 INone 
I 

IGF08502 INone 
I 

IGF29701 None 

IGF29601 None 

IGF55301 None 

I System/360 Model 85 IGFMCH19 None 
I 
I System/370 Model 155 IGFMCH21 None 
I 
I System/370 Model 165 IGFMCH33 None 
I 
IMain storage Scan module IGFASR2D None 
I 
IMaster Scheduler Initialization routine IEEVIPL (Fig.7-10) 
I 
IMaster Scheduler Resident Table IEEMSER None 
I 
IMaster Scheduler TCB IEAMSTCB None 
I 
IMCH Console Write routine IGFMCHEl None 
I 
IMCH Emergency Error Recorder rrodule IGFMCHE3 None 
I 
IMCH Error Recorder module for 
I 
I System/360 Model 65 IGFASROl None 
I 
I System/360 Model 85 IGFMCH17 None 
I 
I System/370 IGFMCHE2 None 
I 
IMCH Initialization module IGFMCHFO None 
I 
IMCH Nucleus IGFMCHEO None 
I I 
IMCH Resident Nucleus module IGFNOOOO INone 
I I 
IMCH Termination routine IGFN0002 I None 
I I 
INucleus Initialization Prograrr (NIP) IEANIP4 INone L _______________________________________________________________ ~ ____________ ~ _________ _ 

Figure 14-2. Directory of Entry Point Names and Flowchart Identifications (part 9 of 15) 

Section 14: Program Organizaticn 751 



r---------------------------------------------------------------T------------T----------, 
I IEntry Point I I 
I Name of Routine, Control Block, Tatle, Transient Area I Name(s) I Chart ID I 
~---------------------------------------------------------------+---------~--+----------~ 

I 
I 
I 

Overlay supervisor I I 
I I 

nonresident module IIEWSZOVR ICE 
-I I 

resident module I I 
I I 

entry point for SEGID or SEGWT macro instruction IIGC037 CE 
I 

entry point for a branch instruction or CALL macro I 
instruction IIGC045 CE 

I 
P~AR Termination Analysis module for I 

I 
Systero/360 Model 65 IIGFASR20 None 

I 
System/360 Model 85 IIGFMCHF5 None 

I 
System/370 IIGFMCHF5 None 

Post routine 

branch entry pcint for I/O Supervisor routines 

branch entry paint for I/O supervisor routines and 
for supervisor routines 

entry paint for the PCST macro instruction 

branch entry point for supervisor routines 

preliminary Error Analysis rrodule for 

System/360 Model 85 

System/370 Model 145 

System/370 Model 165 

Program Check First-Level Interru~tion Handler 

Program Fetch routine 

IEACP~01 

IEACPT02 

IGC002 

IGC002+6 

IGFMCH13 

IGFMCH41 

BH 

BH 

IBH 
I 
IBH 
I 
I 
I 
INane 
I 
INane 
I 

IIGFMCH31 INane 
I I 
IIEAQPKOO IAF,AG 
I I 
I I 
I I 

I entry paint for the Overlay Su~ervisor (IEWSZOVR) IIEWFBOSV ICD 
I I I 
I entry point for the Transient Area Fetch rcutine IIEWFTRAN ICD 
I I I 
I entry paint for contents supervision commcn sutroutines IIEWMSEPT ICD 
I I I 
IProgram Fetch Channel-End Appendage routine IFTCE01 ICD 
I I I 
IProgram Fetch PCI Appendage routine IFTPCI01 ICD 
I I I 
Ipurge Timer routine IIEAQPGTM ILD 
I I I 
IQCB queues. origin of IIEAQQCBO INane 
I I I 
IRefresh Clear Channel module I I 
I I I 
I for system/360, ~odel 65 and Model 65 Multiprocessor IIGFASRlA INane I L _______________________________________________________________ ~ ____________ ~ __________ J 

Figure 14-2. ~irectory of Entry Point Names and Flowchart Identifications (part 10 of 15) 

752 



r---------------------------------------------------------------T------------T----------, 
I IEntry Point I I 
I Name of Routine, Control Block, Tal:le, Transient Area I Name (s) I Chart ID I 
t---------------------------------------------------------------+------------+----------~ 
IRefresh Loader module I I 
I I I 
I for System/360, ~odel 65 and Medel 65 Multifrocesser IGFASR10 INone I 
I I I 
I for System/360, Model 85 IGFMCHF4 None I 
I I 
IRefresh/Repair Verification module for I 
I I 
I System/360 Model 85 IGFMCH14 None I 
I I 
I System/370 Model 155 IGFMCH23 None I 
I I 
I System/370 Model 165 (Part 1) IGFMCH35 None I 
I 
I 
I 

System/370 Model 165 (Part 2) IGFMCH36 None 

IReply Purge routine (also called the WTOR Purge reutine) IEECVPRG None 
I 
IRelease loaded Programs routine IEAQABL LE 
I 
IRelease Main Storage routine IEAQSPET LE 
I 
IRestart Routines I 
I 

DOS Tape Data Set Processor 

ISAM and BDAM Data Set Processor 

Restart Job Management-SMB Reader 

Restart Housekeeping 1 

Restart Housekeefing 2 

Repmain 1 routine 

Repmain 2 routine 

IGCOU05B 

IGCOW05B 

IGCOOO5B 

IGC0105B 

IGC0205B 

IGC0505B 

IGC0605B 

I 
IJY 
I 
INone 
I 
INone 

JJ 

JJ 

JK 

JL 

Repmain 3 routine IGC0705B JM I 
I 

Repmain 4 routine IIGC0805B JM I 
I I I 

Repmain 5 routine IIGC0905B IJN I 
I I I 

REP I/O-JFCB Processor 1 IIGCOG05B IJO I 
I I I 

REP I/O-JFCB Processor lA IIGCOG95B IJO I 
I I I 

REP I/O-JFCB Processor 2 IIGCOI05B IJO I 
I I I 

REP I/O-Dummy Data Set Processcr IIGCOH05B IJP I 
I I I 

REP TCAM Data Set Processor IIGCOJ05B IJX I 
I I I 

REP I/O-Mount/Verify 1 (Non tirect Access) routine IIGCOK05B IJQ I 
I I I 

REp I/O-Mount/verify 2 (tirect Access) routine IIGCOM05B IJR I 
I I I 

REP I/O-SYSIN/SYSOUT Data set Processor 1 IIGCON05B IJS I 
I I I 

REP I/O-SYSIN/SYSOUT Data Set Processor 2 IIGCOQ05B IJS I _______________________________________________________________ ~ ____________ ~ __________ J 

Figure 14-2. Directcry of Entry Point Names and Flowchart Identifications (part 11 cf 15) 

Section 14: Pregram Organizaticn 753 



r---------------------------------------------------------------T------------T----------, 
I IEntry Point I I 
I Narre of Routine, Control Block, Tal:le, Transient Area I Nallie (s) I Chart ID I 
~---------------------------------------------------------------+-----~------+----------~ 

REP I/O-Data set Processor 1 IGCOP05B JT 

REP I/O-Data set Processor lA 

REP I/O-Data set Processor 2 

REP I/O-Access Method-Disposition routine 

Restart Exit routine 

SYSIN/SYSOUT Non-DASD Data Set Processor 

IRollout/Rollin module 
I 
ISecond CPU Interruption Analysis routine 
I 
ISecond CPU Recovery Management Systelli Interface rcutine 
I 
ISecondary Communications Vector Table 
I 
ISEGLD Processor routine 
I 
ISERO routine 
I resident Irodule 
I 
I nonresident modules (for System/360 Models 40, 50, 65, 75) 

, I 
: I 
. SERl routine (for System/360 ~odels 40, 50, 65, 75) 

(for Systelli/360 Models 91, 95, 195) 

STATUS Service routine 

SMF EXCP Counter routine 

SMF Storage rcutines 

SMF Wait Time Collection routine 

SMF Time/Output Limit Expiration routine 

Soft Machine-Check Handler for 

System/370 Model 145 

System/370 Model 155 

System/370 Model 165 

SPIE routine 

IGCOS05B 

IGCOR05B 

IGCOT05B 

IGCOV05B 

IGCOL05B 

IEAQRORI 

INTEXTRN 

INTMLFAL 

IEABEND 

OVLALD02 

IEAMCHOO 

IFBSEROO 
SECMCI 

IEAMCHOO 
IEAMCHOO 

IGC079 

IEASMFEX 

FMSMFCRE 
GMSMFCRE 

IEAQWAIT 

IEATLEXT 

IGFMCH40 

IGFMCH20 

IGFMCH30 

IGC014 

JU 

JV 

JW 

JW 

None 

DC-DI 

None 

None 

None 

CE 

IAK 
I 
IAK 
IAK 
I 
IAL 
IAlY: 
I 
lEW 
I 
IMM 
I 
IDA 
IDA 
I 
IMO 
I 
IMN 
I 
I 

None 

None 

None 

BF 

ISTAE Service routine IGC00060 BP 
I 
I ABEND/STAE Interface 0 routine IGCOR01C BQ 
I 
I ABEND/STAE Interface 1 routine IGCOS01C IBR 
I I 
I ABEND/STAE Interface 2 routine IGCOT01C IBS 
I I 
I ABEND/STAE Interface 3 routine IGCOU01C IBT 

!I 

l _______________________________________________________________ ~ ____________ ~ _________ _ 

Figure 14-2. Directory of Entry Point Names and Flowchart Identifications (Part 12 of 15) 

754 



r---------------------------------------------------------------T------------T----------, 
I IEntry Point I I 
I Name of Routine, Control Block, Table, Transient Area I Name(s) I Chart IC I 
r---------------------------------------------------------------+------------+----------~ 
I ABENC/STAE Interface 4 routine IGCOV01C IBU 
I I 
I ABENC/STAE Interface 5 routine IGCOW01C I,BV 
I I 
IStage 1 Exit Effector IGC043 IBK 
I I 
IStage 2 Exit Effector IEAOEFOO IBL 
I I 
IStage 3 Exit Effector I 
I entry points for the Dispatcher ERFETCH IBM 
I IEAOEF03 BM 
I 
I 
I 

entry point for an I/O error-handling routine 

ISTIMER routine 
I 
Storage Protection Feature Analysis module for 

System/360 Model 85 

System/370 Model 155 

System/370 Model 165 

storage Protect Feature Test ~odule 

Subsystem Interface Module for System/370 Model 165 

Subsystem Purge routine 

SVC First-Level Interruption Handler 

SVC Purge routine 

SVC Second-Level Interruption Handler 

SVC Table 
start of IBM-assigned SVC numters 

start of user-assigned SVC numters 

ISWAP Cormand Processor 
I 
ISyste~ Analysis module 
I for System/360, ~odel 65 and ~odel 65 lo1ultiprocesscr 
I 
I 
I 
I 
I' 
I 
I 
L 
I 

System/360 Model 85 and System/370 

part 1 

part 2 

Part 3 

ISystem error TCB (associated with I/O supervisor transient 
I areas) 
I 
ITask Rerroval routine 
I 
ITask Switching routine 
I 

IIECXTLER 
I 
IIGC047 
I 
I 
IIGFlo1CH15 
I 
IIGFMCH22 
I 
IIGFMCH34 
I 
IIGFASROD 
I 
IIGFMCHF6 
I 
IIEAASPRG 

IEAQSCOO 

IGC016 

IEAQTROO 

IEMORG 

USERORG 

IGF2503D 

IGFASROO 

IGFMVTFl 

IGFMVTF2 

IGFMVTF3 

IEAER'ICB 

TESTr:SP 

IEAODS02 

Blo1 

EB,EF 

None 

None 

None 

None 

None 

None 

IAA 
I 
INone 
I 
lAB 
I 
I 
INone 
I 
INone 
I 
INone 
I 
I 
I None 
I 
I 
I 
INone 
I 
INone 
I 
I None 
I 
I 
INone 
I 
INone 
I 
IBN,BO 
I 

ITerminal Attention Exit Element Purge routine IEAKJXP ILB L _______________________________________________________________ ~ ____________ ~ __________ J 

Figure 14-2. Directory of Entry Point Names and Flowchart Identifications (part 13 of 15) 

Section 14: Program Organization 755 



r---------------------------------------------------------------T------------T----------, 
I IEntry Peint I I 
I Name of Routine, Control Block, Table, Transient Area I Name(s) I Chart Ir I 
~---------------------------------------------------------------+------------+----------~ 
ITESTRAN Interpreter I 
I I 
I entry faint for SVC 61 instruction IGC061 INene 
I I 
I entry faint for the Overlay supervisor (IE~SZOVR) IEGHTOVL INene 
I 
ITime routine 
I 
ITimer Second-Level Interruftion Handler 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

branch entry pcint 

entry faint for the Bispatcher 

branch entry point 

entry point for the External First-Level 
Interruption Handler 

ITrace routine 

I 
I 

entry paint for the Disfatcher 

entry paint for the External First-Level 
Interruption Handler 

entry faint for the I/O First-Level Interruption Handler 

entry faint for the Program Check First-Level 
Interruption Handler 

entry point for the SVC First-Level Interrupticn Handler 

Transient Area Availability Check routine 

Transient Area Control Table 

ITransient Area Exit reutine 
I 
I 
I 
I 
I 

entry faint for the Exit routine 

entry faint for the corr~on subroutines of Contents Supvsn. 

ITransient Area Fetch routine 
I 
I 
I 
I 
I 

entry faint to ferform BLDL and fetch 

entry point to ferform fetch only 

ITransient Area Fetch ~CEs 
I 
I 
I 
I 

IGCOll 

IEAQTrOO 

IEAQTC01 

IIEAQTEOO 

IEAOTIOO 

TRDISP 

TREX 

TRIO 

TRPI 

TRSVC 

TATABCK 

lEAQTAQ 
IEAQTAQ1 

I 
I 
I 
IIEAQ'IROl 
I 

TAX EXIT 

TABLCL 

TAHFE'ICH 

IEATCE1 
IEATCB2 
IEATCBn 
IEATCBn+l 

ITransient Area I/O Blecks (IOES) and associated transient areas TAIOBl 
I TAIOB2 
I 

EA,EE 

ED,EH 

EC,EH 

ED,EH 

ED,EH 

None 

None 

Nene 

None 

None 

AD 

None 
None 

KC 

KC 

AE 

AE 

INane 
INane 
INene 
INane 
I 
INane 
INane 
I 

ITransient Area Refresh routine IEAQTR02 IKD L _______________________________________________________________ ~ ____________ ~ __________ J 

Figure 14-2. Directory of Entry Point Names and Flowchart Identifications (part 14 of 15) 

756 



r---------------------------------------------------------------T------------T----------, 
I IEntry Point I I 
I Name of Routine, Control Block, Table, Transient Area I Name(s) I Chart II: I 
t---------------------------------------------------------------+------------+----------~ 
ITransient Area XCTL rcutine IIEAQTR03 ICA 
I ITASEARCH ICA 
I ITAXRETRY ICA 
I I 
ITTIMER routine IGC046 IEC, EG 
I I 
IType-1 SVC Exit routine IEAOXEOO IKA 
I I 
IType-1 SVC Switch (in SVC First-Level Interru~tion Handler) IEATYPE1 INene 
I I 
IValidity Check routine IEAOVLOO Nene 
I 
IVARY PATH Corrrrand Processor 
I 
I 
I 
IWait routine 
I 
IWrite-to-Log routine 
I 
IWrite-to-Operator reutine (MCS) 
I 

