
(
\.,

V

Systems Reference Library

IBM as Full American

National Standard COBOL

Program Numbers: (Version 2) 360S-CB-545

(Version 3) 5734-CBl

File No. 5360-24 OS
Order No. GC28-6396-5

"·--(Version 4) 5734-CB2 (Compiler and Library)

5734-LM2 (Library Only)

OS/VS COBOL 5740-CBl (Compiler and Library)
5740-LMl (Library only)

This publication gives the programmer the rules for
writing programs that are to be compiled by the IBM OS/VS
COBOL and IBM Full American National Standard COBOL
compilers under the Operating System. It is meant to be
used as a reference manual in the writing of IBM American
National Standard COBOL programs.

COBOL (COmmon ~usiness Qriented 1anguage) is a
programming language, similar to English, that is used for
commercial data processing. It was developed by the
£onference Qn DAta SYstems Languages (CODASYL). The
standard of the language is American National Standard COBOL
X3.23-1968, as approved by the ~merican ~ational ~tandards
Institute (ANSI). ·American National Standard COBOL is
compatible with, and identical to. international standard
ISO/R 1989-1972 Programming Language COBOL.

IBM OS/VS COBOL and IBM as Full American National
Standard COBOL, Versions 2. 3, and 4, incorporate the eight
processing modules defined in the highest level of the
American National Standard. These modules include:

Nucleus
Table Handling
Sequential Access
Random Access
Sort
Report Writer
Segmentation
Library

A significant number of IBM extensions are implemented as
well; these extensions are printed on a~~Jbackground.

PREFACE

COBOL (Cammon Business Oriented
Language) is a programming-language,
similar to English, that is used for
commercial data processing. It was
developed by the £onference Qn DAta SYstems
Languages (CODASYL). The standard of the
language is American National Standard
COBOL X3.23-1968 as approved by the
American National Standards Institute
1~NSI). American National Standard COBOL
is compatible with, and identical to, the

compilers is presented within separate (
paragraphs. Such paragraphs begin with the-'1
heading "Program Product Information", '-

international standard ISO/R 1989-1972
Programming Language COBOL.

IBM OS/VS COBOL and IBM as Full American
National Standard COBOL incorporate the
eight processing modules defined in the
highest level of the American National
Standard. These modules include:

Nucleus
Table Handling
Sequential Access
Random Access
Sort
Report writer
Segmentation
Library

followed by the Version number of the
compiler. paragraphs following these
headings that contain program product
information are 'indented. Information
relating only to the OS/VS COBOL compiler
is presented in the separate chapter "OS/VS
COBOL Considerations".

This publication gives the programmer
the rules for writing programs that are to
be compiled by the IBM OS/VS COBOL and IBM
as Full American National COBOL compilers
under the Operating System. It is meant to
be used as a reference manual in the
writing of IBM American National Standard
COBOL programs.

In this publication, the term standard
COBOL means American National Standard
COBOL; the terms IBM Ful~ American National
Standard COBOL and this compiler mean the
IBM implementation of the highest level of
American National Standard COBOL and all
extensions. There are two types of
extensions:

1. Those that represent features not A significant number of IBM extensions
are implemented as well. approved by American National Standard /-~"

COBOL. \
This manual describes IBM OS/vS COBOL

and all current versions of IBM as Full
American National Standard COBOL -
Versions 2, 3, and 4. Information relating
only to the Version 3 and Version 4

2. Those that represent an easing of the
strict American National Standard
COBOL rules for greater programming
convenience.

Sixth Edition (June 1975)

This edition is a reprint of SGC28-6396-3 and GC28-6396-4
incorporating changes released in technical newsletters
GN28-1002 (dated July 15, 1972) and GN28-1048 (dated May 15,
1974) .

This edition applies to the IBM OS Full American National
Standard COBOL, Version 2 at the Release 21 level of the
Operating System and language for Version 3, Version 4, and
OS/VS COBOL. J

Information in this pUblication is subject to significant change.
Any such changes will be published in new editions or technical
newsletters. Before using the publication, consult the latest
IBM System/360 and System/370 Bibliography, GA22-6822, and the
technical newsletters that amend the bibliography, to learn which
editions and technical newsletters are applicable and current.

Requests for copies of IBM publications should be made to the IBM
branch office that serves you.

A form for readers' comments is provided at the back of this
pUblication. If the form has been removed, comments may be addressed
to IBM Corporation, System Development Division, LDF Publishing
Department J04, 1501 California Avenue, Palo],lto, California 94304.

©Copyright International Business Machines Corporation 1968, 1969,
1970, 1971, 1972, 1973

'---

All such extensions are printed on a~shaded:
packground for the convenience of users who
wish strict conformance with the standardu
Use of features that are extensions may
result in incompatibilities between the
implementation represented by this document
and other implementations. If a complete
chapter is an extension. only the page
heading is shaded. These chapters are:

. as/vs COBOL Considerations

;

Subprogram Linkage Statements

Debugging Language

Format Control of the Source
Program Listing

; Sterling Currency

,Teleprocessing (Version 4)
;

String Manipulation (Version 4):

For the less experienced programmer, the
introduction summarizes the general
principles of COBOL, highlights features of
American National Standard COBOL and,
through ~n example. illustrates the logical
sequence and interrelationship of commonly
used elements' of a COBOL program. The
~alance of the publication gives the
$pecific rules for correct programming in
IBM Full American National Standard COBOL,
as implemented for the IBM Operating
System. Appendixes provide supplemental
information useful in writing IBM American
National Standard COBOL programs. Appendix
A describes the use of intermediate results
in arithmetic operations. Appendix B
contains several sample programs showing
the use of mass storage files. Appendix C
gives a summary of all formats and reserved
words used in the IBM implementation of
Full American National Standard COBOL.
This appendix can be torn out, folded, and
used as a pocket-size reference card.
Appendix D gives a summary of the
applicable statements and clauses for each
file-processing technique. Appendix E
gives considerations for the use of ASCII
encoded filesu Appendix F explains the
symbolic debugging features of the Version
4 Compiler. Appendix G describes COBOL
processing for the 3505 and 3525 devices.

Compiler output and restrictions,
programming examples, and information about
running an IBM American National standard
COBOL program are found in the
pUblications:

IBM as Full American National Standard
COBOL Compiler and Library, Version 2,
programmerws Guide. Order No. GC28-6399

IBM as Full American National Standard
COBOL Compiler and Library, Version 3.
ProgrammerWs Guide, Order No. SC28-6437

IBM as Full American National Standard
COBOL Compiler and Library, Version 4,
Programmer-s Guide. Order No. SC28-6456

The appropriate programmer's guide and this
language reference manual are corequisite
publications.

A knowledge of basic data processing
techniques is mandatory for the
understanding of this publication. Such
information can be found in the following
publications:

Introduction to IBM Data Processing
Systems, Order No. GC20-1684

Introduction to IBM System/360 Direct
Access Stcrage Devices and Organization
Methods, Order No. GC20-1649

The reader should also have a general
knowledge of COBOL before using this
manual. Useful background information can
be found in the following publications:

American National Standard COBOL Coding:

Card And Tape Applications Text, Order
No. SR29-0283

Coding Techniques And Disk Applications
Text, Order No. SR29-0284

Illustrations, Order No. SR29-0285

Student Reference Guide, Order
No.. SR29-0286

Where information in the foregoing
publications conflicts with information in
this publication, the contents herein
supersede any other in the writing of COBOL
programs. Any violation of the rules
defined in this publication for using the
Operating System is considered an error.

A general knowledge of the IBM Operating
System is desirable n although not
mandatory. The following publication gives
such information:

IBM System/360 Operating System:
Introduction, Order No. GC28-6534

ACKNOWLEDGMENT

The fol!owing extract from Government Printing Office Form Number
1965-0795689 is presented for the information and guidance of the user:

"Any organization interested in reproducing the COBOL report and
specifications in whole or in part, using ideas taken from this report
as the basis for an instruction manual or for any other purpose is free
to do so. However, all such organizations are requested to reproduce
this section as part of the introduction to the document. Those using a
short passage, as in a book review, are requested to mention 'COBOL' in
acknowledgment of the source, but need not quote this entire section.

"COBOL is an industry language and is not the property of any company or
group of companies, or of any organization or group of organizations.

"NO warranty, expressed or implied, is made by any contributor or by the
COBOL Committee as to the accuracy and functioning of the programming
system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection therewith.

"Procedures have been established for the maintenance of COBOL.
Inquiries concerning the procedures for proposing changes should be
directed to the Executive Committee of the Conference on Data Systems
Languages.

"The authors and copyright holders of the copyrighted material used
herein

FLOW-MATIC (Trademark of Sperry Rand Corporation),
Programming far the UNIVAC (R) I and II, Data
Automation Systems copyrighted 1958, 1959, by
Sperry Rand Corporation: IBM Commercial Translator,
Form No. F28-80l3, copyrighted 1959 by IBM: FACT, DSI
27A5260-2760, copyrighted 1960 by Min~eapolis- Honeywell

have specifically authorized the use of this material in whole or in
part, in the COBOL specifications. such authorization extends to the
reproduction and use of COBOL specifications in programming manuals or
similar publications."

o

Summary of Amendments Number 8

Date of Publication: May 15, 1974
Fonn o[Publication: TNL GN28·1 048 to GC28·6396·3 and -4

IBM OS/VS COBO L

New: Programming Features

• WHEN·COMPILED special register
• OBJECT·COMPUTER paragraph.· automatic System/370 instruction generation
• VSAM file processing
• Merge facility
• 3886 OCR support
• FIPS Flagger support
• Miscellaneous processing considerations

(Plus all features of IBM OS Full American National Standard
COBOL, Version 4)

Miscellaneous changes for OS/VS COBO L and IBM OS Full American National
Standard COBO L, Versions 2, 3, and 4

Maintenance: Documentation Only

Minor technical changes and corrections

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of this publishing date are indicated by a vertical bar to the left
of the text. These baxs will be deleted at any subsequent republication of the page affected.

----- --------- ---------_.

Summary of Amendments Number 7

Date of Publication: July 15, 1972
Form of Publication: TNL GN28·1002 to GC28·6396·3

IBM as Full American National Standard COBOL, Version 4

New: Programming Changes
• EGI (End Of Group Indicator) substituted for ETI (End Of Transmission

Indicator) in the SEND statement.
• Changes in implementation for the UNSTRING statement, as well as

clarifications in documentation.

IBM as Full American National Standard COBOL, Versions 2, 3, and 4

Maintenance: Documentation only
Minor technical changes and corrections.

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of this publishing date are indicated by a vertical bar to the
left of the text. These bars will be deleted at any subsequent republication of the page affected.

~- "
("

...... '

-------------- ----- --- ----- ------- ----- - -- -- -- --------- ------

/

............ ,

(j

Summary of Amendments Number 6

Date of Publication: May 1972
Form of Publication: Revision, GC28-6396-3

IBM OS Full American National Standard COBOL, Version 4

New: Programming Features

• Special Registers DATE, DAY, and TIME.
• ASSIGN clause device field as comments.
• Dynamic Subprogram Linkage (dynamic CALL statement and CANCEL

statement).
• Teleprocessing Feature.
• String Manipulation Feature.
• Symbolic Debugging Feature and Example .
• 3525 Combined Function Processing.

IBM OS Full American National Standard COBOL, Versions 3 and 4

Maintenance: Documentation Only

ASCII tape me processing clarifications.

Miscellaneous Changes for Versions 2, 3, and 4

Maintenance: Documentation only

Minor technical changes and corrections.

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of this pullishing date are indicated by a vertical bar to the
left of the text. These bars will be deleted at any subsequent replublication of the page affected.

Summary of Amendments

Date of Publication: June 1, 1971
Form of Publication: TNL GN28-0439 to GC28-6393-2

IBM OS Full American National Standard COBOL, Version 3

New: Programming Features

• ASSIGN clause specification of new device numbers.
• USAGE COMPUTATIONAL-4 (system-independent binary).

IBM OS Full American National Standard COBOL, Version 2

New: Documentation Only

• ASSIGN clause specification for new device numbers.

Miscellaneous Changes for Version 2 and Version 3

Minor technical changes and corrections.

Summary of Amendments

Date of Publication: January 15, 1972
Form of Publication: TNL GN28-0478 to GC28-6396-2

IBM OS Full American National Standard COBOL, Version 3

New: Programming Features
• SORT-MESSAGE special register implementation .

Number 4

Number 5

• SORT-CORE-SIZE and SORT-RETURN special registers-added processing
capabilities.

Summary of Amendments Number 3

Date of Publication: December 30, 1970
Form of Publication: TNL GN28-0428 to GC28-6396-2

IBM OS Full American National Standard COBOL, Version 3

New: Programming Features

• SIGN clause implementation.
• ASCII tape file processing.,J
• OBJECT-COMPUTER paragraph requests System/370 instructions.
• RERUN at end-of-volume.
• RECORD CONTAINS 0 CHARACTERS implementation.
• Error Declarative GIVING option enhancement.
• START statement with generic key.
• ON statement enhancement.

Miscellaneous Changes for Versions 2 and 3

Maintenance: Docurent'tion only

• BLOCK CONTAINS 0 CHARACTERS deSCription.
• LABEL RECORDS clause clarification.
• PICTURE clause description and table of precedence.
• USAGE clause description.
• Added examples.
• Minor technical changes and corrections.

o

Summary of Amendments Number 1 ',,- .

Date of Publication: March 1969
Form of Publication: Revision, GC28-6396-1

I mplementation Change

New: Programming change.

FREE statement deleted.

Miscellaneous Changes

New: Documentation only

• Table Handling clarifications.
• Table Handling sample program

Maintenance: Documentation only

Minor technical changes and corrections.

Summary of Amendm~nts Number 2

Date of Publication: June 1970
Form of Publication: Revision, GC28-6396-2

IBM OS Full American National Standard COBOL, Version 2

New: Programming Features

• S-mode (spanned) record processing.
• TOTALING/TOTALED option for LABEL RECORDS clause.
• CLOSE statement change in implementation.

Miscellaneous Changes

Maintenance: Documentation only

Minor technical changes and corrections.

o

CONTENTS -- OS/VS COBOL

Op/VS COBOL CONSIDERATIONS
WHEN-COMPILED Special Register
Configuration Section • • •

SOURCE-COMPUTER Paragraph
OBJECT-COMPUTER Paragraph •
SPECIAL-NAMES paragraph •

VSAM File Processing
Environment Division -- File-Control Paragraph

SELECT Clause • ..
ASSIGN Clause • • • • •
RESERVE Clause • .. • ..
ORGANIZATION Clause • ..
ACCESS MODE Clause
RECORD KEY Clause (Format 2)
PASSWORD Clause •
FILE STATUS Clause

Environment Division -- I-O-CONTROL Paragraph
RERUN Clause
SAME Clause •

Data Divisipn -- FD Entry
LABEL RECORDS Clau~e

Procedure Division
Common processing Facilities
EXCEPTION/ERROR Declarative ..
OPEN Statement ••••
START Statement •
READ Statement
WRITE Statement
REWRITE Statement ..
DELETE Statement
CLOSE Statement • .. • .. _

Merge Facility •••••
Environment Division ••••

File-control Entry for Merge Files
I-O-Control Paragraph • ..

Data Division •
Merge-File Description Entry

Procedure Division
MERGE Statement

3886 OCR Processing •
FIPS Flagger
Miscellaneous Processing considerations

ASSIGN Clause .. • • •
WRITE ADVANCING Statement
SORT Statement •

Moves and Comparisons -- System/360 vs. System/370
Shift And Round Decimal (SRP) -- System/360 vs.

.4. . . .

i
i

• ii
· ii
· ii
• iv
• iv

v
• vi
• vi
• vi
• vi
.vii
.vii
viii
viii
viii
• ix

ix
• ix

ix
ix

• ix
.xii
xiii
.xvi
xvii

• .xviii
• xx
.xxi
xxii

• .xxiii
.xxiii

• .xxiii
• .xxiii
• .. xxiv

xxiv
.xxv
.xxv

• xxviii.
, •• xxix

• xxxv
.. • xxxv

xxxv
• xxxv

FIGURES

• iii Figure I.
Figure II.
System/370
Figure III.
Figure IV.
Figure V.
Figure VI.

Status Key Values and Th~ir Meanings .. • • _
iv
xi
KV OPEN Statement Options and Permissible I/O Statements

KEY Item Categories and Collating Sequences
The Four Levels of FIPS Processing

• xxvii
• xxx

--.- ------ - ------,

o

----.- ------------ ------- --- -------------

~ ~~,-COMP ~LEI?,' _~:P~~~,~t,·, ,~~g!,~~~;~:~:j9~~t!~)J

:'08>\78 ~,~~~~?~,,_~,~~~,~~~~~'I~~~]

Special OS/VS COBOL considerations are discussed in the following
pages. Implementation areas described are:

• WHEN-COMPILED Special Register

• The Configuration Section

• VSAM (Virtual Storage Access Method) Processing

• Merge Facility

• 3886 OCR (Optical Character Reader) Processing

• FIPS (Federal Information processing Standard) Flagger

• Miscellaneous Processing Considerations

OS/VS COBOL supports all of the additional features described in this
chapter. Support for these features is prpvided through a subset of the
complete COBOL language as documented in CODASYL COBOL Journal Of
Development. IBM-specified language capabilities are also implemented.
All features of as Full American National Standard COBOL, Versions 3 and
4, continue to he supported.

The OS/VS COBOL Compiler and Library Program Product operates under
control of OS/VS1 or OS/VS2 (with or without TSO), and the CMS component
of VM/310. OS/VS1 and OS/vS2 can operate as independent systems or
under control of VM/310. To execute OS/VS COBOL object programs the
OS/VS COBOL Subroutine Library is required.

Additional information on OS/VS can be found in the following
publications:

Int~oduction to virtual Storage In System/310, Order No. GR20-4260

OS/VS1 Planning and Use Guide, Order No. GC24-5090

OS/vS2 Planning and Use Guide., Order No. GC28-0600

OS/VS Data Management for Systems Programmers, Order No. GC28-0631

OS/VS Virtual storage Access Method (VSAM) Planning Guide, Order No.
GC26-3199

WHEN-COMPILED SPECIAL REGISTER

The WHEN-COMPILED special register makes available to the object
program the date-and-time-compiled constant carried in the object
module.

WHEN-COMPILED is a 20-byte alphanumeric field valid only as the
sending field in a MOVE statement. The format of these twenty bytes is
hh.mm.ssMMM DD, YYYY (hour.minute.secondmonth day, year).

For example, if the compilation began at 4:31 PM on June 10, 1973,
WHEN-COMPILED would contain the value

16.31.00JUN 10, 1913

OS/VS COBOL Considerations i

lSOURCE/OBJECT-COMPUTER Paragraphs (OS/VS)
L,~", '," , ,

This special register is a programmer aid that provides a means of
associating a compilation listing with both the object program and the
output produced at execution time.

CONFIGURATION SECTION

The Configuration section describes the computer on which the source
program is compiled r the computer on which the object program is
executed, andr optionallYr SPECIAL-NAMES r which relate function-names
used by the compiler with user-specified mnemonic-names.

r--,
I I
I General Format J

~--1

CONFIGURATION SECTION.

SOURCE-COMPUTER. computer-name.

OBJECT-COMPUTER. computer-name

[MEMORY SIZE integer
{

WORDS }
CHARACTERS
MODULES

[SEGMENT-LIMIT IS priority-numberl.

SPECIAL-NAMES,. [junction-name mnemonic-namel

I
J
I
J
I
I
J
i
1
I
I
J
I
I
I

[CURRENCY SIGN IS literal] [DECIMAL-POINT IS COMMA]. I L __ J

The Configuration Section and its associated paragraphs are optional
in a COBOL source program.

SOURCE-COMPUTER PARAGRAPH

The SOURCE-COMPUTER paragraph describes the computer upon which the
source program is to be compiled. This paragraph is treated as
documentation.

Computer-name is a word in the form IBM-370[-model-numberl.

OBJECT-COMPUTER PARAGRAPH

The OBJECT-COMPUTER paragraph describes the computer upon which the
object program is to be executed.

Computer-name must be the first entry in the OBJECT-COMPUTER
paragraph. Computer-name is a word in the form IBM-370 [-model-numberl '.

System/370 instructions are provided automatically by OS/VS COBOL.
(When IBM-360 is specifiedr the compiler generates system/370
instructions and issues a warning message.) The Compiler generates
instructions from the System/370 set -- including Move Long (MVCL)r
Compare Logical Long (CLCL). and Shift And Round Decimal (SRP) -- that
are particularly useful to COBOL. These System/370 instructions replace
object-time subroutines and instructions that former COBOL Compilers
generated under System/360 including routines and instructions to handle
decimal arithmetic scaling (where operands have a different number of
decimal places) and rounding. System/370 support also gives much
improved processing of variable length fields.

ii

Cj

Cj

OBJECT-COMPUTER Paragraph (OS/VS)

Since System/310 does not require boundary alignment for
COMPUTATIONAL, COMPUTATIONAL-l, and COMPUTATIONAL-2 items, no moves are
generated for items that are not SYNCHRONIZED.

performance Considerations:: Space occupied by an OS/VS COBOL program
is decreased, particulary when calls to object-time subroutines, are no
longer necessary. Such calls are always generated in System/360 for
variable-length moves and comparisons. If there is at least one
variable-length alphanumeric move in the source program, System/310
support reduces the size of the object program by at least 484 bytes; if
there is at least one variable-length alphanumeric coroparison,
System/310 support reduces the size of the object program ·by at least an
additional 498 bytes.

r---------~----T---------------------------T---------------------------,
I IFor Each Alphanumeric IFor Each Comparison (in a I
I IMove: Object-program Iconditional expression): I
INumber of I Instructions JObject-program Instructions I
IBytes in Each ~-------------T-------------t-------------T------------~
IMove or ISystem/360 ISystem/310 \System/360 ISystem/310 I
I Comparison IBytes Needed IBytes Needed IBytes Needed IBytes Needed I
~--------------+-------------+-------------+-------------t-------------i
1 variable 1 1 1 I 1
I length I 26+480* J 14-22 1 26+496*) 16-24 J

~--------------+-------------t-------------t-------------+------------~
I fixed length I 1 I I 1
I 1-256 1 6-16 l 6-16 I 8-26 1 8-26 J

I 251-512 I 12-22 J 12-22 I 16-36 I 16-24]
I 513-168 I 18-28 1 14-22 J 24-46 I 16-24 J
J 169-1024 1 24-34 1 14-22 1 32-56 1 16-24 1
I 1025-1280 I 30-40 1 14-22 1 40-66 I 16-24 I
I 1281-1536 I 36-46 J 14-22] 48-16 1 16-24 I
I 11 1 I 1
] >4096 1 26+480* I 14-22 J 26+496* I 16-24 I
~--------------~-------------L-------------~----------___ i _____________ ~
1*Bytes needed to invoke object-time subroutine. plus size of I
I subroutine itself. J L __ J

Figure I. Moves and Comparisons -- system/360 vs. System/370

Figure I gives comparative figures without right justification for
fixed-length and variable-length MOVE statements, and for fixed-length
and variable-length comaprisons.

Figure II gives comparative figures for Shift And Round Decimal
generation; the savings shown are made for each such operation in the
object program.

The MEMORY SIZE clause can be used to document the actual equipment
configuration needed to run the object program.

The SEGMENT-LIMIT clause is discussed in the Segmentation Chapter.

Except for the SEGMENT-LIMIT clause, the OBJECT-COMPUTER paragraph
is treated as documentation.

OS/VS COBOL Considerations iii

----------------------- -----------

fs77f)ii, ~i4qraiil17'rSAr.f~(efs7vs r
4 ~~,~ hA~ ~>~~~~"~;~,» i,::~~1<",*,~~2}:~'; ~: ' ~:,: :'>~ ~:;~ ~'<,~ ~'~,: ~ ,;<:' ~h~'~ '~, ~ <."': ',; ~>,"~,:vf > ~,: ,;" ~,',~;

r-----------------------T-----------------------T----------------------, I I System/360 I System/370 I
I Function I Bytes Needed I Bytes Needed J

~-----------------------+-----------------------+----------------------~ I Rounding I 39 + literal* I 6 ~
I Left Scaling I 6 + literal* I 6 G
I Right Scaling I 12 I 6 t
~-----------------------L-----------------------L-------_______________ ~
I*As used for decimal point alignment the literal varies in length with~
I size of data-item. number of decimal positions defined, and/or ~
I scaling positions defined. 1 L __ J

Figure II. Shift And Round Decimal (SRP) -- System/360 vs. System/370

SPECIAL-NAMES PARAGRAPH

The SPECIAL-NAMES paragraph as discussed in the Environment Division
chapter applies to OS/VS COBOL without change,.

VSAM FILE PROCESSING

VSAM (Virtual storage Access Method) is a high-performance access
method of OS/VS for use with direct access storage. VSAM provides
high-speed retrieval and storage of data, more reliability, flexible
data organization, ease of conversion from other access methods, and
ease of use -- including simplified job control statements. data
protection against unauthorized access, central control of data
management functions, device independence (freedom from consideration of
block sizes, control information, record deblocking, etc.), and
cross-system compatibility.

Access Method services, a multi-function utility program is used to
define a VSAM data set, and optionally load records into it, convert an
existing indexed or sequential data set to VSAM format, and perform
other tasks as well. Access Method Services is described in OS/VS
Virtual Storage Access Method (VSAM) Planning Guide. Order NO-.---
GC26-3799.

VSAM allows key-sequenced and entry-sequenced data sets: records can
, be fixed or variable in length.

In a key-sequenced data set (KSDS), records are stored in the
ascending collating sequence of some embedded key field. For indexed
files of this type, records can be retrieved sequentially in key
sequence: they can also be retrieved randomly according to the
particular value of the key.

In an entry-sequenced data set (ESDS), the records are stored in the
order in which they are presented for inclusion in the data set. New
records are stored at the end of the data set. In COBOL, record
retrieval for sequential files of this type must be sequential.

VSAM files may be written on the following mass storage devices:
2314, 2319, 3330, 3340.

For VSAM file processing in COBOL, there are special language
considerations in the Environment, Data, and Procedure Divisions.

iv

(j

r,

l)

-- ------- - --- -- ------ -- ------

;'VSAM ': FILE:"'Cbti'TROL' '.parac,l?apn':~': (p'S7VS n
, '" ";',,",, '''~''''''''':~:N:,3 ;;;,~,~~:~.~"\:,~~"".,;",,,:,,>J

ENVIRONMENT DIVISION -- FILE-CONTROL PARAGRAPH

The File-Control paragraph names the VSAM file, associates it with an
external medium, and allows specification of other file-related
information.

r--, I General Format 1 '-- Sequential VSAM Files i
~--1

FILE-CONTROL.

{SELECT (OP~IONAL] file-name

ASSIGN TO system-name-i [system-name-21

[RESERVE integer [
AREA J
AREAS

[ORGANIZATION IS SEQUENTIAL]

[ACCESS MODE IS SEQUENTIAL]

[PASSWORD IS data-name-i]

[FILE STATUS IS data-name-2].}

1
J
1
J
J
1
I
1
I
~
,1

I
~
1
I

~
J
1 L ______________________ -------------------------------_________________ J

r--, I General Format 2 -- Indexed VSAM Files J

~--i
FILE-CONTROL.

{SELECT file-name

ASSIGN TO system-name-i [system-name-2]

[RESERVE integer
[

AREA J
AREAS

ORGANIZATION IS INDEXED

{
SEQUENTIAL}

[ACCESS MODE IS RANDOM
DYNAMIC

RECORD KEY IS data-name-3

[PASSWORD IS data-name-i]

[FILE STATUS IS data-name-21.}

J
1
t
J
1
1
I
J
~
J
J
1
I
1
I
I
I
'J

1
I
~
I

i I L ___ - __ J

Each file described by an FD entry or SD entry in the Data Division
must be described in one and only one File-Control entry.

The key word FILE-CONTROL may appear only once, at the beginning of
the File-Control paragraph. The word FILE-CONTROL must begin in Area A~
and be followed by a period followed by a space.

Each File-Control entry must begin with a SELECT clause followed
immediately by an ASSIGN clause. The order in which the other clauses

OS/VS COBOL Considerations v

: VSAM SELECT/ASS~GN/ORGANIZATIO~ ;.C<~a~s"es (OS/VS)

appear is not significant, except that for indexed VSAM files the
PASSWORD clause, if specified, must immediately follow the RECORD KEY
clause. Each File-Control entry must end with a period followed by a
space.

Each data-name in the File-Control entry may be qualified; it may not
be subscripted or indexed. Each data-name must be at a fixed
displacement from the beginning of the data description entry in which
it appears; that iSn it must not appear in the entry after an OCCURS
DEPENDING ON clause.

SELECT Clause

The SELECT clause is used to name each file in the program. Each
file described with an FD entry or SD entry in the Data Division must be
named once and only once as a file-name following the key word SELECT.

FORMAT 1: The OPTIONAL clause must be specified for input files that
are not necessarily present each time the object program is executed.

If file-name represents a sort file, only the ASSIGN clause may be
written following the SELECT clause.

ASSIGN Clause

The ASSIGN clause associates the file with an external storage
medium.

System-name specifies the external-name. and~ optionally, a device
class, a device number, and the file organization. System-name has the
following structure.

[SYSnnn-] [class-] [device-] [organization-]ddname

The SYSnnn, class, and device fields a~e included for compatibility
only; these fields are treated as documentation.

The organization field is required for sequential VSAM files. The
entry must be AS.

The organization field must not be specified for indexed VSAM files.

The ddname field is required. It is a i-character to a-character
field, specifying the external-name by which the file is known to the
system.

RESERVE Clause

The RESERVE clause is treated as documentation.

ORGANIZATION Clause

The ORGANIZATION clause specifies the logical structure of the file.
The file organization is established at the time the file is defined and
cannot subsequently be changed.

vi

u

- --------------- - --- - -- ---- ---_._--

? VSAM-"'AC-CESS~ 'MODE7asco:air'"ffi:'''ctauses-- (OS,1J:S'
~«,y_~\ .. ~.;,:<*_~*""",;>.c..,.,..,~"~,L,."",,,;,,,*~~,,»-,,<,.,..;c~""""i:«",*_::'-__ " __ ""-' __ #;"'-A->~ '"""~*'~~:>:>l>.2<~..s.,.,,';J ~~A ~ ~ ...

FORMAT 1: If the ORGANIZATION clause is omitted, ORGANIZATION
SEQUENTIAL is assumed.

When ORGANIZATION SEQUENTIAL is specified or assumed. the records in
the file are positioned sequentially in the order they were created.
Once established. the position of the file records does not change.

FORMAT 2: When ORGANIZATION INDEXED is specified. each logical record
in the file contains an embedded RECORD KEY which is associated with an
index, and each record is identified through its RECORD KEY value.
After records have been updateB. or have been added to or deleted from
the file. the position of the records may have changed.

ACCESS MODE Clause

The ACCESS MODE clause specifies the manner in which records in the
file are to be processed.

When the ACCESS MODE clause is omitted, ACCESS MODE SEQUENTIAL is
assumed.

When ACCESS MODE SEQUENTIAL is specified or assumed, the records are
processed sequentially. That is, the next logical record in the file is
the next processed.

ACCESS SEQUENTIAL can be specified for sequential or indexed VSAM
files.

When ORGANIZATION IS SEQUENTIAL is specified or assumed, the records
in the file are processed in the sequence established when the file was
created or extended.

When ORGANIZATION IS INDEXED is specified, the records in the file
are processed in the sequence of ascending record key values.

FORMAT 2: For indexed VSAM files, ACCESS MODE RANDOM and ACCESS MODE
DYNAMIC can also be specified.

When ACCESS MODE RANDOM is specified, the sequence in which records
are processed is determined by the sequence in which keys are presented.
The desired record is accessed by placing the value of its key in the
RECORD KEY data item before the associated input/output statement is
executed.

When ACCESS MODE DYNAMIC is specified, records in the file are
processed sequentially and/or randomly. The form of the specific
input/output request determines the access mode.

RECORD KEY Clause (Format 2)

The RECORD KEY clause specifies the data item within the record which
contains the key for that record; each RECORD KEY value in the file must
be unique. A RECORD KEY must be specified for an indexed VSAM ,file.

Data-name-3 is the RECORD KEY data item. Data-name-3 must be defined
as a fixed length alphanumeric or external-decimal unsigned integer data
item within a record description entry associated with file-name.
Data-name-3 is treated as an alphanumeric item.

The data description of data-name-3 and its relative location in the
record must be the same as that specified when the file was defined.

OS/VS COBOL Considerations vii

PASSWORD Clause

The PASSWORD clause controls object-time access to the file~

Data-name-l is the password data item: it must be defined in the
Working-storage Section as an alphanumeric item. The first 8 characters
are used as the password: a shorter field is padded with blanks to 8
characters. The password data item must be equivalent to the one
externally specified.

When the PASSWORD clause is specified, at object time the password
data item must contain the valid password for this VSAM file before the
file can be successfully opened. (See "Status Key" in the following
Common Processing Facilities description.)

FILE STATUS Clause

The FILE STATUS clause allows the user to monitor the execution of
each input/output request for the file.

Data-name-2 is the Status Key data item. Data-name-2 must be defined
in the Data Division as a two-character alphanumeric or external-decimal
unsigned integer item. Data-name-2 is treated as an alphanumeric item.
Data-name-2 must not be defined in the File Section or the Report
section.

When the FILE STATUS clause is specified q a value is moved into the
Status Key by the system after each input/output request that explicitly
or implicitly refers to this file. The value indicates the'status of
the execution of the statement. <See "Status Key" in the/following
Common processing Facilities description.)

ENVIRONMENT DIVISION -- I-a-CONTROL PARAGRAPH

The I-a-CONTROL paragraph specifies the special input/output
techniques to be used in the program. The I-a-CONTROL paragraph and its
associated clauses are optional.

r--,
I J
I General Format -- VSAM Files I
~--~

1
I-a-CONTROL. J

J
[RERUN ON system-name EVERY integer RECORDS '/

/
OF file-name-1J J

1
[SAME [RECORD] AREA I

I
FOR file-name-2 [file-name-3] •••] .u. • J

I ----__ J

The key word I-a-CONTROL must begin in Area A and be followed by a
period and a space.

viii

c)

o

RERUN Clause

The RERUN clause specifies that checkpoint records are to be taken.

system-name identifies the checkpoint £ile, and is specified as
described in the Environment Division chapter. The checkpoint file must
be a standard sequential fi1e (it may not be a sequential VSAM file).

File-name represents the file for which checkpoint records are to be
written. File-name may specify a VSAM file.

SAME Clause

The SAME RECORD AREA clause for VSAM files is implemented as
described in the Environment Division chapter.

The SAME AREA clause, when specified for VSAM files, has the same
meaning as the SAME RECORD AREA clause.

DATA DIVISION -- FD ENTRY

In the FD entry for a VSAM file, the RECORD CONTAINS clause is
implemented as described in the Data Division chapter.

The BLOCK CONTAINS, DATA RECORDS, and VALUE OF clauses, are treated
as documentation for VSAM files.

The RECORDING MODE and REPORT clauses must not be specified for VSAM
files.

There are special considerations for the LABEL RECORDS clause.

LABEL RECORDS Clause

For VSAM files, the LABEL RECORDS clause specifies whether standard
labels are present or omitted.

r--,
I Fonnat I
~--~
I {RECORD IS}{STANDARD} J I LABEL J
] -- RECORDS ARE OMITTED J
I J L-___ --------------~

For VSAM files, either the STANDARD or the OMITTED option may be
specified. Either option is treated as documentation.

The LABEL RECORDS clause is required in every FD entry.

PROCEDURE DIVISION

For VSAM files, there are several Common Processing Facilities that
apply to more than one input/output statement. These Common Processing

OS/VS COBOL Considerations ix

rVS»CCOmmOtr;1'~Qeeij!nq~'F:aeIlItfes"'·"(OS7Vsrl
L' '", h~ 'v y ~, ... : ";~,>/;.,,~';.~"'~M';..."'</'::;Wh~:~>V>.>;->~-::/;,:~~:,...,;""'>,:,,....:><:< ~,' ~ ,>, <~,;

Facilities are discussed before the descriptions of the separate
input/output verbs.

Common Processing Facilities

CURRENT RECORD POINTER: Conceptually, the Current Record Pointer
specifies the next record to be accessed by a sequential request. The
setting of the Current Record Pointer is affected only by the OPEN,
START, and READ statements. The concept of the Current Record Pointer
has no meaning for random access or for output files.

STATUS KEY: If the FILE STATUS clause is specified in the File-Control
entry, a value is placed into the specified Status Key (the 2-character
data item named in the FILE STATUS clause) during execution of any
request on that file; the value indicates the status of that request.
The value is placed in the Status Key before execution of any Error
Declarative or INVALID KEY/AT END option associated with the request.

The first character of the Status Key is known as Status Key 1; the
second character is known as Status Key 2. Combinations of possible
values and their meanings are shown in Figure III.

x

C)

---, .,." ,'"" ,00/'", '-,)' <::,,<-""''Y'"'' ~<, <f'.-.~"'"

~"y~.~ ",c.~~on pro~,~~~~,~(it,,~~~!,~; ~~~!~,Jg.~LY!LJ
r------------T---------------------T------------T----------------------,
IStatus Key 11 Istatus Key 21 I
I Value I Meaning I Value I Meaning ~

~----------+---------------------t------------t----------------------i
I 0 I Successful I 0 INo Further ~
I I Completion I I Information ~

~-----------+--------~------------+------------t----------------------i
I 1 JAt End (no next I 0 INo Further I
I Ilogical record, or I I Information ,
I Ian OPTIONAL file not I I ,
I lavailable at OPEN I I
I I time) I I '
~------------+---------------------t------------t----------------------~
I 2 I Invalid Key ~ 1 I Sequence Error ~

I I .------------t----------------------i
I I ~ 2 IDuplicate Key I
I I r------------t----------------------i I I '1 3 I No Record Found 1
I I r------------t----------------------i
I I U 4 I Boundary Violation j
I J ~ I (indexed VSAM file) 1
~------------t---------------------t------------t----------------------i
I 3 IPermanent Error I 0 INo Further Q
I I (data check" parity I I Information ~

I Icheck~ transmission .------------t----------------------i
I I error) I 4 IBoundary Violation I
I I ' J J (sequential VSAM Q

I I I Ifile) 1
~------------t---------------------+------------+----------------------~

9 IOther Errors I 1 IPassword Failure ~

I r------------t----------------------~
I I 2 ILogic Error ~

I r------------t----------------------i
1 J 3 IResource Not ~
I 1 I Available 'J

I t------------+----------------------~
I 1 4 INo Current Record J
I I IPointer For I
I ~ ISequential Request J

I t------------+----------------------~
I I 5 IInvalid or Incomplete 1
I 1 IFile Information J

I ~------------+----------------------i
I I 6 Ina DD card 1 --__________ ~ _____________________ ~ ____________ ~ ______________________ J

Figure III. Status Key Values and Their Meanings

INVALID KEY CONDITION: The INVALID KEY condition can occur during
execution of a START, READ, WRITE, REWRITE, OR DELETE statement. (For
details of the causes for the condition, see documentation for those
statementsn) When the INVALID KEY condition is recognized, the
following actions are taken in the following order:

1. If the FILE-STATUS clause is specified, a value is placed into the
Status Key to indicate an INVALID KEY condition.

2. If the INVALID KEY option is specified in the statement causing the
condition, control is transferred to the INVALID KEY
imperative-statement. Any EXCEPTION/ERROR declarative procedure
specified for this file is not executed.

3. If the INVALID KEY option is not specified. but an EXCEPTION/ERROR
declarative procedure is specified for the file, the
EXCEPTION/ERROR procedure is executed.

When an INVALID KEY condition occurs, the input/output statement which
caused the condition is,unsuccessful.

OS/VS COBOL considerations xi

-. - - ------ -------------- - -----------------------.

r~~VSJ\M' :,EXCEPTION/~R~OR ':'De91arat~ ve:',: (OS/VB)I
t:C:~ ,,:;',~:,,' ", ,,' " ' ~ <" , ',:<~, ' ','~: ;,'/:' ,',:" :,',", ,;'<;' "~:,' ,',':,' , ',-: """, 'l

INTO/FROM -IDENTIFIER OPTION: This option is valid for READ, REWRITE"
and WRITE statements.

The INTO identifier option makes a READ statement equivalent to

READ file-name

MOVE record-name TO identifier

After successful execution of the READ statement, the current record
becomes available both in the record-name and identifier.

The FROM identifier option makes a REWRITE or WRITE statement
equivalent to

MOVE identifier TO record-name

{
REWRITE}

record-name
WRITE

After successful execution of the WRITE or REWRITE statement, the
current record may no longer be available in record-name, but is still
available in identifier.

In all cases, identifier must be the name of an entry in the
Working-Storage Section, the Linkage Section, or of a record description
for another previously opened file. Record-name/file-name and
identifier must not refer to the same storage area.

EXCEPTION/ERROR Declarative

The EXCEPTION/ERROR Declarative specifies procedures for input/output
exception or error handling that are to be executed in addition to the
standard system procedures.

r--,
I Format J
~--i
I J
I {EXCEPTION} 1 I USE AFTER STANDARD PROCEDURE ,
I ERROR 1
I i
I lfile-name-l [file-name-21 ••• ! 1
I INPUT 1
I ON OUTPUT ~
I 1-0 J
J EXTEND ~
I t L __ J

A USE statement, when present, must immediately follow a section
header in the Declaratives Section (see "Declaratives" in the Procedure
Division chapter). A USE statement must be followed by a period
followed by a space. The remainder of the section must consist of one
or more procedural paragraphs that specify the procedures to be used.

The USE statement itself is not an executable statement; it merely
defines the conditions for execution of the procedural paragraphs.

The words EXCEPTION and ERROR are synonymous and may be used
interchangeably.

xii

'. - . ~

c)

When the file-name option is specified, the procedure is executed
only for the file(s) named. Appearance of a file-name must not cause
simultaneous requests for the execution of more than one EXCEPTION/ERROR
procedure. No file-name can refer to a sort file.

When the INPUT option is specified, the procedure is executed for all
files opened in INPUT mode.

When the OUTPUT option is specified, the procedure is executed for
all files opened in the OUTPUT mode.

When the 1-0 option is specified, the procedure is executed for all
files opened in 1-0 mode.

When the EXTEND option is specified, the procedure is executed for
all files opened in EXTEND mode.

The EXCEPTION/ERROR procedure is executed:

• Either after completing the standard system input/output error
routine. or

• Upon reqognition of an INVALID KEY or AT END condition when an
INVALID KEY or AT END option has not been specified in the
input/output statement, or

• Upon recognition of an IBM-defined condition which causes status key
1 to be set to 9.

After execution of the EXCEPTION/ERROR procedure, control is returned
to the invoking routine.

The EXCEPTION/ERROR procedures are activated when an input/output
error occurs during execution of a READ. WRITE, REWRITE, START, or
DELETE statement. '

If an OPEN statement is issued for a file already in the open status,
the EXCEPTION/ERROR procedures are activated; when the execution of an
OPEN statement is unsuccessful due to any other cause, the
EXCEPTION/ERROR procedures are not activated.

If a file is ~n the OPEN status, and the execution of a CLOSE
statement is unsuccessful, the EXCEPTION/ERROR procedures ,a're activated ..
If the file is in a closed status and a CLOSE statement is issued, the
EXCEPTION/ERROR procedures are not activated.

Within a declarative procedure, there must be no references to
nondeclarative procedures. In nondeclarative procedures, there must be
no references to declarative procedures. except that PERFORM statements
may refer to procedure-names associated with a declarative procedure.

OPEN Statement

The OPEN statement initiates the processing of VSAM files.

r--, I Format I
~---~
I I
I {INPUT file-name-l [file-name-21 ••• ~ I
I OPEN OUTPUT file-name-l [file-name-21 •• ~ ••• I
I 1-0 file-name-l [file-name-21 ••• I
I EXTEND file-name-l [file-name-21 ••• I
I 1 L-___________________________________ -------------------_______________ ~

OS/VS COBOL Considerations xiii

-----,._--_._--------_. - -------------------

At least one of the optio~s INPUT, OUTPUT, 1-0, or EXTEND must be
specified; there may be not more than one instance of each option
specified in one OPEN statement, although more than one file-name may be
specified with each option. The INPUT, OUTPUT6 1-0, and EXTEND options
may appear in the any order.

Each file-name designates a file upon which the OPEN statement is to
operate. Each file-name must be defined in an FD entry in the Data
Division, and must not name a sort file. The FD entry for the file must
be equivalent to the information specified when the file was defined.

The successful execution of an OPEN statement determines the
availability of the file and results in that file being in open mode.
Before successful execution of the OPEN statement for a given file, no
statement can be executed which refers explicitly or implicitly to that
file. The successful execution of the OPEN statement makes the
associated record area available to the program; it does not obtain or
release the first data record.

The INPUT option permits opening the file for input operations.

The 1-0 option permits opening the file for both input and output
operations.

The INPUT and 1-0 options are valid only for files which contain or
which have contained records, whether or not the files still contain any
records when the OPEN statement is executed. (That is, even if all the
records in a file have been deleted, that file can still be opened INPUT
or 1-0.) The INPUT and 1-0 options must not be specified when the file
has not been already created.

The OUTPUT option permits opening the file for output operations.
This option can be specified when the file is being created. (The
OUTPUT option must not be specified for a file that contains records, or
which has contained records that have been deleted.)

The EXTEND option permits opening the file for output operations.
ACCESS MODE SEQUENTIAL must be explicitly or implicitly specified. When
EXTEND is specified. execution of the OPEN statement prepares the file
for the addition of records immediately following the last record in the
file. Subsequent WRITE statements add records to the file, as if the
file had been opened OUTPUT. The EXTEND option can be specified when
the file is being created; it can also be specified for a file which
contains records, or which has contained records that have been deleted.

The OPEN mode, the ACCESS MODE, and the file ORGANIZATION determine
the valid input/output statements for a given VSAM file. Figure IV
shows permissible combinations.

xiv

(""
.... ... """

\ U
"----\

--- -- - -------- ---

~VSAM OPEN Statement (OS/VS)

----------------------T-----------------------T-----------------------,
I File Organization~ I I
I nd OPEN mode I INDEXED I SEQUENTIAL 1
I t-----T------T---T------+-----T------T---T-----~
IACCESS mode ~ I I I I I I I 1
land I/O verb 'INPUTIOUTPUTII-OIEXTENDIINPUTIOUTPUTII-OIEXTEND~

~---------------------- -----+------+---+------+-----+------+---+------~
ISEQUENTIAL OPEN 1 PIP I PIP 1 PIP I PIP ~
I I I I I I I I I ~
I READ I P I - I P I I P I I P I I
I WRITE I I P I - I P 1 - I P I - I P J
I REWRITE I I - I P I ~ - I I P I 1
I START I P I - I P I 1 - I 1 - 1 ~
J DELETE I I - 1 P 1 I - 1 I - 1 I
r----------------------f-----f------+--- -----~~-----~------~---~------
I RANDOM OPEN I P 1 PIP I
I I 1 1 I
1 READ I P I - I P I
I WRITE I I PIP I
I REWRITE I I - I P I
I START I I - I - I
I DELETE J I - I P I
~----------------------+-----t------+---~
I DYNAMIC OPEN I P 1 PIP I
I I I I I
I READ a P I - I P I
I WRITE ~ I PIP I
I REWRITE I I - I P I
I START 1 P I - I P I
I DELETE I I - I P I
~----------------------~-----~------~--- ------------------------------
IP indicates that this input/output statement is permissible for this
I combination of File Organization. Access Mode and OPEN Mode
I
1- indicates that this input/output statement is not permissible for
1 this combination of File Organization, Access Mode. and OPEN Mode 1 L __ J

Figure IV. OPEN Statement Options and Permissible I/O Statements

A file may be opened for INPUT. OUTPUT. 1-0, or EXTEND in the same
program. After the first execution of an OPEN statement for a given
file. each subsequent execution of an OPEN statement must be preceded by
the successful execution of a CLOSE statement without the LOCK option.

Execution of an OPEN INPUT or OPEN 1-0 statement sets the Current
Record Pointer to the first record existing in the file. For indexed
files. the record with the lowest key value is considered the first
record in the file. If no records exist in the file. the Current Record
Pointer is set so that the first Format 1 READ statement executed
results in an AT END condition.

If the PASSWORD clause is specified in the File-Control entry, the
password data item must contain the valid password before the OPEN
statement is executed. If the valid password is not present, the OPEN
statement is unsuccessful.

If the FILE STATUS clause is specified in the File-Control entry. the
associated Status Key is updated when the OPEN statement is executed.

If an OPEN statement is issued for a file already in the OPEN status.
the EXCEPTION/ERROR procedure (if specified) for this file is executed.

OS/VS COBOL Considerations xv

-------------"---"-------

START Statement

The START statement provides a means fo+ logical positioning within
an indexed file for subsequent sequential retrieval of records.

r--, I Format I
.--~

l
EQUAL TO Q

1
= r

~
GREATER THAN 1

~ file-na·me [~ IS data-name] t
> I

~
NOT ~ THAN I

~
NOT < ~

~
[INVALID KEY imperative-statement] V

~ L __ ~

When the START statement is executed. the associated file must be
open in INPUT or I-O mode.

File-name must name an indexed VSAM file with sequential or dynamic
access. File-name must be defined in an FD entry in the Data Division.
File-name must not be the name of a sort file.

When the KEY option is not specified., the EQUAL TO relational
operator is implied. When the START statement is executed, the EQUAL TO
comparison is made between the current value in the RECORD KEY and the
corresponding key field in the file's records. The Current Record
Pointer is positioned to the logical record in the file whose key field
satisfies the comparison.

When the KEY option is specified, data-name may be either

• The RECORD KEY for this file, or

• Any alphanumeric data item subordinate to the RECORD KEY whose
leftmost character position corresponds to the leftmost character
position of the RECORD KEY (that is. a gen~ric key).

When the START statement is executed, the comparison specified in the
KEY relational operator is made between data-name and the key field in
the file's records. If the operands are of unequal size, the comparison
proceeds as if the key field were truncated on the right to the length
of the data-name. All other numeric and nonnumeric comparison rules
apply. The Current Record Pointer is positioned to the first logical
record in the file whose key field satisfies the comparison.

If the comparison is not satisfied by any record in the file, an
INVALID KEY condition exists, and the position of the Current Record
Pointer is undefined. (See "INVALID KEY Condition" in the preceding
Common Processing Facilities section.)

If the FILE STATUS clause is specified in the File-Control entry, the
associated Status Key is updated when the START statement is executed.

xvi

c

READ statement

For sequential access, the READ statement makes available the next
logical record from a VSAM file. For random access, the READ statement
makes available a specified record from a VSAM file.

r--,
I Format 1 I
~--i
~ 1
I READ file-name [NEXT] RECORD [INTO identifier] J

I J
I [AT END imperative-statement] 1
~ 1 L __ J

r--,
I Format 2]
r--i
I J
~ READ file-name RECORD [INTO identifier] J
I 'J
I [INVALID KEY imperative-statement] I
I ~ L ___ -J

When the READ statement is executed, the associated file must be open
in INPUT or I-O mode.

File-name must be defined in an FD entry in the Data Division.
File-name must not be the name of a sort file.

The INTO identifier option is described in the preceding Common
Processing Facilities Section.

Following the unsuccessful execution of a READ statement. the
contents of the associated record area and the position of the Current
Record Pointer are undefined.

If the FILE STATUS clause is specified in the File-Control entry. the
associated Status Key is updated when the READ statement is executed.

FORMAT 1: When ACCESS MODE SEQUENTIAL is specified or assumed for a
VSAM file, this format must be used. For such files the statement ~akes
available the next logical record from the file. For indexed VSAM
files, the NEXT option need not be specified; for sequential VSAM files.
the NEXT option must not be specified.

When ACCESS MODE DYNAMIC is specified for indexed VSAM files, the
NEXT option must be specified for sequential retrieval. For such files~
the READ NEXT statement makes available the next logical record from the
file.

Before a Format 1 READ statement is executed. the Current Record
Pointer must be positioned by the successful prior execution of an OPEN
START, or READ statement. When the Format 1 READ statement is executed
the record indicated by the Current Record Pointer is made available.
For sequential VSAM files, the next record is the succeeding record in
logical sequence. For a sequentially accessed indexed VSAM file, the
next record is that one having the next higher RECORD KEY in collating
sequence.

If the position of the Current Record Pointer is undefined when a
Format 1 READ statement is issued, the execution of the statement is
unsuccessful.

OS/VS COBOL Considerations xvii

)?", 1""1-.1 ~ h' , h h , "h h'"

"SAM, WRI~~,,:,$t~ ~,emep.t," (OS!VS)j

If, when a Format 1 READ state~ent is executed, no next logical
record exists in the file, the AT END condition exists. The execution
of the READ statement is considered unsuccessful.

When the AT END condition is recognized, the following actions are
taken in the following order:

1. If the FILE-STATUS clause is specified in the File-Control entry,
the Status Key is updated to indicate the AT END condition4

2. If the AT END option of the READ statement is specified, control is
transferred to the AT END imperative-statement.

3. If the AT END option is not specified, and a USE AFTER
EXCEPTION/ERROR procedure is specified, either explicitly or
implicitly. that procedure is executed.

For files with SEQUENTIAL organization, when the AT END condition has
been recognized, a READ statement for this file must not be executed
until a successful CLOSE statement followed by a successful OPEN
statement have been executed for this file.

For files with INDEXED organization, when the AT END condition is
recognized, a Format 1 READ statement for this file must not be executed
until one of the following has been successfully executed:

• A CLOSE statement followed by an OPEN statement

• A Format 2 READ statement (dynamic access)

• A START statement

If a sequential VSAM file with the OPTIONAL clause is not present at
the time the file is opened, execution of the first READ statement
causes the AT END condition to occur. Standard end-of-file procedures
are not performed.

FORMAT 2: This format must be used for indexed VSAM files in random
access mode, and for random record retrieval in the dynamic access mode.

Execution of a Format 2 READ statement causes the value in the RECORD
KEY to be compared with the values contained in tne corresponding key
field in the file'S records until a record having an equal value is
found. The Current Record Pointer is positioned to this record, which
is then made available.

If no record can be so identified, an INVALID KEY condition exists,
and execution of the READ statement is unsuccessful. (See "INVALID KEY
Condition" in the preceding Common Processing Facilities Section.)

WRITE Statement

The WRITE statement releases a logical record to an OUTPUT, 1-0, or
EXTEND file.

r--,
I Format I
~--~
I ~
I WRITE record-name [FROM identifier] ~

l J
I [INVALID KEY imperative-statement] 1
I ~ L _________ - __ J

xviii

G

VSAM WRITE statement (OS/VS)

When the WRITE statement is executed, the associated file must be open
in OUTPUT, 1-0" or EXTEND mode.

Record-name must be the name of a logical record in the File Section
of the Data Division. Record-name may be qualified. Record-name must
not be associated with a sort file.

The maximum record size for the file is established at the time the
file is created, and cannot su~sequently be changed.

Execution of the WRITE statement releases a logical record to the
file associated with record-name.

After the WRITE statement is executed, the logical record is no
longer available in record-name~ unless:

• The associated file is named in a SAME RECORD AREA clause (in which
case the record is also available as a record of the other files
named in the SAME RECORD AREA clause), or

• The WRITE statement is unsuccessful due to a boundary violation.

In either of these two cases, the logical record is still available in
record-name.

If the FROM identifier option is specified, then after the WRITE
statement is executed~ the information is still available in identifier~
even though it may not be in record-name. (See "INTO/FROM Identifier
Option" in the preceding Common processing Facilities section.)

The Current Record Pointer is not affected by execution of the WRITE
statement.

The number of character positions required to store the record in a
VSAM file mayor may not b~ the same as the number of character
positions defined by the logical description of that record in the COEOL
program.

If the FILE STATUS clause is specified in the File-Control entry, the
associated Status Key is updated when the WRITE statement is executed.

SEQUENTIAL VSAM FILES: The INVALID KEY option must not be specified.

When an attempt is made to write beyond the externally-defined
boundaries of the file, the execution of the WRITE statement is
unsuccessful, and an EXCEPTION/ERROR condition exists. The contents of
record-name are unaffected. If an explicit or implicit EXCEPTION/ERROR
procedure is specified for the file, the procedure is then executed; if
no such procedure is specified, the results are undefined.

INDEXED VSAM FILES: Before the WRITE statement is executed, the
contents of the RECORD KEY must be set to the desired value. Note that
the value contained in any specific RECORD KEY must be unique within the
records in the file.

When the WRITE statement is executed. the contents of the RECORD KEY
are utilized so that subsequent access to the record can be based on the
RECORD KEY.

If sequential access mode is specified or implied, records must be
released to the file in ascending order of RECORD KEY.

If random or dynamic access is specified, records may be released in
any program-specified order.

INVALID KEY Option: The INVALID KEY condition exists when any of the
following conditions occur:

OS/VS COBOL Considerations xix

._-------------- --- - - --------- --------

• For an OUTPUT or EXTEND file in sequential access mode, when the
value of the RECORD REY is not greater than the value of the RECORD
KEY for the previous record.

• For an I-O or OUTPUT file in random or dynamic access mode, when the
value of the RECORD REY is equal to the value of a RECORD KEY for an
already existing record.

• When an attempt is made to write beyond the externally-defined
boundaries of the file.

When the INVALID KEY condition is recognized~ the execution of the WRITE
statement is unsuccessful, the contents of record-name are unaffected,
and the status Key, if specified, is set to a value to indicate the
cause of the condition. (See "INVALID KEY Condition" and "Status Key"
in the preceding Common Processing Facilities section.)

REWRITE Statement

The REWRITE statement logically replaces an existing record in a VSAM
file.

r--, I Format t
~---~
I J
I REWRITE record-name (FROM identifier] I
I J
I (INVALID KEY imperative-statement] 1
I J L __ J

When the REWRITE statement is executed, the associated file must be
open in I-O mode.

Record-name must be the name of a logical record in the File Section
of the Data Division. Record-name must not be associated with a sort
file. Record-name may be qualified.

Execution of the REWRITE statement replaces an existing record in the
file with the information contained in record-name. For a sequential
VSAM file, the number of character positions in record-name must equal
the number of character positions in the record being replaced. For an
indexed VSAM file, the number of character positions in record-name need
not equal the number of character positions in the record being
replaced.

After successful execution of a REWRITE statement, the logical record
is no longer available in record-name unless the associated file is
named in a SAME RECORD AREA clause (in which case the record is also
available as a record of the other files named in the SAME RECORD AREA
clause) '.

If the FROM identifier option is specified, then after the REWRITE
statement is executed, the information is still available in identifier.
even though it may not be in record-name. (See "INTO/FROM Identifier
Option" in the preceding Common processing Facilities section.)

The Current Record Pointer is not affected by execution of the
REWRITE statement.

If the FILE STATUS clause is specified in the File-Control entry, the
associated Status Key is updated when the REWRITE statement is executed.

xx

o

VSAM'DELETE Statement (Os/VS)

For files in the sequential access mode, the last prior input/output
statement executed for this file must be a successfully executed READ
statement. When the REWRITE statement is executed. the record retrieved
by that READ statement is logically replaced.

SEQUENTIAL FILES: The INVALID KEY option must not be specified for this
type of file. An EXCEPTION/ERROR declarative procedure may be
specified.

INDEXED FILES: For an indexed file in the sequential access mode, the
record to be replaced by the REWRITE statement is identified by the
current value of the RECORD KEY. When the REWRITE statement is
executed, the RECORD KEY must contain the value of the RECORD KEY for
the last-retrieved record from the file.

For an indexed file in random or dynamic access mode, the record to be
replaced is the record identified by the value of the RECORD KEY.

The INVALID KEY condition exists when:

• The access mode is sequential, and the value contained in the RECORD
KEY of the record to be replaced does not equal the RECORD KEY of
the last-retrieved record from the file.

• The value contained in the RECORD KEY does not equal that of any
record in the file.

If either condition exists, the execution of the REWRITE statement is
unsuccessful, the updating operation does not take place" and the data
in record-name is unaffected. (See "INVALID KEY Condition" in the
preceding Common Processing Facilities Section.)

DELETE Statement

The DELETE statement logically removes a record from an indexed VSAM
file.

r--,
I Format J

~--i
I J
I DELETE file-name RECORD 1
J I
I {INVALID KEY imperative-statement] ,I
I I L __ ~

When the DELETE statement is executed, the associated file must be
open in I-O mode.

File-name must be defined in an FD entry in the Data Division and
must be the name of an indexed VSAM file.

For a file in sequential access mode. the INVALID KEY option must not
be specified.

For a file in random or dynamic access mode, the INVALID KEY option
may be specified.

For a file in sequential access mode. the last prior input/output
statement must be a successfully executed READ statement. When the
DELETE statement is executed, the system logically removes the record
retrieved by that READ statement. The current record pointer is not
affected by execution of the DELETE statement.

OS/VS COBOL Considerations xxi

"--

;VSAM CLOSE statement (OS/VS)

For a file in random or dynamic access mode, when the DELETE
statement is executed, the system logically removes the record
identified by the contents of the associated RECORD KEY data item. If
the file does not contain the record specified by the key, an INVALID
KEY condition exists. (See "INVALID KEY Condition" in the preceding
Common Processing Facilities section.)

After successful execution of a DELETE statement, the record is
logically removed from the file and can no longer be accessed.
Execution of the DELETE statement does not affect the contents of the
record area associated with file-name.

If the FILE STATUS clause is specified in the File-Control entry, the
associated Status Key is updated when the DELETE statement is executed.

CLOSE Statement

The CLOSE statement terminates the processing of VSAM files.

r--,
I Format 1
r--i
I J
I CLOSE file-name-l [WITH LOCK] J
I 1
I [file-name-2 [WITH LOCK]] ~

I ~ L ___ - ________________ J

A CLOSE statement may be executed only for a file in an open mode.
After successful execution of a CLOSE statement. the record area
associated with the file-name is no longer available. Unsuccessful
execution of a CLOSE statement leaves availability of the record area
undefined.

Each file-name designates a file upon which the CLOSE statement is to
operate.

When the WITH LOCK option is not specified, standard system closing
procedures are performed. This file may be opened again during this
execution of the object program.

When the WITH LOCK option is specified* standard system closing
procedures are performed; the compiler ensures that this file cannot be
opened again during this execution of this object program.

After a CLOSE statement is successfully executed for the file~ an
OPEN statement for that file must be executed before any other
input/output statement can refer explicitly or implicitly to the file.

If a CLOSE statement is not executed for an open file before the job
is terminated (by, for example, execution of a STOP RUN or GOBACK
statement), results are unpredictable.

If an input sequential VSAM file is described in the File-Control
entry as OPTIONAL and the file is not present during this execution of
the object program, standard end-of-file processing is not performed.

If the FILE STATUS clause is specified in the File-Control entry, the
associated Status Key is updated when the CLOSE statement is executed.

If the file is in an OPEN status and the execution of the CLOSE
statement is unsuccessful, the EXCEPTION/ERROR procedure (if specified)
for this file is executed.

xxii

{"SELECT/ASSIGN < fo~ "M~~ge ("os/vs)l
..>.«~ ... , ;~""" ... ~~w __ "' ~" _~<~~

MERGE FACILITY

The Merge Facility gives the COBOL use~ access to the merging
capabilities of the Program Product OS/VS Sort-Merge (Program Number
5740-SM1). Through COBOL, the user can combine two or more identically
ordered input files into one output file according to keyes) contained
in each record. More than one merge operation can be performed during
one execution of the COBOL program. Special processing of output
records can also be specified.

There are special considerations in the Environment Division, the
Data Division, and the Procedu~e Division for the Merge Facility.

ENVIRONMENT DIVlqION

Each input file and the resulting merged output file must be
described in a separate File-Control entry. and each must be a standard
sequential file, or a VSAM file with sequential access. The merge file
must have a separate File-control entry. as described in the following
paragraphs.

File-Control Entry for Merge Files

The File-Control entry names the merge file and associates it with a
storage medium.

r--1 I General Format I
r---~
I 1
I {SELECT file-name 1
I I
I ASSIGN TO system-name-l [system-name-21 •••• }... 1
I I L ___ -J

Each File-Control entry for a merge file must begin with a SELECT
clause, and be immediately followed by an ASSIGN clause. There may be
no other clauses.

SELECT Clause: The SELECT clause names each merge file in the program.
Each file described by an SO entry in the Data Division must be named
once and only once as a file-name following the key word SELECT.

ASSIGN Clause: The ~SSIGN clause is required. System-name can serve as
documentation to describe the work units. However, since the system
obtains this information at execution time, the compiler treates the
ASSIGN cl~use as documentation.

If an ASCII-collated merge is to be performed, C must be specified in
the organization field. (See nAppendix E: ASCII Considerations. n)

I-a-Control Paragraph

The optional I-a-Control Paragraph specifies the storage area to be
shared by different files.

OS/VS COBOL considerations xxiii

~r'""<>.;-7,-,""'~q'0'"f$'«-~~V":'~~ 'I(~"",';o'''*~~ "'NY''':;''''~' ~::t:~'i""': ..::~' "'1'~~~/<, !:,~:".., '/' w ,...'\-~' ';:/';':'';'''f.'',~ ;'''';<'~W':.:;;' ~ "~,...": ~!~~

~ /,;,SOR~~ME'RGE:<:AREA ',;Clause: \'(os/v8)',' ~
.i~"<,,, ~t:':.(\ ~{" ~;><, l,;,,); ''"' i ~ ... ~ , : <,' \..:/~, 0> ' ",,>, >,,)-.,i ""~" > ~ ~ :,,: ~,>,../ ",;"" "f,.,// ,~ M ~'~ ..,<,,' ... , ~ ~ W,: ,,,/, ~ " ~ :h I..,;,j;',,~

r--, I General Format 1
~--~
I ~

: ~ {~-MERGE} AREA FOR 1
I RECORD ~
I 1
I file-name-l [file-name-21 ~.. • ~

I U L-__ ~

When the SAME SORT AREA or SORT-MERGE AREA clause is specified, at
least one file-name specified must name a sort or merge file. Files
that are not sort or merge files may also be specified. The following
rules apply:

• More than one SAME SORT AREA or SORT-MERGE AREA clause may be
spec1fied; however, a sort or merge file must not be named in more
than one such clause.

• If a file that is not a sort or merge file is named in both a SAME
AREA clause and in one or more SAME SORT AREA or SOR~-MERGE AREA
clauses, all of the files in the SAME AREA clause must also appear
in all of the SAME SORT AREA or SORT-MERGE AREA clauses.

• Files named in a SAME SORT AREA or SORT-MERGE AREA clause need not
have the same organization or access.

• Files named in a SAME SORT AREA or SORT-MERGE AREA clause that are
not sort or merge files do not share storage with each other unless
the user names them in a SAME AREA or SAME RECORD AREA clause.

The SAME SORT AREA or SORT-MERGE AREA clause specifies one storage
area available for merge operations by each named merge file. That is,
the storage area allocated for one merge operation is available for
reuse in another merge operation.

The function of the SAME SORT AREA or SORT-MERGE AREA clause is to
optimize the assignment of storage areas to a given MERGE statement.
The system handles storage assignment automatically; hence, the SORT
AREA or SORT-MERGE AREA options, if specified, are treated as
documentation.

When the SAME RECORD AREA option is specified, the named files,
including any sort or merge files, share only the area in which the
current logical record is processed. Several of the files may be open
at the same time, but the logical record of only one of these files can
exist in the record area at one time.

DATA DIVISION

In the Data Division, the.user must include file description entries
for each merge input file and for the merged output file, merge-file
description entries for each merge file. and record description entries
for each.

Merge-File Description Entry

A merge-file description entry must appear in the File Section for
each merge file named in a File-Control entry.

xxiv

---- ---------- ------ --- ------- - --- ------------- -------- -

(
,---'

C)

r--,
I General Format I
~--i
J 1
I SD merge-file-name J
I 'J
I [RECORD CONTAINS [integer-l TO] integer-2 CHARACTERS] 1
I 1
J
1

{RECORD IS } 11 [DATA data-name-l [data-name-2] •••].
I RECORDS ARE I
J J L __ J

The level indicator SO identifies the beginning of the merge-file
description, and must precede the merge-file-name.

The clauses following merge-file-name are optional, and their order
of appearance is not significant.

One or more record description entries must follow the merge-file
description entry, but no input/output statements may be executed for
the merge file.

Merge-File-Name: The merge-file-name must be the same as that specified
in the merge file File-Control entry. It is also the name specified as
the first operand in the MERGE statement.

RECORD CONTAINS Clause: The size of each data record is ~ompletely
defined in the record description entry; therefore, this clause is never
required. When it is specified, the same considerations apply as in its
Data Division descripti~n.

DATA RECORDS Clause: This clause names the 01-level data records
associated with this SO entry. This clause is never required, and the
compiler treats it as oocumentation. When it is specified, the same
considerations apply as in its Data Division description.

PROCEDURE DIVISION

The procedure Division contains a MERGE statement describing the
merge operation, and optional output procedures. The procedure-names of
the output procedures are specified within the MERGE statement. More
than one MERGE statement can be specified, appearing anywhere except in
the declaratives section or in an input or output procedure for a SORT
or MERGE statement.

MERGE Statement

The MERGE statement combines two or more identically sequenced files
using specified key(s), and makes records available to an output file in
merged order.

OS/VS COBOL Considerations xxv

------------------------, . ------

r--,
I J
I Format 1
~--~

file-name-1

{

ASCENDING }
ON KEY

DESCENDING
data-name-1 [data-name-21 •••

{

ASCENDING }
[ON KEY data-name-3 [data-name-41 ••• 1 •••

DESCENDING

USING file-name-2 file-name-3 [file-name-41 •••

{

GIVING file-name-5 }

OUTPUT PROCEDURE IS section-name-1 [~ section-name-21

1
J
.)

1
J
~
l
1
J
]
l
J
J
~
~
I
~ ---------------------------___ J

No file-name specified in the MERGE statement may be open at the time
the statement is executed. The files are automatically opened and
closed by the merge operation; all implicit functions are performed,
such as execution of system procedures or any associated declarative
procedures.

No file-name may be specified more than once in one MERGE statement.

Only one file-name from a multiple Iile reel may appear in one MERGE
statement.

FILE-NAME-1: This file-~ represents the merge file, and must be
described in an SD entry in the Data Division.

ASCENDING/DESCENDING KEY Option: These options specify whether records
are to be merged in ascending or descending sequence, based on one or
more merge keys.

Each data-name represents a KEY data item, and', must be described in
the record descriptionCs) associated with the SD entry for file-name-l,
the merge work file. The following rules apply:

• if file-name-1 has more than one associated record description
entry, the KEY data items need be described in only one such record
description

• each data-name may be qualified; it may not be subscripted or
indexed (that is" it may not contain or be contained in an entry
that contains an OCCURS clause)

• KEY data items must be at a fixed displacement from the beginning of
the record (that is, no KEY data item may follow an OCCURS DEPENDING
ON clause in the record description)

• a maximum of 12 keys may be specified; the total length of all keys
must not exceed 4092 bytes

• all key fields must be located within the first 4092 bytes of the
logical record

The KEY data items are listed in order of decreasing significance, no
matter how they are divided into KEY phrases. Using the format as an
example, data-name-1 is the most significant key~ and records are merged
in ascending or descending order on that key; data-name-2 is the next
most significant key; within data-name-1, records are merged on

xxvi

c'

MERGE Statement (os/~S)

data-name-2 in ascending or descending order~ Within data-name-2#
records are merged on data-name-3 in ascending or descending order;
within data-name-3, records are merged on data-name-4 in ascending or
descending order, etc.

When ASCENDING is specified, the merged sequence is from the lowest
to the highest value of the contents in the KEY data item according to
the collating sequence used.

When DESCENDING is specified, the merged sequence is from the highest
to the lowest value of the contents in the KEY data item according to
the collating sequence used.

Figure V gives the collating sequence used for each category of KEY
data item.

r------------------------------T---------------------------------------, I KEY Categdry I Collating Sequence 1
~------------------------------+---------------------------------------i
I Alphabetic J I
I Alphanumeric 1 1
I Alphanumeric Edited I EBCDIC (non-algebraic and unsigned) 1
I Numeric Edited I I
~------------------------------+---------------------------------------~ I Numeric ,) Algebraic (signed) 1 L-_____________________________ ~ _____________ -----------_______________ J

Figure V. KEY Item Categories and Collating Sequences

The rules for comparison are thdse for the relation condition (see
"Relation Condition" in the Conditions chapte4 of the Procedure
Division). If two or more KEY data items test as equal, the merge
operation makes the records available in the order that the input
file-names are specified in the USING option.

USING Option: -All file-names listed in the USING option represent
identically ordered input files that are to be merged. ~wo through
eight file-names may be specified.

GIVING Option: File-name-5 is the name of the merged output file. When
this option is specified, all merged records made available from the
merge operation are automatically written on the output file.

OUTPUT PROCEDURE Option: When this option is specified, all output
records from the merge operation are made available to the user (through
a RETURN statement) for further processing.

When an output procedure is specified, control passes to the
procedure during execution of the MERGE statement. Before entering the
output procedure, the merge operation reaches a point at which it can
provide the next merged record when requested. The RETURN statement in
the output procedure is a request for the next merged record. (See the
RETURN statement description in the Sort Feature chapter.) An output
procedure must contain at least one RETURN statement to make merged
records available for further processing.

Control may be passed to an output procedure only when a related
MERGE statement is being executed.

The output procedure must not form part of any other procedure.

If section-name-l alone is specified. the output procedure must
consist of one contiguous Procedure Division section.

If section-name-l THRU section-name-2 is specified, the output
procedure consists of two or more contiguous Procedure Division
sections; section-name-l specifies the first such section;
section-name-2 specifies the last such section.

OS/VS COBOL Considerations xxvii

l"~""~''''''''"'-»:::'~~';'::<:>'W~ ',~ <:,"'~", ~w:''<'"'>::",~"<:"'<:'%''' ;"';','~ ,~.,. ~<f'o»::'~ ,«-.;..;. ~~'~....x < ~,~~" ~';" \> ' '"

;3886'\'OCR., Pl:Qoesa;;ing '(OS/VS) ")
"'~'*;~ .. A ' ,~, .., , v "~ ... ,' ~ ", > 'h ... , > , ,,~

control must not be passed to the output procedure unless a related
MERGE or SORT statement is being executed. because RETURN statements in
the output procedure have no meaning unless they are controlled by a
MERGE or SORT statement,. The output procedure may consist of the
processing requests necessary to select. modify, or copy the records
being made available~ one at a time, from the merge operation. The
following restrictions apply:

• There may be no explicit transfers of control outside the output
procedure. ALTER, GO TO" and PERFORM statements within the
procedure must not refer to procedure-names outside the output
procedure. However, an implicit transfer of control to a
declarative procedure is allowed.

• No SORT or MERGE statements are allowed.

• The remainder of the Procedure Division must not transfer cont~ol to
points inside the output procedure; that is. ALTER, GO TO, and
PERFORM statements in the remainder vf the Procedure Division must
not specify procedure-names within an output procedure.

The compiler inserts an end-of-processing transfer at the end of the
last output procedure section. When end-of-processing is recognized,
the merge operation is terminated, and control is transferred to the
next statement following the MERGE statement.

SEGMENTATION RESTRICTION~: The MERGE statement may be specified in a
segmented program. However, the following restrictions apply:

• If the MERGE statement appears in the fixed portion, then any
associated output procedure must be:

- completely within the fixed portion, or

- completely within one independent segment

• If the MERGE statement appears in an independent segment, then any
associated output procedure must be:

- completely within the fixed portion, or

- completely within the same independent segment as the MERGE
statement

3886 OCR PROCESSING

The IBM 3886 OCR (Optical Character Reader) Model 1 is a general
purpose online unit record device that satisfies a broad range of data
entry requirements. The 3886 OCR can significantly reduce time and cost
factors, by eliminating input steps in both new and existing
applications; a keying process is no longer necessary, since the 3886
OCR can read and recognize data created by numeric hand printing,
high-speed computer printing, typewriters, and preprinted forms.

The IBM 3886 OCR uses several new technologies which make it a
compact, highly reliable, modular device. A powerful microprogrammed
recognition and control processor performs all machine control and
character recognition functions, and enables the 3886 OCR to perform
sophisticated data and blank editing.

The 3886 OCR accepts documents from 3 x 3 to 9 x 12 inches in size.
Under program control, it can read documents line-by-line, transmitting
their contents ,line-by-line to the CPu. Additional facilities, all
under program control, include: document marking, line marking,
document ejecting (with stacker selection), and line reading (of current
line) •

xxviii

(~

FIPS Flagge:r; '(OS/VS) ;

OS/vS COBOL support for the 3886 OCR is through an object-time
subroutine in the COBOL library, invoked through COBOL CALL statements.
By means of parameters passed to the subroutine. the following
operations are provided: open and close the file, read a line, wait for
read completion, mark a line, mark tne current document, eject the
current document, and load a format record. After each operation, a
status indicator is passed back to the COBOL program, so that any
exceptional condition can be tested.

Through a fixed format OCR file information area in the
Working-Storage or Linkage Section, the COBOL user defines storage for
the OCR parameters. Of these parameters, the COBOL programmer is
responsible for providing a file identifier, a format record identifier,
an operation code, and (depending on the operation) a line number, line
format number, mark code, and stacker number. After completion of each
operation a status indicator is returned; after completion of a read
operation, header and data records are also returned.

OS/VS provides two macro instructions for defining documents. The
DFR macro instruction defines attributes common to a group of line
types. The DLINT macro instruction defines specific attributes of an
individual line type. The DFR and associated DLINT macro instructions
are used in one assenbly to build a format record module. The format
record must be link-edited into a system library so that it can be loaded
into the 3886 OCR when the file is to be processed. The format record
indicates the line types to be read, attributes of the fields in the
lines, and the format of the data records to be processed.

Additional information on the IBM 3886 OCR can be found in the following
publications:

IBM 3886 Optical Character Reader

General Information Manual, Order No. GA21-9146

Input Document Design Guide and specifications, Order No. GA21-9148

OS/VS Program Planning Guide for IBM 3886 Optical Character Reader
Modell, Order No. GC21-5069

FIPS FLAGGER

The FIPS (Federal Information Processing Standard) is a compatible
subset of full' American National Standard COBOL, X3.23-1968. The FIPS

'itself is subdivided into four levels: low, low-intermediate,
high-intermediate, and full. Any program written to conform to the FIPS
must conform to one of those levels of FIPS processing. processing
modules included in full American National Standard COBOL, and those
included in the four level of the FIPS are shown in Figure VI.

OS/VS COBOL Considerations xxix

FIPS Flagger ·COS/VS)

r-----------T----------T-----------------T----------------T------------,
I American I! I 1 I
I National I I I I 1
I Standard I I J I 1
I COBOL !Full FIPS IHigh-intermediateILow-intermediateILow FIPS 1
IProcessing JProcessinglFIPS Processing IFIPS Processing IProcessing 1
I Modules I Modules I Modules I Modules I Modules)
~-----------+----------+-----------------+----------------+------------i

2NUC 1,2 12NUC 1,2 i2NUC 1,2 ~2NUC 1,2 llNUC 1,2 I
(Nucleus) I I I ~ ~

3TBL 1,,3
(Table
Handling)

2SEQ 1,2
(Sequential
Access)

2RAC 0,2
(Random
Access)

2SRT 0.2
(Sort)

2RPW 0.,2
(Report
Writer)

2SEG 0" 2
(Segment
ation)

I ~ 1 j ~
13TBL 1,3 J2TBL 1,3 12TBL 1,3 11TBL 1,3 1
'I I J ~

~ I J J
~ I 'I]

2SEQ 1,2 J2SEQ 1,2 12SEQ 1,2 11SEQ 1,2 ~

I ~ i I
t J J J
I J J J

2RAC 0.2]2RAC 0,2]2RAC 0,2! I
~ ~ J 1
I J ~ J
J 1 ,~ ~

2SRT 0.2 llSRT 0, 2 'J I 1
.~ IJ I J

J l ~ 1
J J J J
I J l J
~ J ~ ~
~ ~ ~ 1

2SEG 0,2 J1SEG 0,2 J1SEG 0,2 ~ l
1 1 ~ J
1 I J 1
1 1 ~ J

2LIB 0.2 2LIB 0.2 l1LIB 0,2 11LIB 0~2 1 1
(Library) 1 I 1 J L ___________ ~ __________ ~ _________________ ~ ________________ ~ ____________ J

Figure VI. The Four Levels of FIPS Processing

The FIPS Flagger identifies source clauses and statements that do not
conform to the Federal standard. Four levels of ~lagging, to conform to
the four levels of the FIPS, are provided. The following lists identify
COBOL source elements flagged for each level.

FULL FIPS FLAGGING: When flagging for the full FIPS level is specified.,
the following elements of the COBOL source, if specified, are
identified.

GLOBAL ITEMS

xxx

Single quote instead of double
Floating Point Literals

Special Register LINE-COUNTER
Special Register PAGE-COUNTER
Special Register CURRENT-DATE
Special Register TIME-OF-DAY
Special Register RETURN-CODE
Special Register SORT-RETURN
Special Register SORT-FILE-SIZE
Special Register SORT-CORE-SIZE
Special Register SORT-MODE-SIZE
Special Register SORT-MESSAGE
Special Register LABEL-RETURN
Special Register WHEN-COMPILED

Comment Lines with * in Column 7
The SUPPRESS option of the COpy statement

,/

I I "-____ I

c)

\ FIPS Flaqger (OS/VS) 1

IDENTIFICATION DIVISION Items

ID abbreviation for IDENTIFICATION
Accepting Identification Division Paragraphs in any order
Accepting Program Name in quotes

ENVIRONMENT DIVISION Items

Optional CONFIGURATION SECTION and paragraphs
SOl and S02 Function-names in SPECIAL-NAMES paragraph

Allowing any order for optional SELECT clauses
W. R, or I as Organization indicator in System-name
Optional omission of IS in ACCESS MODE IS Clause
Optional omission of IS in ACTUAL KEY IS Clause
ACTUAL-KEY clause for sequential access of a direct file
ACTUAL-KEY clause for sequential creation of a direct File
NOMINAL KEY Clause in FILE-CONTROL Paragraph
RECORD KEY Clause in FILE-CONTROL pa~agraph
TRACK-AREA Clause in FILE-CONTROL Paragraph
The COpy statement in the FILE-CONTROL paragraph

Short form of RERUN ON Clause
Interchangeable use of REEL and UNIT in RERUN ON Clause
APPLY Clause in I-O-CONTROL paragraph
Allowing I~O-CONTROL paragraph clauses in any order

RESERVE integer AREAS clause (as distinguished from the RESERVE
ALTERNATE AREAS clause)

ORGANIZATIQN clause
ACCESS MODE DYNAMIC clause
PASSWORD clause
FILE STATUS clause

DATA DIVISION Items

REPORT SECTION of DATA DIVISION
RD level indicator
The DATA RECORDS clause for a REPORT FD
LINKAGE SECTION of DATA DIVISION
COMMUNICATION SECTION
CD level indicator

Allowing unequal level numbers to belong to the same group
RECORDING MODE Clause of FD entry.
REPORT Clause of FD Entry
LABEL RECORDS CLAUSE on sort File Description
Optional BLOCK CONTAINS for DIRECT Files when RECORDING MODE IS S
Integer-2 of zero for BLOCK CONTAINS clause
Integer-2 of zero for RECORD CONTAINS clause
TOTALING and TOTALED AREA option of the LABEL RECORDS clause
Accepting name of preceding entry when using multiple redefiniticn
External Floating-point picture
The SIGN Clause
Allowing the SYNCHRONIZED Clause at the 01 level
COMPUTATIONAL-1 option of the USAGE Clause
COMPUTATIONAL-2 option of the USAGE Clause
COMPUTATIONAL-3 option of the USAGE Clause
COMPUTATIONAL-4 option of the USAGE Clause
Nested OCCURS DEPENDING ON clauses
Allowing SYNCHRONIZED with USAGE IS INDEX
The COpy statement in the Working-Storage section
DISPLAY-ST option of the USAGE Clause and associated PICTURE
Use of VALUE Clause as Comments in File Section for other than

Condition-name entries
COpy REDEFINES in Working-Storage Section

OS/VS COBOL Considerations xxxi

'------------, - "------------

PROCEDURE DIVISION Items

USING clause on PROCEDURE DIVISION
THEN used to separate statements
Allowing omission of section header at beginning of Procedure

Division
The START statement
The REWRITE statement
The TRANSFORM statement

The GENERATE statement
The INITIATE statement
Tne TERMINATE statement

The DEBUG statement
The READY TRACE statement
The RESET TRACE statement
The ON statement
The EXHIBIT statement
The CALL statement
The ENTRY statement
The GOBACK statement
The EXIT PROGRAM statement

The USE AFTER STANDARD EXCEPTION sentence
The READ NEXT statement
The DELETE statement
The EXTEND option ~or th~ OPE~ statement and Error Procedures
The SERVICE RELOAD statement

The unary plus operator
Allowing omission of the space following the unary operator
OTHERWISE in IF statements
The message condition
The GO TO MORE-LABELS statement ~ p- /7(
GIVING option of USE sentence
USE BEFORE REPORTING sentence
Allowing REVERSED option of OPEN with multiple reel files
LEAVE, REREAD, and DISP options of the OPEN statement
Allowing omission of the AT END option for READ statements
Allowing omission of the INVALID KEY option for READ and WRITE

statements
The AT END-OF-PAGE or EOP option of the WRITE statement
The WRITE AFTER POSITIONING statement
The FROM SYSIN or CONSOLE option of the ACCEPT statement
The DATE/DAY/TIME format of the ACCEPT statement
The UPON CONSOLE, SYSPUNCH, or SYSOUT option of the DISPLAY

statement
The WITH DISP or POSITIONING option of the CLOSE statement

The BASIS statement
The INSERT statement
The DELETE statement
The RECEIVE Statement
The SEND Statement
The STRING Statement
The UNSTRING Statement
The CANCEL Statement

The EJECT statement
The SKIPl statement
The SKIP2 statement
The SKIP3 statement

HIGH-INTERMEDIATE FIPS FLAGGING: When flagging for the
high-intermediate FIPS level is specified" all elements included in the
preceding list are flagged, plus the following additional COBOL source
elements:

xxxii

(~
\

"'- "

---- ------- ------- ------

o

GLOBAL ITEMS

The REPLACING option of the COPY statement

ENVIRONMENT DIVISION

SEGMENT-LIMIT clause in OBJECT-COMPUTER paragraph
SORT option of SAME Clause

DATA DIVISION

The ASCENDING and DESCENDING KEY option of the OCCURS clause
The DEPENDING ON option of the OCCURS clause

PROCEDURE DIVISION

All sections with the same p~iority number must be together
All segments with priority numbers 1-49 must be together
The SEARCH statement
More than one SORT statement
The FROM option of the RELEASE statement
The INTO option of the RETURN statement

LOW-INTERMEDIATE FIPS FLAGGING: When flagging for the low-intermediate
FIPS level is specified, all elements included in the preceding lists
are flagged, plus the following additional COBOL source elements:

ENVIRONMENT DIVISION

The OR option of the SELECT sentence

DATA DIVISION

SD level indicator

PROCEDURE DIVISION

One or more SORT statements
Only one STOP RUN statement in the non-declarative portion
The RETURN statement
The RELEASE statement

LOW FIPS FLAGGING: When flagging for the ~ow FIPS level is specified,
all elements included in the preceding lists are flagged, plus the
following additional COBOL source elements:

GLOBAL ITEMS

The COpy statement
Comma and semicolon as punctuation
Data-names which begin with non-alphabetic character
continuation of words and numeric literals

Figurative constant ZEROES
Figurative constant ZEROS
Figurative constant SPACES
Figurative constant HIGH-VALUES
Figurative constant LOW-VALUES
Figurative constant QUOTES
Figurative constant ALL literal

OS/VS COBOL Considerations xxxiii

Qs/vs'Ft
";~ " *'M'" <" ',W; ';<J,~",,,J

IDENTIFICATION DIVISION

DATE-COMPILED Paragraph

ENVIRONMENT DIVISION

RESERVE ALTERNATE AREAS Clause in File-Control Paragraph (SELECT
sentence)

OPTIONAL in SELECT Clause
ACTUAL KEY Clause in File-Control Paragraph
FILE-LIMITS ARE Clause
Data-name instead of literal in FILE-LIMIT IS clause
Multiple extents in FILE-LIMIT IS clause
RANDOM option in ACCESS MODE IS Clause

RECORD and file-name option of SAME Clause
MULTIPLE FILE TAPE Clause in I-O-CONTROL paragraph

DATA DIVISION

Level numbers 11 - 49
Level numbers 1-9 (1 digit)
Level number 66 RENAMES clause
Level number 88 Condition Name
Nesting of REDEFINES Clause
VALUE Clause as Condition-name entry
Integer-l TO option of BLOCK CONTAINS (RECORD
Data-name option on LABEL RECORDS Clause
Data-name option of VALUE OF Clause
Multiple Index-names for OCCURS clause

PROCEDURE DIVISION

+, -, *. /. and **
>. <, and = in relationals

or CH~RACTER) Clause

Connectives OF, IN, " ., AND, OR, and NOT
DECLARATIVES., END DECLARATIVES and USE sentence
Qualification of names
Priority number on Section header
The COMPUTE verb
The SEEK Statement
The Sign condition (POSITIVE, NEGATIVE, or ZERO)
Condition-name condition
Compound conditions
Nested IF statements
CORRESPONDING option (ADD, SUBTRACT, and MOVE)
Multiple results of ADD and SUBTRACT statements
REMAINDER option of DIVIDE statement
GO TO without object (used with ALTER)
Multiple operands of ALTER statement
UNTIL Condition and VARYING form of PERFORM
REVERSED and NO REWIND options of OPEN statement
Multiple file-names in OPEN statement
INTO option of READ statement
INVALID KEY option of READ statement
FROM option of WRITE statement
ADVANCING identifier LINES/mnemonic/name form of WRITE
The FROM option of the ACCEPT statement
The UPON option of the DISPLAY statement
The WITH NO REWIND or LOCK option of the CLOSE statement
Multiple file-names in a CLOSE statement
Three levels of subscripting
Multiple Index-names/identifier in SET statement
The UP BY and DOWN BY option of the SET statement

xxxiv

(
~'

--."~

c)

> ""Mis~ell~neou~ 'considerations (OS/VS)

MISCELLANEOUS PROCESSING CONSIDERATIONS

The following items. concerning the Environment Division ASSIGN clause,
and the Procedure Division WRITE ADVANCING and SORT statements, apply
only to OS/VS COBOL.

ASSIGN Clause

In the ASSIGN clause system-name, the class and device fields are
treated as documentation. At execution time, any valid device can be
associated with the file through the DD statement. See the
documentation for the Version 4 ASSIGN clause for further
considerations.

WRITE ADVANCING Statement

A compile-time option allows the user to specify WRITE BEFORE/AFTER
ADVANCING without reserving the first character in the output record as
the control character.

SORT Statement

The SORT statement implementation has been enhanced to allow up to eight
input files when the USING option is specified.

The input files, as well as the output file, can be standard
sequential files, or sequentially accessed VSAM files.

OS/VS COBOL Considerations xxxv

---------- ------------

o

FEATURES OF THE PROGRAM PRODUCT
COMPILERS • • • • • • • • • • • • • • • 11

INTRODUCTION • • • • •
Principles of COBOL • • • •
A Sample COBOL Program • •

Identification Division
Environment Division •
Da ta Division • • • • • • • • • • •
Procedure Division • • • •

15
16
18
19
19
20
23

Beginning the Program -- Input
Operations • • • • • • • • 23
Arithmetic Statements • • • • 24
Conditional Statements • • • • • 25
Handling Possible Errors • •
Data-Manipulation Statements • • • •
Output Operations • • • • • • •

26
26
27

Procedure-Branching Statements
Ending the Program • • • • • •

27
• 31

PART I -- LANGUAGE CONSIDERATIONS

STRUCTURE OF THE LANGUAGE
COBOL Character Set

35

Characters Used in Words • • • • • •
Characters Used for Punctuation
Characters Used for Editing • • • •

37
37
37
38
39

Characters Used in Arithmetic
Expressions • • • • • • • •
Characters Used for Relation
Conditions • •

Types of Words • •
Reserved Words
Names • • • •
Special-names

Constants
Literals • • • • • •
Figurative Constants • • • •

Special Registers • • • • • • •

• • 39

• • 39
• 40

• • • • 40
• • • • 41

• • 41
• • • • 42
• • • • 42
• • • • 43

• • 44

ORGANIZATION OF THE COBOL PROGRAM 47
Structure of the COBOL Program. • • 47

METHODS OF DATA REFERENCE
Qualification • • • •
Subscripting •
Indexing • • • . . .

. . .
· . . .

