
-- -- --===::;:-

l
w

--
------------. Application Program

CALL - OS

Executive and Utilities

Program Description Manual

Program Number 360A-CX-42X

This publication describes the facilities
provided by CALL-OS to installation personnel
who are responsible for the selection,
evaluation, and implementation of the system .•
The intended audience includes systems
engineers, installation programmers, marketing
representatives, and customer systems personnel.

CALL-OS is a terminal-oriented, time sharing
system designed to function under the control of
the IBM System/360 Operating system with either
of two options: Multiprogramming with a Fixed
Number of Tasks (MFT), or Multiprogramming with
a Variable Number of Tasks (MVT). From the
terminal user standpoint, the CALL-OS service
environment approximates that of a dedicated,
in-house, data processing installation.

Note: The CALL/360-0S system has been renamed
the CALL-OS system. Thus, documentation
of Version 2 of the CALL/360-0S system
refers to the system as CALL-OS.

GH20-0786-3

Terminal Equivalency

Terminals which are equivalent to those explicitly supported may also
function satisfactorily. The customer is responsible for establishing
equivalency. IBM assumes no responsibility for the impact that any
.changes to the IBM-supplied products or programs may have on such
terminals .•

Fourth Edition (March 1972)

This edition, GH20-0786-3, is a major revision obsoleting GH20-0786-2 .•
Significant changes have been made throughout this edition and it should
be reviewed in its entirety.

This edition reflects Version 2, Modification Level O, of the CALL-OS
time sharing system and all subsequent versions and modifications until
otherwise indicated in new editions or Technical Newsletters.

Changes are continually being made to the specifications contained
herein. Therefore, before using this publication, consult the latest
system/360 SRL Newsletter (GN20-0360) for the editions that are
applicable and current..

copies of this and other IBM publications can be obtained through IBM
branch offices.

A form has been provided at the back of this publication for reader
comments. If this form has been removed, address comments to IBM,
Technical Publications Department, 1133 Westchester Avenue, White
Plains, New York, 10604.;.

~ International Business Machines Corporation 1971, 1972

PREFACE

This publication describes the facilities provided by CALL-OS and
discusses the concepts and techniques underlying their use.. It is
intended as a reference guide for systems engineers, installation
programmers, marketing representatives, and customer systems personnel
in the implementation of the CALL-OS time sharing system..

This publication contains nine major sections. The first section
summarizes concepts needed for a better understanding of the system and
describes the organization of the system; the next two sections describe
the CALL-OS data base and the CALL-OS Batch Interface facility (COB!),
respectively. The first two sections should be read by anyone not
familiar with the CALL-OS system; the section on COB! should be read by
anyone who desires to use this facility .•

The next five sections contain the information necessary to design,
build, and initialize a CALL-OS system, create and maintain the data
base, and maintain the system itself,. These sections are procedure­
oriented and intended for use by experienced personnel .•

The last section summarizes diagnostic aids available to the system
programmer. An additional source of diagnostic information is the
publication CALL-OS Operator's Manual, which contains all system
messages and ABEND codes, as well as explanations.. Finally, appendices
provide additional information~

To derive maximum benefit from this manual, the user should have a
working knowledge of the following support publications:

CALL-OS System Description Manual CGH20-0673)

CALL-OS Terminal Operations Manual (GH20-0787)

CALL-OS Operator's Manual (GH20-0788}

IBM system/360 Operating System: Concepts and Facilities (GC28-6535)

IBM system/360 Operating system: Job Control Language (GC28-6539)

IBM System/360 Operating system: System Generation (GC28-6554)

IBM system/360 Operating System: Linkage Editor and Loader (GC28-6538)

Page of GHZ0-0786-3
Revised July 31, 1972
By TNL GN20-2780

CONTENTS

Introduction to the CALL-OS System.
System Concepts

Persona1 computing.
User Identification and System security •
Time Sharing and Time S1icing •
Job swapping.
Trivia1 and Nontrivia1 Responses.
Data Base •
Libraries •

User Libraries .•
System Libraries.

Resident and Nonresident Modu1es.
Use of storage Within the CALL-OS Task Area

Executive Area.
User Program Area •

system organization
Executive •

contro1 Program Interrupt Dispatcher.
Resource Managers ,.
User Program Area Manager • •
Termina1 and Disk I/O Hand1ers.

Command Languages
Termina1 Command Language •
Operator Command Language •

Processing Programs •
Compi1ers
Uti1ity Programs.

CALL-OS Batch Interface (COBI) Facility •

CALL-OS Data Base •
System Base •

Compiler Data Sets.
Work/Swap Data Sets

Work Area
Swap Area

overlay Data set.
User Base •

System Group.
User Group.
structure of Each User Base Data Set.

Allocation Record •
Equivalency File.
Catalog •
Directory .File.
Program and Data Files.
File Descriptor Record.
Summary •

Assigning user Numbers.
Using Clusters.

Index Data set.
Data Base and system Performance.

Limitation of Disk space.
P1anned Efficiency of Disk Arm Use.

Backup of the Data Base
Removing a user From the Data Base.

CALL-oS Batch Interface Facility.
Introduction.

COBI Concepts
Output Classes.
submittal of OS/360 Jobs.
Identifying COBI Jobs and Data sets

1
2
2
2
2
3
3
3
4
4
4

'• 5
5
5
5
6
9
9

10
11
13
13
14
14
15
15 '•

.. 16.1
17

18
18
18
18
19
21
22
22
23
23
25
26
26
27
27
28
29
29
31
31
33
35
35
35
35
36

(

37
37
38
38
39
39

\~

/

Definition of SYSOUT Data Sets.. • • • • • • • • .• •
COBI Device Class .• • • • • • • • • •

Sample COBI Job and Its Processing.
Creating and submitting the Job •
COBI Processing After Submittal • •
OS/360 Processing •
Output Destinations and Final COtlI Processing •

COB! Data Sets •••
Index Data Set. •
JCL Data Set. .• .• • • ,. • • • • •
Input Data Sets • • • • • • • • •
Scannable Data Sets • • • • •

scannable output Data sets.
Scannable System Data Sets .•

Preparing to Use COBI • .• • • .• •
Modifying the IEEVLN~T Control Section. •

With an MFT system.. • • • • • • • ,. • •
With an MVT System. .• • • • • • • • • • • • • • •

Converting Cataloged Procedures •
JCL Requirements for DIBCONPR .•
Conversion Process. • • • • • .•
Conversion Example.. • • • • • •
Using the COBI Procedure Library. •

Supplying COBI Reader and Writer Procedures •
COB! Reader CDIBRDR) Procedures • • • • • •
COBI Writer CDIBWJ.'R) Procedure .••• , •••.•
Adding the COBI Procedures to the Gystem. .•

Initializing the COBI Data sets
Initialization Process •••.• ,. .•
Using the Cataloged Procedure • .• • .• .• .• •
Executing U#5INIT as a separate Program • • • •

Link Editing the COBI Reader and Writer Load Modules .•
Maintaining the COBI Data Sets. • ••••.•

. . .

U#5CBXPN - Expanding the COB! Index and JCL Data Set. ••••.••
JCL Requirements.. • • .• • • •
Example • • .• • • • • .• • • • .• ,.

U#5RINIT - Reinitializing the COBI Data Sets. • • .• •
JCL Requirements .• ,. • • • • • • •
Example • .. ,. • .• • ,. • • . • • .

U#5PURGE - Purging Unfinished Jobs from the COtlI Data Sets.
JCL Requirements.. • • .• .• • • .• .• .•
Example ,. • • • .• .• • • • • • • • •

Designing the System. •
System Configuration. • • • • • •

Minimum Machine Configuration
Minimum Storage Requirements.

Data set Allocation • • .• • • .• .• .• .• • .• •
Core Storage Requirements • • • •

Computing Task Area Size.. • •
Allocation of Storage Within the Task Area.
Module Residency Considerations • • •
LCS and Hierarchy support Considerations.
Examples of Core Requirements

Exampl,e 1 • • • • •
Example 2 • • • • •
Example 3 • • • • •
Example 4 • • • • •

summary of Performance Considerations

Building the System • • • • • • • .• • • • • • •
OS/360 System Generation Requirements and Considerations ••

CTRLPROG Macro Instruction.. • • .• .• •
IOCONTRL Macro Instruction.
IODEVICE Macro Instruction. •
RESMODS Macro Instruction • •
SCHEDULR Macro Instruction. •
SUPRVSOR Macro Instruction.

40
42
42
42
43
44
44
44
45
46
47
48
48
49
49
49
50
50
51
51
52
53
54
55
55
56
57
58
58
59
62
63
64
64
65
67
67
68
69
69
70
71

72
72
72
74
74
77
78
79
80
81
82
82
83
83
83
84

85
85
85
85
86
86
87
87

SVCTABLE Macro Instruction. 87
UNITNAME Macro Instruction. 87

CALL-OS System Build. • • ,. • .• • • • • 8 8
system Release Tapes. • • • • 88
system Build Process summary. • • .• • • • • • 89
Step I - Loading the Executive and Utility Libraries. • 91
Step II - Loading the Compiler Libraries. .• • • • • • • • 93
Step III - Link Editing the System. .• 94

User-Specified Options.. • • • .• • • .• .• 96
Subsequent Processing • • • .• • • • 97

Step IV - Establishing the Data Base. • 99
system Build with Existing Data Base. .• • • • • 99
System Build with Default Data Base • • 100
Default Data Base on One Pack .• .• .• • • • • .• .• • • • 101
Default Data Base on Two Packs.. • • 105
Defau.lt Data Base on Three Packs. • .• • • • 110
Restarting the Default Data Base. • 116

step v - Punching the Startup Deck (uptional) •• 116
System Build Considerations for an Installation-~odified System 116

Initializing the System .• • •
System Initialization • • • • •
Startup Deck. • ,. • • • .• .• •

Description of Initialization Parameters.
Overall System Options. • •
Additional COBI Options • • • • • .• .• •

Description of JCL Statements •
JOB Statement • • .• • • • • •
JOBLIB DD Statement • .•
EXEC Statement. • • • •
SYSABEND DD Statement • • • • •
SYSPRINT DD Statement
INDEX DD Statement. • .• • • • •
RESMODS DD Statement.
OVLY DD Statement • • •
BASIC, FORTRAN, PLI, and PL2 DD Statements.
SWAPnn DD Statement .• • •
SYSGRPnn.DD Statement ••
User Group DD Statements.
TWX, T2741, and T2741E DD Statements.
Additional DD Statements for COB! •
SYSIN DD Statement. • • • • •

Creating and Maintaining the Data Base.. .•
U#UTIL3 - Formatting the Index. • •
U#UTIL 1 - Building the Data Base. • • • • • .•

Compiler Data Sets. .•
Work/Swap Data Sets • •
overlay Data Set. • • • .• • • • •
System Group Data Gets ••••••
User Group Data Sets. • •

UTILX - Modifying the Index
JCL Statements .•
Detail Cards. • • .• • •
Output. .• • • .• • • • •

DIBCADBU - Maintaining the Data Base. •
Introduction. • • • • • • • •

Using the Data Base Utility
Ensuring File security •••

Control Statements for Execution.
Job Control Statements. • •
Utility Control Statements.

ACCOUNT Function. .• .• • • • •
Additional DD Statements. •
ACCOUNT Function Statement.
Accounting Options and Examples •

DELE'TE Function • • • • • •
Additional DD Statements. • .• .•

118
118

.• • 118

.• • 120
122
125
128

• • 129
129
129
129

• • 129
130

• • 130
130

.• • • 131
131
131
131
132
133
134

135
135
135

. •.• 136
- - •••• - 137

.• 138
138

• • 139
139
139
140
141

• 141
141

• 141
142
144
144
146
147

• • 148
•• 148

• •• - • - • 149
• .• • • • • 15 2

• 153

(-

DELETE Function Statement
Example • • • • .• .• • .• • .• .•

INSERT/REPLACE Function • • • • • .• •
Additional DD Statements. •
INSERT/REPLACE Function Statement
Example .• • .• .• • • • • • • • • • ,. ,.

JOBFIND FUnction. • .• • .• • •
Additional DD Statements. • • • • •
JOBFIND FUnction Statement.
Example ,. • • . • .• .• • • • ,.

RECONSTRUCT FUnction. • • • •
Additional DD Statements. • •
RECONSTRUCT FUnction Statement.
Range Cards • • • •
Using a Backup Tape • • • •
Example .• • • • • • • . • • .

REORGANIZE FUnction • • • •
Additional DD Statements. •
REORGANIZE Function Statement
Examples.. .• • • .• .• .• • • •

TAPE Function .• • • • . • • •
Additional D"O Statements. •
TAPE Function Statement •
Example • . .• • • • .• . • • .. .• .• 1•

VALIDATE Function • • • • • •
Additional DD Statements •.•
VALIDATE Function Statement •
Example • • • • • • • • • •

WRITE Function. • • • • • • •
Additional DD Statements. •
WRITE FUnction statement.
Example .. . • • • .• .. • ~ •
WRITE FUnction Output .• • •

User and Group Statistical Reports.
User statistics • • • • • •
Group Statistics. .• .• • • • • •

Maintaining the System. • • • •

•• 153
••• 157

157
• 158

159
•• 165

165
• • - • - •• 166

166
• ·• • .• .• • 166

• • 167
• • 167
• • 167

168
•• 168
•• 170
• • 171

171
171

.••.•.•• 172

.• . .•

•• 174
• • 174
•• 174

176
177

• • 177
177

• • 178
• • 178

• • • 179
•• 179
• • 185

• •• - - •• 185
188

• • 188
•• 189

190
Loading Executive and Utilities source and Macro Libraries .••
Loading Compiler source and Macro Libraries

• • 190
• • 191

191
192

Obtaining a Modified Object Deck •.•••
Obtaining a Modified system Load Module •

Linkage Editor JCL Requirements •
Linkage Editor Control Statements

Control Statements for RTOS 1. .•

•••• - - • • • • 193
• • 193

193
Control Statements for U#UTIL1. • ••• • .• 193
Control Statements for DIBCADBU • .• • • • • • • • • • 193

193 Control Statements for Other Modules.
Control Statements for the BASIC Compiler •
Control statements for the FORTRAN Compiler • •
Control Statements for the PLI Compiler Phase •
control Statements for the PL2 Compiler Phase •

• • • - • • • 194
• ••• 194

• • 194
195

• • 196
• • 196
• • 196

•• - - ••• 196

Diagnostic Aids • • • .• • ,. • • • • • •
Global Table and User Terminal Table. .•
CALL-OS Trace Entries .• • • .• •
*REPORT Command .. .• • .• - • • • .• •
*STATUS Command • • • - • • • • • • • • • • • 196

Appendix A: Example of Statistical Report (*REPORT). . 197

Appendix B: Definition of codes for *STATUS Command. 203

Appendix C: Nonresident Module Numbers . . . 205

Index , . '" . .•• 206

FIGURES

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.

Figure 17.

Figure 18.

Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.

TABLES

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.

Use of storage in the CALL-OS task area. •
CALL-OS system components. • • • • • .• .• .• •
Disk work/swap area format • • • • • • • • •
Initial format of the work area ••
Work area following a sort
Format of a major record .•
Major record with three add-on records .• • .•.•.•.•
User group data set organization • • • •
Relationships of user base data set records .•
Organization of the CALL-OS data base ••••
Sample cataloged procedure conversion for COBI • •
PGMA input after COBI processing • • .• • .• • •
PROCA after symbolic parameter substitution. •
Sample procedure before conversion by DIBCONPR .• .•
Sample procedure after conversion by DIBCONPR.. •
JCL statements in the first step of the COBIBLD
procedure. .• .• • • • • • • • • • • • • • .• •
JCL statements in the second step of the COi3I'.13LD
procedure.. ,. . . • . .• • • ,.
Linkage editor control statements in the Dli3CBINC
procedure. .. . ,. ,. ..
CALL-OS system hardware configuration ••••• , •.•
Central cylinder concept (top view) •.••

1
8

19
19
20
20
21
24
30
34
41
43
44
54
54

61

64

The system build process for a new system .•••••••
JCL statements in the RTOSJOB1 procedure •.•• , ••

64
74
75
90
95

JCL statements in the RTOSDBO 1 procedure • • • • .•
Default data base option 1 - single pack •
JCL statements in the RTOSDB02 procedure •
Default data base option 2 - two packs •
JCL statements in the RTOSDB03 procedure .•
Default data base option 3 - three packs •
JCL statements present in CALL-OS startup deck
Data base utility program structure.
Data base utility control cards •••
Data base utility JCL example •••.•
Order of records on a backup tape.. •
Statistical report example • • .• • • • • .• •

Parameter defaults for
Parameter defaults for
Parameter defaults for
Contents of RTOSPROC •
Parameter defaults for
Parameter defaults for

the DIBCONPR utility.. .•
the COBIBLD procedure •
the U#5INIT utility • .•

the 'rtTOSJ0'.81 procedure .•
the RTOS1 .•••••••

• • 102
104
106
108

• • 111
• • 113

120
• • 142
• • 144
• • 146

• 169
197

52
60
63
92
97

121

/

•

Page of GH20-0786-3
Revised July 31, 1972
By TNL GN20-2780

INTRODUCTION TO THE CALL-OS SYSTEM

CALL-OS is a terminal-oriented. time-sharing system which provides an
individualized computing capability to a variety of users,. It is
designed to handle a high volume of traffic in a problem-solving
environment, and to satisfy the needs of the experienced professional as
well as the uninitiated computer user. From the individual terminal
user viewpoint, the service environment approximates that of a dedicated
data processing installation.

The system is interrupt-driven. which eliminates recurring
interrogation of terminals by the computer center and reduces operating
overhead. Most terminal-originated interrogations result in near­
immediate responses. The facilities provided by CALL-OS constitute a
complete in-house computing and data service capability. Some of these
facilities are:

• Concurrent batch-processing capability under OS

• Highly responsive personal computing system under OS, designed for
problem solving

• Extensive terminal command language, directed towards both the
experienced and the inexperienced user

• Multiprogramming within a single task area

• Dynamic assignment of dispatching priorities to provide efficient
use of CPU time

• Shared libraries which may contain source and/or object programs,
and/or data files

• The ability to submit jobs to OS batch processing from the terminal
with the CALL-OS Batch Interface (COBI) facility; COBI also allows
the user to retrieve the output from the job at his terminal

• Three programming languages processed by three fast load-and-go
compilers which generate dynamically relocatable code

• Terminal checkout of user programs

• Extensive edit capabilities for modification of line-numbered files

• Ability to link one user-written program to another via chaining
facilities

• Ability to enter line-numbered information as a program-data file,
either directly from a terminal or by means of a CALL~os utility,
and to read such a file as input during program execution

• Facility for entry of source programs, data, and terminal conunands
via paper tape

• operator control of some system resources

• security features which protect each user's data

• Offline utilities which provide facilities for building and
maintaining the system and its data base

1

Page of GH20-0786-3
Added July 31, 1972
By TNL GN20-2780

CALL-OS operates as a task under the control of the IBM Operating
system <os>. Mu1tiprogranuning with a Fixed Number of Tasks (MFT) or
Multiprogramming with a Variable Number of Tasks (MVT) control program.
It occupies a single region or partition. referred to in this manual as
a task area. Because it requires only one task area. background jobs
may execute concurrently to capitalize on the remaining CPU and core
storage capacity. thus providing the multiprogranuning functions of the
standard operating system. plus a compatible time-sharing capability.
In this environment. each CALL-OS terminal user operates independently
of every other user, and is usually unaware of other terminal users or
other OS activity.

1. 1

The CALL-OS system provides a persona1ized computing service to
multip1e terminal users. The user of this system is provided with an
extensive termina1 command 1anguage designed to faci1itate communication
between the termina1 user and the computer. severa1 progrannning
1anguages are provided to faci1itate problem so1ving. CALL-OS operates
under contro1 of its own contro1 program (executive>, which performs al1
contro1 functions and I/O operations, and provides a standard software
interface for a11 compilers and user programs.. The portion of the task
area not used by the executive is cal1ed the user program area; this
area is a11ocated to compi1ers and executing user programs.

The rest of this section defines system concepts required for better
understanding of the system and the organization of the system .•

SYSTEM CONCEPTS

CALL-OS employs numerous techniques and concepts woven together into
a single functional package. Since a working familiarity with these
elements is essential to a comprehensive understanding of the system,
they are discussed in the following text.

PERSONAL COMPUTING

Personal computing can be defined as the ability of an individual to
use the power of the computer to assist him directly in the solution of
his daily problems. Key to the development of a personal computing tool
is the development of the terminal-oriented, time sharing capability
offered in CALL-OS. This capability permits individuals to obtain
computing services when that capability is required. such a computing
capability is in essence transparent to the individual, thereby
permitting him to concentrate on problem solutions without having to
become further involved with computer/programming disciplines.

USER IDENTIFICATION AND SYSTEM SECURITY

When a user wants to use CALL-OS, he follows a specified procedure to
sign onto the system. Part of this procedure involves identifying
himse1f to the system. Identification consists of typing in a user
number and a password. only the user who gives the appropriate user
number and password may access information previously retained under
that identification.

A user number consists of six characters: the first three are
alphabetic (A through z> and the 1ast three are numeric (0 through 9),.
User numbers are assigned and controlled by the installation.

A password consists of any combination of letters, numbers, and/or
special characters, including embedded blanks, up to eight characters.
The password is selected by the user, and, with his user number,
provides his unique identification.

See the pub1ication CALL-OS Terminal Operations Manual for a detailed
description of the sign-on procedure and password assignment.

TIME SHARING AND TIME SLICING

In CALL-OS, time sharing is defined as the a1location of computer
resources at a single facility, in a time-dependent manner, to several
programs which are simultaneous1y core-resident. In this way, multip1e
users may occupy the same program task area at the same time, but actual
program execution is effected on a scheduled basis for a sing1e user.

2

/
I

~

Multiple residency is thus seen to be simultaneous, and rapid
multiplexing from user to user provides the illusion of each user having
the full resources of the system at his disposal.

In a time sharing environment, the technique employed in the
allocation of system resources to operating programs is time slicing,. A
portion of the available central processing unit time is allocated to
any compilation or execution task. This portion is called a time slice~
By allocating a portion of the system resources to each user, a large
number of users can be supplied with data processing services
simultaneously.

Each terminal job is allotted a time slice as it enters the system.
It is this time slice which determines the maximum length of time the
job may process before it loses control to the next job in the job
queue. The time slice allotted depends on the task to be performed.. A
basic design objective of the system is to ensure completion of most
compilations and executions within the time slice.

JOB SWAPPING

Compilation is interrupted if a time slice is exceeded; execution is
interrupted if the time slice is exceeded or if terminal input is
requested. These interruptions cause the user program to be moved to a
special area of disk storage (called the swap area) so that system
resources can be allocated to other users. This process is called
swapping. For example, upon expiration of a time slice, the currently
active job is swapped out of the user program area onto a preassigned
area called the disk work/swap area. A job is swapped back into the
user program area when it again becomes eligible for execution .•

TRIVIAL AND NONTRIVIAL RESPONSES

From the standpoint of the magnitude of system resources required,
the functions and facilities of CALL•os can be separated into trivial
and nontrivial tasks.. The amount of time taken by the system to respond
to or accomplish one of these tasks is the response time .•

For example, the acceptance of program statements keyed in by a user
and the execution of certain system commands require minimal system
resources; they are therefore carried out with essentially zero response
times. This is possible because the required modules are permanently
core-resident and execute to completion for each individual user.

If, on the other hand, a user requests execution of a program,
storage must be allocated for this task, and significant amounts of
system resources are required. To preclude one user from dominating the
system, a time slice is allocated to the single user for such tasks. By
allocating an increment of CPU time to each user who requires program
execution, a large number of users can be accommodated with data
processing services on a simultaneous basis. The result, however, is
that these nontrivial tasks involve response times of the order of
seconds, while near-instantaneous response is possible for trivial
tasks.

DATA BASE

Information necessary for and created during operation of CALL-OS is
kept in a collection of data sets known as the data base~ This data
base is used by CALL-OS for the storage and retrieval of system and user
resources. Examples of these resources are programs, data files,

3

compilers, and overlay modules.. The data base consists of three logical
parts:

• The index, which identifies all permissible DD statements and data
sets to be used by CALL-OS; the index is used primarily for data set ~-
identification during system initialization and offline data base
manipulation.

• The system base, which fills the needs of the system for compiler
storage, work/swap area, and nonresident modules .•

• The user base, which contains all user number oriented data, such as
passwords, prograRJs, data files, and COBI job identification .•

A detailed description of the data base is given in the section
"CALL-OS Data Base".

LIBRARIES

CALL-OS provides two types of libraries: user libraries and system
libraries. A user library contains information associated with a single
user; a system library contains information shared by many users.. Each
type of library is described in more detail in the following text.

User Libraries

One user library is available to each terminal user,. This library
contains all programs and data files retained by the user, as well as
any OS/360 jobs he intends for submission through COBI. The information
in a user library is controlled only by the user associated with the
library; however, the information may be made available to other users
of the system .•

system Libraries

The system libraries allow information to be shared among many users,.
The following system libraries are available:

• The *Library, accessible to only a specific group of users; that is,
those users whose user numbers are identical for the first four
characters

• The **Library and the ***Library, accessible to all users of the
system

The information in the *Library is controlled by the terminal user .•
He specifies the name of a program or data file he wishes to share with
other users. This name is entered in a special list, called a
directory, which also indicates the sharing user; the program or data
file itself remains in the appropriate user library. Only the user who
shared (or pooled) the information may alter it or cause its name to be
deleted from the *Library .•

The information in the **Library is also controlled by the terminal
user. This library operates in the same way as the *Library: that is,
only the names are specified as being shared; the programs and data
files remain in the sharing user's library,. The difference between the
two libraries is that programs and data files named in the **Library are
available to all users of the system, while programs and data files
named in the *Library are available only to the other users associated
with that particular library .•

4

·"-·

..

The information in the ***Library is controlled only by the
installation. This library contains a list of the programs and data
files in it, as well as the programs and data files themselves.. In this
case, the list is called a catalog.

RESIDEN~ AND NONRESIDENT MODULES

The executive consists of two types of modules: permanently resident
and potentially nonresident. During system build, all the permanently
resident modules are link edited into a single load module called the
base or nucleus, and each potentially nonresident module is link edited
into the installation's job library as a separate module.

During system initialization, the installation specifies a list of
potentially nonresident modules which are to be made resident. Modules
named in the list are loaded with the base and become part of the
resident system for this session of CALL-OS.. Modules not named in the
list are nonresident for this session; these modules are written into
the overlay data set and are brought into storage when needed during
system operation.

USE OF STORAGE WITHIN THE CALL-OS TASK AREA

In the storage available to OS/360, the nucleus occupies the low end
addresses; the rest of core storage is divided into task areas as needed
and assigned to jobs entered with the job control language.. When CALL­
OS is used, it typically occupies a task area at the high end of core
storage. The reason for this depends on the system used: in an MFT
system, the high-end task area receives the highest priority and it is
desirable for CALL-OS to have a high priority within OS/360; in an MVT
system, since CALL-OS is a long-running job, it is desirable to use the
high-end task area to prevent unnecessary core fragmentation .•

The storage between the CALL-OS task area and the OS/360 nucleus is
divided into background task areas, which are given control by CALL-OS
for a certain percentage of execution time or when CALL-OS has no work
to be done. The task area for CALL-OS is divided into the executive
area and the user program area, as shown in Figure 1.

Executive Area

The CALL-OS executive area contains the modules, subroutines,
buffers, and control blocks necessary for execution. The base resides
at the low end of the task area; during initialization, other modules
may be made resident for the current execution of CALL-OS.. Every user
who signs on the system is given a control block called a user terminal
table (UTT); this table contains information pertinent to the user. In
addition, CALL-OS requires certain buffers, for example, the overlay
buffer from which nonres;ident modules execute.

User Program Area

The user program area is used for the compilation and execution of
user programs. This area is made up of three parts:

• Old job area

• New job area

• Compiler area

5

By definition, a job is considered a new job until its time slice has
been exceeded. An old job is a job which has been compiled and has
exceeded one time slice while in execution, and has not requested
terminal I/O during its current execution. A compilation which exceeds
a time slice is swapped out, but is placed at the end of the new job
queue.

The compiler portion of the user program area is determined during
system initialization, and is of sufficient size to contain the maximum
compiler (or compiler phase) in the system. It is always occupied,
either by the compiler in use or by the compiler that was last used .•

The new job area is determined during system initialization based on
the amount of core available.. There is always one new job area, and
there may be two new job areas,. The boundary between the new job area
and the old job area is adjustable; therefore, large old jobs can be
executed by taking space from the new job area as required.. Referring
to Figure 1, new job area 1 is allocated upward from the compiler area,
while new job area 2 is allocated downward from the boundary between the
old and new job areas.

SYSTEM ORGANIZATION

The CALL-OS system can be considered to contain four parts: the
executive, command languages, processing programs, and the CALL-OS Batch
Interface (COBI) facility.

• The executive governs the order in which the processing programs are
executed, and provides services that are required in common by the
processing programs during their execution .•

• Command languages serve as a means by which the terminal user and
the system operator can communicate with the system .•

• Processing programs consist of compilers and utility programs which
are provided by IBM to assist the user, as well as user-written
problem programs which are executed under CALL-OS.. Both IBM and
user-written programs have the same functional relationship to the
executive .•

• COB! is optional, and it permits the terminal user to submit jobs to
OS/360 batch processing from his terminal and, if he desires, have
the output printed at his terminal .•

Figure 2 shows a simplified picture of some of the system components .•

6

HIGH ADDRESS

USER
PROGRAM
AREA

EXECUTIVE
AREA

LOW ADDRESS

OLD JOB AREA

NEW JOB AREA 2

NEW JOB AREA 1

COMPILER AREA

BUFFERS AND USER
TERMINAL TABLES (UTT)

OPTIONALLY RESIDENT
MODULES

CONTROL BLOCKS

RESIDENT CALL-OS
NUCLEUS

Key ~ Unused Space

NEW
JOB
AREA

Figure 1. Use of storage in the CALL-OS task area

CALL-OS
TASK
AREA

7

SYSTEM
INITIALIZATION /

TERMINAL AND CALL-OS
OPERATOR SYSTEM BATCH
COMMAND EXECUTIVE INTERFACE

LANGUAGES FACILITY (COBI)

l I I 1
CALL-OS CALL-OS CALL-OS USER

BASIC COMPILER FORTRAN PL/I PROGRAMS COMPILER COMPILER

OFFLINE
UTILITIES

l 1
SYSTEM DATABASE COBI

BUILD MAINTENANCE DATASET
OPERATIONS

Figure 2. CALL-OS system components

·"'--.

8

EXECUTIVE

The executive serves as the control program for CALL-OS'" It forms
the heart of CALL-OS and controls all facets of process monitoring. It
resides at all times in permanent areas of core storage which are
storage-protected to ensure that they are not inadvertently modified ..
It is basically made up of the following control routines:

• Control program ~nterrupt dispatcher (CPID}

• Resource managers

• User program area manager

• Terminal and disk I/O handlers

Their functions are summarized below .•

Control Program Interrupt Dispatcher

CPID is interrupt-driven and operates disabled in the supervisor
state. Except for machine checks, CPID intercepts all interrupts
occurring during OS/360 and CALL-OS operation.. Interrupts not related
to CALL-OS operation are transferred directly to OS/360 for processing:
interrupts related to CALL-OS operation are processed by CPID, and in
some cases, transferred to OS/360 for further processing'"

In addition to handling interrupts, CPID also dispatches all work to
be done by CALL-OS, and supervises the amount of time allocated to the
various tasks performed by CALL-OS, as well as to background processing
of OS/360 jobs,. During its processing, CPID interfaces with:

• OS/360 interrupt routines

• OS/360 task management thereby communicating with OS/360 when it is
ready for operation

• OS/360 job management, if COBI is used, to process jobs submitted at
the terminal and receive the output

• OS/360 timer supervisors because CALL-OS has both a real-time clock
and a time-slice clock

• OS/360 input/output supervisor (IOS} routines by means of I/O
appendages

• OS/360 trace routines, if desired, to insert specially formatted
entries into the OS/360 trace table

Finally, CPID interfaces with the user program area manager to
provide necessary services such as I/O operations for compilers and user
programs. This interface is accomplished through a Type I supervisor
call (SVC). This SVC is designed solely for use by CALL-OS and is
included in an OS/360 nucleus during the proce~s of building a CALL-OS
system .•

Dispatching of Work: CPID controls the dispatching of all work
according to a five-level priority structure.. Tasks requiring the
fastest response time are given the highest priority.. The five levels,
in order by priority, are:

9

• Level Or which consists of the CPID routines themselvesr the I/O
appendagesr and those subroutines which operate with
interrupts disabled

• Level 1, which consists of the modules which analyze commandsr load
the nonresident modules for executionr and execute from
the overlay btifferr as well as those subroutines which
operate with interrupts enabled

• Level 2r which consists of the modules required to process most
commands

• Level 3r which consists of modules required to sort and/or perform
editing functions on source programs

• Level 4r which consists of compilers and user programs; only one
level 4 job is known to CPID at a timer as determined by
the user program area manager

Each level has a queue of work to be done. These queues are maintained
on a first-inr first-out basis and are used to determine the next task
to be performed within each level-

Note: References to level 5 pertain to OS/360 background processing in
conjunction with CALL-OS; level 5 is notr howeverr a level within
the CALL-OS system .•

Time supervision: CPID supervises the allocation of time for the tasks
required to service user requests. Three classes of time are kept.. The
first is a 6.7-second clockr which serves the needs of the executive
system for user terminai controlr time stampingr operator communicationr
etc.

The second clock is used for time•slicing control over user programs
and compilers executing in the user program area. The amount of time
allotted depends on the type of job. For exampler new jobsr old jobsr
and compilers have different time-slice valuesr as specified during
system initialization.. In additionr an old job which exceeds a time
slice is allotted a larger time slice in order to increase the
probability that the next time the job is dispatched it will complete
execution.

The third clock is used to share the time available for executing
user programs with lower priority jobs executing in OS/360 background.
The time shared is allotted in increments; the size of the increment is
specified during system initialization.. The user program area manager
determines who is to be given the next increment: more information can
be found in a subsequent subsection .•

Resource Managers

Resource managers control the allocation of the buffers used by CALL­
os. These buffers include:

• System bufferr

• Sort bufferr

10

used to hold system data such as data base
records needed for processing user requests;
there is only one system buffer and it is always
present..

used to sort user source programs; there is only
one sort buffer and it may be omitted with a
system initialization option; if omittedr all
sorting takes place in the user program area .•

(

• overlay buffer,

• 24-byte buffers,

used to hold nonresident modules for execution;
there is only one overlay buffer and it is not
present if the system is totally resident..

used to receive input from the terminal; these
buffers, or pots, contain four bytes of control
information and 20 bytes of data; when three pots
are full, their data content is moved to a 60-
byte buffer for output to disk; the number of
pots for each line is specified during system
initialization; the default is four pots per line
with a minimum total of 60 pots in the system,.

• 60-byte buffers, used to output source code to the work area on
disk; there are ten 60-byte buffers in the
system.

• 256-byte buffers, used for terminal output, such as listing of
programs, execution output, and output from the
scan function of COBI; the number of 256-byte
buffers is specified during system
initialization; the default is one buffer for
every three lines with a minimum of five buffers.

A request for any type of buffer is entered in a queue for the buffer on
a first-come, first-served basis.. Activity on behalf of the user who
needs the buffer is suspended until the request is filled.

User Program Area Manager

The user program area manager keeps track of the status of all jobs
in the user program area, controls the swapping of jobs in and out of
the area, and interfaces with CPID through the Type I SVC to provide
executive services for executing compilers and user programs.. The most
important function of the user program area manager, however, is to
inform CPID of the next job to receive control.. since the next job may
be either in the user program area or in the background, the user
program area manager is also responsible for sharing time with the
background as well as determining the amount of time to be shared; this
process is called background time slicing .•

Scheduling work in the User Program Area: The user program area
determines which job <compilation, old job, or either of two new
is to be dispatched next. To do this, it maintains two queues:

manager
jobs)
the old

job queue and the new job queue (for scheduling purposes only, a
compilation is considered to be a new job; however, compilations take
place under the control of the compiler time slice specified during
system initialization) .•

Each queue is maintained on a first-in, first-out basis.. A job is
entered in the new job queue when the user initiates compilation or
execution of a program, after completion of a terminal I/O operation
requested by the job, or for redispatching if compilation time exceeds
the compiler time slice. A job is entered in the old job queue when
execution time exceeds the appropriate time slice <either old or new job
time slice as specified during system initialization) or if the job
requests more than a predetermined number of disk I/O operations (12 for
new jobs, 30 for old jobs).

For a user program area job to be dispatched, it must be in either of
two states:

11

• Ready to compute (if a compiler is needed, it has already been
loaded)

• Actively computing Cone or more increments of its time slice have
already been used)

If more than one eligible job exists, the following priority scheme is
used to determine which job is dispatched:

1. A new job that is actively computing

2. A new job that is ready to compute, or if both new jobs are ready
to compute, the one which has been in core for the longest period
of time

3. An old job that is actively computing or ready to compute

The user program area manager then determines whether background time
slicing is to go into effect. If not, the user program area manager
performs certain initialization steps to prepare the selected job for
dispatching and informs CPID that a job is ready; CPID performs the
actual dispatching.

Background Time Slicing: Time is shared with the background on a
percentage basis, depending on the mode of allocation in effect.. Three
modes are available; the first is in effect when a CALL-OS system is
initialized, the other two may be specified with the *BATCH operator
command (described in the publication CALL-OS Operator's Manual). The
three modes are: ·

• Mode O,

• Mode 1,

• Mode 2,

the automatic mode, indicates that a certain percentage
of the time available to old jobs is given to the
background; the percentage is based on the number of
users on system and is altered automatically as users
sign on and off the system; for example, for five users
or less, 95 percent of the time available to old jobs is
given to the background; this percentage decreases
approximately 1.5 to 2 percent for each additional user.

indicates that a specified percentage of the time
available to old jobs is always to be given to the
background, regardless of the number of users on the
system; the percentage is specified in the *BATCH command
and remains in effect either until altered with another
*BATCH specification or until the automatic mode is
restored, also with the *BATCH command.

is identical to mode 1 except that the specified
percentage is taken from the time available to old and
new jobs.

Therefore, available old job (or old job and new job) time is shared on
a rotating basis between the user program area and the background. The
appropriate percentage of time is allotted on an incremental basis,
determined by the size of the increment specified during system
initialization.

The total number of increments allotted to an old job {or old and new
jobs for mode 2) is always enough to fill the time slice specified for
the job. However, the total amount of elapsed time that the user
program spends in core is based on the percentage of time shared with
the background, as well as the amount of shared time that the background
actually used.

12

The total number of increments allotted to the background depends
either on the number of users on the system or on the percentage of time
to be given to the background. In practice, many background jobs
require only a small amount of CPU time in which to initiate an I/O
operation before being forced to wait for its completion.

Terminal and Disk I/O Handlers

Disk and terminal input/output operations are performed through I/O
appendages; these appendages service the interrupts resulting from I/O
activity. Special routines provide error handling services for disk and
terminal operations.

Disk Operations: Disk input/output activity within the user program
area is initiated by the use of the system Type I SVC in conjunction
with an appropriate SVC code which specifies the exact nature of the I/O
request. The servicing of requests for disk I/O, both for the system
and the user, is accomplished by use of the OS/360 execute channel
program (EXCP) facility. Examples of disk I/O activity are swapping
operations, reading in nonresident modules, manipulating catalogs and
directories, and handling user data files.

For disk operations, event control block posting is performed by the
CALL-OS disk appendages. This precludes abnormal termination of the
system due to errors that affect a minimal number of users. If a disk
I/O error is user-related, the user job is aborted and a retry request
is issued; if the error is recoverable, control is passed to normal
OS/360 error recovery routines. Error recording in SYS1.LOGREC is also
done by OS/360 routines.

Terminal Operations: As with disk I/O, user terminal I/O is performed
through the OS/360 EXCP facility. Subsequent terminal I/O activity,
however, is handled via the restart exit from the terminal I/O
appendage. Examples of terminal I/O activity are entering source
programs, using the terminal command language, printing job output, and
paper tape operations.

For terminal operations, event control block posting and error
recovery are performed by the CALL-OS terminal appendages. Recoverable
terminal I/O errors are handled with a retry request. Unrecoverable
errors are classified as such on two grounds: threshold exceeded, when
the same error recurs for a specified number of times (the number, or
threshold, depends on the type of error, but once established, exists
until a successful operation occurs); ratio exceeded, when a specified
number of errors of any type occur in a predetermined number of I/O
operations on the same terminal.

Error recording in SYS1.LOGREC is done by OS/360 routines by means of
a device-dependent error routine supplied during the building of the
CALL-OS system. This error routine performs no error recovery, it
merely signals IOS that an error should be recorded.

COMMAND LANGUAGES

One of the functions of the executive is the provision of certain
terminal services to the user and the operator. To achieve this
function, two command languages are provided:

• Terminal command language

• Operator command language

13

Page of GH20-0786-3
Revised July 31, 1972
By TNL GN20-2780

The modules which process the commands are part of the executive.
However, the languages themselves form an integral part of the system
and are therefore considered separately.

Terminal Command L~nguage

The terminal command language is designed to facilitate
communications between the terminal user and the system. These commands
permit the terminal user to do the following:

• Sign on and off the system with password security

• Compile and execute source programs under CALL-OS

• Choose a compiler for compilations

• Store and execute object programs

• Create, modify, and save source-program files

• Check out user programs at the terminal

• Use routines saved in CALL-OS system libraries

• Obtain listings of line-numbered files

• Perform various edit operations on one or a number of line-numbered
files

• Define and redefine data files

• Share programs and data files with other users by pooling them in
system libraries

• Protect program and data files pooled by him into system libraries

• Purge program and data files from his library

• submit jobs to OS batch processing and retrieve output at the
terminal

• Enter programs and data files via paper tape

• Create paper tape output online

• Request status information

With these facilities, the terminal user can access system resources
applicable to his particular problem. The terminal command language is
structured so that the user can concentrate on problem solution rather
than on hardware. For a detailed description of the terminal command
language, the user is referred to the CALL-OS Terminal Operations
Manual.

Operator Command Language

A set of commands is available for exclusive use by computer center
operating personnel. Each command in this set is identified by an
asterisk as the first character. The system honors these commands only
if they are transmitted from a command console,. If these commands are
transmitted from any other terminal, they are rejected.

14

Page of GH20-0786-3
Revised July 31, 1972
By TNL GN20-2780

Through these commands, the operator can install and remove users,
transmit messages to users, enable and disable lines, determine user
status both for CALL-OS users and jobs submitted to OS through COBI, and
terminate system operation.

For a detailed description of the operator command language, the user
is referred to the CALL-OS Operator's Manual.

PROCESSING PROGRAMS

Processing programs consist of compilers, utility programs, and user
programs; only compilers and utility programs are discussed here.

Compilers

Three unique compilers offering three applications-oriented,
programming languages are available with the CALL-OS system. From the
standpoint of the user, applications-oriented languages are vital in
extending computer usage to the noncomputer professional, thus paving
the way for the uninitiated person to avail himself of the computing or
processing capability. In CALL-OS, the user may define his problem
solution in a choice of languages:

• CALL-OS BASIC - simple to learn and use

• CALL-OS FORTRAN - scientific/engineering language

• CALL-OS PL/I - flexible power for any problem

Compilation of a user source program can be invoked by entering a RUN
or STORE command at a terminal; the result of compilation is relocatable
object code, which can be executed immediately and/or retained in the
user's library for execution at later times. It is also possible for
one user program to initiate the running of a succeeding program
(compilation and execution, or only execution if the program has been
compiled previously) via program chaining facilities. Communication
between the compilers and the system executive is handled by the user
program area manager through a Type I SVC.

The compilers are noninterpretive and reentrant. By definition,
reentrant code does not alter itself during execution; thus, the same
copy can be used over and over again and/or concurrently. The core and
time savings due to reentrancy are very real and important. In
addition, one compiler may be compiling several programs at the same
time but be at a different point in the process for each program.

The object programs produced by these compilers are dynamically
relocatable. This means an object program may be swapped out of one
portion of the user program area during execution, and swapped into
another portion whenever execution is resumed.

The compilers process the source code in one pass, permitting fast
compilation speeds. CALL-OS BASIC and CALL-OS FORTRAN are single-phase
compilers; CALL-OS PL/I is a two-phase compiler.

Two types of data files are created by user programs within CALL-OS:
external (EBCDIC} and internal (binary). The former can be created by
programs written in CALL-OS FORTRAN or CALL-OS PL/I, and can be used by
programs written in the language that created them. 'l'he latter can be
created and used interchangeably by programs written in CALL-OS FORTRAN,
CALL-OS PL/I, and CALL-OS BASIC. The created data should, of course, be
in a form supported within the structure of the language used. In
addition, line-numbered files {also ca.lled program-data files) can be

15

Page of GH20-0786-3
Revised July 31, 1972
By TNL GN20-2780

read as input in the same manner as external data files. Such files
cannot, however, be opened for output (that is, created or modified} by
an executing program.

CALL-OS BASIC Compiler: CALL-OS BASIC provides an enhanced version of
the BASIC time-sharing language originally developed at Dartmouth
College, Hanover, New Hampshire. The language is easy to learn and
simple to use. It is ideally suited as a first-entry language, as well
as for the occasional user who need not be an experienced programmer.
Some highlights of the CALL-OS BASIC language include the following:

• Ability to execute a CALL-OS BASIC program in either of two levels
of precision, without modification of the source code

• Availability of an image-type output format, wherein the user
explicitly lays out the format for his print line

• Multiple data file support

• Powerful facilities for matrix operations and input/output

CALL-OS FORTRAN Compiler: This is similar to the most widely used and
known of all higher-level scientific languages. It is convenient and
familiar to the scientific/engineering technical community. Some
highlights of CALL-OS FORTRAN include the following:

• Statement entry format, free-form terminal oriented

• Free-form, list-directed input/output

• Multiple data file support

• Additional special characters supported

CALL-OS PL/I Compiler: CALL-OS PL/I is a multipurpose language designed
to extend the range of applications that can be handled by a single
high-level language. It allows the user to enter his statement in a
free-form format. CALL-OS PL/I provides the user with many of the
features of the PL/I language, using the facilities of CALL-OS via a
remote terminal. some of the many advantages to the user of a
combination of language and system features include the following:

16

• Capability to handle a variety of data types, including character
strings and complex numeric data

• Extended array facilities

• Flexible, stream-oriented, input/output facilities, including list­
directed, data-directed, and edit-directed data specification

• A large number of built-in functions

• User-controlled interrupt processing

• Terminal checkout (debugging) of user programs

• Ease of modification of user programs

Utility Programs

Page of GH20-0786-3
Added July 31, 1972
By TNL GN20-2780

Utility programs constitute those modules within CALL-OS which are
used to build, initialize, and maintain a user systeR\. Two types of
utilities are provided: online, which constitute utilities which run in
the CALL-OS task area, and offline, which run at a time when CALL-OS is
not running. Initialization is an online utility; the offline utilities
include system build. data base creation and maintenance, and
initialization and maintenance of COBI data sets.

system Build: The system build process refers to the initial
establishment of CALL-OS under OS/360. At this point in time, only a
preliminary allocation of resources is involved. This essentially
amounts to the setting of limits to various parameters, with a final
allocation of resources, depending upon the specific installation's
requirement, to be made later during system initialization.

system Initialization: System initialization modules are brought into
the CALL-OS task area as soon as it is allocated by OS/360. These
modules set up control information, allocate storage within the CALL-OS
task area, and prepare the system for execution. When finished, control
is given to the executive.

Data Base Operations: Data base operations involve the creation and
manipulation of the data base. Creation consists of initializing the
data base and creating entries for all the data sets in the index.

16.1

/

/

\""' /,'

..
(j,
'{_

(

Manipulation includes the backup, maintenance, and updating of the user
data base; the following functional capabilities are available (note
that the terms "program• and "program file" imply either a saved source
program file or a stored object code file):

• Reorganize a CALL-OS user group or system group from one data base
cluster to another data base cluster .•

• Validate a particular user or a range of users .•

• Delete certain types of CALL-OS data base records and files .•

• List programs, data files, and control information from the CALL-OS
data base .•

• Output a program or data file from the CALL-OS data base in OS/360
format.

• Write a program or data file to tape .•

• Insert or replace a program or data file from card, disk, or tape
input into the CALL-OS data base.

• Merge CALL-OS directory entries from tape input or other CALL-OS
directories .•

• Recreate part or all of a CALL-OS data base from a backup tape.

• Account for CPU time, disk space, and terminal connect time in the
equivalency file of each user group .•

• Update user catalog files with respect to current COBI job status .•

In addition, facilities are provided for conversion of a backup tape
from the CALL/360: Standalone system to a format suitable for use under
CALL-OS.

COBI Data Set Operations: Another set of offline utilities is used to
initialize and maintain the COBI data sets.. The COBI data sets must be
preformatted before they can be used.. In addition, the data sets may
have to be expanded, reinitialized, or cleaned up.

CALL-OS BATCH INTERFACE (COB!) FACILITY

The COBI facility is designed to give the terminal user the
capability to create OS/360 jobs and submit those jobs for batch
processing under OS/360.. The JCL, source program, and data for the job
is saved in his user library; from there, the job is submitted, upon
command from the user, to OS/360 for processing.. At the time the job ii:
submitted, the user may specify that the JCL for the job and/or
specified SYSOUT data sets produced by the job be retained for scanning
at the terminal.

COBI is optional and if used, is included during CALL-OS system
build. Once a part of the system, a further option during system
initialization makes it possible to omit COBI from the current session .•
However, before COBI may be used, certain requirements must be met by
the installation. These requirements, along with a more detailed
description of COBI operation, are contained in the section on COBI.

17

CALL-OS DATA BASE

The CALL-OS data base is comprised of a collection of data sets which
serves as a data storage and retrieval means for CALL-OS.. The data base
is generated during a separate step within the CALL-OS system build
procedure. Backup and recovery of the data base is achieved through the
use of either OS/360 utilities or the CALL-OS data base utility.

The data base consists of three logical parts: the system base,
which serves the system's needs for storage areas; the user base, which
serves as the user's program and data file storage areas; and the CALL­
os Index (hereafter referred to as the index>, which serves to identify
all data sets used by the system.

Each part of the data base is comprised of one or more data sets
which are OS/360 BDAM-compatible data sets,. All CALL-OS data sets
reside on an IBM 2314 or 2319 direct access storage facility and are
cataloged in the system catalog. Since the system and user bases may be
comprised of several data sets, they may be allocated on several
volumes.

SYSTEM BASE

System base data sets are comprised of data sets which are used for
compiler storage, work/swap areas, and overlay module storage. These
data sets are allocated during the data base build procedures, and are
formatted or manipulated through the use of either OS/360 utilities or
CALL-OS utilities.

COMPILER DATA SETS

Compiler data sets contain, in loadable form, a compiler or a
compiler phase, each of which is contained on a single data set. A
compiler data set varies from 1 to 20 tracks in size and must not cross
cylinder boundaries. The data sets are allocated and formatted during
the data base build procedures. The compilers are written as one
contiguous record in track overflow mode, because of their high usage
factor,. Therefore, these data sets must not have multiple extents or
contain alternate tracks. ~-

compiler data sets are OS/360 BDAM-compatible and may be backed up
through the use of OS/360 or CALL-OS utilities. The ddnames used for
these data sets must be the names of the compilers which are to be used.
In the examples in this manual, the ddnames are given as BASIC, FORTRAN,
PLI, and PL2.

WORK/SWAP DATA SETS

work/swap data sets provide a work area for storing and swapping of
user programs and data during online operations. These data sets are
allocated during data base build. They are identified by unique ddnames
of the form SWAPOO through SWAP19. Each user terminal is assigned one
cylinder of work/swap space at each initialization of the online system.
These data sets must therefore start and end at cylinder boundaries,.
swapping is done in track overflow mode, so these data sets must not
have multiple extents or contain alternate tracks.

18

/

~
,-,~

'l

Up to 20 different work/swap area data sets can be allocated and
entered in the index. Since a great portion of all I/O involves these
data sets, they should be spread across as many drives as possible.
They should be placed on the volumes as close to the center of the data
base as possible. During system initialization, any combination of the
work/swap data sets available may be defined. However, the amount of
space in all data sets must allow one cylinder for each line on the
system.

A cylinder of work/swap space is divided into two major areas: the
work area which is used to record incoming source data, and the swap
area which is used for swapping of user areas (see Figure 3).

TRACK 0
NUMBER

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Figure 3.

Work Area

UNSORTED SOURCE
PRIOR TO RUN

MAJOR RECORD+
60-BYTE
'DUMMY'
(MAX)

60 BYTE
'DUMMY'

SWAP
AREA

WORK/SWAP CYLINDER

WORK
AREA

Disk work/swap area format

RUN TIME
PACKAGE

ONE MAJOR
RECORD

SORTED SOURCE
STATEMENTS

FILE

SWAP
AREA

When the CLEAR command is given or when the user signs on the system,
the first track on the cylinder is formatted into 60-byte dummy records
(containing no valid data} as shown in Figure 4.

RO Rl R2 R3

60 60 60 60

Figure 4. Initial format of the work area

19

Page of GH20-0786-3
Revised July 31, 1972
By TNL GN20-2780

As line-numbered input is entered at the terminal, the dummy records
are replaced by 60-byte records containing source data from three 20-
byte pots. Except for the first character in each terminal line, which
is always a count byte (in binary), the contents of each 60-byte disk
record are in EBCDIC code. The characters following the count are the
line number.

A new line always begins at a 20-byte boundary. The end of a line is
denoted by the EBCDIC character N/L (X'' 15 • > • Any space between the end­
of-line character and the next 20-byte boundary will, in practice, be
occupied by previous information (called a "fill"). Note that CALL-OS
does not pad this space; the original information entered there is left
intact. The source lines will have been edited, at this time, for
character erasures. A logical record may cross a physical boundary.

Note that the user may build up to 15 tracks of 60-byte disk records.
Whenever a sort takes place, however, the final packed format cannot
exceed four tracks.

When a user gives a connnand which involves a sort (such as RUN, LIST,
or SAVE), the 60-byte disk records containing the line-numbered entries
are read into core and sorted. After the sort, the lines are written
back to disk as one major record, while the remainder of the track is
filled out with 60-byte dummy records as shown in Figure 5. This major
record contains packed lines with no fills in the line. The first byte
of the major record is the count byte of the first line. The last byte
of the record is an EOF (end-of-file) character, which is an X'01'' ~
Figure 6 shows a sample format of a major record .•

RO Rl R2 R3 R
n

I by~e, 60 60 60

Figure 5. work area following a sort

c N c N c N c N E
0 I 0 I 0 I 0 I 0
u L u L u L u L F
N N N N
'l' T T T

Figure 6. Format of a major record ~

When the user adds more source lines to a source program, they are
written into the 60-byte dummy records. The source program entered at
the terminal, as it resides in the work area at a particular time, may
consist of a major record alone, a mixture of a major record and one or
more new 60-byte records, or only new 60-byte records. Figure 7 shows a
sample major record with three 60-byte add-on records.

In situations where a sort is not needed (for example, when a LIST is
followed by a RUN), only the major record is read in, and the sort is
not performed. When the major record requires an entire track, the
second track is used to hold 60-byte records. If, after a sort, the
major record is greater than one track, the remainder of the major
record is written onto the second track, and the second track is filled
out with 60-byte dummy records.

20

"

' \. -- /

c
0
u
N
T

20
BYTES

MAJOR RECORD

OLD PROGRAM

20
BYTES

20
BYTES

20
BYTES

60 BYTES

20
BYTES

ADD-ON RECORDS

I. 60BYTES
60 BYTES

~
2(}

BYTES
20 20 20

BYTES BYTES BYTES

Figure 7. Major record with three add-on records

Swap Area

The swap area portion of a cylinder of work/swap space assigned to a
user terminal occupies the· last 16 tracks of the cylinder.. This area is
used for swapping the user•s program area from the user's memory to
disk.. The swap area is divided into two parts.. The first is a
recording area used for disk address pointers to program files. The
second is the actual swap area.. These areas are defined as follows:

First Record
of swap Area

The first record of the swap area for each user
terminal is a 2048-byte record with no key .•

This record is created and used by the executive to
carry disk addresses for program files.. Each logical
data file is assigned 512 bytes.. The first logical
file is assigned the first 512-byte area. the second
file is assigned the second area, and so on. up to
the maximum of four data files,.

When a data file is opened. the disk addresses for
that data file are obtained from the appropriate
catalog file. The addresses are placed in the proper
512-byte area, starting with the first byte. Each

21

User Program
swap Area

OVERLAY DATA SET

disk address is in the relative~data-set-relative­
track form (DT'l'R) and occupies four bytes.. The disk
address for the last record for each of the files is
followed by X'FFFFFFFF'. The upper limit for the
number of records in a data file is 100.. (For
further information, see the discussion of the DFLINK
parameter in the description of the run-time options
in the section, •Initializing the System .• • There
can, therefore, be no more than 404 bytes consumed by
disk ·addresses and a word of x' FFFFFFFF' .•

The balance of the first track (5054 bytes) and
the 15 remaining tracks of the cylinder are used for
swapping the run-time package, communications area,
data area(s), and object code. The maximum size
program that can be accommodated, therefore, is
5054+(15x7294)=114,464 bytes.. Because user memory is
allocated in 2048-byte blocks, this number must be
rounded down to the nearest multiple of 2048, which
is 112,640, or 55 blocks of 2048 bytes.

At swap time, only as much of the user program disk
swap area is used as is necessary. The total number
of bytes transferred will be a multiple of 2048 bytes
(all of the user's allocated memory).

The records do not contain keys, and are written with
the write special count key and data commands.. This
allows them to be read with one (if less than 65K
bytes> or two (if greater than 65K bytes> ccws.

The overlay data set, used for overlay modules., is allocated during
data base build and occupies up to one cylinder disk storage space. At
each online initialization of the system, those modules not specified in
the RESMODS data set are written to the overlay data set in loadable
form. Each overlay module is written at the EXCP level as one
contiguous record and must not exceed 7294 bytes of data.

Backup and recovery of this data set is not required, since the data
set is dynamically recreated each time the system is initialized.. The
ddname for this data set is OVLY. This data set need not exist in CALL­
os systems which always operate in the total-resident mode: in this
case, the data set is not represented by an entry in the index.

USER BASE

The two classifications of user base data sets are system group data
sets, which contain systemwide information, and user group data sets,
which contain user-oriented information.. Data sets within each
classification may be divided into two clusters: cluster one is the
primary cluster, cluster two is the alternate.. Clusters permit a user
installation to group its data sets in alternate ways, and/or allow a
system or user group to be allocated on alternate data sets for backup
purposes.

The system group and each user group in a cluster may have up to 40
data sets. The data sets are identified by group and relative data set
number.. The relative data set number is used to sequence data sets
within the same group. and to differentiate between the clusters.. For
example, the relative data set numbers range from 00 through 39 for the
primary cluster and from 40 through 79 for the alternate cluster .•

22

SYSTEM GROUP

The system group contains the system (***) catalog and its associated
programs and data files, as well as the system (**) directory of shared
programs and data files. The system catalog is manipulated only from
the command console or with the data base utility; programs and data
files are entered from this console with the terminal command language .•
The system directory is manipulated from either the command console or a
remote terminal; names of programs and data files to be shared with the
rest of the system are added to the directory with the terminal command
language. All of the information in the system group is available to
the entire system .•

The system group has a user number and password associated with it.
The user number is SYSLIB and may not be changed.. A newly created
system group has a default password.. This password should be changed
periodically to a new installation-selected password by means of a
PASSWORD command, issued from the command console,. The system group
password is not required to sign on as a command console user, but it is
required to access the system group by means of the data base utility .•
(See "Ensuring File Security".)

