-~

Application Program GH20-0786-3

CALL - 0S

Executive and Utilities
Program Description Manual

Program Number 360A-CX-42X

This publication describes the facilities
provided by CALL-OS to installation personnel
who are responsible for the selection,
evaluation, and implementation of the system.
The intended audience includes systems
engineers, installation programmers, marketing
representatives, and customer systems personnel.

CALL-0OS is a terminal-oriented, time sharing
system designed to function under the control of
the IBM System/360 Operating System with either
of two options: Multiprogramming with a Fixed
Number of Tasks (MFT), or Multiprogramming with
a Variable Number of Tasks (MVT). From the
terminal user standpoint, the CALL-0S service
environment approximates that of a dedicated,
in-house, data processing installation.

Note: The CALL/360-0S system has been renamed
the CALL-0S system. Thus, documentation
of Version 2 of the CALL/360-0S system
refers to the system as CALL-0S.

Terminal Equivalency

Terminals which are equivalent to those explicitly supported may also
function satisfactorily. The customer is responsible for establishing
equivalency. IBM assumes no responsibility for the impact that any
changes to the IBM-supplied products or programs may have on such
terminals.

Fourth Edition (March 1972)

This edition, GH20-0786-3, is a major revision obsoleting GH20-0786-2.
Significant changes have been made throughout this edition and it should
be reviewed in its entirety.

This edition reflects Version 2, Modification Level 0, of the CALL-OS
time sharing system and all subsequent versions and modifications until
otherwise indicated in new editions or Technical Newsletters.

Changes are continually being made to the specifications contained
herein. Therefore, before using this publication, consult the latest
System/360 SRL Newsletter (GN20-0360) for the editions that are
applicable and current.

Copies of this and other IBM publications can be obtained through IBM
branch offices.

A form has been provided at the back of this publication for reader
comments. If this form has been removed, address comments to IBM,
Technical Publications Department, 1133 Westchester Avenue, White
Plains, New York, 10604,

(:) International Business Machines Corporation 1971, 1972

PREFACE

This publication describes the facilities provided by CALL-0OS and
discusses the concepts and techniques underlying their use. It is
intended as a reference guide for systems engineers, installation
programmers, marketing representatives, and customer systems personnel
in the implementation of the CALL-0S time sharing system.

This publication contains nine major sections. The first section
summarizes concepts needed for a better understanding of the system and
describes the organization of the system; the next two sections describe
the CALL-0OS data base and the CALL-OS Batch Interface facility (COBI),
respectively. The first two sections should be read by anyone not
familiar with the CALL-OS system; the section on COBI should be read by
anyone who desires to use this facility.

The next five sections contain the information necessary to design,
build, and initialize a CALL-0S system, create and maintain the data
base, and maintain the system itself. These sections are procedure-
oriented and intended for use by experienced personnel.

The last section summarizes diagnostic aids available to the system
programmer. An additional source of diagnostic information is the
publication CALL-OS Operator's Manual, which contains all system
messages and ABEND codes, as Wwell as explanations. Finally, appendices
provide additional information.

To derive maximum benefit from this manual, the user should have a
working knowledge of the following support publications:

CALL-0S System Description Manual (GH20-0673)

CALL-0OS Terminal Operations Manual (GH20-0787)

CALL-0S Operator's Manual (GH20-0788)

IBM System/360 Operating System: Concepts and Facilities (GC28-6535)

IBM System/360 Operating System: Job Control Language (GC28-6539)

IBM System/360 Operating System: System Generation (GC28-6554)

IBM System/360 Operating System: Linkage Editor and Loader (GC28-6538)

Page of GH20-0786-3
Revised July 31, 1972
By TNL GN20-2780

CONTENTS

Introduction to the CALL-0S System.
System Concepts « « « o« o« ¢ o o o .
Personal Computing. « « « « « < «

User Identification and System Secur

Time Sharing and Time Slicing . .
JOb SWapping. « « « o o o o « «
Trivial and Nontrivial Responses.
Data Bas€ .« « = « « « o « = = =
Libraries « « ¢« ¢« ¢« ¢« o o o « « =
User Libraries.
System Librarjes.
Resident and Nonresident Modules.
Use of Storage Within the CALL-0S
Executive Area. . . « « « o
User Program Area . . . « «
System Organization
Executive ¢ o .
Control Program Interrupt Di pat
Resource Managers « « « « « « «
User Program Area Manager . -
Terminal and Disk I/O Handlers.
Command Languages « « « = « o e
Terminal Command Language - o @
Operator Command Language
Processing Programs «
Compilers « « « o ¢« o « « o
Utility Programs. . . .
CALL-OS Batch Interface (COBI) Fac

-

ll.l

CALL-0S Data Bas€ . « « 2 « « o = «
System Base . . ¢ ¢« 4« o o o o o o o

Compiler Data Sets.
Work/sSwap Data SetsS v« « o o o « «
WOXKk AY€a . v ¢ o « « o « =« o o
SWap AY€A « « « o o o o o - o
Overlay Data Set. . . « o o « o «
USEY BASE v« 2 2 o o o o o o o » o =
Systeém GroUP. « « =« « « « =« = =
User Group. . . e« o 4 o = @ ® @
Structure of Each User Base Data S
Allocation Record . - . . . -

Equivalency File.
Catalog « « o ¢« o o o o =
Directory File. . . « o o
Program and Data Flles.
File Descriptor Record. .
SUMMAYY « « « o « = o =
Assigning User Numbers. .
Using Clusters. . « . . .
Index Data Set. « . <« « « &
Data Base and System Performance. .
Limitation of Disk Space.
Planned Efficiency of Disk Arm Use
Backup of the Data Base . . « - «
Removing a User From the Data Base.

L]
[I)
[2]
L]

¢ 8 8
s 8 3
]
.

CALL-0S Batch Interface Facility.
Introduction. « « ¢« « ¢ ¢ o « o «
COBI Concepts « « « « o o « « «
Output Classes. . . - e
Submittal of 0S/360 Jobs. -
Identifying COBI Jobs and Data S

-

ty

.
e 0 s 3 s

8 & 8 6 judes s &
.
¢ s s 3 e 8 @
.

[] s * .]
LY B)
L] L] . . . L]
s 8 &
. .

Task Area

e e e
e o e
. e e

-

cher.

.
s & & 3 8 o & 2 s

L] . DI

-
-
ilit

s o o 8 o
.

ty

.
] . .
¢ & 8
. . L]
4 . .

Mt o o o s o 8 o o
¢ s 8 o s 0 s
. .

u
&

.
§ 2 o 8 & 8 & 8 s s @

]
. . . .
L]

e e e e o
* @ e e o
e ®© e o @
e ® e e e
® o e e o
® e @ e =
e e e o e
e« e * e e
. a -« o -
e ®o e o e
o e e e
o« = e o e
. e . -

e @ o o

.
.
LR T T

ets -

[LI . L] . .

6 & & & & 8 0 5 6 & 0 s s s e @

¢ 6 o & o

¢ o O . s 0

. . . . L] 3 . [. .

. L] . L]

¢ & s 9

0 L])] . [I . . .

o & 8 & & 4 s 3

e & & 0 & & &

¢ & o s s .

. . . * 8] . . L3 s L

.

¢ & & ¥ & & & 4 & 3 & 6 4 6 6 % & & e @ & E 6 3 6 0 & @

¢ & o & s 0 s 0 s

e & & s 8 s s

4 8 s 4 & & 0 s 0

s & & & & s

e & & &

[. ¢ o .

5 8 & 6 3 & 8 §

.] . s &

§ 8 8 s 0 s &

s @

8

i e o & 8 & 6 F & s 4 o s U B S] . é 8 e 8 & & F 8

+ & & & e &

e 6 o & & 86 4 8 8 8 s 5 8 B 4 6 2 & ¥ b e s

e o o & b 8 8 e

s s 8

¢ 8 8 4 8 o o &

s & & 3 s 8 s 3 s 0 e 5 s s 0 ¢ & 8 3 & 3 & 8 8 & 0 s 2 B 8 s 4 4

s & 8 5 3 s s s &

VOOV EELTWWWNNNON=

Definition of SYSOUT Data SetS. - . . « «
COBI Device ClasSs$ « « o o « o « o « o« « «
Sample COBI Job and Its Processing.
Creating and Submitting the Job
COBI Processing After Submittal
0S/360 Processing .« « « o o o « o o o o =

i

| Output Destinations and Final COBI Processing

COBI Data Sets. « o v o o o o o o o o @ o o «
Index Data Set. « o v v @ o 4 o @« o o o o =
JCL Data Set. «w v o o @ o o o o o o @ o o =
Input Data Sets . . . & ¢ & ¢ @ o ¢ ¢ & « .
Scannable Data Sets . . . ¢ & © & ¢ ¢ < o .

Scannable Output Data Sets.
Scannable System Data Sets.

Preparing to Use COBI - . - .

Modifying the IEEVLNAT Control Sectlon. . .
With an MFT System. . . .« <« . . ¢ « o « »
With an MVT System. ¢ @« « « o« .

Converting Cataloged Procedures
JCL Requirements for DIBCONPR
conversion ProCeSS. . o o o « o = @ o o =
Conversion Example. ¢ o« o .« o =
Using the COBI Procedure Library.

Supplying COBI Reader and Writer Procedures
COBI Reader (DIBRDR) Procedures
COBI Writer (DIBWTR) Procedure.
Adding the COBI Procedures to the Gystem.

Initializing the COBI Data Sets . «
Initialization Process. . . « « =« « « « =
Using the Cataloged Procedure
Executing U#5INIT as a Separate Program .

Link Editing the COBI Reader and Writer Load Modules

Maintaining the COBI Data Sets. . . « =« . «

JCL RequirementS. « « « o « o« = « « « « =
Example . . . « . ¢« <« < . . e e “ ..

U#5RINIT - Reinitializing the COBI Data Sets.

JCL RequirementS. « « o o « o « o « « =« @
Example . . . - - o = c o o o o o o

U#5PURGE - Purglng Unflnlshed Jobs from the COBI Data

JCL RequirementsS. . « « « o« o o o o « o =
Example &« « ¢ ¢ 6 @ ¢ @ ¢ @ o o o o o o @

Designing the System. . . « <« . & 2 @ & o @« ..

System Configuration. « « « ¢ o @ « @« « o @« &

Minimum Machine Configuration

Minimum Storage Requirements. . . .« <« . . .

Data Set Allocation . .« « ¢ ¢ ¢ ¢ @ @ @ @ o

Core Storage Requirements ¢ o o o« o«

Computing Task Area Size. . . . o =

. Allocation of Storage Within the Task Area.
Module Residency Considerations

LCS and Hierarchy Support Considerations. .

Examples of Core Requirements . . + « « « =«

. Example 1 . o ¢ v 6 ¢ 6 o o o o o o o o
Example 2 . ¢ ¢ v ¢ ¢ @ o o o o o o o o =

Example 3 . ¢ ¢ 4 ¢ ¢ ¢ e 4 e 4 e e e o s

Example U4 . ¢ & & o o 2 o o o s o s o o
Summary of Performance Considerations

Building the System ¢« ¢ & ¢ & « < .

0S/360 System Generation Requirements and Considerations

CTRLPROG Macro Instruction. . . . « « « o =
JOCONTRL Macro Instructione « « « « o« =« «
IODEVICE Macro Instruction. . « « o« « « « =
RESMODS Macro Instruction . « « « « « o « =
SCHEDULR Macro Instruction. -« « « o« « © o o«
SUPRVSOR Macro INStrucCtion. « « « « « « o« o

-

U#5CBXPN - Expanding the COBI Index and JCL Data Set.

-

SVCTABLE Macro InsStruction. « « « « « @« @ = @« o o « o« = =« o« « o« 87
UNITNAME Macro INnStructioOne. « o« « « « o o « o o o o o« o« « » @« « 87
CALL-OS System Build. . . « o ¢ & « o o 2 « 2 o o « 2 « « « « =« « 88
System Release TAPES. « o = o o « @ @ © = © o « =« = « =« = « « = 88
System Build Process Summary. e o e « o « 89
Step I - Loading the Executive and Ut111ty lerarles. .« e e . . 9N
Step II - Loading the Compiler Libraries. . . « ¢« « « ¢« « « « « 93
Step III - Link Editing the System. . « « ¢« « @ ¢« « « @ « « « « 94
User-Specified OptionsS. « ¢ o @ o o @ 6 4 o o o s o « « =« « o« 96
Subsequent ProCesSsing « « « o o « o o « o o o o o o « « « o « 97
Step IV - Establishing the Data Bas€. « « « « « « « « « « « « « 99
System Build with Existing Data Bas€. « « « « « « « « « « « « 99
System Build with Default Data Base . . . « . « =
Default Data Base on One Pack . « « « « « o« « o «
Default Data Base Oon TWO PACKSe « « o © o« o « o o
Default Data Base on Three PackS. « « « «w « « « = . (
Restarting the Default Data Base. c e o o e e o « o 116
Step V - Punching the Startup Deck (0pt10nal) - . . 116
System Build Considerations for an Installatlon—Modlfled System 116

o s i e
.
.
‘
.
i
-
(=]
(5]

Initializing the System « « ¢ ¢ o ¢ ¢ @ e « o « o « o « o « =« « « 118
System Initialization . . o o o o o o o o o o o o« o 2 « @« « o « - 118
Startup DeCKk. ¢ © ¢ o o 2 © o @ « @ « o = o @ s « a o o« =« o« « « « 118
Description of Initialization Parameters. . . « - « « = « « - « 120
Overall System OptionsS. « « o o o o o = « o © o « o o « « « = 122
Additional COBI OptiOnS . o 2 o « « =« « s « @ = = « @« « o« « « 125
Description of JCL Statements . . « ¢ « ¢ « o« o « « =« « =« « « « 128
JOB Statement . . o ¢ « c ¢ e 4 0 e e e o @ @ @ s o o o = o o 129
JOBLIB DD Statement . . . @« « @ o o © « « o o -
EXEC Statement. . .« ¢ ¢ o o o 6 ¢ ¢ 6 o e o o o « o = =« « « « 129
SYSABEND DD Statement . . . « o ¢ ¢ o o @« o o
SYSPRINT DD Statement . .« ¢ ¢ o ¢ o o « o « = .
INDEX DD Statement. . . o o« o 2o ¢ 2 « o o « o = « « « =« =« « « 130
RESMODS DD Statement. . . « o« o o o o o o 2 « « « « =« « =« « =« 130
OVLY DD Statement . . . ¢ ¢ ¢ 6 ¢ ¢ o o @« @ = « o « « « =« « « 130
BASIC, FORTRAN, PLI, and PL2 DD StatementS, . « « « « « « « ~ 131
SWAPNN DD Statement « o« . o o o o ¢ o o o @ o « o « o « « « o 131
SYSGRPNn . DD Statement . . o« ¢ ¢ 6 @ e o @ o o o o o o o « - « 131
User Group DD Statements. . o ¢ ¢ « 6 @ o ¢ o o ¢ o o « « = « 131
TWX, T2741, and T2741E DD StatementsS. « « « « = « = = « w - « 132
Additional DD Statements for COBI . = « o« « « = « « « « « « o 133
SYSIN DD Statement. « o o o o o o @ =« o © o « o @« o o« o« =« « =« 134

Creating and Maintaining the Data Bas€. « « « « o « « « =« « « « « 135
U#UTIL3 - Formatting the IndexX. o ¢ & o o o o « © « « « @« 135
UH#UTIL1 - Building the Data BaS€. « « « o 2 « 2 « « « « = @« « « « 135
Compiler Data S€tSe. « « « o o = « « & « = o = « a « o« « « o « o 136
Work/swap Data SetS w ¢ v v ¢ ¢ o ¢ ¢ @ 2 o o @ = @« =« o o« « « o 137
Overlay Data Set. . o ¢ u o o o @ o @ o« « = o o o« o« =« =« « = « « 138
System Group Data GetS. « o« o o ¢ o o « o . : -~ 138
User Group Data SetS. o« v @ o o « © =« @« o 2 o @ « o o « o =« « &« 139
UTILX - Modifying the Index . « « ¢« « « « o« « . . 139
JCL StatementsS. « « « ¢ ¢ ¢ o ¢ o o o w o » . . , . 139
Detail CardsS. « v v« o « o o o o o © w = o o © o o o o o « « « « 140
Output.« . . . - e 2 @ @ e o s s e« s o @ = o « o - 141
DIBCADBU - Maintaining the Data Bas€. o o o @ o o o o o o o = - o W1
INtrodUCtion. . o o o « o o o o o © 2 @ = o @ s o o o o o« « « « W41
Using the Data Base Utility . ¢ « o o o o o« o o © o o « = « o 141
Ensuring File SeCUrity. « « o o o « o o o o o « = = « « « « o« 142
Control Statements for Execution. . . « « &« o o o « = « « « « o 144
Job Control StatementS. . ¢ o« v o o o o o o o © o o o = = o o 144
Utility Control StatementS. . « « « © « 2 « « o o o « « =« « = 146
ACCOUNT FUNCtion. w « o o o o o o @ o o © o o o o o o = o = « « 147
Additional DD Statements. . « « ¢ @ « @ o o . ‘ . 148
ACCOUNT Function Statement. . . ¢ « o @ « « « « o @« « = « - « 148
Accounting Options and Examples . . « « « « o = . 149
DELETE Function e © e @ o o o o o o o @ . 152
Additional DD Statements. e o o @ o o @ o @ o o o o w o« o o « 153

DELETE Function Statement . . . ¢ « « ¢ ¢ ©« ¢ o

Example .

INSERT/REPLACE FUNCtion . « « o o o o o ¢ @ o o «

Additional DD StatementS. « « 2 « « « o« o «
INSERT/REPLACE Function Statement . . .

Example

- e e ®© w®w e

JOBFIND Function. . .

Additional DD Statements. “ @ o a s ® @

-

e o o @ @ @ ® o o o @ e

- « @ e e o o o o o
-

JOBFIND Function Statement. . « « « © ¢« « o « o« «

Example

- e o o e e

RECONSTRUCT Function.

Additional DD Statements. « « « « « <« «
RECONSTRUCT Function Statement.

Range Cards

Example
REORGANIZE Function .

Using a Backup Tape « « « « « « «

Additional DD Statements. e o e

> @ ®© ® e e o e e o @

¢ & & s &
.
.
.

REORGANIZE Function Statement . . . « « 2 o « « «
Examples.
TAPE Function
Additional DD StatementsS. . . ¢« 2« ¢ « o« o ¢ o «
TAPE Function Statement . . o« o @ « o o @ « o o @

Example

. « @ e o e

VALIDATE Function . .

Additional DD Statements.
VALIDATE Function Statement . . .

Example

WRITE Function. . . .

Additional DD Statements.
WRITE Function Statement.

Example .

@ @ @ ®© e e @ e e e o e o & e

e e & o e @ e e e o o o e e

. . . .
.
[T Y N)

WRITE Function Output . . . e e e w e e e e o @
User and Group Statistical Reports. e = o @ @ s & @
User Statistics . .
Group Statistics. .

Maintaining

Loading Executive and Utilities Source and Macro L1brar1es

the System.

e o o @ ° e o e e @ © o o e o

Loading Compiler Source and Macro Libraries
Obtaining a Modified Object Deck. . . « * e s a s @
Obtaining a Modified System Load Module e e e o o = o
Linkage Editor JCL Requirements « « « « « =
Linkage Editor Control Statements

Control
Control
Control
Control
Control
Control
Control
Control

Statements
Statements
Statements
Statements
Statements
Statements
Statements
Statements

Diagnostic Aids
Global Table and User T
CALL-0OS Trace Entries .
*REPORT Command . . . «
*STATUS Command « . . .

Appendix A:
Appendix B:
Appendix C:

Index . . .

Example of

Definition

for RTOST1. @ o ¢ o a o o o o @
for UHUTIL1. < &« ¢ « « o « . .
for DIBCADBU . . e o o o = o
for Other Modules. “ s s o
for the BASIC Compller « o .
for the FORTRAN Compller o o o
for the PLI Compiler Phase . .
for the PL2 Compiler Phase . .

erminal Table. . e o & @ @ s @

Statistical Report (*REPORT).

of Codes for *STATUS Command.

Nonresident Module Numbers

. e ® ® e ®

153
157
157
158
159
165
165
166
166
166
167
167
167
168
168
170
171
171
171
172
174
174
174
176
177
177
177
178

179
179
185
185
188
188
189

190

191
191
192
193
193
193
193
193
193
194
194
194
195

196
196
196
196
196
197
203
205

206

FIGURES

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

TABLES

Table
Table
Table
Table
Table
Table

1.
2.
3.
4.
5.
6.
7.

9.

10.
11.
12.
13.
14.
15.
16.

17.
18.

19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

in the CALL-0S task area. . . .
componentS. « « o « o 0 o . . .
Disk work/swap area format <« « ¢ < o« .
Initial format of the work area.
Work area following a sort« « <« « o « .
Format of a major record « « « o« o o o« © o o
Major record with three add-on records
User group data set organization
Relationships of user base data set records. .
Organization of the CALL-0S data base. . . .
Sample cataloged procedure conversion for COBI
PGMA input after COBI processing . « « « « « o«
PROCA after symbolic parameter substitution. .
Sample procedure before conversion by DIBCONPR
Sample procedure after conversion by DIBCONPR.
JCL statements in the first step of the COBIBLD
ProcedUre. « o o« o o o o o o o o o o o @ o o
JCL statements
ProCeAUYrECs « o« o o o o o o o o o o o o o o o .
Linkage editor
ProCeUre. « o @ o < o o o o o o o o o o o o o
CALL-0OS system hardware configuration.
Central cylinder concept (top view).
The system build process for a new system. . .
JCL statements in the RTOSJOB1 procedure . . .
JCL statements in the RTOSDB0O1 procedure . . .
Default data base option 1 - single pack . . .
JCL statements in the RTOSDB02 procedure . . .
Default data base option 2 - two packs
JCL statements in the RTOSDB03 procedure . . .
Default data base optlon 3 - three packs .

JCL statements present in CALL-0OS startup deck
Data base utility program structure.
Data base utility control cards. . . « « . . «
Data base utility JCL example. . « « « « ¢ «
Order of records on a backup tape. . . « « . .
Statistical report example . « .« o« o o« o & o

Use of storage
CALL-0S system

Parameter defaults for
Parameter defaults for
Parameter defaults for
Contents of RTOSPROC .
Parameter defaults for
Parameter defaults for

the DIBCONPR utility. .
the COBIBLD procedure .
the U#5INIT utility . .
the RTOSJOB1 procedure.
the RTOS1 . . «

in the second step of the COBIBLD

control statements in the DIBCBINC

Ay

Page of GH20-0786-3
Revised July 31, 1972
By TNL GN20-2780

INTRODUCTION TO THE CALL-OS SYSTEM

CALL-0OS is a terminal-oriented, time-sharing system which provides an
individualized computing capability to a variety of users. It is
designed to handle a high volume of traffic in a problem-solving
environment, and to satisfy the needs of the experienced professional as
well as the uninitiated computer user. From the individual terminal
user viewpoint, the service environment approximates that of a dedicated
data processing installation.

The system is interrupt-driven, which eliminates recurring
interrogation of terminals by the computer center and reduces operating
overhead. Most terminal-originated interrogations result in near-
immediate responses. The facilities provided by CALL-OS constitute a
complete in-house computing and data service capability. Some of these
facilities are:

e Concurrent batch-processing capability under OS

e Highly responsive personal computing system under OS, designed for
problem solving

e Extensive terminal command language, directed towards both the
experienced and the inexperienced user

e Multiprogramming within a single task area

e Dynamic assignment of dispatching priorities to provide efficient
use of CPU time

e Shared libraries which may contain source and/or object programs,
andsor data files

e The ability to submit jobs to OS batch processing from the terminal
with the CALL-OS Batch Interface (COBI) facility; COBI also allows
the user to retrieve the output from the job at his terminal

e Three programming languages processed by three fast load-and-go
compilers which generate dynamically relocatable code

e Terminal checkout of user programs
e Extensive edit capabilities for modification of line-numbered files

e Ability to link one user-written program to another via chaining
facilities

e Ability to enter line-numbered information as. a program-data file,
either directly from a terminal or by means of a CALL-OS utility,
and to read such a file as input during program execution

e Facility for entry of source programs, data, and terminal commands
via paper tape

e Operator control of some system resources
e Security features which protect each user's data

e Offline utilities which provide facilities for building and
maintaining the system and its data base

poreN

Page of GH20-0786-3
Added July 31, 1972
By TNL GN20-2780

CALL-0S operates as a task under the control of the IBM Operating
System (0S), Multiprogramming with a Fixed Number of Tasks (MFT) or
Multiprogramming with a Variable Number of Tasks (MVT) control program.
It occupies a single region or partition, referred to in this manual as
a task area. Because it requires only one task area, background jobs
may execute concurrently to capitalize on the remaining CPU and core
storage capacity, thus providing the multiprogramming functions of the
standard operating system, plus a compatible time-sharing capability.
In this environment, each CALL-OS terminal user operates independently
of every other user, and is usually unaware of other terminal users or
other 0S activity.

The CALL-0S system provides a personalized computing service to
multiple terminal users. The user of this system is provided with an
extensive terminal command language designed to facilitate communication
between the terminal user and the computer. Several programming
languages are provided to facilitate problem solving. CALL-OS operates
under control of its own control program (executive), which performs all
control functions and I/0 operations, and provides a standard software
interface for all compilers and user programs. The portion of the task
area not used by the executive is called the user program area; this
area is allocated to compilers and executing user programs.

The rest of this section defines system concepts required for better
understanding of the system and the organization of the systemn.

SYSTEM CONCEPTS

CALL-0OS employs numerous techniques and concepts woven together into
a single functional package. Since a working familiarity with these
elements is essential to a comprehensive understanding of the system,
they are discussed in the following text.

PERSONAL COMPUTING

Personal computing can be defined as the ability of an individual to
use the power of the computer to assist him directly in the solution of
his daily problems. Key to the development of a personal computing tool
is the development of the terminal-oriented, time sharing capability
offered in CALL-0S. This capability permits individuals to obtain
computing services when that capability is required. Such a computing
capability is in essence transparent to the individual, thereby
permitting him to concentrate on problem solutions without having to
become further involved with computer/programming disciplines.

USER IDENTIFICATION AND SYSTEM SECURITY

When a user wants to use CALL-0S, he follows a specified procedure to
sign onto the system. Part of this procedure involves identifying
himself to the system. Identification consists of typing in a user
number and a password. Only the user who gives the appropriate user
number and password may access information previously retained under
that identification.

A user number consists of six characters: the first three are
alphabetic (A through Z) and the last three are numeric (0 through 9).
User numbers are assigned and controlled by the installation.

A password consists of any combination of letters, numbers, and/or
special characters, including embedded blanks, up to eight characters.
The password is selected by the user, and, with his user number,
provides his unique identification.

See the publication CALL-OS Terminal Operations Manual for a detailed
description of the sign-on procedure and password assignment.

TIME SHARING AND TIME SLICING

In CALL-0S, time sharing is defined as the allocation of computer
resources at a single facility, in a time-dependent manner, to several
programs which are simultaneously core-resident. 1In this way, multiple
users may occupy the same program task area at the same time, but actual
program execution is effected on a scheduled basis for a single user.

Multiple residency is thus seen to be simultaneous, and rapid
multiplexing from user to user provides the illusion of each user having
the full resources of the system at his disposal.

In a time sharing environment, the technique employed in the
allocation of system resources to operating programs is time slicing. A
portion of the available central processing unit time is allocated to
any compilation or execution task. This portion is called a time slice.
By allocating a portion of the system resources to each user, a large
number of users can be supplied with data processing services
simultaneously.

Each terminal job is allotted a time slice as it enters the systen.
It is this time slice which determines the maximum length of time the
job may process before it loses control to the next job in the job
queue. The time slice allotted depends on the task to be performed. A
basic design objective of the system is to ensure completion of most
compilations and executions within the time slice.

JOB SWAPPING

Compilation is interrupted if a time slice is exceeded; execution is
interrupted if the time slice is exceeded or if terminal input is
requested. These interruptions cause the user program to be moved to a
special area of disk storage (called the swap area) so that system
resources can be allocated to other users. This process is called
swapping. For example, upon expiration of a time slice, the currently
active job is swapped out of the user program area onto a preassigned
area called the disk work/swap area. A job is swapped back into the
user program area when it again becomes eligible for execution.

TRIVIAL AND NONTRIVIAL RESPONSES

From the standpoint of the magnitude of system resources required,
the functions and facilities of CALL~0S can be separated into trivial
and nontrivial tasks. The amount of time taken by the system to respond
to or accomplish one of these tasks is the response time.

For example, the acceptance of program statements keyed in by a user
and the execution of certain system commands require minimal system
resources; they are therefore carried out with essentially zero response
times. This is possible because the required modules are permanently
core-resident and execute to completion for each individual user.

If, on the other hand, a user requests execution of a program,
storage must be allocated for this task, and significant amounts of
system resources are required. To preclude one user from dominating the
system, a time slice is allocated to the single user for such tasks. By
allocating an increment of CPU time to each user who requires program
execution, a large number of users can be accommodated with data
processing services on a simultaneous basis. The result, however, is
that these nontrivial tasks involve response times of the order of
seconds, while near-instantaneous response is possible for trivial
tasks.

DATA BASE

Information necessary for and created during operation of CALL-OS is
kept in a collection of data sets known as the data base. This data
base is used by CALL-0S for the storage and retrieval of system and user
resources. Examples of these resources are programs, data files,

compilers, and overlay modules. The data base consists of three logical
parts:

e The index, which identifies all permissible DD statements and data
sets to be used by CALL-0OS; the index is used primarily for data set
identification during system initialization and offline data base
manipulation.

e The system base, which fills the needs of the system for compiler
storage, work/swap area, and nonresident modules.

e The user base, which contains all user number oriented data, such as
passwords, programs, data files, and COBI job identification.

A detailed description of the data base is given in the section
"CALL-0OS Data Base".
LIBRARIES

CALL-0S provides two types of libraries: wuser libraries and system
libraries. A user library contains information associated with a single

user; a system library contains information shared by many users. Each
type of library is described in more detail in the following text.

User Libraries

One user library is available to each terminal user. This library
contains all programs and data files retained by the user, as well as
any 0S/360 jobs he intends for submission through COBI. The information
in a user library is controlled only by the user associated with the
library; however, the information may be made available to other users
of the system.

System Libraries

The system libraries allow information to be shared among many users.
The following system libraries are available:

e The *Library, accessible to only a specific group of users; that is,
those users whose user numbers are identical for the first four
characters

e The **Library and the ***Library, accessible to all users of the
system

The information in the *Library is controlled by the terminal user.
He specifies the name of a program or data file he wishes to share with
other users. This name is entered in a special list, called a
directory, which also indicates the sharing user; the program or data
file itself remains in the appropriate user library. Only the user who
shared (or pooled) the information may alter it or cause its name to be
deleted from the *Library.

The information in the *#*Library is also controlled by the terminal
user. This library operates in the same way as the *Library: that is,
only the names are specified as being shared; the programs and data
files remain in the sharing user's library. The difference between the
two libraries is that programs and data files named in the **Library are
available to all users of the system, while programs and data files
named in the *Library are available only to the other users associated
with that particular library.

o

The information in the ***Library is controlled only by the
installation. This library contains a list of the programs and data
files in it, as well as the programs and data files themselves. In this
case, the list is called a catalog.

RESIDENT AND NONRESIDENT MODULES

The executive consists of two types of modules: permanently resident
and potentially nonresident. During system build, all the permanently
resident modules are link edited into a single load module called the
base or nucleus, and each potentially nonresident module is link edited
into the installation's job library as a separate module.

During system initialization, the installation specifies a list of
potentially nonresident modules which are to be made resident. Modules
named in the list are loaded with the base and become part of the
resident system for this session of CALL-0S. Modules not named in the
list are nonresident for this session; these modules are written into
the overlay data set and are brought into storage when needed during
system operation.

USE OF STORAGE WITHIN THE CALL-OS TASK AREA

In the storage available to 0S/360, the nucleus occupies the low end
addresses; the rest of core storage is divided into task areas as needed
and assigned to jobs entered with the job control language. When CALL-
OS is used, it typically occupies a task area at the high end of core
storage. The reason for this depends on the system used: in an MFT
system, the high-end task area receives the highest priority and it is
desirable for CALL-OS to have a high priority within 0S/360; in an MVT
system, since CALL-OS is a long-running job, it is desirable to use the
high-end task area to prevent unnecessary core fragmentation.

The storage between the CALL-0S task area and the 0S/360 nucleus is
divided into background task areas, which are given control by CALL-OS
for a certain percentage of execution time or when CALL-OS has no work
to be done. The task area for CALL-OS is divided into the executive
area and the user program area, as shown in Figure 1.

Executive Area

The CALL-0OS executive area contains the modules, subroutines,
buffers, and control blocks necessary for execution. The base resides
at the low end of the task area; during initialization, other modules
may be made resident for the current execution of CALL-0S. Every user
who signs on the system is given a control block called a user terminal
table (UTT); this table contains information pertinent to the user. 1In
addition, CALL-OS requires certain buffers, for example, the overlay
buffer from which nonresident modules execute.

User Program Area

The user program area is used for the compilation and execution of
user programs. This area is made up of three parts:

¢ 01d job area
e New job area

e Compiler area

By definition, a job is considered a new job until its time slice has
been exceeded. An old job is a job which has been compiled and has
exceeded one time slice while in execution, and has not requested
terminal I/0 during its current execution. A compilation which exceeds
a time slice is swapped out, but is placed at the end of the new job
queue.

The compiler portion of the user program area is determined during
system initialization, and is of sufficient size to contain the maximum
compiler (or compiler phase) in the system. It is always occupied,
either by the compiler in use or by the compiler that was last used.

The new job area is determined during system initialization based on
the amount of core available. There is always one new job area, and
there may be two new job areas. The boundary between the new job area
and the old job area is adjustable; therefore, large old jobs can be
executed by taking space from the new job area as required. Referring
to Figure 1, new job area 1 is allocated upward from the compiler area,
while new job area 2 is allocated downward from the boundary between the
old and new job areas.

SYSTEM ORGANIZATION

The CALL-0OS system can be considered to contain four parts: the
executive, command languages, processing programs, and the CALL-0S Batch
Interface (COBI) facility.

e The executive governs the order in which the processing programs are
executed, and provides services that are required in common by the
processing programs during their execution.

e Command languages serve as a means by which the terminal user and
the system operator can communicate with the system.

e Processing programs consist of compilers and utility programs which
are provided by IBM to assist the user, as well as user-written
problem programs which are executed under CALL-OS. Both IBM and
user-written programs have the same functional relationship to the
executive.

e COBI is optional, and it permits the terminal user to submit jobs to
0S/7360 batch processing from his terminal and, if he desires, have
the output printed at his terminal.

Figure 2 shows a simplified picture of some of the system components.