49
49
50
50

USE OF THE COBOL CODING FORM • • • • • • 51
Sequence Numbers • • 51
Area A and Area B • • • • • • • 52

Division Header • • • • • 52
Section Header ••••••••••• 52
Paragraph-names and Paragraphs • • • 52
Level Indicators and Level Numbers • 52

CONTENTS

continuation
continuation
continuation
Literals ••
Blank Lines
comment Lines

of Lines • • • • • • • •
of Nonnumeric Literals
of Words and Numeric

FORMAT NOTATION

PART II -- IDENTIFICATION AND
ENVIRONMENT DIVISIONS

IDENTIFICATION DIVISION
PROGRAM-ID Paragraph
DATE-COMPILED Paragraph

ENVIRONMENT DIVISION -- FILE
PROCESSING SUMMARY • • • • •

· . · ·

. · ·

· · · · · ·

· · · · ·

Data Organization • • • •• • • • .
sequential Data Organization • •
Direct Data Organization • • • • • .
Relative Data Organization • •
Indexed Data Organization . • • • •

Access Methods • • • • • • • •
Accessing a Sequential File • • • • .
Accessing a Direct File

Sequential Access • • • • • • • • .
Random Access

Accessing a Relative File
Sequential Access
Random Access

Accessing an Indexed File
Sequential Access • •
Random Access

ORGANIZATION OF THE ENVIRONMENT
DIVISION • • • • • • • • • • • •

ENVIRONMENT DIVISION -- CONFIGURATION
SECTION • • • • • • • • • • • • • • • •

SOURCE-COMPUTER Paragraph
OBJECT-COMPUTER Paragraph
SPECIAL-NAMES Paragraph

ENVIRONMENT DIVISION -- INPUT-OUTPUT
SECTION • • • • • • • •

53
53

53
53
53

54

57

59
59
60

61
61
61
62
62
62
62
62
62
63
63
64
64
64
65
6S
65

67

68
68
69
69

72
FILE-CONTROL Paragraph • • 72

SELECT Clause
ASSIGN Clause • • '.
RESERVE Clause • • •
FILE-LIMIT Clause
ACCESS MODE Clause •
PROCESSING MODE Clause
ACTUAL KEY Clause
NOMINAL KEY Clause •
RECORD KEY Clause
TRACK-AREA Clause
TRACK-LIMIT Clause •

I-o-CONTROL Paragraph
RERUN Clause • • • •

• • • • 73
• • • • 73
• • • • 7b
• • • . 77

77
• 78

• • • • 78
80
81
82

• • • , 82
• • • . 83

83
SAME Clause • • • • • • • • 85

86 MULTIPLE FILE TAPE Clause

APPLY Clause 86

PART III -- DATA DIVISION • • • • 89

DATA DIVISION -- INTRODUCTION
Organization of External Data
Description of External Data •

• • • • • 91
• • 91

91

ORGANIZATION OF THE DATA DIVISION 92
Organization of Data Division Entries • 93

Level Indicator 93
94
95

Level Number • • • • •
Special Level Numbers
Indentation • • • • • 95

File section • • • • • • • • • • • 95
File Description Entry • • • 96
Record Description Entry • 96

Working-Storage Section 96
Data Item Description Entries • • • 96
Record Description Entries • • • • • 97

Linkage Section • 97
Report Section. •.• • • • 97

FILE DESCRIPTION ENTRY -- DETAILS OF
CLAUSES • • • •

BLOCK CONTAINS Clause
RECORD CONTAINS Clause • •
Recording Mode • • • • • • • • •
RECORDING MODE Clause • • • • •
LABEL RECORDS Clause •
VALUE OF Clause
DATA RECORDS Clause
REPORT Clause

DATA DESCRIPTION •

DATA DESCRIPTION ENTRY -- DETAILS OF

• • 98
• • 98
• .100
• .101
• .102
• .103

.105
• 106
.106

• .107

CLAUSES • • • • • • • • • •• 110
Data-name or FILLER Clause .110
REDEFINES Clause. • • • •• 111
BLANK WHEN ZERO Clause. • •• 115
JUSTIFIED Clause. .115
OCCURS Clause • • • • • .116
PICTURE Clause. • • • .116
The Three Classes of Data ••• 116
Character String and Item Size .117
Repetition of Symbols ••••••• 117
Symbols Used in the PICTURE Clause .118
The Five categories of Data •• 119
Types of Editing •••••••••• 124
Insertion Editing ••••••••• 124
Zero Suppression and Replacement
Editing • • • •
SIGN Clause • • • • •
SYNCHRONIZED Clause • • • •
Slack Bytes • • • •
USAGE Clause • • • • •
DISPLAY Option • • • •

• .126
.128

• .129
• .130
• .135

.136

.137
• 141
.144

The Computational Options • • • •
VALUE Clause • • • • • • •
RENAMES Clause • • • • • •

PART IV -- PROCEDURE DIVISION .147

ORGANIZATION OF THE PROCEDURE DIVISION .149
Categories of Statements. .150

Conditional Statements .151
Imperative Statements •••••••• 151

Compiler-Directing Statements

ARITHMETIC EXPRESSIONS •
Arithmetic Operators • •

CONDITIONS • • • • • •
Test Conditions

Class Condition
Condition-name Condition • •
Relation Condition.
Sign Condition • •

Compound Conditions
Evaluation Rules • • • • • • •
Implied Subjects and
Relational-Operators

Implied Subject
Implied Subject and
Relational-Operator

• .153

• .154
• . 154

• • • . 156
.156

• .157
• • 158
• • 159
• .162
• • 162
• .163

• • • • 164
• .165

• .165
Implied Subject, and Subject and
Relational-Operator • • • • • • 165

CONDITIONAL STATEMENTS •
IF statement • • • •
Nested IF Statements • •

• • 166
• • 166

• • • . 167

DECLARATlVES • • • • • • • • •• • .169
Sample Label Declarative Program •••• 173

ARITHMETIC STATEMENTS
CORRESPONDING option •
GIVING Option
ROUNDED Option • • •
SIZE ERROR option
Overlapping Operands • •
ADD statement
COMPUTE Statement
DIVIDE Statement • • • • • •
MULTIPLY statement •
SUBTRACT Statement •

PROCEDURE-BRANCHING STATEMENTS •
GO TO Statement
ALTER Statement
PERFORM Statement
STOP Statement • •
EXIT Statement • • •

DATA-MANIPULATION STATEMENTS • •
MOVE Statement • • •
EXAMINE Statement • • • •
TRANSFORM Statement

INPUT/OUTPUT STATEMENTS • • • •
OPEN Statement •
START Statement
SEE¥ Statement • •
READ Statement •
WRITE Statement
REWRITE Statement • • •
ACCEPT Statement •
DISPLAY Statement
CLOSE Statement
Sequential File Processing •
Random File processing • • •

SUBPROGRAM LINKAGE STATEMENTS
CALL Statement •
CANCEL Statement • • • • • •

• • • • 178
• .178

.178
• . 178

.179
• • 179
• .179
• • 181
• .181
• • 182
• .183

• .185
• • 185
• .186
• • 187
• • 195

• • • .. 195

• • 197
• .197
• • 200
• • 202

• • • • 205
• 205

• • 208
• • 210

• • • • 210
• .212
• • 217
• • 218

• • • . 220
• • 221
• • 222
• • 225

• • 227
• • 226
• • 231 c

(I

~

ENTRY Statement • • • • • • • • • • 232
USING option •••••••••••• 233
Program Termination Considerations .238
EXIT PROGRAM Statement ••••••• 239
GOBACK Statement. • .240
STOP RUN Statement ••••••••• 240

COMPILER-DIRECTING STATEMENTS
COpy Statement • •
ENTER Statement
NOTE Statement • •

PART V -- SPECIAL FEATURES •

SORT FEATURE • • • • • • • • • • • •
Elements of the Sort Feature •

Environment Division Considerations
for Sort • • • • • • • • •

• .241
• • 241
• .241
• • 241

• .243

• .245
• .245

• .246
Input-Output Section • • •

FILE-CONTROL Paragraph •
SELECT Sentence for Sort
I-O-CONTROL Paragraph

• • • • • • 246
• ••••• 246
File • • .247

• .247
• .247 RERUN Clause • • • • • •

SAME RECORD/SORT AREA Clause
Data Division Considerations for

File Section • • • • • • • • •
Sort File Description

• .248
Sort .248

.248

.249
Procedure Division Considerations for
Sort • • • • • • • • • • .250

SORT Statement. • • •••••• 250
RELEASE Statement ••••••• 254
RETURN Statement. • .255
EXIT Statement. • • .256

Special Registers for Sort. • .256
Sample Program Using the Sort Feature .258

REPORT WRITER FEATURE ••••••••• 260
Data Division -- Overall Description •• 260
Procedure Division -- Overall
Description • • • • • • • •
Data Division Considerations for
Report Writer

• .261

• .262
• .262 File Description • • • •

REPORT Clause • • • •
RECORDING MODE Clause

• •••••• 262

DATA RECORDS Clause • • • •
RECORD CONTAINS Clause • • • • •

Report Section. • • • •••.•
Report Description Entry •
CODE Clause

• .263
• .263
• .263
• .264
• • 264
• .264

.265 CONTROL Clause • • •• ~..;.
PAGE LIMIT Clause
Report Group Description
LINE Clause

• ••••• 266
Entry ••• 269

NEXT GROUP Clause
TYPE Clause
USAGE Clause •
COLUMN Clause
GROUP INDICATE Clause
JUSTIFIED Clause •
PICTURE Clause • • • •
RESET Clause • • • • •

• .271
• .273

• •••••• 275
• • • • • • .277
• •••••• 277

• .278
• •••••• 278

• .278
• .278

BLANK WHEN ZERO Clause • • • • •
SOURCE, SUM, or VALUE Clause

• .279
• .279

.281

.281
Procedure Division Considerations

GENERATE Statement
Detail Reporting •
Summary Reporting

• •••••• 281
.281

Operation of the GENERATE Statement 282
INITIATE Statement. • .282
TERMINATE Statement • • • & • • • . 283
USE Sentence. • ••••••. 284

Special Registers: PAGE-COUNTER and
LINE-COUNTER • • • • • . 285

PAGE-COUNTER •••••••••••. 285
LINE-COUNTER • • • • • • . 28:>

Sample Report writer Program •••••. 287
Key Relating Report to Report
Writer Source Program

TABLE HANDLING FEATURE • •
Subscripting • • • •
Indexing • • • • • • •

• . 290

• .297
• • 297
• .298

Restrictions on Indexing,
Subscripting, and Qualification ••
Example of Subscripting and Indexing

.299

.299
Data Division Considerations for Table
Handling • • • • • • • • • • • • • • • • 300

OCCURS Clause • • • • • .300
USAGE IS INDEX Clause .307

Procedure Division Considerations for
Table Handling • • • • • • • • • • 308

Relation Conditions •••• 308
SEARCH Statement • • • • • 309
SET Statement • • • • • .313

Sample Table Handling Program ••••• 314

SEGMENTATION FEATURE
Organization • • • •

Fixed Portion
Independent Segments • •

Segment Classification • •
Segmentation Control
Structure of Program Segments

Priority Numbers • • • • •
Segment Limit • • • • • • • • • •

Restrictions on' Program Flow • •
ALTER Statement
PERFORM Statement
Called Programs

• .31b
• • 316
• .316
• • 316
• • 317
• • 317
• • 317
• • 317
• .318
• & 319
• • 319
• .319
• • 319

SOURCE PROGRAM LIBRARY FACILITY •••• 320
COpy Statement ••••••••••• 320

Extended Source Program Library
Facility • • • • • • • • • •

BASIS Card •
INSERT Card
DELETE Card

• . 324
• • 324
• .324
• . 324

DEBUGGING LANGUAGE. • •••••• 326
READY/RESET TRACE Statement •• 326
EXHIBIT Statement • • • • • • • 326
ON (Count-conditional) Statement •• 328

Compile-Time Debugging Packet •• 330
DEBUG Card ••••••••••••• 330

FORMAT CONTROL OF THE SOURCE PROGRAM
LISTING •••••••••••• &331

EJECT Statement •••••••••• 331
SKIP1, SKIP2, and SKIP3 Statements .331

• • • • 332
STERLING CURRENCY FEATURE AND
INTERNATIONAL CONSIDERATIONS • •

Sterling Nonreport • • • • • •
Sterling Sign Representation •

Sterling Report • • • • • • •

• 333
• • • 334

• .335

Procedure Division Considerations
International Considerations •

• .338
.338

TELEPROCESSING (TP)
Communication section

CD Entry • • • • •

• •••••• 339
•••••••• 339

Procedure Division •
Message Condition
RECEIVE Statement
SEND Statement •

STRING MANIPULATION
STRING Statement •
UNSTRING Statement •

SUPPLEMENTARY MATERIAL •

• • • • • 340
• 348

• .348
• •• 349

• .350

• • • • .353
• • • • • • 353

• •• 357

• .363

APPENDIX A: INTERMEDIATE RESULTS •••• 365
Compiler Calculation of Intermediate
Results • • • • • • • • • • • •• 366

APPENDIX B: SAMPLE PROGRAMS • •• 367

Creation of a Direct File • •• 368

Creation of an Indexed File • .370

Random Retrieval and Updating of an
Indexed File • • • • • • • • .371

APPENDIX C: AMERICAN NATIONAL STANDARD
COBOL FORMAT SUMMARY AND RESERVED WORDS 373

APPENDIX D: SUMMARY OF FILE-PROCESSING
TECHNIQUES AND APPLICABLE STATEMENTS
AND CLAUSES •••••••••••••• 383

APPENDIX E: ASCII CONSID~RATIONS • • •• 389
I --Environment Division • • .389

• • • • • .389 ASSIGN Clause
RERUN Clause • • •

II -- Data Division
• • • • • •• 390

File Section • • •
BLOCK CONTAINS Clause

• •••••• 390
• • • • • • .390
• • • • .390

LABEL RECORDS Clause • • • • • • •
RECORDING MODE Clause • • • • • •
Compiler Calculation of Recording
Mode • • • • • • • • •

Data Description Entries •
PICTURE Clause •
SIGN Clause •• • • • • • • • • •
USAGE Clause • • • • • •

III -- Procedure Division
LABEL PROCEDURE Declarative
Relation Conditions

IV -- Sort Feature •
ASSIGN Clause
RERUN Clause • •

Data Division
SIGN Clause
USAGE Clause • • • • • •

~ 390
.391

391
• 391
.391
.391
• 391
.391
.392
.392
• 394
.394
.39S
.395
.395
.395

APPENDIX F: SYMBOLIC DEBUGGING
Features (version 4) •••••

Object-Time control-Cards
Sample Program -- TESTRUN

Debugging TESTRUN

• • • • • 397

APPENDIX G: 3505/3525 CARD PROCESSING
3505 OMR Processing • • • •
3505/3525 RCE Processing • • • • •
3525 Combined Function Processing

I -- Environment Division

.397

.399
• • 400

• 413
.413
.413
.414

Considerations. • • • • • • •• .414
SPECIAL-NAMES Paragraph ••. 414

II -- Data Division Considerations •• 41~
III -- Procedure Division
Considerations. • • • ••••. 415

OPEN Statement. • • ••••. 415
WRITE Statement -- Punch Function
Files • • • • • • • ••••. 41S
WRITE Statement -- Print Function
Files • • • • • .416

.41b CLOSE Statement • • • •

AMERICAN NATIONAL STANDARD COBOL
GLOSSARY •

INDEX

• • ·417

• • • • 431

Figure 1. Illustration of Procedure
Branching • • • • • • • • • • • • « • • 28
Figure 2. Complete UPDATING Program
(Part 1 of 2) ••••••••••••• 32
Figure 3. Reference Format ••••• 51
Figure 4. Level Indicator Summary • • 93
Figure 5. Areas Redefined Without
Changes in Length •••••• • .113
Figure 6. Areas Redefined and
Rearranged. • • • • • • • • • .113
Figure 7. Insertion of
Intra-occurrence Slack Bytes •• 132
Figure 8. Insertion of
Inter-occurrence Slack Bytes •••• 133
Figure 9. Logical Operators and the
Resulting Values Upon Evaluation •••• 163
Figure 10. Conditional Statements
with Nested IF Statements ••••••• 167
Figure 11. Information Supplied With
the GIVING Option When an Error
Declarative is Entered ••••••••• 176

Chart 1. Logical Flow of Conditional
Statement With Nested IF Statements •• 168
Chart 2. Logical Flow of Option 4
PERFORM Statement Varying One
Identifier ••••••••••••••• 192
Chart 3. Logical Flow of Option 4
PERFORM Statement Varying Two
Identifiers • • • • • • • • • • • • • .193

------ -----------------

Figure 12. Collating Sequence Used
for Sort Keys • • • • .251
Figure 13. Sample Program Using the
Sort Feature (Part 1 of 2) • . 258
Figure 1.4. Page Format When the PAGE
LIMIT Clause is Specified •. 268
Figure 15. Sample Program Using the
Report Writer Feature (Part 1 of 4) •. 287
Figure 16. Report Produced by Report
Writer Feature (Part 1 of 5) • .292
Figure 17. Storage Layout for
PARTY-TABLE • • • • • • • •• 300
Figure 18. Sample Table Handling
Program (Part 1 of 2) ••••• • .314
Figure 19. STATUS KEY Field --
Possible Values ••• • • • • • .345
Figure 20. Using the TRANSFORloi
Statement with ASCII Comparisons .393
Figure 21. EBCDIC and ASCII Collating
Sequences for COBOL Characters -- in
Ascending Order • • • • • • • • • • • . 394
Figure 22. Symbolic Debugging Option:

TESTRUN (Part 1 of 11) ••••• 402

Chart 4. Logical Flow of Option 4
PERFORM Statement Varying Three
Identifiers •••••••••••••• 194
Chart 5. Format 1 SEARCH Operation
Containing Two WHEN Options •.•••• 311

TABLES

Table 1. Typical Ledger Records Used
for MASTER-RECORD • • • • • • • • • • • 21
Table 2. Typical DETAIL-RECORD • • • • 22
Table 3. File-processing Techniques • 66
Table 4. Choices of Function-name
and Action Taken • • • • • • • • • • • • 70
Table 5. Values for the Organization
Field for System-name •• • • • 76
Table 6. Class and Category of
Elementary and Group Data Items .117
Table 7. Precedence of Symbols Used
in the PICTURE Clause • • • • • • .120
Table 8. Editing Sign control
Symbols and Their Results .125
Table 9. Internal Representation of
Numeric Items (Part 1 of 2) .139
Table 10. Permissible Arithmetic
Symbol Pairs • • • • • • • • • • • • 155
Table 11. Valid Forms of the Class
Test •••••••••••••••••• 158
Table 12. Relational-Operators and
Their Meanings ••••••••••••• 159
Table 13. Permissible Comparisons ••• 161
Table 14. Permissible Symbol Pairs -
Compound Conditions • • • • •••••• 164
Table 15. Permissible Moves •••••• 199

Table 16. Examples of Data Examination 201
Table 17. Examples of Data
Transformation ••••••••••••. 202
Table 18. Combinations of FRO~ and TO
Options (Part 1 of 2) ••••••••. 203
Table 19. Action Taken for
Function-names -- ADVANCING Option ~214
Table 20. Values of Identifier-2 and
Interpretations -- POSITIONING Option .215
Table 21. Values of Integer and
Interpretations -- POSITIONING Option .215
Table 22. Relationship of Types of
sequential Files and the Options of
the CLOSE Statement •••••••••. 225
Table 23. Relationship of Types of
Random Files and the Options of the
CLOSE Statement • • • • • • • • • • • . 226
Table 24. Effect of Program
Termination Statements Within Main
Programs and Subprograms. • • • • .239
Table 25. Index-names and Index Data
Items -- Permissible Comparisons •••• 308
Table 26. Sterling Currency Editing
Applications. • • • • • • • .337
Table 27. Compiler Action on
Intermediate Results. • • • .366
Table 28. Individual Type Codes Used
in SYMDMP Output. • • • • .401

C
-",-

.... __ /

o

PROGRAM PRODUCT INFORMATION

FEATURES OF THE PROGRAM PRODUCT COMPILERS

OS/VS COBOL

The Program Product OS/VS COBOL Compiler and Library includes the
following features:

VSAM (Virtual Storage Access Method) Support -- which provides fast
storage and retrieval of records, password protection~ centralized
and simplified data and space management, advanced error recovery
facilities, plus system and user catalogs./'COBOL supports indexed
(key-sequenced) files and sequential (entry-sequenced) files.
Records can be fixed or variable in length.

Merge Support -- The MERGE verb enables two or more
identically-sequenced input files to be combined into a single
output file by specifying a set of keys. "Both standard sequential
and sequentially accessed VSAM files can be designated as' input or
output. .

Lister Option provides specially formatted listing with embedded
cross references for increased intelligibility and ease of use.
Reformatted source deck is available as an option.

Verb Profiles -- facilitates identifying and locating verbs in the
COBOL source program. Options provide verb summary or verb cross
reference listing which includes verb summary.

Execution Time statistics -- maintains a count of the number of
times each verb in the COBOL source program is executed during an
individual program execution.

FIPS (Federal Information processing Standard) Flagger -- which
. issues messages identifying nonstandard elements in a COBOL source
program. The FIPS Flagger makes it possible to ensure that COBOL
clauses and statements in an OS/vS COBOL source prograrrvconform to
the Federal Information Processing Standard.

WHEN-COMPILED Special Register -- which is a programmer aid that
provides a means of associating a compilation listing with both the

i object program and the output produced at execution time.

System/370 Device Support -- any valid OSIVS device can be used
wi th an OS/VS COBOL program. In most cases, support is transpa'rent
to the OS/VS COBOL program. Ther~ are special considerations for
the following devices:

3886 OCR <Optical Character Reader) -- this device reads
multiline alphanumeric or numeric machine-printed documents or
numeric hand-printed documents, with stacker selection. OS/VS
COBOL support is through an object-time library subroutine.

3330, 3340 Disk Facilities -- these devices are high-speed
large-capacity disks, with the RPS (rotational positional
sensing) feature. Use of the fixed block standard option,
which can be specified at object timeq'results in much
improved performance.

Multifunction Card Devices -- OS/VS COBOL supports the
combined function processing available through these devices.

Program Product Information 11

-----_._---------_. -- -_. _._--

12

Combined functio~s avail~ble 'are: read/punch, read/print"
punch/print, and read/punch/print.

All features of as Full American National Standard COBOL Version 4
continue to be supported by IBM OS/VS COBOL. (See the following
section.) IBM OS/VS COBOL is packaged as a single Program Product,
Program Number 5740-CB1; the Library is also available as a
separate Program Product, Program Number 5740-LM1.

as FULL AMERICAN NATIONAL COBOL VERSION 4

The Version 4 Compiler and Library is a Program Product that
contains all of the features of the Version 2 and Version 3
Compilers, and also contains a number of added features, as well as
improved functions.

The Version 4 compiler contains the following features:

Advanced Symbolic Debugging provides faster and easier debugging
for the COBOL programmer. At abnormal termination a formatted
dump, using COBOL source data-names, is produced. Execution-time
dynamic dumps at user-specified points in the Procedure Division
can also be obtained. When the symbolic debugging feature is
requested, optimized object code is automatically provided.
(Appendix F gives an exa~ple of Symbolic Debugging output.)

Optimized Object Code can be requested, resulting in considerably
small~r object programs than are produced without optimization~
For COBOL programs that are not I/O bound, execution time is
reduced.

; COBOt Teleprocessin5((TP) programs can now ,be written_ using' IBM,'
',extensions to American "Nat-ional S,tandard COBOL.. Such ,programs "are'
:device-independent. and can be created more, easily than'Assembler':'
',TPprograms." . ,The: ,source lang':lage for' such programs is' a subset' ,o,f"
,the CODASYL specifications for COBOL TP- language. ' '
, , 'h " , ' , ',.,,', " , h, <'/' 'I < ~

COBOL Library Management Facility allows installations running with
mUltiple COBOL regions/partitions to save considerable main storage
by sharing some or all of the COBOL library subroutine modules.

Dvn~mic':SUbprOgtam Linkage' gives, the user object-time control' 'of ',' ,:~
main' storage. ' At object time,'COBOL subprogral!ls can be, loaded, "" '< >1
under program control; when.:such a,subprogram ~s no longer needed, :>;

: the calling' program can, free, t,~e' storage' it, occupies for bthe,~ ~~,e:~',~:~

Syntax-checking Compilation can be requested to save machine time
and money while debugging source syntax errors" When unconditional
syntax checking is requested, the source program is scanned for
syntax errors and such error messages are generated, but no object
code is produced. When conditional syntax checking is requested, a
full compilation is produced if no messages or only W-level or
C-level messages are generated; if one or more E-level or D-level
messages are generated. no object code is produced. Selected test
cases have shown that when Object code is not generated,
compilation time may be reduced by as much as 70%.
"" <"<::"""'~»'$,,,,:::

;'String Manipu'laticm,,-prov,iding for: mor.e flexible data manipulatic;n,',":;
:,can now be specified in. COBOL. Contiguous data can be separated, ...:",i
; into 'multiple logical subfie~ds; two or mO,re separate subfieldS: ','can':j
~:be ,con'catenated into' a ,single field. "'\
;;,,~,/ .. <,,~ y ~~<. •• , ~ " ,h, ,', <,<" < ,~~ , I"~ "" " 'h h ' ".'~X~/"'<,;"

All of the features of OS Full American National Standard COBOL
Version 3 continue to be suppprted by Version 4. The Version 4
Compiler and Library is packaged as a single Program Product
(Program Number 5734-CB2); the Library is also available as a
separate Program Product (Program Number 5734-LM2). c

()

OS FULL AMERICAN NATIONAL STANDARD COBOL VERSION 3

The Version 3 Compiler and Library is a Program Product that
contains a number of improvements in function and performance over
Version 2. The compiler may be used with or without the Time
Sharing Option (TSO) of the IBM Operating System.

FEATURES DEPENDENT ON TSO

with TSO, the terminal user may choose options to determine the
characteristics of compiler output to the terminal. He may direct
to the terminal:

• Compilation progress and diagnostic messages •

• The compiler's entire listing data set.

The user may suppress either category or may suppress all output to
the terminal.

In addition, if the user has recorded line numbers in the input
data set, the compiler may be instructed to substitute these
numbers for internal statement numbers in any diagnostic messages
printed on the terminal. Also, when diagnostic messages are
printed on the terminal, a message stating the total number of
statements in error can be included at the request of the user.

FEATURES NOT DEPENDENT ON TSO

with or without TSO, programmers can use the following features:

Optional alphabetically ordered cross-reference listings.
Significant performance improvement has been made to the current
cross-reference option which preserves source statement order.

A flow trace option, which prints a formatted trace of the last
procedures executed before an abnormal termination of execution.
The number of procedures to be traced is specified by the user.

A statement number option, which provides the user with the number
of the COBOL statementw and of the verb within the statement, being
executed when an abnormal termination of execution occurs.

Expansion of the functions of the CLIST and DMAP compiler options.
In addition to the condensed listing (CLIST) and the glossary
(DMAP), global tables, literal pools, and register assignments are
included.

The ability to batch compile more than one program or subprogram
with a single invocation of the compiler, resulting in a reduction
in compilation time.

A separately signed numeric data type. The programmer can use the
SIGN clause to specify the position and the mode of representation

, of the operation sign of numeric data items.

The ability to specify record size at object time for an input QSAM
or QISAM data set.

Generic key for Indexed Files. The programmer can request a record
from an ISAM data set by using a search key which is comprised of a
user-specified number of the high-order characters of the key. The'
user does not have to specify the full or exact search key.

A checkpoint-rerun prov1s1on at end-of-volume for sequentially
accessed files with any file organization.

Program Product Information 13

14

Expansion of the ON statement td permit use of identifiers as well
as literals as the count-conditional operands.

Enhancement of error declaratives so that a GIVING option can
bereferenced when the declarative specifies a file-name list or the
INPUT, OUTPUT. or 1-0 options.

Installation default options separately located from other coding
to improve maintainability and serviceability.

Implementation of ASCII, the American National Standard Code for
Information Interchange. X3.4-1968, which provides the user with
the capability at object time of accepting and creating magnetic
tape files written in this code.

Support for American Nati'onal Standard Magnetic Tape Labels for
Information Interchange, X3.27-1969. These labels may be used only
with tape files written in the American Nationa,l Standard Code for
Information Interchange.

The ability to sort files using the ASCII collating sequence for
character data on a per sort basis.

System/370 Support can be requested, to take advantage of the
System/370 instruction set. When such support is specified,
certain system/370 instructions are generated to replace the
equivalent object-time subroutines and instructions needed when
running under System/360.

OPEN Statement improvement -- generated code for the OPEN statement
has been modified to give substantial savings in object program
space.

Additional Device Support -- The following mass-storage devices are
now supported: 2305-1, 2305-2, 2319, 3330. The 3211 printer is
also supported.

o

INTRODUCTION

In 1959, a group of computer professionals, representing the U.s.
Government, manufacturers, universities, and users. formed the
£onference On DAta SYstems ~anguage (CODASYL). At the first meeting u
the conference agreed upon the development of a common language for the
programming of commercial problems. The proposed language would be
capable of continuous change and development, it would be problem
oriented and machine-independent, and it would use a syntax closely
resembling English, avoiding the use of special symbols as much as
possible. The COmmon Business Oriented Language (COBOL) which resulted
met most of these requirements.- -

As its name implies, COBOL is especially ef£icient in the processing
of business problems. such problems involve relatively little algebraic
or logical processing; instead, they usually manipulate large files of
similar records in a relatively simple way. Thus, COBOL emphasizes the
description and handling of data items and input/output records.

In the years since 1959, COBOL has undergone considerable refinement
and standardization. Now, an extensive subset for a standard COBOL has
been approved by ANSI (the American National Standards Institute), an
industry-wide association of computer manufacturers and-users; this
standard is called American National Standard COBOL (formerly known as
USA Standard COBOL).

This publication explains IBM OS Full American National Standard
COBOL, which is compatible with the highest level of American National
Standard COBOL and includes a number of IBM extensions to it as well.
The compiler supports the processing modules defined in the standard.
These processing modules include:

NUCLEUS -- which defines the permissible character set and the basic
elements of the language contained in each of the four COBOL divisions:
Identification Division, Environment Division, Data Division, and
Procedure Division.

TABLE HANDLING -- which allows the definition of tables and making
reference to them through subscripts and indexes. A convenient method
for searching a table is provided.

SEQUENTIAL ACCESS -- which allows the records of a file to be read or
written in a serial manner. The order of reference is implicitly
determined by the position of the logical record in the file.

RANDOM ACCESS -- which allows the records of a file to be read or
written in a manner specified by the programmer. Progra~mer-specified
keys control successive references to the file.

SORT -- which provides the capability of sorting files in ascending
and/or descending order. This feature also includes procedures for
handling such files both before and after they have been sorted.

REPORT WRITER -- which allows the programmer to describe the format of a
report in the DATA DIVISION, thereby minimizing the amount of PROCEDURE
DIVISION coding necessary.

SEGMENTATION -- which allows large problem programs to be split into
segments to be designated as permanent or overlayable core storage.
This assures more efficient use of core storage at object time.

LIBRARY -- which supports the retrieval and updating of pre-written
source program entries from a userGs library, for inclusion in a COBOL

Introduction 15

-_. __ ._- ------ ---- - -_._-----_.

program at compile time. The effect of the compilation of library text
is as though the text were actually part of the source program.

In this publication" the features included in the NUCLEUS, SEQUENTIAL
ACCESS, and RANDOM ACCESS modules are presented as part of the
discussion of "Language Considerations" and of the four divisions of a
COBOL program. The other five modules -- TABLE HANDLING, SORT, REPORT
WRITER" LIBRARY, and SEGMENTATION --' are presented as separate features
of American National Standard COBOL.

This manual describes all versions of IBM OS American National
Standard COBOL_ All information relating to the Program Product Version
3 and Version 4 compilers is presented within separate paragraphs. Such
paragraphs begin with the heading "Program Product Information",
followed by the Version numbers and all following paragraphs pertaining
to such information are indented. All information relating only to the
OS/VS COBOL Compiler and Library Program Product is included in the
separate chapter, "OS/VS COBOL Considerations."

This chapter gives the reader a general understanding of the
principles of IBM as Full American National Standard COBOL (hereinafter
simply termed "COBOL"). It introduces the reader to COBOL and
demonstrates some of the ways in which the language can be used in the
solution of commercial problems. This discussion does not define the
rules for using COBOL, but rather attempts to explain the basic concepts
of the language through relatively simple examples.

The reader who has an understanding of the principles of cu~rently
implemented versions of COBOL may wish to go directly to "Language
Considerations." Other readers will find many concepts discussed in
this chapter of help in using the detailed instructions throughout the
rest of this manual.

RRINCIPLES OF COBOL

COBOL is one of a group of high-level computer languages. Such
languages are problem oriented and relatively machine independent,
freeing the prog~ammer from many of the machine oriented restrictions of
assembler language, and allowing him to concentrate instead upon the
logical aspects of his problem.

COBOL looks and reads much like ordinary business English. The
programmer can use English words and conventional arithmetic symbols to
direct and control the complicated operations of the computer. The
following are typical COBOL sentences:

ADD DIVIDENDS TO INCOME.
MULTIPLY UNIT-PRICE BY STOCK-aN-HAND

GIVING STOCK-VALUE.
IF STOCK-aN-HAND IS LESS THAN ORDER-POINT

MOVE ITEM-CODE TO REORDER-CODE.

Such COBOL sentences are easily understandable, but they must be
translated into machine language -- the internal instruction codes -
before they can actually be used.

A special syst.ems program, known as a compiler" is first entered into
the computer. The COBOL program <referred to as the source program) is
then entered into the machine, where the compiler reads it and analyzes
it. The COBOL language contains a basic set of reserved words and
symbols. Each combination of reserved words and symbols is transformed
by the compiler into a definite set of usable machine instructions. In
effect, the programmer has at his disposal a whole series of
"prefabricated" portions of the machine-language program he wishes the
compiler to construct.

16 Introduction

~/'~""""""
(

\
\,

When he writes a COBOL program, he is actually directing the compiler
to bring together, in the proper sequence, the groups of machine
instructions necessary to accomplish the desired result. From the
programmer's instructions, the compiler creates a new program in machine
language. This program is known as an object program.

Once the object program has been produced, it may be used at once, or
it may be recorded on some external medium and stored for future use.
When it is needed, it can then be called upon again and again to process
data.

Every COBOL program is processed first when the compiler translates
the COBOL program into machine language (compile time), then when the
machine language program actually processes the data (execution time).

A simple example illustrates the basic principles of translating a
COBOL sentence. To increase the value of an item named INCOME by the
value of an item named DIVIDENDS, the COBOL programmer writes the
following sentence:

ADD DIVIDENDS TO INCOME.

Before the compiler can interpret this sentence, it must be given
certain information. The programmer describes the data represented by
the names DIVIDENDS and INCOME in such a way that the compiler'can
recognize it, obtain it when needed, and treat it in accordance with its
special characteristics.

First, the compiler examines the word ADD. It determines whether or
not ADD is one of the COBOL reserved words, that is, words that have
clearly defined meanings in COBOL (rather than a word like DIVIDENDS,
which is defined by the programmer). ADD is a special kind of reserved
word -- a COBOL key word. Therefore, the compiler generates the machine
instructions necessary to perform an addition and inserts them into the
object program.

The compiler next examines the word DIVIDENDS. Because the
programmer has supplied data information about DIVIDENDS, the compiler
knows where and how DIVIDENDS information is to be placed in core
storage, and it inserts into the object program the instructions needed
in order to locate and obtain the data.

When the compiler encounters the word TO, it again determines whether
or not this is a COBOL reserved word. It is such a word, and the
compiler interprets it to mean that the value represented by the name
following the word TO, in this case INCOME, must be increased as a
result of the addition.

The compiler next examines the word INCOME. Again, it has access to
data information about the word. As a result, it is able to place in
the object program the instructions necessary to locate and use INCOME
data.

The programmer placed a period after the word INCOME. The effect of
the period on the COBOL compiler is similar to its effect in the English
language. The period tells the compiler that it has reached the last
word to which the verb ADD applies, the end of the sentence.

The logical steps we have described are performed by the compiler in
creating the object program, although they might not be performed in
exactly this sequence. All these preparatory steps are required only in
creating the object program. Once created, the object program is used
for the actual processing and may be saved for future reference. The
source program is not required further, unless the programmer makes a
change in it; in that case, it must be compiled again to create a new
object program.

Introduction 17

-- . __ . __ .. - ._--------------------

When the machine-language instruction for ADD is actually performed
at execution time, the instruction is executed in either of two ways,
depending on the format of the data:

.1. It directly adds the value of DIVIDENDS to the value of the data
representing INCOME, thus giving the new value of INCOME.

or

2. It moves the data representing INCOME into a special work area or
register; then DIVIDENDS is added to it to create the sum, after
which the new value of INCOME is returned to the proper area in
storage.

In this simple example, the object program could add the two specified
items with very few machine instructions. In actual practice, however,
some complex COBOL sentences produce dozens of machine instructions.
Then, too, a computer can be instructed to repeat a procedure any number
of times. A few COBOL sentences can start the computer on operations
that could process millions of data records rapidly and accurately.

A SAMPLE-COBOL PROGRAM

COBOL is based on English; it uses English words and certain syntax
rules derived from English. However, because it is a computer language,
it is much more precise than English. The programmer must, therefore,
learn the rules that govern COBOL and follow them exactly. These rules
are detailed later, beginning in the next chapter. The rest of this
chapter gives a general picture of how a COBOL program is put together.

The basic unit of COBOL is the word -- which may be a COBOL reserved
word or a programmer-defined word. Reserved words have a specific
syntactical meaning to the COBOL compiler, and must be spelled exactly
as shown in the reserved word list (see Appendix C). Programmer-defined
words are assigned by the user to such items as data-names and
procedure-names; they must conform to the COBOL rules for the formation
of names.

Reserved words and programmer-defined words are combined by the
programmer into clauses (in the Environment and Data Divisions) and
statements (in the Procedure Division); clauses and statements must be
formed following the specific syntactical rules of COBOL. A clause or a
statement specifies only one action to be performed, one condition to be
analyzed, or one description of data. Clauses and statements can be
combined into sentences. Sentences may be simple (one statement or one
clause), or they may be ~ompound (a combination of statements or a
combination of clauses). Sentences can be combined into paragraphs,
which are named units of logically related sentences, and paragraphs can
be further combined into named sections. In the Procedure Division,
both paragraphs and sections can be referred to as procedures, and their
names can be referred to as procedure names.

There are four"divisions in each COBOL program. Each is placed in
its logical sequence, each has its necessary logical function in the
program, and each uses information developed in the divisions preceding
it. The four divisions and their sequence are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

To illustrate how a COBOL program is written, let us create a
simplified procedure to record changes in the stocks of office furniture

18 Introduction

r~
\

c

u

-------- ---------- -----

offered for sale by a manufacturer. We will need such data items as an
item code to identify each type of product, an item name corresponding
to the code, the unit price of each item of stock, the reorder pOint at
which the manufacturer replaces each item, and the amount of stock on
hand plus its value for each item. Our procedure will update a
MASTER-FILE of all stocks the manufacturer carries by reading a
DETAIL-FILE of current transactions, performing the necessary
calculations, and placing the updated values in the MASTER-FILE. We
will also create an ACTION-FILE of items to be reordered. The
MASTER-FILE resides on a direct-access (mass storage) disk device; the
DETAIL-FILE and ACTION-FILE reside on tape devices.

Many of the examples used in the following discussion have been
simplified for greater clarity. Figure 2, at the end of this chapter,
shows how the entire UPDATING program would actually be written.

Identification Division

First we must assign a name to our program, presenting the
information like this:

IDENTIFICATION DIVISION.
PROGRAM-ID. UPDATING.

PROGRAM-ID informs the compiler that we have chosen the unique name
UPDATING for the program we have written.

In addition to the name of the program, the Identification Division
allows us to list the name of the programmer, the date the program was
written, and other information that will serve to document the program.

Environment Division

Although COBOL is, to a large degree, machine independent, there are
some aspects of any program that depend on the particular computer being
used and on its associated input/output devices. In the Environment
Division, the characteristics of the computer used may be identified.
The location of each file referenced in the program, and how each one of
them will be used, must be described.

First we will describe the source computer (the one the compiler
uses) and the object computer (the one the object program uses) as
follows:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360-H50.
OBJECT-COMPUTER. IBM-360-H50.

This tells us that both computers will be an IBM System/360 Model H50.

Next we must identify the files to be used in our program, and assign
them to specific input/output devices. This is done in the Input-Output
Section.

Introduction 19

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MASTER-FILE, ASSIGN TO •••
ACCESS MODE IS RANDOM
ACTUAL KEY IS FILEKEY.

SELECT DETAIL-FILE, ASSIGN TO •••
ACCESS MODE IS SEQUENTIAL.

SELECT ACTION-FILE, ASSIGN TO •••

The ellipses (•••) in the three foregoing ASSIGN clauses indicate the
omission of system-name, an item too complex to illustrate here.
System-name is in a special format, and it tells the compiler on which
symbolic unit the file will be found and in what way the data is
organized within the file.

Our MASTER-FILE resides on a disk pack, which is a mass storage
device. Access for these devices can be either RANDOM or SEQUENTIAL.
If ACCESS MODE IS RANDOM, then each record within the file can be
located directly through the use of a key (identified in the statement
ACTUAL KEY IS FILEKEY). For our program we have named this key FILEKEY,
and later in the Data Division we will describe it fully. During the
processing of our object program, each record will be made available to
the user in the sequence that the keys are presented to the system.

Our DETAIL-FILE and our ACTION-FILE reside on tape. This means that
ACCESS MODE must be sequential. On tape it is necessary to refer to
each successive record in the file in order to find any individual
record we might wish to access. Since the compiler assumes that the
ACCESS MODE is sequential unless specified otherwise, the ACCESS MODE
clause is never needed in describing a tape file.

Data Division

The Data Division of the COBOL program gives a detailed description
of all the data to be used in the program -- whether to be read into the
machine, used in intermediate processing, or written as output. To
simplify this discussion, we will describe only the two most important
aspects of data description.

1. We will inform the compiler that we intend to work with one kind of
input record, our detail record; one kind of update record, our
master record; and one kind of output record, our action record.

2. We will assign data-names to each of the items of data to be used.

First, we must organize the two input records -- a MASTER-RECORD and
a DETAIL-RECORD. The MASTER-RECORD will be derived from ledger records
that look like those shown in Table 1.

20 Introduction

(~,

(j

--- -- -- ------------- ------------- --- ---

Table 1. Typical Ledger Records Used for MASTER-RECORD
r-----T----------------------------T--------T---------T---------T-------,
I I I Stock I Unit I Stock I J
lItem 1 I on I Price I Value ! Order 1

~:~~:-~------:~:~-~:~:-------------+-~:~~---+---~~~--+--~~~----+-::~~~~-.~
IA10 J 2-drawer file cabinets I 100 I 50 I 5,000 J 50 J
IA11 l 3-drawer file cabinets I 175 I 80 I 14"000 1 80 J
IA12) 4-drawer file cabinets 1 200 I 110 I 22,000 I 150 1
I J I I I J]
IB10 I Sec~etarial desks I 150 1 200 I 30 g 000 1 120 J
IBll 1 Salesmen's desks 1 50 1 175 I 8,750 1 50 I
IB12 J Executive desks 1 75 ~ 500 I 37,500 I 60 I
I I J ~ I I I
IC10 I Secretarial posture chairs ~ 125 I 50 I 6,250 I 140 1
I Cll I Side chairs I 50 1 40 I 2,000 I 60 j
\C12 J Executive swivel chairs I 25 1 150 I 3,750 I 20 I L _____ ~ ____________________________ ~ ________ ~ ________ ~ _________ ~ _______ J

There will be a MASTER-RECORD for each item in this list. In
defining the data for the compiler, we will make sure that each record
is in the same format as all the others. Thus. if we specify the
characteristics of a single record, we will have specified the
characteristics of the whole set. In this way, all of the master
records can be organized into a data set, or filen that we will name
MASTER-FILE. Each complete record within the file we will name the
MASTER-RECORD, with the individual items of data grouped within it.
Accordingly, we will begin our Data Division as follows:

DATA DIVISION.
FILE SECTION.
FD MASTER-FILE DATA RECORD IS MASTER-RECORD •••

01 MASTEh-RECORD.
05 ITEM-CODE
05 ITEM-NAME •••
05 STOCK-ON-HAND •••
05 UNIT-PRICE •••
05 STOCK-VALUE •••
05 ORDER-POINT •••

The FILE SECTION entry informs the COBOL compiler that the items that
follow will describe the format of each file and of each record within
each file to be used in the program. The level indicator FD (File
Description) introduces the MASTER-FILE itself, and tells the compiler
that each entry within MASTER-FILE will be referred to as MASTER-RECORD.
The entry with level number 01 identifies the MASTER-RECORD itself, and
the subordinate entries with level number 05 describe the subdivisions
within the complete MASTER-RECORD. The concept of levels is a basic
attribute of COBOL. The highest level is the FD, the next highest level
is 01. Level numbers from 02 through 49 may subdivide the record, and
the subdivisions themselves can be further subdivided if need be. The
smaller the subdivision, the larger the level number must be.

Each of the data items would actually be described more fully than is
spown here. In an actual program, for example, we would inform the
compiler that each of the items identified as STOCK-ON-HAND, UNIT-PRICE~
STOCK-VALUE, and ORDER-POINT would represent positive numeric values of
a specific size in a specific form. and so forth. At this point, we
need not concern ourselves with these details.

Introduction 21

----------- - -----------

The MASTER-FILE is the main record of current inventory. Changes to
this record are made by entering th~ details of "individual transactions
or groups of transactions. Thus, receipts of new stocks and shipments
to customers will change both STOCK-ON-HAND and STOCK-VALUE. These
changes are summarized in the detail record for each item. A typical
record would appear in a ledger as shown in Table 2.

Table 2. Typical DETAIL-RECORD
r---------T-------------------------T-----------------T----------------,
I Item I I I I
I Code I Item Name I Receipts I Shipments I
~---------+-------------------------+-----------------+----------------~
I Bll I Salesmen's desks I 25 I 15 I L _________ ~ _________________________ ~ _________________ ~ ________________ J

We will therefore organize a DETAIL-FILE, made up of individual items
to be referred to as DETAIL-RECORD. DETAIL-FILE will be arranged by
ITEM-CODE in ascending numerical order.

FD DETAIL-FILE DATA RECORD IS DETAIL-RECORD •••
01 DETAIL-RECORD.

05 ITEM-CODE •••
05 ITEM-NAME •••
05 RECEIPTS •••
05 SHIPMENTS •••

The ACTION-FILE will contain a list of items to be reordered, plus
relevant data:

FD ACTION-FILE DATA RECORD IS ACTION-RECORD •••
01 ACTION-RECORD.

05 ITEM-CODE •••
05 ITEM-NAME •••
05 STOCK-ON-HAND •••
05 UNIT-PRICE •••
05 ORDER-POINT •••

This completes the description of the files we will use.

Note that the names of data items contained within the files are in
many cases identical. Yet each name within each file must be unique, or
ambiguities in references to them will occur. Since identical names are
used in our data descriptions, we must use a special means of
distinguishing between them. The COBOL naming system, with its concept
of levels, allows us to make this distinction by reference to some
larger group of data of which the item is a part. Thus, ITEM-CODE OF
MASTER-RECORD, and ITEM-CODE OF DETAIL-RECORD, and ITEM-CODE OF
ACTION-RECORD can be clearly differentiated from each other. The use of
a higher level name in this way is called qualification. Qualification
is required in making distinctions between otherwise identical names.

Now we must construct the Working-Storage Section of our Data
Division. This section describes records and data items that are not
part of the files, but are used during the processing of the object
program.

22 Introduction

C.:

C)

For our program, we will need several entries in our Working-storage
section. Among them will be several items constructed with level
numbers, similar to those used to describe the file records.

WORKING-STORAGE SECTION.

77 QUOTIENT •••

01 FILEKEY •••
05 TRACK-ID •••
05 RECORD-ID •••

01 ERROR-MESSAGE.
05 ERROR-MESSAGE-1 •••
05 ERROR-MESSAGE-2 •••
05 ERROR-MESSAGE-3 •••

We will use the FILEKEY record in constructing the FILEKEY. We will
use the ERROR-MESSAGE record to create warning messages when errors are
encountered during object time processing. We have assigned the level
number 77 to the data item named QUOTIENT. This level number informs
the compiler that QUOTIENT is a noncontiguous data item -- that is, that
this item has no relationship to any other data item described in the
Working-Storage section. Note that the data items related to each other
must be listed after all the noncontiguous data items.

Procedure Division

The Procedure Division contains the instructions needed to solve our
problem. To accomplish this, we will use several types of COaOL
statements. In constructing our sample program, we will discover how
each type of statement can be used to obtain the results we want.

Beginning.the Program Input Operations

Our first step .in building the Procedure Division is to make the
records contained in the MASTER-FILE and the DETAIL-FILE available for
processing. If we write the statements:

PROCEDURE DIVISION.

OPEN INPUT DETAIL-FILE.
OPEN 1-0 MASTER-FILE.

the system establishes a line of communication with each file, checks to
make sure that each is available for use, brings the first record of the
DETAIL-FILE file into special areas of internal storage known as
buffers, and does other housekeeping.

Introduction 23

be:
The files can now be accessed. Our next statements will therefore

READ DETAIL-FILE AT END GO TO END-ROUTINE.

READ MASTER-FILE INVALID KEY PERFORM INPUT-ERROR
GO TO ERROR-ROUTINE-l.

At this point in our program, these two statements make available for
processing the first record from each file. (Note that the AT END
phrase and the INVALID KEY phrase are necessary in these sentences.
Their use will be explained later.) We are now able to begin arithmetic
operations upon the data.

Arithmetic Statements

We have already seen that the COBOL language contains the verb ADD.
Using this verb, we can add RECEIPTS to STOCK-aN-HAND by writing the
COBOL statement:

ADD RECEIPTS TO STOCK-aN-HAND.

This instructs the program to find the value of RECEIPTS in the
DETAIL-RECORD and add it to the value of STOCK-ON-HAND in the
MASTER-RECORD. (For the sake of brevity, this example and the ones
following have been simplified by omitting the name qualification which .
would be necessary in actual coding. Figure 2, at the end of this
chapter, shows the actual coding necessary.)

Next we must reduce the new value of STOCK-ON-HAND by the amount of
SHIPMENTS. The COBOL verb SUBTRACT will accomplish this result for us,
and so we write:

SUBTRACT SHIPMENTS FROM STOCK-ON-HAND.

These two statements, carried out in succession, will produce a current
value for STOCK-ON-HAND.

Actually, there is a more concise way to perform this particular
calculation. We have broken it into two steps, but COBOL provides
another verb which allows us to specify more than one arithmetic
operation in a single statement. This is the verb COMPUTE.

COMPUTE STOCK-aN-HAND = STOCK-ON-HAND + RECEIPTS - SHIPMENTS.

A COMPUTE statement is always interpreted to mean that the value to
the left of the equal sign will be changed to equal the value resulting
from the calculation specified to the right. The calculation to the
right of the equal sign is evaluated from left to right. That is, in
our example, the addition is performed first and then the subtraction.

The name STOCK-ON-HAND occurs twice in this sentence, but this causes
no difficulty. The expression to the right is calculated first; thus,
it is the current value of STOCK-aN-HAND that is used as the basis for
computing the new value. When this new value has been calculated, it
replaces the old value of STOCK-aN-HAND in the MASTER-RECORD.

24 Introduction

()

So far we have brought only the value of STOCK-ON-HAND up to date,
but a change in this value will also cause a change in STOCK-VALUE. We
will assume that this figure does not include allowances for quantity
discounts, damage to stock, or other such factors, and that STOCK-VALUE
is nothing more than the unit price multiplied by the number of items
currently in stock. COBOL provides us with a MULTIPLY verb, which
permits us to accomplish this:

MULTIPLY STOCK-aN-HAND BY UNIT-PRICE GIVING STOCK-VALUE.

The result of the multiplication will be placed in the MASTER-RECORD as
the new value of STOCK-VALUE. within the program, this statement must
be executed after the COMPUTE statement we wrote earlier, since
STOCK-aN-HAND must be the updated, not the original, value.

Conditional Statements

There are instructions in COBOL that examine data to determine
whether or not some condition is present and, depending on what is
found, to carry out an appropriate course of action.

The MASTER-RECORD contains an item called ORDER-POINT. An item is to
be reordered when its stock has been reduced either to or below its
order point. Let us assume that we have written a procedure for
initiating such an order, and that we have given the name
REORDER-ROUTINE to this procedure. We then write the following two
sentences:

IF STOCK-aN-HAND IS LESS THAN ORDER-POINT
PERFORM REORDER-l •••

IF STOCK-aN-HAND IS EQUAL TO ORDER-POINT
PERFORM REORDER-l •••

in order to compare the present value of STOCK-aN-HAND with the value of
ORDER-POINT. If STOCK-aN-HAND is a smaller value, the COBOL verb
PERFORM causes a transfer of control to the paragraph named REORDER-l.
If STOCK-aN-HAND is not less. than ORDER-POINT, our next instruction is
evaluated. If the values are equal, control is transferred to
REORDER-l. If the values are not equal, control is transferred to the
next instruction.

It is permissible, in COBOL, to combine the two tests into one:

IF STOCK-aN-HAND IS LESS THAN ORDER-POINT OR EQUAL TO
ORDER-POINT PERFORM REORDER-l •••

Here we are writing a compound condition with an implied subject.
STOCK-aN-HAND, the subject of the first condition, is understood to be
the subject of the second condition as well. Compound conditions
increase the flexibility of COBOL and make the handling of many kinds of
problems easier.

In this example, we tested successively for two conditions out of
three. Unless the programmer has some need to distinguish between these
two conditions (and he might), it would be simpler to test for the third
condition instead:

IF STOCK-ON-HAND IS GREATER THAN ORDER-POINT NEXT SENTENCE
ELSE PERFORM REORDER-l •••

The words NEXT SENTENCE have a special meaning in COBOL. When IF
STOCK-ON-HAND IS GREATER THAN ORDER-POINT is true, NEXT SENTENCE takes
effect. Every instruction in the balance of the IF sentence is ignored,
and control is transferred to the sentence following.

Introduction 25

------------ -----------------

The test can be simplified even further, since COBOL allows 'us 'to
express negation:

IF STOCK-ON-HAND IS NOT GREATER THAN ORDER-POINT
PERFORM REORDER-1 •••

If the value of STOCK-VALUE is less than or equal to that of
O~DER-POINT, control is transferred to REORDER-1. If the value is
greater, control automatically passes to the next successive sentence.

The actual rules for specifying tests and comparisons will be given
in a subsequent chapter.

Let us write one more conditional statement:

IF STOCK-ON-HAND IS LESS THAN ZERO •••
GO TO ERROR-WRITE.

One would expect that the smallest value STOCK-ON-HAND could assume
would be zero. If a negative record were processed, the values found
would probably be completely erroneous. To prevent this, the programmer
could anticipate the possibility of error and write a special routine to
be executed whenever the value of STOCK-ON-HAND was found to be
negative. such a routine could stop the processing of this record,
print out the erroneous data, and proceed automatically to process the
following records. The more comprehensive a programmer makes his error
checking, the less likely it is that inaccurate information will pass
through without being marked for special attention.

Data-Manipulation Statements

We saw in the preceding paragraph that if the value of STOCK-ON-HAND
fell below a certain point, control would be passed to a special
sequence of instructions named REORDER-1. Our output ACTION-FILE has
been set up for just this purpose. The bulk of REORDER-1 could consist
of data-manipulation statements; that is, instructions which move the
necessary data items from the MASTER-RECORD area in storage to that area
reserved for the ACTION-FILE records. The COBOL verb MOVE can be used
to accomplish this. We must explain here that the verb MOVE does ~Q~
mean an actual physical movement of data. Instead, it means that the
data items from MASTER-RECORD are copied into ACTION-RECORD. Items
within MASTER-RECORD are not destroyed when a MOVE statement is
executed, and are available for further processing. Individual items
contained in ACTION-RECORD before the operation, however, are replaced
when the statement is executed. Our MOVE statements will be written:

MOVE ITEM-CODE OF MASTER-RECORD TO ITEM-CODE
OF ACTION-RECORD.

MOVE ITEM-NAME OF MASTER-RECORD TO ITEM-NAME
OF ACTION-RECORD.

MOVE STOCK-ON-HAND OF MASTER-RECORD TO
STOCK-ON-HAND OF ACTION-RECORD.

MOVE UNIT-PRICE OF MASTER-RECORD TO UNIT-PRICE
OF ACTION-RECORD.

MOVE ORDER-POINT OF MASTER-RECORD TO ORDER-POINT
OF ACTION-RECORD.

26 Introduction

I

"

c

l
~--'~

./

u

With these five statements, we have set up the ACTION-RECORD to be
written in the ACTION-FILE. However, there is another and easier method
for the programmer to specify the five MOVE operations by taking
advantage of the qualification system in naming:

MOVE CORRESPONDING MASTER-RECORD TO ACTION-RECORD.

The word CORRESPONDING indicates that those data items with names which
are identical in both records are to be copied from MASTER-RECORD into
ACTION-RECORD. Thus, five MOVE statements are replaced by one.

output Operations

When all arithmetic and data-manipulation statements have been
executed, we will write the results in some form. COBOL allows us to do
this with a WRITE instruction.

WRITE MASTER-RECORD INVALID KEY •••
GO TO ERROR-WRITE.

Or, if we were to indicate that an item was to be reordered, we could
write the following:

WRITE ACTION-RECORD.

In either case, the record would be recorded on the output device
specified for the file in the Environment Division; its format would be
determined by the Data Division description of the file.

Procedure-Branching Statements

In our inventory problem, there will be as many master records as
there are kinds of furniture in stock, and there will be a varying
number of detail records. We must read each successive DETAIL-RECORD in
DETAIL-FILE, until everyone of the records in the file has been
processed.

Each time a DETAIL-RECORD is read, we will perform calculations upon
its ITEM-CODE in order to produce our FILEKEY. FILEKEY will then be
used to find a matching record in MASTER-RECORD. If a matching record
cannot be found, either the DETAIL-RECORD is in error, or the
MASTER-RECORD is missing from the file and we must mark that record for
special processing. Consider the series of statements in Figure 1.

You will note that several new elements have been added to the
arithmetic statements and conditional phrases we have already discussed.
First, there are the elements that extend to the left of the other
statements. These elements are the procedure-names we described
earlier. Each procedure-name indicates-the beginning of a paragraph or
a section within the program, and each indicates a reference point for
programmer-specified transfer of control. When a procedure is entered,
each logically successive instruction is processed in turn.

Introduction 27

-------_._---------------------------------_._----- - .

r--, INEXT-DETAIL-RECORD-ROUTINE.
I READ DETAIL-FILE AT END GO TO END-ROU~INE-1.
I
I
I
I READ MASTER-FILE INVALID KEY PERFORM INPUT-ERROR
I GO TO ERROR-WRITE.
COMPUTATION-ROUTINE.

IF STOCK-ON-HAND IN KASTER-RECORD IS LESS THAN ZERO
PERFORM DATA-ERROR GO TO ERROR-WRITE.

IF STOCK-ON-HAND IN MASTER-RECORD IS NOT GREATER THAN
ORDER-POINT IN MASTER-RECORD PERFORM REORDER-1
TBRU REORDER-2.

WRITE-KASTER-ROUTINE.

GO TO NEXT-DETAIL-RECORD-ROUTINE.
REORDER-1.

GO TO SWITCH-ROUTINE.
SWITCH-ROUTINE.

ALTER REORDER-1 TO REORDER-2
END-ROUTINE-1 TO END-ROUTINE-3.

OPEN OUTPUT ACTION-FILE.
REORDER-2.

MOVE CORRESPONDING MASTER-RECORD TO ACTION-RECORD.
WRITE ACTION-RECORD.

ERROR-WRITE.

GO TO NEXT-DETAIL-RECORD-ROUTINE.
INPUT-ERROR.

MOVE " KEY ERROR ON INPUT " TO ERROR-MESSAGE-1 •

•

DATA-ERROR.
MOVE "DATA ERROR ON INPUT " TO ERROR-MESSAGE-1 •

•
END-ROUTINE-1.

GO TO END-ROUTINE-2.
END-ROUTINE-3.

CLOSE ACTION-FILE.
IEND-ROUTINE-2.
I CLOSE DETAIL-FILE.
I CLOSE MASTER-FILE.
I STOP RUN. L ___ _

Figure 1. Illustration of Procedure Branching

28 Introduction

C~

(,

,~/

o

The procedure-names give us a means of controlling the processing of
successive items in our DETAIL-FILE. If, for example, we have finished
processing one complete DETAIL-RECORD and wish to begin processing the
next, control must be transferred to NEXT-DETAIL-RECORD-ROUTINE. This
is accomplished through the use of the COBOL verb GO TO, which transfers
control to the procedure indicated, as in the statement:

GO TO NEXT-DETAIL-RECORD-ROUTINE.

Processing then continues ~ith the first sentence following the
procedure-name NEXT-DETAIL-RECORD-ROUTINE. Note the many other examples
of the GO TO statement in our program. Each gives us the means of
transferring control from one procedure to another.

Another way in which to control the processing of a series of records
is through the use of the COBOL verb PERFORM. Like the verb GO TO, the
verb PERFORM specifies a transfer to the first sentence of a routine.
In addition, PERFORM provides various ways of determining the manner in
which the procedure is to be processed.

Within the COMPUTATION-ROUTINE, there is a statement which uses the
COBOL verb PERFORM:

IF STOCK-ON-HAND IN MASTER-RECORD IS LESS THAN ZERO
PERFORM DATA-ERROR GO TO ERROR-WRITE.

When STOCK-ON-HAND is computed to be less than zero, an error condition
has occurred. First, the compiler is instructed to transfer control to
a procedure named DATA-ERROR. Within DATA-ERROR, there is a MOVE
statement which copies the characters within quotation marks ("DATA
ERROR ON INPUT ") into the area of storage reserved for ERROR-MESSAGE-i.
(The characters within quotation marks are what is known as a literal
because they literally mean themselves. When ERROR-MESSAGE is
displayed, these words will be an actual part of the error message.)
Control is now transferred back to the next statement following the
PERFORM statement, which is the GO TO ERROR-WRITE statement.

Note that within COMPUTATION-ROUTINE there is another PERFORM
statement that is processed in a similar manner:

IF STOCK-ON-HAND IN MASTER-RECORD IS NOT GREATER THAN
ORDER-POINT IN MASTER-RECORD
PERFORM REORDER-i THRU REORDER-2.

This time, the PERFORM statement instructs the object program to
process several paragraphs before returning control to the next
successive statement. Thus, when this PERFORM statement is executed,
control is transferred to REORDER-i. This paragraph is executed, the
next paragraph, SWITCH-ROUTINE, is also executed, and then all the
statements contained in REORDER-2 are executed, at which point control
is returned to the first statement in WRITE-MASTER-ROUTINE -- the next
successive statement after the PERFORM statement.

A PERFORM'statement may specify that a single section or paragraph be
processed, or, if the desired procedure consists of more than one
section or paragraph, it can specify two names that identify the
beginning and the end of the procedure.

GO TO and PERFORM statements may seem to do much the same job. Yet
there are specific reasons that will cause the programmer to choose one
over the other. On the one hand, the programmer may wish to transfer
control to the same procedure from two entirely different sections of

Introduction 29

the program. In this case, PERFORM offers the most convenient method of
returning to the point from which the transfer was made. On the other
hand, if the programmer wishes to proceed to a portion of the program
without specifying a return to the current routine, a GO TO statement
wili provide the best method of making the transfer.

In addition to the GO TO and PERFORM statements, there is another
COBOL statement that affects procedure branching: the ALTER statement.

In any given execution of our object program, we mayor may not use
our ACTION-FILE. Only if some item in STOCK-ON-HAND has fallen below
REORDER-POINT will it be necessary to create an ACTION-RECORD.
Therefore, depending upon the data that is being processed, we will open
ACTION-FILE only if and when such an operation is necessary.

Suppose that for the first time in a particular execution of our
object program we have encountered a value for STOCK-ON-HAND that
indicates it must be reordered. The statement:

IF STOCK-ON-HAND IN MASTER-RECORD IS NOT GREATER THAN
ORDER-POINT IN MASTER-RECORD
PERFORM REORDER-l THRU REORDER-2.

instructs the compiler, when STOCK-ON-HAND is not greater than
ORDER-POINT, to transfer control to the first sentence in REORDER-i.
REORDER-i consists of but one statement:

GO TO SWITCH-ROUTINE.

SWITCH-ROUTINE, as it happens, is the next paragraph, and it contains
an ALTER statement:

ALTER REORDER-i TO REORDER-2
END-ROUTINE-l TO END-ROUTINE-3.

This statement instructs the compiler to substitute the words
REORDER-2 for SWITCH-ROUTINE (within REORDER-i), and END-ROUTINE-3 for
END-ROUTINE-2 (within END-ROUTINE-i). Since, at the time the ALTER
statement is executed, we are already beyond the point at which the
substitution is to be made in REORDER-i, we continue processing each
sequential statement until we reach the end of REORDER-2. We open
ACTION-FILE, and so forth, until we return control to the next statement
following the PERFORM statement.

However, in this execution of our object program, the next time we
must reorder an item, a different sequence of statements is performed.
The program transfers control to REORDER-i, but now the GO TO statement
within REORDER-l has a different operand. Instead of SWITCH-ROUTINE,
the program is now instructed to transfer control to the paragraph named
REORDER-2. Through use of the ALTER statement, we have created a switch
that bypasses the OPEN ACTION-FILE statement in subsequent processing of
reordered items, since the OPEN statement need be executed but once in
any execution of our object program.

Similarly, if ACTION-FILE was never opened in this execution of our
object program, it is not necessary to close it. Therefore, the second
part of the ALTER statement:

END-ROUTINE-i TO END-ROUTINE-3

allows alternate paths of program flow, depending on whether or not this
ALTER statement was ever executed. The precise rules for programming
the ALTER statement are given later in this publication; note, however,
the increased programming flexibility it offers.

30 Introduction

o

-----,----- -- ---- --- ---

Ending the Program

One last step in the logic of our inventory program must now be
taken. We have obtained the update information from a record, performed
the needed arithmetic calculati~ns, moved the data from one area of
storage to another, and written the decision-making and procedure
branching instructions necessary to take care of special cases and to
process each succeeding record. Then we have written the updated
information into the MASTER-FILE and, when necessary, have written the
ACTION-FILE. We must now terminate the program after all records have
been acted upon. Remember that we wrote our first READ statement as
follows:

READ DETAIL-FILE AT END GO TO END-ROUTINE-l.

END-ROUTINE-l will consist of the few instructions necessary to
terminate operations for this program.

Just as the programmer must make all the files available to the
system with a set of OPEN instructions, he must now disconnect these
same files with another series:

END-ROUTINE-i.
GO TO END-ROUTINE-2.

END-ROUTINE-3.
CLOSE ACTION-FILE.

END-ROUTINE- 2.
CLOSE DETAIL-FILE.
CLOSE MASTER-FILE.

These instructions initiate necessary housekeeping routines. (Note here
that, in our program, ACTION-FILE will be closed only if REORDER-l THRU
REORDER-2 has been performed and the ALTER statement has been executed.>
Once a file has been closed, it cannot be accessed by the program again.
The programmer now writes one last COBOL instruction, and it must be at
the logical end of his processing:

STOP RUN.

At this point, COBOL ending procedures are initiated, and the execution
of the program is halted.

This is only a general picture of the way in which a COBOL program
works. The following chapters in this manual give detailed descriptions
of all four divisions within a COBOL program, with explicit instructions
for correct programming in IBM Full American National Standard COBOL.

Introduction 31

--------------------------- ------ ---------,

r--,
IDENTIFICATION DIVISION.
PROGRAM-ID. UPDATING.
REMARKS. THIS IS A SIMPLIFIED UPDATE PROGRAM, USED AS AN

EXAMPLE OF BASIC COBOL TECHNIQUES. THE PROGRAM IS
EXPLAINED IN DETAIL IN THE INTRODUCTION TO THIS MANUAL.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360-HsO.
OBJECT-COMPUTER. IBM-360-HsO.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MASTER-FILE ASSIGN TO DA-2311-D-MASTER
ACCESS MODE IS RANDOM
ACTUAL KEY IS FILEKEY.

SELECT DETAIL-FILE ASSIGN TO UT-2400-S-INFlLE
ACCESS IS SEQUENTIAL.

SELECT ACTION-FILE ASSIGN TO UT-2400-S-0UTFILE.
DATA DIVISION.
FILE SECTION.
FD MASTER-FILE LABEL RECORDS ARE STANDARD

DATA RECORD IS MASTER-RECORD.
01 MASTER-RECORD.

05 ITEM-CODE PICTURE X(3).
05 ITEM-NAME PICTURE X(29).
05 STOCK-ON-HAND PICTURE S9(6) USAGE COMP SYNC.
05 UNIT-PRICE PICTURE S999V99 USAGE COMP SYNC.
05 STOCK-VALUE PICTURE S9(9)V99 USAGE COMP SYNC.
05 ORDER-POINT PICTURE S9(3) USAGE COMP SYNC.

FD DETAIL-FILE LABEL RECORDS ARE OMITTED
DATA RECORD IS DETAIL-RECORD.

01 DETAIL-RECORD.
05 ITEM-CODE PICTURE X(3).
05 ITEM-NAME PICTURE X(29).
05 RECEIPTS PICTURE S9(3)
05 SHIPMENTS PICTURE S9(3)

FD ACTION-FILE LABEL RECORDS ARE OMITTED
DATA RECORD IS ACTION-RECORD.

01 ACTION-RECORD.
05 ITEM-CODE PICTURE X(3).
05 ITEM-NAME PICTURE X(29).
05 STOCK-ON-HAND PICTURE S9(6)
05 UNIT-PRICE PICTURE S999V99
05 ORDER-POINT PICTURE S9(3)

WORKING-STORAGE SECTION.
77 SAVE PICTURE S9(10)
77 QUOTIENT PICTURE S9999
01 FILEKEY.

05 TRACK-ID
05 RECORD-ID

01 ERROR-MESSAGE.

PICTURE S9(S)
PICTURE X(29).

05 ERROR-MESSAGE-l PICTURE X(20).
05 ERROR-MESSAGE-2 PICTURE X(36).
05 ERROR-MESSAGE-3 PICTURE X(46).

USAGE COMP SYNC.
USAGE COMP SYNC.

USAGE COMP SYNC.
USAGE COMP SYNC.
USAGE COMP SYNC.

USAGE COMP SYNC.
USAGE COMP SYNC.

USAGE COMP SYNC.

L __ J

Figure 2. Complete UPDATING Program (Part 1 of 2)

32 Introduction

c

c)

o

r--,
PROCEDURE DIVISION.
OPEN-FILES-ROUTINE.

OPEN INPUT DETAIL-FILE.
OPEN 1-0 MASTER-FILE.

NEXT-DETAIL-RECORD-ROUTINE.
READ DETAIL-FILE AT END GO TO END-ROUTINE-1.

NEXT-MASTER-RECORD-ROUTINE.
MOVE ITEM-CODE IN DETAIL-RECORD TO SAVE.
DIVIDE 19 INTO SAVE GIVING QUOTIENT

REMAINDER TRACK-ID.
MOVE ITEM-NAME IN DETAIL-RECORD TO RECORD-ID.
READ MASTER-FILE INVALID KEY

I PERFORM INPUT-ERROR GO TO ERROR-WRITE.
COMPUTATION-ROUTINE.

COMPUTE STOCK-ON-HAND IN MASTER-RECORD = STOCK-ON-HAND
IN MASTER-RECORD + RECEIPTS - SHIPMENTS.

IF STOCK-ON-HAND IN MASTER-RECORD IS LESS THAN ZERO
PERFORM DATA-ERROR GO TO ERROR-WRITE.

MULTIPLY STOCK-ON-HAND IN MASTER-RECORD BY UNIT-PRICE
IN MASTER-RECORD GIVING STOCK-VALUE
IN MASTER-RECORD.

IF STOCK-ON-HAND IN MASTER-RECORD IS NOT GREATER THAN
ORDER-POINT IN MASTER-RECORD PERFORM REORDER-1
THRU REORDER-2.

WRITE-MASTER-ROUTINE.
WRITE MASTER-RECORD INVALID KEY

PERFORM OUTPUT-ERROR GO TO ERROR-WRITE.
GO TO NEXT-DETAIL-RECORD-ROUTINE.

REORDER-1. GO TO SWITCH-ROUTINE.
SWITCH-ROUTINE.

ALTER REORDER-1 TO REORDER-2
END-ROUTINE-1 TO END-ROUTINE-3.

DISPLAY "ACTION FILE UTILIZED".
OPEN OUTPUT ACTION-FILE.

REORDER-2.
MOVE CORRESPONDING MASTER-RECORD TO ACTION-RECORD.
WRITE ACTION-RECORD.

ERROR-WRITE.
MOVE DETAIL-RECORD TO ERROR-MESSAGE-2.
DISPLAY ERROR-MESSAGE.
GO TO NEXT-DETAIL-RECORD-ROUTINE.

INPUT-ERROR.
MOVE " KEY ERROR ON INPUT " TO ERROR-MESSAGE-1.
MOVE SPACES TO ERROR-MESSAGE-3.

DATA-ERROR.
MOVE "DATA ERROR ON INPUT " TO ERROR-MESSAGE-1.
MOVE MASTER-RECORD TO ERROR-MESSAGE-3.

OUTPUT-ERROR.
MOVE "KEY ERROR ON OUTPUT " TO ERROR-MESSAGE-1.
MOVE SPACES TO ERROR-MESSAGE-3.

END-ROUTINE-1.
GO TO END-ROUTINE-2.

END-ROUTINE-3.
CLOSE ACTION-FILE.

END-ROUTINE-2.
CLOSE DETAIL-FILE.
CLOSE MASTER-FILE.
STOP RUN. L __ J

Figure 2. Complete UPDATING Program <Part 2 of 2)

Introduction 33

c

C~

----------- - --- ---------- -------------------- ----- - ----------

PART I -- LANGUAGE CONSIDERATIONS

c~
• STRUCTURE OF THE LANGUAGE

• ORGANIZATION OF THE COBOL PROGRAM

• METHODS OF DATA REFERENCE

• USE OF THE COBOL CODING FORM

• FORMAT NOTATION

Part I -- Language Considerations

- -------------- "---- ----- --- -------

o

Character Set

The COBOL language is so structured that the programmer can write his
individual problem program within a framework of words that have
particular meaning to the COBOL compiler. The result is the performance,
of a standard action on specific units of data. For example, in a COBOL
statement such as MOVE NET-SALES TO CURRENT-MONTH, the words MOVE and TO
indicate standard actions to the COBOL compiler. NET-SALES and
CURRENT-MONTH are programmer-defined words which refer to particular
units of data being processed by his problem program.

COBOL CHARACTER SET

The complete character set for COBOL consists of the following 51
characters:

Character

0,1, ••• ,9
A,B, ••• ,Z

+

* /
=
$

"~'or, .,
(

)

>
<

Meaning

digit
letter
space
plus sign
minus sign (hyphen)
asterisk
stroke (virgule, slash)
equal sign
currency sign
comma
semicolon
period (decimal point)
quotation mark
left parenthesis
right parenthesis
"greater than" symbol
"less than" symbol

Not.e: : 'This compiIer' $" ·def~uit"·opt.:ion for the 'quotation ~ark' is 'the "',' ~
f'apostrophe ('). Unless the, .d~fault."optio;n "is .. :'Qyerridden •. "the",quotationJ
::):!l@~~,v"t~t,~y. n~i;'. "be .us~d.J If conformance with the standard COBOL
character set is desired, the programmer·must specify the quotation mark
(") through an EXEC card at compile time. If the quotation mark is thus
specified, the apostrophe (I) may not be used.

Characters Used in Words

The characters used in words in a COBOL source program are the
following:

a through 9
A through Z
- (hyphen)

A word.is composed of a combination of not more than 30 characters
chosen from the character set for words. The word cannot begin or end
with a hyphen.

Structure of the Language 37

Character Set

Characters Used for Punctuation

The following characters are used for punctuation:

Character

.
n lOr '.:

, (

)

Meaning
space
comma
semicolon
period
quotation mark
left parenthesis
right parenthesis

The following general rules of punctuation apply in writing a COBOL
source program:

1. When any punctuation mark is indicated in a format in this
publication, it is required in the program.

2. A period, semicolon, or comma, when used, must not be preceded by a
space, but must be followed by a space.

3. A left parenthesis must not be followed immediately by a space;
a right parenthesis must not be preceded immediately by a space.

4. At least one space must appear between two successive words and/or
parenthetical expressions and/or literals. Two or more successive
spaces are treated as a single space, except within nonnumeric
literals.

5. An arithmetic operator or an equal sign must always be preceded by
a space and fOllowed by a space. A unary operator may be preceded
by a left parenthesis.

6. A comma may be used as a separator between successive operands of a
statement. An operand of a statement'is shown in a format as a
lower-case word.

7. A comma or a semicolon may be used to separate a series of clauses.
For example, DATA RECORD IS TRANSACTION, RECORD CONTAINS 80
CHARACTERS.

8. A semicolon may be used to separate a series of statements. For
example, ADD A TO Bi SUBTRACT B FROM C.

9. The W'or~d"'~TiiEbf ,'may"be used to separate a 'series' ofF:$tatement's:~~":''to~
l~~ampl,e",)U)o" A, TO ,B ,THEN, SUBTRACT B FROM' C. ",' .' "::i~

38 Part I -- Language Considerations

C

-'

C)

Character Set

Characters Used for Editin~

Editing characters are single cha~acters or specific two-character
combinations belonging to the following set:

Character
B
o
+

CR
DB
Z
•
$

Meaning
space
zero
plus
minus
credit
debit
zero suppression
check protection
currency sign
comma
period (decimal point)

(For applications, see the discussion of alphanumeric edited and numeric
edited data items in "Data Division.")

Characters.Used in Arithmetic Expressions

The characters used in arithmetic expressions are as follows:

Character
+

•
/

••

Meaninq
addition
subtraction
multiplication
division
exponentiation

Arithmetic expressions are used in the COMPUTE statement and in
relation conditions (see ·Procedure Division" for more details).

Characters Used for Relation Conditions

A relation character is a character that belongs to the following
set:

Character
>
<
=

Meaning
greater than
less than
equal to

Relation characters are used in relation conditions (discussed in
·Procedure Division").

~tructure of the Language 39

--_._-----------------

Words

TYPES OF WORDS

A word is composed of a combination of not more than 30 characters
chosen from the character set for words. The word cannot begin or end
with a hyphen.

The space (blank) is not an allowable character in a word: the space
is a word separator. Wherever a space is used as a word separator, more
than one may be used.

A word is terminated by a space, or by a period, right parenthesis,
comma, or semicolon.

Reserved Words

Reserved words exist for syntactical purposes and must not appear as
user-defined words. However, reserved words may appear as nonnumeric
literals, i.e., a reserved word may be enclosed in quotation marks.
When used in this manner, they do not take on the meaning of reserved
words and violate no syntactical rules.

There are three types of reserved words:

1. Key Words. A key word is a word whose presence is required in a
COBOL entry. Such words are upper case and underlined in the
formats given in this publication.

Key words are of three types:

a. Verbs such as ADD, READ, and ENTER.

b. Required words, which appear in statement and entry formats,
such as the word TO in the ADD statement.

c. Words that have a specific functional meaning, such as ZERO,
NEGATIVE, SECTION, TALLY, etc.

2. optional Words. Within each format, upper case words that are not
underlined are called optional words because they may appear at the
user's option. The presence or absence of each optional word in
the source program does not alter the compiler's translation.
Misspelling of an optional word, or its replacement by another word
of any kind, is not allowed.

3. Connectives. There are three types of connectives:

a. Qualifier connectives, which are used to associate a data-name
or paragraph-name with its qualifier. The qualifier
connectives are OF and IN (see "Methods of Data Reference").

b. Series.connectives, which link two or more consecutive
operands. The series connective is the comma (,).

c. Logical connectives that are used in compound conditions. The
logical connectives are AND, OR, AND NOT, and OR NOT (see
"Conditions").

40 Part I -- Language Considerations

c

------- -------------- -----

Names

There are three types of ~ used in a COBOL program:

1. A data-name is a word that contains at least one alphabetic
character and identifies a data item in the Data Division. The
following are formed according to the rules for data-names:

file-names
index-names
mnemonic-names
record-names
report-names
sort-file-names
sort-record-names

Program Product Information (Version 4)

2. A condition-name is a name given to a specific value, set of
values, or range of values within the complete set of values that a
particular data item may assume. The data item itself is called a
conditional variable. The condition-name must contain at least one
alphabetic character (see "Data Division" and the discussion of
"Special-names" in "Environment Division").

3. A procedure-name is either a paragraph-name or a section-name. A
procedure-name may be composed solely of numeric characters. Two
numeric procedure-names are equivalent if, and only if, they are
composed of the same number of digits and have the same value (see
"Procedure Division"). The following are formed according to the
rules for procedure-names:

library-names
program-names

Note: Abbreviations (such as PIC for PICTURE) are allowed for some
reserved words: the abbreviation is the equivalent of the complete word.
For the formats in which they are allowable, such abbreviations are
shown in the format. The reserved words THRU and THROUGH are
equivalent. In statement formats, wherever the reserved word THRU
appears, the word THROUGH is also allowed.

Special-:-names

Special-names are used in the SPECIAL-NAMES paragraph of the
Environment Division. The term special-name refers to a mnemonic-name.
A mnemonic-name is a programmer-defined word that is associated in the
Environment Division with a function-name: function-names are names
with a fixed meaning, defined by IBM. --------------

In the Procedure Division, mnemonic-name can be written in place of
its associated function-name in any format where such substitution is
valid. The formation of a mnemonic-name follows the rules for formation
of a data-name (see "Special-names" in "Environment Division").

Structure of the Language 41

Constants

CONSTANTS

A constant is a unit of data whose value is not subject to change.
There are two types of constants: literals and figurative constants.

Literals

A literal is a string of characters whose value is determined by the
set of characters of which the literal is composed. Every literal
belongs to one of two categories, numeric and nonnumeric.

NUMERIC-LITERALS: There are two types of numeric literals: fixed-point
fan~ ,flo~ting-~oint.

A fixed-point numeric literal is defined as a string of characters
chosen from the digits 0 through 9, the plus sign, the minus sign, and
the decimal point. Every fixed-point numeric literal:

1. Must contain from 1 through 18 digits.

2. Must not contain more than one sign character. If a sign is used,
it must appear as the leftmost character of the literal. If the
literal is unsigned, the literal is positive.

3. Must not contain more than one decimal point. The decimal point is
treated as an assumed decimal point, and may appear anywhere in the
literal except as the rightmost'character. If the literal contains
no decimal point, the literal is an integer.

(See the discussion of fixed-point numeric items in "Data Division.")

:','" ·A floating-point. n~eric literal is a data item whose potential range
fof value is too great for fixed-point representation. A floating-point
; literal must have the form:

[±lmantissa E{t]exponent

A floating-point literal must appear as a continuous string of
characters with no intervening spaces. The plus or minus signs
,preceding the mantissa and exponent are the only optional characters
within the format. ,The m!ut~~~ consists of from 1 through 16 digits
with a required decimal point.

The exponent.is represented immediately to the right of the mantissa
,by, the symbol E, followed by~a plus or minus sign (if a sign is given)
and one or two digits. The magnitude of the number represented by a
floating-point literal must not exceed .72 x (10 76). A zero exponent
must be written as 0 or 00. It is assumed that an' unsigned exponent is
positive.

The value of the literal is the product of the mantissa and ten
raised, to the power given by the exponent. For example, the literal

+.72E+76

has the value

.72 X 10?0

,(See the discussion of floating-point numeric items in "Data Division.")

If the literal conforms to the rules for the formation of numeric
literals, but is enclosed in quotation marks, it is a nonnumeric
literal.

42 Part I -- Language Considerations

C)

" U
'"

G

constants

NONNUMERIC LITERALS: A nonnumeric literal is defined as a string of any
allowable characters in the Extended Binary Coded Decimal Interchange
Code (EBCDIC) set, excludi~g the quotation mark character. A nonnumeric
literal may be composed of from 1 through 120 characters enclosed in
quotation marks. Any spaces within the quotation marks are part of the
nonnumeric literal and, therefore, are part of the value. All
nonnumeric literals are in the alphanumeric category.

Figurative Constants

A figurative constant is ,a constant to which a specific data-name has
been assigned. These data-names are reserved words. Such a data-name
must notlbe enclosed in quotation marks when used as a figurative
constant. The singular and plural forms of a'figurative constant are
equivalent and may be used interchangeably.

A figurative constant may be used in place of a literal wherever a
literal appears in a format. There is one exception to this rule: if
the literal is restricted to numeric characters, only the figurative
constant ZERO (ZEROES, ZEROS) is allowed.

The fixed data-names and their meanings are as follows:

ZERO
ZEROES
ZEROS

SPACE
SPACES

HIGH~VALUE

HIGH-VALUES

LOW-VALUE
LOW-VALUES

QUOTE
QUOTES

ALL literal

Represents the value 0, or one or more
occurrences of the character 0, depending on
context.

Represents one or more blanks or spaces.

Represents one or more occurrences of the
character that has the highest value in the computer's
collating sequence. The character for HIGH-VALUE is
the hexadecimal IFFI.

Represents one or more occurrences of the
character that has the lowest value in the computerls
collating sequence. The character for LOW~VALUE is
the hexadecimal 1001 •

Represents one or more occurrences of the
quotation mark' character. The word QUOTE (QUOTES)
cannot be used in place of a quotation mark to enclose
a nonnumeric literal.

Represents one or more occurrences of the string of
characters composing the literal. The literal must be
either a nonnumeric literal or a figurative constant
other than the ALL literal. When a figurative
constant is used, the word ALL is redundant and is
used for readability only.

Structure of the Language 43

Special Registers

SPECIAL REGISTERS

The compiler generates storage areas that are primarily used to store
information produced with the use of special COBOL features; these
storage areas are called special registers.

TALLY

The word TALLY is the name of a special register whose implicit
description is that of an integer of five digits without an operational
sign, and whose implicit USAGE is COMPUTATIONAL. The primary use of the
TALLY register is to hold information produced by the EXAMINE statement.
References to TALLY may appear wherever an elementary data item of
integral value may appear (see the "EXAMINE Statement" in "Procedure
Division") •

LINE-COUNTER

LINE-COUNTER is a numeric counter that is generated by the Report
Writer. (For a complete discussion, see "Report Writer.")

PAGE-COUNTER

PAGE-COUNTER is a numeric counter that is generated by the Report
Writer. (For a complete discussion, see ""Report Writer.")

; CURRENT-DATE

" CURRENT-:--DATE, is an S-:byte alphanumeric field, valid only as:, th~'.', ~,'
;,sending field in a ,MOVEstateme~t'.,' The format of these, eight bytes':
:~DD/YY (month/day/year) •

. TIME-OF-DAY

TlME-OF-DAY is a '6-byte external-decimal ,field, :valid only':'as "the: " ,
sending field in a MOVE statement. The 'format is HHMMSS ,(hour, :minu~e"">t':

, second). ' '/' ,<',:,('<\
" ':"~::!

: RETURN-CODE
, ' "'< <;~~

RETURN-CODE is a binary item whose PICTURE is 59999.' It' can be',set>"f/1
by the user to pass a 're~urn code to the' operating system or toe ' ::'" ,,,''> :;: '~,;
invoking program when executing a STOP ,RUN" GOBACK1 or 'EXIT PROGRAM';>' ;<:,:',':'~,

> statement ,(~ee' "Subprogram"Linkage Statements" in "Procedure ,Dlvision~J';;;~
, The retur~ code may be' used by the operating system to determine' : :'>1
r sUb~eque~t job or jOb'step execution flow. When control is returne~ to}'!,
an l.nvokl.ng program, the return, code passed by, the called program is ' "
I 'red 'in RET:oRN-COOE.' , The compi'ler init1aliz~ the field to 0 (zero),::;.:
~,whicli ,norma~ 'return ,code for a successful completion; other' , "'::,:\'

, , " ,,~~.0:«;;...,v ~ y < ~., ... y <",' <, "'~»"','''''''''''' .. N''''''':M/~'':;I

44 Part I -- Language Considerations

(j

·-----------------

Special Registers

lt~~:~:~">·~et~rned are-"c~~~e-nti~n~~lY' in multiples of 4. However, the
I ~,x,~mum value the field can contain is 4095.

t·- (The use of CURRENT-DATE, TIME-OF-DAY, and RETURN-CODE is explained
tin, the Programmer's.Guide.)
t··· ,- ,
r " f,.: '
1 LABEL-RETURN i ,',
l" '

i· LABEL-RETURN is an alphanumeric item whose PICTURE is X. It may be'
l.used to indicate the'.validity of nonstandard labels. At the completion
I, of. a USE BEFORE STANDARD LABEL PROCEDURE for an input file, the
[programmer must set'LABEL-RETURN to indicate ,the validity of the
rnonstandard.label. It must. be set. to nonzero 1f the label is not
tcorrect.
(

},.' The following registers ,are used by the Sort feature and are
t'described under ,"Sort:"
k' , .-

. fSOR~F:LE-SIZE
r,~ORT-cbRE-SI ZE

SORT;';'MODE-SIZE

t ~9RT-~ETURN .

F :,' .'
t .. P;r.;,O.-,9;ra;;;;;,;;m:-" ..;.p;r.;,o..;d..;u;,;:;c_t:-=I.;.;n.:.f~9.:.r_m=a.;::;t:=.i,on (V~rsion 3 and version ~!.
l;.-

For Versions 3 and 4 the fOllowing additional Sort special register
,:'~ "'.: i~ also available:

r>:'~' . SORT.,MESSAGE .

I'program Product Information (Version 4)

t;·':, "For Version 4, the special registers DATE, DAY, and TIME may be
f" ., "used only as sending fields in conjunction with the ACCEPT r (' statement to ,make. this, system information available to the COBOL
t' " ,program.
r"
I:~<' " I?ATE"

,', ',', DATE' ,"is an unsigned external decimal item' with PICTURE 9 (6). r .: .. Within: DATE the sequence -of data elements (from left to right) is:
I.:: , .. ' 2 digits for year of century •. ·2 digits for month of year, 2 digits

' .. ~ ,.-, fpr ,-day of month. ,T,.herefore', July 1, 1971 is expressed,. as 710701.

DAY
'.- ',::, PAY' is, an: unsigned external decimal item with PICr,URE 9 (5) • Wi thin

" '.', " DAY'. the sequence of data elements (from left to right) is: 2
,·digits for yea.r of' century, .3 digits for day of year. Thus, July

:.:J;" ,1.971. is', expressed as .11183.,

: ,TIME

':<rlME 'is' an unsigned external decimal item with PICTURE 9(8).
Within TIME the sequenc'e, of data elements (from left to right) is:
2 digits for hour of day,'2.digits for minute of hour, 2 digits for

,second of minute, 2 digits for hundredths of' seconds. Thus 2:41 PM
is expressed as 14410000. '

Structure of the Language 45

Special Registers (Version 4)

'" ,~, See ';';:he~d&$ciiption,' of, th~ ACCEPT' "s't~t;~ent in "Procedure
Division~' for additional informatiotf.'

; ,~: , The specia'l registers ,'DATE, DAY,' and TIME are valid only as ,;
~,sending ~ields ,in 'the ACCEPT stateme~t, as opposed to the special
, regis,ters, CURRENT-DATE 'and, TI:ME-OF-OAY which ,are valid only' as "

sending fields' 'in ,1;.he ,~OVE, f':Jtatement..
, ,: <...,~>,~ ~,' ... '~ <'" ... :,v'>"':> .. ,:, ... ' -'-.. '" < ,>,~ .. ",",... ...::., ... ~, ,

46 Part I -- Language Considerations

(j

~-- ,

L)

~U~UL ~rogram Structure

Every COBOL source program is divided into four divisions. Each
division must be placed in its proper sequence, and each must begin with
a division header.

The four divisions, listed in sequence, and their functions are:

• IDENTIFICATION DIVISION, which names the program.

• ENVIRONMENT DIVISION, which indicates the machine equipment and
equipment features to be used in the program.

• DATA DIVISION, which defines the nature and characteristics of data
to be processed.

• PROCEDURE DIVISION, which consists of statements directing the
processing of data in a specified manner at execution time.

~: In all formats within this publication, the required clauses and
optional clauses (when written) must appear in the sequence given in the
for.mat, unless the associated rules explicitly state otherwise.

Structure of the COBOL Progra~

{

IDENTIFICATION DIVISION.}

10 DIVISION.

PROGRAM-ID. program-name.

[AUTHOR. [comment-entry] •••]

[INSTALLATION. [comment-entry] •••]

[DATE~WRITTEN. [comment-entry] •••]

[DATE-COMPILED. [comment-entry] •••]

[SECURITY. [comment-entry] •••]

[REMARKS. [comment-entry] •••]

ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.

SOURCE-COMPUTER. entry

OBJECT-COMPUTER. entry

[SPECIAL-NAMES. entry]]

(INPUT-OUTPUT SECTION.

FILE~CONTROL. {entry} •••

(I-O~CONTROL. entry]]

Organization of the COBOL Program 47

------------- - ------------

COBOL Program Structure

DATA DIVISION.

[FILE SECTION.

{file description entry

{record description entry} ••• } •••]

[WORKING-STORAGE.SE~.

[data item description entry] •••

[record description entry] •••]

;::(redQ'tci':j'd'esot1pt'ion/ en:trif~ ~(:~J:~\~: iJ 'C-Vet:tiion, <" t':: !
li~:~J; :~~':~'~W>l.~:~2sM<>''''~i«:~~~~i.~~~~~~j,:.J~;i ~~t!~;,~~~~~~~'::'::::~;~!1~~i,,~:~>«~:w~:;: ~:::::~~~:;~~':'~'~*'~!

[REPORT SECTION.

{report description entry

{report group description entry} ••• } •••]

PROCEDURE DIVISION tr6S1NG'~:Icreii£1lr~fi?1\Tt1aeii~Ifref~'2r:',":~~~1
:.,:.:.;==:.:.::: =--..=;;:----.= W~,..........."..:v;~,~,,~~_4..w<~~«~:.,,::~"'.M.k"l+.tw*~~.,..,J.i».......,~M_....,~~.;...,;,,:....::,,6.,.,'N~' ',*~-:-"'''~ff'::'''';:~'''''''~.w;:'''''''_''''~'w.W'':';';v:?»>~

[[DECLARATIVES.

{section-name SECTION. USE Sentence.

{paragraph-name. {sentence} ••• } ••• } •••

END DECLARATIVES.]

{section-name SECTION [priority].]

{paragraph-name. {sentence} ••• } ••• } •••

_8 Part I -- La~quaqe Considerations

c

G

G

Qualification

Every name used in a COBOL source program must be unique, either
because no other name has the identical spelling, or be~ause it is made
unique through qualification, subscripting, or indexing.

An identifier is a data-name, unique in itself, or made unique by the
syntactically correct combination of qualifiers, subscripts, and/or
indexes.

QUALIFICATION

A name may be made unique if the name exists within a hierarchy of
names and the name can be singled out by mentioning one or more of the
higher levels of the hierarchy. The higher levels are called
qualifiers. Qualification is the process by which such a name is made
unique.

Qualification is applied by placing after a data-name or a
paragraph-name one or more phrases, each composed of a qualifier
preceded by IN or OF. IN and OF are logically equivalent. Only one
qualifier is allowed for a paragraph-name.

Enough qualification must be mentioned to make the name unique;
however, it may not be necessary to mention all levels of the hierarchy.
For example, if there is more than one file whose records contain the
field EMPLOYEE-NO, yet there is but one file whose records are named
MASTER-RECORD, EMPLOYEE-NO OF MASTER-RECORD would sufficiently qualify
EMPLOYEE-NO. EMPLOYEE-NO OF MASTER-RECORD OF MASTER-FILE is valid but
unnecessary (see the discussion of level indicators and level numbers in
"Data Division").

The name associated with a level indicator is the highest level
qualifier available for a data-name. (A level indicator (FD, SD, RD)
specifies the beginning of a file descriptioi1;-sort-iITe descript'ion, or
report description.) A section-name is the highest (and the only)
qualifier available for a procedure-name (see the discussion of
procedure-names in "Procedure Division"). Thus, level indicator names
and section-names must be unique in themselves since they cannot be
qualified.

Program. Product Information (Version 4)

In the communication Section, the level indicator CD specifi'es th~~
b~.g~~~~~~ of a communi~~tion descrIption-. ------- . \

The name of a conditional variable can be used as a qualifier for any
of its condition-names. In addition, a conditional variable may be
qualified to make it unique.

The rules for qualification follow:

1. Each qualifier must be of a successively higher level, and must be
within the same hierarchy as the name it qualifies.

2. The same name must not appear at two levels in a hierarchy.

3. If a data-name or a condition-name is assigned to more than one
data item in a source program, the data-name or condition-name must

Methods of Data Reference 49

Subscripting / Indexing

be qualified each time reference is made to it in the Procedure,
Environment, or Data Division (except in the REDEFINES clause
where, by definition, qualification is unnecessary). (See the
REDEFINES clause in "Data Division.")

4. A paragraph-name must not be duplicated within a section. When a
paragraph-name is qualified by a section-name, the word SECTION
must not appear. A paragraph-name need not be qualified when
referred to within the section in which it appears.

5. A data-name cannot be subscripted when it is being used as a
qualifier.

6. A name can be qualified even though it does not need qualification;
if there is more than one combination of qualifiers that ensures
uniqueness, then any of these combinations can be used.

Although user-defined data-names can be duplicated within the Data
Division and Procedure Division, the following rules should be noted:

1. No duplicate section-names are allowed.

2. No data-name can be the same as a section-name or a paragraph-name.

3. Duplication of data-names must not occur in those places where the
data-names cannot be made unique by qualification.

SUBSCRIPTING

Subscripts can be used only when reference is made to an individual
element within a list or table of elements that have not been assigned
individual data-names (see "Table Handling").

INDEXING

References can be made to individual elements within a table of
elements by specifying indexing for that reference. An index is
assigned to a given level of a table by using an INDEXED BY clause in
the definition of the table. A name given in the INDEXED BY c~ause is
known as an index-name and is used to refer to the assigned index (see
"Table Handling").

50 Part I -- Language Considerations

c

Cj

----------- -------------- -------------------------------

Reference Format

USE OF THE COBOL CODING FORM

The reference format provides a standard method for writing COBOL
source programs. The format is described in terms of character
positions in a line on an input/output medium. Punched cards are the
initial input medium to the COBOL compiler. The compiler accepts source
programs written in reference format (see Figure 3) and produces an
output listing of the source program in the same reference format.

The rules for spacing given in the following discussion of the
reference format take precedence over any other specifications for
spacing given in this publication.

SEQUENCE NUMBERS

A sequence number, consisting of six digits in the sequence number
area, is used to identify numerically each card image to be compiled by
the COBOL compiler. The use of sequence numbers is optional.

If sequence numbers are present, they must be in ascending order. An
error message is i'ssued when source language input is out of sequence.
sequence checking can be suppressed at compile time by overriding the
compiler's default option of checking.

r--,
IBM COBO L. Coding Form

SYSTEM PUNCHING INSTRUCTIONS PAGE OF

PROGRAM GRAPHIC

*, PROGRAMMER ~ DATE
CARD FORM'

PUNCH

SEOUENCE §i A la (PAGEl ISI.UAU
COBOL STATEMENT IDENTIFICATION

, . . " "
,. . ,

01 I i
102 I I

'·103 j i
104 1 T

~--~
I Columns 1-6 represent the sequence number area. I
I Column 7 is the continuation area. I
I Columns 8-11 represent Area At Used for writing COBOL source statements. I
I Columns 12-72 represent Area B~ I
I Columns 73-80 are used to identify the program. I L __ J

Figure 3. Reference Format

Use of the COBOL Coding Form 51

Reference Format

AREA A AND AREA B

Area A, columns 8 through 11, is reserved for the beginning of
division headers, section-names, paragraph-names, level indicators, and
certain level numbers. Ar~~~ occupies columns 12 through 72.

Division Header

The division header must be the first line in a division. The
division header starts in Area A with the divisiol'l:~,~a,m~"" JC?,~lo.~est by, a
space and the word DIVISION, and a period. ,If this program is to be;

~ called, a space 'and a USING clause" may' follow the words PROCEDURE
:DIVISIQN., No other text may appear on t.he saine line as'the'divisio'ri'
header.

Section.Header

The name of a section starts in Area A of any line following the
division header. The section-name is followed by a space, the word
SECTION, and a period. If program segmentation is desired, a space and
a priority number may follow the word SECTION. No other text may appear
on the same line as the section-header, except USE and COpy sentences.

Note: Although USE and COpy may appear in the Declaratives portion of
the Procedure Division, only USE is restricted to the Declaratives
portion. COPY may be used elsewhere in the COBOL program.

Paragraph-names and.Paragraph~

The name of a paragraph starts in Area A of any line following the
division header. It is followed by a period followed by a space.

A paragraph consists of one or more successive sentences. The first
sentence in a paragraph begins anywhere in Area B of either the same
line as paragraph-name or the immediately following line. Each
successive line in the paragraph starts anywhere in Area B.

Level Indicators and Level Numbers

In those Data Division entries that begin with a level indicator, the
level indicator begins in Area A, followed in Area B by its associated
file-name and appropriate descriptive information.

In those data description entries that begin with a level number 01
or 77, the level number begins in Area A, followed in Area B by its
associated data-name and appropriate descriptive information.

In those data description entries that begin with level numbers 02
through 49, 66, or 88, the level number may begin anywhere in Area A or
Area B, followed in Area B by its associated data-name and descriptive
information.

52 Part I -- Language Considerations

i
,)
"-./

c)

Reference Format

CONTINUATION OF LINES

Any sentence or entry that requires more than one line is continued
by starting sutsequent line(s) in Area B. These subsequent lines are
called continuation lines. The line being continued is called the
continued line. If a sentence or entry occupies more than two lines,
all lines other than the first and last are both continuation and
continued lines.

CONTINUATION OF NONNUMERIC LITERALS

When a nonnumeric literal is continued from one line to another, a
hyphen is placed in column 7 of the continuation line, and a quotation
mark preceding the continuation of the literal may be placed anywhere in
Area B. All spaces at the end of the continued line and any spaces
following the quotation mark of the continuation line and preceding the
final quotation mark are considered part of the literal.

CONTINUATION OF WORDS AND NUMERIC LITERALS

When a word or numeric literal is continued from one line to another,
a hyphen must be placed in column 7 of the continuation line to indicate
that the first nonblank character in Area B of the continuation line is
to follow the last nonblank character on the continued line, without an
intervening space.

BLANK LINES

A blank line is one that contains nothing but spaces from column 7
through column 72, inclusive. A blank line may appear anywhere in the
source program, except immediately preceding a continuation line.

COMMENT LINES

Explanatory comments may be inserted on any line within a source
:program by placing an asterisk in column 7 of the line. Any combination
:of the characters from the EBCDIC set may be included in Areas A and B
~of that line. The asterisk and the characters will be produced on the
!,s,ource listing but serve no other purpose (see the NOTE statement in
"compiler Directing Statements" in "Procedure Division.")

Use of the COBOL Coding Form 53

Format Notation

FORMAT NOTATION

Throughout this publication, basic formats are prescribed for various
elements of COBOL. These generalized descriptions are intended to guide
the programmer in writing his own statements. They are presented in a
uniform system of notation, explained in the following paragraphs.
Although it is not part of COBOL, this notation is useful in describing
COBOL.

1. All words printed entirely in capital letters are reserved words.
These are words that have preassigned meanings in COBOL. In all
formats, words in capital letters represent an actual occurrence of
those words. If any such word is incorrectly spelled, it will not
be recognized as a reserved word and may cause an error in the
program.

2. All underlined reserved words are required unless the portion of
the format containing them is itself optional. These are key
words. If any such word is missing or is incorrectly spelled, it
is considered an error in the program. Reserved words not
underlined may be included or omitted at the option of the
programmer. These words are used only for the sake of readability;
they are called optiQ~~~ ~ord~ and, when used, must be correctly
spelled.

3. The characters +, -, <, >, =, when appearing in formats, although
not underlined, are required when such formats are used.

4. All punctuation and other special characters (except those symbols
cited in the following paragraphs) represent the actual occurrence
of those characters. Punctuation is essential where it is shown.
Additional punctuation can be inserted, according to the rules for
punctuation specified in this publication.

5. Words that are printed in lower-case letters represent information
to be supplied by the programmer. All' such words are defined in
the accompanying text.

6. In order to facilitate references to them in text, some lower-case
words are followed by a hyphen and a digit or letter. This
modification does not change the syntactical definition of the
word.

7. certain entries in the formats consist of a capitalized word(s)
followed by the word "Clause" or "Statement." These designate
clauses or statements that are described in other formats, in
appropriate sections of the text.

8. Square brackets ([]) are used to indicate that the enclosed item
may be used or omitted, depending on the requirements of the
particular program. When two or more items are stacked within
brackets, one or none of them may occur.

9. Braces ({ }) enclosing vertically stacked items indicate that one
of the enclosed items is required.

54 Part I -- Language Considerations

(~~

\ , .

(~

c

----- ------------- --------------- --------- ---

c)

Format Notation

10. The ellipsis (•••) indicates that the immediately prec~ding unit
may occur once, or any number of times in succession. A unit means
either a single lower-case word, or a group of lower-ease-words and
one or more reserved words enclosed in brackets or braces. If a
term is enclosed in brackets or braces, the entire unit of which it
is a part must be repeated when repetition is specified.

11. Comments, restrictions, and clarifications on the use and meaning
of every format are contained in the appropriate portions of the
text.

Format Notation 55

• IDENTIFICATION DIVISION

• ENVIRONMENT DIVISION -- FILE PROCESSING SUMMARY

• ORGANIZATION OF THE ENVIRONMENT DIVISION

• ENVIRONMENT DIVISION -- CONFIGURATION SECTION

• ENVIRONMENT DIVISION -- INPUT-OUTPUT SECTION

o
Part II -- Identification and Environment Divisions 57

('-~

\.- ",.

c>

Identification Division Structure/PROGRAM-ID Paragraph

The Identification Division is the first division of a COBOL program.
It identifies the source program and the object program. A source
program is the initial problem program; an object program is-the-output
from a compilation.

In addition, the user may include the date the program is written,
the date the compilation of the source program is accomplished, etc., in
the paragraphs shown.

structure of the Identification Division

{
IDENTIFICATION DIVI§!Q~.}
10 DIVISION ..

PROGRAM-ID. program-name.

[AUTHOR. [comment-entry] •••]

[INSTALLATION. [comment-entry] •••]

[DATE-WRITTEN. [comment-entry] •••]

[DATE-~OMPILED. [comment-entry] •••]

[SECURITY. [comment-entry] •••]

[REMARK§. [comment-entry] •••]

Specific paragraph-names identify the type of information contained
in the paragraph. The name of the program must be given in the first
paragraph, which is the PROGRAM-ID paragraph. The other paragraphs are
optional. If included, they must be presented in the order shown.
However, this compiler will accept them in any order.

The Identification Division must begin with the reserved words ,
IDENTIFICATION DIVISION followed by a period. Each £Q~~~~£=~g~fY may be
any combination of characters from the EBCDIC set, organized to conform
to sentence and paragraph structure. This compiler will accept 10
DIVISION followed by a period as a substitute for the standard d'ivision
header.

The PROGRAM-ID paragraph gives the name by which a program is
identified.

r--,
I Format I
~--~
I I
I PROGRAM=ID. program-name. I
I I L __ J

Identification Division 59

PROGRAM-.ID/DATE-COMPILED Paragraphs

The PROGRAM-ID paragraph contains the name of the program and must be
present in every program.

Program-name identifies the objec1: program to the control program.
Program-name must conform to the rules for. formation of a
proced ure-name r:':"J{owever;' : tnr~f~~o~pi'l;etr ':ac(j~p'1;s'''pr9gr~m:'::n,~~:J"rJ~~~n;:~~

f(~]~~'~li'~'J;i:'::(tup1;:.atiqn marks'. The first eight characters of prograro-name are
used as the identifying name of the program and should therefore be
unique as a program-name.

since the system expects the first character of program-name to be
alphabetic, the first character, if it is numeric, will be converted as
follows:

o to J

1-9 to A-I

Since the system does not include the hyphen as an allowable
character, the hyphen is converted to ~ero if it appears as the second
through eighth character of the name.

Note: For additional information concerning program-name when using the
Sort or segmentation features, see the Programmerus Guide.

DATE-COMPILED Paragraph

The DATE-COMPILED paragraph provides the compilation date on the
source program listing.

r--,
I Format J

r--i
I 1
I DATE-COMPILED. [comment-entry] I
I J L __ J

The paragraph-name DATE-COMPILED causes the current date to be
inserted during program compilation. If a comment-entry is present,
even though it spans lines, it is replaced in its entirety with the
current date.

60 Part II -- Identification and Environment Divisions

(-~

I,
\

---~------

Data Organization

In COBOL, all aspects of the total data processing problem that
depend on the physical characteristics of a specific comput'er are given
in one portion of the source program known as ~he Environment Division.
Thus, a change in computers entails major changes in this division only.
The primary functions of the Environment Division are to describe the
computer system on which the object program is run and to establish the
necessary links between the other divisions of the source program and
the characteristics of the computer.

The exact contents of the Environment Division depend on the method
use,d to process files in the COBOL program. Before the ,language
elements used in the Environment Division can be discussed meaningfully,
some background in the file processing techniques available to the COBOL
user must be given.

Each combination of data organization and access method specified in
the COBOL language is defined as a file-processing technique. The
file-processing technique to be used for a particular file is determined
by the data organization of that file and whether the access method is
sequential or random. Table 3, at the end of this chapter, summarizes
the file-processing techniques.

DATA ORGANIZATION

Four types of data organization are made available to Operating
System COBOL users: sequential, direct'~ :j;e+~ti.v~I:::,:a.nd' .inde~ed.; The
means of creating or retrieving logical records in a file differ,
depending on which type of data organization exists (organization being
the structure of data on a physical file). Each type of data
organization is incompatible with the others. organization of an input
file must be the same as the organization of the file when it was
created.