To run CALL-OS, the system group must be present. The system group
must have at least one and may have up to 40 data sets in any one
cluster. System group data sets are defined by DD statements with names
of the form SYSGRPnn, where nn is the relative data set number. The DD
statements must have names from SYSGRPOO through SYSGRP39 in the primary
cluster, and from SYSGRP40 through SYSGRP79 in the alternate cluster .•

USER GROUP

The organization of user group data sets is based on three logical
groupings: a set of 99 users (sub group), a set of sub groups {user
group>, and a set of user groups (cluster).. Figure 8 illustrates this
logical organization schematically.

23

r--
I Sub Group AAA000-AAA099

r-- I Sub Group AAA 100-A.M 199
User Group I Sub Group AAA200-AAA299

<I
AAAOOO - I

AAA999 I
I Sub Group AAA900-AAA999
L--

Primary r--
Cluster I Sub Group AAB000-AAB099
(see note) I Sub Group AAB100-AAB199

User Group I
AAAAAAOO - I

AAAAAA39 AABOOO - <I
< MMM999 I

AABMMMOO - I
AABMMM39 I

I Sub Group MMM900-MMM999
MMNZZZOO - L--

MMNZZZ39 r--
I Sub Group MMNOOO-MMN099
I

User Group I
I

MMNOOO - <I
ZZZ999 I

L-- I
I
I
I
I Sub Group ZZZ900-ZZZ999
L -

Note: Corresponding names for the alternate cluster are:

AAAAAA40 - AAAAAA79
AABMMM40 - AABMMM79
MMNZZZ40 - MMNZZZ79

Figure 8. User group data set organization

A sub group is a set of 99 users whose user numbers have the same
first four characters~ For example, a sub group could consist of the
set of users with the numbers AAA101 through AAA199.. The sub group is
the smallest set of users for which sharing of program and data files is
allowed. File sharing is made possible through the use of the special
user number which has zeros as the last two characters. When this user
number is validated, the system creates a dummy user catalog (called a
directory) •

The directory for a sub group is the *Directory and it corresponds to
the *Library.. The *Directory serves the same purpose as the directory
of a partitioned data set.. It contains the names of each shared file
for the sub group and the user number of the sharing user: the file
itself remains in the library of the user who shared it.. Thus, for
example, if user number AAA100 is validated, a *Directory is created for
the sub group of users whose numbers are within the range AAA101 through
AAA199. Note that the *Directory for a sub group does not exist unless
the proper number is validated.

24

,/ -,"

'·

•

•

A user group consists of a range of user numbers (such as AAAOOO
through CCC999). Only user numbers ending with 000 or 999 can serve as
bounds. This range can include as few as 1000 user numbers (AAAOOO
through AAA999) or more than 17 million (AAAOOO through ZZZ999). Each
user group is defined by the user installation to include a set of
related users. Each user group is assigned to a collection of single­
volume OS/360 data sets (not all of which need reside on the same
volume).

These data sets are defined by DD statements with unique names of the
form aaazzz00-aaazzz39 in the primary cluster. and aaazzz40-aaazzz79 in
the alternate cluster. where aaazzz is the name of the user group. To
designate a valid user group. the first three letters of this name (aaa)
must precede the last three letters of the name (zzz) in the collating
sequence. Thus. RAATZZ is a valid user group name. and supports any
user number from RAAOOO through TZZ999.

User group data sets are used for the storage of catalogs. programs,
and data for all users in the group. A given user is assigned disk
storage space only from the data sets assigned to his group. thus
ensuring data set integrity. User group data sets are governed by the
following restrictions:

• Identical or overlapping user groups from different clusters must
not be opened for the same session <see the discussion on how to use
clusters later in this chapter).

• No multivolume data sets are allowed.

• Space is assigned on behalf of a group of user numbers; more than
one data set can be assigned to the same group of users.

• Space is dynamically allocated from preformatted data sets.

• For program and data files. space is reallocated only to a user who
has purged space. if the required amount is available .•

STRUCTURE OF EACH USER BASE DATA SET

A system or user group's data storage is allocated from the data sets
assigned exclusively to that group at data base build time. These data
sets will normally contain the following:

• Allocation record. which contains a record of the amount of usable
space left in the data set

• Equivalency file. which is a linked file of user numbers which have
been validated for the group; each user number entry has a pointer
to a user's catalog

• Catalog. which is a linked file which contains all the program and
data file names saved by the user; the location and file length are
included

• Directory file. which is a linked file which contains a list of file
names and user numbers for pooled program and data files

• source program file. which contains user source programs; these
files are organized in several sizes and are stored in the smallest
size available which can contain the entire program

• Object program file. which contains user object programs; object
program files are stored in half tracks

25

Page of GH20-0786-3
Revised July 31, 1972
By TNL GN20-2780

• Data file. which contains input and output data for running
programs; data files are stored in half tracks

• Program-data file. which contains user line-numbered information;
these files are organized in several sizes and are stored in the
smallest available size that can contain the entire file

• File descriptor record. which is used for every object program file
and for any data file longer than four records

~: Program-data files are distinguished from source-program files
only by usage. No structural differences exist between the two
types of files. In this manual. unless otherwise specified, the
term program file should be assumed to refer to both source­
program files and program-data files.

The first data set in each system group must have at least three tracks.
while the first data set in each user group must have at least two
tracks. All other user data sets may be as small as one track, although
larger data sets (one cylinder or more) are recommended for optimum
performance. These data sets may have multiple extents if they are
obtained in the initial allocation; CALL-OS does not attempt to use a
secondary allocation.

Allocation Record

One allocation record exists for each system group and user group
data set. By convention. it occupies the first record of the first
track of the data set. Its function is to provide a starting point for
the CALL-OS initialization routine. The allocation control table
associated with each user base data set can then be initialized.

These tables are updated in core while CALL-OS is in operation, and
reflect the next available tenth. fifth. half, and full track in the
data set. When a user purges a program or data file, this space remains
assigned to him and the allocation table does not reflect the purged
space. During normal system termination processing, the most recent
allocation information is written back into the allocation record for
the data set.

Eguivalency File

An equivalency file is a linked file of records which contain all the
user numbers validated for a group. Each group has one equivalency file
which begins in the second track of the first data set in the group. Up
to 200 user numbers can be indicated before this record is chained to
another full-track record somewhere within the group.

When a user signs on the system. the equivalency file for his group
is checked to confirm that his user number is validated. The entry
associated with a validated user number also provides the beginning
address of the user's catalog. In addition, the equivalency file entry
for a user contains a total space allocation record and total terminal
and execution times.

Each physical record of this file occupies one full track,. A record
consists of a 36-byte key and a 7212-byte data field that can be
forward-linked to the next record of the file. The first physical
record of the file, by convention. resides on the second track of the
first data set assigned to the group. Each record entry is 36 bytes
long. There are twelve bytes at the end of each physical record. The
bytes are always read or written. but are ignored for searching

26

..

•

•

(

Page of GH20-0786-3
Revised July 31, 1972
By TNL GN20-2780

purposes. The EOF indicator for the file is a full word containing
x•o1010101•.

Catalog

The catalog file is a linked file which contains information about
each program and data file retained by the user. In addition, when COBI
is present in the system, the catalog contains information about each
job submitted by the user to be run under os. Finally, the catalog
defines space that is reusable because program and/or data files have
been purged from the data base. One catalog file exists for each user
number validated onto the system.

The catalog for each user consists of one or more records. each of
which can be forward-linked to the next record in the catalog. Each
record occupies a half track and consists of a 36-byte key field and a
3440-byte data field. The data field of each record can contain up to
95 entries, each of which is 36 bytes long. One entry is provided for
each program and data file kept by the user, as well as each COBI job
submitted by him. The information in each entry depends on the type of
entry.

For each program and/or data file, the catalog entry contains the
name of the file, its length, and up to four disk addresses which give
the location of the file,. The catalog entry for a source program always
contains the entire set of disk addresses for the storage areas occupied
by the program (the maximum program size is four tracks). The catalog
entry for an object program always contains the address of a record
called the file descriptor record; this record in turn points to the
storage area(s) for the object program. If a data file is four or less
records long, the catalog entry contains all the disk addresses for the
file; if a data file is longer than four records, the catalog entry
contains the address of a file descriptor record. source program,
object program, and data files are discussed later in this section along
with file descriptor records.

For each COBI job, the catalog entry contains the COBI job number (in
the form #nnnnn> and the job name under which the job is known to
OS/360. This is the only information about COBI jobs that appears in
the data base. The jobs themselves reside in OS/360 data sets.

Note: The catalog for the system group has the same physical
characteristics as other user catalogs and serves as the
***Catalog for the entire system.

Directory File

The directory file is a linked file which contains a list of file
names and user numbers for shared program and data files. The function
of this file is to allow contributing users to share (pool) programs and
data files. These files are shared either with other members of the
same sub group <•Directory> or with all validated users on the system
(**Directory). The *Directory resides in the user group data sets; the
**Directory resides in the system group data sets.

The *Directory file facilitates sharing of programs and data between
members of a sub group. There may be one such directory for each sub
group. The directory is created by validating a user number with its
last two numeric digits 00. This directory is then available for use by
all members of the same sub group. An entry in the equivalency file is
created, which points to a newly-created directory file assigned to the
appropriate user range.

27

Page of GH20..0786-3
Revised July 31, 1972
By TNL GN20-2780

The **Directory file is much the same as the *Directory. That is, it
contains the names of shared files and the user number of the sharing
user. However, files named in the **Directory are available to the
entire system. There is only one **Directory for the system .•

Note: The *Directory for the system group corresponds to the
**Directory for the rest of the system; that is, if the name of a
file is entered at the command console for sharing in the
*Directory, the name is placed in the **Directory, thereby making
the file available to the entire system.

Each physical record of a directory file occupies one half track; it
has a 36-byte key field and a 3440-byte data field, and can be forward­
linked to the next record of the file. Each record can contain as many
as 143 entries, and each entry is 24 bytes. The entry contains the name
of the file being shared, the user number of the owner, the date on
which the file was shared, and the address of the owner's catalog.

Program and Data Files

Thest:! files constitute the user''s data base,. The physical format of
source program. object program, and data files is described.

source-Program File. This file contains a user source program. It
occupies a tenth, fifth, half. or full track; if more than a full track
is required, additional full tracks are assigned, up to a total of four
tracks. In each case there is a 36-byte key field.. The actual data
field sizes are 534 bytes, 1252 bytes. 3440 bytes, and 7212 bytes,
respectively. The data field content is user-dependent.

Object Program File. This file contains a user object program. Each
physical record of this file resides on a half track, consisting of a
36-byte key field and a 3440-byte data field. Each program may occupy
up to 33 half tracks. A file descriptor record is supplied for every
object program.

Data File. This file contains data used for input to and output from
running programs. Each physical record of this file resides on a half
track. and consists of a 36-byte key field and a 3440-byte data field.
There may be up to 100 such records for each data file.. If a file is
longer than four records, a file descriptor record is supplied.

The data field is entirely filled with data, even though it may not
all be valid data. The internal format of the data field is determined
by the compiler which creates the file and is not referenced by the
executive.

Program-Data File. This file is a program file. created as line­
numbered input directly from the terminal, or entered into a user's
library by means of a CALL-OS utility. The file can be opened for input
(and included in the count of simultaneously open files> by an executing
program. The line number preceding a line is not considered as part of
the input; the first character following one blank (or following the
line number if no blank is included) is treated as the first data
character of the line. Program-data files cannot be opened for output,
but other rules that apply to data files apply also to program-data
files. The physical organization of a program-data file is the same as
that of a source-program file.

28

Ir

('

\. /

•

,,

File Descriptor Record

Page of GH20-0786-3
Revised July 31, 1972
By TNL GN20-2780

The catalog entry points to one file descriptor record for each data
file with more than four records and for each object program. This
record occupies a tenth track and consists of a 36-byte key field and a
534-byte data field. The key field contains a copy of the first 20
bytes of the catalog entry. The data field contains up to 100 disk
address links for the appropriate data or object program file. File
descriptor records are assigned on an as-needed basis.

Sununary

The files and records within the user base data sets are logically
related as follows (see also Figure 9):

• One allocation record exists for each user base data set; it is used
to record total usable space in the data set.

• One equivalency record exists for each group; it begins at a known
relative track location within each group. The equivalency record
is accessed on validation and contains the disk address of all
catalogs in this group.

• One catalog exists for every validated user number; a catalog record
has one entry for every data and .program file belonging to that user
and. when COBI is present. one entry for every job submitted by that
user.

• source programs (and program-data files) may occupy up to four full
tracks. The list of disk addresses in the catalog entry provides
for sequential accessing of programs.

• Data files may occupy up to 100 half tracks. The addresses of these
half tracks. if they exceed the four available in the catalog entry.
are stored in a file descriptor record pointed to by the catalog
entry.

• Object programs may occupy up to 33 half tracks. However. every
object program, regardless of its. length. has a file descriptor
record associated with it.

• For user groups. directory records are treated as artificial users.
The records contain the addresses of programs and data files which
may be shared among users in a related range of real user numbers.
The user number which ends in 00 is a dununy number. It provides the
*Directory for the remaining 99 user numbers in the range indicated
by the first four characters in the user number.

• For the system group, the first ***Catalog record is contained in
the first record of the third track of the first data set. The
**Directory records begin at the second record (half track) of the
third track. Typically. the *** files are maintained by the
computer center. while ** files are contributed by users of the
system to be shared among all other users.

Note that none of the components of a group need be contiguous. In all
likelihood, they are scattered across the full spectrum of data sets for
the group.

29

Track 1

Track 2

Track 3

FIRST RECORD
ALLOCATION RECORD

~ NEXT
1/10

DTTR

! NEXT
T 115

DTTR

EQUIVALENCY FILE

USER NUMBER PASSWORD

CATALOG (THIS USER)

! NEXT
T 112

DTTR

SYSLIB ONLY

DTTR CATALOG OF ***PROGRAM
AND DATA FILES

UP TO 200
ENTRIES

DTTR DIRECTORY OF **PROGRAM AND
DATA FILES BY USER NUMBER AND NAME

1/5 1/5

SOURCE PROGRAM SOURCEPROGRAM SOURCEPROGRAM

DATA FILE UNIT= 3440 BYTES

CATALOG

NAME ~ DTTR

DATA
FILE

NAME

DATA FILE UNIT= 3440 BYTES

• DTTR

• DTTR
NAME ~ DTTR

Figure 9. Relationships of user base data set records

30

/

..

lt

/

ASSIGNING USER NUMBERS

User numbers, and how they are assigned, affect the system in many
ways. The entire user number range allowable on the system is any six­
character identification, starting with three alphabetic characters and
ending with three numerics. This range forms an alphabetic sequence
from AAAOOO to ZZZ999.. User storage space is allocated within a user
group which consists of a minimum of one data set and a maximum of 40,.
A group of users is defined by a user number range based on the first
three characters of the user number through some alphabetically
continuous series. For instance, all user numbers starting with AAA
through DZZ could be designated as group 1, and all user numbers between
EAA and zzz could be designated as group 2, for a two-group system..

In addition to the user groups, one group must be provided for the
system and must contain at least one data set. This system group is
created at system generation time and is available to the command
console for entry of files.. The group contains the systemwide (***)
catalog and files, and the systemwide (**) directory of shared files .•
This initial data set can be supplemented (as can all user groups) by
allocation of additional data sets for this group, up to a total of 40
in each cluster.

CALL-OS can be started for any subset of groups at job initialization
time. These data sets contain all catalogs, equivalency records,
directories, programs and data files.. Various subset sequences of this
entire range may be assigned in a particular way in order to accomplish
the following:

1. Ability of a small group of related users to share programs while
restricting all other system users .•

Each user number that is validated, ending with the last two
numeric digits of 00, creates a dummy user directory. The
directory is available for the pooling and use of shared files by
all users whose user numbers are identical for the first four
characters. The next level of directory sharing is systemwide .•
This means, for instance, that all users desiring subsystem
proprietary sharing must have user numbers assigned in the same
99-number band. For example, user numbers ICX701 through ICX799
have a unique directory created by validating dummy user ICX700,.

2. Data set integrity .•

When disk data sets are allocated, they are attached to a cluster
of data sets in behalf of some user number group. The number of
groups and assignment of people to user numbers within the groups
have a great deal of influence on the use of system resources. A
given user is assigned space only from the data sets assigned to
his group.

CALL-OS can be initiated to bring up any number of mutually exclusive
groups up to a maximum of 113 index entries'" Any user who attempts to
sign on and whose group was not specified at startup time, is notified
and disconnected .•

USING CLUSTERS

CALL-OS permits the use of two clusters: the primary cluster and the
alternate cluster. The system group and each user group may have up to
40 data sets in either cluster. When a group is used in a CALL-OS
session, all the data sets associated with that group must be present.
For example, if a user group has data sets IBMIBMOO, IBMIBM01, and
IBMIBM02 in the primary cluster,, all three data sets must be present..

31

Data sets from both types of cluster may be used simultaneously if the
following conditions are met:

• The data sets present for a group must belong to the same cluster,.
For example, SYSGRPOO and SYSGRP41 may not be present in the same
session; nor may IBMIBMOO, IBMIBM41, and IBMIBM42.

• The user number ranges for the specified user groups must not
overlap.. For example, AAADDDOO and BBBFFF40 may not be present in
the same session because the user numbers from BBB001 through DDD999
belong to both user groups.

In the following example, assume that the primary cluster has three
groups and the alternate cluster has four groups~ as follows:

PRIMARY CLUSTER

Group User Range Data Sets

System Group 1
AAAOOO through IJK999 20
IJLOOO through ZZZ999 19

ALTERNATE CLUSTER

Group User Range Data Sets

System Group 1
AAAOOO through GZZ999 10
HAAOOO through RZZ999 10
SAAOOO through ZZZ999 10

DD Names

SYSGRPOO
AAAIJK00-AAAIJK19
IJLZZZ00-IJLZZZ18

DD Names

SYSGRP40
AAAGZZ40-AAAGZZ49
HAARZZ40-HAARZZ49
SAAZZZ40-SAAZZZ49

A CALL-OS session could use the system group from either cluster, and
with certain restrictions, user groups from both clusters.. For example,
the SAAZZZ user group from the alternate cluster may be used only with
the AAAIJK user group from the primary cluster; use of the primary
cluster IJLZZZ user group would result in overlapping user numbers ..

If the user group configurations in both clusters are alike, clusters
may be used effectively through reorganization.. For example, if one
user group in a system is more active than the others, it may become
necessary to reorganize this group earlier to eliminate purged space.
The REORGANIZE function of the data base utility may be used to
reorganize the user group into the other cluster. This reorganized user
group may then be brought up with the user groups from the original
cluster, thereby providing the full range of user group availa~ility ..

Another use of the REORGANIZE function with primary and alternate
clusters of data sets is to keep two different configurations of the
same groups.. For example, take the two following configurations:

Cluster

Primary

Alternate

Group User Range

System
AAA through GGG
III through PPP
YYY through YYY

System
AAA through JJJ
KAA through YYY

Number of Data sets

2
5
3
2

1
3
4

The REORGANIZE function edits and reorganizes the primary into the
alternate cluster in three steps:

32

Primary Alternate

STEP A: SYSTEM (2) to SYSTEM (1)

STEP B: AAA - GGG (5) to AAA - JJJ (3)
III - PPP (3)

STEP C: III - PPP (3) to KAA - yyy (4}
yyy - yyy (4)

The ability to accomplish this rebuild of the groupings and
reallocation of number of data sets depends on the following:

1. Enough disk drives are available to mount all (from and to} data
sets at one time for each run .•

2. ~nough space is available in the alternate data sets to contain
all records in the primary.

INDEX DA'l'A SET

The index is a one-track OS/360 BSAM data set which contains an entry
for each data set associated with CALL-OS.. It identifies all data sets
used by the CALL-OS online system and those operated upon by the data
base utilities, and describes their logical groupings.. The entire track
for the index is allocated and initialized to X'FF's (hexadecimal>
during data base build by U#UTIL3. Data set entries are added to or
deleted from the index during data base build or data base manipulation
with CALL-OS offline utilities.. Each index entry is 64 bytes in length
and identifies one data set.

The entry for a data set begins with a unique identification code
that indicates the general use of the data set, for example, compiler or
system group.. The next field contain>:> the relative data set number of
the data set; this number is in the range from 00 through 79. (For
compiler and overlay entries, this field is always zero.} The third
field indicates the specific group to which the data set belongs (for
identification purposes, compiler, overlay, and work/swap data sets are
also considered to be "groups"); the groups and their associated
identifications are:

• Compiler, identified by the first six letters of the compiler or
compiler phase name (for example, BASIC, FORTRAN, PLI, or PL2)

• Work/swap, identified by SWAP; up to 20 such entries may appear in
the index

• Overlay, identified by OVLY

• System group, identified by SYSLIB; up to 40 such entries may appear
in each cluster

• User group, identified by the user number range of the group (for
example, AAACZZ indicates that the user number range is AAAOOO
through CZZ999}; up to 40 such entries may appear for each user
group in each cluster

The next two fields of the index entry contain the name of the DD
statement which defines the data set and the full data set name, with
all qualifiers. The last two fields contain status information for the
initialization and formatting utilities, and for compilers, the size of
the compiler.

33

The index contains an entry for each DD statement and associated data
set known to both the online and offline systems. The maximum number of
index entries is 113: any or all data sets associated with these entries
may be defined during system initialization~ That definition determines
which data sets are to be available during a particular CALL-OS session ..
This includes any combination of compiler, overlay, work/swap, system
group, and user group data sets. For the system group and each user
group, although the index itself may have entries for the group in both
clusters, only one cluster may be represented for each group during
online operation. Figure 10 shows the overall organization of the CALL­
os data base.

AA.ACZZO'

BASIC

SWAP04

SWAP08

PLI
COMPILER

PL2
COMPILER

INDEX
MAXIMUM

113
ENTRIES

AAACZZOO

SWAP03

FORTRAN

SYSGRPOO

SYSGRP01

SWAPOO

IBMIBM40

OVLY

Figure 10. Organization of CALL-OS data base

34

DATA BASE AND SYSTEM PERFORMANCE

In the planning of system resources, the user should remember that
since CALL-OS runs as a high-priority job in a multiprogramming system,
the way to increase the throughput of the background activity is to
restrain CALL-OS from developing too large a load,. This can also be
achieved by reducing the number of lines enabled and by adjusting the
time slice allocated to background work.

It is also possible to assign availability priorities to groups of
users and thus limit the use of system resources. The only problem
created by bringing up less than the whole system is that programs
available through the **Directory are not available if the user who owns
the program is not brought up.. The process of bringing groups up and
down is not dynamic,. The system must be shut down and be restarted to
change user configurations .•

LIMITATION OF DISK SPACE

Planned availability and priority of the uses of limited amounts of
disk space may be desired for some logical or accounting breakdown.
User numbers can then be assigned to guarantee a given amount to a
particular group. Otherwise, within a group, allocation of space is on
a first-come, first-served basis. A given user retains exclusive use of
his purged space and, where feasible, this space is reused. Any purged
space is available for use by the user until an offline reorganization
run is made to return space to the entire group; the purged space is
then made avail.able to all users in the group .•

PLANNED EFFICIENCY OF DISK ARM USE

For accounting convenience, it may be advantageous to have one data
set allocated to each user group; however, disk arm movement on high­
usage user groups may impair performance,. A substantial performance
improvement may be realized for such user groups by allocating them to
multiple data sets. For example, one high-usage user group may be
allocated to eight data sets on eight different disk modules.. The
system rotates the allocation through all data sets, filling them all up
together and spreading online arm usage across eight disk modules. This
assumes that all data sets are initially allocated with an equal amount
of space. Lower usage groups, however, can be allocated wherever it is
convenient to locate them on disk volumes.

BACKUP OF THE DATA BASE

Backup of the data base data sets can be achieved through OS/360
utilities as well as CALL-OS offline utilities.. In general, system base
data sets, which are easily created and do not often change during a
CALL-OS session, do not call for maintenance in the normal sense of the
word.. User base data sets, on the other hand, require frequent backup,
which can be accomplished in any of the following ways:

1. Through the use of the OS/360 DUMP/RESTORE utility on all packs
which contain data base data sets. The backup copy can be on
tape or on a 2314 or 2319 direct access storage facility. Note
that the format of the restored pack(s) is such that the backup
copy can be used to bring the system onl ine .•

2. Through the use of the OS/360 IEHMOVE utility to copy all data
sets for a user group.. The format of the copied data set is
compatible with CALL-OS format and structure and can be used to
bring the system online.

35

3. Through the use of the data base utility REORGANIZE function to
provide a compressed copy of a user group situated in one cluster
of a data base to a single, unused, preinitialized user group in
an alternate cluster, deleting purged or unused disk space in the
process. This is a disk-to-disk operation,.

4. Through the use of the data base utility TAPE function to provide
a backup tape. This tape may then be used with the data base
utility RECONSTRUCT or INSERT/REPLACE funtion to recreate the
data sets .•

The use of OS/360 utilities is described in the publication IBM
System/360 Operating System: Utilities.. The data base utility-­
functions are discussed in detail in "Creating and Maintaining the Data
Base".

REMOVING A USER FROM THE DATA BASE

It may become necessary to remove the files associated. with a
particular user from the data base. The *CANCEL command is not
sufficient for this purpose because the files for a cancelled user
remain in the data base. One method of removing such files is to
manually purge all the files with the PURGE command before issuing the
*CANCEL command. A second, and better, method is to use the automatic
purge facilities of the DELETE function of the data base utility.. The
DELETE function also produces an archive tape of the deleted files and
removes * and ** directory entries pooled by the cancelled user .•

Even if all of the user•s files have been purged, the cancelled
equivalency entry and one empty catalog half track remain in the data
base after a reorganization. A dormant user number such as this may be
reissued to a new user at a later time by revalidating the user number
with the *VALIDATE command. If it is desired to remove all dormant user
numbers from the data base, the RECON function of the data base utility
can be used. When /$ range cards are used during a reconstruction of
the data base from a backup tape, those users which are no longer
required may be omitted from the cards. This completely eliminates
these users from the system, including the files, the equivalency entry,
and the half-track catalog record associated with each user.

The data base utility functions are described in detail in "Creating
and Maintaining the Data Base•.

36

/

(

CALL-OS BATCH INTERFACE FACILITY

This section describes the CALL-OS Batch Interface (COBI) facility.
which permits CALL-OS terminal users to generate OS/360 jobs and submit
those jobs to OS/360 batch processing. The introduction to this section
describes general concepts important for an understanding of COBI and
follows a sample job through COBI and OS/360 processing.. The rest of
the section describes the COBI data set requirements. the preparatory
steps necessary to use COBI, and the maintenance utilities for the COBI
data sets.

COBI is optional. and is included in the system during CALL-OS system
build. In addition. an initialization option permits a COBI•built CALL­
os system to be initialized without the COBI facility. Additional
information on COBI is found in other sections of this publication. as
follows:

• COBI storage requirements are given in "Designing the System•.

• The process of building a CALL-OS system with COBI is described in
"Building the System".

• The initialization options and DD statement requirements applicable
to COBI are described in •Initializing the System".

Before using the additional information on COBI. the user should be
familiar with the information in the following text.

INTRODUCTION

The COBI facility provides the CALL-OS terminal user with the means
to submit a job for OS/360 batch processing. The user may request that
JCL statements. system messages, and SYSOUT data sets created during
execution of the job be saved for printing (scanning) at the terminal.
COBI saves the JCL and system messages by copying them from the
appropriate output queue to the COBI JCL data set. COBI saves the
requested SYSOUT data sets by providing DSNAME, SPACE, DISP, and UNIT
parameters for specified DD statements according to user-specified
options when the job is submitted; those SYSOUT data sets not saved by
the user are assigned to an output class for processing by OS/360 .•
After a job has been submitted, the user may inquire into the status of
his job and the scannable data sets.

At the time the job is submitted, a 48-byte record in the COBI index
data set is assigned to that job. A job number of the form #nnnnn is
assigned to the job, where nnnnn corresponds to the record number of the
COBI index record. The job name and identifiers of scannable SYSOUT
data sets are recorded in the COBI index record.. Upon completion of the
OS/360 processing of the job, additional information is placed in the
COBI index record.

In order to determine when a submitted job has completed execution,
save its JCL, and locate scannable SYSOUT data sets, an OS/360 output
class must be assigned solely for COBI submitted jobs,. A COBI writer
program periodically examines the output queue of that class for
submitted jobs which have completed execution. For each completed job
found in the queue, the COBI writer determines if the job is a COBI­
submitted job. If not, the job output is reset to an output queue for
processing by an OS/360 writer.

37

A COBI-submitted job is recognized by scanning the output queue for a
JCL comment statement immediately following the JOB statement. (This
comment statement is inserted by COBI when the job is submitted; the
statement contains the job number, the job name, date of submittal, and
other control information.) The COBI writer extracts the job number and
retrieves the related COBI index record.

If either the JCL was requested to be saved or a JCL error was
detected by OS/360, the JCL and system messages are copied into the COBI
JCL data set and a pointer to the JCL is placed in the COBI index
record. If SYSOUT data sets were requested to be saved and the data
sets were created and kept by OS/360, the identification of the volumes
contain:i.ng the data sets are stored in the COBI index record.. User
and/or system completion codes for the job, if any, are also stored in
the COBI index record. Finally, the job's output in the COB! class
queue is reset to an output queue for processing by an OS/360 writer.
The JCL, system messages, and SYSOUT data sets not saved for scanning
would then normally be listed on a printer .•

After a job has been processed by the COBI writer, the COB! index
record contains sufficient information to respond to user inquiries for
the status of his job, and the status and scanning of scannable data
sets. The user may also request that the job, the JCL, or SYSOUT data
sets be scratched. The scratching of a job is accomplished by clearing
the space occupied by its JCL in the COBI JCL data set, scratching the
DSCBs of the scannable SYSOUT data sets, and, finally, clearing the
space occupied by the job's COBI index record .•

COBI CONCEPTS

After a COBI job has been read into an OS/360 job queue, it is
executed in the same way any non-COBI job is executed.. The major
difference in the overall processing of a COBI job is that the user may
request scanning of data sets associated with his job.. The way in which
scanning is made possible involves several important concepts; an
understanding of these concepts is necessary to understand COBI
operation as a whole.

output Classes

When CALL-OS is initialized, an output class is designated for the
routing of output from COBI-submitted jobs.. It is assumed that only
these jobs will have output in the COBI class output queue.. The CBCLASS
initialization parameter is used to assign this class to CALL-OS. If the
parameter is omitted, the default is class Z; this class is used in
subsequent examples .•

The COB! class output queue contains the JCL and system messages for
all COBI-submitted jobs, as well as pointers to any temporary SYSOUT
data sets not saved for scanning. This output queue is monitored by the
COBI writer for COBI-submitted jobs which have completed execution.
When such a job is detected, the JCL and system messages are saved, if
necessary; pertinent information regarding job execution and the
location of scannable SYSOUT data sets is also recorded.. The job output
in the COBI output class queue is then reset to an output queue to be
processed by an OS/360 writer.

The output queue containing the reset output is processed in the
normal manner by an OS/360 output writer started by the operator for
that output class.. This class is designated by the OSCLASS
initialization parameter.. If the parameter is omitted, the default is
class A; this class is used in subsequent examples. The OSCLASS and
CBCLASS parameters must not specify the same class.

38

Submittal of OS/360 Jobs

The terminal user must enter the JCL, source progrdmr and data for an
OS/360 job as source lines from the terminal; he then saves these source
lines as a program file in his library. He issues a SUBMIT command to
direct COBI to format and copy the OS/360 job from the specified program
f-ile(s) to the COBI SYSIN <input) data set. This data set can then be
processed by a COBI reader program which reads the jobs into the OS/360
job queue.

When the SUBMIT command is issued, the user may specify that JCL and
SYSOUT data sets be saved for scanning.. The SYSOUT data sets are
designated by data set identifiers and may be of either of two types:
user-defined data sets and procedure-defined data sets. User-defined
SYSOUT data sets are identified by a parameter of the form Unnn, where
nnn is a number chosen by the user ranging from 1 through 127 .•
Proc~dure-defined SYSOUT data sets are identified by a parameter of the
form nPmm, where: the value o¥Ilmay range from 1 through 7 and
indicates which procedure within the job contains the desired SYSOUT
data set; the value of mm may range from 1 through 15 and indicates
which SYSOUT data set within the procedure is to be saved. For example,

SUBMIT PGMA,(JCL,U1,2P1)

This SUBMIT command specifies a CALL-OS program file named PGMA which
contains an OS/360 job. The JCL is to be saved for scanning, as well as
two SYSOUT data sets: user-defined data set U1 and procedure-defined
data set 2P1 (the first SYSOUT data set in the second procedure executed
by the job).

Identifying COBI Jobs and Data Sets

COB! assigns a job number of the form #nnnnn to every submitted job..
This is true for all submitted jobs with one exception: if the user did
not specify any data sets to be scanned when he submitted the job and if
the JOB statement contains a MSGCLASS parameter ref erring to other than
the COBI output class; in this case, no record of the job is kept by
COBI.

If desired, COBI will also assign a job name to every job. The job
name consists of the user number {of the form aaannn, also referred to
as userid) of the submitting user and a two-character identifier
obtained by hashing the COBI-assigned job number.

The user number, the job number, and the scannable data set
identifier described previously are used to ensure unique data set names
for scannable data sets.. COBI uses these three pieces of information to
create a qualified data set name of the form:

DSN=DIB. userid,. job-number .• data-set-identifier

where

user id

job-number

data-set­
identifier

is the user number, of the form aaannn, of the submitting
user

is the COBI assigned job number, of the form #nnnnn

is the parameter specified in the SUBMIT command, of
the form Pnmm or Unnn.. Note that the user-specified
identifier nPmm is used in the form Pnmm because data set
names may not begin with a numeric character,.

39

Therefore, the user need only refer to a data set by its data-set­
identifier and COBI will generate a data set name to be used by OS/360
for space allocation and output processing .•

Definition of SYSOUT Data Sets

As mentioned briefly before, a scannable data set is defined by a
COBI-supplied DD statement that has DSNAME, SPACE, DISP, and UNIT
parameters. These parameters identify the data set as an OS/360 data
set which is to be created and kept for scanning.. The DD statement
contains only a SYSOUT parameter if the data set is not to be saved for
scanning.. Scannable data sets may be defined in cataloged procedures or
in user-provided DD statements. The technique used by COBI to supply DD
statement parameters depends on the way in which the data set is
defined.

User-Defined SYSOUT Data Sets: To save a user-defined SYSOUT data set
for scanning, the user specifies a parameter of the form Unnn in the
SUBMIT command. For every Unnn parameter specified, COBI scans the
submitted job for a DD statement which contains the parameter &Unnn..
For example, if the user had specified the parameter U1 on a SUBMIT
command, COBI expects to find a DD statement in the job of the following
form:

//ddname DD &U1

If COBI finds a DD statement parameter to match the parameter on the
SUBMIT command, it replaces the DD statement parameter with the
following information:

DSN=DIB. user id .• job-number .• Unnn, SPACE=allocation,
DISP=CNEW,KEEP),UNIT=device-class

where

userid, job-number, and nnn are as described previously

allocation

device-class

is a space allocation for the data set of the form
{TRK,Cprimary,secondary),RLSE) where primary and
secondary are either the allocations specified in the
DSPACE initialization parameter or defaults of ten
tracks each

is either the class of devices specified in the
UNITNM initialization parameter or a default of 2314;
for more information on device class and its use with
COBI, see the subsection "COBI Device Class"

While scanning a submitted job, if COBI encounters a DD statement
parameter with no matching SUBMIT parameter, the DD statement parameter
is replaced with SYSOUT=Z.. This data set is then routed to the COBI
output class, from which it is reset to the OS/360 output class for
processing.

In the following example, assume U2 was specified on the SUBMIT
command:

40

//LIST
//STEP1

JOB
EXEC

//SYSPRINT DD
//SYSUT1 DD
//SYSUT2 DD

(accounting),'PROG. NAME',MSGLEVEL=1
PGM=MYPROG
&U1
DSN=TESTDATA,DISP=(OLD,KEEP),VOL=SER=MYPACK
&U2

COBI replaces the &U1 parameter on the SYSPRINT DD statement with
SYSOUT=Z; it replaces the &U2 parameter on the SYSUT2 DD statement with
the DSNAME, SPACE, DISP, and UNIT parameters described previously.

Procedure-Defined SYSOUT Data Sets: Since COBI does not have access to
the procedure library, a different technique is used to provide DSNAME,
SPACE, DISP, and UNIT parameters for a scannable procedure-defined
SYSOUT data set. To save such a data set for scanning, the user
specifies a parameter of the form nPmm in the SUBMIT command,. For every
nPmm parameter specified, COBI scans the job for the required (nth)
procedure and supplies a symbolic parameter default of the form Prom on
the EXEC statement of the procedure.. COBI assumes that the procedure
will have a corresponding parameter of the form &Prom.

However, this technique obviously requires some changes in the
cataloged procedure itself.. Therefore, before COBI-submitted jobs can
execute cataloged procedures and save procedure created data sets for
scanning, the cataloged procedures must be converted to a form suitable
for use by COBI.

In effect, the conversion process requires that symbolic parameters
of the form &Prom be provided for every DD statement which contains a
SYSOUT parameter for a specified class. In addition, a default for the
symbolic parameters is provided to assign the SYSOUT data sets to the
COBI output class. Therefore, if the user does not request scanning of
a SYSOUT data set in a procedure, the data set is eventually routed to
an OS/360 output class for processing. The conversion process also
supplies a space allocation of SPACE=CTRK,(10,10),RLSE) for any SYSOUT
data set which does not already have one. Finally, sequence numbers are
added to each statement in the procedure.

Figure 11 shows an example of a procedure, before and after its
conversion. Assume that only those data sets assigned to class A are to
be converted. The DIBCONPR utility is provided to perform this
conversion and is described in greater detail in "Preparing to Use
COBI".

PROCA Before Conversion:

//MYSTEP
//SYSUDUMP
//SYSPRINT
//PRINTOUT
//SYSPUNCH

EXEC
DD
DD
DD
DD

PROCA After Conversion:

//PROCA PROC
//
//
//MYSTEP EXEC
//SYSUDUMP DD
//SYSPRINT DD
//PRINTOUT DD
//SYSPUNCH DD

PGM=MYPROG
SYSOUT=A
SY SO UT= A
SYSOUT=A,SPACE=(CYL,(20,5))
SYSOUT=B

P1='SYSOUT=Z', MYSTEP SYSUDUMP
P2='SYSOUT=Z', MYSTEP SYS PRINT
P3='SYSOUT=Z' MYSTEP PRINTOUT
PGM=MYPROG
&P1,SPACE=(TRK,(10,10),RLSE)
&P2,SPACE=(TRK,C10,10),RLSE)
&P3,SPACE=(CYL,(20,5))
SYSOUT=B

Figure 11. Sample cataloged procedure conversion for COBI

00000100
00000200
00000300
00000400
00000500
00000600
00000700
00000800

41

COBI Device Class

It is not possible for COBI to be aware of either the space available
on direct access volumes or the current usage of the volumes.
Therefore, to enable OS/360 to allocate space for scannable SYSOUT data
sets, a nonspecific volume request is made in the DD statements for
these data sets,. To permit more than one volume to be used for
scannable SYSOUT data sets, a class of devices is assigned for COBI use.
This is achieved by specifying either a device type or a group (generic)
name in the UNIT parameter of the DD statement~

Since the request for space is a nonspecific volume request and the
data set is not temp~rary, OS/360 allocates space on a volume called a
storage volume. OS/360 allocates space for the data set either on the
storage volumes with the device type specified or on storage volumes
having the specified generic name. The UNITNM initialization parameter
may be used to specify a device type, a generic name, or a specific unit
address. If the parameter is omitted, the default is a device type of
2314.

It is recommended that a unique generic name be used to identify
those volumes on which scannable SYSOUT data sets may reside.. This
generic name is specified during OS/360 system generation Csee "Building
the System") and restricts the number of storage volumes that may be
used in allocating space for scannable SYSOUT data sets. If the units
given a generic name are not defined by any other group name (for
example, SYSDA or SYSSQ), then only scannable data sets will reside on
storage volumes having the COBI generic name.

SAMPLE COBI JOB AND ITS PROCESSING

This section illustrates the processing of a single COBI job, from
its initial creation and submittal by the terminal user, through its
processing by COBI and OS/360, as well as the handling of the output
produced by the job~ Assume that the job to be submitted executes the
converted cataloged procedure PROCA, as shown previously in Figure 11,
and that the user number of the submitting user is IBM408.

Creating and Submitting the Job

Before an OS/360 job may be submitted through COBI, the JCL, source
statements, and/or data for that job must be present in a user's
library. One way to do this is to create an OS/360 job at the terminal
in the same way a CALL-OS source program file is created. For example,
the user enters the JCL, and in this case, the data for the job, as
numbered statements; he then saves this input in his library under the
name PGMA, as follows:

001
002
003
004

nnn
SAVE
READY

//MYJOB JOB
//STEP 1 EXEC
//MYSTEP.SYSIN DD
(data for MYPROG, the

/*
PGMA

accounting-information
PROCA Cas shown in Figure 11)

* program executed by PROCA)

He may then submit PGMA for OS/360 batch processing by issuing the
following command:

SUBMIT PGMA,(1P2)

42

The rep1y from COBI indicates the job number and the job name, as
fo1lows

#14 SUBMITTED AS IBM4080E

The notation 1P2 indicates that, in the first procedure in the job, the
second SYSOUT data set (SYSPRINT> is to be saved for later scanning at
the user's terminal. Since the user did not specify that the JCL be
saved for scanning, the JCL is not saved unless a JCL error is detected.

For a detailed description of job submitta1 with COBI, see the
publication CALL-OS Termina1 Operations Manual.

COBI Processing After submittal

After a job is submitted, COBI makes certain modifications to the job
input before it is passed to OS/360 for execution. The CALL-OS 1ine
numbers are removed and certain parameters are added to the JOB and EXEC
statements.. In addition, a JCL comment is inserted after the JOB
statement. Figure 12 shows the input for PGMA after the modifications
have been made; the underlined portions indicate additional parameters ..

//IBM4080E JOB accounting-information,MSGCLASS=Z
//*' #14 additional-information
//STEP1 EXEC PROCAL
// P2=' DSN=DIB. IBM408. #00014.P102,DISP=(NEW,KEEP) ,UNIT=CBSCAN''
//MYSTEP.SYSIN DD *

(data for MYPROG)

/*

Figure 12. PGMA input after COBI processing

The job name and a message class assignment (MSGCLASS parameter> are
added to the JOB statement. The job ~ consists of the user number
(IBM408) of the submitting user and a job-name identifier (E), obtained
by hashing the COBI-assigned job number. (Note that if the ANYJNAME
initia1ization parameter is specified, COBI wil1 not assign a name to
the job.) The message c1ass is the COBI output c1ass assigned in the
CBCLASS initialization parameter; this same class must be used when
converting cataloged procedures for use with COBI.

Fo11owing the JOB statement, COBI inserts a JCL comment statement
beginning with //* #nnnnn, ,rhere #nnnnn is the job number (#14).. The
statement also contains additiona1 information, such as the job number
in binary, the name of the job, the CALL-OS coded date, and control
information used by COBI.

For each procedure-defined SYSOUT data set designated as scannable,
an override parameter is added to the EXEC statement~ In this case, the
overriding parameter is P2, because the second data set is to be
scanned. The parameter value contains the data set name, a disposition,
and a unit assignment. The data set name is the format described
previously: index qualifiers of DIB, the· user number (IBM408), and the
job number (#00014>, followed by a specific data set identifier (P102,
the second data set of the first procedure).. The disposition in al1
cases is DISP=(NEW,KEEP). The unit assignment is taken from the UNITNM
initialization parameter; this parameter is used to indicate a
nonspecific vo1ume request for space allocation ..

After these modifications are made to the program input, the job is
written into a COBI input data set, which becomes the input data set for

43

the COBI reader program. This program attaches the OS/360 reader­
interpreter, which reads the submitted jobs into an OS/360 job queue .•
Csee the description of the COBI input data sets in "COBI Data sets".)

OS/360 Processing

Symbo1ic parameter substitution made by the OS/360 reader interpreter
results in the JCL and cataloged procedure statements shown in Figure
13. OS/360 device allocation assigns the SYSPRINT data set to one of
the volumes mounted on the devices in the CBSCAN device class. Up to
the point where an OS/360 output writer would normally process the job
output, the execution and associated OS/360 processing is identical to
that for any OS/360 job.

// EXEC PROCA
/ / P2=' DSN=DIB. IBM408.#00014 .• P 102,DISP= CNEW, KEEP) , UNIT=CBSCAN'
//PROCA PROC P1='SYSOUT=Z', MYSTEP SYSUDUMP
// P2='SYSOUT=Z', MYSTEP SYSPRINT
// P3='SYSOUT=z·• MYSTEP PRINTOUT
XXMYSTEP EXEC PGM=MYPROG
XXSYSUDUMP DD &P1,SPACE=CTRK,(10,10),RLSE)
IEF653I SUBSTITUTION JCL - SYSOUT=Z,SPACE= (TRK, 00, 10} ,RLSE)
XXSYSPRINT DD &P2,SPACE=(TRK,C10,10),RLSE)
IEF653I SUBSTITUTION JCL - DSN=DIB.IBM408.#00014 .• P102,DISP=(NEW,KEEP),
UNIT=CBSCAN,SPACE=(TRK,{10,10),RLSE)
XXPRINTOUT DD &P3,SPACE=(CYL,(20,5))
IEF653I SUBSTITUTION JCL - SYSOUT=Z,SPACE=CCYL,(20,5)}

Figure 13. PROCA after symbolic parameter substitution

output Destinations and Final COBI Processing

The data set to be scanned CSYSPRINT) is written on a storage volume,
as determined by OS/360 device allocation routines. Pointers to the
other two data sets produced by the job (SYSUDUMP and PRINTOUT) are
placed in the COBI class output queue, along with the JCL and resulting
messages associated with the job. This output class is monitored by the
COBI writer and information on execution status is retained.. Finally,
the output from the job is reset from the COBI class output queue to an
output queue for processing by an OS/360 output writer .•

COBI DATA SETS

The COBI facility requires data sets in addition to those required
for execution of the CALL-OS system. These additional data sets, while
not part of the data base, must be all.ocated to CALL-OS before COBI can
be used and must be defined by DD statements when the system is
initialized.. The COBI data sets are used to retain information about
the jobs submitted through COBI, to transmit the jobs to OS/360 batch
processing, and to make information available to the terminal user.. The
data sets are:

44

• COBI index data set, which provides space for the index records
assigned to submitted jobs

• COBI JCL data set, which provides space for storing the JCL and
system messages for completed COBI-submitted jobs prior to printing
at the user's terminal

• Two COBI input data sets, which are used alternately in the copying
and formatting of the submitted jobs from the terminal users'
library and as input data sets for the COBI reader program

/

____.

(

The COBI index, JCL, and input data sets must be allocated and
preformatted with the U#SINIT utility program before they can be used by
CALL-OS system; these data sets may also be maintained with the U#SRINIT
and U#SPURGE utility programs, used to reinitialize and clean up the
data sets, respectively.. In addition, the COBI index and JCL data sets
may be expanded with the U#SCBXPN utility.. (The U#SINIT utility program
is described in "Initializing the COBI Data sets"; the other utilities
are described in "Maintaining the COBI Data Sets" .•)

In addition to the COBI index, JCL, and input data sets, additional
data sets are required when COBI is initialized,. Each volume which is
to contain scannable data sets must be defined by a DD statement. The
scannable data sets do not have to be initialized.. Finally, the OS/360
job queue data set (SYSl .• SYSJOBQE) must be defined. This data set is
used to locate and access the COBI class output queue.. The system job
queue data set does not have to be initialized by the U#SINIT utility,
nor does it have to be defined during reinitialization or purging of the
COBI data sets.

The following text describes the use and characteristics of the COBI
index, JCL, input, and scannable data sets and assumes that, when
necessary, the data sets are in their preformatted state .•

INDEX DATA SET

The COBI index data set provides space for the index records assigned
to jobs submitted from a user's terminal.. Every record in use except
the first contains all the information pertaining to one job submitted
to OS/360 batch processing; the first record contains data set
identification information.. Each record in the data set is 48 bytes
long and the data set may contain up to a maximum of 32,000 records.
The actual number of records in the data set is determined when the data
set is initialized.. This data set is defined with a CBNDX DD statement,
where CBNDX is the ddname.

During CALL-OS system initialization, the records in the COBI index
are scanned to determine which records are available for use. A bit
string corresponding to the records is built in core: the bits for the
records in use are set to one, the bits for the records available for
use are set to zero.

When a new job is submitted, the bit string is scanned and the first
available record in the COBI index is assigned to the new job.. The bit
corresponding to that record is then set to one.. The number of the COBI
index record assigned to the job is used as the COBI-assigned job
number. For example,. the job assigned to the fourth record is given job
number #4; the job assigned to the one-hundredth record is given job
number #100.. Because the first record is always used for data set
identification, it is impossible for a job to be assigned job number #1 .•

After a job has be~n submitted to OS/360 for processing, its index
record contains most of the information about the job.. For example, the
record contains the user number of the user who submitted the job, the
job name, and the location of the job in a COBI input data set, in case
the user decides to cancel the job. During processing, the index record
is used to maintain status information regarding the execution of the
job.

When execution of a job is completed, additional information is put
into the COBI index record for the job. If the user specified that an
output data set be saved for scanning at his terminal, the relative
volume identification of the device containing the data set is added to
the record.. In addition, system and/or user completion codes are

45

inserted in the record. The relative volume identification and the
completion codes are written by the COBI writer-

The index record for a job is deleted when the job is scratched or
cancelled. Under certain circumstances, the scratching of a data set
may also cause the COBI index record for the job to be deleted. When an
index record is deleted, the bit corresponding to it in the bit string
is set to zero, thus making an index record available for use by a new
job.

The original size of the COBI index is estimated according to the
maximum number of jobs that may be processed at any one time.. After a
COBI system has been in operation for a while, the COBI index may become
full during a session.. In this case, no more jobs may be submitted
until either some index records become free or the index itself is
expanded. The utility program U#SCBXPN is used to increase the size of
the COBI index.

Two other utilities are available for maintaining the COBI index:
U#5RINIT, which reinitializes the data set, and U#5PURGE, which cleans
up the data set. All three utilities are described in •Maintaining the
COBI Data sets•.

JCL DATA SET

The COBI JCL data set contains the JCL for submitted jobs under two
conditions: either the user specified that the JCL for the job was to
be saved for scanning when he submitted the job, or a JCL error was
detected when the job was processed under OS/360 but the user did not
specify that the JCL be saved. In either case, the COBI writer copies
the JCL into the COBI JCL data set. The actual module used depends on
whether CALL-OS is in operation or not: if CALL-OS is in use, the
module is M#JCL; if CALL-OS is not in use, the module is DIBWTR.

Space in the JCL data set is allocated in record sets: a JCL record
set contains from one through four. 3440-byte records.. Every set except
the first is used for JCL storage; the first set is reserved for the
volume identification table~ This table contains the volume serial
numbers of all volumes used to store output data sets saved for scanning
at the terminal.. The rest of the JCL record sets are allocated as
needed for the storage of the JCL for a job. The total number of
records in the JCL data set and the number of records in each record set
is determined when the data set is initialized. The JCL data set is
defined with a CBJCL DD statement, where CBJCL is the ddname .•

During CALL-OS system initialization, the volume identification table
is built from the DD statements supplied for volumes containing
scannable data sets. In addition, the JCL record sets are scanned to
determine which are available for use. A bit string corresponding to
the sets is built in core: the bits for the sets in use are set to one,
the bits for the sets available for use are zero~

After a submitted job has been processed by OS/360, the COBI writer
processes the job's output in the COBI class output queue. If the JCL
for the job is to be saved, the COBI writer allocates the first
available JCL record set to the job, enters a pointer to the JCL in the
index record for the job, and copies the JCL.. An identification header
is written at the beginning of each 3440-byte record used for JCL
storage.

As the JCL is copied, it is compressed to eliminate blanks and
reformatted. The new format of a line of JCL in the JCL data set is
identical to the format of a CALL-OS source statement in a program file .•
(The first byte contains the number of characters in the line and the

46

last byte contains X'15', which indicates the end of the line.) JCL
lines are not split acro'ss records.. The minimum amount of space used
for the JCL for a job is one set; the maximum is three sets.. If the JCL
for a job exceeds three sets, the rest of the JCL is not saved for
scanning; however, the complete JCL is printed on the high-speed printer
with the rest of the output for the job.. A bit in the identification
header of the first record in the first set indicates that the JCL has
heen truncated.

The original size of the COBI JCL data set is estimated according to
the size of the COBI index and the number of records in a record set..
After a COBI system has been in operation for a while, it may become
necessary to adjust the size of the JCL data set. The utility program
U#SCBXPN is used to expand or contract the JCL data set..

Two other utilities are available for maintaining the COB! JCL data
set: U#SRINIT, which reinitializes the data set, and U#SPURGE, which
cleans up the data set.. All three utilities are described in
"Maintaining the COBI Data Setsw.

INPUT DATA SETS

COBI uses two input data sets so that, ideally, one is attached to
COBI to receive jobs from terminal users while the other is being read
into OS/360 batch processing by the COBI reader program.. The data sets
are defined with CBSYSINA and CBSYSINB DD statements, where CBSYSINA and
CBSYSINB are ddnames; the COBI reader program is DIBRDR and is executed
by either of two cataloged procedures, DIBRDRA and DIBRDRB. One
cataloged procedure is associated with each data set and reads only that
data set. For example, DIBRDRB reads only the CBSYSINB data set.. The
format of the two data sets and the space allocated to them must be
identical. The amount of space is determined when the data sets are
initialized.

Each COBI input data set consists of two parts.. The first part
contains the jobs submitted from the terminal; the second part contains
the write-to-operator messages associated with these jobs.. The first
record in the data set contains a pointer to the beginning of the part
which contains the write-to-operator messages .•

Initially, the first record in each data set has the characters EOF
starting in column 31; this indicates that the data set is available for
receiving COBI jobs.. Thereafter, the reader program writes the EOF
record at the beginning of the data set when all the jobs have been read
into OS/360 batch processing. This ensures that the jobs will not be
processed twice ..

When CALL-OS with COB! has been initialized, one input data set is
attached to COBI and the other is in available status. When a job is
submitted from a terminal, the job is placed in the data set attached to
COBI. At certain points in the processing of submitted jobs, COBI
attempts to switch the two data sets, thereby making the data set
currently attached to COBI available to the COBI reader.. The switching
of data sets occurs under the following conditions:

• When the current input data set is full

• When a certain number of jobs have been read into the data set (this
number is specified when the system is initialized)

• When a certain number of minutes have elapsed since the data set was
attached to COB! (this number is specified when the system is
initialized) and there is at least one job in the data set

47

• When the operator requests that any jobs ready for OS/360 processing
be made available to a COBI reader

If any one of the preceding conditions is met, COBI checks the status of
the alternate input data set. If the data set has the EOF record as the
first record, the data set is ready to receive new jobs'" If the EOF
record is not present and the current input data set is not full, COBI
continues to write jobs on the current data set until the alternate data
set is available. When the alternate data set becomes available, the
current input data set is given to a COBI reader for processing and the
alternate data set is attached to COBI to receive new jobs,. If both
data sets are full or unavailable, no more jobs may be submitted until
an input data set becomes available.

The initialization parameters are described in the section
"Initializing the System"; the operator commands are described in the
publication CALL-OS Operator's Manual.

SCANNABLE DATA SETS

Scannable data sets contain information which may be printed (or
scanned) on a user terminal.. The user may scan three types of data
sets:

• Output CSYSOUT) data sets associated with one or more of the jobs
submitted by him; he must request that the data set be saved for
scanning when he submits the job..

• Output data sets which have his user number as one of the index
qualifiers in a data set name. Usually, the data set name was not
created by COBI.

• System data sets whose high level index qualifier was designated as
scannable during system initialization of CALL-OS .•

The volumes which are to contain or do contain such data sets are
defined during system initialization. The DD statements for these
volumes have a name of the form SCANxx, where xx is an identifier which
serves to make the name unique .•

The volume identification table in the JCL data set contains the
volume serial numbers of all scannable data set volumes defined during
the current or any previous session of CALL-OS with COBI. However, not
all of these volumes need be mounted during a session and any session
may define new volumes by adding volume serial numbers during system
initialization. The only way the volume serial numbers are deleted from
the volume identification table is by reinitializing the JCL data set.

Scannable Output Data Sets

During OS/360 system generation, it is recommended that the
installation assign a specific class of devices to be allocated for
scannable output from COBI jobs. During C~LL-OS system initialization,
specific volumes are mounted, identified by volume serial number, and
assigned to the COBI device class. When a user submits a job, he
designates which SYSOUT data sets he wishes to scan by specifying the
appropriate data set identifiers (of the form Unnn or nPmm); finally,
during normal OS/360 device allocation for the job, the data set is
allocated on one of the storage volumes assigned to the COBI device
class. A SCANxx DD statement must be included in the CALL-OS startup
deck for each volume mounted for the COB! device class and which
contains scannable data sets. The blocksize for these data sets roust

48

/
I

(

not exceed 127 physical blocks per track; the data sets must reside on
2314 or 2319 disk storage.

When a data set is specified as scannable, COBI assigns a retention
period of seven days; at the end of this time, if the user has not
scanned the data set, the operator may scratch the data set. When a
user scans a data set, he specifies whether the data set is to be kept
or scratched.. If it is to be kept, the retention period is reset for
another seven days,.

Scannable System Data Sets

With the SCANDS initialization parameter, the installation may
specify two high level index qualifiers, thereby making two groups of
system data sets available for scanning at a user terminal. For
example, if SYS1 is specified, the terminal user may scan SYS1.PROCLIB
or SYS1.MACLIB or any other data set with SYS1 as the high level index
qualifier,. The volumes on which these data sets reside must also be
defined by SCANxx DD statements during CALL-OS initialization. The COBI
command facilities do not permit the scratching or modification of these
system data sets ..

PREPARING TO USE COBI

Before COBI may be used, certain preparatory steps must be taken to
provide the necessary operating environment.. These steps are:

• Modify the IEEVLNKT control section by adding the names of the COBI
reader and writer programs

• Convert the installation cataloged procedures with the DIBCONPR
utility to enable the procedures to be used by COBI jobs

• Add cataloged procedures for the COBI reader and writer programs to
SYS1.PROCLIB

• Initialize the COBI index, JCL data set, and the two input data sets

• Link edit the COB! reader and writer programs into SYS1 .• LINKLIB

The last two steps may be performed together as part of an IBM supplied
cataloged procedure (COBIBLD). Before COBIBLD may be used, the first
step of the CALL-OS system build process must have been completed; this
step puts the CALL-OS procedures into SYS1 .• PROCLIB. The system build
process is described in the section "Building the System".

MODIFYING THE IEEVLNKT CONTROL SECTION

The OS/360 control section IEEVLNKT contains the names of all load
modules which may be executed by an OS/360 operator start command,. The
operator executes these load modules from the OS/360 system operator's
console by issuing a start command which refers to a cataloged
procedure. The procedure then initiates execution of the appropriate
load module.. When COBI is used, the operator must issue start commands
which refer to COBI cataloged procedures.. These procedures execute the
COBI reader and writer modules, DIBRDR and DIBWTR, respectively.