IGF2403r: 
IGF24~PD 
IGF34MPD 

IGC001 

IEE0303F 

IGC0003E 

IWrite-to-Operator rcutine (Non-MCS) IGC0003E 
I I 

MP 

IWrite-to-Prograrrmer rcutine I I 
I I I 

Nene 

BG 

GE 

FE 

FE 

I Initialization IIGC0203E INene 
I I I 
I Processing IGC0303E INene 
I I 
I Errdr IGC0403E INone 
I I 
IWRITELOG Availatle Log Cata Set routine IEEVLOUT I (Fig.7-10) 
I I 
IWRITELOG Dis~atch routine IEEVLCSP I (Fig. 7-10) 
I I 
IWRITELOG Get Region reutine IEEFLI:SP INone 
I I 
IWRITELOG Log Initialization routine IEEVLIN I (Fig.7-10) 
I I 
IWRITELOG Log writer rcutine IEEVLWTR I (Fig.7-10) 
I I 
IWRITELOG Master Wait routine IEEVWAIT I (Fig. 7-10) 
I I 
IWRITELOG Open Device routine IEEVLOPN I (Fig.7-10) 
I I 
IWTOR Purge routine (also called the Reply Purge routine) IEECVPRG INone L _______________________________________________________________ L ____________ L __________ J 

Figure 14-2. Directory of Entry Point Names and Flowchart Identifications (part 15 of 15) 

Section 14: Program organization 757 



r-----------T-----------------------------, 
I SVC I I 
I Instruction I Name of Routine I 
~----------+-----------------------------~ 
I SVC 0 IEXCP Su~ervisor (in the I/O 
I I Supervisor) 

I 
SVC 1 IWait routine 

I 
SVC 2 IPost routine 

I 
SVC 3 IExit Routine 

I 
SVC 4 GETMAIN routine 

SVC 5 

SVC 6 

SVC 7 

SVC 8 

SVC 9 

SVC 10 

SVC 11 

SVC 12 

SVC 13 

SVC 14 

FREEMAIN routine 

contents supervision common 
subroutines (entry ~oint for 
the LINK rracro instruction) 

contents SUfervision common 
subroutines (entry ~oint for 
the XCTL nacro instruction) 

ccntents Su~ervision common 
subroutines (entry faint for 
the LOAL rracro instruction> 

Delete routine 

GETMAIN/FREEMAIN routines 

Time routine 

Contents Su~ervision common 
subroutines (entry ~oint for 
the SYNCH macro instruction> 

AEEND routine (ABENDO> 

SPIE routine 

SVC 15 IERREXCP (reinstate system 
lerror task> 
I 

SVC 16 ISVC Purge routine 
I 

SVC 18 IBLDL routine 
I 

SVC 19 10pen routine 
I 

SVC 20 IClose routine 
I 

SVC 34 ILog and WRITELOG Post routine 
I 

SVC 35 IWrite-to-cperator routine 
I 

SVC 36 IWrite-to-Log routine 
I 

SVC 37 IOverlay supervisor resident I 
Imodule (entry point fer SEGLDI 
lor SEGWT rracro instructions) I ___________ ~ _____________________________ J 

Figure 14-3. Table of Routines Invoked by 
SVC Instructions (Part 1 of 2) 

758 

r-----------T-----------------------------, 
I svc I I 
I Instruction I Name of Routine I 
~-----------+-----------------------------~ 

SVC 40 IExtract routine I 
I 

SVC 41 IIdentify routine 
I 

SVC 42 IAttach routine 
I 

SVC 43 IStage 1 Exit Effecter 
I 

SVC 44 ICHAP routine 
I 

SVC 45 10verlay SUfervisor resident 
Imodule (entry point for 
Ibranch instruction or CALL 
Imacro instruction) 
I 

SVC 46 ITTI~ER routine 

SVC 47 

SVC 48 

SVC 51 

SVC 52 

SVC 56 

SVC 60 

SVC 61 

SVC 62 

STI~ER routine 

DEQ routine 

AEDU~P routine (AEDUMP1) 

Restart routine 

ENQ routine 

STAE Service routine 

TESTRAN Inter~reter (entry 
pOint for TTSAV macro 
instruction) 

Detach routine 

SVC 63 ICheckpoint routine 
I 

SVC 72 ICorr.rrunicaticns Task Router 
I routine 
I 

SVC 79 ISet Status routine 
I 

SVC 85 I Dynamic Device Reconfigura-
Ition routine 
I 

SVC 87 IDelete Operator Message 
I routine 
I 

SVC 109 IType 3 and Type 4 Extended 
ISVC Router routine 
I 

SVC 116 IType 1 Extended SVC Reuter 
I routine 
I 

SVC 117 IType 2 Extended SVC Router 
I I routine I 
~-----------~-----------------------------~ 
INote: Only those routines that are used I 
Iby the supervisor are included in this I 
Ilist. I L _________________________________________ J 

Figure 14-3. Tatle of Routines Invoked by 
SVC Instructions (Part 2 of 2) 



ROUTINE SYNOPSES 

Each major routine used by the su~ervi
sor is briefly described. 

ABDUMP routine: (Chart LI) Displays con
trol blocks, programs, and dynanically 
acquired reain storage lelonging to a spe
cific task, as specified by in~ut ~arame
terse Is invoked through a SNAP nacro 
instruction either by the ABEND routine 
during an abncrmal termination, or by a 
user routine at any time. 

ABEND routine: (Charts LK-LY) Invokes the 
ABEND/STAE interface routine if STAE pro
cessing is indicated. Transfers control to 
the Damage Assessment Routine (DAR) routine 
if any of three conditions occurs: the 
task specified for termination is in "must 
complete" status, the task s~ecified for 
termination is a system task, or the ABEND 
routine is reentered as an invalid recur
sion. Depending on the ty~e of AEEN£ requ
est, terreinates either a s~ecific task and 
its incomplete subtasks, or all tasks of a 
job step. Issues WTP rr.essages for type-1 
SVC routines when possible. At the cal
ler's option (if possible), invokes the 
ABDUMP routine to display resources belong
ing to the terminating task, its direct 
ancestors, and its descendants. Frees the 
control blocks, main storage, and other 
resources used by a terminating task and 
its incomplete subtasks. 

ABTERM routine: (Charts LF, LG) Schedules 
execution of the AEEND routine. Is used by 
system routines that wish to terminate a 
task other than their cwn. Also used by 
type-1 SVC routines, which are net ~er
mitted to issue an SVC instruction, and 
which therefore cannot directly invoke the 
ABENr:: routine. 

ABTERM Prologue routine: (Chart LH) Per
forms housekeeping functions in ~re~aration 
for entry to the ABTER~ routine after a 
program interruption. Housekeeping 
includes obtaining the address of the TCE 
for the task to be terminated, and setting 
a completion code to indicate the cause of 
the ~rogram check. 

Alternate Path Retry (APR): Not model
dependent. Allows an I/O operation that 
has developed an error on one channel to be 
retried on another channel (if another 
channel is assigned to the device perforrr.
ing the I/O o~eration) by causing channel
detected errors to be retried in a selec
tive manner on the available paths to a 
device. As paths are found to be incpera
tive, they are marked offline, thus pre
venting unnecessary retry from being 
initiated to failing paths. 

Also ~rovides the ca~ability tc VARY a 
~ath to a device online or offline, using 
the VARY PATH conmand. VARY PATH connand 
~rocessor is part of the Master Scheduler 
(SVC 34). Last ~ath to a device will not 
be varied offline. Four paths to each 
device sup~orted; teleprccessing ~aths not 
su~~crted. 

(For a full description of Alternate 
Path Retry, refer to the Input/Output 
supervisor PLM. 

Attaoh routine: (Chart BA) Obtains storage 
space for a new TCE for the subtask to be 
attached. Places in the new TCE informa
tion needed to control the subtask. Allo
cates to the subtask sub~ools of nain 
storage belonging to its parent or attach
ing task. Places the address of the new 
TeE en two lists: the subtask queue of its 
parent task, and the TCB queue used by the 
Dis~atcher. Schedules supervisor linkage 
to the corr.mon subroutines of Contents 
Supervision. The subroutines will locate, 
fetch (if necessary), and schedule execu
tion of the first ~rogram of the new 
subtask. 

Attention routine: (Chart FA) Receives 
control from the I/O First-Level Interrup
tion Handler after an cperator-caused 
interru~tion (when the REQUEST key cf a 
1052 printer-Keyboard or the START key of a 
card reader is pressed). Posts the a~prc
~riate ECE of the Communications Task. 

BIDI routine: Causes member addresses and 
c~ticnal infornation from a partitioned 
data set directory to be ~laced in a speci
fied list previously constructed in main 
storage. 

CDEXIT routine: (Chart KE ) Deternines if 
there is an outstanding request for use cf 
a recently completed module. If so, sche
dules reentry to the module for a waiting 
requester. If there is no outstanding 
request for the nodule, the routine tests 
the nodule's attributes. If the module is 
in the link pack area, control is returned 
innediately to the caller. If the module 
is in the job step's region, and is either 
reenteratle or reusable, the routine sets 
the "release" flag in the module's CDE and 
the npurge" flag for the job pack queue. 
(These flags are tested ty the GET~AIN rou
tine to determine which module's s~ace nay 
te freed, if needed space is otherwise 
unavailable.) If the module is neither 
serially reusable nor reenteratle, CDEXIT 
(via its CDDESTRY subroutine) renoves the 
nodule's CDE from the job pack queue, and 
frees the space occupied by the module, its 
extent list, and its C£Es (major and 
Itinor) • 

Routine Syno~ses 759 



Channel-Check Handler (CCH): Availatle on 
configurations using the 2860, 2870, 2880, 
145 or 155 channels· (Model 65 and higher). 
Receives control from the I/O SUfervisor 
via a branch when a channel error occurs. 
It performs two major functions. It pro
vides an analysis of the channel logout 
information in the error recovery procedure 
interface block (ERPIE) to aid the afpro
priate device-dependent error recovery pro
cedure in setting up for a retry of the 
failing operation ty the I/O SUfervisor. 
CCH also records envircnrrental data about 
the channel error in a channel error 
intoard record entry. This record entry is 
later written onto the SYS1.LOGREC ty the 
outboard recorder routine (OER) of the I/O 
SUfervisor. An operatcr message is issued 
each time a channel error is recorded. 
(For a full descriftion of the Channel
Check Handler, refer to the Infut/Output 
Supervisor PLM. 

CHAP routine: (Charts EE, EC) Changes the 
dispatching priority of a TCE ty adding the 
specified value to the TCE's existing dis
patching priority. Validates the new dis
patching priority and corrects it if 
necessary. 

Checkpoint routines: (Charts JA-JI) Inter
cept a task's I/O requests, cOfY the task's 
rrain storage region into a user-supflied 
data set, and record the status of data 
sets, main storage and contents sUfervision 
control tlocks, and other supervisor infor
mation necessary to restart the task's 
execution at a later time. 

Communications Task External Interruption 
Handler routine: (Chart FA) Receives con
trol from the External First-Level Inter
rUftion Handler after an Of era tor-caused 
interruption (when the INTERRUPT key on the 
system control panel is pressed). Posts 
the appropriate ECE of the Communications 
Task. 

Communications Task External Processor rou
tine: (Chart FH) Switches control from the 
frincipal console device to the alternate 
console device, and vice versa. 

Communications Task Initialization routine: 
(Chart FD) Initializes tables used for the 
Coremunications Task. Is executed when nuc
leus initialization is performed. 

Coremunications Task Miscellaneous Look-Up 
Services routine: Provides corrrrunications 
Task routines with the addresses of tables, 
or pointers to inforrraticn in the tatles. 
The tatles include the comrrunications vec
tor tatle (CVT), TCEs, REs, task I/O tables 
(TIOTs), and unit control tlocks (UCBs). 

760 

Communications Task Reply Processor rou
tine: Processes replies given ty an opera
tor in response to program messages written 
via the WTOR macro instruction. 

Communications Task MCS Refly Prccessor 
routine: Processes reflies given ty the 
cferatcr in an ~CS environment in resfonse 
to program messages written via the WTOR 
rracro instruction. 

Communications Task Errcr ~essaqe rcutine: 
Asserrbles, edits, and brcadcasts accepted 
replies to a WTOR rracro instruction for the 
Communications Task MCS Reply Processor 
routine, and writes error messages to the 
operator when replies are in error. 

Communications Task Router routine: (Chart 
FG) Selects the service to be ferfcrrred 
after the posting of an ECB for the Corr
munications Task. Routes control to the 
apprcpriate Corrmunications Task processor 
routine. 

Corrrrunications Task unit control tatles: 
[escrite characteristics of the I/O devices 
that perform the Communications Task. Alsc 
contain ECBs for the Communications Task. 

Communications Task Wait routine: (Chart 
FF) Waits for an ECB to be posted, then 
issues an SVC-72 instruction to cause entry 
to the Ccrrrrunications Task Router routine. 

Corrrrunications Task Open/Close routines: 
(Chart FT) Device-dependent routines that 
cause data sets for specific devices to te 
opened and closed. The devices are the 
1052 Console, the 2540 Ccnsole, and the 
1443 Printer. 

corrrrunications Task Processor routines: 
(Charts FQ, FR, FS, FU, FV, FW) I:evice
dependent routines that direct activity on 
specific devices by initiating I/O activi
ty, rranaging data tuffers, and responding 
to I/O completion and error conditions. 
The devices are the 1052 Console, the 2540 
console, and the 1443 Printer. 

contents S£pervision common sutroutines: 
(Chart CAl Locate, fetch, and schedule 
execution of a specified module. If the 
rrodule is in main storage and is available 
for use, schedule its execution. If the 
rrodule is not in main storage, or is ncn
reusable, locate the module. They search 
the specified private library, the link 
litrary, or the jot litrarYi then invoke 
the Frograrr Fetch routine to load the 
rrodule. Finally, they schedule execution 
cf the mcdule. If the module is being 
loaded or is serially reusatle and is in 
use, they place the current SVRE in a wait 
condition, and queue it to a list of SVRBs 
waiting for the rrodule. 



Console SUFPort routines: Added to SVC 12 
for READ, WRITE, OPEN, and CLOSE functions 
for the IEM 1052 Printer-Keyboard, as well 
as OPEN and CLOSE functions for the 2140 
Corrmunications Terrrinal. ~hese routines 
perform buffer management for the 1052 
Frinter-Keyboard only if Multiple Console 
Support (MCS) is included. 

Lamage Assessment routine (DAR): (Charts 
MA-MD) Receives control from various ABEND 
rrodules. Atterrpts to ~rite a core image 
dump, reinstates or initiates reinstatement 
of a failing task or region, and informs 
the operator if this is impossible so that 
the operator may halt system processing. 

Decimal Simulator routines: (Charts MG-ML) 
Perform decimal arithmetic instructions on 
Models 91 and 195. After receiving control 
from the Program First-Level Interruption 
Handler, interpret the instruction, check 
it for validity, and perform operations 
that simUlate the execution of the 
instruction. 

Lelete routine: (Chart CC) Locates the CDE 
for the specified module via a search of 
the task's load list. If there are no out
standing LOAD requests for the module, 
removes the module's load list elerrent frorr 
the load list and frees the storage space 
it occupies. Tests the use/responsibility 
count in the module's CDE. If there are no 
outstanding requests for the module's use, 
branches to CDHKEEP in the CDEXIT routine 
to test the module's attributes. According 
to the attributes, CDHKEEP returns control 
immediately to the caller, or frees the 
module's storage areas, or sets nrelease n 
and "purgen flags for use by the GE'IMAIN 
routine (see CLEXIT routine). 

Degueue routine: (Chart BJ) Updates the 
resource queues by remcving and freeing the 
queue element that represents the request 
for the resource ~hose use is no~ ccmplete. 
For the next requester represented on the 
QEL queue, reduces the ~ait count in its 
SVRB and tests if the requester is ready. 
Determines if a readied requester can 
replace the caller as the next-to-be dis
patched routine. Makes this determination 
via a branch to the Task S~itching routine. 
If no readied requester's task is of higher 
priority than the caller's, returns control 
to the caller. other~ise, returns control 
to the readied requester, ~hose resource(s) 
are no~ available. 