T,

HIGH ADDRESS

v USER
PROGRAM
AREA

EXECUTIVE
AREA

LOW ADDRESS

Figure 1.

OLD JOB AREA

NEW JOB AREA 2

NEW JOB AREA 1

COMPILER AREA

BUFFERS AND USER
TERMINAL TABLES (UTT)

OPTIONALLY RESIDENT
MODULES

\

CONTROL BLOCKS

RESIDENT CALL-0OS
NUCLEUS

Use

Key m Unused Space

NEW
JoB
AREA

of storage in the CALL-0OS task area

CALL-0S
» TASK
AREA

SYSTEM
INITIALIZATION

Figure 2.

CALL-0S system

components

TERMINAL AND CALL-0S
OPERATOR SYSTEM BATCH
COMMAND EXECUTIVE INTERFACE

LANGUAGES FACILITY (COBI)
CALL-0S l%%.'r-é%sN USER
BASIC COMPILER oA conn ER PROGRAMS
OFFLINE
UTILITIES
SYSTEM DATA BASE o Aﬁ%Bs'ET
BUILD MAINTENANCE OPERATIONS

EXECUTIVE

The executive serves as the control program for CALL-0S. It forms
the heart of CALL-0S and controls all facets of process monitoring. It
resides at all times in permanent areas of core storage which are
storage-protected to ensure that they are not inadvertently modified.
It is basically made up of the following control routines:

e Control program interrupt dispatcher (CPID)

e Resource managers

e User program area manager

e Terminal and disk I/0 handlers

Their functions are summarized below.

Control Program Interrupt Dispatcher

CPID is interrupt-driven and operates disabled in the supervisor
state. Except for machine checks, CPID intercepts all interrupts
occurring during 0S/360 and CALL-OS operation. Interrupts not related
to CALL-OS operation are transferred directly to 0S/360 for processing;
interrupts related to CALL-OS operation are processed by CPID, and in
some cases, transferred to 057360 for further processing.

In addition to handling interrupts, CPID also dispatches all work to
be done by CALL-0OS, and supervises the amount of time allocated to the
various tasks performed by CALL-0OS, as well as to background processing
of 0S/360 jobs. During its processing, CPID interfaces with:

e 0S/7360 interrupt routines

e 0S/360 task management thereby communicating with 0S/360 when it is
ready for operation

® 03/360 job management, if COBI is used, to process jobs submitted at
the terminal and receive the output

e 0S/360 timer supervisors because CALL-OS has both a real-time clock
and a time-slice clock

e 0S/360 inputs/output supervisor (IOS) routines by means of I/0
appendages

e 05/360 trace routines, if desired, to insert specially formatted
entries into the 0S/360 trace table

Finally, CPID interfaces with the user program area manager to
provide necessary services such as I/0 operations for compilers and user
programs. This interface is accomplished through a Type I supervisor
call (SW). This SVC is designed solely for use by CALL-OS and is
included in an 0S/360 nucleus during the process of building a CALL-0S
system.

Dispatching of Work: CPID controls the dispatching of all work
according to a five-level priority structure. Tasks requiring the
fastest response time are given the highest priority. The five levels,
in order by priority, are:

e Level 0, which consists of the CPID routines themselves, the I/0
appendages, and those subroutines which operate with
interrupts disabled -

e Level 1, which consists of the modules which analyze commands, load
the nonresident modules for execution, and execute from
the overlay buffer, as well as those subroutines which
operate with interrupts enabled '

e Level 2, which consists of the modules required to process most
commands

e Level 3, which consists of modules required to sort and/or perform
editing functions on source programs

e Level 4, which consists of compilers and user programs; only one
level 4 job is known to CPID at a time, as determined by .
the user program area manager

Each level has a queue of work to be done. These queues are maintained
on a first-in, first-out basis and are used to determine the next task
to be performed within each level.

Note: References to level 5 pertain to 0S/360 background processing in
conjunction with CALL-0S; level 5 is not, however, a level within
the CALL-0S system.

Time Supervision: CPID supervises the allocation of time for the tasks
required to service user requests. Three classes of time are kept. The
first is a 6.7-second clock, which serves the needs of the executive
system for user terminal control, time stamping, operator communication,
etc.

The second clock is used for time<slicing control over user programs
and compilers executing in the user program area. The amount of time
allotted depends on the type of job. For example, new jobs, old jobs,
and compilers have different time-slice values, as specified during
system initialization. In addition, an old job which exceeds a time
slice is allotted a larger time slice in order to increase the
probability that the next time the job is dispatched it will complete
execution.

The third clock is used to share the time available for executing
user programs with lower priority jobs executing in 0S/360 background.
The time shared is allotted in increments; the size of the increment is
specified during system initialization. The user program area manager
determines who is to be given the next increment: more information can
be found in a subsequent subsection.

Resource Managers

Resource managers control the allocation of the buffers used by CALL-
0S. These buffers include: .

* System buffer, used to hold system data such as data base
records needed for processing user requests;
there is only one system buffer and it is always
present.

e Sort buffer, used to sort user source programs; there is only
one sort buffer and it may be omitted with a -
system initialization option; if omitted, all ‘
sorting takes place in the user program area. ~

10

e Overlay buffer, used to hold nonresident modules for execution;
there is only one overlay buffer and it is not
present if the system is totally resident.

24-byte buffers, used to receive input from the terminal; these
buffers, or pots, contain four bytes of control
information and 20 bytes of data; when three pots
are full, their data content is moved to a 60-
byte buffer for output to disk; the number of
pots for each line is specified during system
initialization; the default is four pots per line
with a minimum total of 60 pots in the system.

60-byte buffers, used to output source code to the work area on
disk; there are ten 60-byte buffers in the
system.

256-byte buffers, used for terminal output, such as listing of
programs, execution output, and output from the
scan function of COBI; the number of 256-byte
buffers is specified during system
initialization; the default is one buffer for
every three lines with a minimum of five buffers.

A request for any type of buffer is entered in a queue for the buffer on

a first-come, first-served basis. Activity on behalf of the user who
needs the buffer is suspended until the request is filled.

User Program Area Manager

The user program area manager keeps track of the status of all jobs
in the user program area, controls the swapping of jobs in and out of
the area, and interfaces with CPID through the Type I SVC to provide
executive services for executing compilers and user programs. The most
important function of the user program area manager, however, is to
inform CPID of the next job to receive control. Since the next job may
be either in the user program area or in the background, the user
program area manager is also responsible for sharing time with the
background as well as determining the amount of time to be shared; this
process is called background time slicing.

Scheduling Work in the User Program Area: The user program area manager
determines which job (compilation, old job, or either of two new jobs)
is to be dispatched next. To do this, it maintains two queues: the old
job queue and the new job queue (for scheduling purposes only, a
compilation is considered to be a new job; however, compilations take
place under the control of the compiler time slice specified during
system initialization).

Each queue is maintained on a first-in, first-out basis. A job is
entered in the new job queue when the user initiates compilation or
execution of a program, after completion of a terminal I/O operation
requested by the job, or for redispatching if compilation time exceeds
the compiler time slice. A job is entered in the old job queue when
execution time exceeds the appropriate time slice (either old or new job
time slice as specified during system initialization) or if the job
requests more than a predetermined number of disk I/O0 operations (12 for
new jobs, 30 for old jobs).

For a user program area job to be dispatched, it must be in either of
two states:

11

e Ready to compute (if a compiler is needed, it has already been
loaded)

e Actively computing (one or more increments of its time slice have
already been used)

If more than one eligible job exists, the following priority scheme is
used to determine which job is dispatched:

1. A new job that is actively computing

2. A new job that is ready to compute, or if both new jobs are ready
to compute, the one which has been in core for the longest period
of time

3. An old job that is actively computing or ready to compute

The user program area manager then determines whether background time
slicing is to go into effect. If not, the user program area manager
performs certain initialization steps to prepare the selected job for
dispatching and informs CPID that a job is ready; CPID performs the
actual dispatching.

Background Time Slicing: Time is shared with the background on a
percentage basis, depending on the mode of allocation in effect. Three
modes are available; the first is in effect when a CALL-0OS system is
initialized, the other two may be specified with the *BATCH operator
command (described in the publication CALL-0S Operator's Manual). The
three modes are:

e Mode O, the automatic mode, indicates that a certain percentage
of the time available to o0ld jobs is given to the
background; the percentage is based on the number of
users on system and is altered automatically as users
sign on and off the system; for example, for five users
or less, 95 percent of the time available to old jobs is
given to the background; this percentage decreases
approximately 1.5 to 2 percent for each additional user.

e Mode 1, indicates that a specified percentage of the time
available to old jobs is always to be given to the
background, regardless of the number of users on the
system; the percentage is specified in the *BATCH command
and remains in effect either until altered with another
*BATCH specification or until the automatic mode is
restored, also with the *BATCH command.

e Mode 2, is identical to mode 1 except that the specified
percentage is taken from the time available to old and
new jobs.

Therefore, available old job (or old job and new job) time is shared on
a rotating basis between the user program area and the background. The
appropriate percentage of time is allotted on an incremental basis,
determined by the size of the increment specified during system
initialization.

The total number of ‘increments allotted to an old job (or old and new
jobs for mode 2) is always enough to fill the time slice specified for
the job. However, the total amount of elapsed time that the user
program spends in core is based on the percentage of time shared with
the background, as well as the amount of shared time that the background
actually used.

12

The total number of increments allotted to the background depends
either on the number of users on the system or on the percentage of time
to be given to the background. In practice, many background jobs
require only a small amount of CPU time in which to initiate an I/0
operation before being forced to wait for its completion.

Terminal and Disk I/0 Handlers

Disk and terminal input/output operations are performed through I/O
appendages; these appendages service the interrupts resulting from I/0
activity. Special routines provide error handling services for disk and
terminal operations.

Disk Operations: Disk input/output activity within the user program
area is initiated by the use of the system Type I SVC in conjunction
with an appropriate SVC code which specifies the exact nature of the I/O
request. The servicing of requests for disk I/0, both for the system
and the user, is accomplished by use of the 0S/360 execute channel
program (EXCP) facility. Examples of disk I/O activity are swapping
operations, reading in nonresident modules, manipulating catalogs and
directories, and handling user data files.

For disk operations, event control block posting is performed by the
CALL-OS disk appendages. This precludes abnormal termination of the
system due to errors that affect a minimal number of users. If a disk
I/0 error is user-related, the user job is aborted and a retry request
is issued; if the error is recoverable, control is passed to normal
0S/360 error recovery routines. Error recording in SYS1.LOGREC is also
done by 0S/360 routines.

Terminal Operations: As with disk I/0, user terminal I/0 is performed
through the 0S/360 EXCP facility. Subsequent terminal I/O activity,
however, is handled via the restart exit from the terminal I/O
appendage. Examples of terminal I/O activity are entering source
programs, using the terminal command language, printing job output, and
paper tape operations.

For terminal operations, event control block posting and error
recovery are performed by the CALL-OS terminal appendages. Recoverable
terminal I/0 errors are handled with a retry request. Unrecoverable
errors are classified as such on two grounds: threshold exceeded, when
the same error recurs for a specified number of times (the number, or
threshold, depends on the type of error, but once established, exists
until a successful operation occurs); ratio exceeded, when a specified
number of errors of any type occur in a predetermined number of I/O
operations on the same terminal.

Error recording in SYS1.LOGREC is done by 0S/360 routines by means of
a device-dependent error routine supplied during the building of the
CALL-0S system. This error routine performs no error recovery, it
merely signals IOS that an error should be recorded.
COMMAND LANGUAGES

One of the functions of the executive is the provision of certain
terminal services to the user and the operator. To achieve this
function, two command languages are provided:

e Terminal command language

e Operator command language

13

Page of GH20-0786-3
Revised July 31, 1972
By TNL GN20-2780

The modules which process the commands are part of the executive.
However, the languages themselves form an integral part of the system
and are therefore considered separately.

Terminal Command Langquage

The terminal command language is designed to facilitate
communications between the terminal user and the system. These commands
permit the terminal user to do the following:

e Sign on and off the system with password security

e Compile and execute source programs under CALL-0S

e Choose a compiler for compilations

e Store and execute object programs

e Create, modify, and save source-program files
e Check out user programs at the terminal

e Use routines saved in CALL-OS system libraries

e Obtain listings of line-numbered files

e Perform various edit operations on one or a number of line-numbered
files

e Define and redefine data files

e Share programs and data files with other users by pooling them in
system libraries

e Protect program and data files pooled by him into system libraries
e Purge program and data files from his library

e Submit jobs to OS batch processing and retrieve output at the
terminal

e Enter programs and data files via paper tape
e Create paper tape output online
® Request status information

With these facilities, the terminal user can access system resources
applicable to his particular problem. The terminal command language is
structured so that the user can concentrate on problem solution rather
than on hardware. For a detailed description of the terminal command
language, the user is referred to the CALL-0S Terminal Operations
Manual.

Operator Command Lanquage

A set of commands is available for exclusive use by computer center
operating personnel. Each command in this set is identified by an
asterisk as the first character. The system honors these commands only
if they are transmitted from a command console. If these commands are
transmitted from any other terminal, they are rejected.

14

o

Page of GH20-0786-3
Revised July 31, 1972
By TNL GN20-2780

Through these commands, the operator can install and remove users,
transmit messages to users, enable and disable lines, determine user
status both for CALL-OS users and jobs submitted to 0S through COBI, and
terminate system operation.

For a detailed description of the operator command language, the user
is referred to the CALL-0OS Operator's Manual.

PROCESSING PROGRAMS

Processing programs consist of compilers, utility programs, and user
programs; only compilers and utility programs are discussed here.

Compilers

Three unique compilers offering three applications-oriented,
programming languages are available with the CALL-0OS system. From the
standpoint of the user, applications-oriented languages are vital in
extending computer usage to the noncomputer professional, thus paving
the way for the uninitiated person to avail himself of the computing or
processing capability. In CALL-0OS, the user may define his problem
solution in a choice of languages:

e CALL-0S BASIC - simple to learn and use
e CALL-OS FORTRAN - scientific/engineering language
e CALL-0S PL/I - flexible power for any problem

Compilation of a user source program can be invoked by entering a RUN
or STORE command at a terminal; the result of compilation is relocatable
object code, which can be executed immediately and/or retained in the
user's library for execution at later times. It is also possible for
one user program to initiate the running of a succeeding program
(compilation and execution, or only execution if the program has been
compiled previously) via program chaining facilities. Communication
between the compilers and the system executive is handled by the user
program area manager through a Type I SVC.

The compilers are noninterpretive and reentrant. By definition,
reentrant code does not alter itself during execution; thus, the same
copy can be used over and over again and/or concurrently. The core and
time savings due to reentrancy are very real and important. In
addition, one compiler may be compiling several programs at the same
time but be at a different point in the process for each program.

The object programs produced by these compilers are dynamically
relocatable. This means an object program may be swapped out of one
portion of the user program area during execution, and swapped into
another portion whenever execution is resumed.

‘The compilers process the source code in one pass, permitting fast
compilation speeds. CALL-OS BASIC and CALL-OS FORTRAN are single-phase
compilers; CALL-OS PL/I is a two-phase compiler.

Two types of data files are created by user programs within CALL-0S:
external (EBCDIC) and intermal (binary). The former can be created by
programs written in CALL-OS FORTRAN or CALL-OS PL/I, and can be used by
programs written in the language that created them. The latter can be
created and used interchangeably by programs written in CALL-OS FORTRAN,
CALL-0S PL/I, and CALL-OS BASIC. The created data should, of course, be
in a form supported within the structure of the language used. In
addition, line-numbered files (also called program-data files) can be

15

Page of GH20-0786-3
Revised July 31, 1972
By TNL GN20-2780

read as input in the same manner as external data files. Such files
cannot, however, be opened for output (that is, created or modified) by
an executing program.

CALL-0S BASIC Compiler: CALL-0OS BASIC provides an enhanced version of
the BASIC time-sharing language originally developed at Dartmouth
College, Hanover, New Hampshire. The language is easy to learn and
simple to use. It is ideally suited as a first-entry language, as well
as for the occasional user who need not be an experienced programmer.
Some highlights of the CALL-OS BASIC language include the following:

e Ability to execute a CALL-OS BASIC program in either of two levels
of precision, without modification of the source code

e Availability of an image-type output format, wherein the user
explicitly lays out the format for his print line

e Multiple data file support

e Powerful facilities for matrix operations and input/output
CALL-0S FORTRAN Compiler: This is similar to the most widely used and
known of all higher-level scientific languages. It is convenient and

familiar to the scientific/engineering technical community. Some
highlights of CALL-OS FORTRAN include the following:

e Statement entry format, free-form terminal oriented
e Free-form, list-directed input/output
e Multiple data file support

e Additional special characters supported

CALL-OS PL/I Compiler: CALL-OS PL/I is a multipurpose language designed
to extend the range of applications that can be handled by a single
high-level language. It allows the user to enter his statement in a
free-form format. CALL-OS PL/I provides the user with many of the
features of the PL/I language, using the facilities of CALL-0S via a
remote terminal. Some of the many advantages to the user of a
combination of language and system features include the following:

e Capability to handle a variety of data types, including character
strings and complex numeric data

e Extended array facilities

e Fiexible, stream-oriented, input/output facilities, including list-
directed, data-directed, and edit-directed data specification

e A large number of built-im functions
e User-controlled interrupt processing
e Terminal checkout (debugging) of user programs

e Ease of modification of user programs

16

permr

Page of GH20-0786-3
Added July 31,1972
By TNL GN20-2780

Utility Programs

Utility programs constitute those modules within CALL-0OS which are
used to build, initialize, and maintain a user system. Two types of
utilities are provided: online, which constitute utilities which run in
the CALL-0S task area, and offline, which run at a time when CALL-OS is
not running. Initialization is an online utility; the offline utilities
include system build, data base creation and maintenance, and
initialization and maintenance of COBI data sets.

System Build: The system build process refers to the initial
establishment of CALL-0OS under 0S/360. At this point in time, only a
preliminary allocation of resources is involved. This essentially
amounts to the setting of limits to various parameters, with a final
allocation of resources, depending upon the specific installation's
requirement, to be made later during system initialization.

System Initialization: System initialization modules are brought into
the CALL-0OS task area as soon as it is allocated by 0S/360. These
modules set up control information, allocate storage within the CALL-0S
task area, and prepare the system for execution. When finished, control
is given to the executive.

Data Base Operations: Data base operations involve the creation and
manipulation of the data base. Creation consists of initializing the
data base and creating entries for all the data sets in the index.

16.1

fcey

P

Manipulation includes the backup, maintenance, and updating of the user
data base; the following functional capabilities are available (note
that the terms "program" and "program file" imply either a saved source
program file or a stored object code file):

e Reorganize a CALL-OS user group or system group from one data base
cluster to another data base cluster.

e Validate a particular user or a range of users.
e Delete certain types of CALL-0S data base records and files.

e List programs, data files, and control information from the CALL-0S
data base.

e Output a program or data file from the CALL-OS data base in 0S/360
format.

e Write a program or data file to tape.

e Insert or replace a program or data file from card, disk, or tape
input into the CALL-0S data base.

e Merge CALL-0OS directory entries from tape input or other CALL-0S
directories.

e Recreate part or all of a CALL-OS data base from a backup tape.

e Account for CPU time, disk space, and terminal connect time in the
equivalency file of each user group.

e Update user catalog files with respect to current COBI job status.

In addition, facilities are provided for conversion of a backup tape
from the CALL/360: Standalone system to a format suitable for use under
CALL-0S.

COBI Data Set Operations: Another set of offline utilities is used to
initialize and maintain the COBI data sets. The COBI data sets must be
preformatted before they can be used. In addition, the data sets may
have to be expanded, reinitialized, or cleaned up.

CALL-OS BATCH INTERFACE (COBI) FACILITY

The COBI facility is designed to give the terminal user the
capability to create 0S/360 jobs and submit those jobs for batch
processing under 0S/360. The JCL, source program, and data for the job
is saved in his user library; from there, the job is submitted, upon
command from the user, to 05/360 for processing. At the time the job is
submitted, the user may specify that the JCL for the job and/or
specified SYSOUT data sets produced by the job be retained for scanning
at the terminal.

COBI is optional and if used, is included during CALL-OS system
build. Once a part of the system, a further option during system
initialization makes it possible to omit COBI from the current session.
However, before COBI may be used, certain requirements must be met by
the installation. These requirements, along with a more detailed
description of COBI operation, are contained in the section on COBI.

17

CALL-OS_DATA BASE

The CALL-OS data base is comprised of a collection of data sets which
serves as a data storage and retrieval means for CALL-OS. The data base
is generated during a separate step within the CALL-0OS system build
procedure. Backup and recovery of the data base is achieved through the
use of either 0S/360 utilities or the CALL-0S data base utility.

The data base consists of three logical parts: the system base,
which serves the system's needs for storage areas; the user base, which
serves as the user's program and data file storage areas; and the CALL-
0S Index (hereafter referred to as the index), which serves to identify
all data sets used by the system.

Each part of the data base is comprised of one or more data sets
which are 0S/360 BDAM-compatible data sets. All CALL-0OS data sets
reside on an IBM 2314 or 2319 direct access storage facility and are
cataloged in the system catalog. Since the system and user bases may be
comprised of several data sets, they may be allocated on several
volumes.

SYSTEM BASE

System base data sets are comprised of data sets which are used for
compiler storage, work/swap areas, and overlay module storage. These
data sets are allocated during the data base build procedures, and are
formatted or manipulated through the use of either 0S/360 utilities or
CALL-O0S utilities.

COMPILER DATA SETS

Compiler data sets contain, in loadable form, a compiler or a
compiler phase, each of which is contained on a single data set. A
compiler data set varies from 1 to 20 tracks in size and must not cross
cylinder boundaries. The data sets are allocated and formatted during
the data base build procedures. The compilers are written as one
contiguous record in track overflow mode, because of their high usage
factor. Therefore, these data sets must not have multiple extents or
contain alternate tracks.

Compiler data sets are 0S/360 BDAM-compatible and may be backed up
through the use of 0S/360 or CALL-OS utilities. The ddnames used for
these data sets must be the names of the compilers which are to be used.
In the examples in this manual, the ddnames are given as BASIC, FORTRAN,
PLI, and PL2.

WORK/SWAP DATA SETS

Work/swap data sets provide a work area for storing and swapping of
user programs and data during online operations. These data sets are
allocated during data base build. They are identified by unique ddnames
of the form SWAPOO through SWAP19. Each user terminal is assigned one
cylinder of work/swap space at each initialization of the online system.
These data sets must therefore start and end at cylinder boundaries.
Swapping is done in track overflow mode, so these data sets must not
have multiple extents or contain alternate tracks.

18

Up to 20 different work/swap area data sets can be allocated and
entered in the index. Since a great portion of all I/0 involves these
data sets, they should be spread across as many drives as possible.
They should be placed on the volumes as close to the center of the data
base as possible. During system initialization, any combination of the
work/swap data sets available may be defined. However, the amount of
space in all data sets must allow one cylinder for each line on the
system.

A cylinder of work/swap space is divided into two major areas: the
work area which is used to record incoming source data, and the swap
area which is used for swapping of user areas (see Figure 3).

WORK/SWAP CYLINDER

UNSORTED SOURCE RUN TIME
PRIOR TO RUN PACKAGE
TRACK 0
NUM§ER] MAJOR RECORD + WORK _ ONE MAJOR
1 60-BYTE AREA RECORD
5] ‘DUMMY’ — SORTED SOURCE
-
] (MAX) _ STATEMENTS
3
4_ | FnE |
5—.
6
77]
]]
. -
10| 60BYTE]
1 ‘DUMMY’ SWAP
12-—~ SWAP — AREA
| AREA]
13
14 | -
—
15
16‘ po—
17
18 N
19

Figure 3. Disk work/swap area format

Work Area

When the CLEAR command is given or when the user signs on the systemn,
the first track on the cylinder is formatted into 60-byte dummy records
(containing no valid data) as shown in Figure 4.

Ro Ry Ry R3 Rys

60 60 60 60

Figure 4. Initial format of the work area

19

Page of GH20-0786-3
Revised July 31, 1972
By TNL GN20-2780

As line-numbered input is entered at the terminal, the dummy records
are replaced by 60-byte records containing source data from three 20-
byte pots. Except for the first character in each terminal line, which
is always a count byte (in binary), the contents of each 60-byte disk
record are in EBCDIC code. The characters following the count are the
line number.

A new line always begins at a 20-byte boundary. The end of a line is
denoted by the EBCDIC character N/L (X'15'). Any space between the end-
of-line character and the next 20-byte boundary will, in practice, be
occupied by previous information (called a "fill"). Note that CALL-0S
does not pad this space; the original information entered there is left
intact. The source lines will have been edited, at this time, for
character erasures. A logical record may cross a physical boundary.

Note that the user may build up to 15 tracks of 60-byte disk records.
Whenever a sort takes place, however, the final packed format cannot
exceed four tracks.

When a user gives a command which involves a sort (such as RUN, LIST,
or SAVE), the 60-byte disk records containing the line-numbered entries
are read into core and sorted. After the sort, the lines are written
back to disk as one major record, while the remainder of the track is
filled out with 60-byte dummy records as shown in Figure 5. This major
record contains packed lines with no fills in the line. The first byte
of the major record is the count byte of the first line. The last byte
of the record is an EOF (end-of-file) character, which is an X*'01".
Figure 6 shows a sample format of a major record.

R0 Rl R2 R3 Rn
N
bytes 60 60 60

Figure 5. Work area following a sort

C N|C N|C N|C N|E
0 /10 /10 /10 /10
U L|U L|U L|U L|F
N N N N
T T T T
Figure 6. Format of a major record T—

When the user adds more source lines to a source program, they are
written into the 60-byte dummy records. The source program entered at
the terminal, as it resides in the work area at a particular time, may
consist of a major record alone, a mixture of a major record and one or
more new 60-byte records, or only new 60-byte records. Figure 7 shows a
sample major record with three 60-byte add-on records.

In situations where a sort is not needed (for example, when a LIST is
followed by a RUN), only the major record is read in, and the sort is
not performed. When the major record requires an entire track, the
second track is used to hold 60-byte records. 1If, after a sort, the
major record is greater than one track, the remainder of the major
record is written onto the second track, and the second track is filled
out with 60-byte dummy records.

20

.

MAJOR RECORD ADD-ON RECORDS
e N e N

OLD PROGRAM 60 BYTES 60 BYTES 60 BYTES

Cc C Cc Cc
(o) o o} N o)
aVa a¥ U/ u NN
N N N L N
T T T T
S S — —~ — N——
20 20 20 20 20 20 20 20 20
BYTES BYTES BYTES BYTES BYTES BYTES BYTES BYTES BYTES

Figure 7. Major record with three add-on records

Swap Area

The swap area portion of a cylinder of work/swap space assigned to a
user terminal occupies the last 16 tracks of the cylinder. This area is
used for swapping the user's program area from the user's memory to
disk. The swap area is divided into two parts. The first is a
recording area used for disk address pointers to program files. The
second is the actual swap area. These areas are defined as follows:

First Record The first record of the swap area for each user

of Swap Area terminal is a 2048-byte record with no key.
This record is created and used by the executive to
carry disk addresses for program files. Each logical
data file is assigned 512 bytes. The first logical
file is assigned the first 512-byte area, the second
file is assigned the second area, and so on, up to
the maximum of four data files.

When a data file is opened, the disk addresses for
that data file are obtained from the appropriate
catalog file. The addresses are placed in the proper
512-byte area, starting with the first byte. Each

21

disk address is in the relative-data-set-relative-
track form (DTTR) and occupies four bytes. The disk
address for the last record for each of the files is
followed by X'FFFFFFFF'. The upper limit for the
number of records in a data file is 100. (For
further information, see the discussion of the DFLINK
parameter in the description of the run-time options
in the section, "Initializing the System." There
can, therefore, be no more than 404 bytes consumed by
disk addresses and a word of X'FFFFFFFF'.

User Program The balance of the first track (5054 bytes) and

Swap Area the 15 remaining tracks of the cylinder are used for
swapping the run-time package, communications area,
data area(s), and object code. The maximum size
program that can be accommodated, therefore, is
5054+ (15x7294)=114,464 bytes. Because user memory is
allocated in 2048-byte blocks, this number must be
rounded down to the nearest multiple of 2048, which
is- 112,640, or 55 blocks of 2048 bytes.

At swap time, only as much of the user program disk
swap area is used as is necessary. The total number
of bytes transferred will be a multiple of 2048 bytes
(all of the user's allocated memory).

The records do not contain keys, and are written with
the write special count key and data commands. This
allows them to be read with one (if less than 65K
bytes) or two (if greater than 65K bytes) CCHs.

OVERLAY DATA SET

The overlay data set, used for overlay modules, is allocated during
data base build and occupies up to one cylinder disk storage space. At
each online initialization of the system, those modules not specified in
the RESMODS data set are written to the overlay data set in loadable
form. Each overlay module is written at the EXCP level as one
contiguous record and must not exceed 7294 bytes of data.

Backup and recovery of this data set is not required, since the data
set is dynamically recreated each time the system is initialized. The
ddname for this data set is OVLY. This data set need not exist in CALL-
0S systems which always operate in the total-resident mode; in this
case, the data set is not represented by an entry in the index.

USER BASE

The two classifications of user base data sets are system group data
sets, which contain systemwide information, and user group data sets,
which contain user-oriented information. Data sets within each
classification may be divided into two clusters: cluster one is the
primary cluster, cluster two is the alternate. Clusters permit a user
installation to group its data sets in alternate ways, and/or allow a
system or user group to be allocated on alternate data sets for backup
purposes.

The system group and each user group in a cluster may have up to 40
data sets. The data sets are identified by group and relative data set
number. The relative data set number is used to sequence data sets
within the same group and to differentiate between the clusters. For
example, the relative data set numbers range from 00 through 39 for the
primary cluster and from 40 through 79 for the alternate cluster.

22

e =

SYSTEM GROUP

The system group contains the system (*#*%) catalog and its associated
programs and data files, as well as the system (**) directory of shared
programs and data files. The system catalog is manipulated only from
the command console or with the data base utility; programs and data
files are entered from this console with the terminal command language.
The system directory is manipulated from either the command console or a
remote terminal; names of programs and data files to be shared with the
rest of the system are added to the directory with the terminal command
language. All of the information in the system group is available to
the entire systen.

The system group has a user number and password associated with it.
The user number is SYSLIB and may not be changed. A newly created
system group has a default password. This password should be changed
periodically to a new installation-selected password by means of a
PASSWORD command, issued from the command console. The system group
password is not required to sign on as a command console user, but it is
required to access the system group by means of the data base utility.
(S5ee "Ensuring File Security".)

To run CALL-OS, the system group must be present. The system group
must have at least one and may have up to 40 data sets in any one
cluster. System group data sets are defined by DD statements with names
of the form SYSGRPnn, where nn is the relative data set number. The DD
statements must have names from SYSGRPOO through SYSGRP39 in the primary
cluster, and from SYSGRP40 through SYSGRP79 in the alternate cluster.

USER GROUP

The organization of user group data sets is based on three logical
groupings: a set of 99 users (sub group), a set of sub groups (user
group), and a set of user groups (cluster). Figure 8 illustrates this
logical organization schematically.

23

[}

r=--
| Sub Group ARAR000-AAA099
= | Sub Group AAA100-AAA199
| User Group | sub Group ARA200-ARA299
| <} -
| AAAQ000 - | .
| ARAA999 | .
| | Sub Group AAA900-AAA999
| Lem
Primary | =
Cluster | | Sub Group AABOO0-AAB099
(see note) | | Sub Group AAB100-AAB199
| User Group | .
AAAAAAO0 - | | .
AAAAAA39 | AABOOO - <] -
<] MMM999 | .
AABMMMOO - | | .
AABMMM39 | | -
| | Sub Group MMM900-MMM999
MMNZZZ00 - | t—-
MMNZZZ39 i -
| | Sub Group MMNO000-MMNO099
| | .
| User Group | .
| | -
| MMNOOO - <] -
| 7222999 | .
— | .
| .
: .
| Sub Group ZZZ900-ZZZ999
Le—

Note: Corresponding names for the alternate cluster are:

AAAAAALO - AAAARATI
AABMMM4O - AABMMMT79
MMNZZZ40 - MMNZZZ79

Figure 8. User group data set organization

A sub group is a set of 99 users whose user numbers have the same
first four characters. For example, a sub group could consist of the
set of users with the numbers AAA101 through ARA199. The sub group is
the smallest set of users for which sharing of program and data files is
allowed. File sharing is made possible through the use of the special
user number which has zeros as the last two characters. When this user
number is validated, the system creates a dummy user catalog (called a
directory).

The directory for a sub group is the *Directory and it corresponds to
the #*Library. The *Directory serves the same purpose as the directory
of a partitioned data set. It contains the names of each shared file
for the sub group and the user number of the sharing user; the file
itself remains in the library of the user who shared it. Thus, for
example, if user number AAA100 is validated, a *Directory is created for
the sub group of users whose numbers are within the range AAA101 through
AAA199. Note that the *Directory for a sub group does not exist unless
the proper number is validated.

24

A user group consists of a range of user numbers (such as AAA000
through CCC999). Only user numbers ending with 000 or 999 can serve as
bounds. This range can include as few as 1000 user numbers (AAA000
through AAA999) or more than 17 million (AAAO00O0 through Z2Z999). Each
user group is defined by the user installation to include a set of
related users. Each user group is assigned to a collection of single-
volume 0S/360 data sets (not all of which need reside on the same
volume).

These data sets are defined by DD statements with unique names of the
form aaazzz00-aaazzz39 in the primary cluster, and aaazzz#0-aaazzz79 in
the alternate cluster, where aaazzz is the name of the user group. To
designate a valid user group, the first three letters of this name (aaa)
must precede the last three letters of the name (zzz) in the collating
sequence. Thus, RAATZZ is a valid user group name, and supports any
user number from RAA000 through TZZ999.

User group data sets are used for the storage of catalogs, programs,
and data for all users in the group. A given user is assigned disk
storage space only from the data sets assigned to his group, thus
ensuring data set integrity. User group data sets are governed by the
following restrictions:

e JIdentical or overlapping user groups from different clusters must
not be opened for the same session (see the discussion on how to use
clusters later in this chapter).

®» No multivolume data sets are allowed.

e Space is assigned on behalf of a group of user numbers; more than
one data set can be assigned to the same group of users.

e Space is dynamically allocated from preformatted data sets.

e For program and data files, space is reallocated only to a user who
has purged space, if the required amount is available.