Therefore, before COBI can be used, the names DIBRDR and DIBWTR must
be added to the system.. An IBM-supplied module named DIBNAMES contains
the COBI names in load module format.. (This load module is copied from
OSRTS.EXEC.JOBLIB into qualifier..JOBJ:.IB during Step I of the CALL-OS
system build process; see "Building the system.) The linkage editor is

49

used to combine these names with the names in the IEEVLNKT control
sec~ion and to replace references to IEEVLNKT with references to
DIBNAMES. The actual linkage editor control statements used depend on
whether MFT or MVT is used.

With an MFT System

When an MFT system is used, the IEEVLNKT, IEEVACTL, and IEEVRCTL load
modules must all be modified to include the COBI namesA The JCL
required to execute the linkage editor and the linkage editor control
statements necessary to modify the modules are as follows:

//LKED EXEC PGM=IEWL,PARM='NCAL,LIST,XREF,LET,RENT,REFR'
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(100,10))
//SYSLIB DD DSN=qualifier .• JOBLIB,DISP=SHR
//SYSLMOD DD DSN=SYS1..LINKLIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSLIN DD *

INCLUDE SYSLIB(DIBNAMES)
INCLUDE SYSLMOD(IEEVLNKT)
ENTRY DIBNAMES
NAME IEEVLNKT(R)
REPLACE IEEVLNKT(DIBNAMES)
INCLUDE SYSLMOD(IEEVRJCL)
INCLUDE SYSLIB(DIBNAMES)
INCLUDE SYSLMOD(IEEVRJCL)
ENTRY IEEVRJCL
ALIAS IEEPSN
NAME IEEVRJCL(R)

where

qualifier is the high level index qualifier assigned to CALL-OS
data sets during system build.

With an MVT System

When.an MVT system is used, only the IEEVRJCL load module must be
modified to include the COBI names,. The JCL required to execute the
linkage editor and the linkage editor control statements necessary to
modify the module are as follows:

//LKED EXEC PGM=IEWL,PARM='NCAL,LIST,XREF,LET,RENT,REFR'
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(100,10))
//SYSLIB DD DSN=qualifier .• JOBLIB,DISP=SBR
//SYSLMOD DD DSN=SYS1.LINKLIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSLIN DD *

REPLACE IEEVLNKT(DIBNAMES)
INCLUDE SYSLMOD(IEEVRJCL)
INCLUDE SYSLIB(DIBNAMES)
INCLUDE SYSLMOD(IEEVRJCL)
ENTRY IEEVRJCL
ALIAS IEEPSN
NAME IEEVRJCL(R)

where

qualifier

50

is the high level index qualifier assigned to CALL-OS
data sets during system build .•

CONVERTING CATALOGED PROCEDURES

If SYSOUT data sets produced by a cataloged procedure are to be
scanned at the terminal, the procedure should be converted to a form
suitable for use by COBI with the DIBCONPR utility program.. (If a
procedure is not converted, a &Unnn parameter must be used to override
the procedure JCL.) It is recommended that the converted procedures be
placed in a procedure library unique to COBI and available for use only
by COBI users. If the converted procedures are returned to the
procedure library they were in before conversion, the names of the
converted procedures must be altered.

The SYSPRINT data set in the GO step of certain cataloged procedures
defaults to undefined record format. Since undefined records may not be
used with the COBI SCAN option, the default must be overridden if the
data set is to be scanned. overriding DCB information may be added
either before the cataloged procedures are converted or at the time the
procedure is executed.. The DIBCONPR utility cannot be used to add this
information to a DD statement.

The rest of this subsection describes the JCL required to execute the
utility, the conversion process, an example of procedure conversion, and
the use of the COBI procedure library .•

JCL Requirements for DIBCONPR

When executing the DIBCONPR utility, the user may specify the class
of SYSOUT data sets to be converted, the class to which the converted
data sets are to be assigned, and the space allocation to be given to
any data set which does not already have one specified in the procedure .•
(The space allocation is necessary because if any of the data sets are
to be scanned, they become sequential disk data sets; as such, they do
not receive the SYSOUT default space allocation assigned by the reader.>
All three parameters are optional and appropriate defaults are supplied
if the parameter is omitted.

In addition, DD statements roust be supplied which define the
procedure library which contains the procedures to be converted, the
sequential data set in which the converted procedures are to be written,
a listing data set, and a control card data set..

The complete JCL required to execute DIBCONPR is as follows:

//ANYNAME
//JOBLIB
//STEPNAME
//
//SYSLIB
//SYSPRINT
//SYSPUNCH
//SYSIN
control-cards
/*

JOB
DD
EXEC

DD
DD
DD
DD

DSN=qualifier 1 .• JOBLIB, DISP=SHR
PGM=DIBCONPR,PARM=('OSCLASS=a','CBCLASS=z',
•sPACE=parms'),REGION=60K
DSN=qualifier2 .• PROCLIB,DISP=SHR
SYSOUT=A
data-set-definition

*

where

qualifier1

a

is the high level index qualifier assigned to CALL-OS
data sets during system build

specifies the class of SYSOUT data sets to be converted
and roust be a valid SYSOUT class.. The default is class
A.. This class is the OS/360 output class .•

51

z

parms

qualifier2

data-set­
definition

control­
cards

specifies the class to which the appropriate SYSOUT data
sets are to be converted and must be a valid SYSOUT
class.. The default is class z.. This class is the COBI
output class; the CBCLASS system initialization parameter
must match the CBCLASS class specified for the conversion
process ..

is any valid space allocation of 50 ·characters or less .•
All data sets in the converted class are assigned this
space allocation unless a SPACE parameter is already
present in the unconverted procedure.. In most cases,
cylinder allocation rather than track allocation should
be employed, because of its superior performance
characteristics.. The defaUlt is (CYL,, (1,, 1)).. <DIBCONPR
performs only minimal syntax checking on this par~meter .. >

is the high level index qualifier of the procedure
library which contains the procedures to be converted .•
In most cases, this will be SYS1 .• Note that additional
procedure libraries may be concatenated tQ the library
defined on the SYSLIB DD statement .•

defines a sequential data
the converted procedures .•
valid definition,, as well
data set definition .•

set which is to contain
For example, SYSOUT=B is a

as any tape or sequential disk

specify which procedures in the SYSLIB data set<s> are
to be converted~ each control card contains the member
name of one procedure to be converted in columns 1
through 8 .•

Table 1 shows the defaults for those parameters which may be omitted .•

Based on the parameters, DIBCONPR converts the procedures as
described in the following text.

Table 1. Parameter defaults for the DIBCONPR utility
r--1
!Parameter I Use I Default
1----------+-----------------------------------+-------------------
ICBCLASS !Specifies the class to which !Class z
I jSYSOUT data sets are to be I
I !assigned during conversion I
I I I
IOSCLASS !Specifies the class of SYSOUT !Class A
I jdata sets to be converted I
I I I
jSPACE !Specifies the space allocation to I CCYL,C1,1))
I lbe used for converted data sets I
I !which do not already have one I
L---~---------·-----·--------J

Conversion Process

For each SYSOUT data set in the class to be converted, DIBCONPR
replaces the SYSOUT specification on the appropriate DD statement with
the following:

52

&Pn[,SPACE=parmsl

where

n

parms

is the number of the data set within the procedure and
may range from 1 through 15; if a procedure has more than
15 data sets to be converted, the rest are not converted.

is either the space allocation specified in the SPACE
parameter of the utility EXEC statement or the default if
the SPACE parameter was omitted; if a data set to be
converted already has a SPACE parameter, the parameter is
not changed.

For each converted DD statement, the utility adds to the PROC statement
a symbolic parameter with a default value; a comment field is added
after the parameter. The parameter and the comment field have the
following format:

Pn='SYSOUT=z'[,] step-name ddnarne

where

n

z

step-name

ddname

is the number of the data set within the procedure, as
defined previously

is either the class specified in the CBCLASS parameter on
the utility EXEC statement or a default of Z if the
parameter was omitted; the comma follows the parameter if
more symbolic parameters are required .•

is the name of the step within the procedure to which the
parameter applies

is the name of the DD statement which was converted

As a procedure is converted, the statements in it are given sequence
numbers, starting with 100 and incremented by 100.. (If other sequence
numbers are desired, they can be specified as the procedure is written
into the COBI procedure library by adding additional control
statements,.)

When a procedure is converted, an IEBUPDTE utility control statement
is written in the SYSPUNCH data set; this control statement has the
following format:

ADD NAME=member-name

where

member-name is the name of the converted procedure as specified in
the control card input for DIBCONPR

The converted procedure is then written in the SYSPUNCH data set and a
listing of the procedure is printed on the SYSPRINT data set.. The
entire process is repeated for each member named in the SYSIN data set..

Conversion Example

The following is an example of the JCL required to execute the
DIBCONPR utility program:

53

//CONVERT
//JOBLIB
//CON
//
//SYSLIB
//
//SYSPRINT
//SYSPUNCH
//SYSIN
SAMPLE
ASMFC
ASMFCL
ASMFCLG

/*

JOB
DD
EXEC

DD
DD
DD
DD
DD

1,~PGMR, C',MSGLEVEL=1
DSNAME=OSRTS.JOBLIB,DISP=SHR
PGM=DIBCONPR,PARM='CBCLASS=J,SPACE=(CYL,f2,2))'
REGION=60K
DSNAME=SYS 1 .• PROCLIB, DISP=SHR
DSNAME=USER.PROCLIB,DISP=SHR
SY SO UT= A
SYSOUT=B

*

Since the OSCLASS parameter was not specified on the utility EXEC
statement, all SYSOUT data sets in output class A are to be converted .•

Figure 14 shows the procedure SAMPLE before its conversion1 Figure 15
shows the same procedure after its conversion. Note that the space
allocation for PRINT1 was part of the unconverted procedure and was not
altered by DIBCONPR.

//Pl
//STEPl
//SYSLIB
//SYSPRINT
//SYSPUNCH
//PRINT1
//STEP2
//SYSPRINT

PROC
EXEC
DD
DD
DD
DD
EXEC
DD

LIB=TEST
PGM=PROG1
DSN=iLIB •.• JOBLIB,DISP=SHR
SYSOUT=A
SYSOUT=B
SYSOUT=A,SPACE=(CYL,(8,4))
PGM=PROG2
SYSOUT=A

Figure 14. Sample procedure before conversion by DIBCONPR

./ ADD
//Pl
//
//
//
//STEP1
//SYSLIB
//SYSPRINT
//SYS PUNCH
//PRINTl
//STEP2
//SYSPRINT

NAME= SAMPLE
PROC LIB=TEST,
P1='SYSOUT=J',
P2='SYSOUT=J',
P3='SYSOUT=J'
EXEC PGM=PROG1

STEP1
STEP1
STEP2

DD DSN=iLIB •• JOBLIB,DISP=SHR
DD iPl,SPACE=(CYL,(2,2))
DD SYSOUT=B
DD iP2,SPACE=(CYL,(8,4))
EXEC PGM=PROG2
DD iP3,SPACE=(CYL,(2,2))

SY SPRINT
PRINT1
SYS PRINT

Figure 15. Sample procedure after conversion by DIBCONPR

Using the COBI Procedure Library

00000100
00000200
00000300
00000400
00000500
00000600
00000700
00000800
00000900
00001000
00001100

The converted procedures should be placed in a procedure library
other than the one they were in before conversion1 this library should
be reserved for COBI use only. When the COB! procedure library is
created initially, the entire SYSPUNCH data set may be used as the input
for the IEBUPDTE utility program .•

54

(

This util.ity may also be used to maintain the COBI procedure library;
however, in this case, the ADD control statement for each procedure
which already exists in the library must be replaced by a REPL control
statement. For example, if an installation changes the assignment of
its COBI output class, then the cataloged procedures must be
reconverted. To reconvert procedures, DIBCONPR utility must be executed
against the original unconverted procedures; procedures which are
already converted may not be reprocessed by DIBCONPR.

The following example shows the JCL necessary to create a COBI
procedure library:

PGM=IEBUPDTE,PARM=NEW
//COBIPROC
//UPDTE
//SYSUT2
//
//

JOB
EXEC
DD DSN=OSRTS .• COBIPROC,UNIT=2314, VOL=SER=COBI01,

SPACE=(CYL,(2,1,8)),DISP=(NEW,CATLG),
DCB=SYS 1 .• PROCLIB

//SYSPRINT DD
//SYSIN DD
(SYSPUNCH output from
/*

SYSOUT=A
DATA

the execution of the DIBCONPR utility)

For detailed information on the use of the IEBUPDTE utility, see the
publication IBM System/360 Operating System: Utilities.

SUPPLYING COBI READER AND WRITER PROCEDURES

The installation must provide three procedures to be used with COBI:
two reader procedures and one writer procedure.. The requirements for
the procedures as well as how to add these procedures to the system are
described in the following text.

COBI Reader (DIBRDR) Procedures

Two reader procedures, named DIBRDRA and DIBRDRB, must be supplied
for use by the COBI reader program.. Since this program attaches the
OS/360 reader/interpreter IEFIRC, it is possible to modify an existing
OS/360 reader procedure for use with COB!. Whether this is done or a new
procedure is written, the following requirements must be met for both
COBI reader procedures:

• PGM=DIBRDR must be specified on the EXEC statement

• The parameter field should be coded as shown with one exception:
the last character CZ in the example> is the default output class
for jobs read by the reader; this must be identical to the COBI
output class specified in the CBCLASS initialization parameter.

• The recommended region size is 68K

• The IEFRDER DD statement specifies the data set name of the
appropriate input data set; this name is of the form

DSN=qualifier.CBSYSINx

where

qualifier is the high level index qualifier assigned to CALL-OS
data sets during system build .•

x specifies the input data set, and is A in the DIBRDRA
procedure, B in the DIBRDRB procedure ..

55

The disposition on this DD statement is DISP=SHR. No other
information need be supplied because the input data sets are
initialized and cataloged before COB! is used.

• If the procedures were converted for COBI use, the IEFPDSI DD
statement must contain the name of the procedure library in which
the converted procedures were placed.. If necessary, the
SYS1.PROCLIB procedure library may be concatenated to the COBI
procedure library. (This is desirable when not all the procedures
were converted for COBI use .• >

• The DIBRDRA and DIBRDRB procedures must be identical, with the
exception of the data set name on the IEFRDER DD statement,.

• The IEFDATA DD statement should contain a blocksize specification of
at least 400 for efficient execution; however, if a program cannot
handle input with this blocksize, a DCB parameter with the required
blocksize must be added to the DD * statement for the program..

The following is an example of the DIBRDRA procedure:

//STEPNAME
//
//
//IEFRDER
//IEFPDSI
//
//IEFDATA
//

EXEC

DD
DD
DD
DD

PGM=DIBRDR,
PARM='80103001001024905030SYSDA 000011Z',
REGION=68K
DSN=OSRTS.CBSYSINA,DISP=SHR
DSN=OSRTS.COBIPROC,DISP=SBR
DSN=SYS1.PROCLIB,DISP=SHR
UNIT=SYSDA,SPACE=C80,(500,500),RLSE,CONTIG),
DCB=(BUFN0=2,LRECL=80,BLKSIZE=400,RECFM=FB)

In this example, a separate procedure library was used for the converted
procedures, and $YS1 .• PROCLIB is concatenated to it. The corresponding
DIBRDRB procedure would be identical with one exception: the data set
name DSN=OSRTS.CBSYSINB must be used on the IEFRDER DD statement..

The PARM field of DIBRDRA and DIBRDRB procedures should contain a
track allocation size compatible with the CALL-OS startup deck.. (See
ALOCTYPE and DSPACE under •Additional COB! Options"~> This ensures that
if a SYSOUT data set is retained for scanning on one execution, but not
another, the same amount of space is allocated. (That is, the user­
specified allocation for a data set not retained for scanning should be
such that it has the same effect as the COBI-generated SPACE parameter
for a retained data set .•) For example, if the AlOCTYPE and DSPACE
parameters are not specified, or if ALOCTYPE=CYL and DSPACE is not used,
then the system generates a SPACE parameter CYL,(001,001).. The DIBRDRA
and DIBRDRB procedures should contain 020 020,.

A detailed description of the PARM field and the IEFDATA DD statement
for the OS/360 reader interpreter procedure is found in the publication
IBM System/360 Operating System: System Programmer's Guide.

COB! Writer (DIBWTR) Procedure

One procedure named DIBWTR must be supplied for the COB! writer
program, also called DIBWTR; this program is used when CALL-OS is not
being used but COB! jobs remain to be processed. DIBWTR is not to be
confused with an OS/360 output writer. DIBWTR monitors the CBCLASS
output queue for output from COBI-submitted jobs. If either the JCL is
to be saved for scanning or a JCL error was detected, DIBWTR copies the
JCL into the JCL data set; the COBI job output is then reset to the
OSCLASS output queue for processing by an OS/360 output writer. Whether
the JCL is saved or not, DIBWTR also stores status information about the
job in the COBI index record for the job.. DIBWTR processes one job each

56

time it receives control; the time interval which elapses before it
regains control is determined by the installation.

The EXEC statement in the DIBWTR procedure must contain the following
parameters:

• CBCLASS, which specifies the COBI output class; this class is
processed by DIBWTR

• OSCLASS, which specifies the OS/360 output class to which the COBI
class is reset after processing

• ITIME, which specifies the number of seconds to elapse before DIBWTR
processes another job

The procedure must be named DIBWTR and have DIBWTR as the name on the
PROC card. This is necessary so that when a STOP command is issued by
the OS operator, the correct CSCB can be located, and the system posted
for termination.

The procedure must contain DD statements for the COBI index and the
COBI JCL data set4 In addition, the OS/360 system job queue must be
defined because DIBWTR uses this data set to locate and access the
CBCLASS output queue for COBI jobs.. The following is an example of the
JCL required in a DIBWTR procedure:

//STEPNAME
//
//CBNDX
//CBJCL
//CBJOBQ

where

z

a

nnnn

qualifier

EXEC

DD
DD
DD

PGM=DIBWTR,PARM=('CBCLASS=z','OSCLASS=a',
'ITIME=nnnn'),REGION=28K
DSN=qualifier .• CBNDX, DISP=SHR
DSN=qualifier,. CBJCL, DISP=SHR
DSN=SYS1.SYSJOBQE,DISP=SHR

is the COBI output class; it must be identical to the
CBCLASS specification given in the startup deck and used
for DIBCONPR when converting cataloged procedures

is the OS/360 output class to which the COBI class is
reset after processing; it must not be the same as the
class specified for the CBCLASS parameter

is the time, in seconds, to elapse between the time
DIBWTR finishes one job and receives control to process
the next job; the time interval must be within the range
from 1 through 9999

is the high level index qualifier assigned to CALL-OS
data sets during system build .•

Adding the COBI Procedures to the System

When the three procedures have been prepared as described in the
preceding text, they must be added to SYS1 .• PROCLIB with the IEBUPDTE
utility program,. The following example shows the use of this utility to
add the DIBRDRA, DIBRDRB, and DIBWTR procedures to the system:

57

//PROCUPDT JOB
//UPDTE EXEC PGM=IEBUPDTE,PARM=MOD
//SYSUT1 DD DSN=SYS1.PROCLIB,DISP=OLD
//SYSUT2 DD DSN=SYS1 .• PROCLIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD DATA
./ ADD NAME=OIBRDRA

CJCL Statements for DIBRDRA)
./ ADD NAME=DIBRDRB

{JCL Statements for DIBRDRB)
./ ADD NAME=DIBWTR

(JCL Statements for DIBWTR)
/*

A detailed description of the IEBUPDTE utility is found in the
publication IBM System/360 Operating System: Utilities.

INITIALIZING THE COBI DATA SETS

Before COBI can be used, the COBI index, COBI JCL data set, and the
two COBI input data sets must be initialized by utility U#5INIT. The
utility may be executed as part of a cataloged procedure supplied by IBM
or it may be executed separately.. In either case, the data set
requirements and the initialization process are identical.. The rest of
this section describes the initialization process for each data set, the
use of the cataloged procedure, and the use of the utility as a separate
program. For a description of the data sets and their use, refer to
"COBI Data Sets" presented earlier in this section.

Initialization Process

The four COBI data sets which must be initialized must be processed
by U#5INIT at the same time.. The utility formats the records in each
data set and, when necessary, places required information in the
records.. The process for each data set is described in more detail in
the following text ..

COBI Index Data Set: The user specifies the number of 48-byte records
to be allocated. The utility initializes and writes the specified
number of records into the data set. When U#5INIT has finished
processing, the first record of the COBI index identifies the data set
and contains the following information:

• The total number of records in the data set

• The total number of records in the JCL data set

• The number of records in each JCL record set

• The number of cylinders in each COBI input data set.

The second and all subsequent records in the COBI index are identical in
format: the first byte of each record contains zeros, indicating that
the record is unused; the second byte contains the record number
relative to the beginning of the data set (for example, 2 for the second
record, etc.); the rest of each record contains zeros.

COBI JCL Data set: The user specifies the total number of 3440-byte
records to be allocated as well as the number of records in each JCL
record set. The utility stores this information in the first record of
the COBI index and writes the specified number of JCL record sets into

58

/

(_

the data set.. When U#SINIT has finished processing, the first record of
the first record set contains an identifier and skeleton format for the
volume identification table; the rest of the first set is not used.. The
remaining record sets in the data set contain zeros .•

COBI Input Data sets: The user specifies the number of cylinders to be
allocated to each input data set. The utility stores this information
in the first record of the COBI index and writes the first and only
record into each input data set. This record begins with the
identification//* and indicates the data set (SYSINA or SYSINB).
Finally, the record contains the characters EOF starting in column 31 .•
The rest of the record contains zeros; the rest of the data set is not
altered.

Using the Cataloged Procedure

The cataloged procedure COBIBLD may be used to initialize the COBI
data sets and to link-edit the COBI reader and writer modules into
SYS1.LINKLIB. The first step of this procedure executes the U#SINIT
utility. This utility allocates and preformats the COBI data sets
according to information supplied either by the user or as defaults .•
User-supplied information is specified in the parameter field of the
EXEC statement.. The JCL required to use the cataloged procedure is as
follows:

//INIT
//JOBLIB
//DSINIT
//

where

aaa

bbb

mm

nn

qualifier

vol id

JOB
DD
EXEC

DSN=OSRTS.JOBLIB,DISP=SHR
COBIBLD,CBINDEX=aaa,CBJCLRD=bbb,CBRDSET=mm,
SYSIN=nn,QA=qualifier,VOLID=volid

is the number of 48-byte records to be allocated in the
COBI index. This number is installation dependent and is
based on the number of submitted jobs that might be
present in the system at any one time.. The number
specified must be within the range from 2 through 32,000 .•
If CBINDEX is omitted, the default is 150 records.

is the number of 3440-byte records to be allocated in the
JCL data set.. This number must be at least twice the
number <mm> of records specified for a record set.. In
most cases, this number should be equal to the number of
index records (aaa> times the number of records per set
<mm>.. If CBJCLRD is omitted, the default is 300 records .•

is the number of 3440-byte records in each JCL record set
and may be from one through four. If CBRDSET is omitted,
the default is two records per set.

is the number of cylinders to be allocated for the COBI
input data sets. If SYSIN is omitted, the default is ten
cylinders for each data set.

is the high level index qualifier (QA) assigned to CALL­
os data sets during system build.. If QA is omitted, the
default is OSRTS.

is the volume serial nWilber of the volume which is to
contain the COBI data sets. No default is provided,
therefore VOLID must always be specified.. Note that this
causes the assignment of all four data sets to the same
volume.. By overriding one or more DD statements in the

59

cataloged procedure, the associated data sets may be
assigned to different volumes.

Table 2 shows the defaults for those parameters which may be omitted .•
Figure 16 shows the statements in the first step of the COBIBLD
cataloged procedure.

The user may override certain specifications in the DD statements of
the procedure. The usual rules for overriding must be followed. For
example, the overriding DD statements must be in the same sequence as
the DD statements in the procedure'" The DD statements which can be
overridden are:

CBNDX Defines the COB! index data set

CBJCL Defines the COB! JCL data set

CBSYSINA Defines the SYSINA input data set

CBSYSINB Defines the SYSINB input data set

The VOL=SER parameter may be overridden on all four DD statements; the
DCB parameter may be added to the CBSYSINA and CBSYSINB DD statements to
provide a blocksize specification other than 3200 bytes for the input
data sets. None of the other information on the DD statements should be
overridden.

Table 2. parameter defaults for the COBIBLD procedure

60

r--,
!Parameter I Use I Default
!----------+-----------------------------------+------~------------
ICBINDEX
I
I
I
ICBJCLRD
I
I
I
ICBRDSET
I
I
IQA
I
I
I
ISYSIN
I
I

Specifies the number of 48-byte
records to be allocated to the
COB! index data set

Specifies the number of 3440-byte
records to be allocated to the
COBI JCL data set

Specifies the number of 3440-byte
records in each JCL record set

Specifies the high level index
qualifier assigned to CALL-OS
data sets during system build

Specifies the number of cylinders
to be allocated to each of the
COB! input data sets

150 records

300 records

Two records per set

OSRTS

Ten cylinders for
each data set

L------------------------------~-----------------------------------~

(

//COBIBLD
//
//CB1
//
//CBNDX
//
//
//CBJCL
//
//
//CBSYSINA
//
//
//CBSYSINB
//
//
//SYSPRINT

PROC

EXEC

DD

DD

DD

DD

DD

CBINDEX=150,CBJCLRD=300,SYSIN=10,QA=OSRTS,
CBRDSET=2
PGM=U#SINIT,PARM=('CBINDEX=&CBINDEX',
'CBJCLRD=&CBJCLRD','CBRDSET=&CBRDSET')
DSN=&QA •• CBNDX,SPACE=(48,C&CBINDEX),,CONTIG),
VOL=SER=&VOLID,DISP=CNEW,CATLG,DELETE),
UNIT=2314
DSN=&QA •• CBJCL,VOL=SER=&VOLID,UNIT=2314,
SPACE=(3440,C&CBJCLRD),RLSE,CONTIG,ROUND),
DISP=(NEW,CATLG,DELETE)
DSN=&QA •• CBSYSINA,SPACE=(CYL,(&SYSIN),,CONTIG),
VOL=SER=&VOLID,DISP=(NEW,CATLG,DELETE),
UNIT=2314
DSN=&QA •• CBSYSINB,SPACE=(CYL,(&SYSIN),,CONTIG),
VOL=SER=&VOLID,DISP=(NEW,CATLG,DELETE),
UNIT=2314
SYSOUT=A

Figure 16. JCL statements in the first step of the COBIBLD procedure

overriding the Volume Serial Number: Since the VOLID parameter causes
all four data sets to be allocated on the same volume, the user may want
to override this allocation- The following example shows the use of the
COBIBLD procedure while overriding the volume specification:

//DSINIT
//JOBLIB
//!NIT
//CBSYSINA
//CBSYSINB

JOB
DD
EXEC
DD
DD

DSN=OSRTS.JOBLIB,DISP=SHR
COBIBLD,VOLID=COBI01
VOL=SER=COBI02
VOL=SER=COBI02

Since the CBNDX and CBJCL DD statements were not overridden, the COBI
index and the COBI JCL data set are allocated on volume COBI01.. The two
COBI input data sets are allocated on volume COBI02 .•

Note: Even when overriding, the VOLID parameter must be specified to
provide a value for the corresponding symbolic parameter in the
procedure.

Overriding the Blocksize for the Input Data Sets: The optimum and
default blocksize for the COBI input data sets is 3200 bytes.. However,
the user may specify a smaller blocksize by overriding both DD
statements and specifying the DCB parameter with the BLKSIZE
subparameter.. The blocksize specified must be the same for both input
data sets, a multiple of 80, and within the range 400 through 3200. If
any of these conditions are not met, a message is issued and
initialization terminates.

The following example shows the use of the COBIBLD procedure while
specifying a blocksize of 2400 bytes for the input data set:

//DSINIT
//JOBLIB
//INITSTP
//CBSYSINA
//CBSYSINB

JOB
DD
EXEC
DD
DD

DSN=OSRTS. JOBLIB, .DISP=SHR
COBIBLD,VOLID=COBI01
DCB=BLKSIZE=2400
DCB=BLKSIZE=2400

All four data sets are allocated on volume COBI01 and a blocksize of
2400 is used for the two input data sets .•

Note: The use of a smaller blocksize for the input data sets may cause
increased CALL-OS processing and OS/360 reader overhead .•

61

Executing U#SINIT as a Separate Program

If the COBIBLD procedure is not used, the U#SINIT utility must be
executed to initialize the COBI index, COBI JCL data set, and the two
input data sets. All four data sets must be initialized at the same
time and must meet the following requirements:

• Each must reside on a 2314 or 2319 storage device.

• The space allocated for each data set must be contiguous and must
have only one extent .•

• secondary allocation may not be requested for any data set ..

The JCL required to execute the U#SINIT utility is as follows:

//ANYNAME JOB
//JOBLIB DD
//STEPNAME EXEC
//
//CBNDX DD
//
//CBJCL DD
//
//CBSYSINA DD
//
//
//CBSYSINB DD
//
//
//SYSPRINT DD

DSN=OSRTS.JOBLIB,DISP=SHR
PGM=UISINIT,PARM=('CBINDEX=aaa','CBJCLRD=bbb',
'CBRDSET=mm' >
DSN=qualifier.CBNDX,SPACE=(48,(aaa),,CONTIG),
VOL=SER=volid1,DISP=(list),UNIT=2314
DSN=qualifier.CBJCL,SPACE=(3440,(bbb),RLSE,CONTIG,ROOND),
VOL=SER=volid2,DISP=(list),UNIT=2314
DSN=qualifier.CBSYSINA,SPACE=(CYL,(nn),,CONTIG),
VOL=SER=volid3,DISP=(list),UNIT=2314[,
DCB=BLKSIZE=yyyy]
DSN=quali£ier .. CBSYSINB,SPACE=(CYL,(nn),,CONTIG),
VOL=SER=volid4,DISP=(list),UNIT=2314C,
DCB=BLKSIZE=yyyyJ
SYSOUT=A

where

aaa

bbb

mm

qualifier

62

is the number of 48-byte records to be allocated in the
COBI index.. This number is installation dependent and is
based on the number of submitted jobs that might be
present in the system at any one time. The number must
be within the range from 2 through 32,000.. If omitted,
the default is 150. If present, this number must be
specified in the CBINDEX parameter of the EXEC statement
and in the SPACE parameter of the CBNDX DD statement; the
number should be the same in both places.

is the number of 3440-byte records to be allocated in the
JCL data set. This number should be twice the number of
COBI index records specified and must be at least twice
the number of recbrds specified for a record set. If
omitted, the default is 300.. If present, this number
must be specified in the CBJCLRD parameter of the EXEC
statement and in the SPACE parameter of the CBJCL DD
statement; the number should be the same in both places.
In addition, the space allocated for the JCL data set
must begin on a cylinder boundary. Since the
specification is not made in cylinders, ROUND is required
to force cylinder boundary alignment and RLSE is required
to ensure that unformatted tracks are made available .•

is the number of JCL records in each JCL record set and
is specified only in the CBRDSET parameter of the EXEC
s:tatement.. The number must be within the range from 1
through 4.. If omitted, the default is 2 .•

is the high level index qualifier assigned to CALL-OS
data sets during system build. If the usual default

/

'___

(

value OSRTS is desired, then OSRTS must be specified as
the qualifier .•

volid1
volid2
volid3
volid4

indicate the volume serial number of the volume to
which the associated data set is to be assigned .•
The same or different volumes may be used for
all four data sets.

list specifies the disposition of the data set.. The
recommended disposition is DISP=(NEW,CATLG,DELETE). This
ensures that the data sets are cataloged if the
processing is successful, and are deleted if processing
terminates abnormally.. If an old data set is used and
DISP=(OLD) is specified, the data set must be completely
empty, as if newly created .•

nn is the number of cylinders to be allocated for each input
data set. This number must be identical for both data
sets .•

yyyy is optional and if used specifies the blocksize for the
input data sets~ The blocksize must be the same for both
data sets, a multiple of 80, and within the range 400 to
3200; if any of these conditions are not met,
initialization terminates~ If the DCB parameter is not
specified, a default of 3200 is used .•

Table 3 shows the defaults for those parameters which may be omitted-

Table 3. Parameter defaults for the U#SINIT utility
r---------~--,
!Parameter I Use I Default
1----------+-----------------------------------+-------------------
IBLKSIZE on Specifies the maximum blocksize 3200 bytes
lthe allowed for the COBI input data
jCYSYSINA sets
land
ICYSYSINB
IDD state-
ments

CB INDEX

CBJCLRD

Specifies the number of 48-byte
records to be allocated to the
COBI index data set

Specifies the number of 3440-byte
records to be allocated to the
COB! JCL data set

150 records

300 records

CBRDSET specifies the number of 3440-byte
records in each JCL record set

Two records per setl
I

L---~----•---------------J

LINK EDITING THE COBI READER AND WRITER LOAD MODULES

The load modules for the COBI reader and writer programs (DIBRDR and
DIBWTR, respectively) must be link edited into SYS1.LINKLIB. This link
edit is performed as the second step of the COBIBLD cataloged procedure~
The COBIBLD procedure also initializes and preformats the COBI index,
JCL data set, and the COBI input data sets.. The JCL required to execute
COBIBLD is explained in detail in •Initializing the COB! Data Sets" .•

63

Figure 17 shows the JCL statements contained in the second step of
the COBIBLD procedure.. Note that the linkage editor control statements
are contained in another cataloged procedure, DIBCBINC1 Figure 18 shows
the statements in this cataloged procedure. If the COBIBLD procedure is
not used, the user must execute the linkage editor separately, using the
same JCL and linkage editor control statements.

//CB2
//
//SYSLIB
//SYSLMOD
//SYSUT1
//SYSPRINT
//SYSLIN

EXEC

DD
DD
DD
DD
DD

PGM=IEWL, PARM=·' XREF, LIST r NCAL' r

COND=(O,NE,CB1),REGION=96K
DSN=&QA •• JOBLIB,DISP=SHR
DSN=SYS1.LINKLIB,DISP=OLD
UNIT=SYSDA,SPACE=(1024,(200,20))
SYSOUT=A
DSN=SYS1.PROCLIB(DIBCBINC),DISP=SHR

Figure 17. JCL statements in the second step of the COBIBLD procedure

INCLUDE
NAME
INCLUDE
NAME

SYSLIB <DIBRDR)
DIBRDR(R)
SYSLIB (DIBWTR)
DIBWTR(R)

Figure 18. Linkage editor control statements in the DIBCBINC procedure

MAINTAINING THE COBI DATA SETS

After a CALL-OS system with COBI has been in use for a period of
time, it may be necessary to perform maintenance operations on the COBI
data sets. IBM supplies three utility programs to aid in this
maintenance, as follows:

• U#5CBXPN

• U#5RINIT

• U#5PURGE

Expands the current COBI index and the COBI JCL data set
by copying them into larger data sets1 it will also
contract the COBI JCL data set by copying it into a
smaller data set

Reinitializes the COBI index, JCL, and input data sets

Deletes all references to unfinished jobs from the COBI
data sets

The use, JCL requirements, and an example for each utility is given in
the following text .•

U#5CBXPN - EXPANDING THE COBI INDEX AND JCL DATA SET

When the COBI data sets are initialized, the sizes of the COBI index
and the JCL data set are estimated according to the number of users who
will be using the system at any one time.. If the number of jobs being
submitted is more than was originally expected, or if the average length
of JCL listings is different than anticipated, the sizes of these data
sets may have to be adjusted. Because the COBI index and JCL data set
must have only one extent, a utility has been provided to copy the COBI
index data set into a new data set and to compress or expand the JCL
data set.

Specifically, the U#5CBXPN utility copies the COBI index from its
present data set into another data set, which may differ in size1 it

64

(

copies the COBI JCL data set from its present data set into another data
set, which may be the same size, 1arger, or sma1ler.. If a larger data
set is used, in either case, U#5CBXPN formats the remainder of the data
set into empty records, fil1ed with zeros.

JCL Requirements

The current COBI index and the new COBI index must be defined by DD
statements with the names CBOLDX and CBNDX, respectively. The current
COBI JCL data set and the new COBI JCL data set must be defined by DD
statements with the names CBOLDJCL and CBJCL, respectively.. In
addition, a SYSPRINT DD statement must be supplied to define the system
printer to be used for utility messages .•

The user may also specify the following information on the EXEC
statement:

• The total number of records which the expanded COBI index is to
contain

• The total number of records which the expanded (contracted) COBI JCL
data set is to contain

• The number of records in a JCL record set

If the parameters are omitted, the defaults are the values used to
initia1ize the current COBI index and JCL data sets.. Thus, unless
specific parameter values are given, the new data sets will have the
same size and structure as the current data sets.

The comp1ete JCL required to execute the U#5CBXPN utility is as
follows:

//ANYNAME
//JOBLIB
//STEPNAME
//
//C.BOLDX
//CBNDX
//
//
//CBOLDJCL
//CBJCL
//
//
//SYSPRINT

where

qualifier

aaa

bbb

JOB
DD
EXEC

DD
DD

DD
DD

DD

DSN=qualifier.JOBLIB,DISP=SHR
PGM=U#5CBXPN,PARM=('CBINDEX=aaa',
'CBJCLRD=bbb','CBRDSET=mm'),REGION=88K
DSN=qualifier.CBNDX,DISP=(OLD,DELETE,KEEP)
DSN--user-name-1,SPACE=(48,(aaa),,CONTIG),
UNIT=2314,DISP=(NEW,CATLG,KEEP),
VOL=SER=vo1id1
DSN=qualifier .• CBJCL,DISP=(OLD,DELETE,KEEP)
DSN=user-name-2,UNIT=2314,
SPACE=(3440,(bbb),RLSE,CONTIG,ROUND),
VOL=SER=volid2,DISP=(NEW,CATLG,KEEP)
SYSOUT=A

is the high level index qualifier assigned to CALL-OS
data sets during system build.

is the total number of 48-byte records to be a1located to
the expanded COBI index.. The number cannot exceed 32,000
and is specified in the CBINDEX parameter of the EXEC
statement and in the SPACE parameter of the CBNDX DD
statement.. If the parameter is omitted from the EXEC
statement, the value specified in the CBNDX DD statement
must be equal to the number specified when the data set
was initialized.

is the number of .3440-byte records to be a1located to the
expanded or contracted COBI JCL data set. This number is
specified in the CBJCLRD parameter of the EXEC statement

65

mm

user-name-1
user-name-2

volid1
volid2

and in the SPACE parameter of the CBJCL DD statement.. If
the parameter is omitted from the EXEC statement, the
value specified in the CBJCL DD statement must be equal
to the number specified when the JCL data set was
initialized.

is the number of JCL records in each JCL record set.
This number must be within the range from one through
four and is specified only in the CBRDSET parameter of
the EXEC statement. If the parameter is omitted, the
default is the number of records per set specified when
the JCL data set was initialized.

are user-specified data set names; the qualifier is
not needed. U#5CBXPN replaces these data set names with
the old data set names (typically, qualifier.CBNDX and
qualifier.CBJCL).

are the volume serial numbers of the volumes which are
to contain the expanded COBI index and the expanded
<contracted) JCL data set, respectively; they may specify
the volumes which contain the current data sets.

Note the way in which the disposition is specified on the CBOLDX,
CBOLDJCL, CBNDX, and CBJCL DD statements.. If the system should fail
prior to completion of the expansion, these dispositions ensure that all
data sets are retained.. The user may then determine which data sets are
to be deleted.

After the expanded data sets are created, the data set names
originally assigned to the old data sets are assigned to the expanded
data sets.. To avoid duplicate names, an interim name is assigned to
each old data set. These interim names have the following format:

DSN=DIB. Tnnnnnnn.Dmmmmm .• CBNDX
DSN=DIB.Tnnnnnnn.Dmmmmm.CBJCL

where

nnnnnnn is the time of day

mmmmm is the date

For example, after the interim name is assigned to the old COBI index,
the old name is assigned to the expanded COBI index.. This entire
process is then repeated for the JCL data set.. The old COBI index and
the old COBI JCL data sets are deleted after the utility terminates.

In the unlikely event that the utility should terminate abnormally
while the data set names are being changedy the old data sets are
retained. The actual names under which the old data sets have been
stored C9Jl be determined by listing the volume table of contents (VTOC).

U#5CBXPN uncatalogs the old data sets.. Note that if the new data
sets are not cataloged, no message is issued.

If U#5CBXPN is executed in a multi-step job, the CBOLDX, CBOLDJCL,
CBNDX, and CBJCL DD statements should not contain backward references to
DD statements in previous steps of the job. Similarly, in subsequent
steps, no backward references should be made to the CBOLDX, CBOLDJCL,
CBNDX, and CBJCL DD statements of the current step .•

66

I _.

(

Example

The following example shows the use of the U#5CBXPN utility:

//EXPND
//JOBLIB
//CBX1
//
//CBOLDX
//CBNDX
//
//CBOLDJCL
//CBJCL
//
//
//SYSPRINT
/•

JOB
DD
EXEC

DD
DD

DD
DD

DD

DSN=OSRTS.JOBLIB,DISP=SHR
PGM=U#5CBXPN,REGION=88K
PARM='CBINDEX=200,CBJCLRD=400'
DSN=OSRTS.CBNDX,DISP=(OLD,DELETE,KEEP)
DSN=TEMP1,UNIT=2341,SPACE=(48,(200),,CONTIG),
VOL=SER=COBI01,DISP=(NEW,CATLG,KEEP),
DSN=OSRTS.CBJCL,DISP=(OLD,DELETE,KEEP)
DNS=TEMP2,UNIT=2314,SPACE=(3440,(400),RLSE,
CONTIG,ROUND),
VOL=SER=COBI01,DISP=(NEW,CATLG,KEEP)
SY SO UT= A

U#5RINIT - REINITIALIZING THE COBI DATA SETS

The U#5RINIT utility reinitializes the COBI index, JCL data set, and
the two input data sets.. In addition, the utility produces a SCRATCH
control statement (for use with the OS/360 utility IEHPROGM) for each
scannable output data set which has not already been scratched.

This utility is used when it becomes desirable to recreate the
initial COBI operating environment.. For example, although scannable
data sets are designed as temporary data sets and should be scratched as
soon as possible after their use, it is possible that too many scannable
data sets have been kept; this utility prevents the data from being
lost, while at the same time restores the COBI environment to its
initial state.. This utility could also be used on a periodic basis
within certain time sharing environments to reinitialize COBI; for
example, in a university environment, the U#5RINIT utility could be run
at the end of a semester to prepare for the next term's time sharing work~

The reinitialization process is identical to that described for
initialization (U#5INIT) with the following exceptions:

• The utility punches a SCRATCH control statement for each unscratched
scannable output data set, prior to reinitializing the COBI index
and JCL data sets .•

• The space for the reinitiaiized input data sets may be either old or
new. If old space is used (for example, if the current data set is
to be reinitialized), the space does not have to be empty.. If new
space is used, the amount of space does not have to be equal to the
amount allocated when the data sets were initialized.

• The COBI input data sets are expected to have an end-of-file record
at the beginning of the data set.. If this record is not found by
U#5RINIT, it may indicate either that the jobs in the data set have
not yet been read by the COBI reader or that the space is newly
allocated.. If the space is not newly allocated, a message is issued
to the system operator requesting him to either continue or
terminate U#SRINIT processing.

Except for the above, the requirements for reinitialization are
identical to those for initialization. That is, newly allocated space
must be on a 2314 or 2319 volume, have only one extent, and not request
a secondary allocation- If an error is detected during U#SRINIT
processing, the COBI index and COBI JCL data sets are generally invalid
for a rerun of U#SRINIT.. The correct recovery procedure is to run
U#5INIT to initialize new data sets.

67

JCL Requirements

The process of reinitializing the COB! data sets consists of two
steps. The first step executes the U#5RINIT utility, which performs the
actual reinitialization and processes the unscratched scannable output
data sets. The second step executes the JOBFIND function of the data
b~se utility, which updates the user group catalogs according to the
reinitialized COB! index,.

Executing U#5RINIT: The COBI index, JCL data set, and the two input
data sets must be defined by DD statements with the names CBNDX, CBJCL,
CBSYSINA, and CBSYSINB, respectively. The system printer, which is used
to print any messages resulting from utility processing, must be defined
by a SYSPRINT DD statement. Finally, the data set for the SCRATCH
statements must be defined by a SYSPUNCH DD statement.

The complete JCL required to execute the U#5RINIT utility step is as
follows:

//ANYNAME
//JOBLIB
//STEPNAME
//CBNDX
//CBJCL
//CBSYSINA
//
//
//CBSYSINB
//
//
//SYSPRINT
//SYSPUNCH

JOB
DD
EXEC
DD
DD
DD

DD

DD
DD

DSN=qualifier.JOBLIB,DISP=SBR
PGM=U#5RINIT,REGION=88K
DSN=qualifier.CBNDX,DISP=OLD
DSN=qualifier.CBJCL,DISP=OLD
DSN=qualifier.CBSYSINA,DISP=dispositionC,
DCB=BLKSIZE=yyyy1C,UNIT=2314,VOL=SER=volid3,
SPACE=(CYL,(nn),,CONTIG)]
DSN=qualifier.CBSYSINB,DISP=disposition[,
DCB=BLKSIZE=yyyy1(,UNIT=2314,VOL=SER=volid4,
SPACE=(CYL,(nn),,CONTIG)]
SYSOUT=A
SYSOUT=B

where

68

qualifier is the high level index qualifier assigned to CALL-OS
data sets during system build,.

disposition specifies the disposition for the input data sets,. If an
old data set is used, the disposition is OLD; with the
exception of the DCB parameter on the DD statements for
the input data sets, all the information enclosed in
brackets must be omitted. If a new data set is used, the
disposition is (NEW,CATLG,DELETEY,-with the exception of
the DCB parameter, all the information enclosed in
brackets must be specified as shown. The DCB parameter
may be specified for either old .Q!: ~ input data sets.

volid3 are the volume serial numbers of the volumes which
volid4 are to contain the newly allocated space for the input

data sets. Both data sets may be on the same volume or
on different volumes. These parameters are not specified
if an old data set is used.

nn is the number of cylinders to be allocated to each input
data set. This number and its associated SPACE parameter
is specified only if new space is to be used for the
input data sets; the number specified must be the same
for both input data sets.

yyyy is optional and specifies the blocksize for the input
data sets; this parameter may be used for either old or
new space. The blocksize specified must be the same for '~ ..

both input data sets, a multiple of 80, and within the
range from 400 through 3200; if any of these conditions
are not met, reinitialization terminates,. If the DCB
parameter is not specified, a blocksize of 3200 bytes is
used .•

Executing the JOBFIND Function: The second step necessary for
reinitializing the COBI data sets is the execution of the JOBFIND
function of the data base utility.. Since this step is executed after
the COBI index has been reinitialized, it causes all COBI job entries in
the user group catalogs to be deleted.. This step must be executed for
all user groups associated with the system for which the COBI data sets
were reinitialized. This includes any user groups from either cluster
which may have been active during any session of this particular CALL-OS
system during which submission of COBI jobs was permitted.. Therefore,
the user group DD statements may define user groups from both clusters,
with identical, overlapping, or nonoverlapping user number ranges.. All
data sets associated with a user group must be present. The
requirements for execution of the data base utility (DIBCADBU) are
described in detail in the section on the utility in the section
"Creating and Maintaining the Data Base".

Example

The following example shows the two steps required to reinitialize
the four COBI data sets:

//RINIT
//JOBLIB
//STEP1
//CBNDX
//CBJCL
//CBSYSINA
//CBSYSINB
//SYSPRINT
//SYSPUNCH
//STEP2
//INDEX
//SYSPRINT
//CBNDX
//SYSGRPOO
//IBMIBMOO
//IBMIBM01
//IBMIBM02
//IBMIBM03
//REGREG40
//SYSIN
./ JOBFIND
./ JOBFIND
/*

JOB
DD DSN=OSRTS.JOBLIB,DISP=SHR
EXEC PGM=U#5RINIT,REGION=88K
DD DSN=OSRTS.CBNDX,DlSP=OLD
DD DSN=OSRTS.CBJCL,DISP=OLD
DD DSN=OSRTS.CBSYSINA,DISP=OLD
DD DSN=OSRTS.CBSYSINB,DISP=OLD
DD SYSOUT=A
DD SYSOUT=B
EXEC PGM=DIBCADBU,REGION=96K
DD DSN=OSRTS.INDEX,DISP=SHR
DD SY SO UT= A
DD DSN=OSRTS.CBNDX,DISP=OLD
DD DSN=OSRTS~SYSGRPOO,DISP=SHR

DD DSN=OSRTS.lBMIBMOO,DISP=OLD
DD DSN=OSRTS,.IBMIBM01,DISP=OLD
DD DSN=OSRTS,.IBMIBM02,DISP=OLD
DD DSN=OSRTS.IBMIBM03,DISP=OLD
DD DSN=OSRTS,.REGREG40,DISP=OLD
DD *

USRGROUP=IBMIBM,CLUSTER=1,PASSWORD=COMMCON
USRGROUP=REGREG,CLUSTER=2,PASSWORD=COMMCON

U#SPURGE - PURGING UNFINISHED JOBS FROM THE COBI DATA SETS

This utility purges the COBI data sets by removing all r.eferences to
COBI jobs which are in an unfinished state.. COBI jobs may enter this
state when a system failure occurs while the COBI reader is reading one
of the COBI input data sets.. To make the system operational after such
a failure, the operator must reformat the OS/360 system job queue,
thereby destroying all OS/360 references to COBI jobs not yet finished .•
However, references to these unfinished jobs remain in the COBI data
sets arid in the catalogs of the submitting users .•

69

The purge process removes references to unfinished COB! jobs from the
COBI data sets, as well as the user group catalogs. The COBI data sets
should be purged after the job queue has been reformatted and the OS/360
system is again operational. However, before the purge function can be
executed successfully, the following conditions must be met: ',

1. The CBSYSINA and CBSYSINB data sets have been read by the COBI
reader progrom until both data sets have the EOF record in the
first record.

2. All the jobs read in by the COBI reader have been processed by
OS/360 and have completed execution .•

3. The COBI writer program has been executed and copied the
necessary information into the COBI JCL data set, converted COBI
job output to the appropriate OS/360 output class, and indicated
in the COBI index that all the jobs thus processed are complete.

When these three conditions are met, the only COBI index job entries
left in an unfinished state are those for which the job queue
information was destroyed during reformatting. These job entries and
their associated data sets may then be removed from the system by the
purge process.

JCL Requirements

The process of purging unfinished jobs from the COBI data sets
consists of two steps.. The first step executes the U#SPURGE utility,
which removes the entries for the unfinished jobs from the COBI data
sets and scratches any data sets associated with those jobs. The second
step executes the JOBFIND function of the data base utility, which
deletes the references to the unfinished jobs from the user group
catalogs affected.

Executing U#SPURGE: The COBI index, the two input data sets, and the
system printer must be defined by DD statements with the names CBNDX,
CBSYSINA, CBSYSINB, and SYSPRINT, respectively.. Finally, all volumes
which could contain scannable output data sets associated with any
incomplete jobs must be mounted and defined by SCANxx DD statements .•
. The complete JCL required to execute the U#SPURGE utility step is as
follows:

//ANYNAME
//JOBLIB
//STEPNAME
//CBNDX
//CBSYSINA
//CBSYSINB
//SYSPRINT
//SCANxx

where

qualifier

xx

70

JOB
DD
EXEC
DD
DD
DD
DD
DD

DSN=qualifier.JOBLIB,DISP=SBR
PGM=U#5PURGE,REGION=88K
DSN=qualifier.CBNDX,DISP=OLD
DSN=qualifier.CBSYSINA,DISP=OLD
DSN=qual.ifier .• CBSYSINB,DISP=OLD
SY SO UT= A
VOL=SER=volidn,UNIT=2314,DISP=OLD

is the high level index qualifier assigned to CALL-OS
data sets during system build.

identifies a DD statement which defines a volume which
may contain scannable output data sets associated with
unfinished jobs. one or more SCANxx DD statements must
be supplied1 the SCANxx statements must be identical to
the SCANxx DD statements in the CALL-OS startup deck for

..

(

volidn

the session which was terminated abnormally. No more
than 100 SCANxx DD statements may be supplied.

is the volume serial number of a volume which may contain
scannable output data sets associated with unfinished
jobs.. All volumes upon which scannable output data sets
were written must be mounted and defined by SCANxx DD
statements.

Executing the JOBFIND Function: The second step necessary for purging
unfinished jobs from the COBI data sets is the execution of the JOBFIND
function of the data base utility.. Since this step is executed after
any reference to unfinished jobs have been removed from the COBI data
sets, it causes all references to such jobs to be deleted from the user
group catalogs.. This step must be executed for all user groups which
were active in the CALL-OS system in execution when the OS/360 system
terminated abnormally. Therefore, the user group DD statements must be
identical to those in the CALL-OS .startup deck for this session.. The
requirements for execution of the data base utility (DIBCADBU) are
described in detail in the section on the utility in the section
•creating and Maintaining the Data Base•.

Example

The following example shows the two steps required to purge
unfinished COBI jobs from the CALL-OS system:

//PURGE
//JOBLIB
//STEP1
//CBNDX
//CBSYSINA
//CBSYSINB
//SYSPRINT
//SCAN01
//SCAN05
//STEP2
//INDEX
//SYSPRINT
//CBNDX
//SYSGRPOO
//DEVDEVOO
//DEVDEV01
//ENGENG40
//ENGENG41
//SYSIN
./ JOBFIND
./ JOBFIND
/*

JOB
DD DSN=OSRTS .• JOBLIB, DISP=SHR
EXEC PGM=U#5PURGE,REGION=88K
DD DSN=OSRTS .• CBNDX, DISP=OLD
DD DSN=OSRTS.CBSYSINA,DISP=OLD
DD DSN=OSRTS.CBSYSINB,DISP=OLD
DD SY SO UT= A
DD DISP=OLD,UNIT=2314,VOL=SER=222222
DD DISP=OLD,UNIT=2314,VOL=SER=COBI01
EXEC PGM=DIBCADBU,REGION=96K
DD DSN=OSRTS.INDEX,DISP=SHR
-DD SYSOUT=A
DD DSN=OSRTS.CBNDX,DISP=OLD
DD DSN=OSRTS.SYSGRPOO,DISP=SHR
DD DSN=OSRTS.DEVDEVOO,DISP=OLD
DD DSN=OSRTS.DEVDEV01,DISP=OLD
DD DSN=OSRTS.ENGENG40,DISP=OLD
DD DSN=OSRTS.ENGENG41,DISP=OLD
DD *

USRGROUP=DEVDEV,CLUSTER=1,PASSWORD=COMMCON
USRGROUP=ENGENG,CLUSTER=2,PASSWORD=COMMCON

71

DESIGNING THE SYSTEM

Before the process of system installation is undertaken, a decision
must have been made by the user with respect to the following items:

• System configuration required to support CALL-OS

• Amount of disk storage facility required to fully support the
installation

• Amount of core storage required to fully support the installation

• Performance level required by CALL-OS

The requirements of a given installation environment, coupled with
the system performance level desired by the user, determine the proper
amounts of the i terns mentioned above.. Adequate planning and analysis,
in light of these factors, is therefore required .•

SYSTEM CONFIGURATION

The selection of a hardware configuration for CALL-OS is largely
determined by the requirements of OS/360, CALL-OS, and the application
requirements of the specific installation.. Some of the factors involved
in determining those needs are:

• Maximum number of terminals having concurrent access to CALL-OS

• Expected levels of performance

• Desired amount of concurrent activity in other OS/360 task areas

The total number of concurrently active terminal lines that can be
supported by CALL-OS with suitable response times is directly
proportional to the mix of terminal user applications actively on the
system.. This number may be further affected by other concurrently
active OS/360 task areas as well as by the size and priority of the
CALL-OS task area.

MINIMUM MACHINE C0NFIGURATION

The configuration selected is comprised of the central processing
unit and the peripheral equipment required for ou-line operation of CALL­
os. The minimum central processing unit on which CALL-OS can be
executed is any one of the following:

• system/360 Model 50HG

• System/370 Model 145H (384K) with:

3345 Main Storage Frame
4901 Main Storage Frame Adapter
3046 Power storage 3910 Extended Precision Floating-Point Feature
(optional feature, but no charge)

• System/370 Model 155HG

The minimum peripheral eguipment required for online operation of
CALL-OS with each CPU is:

72

(

• System/360 Model 50HG:

One selector channel
One IBM 2314 storage control Model A1
One IBM 2312 Disk Storage Model A1
One IBM 2702 or 2703 Transmission Control
Two terminal consoles (see below)

• system/370 Model 145H (384K, as defined above>

One IBM 2319 Disk Storage Facility Model A1
One IBM Integrated File Adapter feature (#4650)
One IBM 2702 or 2703 Transmission Control
Two terminal consoles (see below)

• System/370 Model 155HG:

one block multiplexor channel
One IBM 2314 Disk storage Control Model A1
One IBM 2312 Disk Storage Model A1
One IBM 2702 or 2703 Transmission Control
Two terminal consoles (see below)

The two terminal consoles are used for system communication. One
serves as a command console from which the operator issues special
system commands.. The other serves as a communications console for
recording system error messages and activity. The OS/360 system
operator's console is used to initialize CAIW-OS and may serve as the
communicat.ions console, thus reducing to one the number of terminal
consoles required. CALL-OS supports the following terminals:

• IBM 2741 communications Terminal (Correspondence or EBCD)

• Teletype Units,* Type 33 or 35

Any of the above terminals can be used as a command console,
communications console, or a user terminal.. No more than 255 terminals
(including the command and communications consoles) can be
simultaneously online with CALL-OS .•

In addition to the devices named in the preceding text, the utilities
used for offline system support and maintenance require extra peripheral
equipment. Depending on the utilities to be used, the following may be
needed:

• One printer output unit, OS/360~supported, with 120 print positions
and graphics equivalent to the PN print arrangement

• one punched output unit <see OS/360 minimum system requirements)

• One card input unit (see OS/360 minimum system requirements)

• One OS/360-supported magnetic tape unit (any model)

Any peripheral devices, in addition to those given above, will be
supported within the limits .of OS/360 support.. Specifically, CALL-OS
can use additional selector channels and any appropriate 2314 Direct
Access Storage Facility A or B Series configuration-

The relationships of hardware devices to CALL-OS and OS/360 are
depicted in Figure 19.. Further details of system configuration can be
found in CALL-OS System Description Manual.

*Trademark of the TELETY~E Corporation

73

MINIMUM STORAGE REQUIREMENTS

The minimum task area size required for use of CALL-OS is 224K. This
allows a configuration of ten lines with BASIC and FORTRAN compilers and
an object program size of 52K. A typical BASIC language program of 300
statements could be expected to require 52K. Additional task area space
is required for use of the PL/I compiler or the CALL-OS Batch Interface
(COBI) facility, larger user programs, larger terminal networks, or
improved performance in a large network environment. For more
information, see •core Storage Requirements• later in this section,.

I
I
I
I
t
I
I

Card Reader

2314 Direct Access
Storage Facility,

Model Al

I I L _______ _J

The two types of user terminals shown
here represent two or more users.

05/360

CALL-OS

Card Punch

--------,
Timer

I
I
I

___ _J

I
I
I
I
I
I
I
I

2702/2703 _J
Transmission
Control Unit

Command and communications consoles
(one each) may be either 2741 or TTY.

Figure 19. CALL-OS system hardware configuration

DATA SET ALLOCATION

A primary consideration attending the installation of CALL-OS is a
well-planned distribution of disk storage allocation. Performance is
affected much more significantly by disk layout, and the availability of
a dedicated channel, than it is by disk storage capacity. The
minimization of disk seek time, made possible by judicious data set
allocation, is one of the keys to successful system installation.