If the caller is a system routine and 
specifies the "reset must complete" 
operand, the current task, previously 
placed in "must cORplete n status, is 
released from that status. 

Cegueue ~CB routine: (Chart LC) Is invoked 
by either the EO'I routine or ABEND16 during 
a normal or abnormal terrrination. Rerroves 
a specified 'ICE from the TCB queue. 

Detach routine: (Chart BE) Rerroves the 
specified TCE from the TCB queue, and frees 
the 'ICE's storage space and the space of 
any associated problem-program register 
save area. If the caller supplies an in
valid ~CE address, the rcutine branches to 
the ABTERM routine to schedule abnormal 
termination of the caller's task. If the 
specified task i~ incomplete, the routine 
branches to the AETERM reutine to schedule 
abnormal terrrination of the specified task. 

LisFatcher: (Charts KF-KL) Determines the 
routine to be executed next, restores the 
con'tents of saved registers, and lcads an 
cld PSW to give control to the routine. As 
an optional feature, if a task s~itch is tc 
cccur, suspends' timing of the previously 
current task, starts or resumes tirring of 
the task to be given control, and branches 
to the G'IF routines, if active, or the 
'Irace routine to record information about 
the task s\'iitch. 

cisFlay CFerator Console SUFport routines: 
(Charts HA-IF) Added to SVC 12 only if Mul
tiple Console Support (MCS) is included. 
'Ihese reutines provide uniform conscle sup
port for the 2250 Display Unit (Models 1 
and 3), the 2260 Display Station (Mcdel 1 
~ith 2848 Display Control, Model 3), 3211 
Display Console (Models 1 and 2), and the 
Model 85 CRT Display (Feature 5450). 

cynarric tevice Reconfiguration (DDR): Not 
rrodel-defendent; standard for M65MF. 
Allo\'is a demountable vclume to be rrcved 
frerr one device to another, and repcsi
tioned if necessary, without abnormally 
terminating the affected job or reperform
ing IPL. A request to move a volurre Ray be 
initiated by the operator ~ith the SWAP 
command; the SWAP corrmand processor is part 
cf the Master Scheduler (SVC 34). System 
may request a s~ap of volumes folle~ing a 
ferrranent I/O error for non-SYSRES devices 
<interface through OBR/SDRl, or fcllc~ing 
an error in a system fetch operation for 
SYSRES devices (interface through TA Fetch 
cr error fetch sequence). (For a full 
description of Dynamic Device Reconfigura
tion, refer to the Input/Output Supervisor 
PL~. 

End-cf-Task (EOT) routine: (Chart LM 
Frees the resources used in performing a 
successfully completed task. The rescurces 
(control blocks, main storage, data sets, 
modules) are released only if they are net 
needed by ancther task. 

Routine Synopses 161 



Enqueue routine: (Chart EI) Creates, 
if necessary, one or more queue control 
blocks (QCBs) to represent the requested 
resource(s), and places them on the 
resource queues. Depending on the RET pa
rameter that the caller has specified, 
creates a queue element (QEL) to represent 
the request, and places it on a QEL queue. 
If the requested resource is net enqueued 
for another requester,· returns control to 
the current requester, with or without a 
return code (depending on the RET parame
ter). If the requested resource is already 
enqueued for another requester, either of 
two functions are performed, depending on 
the RET parameter: the current requester 
is placed in a wait condition, pending the 
availacility of the resource; or control is 
returned to the current requester, with a 
return code that indicates that the 
resource is not available. 

If the caller is a system routine and 
specifies the "set must complete" cperand, 
the Enqueue routine places the current task 
in "must complete" status. 

ENQ/DEQ Purqe routine: Is invcked by ABENt 
to remove from the rescurce queues requests 
(QELs and possibly one or aore QCBs) 
belonging to a terminating task. The purge 
is performed so that rcutines belonging to 
other tasks could gain access to the 
enqueued resource(s), if the task ter
minated cefore the DEQ routine could be 
executed. 

Erase Phase routine (also called the Erase 
routine): Is invoked by the ECT routine or 
ABEND during a norwal cr abnormal termina
tion. Removes the specified TCB from its 
parent's subtask queue, and frees the space 
cccupied by the TCE and any related 
problem-program register save area. (A 
similar function is performed by the Detach 
routine under different circuastances.) 

EXCP Supervisor: Is a part of the I/O 
Supervisor. Given ccntrol by the SVC 
First-Level Interruption Handler, it starts 
execution of a channelJ;:rogram. It issues 
a Start I/O instruction, then a Stand-Alone 
Seek command. The Stand-Alone Seek command 
moves the access arm of the direct access 
device to the seek address contained in the 
caller's lOB. 

Exit routine: (Chart EE) Processing 
depends on the type of RE associated with 
the exiting routine, as follows: 

1. If the task's current RE is a PRB (see 
Chart FB), the general register con
tents are moved from lower aain 
storage (location IEASCSAV) to the 
TCB. If the PRB is not the last RB on 
the RB queue, the routine branches to 
the CDEXIT routine to perform exit 

762 

J;:rocessing for the completed aodule. 
When CDEXIT returns control, function 
#5 is J;:erformed (see below). If the 
PRB is the last RE on the RE queue 
(quEued directly from the TCB), the 
ECT routine is entered to noraally 
terainate the task. When the EOT rou
tine returns control, the Exit routine 
frees the.RE's space and exits to the 
Transient Area Refresh routine. 

2. If the task's current RE is an SVRE 
(see chart FB), the Exit routine 
branches to the Transient Area Exit 
routine to reaove (if necessary) the 
SVRE from a transient area user queue. 
When control is returned, the register 
contents originally saved in the SVRE 
(registers 2-14) and register contents 
returned by the SVC routine (regs 0, 
1, 15) are in the TCB's save area. 
Function #5 is then performed (see 
belcw). 

3. If the task's current RB is an IRB 
(see Charts FE-FC), the "top" ICE or 
RQE on the IRE's list of elements is 
returned to a next-available list. If 
there is another IQEor RQE queued to 
the IRB, the routine reinitializes the 
IRE for reentry to the asynchronous 
exit routine, and branches tc the Dis
J;:atcher. But if there is no other IQE 
or RQE queued to the IRB, the rcutine 
moves register contents from the IRE's 
register save area to the TCB's 
register save area. Function #5 is 
then performed (see below). 

4. If the task's current RB is an SIRE, 
it is removed from the system error 
TeB, the SIRB's "active" bit is reset, 
and the Transient Area Refresh routine 
is entered. 

5. If the next RB on the task's RB queue 
is ~aiting, the routine indicates to 
the BisJ;:atcher the need for a task 
s~itch by placing zerc in the wneww 
TeE J;:cinter. The routine clears the 
RB's "active" flag and removes the RB 
froa the task's RE queue. If the RE 
is not a permanent system RB ncr an 
IRE that is still needed,1 the RE's 
storage space is freed. Also freed is 
space used for a related problea
program register save area. ~he Exit 
routine then enters the Transient Area 
Refresh routine. 

1An IRB Ray be retained for use with the 
sarre end~of-task exit routine (ETXR) for 
another task. In this case, its RBUSE 
count is not zero. 



Extended SVC Router: (Chart AC) Provide 
linkage to Supervisor Service routines by 
logically extending the routing capability 
of the SVC Interruption Handlers. ESR 
accomplishes this via a secondary routing 
algorithm based on a parameter established 
prior to issuance of one of the ESR SVCS 
(116, 117, or 109). 

External First-Level InterruFtion Handler: 
(Charts AH,AI) Saves the caller's register 
contents in the TCB and the external old 
PSW in the current RE. Eranches to the GTF 
routines, if active, or the Trace routine 
to record information about the external 
interruption. Deterrr.ines whether the 
interruption was caused by the operator or 
the timer, by examining the interruption 
code in the external old PSW. Depending on 
the cause of the interruption, gives con
trol to either the Timer Second-Level 
Interruption Handler or the Console Switch 
routine. 

In a Model 65 Multiprocessing System, 
after saving the old PSW, determines if a 
FLIH routine, other than External FLIH, was 
interrupted. If it was, saves the inter
ruption code and returns contrcl. Other
wise, processes the interruption after set
ting the supervisor lock byte. Alsc, 
determines if the interruption was caused 
by the second CPU, and, if it was, passes 
control to the routine indicated in the 
STMASK byte of the seccnd cpu. 

Extract routine: (Chart EL) Moves the con
tents of selected TCE fields to a specified 
area of main storage. 

FREEMAIN routine: (Chart DA) Frees speci
fied allocated main stcrage. If request is 
to free a region, the job paok queue is 
purged. In this case tasks that are wait
ing for allocation of a region are made 
ready and task switch is indicated. 

In a ~odel 65 Multiprocessing System, 
branches to the Vary Storage Offline (IFSV
RYOF) subroutine to process VQEs which 
apply to the freed area ef main storage. 

Generalized Trace Facility (GTF): Assists 
in tracing program flow by monitoring and 
recording system events. Initiated by the 
operator issuing the START command: 
executes as a system task. When active, 
the optional Trace Table facility must be 
disabled. 

GETMAIN routine: (Chart DA) Allocates main 
storage" space and builds main storage con
trol blocks, if needed. If the request is 
for system queue area and there is ne 
available space in this area, expands the 
supervisor queue area, if possible. If re
quest is not for system queue area, and 
free space is not available, makes space 

availatle ty purging those modules in the 
regicn's jot pack area whose CDEs have 
"release" flag set. These modules have no 
outstanding requests fer their use and have 
teen so flagged by the CDEXIT routine. If 
sufficient medule space cannot be made 
availatle, branches to the ABTERM routine 
to schedule the abnormal terrr.inatien of the 
caller's task. 

Identify routine:" (Chart CE) Creates a 
miner CDE to represent the specified 
embedded entry point to a load medule. 
(ueues the minor CDE to the module's majer 
CDE on the appropriate CDE queue. 

Initial Program Loading (IPL) routine: 
Clears main storage and machine registers 
to cerrect parity. Sets the storage pro
tection key of main storage to the supervi
ser fretection key. Lecates the nucleus 
data set on the system residence device. 
loads into main storage the nucleus and the 
Nucleus Initialization Program (NIF). 
Gives control to the NIP. 

I/O First-Level InterruFtien Handler: 
(Chart AJ) Sets the I/O switch (IORGSW) to 
indicate that an I/O interruption has 
occurred. Saves current register ccntents 
in the current TCB. Saves I/O eld PSW in 
the current RB. Branches to the Trace rou
tine to store pertinent informatien in the 
trace tatle. Branches to the I/O Interrup
tion Supervisor to process the interrup
tion. When control is returned, clears the 
I/O switch (IORGSW) and enters the 
dispatcher. 

I/O Interruption Supervisor: Is a fart ef 
the I/O Superviser. Given control by the 
I/O First~Level Interruption Handler (I/O 
FLIH), it services the I/O interrufticn. 
It then returns control to the I/O FLIH. 

I/O sUFervisor transient area: The area of 
main storage in which the system error task 
loads a system I/O error-handling rcutine. 

Job file control blocks (JFCBs) fc~ 
data sets: Contain descriptive information 
about the primary and alternate system log 
data sets. They are constructed and writ
ten cn auxiliary storage by job management 
routines. Each JFCB is loaded in main 
storage when the DCB with the same ddname 
is cfened. 

Link Fack area queue (also called the link 
Fack area control queue or LPACQ): Con
tains CDEs for modules stored in the link 
fack area of main storage. The link pack 
queue and the job pack queue together are 
called the contents directory. 

Log and WRITELOG Post routine: (Figure 
7-10) Fosts the ECE representing the appro
priate command. For log commands alse 

Routine Syncpses 763 



issues a WTL macro instruction. 

Machine-Check Handler (MCH): Is available 
for SysteB/360 Model 65, ~odel 65 ~ultipro
cessor (MCH/65) and Model 85 (MCH/85) and 
System/370. Receives contro,l via hardware 
loading of the machine check new PSW. This 
program consists of a resident module, and 
transient modules which reside on the SYS1. 
SVCLIB data set. It attempts to recover 
from a machine check interruption. 

MCH/65 first determines if the instruc
tion that was teing executed when the 
machine-check interruption occurred can be 
retried, and, if retry is possible, re
executes the instruction. This function is 
handled by machine recovery facilities on 
the System/360 Model 85 and System/370. 
If, however, instruction retry is nct poss
ible, MCH attempts to assess the damage to 
the program that was interrupted, and, in 
some models, repair that damage. 

If program damage is repaired, the MCH 
attempts to retry the interrupted instruc
tion. If the retry is successful, the MCH 
has recovered completely froIt the Itachine 
check interruption. 

If program damage cannot be repaired or 
instruction retry is unsuccessful, the MCH 
can either continue partial system opera
tion or place the CPU in the wait state. 
'Ihe choice depends on the type of task that 
was current at the time of the machine 
interruption, the number of tasks that are 
affected, and the extent of the pregram 
damage. If limited system operation is 
possible, the MCH either abnorrrally ter
minates the current jot step or sets the 
current task nondispatchable. If even 
limited system operation is not possible, 
because a critical system task is per
manently damaged, the ~CH issues an error 
message and places the CPU in the wait 
state. 1 

For a complete description of the 
Machine-Check Handler prograrr consult the 
rranual appropriate for the model being 
considered. 

• Machine-Check Handler for the Model 65 
PLM 

• Machine-Check Handler for the ~odel 85 
PLM 

• Machine-Check Handler for the System/ 
370 Models 135 and 145 

1The operator may then load the SEREP pro
gram in-order to format and print diag
nostic information from the CPU legout 
area. 

764 

• Machine-Check Handler for the System/ 
370 Models 155 and 165 PLM 

~aster Scheduler Initialization routine: 
(Figure 7-10) Is performed during nucleus 
initializatien. Places appropriate unit 
control cleek narre in the unit control 
table. Constructs an initial list cf ECEs 
for the corrmunications task. Determines 
~hich consoles are active. Gives central 
to the ceITlTunications task Wait routine. 

~aster Scheduler resident table: Contains 
switches and peinters that are used ty the 
~aster Scheduler during nucleus initializa
tien. 

Nucleus Initialization Program (NIP): 
Initializes the resident part of the con
trol program and prepares rrain sterage fer 
control pregrarr eperation. Receives con
trol frorr the IPL routine via a Load PSW 
instruction. Initializes nucleus tables, 
performs general systerr initializaticn, and 
sets up divisicns of main storage. In the 
~odel 65 Multiprocessing Systerr, NIP also 
initializes those parts of the nucleus that 
are unique to rrultiprocessing. 

Open routine: A data rr,anagement reutine 
that completes the specified data centrol 
block and prepares the associated data set 
for processing. Analyses input labels and 
creates cut put labels. 

Cverlay SUFervisor (nonresident module): 
(Chart CE) Directs loading of the specified 
overlay segment and any segments in its 
path that are not in main storage. When 
loading is complete and, the caller has 
issued a CALL rracro instruction or a tranch 
instruction, alters the entry tables of the 
loaded segments. The alteration perrrits 
future branches to the same points in the 
loaded segments without help frorr the Over
lay Superviser. 

Cverlay sUFervisor (resident module): 
(Chart CE) Ottains the address of the seg

ment table fer the overlay module. Ensures 
that the appropriate entry ta~le centains 
the specified entry point name. Causes 
supervisor linkage to the nonresident 
rrodule of the Overlay Supervisor. (The 
nonresident Itodule was leaded by the cerrrron 
subreutines ef Contents Supervision when 
the roet segrrent of the overlay rrodule was 
requested. ) 

Post routine: (Chart BH) Places the cal
ler'S pest cede into the specified ECE; 
sets the completion bit and clears the wait 
bit in the ECB. Also decreases by one the 
RB wait count for the waiting routine. If 
the new RB wait count is greater than zero, 
prepares for return of control to the call
er. If the new RB.wait count is zero, 
branches to the 'Iask Switching, then pre-



fares for return of control to the caller 
or the newly readied rcutine. 