STRUCTURE OF EACH USER BASE DATA SET

A system or user group's data storage is allocated from the data sets
assigned exclusively to that group at data base build time. These data
sets will normally contain the following:

e Allocation record, which contains a record of the amount of usable
space left in the data set

e Equivalency file, which is a linked file of user numbers which have
been validated for the group; each user number entry has a pointer
to a user's catalog

e Catalog, which is a linked file which contains all the program and
data file names saved by the user; the location and file length are
included

e Directory file, which is a linked file which contains a list of file
names and user numbers for pooled program and data files

e Source program file, which contains user source programs; these
files are organized in several sizes and are stored in the smallest
size available which can contain the entire program

e Object program file, which contains user object programs; object
program files are stored in half tracks

25

Page of GH20-0786-3
Revised July 31, 1972
By TNL GN20-2780

e Data file, which contains input and output data for running
programs; data files are stored in half tracks

e Program-data file, which contains user line-numbered information;
these files are organized in several sizes and are stored in the
smallest available size that can contain the entire file

e File descriptor record, which is used for every object program file
and for any data file longer than four records

Note: Program-data files are distinguished from source-program files
only by usage. No structural differences exist between the two
types of files. 1In this manual, unless otherwise specified, the
term program file should be assumed to refer to both source-
program files and program~data files.

The first data set in each system group must have at least three tracks,
while the first data set in each user group must have at least two
tracks. All other user data sets may be as small as one track, although
larger data sets (one cylinder or more) are recommended for optimum
performance. These data sets may have multiple extents if they are
obtained in the initial allocation; CALL-0S does not attempt to use a
secondary allocation.

Allocation Record

One allocation record exists for each system group and user group
data set. By convention, it occupies the first record of the first
track of the data set. Its function is to provide a starting point for
the CALL-OS initialization routine. The allocation control table
associated with each user base data set can then be initialized.

These tables are updated in core while CALL-OS is in operation, and
reflect the next available tenth, fifth, half, and full track in the
data set. When a user purges a program or data file, this space remains
assigned to him and the allocation table does not reflect the purged
space. During normal system termination processing, the most recent
allocation information is written back into the allocation record for
the data set.

Equivalency File

An equivalency file is a linked file of records which contain all the
user numbers validated for a group. Each group has one equivalency file
which begins in the second track of the first data set in the group. Up
to 200 user numbers can be indicated before this record is chained to
another full-track record somewhere within the group.

When a user signs on the system, the equivalency file for his group
is checked to confirm that his user number is validated. The entry
associated with a validated user number also provides the beginning
address of the user's catalog. In addition, the equivalency file entry
for a user contains a total space allocation record and total terminal
. and execution times.

Each physical record of this file occupies one full track. A record
consists of a 36-byte key and a 7212-byte data field that can be
forward-linked to the next record of the file. The first physical
record of the file, by convention, resides on the second track of the
first data set assigned to the group. Each record entry is 36 bytes
long. There are twelve bytes at the end of each physical record. The
bytes are always read or written, but are ignored for searching

26

N

Page of GH20-0786-3
Revised July 31, 1972
By TNL GN20-2780

purposes. The EOF indicator for the file is a full word containing
X'01010101°".

Catalog

The catalog file is a linked file which contains information about
each program and data file retained by the user. In addition, when COBI
is present in the system, the catalog contains information about each
job submitted by the user to be run under OS. Finally, the catalog
defines space that is reusable because program and/or data files have
been purged from the data base. One catalog file exists for each user
number validated onto the system.

The catalog for each user consists of one or more records, each of
which can be forward-linked to the next record in the catalog. Each
record occupies a half track and consists of a 36-byte key field and a
3440-byte data field. The data field of each record can contain up to
95 entries, each of which is 36 bytes long. One entry is provided for
each program and data file kept by the user, as well as each COBI job
submitted by him. The information in each entry depends on the type of
entry.

For each program and/or data file, the catalog entry contains the
name of the file, its length, and up to four disk addresses which give
the location of the file. The catalog entry for a source program always
contains the entire set of disk addresses for the storage areas occupied
by the program (the maximum program size is four tracks). The catalog
entry for an object program always contains the address of a record
called the file descriptor record; this record in turn points to the
storage area(s) for the object program. If a data file is four or less
records long, the catalog entry contains all the disk addresses for the
file; if a data file is longer than four records, the catalog entry
contains the address of a file descriptor record. Source program,
object program, and data files are discussed later in this section along
with file descriptor records.

For each COBI job, the catalog entry contains the COBI job number (in
the form #nnnnn) and the job name under which the job is known to
0S/360. This is the only information about COBI jobs that appears in
the data base. The jobs themselves reside in 0S/360 data sets.

Note: The catalog for the system group has the same physical

characteristics as other user catalogs and serves as the
***Catalog for the entire system.

Directory File

The directory file is a linked file which contains a list of file
names and user numbers for shared program and data files. The function
of this file is to allow contributing users to share (pool) programs and
data files. These files are shared either with other members of the
same sub group (*Directory) or with all validated users on the system
(#*Directory). The #*Directory resides in the user group data sets; the
**Directory resides in the system group data sets.

The *Directory file facilitates sharing of programs and data between
members of a sub group. There may be one such directory for each sub
group. The directory is created by validating a user number with its
last two numeric digits 00. This directory is then available for use by
all members of the same sub group. An entry in the equivalency file is
created, which points to a newly-created directory file assigned to the
appropriate user range.

27

Page of GH20-0786-3
Revised July 31, 1972
By TNL GN20-2780

The #**Directory file is much the same as the #*Directory. That is, it
contains the names of shared files and the user number of the sharing
user. However, files named in the **Directory are available to the
entire system. There is only one *#*Directory for the system.

Note: The *Directory for the system group corresponds to the
**Directory for the rest of the system; that is, if the name of a
file is entered at the command console for sharing in the
*Directory, the name is placed in the **Directory, thereby making
the file available to the entire system.

“Each physical record of a directory file occupies one half track; it
has a 36-byte key field and a 3440-byte data field, and can be forward-
linked to the next record of the file. Each record can contain as many
as 143 entries, and each entry is 24 bytes. The entry contains the name
of the file being shared, the user number of the owner, the date on
which the file was shared, and the address of the owner's catalog.

Program and Data Files

These files constitute the user"s data base. The physical format of
source program, object program, and data files is described.

source-Program File. This file contains a user source program. It
occupies a tenth, fifth, half, or full track; if more than a full track
is required, additional full tracks are assigned, up to a total of four
tracks. In each case there is a 36-byte key field. The actual data
field sizes are 534 bytes, 1252 bytes, 3440 bytes, and 7212 bytes,
respectively. The data field content is user-dependent.

Object Program File. This file contains a user object program. Each

physical record of this file resides on a half track, consisting of a

36-byte key field and a 3440-byte data field. Each program may occupy
up to 33 half tracks. A file descriptor record is supplied for every

object program.

Data File. This file contains data used for input to and output from
running programs. Each physical record of this file resides on a half
track, and consists of a 36-byte key field and a 3440-byte data field.
There may be up to 100 such records for each data file. 1If a file is
longer than four records, a file descriptor record is supplied.

The data field is entirely filled with data, even though it may not
all be valid data. The internal format of the data field is determined
by the compiler which creates the file and is not referenced by the
executive.

Program-Data File. This file is a program file, created as line-
numbered input directly from the terminal, or entered into a user's
library by means of a CALL-OS utility. The file can be opened for input
(and included in the count of simultaneously open files) by an executing
program. The line number preceding a line is not considered as part of
the input; the first character following one blank (or following the
line number if no blank is included) is treated as the first data
character of the line. Program-data files cannot be opened for output,
but other rules that apply to data files apply also to program-data
files. The physical organization of a program-data file is the same as
that of a source-program file.

28

N

Page of GH20-0786-3
Revised July 31, 1972
By TNL GN20-2780

File Descriptor Record

The catalog entry points to one file descriptor record for each data
file with more than four records and for each object program. This
record occupies a tenth track and consists of a 36-byte key field and a
534-byte data field. The key field contains a copy of the first 20
bytes of the catalog entry. The data field contains up to 100 disk
address links for the appropriate data or object program file. File
descriptor records are assigned on an as-needed basis.

Summary

The files and records within the user base data sets are logically
related as follows (see also Figure 9):

e One allocation record exists for each user base data set; it is used
to record total usable space in the data set.

® One equivalency record exists for each group; it begins at a known
relative track location within each group. The equivalency record
is accessed on validation and contains the disk address of all
catalogs in this group.

® One catalog exists for every validated user number; a catalog record
has one entry for every data and program file belonging to that user
and, when COBI is present, one entry for every job submitted by that
user.

e Source programs (and program-data files) may occupy up to four full
tracks. The list of disk addresses in the catalog entry provides
for sequential accessing of programs.

e Data files may occupy up to 100 half tracks. The addresses of these
half tracks, if they exceed the four available in the catalog entry,
are stored in a file descriptor record pointed to by the catalog
entry.

e Object programs may occupy up to 33 half tracks. However, every
object program, regardless of its length, has a file descriptor
record associated with it.

e For user groups, directory records are treated as artificial users.
The records contain the addresses of programs and data files which
may be shared among users in a related range of real user numbers.
The user number which ends in 00 is a dummy number. It provides the
*Directory for the remaining 99 user numbers in the range indicated
by the first four characters in the user number.

e For the system group, the first ***Catalog record is contained in
the first record of the third track of the first data set. The
**Directory records begin at the second record (half track) of the
third track. Typically, the *** files are maintained by the
computer center, while ** files are contributed by users of the
system to be shared among all other users.

Note that none of the components of a group need be contiguous. In all

likelihood, they are scattered across the full spectrum of data sets for
the group.

29

<t FIRST RECORD
ALLOCATION RECORD

Track 1
NEXT NEXT NEXT NEXT
* 1/10 ’ 1/5 * 1/2 * 1
DTTR \ DTTR DTTR DTTR

EQUIVALENCY FILE \

Track 2
USER NUMBER PASSWORD UP TO 200
4 CATALOG (THIS USER) ENTRIES
SYSLIB ONLY
Track 3
DTTR CATALOG OF ***PROGRAM DTTR DIRECTORY OF **PROGRAM AND
AND DATA FILES DATA FILES BY USER NUMBER AND NAME

CATALOG \
f 1/5 y s 15 1/5

SOURCE PROGRAM SOURCE PROGRAM|{ [SOURCE PROGRAM

OBJECT PROGRAM FILE DESCRIPTOR DATA FILE DESCRIPTOR

(DATA FILE UNIT = 3440 BYTES DATA FILE UNIT = 3440 BYTES

CATALOG \
\
DATA kTR
Track n NAME * DTTR FILE NAME DTTR
NAME ‘ DTIR

Key I Records for one user

Unassigned space m Record gap

Figure 9. Relationships of user base data set records

NN

30

A

ASSIGNING USER NUMBERS

User numbers, and how they are assigned, affect the system in many
ways. The entire user number range allowable on the system is any six-
character identification, starting with three alphabetic characters and
ending with three numerics. This range forms an alphabetic sequence
from AAAOOO to Z27Z999. User storage space is allocated within a user
group which consists of a minimum of one data set and a maximum of u40.
A group of users is defined by a user number range based on the first
three characters of the user number through some alphabetically
continuous series. For instance, all user numbers starting with AAA
through DZZ could be designated as group 1, and all user numbers between
EAA and ZZZ could be designated as group 2, for a two-group system.

In addition to the user groups, one group must be provided for the
system and must contain at least one data set. This system group is
created at system generation time and is available to the command
console for entry of files. The group contains the systemwide (**x*)
catalog and files, and the systemwide (**) directory of shared files.
This initial data set can be supplemented (as can all user groups) by
allocation of additional data sets for this group, up to a total of 40
in each cluster.

CALL-0OS can be started for any subset of groups at job initialization
time. These data sets contain all catalogs, equivalency records,
directories, programs and data files. Various subset sequences of this
entire range may be assigned in a particular way in order to accomplish
the following:

1. Ability of a small group of related users to share programs while
restricting all other system users.

Each user number that is validated, ending with the last two
numeric digits of 00, creates a dummy user directory. The
directory is available for the pooling and use of shared files by
all users whose user numbers are identical for the first four
characters. The next level of directory sharing is systemwide.
This means, for instance, that all users desiring subsystem
proprietary sharing must have user numbers assigned in the same
99-number band. For example, user numbers ICX701 through ICX799
have a unique directory created by validating dummy user ICX700.

2. Data set integrity.

When disk data sets are allocated, they are attached to a cluster
of data sets in behalf of some user number group. The number of

groups and assignment of people to user numbers within the groups
have a great deal of influence on the use of system resources. A
given user is assigned space only from the data sets assigned to

his group.

CALL-0S can be initiated to bring up any number of mutually exclusive
groups up to a maximum of 113 index entries. Any user who attempts to
sign on and whose group was not specified at startup time, is notified
and disconnected.

USING CLUSTERS

CALL-OS permits the use of two clusters: the primary cluster and the
alternate cluster. The system group and each user group may have up to
40 data sets in either cluster. When a group is used in a CALL-0S
session, all the data sets associated with that group must be present.
For example, if a user group has data sets IBMIBM00O, IBMIBMO1, and
IBMIBMO2 in the primary cluster, all three data sets must be present.

31

Data sets from both types of cluster may be used simultaneously if the
following conditions are met:

e The data sets present for a group must belong to the same cluster.
For example, SYSGRPOO and SYSGRP41 may not be present in the same
session; nor may IBMIBMOO, IBMIBM41, and IBMIBM42.

e The user number ranges for the specified user groups must not
overlap. For example, AAADDDOO and BBBFFF40 may not be present in
the same session because the user numbers from BBB001 through DDD999
belong to both user groups.

In the following example, assume that the primary cluster has three
groups and the alternate cluster has four groups, as follows:

PRIMARY CLUSTER

Group User Range Data Sets_ DD Names
System Group 1 SYSGRPO0O
AAAO000 through IJK999 20 AAAIJKOO0O-AAATIJIK19
IJL000 through ZZz999 19 IJLZZZ00-IJLZZZ18

ALTERNATE CLUSTER

Group User Range Data Sets DD Names
System Group 1 SYSGRP40
AAAQ000 through GZzZ999 10 AAAGZZU40-AAAGZZU9
HAAO000 through RZZ999 10 HAARZZU4O0-HAARZZU9
SAA000 through ZZZ999 10 SAAZZZU40-SAAZZZ49

A CALL-OS session could use the system group from either cluster, and
with certain restrictions, user groups from both clusters. For example,
the SAAZZZ user group from the alternate cluster may be used only with
the AAAIJK user group from the primary cluster; use of the primary
cluster IJLZZZ user group would result in overlapping user numbers.

If the user group configurations in both clusters are alike, clusters
may be used effectively through reorganization. For example, if one
user group in a system is more active than the others, it may become
necessary to reorganize this group earlier to eliminate purged space.
The REORGANIZE function of the data base utility may be used to
reorganize the user group into the other cluster. This reorganized user
group may then be brought up with the user groups from the original
cluster, thereby providing the full range of user group availability.

Another use of the REORGANIZE function with primary and alternate
clusters of data sets is to keep two different configurations of the
same groups. For example, take the two following configurations:

Cluster Group User Range Number of Data Sets
Primary System 2

AAA through GGG 5

III through PPP 3

YYY through YYY 2

Alternate System
AAA through JJJ
KAA through YYY

W=

The REORGANIZE function edits and reorganizes the primary into the
alternate cluster in three steps:

32

Primary Alternate

STEP A: SYSTEM (2) to SYSTEM (1N

STEP B: AAA - GGG (5) to AAA -~ JJJ (3)
III - PPP (3)

STEP C: IIT - PPP (3) to KAA - YYY (4)

YYY - YYY (4)

The ability to accomplish this rebuild of the groupings and
reallocation of number of data sets depends on the following:

1. Enough disk drives are available to mount all (from and to) data
sets at one time for each run.

2. Enough space is available in the alternate data sets to contain
all records in the primary.

INDEX DATA SET

The index is a one-track 0S/360 BSAM data set which contains an entry
for each data set associated with CALL-0S. It identifies all data sets
used by the CALL-0OS online system and those operated upon by the data
base utilities, and describes their logical groupings. The entire track
for the index is allocated and initialized to X'FF's (hexadecimal)
during data base build by U#UTIL3. Data set entries are added to or
deleted from the index during data base build or data base manipulation
with CALL-0S offline utilities. Each index entry is 64 bytes in length
and identifies one data set.

The entry for a data set begins with a unique identification code
that indicates the general use of the data set, for example, compiler or
system group. The next field contains the relative data set number of
the data set; this number is in the range from 00 through 79. (For
compiler and overlay entries, this field is always zero.) The third
field indicates the specific group to which the data set belongs (for
identification purposes, compiler, overlay, and work/swap data sets are
also considered to be "groups"); the groups and their associated
identifications are:

e Compiler, identified by the first six letters of the compiler or
compiler phase name (for example, BASIC, FORTRAN, PLI, or PL2)

® Work/swap, identified by SWAP; up to 20 such entries may appear in
the index

¢ Overlay, identified by OVLY

e System group, identified by SYSLIB; up to 40 such entries may appear
in each cluster

e User group, identified by the user number range of the group (for
example, AAACZZ indicates that the user number range is AAA00C
through CZz999); up to 40 such entries may appear for each user
group in each cluster

The next two fields of the index entry contain the name of the DD
statement which defines the data set and the full data set name, with
all qualifiers. The last two fields contain status information for the
initialization and formatting utilities, and for compilers, the size of
the compiler.

33

The index contains an entry for each DD statement and associated data
set known to both the online and offline systems. The maximum number of
index entries is 113; any or all data sets associated with these entries
may be defined during system initialization. That definition determines
which data sets are to be available during a particular CALL-OS session.
This includes any combination of compiler, overlay, work/swap, system
group, and user group data sets. For the system group and each user
group, although the index itself may have entries for the group in both
clusters, only one cluster may be represented for each group during
online operation. Figure 10 shows the overall organization of the CALL-
0s data base.

- __—

v __/
AAACZZO01 AAACZZ00
BASIC SWAPO3

\Swﬂf“/\ FORTRAN
INDEX
MAXIMUM
113
© ENTRIES ©
v v
SWAP08 SYSGRP0O
N SYSGRPO1
PLI
COMPILER N SWAPOD _4
PL2
ComPILER ~

1BM1BM40

SWAP10

Figure 10. Organization of CALL-0S data base

34

e

DATA BASE AND SYSTEM PERFORMANCE

In the planning of system resources, the user should remember that
since CALL-OS runs as a high-priority job in a multiprogramming system,
the way to increase the throughput of the background activity is to
restrain CALL-0S from developing too large a load. This can also be
achieved by reducing the number of lines enabled and by adjusting the
time slice allocated to background work.

It is also possible to assign availability priorities to groups of
users and thus limit the use of system resources. The only problem
created by bringing up less than the whole system is that programs
available through the *#*Directory are not available if the user who owns
the program is not brought up. The process of bringing groups up and
down is not dynamic. The system must be shut down and be restarted to
change user configurations.

LIMITATION OF DISK SPACE

Planned availability and priority of the uses of limited amounts of
disk space may be desired for some logical or accounting breakdown.
User numbers can then be assigned to guarantee a given amount to a
particular group. Otherwise, within a group, allocation of space is on
a first-come, first-served basis. A given user retains exclusive use of
his purged space and, where feasible, this space is reused. Any purged
space is available for use by the user until an offline reorganization
run is made to return space to the entire group; the purged space is
then made available to all users in the group.

PLANNED EFFICIENCY OF DISK ARM USE

For accounting convenience, it may be advantageous to have one data
set allocated to each user group; however, disk arm movement on high-
usage user groups may impair performance. A substantial performance
improvement may be realized for such user groups by allocating them to
multiple data sets. For example, one high-usage user group may be
allocated to eight data sets on eight different disk modules. The
system rotates the allocation through all data sets, filling them all up
together and spreading online arm usage across eight disk modules. This
assumes that all data sets are initially allocated with an equal amount
of space. Lower usage groups, however, can be allocated wherever it is
convenient to locate them on disk volumes.

BACKUP OF THE DATA BASE

Backup of the data base data sets can be achieved through 0S/360
utilities as well as CALL-OS offline utilities. In general, system base
data sets, which are easily created and do not often change during a
CALL-0S session, do not call for maintenance in the normal sense of the
word. User base data sets, on the other hand, require frequent backup,
which can be accomplished in any of the following ways:

1. Through the use of the 0S/360 DUMP/RESTORE utility on all packs
which contain data base data sets. The backup copy can be on
tape or on a 2314 or 2319 direct access storage facility. Note
that the format of the restored pack(s) is such that the backup
copy can be used to bring the system online.

2. Through the use of the 0S/360 IEHMOVE utility to copy all data
sets for a user group. The format of the copied data set is
compatible with CALL-0S format and structure and can be used to
bring the system online.

35

3. Through the use of the data base utility REORGANIZE function to
provide a compressed copy of a user group situated in one cluster
of a data base to a single, unused, preinitialized user group in
an alternate cluster, deleting purged or unused disk space in the
process. This is a disk-to-disk operation.

4. Through the use of the data base utility TAPE function to provide
a backup tape. This tape may then be used with the data base
utility RECONSTRUCT or INSERT/REPLACE funtion to recreate the
data sets.

The use of 0S/360 utilities is described in the publication IBM
System/360 Operating System: Utilities. The data base utility
functions are discussed in detail in "Creating and Maintaining the Data
Base".

REMOVING A USER FROM THE DATA BASE

It may become necessary to remove the files associated with a
particular user from the data base. The *CANCEL command is not
sufficient for this purpose because the files for a cancelled user
remain in the data base. One method of removing such files is to
manually purge all the files with the PURGE command before issuing the
*CANCEL command. A second, and better, method is to use the automatic
purge facilities of the DELETE function of the data base utility. The
DELETE function also produces an archive tape of the deleted files and
removes * and ** directory entries pooled by the cancelled user.

Even if all of the user's files have been purged, the cancelled
equivalency entry and one empty catalog half track remain in the data
base after a reorganization. A dormant user number such as this may be
reissued to a new user at a later time by revalidating the user number
with the *VALIDATE command. If it is desired to remove all dormant user
numbers from the data base, the RECON function of the data base utility
can be used. When /$ range cards are used during a reconstruction of
the data base from a backup tape, those users which are no longer
required may be omitted from the cards. This completely eliminates
these users from the system, including the files, the equivalency entry,
and the half-track catalog record associated with each user.

The data base utility functions are described in detail in "Creating
and Maintaining the Data Base".

36

CALL-0OS BATCH INTERFACE FACILITY

This section describes the CALL-OS Batch Interface (COBI) facility,
which permits CALL-OS terminal users to generate 0S/360 jobs and submit
those jobs to 0S/360 batch processing. The introduction to this section
describes general concepts important for an understanding of COBI and
follows a sample job through COBI and 0S/360 processing. The rest of
the section describes the COBI data set requirements, the preparatory
steps necessary to use COBI, and the maintenance utilities for the COBI
data sets.

COBI is optional, and is included in the system during CALL-0S system
build. In addition, an initialization option permits a COBI-built CALL-
0S system to be initialized without the COBI facility. Additional
information on COBI is found in other sections of this publication, as
follows:

e COBI storage requirements are given in "Designing the System".

* The process of building a CALL-0OS system with COBI is described in
"Building the System".

e The initialization options and DD statement requirements applicable
to COBI are described in "Initializing the System".

Before using the additional information on COBI, the user should be
familiar with the information in the following text.

INTRODUCTION

The COBI facility provides the CALL-0OS terminal user with the means
to submit a job for 0S/360 batch processing. The user may request that
JCL statements, system messages, and SYSOUT data sets created during
execution of the job be saved for printing (scanning) at the terminal.
COBI saves the JCL and system messages by copying them from the
appropriate output queue to the COBI JCL data set. COBI saves the
requested SYSOUT data sets by providing DSNAME, SPACE, DISP, and UNIT
parameters for specified DD statements according to user-specified
options when the job is submitted; those SYSOUT data sets not saved by
the user are assigned to an output class for processing by 0S/360.
After a job has been submitted, the user may inquire into the status of
his job and the scannable data sets.

At the time the job is submitted, a 48-byte record in the COBI index
data set is assigned to that job. A job number of the form #nnnnn is
assigned to the job, where nnnnn corresponds to the record number of the
COBI index record. The job name and identifiers of scannable SYSOUT
data sets are recorded in the COBI index record. Upon completion of the
0S/360 processing of the job, additional information is placed in the
COBI index record.

In order to determine when a submitted job has completed execution,
save its JCL, and locate scannable SYSOUT data sets, an 0S/360 output
class must be assigned solely for COBI submitted jobs. A COBI writer
program periodically examines the output queue of that class for
submitted jobs which have completed execution. For each completed job
found in the queue, the COBI writer determines if the job is a COBI-
submitted job. If not, the job output is reset to an output queue for
processing by an 0S/360 writer.

37

A COBI-submitted job is recognized by scanning the output queue for a
JCL comment statement immediately following the JOB statement. (This
comment statement is inserted by COBI when the job is submitted; the
statement contains the job number, the job name, date of submittal, and
other control information.) The COBI writer extracts the job number and
retrieves the related COBI index record.

If either the JCL was requested to be saved or a JCL error was
detected by 0S/360, the JCL and system messages are copied into the COBI
JCL data set and a pointer to the JCL is placed in the COBI index
record. If SYSOUT data sets were requested to be saved and the data
sets were created and kept by 0S/360, the identification of the volumes
containing the data sets are stored in the COBI index record. User
and/or system completion codes for the job, if any, are also stored in
the COBI index record. Finally, the job's output in the COBI class
queue is reset to an output queue for processing by an 0S/360 writer.
The JCL, system messages, and SYSOUT data sets not saved for scanning
would then normally be listed on a printer.

After a job has been processed by the COBI writer, the COBI index
record contains sufficient information to respond to user inquiries for
the status of his job, and the status and scanning of scannable data
sets. The user may also request that the job, the JCL, or SYSOUT data
sets be scratched. The scratching of a job is accomplished by clearing
the space occupied by its JCL in the COBI JCL data set, scratching the
DSCBs of the scannable SYSOUT data sets, and, finally, clearing the
space occupied by the job's COBI index record.

COBI CONCEPTS

After a COBI job has been read into an 0S/360 job queue, it is
executed in the same way any non-COBI job is executed. The major
difference in the overall processing of a COBI job is that the user may
request scanning of data sets associated with his job. The way in which
scanning is made possible involves several important concepts; an
understanding of these concepts is necessary to understand COBI
operation as a whole.

Output Classes

When CALL-OS is initialized, an output class is designated for the
routing of output from COBI-submitted jobs. It is assumed that only
these jobs will have output in the COBI class output queue. The CBCLASS
initialization parameter is used to assign this class to CALL-0S. If the
parameter is omitted, the default is class Z; this class is used in
subsequent examples.

The COBI class output queue contains the JCL and system messages for
all COBI-submitted jobs, as well as pointers to any temporary SYSOUT
data sets not saved for scanning. This output queue is monitored by the
COBI writer for COBI-submitted jobs which have completed execution.

When such a job is detected, the JCL and system messages are saved, if
necessary; pertinent information regarding job execution and the
location of scannable SYSOUT data sets is also recorded. The job output
in the COBI output class queue is then reset to an output queue to be
processed by an 0S/360 writer.

The output queue containing the reset output is processed in the
normal manner by an 0S/360 output writer started by the operator for
that output class. This class is designated by the OSCLASS
initialization parameter. If the parameter is omitted, the default is
class A; this class is used in subsequent examples. The OSCLASS and
CBCLASS parameters must not specify the same class.

38

Submittal of 0S/360 Jobs

The terminal user must enter the JCL, source program, and data for an
057360 job as source lines from the terminal; he then saves these source
lines as a program file in his library. He issues a SUBMIT command to
direct COBI to format and copy the 0S/360 job from the specified program
file(s) to the COBI SYSIN (input) data set. This data set can then be
processed by a COBI reader program which reads the jobs into the 0S/360
job queue.

When the SUBMIT command is issued, the user may specify that JCL and
SYSOUT data sets be saved for scanning. The SYSOUT data sets are
designated by data set identifiers and may be of either of two types:
user-defined data sets and procedure-defined data sets. User—-defined
SYSOUT data sets are identified by a parameter of the form Unnn, where
nnn is a number chosen by the user ranging from 1 through 127.
Procedure-defined SYSOUT data sets are identified by a parameter of the
form nPmm, where: the value of n may range from 1 through 7 and
indicates which procedure within the job contains the desired SYSOUT
data set; the value of mm may range from 1 through 15 and indicates
which SYSOUT data set within the procedure is to be saved. For example,

SUBMIT PGMA, (JCL,U1,2P1)

This SUBMIT command specifies a CALL-0S program file named PGMA which
contains an 0S/7360 job. The JCL is to be saved for scanning, as well as
two SYSOUT data sets: user-defined data set U1 and procedure-defined
data set 2P1 (the first SYSOUT data set in the second procedure executed
by the job).

Identifying COBI Jobs and Data Sets

COBI assigns a job number of the form #nnnnn to every submitted job.
This is true for all submitted jobs with one exception: if the user did
not specify any data sets to be scanned when he submitted the job and if
the JOB statement contains a MSGCLASS parameter referring to other than
the COBI output class; in this case, no record of the job is kept by
COBI.

If desired, COBI will also assign a job name to every job. The job
name consists of the user number (of the form aaannn, also referred to
as userid) of the submitting user and a two-character identifier
obtained by hashing the COBI-assigned job number.

The user number, the job number, and the scannable data set
identifier described previously are used to ensure unique data set names
for scannable data sets. COBI uses these three pieces of information to
create a qualified data set name of the form:

DSN=DIB.userid. job-number.data-set-identifier
where

userid is the user number, of the form aaannn, of the submitting
user

job-number is the COBI assigned job number, of the form #nnnnn
data-set- is the parameter specified in the SUBMIT command, of
identifier the form Pnmm or Unnn. Note that the user-specified

identifier nPmm is used in the form Pnmm because data set
names may not begin with a numeric character.

39

Therefore, the user need only refer to a data set by its data-set-
identifier and COBI will generate a data set name to be used by 0S/360
for space allocation and output processing.

Definition of SYSOUT Data Sets

As mentioned briefly before, a scannable data set is defined by a
COBI-supplied DD statement that has DSNAME, SPACE, DISP, and UNIT
parameters. These parameters identify the data set as an 0S/360 data
set which is to be created and kept for scanning. The DD statement
contains only a SYSOUT parameter if the data set is not to be saved for
scanning. Scannable data sets may be defined in cataloged procedures or
in user-provided DD statements. The technique used by COBI to supply DD
statement parameters depends on the way in which the data set is
defined. ‘

User-Defined SYSQUT Data Sets: To save a user-defined SYSOUT data set
for scanning, the user specifies a parameter of the form Unnn in the
SUBMIT command. For every Unnn parameter specified, COBI scans the
submitted job for a DD statement which contains the parameter &Unnn.

For example, if the user had specified the parameter U1 on a SUBMIT
command, COBI expects to find a DD statement in the job of the following
form:

//ddname DD £U1

If COBI finds a DD statement parameter to match the parameter on the
SUBMIT command, it replaces the DD statement parameter with the
following information:

DSN=DIB.userid. job-number.Unnn,SPACE=allocation,
DISP=(NEW,KEEP) ,UNIT=device-class

where
userid, job-number, and nnn are as described previously

allocation is a space allocation for the data set of the form
(TRK, (primary,secondary) ,RLSE) where primary and
secondary are either the allocations specified in the
DSPACE initialization parameter or defaults of ten
tracks each

device-class is either the class of devices specified in the
UNITNM initialization parameter or a default of 2314;
for more information on device class and its use with
COBI, see the subsection "COBI Device Class"

While scanning a submitted job, if COBI encounters a DD statement
parameter with no matching SUBMIT parameter, the DD statement parameter
is replaced with SYSOUT=Z. This data set is then routed to the COBI
output class, from which it is reset to the 0S/360 output class for
processing.

In the following example, assume U2 was specified on the SUBMIT
command :

//LIST JOB (accounting), 'PROG. NAME',MSGLEVEL=1
//STEP1 EXEC PGM=MYPROG

//SYSPRINT DD §01

//SYSUT1 DD DSN=TESTDATA,DISP=(OLD,KEEP) , VOL=SER=MYPACK
//SYSUT2 DD §02

40

/(5;7;5;:{‘\}

-

COBI replaces the &U1 parameter on the SYSPRINT DD statement with
SYSOUT=Z; it replaces the §U2 parameter on the SYSUT2 DD statement with
the DSNAME, SPACE, DISP, and UNIT parameters described previously.

Procedure-Defined SYSOUT Data Sets: Since COBI does not have access to
the procedure library, a different technique is used to provide DSNAME,
SPACE, DISP, and UNIT parameters for a scannable procedure-defined
SYSOUT data set. To save such a data set for scanning, the user
specifies a parameter of the form nPmm in the SUBMIT command. For every
nPmm parameter specified, COBI scans the job for the required (nth)
procedure and supplies a symbolic parameter default of the form Pmm on
the EXEC statement of the procedure. COBI assumes that the procedure
will have a corresponding parameter of the form &Pmm.

However, this technique obviously requires some changes in the
cataloged procedure itself. Therefore, before COBI-submitted jobs can
execute cataloged procedures and save procedure created data sets for
scanning, the cataloged procedures must be converted to a form suitable
for use by COBI.

In effect, the conversion process requires that symbolic parameters
of the form §Pmm be provided for every DD statement which contains a
SYSOUT parameter for a specified class. In addition, a default for the
symbolic parameters is provided to assign the SYSOUT data sets to the
COBI output class. Therefore, if the user does not request scanning of
a SYSOUT data set in a procedure, the data set is eventually routed to
an 0S/360 output class for processing. The conversion process also
supplies a space allocation of SPACE=(TRK,(10,10),RLSE) for any SYSOUT
data set which does not already have one. Finally, sequence numbers are
added to each statement in the procedure.

Figure 11 shows an example of a procedure, before and after its
conversion. Assume that only those data sets assigned to class A are to
be converted. The DIBCONPR utility is provided to perform this
conversion and is described in greater detail in "Preparing to Use
COBI".

PROCA Before Conversion:

//MYSTEP EXEC PGM=MYPROG

//SYSUDUMP DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//PRINTOUT DD SYSOUT=A,SPACE=(CYL, (20,5))
//SYSPUNCH DD SYSOUT=B

PROCA After Conversion:

//PROCA PROC P1="SYSOUT=%Z', MYSTEP SYSUDUMP 00000100
7/ P2='SYSOUT=Z"', MYSTEP SYSPRINT 00000200
7/ P3="'SYSOUT=2Z" MYSTEP PRINTOUT 00000300
//MYSTEP EXEC PGM=MYPROG 00000400
//SYSUDUMP DD §P1,SPACE=(TRK, (10,10) ,RLSE) 00000500
//SYSPRINT DD §P2,SPACE=(TRK, (10,10) ,RLSE) 00000600
//PRINTOUT DD &§P3,SPACE=(CYL, (20,5)) 00000700
//SYSPUNCH DD SYSOUT=B 00000800

Figure 11. Sample cataloged procedure conversion for COBI

41

COBI Device Class

It is not possible for COBI to be aware of either the space available
on direct access volumes or the current usage of the volumes.
Therefore, to enable 0S/360 to allocate space for scannable SYSOUT data
sets, a nonspecific volume request is made in the DD statements for
these data sets. To permit more than one volume to be used for
scannable SYSOUT data sets, a class of devices is assigned for COBI use.
This is achieved by specifying either a device type or a group (generic)
name in the UNIT parameter of the DD statement.