CALL-OS data sets fall into two general categories: high usage,
which consist of the work/swap, overlay, and compiler data sets1 and low

74

usage, which consist of the index, system group, and user group data
sets. High-usage data sets account for 70 to 80 percent of all disk
accesses. These particular data sets are referred to as •central
cylinder functions•, because they should be placed physically in the
center of the disk pack, while the user program save area and all other
data sets are placed on either the inside or the outside of the pack .•

Figure 20 illustrates the central cylinder concept as viewed from the
top of a disk pack.. Allocation of high-usage data sets begins with
cylinder 100 and continues outward in either direction. For example,
cylinder 99 and cylinder 101, cylinder 98 and cylinder 102, and so on.

CENTRAL CYLINDER AREA "SAVE" AREAS
1. Work/Swap Area
2. Compilers
3. System Group
4. Overlay Modules

1. Index
2. Allocation Record
3. Equivalency Files
4. Catalogs
5. Directories
6. Program Files
7. Data Files
8. File Descriptor Records

Figure 20. The central cylinder concept (top view>

The central cylinder functions contain six data sets, plus N
work/swap data sets where N is the number of packs assigned to CALL-OS .•
The work/swap data sets should be allocated evenly across all packs.
Each communications line supported by the system requires one cylinder:

75

hence, the number of cy1inders of work/swap a11ocated on each pack
shou1d be the number of termina1s divided by the number of packs .•

The fo11owing tab1es indicate how the centra1 cy1inders shou1d be
1aid out a$ a function of the number of packs. The physica1 p1acement
of data sets within a group shou1d a1so be as shown:

76

One Pack

(1) PLI
(2) PL2
(3) OVERLAY
(4) WORK/SWAP (physical center)
(5) BASIC
(6) FORTRAN
(7) SYSGROUP,

Two Packs

Pack #1

(1) BASIC
(2) WORK/SWAP
(3) PLI
(4) PL2

Three Packs

Pack #1

(1) WORK/SWAP
(2) PLI
(3) PL2

Four Packs

Pack #1

(1) BASIC
(2) WORK/SWAP

Pack #4

(1) SYS GROUP
(2) WORK/SWAP
(3) FORTRAN

Five Packs

Pack #1

(1) BASIC
(2) WORK/SWAP

Pack #4

(1) SYSGROUP
(2) WORK/SWAP

Pack #2

(1) OVERLAY
(2) WORK/SWAP
(3) SYSGROUP
(4) FORTRAN

Pack #2

(1) OVERLAY
(2) WORK/SWAP
(3) BASIC

Pack #2

(1) OVERLAY
(2) WORK/SWAP

Pack #2

(1) OVERLAY
(2) WORK/SWAP

Pack #5

(1) PLI
(2) PL2
(3) WORK/SWAP

Pack #3

(1) FORTRAN
(2) WORK/SWAP
(3) SYSGROUP

Pack #3

(1) WORK/SWAP
(2) PLI
(3) PL2

Pack #3

(1) FORTRAN
(2) WORK/SWAP

Six Packs

Pack #1 Pack #2 Pack #3

(1) BASIC (1) OVERLAY (1) FORTRAN
(2) WORK/SWAP (2) WORK/SWAP (2) WORK/SWAP

Pack #4 Pack #5 Pack #6

(1) SYSGROUP (1) WORK/SWAP (1) PLI
(2) WORK/SWAP (2) PL2

(3) WORK/SWAP

For any configuration above six packs, the first six packs appear as
above; all other packs contain only work/swap data sets .•

The preceding configurations were arrived at by ranking the data sets
as to number of I/O requests, most frequent to least frequent, as
follows:

(1) WORK/SWAP
(2) OVERLAY
(3) BASIC
(4) SYSGROUP
(5) FORTRAN
(6) PLI
(7) PL2

If an installation finds that its data set usage is other than that
described, appropriate substitutions should be made.. Some conditions
which affect the priority sequence are:

1. Making resident all high-usage overlays (for example, modules
required for run, list, load, and save functions. This greatly
reduces the usage of the overlay data set, shifting it from
second place to probably last place in the priority list.

2. Having the majority of the terminal users with a language
orientation other than that given in the priority sequence
(BASIC, FORTRAN, and then PL/I). For example, some installations

may have most terminal users using only FORTRAN, in which case
the FORTRAN data set would shift from fifth position to third
position.

The foregoing discussion assumes dedicated packs, even though
dedication is not required. If a user installation chooses not to have
dedicated packs, then the high activity data sets should be placed on
packs with relatively little other activity .•

The placement of data sets is important only as a function of the
number of users.. As the number of users increases, the data base should
be spread over more volumes'"

CORE STORAGE REQUIREMENTS

One approach to system configuration is to determine what other tasks
are to be run concurrently with the CALL~os application, how much core
is available for a task area, and the nature of the CALL-OS jobs to be
performed.. After a decision is made regarding those modules which
should be resident, it is possible to determine the number of
communications lines that could be brought up during system
initialization; this determination is based on the amount of storage
remaining in the CALL-OS task area. Another approach is to commence

77

with those CALL-OS jobs which are to be run with acceptable response
times, and the number of terminals required to be supported, and then
determine the task area size necessary to accomplish these objectives.
The rest of this section describes how to compute the task area size,
the way storage is allocated within the task area, module residency
considerations, and hierarchy support considerations. The section ends
with several examples of core requirements .•

COMPUTING TASK AREA SIZE

As an aid in arriving at the desireable task area size, an analysis
of the core requirements for the CALL-OS system configuration desired
should be made.. The core requirements are divided into four catagories:

• Basic fixed core requirement, which is that storage required for the
CALL-OS nucleus; the actual amount required depends on whether COBI
is used

• Variable core requirements, which depend on those items that vary
from system to system; for example, the number of lines, buffers,
the types of terminals, and, if COBI is used, the number of
scannable data sets and the volumes on which they reside

• Optional core requirements, which depend on the particular system
configuration chosen; for example, the number of modules made
resident, the compilers used, and the size of the user program area

• OS/360 core requirements, which consist of the core needed by OS/360
routines and control blocks

Once the CALL-OS task area size bas been computed, it is then
possible to determine the amount of storage available for batch
processing. All core requirements given are decimal approximations.

78

• Basic Fixed Core Requirements (RTOS1) - Choose one

CALL-OS Nucleus
CALL-OS/COBI Nucleus

• variable core Requirements

Each Line
Each Input Buffer (Pot)
<Four pots for each line with a

minimum of 60 pots)
Each output Buffer
(One buffer for each set of three lines

with a minimum of five buffers>
Each User or System Group Data Set
Each Terminal Type
(L=number of lines of this type)
Each Translate Table
(One table for each terminal type)
Each work/swap Data set

• Additional variable Core Requirements for COBI

Volume Identification Table
(M=number of entries in

the table)
Enqueue/Dequeue Table
(N=number of users scanning data sets

at any one time; the default is
one for every ten lines with
a minimum of two users>

56,700
65,600

512
24

256

132
120+4L

512

120

12*M

4* (N+4)

,......._ __

DCB plus its Work Area
(N is as previously defined)
DEBs - in MFT only
(N is as previously defined)

• Optional Core Requirements

overlay Buffer (see note>
With COBI
Without COBI

Co1opiler (choose largest in system)
BASIC
FORTRAN
PL/I

Sort Buff er
User Program Area (choose one)

Minimum size
(Pmin=size of largest object

program)
Medium size - this allows an

old job area of
6CJ,,632 bytes

(Pmax=114,,688 bytes)
Maximum size

160*N

100*N

7,,260
5,,700

82,,000
88,,000

106,,000
14,,400

Pmin

1.6Pmax

3Pmax

Note: The size of the overlay buffer is based on the size of
the largest potentially nonresident module. If COBI
is used,, the largest potentially nonresident module
is M#SUB; if COBI is not used, the largest module is
M#CAT Csee •Module Residency Considerations•). If the
module is resident,, the overlay buffer size required
decreases. However,, the total core required by the
resident modules must be added to the task area size .•

• Operating System Core Requirements

ABEND
(To ensure complete dumps)
subpools

ALLOCATION OF STORAGE WITHIN THE TASK AREA

6,000 - MVT
8,,000 - MFT
6,,000

The CALL-OS task area core is allocated by the initialization
program. First, the resident modules,, buffers, and the compiler area
are allocated.. The remainder of the task area is used for the user
program area, which is divided between the new job area and the old job
area. The following algorithm is used .•

• The first 56 units (one unit= 2048 bytes), or 114,,688 bytes, are
allocated to the new job area.

• The next 34 units, or 69,632 bytes, are allocated to the old job
area.

• The next 44 units are allocated, one to each of the two subareas,
until the old job area reaches 56 units .•

• Space is then given to the new job area until it reaches 112 units .•

sizes of the new and old job areas are printed on the OS/360 system
operator's console when the initialization process is completed.

After the new job area reaches 112 units, any storage left in the
task area remains unused by CALL-OS.. Therefore, for efficient use of

79

storage within the entire system, it is important that the task area
size be assigned accurately.

MODULE RESIDENCY CONSIDERATIONS

To provide flexibility in the configuration of core storage used by
CALL-OS, certain modules used by the system can be made either resident
or nonresident. The residency option is controlled by the RESMODS and
OVLY DD statements.. The RESMODS DD statement specifies a data set
containing a list of those modules which are to be made resident during
the current system run. Module names which can appear in this list and
their approximate sizes are:

Modules Size <Dec.. B~tes >

M#ABSUB 1280 <see note>
M#ACCT 700
M#CANCL 2100 Csee note)
M#CAT 5700
M#CBST 7240 (see note)
M#CCBA 400
M#CCCO 900 (see note)
M#CCDA 400
M#CCDI 1500
M#CCME 400
M#CCOF 1200
M#CCRE 4700
M#CCST 1000
M#CCTE 2000
M#CCUS 600
M#CCVA 1500
M#CCWA 600
M#DIR 1600
M#ECHO 500
M#EDIT 2600
M#ESCN 3100
M#HELi? 200
M#IJCL 700 <see note)
M#ISCAN 6300 (see note>
M#ISUB 4600 <see note)
M#JCL 6100 <see note)
M#LDRD 600
M#LIB 1600
M#LIST 500
M#LOAD 500
M#LOG 2000
M#MREM 3100
M#MWSC 1800
M#NAME 200
M#NOTFY 1100 <see note)
M#OBJR 700
M#PASS 700
M#RDSO 120.0
M#RUN 800
M#SAVE 500
M#SCAN 6500 <see note)
M#SCR 3600 <see note)
M#SORT 1300
M#STAT 600
M#STOR 1700
M#SUB 7260 (see note)
M#TIME 800
M#WEAV 600
M#WID 400

80

(

M#WRSO
T#TTYTAB
T#27CTAB
T#27ETAB

1600
512
512
512

Note: This is a COBI module and should not be made resident if COBI
is not to be used in this session of CALL-OS.

Four members of SYS1,.PROCLIB are included with the system which can
be used to provide a variety of resident configurations. The functions
of these members are:

RTOSALL

RTOSNONE --

RTOSLLRS --

RTOSUSER --

All modules are made resident. (Actual list specifies
ALLRES .• > For an all-resident system which is desired
to be loaded into LCS, ALLRESC1> may be specified .•

All potentially nonresident modules are made
nonresident. (Actual list specifies NONRES ..)

The modules associated with the load, list, run, and
save functions are made resident. These modules are
M#CAT, M#DIR, M#LDRD, M#LIST, M#LOAD, M#RDSO, M#RUN,
M#SAVE, M#SORT, and M#WRSO.

All modules are made resident except for those
modules associated with·operator commands (that is,
modules whose names begin with M#CC).

If a module is to be made nonresident, it is read from the JOBLIB
data set during system initialization and rewritten into the overlay
data set for later retrieval by the system executive. If the OVLY DD
statement is present, but no RESMODS DD statement is provided, a
nonresident system is assumed.. If no OVLY DD statement is provided, a
totally resident system is assumed,.

The members listed provide a certain amount of flexibility in trading
space and time. Finally, note that the size of the overlay buffer is
based on the size of the largest module to be nonresident. If all
modules are resident,. no overlay buffer is allocated.

LCS AND HIERARCHY SUPPORT CONSIDERATIONS

OS/360 Hierarchy support may be used to place portions of CALL-OS in
the IBM 2361 Large Capacity Storage CLCS).. This support is implemented
in three areas,. as follows:

1. The linkage editor can be employed to spread the various parts of
the system executive into the two hierarchies provided. For a
description of this process, refer to the publication IBM
system/360 Operating system: Linkage Editor and Loader,.

2. To place modules which are potentially nonresident in hierarchy
(H-1) storage,. the module name in the RESMODS list can be
followed by a hierarchy indicator in parentheses.. Thus,.
M#LOAD(1) would cause M#LOAD to be placed in hierarchy 1.
M#LOAD(O) can also be coded for hierarchy zero,. but a zero value
is automatically assumed if no indicator is present. Note that
even when no OVLY DD statement is provided,. the RESMODS data set
is still read <since a totally resident system is assumed) to
ensure the processing of any hierarchy indicators ..

3. With the LCSRES parameter in the startup deck, any or all of the
nine dynamic areas of core storage obtained by CALL•OS during
system initialization can be placed in hierarchy 1.. See the

81

description of the LCSRES parameter in the section "Initializing
the system.•

The following points should be carefully considered when hierarchy
options are used:

1. No attempt is made by the system to obtain core from another
hierarchy when no core remains in the specified hierarchy,.

2. Error messages printed by the system indicate the system
component for which storage allocation has failed and the
initialization process has stopped,.

3. It is anticipated that the user may have to try various task area
sizes before he obtains the exact configuration desired.

4. To run CALL-OS in either an MFT partition or an MVT region which
is defined entirely in B-1 storage, no LCS options should be
specified, since requests for H•O storage in such a task area are
filled from the H-1 storage available.

No general statements may be made regarding the levels of performance
attained when various system components are placed in hierarchy 1.. It
is assumed that the user employing this support has carefully studied
both his own response requirements and the functions of the various
CALL-OS system components, and that, furthermore, his selection of
portions of the system for placement in H-1 storage is based on such a
study. Hierarchy support is provided so that users planning to operate
with such a configuration can easily place selected components in
hierarchy 1 without being required to modify CALL-OS,.

EXAMPLEs OF CORE REQUIREMENTS

This subsection contains examples of core requirements for several
CALL-OS systems.. The system configurations are not meant to be typical
systems, but were chosen for their value as examples. The figures used
are those given in the preceding subsections.

Example 1

This example shows the small CALL-OS configuration with a task area
size of approximately 219K. This system supports ten lines, one
terminal type, the BASIC and FORTRAN compilers, and the minimum user
program area size. The care requirements are as follows:

82

Fixed Core Requirement
10 Lines
60 Input Buffers
4 output Buffers
1 User Group Data Set
1 System Group Data Set
1 Terminal Type
1 Translate Table
1 work/swap Data set
overlay Buff er
BASIC and FORTRAN Compilers
User Program Area

{minimum size)
Operating System Core Requirements
TOTAL

56,700
5,120
1,440
1,280

132
132
160
512
120

5,700
88,,000

53,,248
12,000

224,544

Example 2

The CALL-OS system in this example supports 25 lines, one terminal
type, all three compilers, and the medium user program area size,. The
core requirements are as follows:

Example 3

Fixed Core Requirement
25 Lines
100 Input Buffers
9 Output Buffers
2 User Group Data sets
1 System Group Data set
1 Terminal Type
1 Translate Table
1 Work/Swap Data Set
overlay Buffer
BASIC, FORTRAN, and PL/I Compilers
User Program Area (112K program size,

medium size)
Operating System Core Requirements
TOTAL

56,700
12,800
2,400
2,304

264
132
220
512
120

5,700
106,000

182,400
12,000

381,552

The CALL-OS system in this example supports 60 lines, three terminal
types, all three compilers, and a user program area size of 2Pmax,. In
addition, the modules for the load, list, run, and save functions are
made resident. The core requirements are as follows:

Example 4

Fixed Core Requirement
60 Lines
240 Input Buffers
20 Output Buffers
5 User Group Data sets
2 system Group Data Sets
3 Terminal Types
3 Translate Tables
2 Work/Swap Data Sets
overlay Buffer
Resident load, list, save, and run

functions
BASIC, FORTRAN, and PL/I Compilers
Sort Buff er
User Program Area (2Pmax)
Operating System Core Requirements
TOTAL

56,700
30,720

5,760
5,120

660
264
600

1,536
240

4,700

14,200
106,000

14,400
229,376

12,000
482,276

Note: --- Since M#CAT is to be made resident, the size of the
overlay buffer decreases to the size of the next -
largest nonresident module, M#CCRE,.

The CALL-OS system in this example uses the COB! facility under MVT
and supports 100 lines, three terminal types, all three compilers, and
the maximum user program area size.. The COB! volume identification
table has a maximum of ten entries.. (Note that the number of entries is
not necessarily the number of scannable data set volumes mounted for
this session; rather, this number must be the maximum number of such
volumes mounted for this or any other previous session.) The number of
users permitted to scan data sets at any one time is estimated as one
per ten lines, or in this example, ten.. In addition, the modules for
the load, list, save, and run functions are made resident.. The core
requirements are as, follows:

83

Fixed Core Requirement
100 Lines
400 Input Buffers
34 Output Buffers
10 User Group Data Sets
2 System Group Data Sets
3 Terminal Types
3 Translate Tables
4 Work/Swap Data Sets
Volume Identification Table (M=10>
Enqueue/Dequeue Table (N=10)
DCB plus work Area (N=10)
overlay Buffer
Resident load, list, save, and run

functions
BASIC, FORTRAN, and PL/I compilers
Sort Buff er
User Program Area(JPmax, maximum size)
Operating System Core Requirements
TOTAL .

65,600
51,200

9,600
8, 704
1,320

264
760

1,536
480
120

56
1,600
7,260

14,200
106,000

14,400
344,064

12,000
639,164

SUMMARY OF PERFORMANCE CONSIDERATIONS

The following is a list, in order of relative importance, of
suggestions that will improve system performance.. The items concerning
disk channel and data set attributes are important only in relationship
to the amount of background work activity .•

1. Make CALL-OS the highest-priority task area .•

2. Allocate enough core so that the user program area is at least 180K~

3. Make resident the modules that control the run, load, list, and
save functions.

4. Allocate disk channels so that the CALL-OS task area has a
dedicated channel.

5. Plan swap, overlay, and compiler data sets (central cylinder
function) in the physical center of the packs, and distribute
them evenly over the number of drives available .•

6. Allocate a sort buffer.

7. Increase the number of 256-byte buffers if queues seem to occur
regularly <examine *REPORT output)

8. Place the user group data sets on either side of the central
cylinder functions, and distribute them evenly over the number of
drives available .•

9. Allocate two dedicated channels with data sets appropriately
distributed .•

10. Allocate enough core so that the user program area is 336K.

11. Make resident all modules that process user commands .•

12. Make all modules resident.

13. Allocate more dedicated channels .•

14.

84

If COBI is not being used, adjust the background time-slice
algorithm to give 100~ to CALL-OS. This is done with the *BATCH
command, as described in the publication CALL-OS Operator's Manual.

•

BUILDING 'IHE SYSTEM

The process of building a system with which to run CALL-OS may
require an OS/360 system generation, as well as the execution of certain
programs which actually build the CALL-OS system,. This section
summarizes the system generation requirements, as they apply to CALL-OS,
and describes in detail the actual CALL-OS system build process .•

Note: If COBI is to be used and a new OS/360 system is to be generated,
the user should read "Modification of the IEEVLNKT Load Module"
in the section "CALL-OS Batch Interface Facility•,. The modified
load module may be incorporated into the system during its
generation.

OS/360 SYSTEM GENERATION REQUIREMENTS AND CONSIDERATIONS

This subsection explains the operands that must be included in the
system generation macro instructions when an operating system is
generated for the support of CALL-OS. Also mentioned are those operands
which constitute a basic requirement for an operating system regardless
of CALL-OS, but whose values should be considered in the light of CALL­
os. Only those macro instructions and operands directly related to
CALL-OS are mentioned,. For other macro instructions and operands
required for operating system generation, see IBM System/360 Operating
System: System Generation.

CTRLPROG MACRO INSTRUCTION

The MAXIO operand in the CTRLPROG macro instruction represents the
maximum number of I/O operations that can be simultaneously processed by
the operating system,. IOS support for terminals and the 2314 or 2319
storage facility is required by the operating system to support CALL-OS,.
A recommended minimum value for this parameter should be N+N/10, where N
is the number of lines supported, plus one for every four direct access
devices on the system.

Note: The value specified in the MAXIO operand determines the number of
request elements (RQEs) generated in the OS/360 operating system.
If this number is too small, it is possible to exhaust the RQE
queue, thereby causing unpredictable system errors,.

With an MFT system, the amount of storage allocated to the system
queue area is specified in the SYSQUE parameter. If COBI is to be used
with CALL-OS, an additional amount must be specified in this parameter
sufficient to allow two subtasks, as well as the normal system queue
area requirements,.

Because CALL-OS performs its own time slicing operations, it cannot
be run in a task area for which time slicing has been specified .•
Therefore, care must be taken to ensure that the TMSLICE parameter is
not specified either for the partition in which CALL-OS is run on an MFT
system or for the priority under which CALL-OS is run on an MVT system.

IOCONTRL MACRO INSTRUCTlON

IOCONTRL identifies to the operating system the type of transmission
control unit (TCU) to be attached to a system/360 channel. Specify one
IOCONTRL macro for each TCU to be operated under CALL-OS,.

85

If the user wishes to specify an .IBM 2702 TCU containing the 31-line
expansion feature, a separate IOCONTRL macro must be coded for each of
the two sets of lines .•

IODEVICE MACRO INSTRUCTION

IODEVICE describes to the operating system the characteristics of an
input/output device and its operating system requirements. For CALL-OS,
IODEVICE identifies the type of terminal (IBM 2741 or TTY) that is
connected to each line. The operands that are associated with this
macro, and which are pertinent to CALL-OS, are discussed below:

UNr.r=type

ADDRESS=address

ADAPTER=type

SETADDR=value

Specifies the type of terminal that is to
communicate with the computer over the line
address given by the ADI>RESS operand.. Val i.d
parameters for terminals to be used with CALL-OS
are 2741 and TWX.

Specifies the three-digit address of the line
over which the type of terminal given in the UNIT
parameter is to communicate.. Valid parameters
are within the range 000-6FF, inclusive.

Specifies the type of TCU terminal control and
terminal adapter associated with the line address
given in the ADDRESS parameter.. Code one of the
following values:

IBM1 for an IBM 2741 Communications Terminal
COiiimunicating with an IBM 2702 or 2703 TCU
through an IBM Terminal Adapter, Type I, and
either (1) an appropriate data set, or (2) an
IBM line adapter .•

TELE2 for a TWX, Type 33 or 35, communicating
with an IBM 2702 or 2703 TCU through a
Telegraph Terminal Control, Type II, and a
data set line adapter and an appropriate data
set.

Specifies which of the three set address (SAD)
commands is to be issued to the TCU (IBM 2702
only) for operations on the line specified by the
ADDRESS parameter.. The SAD command selects the
appropriate line speed for the type of terminal
connected to the line.. The association between
the specific command (SADZER, SADONE, or SADTWO)
and the corresponding line speed is established
by internal connection within the 2702. This is
accomplished by the customer engineer when the
2702 is installed.. This operand must be coded if
the TCU to which the line is connected is an IBM
2702. When RPQ E54838 is installed, the original
SAD command will continue to be specified (do not

· specify SAD 3).

RESMODS MACRO INSTRUCTION

The RESMODS macro instruction is used to add user-written routines,
in load module form, to the nucleus library (SYS1.NUCLEUS) to be
generated. Before these modules can be included in the nucleus library,
they must be members of a partitioned data set. Since the CALL-OS Type
I SVC is added to the operating system nucleus at system build time, the

86

/

(

user need not include the RESMODS macro instruction unless he plans to
include the Type I SVC from the CALL-OS load module library during a
subsequent system generation.

SCHEDULR MACRO INSTRUCTION

When COBI is used. the terminal user may transmit messages to the
OS/360 system operator's console.. If multiple console support is
included in the system. he may use routing codes with the messages .•
This support is specified in the SCHEDULR and SECONSLE macro
instructions during system generation .•

SUPRVSOR MACRO INSTRUCTION

For CALL-OS support, the SUPRVSOR macro instruction must specify
operands as follows:

The OPTIONS operand must specify PROTECT for both MF'!' and MVT
systems:

OPTIONS=PROTECT

The OPTIONS operand must specify ATTACH for MFT systems only:

OPTIONS=(ATTACH,PROTECT)

The TIMER operand must specify INTERVAL: TIMER=INTERVAL

The TRACE operand is not required for CALL-OS. If the CALL-OS trace
option is desired, the operating system generation must include the
TRACE operand.

SVCTABLE MACRO INSTRUCTION

CALL-OS requires a Type I SVC routine. This routine is supplied as
part of the basic program material from the IBM Program Information
Department (PID), and is added to the System/360 Operating System during
the CALL-OS system build procedure. The operating system is prepared
for this SVC routine through the use of the SVCTABLE macro instruction.

UNITNAME MACRO INSTRUCTION

The UNITNAME macro instruction is used to assign a unique name to a
collection of I/O devi·ces assigned to specific addresses. The addresses
must be the same as those specified in the IODEVICE macro instruction..
Then this name can be used in the UNIT parameter of the appropriate DD
statement. For example, all the teletype terminals in a system could be
assigned to one named coll~ction, all the 2741 correspondence to
another, and so on. or, if an IBM System 370 Model 145 is being used
and 2319 devices are assigned to 2314, then all CALL-OS cataloged
procedures which assign data sets to 2314 storage devices will operate
without change.

In addition, when COBI is used. it is recommended that the devices
upon which volumes with scannable output data sets will be mounted be
assigned to a device class with the UNITNAME macro.. The name of this
class may then be referenced in the DD statements for the volumes .•
Scannable output data sets must reside on 2314 or 2319 disk storage. It
is further recommended that SYSDA not be assigned to devices used for
scannable output; there may be difficulty in varying them offline at

87

CALL-OS completion time because OS/360 system data sets may be placed
there.

CALL-OS SYSTEM BUILD

System build for CALL-OS follows a simple process.. This process has
the following advantages:

• Minimizes operator intervention

• Reduces JCL and control statement requirements

• Facilitates the addition of CALL-OS routines to OS/360 libraries

The basis of the sys.tern build process is the CALL-OS system as released
by IBM.

SYSTEM RELEASE TAPES

When the CALL-OS system is released, it may consist of up to a
maximum of four release tapes: one tape for the executive and utility
programs and one tape for each compiler requested by the installation.
Each release tape contains several unloaded data sets produced by the
OS/360 utility program IEHMOVE. These data sets contain source, macro
and load module libraries for the component, and, in the case of the
executive and utility release tape, two additional data sets contain
IBM-supplied JCL procedures and the changes applied to the previous
version, respectively .•

The executive and utility release tape contains the following data
sets:

• RTOSPROC which contains the JCL procedures required to
build a system, create a data base, and
initialize COBI data sets, as well as standard
module residency lists

• OSRTS.EXEC.MODLIB which contains, in load module form, all the
executive and utility modules necessary to run
the system

• OSRTS.EXEC.MACLIB which contains the executive and utility macros

• OSRTS.EXEC.SOURCE which contains the executive and utility source
modules

• OSR7S.EXEC.CHANGE which contains the change cards applied to the
previous version of CALL-OS to obtain this (the
current) version of CALL-OS.

During the system build process, the procedure, macro, and load
module libraries are loaded from the release tape.. When system build is
completed, the macro library and certain procedures may be deleted from
the system (see Step I). The source library does not have to be loaded
until updates are made to the system as described in the section
"Maintaining the System". The change data set does not have to be
loaded unless the installation has modified CALL-OS modules and wants to
see the changes applied to those modules (see "System Build
Considerations for an Installation-Modified System" at the end of this
section).

The release tape for each compiler selected by the installation
contains the following data sets:

88

• OSRTS.component.MODLIB
• OSRTS.component.SOURCE
• OSRTS.component.MACLIB

where component is a CALL-OS 1anguage name (BASIC, FORTRAN, or PL!).
During system build, only the 1oad module library for the compiler is
loaded. The source and macro libraries are used to maintain the system
and do not need to be loaded until updates are to be made to the
compiler.

SYSTEM BUILD PROCESS SUMMARY

As illustrated in Figure 21, the system build process for a new
system may consist of the following steps:

Step I

Step II

Step III

Step IV

Step V

Execute the IEHMOVE utility to load the supplied
executive and uti1ity libraries from the release tape to
a disk pack.

Execute the IEHMOVE utility to load the supplied compiler
libraries.

Execute the RTOSJOB1 procedure to accomplish the
following:

• Assemb1e the global table macro~

• Link-edit the CALL-OS nucleus with the assembled
global table.

•

•

Relink-edit the OS/360 nucleus with the CALL-OS
SVC.

Link-edit the CALL-OS device-dependent error
routine into SYS1.SVCLIB.

Build the CALL-OS data base.. At this point in the
process, the user can elect one of three options. He can
(1) establish a new data base to conform with CALL-OS
formats and structure, (2) rebuild an existing data base
or connect an existing data base to his system, or (3)
create and format a default data base. For option 1, see
the description of U#UTIL1 in the section •creating and
Maintaining the Data Base•. Options 2 and 3 are discussed
under Step IV later in this subsection.

If desired, execute the U#UTIL5 utility to create JCL
statements from the CALL-OS index.. These statements form
the base for the startup deck used to initialize the
CALL-OS system .•

Steps I through IV must be performed when a new CALL-OS system is
built. If an existing system is being modified, Steps I and III are
required, step II is required.only if a new version of a compiler used
in the system is released, and Step IV is required only if a data base
is to be built or recreated.. step v is optional during any system
build.

The following directions should be read thoroughly before beginning
actual machine operation to ensure that no prerequisite detail has been
overlooked. Ten disk cylinders must be available for an online JOBLIB,
one track in SYSt.PROCLIB for system build procedures, and one track in
SYS 1 • SVCLIB for the device-dependent error routine .•

89

STEP I

STEP II

STEP III

STEP IV

STEP V (optional)

START
SYSTEM BUIL

TAPE-TO-DISK
LOAD OF
EXECUTIVE&
UTILITIES
LIBRARIES

TAPE-TO-DISK
LOAD OF
COMPILER
LIBRARIES

BUILD

SYSTEM

BUILD

CALL-OS

DATABASE

GENERATE

USERJCL

END SYSTEM
BUILD

Figure 21. ~he system build process fo~ a new system

90

STEP I - LOADING THE EXECUTIVE AND UTILITY LIBRARIES

Prior to executing the RTOSJOB1 procedure in Step III, the user must
have satisfied the following requirements:

1. The library RTOSPROC must be merged with SYS1.PROCLIB. RTOSPROC
contains the procedures listed in Table 4.

2. The library OSRTS.EXEC.MODLIB must be loaded from tape to disk,
renamed to qualifier.JOBLIB, and cataloged (where qualifier is an
index level qualifier selected by the user) .•

3. The library OSRTS.EXEC.MACLIB must be loaded from tape to disk,
renamed to qualifier.MACLIB, and cataloged.

The IEHMOVE utility is used for all three steps.. The following example
shows the use of the utility to perform all Step I requirements:

//LOAD
//MOVE
//SYSPRINT
//SYSUT1
//DD1
//DD2
//TAPE1
//
//
//SYSIN

COPY

COPY

COPY

COPY

/*
//BLDXCAT
//SYSPRINT
//DD1
//SYSIN

/*

BLDX
CATLG
CATLG

JOB
EXEC
DD
DD
DD
DD
DD

PGM=IEHMOVE
SYSOUT=A
UNIT=2314,DISP=OLD,VOL=SER=scrvol
UNIT=2314,DISP=OLD,VOL=SER=volid1
UNIT=2314,DISP=OLD,VOL=SER=volid2
UNIT=2400,DISP=(OLD,PASS),VOL=SER=RTOSYS,
LABEL=C,NL),DCB=(LRECL=80,BLKSIZE=800,
RECFM==FB)

DD *
PDS=RTOSPROC,TG==2314=volid2,FROM==2400==(RTOSYS,1),

FROMDD==TAPE1
PDS=RTOSPROC,TG==2314=volid1,FROM=2314==volid2,

RENAME==SYS1_.PROCLIB
PDS==OSRTS.EXEC.MODLIB,T0=2314==volid2,

FROM=2400==(RTOSYS,2),FROMDD=TAPE1,
RENAME=qualifier.JOBLIB

PDS==OSRTS.EXEC.MACLIB,T0==2314==volid2,
FROM==2400==(RTOSYS,3),FROMDD=TAPE1,
RENAME=qualifier.MACLIB

EXEC PGM==IEHPROGM
DD SY SO UT== A
DD DISP==OLD,VOL=SER==volid2,UNIT==2314
DD *
INDEX=qualif ier
DSNAME=qualifier.JOBLIB,VOL=2314=volid2
DSNAME=qualifier.MACLIB,VOL=2314=volid2

x

x

x
x

x
x

91

Table 4. Contents of RTOSPROC

r---~-----·------------,
I When used I Members I ~ I
1--------------+-----------+-----------------------------------1 I System Build I RTOSJOB1 I Procedure to build CALL-OS I
I (See note) I I I
1--------------+-----------+--------·--------------------------1 Data Base I RTOSDB01 I Procedure to build one-pack
I Build J I default data base
I (See note) I RTOSDB02 I Procedure to build two-pack
I I I default data base
I I RTOSDB03 I Procedure to build three-pack
I I I default data base
1--------------+-----------+-----------------------------------
ICOBI I COBIBLD I Procedure to initialize COBI
IInitializationl I data sets and link edit the COBI
I I I reader and writer modules into
I I I SYS1.LINKLIB (see the section
I I I on COBU
I I DIBCBINC I Used in second step of COBIBLD
I I I procedure
J--------------+-----------+-----------------------------------
tsystem I RTOSALL I Module list for totally resident
IInitializationl I system
!Module I RTOSLLRS I Module list for load, list, run,
!Residency I I save functions
f Lists I RTOSNONE I Module list for nonresident
I I I system
I I RTOSUSER J Module list for user terminal
I I I commands
1--1 Note: The system and data base build procedures may be
I deleted from SYS1.PROCLIB after CALL-OS has been
I built.
L------------------------------------·-------------------------J

where

qualifier

scrvol

volid1

volid2

92

is the index level qualifier chosen by the user for
CALL-OS data sets; the default is OSRTS

is the volume identification of a scratch volume

is the volume identification of volume on which
SYS1.PROCLIB resides

is the volume identification of volume on which the
user desires qualifier .• JOBLIB and qualifier .• MACLIB to
reside

(

STEP II - LOADING THE COMPILER LIBRARIES

The optional compiler libraries OSRTS.PLI.MODLIB, OSRTS.BASIC.MODLIB,
and OSRTS.FORTRAN.MODLIB must be merged with qualifier.JOBLIB (see the
example that follows>,.

The following example illustrates the copying of the load module
library for all three language compilers:

//COMPUPDT
//MOVE
//SYSPRINT
//SYSUT1
//DD1
//BASTAPE
//
//FORTAPE
//
//PLITAPE
//
//SYSIN

COPY

COPY

COPY

/*

where

qualifier

volid1

scrvol

PGM=IEHMOVE
SYSOUT=A

JOB
EXEC
DD
DD
DD
DD

DD

DD

DISP=OLD,UNIT=2314,VOL=SER=scrvol
DISP=OLD,UNIT=2314,VOL=SER=volid1
DISP=OLD,UNIT=2400,VOL=SER=BASIC,LABEL=(,NL),
DCB=(LRECL=80,BLKSIZE=800,RECFM=FB)
DISP=OLD,UNIT=2400,VOL=SER=FORT,LABEL={,NL),
DCB=(LRECL=80,BLKSIZE=800,RECFM=FB)
DISP=OLD,UNIT=2400,VOL=SER=PLI,LABEL=(,NL),
DCB=(LRECL=80,BLKSIZE=800,RECFM=FB)

DD *
PDS=OSRTS.BASIC.MODLIB,T0=2314=volid1,

FROM=2400=(BASIC,1),FROMDD=BASTAPE,
RENAME=qualifier.JOBLIB

PDS=OSRTS.FORTRAN.MODLIB,TQ=2314=volid1,
FROM=2400=(FORT,1),FROMDD=FORTAPE,
RENAME=qualifier .• JOBLIB

PDS=OSRTS.PLI.MODLIB,TQ=2314=volid1,
FROM=2400=(PLI,1),FROMDD=PLITAPE,
RENAME=qualifier.JOBLIB

x
x

x
x

x
x

is the index level qualifier chosen by the user for
CALL-OS data sets; the default is OSRTS

is the volume identification of volume on which
qualifier.JOBLIB resides

is the volume identification of a scratch volume

Note: The DD statements for compilers which are not to be supported
must be deleted when this step is executed.

93

STEP III - LINK EDITING THE SYSTEM

Step III of the system build process link edits the system. For
convenience, a cataloged procedure has been provided to perform this
link edit. This procedure is named RTOSJOB1 and resides in SYS1.PROCLIB
after completi-0n of Step I of the system build process. The procedure
consists of the following steps:

• Step S01

• Step S02

• Step S03

• Step S04

• Step S05

Causes execution of U#UTIL2, a CALL-OS utility program
which produces assembler and linkage editor control
statements used in the subsequent steps of the procedure

causes the assembly of the CALL-OS global table macro for
the purpose of making user-selected options available to
the CALL-OS system

Causes the link edit of the CALL-OS nucleus with the
previously-assembled global table

Causes the link edit of an OS/360 nucleus with the CALL­
os Type I SVC routine

Causes the link edit of the device-dependent error
routine into the system SVC library CSYS1.SVCLIB)

Figure 22 shows the JCL statements in the procedure.. The following
JCL is required to execute the procedure:

//SYSBLD
//JOBLIB
//
//

where

94

qualifier

user-specified
options

JOB
DD
EXEC

DSN=qualif ier .• JOBLIB, DISP=OLD
RTOSJOB1,QA=qualifier,
PARM.S01='user-specified options'

is the index level qualifier for CALL-OS data sets
chosen by the user.. The default is OSRTS and is used
in examples in other portions of this manual:•

indicates information passed to the CALL-OS U#UTIL2
utility program. These options are used in the
building of control statements and are described in
greater detail in the following text.

//RTOSJOB1
//S01
//PROCCC03
//
//PROCCC04
//
//PROCCC08
//
//GTABOPTS
//
//SYSUDUMP
//SYSPRINT
//S02
//
//SYSUT1
//SYSUT2
//SYSUT3
//SYSLIB
//SYSIN
//SYSGO
//SYSPUNCH
//SYSPRINT
//$03
//
//SYSLIB
//SYSLMOD
//SYSLIN
//SYSUT1
//SYSPRINT
//S04
//
//SYSLIB
//SYSLMOD
//SYSLIN
//SYSUT1
//SYSPRINT
//SOS
//
//SYSLIB
//SYSLMOD
//SYSLIN
//SYSUT1
//SYSPRINT

PROC
EXEC
DD

DD

DD

DD

DD
DD
EXEC

DD
DD
DD
DD
DD
DD
DD
DD
EXEC

DD
DD
DD
DD
DD
EXEC

DD
DD
DD
DD
DD
EXEC

DD
DD
DD
DD
DD

QA=QSRTS
PGM=U#UTIL2,COND=(0,NE) ** UPDATE CONTROL CARDS *
UNIT=SYSDA,DISP=(,PASS),DSN=&CC03,
SPACE=(TRK,1),DCB=(BLKSIZE=80,LRECL=80,RECFM=FB)
UNIT=SYSDA,DISP=(,PASS),DSN=&CC04,
SPACE=(TRK,1),DCB=CBLKSIZE=80,LRECL=80,RECFM=FB)
UNIT=SYSDA,DISP=(,PASS),DSN=&CC08,
SPACE=(TRK,1),DCB=(BLKSIZE=80,LRECL=80,RECFM=FB)
DSN=>ABMAC,DISP=(,PASS),UNIT=SYSDA,
SPACE=(TRK,1),DCB=(BLKSIZE=80,LRECL=80)
SYSOUT=A
SYSOUT=A
PGM=IEUASM,PARM=LOAD,REGION=80K, ** ASM GTAB **
COND=(O,NE)
UNIT=SYSDA,SPACE=(1700,(400,50))
UNIT=SYSDA,SPACE=(1700,(400,50))
UNIT=SYSDA,SPACE=(1700~{400,50))
DSN=&QA •• MACLIB,DISP=OLD
DSN=>ABMAC,DISP=(OLD,DELETE)
DSN=&OBJMOD,UNIT=SYSDA,SPACE=CTRK,4),DISP=(,PASS)
DUMMY
SYSOUT=A
PGM=IEWL,PARM='XREF,LIST,LET,NCAL',
COND=(4,LT),REGION=96K ** L/E BASESYS **
DSN=&OBJMOD,DISP=(OLD,DELETE)
DSN=&QA •• JOBLIB,DISP=(OLD,PASS)
DSN=&CC04,DISP=(OLD,DELETE)
UNIT=SYSDA,SPACE=C1024,C200,20))
SYSOUT=A
PGM=IEWL,PARM='XREF,LIST,LET,NCAL,DC,SCTR',
COND=(4,LT),REGION=96K **L/E SVC **
DSN=&QA •• JOBLIB,DISP=(OLD,PASS)
DSN=SYS1.NUCLEUS,DISP=OLD
DSN=&CC03,DISP=(OLD,DELETE)
UNIT=SYSDA,SPACE= (1024, (200, 20))
SY SO UT= A
PGM=IEWL,PARM='XREF,LIST,LET,NCAL',
COND=(4,LT),REGION=96K ** L/E I/ORTN **
DSN=&QA •• JOBLIB,DISP=COLD,PASS)
DSN=SYS1.SVCLIB,DISP=OLD
DSN=&CC08,DISP={OLD,DELETE)
UNIT=SYSDA,SPACE=(1024,C200,20))
SY SO UT= A

Figure 22. JCL statements in the RTOSJOB1 procedure

95

User-Specified Options

When the cataloged procedure is executed, the user supplies optional
information in the parameter field of the EXEC statement. These options
are used in the first step of the catalog procedure to produce the
control statements used in subsequent steps. The parameter field has
the following format:

PARM.S01='SVC=nnn,NUC=(x,y),ERRNO=mmm,TYPE=aaa,COBI=bbb'

where

nnn is the number assigned to the CALL-OS SVC during system
generation and must be in the range 200 through 255. If this
parameter is omitted, the default is 255 .•

x identifies the OS/360 nucleus CIEANUCOx) to which the CALL-OS
SVC load module is to be added and must be in the range 1
through 9. If this parameter is omitted, the default is 1.

y identifies the OS/360 nucleus (IEANUCOy> to be created and
must be in the range 1 through 9. If this parameter is
omitted, the default is 2.

mmm is the number to be assigned to the device-dependent error
routine and must be in the range 220 through 229. If this
parameter is omitted, the default is 229.

aaa specifies the type of the OS/360 system under which CALL-OS
is to be run and must be either MFT or MVT. If this parameter
is omitted, the default is MFT.

bbb specifies whether or not the COB! modules are to be part of
the CALL-OS system and must be either YES or NO~ If this
parameter is omitted, the default is NO.

Note: If the NUC Parameter is specified, both the x and y parameters
must be supplied.

Table 5 shows the parameter defaults for RTOSJOB1 ..

The following example shows the specification of user-specified
options for use with the cataloged procedure:

PARM.S01='SVC=246,NUC=C,1,6),ERRNQ=222'

This results in an SVC number of 246 being assigned to the CALL-OS Type
I SVC and a number of 227 being assigned to the error routine.. The
OS/360 nucleus to be used as input is IEANUC01 and the resulting nucleus
is to be named IEANUC06. The OS/360 system is an MFT system and the
CALL-OS system is not to contain COBI.

96

(

Table 5. Parameter defaults for the RTOSJOB1 procedure

r---·----------------------~-,
!Parameter I Use 1 Default
----------+-----------------------------------+-------------------
COBI Specifies whether or not the INO

ERR NO

NUC

QA

SVC

'IYPE

resident COBI modules are to be I
included in the CALL-OS nucleus I

Specifies number to be assigned
to the device-dependent error
routine

Specifies both the old OS/360
nucleus, to which the CALL-OS SVC
is to be added, and the new OS/360
nucleus, to be created ~-

Specifies the high level index
qualifier to be used for CALL-OS
data sets

I
1229
I
I
I
told nucleus: 1
tnew nucleus: 2
I
I
I
IOSRTS
I
I
I

Specifies the number to be 1255
assigned to the CALL-OS Type I SVC I

I
Specifies the type of OS/360 systemtMFT
under which CALL-OS is to be run I I

L--J

Subsequent Processing

The first step of the cataloged procedure is the execution of the
CALL-OS utility program U#UTIL2. This utility builds four sets of
statements which are placed in temporary sequential data sets. Three of
these sets are used as control statement input to the linkage editor to
produce the OS/360 nucleus containing the CALL-OS Type I SVC, the CALL­
os nucleus, and the CALL-OS terminal device-dependent error routine.
The fourth set of statements is used as source input to the OS/360
assembler to produce the CALL-OS global table. The user supplies the
information necessary to build these statements with the parameters
described previously .•

OS/360 Nucleus - Linkage Editor Control Statements: The first set of
statements produced by U#UTIL2 is placed in the temporary data set
defined by the PROCCC03 DD statement. These statements are the linkage
editor control statements used to link edit the CALL-OS SVC into either
an OS/360 MFT or an OS/360 MVT nucleus. The statements produced depend
on the OS/360 system specified and are as follows:

INSERT IEAANIPO For MF'l'
INSERT IEAAIBOO
CHANGE IGC255 (IGCnnn)
INCLUDE SYSLIB(IGC255)
INCLUDE SYSLMOD(IEANUCOx)
NAME IEANUCOy(R)

or

INSERT IEAANIPO For MVT
INSERT IEAQFXOO
CHANGE IGC255 (IGCnnn)
INCLUDE SYSLIB (IGC255V)
INCLUDE SYSLMOD(IEANUCOx)
NAME IEANUCOy(R)

97

where

nnn

x

y

is either the SVC number supplied with the SVC parameter
or a default of 255

is either the from nucleus number supplied with the
NUC parameter or a default of 1

is either the to nucleus number supplied with the NUC
parameter or a<lefault of 2

This data set is used as input to a step which link edits an existing
copy of the OS/360 nucleus into the same or new copy.. During this link
edit, the CALL-OS Type I SVC is included in the OS/360 nucleus and given
the number specified by the user.

CALL-OS Nucleus - Linkage Editor Control Statements: The second set of
statements produced by U#UTIL2 is placed in the temporary data set
defined by the PROCCC04 DD statement. These statements are the linkage
editor control statements used to link edit the CALL-OS nucleus. The
statements produced depend on the OS/360 system specified (MFT or MVT)
and whether COBI is used or not. The appropriate control statements are
as follows:

INCLUDE
INCLUDE
INCLUDE

[INCLUDE

ENTRY
NAME

or

INCLUDE
INCLUDE
INCLUDE

(INCLUDE

ENTRY
NAME

SYSLIB For MFT
SYSLMOD(C#CPID)
SYSLMOD <RTOS 1)
SYSLMOD(C#IOREQ,C#NOTFY,M#QIOR,M#CBIO,M#VTBL,S#INDXQ,

N#LINIT
RTOS1 (R)

S#PARM,S#QNOT)]

SYSLIB For MVT
SYSLMOD(C#CPIDV)
SYSLMOD(RTOS1)
SYSLMOD(C#IOREQ,C#NOTFY,M#QIOR,M#CBIO,M#VTBL,S#INDXQ,

N#LINIT
RTOS1 (R)

S#PARM,S#QNOT)]

The INCLUDE statement enclosed in brackets is present in the data set
only if COBI=YES is specified. This data set is used as input to the
step which link edits the CALL-OS nucleus.. This nucleus is tailored to
suit the needs of the installation as specified with parameter
information..

CALL-OS Error Routine - Linkage Editor Control Statements: The third
set of control statements produced by U#UTIL2 is placed in the temporary
data set defined by the PROCCC08 DD statement. These statements are the
linkage editor control statements used to link edit the CALL-OS device
dependent error routine. The statements produced assign the user­
specified number to the routine and place the routine in the SVC library
(SYS1.SVCLIB). The control statements are as follows:

98

CHANGE
INCLUDE
NAME

where

IGEDUMMY (IGEOOnnn)
SYSLIB UGEDUMMY)
IGEOOnnn(R)

nnn is either the user-desired number assigned to the
device-dependent error routine or a default of 229.

(

Global Table Assembly Control Statements: The fourth set of statements
produced by U#UTIL2 is placed in the temporary data set defined by the
GTABOPTS DD statement. These statements are assembler source statements
used in the assembly of the CALL-OS global table macro,. The statements
are as follows:

Z#GTAB
END

where

CSECT=YES,SVC=nnn,ERRNQ=mmm,OSTYPE=aaa,COBI=bbb

nnn is either the user-specified SVC number or a default of 255

mmm is either the user-specified error routine number or a
default of 229

aaa specifies the type of OS/360 system, either MFT or MVT, with
a default of MFT

bbb specifies whether or not COBI is to be added to the system,
either YES or NO, with a default of NO

STEP IV - ESTABLISHING THE DATA BASE

To use the CALL-OS product, which includes the executive system,
language facilities, and offline utility programs, the customer must
establish his data base (directories, catalogs, file and program space,
etc.) to conform to CALL-OS formats and structure. In practice, the
customer's programming staff prepares the appropriate JCL to allocate
all necessary data sets, and to invoke the proper CALL-OS utilities to
format those allocate(} data sets,. This is the way a system should be
installed if system performance and disk storage are to be properly
considered, but as a convenience, the system build package can create
and format for the customer a default data base on from one to three
completely dedicated packs,. This provides the shortest path to
installation, but does not necessarily provide the best system
performance. The user should be cognizant of the data base philosophy,
before commencing data base build, if he does not accept one of the
default data bases.

system Build with Existing Data Base

If it should become necessary to rebuild the system, the CALL-OS
index and the OS/360 catalog must be updated. As an example, assume
that a new release of CALL-OS takes place, and that the user does not
desire to make any changes to the existing data base.. In this case, the
following steps should be taken:

1,. Scratch and uncatalog the JOBLIB data set ..

2,. Scratch the CALL-OS members of SYS1 .PROCLIB which were copied
into SYS1 .. PROCLIB during step I of the previous sytem build (see
Table 1) ..

3. Run Steps I and II of system build to copy the release libraries
to disk, copy the new procedures into SYS1.PROCLIB, and copy the
language compilers into the JOBLIB.

4. Run step III of system build to generate the new system.

5. Run program U#UTIL1 specifying the COMPILER function to replace
an old compiler with a new compiler supplied on the release tape.
'The DD statement should specify DISP=OLD for each compiler,. 'The
index is updated only with the length of the new compiler,.

99

Should new space for a compiler be required, uncatalog and scratch
the existing space in step 1 above, and reallocate and catalog the new
area in step 5 above.

The means by which to reestablish the index and/or to move the data
base are covered in the next examples .•

Assuming that you are generating CALL-OS for the first time, but wish
to connect an existing data base which is to remain on the same pack(s)
but which is not cataloged (that is, new OS/360 SYSGEN or generating a
unique OS/360 and CALL-OS), the following steps may be followed:

1. Run steps I, II, and III of system build to generate CALL-OS.

2. Run U#UTIL1 foz compilers, using previous compiler data sets
(DISP=OLO) to update the index and obtain the new versions of the
compilers.

Given the circumstances above, with the exception of operating the
data base on different packs, the following steps could be taken:

1. Run steps I, II, and III of system build to generate the system,.

2. Run U#UTIL1 for all functions <that is, overlay, swap, system
group, user group, compiler>, to allocate, format, and validate
space on the new packs, add the entries to the index data set,
and catalog the data sets.

3. Move the data base to the newly allocated space, using the copy
function of the OS/360 utility IEHMOVE. The REORGANIZE function
of the data base utility DIBCADBU may also be used to move the
data set and regain purged space.

Specific customer requirements vary from installation to
installation; however, the examples and guidelines above should prove
helpful in solving the problems of system rebuild and/or using an
existing data base.

system Build with Uefault Data Base

Three default data base options are provided: one pack, two packs,
and three packs. The user provides volume identifications and the
number of lines to be supported. The packs should have been initialized
and be free of flagged tracks in the central cylinders. The VTOC for
these packs must reside on cylinder zero, and not extend past cylinder
zero, track 18. Absolute track allocation is used in these procedures,.
Therefore, the packs may not have any space allocated before data base
build .•

The central cylinders start at cylinder 81. To find the last central
cylinder (LCC) used, use the following formulas:

one Ea ck LCC=81+9+lines supported

two eacks pack 1 LCC=81+5+lines on this pack
pack 2 LCC=81+4+lines on this pack

three Eacks pack 1 LCC=81+2+lines on this pack
pack 2 LCC=81+2+lines on this pack
pack 3 LCC=81+5+lines on this pack

Note that if U#UTIL1 is not in SYS1..LINKLIB, a JOBLIB statement must
be inserted in the JCL pointing to the user library which contains
U#UTIL1.

100

For compiler runs of U#UTIL1, a task area of 150K is required. For
MFT, the data base procedures require a minimum task area of 150K. For
MVT, the task area size is specified on the default data base
procedures.

Note that all language compilers supplied with the system are
allocated one cylinder of disk space during Step 4 of the default data
base build.. In addition, an attempt is made to convert all supplied
compilers to fast-load-and-go format.

For each compiler not ordered with the system, and, therefore, not to
be supported in this data base, an error message is generated by the
utility U#l1l'IL1 during Step 4 of the default data base build. The
format of this message is as follows:

nnnnnn
***COMPILER - BAD BLDL ON COMPILER NAME

where

nnnnnn is the compiler name that could not be found in JOBLIB.

This message should be ignored for language compilers which are not
to be supported. However, any other messages encountered during this
step must be f'urther investigated.

Default Data Base on One Pack

For one pack, punch and execute the following statements:

//DB01
//
//

where

vol id

number

qualifier

JOB
EXEC RTOSDB01,VOL1=volid1,LINES1=number,

QA=qualif ier

is the volume identification of disk pack on which
the data base is to be built.

is the maximum number of lines to be supported <not
exceeding 99); this determines the number of
cylinders for work/swap space allocation.

is the index level qualifier chosen by the user for
CALL-OS data sets; the default is OSRTS.

These statements cause the RTOSDB01 procedure to be executed. This
procedure contains the JCL statements shown in Figure 23; it builds a
data base on one pack as shown in Figure 24.

101

//
//STEPO
//INDEX
//
//
//SYSPRINT
//STEP1
//INDEX
//SYSPRINT
//AAAZZZOO
//
//
//STEP2
//INDEX
//SYSPRINT
//OVLY
//
//STEP3
//SYSPRINT
//INDEX
//SYSGRPOO
//
//

PROC
EXEC
DD

DD
EXEC
DD
DD
DD

EXEC
DD
DD
DD

EXEC
DD
DD
DD

QA=OSRTS
PGM=UIUTIL3 ** FORMAT INDEX **
DSN=&QA •• INDEX,DISP=(,PASS),VOL=SER=&VOL1,
UNIT=2314,SPACE=(ABSTR,C1,19)),
DCB=(BLKSIZE=7294,LRECL=7294)
SYSOUT=A
PGM=U#UTIL1,PARM='USRGROUP',COND=CO,NE)
DSN=&QA •• INDEX,DISP=(OLD,PASS)
SY SO UT= A
DSN=&QA •• AAAZZZ00,VOL=SER=&VOL1,UNIT=2314,
DISP=(,PASS),SPACE=(ABSTR,(1600,20)),
DCB=DSORG=DA
PGM=U#UTIL1,PARM='OVERLAY',COND=CO,NE)
DSN=&QA •• INDEX,DISP=(OLD,PASS)
SYSOUT=A
DSN=&QA •• OVLY,VOL=SER=&VOL1,UNIT=2314,
DISP=(,PASS) ,SPACE= (ABSTR, (20, 1620))
PGM=UIUTIL1,PARM='SYSGROUP',COND=CO,NE)
SYSOUT=A
DSN=&QA •• INDEX,DISP=(OLD,PASS)
DSN=&QA •• SYSGRPOO,VOL=SER=&VOL1,UNIT=2314,
DISP=(,PASS),SPACE=(ABSTR,(80,1640)),
DCB=DSORG=DA

Figure 23. JCL statements in RTOSDB01 procedure (part 1 of 2)

102

//STEP4
//
//SYSl'RINT

EXEC

DD

PGM=U#UTIL1,PARM='COMPILER',COND=(O,NE),
REGION=150K
SYSOUT=A

//INDEX DD ·"--.. DSN=&QA •• INDEX,DISP= (OLD,PASS)
//LANG
//FORTRAN
//
//PL2
//
//PLI
//
//BASIC
//
//STEPS
//SYSPRINT
//INDEX
//SWAPOO
//
//STEP6
//
//
//SYSPRINT
//INDEX
//AAAZZZ01
//
//STEP7
//
//
//SYSPRINT
//INDEX
//UGRP1
//
//OVLAY

DD
DD

DD

DD

DD

EXEC
DD
DD
DD

EXEC

DD
DD
DD

EXEC

DD
DD
DD
DD
DD

DSN=&QA •• JOBLIB,DISP=OLD
DSN=&QA •• FORTRAN,VOL=SER=&VOL1,UNIT=2314,
DISP=(,PASS),SPACE=(ABSTR,(20,1720))
DSN=&QA •• PL2,VOL=SER=&VOL1,UNIT=2314,
DISP=(,PASS),SPACE=(ABSTR,(20,1740))
DSN=&QA •• PLI,VOL=SER=&VOL1,UNIT=2314,
DISP=C,PASS),SPACE=CABSTR,(20,1760))
DSN=&QA •• BASIC,VOL=SER=&VOL1,UNIT=2314,
DISP=C,PASS) ,SPACE=CABSTR, (20, 1780))
PGM=U#UTIL1,PARM='WORKSWAP'
SYSOUT=A
DSN=&QA •• INDEX,DISP=(OLD,PASS)
DSN=&QA •• SWAP00,VOL=SER=&VOL1,UNIT=2314,
DISP= (,PASS) , SPACE= (CYL, &LINES 1 .•)
PGM=U#OTIL1,PARM='USRGROUP',
COND=((0,NE,STEP0),(0,NE,STEP1),(0,NE,STEP2),
(0,NE,STEP3),(0,NE,STEP5))
SYSOUT=A
DSN=iQA •• INDEX,DISP=COLD,PASS)
DSN=&QA •• AAAZZZ01,VOL=SER=&VOL1,UNIT=2314,
DISP=C,PASS),SPACE=(CYL,(10),,MXIG),DCB=DSORG=DA
PGM=IEHPROGM,
COND=((0,NE,STEP0),(0,NE,STEP1),(0,NE,STEP2),
(0,NE,STEP3),(0,NE,STEP5),(0,NE,STEP6))
SYSOUT=A
DSN=&QA •• INDEX,DISP=(OLD,CATLG)
DSN=*. STEP 1 .• AAAZZ ZOO, DISP= (OLD ,CATLG)
DSN=•.STEP6.AAAZZZ01,DISP=(OLD,CATLG)
DSN=•.STEP2.0VLY,DISP=(OLD,CATLG)

//SYSGRP DD \.-.... DSN=•.STEP3.SYSGRP00,DISP=(OLD,CATLG)

(

//COMP1
//COMP2
//CO.MP3
//COMP4
//SWAP
//SYSIN

DD
DD
DD
DD
DD
DD

DSN=•.STEP4.FORTRAN,DISP=(OLD,CATLG)
DSN=•.STEP4.PL2,DISP=(OLD,CATLG)
DSN=•.STEP4.PLI,DISP=(OLD,CATLG)
DSN=•.STEP4.BASIC,DISP=COLD,CATLG)
DSN=•.STEP5.SWAP00,DISP="°LD,CATLG)
DUMMY

Figure 23. JCL statements in RTOSDB01 procedure (part 2 of 2)

103

CYL
0

81

82

86

87

88

89

90

90 +LINES 1

VOLUME I

VOLUME TABLE OF CONTENTS (VTOC)/CALL/-OS INDEX

USER GROUP 1 - First Data Set (OSRtS. AAAZZZOO)

OVERLAY MODULE (OSRTS.OVL Y)

SYSTEMS GROUP DATA SET (OSRTS.SYSGRPOO)

CALL-OS FORTRAN COMPILER (OSRTS.FORTRAN)

CALL-OS PL/I COMPILER - Second Phase (OSRTS.PL2)

CALL-OS PL/I COMPILER - First Phase (OSRTS.PLI)

CALL-OS BASIC COMPILER (OSRTS.BASIC)

WORK/SWAP DATA SET (OSRTS.SWAPOO)

~------------------------~

USER GROUP 1 - Second Data Set (OSRTS.AAAZZZOI)

Figure 24. Default data base option 1 - single pack

104

Default Data Base on Two Packs

For two packs, punch and execute the following statements:

//DB02
//
//

where

volid1
volid2

num1
num2

qualifier

JOB
EXEC RTOSDB02,VOL1=volid1,VOL2=volid2,LINES1=num1,

LINES2=num2,QA=qualifier

is the volume identification of the packs on which
the data base is to be built

specify the total number Cnum1 and num2) of lines
to be supported. Split the lines as evenly as
possible between the two packs;
for example, if 21 lines are to be supported,
then: LINES1=11,LINES2=10.

num1 may not exceed 103.
num2 may not exceed 104.

is the index level qualifier chosen by the user for
CALL-OS data sets; the default is OSRTS.