Prograrr Check First-Level Interruption Han
dler: (Charts AF,AG) Saves register con
tents in ~rogram check register save area 
in lower main storage. ~hen branches to 
the Monitor Call Interrupt Handler tc filt
er out valid requests for rronitoring. 
~hese requests are recorded by GTF (if 
active), and ccntrcl is returned directly 
to the user's program or the dispatcher if 
a task switch is necessary. If it is not a 
rronitoring request, it is a valid program 
check and control is returned to the Pro
gram Check FLIH after recording the program 
check interruption in GTF, if GTF is 
active. If GTF is nct active, and the 
trace option exists in the system, branches 
to the Trace routine tc store inforrration 
in the Trace table. If the interrupted 
routine was operating in supervisor state, 
gives control to the AETERM Prologue rou
tine. If the interrupted routine was 
operating in ~roblem-prograrn state, deter
mines if the a9dress of a prograrr interrup
tion element (PIE) is in the current TCB. 
If a PIE address is not in the TCB, 
branches to the ABTERM Prologue routine. 
Otherwise, stores the prograrr. cld PSW and 
registers 2-14 in the PIE. If a program 
interruption control area (PICA) is not in 
effect or is being used for a previous pro
gram interruption, the routine branches to 
the ABTERM Prologue routine. Ctherwise, 
places the entry ~cint address of the 
interrupted routine in the prograrr cld PSW 
and branches tc a user-written error
handling routine. 

In a Model 65 Multiprocessing System, 
determines if the interruption was caused 
by an SSM instruction. If it was, sets the 
supervisor lock byte if complete enablement 
is not indicated, records the interrupticn 
from the SSM instructien in the GTF trace 
area, if GTF is active, and returns control 
to the interru~ed routine. Before proces
sing other types of prograrr interruptions, 
sets the supervisor lock byte. 

Prograrr Fetch routine: (Chart CD) Obtains 
needed storage space, initializes tables 
and an extent list, initiates I/C opera
tions, and loads the specified module or 
overlay segment into main storage. Per
forms any needed relocation of address con
stants. Computes the rrodule's relccated 
entry point address and returns it to the 
caller. Also returns the address of the 
rrodule's extent list. 

Froqram Fetch Channel-End Appendage rou
tine: (Chart CD) Determines if all buffers 
are full and whether the entire module or 
overlay segment has been loaded. Receives 
control from and returns control to the I/O 
Interruption Su~ervisor. 

Program Fetch PCI Appendage routine: 
(Chart Cr) After each PCI interrupticn, it 
tests a record in the current RL[ buffer. 
When necessary, it causes a channel-program 
switch between two-record mode and single
record mode. Such switch is necessary if 
an RID or control record does not fellcw a 
text reccrd en auxiliary storage. When the 
last record is being read, posts a fetch 
ECE. Receives control from and returns 
control to the I/O Supervisor'. 

Furge Tiner routine: (Chart LD) Is invcked 
by the EOT rcutine or ABEND1 during a ncrn
alar abnornal termination. Tests a timer 
queue element (~QE), if cne belcngs to the 
terrrinating task. If the TQE is nct on the 
tirrer queue, issues a FREEMAIN macro 
instruction to free the space the TCC cccu
pies. If, hcwever, the TQE is on the timer 
queue, the r.outine branches to the Tiner 
Second-Level Interruption Handler 
(IEAQTDOO) tc cancel the interval request 
and rerrcve the TCE from the timer queue. 

ReFly Purge routine: Refer to the WTOR 
Purge rcutine. 

Release loaded Programs routine: (Chart LE) 
Is invck~d by the EOT routine or AEEN[16 
during a norrral cr abncrmal terrrinaticn. 
Frees lcad list elerrents for the terrrinat
ing task and reduces the use/responsibility 
count in each related CEE. Branches tc 
CEHKEEP in the C[EXIT routine to test the 
reduced use/res~onsibility count and per
forrr, if necessary, further module cleanup. 

Release ~ain Storage routine: (Chart LE) 
Is invcked by theEOT routine or AEENE16 
during a norrral or abncrrral terrrination. 
Releases rrain storage exclusively allocated 
to the terminating task. ~he task's sub
pool queue elerrents (SPQES) are used to 
free unshared subpools. The SPQEs are 
removed from the task's main storage queues 
and their s~ace is freed. In addition, if 
the job step task is being terrrinated, the 
routine branches to C[EESTRY in the C[EXIT 
routine. C[r;ESTRY frees main stcrage occu
pied by each mcdule in the job pack area, 
its extent list, and its C[Es (rrajor and 
rrinor). 

Restart routine: (Charts JJ-JY) Reads and 
interprets records from a checkpoint entry 
to restore a ~reviously executed task to 
its rrain storage region, open and repcsi
tion its data sets, and restore task con
trol blocks and queues sc that it rray be 
restarted within a job step. 

Rollout/Rollin module: (Charts DC-DI) 
Schedules rollout when an unconditional 
GETMAIN cannot be satisfied with space from 
the job step's region; schedules rcllin 
when all space in a borrowed region is 
freed. 

Routine Synopses 765 



SEGLD Processor routine: (Chart CE) Is a 
fart of the Overlay SUfervisor nonresident 
module. Is attached tc operate as a sub
task. Scans the segment tatle. Invckes 
the Program Fetch routine to load each 
indicated segment of an overlay rrodule. 
Posts an ECB for the Overlay Supervisor 
when all indicated segments have been 
loaded. 

SERO routine (resident module): (Chart AK) 
~odel-independent part of the SERO routine. 
Is entered after a machine check interrup
tion. Saves register contents and other 
indicative information, halts I/O activity, 
and causes entry tc the a~propriate model
dependent part of the routine. 

SERO rcutine (nonresident module): (Chart 
AK) Model-defendent modules, one of which 
is used with the corresponding rrodel of IB~ 
System/360. Collects information atout the 
status of the system at the time of the 
interruption, writes the inforrraticn onto 
the SYS1.LOGREC data set, and places the 
CPU into a wait state. 

SERl routine: (Charts AL,AM) Model
dependent modules, one of which is used 
with the corresponding model of IE~ System/ 
360 or .System/370. Collects information 
about the status of the machine at the time 
of the interruption and writes the informa
tion onto the SYS1.LOGREC data set. Then, 
either causes an atncrmal terminaticn of . 
the job step, cr places the CPU into the 
wait state, depending on the severity of 
the error condition. 

Set Status routine: (Chart EW) Sets all 
tasks of the specified jcb step nondis
patchable by setting the TCEPRO flags in 
their TCBs. 

SHOLDTAP routine: In a Model 65 Multi
processing System, issues a write direct 
instructicn which initiates an external 
interruption on the second CPU in a multi
frocessing system. The ST~ASK byte indi
cates the routine that gains control on the 
second CPU as a result of the interruption. 

SMF EXCP counting routine: (Chart MM) 
Counts and records the numter of references 
to user data sets. Compares EXCP count to 
output limit specified for SYSOU~ data 
sets. 

SMF Storage rcutines: (Chart DA) Records 
the number of 2K blocks required within the 
region for protlem program execution. 

SMF Time/Output Limit Expiration rcutine: 
(Chart MN) Provides an interface with a 
user time limit expiraticn routine and with 
a user output limit routine. 

766 

SMF wait Time Collection routine: (Chart 
~O) Collects and records system wait time 
information. 

SPIE routine: (Chart EF) Places intc the 
caller's TCB an indirect pointer to the 
specified user errcr-handling routine. 
Either lccates an existing prograrr inter
ruption elerrent (PIE) or creates a new one, 
and places its address in the caller'S TCE. 
Then places in the PIE the address of the 
associated prograrr interruption contrcl 
area (PICA). The PICA contains the address 
cf the user error-handling routine. 

STAE Service rcutine: (Charts BP-BV) 
creates a STAE ccntrol block which ccntains 
the address cfa user-written STAE exit 
routine and pararreter list. When an ABEND 
is scheduled for a task that has issued 
STAE, the AEEND routine invokes the ABEND/ 
STAE interface routine, which purges the 
task~s I/O, schedules the STAE exit rou
tine, and returns control to the user at 
the STAE exit routine address. Upon coIl'
pletion of the STAE exit routine, the 
ABEND/STAE interface routine either returns 
contrcl tc AEEND to terminate the task or 
schedules the user-written STAE retry 
routine. 

Stage 1 Exit Effector: (Chart BK) Creates 
and initializes an interruption request 
bleck (IRB) to schedule and control execu
tion of a user exit routine. 

Stage 2 Exit Effector: (Chart BL) Starts 
the scheduling of entry to a user exit rou
tine by flacing the specified queue element 
(lQE orRQE) on the appropriate asynch
ronous exit queue. 

Stage 3 Exit Effector: (Chart BM) Com
pletes the scheduling of a user exit rou
tine. It does this ty transferring an IQE 
or RQE from an asynchronous exit queue to 
the queue telonging to the appropriate IRE 
cr SIRB. Queues the IRB to the apprcpriate 
TCE. Queues the SIRB to the system error 
~CB. contains an error fetch sequence 
(similar to the ~A Fetch routine) that 
causes a needed but unavailable system I/O 
error-handling routine to be loaded. The 
error-handling rcutine is loaded in the I/O 
Superviscr transient area. 

STI~ER routine: (Charts EB-EF) Builds and 
places cn the timer queue the elements that 
represent specified tirre intervals. 

SVC First-Level InterruFtion Handler: 
(Chart AA) Saves the caller's register ccn
tents. Eranches to the GTF routines, if 
active or the Trace routine to reccrd 
information about the SVC interruption. 
retermines froIl" the SVC table the type of 
SVC routine to be given control. If a 
type-l rcutine, gives control to the rou-



tine. If a type-2, 3, or 4 routine, gives 
control to the SVC Seccnd-Level Interrup
tion Handler. 

SVC Purge routine: Is fart of the I/O 
Supervisor. Is invoked by AEENDl during an 
abnormal termination. Removes from system 
queues the request elerrents (RQEs) that 
represent I/O requests issued for the ter
rr.inating task. Issues a Halt I/O instruc
tion to stop the task's I/C operatiens. 

SVC Second-Level Interruption Handler: 
(Chart AB) is entered from the'SVC First
Level Interruption Handler. Constructs a 
supervisor request block (SVRB) frerr pre
viously allocated sface and initializes the 
SVRB. Moves the caller's register contents 
from lower main storage to the SVRB. 
~ueues the SVRE to the TCE for the caller's 
task. If a resident (type-2) SVC routine 
is needed, branches directly to the 
routine. 

If a nonresident (type 3 or 4) SVC rou
tine is needed, determines if the routine 
is already in a transient area tlock (TAB). 
If the routine is in a ~AB, places the SVRB 
on a user queue and tranches to the TAB. 
If the routine is not in a TAB, examines 
the transient area control table and the 
user queues to find an availatle TAB. If 
it finds an available TAE, places those 
SVRBs "using" the TAB into a wait condi
tion, places the new SVRE on the user queue 
for the TAB, makes the new SVRB wait, 
readies a transient area fetch task to load 
the SVC routine into the TAB, invokes the 
~ask Switching routine, and tranches to 
theDispatcher. If, however, an availatle 
~AB cannot be found, places the new SVRB 
into a wait condition, indicates the need 
for a task switch, and branches to the 
I:ispatcher. 

System Error TCB: The systelt ~CB under 
whose control system I/O error-handling 
routines are loaded into the I/O Supervisor 
transient area and then executed. 

Task Removal routine: In a Model 65 Multi
processing System, deterrr·ines if the cur
rent task en the seccnd CPU in a multipro
cessing sys'cem has beei1 set iloildispatch
able. If it has, causes the dispatcher to 
gain control on the second CPU and dispatch 
a new task. 

~ask Switching routine: (Charts BN,EO) 
Cetermines if a newly readied task, which 
rray be of higher dispatching prierity than 
the current task, should be dispatched in 
place of the current task. Corrpares the 
dispatching friority of the specified ready 
task with that of the next-to-be-dispatched 
task. (The address of the TCE for the 
next-to-be-dispatched task is stored in the 
"new" TCB painter, IEATCEP.) If the speci-

fied task's priority is higher, places its 
TCE address into the "new" ~CB pointer. If 
the specified task's priority is lcwer, 
rrakes nc change. If the task priorities 
are equal, places in the "new" TCE pcinter 
the address of the TCB positioned higher on 
the TCE queue. 

In a Model 65 Multiprocessing System, 
determines if the newly readied task should 
te dispatched in place of the current task 
en either cPU. Cetermines which ef the twc 
next-tc-te-dispatched tasks has the lower 
dispatching priority, and compares the 
lower task with the newly readied task. If 
the newly readied task has a higher pricri
ty, places its ~CB address into the "new" 
'ICB pointer. 

'IESTRAN Interpreter: Is the part cf the 
control pregrarr that interprets requests 
for test services. Is invoked by either 
the common subroutines ef Contents Supervi
sion or the Overlay SUfervisor if the 
loaded module cr segrrent is being tested. 

Time routine: (Charts EA, EE) Deterrrines 
the current date and time of day and 
returns beth values to the caller. Places 
the time of day into register 0 and the 
date intc register 1. 

'Iirrer Second-Level Interruption Handler: 
(Charts EL,EH) Is entered from the External 
First-Level Interruption Handler after a 
tirrer-caused interruption. Cetermines what 
action to take by rerroving and examining 
the tOfmost tirrer queue element (TQE) on 
the tirrer queue. May prepare entry to a 
user-written routine or posts a Sfecified 
ECE. Resets the interval timer, using the 
value contained in the new top TQE. 

Trace routine: Euilds the trace table, a 
system oftion. ~he trace table describes 
conditicns at each SVC interruption, 
external interruftion, program interruf
tion, and at each issuance of a Start I/O 
instruction, and each execution cf the Cis
fatcher. ~he 'Irace routine is invoked by 
the SVC First-Level Interrupticn Handler 
(SVC FLIH), the I/C FLIH, the External 
FLIH, the Prcgram Check FLIH, and the 
Dispatche:L. 

Transient Area Availability Check rcutine: 
(Chart AD) Is invoked by the SVC Seccnd
Level Interruftion Handler. Examines the 
transient area contrcl table and the user 
queues to locate a transient area bleck 
that may be overlaid by a SVC routine. 

'Iransient Area Exit routine: (Chart KC) Is 
invoked by the Exit routine or by the com
rron sutrGutines of Contents Supervisien. 
Frepares for return of control to the call
er of a type-2, 3, or 4 SVC routine. Mcves 
saved register contents from the exiting 

Routine Synopses 767 



routine's SVRE to the ~CE for the caller's 
task. For an exiting nonresident routine 
(type 3 or 4), removes the SVRB frore its 
transient area user queue. 

Transient Area Fetch routine: (Chart AE) 
Is entered when the SVC Second-Level Inter
rUftion Handler, or the Transient Area XCTL 
routine, or the Transient Area Refresh rou
tine determines that a nonresident SVC rou
tine must be loaded. Locates the needed 
routine, and uses the prograrr. Fetch routine 
to load the needed routine into the avail
able transient area block. Is ccntrolled 
by a high-fricrity system TCB, called a 
transient area fetch TCB. 

Transient Area Refresh routine: (Chart KD) 
Betermines if an SVC routine that cccufied 
a transient area block but was overlaid 
should be reinstated. If so, schedules 
reloading of and entry to the routine. 

Transient Area XCTL routine: (Chart CAl 
Prepares for entry to another rrodule of a 
rrulti-module (tYfe-4) SVC routine. Rein
itializes the appropriate SVRB. If the 
needed module is in a transient area block, 
schedules entry to it. Otherwise, locates 
(if possible) an available transient area 
block and schedules loading of and entry to 
the module. If a transient area block is 
not available, places the SVC routine's 
SVRB in the wait conditicn, queues the SVRE 
to a queue of waiting SVRBS, and indicates 
the need for a task switch. 