Since the request for space is a nonspecific volume request and the
data set is not temporary, 0S/360 allocates space on a volume called a
storage volume. 0S/360 allocates space for the data set either on the
storage volumes with the device type specified or on storage volumes
having the specified generic name. The UNITNM initialization parameter
may be used to specify a device type, a generic name, or a specific unit
address. If the parameter is omitted, the default is a device type of
2314,

It is recommended that a unique generic name be used to identify
those volumes on which scannable SYSOUT data sets may reside. This
generic name is specified during 0S/360 system generation (see "Building
the System") and restricts the number of storage volumes that may be
used in allocating space for scannable SYSOUT data sets. If the units
given a generic name are not defined by any other group name (for
example, SYSDA or SYSSQ), then only scannable data sets will reside on
storage volumes having the COBI generic name.

SAMPLE COBI JOB AND ITS PROCESSING

This section illustrates the processing of a single COBI job, from
its initial creation and submittal by the terminal user, through its
processing by COBI and 0S/360, as well as the handling of the output
produced by the job. Assume that the job to be submitted executes the
converted cataloged procedure PROCA, as shown previously in Figure 11,
and that the user number of the submitting user is IBM4OS.

Creating and Submitting the Job

Before an 0S/360 job may be submitted through COBI, the JCL, source
statements, and/or data for that job must be present in a user's
library. One way to do this is to create an 0S/360 job at the terminal
in the same way a CALL-OS source program file is created. For example,
the user enters the JCL, and in this case, the data for the job, as
numbered statements; he then saves this input in his library under the
name PGMA, as follows:

001 //MYJOB JOB accounting~information

002 //STEP1 EXEC PROCA (as shown in Figure 11)
003 //MYSTEP.SYSIN DD *

oou (data for MYPROG, the program executed by PROCA)

nnn /*

SAVE PGMA

READY

He may then submit PGMA for 0S/360 batch processing by issuing the
following command:

SUBMIT PGMA, (1P2)

42

PN

The reply from COBI indicates the job number and the job name, as
follows

#14 SUBMITTED AS IBM4OSOE

The notation 1P2 indicates that, in the first procedure in the job, the
second SYSOUT data set (SYSPRINT) is to be saved for later scanning at
the user's terminal. Since the user did not specify that the JCL be
saved for scanning, the JCL is not saved unless a JCL error is detected.

For a detailed description of job submittal with COBI, see the
publication CALL-OS Terminal Operations Manual.

COBI Processing After Submittal

After a job is submitted, COBI makes certain modifications to the job
input before it is passed to 0S/360 for execution. The CALL-OS line
numbers are removed and certain parameters are added to the JOB and EXEC
statements. In addition, a JCL comment is inserted after the JOB
statement. Figure 12 shows the input for PGMA after the modifications
have been made; the underlined portions indicate additional parameters.

//1IBM4O8OE JOB accounting-information,MSGCLASS=%
/7% #14 additional-information
//STEP1 EXEC PROCA,
// P2='DSN=DIB.IBM408.#00014.P102,DISP=(NEW,KEEP) ,UNIT=CBSCAN"
//MYSTEP.SYSIN DD *
. (data for MYPROG)
/%

Figure 12. PGMA input after COBI processing

The job name and a message class assignment (MSGCLASS parameter) are
added to the JOB statement. The job name consists of the user number
(IBM408) of the submitting user and a job-name identifier (E), obtained
by hashing the COBI-assigned job number. (Note that if the ANYJNAME
initialization parameter is specified, COBI will not assign a name to
the job.) The message class is the COBI output class assigned in the
CBCLASS initialization parameter; this same class must be used when
converting cataloged procedures for use with COBI.

Following the JOB statement, COBI inserts a JCL comment statement
beginning with //#%* #nnnnn, where #nnnnn is the job number (#14). The
statement also contains additional information, such as the job number
in binary, the name of the job, the CALL-0S coded date, and control
information used by COBI.

For each procedure-defined SYSOUT data set designated as scannable,
an override parameter is added to the EXEC statement. In this case, the
overriding parameter is P2, because the second data set is to be
scanned. The parameter value contains the data set name, a disposition,
and a unit assignment. The data set name is the format described
previously: index qualifiers of DIB, the user number (IBM408), and the
job number (#00014), followed by a specific data set identifier (P102,
the second data set of the first procedure). The disposition in all
cases is DISP=(NEW,KEEP). The unit assignment is taken from the UNITNM
initialization parameter; this parameter is used to indicate a
nonspecific volume request for space allocation.

After these modifications are made to the program input, the job is
written into a COBI input data set, which becomes the input data set for

43

the COBI reader program. This program attaches the 0S/360 reader-
interpreter, which reads the submitted jobs into an 0S/360 job queue.
(See the description of the COBI input data sets in "COBI Data Sets".)

03/360 Processing

Symbolic parameter substitution made by the 0S/360 reader interpreter
results in the JCL and cataloged procedure statements shown in Figure
13. 0S/360 device allocation assigns the SYSPRINT data set to one of
the volumes mounted on the devices in the CBSCAN device class. Up to
the point where an 0S/360 output writer would normally process the job
output, the execution and associated 0S/360 processing is identical to .
that for any 0S/360 job.

/7/ EXEC PROCA

// P2='DSN=DIB.IBM408.#00014.P102,DISP=(NEW,KEEP),UNIT=CBSCAN" .
//PROCA PROC P1="SYSOUT=Z"', MYSTEP SYSUDUMP

// P2="SYSOUT=Z"', MYSTEP SYSPRINT

/77 P3="SYSOUT=Z" MYSTEP PRINTOUT

XXMYSTEP EXEC PGM=MYPROG

XXSYSUDUMP DD &§P1,SPACE=(TRK, (10, 10) ,RLSE)

IEF6531 SUBSTITUTION JCL - SYSOUT=%,SPACE=(TRK, (10,10) ,RLSE)

XXSYSPRINT DD §P2,SPACE=(TRK, (10,10) ,RLSE)

IEF6531 SUBSTITUTION JCL - DSN=DIB.IBM408.#00014.P102,DISP=(NEW,KEEP),
UNIT=CBSCAN, SPACE= (TRK, (10, 10) ,RLSE)

XXPRINTOUT DD &§P3,SPACE=(CYL, (20,5))

IEF6531 SUBSTITUTION JCL - SYSOUT=%,SPACE=(CYL, (20,5))

Figure 13. PROCA after symbolic parameter substitution

Output Destinations and Final COBI Processing

The data set to be scanned (SYSPRINT) is written on a storage volume,
as determined by 0S/360 device allocation routines. Pointers to the
other two data sets produced by the job (SYSUDUMP and PRINTOUT) are
placed in the COBI class output queue, along with the JCL and resulting
messages associated with the job. This output class is monitored by the
COBI writer and information on execution status is retained. Finally,
the output from the job is reset from the COBI class output queue to an
output queue for processing by an 0S/360 output writer.

COBI DATA SETS

The COBI facility requires data sets in addition to those required
for execution of the CALL-OS system. These additional data sets, while
not part of the data base, must be allocated to CALL-OS before COBI can
be used and must be defined by DD statements when the system is
initialized. The COBI data sets are used to retain information about -
the jobs submitted through COBI, to transmit the jobs to 0S/360 batch
processing, and to make information available to the terminal user. The
data sets are:

e COBI index data set, which provides space for the index records
assigned to submitted jobs

e COBI JCL data set, which provides space for storing the JCL and
system messages for completed COBI-submitted jobs prior to printing
at the user's terminal

e Two COBI input data sets, which are used alternately in the copying

and formatting of the submitted jobs from the terminal users"
library and as input data sets for the COBI reader program

4y

=

/ /F:‘F‘ iy

The COBI index, JCL, and input data sets must be allocated and
preformatted with the U#5INIT utility program before they can be used by
CALL-0S system; these data sets may also be maintained with the U#5RINIT
and U#5PURGE utility programs, used to reinitialize and clean up the
data sets, respectively. 1In addition, the COBI index and JCL data sets
may be expanded with the U#5CBXPN utility. (The U#5INIT utility program
is described in "Initializing the COBI Data Sets"; the other utilities
are described in "Maintaining the COBI Data Sets".)

In addition to the COBI index, JCL, and input data sets, additional
data sets are required when COBI is initialized. Each volume which is
to contain scannable data sets must be defined by a DD statement. The
scannable data sets do not have to be initialized. Finally, the 0S/360
job queue data set (SYS1.SYSJOBQE) must be defined. This data set is
used to locate and access the COBI class output queue. The system job
queue data set does not have to be initialized by the U#S5INIT utility,
nor does it have to be defined during reinitialization or purging of the
COBI data sets.

The following text describes the use and characteristics of the COBI
index, JCL, input, and scannable data sets and assumes that, when
necessary, the data sets are in their preformatted state.

INDEX DATA SET

The COBI index data set provides space for the index records assigned
to jobs submitted from a user's terminal. Every record in use except
the first contains all the information pertaining to one job submitted
to 0S/360 batch processing; the first record contains data set
identification information. Each record in the data set is 48 bytes
long and the data set may contain up to a maximum of 32,000 records.

The actual number of records in the data set is determined when the data
set is initialized. This data set is defined with a CBNDX DD statement,
where CBNDX is the ddname.

During CALL-0OS system initialization, the records in the COBI index
are scanned to determine which records are available for use. A bit
string corresponding to the records is built in core: the bits for the
records in use are set to one, the bits for the records available for
use are set to zero.

When a new job is submitted, the bit string is scanned and the first
available record in the COBI index is assigned to the new job. The bit
corresponding to that record is then set to one. The number of the COBI
index record assigned to the job is used as the COBI-assigned job
number. For example, the job assigned to the fourth record is given job
number #4; the job assigned to the one-hundredth record is given job
number #100. Because the first record is always used for data set
identification, it is impossible for a job to be assigned job number #1.

After a job has been submitted to 0S/360 for processing, its index
record contains most of the information about the job. For example, the
record contains the user number of the user who submitted the job, the
job name, and the location of the job in a COBI input data set, in case
the user decides to cancel the job. During processing, the index record
is used to maintain status information regarding the execution of the
job.

When execution of a job is completed, additional information is put
into the COBI index record for the job. If the user specified that an
output data set be saved for scanning at his terminal, the relative
volume identification of the device containing the data set is added to
the record. 1In addition, system and/or user completion codes are

45

inserted in the record. The relative volume identification and the
completion codes are written by the COBI writer.

The index record for a job is deleted when the job is scratched or
cancelled. Under certain circumstances, the scratching of a data set
may also cause the COBI index record for the job to be deleted. When an
index record is deleted, the bit corresponding to it in the bit string
is set to zero, thus making an index record available for use by a new
job.

The original size of the COBI index is estimated according to the
maximum number of jobs that may be processed at any one time. After a
COBI system has been in operation for a while, the COBI index may become
full during a session. In this case, no more jobs may be submitted -
until either some index records become free or the index itself is
expanded. The utility program U#5CBXPN is used to increase the size of
the COBI index.

Two other utilities are available for maintaining the COBI index:
U#5RINIT, which reinitializes the data set, and U#5PURGE, which cleans
up the data set. All three utilities are described in "Maintaining the
COBI Data Sets".

JCL DATA SET

The COBI JCL data set contains the JCL for submitted jobs under two
conditions: either the user specified that the JCL for the job was to
be saved for scanning when he submitted the job, or a JCL error was
detected when the job was processed under 0S/360 but the user did not
specify that the JCL be saved. 1In either case, the COBI writer copies
the JCL into the COBI JCL data set. The actual module used depends on
whether CALL-OS is in operation or not: if CALL-OS is in use, the
module is M#JCL; if CALL-0OS is not in use, the module is DIBWTR.

Space in the JCL data set is allocated in record sets: a JCL record
set contains from one through four 3440-byte records. Every set except
the first is used for JCL storage; the first set is reserved for the
volume identification table. This table contains the volume serial
numbers of all volumes used to store output data sets saved for scanning
at the terminal. The rest of the JCL record sets are allocated as
needed for the storage of the JCL for a job. The total number of |
records in the JCL data set and the number of records in each record set
is determined when the data set is initialized. The JCL data set is
defined with a CBJCL DD statement, where CBJCL is the ddname.

During CALL-OS system initialization, the volume identification table
is built from the DD statements supplied for volumes containing
scannable data sets. In addition, the JCL record sets are scanned to
determine which are available for use. A bit string corresponding to
the sets is built in core: the bits for the sets in use are set to one,
the bits for the sets available for use are zero.

After a submitted job has been processed by 0S/360, the COBI writer
processes the job's output in the COBI class output queue. If the JCL
for the job is to be saved, the COBI writer allocates the first
available JCL record set to the job, enters a pointer to the JCL in the
index record for the job, and copies the JCL. An identification header
is written at the beginning of each 3440-byte record used for JCL
storage.

As the JCL is copied, it is compressed to eliminate blanks and
reformatted. The new format of a line of JCL in the JCL data set is
identical to the format of a CALL-OS source statement in a program file.
(The first byte contains the number of characters in the line and the

46

last byte contains X'15', which indicates the end of the line.) JCL
lines are not split across records. The minimum amount of space used
for the JCL for a job is one set; the maximum is three sets. If the JCL
for a job exceeds three sets, the rest of the JCL is not saved for
scanning; however, the complete JCL is printed on the high-speed printer
with the rest of the output for the job. A bit in the identification
header of the first record in the first set indicates that the JCL has
been truncated.

The original size of the COBI JCL data set is estimated according to
the size of the COBI index and the number of records in a record set.
After a COBI system has been in operation for a while, it may become
necessary to adjust the size of the JCL data set. The utility program
U#5CBXPN is used to expand or contract the JCL data set.

Two other utilities are available for maintaining the COBI JCL data
set: U#S5RINIT, which reinitializes the data set, and U#5PURGE, which
cleans up the data set. All three utilities are described in
"Maintaining the COBI Data Sets".

INPUT DATA SETS

COBI uses two input data sets so that, ideally, one is attached to
COBI to receive jobs from terminal users while the other is being read
into 0S/360 batch processing by the COBI reader program. The data sets
are defined with CBSYSINA and CBSYSINB DD statements, where CBSYSINA and
CBSYSINB are ddnames; the COBI reader program is DIBRDR and is executed
by either of two cataloged procedures, DIBRDRA and DIBRDRB. One
cataloged procedure is associated with each data set and reads only that
data set. For example, DIBRDRB reads only the CBSYSINB data set. The
format of the two data sets and the space allocated to them must be
identical. The amount of space is determined when the data sets are
initialized.

Each COBI input data set consists of two parts. The first part
contains the jobs submitted from the terminal; the second part contains
the write-to-operator messages associated with these jobs. The first
record in the data set contains a pointer to the beginning of the part
which contains the write-to-operator messages.

Initially, the first record in each data set has the characters EOF
starting in column 31; this indicates that the data set is available for
receiving COBI jobs. Thereafter, the reader program writes the EOF
record at the beginning of the data set when all the jobs have been read
into 0S/360 batch processing. This ensures that the jobs will not be
processed twice.

When CALL-OS with COBI has been initialized, one input data set is
attached to COBI and the other is in available status. When a job is
submitted from a terminal, the job is placed in the data set attached to
COBI. At certain points in the processing of submitted jobs, COBI
attempts to switch the two data sets, thereby making the data set
currently attached to COBI available to the COBI reader. The switching
of data sets occurs under the following conditions:

e When the current input data set is full

e When a certain number of jobs have been read into the data set (this
number is specified when the system is initialized)

e When a certain number of minutes have elapsed since the data set was

attached to COBI (this number is specified when the system is
initialized) and there is at least one job in the data set

47

e When the operator requests that any jobs ready for 0S/360 processing
be made available to a COBI reader

If any one of the preceding conditions is met, COBI checks the status of
the alternate input data set. If the data set has the EOF record as the
first record, the data set is ready to receive new jobs. If the EOF
record is not present and the current input data set is not full, COBI
continues to write jobs on the current data set until the alternate data
set is available. When the alternate data set becomes available, the
current input data set is given to a COBI reader for processing and the
alternate data set is attached to COBI to receive new jobs. If both
data sets are full or unavailable, no more jobs may be submitted until
an input data set becomes available.

The initialization parameters are described in the section
"Initializing the System"; the operator commands are described in the
publication CALL-0S Operator's Manual.

SCANNABLE DATA SETS

Scannable data sets contain information which may be printed (or
scanned) on a user terminal. The user may scan three types of data
sets:

e Output (SYSOUT) data sets associated with one or more of the jobs
submitted by him; he must request that the data set be saved for
scanning when he submits the job.

e Output data sets which have his user number as one of the index
qualifiers in a data set name. Usually, the data set name was not
created by COBI.

e System data sets whose high level index qualifier was designated as
scannable during system initialization of CALL-O0S.

The volumes which are to contain or do contain such data sets are
defined during system initialization. The DD statements for these
volumes have a name of the form SCANxXx, where xx is an identifier which
serves to make the name unique.

The volume identification table in the JCL data set contains the
volume serial numbers of all scannable data set volumes defined during
the current or any previous session of CALL-OS with COBI. However, not
all of these volumes need be mounted during a session and any session
may define new volumes by adding volume serial numbers during system
initialization. The only way the volume serial numbers are deleted from
the volume identification table is by reinitializing the JCL data set.

Scannable Output Data Sets

During 0S/360 system generation, it is recommended that the
installation assign a specific class of devices to be allocated for
scannable output from COBI jobs. During CALL-OS system initialization,
specific volumes are mounted, identified by volume serial number, and
assigned to the COBI device class. When a user submits a job, he
designates which SYSOUT data sets he wishes to scan by specifying the
appropriate data set identifiers (of the form Unnn or nPmm); finally,
during normal 0S/360 device allocation for the job, the data set is
allocated on one of the storage volumes assigned to the COBI device
class. A SCANxx DD statement must be included in the CALL-OS startup
deck for each volume mounted for the COBI device class and which
contains scannable data sets. The blocksize for these data sets must

48

el

ey

not exceed 127 physical blocks per track; the data sets must reside on
2314 or 2319 disk storage.

When a data set is specified as scannable, COBI assigns a retention
period of seven days; at the end of this time, if the user has not
scanned the data set, the operator may scratch the data set. When a
user scans a data set, he specifies whether the data set is to be kept
or scratched. If it is to be kept, the retention period is reset for
another seven days.

Scannable System Data Sets

With the SCANDS initialization parameter, the installation may
specify two high level index qualifiers, thereby making two groups of
system data sets available for scanning at a user terminal. For
example, if SYS1 is specified, the terminal user may scan SYS1.PROCLIB
or SYS1.MACLIB or any other data set with SYS1 as the high level index
qualifier. The volumes on which these data sets reside must also be
defined by SCANxx DD statements during CALL-OS initialization. The COBI
command facilities do not permit the scratching or modification of these
system data sets.

PREPARING TO USE COBI

Before COBI may be used, certain preparatory steps must be taken to
provide the necessary operating environment. These steps are:

e Modify the IEEVLNKT control section by adding the names of the COBI
reader and writer programs

e Convert the installation cataloged procedures with the DIBCONPR
utility to enable the procedures to be used by COBI jobs

e Add cataloged procedures for the COBI reader and writer programs to
SYS1.PROCLIB

e Initialize the COBI index, JCL data set, and the two input data sets
e Link edit the COBI reader and writer programs into SYS1.LINKLIB

The last two steps may be performed together as part of an IBM supplied
cataloged procedure (COBIBLD). Before COBIBLD may be used, the first
step of the CALL-0OS system build process must have been completed; this
step puts the CALL-OS procedures into SYS1.PROCLIB. The system build
process is described in the section "Building the System".

MODIFYING THE IEEVLNKT CONTROL SECTION

The 0S/360 control section IEEVLNKT contains the names of all load
modules which may be executed by an 0S/360 operator start command. The
operator executes these load modules from the 0S/360 system operator's
console by issuing a start command which refers to a cataloged
procedure. The procedure then initiates execution of the appropriate
load module. When COBI is used, the operator must issue start commands
which refer to COBI cataloged procedures. These procedures execute the
COBI reader and writer modules, DIBRDR and DIBWTR, respectively.

Therefore, before COBI can be used, the names DIBRDR and DIBWTR must
be added to the system. 2An IBM-supplied module named DIBNAMES contains
the COBI names in load module format. (This load module is copied from
OSRTS.EXEC.JOBLIB into qualifier.JOBuIB during Step I of the CALL-0S
system build process; see "Building the System.) The linkage editor is

49

used to combine these names with the names in the IEEVLNKT control
section and to replace references to IEEVLNKT with references to
DIBNAMES. The actual linkage editor control statements used depend on
whether MFT or MVT is used.

With an MFT System

When an MFT system is used, the IEEVLNKT, IEEVACTL, and IEEVRCTL load
modules must all be modified to include the COBI names. The JCL
required to execute the linkage editor and the linkage editor control
statements necessary to modify the modules are as follows:

//LKED EXEC PGM=IEWL,PARM="NCAL,LIST,XREF,LET,RENT,REFR"'
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK, (100,10))

//SYSLIB DD DSN=qualifier.JOBLIB,DISP=SHR

//SYSLMOD DD DSN=SYS1.LINKLIB,DISP=OLD

//SYSPRINT DD SYSOUT=A

//SYSLIN DD *

INCLUDE SYSLIB(DIBNAMES)
INCLUDE SYSLMOD (IEEVLNKT)
ENTRY DIBNAMES

NAME IEEVLNKT (R)

REPLACE IEEVLNKT (DIBNAMES)
INCLUDE SYSLMOD (IEEVRJCL)
INCLUDE SYSLIB(DIBNAMES)
INCLUDE SYSLMOD (IEEVRJCL)
ENTRY IEEVRJCL

ALIAS IEEPSN

NAME IEEVRJCL(R)

where
qualifier is the high level index qualifier assigned to CALL-0S

data sets during system build.

With an MVT System

When an MVT system is used, only the IEEVRJCL load module must be
modified to include the COBI names. The JCL required to execute the
linkage editor and the linkage editor control statements necessary to
modify the module are as follows:

//LKED EXEC PGM=IEWL,PARM="NCAL,LIST,XREF,LET,RENT,REFR"
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK, (100,10))

//SYSLIB DD DSN=qualifier.JOBLIB,DISP=SHR

//SYSLMOD DD DSN=SYS1.LINKLIB,DISP=0LD

//SYSPRINT DD SYSOUT=A

//SYSLIN DD *

REPLACE IEEVLNKT (DIBNAMES)
INCLUDE SYSLMOD(IEEVRJCL)
INCLUDE SYSLIB(DIBNAMES)
INCLUDE SYSLMOD(IEEVRJCL)
ENTRY IEEVRJCL

ALIAS IEEPSN

NAME IEEVRJCL(R)

where

qualifier is the high level index qualifier assigned to CALL-0S
data sets during system build.

50

) e,

CONVERTING CATALOGED PROCEDURES

If SYSOUT data sets produced by a cataloged procedure are to be
scanned at the terminal, the procedure should be converted to a form
suitable for use by COBI with the DIBCONPR utility program. (If a
procedure is not converted, a &Unnn parameter must be used to override
the procedure JCL.) It is recommended that the converted procedures be
placed in a procedure library unique to COBI and available for use only
by COBI users. If the converted procedures are returned to the
procedure library they were in before conversion, the names of the
converted procedures must be altered.

The SYSPRINT data set in the GO step of certain cataloged procedures
defaults to undefined record format. Since undefined records may not be
used with the COBI SCAN option, the default must be overridden if the
data set is to be scanned. Overriding DCB information may be added
either before the cataloged procedures are converted or at the time the
procedure is executed. The DIBCONPR utility cannot be used to add this
information to a DD statement.

The rest of this subsection describes the JCL required to execute the

utility, the conversion process, an example of procedure conversion, and
the use of the COBI procedure library.

JCL Requirements for DIBCONPR

When executing the DIBCONPR utility, the user may specify the class
of SYSOUT data sets to be converted, the class to which the converted
data sets are to be assigned, and the space allocation to be given to
any data set which does not already have one specified in the procedure.
(The space allocation is necessary because if any of the data sets are
to be scanned, they become sequential disk data sets; as such, they do
not receive the SYSOUT default space allocation assigned by the reader.)
All three parameters are optional and appropriate defaults are supplied
if the parameter is omitted.

In addition, DD statements must be supplied which define the
procedure library which contains the procedures to be converted, the
sequential data set in which the converted procedures are to be written,
a listing data set, and a control card data set.

The complete JCL required to execute DIBCONPR is as follows:

//ANYNAME JOB —-_—
//JOBLIB DD DSN=qualifier1.JOBLIB,DISP=SHR
//STEPNAME EXEC PGM=DIBCONPR,PARM=("0OSCLASS=a', 'CBCLASS=z",
V4 *SPACE=parms ') ,REGION=60K
//SYSLIB DD DSN=qualifier2.PROCLIB,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSPUNCH DD data-set-definition
//SYSIN DD *
control-cards
/%

where

qualifiert is the high level index qualifier assigned to CALL-OS
data sets during system build

a specifies the class of SYSOUT data sets to be converted

and must be a valid SYSOUT class. The default is class
A. This class is the 0S/360 output class.

51

z specifies the class to which the appropriate SYSOUT data
sets are to be converted and must be a valid SYSOUT
class. The default is class Z. This class is the COBI
output class; the CBCLASS system initialization parameter
must match the CBCLASS class specified for the conversion
process.

parms is any valid space allocation of 50 characters or less.
All data sets in the converted class are assigned this
space allocation unless a SPACE parameter is already
present in the unconverted procedure. In most cases,
cylinder allocation rather than track allocation should
be employed, because of its superior performance
characteristics. The default is (CYL,(1,1)). (DIBCONPR
performs only minimal syntax checking on this parameter.)

qualifier2 is the high level index qualifier of the procedure
library which contains the procedures to be converted.
In most cases, this will be SYS1. Note that additional
procedure libraries may be concatenated to the library
defined on the SYSLIB DD statement.

data-set- defines a sequential data set which is to contain

definition the converted procedures. For example, SYSOUT=B is a
valid definition, as well as any tape or sequential disk
data set definition.

control- specify which procedures in the SYSLIB data set(s) are

cards to be converted; each control card contains the member
name of one procedure to be converted in columns 1
through 8.

Table 1 shows the defaults for those parameters which may be omitted.

Based on the parameters, DIBCONPR converts the procedures as
described in the following text.

Table 1. Parameter defaults for the DIBCONPR utility

| Parameter | Use | Default

|CBCLASS |Specifies the class to which |Class Z
	sYsouT data sets are to be
	assigned during conversion
oscLass	specifies the class of SYSOUT
	data sets to be converted

| |
| SPACE | Specifies the space allocation to | (CYL, (1,1))
| |be used for converted data sets |

| |which do not already have one |

gy gy S SO S - o e - -

e s e S o S S . S oo, Smes comars)

Conversion Process

For each SYSOUT data set in the class to be converted, DIBCONPR
replaces the SYSOUT specification on the appropriate DD statement with
the following:

52

§Pnl,SPACE=parms]

where
n is the number of the data set within the procedure and
may range from 1 through 15; if a procedure has more than
15 data sets to be converted, the rest are not converted.
parms is either the space allocation specified in the SPACE

parameter of the utility EXEC statement or the default if
the SPACE parameter was omitted; if a data set to be
converted already has a SPACE parameter, the parameter is
not changed.

For each converted DD statement, the utility adds to the PROC statement
a symbolic parameter with a default value; a comment field is added
after the parameter. The parameter and the comment field have the
following format:

Pn="'SYsSoOuT=z'[(,] step-name ddname
where

n is the number of the data set within the procedure, as
defined previously

z is either the class specified in the CBCLASS parameter on
the utility EXEC statement or a default of Z if the
parameter was omitted; the comma follows the parameter if
more symbolic parameters are required.

step-name is the name of the step within the procedure to which the
parameter applies

ddname is the name of the DD statement which was converted

As a procedure is converted, the statements in it are given sequence
numbers, starting with 100 and incremented by 100. (If other sequence
numbers are desired, they can be specified as the procedure is written
into the COBI procedure library by adding additional control
statements.)

When a procedure is converted, an IEBUPDTE utility control statement
is written in the SYSPUNCH data set; this control statement has the
following format:

ADD NAME=member—-name

where

member-name is the name of the converted procedure as specified in
the control card input for DIBCONPR

The converted procedure is then written in the SYSPUNCH data set and a

listing of the procedure is printed on the SYSPRINT data set. The
entire process is repeated for each member named in the SYSIN data set.

Conversion Example

The following is an example of the JCL required to execute the
DIBCONPR utility program:

53

//CONVERT JOB 1,"PGMR, C',MSGLEVEL=1

//JOBLIB DD DSNAME=OSRTS . JOBLIB, DISP=SHR
//CON EXEC PGM=DIBCONPR, PARM='CBCLASS=J,SPACE=(CYL, (2,2))"
/77 REGION=60K

//SYSLIB DD DSNAME=SYS1.PROCLIB, DISP=SHR
7/ DD DSNAME=USER.PROCLIB,DISP=SHR
//SYSPRINT DD SYSOUT=A

//SYSPUNCH DD SYSOUT=B

//SYSIN DD *

SAMPLE

ASMFC

ASMFCL

ASMFCLG

/¥

Since the OSCLASS parameter was not specified on the utility EXEC
statement, all SYSOUT data sets in output class A are to be converted.

Figure 14 shows the procedure SAMPLE before its conversion; Figure 15
shows the same procedure after its conversion. Note that the space
allocation for PRINT1 was part of the unconverted procedure and was not
altered by DIBCONPR.

/7/P1 PROC LIB=TEST
//STEP1 EXEC PGM=PROG1
//SYSLIB DD DSN=§LIB..JOBLIB,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSPUNCH DD SYSOUT=B
//PRINT1 DD SYSOUT=A, SPACE=(CYL, (8,4))
//STEP2 EXEC PGM=PROG2
//SYSPRINT DD SYSOUT=A

Figure 14. Sample procedure before conversion by DIBCONPR

-/ ADD NAME=SAMPLE

//P1 PROC LIB=TEST, 00000100
// P1="'SYSouUT=J°, STEP1 SYSPRINT 00000200
// P2="sYsouT=J"', STEP 1 PRINT1 00000300
7/ P3="SYSOUT=J" STEP2 SYSPRINT 00000400
//STEP1 EXEC PGM=PROG1 00000500
//SYSLIB DD DSN=§LIB..JOBLIB,DISP=SHR 00000600
//SYSPRINT DD &§P1,SPACE=(CYL, (2,2)) 00000700
//SYSPUNCH DD SYSOUT=B 00000800
//PRINT1 DD §P2,SPACE=(CYL, (8,4)) 00000900
//STEP2 EXEC PGM=PROG2 00001000
//SYSPRINT DD €P3,SPACE=(CYL, (2,2)) 00001100

Figure 15. Sample procedure after conversion by DIBCONPR

Using the COBI Procedure Library

The converted procedures should be placed in a procedure library
other than the one they were in before conversion; this library should
be reserved for COBI use only. When the COBI procedure library is
created initially, the entire SYSPUNCH data set may be used as the input
for the IEBUPDTE utility program.

54

This utility may also be used to maintain the COBI procedure library;
however, in this case, the ADD control statement for each procedure
which already exists in the library must be replaced by a REPL control
statement. For example, if an installation changes the assignment of
its COBI output class, then the cataloged procedures must be
reconverted. To reconvert procedures, DIBCONPR utility must be executed
against the original unconverted procedures; procedures which are
already converted may not be reprocessed by DIBCONPR.

The following example shows the JCL necessary to create a COBI
procedure library:

//COBIPROC JOB -

//UPDTE EXEC PGM=IEBUPDTE, PARM=NEW

//SYSUT2 DD DSN=0SRTS.COBIPROC,UNIT=2314,VOL=SER=COBIO1,
// SPACE=(CYL,(2,1,8)) ,DISP=(NEW,CATLG),

// DCB=SYS 1.PROCLIB

//SYSPRINT DD SYSOUT=A

//SYSIN DD DATA

(SYSPUNCH output from the execution of the DIBCONPR utility)

/%

For detailed information on the use of the IEBUPDTE utility, see the
publication IBM System/360 Operating System: Utilities.

SUPPLYING COBI READER AND WRITER PROCEDURES

The installation must provide three procedures to be used with COBI:
two reader procedures and one writer procedure. The requirements for
the procedures as well as how to add these procedures to the system are
described in the following text.

COBI Reader (DIBRDR) Procedures

Two reader procedures, named DIBRDRA and DIBRDRB, must be supplied
for use by the COBI reader program. Since this program attaches the
057360 reader/interpreter IEFIRC, it is possible to modify an existing
057360 reader procedure for use with COBI. Whether this is done or a new
procedure is written, the following requirements must be met for both
COBI reader procedures:

e PGM=DIBRDR must be specified on the EXEC statement

e The parameter field should be coded as shown with one exception:
the last character (Z in the example) is the default output class
for jobs read by the reader; this must be identical to the COBI
output class specified in the CBCLASS initialization parameter.

e The recommended region size is 68K

e The IEFRDER DD statement specifies the data set name of the
appropriate input data set; this name is of the form

DSN=qualifier.CBSYSINx
where

qualifier is the high level index qualifier assigned to CALL-0S
data sets during system build.

b 4 specifies the input data set, and is A in the DIBRDRA
procedure, B in the DIBRDRB procedure.

55

The disposition on this DD statement is DISP=SHR. No other
information need be supplied because the input data sets are
initialized and cataloged before COBI is used.

e If the procedures were converted for COBI use, the IEFPDSI DD
statement must contain the name of the procedure library in which
the converted procedures were placed. If necessary, the
SYS1.PROCLIB procedure library may be concatenated to the COBI
procedure library. (This is desirable when not all the procedures
were converted for COBI use.)

e The DIBRDRA and DIBRDRB procedures must be identical, with the
exception of the data set name on the IEFRDER DD statement.

e The IEFDATA DD statement should contain a blocksize specification of
at least 400 for efficient execution; however, if a program cannct
handle input with this blocksize, a DCB parameter with the required
blocksize must be added to the DD * statement for the program.

The following is an example of the DIBRDRA procedure:

//STEPNAME EXEC PGM=DIBRDR,

/7 PARM="80103001001024905030SYSDA 000011z°*,

/7 REGION=68K

//IEFRDER DD DSN=0SRTS.CBSYSINA,DISP=SHR

//1IEFPDSI DD DSN=0SRTS.COBIPROC,DISP=SHR

Va4 DD DSN=SYS1.PROCLIB,DISP=SHR

//IEFDATA DD UNIT=SYSDA,SPACE=(80, (500,500) ,RLSE,CONTIG),
/77 DCB=(BUFNO=2, LRECL=80, BLKSIZE=400, RECFM=FB)

In this example, a separate procedure library was used for the converted
procedures, and SYS1.PROCLIB is concatenated to it. The corresponding
DIBRDRB procedure would be identical with one exception: the data set
name DSN=0OSRTS.CBSYSINB must be used on the IEFRDER DD statement.