These statements cause the RTOSDB02 procedure to be executed. This
procedure contains the JCL statements shown in Figure 25; it builds a
data base on two packs as shown in Figure 26.

105

// PROC QA=OSRTS
//STEPO EXEC PGM=U#UTIL3 ** FORMAT INDEX ** //INDEX DD DSN=&QA •• INDEX,DISP=(,PASS),VOL=SER=&VOL1,
// UNIT=2314,SPACE=(ABSTR,(1,19)),
// DCB=(BLKSIZE=7294,LRECL=7294)
//SYSPRINT DD SYSOUT=A
//STEP1 EXEC PGM=U#UTIL1,PARM='USRGROUP',COND=CO,NE)
//INDEX DD DSN=&QA •• INDEX,DISP=COLD,PASS)
//SYSPRINT DD SYSOUT=A
//AAAMZZOO DD DSN=&QA •• AAAMZZ00,VOL=SER=&VOL1,UNIT=2314,
// DISP=C,PASS),SPACE={ABSTR,(1600,20)),
// DCB.=DSORG=DA
//NAAZZZOO DD DSN=&QA •• NAAZZZ00,VOL=SER=&VOL2,UNIT=2314,
// DISP=C,PASS),SPACE=CABSTR,(1600,20)),
// DCB=DSORG=DA
//STEP2 EXEC PGM=WtuTIL 1, PARM= I OVERLAY I , COND= (0, NE)
//SYSPRINT DD SYSOUT=A
//INDEX DD DSN=&QA •• INDEX,DISP=(OLD,PASS)
//OVLY DD DSN=&QA •• OVLY,VOL=SER=&VOL2,UNIT=2314,
// DISP=(,PASS),SPACE=(ABSTR,(20,1620))
//STEP3 EXEC PGM=U#UTIL1,PARM='SYSGROUP',COND=CO,NE)
//SYSPRINT DD SYSOUT=A
//INDEX DD DSN=&QA •• INDEX,DISP=(OLD,PASS)
//SYSGRPOO DD DSN=&QA •• SYSGRP00,VOL=SER=&VOL1,UNIT=2314,
// DISP=(,PASS),SPACE=(ABSTR,(80,1620)),
// DCB=DSORG=DA
//STEP4 EXEC PGM=U#UTIL1,PARM='COMPILER',COND=(0,NE),
// REGION=150K
//SYSPRINT DD SYSOUT=A
//INDEX DD DSN=&QA •• INDEX,DISP=(OLD,PASS)
//LANG DD DSN=&QA •• JOBLIB,DISP=OLD
//FORTRAN DD DSN=&QA •• FORTRAN,VOL=SER=&VOL2,UNIT=2314,
// DISP=(,PASS),SPACE=(ABSTR,(20,1640))
//PL2 DD DSN=&QA •• PL2,VOL=SER=&VOL2,UNIT=2314,
// DISP=(,PASS),SPACE=CABSTR,(20,1660))
//PLI DD DSN=&QA •• PLI,VOL=SER=&VOL2,UNIT=2314,
// DISP=(,PASS),SPACE={ABSTR,(20,1680))
//BASIC DD DSN=&QA •• BASIC,VOL=SER=&VOL1,UNIT=2314,
// DISP=C,PASS),SPACE={ABSTR,(20,1700))

Figure 25. JCL statements in the RTOSDB02 procedure {part 1 of 2)

106

//STEPS
//SYSPRINT
//INDEX
//SWAPOO
//
//SWAP01
//
//STEP6
//
//
//SYSPRINT
//INDEX
//AAAMZZ01
//
//
//NAAZZZ01
//
//STEP?
//
//
//SYSPRINT
//INDEX
//UGRP1
//
//UGRP2
//
//OVLAY
//SYSGRP
//COMP1
//COMP2
//COMP3
//COMP4
//SWAP
//
//SYSIN

EXEC
DD
DD
DD

DD

EXEC

DD
DD
DD

DD

EXEC

DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD

PGM=U#UTIL1,PARM='WORKSWAP'
SY SO UT= A
DSN=&QA •• INDEX,DISP=(OLD,PASS)
DSN=&QA •• SWAP00,VOL=SER=&VOL1,UNIT=2314,
DISP=(,PASS) ,SPACE=(CYL, &LINES1 .•)
DSN=&QA •• SWAP01,VOL=SER=&VOL2,UNIT=2314,
DISP=(,PASS) ,SPACE=(CYL, &LINES2 .•)
PGM=U#UTIL1,PARM='USRGROUP',
COND=((0,NE,STEP0),(0,NE,STEP1),(0,NE,STEP2),
(0,NE,STEP3),(0,NE,STEP5))
SYSOUT=A
DSN=&QA •• INDEX,DISP=(OLD,PASS)
DSN=&QA •• AAAMZZ01,VOL=SER=&VOL1,UNIT=2314,
DISP=(,PASS),SPACE=(CYL,(10),,MXIG),
DCB=DSORG=DA
DSN=&QA •• NAAZZZ01,VOL=SER=&VOL2,UNIT=2314,
DISP=(,PASS),SPACE=(CYL,(10),,MXIG),DCB=DSORG=DA
PGM=IEHPROGM,
COND=((0,NE,STEP0),(0,NE,STEP1),(0,NE,STEP2) 1

{0,NE,STEP3),(0,NE,STEP5),(0,NE,STEP6))
SY SO UT= A
DSN=&QA •• INDEX,DISP=(OLD,CATLG)
DSN=*.STEP1.AAAMZZ00,DISP={old,CATLG)
DSN=•.STEP6.AAAMZZ01,DISP=(OLD,CATLG)
DSN=•.STEP1.NAAZZZ00,DISP=(OLD,CATLG)
DSN=*.STEP6.NAAZZZ01,DISP=(OLD,CATLG)
DSN=•.STEP2.0VLY,DISP=(OLD,CATLG)
DSN=*· STEP3 .• SYSGRPOO ,DISP= (OLD,CATLG)
DSN=*.STEP4.FORTRAN,DISP=(OLD,CATLG)
DSN=•.STEP4.PL2,DISP=(OLD,CATLG)
DSN=•.STEP4.PLI,DISP=(OLD,CATLG)
DSN=•.STEP4.BASIC,DISP=(OLD,CATLG)
DSN=*.STEP5.SWAP00,DISP=(OLD,CATLG)
DSN=•.STEP5.SWAP01,DISP=(OLD,CATLG)
DUMMY

Figure 25. JCL statements in the RTOSDB02 procedure (part 2 of 2)

107

CYL

0

81

85

86

86 +LINES I

VOLUME!

VOLUME TABLE OF CONTENTS (VTOC)/CALL-OS INDEX

USER GROUP 1 - First Data Set (OSRTS.AAAMZZOO)

SYSTEMS GROUP DATA SET (OSRTS.SYSGRPOO)

CALL-OS BASIC COMPILER (OSRTS.BASIC)

WORK/SWAP DATA SET (OSRTS.SWAPOO)

r- - - - - - - - - - - - - - - - - ---

USER GROUP l -·Second Data Set (OSRTS.AAAMZZO])

Figure 26. Default data base option 2 - two packs (part 1 of 2)

108

CYL
0

81

82

83

84

85

85 +LINES 2

VOLUME 2

VOLUME TABLE OF CONTENTS (VTOC)

USER GROUP I - First Data Set (OSRTS.NAAZZZOO)

OVERLAY MODULE (OSRTS.OVLY)

CALL-OS FORTRAN COMPILER (OSRTS.FORTRAN)

CALL-OS PL/I COMPILER - Second Phase (0SRTS.PL2)

CALL-OS PL/I COMPILER - First Phase (OSRTS.PLl)

WORK/SWAP DATA SET (OSRTS.SWAPOI)

r---------------------------

USER GROUP I - Second Data Set (OSRTS.NAAZZZOl)

Figure 26. Default data base option 2 - two packs (part 2 of 2)

109

Default Data Base on Three Packs

For three packs, punch and execute the following statements:

//DB03
//
//
//

where

volid1
volid2
volid3

num1
num2
num3

qualifier

JOB
EXEC RTOSDB03,VOL1=volid1,VOL2=volid2,VOL3=volid3,

LINES1=num1,LINES2=num2,LINES3=num3,
QA=qualifier

is the volume identification of packs on which the
data base is to be built

specify the total number (num1, num2, and num3}
of lines to be supported.. Divide the lines as
evenly as possible across the packs;
for example, if 31 lines are to be supported,
then: LINES1=10, LINES2=10, LINES3=11 .•

num1 may not exceed 106.
num2 may not exceed 106.
num3 may not exceed 103.

is the index level qualifier chosen by the user for
CALL-OS data sets; the default is OSRTS.

These statements cause the RTOSDB03 procedure to be executed.. This
procedure contains the JCL statements shown in Figure 27; it builds a
data base on three packs as shown in Figure 28.

110

\

"---

//
//STEPO
//INDEX
//
//
//SYSPRIN'l'
//STEP1
//INDEX
//SYSPRINT
//AAAIZZOO
//
//
//JAARZZOO
//
//
//SAAZZZOO
//
//
//STEP2
//SYSPRINT
//INDEX
//OVLY
//
//STEP3
//SYSPRIN'l'
//INDEX
//SYSGRPOO
//
//
//STEP4
//
//SYSPRINT
//INDEX
//LANG
//FORTRAN
//
//PL2
//
//PLI
//
//BASIC
//

PROC
EXEC
DD

DD
EXEC
DD
DD
DD

DD

DD

EXEC
DD
DD
DD

EXEC
DD
DD
DD

EXEC

DD
DD
DD
DD

DD

DD

DD

QA=OSRTS
PGM=U#UTIL3 ** FORMAT INDEX **
DSN=&QA •• INDEX,DISP=C,PASS),VOL=SER=&VOL1,
UNIT=2314,SPACE=(ABSTR,C1,19)),
DCB=(BLKSIZE=7294,LRECL=7294)
SYSOUT=A
PGM=UIUTIL1,PARM='USRGROUP',COND=(O,NE)
DSN=&QA •• INDEX,DISP=(OLD,PASS)
SYSOUT=A
DSN=&QA •• AAAIZZ00,VOL=SER=&VOL1,UNIT=2314,
DISP=(,PASS),SPACE=(ABSTR,(1600,20)),
DCB=DSORG=DA
DSN=&QA •• JAARZZ00,VOL=SER=&VOL2,UNIT=2314,
DISP=(,PASS),SPACE=(ABSTR,(1600,20)),
DCB=DSORG=DA
DSN=&QA •• SAAZZZ00,VOL=SER=&VOL3,UNIT=2314,
DISP=(,PASS),SPACE=(ABSTR,(1600,20)),
DCB=DSORG=DA
PGM=U#UTIL1,PARM='OVERLAY',COND=CO,NE)
SYSOUT=A
DsN=&QA •• INDEX,DISP=(OLD,PASS)
DSN=&QA •• OVLY,VOL=SER=&VOL3,UNIT=2314,
DISP=(,PASS),SPACE=(ABSTR,(20,1620))
PGM=U#UTIL1,PARM='SYSGROUP',COND=CO,NE)
SYSOUT=A
DSN=&QA •• INDEX,DISP=(OLD,PASS)
DSN=&QA •• SYSGRP00,VOL=SER=&VOL3,UNIT=2314,
DISP=(,PASS),SPACE=(ABSTR,(80,1640)),
DCB=DSORG=DA
PGM=UIUTIL1,PARM='COMPILER',COND=(O,NE),
REGION=150K
SYSOUT=A
DSN=&QA •• INDEX,DISP=(OLD,PASS)
DSN=&QA •• JOBLIB,DISP=OLD
DSN=&QA •• FORTRAN,VOL=SER=&VOL1,UNIT=2314,
DISP::::(,PASS),SPACE=(ABSTR,(20,1620))
DSN=&QA •• PL2,VOL=SER=&VOL2,UNIT=2314,
DISP=(,PASS),SPACE=(ABSTR,(20,1620))
DSN=&QA •• PLL,VOL=SER=&VOL2,UNIT=2314,
DISP=(,PASS),SPACE=(ABSTR,(20,1640))
DSN=&QA •• BASIC,VOL=SER=&VOL1,UNIT=2314,
DISP=(,PASS),SPACE=(ABSTR,(20,1640))

Figure 27. JCL statements in the RTOSDB03 procedure (part 1 of 2)

111

//STEPS
//SYSPRINT
//INDEX
//SWAPOO
//
//SWAP01
//
//SWAP02
//
//STEP6
//
//
//SYSPRINT
//INDEX
//AAAIZZ01
//
//
//JAARZZ01
//
//
//SAAZZZ01
//
//
//STEP7
//
//
//SYSPRINT
//INDEX
//UGRP1
//
//UGRP2
//
//UGRP3
//
//OVLAY
//SYSGRPOO
//COMP1
//COMP2
//COMP3
//COMP4
//SWAP
//
//
//SYSIN

EXEC
DD
DD
DD

DD

DD

EXEC

DD
DD
DD

DD

DD

EXEC

DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD

PGM=U#UTIL1,PARM='WORKSWAP'
SYSOUT=A
DSN=&QA •• INDEX,DISP=(OLD,PASS)
DSN=&QA •• SWAP00,VOL=SER=&VOL1,UNIT=2314,
DISP=(,PASS),SPACE=(CYL,&LINES1.)
DSN=&QA •• SWAP01,VOL=SER=&VOL2,UNIT=2314,
DISP=(,PASS) ,SPACE=(CYL, &LINES2 .•)
DSN=&QA •• SWAP02,VOL=SER=&VOL3,U'i.fIT=2314,
DISP=(,PASS),SPACE=(CYL,&LINES3.)
PGM=UIUTIL1,PARM='USRGROUP',
COND=((0,NE,STEP0),(0,NE,STEP1),(0,NE,STEP2),
(0,NE,STEP3),(0,NE,STEP5))
SY SO UT= A
DSN=&QA •• INDEX,DISP=(OLD,PASS)
DSN=&QA .•• AAAIZZO 1, VOL=SER=&VOL 1, UNIT=2314,
DISP=(,PASS),SPACE=(CYL,(10),,MXIG),
DCB=DSORG=DA
DSN=&QA •• JAARZZ01,VOL=SER=&VOL2,UNIT=2314,
DISP=(,PASS) ,SPACE=(CYL, (10) ,,MXIG),
DCB=DSORG=DA
DSN=&QA •• SAAZZZ01,VOL=SER=&VOL3,UNIT=2314,
DISP=(,PASS),SPACE=(CYL,(10),,MXIG),
DCB=DSORG=DA
PGM=IEBPROGM,
COND=((0,NE,STEP0),{0,NE,STEP1),{0,NE,STEP2),
(0,NE,STEP3),{0,NE,STEP5),(0,NE,STEP6))
SYSOUT=A
DSN=&QA •• INDEX,DISP=(OLD,CATLG)
DSN=*.STEP1.AAAIZZ00,DISP=COLD,CATLG)
DSN=*· STEP6 .AAAIZZ01,DISP= fOLD,CATLG)
DSN=*.STEP1.JAARZZ00,DISP=COLD,CATLG)
DSN=*.STEP6.JAARZZ01,DISP=(OLD,CATLG)
DSN=*.STEP1.SAAZZZ00,DISP=(OLD,CATLG)
DSN=*.STEP6.SAAZZZ01,DISP=(OLD,CATLG)
DSN=*.STEP2.0VLY,DISP=(OLD,CATLG)
DSN=*.STEP3.SYSGRP00,DISP=(OLD,CATLG)
DSN=•.STEP4.FORTRAN,DISP=COLD,CATLG)

. DSN=*.STEP4.PL2,DISP=(OLD,CATLG)
DSN=*.STEP4.PLI,DISP=(OLD,CATLG)
DSN=*.STEP4.BASIC,DISP=(OLD,CATLG)
DSN=*.STEP5.SWAP00,DISP=(OLD,CATLG)
DSN=*.STEP5.SWAP01,DISP=(OLD,CATLG)
DSN=*.STEP5.SWAP02,DISP=(OLD,CATLG)
DUMMY

Figure 27. JCL statements in the RTOSDB03 procedure (part 2 of 2)

112

VOLUME I
CYL

0

VOLUME TABLE OF CONTENTS (VTOC)/CALL-OS INDEX

USER GROUP I - First Data Set (OSRTS.AAAIZZOO)

81

82
CALL-OS BASIC COMPILER (OSRTS.BASIC)

83 CALL-OS FORTRAN COMPILER (OSRTS.FORTRAN)

WORK/SWAP DATA SET (OSRTS.SWAPOO)

83+LINES1t---------- - ---- - - ---- -

USER GROUP 1 - Second Data Set (OSRTS.AAAIZZOl)

Figure 28. Defau1t data base option 3 - three packs (part 1 of 3)

(_

113

CYL

0

81

82

83

VOLUME 2

VOLUME TABLE OF CONTENTS (VTOC)

USER GROUP I - First Data Set (OSRTS.JAARZZOO)

CALL-OS PL/I COMPILER - Second Phase (OSRTS.PL2)

CALL-OS PL/I COMPILER -- First Phase (OSRTS.PLI)

WORK/SWAP DATA SET (OSRTS.SWAPOI)

83 +LINES 2 t- _ _ ________________ _

USER GROUP I - Second Data Set (OSRTS.JAARZZOI)

Figure 28. Default data base option 3 - three packs Cpart 2 of 3)

114

CYL
VOLUME 3

0

VOLUME TABLE OF CONTENTS (VTOC)

USER GROUP I - First Data Set (OSRTS.SAAZZZOO)

81

82 OVERLAY MODULE (OSRTS.OVLY)

SYSTEMS GROUP DATA SET (OSRTS.SYSGRPOO)

86

WORK/SWAP DATA SET (OSRTS.SWAP02)

86 +LINES 3 t- ___________________ --" _

USER GROUP I - Second Data Set (OSRTS.SAAZZZOI)

Figure 28. Default data base option 3 - three packs (part 3 of 3)

115

Restarting The Default Data Base

In the establishment of a default data base, certain conditions (such
as miscalculation of user requirements, abnormal termination, etc.) may
result in an incorrect definition of the data base and, furthermore,
require a restart of the default data base build procedure. To recover
from such a situation, the default data base procedures are restartable ..

STEP V - PUNCHING THE STARTUP DECK (OPTIONAL)

This part of the system build process may be omitted if the startup
deck has been prepared in some other way. For example, if an existing
deck is used or the deck is punched by hand. The utility is U#UTIL5,
which uses the information in the index to create the deck. The
following JCL is required:

//SYSBLD3
//JOBLIB
//STEP
//INDEX
//CARD
//SYSABEND
//SYSPRINT

JOB
DD
EXEC
DD
DD
DD
DD

DSN=OSRTS.JOBLIB,DISP=SHR
PGM=U#UTIL5
DSN=OSRTS.INDEX,DISP=OLD
SYSOUT=B
SY SO UT= A
SYSOUT=A

For an example of U#UTIL5 output, see the section "Initializing the
System.•

SYSTEM BUILD CONSIDERATIONS FOR AN INSTALLATION-MODIFIED SYSTEM

If an installation has modified CALL-OS modules, it may want to
examine the changes made to the previous IBM version of CALL-OS to
produce the current version. The change data set on the executive and
utility release tape contains the changes to those modules which were
not completely rewritten. This data set is loaded from tape to disk in
the same way the source and macro libraries are loaded.. If desired, the
IEHMOVE control statements to load the change data set may be added to
Step I of system build.

Once loaded, the change data set becomes a partitioned data set. The
member named INFO contains the names of the new modules added to the
current version, as well as the names of the modules from the previous
version which were completely rewritten. The rest of the members
contain the IEBUPDTE change cards that were applied to modules which
were modified, one member for each modified module.

The following JCL can be used to print member INFO:

//PRINT
//
//SYSPRINT
//SYSUT1
//
//SYSUT2
//SYSIN

/*

PRINT
RECORD

JOB
EXEC
DD
DD

PGM=IEBPTPCH
SY SO UT= A
DSN=OSRTS.EXEC.CHANGE(INFO),DISP=OLD,
UNIT=2314,VOL=SER=volid

DD SY SO UT= A
DD *

TYPORG=PS,MAXFLDS=1
FIELD=C80)

where

vol id

116

is the volume serial number of the volume which contains the
change data set

This same JCL, with minor modifications, may be used to punch out the
change cards for a module,. These modifications are:

1. On the SYSUT1 DD statement, change the member name from INFO to
the name of the module

2. On the SYSUT2 DD statement, change SYSOUT=A to SYSOUT=B

3. On the first utility control statement, change PRINT to PUNCH

117

t

INITIALIZING THE SYSTEM

It has already been pointed out that system build refers to the
initial establishment of CALL-OS to be run under the control of OS/360.
System initialization is that portion of CALL-OS which tailors the CALL­
os time-sharing system to meet the user's run-time requirements. This
function is carried out immediately after OS/360 gives control to the
CALL-OS job, and just before the enabling of user terminals for online
operations.

SYSTEM INITIALIZATION

The CALL-OS system operates as a task under control of the OS/360
system, and as such, is entered into the OS/360 system as part of the
job stream. The CALL-OS job is defined by the installation system
programmer in the form of a startup deck, which causes the CALL-OS
system to be initialized and put into operation. CALL-OS initialization
determines the system environment required to support CALL-OS at a
particular installation. The system environment consists of the
execution characteristics desired and the data set configuration
required for the current session.

The execution characteristics affect total system performance and
control the functions available during this session of CALL-OS.. These
characteristics are specified by initialization options in the parameter
field of the EXEC statement in the startup deck. These options specify
the number of buffers in the system, the logical line numbers for the
system consoles, the maximum size of new data files, the time slice
values assigned to new and old jobs as well as compilers, which portions
of the system are to reside in hierarchy storage, and COBI operating
information.. During initialization of CALL-OS, the parameters are used
to tailor the system for execution during this session only.. The
execution characteristics of the system may be altered each time the
system is initialized.

The data set configuration provides the disk space required for
system operation and determines the number of user groups supported for
the current session. The entire configuration is defined by the DD
statements in the startup deck. Required statements define the index,
the system group data sets, the work/swap data sets, and if COBI is
used, the COBI storage requirements as well.. Other DD statements
determine the type of terminals supported, the number of lines to be
enabled, the user groups to be allowed access to the system, the
compilers to be used, and the modules to be resident for this session.
By varying the optional DD statements, a variety of system
configurations and available facilities are possible.

The rest of this section describes the startup deck in detail,.

STARTUP DECK

The startup deck to be used to initiate CALL-OS may be punched either
by hand or by using the U#UTIL5 utility. If the utility is used, there
must be at least one qualifier in the data set names, and the following
modifications must be made to the statements in the output deck:

1 • The JOB statement must be completed or replaced .•

118

"--··

2. The EXEC statement must be completed with the appropriate
parameter information.

3. For more than one data set qualifier, the JOBLIB and INDEX DD
statements must be corrected.

4. The TWX, T2741, and T2741E DD statements must be supplied to
define the line configuration.

5. Any DD statements not desired should be removed (for example, the
DD statements for the alternate cluster).

6. If COBI is to be used, DD statements must be supplied to define
the OS/360 system job queue, COBI index, JCL data set, and the
input data sets; in addition, if scanning is to be permitted, one
or more volumes for scannable data sets must be defined .•

Figure 29 shows the JCL statements that may be used in a CA~-os
startup deck. In the figure, required information on each statement is
shown in uppercase letters and, along with special characters, must be
punched as shown. Optional information is shown in lowercase letters
and is supplied in accordance with the system to be initialized. The
following sections contain detailed descriptions of the parameter
information which may be supplied on the EXEC statement and the JCL
statements in the startup deck..

Note: CALL-OS monitors its own time sharing and should not be run under
OS/360 time sharing facilities. If, however, CALL-OS is
initialized either in a time sharing partition for MFT or under a
time sharing priority for MVT, an error message is issued and
initialization terminates .•

119

//CALLOS
//JOBLIB
//CALL
//
//SYSABEND
//SYSPRINT
//INDEX
//RESMODS
//OVLY
//BASIC
//FORTRAN
//PLI
//PL2
//SWAPnn
//SYSGRPnn
//aaabbbnn

//yyyzzzn
//'TWX
//T2741
//'T2741E
//SYSJOBQ
//CBNDX
//CBJCL
//CBSYSINA
//CBSYSINB
//SCANxx
//SYSIN

JOB
DD
EXEC

DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD

DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD

MSGLEVEL=1.CLASS=b
DSN=OSRTS.JOBLIB.DISP=SHR
PGM=RTOS1.ROLL=(NO.NO}.PARM=Coption1.
option2.etc'>
SYSOUT=A
SYSOUT=A
DSN=OSRTS.INDEX.DISP=SHR
DSN=SYS1.PROCLIB(membername>.DISP=SHR
DSN=OSRTS.OVLY.DISP=OLD
DSN=OSRTS.BASIC,DISP=OLD
DSN=OSRTS.FORTRAN.DISP=OLD
DSN=OSRTS.PLI.DISP=OLD
DSN=OSRTS.PL2.DISP=OLD
DSN=OSRTS.SWAPnn,DISP=OLD
DSN=OSRTS.SYSGRPnn,DISP=OLD
DSN=OSR'l'S.aaabbbnn,DISP=OLD

DSN=OSRTS .• yyyzzznn,DISP=OLD
UNIT=Cgeneric name or unit address)
UNIT=Cgeneric name or unit address>
UNIT=Cgeneric name or unit address)
DSN=SYS1.SYSJOBQE,DISP=SHR
DSN=OSRTS.CBNDX,DISP=OLD
DSN=OSRTS.CBJCL.DISP=OLD
DSN=OSRTS.CBSYSINA,DISP=SHR
DSN=OSRTS.CBSYSINB.DISP=SHR
VOL=SER=yyyyyy,DISP=SHR.UNIT=2314

*
insert parameter information here; this information and the SYSIN
DD statement are required only when more than 100 characters of
parameter information are specified .•

/*

Figure 29. JCL statements present in a CALL-OS startup deck

DESCRIPTION OF INITIALIZATION PARAMETERS

The parameter field on the EXEC statement and/or the SYSIN DD
statement allows the user to specify a number of options available for
execution. The options are divided into two groups: overall system
options. which apply to the entire system, and additional options. which
are used when the COBI facility is used. Table 6 shows the defaults for
the system and COBI options in alphabetical order; those parameters not
listed have no default.

It may be necessary to exceed the 100-character limitation on the
length of this field. Under such circumstances. the additional
parameter information may be included by using the SYSIN DD statement.
Parameter information may be supplied with either or both methods. as
long as no more than 400 characters are supplied altogether.

120

(

Table 6,. Parameter defaults for RTOS1
r--,
!Parameter I Use I Default I
1----------+-----------------------------------+-~-----------------1
ACTIME ISpec-ifies the time interval which 130 minutes I

lis to elapse between accounting I I
I checkpoints I I
I I I

ALOCTYPE !Specifies whether the space !Cylinder allocation

CBCLASS

COMCON

COMTSL

DFLINK

DSPACE

IPBUFS

OPBUFS

IMAXDCB
I
I
I

OS CLASS

RDRQTY

RDRTIM

RUNTSL
I
I
I
I
ISHRTSL
I
I

!allocation for user-defined I
lscannable output data sets created I
by COB! jobs is in tracks or I
cylinders I

Specifies the output class for
the JCL and unscannable SYSOUT
data sets for COB! jobs

Specifies the logical line number
for the communications console

Specifies the time slice allotted
to each compiler or compiler phase

Specifies the maximum number of
half tracks allowed for a data file

Specifies the space allocation for
user-defined scannable data sets
created by COBI jobs

Specifies the number of pots to be
allocated for each line

Specifies the total number of
256-byte buffers to be allocated

Specifies the number of users
permitted to scan data sets at
the same time

Specifies the output class to be
used to return COBI JCL and data
sets to OS/360 for processing

Specifies the maximum number of
jobs to be submitted before the
COB! input data sets are switched

Specifies the number of minutes
to elapse before the COBI input
data sets are switched

Specifies the time slice allotted
to new and old jobs

Specifies the increment of time
used to share time between user
program area jobs and background

I
Class z

Logical line 2

BASIC: one second
FORTAAN: two secs,.
PLI, PL2: two secs .•

100 half tracks

Four pots per line
with a minimum of
60 total

One for every ten
lines with a mini­
mum of two total

Class A

Ten jobs

15 minutes

New jobs: three
secs ..

Old jobs: ten
secs .•

One second

121

Table 6. Parameter defaults for RTOS1 (continued)
r--·-------------·-~-, I Parameter I Use I Default I
1----------+-----~-----------------------------+-------------·------1
I I I I
ISYSCON !Specifies the logical line number !Primary: line 1 I
I jfor one or both command consoles !Alternate: line 0 I
I I I I
IUNITNM !Specifies the direct access unit 12314 I
I lname to be used for scannable I I
I I output data sets I I
L---------------------------------•--------------------------------J

overall System Options

These options apply to the overall operation of the entire system,.
If any change is to be made in the specifications, the system must be
reinitialized. The options which may be specified and their associated
parameters are:

• The logical line number for the communication console - COMCON
parameter

• The logical line number for one or both command consoles - SYSCON
parameter

• The time slice allotted to new and old jobs - RUNTSL parameter

• The increment of time used to share time between user program area
jobs and background processing - SHRTSL parameter

• The time slice alloted to each compiler or compiler phase - COMTSL

• The time interval to elapse between accounting checkpoints - ACTIME
parameter

• The portions of the CALL\OS system which are to be loaded into
hierarchy storage - LSCRES parameter

• The maximum number of half tracks allowed for a data file - DFLINK
parameter

• The total number of 256-byte buffers to be allocated - OPBUFS
parameter

• The number of 24-byte buffers {pots> to be allocated for each line -
IPBUFS parameter

• The absence of the sort buff er - NOSORT parameter

• The absence of CALL-OS trace table entries - NOTRACE parameter

Appropriate defaults are assigned when a parameter is omitted~ The
parameters, their formats, and the defaults are described in the
following text in alphabetical order by parameter .•

ACTIME=nnn

122

User accounting information is updated on disk
whenever a user initiates or terminates a terminal
session. In addition, periodic checkpoints are taken
during the terminal session to avoid loss of billing
data in the event of a system failure~ The number of
minutes between checkpoints is specified with the
ACTIME parameter, where nnn must be an integer.. The
default is 30 minutes between checkpoints~

COMCON=nnn This is used to enter the communications conso1e
1ogica1 1ine number. The defau1t is 1ogica1 1ine
number 2,.

COMCON=O signifies that no communications conso1e is
to be a11ocated, and that CALL-OS error messages are
to be printed on the OS/360 system operator•s
conso1e.

CA 1ogica1 1ine number is defined as the order in
which termina1s dedicated to CALL-OS are assigned a
UTT,. See a1so TWX, T2741, and T2741E DD statement
descriptions.)

COMTSL=Cnnn,1name) Each compi1er or compi1er phase in the CALL-OS system
has a defau1t time s1ice associated with it,. To
override these va1ues, one COMTSL parameter must be
inc1uded for each va1ue to be modified,

DFLINK=nnn

IPBUFS=nnn

LCSRES=aaaaaaaa

where

nnn represents the new time s1ice va1ue
1name indicates the name of the compi1er or

compi1er phase, and must be BASIC,
FORTRAN, PLI, or PL2

The minimum time s1ice for any compi1er is one
second; the maximum is ten seconds .•

Note that for PL/I, an additiona1 COMTSL parameter
must be specified for the second phase.. The defau1t
va1ues provided with the system are one second for
BASIC and three seconds each for FORTRAN, PLI, and
PL2.. These times are the times recommended for the
IBM System/360 Mode1 50 and shou1d be modified if
another CPU is used.. For examp1e, on a .Mode1 65 and
above, possib1e va1ues are one second for a11
compi1ers and compi1er phases .•

Each time a user either creates a new data fi1e or
updates an o1d data fi1e, he may optiona11y specify
the number of ha1f tracks (1inks) he wishes to
associate with his fi1e. The DFLINK parameter
determines the maximum number of 1inks which can be
requested.. The nnn va1ue may range from 4 to 100,
inc1usive.. The defau1t is 100 links .•

Specifies the number of 24-byte buffers <pots) to be
allocated for each termina1 1ine. The defau1t is
four buffers per termina1 1ine with a minimum tota1
of 60 buffers. If the tota1 number of buffers in the
system is less than four times the number of terminal
lines, then the total is increased, either to four
times the number of terminal lines or to the minimum
of 60.. The maximum is 15 pots per line, or the total
of 60 if the number of lines is less than or equal to
four.

Specifies that the indicated portions of the CALL-OS
system are to be located in Hierarchy 1 storage .•
Only those areas indicated by a letter code reside in
Hierarchy 1 storage.. The letters permitted and their
meanings are as follows:

123

NOSORT

NOTRACE

OPBUFS=nnn

RUNTSL=(nnn,mmm)

124

Letter

B
c
D
G
J
0
p

s
u

256-byte buffers
compiler area
Data control blocks (DCB)
COBI tables and bit strings
New job area and old job area
overlay buffer <see note)
Pots (24-byte buffers> and terminal
translate tables
sort buffer
User terminal tables (UTT)

Extreme care should be exercised in the use of this
option~ some considerations for its usage are
discussed in the section "Designing the system,."

Note: If LCS is available, an overlay buffer should
not be needed since an all-resident system is
clearly desirable.

If this parameter is present, the dedicated sort
buffer is not included at job initialization and
sorting takes place in the user program area.. If the
parameter is not present, the sort buffer is included
at initialization time .•

Exercise of this option should be considered with a
minimal CALL-OS system supporting a small number of
users,. The 14, 400 bytes required for the sort buffer
would be available to run larger programs,.

If the CALL-OS customer includes the trace table
option in his OS/360 system generation (SUPRVSOR
macro>, CALL-OS trace entries become optionally
available in the same table.. If these entries are
not desired,, NOTRACE should be coded,. The default
condition of no tracing is assumed if the OS/360
option is excluded at system generation time,.

Specifies the total number of 256-byte buffers in the
system.. The default is one buffer for every three
terminal lines with a minimum of five buffers,. A
number of buffers less than one-third the number of
terminal lines is increased, either to one-third the
number of terminal lines or to a minimum of five
buffers~ The maximum is one buffer per line, or the
default total of five if the number of lines is less
than or equal to five .•

Specifies time-slice values for new(nnn) and old(mmm)
problem program jobs,. These values are used to
determine the amount of CPU time a new or old job
should have before being swapped out~ However, the
total elapsed time a job is in core is based on the
amount of tim·e given to background~ this is because
the time slice is allocated in increments rather than
all at once <see SHRTSL). This parameter is used
solely for CALL-OS, and is not to be confused with
OS/360 task area time-slicing~ The range allowed is
0.5 through 5.0 seconds for a new job and 1 through
20 seconds for an old job.

/
\'-.___

SHRTSL=ttt

SYSCON=(ppp,aaa)

The default condition for the system is (3,10), which
provides a three-second time slice for a new job and
a ten-second time slice for an old job..

Note that the times given are the times for the IBM
System/360 Model 50 and should be modified if another
CPU is used.. For example, a possible value for the
Model 65 could be (1,3).

Note: For these and other time-slice values, the
user can specify time to within one tenth of
a second.. Examples of acceptable time-slice
values are: O. 5, t. 6, 0 .• 7, and 3 .• 0,.
Examples of unacceptable formats are: 3 .• 45
and 0 .. 47 .•

specifies the increment of time to be used to share
time on a rotating basis between user programs and
background processing. When an increment is used up,
a decision is made whether the next increment is to
be given to the currently-executing user program or
to the background.. This decision is based on the
mode of allocation in effect at the time; the mode is
controlled with the *BATCH command, as described in
the publication CALL-OS Operator's Manual .•

The minimum value of ttt is 0 .• 1 second, the maximum
value is 10 seconds, and the default value is one
second; it must always be less than the old job time
slice for this session <see RUNTSL). Reducing this
value below one second increases system overhead
involved in task switching, but it may improve
overall system performance through more effective use
of the I/O devices associated with background jobs .•

A maximum of two command consoles is permitted on the
system; this parameter assigns logical line numbers
to the command console<s>,

where

PPP is the logical line number of the primary
command console

aaa is the logical line number of the alternate
command console.

The default is logical line number 1 for the primary
command console and logical line number 0 for the
alternate,.

Note that a zero value for the primary console is
treated as null, in which case the default value is
used.

Additional COBI Options

These options are specified only when the COBI facility is used; If
COBI is not used, these options are ignored if present. The options
which may be specified and their associated parameters are:

• Whether or not COBI is to be active for this session of CALL-OS -
NOCOBI parameter

• The automatic starting of the reader - AUTRDR parameter

125

• The maximum number of jobs to be submitted before the COBI input
data sets are switched - RDRQTY parameter

• The time interval that is to elapse before the COBI input data sets
are switched - RDRTIM parameter

• The abi1ity to allow the user to specify a name for each job
submitted - ANYJNAME parameter

• The primary and secondary allocation for user-defined scannable
output data sets created by COBI jobs - DSPACE parameter

• Whether the above allocation is in cylinders or tracks - ALOCTYPE
parameter

• The direct access unit name to be us.ed for scannable output data
sets created by COBI jobs - UNITNM parameter

• The maximum number of users permitted to scan data sets
simultaneously - MAXDCB parameter

• The high level index qualifiers of system data sets that may be
scanned by the user - SCANDS parameter

• The output class for the JCL and unscannable SYSOUT data sets for
COBI jobs - CBCLASS parameter

• The output class to be used to return COBI JCL and SYSOUT data sets
to OS/360 for printing - OSCLASS parameter

The parameters, their formats, and appropriate defaults are described in
the following text in alphabetical order by parameter.

ALOCTYPE=xxx

ANYJNAME

AUTRDR

126

Specifies whether the space allocation for user­
defined scannable output data sets created by COBI
jobs <established by the DSPACE parameter> is in
tracks or cylinders, indicated by TRK or CYL,
respectively.. The default for this parameter is CYL,
since cylinder allocation leads to better
performance.

Indicates that the terminal user may supply a job
name for his jobs; COBI does not alter the job name .•
If this parameter is omitted, COBI creates a job name
for each submitted job. The COBI-created name
consists of the user number and a two-byte identifier
which is obtained from the assigned job number .•

Note: If ANYJNAME is specified, duplicate job names
may occur.. If a user later cancels a job, no
guarantee can be made that his job will be
cancelled .•

Indicates that CA:.:.L-OS is to start the reader
(DIBRDRA or DIBRDRB) to read the prepared COBI input
data set.. If this parameter is omitted, the operator
must start the reader.

This parameter may be overridden during execution of
CALL-OS by specifying the RESET,AUTRDR function of
the *COBI command. For a complete description of
this command, see the publication CALL-OS Operator's
Manual .•

CBCLASS=a

DSPACE=(ppp,sss)

MAXDCB=nn

NOCOBI

OSCLASS=a

specifies the COBI output class and must be a valid
output class (0 through 9 or A through Z). If this
parameter is omitted, the default is output class z .•

This class contains any COBI job SYSOUT data sets
which were not specified as scannable when the job
was submitted and all the JCL associated with the
COBI jobs,. COBI intercepts the COBI output class
when the job terminates and records status
information about the job and its data sets.. In
addition, if the JCL is to be saved, it is copied
into the JCL data set. The output for the job is
then reassigned to an OS/360 output class <see the
OSCLASS parameter) for printing by an output writer .•

The COBI output class must be the class specified in
the CBCLASS parameter for the DIBCONPR utility
program when the cataloged procedures were converted ..

Specifies, in cylinders or tracks, the primary (ppp)
and secondary (sss) space allocation for user-defined
scannable output data sets created by COBI jobs. (A
space allocation is assigned to procedure-defined
SYSOUT data sets when the procedures are converted .•)
Either or both allocation specifications may be
omitted. If a parameter is omitted or if a zero
value is specified, the default is one cylinder for
the primary allocation and one cylinder for the
secondary allocation if ALOCTYPE=CYL, or ten tracks
for the primary and ten tracks for the secondary if
ALOCTYPE=TRK.

Specifies the number of users permitted to scan data
sets at the same time; the maximum which may be
specified is the number of logical lines defined in
the startup deck for this session.. If this parameter
is omitted, the default is one user for every ten
lines with a minimum of two users.. Any number above
this amount should be determined by the anticipated
number of COBI users who will be scanning data sets .•
Daily operation of the installation will indicate if
the number should be increased.. If a particular
installation uses COBI heavily, it may be necessary
to allow six or eight users for every ten lines.

Specifies that COBI is not to be active for this
session of CALL-OS. The resident COBI modules are
not loaded with the CALL-OS nucleus .•

Specifies an OS/360 output class and must be a valid
output class (0 through 9 or A through Z). It must
not be the same as the class specified in the CBCLASS
parameter.. If this parameter is omitted, the default
is output class A .•

The output associated with a COBI job is reassigned
from the COBI output class (see the CBCLASS
parameter) to the OS/360 output class after the job
has been processed by the COBI JCL module <see the
description of the JCL data set in the chapter on
COBI). The OS/360 output class is processed by an
OS/360 output writer which prints the output on the
high-speed printer .•

127

RDRQTY=nnn

RDRTIM=mmm

SCANDS=
(index1,index2)

UNITNM=name

Specifies the maximum number of jobs (nnn) to be
accepted into a COBI input data set before a switch
is made to allow the other to accept input. The
switch is made only if the reader has finished
reading the other data set. The number specified
must be within the range 0 through 999; a value of 0
makes the function inoperative,. If this parameter is
omitted, the default is ten jobs,.

The parameter, or the default, may be overridden by
specifying the RESET,RDRQTY function of the *COBI
command,. Any RDRQTY specification is ignored if the
ANYBATCH function of the *COBI command is used. For
a complete description of the *COBI command, see the
publication CALL-OS Operator• s Manual .•

Specifies the time interval in minutes <mmm) before a
switch is made between the COBI input data sets,. The
switch is made only if the current input data set has
one or more jobs in it and if the reader has finished
reading the other data set. The number specified
must be within the range 0 through 999; a value of 0
makes the function inoperative. If this parameter is
omitted, the default is 15 minutes.

The parameter, or the default, may be overridden by
specifying the RESET,RDRTIM function of the *COBI
command. Any RDRTIM specification is ignored if the
ANYBATClI function of the *COBI command is used,. For
a complete description of the *COBI command, see the
publication CALL-OS Operator's Manual.

Specifies the high level index qualifier of system
data sets that may be scanned by the terminal user;
the user is not permitted to modify or scratch the
data sets.. If, for example, SCANDS=SYS1 is
specified, any COBI user may scan any data set with
SYS1 as the high level index qualifier, such as
SYS 1. MACLIB or SYS 1,. PROCLIB. It is recommended that
the SCANDS parameter contains the high level index
qualifier of the COBI procedure library; it is this
library which contains the converted procedures,.

Only two qualifiers may be specified and each may be
up to eight characters in length.. If this parameter
is omitted, the user is permitted to scan only those
data sets with his user number as a qualifier in the
data set name.

Specifies the group of devices containing the volumes
to be used for scannable output data sets created by
COBI jobs, either by device type or generic name,.
The generic name must have been specified in the
UNITNAME macro during system generation,. In
addition, a specific unit address may also be
specified'" If this parameter is omitted, the default
is device type 2314.

DESCRIPTION OF JCL STATEMENTS

The data set names used in the startup deck must correspond to the
names supplied for the system build utility programs,. The data set
names shown in the startup deck in the figure are the names created and
cataloged by default during system build.. The user may create his own

128

(

data set names with the JCL statements.. In this case,. the data set
names are optional and the VOLUME and UNIT parameters must be supplied
on the DD statements.. The names of the DD statements must be as shown.

The following text describes the JCL statements in the order in which
they appear in the startup deck shown in Figure 29 .•

JOB Statement

The JOB statement in the startup deck for CALL-OS must meet certain
requirements; it:

• must specify a job name (in the sample the name is CALLOS); this
name appears in the termination message issued by OS/360 when CALL­
os terminates abnormally,.

• must specify ROLL=CNO,.NO) unless this parameter is specified on the
EXEC statement,.

• should assign a unique job class to CALL-OS,.

• must specify a REGION for MVT unless this parameter is specified on
the EXEC statement.

JOBLIB DD Statement

The JOBLIB DD statement designates the private library containing all
CALL-OS load modules.. Instead of a JOBLIB statement,. a STEPLIB DD
statement may be used.. If all modules reside in SYS1.LINKLIB,. the
JOBLIB (or STEPLIB) statement may be omitted .•

EXEC statement

The EXEC statement in the startup deck for CALL-OS must meet certain
requirements; it:

• must specify the CALL-OS program name; that is PGM=RTOS1,.

• must specify ROLL=CNO,.NO) unless this option is specified on the JOB
statement,.

• may specify initialization options in the PARM field if less than
100 characters of information is supplied, and

• must specify a REGION for MVT unless this parameter is specified on
the JOB statement~

SYSABEND DD Statement

The SYSABEND DD statement identifies the data set for ABEND dumps and
need only specify the appropriate SYSOUT class.

SYSPRINT DD Statement

The SYSPRINT DD statement specifies the output destination for
statistics produced by the *REPORT command and, if COBI is present,. for
status requests issued by the operator with a *COBI-P command.. The DD
statement may specify either a SYSOUT class or a dedicated printer .•
When the data set is directed to SYSOUT, the default block size

129

parameter is 665 bytes.. The user may override this value in 133-byte
increments up to a maximum of 1995 bytes .•

INDEX DD Statement

The INDEX DD statement identifies the CALL-OS index data set created
at data base build time. This data set contains, among other items, all
possible data base DD statement names permissible in this startup deck.

RESMODS DD Statement

The RESMODS DD statement identifies the list of potentially
nonresident modules that are to be made resident during the current run
of CALL-OS. For convenience the procedure library supplied with the
system contains four members which may be used to specify module
residency. When one of these members is used, the DSNAME specification
must contain both the data set name and the member name, where the data
set name specifies the procedure library and the member name specifies
one of the following:

RTOSALL

RTOSNONE

RTOSLLRS

RTOSUSER

All modules to be made resident..

All potentially nonresident modules to be made
nonresident.

All modules for the load, list, run, and save functions
to be made resident..

All modules for user terminal command functions to be
made resident; all modules for operator command functions
to be nonresident..

In addition, the user may use lists other than those in the procedure
library. The user-supplied list may be a sequential data set, a member
of a partitioned data set, or a data set in the input stream,. The
format of the list is identical in all three cases.. The list consists
of 80-byte card images, beginning in column 1 and continuing up to and
including column 71. Column 72 must be bl,ank.. scanning of any card is
terminated when the first blank is encountered. As many card images as
are necessary may be used to complete a list. Module names in the list
must be separated by commas except for the last name on the card.

If hierarchy support is part of the OS/360 system, the RESMODS list
may be used to designate the hierarchy into which a module is loaded .•
The hierarchy specification is placed in parentheses after the module
name, for example, M#LOAD(1) indicates that M#LOAD is to be placed in
hierarchy 1. Hierarchy 0 may also be specified, but it is the default.
More information on using hierarchy support is contained in the section
"Designing the system",.

If the RESMODS and OVLY DD statements are omitted, all potentially
nonresident modules are to be made resident; if the RESMODS DD statement
is omitted and the OVLY DD statement is included, all of these modules
are to be nonresident,.

OVLY DD Statement

The OVLY DD statement specifies the data set to be used by the CALL­
os initialization routines. This data set contains copies of modules
selected from the CALL-OS load module library that are to remain
nonresident for today's run.. For a totally resident system the OVLY DD
statement should be omitted.

130

(

BASIC, FORTRAN, PLI, and PL2 DD Statements

The BASIC and FORTRAN DD statements specify the location of the BASIC
and FORTRAN compilers, respectively. The PLI and PL2 DD statements
specify the location of the first and second phases, respectively, of
the PL/I compiler; if PL/I is to be us~a, both statements must be
present. The compiler data sets are created and loaded during the
system build process .•

Only those compilers to be made active during the current online
session need to be represented by DD statements'" The initialization
routines determine the amount of core storage to be set aside for the
compiler area by using the value of the size for the largest compiler to
be used in the system'" For example, if the PLI and PL2 DD statements
are omitted, the compiler area will be large enough for either BASIC or
FORTRAN.

SWAPnn DD Statement

Each SWAPnn DD statement identifies one of several <or only one)
work/swap data sets to be used by the online system'" At least one SWAP
DD statement must be present; additional work/swap data sets are
identified by nn, in the range 00 through 19'"

Any subset of the possible 20 work/swap data sets can be specified
during initialization. However, the total space in all data sets
specified must allow one cylinder for each terminal line (specified with
the TWX, T2741, and T2741E DD statements).. All the lines are opened
during initialization and each line assigned.to one work/swap cylinder.

The cylinders are assigned on a round-robin, first come first served
basis: the first line (by logical line number) is assigned to the first
cylinder of the first data set; the second line is assigned to the first
cylinder of the second data set, etc.. The data sets are used in
ascending sequence, according to the nn in the DD statement name.. For
example, if SWAP12, SWAP05, and SWAP08 are defined in the startup deck,
the first line is assigned to the data set defined by the SWAP05 DD
statement.

SYSGRPnn DD Statement

The SYSGRPnn DD statement identifies one of several <o~ only one>
system group data sets (that is, those data sets used for system
libraries). At least one SYSGRPnn DD statement must be present.. If
only one is present, the number must be either 00 for the primary
cluster or 40 for the alternate cluster; if several DD statements are
required to define the system group, the numbers must be in sequence,
either from 00 through 39 or from 40 through 79.. All statements must
belong to the same cluster.

User Group DD Statements

User group DD statements have the form aaabbbnn and identify those
user groups to be present in the current session'" For each DD
statement, aaabbb specifies the range of user numbers in the group,
where aaa indicates the first three characters of the low-order user
number and bbb indicates the first three characters of the high-order
user number. For example, AAABBB indicates that user numbers AAA001
through BBB999 are in this group.

At least one user group DD statement must be present, and each user
group may have more than one data set.. The data sets for a group are

131

sequenced by nn, starting with 00 for the primary cluster and 40 for the
alternate c.luster,. If only one DD statement is required for a group,
the number must be either 00 or 40; if more than one DD statement is
required, the numbers must be in sequence, from 00 through 39 for the
primary cluster and 40 through 79 for the alternate cluster.

If a group is to be present for a session, all the data sets for the
group must be present and from the same cluster. Entire groups from
either cluster may be present during the same session as long as their
user number ranges do not overlap.

TWX, T2741, and T2741E DD Statements

The TWX, T2741, and T2741E DD statements identify the terminals to be
brought up by CALL-OS during initialization and enabling of the system.
The statements and the associated terminal type are:

• TWX Identifies a group of Teletype (TTY) terminals and causes the
T#TTYTAB translation table to be loaded

• T2741 Identifies a group of 2741 Correspondence Terminals and
causes the T#27CTAB translation table to be loaded

• T2741E Identifies a group of 2741 EBCD terminals and causes the
T#27ETAB translation table to be loaded

If the system is not using one or more of the terminal types, the
appropriate DD statement may be omitted.

At least one of the TWX, T2741, or T2741E DD statements must be part
of the startup deck. The unit addresses may be expressed either in
generic terms by using the OS/360 system generation convention or in the
form of actual unit addresses,. If actual unit addresses are used, the
DD statements for the terminals must be concatenated .•

Logical Line Numbers: Logical line numbers begin with the Teletype
terminals, followed by 2741 correspondence and 2741 EBCD terminals in
that order,. For example, if there are two teletype terminals and two
2741 correspondence terminals, the first 2741 correspondence terminal is
logical line number 3 while the first 2741 EBCD terminal is logical line
number 5. The order of the DD statements containing the ddnames has no
effect on the assignment of logical line numbers,.

Translate Table Loading: Translate table loading may be indicated
either by the presence of a DD statement for the terminal type and/or by
the presence in the RESMODS list of the translate table name: T#TTYTAB
for TTY, T#27CTAB for 2741 correspondence, and T#27ETAB for 2741 EBCD.
Hierarchy specifications are honored if defined in the RESMODS list;
otherwise, the default is the hierarchy in which the system pots are
loaded. Separate DCBs are built for each of the three terminal types
only if that terminal type is requested via a DD statement.

Considerations for 2741 Terminals: If only one type of 2741 terminal is
physically connected to a system, then that customer installation may
specify this particular terminal type (correspondence or EBCD) in the
appropriate DD statement, and instruct its 2741 terminal users to
depress the RETURN only for the sign-on procedure.

A customer installation may employ a large number of one type of 2741
terminal on a system where terminal users depress the RETURN only for
the sign-on procedure,. If a relatively small number of the second type

132

(_

of 2741 terminal is now added to the system, this installation may
specify all the 2741 terminals with one type of 2741 DD statement and
instruct users of the second 2741 terminal type to perform the standard
sign-on procedure.. Users of the first 2741 terminal type can continue
to sign on by depressing the RETURN key only.

Both the 2741 correspondence and 2741 EBCO terminal types can be
supported by one DCB. This is accomplished by specifying one type of DD
statement for all 2741 line addresses, and requesting the loading of the
translate table for the type of 2741 terminal not specified on the DD
statement via the RESMODS list. This gives a customer installation the
advantage of employing only one rotary for all 2741 lines; and, in
addition, conserves core storage for DCBs.

Additional DD Statements for COBI

If COBI is to be used, additional DD statements are required.. If
COBI is not to be used, these statements are ignored if present. The
statements and their requirements are as follows:

SYSJOBQ

CBNDX

CBJCL

CBSYSINA
CBSYSINB

SCANxx

Defines the OS/360 system job queue data set,
SYS 1 .• SYSJOBQE ..

Defines the COBI index data set, which contains
information about each job submitted to OS/360 from a
user terminal .•

Defines the CuBI JCL data set. If the user requests
that the JCL for a submitted job be saved for
scanning at the terminal, the JCL is written into the
JCL data set.. If the user does not request JCL
scanning but his job contained a JCL error. the JCL
is also saved ..

Define the data sets which are to contain jobs
submitted through COBI for execution under OS-/360 .•
Ideally, one data set is attached to COBI to receive
jobs while the other is being read into OS/360 batch
processing.. Both statements must be present when
COBI is used.

Defines those volumes which contain scannable data
sets, where xx is a two-character identifier used to
make each DD statement unique.. At least one SCANxx
DD statement must be present if scanning of COBI job
output at a terminal is to be allowed,.

one DD statement must be supplied for each volume
which is to contain scannable data sets produced by
COBI jobs. These volumes are mounted on the class of
devices specified in the UNITNM parameter .•

In addition, if the SCANDS parameter is specified, a
DD statement must be supplied for each volume which
contains the system data sets associated with the
index level qualifier. For example, if SCANDS=SYS1
is specified, one DD statement must be supplied with
the volume serial number of each of the system
residence packs,.

The DSNAME parameter must not be specified on any
SCANxx DD statement.

133

SYSIN DD Statement

If more than 100 characters of parameter information are required,
additional parameter information may be entered following a SYSIN DD *
statement as 80-column card images.. Information in these card images ,
must always begin in column 1 and must not extend beyond column 71 .•
Keyword parameters and their accompanying values may not extend from one
card to the next. The format for all keywords is identical to the
format required when the information is entered with the EXEC statement..
Note that scanning of each card continues until the first blank is
reached. No comma is required after the last parameter on any card, and
no use is made of any continuation indicators in column 72. As many
additional cards as required may be used, provided that no more than 400
characters of information are specified altogether.

134

CREATING AND MAINTAINING THE DATA BASE

CALL-OS provides several utilities that may be used in the building
and maintaining of the data base. Because these utilities are
diversified in function, they are gathered into one chapter for the
convenience of the user. The utilities are:

• U#UTIL3 Formats the index data set

• U#UTIL1 Constructs the data base

• UTILX Maintains the index data set

• DIBCADBU Maintains user base data sets

Two of these utilities are involved in the creation of the index and
the data base: U#UTIL3 and U#UTIL1. U#UTIL3 formats the index data set
to a full track of X'FF' (hexadecimal); this formatting is the only
function carried out by U#UTIL3. Following the execution of U#UTIL3,
information describing each data set within the data base is added to
the index by running U#UTIL1, which must process every part of the data
base. In addition to making entries in the index for each data set, the
utility may perform other special processing depending on the type of
data set which is being processed. After the necessary U#UTIL1 runs,
the data base should be ready for use by the system.

The other two utilities are involved in the maintenance of the index
and the data base: UTILX and DIBCADBU .• UTILX may be used to update and
modify the index data set. DIBCADBU consists of a number of separate
functions which are used to perform a variety of operations on the data
base. For example, this utility may be used to reorganize the data
base, perform backup or accounting operations, output a portion of the
data base, and perform additions, deletions, or replacements of
information in the data base.

This section describes the four utilities in greater detail.

U#UTIL3 - FORMATTING THE INDEX

The only purpose of this utility is to format the one-track index
data set to hexadecimal 'FF's. It is run as part of the third step of
the system build process, and should be run thereafter only when some
exceptional situation makes a complete recreation of the index
necessary. An example of the JCL required to execute U#UTIL3 follows:

//NAME
//JOBLIB
//
//INDEX
//
//

JOB
DD
EXEC
DD

DSNAME=OSRTS.JOBLIB,DISP=SHR
PGM=U#UTIL3
DSNAME=OSRTS.INDEX,DISP=CNEW,CATLG),
UNIT=2314,VOLUME=SER=XXXXXX,
SPACE= (TRK, 1)

Since the index is read only once by the online system, its physical
location has no effect on the performance of the system.