Sequential Data Organization

When sequential data organization is used, the logical records in a
file are positioned sequentially in the order in which they are created
and are read sequentially in the order in which they were created (or in
sequentially reversed order if the REVERSED option of the OPEN statement
is written for tape files). such a file organization is referred to in
this publication as standard sequential organization.

This type of data organization must be used for tape or unit-record
files and may be used for files assigned to mass storage devices. No
key is associated with records on a sequentially organized file.

Environment Division -- File Processing Summary 61

Access Methods

Direct Data Organization

Direct data organization is characterized by the use of the relative
track addressing scheme. When this addressing scheme is used, the
positioning of the logical records in a file is determined by an ACTUAL
KEY supplied by the user in the Environment Division. ACTUAL KEY is a
key which is used to 19cate a logical record of the file. The first
portion is the track identifier, which specifies the track (relative to
the first track for a file) on which space to place a record is sought,
or at which the search for a record is to begin. The second portion is
the record identifier, which is a symbolic identifier for the record.
Files with direct data organization must be assigned to mass sto~age
devices.

Relative Data Orqanizatiou,

Relative data organization is characterized by the use of the
relative record addressing scheme. When this addressing scheme is used,
the position of the logical records in a file is determined relative to
the first record of the file starting with the initial value of zero. A
NOMINAL KEY is used to identify randomly accessed records. Files with

: relative data organization must be assigned to mass storage devices.

, Indexed Data organization

When indexed data organization is used, the position of each logical
» record in a file is determined by indexes created with the file and
,maintained by the system. The indexes are based on keys provided by the'
: user. Indexed files must be assigned to mass storage devices.
i

ACCESS METHODS

Two access methods are available to users of Operating System COBOL:
sequential access and random access.

sequential access is the method of reading and writing records of a
file in a serial manner; the order of reference is implicitly determined
by the position of a record in the file.

Random access is the method of reading and writing records in a
programmer-specified manner; the control of successive references to the
file is expressed by specifically defined keys supplied by the user.

ACCESSING A SEQUENTIAL FILE

A standard sequential file may only be accessed sequentially, i.e.,
records are read or written in order. Records can be created and
retrieved; for standard sequential files on mass storage devices,
records can also be updated.

ACCESSING A DIRECT FILE

Direct files may be accessed both sequentially and randomly. Records
can be created and retrieved sequentially; they can be created,
retrieved, updated, and added randomly.

62 Part II -- Identification and Environment Divisions

----- ------ ----- ---------- - ---- --- .- ----------- -.----. ------- ----------------

(~_/\

Access Methods

Sequential Access

When a direct file is being read sequentially, records are retrieved
in logical sequence: this logical sequence corresponds exactly to the
physical sequence of the records. Dummy records, if present, are also
made available.

I ,- <"'When a- direct file is being read sequentially, the ACTUAL KEY clause!
\may be specified. The track identifier (representing the relative trac~
{number) is not changed. The symbolic identifier for the record is '
lplaced in the record-identifier portion of ACTUAL KEY, except when an
tinput/output error occurs.

A direct file may be created sequentially, and the ACTUAL. KEY clause'
:is required for this type of processing. Data is written sequentially.
,When the user wishes to switch tracks, he must add a number equal to the
lnumber of the tracks to be advanced to the track number portion of the
~.ACTUAL KEY field.

t' COBOL will add dummy (recording mode F) or capacity (recording mode
~O, V, Or S) records to complete the previous track(s). A relative track
i,address of. zero in the ACTUAL KEY field corresponds to the first track
lassigned to the file. If the initial value is not zero, COBOL will
}complete the intervening tracks with dummy or capacity records and write'
~the first record on the track indicated by the ACTUAL KEY. When no more'
lspace is available on the specified track, the compiler generates coding
fto advance to the next track by adding one to the track address portion :
:of the ACTUAL KEY. Data management will automatically replace the dummY;
lor capacity records when additions are made to the file. At the time '
;that the file is closed, dummy or capacity records are added to the
!current track and all following tracks, as determined by the TRACK-LIMI~
lclause (see "TRACK-LIMIT Clausen in "Input-Output Sectionn

). When a i
~unit of a multivolume file is closed, the tracks which have been ;
iallocated on the current unit are initialized with dummy or capacity
(records before the next unit is made available.
r- .
;
i After a WRITE, CLOSE, or CLOSE UNIT, the relative track number for
/the last WRITE (of a data, dummy, or capacity record) is placed in the
:!~!,~,1;. ;o~r .. bytes C?f ,tile ACTUAL KE!Y by the compiler.

Dummy records are identified by the figurative constant HIGH-VALUE in
the fifth position of the ACTUAL KEY. If no ACTUAL KEY is specified,
dummy records are not identifiable.

Random. Access

When a direct file is accessed randomly, the ACTUAL KEY clause is
required.

When records are being retrieved from a direct file raridomly, the
ACTUAL KEY is used to determine the track and to locate a particular
record on that track. When a match is found, the data portion of the
record is read, or, for a rewrite operation, replaced by a new record.
Ttl~,.specified track is ~he only one searched for the desired record. If,
he desired record cannot be found on the specified track, the search)
n' be-'extended to a specific number of tracks, or to the entire file by:
nD card option (see the prQgrammer's Guig~).

Environment Division File Processing Summary 63

Access Methods

For a WRITE operation, after locating the track, the system searches
for the last record on the track, and writes the new record (with
cOntrol fields including a key field equal to the identifier found
within the ACTUAL KEY field) after the last record. :tf the'required

E
1,aC:fEf 'cannc)t'" De fO~Und"'on the s"pecified' t.rack, "the' search can be extended';
o include',a specific 'number ,of tracks, or to include the entire file, by~

j~,'" l?P" ca,:rq,,,,option. " , " " , " ' , ' " j

When a direct file is being created, all the tracks of the fiie are
initialized at open time with capacity records (mode U, V, or S) or
dummy records (mode F). The number of tracks to be initialized is
determined by the TRACK-LIMIT clause, or by the SPACE parameter in the
DD card if the clause is omitted. Therefore, a WRITE statement issued
for an output file is processed in the same manner as a WRITE statement
that adds a record to an I-O file.

Appendix B contains an example of a program to create a direct file;
Figure 2, in the Introduction, contains an example of a program to
update a direct file.

~;~;ING ~ RELATIVE ~~E

I~:",' ~ ~elat1v~' file may' be accessed either "sequentially 'or randomly.
ReCords can be, created, retrieved, updated, and added sequentially;, they:::
;:~n be, :t;etrieved, upda~ed, and added ,randomly. ' "',"::

i

Ii, '::' :,:j
"{

truen~ialAccess1

1'{,~:\, ,A '.relative ~ile may be' cr,eated sequentially 'only~ , When a relative ,", I
Lfile ,is vbeinq "created, the NOMINAL KEY clause may be specified. ',The < {', <, ,

(:compiler adds" dummy records to complete the ,last track of the file, when:
~lt, is 'closed and to initialize the allocated tracks on the current. " :,,' ,
fvol'ume when a CLOSE' UNIT is execut.ed. The relat.ive blOck number of the',
~~~~f1Jt. ',record wr,itten 1s pla?ed in ~he NOMINAL REt; after a WRITE, CLOSEI' , 
I'OX' CLOSE UNIT,' if t.he' key 1S specl.fied. If the NOMINAL KEY is ", 
r_pecified, and the value in the NOMINAL KEY for a WRITE is greater tlian < " 

t;the 'next. sequential relative,:block number, 't.he necessary number of dummy 
i'~,cords: is, written ,by the compiler so t.hat the actual record,;s writ.ten , 
~ln t.he specified relative block position. 
i ,\, ,,' >, ' " " > " < , 

~H,~)' DUmmy 'rec~rds are 'identified by the presence' of t.he figurative 
hconstant SIGH-VALUE in t.he first position, of the record. ~he user can 
'a~d ~ummy records by writing a r~cord with HIGH-VALUE in the first, 
f:pbsition of the record. h When the key is not specified, the user must <"h' 

~~ite ',dummy' records' himself,' except for those writt.enby, t.he compiler 
tdux'ing the execution of a CLOSE or CLOSE UNIT statement. ' , 

I",,';' 'Wh~n ":a rel~tive', ~ile i~ being read sec;iuentially, '~he' 'recordS: are made :>1 
flllft'i'lable in the order ,in which the records were writ.ten. Dummy records" ·,'are also' made available. ' " 

l~ndOlU.Acce~s 
~i: ' *' , 

,::~'~:: ~'TO ',re~r,ievE(or 'uPdate ~'relative, file ra ndonay , the NOMINAL KEY , , 
'Dlaus,e' is requir~<d in the Environment Division. '( The NOMINAL' KEY', 
~htains ,the position of the record relative to the beginning of' the 
file" starting', wi th an, initial value of zero.» ' , ' 

64 Part II -- Identification and Environment Divisions 

.... - .. 



o 

------ - --- - --- - -------------_ ... ------------

Access Methods 

'" ." The records are' retrieved on the basis of the NOMINAL KEY. Records 
can be updated by reading a record into an area, updating it in that 
area, and rewriting it from the same area. Records may not be added to 

. the file except by replacement of dummy records created by the user or 
!the compiler. 
I 

;ACCESSING AN INDEXED FILE 

i 
{, An indexed file may be accessed either sequentially or randomly. 
!Records can, be cr~ated, retrieved, updated, and added'sequen~ially; they 
~can be retrieved, updated, and added randomly. 

;;Sequential Access 
t 

t, An indexed file may be created sequentially only. When creating an 
findexed file, the RECORD KEY clause must be specified. It is used to 
tindi<;:a,te the location of the key within the record itself. Repords 
{appear in the file in the order in which' they are written.' 
~' , ,", ' , 

t' . 

!"', , ,Room 'may be reserved for the insertion of new rec()rds by writing 
t'reeords with 81GB-VALUE in the first byte. These records are not made 
[;ivailable in a sequential retrieval. 

To retrieve or update an indexed file sequentially, the RECORD KEY 
~clause must be specified. If record retrieval is to begin with other 
;:than, the first ,record, the NOMINAL KEY clause must be specified, and a 
;START statement must be executed before the first READ statement. 
:aecords are read in,the order in which they were placed on the file 
;previously. Logically, this corresponds to the sequence of keys, which,' 
(must be in collating sequence at the time the file is created. The i 
jSTART statement can also be used to initiate the access of a segment of ' 
ithe file when processing sequentially_ More than one START statement ' 
!may be used in a program. 

t 
I -

I, 
I 

(, < 

l:Random Access 
I' 
f 

~-: . To retr}.eve or update an, indexed, file randomly, both the NOMINAL KEY: 
fand RECORO KEY clauses are required. ,A record is considered "foundn 

twhen the NOMINAL KEY is equal ,to the ',value ... of the RECORD KEY for the ' 
\record. ' When adding or updating a record 'in a randomly accessed indexed; 
If11e, the value in the RECORD KEY position must'be identical to that of < 

1 the NOMINAL KEY field. , ' , , ' . 
t, r,'" , Dummy records (records with HIGH-VALUE in the first byte) are made 
,available in'a random retrieval. 
~,~ , , 

t Oummy 'records forced off the pr~mary are'a by random addi tiori of , ,j 
I.:t:'ecords, are physically deleted and are not written in the overflow, area.:'~ 
r (For a: discussion of primary and overflOW areas, see, the frog~mm~~~§., , : '} 
!Guide. ), ,'" ,', ' ~('i 
i 

L: Appendix B contains examples of programs'to create, retrieve, and " 
lupdate indexed ,files. ' 
t,;;'"M-.:<""':-:<'..,.),., ,0' ~<~ <,,~ ,> ?, ..... , y >, <, .... ~ ~, , 

Environment Division -- File Processing Summary 65 



Access Methods 

Table 3. File-processing Techniques 
r-----------------T--------------T---------------T---------------------, 
IDa ta Management I I I I 
I Technique I Device Type I Access I Organization I 
~-----------------+--------------+---------------+---------------------i I QSAM I Reader I [SEQUENTIAL] I standard sequential I 
~-----------------~--------------~---------------+---------------------i 
I QSAM I Punch I [SEQUENTIAL] I standard sequential I 
~-----------------+--------------+---------------+---------------------i 
I QSAM I Printer I [SEQUENTIAL] I standard sequential I 
~-----------------~--------------~---------------+---------------------i I QSAM I Tape I [SEQUENTIAL] I standard sequential I 
~-----------------+--------------+---------------+---------------------i 
I QSAM I Mass storage I [SEQUENTIAL] I standard sequential I 
~-----------------+--------------~---------------+---------------------i 
I BSAM I Mass storage I [SEQUENTIAL] I direct I 
~-----------------+--------------+---------------+---------------------i I BDAM I Mass storage I RANDOM I direct I 

t--~~~#6TsiM;:;~~::;~:~"ft,~~ii::ii~ra~i~t :;<1~i~tiii~iitl~":71::'i~aii~a~::~---,~~--:::~~~1 
~ h~~ __ ~~~~~~_~_+~~~~~~~~-~~+~~~~~~~~~~~~~+~~~~~-~~~_~-~~~~~~-~i 
I ;;,'::,:<:,,','&IS,Mf'> '<, "J _SS 'st.orage t, RANDOM.,', I indexed, ,',' ~ I 
~ ,P .. .: ... :.:.'..~~-:-- ... ~ .. ~ .. +~ .. ~'''': .. ~~ ...... ,. .. ~~+-; ... ' ............ -~ ........ -.. :..+ .......... ~ ................. _ ..... ..:;-.... ~+-~ 
I'::;,' \ BSAM, , ;',,<,~., I Masst:Jtorage'·, (SEQUENTIAL] I relative ' . ~ I 
~ v"~ ..; .. ....-.............. ~ ... ~~:...~ .. + ..... ..:. ............................... +-......... --.............................. + ...................................... -....... .;.. ........... ___ ,;...., 
I :;;" ",'aD~" ',,;' '; ,'~ " I, Mass, storage'" ,RANDOM.' .' t' relative:, :' :,) I 
L __ "::::;=,:~:;"~":'::':':';;;:;:;:;:::~~::'1:!;:::';:;,:::':'::':;:':;;::':'::";;';';";';;';";;_ :";>;.:~,;,;;;..;...;";; ::"'_''';' _:..~;;.' ~ ~ ,;,.:..' J...,;. ~';"; _'~,,;:~:,,:";'';:'';:' ;";"_';;;;"; "';'';:''';; ~,~_ J 

/' .. ~ ...... 
r ' 
~~- .. / 

C
-'" 
--" " 

66 Part II -- Identification and Environment Divisions 



() 

Environment Division--Structure 

ORGANIZATION OF THE ENVIRONMENT DIVISION 

The Environment Division must begin in Area A, with the heading 
ENVIRONMENT DIVISION followed by a period. 

The Environment Division is divided into two sections: the 
Configuration Section and the Input-Output Section. The sections and 
paragraphs, when written, must appear in the sequence shown. 

Structure of the Environment Division 

ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 

SOURCE-COMPUTER paragraph 

OBJECT-COMPUTER paragraph 

[SPECIAL-NAMES paragraph] 

[INPUT-OUTPUT SECTION. 

FILE-CONTROL paragraph 

[I-O~CONTROL paragraph]] 

Organization of the Environment Division 67 

-------------------------------



SOURCE-COMPUTER Paragraph 

ENVIRONMENT DIVISION -- CONFIGURATION SE£!!Q~ 

The Configuration Section deals with the overall specifications of 
computers. It is divided into three paragraphs: the SOURCE-COMPUTER 
paragraph, which describes the computer on which the source program is 
compiled: the OBJECT-COMPUTER paragraph, which describes the computer on 
which the program is executed: and, optionally, the SPECIAL-NAMES 
paragraph, which relates the function-names used by the compiler to 
mnemonic-names specified in the source program by the user. 

r----------------------------------------------------------------------, I General Format I 
~----------------------------------------------------------------------i 
I I 
I CONFI@URATION SECTION. I 
I I 
I SOURCE-COMPUTER. source-computer-entry I 
I I 
I OBJECT-COMPUTER. object-computer-entry I 
I I 
I [SPECIAL-NAMES. special-names-entry] I 
I I L ______________________________________________________________________ J 

section-names and paragraph-names must begin in Area A. 

, The Configuration section and its associated paragraphs are optional . 
;within a COBOL source program. 

SOURCE-COMPUTER Paragraph 

The SOURCE-COMPUTER paragraph serves only as documentation and 
aescribes the computer upon which the program is to be compiled. 

r----------------------------------------------------------------------, 
I General Format I 
~----------------------------------------------------------------------i 
I I 
I SOURCE-COMPUTER. computer-name. I 
I I L ______________________________________________________________________ J 

Computer-name is IBM-360[-model-number] or IBM-370[-model-number]. 

The SOURCE-COMPUTER paragraph is treated as comments by the COBOL 
compiler. 

68 Part II -- Identification and Environment Divisions 

(~ 



G 

- -- ------------

OBJECT-COMPUTER Paragraph 

OBJECT-COMPUTER Paragraph 

The OBJECT· COMPUTER paragraph describes the computer on which the 
program is to be executed. 

r----------------------------------------------------------------------, I General Format I 
~---------------------------------------------------------------------~ 
II ] OBJECT-COMPUTERM computer-name 1 
I I 

1 [MEMORY SIZE integer {~CTERS} 1 j 
I MODULES I 
I } 
I [SEGMENT-LIMIT IS p+iority-numberl. I 
I 1 L ______________________________________________________________________ 1 

Computer-name is IBM-360[-model-numberl~ Computer-name must be the 
first entry in the OBJECT-COMPUTER paragraph. 

If the configuration implied by computer-name comprises more or less 
equipment than is actually needed by the object program, the MEMORY SIZE 
clause permits the specification of the actual subset (or superset) of 
the configuration. 

with the exception of the SEGMENT-LIMIT clause, both the 
SOURCE-COMPUTER and OBJECT-COMPUTER paragraphs are treated as comments 
by the COBOL compiler. 

The SEGMENT-LIMIT clause is discussed in "segmentation." 

Program product Information (Version 3 and Versiun 4) 

computer-name may also be specified as IBM-370[-model-numberl. If 
IBM-370 is specified, Systeml370 instructions are generated by the 
compiler. When IBM/370 is specified. the object program must be 
executed on a System/370 machine. 

SPECIAL-NAMES Paragraph 

The SPECIAL-NAMES paragraph provides a means of relating 
function~names to user-specified mnemonic-names. The SPECIAL-NAMES 
paragraph can also be used to exchange the functions of the comma and 
the period in the PICTURE character string and in numeric literals. In 
addition, the user may specify a substitution ~haracter which then must 
be used in place of the currency sign ($) in the PICTURE character 
string. 

Environment Division -- Configuration section 69 



SPECIAL-NAMES Paragraph 

r----------------------------------------------------------------------, I General Format I 
~----------------------------------------------------------------------~ 
I I 
I §PECIAL-NAMES. I 
I I 
I (function-name IS mnemonic-name] I 
I I 
I (~URRENCY SIGN IS literal] I 
I I 
I [QEC!~~L-POINT IS QQMM~]. I 
I I L ______________________________________________________________________ J 

When the SPECIAL-NAMES paragraph is specified, the comma or the 
semicolon may optionally be used to separate successive entries; there 
must be one and only one period, placed at the end of the paragraph. 

Fun£tion-n~ may be chosen from the following list: 

SYSOUT 
SYSIN 
SYSPUNCH 
CONSOLE 
COl through C12 
CSP 

'1': 
t"9,02,," 
literal 

If SYSIN, SYSOUT, SYSPUNCH, or CONSOLE is specified, the associated 
mnemonic-name may be used in ACCEPT and DISPLAY statements. 

If COl through C12, csp[' ?,~t!f,'j5r~)~92, ;is specified, the associated 
mngmoni~am~ may be used in a WRITE BEFORE/AFTER ADVANCING statement. 
These fun£~~Qn~~ are the carriage control characters shown in rable 
4. 

Table 4. Choices of Function-name and Action Taken 

r---------------------------------T------------------------------------, 
I Function-name I Action Taken I 
~---------------------------------+------------------------------------~ 
I CSP I Suppress spacing. I 
~---------------------------------+------------------------------------~ 
I COl through C09 I Skip to channel 1 through 9, I 
I I respectively. I 
~---------------------------------+------------------------------------~ 
I C10 through C12 I Skip to channel 10, 11, 12, I 
I I respectively. I 
~-f~:; :7,:::;;;: 7,::;:::';:.::::.77:-;:;-::~ =:::: ;'-:,::',:::::,;:-:,::::, ::,7:w":':,:::O:::::- - -, t~,:- :: :-:;;,~ ,:-,;;,~,:- ~ ~ :: - -:: :- -:;;:::, ::::;: -:: -::::~ :::-: ;:"','::,-,,-, -::::, :-"~ ,:,"",:: 7"" ~ 
It;": S01,' ,802 ,':"," ',' , ''', .,' , I pocket, select 1 or 2, ',on the IBM,' ;1 
I :," ;',': : : " ',,',', ",' , ':" ,,' t·, /1442, and p1 and' p2 on the ,,', ~I 

tJ~~~i;~~:l~,=-:;~~~,~,~~~~~!;~~~:~'~'~,~~'_,~,~~,~l_~ __ :~~~::~~::f~~~.:._~ __ , __ ~,_~_~,_,~,_,~~~,~~ 
Tne choice of literal indicates that function-name is to be used to 

identify Report Writeroutput. The mnemonic-name should appear in a 
CODE clause in a Report Description entry (RD) (see "Report Writer"). 
One such special-name entry may be given for each Report defined in a 
source program. The literal must be a one-character nonnumeric literal. 

The CURRENCY SIGN clause specifies the literal that is used in the 
PICTURE clause to represent the currency symbor:- The literal must be 

70 Part II -- Identification and Environment Divisions 

C.~' 



o 

~-( " 

~_/ 

o 

SPECIAL-NAMES Paragraph 

nonnumeric and is limited to a single character which must not be any of 
the following: 

1. Digits 0 through 9 

2. Alphabetic characters A, B, C, D, P, R, S, V, X, Z, or the space. 

3. Special characters * + "'or' 

If the CURRENCY SIGN clause is not present, only the $ can be used as 
the currency symbol ($) in the PICTURE clause. 

The DECIMAL-POINT IS COMMA clause means that the function of the 
comma and the period are exchanged in the PICTURE character string and 
in numeric literals. When this clause is written, the user must 
represent the decimal point, when required in a numeric literal or in 
the PICTURE clause, by a comma (,); the period must be used for the 
functions ordinarily served by the comma. 

Environment Division -- Configuration section 71 



FILE-CONTROL Paragraph 

ENVIRONMENT DIVISION -- INPUT-OUTPUT SECTION 

The Input-Output Section deals with the definition of each file, the 
identification of its external storage media, the assignment of the file 
to one or more input/output devices, and also deals with information 
needed for the most efficient transmission of data between the media and 
the object program. The section is divided into two paragraphs: the 
FILE-CONTROL paragraph, which names and associates the files used in the 
program with the external media; and the I-O-CONTROL paragraph, which 
defines special input/output techpiques. 

r----------------------------------------------------------------------, 
I General Format I 
~----------------------------------------------------------------------~ 
I I 
I [INPUT-OUTPUT SECTION. I 
I I 
I FILE-CONTROL. {file-control-entry} I 
I I 
I [I-O-CONTROL. input-output-control-entry]] I 
I I L ______________________________________________________________________ J 

FILE-CONTROL PARAGRAPH 

Information that is used or developed by the program may be stored 
externally. File description entries in the Data Division name the 
files into which the information is arranged and specify their physical 
characteristics. The FILE-CONTROL paragraph assigns the files (by the 
names given in the file description entries) to input/output devices. 

r----------------------------------------------------------------------, I General Format I 
~----------------------------------------------------------------------~ 

FILE-CONTROL. 
{SELECT Clause 
ASSIGN Clause 
[RESERVE Clause] 
[FILE-LIMIT Clause] 
[ACCESS MODE Clause] 
[PROCESSING MODE Clause] 
[ACTUAL KEY Clause] 
[NOMINAL KEY Clause] 
[RECORD KEY Clause] 
(TRACK-AREA Clause] 
[TRACK-LIMIT Clause].} 

______________________________________________________________________ J 

Each SELECT sentence must begin with a SELECT clause followed 
immediately by an ASSIGN clause: the order in which the optional' cla~~~~ 

"are written is not significant. 

72 Part II -- Identification and Environment Divisions 



o 

SELECT/ASSIGN Clauses 

SELECT Clause 

The SELECT clause is used to name each file in a program. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I SELECT [OPTIONAL] file-name I 
I I L ______________________________________________________________________ J 

Each file described in the Data Division must be named once and only 
once as a file-name.following the key word SELECT. Each file named in a 
SELECT clause must have a file description (FD) entry or s.ort-file 
description (SO) entry in the Data Division of the source program. 

The key word OPTIONAL may be specified only for input files accessed 
sequentially. It is required for input files that are not qecessarily 
present each time the object program is executed. When a file is not 
present at object time, the first READ statement for that file causes 
control to be passed to the imperative-statement following the key words 
AT END. However, 'OPTIONAL need not be specified and will be treated as 

:'a 'comment, since this function is performed by the operating system 
:~~rou(Jh ,the ,DO statement with the DUMMY,cjr NULLFILE parameter. . 

ASSIGN Clause 

The ~SSIGN clause is used to assign a file to an external medium. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I ASSIG~ TO [integer-i] system-name-l I 
I I 
I [system-name-2]... I 
I I 

I
I [FOR {REEL} ] II MULTIPL§ 
I UNIT I 
I I L ___________________ --_________________________________________________ J 

Integer-i indicates the number of input/output units of a given 
medium assigned to file-name. However, since the number of units is 
automatically determined by the operating system, the integer-l option 
need not be specified. When specified, it is treated as comments (see 
IBM System/360 Operati~2ystem: Job Control Language, Form GC28-6539). 

System-name specifies a device class, a particular input/output 
device, the organization of data upon this device, and the external-name 
of the file. All files used in a program must be assigned to an 
input/output medium. Any system-name beyond the first for a file will 
be treated as comments. 

FOR.MULTIPLE REEL/UNIT is applicable whenever the number of tape 
units or mass storage devices assign~d might be less than the number of 
reels or units in the file. The operating system will automatically 

Environment Division -- Input-Output Section 73 



ASSIGN Clause 

handle volume switching for sequentially processed files. All volumes 
must be mounted for randomly accessed files. Therefore, when this 
clause is specified, it is treated as comments. 

System-name has the following structure: 

class [-device]-organization-name 

Class is a 2-character field that specifies the device class; 

DA (mass storage) 
UT (utility) 
UR (unit-record) 

Files assigned to UT or UR must have standard sequential organization 
and can be accessed only sequentially. Files assigned to DA may have 
standard sequential or direct organization. When organization is 
direct, access may be either sequential or random. 

"...: ". ... 

Files assigned to DA ma~ also have relative or indexed organization. -
When organization is relative or indexed, access may either be 
sequential ~r "random., 

Device is used to specify a particular device within a device class. It 
can be a 4- to 6-character field. If device independence for a file is 
desired, the device class must be UT, no device number may be specified, 

ratid", no: ENri-bF":'PAGi(~iauses 'may' be "associated with the file. At 
execution time, such a file may be assigned to any device class 
(including unit-record). 

The allowable system devices for any given class are as follows: 

Mass storage (DA) 2301, 2302, 2303, 2311, 2314, 2321. 

Utility (UT) 2301, 2302, 2311, 2314, 2321, 2400. 

Unit-record (UR) 1403, 1404 (for continuous forms only), 1442R, 1442P, 
1443, 1445, 2501, 2520R, 2520P, 2540R, 2540P. ig indicates reader; ~ 
indicates punch.) 

Note: Sort input, output, or work files may be assigned to any utility 
device except device number 2321 (see "Sort"). 

Program. Product Information_(Version 3) 

For Version 3 only, the following additional system devices are 
allowable: 

Mass Storage (DA) 2305-1, 2305-2, 2319, 3330 

Utility (UT) 2305-1, 2305-2, 2319, 3330 

Unit Record (UR) 3211 

Note: For the Version 1 and Version 2 Compilers, these devices (2305-1, 
2305-2, 2319, 3330, or 3211) can be used, if the device field in 
system~name is omitted. At execution time, any of these devices can be 
specified through the UNIT subpararneter of the file's DD statement. 
Note, however, that except for files containing spanned records the 
device field is treated as comments. For files containing spanned 
records, the block length for the file is checked against the maximum 
block length allowed for the device specified, and the smaller of the 
tWO becomes the blo~k size that is used. 

74 Part II -- Identification and Environment Divisions 



(' 

~/I 

c 

ASSIGN Clause 

Program. Product Informatio~_lve~~Qrr~L 

The gevice field in system-name is treated as comments by the 
Version 4 compiler. At execution time, any valid device can be 
specified through the UNIT subparameter of the file's DD statement. 
The following considerations apply: 

• If an invalid device number is specified, no error diagnostic is 
produced. 

• For an ASCII file, if 2400 (or other compatible tape device) is 
not specified in the device field, no error diagnostic is 
produced. 

• For a direct file with spanned records, the Version 4 Compiler 
always calculates buffer size from the COBOL record description. 

organization is a i-character field that indicates the file 
organization. The following characters must be used: 

S for files with standard sequential organization 
D for files with direct organization 
W for files with direct organization when REWRITE is used. When the 

file is opened as INPUT or OUTPUT, however, ~ is the equivalent of 
D. 

R for files with relative organization 
I for files with indexed organization 

Table 5 can be used to determine the correct choice for the 
organization field in system-name. 

Name is a 1- to 8-charccter field specifying the external-name by which 
the file is known to the system. It is the name that appears in the 
name field of the DO card for the file. 

Note: ASCII considerations for the ASSIGN clause are given in 
Appendix E. 

Environment Division -- Input-Output Section 75 



ASSIGN/RESERVE Clauses 

Table 5. Values for the Organization Field'for System-name 
r---------------T---------------T-----------------------T--------------, 
I I ACCESS MODE I I Organization I 
I Device Type I Clause I File Organization I Field I 
~---------------f---------------f-----------------------+--------------~ I tape, punch I I I I 
I reader, printer I [SEQUENTIAL] I standard sequential I S I 
~---------------f---------------+-----------------------f--------------~ I mass storage I I I I 
I device I [SEQUENTIAL] I standard sequential I S I 
~---------------f---------------f-----------------------f--------------~ 
Imass storage I I I I 
I device I [SEQUENTIAL] I direct I D I 
~---------------+---------------+-----------------------f--------------~ 
lmass storage I I I I 
I device I RANDOM I direct I D I 

lidev1ce :', " .,' """ I', '(SEQUENTIAL] :,,' :1 ";ludexed·",> <;,> '\"'~<'~';<,', ~\.,:.\< ..... ···:,'~I«,"\\h,;\\i,Z: . .:. ,\\/;> <~ I 
l.',' ,~<~ '~"",,' ",<' "'->, ... ",, ""',',, "'-' <"~ ... ~,, V", ~/,'::,~',"':'<~"""{",~ ... ;,> ;.,~ ... ,~" :"', ... ~~'~, ... )~,:/':,~~~'~'\~;} ...... l"~\'~, ... F ...................... ' ... ;.. ........ --f ... · .. :.; .. ..:._.;· ........ • .. ..;. .. ;f-----.· ........ ·,.;._.-.. __ .. ----~-.-;-+~-.-•. ~-.;. .. -~' , ~ 
~~.~;::::~:~_~t~~1~~;§i~titlf~!~f~~4~jJ[~r~~,~~~1~~~~I·~~~~J 

RESERVE Clause 

The RESERVE clause allows the user to modify the number of 
input/output areas (buffers) allocated by the compiler. 

r--------------~-------------------------------------------------------, I Format I 
~----------------------------------------------------------------------~ 
I I 

! RESERVE G:tegeJ ALTERNATE [::J ! 
I I L ______________________________________________________________________ J 

This clause specifies that the number of buffers represented by 
integer be reserved for a standard sequential file fof:::ij'n'.~,I:n1iixii1f:~:1!,Im 
[t;hEl~'"",i~Z.~c'c'jaijJi~:~:piqu~~lj'llY!, in addition to the one required buffer 
which is reserved automatically. 

This clause must not be specified for direct [oi~:::iii'ative~~ files; if 
specified, the clause is <i·ignored and the one required buffer is 
reserved. 

The number of additional buffers is represented by the value of 
integer which must not exceed 254. 'If NO is written, no additional 
buffers are reserved, aside from the standard minimum of one. 

76 Part II -- Identification and Bnvironment Divisions 



FILE-LIMIT/ACCESS MODE Clauses 

If the RESERVE clause is omitted, and the SAME AREA clause is used 
for the file, two areas are reserved. If the RESERVE clause is omitted, 
and the SAME AREA clause is not used for the file, the number of buffers 
assigned at execution time is taken from the DD card for the file. If 
no buffers are specified on the DD card, two areas are reserved. 

FILE-LIMIT Clause 

The FILE-LIMIT clause serves only as documentation, and is used to 
specify the logical beginning and the logical end of a file on a mass 
storage device. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I I {FILE-LIMIT IS } {data-name-l} THRU {data-name-2} : 

I FILE~LIMITS ARE literal-l literal-2 I 
I I I [{data-name-3} THRU {data-name-4} l... : 

I literal-3 literal-4 I 
I I L ______________________________________________________________________ J 

The logical beginning of a mass storage file is the address specified 
by the first operand of the FILE-LIMIT clause; the logical end of a mass 
storage file is the address specified as the last operand of the 
FILE-LIMIT clause. Because file boundaries are determined at execution 
time from the operating system's control cards, this clause need not be 
specified and will be treated as comments. 

ACCESS MODE Clause 

The ACCESS MODE clause defines the manner in which records of a file 
are to be accessed. 

r----------------------------------------------------------------------, I Format I 
~----------------------------------------------------------------------~ 
I I 
II {SEQUE~TIAL} II ACCESS MODE IS 
I RANDOM I 
I I L ______________________________________________________________________ J 

If this clause is not specified, ACCESS IS SEQUENTIAL is assumed. 
For ACCESS IS SEQUENTIAL, records are placed or obtained sequentially. 
That is, the next logical record is made available from the file when a 
READ statement is executed, or the next logical record is placed into 

Environment Division -- Input-Output Section 77 



PROCESSING MODE/ACTUAL KEY Clauses 

the file when a WRITE statement is executed. ACCESS IS SEQUENTIAL may 
be applied to files assigned to tape, unit record, or mass storage 
devices. 

For ACCESS IS RANDOM, storage and retrieval are on the basis of an 
ACTUAL~Or 'NOMINAL: KEY associated with each record. When the RANDOM 
option'is specified, the file must be assigned to a mass storage device. 
ACCESS IS RANDOM may be specified when file organization is direct; 
irelativ:e~ <:>r:', i!l<:1e~,~~~ 

The key word IS must be specified. tii~~~yer~" this ?ompiler allows the': 
;'key word' IS: to 'be" omltte<U 

~ ,< , ~ -:" ~ ~ 

PROCESSING MODE Clause 

The PROCESSING MODE clause serves only as documentation, and 
indicates the order in which records are processed. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I PROCESSING MODE IS SEQUENTIAL I 
I I L ______________________________________________________________________ J 

This clause may be omitted. When specified, it is treated as 
comments. 

ACTUAL KEY Clause 

When creating or retrieving records from a randomly accessed file, 
the programmer is responsible for providing the ACTUAL KEY for each 
record to be processed. 

An ACTUAL KEY is a key that can be directly used by the system to 
locate a logical record on a mass storage device. The ACTUAL KEY is 
made up of two components: 

1. The track identifier, which contains the relative track number at 
which the search is to start for a record or for a space in which 
to place a new record. 

2. The record identifier, which serves as a unique symbolic identifier 
for the 'record and is associated with the record itself. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I ACTUAL KEY IS data-name I 
I I L ______________________________________________________________________ J 

78 Part II -- Identification and Environment Divisions 



C) 

--------- --------- ----------- -----

ACTUAL KEY Clause 

The ACTUAL KEY clause must be specified for direct files when ACCESS 
IS RANDOM is specified. The ACTUAL KEY field must be set to a desired 
value before the execution of the READ and WRITE statements. 

When a READ statement is executed for a file, a specific logical 
record (located using the contents of £at~~g~~~) is made available from 
that file. 

When a WRITE statement is executed, a logical record is placed in the 
file at a location found through the use of the contents of dat~=~~m~. 

The ACTUAL KEY clause may be specified when reading direct files 
> sequentially. 

The ACTUAL KEY clause must be specified when creating a direct file 
with sequential access. 

Data~ may be any fixed item from 5 through 259 bytes in length. 
It must be defined in the File, Working-Storage, or Linkage Section. 
However, if data-name is specified in the File Section, it may not be 
contained in the file for which it is the key. The following 
considerations apply: 

1. The first four bytes of data-name are the track identifier and must 
be defined as a 5-integer binary data item whose maximum value does 
not exceed 65,535. 

2. The remainder of data-name -- 1 through 255 bytes in length -
represents the record identifier. It is the user's responsibility 
to select from 1 through 255 bytes for the symbolic portion of the 
ACTUAL KEY field. Data within these bytes will be treated exactly 
as specified. 

The key word IS must be specified. ,However, this compiler allows the: 
~~=Y, word IS to be omitted. 

Sample coding to represent the data-name specified in the ACTUAL KEY 
clause would be as follows: 

ENVIRONMENT DIVISION. 

ACTUAL KEY IS THE-ACTUAL-KEY. 

DATA DIVISION. 

WORKING-STORAGE SECTION. 
01 THE-ACTUAL-KEY. 

05 RELATIVE-TRACK-KEY USAGE COMPUTATIONAL PICTURE IS S9(5) 
VALUE IS 10 SYNCHRONIZED. 

05 EMPLOYEE-NO PICTURE IS X(6) VALUE IS LOW-VALUE. 

RELATIVE-TRACK-KEY contains the relative track address at which the 
record is to be placed, or at which to search for the record. 
EMPLOYEE-NO serves as a unique identifier associated with the record 
itself and represents the record identifier of the key field. 

Environment Division -- Input-Output Section 79 



NOMINAL.KEY Clause 

The NOMINAL REY, clause ,is used with indexed and relative files~ 
indexed files, the clause specifies ,a symbolic identitY,for a specific" 

,logical record. For relative files, the NOMINAL REY clause specifies. 
the relative record number for a specific logical record, ,relative ,to' 
the beginning of the file. ' . 

r--..... ------~- ......... --.. --'*:"' ... - ... --...... -,.. ............. ~ ... - .. ,---""_:----__: ... ---............. - .... ..:..--: ................... _ .......... - .... , 

I ' ' ,Forma t ' . ' , ' I 
~----------------------~---~---~---~-----------~----------------~--~--~~, I ' , :. I ' 
I NOMINAL KEY IS data-name . t; 

~ I " , " " ,.,', . ,', ' i 
L~ ________________ ~~ _____ ~_~_~~~~ ___ ~ __ ~ .. ~ __ ... ___ ~ _____ ~~~~~ ______ ~_~~_ .. _~J , 

, ' 

A NOMINAL KEY clause'is required when an indexed or relative ·file i6',:/: 
accessed randomly. 'It is also required when an in,dexed file is access,ed<·~ 
sequentially and a START statement is used. 'Tne NOMINAL KEY clause' may:' ,:, 
also be specified when creating a relative ,file., ,';,',' ,il 

, /,'J 
, . When the NOMINAL' KEY clause is specified for an indexed file that is.: 'j 
'accessed randomly: ' 

, " 

• Data-name may specify any fixed~length Working-storage item from l' 
through 255 bytes in length." ' 

• Data-name . must be at 'a fixed,~ displacement from the beginning 'Of the", 
record description in which ,it appears; that is, it may not appear ' 
in the entry subsequent 'to an ~CCgRS,DEPENDING ON clause. ' 

! 

• The symbolic identity of 'the", record must. b,e placed' in data-nam! 
before the execution of the READ, WRITE" or "REWRITE 'statement •. ,:., 

! i 
• The symbo1i~ identity is ~sed when retrie~ing or updating a ree'ord ." 

to locate the logical record with,a matching RECORD KEY or, wh~n ' , 
adding a record, to creat~ the key, that :will be .associated with ,the. 
record. ' , , , ' ~ .',.',. ' , " ,', 

• When a READ statement is' ex~cut~d, a specific iogic~i record is ~de~ 
'available from the file using the contents of data-name. '. ::" ,,' 

• When a WRITE,o~ REWRITE statement is ~xecutedf the symbolic ,identity' 
of the record specified by ~~name is used to determine the, , .. ,', 

, ,physical location ~at which the record is written.,: ",' , , 

• If the TRACK-AREA clause is not specified for' the ,file, then after a .'J 
WRITE statement is executed, the contents of :t:.he ,NOMINAL K~Y',f~eld '." l 
are 'urtpredictable., " , ,,' ',' , 

, ,', ~, " ' . ' ,; 
,When the NOMINAL REY, clause is specified for an indexed file that is:. I 

,accessed sequentially': , , \; 
, " , , 

• Data-name.may, specify any fixed-length' working-:storage item ,from .. 1 , 
through 255 bytes ,in length~ , 

. , 

• Data-name must be ~t, a fixed di~Placement from the' beginning of' ,the' .; 
record descriptio~ in which it appears; that is,' it may'not ~ppear 
in the entry sub~equent to an OCCURS DEPENDING ~ON clause." ," ,,,' ': 

• The NOMINAL KEY clause must be specified:if a'Format'l'START 
statement is used. When the START statement ·is executed, the ",,, 
contents of data-name.are used'to locate the record at which, 
processing is to begin. The 'next READ statement accesses this 
record. 

80 Part II--Identification and Environment Divisions 



CI 

------- ------------. -----. 

NOMINAL KEY/RECORD KEY Clauses 

When the NOMINAL KEY clause is used for a relative file that is 
either created or accessed randomly: 

• Data-name may specify any 8-integer binary item in Working-Storage 
whose maximum value does not exceed 15,728,640. 

• Data-name must be at a fixed displacement from the beginning of the 
record description in which it appears; that is, it may not appear 
in the entry subsequent to an OCCURS DEPENDING ON clause. 

• The relative record number must be placed in data-name before the 
execution of the READ, WRITE, or REWRITE statement;---

• When a READ statement is executed, a specific logical record is made 
available from the file using the contents of ~~~nam~. 

• When a WRITE or REWRITE statement is executed, the relative record 
number is used to determine the physical location, relative to the 
beginning of the file, at which the record is written. 

RECORD KEY Clause 

A RECORD KEY is used to access an indexed file. It specifies the 
item within the data record that contains the key for the record. 

r----------------------------------------------------------------------, I· Format I 
~---------------------------------------------------------~-----------~~ 

: I 1-
, I RECORD KEY IS data-name I 
1 I L-_____________________________________________________________________ J 

The RECORD KEY clause must be specified for an indexed file. 

Data-name may be any fixed-length item within' the record. It must be 
,less than 256 bytes in length. 

When two or more record descriptions are associated with a file, a 
similar field must appear in each description, and must be in the same 

,relative position from the beginning of the record, although the same 
-data-name need not be used for both fields. 

Data-name must be defined to exclude the first byte of the record in 
-the following cases: 

1. Files with unblocked records 

'2. Files from which records are to be deleted 

3. Files whose keys might start with a delete-code character 
(HIGH-VALUE) • 

With these exceptions, the item specified by ~~~~~m~ may appear 
'anywhere within the record. 

Environment Division -- Input-output Section 81 



This clause may be used optionally when records are to be added to an 
,indexea file in ~he ranaom access mode. Efficiency in adding a record' 
is improved when the TRACK-AREA clause is specified. 

r----------------------------------------------------------------------, , I Format I .-----------------------------------,---------------------------------:---1 
I I 

, I, { data-name} 'I 
TRACK~AREA IS CHARACTERS 

I integer I 

I " 
~ _______________________________ - _____________________________________ J 

When records are to be added to random access files with indexed 
~orqanization, this Clause specifies either an area (dat!=n~~) or the 
, size of an area (integer). The area is used to hold all the blocks on a ' 
,track, including their c~unt and key fields, plus one logical r~cord. .1 

, The area defined by the TRACK-AREA clause must be a multiple of 8 and 
,must not exceed 32,760 bytes. 

, When the integer.option is specified, an area of integer bytes is 
. obtained from the system when the file is opened. It is released to the 
, system w~en the file is closed. 

When the data-name option is specified, data-name must specify an 
, item ,described with an 01 or 77' level number in the Working-Storage 
Section. 

If a record is added to an indexed file, and the TRACK-AREA clause 
was not specified for the file, the contents of the NOMINAL KEY field 
are unpredicta~le after a WRITE statement is execute'd. 

: TRACK-LIMIT Clause, 

The TRACK-LIMIT clause indicates the relative number of the last 
: track to be initialized for the creation of files with direct 
: organization. ' <; 

, r---------------------------------------------------------------------~, , . I Format r . 
• ----------------------------------------------------------------------i I I < 

: 1 TRACK-LIMIT IS integer [TRACK ] t ' 
I TRACKS I 

: I I L ________________________________________________ ~ _____________________ J 

This clause does not cause track allocation. which is the function of 
a DD card parameter. 

seguential Access -- When used in conjunction with ACCESS IS 
'SEQUENTIAL and a file opened as OUTPUT, if the'last relativ~ track 
'number used by the file when it is closed is less than that specifi~d 
the TRACK-LIMIT clause, the unused portiones) of the track(s) is filled. 

rwith capacity records (mode U, V, or S) or with dummy records (mode F)~ 
!~~, the last relative:track number used by the file is equal to 'or 

82 Part II -- Identification and Environment Divisions 



(- ) 
~-~/ 

o 

----------------------------

I-a-CONTROL Paragraph/RERUN Clause 

greater than that specified in the TRACK-LIMIT clause,' or if the clause 
is omitted, a capacity ree,ord or dummy records is written for the' 
current track of the file, and the remaining allocated tracks are not 
initialized. Note that since the first relative track is track O. at 
least integer plus one track will be initialized. 

Random Access -- When used in conjunction with ACCESS IS RANDOM, the 
, TRACK-LIMIT clause specifies the last relative track number to be 
initialized at open time; the tracks are initialized with dummy <mode F) 

. or capacity (modes U, v, or S) records. This defines the total size of, 
, the file; that is, no additional tracks may be used by the file, and any 
references to tracks outside this area will result in an INVALID KEY 
condition. If this clause is omitted, the number of tracks initialized 
is determined from the SPACE and VOLUME count parameters of the 00 card. 
The first volume will be initialized according to the primary allocation 
,quantity, and succeeding volumes (if any) will be initialized from the 
secondary quantity (one quantity per volume). 

I-O-CONTROL PARAGRAPH 

The I-O-CONTROL paragraph defines some of the special techniques to 
be used in the program. It specifies the points at which checkpoints 
are to be established, the core storage area which is to be shared by 
different files, the location of files on multiple-file reels, and 
optimization,techniques. The I-O-CONTROL paragraph and its associated 
clauses are an optional part of the Environment Division. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 

I 
I-O-CONTROL. I 

I 
[RERUN Clause] I 

I 
[SAME AREA Clause] I 

I 
[MULTIPLE FILE TAPE Clause] I 

I 
[APPLY Clause] I 

I ______________________________________________________________________ J 

The order in which the I-a-CONTROL paragraph clauses are written is 
:not significant. 

, , ~ h h 

The presence of a RERUN clause specifies that checkpoint records are 
to be taken. A checkpoint record is a recording of the status of a 
problem program and main storage resources at desired intervals. The 
contents of core storage are recorded on an external storage device at 
the time of the checkpoint, and can be read back into core storage to 
restart the program from that point. 

Environment Division -- Input-Output Section 83 



RERUN Clause 

r----------------------------------------------------------------------, I Format 1 I 
~----------------------------------------------------------------------~ 
I I 
I RERUN ON system-name I 

! I integer ~ORD2 ! 
: EVERY [END OF] {BEE~} OF file-name : 

I QNI! I 
I I L ______________________________________________________________________ J 

r;-::-='-~~--:-'-':-~-:~~:-'~~---~:---~--;~;~~-2-:-~-------------~-----------,-,-:::1 

~~---~-~-~~-~~-~~-~~-~~~~~~-~----~~-~-~~-~-~~~---~~~~-~-~~~~~-~~--~----i 11 " ' ,,' : " , : I 
1 RERUN Q!i system"';name.' 'I I 
1 , ; " ''" , ", , " < n ',,, ""',, ' ' '. ' ' , , "I L ______________________________________________________________________ J 

Checkpoint records are written sequentially and must be assigned to 
tape or mass storage devices. 

System~name specifies the external medium for the checkpoint file, 
the file upon which checkpoint records are written. It must not be the 
same as any system-name used in a File-Control ASSIGN clause, but it 
follows the same rules of formation. System-name must specify a tape or 
mass storage device. 

File~name represents the file for which checkpoint records are to be. 
written. It must be described with a file description entry in the Data 
Division. 

FORMAT 1: More than one Format 1 RERUN clause may be specified in a 
program. If m~ltiple RERUN clauses are specified, they may be specified 
either for the same or for different checkpoint files. 

There are two options of the Format 1 RERUN clause. Each may be 
specified once for any given file=~m~. 

RECORDS options: This option is valid for sequentially or randomly 
accessed files. It specifies that a checkpoint record is to be written 
for every integer.records of file-name processed. 

The value of integer must not exceed 16,777,215. 

Program.Product Information_(Version 3 and Version 4) 

END.OF REEL/UNIT Option: This option is valid only for 
sequentially accessed files with any organization. It specifies 
that a checkpoint record is to be written whenever end-of-volume 
for file-name occurs. Normal volume closing procedures are also 
performed. END OF REEL is valid only for tape files; END OF UNIT 
is valid only for sequentially accessed files residing on mass 
storage devices. 

; "gowever, iii ,order' to acllieve etevice' independence, this compiier: 
'allows the': terms REEL and' UNIT ,to be used :interchangeably:. ' 

, ~, ~ 

84 Part II -- Identification and Environment Divisions 



r- ... 
( " 

~) 

SAME Clause 

FORMAT.2: Format 2 is used for taking checkpoint records for sort 
files, and is described in "I-O-CONTROL Paragraph" in the chapter on the' 
Sort Feature. 

Note: ASCII considerations for the RERUN clause are given in 
Appendix E. 

SAME Clause 

The SAME clause specifies that two or more files are to use the same 
core storage area during processing. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I [ RECORD] I I ~ AREA FOR file-narne-1 {file-name-2} ••• I 
I SORT I 
I I L ______________________________________________________________________ J 

The discussion that follows pertains only to SAME AREA and SAME 
RECORD AREA. The SAME clause with the SORT option is discussed in 
"Sort." 

The SAME RECORD AREA clause specifies that two or more files are to 
use the same main storage area for processing the current logical 
record. ~ll of the files may be open at the same time. A logical 
record in the shared storage area is considered to be: 

• a logical record of each opened output file in this SAME RECORD AREA 
clause, and 

• a logical record of the most recently read input file in this SAME 
RECORD AREA clause. 

If the SAME AREA clause does not contain the RECORD option, the area 
being shared includes all storage areas assigned to the files; 
therefore, it is not valid to have more than one of these files open at 
one time. 

More than one SAME clause may be included in a program; however: 

1. A specific file-name must not appear in more than one SAME AREA 
clause. 

2. A specific file-name must not appear in more than one SAME RECORD 
AREA cIa use. 

3. If one or more file-names of a SAME AREA clause appear in a SAME 
RECORD AREA clause, all of the file-names in that SAME AREA clause 
must appear in that SAME RECORD AREA clause. However, that SAME 
RECORD AREA clause may contain additional file-names that do not 
appear in that SAME AREA clause. 

Note: For a direct file with mode S records, the program is 
device-dependent if both the SAME AREA clause and the device field of 
system-name are specified. The compiler then determines the segment 

Environment Division -- Input-output Section 85 



MULTIPLE FILE TAPE/APPLY Clauses 

work area as either the track capacity of the device specified, or as 
8 + logical-record-length, whichever is smaller. 

If the SAME AREA clause is specified, and the device field of 
system-name is not specified, the compiler calculates the segment work 
area as 8 + logical-record~length, no matter which device is used. 

If neither the SAME AREA clause nor the device field is specified, 
then at execution time the segment work area is calculated as either the 
track area of the device assigned, or 8 + logical-record-length, 
whichever is smaller. 

Program Product Information (Version 3 and Version 4) 

If the BLOCK CONTAINS 0 and/or the RECORD CONTAINS 0 clauses are 
specified, then the SAME AREA clause may not be specified. 

MULTIPLE FILE TAPE Clause 

The MULTIPLE FILE TAPE clause is used for documentation purposes and 
indicates that two or more files share the same physical reel of tape. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I MULTIPLE FILE TAPE CONTAINS file-name-i [~Q2I!!Q~ integer-i] I 
I I 
I [file-name-2 [POSI!!ON integer-2]]... I 
I I L ______________________________________________________________________ J 

The MULTIPLE FILE TAPE clause is required when more than one file 
shares the same physical reel of tape. 

However, this compiler treats the MULTIPLE FILE TAPE clause as 
comments, since this function is performed by the system through the 
LABEL parameter of the DO statement (see the ~rogra~~E:~_~~id~). 

APPLY Clause 

There are several options of the APPLY clause. More than one of each" 
option may appear. 

r----------------------------------------------------------------------, I . Format for Option 1 I 
~----------------------------------------------------------------------~ 
I I 

'I APPLY WRITE-ONLY ON file-name-l [file-name-21 ••• I 
I I L ______________________________________________________________________ J 

86 Part II -- Identification and Environment Divisions 

c 



( 
'----/ 

G 

APPLY Clause 

This option is used to make optimum use of buffer and device space 
allocated when creating a file whose recording mode is V. Normally, a 
buffer is truncated when there is not enough space remaining in it to 
accommodate the maximum size record. Use of this option will cause a 
buffer to be truncated only when the next record does not fit in the 
unused remainder of the buffer. This option has meaning only when the 
file is opened as OUTPUT. 

The files named in this option must have standard sequential 
organization. 

Every WRITE statement associated with the file must use the WRITE 
record-name FROM identifier option. None of the subfields of 
record-name may be referred to in procedural statements, nor may any of 
the subfields be the object of an OCCURS DEPENDING ON clause. 

However, if the same file is opened for INPUT or I-a, the subfields 
of the record-name may be referred to. When the same file is opened for, 

! 1-0, the WRITE statement must not be used; the REWRITE statement must be 
used in its place. 

r----------------------------------------------------------------------, I Format for option 2 I 
~----------------------------------------------------------------------~ 
I I 
I APPLY CORE-INDEX ON file"';name~'l [file-name-21... I 
I I L ______________________________________________________________________ J 

This option may be specified only for an indexed file whose access 
. mode is random. It is used to specify that the highest level index is 
to be processed in core. The area will be obtained at open time and 

, released at close time. 

r----------------------------------------------------------------------, I Format for Option 3 I 
~----------------------------------------------------------------------i 
I I 
I ~-RECORD-OVERFLOW ON file-name-l [file-name-21 ••• I 
I I L-_____________________________________________________________________ J 

. 
If the record overflow feature is available for the mass storage 

,device'being used, the amount of unused space on a volume may be reduced 
by specifying this option for files on that volume. If the option is 
used, a block that does not fit on the track is partially written on 

. that track and continued on the next available track. 

This option may be specified only for a standard sequential file 
(with F, U, or V mode records) assigned to a mass storage device, or a 

. direct file with fixed-length records. 

Environment Division -- Input-output section 87 



;;~-;$"r .... ~-~~--;I--~'-:" ....... ~~"-"":"'- .. ...;.:-:-....... .;.:....:.-----------... ---.. -.;;.---------------------------, 
;:'1" ",,'" "<,', ", Format for Option 4 I 
t:;t1.-~-~:---~7" ... ~,-~~-----~-----------------------~------------------------1 
(,','1 '" :~ 'REORG-CRITERIA TO data-name ON file-name I 

ft~~~i~~~:~_---~--------------------------------------__________________ J 
1,1'" 

r:,~:;",:If ,the '''reorganization criteria" feature was specified on the DD card 
i;/for' an, ,indexed file 'when it was created, this option may be specified 
t 'for the file ,when ACCESS IS RANDOM is specified. 
1', , ' , 

L,' ,The:' re~rganizati<,>n 'statistics, maintained by the system will be placed 
~>.ln data .... nci'me when,a CLOSE statement is executed for the file. Data-name 
¥<,'must be composed of ,three COMPUTATIONAL items of 2, 2, and 4 bytes in 
?::'length, ,respectively." 
f'> ,", i'" "i ", ,', " " ' 

xt:-;- The ,first 2 bytes' will contain the number of cylinder overflow areas 
r:ithat, ate,' full., ,The "second 2 bytes ,will contain the number of tracks 
L(part'ialori,'whole') 'remaining' in the independent overflow area. The last 
t)", byt.es; will contain' the number of READ or WRITE statements that 
Laccessed:overflowrecords that are not the first in the chain of such 
krecords.' ; , 
Ih:lJ::~,,,,;'~jiv/u:'J,L,~'!~/,~ , 

88 Part II -- Identification and Environment Divisions 



• DATA DIVISION -- INTRODUCTION 

• ORGANIZATION OF THE DATA DIVISION 

• FILE DESCRIPTION ENTRY -- DETAILS OF CLAUSES 

• DATA DESCRIPTION 

• DATA DESCRIPTION -- DETAILS OF CLAUSES 

Part III -- Data Division 89 





o 

o 

External Data--Description 

DATA DIVISION -- INTRODUCTION 

The Data.Division of a COBOL source program contains the description 
of all information to be processed by the object program. Two types of 
data may be processed by a COBOL program: information recorded 
externally on files and information created internally. The second 
type, which exists only during the execution of a program, will be 
discussed later in this chapter in "Working-Storage section." 

ORGANIZATIQN OF EXTERNAL DATA 

A file.is a collection of records. There are two types of records: 
physical records and logical records. A Ehy~~ca!-E~£Q~~ is a group of 
characters or records which is treated as an entity when moved into or 
out of core storage. A !Q~ca!-E~£Qrd is a number of related data 
items. It may itself be a physical record, i.e., contained within a 
single physical unit, it may be one of several logical records contained 
within a single physical record, or it may extend across physical units. 

COBOL source language statements provide the means of describing the 
relationship between physical and logical records. Once this 
relationship is established, only logical records are made available to 
the COBOL programmer. Hence, in this manual, a reference to records 
means logical records unless the term "physical records" is used. 

DESCRIPTION OF EXTERNAL DAT~ 

In the discussion of data description, a distinction must first be 
made between a record's external description and its internal content. 

External description refers to the physical aspects of a file, i.e., 
the way in which the file appears on an external medium. For example, 
the number of logical records per physical record describes the grouping 
of records in the file. The physical aspects of a file are specified in 
file description entries. 

A COBOL record usually consists of groups of related information that 
are treated as an entity. The explicit description of the contents of 
each record defines its internal characteristics. For example, the type 
of data to be contained within each field of a logical record is an 
internal characteristic. This type of information about each field of a 
particular record is grouped into a record description entry. 

Data Division -- Introduction 91 



Data Division--Structure 

ORGANIZATION OF THE DATA DIVI§!ON 

The Data Division is divided into four sections: the File Section, 
the Working-storage Section, the' ':Lin~a,ge, ;'~e~tiori~ and the Report 
section. 

All data that is stored externally, for example, on magnetic tape, 
must be described in the ~!!~~ectio~ before it can be processed by a 
COBOL program. Information that is developed for internal use must be 
described in the, Working-Stor2ge section. ,'Informat'ion,' passed from' orie' 

,program to an6t~er ,must be,des~~;ibe~ in,tl}e, Linkage Section.' The' 
content and format of all reports that are to be generated by the Report 
Writer feature must be described in the Report Section. 

The Data Division is identified by, and must begin with, the header 
DATA DIVISION. The File section is identified by, and must begin with, 
the header FILE SECTION. The header is followed by one or more file 
description entries and one or more associated record description 
entries\ The Working-Storage Section is identified by, and must begin 
with, the header WORKING-STORAGE SECTION. The header is followed by 
data item description entries for noncontiguous items, followed by 
record description entries. The ,Linkage' Sectibn' i'9 ideritifiecf by, 'and",~: 

"must begin with, the header'. LINKAGE',SECTION~ , The header is followed, by' 
: noncontiguous data item description",~ntrie~f £ol:lo,w,e~ by:, r~90rd ,',' <':";,';! 
",descr~pt~<?n ,en~ries.' The Report section is identified by, and must 
begin with, the header REPORT SECTION. The header is followed by one or 
more report description entries, and one or more report group 
description entries. 

Program Product Informatioa (Version 4) 

'In Version 4" a fifth sectioll~'''(thecommun:icati'on':sect.lori~' C'ontains'v;< 
'information about the ',interface ,bet~entiii, COBOL 'fppr~gram: and,:' :! ','( 
the',user written 'TeAM, Message, Control',Progra",~',' The ,communi.'C<itiOri , 
section is identified' by, and must':begin with,' the ,header, ,',:,',' ',' 
COMMUNICATION SECTION. The' 'heaqe'r ,is ,followed" by, 'one ',or more,', " "',' 
co~unication description entries, each, ,optionally, 'followed,b~-:on~ , 

'or more record description,'entx::ies.,," In the Data Division, ,the, ':';" '/'; 
Communication Secti'on must, be written after the Linkage'Section 'a~d; 
before the Report, SeCti'on. , '(see' the 'l'eleprocessing::chapter.»,' ,: ,,:,~ 

",<~', '> ,~" ,,~ / ''''h~ ~ <",~'\\ 

For the proper formats of Division and Section headers, see "Use of 
the COBOL Coding Form" in "Language Considerations." 

Structure of the Data Division 

DATA DIVISION. 

FILE SECTION. 

{file description entry 

{record description entry} ••• } ••• 

WORKING-STORAGE SECTION. 

[data item description entryl ••• 

[record description entryl ••• 

92 Part III -- Data Division 

c' 



C
" 
" ,) 

o 

Data Division structure/Level Indicator 

LINKAGE SECTION., 

; [data item description'entryJ ••• 

[record description entry] ••• 

COMMUNICATION SECTION. (Version 4) 

:{communication description entry (Version 4) 

: (record description entryJ ••• } ••• (Version 4) 

REPORT SECTION. 

{report description entry 

{report group description entry} ••• } ••• 

Each of the sections of the Data Division is optional and may be 
omitted from the source program when the section is unnecessary. When 
used, the sections must appear in the foregoing sequence. 

ORGANIZATION OF DATA DIVISION_ENTRIES 

Each Data Division entry begins with a level indicator or a level 
number, followed by one or more spaces, followed by the name of-a-data 
item (except in the Report Section), followed by a sequence of 
independent clauses describing the data item. The last clause is always 
terminated by a period followed by a space. 

There are two types of Data Division entries: those that begin with 
a level indicator and those that begin with a level number. 

Level Indicator 

The level indicator FD is used to specify the beginning of a file 
description entry. When the file is a sort-file, the level indicator SO 
must be used instead of FD (see "Sort"). When a report is to be 
generated by the Report writer feature, the level indicator RD, 
specifying the beginning of a report description entry, must be provided 
for each report, in addition to the FD for the file from which the 
report is generated (see "Report Writer"). Figure 4 summarizes the 
level indicators. 

r----------T-----------------------------------------------------------, 
IIndicator I Use I 
~----------+-----------------------------------------------------------~ I FO I file description entries I 
I I I 
I SO I sort-file description entries I 
I I I 
I ""'CD I. c.ommuni~ation description entries (Version 4) I 
I . 'd I 
I RO I report descriptiQn entries I L __________ ~ _________________________________________________________ J 

Figure 4. Level Indicator Summary 

Organization of the Data Division 93 



Level Numbers 

Each level indicator must begin in Area A and be followed in Area B 
by its associated name and appropriate descriptive information. 

Level indicators are illustrated in the sample COBOL programs found 
in Appendix B. 

Level.Number 

Level numbers are used to structure a logical record to satisfy the 
need to specify subdivisions of a record for the purpose of data 
reference. Once a subdivision has been specified, it may be further 
subdivided to permit more detailed data reference. 

The basic subdivisions of a record, that is, those not further 
subdivided, are called el~m~nta£y it~m~; consequently, a record may 
consist of a sequence of elementary items, or the re90rd itself may be 
an elementary item. 

In order to refer to a set of elementary items, the elementary items 
are combined into groups. A group item consists of a named sequence of 
one or more elementary items. Groups, in turn, may be combined into 
larger groups. Thus, an elementary item may belong to more than one 
group. In the following example, the group items MARRIED and SINGLE are 
themselves part of a larger group named RETIRED-EMPLOYEES: 

02 RETIRED-EMPLOYEES. 
03 MARRIED. 

04 NO-MALE PICTURE 9(8). 
04 NO-FEMALE PICTURE 9(8). 

03 SINGLE. 
04 NO-MALE PICTURE 9(8). 
04 NO-FEMALE PICTURE 9(8). 

A system of level numbers shows the organization of elementary items 
and group items. Since records are the most inclusive data items, the 
level number for a record must be 1 or 01. Less inclusive data items 
are assigned higher (not necessarily successive) level numbers not 
greater than 49. There are special level numbers -- 66, 77, and 88 
which are exceptions to this rule. Separate entries are written in the 
source program for each level number used. 

A group includes all group and elementary items following it until a 
level number less than or equal to the level number of that group is 
encountered. The level number of an item which immediately follows the 
last elementary item of the previous group must be equal to the level 
number of one of the groups to which a prior elementary item belongs. 

Standard Nonstandard 
01 A. :' 01 A. 

05 C-l. 05 C-l. 
10 D PICTURE x. 10 D pICTURE x. 
10 E PICTURE x. 10 E PICTURE x. ' 

05 C-2. 04 B-1. 

In the foregoing example, the compiler will accept the nonstandard' 
use of 04 and treat it a~ though ·it had been writ~e~ as a~ 05. 

Level numbers 01 and 77 must begin in Area A, followed in Area B by 
associated data-names and appropriate descriptive information. All 
other level numbers may begin in either Area A or in Area B, followed in 
Area B by associated data-names and appropriate descriptive information. 

94 Part III -- Data Division 

c 



--- -- --------

Level Numbers/File Section 

A single-digit level number is written either as a space followed by 
a digit or as a zero followed by a digit. At least one space must 
separate a level number from the word following the level number. 

Special Level Numbers 

Three types of data exist whose level numbers are not intended to 
structure a record: 

66: Names of elementary items or groups described by a RENAMES clause 
for the purpose of regrouping data items have been assigned the 
special level number 66. For an example of the function of the 
RENAMES clause, see "Data Description." 

77: Noncontiguous Working-storage items, which are not subdivisions of 
other items and are not themselves subdivided, have been assigned 
the special level number 77. 

88: Entries that specify condition-names to be associated with 
particular values of a conditional variable have been assigned the 
special level number 88. For an example of level-88 items, see 
"Data Description." 

Indentation 

Successive data description entries may have the same format as the 
first such entry or may be indented according to level number. 
Indentation is useful for documentation purposes and does not affect the 
action of the compiler. 

FILE SECTION 

The File Section contains a description of all externally stored data 
(FO) , and a description of each sort-file (SO) used in the program. 

The File Section must begin with the header FILE SECTION followed by 
a period. The File section contains file description entries and 
sort-file description entries, each one followed by its associated 
record description entry (or entries). 

r----------------------------------------------------------------------, 
I General Format I 
~----------------------------------------------------------------------~ 
I I 
I FILE SECTION. I 
I I 
I {file description entry I 
I I 
I {record description entry} ••• }... I 
I I L ______________________________________________________________________ J 

Organization of the Data Division 95 

-------------- --- ------_. 



File Sectio~working-Storage Section 

File Description Entry 

In a COBOL program, the File Description Entries (FD and SD) 
represent the highest level of organization in the File Section. The 
file description entry provides information about the physical structure 
and identification of a file, and gives the record-name(s) associated 
with that file. 

For a complete discussion of the sort-file-description entry, see 
"Sort." 

Record Description Entry 

The Record Description Entry consists of a set of data description 
entries which describe the particular record(s) contained within a 
particular file. For a full discussion of the format and the clauses 
required within the record description entry, see "Data Description." 

WORKING~STORAGE SECTION 

The Working-Storage Section may contain descriptions of records which 
are not part of external data files but are developed and processed 
internally. 

The Working-Storage section must begin with the section header 
WORKING-STORAGE SECTION followed by a period. The Working-Storage 
section contains data description entries for noncontiguous items and 
record description entries, in that order. 

r----------------------------------------------------------------------, I General Format I 
~----------------------------------------------------------------------~ 
I I 
I WORKING-STORAGE-SECTION. I 
I I 
I [data item description entry] I 
I I 
I [record description entry] ••• I 
I I L ______________________________________________________________________ J 

Data Item Description Entries 

Noncontiguous items in Working-storage that bear no hierarchical 
relationship to one another need not be grouped into records, provided 
they do not need to be further subdivided. Instead, they are classified 
and defined as noncontiguous elementary items. Each of these items is 
defined in a separate data item description entry that begins with the 
special level number 77. 

96 Part III -- Data Division 



G 

Linkage Section/Report Section 

Record Description Entries 

Data elements in Working-storage that bear a definite hierarchical 
relationship to one another must be grouped into records structured by 
level number. 

LINKAGE SECTION 

The Linkage Section describes data made available from another 
program. It is also used to describe data from the PARM field of the 
EXEC statement, which is made available to a main program at execution 
time (see "Subprogram Linkage"). 

r----------------------------------------------------------------------, I General Format I ' 
~----------------------------------------------------------------------~' 
I I 
I LINKAGE SECTION. I' 
I I 
I [data item description entry] ••• I 
I I 
I [record description entry] ••• r 
I I L ______________________________________________________________________ J 

Data item description entries and ~~Q£g~~~ipt!Qn_entri~ in the 
Linkage Section provide names and des9riptions, but storage within the 
program is not reserved since the data area exists elsewhere. Any data, 
description clause may be used to describe items in the Linkage Section" 
with one exception: the VALUE clause'may not be specified for other, 
than level-aa items. In the Linkage Section, the compiler assumes that 
each level-Ol item starts on a doubleword boundary. 

Note: The combined total number of level-77 and level-Ol items in the 
Linkage Section may not exceed 255. 

Program Product Information (Version 4) 

COMMUNICATION SECTION 

The Communication Section contains Communication Description 
entries for input and/or for output, and optional record 
description entries. The Communication Section is discussed in 
"Teleprocessing". 

REPORT SECTION 

The Report section contains Report Description entries and report 
group description entries for every report named in the REPORT clause. 
The Report Section is discussed in "Report Writer." 

Organization of the Data Division 97 



FD Entry/BLOCK CONTAINS Clause 

FILE DESCRIPTION ENTRY -- DETAILS OF CLAUSES 

The file description entry consists of level indicator (FD), followed 
by file-name, followed by a series of independent clauses. The entry 
itself is terminated by a period. 

r----------------------------------------------------------------------, 
I General Format I 
~----------------------------------------------------------------------~ 

FD file-name 

[BLOCK CONTAINS Clause] 

[RECORD CONTAINS Clause] 

(RECORDING MODE Clause] 

LABEL RECORDS Clause 

[VALUE OF Clause] 

[DATA RECORDS Clause] 

[REPORT Clause]. I 
______________________________________________________________________ J 

The level indicator FD identifies the beginning of a file description 
entry and must precede the file-name. The clauses that follow the name 
of the file are optional in-many cases, and their order of appearance is 
not significant. 

BLOCK.CONTAINS Clause 

The BLOCK CONTAINS clause is used to specify the size of a physical 
record. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------.------------------------------------------------~ 
I I 
II { CHARACTERS } II 

BLOCK CONTAINS [integer-l !Q] integer-2 
I g~QQgQ~ I 
I I L ______________________________________________________________________ J 

The BLOCK CONTAINS clause is unnecessary when a physical record 
contains one and only one complete logical record. In all other 
instances, this clause is required. 

98 Part III -- Data Division 



u 

G 

o 

BLOCK CONTAINS Clause 

The BLOCK CONTAINS clause need not be specified for: 

• Direct files with F, U, or V-mode records. 

• Direct files when the RECORDING MODE clause is specified for 
S-mode records. 

• Relative files. 

• Files containing U-mode records. 

For these types of files, the compiler accepts the clause and treats it 
as comments, issuing a diagnostic message. 

The RECORDS option may be used unless one of the following situations 
exists, in which case the CHARACTERS option should be used: 

1. The physical record contains padding (areas not contained in a 
logical record). 

2. Logical records are grouped in such a manner that an inaccurate 
physical record size would be implied. Such would be the case 
where the user describes a mode V record of 100 characters, yet 
each time he writes a block of 4, he writes a 50-character record 
followed by three 100-character records. Had he used the RECORDS 
option, the compiler would have calculated the block length as 420. 

3. Logical records extend across physical records; that is, recording 
mode is S (spanned). 

When the RECORDS option is used, the compiler assumes that the block 
size provides for integer-2 records of maximum size and then provides 
additional space for any required control bytes. 

When the CHARACTERS option is used, the physical record size is 
specified in Standard Data Format, i.e., in terms of the number of bytes 
occupied internally by its characters, regardless of the number of 
characters used to represent the item within the physical record. The 
number of bytes occupied internally by a data item is included as part 
of the discussion of the USAGE clause. ~u~~~~~1 and ~~te~~r-£ must 
include slack bytes and control bytes contained in the physical record. 

When the CHARACTERS option is used, and if only integer-2 is shown 
and is not zero, integer-2 represents the exact size of the physical 
record. If both integer-l and integer-2 are shown, they refer to the 
minimum and maximum size of the physical record, respectively. 

When both integer-l and int~ger-2 appear, they must be positive 
integers. 

When only integer-2 is shown, and it is specified as zero, the block 
,size is determined at object time from the DD parameters or the data set 

: label for the file. If integer-2 is specified as zero, the file-name 
; may not appear in a SAME AREA clause. The file must either be a 

I . standard sequential file or an indexed file whose ACCESS MODE is 
,sequential. ' 

When the BLOCK CONTAINS clause is omitted, it is assumed that records 
are not blocked. When neither the CHARACTERS nor the RECORDS option is 
specified, the CHARACTERS option is assumed. 

Program Product tnformation (Version 3 and Version 4) 

If the BLOCK CONTAINS clause is omitted and the RECORD CONTAINS 0 
CHARACTERS clause is specified. then the block size is determined 
at object time from the DO parameters or the data set label for the 
file. 

File Description Entry -- Details of Clauses 99 



RECORD CONTAINS Clause 

1,'N~t~~ ,When an 'indexed :£11e is opened for INPUT or 1-0, the blocking" 
t;'factor must equal the blocking factor used ,when the file was created. 
kThis' restriction, also, holds 'if the block size is specified at object 
1: time with a DO card, rather than at compile time with an Fo entry. ' 
.. , • • , I 

For an indexed file. neither the [integer-l TO] nor the CHARACTERS 
f~~~i,on: may be used. 

Note: ASCII considerations for the BLOCK CONTAINS clause are given in 
Appendix E. 

RECORD CONTAINS Clause 

The RECORD CONTAINS clause is used to specify the size of a file's 
data records. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I RECORD CONTAINS [integer-l TO] integer-2 CHARACTERS I 
I I L ______________________________________________________________________ J 

Since the size of each data record is completely defined within the 
record description entry, this clause is never required. When the 
clause is specified, the following notes apply: 

1. If both integer-l and integer-2 are shown, they refer to the number 
of characters in the smallest data record and the number in the 
largest data record, respectively. 

2. Integer-2, when nonzero, should not be used by itself unless all 
the data records in the file have the same size. In this case, 
integer-2 represents the exact number of characters in the data 
record. 

3. The size of the record must be specified in Standard Data Format, 
i.e., in terms of the number of bytes occupied internally by its 
characters, regardless of the number of characters used to 
represent the item within the record. The number of bytes occupied 
internally by a data item is discussed in the description of the 
USAGE clause. The size of a record is determined according to the 
rules for obtaining the size of a group item. 

When both integer-l and integer-2 appear, they must be positive 
integers. 

Program-Product Information (Version 3 and version 4) 

; When only integer-'2 ,i~ sho~, it 'may be specified as zero. When it, 
:is specified as zero, the record size is determined at object'time 
lfrom'either the data's~t'label'or the DD card: the recording'moae 
l:may be fixed, va'riable,: or" spanned. ' If integer-2 is specified as' 
:zero, the associated,file~name may not appear in a SAME' AREA or 
'S~ RECORD AREA clause. The ,file, must be an inpnt file whose 
\organizat.ion ,is standard sequential or, indexed and ~hose ACCESS 
MOI?E is sequential. ' " , ~, ; 

ii, at object time, 'the'actual record (that is, the record actually 
read) ',is larger than the 01 data record description, only the , ' 
'record length'specified by:the record ,description is accessible to 

100 Part III -- Data Division 

c 



G 

C) 

RECORD CONTAINS Clause/Recording Mode 

the user; if the actual record is smaller then the record 
description, references to areas beyond the actual record produce 
unpredictable result~~ 

If the RECORD CONTAINS clause specifies integer-2 as zero and the 
BLOCK CONTAINS 0 CHARACTERS clause is used (or if the BLOCK 
CONTAINS clause is omitted), then the block· size is determined at 
object time from the DD parameters or the data set label for the 
file. 

Whether this clause is specified or omitted, the record lengths are 
determined by the compiler from the record descriptions. When one or 
more of the data item description entries within a record contains an 
OCCURS DEPENDING ON clause, the compiler uses the maximum value of the 
variable to calculate the record length. 

However, if more than one entry in a given record description 
contains an OCCURS DEPENDING ON clause, and the maximum values of the 
variables in these OCCURS clauses do not occur simultaneously, 
integer-2, as specified by the user, may indicate a maximum record size 
other than the size calculated by the compiler from the maximum values 
of the OCCURS clause variables. In this case, the user-specified value 
of integer-2 determines the amount of storage set aside to contain the 
data record. 

For example, in a school whose total enrollment is 500, an unblocked 
file of collective attendance records is being created, each record of 
which is described as follows: 

01 ATTENDANCE-RECORD. 
05 DATE PICTURE X(6). 
05 NUMBER-ABSENT PICTURE S999 COMPUTATIONAL SYNCHRONIZED. 
05 NUMBER-PRESENT PICTURE S999 COMPUTATIONAL SYNCHRONIZED. 
05 NAMES-OF-ABSENT OCCURS 0 TO 500 TIMES DEPENDING ON 

NUMBER-ABSENT PICTURE A(20). 
05 NAMES-OF-PRESENT OCCURS 0 TO 500 TIMES DEPENDING ON 

NUMBER-PRESENT PICTURE A(20). 

The programmer can save storage by taking advantage of the fact that 
NUMBER-ABSENT plus NUMBER-PRESENT will never exceed the school's total 
enrollment. Unless the programmer writes RECORD CONTAINS 10,010 
CHARACTERS in the FD entry for the file, the compiler calculates the 
record size to be almost twice as large. 

Recording-Mode 

When the RECORDING MODE clause is not used to specify the recording·~ 
mode of the records in the fil~, the COBOL compiler scans each record .. 
description entry to determine it. The recording mode may be F (fixed), 
U (unspecified), V (variable), or S (spanned). 

Recording.Mode F -- All of the records in a file are the same length and 
each is wholly contained within one block. Blocks may contain more than 
one record, and there is usually a fixed number of records per block. 
In this mode, there are no record-length or block-descriptor fields. 

Recording .. Mode U -- The records may be either fixed or variable in 
length. However, there is only one record per block. There are no 
record-length or block-descriptor fields. 

Recording-Mode V ..:- The records may be either fixed or variable in 
length, and each must be wholly contained in one block. Blocks may 
contain more than one record. Each data record includes a record-length 

File Description Entry -- Details of Clauses 101 

-----. -------------------------------------



Recording Mode/RECO~ING MODE Clause 

field and each block includes a block-descriptor field. These fields 
are not described in the Data Division; provision is automatically made 
for them. These fields are not available to the user. 

Recording Mode S -- The records may be either fixed or variable in 
length, and may be larger than a block. If a record is larger than the 
remaining space in a block, a segment of the record is written to fill 
the block. The remainder of the record is stored in the next block (or 
blocks, if required). Only complete records are made available to the 
user. Each segment of a record in a block, even if it is the entire' 
record, includes a segment-descriptor field, and each block includes a 
block-descriptor field. These fields are not described in the Data 
Division; provision is automatically made for them. These fields are 
not available to the user. 

For standard sequential files, the compiler determines the recording 
mode for a given file to be: 

F if all the records are defined as being the same size and the size 
is smaller than or equal to the block size. 

V if the records are defined as variable in size, or if the RECORD 
CONTAINS clause specifies variable size records and the longest 
record is less than or equal to the maximum block size. 

S if the maximum block size is smaller than the largest record size. 

For direct files, the compiler determines the recording mode for a 
given file to be: 

F if all the records are defined as being the same size, and the size 
is smaller than or equal to the block size. 

u if the records are defined as variable in size, or if the RECORD 
CONTAINS clause specifies variable size records and the longest 
record is less than or equal to the maximum block size. 

S if the maximum block size is smaller than the largest record size. 

Files with indexed or relative organization must have F-mode records. 

Note: ASCII considerations for compiler calculation of recording mode 
are-given in Appendix E. 

RECORDING MODE Clause 

The RECORDING MODE clause is us~d to specify the format of the 
logical records in the file. 

r----------------------------------------------------------------------, I Format, I 
~----------------------------------------------------------------------i I L 
I RECORDING MODE IS mode I' 
I I L ______________________________________________________________________ J, 

Mode is specified a's either F, V, U or S. If this clause is not 
specified, the recording mode is determined as described in nRecording 

, Mode." 

102 Part III -- Data Division 



C:~~I 

RECORDING MODE/LABEL RECORDS Clauses 

F mode (fixed-length format) may be specified when all the logical 
records in a file are the same length and each is wholly contained 
'within one physical block. This implies that no OCCURS DEPENDING ON 
,clause is associated with an entry in any record description for the 
file. If more than one record description entry is given following the 
FD entry, all record lengths calculated fr9m the record descriptions 
must be equal. 

V mode (variable-length format) may be specified for any combination 
of record descriptions if each record is wholly ,contained in one 
physical block. A mode V logical record is preceded by a control field 
containing the length of the logical record. Blocks of variable-length 
records include a block-d~scriptor control field. V mode may not be 
specified for files with indexed or relative organization. 

U mode (unspecified format) may be specified for any combination of 
record descriptions, if each record is wholly contained in one physical 
block, and the block contains only on,e physical record. It is 
comparable to V mode with the exception that U-mode records are not 
blocked and have no preceding control field. U mode may not be 
specified for files with indexed or relative organization. 

S mode (spanned format) may be specified for any combination of 
record descriptions. If a record is larger than the remaining space in 
a block, a segment of the record is written to fill the block. The 
remainder of the record is stored in the next block (or blocks, if 
required). only complete records are made available to the user. Each 
segment of a record in a block, even if it is the entire record, 
includes a segment-descriptor field, and each block includes a 
block-descriptor field. These fields are not described in the Data 
Division; prOVision is automatically made for them. These fields are 
not available to the user. S mode may be specified for standard 
sequential files or for direct files. 

Note: ASCII considerations for the RECORDING MODE clause are given in 
Appendix E. 

LABEL RECORDS Clause 

The LABEL RECORDS clause specifies whether labels are present, and if 
present, identifies the labels. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I SRECORD IS } ) QMITTED ( I 
I LABEL STANDARD I 
I tRECORDS ARE ~data=name-1 [data-name-21 ••• [TOTALING AREA~ I 
I IS data-name-3 TOTALED AREA IS I 
I data-name-4] I 
I I L ______________________________________________________________________ J 

The LABEL RECORDS clause is required in every FD. 

The OMITTED option specifies that either no explicit labels exist for 
the file or that the existing labels are nonstandard and the user does 
not want them to be processed by a label declarative (i.e., they will be 
processed as data records). The OMITTED option must be specified for 
files assigned to unit record devices. It may be specified for files 

File Description Entry -- Details of Clauses 103 

------- ------



LABEL RECORDS Clause 

assigned to magnetic tape units. Use of the OMITTED option does not 
result in automatic bypassing of nonstandard labels on input. It is the 
user's responsibility to either process or bypass nonstandard labels on 
input and create them on output. 

The STANDARD option specifies that labels exist for the file and that 
the labels conform to system specifications. The system will bypass 
user labels appearing in the file if the STANDARD option is specified. 

I ' ',' Thck 'STANDARD 'optio~ mu~:t' ?e specified ,for files with indexed· 
:orqan~zation. ' 

Note: ASCII considerations for the LABEL RECORDS clause are given in 
Appendix E. 

In the discussion that follows, all references to data-name-l apply 
equally to data-name-2. 

The data-name-l option indicates either the presence of user labels 
in addition to standard labels, or the presence of nonstandard labels. 
Data-name-l specifies the name of a user label record. Data-name-l must 
appear as the subject of a record description entry associated with the 
file, and must not appear as an operand of the DATA RECORDS clause for 
the file. 

If user labels are to be processed, data-name-l may be specified for 
direct files, ,relcl'1:1ve files,' or for standard sequential files with the 
exception of files assigned to unit-record devices. 

A user label is 80 characters in length. A user header label must 
have UHL in character positions 1 through 3. A user trailer label must 
have UTL in character positions 1 through 3. Both header and trailer 
labels may be grouped, and each label must show the relative position 
('., 2, ••• ) of the label within the user label group, in character 
position 4. The remaining 76 characters are formatted according to the 
user's choice. User header labels, follow standard beginning file 
labels but precede the first data record: user trailer labels follow 
standard closing file labels. 

If nonstandard labels are to be processed, data-name-l may be 
specified only for standard sequential files, with' the exception of 
files assigned to unit-record devices. The length of a nonstandard 
label may not exceed 4,095 character positions. 

All Procedure Division references to ~~£~B~me-l, or to any item 
subordinate to data-name-l, must appear within label processing 
declaratives. 

Note: In the discussion that follows, the term volume applies to all 
input/output devices. Treatment of a mass storage device in the 
sequential access mode is logically equivalent to the treatment of a 
tape file. 

'The TOTALING and TOTALED AREA option may be specified when the 
programmer wishes to create a sequential file with user labels. with 
this option he,is able to obtain exact information about each volume of 

, a multi'volume file', 'so that the information can be recorded in the user 
'trailer label each', time a volume swi tch, occurs. 

(A,"WRITE statement executed before a volume switch may cause a record 
J:o be written after the volume switch occurs (i.e., the record is 
written, on the new volume), because the volume switch took place between' 
,the ~ime' the WRITE statement was initiated, and the time the record was 

','actually written~ Thus, information accumulated as current records are 
,'''' processed does not, at label processing time, necessarily reflect the 
, 'output on ,that volume. The TOTALING/TOTALED AREA option can be used to 
,r~c~ify thi~ situation.) 

104 Part III -- Data Division 

~' 
'- --, 



c 

VALUE OF Clause 

Data~name-3, the TOTALING AREA, is defined in the Working-Storage 
; Section. Data-name-3 is used by the programmer to store information to 
be used in constructing the user labels -- information such as 

'accumulated totals for records, identification fields within the current 
,record, etc. Befpre each WRITE statement he issues, he must store 
'information associated with the current record in data-name-3~ There 
'are two exceptions. If he has specified the SAME RECORD AREA and/or the 
APPLY WRITE-ONLY clauses, then he must store the current record 

,information in data-name-3 after issuing the WRITE statement. The 
'information in data-name-3 is always associated by the system with the 
'current WRITE statement. 

,/ 

. Data~name-4, the TOTALED AREA, must be defined at the 01 level in the 
:Linkage section, and must contain fields described as identical with ' 
'those within data-name-3. The system allocates the space for 
,data-name-4 and uses it to save user label information (obtained from 
;data-name-3) associated with the most recent record actually written on 
'the current volume. Thus, when a volume switch occurs, data-name-4 
contains the user label information for the last record actually written 
on the current volume, and the programmer can use data-name-4 ,to 

'construct an accurate trailer label for the current volume, and an 
~ccurate header label for the next. 

For both data-name-3.and g~~me-4, the user must define the first 
;, two bytes of each record for use by the system. 

The TOTALING and TOTALED AREA option may not be specified for S-mode 
: records. 

VALUE OF Clause 

The VALUE OF clause particularizes the description of an item in the 
label records associated with a file, and serves only as documentation. 

r----------------------------------------------------------------------, 
I Format I 

~----------------------------------------------------------------------~ 

II {literal-l } III 
VALUE OF data-name-l IS 

I data-name-2 I 

III {literal-2 }1. .. II [data-name-3 IS 
I data-name-4 I 
I I L ______________________________________________________________________ J 

To specify the required values of identifying data items in the label 
records for the file, the programmer must use the VALUE OF clause. 

However, this compiler treats the VALUE OF clause as comments, since 
this function is performed by the system through the LABEL parameter of 
the DO statement for the file (see the PrQ~~~mm~~~2_~~!g~). 

File Description Entry -- Details of Clauses 105 



DATA RECORDS/REPORT Clauses 

DATA RECORDS Clause 

The DATA RECORDS clause serves only as documentation, and identifies 
the records in the file by name. 

r----------------------------------------------------------------------, I Format I 
~----------------------------------------------------------------------~ 
I I 

I
I {RECORD IS } II 
~ data-name-l [data-name-21 ••• 

I RECORDS ARE I 
I I L ______________________________________________________________________ J 

The presence of more than one data-name indicates that the file 
contains more than one type of data record. That is, two or more record 
descriptions for a given file occupy the same storage area. These 
records need not have the same description. The order in which the 
data-names are listed is not significant. 

Data-name-l, data-name-2, etc., are the names of data records, and 
each must be preceded in its record description entry by the level 
number 01. This clause is never required. 

REPORT Clause 

The REPORT clause is used in conjunction with the Report Writer 
feature. A complete description of the REPORT clause can be found in 
"Report writer." 

106 Part III -- Data Division 

( 
\ 



~ .. , 

U 

() 

Data Description--General Formats 

DATA DESCRIPTION 

In COBOL, the terms used in connection with data description are: 

Data Description Entry -- the clausen or clauses~ that specify the 
characteristics of any particular noncontiguous data item, or of any 
data item that is a portion of a record. The data description ent~y 
consists of a level number, a data-name (o~ condition-name), plus any 
associated data description clauses. 

Data Item Description Entry -- a data description entry that defines 
a noncontiguous data item. It consists of a level number (77), a 
data-name plus any associated data description entries. Data item 
description entries are valid in the Working-Storage section 'and 1n the 
~',~i?k~~e section::- " 

Record Description Entry -- the term used in connection with a 
record. It consists of a hierarchy of data description entries. Record 
description entries are valid in the File. working-Storage~ ana. Li:nkage': 
sections. '< ~",,'h h~ h 

Program Product Information (Version 4) 

'For Version 4 record description entries are valid in the 
Communication section. 

The maximum length for a data description entry is 32,767 bytes. 
except for a fixed-length Working-Storage 'or Linkage 'Section group item~ 
which may be as long as 131,071 bytes. 

r----------------------,.-----------------------------------------------, I General Format 1 1 
~----------------------------------------------------------------------i 

level number 
{

data-name} 

FILLER 

[RSDEFINES Clause] 
[BLANK WHEN ZERO Clause] 
[JUSTIFIED Clause] 
[OCCURS Clause] 
[PICTURE Clause] u, 

(SIGN Clause) (Vers~ons? 'apd, 4)'; 
[SYNCHRONIZED Clause] 
[USAGE Clause] 
[VALUE Clause] 

1 
1 
1 
J 
l 
~ 
I 
J 
J 
J 
I 
I 
I 
I 
J L ______________________________________________________________________ J 

r----------------------------------------------------------------------, 
I General Format 2 t 
~----------------------------------------------------------------------~ 
I 1 
I 66 data-name-1 RENAMES Clause. l 
I J L ______________________________________________________________________ J 

Data Description 107 



Data Description--General Formats 

r----------------------------------------------------------------------, 
I General Format 3 I 
~-~--------------------------------------------------------------------~ 
I I 
I 88 condition-name VA~UE Clause. I 
I I L ________________________ -----------------------------_________________ J 

~~~al Fo~mat 1 is used for record description entries in the File, 
Working-Storager~~~a~~~~a9E0Sections and for data item description
entries in the Wcfr:King::;S'to'rage ,~?:liinlMi:1 Sections. The following
rules apply: :,-,(,:.11,',; it:":",!; "'"",,,,1,,/1

1. Level number may be any number from 1 through 49 for record
description entries, or 77 for data item description entries.

2. The clauses may be written in any order, with one exception: the
REDEFINES clause, when used, must immediately follow the data-name.

3. The PICTURE clause must be specified for every elementary item,
with the exception of index data items~'fi~l$~~~~~~~1~~~1~9~~O~·~t)

;tems are descr;bed r:rn';'<"«"""T'''a·«~I'''e'i:''a;;;,H''a''-n·,·d·'''l''''~'n><'g'~".>""'" ,'/ ,(>""~1',.,~,, F~~~~. Index data 1) ...

4. Each entry must be terminated by a period.

5. Semicolons or commas may be used as separators between clauses.

Program Product Information (VersiQn_~L

Kfo:r;i;v~1::$:~9~~W;~!fGir
t'4~s,q~~p~!~~:i'::~,
!?;:'~:<;:L ~~(t',<\,:, w-~ (; ~ z' ,t;~;/*~~>;~:?;,~: ~!? /

General Format 2 is used for the purpose of regrouping data items.
The following rules apply:

1. A level-66 entry cannot rename another level-66 entry, nor can it
rename a level-77, level-88, or level-O! entry.

2. All level-66 entries associated with a given logical record must
immediately follow the last data description entry in the record.

3. The entry must be terminated by a period.

The RENAMES clause is discussed in detail later in this chapter.

General Fo~~l is used to describe entries that specify
condition-names to be associated with particular values of a conditional
variable. A condition-name is a name assigned by the user to a specific
value a data item may assume during object program execution. The
following rules apply:

1. The condition-name entries for a particular conditional variable
must immediately follow the conditional variable.

2. A condition-name can be associated with any elementary data
description entry except another condition-name, or an index data
item.

108 Part III -- Data Division

-- -- -----

c)

Data Description--General Formats

3. A condition-name can be associated with a group item data
description entry. In this case:

• The condition value must be specified as a nonnumeric literal or
figurative constant.

• The size of the condition value must not exceed the sum of the
sizes specified by the pictures in all the elementary items
within the group.

• No element within the group may contain a JUSTIFIED or
SYNCHRONIZED clause.

• No USAGE other than USAGE IS DISPLAY may be specified within the
group.

4. The specification of a condition-name at the group level does not
restrict the specification of condition-names at levels subordinate
to 'that group.

5. The relation test implied by the definition of a condition-name at
the group level is performed in accordance with the rules for
comparison of nonnumeric operands, regardless of the nature of
elementary items within the group.

6. Each entry must be terminated by a period.

Examples of both group and elementary condition-name entries are
I g!~~~ !~ ~h~ ~~~c~ip~iou of the VALUE clause.

Data Description 109

Data-name/FILLER Clause

DATA DESCRIPTION ENTRY -- DETAILS OF CLAUSES

The data description entry consists of a level number, followed by a
data-name, followed by a series of independent clauses. The clauses may
be written in any order, with one exception: the REDEFINES clause, when
used, must immediately follow the data-name. The entry must be
terminated by a period.

Data-name or FILLER Clause

A data-name specifies the name of the data being described. The word
FILLER specifies an elementary or group item of the logical record that
is never referred to and therefore need not be named.

r--,
I Format I
~--~
I I
I level number {data-name} I
I FILLER I
I I L __ J

In the Working-Storage, ;Linkage~' or File sections, a data-name or the
key word FILLER must be the first word following the level number in
each data description entry.

Program Product Information (Version 4)

"For Version' ,4. record description entries are allowed in the
~Comrnunication Section. A data-name or the key word FILLER must be
;,~he,'ifirst ,.w0~~ fOll~~ng each ,lever number in such an entry.

A data~name is a name assigned by the user to identify a data item
used in a program. A data-name refers to a kind of data, not to a
particular value; the item referred to may assume a number of different
values during the course of a program.

The key word FILLER is used to specify an elementary item or a'group
[ItemJthat is never referred to in the program, and therefore need not be

named. Under no circumstances may a FILLER item be referred to
directly. In a MOVE, ADD, or SUBTRACT statement with the CORRESPONDING
option, FILLER items are ignored.

Note: Level-77 and level-Ol entries in the Working-Storage Section and
f~nkag'e,~,S~~t:~9J:i: must be given unique data-!!~~, since neither can be
qualified. Subordinate data-names, if they can be qualified, need not
be unique.

110 Part III -- Data Division

~

~ ... /

c

Page of GC28-6396-3 and -4, Revised 5/15/74, by TNL: GN28-1048

REDEFINES Clause

REDEFINES Clause

The REDEFINES clause allows the same computer storage area to contain
different data items or provides an alternative grouping or description
of the same data. That is, the REDEFINES clause specifies the
redefinition of a storage area, not of the data items occupying the
area.

r--1
I Format 1
~--i
1 J
J level number data-name-l REDEFINES data-name-2 ~
I ,) L __ J

The level numbers of data-name-l and data-name-2 must be identical,
but must not be 66 or 88. Data-name-2 is the name associated with the
previous data description entry. Data-name-l is an alternate name for
the same area. When written, the REDEFINES clause must be the first
clause following data-name-l.

The REDEFINES clause must not be used in level-Ol entries in the File
section. Implicit redefinition is provided when more than one level-Ol
entry follows a file description entry.

Program Product Information (Version 4)

For Version 4, the REDEFINES clause must not be used in level-Ol
entries in the communication section. Implicit redefinition is
provided when more than one level-Ol entry follows a communication
description entry.

Redefinition starts at data-name-2 and ends when a level number less
than or equal to that of data-name-2 is encountered. Between the .data
descriptions of data-name-2 and data-name-l, there may be no entries
having lower level numbers (numerically) than the level number of
data-name-2 and data-name-l.

Example:

05 A.
10 A-l PICTURE X.
10 A-2 PICTURE XXX.
10 A-3 PICTURE 99.

05 B REDEFINES A PICTURE X(6).

In this case, B is data-name-l, and A is data-name-2. When B redefines
A., the redefinition includes all of the items subordinate to A (A-l,
A-2., and A-3).

The data description entry far data-name-2 cannot contain an OCCURS
clause, nor can data-name-2 be subordinate to an entry which contains an
OCCURS clause. An item subordinate to data-name-2 may contain an OCCURS
clause without the DEPENDING ON option. Data-name-l or any items
subordinate to data-name-l may contain an OCCURS clause without the
DEPENDING ON option. Neither data-name-2 nor data-name-l nor any of
their subordinate items may contain an OCCURS clause with the DEPENDING
ON option.

When data-name-l has a level number other than 01., it must specify a
storage area of the same size as data-name-2.

Data Description Entry -- Details of Clauses 111

---------- ---- -- -- ------------ ---- -- --- ----------------- --- - - --

REDEFINES Clause

f"«';' :However, t'hi; ""b;~;ii'~M;ii'l ";U~~'~~h~',~~i~~""~f",'t.~'~~:'~~'~;i?tii;;~·'~~/
!~~:f::~:=::~~\,~o,' b~"jl~a~,;;tr~n, the, ~ize ,of ,~~e"t;edet,~ned,'area::';,:", '-:;',:,,~
),.;.;',~ .,., ,,,' ,.. ... x", ... ~"'~~,~~ ; ,~ ... ,>« ;~ """,,

If data-name-1 contains an OCCURS clause. its size is computed by
multiplying the length of one occurrence by the number of occurrences.

Note: In the di~S,~,~~;9,!!,.J!!lJ,~h.,,,~2l,~9!1~', ,:t.,he ,,,tE!rm,,,~c9,1Ilpp:tational" refers
to COMPUTATIONALt:,,~Q~E~~~,~9,~~~~,~.:": ,,,~,n~,',GP~PP,TA~~QN~t.=,2 ;,,:i terns.

When the SYNCHRONIZED clause is specified for an item that also
contains a REDEFINES clause, the data item that is redefined must have
the proper boundary alignment for the data item that REDEFINES it. For
example, if the programmer writes:

05 A PICTURE X(4).
05 B REDEFINES A PICTURE 59(9) COMP SYNC.

he must ensure that A begins on a fullword boundary.

When the SYNCHRONIZED clause is specified for a computational item
that is the first elementary item subordinate to an item that contains a
REDEFINES clause, the computational item must not require the addition
of slack bytes.

Except for condition-name entries, the entries giving the new
description of the sto~age area must not contain any VALUE clauses.

The entries giving the new description of the storage area must
follow the entries describing the area being redefined, withouu
intervening entries that define new storage areas. Multiple
redefinitions of ~h~ same sto7age area Shouldiiall,,,p:se7:th~,,~~a.1::.~,:-;:~,a~~:1'p
l~l:?:~ ".~~!:!"Y""~!1,a,t;,,,,C?,,,;:,!,g!n~l!~,,,,~,~f~~,E!9,.",t:~~,,,~;-,~,~,"!,"""", ,owever.. t.hl.s ;c():mpl:le:~,wi,'" ':',,::
~ccept, ~a' valid, the' data-n'ame,' ~,f' the', preceding, entry, whe,n 'Multiple>,';' :<"",'~t,<;i;;'
trec;tefini~ion.' is '~$'ed~ \:':,For,,~xample/ both 'of' :the ,'foflo~illg ,ax:e 'va,~ic('>u,$,~~j~
e~, :;~~,~,~~,,~~,R~E ::f,~~~L ,~,~!:lJ~,~~,,; ~~',:,.,>:,~,:" ,,,"'.,,:::,' .'"0~':'''''''~''' ,:::' ';"'~,,~~ " ", ' ,: •• ."~,, 'M">"; ;:",,~:" ::,,<~",,;'"~,':>~,~~'),~>~.:J,;'::,.~,,:

05 A PICTURE 9999.
05 B REDEFINES A PICTURE 9V999.
05 C REDEFINES A PICTURE 99V99.

Data items within an area can be redefined without their lengths
being changed; the following statements result in the storage layout
shown in Figure 5.