The PARM field of DIBRDRA and DIBRDRB procedures should contain a
track allocation size compatible with the CALL-0OS startup deck. (See
ALOCTYPE and DSPACE under "Additional COBI Options".) This ensures that
if a SYSOUT data set is retained for scanning on one execution, but not
another, the same amount of space is allocated. (That is, the user-
specified allocation for a data set not retained for scanning should be
such that it has the same effect as the COBI-generated SPACE parameter
for a retained data set.) For example, if the A1OCTYPE and DSPACE
parameters are not specified, or if ALOCTYPE=CYL and DSPACE is not used,
then the system generates a SPACE parameter CYL, (001,001). The DIBRDRA
and DIBRDRB procedures should contain 020 020.

A detailed description of the PARM field and the IEFDATA DD statement
for the 0S/360 reader interpreter procedure is found in the publication
IBM System/360 Operating System: System Programmer's Guide.

COBI Writer (DIBWTR) Procedure

One procedure named DIBWTR must be supplied for the COBI writer
program, also called DIBWTR; this program is used when CALL-OS is not
being used but COBI jobs remain to be processed. DIBWTR is not to be
confused with an 0S/360 output writer. DIBWTR monitors the CBCLASS
output queue for output from COBI-submitted jobs. If either the JCL is
to be saved for scanning or a JCL error was detected, DIBWTR copies the
JCL into the JCL data set; the COBI job output is then reset to the
OSCLASS output queue for processing by an 0S/360 output writer. Whether
the JCIL is saved or not, DIBWTR also stores status information about the
job in the COBI index record for the job. DIBWTR processes one job each

56

time it receives control; the time interval which elapses before it
regains control is determined by the installation.

The EXEC statement in the DIBWTR procedure must contain the following
parameters:

* CBCLASS, which specifies the COBI output class; this class is
processed by DIBWTR

® OSCLASS, which specifies the 0S/360 output class to which the COBI
class is reset after processing

e ITIME, which specifies the number of seconds to elapse before DIBWTR
processes another job

The procedure must be named DIBWTR and have DIBWTR as the name on the
PROC card. This is necessary so that when a STOP command is issued by
the 0S operator, the correct CSCB can be located, and the system posted
for termination.

The procedure must contain DD statements for the COBI index and the
COBI JCL data set. In addition, the 0S/360 system job queue must be
defined because DIBWTR uses this data set to locate and access the
CBCLASS output queue for COBI jobs. The following is an example of the
JCL required in a DIBWTR procedure:

//STEPNAME EXEC PGM=DIBWTR,PARM=("'CBCLASS=z"', 'OSCLASS=a',
/77 * ITIME=nnnn") ,REGION=28K
//CBNDX DD DSN=qualifier.CBNDX, DISP=SHR
//CBJCL DD DSN=qualifier.CBJCL,DISP=SHR
//CBJOBQ DD DSN=SYS 1.SYSJOBQE,DISP=SHR
where
z is the COBI output class; it must be identical to the

CBCLASS specification given in the startup deck and used
for DIBCONPR when converting cataloged procedures

a is the 0S/360 output class to which the COBI class is
reset after processing; it must not be the same as the
class specified for the CBCLASS parameter

nnnn is the time, in seconds, to elapse between the time
DIBWTR finishes one job and receives control to process
the next job; the time interval must be within the range
from 1 through 9999

qualifier is the high level index qualifier assigned to CALL-0OS
data sets during system build.

Adding the COBI Procedures to the System

When the three procedures have been prepared as described in the
preceding text, they must be added to SYS1.PROCLIB with the IEBUPDTE
utility program. The following example shows the use of this utility to
add the DIBRDRA, DIBRDRB, and DIBWTR procedures to the system:

57

//PROCUPDT JOB —_—

//UPDTE EXEC PGM=I1EBUPDTE, PARM=MOD
//SYSUT1 DD DSN=SYS1.PROCLIB,DISP=0LD
//SYSUT2 DD DSN=SYS1.PROCLIB,DISP=0LD
//SYSPRINT DD SYSOUT=A
//SYSIN DD DATA
o/ ADD NAME=DIBRDRA

(JCL sStatements for DIBRDRA)
./ ADD NAME=DIBRDRB

(JCL Statements for DIBRDRB)
./ ADD NAME=DIBWTR

(JCL Statements for DIBWTR)
/%

A detailed description of the IEBUPDTE utility is found in the
publication IBM System/360 Operating System: Utilities.

INITIALIZING THE COBI DATA SETS

Before COBI can be used, the COBI index, COBI JCL data set, and the
two COBI input data sets must be initialized by utility U#5INIT. The
utility may be executed as part of a cataloged procedure supplied by IBM
or it may be executed separately. In either case, the data set
requirements and the initialization process are identical. The rest of
this section describes the initialization process for each data set, the
use of the cataloged procedure, and the use of the utility as a separate
program. For a description of the data sets and their use, refer to
"COBI Data Sets" presented earlier in this section.

Initialization Process

The four COBI data sets which must be initialized must be processed
by U#5INIT at the same time. The utility formats the records in each
data set and, when necessary, places required information in the
records. The process for each data set is described in more detail in
the following text.

COBI Index Data Set: The user specifies the number of 48-byte records
to be allocated. The utility initializes and writes the specified
number of records into the data set. When U#5INIT has finished
processing, the first record of the COBI index identifies the data set
and contains the following information:

e The total number of records in the data set

e The total number of records in the JCL data set

e The number of records in each JCL record set

e The number of cylinders in each COBI input data set.

The second and all subsequent records in the COBI index are identical in
format: the first byte of each record contains zeros, indicating that
the record is unused; the second byte contains the record number
relative to the beginning of the data set (for example, 2 for the second
record, etc.); the rest of each record contains zeros.

COBI JCL Data Set: The user specifies the total number of 3440-byte
records to be allocated as well as the number of records in each JCL
record set. The utility stores this information in the first record of
the COBI index and writes the specified number of JCL record sets into

58

the data set. When U#5INIT has finished processing, the first record of
the first record set contains an identifier and skeleton format for the
volume identification table; the rest of the first set is not used. The
remaining record sets in the data set contain zeros.

COBI Input Data Sets: The user specifies the number of cylinders to be
allocated to each input data set. The utility stores this information
in the first record of the COBI index and writes the first and only
record into each input data set. This record begins with the
identification //* and indicates the data set (SYSINA or SYSINB).
Finally, the record contains the characters EOF starting in column 31.
The rest of the record contains zeros; the rest of the data set is not
altered.

Using the Cataloged Procedure

The cataloged procedure COBIBLD may be used to initialize the COBI
data sets and to link-edit the COBI reader and writer modules into
SYS1.LINKLIB. The first step of this procedure executes the U#5INIT
utility. This utility allocates and preformats the COBI data sets
according to information supplied either by the user or as defaults.
User-supplied information is specified in the parameter field of the
EXEC statement. The JCL required to use the cataloged procedure is as
follows:

/7/INIT JOB -———
//JOBLIB DD DSN=0OSRTS.JOBLIB,DISP=SHR
//DSINIT EXEC COBIBLD,CBINDEX=aaa,CBJCLRD=bbb,CBRDSET=mm,
/7 SYSIN=nn,QA=qualifier,VOLID=volid
where
aaa is the number of 48-byte records to be allocated in the

COBI index. This number is installation dependent and is
based on the number of submitted jobs that might be
present in the system at any one time. The number
specified must be within the range from 2 through 32,000.
If CBINDEX is omitted, the default is 150 records.

bbb is the number of 3440-byte records to be allocated in the
JCL data set. This number must be at least twice the
number (mm) of records specified for a record set. In
most cases, this number should be equal to the number of
index records (aaa) times the number of records per set
(mm). If CBJCLRD is omitted, the default is 300 records.

mm is the number of 3440-byte records in each JCL record set
and may be from one through four. If CBRDSET is omitted,
the default is two records per set.

nn is the number of cylinders to be allocated for the COBI
input data sets. If SYSIN is omitted, the default is ten
cylinders for each data set.

qualifier is the high level index qualifier (QA) assigned to CALL-
0S data sets during system build. If QA is omitted, the
default is OSRTS.

volid is the volume serial number of the volume which is to
contain the COBI data sets. No default is provided,
therefore VOLID must always be specified. Note that this
causes the assignment of all four data sets to the same
volume. By overriding one or more DD statements in the

59

cataloged procedure, the associated data sets may be
assigned to different volumes.

Table 2 shows the defaults for those parameters which may be omitted.
Figure 16 shows the statements in the first step of the COBIBLD
cataloged procedure.

The user may override certain specifications in the DD statements of
the procedure. The usual rules for overriding must be followed. For
example, the overriding DD statements must be in the same sequence as
the DD statements in the procedure. The DD statements which can be
overridden -are:

CBNDX Defines the COBI index data set
CBJCL Defines the COBI JCL data set
CBSYSINA Defines the SYSINA input data set
CBSYSINB Defines the SYSINB input data set

The VOL=SER parameter may be overridden on all four DD statements; the
DCB parameter may be added to the CBSYSINA and CBSYSINB DD statements to
provide a blocksize specification other than 3200 bytes for the input
data sets. None of the other information on the DD statements should be
overridden.

Table 2. Parameter defaults for the COBIBLD procedure

o ————— ———————————— ————— ————— —— .~ — ———— ——— ——— e . . = o - ———

r
| Parameter | Use Default

|

1 ¥
| CBINDEX |Specifies the number of u48-byte |
{ | records to be allocated to the |
	COBI index data set
CBOCLRD	Specifies the number of 3440-byte
	xrecords to be allocated to the
	COBI JCL data set
CBRDSET	Specifies the number of 3440-byte
	xrecords in each JCL record set
I	

QA | Specifies the high level index
|qualifier assigned to CALL-0S
|data sets during system build
|

SYSIN | Specifies the number of cylinders
jto be allocated to each of the
|COBI input data sets

L e o e o o o B e e e e o e e e o o o e . e e e e S e i e e e . o e Py |

Ten cylinders for
each data set

60

//COBIBLD PROC CBINDEX=150, CBJCLRD=300,SYSIN=10,QA=OSRTS,

7/ CBRDSET=2

/7/CB1 EXEC PGM=U#5INIT, PARM=(*CBINDEX=(CBINDEX"',

7/ * CBJCLRD=§CBJCLRD" , * CBRDSET=§CBRDSET")

//CBNDX bD DSN=§QA. .CBNDX, SPACE= (48, (§CBINDEX) ,,CONTIG),
/77 VOL=SER=6VOLID,DISP=(NEW,CATLG,DELETE),

// UNIT=2314

//CBJCL DD DSN=&QA. .CBJCL, VOL=SER=§VOLID,UNIT=2314,

/7 SPACE=(3440, (§CBJCLRD) ,RLSE,CONTIG,ROUND),

/7 DISP=(NEW,CATLG,DELETE)

//CBSYSINA . DD DSN=§QA..CBSYSINA,SPACE=(CYL, (§SYSIN),,CONTIG),
Va4 VOL=SER=§VOLID,DISP=(NEW, CATLG,DELETE),

7/ UNIT=2314

//CBSYSINB DD DSN=§QA..CBSYSINB,SPACE=(CYL, (§SYSIN),,CONTIG),
Va4 VOL=SER=§VOLID,DISP=(NEW,CATLG,DELETE),

/77 UNIT=2314

//SYSPRINT DD SYSOUT=A

Figure 16. JCL statements in the first step of the COBIBLD procedure

Overriding the Volume Serial Number: Since the VOLID parameter causes
all four data sets to be allocated on the same volume, the user may want
to override this allocation. The following example shows the use of the
COBIBLD procedure while overriding the volume specification:

//DSINIT JOB -—

//JOBLIB DD DSN=0SRTS.JOBLIB,DISP=SHR
//INIT EXEC COBIBLD,VOLID=COBIO1
//CBSYSINA DD VOL=SER=COBI02

//CBSYSINB DD VOL=SER=COBIO02

Since the CBNDX and CBJCL DD statements were not overridden, the COBI
index and the COBI JCL data set are allocated on volume COBIO1. The two
COBI input data sets are allocated on volume COBIO2.

Note: Even when overriding, the VOLID parameter must be specified to
provide a value for the corresponding symbolic parameter in the
procedure.

Overriding the Blocksize for the Input Data Sets: The optimum and
default blocksize for the COBI input data sets is 3200 bytes. However,
the user may specify a smaller blocksize by overriding both DD
statements and specifying the DCB parameter with the BLKSIZE
subparameter. The blocksize specified must be the same for both input
data sets, a multiple of 80, and within the range 400 through 3200. If
any of these conditions are not met, a message is issued and
initialization terminates.

The following example shows the use of the COBIBLD procedure while
specifying a blocksize of 2400 bytes for the input data set:

//DSINIT JOB -

//JOBLIB DD DSN=0SRTS.JOBLIB,DISP=SHR
//INITSTP EXEC COBIBLD,VOLID=COBIO1
//CBSYSINA DD DCB=BLKSIZE=2400
//CBSYSINB DD DCB=BLKSIZE=2400

All four data sets are allocated on volume COBIO1 and a blocksize of
2400 is used for the two input data sets.

Note: The use of a smaller blocksize for the input data sets may cause
increased CALL-0OS processing and 0S/360 reader overhead.

61

Executing U#5INIT as a Separate Program

If the COBIBLD procedure is not used, the U#5INIT utility must be
executed to initialize the COBI index, COBI JCL data set, and the two
input data sets. All four data sets must be initialized at the same
time and must meet the following requirements:

e Each must reside on a 2314 or 2319 storage device.

e The space allocated for each data set must be contiguous and must
have only one extent.

e Secondary allocation may not be requested for any data set.
The JCL required to execute the U#5INIT utility is as follows:

//ANYNAME JOB -
//JOBLIB DD DSN=0OSRTS.JOBLIB,DISP=SHR

//STEPNAME EXEC PGM=U#S5INIT,PARM=("'CBINDEX=aaa', 'CBJCLRD=bbb',
7/ ! CBRDSET=mm")
//CBNDX DD DsSN=qualifier.CBNDX,SPACE=(48, (aaa),,CONTIG),
7/ VOL=SER=volid1,DISP=(1list),UNIT=2314
//CBJCL DD DSN=qualifier.CBJCL,SPACE=(3440, (bbb) ,RLSE,CCNTIG,ROUND),
7/ VOL=SER=vo0lid2,DISP=(1list),UNIT=2314
//CBSYSINA DD DSN=qualifier.CBSYSINA,SPACE=(CYL, (nn),,CONTIG),
// VOL=SER=vo0l1id3,DISP=(list),UNIT=23141,
7/ DCB=BLKSIZE=yyyy]
//CBSYSINB DD DSN=qualifier.CBSYSINB,SPACE=(CYL, (nn),,CONTIG),
7/ VOL=SER=volid4,DISP=(list),UNIT=2314[,
V4 DCB=BLKSIZE=yyyy]l
//SYSPRINT DD SYSOUT=A
where
aaa is the number of 48-byte records to be allocated in the

COBI index. This number is installation dependent and is
based on the number of submitted jobs that might be
present in the system at any one time. The number must
be within the range from 2 through 32,000. If omitted,
the default is 150. If present, this number must be
specified in the CBINDEX parameter of the EXEC statement
and in the SPACE parameter of the CBNDX DD statement; the
number should be the same in both places.

bbb is the number of 3440-byte records to be allocated in the
JCL data set. This number should be twice the number of
COBI index records specified and must be at least twice
the number of records specified for a record set. If
omitted, the default is 300. If present, this number
must be specified in the CBJCLRD parameter of the EXEC
statement and in the SPACE parameter of the CBJCL DD
statement; the number should be the same in both places.
In addition, the space allocated for the JCL data set
must begin on a cylinder boundary. Since the
specification is not made in cylinders, ROUND is required
to force cylinder boundary alignment and RLSE is required
to ensure that unformatted tracks are made available.

mm is the number of JCL records in each JCL record set and
is specified only in the CBRDSET parameter of the EXEC
statement. The number must be within the range from 1
through 4. If omitted, the default is 2.

qualifier is the high level index qualifier assigned to CALL-0S
data sets during system build. If the usual default

62

! value OSRTS is desired, then OSRTS must be specified as
the qualifier.

, volidi indicate the volume serial number of the volume to
- volid?2 which the associated data set is to be assigned.
volid3 The same or different volumes may be used for
volidu all four data sets.
{
list specifies the disposition of the data set. The

' recommended disposition is DISP=(NEW,CATLG,DELETE). This
ensures that the data sets are cataloged if the
processing is successful, and are deleted if processing
terminates abnormally. If an old data set is used and
DISP=(OLD) is specified, the data set must be completely
empty, as if newly created.

. nn is the number of cylinders to be allocated for each input
data set. This number must be identical for both data
sets.

YYYY is optional and if used specifies the blocksize for the

input data sets. The blocksize must be the same for both
data sets, a multiple of 80, and within the range 400 to
3200; if any of these conditions are not met,
initialization terminates. If the DCB parameter is not
specified, a default of 3200 is used.

Table 3 shows the defaults for those parameters which may be omitted.

Table 3. Parameter defaults for the U#5INIT utility

- - - - - i e —————————— = ——— > oo = s

Ve | Parameter | Use | Default

| BLKSIZE on|Specifies the maximum blocksize 13200 bytes

] the |]allowed for the COBI input data

|CYSYSINA |sets

l |and

‘ | CYSYSINB
|DD state-
|ments

|
|
|

— e, S— —— —— —— O — —— — —— o— — — ————]

|
|
|
|
|
| |
| CBINDEX | sSpecifies the number of u48-byte 1150 records
i | records to be allocated to the |
| | COBI index data set |
I | |
| CBJICLRD | Specifies the number of 3440-byte |300 records
| jrecords to be allocated to the |

| | COBI JCL data set |
| |
| |
| 1
L

|
CBRDSET | Specifies the number of 3440-byte
|records in each JCL record set

- - - -— -~ -

Two records per set

[Sy—

LINK EDITING THE COBI READER AND WRITER LOAD MODULES

The load modules for the COBI reader and writer programs (DIBRDR and
DIBWTR, respectively) must be link edited into SYS1.LINKLIB. This link
edit is performed as the second step of the COBIBLD cataloged procedure.
The COBIBLD procedure also initializes and preformats the COBI index,
JCL data set, and the COBI input data sets. The JCL required to execute
if COBIBLD is explained in detail in "Initializing the COBI Data Sets".

63

Figure 17 shows the JCL statements contained in the second step of
the COBIBLD procedure. Note that the linkage editor control statements
are contained in another cataloged procedure, DIBCBINC; Figure 18 shows
the statements in this cataloged procedure. If the COBIBLD procedure is
not used, the user must execute the linkage editor separately, using the
same JCL and linkage editor control statements.

/7/CB2 EXEC PGM=IEWL, PARM="XREF,LIST,NCAL',

7/ COND=(0,NE,CB1) ,REGION=96K .
//SYSLIB DD DSN=€QA. .JOBLIB,DISP=SHR

//SYSLMOD DD DSN=SYS1.LINKLIB,DISP=0OLD

//SYSUT1 DD UNIT=SYSDA,SPACE=(1024, (200,20))

//SYSPRINT DD SYSOUT=A ~
//SYSLIN DD DSN=SYS1.PROCLIB(DIBCBINC) ,DISP=SHR

Figure 17. JCL statements in the second step of the COBIBLD procedure

INCLUDE SYSLIB(DIBRDR)
NAME DIBRDR(R)
INCLUDE SYSLIB(DIBWTR)
NAME DIBWTR(R)

Figure 18. Linkage editor control statements in the DIBCBINC procedure

MAINTAINING THE COBI DATA SETS

After a CALL-0S system with COBI has been in use for a period of
time, it may be necessary to perform maintenance operations on the COBI
data sets. IBM supplies three utility programs to aid in this
maintenance, as follows:

o U#5CBXPN Expands the current COBI index and the COBI JCL data set
by copying them into larger data sets; it will also
contract the COBI JCL data set by copying it into a
smaller data set

e U#S5RINIT Reinitjializes the COBI index, JCL, and input data sets

e U#5PURGE Deletes all references to unfinished jobs from the COBI
data sets

The use, JCL requirements, and an example for each utility is given in
the following text.

U#5CBXPN - EXPANDING THE COBI INDEX AND JCL DATA SET

When the COBI data sets are initialized, the sizes of the COBI index
and the JCL data set are estimated according to the number of users who -
will be using the system at any one time. If the number of jobs being
submitted is more than was originally expected, or if the average length
of JCL listings is different than anticipated, the sizes of these data
sets may have to be adjusted. Because the COBI index and JCL data set
must have only one extent, a utility has been provided to copy the COBI
index data set into a new data set and to compress or expand the JCL
data set.

Specifically, the U#5CBXPN utility copies the COBI index from its ,
present data set into another data set, which may differ in size; it ' ~

64

/1.‘:.‘-1 3

iy

copies the COBI JCL data set from its present data set into another data
set, which may be the same size, larger, or smaller. If a larger data
set is used, in either case, U#5CBXPN formats the remainder of the data
set into empty records, filled with zeros.

JCL Requirements

The current COBI index and the new COBI index must be defined by DD
statements with the names CBOLDX and CBNDX, respectively. The current
COBI JCL data set and the new COBI JCL data set must be defined by DD
statements with the names CBOLDJCL and CBJCL, respectively. 1In
addition, a SYSPRINT DD statement must be supplied to define the system
printer to be used for utility messages.

The user may also specify the following information on the EXEC
statement:

e The total number of records which the expanded COBI index is to
contain

® The total number of records which the expanded (contracted) COBI JCL
data set is to contain

e The number of records in a JCL record set

If the parameters are omitted, the defaults are the values used to
initialize the current COBI index and JCL data sets. Thus, unless
specific parameter values are given, the new data sets will have the
same size and structure as the current data sets.

The complete JCL required to execute the U#5CBXPN utility is as
follows:

//ANYNAME JOB -
//JOBLIB DD DSN=qualifier.JOBLIB,DISP=SHR
//STEPNAME EXEC PGM=U#5CBXPN, PARM= ("' CBINDEX=aaa"',
/77 *CBJCLRD=bbb" , " CBRDSET=mm"') , REGION=88K
//CBOLDX DD DSN=qualifier.CBNDX,DISP=(OLD,DELETE,KEEP)
//CBNDX DD DSN=user-name-1,SPACE=(48, (aaa), ,CONTIG),
/77 UNIT=2314,DISP=(NEW,CATLG,KEEP),
/7 VOL=SER=volid1
//CBOLDJCL DD DSN=qualifier.CBJCL,DISP=(OLD,DELETE,KEEP)
//CBJCL DD DSN=user-name-2,UNIT=2314,
7/ SPACE=(3440, (bbb) ,RLSE,CONTIG,ROUND),
// VOL=SER=vo0lid2,DISP=(NEW, CATLG,KEEP)
//SYSPRINT DD SYSOUT=A

where

qualifier is the high level index qualifier assigned to CALL-0OS
data sets during system build.

aaa is the total number of 48-byte records to be allocated to
the expanded COBI index. The number cannot exceed 32,000
and is specified in the CBINDEX parameter of the EXEC
statement and in the SPACE parameter of the CBNDX DD
statement. If the parameter is omitted from the EXEC
statement, the value specified in the CBNDX DD statement
must be equal to the number specified when the data set
was initialized.

bbb is the number of 3440-byte records to be allocated to the

expanded or contracted COBI JCL data set. This number is
specified in the CBJCLRD parameter of the EXEC statement

65

and in the SPACE parameter of the CBJCL DD statement. If
the parameter is omitted from the EXEC statement, the
value specified in the CBJCL DD statement must be equal
to the number specified when the JCL data set was
initialized.

mm is the number of JCL records in each JCL record set.
This number must be within the range from one through
four and is specified only in the CBRDSET parameter of
the EXEC statement. If the parameter is omitted, the
default is the number of records per set specified when
the JCL data set was initialized.

user-name-1 are user-specified data set names; the qualifier is

user-name-2 not needed. U#5CBXPN replaces these data set names with
the old data set names (typically, qualifier.CBNDX and
qualifier.CBJCL).

volid1 are the volume serial numbers of the volumes which are

volid2 to contain the expanded COBI index and the expanded
(contracted) JCL data set, respectively; they may specify
the volumes which contain the current data sets.

Note the way in which the disposition is specified on the CBOLDX,
CBOLDJCL, CBNDX, and CBJCL DD statements. If the system should fail
prior to completion of the expansion, these dispositions ensure that all
data sets are retained. The user may then determine which data sets are
to be deleted.

After the expanded data sets are created, the data set names
originally assigned to the old data sets are assigned to the expanded
data sets. To avoid duplicate names, an interim name is assigned to
each old data set. These interim names have the following format:

DSN=DIB.Tnnnnnnn.Dmmmmm. CBNDX
DSN=DIB.Tnnnnnnn.Dmmmmnm. CBJCL

where
nnnnnnn is the time of day
mmmmm is the date

For example, after the interim name is assigned to the old COBI index,
the old name is assigned to the expanded COBI index. This entire
process is then repeated for the JCL data set. The old COBI index and
the old COBI JCL data sets are deleted after the utility terminates.

In the unlikely event that the utility should terminate abnormally
while the data set names are being changed, the o0ld data sets are
retained. The actual names under which the old data sets have been
stored can be determined by listing the volume table of contents (VTOC).

U#5CBXPN uncatalogs the old data sets. Note that if the new data
sets are not cataloged, no message is issued.

If U#5CBXPN is executed in a multi-step job, the CBOLDX, CBOLDJCL,
CBNDX, and CBJCL DD statements should not contain backward references to
DD statements in previous steps of the job. Similarly, in subsequent
steps, no backward references should be made to the CBOLDX, CBOLDJCL,
CBNDX, and CBJCL DD statements of the current step.

66

Example
The following example shows the use of the U#5CBXPN utility:

//EXPND JOB -_—

//JOBLIB DD DSN=0SRTS.JOBLIB,DISP=SHR

//CBX1 EXEC PGM=U#5CBXPN, REGION=88K

7/ PARM="' CBINDEX=200,CBJCLRD=400"

//CBOLDX DD DSN=0SRTS.CBNDX, DISP=(OLD, DELETE, KEEP)
//CBNDX DD DSN=TEMP 1, UNIT=2341, SPACE= (48, (200) , ,CONTIG),
Vo4 VOL=SER=COBIO01,DISP=(NEW,CATLG,KEEP),
//CBOLDJCL DD DSN=OSRTS.CBJCL,DISP=(OLD,DELETE, KEEP)
//CBJCL DD DNS=TEMP2, UNIT=2314, SPACE=(3440, (400) ,RLSE,
7/ CONTIG,ROUND),

V24 VOL=SER=COBIO1,DISP=(NEW, CATLG, KEEP)
/./SYSPRINT DD SYSOUT=

/¥

U#5RINIT - REINITIALIZING THE COBI DATA SETS

The U#5RINIT utility reinitializes the COBI index, JCL data set, and
the two input data sets. 1In addition, the utility produces a SCRATCH
control statement (for use with the 0S/360 utility IEHPROGM) for each
scannable output data set which has not already been scratched.

This utility is used when it becomes desirable to recreate the
initial COBI operating environment. For example, although scannable
data sets are designed as temporary data sets and should be scratched as
soon as possible after their use, it is possible that too many scannable
data sets have been kept; this utility prevents the data from being
lost, while at the same time restores the COBI environment to its
initial state. This utility could also be used on a periodic basis
within certain time sharing environments to reinitialize COBI; for
example, in a university environment, the U#5RINIT utility could be run
at the end of a semester to prepare for the next term's time sharing work.

The reinitialization process is identical to that described for
initialization (U#5INIT) with the following exceptions:

e The utility punches a SCRATCH control statement for each unscratched
scannable output data set, prior to reinitializing the COBI index
and JCL data sets.

e The space for the reinitialized input data sets may be either old or
new. If old space is used (for example, if the current data set is
to be reinitialized), the space does not have to be empty. If new
space is used, the amount of space does not have to be equal to the
amount allocated when the data sets were initialized.

e The COBI input data sets are expected to have an end-of-file record
at the beginning of the data set. If this record is not found by
U#S5RINIT, it may indicate either that the jobs in the data set have
not yet been read by the COBI reader or that the space is newly
allocated. If the space is not newly allocated, a message is issued
to the system operator requesting him to either continue or
terminate U#SRINIT processing.

Except for the above, the requirements for reinitialization are
identical to those for initialization. That is, newly allocated space
must be on a 2314 or 2319 volume, have only one extent, and not request
a secondary allocation. If an error is detected during U#5RINIT
processing, the COBI index and COBI JCL data sets are generally invalid
for a rerun of U#5RINIT. The correct recovery procedure is to run
U#5INIT to initialize new data sets.

67

JCL Requirements

The process of reinitializing the COBI data sets consists of two
steps. The first step executes the U#5RINIT utility, which performs the
actual reinitialization and processes the unscratched scannable output
data sets. The second step executes the JOBFIND function of the data
base utility, which updates the user group catalogs according to the
reinitialized COBI index.

Executing U#5RINIT: The COBI index, JCL data set, and the two input
data sets must be defined by DD statements with the names CBNDX, CBJCL,
CBSYSINA, and CBSYSINB, respectively. The system printer, which is used
to print any messages resulting from utility processing, must be defined
by a SYSPRINT DD statement. Finally, the data set for the SCRATCH
statements must be defined by a SYSPUNCH DD statement.

The complete JCL required to execute the U#5RINIT utility step is as
follows:

//BANYNAME JOB ——

//JOBLIB DD DSN=qualifier.JOBLIB,DISP=SHR

//STEPNAME EXEC PGM=U#5RINIT,REGION=88K

//CBNDX DD DSN=qualifier.CBNDX,DISP=0OLD

//CBJCL DD DSN=qualifier.CBJCL,DISP=0LD

//CBSYSINA DD DSN=qualifier.CBSYSINA,DISP=dispositionl,

7/ DCB=BLKSIZE=yyyy] [,UNIT=2314,VOL=SER=volid3,
// SPACE=(CYL, (nn), ,CONTIG)]

//CBSYSINB DD DSN=qualifier.CBSYSINB,DISP=dispositionl,

7/
/77

//SYSPRINT
//SYSPUNCH

where

qualifier

disposition

volid3
volidy

nn

YYYY

68

DCB=BLKSIZE=yyyyl [,UNIT=2314,VOL=SER=volidl,
SPACE=(CYL, (nn) , ,CONTIG)]

DD SYSOUT=A

DD SYSOUT=B

is the high level index qualifier assigned to CALL-0S
data sets during system build.

specifies the disposition for the input data sets. If an
old data set is used, the disposition is OLD; with the
exception of the DCB parameter on the DD statements for
the input data sets, all the information enclosed in
brackets must be omitted. If a new data set is used, the
disposition is (NEW,CATLG,DELETE); with the exception of
the DCB parameter, all the information enclosed in
brackets must be specified as shown. The DCB parameter

may be specified for either o0ld or new input data sets.

are the volume serial numbers of the volumes which

are to contain the newly allocated space for the input
data sets. Both data sets may be on the same volume or
on different volumes. These parameters are not specified
if an old data set is used.

is the number of cylinders to be allocated to each input
data set. This number and its associated SPACE parameter
is specified only if new space is to be used for the
input data sets; the number specified must be the same
for both input data sets.

is optional and specifies the blocksize for the input
data sets; this parameter may be used for either old or
new space. The blocksize specified must be the same for

both input data sets, a multiple of 80, and within the
range from 400 through 3200; if any of these conditions
are not met, reinitialization terminates. If the DCB
parameter is not specified, a blocksize of 3200 bytes is
used.

Executing the JOBFIND Function: The second step necessary for
reinitializing the COBI data sets is the execution of the JOBFIND
function of the data base utility. Since this step is executed after
the COBI index has been reinitialized, it causes all COBI job entries in
the user group catalogs to be deleted. This step must be executed for
all user groups associated with the system for which the COBI data sets
were reinitialized. This includes any user groups from either cluster
which may have been active during any session of this particular CALL-0S
system during which submission of COBI jobs was permitted. Therefore,
the user group DD statements may define user groups from both clusters,
with identical, overlapping, or nonoverlapping user number ranges. All
data sets associated with a user group must be present. The
requirements for execution of the data base utility (DIBCADBU) are
described in detail in the section on the utility in the section
"Creating and Maintaining the Data Base".

Example

The following example shows the two steps required to reinitialize
the four COBI data sets:

//RINIT JOB -——=

//JOBLIB DD DSN=O0OSRTS.JOBLIB,DISP=SHR
//STEP1 EXEC PGM=U#5RINIT,REGION=88K
//CBNDX DD DSN=OSRTS.CBNDX,DISP=0OLD
//CBJCL DD DSN=0SRTS.CBJCL,DISP=0LD
//CBSYSINA DD DSN=OSRTS.CBSYSINA,DISP=0OLD
//CBSYSINB DD DSN=OSRTS.CBSYSINB,DISP=0LD
//SYSPRINT DD SYSOUT=A

//SYSPUNCH DD SYSOUT=B

7//STEP2 EXEC PGM=DIBCADBU,REGION=96K
//INDEX DD DSN=0OSRTS. INDEX,DISP=SHR
//SYSPRINT DD SYSOUT=A

//CBNDX DD DSN=0OSRTS.CBNDX, DISP=0LD
//SYSGRP00O DD DSN=0OSRTS.SYSGRP00,DISP=SHR
7//IBMIBMOO DD DSN=0OSRTS. IBMIBM00,DISP=OLD
//IBMIBMO1 DD DSN=OSRTS.IBMIBMO1,DISP=OLD
//IBMIBMO2 DD DSN=OSRTS. IBMIBM02,DISP=OLD
//IBMIBMO3 DD DSN=OSRTS.IBMIBM03,DISP=OLD
//REGREGU40 DD DSN=OSRTS.REGREG40,DISP=0LD
//SYSIN DD * 4

./ JOBFIND USRGROUP=IBMIBM,CLUSTER=1, PASSWORD=COMMCON
./ JOBFIND USRGROUP=REGREG,CLUSTER=2, PASSWORD=COMMCON
V4

U#5PURGE - PURGING UNFINISHED JOBS FROM THE COBI DATA SETS

This utility purges the COBI data sets by removing all references to
COBI jobs which are in an unfinished state. COBI jobs may enter this
state when a system failure occurs while the COBI reader is reading one
of the COBI input data sets. To make the system operational after such
a failure, the operator must reformat the 0S/360 system job queue,
thereby destroying all 0S/360 references to COBI jobs not yet finished.
However, references to these unfinished jobs remain in the COBI data
sets and in the catalogs of the submitting users.