U#UTIL1 - BUILDING THE DATA BASE

This utility performs those functions necessary to prepare the data
base data sets for use with the system. It is employed as part of the

135

default data base build procedures; its use is also required when
building a custom-tailored data base and when adding additional data
sets to an existing data base,. U#UTIL 1 must also be used to pre format
any output data sets required for the RECONSTRUCT and REORGANIZE
functions of the data base utility'" In this case, if the data sets
already exist in the data base, UTILX must be used first to delete the
appropriate index entries.

Five different types of data sets can be processed by U#UTIL1. The
desired function is indicated by specifying one of the five literals
listed below in the PARM field of the EXEC statement..

// EXEC PGM=U#UTIL1,PARM='COMPILER'
'SYSGROUP'
'USRGROUP'
'WORKSWAP'
'OVERLAY'

Only one function per run may be invoked, but more than one data set
within a function can be processed during a run. During execution of
U~UTIL1, the ddname from each compiler, system group, user group,
work/swap, or overlay data set DD statement is printed on the device
indicated by the SYSPRINT DD statement (which would normally be the
system printer SYSOUT=A)'"

This information appears below an appropriate heading, together with
the corresponding ddname and dsname entered in the index. Any violation
of the ddname naming conventions for CALL-OS data sets or conflict with
existing index entries causes an appropriate error message to be printed
below the pertinent DD statement and index information; the program
proceeds to the next statement without performing any data set
processing or index updating function for the current DD statement. If
an error occurs during the processing of any of these data sets, an
error message is printed, the processing of the data set is terminated,
and the index is not updated with the new DD statement information.
Csee the CALL-OS Operator's Manual for a list of U#UTIL1 system printer
(SYSPRINT) error messages,.>

The following subsections describe the special processing that takes
place for each of the five types of data sets .•

COMPILER DATA SETS

One load module version of each compiler in the system resides in the
CALL-OS JOBLIB partitioned data set. Performance considerations require
that the reading of these compilers be done as rapidly as possible; for
that reason, the version of each compiler which executes as part of the
online system resides in a modified format on a separate data set. This
special version of each compiler is created by U#UTIL1 .•

For each compiler run of U#UTIL1, the LANG DD statement points to the
JOBLIB data set which contains members whose names match the ddnames of
the other DD statements provided,. These other DD statements point to
the data sets into which the modified versions of the compilers are to
be written. The utility first ensures that no multiple extents or
alternate tracks have been assigned within the space allocated to the
compiler data set, and that the data set does not cross any cylinder
boundaries. It then rewrites the compiler into that area in the
necessary format. Where optimum performance is desired, care should be
taken in allocating the compiler data sets. (Particular attention
should be given to the discussion of the central cylinder functions in
the section ., Designing the System",. >

136

In addition to rewriting the compilers in the data sets provided, the
index is updated to reflect the new status of each compiler.. If no
previous entry with the compiler name exists in the index, an entry is
created which contains the compiler name, the name of the data set in
which it is being rewritten, and the length of the compiler,. If the
index already has an entry for this compiler, the entry is updated only
to reflect the current data set name and the compiler length,. If the
user desires to retain the old copy of a compiler for backup purposes,
he may specify a new data set name,. However, to return to a previous
version of the compiler, he must update the index with the UTILX utility
(see "UTILX-Modifying the Index•).

Note that the online system still requires the JCL necessary to
define the compiler data sets; the index is used only for maintaining
control information about the data sets .•

The following example shows the JCL necessary to run U#UTIL1 on the
three compilers provided with the system. Note particularly the manner
in which the two-phase PL/I compiler must be handled, and that compiler
allocations must not cross cylinder boundaries .•

//NAME
//JOBLIB
//
//SYSPRINT
//INDEX
//LANG
//FORTRAN
//
//BASIC
//
//PLI
//
//PL2
//

JOB
DD
EXEC
DD
DD
DD
DD

DD

DD

DD

WORK/SWAP DATA SETS

-.... -
DSNAME=OSRTS.JOBLIB,DISP=SHR
PGM=U#UTIL1,PARM='COMPILER'
SYSOUT=A
DSNAME=OSRTS.INDEX,DISP=OLD
DSNAME=OSRTS.JOBLIB,DISP=SHR
DSNAME=OSRTS.FORTRAN,SPACE=(CYL,1),
DISP=(NEW,CATLG),UNIT=2314,VOL=SER=XXXXXX
DSNAME=OSRTS.BASIC,SPACE=CCYL,1),
DISP=(NEW,CATLG),UNIT=2314,VOL=SER=XXXXXX
DSNAME=OSRTS.PLI,SPACE=CCYL,1),
DISP=(NEW,CATLG),UNIT=2314,VOL=SER=XXXXXX
DSNAME=OSRTS.PL2,SPACE=(CYL,1),
DISP=(NEW,CATLG},UNIT=2314,VOL=SER=XXXXXX

Each data set specified by a SWAPnn DD statement is validated to
ensure that no multiple extents or alternate tracks have been assigned,
and that the data set starts and ends at cylinder boundaries.. If the
data set is satisfactory, an index entry is created or updated.

One cylinder in a work/swap data set must be available to the online
system for each line being enabled,. If optimum system performance is
desired, care should be taken in allocating these data sets~ (For more
information on this subject, refer to the discussion of the central
cylinder functions under "Designing the System",.)

The following is an example of the JCL required to add two work/swap
data sets to the system:

//NAME
//JOBLIB
//
//SYSPRINT
//INDEX
//SWAPOO
//
//SWAP01
//

JOB
DD
EXEC
DD
DD
DD

DD

DSNAME=OSRTS.JOBLIB,DISP=SHR
PGM=U#UTIL1,PARM='WORKSWAP'
SYSOUT=A
DSNAME=OSRTS.INDEX,DISP=OLD
DSNAME=OSRTS.SWAPOO,DISP=CNEW,CATLG),
SPACE=(CYL,30,,CONTIG),UNIT=2314,VOL=SER=XXXXXX
DSNAME=OSRTS.SWAP01,DISP=(NEW,CATLG),
SPACE=(CYL,30,,CONTIG),UNIT=2314,VOL=SER=YYYYYY

137

OVERLAY DATA SE'T

The data set specified by the OVLY DD statement is validated to
ensure that the data set resides on a single volume; an index entry is
then created or updated. If optimum system performance is desired, care
should be taken in allocating this data set,. (Refer to the discussion
of central cylinder functions under "Designing the System".)

The following is an example of the JCL required to add the overlay
data set to the system:

//NAME
//JOELIE
//
//SYSPRINT
//INDEX
//OVLY
//

JOB
DD
EXEC
DD
DD
DD

SYSTEM GROUP DATA SETS

DSNAME=OSRTS.JOBLIE,DISP=SHR
PGM=U#UTIL1,PARM='OVERLAY'
SYSOUT=A
DSNAME=OSRTS.INDEX,DISP=OLD
DSNAME=OSRTS.OVLY,DISP=(NEW,CATLG),
UNIT=2314,VOLUME=SER=XXXXXX,SPACE=CCYL,1)

Each data set specified by a SYSGRPnn DD statement is validated to
ensure that the data set resides on a single volume; if the data set is
the first in the group, it is checked to ensure that at least three
tracks have been allocated. The data set is then formatted, and an
index entry is created. Existing system group index entries cannot be
updated by U#UTIL1; however, additional data sets which come immediately
after the existing data sets in sequence may be added at any time. The
formatting of the data set consists of:

1. Building an allocation record and nine empty records on the first
track of the data set.

2. Writing an equivalency record on the second track of the data
set, and a catalog record (for the *** programs and data files)
and a directory record (for the ** programs and data files) on
the third track, if the data set is the first in the group .•

3. Formatting the remainder of the space in the data set into half
track records.

Existing system group data sets cannot be processed by U#UTIL1 unless
they are first deleted from the index by UTILX. This should only be done
when it is desired to delete an entire system group, thus destroying the
accumulated data for that group,. (See the description of UTILX
elsewhere in this section.)

An example of the JCL required to add a system group data set
follows.

//NAME
//JOELIB
//
//SYSPRINT
//INDEX
//SYSGRPOO
//
//

JOB
DD
EXEC
DD
DD
DD

DSNAME=OSRTS.JOBLIE,DISP=SHR
PGM=U#UTIL1,PARM='SYSGROUP'
SYSOUT=A
DSNAME=OSRTS.INDEX,DISP=OLD
DSNAME=OSRTS.SYSGRPOO,DISP=(NEW,CATLG),
SPACE=(CYL,4),VOL=SER=XXXXXX,
UNIT=2314,DCB=DSORG=DA

Note: U#UTIL 1 assigns a password of SECURITY to the SYSLIB user,. The
person in charge of system security should alter this password as
soon as possible to prevent unauthorized use of the data base
utility DIBCADEU.

138

•

USER GROUP DATA SETS

These data sets are processed by U#UTIL1 in the same manner as system
groups, except that U#UTIL1 does not write a catalog record and a
directory record on the third track of the first data set in each group .•
Therefore, user group data sets are checked for a minimum of two tracks
rather than three.. The ddnames supplied must meet the specifications
listed under "CALL-OS Data Base" .•

Whenever a new user group is needed, or the data sets in any existing
user group have been filled up, the USRGROUP option of this utility
should be used to add new data sets to the data base.. When this utility
is employed to add additional data sets to an existing user group, the
new data sets must immediately follow the existing data sets in that
group sequence.

Existing user group data sets cannot be processed by U#UTIL1 unless
they are first deleted from the index by UTILX.. This should only be
done when it is desired to delete an entire user group, thus destroying
the accumulated data in that group.. (See the description of UTILX
elsewhere in this section.)

An example of the JCL required to add two user groups to the system
follows:

//NAME
//JOBLIB
//
//SYSPRINT
//INDEX
//AAABZZOO
//
//
//CAADZZOO
//
//
//CAADZZ01
//
//

JOB
DD
EXEC
DD
DD
DD

DD

DD

DSNAME=OSRTS.JOBLIB,DISP=SHR
PGM=U#UTIL1,PARM='USRGROUP'
SYSOUT=A
DSNAME=OSRTS.INDEX,DISP=OLD
DSNAME=OSRTS.AAABZZOO,DISP=(NEW,CATLG),
UNIT=2314,VOLUME=SER=XXXXXX,
SPACE=(CYL,80),DCB=DSORG=DA
DSNAME=OSRTS.CAADZZOO,DISP=(NEW,CATLG),
UNIT=2314,VOLUME=SER=YYYYYY,
SPACE=(CYL,40),DCB=DSORG=DA
DSNAME=OSRTS.CAADZZ01,DISP=(NEW,CATLG),
UNIT=2314,VOLUME=SER=ZZZZZZ,
SPACE=(CYL,40),DCB=DSORG=DA

UTILX - MODIFYING THE INDEX

After a system and its data base have been built, situations may
arise where it is necessary to modify the index without modifying the
individual data sets within the data base.. UTILX provides this
capability.. It may be used to add, delete, or replace entries in the
index. As part of its processing, UTILX produces a listing of the index
before updating, as well as another list of the updated copy.. It can
also produce a punched card version of the index which can be used to
recreate the index if necessary •

JCL STATEMENTS

The following is a sample of the JCL required to execute UTILX:

//NAME
//JOBLIB
//
//INDEX
//SYSPUNCH
//SYSPRINT
//SYSIN
ADD

JOB
DD
EXEC
DD
DD
DD
DD

DSNAME=OSRTS.JOBLIB,DISP=SHR
PGM=UTILX
DSNAME=QSRTS.INDEX,DISP=OLD
SYSOUT=B •--PUNCHED OUTPUT---
SYSOUT=A

*

139

(Detail cards for entries to be added)
DEL
(Detail cards for entries to be deleted)
/*

The program is controlled through the cards read in following the
SYSIN DD statement. A function control card Cwith either ADD or DEL in
columns 1-3) controls processing of detail cards until another function
control card is read.

DETAIL CARDS

The detail cards are free-form, with the fields separated by one or
more blanks or a comma surrounded by optional blanks. Successive commas
are used to indicate an omitted field.. The fields are as follows:

Field

1

2

3

4

5

6

Field Definition

Entry type.. This must be up to three decimal digits
identifying the appropriate code from the list below:

Code

1
2

100
150
160
170
180

Meaning

compiler
overlay
Work/swap
Primary cluster for system group
Primary cluster for user group
Alternate cluster for system group
Alternate cluster for user group

Relative data set number, from 0 through 39 for
the primary cluster, and 40 through 79 for the
alternate cluster.. For detail cards other than
work/swap, system, or user groups, this field should
be zero,.

Group identification.. For system groups, the value
is SYSLIB. For ~ groups, the value is of the
form aaabbb where aaa is the three-character lower
range and bbb is the three-character upper range
for user numbers in the group.. For compilers. the
value is the first six characters of the ddname .•
For work/swap entries the value is SWAP and for
overlay entries, the value is OVLY.

The name (up to eight characters) of the DD statement
which defines the data set ..

The data set name Cup to 44 characters) assigned
to the data set.

compiler size. Up to six decimal digits, indicating
total bytes in each compiler data set. For entries
other than compiler entries, this field should be
zero .•

For an ADD entry, all six data fields must be present. A previous
entry in the index containing the same entry type and ddname is replaced
by the ADD function.. For the DEL function, only the first and fourth
data fields need be present..

140

•

OUTPUT

The output produced by UTILX consists of a three-part printed listing
and, optionally, a card deck.. The first printout that appears is a
listing .~f the index entries before any changes are made. The second
printout is a list of the detail card images.. If an error is found
during the reading of a detail card, a message is printed below the
card, the index is not updated, and the program processes the next card .•
The third printout is a listing of the index after it has been updated.
The card deck which is punched consists of the index entries, exactly as
they appear in the updated listing of the index. These cards can be
used as detail cards for subsequent runs of UTILX, as they adhere to the
format described for the detail cards.

DIBCADBU - MAINTAINING THE DATA BASE

The CALL-OS Data Base Utility (DIBCADBU) provides capabilities for
manipulation and maintenance of the CALL-OS data base. Principle
components of the data base to be manipulated are user catalogs, program
and data files, and shared directories and libraries. Program files and
data files are created by remote terminal users or with the data base
utility. In this chapter, the terms "program" and "program file" imply
either a saved source program file or a stored object program file.

INTRODUCTION

The data base utility is a comprehensive group of generalized utility
and maintenance routines designed to assist the user in the day-to-day
operation of the system. By this means, the most frequently required
services of data base maintenance and manipulation can be performed with
a minimum of effort. The data base utility can be executed as an
offline batch program in any OS/360 environment to provide a complete
range of services.

All data sets used by the data base utility are standard OS/360 data
sets.. Among these are the CALL-OS system group and user group data
sets, which are suballocated into logical files of several types.. All
such files created or modified by the utility are standard CALL-0S
files. For a detailed description of these files, see the "CALL-OS Data
Base" section.

Using the Data Base Utility

The data base utility consists of nine separate functions: ACCOUNT,
DELETE, JOBFIND, INSERT/REPLACE, RECONSTRUCT, REORGANIZE, TAPE,
VALIDATE, and WRITE. Each function is processed by one serially reusable
module which operates under control of the main utility control module
(see Figure 30). The actual processing performed by each module is
specialized by means of user-provided utility control statements.

When a control statement is recognized, the utility control module
(which is always resident) loads the appropriate function module and
transfers control to it.. When the function module has finished
processing the request, the module is deleted unless the next control
statement requests the same function.. For this reason, all requests for
the same function should be grouped together to reduce the time required
to load function modules and improve overall utility performance.

All functions of the data base utility except the WRITE function
operate offline, when CALL-OS is not in operation against the same
system group and/or user group data sets,. The WRITE function may be
executed concurrently with CALL-OS as long as certain rules are

141

followed. These rules are described in more detail under "WRITE
Function".

WAITE

VALIDATE

TAPE

REORGANIZE

ACCOUNT

RECONSTRUCT

DELETE

INSERT/
REPLACE

JOBFIND

Figure 30. Data base utility program structure

Ensuring File Security

The data base utility is designed to maintain the standards of system
integrity established by CALL-OS online system operation.. To protect
against inadvertent access to or destruction of retained program and
data files, the CALL-OS online system requires that each terminal user
follow a specific sign-on procedure, using his user number and password.
All resources belonging to a user are protected under this
identification. No file can be added to or deleted from an individual
user library unless the required user password has been specified.

In a similar manner, the data base utility requires specification of
the required user password prior to insertion, replacement, or deletion
of a program or data file from an individual user library,. This user
number and password security measure applies to both system group and
user group data sets; additional security measures are available for
user groups.

System Group security: Since the data base utility may also be used to
manipulate various system control files, a SYSLIB password facility is
provided in addition to the user password,. A system group created by
U#UTIL1 has a default SYSLIB password of SECURITY; to ensure security,
the system programmer must issue the PASSWORD terminal command through
the command console and assign a new password to SYSLIB for use by the
data base utility.. To perform certain data base manipulations, some of
which are equivalent to online command console functions, the function
statement must contain the password that has been assigned to SYSLIB.
This password is checked by the data base utility before these functions
can be executed,.

Note: The default password of SECURITY applies to the current version
of CALL-OS. If a data base created by a previous version of
CALL-OS is used, the default password for the system group may be
RTOS or PASSWORD. This password must be changed with the PASSWORD
command from the command console. The PASSWORD command is
described in the publication CALL-OS Terminal Operations Manual.

142

User Group security: The termina1 user can also contro1 the copying or
inserting of his program and data files into another user's library .•
All program or data files saved or stored by a terminal user or inserted
in a user library by means of the data base utility are initially in an
unreleased, or secure, state. When a file is in this state, it cannot
be inserted by another user into his library unless the originating user
releases the file with the RELEASE command. The data base utility
returns the fi1e to a secure state after accessing the file. If a user
releases a file but does not use the data base utility, the originating
user may return the file to the secure state by issuing a SECURE command
at his termina1.

Additional security features can be imposed by a terminal user
through use of the terminal command language. The following features
are avai1ab1e to remote terminal users with the terminal command
language, and are also available to users of the data base utility with
parameters on the function statement,.

• LOCK

Prevents a program or data file in the user's library from being
accidentally destroyed. No program or data file with the same name
can be saved or stored in the library by a remote terminal user, and
the file cannot be purged from the library.. Similarly, a locked
file cannot be replaced or deleted using the data base utility. A
file can be locked either by issuance of the LOCK command from the
terminal or as it is inserted in a user library with the data base
utility.

• UNLOCK

Removes protection from a previously locked program or data file.. A
file can be unlocked either by issuance of the UNLOCK command from
the terminal or as it is inserted in or removed from a user library
with the data base utility,.

• PROTECT

Specifies that the named, saved, or stored program or data file is
run only. The name of the program or data file is in the
*Directory, the **Directory, or the ***Library. A protected program
file cannot be listed, altered, saved, or stored by any user other
than the originator. A protected data file may not be opened by
other users of the library.. A file can be protected either by
issuance of the PROTECT command from the terminal or as it is
inserted in a user library by the data base utility,. The user who
protected the fi1e may remove the protection by issuing the ALLOW
command at his terminal.

• POOL *program or data file name
• POOL **program or data fi1e name

Makes a user's stored or saved program or data file available to
other users through the shared library facility.. If a file having
the same name is already listed in the *Directory or **Directory,
pooling of the program is not allowed .•

• PULL *program or data file name
• PULL **program or data file name

Removes the program or data file name from the *Directory or
**Directory. A file can be pulled either by issuance of the PULL
command from the terminal or with the data base utility,.

143

For a complete description of the CALL-OS terminal command language,
see the CALL-OS Terminal Operations Manual.

CONTROL STATEMENTS FOR EXECUTION

Two types of control statements are required to execute the data base
utility: job control statements, which provide communication between
the data base utility and OS/360, and function statements, which control
specific operations performed by the utility.. Each statement is entered
on one or more control cards.. Figure 31 shows the control card deck
format for the data base utility .•

II EXEC
STATEMENT

// JOB
STATEMENT

I* DELIMITER
STATEMENT

•/ FUNCTION
STATEMENTS

Figure 31. Data base utility control cards

Job Control Statements

The following is an example of the JCL statements required to execute
the data base utility:

144

//ANYNAME
//JOBLIB
//STEPNAME
//INDEX
//SYSPRINT

JOB
DD
EXEC
DD
DD

MSGLEVEL=1,REGION=96K
DSN=OSRTS.JOBLIB,DisP=sHR
PGM=DIBCADBU
DSN=OSRTS.INDEX,DISP=SHR
SY SO UT= A

Additional DD statements

//SYSIN DD *

Function statements and any input program or data file in card form

/*

,,

,,

,•'

The additional DD statements required depend on the operation or
function to be performed; these are summarized in the following text.
The function statements and examples of their use with the appropriate
OD statements are given in subsequent sections.

Whenever system group data sets are accessed or whenever the SYSLIB
password is specified, one DD statement must be included for each data
set in the system group in one or both clusters referenced in the job
step. If only one cluster is referenced, the system group supplied must
be from that cluster.. The ddname is of the form:

SYSGRPnn where nn is the relative data set number; system
group data set numbering must begin with 00 in the
primary cluster and 40 in the alternate cluster

Whenever ~ group data sets are accessed, one DD statement must be
included for each of the data sets in each group accessed. The ddname
is of the form:

aaabbbnn where aaa and bbb are the first three characters of
the upper and lower bound user numbers (the range of
the user group) having access to the defined data
set, and nn is the relative data set number; user
group data set numbering must begin with 00 in the
primary cluster and 40 in the alternate cluster

When certain functions are requested, one or more additional DD
statements are required.. The ddnames are of the form:

LIBRARY

SYS PUNCH

TAPE IN

TAPEOUT

TAPEJ

PRINTJ

CBNDX

CBJCL

name

Defines either the OS/360 partitioned data set which
contains the programs to be added to the data base
with the INSERT/REPLACE function or the OS/360
partitioned data set which is to be used as the
output data set by the WRITE function

Defines the punched output data set

Defines the backup tape to be used as input

Defines the backup tape to be written

Defines a tape journal to be written by the ACCOUNT
function

Defines a printed journal to be written by the
ACCOUNT function

Defines the COB! index either when the JOBFIND
function is used or when the DELETE function is used
to purge COBI jobs from the data base

Defines the COBI JCL data set when the DELETE
function is used to purge COBI jobs from the data
base

Defines an OS/360 sequential data set to be converted
to a CALL-OS data file or vice versa

An example of the job control language set up for a typical
application of the data base utility is shown in Figure 32.. A detailed
explanation of the various statement entries can be obtained from the
publication ~ Systern/360 Operating system: Job Control Language.

145

//JOBNAME JOB MSGLEVEL=1,REGION=96K
//JOBLIB DD DSN=OSRTS.JOBLIB,DISP=SHR
// EXEC PGM=DIBCADBU
//INDEX DD DSN=OSRTS.INDEX,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSPUNCH DD SYSOUT=B
//SYSGRPOO DD DSN=OSRTS .• SYSGRPOO ,DISP=SHR
//SYSGRP01 DD DSN=OSRTS.SYSGRP01,DISP=SHR
//AAAMMMOO DD DSN=OSRTS.AAAMMMOO,DISP=SHR
//AAAMMM01 DD DSN=OSRTS.AAAMMM01,DISP=SHR
//NNNZZZOO DD DSN=OSRTS.NNNZZZOO,DISP=SHR
//NNNZZZ01 DD DSN=QSRTS.NNNZZZ01,DISP=SHR
//LIBRARY DD DSN=PROGRAM .• PDS, DISP=OLD, UNIT=2314,
// VOL=SER=MYPAK
//TAPEIN DD DSN=AAA.BACKUP,DISP=(,KEEP),UNIT=2400,
// VOL=SER=INPUT,LABEL=(,SL)
//TAPEOUT DD DSN=MMM.BACKUP,DISP=(,KEEP),UNIT=2400,
// VOL=SER=OUTPUT,LABEL=(,SL)
//TESTDATA DD DSN=MYDATA,DISP=OLD,UNIT=2314,
// VOL=SER=DATAPK
//SYSIN DD •

(function statements)

Figure 32. Data base utility JCL example

Utility Control Statements

Function statements are the data base utility control statements.
These statements indicate which data base utility function is to be
performed and specify parameters used to control processing. A function
statement has up to four fields: identification, mnemonic, parameter,
and comment, in that order.

The identification field is always columns 1 and 2 of the statement .•
These columns must contain .• / followed by at least one blank .•

The mnemonic field identifies the function to be used and must
contain one of the following values:

ACCOUNT
DELETE
INSERT
JOBFIND
REC ON
REORG
REPLACE
TAPE
VALIDATE
WRI'l'E

The mnemonic field must be followed by at least one blank.

The parameter field contains keyword parameters which control the
specific process performed by the function. The parameters are
separated by commas and may be extended up to and including column 71~
At least one blank must follow the last parameter unless the last
character appears in column 71 .•

146

/

~-

/

The comment field is optional. and may not appear unless it is
preceded by at least one parameter. followed by a blank.. The comment
field may extend up to and including column 71.

Function statements may be continued on as many cards as needed to
hold the statement. The rules for con~inuing a function statement are:

1. The card to be continued must contain either:

• Only the identification field (columns 1 and 2) and the
mnemonic field somewhere in columns 4 through 71. or.

• The first two fields and/or an incomplete parameter field
(with or without a comment field); the last parameter must be
followed by a comma. and. if the comma is not in column 71r
at least one blank.

2. The continuation card must contain ./ in columns 1 and 2 .•

3. One or more blanks must appear between the .• / and the continued
parameter field.

Note: When the PASSWO:dD or USERPASS parameter is specified on the
control statement. printing of the associated value is suppressed
unless the control statement contains an error• If the value
following either the PASSWORD parameter or the USERPASS parameter
contains embedded blanks and/or special characters. then the
value must be enclosed in single quotes.. If the value contains a
single quote. the quote is represented by two consecutive single
quotes. The following examples illustrate this point:

Password Value Parameter Value

ABCrb489 'ABCrb489'

AAAb'ME' I AAAb I I ME I I I

MMM#? 'MMM#?'

where b represents a blank

Analysis of the function statements involves only those parameters
which are either required or optional for the specified function. If
parameters other than those listed for a function are specified on a
function statement. they are ignored.. If parameters which are not valid
for any function are specified. an error message is issued.. Specific
details on parameters and options for each function are given in the
following sections.

ACCOUNT FUNCTION

Online accounting routines update only processor and terminal connect
time; no accounting is made of disk usage by the online system.. The
ACCOUNT function of the data base utility gives the capability to
perform offline accounting functions on the CALL-OS data base <intended
for customer billing services).

This function provides for offline updates to the disk usage
parameter. DISKUNIT. located in each user's equivalency entry.. There
are also provisions for accounting functions in which the equivalency
records may be written to tape and/or the pertinent data extracted and
listed on the printer .•

147

Additional DD Statements

In addition to the required JCL statements described previously, the
ACCOUNT function requires one or more system group DD statements and/or
one or more user group DD statements.. If a tape journal is requested, a '-,~
TAPEJ DD statement is necessary,. If a printer journal is requested, a
PRINTJ DD statement is necessary; this statement should define the
system output data set.

ACCOUNT Function Statement

The ACCOUNT function statement specifies the operations to be
performed. The specific options available with the ACCOUNT function are
described below.

r---, 11-21 Mnemonic I Parameters I
1---+-----------+---------------------------------------1
j./ I ACCOUNT I USRGROUP={aaabbblSYSGRP},CLUSTER=k, I
I I I I
I I I PASSWORD=xxxxxxxx I
I I I I
I I I C,OPTIONS=([TAPEJ,][PRINTJ,][RESET])] I
L--~---------------------------~------------------------J

Note: {} - select one from enclosed list.
CJ - indicates optional parameter

USRGROUP=
aaabbb specifies the user group on which the accounting

function is to be performed; when this option is
specified, one or more aaabbbnn DD statements must be
supplied.

SYSGRP specifies that the system group is to have the
accounting function performed on it.

Note: Prior to this version of CALL-OS, accounting
information was not maintained for the system
group; instead, these fields (CPUTIME,
TERMTIME, and DISKUNIT) were set to arbitrary
high values. If it is desired to perform
accounting for a system group created and/or
used under a previous version of CALL-OS, the
ACCOUNT function should be run first with
OPTIONS=RESET to initialize the accounting
fields in the SYSLIB equi valency entry .•

CLUSTER=k
specifies the cluster number, either 1 or 2, of the user group or
system group data set upon which accounting is to be done .•

PASSWORD=xxxxxxxx
must specify the SYSLIB password; because this parameter is
required, one or more system group DD statements must be supplied to
provide password validation .•

OPTIONS=()

148

Notes: (1) If only one option is given, the parentheses may be
omitted.

(2) These options may be used alone or in any combination .•

...

TAPEJ

PRINTJ

RESET

specifies that user equivalency information used for
accounting is to be written to the tape journal data
set defined by the TAPEJ DD statement..

specifies that user equivalency information used for
accounting is to be written to the printed journal
data set defined by the PRINTJ DD statement..

specifies that user equivalency information used for
accounting (CPUTIME, TERMTIME, and DISKUNIT) is to be
reset to zero .•

Accounting Options and Examples

The accounting operations performed depend on whether the OPTIONS
parameter is absent or whether one or more options are specified,. The
options available are as follows:

• Basic accounting

• Tape journal

• Printed journal

• Resetting equivalency fields to zero

These options and suggestions for the use of the ACCOUNT function are
described in greater detail in the following paragraphs,.

Basic Accounting: Basic accounting is performed every time the ACCOUNT
function is executed, whether or not the OPTIONS parameter is specified.
Each user's catalog records are scanned for current disk usage and the
total amount of space now being used is compared with the equivalency
entry, DISKUNIT. If the DISKUNIT value is less than the current usage,
it is set to the greater amount; purged space is not counted,. The
equivalency record is then rewritten.

An example of the JCL for execution of the ACCOUNT function with only
the basic accounting operations to be performed follows:

//ACCOUNT
//JOBLIB
//BASIC
//INDEX
//SYSPRINT
//SYSGRPOO
//SYSGRP01
//MEDSUROO
//MEDSUR01
//MEDSUR02
//SYSIN
./ ACCOUNT
/*

JOB 'J.CODER',MSGLEVEL=1,REGION=96K
DD DSN=OSRTS.JOBLIB,DISP=SHR
EXEC PGM=DIBCADBU
DD DSN=OSRTS.INDEX,DISP=SHR
DD SY SO UT= A
DD DSN=OSRTS.SYSGRPOO,DISP=OLD
DD DSN=OSRTS .• SYSGRPO 1, DISP=OLD
DD DSN=OSRTS .• MEDSUROO, DISP=OLD
DD DSN=QSRTS.MEDSUR01,DISP=OLD
DD DSN=OSRTS.MEDSUR02,DISP=OLD
DD *

USRGROUP=MEDSUR,CLUSTER=1,PASSWORD=COMMCON1

Basic accounting operations are performed on user group MEDSUR in the
primary cluster. The DISKUNIT field in the equivalency records is
updated for all the users in the group.. No journals are produced and no
resetting is done .•

Tape Journal: The tape journal option (TAPEJ) provides basic
accounting, in addition to a daily journal tape.. The tape journal
contains the up-to-date equivalency entries for each user.. When the

149

TAPEJ option is specified, a TAPEJ DD statement must be included in the
JCL to define the data set. This DD statement may define either a tape
data set or a physical sequential data set on disk.

The tape journal is written with fixed (F) format records and a
blocksize of 7248 bytes. The first 36 bytes contain a copy of the key
field from the updated equivalency record; note that the date on which
the equivalency record was last updated reflects the date on which the
ACCOUNT function was performed~ The remaining 7212 bytes contain the
updated equivalency information for the user or system group. For the
system group, the only genuine user number is SYSLIB; however, the
ACCOUNT function generates a pseudo-entry with a user number of PUBLIC.
This entry contains the number of tracks used by the ** directory, with
zeros in the other accounting fields.. The pseudo-entry is included in
the system group equivalency record written in the tape journal;
however, it is not written into the equivalency file in the system group
data set.

An example of the JCL for execution of the ACCOUNT function with the
tape journal option follows:

//TAPEJOUR
//JOBLIB
//STEP1
//INDEX
//SYSPRINT
//TAPEJ
//
//SYSGRP40
//DEVDEV40
//SYSIN
./ ACCOUNT
./
/*

JOB
DD
EXEC
DD
DD
DD

'J.CODER',MSGLEVEL=1,REGION=96K
DSNAME=OSRTS.JOBLIB,DISP=SHR
PGM=DIBCADBU
DSNAME=OSRTS.INDEX,DISP=SHR
SYSOUT=A
DSN=DEVDEV,UNIT=2400,VOL=SER=OUTPUT,
LABEL=(,SL),DISP=(MOD,KEEP)

DD DSN=OSRTS.SYSGRP40,DISP=OLD
DD DSN=OSRTS .• DEVDEV40, DISP=OLD
DD *

USRGROUP=DEVDEV,CLUSTER=2,PASSWORD=CONSOLE1,
OPTIONS=TAPEJ

The data base utility ACCOUNT function is performed on user group DEVDEV
in the alternate cluster. Basic accounting is performed and a tape
journal is produced from the equivalency records for the users in the
group. Note that by specifying MOD on the TAPEJ DD statement,
accounting information for more than one user group or more than one
day's activities may be accumulated in the same data set.

Printed Journal: When the printed journal option (PRINTJ) is specified,
basic accounting is performed and the equivalency entries are written
out on the printer with no tape output. The printed output shows the
current basic accounting information which includes updated disk usage .•
When the PRINTJ option is specified, a PRINTJ DD statement must be
included in the JCL to define the printer data set. The format of the
printed journal for a user group is as follows:

CALL-OS CURRENT TOTALS USER GROUP UCBUCB MM/DD/YY PAGE 1

USER NUMBER/CONNECT TIME/CPU TIME/DISK TRACKS/LAST VALID./LAST USE DATE

UCB103
UCB104

UCB999

HH:MM
HH:MM

HH:MM

HH:MM:SS
HH:MM:SS

HH : l."1M: SS

TTTT.T
TTTT.T

TTTT.T

MM/DD/YY MM/DD/YY
MM/DD/YY MM/DD/YY

MM/DD/YY MM/DD/YY

Time is reflected in the printed output in hours, minutes, and seconds .•
The number of disk tracks used is reflected to the smallest disk unit
which is a tenth (. 1) of a track.

150

The printed journal for a system group has the same format as for a
user group. The user number for the system group is SYSLIB, and is
followed by the accounting information. The ACCOUNT function generates
a pseudo-entry whose user number is PUBLIC; this entry contains the
number of tracks used by the ** directory and zeros in the other
accounting fields. The pseudo-entry is included in the system group
equivalency record written in the printed journal; however, it is not
written into the equivalency file in the system group data set.

An example of the JCL for execution of the ACCOUNT function with the
printed journal option follows:

//ACCOUNTP
//JOBLIB
//STEP1
//INDEX
//SYSPRINT
//PRINTJ
//SYSGRPOO
//SYSGRP01
//UCBUCBOO
//UCBUCB01
//SYSIN
./ ACCOUNT
./
/*

JOB
DD
EXEC
DD
DD
DD
DD
DD
DD
DD

'J.CODER',MSGLEVEL=1,REGION=96K
DSNAME=OSRTS.JOBLIB,DISP=SHR
PGM=DIBCADBU
DSNAME=OSRTS.INDEX,DISP=SHR
SY SO UT= A
SYSOUT=A
DSN=OSRTS.SYSGRPOO,DISP=OLD
DSN=OSRTS .. SYSGRP01,DISP=OLD
DSNAME=OSRTS.UCBUCBOO,DISP=OLD
DSNAME=OSRTS.UCBUCB01,DISP=OLD

DD *
USRGROUP=UCBUCB,CLUSTER=1,PASSWORD=COMMCON1,
OPTIONS=PRINTJ

Basic accounting is performed and a printed journal is produced for user
group UCBUCB in the primary cluster.

Resetting Equivalency Fields to Zero: When RESET is specified, the
equivalency entries used for accounting CCPUTIME, TERMTIME, and
DISKUNIT) are reset to zero.. Resetting occurs after the updated
information has been written into the tape journal and/or the printed
journal. Then the equivalency record is written back on the disk .•

An example of the JCL for execution of the ACCOUNT function with the
tape journal, printed journal, and reset options follows:

//ACCNTTP JOB 'J.CODER',MSGLEVEL=1,REGION=96K
//JOBLIB DD DSNAME=OSRTS.JOBLIB,DISP=SHR
//STEP1 EXEC PGM=DIBCADBU
//INDEX DD DSNAME=OSRTS.INDEX,DISP=SHR
//SYSPRINT DD SY SO UT= A
//PRINTJ DD SYSOUT=A
//TAPEJ DD DSNAME=JOURNAL,UN!T=2400,VOL=SER=OUTPUT,
// LABEL=(,SL),DISP=CMOD,KEEP)
//SYSGRPOO DD DSN=OSRTS.SYSGRPOO,DISP=OLD
//SYSGRP01 DD DsN=OSRTS.SYSGRP01,DisP=OLD
//SYSGRP40 DD DSN=OSRTS .• SYSGRP4 0, DISP=OLD
//MEOSUROO DD DSNAME=OSRTS.MEDSUROO,DisP=OLD
//MEDSUR01 DD DSNAME=OSRTS.MEDSUR01,DISP=OLD
//MEDSUR02 DD DSNAME=OsRTS.MEDSUR02,DISP=OLD
//DEVDEV40 DD DSNAME=OSRTS.DEVDEV40,DISP=OLD
//UCBUCBOO DD DSNAME=OSRTS.UCBUCBOO,DISP=OLD
//UCBUCB01 DD DSNAME=OSRTS.UCBUCB01,DISP=OLD
//SYSIN DD *
./ ACCOUNT USRGROUP=SYSGRP,CLUSTER=1,PASSWORD=COMMCON1,
./ OPTIONS=(TAPEJ,PRINTJ,RESET)
./ ACCOUNT USRGROUP=UCBUCB,CLUSTER=1,PASSWORD=COMMCON1,
./ OPTIONS=(TAPF.J,PRINTJ,RESET)
./ ACCOUNT USRGROUP=MEDSUR,CLUSTER=1,PASSWORD=COMMCON1,
./ OPTIONS=(TAPF.J,PRINTJ,RESET)
.. / ACCOUNT USRGROUP=SYSGRP,CLUSTER=2,PASSWORD=CONSOLE1,

151

./ OPl'IONS=(TAPF.J,PRINTJ,RESET)

.. / ACCOUNT USRGROUP=DEVDEV,CLUSTER=2,PASSWORD=CONSOLE1,

./ OPTIONS=(TAPF.J,PRINTJ,RESET)
/*

A tape and printed journal is produced for user group DEVDEV in the
alternate cluster, and for user groups UCBUCB and MEDSUR in the primary
cluster. In addition, a tape and printed journal of the system group
for each cluster is also printed. All equivalency entries are reset to
zero.

suggestions for Use of the ACCOUNT Function: The available ACCOUNT
function options may be used in any combination to provide a variety of
accounting services. For example, the TAPEJ option could be used daily
to provide basic accounting information and a daily tape journal
containing month-to-date statistics. This tape would serve as a backup
copy for chargeable services if system malfunctions occurred the next
day and prevented accounting from taking place.. The PRINTJ • RESET,
and/or TAPEJ options could be used monthly to provide monthly accounting
information, including a printed journal of accounting information
accumulated during the month, followed by resetting of the equivalency
fields to zero.

However, this method has one disadvantage: the DISKUNIT field
reflects the largest amount of disk storage used on any one day.. If it
is desired to bill users based on the average amount of disk storage
used, or in a detailed manner based on day•to-day variations in disk
storage used, the ACCOUNT function can be used to obtain this
information on a day-to-day basis. For example, if the TAPEJ and RESET
options are used daily, then the tape journal will contain accounting
information for only that day. At the end of the month, these daily
journals can be used as input to an installation-written accounting
rouinte. This accounting routine can then total and average the amount
of CPU time, terminal time, and disk storage used by each terminal user,
as well as prepare the bills.

Whatever the accounting method used, some type of accounting should
be performed every day.. One way to ensure this is to execute the
ACCOUNT function of the data base utility as a job step immediately
following the job step which initiates CALL-OS .• In this way, accounting
is performed as soon as CALL-OS terminates.

DELETE FUNCTION

The DELETE function of the data base utility is used to remove any
portion of a user's data base through the following capabilities:

• Cancel a user .•

• Cancel a range of users .•

• Purge one or all programs for a user, removing all directory
references.

• Purge one or all data files for a user, removing all directory
references.

• Purge one or all COBI jobs for a user,.

• Purge all programs and all data files for a user, removing all
directory references .•

152

,,

/
I

r

• Purge al1 programs. data fi1es. and COBI jobs for a user. removing
al1 directory references.

• Purge all user catalog entries. removing all directory references,
for a range of users.

• For a user or range of users. purge a11 programs. data fi1es. or
both that have not been used since a specified date, un1ess the
files are locked.

• Purge one or all ***Library entries,.

• Pu11 directory (* or ** or both) entries for one or all programs or
data fi1es for a user or range of users.

• Pu11 directory (* or ** or both) entries regardless of user number
associated.

• Pull directory <* or ** or both) entries on a time~since-last-used
basis.

• Clean a directory by pulling a11 directory entries for which there
are no corresponding active program or data fi1es in the user
cata1og (for one user, for a range of users, or for a directory
without regard to associated user number).

• Write a backup tape of deleted program(s) or data fi1e(s),.

Additional DD Statements

In addition to the required JCL statements described previously, the
DELETE function requires, depending on the operation, one or more system
group DD statements. and/or one or more user group DD statements. If a
backup tape is to be written of the de1eted items, a TAPEOUT DD
statement must be supp1ied,. If COBI job entrie$ are to be purged from
the data base, the CBNDX, CBJCL, and SYSPUNCH DD statements must a1so be
supplied .•

DELETE Function Statement

The DELETE function statement specifies the operations to be
performed on the data base. The options available are described below.

153

r---,
1-21 Mnemonic I Parameters I
---+-----------+---
• / DELETE FROMUSER={aaanmmlSYSLIBl**LIB},

[FROMUSR2=aaanpp,]FROMCLUS=k,

COMMAND=([*CANCEL,l[PURGEIPULL]),

PASSWORD=xxxxxxxx,

CFILE={PROGIDATAIBOTHINULLfJOBIEVERY},l

CNAME={filename I xxxxxxx .• I (ALL)}, l

I [DATE=yyddd,]
I
I [LANG={BASICIFORTRANIPL/IIDATA},]
I
I I [OPTIONS=((UNLOCK,][NOTAPE,][*,][**])]
L---J
Note: {} - select one from enclosed list

CJ - indicates optional parameter

FROM USER=
aaanmm specifies the only user number or the first of a

range of user numbers to be cancelled and/or whose
files are to be purged or pulled.. When this option
is specified, one or more aaabbbnn. DD statements must
be supplied to define the user group to which this
user number or range of numbers belongs.. When PULL
is specified, a user number of the form aaanOO
indicates that entries are to be pulled from the
*Directory without regard to the user who pooled the
entry ..

SYSLIB

**LIB

specifies that entries are to be purged from the
***Library.

specifies that entries are to be pulled from the
**Directory without regard to the user who pooled the
entry.

FROMUSR2=aaanpp
specifies the last of a range of user numbers to be acted upon .•
This parameter is not needed if only one user is being acted upon.
When FROMUSR2 is specified, FROMUSER must be specified as aaanmm and
aaan must be the same for FROMUSER and FROMUSR2 and mm must be less
than or equal to pp. FROMUSR2 must not be specified if FROMUSER is
of the form aaanOO and PULL is specified .•

FROMCLUS=k
specifies the cluster number, either 1 or 2, of the user group to be
acted upon.

COMMAND=
*CANCEL

PURGE

154

cancels the user number(s) specified by setting the
password (s) to zero,. *CANCEL may not be specified if
FROMUSER=SYSLIB or **LIB.

purges the catalog entries for the user(s) specified
(if the appropriate password is given) unless the
specified file is locked.. As an entry for a program

PULL

PASSWORD=xxxxxxxx

is purged, any directory reference to the program is
also removed,. If the user has specified UNLOCK in
the OP!'IONS parameter, the file is unlocked, then
purged. A user number of the form aaanOO is ignored,
but all other users in the range specified by
FROMUSER and FROMUSR2 are processed.. A backup tape
containing all purged programs and data files is
created unless OPTIONS=CNOTAPE) is specified. The
backup tape must be defined with a TAPEOUT DU
statement. One backup tape data set is created for
each DELETE control statement: a disposition of MOD
cannot be used to put multiple data sets on one tape.
However, mu1tivolume data sets are permitted.. The
format of the tape is the same as that for the TAPE
function so that the tape can be used as input to
either the INSERT/REPLACE or RECONSTRUCT function to
restore the purged program(s) or data fileCs>.

specifies that directory entries are to be pulled .•

specifies the current password of the single currently-valid user
specified by FROMUSER, when FROMUSR2 is not specified and •CANCEL is
not specified.. The password given on the control statement must
match the password in the equivalency entry for the user number: if
the passwords do not match no processing is done for this control
statement.

specifies the SYSLIB password under the following conditions: if
•CANCEL is specified or if the user has already been cancelled: if a
range of users is being acted upon: or if SYSLIB, **LIB, or a
•Library (aaan00) has been specified as the user. When this option
is specified, one or more SYSGRPnn DD statements must be supplied.

FILE=
PROG

DATA

BOTH

NULL

JOB

EVERY

specifies that source and object program entries are
to be purged or pulled from the data base.. If
purged, any directory references are removed.

specifies that data file entries are to be purged or
pulled from the data base. If purged, any directory
references are removed.

specifies that both program and data file entries are
to be purged or pulled from the data base. If
purged, any directory references are removed .•

specifies that all directory entries for which there
are no corresponding program or data files in the
user• s catalog are to be pulled.. PULL must be
specified,.

specifies that COBI job entries are to be purged from
the data base. One SCRATCH control statement for the
OS/360 utility IEHPROGM is generated for each data
set associated with the COBI job entry purged. If
this option iH specified, a SYSPUNCH DD statement
must be supplied~

specifies that every program file, data file, and
COBI job entry is to be purged from the data base for
the user(s) specified. For purged files, any
directory references are removed .•

155

Notes: (1) Specifying FILE= EVERY and OP.l'IONS=UNLOCK with the *CANCEL
and PURGE commands removes a user from the data base.

(2) When a single user number is specified, the FILE
parameter defaults to FILE=BOTH1 when a range of user
numbers is specified, the FILE parameter defaults to
FILE=EVERY.

(3) The FILE parameter should not be specified when *CANCEL
is the only command given .•

(4) When FILE=JOB or EVERY, the CBNDX, CBJCL, and SYSPUNCH DD
statements must be supplied.

NAME=
filename specifies the name of the program, data file, or COBI

job entry to be purged or pulled from the catalog of
the user<s> specified~

xxxxxxx. specifies that only those files whose name begins
with the characters indicated are to be deleted.
From zero to seven characters may precede the period.
The period indicates only that the characters
specified are a prefix and is not used as a part of
the prefix.

(ALL) specifies that all
FILE parameter are
user(s) specified .•
NAME=(ALL).

files of the type indicated by the
to be purged or pulled for the

NAME=. is equivalent to

Notes: (1) The NAME parameter defaults to NAME=<ALL> under the
following conditions: when FILE=BOTH, EVERY, or NULL is
specified1 when a range of users is being purged1 or when
the DATE parameter is specified .•

(2) The NAME parameter should not be specified when *CANCEL
is the only command given .•

(3) NAME=xxxxxxxx. should not be specified for COBI job
entries.

DATE=yyddd
specifies a two-digit year number and three-digit day number for
purging records on a time-since-last-used basis. For example, the
notation for January 1, 1971 would be 71001. All entries of the
type specified by the FILE parameter that have not been accessed on
or after the date are purged for the user specified (unless the file
is locked, and UNLOCK has not been specified in the OPTIONS
parameter). Directory references are also pulled on a time-since­
last-used basis.

Notes: (1) When a DATE parameter is specified, the NAME parameter
defaults to NAME=(ALL).

(2) The DATE parameter should not be specified when *CANCEL
is the only command given .•

(3) The DATE parameter should not be specified when FILE=JOB
or EVERY.

LANG={BASICIFORTRANIPL/IIDATA}

156

specifies the programming language of the programs or data files to
be deleted. If the LANG parameter is not specified, programs and
data files are processed without regard to programming language .•

't

OPTIONS=()

Note: If only one option is given, the parentheses may be omitted.

UNLOCK

NOTAPE

* and/or **

Example

specifies that the program or data file to be purged
is to be unlocked before being purged.. UNLOCK may be
specified only when PURGE is specified.

Note: A program or data file with the LOCK
attribute is not purged unless OPTIONS=UNLOCK
has been specified .•

specifies that no backup tape is to be written,.
NOTAPE may be specified only when PURGE is specified;
if NOTAPE is not specified, a backup tape is written
containing each purged program or data file .•

specifies the directory or directories from which
programs are to be pulled if a range of users or a
single user (other than **LIB or a *Library> has been
specified.. If neither * nor ** is specified, it is
assumed that entries are to be pulled from both
directories.. PULL must be specified when * and/or **
is specified.

In the following example, all the entries in the data base associated
with a user number are to be deleted and a backup tape is to be written
of the deleted information.

//DELETE
//JOBLIB
//DEV468
//INDEX
//SYSPRINT
//DEVDEVOO
//DEVDEV01
//CBNDX
//CBJCL
//SYSPUNCB
//TAPEOUT
//
//SYSIN
./ DELETE .• /
/*

JOB
DD
EXEC
DD
DD
DD
DD
DD
DD
DD
DD

MSGLEVEL=1,REGION=96K
DSN=OSRTS.JOBLIB,DISP=SHR
PGM=DIBCADBU
DSN=OSRTS.INDEX,DISP=SBR
SYSOUT=A
DSN=OSRTS.DEVDEVOO;DISP=SHR
DSN=QSRTS.DEVDEV01,DISP=SHR
DSN=OSRTS.CBNDX,DISP=SHR
DSN=OSRTS .• CBJCL, DISP=SHR
SYSOUT=B
DSN=BACKUP.DEV,DISP=(NEW,KEEP),UNIT=2400,
LABEL=(,SL),VOL=SER=DEV468

DD *
FROMUSER=DEV468,FROMCLUS=1,COMMAND=PURGE,PASSWORD=GRP2USR4,
FILE=EVERY,OPTIONS=UNLOCK

The user whose number is DEV468 and whose password is GRP2USR4 is
deleted from the primary cluster of the data base. Program files and
data files are unlocked before being deleted and are written onto the
backup tape defined by the TAPEOUT DD statement,. In addition, each COBI
job entry for that user is deleted and a SCRATCH control statement is
produced for each data set associated with the COBI job.

INSERT/REPLACE FUNCTION

The INSERT/REPLACE function of the data base utility is used to make
additions and changes to a user catalog through card, tape, or disk
input. The INSERT/REPLACE function also allows program input in the
form of members of a partitioned data set, and data file input in the
form of .a sequential data set.

157

A FORTRAN, PL/I, or BASIC program or data file in OS/360 format may
be entered from cards into the user's data base as either a new entry or
a replacement for an existing entry. BASIC source programs are entered
into CALL-OS essentially unchanged. Each card must begin with a line
number, starting in the first column of the left-hand margin (usually
column 1). The line numbers must be in nondescending sequence.. If two
or more cards have the same line number, they are combined to form a
single source line in CALL-OS. In this case, the second and succeeding
cards in the combination must have a blank after the line number; source
columnb following the blank are added to the end of the source columns
on the preceding card. When a FORTRAN source program is entered, the
INSERT/REPLACE function reformats the program to CALL-OS free-form
format by changing FORTRAN continuation and comment characters and
adding a line number to the beginning of each generated line.. PL/I
source programs and DATA terminal files are entered into CALL-OS'With
the source data unchanged. A CALL-OS line number is added to the
beginning of each generated line,. For FORTRAN, PL/I, and DATA, the line
number is either taken from columns 76 through 80 of the card sequence
number or generated as specified. The sequence numbers must be in
nondescending order; if two or more cards have the same sequence number,
they are combined to form a single source line in CALL-OS. However, no
editing for language differences is done by the INSERT/REPLACE function~

The INSERT/REPLACE function can be used to enter programs from tape,.
This facilitates reentrance of programs, data files, or entire user
libraries or user ranges from a backup tape as well as transferral of
users from one CALL-OS data base to another by tape,.

A third use of the INSERT/REPLACE function is to transfer programs or
data from one user catalog to another within the same data base. Entire
user libraries or user ranges may be copied from one part of the data
base to another, changing the user numbers in the process. In addition,
directories may be updated, either using a backup tape or another part
of the same direct-access data base.

Additional DD Statements

In addition to the required JCL statements described previously, the
INSERT/REPLACE function requires, depending on the operation to be
performed, one or more system group DD statements, and/or one or more
user group DD statements. If programs from an OS/360 partitioned data
set are to be used as input, a LIBRARY DD statement that defines the
input data set must be supplied. If data files from a sequential data
set are to be used as input, a DD statement that defines the data set
must be supplied. If a backup tape is to be used as input, a TAPEIN DD
statement must also be supplied; concatenation of backup tapes is not
permitted. The DCB subparameter BUFN0=1 should be specified in the
TAPEIN DD statement to run DIBCADBU in 96K; backup tape input with
double buffering (the default> requires 100K.

158

..

INSERT/REPLACE Function Statement

The INSERT/REPLACE function statement specifies the operations to be
performed.. The specific options available with the INSERT/REPLACE
function are described below.

INSERT

r---~-,
11-21 Mnemonic I Parameters
1---+-----------+---
1./ I INSERT USER={aaanmmlSYSLIBl**LIB},
I I or
I I REPLACE [USR2=aaanpp,]CLUSTER=k,
I I
I I [FROMUSER={bbbrqqlSYSLIBl**LIBl,1
I I
I I [FROMCLUS=j,J
I I
I I [INPUT={CARDJOSDSIDISKITAPE},]

CLANG= {BASIC I FORTRAN I PL/I I DATA}, 1

PASSWORD=xxxxxxxx,[USERPASS=yyyyyyyy,]

CFILE={PROGIDATAIBOTH},]

CNAME=Uilename I xxxxxxx .• J (ALL)}, 1

[RENAME= { newname I yyyyyyy ,. } , l

[MARG= Crom, nn} , 1

CLINEGEN={SEQ,xxxxx},] [LINEINC=xxxxx,l

[OPTIONS=([SEQ,][LIST,](UNLOCK,][LOCK]
[LONG,][PROTECT,] [*,] [**,]
[OBJECT,][FORMDATA,][VAL]),]

[SPACE=sss]
L-----------------------------------~-----------------------J

Note: {} - select one from enclosed list
Cl - indicates optional parameter

indicates that the input program or data file is to be inserted into
the data base. If a program or data file exists in the user's
catalog with the same name, the program or data file is not
inserted .•

REPLACE
indicates that the input program or data file is to be replaced in
the data base.. If a program or data file with the same name
currently exists in the user's catalog, it is replaced.. If no
program or data file with the same name exists in the user's
catalog, the input program or data file is inserted into the data
base and a message is printed indicating that no previous file of
that name existed,.

USER=
aaanrom specifies the only user number or the first of a

range of user numbers into whose catalog the input
program or data is to go. When this option is
specified, one or more aaabbbnn DD statements must be

159

SYSLIB

**LIB

supplied to define the user group to which this user
number or range of user numbers belongs.. The user
number must be a validated user number unless
validation is to be performed in conjunction with the
INSERT/REPLACE operation in which case OPTIONS=VAL
must be specified.. A user number of the form aaanOO
may be specified only when INPUT=DISK or TAPE; this
type of user number specifies a *Directory into which
entries are to be placed.. These entries are to be
taken from the •Directory specified by FROMUSER,
which in this case must have the form bbbrOO.

specifies that the input program or data is to be put
in the ***Library.

specifies that the **Directory entries from the
opposite cluster or from tape are to be placed into
the **Directory specified by the CLUSTER parameter ..
INPUT=DISK or TAPE must be specififed.. When
USER=**LIB is specified, no FROMUSER or FROMCLUS
should be specified.

USR2=aaanpp
specifies the last user in a range of users into whose catalogs
programs and data files are to be inserted or replaced.. USR2 need
not be specified if only one user is intended. USR2 must not be
specified if INPUT=CARD or OSDS. If USR2 is specified, USER must be
specified as aaanmm and aaan must be the same for USER and USR2 and
mm must be less than or equal to pp.

CLUSTER=k
specifies the cluster number, either 1 or 2, into which the program
or data is to be placed .•

FROMUSER={bbbrqqlSYSLIBl**LIB}
specifies the catalog or directory from which the program or data
file is to be taken when INPUT=DISK or TAPE. When USER and USR2
specify a range of users, the last two digits of the FROMUSER number
must match the last two digits of the USER number. When a FROMUSER
is specified of the form bbbrOO, the specified USER must have the
form aaanmm; if mm is not equal to 00 and USR2 is not specified,
then the aaan in the USER number must be the same characters as
bbbr, that is, the USER must be in the subscription group served by
the bbbrOO *Directory .•

Note: The FROMUSER parameter must be specified when INPUT=TAPE or
DISK, except when USER=**LIB.

FROMCLUS=j
specifies the cluster from which the program or data file is to be
taken when INPUT=DISK.

Note: The FROMCLUS parameter must be specified when INPUT=DISK,
except when USER=**LIB or when USER and FROMUSER specify the
same user number Cin these cases, FROMUSER is assumed to be
in the opposite cluster from USER).

INPUT=

160

CARD specifies that the program or data file to be
inserted or replaced follows this control statement
in the input stream Cin card format). The delimiter
for the input deck is either the next ./ control card
or an EOF indication for the SYSIN data set.
INPUT=CARD is the default.

OSDS

DISK

TAPE

specifies, when FILE=PROG, that the input is the
member whose name is given by the NAME parameter;
this member is found in the partitioned data set
defined by the LIBRARY DD statement. If NAME=(ALL),
all the members of the data set are used as input..

specifies, when FILE=DATA, that the input is the
05/360 data set defined by the DD statement whose
ddname is given by the NAME parameter.. This must be
a card-image data set, unless the FORMDATA option is
specified, in which case it may have F, FB, v, or VB
format, with logical records of 255 data bytes or
less .•

specifies that the programs or data files to be
inserted or replaced are to be obtained from the user
catalog(s) specified by FROMUSER and FROMCLUS Con
CALL-OS disk data sets).

Note: When INPUT=DISK, the specified FROMUSER is
not the same as the specified USER, and USR2
is not specified, a program or data file
cannot be used as input unless the user in
whose catalog the program or data file
currently resides first releases the program
or data file. However, if FROMUSER=SYSLIB or
**LIB, then any program which has not been
protected may be copied from the ***Library
or **Library, respectively.. The data base
utility secures the file in the FROMUSER
catalog after it has been transferred .•

specifies that the programs or data files to be
inserted or replaced are to be obtained from a backup
tape, under the user number specified by FROMUSER. If
this option is specified, a TAPEIN DD statement must
be supplied .•

LANG={BASICIFORTRANIPL/IIDATA}
specifies the programming language applicable to the program or data
file input. The default is LANG=BASIC for INPUT=CARD or OSDS.. The
LANG parameter may also be specified when INPUT=TAPE or DISK to
indicate that only files of a specific language type are to be
processed .•

PASSWORD=xxxxxxxx
specifies the ~ password (of the user into whose catalog the
program or data is to be placed) if only a single user is specified
and RECORD=PROG, DATA, or BOTH.

specifies the SYSLIB password (for the specified cluster) either if
OPTIONS=VAL, or if USER=SYSLIB, **LIB, or aaanOO, or USER and USR2
are specified.. When this option is specified, one or more SYSGRPnn
DD statements must be supplied .•

USERPASS=yyyyyyyy
specifies the password which is to be given to the user<s> which is
to be validated as a result of specifying either OPTIONS=VAL or a
range of users.. The USERPASS parameter must be specified when
OPTIONS=VAL or a range of users is specified.