05 NAME-2.
10 SALARY PICTURE XXX.
10 50-SEC-NO PICTURE X(9).
10 MONTH PICTURE XX.

05 NAME-1 REDEFINES NAME-2.
10 WAGE PICTURE XXX.
10 MAN-NO PICTURE X(9).
10 YEAR PICTURE XX.

112 Part III -- Data Division

---------- ------ -- ------- --- ----- --- -- -- ---- - -- ---- -------

(\

"----')

C"'
)

REDEFINES Clause

r--,

NAME-2

NAME-1

SALARY SO-SEC-NO MONTH

.----"'-"' --""- -~
r--T--T--T--T--T--T--T--T--T--T--T--T--T--'
I I I I I I I I I I I I I I I
I I I I
I I I I I I I I I I I I I I I L __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ J

WAGE MAN-NO YEAR

Figure 5. Areas Redefined Without Changes in Length

Data items can also be rearranged within an area; the following
statements result in the storage layout shown in Figure 6.

05 NAME-2.
10 SALARY PICTURE XXX.
10 SO-SEC-NO PICTURE X(9).
10 MONTH PICTURE XX.

05 NAME-1 REDEFINES NAME-2.
10 MAN-NO PICTURE X(6).
10 WAGE PICTURE 999V999.
10 YEAR PICTURE XX.

r--,

NAME-2

NAME-1

SALARY SO-SEC-NO MONTH

~- --""-- ~
r--T--T--T--T--T--T--T--T--T--T--T--T--T--'
I I I I I I I I I I I I I I I
I I I I
I I I I I I I I I I I I I I I L __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ J

MAN-NO WAGE YEAR ---------------~ ~
r--T--T--T--T--T--T--T--T--T--T--T--T--T--'
I I I I I I I I I I I I I I I
I I I I
I I I I I I I I I I I I I I I L __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ J

__ J

Figure 6. Areas Redefined and Rearranged

When an area is redefined, all descriptions of the area remain in
effect. Thus, if B,and C are two separate items that share the same
storage area due to redefinition, the procedure statements MOVE X TO B
or MOVE Y TO C could be executed at any point in the program. In the
first case, B'would assume the value of X and take the form specified by
the description of B. In the second case, the same physical area would
receive Y according to the description of C. It should be noted,
however, that if both of the foregoing statements are executed
successively in the order specified, the value Y will overlay the value
X. However, redefinition in itself does not cause any data to be erased
and does not supersede a previous description.

Data Description Entry -- Details of Clauses 113

REDEFINES Clause

The usage of data items within an area can be redefined.

Altering the USAGE of an area through redefinition does not cause any
change in existing data. Consider the example:

05 B PICTURE 99 USAGE DISPLAY VALUE IS S.
05 C REDEFINES B PICTURE S99 USAGE COMPUTATIONAL.
05 A PICTURE S9999 ·USAGE COMPUTATIONAL.

Assuming that B is on a halfword boundary, the bit configuration of
the value S is 1111 0000 1111 1000, because B is a DISPLAY item.
Redefining B does not change its appearance in storage. Therefore, a
great difference results from the two statements ADD B TO A and ADD C TO
A. In the former case, the value S is added to A, because B is a
display item. In the latter case, the value -3,S4S is added to A,
because C is a binary item (USAGE IS COMPUTATIONAL), and the bit
configuration appears as a negative number.

Moving a data item to a second data item that redefines the first one
(for example, MOVE B TO C when C redefines B), may produce results that
are not those expected by the programmer. The same is true of the
reverse (MOVE B TO C when B redefines C).

A REDEFINES clause may be specified for an item within the scope of
an area being redefined, that is, an item subordinate to a redefined
item. The following example would thus be a valid use of the REDEFINES
clause:

05 REGULAR-EMPLOYEE.
10 LOCATION PICTURE A(S).
10 STATUS PICTURE X(4).
10 SEMI-MONTHLY-PAY PICTURE 9999V99.
10 WEEKLY-PAY REDEFINES SEMI-MONTHLY-PAY

PICTURE 999V999.

05 TEMPORARY-EMPLO~EE REDEFINES REGULAR-EMPLOYEE.
10 LOCATION PICTURE A(S).
10 FILLER PICTURE X(6).
10 HOURLY-PAY PICTURE 99V99.

REDEFINES clauses may also be specified for items subordinate to
items containing REDEFINES clauses. For example:

05 REGULAR-EMPLOYEE.
10 LOCATION PICTURE A(S).
10 STATUS PICTURE X(4).
10 SEMI-MONTHLY-PAY PICTURE 999V999.

05 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE.
10 LOCATION PICTURE A(S).
10 FILLER PICTURE X(6).
10 HOURLY-PAY PICTURE 99V99.
10 CODE-H REDEFINES HOURLY-PAY PICTURE 9999.

114 Part III -- Data Division

C
··',
)

BLANK WHEN ZERO/JUSTIFIED Clauses

BLANK WHEN ZERO Clause

This clause specifies that an item is to be set to blanks whenever
its value is zero.

r--,
I Format I
~--~
I I
I BLANK WHEN ZERO I
I I L __ J

When the BLANK WHEN ZERO clause is used, the item will contain only
blanks if the value of the item is zero.

The BLANK WHEN ZERO clause may be specified only at the elementary
level for numeric edited or numeric items. When this clause is used for
an item whose PICTURE is numeric, the category of the item is considered
to be numeric edited.

This clause may not be specified for level-66 and level-B8 data
items.

JUSTIFIED Clause

The JUSTIFIED clause is used to override normal positioning of data
within a receiving alphabetic or alphanumeric data item.

r--,
I Format I
~--~
I I
II {JUSTIFIED} II

RIGHT
I JUST I
I I L __ J

Normally, the rule for positioning data within a receiving
alphanumeric or alphabetic data item is:

• The data is aligned in the receiving field, beginning at the
leftmost character position within the receiving field. Unused
character positions to the right are filled with spaces. If
truncation occurs, it will be at the right.

The JUSTIFIED clause affects the positioning of data in the receiving
field as follows:

1. When the receiving data item is described with the JUSTIFIED clause
and the data item sent is larger than the receiving data item, the
leftmost characters are truncated.

2. When the receiving data item is described with the JUSTIFIED clause
and is larger than the data item sent, the data is aligned at the
rightmost character position in the data item. Unused character
positions to the left are filled with spaces.

The JUSTIFIED clause may only be specified for elementary)items.

This clause must not be specified for level-66 or level-88 data
items.

Data Description Entry -- Details of Clauses 115

PICTURE Clause

OCCURS Clause

The OCCURS clause is used to define tables and other homogeneous sets
of data, whose elements can be referred to by subscripting or indexing.
The OCCURS clause is described in "Table Handling."

PICTURE. Clause

The PICTURE clause describes the general characteristics and editing
requirements of an elementary item.

r--,
I Format I
~--~
I I

I
I {PICTURE} II IS character string
I PIC I
I I L __ J

The PICTURE clause can be used only at the elementary level.

The character string consists of certain allowable combinations of
characters in the COBOL character set. The maximum number of characters
allowed in the character string is 30. The allowable combinations
determine the category of the elementary item.

There are five categories of data that can be described with a
PICTURE clause. They are:

1. Alphabetic
2. Numeric
3. Alphanumeric
4. Alphanumeric edited
5. Numeric edited

The Three Classes of Data

The five categories of data items are grouped into three classes:
alphabetic, numeric, and alphanumeric. For alphabetic and numeric, the
class and the category are synonymous. The alphanumeric class includes
the categories of alphanumeric (without editing), alphanumeric edited,
and numeric edited.

Every elementary item belongs to one of the three classes and to one
of the five categories. The class of a group item is treated at object
time as alphanumeric regardless of the class of the elementary items
subordinate to that group item.

Table 6 shows the relationship of the class and category for
elementary and group data items.

116 Part III -- Data Division

----- - ---------- ---------- -------------------

C
·- \

)

PICTURE Clause

Table 6. Class and Category of Elementary and Group Data Items
r--------------------T---------------------T---------------------------,
I Level of Item I Class I Category I

~--------------------+---------------------+---------------------------~
I I Alphabetic I Alphabetic I

I ~---------------------+---------------------------~
I Elementary I Numeric I Numeric I

I ~---------------------+---------------------------~ I I I Alphanumeric I
I I Alphanumeric I Alphanumeric Edited I
I I I Numeric Edited I
~--------------------+---------------------+---------------------------~
I I I Alphabetic I
I I I Numeric I
I Group I Alphanumeric I Alphanumeric I
I I I Alphanumeric Edited I
I I I Numeric Edited I L ____________________ ~ _____________________ ~ ___________________________ J

Character.String and Item Size

In the processing of data through COBOL statements, the size of an
elementary it~m is determined through the number of character positions
specified in its PICTURE character string. In core storage, however,
the size is determined by the actual number of bytes the item occupies,
as determined by i~s PICTURE character string, and also by its USAGE
(see "USAGE Clause").

Normally, when an arithmetic item is moved from a longer field into a
shorter one, this compiler will truncate the data to the number of
characters represented in the PICTURE character string of the shorter
item.

For example, if a sending field with PICTURE 599999, and containing
the value +12345, is moved to a COMPUTATIONAL receiving field with
PICTURE 599, the data is truncated to +45.

~~~~C"is a compile'time option;' however~ this' co~piier may be instructed, - '-~j 
t;~', such an qp~ration, to truncate only such d1gits as would overflow the~ 
!~ece~ving field. If this option is used, the'result of, the move in the,; 
':foregoihg ~~ample is '+23«15. since a COMPUTATIONAL item 'two bytes in '~ 
~(l~~gth, can 'contain up to' four decimal digits of data. ,Note that 'care '; 
:~u$t,be ~s~d.when,using this option, since the~e are times when the data { 
~~~~ contain a negative sign. ' ,,:, 

Repetition.of Symbols

An integer which is enclosed in parentheses following one of the
symbols

A x 9 P z • B o +

indicates the number of consecutive occurrences of the symbol. For
example, if the programmer writes

A(40)

$

the four characters (40) indicate forty consecutive appearances of the
symbol A. The number within parentheses may not exceed 32,767.

Data Description Entry -- Details of Clauses 117

PICTURE Clause

Note: The following symbols may appear only once in a given PICTURE
clause:

S v CR DB E

Symbols-Used in the PICTURE Clause

A

B

P

The functions of the symbols used to describe an elementary item are:

Each A in the character string represents a character position that
can contain only a letter of the alphabet or a space.

Each B in the character string represents a character position into
which the space character will be inserted.

The E in the character string represents the exponent in an
external floating-point item. The E occupies one byte of storage,
and is counted in determining the size of the elementary item. The
E ~s included in any representation upon external media.

The P indicates an assumed decimal scaling position, and is used to
specify the location of an assumed decimal point when the point is
not within the number that appears in the data item. The scaling
position character P is not counted in the size of the data item.
Scaling position characters are counted in determining the maximum
number of digit positions (18) in numeric edited items or in items
that appear as operands in arithmetic statements.

The scaling position character P may appear only to the left or
right of the other characters in the string as ~ continuous string
of pi s wi thin a PICTURE description. The sign &ha'racter S and the
assumed decimal point V are the only characters which may appear to
the left of a leftmost string of piS. Since the scaling position
character P implies an assumed decimal point (to the left of the
piS if the piS are leftmost PICTURE characters and to the right of
the p1 $ if the P'$ are rightmost PICTURE characters), the assumed
decimal point symbol V is redundant as either the leftmost or
rightmost character within such a PICTURE description.

S The symbol S is used in a PICTURE character string to indicate the
presence (but not the representation nor, necessarily, the
position) of an operational sign, and must be written as the
leftmost character in the PICTURE string. An operational sign
indicates whether the value of an item involved in an operation is
positive or negative. The symbol S is not counted in determining
the size of the elementary item, unless an associated SIGN clause
~specifies tne SEPARATE CHARACTER option.

V The V is used in a character string to indicate the location of the
assumed decimal point and may appear only once in a character
string. The V does not represent a character position and,
therefore, is not counted in the size of the elementary item. When
the assumed decimal point is to the right of the rightmost symbol
in the string, the V is redundant.

X Each X in the character string represents a character position
which may contain any allowable character from the EBCDIC set.

Z Each Z in the character string'represents a leading numeric
character position; when that position contains a zero, the zero is
replaced by a space character. Each Z is counted in the size of
the item.

9 Each 9 in the character string represents a character position that
contains a numeral and is counted in the size of the item.

118 Part III -- Data Division

------- ------------

o

~l
DB ~

PICTURE Clause

Each zero in the character string represents a character position
into which the numeral zero will be inserted. Each zero is counted
in the size of the item.

Each comma in the character string represents a character position
into which a comma will be inserted. This character is counted in
the size of the item. The comma insertion character cannot be the
last character in the PICTURE character string.

When a period appears in the character string, it is an editing
symbol that represents the decimal point for alignment purposes.
In addition, it represents a character position into which a period
will be inserted. This character is counted in the size of the
item. The period insertion character cannot be the last character
in the PICTURE character string.

Note: For a given program, the functions of the period and comma
are exchanged if the clause DECIMAL-POINT IS COMMA is stated in the
SPECIAL-NAMES paragraph. In this exchange, the rules for the
period apply to the comma and the rules for the comma apply to the
period wherever they appear in a PICTURE clause.

These symbols are used as editing sign control symbols. When
used, each represents the character position into which the
editing sign control symbol will be placed. The symbols are
mutually exclusive in one character string. Each character used in
the symbol is counted in determining the size of the data item.

* Each asterisk <check protect symbol) in the character string
represents a leading numeric character position into which an
asterisk will be placed when that position contains a zero. Each
asterisk <*> is counted in the size of the item.

$ The currency symbol in the character string represents a character
position into which a currency symbol is to be placed. The
currency symbol in a character string is represented either by the
symbol $ or by the single character specified in the CURRENCY SIGN
clause in the SPECIAL-NAMES paragraph of the. Environment Division.
The currency symbol is counted in the size of the item.

Table 7 shows the order of precedence of the symbols used in the
PICTURE clause.

The Five categories of Data

The following is a detailed description of the allowable
combinations of characters for each category of data.

ALPHABETIC ITEMS: An alphabetic item is one whose PICTURE
character string contains only the symbol A. Its contents, when
represented in Standard Data Format, must be any combination of the
26 letters of the Roman alphabet and the space from the COBOL
character set. Each alphabetic character is stored in a separate
byte.

If a VALUE clause is specified for an alphabetic item, the
literal must be nonnumeric.

Data Description Entry -- Details of Clauses 119

PlcrURE Clause

Table 1. Precedence of Symbols Used in the PICTURE Clause
-----------------------T------------------------T-----------------------T--------------, ~~

I FIRST I NON-FLOATING I FLOATING I OTHER I I,
I SYMBOL I INSERTION SYMBOLS I INSERTION SYMBOLS I SYMBOLS I \, "
I ~-T-T-T-T---T---T----T---t---T---T---T---T---T---t-T-T-T-T-T-T--~
I SECOND I I I I I + I + I CR I I Z I Z I + I + I I I I A I I I I I I
I SYMBOL IBIOI,I.I - I - I DB Ics11 * I * I - I - Ics11cs1191XISIVIPIPIE21
~------------T--------- -t-t-t-t---t---t----t---t---t---t---t---t---f---t-t-f-f-t-f-f--~

I B IXIXIXIXI X I I IX I X I X I X I X IX IX IXIXI IXI IXI I
~----------+-+-+-+-+---+---t----+---+---+---+---+---+---+---+-+-+-+-+-+-+--~
, 0 IXIXIXIXI X I I IX I X I X I X I X IX IX IXIXI IXI IXI I

NON-FLOATING~----------+-t-t-t-t---f---f----t---t---t---t---t---f---f---t-f-+-f-f-t-t--~
I , IXIXIXIXI X I I IX I X I X I X I X IX IX IXI I IXI IXI I

INSERTION ~----------+-+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-+--~
I IXIXIXI I X I I IX I X I I X I IX I IXI I I I I I I

SYMBOLS ~----------t-t-t-t-+---t---f----+---f---t---t---t---t---f---t-t-t-t-t-t-t--~
I + or - I X I
~----------+-+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-+--~
I + or - IXIXIXIXI I I IX I X I X I I IX IX IXI I IXIXIXI I
~----------f-t-+-t-t---t---t----+---f---t---+---+---f---f---+-+-f-f-f-f-+--~
I CR or DB IXIXIXIXI I I IX I X I X I I IX IX IXI I IXIXIXI I
~----------+-+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-+--~
I cs1 I I I I I X I I I I I I I I I I I I I I I I I

~------------+----------+-+-+-+-+---f---+----t---t---t---+---t---f---f---t-t-f-f-f-f-t--~
I I Z or * I X I X I X I I X I I I X I X I I I I I I I I I I I I I
I ~----------t-+-+-+-+---+---+----+---+---+---+---+---+---t---+-+-+-+-+-f-t--i
I FLOATING I Z or * IXIXIXIXI X I I IX I X I X I I I I I I I IXI IXI I
I ~----------t-t-+-+-+---f---t----t---f---f---f---t---t---f---f-t-t-f-f-f-t--~
I INSERTION I + or - IXIXIXI I I I IX I I I X I I I I I I I I I I I
I ~----------+-+-+-+-+---t---+----+---+---+---+---+---+---+---+-+-+-+-+-+-t--i
I SYMBOLS I + or - IXIXIXIXI I I IX I I I X I X I I I I I IXI IXI I
I ~----------+-+-+-+-+---f---f----+---f---t---f---t---f---f---t-f-t-f-t-t-t--~
I I cs 1 I X I X I X I I X I I I I I I I I X I I I I I I I I I
I t---~~~----t~t~t~t~t-~-t---t----t---t---t---t---t---t~--t~--t-t-t-t~t-t~t--1 ~I
~------------f----------t-t-t-t-+---+---f----+---t---+---+---t---+---f---t-t-t-+-t-f-t--~ \,--/

I 9 IXIXIXIXI X I I IX I X I I X I IX I IXIXIXIXI IXIX I
~----------+-+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-+--~
I A X IXIXI I I I I I I I I I I I IXIXI I I I I I
~----------t-f-+-+-+---t---+----+---+---+---f---+---+---t---t-+-t-t-f-t-f--i

OTHER I S I
~----------+-+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-+--i

SYMBOLS I V I X I X I X I I X I I I X I X I I X I I X I I X I I X I I X I I I
~----------t-f-+-+-+---f---f--·--t---f---f---+---t---f---f---t-t-f-f-f-f-t--~
I p IXIXIXI I X I I IX I X I I X I IX I IXI IXI IXI I I
.----------+-+-+-+-+---f---f----+---f---+---f---+---+---+---+-+-+-+-+-+-+--~
I P I I I I I X I I IX I I I I I I I I IXIXI IXI I
~----------t-+-+-+-t---t---f----+---t---f---+---t---f---+---f-t-f-f-f-f-t--i
I E2 I I I I X I X I I I' I I I I I I I X I I I X I I I I

~------------~----------~-~-~-~-~---~---~----~---~---~-__ i ___ ~ ___ ~ ___ i ___ ~_~_i_~_i_i_i __ i
11CS is the abbreviation for the currency symbol. I
12See the description of external floating-point items for the specific combination of I
" symbols that is valid. I
~-------------:---~ IAt least one of the symbols A, X, Z, 9, or *, or at least two of the symbols +, -, or I
I cs must be present in a PICTURE string. I
IAn X at an intersection indicates that the symbol(s) at the top of the column may, in at
I given character-string, appear anywhere to the left of the symbol(s) at the left of I
I the row. I
INon-floating insertion symbols + and -, floating insertion symbols Z, *, +, -, and cs, I
I and other symbol P appear twice in the above PICTURE character precedence table. rhel
I leftmost column and uppermost row for each symbol represents its use to the left of I
I the decimal point position. The second appearance of the symbol in the table I
I represents its use to the right of the decimal point position. I
IBraces ({}) indicate items that are mutually exclusive. I L ___ J c=-:

120 Part III -- Data Division

,----------,--_.

()

o

o

PICTURE Clause

ALPHANUMERIC ITEMS: An alphanumeric item is one whose PICTURE character
string is restricted to combinations of the symbols A, X, and 9. The
item is treated as if the character string contained all XiS. Its
contents, when represented in Standard Data Format, are allowable
characters from the EBCDIC set.

A PICTURE character string which contains all A's or all 91 s does not
define an alphanumeric item.

If a VALUE clause is specified for an alphanumeric item, the !~~~~~!
must be nonnumeric.

NUMERIC-ITEMS: There are two types of numeric items: fixed-point items
\and floating-point items.

Fixed-Point Numeric Items: There are three types of fixed-point numeric
items: external decimal, binary, and internal decimal. See the
discussion of the USAGE clause for details concerning each.

The PICTURE of a fixed-point numeric item may contain a valid
combination of the following characters:

9 v P S

Examples of fixed-point numeric items:

PICTURE
9999
S99

S999V9
PPP999
S999PPP

Valid Range of Values
o through 9999
-99 through +99
-999.9 through +999.9
o through .000999
-1000 through -999000 and
+1000 through +999000 or zero

The maximum size of a fixed-point numeric item is 18 digits.

The €ontents of a fixed-point numeric item, when represented in
Standard Data Format, must be a combination of the Arabic numerals 0
through 9; the item may contain an operational sign. If the PICTURE
contains an S, the contents of the item are treated as positive or
negative values, depending on the operational sign: if the PICTURE does
not contain an S, the contents of the item are treated as absolute
values.

If a VALUE clause is specified for an elementary numeric item, the
literal must be numeric. If a VALUE clause is specified for a group
item consisting of elementary numeric items, the group is considered
alphanumeric, and the literal must therefore be nonnumeric.

Note: ASCII considerations for the PICTURE clause are given in Appendix
E.

'Floatinq~Point Numeric Items: These items define data whose potential
:range of value is too great for fixed-point presentation. The magnitude
<of the-number represented by a floating-point item must be greater than
:5.4 x 10-79 but must not exceed .72 x 1076 •
<

Data Description Entry -- Details of Clauses 121

PICTURE Clause

;' There are two types of floating-point items:' internal floating-point:
t and external floating-point. See the discussion of the USAGE Clause for '
details concerning each.

, No PICTURE clause may be associated with an internal floating~point
; item.
~

An external floating-point item has a PICTURE character string in the
: following form:

{±}mantissa~{±}exponent

, where each element of the string is composed according to the following
; rules:·
i

;
" ,

~

A plus sign or a minus sign must immediately precede both the
mantissa and the exponent in the PICTURE character string

+ indicates that a plus sign in the data represents positive
values and that a minus sign represents negative V:alues,' '

- indi'cates that a space character in the data represents
positive values and that'a minus sign represents'negative
values. '

The plus sign, the space character, and the minus sign occupy I
a byte of storage. \

! mantissa
\

The mantissa immediately follows the first sign character, and
'is represented using the following,three symbols:

9 Each 2 in the mantissa character string represents a
digit position into which a 'numeric character will be
placed. From one to sixteen 9'$ may be present in the,
.string. Each digit position occupies a byte of storage.

indicates an actual decimal point.
storage.

It occupies a byte of ',~

, '

r
j

exponent

v indicates an assumed decimal point. It does not take up
any' storage.

One actual or assumed decimal point must be present in
the mantissa as a l~ading, embedded, or trailing symbol.,

indicates the exponent, and immediately follows the mantissa.
It occupies o~e byte of storage.

The exponent immediately follows the second sign character.
It is represented by two consecutive 9's. Each occupies a
byte of storage.

: External data must conform to 'the representation specified in the
; PICTURE clause.
I

~Examples of external floating-point items:

PICTURE
-9V99E-99

+999. 99E+99
-V9(6)E+99
+.9(10)E-99

Format of External Dat~
. b540E-79

+123. 45E-14
b565656E+45

+.7200000000E 16

Value Expressed
+5 .. 40 x 10-79

+123.45 x 10-1.4
+.565656 X 1045

+.72 x 107e

(Note that any of the above PICTURE representations can express the
fu~l ra~ge of possible values.)

122 Part III -- Data Division

- --- -- -,-----------

PICTURE Clause

No VALUE clause may be associated with an external floating-point
.item.

ALPHANUMERIC EDITED ITEMS: An alphanumeric edited item is one whose
PICTURE character string is restricted to certain combinations of the
following symbols:

A x 9 B o

To qualify as an alphanumeric edited item, one of the following
conditions must be true:

1. The character string must contain at least one B and at least one
X.

2. The character string must contain at least one 0 and at least one
X.

3. The character string must contain at least one 0 (zero) and at
least one A. Its contents, when represented in Standard Data
Format, are allowable characters chosen from the EBCDIC set.

USAGE IS DISPLAY is used in conjunction with alphanumeric edited
items.

If a VALUE clause is specified for an alp~anumeric edited item, the
literal must be nonnumeric. The literal is treated exactly as
specified; no editing is performed.

Editing-Rules: Alphanumeric edited items are subject to only one type
of editing: simple insertion using the symbols 0 and B.

Examples of alphanumeric edited items:

PICTURE
OOOX(12)
BBBX(12)
OOOA(12)
X(5)BX(7)

Value of Data
ALPHANUMEROT
ALPHANUMEROl
ALPHABETIC
ALPHANUMERIC

Edited Result
OOOALPHANUMEROl

ALPHANUMER01
OOOALPHABETIC
ALPHA NUMERIC

NUMERIC-EDITED ITEMS: A numeric edited item is one whose PICTURE
character string is restricted to certain combinations of the symbols:

B P V z o 9 * + CR

The allowable combinations are determined from the order of
precedence of symbols and editing rules.

DB $

The maximum number of digit positions that may be represented in the
character string is 18.

The contents of the character positions that represent a digit, in
Standard Data Format, must be one of the numerals.

USAGE IS DISPLAY is used in conjunction with numeric edited items.

If a VALUE clause is specified for a numeric edited item the literal
must be nonnumeric. The literal is treated exactly as specified; no
editing is performed.

The maximum length of a numeric edited item is 127 characters.

Editing Rules: All types of editing are valid for numeric edited items.

Data Description Entry -- Details of Clauses 123

._--------------- -----_._-------------- ------------ --- --------- -- - - -

PICTURE Clause

Types of Editing

There are two general methods of performing editing in the PICTURE
clause: by insertion or by suppression and replacement.

There are four types of insertion editing:

1. Simple insertion
2. Special insertion
3. Fixed insertion
4. Floating insertion

There are two types of suppression and replacement editing:

1. Zero suppression and replacement with spaces
2. Zero suppression and replacement with asterisks

Insertion-Editing

Simple insertion editing is performed using the following insertion
characters:

(comma) B (space) o (zero)

The insertion characters are counted in the size of the item and
represent the position in the item into which the character will be
inserted.

Examples of simple insertion editing:

PICTURE
99,999

9,999,000
99B999BOOO
99B999BOOO

99BBB999

Value of Data
12345
12345

1234
12345

123456

Edited Result
12,345

2,345,000
01 234 000
12 345 000

23 456

Special insertion editing is performed using the period (.) as the
insertion character. The result of special insertion editing is the
appearance of the insertion character in the item in the same position
as shown in the character string.

In addition to being an insertion character, the period represents a
decimal point for alignment purposes. The insertion character used for
the actual decimal point is counted in the size of the item.

The use of both the assumed decimal point, represented by the symbol
V, and the actual decimal point, represented by the period insertion
character, in one PICTURE character string is not allowed.

Examples of special insertion editingl

PICTURE
999.99
999.99
999.99
999.99

Value of Data ----1:234-
12.34

123.45
1234.5

124 Part III -- Data Division

Edited Result --ooi:-n--
012.34
123.45
234.50

c;

PIcrURE Clause

Fixed insertion editing is performed by using the following insertion
characters:

currency symbol $
editing sign control symbols + CR DB

Only one currency symbol and only one of the editing sign control
symbols can be used in a given PICTURE character string.

Fixed insertion editing results in the insertion character occupying
the same character position in the edited item as it occupied in the
PICTURE character string.

$ The currency symbol must be the leftmost character position to
be counted in the size of the item, unless it is preceded by
either a + or a - symbol.

+ or - When either symbol is used, it must represent the leftmost or
rightmost character position to be counted in the size of the
item.

CR or DB When either symbol is used, it represents two character
positions in determining the size of the item and must
represent the rightmost character positions that are counted
in the size of the item.

Editing sign control symbols produce results depending upon the value
of the data item as shown in Table 8.

Table 8. Editing Sign Control Symbols and Their Results
r---------------------------------T---~--------------------------------,
I I Result I
I ~--------------------~---------------~
I Editing Symbol in PICTURE I Dat.a Item I Data Item I
I Character String I positive or Zero I Negative I
~---------------------------------+--------------------+---------------~
I + I + I I
I I space I I
I CR I 2 spaces I CR I
I DB I 2 spaces I DB I L-________________________________ ~ ____________________ ~ _______________ J

Examples of fixed insertion editing:

PICTURE
999.99+

+9999.99
9999.99-
$999.99

-$9"99.99
$9999. 99CR
$9999. 99DB

Value of Data
+6555.556
-5555.555
+1234.56
-123.45
-123.456
+123.45
-123.45

Edited Result
555.55+

-5555.55
1234.56
$123.45

-$123.45
$0123.45
$0123. 45DB

Floating insertion editi~ is indicated in a PICTURE. character string
by using a string of at least two of the allowable insertion characters
$ + or - to represent the leftmost numeric character positions into
which the insertion characters can be floated.

The currency symbol ($) and the editing sign symbols (+ or -) are
mutually exclusive as floating insertion characters in a given PICTURE
character string.

Data Description Entry -- Details of Clauses 125

PICTURE Clause

Any of the simple insertion characters C, B 0) embedded in the string
of floating insertion characters, or to the immediate right of this
string, are part of the floating string.

In a PICTURE character string, there are only two ways of
representing floating insertion editing:

1. Any or all leading numeric character positions to the left of the
decimal point are represented by the insertion character.

2. All of the numeric character positions in the PICTURE character
string are represented by the insertion character.

The result of floating insertion editing depends upon the
representation in the PICTURE character string:

1. If the insertion characters are only to the left of the decimal
point, a single insertion character is placed into the character
position immediately preceding the first nonzero digit in the data
represented by the insertion symbol string or the decimal point,
whichever is farther to the left of the PICTURE character string.

2. If all numeric character positions in the PICTURE character string
are represented by the i~sertion character, the result depends upon
the value of the data. If the value is zero, the entire data item
will contain spaces. If the value is not zero, the result is the
same as when the insertion characters are only to the left of the
decimal point.

To avoid truncation when using floating insertion editing, the
programmer must specify the minimum size of the PICTURE character string
for the receiving data item to be:

1. The number of characters in the sending item, plus

2. The number of insertion characters Cother than floating insertion
characters) being edited into the receiving data item, plus

3. One character for the floating insertion character.

Examples of floating insertion editing:

PICTURE
$$$$.99
$$$9.99

$$,$$$,999.99
++,+++,999.99
$$,$$$,$$$.99CR
$$,$$$,$$$.99DB
++,+++,+++.+++

Value of Data
---------~23

.12
-1234.56

-123456.789
-1234567
+1234567

0000.00

Zero Suppression and Replacement Editing

Edited Result
--------~2

$0.12
$1,234.56

-123,456.78
$1,234,567.00CR
$1,234,567.00

zero.suppression and reelacement editing means the suppression of
leading zeros in numeric character positions and is indicated by the use
of the alphabetic character Z or the character * in the PICTURE
character string. If Z is used, the replacement character will be the
space; if * is used, the replacement character will be *.

The symbols + - * Z and $ are mutually exclusive as floating
replacement characters in a given PICTURE character string.

Each suppression symbol is counted in determining the size of an
item.

126 Part III -- Data Division

(~\

I

\

(~

C)

o

PICTURE Clause

Zero suppression and replacement editing is indicated in a PICTURE
character string by using a string of one or more of either allowable
symbol to represent leading numeric character positions, which are to be
replaced when the associated character position in the data contains a
zero. Any of the simple insertion characters embedded in the string of
symbols or to the immediate right of this string are part of the string.
Simple insertion or fixed insertion editing characters to the left of
the string are not included.

In a PICTURE character string, there are only two ways of
representing zero suppression:

1. Any or all of the leading numeric character positions to the left
of the decimal point are represented by suppression symbols.

2. All of the numeric character positions in the PICTURE character
string are represented by suppression symbols.

If the suppression symbols appear only to the left of the decimal
point, any leading zero in the data which appears in a character
position corresponding to a suppression symbol in the string is replaced
by the replacement character. Suppression terminates at the first
nonzero digit in the data or at the decimal point, whichever is
encountered first.

If all numeric character positions in the PICTURE character string
are represented by suppression symbols, and the value of the data is not
zero, the result is the same as if the suppression characters were only
to the left of the decimal point.

If the value of the data is zero, the entire data item will be spaces
if the suppression symbol is Z, or it will be asterisks (except for the
actual decimal point) if the suppression symbol is *.

If the value of the data is zero and the asterisk is used as the
suppression symbol, zero suppression editing overrides the function of
the BLANK WHEN ZERO clause, if specified.

Examples of zero suppression and replacement editing:

PICTURE Value of Data Edited Result
ZZZZ.ZZ 0000.00
****.** 0000.00 ****.**
ZZZZ.99 0000.00 .00
****.99 0000.00 ****.00
ZZ99.99 0000.00 00.00

Z,ZZZ.ZZ+ +123.456 123.45+
*,***.**+ -123.45 **123.45-

,*,***.**+ +12345678.9 *2,345,678.90+
$Z,ZZZ,ZZZ.ZZCR +12345.61 $ 12,345.61

$B*,***,***.**BBDB -12345.61 $ ***12,345.67 DB

Data Description Entry -- Details of Clauses 121

[siGN· Clause . (Versions 3 and 4)

Program Product Information (Version 3 and Version 4)

.SIGN Clause

The SIGN clause specifies the position and mode of representation
of the operational sign for a numeric data description entry.

r---------------------------------------~-------------------------, I Format (Version 3 and Version 4) I
~---~
I I
I {LEADING } I I [SIGN IS] ---- [§.EPARATE CHARACTER] I
I TRAILING t
I I L ___ J

The SIGN clause is required only when an explicit description of
the properties of the operational sign is necessary.

The numeric data description entries to which the SIGN clause
applies must, explicitly or implicitly, be described as USAGE IS
DISPLAY.

Only one SIGN clause may apply to any given numeric data
description entry.

The SIGN clause may be specified only for a numeric data
description entry whose PICTURE contains the character S, or for a
group item containing at least one such numeric data description
entry.

When specified, the SIGN clause defines the position and mode of
representation of the operational sign for the numeric data
description entry to which it applies, or for each signed numeric
data description entry subordinate to the group to which it
applies.

If the SEPARATE CHARACTER option is not specified, then:

• The operational sign is presumed to be associated with the
LEADING or TRAILING digit position, whichever is specified, of
the elementary numeric data item. (In this instance,
specification of SIGN IS TRAILING is the equivalent of the
standard action of the compiler.)

• The character S in the PICTURE character string is not counted
in determining the size of the item (in terms of Standard Data
Format characters).

If the SEPARATE CHARACTER option is specified, then:

• The operational sign is presumed to be the LEADING or TR~ILING
character position, whichever is specified, of the elementary
numeric data item. This character pOSition is not a digit
position.

• The character S in the PICTURE character string is counted in
determining the size of the data item (in terms of Standard
Data Format characters).

• + is the character used for the positive operational sign.

• - is the character used for the negative operational sign~

128 Part III -- Data Division

-- - - ---

o

SYNCHRONIZED Clause

• At object time if one of the characters + or - is not present
in the data an error occurs, and the program will terminate
abnormally.

Every numeric data description entry whose PICTURE contains the
character S is a signed numeric data description entry. If the
SIGN clause applies to such an entry, and conversion is necessary
for purposes of computation, or for comparisons, conversion takes
place automatically.

If no SIGN clause applies to a numeric data description entry whose
PICTURE character string contains the character S, then the
position of the operational sign is determined as explained in the
description of the USAGE clause.

Note: ASCII considerations for the SIGN clause are given in
Appendix E.

SYNCHRONIZED Clause

The SYNCHRONIZED clause specifies the alignment of an elementary item
on one of the proper boundaries in core storage.

r--,
I Format I
~--~
I I
: {SYN~HRONIZED} [LEFT] I
I SYNC RIGHT I
I I L __ J

The SYNCHRONIZED clause is used to ensure efficiency when performing
arithmetic operations on an item.

The SYNCHRONIZED clause may appear only at the elementary level or at
level-Ol. When used at level-Ol, every elementary item within this
level-Ol item is synchronized.

If either the LEFT or the RIGHT option is specified, it is treated as
comments.

The length of an elementary item is not affected by the SYNCHRONIZED
clause.

When the SYNCHRONIZED clause is specified for an item within the
scope of an OCCURS clause, each occurrence of the item is synchronized.

When the item is aligned, the character positions between the last
item assigned and the current item are known as "slack bytes." These
unused character positions are included in the size of any group to
which the synchronized elementary item belongs.

The proper boundary used to align the item to be synchronized depends
on the format of the item as defined by the USAGE clause.

When the SYNCHRONIZED clause is specified, the following actions are
taken:

For a COMPUTATIONAL item:

1. If its PICTURE is in the range of S9 through S9(4), the item is
aligned on a halfword (even) boundary.

Data Description Entry -- Details of Clauses 129

SYNCHRONIZED CLAUSE/Slack Bytes

2. If its PICTURE is in the range of S9(5) through S9(18), the item is
aligned on a fullword (multiple of 4) boundary.

For a COMPUTATIONAL-1 item, the item is aligned on a fullword
boundary.

For a COMPUTATION~2 item, the item is aligned on a dOubleword
(multiple of 8) boundary.

For a DISPLAY or COMPUTATIONAL-3 item, the SYNCHRONIZED clause is
treated as comments.

Note: In the discussion which follows, the term "computational" refers
to COMPUTATIONAL, COMPUTATIONAL-1, and COMPUTATIONAL-2 items.

When the SYNCHRONIZED clause is specified for an item that also
contains a REDEFINES clause, the data item that is redefined must have
the proper boundary alignment for the data item that REDEFINES it. For
example, if the programmer writes:

02 A PICTURE X(4).
02 B REDEFINES A PICTURE S9(9) COMP SYNC.

he must ensure that A begins on a fullword boundary.

When the SYNCHRONIZED clause is specified for a computational item
that is the first elementary item subordinate to an item that contains a
REDEFINES clause, the computational item must not require the addition
of slack bytes.

When SYNCHRONIZED is got specified for binary or internal
floating-point items, no space is reserved for slack bytes. However,
when computation is done on these fields, the compiler generates the
necessary instructions to move the items to a work area which has the
correct boundary necessary for computation.

In the File Section, the compiler assumes that all level-01 records
containing SYNCHRONIZED items are aligned on a doubleword boundary in
the buffer. The user must provide the necessary inter-record slack
bytes to ensure alignment.

In the working-storage Section, the compiler will align all level-01
entries on a doubleword boundary.

I, ,

; For the purposes of aligning COMPUTATIONAL, COMPUTATIONAL~l, and
;COMPUTATIONAL-2 items in the Linkage section, all level-01 items are
a~sumed to begin on doubleword boundaries. Therefore, if the user
~issues a CALL statement he must ensure that such operands of any USING
: clause within it are correspondingly aligned.

Slack Bytes

There are two types of slack bytes: intra-record slack bytes and
inter-record slack bytes.

Intra-record slack bytes are unused character positions preceding
each synchronized item in the record.

Inter-record slack bytes are unused character positions added between
blocked logical records.

INTRA-RECORD SLACK BYTES: For an output file, or in the Working-Storage
Section, the compiler inserts intra-record slack bytes to ensure that
all SYNCHRONIZED items are on their proper boundaries. For an input
file, or in the Linkage Section, the compiler expects intra-record slack

130 Part III -- Data Division

c

Slack Bytes

bytes to be present when necessary to assure the proper alignment of a
SYNCHRONIZED item.

Because it is important for the user to know the length of the
records in a file, the algorithm the compiler uses to determine whether
slack bytes are required and, if they are required, the number of slack
bytes to add, is as follows:

• The total number of bytes occupied by all elementary data items
preceding the computational item are added together, including
any slack bytes previously added.

• This sum is divided by ill, where:

m = 2 for COMPUTATIONAL items of 4-digit length or less

m = 4 for COMPUTATIONAL items of S-digit length or more

m = 4 for COMPUTATIONAL~l items

m = 8 for COMPUTATIONAL-2 items

• If the remainder (~) of this division is equal to zero, no
slack bytes are required. If the remainder is not equal to
zero, the number of slack bytes that must be added is equal to
!!! - !:.-

These slack bytes are added to each record immediately following the
elementary data item preceding the computational item. They are defined
as if they were an item with a level number equal to that of the
elementary item that immediately precedes the SYNCHRONIZED computational
item, and are included in the size of the group which contains them.

For example:

01 FIELD-A.
as FIELD-B PICTURE X(S).
as FIELD-C.

10 FIELD-D PICTURE xx.
[10 Slack-Bytes PICTURE X. Inserted by compiler]
10 FIELD-E COMPUTATIONAL PICTURE S9(6) SYNCHRONIZED.

01 FIELD-L.
as FIELD-M PICTURE X(S).
as FIELD-N PICTURE xx.

[as Slack-Bytes PICTURE X. Inserted by compiler]
05 FIELD-O.

10 FIELD-P COMPUTATIONAL PICTURE S9(6) SYNCHRONIZED.

Slack bytes may also be ~dded by the compiler when a group item is
defined with an OCCURS clause and contains within it a SYNCHRONIZED data
item with USAGE defined as COMPUTATIONAL, COMPUTATIONAL-l, or

'COMPUTATIONAL-2. To determine whether slack bytes are to be added, the
'following action is taken:

• The compiler calculates the size of the group, including all the
necessary intra-record slack bytes.

• This sum is divided by the largest ill required by any elementary
item within the group.

• If!:. is equal to zero, no slack bytes are required. If ~ is not
equal to zero, ill - E slack bytes must be added.

Data Description Entry -- Details of Clauses 131

------ --- - ----

Slack Bytes

The slack bytes are inserted at the end of each occurrence of the
group item containing the OCCURS clause. For example, if a record is
defined as follows:

o

01 WORK-RECORD.
05 WORK-CODE PICTURE X.
05 COMP-TABLE OCCURS 10 TIMES.

10 COMP-TYPE PICTURE X.
[10 Ia-Slack-Bytes PIC XX. Inserted by compiler]
10 COMP-PAY PICTURE S9(4)V99 COMP SYNC.
10 COMP-HRS PICTURE S9(3) COMP SYNC.
10 COMP-NAME PICTURE XeS).

The record will appear in storage as shown in Figure 7.

1
I- First Occurrence of COMP-TABLE

wi
81~
YI~I la
~ I ~ I Slack o 1 0 I
== 1 U I Bytes COMP-PAY

I I

H

o = doubleword boundary
F = fullword boundary
H = halfword boundary

H

1 I
I I I COMP- I
I HOURS I
I I

H

o

I
-I
I
I
I
I

COMP-NAME- I
I

H H H

Figure 7. Insertion of Intra-occurrence Slack Bytes

In order to align COMP-PAY and COMP-HRS upon their proper boundaries,
the compiler has added two intra-occurrence slack bytes (shown above as
Ia-Slack-Bytes).

However, without further adjustment, the second occurrence of
COMP-TABLE would now begin one byte before a doubleword boundary, and
the alignment of COMP-PAY and COMP-HRS would not be valid for any
occurrence of the table after the first. Therefore, the compiler must
add inter-occurrence slack bytes at the end of the group, as though the
record had been written:

01 WORK-RECORD.
05 WORK-CODE. PICTURE X.
05 COMP-TABLE OCCURS 10 TIMES.

10 COMP-TYPE PICTURE X.
[10 Ia-Slack-Bytes PIC XX. Inserted by compiler]
10 COMP-PAY PICTURE S9(4)V99 COMP SYNC.
10 COMP-HRS PICTURE S9(3) COMP SYNC.
10 COMP-NAME PICTURE xes).

[10 Ie-Slack-Bytes PIC XX. Inserted by compiler]

so that the second (and each succeeding) occurrence of COMP-TABLE begins
one byte beyond a doubleword boundary. The storage layout for the first
occurrences of COMP-TABLE will now appear as shown in Figure 8.

132 Part III -- Data Division

(~

C)

Slack Bytes

Each succeeding occurrence within the table will now begin at the same
relative position as the first.

I I ... · ~, i.""eee'" • .. I-~----Flrst Occurrence of COMP-TABLE-----__ .. I_-----Second Occurrence ofc'O#-T'AII'rE" - -==- -r
I I I

~ I w 1 I I I I 01.... I Y 17 I la I I Ie I
- - Slack I COMP- I Slack II I
O~ lo~ I I Bytes COMP-PAY HOURS COMP-NAME Bytes I I
::= IU I I I I I

D

H

o = doubleword boundary
F = fuilword boundary
H = halfword boundary

H

D

H H H H

D

Figure 8. Insertion of Inter-occurrence Slack Bytes

D

Where SYNCHRONIZED data items defined as COMPUTATIONAL,

H H

;~Q~'(J,~1).~~9!":t?U!~f, or .. co~,.~rrl\Tl;,6~~,~~ ~ ,; follow an entry containi~ an OCCURS
DEPENDING ON clause, slack bytes are added on the basis of the ~ield
occurring the maximum number of times. If the length of this f~ld is
not divisible ,by the ill required for the data, only certain values ~f the
data-name that is the object of the DEPENDING ON option will give p~per.
alignment of the fields. These values are those for which the length~f
the data field multiplied by the number of occurrences plus the slack
bytes that have been calculated based on the maximum number of
occurrences is divisible by m.

For example:

01 FIELD-A.
05 FIELD-B PICTURE 99.
05 FIELD-C PICTURE X OCCURS 20 TO 99 TIMES

DEPENDING ON FIELD-B.
[05 Slack-Bytes PICTURE X. Inserted by compiler]
05 FIELD-D COMPUTATIONAL PICTURE S99 SYNCHRONIZED.

In this example, when references to FIELD-D are required, FIELD-B is
restricted to odd values only.

01 FIELD-A.
05 FIELD-B PICTURE 999.
05 FIELD-C PICTURE XX OCCURS 20 TO 99 TIMES

DEPENDING ON FIELD-B.
[05 Slack-Bytes PICTURE X. Inserted by compiler]
05 FIELD-D COMPUTATIONAL PICTURE S99 SYNCHRONIZED.

In this example all values of FIELD-B give proper references to
FIELD-D.

INTER-RECORD SLACK BYTES: If the file contains blocked logical records
that are to be processed in a buffer, and any of the records contain
entries defined as COMPUTATIONAL~,,:"CQ~y~~T~p~Al:.:.~·;\'9#:~,:¢,O~~A~~9N,ru:;:,2;:;
for which the SYNCHRONIZED clause is specified, the user must add any
inter-record slack bytes needed for proper alignment.

Data Description Entry -- Details of Clauses 133

D

Slack Bytes

The lengths of all the elementary data
all intra-record slack bytes, are added.
necessary to add four bytes for the count
divided by the highest value of m for any

I the record.

items in the record, including
For mode V records, it is
field. The total is then
one of the elementary items in

If ~ (the remainder) is equal to zero, no inter-record slack bytes
are required. If ~ is not equal to zero, m - ~ slack bytes are
required. These slack bytes may be specified by writing a level-02
FILLER at the end of the record.

If mode U records are being read backwards, doubleword boundary
alignment of the input/output buffer will be obtained only if the
lengths of the logical records are divisible by eight.

Example: The following example shows the method of calculating both
intra-record and inter-record slack bytes. Consider the following
record description:

01 COMP-RECORD.
05 A-l PICTURE XeS).
05 A-2 PICTURE X(3).
05 A-3 PICTURE X(3).
05 B-1 PICTURE S9999 USAGE COMP SYNCHRONIZED.
05 B-2 PICTURE S99999 USAGE COMP SYNCHRONIZED.
05 B-3 PICTURE S9999 USAGE COMP SYNCHRONIZED.

The number of bytes in A-l, A-2, and A-3 total 11. B-1 is a 4-digit
COMPUTATIONAL item and therefore one intra-record slack byte must be
added before B-1. With this byte added, the number of bytes preceding
B-2 total 14. Since B-2 is a COMPUTATIONAL item of five digits in
length, two intra-record slack bytes must be added before it. No slack
bytes are needed before B-3.

The revised record description entry now appears as:

01 COMP-RECORD.
05 A-l PICTURE XeS).
05 A-2 PICTURE X(3).
05 A-3 PICTURE X(3).

[OS Slack-Byte-l PICTURE X. Inserted by compiler]
05 B-1 PICTURE S9999 USAGE COMP SYNCHRONIZED.

[OS Slack-Byte-2 PICTURE XX. Inserted by compiler]
05 B-2 PICTURE S99999 USAGE COMP SYNCHRONIZED.
05 B-3 PICTURE S9999 USAGE COMP SYNCHRONIZED.

There is a total of 22 bytes in COMP-RECORD, but from the rules given
in the preceding discussion, it appears that m = 4 and ~ = 2.
Therefore, to attain proper alignment for blocked records, the user must
add two inter-record slack bytes at the end of the record.

The final record description entry appears as:

01 COMP-RECORD.
05 A-1 PICTURE xes).
05 A-2 PICTURE X(3).
05 A-3 PICTURE X(3).

[OS Slack-Byte-l PICTURE X. Inserted by compiler]
05 B-1 PICTURE S9999 USAGE COMP SYNCHRONIZED.

[OS Slack-Byte-2 PICTURE xx. Inserted by compiler]
05 B-2 PICTURE S99999 USAGE COMP SYNCHRONIZED.
05 B-3 PICTURE S9999 USAGE COMP SYNCHRONIZED.
05 FILLER PICTURE XX. [Inter-record slack bytes added by user]

134 Part III -- Data Division

C)

USAGE Clau ••

USAGE Clause

The USAGE clause specifies the manner in which a data item is
represented in core storage.

r--,
I Format 1 I
~--~

[USAGE IS]

DISPLAY

{
COMPuTATIONAL}
COMP

{
£Q@PUTATIONAL-l}
COMP-l

'{COMPUTATIONAL-2}
COMP-2
J£Q~PUTATIONAL-3}
1.COMP-3
DISPLAY-ST
INDE~

I
I
I
I
I
I
I
I
I ,
I
I
I L ___ -----------------J

r--,
I Format 2 (Version 3 and Version 4) I
~--~
I ' I
II { COMfUTATIONAL- 4 } II
[~ IS]

I COMP-4 I
I I L ___________________ ---------_____________ ~ _____ ~~ ____________ ~~ __ ~ ____ J

The USAGE clause can be specified at any level of data description.
However, if the USAGE clause is written at a group level, it appli~s to
each elementary item in the group. The usage of an elementary item
cannot contradict the usage of a group to which an elementary item
belongs.

This clause specifies the manner in which a data item is represented
in core storage. However, the specifications for some statements in the
Procedure Division may restrict the USAGE clause of the operand referred
to.

If the USAGE clause is not specified for an elementary item, or for
any group to which the item belongs, it is assumed that the usage is
DISPLAY.

Note: ASCII considerations for the USAGE Clause are given in
Appendix E.

Data Description Entry -- Details of Clauses 135

USAGE Clause

DISPLAY Option

The DISPLAY option can be explicit or implicit. It specifies that
the data item is stored in character form, one character per eight-bit
byte. This corresponds to the form in which information is represented
for initial card input or for final printed or punched output. USAGE IS
DISPLAY is valid for the following types of items:

• alphabetic

• alphanumeric

• alphanumeric edited

• numeric edited

• external decimal

• external floating-point

Alphabetic, alphanumeric, alphanumeric edited, and numeric edited
items are discussed in the description of the PICTURE clause.

External Decimal Items: These items are sometimes referred to as zoned
decimal items. Each digit of a number is represented by a single byte.
The four high-order bits of each byte are zone bits; the four high-order
bits of the low-order byte represent the sign of the item. The four
low-order bits of each byte contain the value of the digit. When
external decimal items are used for computations, the compiler performs
the necessary conversions.

The maximum length of an external decimal item is 18 digits.

Examples of external decimal items and their internal representation
are shown in Table 8.1.

External Floating-Point I~~m~: The PICTURE of an external
floating-point item is in the following form:

{±}mantissa~{±}exponent

(See the discussion of the PICTURE clause for the valid combination of
symbols.)

The m!ntis~ is the decimal part of the number.

The exp~ specifies a power of ten that is used as a multiplier.

The value of an external floating-point number is the mantissa
multiplied by the power of ten expressed by the exponent. The magnitude
of a number represented by a floating-point item must be greater than
5.4 X (10-79) but rnnst not exceed .72 X (1076).

When used as a numeric operand an external floating-point number is
scanned at object time, and converted to the equivalent internal
floating-point values. In this form, the number is used in arithmetic
operations. (See COMPUTATIONAL-l and COMPUTATIONAL-2 options.)

An example of an external floating-point number and its internal
representation 'is shown in Table 9.

136 Part III -- Data Division

~--

(~

o

USAGE Clause

The Computational Options

A COMPUTATIONAL, COMPUTATIONAL-1_ COMPUTATIONAL-2, COMPUTATIONAL-3,
9~ COMPUTATIONAL-4 item represents a value to b~ used in arithmetic
operations and must' be numeric. If the USAGE of any group item is
described with any of these options, it is the elementary items within
this group which have that USAGE" The group item itself cannot be used
in computations.

COMPUTATIONAL OPTION: This option is specified for binary data items.
Such items have a decimal equivalent consisting of the decimal digits 0
through 9, plus a sign.

The amount of storage occupied by a binary item depends on the number
of decimal digits defined in its PICTURE clause:

Digits in PICTURE Clause
1 through 4
5 through 9
10 through 18

Storage Occupied
2 bytes (halfword)
4 bytes (fullword)
8 bytes (2 fullwords

not necessarily
a doubleword)

The leftmost bit of the stordge area is the operational sign.

The PICTURE of a COMPUTATIONAL item may contain only 9's, the
operational sign character S, the implied decimal point v, and one or
more P·s.

Note: The COMPUTATIONAL option is system dependent and normally is
assigned to representations that yield the greatest efficiency when
performing arithmetic operations on that system; for this compiler, the
COMPUTATIONAL option is binary.

An example of a binary item is shown in Table 9.

, COMPUTATIONAL-i, COMPUTATIONAL-2 OPTIONS: These options are specified
':, for internal ftloating-point items. Such an item is equivalent to an
: external floating-point item in capabilitv and purpose. Such items
; occupy either 4 or 8 bytes of' storage. -

The sign of the fraction (mantidsa) id the leftmost bit in either
format ..

The exponent appears in bit positions 1 through 7.

The fraction
'rightmost bytes.

equivalent to the mantissa -- appears in the

COMPUTATIONAL-i is specified for short-precision internal floating
point items.' such items are four bytes in length., aligned on a fullword
boundary. The fraction occupies the rightmost three bytes of the item.

, COMPUTATIONAL-2 is speciffed for long-precision floating-point items.
'Such items are eight bytes i'n length, and are aligned on a doubleword
: boundary. The fraction occupies the rightmost seven bytes of the item.

No PICTURE clause may be associated with an internal floating-point
, item.

If a VALUE clause is associated with an internal floating-point item~
the literal must be a floating-point literal (for example, ~ALUE IS

'7.14E+2).

, Examples of internal floating-point items, and their internal
:representation, are shown in Table 9.
~ ~y > ~

Data Description Entry -- Details of Clauses 137

USAGE Clause

h h" ~,.,., 'MV h', .,~ ~~ ... , ~ "~ < ... ~,,.. ... ,... 'Of '", .,., ~'." """'<'~~>"'''''''~~<r~''''«--~'''-~~'''t.~

£2t1PUTAUQNAL-3 OPTION: This option ,is specified' for !nternal 'd~~imai;~':~':M"
items. . Sl:lch an item appea:s in sto:age in p~cked. decimal "fot:'mat~ Th.e,t~\y;'l
are twq d1.gits per byte, Wl.th the s1.gn contal.ned l.n the ,,law-order ',fout',"'<""1
bits of the rightmost byte.. Such an item may contain any of ~he "d1.9~'t's';::~: ,:i
O. tt;rough 9, plus a sign, representing a value not 'exceeding "fa d~<;:,i~l~t,(i~
dl.g1.ts. " '" ,. ", ":\~;'1

, ' ~,' ,,' \ ,\' ~" ',', ':' J/i
For internal decimal items whose PICTURE does not contafn; anSj,'the:,o ':,~;

sign position is' occupied by a bit configu,r:ation that is interpreted,-.as,,::2J
positive, but that 'd?eS not represent an overpunch. " '.'" ',< :':::]

, '<~',;:,,' :>\;!
The PICTURE of a COMPUTATIONAL-3' it~m may contain 'only 9' s, 'the . ,'. '/

, ~~~~a ~~~~al sign character 5, the assumed decimal pOint v, and' o~e~,?T{~\;l

Examples of internal decimal items 'and ,their internal r~pitesenta~ioif';;< ~

:::q:::~~u::b::f:~matiQ~iY~~rSion 4 I. ••..; ::~{~l
£QMID!~~~L-~_Qf:!:!Q!,!: This option (Format 2) is .specified for'·', ';;':;l',l
s~s~em-independ~~mt binary items. For this compiler; it is, :the ',:;:::,',:,d
equ.lvalet;lt of COtvlPUTATIQNAL. , ." '\'<:<::1

"", "'.o,"_._~'.,""'_« *",_l

~ ~~ v, <~,,~ , ~, , ',v ,~~ '~N~N ,~"'N,'~7,h~~~;~:~~~\\~;:!

OSAGE DISPLAY",:ST is discussed .in the. chapter on ste'rling 'Currency';',;::':~:i
,,' v' ',~ ~:> ' >1,\/~J:~11

USAGE INDEX is discussed in the chapter on Table Handling.

138 Part III -- Data Division

C~

-------- ------ -- --------

USAGE Clause

Table 9. Internal Representation of Numeric Items (Part 1 of 2)
r----------------T---------T---------------T---------------------------,
1 Item 1 Value 1 Description 1 Internal Representation* 1
~----------------+---------+---------------+---------------------------~
External Decimal -1234 1 DISPLAY IZ11Z21Z31F41

1 PICTURE 9999 L __ ~ __ ~ __ ~ __ J

1
1 byte
1
1 DISPLAY IZ1 1Z2 1Z31D4 1

L __ .1. __ ~ __ ~ __ J 1 PICTURE S9999
1
1
1
1
1
1
1
1

byte

Note that, internally,
the D4, which represents
-4, is the same bit
configuration as the
EBCDIC character M.

"verSion 3 & 4) t
1 DISPLAY I IZll Z2 1Z31Z4 1601 PICTURE S99991 L __ ~ __ ~ __ .L __ .L __ J J

SIGN TRAILING 1 'I
SEPARATE I byte :1

1 :1
(Version.3 & 4) 1 :1
DISPLAY I ID1IZ2IZ3IZ"'1 ':1

PICTURE S99991 L __ .L __ ~ __ ~ __ J 'I
SIGN LEADING I : 1

I byte 1
I ,I
I Note that internally the 'I
1 D1, which represents -1, 1
I is the same bit 1
1 configuration as the ,I
I EBCDIC character J. : I

~----------------~---------.L---------------~----------_______________ ~_~
*Codes used in this ~olumn are as follows:

Z = zone, equivalent to hexadecimal F, bit configuration 1111

Hexadecimal numbers and their equivalent meanings are:
F = non-printing plus sign (treated as an absolute value)
C = internal equivalent of plus sign, bit configureation 1100
D = internal equivalent of minus sign, bit configuration 1101

S = sign position of a numeric field; internally,
1 in this position means the number is negative
o in this position means the number is positive

b = a blank

60 = minus sign, bit configuration 0110 0000 L ___ _

Data Description Entry -- Details of Clauses 139

---------- ----- - --- --------- - -------- ------- ----

USAGE Clause

Table 9. Internal Representation of Numeric Items (Part 2 of 2)
r----------------T---------T---------------T---------------------------,
1 Item 1 Value 1 Description 1 Internal Representation* 1
~----------------+---------+---------------+---------------------------~
IBinary 1 -1234 COMPUTATIONAL 1 11111110111 001 0 111101 1
1 , PICTURE S99991 L1---J.----J.----.1.----J 1
I liT ~I
1 liS byte 1
1 1 1 1
1 1 1 Note that, internally, I
I I 1 negative binary numbers I
I I 1 appear in two's I
I 1 I complement form. I
~----------------+--------- ---------------+---------------------------~ I Internal Degimall '+1234' COMPUTATIONAL~31 ' foi 123 i '4FT' , , ; "''', I
I, I I PICTURE 9999 I L __ J._-J.~ , : I
I I I I ' ,I
1 I I I byte, ',I
I" I I, , ' " "r' , : I
I, I I COMPUTATIONAL-3 r I 01 f 2314C f ' ' I
1 1 ' I PICTURE '899991, l':"_'J._" -~ ",' I
I I I" I ' , ,;',: :" I
I, It" I", " byte ,: I
~----------------+---------I-------,;".-----'--f---------:..-...:.;..--------------~
I External I +i2. 34E+21 DISPLAY' I ,+ 11121. 1'3 f41 E Lb,1 0',121 ,: I
I Floating-point', J PICTURE 'I, L_J._J. J._J...;.J._~J.._-:L-~ ,I
I I I +99.99E-99 ,I '',< :I
I I I ,I. " ,', ":'byte ,"I
~----------------+---------I ------------~,--:+--------'--------~--""':':""--...;--.;;:.~
I Internal I', I COMPUTATIONAL-11 ' I S I Exponent I Fraction "II I Floating-point I 'I I l_J. ________ .L __ ;.. ______ ,---J I
1 I I ' J ' 0 1 7 8 , 31 1
I I , ' I ,I , ',,', ' I
1 I I COMPUTA'rIONAL-2, Ii, IS J Exponent I Fraction < .'11 I I ' I , : I L_J._-: ______ .l _______ '-_~-.:.:.J' I
I I I, I " 0 1 , 7 8 ' ,6~' 1
~----------------J..---'------.L----'-----------:1.--'-~----__________ .:..~ ____ '_ __ ~

*Codes used in this column are as follows:
Z = zone, equivalent to hexadecimal F, bit configuration 1111

Hexadecimal numbers and their equivalent meanings are:
F = non-printing plus sign (treated as an absOlute value)
C = internal equivalent of plus sign, bit configuration 1100
D = internal equivalent of minus sign, bit configuration 1101

S = sign position of a numeric field; internally,
1 in this position means the number is negative
o in this position means the number is positive

b = a blank __ J

140 Part III -- Data Division

/

U

o

VALUE Clause

VALUE Clause

The VALUE clause is used to define the initial value of a
Working-storage item or the value associated with. a condition-name.

There are two formats of the VALUE clause:

r--,
I Format 1 1
~--~
I]
I VALUE IS literal ·1
I] L __ J

r--,
I Format 2 I
~--~
I 1

I
I {VALUE IS }]1 literal-1 [THRU literal-21
I VALUES ARE)
I 1
I [literal-3 [THRU literal-411... 1
I 1 L ___ -J

The VALUE clause must not be stated for any item whose size,
explicit or implicit, is variable.

A figurative constant may be substituted wherever a literal is
specified.

Rules governing the use of the VALUE clause differ with the
particular section of the Oata Division in which it is specified.

• • r::~7":N9"~~~~"<->~n;N<:~~':':'''1:~/n'~»';~"<'.t:::::''1::'y~,?f~ .M~-:r-'''''''~'{

1. In the F1le Sectl.on ana\t.he~,Linkageh,Be.c;tl;on;",."t}l,~",yA~PE;""cl~us,~ ,rctus,t:
(f>~/r~~\s,ed "only"".,i~lN' c,Olldi,~iqn.~~am_:.C' ~~tJ:i,~s,.,:.) ~()weyer,,' thi~ ~omp,ile:;r ", ,~
t~il,1.:';~c<::ept,:the. "'~t.tUE';'CJ;au~'e'" 1.n; o~he~" Fl.l;e 's~e<t?-on:'and 'Linka,ge' " .:;
~,2.~A2l!:~~!!it~!.!~i:.~~!l.u4,,,:,:E;~.~~:j!;M~'~§J,:;99~~~'!:~,~~: ,',' , "" :',' ,j"J

Program Product Information (Version 4)
f=-t '«\~ ,:7;~::;"':-;;:'''''''ty ~w V;"~Yl"'~: >1'''' /).,~<' :y;~,' "~ ,..,~ '''': ':<;/:':/,'t,~~:~ '/::« ~"""""y~:~,Y~' ~ ~ : .. y ,

iFd~:<'V~rsiQn ,: # ~ ;:~: in', the,,; coromunicat:;LQns' 'Se~t.ion the,', VALUE ·c'ia use"
fs'p.o"uta~~~~:'.,~~:~d,;'ol)iy;,:-in":.condi~ion~name ,\entiies'., When it" is:," .
:,9~~dt,'r;t'),':¢~~~r:<e,nt:r;i.·~,s,~ ,:the, V.ersion'<~(:<?<:'tnPiler .. ac,cept.s: the' ~:: '
tQI,~\l§jl,~11q,::::t_~g~j;::_~.~:.~,t,,;~'~~'"' qQrnmentFl~;,J 1 " ' / ,:' J ':; , ' " ' . ' '.

2. In the Working-Storage Section, the VALUE clause must be used in
condition-name entries, and it may also be used to specify the
initial value of any data item. It oauses the item to assume the
specified value at the start of execution of the object program.
If the VALUE clause is not used in an item's description, the
initial value is unpredictable.

3. In the Report Section, the VALUE clause causes the report data
item to assume the specified value each time its report group is
presented. This clause may be used only at an elementary level in
the Report Section. The Report Section is discussed in detail in
the "Report writer" chapter.

The VALUE clause must not be specified in a data description entry
that contains an OCCURS clause or in an entry that is subordinate to an
entry containing an OCCURS clause. This rule does not apply to
condition-name entries.

Data Description Entry -- Details of Clauses 141

VALUE Clause

Within a given record description, the VALUE clause must not be used
in a data description entry that is subsequent to a data description
entry which contains an OCCURS clause with a DEPENDING ON phrase.

The VALUE clause must not be specified in a data description entry
that contains a REDEFINES clause or in an entry that is subordinate to
an entry containing a REDEFINES clause. This rule does not apply to
condition-name entries.

If the VALUE clause is used in an entry at the group level, the
literal must be a figurative constant or a nonnumeric literal, and the
group area is initiali~ed without consideration for the USAGE of the
individual elementary or group items contained within this group. The
VALUE clause then cannot be specified at subordinate 'levels within this
group.

The VALUE clause cannot be specified fo~ a group containing items
with descriptions including JUSTIFIED, SYNCHRONIZED, or USAGE (other
than USAGE IS DISPLAY).

. : 'il1E::~1~~'e-:t(f~~"'n6~~e'7~peclfiea :~fo"r7'eiternar < f'loa£lng:':poInt'" i
~~l:;f}~::;~1j~~}{~/:::! .<; ::,,>,::,~)~', l~j ,'/: "', ... "" .' r. '. , '.,." . . . , <~

e follow1ng rules apply:

1. If the item is numeric, all literals in the VALUE clause must be
numeric literals. If the literal defines the value of a
Working-Storage item, the literal is aligned according to the
rules for numeric moves, except that the literal must not have a
value that would require truncation of nonzero digits.

h'fr'~t$mi1~7Inf~h\al\:fr;atin9=p~oInt~ < "the"'iTi-:etar" must' "b~' a ..
·'.~'~:rig:rPQi~i;.·:·:liter~l! . .:(~()~·.;. ~xample, 'VALUE 'IS 7 .14,E+2) •. ,' " . ':
''';/~::~\i..,:,,,J'A:,M;<:i~~;'-d'>~<9~,;,,,.0;;rd':'/f.'"-«~';:'M ... tiA''''~ '/.1"",{,,,/ ~'>'<'''''h''''/ '.,""h .,,« '<' ,~,).,., .,., .. /,(j

2. If the item is alphabetic or alphanumeric (elementary or group),
all literals in the VALUE clause must be nonnumeric literals. The
literal is aligned according to the alignment rules (see
"JUSTIFIED Clause"), except that the number of characters in the
literal must not exceed the size of the item.

3. All numeric literals in a VALUE clause of an item must have a
value that is within the range of values indicatea by the PICTURE
clause for that item. For example, for PICTURE 99PPP, the literal
must be within the range 1000 uhrough 99000 or zero. For PICTURE
PPP99, the literal must be within the range .00000 through .00099.

4. The function of the editing characte~s in a PICTURE clause is
ignored in determining the initial appearance of the item
described. However, editing characters are included in
determining the size of the item.

5. A maximum of 65,535 bytes may be initialized by means of a single
VALUE clause.

Format 1 of the VALUE clause must not conflict with other clauses
either in the data descriptio~ of the item or in the data descriptions
within the hierarchy of this term.

Format 2 of the VALUE clause is used to describe a condition-name.
Each condition-name requires a separate level-SS entry. A Format 2
VALUE clause associates a value, values, or range of values with the
condition-name.

In a condition-name entry, the VALUE clause is required and is the
only clause permitted in the entry. A condition-name is a name
assigned by the user to the values a data item may assume during object
program execution. A condition-name must be formed according to the
rUles for data-name formation. The condition-name entries for a

142 Part III -- Data Division

c

()

(j

o

VALUE Clause

particular conditional variable must follow the conditional variable.
Hence, a level-88 entry must always be preceded either by the entry for
the conditional variable.or by another level-88 entry (in the case of
several consecutive condition-names pertaining to a given item).

The THRU option assigns a range of values to a condition-name.
Wherever used, literal-1 must be less than l~£~~~l=£, l~£~~~l=l less
than literal-4, etc.

The type of literal in a condition-name entry must be consistent
with the data type of the conditional variable. In the following
example, CITY-COUNTY-INFO, COUNTY-NO, and CITY are conditional
variables; the associated condition-names immediately follow the
level-number 88. The PICTURE associated with COUNTY-NO limits the
condition-name value to a 2-digit numeric literal. The PICTURE
associated with CITY limits the condition-name value to a 3-character
nonnumeric literal. Any values for the condition-names associated with
CITY-COUNTY-INFO cannot exceed 5 characters, and the literal (since
this is a group item) must be nonnumeric:

05

05

CITY-COUNTY-INFO.
88 BRONX
88 BROOKLYN
88 MANHATTAN
88 QUEENS
88 STATEN-ISLAND

10 COUNTY-NO
88 DUTCHESS
88 KINGS
88 NEW-YORK
88 RICHMOND

10 CITY
88 BUFFALO
88 NEW-YORK-CITY
88 POUGKEEPSIE

POPULATION •••

VALUE "03NYC".
VALUE "24NYC".
VALUE "31NYC".
VALUE "41NYC".
VALUE "43NYC".

PICTURE 99.
VALUE 14.
VALUE 24.
VALUE 31.
VALUE 43.

PICTURE X(3).
VALUE "BUF".
VALUE "NYC".
VALUE "POK".

Every condition-name pertains to an item in such a way that the
condition-name may be qualified by the name of the item and the item's
qualifiers. The use of condition-names in conditions is described in
"Conditions."

A condition-name may pertain to an item (a conditional variable)
requiring subscripts. In this case, the condition-name, when written
in the Procedure Division, must be subscripted according to the
requirements of the associated conditional variable.

A condition-name can be associated with any elementary or group item
except the following:

1. A level-66 item.

2. A group containing items with descriptions which include
JUSTIFIED, SYNCHRONIZED, or USAGE other than DISPLAY.

3. An index data item (see "Table Handling").

Data Description Entry -- Details of Clauses 143

RENAMES Clause

RENAMES.Clause

The RENAMES clause permits alternate, possibly overlapping,
groupings of elementary data.

r--,
I Format I
~--i
I I
I 66 data-name-l RENAMES data-name-2 [!gg~ data-name-31 I
I I L __ J

One or more RENAMES entries can be written for a logical record.

All RENAMES entries associated with a given logical record must
immediately follow its last data description entry.

Data~name-2 and dat~-n~~~~l must be the names of elementary items or
groups of elementary items in the associated logical record and cannot
be the same data-name. Data-name-3 cannot be subordinate to
data-name-2.

When data-name-3 is not specified, ~~~~~~~~~~~ can be either a group
item or an elementary item. When data-name-2 is a group item,
data-name-1 is treated as a group item, and when data-name-2 is an
elementary item, data-name-1 is treated as an elementary item.

When data-name-3 is specified, data-name-l is a group item that
includes all elementary items: -----------

1. Starting with data-name-2 (if it is an elementary item); or
starting with the first elementary item within data-name-2 (if it
is a group item), and

2. Ending with data-name-3 (if it is an elementary item); or ending
with the last elementary item within data-name-3 (if it is a group
item) •

A level-66 entry cannot rename another level-66 entry nor can it
rename a level-77, level-SS, or level-01 entry.

Data-name-l cannot be used as a qualifier and can be qualified only
by the names of the level-Ol or FD entries.

Program.Product Information (Version 4)

In the communication section, data-name-1 can be qualified only by
the names of the level-Ol or CD entries.-

Both data-name-2 and Q~~~=~ame-3 may be qualified.

Neither data-name-2 nor data-name-3 may have an OCCURS clause in its
data description entry nor may either of them be subordinate to an item
that has an OCCURS clause in its data description entry.

Data-name-2 must precede ~~~~~~ in the record description;
after any associated redefinition, the beginning point of the area
described by data-name-3 must logically follow the beginning point of
the area described by data-name-2.

144 Part III -- Data Division

c'

o

RENAMES Clause

For example, the following Working-Storage record is incorrect:

01 ERR-REC.
05 GROUP-A.

10 FIELD-1A.
15 ITEM-iA PICTURE XXXX.
15 ITEM-2A PICTURE XXX.

10 FIELD-2A.
15 ITEM-3A PICTURE XXX.
15 ITEM-4A PICTURE XXX.

05 GROUP-B REDEFINES GROUP-A.
10 FIELD-lB.

15 ITEM-iB PICTURE XX.
15 ITEM-2B PICTURE XXX.
15 ITEM-3B PICTURE XX.

10 FIELD-2B.
15 ITEM-4B PICTURE XX.
15 ITEM-5B PICTURE XX.
15 ITEM-6B PICTURE XX.

66 NEW-ERR-REC RENAMES ITEM-3A THRU ITEM-2B.

Although ITEM-3A precedes ITEM-2B in the record description, ITEM-2B
logically precedes ITEM-3A in storage. Thus this example is incorrect.

The following shows the corrected Working-Storage record:

01 CORRECTED-RECORD.
05 GROUP-A.

10 FIELD-1A.
15 ITEM-1A PICTURE XX.
15 ITEM-2A PICTURE XXX.
15 ITEM-3A PICTURE XX.

10 FIELD- 2A.
15 ITEM-4A PICTURE XX.
15 ITEM-5A PICTURE XX.
15 ITEM-6A PICTURE XX.

05 GROUP-B REDEFINES GROUP-A.
10 FIELD-lB.

15 ITEM-1B PICTURE XXXX.
15 ITEM-2B PICTURE XXX.

10 FIELD- 2B.
15 ITEM-3B PICTURE XXX.
15 ITEM-4B PICTURE XXX.

66 NEW-REC RENAMES ITEM-2A THRU ITEM-3B.

In this example ITEM-2A precedes ITEM-3B both in the record
description and logically in storage.

Data Description Entry -- Details of Clauses 145

RENAMES Clause

The following example shows how the RENAMES clause might be used in
an actual program:

01 OUT-REC.
05 FIELD-X.

10 SUMMARY-GROUPX.
15 FILE-1 PICTURE X.
15 FILE-2 PICTURE X.
15 FILE-3 PICTURE X.

05 FIELD-Y.
10 SUMMARY-GROUPY.

15 FILE-1 PICTURE X
15 FILE-2 PICTURE X.
15 FILE-3 PICTURE X.

05 FIELD-Z.
10 SUMMARY-GROUPZ.

15 FILE-1 PICTURE X.
15 FILE-2 PICTURE X.
15 FILE-3 PICTURE X.

66 SUM-X RENAMES FIELD-X.
66 SUM-XY RENAMES FIELD-X THRU FIELD-Y.
66 SUM-XYZ RENAMES FIELD-X THRU FIELD-Z.

In the Procedure Division, the programmer may wish, for example, to
do a complete tally of files in each field of the foregoing record. If
all active files are represented by an A and all inactive files are
represented by an I, the statement

EXAMINE SUM-XYZ TALLYING ALL "An

would accomplish this purpose. The two additional RENAMES entries
(SUM-X and SUM-XY) allow a less inclusive tally, if desired. (The
EXAMINE statement is discussed in "Procedure Division.")

1~' Part III -- Data Division

C~,

---- -- ------- ----- ----

(' ,
----/

• ORGANIZATION OF THE PROCEDURE DIVISION

• ARITHMETIC EXPRESSIONS

• CONDITIONS

• CONDITIONAL STATEMENTS

• DECLARATIVES

• ARITHMETIC STATEMENTS

• PROCEDURE BRANCHING STATEMENTS

• DATA-MANIPULATION STATEMENTS

• INPUT/OUTPUT STATEMENTS

• SUBPROGRAM-LINKAGE'STATEMENTS

• COMPILER-DIRECTING STATEMENTS

C)
Part IV -- Procedure Division 147

(~

,- '

C)

G

o

Procedure Division--Description

The Procedure Division contains the specific instructions for
solving a data processing problem. COBOL instructions are written in
statements, which may be combined to form sentences. Groups of
sentences may form paragraphs, and paragraphs may be combined to form
sections.

The Procedure Division must begin with the header PROCEDURE DIVISION
followed by a period and a space unless Subprogram Linkage is used. In:

! this' case', the Procedure" Division header in a called program may
optionally con~a~~ a US~N~ c~ause,preceding ~he period (see "Subprogram,
Linkage").

The Procedure Division header is followed, optionally, by
Declarative Sections, which are in turn followed by procedures, each
made up of statements, sentences, paragraphs, and/or sections, in a
syntactically valid format. The end of the Procedure Division (and the'
physical end of the program) is that physical position in a COBOL
source program after which no further procedures appear.

The statement is the basic unit of the Procedure Division. A
statement is a syntactical1y valid combination of words and symbols
beginning with a COBOL verb. There are three types of statements:
conditional statements containing conditional expressions (that is,
::~~~_ ~c:>:_ au~~~e~ __ ~O~?~t~o~)_! _ ~~pe~a:ive s~~tem:~ts ??nsis~i?g Of, an

consisting of a compiler-directing verb-and-rt5-operand~----------

A sente~ is composed of one or more statements. The statements
may optionally be separated by semicolons ,or the word THEN. A sentence
must be terminated by a period followed by a space.

Several sentences that convey one idea or procedure may be grouped
to form a paragraph. A paragraph must begin with a paragraph-name
followed by a period. A paragraph may be composed of one or,more
successive sentences. A paragraph ends immediately before the next
paragraph-name or section-name, at the end of the Procedure Division,
or, in the Declarative portion, at the key words END DECLARATIVES.

One or more paragraphs form a ~~tiQ~. A section must begin with a
section header (section-name followed by the word SECTION, followed by
a period; if program segmentation is desired, a space and a priority
number followed by a period may be inserted after the word SECTION).
The general term procedure-name may refer to both paragraph-names and
section-names.

The Procedure Division may contain both declaratives and procedures.

Declarative sections must be grouped at the beginning of the
Procedure Division, preceded by the key word DECLARATIVES followed by a
period and a space. Declarative sections are concluded by the key
words END DECLARATIVES followed by a period and a space. (For a more
complete discussion of declarative sections, see "Declaratives.")

A procedure is composed of a paragraph or group of successive
paragraphs, or a section or group of successive sections within the
Procedure Division. Paragraphs need not be grouped into sections.

If sections are used within the Procedure Division, a section header
should immediately follow the Procedure Division header, except when a
declarative section is included, in which case the section header
should immediately follow END DECLARATIVES. However, if,a section

i-header is missing at the beginning of the nondeclarative portion of the ",,- , ' "- -" ,

Organization of the Procedure Division 149

Procedure Division -- Structure

tprocedure Division, this compiler processes the source program as
fthOU9h a section head had been written.

A section ends immediately before the next section-name or at the
end of the Procedure Division, or, in the Declarative portion of the
Procedure Division, immediately before the next section-name or at the
words END DECLARATIVES, where END must appear in Area A.

If program segmentation is used, the programmer must divide the
entire Procedure Division into named sections. Program segmentation is
discussed in "Segmentation."

Execution begins with the first statement of the Procedure Division,
excluding declaratives. Statements are then executed in the order in
which they are presented for compilation, except where the rules in
this chapter indicate some other order.

Structure of the Procedure Division

PROCEDURE DIVISION (~~ identifier-l [identifier-21 ••• 1.

[[OECLARATIVES.

{section-name SECTION. USE Sentence.

{paragraph-name. {sentence} ••• } ••• } •••

END DECLARATIVES.l

{section-name SECTION (priority].]

{paragraph-name. {sentence} ••• } ••• } •••

CATEGORIES OF STATEMENTS

There are three categories of statements used in COBOL: conditional
statements, imperative statements, and compiler-directing statements.

A conditional statement is a statement containing a condition that
is tested (see "Conditions") to determine which of the alternate paths
of program flow is to be taken.

An imperative statement specifies that an unconditional action is to
be taken by an object program. An imperative statement may also
consist of a series of imperative statements.

A compiler-directing statement directs the compiler to take certain
actions at compile time.

150 Part IV -- Procedure Division

c

Statement Categories

CONDITIONAL STATEMENTS

COBOL statements used as conditional statements are:

IF
:ON

I
ADD
COMPUTE
SUBTRACT (ON SIZE ERROR)
MULTIPLY
DIVIDE
GO TO (DEPENDING ON)
READ } SEARCH (AT END)
RETURN
WRITE (AT END-OF-PAGE)
READ 1 START (INVALID KEY)
WRITE) ~REWRITE
PERFORM (UNTIL)
SEARCH (WHEN)
E~H<IBIT,: , (CHANGED)

Program-Product Information_(Vers~~~

For Version 4, the following additional' 'statementfr a're"':usec~(asJ
condi tional statements: ' «> < " " 0.' ~: J

RECEIVE
STRING

; "U~S'l?R~~G

(NO DATA)
CON OVERFLOW) <
(<?N, PVERF~OW)

The options in parentheses cause otherwise imperative statements to
be treated as conditionals at execution time. A discussion of these
options is included as part of the description of the associated
imperative statement.

IMPERATIVE STATEMENTS

COBOL verbs used in imperative statements can be grouped into the
following categories and subcategories:

A. DECLARATIVES
USE

1. Arithmetic
ADD
COMPUTE
DIVIDE
MULTIPLY
SUBTRACT

2. Procedure-Branching
GO TO
ALTER
PERFORM
STOP
EXIT

Organization of the Procedure Division 151

Statement Categories

3. Data-Manipulation
MOVE
EXAMINE

'TRANSFORM

Program ~oduct Information (Version 4)

,'"
,For Version 4, the following additional data manipulation
statements are allowed:

STRING
. UNSTRING

Note: The STRING and UNSTRING statements are described in the':
separate chapter "String Manipulation".

4. Input/Output
OPEN

: START
SEEK
READ
WRITE

: REWRITE
ACCEPT
DISPLAY
CLOSE

Program Product Information (Version 4)

For Version 4, the following input/output statements are valid;
: for teleprocessing programs:

RECEIVE
SEND

Note: The RECEIVE and SEND statements are'described in the
s~p~rate chapter "Teleproce~sing~.

5. Report Writer
GENERATE
INITIATE
TERMINATE

6. Table Handling
SEARCH
SET

7. Sort
SORT
RETURN
RELEASE

8. Debugging
READY TRACE
RESET TRACE

, EXHIBIT

Note: Debugging, Report Writer, Tabie Handling, and Sort
statements are discussed in separate chapters.

152 Part IV -- Procedure Division

\ 0
,

C. SUBPROGRAM.LINKAGE

CALL
ENTRY
GOBACK
EXIT (PROGRAM)

Statement Categories

Program Product Information (Version 4)

'For Version 4, the following additional Subprogram Linkage
:statement is valid:

CANCEL

COMPILER-DIRECTING STATEMENTS

COBOL verbs used in compiler-directing statements are:

COPY
ENTER
NOTE
)~~~G,'

Note: The COpy statement is discussed in "Source Program Library
>,,,!,~ci~i.ty:~ ~ ,,!he statements listed in "Format Control of t~:. ~o~rce

!~~.~ > ,~~ con~i~ex:ed. a~" >cc?ll!p~>ler::-directing statements.

organization of the Procedure Division 153

Arithmetic Operators

ARITHMETIC EXPRESSIONS

Arithmetic expressions are used as operands of certain conditional
and arithmetic statements.

An arithmetic expression may consist Qf any of the ~ollowing:

1. An identifier described as a numeric elementary item

2. A numeric literal

3. Identifiers and literals, as defined in items 1 and 2, separated
by arithmetic operators

4. Two arithmetic expressions, as defined in items 1, 2, and/or 3,
separated by an arithmetic operator

5. An arithmetic expression, as defined in items 1, 2, 3, and/or 4,
enclosed in parentheses

Any arithmetic expression may be preceded by :~,",l1~~:ll:::i:'~;-"o,;'i a unary -

ARITHMETIC OPERATORS

There are five arithmetic operators that may be used in arithmetic
expressions. Each is represented by a specific character or character
combination that must be preceded by a space and followed by a space,
except that a unary operator must not be preceded by a space when it
follows a left parenthesis. rThts" 'compiler ,1allotn:f"t:he·''''spaee''''followl.ng~
~1!~':~,~~~~i:"~~~~~~,'E~~!:', ~~ ::~: :~~~J~:t;:~,~,~,~':\:>~. ~. . :",: ~:,~».L>L~L~<,',~,~i.:~~ "'"",~:~;:,~.,~-:;,~:, ,:~'.::~~ ".~,~:~!:~<:~:,:.~j

Arithmetic Operator
+

•
/
••

Meaning
addition
subtraction
multiplication
division
exponentiation

Parentheses may be used in arithmetic expressions to specify the
order in which elements are to be evaluated.

Expressions within parentheses are evaluated first. When
expressions are contained within a nest of parentheses, evaluation
proceeds from the least inclusive to the most inclusive set.

When parentheses are not used, or parenthesized expressions are at
the same level of inclusiveness, the following hierarchical order is
implied:

1.
~ , ~ < / "" ' Yv.. ~'t

;una~y:~ or unary -

2. **
3. * and /

4. + and -

When the order of consecutive operations on the same hierarchical
level is not completely specified by parentheses, the order of
operation is from left to right.

154 Part IV -- Procedure Division

c·

c

o

o

Arithmetic Operators

Table 10 shows permissible symbol pairs. A symbol pair in an
arithmetic expression is the occurrence of two symbols that appear in
sequence.

Table 10. Permissible Arithmetic Symbol Pairs
----------------T------------T------------T-----------T-------T-------,

I second I Variable I. I •• + - I unary + I (I) I
I Symbol I (identifier I I unary - I I I
I lor literal) I I I I I
I I I I I I I
I First I I I I I I
I Symbol I I I I I I
~--------------- ------------+------------+-----------+-------+-------~
I Variable I I p I I I p I
I (identifier I I I I I I
I or literal) I I I I I I
~----------------f------------f------------f-----------+-------+-------~
I * / .* + - I p I I pip - I I
~----------------+------------+------------f-----------+-------+-------~
I unary· + or I I I I I I
I unary - I p I I I p I I
~----------------+------------+------------+-----------+-------+-------~
I (I p I I pip I I
~----------------+------------+------------+-----------+-------+-------~
I) I I p I I I p I
~----------------~------------~------------~-----------~-------~-------~ I p indicates a permissible pairing I
I _ ~-~~~~~O~ ~h~~ ~ho n~;r;nn ;~ nnr n~rmirr~n I L __ _

An arithmetic expression may begin only with a left parenthesis, a
;)inaiy +;' a, unary -, or a variable, and may end only with a right
parenthesis or a variable.

There must be a one-to-one correspondence between left and right
parentheses of an arithmetic expression.

Arithmetic Expressions 155

Test Conditions

CONDITIONS

A condition causes the object program to select between alternate
paths of control depending on the truth value of a test. Conditions
are used in IF, PERFORM, and SEARCH statements.

A condition is one of the following:

• Class condition

• Condition-name condition

• Relation condition

• Sign condition

Program Product Information (Version 4)

!For 'Vers1on' 4'~'Te'ieprocessing~ 'programs~ "the 'foiiowing":condi~foii' 1~]
\also valid:, ,,', ", ' " ',:' \'1
'. Messagecon~ition' '. . : :'~«ll
~' ~~, ~ < < ~ ; , " '>',v"Y,'~~)':~::i

INot.et 'The Message,condition is' discussed, in' the ,separ~te,c~al?~}.~"",t,.;,,','~
I"Teleprocessinq". " "" , ' .. ' . , ·:/1
t ~~ ,,, ~ ,~'''~~> ... ,~, ~~... ,'h h' "h ->',<h '~'«";:"'<h"'h~::...,...,~"~~~h,, ~'io{

In addition, there are two constructions that affect the evaluation
of conditions. These are:

1. (condition)

Parentheses may be used to group conditions (see "Compound
Conditions").

2. NOT condition

The construction -- NOT condition -- (where condition is one of
the four conditions listed above) is not permitted if the
condition itself contains a NOT.

Conditions may be combined through the use of logical operators to
form compound conditions (for a full discussion, see "Compound
Conditions").

TEST CONDITIONS

A test condition is an expression that, taken as a whole, may be
either true or false, depending on the circumstances existing when the
expression is evaluated.

There are four types of simple conditions which, when preceded by
the word IF, constitute one of the four types of tests: class test,
~ondition-name test, relation test, and sign test.

156 Part IV -- Procedure Division

C",
"

~-- ,

~)

o

----------- ------ ---------------------------

C1ass Condition

The construction -- NOT condition -- may be used in any simple test
condition to make the relation specify the opposite of what it would
express without the word NOT. For example, NOT (AGE GREATER THAN 21)
is the opposite of AGE GREATER THAN 21.

Each of the previously mentioned tests, when used within the IF
statement, constitutes-a conditional statement (see "Conditional
Statements"). '

Class Condition

The class test determines whether data is alphabetic or numeric.

r------~--, I Format I
~--~
I I
II { NUMERIC } II identifier IS [NOT]
I ALPHABETIC I
I I L __ J

The operand being tested must be described implicitly or explicitly
as USAGE DISPLAY 'or "U,~~GE- COMP!J~~~,I,o~AL::"~.

A numeric data item consists of the digits 0 through 9, with or
without an operational sign.

The identifier being tested is determined to be numeric only if the
contents consist of any combination of the digits 0 through 9. If the
PICTURE of the identifier being tested does not contain an operational
sign, the identifier being tested is determined to be numeric only if
the contents are numeric and an operational sign is not present. If
its PICTURE does contain an operational sign, the identifier being
tested is determined to be numeric only if the contents are numeric and
a valid operational sign is present. Valid operational signs are
hexadecimal F, C, and D.

i-W,'r":~'" w, """;''''' "," ""'_"H"~_ ",,,'.' '" _M' n """, ,'» ""', ' <" " F' '''>'''; ;".'" "" '," "'" "';_'~~ 'w"" "-,'''' ",-", , '''' ,'"

i.For,'numeric data items, described ,with', the SEPARATE SIGN 'clause,'
t-val~d: ,ope:r::ationa,l s,ign8 are hexadecimal 4E /and 60~' , ' ,
j&..l.>c>;;;'~"""'6<"":':""'M""""'> ~l~~~;;.,':«: ,~< ",~ ,,,",«'::<, ,~ '''>< " " ,.y.,.,~ '''' .,. ,/ ,~ ~ " , ,(,," / ~i yv / ,.. '" , ",,~; ,'" ,'y.,

The NUMERIC test cannot be used with an !g~nt!~!~; described as
alphabetic.

An alphabetic data item consists of the space character and the
characters A through Z.

The identifier being tested is determined to be alphabetic only if
the contents consist of any combination of the alphabetic characters A
through Z and the space.

The ALPHABETIC test cannot be used with an identifier described as
numeric.

Conditions 157

Condition-name Condition

Table 11 shows valid forms of the, class test.

Table 11. Valid Forms of the Class Test
r--------------------T--
IType of Identifier I Valid Forms of the Class Test
~--------------------+----------------------T-------------------------
I Alphabetic ' I ALPHABETIC I NOT ALPHABETIC
~--------------------+----------------------+-------------------------
I Alphanumeric, I ALPHABETIC I NOT ALPHABETIC
IAlphanumeric Edited, I NUMERIC I NOT NUMERIC
INumeric Edited I I
~--------------------+----------------------f-------------------------I External-Decimal I NUMERIC I NOT NUMERIC
(or 'J:nt.ernaf"::Decifmal" I I
L'.:..:..~ ______ :.. _______ '.:...:.:....L ______________________ .L ________________________ _

Condition-name Condition

The condition-name condition causes a conditional variable to be
tested to determine whether or not its value is equal to one of the
values associated with condition-name.

r--
I Format
~--
I
I condition-name
I L ___________________ - ___ _

An example of the use of the condition-name condition follows:

05 MARITAL-STATUS PICTURE 9.
88 SINGLE VALUE 1.
88 MARRIED VALUE 2.
88 DIVORCED VALUE 3.

MARITAL-STATUS is the conditional variable; SINGLE, MARRIED, and
DIVORCED are condition-names. Only one of the conditions specified by
condition-name can be present for individual records in the file. To
determine the marital status of the individual whose record is ,being
processed, IF SINGLE ••• can be coded, and its evaluation as true or
false determines the subsequent path the object program takes.

A condition-name is used in conditions as an abbreviation for the
relation condition, since the associated condition-name is equal to
only.one of the values (or ranges of values) assigned to that
conditional variable. That is, to determine whether the condition
SINGLE is present, IF MARITAL-STATUS = 1 ••• would have the same effect
as using the condition-name test IF SINGLE ••••

If the condition~name is associated with a range ~f values (or with
several ranges of values), the conditional variable is tested to
determine whether or not its value falls within the range(s), including
the end values. The result of the test is true if one of the values
corresponding to the condition-name equals the value of its associated
conditional variable.

(An example of both group and elementary condition-name entries is
given in the description for the VALUE clause in "Data Division".)