69

The purge process removes references to unfinished COBI jobs from the
COBI data sets, as well as the user group catalogs. The COBI data sets
should be purged after the job queue has been reformatted and the 0S/360
system is again operational. However, before the purge function can be
executed successfully, the following conditions must be met:

1. The CBSYSINA and CBSYSINB data sets have been read by the COBI
reader progrom until both data sets have the EOF record in the
first record.

2. All the jobs read in by the COBI reader have been processed by
0S/360 and have completed execution.

3. The COBI writer program has been executed and copied the -]
necessary information into the COBI JCL data set, converted COBI 1
job output to the appropriate 0S/360 output class, and indicated (
in the COBI index that all the jobs thus processed are complete. |

When these three conditions are met, the only COBI index job entries

‘left in an unfinished state are those for which the job queue

information was destroyed during reformatting. These job entries and

their associated data sets may then be removed from the system by the

purge process.

JCL Requirements

The process of purging unfinished jobs from the COBI data sets
consists of two steps. The first step executes the U#5PURGE utility,
which removes the entries for the unfinished jobs from the COBI data
sets and scratches any data sets associated with those jobs. The second
step executes the JOBFIND function of the data base utility, which
deletes the references to the unfinished jobs from the user group
catalogs affected.

Executing U#5PURGE: The COBI index, the two input data sets, and the
system printer must be defined by DD statements with the names CBNDX,
CBSYSINA, CBSYSINB, and SYSPRINT, respectively. Finally, all volumes
which could contain scannable output data sets associated with any
incomplete jobs must be mounted and defined by SCANxx DD statements.
The complete JCL required to execute the U#5PURGE utility step is as
follows:

//ANYNAME JOB -
//JOBLIB DD DSN=qualifier.JOBLIB,DISP=SHR
//STEPNAME EXEC PGM=U#5PURGE , REGION=88K
//CBNDX DD DSN=qualifier.CBNDX,DISP=OLD
//CBSYSINA DD DSN=qualifier.CBSYSINA,DISP=0LD
//CBSYSINB DD DSN=qualifier.CBSYSINB,DISP=OLD
//SYSPRINT DD SYSOUT=A .
//SCANxx DD VOL~=SER=vo0lidn,UNIT=2314,DISP=OLD
where "

qualifier is the high level index qualifier assigned to CALL-0S
data sets during system build.

XX identifies a DD statement which defines a volume which
may contain scannable output data sets associated with
unfinished jobs. One or more SCANxx DD statements must
be supplied; the SCANxx statements must be identical to
the SCANxx DD statements in the CALL-0S startup deck for

70

N

the session which was terminated abnormally. No more
than 100 SCANxx DD statements may be supplied.

volidn is the volume serial number of a volume which may contain
scannable output data sets associated with unfinished
jobs. All volumes upon which scannable output data sets
were written must be mounted and defined by SCANxx DD
statements.

Executing the JOBFIND Function: The second step necessary for purging
unfinished jobs from the COBI data sets is the execution of the JOBFIND
function of the data base utility. Since this step is executed after
any reference to unfinished jobs have been removed from the COBI data
sets, it causes all references to such jobs to be deleted from the user
group catalogs. This step must be executed for all user groups which
were active in the CALL-OS system in execution when the 0S/360 system
terminated abnormally. Therefore, the user group DD statements must be
identical to those in the CALL-OS startup deck for this session. The
requirements for execution of the data base utility (DIBCADBU) are
described in detail in the section on the utility in the section
"Creating and Maintaining the Data Base".

Example

The following example shows the two steps required to purge
unfinished COBI jobs from the CALL-OS system:

//PURGE JOB -

//JOBLIB DD DSN=0SRTS.JOBLIB,DISP=SHR

//STEP1 EXEC PGM=U#5PURGE , REGION=88K

//CBNDX DD DSN=0SRTS.CBNDX,DISP=0OLD
//CBSYSINA DD DSN=OSRTS.CBSYSINA,DISP=OLD
//CBSYSINB DD DSN=OSRTS.CBSYSINB,DISP=OLD
//SYSPRINT DD SYSOUT=A

//SCANO1 DD DISP=OLD,UNIT=2314,VOL=SER=222222
//SCANO05 DD DISP=0LD,UNIT=2314,VOL=SER=COBIO1
//STEP2 EXEC PGM=DIBCADBU, REGION=9 6K

//INDEX DD DSN=OSRTS. INDEX, DISP=SHR
//SYSPRINT DD SYSOUT=A

/7/CBNDX DD DSN=0OSRTS.CBNDX,DISP=0LD
//SYSGRP0O DD DSN=0SRTS.SYSGRP00,DISP=SHR
//DEVDEV00 DD DSN=0OSRTS.DEVDEV00,DISP=0OLD
//DEVDEV01 DD DSN=OSRTS.DEVDEV01,DISP=OLD
//ENGENG40 DD DSN=0OSRTS.ENGENG40,DISP=0LD
//ENGENG#41 DD DSN=0OSRTS.ENGENG41,DISP=OLD
//SYSIN DD *

./ JOBFIND USRGROUP=DEVDEV,CLUSTER=1, PASSWORD=COMMCON
«/ JOBFIND USRGROUP=ENGENG,CLUSTER=2, PASSWORD=COMMCON
7%

71

DESIGNING THE SYSTEM

Before the process of system installation is undertaken, a decision
must have been made by the user with respect to the following items:

e System configuration required to support CALL-0S

e Amount of disk storage facility required to fully support the
installation

e Amount of core storage required to fully support the installation

e Performance level required by CALL-0S

The requirements of a given installation environment, coupled with
the system performance level desired by the user, determine the proper

amounts of the items mentioned above. Adequate planning and analysis,
in light of these factors, is therefore required.

SYSTEM CONFIGURATION

The selection of a hardware configuration for CALL-0S is largely
determined by the requirements of 0S/360, CALL-OS, and the application
requirements of the specific installation. Some of the factors involved
in determining those needs are:

e Maximum number of terminals having concurrent access to CALL-0S
e Expected levels of performance
e Desired amount of concurrent activity in other 0S/360 task areas

The total number of concurrently active terminal lines that can be
supported by CALL-0S with suitable response times is directly
proporticnal to the mix of terminal user applications actively on the
system. This number may be further affected by other concurrently
active 0S/360 task areas as well as by the size and priority of the
CALL-0OS task area.

MINIMUM MACHINE CONFIGURATION

The configuration selected is comprised of the central processing
unit and the peripheral equipment required for omline operation of CALL-
0S. The minimum central processing unit on which CALL-0OS can be
executed is any one of the following:

e System/360 Model 50HG
e System/370 Model 145H (384K) with:
3345 Main Storage Frame
4901 Main Storage Frame Adapter
3046 Power Storage 3910 Extended Precision Floating-Point Feature
(optional feature, but no charge)
e System/370 Model 155HG

The minimum peripheral equipment required for online operation of
CALL-OS with each CPU is:

72

‘ ~FPe

e System/360 Model 50HG:

One selector channel

One IBM 2314 Storage Control Model A1

One IBM 2312 Disk Storage Model Atl

One IBM 2702 or 2703 Transmission Control
Two terminal consoles (see below)

e System/370 Model 145H (384K, as defined above)

One IBM 2319 Disk Storage Facility Model A1

One IBM Integrated File Adapter feature (#4650)
One IBM 2702 or 2703 Transmission Control

Two terminal consoles (see below)

e System/370 Model 155HG:

One block multiplexor channel

One IBM 2314 Disk Storage Control Model A1
One IBM 2312 Disk Storage Model A1

One IBM 2702 or 2703 Transmission Control
Two terminal consoles (see below)

The two terminal consoles are used for system communication. One
serves as a command console from which the operator issues special
system commands. The other serves as a communications console for
recording system error messages and activity. The 0S/360 system
operator's console is used to initialize CALL-0OS and may serve as the
communications console, thus reducing to one the number of terminal
consoles required. CALL-OS supports the following terminals:

e IBM 2741 Communications Terminal (Correspondence or EBCD)
e Teletype Units,* Type 33 or 35

Any of the above terminals can be used as a command console,
communications console, or a user terminal. No more than 255 terminals
(including the command and communications consoles) can be
simultaneously online with CALL-CS.

In addition to the devices named in the preceding text, the utilities
used for offline system support and maintenance require extra peripheral
equipment. Depending on the utilities to be used, the following may be
needed:

e One brinter output unit, 0S/360-supported, with 120 print positions
and graphics equivalent to the PN print arrangement

e One punched output unit (see 0S/360 minimum system requirements)

e One card input unit (see 0S/360 minimum system requirements)

® One 0S/360-supported magnetic tape unit (any model)
Any peripheral devices, in addition to those given above, will be
supported within the limits of 0S/360 support. Specifically, CALL-0OS
can use additional selector channels and any appropriate 2314 Direct
Access Storage Facility A or B Series configuration.

The relationships of hardware devices to CALL-0OS and 0S/360 are

depicted in Figure 19. Further details of system configuration can be
found in CALL-OS System Description Manual. '

*Trademark of the TELETYPE Corporation

73

MINIMUM STORAGE REQUIREMENTS

The minimum task area size required for use of CALL-0OS is 224K. This
allows a configuration of ten lines with BASIC and FORTRAN compilers and
an object program size of 52K. A typical BASIC language program of 300
statements could be expected to require 52K. Additional task area space
is required for use of the PL/I compiler or the CALL-OS Batch Interface
(COBI) facility, larger user programs, larger terminal networks, or
improved performance in a large network environment. For more
information, see "Core Storage Requirements” later in this section.

Card Reader 1052 Card Punch
Printer-Keyboard

os/j30
r Printer — | —]
| S — |
| i |
| (CALL-0S I }
! ! I
| 2314 Direct Access - _I |
Storage Facility,
I Model Al I |
| | |
- | moyzos ||

Ti
Control Unit

Modems

Modems or
Acoustical
Couplers

Remote

2741

The two types of user terminals shown Command and communications consoles
here represent two or more users. (one each) may be either 2741 or TTY.

Figure 19. CALL-OS system hardware configuration

DATA SET ALLOCATION

A primary consideration attending the installation of CALL-OS is a
well-planned distribution of disk storage allocation. Performance is
affected much more significantly by disk layout, and the availability of
a dedicated channel, than it is by disk storage capacity. The
minimization of disk seek time, made possible by judicious data set
allocation, is one of the keys to successful system installation.

CALL-OS data sets fall into two general categories: high usagqge,
which consist of the work/swap, overlay, and compiler data sets; and low

74

usage, which consist of the index, system group, and user group data
sets. High-usage data sets account for 70 to 80 percent of all disk
accesses. These particular data sets are referred to as "central
cylinder functions", because they should be placed physically in the
center of the disk pack, while the user program save area and all other
data sets are placed on either the inside or the outside of the pack.

Figure 20 illustrates the central cylinder concept as viewed from the
top of a disk pack. Allocation of high-usage data sets begins with
cylinder 100 and continues outward in either direction. For example,
cylinder 99 and cylinder 101, cylinder 98 and cylinder 102, and so on.

CENTRAL CYLINDER AREA
1. Work/Swap Area
2. Compilers
3. System Group
4. Overlay Modules

Cvlinder 100

¢l

7,

/

|

i
\\\“\\\»\\\\\\\\\\\\\

N

SN

B

$S
S

D

Figure 20. The central

R

7
%

—— “SAVE” AREAS

1. Index

2. Allocation Record

3. Equivalency Files

4. Catalogs

5. Directories

6. Program Files

7. Data Files

8. File Descriptor Records

gy ’
////////// L2

-

SPINDLE AREA
(Unused)

2 ////
””//////%/777’/?////

cylinder concept (top view)

The central cylinder functions contain six data sets, plus N
work/swap data sets where N is the number of packs assigned to CALL-0S.
The work/swap data sets should be allocated evenly across all packs.
Each communications line supported by the system requires one cylinder;

75

hence, the number of cylinders of work/swap allocated on each pack
should be the number of terminals divided by the number of packs.

The following tables indicate how the central cylinders should be
laid out as a function of the number of packs. The physical placement
of data sets within a group should also be as shown:

One Pack
(1) PLI
(2) PL2

(3) OVERLAY

(4) WORK/SWAP (physical center)
(5) BAsIC

(6) FORTRAN

(7) SYSGROUP

Two Packs

Pack #1 Pack #2

(1) BASIC (1) OVERLAY
(2) WORK/SWAP (2) WORK/SWAP
(3) PLI (3) SYSGROUP
(4) PL2 (4) FORTRAN

Three Packs

Pack #1 Pack #2 Pack #3

(1) WORK/SWAP (1) OVERLAY (1) FORTRAN
(2) PLI (2) WORK/SWAP (2) WORK/SWAP
(3) PL2 (3) BASIC (3) SYSGROUP

Four Packs

Pack #1 Pack #2 Pack #3
(1) BASIC (1) OVERLAY 1 WORK/SWAP
(2) WORK/SWAP (2) WORK/SWAP (2) PLI
(3) PL2
Pack #4

(1) SYSGROUP
(2) WORK/SWAP
(3) FORTRAN

Five Packs

Pack #1 Pack #2 Pack #3

(1 BASIC (1) OVERLAY (1) FORTRAN
(2) WORK/SWAP (2) WORK/SWAP (2) WORK/SWAP
Pack #u4 Pack #5

(1) SYSGROUP (1) PLI

(2) WORK/SWAP (2) PL2

(3) WORK/SWAP

76

Six Packs

Pack #1 Pack #2 Pack #3

(1) BASIC (1) OVERLAY (1) FORTRAN
{2) WORK/SWAP (2) WORK/SWAP (2) WORK/SWAP
Pack #4 Pack #5 Pack #6

(1) SYSGROUP (1) WORK/SWAP (1) PLI

(2) WORK/SWAP (2) PL2

(3) WORK/SWAP

For any configuration above six packs, the first six packs appear as
above; all other packs contain only work/swap data sets.

The preceding configurations were arrived at by ranking the data sets
as to number of I/0 requests, most frequent to least frequent, as
follows:

(1) WORK/SWAP
(2) OVERLAY
(3) BASIC

(4) SYSGROUP
(5) FORTRAN
(6) PLI

(7) PL2

If an installation finds that its data set usage is other than that
described, appropriate substitutions should be made. Some conditions
which affect the priority sequence are:

1. Making resident all high-usage overlays (for example, modules
required for run, list, load, and save functions. This greatly
reduces the usage of the overlay data set, shifting it from
second place to probably last place in the priority list.

2. Having the majority of the terminal users with a language
orientation other than that given in the priority sequence
(BASIC, FORTRAN, and then PL/I). For example, some installations
may have most terminal users using only FORTRAN, in which case
the FORTRAN data set would shift from fifth position to third
position.

The foregoing discussion assumes dedicated packs, even though
dedication is not required. If a user installation chooses not to have
dedicated packs, then the high activity data sets should be placed on
packs with relatively little other activity.

The placement of data sets is important only as a function of the

number of users. As the number of users increases, the data base should
be spread over more volumes.

CORE STORAGE REQUIREMENTS

One approach to system configuration is to determine what other tasks
are to be run concurrently with the CALL-OS application, how much core
is available for a task area, and the nature of the CALL-OS jobs to be
performed. After a decision is made regarding those modules which
should be resident, it is possible to determine the number of
communications lines that could be brought up during system
initialization; this determination is based on the amount of storage
remaining in the CALL-OS task area. Another approach is to commence

77

with those CALL-0S jobs which are to be run with acceptable response
times, and the number of terminals required to be supported, and then
determine the task area size necessary to accomplish these objectives.
The rest of this section describes how to compute the task area size,
the way storage is allocated within the task area, module residency
considerations, and hierarchy support considerations. The section ends
with several examples of core requirements.

COMPUTING TASK AREA SIZE

As an aid in arriving at the desireable task area size, an analysis
of the core requirements for the CALL-OS system configuration desired
should be made. The core requirements are divided into four catagories:

e Basic fixed core requirement, which is that storage required for the
CALL-0S nucleus; the actual amount required depends on whether COBI
is used

e Variable core requirements, which depend on those items that vary
from system to system; for example, the number of lines, buffers,
the types of terminals, and, if COBI is used, the number of
scannable data sets and the volumes on which they reside

e Optional core requirements, which depend on the particular system
configuration chosen; for example, the number of modules made
resident, the compilers used, and the size of the user program area

® 0S/360 core requirements, which consist of the core needed by 0S/360
routines and control blocks

Once the CALL-OS task area size has been computed, it is then
possible to determine the amount of storage available for batch
processing. All core requirements given are decimal approximations.

e Basic Fixed Core Requirements (RTOS1) - Choose one

CALL-0S Nucleus 56,700
CALL-0S/COBI Nucleus 65,600

e Variable Core Requirements

Each Line 512
Each Input Buffer (Pot) 24
(Four pots for each line with a

minimum of 60 pots)
Each Output Buffer 256
(One buffer for each set of three lines

with a minimum of five buffers)

Each User or System Group Data Set 132
Each Terminal Type 120+4L
(L=number of lines of this type)

Each Translate Table 512
(One table for each terminal type)

Each Work/Swap Data Set 120

e Additional Variable Core Requirements for COBI

Volume Identification Table 12*M
(M=number of entries in

the table)
Enqueues/Dequeué Table 4*(N+4)

(N=nunber of users scanning data sets
at any one time; the default is
one for every ten lines with
a minimum of two users)

78

DCB plus its Work Area 160*N
(N is as previously defined)
DEBs - in MFT only 100*N
(N is as previously defined)

e Optional Core Requirements

Overlay Buffer (see note)

With COBI 7,260

Without COBI 5,700
Couwpiler (choose largest in system)

BASIC 82,000

FORTRAN 88,000

PL/I 106,000
Sort Buffer 14,400
User Program Area (choose one)

Minimum size Pmin

(Pmin=size of largest object

program)
Medium size - this allows an 1.6Pmax

old job area of
6Y,632 bytes
(Pmax=114,688 bytes)
Maximum size 3Pmax

Note: The size of the overlay buffer is based on the size of
the largest potentially nonresident module. If COBI
is used, the largest potentially nonresident module
is M#SUB; if COBI is not used, the largest module is
MHCAT (see "Module Residency Considerations"). If the
module is resident, the overlay buffer size required
decreases. However, the total core required by the
resident modules must be added to the task area size.

e Operating System Core Requirements

ABEND 6,000 - MVT
(To ensure complete dumps) 8,000 - MFT
Subpools 6,000

ALLOCATION OF STORAGE WITHIN THE TASK AREA

The CALL-OS task area core is allocated by the initialization
program. First, the resident modules, buffers, and the compiler area
are allocated. The remainder of the task area is used for the user
program area, which is divided between the new job area and the old job
area. The following algorithm is used.

e The first 56 units (one unit = 2048 bytes), or 114,688 bytes, are
allocated to the new job area.

e The next 34 units, or 69,632 bytes, are allocated to the old job
area.

e The next 44 units are allocated, one to each of the two subareas,
until the old job area reaches 56 units.

e Space is then given to the new job area until it reaches 112 units.

Sizes of the new and o0ld job areas are printed on the 0S/360 system
operator's console when the initialization process is completed.

After the new job area reaches 112 units, any storage left in the
task area remains unused by CALL-OS. Therefore, for efficient use of

79

storage within the entire system, it is important that the task area
size be assigned accurately.

MODULE RESIDENCY CONSIDERATIONS

To provide flexibility in the configuration of core storage used by
CALL-0S, certain modules used by the system can be made either resident
or nonresident. The residency option is controlled by the RESMODS and
OVLY DD statements. The RESMODS DD statement specifies a data set
containing a list of those modules which are to be made resident during
the current system run. Module names which can appear in this list and
their approximate sizes are:

Modules Size (Dec. Bytes)
M#ABSUB 1280 (see note)
M#ACCT 700

M#CANCL 2100 (see note)
M#CAT 5700

M#CBST 7240 (see note)
M#CCBA 400

M#CCCO 900 (see note)
M#CCDA 400

M#CCDI 1500

M#CCME 400

M#CCOF 1200

M#CCRE 4700

M#CCST 1000

M#CCTE 2000

M#CCUS 600

M#CCva 1500

M#CCWA 600

M#DIR 1600

M#ECHO 500

M#EDIT 2600

M#ESCN 3100

M#HELP 200

M#IJCL 700 (see note)
M#ISCAN 6300 (see note)
M#ISUB 4600 (see mote)
M#JCL 6100 (see note)
M#LDRD 600

M#LIB 1600

M#LIST 500

M#LOAD 500

M#LOG 2000

M#MREM 3100

M#MWSC 1800

M#NAME 200

M#NOTFY 1100 (see note)
M#OBJR 700

M#PASS 700

M#RDSO 1200

M#RUN 800

M#SAVE 500

M#SCAN 6500 (see note)
M#SCR 3600 (see note)
M#SORT 1300

M#STAT 600

M#STOR 1700

M#SUB 7260 (see note)
M#TIME 800

M#WEAV 600

M#WID 400

80

/(» N

M#WRSO 1600

THTTYTAB 512
T#27CTAB 512
T#2TETAB 512

Note: This is a COBI module and should not be made resident if COBI
is not to be used in this session of CALL-OS.

Four members of SYS1.PROCLIB are included with the system which can
be used to provide a variety of resident configurations. The functions
of these members are:

RTOSALL

All modules are made resident. (Actual list specifies
ALLRES.) For an all-resident system which is desired
to be loaded into LCS, ALLRES(1) may be specified.

RTOSNONE All potentially nonresident modules are made

nonresident. (Actual list specifies NONRES.)

RTOSLLRS

The modules associated with the load, list, run, and
save functions are made resident. These modules are
M#CAT, M#DIR, M#LDRD, M#LIST, M#LOAD, M#RDSO, M#RUN,
M#SAVE, M#SORT, and M#WRSO.

RTOSUSER All modules are made resident except for those
modules associated with- -operator commands (that is,

modules whose names begin with M#CC).

If a module is to be made nonresident, it is read from the JOBLIB
data set during system initialization and rewritten into the overlay
data set for later retrieval by the system executive. If the OVLY DD
statement is present, but no RESMODS DD statement is provided, a
nonresident system is assumed. If no OVLY DD statement is provided, a
totally resident system is assumed.

The members listed provide a certain amount of flexibility in trading
space and time. Finally, note that the size of the overlay buffer is
based on the size of the largest module to be nonresident. If all
modules are resident, no overlay buffer is allocated.

LCS AND HIERARCHY SUPPORT CONSIDERATIONS

0S/360 Hierarchy support may be used to place portions of CALL-0OS in
the IBM 2361 Large Capacity Storage (LCS). This support is implemented
in three areas, as follows:

1. The linkage editor can be employed to spread the various parts of
the system executive into the two hierarchies provided. For a
description of this process, refer to the publication IBM
System/360 Operating System: Linkage Editor and Loader.

2. To place modules which are potentially nonresident in hierarchy
(H-1) storage, the module name in the RESMODS list can be
followed by a hierarchy indicator in parentheses. Thus,
M#LOAD(1) would cause MH#LOAD to be placed in hierarchy 1.
M#LOAD(0) can also be coded for hierarchy zero, but a zero value
is automatically assumed if no indicator is present. Note that
even when no OVLY DD statement is provided, the RESMODS data set
is still read (since a totally resident system is assumed) to
ensure the processing of any hierarchy indicators.

3. With the LCSRES parameter in the startup deck, any or all of the

nine dynamic areas of core storage obtained by CALL-0S during
system initialization can be placed in hierarchy 1. See the

81

description of the LCSRES parameter in the section "Initializing
the system."

The following points should be carefully considered when hierarchy
options are used:

1. No attempt is made by the system to obtain core from another
hierarchy when no core remains in the specified hierarchy.

2. Error messages printed by the system indicate the system
component for which storage allocation has failed and the
initialization process has stopped.

3. It is anticipated that the user may have to try various task area
sizes before he obtains the exact configuration desired.

4. To run CALL-OS in either an MFT partition or an MVT region which .
is defined entirely in H-1 storage, no LCS options should be
specified, since requests for H=<0 storage in such a task area are
filled from the H-1 storage available.

No general statements may be made regarding the levels of performance
attained when various system components are placed in hierarchy 1. It
is assumed that the user employing this support has carefully studied
both his own response requirements and the functions of the various
CALL-0OS system components, and that, furthermore, his selection of
portions of the system for placement in H-1 storage is based on such a
study. Hierarchy support is provided so that users planning to operate
with such a configuration can easily place selected components in
hierarchy 1 without being required to modify CALL-OS.

EXAMPLES OF CORE REQUIREMENTS

This subsection contains examples of core requirements for several
CALL-0S systems. The system configurations are not meant to be typical
systems, but were chosen for their value as examples. The figures used
are those given in the preceding subsections.

Example 1

This example shows the small CALL-OS configuration with a task area
size of approximately 219K. This system supports ten lines, one
terminal type, the BASIC and FORTRAN compilers, and the minimum user
program area size. The core requirements are as follows:

Fixed Core Requirement 56,700
10 Lines 5,120
60 Input Buffers 1,440
4 Output Buffers 1,280
1 User Group Data Set 132
1 System Group Data Set 132
1 Terminal Type 160
1 Translate Table 512
1 Work/Swap Data Set 120
Overlay Buffer 5,700
BASIC and FORTRAN Compilers 88,000
User Program Area

{(minimum size) 53,248
Operating System Core Requirements 12,000
TOTAL 224,544

82

Example 2

The CALL-0S system in this example supports 25 lines, one terminal
program area size. The

type, all three compilers, and the medium user

core requirements are as follows:

Example 3

Fixed Core Requirement
25 Lines

100 Input Buffers

9 Output Buffers

User Group Data Sets
System Group Data Set
Terminal Type
Translate Table

1 Work/Swap Data Set
Overlay Buffer

BASIC, FORTRAN, and PL/I Compilers

- - N

56,700
12,800
2,400
2,304
264
132
220
512
120
5,700
106,000

User Program Area (112K program size,

medium size)
Operating System Core Requirements
TOTAL

182,400

12,000
381,552

The CALL-OS system in this example supports 60 lines, three terminal
types, all three compilers, and a user program area size of 2Pmax. In
addition, the modules for the load, list, run, and save functions are

made resident.

Example 4

Fixed Core Requirement

60 Lines

240 Input Buffers

20 output Buffers

5 User Group Data Sets

2 System Group Data Sets

3 Terminal Types

3 Translate Tables

2 Works/Swap Data Sets

Overlay Buffer

Resident load, list, save, and run
functions

BASIC, FORTRAN, and PL/I Compilers

Sort Buffer

User Program Area (2Pmax)

Operating System Core Requirements

TOTAL

The core requirements are as follows:

56,700
30,720
5,760
5,120
660
264
600
1,536
240
4,700

14,200
106,000
14,400
229,376

_12,000

482,276

Note: Since M#CAT is to be made resident, the size of the
overlay buffer decreases to the size of the next .
largest nonresident module, M#CCRE.

The CALL-OS system in this example uses the COBI facility under MVT
and supports 100 lines, three terminal types, all three compilers, and

the maximum user program area size.
table has a maximum of ten entries.

The COBI volume identification
(Note that the number of entries is

not necessarily the number of scannable data set volumes mounted for

this session;

rather, this number must be the maximum number of such

volumes mounted for this or amy other previous session.) The number of
users permitted to scan data sets at any one time is estimated as one

per ten lines, or in this example, ten.

the load, list, save, and run functions are made resident.
requirements are as_ follows:

In addition, the modules for

The core

83

Fixed Core Requirement 65,600

100 Lines 51,200
400 Input Buffers 9,600
34 Output Buffers 8,704
10 User Group Data Sets 1,320
2 System Group Data Sets 264
3 Terminal Types 760
3 Translate Tables 1,536
4 WorkssSwap Data Sets 480
Volume Identification Table (M=10) 120
Enqueue/Dequeue Table (N=10) 56
DCB plus Work Area (N=10) 1,600
Overlay Buffer 7,260
Resident load, list, save, and run

functions 14,200
BASIC, FORTRAN, and PL/I compilers 106,000
Sort Buffer 14,400
User Program Area(3Pmax, maximum size) 344,064
Operating System Core Requirements 12,000
TOTAL 639,164

SUMMARY OF PERFORMANCE CONSIDERATIONS

The following is a list, in order of relative importance, of
suggestions that will improve system performance. The items concerning
disk channel and data set attributes are important only in relationship
to the amount of background work activity.

6.

7.

10.
11.
12.
13.

14.

84

Make CALL-OS the highest-priority task area.
Allocate enough core so that the user program area is at least 180K.

Make resident the modules that control the run, load, list, and
save functions.

Allocate disk channels so that the CALL-0S task area has a
dedicated channel.

Plan swap, overlay, and compiler data sets (central cylinder
function) in the physical center of the packs, and distribute
them evenly over the number of drives available.

Allocate a sort buffer.

Increase the number of 256-byte buffers if queues seem to occur
regularly (examine *REPORT output)

Place the user group data sets on either side of the central
cylinder functions, and distribute them evenly over the number of
drives available.

Allocate two dedicated channels with data sets appropriately
distributed.

Allocate enough core so that the user program area is 336K.
Make resident all modules that process user commands.

Make all modules resident.

Allocate more dedicated channels.

If COBI is not being used, adjust the background time-slice

algorithm to give 100% to CALL-OS. This is done with the *BATCH
command, as described in the publication CALL-0S Operator's Manual.

BUILDING THE SYSTEM

The process of building a system with which to run CALL-0S may
require an 0S/360 system generation, as well as the execution of certain
programs which actually build the CALL-OS system. This section
summarizes the system generation requirements, as they apply to CALL-0S,
and describes in detail the actual CALL-0OS system build process.

Note: 1If COBI is to be used and a new 0S/360 system is to be generated,
the user should read "Modification of the IEEVLNKT Load Module"
in the section "CALL-OS Batch Interface Facility". The modified
load module may be incorporated into the system during its
generation.

0S/360 SYSTEM GENERATION REQUIREMENTS AND CONSIDERATIONS

This subsection explains the operands that must be included in the
system generation macro instructions when an operating system is
generated for the support of CALL-0S. Also mentioned are those operands
which constitute a basic requirement for an operating system regardless
of CALL-0S, but whose values should be considered in the light of CALL-
O0S. Only those macro instructions and operands directly related to
CALL-0S are mentioned. For other macro instructions and operands
required for operating system generation, see IBM System/360 Operating
System: System Generation.

CTRLPROG MACRO INSTRUCTION

The MAXIO operand in the CTRLPROG macro instruction represents the
maximum number of I/0 operations that can be simultaneously processed by
the operating system. IOS support for terminals and the 2314 or 2319
storage facility is required by the operating system to support CALL-OS.
A recommended minimum value for this parameter should be N+N/10, where N
is the number of lines supported, plus one for every four direct access
devices on the systemn.

Note: The value specified in the MAXIO operand determines the number of
request elements (RQEs) generated in the 0S/360 operating system.
If this number is too small, it is possible to exhaust the RQE
queue, thereby causing unpredictable system errors.

With an MFT system, the amount of storage allocated to the system
queue area is specified in the SYSQUE parameter. If COBI is to be used
with CALL-0S, an additional amount must be specified in this parameter
sufficient to allow two subtasks, as well as the normal system queue
area requirements.

Because CALL-OS performs its own time slicing operations, it cannot
be run in a task area for which time slicing has been specified.
Therefore, care must be taken to ensure that the TMSLICE parameter is
not specified either for the partition in which CALL-OS is run on an MFT
system or for the priority under which CALL-OS is run on an MVT system.

IOCONTRL MACRO INSTRUCTION
IOCONTRL identifies to the operating system the type of transmission

control unit (TCU) to be attached to a System/360 channel. Specify one
TIOCONTRL macro for each TCU to be operated under CALL-OS.

85

If the user wishes to specify an IBM 2702 TCU containing the 31-line
expansion feature, a separate IOCONTRL macro must be coded for each of

the two sets of lines.

IODEVICE MACRO INSTRUCTION

IODEVICE describes to the operating system the characteristics of an
input/output device and its operating system requirements. For CALL-OS,
IODEVICE identifies the type of terminal (IBM 2741 or TTY) that is

connected to each line.

The operands that are associated with this

macro, and which are pertinent to CALL-0S, are discussed below:

UNIT=type

ADDRESS=address

ADAPTER=type

SETADDR=value

Specifies the type of terminal that is to
communicate with the computer over the line
address given by the ADDRESS operand. Valid
parameters for terminals to be used with CALL-OS
are 2741 and TWX.

Specifies the three-digit address of the line
over which the type of terminal given in the UNIT
parameter is to communicate. Valid parameters
are within the range 000-6FF, inclusive.

Specifies the type of TCU terminal control and
terminal adapter associated with the line address
given in the ADDRESS parameter. Code one of the
following values:

IBM1 for an IBM 2741 Communications Terminal
communicating with an IBM 2702 or 2703 TCU
through an IBM Terminal Adapter, Type I, and
either (1) an appropriate data set, or (2) an
IBM line adapter.

TELE2 for a TWX, Type 33 or 35, communicating
with an IBM 2702 or 2703 TCU through a
Telegraph Terminal Control, Type II, and a
data set line adapter and an appropriate data
set.

Specifies which of the three set address (SAD)
commands is to be issued to the TCU (IBM 2702
only) for operations on the line specified by the
ADDRESS parameter. The SAD command selects the
appropriate line speed for the type of terminal
connected to the line. The association between
the specific command (SADZER, SADONE, or SADTWO)
and the corresponding line speed is established
by internal connection within the 2702. This is
accomplished by the customer engineer when the
2702 is installed. This operand must be coded if
the TCU to which the line is connected is an IBM
2702. When RPQ ES54838 is installed, the original
SAD command will continue to be specified (do not

" specify SAD 3).

RESMODS MACRO INSTRUCTION

The RESMODS macro instruction is used to add user-written routines,
in load module form, to the nucleus library (SYS1.NUCLEUS) to be
generated. Before these modules can be included in the nucleus library,
they must be members of a partitioned data set. Since the CALL-0OS Type
I SVC is added to the operating system nucleus at system build time, the

86

Py

user need not include the RESMODS macro instruction unless he plans to
include the Type I SVC from the CALL-0S load module library during a
subsequent system generation.

SCHEDULR MACRO INSTRUCTION

When COBI is used, the terminal user may transmit messages to the
05/360 system operator's console. If multiple console support is
included in the system, he may use routing codes with the messages.
This support is specified in the SCHEDULR and SECONSLE macro
instructions during system generation.

SUPRVSOR MACRO INSTRUCTION

For CALL-OS support, the SUPRVSOR macro instruction must specify
operands as follows:

The OPTIONS operand must specify PROTECT for both MFT and MVT
systems:

OPT IONS=PROTECT

The OPTIONS operand must specify ATTACH for MFT systems only:
OPTIONS=(ATTACH,PROTECT)

The TIMER operand must specify INTERVAL: TIMER=INTERVAL

The TRACE operand is not required for CALL-0OS. If the CALL-OS trace
option is desired, the operating system generation must include the
TRACE operand.