FILE=
PROG

DATA

specifies that the input is a program file.

specifies that the input is a data file .•

161

BOTH specifies that the input is both program and data
files ..

Notes: C1> FILE=PROG is the default, unless a range of users is
specified, in which case FILE=BOTH and OPTIONS=VAL is the
default.

C2) FILE=BOTH may not be specified when INPUT=CARD or OSDS,
since only one program or data file may be named on a
single control statement.

NAME=
filename specifies the single program or data file being

input. If no RENAME parameter is specified, the
filename specified by the NAME parameter is also
assigned to the program or data file after it is
inserted ..

xxxxxxx.

Notes: C1) If INPUT=CARD, this NAME is assigned to
the file after it is inserted into the
data base .•

C2) If INPUT=0SDS and FILE=PROG, the NAME
parameter specifies the member name to be
inserted from the partitioned data set
defined by the LIBRARY DD statement.

(3) If INPUT=OSDS and FILE=DATA, the NAME
parameter specifies the name of the DD
statement which defines a sequential data
set to be used as input.

(4) If INPUT=DISK or TAPE, the NAME parameter
specifies the file to be transferred from
the FROMUSER library .•

specifies that only those files whose name begins
with the characters indicated are transferred if
INPUT=DISK, TAPE, or OSDS and FILE=PROG. A maximum of
seven characters in addition to the period may be
specified. The period indicates only that the
characters specified are a prefix and is not used as
a part of the prefix .•

CALL) specifies that all records of the type indicated by
the FILE parameter are to be inserted or replaced
into the specified user Cs) catalog.. If NAME= CALL) is
specified for program input when INPUT=OSDS, all
members of the partitioned data set specified by the
LIBRARY DD card are inserted.. NAME= CALL) cannot be
specified when INPUT=CARD or when INPUT=OSDS and
FILE=DATA. NAME=. is equivalent to NAME=(ALL).

Note: NAME=CALL) is the default when a range of users is specified;
this is the only case in which the NAME parameter may be
omitted .•

RENAME=
newname specifies the new name to be assigned to the program

or data file being inserted.. If omitted, the
filename specified by the NAME parameter is assigned
to the program or data file being inserted .•

162

yyyyyyy. specifies a prefix of up to seven characters which is
added to the name of the program or data file after
it is inserted. Resulting filenames which exceed
eight characters are truncated on the right. If the
NAME parameter also specifies a prefixr the prefix
specified by RENAME replaces the prefix specified by
NAME in the transferred file; if RENAME=. is
specifiedr the prefix specified by NAME is omitted
from the result.

Notes: (1) If the NAME parameter specifies a prefix or NAME=CALL>r
RENAME may be omitted or may specify a prefixr but may
not specify a unique new name.

(2) If an embedded / would otherwise appear in the resulting
newnamer the / is removed from the name .•

(3) If the resulting newname would otherwise begin with a
numeric character (due to the deletion of leading
characters when RENAME=. is specified>r then a # is added
to the beginning of the name,.

MARG=<mmrnn)
specifies the card margins for the input, where mm specifies the
left margin and nn specifies the right margin.. The numbers ron and
nn may be one or two decimal digits. The left margin must be
greater than or equal to 1 and less than the specified right margin.
The right margin must be less than or equal to 80.. Only the data
between and including the card margins is put into the data base.
The MARG parameter is applicable only when INPUT=CARD or OSDS (and
in the latter easer only when the data set is in card-image format),.

Notes: (1) For BASIC source programs, the default is MARG=C1r80).

LINE GEN=
SEQ

xxxxx

(2) For FORTRAN source programsr for all object programs, and
for data files which are being input without using the
FORMDATA optionr the standard input has MARG=C1r72) and
may not be overridden by using the MARG parameter.

(3) For PL/I source programsr the default is MARG=C2r72).

(4) For DATA terminal files and data files being input in
card-image format using the FORMDATA optionr the default
is MARG=C1r80).

specifies that line numbers are to be generated from
the sequence numbers contained in columns 76 through
80.

specifies the initial number of the line numbers that
are to be generated.. The default value is 00100.

LINEINC=xxxxx
specifies the value by which the line numbers are to be incremented .•
The default value is 00010.

Notes: (1) The LINEGEN and LINEINC parameters are valid only for
FORTRAN and PL/I source programs, and only when
INPUT=CARD or OSDS is specified.. Line numbers will not
be generated for BASIC programs, for object programsr or
for data files.

163

(2) If the LINEGEN and LINEINC parameters are omitted, the
default is an initial line number of 00100 incremented by
00010.

(3) The LINEINC parameter should not be specified when
LINEGEN=SEQ is specified .•

OPTIONS=()

164

Note: If only one option is given, the parentheses may be omitted .•

SEQ specifies that sequence numbers on the input
statements are to be checked. The sequence numbers
must be contained in columns 73 through 80 of the
input card-image records. If SEQ is specified, any
statement out of sequence is flagged and not entered
into the data base. If SEQ is not specified, no
sequence checking is performed .•

LIST

UNLOCK

LOCK

LONG

PROTECT

* and/or **

OBJECT

VAL

FORMDATA

Notes: (1) No sequence checking is performed when
LANG=BASIC.

(2) The SEQ option may be specified only when
INPUT=CARD or OSDS.

specifies that the input is to be listed on the
printer as it is entered from cards or from an OS/360
data set. The LIST option may be specified only when
INPUT=CAND or OSDS.

specifies that if the program or data being replaced
in the data base is locked, it is to be unlocked,
then replaced.. The UNLOCK option is ignored on an
INSERT function.

specifies that the program or data being entered is
to be given the LOCK attribute (that is, the entry
cannot be purged unless first unlocked) .•

specifies that, for the BASIC source program being
entered, arithmetic is long precision.

specifies that the program is to be run-only (that
is, it cannot be listed or saved by anyone except the
owner of the program) .•

specifies that the file being entered is to be pooled
in the *Library and/or **Library, respectively .•

specifies that the program file(s) being entered is a
CALL-OS object program(s) .•

specifies that the user(s) indicated by the USER (and
USER2) parameter is to be validated before the INSERT
or REPLACE function is performed. When this option
is specified, the VALIDATE function is executed
before the INSERT/REPLACE function .•

specifies that a CALL-OS external format data file is
to be generated from input data which does not
already contain the various control bytes used in
such files. Either LANG=FORTRAN or PL/I must be
specified when the FORMDATA option is given; the
generated data file conforms to the external data
format used by the specified language.. The FORMDATA

SPACE=sss

option should not be specified when the input data
already contains all necessary control bytes to make
it a valid CALL-OS data file <either internal format
or external format.) The FORMDATA option may be
specified only when INPUT=CARD or OSDS.

specifies the maximum number of file units (half tracks) which may
be allocated to a data file which is being inserted or replaced,
where 1 $ SSS $ 100. Whenever INPUT=CARD or OSDS and FILE=DATA are
specified, the default is SPACE=4. If the SPACE parameter is
specified when INPUT=DISK or TAPE, it is used to override the
maximum file space allocations of any data files being inserted or
replaced whose existing allocation is smaller than sss.. Only the
number of file units given by the SPACE parameter (default or
specified) are allocated for the input. Any remaining input is
ignored .•

Example

In the following example, program files from an OS/360 partitioned
data set and data files from OS/360 sequential data sets are to be added
to the data base.

//REPLACE
//JOELIE
//INS305
//INDEX
//SYSPRINT
//INSINS40
//LIBRARY
//DA'IAIN
//
//
//SYSIN
./ REPLACE
.• /
./
./ REPLACE
./
./
/*

JOB MSGLEVEL=1,REGION=96K
DD DSN=OSRTS.JOBLIB,DISP=SHR
EXEC PGM=DIBCADBU
DD DSN=OSRTS.INDEX,DISP=SHR
DD SY SO UT= A
DD DSN=OSRTS.INSINS40,DISP=SHR
DD DSN=INS.PDSIN,DISP=OLD,UNIT=2314,VOL=SER=INS204
DD DSN=INS.DATA1,DISP=OLD,UNIT=2314,VOL=SER=INS204
DD DSN=INS.DATA2,DISP=OLD,UNIT=2314,VOL=SER=INS204
DD DSN=INS.DATA3,DISP=OLD,UNIT=2314,VOL=SER=INS204
DD *

USER=INS305,CLUSTER=2,INPUT=OSDS,LANG=PL/I,
PASSWORD=305MMW,FILE=PROG,NAME=(ALL),
OPTIONS={SEQ,LIST,UNLOCK)
USER=INS305,CLUSTER=2,INPUT=OSDS,LANG=PL/I,
PASSWORD=305MMW,FILE=DATA,NAME=DATAIN,
OPTIONS=(LIST,UNLOCK,FORMDATA)

Program and data file input is used to replace entries in the alternate
cluster for the user whose number is INS305 and whose password is
305MMW. All of the members in the OS/360 partitioned data set INS.PDSIN
are used as input; the members are PL/I programs and are sequence
checked and listed as they are read in. The input OS/360 data files
reside in three sequential data sets, concatenated with DD statement
DATAIN; the three files are converted to one CALL-OS data file which is
listed as it is read in. If the program or data file to be replaced is
locked, it is unlocked and then replaced. If the program or data file
being read in does not have a matching entry in the data base, it is
added to the data base and a message is issued.

JOBFIND FUNCTION

When a job is submitted through COBI, an entry for that job is
created in the user's catalog, as well as the COBI index. The JOBFIND
function of the data base utility is used to update user catalogs with
respect to current COBI job entries the user may have in the COBI index ..
Any user catalog entries that refer to a COB! job which is no longer

165

current are eliminated. Also, user catalog entries are created for
current COBI jobs which did not previously have a user catalog entry .•

The JOBFIND function should be used after each REORGANIZE or
RECONSTRUCT function to ensure that user catalogs contain the user• s '--
current COBI job entries. Similarly, if the installation switches from
a user group in the primary cluster to a backup copy of that user group
in the alternate cluster (or vice versa), the JOBFIND function should be
run on the backup copy; this updates the backup copy with respect to
COBI jobs currently in the COBI index .•

Additional DD Statements

In addition to the required JCL statements described previously, the
JOBFIND function requires one or more system group DD statements, and
may also require one or more user group DD statements which define the
user group whose catalog records are to be updated. The COBI index data
set must be defined with a CBNDX DD statement.

JOBFIND Function Statement

The JOBFIND function statement specifies the user group catalogs to
be updated. The specific options available with the JOBFIND function
are described below.

r-------~---,
J 1-2 I Mnemonic I Parameters I
1---+-----------+---1 I·/ I JOBFIND I USRGROUP={aaabbblSYSGRP},CLUSTER=k, I
I I I I
I I I PASSWORD=xxxxxxxx I
L--J

~: {} - select one from enclosed list..

USRGROUP=
aaabbb specifies the user group in which user catalogs are

to be updated to reflect current COBI job status;
when this option is specified, one or more aaabbbnn
DD statements must be supplied .•

SYSGRP specifies that the system group catalog is to be
updated to reflect current COBI job status .•

CLUSTER=k
specifies the cluster number, either 1 or 2, of the group to be
processed.

PASSWORD=xxxxxxxx
must specify the SYSLIB password; because this parameter is
required, one or more SYSGRPnn DD statements must be supplied to
provide validation of this password,.

Example

In the following example, the user catalogs are updated with respect
to current COBI job entries in the COBI index.

166

//JOBFIND
//JOBLIB
//IBMJOB

JOB
DD
EXEC

MSGLEVEL=1,REGION=96K
DSN=OSRTS.JOBLIB,DISP=SHR
PGM=DIBCADBU

//INDEX
//SYSPRINT
//CBNDX
//SYSGRPOO
//SYSGRP01
//IBMIBMOO
//IBMIBM01
//SYSIN
./ JOBFIND
/*

DD DSN=OSRTS.INDEX,DISP=SHR
DD SYSOUT=A
DD DSN=OSRTS.CBNDX,DISP=SHR
DD DSN=OSRTS.SYSGRPOO,DISP=SHR
DD DSN=OSRTS .. SYSGRP01,DISP=SHR
DD DSN=OSRTS.IBMIBMOO,DISP=SHR
DD DSN=OSRTS.IBMIBMOl,DISP=SHR
DD *

USRGROUP=IBMIBM,CLUSTER=l,PASSWORD=COMMCON1

The catalogs for user group IBMIBM in the primary cluster are updated to
reflect the current status of the COBI index. The SYSGRPnn DD
statements are required for validation of the SYSLIB password,.

RECONSTRUCT FUNCTION

The RECONSTRUCT function of the data base utility gives the
capability to recreate a system group or to selectively recreate a user
group from the information recorded on a backup tape.. A backup tape may
be produced by the TAPE and DELETE functions of this utility, and may
also be produced by the CALL/360: Standalone System backup program .•

Note: Before the RECONSTRUCT function is executed, the data sets
involved must be preformatted by U#UTIL1. Before U#UTIL1 can
function properly, entries for the data sets must be removed from
the index by deleting them with UTILX .• These utilities are
described earlier in this chapter .•

Additional DD Statements

In addition to the required JCL statements described previously, the
RECONSTRUCT function requires one or more DD statements that define
either a system group or a user group which is to be recreated from the
backup tape.. The backup tape itself must be defined by a TAPEIN DD
statement; concatenation of backup tapes is not permitted .•

RECONSTRUCT Function Statement

Either a system group or a user group is recreated depending on the
specification in the RECONSTRUCT function statement. The specific
options which are available with the RECONSTRUCT function are described
below.

r---,
11-21 Mnemonic I Parameters I
1---+-----------+--------------~----------------------------1
I-/ I RECON I USRGROUP={aaabbblSYSGRP},CLUSTER=k I
L---J
Note:

USRGROUP=
aaabbb

{} - select one from enclosed list

specifies the user group which is to be recreated
from the backup tape; when this option is specified,
one or more aaabbbnn DD statements must be supplied,.
The RECON function statement may be followed by range
cards that specify which user numbers are to be
selected from the backup tape for the new user group ..
If the range cards are omitted, a default range is
used; this range includes the entire group specified
by the USRGROUP parameter.

167

SYSGRP specifies that the system group is to be recreated
from the backup tape; when this option is specified,
one or more SYSGRPnn DD statements must be supplied,.
The RECON function statement may be followed by range
cards that specify the user numbers whose pooled
programs and data files are to be included in the
reconstructed ••Directory. If the range cards are
omitted, the **Directory contains no entries.

CLUSTER=k
specifies the cluster number, either 1 or 2, of the user group or
system group data set which is to be produced by reconstruction.
This does not have to be the same cluster number as the cluster from
which the backup tape was made.

Range Cards

User numbers within a range of user numbers may be selected for
transfer from a backup tape to the data base. One execution of the
RECONSTRUCT function accepts up to 200 ranges. These ranges are kept in
a sorted table, and each tape record is checked against this table to
see if it should be moved into the user group.

The ranges are specified on one or more range cards with the
following format.

r---~---,
11-21 4-15 I 11-20 I 30-41 I 43-54 I 56-67 I 69-80 I
1---+-------+-------+-------+-------+-------+-------1
I/$ ICrange11Crange11Crange1jCrange11Crange11 Crange11
L---•~~---J

Note: CJ indicates optional parameter,.

range
specifies a twelve-character user number range of the form
aaammmbbbnnn, where aaammm and bbbnnn are user numbers, with aaammm
less than or equal to bbbnnn in the collating sequence,. A maximum
of 200 ranges may be specified on as many cards as are needed.
There must be one blank between consecutive range fields and any
field may be left blank,. If a twelve-byte range field is blank, it
is ignored. The ranges specified must be nonoverlapping ranges
within the user group specified on the RECON control statement.

Another ./ function statement or an end-of-file ends range card
reading. If no range cards are provided, a range equal to the output
user group range is put into the range table, except for SYSGRP runs, in
which case the range table is left empty,.

Using a Backup Tape

The following text describes the format and processing of a backup
tape; specific differences between the backup tape formats for CALL-OS
and the CALL/360: Standalone system are noted at the end of this
section..

Backup Tape Format: The backup tape is written in a user-number
oriented sequence. Therefore, system group (SYSGRP) records have
special pseudo user numbers which begin with three asterisks <•••>. All
*** material is located in the first portion of the backup tape.

168

'"-.__

(_

The tape is written in a variable-length blocked format, where the
maximum block size is 7404 bytes, and the maximum logical record is 7400
bytes. Each logical record corresponds to a record from the data base .•
Only the useful information from each disk record is transferred to
tape, so the tape records are variable in length.. Equivalency records
are a full track; catalog, directory, object program, and data records
are a half track; source program records vary in size from a tenth track
to a full track.. All records except the equivalency records contain a
36-byte key field,.

Records on a backup tape appear in the order shown in Figure 33 .•

User No.

•••010

•••700
***800
•••900
•••900
AAAOOO
AAA001
AAA001

Records

CONTROL RECORD (PRESENT ON STANDALONE SYSTEM BACKUP
TAPES ONLY)
ALL EQUIVALENCY RECORDS
PUBLIC {**) DIRECTORY
SYSTEM (***) CATALOG
SYSTEM (***) PROGRAMS AND DATA FILES
FIRST POSSIBLE SUB GROUP DIRECTORY
CATALOG FIRST POSSIBLE USER
PROGRAMS AND DATA FILES

ZZZ999
ZZZ999

END OF FILE

CATALOG
PROGRAMS AND DATA FILES

LAST POSSIBLE USER

Figure 33. Order of records on a backup tape

Backup Tape Processing: Two modes of operation are used during backup
tape processing: system or user, depending upon the USRGROUP
specification on the RECON function statement .•

In system mode, the backup tape need only be read until the first
user number for any user appears. In other words, the processing is
ended when a user number without *** in the first three characters is
encountered.

In user mode, processing ends when a user number higher than the
highest user number in the output group range is read.. For example, if
an output user group had a range of TTT to zzz, the complete backup tape
Cor set of tapes) would have to be scanned and processed .•

Notes: The following notes are made with reference to the RECONSTRUCT
function as performed on a backup tape:

1.

2.

Equivalency records on the backup tape do not have a disk key
field.. They are up to a full track in length and contain up to
130 entries, each 56 bytes long. The first entry starts at byte
20.

In system mode, the system directory is created in the output
group. However, the catalog pointers within this directory are
not initialized. They are set up during the startup of CALL-OS.

In user mode complete directories are built. When a directory is
read, it is structured into an output buffer.. It stays there
until the next directory is read, at which time all of the
catalogs which should be pointed to by the first directory have

169

been processed,. The catalog processing has set the disk
addresses for the catalogs into the equivalency file. The
equiva1ency file is scanned for user numbers which appear in the
directory, and the catalog disk addresses are transferred from
the equiva1ency file to the directory. The directory is written
to disk, and the next directory is moved into the output buffer
to await catalog addresses~

3. The user number in a directory entry must be within one of the
ranges in the range table, or it wi11 not be moved to CALL-OS,.
This applies to both system and user runs,. In user mode, . the
range table is also used to determine if equivalency entries,
catalog records, program records, and data records should be
included in the reconstructed user group,.

Files other than the user (sub group) directories are not as
complex to handle. They are read from the tape and moved to disk
with only certain flags and lengths in their catalog entries
altered to be compatible with CALL-OS, if necessary.

4. The backup tape has no file descriptor records since all records
for a given program or data file are adjacent on the tape.. The
RECONSTRUCT function creates file descriptors for all object
programs and for any data files containing more than four
records.

5. The CALL/360: Standalone System provides BASIC, PL/I, and FORTRAN
language time sharing and is similar in some ways to the CALL-OS
system. However, the two data bases are somewhat different in
nature. The CALL/360: Standalone system has a data base made up
of fu11 tracks for equiva1ency files and half tracks for the
remainder of the data base. CALL-OS has a data base made up of
tenth, fifth, half, and full tracks. Therefore, while the
maximum source program record on the standalone system is a half
track, a source program record for CALL-OS may be up to a full
track in length.

Example

In the following example, a backup tape is used to recreate a user
group data set in the primary cluster,.

//JOBRECON JOB 'J.CODER',MSGLEVEL=1,REGION=96K
//JOBLIB DD DSN=OSRTS.JOBLIB,DISP=SHR
//STEP1 EXEC PGM=DIBCADBU
//INDEX DD DSN=OSRTS.INDEX,DISP=SHR
//SYSPRINT DD SYSOUT=A
//TAPEIN DD DSNAME=BACKUP,DISP=OLD,VOLUME=SER=(DAY1,DAY1A),
// UNIT=2400
//DEVDEVOO DD DSNAME=OSRTS.DEVDEVOO,DISP=OLD
//SYSGRPOO DD DSN=OSRTS.SYSGRPOO,DISP=OLD
//CBNDX DD DSN=OSRTS.CBNDX,DISP=OLD
//SYSIN DD *
,. / RECON USRGROUP=DEVDEV, CLUSTER= 1
/$ DEV222DEV333
/ $ DEV77 0DEV77 2 DEV780DEV785

DEV733DEV733
DEV055DEV063 DEV010DEV010

/$
/$

DEV790DEV792 DEV795DEV795 DEV710DEV720
DEV550DEV560

,./ JOBFIND USRGROUP=DEVDEV,CLUSTER=1,PASSWORD=SECURITY
/*

This example assumes that data set OSRTS.DEVDEVOO is in the
preformatted state. If this is not the case, then JCL similar to that

170

shown in the examples for the REORGANIZE function must be used to
execute UTILX and U#UTIL1_.

REORGANIZE FUNCTION

The REORGANIZE function of the data base utility is used to
reorganize the system group or one or more user groups of one cluster of
the data base into the system group or a user group (respectively) of
the other cluster. In this reorganization, purged space is eliminated,
and the new system or user group may have a different number of data
sets of different sizes from the original group.. Also, a new user group
may be an extraction from, or a combination of, the original user
group(s).

Note: Before the REORGANIZE function is executed, the data sets
involved must be preformatted by U#UTIL 1.. Before U#UTIL 1 can
function properly, entries for the data sets must be removed from
the index by deleting them with UTILX. These utilities are
described earlier in this chapter .•

Additional DD Statements

In addition to the required JCL statements described previously, the
REORGANIZE function requires one or more DD statements (for both
clusters) for each system or user group to be reorganized .•

REORGANIZE Function Statement

The new system or user group which is to result from the
reorganization is specified on the REORGANIZE function statement, along
with the cluster to which the new group belongs.. The input for each
reorganization may contain more than one system or user group; however,
only one group may be specified on the REORGANIZE function statement.. A
complete reorganization of the "to" cluster requires as many function
statements as there are system and user groups in that cluster .•

The specific options which are available with the REORGANIZE function
are described below .•

r---,
11-21 Mnemonic I Parameters I
1---+-----------+---------------------------------------1
I-/ I REORG I USRGROUP={aaabbblSYSGRP},CLUSTER=k I
I I I I
L---J
Note:

USRGROUP=
aaabbb

SYSGRP

CLUSTER=k

{} - select one from enclosed list.

specifies the new user group which is to result from
the processing; when this option is specified, one or
more aaabbbnn DD statements must be supplied .•

specifies that a new system group is to result from
the processing; when this option is specified, one or
more SYSGRPnn DD statements must be supplied,.

specifies the cluster number, either 1 or 2, of the new user group
or system group data set.

171

Examples

The following example reorganizes a user group with four data sets
into a user group with only one data set. The reorganization is from
the primary cluster to the alternate. The four input data sets are
REGREGOO through REGREG03, since, by convention, the data sets of the
primary cluster have ddnames which end with numbers in the range 00
through 39. REGREG40 designates the single data set in the alternate
cluster. The user number range for both the input user group and the
output user group is REGOOO to REG999 .•

//JOBREORG
//JOBLIB
//STEP1
//INDEX
//SYSPRINT
//REGREGOO
//REGREG01
//REGREG02
//REGREG03
//REGREG40
//SYSIN
./ REORG
/*

JOB
DD
EXEC
DD
DD
DD
DD
DD
DD
DD

I J .• CODER I , MSGLEVEL= 1, REGION=9 6K
DS~=OSRTS.JOBLIB,DISP=SHR

PGM=DIBCADBU
DSN=OSRTS.INDEX,DISP=SHR
SYSOUT=A
DSN=OSRTS.REGREGOO,DISP=OLD
DSN=OSRTS.REGREG01,DISP=OLD
DSN=OSRTS.REGREG02,DISP=OLD
DSN='OSRTS.REGREGOJ,DISP=OLD
DSN=OSRTS.REGREG40,DISP=OLD

DD *
USRGROUP=REGREG,CLUSTER=2

The next example shows system group reorganization.
the reorganization is from the alternate cluster to the
data is copied from the single data set SYSGRP40 to the
SYSGRP01 data sets.

JOB I J,. CODER I ,MSGLEVEL= 1, REGION=9 6K
DD DSN=OSRTS.JOBLIB,DISP=SHR
EXEC PGM=DIBCADBU
DD DSN=OSRTS.INDEX,DISP=SHR
DD SYSOUT=A
DD DSN=SYSGRPOO,DISP=OLD
DD DSN=SYSGRP01,DISP=OLD
DD DSN=SYSGRP40,DISP=OLD
DD *

//JOBREORG
//JOBLIB
//STEP1
//INDEX
//SYSPRINT
//SYSGRPOO
//SYSGRP01
//SYSGRP40
//SYSIN
./REORG USRGROUP=SYSGRP,CLUSTER=1

In this case,
primary.. The
SYSGRPOO and

The two preceding examples assume that the system and user group data
sets are in the preformatted state. The following example shows how to
preformat data sets with the UTILX and U#UTIL1 utility programs.. In
addition, the REORGANIZE function is used to backup and recover data
sets.

Backup is defined as copying the data base from the primary cluster
to the alternate cluster.. Recovery is defined as copying the data base
from the alternate cluster to the primary cluster.. In the execution of
UTILX in STEP1, note that no index deletion is specified for the IBMIBM
user group.. This is because the data set for the alternate cluster is
newly created by U#UTIL1 in STEP2 (the disposition parameter on the
IBMIBM DD statement specifies NEW).

The following example shows the backup of the IBMIBM and JBMJBM user
groups, followed by the recovery of the reorganized data sets
immediately.

172

//BACKUP
//JOBLIB
//STEP1
//INDEX
//SYSPUNCH DD
//SYSPRINT DD
//SYSIN DD
DEL

JOB
DD
EXEC
DD

'J.CODER'.MSGLEVEL=1,REGION=96K
DS~=OSRTS.JOBLIB,DISP=SHR

PGM=UTILX
DSN=OSRTS,. INDEX, DISP=SHR
DUMMY
SY SO UT= A

*
180,040,JBMJBM,JBMJBM40,0SRTS,.JBMJBM40

/*
PGM=U#UTIL1,PARM='USRGROUP'
SYSOUT=A

//STEP2
//SYSPRINT
//INDEX
//IBMIBM40
//
//JBMJBM40
//STEP3
//INDEX
//SYSPRINT
//IBMIBMOO
//IBMIBM01
//IBMIBM02
//JBMJBMOO
//JBMJBM01
//JBMJBM02
//IBMIBM40
//JBMJBM40
//SYSIN

EXEC
DD
DD
DD

DSN=OSRTS.INDEX,DISP=SHR
DSN=OSRTS.IBMIBM40,DISP=(NEW,CATLG),UNIT=2314,
VOL=SER=RTOS01,SPACE=(CYL,(30)),DCB=DSORG=DA

DD DSN=OSRTS.JBMJBM40,DISP=OLD
EXEC PGM=DIBCADBU
DD DSN=OSRTS.INDEX,DISP=SHR
DD SY SO UT= A
DD DSN=OSRTS.IBMIBMOO,DISP=OLD
DD DSN=OSRTS.IBMIBM01,DISP=OLD
DD DSN=OSRTS.IBMIBM02,DISP=OLD
DD DSN=OSRTS.JBMJBMOO,DISP=OLD
DD DSN=OSRTS.JBMJBM01,DISP=OLD
DD DSN=OSRTS.JBMJBM02,DISP=OLD
DD DSN=OSRTS.IBMIBM40,DISP=OLD
DD DSN=OSRTS.JBMJBM40,DISP=OLD
DD *

./ REORG

./ REORG
USRGROUP=IBMIBM,CLUSTER=2
USRGROUP=JBMJBM,CLUSTER=2

/*
//STEP4 EXEC
//INDEX DD
//SYSPUNCH DD
//SYSPRINT DD
//SYSIN DD
DEL

PGM=UTILX
DSN=OSRTS.INDEX,DISP=SHR
DUMMY
SYSOUT=A

*
160,000,IBMIBM,IBMIBMOO,OSRTS.IBMIBMOO
160,001,IBMIBM,IBMIBM01,0SRTS.IBMIBM01
160,002,IBMIBM,IBMIBM02,0SRTS.IBMIBM02
160, 000 ,JBMJBM, JBMJBMOO, OSRTS,. JBMJBMOO
160,001,JBMJBM.JBMJBM01,0SRTS.JBMJBM01
160 • 00 2 ,JBMJBM, JBMJBMO 2,0SRTS,. JBMJBM02

/*

//RECOVERY
//JOBLIB
//STEP5
//SYSPRINT
//INDEX DD
//IBMIBMOO DD
//IBMIBM01
//IBMIBM02
//JBMJBMOO
//JBMJBM01
//JBMJBM02
//STEP6
//INDEX
//SYSPRINT
//IBMIBMOO
//IBMIBM01
//IBMIBM02
//IBMIBM40
//JBMJBMOO
//JBMJBM01

JOB
DD
EXEC
DD

DD
DD
DD
DD
DD
EXEC
DD
DD
DD
DD
DD
DD
DD
DD

'J.CODER',MSGLEVEL=1,REGION=96K
DSN=OSRTS.JOBLIB,DISP=SHR
PGM=U#UTIL1,PARM='USRGROUP'
SYSOUT=A
DSN=OSRTS.INDEX,DISP=SHR
DSN=OSRTS.IBMIBMOO,DISP=OLD
DSN=OSRTS.IBMIBM01,DISP=OLD
DSN=OSRTS.IBMIBM02,DISP=OLD
DSN=OSRTS.JBMJBMOO,DISP=OLD
DSN=OSRTS.JBMJBM01,DISP=OLD
DSN=OSRTS.JBMJBM02,DISP=OLD
PGM=DIBCADBU
DSN=OSRTS.INDEX,DISP=SHR
SY SO UT= A
DSN=OSRTS.IBMIBMOO,DISP=OLD
DSN=OSRTS.IBMIBM01,DISP=OLD
DSN=OSRTS.IBMIBM02,DISP=OLD
DSN=OSRTS •. IBMIBM4 0, DISP=OLD
DSN=OSRTS.JBMJBMOO,DISP=OLD
DSN=OSRTS.JBMJBM01,DISP=OLD

173

//JBMJBM02
//JBMJBM40
//SYSGRPOO
//CBNDX
//SYSIN
./ REORG
./ REORG
/*

DD DSN=OSRTS.JBMJBM02,DISP=OLD
DD DSN=OSRTS.JBMJBM40,DISP=OLD
DD DSN=OSRTS.SYSGRPOO,DISP=OLD
DD DSN=OSRTS.CBNDX,DISP=OLD
DD *
USRGROUP=IBMIBM.,CLUSTER=1
USRGROUP=JBMJBM.,CLUSTER=l

If at a later date., it becomes necessary to recover the data base,
the job consists of STEP4 from the BACKUP job and the entire RECOVERY
job with the addition of the following JOBFIND control statements after
the REORG statements:

./

./
JOBFIND
JOBFIND

USRGROUP=IBMIBM.,CLUSTER=l,PASSWORD=SECURITY
USRGROUP=JBMJBM.,CLUSTER=l,PASSWORD=SECURITY

TAPE FUNCTION

The TAPE function of the data base utility is used to write a backup
tape of a user, subscription group, user group, system group, or user
group/system group cluster. Each backup tape contains all appropriate
user numbers and passwords., catalogs, directories, file descriptors,
programs., and data files.. The format of the backup tape is compatible
with the backup tapes obtained from the CALL/360: Standalone system .•
These backup tapes can be used as input to the INSERT/REPLACE function
and the RECONSTRUCT function of the data base utility .•

Additional DD Statements

In addition to the required JCL statements described previously, the
TAPE function requires, depending on the operation to be performed, one
or more system group DD statements and/or one or more user group DD
statements.. The output tape must be defined with a TAPEOUT DD
statement; a separate backup tape data set is created for each TAPE
control statement. A disposition of MOD cannot be used to put multiple
data sets on one tape; however, multivolume data sets are permitted .•

TAPE Function Statement

The output operations to be performed are described on the TAPE
function statement. The specific options which are available with the
TAPE function are described below.

174

r---,
11-21 Mnemonic I Parameters I
J---+-----------+---------------------------------------1
./ I TAPE [FRMGROUP={aaabbblSYSGRP},] I

I FROMUSER={aaanmmlSYSLIBl**LIB}, I
I I
I [FROMUSR2=aaanpp,JFROMCLUS=k, I
I I
I PASSWORD=xxxxxxxx, I
I I
I [FILE={PROGIDATAIBOTH},] I
I I
I (NAME=filename I xxxxxxx. I (ALL), 1 I
I I
I [LANG={BASICIFORTRANIPL/IIDATA},] I

L----------------~--------------------------------------J

Note: {} - select one from enclosed list
CJ indicates optional parameter

' ··~ ..

FRMGROUP=
aaabbb

SYSGRP

FROM USER=

specifies the user group which is the only user group
to be contained on the backup tape. When this option
is specified, one or more aaabbbnn DD statements must
be supplied ..

specifies that the backup tape is to contain the
system group only'" When this option is specified one
or more SYSGRPnn DD statements must be supplied .•

Note: The **Directory is in the system group, but
the programs and data files it references are
in other groups. Directory entries are not
included unless they refer to user groups for
which DD statements have been provided .•

aaanmm specifies the only user number or the first of a
range of user number which the backup tape is to
contain. When this option is specified, one or more
aaabbbnn DD statements must be supplied to define the
user group to which this user number or range of
numbers belongs,. A *Directory is always written on
the tape for the specified user or range of users;
consequently, it is not necessary to start a range of
users with a FROMUSER of the form aaanOO.. If
FROMUSER is of the form aaanOO and FROMUGR2 is not
specified or specifies the same user number, no
backup tape is written.

SYSLIB specifies that the backup tape is to contain the
***Library only .•

**LIB specifies that the backup tape is to contain the
**Library only.. Only the directory is included; the
pooled programs and data files themselves are not.
Directory entries are not included unless they refer
to user groups for which DD statements have been
provided,.

Note: If both the FRMGROUP and FROMUSER parameters are omitted, the
backup tape covers the system group from the cluster
specified and all user groups for which the user has supplied
DD statements.

FROMUSR2=aaanpp
specifies the last number of a range of user numbers which the
backup tape is to contain. This parameter is not needed if only one
user to be included on the tape.. The FROMUSR2 parameter may be
specified only when the FROMUSER parameter has been specified as
aaanmm. When FROMUSR2 is specified, aaan must be the same for
FROMUSER and FROMUSR2, and mm must be less than or equal to pp, so
that FROMUSER and FROMUSR2 define a range of users within a
subscription group .•

FROMCLUS=k
specifies the cluster number, either 1 or 2, from which the backup
tape is to be written .•

PASSWORD=xxxxxxxx
specifies the current password of the single, currently valid user
specified by FROMUSER. The password given on the control card must
match the password in the user's equivalency entry or the tape is
not written.

175

specifies the SYSLIB password under the following conditions: if
the user has been cancelled; if a range of users, user group, or
entire cluster has been specified; or if FROMUSER=SYSLIB or **LIB,
or FRMGROUP=SYSGRP has been specified.. When this option is
specified, one or more SYSGRPnn DD statements must be supplied .•

FILE=
PROG specifies that the backup tape is to include only

program files,.

DATA specifies that the backup tape is to include only
data files.

BOTH specifies that the backup tape is to include both
program and data files for the specified user (s) .•

Note: FILE=BOTH is the default.

NAME=
filename specifies that the backup tape is to include only

program and/or data files that have this name.

xxxxxxx .•

{ALL)

specifies that the backup tape is to include only
those files whose name begins with the characters
indicated. A maximum of seven characters in addition
to the period may be specified. The period indicates
only that the characters specified are a prefix and
is not used as a part of the prefix .•

specifies that all program and/or data files for the
specified user(s) are to be included on the backup
tape.. NAME=.. is equivalent to NAME= (ALL) •

~ NAME=(ALL) is the default.

LANG={BASICIFORTRANIPL/IIDATA}
specifies the programming language of the programs or data files
being output. If the LANG parameter is not specified, programs and
data files are processed without regard to programming language .•

Example

In the following example, a backup tape is created of two user groups
and the system group for the primary cluster .•

176

//TAPE
//JOBLIB
//BACKUP
//INDEX
//SYSPRINT
//TAPEOUT
//
//SYSGRPOO
//SYSGRP01
//DEVDEVOO
//DEVDEV01
//MMBMMBOO
//MMBMMB01
//MMBMMB02
//SYSIN
./ TAPE
/*

JOB
DD
EXEC
DD
DD
DD

MSGLEVEL=1,REGION=96K
DSN=OSRTS.JOBLIB,DISP=SHR
PGM=DIBCADBU
DSN=OSRTS.INDEX,DISP=SHR
SYSOUT=A
DSN=BACKUP.DEVMMB,UNIT=2400,DISP=(NEW,KEEP),
VOL=SER=(DM0001,DM0002)

DD DSN=OSRTS .• SYSGRPOO, DISP=SHR
DD DSN=OSRTS.SYSGRP01,DISP=SHR
DD DSN=OSRTS.DEVDEVOO,DISP=SHR
DD DSN=OSRTS.DEVDEV01,DISP=SHR
DD DSN=OSRTS.MMBMMBOO,DISP=SHR
DD DSN=OSRTS.MMBMMB01,DISP=SHR
DD DSN=OSRTS.MMBMMB02,DISP=SHR
DD *

FROMCLUS=1,PASSWORD=COMMCON1

f
... ~.

Since neither FRMGROUP nor FROMUSER is specified, the backup tape
contains information from the system group for the cluster and those
user groups for which DD statements are provided, in this case user
groups DEVDEV and MMBMMB.

VALIDATE FUNCTION

The VALIDATE function of the data base utility gives the capability
for off line validation of one user and the assignment of a password of
his choice. A range of user numbers may also be validated and assigned
a common password which may be changed as soon as the user signs on to
the system the first time,. If an already validated user number is
specified, an error message is issued.

Additional DD Statements

In addition to the required JCL statements described previously, the
VALIDATE function requires one or more system group DD statements and
one or more user group DD statements.

VALIDATE Function Statement

The user(s) to be validated and the password to be assigned is
specified on the VALIDATE function statement. The specific options
which are available with the VALIDATE function are described below,.

r---,
11-21 Mnemonic I Parameters I
1---+-----------+-------------------------~--·----------1
I ./I VALIDATE I USER=aaanmm,CUSR2=aaanpp,]CLUSTER=k, I
I I I I
I I I PASSWORD=xxxxxxxx,USERPASS=yyyyyyyy I
L---J

Note: [l indicates optional parameter..

USER=aaanmm
specifies the only user number or the first of a range of user
numbers to be validated,. One or more aaabbbnn DD statements must be
supplied to define the user group to which the user number or range
of numbers belongs .•

USR2=aaanpp
specifies the last number of a range of user number(s) to be
validated. This parameter is not needed if only one user is being
validated. When USR2 is specified, aaan must be the same for USER
and USR2, and mm must be less than or equal to pp.

Note: Any user number that is within the specified range and
already validated is not processed, but a message is printed .•

CLUSTER=k
specifies the cluster number, either 1 or 2, of the user group to be
acted upon.

PASSWORD=xxxxxxxx
must specify the SYSLIB password; because this parameter is
required, one or more SYSGRPnn DD statements must be supplied to
provide password validation,.

177

USERPASS=yyyyyyyy
specifies the password to be assigned to the user(s) validated. In
the case of validation of a range of users, this password is
assigned to all users validated .•

Note: The USERPASS parameter is not required for validation of the
single user number that represents a directory .•

Example

In the following example, a range of users numbers is validated and
assigned a single password .•

//VALID
//JOBLIB
//CCC
//INDEX
//SYSPRINT
//SYSGRP40
//CCCDDD40
//CCCDDD41
//SYSIN
.• / VALIDATE
./
/*

JOB
DD
EXEC
DD
DD
DD
DD
DD

MSGLEVEL=1,REGION=96K
DSN=OSRTS.JOBLIB,DISP=SHR
PGM=DIBCADBU
DSM=OSRTS.INDEX,DISP=SHR
SYSOUT=A
DSN=OSRTS.SYSGRP40,DISP=SHR
DSN=OSRTS.CCCDDD40,DISP=SHR
DSN=OSRTS.CCCDDD41,DISP=SHR

DD *
USER=CCC101,USR2=CCC199,CLUSTER=2,PASSWORD=CCN1,
USERPASS=CCC12345

The user numbers in the range CCC101 through CCC199 are validated for
the alternate cluster. All the users are assigned a password of
CCC12345 which may be changed as soon as the user signs on the system.

WRITE FUNCTION

The WRITE function of the data base utility provides the following
capabilities:

• Print (formatted or dumped in hexadecimal) the equivalency entry
(excluding the password), catalog record and summary, program file,
data file, or file descriptor record, for a user.

• Print (formatted or dumped in hexadecimal) every record pertaining
to a given user .•

• Print one or all programs or data files in the ***Library .•

• Print the *Directory or **Directory .•

• Print the allocation record or all equivalency entries for a user
group.

• Print statistics on disk space usage, saved and stored programs, and
saved data files.

• Punch program or data files in card format, with source program
files converted to a format compatible with OS/360 batch compilers .•
BASIC source programs are punched with the same content as in CALL­
OS, with the line number at the beginning of each line.. The right
margin must be greater than or equal to the left margin plus six.
FORTRAN source programs are converted to standard fixed-form FORTRAN
format. The CALL-OS line number is converted to an eight-digit
sequence number and punched in columns 73 through 80. Comment lines
located immediately after a continued line are treated as
continuation lines rather than comments.. PL/I source programs are
converted to the standard 60-character PL/I character set.. The

178

CALL-OS line number is converted to an eight-digit sequence number
and punched in columns 73 through 80 (if the right margin is 72 or
less). DATA terminal files are punched with the same content as in
CALL-OS, except that the line number is removed from the front of
each line. If the right margin is 72 or less, the line number is
converted to an eight-digit sequence number and punched in columns
73 through 80.

• Convert CALL-0S program or data files to OS/360 data sets; source
program files are members of partitioned data sets in card-image
format compatible with OS/360 batch compilers, and data files are
sequential data sets in card-image format suitable for reloading (by
the INSERT/REPLACE function) or reformatted to F, FB, V, or VB
format (or FA, FBA, VA, or VBA format if printer control characters
are desired) .•

The WRITE function is the only function that may be executed at the same
time that the online CALL-OS system is operating against the same data
sets. Thus, control information, programs, and data files may be
listed, and programs and data files may be converted to OS/360 format,
all while CALL-OS is executing. The online system and the WRITE
function may use the same system group and/or user group data sets;
these common data sets must be defined for both jobs with DD statements
that contain DISP=SHR. The WRITE function executes in a task area size
of 68K.

Additional DD Statements

In addition to the required JCL statements described previously, the
WRITE function requires, depending on the operation to be performed, one
or more system group DD statements and/or one or more user group DD
statements.. If a program file is to be written into an OS/360
partitioned data set, a LIBRARY DD statement that describes the output
data set must be supplied. If a data file is to be written into an
OS/360 sequential data set, a DD statement that describes the output
data set must also be supplied.. If a program or data file is to be
punched, a SYSPUNCH DD statement must be supplied .•

WRITE Function Statement

The output produced depends on the specifications made in the WRITE
function statement.. Specific options available with the WRITE function
are described below .•

179

r---,
1-21 Mnemonic I Parameters

---+-----------+---. / I WRITE jFRMGROUP={aaabbblSYSGRP} i
I tFROMUSER={aaanmmlSYSLIBl**LIBl\
I

FROMCLUS=k,[OUTPUT={PRIN'I'ICARDIOSDS},]

FILE={PROGjDATAIBOTHIDESICATIDIRIEQUIVI
ALLOCIEVERYISTAT},

[NAME={fi1ename I xxxxxxx .• j (ALL)} ,l

[RENAME={newnamelyyyyyyy.l,l

CLANG={B~SICIFORTRANIPL/IIDATAl,l

[MARG=(mm,nn), l

[OPTIONS=([HEX,](OBJECT,][LIST,]
[FORMDATA]),]

[PASSWORD=xxxxxxxx]
L------------------------------~----------------------------J

Note: --- {} - choose one from enclosed list
Cl - indicates optional parameter

FRMGROUP=
aaabbb specifies the .user group from which records are to be

written; when this option is specified, one or more
SYSGRPnn DD statements and one or more aaabbbnn DD
statements must be supplied .•

SYSGRP specifies that records are to be written from the
system group data sets, which contain the ***Catalog
and the **Directory; when this option is specified,
one or more SYSGRPnn DD statements must be supplied .•

Note: When FRMGROUP is specified, only the allocation record,
equivalency file, or group statistics may be obtained .•

FROM USER=
aaanmm

SYSLIB

**LIB

FROMCLUS=k

specifies the user number from which records are to
be written. When this option is specified, one or
more aaabbbnn DD statements must be supplied to
define the user group to which this user number
belongs. If mm is equal to 00, the FROMUSER is the
*Library for a subscription group.

specifies that records are to be written from the
***Library.

specifies that records are to be written from the
**Library.

specifies the cluster number, either 1 or 2, from which the
indicated records are to be written.

OUTPU'I=
PRINT

180

specifies that the records indicated by the FILE and
NAME parameters are to be written on the output
device specified by the SYSPRINT DD statement.

CARD

OSDS

...

specifies that the programs and/or data files
indicated by the FILE and NAME parameters are to be
written on the output device specified by the
SYSPUNCH DD statement.

specifies that the programs and/or data files
indicated by the FILE and NAME parameters are to be
written in an OS/360 data set. Source (or object)
program fi1es are written in the partitioned data set
defined by the LIBRARY DD statement. They are given
a member name which matches the newname of the
program. Data files are written in the OS/360
physical sequential data set defined by the DD
statement whose name matches the newname of the data
file. Existing members in the LIBRARY partitioned
data set may be replaced by the WRITE function by
specifying DISP=OLD on the LIBRARY DD statement. If
DISP=NEW or MOD is specified, new members are stowed
into the data set, but existing members are not
replaced; an OS/360 abnormal termination message is
issued if an attempt is made to stow a member whose
name a1ready exists in the data set.

The required DCB parameters must be specified, either
if SYSOUT is specified on a data file DD statement,
or if DISP=NEW is specified on the LIBRARY DD
statement or on a data file DD statement. For
examp1e,

//DATAF1
II
//
//
//DATAF2
//
//LIBRARY
//
//
//

DD DSN=AAA001 .• DATAF1 ,DISP=(NEW,KEEP),
UNIT=2314,~0L=SER=MYPACK,
SPACE=(TRK,10),DCB=(RECFM=VB,
BLKSIZE=2594,LRECL=259)

DD SYSOUT=A,DCB=(RECFM=VBA,BLKSIZE=1254,
LRECL=125)

DD DSN=AAAOOl.SOURCE,DISP= (NEW,CATLG),
UNIT=2314,VOL=SER=MYPACK,
SPACE=(CYL,(15,,10)),DCB=(DSORG=PO,
RECFM=FB,BLKSIZE=3200,LRECL=80)

Note that when a new partitioned data set is
allocated on the LIBRARY DD statement, the DCB
parameter must specify DSORG=PO; in addition, the
SPACE parameter must specify the number of directory
b1ocks to be used,.

New LIBRARY partitioned data sets and new data files
without the FORMDATA option must have card-image
records; that is, a record format (RECFM) of FB and a
logical record length (LRECL) of 80, or a record
format of F and a block size CBLKSIZE) of 80.
Regardless of the RECFM parameter specified on the DD
statement, a default of FB is used. The BLKSIZE and
LRECL parameters are optional; if omitted, defaults
of BLKSIZE=800 and LRECL=80 are used.

For data files with OPTIONS=FORMDATA, the RECFM
parameter may be F, FA, FB, FBA, V, VA, VB, or VEA
and must be specified in either the data set label
(for existing data sets) or on the DD statement (for
new data sets). The BLKSIZE and LRECL parameters are
optional; if omitted, the following defaults are
used:

181

Default Default
RECFM LRECL BLKSIZE

F 80 80
FA 121 121
FB 80 800
FBA 121 1210
v 259 259
VA 125 125
VB 259 2594
VBA 125 1254

~ If the OUTPUT parameter is omitted, OUTPUT=PRINT is assumed ..

FILE=

182

PROG specifies that program(s) are to be written from the
library indicated by FROMUSER.

DATA specifies that data files are to be written from the
library indicated by FROMUSER.

BOTB specifies that either programs or data files or both
are to be written from the library indicated by
FROMUSER.

DES specifies that the file descriptor record(s) for the
data file(s) and/or object program(s) specified by
the NAME parameter are to be listed for the user
indicated by the FROMUSER parameter.. OUTPUT must not
be CARD or OSDS.

CAT specifies that the catalog for the user specified by
the FROMUSER parameter is to be listed. When the
FROMUSER is a •Library or the ••Library, the catalog
entries corresponding to the directory entries are
printed.. OUTPUT must not be CARD or OSDS.

DIR

EQUIV

ALLOC

EVERY

Note: When the entire catalog record is being
listed for an individual user, unless
OPTIONS=HEX, a catalog summary giving usable
space due to purging or replacing, space in
use for programs, and space in use for data
files is also printed.

specifies that the directory is to be listed for a
•Library of a subscription group or for the
**Library, as indicated by the FROMUSER parameter.
OUTPUT must not be CARD or OSDS.

specifies that the equivalency entry or entries are
to be listed for the user or user group specified by
the FROMUSER or FRMGROUP parameter.. OUTPUT must not
be CARD or OSDS.

specifies that the allocation record for the user
group specified by the FRMGROUP parameter is to be
printed.. OUTPUT must not be CARD or OSDS .•

specifies that every applicable type of record for
the specified FROMUSER is to be listed. For an
individual user, EVERY is equivalent to specifying
EQUIV, CAT, DES, and BOTH. When FROMUSER is a
*Library or the ••Library, EVERY is equivalent to
EQUIV, DIR, and BOTH. OUTPUT must not be CARD or
OSDS.

,.

STAT specifies the listing of statistics concerning
allocated, unallocated, and purged space, number and
size of saved programs and data files, for the user
group specified by the FRMGROUP parameter.. OUTPUT
must not be CARD or OSDS.

NAME=
filename specifies the name of the file or entry to be written

out.

xxxxxxx. specifies that only those files whose name begins
with the characters indicated are to be written out.
A maximum of seven characters in addition to the
period may be specified. The period indicates only
that the characters specified are a prefix and is not
used as part of the prefix.

(ALL) specifies that all records or entries of the type
named by FILE are to be written out. NAME=. is
equivalent to NAME=(ALL).

Note: The NAME parameter may be specified only when FILE=PROG,
DATA, BOTH, DES, CAT, DIR, or EVERY. When FILE=PROG, DATA,
BOTH, DES, or EVERY, the NAME parameter must be specified.
For FILE=CAT or DIR, the default is NAME=(ALL).

RENAME=
newname specifies the name of the converted output version of

the program or data file.. If this parameter is
omitted, the newname is assumed to be identical to
the filename; in this case, the name on the DD
statement that defines the output data set must also
be identical to filename.

yyyyyyy. specifies a pref ix of up to seven characters which is
to be added to the name of the converted output
version of the program or data file. Resulting
filenames which exceed eight characters are truncated
on the right. If the NAME parameter also specifies a
pref ix, the pref ix specified by RENAME replaces the
prefix specified by NAME in the result; if RENAME=,.
is specified, the prefix specified by NAME is omitted
from the result.

Notes: (1) If the NAME parameter specifies a prefix or if NAME=(ALL)
is specified, RENAME may be omitted or may specify a
prefix, but may not specify a unique newname.. RENAME may
be specified only for OUTPUT=CARD or OUTPUT=0SDS.

(2) If an embedded / would otherwise appear in the resulting
newname, the / is removed from the name.

(3) If the resulting newname would otherwise begin with a
numeric character <due to the deletion of leading
characters when RENAME=.. is specified), then a ff: is added
to the beginning of the name.

LANG={BASICIFORTRANjPL/IjDATA}
specifies the programming language of the programs or data files
being output. If the LANG parameter is not specified, programs and
data files are processed without regard to programming language .•
The LANG parameter may be specified only when FILE=PROG, DATA, BOTH,
DES, CAT, DIR, or EVERY.

183

MARG=(mm,nn)
specifies the card column margins of the converted output (program
or data file) for OUTPUT=CARD or OSDS, where mm specifies the left
margin and nn specifies the right margin.of the card-image output..
The numbers mm and nn may be one or two decimal digits.. The left
margin must be greater than or eqUa.l to 1 and must be less than the
specified right margin. The right margin must be less than or equal
to 80; if it is less than or equal to 72, a sequence number is
generated in columns 73 through 80 of the output ·card-image.. In the
case of source programs, this sequence number is of the form
OOOddddd, where · ddddd is the source program line number.. For object
programs and data files, the sequence numbers start with 00000010
and are incremented by 10.. When OUTPUT=OSDS, data files are not
given margins or sequence numbers if the output data set does not
contain card-image records,.

Notes: (1) For BASIC source programs, the default is MARG=(1,80).
The same line number is generated on each card punched
for a BASIC statement longer than 80 characters.

(2) For FORTRAN source programs, for all object programs, and
for data files for which the FORMDATA option is not
specified, the standard output is MARG=(1,72) and may!!£!;
be overridden by using the MARG parameter .•

(3) For PL/I source programs, the default is MARG=(2, 72) .•

(4) The same sequence number is generated for each card
punched for the same FORTRAN or PL/I statement..

(5) For DATA terminal files and data files for which the
FORMDATA option is specified and whose output data set is
card-image, the default is MARG=C1,80).

OPTIONS::()

184

Note: If only.one option is given, the parentheses may be omitted.

HEX specifies that the records are to be listed in
hexadecimal dump format. This option may be
specified only when OUT~UT=PRINT. If HEX is not
specified, the records are formatted, and listed in
character form with heading, unless the records are
those of a stored object program, in which case the
listing is always in hexadecimal dump format.

OBJECT speci~ies that object programs are the only programs
which may be output.. If OBJECT is specified, the
FILE parameter must specify PROG, BOTH, or EVERY. If
the OBJECT option is not specified, only source
programs are written.

LIST causes the printed listing of a program or data file
which has been converted for OUTPUT=CARD or osos.
This printed listing is in output record EBCDIC
character format for source programs and for data
files for which the FORMDATA option has been
specified; in all other cases, the listing is in
output record hexadecimal format. The LIST option
may not be specified when OUTPUT::PRINT.

FORMDATA specifies that the records in any CALL-OS data file
are to be stripped of certain control bytes, and,
where appropriate~ split into logical records in the
output data set.. Internal format data files are

\

'·

converted to external format in the output data set~
The OUTPUT parameter must specify CARD or osos and
FILE must specify DATA or BOTH.

Note: When OUTPUT=OSDS, the record format (RECFM)
DCB parameter must be specified for the
output data set.. The logical record length
(LRECL) and the blocksize (BLKSIZE) may be
specified.. If omitted, defaults are assigned
as described under the OSDS output option..

PASSWORD=xxxxxxxx
specifies the SYSLIB password if the FRMGROUP parameter is specified
or if the FROMUSER is canceled; when this option is specified, one
or more SYSGRPnn DD statement must be supplied.

specifies the FROMUSER • s password,. If the FROMUSER is a * Library,
then the PASSWORD parameter must specify the password of some
currently valid user in the subscription group. For example, if
FROMUSER=AAA100, then the password of any valid user from AAA101 to
AAA199 may be used.. If the FROMUSER is canceled, the SYSLIB
password must be specified. If FROMUSER=**LIB, the PASSWORD
parameter should be omitted. Protected programs and data files can
not be output when the FROMUSER is a •Library or the **Library.

~ When FROMUSER=SYSLIB, unprotected programs and data files may
be written out even if the PASSWORD parameter is omitted .•
Protected programs and data files and equivalency records
require the SYSLIB password to be specified.

Example

In the following example, the program and data files from the
***Library for the entire system are to be printed.

//WRITE
//JOBLIB
//THREEST
//INDEX
//SYSPRINT
//SYSGRPOO
//SYSGRP01
//SYSGRP02
//SYSGRP40
//SYSGRP41
//SYSIN
./ WRITE
./ WRITE
/*

JOB MSGLEVEL=1,REGION=68K
DD DSN=OSRTS.JOBLIB,DISP=SHR
EXEC PGM=DIBCADBU
DD DSN=OSRTS.INDEX,DISP=SHR
DD SYSOUT=A
DD DSN=OSRTS.SYSGRPOO,DISP=SHR
DD DSN=OSRTS.SYSGRP01,DISP=SHR
DD DSN=OSRTS.SYSGRP02,DISP=SHR
DD DSN=OSRTS.SYSGRP40,DISP=SHR
DD DSN=OSRTS .• SYSGRP41, DISP=SHR
DD *

FROMUSER=SYSLIB,FROMCLUS=1,FILE=BOTH,NAME=(ALL)
FROMUSER=SYSLIB,FROMCLUS=2,FILE=BOTH,NAME=(ALL)

Both program files and data files are written from the primary and
alternate ***Library .•

WRITE Function Output

The following text describes the output of the WRITE function when
OUTPUT=PRINT is specified and OPTIONS=HEX is not specified. The utility
control statement is printed preceding the output associated with the
statement. A header line (RECORD KEY:) appears before the file or
record to be printed.. The contents of this header depend on the type of
file or record being printed. The rest of this section describes the
output format for the types of files and records in the data base:
equivalency, directory, catalog, source program, object program, and

185

data files; allocation and file descriptor records.
and group statistics may be obtained with the WRITE
of these statistics is described in •user and Group
Reports•.

In addition, user
function; the format
Statistical

Note: The description of the directory and catalog file output applies
to a request for the printing of the entire file. If selective
printing is requested, this output is somewhat simplified.

Allocation Record: The header for an allocation record indicates the
type of output (ALOC), the group and relative data set number to which
the allocation information applies, and the date on which the record was
last written. The header is followed by the total number of tracks in
the data set, the number of unused tracks, the address of the next
unused full track, and the addresses of the last used half, fifth, and
tenth tracks.. The allocation record for each data set in the group is
printed.

Equivalency File: The header for each link of an equivalency file
indicates the type of output (EQU.), the address of the next link in the
file, the group to which the equivalency information applies, and the
date on which this link was last written. The header is followed by a
list of the equivalency entries in the link. The listing for each entry
contains the following:

• The user number

• The date on which the user number was validated

• Either the password or an indication that the user number has been
canceled

• The address of the first catalog link associated with the user
number; for user numbers of the form aaanOO, the address of the
first directory link

• The amount of CPU time accumulated by the user

• The amount of time the user was connected to the system

• The date on which the user last used CALL-OS

• The number of disk tracks associated with the user

If the equivalency file has more than one link, each link is printed in
the format described- The header line precedes each link. For the last
(or only) link in the file, the next link field in the header contains
zeros.