TTIMER routine: (Charts EC, EG) Determines 
and flaces intc register 0 the tirre remain
ing in a previously requested time inter
val. Optionally cancels a previcusly 
requested interval. 

Type-1 Exit routine: (Chart KA) Rcutes 
control to the interrufted routine cr to 
the Dispatcher. Restores saved register 
contents and returns control to the inter
rUfted routine, if the need for a task 
switch is not indicated. (A task switch is 
not indicated if the addresses in the two 
TCB fointers, IEATCBP and IEATCEP+4, are 
equal.) If the need for a task switch is 
indicated, moves saved register contents to 
the current TCE, and gives control to the 
Dispatcher to perform the task switch. 

Validity Check routine: Validates user
supplied addresses. Checks addresses for 
fullword boundary alignment, determines if 
the addr~sses lie within the limits of main 
storage, and tests if the addresses specify 
storage areas whose stcrage frotection keys 
match the protection key in the caller's 
TCB. 

Vary Storage Offline subroutine (IFSVRYOF): 
Frocesses requests tc remove an area from 
available main storage in a rrulti~rocessing 

768 

system. Alters the FBQE(s) and marks the 
area unavailable in the FSSEMAP. 

~ait routine: (Chart EG) Beterrrines if any 
cf the SfEcified events have occurred. If 
all have occurred, prepares for return of 
control to the caller. If all the speci
fied events have nct occurred, makes the 
caller wait by flacing the appropriate wait 
count into the caller's RE. Then indicates 
the need for a task switch. 

Write-to-L~outine: (Charts GB,GC) 
Schedules servicing of a request tc write a 
rressage cnto the system log. Places the 
message into a log' elerrent and adds the 
element to a chain of log elements. Pests 
the systere lcg ECB to signify receipt of 
the message. 

~rite-to-Operator routine: (Charts FE,FC) 
Frefares buffers and posts the communica
ticns task ECB. 

~ri te-to-.Proqrarrrrer routine: For a WTO cr 
~TCR macro instruction with a ROUTcrE=ll 
parameter, puts the rressage into the job's 
system rressage class output data set. 

~RITELOG Available Log rata Set rcutine: 
(Figure 7-10) Sets a bit in the log control 
area to indicate availability cf either the 
frirrary cr alternate system log data set. 

~RITELCG DisFatch routine: (Figure 7-10) 
Initializes a job file control block (JFCE) 
and a data set block (DSB) for the speci
fied prirrary or alternate log data set. 
Flaces bcth the JFCB and DSB on the job 
queue. 

~RITELCG Get Region routine: Obtains the 
regicn tc be used for the log disfatcher 
task. 

WRITELOG Log Initialization routine: 
(Figure 7-10) Searches the catalcg tc lcc
ate the two log data sets. Creates a data 
control block (CCB) fcr and opens the pri
rrary log data set. Initializes the log 
control area. 

WRITELOG Log Writer routine: (Chart GA) 
Writes messages cnto the systerr log data 
set. In resfonse to a WRITELOG ccrrrrand, 
causes the affrofriate log data set to be 
transferred to an output device by a system 
output writer. 

~RITELOG Master Wait routine: (Figure 
7-10) Fasses control to the Log Writer rou
tine when the system log ECB is posted. 

WRITELCG OFen revice routine: (Figure 
7-10) Opens the sfecified systerr cutfut
writer data set. 



WTOR Purge routine (also called ReFly Purge 
routine): Is invoked by the EOT rcutine, 
ASIR5, or ABENr:l during a norll'al or abnorll1-
al termination. Dis~oses of outstanding 
messages and replies to messages by remov
ing elements froIT. the buffer queue and the 
re~ly queue. 

Routine Synopses 769 



APPENDIX A: DIAGNOS~IC AIrs IN ABEND PROCESSI~G 

If an error occurs during ABEND froces
sing, the result is usually an invalid 
recursion that leads tc an entry into DAR. 
~he dump taken by DAR at this tiRe is inva
luable in determining the cause of the 
recursion~ however, a stand-alcne cr ABEND 
dump can also te helfful. Generally, the 
programmer only needs to exarrine the fol
lowing areas to get sorre idea of the 
problem: 

1. PSW and registers at ABENr. (These 
may be in one or Rore places defending 
on the tYfe of durrf.) 

2. The RB chain of the terminating TCB. 

3. A trace table with a sufficient number 
of entries. 

Most often, the imfortant registers are 
found in DAR1's (IEAQT~OI) SVRE register 
save area. The interruftion handlers' 
register save areas, of which the frograre 
interruption save area is the most impor
tant, some'times can give an idea of fre
vious haffenings. (~he easiest way to find 
the save area is to examine the rrachine 
code in the durrp until the STM instruction 
is located for the particular interruption 
handler. ) 

The registers in AB~ERM's save area are 
helpful in understanding an ABENt initiated 
by a type-1 SVC because there is often use
ful information left in that SVC's regis
ters when it tranches to AETER~. 

Because of the nature of ABEND'S purges, 
invalid recursions often involve the GET
!1AIN or FREEMAIN functions, usually invoked 
via SVC 10 or its branch entry. In such a 
case, AETERM's save area often contains the 
following useful inforrration: 

770 

Register 2 - The invalid rrain storage 
contrcl tlock detected. 

Register 5 - The subfool number. 

Register 8 - GET~AIN/FREEMAIN base. 

Register 10 - The number of bytes to be 
freed or requested. 

Register 11 - The area to te freed or 
requested. 

Register 12 - The valid SPQE or DQE 
address that the main 
storage control block in 
register 2 was chained to. 

If this is zero, the rrain 
storage queues may have 
been exhausted in atterrpt
ing to find an allocation 
for the referenced 
storage. 

INTERNAL AEEND DEBUGGING FEATURES 

The AEEND (SVC 13) modules contain 
internal features which are present for the 
eXfress furfose of debugging AEEND. These 
features are consistent across ABEND and 
ASIR. Although consistency is not fresent 
across all DAR rrodules, ABEND/DAR inter
faces have been altered to ensure that sorre 
detugging inforrration is still available 
~hen ABEND regains control frorr DAR. The 
general detugging aids follow: 

1. When an AEEND (SVC 13) module passes 
control, via an XCTL, to ancther SVC 
13 rrodule, the last four tytes of the 
CSECT name of the mcdule issuing the 
XCTI are flaced in register o. 
Register 1 contains the last four 
tytes of the CSECT name of the module 
that gains control after the XCTI. A 
glance at the trace tatle tells a sys
tem prograrrrrer exactly which SVC 13 
modules have received control and the 
order. Note that all SVC 13 rrodules 
end in C'*01C' where * is any digit or 
number of the universal alphatet. 

2. At entry to AEENDO for a true AEEND, 
the extended save area of the ABEND's 
SVRE is zeroed out. Any nonzerc value 
in the ESA Rust have teen put there by 
ABEND. 

3. The last two words of the ESA ccntain: 

C'ABEND',C'*',X'SSSO' 

where 

* is the fifth character in the 
narre of the ABEND CSECT that last 
got control, and 

SSS is the system completion code 
for the ABEND that is being fro
cessed ty the ABEND SVRB. If SSS 
is 000, either the ABEND was a user 
ABEND, or the system completion 
code was not available at the tirre 
the first ABEND module gained 
control. 



determining whether te open 239 
ensuring that tbe dump data set remains 

open for the duration of the job 
step 240 

indicating whether the dump data set has 
been opened 240 

preparing to open ~40 
Dumping 

contents directory entries 220 
data extent blocks (DEEs) 220 
dynamically acguired storage 224 
extent lists 220 
GTF control and error records 225 
GTF trace data 225 
load modules represented by eDEs 224 
main storage gueue elements 220 
nucleus of main storage 224 
old PSW 220 
prcblem-program register save areas 222 
QCBs, QEIs, and save areas belonging to 

IRBs 221 
register contents 224 
request blocks 220 
storage acquired for the task 225 
task I/C table (TIOT) 220 
task's load list 220 
TCB 220 
trace table 225-226 

Dumps (see Dumping, and Sa o:ple dump) 
Dynamic DD entries 

specification of 239 
Dynamic Device Reconfiguration (DDR) 

description of 2,26 
entry peint names cf 747 
error routine fetch processing 68 
model dependency 2,25 
module names for ;35,736,738,739 
synopsis of 761 

ECB (see Event control block) 
End-of-!ask (EOT) routine 

description of 203 
entry peint name cf 749 
flowchart of 634 
module name for 726 
synopsis of 761 

End-of-Task Exit routine (ETXR) 
scheduling of 206 

ENQ routine (see Enqueue routine) 
ENQ/DEQ Purge routine 

description of 247 
entry point name of 749 
module name ior 727 
synopsis of 762 

Enqueue routine 
description of 51 
entry point name of 749 
flowchart of 432 
module name for 737 
synopsis of 761 

ENTAB (see Entry tab Ie) 
Entry points 

directory of ;43-757 
embedded, informing the supervisor 

of 87-88 
Entry table (ENTAB) 92 

format of 329 

ENTRY2 244 
Environment Recording Edit and Print 
Service Aid (IFCEREPO) 26 

Erase phase routine 
entry peint name of 749 
function of 

during abnormal termination 254 
during normal termination 207 

module name for 727 
synopsis of 762 

ERFETCI{ 67 
Error fetch sequence 67 
ETXR opera nd 

effect when ATTACH routine is 
executed 32 

ETXR scheduling 206 
Event control block 

forma t of 308 
(also see Post ing an event control 
block) 

EXCP Supervisor 
entry peint name of 750 
function of 102 
module name for 729 
synopsis cf 762 

Exit Effector (see Stage 1 Exit Effector, 
Stage 2 Exit Effector, and Stage 3 Exit 
Effector) . 

Exit routine 
description of 190 
entry point name of 750 
flowchart of 627 
module name for 736 
synopsis of 762 

Extended SVC Router (ESR) 
description of 15 
entry point names of 749 
flowchart cf 405 
module name for 738 
synopsis ef 762 

Extent list 
construction of 99 
definition of 194 
normal release of 194 
(also see scatter exten t list and block 
extent list a nd note list) 

External First-Level Interruption Handler 
descripticn of 22-23 
entry point name of 750 
flowcharts of 411 
module name for 721 
synopsis of 763 

External FLIH {see External First-Level 
Interrupt ion Handler; 

External interruptions 23 
Extract routine 

description of 40 
entry peint names of 750 
flowchart of 426 
module names for 737 
synopsis ef 763 

Fail soft storaqe element map (FSSEMA P) 
forma t of 354 

FBQE (see Free block queue element) 
First CPU Signal routine 

descriptien of 73 

Inde·x 779 



entry point name of 750 
module name for 726 

First-time logic switch (see P~ogram 
interruption element) 

FQE (seE FreE queue element) 
Free tlock queue element (FBQE) 

construction of 111,131-132 
definition of 111 
format of 334 

Free queue element (FOE) 
construction of 114,131 
format of 331 

FREEMAIN mac~o instruction 
list structure of 108 
types of SVC instructions for 108 

FREEMAIN routine 
description of 131 
entry peint names cf 750 
flowchart of 468 
module name for 726,737 
synopsis of 7€3 

FSSEMAP 354 

Generalized Trace Facility (GTF) 
descripticn of 8,277 
dump of trace data 225 
exterrial storage cptien 277 
internal storage option 277 
synopsis of 763 

GETMAIN macro instruction 
list structure of 108 
types of SVC instructions for 108 

GETMA.IN ~outine 
description of 108 
entry point names cf 750 
flowchart of 468 
module name for 726,737 
synopsis of 763 

GOVRFLB 130 
format of 332 

GTF (see Gen eralized 'Ince Facili ty) 

HOOK macro instruction 
resume GTF trace 243,257 
suspend GTF trace 242 

IFCEREPO 26 
I/O block 

for the I/O superv isor transient area 
entry point namE of 750 
module name for 727 

for the SVG transient areas 
entry point names of 756 
module name fer 741 

I/O First-Level Interruption Handler 
description of 24 
entry point name of 750 
flovchart of 413 
module name for 727 
synopsis of 763 

I/O PLIH (see I/O F irst-Leve 1 Interruption 
Handler) 

I/O Interruption Supervisor 
description of 24 
entry point name of 750 

780 

module name for 729 
synopsis of 763 

I/O interruptions 24 
I/O requests and I/O operations in process 

purging of 234 
I/O superv isor transient area 

entry peintna me of 750 
synopsis of 763 

I/O switch (IORGSW) 24 
Identify routine 

description of 87-90 
entry peint name of 750 
flowchart of 461 
module name for 737 
synopsis of 763 

IEADQTCB 206,254 
IEAHEAD 38 
IEAQABL (see Release Loaded Programs 
routine) 

IEAQERA (see Erase Phase routine) 
IEAQSPET (see Release Main storage routine) 
IEAQTAQ (see Transient area control table) 
IEASCSAV 11 
IEATCBP 190 
IEATYPE1 

use of during ASTERM processing 215 
IEEVLIN routine 175 

(see also WRITELOG Log Initialization 
routine) 

IEEVLOPN routine 175 
(see also WRITELOG Open Device routine) 

IEEVWAIT routine 175 
(see also WRITE LOG Master wait routine) 

Informing the supervisor of an embedded 
module entry point 87 

Initial Program Loading (IFL) routine 
entry point name of 750 
module name for 741 
synopsis of 763 

Inter-Partition Post 
cancellation for TCAM data sets 248 
cancellation for TSO tasks 248 
check by Post routine 49 

Interruption handling 10 
(see also SVC interruption handling, 
Program interruptions, External 
interruptions, I/O interruptions, and 
Machine interruptions) 

Interruption queue element 
construction of 31-32 
definition of 64 
format of 312 
initialization of 32 
normal release of 69 
queuing of 65 

Interruption re quest block 
abnormal release of 252 
con·struction of 65 
definit ion of 4 
format of 299 
normal release of 195 

lOB (see I/O block) 
IOBSEEK Held 127 
IORGSW (see 1/0 switch) 
IOE (see Interruption queue element) 
IOE list (AEQJ) 65 
IRB (see Interruption request block) 
ISAK and BDAl'I Data Set Processor 



EXAMPLE: If the ABEND SVRB pointed to by 
the TCB in an ABEND durrp contained the 
hexadecimal characters 'C1C2C5r5C4F90C10' 
in its last two words, the AEENr module in 
control at the time of the dumf was 
IGC0901C, and it was processing a OCl pro
gram check. 

If there were another ABEND SVRB on the 
chain with a value of'C1C2C5D5C4F48060' in 
its ESA, there was an AEENr frevious to the 
OCl program check. In analyzing this dump, 
the prograrrmer may conclude that there must 
have been an ABEND recursion; the frevious 
ABEND was an 806 ABEND, and the last module 
to have control in the previous ABEND was 
IGC0401C. 

The system frcgrarrmer might use this 
debugging information to deterrrine the fol
lowing chain cf logic in limiting the like
ly problem area: 

1. The last ABEND module in control was 
IGC0401C. It either terminated 

abncrrrally en a prograrr check, or some 
routine called on its behalf ter
minated on a prograrr check. 

2. The ABEND dump was taken on the recur
sion; thus ABEND was frepared tc 
handle the recursion validly. 

3. IGC0401C has only one valid recursion 
- across the write-to-Prograrrmer rou
tine. If WTP should terminate abnorm
ally, a valid recursion ocnfiguraticn 
flag is set. 

4. The programmer may conclude that the 
Write-tc-Programmer routine rrust 
itself have abnormally terminated via 
a program check, or sorre systerr rcu
tine called on its behalf abnormally 
terminated. The systerr prograrrrrer 
wculd then check other information 
(such as the RB chain> to verify this 
ccnclusion, and continue by checking 
for the error in WTP. 