SVCTABLE MACRO INSTRUCTION

CALL-0S requires a Type I SVC routine. This routine is supplied as
part of the basic program material from the IBM Program Information
Department (PID), and is added to the System/360 Operating System during
the CALL-0S system build procedure. The operating system is prepared
for this SVC routine through the use of the SVCTABLE macro instruction.

UNITNAME MACRO INSTRUCTION

The UNITNAME macro instruction is used to assign a unique name to a
collection of I/0 devices assigned to specific addresses. The addresses
must be the same as those specified in the IODEVICE macro instruction.
Then this name can be used in the UNIT parameter of the appropriate DD
statement. For example, all the teletype terminals in a system could be
assigned to one named collection, all the 2741 correspondence to
another, and so on. Or, if an IBM System 370 Model 145 is being used
and 2319 devices are assigned to 2314, then all CALL-OS cataloged
procedures which assign data sets to 2314 storage devices will operate
without change.)

In addition, when COBI is used, it is recommended that the devices
upon which volumes with scannable output data sets will be mounted be
assigned to a device class with the UNITNAME macro. The name of this
class may then be referenced in the DD statements for the volumes.
Scannable output data sets must reside on 2314 or 2319 disk storage. It
is further recommended that SYSDA not be assigned to devices used for
scannable output; there may be difficulty in varying them offline at

87

CALL-0S completion time because 0S/360 system data sets may be placed
there.

CALL-OS SYSTEM BUILD

System build for CALL-0S follows a simple process. This process has
the following advantages:

e Minimizes operator intervention
e Reduces JCL and control statement requirements
e Facilitates the addition of CALL-0OS routines to 0S/360 libraries

The basis of the system build process is the CALL-OS system as released
by IBM.

SYSTEM RELEASE TAPES

When the CALL-0OS system is released, it may consist of up to a
maximum of four release tapes: one tape for the executive and utility
programs and one tape for each compiler requested by the installation.
Each release tape contains several unloaded data sets produced by the
0S/360 utility program IEHMOVE. These data sets contain source, macro
and load module libraries for the component, and, in the case of the
executive and utility release tape, two additional data sets contain
IBM-supplied JCL procedures and the changes applied to the previous
version, respectively.

The executive and utility release tape contains the following data
sets:

¢ RTOSPROC which contains the JCL procedures required to
build a system, create a data base, and
initialize COBI data sets, as well as standard
module residency lists

OSRTS.EXEC.MODLIB which contains, in load module form, all the
executive and utility modules necessary to run
the system

OSRTS.EXEC.MACLIB which contains the executive and utility macros

OSRTS.EXEC.SOURCE which contains the executive and utility source
modules

OSRIS.EXEC.CHANGE which contains the change cards applied to the
previous version of CALL-0S to obtain this (the
current) version of CALL-0S.

During the system build process, the procedure, macro, and load
module libraries are loaded from the release tape. When system build is
completed, the macro library and certain procedures may be deleted from
the system (see Step I). The source library does not have to be loaded
until updates are made to the system as described in the section
"Maintaining the System". The change data set does not have to be
loaded unless the installation has modified CALL-OS modules and wants to
see the changes applied to those modules (see "System Build
Considerations for an Installation-Modified System" at the end of this
section).

The release tape for each compiler selected by the installation
contains the following data sets:

88

® OSRTS.component.MODLIB
e OSRTS.component.SOURCE
® OSRTS.component.MACLIB

where component is a CALL-OS language name (BASIC, FORTRAN, or PLI).
During system build, only the load module library for the compiler is
loaded. The source and macro libraries are used to maintain the system
and do not need to be loaded until updates are to be made to the
compiler.

SYSTEM BUILD PROCESS SUMMARY

As illustrated in Fiqure 21, the system build process for a new
system may consist of the following steps:

Step I Execute the IEHMOVE utility to load the supplied
executive and utility libraries from the release tape to
a disk pack.

Step 1I Execute the IEHMOVE utility to load the supplied compiler
libraries.

Step III Execute the RTOSJOB1 procedure to accomplish the
following:

. Assemble the global table macro.

. Link-edit the CALL-0S nucleus with the assembled
global table.

. Relink-edit the 0S/360 nucleus with the CALL-0S
SVC.

. Link-edit the CALL-0S device-dependent error
routine into SYS1.SVCLIB.

Step IV Build the CALL-0S data base. At this point in the
process, the user can elect one of three options. He can
(1) establish a new data base to conform with CALL-OS
formats and structure, (2) rebuild an existing data base
or connect an existing data base to his system, or (3)
create and format a default data base. For option 1, see
the description of U#UTIL1 in the section “"Creating and
Maintaining the Data Base". Options 2 and 3 are discussed
under Step IV later in this subsection.

Step V If desired, execute the U#UTILS utility to create JCL
statements from the CALL-0S index. These statements form
the base for the startup deck used to initialize the
CALL-0S system.

Steps I through IV must be performed when a new CALL-OS system is
built. If an existing system is being modified, Steps I and III are
required, Step II is required only if a new version of a compiler used
in the system is released, and Step IV is required only if a data base
is to be built or recreated. Step V is optional during any system
build.

The following directions should be read thoroughly before beginning
actual machine operation to ensure that no prerequisite detail has been
overlooked. Ten disk cylinders must be available for an online JOBLIB,
one track in SYS1.PROCLIB for system build procedures, and one track in
SYS1.SVCLIB for the device-dependent error routine.

89

START
SYSTEM BUILD/

TAPE-TO-DISK
LOAD OF
EXECUTIVE &
STEPI UTILITIES
LIBRARIES

!

TAPE-TO-DISK
LOAD OF
STEP II COMPILER
LIBRARIES

!

BUILD
SYSTEM

'

BUILD
STEP IV CALL-0S
DATA BASE

l

GENERATE

STEP III

STEP V (optional) USERJCL

END SYSTEM
BUILD

Figure 21. The system build process fox a new system

90

STEP I - LOADING THE EXECUTIVE AND UTILITY LIBRARIES

< Prior to executing the RTOSJOB1 procedure in Step III, the user must
have satisfied the following requirements:

1. The library RTOSPROC must be merged with SYS1.PROCLIB. RTOSPROC
contains the procedures listed in Table 4.

2. The library OSRTS.EXEC.MODLIB must be loaded from tape to disk,
renamed to qualifier.JOBLIB, and cataloged (where qualifier is an
index level qualifier selected by the user).

- 3. The library OSRTS.EXEC.MACLIB must be loaded from tape to disk,
renamed to qualifier.MACLIB, and cataloged.

The IEHMOVE utility is used for all three steps. The following example
- shows the use of the utility to perform all Step I requirements:

//LOAD JOB -—-
//MOVE EXEC PGM=IEHMOVE
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=2314,DISP=0OLD,VOL=SER=scrvol
//DD1 DD UNIT=2314,DISP=0LD,VOL=SER=volid1
//DD2 DD UNIT=2314,DISP=0LD,VOL=SER=v0lid2
//TAPE1 DD UNIT=2400,DISP=(0OLD,PASS) ,VOL=SER=RTOSYS,
// LABEL=(,NL) ,DCB=(LRECL=80, BLKSIZE=800,
// RECFM=FB)
//SYSIN DD *
COPY PDS=RTOSPROC,T0O=2314=v01lid2, FROM=2400= (RTOSYS, 1),
FROMDD=TAPE1
COPY PDS=RTOSPROC,T0O=2314=volid1,FROM=2314=volid2,
~ RENAME=SYS 1.PROCLIB
N COPY PDS=0SRTS.EXEC.MODLIB,TO=2314=volid2,

FROM=2400=(RTOSYS, 2) , FROMDD=TAPE1,
RENAME=qualifier.JOBLIB

COPY PDS=0SRTS.EXEC.MACLIB,TO=2314=volid2,
FROM=2400=(RTOSYS,3) , FROMDD=TAPE1,
RENAME=qualifier.MACLIB

M MM MM

VA
//BLDXCAT EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=A
/7/DD1 DD DISP=0OLD,VOL=SER=volid2,UNIT=2314
//SYSIN DD *
BLDX INDEX=qualifier

CATLG DSNAME=qualifier.JOBLIB,VOL=2314=volid2
CATLG DSNAME=qualifier.MACLIB,VOL=2314=v01lid2
/%

91

Table 4.

Contents of RTOSPROC

- -

r 1
| When Used | Members | Use |
S U ——— e |
| System Build | RTOSJOB1 | Procedure to build CALL-0S |
| (See note) | | |
I ¥ } : --=-|
Data Base	RTOSDB01	Procedure to build one-pack
Build		default data base
(See note)	RTOSDB02	Procedure to build two-pack
		default data base
	RTOSDB0O3	Procedure to build three-pack
		default data base
[====mmmmmmm e ¥ $ - --=-=-=-		
{COBI	COBIBLD	Procedure to initialize COBI
Initialization]		data sets and link edit the COBI
i]	reader and writer modules into	
		SYS1.LINKLIB (see the section
		on COBI)
	DIBCBINC	Used in second step of COBIBLD
		procedure
S A P --==-==		
System	RTOSALL	Module 1list for totally resident
Initialization		system
Module	RTOSLLRS	Module list for load, list, run,
Residency		save functions
Lists] RTOSNONE	Module list for nonresident	
		system .
	RTOSUSER	Module list for user terminal
		commands
- =emmmes |
| Note: The system and data base build procedures may be |
| deleted from SYS1.PROCLIB after CALL-OS has been |
| built. |
L _— ———— - - 4

where

qualifier is the index level qualifier chosen by the user for
CALL-0OS data sets; the default is OSRTS

scrvol is the volume identification of a scratch volume

volid1 is the volume identification of volume on which
SYS1.PROCLIB resides

volid2 is the volume identification of volume on which the

user desires qualifier.JOBLIB and qualifier.MACLIB to
reside

92

STEP 1II - LOADING THE COMPILER LIBRARIES

The optional compiler libraries OSRTS.PLI.MODLIB, OSRTS.BASIC.MODLIB,
and OSRTS.FORTRAN.MODLIB must be merged with qualifier.JOBLIB (see the
example that follows).

The following example illustrates the copying of the load module
library for all three language compilers:

//COMPUPDT JOB

//MOVE
//SYSPRINT
//SYSUT1
//DD1
//BASTAPE
/7/
//FORTAPE
//
//PLITAPE
/7
//SYSIN
COPY

COPY

COPY

/*

where

qualifier

volid1l

scrvol

EXEC PGM=IEHMOVE

DD SYSOUT=A

DD DISP=OLD,UNIT=2314,VOL=SER=scrvol

DD DISP=0OLD,UNIT=2314,VOL=SER=volid1l

DD DISP=0OLD,UNIT=2400,VOL=SER=BASIC,LABEL=(,NL),
DCB=(LRECL=80,BLKSIZE=800,RECFM=FB)

DD DISP=OLD,UNIT=2400,VOL=SER=FORT,LABEL=(,NL),
DCB=(LRECL=80,BLKSIZE=800,RECFM=FB)

DD DISP=0OLD,UNIT=2400,VOL=SER=PLI,LABEL=(,NL),
DCB=(LRECL=80,BLKSIZE=800,RECFM=FB)

DD *

PDS=0SRTS.BASIC.MODLIB,TO=2314=volid1,

PDS=0SRTS . FORTRAN.MODLIB,TO=2314=volid1,

PDS=OSRTS.PLI.MODLIB,TO=2314=volid1,

FROM=2400=(BASIC, 1) , FROMDD=BASTAPE,
RENAME=qualifier.JOBLIB

FROM=2400=(FORT, 1) , FROMDD=FORTAPE,
RENAME=qualifier.JOBLIB

M XM M

FROM=2400=(PLI, 1) ,FROMDD=PLITAPE,
RENAME=qualifier.JOBLIB

is the index level qualifier chosen by the user for
CALL-0S data sets; the default is OSRTS

is the volume identification of volume on which
qualifier.JOBLIB resides

is the volume identification of a scratch volume

Note: The DD statements for compilers which are not to be supported
must be deleted when this step is executed.

93

STEP III - LINK EDITING THE SYSTEM

Step III of the system build process link edits the system. For
convenience, a cataloged procedure has been provided to perform this

link edit.

This procedure is named RTOSJOB1 and resides in SYS1.PROCLIB

after completion of Step I of the system build process. The procedure
consists of the following steps:

e Step S01

e Step S02

Step S03

Step S04

Step S05

Causes execution of U#UTIL2, a CALL-OS utility program
which produces assembler and linkage editor control
statements used in the subsequent steps of the procedure

Causes the assembly of the CALL-0S global table macro for
the purpose of making user-selected options available to
the CALL-0S system

Causes the link edit of the CALL-0S nucleus with the
previously-assembled global table

Causes the link edit of an 0S/360 nucleus with the CALL-

0S Type I SVC routine

Causes the link edit of the device-dependent error
routine into the system SVC library (SY¥S1.SVCLIB)

Figure 22 shows the JCL statements in the procedure. The following
JCL is required to execute the procedure:

//SYSBLD
//JOBLIB

/7
//

where

qualifier

JOB -

DD DSN=qualifier.JOBLIB,DISP=0LD

EXEC RTOSJOB1,QA=qualifier,
PARM.SO1='user-specified options'

is the index level qualifier for CALL-OS data sets
chosen by the user. The default is OSRTS and is used
in examples in other portions of this manual.

user-specified indicates information passed to the CALL-0S U#UTIL2

options

94

utility program. These options are used in the
building of control statements and are described in
greater detail in the following text.

“ /,4;:,«.; ..11;\

Figure 22.

//RTOSJOB1
/77501
//PROCCCO03
/7
//PROCCCO4
/77
//PROCCCO8
//
//GTABOPTS
/77
//SYSUDUMP
//SYSPRINT
/7502

7/
//SYSUT1
//SYSUT2
7/SYSUT3
//SYSLIB
//SYSIN
//SYSGO
//SYSPUNCH
//SYSPRINT
77503

7/
//SYSLIB
//SYSLMOD
//SYSLIN
//SYSUT1
//SYSPRINT
/77504

/77
//SYSLIB
//SYSLMOD
//SYSLIN
//SYSUT1
//SYSPRINT
/77505

7/
//SYSLIB
//SYSLMOD
//SYSLIN
//SYSUT1
//SYSPRINT

PROC
EXEC
DD

DD

DD

DD

DD
DD
EXEC

DD
DD
DD
DD
DD
DD
DD
DD
EXEC

DD
DD
DD
DD
DD
EXEC

DD
DD
DD
DD
DD
EXEC

DD
DD
DD
DD
DD

QA=OSRTS

PGM=U#UTIL2,COND=(0,NE) *#* UPDATE CONTROL CARDS *
UNIT=SYSDA,DISP=(,PASS) ,DSN=£CCO03,

SPACE=(TRK, 1) ,DCB=(BLKSIZE=80,LRECL=80, RECFM=FB)
UNIT=SYSDA,DISP=(,PASS) ,DSN=£CCO4,

SPACE=(TRK, 1) ,DCB=(BLKSIZE=80, LRECL=80, RECFM=FB)
UNIT=SYSDA,DISP=(,PASS) ,DSN=£CCO08,

SPACE=(TRK, 1) ,DCB=(BLKSIZE=80,LRECL=80, RECFM=FB)
DSN=§GTABMAC,DISP=(,PASS) ,UNIT=SYSDA,
SPACE=(TRK, 1) ,DCB=(BLKSIZE=80, LRECL=80)

SYSOUT=A

SYSOUT=A

PGM=IEUASM,PARM=LOAD,REGION=80K, ** ASM GTAB **
COND=(0,NE)

UNIT=SYSDA,SPACE=(1700, (400,50))
UNIT=SYSDA,SPACE=(1700, (400,50))
UNIT=SYSDA,SPACE=(1700, €400,50))

DSN=§QA. .MACLIB, DISP=0LD
DSN=§GTABMAC,DISP=(OLD,DELETE)

DSN=§O0BJMOD, UNIT=SYSDA ,SPACE= (TRK, 4) ,DISP=(,PASS)
DUMMY

SYSOUT=A

PGM=IEWL,PARM="'XREF,LIST,LET,NCAL",

COND=(4,LT) ,REGION=96K ** L/E BASESYS *#*
DSN=§O0BJMOD,DISP= (OLD, DELETE)

DSN=&QA. .JOBLIB,DISP=(OLD,PASS)
DSN=§CCO4,DISP=(OLD,DELETE)
UNIT=SYSDA,SPACE=(1024, (200,20))

SYSOUT=A

PGM=IEWL, PARM="'XREF,LIST,LET,NCAL,DC,SCTIR',
COND=(4,LT) ,REGION=96K **L/E SVC **
DSN=§QA. .JOBLIB,DISP=(OLD,PASS)
DSN=SYS1.NUCLEUS, DISP=OLD
DSN=§CC03,DISP=(OLD,DELETE)
UNIT=SYSDA,SPACE=(1024, (200,20))

SYSOUT=A

PGM=IEWL,PARM="XREF,LIST,LET,NCAL"',

COND=(4,LT) ,REGION=96K ** L/E I/ORTN **
DSN=§0QA..JOBLIB,DISP=(OLD,PASS)
DSN=SYS1.SVCLIB,DISP=0OLD
DSN=§CC08,DISP=(OLD,DELETE)
UNIT=SYSDA,SPACE=(1024,(200,20))

SYSOUT=A

JCL statements in the RTOSJOB1 procedure

95

User-Specified Options

When the cataloged procedure is executed, the user supplies optional
information in the parameter field of the EXEC statement. These options
are used in the first step of the catalog procedure to produce the
control statements used in subsequent steps. The parameter field has
the following format:

PARM.S01="'SVC=nnn,NUC=(x,y) , ERRNO=mmm, TYPE=aaa,COBI=bbb"
where

nnn is the number assigned to the CALL-0S SVC during system
generation and must be in the range 200 through 255. If this
parameter is omitted, the default is 255.

be identifies the 0S/360 nucleus (IEANUCOx) to which the CALL-0S
SVC load module is to be added and must be in the range 1
through 9. If this parameter is omitted, the default is 1.

y identifies the 05/360 nucleus (IEANUCOy) to be created and
must be in the range 1 through 9. If this parameter is
omitted, the default is 2.

mmm is the number to be assigned to the device-dependent error
routine and must be in the range 220 through 229. 1If this
parameter is omitted, the default is 229.

aaa specifies the type of the 0S/360 system under which CALL-0S
is to be run and must be either MFT or MVT. If this parameter
is omitted, the default is MFT.

bbb specifies whether or not the COBI modules are to be part of
the CALL-OS system and must be either YES or NO. If this
parameter is omitted, the default is NO.

Note: If the NUC Parameter is specified, both the x and y parameters
must be supplied.

Table 5 shows the parameter defaults for RTOSJOBI1.

The following example shows the specification of user-specified
options for use with the cataloged procedure:

PARM.S01="'3vVC=246,NU0C=(,1,6) ,ERRNO=227"

This results in an SVC number of 246 being assigned to the CALL-OS Type
I SVC and a number of 227 being assigned to the error routine. The
0S/360 nucleus to be used as input is IEANUCO1 and the resulting nucleus
is to be named IEANUC06. The 0S/360 system is an MFT system and the
CALL-0S system is not to contain COBI.

96

—

=~

Table 5. Parameter defaults for the RTOSJOB1 procedure

[T ———— B T - -

Default

|
i
|
1
|
|
|
|
]
|
|
|
|
|
|
!
t
|
|
|
|
]
|
|
|
|
|
1
1
|
t
|
|
[}
|
|
1
|
|
|
|
b
1
|
|
-+ —
1
|
t
]
|
]
|
1
|
|
|
4
|
[
|
|
|
i
|

| COBI |Specifies whether or not the
| resident COBI modules are to be
|]included in the CALL-OS nucleus

NO

|
ERRNO |Specifies number to be assigned 229
| to the device-dependent error
| routine
|
NUC |Specifies both the old 0S/360
|nucleus, to which the CALL-0S SVC
jis to be added, and the new 0S/360

|
I
|
|
|
|
|
| 0old nucleus: 1
|
|
|nucleus, to be created |
|
|
|
|
|
|
|
!
|MFT
I

new nucleus: 2

QA |Specifies the high level index OSRTS
|qualifier to be used for CALL-0S
|data sets

svcC |Specifies the number to be 255

| assigned to the CALL-0OS Type I SVC

|
TYPE | Specifies the type of 0S/360 system
junder which CALL-0S is to be run

o e e e e e o e = ——— " ————————————————— - -

e e s e . S S o s S . S s S G . S b, S e e, G, SO, s, a2

Subsequent Processing

The first step of the cataloged procedure is the execution of the
CALL-0S utility program U#UTIL2. This utility builds four sets of
statements which are placed in temporary sequential data sets. Three of
these sets are used as control statement input to the linkage editor to
produce the 0S/360 nucleus containing the CALL-0S Type I SVC, the CALL-
0S nucleus, and the CALL-0S terminal device-dependent error routine.

The fourth set of statements is used as source input to the 0S/360
assembler to produce the CALL-0S global table. The user supplies the
information necessary to build these statements with the parameters
described previously.

05/360 Nucleus - Linkage Editor Control Statements: The first set of
statements produced by U#UTIL2 is placed in the temporary data set
defined by the PROCCCO03 DD statement. These statements are the linkage
editor control statements used to link edit the CALL-OS SVC into either
an 0S/360 MFT or an 0S/360 MVT nucleus. The statements produced depend
on the 0S/360 system specified and are as follows:

INSERT IEAANIPO For MFT
INSERT IEAATIHOO
CHANGE IGC255(IGCnnn)

INCLUDE SYSLIB(IGC255)
INCLUDE SYSLMOD (IEANUCOX)

NAME IEANUCOy (R)
or
INSERT IEAANIPO For MVT
INSERT IEAQFX00
CHANGE IGC255(IGCnnn)

INCLUDE SYSLIB(IGC255V)
INCLUDE SYSLMOD (IEANUCOx)
NAME IEANUCOy (R)

97

where

nnn is either the SVC number supplied with the SVC parameter
or a default of 255

X is either the from nucleus number supplied with the
NUC parameter or a default of 1

y is either the to nucleus number supplied with the NUC
parameter or a default of 2

This data set is used as input to a step which link edits an existing
copy of the 0S/7360 nucleus into the same or new copy. During this link
edit, the CALL-OS Type I SVC is included in the 0S/360 nucleus and given
the number specified by the user.

CALL-0S Nucleus - Linkage Editor Control Statements: The second set of
statements produced by U#UTIL2 is placed in the temporary data set
defined by the PROCCCO4 DD statement. These statements are the linkage
editor control statements used to link edit the CALL-OS nucleus. The
statements produced depend on the 0S/360 system specified (MFT or MVT)
and whether COBI is used or not. The appropriate control statements are
as follows:

INCLUDE SYSLIB For MFT
INCLUDE SYSLMOD (C#CPID)
INCLUDE SYSLMOD (RTOS 1)
{ INCLUDE SYSLMOD (C#IOREQ, C#NOTFY, M#QIOR,M#CBIO, M#VTBL, S# INDXQ,

S#PARM, S#QNOT)]
ENTRY NHLINIT
NAME RTOS1(R)
or
INCLUDE SYSLIB For MVT

INCLUDE SYSLMOD (C#CPIDV)

INCLUDE SYSLMOD (RTOS 1)

[INCLUDE SYSLMOD (C#IOREQ,C#NOTFY, M#QIOR,M#CBIO, M#VTBL,S#INDXQ,
S#PARM, S#ONOT) 1

ENTRY NH#LINIT

NAME RTOS1(R)

The INCLUDE statement enclosed in brackets is present in the data set
only if COBI=YES is specified. This data set is used as input to the
step which link edits the CALL-OS nucleus. This nucleus is tailored to
suit the needs of the installation as specified with parameter
information.

CALL-0OS Error Routine - Linkage Editor Control Statements: The third
set of control statements produced by U#UTIL2 is placed in the temporary
data set defined by the PROCCCO08 DD statement. These statements are the
linkage editor control statements used to link edit the CALL-0S device
dependent error routine. The statements produced assign the user-
specified number to the routine and place the routine in the SVC library
(SYS1.SVCLIB) . The control statements are as follows:

CHANGE IGEDUMMY (IGEOOnnn)
INCLUDE SYSLIB(IGEDUMMY)
NAME IGEOOnnn (R)

where

nnn is either the user-desired number assigned to the
device-dependent error routine or a default of 229.

98

Global Table Assembly Control Statements: The fourth set of statements

produced by U#UTIL2 is placed in the temporary data set defined by the
GTABOPTS DD statement. These statements are assembler source statements
used in the assembly of the CALL-OS global table macro. The statements
are as follows:

Z#GTAB CSECT=YES, SVC=nnn, ERRNO=mmm, OSTYPE=aaa, COBI=bbb
END
where
nnn is either the user-specified SVC number or a default of 255
mmm is either the user-specified error routine number or a

default of 229

aaa specifies the type of 0S/360 system, either MFT or MVT, with
a default of MFT

bbb specifies whether or not COBI is to be added to the systenm,
either YES or NO, with a default of NO

STEP IV - ESTABLISHING THE DATA BASE

To use the CALL-0S product, which includes the executive system,
language facilities, and offline utility programs, the customer must
establish his data base (directories, catalogs, file and program space,
etc.) to conform to CALL-OS formats and structure. In practice, the
customer's programming staff prepares the appropriate JCL to allocate
all necessary data sets, and to invoke the proper CALL-OS utilities to
format those allocated data sets. This is the way a system should be
installed if system performance and disk storage are to be properly
considered, but as a convenience, the system build package can create
and format for the customer a default data base on from one to three
completely dedicated packs. This provides the shortest path to
installation, but does not necessarily provide the best system
performance. The user should be cognizant of the data base philosophy,
before commencing data base build, if he does not accept one of the
default data bases.

System Build with Existing Data Base

If it should become necessary to rebuild the system, the CALL-0S
index and the 0S/360 catalog must be updated. As an example, assume
that a new release of CALL-OS takes place, and that the user does not
desire to make any changes to the existing data base. 1In this case, the
following steps should be taken:

1. Scratch and uncatalog the JOBLIB data set.

2. Scratch the CALL-0S members of SYS1.PROCLIB which were copied
into SYS1.PROCLIB during Step I of the previous sytem build (see
Table 1).

3. Run Steps I and II of system build to copy the release libraries
to disk, copy the new procedures into SYS1.PROCLIB, and copy the
language compilers into the JOBLIB.

4. Run Step III of system build to generate the new systemn.
5. Run program U#UTIL1 specifying the COMPILER function to replace
an old compiler with a new compiler supplied on the release tape.

The DD statement should specify DISP=OLD for each compiler. The
index is updated only with the length of the new compiler.

99

Should new space for a compiler be required, uncatalog and scratch
the existing space in step 1 above, and reallocate and catalog the new
area in step 5 above.

The means by which to reestablish the index and/or to move the data
base are covered in the next examples.

Assuming that you are generating CALL-0S for the first time, but wish
to connect an existing data base which is to remain on the same pack(s)
but which is not cataloged (that is, new 0S/360 SYSGEN or generating a
unique 0S/360 and CALL-0S), the following steps may be followed:

1. Run steps I, II, and III of system build to generate CALL-OS.

2. Run U#UTIL1 for compilers, using previous compiler data sets
(DISP=0LD) to update the index and obtain the new versions of the
compilers.

Given the circumstances above, with the exception of operating the
data base on different packs, the following steps could be taken:

1. Run steps I, II, and III of system build to generate the system.

2. Run U#UTIL1 for all functions (that is, overlay, swap, system
group, user group, compiler), to allocate, format, and validate
space on the new packs, add the entries to the index data set,
and catalog the data sets.

3. Move the data base to the newly allocated space, using the copy
function of the 0S/360 utility IEHMOVE. The REORGANIZE function
of the data base utility DIBCADBU may also be used to move the
data set and regain purged space.

Specific customer requirements vary from installation to
installation; however, the examples and guidelines above should prove
helpful in solving the problems of system rebuild and/or using an
existing data base.

System Build with VDefault Data Base

Three default data base options are provided: one pack, two packs,
and three packs. The user provides volume identifications and the
number of lines to be supported. The packs should have been initialized
and be free of flagged tracks in the central cylinders. The VTOC for
these packs must reside on cylinder zero, and not extend past cylinder
zero, track 18. Absolute track allocation is used in these procedures.
Therefore, the packs may not have any space allocated before data base
build.

The central cylinders start at cylinder 81. To find the last central
cylinder (LCC) used, use the following formulas:

one_pack LCC=81+9+1lines supported
two packs pack 1 LCC=81+5+1lines on this pack
pack 2 LCC=81+4+lines on this pack

three packs pack 1 LCC=81+2+1lines on this pack
pack 2 LCC=81+2+1lines on this pack
pack 3 LCC=81+5+1lines on this pack

Note that if U#UTIL1 is not in SYS1.LINKLIB, a JOBLIB statement must

be inserted in the JCL pointing to the user library which contains
U#UTIL1.

100

For compiler runs of UH#UTIL1, a task area of 150K is required. For
MFT, the data base procedures require a minimum task area of 150K. For
MVT, the task area size is specified on the default data base
procedures.

Note that all language compilers supplied with the system are
allocated one cylinder of disk space during Step 4 of the default data
base build. In addition, an attempt is made to convert all supplied
compilers to fast-load-and-go format.

For each compiler not ordered with the system, and, therefore, not to
be supported in this data base, an error message is generated by the
utility U#UTIL1 during Step 4 of the default data base build. The
format of this message is as follows:

nnnnnn
***COMPILER - BAD BLDL ON COMPILER NAME

where
nnnnnn is the compiler name that could not be found in JOBLIB.
This message should be ignored for language compilers which are not

to be supported. However, any other messages encountered during this
step must be further investigated.

Default Data Base on One Pack

For one pack, punch and execute the following statements:

//DBO1 JOB -
// EXEC RTOSDBO01,VOL1=volid1,LINES 1=number,
/77 OA=qualifier
where
volid is the volume identification of disk pack on which
the data base is to be built.
number is the maximum number of lines to be supported (not
exceeding 99); this determines the number of
cylinders for work/swap space allocation.
qualifier is the index level qualifier chosen by the user for

CALL-0S data sets; the default is OSRTS.
These statements cause the RTOSDB0O1 procedure to be executed. This

procedure contains the JCL statements shown in Figure 23; it builds a
data base on one pack as shown in Figure 24.

101

Figure 23.

102

/77

//STEPO
//INDEX

/7

7/
//SYSPRINT
//STEP1
//INDEX
//SYSPRINT
//BARZZ700
/77

7/

//STEP2
//INDEX
//SYSPRINT
//0VLY

7/

//STEP3
//SYSPRINT
//INDEX
//SYSGRP00
7/

7/

PROC
EXEC
DD

DD
EXEC
DD
DD
DD

EXEC
DD
DD

EXEC

DD
DD

QA=0SRTS

PGM=U#UTIL3 ** FORMAT INDEX **
DSN=§QA. . INDEX,DISP=(,PASS),VOL=SER=§VOL1,
UNIT=2314,SPACE=(ABSTR, (1,19)),
DCB=(BLKSIZE=7294,LRECL=7294)

SYSOUT=A
PGM=U#UTIL1,PARM="USRGROUP"',COND=(0,NE)
DSN=€QA. . INDEX,DISP=(OLD,PASS)

SYSOUT=A
DSN=§QA..AAAZZZ00,VOL=SER=§VOL1,UNIT=2314,
DISP=(,PASS) ,SPACE=(ABSTR, (1600,20)),
DCB=DSORG=DA
PGM=U#UTIL1,PARM="OVERLAY',COND=(0,NE)
DSN=§QA. .INDEX,DISP=(OLD,PASS)

SYSOUT=A

DSN=§0QA. .OVLY,VOL=SER=§VOL1,UNIT=2314,
DISP=(,PASS) ,SPACE=(ABSTR, (20,1620))
PGM=U#UTIL1, PARM="SYSGROUP',COND=(0,NE)
SYSOUT=A

DSN=§&QA. . INDEX,DISP=(OLD,PASS)

DSN=§QA. .SYSGRP00, VOL=SER=§VOL1,UNIT=2314,
DISP=(,PASS) ,SPACE=(ABSTR, (80, 1640)),
DCB=DSORG=DA

JCL statements in RTOSDBO01 procedure (part 1 of 2)

//STEP4 EXEC
/77

//SYSPRINT DD
/7 INDEX DD
//LANG DD
//FORTRAN DD
/7

//PL2 DD
/77

//PLI DD
/77

//BASIC DD
7/

//STEPS EXEC
//SYSPRINT DD
//INDEX DD
//SWAPOO DD
7/

/7/STEP6 EXEC
/77

//

//SYSPRINT DD
//INDEX DD
//BAAZZ27Z01 DD
/77

//STEP7 EXEC
V4

/77

//SYSPRINT DD
//INDEX DD
//UGRP1 DD
/7 DD
//0VLAY DD
//SYSGRP DD
//COMP1 DD
//COMP2 DD
//COMP3 DD
//COMP4 DD
//SWAP DD
//SYSIN DD

Figure 23.

PGM=U#UTIL1, PARM="COMPILER',COND=(0,NE),
REGION=150K

SYSOUT=A

DSN=§QA. . INDEX,DISP=(OLD,PASS)
DSN=&QA. . JOBLIB, DISP=OLD

DSN=&QA. . FORTRAN, VOL=SER=§VOL 1, UNIT=2314,
DISP=(,PASS) ,SPACE=(ABSTR, (20, 1720))
DSN=EQA. .PL2, VOL=SER=§VOL1, UNIT=2314,
DISP=(,PASS),SPACE=(ABSTR, (20, 1740))
DSN=§QA. .PLI,VOL=SER=§VOL1,UNIT=2314,
DISP=(,PASS),SPACE=(ABSTR, (20,1760))
DSN=§QA..BASIC,VOL=SER=§VOL1,UNIT=2314,
DISP=(,PASS),SPACE=(ABSTR, (20, 1780))
PGM=U#UTIL1, PARM="'WORKSWAP"

SYSOUT=A

DSN=£QA. . INDEX,DISP=(OLD,PASS)

DSN=§QA. . SWAP00, VOL=SER=§VOL1, UNIT=2314,
DISP=(,PASS),SPACE=(CYL, §LINES1.)
PGM=U#UTIL1, PARM="'USRGROUP",

COND=((0,NE,STEP0), (0,NE,STEP1), (0,NE,STEP2),
(0,NE,STEP3), (0,NE,STEP5))

SYSOUT=A

DSN=§QA. . INDEX,DISP= (OLD,PASS)
DSN=EQA..AAAZZZ0 1, VOL=SER=§VOL1, UNIT=2314,
DISP=(,PASS),SPACE=(CYL, (10), ,MXIG) , DCB=DSORG=DA
PGM=IEHPROGM,

COND=((0,NE,STEP0), (0,NE,STEP1), (0,NE,STEP2),
(0,NE,STEP3), (0,NE,STEP5), (0, NE,STEP6))
SYSOUT=A

DSN=§QA. . INDEX,DISP=(OLD, CATLG)
DSN=#.STEP1.AAAZZ%00,DISP=(OLD,CATLG)
DSN=%.STEP6.AAAZZ%01,DISP=(OLD,CATLG)
DSN=#.STEP2.0VLY,DISP=(OLD,CATLG)
DSN=#.STEP3.SYSGRP00,DISP=(OLD,CATLG)
DSN=#%.STEP4.FORTRAN, DISP=(OLD,CATLG)
DSN=#%, STEP4.PL2,DISP=(OLD,CATLG)
DSN=%.STEP4.PLI,DISP=(OLD,CATLG)
DSN=#.STEP4.BASIC,DISP=(OLD,CATLG)
DSN=#.STEP5.SWAP00,DISP= (OLD, CATLG)

DUMMY

JCL statements in RTOSDB01 procedure (part 2 of 2)

103

CYL

90+LINEST |

Figure 24.