158 Part IV -- Procedure Division

~~~--- --- -------

c 



Relation Condition 

Relation Condition 

A relation condition causes a comparison of two operands, either of 
which may be an identifier., a literal, or an arithmetic expression .. 

r----------------------------------------------------------------------, 
I Format I 
.----------------------------------------------------------------------i 
I ~ 
I {identifier-1 } ~ 
I literal-1 relational~operator I 
I arithmetic-expression-1 I 
I l 
I {identifier-2} 1 
I literal-2 1 
I arithmetic-expression-2 ) 
I I L-_____________________________________________________________________ J 

The first operand is called the subject of the condition; the second 
operand is called the Object of the condition. 

The subject and object must have the same USAGE, except when two 
numeric operands are compared. 

A relational-operator specifies the type of comparison to be made in 
a relation condition. The meaning of the relational operators is shown 
in Table 12. 

Table 12. Relational-Operators and Their Meanings 
r-----------------------T----------------------------------------------, I Relational-operator I Meaning I 
.-----------------------+----------------------------------------------i 
J J J 
115 [NOT] GREATER THAN I Greater than or not greater than J 
115 [!!Q!] > I t 
.-----------------------+----------------------------------------------i 
JIS [NOT] LESS THAN I Less than or not less than J 
1 IS [NOT] < I J 
~-----------------------t----------------------------------------------~ 
115 [NOT] EQUAL TO I Equal to or not equal to 1 
1 IS [NOT] = J 1 L _______________________ ~ ______________________________________________ J 

The word TO in the EQUAL TO relational operator is required; 
0Th'l5Weve'i, ~~·::cfirs~,·ci:impiler "all'ow$' 'the" word· .TO to be .. 
L ~ ~r }id~~~~mi<#f~y.~4_~#~w~ ... ~~~"*"l>oY.>~-."W.;~ ... _'_ ... ,;.'""',;.iM;;~~W'.«"h.....,. ...... ~M'~ ... ~ ,t, ':. 

The relational-operator must be preceded by, and followed by~ a 
space. 

Conditions 159 



Relation Condition 

COMPARISON OF NUMERIC OPERANDS: For operands whose class is numeric, a 
comparison is made with respect to the algebraic value of the operands. 

Zero is considered a unique value, regardless of sign. 

Comparison of numeric operands is permitted regardless of the manner 
in which their USAGE is described. 

Unsigned numeric operands are considered positive for purposes of 
comparison. 

COMPARISON OF NONNUMERIC OPERANDS: For nonnumeric operands, or for one 
numeric and one nonnumeric operand, a comparison is made with respect 
to the binary collating sequence of the characters in the EBCDIC set. 

The EBCDIC collating sequence, in ascending order, is: 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8 .. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 

17-42. 
43-52. 

(space) 
(period or decimal point) 

< ("less than" symbol) 
( (left parenthesis) 
+ (plus sign) 
$ (currency symbol) 
* (asterisk) 
) (right parenthesis) 

(semicolon) 
(hyphen or minus symbol) 

/ (stroke, virgule, slash) 
, (comma) 
> ("greater than" symbol) 
ft"" ""(iii 'ostro""}le""or'"''slri''' Ie~-'w "u5uti'oi1 'mark), 1 h,,,~,,,w "" J?, "" " , p, ""',,, ",n"";,,,~,J1. '~'_4g ""''''NM, ,4'", 'M;' ,M,",,,,,,,,®""''''' = (equal sign) , 
" (quotation mark) 
A through Z 
o through 9 

(The complete EBCDIC collating sequence is given in the publication 
IBM System/360 Reference Data, Form X20-1703.) 

If one of the operands is described as numeric, it is treated as 
though it were moved to an alphanumeric data item of the same size and 
the contents of this alphanumeric data item were then compared to the 
nonnumeric operand (see "MOVE Statement"). 

The size of an operand is the total number of characters in the 
operand. All group items are treated as nonnumeric operands. 

Numeric and nonnumeric operands may be compared only when their 
USAGE is the same, implicitly or expli~itlY. 

~"""''''''''''«7''''''-''<'''¥''; w~ ", , <' "<'<~ .,.. ... .,. '" r ',:" ; However,' thi~ compiler 'allows a' g~oup' item', :t~ ,be' :compar,ed :to:' 
i}~umeri<:: item even if, the USAGE of ,the "numeri'c: ~tenLif!l':'o~ex;;"than 
I, DISPLAY.. , ' , 
t~:;....».j;-»1;"""'«'.:~';: , h'h" .... "' .. :»,,...,<,,_» v.<,..,..~.,.,.,. ,.,.,~,.,., ' 

There are two cases of nonnumeric co~parison to consider: operands 
of equal size and operands of unequal size. 

160 Part IV -- Procedure Division 



1. 

Relation Condition 

Comparison of Operands of Equal Size 

Characters in corresponding character positions of the two 
operands are compared from the high-order end through the 
low-order end. The high-order end is the leftmost position; the 
low-order end is the rightmost character position. 

If all pairs of characters compare equally through the last pair, 
the operands are considered equal when the low-order end is 
reached. 

If a pair of unequal characters is e~countered, the two characters 
are compared to determine their relative position in the collating 
sequence. The operand that contai:ns the character higher in the 
collating sequence is considered to he the greater operandu 

2. Comparison of Operands of Unequal Siz,e 

If the operands are of unequal size, comparison proceeds as though 
the shorter operand were extended on the right by a sufficient 
number of spaces to make the operands of equal size. 

Conditions 160.1 





(j 

o 

Relation Condition 

COMPARISONS INVOLVING INDEX-NAMES AND/OR INDEX DATA ITEMS: The 
comparison of two index-names-rS-equivalent-to the comparison of their 
corresponding occurrence numbers. 

In the comparison of an index data item with an index-name or with 
another index data item, the actual values are compared without 
conversion. 

The comparison of an index-name with a numeric item is permitted if 
the numeric item is an integer. The numeric integer is treated as an 
occurrence number. All other comparisons involving an index-name or 
index data item are not allowed. (For a discussion of indexing, see 
"Table Handling.") 

Permissible comparisons are shown in Table 13. 

Table 13. Permissible Comparisons 
-------------------------------T--T--T--T---T--T---T---T---T---T---T--T--T--T--T---T---' 

I Second operandIGRIALIANIANEINEIFC*IZR lED IBI lID IEFIIFISRISNIIN IIDII 
IFirst Operand I I I I I INNLINL I I I I I I I I I I 
~------------------------------ --+--+--+---+--+---+---+---+---+---+--+--+--+--+---+---~ 
IGroup (GR) INNINNINNINN INNINN INN INN INN INN INNINNINNINNI I I 
~-------------------------------+--+--+--+---+--+---+---+---+---f---+--f--+--+--f---+---~ 
IAlphabetic (AL) INNINNINNINN INNINN INN INN I I INNI INNINNI I I 
~-------------------------------+--+--+--+---+--+---f---+---+---+---+--+--+--+--+---+---~ 
IAlphanumeric (AN) INNINNINNINN INNINN INN INN I I INNI INNINNI I I 
~-------------------------------+--+--+--f---+--+---+---f---+---+---+--f--+--+--+---+---~ 
1111nh;:'!"nmpric Edited (ANE) INNINNINNINN INNINN INN INN I I INNI INNINNI I I 
~ _______________________________ ~ I I I • • : : : • • • I I I _L ___ J 

INumeric Edited (NE) INNINNINNINN INNINN INN INN I I INNI INNINNI I I 
~-------------------------------+--+--f--+---+--+---+---f---+---+---f--f--f--f--+---+---~ 
IFigurative Constant (FC)* and INNINNINNINN INNI I INN I I INNI INNINNI I I 
I Nonnumeric Literal (NNL) I I I I I I I I I I I I I I I I I 
~-------------------------------+--f--+--f---+--+---+---+---+---+---+--f--+--f--t---+---~ 
IFig. Constant ZERO (ZR) and INNINNINNINN INNI I INU INU INU INUINUINNINUII011 I 
INumeric Literal (NL) I I I I I 1- I I I I I I I I I I I 
~-------------------------------+--+--+--+---+--+---+---+---+---+---+--+--+--+--+---+---~ 
IExternal Decimal (ED) INNINNINNINN INNINN INU INU INU INU INUINUINNINUII011 I 
~-------------------------------+--+--+--+---+--+---+---+---+---+---f--+--+--+--+---+---~ 
IBinary (BI) INNI I I I I INU INU INU INU INUINOI INUII011 I 
~-------------------------------+--+--+--+---+--+---+---+---+---+---+--+--+--f--+---+---~ 
IInternal Decimal (ID) INNI I I I I INU INU INU INU INUINUI INUII011 I 
~-------------------------------+--+--f--+---+--+---+---+---+---+---+--+--+--+--+---+---~ 
IExternal Floating Point (EF) INNINNINNINN INNINN INU INU INO INU INUINUINNINUI I I 
~-------------------------------+--+--+--+---+--f---+---+---+---f---f-~+--+--+--+---+---~ 
I-Internal Floating Point (IF) I NNI I I I I INU I NU INU I NU I NUl NUl I NUl ~ I 
~-------------------------------+--+--+--+---+--+---+---+---+---+---+--+--+--+--+---+---~ 
fSter~ing Report (SR) INNINNINNINN INNINN INN INN I I INNI INNINNI I I 
~-------------------------------+--f--f--+---+--f---f---+---f---f---f--f--+--+--+---+---~ 
\Sterling Nonreport (SN) lNN1NNINNINN INNINN INU JNU, INU INU INUINUINNINUI I I 
~------------------------------+--+--+--+---+--+---+---+---+---+---+--+--+--+--+---+---~ 
IIndex Name (IN) I I I I I I II011I011I011I011 I I I IIO IIV I 
~-------------------------------+--+--+--+---+--+---f---f---+---+---+--+--+--+--+---+---~ 
IIndex Data Item (IDI) I I I I I I I I I I I I I I IIV IIV I 
~-------------------------------~--~--~--~---~--~---~---~---~---~---~--~--~--~--~---~---~ 
I*FC includes all Figurative Constants except ZERO. I 
11Valid only if the numeric item is an integer. I 
I I 
INot~: I 
I NN = comparison as described for nonnumeric operands I 
I NU = comparison as described for numeric operands I 
I IO = comparison as described for two index-names I 
I IV = compar~son as described for index data items I L _______________________________________________________________________________________ J 

Conditions 161 



Sign Condition/Compound Conditions 

Sign condition 

The sign condition determines whether or not the algebraic value of a 
numeric operand (i.e., an item described as numeric) is less than, 
greater than, or equal to zero. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
II {identifier } {POSITIVE} II 

IS [NOT] NEGATIVE 
I arithmetic-expression ZERO I 
I I L ______________________________________________________________________ J 

An operand is positive if its value is greater than zero, negative if 
its value is less than zero, and zero if its value is equal to zero. An 
unsigned field is always positive or zero. 

COMPOUND. CONDITIONS, 

Two or more simple conditions can be combined to form a compound 
condition. Each simple condition is separated from the next by one of 
the logical operators AND or OR. 

The logical operators must be preceded by a space and followed by a 
space. The meaning of the logical operators is as follows: 

Logical Operator 

Logical inclusive OR, i.e., either or both 
are true 

Logical conjunction, i.e., both are true 
Logical negation 

Figure 9 shows the relationships between the logical operators and 
simple conditions A and B, where A and B have the following values: 

Values for 
Condition.A 

True 
False 
True 
False 

Values for 
Condition !! 

True 
True 
False 
False 

162 Part IV -- Procedure Division 



o 

o 

Compound Conditions 

r-------T------T-----T-------------T-----------T------------T----------, 
IA AND BIA OR BINOT AINOT (A AND B) I NOT A AND BINOT (A OR B) I NOT A OR BI 
~-------+------+-----+-------------+-----------+------------f----------i 
I True 1 True I False I False I False IFalse I True I 
~-------+------f-----+-------------+-----------+------------+----------i 
I False I True ITrue ITrue I True IFalse I True I 
~-------+------f-----+-------------+-----------+------------f----------i 
I False I True I False I True I False IFalse IFalse I 
~-------+------+-----+-------------+-----------f------------+----------i 
I False IFalse ITrue \True I False I True ITrue I L _______ ~ ______ ~ _____ ~ _____________ ~ ___________ ~ ____________ ~ __________ J 

Figure 9. Logical Operators and the Resulting Values Upon Evaluation 

EVALUATION RULES 

Logical evaluation begins with the least inclusive pair of 
parentheses and proceeds to the most inclusive. 

If the order of evaluation is not specified by parentheses, the 
expression is evaluated in the following order: 

1. Arithmetic expressions 

2. Relational-operators 

3. [NOT] condition 

4. AND and its surrounding conditions are evaluated first, starting at 
the left of the expression and proceeding to the right. 

5. OR and its surrounding conditions are then evaluated, also 
proceeding from left to right. 

Consider the expression: 

A IS NOT GREATER THAN B OR A + B IS EQUAL TO C AND D IS POSITIVE 

This will be evaluated as if it were parenthesized as follows: 

(A IS NOT GREATER THAN B) OR «(A + B) IS EQUAL TO C) AND (D IS 
POSITIVE». 

The order of evaluation is as follows: 

1. (A + B) is evaluated, giving some intermediate result, for example, 
x. 

2. (A IS NOT GREATER THAN B) is evaluated, giving some intermediate 
truth value, for example, tl. 

3. (x IS EQUAL TO C) is evaluated, giving some intermediate truth 
value, for example, t2. 

4. (D IS POSITIVE) is evaluated, giving some intermediate truth value, 
for example, t3. 

5. (t2 AND t3) is evaluated, giving some intermediate truth value, for 
example, t4. 

6. (tl OR t4) is evaluated, giving the final truth value, and the 
result of the expression. 

Conditions 163 



Compound Conditions 

Table 14 shows permissible symbol pairs. A symbol pair in a compound 
condition is the occurrence of two symbols appearing in sequence. 

Table 14. Permissible Symbol Pairs -- Compound Conditions 
-------------------T--------------T-------T-------T-------T-----T-----' 

I Second I Condition I OR I AND I NOT I ( I ) I 
I Symbol I I I I I I I 
I I I 1 1 1 1 1 
IFirst 1 I ' I I I I I 
1 Symbol 1 1 1 I 1 1 1 
~------------------- --------------+-------+-------+-------+-----+-----~ 
I Condition lip 1 p 1 lip 1 
~-------------------+--------------+-------t-------+-------t-----+-----~ 
1 OR I p 1 lip I p 1 1 
~-------------------+--------------+-------+-------+-------+-----+-----~ 
I AND I p 1 - I - 1 pip I - 1 
~-------------------t--------------t-------t-------+-------t-----+-----~ 
I NOT I p I 1 I I p I I 
~-------------------+--------------+-------+-------+-------+-----+-----~ 
I ( I p I I I pip I I 
~-------------------+--------------t-------t-------+-------t-----+-----~ 
I ) I I pip I I I p I 
~-------------------~--------------~-------~-------~-------~-----~-----~ 
I p indicates a permissible pairing I 
I - indicates that the pairing is not permitted I L ______________________________________________________________________ J 

IMPLIED SUBJECTS AND RELATIONAL-OPERATORS 

When relation conditions are written in a consecutive sequence, any 
relation condition except the first may be abbreviated by: 

1. The omission of the subject of the relation condition, or 

2. The omission of the subject and relational-operator of the relation 
condition. 

Within a sequence of relation conqitions, both forms of abbreviation may 
be used. The effect of using such abbreviations is as if the omitted 
subject was taken from the most recently stated subject, or the omitted 
relational-operator was taken from the most recently stated relational
operator. 

r----------------------------------------------------------------------, 
IFormat of Implied Subject: 1 

~----------------------------------------------------------------------~ 
1 ••• subject relational-operator object I 
I ,I 

! { ::} [NOT) relational-operator object... ! 
1 I L ______________________________________________________________________ J 

164 Part IV -- Procedure Division 

c 



o 

------------ --------- ------

Compound Conditions 

r----------------------------------------------------------------------, 
IFormat of Implied Subject and Relational-operator: I 
~-------------------~--------------------------------------------------~ 
I I 

! ... subject relational-operator object {~} [NOT] object... ! 
I I L ______________________________________________________________________ J 

Ambiguity may result from using NOT in conjunction with 
abbreviations. When only the subject is implied, NOT is interpreted as 
a logical operator rather than as part of the relational operator. For 
example, A NOT > BAND < C is equivalent to A NOT > B AND A < C. When 
both the subject and the relational operator are implied, NOT is 
interpreted as part of the relational operator. For example, A NOT > B 
AND C is equivalent to A NOT > B AND A NOT > C. 

The following are examples of implied 2~Qi~£!2' and E~!~!ion~!= 
operators. Each example consists of two equivalent statements: 

Implied-Subject 

A = B OR NOT > C (The subject, A, is implied.) 

(The subiect. A. is explicit.) 

Implied-Subject-and Relational-Operato~ 

A = B AND C 

A = B AND A = C 

A NOT = BAND C 

A NOT = BAND 
A NOT = C 

A > B AND NOT < C AND D 

(Subject and relational-operator, A = 
are implied.) 

(Subject and relational-operator, A = 
are explicit.) 

(Subject and relational-operator, A NOT 
are implied.) 

(Subject and relational-operator, A NOT 
are explicit.> 

(Subject, A, is implied in the second 
condition. subject, A, and relational
operator, <, are implied in the third 
condition.) 

= 

= 

A > B AND NOT A < C 
AND A < D 

(Subject, A, and relational-operator, <, are 
explicit.) 

The omitted subject is taken from the most recently stated subjec~, 
that is, A. 

The omitted relational-operator is taken from the most recently 
stated relational-operator, that is, <. 

Conditions 165 

----- - -- ------



IF Statement 

CONDITIONAL STATEMENTS 

A conditional statement specifies that the truth value of a condition 
is to be determined and that the subsequent action of the object program 
is dependent on this truth value. Conditional statements are listed in 
"Categories of Statements." 

A conditional sentence is. a conditional statement optionally preceded 
by an imperative statement, terminated by a/period followed by a space. 

Only the IF statement is discussed in this section. Discussion of 
the other conditional statements is included as part of the description 
of the associated imperative statements. 

IF Statement 

The IF statement causes a condition to be evaluated. The subsequent 
action of the object program depends upon whether the condition is true 
or false. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I {statement-l } {ELSE } {statement-2 } I I IF condition·'TBEN' I 
I ~EXT SENTENCE :OT~ERW~S~ NEXT SENTENCE I 
I I L ______________________________________________________________________ J 

The phrase ELSE70THBRWISE' NEXT SENTENCE may be omitted if and only if 
it immediately precedes the period for the sentence. 

When an IF statement is executed, the following action is taken: 

1. If the condition is true, the statement immediately following the 
conditionror"','THEft (statement-l) is executed. (If ELSE/OTHERWISE'is 
omitted, then'all"imperative statements following the conditfon 'and 
preceding the period for the sentence are considered to be part of 
statement-l.) Control is then passed implicitly to the next 
sentence unless GO TO procedure-name is specified in statement-l. 
If the condition is true and NEXT SENTENCE is written, control 
passes explicitly to the next sentence. 

2. If the condition is false, either the statement following ELSE;'·c,r: 
rOTBERWZSE: (statement-2) is executed, or, if the ELSE:or'OTHERWISE 
• option' 1s' omitted, the next sentence is executed. If the c'ondition 
is false and NEXT SENTENCE is written following ELSE, control 
passes explicitly to the next sentence. 

When IF statements are not nested, statement-l and statement-2 must 
represent imperative statements. 

166 Part IV -- Procedure Division 



/~ 

U 

() 

IF Statement 

Nested IF.Statements 

The presence of one or more IF statements within the initial IF 
statement constitutes a "nested IF statement." 

Statement-l and statement-2 in IF statements may consist of one or 
more imperative statements and/or a conditional statement. If a 
conditional statement appears as statement-lor as part of statement-i, 
it is said to be nested. Nesting statements is much like specifying 
subordinate arithmetic expressions enclosed in parentheses and combined 
in larger arithmetic expressions. 

IF statements contained within IF statements must be considered as 
paired IF and ELSE combinations, proceeding from left to right. Thus, 
any ELSE encountered must be considered to apply to the immediately 
preceding IF that has not already been paired with an ELSE. 

In the conditional statement in Figure 10, C stands for condition: S 
stands for any number of imperative statements; and the pairing of IF 
and ELSE is shown by the lines connecting them. 

chart 1 is a flowchart indicating the logical flow of the conditional 
statement in Figure 10. 

! t t ~ I t t 
IFI Cl SI IF2 C2 IF3 C3 S2 ELSE S3 ELSE S4 IF4 C4 C5 S5 ELSE 56 

cl c2 r el e2 

dl 

bl b2 

al 

al - Statement-l for IFI (If Cl is false, the next sentence is executed, since there is no ELSE for it.) 
bl - Statement-l for IF2 
b2 - Statement-2 for IF2 

cl - Statement-l for IF3 
c2 - Statement-2 for IF3 

dl - Statement-! for IF4 (If C4 is false, the next sentence is executed, since there is no ELSE for it.) 
el - Statement-l for IF5 
e2 - Statement-2 for IF5 

Figure 10. Conditional Statements With Nested IF Statements 

, 

~ 

~ 

Conditional Statements 167 



IF Statement 

Chart 1. Logical Flow of Conditional Statement with Nested IF 
Statements 

····Al········· • EXECUTION OF • 
• IF STATEMENT • 
• BEGINS • .. ·· .. ·r .. · .... 

.•. 
Bl •• 

•• t. 
•• •• FALSE .. .. Cl .... ---------------_____________________________________________________________ _ .. . . .. . -ru

' 

·····Cl·········· • • • • 
• Sl • • • • • ...... ·T ...... · 

••• • *. 01 .. . .... 02.......... 03 .. 
. * *. • • .*., 

• • • • FALsr • • • • • • FALSE 
•• •• C2 •••• -------->: S4 :-------->.. •. C4 •••• --_________________________ :-.. .. . . .. ,-.. .. ................. . .. . 1- l~ 

.•. .., 
El •• • •••• E2.......... E3 •• • •••• E4 •••••••••• . *.. • • .• *. • • 

•• •• FALSE • • •• •• ~ALSE • • .0 C3 0.-------->. S3 • •• C5 0.------->. S6 • *. •• • • •. •• • • .. .. . . .... . . .. .. ................. .. .. . ............... . 
1- I-

..... Fl.......... . .... F3 ......... . 
•• •• .. .. 
• S2 • • S5 • •• •• •• •• ................. .. ...... 1' ....... 

<--------------------------------------------------------------------------------

·····Hl·········· • • • • 
• NEXT SENTENCE • • • • • ••••••••••••••••• 

168 Part IV -- Procedure Division 

C
-~ 

--' ~ 



o 

o 

Declaratives--General Format 

The Declaratives Section provides a method of including procedures 
that are invoked non-synchronously; that is, they are executed not as 
part of the sequential coding written by the programmer, but rather when 
a condition occurs which cannot normally be tested by the programmer. 

Although the system automatically handles checking and creation of 
standard labels and executes error recovery routines in the case of 
input/output errors, additional procedures may be specified by the COBOL 
programmer. The Report Writer feature also uses declarative procedures.~ 

Since these procedures are executed Qnl~ben labels of a file are to 
~processed, o~at the time~XL-~Q~~eading or writ~ng occurs or~ 
when a reegrt group is to be EL~eg, they cannot-appeaL il~he regular 
sequence of procedural statements. They must be written at the 
beginning of the Procedure Division in a subdivision called 
DECLARATIVES. A group of declarative procedures constitutes a 
declarative section. Related procedures are preceded by a USE sentence 
that specifies their function. A declarative section ends with the 
occurrence of another section-name with a USE sentence or with the key 
words END DECLARATIVES. 

The key words DECLARATIVES and END DECLARATIVES must each begin in 
Area A and be followed by a period. No other text may appear on the 
,... .......... "" ,~"'"'O 

r----------------------------------------------------------------------, I General Format I 
~----------------------------------------------------------------------~ 

I 
PROCEDURE DIVISION. I 

I 
DECLARATIVES. I 

I 
{section-name SECTION. USE sentence. I 

I 
{paragraph-name. {sentence} ••• } ••• } ••• I 

I 
END.DECLARATIVES. I 

I ______________________________________________________________________ J 

~The USE sentence identifies the type of declarative. There are three 
formats of the USE sentence. Each is associated with one of the 
following types of procedures: 

1. Input/output label handling 

2. Input/output error-checking procedures 

3. Report writing procedures 

A USE sentence, when present, must immediately follow a section 
header in the Declarative portion of the Procedure Division and must be 
followed by a period followed by a space. The remainder of the section 
must consist of one or more procedural paragraphs that define the 
procedures to be used. The USE sentence itself is never executed; 
rather, it defines the conditions for the execution of the USE 
procedure. 

Declaratives 169 



LABEL Declarative 

Format 1 is used to provide user label-handling procedures. There 
are two options of Format 1. 

r----------------------------------------------------------------------, 
, Format 1 , 
~----------------------------------------------------------------------~ , I 
,Option 1 , 

! USE {BEFORE} STANDARD [BEGINNING] [ ~~~i J i 
,AFTER UNIT I 
, I 
, { {file-name} ••• J I 
, OUTPUT I 
, LABEL PROCEDURE ON INPUT I 
I 1-0 I 
~---------------------------------------------------------------------~~ 
Option. 2 

USE { 
BEFORE} 

STANDARD [~~~!~~] [iiJ AFTER 

LABEL PROCEDURE ON {

{file-name} ••• J 
OUTPUT • 
!~~!!!
!::.Q 

L ______________________________________________________________________ J 

When BEFORE is specified, it indicates that nonstandard labels are to 
be processed. Nonstandard labels may be specifi.ed only for tape files. 

When AFTER is specified, it indicates that user labels follow 
standard file labels, and are to be processed. 

Note: ASCII considerations for user label-handling procedures are given 
in Appendix E. 

The labels must be listed as data-names in the LABEL RECORDS clause 
in the file description entry for the file, and must be described as 
level-01 data items subordinate to the file entry. 

If neither BEGINNING nor ENDING is specified, the designated 
procedures are executed for both beginning and ending labels. 

If UNIT, REEL, or FILE is not included, the designated procedures are 
executed both for REEL or UNIT, whichever is appropriate, and f9r FILE 
labels. The REEL option is not applicable to mass storage files. The 
UNIT option is not applicable to files in the random access mode, since 
only FILE labels are processed in this mode. 

If FILE is specified, the designated procedures are executed at 
beginning-of-file (on first volume) and/or at end-of-file (on last 
volume) only. If REEL or UNIT is specified, the designated .procedures 
are executed at beginning-of-volume (on each volume but the first) 
and/or at end-of-volume (on each volume but the last.) Both BEGINNING 
and ENDING label processing is executed if BEGINNING or ENDING has not 
been specified. 

The same file-name.may appear i~ different specific arrangements of 
Format 1. However, appearance of a file-name in a USE statement must 

170 Part IV -- Procedure Division 



. U 

o 

LABEL Declarative 

not cause the simultaneous request for execution of more than one USE 
declarative. 

If the file-name option is used, the file description entry for 
file-name must not specify a LABEL RECORDS ARE OMITTED clause. 

The file-name must not represent a sort-file. 

The user label procedures are executed as follows when the OUTPUT, 
INPUT, or 1-0 options are specified: 

• When OUTPUT is specified, only for files opened as output. 

• When INPUT is specified, only for files opened as input. 

• When 1-0 is specified, only for files opened as 1-0. 

If the INPUT, OUTPUT, or 1-0 option is specified, and an input, 
output, or input-output file, respectively, is described with a LABEL 
RECORDS ARE OMITTED clause, the USE procedures do not apply. 

The standard system procedures are performed: 

1. Before or after the user's beginning or ending input label check 
procedure is executed. 

2. Before the user's beginning or ending output label is created. 

3. After the user's beginning or ending output label is created, but 
before it is written on tape. 

4. Before or after the user's beginning or ending input-output label 
check procedure is executed • 

Within the procedures of a USE declarative in which the USE sentence 
specifies an option other than fi~~~rr~~, references to common label 
items need not be qualified by a file-name. A common label item is an 
elementary data item that appears in every label record of the program, 
but does not appear in any data record of this program. Such items must 
have identical descriptions and positions within each label record. 

Within a Format 1 declarative section there must be no reference to 
any nondeclarative procedure. Conversely, in the nondeclarative portion 
there must be no reference to procedure-names that appear in the 
declaratives section, except that PERFORM statements may refer to a USE 
procedure, or to procedures associated with it. 

The exit from a Format 1 declarative section is inserted by the 
compiler following the last statement in the section. All logical 
program paths within the section must lead to the exit point. 

; There is one exception: a special exit may be specified by the 
;statement GO TO MORE-LABELS. When an exit is made from a Format 1 
!declarative section by means of this statement, the system will do one 
!O~ the following: 

r'1. Write the current beginning or ending label and then re-enter the 
:,' USE section at its beginning for further creating of labels. After 
r·, creating the last label, the user must exit by executing the last 
f· statement of the section. 
1< 

), 2. Read an additional beginning or ending label, and then re-enter the 
USE section at its beginning for fUrther checking of labels. When 
processing user labels, the section will be re-entered only if 
there is another user label to check. Hence, there need not be a 
program path that flows through the last statement in the section. 
For nonstandard labels, the compiler does not know ,how'man~.labels 

Declaratives 171 



LABEL Declarative 

exist. Therefore, the last statement in the section must be 
executed to terminate nonstandard label processing. 

If a GO TO MORE-LABELS statement is not executed for a user label, 
the declarative section is not re-entered to check or create any 
immediately succeeding user labels. 

When reading nonstandard header labels, : It is the user's responsi
bility to read any tape marks that are used to terminate labels. The GO 
TO MORE-LABELS exit must be used, and tbe declarative must recognize 
that a tape mark rather than data is being read. The final exit from 
the declarative must not be taken until the file is positioned just 
before the first data record. 

The programmer must set special register LABEL-RETURN to nonzero if 
the nonstandard header label of an input file is not correct. 

After the nonstandard trailer labels are processed, the system 
determines from the DD statement if another reel is to be read or if the 
current reel is the end of the file. If the current reel is the last 
one for the file, the statement execu~ed is the one specified in the AT 
END phrase of the READ statement that detected the end-of-reel 
condition. If the current reel is not the last, a volume-switch takes 
place, the header label is processed, and the first record on the reel 
is read. 

172 Part IV'-- Procedure Division 

~ ' ... - "," 



/ 

\. I 
-.--) 

CD 

c) 

-------------- - -- ---------------------------

LABEL_Declarative--Sample Program 

SAMPLE LABEL DECLARATIVE PROGRAM 

The following program creates a £ile with user labels. To create the 
labels, the program contains a DECLARATIVES section. with USE procedures 
for creating both header and trailer labels. 

The program illustrates the following items: 

For the file requiring the creation of user labels., the LABEL 
RECORDS clause uses the data-name option. 

o The USE AFTER BEGINNING/ENDING LABEL option is specified to create 
user labels. 

Ij"\ The program creates two user header labels., r~ri21n9~the_ speclai~ 
\::V r~exit -GO T-O- -MORE "LABEts~'to~cieatEF":tn~s.econ:a:- label. t'_~_d'~~'_"---''''''''>''''''- , 

~ ,,.. v >~ .,.. <.0 ~ 0:', > - > ., "~...... ~"'" __ .,,*,,_ v.~fu.:..,>,,""'4<:._""'<.'''''''~'''''' »»L.,<,»,.~,::,-,,,,,,,,,,,,,,,, .. _ ... 05 

The information to be inserted in the use~ labels comes from input 
file records. Therefore, records co~ainrng the information must 
be read and stored before the output file is opened, and the header 
label procedures are inVOked. 

IDENTIFICATION DIVISION. 
PROGRAM-ID. LABELPGM. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-360-F50. 
OBJECT-COMPUTER. IBM-360-F50. 
TNPnrr-nTTrrpnrr SECTION . 
.r .lLJ:.-L:Ul~ .Ll{UL. 

SELECT NO-LBL ASSIGN TO UT-2400-S-INFILE. 
SELECT USER ASSIGN TO UT-2400-S-USRFILE. 

DATA DIVISION. 
FILE SECTION. 
FD NO-LBL 

RECORD CONTAINS 80 CHARACTERS 
LABEL RECORD IS OMITTED. 

01 IN-REC. 
05 TYPEN PIC X(4). 
OS DEPT-ID PIC X(li). 
05 BIL-PERIOD PIC XeS). 
OS NAME PIC X(20). 
05 AMOUNT PI~ 9(6). 
OS FILLER PIC X(lS). 
05 SECUR-CODE PIC XX. 
05 FILLER PIC 9. 
05 ACCT-NUM PIC 9(10). 
05 FILLER PIC 9(6). 

01 IN-LBL-HIST. 
OS FILLER PIC X(4). 
05 FILE-HISTORY PIC X(76). 

FD USER 
RECORD CONTAINS 80 CHARACTERS 
BLOCK CONTAINS S RECORDS 
LABEL RECORDS ARE USR-LBL USR-LBL-HIST. 

01 USR-LBL. 
OS USR-HDR PIC X(4). 
OS DEPT-ID PIC X(li). 
05 USR-REC-CNT PIC 9(8) COMP-3. 
05 BIL-PERIOD PIC xes). 
05 FILLER PIC X(53). 
OS SECUR-CODE PIC XX. 

Declaratives 173 

----------,----------------------------------------------



LABEL Declarative--Sample Program 

01 USR-LBL-HIST4 
OS FILLER PIC X(4). 
OS LBL-HISTORY PIC X(76). 

01 USR-REC. 
OS TYPEN PIC X(4). 
OS FILLER PIC XeS). 
OS NAME PIC X(20). 
OS FILLER PIC X(4). 
OS ACCT-NUM PIC 9(10). 
OS AMOUNT PIC 9(6) COMP-3. 
OS FILLER PIC X(2S). 
OS U-SEQ-NUMB PIC 9(8). 

WORKING-STORAGE SECTION. 
77 U-REC-NUMB PIC 9(8) VALUE ZERO. 
77 SAV-DEPT-ID PIC X(ll). 
77 LBL-SWITCH PIC 9 VALUE ZERO .• 
77 USER-SWITCH PIC 9 VALUE ZER0. 
01 STOR-REC .• 

OS DEPT-ID PIC X(ll). 
OS BIL-PERIOD PIC xes). 
05 SECUR-CODE PIC XX. 

PROCEDURE DIVISION. 

DECLARATIVES. 
USR-HDR-LBL SECTION. USE AFTER BEGINNING FILE 

LABEL PROCEDURE ON USER. 
A. IF LBL-SWITCH = 0 

MOVE SPACES TO USR-LBL 
MOVE ZEROES TO USR-REC-CNT 
MOVE 'UHLl u TO USR-HDR 
MOVE CORRESPONDING STOR-REC TO USR-LBL 
ADD 1 TO LBL-SWITCH GO TO MORE-LABELS 

ELSE MOVE 'UHL2' TO USR-HDR 
MOVE FILE-HISTORY TO LBL-'HISTORY. 

USR-TRLR-LBL SECTION. USE AFTER ENDING FILE 
LABEL PROCEDURE ON USER. 

B. MOVE SPACES TO USR-LBL. 
MOVE 'UTL1' TO USR-HDR. 
MOVE SAV-DEPT-ID ~O DEPT-ID IN USR-LBLft 
MOVE U-REC-NUMB TO USR-REC-CNT. 

END DECLARATIVES. 

OPEN INPUT NO-LBL. 
READ-IN. 

READ NO-LBL AT END GO TO END-JOB. 
A. IF USER-SWITCH = 1 NEXT SENTENCE 

ELSE ADD 1 TO USER-SWITCH 
MOVE CORRECPONDING IN-REC TO STOR-REC 
MOVE DEPT-ID OF IN-REC TO SAV~DEPT-ID 

PERFORM READ-IN 
OPEN OUTPUT USER 
GO TO READ-IN. 

MOVE SPACES TO USR-REC 
ADD 1 TO U-REC-NUMB 
MOVE CORRESPONDING IN-REC TO USR-REC 
MOVE U-REC-NUMB TO U-SEQ-NUMB 
WRITE USR-REC 
GO TO READ-IN. 

END-JOB. 
CLOSE NO-LBL USER 
STOP RUN. 

174 Part IV -- Procedure Division 

c 



o 

ERROR Declarative 

A Format 2 USE sentence specifies procedures to be followed if an 
input/output error occu~s during file processing. 

r----------------------------------------------------------------------, 
I Format 2 I 
~----------------------------------------------------------------------~ 
I I 
I USE AFTER STANDARD ERROg PROC~~Qg~ I 
I I i ON {!i:ame-l Ifile-name-21 ... } ! 

I I 
I (GIVING data-name-l [data~name~2]j. I 
I I L ______________________________________________________________________ J 

USE declaratives which specify error handling procedures are 
activated when an input/output error occurs during execution of a READ, 
WRITE,' RE,WRI~~, ,or~ S~~T; statement. 

Automatic system error routines are executed before user-specified 
procedures. 

User error handling procedures are executed for invalid key 
conditions if the INVALID KEY option is not specified in the statement 
causing the condition. 

within the error procedure, the allowable statements that may be 
executed depend on the organization and access specified for the file in 
error. 

, Within a USE procedure there must not be any reference to 
,!l0~declarative procedures ;~XC0~P,~, ,,~]iel;l '~~ ,~lc;f~:, l:~ tatt~n wi~h, a:' ~9',,~O' 
L~~atement. conversely, in the nondeclarative portion, there must be no 
reference to procedure-names that appear in the declaratives portion, 
except that PERFORM statements may refer to a USE declarative or to 
procedures associated with such a declarative. 

When the file-name option is used, error handling procedures are 
executed for input/output errors occurring for the named filets) only. 

A file-~ must not be referred to, implicitly or explicitly, in 
more than one Format 2 USE sentence. 

The user error procedures are executed, when the INPUT, OUTPUT, or 
1-0 options are specified and an input/output error occurs, as follows: 

• When INPUT is specified, only for files opened as INPUT. 

• When OUTPUT is specified, only for files opened as OUTPUT. 

• When I-a is specified, only for files opened as I-a. 
~ ~ ",.. i ' , ,~ .,. , 

:' When the GIVING option is used and an error declar~tive 'section is, 
~ entered) data-name-l will contain the information shown'in:Figure 11. I' < h ,p ~ 

L ' 'The GIVING option is valid 'onl¥, when the error proc'edure', specifies, 
i "single file-name. 
:.«'«<'A ... ~, <h'< 

Program ' Product Information (Version 3 and Version 4) 

: The GIVING option may specify multiple 'file~names" ora~~< ()n~ "¢>f 
,the ~N~~~~ "O~~~UT/,,~~O ,,~~:,~~ns. ' ,,,,,,,, 

Declaratives 175 



ERROR Declarative 

~~'r~:..,::";; .... ~,;,,;,,,,--,:,,,,'~'T"'-":"~';'''''''--'-'-,,,,,,,,,,,---,,,,,-,,,------,,---,,,,,,,------ ..... -----~;.':.' ... - ... ~ .. .:....:.~:.:.:.:,~ 
~'l ", ,'Byte, ' 1, ',' ,Information' ' I 
it-~-~o:11-~---t-~;;;;;-~;;--------------~------------------------------1 
fl 12-13 ,I Number of bytes in error block (in binary) or blank I 
f,'l 14-48 I Blanks L 
;,1 '49, I , I 
~ ,50-57 1 Jobname r 

'.... ,/ 

~'I 58 I , I, 
~ I '59-66 I Stepname I, 
, I 67 I , Ii 
I 68-70 I unit address " 

! J 71 I , I' 
: I 72-73 I Device-type I 
~, I 74 I , I' 
: I 75-82 I DDNAME I 
, I 83 I , I 
I 84-89 I Operation attempted I 
I 90 I , I 
I 91-105 ' I Error description I 
I· 106 I , I, 
I 107-127 I The contents of this field depend on the type of 1 
I " input/output device in use, as follows: I 

i I I I 
; I I For unit record, 107-120 Asterisks I' 
; I 1 121 ' , I: 
: I I 122-127 Access method I \ 
:' I I I ; 
: I I For magnetic tape, 107-113 Block count (in decimal) I 
L I I 114, I 
~<I 'I 115-119 Access method I' 
}, I I 120-127 Blanks I 
iJ I I 
I> I I For mass storage, 107-120 Last actual address, in I,' 
l'l ' ,1 the form BBCCHHR I 
I ' I I' (in hexadeCimal) , I : 
r,: I I' 121, I 
I: I.' . " I 122-127 Access method , I ; 
~: I .. ,1~8-135 ,,,,,' ',I', System use ' , , , , ' (: 
f ,~_~_~--... ,_~--~~.L-~-----"':"'------_:------------~------------------------~--"':"~ , , r'NoteS!: . ,,' , ,'., , 'I' 

[
'J'io, ~ytes 12~13ari! in binary representation. . '. 'I. 
f:' I ' 2. >, Byt-eli "9-127," unless otherwise' indica ted, are in EBCDIC ' I ~ 
J: 1 ,: representation. I: 
(I ' r 
{':I 3; Bytes 91~10S (Error Description) contain a brief description of I 
\' I the type of error that occurred. The description is provided by I 
f'l tbe system error analysis procedures, and is placed into bytes I' 

I 91-105 upon entry into the Error Declarative. I' 
I I 
I For example, if the FD for an input file described 120-character I 
I records, and if at execution time the file actually contained I 

"I 100-cbaracter records, then when a read operation was attempted I 
;: I an, error would occur, and the system would return the message I 
i"1 "WRN.LEN.RECORD". IJ 
t I II 
,I Similarly, for a BISAM file opened 1-0, an attempt to write a II 
I ' record without a preceding read operation would cause an error, 11 
I and, the system would return the message "INVALID REQUEST". ,11 
I Ii 

" Note that each release of the operating System adds and deletes I: 
;1: messages, so that the actual content of the messages is subject Ii 

, " to change. I' , L ______________________________________________________________________ J 

: ,Figure: 11. Information Supplied With the GIVING Option When an Error 
" ' Declarative is Entered 

176 Part IV -- Procedure Division 



c) 

",----u 

C
·'" 
) 

--------- --- --- ,-- ----------

ERROR Declarative 

r~"~' 'Data":'n~me-1 -mus~' be a 
It'WOrking-storage Section. 

data-name-1 will contain 
i· 

136-byte item. It must be defined in the 
If no data was transmitted, bytes 12-13 of 

blanks .. 

If speqified, data-name-2 contains the block in error for a READ 
operation, if data was transmitted. For a WRITE, REWRITE, or START 
operation, data-name-2 must not be referred to. 

~ 
Data-name-2 must be an item large enough to hold the largest physical, 

block which exists or which will be processed. It must be defined in 
the Working-Storage or Linkage Section. If data-name-2 is defined in 

:;~~~ ~i;~~I;?1;"~;~~;~:l ~~;~'~~~~~'~~~'~M;~.~!~~~_;E~;,~ :~~~~~~ i_n_ th: .~~f f ~r 
An exit from this type of declarative section can be effected by 

executing the last statement in the section (normal return) ,or by means,; 
rof' -'a:-i-G<Y"TCf st'atement." ' A, summary _ of I the facilities, :.precaqtions. t9 b,e ; 
Lt'?_~~".~h,~!l,,~~~~!!9'_ .~11e .. 5~~v:P:~~._~~p~i5?n,q 1 and suggested user response 

associated with each file-processing technique when an error occurs, is 
given in the Programmer's Guide. 

A Format 3 USE sentence specifies Procedure Division statements that 
are executed just before a repor~ group named in the Report section of 
the Data Division is produced (see "Report Writer"). 

-----------------------------------------------------------------------, 
J s: UL1l1Cl \.. ..J • 

~----------------------------------------------------------------------~ 
I ] 
I USE BEFORE REPORTING data-name. J 

I J L ______________________________________________________________________ J 

Declaratives 177 



CORRESPONDING/GIVING/ROUNDED Options 

ARITHMETIC STATEMENTS 

The arithmetic statements are used for computations. Individual 
operations are specified by the ADD, SUBTRACT, MULTIPLY. and DIVIDE 
statements. These operations can be combined symbolically in a formula. 
using the COMPUTE statement. 

Because there are several options common to the arithmetic 
statements, their discussion precedes individual statement descriptions. 

CORRESPONDING Option 

The CORRESPONDING option enables computations to be performed on 
elementary items of the same name simply by specifying the group item to 
which they belong. The word CORRESPONDING may be abbreviated as CORR. 

Both identifiers following CORRESPONDING must refer to group items. 
For the purposes of this discussion, these identifiers will be called d1 
and d 2 • 

Elementary data items from each group are considered CORRESPONDING 
when both data items have the same name and qualification, up to but not 
including d1 and d2 • 

Neither d1 nor d 2 may be a data item with level number 66, 77, or 88. 
nor may either be described with the USAGE IS INDEX clause. Neither dl 
nor d2 may be a FILLER item. 

Each data item subordinate to d 1 or d 2 that is described with a 
REDEFINES, RENAMES, OCCURS, or, USAGE IS INDEX clause is ignored; any 
items subordinate to such data items are also ignored. However, d1 or 
d2 may themselves be described with REDEFI:NES or OCCURS clauses, or be 
subordinate to items described with REDEFI:NES or OCCURS clauses. 

d2 is ignored. 

GIVING Option 

If the GIVING option is specified, the value of the identifier that 
follows the word GIVING is set equal to the calculated result of the 
arithmetic operation. This identifier, since not itself involved in the 
computation, may be a numeric edited item. 

ROUNDED Option 

After decimal point alignment, the number of places in the fraction 
of the result of an arithmetic operation is compared with the number of 
places provided for the fraction of the resultant identifier. 

When the size of the fractional result exceeds the number of places 
provided for its storage, truncation occurs unless ROUNDED is specified. 
When ROUNDED is specified" the least significant digit of the resultant 
identifier has its value increased by 1 whenever the most significant 
digit of the excess is greater than or equal to 5. 

178 Part IV -- Procedure Division 



SIZE ERROR Option/ADD Statement 

When the resultant identifier is described by a PICTURE clause 
containing P's and when the number of places in the calculated result 
exceeds this size, rounding or truncation occurs relative to the 
rightmost integer position for which storage is allocated. 

I
~~: The preceding ROUNDED description does not apply ~hen the 
t res1:lltant field is floating point" in which case rounding has no 
('meaning. However, if at least one of the operands of an ari thriletic 
! ope~ation is fu.oating-point and the resultant Ifield isjfixed-point', 
! ~ound,ing alway~ takes place". wheth~r ,or not ROUNDED is specif,,~ed. ' 

SIZE ERROR Option 

If, after decimal point alignment, the value of a, result exceeds the 
largest value that can be contained in the associated resultant 
identifier, a size error condition exists. Division by zero always 
causes a size error condition. The size error condition applies only to 
the final results of an arithmetic operation and does not apply to 
intermediate results. If the ROUNDED option is specified, rounding 
takes place before checking for size erro~. When such a size error 
condition occurs, the sUbsequent action depends on whether or not the 
SIZE ERROR option is specified. 

If the SIZE ERROR option is not specified and a size er~or condition 
occurs, the value of the resultant identifier affec~ed may be 
unpredictable. 

____ ..:J.! J_.! __ _ 

occurs, the value of the resultant identifier affected by the size error 
is not altered. After completion of the execution of the arithmetic 
operation, the im~erative statement in the SIZE ERROR option is 
executed. 

For .COMPUTATIONAL-1 and COMPUTATION~-2 item,s", on.l.y divll?ion by zero, 
c;:auses t,h:~, ~ ~~J?~ra:ti ye statement i,~, .~,h:,e ,,~I,~~ ~R~~~, ,o~tio~:" ~~~ be executed .• : 

Overlapping Operands 

When the sending and receiving operands of an arithmetic statement or 
a MOVE statement share a part of their storage (that' is" when the 
operands overlap), the result of the execution of such a statement is 
unpredictable. 

ADD Statement 

The ADD statement causes two or more numeric operands to be summed 
and the result to be stored. 

r----------------------------------------------------------------------, 
I Format 1 1 
~----------------------------------------------------------------------~ 
I I 
II {identifier-1} [identifier-2] II 

ADD TO identifier-m [EOUNDED] 
I literal-1 literal-2 1 
I ) 
I [identifier-n [ROUNDED]] ••• [ON SIZE ERROR imperative-statement] l 
I 1 l ______________________________________________________________________ J 

Arithmetic Statements 179 

-------------



ADD Statement 

r----------------------------------------------------------------------, 
I Format 2 I 
~----------------------------------------------------------------------~ 
I I I ADD {identifier-1} {identifier-2} [identifier-3 ] I 
I literal-1 literal-2 literal-3 I 
I I 
I GIVIN~ identifier-m [RQQNDED] [ON SIZ~ ~gROR imperative-statement] I 
I I L ______________________________________________________________________ J 

r----------------------------------------------------------------------, 
I Format 3 I 
~----------------------------------------------------------------------~ 
I I 
II {CORR } II ADD identifier-1 ~Q identifier-2 
I £QgRESPONDI~~ I 
I I 
I [SQQNDED] [ON §~ ~RRQR imperative-statement] I 
I I L ______________________________________________________________________ J 

FORMAT 1 -- the values of the operands preceding the word TO are 
added together, and the sum is added to the current value of 
identifier-m (identifier-n), etc. The result is stored in identifier-m 
(identifier-n);-etc~-----

FORMAT 2 -- when the GIVING option is used, there must be at least 
two operands preceding the word GIVING. The values of these operands 
are added together, and the sum is stored as the new value of 
identifier-me 

In Formats 1 and 2 each ~~~ntifier must refer to an elementary 
numeric item, with the exception of identifiers appearing to the right 
of the word GIVING. These may refer to numeric edited data items. 

Each literal must be a numeric literal. 

The maximum size of each operand is 18 decimal digits. The maximum 
size of the resulting sum, after decimal point alignment, is 18 decimal 
digits. 

FORMAT 3 -- when the CORRESPONDING option is used, elementary data 
items within igentifie~-l are added to and stored in corresponding 
elementary data items within ~~~g~~£ig~~£. Identifier-1 and 
identifier-2 must be group items. 

When ON SIZE ERROR is used in conjunction with CORRESPONDING, the 
size error test is made only after the completion of all the ADD 
operations. If any of the additions produces a size error condition, 
the resultant field for that addition remains unchanged, and the 
imperative statement specified in the SIZE ERROR option is executed. 

180 Part IV -- Procedure Division 



C) 

COMPUTE/DIVIDE Statements 

COMPUTE-Statement 

The COMPUTE statement assigns to a data item the value of a data 
item, literal, or arithmetic expression. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I {identifier- 2 } I 
I COMPUTE identifier-l [EQQNDED] = literal-l I 
I arithmetic-expression I 
I I 
I [ON SIZE ERROR imperative-statement] I 
I I L ______________________________________________________________________ J 

Literal-l must be a numeric literal. 

Identifier-2 must refer to an elementary numeric item. Identifier-l 
may describe a numeric edited data item. 

~hp ;npnr;T;pr-? ~nn 1;rpr~1-1 ontions nrovide a method for settina 
tne value OE 1aen~1E1er-L equaL ~o ~ne Vd~ue UL ~uell~~L~eL-~ UL 

literal-l. 

The arithmetic-expression option permits the use of a meaningful 
combination of identifiers, numeric literals, and arithmetic operators. 
Hence, the user can combine arithmetic operations without the 
restrictions imposed by the arithmetic statements ADD, SUBTRACT, 
MULTIPLY, and DIVIDE. 

As in all arithmetic statements, the maximum size of each operand is 
18 decimal digits. 

DIVIDE Statement 

The DIVIDE statement is used to find the quotient resulting from the 
division of one data item into another data item. 

r----------------------------------------------------------------------, 
I Format 1 I 
~----------------------------------------------------------------------~ 
I I 
II {identifier-l} II 

DIVIDE ~~TO identifier-2 [gQQ~Q~Q] 
I literal-l I 
I I 
I [ON SIZE ERROR imperative-statement] I 
I I L ______________________________________________________________________ J 

Arithmetic Statements 181 

---------- --------------- - ---- --- ------- ---- ------- -------------------



DIVIDE/MULTIPLY Statements 

r----------------------------------------------------------------------, 
I Format 2 I 
~----------------------------------------------------------------------~ 
II I 
II {identifier-if {INTO} {identifier- 2 } II 

DIVIDE GIVING identifier-3 
I literal-i BY literal-2 I 
I I 
I [ROUNDED] [REMAI~Q~g identifier-4] I 
I I 
I [ON SIZE ERROR imperative-statement] I 
I I L ______________________________________________________________________ J 

When Format 1 is used, the value of identifier-i (or literal-i) is 
divided into the value of identifier-2.--The-value-of the-dividend 
(identifier-2) is replaced by the value of the quotient. 

When Format 2 is used, the value of identifier-1 (or literal-1) is 
divided into or by identifier-2 (or literal-2)', the quotient is stored 
in identifier-3, and the remainder optionally is stored in !~~g~!~!~~=~. 

A remainder is defined as the result of subtracting the product of 
the quotient and the divisor from the dividend. When the REMAINDER 
option is specified, none of the identifiers may refer to floating-point 
items. If the ROUNDED option is also specified, the quotient is rounded 
after the remainder is determined. 

Each identifier must refer to an elementary numeric item except the 
identifier following the word GIVING which may be a numeric edited item. 

Each literal must be a numeric literal. 

The maximum size of each operand is 18 decimal digits. The maximum 
size of the resulting quotient, after decimal point alignment, is 18 
decimal digits. The maximum size of the resulting remainder (if 
specified), after decimal point alignment is 18 decimal digits. 

Division by zero always results in a size error condition. 

MULTIPLY. Statement 

The MULTIPLY statement is used to multiply one data item by another 
data item. 

r----------------------------------------------------------------------, 
I Format 1 I 
~----------------------------------------------------------------------~ 
I I 
I { identifier-l} I 
I MULTIPLY BY identifier-2 [gQUNQ~Q] I 
I literal-l I 
I I 
I [ON SIZE ERROR imperative-statement] I 
I I L ______________________________________________________________________ J 

182 Part IV -- Procedure Division 



o 

C) 

,------ ------------------------

MULTIPLY/SUBTRACT Statements 

r----------------------------------------------------------------------, 
I Format 2 I 
~----------------------------------------------------------------------~ 
I I 
I {identifier-i} {identifier-2} I I MULTIPLY BY ~!Y!~~ identifier-3 I 
I literal-i literal-2 I 
I I 
I [ROUNDED] [ON §!£~ ~RRQg imperative-statement] I 
I I L-_____________________________________________________________________ J 

When Format 1 is used, the value of identifier-l (or literal-i) is 
multiplied by the value of identifier-2~-The-value of the-multiplier 
(identifier-2) is replaced by the product. 

When Format 2 is used, the value of ig~~~i~ie~~! (or li~~~al=!) is 
multiplied by identifier-2 (or literal-2), and the product is stored in 
identifier-3. 

Each identifier must refer to an elementary numeric item except the 
identifier,following the word GIVING which may be a numeric edited item. 

Each literal must be a numeric literal. 

The maximum size of each operand is 18 decimal digits. The maximum 
size of the resulting product, after decimal point alignment, is 18 
decimal digits. 

SUBTRACT statement 

The SUBTRACT statement is used to subtract one, or the sum of two or 
more, numeric data items from another data item(s). 

r----------------------------------------------------------------------, 
I Format 1 I 
~----------------------------------------------------------------------~ 
I I 

I
I {identifier-l} [identifier-2 ] II 

SUBTRACT 
I literal-i literal-2 I 
I I 
I ~ identifier-m [BQQ~DEQ] I 
I I 
I [identifier-n [ROU~DED]] ••• [ON SIZE ERROR imperative-statement] I 
I I L ______________________________________________________________________ J 

Arithmetic Statements 183 



SUBTRACT Statement 

r----------------------------------------------------------------------, 
I Format 2 . I 
~----------------------------------------------------------------------~ 
I I 
II {identifier-l} [identifier-2 ] II 

SUBTRACT 
I literal-l literal-2 I 
I I 
II { identifier-m} II 

FROM GIy!~@ identifier-n 
I literal-m I 
I I 
I [ROUNDEQ] [ON §!!~ ERROg imperative-statement] I 
I I L ______________________________________________________________________ J 

r----------------------------------------------------------------------, 
I Format 3 I 
~----------------------------------------------------------------------~ 
I I 

I SUBTRACT {CORR } identifier-l FROM identifier-2 I 
I CORRESPONDING I 
I I 
I [ROUNDED] [ON SIZE ~gROR imperative-statement] I 
I I L ______________________________________________________________________ J 

Format 1 -- all literals or identifiers preceding the word FROM are 
added together, and this total is subtracted from identifier-m, and 
identifier-n (if stated), etc. The result of the subtraction is stored 
as the new value of identifier-m, identifier-n, etc. 

Format 2 -- all literals or identifiers preceding the word FROM are 
added together, and this total is subtracted from !~~~!~!~m or 
identifier-me The result of the subtraction is stored as the new value 
of identifier-n. 

Format 3 -- data items in identifier-l are subtracted from, and the 
difference stored into corresponding data items in, identifier-2. When 
the CORRESPONDING option is used in conjunction with ON SIZE ERROR and 
an ON SIZE ERROR condition arises, the result for SUBTRACT is analogous 
to that for ADD. 

Each identifier must refer to an elementary numeric item except the 
identifier following the word GIVING which may be a numeric edited item. 

Each literal must be a numeric literal. 

The maximum size of each operand is 18 decimal digits. The maximum 
size of the resulting difference, after decimal point alignment, is 18 
decimal digits. 

184 Part IV -- Procedure Division 

c 



GO TO Statement 

Statements, sentences, and paragraphs in the Procedure Division are 
ordinarily executed sequentially. The procedure branching statements 
allow alterations in the sequence. These statements are ALTER, GO TO, 
PERFORM, STOP, and EXIT. 

GO.TO statement 

The GO TO statement allows a transfer from one part of the program to 
another. 

r----------------------------------------------------------------------, 
I Format 1 I 
~----------------------------------------------------------------------~ 
I I 
I §Q TO procedure-name-l I 
I I L ______________________________________________________________________ J 

r----------------------------------------------------------------------, 
I ~v .............. ~ I 

~----------------------------------------------------------------------~ 
I I 
I GO TO procedure-name-l [procedure-name-2] I 
I I 
I ~DING ON identifier I 
I I L ______________________________________________________________________ J 

r----------------------------------------------------------------------, 
I Format 3 I 
~----------------------------------------------------------------------~ 
I I 
I GO TO. I 
I I L ______________________________________________________________________ J 

When Format 1 is specified, control is passed to procedure-name-1 or 
to another procedure name if the GO TO statement has been changed by an 
ALTER statement. (If the latter is the case, the GO TO statement must 
have a paragraph name, and the GO TO statement must be the only 
statement in the paragraph.) 

'---

If a GO TO statement represented by Format 1 appears in an imperative 
sentence, it must appear as the only or last statement in a sequence of 
imperative statements. 

When Format 2 is used, control is transferred to one of a series of 
procedures, depending on the value of the identifier. For example, when 
identifier has a value of 1, control is passed to procedure-name-1; a 
value of 2 causes control to be passed to procedure-name-2, ••• ; a value 
of n causes control to be passed to procedure-name-n. For the GO TO 
statement to have effect, identifier must represent a positive or 
unsigned integer, i.e., 1. 2, ••• , n. If the value of the identifier is 
anything other than a value within the range 1 through n, the GO TO 
statement is ignored. The number of procedure-names must not exceed 
2031. 

Procedure-Branching Statements 185 



ALTER Statement 

Identifier is the name of a numeric elementary item described as an 
integer. Its PICTURE must be of four digits or less. Its USAGE must be 
DISPLAY, COMPUTATIONAL, or COMPUTATIONAL-3. 

When Format 3 is used, an ALTER statement, referring to the GO TO 
statement, must have been executed prior to the execution of the GO TO 
statement. The GO TO statement must immediately follow a paragraph name 
and must be the only statement in the paragraph. 

ALTER statement 

The ALTER statement is used to change the transfer point specified in 
a GO TO statement. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I ALTER procedure-name-l !Q [PRQCEED !Q] procedure-name-2 I 
I I 
I I 
I [procedure-name-3 !Q [PRO£EEQ TO] procedure-name-4]... I 
I I L ______________________________________________________________________ J 

Procedure-name-l, procedure-name-3, etc., must be the names of 
paragraphs that contain only one sentence consisting of a GO TO 
statement without the DEPENDING option. 

Procedure-name-2, procedure-name-4, etc., must be the names of 
paragraphs or sections in the Procedure Division. 

The effect of the ALTER statement is to replace the procedure-name 
operands of the GO TO statements with procedure-name-2, 
procedure~name-4, etc., of the ALTER statement, where the paragraph-name 
containing the GO TO statement is procedure-name-l, procedure-name-3, 
etc. For example: 

PARAGRAPH-l. 
GO TO BYPASS-PARAGRAPH. 

PARAGRAPH-1A. 

BYPASS-PARAGRAPH. 

ALTER PARAGRAPH-l TO PROCEED TO PARAGRAPH-2. 

PARAGRAPH-2. 

Before the ALTER statement is executed, when control reaches 
PARAGRAPH-l, the GO TO statement transfers control to BYPASS-PARAGRAPH. 
After execution of the ALTER statement, however, when control reaches 
PARAGRAPH-l, the GO TO statement transfers control to PARAGRAPH-2. 

186 Part IV Procedure Division 

"-' , 
( 
\.- --



------------------ ---------------------- --- --- --------- ------

u 

PERFORM Statement 

seqmen~~~iQn Infor~~~iQ~: A GO TO statement in a section whose 
priority is greater than or equal to 50 must not be referred to by an 
ALTER statement in a section with a different priority. All other uses 
of the ALTER statement are valid and are performed even if the GO TO to 
which the ALTER refers is in an overlayable fixed segment (see 
"segmentation"). 

The PERFORM statement is used to depart from the normal sequence of 
procedures in order to execute a statement, or a series of statements, a 
specified number of times; or until a predetermined condition is 
satisfied. After the statements are executed, control is returned to 
the statement after the PERFORM statement. 

r----------------------------------------------------------------------, 
I Format 1 I 
~----------------------------------------------------------------------~ 
I I 
I PERFORM procedure-name-l [~ffRU procedure-name-2J I L ______________________________________________________________________ J 

r------------- - - -- -- _ 
I Format 2 I 
~----------------------------------------------------------------------~ 
I I 
I PERFOg~ procedure-name-l [Ttlg~ procedure-name-2J I 
I I 
'I {identifier-l} II 

T!~~§ 
I integer-l I L ______________________________________________________________________ J 

r----------------------------------------------------------------------, 
I Format 3 I 
~----------------------------------------------------------------------~ 
I I 
, PERFQg~ procedure-name-l [THR~ procedure-name-2J , 
I I 
I ~llTIL condition-l I L ______________________________________________________________________ J 

Procedure-Branching Statements 187 



PERFORM Statement 

r----------------------------------------------------------------------, 
, Format 4 J 

r----------------------------------------------------------------------~ 
I PERFORM procedure-name-1 [THRU procedure-name-2] ] 
I J 
" {indeX-name-l} {indeX-name-2} I) 

VARYING FROM literal-2 
I identifier-l identifier-2 J 

'
I {literal-3 } lJI 

BY UNTIL condition-l 
,identifier-3 ) 
I 1 
I {indeX-narne- 4} {indeX-name- 5} J 
I [AFTER FROM Ii teral-5 i 
, identifier-4 identifier-5 J 
I J 

I' {literal-6 } '
J BY UNTIL condition-2 

I identifier-6 J 
I ] 
I {indeX-name-7} {indeX-name-8} 1 
I [AFTER FROM literal-8 I 
I identifier-7 identifier-8 ) 
I 1 
, {literal-9 } 1 
'BY UNTIL condition-3]] J 
,identifier-9 J L ______________________________________________________________________ J 

Each procedure-name must be the name of a section or paragraph in the 
Procedure Division. 

Each identifier represents a numeric elementary item described in the 
Data Division. In Format 2, and Format 4 with the AFTER option, each 
w~den~if i~~, :t"ep,res~,nt~,?, !lu~~l~Fic:", i t:em ",9~~~,cr~p~d" a~ ,,~n , int~9~r ~"' r~~pwev~Ffl 
iwhen Format' 4 with the AFTER option is used, this compiler ~llows, eacht/;:1 
t~~entifier to be described as ;~, n?~:i,~t,~~r~l >n~,e:r~c" ~t:~~~",": " :~,~',:'~~:~':J 

Each literal represents a numeric literale 

Whenever a PERFORM statement is executed. control is transferred to 
the first statement of the procedure named procedure-name-1. Control is 
always returned to the statement following the PERFORM statement. The 
point from which this control is passed is determined as follows: 

1. If procedure-name-1 is a paragraph-name and procedure-name-2 is not 
specified, the return is made after the execution of the last 
statement of procedure-name-1. 

2. If procedure-name-l is a section name and procedure-name-2 is not 
specified, the return is made after the execution of the last 
sentence of the last paragraph in procedure-name-1. 

3. If procedure-name-2 is specified and it is a paragraph name, the 
return is made after the execution of the last statement of that 
paragraph. 

4. If procedure-name-2 is specified and it is a section name, the 
return is made after the execution of the last sentence of the last 
paragraph in the section. 

When both procedure-name-1 and procedure-name-2 are specified, GO TO 
and PERFORM statements may appear within the sequence of statements 
within these paragraphs or sections. When procedure-name-1 alone is 
specified, PERFORM statements may appear within the procedure. GO TO 

188 Part IV -- Procedure Division 



( / 

'-.---

C) 

PERFORM Statement 

may also appear but may not refer to a procedure-name outside the range 
of procedure-name-l. 

When a PERFORM statement includes within its range of procedures 
another PERFORM statement, this embedded PERFORM statement must have its 
range of procedures either totally included in or totally excluded from 
the range of procedures of the original PERFORM statement. That is, the 
exit point of the original PERFORM statement cannot be contained within 
the range of procedures of the embedded PERFORM statement, except as a 
common exit point. Embedded PERFORM or GO TO statements may have their ; 
exit point at the same point that the original PERFORM makes it exit. " 
This common exit point must be the name of a paragraph consisting solely; 
of an EXIT statement. 

Control may be passed to a sequence of statements that lies between 
the entry and exit points of a PERFORM statement by means other than a 
PERFORM. In this case, control passes through the last statement of the 
procedure to the following statement as if no PERFORM statement referred 
to these procedures. 

FORMAT 1: When Format 1 is used, the procedure(s) referred to are 
executed once, and control returns to the statement following the 
PERFORM statement. 

FORMAT 2: When Format 2 is used, the procedure(s) are performed the 
number of times specified by identifier-l or i~~§~E-l. Once the TIMES 
option is satisfied, control is transferred to the statement following 
the PERFORM statement. 

The following rules apply to the use of a Format 2 PERFORM statement: 

1. If integer-lor identifier-l is zero or a negative number at the 
time the PERFORM statement is initiated, control passes to the 
statement following the PERFORM statement. 

2. Once the PERFORM statement has been initiated, any reference to 
identifier-l has no effect in varying the number of times the 
procedures are initiated. 

FORMAT 3: When Format 3 is used, the specified procedures are performed 
until the condition specified by the UNTIL option is true. At this 
time, control is transferred to the statement following the PERFORM 
statement. If the condition is true at the time that the PERFORM 
statement is encountered, the specified procedure(s) are not executed. 

FORMAT 4: Format 4 is used to augment the value of one or more 
identifiers or index-names during the execution of a PERFORM statement. 

When executing a Format 4 PERFORM statement, the initial values of 
identifier-2 (index-name-2) and identifier-S (index-name-S) must be 
positive in order to conform with the standard~--However;-this compiler 
allows these initial values to be negative. 

In the following discussion of Format 4, every reference to 
identifier-n also refers to index-name-n except when identifier-n is the 
object of the BY option. Also, when-index-names are used, the FROM and 
BY clauses have the same effect as in a SET statement (see "Table 
Handling") • 

During execution of the PERFORM statement, reference to index-names 
or identifiers of the FROM option has no effect in altering the number 
of times the procedures are to be executed. Changing the value of 
index-names or identifiers of the VARYING option or identifiers of the 
BY option, however, will change the number of times the procedures are 
executed. 

Procedure-Branching Statements 189 

-----"""-- ------ ---------



PERFORM Statement 

When one identifier is varied, the following is the sequence of 
events: 

1. Identifier-1 is set equal to its starting value, identifier-2 or 
literal-2. 

2. If condition-1 is false, the specified procedure(s) are executed 
once. 

3. The value of identifier-1 is augmented by the specified increment 
or decrement, identifier-3 or literal-3, and condition-1 is 
evaluated again. 

4. Steps 2 and 3 are repeated, if necessary, until the condition is 
true. When the condition is true, control passes directly to the 
statement following the PERFORM statement. If the condition is 
true for the starting value of identifier-1, the procedure(s) are 
not executed, and control passes directly to the statement 
following the PERFORM statement. 

Chart 2 is a flowchart illustrating the logic of the PERFORM 
statement when one identifier is varied. 

When two identifiers are varied, the following is the sequence of 
events: 

1. Identifier-1 and identifier-4 are set to their initial values, 
identifier-2 (or literal-2) and identifier-5 (or literal-5), 
respectively. 

2. Condition-1 is evaluated: if true, control is passed to the 
statement following the PERFORM statement: if false, condition-2 is 
evaluated. 

3. If condition-2 is false, procedure-name-l through procedure-name-2 
(if specified) is executed once. 

4. Identifier-4 is augmented by identifier-6 (or literal-6), and 
condition-2 is evaluated again. 

5. If condition-2 is false, steps 3 and 4 are repeated. 

6. If condition-2 is true, identifier-4 is set to its initial value, 
identifier-5. 

7. Identifier-1 is augmented by identifier-3 (or literal-3). 

8. Steps 2 through 7 are repeated until condition-1 is true. 

At the termination of the PERFORM statement, if condition-1 was true 
when the PERFORM statement was encountered, identifier-1 and 
identifier-4 contain their initial values. Otherwise, identifier-1 has 
a value that differs from its last used setting by an increment or 
decrement, as the case may be. 

Chart 3 is a flowchart illustrating the logic of the PERFORM 
statement when two identifiers are varied. 

For three identifiers, the mechanism is the same as for two 
identifiers except that identifier-7 goes through the complete cycle 
each time that identifier-4 is augmented by identifier-6 or literal-6, 
which in turn goes through a complete cycle each time identifier-1 is 
varied. 

190 Part IV -- Procedure Division 



PERFORM Statement 

Chart 4 is a flowchart illustrating the logic of the PERFORM 
statement when three identifiers are varied. 

SEGMENTATION INFORMATION: A PERFORM statement appearing in a section 
whose priority is less than the segment limit can have within its range 
only one of the following: 

1. Sections each of which has a priority number less than 50. 

2. Sections wholly contained in a single segment whose priority number 
is greater than 49. 

However, this compiler allows the PERFORM to have within its range 
sections with any priority numbers. 

A PERFORM statement appearing in a section whose priority number is 
equal to or greater than the segment limit can have within its range 
only one of the following: 

1. sections with the same priority number as the section containing 
the PERFORM statement. 

2. Sections with a priority number less than the segment limit. 

However, this compiler allows the PERFORM to have within its range 
se~tions with any priority numbers. 

When a procedure-name in an ~naepenaent:. S~glll~Il1:' .i:::; .1.t:..Lt:.L.Lcu. I,..V ~:J ~ 
PERFORM statement contained in a segment with a different priority 
number, the segment referred to is made available in its initial state 
for each execution of the PERFORM statement. When a procedure-name in 
the fixed portion is referred to by a PERFORM statement in an 
independent segment, the independent segment is reinitialized upon exit 
from the PERFORM statement. (See "segmentation.") 

Procedure-Branching Statements 191 



PERFORM Statement 

Chart 

192 

2. Logical Flow of Option 4 PERFORM statement Varying One 
Identifier 

···.A2·· •• ••••• • EXECUTION OF • 
• PERFO~ STMT • 
• BEGINS • ............... 

1 
.····B2 ••••••• • •• 
• SET • 
• IOE~IFIER-l • 
• EQUAL TO ITS • 
• FROM VALUE • · . ................. 

1 .•. 
C2 •• .... ··.·c3 ... · ... ·· • • TEST •• TRUE. • 

-> •. CONDITION-l •• -------->. EXIT • .. .. . . .. .. . ............. . .. .. rLS

' 

·····02 ... ···.··· • • 
• EXECUTE • 
• PROCEOURE-l • 
• T'iRU • 
• PROCEOURE-2 • .. · .... T .. · .. ·· 
•• ···E2 ••• ••••••• • • 
• AUGMENT • 

---. IOENTIFIER-l • 
• WITH ITS BY • 
• VALUE • ................. 

Part IV -- Procedure Division 

c: 



--------------------------------------------------------------------------------------------------------------------------------------------------------

o 

PERFORM Statement 

Chart 3. Logical Flow of Option 4 PERFORM Statement Varying Two 
Identifiers 

•••• Al· •••• • ••• 
• EXECUTIO~ OF • 
• PER FOaM STMT • 
• BEGI~S • ............... 

V ·····el·········· · . • IDENTIFIER-l • 
• IDENTIFIER-/4 • 
'SET TO I,UTIAL • 
• "'qOM VALUE • 

~:;;:;::l········· 
• • •••• 

" , 
Cl " ,.., ····C2······.·. 

" TEST " TRUE' • *, CONOITION-l ,.-------->* EXIT • .. .. . . .. .. . ............. . .. .. r"' 
, " 

01 " .• *. 
" TEST " TRUE r->·'. CONOITION-2., ·-----------------1 .. . . .. .. es

' 

·····El·········· • • 
• EXECUTE • 
• PROCEDURE-l • 
• THIW • 
• PROCEDURE- 2 • ...... ·T .... · .. 
·····Fl·········· • • 
• AUGMENT • 

---. IOENTIFIER-/4 • 
• WITH ITS BY • 
• VALUE • ••••••••••••••••• 

1 
.····E2 •• •••••••• • SET • 
'IOENTIFIEP-/4 'l'O' 
• ITS INITIAL • 
• FROM VALUE • · . .. · .... T· ...... 
..···F2·········· • • 
• AUGI'.ENT • 
• IDENTIFIFR-l • 
• WIT'! ITS BY • 
• VALUE • ········i········ 

• ••• · . • Cl • • • •••• 

Procedure-Branching Statements 193 



PERFORM Statement 

Chart 

194 

4. Logical Flow of Option 4 PERFORM statement Varying rhree 
Identifiers 

• ••• 1\2· •••••••• 
• EXECUTION OF • 
• PERFORM STMT • 
• BEGINS • · .. · .. 1· .... · 
..... s2··· ...... . 
• IDENTIFIE~-l • 
• IDENTIFIFR-II • 
• IDENTIFIER-7 • 
• SET TO INITIAL • 
• FROM VALUES • ····· .. T······· 

.•. 
c2 •• •... .... ·.··c3 ........ . 

•• • • TEST •• TRUE. • 
• C2 .----> •. CONDITION-l •• -------->. EXIT • .. .. .. . . .... .... . ............. . .. .. 

r" .•. 
D2 •• .... .. .. 

• • •• TEST •• TRUE 
• D2 .----> •. COt«>ITION-2 •• ------------------------------------------•• •. .* .... .... 

* ••• 
fALSE 

.•. 
E2 •• 

•• +. 
•• TEST •• TRUE 

--> •• COt«>ITION-3 •• -----------------l .. .. .. . . .. .. r" 
••••• F2.. •••••••• • •••• F3 •••••••••• 
• •• SET • 
• EXECUTE. • IDENTIFIER-7 • 
• PROCEDURE-l • .'l'O ITS I,HTIAL • 
• TIJRU • • FROM VALUl. • 
• PROCEDURE-2 •• • 

.... ···1······· .. ·····1······· 
••••• G2.......... • •••• G3 •••••••••• · .. . 
• AUGMENT. • AUGMENT • 

---. IDENTIFIER-7 • • IDENTIFIER-II • 
• WITH ITS BY • • ~ITH ITS BY • 
• VALUE. • VA LUE • ................. ········1········ 

.... · . • D2 • · . .... 

·····FII •••••••••• 
• SET • 
.IDENTIFIE~-II TO. 
• ITS INITIAL • 
• FROM VALUE • · . ........ 1" ..... . 
·····GII •••••••••• · . • AUGME.NT • 
• IDENTIFIER-l • 
• WITH ITS BY • 
• VALUE • ········1········ 

. ... · . • C2 • · . .... 

Part IV -- ProcedUre Division 



STOP/EXIT Statements 

The STOP statement halts the object program either permanently or 
temporarily. 

r----------------------------------------------------------------------, 
1 Format 1 
~----------------------------------------------------------------------~ 

'\1 {RUN} :1 STOP 
1 literal 1 
, 1 L ______________________________________________________________________ J 

When the RUN option is used, the execution of the object program is 
terminated, and control is returned to the system. 

If a STOP statement with the RUN option appears in an imperat~ve 
statement, it must appear as the only or last statement in a sequence of 
imperative statements. All files should be closed before a STOP RUN 
statement is issued. 

If it is desired to pass a ret:urn cou~ "CU "Cut: upt:.La. .... .,l..U'j ... ,lw:...:. .. " • .::,:;,: ~!:::: 
invoking program, the.special register RETURN-CODE must be set prior to 

•• • --_ .... _,.. ,...,... ............ .! - - ...... ..: - - _ ... --=.&- """"'" .. h",roo.,.." 'DTr",....· ... -~ • 

59999. The normal return code for successful completion is zero; othe~ 
values returned are conventionally in multiples of four. However, the 
maximum value the field can contain is 4095. 

For the effect when STOP RUN is used in either a calling program or a 
called program, see "Subprogram Linkage." 

When the literal option is used, the literal is communicated to the 
operator. The program may be resumed only by operator intervention. 
Continuation of the object program begins with the execution of the next 
statement in sequence. 

The literal may be numeric or nonnumeric, or it may be any figurative 
constant except ALL. 

EXIT Statement 

The EXIT statement provides a common end point for a series of 
procedures. 

r----------------------------------------------------------------------, 
1 Format 1 
~----------------------------------------------------------------------~ 
1 \ 
1 paragraph-name. EXIT (~BQGRA~]. 1 
\ 1 L ______________________________________________________________________ J 

Procedure-Branching Statements 195 



EXIT Statement 

It is sometimes necessary to transfer control to the end point of a 
series of procedures. This is normally done by transferring control to 
the next paragraph or section, but in some cases this does not have the 
required effect. For instance, the point to which control is to be 
transferred may be at the end of a range of procedures governed by a 
PERFORM or at the end of a declarative section. The EXIT statement is 
provided to enable a procedure-name to be associated with such a point. 

If control reaches an EXIT paragraph and no associated PERFORM or USE 
statement is active, control passes through the EXIT point to the first 
sentence of the next paragraph. 

The EXIT statement must be preceded by a paragraph-name and be the 
only statement in the paragraph. 

The EXIT statement with the PROGRAM option is discussed in 
"Subprogram Linkage." 

196 Part IV -- Procedure Division 



MOVE Statement 

DATA-MANIPULATION STATEMENTS 

Movement and inspection of data are implicit in the functioning of 
several of the COBOL statements. These statements are: MOVE, EXAMINE, 
and TRANSFORM. 

MOVE Statement 

The MOVE statement is used to transfer data from one area of storage 
to one or more other areas. 

r----------------------------------------------------------------------, 
I Format 1 1 
~----------------------------------------------------------------------i 
I I 
1\ {identifier-1} I) 
~ TO identifier-2 [identifier-31 •• Q 

I literal. ) 
I J l ______________________________________________________________________ J 

r--- - -------
\ Format 2 I 
~----------------------------------------------------------------------~ 
I I 

\
1 {CORRESPONDING} II 

MOVE identifier-1 TO identifier-2 
\ CORR 1 
I ) L _____________________________________________________ ---______________ J 

An index data {tern cannot appear as an operand of a MOVE statement. 

FORMAT 1: identifier-1 and literal represent the sending area; 
identifier-2, identifier-3, u.q represent the receiving areas. 

The data designated by literal or identifier-1 is moved first to 
identifier-2, then to identifier-3 (if specified), etc. 

FORMAT 2: the CORRESPONDING option is used to transfer data between 
items of the same name simply by specifying the group items to which 
they belong. 

Neither identifier may be a level-66, level-77, or level-88 data 
item. 

Data items from each group are considered CORRESPONDING when they 
have the same name and qualification, up to bu~ not including 
identifier-1 and identifier-2. 

At least one of the data items of a pair of matching items must be an 
elementary data item. 

Each subordinate item containing an OCCURS, REDEFINES, USAGE IS 
INDEX, or RENAMES clause is ignored. However, either identifier may 

Data-Manipulation Statements 197 



MOVE 'statement 

have a REDEFINES or OCCURS clause in its description or may be 
subordinate to a data item described with these clauses. 

General Rules Applying to Any MOVE Statement: 

1. Any move in which the sending and receiving items are both 
elementary i~ is an elementary move. Each elementary item 
belongs to one of the following categories: numeric, alphabetic, 
alphanumeric, numeric edited, or alphanumeric edited (see "PICTURE 
Clause" in "Data Division"). Numeric literals belong to the 
category numeric; nonnumeric lit~rals belong to the category 
alphanumeric. 

2. When an alpnanumeric edited, alphanumeric, or alphabetic item is a 
receiving item: 

a. Justification and any necessary filling of unused character 
positions takes place as defined under the JUSTIFIED clause. 
Unused character positions are fLlled with spaces. 

b. If the size of the sending item LS greater than the size of the 
receiving item, the excess characters are truncated after the 
receiving item is filled. 

c. If the sending item has an operational sign, the absolute value 
is used. 

3. When a numeric or numeric edited item is a receiving item: 

ao Alignment by decimal point and any necessary zero filling of 
unused character positions takes place" except when zeros are 
replaced because of editing requirements. 

b. The absolute value of the sending item is used if the receiving 
item has no operational sign. 

c. If the sending item has more digits to the left or right of the 
decimal point than the receiving item can contain. excess 
digits are truncated. 

d. The results at object time may be unpredictable if the sending 
item contains any nonnumeric cha~acters. 

4. Any necessary conversion of data from one form of internal 
representation to another takes place during the moveg along with 
any speci£ied editing in the receiving item. 

5. Any move that is not an elementary move is treated exactly as 
though it were an alphanumeric elementary move g except that there 
is no conversion of data from one fo~ of internal representation 
to another. In such a move, the receiving area is filled without 
consideration for the individual elementary or group items 
contained within either the sending or the receiving area. 

6. When the sending and. receiving operands of a MOVE statement share a 
part of their storage (that is, when the operands overlap), the 
result of the execution of such a statement is unpredictable. 

There are certain restrictions on elementary moves. These are shown 
in Table 15. 

198 Part IV -- Procedure Division 

c 



o 

-- - - --- ------------------------

MOVE Statement 

Table 15. Permissible Moves 
--------------------------------T--T--T--T--T--T--T---T--T--T--T--T--' 

I Receiving FieldlGRIALIANIEDIBIINEIANEIIDIEFIIFISNISRI 
ISource Field I I I I I I I I I I I I I 
~-------------------------------- --+--+--+--+--+--+---+--+--+--+--+--~ 
IGroup (GR) IY IY IY IY1 1Y1 1Y1 1Y1 IY11Y11Y11Y11y11 
~---------------------------------+--+--+--+--+--+--+---+--+--+--+--+--~ 
IAlphabetic (AL) IY IY IY IN IN IN IY IN IN IN IN IN I 
~---------------------------------+--+--+--+--+--+--+---+--+--+--+--+--~ 
IAlphanumeric (AN) IY IY IY IY41Y41Y41Y IY41Y41Y41Y41Y41 
~---------------------------------+--+--+--+--+--+--+---+--+--+--+--+--~ 
IExternal Decimal (ED) ly1 1N IY2 1Y IY IY IY2 IY lY IY lY lY 1 
~---------------------------------+--+--+--+--+--+--+---+--+--+--+--+--~ 
lBinary (BI) ly1 lN IY2 1Y lY IY IY2 IY lY IY IY IY I 
~---------------------------------+--+--+--+--+--+--+---+--+--+--+--+--~ 
INumeric Edited (NE) IY IN IY IN IN IN IY [N IN IN IN IN I 
~---------------------------------+--+--+--+--+--+--+---+--+--+--+--+--~ 
IAlphanumeric Edited (ANE) IY IY IY IN IN IN IY IN IN IN IN IN'I 
~---------------------------------+--+--+--+--+--+--+---+--+--+--+--+--~ 
IZEROS (numeric or alphanu~eric) IY IN IY IY3 1y3 1Y3 1Y ly31y31y31Y31Y31 
~---------------------------------+--+--+--+--+--+--+---+--+--+--+--+--~ 
ISPACES (AL) IY IY IY IN IN IN IY IN IN IN IN IN I 
~---------------------------------+--+--+--+--+--+--+---+--+--+--+--+--~ 
I HIGH-VALUE, LOW-VALUE, QUOTES IY IN IY IN IN IN IY IN IN IN IN IN I 
~---------------------------------+--+--+--+--+--+--+---+--+--+--+--+--~ 
IALL literal IY IY IY lyslyslyslY lysIN IN IN IN I 
~---------------------------------+--+--+--+--+--+--+---+--+--+--+--+--~ 
INumeric Literal ly1 1N IY2 1Y IY IY IY2 IY IY IY IY IY I 
~---------------------------------+--+--+--+--+--+--+---+--+--+--+--+--~ 
INonnumeric Literal IY IY IY lys IY5 1Y5 1Y !ys,N ~N !N IN ! 
~---------------------------------t--t--t--t--t--t--t---t--T--T--T--T--' 
IInternal Decimal (10) ly1 1N IY 2 1Y IY IY IY2 IY IY IY IY IY I 
• --I __ ~ __ ~ __ ~ __ i __ i __ i ___ i __ i __ + __ + __ ~ __ ~ 
IExternal Floating-po1nt '~~J IX-t~ I~ IL l~ l~ lU I~ I~ 14 1- .- I 

~---------------------------------+--+--+--+--+--+--+---+--+--+--+--+--~ 
IInternal Floating-point (IF) ly1 1N IN IY IY IY IN IY IY IY IY IY I 
~---------------------------------+--+--+--+--+--+--+---+--+--+--+--+--~ 
ISterling Nonreport (SN) ly1 1N IY IY IY IY IN IY IY IY IY IY I 
~---------------------------------+--+--+--+--+--+--+---+--+--+--+--+--~ 
ISterling Report (SR) IY IN IY IN IN IN IY IN IN IN IN IN I 
~---------------------------------+--+--+--+--+--+--+---+--+--+--+--+--~ 
IFloating-point Literal ly1 1N IN IY IY IY IN IY JY IY IY IY I 
~~--------------------------------i-_~--~--~--~--~--~-__ ~ __ ~ __ ~ __ ~ __ ~ __ ~ 
11 Move without conversion (like AN to AN). I 
12 0nly if the decimal point is at the right of the least significant I 
I digit. I 
l3Numeric move. 1 
14rhe alphanumeric field is treated as an ED (integer) field. I 
ISThe literal must consist only of numeric characters and is treated asl 
I an ED integer field. I L ______________________________________________________________________ J 

Data-Manipulation Statements 199 



EXAMINE Statement 

EX~MINE Statement 

rhe EX~MINE statement is used to count the number of times a 
specified character appears in a data item and/or to replace a character 
~ith another character. 

r----------------------------------------------------------------------, 
I Format 1 I 
~----------------------------------------------------------------------~ 
I I 
I {Q~!:~!! [~gs T } I 
I EX~MINE identifier ~~!!~~~~~ ~~!! literal-l I 
I ~~~~f~~ I 
I I 
I [REPLAC!~~ ~~ literal-2] I 
I I L ______________________________________________________________________ J 

r----------------------------------------------------------------------, 
I Format 2 I 
~----------------------------------------------------------------------~ 
I I 

I {ALL l I I LEADIN3 I 
I EX~MINE identifier R~~~~~~~~ FIRsr-- literal-l I 
I Q~~f~ [fg~~ I 
I I 
I ~! literal-2 I 
I I L ______________________________________________________________________ J 

In all cases, the descripti~n of i~~llti~i~~ must be such that its 
usage is display (explicitly or implicitly). 

When igentifie~ represents a nonnumeric data item, examination starts 
at the leftmost character and proceeds to the right. Each character in 

l 
the data item is examined in turn. For purposes of the EX~MINE 
statement, external floating-point items are treated as nonnumeric data 
items. 

When identifier represents a numeric data item, this data item must 
consist of :numeric characters, and may possess an operational sign. 
Examination starts at the leftmost character and proceeds to the right. 
Each character is examined in turn. 

If the letter ·S· is used in the PICTURE of the data item description 
to indicate the presence of an operational sign, the sign is ignored by 
the EXAMINE statement. 

Each literal must consist of a single character belonging to a class 
consistent with that of the identifier; in addition, each literal may be 
any figurative constant except ALL. If identifier is numeric, each 
literal must be an unsigned integer or the figurative constant ZERO 
(ZEROES, ZEROS). 

When Format 1 is used, an integral count is created which replaces 
the value of a special re~ister called TALLY, ~hose implicit description 
is that of an unsigned integer of five digits (se~ "Language 
Considerations"). 

200 Part IV -- Procedure Division 

I 

\ 

'-. , 



( ) 
'---

o 

--------- - - -- -- - -------------

EXAMINE Statement 

1. When the ALL option is used, this count represents the number of 
occurrences of !i~~~!=!. 

2. When the LEADING option is used, this count represents the number 
of occurrences of !itg~~!=! prior to encountering a character other 
than literal-l. 

3. When the UNrIL FIRST option is used, this count represents all 
characters encountered before the first occurrence of li~~~~l=!. 

Whether Format 2 is used, or the REPLACING option of Format 1, the 
replacement rules are the same. They are as follo~s: 

1. When the ALL option is used, !ite~~!=~ is substituted for each 
occurrence of !itg~~!=!. 

2. When the LEADING option is used, the substitution of !i~~f~!=f for 
each occurrence of literal-l terminates as soon as a character 
other than literal-i-or-the-right-han~ boundary of the data item is 
encountered. 

3. When the UNrIL FIRsr option is used, the substitution of !i~~~~!=~ 
terminates as soon as !itgf~l=! or the right-han~ boundary of the 
data item is encountere~. 

4. When the FIRST option is used, the first occurrence of !itg£~!=! is 
replaced by literal-£. 

i:)E;'t::C.1..J:.1.C J!oA~L·.lJ.L"'.c. o;)'-a'-c ... c.......... .... •• OJ ....... ~ ___ __ _ __ _ ___ _ 

the associated data item and the TALLY are shown in rable 16. 

Table 16. Examples of Data Examination 
r---------------------------------------------T--------T-------T-------, 
I I I I Result-I 
I I I ling I 
I I I I Value I 
I IITEM-1 IData lof I 
I EXAMINE Statement I (Before) I (After) I rALLY I 
~---------------------------------------------+--------+-------+-------~ 
IEXAMINE ITEM-l TALLYING ALL 0 1101010 1101010 I 3 I 
~---------------------------------------------+--------+-------+-------~ 
IEXAMINE ITEM-l TALLYING ALL 1 REPLACING BY 0 1101010 1000000 I 3 I 
~---------------------------------------------+--------+-------+-------~ 
IEXAMINE ITEM-l REPLACING LEADING "." BY SPACEI**7000 I 7000 1- + I 
~---------------------------------------------+--------+-------+-------~ 
IEXAMINE IrEM-l REPLACING FIRsr "*" by "$" 1**1.94 1$*1.94 I + 1 
~---------------------------------------------~--------~-------~-------~ 1+ unchanged I L ______________________________________________________________________ J 

Data-Manipulation statements 201 



,TRANSFORM Statement 

The TRANSFORM statement is used to alter characters according to a 
transformation rule. . 

r----------------------------------------------------------------------, I Format 1 
~----------------------------------------------------------------------~ I . I 
I {figurative-constant-1} I 
I TRANSFORM identifier-3 CHARACTERS ERQ~ nonnumeric-literal-1 " 
I identifier-1 . I 
I I 
I {figUrative-constant~2} 'I 
I !Q nonnumeric-literal-2 I 
I identifier-2· I 
I I L _________ , _______________ .:... ___________________________ -.-________________ J 

IdentifieE=l must represent an elementary alphabetic, alphanumeric, 
or numeric edited item, or a group item. 

The combination of the FROM and TO options determines what the 
transformation'rule is. 

The following rules pertain to the operands of the FROM and TO 
options: 

1. Nonnumeric literals require enclosing quotation marks. 

2. Identifier-1 and identifier-2 must be elementary alphabetic, or 
alphanumeric items, or fixed length group items not over 255 
characters in length. 

3. A character may not be repeated in nonnumeric-literal-1 or in the 
area defined by identifier-+. If a character is repeated, the 
results will be unpredictable. 

4. The allowable figurative constants are: ZERO, ZEROES, ZEROS, 
SPACE, SPACES, QUOTE, QUOTES, HIGH-VALUE f HIGH-VALUES, LOW-V~LUE, 
and LOW-VALUES. 

When either 1~en~1f1g~~1 or ~ggg~~f~~~~£ appears as an operand of the 
specific transformation, the user can chan~e the transformation rule at 
object time. 

Examples of data transformation are given in Table 17; combinations 
of the FROM and TO options are shown in Table 18. 

If any of the operands of a TRANSFORM statement share a part of their 
storage (that is, if the operands overlap), the result of the execution 

'of such a statement is unpredictable. 

Table 17. Examples of Data Transformation 
r-------------------T---------------T---------------T------------------, I ~ Identifier-3 I I I Identifier-3 I 
I . (Before) I FROM I TO I (After) I 
~-----------------~-t-------~-------t---------------t------------------~ I 1b7bbABC I SPACE I QUOTE 1 lft7n~ABC I 
I Ib7bbABC I "17CB". I "QRST") I QbRbbATS \~, I 
1 Ib7bbABC I b17ABC I CBA71b I BCACC71b I 
I 1234WXY89 I 98YXW4321 I ABCDEFGHI I IBGFEDCBA I l ___________________ ~ _______________ ~ _______________ ~ __________________ J 

202 Part IV -- Procedure Division 



() 

o 

------- ------------------ --- - ---- .. _--- -

TRANSFORM Statement 

Table 18. Combinations of FROM and TO Options (Part 1 of 2) 
r---------------------T------------------------------------------------, I Operands I Transformation Rule \ 
~---------------------+------------------------------------------------~ 
FROM I All characters in the data item representen by\ 
figurative-constant-ll i~entifier-3 equal to the single character \ 
TO I figurative-constant-l are replaced by the \ 
figurative-constant-21 single character figurative-constant-2. \ 

I \ 
I \ 

FROM I All characters in the data item represented byl 
figurative-constant-l i~entifier-3 equal to the single character \ 
TO figurative~constant-l are replaced by the I 
nonnurneric-literal-2 single character nonnumeric-literal-2. \ 

FROM 
figurative-constant-l 
TO 
identifier-2 

FROM 
nonnumeric-literal-l 
TO 
figurative-constant-2 

'C'nnu 

I 
I 

All characters in the data item represented byl 
identifier-3 equal to the single character I 
figurative-constant-l.are replaced by the I 
single character represented by I 
identifier-2. I 

I 
. I 

All characters in the data item represented byl 
i~entifier-3 that are equal to any character 
in nonnumeric-literal-l are replaced by the 
single character figurative-constant-2. 

t - -----
I\1nnnn'Y1':::>r;r"'-1;+-pr~1-1 rin:'J nonnnmeric-literal-2 

must be equal in length or nonnumeric
literal-2 must be a single 

!nonnumeric-literal-l 
ITO 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

If the nonnumeric-literals are equal in 
length, any character in the data item 
represented by identifier-3 equal to a 
character in nonnumeric-literal-l is 
replaced by the character in the 
corresponding. position of 
nonnumeric-literal-2. 

If the length of nonnumeric-literal-2 is one, 
all characters in the data item represented 
by identifier-3 that ~re equal to any 
character appearing in nonnumeric-literal-l 
are replaced by the single character given 

I in nonnumeric-literal-2. ! L _____________________ ~ ________________________________________________ J 

Data-Manipulation Statements 203 



;Tab1e 18. Combinations of FROM and TO Options <Part 2 of 2) 
:r---------------------T-----------------------------------------------~,: i I Operands ' I Transformation Rule .14 
;' ~-~-------------------+-----------------------------------------------...;.~j 
'(FROM I Nonnumeric-literal-l and the data item r 
Inonnumeric-llteral-l 1 represented by identifier-2 must be equal inll 
I TO , length or identifier-2, must represent a r 

\ .. 
\ , 

l!dentifier-2 I single character item. I 
I I J 

\1 I If nonnumeric-literal-l an~ i~entifier-2 'are t 
~I I equal in length, any character represented I 
:1 I by identifier-3 equal to a character in I 
II I nonnumeric-literal-l is replaced by the I, 
:1 I character in the correspon~ing position of I 
J I the item represented by identifier-2. I 
I I I 
I I If the length of the data item represente~ by I 
I I identifier-2 is one, all characters I' 
I I represented by identifier-3 that are equal J 

\ I I to any character appearing fn nonnumeric- I 
;1 I litera1-1 are replaced by the single I 
11 I character represented by identifier-2. 1 
(I I I 
llFROM I All characters represente~ by identifier-3 I 
ilidentifier-l I that are equal to any character in the ~ata J 
flTO I item represented by identifier-l are I 
:lfigurative-constant-21 replaced by the single character I 
;1 1 figurative-constant-2. I 
f I I I 
! I I I' 
~IFROM I The data item represented by identifier-l and ,. p identifier-l I nonnumeric-literal-2 must be. of equal I 
\ITO I length or nonnumeric-literal-2 must be one I 
Hnonnumeric-literal-2 I character. I 
!il' I I 
~I I If ldentifier-l and nonnumeric-literal-2 are I 
rJ 1 equal in length, any character in I 
1"1 I identifier-3 equal to a character in I' 
II I identifier-l is replaced by the character inl 
II I the corresponding position of I 
;;1 I nonnumeric-literal-2. I' 
! I I I 
fl I If the length of nonnumeric-literal-3 is one, I 
~I -f all characters represented by identifier-3 I 
II I that are equal to any character represented I 
?'I I 'by identifier-l are replaced by the single I 
~I I character given in nonnumeric-literal-2. I 
q I I 
HFROM . I Any character in the data item represented by j' 
~J identifier-l I "identifier-3 equal to a character in the I 
f, ITO I data item represented by identifier-l is I 
! I identi~ier-2 I replaced by the character in the I· 
tl I corresponding position of the data item t: 
II' I ,represented by i~entifier-2. Identifier-l I 
II . I and identifier-2 can be one or more I 
tJ, I characters, but must be equal in length. r: i ,1. _______ -:-_____________ J. _______________________________________________ ...;.J ' 

204 Part IV -- Procedure Division 



C) 

o 

OPEN Statement 

The flo~ of data through the computer is governej by the Operating 
System. The COBOL statements jiscussed in this section are used to 
initiate the flow of data to and from files stored on external mejia and 
to govern low-volume information that is to be obtained from or sent to 
input/output devices such as a card reader or console type~riter. 

The Operating System is a record processing system. That is, the 
unit of data made available by a READ or passed along by a WRITE is the 
record. The COBOL user need be concerned only with the use of 
individual records; provision is automatically made for such operations 
as the movement of data into buffers and/or internal storage, validity 
checking, error correction (where feasible), unblocking and blocking, 
and volume switching procedures. 

Discussions in this section use the terms volume and reel. rhe term 
volume applies to all input and output devices. The term ~~el applies 
only to tape devices. rreatnent of mass storage devices in the 
sequential access mode is logically equivalent to the treatment of tape 
files. 

Note: The WRITE statement ~ith the BEFORE/AFTER ADVANCING option is 
... c~<;a .... c~ ;"u ~u i::>ULllC u~ ;"~.LC ~~i::>l.;u;:,;:,~uu;:, wil';'I.; i.L ,;:v~~vw a;:, '-.ill:: nnJ..L,C, 

BEFORE/AFTER ADVANCING statement. Similarly, the WRITE statement with 
the AFrER POSITIONING ootion is referred to in som~ discussions as the 

OPEN Statement 

The OPEN statement initiates the processing of input, output, and 
input-output files. It perforns checking and/or writing of labels and 
other input/output operations. 

r----------------------------------------------------------------------, 
I Format 1 I 
~----------------------------------------------------------------------~ 
I I 
II [REVERSED] II OPEN [INPUT {file-name l ••• ] 
I WITH !iQ g~r!~-m~ I 
I I 
I [QUTPUT {file-name [~ITH ~Q g~r!~!iQ]l ••• ] I 
I I 
I [!~Q {file-namel ••• ] I 
I I L ______________________________________________________________________ J 

Input/Output Statements 205 



OPEN Statement 

:'r-.:...-..:----------------------------------------------------..:.------... -..;..;.--"..;, 
"I Format 2 I: 
'.----------------------------------------------------------------------i I ~ I 
"I [ B~~ER~~Q ] [LE~!!~ ] I: 'I ~ (IN~ {file-name RER.,EAD 1 ••• 1 I, 
:I WITH !!Q B~~!'~Q Q.IS~ r 
'I I: 

f (Q!!TPUT {file-na:ne [WIrii NQ B~~IND] [~~~~~Q] } ... ] J; 
I DISf, I, 
I L 
I [i::,Q {file-name} ••• ] r 
I J L ______________________________________________________________________ J 

The fi!~am~ must be defined by a file description entry in the Data 
Division. 

At least one of the options INPUT, OUTPUT, or 1-0 must be specified. 
Ho~ever, there must be no more than one instance of each option in the 
same statement, although m~re than one ~!!~=~~m~ may be used with each 
option. These options may appear in any order. 

The 1-0 option pertains only to mass storage files. 

The OPEN statement must n~t specify a s~rt-file, but an OPEN 
statement must be specified for all other files. rhe OPEN statement for 
a file must be executed prior to the first READ, START, REWRITE. or 
WRITE statement for that file. A file can be opened more than once. 
Ho~ever, a second OPEN statenent for a file cannot be executed prior to 
the execution of a CLOSE statement for that file. The OPEN statement 
does not obtain or release the first data record. A READ ~r WRITE 
statement must be executed to obtain or release,' respectively, the first 
data record. 

The OPEN statement causes the user's be~inning label subroutine to be 
executed if one is specified by a USE sentence in the Declaratives 
Section. 

The REVERSED and the NO REWIND options can be used only with a 
sequential single reel file. rhis compiler allows REVERSED to be used' 

:with a sequential multiple reel file. The REVERSED option cannot be 
used for a file containin~ mode V records. If the option is specified 
for a file containing mode U records, doubleword boundary alignment of 
the logical record is obtained only if the length of the logical record 
is divisible by eight. If there is no doubleword boundary alignment for 
a record containing SYNCHRONIZED items, the record cannot be properly 
process.ed. 

Files with nonstandard labels should not be opened for reversed 
reading unless the last label is followed by a tape mark. Otherwise, 
the system reads labels as though they were data records. When the 
REVERSED option is specified, subsequent READ statements for the file 
make the data records of the file available in reversed order; that is, 
starting with the last record. 

When the REVERSED option is specified, execution of the OPEN 
statement causes the file to be positioned at the end of the file. 

When opening a file, the NO REWIND option has no effect on file 
positioning. It appears in the format for language consistency. when 
either NO REWIND or no option is specified, positioning of a file at 
OPEN time is controlled by the operating system (see the ~EQ~E~m~~E~~ 
Guide) • 

If a sequential input file is designated with the OPTIONAL clause in 
the File Control paragraph of the Environment Division. the clause is 

206 Part IV -- Procedure Division 



OPEN Statement 

treated as comments. The desired effect is achieved by specifying the 
DUMMY or NULLFILE parameter in the DD statement for the file. If the 
parameter is specified, the first READ dtatement for this file causes 
control to be passed to the imperative statement after the key words AT 
END. 

The I-a option permits the opening of a mass storage file for both 
input and output operations. since this option implies the existence of 
the file, it cannot be used if the mass storage file is being initially 
created. 

When the I-a option is used, the execution of the OPEN statement 
includes the following steps: 

1. rhe label is checked. 

2. rhe user's label subroutine, if one is specified by a USE sentence, 
is executed. 

3. The label is written. 

Format 2 may be specified only for standard sequential files. Since 
the positioning options are only applicable to tape files, they will be 
ianore1 if. at execution time. a mass storaqe device is assigned to the 
file • 

.in b'ormat ~, wnen ~ne SUDse:;{uen~ vUJ,ume J.:::i nul:. -c.u uc:: llIUUUL.t::"" vu. ","1£'" 

same device, the LEAVE, REREAD, and DISP,options define the positioning 
of volumes at end of volume in two cases: 

1. When automatic>e~,of volume occurs (automatic end of volume occurs 
when an end-of-volume condition is detected during execution of a 
READ or WRITE statement). 

2. When ex~cution of a CLOSE REEL/UNIT WITa POSITIONING statement 
causes fo~ced end of volume. 

The LEAVE option causes each volume affected to be positioned at the 
end of the file on the volume, unless the REVERSED opt~n is also 
specified. If the REVERSED option is specified, the tape is positioned 
at the beginning (i.e., the logical end) of the file on each volume 
affected. 

The REREAD option causes each volume affected to be backspaced and 
positioned at the beginning of the file on the volume, unless the 
REVERSED option is specified. If the REVERSED option is specified, ,the 
tape is repositioned at the end (i.e., the logical beginning) of the 
file-on each volume. 

If the DISP option is specified, the action taken --'such as rewind, 
unload, etc. -- is a function of the DISP parameter of the associated 
DO statement for the file. The action is the same, whether or not the 
REVERSED option is specified. 

Input/Output Statements 207 



START Statement 

rhe START statement initiates processing of a segment of a 
sequentially accessed indeKea file at a specif~ed key. Processing may 
be specified to begin at a specific NOMINAL KEY that matches a RE:ORD 
KEY within the file, or it may be specified to 'start at the beginning of: 
a specific generic class of records. Processing begins with the first 
record of the specified generic key class. 

r----------------------------------------------------------------------, 
I Format 1 I 
~----------------------------------------------------------------------~ 
I I 
I START file-name [!~~~~~Q KEY imperative-statement] I 
I I l ______________________________________________________________________ J 

r----------------------------------------------------------------------, 
I Format 2 (Version 3 and Version 4) I 
~----------------------------------------------------------------------~ 
I I 

! 2!lMIT file-name USING KEY :lata-name {!:;QU:!! ;!:Q} identifier i 
I I 
I [!~VALID KEY imperative-statement] I 
I I l ________________________________ ~ ____ - ____________________________ - ___ J 

Normally, an indexed file in the sequential access mode is processed 
sequentially from the first record until the last, or until the file is 
closed. If processing is to begin at other than the first record, or if 
processing is to continue at other than the next sequential record, then 
a START statement must be executed prior to the READ statement for the 
record desired. Processing then continues sequentially until a 
subsequent 'START or CLOSE statement is executed, or until end-af-file is 
reached. 

If processing is to begin at the first record in the file, a SrARr 
statement is not required before the first READ statement. 

File-name: The file-name must be defined by a file description entry in 
the Data Division-.-------

Format 1: When Format 1 is used, the contents of the NOMINAL KEY are 
used as the key value of the record at which processing is to begin. In 
this instance, this key value must be placed in the data-name specified 
by the NOMINAL KEY clause for this file before the START statement is 
issued. 

When the INVALID KEY option is specified, control is passed to the 
imperative-statement following INVALID KEY when the contents of the 
NOMINAL KEY field are invalid. The key is considered invalid when the 
record is.not found in the file. 

In both Format 1 and Format 2, if the INVALID KEY option is not 
specified,- an invalid key condition causes the execution of the USE 

J' AFTER STANDARD ERROR procedure, if 'specified, for the file. If neither 
is specified, abnormal termination may result. 

208 Part IV -- Procedure Division 



/ 

~) 

._-----------------------------

START Statement (Version 3 and 4) 

Program Product Information (Version 3 and Version 4) 

Format 2: When Format 2 is used, the programmer requests that 
processing begin with the first record of a specified generic key 
class. 

Data-name must be the data-name specified in the RECORD KEY clause 
for the file. 

Identifier contains the generic key value for the requestn and may 
be any data item less than or equal in length to the RECORD KEY for 
the file. Identifier may not appear in the record description for 

, this file. 

The USAGE of data-name and identifier should be DISPLAY. 

When the USING KEY option is specifiedn then before a START 
statement is issued, the user must place the desired value (the 
generic key) into identifier. When the START statement is 
executed, the contents of identifier are compared with the contents 
of the RECORD KEY data-name. The comparison is non-algebraic, from 
left to right. The length of the comparison is controlled by the 
length of identifier. Sequential processing of the file begins at 
the first record whose RECORD KEY contains a match with the 
contents of identifier ... 

Identifiers of different lengths may be specified for different 
START statements for the same file. 

For example, if the data records in a file contain a 10-character 
R~CORP ~EY ~ield, and the user wishes to process the file from the 
beginning of a generic 'class defined by the first five characters 

................................... ..................... .L.&. U.C .La","c.L. W.LOUCi:I ","v JJ~Ij.LJl p..l.UL:e::»::»J.1JIj l...l.Ulll 1:.ut;! 

beginning of another generic class d?fined by the first three 
characters within the RECORD KEY field, his next START statement 
may specify a 3-character identifier field. 

'( 

Note that upon execution of a Format 2 START statement the contents 
of the NOMINAL KEY field associated with the file remain unchanged. 

, If identifier is greater in length than data-name, then the excess 
low~order characters of identifier a~e truncated. 

In Format 2, when the INVALID KEY option is specified, control is 
, passed to the imEerative-statement foxlowing INVALID KEY when the 

contents of identifier are invalid. Identifier is considered 
invalid when the generic key class it contains is not found in the 
file .. 

Input/Output Statements 209 

-----------------, ,------------------



SEEK/READ Statements 

SEEK Statement 

The SEEK statement serves only as documentation. and is meant to 
initiate the accessing of a mass storage data record for subsequent 
reading or writing. 

r----------------------------------------------------------------------, 
I Format ~ 

~---------------------------------------------------------------------i 
I ] 
I SEEK file-name RECORD I 
I 1 L _____________________________________________________ -----------------J 

The file-name must be defined by a file description entry in the Data 
Division. 

A SEEK statement pertains only to direct files in the random access 
mode and may be executed prior to the execution of a READ or WRITE 
statement. 

The SEEK statement uses the contents of the data-name in the ACTUAL 
KEY clause for the location of the record to be accessed. If the key is 
invalid, when the next READ or WRITE statement for the associated file 
is executed, control will be passed to the imperative statement 
following the INVALID KEY option. 

However, this statement (if specified) is treated as a comment. 

READ statement 

The functions of the READ statement are: 

1. For sequential file processing, to make available the next logical 
record from an input file and give control to a specified 
imperative statement when end-of-file is detected. 

2. For random file processing, to make available a specific record 
from a mass storage file and give control to a spec~ . .t:!-~~~g~,,~XnR~~.r::,?,.1~~ e 
statement if the contents of the associated ACTUAL ii?EY:~br: 'NOM!, 
KEY data item are found to be invalid. t:~~"" •. ":;,"$IJ~~_'~~""'_"",;., 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I 1 
I READ file-name RECORD [INTO identifier] 1 
I J 

I) {AT END } ~l imperati ve-statemerlt 
) INVALID KEY } 
L ______________________________________________________________________ J 

An OPEN statement must be executed for the file prior to the 
execution of the first READ for that file. When a READ statement is 

210 Part IV -- Procedure Division 



-------- --~ ---- --- -----~ 

u 

READ Statement 

executed, the next logical rec~rd in the named file becomes accessible 
in the input area defined by the associated record description entry. 

The record remains in the input area until the next input/output 
statement for that file is executed. No reference can be made by any 
statement in the Procedure Division to information that is not actually 
present in the current record. Thus, it is not permissible to refer to 
the nth occurrence of data that appears fe~er than ~ times. If such a 
reference is made, no assumption should be made about the results in the 
object program. 

When a file consists of m~re than one type of logical record, these 
records automatically share the same storage area; this is equivalent to 
an implicit redefinition of the area. Only the information that is 
present in the current record is accessible. 

FILE~NAME: The file-name must be defined by a file description entry in 
the Data Division~------

INro IDENrI~IER~PTION: rhe INTO identifier option makes the READ 
equivalent to a READ state~ent and a MOVE statement. Identifier must be 
the name of a Working-Storage or Linkage Section entry;-or-an-output 
record of a previously opened file. When this option is used, the 
current record becomes available in the input area, as well as in the 
area specified by identifier. Data will be moved into identifier in 
accordance with the COBOL rules for the MOVE statement without the 
CORRESPONDING option. 

~!_g~OPTION; The AT END option must be specified for all files in the 
sequential access mode. If, during the execution of a READ statement, 
the logical end of the file is reached, control is passed to the 
imperative statement specified in the AT END phrase. After execution of 
the imperative statement ass~ciated with the AT END phrase, a READ 
statement for that file must not be given ~ithout prior execution ~f a 
CLOSE statement and an OPEN statement for that file. 

If a DO card for a sequential file specifies the DUMMY or NOLLFILE 
parameter, on the first READ f~r the file, control will be passed to the 
imperative statement in the AT END phrase. For purposes of language 
consistency, the OPTIONAL clause should be specified for this type of 
file. 

If, during the processing of a multivolume file in the sequential 
access mode, the end of tape reel or mass storage unit is recognized on 
a sequential READ, the follo~ing operations are carried out: 

a. The standard ending volume label procedure and the user's 
ending volume label procedure if specified by the USE 
statement. The order of execution of these two procedures is 
specified by the USE statement. Positioning of ,the volume' is: 
,performed as specified. in the', OPEN ,VOlume, pos,itio,ning opt,i~~., i 

b. A volume switch. 

c. The standard beginning volume label procedure and the user's 
beginning volume procedure if specified. The order of 
execution is again specified by the USE statement. 

d. The first data record on the ne~ volume is made available. 

Input/Output statements 211 

------------



READ Statement 

INVALID KEY OPTIO~: The INVALID KEY option must be specified for mass 
storage files in the random access mode. rhis compiler will allow the 

,user to omit this option. If the INVALID KEY option is not specified, ' 
:an invalid key condition will cause the execution of the USE AFTER 
\STANDARD ERROR procedure if specified for the file. If no error 
;processing declarative is specified for the file, the invalid key 
:condition will be ignored. 

If ACCESS IS RANDOM is specified for the file, the contents of the 
ACTUAL or NOMINAL KEY for the file must be set to the desired value 
before the execution of the READ statement. 

Only the track specified in the ACTUAL KEY is searched for the record 
being read. 

If the desired record cannot be found on the specified track, the 
search can be extended to include a specific number of tracks or to 
include the entire file, with the LIMCT parameter on the DO card. 

Control is passed to the imperative statement following INVALID KEY 
when the contents of the ACTUAL KEY or NOMINAL KEY field are invalid. 

The key is considered invalid under the following conditions: 

1. For a direct file that is accessed randomly: when the record is 
not found within the search limits, or when the track address in 
the ACTUAL KEY field is outside the limits of the file. 

2. For an indexed file that is accessed randomly: when no record 
exists whose RECORD KEY field matches the contents of the NOMINAL 
KEY field. 

3. For a relative file that is accessed randomly: when the relative 
record number in the NOMINAL KEY field is outside the limits of the 
file. 

~hen the execution of a READ statement for an indexed file causes an 
INVALID KEY condition, a RE~RITE statement should not be executed for 
the record with t~at key. 

WRIrE Statement 

The ~RITE statement releases a logical record to an output file. It 
can also be used for vertical positioning of a print file. For 
sequentially accessed mass storage files, the WRITE statement passes 
control to a specified imperative statement if no space is available in 
which to write the record. For randomly accessed mass storage files, 
the WRITE statement passes control to a specified imperative statement 
if the contents of the associated ACTUAL or NOMINAL KEY data item are 
found to be invalid. 

212 Part IV -- Procedure Division 

(--~, 

'- .'" 



C) 

WRITE Statement 

~he' WaiTE'·statement--can·-also-be-use(f~for~'pc;cket~'select10n -'-fOra~'cardl 
~a~~!~~.!_",~~,_"., .•. ___ ,,;._, _,,,,,,~,_, .". __ ~_ , ___ .. ~ __ ~.".,." _ .. ~~_, .:,'_.' '~"_"_'.' 'w. ,,~,! ......... -'_,,~ •• _ .... _ • ....:.< ~' .. ,~ .. ~" __ .... ~~_~,,J 

r----------------------------------------------------------------------, 
I Format 1 I 
~----------------------------------------------------------------------~ 
I I 
I WRITE record-name [FROM identifier-i] I 
I I 
I {BEFORE} {identifier-2 LINES} I 
I [ ADVANCING integer LINES I 
I AFTER mnemonic-name I 

! ~~I:~~p~r·~;~~:~·~:~::::::~::J i 
I I L ______________________________________________________________________ J 

, , --------------------------:-------,---::;'1 
'" , ' , ' Forma t 2 ' '.' '; J 
~~~~~~~~~~-~----~---------~--~---------------~--~-----~-----~~~-~~-~i , ' " , I 

H8m' record-name [FROM identifier-i] 'I

, , I
•. -.":~--:.~ ... "~~J

:, J

r--,
I Format 3 I
~--~
I I
I WRITE record-name [FROM identifier-i] I
I I
I INVALID KEY imperative-statement I
I I L __ J

An OPEN statement for a file must be executed prior to executing the
first WRITE statement for that file.