Appendix A: Diagnostic Aids in Abend Processing 771 





ABDUMP nondispatchability flag (TCBNDUr1P) module na me for 736 
clearing by ABDUMP9 

AEENDO 232 descriptien of 225 
ASIR 5 262 entry point name of 743 

definition of 289 module name for 736 
ABDUMP parameter list ABDUMP11 

format of 341 description of 223 
ABDUMP "resident" module entry point na me of 743 

descriptien of 219 module name for 733 
entry point name of 743 ABDU M P12 
module name for 733 description of 225 

ABDUMP modules entry point name of 743 
description of 216-217 module na me for 733 
flowchart of 660 ABDUMP 13 
synopsis of 759 descr ipt ion of 225 

ABDU MPH entry point name of 743 
descriFtion of 226 module name fOL" 733 
entry point name of 743 ABDUMP14 
module name for 733 descripti on of 225 

ABDUMPI entry point name of 743 
description of 226 mod ule name for 734 
entry point name of 743 ABDUMP15 
module name for 733 description of 225 

ABDUMPQ entry peint name of 743 
descriptien of 220 module name for 734 
entry point name of 743 ABDUMP16 
module name for 734 description of 226 

ABDUMP1 entry point name of 743 
description of 219 module na me for 734 
entry Feint name of 743 ABEND modu les 
module name for 733 description of 229- 230 

ABDUMP1.5 dia gnostic aids 770-771 
descript ion of 220 flowchart of 664 
entry point name of 743 synopsis of 759 
module name for 733 ABENDO 

ABDU MP2 description of 230 
description of 220 entry point name of 743 
entry point name of 743 flowchart of 665 
module name for 735 mod ule na me for 734 

ABDUMP3 ABEND1 
description of 220 description of 232 
entry point name of 743 entry point name o.f 743 
module name for 735 flowchart of 668 

ABOUMP4 module name for 735 
description of 221 ABEND3 
entry point name of 743 description of 235 
module name for 735 entry point name of 743 

ABDUMP5 flowchart:. of Of:j 

description of 221 module name for 735 
entry point name of 7113 ABEND4 
module name for 735 des.cript ion of 236 

ABOU MP6 entry peint name of 744 
description of 222 flowchart of 675 
entry point name of 743 module name for 735 
module name for 736 ABEND5 

ABDUI'IP7 description of 237 
description of 223 en try point na me of 744 
entry peint name of 743 flowchart of 677 
module name for 736 module name for 736 

ABOU MP8 ABEND7 
description of 224 des cr ipt ion of 237 
entry point name of 743 entry point name of 744 

Index 773 



flowchart of 679 
module name for 736 

ABEND8 
description of 238 
entry point name of 744 
flowchart of 681 
module name for 736 

ABEND9 
description of 241 
entry peint name ef 744 
flowchart of 685 
module name for 736 

ABEN D 11 
description of 243 
entry point name ef 744 
flowchart of 6E7 
module name for 733 

ABEND12 
description of 247 
entry peint name ef 744 
flowchart of 691 
module name for 733 

ABEND13 
description of 248 
entry peint name ef 744 
flowchart of 694 
module name for 733 

ABEND15 
description of 249 
entry peint name cf 744 
flowchart of 697 
module name for 733 

ABEN D16 
description of 251 
entry point name cf 744 
flcwchart of 702 
module name for 733 

ABEND20 
description of 255 
entry point name of 744 
flowchart of 704 
module name for 733 

ABEND/STAE Interface routines 
description of 257 

ABEND/STAE Interface 0 routine (ASIRO) 
description of 259 
entry point name of 754 
flowchart of 443 
module name for 733 

ABEND/STAE Interface 1 routine (ASIR 1) 
description of 259 
entry point name of 754 
flowchart of 445 
module name for 734 

ABENt/STAE Interface 2 routine (ASIR2) 
description of 260 
entry point name of 754 
flowchart of 447 
module name for 734 

ABEND/STAE Interface 3 routine (ASIR3) 
description of 260 
entry point name of 754 
flowchart of 448 
modul € name for 734 

ABENt/STH Interface 4 routine (ASIR4) 
description of 261 
entry point name of 755 
flowchart of 451 

774 

module name for 734 
ABEND/STAE Interface 5 routine (AS IRS) 

description of 261 
entry point na me of 755 
flowchart of 455 
module name for 734 

Abnormal dump 216 
Abnormal termination 207 
ABTERM Prologue routine 

description of 214 
entry point name of 744 
flovc ha rt cf 659 
module name for 729 
synopsis of 759 

ABTERM routine 
description of 208 
entry peint names of 744 
flowcharts of 657 
module nalle for 729 
synopsis of 759 

Access-Method Disposition routine 
descripticn of 189 
entry point name of 754 
flowchart of 621 
module name for 734 

AEQA (see FQE queue) 
AEQJ(see IQE list) 
Alias process ing 80 
Allocated queue element (AQE) 

construction of 131 
format of 331 
normal release of 137 

Alternate Path Retry (APR) 
descripticn of 2,26 
entry point names of 744 
model dependency 2,25 
module names for 741 
synopsis of 759 

AQE (see Allocated queue element) 
ASIR (see ABEND/STAE Interface routines) 
Asynchronous Error routine (see 
Communications task) 

Asynchronous exit queues 65 
Asynchronous e~it routine (see User exit 
routine or Task asynchronous exit routine) 

Attach routine 
description of 31 
entry point name of 744 
flowchart of 418 
module name for 737 
synopsis of 759 

Attention routine 
description of 147,153 
entry point name of 744 
flowcha rt of 490 
module name for 729 
synopsis cf 759 

BLDL routine 
entry point name of 744 
function of when used by the common 
subroutines of Contents 
Supervision 78,79 

module name for 729 
preparation for use of during transient 
area XCTL processing 87 

synopsis of 759 



Block extent list and note list 
format of 320 

Cathode Ray Tube (CFT) console 161 
CDABDEL routine (see Belease Leaded 

Programs routine) 
CEADVANS 83 
CDALLOC subroutine 79,81 
CtATTR field 78,80 
CDATTR2 field 80,81 
CDCONTRL 81 
CDDESTRY routine 194,195 
CDE (see contents directory entry) 
CDEEPADR field 14 
CDENTPT field 80 
CDEPILOG subroutine 81,194 
CDEPRGNM field 14 
CDEXIT routine 

description of 194 
entry point names cf 744 
flowchart of 632 
module name for 726 
synopsis of 759 

CDHKEEP 194 
CDMOPOP subroutine 81,82 
CDQOECTL subroutine 76,80 
CDSEARCH subroutine 77,78 
CDSETOP subroutine 78 
Channel-Check Handler 

description of 2,26 
entry peint names cf 744 
module names for 738 
synopsis of 760 

Channel error 
recovery options fer 25-26 

CHAP routine 
description of 37-40 
entry peint names of 744 
flowcharts of 422 
medule name for 737 
synopsis of 760 

Check I/O routine 
descripticn of 181 
entry point name of 745 
flowchart of 599 
module name for 736 

Check main routines 
description of 182 
entry point names of 745 
flowcharts of 601 
module name for 733 

Checkpoint entry 178 
Checkpoint ~xit routine 

description of 183 
entry point name of 745 
flowchart of 604 
module name for 734 

Checkpoint Header Beccrd (CHR) 
ccnstruction of 18C 
format of 181 

Checkpoint Housekeeping routines 
description of 17~,180 
entry peint names cf 745 
flowcharts of 596 
module names for 735 

Checkpoint Message module 
description of 183 

ent ry pci nt na me of 745 
flowchart of 605 
module name for 734 

CIRB 
macro instruction 64 
routine (see Stage 1 Exit Effector) 

Cleanup routine (see Communicatiuns task) 
Closing da ta sets 

for abnormally terminating tasks 243 
for normally terminating tasks 204 

Command routine (see communications task) 
Communications EeB 47 
Communica tions ta sk 

Device Independent Operator Console 
Support routines (DIDOCS) 161-164 

Asynchronous Error routine 
description of 168 
entry point name of 748 
flowchart of 550 
module name for 730 

Cleanup routine 
description of 174 
entry point name of 748 
flowchart of 582 
module name .for 730 

Command routine 
description of 170 
entry point name of 748 
flowchart of 567 
module name for 730 

Delete 1 routine 
description of 171 
entry point name of 748 
flowchart of 570 
module name for 730 

Delete 2 routine 
description of 171 
entry point name of 748 
flowchart of 572 
module name for 730 

Dele(e 3 routine 
description of 171 
entry point name of 748 
flowchart of 573 
module name for 730 

Delete 4 routine 
description of 171 
entry point name of 748 
flowchart of 575 
module name for 730 

Display 1 routine 
description of 169 
entry point name of 748 
flowchart of 557 
module name for 730 

Display 2 routine 
description of 169 
entry point name of 748 
flowchart of 559 
module name for 730 

Display 3 routine 
description of 169 
entry pOint name of 748 
flowchart of 561 
module name for 731 

Light Pen/Cursor routine 
description of 171 
entry point name of 748 

Index 775 



776 

flowchart of 576 
module name for 730 

MEssa ge 1 r cuti [e 
description of 168 
entry point name cf 748 
flowchart of 553 
module name for 730 

Message 2 rcutine 
description of 168 
entry point r.ame of 748 
flowchart of 554 
module name for 730 

Message 3 routine 
description of 169 
entry point tame of 748 
flowchart cf 556 
module name for 730 

Model E5 I/O reutine 
description of 168 
entry poitt name of 748 
flowchart of 549 
module name for 730 

0Fen/Close routine 
description of 165 
entry point tame of 748 
flowchart of 543 
module name for 730 

OFtions routine 
description of 170 
entry point tame of 749 
flowchart of 565 
module name for 730 

PFK 1 routine 
description of 172 
entry point [arne of 749 
flowchart cf 579 
module name for 730 

PFK 2 routine 
description of 172 
entry point name of 749 
flowchart of 5E1 
module name for 730 

Processor 0, Load 1 
description of 165 
entry point name of 749 
flowchart of 536 
module name for 731 

Processor C, Lead 2 
description of 165 
entry point name of 749 
flowchart ef ~38 

module name for 731 
Processor 1, Load 1 

description of 165 
entry point name of 749 
flowchart of 540 
module name for 730 

Processor 1, Load 2 
description of 165 
entry point name of 749 
flowchart cf 542 
module name for 730 

Rell Mode reutine 
description of 169 
entry point name of 749 
flowchart cf 563 
module name for 730 

status Display Interface 1 routine 

description of 172 
entry peint name of 749 
flowchart of 584 
module name for 731 

status Display Interface 2 routine 
description of 172 
entry peint name of 749 
flowchart of 585 
module name for 731 

status Display Interface 3 routine 
description of 173 
entry point name of 749 
flowchart of 587 
module name for 731 

status Display Interface 4 routine 
description of 173 
entry point name of 749 
flowchart of 589 
module name for 731 

status Display Interface 5 routine 
description of 173 
entry Faint name of 749 
flowchart of 590 
module name for 731 

status Display Interface 6 routine 
description of 173 
entry point name of 749 
flowchart of 593 
module name for 731 

status Display Interface 7 routine 
description of 173 
entry point name of 749 
flowchart of 595 
module name for 731 

Timer, Interpreter routine 
description of 174 
entry point name of 749 
flowchart of 577 
module name for 730 

2250 I/O 1 routine 
description of 166 
entry point name of 749 
flowchart of 544 
module name for 730 

2250 I/O 2 routine 
description of 167 
entry peint name of 749 
flowchart of 546 
module name for 730 

2260 I/O 1 routine 
description of 167 
entry peint name of 749 
flowchart of 547 
module name for 730 

2260 I/O 2 routine 
description of 167 
entry point name of 750 
flowchart of 548 
module name for 731 

3277 I/O 1 routine 
description of 167 
entry point name of 749 
flowchart of 567 

3277 110 2 routine 
description of 167 
entry point name of 749 
flowchart of 569 

communications Task Routines 



External Interrupticn Handler routine 
description of 147 
entry point name of 745 
flowchart of 490 
module name for 729 
synopsis of 760 

External Processor routine 
entry point name of 745 
flowchart of 501 
mo dul e name for 732 
synopsis. of 760 

Graphic Console I nitia liza tion routine 
entry point name of 750 
flowchart of 498 
module name for 731 

Initialization routine 
description of 153 
entry point name of 745 
flowchart of 493 
module name for 730 
synopsis of 760 

Miscellaneous looku~ Services routine 
entry point name of 745 
module name for 732 
synopsis of 760 

Multiple-line write-to-operator, Load 1 
description of 157 
entry point name of 748 
flowchart of 532 
module name fer 731 

Multiple-line Write-to-Operator, Load 2 
description of 157 
entry point name of 748 
flowchart of 533 
module name for 731 

Multiple-line IIrite-to-Operator, Load 3 
description of 158 
entry point nale of 748 
flowchart of 534 
module name for 731 

Multiple-line Write-to-Operator, load 4 
description of 158 
entry Feint na me of 748 
flowchart of 535 
module name for 731 

Open/Close routines 
description of 160 
entry point names of 746 
flowchart of 523 
module names fer 733,736 
synopsis of 760 

Processor routines 
description of 160,161 
entry point names of 746 
flowcharts of 517-521 r 524-528 
module names for 735 r 736 
synopsis of 760 

ReFly Processor routine 
description of 150 
entry point names of 745 
module name for 732 
synopsis of 760 

Request block (RB) 
entry point na me of 745 

Router routine 
description of 147 
entry point name of 745 
flowchart of 500 

modu Ie name for 735 
synopsis of 760 

Task control block (TCB) 
entry point name of 746 
format of 287 

unit control tables (UCBs) 
description of 147 
entry point name of 746 
module name for 131 
synopsis of 760 

Wa it routine 
descr'ipt ion of 147 
entry point Dame of 746 
flowchart of 499 
module name for 729 
syno psis of 760 

Write to Programmer processing 151 
Communications vector table (CVT) 

definition of 20 
entry point name of 746 
format of 283 
module name for 726 

Console 
input 

external interruption 147 r 148 
I/O interruption 147,148 

out put 
liTO macro instruction 141-149 
WTOR macro instruction 147-150 

Console Alarm 156 
Contents directory 

definition of 4 
updating of 77 

contents directory entry (CD~ 
abnormal release of 249 
construction of 78 
def inition of 77 
for mat of 315 
norma 1 release of 205 

Contents Supervision, common subroutines of 
description of 75-11 
entry peint names of 146 
flowcharts of 458-460 
module names for 726,727 r 737 
synopsis of 760 

control record 
forma t of 324 

Control and relocation dictionary record 
format of 326 

CRT console 161 
CSPCHK subroutine 109,132 
CVT (see communications vector table) 

Damage Assessment Routines (DAR) 
ABEND1 routine with. 233 
DAR 1 r'outine 

description cif 255 
entry point name of 747 
flowchart of 705 
module name for 733 

DA R2 routine 
description of 256 
entry point name of 747 
flowchart of 706 
modu Ie na me for 134 

DAR3 routine 
description of 256 

Index 777 



entry point name of 747 
flowchart of 7el 
module name for 734 

tAR4 routine 
description of 257 
entry point name of 147 
flowchart of 110 
module name for 735 

general description 255 
synopsis of 761 

Data set descr iptor records 
definition of 118 
format of 182 

Data set directory entry 
as uSEd by common subroutines of 
contents supervision 76 

as used by the Frogram Fetch routine 
100 

format of 316 
Data Set Processor routines 

description of 188,189 
entry point names of 753-754 
flowcharts of 616-620 
module names for i34 

DCB parameter for LINK, LOAD, or XCTL 
processing 18 

DCM (see Display control module) 
nn statement for dump data set 239,242 
DEB queue 

use of to close data sets 
during abnorma 1 termination 245 
during normal termination 204 