Directory file: The header for each link of a directory file indicates
the type of output (DIR.), the address of the next link in the directory
file, the user (either PUBLIC for the **Directory or a user number of
the form aaanOO for a *Directory), and the date on which this link was
last written.. The directory entries are printed in two columns.. Each
entry contains the name of the file, the user number of the pooling
user, the date on which the file was pooled, and the address of the
catalog link which contains the file. Null entries appear when a file
name has been pulled from the directory .•

If a directory file has more than one link, each link is printed in
the format described.. The header line precedes each link.. For the last
(or only> link, the next link field in the header contains zeros.

186

,

('

'\c_

Note: For the **Directory, the catalog link addresses may not be
accurate. These addresses reflect the location of the links the
last time CALL-OS was initialized. If a user group was not
initialized, the catalog link addresses for all files pooled by
users in that group will be zero.

Catalog File: The header for each link of a catalog file indicates the
type of output (CAT.), the address of the next link in the file, the
user whose catalog is being printed, and the date on which this link was
last written. This header is followed by a list of the entries in the
catalog link.. The listing for each entry contains the following:

• The type of entry

• The language

• In some cases, the maximum size of the program or data file: for
source programs which have just been run and then saved, an estimate
of the number of 2K blocks required to run the program; for object
programs, the number of 2K blocks of object code; for data files,
the maximum number of units (half tracks) which can be allocated to
the file

• A flags field which indicates special conditions associated with the
program or data file, as follows:

L the file is locked

p the file is protected

E the object program was allocated excess file units which were
not used; the number of excess units appears at the right of
the entry

R the file has been released

When present, these flags may appear singly or in combination .•

• The name of the file

• The date on which the file was created

• The date on which the file was last accessed

• The number of lines in the file

• The size of the file: for source program files, the number of
bytes; for object program and data files, the number of file units

• The location of the file: for source program files and for object
programs and data files occupying four or less file units, from one
through four disk addresses; for object program files and data files
occupying more than four file units, the address of a file
descriptor record, which in turn gives the location of the file

If a catalog file has more than one link, each link is printed in the
format described. The header line precedes each link. For the last (or
only) link, the next link field in the header contains zeros.. The
catalog listing is followed by a catalog summary. This summary gives
the number of programs, data files, COBI jobs, and purged entries in the
catalog, as well as the amount of storage used and the amount of storage
available because of purging.

187

source Prograro File: The header for a source program file indicates the
type of output (PROG), the name of the file, the user number of the user
who created the file, and the date on which the file was created or last
modified. The header is followed by the source prograro. Each line in
the source program is printed, preceded by the number of bytes in the ·.._
line.. This number appears in parentheses unless the program is
continued to another file unit. In this case, the number appears
between asterisks. When a source program exceeds one file unit, the
header line precedes each subsequent file unit..

Object Program File: The header for an object program file indicates
the type of output (OBJ.), the name of the file the user number of the
user who stored the object program. and the date on which the file was
last stored. The header is followed by a hexadecimal dump of the object
code. If an object program file exceeds one file unit, the header line
precedes each subsequent file unit.

Data File: The header for a data file indicates the type of output
(DATA), the name of the file, the user number .of the user who created
the file, and the date on which the file was last written.. A second
header line indicates the number Of data bytes in the file unit, the
last file unit in the file (otherwise blank}, and the type of data in
the file. This is followed by the data itself. If a data file exceeds
one file unit, the two header lines precede each subsequent file unit..

File Descriptor Record: The header for a file descriptor record
indicates the type of output (FILE), the catalog entry which refers to
the record, the user number, and the date on which the record was last
written. The header is followed by a list of file unit addresses, in
groups of eight, which give the location of file associated with the
record.

USER AND GROUP STATISTICAL REPORTS

During the processing for the ACCOUNT, RECONSTRUCT, and REORGANIZE
functions, statistics are automatically printed for each user processed.
Statistics may also be requested independently by specifying FILE=STAT
in the WRITE function statement.

User Statistics

For each user number, the following line or lines are printed:

• one directory line is printed when a directory is involved in the
processing. This line identifies the directory (either aaanOO
DIRECTORY for each sub group directory or **DIRECTORY for the system
directory> and indicates the number of half tracks, pooled entries,
and null (pulled} entries.

• Four user lines are printed for each user number involved in the
processing. The first line gives the user number <either SYSLIB for
the system group or aaannn for each user in each user group>, the
number of half tracks and number of null entries in the catalog, and
either the number of days since any disk activity on the catalog or
an indication that the user has been canceled.. The second line
indicates the number of source programs, object programs, data
files, purged entries, and COBI jobs in the catalog. The last two
lines give the amount of used and purged disk space, in tenth,
fifth, half, and full track amounts.

188

(

Group Statistics

At the end of the processing for the function, group statistics are
produced.. The statistics can be of use to the computer center in
planning expansion of the data base and in judging the frequency of
reorganization required. The group statistics are a detailed breakdown
of storage use and activity analysis on the output user group. This
report is produced on three pages.

The first page of the group statistics indicates the group (either
SYSGRP for the system group or aaabbb for a user group), the cluster to
which the group belongs, and a summary of disk space used by the group .•
The disk summary lists the total tracks in the group, the number of
tracks available, in use, purged, and lost. This summary is followed by
a breakdown of the records in the group and the amount of space in use
and purged for the entire group.

The second page provides an analysis by size and programming language
for all files associated with the group. This analysis is divided into
source program, object program, and data file statistics.. The analysis
for source programs gives the number of programs in each disk size as
well as the number of lines and bytes per line. For object programs and
data files, the analysis is by half tracks, with an indication of the
number of programs or files in each of several ranges.

The last page provides an activity analysis. The breakdown is by
number of days (several ranges are used) and is categorized by the
number of source programs, object programs, data files, and COBI jobs in
each range. The number of days since last used, run, read, or submitted
provides an indication of the currency of group activity; the number of
days since last saved, stored, or created provides an indication of the
growth activity.

189

MAINTAINING THE SYSTEM

As described in the system build process, the material received by
the installation consists of from two to four release tapes, depending
on the number of compilers selected. Each release tape contains source
and macro libraries in the form of unloaded data sets. These libraries,
together with source modifications, are used by the installation to
apply fixes to the system .•

Before updates can be made, the respective source and macro libraries
must be loaded from the release tape onto disk. Then the source module
is updated with the source modifications and the altered source module
is assembled to obtain an object deck containing all the changes. This
object deck is then relink-edited and a new system load module is
produced. Note that upon completion of a relink-edit of a compiler
module, the utility U#UTIL1 must be run to convert the new version of
the compiler to the fast-load-and-go format and to update the compiler
size in the index ..

The examples given below illustrate the various methods that can be
used to move the data sets provided from tape to disk and to update the
system.. For detailed information of block sizes and data set members,
the reader is referred to the appropriate CALL-OS Application Directory
which is supplied with each release tape.

LOADING EXECUTIVE AND UTILITIES SOURCE AND MACRO LIBRARIES

To load the source and macro libraries for the executive and the
utilities, punch and execute the following JCL, supplying the necessary
information.. If the macro library was not deleted after the system
build process, the COPY statement for the macro library may be omitted.

190

//LOAD
//
//SYSPRINT
//SYSUT1
//DD1
//TAPE
//
//SYSIN

COPY

COPY

/*

Parameter

scrvol

volid1

qualifier

PGM=IEHMOVE
SYSOUT=A

JOB
EXEC
DD
DD
DD
DD

UNIT=2314,DISP=OLD,VOL=SER=scrvol
UNIT=2314,DISP=OLD,VOL=SER=volid1
UNIT=2400,DISP=OLD,VOL=SER=RTOSYS,
LABEL=(,NL),DCB=(LRECL=80,BLKSIZE=800,RECFM=FB)

DD *
PDS=OSRTS.EXEC.MACLIB,T0=2314=volid1,

FROM=2400=(RTOSYS,3),FROMDD=TAPE,
RENAME=qualifier.MACLIB

PDS=OSRTS.EXEC.SOURCE,T0=2314=volid1,
FROM=2400=(RTOSYS,4),FROMDD=TAPE

Meaning

Volume identification of scratch volume

Volume identification of volume on which
qualifier.MACLIB resides

Index level qualifier for CALL-OS
chosen by user at system build time

x
x

x

'"-

/
\.._

(

LOADING COMPILER SOURCE AND MACRO LIBRARIES

The following example loads the source and macro libraries for all
three compilers.. The statements for those compilers not in the system
should be omitted .•

//LOAD
//
//SYSPRINT
//SYSUTl
//DDl
//BASTAPE
//
//FORTAPE
//
//PLITAPE
//
//SYSIN

COPY

COPY

COPY

COPY

COPY

COPY

/*

Parameter

servo!

volidl

qualifier

PGM=IEHMOVE
SYSOUT=A

JOB
EXEC
DD
DD
DD
DD

DD

DD

UNIT=2314,DISP=OLD,VOL=SER=scrvol
UNIT=2314,DISP=OLD,VOL=SER=volid1
UNIT=2400,DISP=OLD,VOL=SER=BASIC,LABEL=(,NL),
DCB=(LRECL=80,BLKSIZE=800,RECFM=FB)
UNIT=2400,DISP=OLD,VOL=SER=FORT,LABEL=(,NL),
DCB=(LRECL=80,BLKSIZE=800,RECFM=FB)
UNIT=2400,DISP=OLD,VOL=SER=PLI,LABEL=(,NL),
DCB=(LRECL=80,BLKSIZE=800,RECFM=FB)

DD *
PDS=OSRTS.BASIC.MACLIB,T0=2314=volid1,

FROM=2400=CBASIC,2),FROMDD=BASTAPE,
RENAME=qualifier.MACLIB

PDS=OSRTS.BASIC.SOURCE,To=2314=volid1,
FROM=2400=(BASIC,3),FROMDD=BASTAPE

PDS=OSRTS.FORTRAN.MACLIB,TQ=2314=volid1,
FROM=2400=CFORT,2),FROMDD=FORTAPE,
RENAME=qualifier .• MACLIB

PDS=OSRTS. FORTRAN .• SOORCE, To= 2314=volid1,
FROM=2400=(FORT,3),FROMDD=FORTAPE

PDS=OSRTS.PLI.MACLIB,T0=2314=volid1,
FROM=2400=(PLI,2),FROMDD=PLITAPE,
RENAME=qualifier.MACLIB

PDs=OSRTS.PLI.SOURCE,T0=2314=volid1,
FROM=2400=(PLI,3),FROMDD=PLITAPE

Meaning

Volume identification of scratch volume

Volume identification of volume on which
qualifier .• MACLIB resides

x
x

x

x
x

x

x
x

x

Index level qualifier for CALL-OS chosen by user at
system build time

Note that the executive and utilities macro library is required in
order to assemble compiler modules.. The compiler macro libraries and
the executive and utilities macro library should be combined into one
data set as indicated by the R.ENAME parameter in the examples given.. If
they are not so combined, the update and assemble example must be
modified to concatenate the libraries on the SYSLIB DD statement for the
assembler step.

OBTAINING A MODIFIED OBJECT DECK

The source module is updated with the changes and reassembled to
produce an object deck which contains the changes,. The following
example updates a source module with changes and assembles the modified
module.

191

//UPDTASM
//UPDT
//SYSUT1
//
//SYSUT2
//
//SYSPRINT
//SYSlN

JOB
EXEC
DP

-~-

PGM=IEBUPDTE,PARM=MOD
DSN=OSRTS .. component.SOURCE,DlSP=OLD,
UNIT=2314,VOL=SER;::volid1

./ CHANGE

DD

DD
DD

DSN=QSRTS .. component .• SOURCE, DISP=OLD,
UNIT=2314,VOL=SER=volid2
SYSOUT=A

* NAME=modname

(source modification cards>

/*
//ASM EXEC PGM=!EUASM,PARM='LINECOUNT=50,0ECK',

REGION=80K,CONI)=((0,NE,UPDT)) //
//SYSLIB DD
//
// DD
//SYSUT1 DD
//SYSUT2 DD
//SYSUT3 DD
//
//SYSPRINT DD
//SYSPUNCH DD
//SYS!N DD
//

Parameter

component

volid1

volid2

modname

qualifier

vol id

DSN=qualif ier .• MACLIB, DISP=OLD, UN!T=2314,
VOL=SER,=volid
DSN=SYS1.MACLIB,DISP=OLD
UNIT=SYSDA,SPACE=(1700,(400,50))
UNIT=SYSDA,SPACE=C1700,C400,50))
UNIT=(SYSDA,SEP=(SYSUT2,SYSUT1,SYSLIB)),
SPACE=(1700,(400,50))
SYSOUT=A
SYSOUT=B
DSN=OSRTS.component.SOURCE(modname>,
DISP=OLD,UNIT=2314,VOL=SER=volid2

Meaning

Name of the CALL-OS component to be updated~ it must
be one of the following: EXEC, BASIC, FORTRAN, or
PLI

Volume identification of volume on which
OSRTS.component.SOURCE resides

Volume identification of volume on which
OSRTS.component .. SOURCE is to reside

Name of the module <or subroutine> to be updated

Index level qualifier for CALL-OS chosen by user at
system build time

Volume identification for volume on which
qualifier.MACLIB resides

OBTAINING A MODIFIED SYSTEM ~OAD MODULE

A system load module is link-edited using an object deck and linkage
editor control statements. The object deck is obtained as in the
preceding exampl~.. 'rhe control statements used depend on the module
being updated. 'rhe following text shows an example of the JCL required
to execute the linkage editor, followed by the linkage editor control
statements.

192

LINKAGE EDITOR JCL REQUIREMENTS

The following example shows the JCL required to execute the linkage
editor:

//LKED
//LINK
//SYSLIN
//SYSPRINT
//SYSLMOD
//SYSUT1
//

JOB
EXEC
DD
DD
DD
DD

PGM=IEWL,PARM='XREF,LIST,LET,NCAL',REGION=96K
DDNAME=SYSIN

//SYSIN DD

SYSOUT=A
DSN=qualifier.JOBLIB,DISP=OLD
UNIT=(SYSDA,SEP=CSYSLMOD,$YSLIN)),
SPACE=C1024,C200,20))

*
(object deck and linkage editor control statements>

LINKAGE-EDITOR CONTROL STATEMENTS

The following sections show the linkage editor control statements
required to link edit system modules.. The statements required depend on
the module .•

Control Statements for RTOS1

INSERT T#GTAB
INSERT C#CPID (C#CPIDV for MVT user)

<object deck obtained from update and assembly>

INCLUDE SYSLMOD(RTOS1)
ENTRY N#LINIT
NAME RTOS1 (R)

Control Statements for U#UTIL1

<object deck obtained from update and assembly)

INCLUDE SYSLMOD(U#UTIL1)
ENTRY U#UTIL1
NAME U#UTIL1(R)

Control Statements for DIBCADBU

(object deck obtained from update and assembly)

INCLUDE SYSLMOD(DIBCADBU)
ENTRY DIBINIT
NAME DlBCADBU(R)

Control Statements tor other Modules

The following control statements are to be used for potentially
nonresident modules and utility modules other than those referred to
previously:

(object deck obtained from update and assembly>

NAMEmodname(R)

193

Control Statements for the BASIC Compiler

Note that the module NUCLEUS must be the first module in the
composite load module (BASIC)-.• --- --

1. For NUCLEUS

(object deck obtained from update and assembly)

INCLUDE SYSLMOD(BASIC)
NAME BASIC(R)

2. All other BASIC modules

REPLACE csectC,csect, •• ~1

INCLUDE SYSLMOD(BASIC)

(Replace all csects in assembled
module)

<object deck obtained from update and assembly)

NAME BASIC(R)

Control Statements for the FORTRAN Compiler

Note that the module FORCOMP must be the first module, followed
by the eight modules listed below in item 2, in the composite
load module (FORTRAN).

1. For FORCOMP

(object deck obtained from update and assembly)

INCLUDE SYSLMOD(FOR'J.'RAN)
NAME FORTRAN(R)

2.. Any of the following: FORALC1,FORALC2,FORINIT,FORPCHK,
FORPOPS,FORREM,FORSCN,FORSCNSR.

(object deck of FORCOMP)
(object deck obtained from update and assembly>

INCLUDE SYSLMOD(FOR'l'RAN)
NAME FORTRAN(R)

3. All other FORTRAN modules

REPLACE csect C, csect, ••.• 1

INCLUDE SYSLMOD·(FORTRAN)

(Replace all csects in assembled
module)

(object deck -obtained from update and assembly)

NAME FORTRAN(R)

Control Statements for the PLI Compiler Phase

194

Note that the module $CCONT must be the first module in the
composite load module (PLI).---- --

1. For $CCONT

<object deck obtained from update and assembly)

rr·
\it

INCLUDE SYSLMOD(PLI)
NAME PLI(R)

2. All other PLI phase modules

REPLACE csect C, csect, •.•.• 1 (Replace all csec~s in assembled
module)

INCLUDE SYSLMODCPLI)

(object deck obtained from update and assembly)

NAME PLI(R)

Control Statements for the PL2 compiler Phase

Note that the module $WCONT must be the first module in the
composite load module (PL2).~~ ~

1 • For $WCONT

(object deck obtained from update and assembly)

INCLUDE SYSLMODCPL2)
NAME PL2(R)

2. All other PL2 phase modules

REPLACE csect C, csect, ••.• 1 (Replace all csects in assembled
module)

INCLUDE SYSLMOD(PL2)

(object deck obtained from update and assembly)

NAME PL2(R)

195

DIAGNOSTIC AIDS

CALL-OS provides several debugging facilities which can be used in
conjunction with, and in addition to, the service aids provided by
OS/360. The global table and the user terminal table are the primary
sources of information concerning the status of the CALL-OS program at
the time of an error. For information regarding the events which
immediately preceded the error, the CALL•OS entries in the OS/360 trace
table are of great assistance. For online debugging and error analysis,
the commands *STATUS and *REPORT can provide useful information .•

GLOBAL TABLE AND USER TERMINAL TABLE

Efficient debugging requires knowledge of system control information
contained in the form of control blocks and tables. The CALL-OS global
table and the user terminal table provide important sources of
information concerning status of both the system and the individual user.

The global table can be located by reference to the link-edit map
generated at system build time. Its symbolic name is T#GTAB. When
CALL-OS is in control, register 12 contains the address of the global
table. Constants, important addresses, and canned messages <referenced
by more than one module or subroutine) are placed in this table.

The user terminal table, assigned to each communications line,
contains information concerning each individual user. Channel program
areas and OS/360 input/output blocks are located within the UTT,
together with information needed by the compilers and the executive
routines. The upper and lower limits of the list of UTT's can be found
in the global table .•

CALL-OS TRACE ENTRIES

If the CALL-OS user includes the trace table option in his OS/360
system generation, he also has the option of placing special CALL-OS
entries in that same table.. These entries are made automatically unless
NOTRACE has been included in the PARM field on the EXEC statement of the
startup deck.. These trace entries are very important in any error
analysis within CALL-OS, and the user should create a trace table
sufficiently large to ensure its usefulness.

*REPORT COMMAND

This operator command prints the contents of various statistical
counters, including I/O activity counts, and hardware-oriented terminal
information. These reports provide valuable data to help diagnose
communications line problems and other errors that do not normally cause
a core dump to be printed. If a dedicated printer is not specified on
the SYSPRINT DD statement at system initialization, the report is
printed at job end. An example of a statistical report and the
definition of fields for the *REPORT command are presented in Appendix A .•

*STATUS COMMAND

This operator command obtains current status information from the
designated UTT and prints it on the command console. This command is a
useful debugging aid where a quick status check is needed for a user
e:icperiencing difficulties with a particular system process.. The
definition of codes for the *STATUS command is given in Appe~dix B.

196

APPENDIX A: EXAMPLE OF STATISTICAL REPORT (*REPORT)

' "

CALL-OS STAT! STI CAL REPORT 15• ll

TIME 0>1 15:10 ELAPSED Tl ME• 67 sec. PAGE

TOTAL REQUESTS QUE uED REQUESTS MAX !MUM QUEUE CURRENT QUEUE DISK READ OLD REQUEST

6(BYTF. BUFFER 0 0

2'6 BYTE RUFFER 0 0

SYSTEM BUFFER 10 0 0

SORT BUFFER 0 0 0 0

~VERLAY HUFFER 123 58 58

CPIO LEVEL 3t,6 2"

CPID LEVEL 166 2"

CP IO LEVEL 3 0 0

COMMAND TOTALS

RUN 2 LI ST l LOAD 4 SAVE 3 •BATCH 0 •CANCEL 0 •COB! c
•OATE 0 •DISABLE 9 0 •ENABLE 0 •IGNORE 0 •MESSAGE = 0 •OFF ~ *RE PORT z
•STATUS 0 •TELL 0 •USERS 0 •VALIDATE• 0 •WARN 0 ADD 0 ALLOW 0
CANCEL 0 CHALOG 0 CLEAR 0 DEl.:ETE 0 OSSTATUS • 0 ECHO 0 ENTEP. c
EXTRACT 0 FILE 0 FIND 0 HELP 0 INSERT 0 JOBSTATUS• n KEY 0
LnCK 0 LDGON 0 MERGE l MOVE 0 NAME 0 NOTIFY n OFF 0
PASSWORD 0 POOL 0 PROTECT Q PULL 0 PUNCH 0 PURGE 0 RELEASE 0
RENUMBER • I REPLACE 0 SCAN n SCRATCH 0 SECURE 0 STATUS 0 STORE 0
SUBMIT 0 TAPE 0 TIME Q UNLOCK 0 WEAVE 0 WIDTH 0

TOTAL 14

TOTH RUN TOTAL TTY INPUT INPUT OUTPUT OUTPUT 256 BYTE TOTAL TOTAL CEN, CVL,
BREAKS BREAKS ERASES ERASES LINES REQUESTS LINES MESSAGES MESSAGES MESSAGES DISK I/OS 01 SK I/OS

4 0 0 15 0 19 q 20 11 ~ 73

M•OISP NO SWAP NFW JOB OLD JOB JOBS NEED MAX, NEW MAX, OLD NEW JOB >IEW JOB OLD JOB TENRFL OLD JOB AREA

(CALL ED COUNTER QUEUE QUEUE COMPILER JOB QUEUE JOB QUEUE AREA FULL HOLE SMALL AREA FULL SET EXTENDED

\

""·
0 0 0 c 0

BAS IC PL/ I FORTRAN E XCES 1/0 JOBS USING DAH FILE NUMBER OF REST ART ED APPENDS AiJO, CORE COMPILE COMP, & GD
LflA~ LOAU LOAD JOB SWAP FILES I/OS OPENS EDI TS REQUESTS !SECI < sEr. 1

0 0 0 0 0 0 0 0 0 0

~ASTER MOOE SORT NO SORT OBJECT CORI SUBMITTED SUBMITTED MAX SUS MIJCL # DSN DSN VAR TAB
REQUESTS RUNS DI SK I/OS JOSS LINES QUEUE RESETS OPENS OPENS TRACKS

0 0 22 0 0 0 0 0 0 0

SCAN OS SCAN JCl SCRATCHED MAX lfJREQ TEMPI TE MP2 TEMP3 TEMP4 TEMP5
~UT LINES our LINES DATA SETS QllEUE

c 0 0 0 0 0

Figure 34. Statistical report example (part 1 of 3)

(

197

CALL-OS STATISTICAL REPORT l i:; :11

TIME ON 15: 10 ELAPSED T !ME= 67 SEC• PAGE 2

CPU Tl"IE NO. OF
c SEC I COMPUTE INTERACTION

c.o - 0.2 2 '-
0.2 - 0.4 0
0.4 - 0.6 0
0.6 - o.a Q

o.a - l.O 0
1.0 - 1.2 0
1.2 - lo 4 0
1.4 - 1.6 0
1.6 - l. 8 0
1.8 - 2.0- 0
2.0 - 2.2 0
2.2 - 2.4 0
2.4 2. 6 c
2.6 - 2.8 0
2.1:1 - 3." c
3.0 - 3.2 0
3.2 - 3.4 0
3.4 - 3.6 0
3.6 - 3.8 0
3.8 - 4.0 0
4.C - 4. 2 0
4.2 - 4.4 0
4.4 - 4.6 0
4.6 - 4.8 0
4.!I - s.o 0
OVER 0

TOTAL 2

Figure 34. Statistical report example <part 2 of 3)

198

..

(_

T !'IE ON 15: 10

Ol5K USAGES

USE!{ GROUPS

SYSLIB
!\UT TO BUT

LINE # nFF

c

CALL-OS STATISTICAL REPORT

ELAPSED TIME= 6 7 SF.C.

TOTAL
TRACKS

lGO
100

AVAILABLE
TRACKS

86
R4

CALLS 2741
RECEIVED PARITY

f)

USER
'JN

TOTAL

Figure 34. Statistical report example (part 3 of 3)

15: 11

PAGF

199

DEFINITION OF Fl:£i..DS (STATISTICAL REPORT)

FIELD NAME

60 BYTE BUFFER

256 BYTE BUFFER

SYSTEM BUFFER

SORT BUFFER

OVERLAY BUFFER

CPID LEVEL 1

CPIO LEVEL 2

CPID LEVEL 3

COMMAND TOTALS

TOTAL BREAKS

RUN BREAKS

TOTAL ERASES

TTY ERASES

INPUT LINES

INPUT REQUESTS

OUTPUT LINES

OUTPUT MESSAGES

256 BYTE MESSAGES

TOTAL MESSAGES

TOTAL DISK I/OS

CEN. CYL. DISK
I/OS

M#DISP CALLED

NO SWAP COUNTER

NEW JOB QUEUE

OLD JOB QUEUE

200

DEFINITION

summary Of the use of the 60-byte buffers

summary of the use of the 256-byte buffers

summary of the use of the system buffer

summary of the use Of the sort buffer

sumary of the use of the overlay buffer

Summary of the level 1 interrupts

Summary of the level 2 interrupts

Summary of the level 3 interrupts

This section indicates the number of times a specific
command has been made .• A field at the end of the
command totals indicates the total number of all
commands made ..

Total number of times the BREAK key on the TTY or the
ATTN key on the 2741 has been depressed

Total number of times the BREAK key or the ATTN key
has been depressed while under control of the RUN
command

Total number of erases requested

Total number of TTY erases requested <number of
characters <erase messages> received)

Total number of input lines received

Total number of input requests received

Total number of output lines transmitted

Total number of output messages translated

Total number of 256-byte buffer type messages

Total number of all messages transmitted

Total number of disk I/O operations

Total number Of central cylinder disk I/O
operations

Total number of times that the routine M#DISP was
entered

Number of times any job was dispatched with L#NSOB
set

Number of current new job queue entries

Number of current old job queue entries

(_

FIELD NAME

JOBS NEED COM­
P ILER

MAX. NEW JOB
QUEUE

MAX. OLD JOB
QUEUE

NEW JOB AREA FULL

NEW JOB HOLE
SMALL

DEFINITION

Total number of jobs requiring a compiler

Maximum number of new jobs queued at any time
on this run

Maximum number of old jobs queued at any time
on this run

Number of times a new job was ready to use the new
job area but the new job area was full, and the
waiting new job must be queued

Number of times a new job area had less than
two jobs, but the hole was too small to start the
second job

OLD JOB AREA FULL Number of times an old job is ready to use the old
job area, but the old job area is already being used,
and the waiting old job must be queued

TENRFL SET A count of the number of times that the second new
job area is restrained from accepting a new job, in
order to permit the top job in the new job queue to
have sufficient space in the program area; the
purpose of this field is to permit an installation to
monitor the number of requests of this type, so that
it may know that performance is suffering because
sufficient space for user programs was not allocated

OLD JOB AREA Total number of times the old job area had to
EXTENDED be extended

BASIC LOAD

PL/I LOAD

FORTRAN LOAD

EXCES I/O JOB
SWAP

JOBS USING FILES

DATA FILE I/OS

NUMBER OF OPENS

RESTARTED EDITS

APPENDS

ADD. CORE
REQUESTS

COMPILE (SEC)

COMPILE AND GO
(SEC)

Total number of times the BASIC compiler was loaded

Total number of times the PL/I compiler was loaded

Total number of times the FORTRAN compiler was loaded

Count of the swaps due to excessive I/O opera
tions

Number of current jobs using data files

Number of I/O operations due to the processing of
data files

Total number of opens requested during execution of
user program

Number of editing commands which had to be restarted
because the initial core allocation was too low

Total number of appends

Total number of times additional core has been
requested for restart

Total time in seconds spent in compilations

Total time in seconds spent in compilations and
execution

201

FIELD NAME

MASTER MODE
REQUESTS

DEFINITION

A count of the number of times when a system
process. such as SORT, requires program area
sorting. This information is useful in determining
an installation's sort buffer requirements .•

SORT Incremented by M#RDSO if sort is needed (M#RDSO reads
in user requested source program)

NOSORT Incremented by M#RDSO if sort is not needed

OBJECT RUNS Total number of stored object programs executed

TEMP1 - TEMPS Used during development of additional features

COB! DISK I/OS Number of disk I/O requests issued by COB! module M#CBIO

SUBMITTED JOBS Number of jobs written on the COB! input data sets

SUBMITTED LINES Number of submitted lines (80 characters each)

MAX. SUB QUEUE Maximum number of jobs in queue between M#ISUB and M#SUB

M#JCL RESETS Number of jobs which M#JCL reset from the COBI output
class to the OS/360 output class

DSN OPENS Number of scannable data sets generated by COB! jobs

DSN OPENS Number of scannable data sets which were actually
scanned

VAR TAB TRACKS Number of tracks used in building the variable tables
required to access variable-length records

SCAN DS OUT LINES Number of output lines generated for scan requests
for scannable SYSOUT data sets

SCAN JCL OUT Number of output lines generated for scan requests
LINES for JCL data. sets

SCRATCHED DATA Number of scannable data sets scratched
SETS

MAX IOREQ QUEUE Maximum number of queued I/O requests

COMPUTE INTER- This table indicates the number of jobs which have
ACTION executed for the specified amount of time before

being swapped out as a result of time slicing, I/O
request. or request of terminal input~ It is normal
to have a high count in the field which is compatible
with the old and new time-slice values .•

DISK USAGE Specifies disk used by present run. total number of
tracks, and total number of available tracks

LINE NUMBER Specifies all the lines included in the JCL deck.. It
will indicate: (1) the number of times the line has
received the OFF command, (2) the number of calls
received on the line, (3) the number of 2741 parity
errors which have occurred, and (4) the line now
active.

202

/

/

APPENDIX B: DEFINITION OF CODES FOR *STATUS COMMAND

USER'S STATUS CODES (STAT)

Code Associated Command Code Associated

01 RUN without parameters 1E WIDTH
02 RUN with parameters 1F CATALOG
03 LIST 20 ALLOW
04 LOAD 21 PROTECT
05 SAVE 22 POOL
06 RENUMBER, DELETE, EXTRACT, ADD 23 PULL

REPLACE, MOVE, FIND, INSERT 24 *STATUS
07 MERGE, WEAVE 25 *USERS
08 TIME 26 *DATE
09 *CANCEL 27 Not used
OA *VALIDATE 28 STATUS
OB CLEAR 29 *REPORT
oc *TELL 2A KEY
OD LOCK 2B TAPE
OE LOGON 2C *BATCH
OF OFF 2D Not used
10 FILE 2E STORE
11 PASSWORD 2F CANCEL
12 PURGE 30 DSSTATUS
13 UNLOCK 31 JOBSTATUS
14 *DISABLE 32 Not used
15 *ENABLE 33 NOTIFY
16 *MESSAGE 34 SCAN
17 *WARN 35 SCRATCH
18 ECHO 36 SUBMIT
19 ENTER 37 *COBI
1A HELP 38 PUNCH
1B *OFF 39 SECURE
1C NAME 3A RELEASE
1D *IGNORE

TERMINAL CHANNEL STATUS CODES (TCHST)

Code Meaning

00
04
08
oc
10
14
18
1C
20
24
28
2C
80

Idle (no command outstanding)
Writing text
Writing marks
Reading text
Reading skip (ignore PCI)
Disable outstanding
Enable outstanding
Prepare issued for break test
Disable outstanding <trouble) - message next
Issue disable next <normal>
Ignore interrupts Cline out of service)
Paper tape is halting
Recursive entry state to appendage--error recorded

Command

203

TERMINAL FLAG BYTE CODES (TFLG1)

80
40
20
10
08
04
02
01

Meaning

Error has occurred in the enable sequence
Do not enable
Information message queued for this line
:Line break has been received
Message routine is performing line folding
Program lines lost when inputting from paper tape
Warning message ready to print
Flag to get special sort error message

OS/360 IOS TERMINAL COMMUNICATIONS SWITCH CODES (IOSW)

204

Code

00
04
08
08

Meaning

Exit from start I/O appendage
Set up to issue halt l/O for break test
switch for start I/O to post appendages
Last legal I/O vector.. Must equal last

for busy test
legal value,.

\., __

APPENDIX C: NONRESIDENT MODULE NUMBERS

'"

Hexadecimal Module
Number Name

070 M#ACCT
080 M#STOR
090 M#CAT
OAO M#CCDA
OBO M#CCDI
oco M#CCME
ODO M#CCOF
OEO M#CCRE
OFO M#CCST
100 M#CCTE
110 M#CCUS
120 M#CCVA
130 M#CCWA
170 M#DIR
1BO M#ECHO
1CO M#EDIT
200 M#HELP
230 M#LDRD
240 M#LIB
260 M#LIST
270 M#LOAD
280 M#LOG
2AO M#MWSC

~ 2BO M#NAME
_ 2FO M#PASS

300 M#ESCN
310 M#RDSO
330 M#RUN
340 M#SAVE
3SO M#SORT
380 M#STAT
3A0 M#TIME
3CO M#WID
300 M#WRSO
sso M#CCBA
570 M#OBJR
S90 M#CANCL
SBO M#CBST
sea M#CCCO
SDO M#IJCL
SEO M#ISCAN

,Jl SFO M#ISUB
600 M#JCL
610 M#NOTFY
620 M#SCAN
630 M#SCR
640 M#SUB
690 M#MREM
6AO M#WEAV
6BO M#ABSUB

(

205

*REPOR'T command
output 197-202
use 196

*STATUS command
output 203-204
use 196

ACCOUN'T function
additional DD statements 148
basic accounting 149
examples of use 149-152
function statement format 148
overview 147
parameters 148-149
printed journal 150-152
resetting equivalency fields 151-152
suggestions for use 152
tape journal 149-150

accounting checkpoints 122
ACTIME initialization parameter 122
actively computing state 12
ADAP'TER operand of the IODEVICE macro 86
add-on records 20-21
ADDRESS operand of the IODEVICE macro 86
allocation record

defined 25-26
format 26
use 26-28
WRITE function output 185-186

alternate cluster
DD statements 131-132
defined 22
examples of use 31-33
number of data sets 23
reorganization 32-33
use with primary cluster 23

ANYJNAME initialization parameter 126
AUTRDR initialization parameter 126
automatic

mode of dispatching 12
mode f.or starting a COBI reader 126

background
processing 10
task areas 5
time slicing

clock 10
process 12
and SHRTSL initialization parameter 125

backup
of data base

general methods 35-36
with REORGANIZE function 172-174

tape
creation by 'TAPE function 174-177
format 168-169
processing by RECONS'TRUCT function 169-170
use with INSER'T/REPLACE function 168-169

basic accounting 149

206

..

•

BASIC compiler
for 18-19, 139

15
DD statements
facilities of
modification of 194

bit string
COBI index data set 45-46
COBI JCL data set 46
LCS residency option 124

blocksize
COBI input data set 61
DIBRDR 56

building the data base
with default data base 100-101
with existing data base 99-100
{see also U#UTIL1)

CALL-OS
compilers, overview

BASIC 15
characteristics 15
FORTRAN 16
PL/I 16

Batch Interface Facility {see COB!)
data base, overview 3-4,18
nucleus

building 5
link edit of 97-98
location in storage 5

utilities, overview 16
cancelling a user from the data base 154
catalog

defined 25
format 27
use 27-29
WRITE function output 187-188

cataloged procedures
for building CALL-OS 95
for building COBI 61,64
for building the data base

on one pack 102-103
on three packs 111-112
on two packs 106-107

conversion for use with COBI
example 41,54
process 52-53
reason 40-41
utility 51

for DIBRDR 56
for DIBW'TR 57

CBCLASS initialization parameter
with DIBCONPR 52
with DIBWTR 57
for initialization 127
and MSGCLASS 43
use 38

CBJCL DD statement
with COBIBLD 60-61
with DIBCADBU 145-146,165-166
in startup deck 133
with U#5CBXPN 65
with U#5INIT 62
with U#5PURGE 70
with U#5RINIT 68
use 46

207

CBNDX DD statement
with COBIBLD 60-61
with DIBCADBU 145-146,165-166
in startup deck 133
with U#5CBXPN 65
with U#5INIT 62
with U#5PURGE 70
with U#5RINIT 68
use 45

CBOLDJCL DD statement 65-66
CBOLDX DD statement .65-66
CBSYSINA/B DD statements

with COBIBLD 60-61
in startup deck 133
with U#5INIT 62
with U#5PURGE 70
with U#5RINIT 68
use 47

central cylinder concept
dependency on number of tracks 76-77
description of 75

central processing unit for CALL-OS 72
change data set on release tape 88-89
CLUSTER parameter

with ACCOUNT function 148
with INSERT/REPLACE function 160
with JOBFIND function 166-167
with RECONSTRUCT function 168
with REORGANIZE function 172
with VALIDATE function 178

clusters
ddnames

system group data sets 23
user group data sets 25

DD statements in startup deck 131-132
defined 22
use of 31-33

COBI
DD statements in startup deck 133-134
device class

description of use 42
and UNITNAME macro 87
and UNITNM initialization parameter 128

general facilities 6,17
index data set

bit string 45
ddname for 45
expansion of 64-65
initialization of 58
maintenance of 69,165-166
records of 37,45
reinitialization of 67
size 45-46
use 37-38,45

initialization options 133-135
input data sets

208

blocksize 61
ddnames for 47
format 46-47
initialization of 59
maintenance of 69-70
processing of 39
reinitialization of 61
switching of 47-48,128
use 37-38,47

•

•

•

•

..

JCL data set
contraction of 65-66
ddname for 46
expansion of 65-66
format 46-47
initialization of 58
reinitialization of 67
size 47
use 46-47

job entries
in catalog 27
deletion from data base 155-156

output class
in conversion of cataloged procedures
example of use 37,44
queue processing 37-38,46
resetting of 37-38,46
specification of 127

procedure library 54-56
processing of jobs

after execution 46,56
after submittal 43

reader procedure 55-56
storage requirements

example 83-84
fixed 78
modules 80-81
variable 78

system build 96-99
writer procedure 56-57

COBIBLD procedure
initialization of COBI data sets

defaults 60-61
execution of 59
overriding of 61
parameters for 59-60
use 59

link editing of COBI load modules 63-64
COMCOM initialization parameter 123
command console logical line numbers 125
command languages 6,13
COMMAND parameter for the DELETE function
comment statement for COBI-submitted jobs
communications console logical line number
COMTSL initialization parameter 123
compiler

area
allocation of 79
LCS residency option 123-124
location in storage 6

characteristics of 15-16
data sets

creation of 136-137
index entries 33
format 18

libraries, loading
macro 191
module 93
source 191

time slice 123

52

154-155
38,43

123

conversion of cataloged procedures for use with COBI {see DIBCONPR)
copying of JCL into the COBI JCL data set 46-47
CPID (control program interrupt dispatcher) 9-10
CTRLPROG macro 85

209

data base, defined 3-4
data base utility (see DIBCADBU)
data file

catalog entry 26-27
defined 25-26
deletion from data base 156
format 28
use 28-29
WRITE function output 18.8

data-set identifier
specification of 39
use in COBI data set names 39-40

DATE parameter of the DELE'TE function 156
default data base build

general information 100-101
one pack

format of the data base 104
JCL requirements 101-102
RTOSDB01 procedure 102-103

restarting 116
three packs

format of the data base 113-115
JCL requirements 110
RTOSDB03 procedure 111-112

two packs
format of the data base 108-109
JCL requirements 105
RTOSDB02 procedure 106-107

DELETE function
additional DD statements 153
example 157
function statement format 153-154
overview 152-153
parameters 153-157
removing a user from the data base 36

detail cards for UTILX 139-141
device class for COBI 42,87,128
DFLINK initialization parameter 123
DIBCADBU

ensuring file security 66-67
general use of 141-142
JCL requirements 144-145
modification of 193
overview 141
utility control statement format 146-147
(see also ACCOUNT, DELETE, INSERT/REPLACE, JOBFIND, RECONSTRUCT,
REORGANIZE, TAPE, VALIDATE,, and WRITE functions)

DIBCONPR
COBI procedure library 54-55
defaults 51-52
example 54
JCL requirements 51-52
process of conversion 52-53

DIBRDR
adding procedures to SYS1.PROCLIB 57-58
automatic starting of 126
cataloged procedures for 56
and IEEVLNKT control section 50
link edit of load modules into system 63-64

DIBWTR
adding procedure to SYS1.PROCLIB 57-58
cataloged procedure 56
and IEEVLNKT control section 50
link edit of load module into system 63-64

210

•

•

directory
defined 25
format 29
use 27-28
validation of 31
WRITE function output 186

disk
arm use efficiency 35
I/O operations 13
space limitations 35

dispatching
jobs in use program area 11-12
work in CALL-OS 9-10

DSPACE initialization parameter 127
dummy records

creation 19
use 20

efficiency of disk arm use 35
equivalency record

defined 25
format 26
resetting of fields in 151-152
use 26-28
WRITE function output 185~186

error
ratio 13
recording for I/O errors 13
routine for CALL-OS

assignment of number 96
default 97
link edit of 98

threshold 13
EXEC statement in startup deck 129
executive

area 5
defined 6
libraries, loading of

macro 190-191
module 91-92

source 190-191
expansion of COBI data sets (see U#5CBXPN)

file descriptor record
defined 26
format 28
use 27-29
WRITE function output 188

FILE parameter
with DELETE function 155-156
with INSERT/REPLACE function 161-162
with TAPE function 176
with WRITE function 182-183

file security with DIBCADBU
system group 142
user group 143

fill character 20
first record of swap area 21
fixed core requirements for CALL-OS 78
formatting the index data set 135
FORTRAN compiler

DD statement for 18,138
facilities of 16
modification of 194

211

FRMGROUP parameter
with TAPE function 175
with WRITE function 180

FROMCLUS parameter
with DELETE function 154
with INSERT/REPLACE function 160
with TAPE function 175
with WRITE function 180

FROMUSER parameter
with DELETE function 153-154
with TAPE function 175
with WRITE function 180

FROMUSR2 parameter
with DELETE function 154
with TAPE function 175

generic name
global table

42,87,128
99,196

hierarchy considerations 81,130
high usage data sets 75

IEEVLNKT control section modification for COBI 49-50
increments for background time slicing 12,125
index data set

DD statement for 130
entry format 33
formatting of 135
initialization of 33,135-136
limits 34
maintenance 33,140
maximum size 34
modification of 140
use 3-4,18,33
(see also COB! index data set)

initialization
CALL-OS system 118-120
COBI data sets

with COBIBLD 59-61
with U#5INIT 62

index data set 33,135
INPUT Parameter for INSERT/REPLACE function 160
inserting a file into the data base 157-158,159-160
INSERT/REPLACE function

additional DD statements 157-158
example 165
function statement format 159
overview 157-158
parameters 159-165

installation-modified system, system build considerations 116-117
interim name, used in expansion and contraction of COBl data sets 66
interrupt handling 9
IOCONTROL macro 85
IODEVICE macro 86
IPBUFS parameter 123
ITIME parameter for DIBWTR 57

JCL comment statement in COBI jobs 38,43
JCL data set (see COBI JCL data set>
JOBFIND function

additional DD statements 166
examples 69,71,166-167
function statement format 166
overview 165-166

212

"

parameters 166-167
use in

purging COBI data sets 71
reinitializing COBI data sets 69

JOBLIB DD statement in startup deck 129
job name for COBI jobs

and ANYJNAME initialization parameter 43,126
assignment of 39,43

job number for COBI jobs
assignment 37-39
use in

data set names 39-40
JCL comment statement 43

JOB statement in startup deck 129
job swapping 3

LANG parameter
with DELETE function 156
with INSERT/REPLACE function 161
with TAPE function 176
with WRITE function 183

LCS support
description 81
and LCSRES initialization parameter 81,123-124
and RESMODS list 130

level structure of CALL-OS 9-10
libraries

compiler 93,191
executive 91-92,190
system 4-5
user 4
utility 91~92,190

LINEGEN parameter of the INSERT/REPLACE function 163
LINEINC parameter of the INSERT/REPLACE function 163-164
link edit

CALL-OS
error routine 98
nucleus 97-98
user options 96-97

modified system load module 192-195
OS/360 nucleus 97-98

links in a data file 123
loading libraries

compiler
macro
module
source

executive

191
93
191

macro 190
module 91-92
source 190

utility
macro 190
module 91-92
source 190

logical line number
communications console 125
command console 123
terminal lines 132

low usage data sets 74-75

machine configuration for CALL-OS 72-73
macro libraries on release tapes

loading
executive 91-92

213

compiler 191
utility 91-92

names of 88-89
maintaining the CALL-OS system, overview 190
major records 20
MARG parameter

with INSERT/REPLACE function 163
with WRITE function 184

MAXDCB initialization parameter 127
MAXIO operand of the CTRLPROG macro 85
message class for COBI 43
MFT

CALL-OS system build
linkage edit.or control statements 98
option 96

IEEVLNKT control section 49-50
minimum system configuration

machine 72-73
storage requirements 74

modes for background time slicing 12-13
modification of IEEVLNKT control section

for MF'l' 49-50
for MVT 50

modifying the index <see UTILX)
module libraries on release tapes

loading
executive 91-92
compiler 93
utility 91-92

names of 88-89
module residency lists

standard 81,130
user specified 130

module storage requirements 80-81
MVT

CALL-OS system build
linkage editor control statements 98
option 96

IEEVLNKT control section 50

NAME parameter
with DELETE function 156
with INSERT/REPLACE function 162
with TAPE function 176
with WRITE function 183

ne~ job
area

allocation of 79
LCS residency option 123
location in storage 6

defined 6
queue 11
time slice

and background 12
specification of 124

NOCOBI initialization option 127
nonresident modules

defined 5
and LCS support 81-82
numbers for 205
storage requirements 80-81

nontrivial response 3
NOSORT initialization parameter 124
NOTRACE initialization parameter 124

214

41

•

..

(

object program file
catalog entry 27
defined 25
format 28
use 28-29
WRITE function output 188

old job
area

allocation of 79
LCS residency option 123-124
location in storage 6

defined 6
queue 11-12
time slice

and background 12
specification of 124

OPBUFS initialization parameter 124
operator conunand language 14
optional core requirements for CALL-OS 79
OPTIONS

operand of SUPRVSOR macro 87
parameter

with ACCOUNT function 149
with DELETE function 156-157
with INSERT/REPLACE function 164-165
with WRITE function 184-185

OSCLASS parameter
initialization option 127
use

with DIBCONPR 52
with DIBWTR 57
general 38

OS/360
core requirements 79
nucleus

assignment 96
defaults 97
link edit of 97-98

OUTPUT parameter of WRITE function 180-182
overlay

buffer
defined 11
LCS residency option 123-124
size of 79

data set
DD statement for 130
use 5,,22
validation of 138

OVLY DD statement in startup deck 22,,81,130
output classes

processing of 37-38
specification of

CBCLASS parameter 52-53,,57,,127
OSCLASS parameter 52-53,,57,,127

use by COBI 38

password
defined 2
for system group 23

PASSWORD parameter
with ACCOUNT function 148-149
with DELETE function 155
with INSERT/REPLACE function 161
with JOBFIND function 166-167
with TAPE function 175-176

215

with VALIDATE function 178
with WRITE function 185

performance considerations fbr CALL-OS 84
peripheral equipment for CALL-OS 72-73
personal computing 2
PL/I compiler

DD statements for 18
faci1ities of 16
modification of

PLI module 18
PL2 module 18

pots (see 24-byte buffers)
primary cluster

DD statements 131-132
defined 22
examples 32
number of data sets in 23
reorganization of 32-33
use with alternate cluster 31

printed journal 150-151
priority for dispatching user jobs 12
priorities of work in CALL-OS 9-10
procedure-defined scannable SYSOUT data sets

COBI definition of 41
conversion required 41
specification of 39

processing programs 6
program file

deleting from the data base 156
<see also source programs file and object program file)

pulling directory entries from the data base 155
punching the startup deck 116
purged space in the data base 26
purging

COBI data sets (see 0#5PURGE)
a user from the data base 154-155

range cards for RECONSTRUCT function 168
ratio 13
RDRQTY initialization parameter 128
RDRTIM initialization parameter 128
ready to compute state 12
RECONSTRUCT function

additional DD statements 167
backup tape

format 168-169
processing 169-170

example 170
function statement format 167
overview 167
parameters 167-168
range cards 168
removing dormant users from data base 36
statistics

system group 188
user group 188-189

record set
default 60
defined 46
specification of 59,62

region size
for CALL-OS 78-79,129
for DIBCADBU 144
for DIBCONPR 51

216

..

•

(_

for DIBRDR 55
for DIBWTR 57

reinitializing the COBI data sets (see U#5RINIT)
relative data set number

defined 22
use

system group data set names 23,131-132
user group data set names 25,131-132

release tapes
executive and utility 88
compiler 88-89

removing a user from the data base 36
RENAME parameter

with INSERT/REPLACE function 162-163
with WRITE function 183

REORGANIZE function
additional DD statements 171
to backup the data base 43
examples

of backup 173-174
four data sets into one 172
of recovery 174
using two clusters 32

function statement format 171
overview 171
parameters 17 2
statistics

system group 188
user group 188-189

REPLACE function (see INSERT/REPLACE function)
replacing a file in the data base 159
resetting equivalency fields 151-152
resident modules

defined 5
and RESMODS DD statement 130
standard residency lists 81,130

RESMODS
data set

DD statement for 81,130
and LCS support 81
use 22

macro 86
resource managers '10-11
restarting the default data base 116
retention period for COBI scannable data sets 49
RTOS1

defaults 121-122
execution of 120
modification of 193

RTOSDB01 procedure
data base created by 104
execution of 101
JCL statements in 102-103

RTOSDB02 procedure
data base created by 108-109
execution of 105
JCL statements in 106-107

RTOSDB03
data base created by 113-115
execution of 110
JCL statements in 111-112

RTOSJOB1
defaults 97
execution of 94
parameters for 96

217

RTOSPROC, contents of 92
RUNTSL initialization parameter 124

SCANDS initialization parameter 49,128
scannable data sets

SYS OUT
allocation of space for 48
blocking factor 48
DD statements for 48,133
device types 48
processing of 44
purging 70
retention period 49
specification of 39
types 39

system 49,128,133-134
SCANxx DD statements

for SYSOUT DD statements 48,133
for system data sets 49,133-134

SCHEDULR macro 87
scratching COBI jobs and data sets 38
SECURITY password 23
SETADDR operand of the IODEVICE macro 86
SHRTSL initialization parameter 125
sort buffer

description 10
LCS residency option 123
and NOSORT initialization parameter 124

source program file
catalog entry 26-27
defined 25
format 28
use 28-29
WRITE function output 188

source libraries on release tapes
loading

executive 190
compiler 191
utility 190

names of 88-89
source line format in work area 20
space allocation for COBI scannable data sets 42
SPACE parameter

with DIBCONPR utility 52-53
with INSERT/REPLACE function 165

startup deck statements
DD statements

BASIC 131
CBJCL 133
CBNDX 133
CBSYSINA/B 133
FORTRAN 131
INDEX 130
JOBLIB 129
OVLY 130

218

PLI 131
PL2 131
RESMODS 130
SCANxx 133
STEPLIB 129
SWAPnn 131
SYSABEND 129
SYSGRP 131
SYSIN 134
SYSJOBQ 133

')

SYSPRINT 129-130
TWX 132
T2741 132
T2741E 132
user group 131-132

EXEC statement 129
JOB statement 129

statistical reports
WRITE function

system group 188-189
user group 188

*REPORT 197-202
STEPLIB DD statement in startup deck 129
storage requirements for CALL-OS

examples 82-84
and LCS support 81-82
minimum 74
module sizes 80-81
and performance 84
task area size 78-79

structure of user base data sets 25-26
sub group

defined 23-24
directory 24,27

SUBMIT command 39
submitting jobs with COBI

example 42-43
method 37
processing 38-39, 44

SUPRVSOR macro 87
SVCTABLE macro 87
swap area 21-22
SWAPnn DD statements in startup deck 19,131
swapping 3
switching COBI input data sets 47,128
symbolic parameters

use with COBI 41,52
substitution of 44

SYSABEND DD statement in startup deck 129
SYSCON initialization parameter 125
SYSGRPnn DD statements 23,131,145
SYSIN DD statement in startup deck 134
SYSJOBQ DD statement in startup deck 133
SYSLIB user number 23
SYSPRINT DD statement in startup deck 129
SYSQUE operand of CTRLPROG macro 85
system

base 3-4,18
buffer 10
build summary 89
catalog 5,23
data sets, scanning 49,128
directory 4,23,27
generation considerations for CALL-OS 85-88
group

DD statements 23,131-132
index entry 33
password 23
security with DIBCADBU 142
statistics 189
user number 23
validation of 138
WRITE function output 189

initialization

219

COBI options 125-126
DD statements 129-134
defaults 121-122
general process 118-119
parameter field length 120-121
startup deck 118-119
SYSIN data set 134
system options 122

111odules
modified load module 192-193
modified object deck 191-192

performance and the data base 35
security 2

TAPE function
additional DD statements 174
backup of data base 35
example 176
function statement format 174
overview 174
parameters 175-177

tape journal option 149-150
task area

allocation of storage within 79
CALL-OS use of 5-6
defined 1-2
priorities 5
size for CALL-OS

computation of 78-80
minimum 74

terminal
command language 14
considerations 132-133
input buffers (see 24-byte buffers)
I/O operations 13
output buffers (see 256-byte buffers)

threshold 13
TIMER operand of SUPRVSOR macro 87
time

sharing
with background 12-13,125
defined 2

slice
background 125
compiler 123
new job 124
old job 125

slicing
affect of job swapping 3
control of 9-10
defined 2-3

supervision in CALL-OS 10
TMSLICE operand of CTRLPROG macro 85
TRACE operand of SUPRVSOR macro 87
trace table entries

for CALL-OS 196
and NOTRACE initialization parameter

translate table loading 132
trivial response 3
Type I SVC

as compiler/executive interface 11
for disk I/O operations 13
link edit of 98

220

·"--.

124

number
assignment of 96
default 97

and SVCTABLE macro 87
132-133

132-133
132-133

TWX DD statements in startup deck
T2741 DD statements in startup deck
T2741E DD statements in startup deck

U#5CBXPN
example 67
JCL requirements 65-66
processing 66-67

U#5INIT
defaults 63
JCL requirements 62-63
use 62

U#5PURGE
example 71
JCL requirements 70-71
processing 69-70

U#5RINIT
example 69
JCL requirements 68-69
processing 67

U#UTIL1
on compiler data sets 136-137
general processing 135-136
modification of 193
on overlay data set 138
on system group data sets 138
on user group data sets 139
on work/swap data sets 137

U#UTIL3 135-136
U#UTIL5 116
UNITNAME macro 87
UNITNM 42.43.128
UNIT operand of IODEVICE macro 86
user

base 5.18.22
defined SYSOUT data sets scannable

COBI definition of 40-41
specification of 39

group
DD statements 25,131-132
defined 23,25
index entry 33
restrictions 25-26
security with DIBCADBU 143
statistics 188-189
validation of 139
WRITE function output 188

number
assignment of 31
in COBI job name 39
in COB! data set names 39
defined 2
range 31
for system group 23
validation of 26

program area
defined 6
manager 11-13
time slicing 10,123-125

program swap area 21-22
terminal table (UTT) 5,124,196

221

USER parameter
with INSERT/REPLACE function 159
with VALIDATE function 177

USERPASS parameter
with INSERT/REPLACE function 161-162
with VALIDATE function 178

using the ACCOUNT function 151-152
USR2 parameter

with INSERT/REPLACE function 160
with VALIDATE function 117

USRGROUP parameter
with ACCOUNT function 148
with JOBFIND function 165-167
with RECONSTRUCT function 167-168
with REORGANIZE function 171-172

UTILX
detail cards 140
JCL requirements 139-140
output 141

VALIDATE function
additional DD statements 177
example 178
function statement format 177
overview 177
parameters 177-178

variable core requirements for CALL-OS 78-79
volume

identification table 46
serial number 61

work area 19-20
work/swap data sets

central cylinder concept 75-76
cylinder assignment 131
DD statements for 131
index entry 33
use 18-19
validation of 137

WRITE function
additional DD statements 179
example 185
function statement format 180
output

allocation record 186
catalog record 187
data file record 188
directory record 186
equivalency record 186
file descriptor record 188
object program record 188
source program record 188
system group statistics 188-189
user group statistics 188-189

24-byte buffers
defined 11
description 10-12
and IPBUFS initialization parameter 123
LCS residency option 123
use 20

60-byte buffers
description 11
use 20

222

•

256-byte buffers
description 11
LCS residency option 123-124
and OPBUFS initialization parameter 124

2741 terminal considerations 132-133

223

GH20-0786-3

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

(")
)>
r
r
I

0 en
<
('.J

m
x
m
(")
c ...
<" m
!(D

c
::!';

;:;:
iD'
"'

•
•

•

(
··~.

READER'S COMMENT FORM

CALL-OS V 2 Executive & Utilities

Program Description Manual

GH20-0786-3

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers). All comments and sugges­
tions become the property of IBM. If you wish a reply, be sure to include your name and address.

COMMENTS

fold fold

fold fold

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES, STAPLE AND MAIL.

GH20-0786-3

YOUR COMMENTS PLEASE •. .

Your comments on the other side of this form will help us improve future editions of this pub­
lication. Each reply will be carefully reviewed by the persons responsible for writing and pub­
lishing this material.

Please note that requests for copies of publications and for assistance in utilizing your IBM

system should be directed to your IBM representative or the IBM branch office serving your
locality.

fold fold

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS, N. Y.

Attention: Technical Publications

fold

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

I BM Corporation

1133 Westchester Avenue

White Plains, N.Y. 10604

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

fold

•

n
)>
r
r
I
0 en
<
I\,)

m
x
CD
(")

s.
;::·
CD

~

c
:::!.
~
Cii"
"'
"ti
CJ
s:
31 :;·
CD a.
:;·
c
tn ..
)>

C)
:r
I\,)

9
0
-.J
00
<» w

Technical Newsletter

CALL-OS
Executive and Utilities
Program Description Manual
Program Number 3~0A-CX-42X

©IBM Corp. 1971, 1972

Base Puhl. No. GH20-0786-3

This Newsletter No. GN20-2780

Date July 31, 1972

Previous Newsletter Nos. None

This Technical Newsletter is intended only for those who wish to make the base publication apply to
Version 1, Modification Level 2. It provides replacement pages for the subject manual. These
replacement pages remain in effect for subsequent versions and modifications unless specifically altered.
Pages to be inserted and/or removed are listed below:

Preface - First page of Contents
1-2
13-16
19-20
25-30

A vertical rule in the left margin indicates a change. Absence of a vertical rule on a page bearing a
"revised" notice means only that existing copy has been moved or that a minor typographical error
has been corrected.

Please file this cover letter at the back of the manual to provide a record of changes.

Note: The IBM Operating System is commonly referred to as OS. For consistency, the term OS/360
has been replaced by the term OS on all changed pages of this manual. Users of the manual
should regard OS and OS/360 as synonymous.

IBM Corporation, Technical Publications Dept., 1133 Westchester Avenue, White Plains, N. Y. 10604

Printed in U.S.A.

,,...,--

\.......___.