For files in both the sequential and random access modes, the logical
record released is no longer available after the WRITE statement is
executed.

RECORD-NAME: The record-name is the name of a logical record in the
File Section of the Data Division and must not be part of a sort-file.

FROM OPTION: When the FROM option is written, it makes the WRITE
equivalent to the statement MOVE identifier-1 TO record-name followed by
the statement WRITE record-name. Data is moved into record-name in
accordance with the COBOL rules for the MOVE statement without the
CORRESPONDING option. Identifier-1 should be defined in the
Working-Storage section, 1!-!l,e",Li~~~~,~ .. :~,~,~~~~n! or in another FD.

Input/Output Statements 213

------------ .

WRITE statement

Program Product Information (Version 4)

~~,ye'i~~o,n:': Wde'riti'fie%?~~ai: ,b~,': ~h~~~~atrie~~'6f~an ,'~~try'~Iit· > the,
kt~~C~tiQ~L.~,~~i9l).~ " ,,,~.> ' '''~,,'.,. >' '

FORMAT 1 fAiDTciOIiMAT1:z: Formats 1 ra:nd>~'2'; are used only with standard
sequential files.

The ADVANCINGmnd~iORITIONiNG'loptions allow control of the vertical
J?.$>,.~.itJRl'lillg:. of each record on the printed page. If the ADVANCING tor:
EOBIT~6NINGjoption is not used, aU~Rm~ti~~ftPvancing is provided to cause
single spacing. If the ADVANCING !,ot, POSITIONING; option is used, auto
matic advancing is overridden.

When the ADVANCING ~i~fOSITfb]ffNG~option is written for a record in a
file, every WRITE statement for_.!",~S9,Fg~.Jrt .. Jn~:L,~~Ir)e" .. (;il~ ,.Ir)u,st"also. .. , .. , ."_ . .,,
9gQ~~~U_~n~;."",<?l...-1;1~~~~e_,pJ?t-A,QA~,~_.~,IT~e POSI,TIONING:and. ADVANCING options may:
b§t2!?2.t~:(be~~~1?~£!t!~C!L~~~,.La,:".~~1~.~

I. When
h

the.ADVANCINGd~~JP6SIh-~io~IN~oPtion is used
d
, the first character

1n eac log1cal recor for t e f1le must be reserve by the user for the.
control character. The compiler will generate instructions to insert
the appro . a r;4~~,gt}!~~q)"Mi,~:Q~,~~~~~,r'''~~'''1~J~~>",Jjf~~''~ ",.,9~a.;t:p.~.tJ~F~~~Il,~tjhe
record. It'Q.a.:-~o..tt:;.:t,9E~~·;;p~nqne,~f~~~ ~Pe',;tt'.r;$.t.':;eijaX'act.erl .,is !:uSed

~1 It is the user's responsibility to see that the
appropriate channels are punched on the carriage control tape.

Format 1: In the ADVANCING option, when identifier-2 is used, it must
be the name of a nonnegative numeric elementary item (less than 100)
described as an integer. If identifier-2 is specified, the printer page
is advanced the number of lines contained in the identifier.

When integer is used in the ADVANCING option, it must be nonnegative
and less than 100. If integer is specified, the printer page is
advanced the number of lines equal to the value of integer.

When the mnemonic-name option is used in the ADVANCING option, it
must be defined as a function-name in the Special-Names paragraph of the
Environment Division. ~):t.<",i,,?~JJ§J~B~"Jqr_~a_~~:tp .~to, ""ch,annels"l:-9" ' ,,10,-12, ,and
1;.$>$ s~qP.Rr,~§~ spacing. t'It: :is: ~lso":.usedfor,; pocket' selection for a card:
~ 'uricti'>'ftle""j 11..", •• ,.,0.", , ",',,,,,,.,,, " "" ."""., , ,. " ,

l~ • ,d< "»~~".* ,, ___ •• _J

The action taken for each function-name is given in Table 19.

If the BEFORE ADVANCING option is used, the record is written before
the printer page is advanced according to the preceding rules.

If the AFTER ADVANCING option ~s used, the record is written after
the printer page is advanced according to the preceding rules.

Table 19. Action Taken for Function~names -- ADVANCING Option
r---------------T--,
I Function-name I Action Taken I
~---------------+--~
ICSP I Suppress spacing I
~---------------+--~
ICOl through C091 Skip to channell through 9, respectively I
~---------------+--~
IC10 through C121 Skip to channel 10, 11, and 12, respectively I

[~~~7:~.~;-:7-:-:S~t~~;~6;;;~::1~~f~~~ci;~;~~~=fii;:-·i'~;~~~4:;;~~~d~~~"-:~;-p;~~1 '1\"";".1 " .'/, '", ,', ; 1,' , oii' the"IBM 2540" ", ',J ~., .. , . ':' . ", " " ' I
~i·~~~~~·~~;J~IT::;;·b~::l~:~!!~..!:~::.;:·~;::.i.::..:...;~~.±_!~:;;:.;;;~_,~.::~~>::;~:;. .;....!::;:·:.:;~,~~.:;.:~~.::.~~~I~~.~~~~~~~~£;;J

214 Part IV -- Procedure Division

------------- ---- --- -

/

~)

o

WRITE Statement

Format 2: In the AFTER POSITIONING o~tion, ~g~~£~f!~~~~ must be
described as a one-character alphanumeric item, that is, with PIcrURE X.
Table 20 sho~s the valid'values that identifier-2 may assume and their
interpretations.

In Format 2, int~~~ must ,be unsignei, ani must be the value 0, 1, 2,
or 3. The values assume the meanings given in Table 21.

Table 20. Values of Iientifier-2 and Interpretations -- POSITIONING
Option

r------------T---,
I Value of I I
I I1entifier-2 I Interpretation I
~------------t------~--i '
I bCblank) I Single-spacing I
I 0 I Double-spacing I
I - I Triple-spacing I
I + I Suppress spacing I
I 1 - 9 I Skip to channel 1 - 9, respectively I
I A, B, C I Skip to channel 10, 11, 12, respectively I '
I v. w I Pocket select 1 or 2, respectively, on the IBM 1442, I
I I ani P1 or P2 on the IBM 2540. I L ____________ ~ ___ J

Table 21. Values of Integer ani Interpretations -- POSITIONING Option
~------------~---,

I .LULt::~t::.L I .L1H.t::1.p1.CI...Cl.I....LVU I

~------------+---~ I ' 0 I Skip to channel 1 of next page (carriage control I
I I "eject") I
I I I
I 1 I Single-spacing I
I I I
I 2 I Double-spacing I
I I I
I 3 I Triple-spacing I L ____________ ~ ___ J

If the AFrER POSITIONING option is usei, the recorj is written after the·
printer page is aivancei accoriing to the preceding rules.

END-OF-PA3E OPTION: rhe END-OF-PAGE coniition exists Nhen the channel
12-punch on-the-carriage control tape is sensei by an on-line printer.
The printer file ~ust be iefined as an unblocked single buffered file.
The programmer should ensure that every WRITE statement in the program
(whether using the ADVANCING or the POSIrIONING option) advances the
printer only on~ line at a time: otherwise, the channel 12 ~unch may not.
be s~nsed and results may be unpreiictable.

When an END-OF-PAGE coniition exists, the ~riting and spacing
operations are completed before the END-OF-PAGE imperative statement is

: executed. rhe END-OF-PAGE statement will be executed only for an
on-line printer.

NQ£g: DISPLAY, EXHIBIr, ~RIrE AFrER POSITIONING, and ~RIrE AFrER
ADVANCING statements all cause the printer to space Defore printing.
fio~ever, a simple WRIrE statement without 3ny option given, or a wRlrE
BEFORE ADVANCING statement both cause tne printer to space after
printing. rherefore, it is possible that mixed DISPLAY, EXHIBIT, 3nd

Input/Output Statements 215

WRITE statement

simple WRITE statements or WRITE BEFORE ADVANCING statements within the
same program may cause overprinting.

MULTIVOLUME SEQUENTIAL FILES: The discussion below applies to all
multivolume tape files and mass storage files in the sequential access
mode.

After the recognition of an end-of-volume on a multivolume OUTPUT
file in the sequential access mode, the WRITE statement performs the
following operations:

2. A volume switch.

3. The standard beginning volume label procedures and the user's
beginning volume label procedure if specified by the USE statement.
The order is specified by the USE statement.

FORMAT 3: Format 3 is used for randomly or sequentially accessed mass
storage files.

For standard sequential files opened as OUTPUT, the WRITE statement
can be specified only to create the file. For such files opened as I-O.
a READ statement must be execuued before the WRITE statement is issued;
the WRITE statement updates the record retrieved by the previous READ
statement.

~" For sequentially accessed direct files, the' WRITE statE!lqent '<:rea ," ,
:~€<?ord for an OUTPUT file. If a rec,ord with the same A~TUA~"iq:Y:'~+'X'e~~y,"'"
texl.sts, the WRITE statement replaces that record; otherwise' it',cre~tes':,a\\i
lnew, z:ecC?rd .. , ' " ", ;, ::,L~L~:~;;;;,~,,',~~:' ;:;,tz~i2~
f,h")" ,~'" ~" -i-./' ~ v, >hVy '<~""h'h'''' ~.« w"" V/(~'M" /""'''''/"'''',~Yr.;''''V''rY''/·\'~'~~'~»'''V»;~"''-';'<'!:>''''I:<~~/'''"t~'-r~.oo;>w~"", ""'r,~~~,,;,~

f For sequ~ntially' accessed, indexed or :relative "f11es,:,'the:'Wtt
Istatement creat,es a' record "for" ~n OUTPUT ,'file. ,':", ',,' "", <>,' , :";;';!;<':~,"::::;\J >'(; i
~ "N'" < , , , , ' h ~... " ~ ... , ~ </ .,;- , ""<: ".,~.,.. ,>' , ... ~x '«"~M"''''''''''''(M'''''''''W''''"",,",~H ..,~~ '_""''''~'''~'''_N"'''''''~_,:c, _$,..x~ ""~~~:M~;:,;.,.,.:,k4a

If ACCESS IS RANDOM is specified for the file, the contents of the
ACTUAL 1o'r'" NOMINAL 'iKEY field for the file must be set to the desired
value before "the 'execution of a WRITE statement. For a direct file, the
track specified in the ACTUAL KEY £ield is searched for space for the
record to be written.

r' If,' the; requir~d'''~'p~~'~ ,~~~~~t<'b;~:~found<"';c;:f?~if~:'fh~r7;;dJ~d~~~i;if~~~~t) ,
19n the specific, t.rack, the search,:can be ext,eride'ditQ:;i~ql~Qe:~~:;l$p~e~,~,~q
;number of t,t:acks, or to include,'the entire file., witif t.h'e LIMCT;,;~;?~ ::,;~:y;\:;)

;parame~er on ~~~" ;~~ ,,~ard.' 'M~k~':""~"~':.",~~"";"«~';';"~"';'~N~";,'i,~::~<",:,.~"~,,~ij':~J:h~,:f1:~:
~:~L;~s~~!s O~~I~N ~as;h~t~~~A~I~e~~~e~Pr~~fslI!~6~U#~teiE:j1I!~~1~~~'tfie f,~l~ , ",,, , , , ," " ," '" ",,,,, ''',. " g",;; " """" "p , "L'" ' "'. ;,' ,,'"

iuser to omit this option .. , If the' INVALID KEY, option "is not spe,clf1ed;;,':~;c:~
Ian invalid key condition causes the, execution of the, USE ,1{lF'XER ;,STANDAru{-:/' 1
fERROR pr?cedure if ,~p~cified for the ,file,." I'f n? ;errO~)?r9~,es~:i;~q"::(;Y::i:~:{;~~;
l~eclaratl.ve is specl.fJ..ed for the file" the :~nval~~ key '~nd,~~~p:~':<'~~',;?,~<~t~<:r;:~/;l
il. s.nored,. , "'0< ,," .,' '; ",:, l, h',:;' ",',""",:" ••• ,l:. ~:.=,:,::2,~:,. ::::;',;';,;, :::~}0\~:>:YS:;'k:;;":d;;,:.:.~~J

Control is passed to the imperative statement following INVALID KEY
where the following conditions exist:

1. For a mass storage file in the sequential access mode and opened as
OUTPUT: when no space is available Ln which to write the record.

2. For a direct file in the random access mode and opened as I-O or
OUTPUT: when a record is being added to the file, and anyone of
the following conditions occurs:

216 Part IV -- Procedure Division

('
'-..,-"

---- - - ----- ------ ------

WRITE/REWRITE Statements

a. The track number specified' in the ~CTUAL KEY field is outside
the limits of the file.

b. For files with mode F records, the figurative constant HIGH
VALUE (or its equivalent) has been moved into the first
character position of the symbolic portion of the ~CTUAL KEY
field.

3. For a direct file in the random access mode, opened as I-a, and a
record is being updated: when the record is not found, or when the
track number in the ~CTU~L KEY field is outside the limits of the
file.

4. For an indexed file in the sequential access mode, opened as
OUTPUT, and either one of the following conditions occurs:

a. The contents of the RECORD KEY field are not in ascending order
when compared with the contents of the RECORD KEY field of the
preceding record.

b. The contents of the RECORD KEY field duplicate those of the
preceding record.

5. For an indexed file in the random access mode, opened as I-O, and a
record is being added to the file: when the contents of the
NOMINAL KEY field associated with the record to be added duplicate
the contents of a RECORD KEY field already in the file.

RANDOMLY ACCESSED DIRECT FILES: For a direct file in the random access
mode that is opened 1-0, the-following considerations apply:

1. Tf D is soecified in the ASSIGN clause system-name, then:

I" ct. a n['\..LJ..L Ii:)",O""'C:::LUC1.l'- ""t;'u,;..L,-'\;;,...., "-'&,-- -- _ - t:"'--------;;, ------
l . statement was for a record with the same A:TUAL KEY.
,-_./

b. a WRITE statement adds a new record to the file, whether or not
a duplicate record exists, if the preceding READ statement was
~~ for a record with the same ACTUAL KEY.

2. If H is specified in the ASSIGN clause system-name, then:

a. a REWRITE statement searches for a record with a matching
ACTUAL KEY, and updates it.

b. a WRITE statement adds a new record to the file, whether or not
a duplicate key exists.

RE~RITE Statement

The function of the REwRITE statement is to replace a logical record
on a mass storage device ~ith a specified record, if the contents of the,
associated ACTUAL KEY or NOMINAL KEY are found to be valid.

:r-----7--~---------1 I Format I
~--i
J I
I REWRITE record-name (E~Q~ identifier] I
I I
I (!NVALlQ KEY imperative-statement] I
I J .L ______ ---___ J

j y ~, .,.. <

Input/Output Statements 211

hliwRITB/ACCEPT Statements

r
<"" , The record-:-name is the name of a logical record in the File'
:;'Of the Data 01 vi,sion ana must not be part of a sort-file.
,',

t, The READ statement for, a file must be executed before a RE~RIrE
l"statement for the 'file can' 'be executed, except for a direct ~ile
1 accessed randomly. A RE~RITE statement can be executed only for files
',opened as 1-0; any, f,ile organization is valia.

" " 5'1hen the FROM option is use:!, the REWRITE statement is equivalent to '
t,the statement'MoVE identifier ro record-name followed by the statement
~TE record-name. !~gU~!~!~~ should be defined in the Working
I,storage section, Linkage Section, or in another FD.
t,
\: ,,'>

t 'For a direct file that is accesse'd randomly, control is pass~d to theJ
imperative statement following INVALID KEY ~hen the contents of the

t ~CrOAL KEY field are invalid. The key is considered invalid when the
~'record is not found,'or the track number specifie:! in ACTUAL KEY is
i outside the li~i ts of the file.,
f
f For a relative flle that is accessed randomly, control is passed to i

I the impera~statement following INVALID ,KEY when the contents of the
NOMINAL KEY field are invalid. The key is considered invalid when the

!:relative record number in the NOMINAL KEY field is outside the limits of
I the file. .:
r ' ; , " ,

I," An INVALID KEY error will never be detected when updating a randomly
i accessed indexed file, and the results of a REWRIrE statement are
~', unpredictable. If, when randomly reading a record of an indexed file, ,
i' ;an INVALID KEY condition 'occurs, the record shoul:! not be rewritten. If',
J'the INVALIO KEY option is not specified, an invalid key condition ,will
f ,callse the execution of the USE AFTER STANDARD ERROR procedure, if ' ,.' ,
I'specified for the file. If no error proc~ssing declarative is specified~
! for' the file, the invalid key condition ..,111 be ignored. "
~ >' ., > <

~ ,

! ' 'If,ACCESS IS R~NDOM is specified for the file, the ACTUAL or 'NOMINAL
I REt must be set to the ,desired value prior to the execution of the
i 'RE~~~,TE ,'statement.
/,' ' ,

1', '
tRoce: For the relationship between the REwRITE statement and the ASSIGNi r 'clause system-name, see th.e paragraphs on Randomly Accessed Files in' ,"i

!:, ,"~r,i te ,Statement".

ACCEP'r sta~~

The function of the ACCEPT statement is to obtain data from the
system logical input device (SYSIN), or from the CONSOLE.

r--~-----,
I Format 1 I
~--i
I I

I ACCEPT identifier [FRO~ {~~~~~LE }] I
I mnemonic-name I
I I L __ J

218 Part IV -- Procedure Division

Cj

--------------- --------------- -- ---- --- ------

ACCEPT Statement

.,
'r--,: I Forma t 2 (Version 4) r
'.----------------------~---i
I I

,I ACCEPT identifier F~Q~ {~~i~} :
I !~~~ I
I I L __ ~ ___ J

w , ~ (, , " ,

FORMAT.1; Iden~ifier may be either a fixed-length group item or an
elementary alphabetic, alphanu~eric, external decimal, or external,
:floating-point item. Identifier may not be any special register except
TALLY. The data is read and the appropriate number of characters is
moved into the area reserved for identifier. No editing or error
checking of the incoming data is done.

If the input/output device specified by an ACCEPT statement is the
same one designated for a READ statement, the results may be
unpredJictable.

Mnemonic-name may assume either the meaning SYSIN or CONSOLE.
Mnemonic-name must be specified in the SPECIAL-NAMES paragraph of the
Environment Division. If mnemonic-name is associated ~ith CONSOLE,
identifier must not exceed 114 character positions in length. If the
FROM option is not specified, SYSIN is assumed.

When an ACCEPT statement with the FROM mnemonic-name for CONSOLE
=;~~=~ ~~ ~?0~ ~n~~n~~ i~ pyp~n~~d. the followina actions are taken:

1 _ '" r;~."Gtcm qenerated messaqe code is automatically displayed,

2. Execution is suspended. When a console input message, preceded by
the same message code as in point 1 above" is identified by the
control program, execution of the ACCEPT statement is resumed and
the message is moved to the specified identifier and left
justified, regardless of the PICTURE. If the field is not filled,
the lo~-order positions may contain invalid data.

If mnemonic-name is associated with SYSIN or if' the FROM, SYSIN optiPA:
•• 1,S, -sp~cified, an input record size of 80 is assumed. If the size of the
accepting data item is less than 80 characters, the data must appear as
the first set of characters within the input record; any characters
beyond the length of the accepting identifier are truncated. If the
size of the accepting data iten is greater than 80 characters, as many
input records as necessary are read until the storage area allocated to
the data item is filled. If the accepting data item is greater than 80
characters, but is not an exact multiple of 80, the remainder of the
last input record is not accessible.

Program Product Information (Y~~~~QU_~L

FORM~T 2: This format ~akes the information in the specified
speciar-Register (DATE, DAY, or TIME) available to the COBOL
program in the specified !g~tifieE.

The identifier may be either a fixed-length group item, or an
elementary alphanumeric, alphanumeric edited, numeric edited,
'external decimal, binary, internal decimal, or external
floating-point item. The data is moved from the specified special
,Register into the identifier, follo~ing the rules for the MOVE
statement without the CORRESPONDING option.

DATE has the implicit PICTURE 9(6). The sequence of data
elements (from left to right) is: 2 digits for year of century, 2

Input/Output Statements 219

DISPLAY Statement

digits for month of year, 2 digits for day of month. Thus July 1,:
1971 is expressed as 710701.

O~Y has the implicit PICTURE 9(5). The sequence of data
elements (from left to right) is: 2 digits for year of century, 3,
digits for day of year. rhus July 1, 1971 is expressed as 71183.

TIME has the implicit PICTURE 9(8). The sequence of data
elements (from left to right) is: 2 digits for hour of day, 2 .
digits for minute of h~ur, 2 digits for second of minute, 2 digits
for hundredths of second. Thus 2:41 PM is expressed as 14410000. ,

DISPL~Y-statement

The function of the DISPL~Y statement is to write data on an output
device.

r--,
I Format I
~--~
I I

I {literal-1} [literal-2] t~~~~8~~H 1: I DISPLAY ••• [UPON SYSOUT--]1
I identifier-l identifier-2 ---- mnemonic-name 1
I 1 L __ J

Mnemonic-name must be specified in the SPECIAL-NAMES paragraph of the
Environment Division. Mnemonic-name may be associated only with the
reserved words CONSOLE, SYSPUNCH, or sysour.

When the UPON option is onitted, the system logical output device
(SYSOur> is assumed.

~ maximum logical record size is assumed for each device. For
CONSOLE (the system logical console device), the maximum is 100
characters. For SYSOUT (the system logical output device), the maximum
is 120 characters. For SYSPUNCH (the system punch device), the maximum
is 72 characters, with positions 73-80 used for the PROGR~M-ID name.

If the total character count of all operands is less than the maximum
(or 72 for SYSPUNCH), the remaining character positions are padded with
blanks. If the count exceeds the maximum size, operands are continued
in the next record. As many records as necessary are written to display
all the operands specified. Those operands pending at the time of the
break are split between lines if necessary.

Identifiers described as US~GE COMPUTATIONAL, COMPUTATIONAL-1,
COMPUTATIONAL-2, or COMPUTATIONAL-3 are converted automatically to
external format, as follows:

1. Internal-decimal and binary items are converted to external
decimal. Negative signed values cause a low-order sign overpunch
to be developed.

2. Internal floating-point items are converted to external
floating-point.

220 Part IV -- Procedure Division

~-
/

- --~--- ----- -----

DISPLAY/CLOSE Statements

3. No other data items require conversion.

For example, if three internal decimal items have values of -34, +34,
and 34, they are displayed as 3M, 34, an~ 34, respectively.

If a figurative constant is specified as one of the operands, only a
single occurrence of the figurative constant is displayed.

Identifier may not be any special register except rhLLY.

When a DISPLAY statement contains more th~n one operand, the data
contained in the first operand is stored as the first set of characters,
anj so on, until the output record is filled. This operation continues
until all information is displ~yed. Data contained in an operand may
extend into subsequent records.

Note: DISPLAY, EXHIBIT, wRITE AFrER POSITIONING, anj WRITE hFrER
ADVhNCING statements all cause the printer to space before printing.
Ho~ever, a simple WRITE statement without any option given, or a wRIrE
BEFORE ADVANCING statement both cause the printer to space after
printing. Therefore, it is possible that mixed DISPLAY, EXHIBIT, and
simple WRIrE statements or WRIrE BEFORE hDVhNCING statements within the
same program may cause overprinting.

The CLOSE statement terminates the processing of input/output reels,
units, and files, with optional rewind and/or lock where applicable.

r--,
I Format 1 I
~--~
I I
II [~~§~] { ~Q R§~!~~ } II CLOS§ file-name-l [WITH
I Q~!~ ~Q~~ I
I I
II [~~§~] { ~Q g~~!~~ }]] ••• II [file-name-2 [WITH
I Q~!~ ~Q~~ I
I I L __ J

r--,
I Format 2 I
~--~
I I

I £LOSE file-name-l [WITH LOCK] I I { ~Q ~§~!~~} I

I ~!~~ I
I I
I { NO REWI NO } I I [file-name-2 [WITH ~Q£g-----]] I
I Q!~~ I
I I L __ J

Input/Output Statements 221

CIDSE Statement

r--,
I Format 3 I
~--~
I I

I CLOS~ file-name-l {B~~!!} [WITH {~§c~EW~~Q }] I
I ~~~~ ~Q2ITIONING I
I I

: [file-name-2 { B~~!! } [WITH {~~c~EWI~Q }]]... I
I ~~~~ fQ2ITIONI~~ I
I I L __ J

Each file-~me is the name of a file upon which the CLOSE statement
is to operate; it must not be the name of a sort-file.

The file-name must be defined in a file description entry in the Data
Division:-------

A file may be closed more than once, but each CLOSE statement
(without the REEL/UNIT option) must logically be preceded by an OPEN
statement for that file. A file that is opened within a run unit must
be closed within that run unit.

The REEL, DISP, WITH POSIrIONING, and WITH NO REWIND options are
applicable only to tape files. The UNIT option is applicable only to
mass storage files in sequential access mode. Since device assignments
can be specified at execution time, the words REEL and UNIT are
interchangeable. If a file is assigned to a mass storage device, the
DISP, WITH POSITIONING, and NO REWIND options will be ignored.

For purposes of showing the effect of variou~ CLOSE options as
applied to various storage media, all input/output files are divided
into the following categories:

.1. Unit record volume. A file whose input or output medium is such
that rewinding, units, and reels have no meaning.

2.

3.

Sequential single volume.
contained on one volume.
volume.

sequential multivolume.
more than one volume.

A sequential file that is entirely
There may be more than one file on this

A sequential file that may be contained on

4. Random single volume. A file in the random access mode that may be
contained on a single mass storage volume.

5. Random multivolume. A file in the random access mode that may be
contained on more than one mass storage volume.

Note: See also "File Processing Summary" in the Environment Division,
and "Appendix 0: Summary of File Processing Techniques and Applicable
Statements and Clauses."

sequential File Processin~

The results of executing each CLOSE option for each type of file are
summarized in Table 22. The definitions of the symbols in the
illustration are given below. Where the definition of the symbol
depends on whether the file is an input or output file, alternate

222 Part IV -- Procedure Division

,r-"

(
...... _/

/
~I

CLOSE Statement

definitions are given; otherwise, a ~efinition applies to files opened
as INPUT, OUTPUT, and 1-0.

A -- Previous Volumes Unaffected

All volumes in the file prior to the current volume are processed
according to standard v~lume switch procedures except those volumes
controlled by a prior CLOSE REEL/UNIT statement. The standar~ switch
procedure positions the v~lumes as specified by the volume
positioning option of the OPEN statement.

B ~- No Rewind of Current Reg~

The current volume is positioned at the logical end of the file on
the volume.

C .~ Standard close File

Files oeg~ed~s INPQ!_~~g_~~Q: If the file is positioned at its end,.
an~ label records are s~ecified, the standard ending label pr~cedure
and the user ending label procedure (if specifie~ by the USE
statement) are performed. The order of execution of these two
procedures is specified by the USE statement. Standard system
closing proce~ures are then performed.

If'the file is positioned at its end, and label records are not
specified for the file, standard system closing procedures are
performed.

If the file is positioned other than at its end, the standard system
closing procedures are ~erformed. Even if label procedures are
specified, no label processing is performed.

(An INPUT or 1-0 file is considere~ to be at its en~ if the Ar END
phrase of the READ statement has been executed, an~ no CLOSE
statement has been executed.>

Files.oe~ed_~TPUT: If label records are specified for the file,
standard ending label procedures and user ending label procedures (if
specified by the USE statement) are performed. The order of
execution of these two ~rocedures is specified by the USE statement.
Standar~ system closing procedures are then performed.

If label records are not specifie~ for the file, standard system
closing procedures are performed.

This feature has no meaning in this system and is treated as
comments.

E -- Standard File Lock

The compiler ensures that this file cannot be opened again during
this execution of the object program.

F.~- Standard Close Volume

~iles.Q~~ed~~!NPU!_~~~_~~Q: The following operations are
performed:

1. A volume switch.

2. The standard beginning volume label procedure and the user's
beginning volume fabel procedure (if specified by the USE

Input/Output statements 223

CLOSE Statement

statement). The order of execution of these two procedures is
specified by the USE statement.

3. Makes the next data record on the new volume available to be
read.

Files.opened.a~ OU~fUT: The following operations are performed:

1. The standard ending volume label procedure and the user's ending
volume label procedure (if specified by the USE statement). The
order of execution of these two procedures is specified by the
USE statement.

2. A volume switch.

3. The standard beginning volume label procedure and the user's
beginning volume label procedure (if specified by the USE
statement). The order of execution of these two procedures is
specified by the USE statement.

G -- Rewind

The current volume is positioned at its beginning.

fa· ",:,-' POSITIONING of' C'urrent Reel

I . The CU:=-:lume -:-::::ned as specified by the volume
t~, PC?s.itioning op~ion of the OPEN statement.

!J :~-< DISl?
~

t
1, ,
{
i '
[

The positioning of the current volume (such as rewind, unload, etc.)
is a function of the DISP parameter of the associated DO statement
for the file. The action is the same, whether or not the file was
,ope~~d REVERSED.

x ~~ Illegal

This is an illegal combination of a CLOSE option and a file type.
The results at object time may be unpredictable.

224 Part IV -- Procedure Division

~\
I

CLOSE Statement

Table 22. Relationship of Types of Sequential Files and the Options of
the CLOSE Statement

--------------------T------------T-----------------T------------------,
I FILEI unit I sequential I sequential I
I Type I Record I Single-Volume I Multivolume I
I CLOSE I I I I
I Option I I I I
~-------------------- ------------+-----------------+------------------~

I I
CLOSE I C I c, G C, G, A

I I
CLOSE I C, E I c, G, E C, G, E, A
WITH LOCK I I

I I
CLOSE WITH I X I c, B C, B, A
NO REWIND I I

I I
CLOSE WITH I X I c, J C, J, A
DISP I I

, I' I
CLOSE REEL I X I X F, G

I I
CLOSE REEL I X I X F, G, D
WITH LOCK I I

I I
CLOSE REEL I X I X F, B
WITH NO REWIND I I

I I
CLOSE REEL I X I X F, H

,WITH POSITIONING I I
I I

CLOSE UNIT I X I X F
I I

CLOSE UNIT I X I X F, 0
WITH LOCK I I

I I
'CLOSE UNIT I X I X F
,WITH POSITIONING 1 ,< ,I, ' , I L ____________________ ~ ____________ ~ _________________ ~_-----------------

General-Considerations: ~ file is designated as optional by specifying
the DUMMY or NULLFILE parameter on the DO card for the file. If an
optional file is not present, the standard end-of-file processing is not
performed. For purposes of language consistency, the OPTIONAL phrase of
the SELECT clause should be specified for this type of file.

If a CLOSE statement ~ithout the REEL or UNIT option has been
executed for a file, the next input/output statement to be executed for
that file must be an OPEN statement.

rhe results of executing each CLOSE option for each type of file are
summarized in Table 23. The definitions of the symbols in the figure
are given below. Where the definition depends on whether the file is an
input or output file, alternate definitions are given; otherwise, a
definition applies to files opened as INPur, OUTPur and 1-0.

!L=.::...:..Standard_Close-File

The standard ending label procedure and the user ending label
procedure (if specified by the USE statement) are performed. For 1-0
files and OUTPUT files the labels are written. Standard system
closinq procedures are then performed.

Input/Output Statements 225

----------- --- - --- ---.----

CLOSE Statement

L -- standard File Lock

rhe compiler ensures that this file cannot be opened again during
this execution of this object program.

Table 23. Relationship of Types of Random Files an~ the Options of the
CLOSE Statement

-----------------------T------------------------T---------------------, I FILE I Random I Random I
I Typel Single-Volume I Multivolume I
I CLOSE I I I
I Option I I I
~----------------------- ------------------------f---------------------~
I I I I
I CLOSE I K I K I
I I I I
I CLOSE I I I
I ~IrH LOCK I K, L I K, L I L _______________________ ~ ________________________ ~ _____________________ J

226 Part IV -- Procedure Division

'Dynamio Subprogram Linkage (versi'o~.~:,,\!:1

§Q~PROGRAM LINKAGE ST~IEMENtl§~

Subprogram linkage statements are special statements that permit
communication between object programs. These statements are CALL,
ENTRY, GOBACK, and EXIT.

A new option of the CALL statement and the addition of the
CANCEL statement permit dynamic loading and deletion of COBOL
subprograms in the COBOL processing environment.

The CALL statement, as it has previously been specified for OS
Full American National Standard COBOL, has been static. rhat is,
the main COBOL program and all subprograms invoked with the CALL
statement must have been part of the same load module. Thus, when
a subprogram was called it was already core-resident, and a branch
to it occurred. Subsequent execution of CALL statements entered
that subprogram in its last-used state. If alternate entry pOints
were specified, then any CALL to the subprogram could select any of
the alternate ENTRY points at which to enter the subprogram. If
the linking of all subprograms with the main program resulted in a
load module that required more main storage than was available,
then the user could utilize the Segmentation feature. Now, with
the implementation of the dynamic CALL and CANCEL statements, the
l;UljUL user can con1:.roJ. aynclluicCl.i.iy "Cut::: IlIUUU.1.t:::~ l..i.aCl.1.. Cl..L C i..v ~c
core-resident.

For the Version 4 Compiler, the CALL statement can also be
specified as dynamic; that is, the called subprogram is not link
edited with the main program, but is instead link edited into a
separate load module, and at execution time is loaded only if and
when it is required (that is, when it is called).

~~~~ 3=bp:o;=== i=~okc~ ~ith a ~~na~ic C~~~ ~tate~ent ~~~ b~ 
part of a different load module, which is a member of the system 
link library or of a user-supplied private library. rhe execution 
of the dynamic CALL statement to a subprogram that is not 
core-resident results in the loading of that subprogram from 
secondary storage into the region/partition containing the main 
program, and a brancn to the subprogram. 

Thus, the first dynanic CALL to a subprogram obtains a fresh 
copy of the subprogram. Subsequent calls to the same subprogram 
(either by the original caller or by any other subprogram within 
the same region/partition) result in a branch to the same copy of 
the subprogram in its last-used state. However, ~hen a CANCEL 
statement is issued for that subprogram, the core storage occupied 
by the subprogram is freed, and a subsequent CALL to the subprogram 
will function as though it were the first. A CANCEL statement 
referring to a called subprogram may be issued by a program other 
than the original caller. In order for the CALL statement to 
function as defined by CODASYL, the user subprograms must be 
linkage edited as non-reentrant and non-serially-reusable. 

The user can specify the mode (static or dynamic) of the CALL 
literal statement through ne~ parameters of the EXEC job control 
statement. Static mode is the default option. Subprograms invoked 
through the CALL ~~~~~~~~~~ statement are always dynamically loaded 
at object time. 

When the dynamic CALL statement is used at object time, the 
COBOL Library Management Facility must be used by the main program 

Subprogram Linkage Statements 227 



and all subprograms in one region/partition. Otherwise, multiple 
copies of library subroutines may be resident at one time and cause 
unpredictable results. 

User subprograms that are to be invoked at object time with the 
dynamic CALL statement Dust be members of the system link library 
or of a user-supplied private library. 

In the sections that follow, the language for both the static 
and dynamic CALL statement is described. The CANCEL statement, 
which functions only for programs that have been dyna~ically 
called, is also described. 

(Additional information on the static and dynamic CALL 
statements, and the associated EXEC job control statement 
parameters, can be found in os Full ~merican National Standard 
COBOL~Qmeil~~n~_~~Q~~~~L_Y~~~!QU=[~=~~~g~~~m~~~~=~~!~~~-or~er 
No. SC28-6456.) 

CA.LL Statement 

The CALL statement permits communication between a COBOL object 
program and one or more COBOL subprograms or other language subprograms. 

r----------------------------------------------------------------------, 
I Format 1 I 
~----------------------------------------------------------------------i 
I I 
I CALL literal-l [USING identifier-l [identifier-21 ••• 1 I 
I I L ______________________________________________________________________ J 

r----------------------------------------------------------------------, I Format 2 (Version 4) I 
~----------------------------------------------------------------------i 
I I 
I CA.LL identifier-l [Q~!~2 identifier-2 [identifier-31 ••• 1 I 
I I L ______________________________________________________________________ J 

Literal-l is a nonnumeric literal and is the name of the program that 
is being called, or the name of an entry point in the called program. 
The program in which the C~LL statement appears is the calling program. 
Literal-l must conform to the rules for formation of a program-name. 
The first eight characters of literal-l are used to make the 
correspondence between the called and calling program. 

When the called program is to be entered at the beginning of the 
Procedure Division, ~~~=~ ~ust s~ecify the program-name (in the 
PROGR~M-ID paragraph) of the called program. The called program must 
have a USING clause as part of its Procedure Division header if there is 
a USING clause in the CALL statement which invoked it. 

When the called program is to be entered at entry points other than 
the beginning ,of the Procedure Division, these alternate entry points 
are identified by an ENTRY statement and a USING option corresponding to 
the USING option of the invoking CALL statement. In the case of a CALL 
with a corresponding ENTRY, ~!~~ra!=! must be a name other than the 
program-name but follows the same rules as those for the formation of a 
program-name. 

The idgntifi~ specified in the USING option of the C~LL statement 
indicate those data items available to a calling program that may be 
referred to in a called program. When the called subprogram is a COBOL 
program, each of the operands in tne USING option of the calling program 

228 Part IV -- Procedure Division 



/ 

~/ 

f CALL'~'S t~a ternen~ ') 
~.,." '" ,,, " " ,,' k"j 

must be defined as a data item in the File Section, Working-Storage 
Section, or Linkage Section. If the called subprogram is written in a 
language other than COBOL I the operands of the USING option may 
additionally be a file-name or a procedure-name. If the operand of the 
USING option is a file-name, the file with which the file-name is 
associated must be opened in the calling program. 

Program Product Information (Version 4) 

For Version 4, each of the operands of the USING option in the 
calling program may additionally be defined as a data item in the 
Communication Section. 

Names in the two USING lists (that of the CALL in the main program 
and that of the Procedure Division header or the ENTRY in the 
subprogram) are paired in a one-to-one correspondence. In the case of 
index-names, no such correspondence is established. 

There is no necessary relationship between the actual names used for 
such paired names, but the data descriptions must be equivalentd When a 
group data item is narr.ed in the USING list of a Procedure Division 
header or an ENTRY statement, names subordinate to it in the. 
subprogram's Linkage Section may be employed in subsequent subprogram 
procedural statements. 

When group items with level numbers other than 01 are specified, 
..... --" .......... -- •. Y" ... rI_h.n""'rI"' .... " ",l;rTnTTl~n'" ;c:: TAnn;TAn it= ~l1hordinate items are 
II:" - - 1..- - - - - - -- -- - - - - - - ... -' _ 

described as COMPUTATIONAL, COMPUTATIONAL-l, or COMPUTATIONAL-2q 

The USING option should be included in the CALL statement only if 
there is a USING option in the called entry point, which is either 
included in the procedure Division header of the called program or 
included in an ENTRY statement in the called program. The number of 
operands in the USING option of the CALL statement should be the same as 
the number of operands in the USING option of the Procedure Division 
header. or ENTRY statement. If the number of operands in the USING 
option of the CALL statement is greater than the number in the USING 
option in the called program, only those specified in the USING option 
of the called program may be referred to by the called program. 

The execution of a CALL statement causes control to pass to the 
called program. The first time a called program is entered, its state 
is that of a fresh copy o.f the program. Each subsequent time a called 
program is entered, the state is as it was upon the last exit from that 
program. Thus, the reinitialization of the following items is the 
responsibility of the programmer: 

GO TO statements which have been altered 
TALLY 
Data items 
ON statements 
PERFORM statements 
EXHIBIT CHANGED statements 
EXHIBIT CHANGED NAMED statements 

EXHIBIT CHANGED and EXHIBIT CHANGED NAMED operands will be compared 
against the value of the item at the time of its last execution, whether 
or not that execution was during another CALL to this program. If a 
branch is made out of the range of a PERFOPM, after which an exit is 
made from the program, the range of that PERFORM is still in effect upon 
a subsequent entry. 

Called programs may contain CALL statements. However, a called 
program must not contain a CALL statement that directly or indirectly 
calls the calling program. 

Subprogram Linkage Statements 229 

'_._--_._--------------------- --------



~ called program may not be segmented. 

f~Qgr~m_frQ~Y£~_!rrfQrm~~iQ~_i~gr~~Q~_~~ 

For Version 4, the following ajjitional consijerations for the CALL 
statement an1 for the C~NCEL statement apply. 

FOBM~r_l: When the !!~gr~!~l option is specified, then the C~LL 
statement may be either static or dynamic. 

If the CALL literal-l statement is static, the following 
considerations apply:---

• rhe programmer may specify !!~gr~!~l as a program-name or as an 
alternate entry point, in any order. 

• rhe first time a called program is entered, its state is that 
of a fresh copy of the program. Each subsequent time the 
program is entered, the state is as it was upon the last exit 
from the program. 

• rhe CANCEL !!~gr~! statement may not be specified in this case. 
rhe CANCEL i~gg~i~i~r statement is accepted: however, the 
compiler then options the COBOL Library Management Facility. 

If the CALL !!~gr~!~l statement is dynamic, the following 
considerations apply: 

• A called program is in its initial state the first time it is 
called within a run unit, and also the first time it is called 
after a CANCEL statement for the called program has been 
executed. 

• On all other entries into the called program, the state of the 
called program remains unchanged from its state when last 
executed. 

• Differing entry points for one subprogram should not be 
specified unless an intervening C~NCEL statement has been 
executed. (See note after the Format 2 description.) 

(For example, if subprogram A has been called using its 
program-name as the entry point, then until a CANCEL statement 
for subprogram A has been executed, subsequent CALL statements 
for subprogram A should all use the program-name as the entry 
point. After a C~NCEL statement has been executed, however, 
some alternate entry ~oint for subprogram ~ may then be 
specified. rhat entry point should be the one entry point 
specified until yet another CANCEL statement has been 
executed.) 

• Names prefixed by ILBO cannot/be used as names of called 
subprograms, or as names of alternate entry points. 

FORMAr 2: rhe contents of identifier-l must conform to the rules 
for-formation of a program-name~--The-first 8 characters of 
identifier-l are used to make the correspondence between the 
calling and called progran. 

The CALL idgg~i~!~r~l statement is always dynamic. The 
following considerations apply: 

• A called program is in its initial state the first time it is 
called within a run unit, and also the first time it is called 
after a CANCEL statement for the called program has been 
executed. 

230 Part IV -- Procedure Division 



---------- --- - ----- -------

• On all other entries into the called program, the state of the 
called program remains unchanged from its state when last 
executed. 

• Differing entry points for one subprogram should not be 
specified unless an intervening C~NCEL statement has been 
executed. (See Note at the end of this description.) 

• Names prefixed by ILBO cannot be used as names of called 
subprograms, or as names of alternate entry points. 

Note: Linking two load modules together results logically in a 
single program with a primary entry point and an alternate entry 
point, each with its own name. (Each name by which a subprogram is 
to be dynamically invoked must be kno~n to the system: each such 
name must be specified in linkage editor control statements as 
either a NAME or an ~LI~S of the load module containing the 
subprogram.) Only if user modules are link edited with the 
attribute of non-reentrant and non-seria11y-reusab1e will a C~NCEL 
statement guarantee a fresh copy of the subprogram upon a 
subsequent C~LL. 

Static and dynamic C~LL statements may both be specified in the 
same program. The C~LL 1itera1-1 statement results, in this case, 
in the subprogram so invoked being link-edited with the main 
program into one load module. The CALL identifier-1 statement 
results in the dynamic invocation of a separate load module. When 
a dynamic CALL statement and a static C~LL statement to the same 
~l1hDrocrram are issued within one proaram. a second copy of the 
subprogram is loaded. rherefore, care must be used to avoid 
duplicate load modules. 

The CANCEL statement releases ehe core storage occupi~a by a 
called subprogram. 

r----------------------------------------------------------------------, 
I Format (Version 4) I 
~----------------------------------------------------------------------~ 

! CANCEL {literal-1 } [literal-2 ] i 
I ------ identifier-1 identifier-2 ••• I 
I I L ______________________________________________________________________ J 

Each literal specified in the statement must be a nonnumeric 
literal. 

The contents of each identifier specified must conform to the 
rules for formation of a-program=name. The first 8 characters of 
the identifier are used to make the correspondence between the 
calling and called program. 

Each literal or identifier specified in the C~NCEL statement 
must be the-Bame as-the-rrtera1 or identifier specified in the 
associated CALL statement(s). 

The CANCEL 1i~~! statement is invalid in a program in ~hich 
the CALL literal statement is static. Under the same conditions, 
the CANCEL ~denti~ie~ statement is accepted, but the compiler then 
options the COBOL Library Management facility. 

Subprogram Linkage Statements 231 



Subsequent to the execution of a C~NCEL statement, the program, 
referred to therein ceases to have any logical relationship to the 
program in which the CANCEL statement-appears. A subsequently 
eKecuted CALL statenent by any program in the run unit naming the 
same program will result in that program being entered in its 
initial state. 

A logical relationship to a cancelled subprogram is established 
only by execution of a subsequent CALL statement. 

A called subprogram is cancelled either by being directly 
referred to as the operand of a CANCEL statement or by the 
termination of the run unit of which the program is a member. 

No action is taken when a CANCEL statement is executed naming a 
program that has not been called in this run unit or has been 
called and is at present cancelled. Control passes to the next 
statement. 

To guarantee the proper execution of the CANCEL statement, prior 
to the execution of a CANCEL statement for a subprogram, every CALL 
statement for that subprogram should name the same entry point. 
Follo~ing the execution of a CANCEL statement, a CALL statement may 
specify a different entry point. 

Called subprograms may contain CANCEL statements. However, a 
called subprogram must not contain a CANCEL statement that directly 
or indirectly cancels the calling program itself, or any other 
program higher that itself in the calling hierarchy. In such a 
case the run unit is terminated. 

A program named in a CANCEL statement must not refer to any 
program that has been called and has not yet executed an EXIT 
PROGRAM or GOBACK statement. A program may, however, CANCEL a 
program that it did not call, providing that in the calling 
hierarchy it is higher than or equal to the program it is 
cancelling. For example, A calls B, and B calls C; when A receives 
control it can cancel C; or A calls B, and A calls C; when C 
receives control it can then cancel B. 

ENTRY statement 

The ENTRY statement establishes an entry point in a COBOL subprogram. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ I ,,- I 
I ENTRY literal-l [USIN~ identifier-l [identifier-21 ••• 1 I 
I I L ______________________________________________________________________ J 

Control is transferred to the entry point by a CALL statement in an 
invoking program. 

Literal~l must not be the name of the called program, but is formed 
according to the same rules followed for program-names. 

Literal-l must not be the name of any other entry point or 
program-name in the run unit. 

A called program, once invoked, is entered at that ENTRY statement 
whose operand literal-l is the same as the literal-l specified in the 
CALL statement that invoked it. 

232 Part IV -- Procedure Division 

,r'" 
r ' 
{ 
I 
\,' ..... __ .' ' 

c 



--- ------- --- ----------------- -- ---- -----

USING Option 

f·USING "option 
L __ M_""_HM_ e ____ • _ -

The USIN3 option makes ~ata items defined in the calling program 
available to a called progran. The number of operands in the USIN3 
option of a called program must be less than or equal to the number of 
operan~s in the corresponding CALL statement of the invoking program. 

The USING option may also be used at execution time to pass 
parameters from the EXEC statement to a main program. 

The USING option may be specified in the CALL statement, the ENrRY 
statement, or in the Procedure Division header. rhe three uses are 
sho~n in the following fornats: 

r----------------------------------------------------------------------, 
I Format 1 (Within a Calling Program) I 

~----------------------------------------------------------------------~ 
I I 
I CA~~ literal-l [~§!NG identifier-l [identifier-21 ••• 1 I 
I I L ______________________________________________________________________ J 

r----------------------------------------------------------------------, 
I Format 2 (Version 4 -- Within a Calling Program) I 
~----------------------------------------------------------------------~ 
I I 
I CALL identifier-l [Q§!~~ ijentitier-~ l1~ent1~1er-~J ••• J i 
I I L ______________________________________________________________________ J 

r----------------------------------------------------------------------, 
I Format 3 (Within a Called Program) I 
~----------------------------------------------------------------------~ 
I I 
IQe£ion 1 I 
I I 
I ENTRY literal-l [Q§!~~ identifier-l [identifier-21 ••• 1 I 
I I 
~----------------------------------------------------------------------~ 
I I 
IQetion 2 I 
I I 
I PROC~QQR~ Q!VI§!QN [Q§!~@ identifier-l [identifier-21 ••• 1. I 
I I L ______________________________________________________________________ J 

When the USING option is specified in the CALL statement, it must 
appear on either the Procedure Division header of the called program, or 
in an ENTRY statement in the called progran. 

The USING option may be present on the Procedure Division header or 
in an ENTRY statement if the object program is to function under the 
control of a CALL statement, and the CALL statement contains 3 USING 
clause. It may also be present on the Procedure Division header when 
information is to be passed fr~m the EXEC statement to the main program. 

When a called program has a USIN3 on its Procedure Division header 
and linkage was effected by a CALL statement where !~~~£~!=! is the name 
of the called program, executi~n of the called program begins with the 
first instruction in the Procedure Division after the Declaratives 
Section. 

Subprogram Linkage statements 233 



When linkage to a called program is effected by a CALL statement 
where literal-1 is the name of an entry point specified in the ENTRY 
statement of the called program, that execution of the called program 
begins with the first statement fol~owing the ENTRY statement. 

When the USING option is p~esent, the object program operates as 
though each occurrence of identifier-1, identifier-2, etc •• in the 
Procedure Division had been replaced by the corresponding identifier 
from the USING option in the CALL statement of the calling program. 
That is, corresponding identifiers refer to a single set-of data which 
is available to the calling program. The correspondence is positional 
and not by name. In the case of index-names, no such correspondence is 
established. 

At execution time, the USING option may be used to pass parameters 
from the EXEC job control statement to a main COBOL program. In this 
case, a USING option on the Procedure Division header of a main program 
may contain identifier-l as its only operand. Information from the PARM 
field of the EXEC statement is then availamle in the Linkage Section at 
the location specified as identifier-1. The first two bytes of 
identifier-1 contain a count of the number of bytes of information in 
the PARM field; the two bytes are set to zero if the PARM field was 
omitted. This two-byte field is binary and should be defined with PIC 
S9(4) COMPo Immediately following these two bytes is the information in 
the PARM field. The maximum length of the field to be passed is 100 
bytes. 

Each of the operands in the USING option of the Procedure Division 
header or the ENTRY statement must have been defined as a data item in 
the Linkage Section of the program in which this header or ENTRY 
statement occurs, and must have a level number of 01 or 77. Since the 
compiler assumes that each level-01 item is aligned upon a doubleword 
boundary, it is the programmer's responsibility to ensure proper 
alignment. 

The folQowing is an example of a calling program with the USING 
option: 

IDENTIFICATION DIVISION. 
PROGRAM-ID. CALLPROG. 

DATA DIVISION. 

WORKING-STORAGE 
01 RECORD-l. 

10 SALARY 
10 RATE 
10 HOURS 

SECTION. 

PICTURE S9(5)V99. 
PICTURE S9V99. 
PICTURE S99V9. 

PROCEDURE DIVISION. 

CALL "SUBPROG" USING RECORD-l. 

CALL "PAYMASTR" USING RECORD-l. 

STOP RUN. 

234 Part IV -- Procedure Division 



o 

The following is an example of a called subprogram associated with 
the preceding calling program: 

IDENTIFICATION DIVISION. 
PROGRAM-ID. SUBPROG. 

DATA DIVISION. 

LINKAGE SECTION. 
01 PAYREC. 

as PAY 
as HOURLY-RATE 
as HOURS 

PICTURE S9(5)V99. 
PICTURE S9V99. 
PICTURE S99V9. 

PROCEDURE DIVISION USING PAYREC. 

GOBACK. 
ENTRY "PAYMASTR" USING PAYREC. 

GOBACK. 

Processing begins in CALLPR03, which is the £!!!!n[ program. When the 
statement 

CALL "SUBPROG" USING RECORD-l. 

is executed, control is transferred to the first statement of the 
Procedure Division in SUBPROG, which is the £alle~ program. In the 
calling program, the operand of the USING option is identified as 
RECORD-l. 

When SUBPROG receives control, the values within RECORD-l are made 
available to SUBPROGi in SUBPROG, however, they are referred to as 
PAYREC. Note that the descriptions of the subfields of PAYREC 
(described in the Linkage Section of SUBPROG) are the same as those for 
RECORD-1. 

When processing within SUBPROG reaches the first GOBACK statement, 
control is returned to CALLPR03 at the statement immediately follo~ing 
the original CALL statement. Processing then continues in CALLPR03 
until the statement 

CALL "PAYMASTR" USING RECORD-1. 

is reached. Control is again transferred to SUBPROG, but this time 
processing begins at the statement following the ENTRY statement in 
SUBPR03. The values within RECORD-l are again made available to SUBPROG 
through the matching USING operand PAYREC. When processing reaches the 
second GOBACK statement, control is returned to CALLPROG at the 
statement immediately following the second CALL statement. 

In any given execution of these two programs, if the values within 
RECORD-1 are changed between the time of the first CALL and the second, 
the values passed at the time of the second CALL statement will be the 
changed, not the original, values. If the programmer wishes to use the 
original values, then he must ensure that they have been saved. 

Subprogram Linkage Statements 235 



'/ ,~<-., , 

'OSING Option (Version 4) 

The following example shows a program using Format 1 of the C~LL 
statement with the USING. option (the CALL statement is static). 

IDENTIFIC~TION DIVISION. 
PROGRAM-ID. CALLST~T. 

DATA DIVISION. 

WORKING-STORAGE SECTION. 
01 RECORD-l. 

as S~LARY 
as R~TE 
as HOURS 

PROCEDURE DIVISION. 

PICTURE S9(S)V99. 
PICTURE S9V99. 
PICTURE S99V9. 

CALL "SUBPROG" USING RECORD-l. 

CALL "PAYMASTR" USING RECORD-l. 

STOP RUN. 

The following example shows a program achieving the same results 
with Format 2 the CALL ~g~B~!~ie~~~ option (the CALL statement 
is dynamic): 

IDENTIFICATION DIVISION. 
PROGR~M-ID. CALLDYN~. 

DATA DIVISION. 

WORKING-STORAGE SECTION. 
77 IDENr PIcrURE X(S). 

01 RECORD-l. 
as SALARY 
as RATE 
as HOURS 

PICTURE S9(S)V99. 
PICTURE S9V99. 
PICTURE S99V9. 

236 Part IV -- Procedure Division 

c~ 



(j 

c) 

PROCEDURE DIVISION. 

MOVE "SUBPROG" TO IDENT. 
CALL IDENT USING RECORD-l. 

CANCEL IDENT. 

MOVE "PAYMASTR" TO IDENT. 
CALL IDENT USING RECORD-l. 

STOP RUN. 

USING Option (Version 4) 

The following is an example of a called subprogram which can be 
associated with either of the preceding calling programs: 

IDENTIFICATION DIVISION. 
PROGRAM-ID. SUBPR03. 

DATA DIVISION. 

LINKAGE SECTION. 
01 PAYREC. 

10 PAY 
10 HOURLY-RATE 
10 HOURS 

PICTURE S9(S)V99. 
PICTURE S9V99. 
PICTURE S99V9. 

PROCEDURE DIVISION USING PAYREC. 

GOBACK. 
ENTRY "PAYMASTR" USING PAYREC. 

GOBACK. 

Processing begins in the £~!!~~ program -- which may be either 
CALLSTAT or CALLDYNA. when the first CALL statement is executed, 
control is transferred to the first statement of the Procedure 
Division in SUBPROG, which is the £~!!~~ program. 

Note that in each of the calling programs the operand of the USING 
option is identified as RECORD-i. 

When SUBPROG receives control, the values within RECORD-l are 
made available to SUBPROG; in SUBPROG, however, they are referred 
to as PAYREC. Note that the PICTURE descriptions of the subfields 
within PAYREC (described in the Linkage Section of SUBPROG) are the 
same as those for RECORD-i. 

Subprogram Linkage Statements 237 

.------------------------------------------------------------------------



ogrili'"Teiii!i'tron::conifdera€!~ns; 
h ~ M'~ , ,::.. h '"' ,,,~ ... """""'* .... '::0~~h» < ',h<~ ,,~ , ,1~, ~<'" 

When processing within SUBPROG reaches the first GOBACK 
statement, control is returned to the calling program. Processing 
continues in that program until the second CALL statement is 
issued. 

Note that in CALLSTAr (statically linked) that the CANCEL 
statement is not valid. In CALLDYNA, however, since the second 
CALL statement refers to another entry point within SUBPROG, a 
CANCEL statement is issued before the second CALL statement. 

With the second CALL statement in the calling program, control 
is again transferred to subprog, but this time processing begins at 
the statement following the ENTRY statement in SUBPROG. The values 
within RECORD-1 are again made available to SUBPROG through the 
matching USING operan~ PAYREC. When processing reaches the second 
GOBACK statement, control is returned to the calling program at the 
statement immediately following the second CALL statement. 

In any given execution of these two programs, if the values 
within RECORD-1 are changed between the time of the first CALL and 
the second, the values passed at the time of the second CALL 
statement will be the changed, not the original, values. If the 
user wishes to use the original values, then he must ensure that 
they ~ave been saved. 

There are three ways in COBOL source language to terminate a program. 
They are: 

1. EXIT PROGRAM 

2. GOBACK 

3. STOP RUN 

Table 24 shows the effect of each program termination statement, 
basea on whether it is issued within a main program or a subprogram. 

A main program is the highest level COBOL program invoked in a step. 
A subprogram is a COBOL program that is invoked by another COBOL 
program. (Programs written in other languages that follow COBOL linkage 
conventions are considered COBOL programs in this sense.) 

The use of the GOBACK statement allows any COBOL program to function 
either as a main program or as a su~program. 

238 Part IV -- Procedure Division 



C) 

--- ----- - -- --- ----------------------- - -------

Table 24. Effect of Program Termination Statements ~ithin Main Programs 
and Subprograms 

r----------------T----------------------T------------------------------, 
1 Termination 1 1 1 
1 Statement 1 Main Program 1 Subprogram I 
~----------------+----------------------+------------------------------~ 

EXIT PROGRAM 

STOP RUN 

Non-operational 

Return to invoker. 
(may be system 
and cause end of 
job step) 

Return to invoking 
program. 

Return directly to 
invoker of main program. 
(may be system and cause 
end of job step). 

GOBACK Return to invoker. Return to invoking program. 
(may be system 
and cause end of 
job step) 

~----------------~----------------------~------------------------------~ I.If main program is called by a program written in another language 1 
1 that does not follow COBOL linkage conventions, return will be to 1 
1 this calling program. 1 L ______________________________________________________________________ J 

If it is desired to pass a return code to the operating system or the 
invoking program, the special register RETURN-CODE must be set by the 
user prior to the termination statement. RETURN-CODE is a binary item 
wnose lIJ.L:',J.'Ut<.J:i ~s b::J::J::J::J. ',L°[lt:: CUlUt:'.i:i.t::L .i.u.i.\;..i.Q:i..i.~CQ ~~~~~~;-~c~~ ~.::;. : 
(zero), the normal return coae for a successful completion; other values 
returned are conventionally in multiples of four. However, the maximum 
value the field can contain is 4095. 

EXIT PROGRAM Statement 

This form of the EXIT statement marks'the logical end of a called 
program. 

r----------------------------------------------------------------------, 
1 Format 1 
~----------------------------------------------------------------------~ 
I 1 
1 paragraph-name. ~XI~ ~~Q~~~~. 1 
I I L ______________________________________________________________________ J 

The EXIT statement must be preceded by a Qaragra2h=ll~. and be the 
only statement in the paragraph. 

If control reaches~an EXIT PROGRAM statement while operating unaer 
the control of a CALL statement, control returns to the point in the 
calling program immediately following the CALL statement. 

If control reaches an EXIT PROGRAM statement, ana no CALL statement 
is active, control passes through the exit point to the first sentence 
of the next paragraph. 

Subprogram Linkage Statements 239 



GOBACK Statement 

rhe GOBACK statement marks the lo~ical en1 of a called program. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I GOBAC!. I 
I I L ______________________________________________________________________ J 

A GOBACK statement must appear as the only statement, or as the last 
of a series of imperative statements, in a sentence. 

If control reaches a GOBACK statement ~hile operating under the 
control of a CALL statement, control returns to the point in the calling 
program immediately follo~in~ the CALL statement. 

If control reaches a GOBACK statement, and no CALL statement is 
active, control ~ill be returned to the invoking pro~ram, ~hich may be 
the system and cause end of job. 

STOP RUN Statement 

For a discussion of the STOP statement ~ith the RUN option, see 
wProcedure-Branchi~q Statements." 

240 Part IV -- Procedure Division 

c 



o 

ENTER/NOTE Statements 

Compiler-directing statements are special statements that provide 
instructions for the COBOL compiler. The compiler-directing statements 
are COPY, ENTER, and NOTE. 

COpy statement 

Prewritten source program entries can be included in a COBOL program 
at compile time. Thus, an installation can utilize standard file 
descriptions, record descriptions, or procedures without having to 
repeat programming them. These entries and procedures are contained in 
user-created libraries. Tney are included in a source program by means 
of a COpy statement (see "Source Program Library Facility"). 

ENrER Statement 

The ENTER statement serves only as documentation, and is intended to 
provide a means of allowing the use of more than one source language in 
~he ~ame source program. This compiler allo~s no other source lang~age 
~" ~u~ tiUUC~~ pcuyrarn. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I ENTER language-name [routine-name]. I 
I I L ______________________________________________________________________ J 

rhe ENrER statement is accepted as comments. 

NorE Statement 

The NOTE statement allo~s the programmer to write commentary ~hich 
will be produced on the source listing but not compiled. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I ~ character string I 
I I L ______________________________________________________________________ J 

Any combination of the characters from the EBCDIC set may be included 
in the character string. 

Compiler-Directing Statements 241 



NOTE Statement 

If a NOTE sentence is the first sentence of a paragraph, the entire 
paragraph is considered to be part of the £~~~~£~~~_~~~;~~. Proper 
format rules for paragraph structure must be observed. 

If a NOTE sentence appears as other than tpe first sentence of a 
paragraph, the commentary ends with the first instance of a period 
followed by a space. 

~, :': ':'Expia'natory c'omments may' be inserted on any line within a source, i"'j 
:program by placing an asterisk in column 7 of the line. Any combinationj 
,of <the characters from the' EBCDIC set may be included in Area ~ an~ Area; 
,8, of ,that line. The asterisk' and the characters will be produced on the 
,l:is,ting, but ~,erve,,,no, otber"pu,rpose. 

242 Part IV -- Procedure Division 



• SORT FEATURE 

• REPORT WRITER FEATURE 

• TABLE HANDLING FEATURE 

• SEGMENTATION FEATURE 

• SOURCE PROGRAM LIBRARY F~CILITY 

• DEBUGGING LANGUAGE 

--.- ..... - - -...- .. _---- ------ ............ __ ............. .... ,.. ...... ,..~,.,. 
,. .a: V "L·.a..t1..,L \",.vL ...... nv .... V~ ..... ,L.,U;' t.,.J\..IvJ.,,""" ........ .L'V1lo,.l&,.""~ .... ....... ...., ........ .... 

• STERLING CURRENCY FEATURg 

I • rELEPROCESSING (TP) FEATURE (Version 4) 

• STRING MANIPULATION FEATURE (Version 4) 

o 
Part V -- Special Features 243 



c 



"--./ 

c) 

Sort--Description 

SORT FEATURE 

The COBOL programmer can gain convenient access to the sorting 
capability of the OS Sort/Merge by including a SORT statement and other 
elements of the Sort Feature in his source program. The Sort Feature 
provides the capability for sorting files and including procedures for 
special handling of these files both before and after they have been 
sorted. within the limits of object-time storage, a source program may 
have any number of SORT statements, and each SORT statement may have its 
own special procedures. 

The basic elements of the COBOL Sort Feature are the SORT statement 
in the Procedure Division and the Sort-File-Description (SO) entry, with 
its associated record description entries, in the Data Division. A 
sorting operation is based on sort-keys named in the SORT statement. A 
sort-key specifies the field within a record on which the file is 
sorted. sort-keys are defined in the record description associated with 
the SD entry. The records of' a file may be sorted in ascending or 
descending order, or in a mixture of the two; that is, the sort-keys may 
be specified as ascending or descending, independent of one another, and 
the sequence of the sorted records will conform to the mixture 
specified. 

For more information on using the Sort Feature, see the Programmer's 
Guide. 

Note: Language considerations for an ASCII collated sort are given in 
Appendix E. 

ELEMENTS OF THE SORT FEATURE 

To use the Sort Feature, the COBOL programmer must provide additional 
information in the Environment, Data, and Procedure Divisions of the 
source program. 

The SORT statement in the Procedure Division is the primary element 
of a source program that performs one or more sorting operations. The 
term "sorting operation" means not only the manipulation by the So~t 
Program of sort-work-files on the basis of the sort-keys designated by 
the COBOL programmer, but it also includes the method of making records 
availa~le to, and retrieving records from, these sort-work-files. A 
sort-work-file is the collection of records that is involved in the 
sorting operation as it exists on an intermediate device(s). Records 
are made available either by the USING or INPUT PROCEDURE options of the 
SORT statement. Sorted records are retrieved either by the GIVING or 
OUTPUT PROCEDURE options of the SORT statement. 

In the Environment Division, the programmer must write SELECT 
sentences for all files used as input to and output from the sort 
program and for the sort-file. r~t:,:;~c~ee~.l.~~;:~~~~~:~~i:rre~~§~~ "' "" 

,9';', Ii ;:$ote.n~pera~i"'"Oit,,;,,:,a ~ERUN> sta~en:tent.' mus:J: ',' also;:;'be, ,>~e~Uded, 
" < , l'" ," ~,. '>/ ;~-:}~~;~"AA~k$:~&..A-.:"~""~~_'b",,,~ .. M~~''';::'~~~~h~ ........ j:~.f>;..,.j.~kJ~ 

In the Data Division, the programmer must include file description 
entries (FD) for all files that are used to provide input·to or output 
from the sort program. He must also write a Sort-File-Oescription (SO) 
entry and its associated record description entries to describe the 
records that are to be sorted, including their sort-key fields. 

In the Procedure Division, the programmer specifies in the SORT 
statement the sort-file to be sorted, the sort-key names, whether the 
sort is to be in ascending or descending sequence by key, and whether 

Sort Feature 245 



SELECT Clause 

records are to have special processing. If there is to be such 
processing, he also includes in the Procedure Division the program 

~~~~,!:.~5?n~~:L "t;"~~ t;" P~,~J5?~!!!., !:,~,e;" ,P;-2,~~s ~ ~ n~,. :":w~' s'peci'af" ',s6~r *'re'gisters,' 1f 'lise,d~, 
t~::,:;;,,:e,t,e~,~,n.,ced 'l.n <~h,e, ,~:t:0ce~~r,e D1 V1S1.0n~

There are certain statenents the programmer must use in the
Environment Division to use the Sort Feature. Detailed descriptions of
these statements follow.

INPUT-OUTPUT SECTION

The Input-Output Section is' composed of two parts: the FILE-20NTROL
paragraph and the I-O-CONrROL paragraph.

The FILE-CONTROL paragraph is specified once in a COBOL program.
within this paragraph, all files referred to in the source program must
be named in a SELECT sentence.

Files used within input and output procedures, and files named in the
USING and GIVING options of the SORr statement are named in the SELECT
sentence as described in "Environment Divisiob."

The file named in the GIVIN3 option of the SORT statement can
alternately be described in the following format:

r--,
I Format I
~--~

§.~~~CT file-name

'ASSIG~ TO [integer-1] system-name-1 [system-name-2]

OR system-name-3 [FOR ~Q!!!!'~!!~ { B.~~!!}

[g~2ERVE
{

1~. n

Q

teger-2 }

~!!!.!:

ALTERNATE [AREA]
AREAS

] .
L ___ _

The OR option is neither required nor used by this compiler and is
treated as comments.

246 Part V -- Special Features

/-- -"
I

" .

o

SELECT sort-file/RERUN Clauses

The MULTIPLE clause function is specified by object time control
cards; hence, the MULTIPLE clause is neither required nor used by this
compiler. The RESERVE cl~use is applicable as described in "Environment
Division."

SELECT Sentence for Sort File

The following format for the SELECT sentence must be used for the
sort-file.

r--,
I Format I
~--~
I I
I SELECT sort-file-name I
I I
I ASSIGN TO [integer-l] system-name-l [system-name-2] ••• I
I I L __ J

The SELECT clause may be specified for the sort-file. Sort-fi~~~
identifies the sort-file to the compiler.

The ASSIGN clause must be specified, and may be used to describe the
sort work files; the intgg~~ and ~Y~~~m=~~~~~ can serve as documentation
to describe the number and class of work units. However, since the
system obtains this information at execution time, the compiler treats
the ASSIGN clause as comments.

I-O-CONTROL Paragraph

The I-O-CONTROL paragraph specifies when checkpoints are to be taken,
as well as what core storage area is to be shared by different files.
The I-O-CONTROL paragraph is coded once in the source program. The
checkpoint interval associated with the standard RERUN format (specified
in the "Environment Division") is determined by the number of records
processed for the given file. Obtaining checkpoint records within th~
operation of a SORT statement is specified by a special format of the
RERUN statement, as described below.

RERUN Clause

The format of the ,~ERUN clause used in conjunction with the sorting
operation is:

r--, I Format I
~--------~---~
I I
I ~ ~ system-name I
I t L __ --__ J

Sort Feature 247

SAME RECORD/SORT AREA Clauses

f~~e~~~oi~~S~~~~r~! !~!S t~o~:a~~!t;~~ :R~~gi~:is~ri~~~!~~;~Jfr~~:r~l)
fthe sort program, during the execution of all SORr statements that ',' : ',::
lappear in a COBOL program. Its absence indicates that, within the, ','~
lexecution> of any SORT statement, checkpoint records are not to be taken.' i
I, , ,'; ,"I

i' §ystem-~~ must not be tne same as any system-name used in, an ASSIGN:]
iclause, but must follow tne same rules of formation. ,',J
l' " I
t' . h ; t, At the time the checkpoint procedure of the SORr statement takes " , ~
ieffect~ the status. of all open file~, whether involved in the sorting' ,;,;j
:"operatl.on or nC?t, ~s recorded. ,,,, """"

S~ME RECORD/SORT AREA Clause

The S~ME RECORD/SORT AREA clause specifies that two or more files are
to use the same storage area during processing.

r--,
I Format I
~--~
I I
I { RECORD} I I S~ME --- ~REA FOR file-name-l {file-name-2}... I
I §ORI I
I I L __ J

~hen the RECORD option is used, the named files, including any
sort-files, share only the area in which the current logical record is
processed. Several of the files may be open at the same time, but the
logical record of only one of these files can exist in the record area
at one time.

The function of the SORT option is to optimize the assignment of
storage areas to a given SORT statement. The system handles storage
assignment automatically; hence, the SORT option, if given, is treated
as comments.

In the Data Division the programmer must include file description
entries for files to be sorted, sort-file description entries for sort
work files, and record description entries for each.

FILE SECTION

The File Section of a program which contains a sorting operation must
furnish information concerning the physical structure, identification,
and record names of the records to be sorted. This is provided in the
sort-file-description entry.

248 Part V -- Special Features

------------------------------- ----------

/

~)

o

SO Entry

Sort File Description

A sort-file-description entry must appear in the File Section for
every file named as the first operand of a SORT statement.

r--,
I Format ~

~--1
SD sort-file-name

'UiECORDING MODE IS model :

[DATA
{

RECORD IS }

RECORDS ARE
data-name-l [data-name-2lv •• l

[RECORD CONTAINS [integer-l TO] integer-2 CHARACTERS]

1
~
I
1
J
J
J
)
i
J

- - - , , - J
, {RECORD IS J {,STANDARD} ;)]
t (LABEL 1;. (Version 4) I
~ - RECORDS ARE OMITTED : 1
" I J

L. ____________ ~=~=..:.:::.::=:.:.::::::::.::..:.:,:::~_:..:.:.:::;:::...::~..::.,;;.:.:~..::.:.:;::.:::::..;-..;._:;;.:;.:::.;~ ____________________ J

Sort-file-name is the name given to describe the records to be
sorted.

RECORDING MODE clause is discussed in "Data Division. It The
be F, V, or S.

The DATA RECORDS clause specifies the names of the records in the
file to be sorted. Data-name-l, data-name-2, ••• of the DATA RECORDS
clause refer to the records described in the record descriptions
associated with this SD.

The RECORD CONTAINS clause specifies the size of data records in the
file to be sorted. This clause is optional. The actual size and mode
(fixed or variable) of the records to be sorted are determined from the
level-Ol descriptions associated with a given SD entry. When the USING
and GIVING options of the SORT statement are used, the record length
associated with the SD must be the same length as the record associated
with the FD's for the USING and GIVING files. If any of the SD data
record descriptions contains an OCCURS clause with the DEPENDING ON
option. variable-length records are assumed. See "Data Division" for
the format assumptions that a~e made by the compiler when the RECORDING
MODE clause is not specified •

. Note: Extreme caution should be used when sorting variable length
records with embedded objects of the OCCURS DEPENDING ON clause. See
the section on Sorting variable Length Records in the Programmer's Guide
chapter on Using The Sort Feature.

Program Product Information (Version 4)

:~~;;·.~y~~~~on- q -Compiler accept~ the LAB~ -RECORD~ clause. ,'if ,;
~_~~P+j~:,d'i_a~~.j:M::~~~'::~:""~~d_:"~~~~~~~~':'''' ' ' "_

The DATA RECORDS, LABEL RECORDS, and RECORD CONTAINS clauses are
described in "Data Division".

Sort Feature 249

SORT Statement

rhe Procedure Division must contain a SORr statement to describe the
sorting operation an1, optionally, input and output procedures. rhe
procedure-names constituting the input an1 output procedures are
specified within the SORT statement.

rhe Procedure Division nay contain more than one SORT statement
appearing anywhere except in the declaratives portion or in the input
and output procedures associated with a SORr statement.

SORT Statement

rhe SORT statement provides information that controls the sorting
operation. This information directs the sorting operation to obtain
recor1s to be sorted either from an input procedure or the USING file,
to sort the records on a set of specifie1 sort keys, and in the final
phase of the sorting operation to make each recor1 available in sorted
order, either to an output procedure or to the GIVING file.

r--,
I Format I
~--~

~ORr file-name-l ON ---------- KEY {1ata-name-l}
{

DESCENDING }

~~£~~Q!'~§

[ON ~--------- KEY {1ata-name-2}
{

DESCENDING } ...] ...
ASCENDING

{ ~NPU~ ~~Q£~QQRE IS section-name-l [!ff~~ section-name-21}
QSIN~ file-name-2

{ QUTf~I PRQ£EDUR~ IS section-name-3 [~ff~~ section-name-41}
GIV!.~@ file-name-3

__ J

File-name-l is the name given in the sort-file-3escription entry that
describes the-records to be sorted.

~~£ENDI~§_~ng_QESCEND!~@: rhe ASCENDING an3 DESCENDIN3 options specify
whether records are to be sorte1 into an ascending or 1escending
sequence, respectively, base1 on one or more sort keys.

Each g~~~=n~mg represents a "key" data item an1 must be described in
the records associated with the sort-file-name.

At least one ASCENDING or DESCENDING clause must be specified. Both
options may be specified in the same SORr statement, in which case,
recor3s are sorte1 on ~~~~=n!m~=!, in ascending or 1escending order; and
then within data-name-l, they are sorted on the KEY data item
represented by g~ta=n~m~=~, in ascending or 1escen1ing order, etc.

Keys are always listed from left to right in order of decreasing
significance, regardless of ~hether they are ascen1ing or 1escen1ing.

250 Part V -- Special Features

-- - ---- --------

c

, ,

I "

U

'I 0
_-,

SORT State~ent

fhe direction of the sort depends on the use of the ASCENDING or
DESCENDING clauses as follo~s:

1. When an ASCENDING clause is used, the sorted sequence is from the
lo~est value of the key t~ the highest value, according to the
collating sequence for the COBOL character set.

2. When a DESCENDING clause is used, the sorted sequence is from the
highest value of the key to the lowest value, according to the
collating sequence of the COBOL character set.

Sort keys must be one of the types of data item listed in Figure 12.
Corresponding to each type of data item is a collating sequence that is
used ~ith it for sorting.

A character in the EBCDIC collating sequence (used with alphabetic,
alphanumeric, etc., data itens) is interpreted as not being signed. For
fixed-point and internal floating-point numeric data items characters
are collated algebraically (that is, as being signed).

r--------------------------------------T-------------------------------,
I Type of Data Item Used for Sort Key I Collating Sequence I

~--------------------------------------+--------~----------------------~
I Alphabetic I EBCDIC I
I Alphanumeric I EBCDIC I
I Numeric Edited I EBCDIC I
I Group I EBCDIC I
I External Decimal I Zoned Decimal I
I Binary I Fixed-point I
I Internal Decimal I Fixed-point I
I Internal Floating-point t Floa'ting-point I
I 'External Floating-point I EBCDIC I L ______________________________________ ~ _______________________________ J

Figure 12. Collating Sequence Used for Sort Keys

The EBCDIC collating sequence for COBOL characters in ascending order
is:

1. (space)
2. (period or decimal point)
3. < (less than)
4. ((left parenthesis)
5. + (plus symbol)
6. $ (currency symb~l)
7. • (asterisk)
8.) (right parenthesis)
9. (semicolon)

10. (hyphen or minus symbol)
11. I (stroke, virgule, slash)
12. , (comma)
13. > (greater than)
14. (apostrophe or single quotation mark)
15. = (equal sign)
16. n (quotation mark)

17-42. A through Z
43-52. 0 through 9

(The complete EBCDIC collating sequence is given in !~~_~~~~~~!~~~
Reference Data, Form X20-1703.)

Sort Feature 251

SORT Statement

The record description for every record that is listed in the DATA
RECORDS clause of an SO description must contain the "key" items
data-name-i, data-name-2, etc. These "key" items are subject to the
following rules:

1. Keys must be physically located in the same position and have the
same data format in every logical record of the sort-file. If
there are multiple record descriptions in an SO, it is sufficient
to describe a key in only one of the record descriptions.

2. Key items must not contain an OCCURS clause nor be subordinate to
entries that contain an OCCURS clause.

3. A maKimum of 12 keys may be specified. The total length of all the
keys must not exceed 256 bytes.

4. All keys must be at a fixed displacement from the beginning of a
record; that is, they cannot be located after a variable table in a
record.

5. All key fields must be located within the first 4092 bytes of a
logical record.

6. The data-names describing the keys may be qualified.

2~~TION-NAME=1_AN~SE~~!Q~=~~M~~~: Section-name-1 is the name of an
in~ut procedure; ~~Qu=u~m~~£ is the-name-of-the last section that
contains the input procedure in the COBOL main program. Section-name-2
is required if the procedure terminates in a section other than that in
which it is started.

INPUT PROCEDURE: The presence of the INPUT PROCEDURE option indicates
that the programmer has written an input procedure to process records
before they are sorted and has included the procedure in the Procedure
Division as one or more distinct sections.

The input procedure must consist of one or more sections that are
written consecutively and do not form a part of any output procedure.
The input procedure must include at least one RELEASE statement in order
to transfer records to the sort-file.

control must not be passed to the input procedure except when a
related SORT statement is being executed, because the RELEASE statement
in the input procedure has no meaning unless it is controlled by a SORT
statement. The input procedure can inclUde any procedures needed to
select, create, or modify records. There are three restrictions on the
procedural statements within an input procedure:

1. The input procedure must not contain any SORT statements.

2. The input procedure must not contain any transfers of control to
paints outside the in~ut procedure.' The execution of' a' C~LL'

'statement to another program that follo~s standard 'linkage
conventions, or the execution of USE declaratives for label
handling and error processing are not considered transfers of
control outside of an in~ut procedure. Hence, they are allowed to
be activated within these procedures.

',However, this compiler permits the ALrER, GO TO,: and PERFOR'M'"
statements in the input procedure to refer to procedure-names
outside the input procedure. However, it is the user's
'responsibility to ensure a return to the input procedure after
exiting through a GO TO or PERFORM statement.

3. The remainder of the Procedure Division must not contain any
transfers of control to points inside the input procedure (with the
exception of the return of control from a Declaratives section).

252 Part V -- Special Features

(
\.)

o

SORT Statement

faowoev'er,"'this compiler allowos ALTER, GO TO an~ PERFORM statements
in the remainder of the Procedure Division to refer to .

; procedure-names woithin the input procedure. If a SORr statement is 1

,active wohen the transfer of control is made, then all such
transfers are valid. If a SORT statement is not active, however,
then the user must ensure that such a transfer-of control does not
cause:

:a. A RELEASE statement to be execute~

b. ,~ontrol to reach the end of the input procedure

If an input procedure is specified, control is passed to the input
procedure when the SORT program input phase is ready to receive the
first record. The compiler inserts a return mechanism at the end of the
last section of the input procedure and ~hen control passes the last
statement in the input procedure, the records that have been released to
file-name-l are sorted. The RELEASE statement transfers records from
the Input Procedure to the input phase of the sort operation (see
"RELEASE Statement").

USING; If the USING option is specified, all the records in fi!~~u~m~~
are transferred automatically to file-name-i. At the time of execution
of the SORT statement, file-name-2 must not be open. File-na~e-2 must
be a standard sequential file. For the USING option, the compiler will
open, read, release, and close file-name-2 without the pro;rammer
specifying these functions. If the user specifies error handling and/or
label processing declaratives for file-name-2, the compiler will make
the necessary linkage to the appropriate Declaratives Section.

SEcrION-NAME-3 AND SECTION~~~~~~~: se~~iQu~~ame-3 represents the name
of an output procedure; ~g£~iQ~~~~~~ is the name of the last section
that contains the output procedure in the COBOL main program.
Section-name-4 is required if the procedure terminates in a section
other than that in which it is started.

OUTPUT PROCEDURE: The output procedure must consist of one or more
sections that are written consecutively an~ do not form a part of any
input procedure. The output procedure must include at least one RETURN
statement in order to make sorted records available for processing.

Control must not be passed to the output procedure except when a
related SORT statement is being executed, because RETURN statements in
the output procedure have no meaning unless they are controlled by a
SORT statement. The output procedure may consist of any proce~ures
neede~ to select, modify, or copy the records that are being returned
one at a time, in sorted 'order, from the sort-file. There are three
restrictions on the procedural statements ~ithin the output procedure.

1. The output procedure nust not contain any SORT statements.

2. The output procedure must not contain any transfers of control to
points outside the output procedure. The execution of a CALL

:statement to another program that follows standard linkage ,
'conventions, or the execution of USE declaratives for label
'handling or error processing are not considere~ transfers of
control outside of an output procedure. Hence, they are allo~ed to
be activated within these procedures.

However. 'this compiler permits the ALTER, GO TO, and PERFORM
{statements in the output procedure to refer to procedure-names
outside the output procedure. However, it is the user's

'responsibility to ensure a return to the output procedure after
:N eld: t~ng ,~h,rou~h, a GO TO or PERFORM statement.

3. The remainder of the Procedure Division must not contain any
transfers of control to points inside the output procedure (with

Sort Feature 253

'-----------------_. - -- ----------------------------

RELEASE Statement

the exception of the return of control from a Declaratives
Section) •

Hovever, this compiler allows ALTER, GO TO and PERFORM statements
, in the remainder of the Procedure Division to refer to
procedure-names within the output procedure. If a SORT statement
is active when the transfer of control is made, then all such

'transfers are valid. If a SORT'statement is not active, however,
; then the user must ensure that such a transfer-of control does not
, cause:

'a. A RETURN statement to be executed

b. Control to reach the end of the output procedure

If an output procedure is specified, control passes to it after
file-name-l has been placed in sequence by the SORT statement. The
compiler inserts a return mechanism at the end of the last section in
the output procedure. ~hen control passes the last statement in the
output procedure, the return mechanism provides for termination of the
SORT and then passes control to the next statement after the SORr
statement.

When all the records are sorted, control is passed to the output
procedure. The RETURN state~ent in the output procedure is a request
for the next record (see "RETURN statement").

GIVING: If the GIVING option is used, all sorted records in file-name-l
are automatically transferred to ~i~g=~~mg=~. At the time of -execution
of the SORT statement, file-nane-3 must not be open. File-name-3 must
name a standard sequential file. For the GIVING option, the compiler
viII open, return, write, and close file-name-3 without the programmer
specifying these functions. If the user specifies error handling and/or
label processing declaratives for file-name-3, the compiler will make
the necessary linkage to the appropriate Declaratives Section.

CONTROL OF INPUT OR OUTPUT PROCEDURES: rhe INPUr or OUTPUr PROCEDURE
options function in a manner-similar-to Option 1 of the PERFORM
statement; for example, naming a section in an INPUr PROCEDURE clause
causes execution of that section during the sorting operation to proceed
as though that section had been the subject of a PERFORM statement. As
with a PERFORM, the execution of the section is terminated after
execution of its last statement. rhe procedures may be terminated by
using an EXIT statement (see "EXIT Statement").

RELEASE Statement

The RELEASE statement transfers records from the input procedure to
the input phase of the sort operation.

r--,
I Format I
~--~
I I
I RELEASE sort-record-name [[gQ~ identifier] I
I I L __ J

A RELEASE statement may be used only ~ithin the range of an input
procedure associated with a SORT statement.

254 Part V -- Special Features

,/ --'\

\ ...

(,
~-'

~

(I

~

o

RETURN Statement

If the INPUT PROCEDURE option is specifie~, the RELEASE statement
must be included within the ~iven set of procedures.

Sort-record-name must be the name of a lo~ical record in the
associated-sort-frle description.

When the FROM identifier option is used, it makes the ~ELEASE
statement equivalent to the statement MOVE i~entifier TO
sort-record-name, followed by the RELEASE statement.

§QE~~E~£QE~~~~g and i~~~~ifig~ must not refer to the same storage
area. A ~OVE with the rules for group items is effected from
identifier, using the length of the record-name associated with the so
entry.

After the RELEASE statement is executed, the logical record is no
longer available. When control passes from the input procedure, the
file consists of those records that were placed in it by the execution
of the RELEASE statement.

rhe RErURN statement obtains individual records in sorted order from
the final phase of the sort program.

r--,
I Format I
~--~
I I
I RErug~ sort-file-name RECORD [~~~Q identifier] I
I I
I AT END imperative-statement I
I I L __ J

Sort~file-name is the name ~iven in the sort-file-description entry
that describes the records to be sorted.

All references to records retrieved by a RETURN statement must be in
terms of the record description(s) associated with the SO entry, unless
the INro option is specified. The retrieved record may, optionally, be
moved to the user's own area and be referenced as appropriate.

A RETURN statement may only be used within the ran~e of an output
procedure associated with a SORT statement for file-name-l.

rhe i1~~~ifier must be the name of a Horking-storage area or an
output record area. Use of the INTO option has the same effect as the
MOVE statement for alphanumeric items.

rhe ime~~~tiyg-sta~~mgn~ in the AT END phrase specifies the action to
be taken Hhen all the sorted records have been obtained from the sorting
operation. After execution of the imperative-statement in the Ar END
phrase, no RETURN statement~ may be executed within the current output
procedure.

Sort Feature 255

f~.~.'<'~:>·.:·-O/~""t~ ~':"f'N<:;""""~'::>"""n~?U~::'-~t<'t+~' ,x~ ~,,~ \

Sort--EXIT Sta temen~l$pec:t~l ,'~ ~eg,is~~rsi
I, "_i,,,*," ;,,, ,,<, ,,;~, '" *, <, '0'<*"< :,,'~ "" ,<

EXIT statement

The EXIT statement may be used as a common end point for input or
output procedures executed as with programs executed through a PERFORM
statement.

r--,
I Format 1
~--i
I 'I
I paragraph-name. EXIT. J
I 1 L __ J

When used in this manner, the EXIT statement must appear as the only
statement in the last paragraph of the input or output procedure.

,: "

~;~' > ~ ; : ~ \ ' / '~y ~ , '~ '\ ,:~ >

1~~ro9r~m 'prriduct: "ihf6rmati~n (Version 3 and Version ,4)

;~;:;;',t,~z'W~f!xi:,:th'~:'~e~sion,' '3' "~r"~e~si~n' 4 :'coinpile~' is used, in, conjunct'ion':'~it1,l';,;
gu,\< i::.hE("Pr;Qgr~,:'p,r<?ducit 'as 'Sor~/Merge (Program No. 5734-SM1) t • a f~,f:th"
>,;","',:, special!, register, ','SORT-MESSAGE, ,is' availabl,e" as ,well as 'l.mproy~d', ,,:\'
:;:,~:,<::funci~ioils'> for ;'the:. ,SORT-CORE:-SIZE "and SORT-RETURN ,special' register$";\
:~;(: :~wp.en:',:eithe~',:tJ:le ,ye~sion 3 'o~"i:.l:le Version 4 Compiler is ,used,,' in :':":':""
,K, " ,:conjunction W:Ltht,,'tl;ie Type 1 ,QS sort/Merge (Program No. '360S~S~-:,023):>~ '>'/,
,~",i"~::'the'$e ,new" feat.ures , are,' not " available/f :'and 'a warning ,message is,;' issued ;,
t:" '::by','the 'sort 'during execution (the sort 'executes properly)~':' ',:,':'" " '1"":;,,;'

1
~{~~:,~/:r:F,q~~~~' In'~orma't;o~ ':abo~t; ,tti,~'", ~b~'t : s~eci~l Regl'~t~~~:, ca'~ , ~~',:'fo~~d',: l~:~>'
!:(n> f!Q$i'~9;:the :,SORT F~ature" in, the Program prod~ct, Programmer's Guide., i:!'
{~~' ~'~ ~, h':~;" > ~ + ' ' " "'" ','" : " ~ , " ,l' , « ' , .,' '~h' ~,

i':;~'~~~' <;Th~:~'~"ii~~, " tbi'e~, :,~~~ist~~'~',~ay:, have' '~~~tr,~l' ,info~m~t~'on '~r~nsf~r1;~d ,~~~
',~,them/at:object ,'time' if ,:tne',user "specifies ,them,'as 'the receiving,>fiel'ds ,;::,
,:~p~':::st'~~,Euit~~t,s,," suc~' a~: ',MOY~~,",' Howeverf~none of 'the sort' ~peclal-;'r~~~~te~~
l'<::~n"be ,used :as, opel:ands,''in: ACCEPT. ,DISPLAY," or EXBIBIT, statement~,.:, '"Tl'l~:I'
[;;~i)'~~tma~i:On';m~$t be, p'af:;sed befor~ ,the" SORT "statement, 1,s, executed.;, "-.r~~,:/'
!:Ie~tist,ers,;are,' i'nitialized' ,to 'zero' by, the ,compiler,' but are not,'J;'ef:;et, /",'"
tl~fter':;~i' '~ort, procedv.re :'is ~~xecuted .. " Thus, if: ~ " prog,ram has multiple':"',
;'pORT,/s,tate~ents,' any' values in t~e registers ,at the ,completion {o~ ,op.e , ,;:
,;~soi:tillq operation ,,~ill bEf in, the registers at the beginning of;' another~: ,"
\:unless modified ' 't: ".;,' ':J' "" "</ ":",,,~;,,::>

~::::l::~;:"~OR~":FlLE;:':~:ZE :~~' ':the 'name' bf 'a bin~~ data item whose' ~IC~~E ",is' ,;
, ," "S9(8)'... ,It, is used for 'the' estimated number of records ,'iIi' the file :,:,:.