Decimal Simulator routines for !'Iodel 91 
Add, Subtract, Zero-and-Add 

description of 267 
entry point name of 147 
flowchart of i16 

Analyzer/End 
description of 271 
entry point names of 747 
flowchart of 720 

Compare Decimal 
description of 271 
entry point name of 747 
flowchart of 715 

Divide Decimal 
description of 270 
entry point name of 741 
flowchart of 719 

Multiply Decimal 
description of 267 
entry point name of 747 
flowchart of 718 

Simulator Control 
description of 263 
entry point name of 747 
flowchart of 714 

synopsis of 1E1 
Deferring a request fcr a transient SVC 
routine 19-20 

Deferring the request for an unavailable 
mod ule 76 

Delete routine 
description of 90 
entry point name of 147 
flowchart of 461 
module name for 737 
synopsis of 761 

778 

Delete routines (DIDOCS) (see 
Communica tions task) 

Dequeue rout ine 
descripticn of 60 
entry point name of 747 
flowcharts of 434 
mod ule Ila me for 137 
synopsis of 761 

Dequeue TCB routine 
entry point name of 747 
flowchart of 654 
function cf 

during abnormal termination 254 
during normal termination 206 

module na me for 126 
synopsis of 161 

Descriptor queue elemen t (DQE) 
construction of 113 
forma t of 330 
norma 1 release of 132 

Detach routine 
description of 41 
entry point name of 141 
flowchart of 421 
module name for 741 
synopsis of 161 

Device Independent Display Operator Console 
Support (see Communications task) 

Diagnostic aids 770-711 
DIDOeS (see Communications task) 
Direct SYSOUT Writer 237 
Dispatcher 

description of 196 
entry point name of 747 
flowcha rts of 633 
module name for 729 
synopsis of 761 

Dispatching priority 
changing of 37 
use of by the Dispatcher 197 

Display Control Module 164 
format of 3q4 

Device Independent Display Operator Console 
Support (see Communications task) 

DJSEARCH Subroutines 
flowcharts of 636,642 

DOS Ta pe Data Set Processor 
description of 188 
entry point name of 153 
flowcha rt of 624 
module name for 134 

DPQE (see Dummy partition queue element) 
DQE (see Descriptor que ue elemen t) 
DQLOAD subroutine, function of 81 
DQTCB (see Dequeue TCB routine, function 
of) 

Dummy Data Set Processor 
description of 186 
entry point name of 153 
flowchart of 613 
module name for 733 

Dummy partition queue element (DPQE) 
construction of 111 
format of 334 

Dummy request block for the system error 
task 67 

Dump, sample 375 
Dump data set 



description of 189 
entry point name of 753 
mcdule name for 734 

JFCB Processor routines 
description of 186 
entry peint names cf 753 
flowchart of E12 
module name for 733 

Job file centrol blocks for log data 
sets 181 

Job pack area contrel queue 4-5,76 
Job pack area queue jsee Job pack area 

con trol queue) 
Jot step Tilting 

in Dispatcher routine 
description of 201 
flowchart of E34 

in Post routine 
description of 48 
flowchart of 431 

in thi t routine 
description of 47 
flowchart of 429 

in 'rimer Second-Level Interruption 
Handler 

description of 143 
flowchart of 4E4 

JPACQ (see Job pack area control queue) 

LCS (2361 Core Sterage) (see Main Storage 
Hierarchy Support) 

Light Pen/Cursor routine (see 
Communica tions task) 

Limit priority 37 
Link pack area 4 
Link pack area control queue 

definition of 4 
sEarch of 77 

Link pack area queue (see Link pack area 
can trol queue) 

Load list 
definition of 5,78 
purging of 253 

Load list element 
abnormal release ef 253 
construction of 82 
format of 316 
nermal release of 91 

Local system queue arEa 1G9,130,137 
Log and WRITE LOG Fast routine 

entry point name of 75i 
module name for 732 
synopsis of 763 

Log command 175-176 
Log aata sets 

jot file control blecks (JPCBs) for 
entry point name of 751 
module name for 731 

LPACQ (see Link pack arEa contrel queue) 
LSQA (see local system queue area) 

Machine-Check Handler 
Contents Supervision with 80 
entry point names cf 751 

general description 2,25-26,29 
mod u Ie na me s for 7 3 9 
synopsis of 763 

Machine-Check record (SERa and SER1) 
construction of 26 
format of 371 

Machine interruptions 
definition of 1 
recovery options for 24-29 

Main stora ge 
allocation of 107 
purging of 205,254 

Main Storage Hierarchy Support 
Contents Supervision service routines 

with 76 
description of 5,8 
GETMl\IN routine with 100,113 
loading of overlay module with 92 

Major CDE (see contents directory entry) 
Major QCB (see Queue control block) 
Master Scheduler Initialization routine 

entry peint name of 751 
module name for 731 
synopsis of 764 

Master scheduler resident table 
entry point name of 751 
module name for 731 
synopsis of 764 

Master scheduler task control block (TCB) 
entry peint name of 751 
module name for 727 

MCH (see Machine-Check Handler) 
MCS (see Multiple Console support) 
Message routines (see Communications task) 
Minor CDE (see contents directory entry) 
Minor QCB (see Queue control block) 
Model 85 I/O routine (see Communications 
task) 

Model 85 operator console with CRT display 
support (see Communica tions task) 

!'Iodel 91 
Dec imal Simula ter routines (see Decimal 
Simulater routines) 

Program Check First-Level Interruption 
Handler routine for 

descr.ipt ion of 22 
flowchart of 410 

SER1 routine for 
description of 27-29 
entry peint name of 754 
flowchart of 416 
module name for 727 

Mount/verify routines 
description of 187 
entry peint names of 753 
flowcharts of 614 
module name for 733 

MPCVT (see Multiprocessing communications 
vector table) 

Multiple Console Support 
detailed routine descriptions 

Attention Handler module 
desc.ription of 153 
entry point name of 144 
flowchart of 490 
module na me for 729 

Console Support routines 159 
Console Initialization module 

Index 781 



description of 153 
entry point name of 745 
flowchart of 493 
module name for 730 
synopsis of 760 

Console SV itchllodu les 
description of 155 
entry point names of 745 
flowchart of 502 
module name fer 732 

DEvice Interface routine 
description of 156 
entry point name of 745 
flowchart of 509 
module name for 729 

DOM Service module 
description of 158 
entry point name of 745 
flowchart of 515 
module name for 729 

External Interruptien Handler 
description of 153 
entry point name of 745 
flowchart of 490 
module name for 729 

Gra{:hic Console Initiali:zation Module 
description of 155 
entry point name of 750 
flowchart of 498 
module name for 731 

Mini-Router Module 
description of 155 
entry point name of 745 
module name for 735 

NIP Message Buffer Writer Module 
descr ipt ion of 158 
entry point name of 745 
module name for 736 

Router module 
description of 155 
entry point name of 746 
flowchart of 502 
module name .fer 730. 

Unit Control module 
description of 158 
entry point name of 746 
module name for 731 

W'IO/R Service Medule 
description of 158 
entry point Ilame of 746 
flowchart of 512 
module name for 730 

3284/3286 Processor routine 
description of 161 
en-try point name of 746 
flowchart of 528 

general description 151 
Reply Queue Element (RQE) for 
Unit Control Module MCS prefix 
Write Queue Element (WOE) for 

335 
356 

361 
Multiple-Line write to Operator 

macro expansion 369 
Multiple-Line Write-to-opera tor routines 

(see Communications task) 
Multiprocessing communications vector table 

(MPCVT) 
format of 353 

Multiprocessing 

782 

ABDUMP routine with 224,226 
description of 7-8 
Dispatcher with 196,198 
Externa 1 FLIR routine with 

description of 23-24 
flowchart of 412 

First CPU Signal routine with 73 
FREEMAIN routine with 131 
I/O FLIH routine with 

desc~iption of 24 
flowchart of 413 

.Job Step Timing with 
description of 201 
flowchart of 634 

Machine-Check recovery with 29 
Program Interruption FLIR routine with 

description of 21-22 
flowchart of 408 

Set Status routine with 72 
Sta ge 3 Exit Effector with 67 
SVC FLIH routine with 

description of 12 
flowchart of 403 

Task switching routine with 70 
Type 1 Exit routine wi th 190-

Must-complete status 
clearing of 62 
OAR processing for tasks 255 
meaning of TeE flags for 58 
setting of 57 

NIP (see Nucleus initiali~ation program) 
Nondispatchability flags, TCB 211 
Nonreusable module 

purging of module after its use is 
complete 194 

Normal termination 203-207 
Nucleus initialization program (NIP) 

entry point name of 751 
module name for 727 
synopsis of 764 

Open/Close routine (see Communications 
task) 

Open ing the dump data set 239 
Operato.r communications queues 

purging of 235 
OPSW (see RB old PSW, SVC old PSi, External 
interruptions) 

options routine (see Communications task) 
ORDERCDO routine 195 
overlay supervisor 

description of 91-92 
entry point names of 752 
flowchart of 467 
module names for 732,737 
synopsis of 764 
types of processing 92 

Parameter list element (ENQ/DEQ routines) 
forma t of 309 

PARRLSE routine 236 
partially loaded modules 

release of 235 
Partition queue element 



construction of 109,111 
definition of 5 
forma t of 333 

Partitioned data set directory entry (see 
Data set directory ent ry) 

PC FLIH (see Program-Check First-Level 
In terr uption Handler) 

PDS directory entry (see Data set directory 
en try) 

PFK routines (see Com!unications task) 
PICA (see Program interruption control 

area) 
P IE (see program interru ption elemen t) 
Post ro utine 

description of 4E-51 
entry point names of 752 
flowchart of 431 
module name for 727,736 
synopsis of 164 

Posting an event contrel block 
general (see Post routine) 
posting the l/C supervisor ICB 
posting the parent task's FCB 
posting the program fetch ECB 

PQE (see Partition queue element) 
PBB (see Program request block) 
Preserve routine 

description of 181 
entry point names of 746 
flowchart of 600 
module names for 733 

98 
206 
98 

Processor routines (see Ccmmunications 
task) 

Program Check First-Level Interruption 
RandIer 21 

Program Fetch buffer table 99 
format of 323 

Program Fetch Channel-End Appendage routine 
description of 103 
entry point name of 752 
flowchart of 464 
module name for 726 
synopsis of 165 

Program Fetch PCl Appendage routine 
description of 103 
entry point name of 752 
flowchart of 464 
module name for 726 
synopsis of 165 

Program Fetch routine 
descrip£icn of 91 
entry point names ef 752 
flowchart of 464 
module name for 132 
synopsis of 765 

Program Fetch work area 
description of 98 
form at of 323 
initialization of 98 

Program interruption control area (PICA) 
construction at 44 
format of 306 

Program interruption element (PIE) 
censtruction of 44 
format of 306 
normal release of 204 
purging of 234 

Program interruptions 20-21 
Program request block (PRS) 

abnormal release of 251 
construction of 82 
definit ion of 4 
forma t of 304 
normal release of 195 

Purge Timer routine 
entry peint of 152 
flowchart of 655 
function of 234 
module name for 121 
synopsis of 765 

QCB (see Queue control block) 
QCB gueues 

abnormal removal of elements from 248 
constructicn of 54 
illustration of 53 
normal removal of element from 60-61 
origin of 128 

QEL (see Queue element (QEL) for 
serializing the use of a resource) 

QEL queues 
abnormal removal of elements f["om 248 
construction of 54 
illustration of 53 
normal removal of element from 60-61 

Qname 51 
Queue control block 

abnormal release 
construction of 
forma ts of 310 

(QCB) 
of 248 
54 

normal release of 61 
Queue element (QE.L) for serializing the use 
of a resource 

abnormal release of 248 
construction of 54 
format of 311 
normal release of 61 

RB (see Request block) 
RB old PSW 

saving of 12 
RBREMOVE subroutine 250 
Recovery Management (see Machine-Check 
Handler) 

Recovery options for machine checks and 
channel errors 25-26 

Recursion, ABEND 
flags 228 
invalid 228 
valid 228 

Refreshing a transient area block {see 
Transient Area Refresh routin~ 

Region of main storage 
allocation of 10~ 
freeing of 132 

Relative Priority routine 11 
Release Loaded Programs routine 

description of 205 
entry point name of 153 
floucha rt of 656 
module name for 127 
synopsis of 165 

Release l1a in Storage routine 
description of 205 
entry point name of 153 
flowchart of 656 

Index 783 



module name for 728 
synopsis of 765 

Beleasing main storage 
at end of task 205 
during abnormal termination 254 
in re~ponse to a FREEHAIN macro 

instruction 131 
Belocation list dictionary record 98 

format of 325 
RELPRIOR routine (see Relative Priority 

rou tine) 
Reply Purge routine (see WTOR Purge 

routine) 
Reply queue element 

abnormal release of 235 
definition of 150 
format of 335 

Repmain routines 
description of 1E5 
entry point names of 753 
flowcharts of 607 
module names .fer 736 

Request block 
definiticn of types 4 
dummy (see Dummy request block for the 

system error task) 
fields and formats ef (see Interruption 
request block, format of; program 
request block, forma t cf; Supervisor 
request block, format of; System 
interruption request block, format o~ 

normal release of 191 
purging of 251 

Request queue elenent (EQE) 
abnormal return to free list 234 
definition of 64 
formats of 314 
normal return to free list 67 
queuing cf 66 

Requesting one or more resources via an ENQ 
macro instruction 51 

Requests for user exit reutines 
purging of 234 

Resident display contrel medule 
description of 164 
format of 344 

RESERVE macro instruction 
as used in Dequeue reutine 63 
as used in Enqueue reutine 59 

"Reset must complete" function 
descriptien of 62 

Resource queues for ENe/DEQ requests 51 
Responsibility count (LLCOUNT) 90,253 

format of 316 
(see also Load list element) 

Restart Exit routine 
description of 189 
entry point name cf 754 
flowchart of E21 
module name for 734 

Restart Housekeeping routines 
description of 185 
entry point names ef 753 
flowchart of 606 
module name of 735 

Resume I/O routine 
description of 1E3 
entry peint name ef 745 

784 

flowchart of 604 
module name of 734 

RET parameter 
effect of during ENQ processing 

54-55,59 
RIQE (see Rollout I/O queue element) 
RLD buffer 99 
RLD record 

format of 325 
Rname 51 
Roll Hade routine (see Communications task) 
ROLL parameter 34 
Rollout I/O Queue Element (RIQE) 

construction of 125 
forma t of 334 
normal release of 135 

Rollout/Rollin feature 7 
Rollout/Rollin module 

description of 119 
entry peint name of 754 
flowcha rts of 473 
module name for 728 
sc hed u ling of 115 
synopsis of 765 

RQE (see Request queue element) 
RQE queue (AEQA) 

placing element on 66 
removing ele ment from 67 
(also see Request queue element, 
abnormal return to free list) 

Sample dump 
format of 37.5 

SCANTREE subroutine 209 
Scatter extent list 

format of 319 
Sca t ter /translati en record 

format of .321 
SCB (see STAE control block) 
Secondary communications vector table 

format of 339 
Second CPU Recovery Management System 
Interface rout ine 

descripticn of 23-24 
entry point name of 754 
module name for 741 

SEGLD macro instruction 
linkage to the overlay Supervisor 
for 91 

SEGLD Processor routine 
description of 92 
entry pcint name of 754 
flowchart of 467 
module name for 741 
synopsis of 766 

Segment table 91 
forma t cf 327 

SEGTAB (see Segment table) 
SEGWT macro instruction 

linkage to the Overlay Supervisor 
for 91 

SER routines (see SERO routine and SEB1 
routine) 

Serializing the use of a resource 51 
SETSUBS subroutine 209 
SERO routine 

description of 27 



entry Foint names cf 754 
flowchart of 414 
module names for 727,732,741 
synopsis of 766 