104

81

82

86

87
88
89

90

VOLUME I

VOLUME TABLE OF CONTENTS (VTOC)/CALL/-0S INDEX

USER GROUP 1 — First Data Set (OSRTS. AAAZZZ00)

OVERLAY MODULE (OSRTS.OVLY)

SYSTEMS GROUP DATA SET (OSRTS.SYSGRPO00)

CALL—-OS FORTRAN COMPILER (OSRTS.FORTRAN)

CALL—-OS PL/I COMPILER — Second Phase (OSRTS.PL2)

CALL—-OS PL/I COMPILER - First Phase (OSRTS.PL1)

CALL—-OS BASIC COMPILER (OSRTS.BASIC)

WORK/SWAP DATA SET (OSRTS.SWAPO00)

— e e — o — — — — — — — —— — — —— —— — — —— —— —— o— o]

USER GROUP 1 — Second Data Set (OSRTS.AAAZZZ01)

Default data base option 1 - single pack

Default Data Base on Two Packs

For two packs, punch and execute the following statements:

//DB02
/7
7/

where

volidi1
volid2

numl
num2

qualifier

RTOSDB02,VOL1=volid1,VOL2=volid2,LINES 1=numl,
LINES2=num2,QA=qualifier

is the volume identification of the packs on which
the data base is to be built

specify the total number (numl1 and num2) of lines
to be supported. Split the lines as evenly as
possible between the two packs;

for example, if 21 lines are to be supported,
then: LINES1=11,LINES2=10.

num1 may not exceed 103.
num2 may not exceed 104.

is the index level qualifier chosen by the user for
CALL-0S data sets; the default is OSRTS.

These statements cause the RTOSDB02 procedure to be executed. This
procedure contains the JCL statements shown in Figure 25; it builds a
data base on two packs as shown in Figure 26.

105

Figure 25.

106

/77

//STEPO
//INDEX

//

7/
//SYSPRINT
//STEP1

/7 INDEX
//SYSPRINT
//AAAMZZ00
7/

/7
//NAAZZZ00
7/

/7/

//STEP2
//SYSPRINT
//INDEX
//0VLY

7/

//STEP3
//SYSPRINT
//INDEX
//SYSGRP00
/7

7/

//STEP4

7/
//SYSPRINT
//INDEX
//LANG
//FORTRAN
/77

//PL2

/7

//PLI

/7/

//BASIC

7/

PROC
EXEC
DD

DD
EXEC
DD
DD
DD

DD

EXEC
DD
DD
DD
DD
DD
DD

DD

QA=O0OSRTS

PGM=U#UTIL3 *¥* FORMAT INDEX *%
DSN=&QA..INDEX,DISP=(,PASS) ,VOL=SER=§VOL1,
UNIT=2314,SPACE=(ABSTR, (1,19)),
DCB=(BLKSIZE=7294,LRECL=7294)

SYSOUT=A
PGM=U#UTIL1,PARM="USRGROUP"',COND=(0,NE)
DSN=§&QA. . INDEX,DISP=(OLD,PASS)

SYSOUT=A
DSN=§QA..AAAMZZ00,VOL=SER=§VOL1,UNIT=2314,
DISP=(,PASS) ,SPACE=(ABSTR, (1600,20)),
DCB=DSORG=DA
DSN=§QA..NAAZZZ00,VOL=SER=EVOL2,UNIT=2314,
DISP=(,PASS) ,SPACE=(ABSTR, (1600,20)),
DCB=DSORG=DA

PGM=U#UTIL1, PARM="OVERLAY"' , COND=(0,NE)
SYSOUT=A

DSN=§QA. . INDEX,DISP=(OLD,PASS)
DSN=§QA..OVLY,VOL=SER=§VOL2,UNIT=2314,
DISP=(,PASS) ,SPACE=(ABSTR, (20, 1620))
PGM=U#UTIL1,PARM="SYSGROUP',COND=(0,NE)
SYSOUT=A

DSN=&QA.. INDEX,DISP=(OLD,PASS)
DSN=EQA..SYSGRP00, VOL=SER=§VOL1,UNIT=2314,
DISP=(,PASS) ,SPACE=(ABSTR, (80,1620)),
DCB=DSORG=DA
PGM=U#UTIL1,PARM="'COMPILER',COND=(0,NE),
REGION=150K

SYSOUT=A

DSN=§QA. . INDEX,DISP=(OLD,PASS)

DSN=§QA. .JOBLIB,DISP=0OLD

DSN=§QA. .FORTRAN, VOL=SER=§VOL2,UNIT=2314,
DISP=(,PASS) ,SPACE=(ABSTR, (20,1640))
DSN=§QA. .PL2, VOL=SER=§VOL2, UNIT=2314,
DISP=(,PASS),SPACE=(ABSTR, (20,1660))
DSN=§QA. .PLI,VOL=SER=§VOL2,UNIT=2314,
DISP=(,PASS) ,SPACE=(ABSTR, (20,1680))
DSN=§QA. .BASIC,VOL=SER=§VOL1,UNIT=2314,
DISP=(,PASS) ,SPACE=(ABSTR, (20,1700))

JCL statements in the RTOSDB02 procedure (part 1 of 2)

//STEP5S
//SYSPRINT
/7 INDEX
L //SWAPO0
- Vo4
//SWAPO1
V4
//STEP6
Vo4
7/
//SYSPRINT
7/7INDEX
//BAAAMZZ01
/7
V4
//NARZ2201
V4
//STEP7
V4
V4
//SYSPRINT
//INDEX
//UGRP1
V4
//UGRP2
V4
//0VLAY
//SYSGRP
//COMP1
//COMP2
//COMP3
//COMPY4
e //SWAP
Vo4
//SYSIN

EXEC
DD
DD
DD

DD

EXEC

DD
DD
DD

DD

EXEC

DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD

PGM=U#UTIL1, PARM="WORKSWAP"

SYSOUT=A

DSN=§QA. .INDEX,DISP=(0OLD,PASS)

DSN=EQA. .SWAP00, VOL=SER=§VOL1,UNIT=2314,
DISP=(,PASS),SPACE=(CYL, §LINES1.)
DSN=§QA..SWAP01, VOL=SER=§VOL2,UNIT=2314,
DISP=(,PASS) ,SPACE=(CYL, §LINES2.)
PGM=U#UTIL1, PARM="USRGROUP"',
COND=((0,NE,STEPO), (0,NE,STEP1), (0,NE,STEP2),
(0,NE,STEP3), (0,NE,STEP5))

SYSOUT=A

DSN=§QA. . INDEX,DISP=(OLD,PASS)
DSN=§QA..AAAMZZ01,VOL=SER=§VOL1,UNIT=2314,
DISP=(,PAsSS),SPACE=(CYL, (10), ,MXIG),
DCB=DSORG=DA
DSN=§QA..NAAZZZ01,VOL=SER=§VOL2,UNIT=2314,
DISP=(,PASS),SPACE=(CYL, (10), ,MXIG) ,DCB=DSORG=DA
PGM=IEHPROGM,
COND=((0,NE, STEPO), (0,NE,STEP1), (0,NE,STEP2) ,
(0,NE,STEP3), (0,NE,STEPS5), (0,NE,STEP6))
SYSOUT=A

DSN=§QA. . INDEX,DISP=(OLD, CATLG)
DSN=#.STEP1.AAAMZ200,DISP=(old,CATLG)
DSN=#*.STEP6.AAAMZZ01,DISP=(OLD,CATLG)
DSN=#.STEP1.NAAZZZ00,DISP=(OLD,CATLG)
DSN=#*.STEP6.NAAZZ701,DISP=(0OLD,CATLG)
DSN=#%.STEP2.0VLY,DISP=(OLD,CATLG)
DSN=#.STEP3.SYSGRP00,DISP=(OLD,CATLG)
DSN=#%.STEP4.FORTRAN,DISP=(OLD,CATLG)
DSN=#%.STEP4.PL2,DISP=(OLD,CATLG)
DSN=*.STEP4.PLI,DISP=(OLD,CATLG)
DSN=#.STEP4.BASIC,DISP=(OLD,CATLG)
DSN=#*.STEP5.SWAP00,DISP=(OLD,CATLG)
DSN=#*.STEP5.SWAP01,DISP=(OLD,CATLG)

DUMMY

Figure 25. JCL statements in the RTOSDB02 procedure (part 2 of 2)

=N

107

VOLUME |
CYL

VOLUME TABLE OF CONTENTS (VTOC)/CALL—-0S INDEX

USER GROUP 1 — First Data Set (OSRTS.AAAMZZ00)

81

SYSTEMS GROUP DATA SET (OSRTS.SYSGRP00)
85

36 CALL-OS BASIC COMPILER (OSRTS.BASIC)

WORK/SWAP DATA SET (OSRTS.SWAP(0)

86 + LINES 1

e e e e e e e — — o— — — —— t— — —]

USER GROUP 1 — Second Data Set (OSRTS.AAAMZZ0])

Figure 26. Default data base option 2 - two packs (part 1 of 2)

108

i

CYL

VOLUME 2

VOLUME TABLE OF CONTENTS (VTOC)

81

USER GROUP | — First Data Set (OSRTS.NAAZZZ00)

82

OVERLAY MODULE (OSRTS.OVLY)

83

CALL—-OS FORTRAN COMPILER (OSRTS.FORTRAN)

84

CALL-OS PL/I COMPILER — Second Phase (OSRTS.PL2)

85

CALL-OS PL/I COMPILER — First Phase (OSRTS.PL1)

85 + LINES 2

WORK/SWAP DATA SET (OSRTS.SWAPO1)

—— v ——— — — — — — — — — — — — — — — —— — — o — — — o]

USER GROUP 1 — Second Data Set (OSRTS.NAAZZZO1)

Figure 26.

Default data base option 2 - two packs (part 2 of 2)

109

Default Data Base on Three Packs

For three packs, punch and execute the following statements:

//DB03 JOB
/77 EXEC
/77
//

where
volidi1l
volid2
volid3
numl

num2
num3

qualifier

These statements cause the RTOSDB03 procedure to be executed.

-

RTOSDB03,VOL1=volid1,VOL2=volid2,VOL3=volid3,
LINES1=numl,LINES2=num2, LINES3=num3,
QA=qualifier

is the volume identification of packs on which the
data base is to be built

specify the total number (num1, num2, and num3)
of lines to be supported.

evenly as possible across the packs;

for example, if 31 lines are to be supported,

then: LINES1=10, LINES2=10, LINES3=11.

num! may not
num2 may not
num3 may not

is the index
CALL-0S data

exceed 106.
exceed 106.
exceed 103.

Divide the lines as

level qualifier chosen by the user for

sets;

the default is OSRTS.

This

procedure contains the JCL statements shown in Figure 27; it builds a
data base on three packs as shown in Figure 28.

110

=N

/77 PROC
//STEPO EXEC
//INDEX DD

//

7/

//SYSPRINT DD
//STEP1 EXEC

//INDEX DD
//SYSPRINT DD
//AAAIZZ00 DD
7/

/77

//JARARZZ00 DD
7/

/7

//SAAZZ7Z00 DD
/77

/77

//STEP2 EXEC
//SYSPRINT DD
//INDEX DD
//0VLY DD
7/

//STEP3 EXEC
//SYSPRINT DD
//INDEX DD
//SYSGRP00 DD
7/

/77

//STEPY EXEC
//

//SYSPRINT DD
//INDEX DD

//LANG DD
//FORTRAN DD
7/
//PL2 DD
/77
//PLI DD
7/
//BASIC DD
/7

QA=0OSRTS

PGM=U#UTIL3 ** FORMAT INDEX
DSN=&QA..INDEX,DISP=(,PASS) ,VOL=SER=§VOL1,
UNIT=2314,SPACE=(ABSTR,(1,19)),
DCB=(BLKSIZE=7294,LRECL=7294)

SYSOUT=A

PGM=U#UTIL1, PARM="USRGROUP',COND=(0,NE)
DSN=§QA. . INDEX,DISP=(OLD,PASS)

SYSOUT=A
DSN=§QA..AAAIZZ00,VOL=SER=§VOL1,UNIT=2314,
DIsP=(,PASS) ,SPACE=(ABSTR, (1600,20)),
DCB=DSORG=DA
DSN=§QA..JAARZZ00,VOL=SER=§VOL2,UNIT=2314,
DISP=(,PASS) ,SPACE=(ABSTR, (1600,20)),
DCB=DSORG=DA
DSN=EQA..SAAZZZ00,VOL=SER=§VOL3,UNIT=2314,
DISP=(,PASS) ,SPACE=(ABSTR, (1600,20)),
DCB=DSORG=DA

PGM=U#UTIL1, PARM="OVERLAY',COND=(0,NE)
SYSOUT=A

DSN=§QA..INDEX,DISP=(OLD,PASS)
DSN=§QA..OVLY,VOL=SER=§VOL3,UNIT=2314,
DIsP=(,PASS) ,SPACE=(ABSTR, (20, 1620))
PGM=U#UTIL1, PARM="SYSGROUP"',COND=(0,NE)
SYSOUT=A

DSN=§QA. . INDEX,DISP=(OLD,PASS)
DSN=EQA..SYSGRP00,VOL=SER=§VOL3,UNIT=2314,
DISP=(,PASS) ,SPACE=(ABSTR, (80,1640)),
DCB=DSORG=DA

PGM=U#UTIL1, PARM="'COMPILER"',COND=(0,NE),
REGION=150K

SYSOUT=A

DSN=§QA. . INDEX,DISP=(OLD,PASS)

DSN=§6QA. .JOBLIB,DISP=0LD

DSN=§QA. . FORTRAN, VOL=SER=§VOL1,UNIT=2314,
DISP=(,PASS),SPACE=(ABSTR, (20, 1620))
DSN=§QA. .PL2, VOL=SER=§VOL2,UNIT=2314,
DIsP=(,PASS) ,SPACE=(ABSTR, (20,1620))
DSN=§QA..PLI,VOL=SER=§VOL2,UNIT=2314,
DIsSP=(,PASS) ,SPACE=(ABSTR, (20, 1640))
DSN=§QA..BASIC,VOL=SER=§VOL1,UNIT=2314,
DISP=(,PASS) ,SPACE=(ABSTR, (20,1640))

Figure 27. JCL statements in the RTOSDB03 procedure (part 1 of 2)

* %

1

Figure 27.

112

//STEPS
//SYSPRINT
//INDEX
//SWAPO0
/7/
//SWAPO1
/77
//SWAPO2
/77

//STEP6

77

7/
//SYSPRINT
/7 INDEX
//AAAIZZ01
7/

/77
//3ARARZZ01
7/

/77
//SARZ27Z01
7/

7/

//STEP7

/77

/77
//SYSPRINT
//INDEX
//UGRP1

7/

//UGRP2

/77

//UGRP3

//
//0VLAY
//SYSGRP0O
//COMP1
//COMP2
//COMP3
//COMPY4
//SWAP

7/

/77
//SYSIN

EXEC
DD
DD
DD

DD

EXEC

DD
DD
DD

DD

DD

PGM=U#UTIL1,PARM="WORKSWAP'

SYSOUT=A

DSN=§QA. . INDEX,DISP=(OLD,PASS)
DSN=§QA..SWAP00, VOL=SER=§VOL1, UNIT=2314,
DISP=(,PASS) ,SPACE=(CYL, §LINES1.)
DSN=§QA..SWAP01, VOL=SER=§VOL2,UNIT=2314,
DISP=(,PASS) ,SPACE=(CYL, §LINES2.)

DSN=§QA. .SWAP02, VOL=SER=§VOL3,UJIT=2314,
DISP=(,PASS) ,SPACE=(CYL, §LINES3.)
PGM=U#UTIL1, PARM="USRGROUP",

COND=((0, NE,STEPO), (0,NE,STEP1), (0,NE,STEP2),
(0,NE,STEP3), (0,NE,STEP5))

SYSOUT=A ’
DSN=§QA. . INDEX,DISP=(OLD,PASS)
DSN=§QA..AAAIZZ01,VOL=SER=§VOL1,UNIT=2314,
DISP=(,PASS) ,SPACE=(CYL, (10), ,MXIG),
DCB=DSORG=DA
DSN=§QA..JAARZZ01,VOL=SER=§VOL2,UNIT=2314,
D1spP=(,PASS) ,SPACE=(CYL, (10), ,MXIG),
DCB=DSORG=DA
DSN=§QA..SAAZZZ01,VOL=SER=§VOL3,UNIT=2314,
DIsP=(,PASS) ,SPACE=(CYL, (10), ,MXIG),
DCB=DSORG=DA

PGM=IEHPROGM,

COND=((0,NE,STEPO), (0,NE,STEP1), (0,NE,STEP2),
(0,NE,STEP3), (0,NE,STEPS) , (0,NE,STEP6))
SYSOUT=A

DSN=§QA. .INDEX,DISP=(OLD,CATLG)
DSN=#%.STEP1.AAAIZZ00,DISP=(OLD,CATLG)
DSN=#%.STEP6.AAAIZZ01,DISP=(0OLD,CATLG)
DSN=#%.STEP1.JAARZZ00,DISP=(OLD,CATLG)
DSN=#%.STEP6.JAARZZ01,DISP=(OLD,CATLG)
DSN=#*.STEP1.SAAZZ%Z00,DISP=(OLD,CATLG)
DSN=#.STEP6.SAAZZZ01,DISP=(OLD,CATLG)
DSN=#*.STEP2.0VLY,DISP=(OLD,CATLG)
DSN=#%.STEP3.SYSGRP00,DISP=(OLD,CATLG)
DSN=#*.STEP4.FORTRAN,DISP=(OLD,CATLG)

" DSN=#%,STEP4.PL2,DISP=(OLD,CATLG)

DSN=#*.STEP4.PLI,DISP=(OLD,CATLG)
DSN=%.STEP4.BASIC,DISP=(OLD,CATLG)
DSN=%_,STEPS .SWAP00,DISP=(0OLD,CATLG)
DSN=%*.STEP5.SWAPO1,DISP=(OLD,CATLG)
DSN=%.STEP5.SWAP02,DISP=(0OLD,CATLG)
DUMMY

JCL statements in the RTOSDB03 procedure (part 2 of 2)

CYL

VOLUME 1

VOLUME TABLE OF CONTENTS (VTOC)/CALL-O0S INDEX

81

USER GROUP | — First Data Set (OSRTS.AAAIZZ00)

82

CALL-OS BASIC COMPILER (OSRTS.BASIC)

83

CALL—-OS FORTRAN COMPILER (OSRTS.FORTRAN)

B4LNES I} — — — — — — — — — — — — — — — — — —

WORK/SWAP DATA SET (OSRTS.SWAPO0O0)

USER GROUP 1 — Second Data Set (OSRTS.AAAIZZ01)

Figure 28.

Default data base option 3 - three packs (part 1 of 3)

113

J
CYL VOLUME 2

VOLUME TABLE OF CONTENTS (VTOC)

USER GROUP 1 — First Data Set (OSRTS.JAARZZ00)

81

% CALL-OS PL/I COMPILER — Second Phase (OSRTS.PL2)

23 CALL—-OS PL/I COMPILER -- First Phase (OSRTS.PL1)

WORK/SWAP DATA SET (OSRTS.SWAPO1)

83+LINES2 | . . -

USER GROUP 1 — Second Data Set (OSRTS.JAARZZ01)

Figure 28. Default data base option 3 - three packs (part 2 of 3)

114

CYL VOLUME 3

1 VOLUME TABLE OF CONTENTS (VTOC)

USER GROUP | — First Data Set (OSRTS.SAAZZZ00)

81

82 OVERLAY MODULE (OSRTS.OVLY)

SYSTEMS GROUP DATA SET (OSRTS.SYSGRP0O0)
86

WORK/SWAP DATA SET (OSRTS.SWAPO02)

86 + LINES 3

USER GROUP 1 — Second Data Set (OSRTS.SAAZZZ01)

Figure 28. Default data base option 3 - three packs (part 3 of 3)

115

Restarting The Default Data Base

In the establishment of a default data base, certain conditions (such
as miscalculation of user requirements, abnormal termination, etc.) may
result in an incorrect definition of the data base and, furthermore,
require a restart of the default data base build procedure. To recover
from such a situation, the default data base procedures are restartable.

STEP V - PUNCHING THE STARTUP DECK (OPTIONAL)

This part of the system build process may be omitted if the startup
deck has been prepared in some other way. For example, if an existing
deck is used or the deck is punched by hand. The utility is U#UTIL5,
which uses the information in the index to create the deck. The
following JCL is required:

//SYSBLD3 JOB -

//JOBLIB DD DSN=0OSRTS.JOBLIB,DISP=SHR
//STEP EXEC PGM=U#UTILS

//INDEX DD DSN=0OSRTS.INDEX,DISP=0LD
//CARD DD SYSOUT=B

//SYSABEND DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

For an example of U#UTILS output, see the section "Initializing the
System. "

SYSTEM BUILD CONSIDERATIONS FOR AN INSTALLATION-MODIFIED SYSTEM

If an installation has modified CALL-0OS modules, it may want to
examine the changes made to the previous IBM version of CALL-0OS to
produce the current version. The change data set on the executive and
utility release tape contains the changes to those modules which were
not completely rewritten. This data set is loaded from tape to disk in
the same way the source and macro libraries are loaded. If desired, the
IEHMOVE control statements to load the change data set may be added to
Step I of system build.

Once loaded, the change data set becomes a partitioned data set. The
member named INFO contains the names of the new modules added to the
current version, as well as the names of the modules from the previous
version which were completely rewritten. The rest of the members
contain the IEBUPDTE change cards that were applied to modules which
were modified, one member for each modified module.

The following JCL can be used to print member INFO:

//PRINT JOB
/7 EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=0SRTS.EXEC.CHANGE (INFO) ,DISP=0LD,
// UNIT=2314,VOL=SER=volid
//SYSUT2 DD SYSOUT=A
//SYSIN DD *
PRINT TYPORG=PS,MAXFLDS=1
RECORD FIELD=(80)
/%
where
volid is the volume serial number of the volume which contains the

change data set

116

This same JCL, with minor modifications, may be used to punch out the
change cards for a module. These modifications are:

1. On the SYSUT1 DD statement, change the member name from INFO to
the name of the module

2. On the SYSUT2 DD statement, change SYSOUT=A to SYSOUT=B

3. On the first utility control statement, change PRINT to PUNCH

117

INITIALIZING THE SYSTEM

It has already been pointed out that system build refers to the
initial establishment of CALL-0OS to be run under the control of 0S/360.
System initialization is that portion of CALL-OS which tailors the CALL-
0S time-sharing system to meet the user's run-time requirements. This
function is carried out immediately after 0S/360 gives control to the
CALL-0S job, and just before the enabling of user terminals for online
operations.

SYSTEM INITIALIZATION

The CALL-OS system operates as a task under control of the 0S/360
system, and as such, is entered into the 0S/360 system as part of the
job stream. The CALL-OS job is defined by the installation system
programmer in the form of a startup deck, which causes the CALL-OS
system to be initialized and put into operation. CALL-0S initialization
determines the system environment required to support CALL-0S at a
particular installation. The system environment consists of the
execution characteristics desired and the data set configuration
required for the current session.

The execution characteristics affect total system performance and
control the functions available during this session of CALL-0S. These
characteristics are specified by initialization options in the parameter
field of the EXEC statement in the startup deck. These options specify
the number of buffers in the system, the logical line numbers for the
system consoles, the maximum size of new data files, the time slice
values assigned to new and old jobs as well as compilers, which portions
of the system are to reside in hierarchy storage, and COBI operating
information. During initialization of CALL-0S, the parameters are used
to tailor the system for execution during this session only. The
execution characteristics of the system may be altered each time the
system is initialized.

The data set configuration provides the disk space required for
system operation and determines the number of user groups supported for
the current session. The entire configuration is defined by the DD
statements in the startup deck. Required statements define the index,
the system group data sets, the work/swap data sets, and if COBI is
used, the COBI storage requirements as well. Other DD statements
determine the type of terminals supported, the number of lines to be
enabled, the user groups to be allowed access to the system, the
compilers to be used, and the modules to be resident for this session.
By varying the optional DD statements, a variety of system
configurations and available facilities are possible.

The rest of this section describes the startup deck in detail.

STARTUP DECK

The startup deck to be used to initiate CALL-0OS may be punched either
by hand or by using the U#UTIL5 utility. If the utility is used, there
must be at least one qualifier in the data set names, and the following
modifications must be made to the statements in the output deck:

1. The JOB statement must be completed or replaced.

118

T
Ay,

The EXEC statement must be completed with the appropriate
parameter information.

For more than one data set qualifier, the JOBLIB and INDEX DD
statements must be corrected.

The TWX, T2741, and T2741E DD statements must be supplied to
define the line configuration.

Any DD statements not desired should be removed (for example, the
DD statements for the alternate cluster).

If COBI is to be used, DD statements must be supplied to define
the 057360 system job queue, COBI index, JCL data set, and the
input data sets; in addition, if scanning is to be permitted, one
or more volumes for scannable data sets must be defined.

Figure 29 shows the JCL statements that may be used in a CALL-0S
startup deck. In the figure, required information on each statement is
shown in uppercase letters and, along with special characters, must ke
punched as shown. Optional information is shown in lowercase letters
and is supplied in accordance with the system to be initialized. The
following sections contain detailed descriptions of the parameter
information which may be supplied on the EXEC statement and the JCL
statements in the startup deck.

Note:

CALL-0S monitors its own time sharing and should not be run under
0S/360 time sharing facilities. If, however, CALL-OS is
initialized either in a time sharing partition for MFT or under a
time sharing priority for MVT, an error message is issued and
initialization terminates.

119

//CALLOS JOB MSGLEVEL=1,CLASS=b

//JOBLIB DD DSN=0SRTS.JOBLIB,DISP=SHR

//CALL EXEC PGM=RTOS 1,ROLL=(NO,NO) , PARM=(option1,
/77 option2,etc')

//SYSABEND DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//INDEX DD DSN=0OSRTS.INDEX, DISP=SHR

//RESMODS DD DSN=SYS 1.PROCLIB (membername) ,DISP=SHR
//0VLY DD DSN=0OSRTS.OVLY,DISP=0OLD

//BASIC DD DSN=0OSRTS.BASIC,DISP=0LD

//FORTRAN DD DSN=0OSRTS. FORTRAN,DISP=0OLD

//PLI DD DSN=OSRTS.PLI,DISP=0LD

//PL2 DD DSN=0OSRTS.PL2,DISP=0OLD

//SWAPnn DD DSN=OSRTS .SWAPnn, DISP=0OLD
//SYSGRPnn DD DSN=0OSRTS.SYSGRPnn, DISP=OLD
//aaabbbnn DD DSN=0OSRTS.aaabbbnn, DISP=0LD
//7yyyzzzn DD DSN=0OSRTS.yyyzzznn,DISP=0LD

//TWX DD UNIT=(generic name or unit address)
//T2741 DD UNIT=(generic name or unit address)
//T2741E DD UNIT=(generic name or unit address)
//SYSJ0BQ DD DSN=SYS1.SYSJOBQE,DISP=SHR

//CBNDX DD DSN=0OSRTS .CBNDX,DISP=0LD

//CBJCL DD DSN=0SRTS.CBJCL,DISP=0OLD
//CBSYSINA DD DSN=0OSRTS.CBSYSINA,DISP=SHR
//CBSYSINB DD DSN=0SRTS.CBSYSINB,DISP=SHR
//SCANXX DD VOL=SER=yyyyyy,DISP=SHR,UNIT=2314
//SYSIN DD *

Insert parameter information here; this information and the SYSIN
DD statement are required only when more than 100 characters of
parameter information are specified.

/%

Figure 29. JCL statements present in a CALL-<OS startup deck

DESCRIPTION OF INITIALIZATION PARAMETERS

The parameter field on the EXEC statement and/or the SYSIN DD
statement allows the user to specify a number of options available for
execution. The options are divided into two groups: overall system
options, which apply to the entire system, and additional options, which
are used when the COBI facility is used. Table 6 shows the defaults for
the system and COBI options in alphabetical order; those parameters not
listed have no default.

It may be necessary to exceed the 100-character limitation on the
length of this field. Under such circumstances, the additional
parameter information may be included by using the SYSIN DD statement.
Parameter information may be supplied with either or both methods, as
long as no more than 400 characters are supplied altogether.

120

5?}\

Table 6. Parameter defaults for RTOS1

r
|

|ACTIME

ALOCTYPE

CBCLASS

8
=
0
(e}
=4

COMTSL

DFLINK

DSPACE

IPBUFS

OPBUFS

MAXDCB

2 3
€ £
=B

s
-
=
H
[}
=

e
[=
2
H
w
-

SHRTSL

Parameter | Use

_—_d—————————— -——— -

—— s o . 2 o e 2 e - —— b - - -

Default

|Specifies the time interval which
|is to elapse between accounting
| checkpoints

|

}

|

|

|

|
|Specifies whether the space |
|allocation for user-defined |
|scannable output data sets created |
| by COBI jobs is in tracks or |
|cylinders |
| |
|Specifies the output class for |
| the JCL and unscannable SYSOUT |
|data sets for COBI jobs |
|

|

|

|Sspecifies the logical line number
| for the communications console

Logical line 2

| Specifies the time slice allotted |BASIC: one second
|to each compiler or compiler phase |FORTRAN: two secs.
| | PLI,PL2: twoO secs.
|

|Specifies the maximum number of] 100 half tracks
|half tracks allowed for a data file|

| |

| sSpecifies the space allocation for |One for primary and
|]user-defined scannable data sets |one for secondary

| created by COBI jobs | if ALOCTYPE=CYL;

| | ten otherwise

|Specifies the number of pots to be |Four pots per line

|allocated for each line |with a minimum of
| |60 total

|

|]Specifies the total number of One for every three
| 256-byte buffers to be allocated |1lines with a mini-~
| mum of five total
|

|Specifies the number of users |One for every ten
|permitted to scan data sets at |lines with a mini-
|the same time |mum of two total

|

|specifies the output class to be Class A

|used to return COBI JCL and data
|sets to 0S/360 for processing

|Specifies the maximum number of
| jobs to be submitted before the
|COBI input data sets are switched

Ten jobs

|Specifies the number of minutes 15 minutes
| to elapse before the COBI input
|data sets are switched

|

|Specifies the time slice allotted
|to new and old jobs

|
|
|
|Specifies the increment of time

| used to share time between user
| porogram area jobs and background

New jobs: three
secs.

01ld jobs: ten
secs.

One second

I S S S— — — — d— —— T — T — — —— S—— — f—— — — —t— — — — S— — — — — — — — — — — T— o, — G s S S B G, S S, P s, S s, SO s, . thmne, St i, S g, S, s, 5]

121

Table 6. Parameter defaults for RTOS1 (continued)

S === 1
| Parameter | Use | Default |
T i T T
| SYSCON |specifies the logical line number |Primary: 1line 1 |
| | for one or both command consoles |Alternate: 1line 0 |
I I I I
UNITNM	specifies the direct access unit 12314	
	name to be used for scannable	
	output data sets	
L -——— - -— - -

Overall System Options

These options apply to the overall operation of the entire system.
If any change is to be made in the specifications, the system must be
reinitialized. The options which may be specified and their associated
parameters are:

The logical line number for the communication console - COMCON
parameter

The logical line number for one or both command consoles - SYSCON
parameter

The time slice allotted to new and old jobs - RUNTSL parameter

The increment of time used to share time between user program area
jobs and background processing - SHRTSL parameter

The time slice alloted to each compiler or compiler phase - COMTSL

The time interval to elapse between accounting checkpoints - ACTIME
parameter

The portions of the CALL-OS system which are to be loaded into
hierarchy storage - LSCRES parameter

The maximum number of half tracks allowed for a data file - DFLINK
parameter

The total number of 256-byte buffers to be allocated - OPBUFS
parameter

The number of 24-byte buffers (pots) to be allocated for each line -
IPBUFS parameter

The absence of the sort buffer - NOSORT parameter

The absence of CALL-OS trace table entries - NOTRACE parameter

Appropriate defaults are assigned when a parameter is omitted. The
parameters, their formats, and the defaults are described in the
following text in alphabetical order by parameter.

ACTIME=nnn User accounting information is updated on disk

122

whenever a user initiates or terminates a terminal
session. In addition, periodic checkpoints are taken
during the terminal session to avoid loss of billing
data in the event of a system failure. The number of
minutes between checkpoints is specified with the
ACTIME parameter, where nnn must be an integer. The
default is 30 minutes between checkpoints.

i,

P

COMCON=nnn

COMTSL~ (nnn, 1name)

DFLINK=nnn

IPBUFS=nnn

LCSRES=aaaaaaaa

This is used to enter the communications console
logical line number. The default is logical line
number 2.

COMCON=0 signifies that no communications console is
to be allocated, and that CALL-OS error messages are
to be printed on the 0S/360 system operator's
console.

(A logical line number is defined as the order in
which terminals dedicated to CALL-0S are assigned a
UTT. See also TWX, T2741, and T2741E DD statement
descriptions.)

Each compiler or compiler phase in the CALL-0S system
has a default time slice associated with it. To
override these values, one COMTSL parameter must be
included for each value to be modified,

where

nnn represents the new time slice value

lname indicates the name of the compiler or
compiler phase, and must be BASIC,
FORTRAN, PLI, or PL2

The minimum time slice for any compiler is one
second; the maximum is ten seconds.

Note that for PL/I, an additional COMTSL parameter
must be specified for the second phase. The default
values provided with the system are one second for
BASIC and three seconds each for FORTRAN, PLI, and
PL2. These times are the times recommended for the
IBM System/360 Model 50 and should be modified if
another CPU is used. For example, on a Model 65 and
above, possible values are one second for all
compilers and compiler phases.

Each time a user either creates a new data file or
updates an old data file, he may optionally specify
the number of half tracks (links) he wishes to
associate with his file. The DFLINK parameter
determines the maximum number of links which can be
requested. The nnn value may range from 4 to 100,
inclusive. The default is 100 links.

Specifies the number of 24-byte buffers (pots) to be
allocated for each terminal line. The default is
four buffers per terminal line with a minimum total
of 60 buffers. If the total number of buffers in the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>