'/ :to ',b~': ~orted,.. ,If ?ORT~F:ILE-S~ZE, is, ,om~t;.ted,' the, ,Sort ,~~ature,~ ,':',':,::,J
assumes that the fl.le contains the maXl.mum number of records' t~at :! ':"~;;!
-'can 'be process'ed' with' the available core 'size and numberpf"work:,::'::,\',';'
units. If the 'estimate exceeds the maximum, the estimate 'will ,be"')'
ignored ','; ".'" ' ' " ; " : ," "<'

~ • ' ~~ H ,', ' h' y~' ~ "'~~~ .. ::~h.::;f~;'
, ..,. ",~ ,~':-.'~ "h ~", h ~/:, ,; '.-$. , ~""_ •• ~~,:,,.~h~

256 Part V -- Special Features

o

, ,,~ort.-:~p~cial Regi~~ei
r~'i.' SORT":CORE-SIZE is the name of a binary data item whose PICTURE is

S9(8). It is used to specify the number of bytes of storage
available to the sorting operation if it is different from the core
size that the Sort Feature WQuld normally use.

program Product Information (version 3 and Version 4)

By placing one of the following values in SORT-CORE-SI~E, .. the
programmer can take advantage of the 'tmaximum" main storage
parameter supported by the as Sort/Merge Program Product:

a. When +999999 is coded. COBOL specifies that Sort should use
all available main storage, reserving 6K bytes of main
storage for, use by the data management routines.

b. When a negative number is specifiedv COBOL uses the absolute
value of the number as the number of bytes of main storage
to be reserved for da·ta management routines and buffers.
The value is only reserved if the as s~rt/Merge Program
Product was installed with the "maximum" main storage
parameter.

f ~.. SORT-MODE-SIZE is the name of a bina~ data item whose PICTURE is
S9(5). It is used for variable-length records. If the l~ngth of
most records in the file is significantly different from the
average record length, performance is improved by sp~cifying the
most frequently occurring record lengtho If SORT-MODE-SIZE is
omitted, the average of the maximum and minimum record lengths is
assumed. For example, if records vary in length from 20 to 100
pytes, but most records are 30 bytes long, the value 30 should be
'moved to SORT-MaDE-SIZE. The maximum record length handled by the

. Sort Fe~ture is 32,000 bytes.

SORT-RETURN is the name of a binary data item whose PICTURE is
S9(4}. ,It contains a return code of 0 or 16 at the completion of a
'sorting operation'to signify the success or failure, respectively.
of the sort operation. If the sort operation terminates abnormally
and there is no reference to this special register anywhere in the
program, a message is displayed on the console. The operator then
may continue or cancel ,the job.

Program Product Information (Version 3 and version 4)

The SORT-RETURN special register can also be used to terminate
the as sort/Merge Program product sorting operationQ The
programmer can place the value 16'in this special register at

;,' any point during an Input or Output- Procedure to terminate the
Sort immediately afte~ execution of the next RELEASE or RETURN
statement.

5. SORT-MESSAGE is the name of an alphanumeric data item whose
PICTURE is X(8). If the as Sort/Merge Program Product has been
installed so that any of its messages are routed to the

. printer, then the programmer can place in SORT-MESSAGE the
.DDname which the Sort is to use in place of SYSOUT for its
messages. For example, when the statement MOVE "SORTDDNM" TO
SORT-MESSAGE is executed before the Sort is initiated, then the
Sort writes its printer messages to SORTDDNM rather than to

,SYSOUT. If SORT-MESSAGE is not modified during the program',
the default value is decided when the as sort/Merge Program
Product is installed.

Sort Feature 257

Sort--Sample Program

SAMPLE PROGRAM USING THE SORT FEATURE

Figure 13 illustrates a sort based on a sales contest. The records
to be sorted contain data on salesmen: name and address, employee
number, department number, and pre-calculated net sales for the contest
period.

The salesman with the highest net sales in each department wins a
prize. and smaller prizes are awarded for second highest sales, third
highest, etc. The order of the SORT is (1) by department" the lowest
numbered first (ASCENDING KEY DEPT); and (2) by net sales within each
department, the highest net sales first (DESCENDING KEY NET-SALES).

The records for the employees of departments 7 and 9 are eliminated
in an input procedure (SCREEN-DEPT) before sorting begins. The
remaining records are then sorted, and the output is placed on another
file for use in a later job step.

r--,
000005 IDENTIFICATION DIVISION. J
000010 PROGRAM-ID. CONTEST. J
000015 ENVIRONMENT DIVISION. ~
000016 CONFIGURATION SECTION. I
000017 SOURCE-COMPUTER. IBM-360-H50. I
000018 OBJECT-COMPUTER. IBM-360-H50. I
000019 SPECIAL-NAMES. SYSOUT IS PRINTER. I
000020 INPUT-OUTPUT SECTION,. J
000025 FILE-CONTROL. I
000030 SELECT NET-FILE-IN ASSIGN TO UT-2400-S-INFILE. I
000035 SELECT NET-FILE-OUT ASSIGN TO UT-2400-S-S0RTOU~. I
000040 SELECT NET-FILE ASSIGN TO UT-240P-S-NETFILE. I
000050 DATA DIVISION,. J
000055 FILE SECTION. J
000060 SD NET-FILE I
000065 DATA RECORD IS SALES-RECORD. I
000070 01 SALES-RECORD. I
000075 05 EMPL-NO PICTURE 9(6). I
000080 05 DEPT PICTURE 9(2). J

000085 05 NET-SALES PICTURE 9(7)V99. J
000090 05 NAME-ADDR PICTURE X(SS). J
000095 FD NET-FILE-IN J
00096 LABEL RECORDS ARE OMITTED ,
000100 DATA RECORD IS NET-CARD-IN. I
000105 01 NET-CARD-IN. J
000110 05 EMPL-NO-IN PICTURE 9(6)~ J
000115 05 DEPT-IN PICTURE 9(2)0 I
000120 05 NET-SALES-IN PICTURE 9(7)V99. I
000125 05 NAME-ADDR-IN PICTURE X(55). J
000130 FD NET-FILE-OUT I
000131 LABEL RECORDS ARE OMITTED J
000135 DATA RECORD IS NET-CARD-OUT. I
000140 01 NET-CARD-OUT. J
000145 05 EMPL-NO-OUT PICTURE 9(6).]
000150 05 DEPT-OUT PICTURE 9(2). I
000155 05 NET-SALES-OUT PICTURE 9(7lV99. I
000160 05 NAME-ADDR-OUT PICTURE X(SS). J L-__ ~----________________ J

Figure 13. sample Program Using the Sort Feature (Part 1 of 2)

258 Part V -- Special Features

c

o

Sort -- Sample Progra~

r--,
000165 PROCEDURE DIVISION.
000170 ELIM-DEPT-7-9-NO-PRINTOUT.
000175 SORT NET-FILE
000180 ASCENDING KEY DEPT
000185 DESCENDING KEY NET-SALES
000190 INPUT PROCEDURE SCREEN-DEPT
000195 GIVING NEr-FILE-OUT.
000200 CHECK-RESULTS SECTION.
000205 C-R-1.
000210 OPEN INPUT NET-FILE-OUT.
000215 C-R-2.
000220 READ NET-FILE-OUr ~r END GO TO C-R-FINAL.
000225 DISPLAY EMPL-NO-OUr DEPr-OUT NET-SALES-OOT
000230 NAME-ADDR-our OPON PRINTER.
000235 C-R-3.
000240 GO TO C-R-2.
000245 C-R-FINAL.
000250 CLOSE NET-FILE-OOT.
000255 STOP RUN.
000260 SCREEN-DEPT SECrION.
000265 5-0-1.
000270 OPEN INPUT NEF-FILE-IN.
000275 5-0-2.
000280 READ NET-FILE-IN Ar END GO TO S-D-FIN~L.
000285 DISPLAY EMPL-NO-IN DEPT-IN NET-SALES-IN
000290 NAME-ADDR-IN OPON PRINTER.
000295 S-D-3.
000300 IF DEPT-IN = 7 OR 9 GO TO S-D-2
000305 ELSE
000310 MOVE NET-CARD-IN TO SALES-RECORD
000315 RELEASE SALES-RECORD
000320 GO TO S-D-2.
000325 S-D-FINAL.
000330 CLOSE NET-FILE-IN.
000335 S-D-END.
000340 EXIT. L ___ _

Figure 13. Sample Program Using the Sort Feature (Part 2 of 2)

Sort Feature 259

Report Writer -- Description

REPORT WRITER FEATURE

The Report Writer Feature permits the programmer to specify the
format of a printed report in the Data Division, thereby minimizing the
amount of Procedure Division coding he ~ould have to ~rite to create the
report.

~ printed report consists of the information reported and the format
in ~hich it is printed. Several reports can be pro~uced by one program.

In the Data Division, the programmer gives the name(s) and describes
the format(s) of the report(s) he wishes produced. In the Procedure
Division, he writes the statements that produce the report(s).

~t program execution time, the report in the format defined is
produced -- data to be accumulated is summed, totals are produced,
counters are stepped and reset, and each line and each page is printed.
Thus, the programmer need not concern himself with the details of these
operations.

In the Data Division, the programmer must write an FD entry that
names the output file upon which the report is to be ~ritten, and must
also name the report itself. ~ report may be written on two files at
the same time.

~t the end of the Data Division, he must add a Report section to
define the format of each report named. In the Report Section, there
are two types of entries:

1. The g~EQr~~~££~Qti~~_~~~£y (RD) ~hich describes the physical
aspects of the report format.

2. The r~Qrt~£Q~_ges2r~Q~iQg_~g~£!~~ ~hich describe the data items
within the report and their relation to the report format.

In the report description entry, the programmer specifies the maximum
number of lines per page, ~here report· groups are to appear on the page~
and which data items are to be considered as controls.

controls govern the basic format of the report. When a control
changes value -- that is, ~hen a ~Qg~£Q!_Q£~~~ occurs -- special actions
will be taken before the next line of the report is printed. Controls
are listed in a hierarchy, proceeding from the most inclusive down to
the. least inclusive. rhus, by specifying HE~DING and FOOTING controls,
the programmer is able to instruct the Report Writer to produce the
report in whatever format he desires.

For example, in the program at the end of this chapter, the hierarchy
of controls proceeds from the highest (FIN~L) to an intermediate control
(MONTH) to the minor control (DAY). D~Y is the minor control since if
MONTH changes, DAY also m~~~ change. Whenever any control changes,
special actions are performed by the Report Writer -- sum information is
totale~, counters are reset, special information is printed, and so
forth -- before the next detail line is printed.

The reEQr~~ro~g~2riE~~Q~_g~~ri~~ describe the characteristics of
all data items containe·d within the £~EQr~_g:£Q~2: the· format of each
data item present, its placement ~n relation to the other data items
within the report group, and any control factors associate~ with the

260 Part V -- Special Features

------------------- -------

Report writer -- Description

group. Information to be presented within a report group can be
described in three ways:

• As SOURCE-information, which is information from outside the report.

• As SUM.information, which is the result of addition operations upon
any data present, whether SOURCE information or other SUM
information.

• As VALUE.information, ~hich is constant information.

Through the RD and the report group description entries, the
programmer has thus defined completely the content, the format, and the
summing operations necessary to produce the desired report.

In the Procedure Division, the programmer instructs the Report writer
to produce the report through the use of three Report writer statements:
INIrIATE, GENERATE, and TERMIN~TE.

The INITIATE statement performs functions in the Report Writer
analogous to the OPEN statement for individual files.

The GENERATE statement autonatically produces the body of the report.
Necessary headings and footings are printed, counters are incremented
and reset as desired, source information is obtained, and sum
information is produced, data is moved to the data item(s) in the report
group description entry, controls are tested, and ~hen a control break
occurs, the additional lines requested are printed, as well as the
detail line that caused the control break. ~ll of this is done
automatically, thus relieving the programmer of the responsibility for
writing detailed tests and looping procedures that ~ould otherwise be
necessary.

The TERMINATE statement completes the processing of a report. It is
analogous to the CLOSE statenent for individual files.

In the Declaratives portion of the Procedure Division, the programmer
may also specify ~ USE BEFORE REPORTING procedure for report group. In
this procedure, he is able to specify any additional processing he
wishes done before a specific report group is printed.

rwo special registers are used by the Report Writer feature:

LINE-COUNTER -- which is a numeric counter used by the Report writer to
determine when a PAGE HEADING and/or a PAGE FOOTING report group is
to be presented. The maximum value of LINE-COUNTER is based on the
number of lines per page as specified in the PAGE LIMIT<S) clause.
LINE-COUNTER may be referred to in any ProcedUre Division
statement.

PAGE-COUNTER -- which is a numeric counter that may be used as a SOURCE
data item in order to present the page number on a report line.
The maximum size of P~GE-COUNTER is based on the size specified in
the PICTURE clause associated with an elementary item whose SOURCE
IS PAGE-COUNTER. This counter may be referred to by any Procedure
Division statement.

Figure 15, at the end of this chapter, gives an example of a Report
Writer program for a manufacturer's quarterly report.

Figure 16, which follows the program, sho~s the report that would be
produced.

Report ~riter Feature 261

FO Entry/REPORT Clause

~e names of all the reports to be produced must be named in the File ~
Section of the Data Division. An entry is required in the FD entry to
list the names of the reports to be produced on that file. A Report
Section must be added at the end of the Data Division to define the
format of each report.

FILE DESCRIPTION

The File Description furnishes information concerning the physical
structure, identification, and record-names pertaining to a given fi~e.

r--,
I General Format I
~--~

~ file-name

[BLOCK CONTAINS Clause]
[RECORD CONTAINS Clause]
[RECPRDING, ,~bOFf "C,iausef
LABEL RECORDS Clause
[VALUE OF Clause]
lD'ATA 'RECORDS ciause]"',
REPORT Cla'use. '

I
I
I
I
I
I
I
I
I
I
I - ___ J

A discussion of all the above-mentioned clauses appears in "Data
Division." A description of the REPORT clause, the RECORDING MODE
~lal1se,' ~he ,DATA RECORO'S 'cI'ause', ,and the RECORD CONTAINS clause for a
file on which a report is produced follows.

REPORT Clause

Each unique report-name must appear in the REPORT clause of the FO
entry (or entries) for the file(s) on which the report(s) is to be
produced. The REPORT clause cross references the description of report
description entries with their associated file description entry.

r--,
I Format I
~--~
I I
I {REPORT IS } I I report-name-l [report-name-21... I
I REPORTS ARE I
I I L __ J

Each file description entry for standard sequential OUTPUT files
within the File Section may include a REPORT clause containing the names

262 Part V -- Special Features

(I

,,--j

()

RECORDING MODE/DATA RECORDS(RECORD CONTAINS Clauses

of one or more reports. rhese reports may be of different sizes,
formats, etc., and the order in which their names appear in the clause
is not significant.

Each unique report~name listed in an FD entry must be the subject of
an RD entry in the Report Section. ~ given report-name may appear in a
maximum of two REPORT clauses.

RECORDING MODE Clause

The RECORDING MODE clause is used to specify the format of the
logical records within the file. If this clause is omitted, the
recording mode is determined as described ,in "Data Division."

D~r~ RECORDS Clause

If the DATA RECORDS clause is specified, and the file is used for
output, the AFTER ADVANCING option must be used when writing records
named in this clause.

RECORD CONTAINS Clause

rhe RECORD CONrAINS clause enables the user to specify the maximum
size of his report record.

r--,
I Format I
~--~
I I
I RECORD CONTAINS [integer-1 ~Q] integer-2 CHAR~CTERS I
I I L __ J

The specified size of each report record must include the carriage
control/line spacing character, and the CODE character, if the CODE
option is used. If the RECORD CONr~INS clause is omitted, the compiler
assumes a default size of 133 characters.

For variable-length records, the size of each print line will be
integer-2 characters, and the size of each blank line required for
spacing will be 11 characters. For fixed-length records, the size of
each print line and each blank line required for spacing will be
integer-2 characters.

For further information on the RECORD CONTAINS cl~use, see "Data
Division. n

Report Writer Feature 263

RD Entry

REPORT SECTION

The Report section consists of two types of entries for each report;
one describes the physical aspects of the report format, the other type
describes conceptual characteristics of the items that make up the
report and their relationship to the report format. These are:

1. Report Description entry (RD)

2. Report group description entries

The Report Section must begin with the header REPORT SECTION.

Report Description Entry

The Report Description entry contains information pertaining to the
overall format of a report named in the File Section and is uniquely
identified by the level indicator RD. The clauses that follow the name
of the report are optional, and their order of appearance is not
significant.

The entries in this section stipulate:

1. The maximum number of lines that can appear on a page.

2. Where report groups are to appear on a page.

3. Data items that act as control factors during presentation of the
report.

r--,
I General Format I
~--~
I I
I REPORT SECTION. I
I I
I RD report-name I
I [CODE Clause] I
I [CONTROL Clause] I
I [PAGE LIMIT Clause]. I
I I L __ J

RD is the level indicator.

Report~name is the name of the report and must be unique. The
report-name must be specified in a REPORT clause in the file description
entry for the file on which the report is to be written.

CODE Clause

The CODE clause is used to specify an identifying character added at
the beginning of each line produced. The identification is meaningful
when more than one report is written on a file.

264 Part V -- special Features

o

CODE/CONTROL Clauses

r--,
I Format I
~--~
I I
I WITH,£ODE mnemonic-name I
I I L __ J

Mnemonic-name must be associated with a single character literal used
as function-name-l in the SPECIAL-NAMES paragraph in the Environment
Division. The identifying cnaracter is appended to the beginning of the
line, preceding the carriage control/line spacing character. rhis
clause should not be specified if the report is to be printed on-line.

CONTROL Clause

The CONTROL clause indicates the identifiers that specify the control
hierarchy for this report, that is, the control breaks.

r--,
I Format I
~--~
I I
I { CONTROL IS } {FINAL } I I identifier-l [identifier-21... I
I CONTROLS ARE FINA~ identifier-l [identifier-21... I
I I L __ J

A control is a data item that is tested each time a detail report
group is generated. If tne test indicates that the value of the data
item (i.e., CONTROL) has changed, a control break is said to occur, and
special action (described below) is taken before printing the detail
line.

FINAL is the highest level control. (It is the one'exception to the
statement that controls are data items.) rhe identifiers specify the
control hierarchy of the other controls. ~g~~~~t~~E~! is the major
control, ~g~tifier-2 is the intermediate control, etc. The last
identifier specified is the ninor control. The levels of the controls
are indicated by the order in which they are written. FINAL need not be
specified in the CONrROL clause, even if a CONTROL HEADING FINAL or
CONTROL FOOTING FINAL is specified.

The control identifier~ must each specify different data items; that
is, their descriptions must not be such that they occupy (partially or
completely) the same area of storage, or overlap in any way.

When controls are tested, the highest level control specified is
tested first, then the second highest level, etc. When a control b~eak
is found for a particular level, a control break is implied fqr each
lower level as well. A control break for FINAL occurs only at the
beginning and ending of a report (i.e., before the first detail line is
printed and after the last detail is printed).

The action to be taken as a result of a control break depends on what
the programmer defines. He may define a CONTROL HEADING report group
and/or a CONTROL FOOTING group or neither for each control.

Report writer Feature 265

PAGE LIMIT Clause

The control footings and headings that are defined are printed prior
to printing the originally referenced detail. They are printed in the
following order: lowest level control footing, next higher level
control footing, etc., up to and including the control footing for the
level at which the control break occurred; then the control heading for
that level, then the next lower level control heading, etc., down to and
including the minor control heading; then the detail is printed. If, in
the course of printing control headings and footings, a page condition
is detected, the current page is ejected and a new page begun. If the
associated report groups are given, a page footing and/or a page heading
are also printed.

The CONTROL clause is reguired when CONTROL HEADING or CONTROL
FOOTING report groups ~"othei', t.han:'t'X·NAL; are specifie::l.

The identifiers specified in the CONTROL clause are the only
identifiers referred to by the RESET and TYPE clauses in a report group
description entry for this report. The identifiers must be defined in
the File or Working-Storage Section of the Data Division.

Program Product Information (V~~~~on_~L

I For' version' '4',' '''the 'Icie'nt1flers ih th'e CONTROL 'clause may also ,'be;
i,cl~,fi~e,cl ,;0,,' t.~e c,?mmu~ihC,~,i!~,C?,~,,,~w~~~;o,~,,.,,,,,

PAGE LIMIT Clause

The PAGE LIMIT clause indicates the specific line control to be
maintained within the logical presentation of a page, i.e., it describes
the physical format of a page of the report.

r--,
I Format I
~--~
I I
II [LIMIT IS] {LINE } II PAGE integer-l
I LIMITS ARE LI~~2 I
I I
I [H~ADING integer-2] I
I [FIB2I DETAIL integer-3] I
I [LAST DETAIL integer-4] I
I [FOOTING integer-5] I
I I L __ J

If this clause is not specified, PAGE-COUNTER and LINE-COUNTER
special registers are not generated.

The PAGE LIMIT clause is required when page format must be controlled
by the Report Writer.

integer~l; The PAGE LIMIT integer-l LINES clause is required to
specify the depth of the report page; the'depth of the
report page mayor may not be equal to the physical
perforated continuous form often associated in a report
with the page length. The size of the fixed data-name,
LINE-COUNTER, is the maximum numeric size based on
integer-l lines required for the counter to prevent
overflow.

266 Part V -- Special Features

c~

o

inteqer-:-2:

inteqer~3:

inteqer-4:

inteqer~5:

PAGE LIMIT Clause

The first line number of the first heading print group is
specified by integer-2. No print group will start
preceding inte~er-2, i.e., integer-2 is the first line on
which anything may be printed.

The first line number of the first normal print group
(body group) is specified by integer-3. No DET~IL,
CONTROL HEADIN3, or CONTROL FOOTING print group will start
before integer-3.

The last line number of the last nonfooting body group is
specified by integer-4. No DETAIL or CONTROL HE~DIN3
print group ~ill extend beyond integer-4.

The last line number of the last CONTROL FOOTING print
group is specified by integer-5. No CONTROL FOOTIN3 print
group will extend beyond integer-5. PAGE FOOTING print
groups will follow integer-5.

Using the parameters of the P~GE LIMIT clause, the Report Writer
establishes the areas of the page where each type of report group is
allowej to be printed. The following are the page areas for each type
of report group:

1. A REPORT HEADING report group can extend from line integer-2 to
line integer-1, inclusive. If the REPORT HEADING report group is
not on a page by itself, the FIRST DET~IL integer-3 clause must be
present in the PAGE LIMIT clause of the report.

2. A PAGE HE~DING report group may extend from line integer-2 to line
integer-3 minus 1, inclusive. If a PAGE HE~DING report group is
specified in the report description, the FIRST DETAIL integer-3
clause must be present in the P~GE LIMIT clause of the report. A
PAGE HE~DING report group that follows a REPORT HEADING report
group on the same page nust be able to be printej in the area of
the page defined in this rule.

3. CONTROL HE~DING report groups and DET~IL report groups must be
printed in the area of the page that extends from line integer-3 to
line integer-4, inclusive.

4. CONTROL FOOTING report ~roups must be printed in the area of the
page extending from line integer-3 to line integer-5, inclusive.

5. A PAGE FOOTING report group may extenj from line integer-5 plus 1
to line integer-l, inclusive. If PAGE FOOTING is specified in the
report description, either the FOOTIN3 integer-5 or L~ST DEr~IL
integer-4 clause must be present in the PAGE LIMIT clause of the
report.

6. A REPORT FOOTING report group can exten1 from line integer-2 to
line integer-1, inclusive. If the REPORT FOOTING report group is
not on a page by itself, either the FOOTING integer-5 or L~Sr
DETAIL integer-4 clause must be present in the PAGE LIMIT clause of
the report.

Figure 14 pictorially represents page format report group control
when the PAGE LIMIT clause is specified.

Report Writer Feature 267

PAGE LIMIT Clause

integer-2

integer-3

integer-4

integer-5

integer-!

REPORT

HEADING/
FOOTING

,

PAGE

HEADING

~

DETAIL &

CONTROL
HEADING

~

CONTROL

FOOTING

Ir

PAGE

FOOTING

~
Figure 14. Page Format When the PAGE LIMIr Clause is Specified

The PAGE LIMIT clause may be omitted when no association is desired
between report groups and the physical format of an output page. In
this case, relative line spacing must be indicated for all report groups
of the report.

If absolute line spacing is indicated for all the report groups, none
of the integer-2 through integer-S controls need be specified. If any
of these limits are specified for a report that has only absolute line
spacing, the limits are ignored.

If relative line spacing is indicated for any report group, all LINE
NUMBER and NEXT GROUP spacing must be consistent with the control
specified or implied in the PAGE LIMIT clause.

If PAGE LIMITS integer-l is specified and some or all of the HEADING
integer-2, FIRST DETAIL integer-3, LAST DETAIL integer-4, FOOrIN3
integer-S clauses are omitted, the following implicit control is assumed
for all omitted specifications:

1. If HEADING integer-2 is omitted, integer-2 is considered to be
equivalent to the value 1, that is, LINE NUMBER one.

2. If FIRST DETAIL integer-3 is omitted, integer-3 is considered to be
equivalent to the value of integer-2.

3. If LAST DETAIL integer-~ is omitted, integer-4 is considered to be
equivalent to the value of integer-S.

4. If FOOTING integer-5 is omitted, integer-S is considered,to be
equivalent to the value of integer-4. If both LAST DETAIL
integer-4 and FOOTING integer-S are omitted, integer-4 and
integer-S are both considered to be equivalent to the value of
integer-i.

Only one PAGE-LIMIT clause may be specified for a Report Description
entry.

• Integer-l through integer-5 must be positive integers.

• Integer-2 through integer-S must be in ascending order. Integer-5
must not exceed integer-i.

268 Part V -- Special Features

c

l

Report Group Description Entry

Report Group Descriptioe-l~~~

A report comprises one or more report groups. Each report group is
described by a hierarchy of entries similar to the description of a data
record. There are three categories of report groups: heading groups,
detail groups, and footing groups. A CONTROL HEADING, DETAIL, or
CONTROL FOOTING report group may also be referred to as a body group.

The report group description entry defines the format and
characteristics for a report group. The relative placement of a
particular report group within the hierarchy of report groups, the
format of all items, and any control factors associated with the group
are defined in this entry.

Schematically, a report group is a line, a series of lines, or a null
<i.e., nonprintable) group. A report group is considered to be one unit
of the report. Therefore, the lines of a report group are printed as a
unit.

A null group is a report group for which no LINE or COLUMN clauses
have been specified (that is, a nonprintable report group).

The report group description entry defines the format and
characteristics applicable to the type of report group.

1. For all report groups that are not null groups, the description
entry indicates where and when the report group is to be presented.

2. For all report groups, the description entry indicates when the
nonprinting functions of the report group, such as summation, are
to be performed.

3. For all report groups except DETAIL, the description entry allows
for the execution of a user-specified procedure prior to printing a
report group. If a report group is a null group, the execution of
the user procedure occurs in the same manner as though the report
group were printed.

4. For CONTROL FOOTING report groups, the description entry indicates
the user'S summation algorithm.

Report group names are required when reference is made in the Procedure
Division to:

• A DETAIL report group by a GENERATE statement

• A HEADING or FOOTING report group by a USE sentence

Report group names are required when reference is made in the Report
section to a DETAIL report group by a SUM UPON clause.

Except for the data-name clause which, when present, must immediately
follow the level-number, the clauses may be written in a~y order.

Report Writer Feature 269

Report Group Description Entry

r--, I General Format 1 I
~--~
I I
I 01 [data-name-i] I
I [LINE Clause] I
I [NEXT GROUP Clause] I
I TYPE Clause I
I [USAGE Clause]. I
I I L __ J

r--, I General Format 2 I
~--i
I I
I level number [data-name-l] I
I [LINE clause] I
I [USAGE clause]. I
I I L __ J

r--, I General Format 3 I
~--i

level-number [data-name-l]
[COLUMN Clause]
[GROUP Clause]
[JUSTIFIED Clause]
[LINE Clause]
[PICTURE Clause]
[RESET Clause]
[BLANK WHEN ZERO Clause]

[{
SOURCE}] SUM Clause
VALUE

[USAGE Clause].

r--, I General Format 4 I
~--i

01 [data-name-l]
[BLANK WHEN ZERO Clause]
[COLUMN Clause]
[GROUP Clause]
[JUSTIFIED Clause]
[LINE Clause]
[NEXT GROUP Clause]
PICTURE Clause
[RESET Clause]

{
SOURCE}
SUM . Clause
VALUE

TYPE Clause
[USAGE Clause].

270 Part V -- Special Features

r-~
(,
I

-~ - -- -- -~-~- ---~~--------

C)

LINE Clause

Format 1 is used to indicate a report group.. A report group
description must contain·a report group entry (level-Ol) and it must be
the first entry. A report group extends from this entry either to the
next report group level-Ol entry or to the beginning of the next report
description. A null report g~oup may contain only a Format 1 report
group entry.

Format 2 is used to indicate a group item. A group item entry may
contain a level number from 02 through 48; this entry has the following
functions:

• If a report group has more than one line and one of the lines
contains more than one elementary item, a group item entry may be
used to indicate the LINE number of the subordinate elementary
items.

• If a group item entry contains no LINE clause and there are no SUM
counters subordinate to it, its only function is documentation.

Format 3 is used to indicate an elementary item. An elementary item
entry may contain a level number from 02 through 49; this entry has the
following functions:

• An elementary item entry may be used to describe an item that is to
be presented on a printed line. In this case, a COLUMN clause, a
PICTURE clause, and either a S0URCE, SUM, or VALUE clause must be
present.

• An elementary item entry in a DETAIL report group may be used to
indicate to the Report Writer what operands are to be summed upon
presentation of the DETAIL report group.

• An elementary item entry in a CONTROL FOOTING report group may be
used to define a SUM counter (see the discussion of the SUM clause).

Format 4 is used to indicate a report group that consists of only one
elementary item. If Format 4 is used to define the report group instead
of Format 1, it must be the only entry in the groupu

LINE Clause

The LINE clause indicates the absolute or relative line number of
this entry in reference to the page or previous entry.

r--,
I Format I
~--~
I I

I ~ NUMBER IS {!~~~g~~~~ger-2} I
I NEXT PAGE 1
I) L __ J

Each line of a report must have a LINE clause associated with it.
For the first line of a report group, the LINE clause must be given
either at the report group level or prior to or for the first elementary
item in the line. For report lines other than the first in a report
group, the LINE clause must be given prior to or for the first
elementary item in the line. When a LINE clause is encountered,
subsequent entries following the entry with the LINE clause are

Report Writer Feature 271

LINE Clause

implicitly presented on the same line until either another LINE clause
or the end of the report group is ~ncounter~d.

!nteqer~! and in~ggg~~~ must be positive integers.

LINE NUMBER IS integer-1 is an absolute LINE clause. It indicates
the fixed line of the page on ~hich this line is to be printed.
LINE-COUNTER is set to the v~lue of ~~~~~~~~l and is used for printing
the items in this and the follo~ing entries ~ithin the rep~rt gr~up
until a different value for the LINE-COUNrER is specified.

LINE NUMBER IS PLUS integer-2 is a relative LINE clause. The line is
printed relative to the previ~us line either printed or skipped.
LINE-COUNTER is incremented by the value of ig~~q~~~~ and is used for
printing the items in this and the folloNing entries ~ithin the report
group until a different value for the LINE-COUNTER is specified.
Exceptions to this rule are discussed later.

LINE NUMBER IS NEXT PA3E in~icates that this report group is t~ be
printed on the next page, not on the current page. This LINE cl~use may
appear only in a report gr~up entry or may be the LINE clause ~f the
first line of the report group.

Within any report group, absolute LINE NUMBER entries must be
indicated in ascending order, ~nd an absolute LINE NUMBER cannot be
preceded by a relative LINE NUMBER. If the first line of the first body
group that is ·to be printed ~n a page cont~ins either a relative LINE
clause or ~ LINE NUMBER IS NEXT PAGE clause, the line is printed on line
FIRST DETAIL integer-3. Ho~ever. if the LINE-COUNTER contains a value
that is greater than or equal to FIRST DErAIL integer-3, the line is
printed on line LINE-COUNrER plus 1. This value of LINE-COUNTER Nas set
by an absolute NEXT GROUP cl~use in the previously printed body group
(see rules for NEXT GROUP).

If the report group entry of a body group contains a LINE NUMBER IS
NEXT PAGE clause and the first line contains a relative LINE clause, the
first line is printed relative to either FIRST DETAIL integer-3 ~r
LINE-COUNrER, ~hichever is gre~ter. This value of LINE-COUNTER ~as set
by an absolute NEXT GROUP clause in the previously printed body group.

The following are the rules for the LINE clause by report group type:

1. REPORT HEADING

• LINE NUMBER IS NEXT PA3E cannot be specified in the report group.

• The first line of the report group may contain an absolute or
relative LINE clause.

• If the first line contains a relative line clause, it is relative
to HEADING integer-2.

2. PAGE HEADING

• LINE NUMBER IS NEXr PA3E cannot be specified in the report group.

• The first line may contain either an absolute or relative LINE
clause.

• If the first line contains a relative LINE clause, it is relative
to either HEADING integer-2 or the value of LINE-COUNTER,
whichever is greater. The value in LINE-COUNTER that is greater
than HEADING integer-2 can only result from a REPORT HEADING
report group being printed on the same page as the PAGE HEADING
report group.

272 Part V -- Special FeatUres

(J

3.

4.

NEXT GROUP Clause

CONTROL HEADING, DETAIL, and CONTROL FOOTING

• LINE NUMBER I~ NEXT PAGE may be specified in the report group.

• The first line of the report group may contain either an absolute
or relative LINE clause.

PAGE FOOTING

• LINE NUMBER IS NEXT PAGE cannot be specifie4 in the report group.

• The first line of the report group may contain an absolute or
relative LINE clause.

• If the first line contains a relative LINE clause, it is relative
to FOOTING integer-5.

5. REPORT FOOTING

• If the report group is to be printed on a page by itself, LINE
NUMBER IS NEXT pOAGE must be specified.

• If LINE NUMBER IS NEXT PAGE is the only LINE clause in the repo~t
group description, the line ~ill be printed on line HEADING
integer-2.

• If the report group description does not contain a LINE NUMBER IS
NEXT PAGE clause, the first line must contain an absolute or
relative LINE clause. If it contains a relative LINE clause, the
line is relative to either FOOTING in~eger-5 or the value of
LINE-COUNTER, ~hichever is greater. The value in LINE-:OUNrER
that is greater than FOOTING integer-5 can only result from the
printing of the PAGE FOOTING report group.

NEXT GROUP_.-£.!~

The NEXT GROUP clause indicates the spacing condition follo~ing the
last line of the report group.

r--,
I Format I
~--~
I I
I { integer-1 1 I
I NEXT @ROUP IS PLU§ integer-2 I
I ~~~~ ~~@~ I
I I L __ J

The NEXT GROUP clause can appear only in a report group entry.
Integer-1 and integer-2 must be positive integers.

The follo~ing are the rules for the NEXT GROUP clause by report group
type:

1. REPORT HEADING

• If the report group is to be printea on a page by itself, NEXT
GROUP IS NEXT PAGE must be specified in the report group
description.

Report ~riter Feature 213

NEXT GROUP Clause

• Integer-1 indicates an absolute line number which sets the
LINE-COUNTER to this value after printing the last line of the
report group.

• Integer-2 indicates a relative line number which increments the
LINE-COUNTER by the integer-2 value after printing the last line
of the report group.

• An absolute or relative NEXT GROUP clause must not cause the
LINE-COUNTER to be set to a value greater than FIRST DETAIL
integer-3 minus 1.

2. PAGE HEADING, PAGE FOOTING, and REPORT FOOTING

• A NEXT GROUP clau~e cannot be specified in the report group.

3. CONTROL HEADING, DETAIL, and CONTROL FOOTING

• If a. NEXT GROUP clause implies a page change, the change occurs
only when the next body group is to be printe~.

• The NEXT GROUP IS NEXT PAGE clause indicates that no more body
groups are to be printed on this page.

• An absolute or relative NEXT GROUP clause may cause the
LINE-COUNTER to be set to a value greater than or equal to FIRST
DETAIL integer-3 and less than or equal to FOOTING integer-5.
This is an exception to the rule which defines the page area of
CONTROL HEADING and DETAIL report groups.

• If a NEXT GROUP IS inteqer-1 clause causes a page change, the
value of LINE-COUNTER is set to the value of integer-1 before the
formatting of the first line of the next body group to be
printed. This implies that if the first line of the next body
group to be printed contains a relative LINE NUMBER clause, the
line will be printed on line LINE-COUNTER plus 1; if the first
line contains an absolute LINE NUMBER clause that is less than or
equal to integer-1, a page will be printed which contains only
PAGE HEADING and FOOTING report groups, and the following page
will contain the body group.

• When the NEXT GROUP clause is specified for a CONTROL FOOrING
report group, the NEXT 3ROUP clause functions are performed only
when a control break occurs for the control that is associated
with this report group.

274 Part V -- Special Features

c

(J
'---/

(j

TYPE Clause

TYPE Clause

The TYPE clause specifies the particular type of report group that is
described by this entry an~ indicates the time at which the report group
is to be generated.

r--,
I Format I
~--~

TYPE IS
{
identifier-n}
~b.~~~

{
identifier-n}
~~~~~ 

L ______________________________________________________________________ J 

The TYPE clause in a particular report group entry indicates the 
point in time at which this report group will be generated as output. 

If the report group is ~escribed as TYPE DETAIL or DE, then a 
GE~ERArE statement in the Procedure Division directs the Report Writer 
to produce this report group. Each DETAIL report group must have a 
unique data-name at level-Ol in a report. 

If the report group is described as other than rYPE DETAIL or DE, the 
generation of this report group is an automatic feature of the Repor~ 
Writer, as detailed in the following paragraphs. 

The REPORT HEADING or Ra entry indicates a report group that is 
produced only once at the beginning of a report during the execution of 
the first GENERATE statement. There can be only one report group of 
this type in a report. SOORCE clauses used in REPORT HEADING report 
groups refer to the values of data items at the time the first GENERATE 
statement is executed. 

rhe PAGE HEADING or PH entry indicates a report group that is 
produced at the beginning of each page according to PAGE condition rules 
as specified below. There can be only one report group of this type in 
a report. 

The CONTROL HEADING or CH entry indicates a report group that is 
produced at the beginning of a control group for a designated 
identifier, or, in the case of FINAL, is produced once before the first 
control group during the execution of the first GENERATE statement. 
There can be only one report group of this type for each identifier and 
for the FINAL entry specified in a report. In order to produce any 
CONTROL HEADING report groups, a control break must occur. SOORCE 
clauses used in CONTROL aEADING FINAL report groups refer to the values 
of the items at the time the first GENERATE statement is executed. 

The CONTROL FOOTING or CF entry indicates a report group that is 
produced at the end of a control group for a designated identifier or is 
produced once at the termination of a report ending a FINAL con'trol 
group. There can be only one report group of this type for each 

Report Writer Feature 275 



TYPE Clause 

identifier and for the FINAL entry specified in a report. In order to 
produce any CONTROL FOOTING report groups, a control break must occur. 
SOURCE clauses used in CONTROL FOOTING FINAL report groups refer to the 
values of the items at the time the TERMINATE statement is executed. 

The PAGE FOOTING or PF entry indicates a report group that is 
produced at the bottom of each page according to PAGE condition rules as 
specified below. There can be only one report group of this type in a 
report. 

The REPORT FOOTING or RF entry indicates a report group that is 
produced only at the termination of a report. There can be only one 
report group of this type in a report. SOURCE clauses used in TYPE 
REP ORr FOOTING report groups refer to the value of items at the time the 
TERMINATE statement is executed. 

Identifier-n r as well as FINAL, must be one of the identifiers 
described-in-the CONTROL clause in the report description entry. 

A FINAL type control break may be designated only once for :ONrROL 
HEADING or CONTROL FOOTING entries within a particular report 
description. 

Nothing precedes a REPORT HEADING entry and nothing follows a REPORT 
FO~TING entry within a report. 

The HEADING or FOOTING report groups occur in the following Report 
Writer sequence if all exist for a given report: 

REPORT HEADING (one occurrence only) 
PAGE HEADING 

CONTROL HEADING 
DETAIL 
CONTROL FOOTING 

PAGE FOOTING 
REPORT FOOTING (one occurrence only) 

CONTROL HEADING report groups are presented in the following 
hierarchical arrangement: 

Final Control Heading (one occurrence only) 
Major Control Heading 

Minor Control Heading 

CONTROL FOOTING report groups are presented in the following 
hierarchical arrangement: 

Minor Control Footing 

Major Control Footing 
Final Control Footing (one occurrence only) 

276 Part V -- Special Features 

C~ _ .. '" 



----- ------------ -------- ------------------ -- --- -----------------------

COLUMN Clause 

CONTROL HEADING report groups appear with the current values of any 
indicated SOURCE data items before the DETAIL report groups of the 
CONTROL group are produced. CONTROL FOOTING report groups appear with 
the previous values of any indicated SOURCE data items specified in the 
CONTROL clause, just after the DETAIL repQrt groups of that CONTROL 
group have been produced. 

The USE procedures specified for a CONTROL FOOTING report group that 
refer to source data items that are specified in the CONTROL clause 
affect the previous value of the items. If the CONTROL FOOTING report 
refers to source data items that are not specified in the CONTROLS 
clause, the USE procedures affect the curr.ent value of the items. These 
report groups appear whenever a control break occurs. LINE NUMBER 
determines the absolute or relative position of the CONTROL report 
groups, exclusive of the other HEADING and FOOTING report groups. 

USAGE Clause 

DISPLAY is the only option that may be specified for group and 
elementary items in a Report Group Description entry (see "USAGE 
Clause"). 

COLUMN Clause 

The COLUMN clause indicates the absolute column number on the printed 
page of the high-order (leftmost) characte~ of an elementary item. 

r----------------------------------------------------------------------, 
I Format 1 
~----------------------------------------------------------------------i 
I ] 
I COLUMN NUMBER IS integer-l J 

I J L ______________________________________________________________________ J 

The COLUMN clause indicates that the leftmost character of the 
elementary item is placed in the position specified by integer. If the 
COLUMN clause is not specified, the elementary item, though included in 
the description of the report group, is suppressed when the report group 
is produced at object time. 

Inteqer-l must be a positive integer. 

The COLUMN number clause is given at the elementary level within a 
report group even if the elementary level is a single level-Ol entry, 
which alone constitutes the report group. 

Report Writer Feature 277 

------------------ -



GROUP INDICATE/RESET Clauses 

GROUP INDICATE Clause 

'The GROUP INDICATE clause specifies that this elementary item is to 
be produced only on the first occurrence of the item after any control 
or page break. 

r----------------------------------------------------------------------, I Format I 
~----------------------------------------------------------------------~ 
I I 
I GROUP INDICATE I 
I I L ______________________________________________________________________ J 

The GROUP INDICATE clause must be specified only at the elementary 
item level ~ithin a DETAIL report group. 

An elementary item is not only group indicated in the first DErAIL 
report group containing the item after a control break, but is also 
group indicated in the first DETAIL report group containing the item on 
a ne~ page, even though a control break did not occur. 

JUSTIFIED Clause 

The JUSTIFIED clause is applicable in report group description 
entries as described in "Data Division." 

PICTURE Clause 

The PICTURE clause is applicable in Report Group Description entries 
as described in "Data Division." 

RESEr Clause 

The RESET clause indicates the CONTROL identifier that causes the SUM 
counter in the elementary item entry to be reset to zero on a CONrROL 
break. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
II lidentifier-l\ II 

RESET ON 
I FINAL I 
I I L ______________________________________________________________________ J 

After presentation of the CONTROL FOOTING report group, the counters 
associated ~ith the report group are reset automatically to zero, unless 
an explicit RESET clause is given specifying reset based on a higher 
level control than the associated control for the report group. 

rhe RESET clause may be used for progressive totaling of identifiers 
~here subtotals of identifiers may be desired without automatic 
resetting upon producing the report group. 

278 Part V -- Special Features 

' ... - ~ 



C.') 

c) 
\ 

- -------------- ---

SOURCE/SUM/VALUE Clause 

I~entifier-1 must be one of the identifiers described in the :ONTROL 
clause in the Report Description entry (RD). Identifier-1 must be a 
higher level CONTROL i~entifier than the CONTROL identifier associated 
with the CONTROL FOOTING report group in which the SUM and RESET clauses 
appear. 

The RESET clause may be use~ only in conjunction with a SUM clause. 

BL~NK,WHEN,ZERO Clause 

The BL~NK WHEN ZERO clause is applicable here as discussed in "Data 
Division." 

The SOURCE, SUM, or V~LijE clause defines the purpose of this 
elementary item within the report group. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 

! SOURCPS 1 ::~~~fier-J ! 
I I 
~----------------------------------------------------------------------~ 

I lTALLY~ t [T~LLY' ] I 
: SUM ~d~~tifier-2~ ~~en:~fier-3 ••• [Q~Q~ data-namel I 
I I 
~------------------------~---------------------------------------------~ 
I I 
I VALUE IS literal-1 I 
I I L ______________________________________________________________________ J 

SOURCE; The SOURCE clause indicates a data item that is to be use~ as 
the source for this report item. The item is presente~ according to the 
PICTURE clause and the COLUMN clause in this elementary item entry. 

The SOURCE clause has two functions: 

1. To specify a data iten that is to be printed 

2. To specify a data iten that is to be summed in a CONTROL FOOTING 
report group (see the discussion' of the SUM clause) 

~t,i!~i~~it~j!~~~~, :.!~., J?~~,<?,~ ,',,~( !dent~f ier:.! ,_~,~._~, _.~9l!~~~ __ ~t0~~~~~~t 

proqram-Product.Informatio~_i~~~!QB~ 

r~oi;:"version 4,' a'-'SOURCE d.a'ta'~ltem may al!io' be an elementary'; 
rnU,e&2,~S!~~, .!~~~_}~~~~~!:;~.~LJ~/~~~,~ .. ,_~_~~~~~g,~~!~~. <,~~~~_!,?n.· 

Report Writer Feature 279 



SOURCE/SUM/VALUE Clause 

SUM: rhe SUM clause is used to cause automatic summation of data and 
may appear only in an elementary item entry of a CONTROL FOOrING report 
group. The presence of a SU~ clause defines a SUM counter. If a SUM 
counter is to be referred to by a Procedur'e Division statement or Report 
Section entry, a data-name clause must be specified ~ith the SOM clause 
entry. The data-name then represents the summation counter generated by 
the Report Writer to total the operands specified immediately following 
SUM. If reference is never made to a summation counter, the counter 
need not be named explicitly by a data-name entry. 

Whe~her the elementary item entry that contains a SOM clause names 
the summation counter or not, the PICTURE clause must be specified for 

. each SOM counter. Editing characters or editing clauses may be included 
in the description of a SUM counter. Editing of a SUM counter occurs 
only upon presentation of that SUM counter. At all other times, the SUM 
counter is treated as a nu~eric data item. The SUM counter must be 
large enough to accommodate the summed quantity ~ithout truncation of 
integral digits. 

An operand of a SUM clause must be an elementary numeric data item 
that appears in the File, Working-Storage, or Linkage Section, or is the 
name of a SUM counter. ~ SUM counter that is an operand of SUM clause 
must be defined in the same CO~rROL FOOTING report group that contains 
this SOM clause or in a CONTROL FOOTING report group that is at a lower 
level in the control hierarchy of this report. 

~ SOM counter is incremented by its operands in the following manner: 

• An operand that is an elementary numeric data item appearing in the 
File, Working-storage, or Linkage Section is added to the SUM 
counter upon the generation of a DETAIL report group that contains 
this operand as a SOURCE data item: even if the operand ap~ears in 
more than one SOURCE clause of the DET~IL report group, it is added 
only once to the SUM counter. The operands must appear exactly as 
they are in the SOURCE clauses with regard to qualification, 
subscripting, and indexing. " If 'the SUM clause contains the UPON" 
:option~ 'the opera'rid 'aoes hot have to appear in a SOURCE clause of 
L~h:e J)ET~~L, :t:e~t?:t:t" "g:x:oup~"" ,n " 

• ~n operand that is a SUM counter and is defined in a CONTROL FOOTING 
that is at an~ lower level in the control hierarchy of this re~ort 
is summed before presentation of the CONrROL FOOrING in which it is 
defined. This counter u~dating is commonly called rolling counters 
forward. 

• ~n operand that is a SUM counter and is defined in the same :ONTROL 
FOOTING as this SUM clause, is summed before presentation of this 
CONTROL FOOTING. This counter updating is commonly called 
cross-footing. SUM counter operands are added to their respective 
SUM counters in the order in which they physically appear in the 
CONTROL FOOTING report group description, i.e., left to right ~ithin 
an elementary item entry and down the elementary item entries. 

The UPON ~ata-nam~ option is required to obtain selective summation for 
a particular data item that is named as a SOURCE item in t~o or more 
DET~IL report groups. !~gU~~f~~~~~ and i~gU~ifi~~~~ must be SOURCE data 
items in data-name. "" However, . 'this :'compiler" does' not require "that" 
[!'~~A!=:~~!~l¢-2, i~e~ti£i~r:-~,'" ~tc., b,e SOPRCE, 1~~.a,,,,~~~ms,, in,,,a.ata-m~me. 
Data-name must be the name of a DETAIL report group. 

The following is the chronology of summing events. 

1. Cross-footing and counter rolling. 

2. Execution of the USE BEFORE REPORTING procedure. 

3. Presentation of the cbntrol footing if it is not a null grou~. 

280 Part V -- special Features 

r~, 
( , 

\ 



( 
,/ 

",-./ 

GENERATE Statement 

4. SUM counter resetting unless an explicit RESET clquse appears in 
the entry that defines the SUM counter. 

~U~i~:~~~U~ ~~usi.·· ~ 
VALUE: Tpe VALUE clause causes the report data item to assume the 
specified value each time its report group is presented only if the 
elementary item entry does not contain a GROUP INDICATE clause. If the 
GROUP INDICATE clause is present and a given omject time condition 
exists, the item will not assume the specified value (see GROUP INDICATE 
rules) .. 

PROCEDURE DIVISION CONSIDERATIONS 

To produce a report, the INITIATE, GENERATE, and TERMINATE statements 
must be specified in the Procedure Division. In addition, a USE BEFORE 
REPORTING declarative section may be written in a declarative section of 
the Procedure Division. This option allows the programmer to manipulate 
or alter data immediately before it is printed. 

GENERATE Statement 

The GENERATE statement is used to produce a report. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I t 
I GENERATE identifier ) 
I I L-_____________________________________________________________________ J 

Identifier is the name of either a DETAIL report group or an RD 
entry. 

Detail Reporting 

If identifier is the name of a DETAIL report group, the GENERATE 
statement does all the automatic operations within a Report Writer 
program and produces an actual output detail report group on the output 
medium. At least one DETAIL report group must be specified. 

surnmar~ Reporting 

If identifier is the name of an RD entry, the GENERATE statement does 
all of the automatic operations of the Report Writer except producing 
any detail report group associated with the report. For summary 
reporting a DETAIL report group need not be specified. 

In summary reporting., SUM counters are algebraically incremented in 
the same manner as for detail reporting. 

Report Writer Feature 281 

---- -----,---------



GENERA~E Statement 

If more than one DETAIL report group is specifiej in a report, SOM 
counters are algebraically incremented as though consecutive GENERATE 
statements ~ere issued for all the DETAIL report groups of the report. 
This consecutive summing takes place in the order of the physical 
appearance of the DETAIL report group descriptions. Even if there is 
more than one DETAIL report group ~ithin a report, only one test for 
control break is made for each GENERATE report-name. This test is made 
by the Report writer prior to the summary reporting. After initiating a 
report anj before terminating the same report, both detail reporting and 
summary reporting may be performed. 

A GENERATE statement, in both detail and summary reporting, 
implicitly produces the follo~ing automatic operations (if defined): 

\ 
1. Steps and tests the LINE COUNTER and/or PAGE COONTER to produce 

appropriate PAGE FOOTIN3 and/or PAGE HEADING report groups, after a 
line is printed. 

2. Recognizes any spec1fiej control breaks to produce appropriate 
CONTROL FOOTING and/or :ONTROL HEADIN3 report groups. 

3. Accumulates into the SU~ counters all specified identifier(s). 
Resets the SUM counters. 

4. Executes any specified routines defined by a USE statem~nt before 
generation of the associated report group(s). 

During the execution of the first GeNERATE statement, the follo~ing 
report groups associated ~ith the report (if specified) are produced in 
the order: 

1. REPORT HEADING report group 

2. PAGE HEADING report group 

3. All CONTROL HEADING report groups in the order FINAL, major to 
minor 

4. The DETAIL report group if specifiej in the GENERATE statement 

If a control break is recognized at the time of the execut~bn of a 
GENERArE statement (other than the first that is executed for a report), 
all CONTROL FOOTING report groups specifiej for the report are projuced 
from the minor report group, up to and including the report group 
specified for the identifier which caused the control break. rhen, the 
CONTROL HEADING report group(s) specified for the report are produced, 
starting ~ith the report group specified for the identifier that caused 
the control break, and continuing do~n to and ending ~ith the minor 
report group. Then, the DETAIL report group specified in the GENERATE 
statement is produced. 

Data is moved to the data item in the Report Group Description entry 
of the Report Sectio~ and is edited under control of the Report ~riter 
according to the same rules for movement and editing as described for 
the MOVE statement (sea "Procedure Division"). 

The INITIATE statement begins the processing of a report. 

282 Part V -- Special Features 

C~ 



INITIATE/TERMINATE Statements 

r--------------------------------~-------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I !!ITIATE report-name-l [report-name-2) ••• I 
I I L _____________________________________________________ - ________________ J 

Each ~~2Q~t-~~ must be defined by a Report Description entry in the 
Report Section of the Data Division. 

The INITIATE statement resets all data-name entries that contain SUM 
clauses associated with the report; the Report Writer controls for all 
the TYPE report groups that are associated with this report are set up 
in their respective order. 

The PA3E-COUNTER register, if specified, is set to 1 (one) during the 
eKecution of the INITIATE statement. If a starting value other than 1 
is desired, the programmer may reset this PAGE-COUNTER following the 
INITIATE statement. 

The LINE-COUNTER register, if specified, is set to zero during the 
eKecution of the INITIATE statement. 

, t,o :~er~ ': during:', t.tie,' ,executi,c;>n of', the " 
,:':,,:t, ,:':'>ij<:',:;:,,:,;:'i, ~~",£, ~ ;':., ,'':, '., "':"" ,,,,;", <' 

The INITIATE statement does not open the file with which the report 
is associated; an OPEN statement for the file must be given by the user. 
The INITIATE statement performs Report Writer functions for individuall~ 
described reports analogous to the input/output functions that the OPEN 
statement performs for individually described files. 

A second INITIATE statenent for a particular £~2Q££=U~~~ may not be 
eKecuted unless a TERMINATE statement has been executed for that 
report-name subsequent to the first INITIArE statement. 

TERMINArE statement 

The TERMINATE statement completes the processing of a report. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I TERMINATE report-name-l [report-name-2) ••• I 
I I L ______________________________________________________________________ J 

Each ~eQ~~=u~m~ given in a rERMINATE statement must be defined by an 
RD entry in the Data Division. 

The TERMIN~TE statement produces all the CONrROL FOOTIN3 report 
groups associated with this report as though a control break had just 
occurred at the highest level, and completes the Report writer functions 
for the named reports. The rERMINATE statement also produces the last 
REPORT FOOTING report group associated with this report. 

Appropriate PAGE HEADING and/or PAGE FOOrING report groups are 
prepared in their respective order for the report description. 

Report ~riter' Feature 283 



USE BEFORE REPORTING Declarative 

A second TERMINATE statement for a particular report may not be 
executed unless a second INITIATE statement has been executed for the 
report-name. 

The TERMINATE statement does not close the file with which the report 
is associated; a CLOSE statement for the file must be given by the user. 
The TERMINATE statement performs Report Writer functions for 
individually described report programs analogous to the input/output 
functions that the CLOSE statement performs for individually described 
files. 

If, at object time, no GENERATE statement is executed for a report, 
the TERMINATE statement of the report will not produce any report groups 
and will not perform any SUM processing. 

SOURCE clauses used in CONTROL FOOTING FINAL or REPORT FOOT1NG report 
groups refer to the values of the items during the execution of the 
TERMINATE statement. 

USE Sentence 

The USE sentence specifies Procedure Division statements that are 
executed just before a report group named in the Report Section of the 
Data Division is produced. 

r----------------------------------------------------------------------, 
I Format t 
~----------------------------------------------------------------------~ 
I ) 
I USE BEFORE REPORTING data-name. i 
I I l _____________________________________________________ - ________________ J 

A USE sentence, when present, must immediately follow a section 
header in the declaratives portion of the Procedure Division and must be 
followed by a period followed by a space. The remainder of the section 
must consist of one or more procedural paragraphs that define the 
procedures to be used. 

Data-name represents a report group named in the Report Section of 
the Data Division. A data-name must not appear in more than one USE 
sentence. Data-name must be quali~ied by the report-name if data-name 
is not unique. 

No Report Writer statement (GENERATE, INITIATE, or TERMINATE) may be 
written in a procedural paragraphCs) following the USE sentence in the 
declaratives portion. 

The USE sentence itself is never executed; rather it defines the 
conditions calling for the execution of the USE procedures. 

The designated procedures are executed by the Report Writer just 
before the named report group is produced, regardless of page or control 
break associations with report groups. The report group may be any type 
except DETAIL. 

Within a USE procedure, there must not be any reference to any 
nondeclarative procedures. Conyersely, in the nondeclarative portion, 
there must be no reference to procedure names that appear in the 
Declaratives Section, except that PERFORM statements may refer to a USE 
procedure or to the procedures associated with the USE procedure. 

284 Part V -- Special Features 



------------------ -- ---

Report Writer -- Special Registers 

When ,the user wishes. to suppress the printing of the specified r~p~~tl 
groups, the statement 1 

MOVE 1 TO PRINT-S~Tca 

ris used in the USE BEFORE REPORTING declarative section. When this 
;statement is encountered, only the specified report group is not 
!printed; the statement must be written for each report group whose 
printing is to be suppressed. 

Use of PRINT-SWITCH to suppress the printing of a report group 
implies that: 

1. Nothing is printed 

2. The LINE-COUNTER is not altered 

3. The function of the NEXT GROUP clause, if one appears in the report, 
group description, is nullified 

SPECIAL REGISTERS: PAGE-COUNTER AND LINE-COUNTER 

The fixed data-names, PAGE-COUNTER and LINE-COUNTER, are numeric 
counters automatically generated by the Report Writer based on the 
presence of specific entries; they do not require data description 
clauses. The description of these two counters is included here in 
order to explain their resultant effect on.the overall report format. 

PAGE-COUNTER 

A PAGE-COUNTER is a counter generated by the Report Writer to be used 
as a source data item in order to present the page number on a report 
line. A PAGE-COUNTER is generated for a report by the Report Writer if 
a PAGE-LIMIT clause is specified in the RD entry of the report. rhe 
numeric counter is a 3-byte_COMPUTATIONAL-3 item that is presented 
according to the PICTURE clause associated with the elementary item 
whose SOURCE is PA~E-COUNTER. 

If more than one PAGE-COUNTER is given as a SOURCE data item within a 
given report, the number of nu~eric characters indicated by the PICTURE 
clauses must be identical. If more than one PAGE-COUNTER exists in the 
program, the user must qualify PAGE-COUNTER by the report name. . 

PAGE-COUNTER may be referred to in Report Section entries and in 
Procedure Division statements. After an INITIATE statement, 
PAGE-COUNTER contains one; if a starting value for PAGE-COUNTER other 
than one is desired, the programmer may change the contents of the 
PAGE-COUNTER by a Procedure Division statement after an INITIATE 
statement has been executed. PAGE-COUNTER is automatically incremented 
by one each time a page break is recognized by the Report Writer, after 
the production of any PAGE FOOTING report group but before production of 
any PAGE HEADING report group. 

LINE~COUNTER 

A LINE-COUNTER is a counter used by the Report Writer to determine 
when a PAGE HEADING and/or a PAGE FOOTING report group is to be 
presented. One line counter is supplied for each report with a PAGE 
LIMIT(S) clause written in the Report Description entry (RD). The 
numeric counter is a 3-byte COMPUTATIONAL-3 item that is presented 

Report Writer Feature 285 

----------------------------------------------



Report Writer -- Special Registers 

according to the PICTURE clause associated with the elementary item 
~hose SOURCE is LINE-COUNTER. 

, LINE-COUNTER may be referred to in Report Section entries and in 
Procedure Division statements. If more than one Report Description 
entry (RD) exists in the Report Section, the user must qualify 
LINE-COUNTER by the report-name. LINE-COUNTER is automatically tested 
and incremented by the Report ~riter based on control specifications in 
the PAGE LIMIT(S) clause and values specified in the LINE NUMBER and 
NEXT GROUP clauses. After an INITIATE statement, LINE-COUNTER contains 
zero. Changing the value of LINE-COUNTER by Procedure Division 
statements may cause page format control to become unpredictable in the 
Report Writer. 

rhe value of LINE-COUNTER during any Procedure Division test 
statement represents the number of the last line printed by the 
previously generated report group or represents the number of the last 
line skipped to by a previous NEXT GROUP specification. 

In a USE BEFORE REPORTING, if no lines have been printed or skipped 
on the current page, LINE-COUNTER ~ill contain zero. 1n all other 
cases, LINE-COUNTER represents the last line printed or skipped. 

286 Part V -- Special Features 

'-



------ ------------ ----------- --------------- -- --- -----

Report Writer -- Sample Program 

S~MPLE REPORT WRITER PROGR~M 

The program in Figure 15 illustrates a Report Writer source program. 
The records used in the report (i.e., input data) are shown after the 
STOP RUN card in the program. Using the first record as an example, the 
data fields are arranged in the following format: 

Col. 1 1 
3 8 1 7 -------------------------

,~

Department 
Number 

A 0 0 0 2 A 0 1 0 1 0 0 2 0 0 
-----

~ 

Number of 
Purchases 

Month Cost 

The decimal point in the cost field is assumed to be two places from 
the right. 

r----------------------------------------------------------------------, 
000005 IDENTIFICATION DI~ISION. 
000010 PROGRAM-ID. ACME. 
000015 REMARKS. THE REPORT WAS PRODUCED BY THE REPORT WRITER. 
000020 ENVIRONMENT DIVISION. 
000025 CONFIGURATION SECrION. 
000030 SOURCE-COMPUTER. IBM-360-H50. 
000035 OBJECT-COMPUTER. IBM-360-H50. 
000040 INPUT-OUTPUT SECTION. 
000045 FILE-CONTROL. 
000050 SELECT INFILE ASSIGN TO UT-S-INFILE. 
000055 SELECT REPORT-FILE ASSIGN TO UT-S-OUTPRINT. 
000060 DATA DIVISION. 
000065 FILE SECTION. 
000070 FD INFILE 
000015 LABEL RECORDS ARE OMITTED 
000080 DATA RECORD IS INPUT-RECORD. 
000085 01 INPUT-RECORD. 
000090 05 FILLER 
000095 05 DEPT 
000100 05 FILLER 
000105 05 NO-PURCHASES 
000110 05 FILLER 
000115 05 TYPE-PURCBASE 
000120 05 MONTH 
000125 05 DAY-1 
000130 05 FILLER 
000135 05 COST 
000140 05 FILLER 
000145 FD REPORT-FILE 

PICTURE 
PICTURE 
PICTURE 
PICTURE 
PICTURE A. 
PICTURE 
PICTURE 
PICTURE 
PICTURE 
PICTURE 
PICTURE 

AA. 
XXX. 
AA. 
99. 

A. 
99. 
99. 
A. 
999V99. 
X(59). 

000150 LABEL RECORDS ARE STANDARD 
000151 RECORD CONTAINS 121 CHARACTERS 
000155 REPORT IS EXPENSE-REPORT. 
000160 WORKING-STORAGE SECTION. 
000165 11 SAVED-MONTH PICTURE 99 VALUE IS O. 

1000115 11 CONTINUED PICTURE X(ll) VALUE IS SPACE. L ______________________________________________________________________ J 

Figure 15. Sample Program Using the Report Writer Feature (Part 1 of 4) 

Report ~riter Feature 287 

--------------------------------



Report Writer -- Sam~le Program 

r----------------------------------------------------------------------, 
000180 01 MONTH-TABLE. 
000185 05 RECORD-MONTH. 
000190 10 FILLER PICTURE ~(9) VALUE IS "JANUARY". 
000195 10 FILLER PICTURE ~(9) VALUE IS "FEBRUARY". 

,/~, 

( 
\ 

000200 10 FILLER PICTURE ~(9) VALUE IS "MARCH ". 
000205 10 FILLER PICTURE ~(9) VALUE IS "APRIL ". 
000210 10 FILLER PICTURE ~(9) VALUE IS "MAY". 
000215 10 FILLER PICTURE ~(9) VALUE IS "JUNE ". 
000220 10 FILLER PICTURE ~(9) VALUE IS "JULY". 
000225 10 FILLER PICTURE ~(9) VALUE IS "AUGUST ". 
000230 10 FILLER PICTURE ~(9) VALUE IS "SEPTEMBER". 
000235 10 FILLER PICTURE ~(9) VALUE IS "OCTOBER ". 
000240 10 FILLER PICTURE ~(9) VALUE IS "NOVEMBER ". 
000245 10 FILLER PICTURE ~(9) VALUE IS "DECEMBER ". 
000250 05 RECORD-AREA REDEFINES RECJRD-MONrH. 
000255 10 MONTHNAME PICTURE A(9) OCCURS 12 TIMES. 
000260 REPORT SECTION. 
000265 RD EXPENSE-REPORT 
000270 CONTROLS ARE FINAL MONTH DAY-1 
000275 PAGE LIMIT IS 59 LINES 
000280 HEADING 1 
000285 FIRST DETAIL 9 
000290 LAST DETAIL 48 
000295 FOOTING 52. 
000300 01 TYPE IS REPORr HEADING. 
000305 05 LINE NUMBER IS 1 
000310 COLUMN NUMBER IS 27 
000315 PICTURE IS A(26) 
000320 VALUE IS "ACME MANUFACTURING COMPANY". 
000325 05 LINE NUMBER IS 3 
000330 COLUMN NUMBER IS 26 
000335 PICTURE IS A(29) 
000340 VALUE IS "QUARTERLY EXPENDIrURES REPORT". 
000345 01 PAGE-HEAD 
000350 TYPE IS PAGE HEADING. 
000355 05 LINE NUMBER IS 5. 
000360 10 COLUMN IS 30 
000365 PICTURE IS A(9) 
000370 SOURCE IS MONTHNAME OF RECORD-AREA (MONTH). 
000375 10 COLUMN IS 39 
000380 PICTURE IS A(12) 
000385 VALUE IS "EXPENDITURES". 
000390 10 COLUMN IS 52 
000395 PICrURE IS X(11) 
000400 SOURCE IS CONTINUED. 
000405 05 LINE IS 7. 
000410 10 COLUMN IS 2 
000415 PICrURE IS X(35) 
000420 VALUE IS "MONTH DAY DEPT NO-PURCHASES". 
000425 10 COLUMN IS 40 

1000430 PICTURE 'IS X(33) 
1000435 VALUE IS "rypE COST CUMULATIVE-COST". L ______________________________________________________________________ J 

Figure 15. Sample Program Using the Report Writer Feature (Part 2 of 4) 

288 Part V -- Special Features 



- ------------------

o 

Report Writer -- Sample Program 

r----------------------------------------------------------------------, 
000440 01 DETAIL-LINE TYPE IS DETAIL LINE NUMBER IS PLUS 1. 
000445 05 COLUMN IS 2 GROUP "INDICATE PICTURE IS A(9) 
000450 SOURCE IS MONTHNAME OF RECORD-AREA (MONTH). 
000455 05 COLUMN IS 13 GROUP INDICATE PICTURE IS 99 
000460 SOURCE IS DAY-1. 
000465 05 COLUMN IS 19 PICTURE IS XXX SOURCE IS DEPT. 
000470 05 COLUMN IS 31 PICTURE IS Z9 SOURCE IS NO-PURCHASES. 
000475 05 COLUMN IS 42 PICTURE IS A SOURCE IS TYPE-PURCHASE. 
000480 05 COLUMN IS 50 PICTURE IS ZZ9.99 SOURCE IS COST. 
000485 01 TYPE IS CONTROL FOOTING DAY-1. 
000490 05 LINE NUMBER IS PLUS 2. 
000495 10 COLUMN 2 PICTURE X(22) 
000500 VALUE "PURCHASES AND COST FOR". 
000505 10 COLUMN 24 PICTURE Z9 SOURCE SAVED-MONTH. 
000510 10 COLUMN 26 PICTURE X VALUE "_". 
000515 10 COLUMN 27 PICTURE 99 SOURCE DAY-1. 
000520 10 COLUMN 30 PICTURE ZZ9 SUM NO-PURCHASES. 
000525 10 MIN 
000530 COLUMN 49 PICTURE $$$9.99 SUM COST. 
000535 10 COLUMN 65 PICTURE $$$$9.99 SUM COST 
000540 RESET ON FINAL. 
000545 05 LINE PLUS 1 COLUMN 2 PICTURE X(71) 
000550 VALUE ALL R.". 
000555 01 TYPE CONTROL FOOTING MONTH 
000560 LINE PLUS 1 NEXT GROUP NEXT PAGE. 
000565 05 COLUMN 16 PICTURE A(14) VALUE "TOTAL COST FOR". 
000570 05 COLUMN 31 PICTURE A(9) 
000575 SOURCE MONTHNAME OF RECORD-AREA (MONTH). 
000580 05 COLUMN 43 PICTURE AAA VALUE "WAS". 
000585 05 INT 
000590 COLUMN 48 PICTURE $$$9.99 SUM MIN. 
000595 01 TYPE CONTROL FOOTING FINAL LINE NEXT PAGE. 
000600 05 COLUMN 16 PICTURE A(26) 
000605 VALUE "TOTAL COST FOR QUARTER WAS". 
000610 05 COLUMN 45 PICTURE $$$$9.99 SUM INT. 
000615 01 TYPE PAGE FOOTING LINE 57. 
000620 05 COLUMN 59 PICTURE X(12) VALUE "REPORT-PAGE-". 
000625 05 COLUMN 71 PICTURE 99 SOURCE PAGE-COUNTER. 
000630 01 TYPE REPORT FOOTING 
000635 LINE PLUS 1 COLUMN 32 PICTURE A(13) 
000640 VALUE "END OF REPORT". 
000645 PROCEDURE DIVISION. 
000650 DECLARATIVES. 
000655 PAGE-HEAD-RTN SECTION. 
000660 USE BEFORE REPORTING PAGE-HEAD. 
000665 PAGE-HEAD-RTN-SWITCH. 
000670 GO TO PAGE-HEAD-RTN-TEST. 
000675 PAGE-HEAD-RTN-TEST. 
000680 IF MONTH = SAVED-MONTH MOVE "(CONTINUED)" TO CONTINUED 
000685 ELSE MOVE SPACES TO CONTINUED 
000690 MOVE MONTH TO SAVED-MONTH. 
000695 GO TO PAGE-HEAD-RTN-EXIT. 
000697 PAGE-HEAD-RTN-ALTER. 
000698 ALTER PAGE-HEAD-RTN-SWITCH 

TO PAGE-HEAD-RTN-SUPPRESS. 
000700 PAGE-HEAD-RTN-SUPPRESS. 
000705 MOVE 1 TO PRINT-SWITCH. 
000710 PAGE-HEAD-RTN-EXIT. 
000715 EXIT. 

1000720 END DECLARATIVES. L ___ ~ __________________________________________________________________ J 

Figure 15. Sample Program Using the Report Writer Feature (Part 3 of 4) 

Report Writer Feature 289 



Report Writer~-Sample Program 

r----------------------~-----------------------------------------------, 
1000725 OPEN-FILES. OPEN INPUT INFILE OUTPUT REPORT-FILE. 
1000735 INITIATE EXPENSE-REPORT. 
1000740 READATA. 
1000745 READ INFILE AT END GO TO' COMPLETE. 
1000755 GENERATE DETAIL-LINE. 
1000760 GO TO READATA. 
1000765 COMPLETE. 
1000770 PERFORM PAGE-HEAD-RTN-ALTER. 
1000780 TERMINATE EXPENSE-REPORT. 
1000785 CLOSE INFILE REPORT-FILE. 
000790 STOP RUN. 

AOO 
A02 
A02 
AOl 
A04 

02 A010l 
01 A010l 
02 C010l 
02 B0102 
10 A0102 

00200 
00100 
01600 
00200 
01000 

J 
J 
J 
I 
) 
J 
~ 
J 
J 
~ 
1 
I 

AOl 06 C0329 04800 ] 
A03 20 E0331 06000 I _____________________________________________________________________ -J 

Figure 15. Sample Program Using the Report Writer Feature (Part 4 of 4) 

Key Relating Report to Report writer Source Program 

In che key, the numbers enclosed in circles (for example,Q) relate 
the explanation below to the corresponding output line in Figure 16. 

The 6-digit numbers (for example, 000615) show the source statement 
from the program illustrated in Figure 15. 

® 

® 

<V 

is the REPORT HEADING resulting from source lines 000300 ... 000340,. 

is the PAGE HEADING resulting from source lines 000345-000435. 

is the DETAIL line resulting from source lines 000440-000480 (note 
that since it is the first detail line after a control break, the 
fields defined with the GROUP INDICATE clause, lines 
000445-000460, appear). 

is a DETAIL line resulting from,the same source lines as(V. In 
this case, however, the fields described as GROUP INDICATE do not 
appear (since the control break did not immediately precede the 
detail line). 

is the CONTROL FOOTING (for DAY-l) resulting from source lines 
000485-000550. 

is the PAGE FOOTING resulting from source lines 000615-000625. 

is the CONTROL FOOTING (for MONTH) resulting from source lines 
000555- 00057 5. 

290 Part V -- Special Features 



--------- --- - ------

( ) 
~/ 

Report Wri te'r -- Sample Program 

is the CONTROL FOOTI~~ '~or FINAL) resulting from source lines 
000595-000610. 

is the REPORTING FOOTING resulting ~rom ~ource lines 
000630-000640. 

Lines 000650-000715 of the example illustrate a use of USE BEFORE 
REPORTING. The effect of th~ source is that each time a new page is 
started, a test is made to determine whether the new page is being 
starte~ because a change in MONTH has been recognized (the definition 
for the control footing for MONTH specifies NEXT GROUP NEXT PAGE) or 
because the physical limits of the page were exhauste~. If a change in 
MONTH has been recognized, spaces are moved to the PAGE HEADING; if the 
physical limits of the page are exhausted, "(CONTINUED)" is moved to the 
PAGE HEADING. 

Report Writer Feature 291 



Report Writer -- Sample Program 

(!)L~--------------------------AC~E MANUFACTURING COMPANY 

QUARTERLY EXPENDITURES REpnPT 

~---------------------------JANUARY EXPENOITUPFS 

MONTH DAY DF.PT NO-PURCHASES TYPE 

0-JANUARY 01 AOO 
-A02 

A02 

7 
1 
2 

A 
A 
C 

COST 

2.00 
1.00 

16.00 

CU MU LAT I VE-COST 

~PURCHASES AND eCST FOR 1-01 5 $19.00 $19.00 
~*********************************************************************** 

JANllAPY 02 A01 2 ~ 2.00 
A04 10 A 10.00 
A04 10 C 80.00 

PURCHASES AND COST FOR 1-02 22 $92.00 $111.00 
*********************************************************************** 
JANUAPY O~ A01 2 B 2.00 

PURCHASES AND COST FOR 1-05 2 $2.00 $113.00 
*********************************************************************** 
JANUARY 08 AOI 10 A 10.00 

AOI 8 B 12.48 
AOI 20 0 38.40 

PURCHASES AND COST FOR 1-0A 38 $60.88 $173.88 
*********************************************************************** 
JANU A~Y 13 AOO 4 B 6."24 

AOO 1 C 8.00 

PURr.HASES AND COST FOR 1-13 5 $14.24 $188.12 
*********************************************************************** 
JANUARY 15 AOO 10 0 19.20 

A02 1 e 8.00 

PURC~ASES AND COST FOR 1-15 11 $27.20 $215.32 
*********************************************************************** 
JANUARY 21 A03 10 E 30.00 

A03 10 F 25.00 
A03 10 G 50.00 

PURCHASES AND COST FO~ 1-21 ~O $105.00 $320.32 
**********'************************************************************* 
JANUARY 23 AOO 5 A 5.00 

PURCHASES AND COST FOR 1-23 5 $5.00 $325.32 
*********************************************************************** 

(!) REPORT-PAGE-Ol 

Figure 16. Report Produced by Report writer Feature (Part 1 of 5) 

292 Part V -- Special Features 

~, 
I. 

,(~' 



( , 

"--./ 

('"---

~) 

Report Writer -- Sample Program 

(2)--------------------------------JANUAP.Y 

~MONTH DAY DEFT NO-PURCHASES 

EXPENDITURES (CONTINUED) 

TYPE COST CUMULATIVE-COST 

~JANUARY 26 

PURCHASES AND COST FOR 1-27 21 $129.36 $467.48 
*********************************************************************** 
JANUARY 30 AOO 2 9 3.12 

A02 10 A 10.00 
AO? 1 C 8.00 
A04 15 B 23.40 
A04 10 C 80.00 

PURCHASES AND COST FO~ 1-30 38 $124.52 $592.00 
*********************************************************************** 
JANUARY 31 AOO 1 A 1.00 

A04 0 A 6.00 

PUQCHASES AND CCST FOR 1-31 7 $7.00 $599.00 
*********************************************************************** 

(2)~---------------TOTAL COST FOR JANUARY WAS $599.00 

®~------------------------
REPORT-PAGE-02 

Figure 16. Report Produced by Report Writer Feature (Part 2 of 5) 

Report writer Feature 293 

---- - - -------------------- - -------------



Report Writer -- Sample Program 

~MONTH FEBRUARY EXPENDITURES 

OAY DEPT NO-PURCHASES TYPE COST CUMULATIVE-COST 

@-FEBRUARY 15 A02 10 A 10.00 
A02 2 B 3.12 

-A02 1 C 8.00 
A03 15 G 75.00 
A04 5 B 7.80 
A05 8 A 8.00 
A05 5 C 40.00 

~PURCHASES AND COST FOP 2-15 46 $151.92 $750.92 
~*********************************************************************** 

FEBRUARY 16 A02 2 C 16.00 
AO~ 10 A 10.00 
A07 10 A 10.00 
A07 10 F 25.00 

PURCHASES AND CQST FOR 2-16 32 $61.00 $811.92 
*****************************~***************************************** 
FEBRUARY 17 A07 10 E 30.00 

A07 10 G 50.00 

PURCHASES AND COST FOP 2-17 20 $80.00 $891.92 
*********************************************************************** 
FEBRUARY 21 AO~ 20 A 20.00 

A06 20 B 31.20 
A06 20 C 160.00 
A06 20 0 38.40 
A06 20 E 60.00 
A06 20 F 50.00 
AOe 20 G 100.00 

PURCHASES AND COST FOR 2-21 140 $459.60 $1351.52 
*********************************************************************** 
FFB~UAPY 27 A01 21 D 40.32 

PURC~ASES AND CQST FnR 2-27 21 $40.32 $1391.84 
*******************************~*************************************** 
FEBRUAPY 28 A02 3 . B 4.68 

A02 5 C 40.00 
A03 15 E 45.00 

PURCHASES AND CCST FOR 2-28 23 $89.68 $1481.52 
*********************************************************************** (2)~--------------TOTAL COST FOR FEBRUARY WAS $882.52 

(!)---------------------------------------------------------REPORT-PAGE-03 

Figure 16. Report Produced by Report Writer Feature (Part 3 of ~\ 

294 Part V -- Special Features 

( 
I" 
\, -' 



------ --------------------------------- --------------

l __ -/ 'I 

C) 

Report Writer -- Sample Program 

~ONTH 
MARC~ EXPENDITURES 

DAY DEPT NO-PURCHASES TYPE COST CUMULATIVE-COST 

@-MARCH 01 A02 5 A 5.00 
-A02 1 C 8.00 

0- AO? 25 G 125.00 

~PURCHASES AND COST FOR 3-01 31 $138.00 $1619.52 
~*********************************************************************** 

MARCH 06 A02 5 A 5.00 

PURCHASES AND COST FOR 3-06 5 $5.00 $1624.52 
*********************************************************************** 
MARCH 07 A02 5 A 5.00 

PURCHASES AND COST FOR 3-07 5 $5.00 $1629.52 
*********************************************************************** 
MARCH 13 A02 10 A 10.00 

PUPCHASES AND COST FOR 3-13 10 $10.00 $1639.52 
*********************************************************************** 
MARCH 15 A01 21 A 21.00 

A02 1 A 1.00 
A03 15 F 37.50 
~Ot 5 E 15.00 
Aot 5 F 12.50 

PURCHASES AND COST FOR 3-15 47 $87.00 $1726.52 
*********************************************************************** 
MARCH 20 A03 15 E 45.00 

PURCHASES AND COST FOR 3-20 15 $45.00 $1771.52 
*********************************************************************** 
MARCH 21 A02 15 A 15.00 

A03 15 F 37.50 

PU~CHASES AND COST FOP 3-21 30 $52.50 $1824.02 
*********************************************************************** 
MARCH 23 A02 2 A 2.00 

PURCHASES AND cnST FOP 3-23 2 $2.00 $1826.02 
*********************************************************************** 
MARCH 25 A03 30 ~ 75.00 

PURCHASES AND CCST FOR 3-25 30 $75.00 $1901.02 
~********************************************************************** 

(!) REPORT-PAGE-04 

Figure 16. Report Produced by Report Writer Feature (Part 4 of 5) 

Report Writer Feature 295 



Report Writer -- Sample Program 

0:::::MONT~ MARCH EXPENDITURES (CONTINUED) 

DAY DE PT NO-PU~CHASES TYPE COST CUMU LAT I VE-COST 

0--MARCH 26 A02 1 A 1.00 

~PURCHASES AND COST FOR 3-26 1 $1.00 $1902.02 
~*********************************************************************** 

~ARCH 29 AOI 6 C 48.00 

PURCHASES AND COST FOR 3-29 6 $48.00 $1950.02 
*********************************************************************** 
MARCH 31 A03 20 E 60.00 

PURCHASfS AND COST FOR 3-31 20 $60.00 $2010.02 
*********************************************************************** CI> TOTAL COST FOR MARCH WAS $528.50 

C!) REPORT-PAGE-05 

~TOTAl COST FOR QUARTER WAS $2010.02 

C!)~------____________ _ 
REPORT-PAGE-06 

(!)~ _____________________________ ENO OF REPORT 

Figure 16. Report Produced by Report Writer Feature (Part 5 of 5) 

296 Part V -- special Features 

1/'-'" 

( 
\. 



Subscripting 

TABLE HANDLING FEATURE 

The Table Handling feature enables the programmer to process tamles 
or lists of repeated data conveniently. A table may have up to th~ee 
dimensions, i.e., three levels of subscripting or indexing can be 
handled. Such a case exists when a group item described with an OCCURS 
clause contains another group item with an OCCURS clause, which in turn 
contains an item with an OCCURS clause. To make reference to any 
element within such a table, each level must be subscripted or indexed. 

SUBSCRIPTING 

Subscripts are used only to refer to an individual element within a 
list or table of elements that have not been assigned individual 
data-names. 

r----------------------------------------------------------------------, 
I Format I 
r--------------------------------------------------------------------~ 
I I 
I data-name (subscript [, subscript] [, subscript]) ,] 
I J L ______________________________________________________________________ J 

The subscript, or set of subscripts, that identifies the table 
element is enclosed in parentheses immediately following the space that 
terminates data-name, which is the name of the table element. When more 
than one subscript appears within a pair of parentheses, each subscript 
must be separated from the next by a comma followed by a space~ 

(f~wev~;: "th~j~~j;'Q~pi.,l.»~j: ,j!t~Q:ir,!S~" ~11i?_ qgJ!1~,!",:t~:t ,12~"_9!!lA~t~g.!\j No space may 
appear between the left parenthesis and the leftmost subscript or 
between the rightmost subscript and the right parenthesis. To identify 
an element in the table named SALARY by the set of subscripts YEAR, 
MONTH, and WEEK, the programmer would write: SALARY (YEAR, MONTH, 
WEEK). 

The subscript can be represented by a numeric literal that is a 
posi ti ve integer L~:Qy,~,~Jl~L:§t?,~9;~.!"..F.~,9J~~,~:;:',:!h~1tI.,i or by a data-name. 
Restrictions on the use of a data-name as a subscript are: 

1. Data-name must be a numeric elementary item that represents a 
positive integer. 

2. The name itself may be qualified, but not subscripted. 

The subscript may contain a sign, but tQEllowest ~~rmissible 
subscript value is 1. Hence, the use of -€.~d or a ,n:~at~~ subscript is 
-no~permitted. The highest permissible subscript va~ue in any 
particuLar-case is the maximum number of occurrences of the item as 
specified in the OCCURS clause. 

Qualification may be used in conjunction with subscripting, in which 
case OF or IN follows the data-name being subscripted. 

Table Handling Feature 291 



Subscripting and Indexing 

r----------------------------------------------------------------------, I Format I 
~----------------------------------------------------------------------~ 
I J I data-name I::} data-name-l [ {::} data-name-2J... ! 
I l 
I (subscript [, subscript] [., subscript]) ~ 
I ,] L-____________________________________________________________________ -J 

~ote: Data-name is the item being subscripted. not data-name-l. That 
1S, in the statement SALARY OF EMPLOYEE-RECORD (YEAR, MONTH, WEEK), the 
data item SALARY is subscripted by YEAR, MONTH, and WEEK. 

INDEXING 

References can be made to individual elements within a table of 
elements by specifying indexing for that reference. 

An index is assigned to a given level of a table by using· an INDEXED 
BY clause in the definition of the table.. A name given in the INDEXED 
BY clause is known as an index-name and is used to refer to the assigned 
index. An index-name must be initialized by a SET or PERFORM statement 
before it is used in a table reference. An index may be modified only 
by a SET, SEARCH, or PERFORM statement. 

r----------------------------------------------------------------------, 
I Format 1 

~----------------------------------------------------------------------i 
I J 
I data-name (index-name [ {±} integer] I 
I ] 
I (, index-name [ {±} integer]][. index-name [ {±} integer]]) 1 
I J L-_________________________________________ ~ ___________________________ J 

Direct indexing is specified by using an index-name in the form of a 
subscript. For example, 

ELEMENT (PRIME-INDEX) 

Relative indexing is specified when the terminal space of the 
data-name is followed by a parenthesized group of items: the 
index-name, followed by a space, followed by one of the operators + 
or -, followed by another space, followed by an unsigned integral 
numeric literal. For example, 

ELEMENT (PRIME-INDEX + 5) 

Qualification may be used in conjunction with indexing, in which case 
OF or IN follows the data-name being indexed. 

298 Part V -- Special Features 



/' 

L/ 

Subscripting and Indexing 

r----------------------------------------------------------------------, 
I Format I 
~-------------------------------------------------------------------.--~ 
I I 

! data-name 1 :: ! data-name-l [ I:! iata-name-2]. • • ! 
I I 
I (index-name [ {tl integer][, index-name [ {±} integer]] I 
I I 
I [, index-name [ {t} integer]]) I 
I I L ______________________________________________________________________ J 

Note: Data items described by the USAGE IS INDEX claus,e permit storage 
of the values of index-names as data ~ithout conversion. Such data 
items are called index data items. 

RESTRICTIONS ON INDEXING, SUBSCRIPTING, AND QUALIFICATION 

Tables may have one, two, or three dimensions. Therefore, references 
to an element in a table may require up to three subscripts or indexes. 

1. A data-name must not be subscripted or indexed when the data-name 
is itself being used as an index, subscript, or qualifier. 

2. 

3. 

4. 

5. 

When qualification, subscripting, or indexing are required for a 
given data item, the indexes or subscripts are specified after all 
necessary qualification is given. 

Subscripting and indexing must not be used together in a single 
reference. 

Wherever subscripting is not permitted, indexing is not permitted. 

The commas sho~n in the formats for indexes and subscripts are 
required. 

EXAMPLE OF SUBSCRIPTING AND INDEXING 

For a table with three levels of indexing, the following Data 
Division entries would result in a storage layout as shown in Figure 17. 

01 PARTY-TABLE REDEFINES TABLE. 
05 PARTY-CODE OCCURS 3 TIMES INDEXED BY PARTY. 

10 AGE-CODE OCCURS 3 TIMES INDEXED BY AGE. 
15 M-F-INFO OCCURS 2 TIMES INDEXED BY M-F 

PICTURE 9(7)V9 USAGE DISPLAY. 

PARTY-TABLE contains three levels of indexing. Reference to 
elementary items within PARTY-TABLE is made by use of a name that is 
subscripted or indexed. A typical Procedure Division statement might 
be: 

MOVE M-F-INFO (PARTY, AGE, M-F) TO M-F-RECORD. 

In order to use the Table Handling feature, the programmer must 
provide certain information in the Data Division and Procedure Division 
of the program. 

Table Handling Feature 299 



Subscripting and Indexing 

r---------------------------------------------------------------------, 
8 bytes Byte 

---------~---------

PARTY-TABLE PARTY-CODE(2) 

PARTY-CODE(1) 

AGE-CODE (1, 1) 

AGE-CODE (1, 2) 

AGE-CODE (1, 3) 

AGE-CODE (2, 1) 

AGE-CODE (2, 2) 

f
r;:;:i;;~-(l~-l~l)l 
r------------------~ 
IM-F-INFO (1, 1, 2) 1 
~------------------~ 

~ ~=:=:.~:~-~:~-~~-:~~ 
{IM-F-INFO (1, 2, 2) 1 
~------------------~ 

~~~::::~:~-~:~-:~-:~~ 
{IM-F-INFO (1, 3, 2) 1

{t~:;:i;;~-(2~-1~-1)1 r------------------~
IM-F-INFO (2, 1, 2) 1
~------------------~

f~=:=:~~-~~~-~~-:~~
{IM-F-INFO (2, 2, 2) 1
------------------~

IM-F-INFO (2, 3, 1)1
AGE-CODE (2, 3) ~------------------~

IM-F-INFO (2, 3, 2) 1
------------------~

1 M-F-INFO (3, "1, 1) 1
AGE-CODE (3, 1) r------------------~

IM-F-INFO (3, 1, 2) 1

PARTY-CODE (3) AGE-CODE (3, 2)

AGE-CODE (3, 3)

{t;:;:i;;~-(3~-2~-1)1 r------------------~

1
~~=:=:NF~-~~-~~~~~
~::::~~-~:~-:~-:~~
IM-F-INFO (3, 3, 2) 1 L __________________ ~

---------,,~------------~--~~-------- ---------~~--------

No.

0

8

16

24

32

40

48

56

64

72

80

88

96

104

112

120

128

1361
1
1
1

OCCURS 3 TIMES OCCURS 3 TIMES OCCURS 2 TIMES 1 - ___ J

Figure 17. Storage Layout for PARTY-TABLE

Note: Programming techniques for Table Handling are given in detail in
the Programmer's Guide.

rhe OCCURS and USAGE clauses are included as part of the record
description entries in a program utilizing the Table Handling feature.

OCCURS Clause

The OCCURS clause eliminates the need for separate entries for
repeated data, since it indicates the number of times a series of
records with identical format is repeated. It also supplies information
reguired for the application of subscripts or indexes.

300 Part V -- Special Features

,~~,

1\. .. ./

-- ------ --------. ---- ------------------ ---

OCCURS Clause

The OCCURS clause has three formats.

r--,
I Format 1]
~--~
I)
I OCCURS integer-2 TIMES I
I I
II {ASCENDING} f KEY IS data-name-2 [data-name-3] •• ~] ••• I

I DESCENDING J

I J
I [INDEXED BY index-name-l [index-name-2] •••] I
I J L __ J

r--,
I Format 2 1
~---~.::..-------------------------i
I J
I OCCURS integer-l TO integer-2 TIMES [DEPENDING ON data-name-l] I
I J

I

I {ASCENDING } I)
KEY IS data-name-2 [data-name-3] •••] ..••

I DESCENDING I
I I
I [INDEXED BY index-name-l [index-name-2] •••] J

I J L ___ -J

rr--~ it - _ ' -Format 3 ' , " :)

:.--~ ;1 ' , :J
II OCCURS integer-2 TIMES [DEPENDING ON ,data-name-i1 ' 'J it' !]
II {ASCENDING } , " . - :1
II. r' KEY IS data-name-'2 (data-narne-31 .. ,..] II
11" DESCENDING, '_ ' ,- , -Jl
!I 1)
II, ',[INDEXED BY index-name-1. (index nam~..:.21 •• ~. 1, , II
n " ",..' ,_ ' " ", -' ,_ " ',- d
t~.~~~~~~~~_~~~~~~~~~~_~~~~~~~~~~~~~_~~~~~ ______ ~

The other data description clauses associated with an entry whose
description includes an OCCURS clause apply to each occurrence of the
item described.

Since three subscripts or indexes are allowed, three nested levels of
the OCCURS clause are allowed. That is, 3-dimensional tables can be
specified. No table may be longer than 32767 bytes in length, except
for fixed-length tables in the Working-Storage Section:"oi(' Li'rika'ge
eci-tion. which may be as long as 131071 bytes,. *-, ",", "'-,--,'

,,,,.,,'*.« :::.-vd

The subject of an OCCURS clause is the data-name of the entry that
contains this OCCURS clause. The subject of an OCCURS clause must be
subscripted or indexed whenever it is referred to fn any statement other
than SEARCH.

Table Handling Feature 301

OCCURS Clause

When subscripted, the subject refers to one occurrence within the
table. When not subscripted (permissible only in the SEARCH statement).
the subject represents the entire table element.

The OCCURS clause may not be specified in a data description entry
that:

1. Has a level-01 or level-77 number

2. Describes an item whose size is variable

(The size of an item is variable if the data description of any
subordinate item within it contains an OCCURS DEPENDING ON clause
that is, an OCCURS clause with the DEPENDING ON option.)

f;
<'<'~'Wm~ ""tr"""":r:: ;;'~<~~:N,N;r'?'::::~~~~~~!~~/~~~(r:wf!"":~~?'7'-~~r-:;~~z;:~'r'r~~~/~:-:«<~""-::~4':--:~((:7-*~~'~;'~~ ~J>~'M"':~r~'~:;~'~'-M 1'/'/'w0_"""<~~'~:'¥~(1~*</~'Cyw~w'*"'r-;l

",' 'aowevef/'t~is'''COln!>il~x>'a:itows< t.he,size:,of:;;?tny ,subordfriate:' i~e,~ ,'i;:o>,be ,;"l
variable ,'-..." that ,is.' to"cont.ain an, OCCURS' DEPENDING "ON iclaus'e. ",,,, ';

L", "", ,M "'''''~>'M~}~'';'''''' ,d """/'" , ,\ '/""'" ""," , , ,,>,,,,, "" M ", >M'" , ,'",,, «', '" '" ' "',,, , ",,/,'

Except for condition-name entries, ,a record description entry that
contains an OCCURS clause must not also contain a VALUE clause.

Within a given record description, the VALUE clause must not be used
in a data description entry that is subsequent to a data description
entry that contains an OCCURS DEPENDING ON clause.

In the diSlus,sic>n.";,w;ni~~~,C)J.lP~;~#<,w.t.,h,e<Wl1te17,,m'''''~Tspmphl;tational" refers to
COMPUTAT IONAL 'i~S"gh~f:!!~~~!~!~k:~,'i",~~!l:4'Lqg~r,q~n:g,~~;::,:,g"~,,p.ata items. ,

When a computational elementary item specifies both the OCCURS and
SYNCHRONIZED clauses, any necessary slack by~es for each occurrence of
'the item are added by the compiler. When a group item specifies the
OCCURS clause and also contains SYNCHRONIZED computational elementary
itenls, any necessary slack bytes fo~ each occurrence of the group are
added by the compiler, as well as the necessary slack bytes for each
occurrence of the computational elementary items. See "Slack Bytes" in
"Data Division" for a complete discussion ..

In Format 1, integer-2 represents the exact number of occurrences.
In this case, integer-2 must be greater than zero.

r~~~"~'»)'?"'~<'~~;"),~"~~

DEPENDING ON OPTION: In Format 2 and ""FormatA '31 the DEPENDING ON option
is usedw This indicates that the subject of this entry has a variable
number of occurrences. This does not mean that the length of the
subject is variable, but rather that the number of times the subject may
be repeated is variable, the number of times being controlled by the
value of data-name-1 at object time.

Program Product Information (Version 4)
r/«~~~:::*/~:7 ~/?::f ;;~~~ ,;o:~~~"r~~::~~~~r;:;:::7*'~r~':J! ;~~~~,:T~~~\~~~~:~~;~'7~ i~:~~<~ y:~,<»>:::::: ":~~t:~~~y~ ~~'~~,~7~«=,~~~?,,~*\ ',~', ~< '

rIn, V'~~~~'qn :, '4 ;:' ",the~', PCCU,R$, :,PE~E~Dl:N,G" b~ "<?,~a~,s:e' '~~~y 'no~ ;,be ,~p~~1:f,fe~:5:
tfor, reco,r(l'}ie~c~~p:t~Q~'!'~,n~:r::~~s",:'?-n ,,~e,' c;:o~un~;<;atipn, ,~ectl.on, ,of': a, ,,;'
fC~~,q,~,,:~~, ,J?,~<;>9':;-~,gr~};N::::;; ,,:,:,:'; ",j:: ::::,:~'{~~;::;):c, ~:";',, ',', ' :':'::"':~ f:,'d',,::'(,,;:' , ' " ','

In Format 2, integer-1 represents the minimum number of occurrences,
and integer-2 represents the maximum number of occurrences. Integer-l
may be zero or any positive integer. Integer-2 must be greater than
zero, and also greater than integer-l. Intege~-2 must be less than
32,768. The value of must not exceed integer-2.

~:;;~g~~15~~Em
302 Part V -- special Features

--- ------------- ----------- ----- -- ---

OCCURS Clause

Data-name-1, the objec~ of the DEPENDING ON aptian:

• Must be described as a positive integer

• Must not exceed integer-2 in value

• May be qualified, when necessary

• Must not be subscripted (that is, must not itself be the subject of.
or an entry within, a table)

• Must, if it appears in the same record as the table it controls,
appear before the variable portion of the record

If the value of data-name-1 is reduced. the contents of data items
whose occurrence numbers exceed the new value of data-name-1 become
unpredictable.

Unused character positions resulting f~om the DEPENDING ON option
will not appear on external media.

The DEPENDING ON option is required only when the last occu~renae of
the subject cannot otherwise be determined.

Any Data Division entry which contains an OCCURS DEPENDING ON clause.
or which has subordinate to it an entry which contains an OCCURS
DEPENDING ON clause, cannot be the object of a REDEFINES clause.

KEY OPTION: The KEY option is used in conjunction with the INDEXED BY
option in the execution of a SEARCH ALL statement. The KEY option is
used to indicate that the repeated data is arranged in ASCENDING or in
DESCENDING order, according to the values contained in data-name-2,
data-name-3, etc.

Data-name-2 must be''"'either the name of the entry containing an OCCURS
clause, or it must be an entry subordinate to the entry containing the
OCCURS clause. If data-name-2 is the subject of this table entry, it is
the only key that may be specified for this table. If data-name-2 is
not the subject of this table entry, all the keys identified by
data-name-2, data-name-3, etc.;

• Must be subordinate to the subject of the table entry itself

• Must not be subordinate to any other entry that contains an OCCURS
clause

• Must not themselves contain an OCCURS clause

When the KEY option is specified, the following rules apply:

• Keys must be listed in decreasing order of significance4

• The total number of keys for a given table element must not exceed
12.

• The sum of the lengths of all the keys associated with one table
element must not exceed 256.

• A key may have the following usages: DISPLAY
COMPUTATIONAL.

or

Table Handling Feature 303

OCCURS Clause

" 'The <follo)ting e,x~mple '~how~"',~,;viol~tio~' ,of "th~ ~~:,~'~;~;~,d;~~';"i-ij$'i
'WORKING-S~ORAGE'SECTION.
77 'CURRENT-WEEK,'
01 TABLE-RECORD.

05 'EMPLOYEE-TABLE OCCURS 100 TIMES .'
ASCENDING KEY'IS WAGE';'RATE EMPLOYEE-NO'

. INDEXED BY, AI,.: B.;..' " " ',' " , . .
10", WEEK-RECORD OCCURsl,TO 52 'TIMES,
. ,: DEPENDiNG ON' CURRENT-WEEK' ,

,\ 'ASCENDI~' KEY IS, EMPLOYEE-NAME ,", ,,;'
, ~, INDEXED ~BY ",c. ~ "~ ~

, , " '15 : WEEK';'NO ,", ' , : ' ',l?I.C 99.>'
, ' '15 AUTHORIZED-ABSENCES PIC ,,<9. ,
, ',::" .15" UNAUTHORIZED-ABSENCES .. PIC' '9~ ,

, ':" 15, ,h ,~LATENEssES 'PI:C ~,' 9./ ~ ~ h

. 10,.' .EMPLOYEE-'NAME" 'PIC X'(20) '"
. ,,,'1'0 EMPLOYEE-NO PIC: 9 (6) •
. ,10 ',WAGE-ltA~ ':PI~' '~999V:99 ..

, .

WAGE-RA1'E and·'· EMPLOYEE-NO , are invalid, as keys,
','after ,th~ Variabl'Ei. portion~ of ,thE\! table.

, ' v N{ '~',"\~ <,~" ~.,. 'h ~ " " , ~> ','h,h 'v ,< v

, 'The' folJ..ow1n ',~is,',a' corrected example ?f, 1:.;h~. R~,,¥ '~p~ion,:, ,
' « <' < ~ ~ > ~ : ~ t:' :;, ;~ '; h ',.... ~h ,< , < ~ ,< 'l; , ; " ' h ' < < < h ,

,,"WORKING;Sro ~'" , :'SECTION. ' ,
17 ' CURkENT~WIEK " ' PICTURE 99';
01. ,TABLE-RECORD_.',' , :, ,', .