SER1 routine 
description of 27-29 
entry point name of 754 
flowcharts of 415 
module name for 727 
synopsis of 766 

"Set must complete" function 57 
Set Status routine 

description of 72 
entry point name of 754 
flowchart of 456 
module name for 738 
synopsis of 766 

Severe error condition 
recognizing a 232 

Shared Direct Access Device feature 
description of 7 
Dequeue routine with 

description of 63 
flowchart of 432 

Enqueue routine with 
description of 59 
flowchart of 432 

SHOLDTAP routine 
description of 73 
synopsis of 766 

SHPC (see Six-hour pseudo clock) 
SIRB (see system interruption request 

block) 
Six-hour pseudo clock 139 
S"F (see System Management Facili ty) 
SPEOT routine (see Belease Main storage 
routinE) 

SPIE routine 
description of 44 
entry peint name of 754 
flowchart of 428 
module name for 737 
synopsis of 766 

SPQE (see Subpool queue element) 
SQA (see system queue area) 
STAE 

macro instruction 257 
Service routine 

description of 257 
entry point na me cf 754 
flovchart of 442 
module name for 735 
synopsis of 766 

ST!E control blocK (SeE) 
format of 301 

stage 1 Exit Effector 
description of 65 
entry paint name of 755 
flowchart of 436 
module name for 737 
synopsis of 766 

stage 2 Exit Effector 
description of 66 
entry point name of 755 
flowchart of 437 
module name for 729 
synopsis of 766 

stage 3 Exit Effector 

description of 66 
entry point names of 155 
flowcha rt of 438 
module name for 726,129 
synopsis of 166 

status Display Interface routines (see 
Communications task) 

STATUS macro instruction 
analysis of parameters 71 

Steal Core Subroutine 247 
STIMER routine 

descr iption of 142 
entry point name of 755 
flowchart of 482,487 
module name for 737 
synopsis cf 766 

storage Reconfiguration 
ABENDO routine with 

description of 231 
flowchart of 665 

ABEND1 routine with 
description of 232 
flotlcha.rt of 668 

ABEND 7 routine with 
description of 237 
.flowchart with 679 

ABEND 20 routine with 
description of 255 
flowchart of 704 

CDEXIT routine with (flowchart) 632 
general description of 29 

Storage Ut ilization Block (SUB) 
definition of 164 
forma t of 373 

subpool 
indicating shared ownership of 35 

Subpool End-of-Task routine (see Release 
"ain Storage routine) 

Subpool queue element (SPQE) 
abnormal release of 254 
construction of 113 
format of 330 
normal release of at end of task 205 

Subtask 
attaching of 31 
detaching of 41 
queue 36 

Supervisor reguest block 
abnorma 1 release of 249,253 
construction of 13-14 
definition of 4 
format of 296 
normal release of 192 

sve DUMP 
description of 218 
entry peint names of 743 
flowc.harts of 711 
module names for 734 

SVC First-level Interruption Handler 
description of 12 
entry paint name of 755 
flowchart of 403 
module name for 728 
synopsis of 766 

SVC FL1H (see SVC First-Level Interruption 
Handler) 

SVC interruption handling 
for nonresident (transient) SVC 

Index 785 



routine 14-15 
for type-1 SVC routine 12 
for resident SVC routine requiring an 

SVRB 13 
SVC old PSW 12 
SVC purgE parameter list 125 

format of 336 
SVC Purge routine 

entry pcint name cf 755 
function of 235 
module name for 737 
synopsis of 767 

SVC Second-level Interruption Handler 
description of 13-15 
entry point names of 755 
flowchart of 404 
mcdule name for 728 
synopsis of 767 

SVC SLI8 (SEE SVC Secend-Level 
Interruption Handler) 

SVC table 13 
format of 282 

SVRB (see Supervisor request block) 
SYNC 8 procEssing 

description of 77.,81 
entry point name 746 
flowchart of 458 
module name for 737 

SYSABEND data set (see DumF data se~ 
SYSIN/SYSOUT Data Set Processors 

description of 184-185 
entry peint names of 743 
flowchart of 6C7 
module names for 724 

SYSIN/SYSOUT Non-Direct Access Data Set 
Processor 

description of 187 
entry point name of 754 
module name for 734 

System Error task 67 
system error TCB 67 

entry point na me cf 755 
module name for 726 

System error transient area (see I/O 
supervisor transient area) 

System interruption request blcck 4,67 
format of 300 
initialization of 67 

System log 175 
System Management Facility 

Attach routine with 
description of 33 
flowchart of 418 

786 

dEtailEd description of 8,274 
Dispatcher routine with 

description of 198 
flowchart of 633 

EXCP Counting routine 
description of 275 
flowchart of 721 

External FLIH routine with 
multiprocessing flowchart of 412 
uniprocessing flowchart of 411 

FREEMAIN routine with 
description of 132 
flowcha.rt o.f 468 

FItSKFCRE routine 
dEScr iption of 132 

flowchart of 468 
GETMAIN routine with 

de sc r i pti on of 11 4 
flowchart of 468 

GHSlf·FCRE routine 
description of 114 
flowchart of 468 

Input/output FLIH routine with 
description of 24 
flowchart of 413 

Output Limit Expiration routine 
description of 145,274 
flowchart of 723 

Timer SLIH routine with 145 
flowchart of 484 

Timing Ccntrol Table 276 
wait routine with 

description of 48 
flowchart of 429 

Wait Time Collection routine 
description of - 275 
flowchart of 724 

system queue area 109,130,137 
SYSUDUlfP data set (see Dump data set) 
SYS1.DUMF data set 

with Da mage Assessment Routine 256 
SYS1.LINKLIB data set 

data control block (OCB) 
entry point name for 747 
module name for 741 

da ta extent block (DEB) 
entry point name for 747 
module name for 741 

SYS1.LOGREC data set 26 
SYS1.SVCLIE data set 

data control block (DCB) 
entry point name of 747 
modUle name for 741 

da ta exte nt block (DEB) 
entry point name of 747 
module name for 741 

TAB (see Transient area block) 
TABLDL (see Transient area fetch routine) 
TACT (see Transie nt area control table) 
TAHABEND subroutine 249 
TA8EXIT subroutine (see T.ransient Area 
Exit routine) 

T AHFETCH (see T.r ansient A.rea Fetch 
routine) 

TARESTRT (see SVC Second-Level 
Interruption Handle~ 

Task asynchronous exit routine 
scheduling of 43 
specifying of 258 

Task control block 
abnormal release of 255 
construction of 31 
def in it ion of 3 
forma t of 281 
normal release of 207 
posit ion of 1 
queuing o.f 36 
system 295 
system (pseudo task) 198 

Task Removal routine 
descr ipt ion of 73 



entry point name of 755 
module name for 742 
synopsis of 767 

Task switching routine 
descri~ticn of 70 
entry point name of 755 
flowchart of 440 
mcdule name f~r 729 
synopsis of 767 

Task timing 
descri~ticn of 200 
flowchart of 634 

!AXEXIT (see Transient Area Exit routine) 
TAXR!TRY (see Transient Area leTL routine) 
TCAM AB£UMP modules 

description of 226 
entry point names of 743 
flowchart of 662 
module names for 733 

TCAM Data Set Processcr 
description of 186 
entry point name of 753 
flowchart of 622 
module name for 733 

TCE (see Task control blcck) 
rCT (see Timing Centrel Table) 
TEST£SP routine (see Task Removal routine) 
TESTRAN interpreter 

entry point names of 756 
module names for 732,737 
use by the.common subroutines of 

Contents Supervision 80 
use by the Models 91 and 195 
Program Inter.rupticn Handler 
use by the Overlay Supervisor 

Time of expiration 141 
Time routine 

description of 139,140 
entry peint names cf 756 
flowchart of 481,486 
module name for 737 
synopsis of 767 

Time Sharing Option (TSO) 
Dequeue routine with 432 
description of 7 

22,263 
22 

467 

End- of-Task routine with 203 
Fetch and BLDL processing with 19 
issuing ATTACH with 36 
issuing CHAP with 38 

flowchart of 422 
local system queue area 130,137 
POST with TJID 49 
stage 3 Exit Effector with 66 
subpccl allocation iiO 
timer interruption with 143 
time sharing link ~ack area 

extension 17,80 
TSEVINT macro instruction 19,49,143,150 
TSO Dispatcher 199 
user exit routine with 195 

Time-slice control element 
pcinte.rs of 37 
creation of 4 
format of 343 

Tim e-sl icin 9 featu re 
Attach routine with 

description of 34 
flowchart of 418 

Chap routine with 
description of 37 
flowchart of 423 

description of 6-7 
Dispatc her routine with 

description of 198 
flowchart of 631,643 

EOT routine with 
description of 206 

Timer Interpre·ter routine (see 
Communications task) 

Timer interruption handling 142 
Timer queue 

positioning of elements on 142 
purging elements from 234 

Timer queue element 
abnorma 1 release of 234 
construction of 142 
definition of 141 
format of 331 
normal removal fro mtime.r queue 143 

Timer Second-Level Interruption Handler 
description of 143 
entry point names of 756 
.flowchart of 484,489 
module name for 728,729 
synopsis of 167 

Timer SLIH ~ee Timer Second-Level 
Interruption Handler) 

Timing 
job step 201 
task 200 

Timing Control Table 275 
TaX (see Time of expiration) 
TOE (see Timer queue element) 
Trace rout ine 

entry point names of 756 
funct·ion of 8,217 
module name for 742 
synopsis of 167 

Trace table 8,217 
format of 303,304 

Tracing facilities. 2,273 
Transient Area Availability Check routine 

description of 16 
entry point name of 156 
flowchart of 406 
module name for 742 
synopsis of 167 

Transient area block 16 
Transient area control table (TACT) 16.192 

format of 305 
Transient Area Exit routine 

description of i92 
entry peint names of 756 
flowchart of 630 
module name for 728,742 
synopsis of 167 

Transient Area Fetch routine 
description of 19 
entry point names of 756 
flowchart of 401 
module na me for 742 
synopsis of 768 

Transient area fetch task 18 
Transient area fetch TCBs 

entry point names of 156 
function of 18 

Index 787 



module name for 728 
Transient area handler 15-20 
Transient area I/O blccks (lOBs) and 
associated transient area blocks 

entry peint names cf 756 
module name for 742 

Transient Area Refresh routine 
descript.ion of 191,192,195 
entry point name of 756 
flowchart of E31 
module name for 728 
synopsis of 768 

Transient area user ccunt 
address of 339 
definition of 86 

Transient Area XC!L routine 
description of 83 
entry ~cint names cf 757 
flowchart of 458 
module name for 728,742 
synopsis of 768 

Transient display control module 
descripticn of 164 
format of 347 

TSCE (see Time-slice control elemen t) 
TTII'IER routine 

description of 145 
entry ~cint name ef 757 
flowchart of 483,487 
module name for 737 
synopsis of 768 

Twenty-four hour pseudo clock (T4PC) 138 
Type-1 E~it routine 

desc~iption of 190 
entry ~oint names cf 757 
flowchart of 626 
module name for 729 
synopsis of 768 

Type-1 SVC message 
description of 236 
freeing of WTP buffer 236 
purging of message list elements 236 

'Iype-1 SVC switch (IEAHPE1) 
entry point name of 757 
function of during ABTERM 

process ing 215 
module name for 728 

T4PC (see Twenty-four hour pseudo clock) 

unit control Module 
Base 355 
description 158 
Entry In dividual Device Map 358 
MCS Prefix 356 
Message Text and Event Indication 
List 360 

UCM Extension· Prefix 356 
Use/responsibility ceunt 90 
User Exit routine 

scheduling of 64 

Validity Check 
description 
entry peint 
module name 
synopsis of 

788 

routine 
of 71 
name of 757 
for 729 

768 

Vary Storage Offline routine 
description o.f 132 
synopsis of 768 

Vary queue element (VQE) 
format of 354 

V QE (see Vary queue element) 

wait routine 
description of 45 
entry point name of 757 
flowchart of 429 
module name for 736 
synopsis of 768 

Where-to-Go routine 
cleanup in 227 
function ef 219 

WQE (see write queue element) 
Write queue element 

Ma jor. WQE 363 
MCS (single-line WTO) 361 
Minor WQE 366 

Write-to-Log routine 
descriptien 175 
entry point na Ole of 757 
flowchart 530 
module name for 732 
synopsis of 768 

Write-to-Opera·tor routine 
entry point name of 757 
flowchart 491 
module name for 734 
synopsis of 768 

Write-to-P.rogrammer routine 6,151 
WRITELOG Available Log Data Set routine 

entry point name of 757 
module na me for 731 
synopsis of 768 

WRITELOG command 175 
WRITELOG Dispatc.h routine 

entry point name of 757 
module name for 731 
synopsis of 768 

WRITELOG Get Region 
entry point name 
module name for 
synopsis of 768 

routine 
of 757 
731 

WRITELOG Log Initialization routine 
entry poin~ name of 757 
module name for 731 
synopsis of 768 

WRITELOG Log Write.r 
entry point name 
module name for 
synopsis of 768 

routine 
of 757 
731 

!fRITELOG !!aster !fait routine 
entry point name of 757 
module Dame for 732 
synopsis of 768 

!fRITELOG Open Device routine 
entry point Daile of 757 
module name fo~ 731 
synopsis of 768 

iTL routine 175 
(see also Write-to-Log routine) 

!fTO rout ine (see Write-to-Operator 
routine) 

VTO/R Macro Expansion 368 



WTOR macro instruction 150 
iTOR Purge routine 

entry point name of 757 
function as used by ABEND routine 235 
function as used by EO'! routine 204 
module name for 731 
synopsis of 769 

XCTL processing 
description of 82 
entry peint name of 746 
flowchart of 458 
module name for 737 

2K Storage Reconfiguration (see Storage 
Recon figurat ion) 

2250 System operatorOs Console Support 
routines (see Communications task) 

2260 Syste m Operator's Console Support 
routines (see Communications task) 

2860/2870/2880 Channel-Check support 
descripticn of 2 
Transient Area Fetch IIO error 26 

789 



n 
S 

IBM System/360 Operating System 
MVT Supervisor 

Your views about this publication may help improve its usefulness; this form 
will be sent to the author's department for appropriate action. Using this 
form to request system assistance or additional publications will delay response, 
however. For more direct handling of such requests, please contact your 
IBM representative or the IBM Branch Office serving your locality. 

How did you use this publication? 

o As an introduction o As a text (student) 

o As a reference manual o As a text (instructor) 

READER'S 
COMMENT 
FORM 

o For another purpose (explainL ______________________ . __________ . ______________ _ 

Please comment on the general usefulness of the book; suggest additions, deletions, and clarifications; list 
specific errors and omissions (give page numbers): 

What is your occupation? _______ . ___ . ________________________ . __ . __________ _ 

Number of latest Technical Newsletter (if any) concerning this publication: ___________________ _ 

Please include your name and address in the space below if you wish a reply. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office 
or representative will be happy to forward your comments.) 



GY28-6659-7 

Your comments, please ... 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. Your comments on the other side of this 
form will be carefully reviewed by the persons responsible for writing and publishing 
this material. All comments and suggestions become the property of IBM. 

Fold Fold 

I 

I 
1 
I 
I 
I 
I 
n 
So 
~ 
"T1 
0 
ii 
» 
0" 
" IQ ,... 
5· 
CD 

I 
I 
I 
I 
I ................................................................. , ................................................................................................................. . 

fold 

Business Reply Mail 
No postage stamp necessary if mailed in the U.S.A. 

Postage will be paid by: 

International Business Maohines Corporation 
Department 636 
Neighborhood Road 
Kingston, New York 12401 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(Intematlonal) 

Fold 

First Class 
Permit 40 
Armonk 
New York 



GY28-6659-7 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York IDBD4 
[U.S.A. only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 