,05,'EMPLOYEE-TABLE OCCURS 100 TIMES ,
, ,ASCEND+NG KEY IS '~AG~,-RATE ,EMPLOYEE-~O

',:' " ':INDEXED ,BY A,." 'B. , "," '
, , .";\'1'0' ,:,EMPLOYEE-NAME " ' ,,', PIC ,;X(20) .. '

, " ' >10;: :EMPLdnE-'l~o ",!' •): PIC' 916)~,' ",;
, "",\~'10',:,>WAGE~RATE ,,' , , ' ' , " ,"',', .,l?IC'9999V99.':

, " ,"l(f,\:\lU~EK:"B.EC~lm'OCCURS"i.:TO·, ~2"TI~S .. ~~<,~,
:"DEPBNDING ,Ol~ ,CURRENT-,WEEK' ", : ,"""." .<'>.: \,
::"AS~f!NDIN~, l<E'Y; ,I~', ~~~K?N~,,;I~BXED\B~ '~~;:~:
',lS .JiE~K NO '" ,"" \ "j '"~I ,PIC ,99 .. "" ,"

, ' 15 :' AUTHORIZED-ABSENCES PIC:' 9~:- ':,':'
>;, ','~\l!L>\UNAtiTHqRIZED"'ABSENCES,'PIC'!: 9'../">/'
,,\~~~:":Y,,\15':>,:~~ENESSES: "',.':,',',' 'PIC:'<:9~"'\""\\'"

\~' , ' "://'

;',' ,:"'," The"k'eY~'WAGE~RATE~~d EMPLOYEE~NO 'both ~ppea'r"~~' a\fixed,':"\;:'~:,::"
t~, «~!,~i>,l~~~tn~n~,: !~<?~~' ,!!?:~,,,~?eg~,l'l?~~,~,,,. ~~,,,,,~_~!:~,,~,~~!,~,.j~t~~~~~,,_:~~,~!te!~~:±~~~,.;.~,\\

INDEXED BY OPTION: The INDEXED BY option is required if the subject of
this entry (the data-name described by the OCCURS clause, or an item
within this data-name, if it is a group item) is to be referred to by
indexing. The index-name(s) identified by this clause is not defined
elsewhere in the program, since its allocation and format are dependent
on the system, and, not being data, cannot be associated with any ~ata
hierarchy.

The number of index-names for a Data Division entry must not exceed
twelve.

An index-name must be initialized through a SET or PERFORM statement
before it is used.

Each index-name is a fullword in length and contains a binary value
that represents an actual displacement from the beginning of the table

304 Part V -- Special Features

o

-- ------~----------------

OCCURS Clause

that corresponds to an occurrence number in the table. The value is
calculated as the occurrence number minus one, multiplied by the length
of the entry that is indexed by this index-name.

For example, if the programmer writes-

A OCCURS 15 TIMES INDEXED BY Z PICTURE IS X(lO).

on the fifth occurrence of A, the binary value contained in Z will be:

Z = (5 - 1) • 10 = 40

Note that, for a table entry of variable length, the value contained in
the index-name entry will become invalid when the table entry length is
changed, unless the user issues a new SET statement to correct the value
contained in the index-name.

The following example of the setting of values in index-name is
incorrect:

DATA DIVISION.

77 E PICTURE S9(5) COMP SYNC.
01

05 A OCCURS 10 INDEXED BY IND-i •••
10 B OCCURS 10 DEPENDING ON E INDEXED BY IND-2 •••

PROCEDURE DIVISION.

MOVE 8 TO E
SET IND-1 TO 3
SEARCH A •••

MOVE 10 TO E
SEARCH A •••

(Moving 10 to E changes the length of the table entry A, so that IND-1
now contains an invalid value.)

Table Handling Feature 305

OCCURS Clause

The following example of the setting of values in index-name is
correct:

DATA DIVISION.

77 E PICTURE 59(5) COMP SYNC.
77 D PICTURE S~(S) COMP SYNC.
01

05 A OCCURS 10 INDEXED BY IND-l •••
10 B OCCURS 10 DEPENDING ON E INDEXED BY IND-2 •••

PROCEDURE DIVISION.

MOVE 8 TO E
SET IND-l TO 3
SET 0 TO IND-l
SEARCH A •••

MOVE 10 TO E
SET IND-l TO D
SEARCH A •••

(Here the user has saved the occurrence number in 0, and then later
reset IND-i to obtain the corrected value.)

There are two types of indexing: direct indexing and relative
indexing.

Direct Indexing; If a das~=~~!~ is used in the procedure text with
index-names, the data-name itself must be the subject of an INDEXED BY
option, or be subordinate to a group(s) that is the subject of the
INDEXED BY option.

In the following example

A (INDEX-i,' INDEX-2, INDEX-3)

implies that A belongs to a structure wit~"",~~;:,~,~~,J;'~~~!'§»»F_g"t,.,Q££g,,!~~,~,,,,~,,,_,T.'~"r,,,~"'j
clauses, each with an INDEXED BY option. },However,<J.f"da'Ca-name,' ,A, ::,.\.,0::::,>,';;

rt~;is"',r'~~~p~~1::·6~lo,n9i<:~o7]in:::;o~e:q~~:;:~€ru:c~l1'~$' '~h~~:', does ~not'::-;ie:th~ ;,:: ';:: :-::,',i:;:::>r,
f l:NDE~ED" BJ', ,optio!l" ",tb:~~,: ~pmpi+er ':,~cceJ?~s;, th~", '~p'ecif 1cati,on', o~<:~ '..;, ,,'i" ::~:'j ~,,:>.
l. :irtdax~'na'mes,,' (in 'this ,;'exa~le',;~INDJX~ t,' ",> IND1tX~2, ,'"I NOEX-l h., ','$0(1 ',a,ssumes,>.t:b
~/U$er" bas ,:sit':,t.b.eril':,to,:valtJe!J:'>':bat.:;:'c:or,r'espon'Cl,;'to" the <,'oc'ciutrende'<number:';,:;ll'
~: ,~~~,~~~",'!;,~~~~:~i~~;!~~~L~:L:~(,~;:(:r>:2i::~,i; ~;::,; ;,:;~;:~::.j:~LL?': j}~ ;".~j,:" ::,:<:"~~~::;,~~~;w :'~ >M:i~,i~~,~..: 2~~~:::~::':<,::,~'~~::;:~J' :::" " .. "

Relative. Indexing; The ~~~~~~~~m~ is followed by a space, followed
by one of the operators + or -, followed by another space, followed by
an unsignea numeric literal. The numeric literal is considered to be an
occurrence number, ana is converted' to an index value before being added
to, or subtracted from, the corresponding index-name.

306 Part V -- Special Features

(
'-._--"

/"--"
t' ,
~,/

USAGE IS INDEX Clause

Given the following eKample:

A (Z + 1, J + 3, K + 4)

where:

table element indeKed by Z has an entry length of 100

table element indexed by J has an entry length of 10

table element indexed by K has an entry length of 2

the resulting address will be computed as follows:

(ADDRESS of A) + Z +,100 * 1,+ J + lO * 3,+ K +,4 * 2,
I , I

US~GE IS INDEX Clause

conversion of integers
to indeK values

The USAGE IS INDEX clause is used to specify the format of a data
item stored internally.

r--,
I Format I
~--~
I I
I [USAGE IS] INDEX I
I I L __ J

rhe USAGE IS INDEX clause allows the programmer to specify indeK data
items.

An inde~ Qat~ item is an elementary item (not necessarily connected
with any table) that can be used to save index-name values for future
reference. An index data item must be assigned an index-name value
(i.e., (occurrence number - 1) * entry length) through the SEr
statement. such a value corresponds to an occurrence number in a table.

The USAGE IS INDEX clause may be ~ritten at any level. If a group
item is described with the USAGE IS INDEX clause, it is the elementary
items within the group that are ~~~~~_g~t~_~t~m~; the group itself is
not an index data item, and the group name cannot be used in SEARCH and
SEr statements or in relation conditions. The USAGE clause of an
elementary item cannot contradict the USAGE clause of a group to ~hich
the item belongs.

An ind~K dat~item can be referred to directly only in a SEARCH or
SEr statement or in a relation condition. An index data item can be
part of a group which is referred .to in a M~VE or an input/output
statement. When such operations are executed, however, there is no
conversion of the contents of the indeK data item.

An ind~~ dat~ item cannot be a conditional variable.

rhe SYNCHRONIZED, JUSTIFIED, PICTURE, BLANK WHEN ZERO, or VALUE
clauses cannot be used to describe group or elementary items described
with the USAGE IS ,INDEX clause •. However, this compiler allows the use;

,,'!>f SYNCHRON.IZEq when USAGE IS INDEX to obtain efficient use of the item~;

Table ~andling Feature 307
I

Table Handling -- Relation Conditions

rhe SEARCH and the SEr statements may be used to facilitate table
handling. In addition, there are special rules involving rable Handling
elements ~hen they are used in relation conditions.

:omparisons involving index-names and/or index data items conform to
the follo~ing rules:

1. The comparison of two index-names is actuftlly the comparison of the
corresponding occurrence numbers.

2. In the comparison of an index-name ~ith a data item (other than an
index data item), or in the comparison of an index-name with a
literal, the occurrence number that corresponds to the value of the
index-name is compared ~ith the data item or literal.

3. In the comparison of an index data item with an index-name or
another index data item, the actual values are compared without
conversion.

Any other comparison involving an index data item is illegal.

Table 25 gives permissible comparisons for index-names and index data
items.

Table 25. Index-names and Index Data Items -- Permissible Comparisons
-----------------T----------T----------T-------------T---------------,

I Second I Index-name I Index I Data-name INumeric literal I
I Operandi I Data Item I (numeric I (integer only) I
I First I I linteger only) I I
I Operand I I I I I
~------------------ ----------+----------+-------------+---------------~ I Index-name I Compare I Compare I Compare I Compare I
I I occurrence I without I occurrence I occurrence I
I I number I conversion I number with Inumber with I
I I I I data-name I literal I
~------------------+----------+----------+-------------+---------------~
IIndex Data I Compare I Compare I Illegal I Illegal I
I Item I without I without I I I
I Iconversionlconversionl I I
~------------------+----------+----------+-------------~---------------~
I Data-name I Compare I Illegal I I
I (numeric I occurrence I I I
I integer I number I I I
lonly) Iwith I I I
I Idata-name I I See Table ·12 for I
~------------------+-----'-----+----------~ permi ssibl e compar is ons I
I Numeric I Compare I Illegal I I
I literal I occurrence I I I
I (integer I number I I I
I only) I with I I I
I IIi teral I I I L __________________ ~ __________ ~ __________ ~ _____________________________ J

308 Part V -- special Features

CJ

Page of GC28-6396-3 and -4, Revised 5/15/74, by TNL: GN28-1048

SEARCH Statement

SEARCH Statement

The SEARCH statement is used to search a tamle for an element that
satisfies a specified condition, and to adjust the value of the
associated index-name to the occurrence number corresponding to that
table element.

r--, I Format 1 J

~--~
1 I
II {indeX-name-l} J

I SEARCH identifier-1 [VARYING
I identif ier-2 J

1]
I [AT END imperative-statement-1])
I J
II {imperative-statement-2} 1)

WHEN condition-1
I NEXT SENTENCE J
I)
II {imperative-statement-3}'

[~ condition-2 l... ~
I NEXT SENTENOE I
I 1 L __ J

r--,
1 Format 2 I

~--i
I 1
I SEARCH ~ identifier-1 [AT END imperative-statement-l] I
I)
II {imperative-statement-2} II
~ condition-l

I NEXT SENTENCE 1
I i L __ J

The Data Division description of
clause with the INDEXED BY option.

When written in the SEARCH statement. identifier-1 must refer to all
occurrences within one level of a table; that is, it must not be
subscripted or indexed.

Identifier-l can be a data item subordinate to a data item that
contains an OCCURS clause, thus providing for a two or three dimensional
table. An index-name must be associated with each dimension of the
table through the INDEXED BY phrase of the OCCURS clause. Execution of
a SEARCH statement causes modification only of the setting of the
index-name associated with identifier-1 (and, if present" of
index-name-l or identifier-2). Therefore. to search an entire two or
three dimensional table, it is necessary to execute a SEARCH statement
several times; prior to each execution, SET statements must be executed
to adjust the associated index-names to their appropriate settings.

In the AT END and WHEN options., if any of the specified imperative
statement(s) do not terminate with a GO TO statement, control passes to
the next sentence after execution of the imperative statement.

Format 1 Considerations -- Identifier-2, when specified. muse be
described as an index data item. or it must be a fixed-point numeric
elementary item described as an integer. When an occurrence number is

Table Handling Feature 309

------------- ------ ._--- ------------------------ ------_. -------- -------_ .. ------- --------------- ---_._.

SEARCH Statement

incremented, identifier-2 is simultaneously incremented by the same
amount.

Condition-l, condition-2, etc., may be any condition, as follows:

relation condition

class condition

condition-name condition

sign condition

(condition)

[NOT] condition {AONRD}

(See Conditions section of "Procedure Division.")

Upon the execution of a SEARCH statement, a serial search ta~es
place,' starting with the current'index.setting.

If, at the start of the SEARCH, the value of the index-name
associated with identifier-l is not greater than the highest possible
occurrence number for identifier-l, the following actions take place:

1. The condition(s) in the WHEN option are evaluated in the order they
are written.

2. If none of the conditions is satisfied, the index-name for
identifier-l is incremented to reference the next table element,
and step 1 is repeated.

3. If, upon evaluation, one of the WHEN conditions is satisfied, the
search terminates immediately, and the imperative-statement
associated with that condition is executed. The index-name points
to the table element that satisfied the condition.

4. If the end of the table is reached without ~he WHEN condition being
satisfied, the search tprminates as described in the next
paragraph.

If at the start of the search, the value of the index-name associated
with identifier-l is greater than the highest permissible occurrence
number for identifier-l, the search is terminated immediately, and if
the A~ ~ND option is specified, imperative-statement-l is executed. If
this option is omitted, control passes to the next senten'ce.

When the VARYING index-name-l option is not specified, the index used
for the search is the first (or only) index-name associated with
identifier-i.

When the VARYING index-name-l option is specified, one of the
following applies:

• If iydex-name-l is one of the indexes for identifier-l, index-name-l
is used for the search. Othe+wise, the first (or only) index-name
for identifier-l is used •

• If index-name-l is an index for another table entry, then when the
index-name for identifier-l is incremented to represent the next
occurrence of the table, index-name-l is simultaneously incremented
to represent the next occurrence of the table it indexes.

A flowchart of the Format 1 SEARCH operation containing two WHEN
options is shown in Chart 5.

310 Part V -- Special Features

\

r"
\ '--.-..

Cj

SEARCH Statement

Chart s. Format 1 SEARCH operation Containing T~o WHEN Options

••• ~~~~s~ETIM.~~s~~g~s
OCCURRENCE NUHBFR

····11.2 •• ·••·••• • EXECUTION •
• OF SEARCH •
• BEGINS •

-------,1 , ..
B2 •• • •••• B4 ••••••••••

•• *. ••
• • •• GT AT END. • IMPERATIVE-. • • • , ••• .----------------------------->. STATFMENT-l .------> , r OR

, ..
C2 •• • •••• C4 ••••••••••

, • ., TRUE WHEN CONDITION-l • IMPERATIVE-. • •
• , CON!lITION-l ,.-------------------------->. STATEMENT-2 .-----> •• • * •••••••••••••••••

rALSE

...
D2 •• • •••• u4 ••••••••••

,. ., TRUE WHEN CONDITION-2* • IMPERATIVE-. • •
• , CONDITION-2 ,.------------------------------>. STATEMENT-3 .-----> *. .• ••

*. .• • • •• . * •••••••••••••••••

rSE

·····E2··········
• INCREMENT •
• INDEX-NAME FOR •
• IDENTIFIER-l •
• IINDEX-NAME-l •
• IF APPLICABLEl.

········1········

·····F2 ••• •••••••
• INCREMENT •

___ : f~g~xi~~~E~ :
• TABLE) OR •
• IDEifrIFIER-2 •

• THESE OPERATIONS ARE INCLUDED ONLY WHEN CALLED Foa
IN THE STAT~NT,

•• EACH OF THESE CONTROL TRANSFERS IS TO THE NEXT
SENTENCE UNLESS THE IMP~TIVE-STATEMENT ENDS WITH
A GO TO STATEMENT.

Table Handling Feature 311

.------------------------------

SEARCH Statement

Format-2 Considerations -- rhe first index-name assigned to
identifier-1 will be used for the search.

The description of identifier-1 must contain the KEY option in its
OCCURS clause.

Condition-1 must consist of one of the following:

• A relation condition incorporating the EQUALS, EQUAL TO, or equal
sign (=) relation. Either the subject or the object (but not
both) of the relation-condition must consist solely of one of the
data~names that appear in the KEY clause of ideBtifier-1 •

• A condition-name condition in which the VALUE clause describing the
condition-name consists of a single literal only. The conditional
variable associated ~ith the condition-name must be one of the
data~names that appear in the KEY clause of ideBtifier-!.

• A compound condition forne1 from simple conditions of the types
described above, with AND as the only connective.

Any dat~~ that appears in the KEY clause of !g~~~!f!~~~! may be
tested in condition-1. However, all data-names in the KEY clause
preceding the one to be tested must also be so tested in condition-1.
No other tests may be made in condition-1.

For example, if the following table were define1 in the Data
Division:

11 VALUE-1 PIcrURE 99 •

.
05 A OCCURS 10 rIMES ASCENDING KEY IS KEY1, KEY2, KEY3, KEY4

INDEXED BY I.
10 KEY1 PlcrURE 9.
10 KEY2 PICTURE 99.
10 KEY3 PIcrURE 9.
10 KEY4 PICTURE 9.

88 BLUE VALUE 1.

in the Procedure Division, valid WHEN phrases could be:

~BEN KEY1 (I) = 3 AND KEY2 (I) = 10 AND KEY3 (I) = 5 •••

~HEN KEY1 (I) = 3 AND KEY2 (I) = VALUE-1
AND KEY3 (I) = 5 AND BLUE (I) •••

During execution of a Fornat 2 SEARCH statement, a binary search
takes place; the setting of index-name is varied during the search so
that at no time is it less/than the value that corresponds to the first
element of the table, nor is it ever greater than the value that
corresponds to the last element of the table. If condition-l cannot be
satisfied for any setting of the index within this permitted-range,
control is passed to !mper!~!y~ statement-l when the AT END option
appears, or to the next sentence when this clause does not appear. In
either case, the final setting of the index is not predictable. If the
index indicates an occurrence that allo~s condition-l to be satisfied,
control passes to imperatiy~~~~!~~m~B~=~.

312 Part V -- Special Features

SET Statement

The SET statement establishes reference points for table handling
operations by setting index-nanes to values ~ssociatej with table
elements. The SEr statement must be used when initializing index-name
values before execution of a SE~RCH statement; it may also be used to
transfer values between injex-names and other elementary data items.

r--,
I Format 1 I
~--~
I I
I 1 index-name-1 [index-name-21···1 1 injex-name-3 ! I
I SEr !Q identifier-3 I
I --- identifier-1 [identifier-21... literal-1 I
I I L __ J

r--,
I Format 2 I
~--~
I I
II 1 UP BY 1 1 identifier- 4 1 II SET index-name-4 [index-name-S1 •••
I QQ~~ ~~ literal-2 I
I I L __ J

~ll idggtifier~ must name either index data items or fixed-point
numeric elementary items described as inte~ers; however, i~gg~ifi~£~~
must not name an index data item. When a literal is used, it must be a
positive integer. In~~~~g~m~~ are related-to-i-given table through the
INDEXED BY option of the OCCURS clause; when index-names are specified
in the INDEXED BY option, they are automatic~lly defined.

~ll references to ig~g~~~~~g~l, i~gg~ifig£~l, and i~~g~~g~mg~~ apply
e~ually to i~dex-~me-~, i~g~tifig£~£, and i~~g~~g~m~~~, respectively.

Format 1 Considerations -- When the SEr statement is executed, ~ne of
the-follo~Ing-ictions-occurs:

1. Index-name-1 is convertej to a value th~t corresponds to the same
table element to ~hich either injex-name-3, identifier-3, or
literal-1 corresponds. If identifier-3 is an injex jata item, or
if index-name-3 is related to the same table as index-name-1, no
conversion takes place. ro be valid, the resultant value of
index-name must correspond to an occurrence number of an element in
the associated table.

2. If identifier-1 is an index data item, it is set equal to either
the contents of index-name-3 or ijentifier-3, where identifier-3 is
also an index data item. Literal-1 cannot be used in this case.

3. If identifier-1 is not an index data item, it is set to an
o~currence number that c~rresponds to the value of index-name-3.
Neither identifier-3 nor literal-1 can be used in this case.

Fo~m~~_~_£Qrr~ide~~tiQ~~ -- When the SEr statement is executed, the
contents of index-name-4 (and index-name-S, etc., if present) are
incremented (Up-aYf-or-decrenented-(DOWN-SY) by a value that corresponds
to the number of occurrences representej by the value of bitg£~b~f or
ide~tifie~~~.

Table Handling Feature 313

. 1

Table Handling--Sample Program

SAMPLE TABLE HANDLING PROGRAM

The program in Figure 18 illustrates the Table Handling feature,
including the use of indexing. of the SET statement. and of the SEARCH
statement (including the VARYING aption and the SEARCH ALL format).

The census bureau uses the program to compare:

1. The number of births and deaths that occu~red in anyone of the 50
states in anyone of the past 20 years with

2. The total number of births and deaths that occurred in the same
state over the entire 20-year period

The input file. INCARDS, contains the specific information upon which
the search of the table is to be conducted. INCARDS is formatted as
follows: .

STATE-NAME a 4-character alphabetic abbreviation of the state name

M-F-CODE 1 = male; 2 = female.

YEARCODE a 4-digit field in the range 1950 through 1969

A typical run might determine the number of females born in New York
in 1953 as compared with the total number of females born in New York in
the past 20 years.

r--,
IDENTIFICATION DIVISION. ,J
PROGRAM-ID. TABLES. 1
ENVIRONMENT DIVISION. ~
CONFIGURATION SECTION. J
SOURCE-COMPUTER. IBM-360. J
OBJECT-COMPUTER. IBM-360. 1
SPECIAL-NAMES. CONSOLE IS TYPEWRITER. J
INPUT-OUTPUT SECTION.)
FILE-CONTROL. J

SELECT INFILE ASSIGN TO UT-2400-S-INIl'APE. ,J
SELECT OUTFILE ASSIGN TO UR-S-PRTOUT. ,
SELECT INCARDS ASSIGN TO UR-S-ICARDS. I

DATA DIVISION. ~
FILE SECTION. J
FD INFILE LABEL RECORDS ARE OMITTED. J
01 TABLE-1 PIC X(28200). J
01 TABLE-2 PIC X(1800).
FD OUTFILE LABEL RECORDS ARE OMITTED.
01 PRTLINE PIC X(133).
FD INCARDS LABEL RECORDS ARE OMITTED.
01 CARDS.

05 STATE-NAME PIC X(4) •
05 M-F-CODE PIC 9.
05 YEARCODE PIC 9(4).
05 FILLER PIC X(71).

WORKING-STORAGE SECTION.
01 PRTAREA-20.

05 FILLER PIC X VALUE SPACES.
05 YEARS-20 PIC 9(4).
05 FILLER PIC X(3) VALUE SPACES.
05 BIRTHS-20 PIC 9(7).
05 FILLER PIC X(3) VALUE SPACES.
05 DEATHS-20 PIC 9(7).

I 05 FILLER PIC X(108) VALUE SPACES. I L __ J

Figure 18. Sample Table Handling Program (Part 1 of 2)

314 Part V -- Special Features

C~)

Table Handling--Sample Program

r--,
101 PRTAREA. 1
I 05 FILLER PIC X.
I 05 YEAR PIC 9(4)"
I 05 FILLER PIC X(3) VALUE SPACES.
I 05 BIRTHS PIC 9(5).
I 05 FILLER PIC X(3) VALUE SPACES.

05 DEATHS PIC 9(5)u
05 FILLER PIC X(112) VALUE SPACES.

01 CENSUS-STATISTICS-TABLE.
05 STATE-TABLE OCCURS 50 TIMES INDEXED BY ST.

10 STATE-ABBREV PIC X(4).
10 M-F OCCURS 2 TIMES INDEXED BY SEe

15 STATISTICS OCCURS 20 TIMES ASCENDING KEY IS YEAR
INDEXED BY YR.
20 YEAR PIC 9 (4).,
20 BIRTHS PIC 9(5).
20 DEATHS PIC 9(5).

01 STATISTICS-LAST-20-YRS.
05 M-F-20 OCCURS 2 TIMES INDEXED BY SE-20.

10 STATE-20 OCCURS 50 TIMES INDEXED BY ST-20.
15 YEARS-20 PIC 9(4).
15 BIRTHS-20 PIC 9(7).
15 DEATHS-20 PIC 9 (7)"

PROCEDURE DIVISION.
OPEN-FILES.

OPEN INPUT INFILE INCARDS OUTPUT OUTFILE.
READ-TABLE.

READ INFILE INTO CENSUS-STATISTICS-TABLE
AT END GO TO READ-CARDS.

READ INFILE INTO STATISTICS-LAST-20-YRS
AT END GO TO READ-CARDS.

READ-CARDS.
READ INCARDS

AT END GO TO EOJ.
I DETERMINE-ST.
I SET ST ST-20 TO 1.
I SEARCH STATE-TABLE VARYING ST-20 AT END GO TO ERROR-MSG-1
I WHEN STATE-NAME = STATE-ABBREV (ST) NEXT SENTENCE.
IDETERMINE-SE.
I SET SE SE-20 TO M-F-CODE.
I DETERMINE-YR.
I SEARCH ALL STATISTICS AT END GO TO ERROR-MSG-2
I WHEN YEAR OF STATISTICS (ST, SE, YR) = YEARCODE
I GO TO WRITE-RECORD.
l ERROR-MSG-1.
I DISPLAY "INCORRECT STATE" STATE-NAME UPQN TYPEWRITER.
I GO TO READ-CARDS.
lERROR-MSG-2.
I DISPLAY "INCORRECT YEAR" YEARCODE UPON TYPEWRITER.
I GO TO READ-CARDS.
1 WRITE-RECORD.
I MOVE CORRESPONDING STATISTICS (ST, SE, YR) TO PRTAREA.
I WRITE PRTLINE FROM PRTAREA AFTER ADVANCING 3.
I MOVE CORRESPONDING STATE-20 (SE-20, ST-20) TO PRTAREA-20.
J WRITE PRTLINE FROM PRTAREA-20 AFTER ADVANCING 1.
I GO TO READ-CARDS.
lEOJ.
I CLOSE INFILE INCARDS OUTFILE.
I STOP RUN. 1 L __ J

Figure 18. Sample Program for the Table Handling Feature (Part 2 of 2)

Table Handling Feature 315

Segmentation -- Organization

rhe segmentation Feature 3llows the problem programmer to communicate
with the compiler to specify object program overlay requirements. rhe
segmentation feature permits segmentation of proce~ures only. The
Procedure Division 3n~ Environnent Division are considered in
determining segmentation requirements for an object program.

Although it is not mand3t~ry, the Proce~ure Division for a source
program is usually written as several consecutive sections, each of
which is composed of a series ~f closely rel3ted operations that are
designed to perform collectively a particular function. However, when
segmentation is used, the entire Procedure Division must be in sections.
In addition, each section must be classified as belonging either to the
fixed portion or to one of the independent segments of the object
program. Seqmentation in no way affects the neej for qualification of
procedure-names to ensure uni~ueness.

FIXED PORrION

rhe fixed portion is defined as that part of the object program that
is logically treated as if it ~ere always in computer storage. rhis
portion of the program is conp~sed of t~o types of computer storage
segments, permanent segments and overlayable fix~d segments.

A permanent segment is a segment in the fixed portion that cannot be
overlaid by any other part of the program.

An overlayable fixed segment is a segment in the fixed portion which,
although logically treated as if it were alw3Ys in storage, can be
overlaid (if necessary) by another segment to optimize storage
utilization. However, such 3 segment, if called for by the program, is
always made available in the state it was in when it was last used.

Depending on the availability of storage, the number of permanent
segments in the fixed portion can be varied through the use of a special
facility called SEGMENr-LIMIT, which is ~iscussed in "Structure of
Program Segments."

INDEPENDENr SEGMENTS

An independent segment is defined as that part of the object program
which can overlay, and be overlaid by, either an overlayable fixed
segment or another independent segment. An independent segment is
always considered to be in its initial state each time it is made
available to the program.

316 Part V -- Special Features

(~

\ /
'-. J

Segmentation Control/Priority Numbers

SEGMENT CLASSIFICATION

Sections that are to be segmented are classified by means of a system
of priority numbers. The following criteria should be used:

• Logical.requirements; sections that must be available for
reference at all times, or which are referred to very frequently,
are normally classified as belonging to one of the permanent
segments: sections that are less frequently used are normally
classified as belonging either to one of the overlayable fixed
segments or to one of the independent segments, depending on logic
requirements.

• Frequency of.use: Generally, the more frequently a section is
referred to, the lower its priority number should be; the less
frequently it is referred to, the higher its priority number should
be.

• Relationsh!Q~Q~he~_2~~~io~2: Sections that frequently
communicate with one another should be given equal priority
numbers. All sections with the same priority number constitute a
single program segment.

SEGMENTATION CONTROL
)

The logical sequence of the program is the same as the physical
sequence except for specific transfers of control. A reordering of the
object module will be necessary if a given segment has its sections
scattered throughout the source program. However, the compiler will
provide transfers to maintain the logic flow of the source program. The
compiler Hill also insert instructions necessary to load and/or
initialize a segment when necessary. Control may be transferred within
a source program to any paragraph in a section: that is, it is not
mandatory to transfer control to the beginning of a section.

PRIORITY NUMBERS

Section classification is accomplished by means of a system of
priority numbers. The priority number is included in the section
header.

r--,
I Format I
~--~
I I
I section-name SECTION [priority-numberl. I
I I L __ J

All sections that have the same 2~~Q~~~~~~~illQ~~ constitute a program
segment with that priority.

The ~!ori£y-number.must be an integer ranging in value from 0
through 99.

Segmentation Feature 311

SEGMENT-LIMIT Clause

Segments with prior!~=UB~be~~ 0 through 49 belong to the fixe~
portion of the object program.

Segments with ~iori~=~~mQ~~~ 50 through 99 are independent
segments.

Sections in the declaratives portion of the Procedure Division must
not contain Qriority-number~ in their section headers. They are treated
as fixed segments with a priority-number of zero.

If the priority-number is omitted from the section header, the
priority is assumed to be zero.

When a procedure-name in an independent segment is referred to by a
PERFORM statement contained in a segment with a different priority
number, the segment referred to is made available in its initial state
for each execution of the PERFORM statement.

SEGMENT LIMIT

Ideally, all program se~ments having priority-numb~~ ranging from 0
through 49 are treated as permanent segments. However, when
insufficient storage is available to contain all permanent segments plus
the largest overlayable se~ment, it becomes necessary to decrease the
number of permanent segments. The SEGMENT-LIMIT feature provides the
user with a means by which he can reduce the number of permanent
segments in his program, while these permanent segments still retain the
logical properties of fixed portion segments (priority numbers 0 through
49).

r--,
I Forma£ I
~--~
I I
I [SEGMENT~LIMIr IS priority-number] I
I I L __ J

The SEGMENT-LIMIT clause is coded in the OBJECT-COMPUTER paragraph.

Priority~number must be an integer that ranges in value from 1
through 49.

when the SEGMENT-LIMIT clause is specified, only those segments
having priority~numbers.from 0 up to, but not including, the priority
number designated as the segment limit are considered as permanent
segments of the object program.

Those segments having P~~~~~~~_~~mQ~~~ from the segment limit through
49 are considered as overlayable fixed segments.

when the SEGMENT-LIMIT clause is omitted, all segments having
priority-numbers from 0 through 49 are considered to be permanent
segments of the object program.

318 Part V -- Special Features

C
--"\

/

()

Segmentation -- Restrictions

RESTRICTIONS ON PROGRAM F~Q~

When segmentation is used, the following restrictions are place~ on
the ALTER and PERFORM statements, an~ called programs:

ALTER Statement

1. A GO TO statement in a section whose priority number is 50 or
higher must not be referred to by an ALrER statement in a section
with a different priority number.

2. A GO ro statement in a section whose priority number is lower than
50 may be referre~ to by an ALTER statement in any section, even if
the GO TO statement to which the ALTER refers is in a segment of
the program that has not yet been calle~ for execution.

PERFORM. Statement

1. A PERFORM statement that appears in a section whose priority number
is lower than the seqment limit can have within its range only the
following:

a. Sections with priority numbers lower than 50.

b. sections wholly contained in a single segment whose priority
number is higher than 49.

n>-,-'aowever, this compiler allows the 'PERFORM.' to have within its range:
l!~.=_!:~_c:>ns ,~ith an:r ~rior~,~y,~n~~~,~_rs., ' _, _, ~ _'_ , ". ,.:. "'" _", ",'

2. A PERFORM statement that appears in a section whose priority number
is equal to or higher than the segment limit can have within its
range only the follo~ing:

a. Sections with the same priority number as the section
containing the PERFORM statement.

b. Sections with priority numbers that are lOwer than the segment
limit.

F"~' , Ho'wever; this' 'compiler allotofs 'the' 1>ERFORM to have within ,its range;
;sections with any priority 'numbers. '
&'W",-»:~x"".'>..w>. ""'" <:«vW ..,.,: ~ y", ,<v , , , ~ ... ,

When a procedure-name in a permanent segment is referre~ to by a
PERFORM statement in an independent segment, the in~ependent segment is
reinitialized upon exit from the performe~ procedures.

Segmentation Feature 319

COpy Statement

Prewritten source program entries can be included in a source program
at compile time. Thus, an installation can use standard file
descriptions, record descriptions, or procedures without recoding them.
These entries and procedures are contained in user-created libraries;
they are included in a source program by means of a COpy statement.

COpy Statement

rhe COpy statement permits the user to include prewritten Data
Pivision entries, Environment Division clauses, and Procedure Division
procedures in his source program.

r--,
I Format I
~--~

:OPY library-name r{SOpiRii§~
»_iM». ... ' *, .,....:~""'~~h ... "_ ~,.. u""'::.1

[RE~LACING word-l ~~ {~~~~~:l-l }
identifier-l

1
word-4 I

[word-3 BY literal-2
identifier-2

] ...].

No other stat~~s~~~r~Cl~<,}~,!-~,',!,~.~",~~y, <~,EE~.~E"~,~".,,~~~,,,~.e.m~N,~~~!:~y".,~,~*.~!l~,"*"'72IPy
state,ment, , t.he>:exception ,of t,he, report' {fescription""entry, 'an~ ,1;.ne'::,

[.;I:.lr*E r::9'~~~9~::~~!!.!,~~~~~ ,,~, C'_'~~""'~'"M"." •• , "'h~',, ", -<' ~,~.~""',,_"'w'."mM"" ""'" - ," , "",,,,,,,,,,,,",,,,,,,, , M',,, '. '" • ,"" ", -,,,,j

When the library text is copied from the library, compilation is the
same as tnough the text were actually part of the source program.

The COPY statement processing is terminated by the end of the library
text.

The text contained in tne library must not contain any COpy
statements.

320 Part V -- Special Features

~
(
.\...._.- '

r~
',-.-

------_.- ----------

COpy statenvant

r--,
I General Format I

l ,
/

~--~
IOption 1 (within the Configuration Section): I
I I
I §QQg£E-COMPUTER. COP~ statement. I
I OBJE~I=£OMPUTER. COP~ statement. I
I SPECIAL-NAME~. COpy statement. I
~--~
IOption 2 (within the Input-Output section): I
I I
I FILE-~TROL. COPY statenent. I
I I~O~~QNTRO~. COpy statement. I
~------~---~
IOption 3 (within the FILE-CONTROL Paragraph): I
I I
I, ~I file-name COPY·statement. I
~--~
lQ2tion 4 (within the File Section): I
I I
I FD file-name COpy statenent. I
I 2Q sort-file-name COpy statement. I
~--~
loption 5 (within the Report section): I
I I
I RD report-name COpy statement. I
I :BQ report-name [WITH £QQ~ mnemonic-namel COpy statement. I
~--~
loption 6 (within a File or sort description entry, or within the I
IWorking-Storage Section or the Linkage Section): I
I I
I 01 data-name COPY statement. I
~--~

"
loption 7 (with a Report Group): I
I I
I 01 [data-name] COPY statenent. I (/

-../'

~~---~
loption 8 (within the working-Storage Section or the Linkage Section): I
1:- - I
I::.~".. 77 ~ata':'name C.O~Y statement. I
~~---~
IOption 9 (within the Working-Storage Section or the Linkage Section): I
Ii . I
I; 01 data-name-l REDEFINES data-name-2 COpy statement. I
I:"" .. 77 ~ata-name-l REDEFINES data-na~e-2 COpy statement. I
~--~
IOetion 10 (within the Procedure Division): I
I I
I section-name SECTION. [priority-number]. COpy statement. I
I paragraph-name. COPY statement. I
~--------------~---~
IProg~~£QQ~~Inform~~iQll_iY~~~iQll_~L I
I I
I oeti0B-li (within the Comnunication Section): I
I I
I CD cd-name COpy statement. I L ___ ~_~ ____ ~ ___ : ____ ~ __ J

Source Program Library Facility 321

COpy Statement

Librar~=.!!~ is the na,me of a member of a partitioned data set
contained in the user's library; it identifies the library subroutine to
the control program. Library-name must follow the rules of formation
for a program-name. The first eight characters are used as the
identifying name.

The words preceding COpy conform to mar~in restrictions for COBOL
programs. On a given source program card containing the completion of a
COpy statement, there must be no information beyona the statement
terminating perioa. The material introduced into the source program by
the COpy statement will fOll~w".t:>'~~" S9:p.~(.s,~,~tem~!l~ .. }>.n,.,.~~~"" ~is,1:,.~.~.g'''''''''''''''''''''''''~"f
beginning on the next line. :aowe~er. the SUPPRESS option may be used to!
!:r~di'ciite thiit. "t.he· ·~.~orarY': ~'iltry. J~ .. ~ot 'to be liste .. ~. < <.' i

If the REPLACING option is used, each ~ord specified in the format is
replaced by the stipulated ~Q~a, !deB~if!~~, or !it~! which is
associated with it in the format.

~ora~l, word-2, etc., may be a data-name, procedure-name,
condition-name, mnemonic-name, or file-name.

Use of the REPLACING option does not alter the material as it appears
in the library.

~hen options 1, 2, L3" 4, 5, or 10 are IIIritten, the words COpy
library~name are replaced by the information identified by library-name.
This information comprises tne sentences or clauses needed to complete
the paragraph, sentence, or entry containing the copy statement.

~hen options 6, 7,~ .,8~. or- .. ~9! are written, the entire entry is replaced
by the information identified by !~Q~~~I=~~m~, except that gata=~~m~ (if
specified) replaces the corresponding data-name from the library.

" .
;When Option 11 is written, ,the words COpy !~brs£I=~sm~ are replaced
by the information identified by library-name. This information
comprises the clauses needed to complete the CD entry containing
the COpy 'statement. '

For example, if the library entry PAYLIB consists of the following
Data Division record:

01 A.
05
05
05

B PIC 599.
C PIC S9(5)V99.
D' PIC S9999 OCCURS 0 TO 52 TIMES

DEPENDING ON B OF A.

the programmer can use the COpy statement in the Data Division of his
program as follollls:

01 PAYROLL COpy PAYLIB.

In this program, the library entry is then copied; the resulting entry
is treated as if it had been written as follows:

01 PAYROLL.
05 B PIC 599.
05 C PIC S9(5)V99.
05 D PIC 59999 OCCURS 0 TO 52 TIMES

DEPENDING ON B OF A.

Note that the data-name A nas not been changed in the DEPENDING ON
option.

322 Part V -- Special Features

/ --"

'- .

o

COpy statement

ro change some (or all) of the names ~ithin the library entry to
names he ~ishes to reference in his program, the p~ogrammer can use the
REPLACING option:

01 PAYROLL COpy PAYLIB REPLACING A BY PAYROLL
B BY PAY-CODE C BY GROSSPAY.

In this program the library entry is then copied~ the resulting entry is
treated as if it had been ~ritten as follo~s:

01 PAYROLL.
05 PAY-CODE PIC S99.
05 GROSSPAY PIC S9(5)V99.
05 0 PIC S9999 OCCURS 0 TO 52 TIMES

DEPENDING ON PAY-CODE OF PAYROLL.

The entry as it appears in tne library remains unchanged.

Program-Product.InformatiQ~_~~~sion_~-!a~_version 4)

;"~M"~!~~.~~'~~ ,_~,~~~kJ!~~<~",~~~i!~~~'.:I!!,"",~,~~_~m~_~t>~E!~~~,~: "<~~~>~~~~'~>~>~'.'~>~~¥ .. >.~"~,~>~~~

Source Program Library Facility 323

BASIS/INSERT/DELETE Cards

, A complete program may be included as an entry in the user's library,
and may be used as the basis-of.compilation. Input to the compiler is a
BASIS card, followed by any number of INSERT and/or DELETE cards, ,
follo~ed by any number of debugging packets, if desired. These packets
can be requested and modified through INSERT and DELETE cards (see
"Debugging Language").

Program. Product InformatiQn_l~~~~iQn_~_en~_~g~~iQn_~~

On BASIS, INSERT, and DELETE cards, a sequence number may appear in
columns 1 through 6.

BASIS.Car::i

r--, I F~rmat I
~--i
I I
I BASIS library-name I
J, I l __ J

The word BASIS followed QY ~~Q~~rl-~m~ may appear anywhere within
columns 1 through 72 on the card. There must be no other text on the
card.

Library~name:must follow the rules of formation for program-name; it
is the name by which the library entry is known to the control .program.
The first eight characters are used as the identifying name.

If the INSERT or DELETE cards follow the BASIS card, the library
entry is mOdified prior to being processed by the compiler. Use of
INSERT or DELETE cards does not'alter the material in the library.

INSERT~Card

r--, I Format I
~--i , I
I INSERT;sequence-number-field I
I I L __ J

DELETE.Carg

r--, I Format J

~--i I I '
I DELETE sequence-number-field I
I ., I L __ ~ _____________________________ J

324 Part V -- Special Features

c---'
)

o

----- ---.------

rM-:-:~'-'The'-word '" INSERt" 'or' 'oE'LErE, f 01'1 owed' 11y~·a···Eipa-ce;"~'fol1·<fwe~"'"'~'·:-:7(~:;7;-::"~,;

I
,-Seil1lel,).oe"'!l~::.t!!tl1! may appear antwhere within columns"l through'72'on

, > tbe card. There must be no other text on the card. , ' ,,; ", ." \
t ':; , ' > " 1 ",,\ ',' , ',-

I,' Eaoh number in the sequence-number-field must ifilf'er',to a} sequ:ence, '
,:.,',number of the ba~ic' library entry. l'he sequence number is' t.he '~,:",ai9i~',
~ ,nwnber the programmer -assigns, in columns 1 t;.hrougt?- 6"of the, CO~OL,.~'c:od+~,~~ r'- form ' " , ' " ,,';

:~; ,'.' '~~ num~ers ' specifiea in the sequenCe-n~lIIber-fielamust .,~~ ;,{'n \.:.!'.:.;~;::;
l:),: <,:~a:sc:endinCJ numerical. ord.er ' f rom' the first' INSSR~/DELEtE c~r~' t:'cf- ~~ti~),a$~?'
j,,',:INSERl'/DELETE card J.n, the program. , ", - -- ,,-: ',' \' , -- ,'>:,:::>::

t!~~,;;~ r~e s!!luen~e~number-fi eU of an INSERT card ~ust be a ~in9ie~~~e1{~
i
:.:\~ -('e'~~q.,' 'ooo$10T:--itleast:-one neW' source pro;Jram card must', foi:iow~,"the '.~~::'/,'
'" INSERr card for ·insertion after the card. specified. by the, . ; >. -.. ':'
, .s~~~en~e-p.umber-fiela. - . ' .:~:i:~\

I," ' ". ',\. :/:~:;;
(:. ' , rbe' ent.ries comprising sequence-number-field of a OELEl'E' ca~d tntls't "be'.;
t-:. numbers or ranges of: numbers. Each entry must be separate:! ,from.the' ,<.".:"?
b! ,'~,r~c,e3ing ent.ry by a. comma followed b¥, a .space.' ,Ranges C?'f" num~r,s,.:.'atEf:);i
t.:';,l.ndicated by separatl.ng the two bounal.ng' numbers of t;he range __ t?Y",slD:: ',~'::"£::

r?,bYPh~::oo:::o::::~e :00010 ',' \,X~j

!':~~~ici~ii~:f:= ~~~ a~a:Y o~~l ~~~ e~e~~LErEc~ra •. for InS~iUOnbe~br~:~l~~1.
tL~~";...,...,.; w 0 ~ , ~h W~~~\.'_ ... ~0>.' ~oi>~w-.,......,~-;""''';',~..A<''''l«>"",·,/,*l",: '\

Source Program Library Facility 325

-- --------

The following statements are provided for program debugging. They
may appear anywhere in a COBOL program or in a compile-time debugging
packet.

For the TRACE and EXHIBIT statements, the output is written on the
system logical output device (SYSOUT). A maximum logical record size of
120 characters is assumed. This assumed size is overridden if a logical
record size is specified on the associated SYSOUT DD statement.

READY/RESET TRACE Statement

r--, I Format I
~--i
I 1

I {~} ~ 1
I~ I
I I L-___ J

After a READY TRACE statement is executed, each time execution of a
paragraph or section begins, its compiler-generated card number is
displayed. The execution of a RESET TRACE statement terminates the
functions of a previous READY TRACE statement.

EXHIBIT Statement

r--,
I Format I
.--i
I I

I
I {NAMED} { identifier-1} 1

EXHIBIT CHANGED NAMED I

I CHANGED nonnumeric-literal-1 J
I) I [identifier-2] J

I nonnumeric-literal-2 I
I . J L-__ -------___ -J

The execution of an EXHIBIT statement causes a formatted display of
the identifiers (or nonnumeric literals) listed in the statement.

Identifiers listed in the statement cannot be any special register
except TALLY,.

Program Product Information (Version 3 and Version 4)

Identifiers listed in the statement cannot be specified using
relative indexing. (That is, where INX is an index-name for
TABLE-A, the following statement is invalid: EXHIBIT NAMED TABLE-A
(INX + 2).)

326 Part V -- Special Features

c

EXHIBIT Statement:

Nonnumeric-literals l~sted in the statement are followed by a blank
when displayed.

The display of the operands is continued as described for the DISPLAY
statement. A maximum logical record size of 120 characters is assumed.

EXHIBIT-NAMED: Each time an EXHIBIT NAMED statement is el~ecuted, there
is a formatted display of each identifier listed and its value. Since
both the identifying name and the-value-of tne identifer are displayed,
a fixed columnar format is unnecessary. If the list of operands
includes n~~eric~lite~~12' they are displayed as remarks each time
the statement is executed.

The format of the output for each id~n~ifi~~ listed in the EXHIBIT
NAMED statement is:

original identifying name, including qualifiers if written
(no more than 120 characters in length)

space
equal sign
space
value of identifier (no more than 256 bytes in length)
space

EXHIBIT.CHANGED-NAMED: Each time an EXHIBIT CHANGED NAMED stat~ment is
executed, there is a display of each i~~n~iti~~ listed and its value
only if the value has changed since the previous time the statement was
executed. The initial time such a statement is executed, all values are
considered changed and are displayed. If the list of operands includes
nonnumeric-literals, they are displayed as remarks each time the
statement is executed.

Since both the identifying name and the value of each identifier is
displayed, a fixed columnar format is unnecessary. If some of the
identifiers have not changed in value, no space is reserved for them.
If none of the identifiers have changed in value, no blank line(s) will
be printed.

The format of the output for each iden~ifi~~ listed in the EXHIBIT
CHANGED NAMED statement is:

original identifying nane, including qualifiers if written
(no more than 120 characters in length)

space
equal sign
space
value of identifier (no more than 256 bytes in length)
space

EXHIBIT CHANGED: Each time an EXHIBIT CHANGED statement is executed,
there is a display of the current value of each i~~n~iti~~ listed only
if the value has changed since the previous time the statement was
executed. The initial time the statement is executed, all values are
considered changed and are displayed. If the list of operands includes
nQU~ric-literals, they are printed as remarks each time the statement
is executed.

The format of the output for a specific EXHIBIT ~HANGED statement
presents each operand in a fixed columnar position. Since the operands
are displayed in the order they are listed in the statement, the
programmer can easily distinguish each operand.

Oebugging Language 327

The follo~ing considerations apply:

• If there are two or more ~~~~~~~!~~~ as operands, and some, but not
all, are changed from the previous execution of the statement, only
the changed values are displayed. The positions reserved for a
given operand are blank ~hen the value of the operand has not
changed.

• If none of the operands have changed in value from the previous
execution of the state~ent, a blank line(s) will be printed.

• variable length identifiers are not permitted as operands.

• The storage reserved for any operand cannot exceed 256 bytes.

Note: The combined total length of all operands for all EXHIBIr :HANGED
NAMED plus all EXHIBIT CHANGED statements in one program cannot exceed
32,767 bytes.

If two distinct EXHIBIT CHANGED NAMED or two EXHIBIT CHANGED
statements appear in one program, each specifying the same ~g~~~!~!~~~,
the changes in value of those identifiers are associated with each of
the t~o separate statements. Depending on the path of program flow, the
values of the identifier saved for comparison.may differ for each of the
two statements.

ON-(Count~conditional) sta~~m~~~

The ON statement allows the programmer to specify when the statements
it contains are to be executed.

r--, I Format 1 I
~--~
I I
I ON integer-1 [AND EVER! integer-21 (Q~~~~ integer-31 I
I I
I { imperative-statement} { ELSE } { statement ••• } I
I NEXT §.~NTENCE QIHER~~§'~ NE!I SEN!ENCE I
I I L __ J

r--, I Format 2 (Version 3 and Version 4) I
~--~

{
integer-1 }

identifier-1 {
integer-2 }

(~~Q ~Y~B! identifier-2 1

{

integer-3 }
[UNTIL]
----- identifier-3 {

imperative-statement}

~~XT §.~~!ENCE

{
ELSE }

OTHERWISE {
statement. • • }

~~!! §.~~!~~~~
L __ J

All inteqers contained in the ON statement must be positive and no
greater than 16,777,215.

The phrase ELSE/OTHER~ISE NEXT SENTENCE may be omitted if it
immediately precedes the period for the sentence.

328 Part V -- special Features

(
I

"- '

(j

ON Statement

Form~t_£: ~ll ~~~Qtifi~E~ must be fiKej-point numeric items
described as integers. rheir values nust be positive and no
greater than 16,777,215.

~t object time each i~~Q~ifi~E must be initializej to a positive
value before the first eKecution of the ON statement. Between
eKecutions of the ON statement, the values contained in the
identifiers may be modifiej. rhe programmer's manipulation of
these values in no way affects the compiler-generated counter
associated with the ON statement.

In the discussion that follows, each reference to iQ£~g~E~l applies
equally to i~~Q£ifigE~l. Similarly, each reference to iQ£gggE=~
applies to i~~rr~!f!gE~£, an3 each reference to in~gggf=~ applies to
i:len~ifigE=l·

In Format 1 anj Format 2 the ON statement is evaluated and executed
as follows:

• Each ON statement has a conpiler-generated counter associate:l with
it. rhe counter is initialized to zero in the object program. Each
time the path of program flow reaches the ON statement, the counter
is incremented by one, and the £Q~n£=£QQ~itiQQ (integer-l ~ND EVER~
integer-2 UNTIL integer-3) is tested.

• If the £Q~t=£Qng~~iQn is satisfied, the i~E~~~~iyg=~£~t~~gQt (or
NEXT SENTENCE) preceding ELSE/orHERWISE is executej. (Note tnat an
imperative-statement may consist of a series of imperative
statements.)

• If the count-condition is not satisfied, the statement(s) (or ~EXT
SENTENCE)-followIng~LSE/orHERWISE is execute~~--If-the-
ELSE/OTHERWISE option does not appear, the next sentence is
executed.

The £QYn~~condition is evaluated as follows:

• If only intg~er-l has been specified, then the count-condition is
satisfied only once: when the path of program flo~-has-reached the
ON statement integer-l times -- that is, when the value in the
counter equals integer-i.

• When only intgger-l and iQ~gggE~~ are specified, then the value of
int~~~~=£ is assumed to be one, and the £Q~nt=£QQ~itiQQ is satisfied
when the value in the counter is any value within the range
int~g~::.!. through irr£gg~~=~. /

• If only int~~er-l and int~g~E~£ are specified, then the
count-condition is satisfied each time the value in the counter is
equal-to-irrteger-!. + (in~gggE~£ * K), where K is any positive
integer or zero. No upper limit for the execution of the ON
statement is assumed.

• When all three intgg~E~ are specified, then the £Q~nt=£Qngi~iQQ is
satisfied as in the last preceding case, except that an upper limit
beyond which the count-condition cannot be satisfied is specified.
The ·upper limit is iQ£gggE=~.

Debugging Language 329

COMPILE-TIME DEBUGGING PACKET

Debugging statements for a given paragraph or section in a program
may be grouped together into a debugging packet. These statements will
be compiled with the source language program and will be executed at
object time. Each packet refers to a specified paragraph-name or
section-name in the Procedure Division. Compile-time debugging packets
are grouped together and are placed immediately following the source
program. No reference to procedure-names in debug packets may be made
in the body of the program.

DEBUG Card

Each compile time debug packet is headed by the control card DEBUG.

r--,
I Format \ t
~---~----------------------i
I]
I DEBUG location J

I) L ___ ~

The word DEBUG followed by location may appear anywhere within
columns 1 through 72 on the card. There must be no other text on the
card.

The location is the section-name or par.agraph-name (qualified, if
necessary) indicating the point in the program at which the packet is to
be executed. Effectively, the statements in the packet are executed as
though they were physically placed in the source program following the
section-name or paragraph-name, but preceding the text associated with
the procedure. The same location must not be used in more than one
DEBUG control card. Location cannot be a paragraph-name within any
debug packet.

A debug packet may consist of any procedural statements conforming to
the requirements of American National Standard COBOL. The following
considerations apply:

• A PERFORM or ALTER statement in a debug packet may refer to a
procedure-name in any debug packet or in the main body of the
Procedure Division.

• A GO TO statement in a debug packet may not refer to a
procedure-name in another debug packet, but it may refer to a
procedure-name in the main body of the Procedure Division.

Program Product Information (Version 3 and Version 4)

On the DEBUG card. the sequence number may appear in columns 1
through 6 followed by at least one space; in this case, the word
DEBUG may not begin before column 8.

330 Part V -- Special Features

C
-·,
.--)

rhere are four statements that allow the programmer to control the
spacing of the source program listings produced by the COBOL compiler.
These statements are: E~ECr, SKIP1, SKIP2, and SKIP3. They may be
written anywhere in the source program.

EJECT.Statement

The EJECT statement instructs the compiler to print the next source
statement at the top of the next page.

r--,
I Format I
~--~
I I
I 1 Area B I
I --------------------- I
I EJECT I
I I L __ ~ ___ J

rhe ~ord EJECT may be written any~here ~ithin ~rea B and must be the
only statement on the card. There must be ~Q punctuation.

rhese statements instruct the compiler to skip/1, 2, or 3 lines
before printing the next source statement.

r--,
I Format I
~--~
I I
I 1 Area B I
I --------------------- I
I 1 SKIP1 I I I SKIP2 I
I SKIP~ I
I I L __ J

SKIP1 tells the compiler to skip 1 line (double spacing).

SKIP2 tells the compiler to skip 2 lines (triple spacing).

SKIP3 tells the compiler to skip 3 lines (quadruple spacing).

SKIP1, SKIP2, or SKIP3 may be ~ritten any~here within Area B and must
be the only statement on the card. There must be ~Q punctuation •

Format Control of the Source Program Listing 331

Sterling Conventions

COBOL provides facilities for hanaling sterling currency items by
means of an extension of the PIcrURE clause. Additional options and
formats, necessitated by the nondecimal nature of sterling and by the
conventions by which sterlin; amounts are represented in punched cards,
are also available.

COBOL provides a means to express sterlin; currency in pounds,
shillings, and pence, in that order. There are 20 shillin;s in a pound,
and 12 pence in a shillin;. Although sterling amounts are sometimes
expressed in shillings and pence only (in ~hich case the number of
shillings may exceed 99), within machine systems, shillings will al~ays
be expressed as a 2-digit field. Pence, ~hen in the form of integers,
like~ise ~ill be expressed as a 2-digit field. However, provision must
be made for pence to be expressed as decimal fractions as well, as in
the form 17s.10.237d.

The IBM method for representing sterling amounts in punched caras
uses t~o columns for shillings and one for pence. renpence (lOd.) is
represented by an '11' punch and elevenpence (lld.) by a '12' punch.
The British Standards Institution (B.S.I.) representation uses single
columns for both shillings and pence. The B.S.I. representation for
shillings consists of a '12' punch for ten shillings and the alphabetic
punches A through I for 11 through 19 shillings, respectively.

Note: The B.S.I. representation for shillings precludes the use of more
than 19 shilli-ngs in a sterling expression; therefore, 22/10 (that is,
22 shillings 10 pence) must be expanaed by the user to 1/2/10.
Similarly, the guinea -- 21 shillings -- or any multiple thereof, must
be expanded to pounds and shillings.

rhe indicated representations may be used separately or in
combination, resulting in four possible conventions.

1. IBM shillings and IBM pence

2. IBM shillings and B.S.I. pence

3. B.S.I. shillings and IBM pence

4. B.S.I. shillings and B.S.I. pence

Any of these conventions may be associated with any number of digits
(or none) in the pound field and any number of decimal places (or none)
in the pence field. In addition, sign representation may be present as
an overpunch in one of several allo~able positions in the amount, or may
be separately entered from another field.

r~o formats are provided in the PICTURE clause for the representation
of sterling amounts: sterling report format (used for editing) and
sterling nonreport format (used for arithmetic).

In the formats that follo~, rr stands for a positive integer other
than zero. This integer enclosed in parentheses and following the
symbols 9, B, etc., indicates the number of consecQtive occurrences
the preceding symbol. For example, 9(6) and 999999 are equivalent.
PlcrURE characters used to describe sterling items are:

6 7 8 9 CD. , 1 B Z V. £: s d CR DB + -

(The character £ is the sterling equivalent of the character $.)

332 Part V -- Special Features

of
The

Sterling Nonreport Format;

Note: The lo~er-case letters "s" anj "d" are represented by an 11-0-2
punch and a 12-0-4 punch, respectively.

STERLING NONREPORT

The format of the PICTURE clause for a sterling nonreport data item is:

r--,
I Format I
~--~
I I
I {PICTURE} {6[6]} I I IS 9[(n)]0[8]80 I
I PI£ 7[7] I
I I

[[V]9[(n)]] [USAGE IS] QI2~~~!~2~ I
I I L __ J

Note: For a sterling nonreport picture to be valid, it must contain a
pound field, a shilling fielj, and a pence field.

The representation for pounds is 9[(n)]0 ~here:

1. The character 9 indicates that a character position ~ill al~ays
contain a numeric character, and may extend to ~ positions.

2. The character 0 indicates the position of an assumed pound
separator.

The representation for shillings is [8]80 ~here:

1. The charact~rs [8]8 indicate the position of the shilling field and
the convention by ~hich shillings are represented in punched cards.
88 indicates IBM shilling representation occupying a 2-column
field, the character 8 indicates B.S.I. single-column shilling
representation. /

2. The character D indicates the position of an assumed shilling
separator.

The representation for pence is;

{
6[7]} [[V]9[(n)]]
7(7]

1. The character 6 indicates IBM single-column pence repre~tation
~herein 10d. is represented by an '11' punch and 1t~ by a '12'
punch. The characters 66 indicate 2-column rppresentation of
pence, usually from some external me~ium ottier than punched cards.

2. The character 7 indicates B.S.I. single-column pence representation
~herein 10d. is represented by a '12' punch and 11d. by an '11'
punch. The characters 77 indicate 2-column representation of
pence. Consequently, 66 and 77 serve the same purpose and are
interchangeable.

Sterling Currency and International Considerations 333

~~t~rlinq>sign >~p~~~~~tation
i~u, > , > > >, , > > , , >

3. The character V indicates the position of an assumed decimal point
in the pence field. Its properties and use are identical with that
of V in dollar amounts. Decimal positions in the pence field may
extend to n positions.

4. rhe character 9 indicates that a character position will always
contain a numeric character, an~ may extend to n positions.

Example; Assume that a sterling currency data item used in arithmetic
ex~ressions is to be represented in IBM shillings and IBM ~ence, and
that this data item will never exceed 99/19s/11d. Its picture should
be:

PICTURE 9(2)088D6 DISPLAY-ST.

rhe VALUE clause must not be specified for sterling nonreport items.

Signs for sterling amounts nay be entered as overpunches in one of
several allowable positions of the amount. A sign is indicated by an
embedded S in the nonreport PICTURE immediately to the left of the
position containing the over~unch. ~llowable overpunch positions are
the high-order and low-order positions of the pound field, the high
order shilling digit in 2-column shilling representation, the low-order
pence digit in 2-column pence representation, or the least significant
decimal position of pence.

The following are examples of sterling currency nonreport data items
showing sign representation in each of the allowable positions:

PI.cTURE S99D88D6V9(3) DISPLAY-ST

PICTURE 9S9D88D6V9(3) DISPLAY-ST

PICTURE 9(2)DS88D6V9(3) DISPLAY-ST

PICTURE 9(2)D88D6S6V9(3) DISPLAY-ST

PICTURE 9(2)088D6V99S9 DISPLAY-ST

334 Part V -- Special FeatUres

(~

'--. -

STERLING REPORT

The sterling currency rep~rt data item is composed of four portions:
pounds, shillings, pence, and pence decimal fractions.

r--, I Format I
~--~

{
PICTURE} IS

PIC

[pound-report-stringl[pound-separator-string] delimiter

shilling-report-string [shilling-'separator-stringl delimiter

pence-report-string [pence-separator-string] [sign-stringl

[OSAG~ IS] DISPLAY-ST
L __ J

Pound-Report~String - This string is optional. It is subject to the
same rules as other numeric edited items, ~ith the following exceptions:

• The allo~able characters are: £ (pound symbol) 9 Z * + 0
(zero) B , (comma).

• The total number of digits in the pound-report-string plus the
fractional-pence field cannot exceed 15. (That is, if there are 11
digits in the pound-report-string, there cannot be more than four
digits in the fractional-pence-field.)

• The character £ is the sterling equivalent of $.

• Termination is controlled by the pound-separator-strin~.

Pound-separator-String - This string is optional. It may include one
character, or any combination ~f the follo~~ng characters:

B I (period ~r decimal poi_nt)

Editing of the separator characters is dependent upon the use of C or
D as delimiters.

The Delimiter.Characters - The delimiter characters C and 0 are
required. They primarily serve to indicate the end of the pounds and
shillings portions of the picture. In addition, they serve to in~icate
the type of editing to be applied to separator characters to the right
of the lo~-order digit (of the pounds and shillings integer portions of
the item).

The delimiter character 0 indicates that separator character(s) to
the right of the low-order digit position (of the field delimited) are
al~ays to appear; that is, n~ editing is performed on the separator
character(s).

Sterling Currency and International Considerations 335

1 :>r«-' i;><:YJ':>...,~<,...-<.:w,"<':>:.< '~H.Po/"";:,....<.:<,...,.;>..,~ hY '';> ~ Y ·:ow"'" y ~~~ " ~ ~

ierling . Report 'Format>
{,.., , h" y ~ y' YN , ' , <..,. ,~ ,. < _ < ,-.. < ,>

The delimiter character C indicates that if the lo~-order digit
position (of the field delimited) is represented by other than the edit
character 9, editing continues through the. separator character(s).

The delimiter characters C and 0 are used for editing purposes only.
They do rrQ~ take up space in the printed result.

The following examples show the editing performed ~hen a value of
zero is moved to a sterling report item.

**/CZ9s/D99:l

would result in

***bOs/OOd

whereas, if the picture were

**/DZ9s/D99d

the result would be

**/bOs/OOd

The delimiter C is equivalent to D when the low-order digit position
is represented by a 9. That is, the follo~ing two pictures are
equivalent:

ZZ9/DZ9/D99
ZZ9/CZ9/C99

The delimiters used for the pounds and shillings portion of the
picture need not be the same.

Note: Although the EQ~nd=~~eQ~~=~~~in~ and the eound-separator-string
are optional, a delimiter character (either C or D) must be present;
thus, when programming for shillings and pence only, the PICTURE clause
must begin PICTURE IS C (or 0).

Shillinq-Reeort-String - This is a required two-character field. It is
made up of the following characters:

9 8 Z *
The valid combinations of these characters are:

99 Z9 ZZ Z8 *9 **
The 8 is an edit character and is treated as a 9. However, if the
digits to the left of the edit character 8 are zeros, the 8 is treated
as the character that precedes it <either Z or *).

ShilliDq-Separator-Stri~ - rhis string is optional. It may include one
character, or any combination of the follo~ing characters:

B / s (period or decimal point)

Editing of the shilling-separator characters is dependent upon the
use of C or D as delimiters.

336 Part V -- Special Features

r
\ ~ .

c~

Sterling Report Format

Pence-Report-strinq - rhis field is made up of two parts: a required
whole-pence field, and an optional fractional-pence field.

The required whole-pence field is a two-character field, made up of
the following symbols:

9 8 Z *
Valid combinations of these characters are:

99 Z9 ZZ Z8 ** *8

The function of the editing character 8 is the same as in the
shilling-report-string.

The optional fractional-pence field is indicated by a decimal point
followed by one or more 9's. It is used to specify fractional pence in
decimal form.

rhe total number of digits in the fractional-pence field plus the
pound-report-string cannot exceed 15.

Pence~rator-strinq - T~is string is optional and may consist of one
or both of the following characters:

d (period or decinal point)

If both characters are used, they must be used in the order shown above.

Sign-Field - This field is optional and may consist of:

• optionally, one or more blanks (B), followed by

• one of the following one- or two-character combinations:

+ CR DB

Sterling Report editing applications are shown in rable 26.

Table 26. Sterling Currency Editing Applications
r------------------T--------------T---------------------T--------------,
I Picture INumeric Value I sterling Equivalent \ Printed \
I I (in pence) \ £ s d \ Result \
r------------------+--------------+-~-------------------+--------------~

£££ /099s/099d 3068 12 15 08 £12/15s/08d \
£U/D99s/099d 0668 2 15 OS £2/15s/08d \
£U/099s/D99d 0188 0 15 08 /15s/08d \
£££ /C99s/D99d 0188 0 15 OS 15s/08d I
ZZZ/DZZs/OZZd 0000 0 00 00 / s/ d I
ZZZ/CZZs/DZZd 0000 0 00 00 s/ d I
£BD99sB099.9d 080.5 0 06 08.5 06s 08.Sd I
***/C •• O/C ••• 99d 1040.12 4 06 08.12 *.4/*6s/.8.12dl
•• *:C.*s:C.*.99d 080.12 0 06 OS.12 ••••• 6s:*S.12dl
••• /O.*s/D ••• 99d 00001.23 0 00 01.23 ••• / •• s/.1.23d\
W/D.9,s/O**.99d 00961.23 4 00 01.23 £4/.0s/.1.23dl
£ •• /D.9s/0 ••• 99d 00961.23 4 00 01.23 £*4/*Os/.1.23d\
£**/O.9s/0.*.99d 00001.23 0 00 01.23 £ •• /*Os/.1.23dl
W/099s/099dCR -3068 12 15 OS £12/1Ss/0dCR I L-_________________ ~ ______________ ~ ____________________ ~ _____________ J

A sterling report PIcrURE may have a BL~NK WHEN ZERO clause
associated with it specifyin~ that the item described is filled with
spaces whenever the value of the item is zero.

If the VALUE clause is specified for a sterling report item, the
literal must be alphanumeric. rhe VALUE clause is treated exactly as it
is specified, with no editin~ performed.

Sterling Currency and International Considerations 331

The maximum length of a sterling report item is 127 characters.

If the VALUE clause is specified for a sterling report item, the
literal must be alphanumeric.

PROCEDURE DIVISION CONSIDERArIONS

The MOVE, DISPLAY, ACCEPT, EXAMINE, ana TRANSFORM statements,
arithmetic statements, and relation tests may be written containing
identifiers that represent sterling items.

Sterling items are not considered to be integers ana should not be
used where an integer is required.

INrERNATIONAL.CONSIDERATIONS
. --

1. The functions of the period and the comma may be exchanged in the
PICTURE character-string and in numeric literals by writing the
clause DECIMAL-POINT IS COMMA in the SPECIAL-NAMES paragraph of the
Environment Division.

2. rhe PICTURE of report itens may terminate with the currency symbol
in cases where the graphic $ is supplanted by a particular national
currency symbol, through use of the CURRENCY SIGN IS literal clause
in the SPECIAL-NAMES paragraph of the Environment Division.

338 Part V -- Special Features

(
'---.....-/

(j

COBOL/MCP Interface (Version 4)

Program Product Information (Version 4)

~ELEPROCESSING-(TP)

The Teleprocessing (rp) Feature of the Version 4 Compiler
permits the COBOL Programmer to create device-independent message
processing programs for teleprocessing applications. A
teleprocessing network consists of a central computer, remote (or
local) station(s), and the communication lines connecting such
station(s) to the central computer.

In TP applications, data flow into the system is random an~
proceeds at relatively slow speeds. Data in the system exists as
messages from remote stations, or as messages generated by internal
programs. Once delivered to the computer, the messages can be
processed at computer speeds. Thus, TP applications require a
Message Control Program (MCP) that acts as an interface between the
COBOL program and the remote stations.

The MCP acts as the logical interface between the entire network
of communications devices and the COBOL program, in much the same
manner as the system acts as an interface between the COBOL object
program and conventional input/output devices. The MCP also must
perform device-dependent tasks such as character translation, and
insertion of control characters, so that the COBOL program itself
is device-independent. The MCP and the COBOL TP program operate
asynchronously; that is, there is no fixed time relationship
between the receipt of a message by the MCP and its subse~uent
processing by the COBOL TP program.

To store the messages until they are to be processed, the MCP
uses destination queues, which may be thought of as sequential data
sets. The queues act as buffers between the COBOL TP program and
the remote stations. To the COBOL TP program, the MCP queue from
which it accepts messages is logically an ige~~_~~~~~; the queue
into which it places messages is logically the Q~~E~~_~~~~~. In
this publication, these terms are used with this meaning.

More detailed information about requirements for an MCP are
given in the publication I~~_Q~_[~!!_~~~~i£~g_~~~~Qg~!_~~~g~~~~
COBO~~QmEil~~~g~_~~Q~~~~L_~~~~~Qg_~L_f~Q~~~m~~~~~_@~~£~, Order
No. SC28-6456.

COMMUNICATION SECTION

The Communication section of a COBOL program must be specified
if the program is to utilize the TP features of COBOL. rhe
Communication Section, through the definition of Communication
Description (CD) entries, establishes the interface between the
COBOL object program ~nd the MCP.

The Communication section is identified by, an~ must begin with
the section header COMMUNICATION SECTION. rhe header is followed
by Communication Description (CD) entries. Specification of the CD
entry causes an implicitly defined data area to be created; that
is, the generated data area has a fixed format. Level-Ol record
description entries may optionally follow the CD entry; these
record description entries implicitly redefine the fixed data areas
of the CD.

Teleprocessing (TP) 339

CD Entry (Version LJ).

r---~--------------------,
I General Format I
~--~
I I
I COMMUNIC~~!Q~ SE~TIO~. I
I I
I {communication description entry I
I I
I [record description entry] ••• }... • I
I I L __ J

When it is specified, the Communication Section should contain
at least one CD entry. ~ single CD entry is sufficient if messages
are only of one type, that is, only FOR INPUT or only FOR OUTPUT.
If the COBOL TP proqram is to both receive and send messages, then
at least two CD entries are required -- one FOR INPUT and one FOR
OUTPUT. However, multiple input and/or output CD entries may be
specified.

The CD entry is valid only in the Communication Section.

The CD entry represents the highest level of organization in the
Communication section. The Communication section header is
follo~ed by CD entries, each consisting of a level indicator, a
data-name, and a series of optional independent clauses.

r--,
I Format 1 I
~--~

CD cd-name ·FOR !NPU~

[[[SYMBOLIC QQEU§
[SYMBOLIC ~~B-Q~g~§~!
[SYMBOLIC SU~~Q§~§~~
[SYMBOLIC ~~~~Q~g~§~~
[MESSAGE DATE
[MESSAGE TIME
[SYMBOLIC SOURCE
[TEXT LENGTH-
[ENDKEY
[STATUS-KEY
[2QEUE DEPTH

IS data-name-l]
IS data-name-2]
IS data-name-3]
IS data-name-LJ]
IS data-name-5]
IS data-name-6]
IS data-name-71
IS data-name-Sl
IS data-name-9]
IS data-name-l01
IS data-name-ll]l

[data-name-l data-name-2 ••• data-name-ll]1.
L __ J

r--,
I Format 2 I
~--~
I I
I CD cd-name FOR OUTPUT I
I [DESTIN~TIONlCOQ~~ IS data-name-l] I
I [TEXT LENGTH IS data-name-21 I
I [STATUS KEY IS data-name-31 I
I [ERROR KEY IS data-name-4] I
I [SYMBOLIC DE§TI~~~!Q~ IS data-name-51. I
I I L __ J

340 Part V -- Special Features

-- ----------- ------

CD bt~ 1w-rsion 4»)

r---------------------------------~------------------------------------,
I Format 3 I
~--~
I
I
I
I
I
I
I
I
I
I
I

cd-name library-name

{
word-l } { word-2 }

[REPLACING BY
--------- identifier-l -- identifier-2

{
word-3 } {WOrd-4 }

[BY] •••].
identifier-3 identifier-4

L ___ _

The CD entry serves as a storage are3 through which the :OBOL
program and the MCP interface. The COBOL programmer moves
information 3bout the message into the CD before initiating any
request. The MCP, after acting upon the request, returns through
the same CD information pertaining to the request.

The CD entry is defined in such a way that any number of message
queues may be accessed through the same CD entry. Conversely,
different portions of one message may be accessed through multiple
CD entries in the same pr~gram or in different COBOL subprograms
residing in the same region or partition. Thus, anyone COBOL rp
program need specify only one input CD entry and/or one output CD
entry. Rules controlling the accessing of MCP queues are specified
in the detailed descrptions of both input (Format 1) and output
(Format 2) CD entries.

The level indicator CD identifies the beginning of a
communication Description entry. and must appear in Area A. It
must be followed in Area B by £~=~~~~. Cd-name followS the rules
for formation of a data-name. Cd-name may be followed by a series
of optional independent clauses (as shown in Format 1 and Format
2).

The optional clauses may be followed by an optional level-01
record description entry. rhis record description entry implicitly
redefines that of the fixed data area described by the CD entry.
The total length of the record description entry must be the same
as or less than the fixed data iescriptions of the CD entry; if it
is not, an error message is produced. However, the MCP always
references this data area according to the implicit data
descriptions of the CD entry; that is, for an input CD the contents
of positions 1 through 12 are always used as the symbolic queue,
the contents of positions 13 through 24 are always used as symbolic
sub-queue-l, and so forth.

The optional clauses of the CD entry may be written in any
order. Since the data areas of both the input CD and the output CD
have implicit definitions, the optional clauses are necessary only
to assign user names for those areas that the COBOL program will
reference. However, if all the options of either format are
omitted, then a level-01 record description entry must follow the
CD entry.

Except for a level-B8 entry, the level-01 record description
entry must not contain any VALUE clauses.

FORM~T 1: This format is required if the CD entry is FOR INPOr.
At least one input CD entry must be specified if input messages are
to be received from a queue. Any number of queues may be accessed
through the same input CD entry. This is accomplished simply by
moving a different symbolic queue name into the input CD.

Teleprocessing <rp) 341

Conversely, ~ifferent portions of one message may be accessed
through different CD entries. rhus, CD entries in the same or
different COBOL subprograms in the same run unit may be used to
access different portions of one message. The same CD entry may be
used to access a message from another queue before the first
message is completed. The following restrictions apply:

• Only one region (or partition) can have access to any
particular queue at one time.

• The data in a queue must be accessed sequentially. That. is, a
second message in any queue cannot be accessed until the entire
first message in that queue is accessed. However, a second
message from another queue may be accessed before the entire
message in the first queue is accessed.

The specification of an input CD entry results in a record whose
implicit description is equivalent to the following:

~guivalent CQ~OL_B~~~~~_~~~~~!2t!Q~
01 data-name-O.

02 data-name-l
02 data-name-2
02 data-name-3
02 data-name-4
02 data-name-S
02 data-name-6
02 data-name-7
02 data-name-8
02 data-name-9
02 data-name-l0
02 data-name-ll

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

X(12).
X(12)
X(12)
X(12)
9(6).
9(8).
X(12).
9(4).
X.
XX.
9(6).

~~~~~!2t!Q~_Q~_~~~ 

Symbolic Queue 
Sub-queue-l 
Sub-queue-2 
Sub-queue-3 
Message Date 
Message Time 
Symbolic Source 
Text Length 
End Key 
Status Key 
Queue Depth 

For each input CD entry, a record ar~a of 87 contiguous Standard 
Data Format characters is always g~nerated, implicitly defined as 
previously specified. rhe data names corresponding to the various 
fields of the CD record area may be explicitly defined, through the 
use of the optional clauses as follows: 

Format 1--~ 02tion 1: The data names corresponding to the various 
fields of the CD record area may be explicitly defined, through the 
use of the optional clauses as follows: 

SYMBOLIC-QUEUE-an~_2Q~=QQEUE_£~~: rhese clauses define 
data~~~, dat~=~m~=£L_g~~~=~~me-~, and ~ata-name-4 as the names 
of alphanumeric data items each of 12 characters in length, and 
occupying character positions within the record as follows: 

data-name-l occupies character positions 1 through 12 
data-name-2 occupies character positions 13 through 24 
data-name-3 occupies character positions 25 through 36 
data-name-4 occupies character positions 37 through 48 

The contents of the SYMBOLIC QUEUE can be specified as a queue 
structure. SUB-QUEUE-l, SUB-QUEUE-2, and SUB-QUEUE-3 specify the 
levels of such a structure. When a given level of such a structure 
is specified, all higher levels must also be specified. However, 
no given queue structure need specify all four levels. 

For example, if only a three-level queue structure is needed for 
a given program, then the following COBOL statements adequately 
specify the levels of the structure: 

SYMBOLIC QUEUE IS QNAME 
SYMBOLIC SUB-QUEUE-l IS SUBQl 

SYMBOLIC SUB-QUEUE-2 IS SUBQ2 ••• 

342 Part V -- Special Features 



C) 

dince SYMBOLIC SUB-QUEUE-2 is specified, both SYMBOLIC SUB-QUEUE-l 
and SYMBOLIC QUEUE must also be specified. (It would be invalid to 
specify SUB-QUEUE-2 without also specifying SUB-QUEUE-l.) 

When symbolic sub-queues are used in the COBOL program, the 
associated queue structures must be predefined to the MCP. Queue 
structures are described in the publication OS Full American 
National Standard COBOL Compiler and Library, Version 4, 
Programmer's Guide, Order No. SC28-6456. 

A RECEIVE statement causes the serial return of the next message 
(or portion of a message) from the queue specified in ~~~~=~~~g=!, 
and, if SUB-QUEUE clauses are specified, from one of the sub-queues 
specified in data-name-2, data-name-3, or data-name-4. 

Before the RECEIVE statement is executed, the data-name of the 
queue, and, if specified, of the sub-queue(s) must contain the 
symbolic name(s) of the wanted queue. All such symbolic names must 
be previously defined to the MCP. The compiler initializes the 
sub-queue names to SPACES; if a sub-queue has been accessed, then 
it is the responsibility of the user to reinitialize each sub-queue 
name that is not to be used to SPACES. 

When the RECEIVE statement is executed, the MCP uses the 
symbolic name of the wanted queue to access the next message. 
After execution of the RECEIVE statement the contents of 
data~name-l remain unchanged; the contents of data-name-2 through 
data-name-4 (if applicable) are updated to contain the name of the 
sub-queue from which the message was received. 

MESSAGE DATE Clause: This clause defines data-name-5 as the name 
of an unsigned 6-digit integer data item, occupying-Character 
positions 49 through 5.4 of the record. 

Data-name-5 has the format YYMMDD (year, month, day). Its 
contents represent the date on which the MCP received this message. 

The contents of data-name-5 are updated by the MCP as part of 
the execution of each RECEIVE statement. 

MESSAGE TIME Clause: This clause defines data-name-6 as the name 
of an unsigned 8-digit integer data item, occupying character 
positions 55 through 62 of the record. 

Data-name-6 has the format HHMMSSTT (hours, minutes, seconds, 
hundredths of a second). Its contents represent the time of day 
the message was received into the system by the MCP. 

The contents of data-name-6 are updated by the MCP as part of 
the execution of each RECEIVE statement. 

SYMBOLIC SOURCE Clause: This clause defines data-name-7 as the 
name of an elementary alphanumeric data item of 12 characters, 
occupying character positions 63 through 74 of the record. 

During execution of a RECEIVE statement, the MCP provides in 
data-name£7 the symbolic name of the terminal that is the source of 
this message. (The symbolic names the MCP uses are one through 
eight characters in length; the remaining characters are set to 
SPACES.) However, if the symbolic name of the source terminal is 
not known to the MCP, the contents of data-name-7 are set to 
SPACES. 

TEXT LENGTH Clause: This clause defines data-name-8 as the name of 
an unsigned 4-digit integer data item, occupying-character 
positions 75 through 78 of the record. 

Teleprocessing (TP) 343 



The MCP indicates through the contents of data-name-8 the number 
of main storage bytes of the user's work area~Illed-as-a result of 
the execution of the RECEIVE statement. 

END KEY Clause: This clause defines data-name-9 as the name of a 
1-character elementary alphanumeric data-Item,-occupying character 
position 79 of the record. 

The MCP sets the contents of gat~~m~-9, as part of the 
execution of each RECEIVE statement, according to the following 
rules: 

• When RECEIVE MESSAGE is specified, then the contents of 
data-name-9 are: 

3 if end-of-group has been detected 

2 if end-of-message has been detected 

o if less than a message has been moved into the user-specified 
area 

• When RECEIVE SEGMENT is specified, then the contents of 
data-name-9 are: 

3 if end-of-group has been detected 

2 if end-of-message has been detected 

1 if end-of-segment has been detected 

o if less than a message segment has been moved into the 
user-specified area. 

• When more than one of the above conditions is satisfied 
simultaneously, the rule first satisfied in the order listed 
determines the contents of dat~~~=2. An End of Group is a 
logical End Of File condition caused by a user request in the 
MCP. In general, depending on the size of the work unit and 
the work area provided, End Keys m~ be associated with a text 
length of zero. This is always the case for End Of Group, and 
may be for End Of Message when receiving a segmented message 
with the RECEIVE SEGMENT option. 

Note: The MCP never removes the End Of Transmission line 
control character. This character is translated to EBCDIC as 
X'37'. COBOL assumes that the message is being translated and 
the user wants the X'37' removed. Therefore, the last data 
character of a message must never be X'37'. 

STATUS KEY Clause: This clause defines data-name-10 as the narr.e of 
a 2-character elementary alphanumeric data-item~-occupying 
character positions 80 and 81 of the record. 

The contents of data-name-10 indicate the status condition of 
the previously executed RECEIVE or IF MESSAGE statement. The 
program should, therefore, check the STATUS KEY immediately after 
each RECEIVE operation to verify the status. The values 
data-name-10 can contain, and their meanings, are defined in Figure 
19. 

Figure 19 indicates the possible values that the STATUS KEY 
field (for both input and output CD entries) may contain at the 
completion of execution for each statement. An X on a line in a 
statement column indicates that the associated code on that line is 
possible for that statement. 

344 Part V -- Special Features 

c 

c 



C) 

r---------T----------------------------T-----------T--------T----------, 
I STATUS I I I I I 
I KEY I I I I I 
I Code I Meaning I RECEIVE I SEND IIF MESSAGE I 

~---------+----------------------------+-----------+--------+----------~ 
I 00 I No error detected. I X I X I X I 
I I Request completed. I I I I 

~---------+----------------------------+-----------+--------+----------~ 
I 20 I Destination unknown. I I X I I 
I I Data-name-5 gives I I I I 
I I unknown destination. I I I I 
I I Request canceled. I I I I 
~---------+----------------------------+-----------+--------t----------~ 
I 20 I 1) Queue name unknown I X I I X I 
I I (No DD card). I I I I 
I I 2) Invalid queue I I I I 
I I structure. I I I I 
I I Request canceled. I I I I 

~---------+----------------------------+-----------+--------+----------~ 
I 21 I Insufficient storage I X I X I X I 
I I available for control I I I I 
I I blocks and/or buffers. I I I I 
I I Request canceled. I I I I 
~---------t-----~----------------------t-----------+--------+----------~ 
I 22 I Queue name unknown. I I X I I 
I I (No DD card.) I I I I 
I I Request canceled. I I I I 
~---------+----------------------------+-----------+--------+----------~ 
I 29 I An input/output error I X I X I X I 
I I has occurred. Request I I I I 
I I canceled. I I I I 
~---------+----------------------------+-----------+--------+----------~ 
I 50 I Character count greater I I X I I 
I I than sending field. I I I I 
I I Request ignored. I I I I 
~---------+----------------------------+-----------+--------+----------~ 
I 60 I Partial segment with I I X I I 
I I either zero character I I I I 
I I count or no sending I I I I 
I I area specified. I I I I 
I I Request ignored. I I I I ~ ________ ~ ____________________________ ~ ___________ ~ ________ ~ _________ J 

Figure 19. STATUS KEY Field -- Possible Values 

QUEUE DEPTH Clause: This clause defines data-name-ll as the nam~ 
of an unsigned 6-digit integer data item, -occupying-character 
positions 82 through 87 of the record. 

The contents of data-name-ll indicate the number of messages 
that exist in an input queue. The MCP updates the contents of 
data-name-li only as part of the execution of an IF MESSAGE 
statement. 

Format 1 -- Option 2: The second option of Format 1 allows the 
programmer to specify data-name-i through data-name-i1 without the 
descriptive clauses. If any data-names are to be omitted, the word 
FILLER must be substituted for each omitted name, except that 
FILLER need not be specified for any data-name that comes after the 
last name to be referenced. 

For example, if the programmer wishes to refer to the. SYMBOLIC 
QUEUE as QUEUE-IN and 'to the MESSAGE DATE as DATE-IN, he can write 
the input CD entry as follows: 

CD INPUT-AREA FOR INPU'l' 
QUEUE-IN FILLER FILLER FILLER DATE-IN. 

Teleprocessing (TP) 345 



In this case data-name-6 through data-name-11 can be omitted, 
nor need FILLER be written in their place. 

The same input CD entry can be written as follows (in this case, 
an optional level-01 record description entry redefining the data 
areas is also included.): 

CD INPUT-AREA FOR INPUT 
SYMBOLIC QUEUE IS QUEUE-IN 
MESSAGE DATE IS DATE-IN. 

01 INAREA-RECORD. 
05 FILLER PICTURE X(78) • 
05 ENDKEY-CODE PICTURE X(l) • 

88 PARTIAL-SEGMENT VALUE "0" • 
88 END-SEGMENT VALUE "1". 
88 END-MESSAGE VALUE "2" • 
88 END-TRANSMISSION VALUE "3" • 

05 FILLER PICTURE X(8) • 

By naming the SYMBOLIC QUEUE and MESSAGE DATE field~ of the CD 
the programmer can refer to these data areas within his program 
without further defining them. By redefining the END KEY data 
area, the programmer can use condition names to refer to the values 
contained in that area. 

FOR~±-~: This format is required if the CD entry is FOR OUTPUT. 
At least one output CD entry must be specified if messages are to 
be placed into an output queue. A number of output CD entries in 
the same program or in different subprograms in the same run unit 
may be uSed to send different portions of the same message, so that 
parts of one message may be transferred to the MCP using different 
CD entries. 

Until the transfer of a first message from the COBOL program to 
the MCP has been completed, the transfer of a second message may 
not begin. Changing the destination before indicating End Of 
Message causes unpredictable results. 

The specification of an output CD entry always results in a 
record whose implicit description is equivalent to the following: 

Equivalent COBOL Record Descr!E~~on 

01 data-name-O. 
02 data-name-1 PICTURE 9(4). 
02 data-name-2 PICTURE 9(4). 
02 data-name-3 PICTURE xx. 
02 data-name-4 PICTURE X. 
02 data-name-5 PICTURE X(12). 

Destination Count 
Text Length 
Status Key 
Error l<ey 
Symbolic Destination 

For each output CD entry, a record area of 23 contiguous 
Standard Data Format character positions is always generated. It 
is implicitly defined as previously illustrated. Through the use 
of the optional clauses, user data-names may be explicitly 
associated with the output CD subfields as follows: 

DESTINATION COUNT Clause: The DESTINATION COUNT clause defines 
data-name-1 as the name of an unsigned 4-digit integer data item. 
occupying character positions 1 through 4 of the record. The 
CODASYL specification for teleprocessing defines the DESTINATION 
COUNT clause as shown in Format 2. However, since COBOL allows 
only one destination, the DESTINATION COUNT clause, if specified, 
is treated as comments. 

TEXT LENGTH Clause: This clause defines data-name-2 as the name of 
an unsignp.d~-digit integer data item, occupying character 
positions 5 through 8 of the record. 

346 Part V -- Special Features 

c 



---------- -----------

As part of the execution of a SEND statement, the MCP interprets 
the contents of data-name-2 as the user's indication of the number 
of leftmost bytes of main storage of the identifier named in the 
SEND statement to be transferred (see SEND statement). 

STATUS KEY Clause: This clause defines data-name-3 as the name of 
a 2-character elementary alphanumeric data item, occupying 
character positions 9 and 10 of the record. 

The contents of data-name-3 indicate the status condition of the 
previously executed SEND statement. The values data-name-3 can 
contain, and their meanings, are defined in Figure 19. 

ERROR KEY Clause: This clause defines data-name-4 as the name of a 
l-character elementary alphanumeric data-Item;-occupying character 
position 11 of the record. 

If, during the execution of a SEND statement, the MCP determines 
that the specified destination is unknown, the MCP updates the 
contents of data-name-4. Data-name-4 will contain: 

1 if the symbolic destination contained in g~ta-B~~~ is unknown 
to the MCP. 

a if the symbolic destination is known to the MCP. 

~: The ERROR KEY field is set to '1' only when the STATUS KEY 
is set to '20'. Therefore, the programmer should not examine the 
ERROR KEY unless the STATUS KEY field is set to '20'. 

SYMBOLIC DESTINATION Clause: This clause defines data-name-5 as 
the name of a 12-character elementary alphanumeric data item, 
occupying character positions 12 through 23 of the record. 

Data-name-5 contains a symbolic destination. The first 1 
through 8 characters of data-name-5 must be previously defined to 
the MCP. 

The following example illustrates an output CD entry, with an 
optional level-Ol record description entry redefining the data 
areas: 

CD OUTPUT-AREA FOR OUTPUT 
TEXT LENGTH IS MSG-LGTH 
SYMBOLIC DESTINATION IS Q-OUT. 

01 OUTAREA-RECORD. 
as FILLER PICTURE X(10). 
as ERRKEY-CODE PICTURE X. 

88 KNOWN VALUE "0". 
88 UNRNOWN VALUE "1" • 

as FILLER PICTURE X(12). 

By naming the TEXT LENGTH and SYMBOLIC DESTINATION fields of the 
CD entry, the programmer can refer to those data areas within his 
program without further defining them. By redefining the ERROR KEY 
data area, the programmer can use condition-names to refer to the 
values contained in that area. 

Note: When a message is being sent to a remote station, TCAM adds 
the proper End Of Transmission line control character. 

FORMAT 3: The CD entry may be pre-written and included in the 
user-created library. The entry may then be included in a COBOL 
source program by means of a COPY statement. (See "COPY Statement" 
in the chapter on the Source Program Library Facility.) 

Teleprocessing (TP) 347 



PROCEDURE DIVISION 

In the Procedure Division, there is an additional condition 
which may be used by a COBOL TP program: the message condition. 

There are two additional input/output statements used by a COBOL 
TP program to communicate with the MCP: the RECEIVE statement and 
the SEND statement. 

Each of these language elements is described in the sections 
that follow. 

Message Condition 

The message condition determines whether or not one or more 
complete messages exist in a designated queue of messages. The 
condition can then be specified in an IF statement. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ I [NOT] MESSAGE FOR cd-name I L ______________________________________________________________________ J 

The cd-name must specify an input CD entry. 

At the time of the test, the CD entry must contain the name of 
the SYMBOLIC QUEUE to be tested. 

A MESSAGE condition exists only if one or more complete messages 
are present in the named queue. A NOT MESSAGE condition exists if 
there are no complete messages in the named queue. 

Execution of the message condition causes the QUEUE DEPTH field 
of the named input CD to be updated with the number of complete 
messages present in the input queue or queue structure. Executing 
a message condition to a queue structure returns a count of the 
number of complete messages in the entire structure. Thus the 
COBOL TP program can check a queue or queue structure for a 
predetermined message count before invoking a specific TP 
processing program. 

When using compound IF statements, care must be taken to ensure 
that the message condition is actually tested, so that the QUEUE 
DEPTH field will actually be updated. For example, suppose the 
programmer writes: 

IF A = B AND MESSAGE FOR QUEUE-IN ••• 

then when A is not equal to B, the message condition is not tested, 
and the QUEUE DEPTH field for QUEUE-IN is not updated. To ensure 
that the message condition is tested, the programmer must always 
write it as the first condition tested within a multiple condition. 

When the message condition is executed, the STATUS KEY field of 
the named inpu~ CD is set as follows: 

'00' for a valid request 

~20' invalid queue name or queue structure 

• 21' insufficient storage for system control blocks 

348 Part V -- Special Features 



o 

RECEIVE Statement (Version ·4)~} 
"..,.",J 

'29' input/output error 

(See Figure 19 for a complete explanation.) 

When a STATUS KEY other than '00' is returned, the QUEUE DEPTH 
field is unchanged. 

The RECEIVE statement makes available to the COBOL program a 
message, message segment, or a portion of a message or message 
segment, and pertinent information about that message data from a 
queue maintained by the MCP. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I {MES~} I IRECEIVE.cd-name ~~!Q identifier-l I 
I SEGMENT. I 
I I 
I [NO:DAT~ imperative-statement) I 
I I L ______________________________________________________________________ J 

The cd-name must specify an input CD entry. 

Before a RECEIVE statement is executed, this input CD entry must 
contain, in its SYMBOLIC QUEUE field, a name of up to 12 
characters. The first 1 through 8 characters of this name must be 
unique, and must match the DOname of the DO statement that 
specifies the queue. 

Upon execution of the RECEIVE statement, data is transferred to 
the receiving character positions of ~g~rr~~~~~£=1, aligned to the 
left ~ithout any SPACE fill and ~ithout any data format conversion. 
The,follo~ing. data items in the input CD are appropriately updated 
~hen the RECEIVE statement is executed: MESSAGE DATE field, 
MESSAGE TIME field, SYMBOLIC SOURCE field, TExr LENGTH field, END 
KEY field, STATUS KEY field (see Figure 19), and if the message ~as 
retrieved through a queue structure, SY~BOLIC SUB-QUEUE-l through 
SYMBOLIC SUB-QUEUE-3. 

A complete message need not be received before another MCP ~ueue 
is accessed. Thus, messages from different MCP queues may be 
processed at the same time by a COBOL program. (Note, ho~ever, 
that a message is not made available to the COBOL pro~ram until it 
is completely received by the MCP and placed in a queue.) 

A singl~ execution of a RECEIVE statement never returns m~re 
than a single message (~hen the MESSAGE phrase is used) or a single 
segment (when the SEGMENT phrase is used), regardless of the size 
of the receiving area. 

When the MESSAGE phrase is used the end-of-segment condition, if 
present, is ignored, and the end-of-segment indicator is treated as 
a data character. (This occurs only ~hen the user, through the 
MCP, segments the message, and the COBOL program uses MESSAGE mode 
to RECEIVE the message.) The follo~ing rules apply to the data 
transfer: 

• If a message is the same size as ~~~rrtitie~=!, the message is 
stored in identifier-i. 

Teleprocessing (rp) 349 



~BSCElvE/SEND' Statements (Version 4) 
t",,~"', " "" 

• If a message size is smaller than !~~~~!f!~~~!, the message is 
aligned to the leftmost character position of identifier-l with 
no SPACE fill. 

• If a message size is larger than !g~g~!f!~~~!, the message 
fills identifier-l left to right, starting ~ith the leftmost 
character of the nessage. The remainder of the message can be 
transferred to identifier-l with subsequent RECEIVE statements 
referencing the same queue. Either the MESSAGE or the SE3MENT 
option may be specified for the subsequent RECEIVE statements. 

When the SEGMENT phrase is used, the end-of-segment condition, 
if present (or the en~-of-message con~ition, if present), 
determines the en~ of data transfer. In this case, the 
end-of-segment indicator is not treated as a ~ata character, and is 
not transferred with the data. The following rules apply to the 
data transfer: 

• If a segment is the same size as !~~~~!t!~~~!, the segment is 
stored in identifier-l. 

• If the segment size is smaller than !den~!fier-!, the segment 
is aligned to the leftmost character position of identifier-l 
with no SPACE fill. 

• If a segment size is larger than !~~~tifie~~!, the segment 
fills identifier-l left to right starting with the leftmost 
character position of the segment. The remainder of the 
segment can be transferred to identifier-l with subsequent 
RECEIVE statements referencing the same queue. Either the 
MESSAGE or the SEGMENT option may be specified for the 
subsequent RECEIVE statements. 

Once the execution of a RECEIVE statement has returned a portion 
of a message, only subsequent execution of RECEIVE statements in 
that run unit can cause the remaining portions of the message to be 
returned. 

After the execution of a STOP RUN statement, or of a GOBACK 
statement in a main program, the disposition of the remaining 
portions of any message only partially obtained is not define~. 

When the NO DATA option is specified and the queue is empty 
(that is, there are no complete messages in the input queue), then 
control passes to the !mQ~~~~!Y~~~~~~~m~nt specified in the NO DATA 
option. 

When the NO DATA option is not specified and the queue is empty, 
execution of the COBOL object program is suspended (that is, placed 
in wait status) until data is made available in !~~~~!f!~~~!. 

The SEND statement causes a message, a message segment, or a 
portion of a message or message segment to be released to the 
Message Control Program. 

r----------------------------------------------------------------------, I Format 1 I 
~----------------------------------------------------------------------~ 
I I 
I SENQ cd-name FRQ~ identifier-l I 
I I L ______________________________________________________________________ J 

350 Part V -- Special Features 



r----------------------------------------------------------------------, I ~~rt2 ; 
~----------------------------------------------------------------------~ 
I 1 
I lWITH identifier-2( I 
I WITH ESI . ~ 

1 SEND cd-name [FROM identifier-l] ~ 1 
I WITH EMI 1 
t WITH EGI ~ 

I ~ L _______________________________________________________ - ______________ J 

Messages may be transferred to the MCP in segments. as complete 
messages, or in parts of segments or messages. However. data is 
never transmitted to the named destination until a complete message 
has been transferred to the MCP. 

until the transfer of a first message from the COBOL program to 
the MCP has been completedo the transfer of a second message may 
not begin. Changing the destination before indicating End Of 
Message causes unpredictable results. 

The cd-name must specify an output CD entryo 

Before a SEND statement is executed, this output CD entry must 
contain: 

• in the TEXT LENGTH field, the number of leftmost bytes of 
contiguous data to be transferred to the output queue from 
identifier-i • 

• in the SYMBOLIC DESTINATION field, the symbolic identification 
of the remote stationCs) that are to receive the messageq (The 
first 1 through 8 characters of this field must be previously 
defined to the MCP.) 

Upon execution of the SEND statement, data is transferred from 
identifier-l to the MCP queue corresponding to the terminal 
identifier contained in the SYMBOLIC DESTINATION field. 

As part of the execution of the SEND statement, the MCP 
interprets the contents of the TEXT LENGTH field to be the user's 
indication of the number of leftmost character positions of 
identifier-l from which data is to be transferred. 

If the contents of the TEXT LENGTH field are zero, no characters 
of data are transferred from identifier-i. (A zero TEXT LENGTH 
field is valid only with the Format 2 SEND statement.) 

If the contents of the TEXT LENGTH field are outside the range 
of zero through the size of identifier-l inclusive, an error is 
indicated in the STATUS KEY field, no data is transferred, and the 
name in the SYMBOLIC DESTINATION field is not validated. The 
contents of the STATUS KEY field are updated by the MCP. (See 
Figure 19, STATUS KEY Field -- possible Values4) 

If the user causes special control characters to be embedded as 
data characters within the message, these control characters are 
enqueued with the message, and it is the user's responsibility to 
ensure that these characters function as intended. 

The disposition of a portion of a message not terminated by a 
subsequent and associated EMI or EGI is undefined. (However. such 
a message portion will not be transmitted to the destination.) 

Teleprocessing (TP) 351 



Format 2 Considerations: This format of the SEND statement allows 
the programmer to specify whether or not an end indicator is 
associated with the message. 

If the FROM identifier-l option is omittedu then an end 
indicator is associated with the data enqueued by a previous SEND 
statement. 

The hierarchy of end indicators. and their meanings, is as 
follows: 

EGI End of Group Indicator -- the CODASYL specification defines 
the EGI as indicating that the group of messages to be 
transmitted is complete. However. for this implementation, 
the EGI is regarded as equivalent to the EMI. Therefore, if 
EGI is specified without a preceding EMI, the EGI is regarded 
as an EMI: if the EGI is specified after a preceding EMI, the 
EGI is treated as comments (that is, is ignored). 

EMI End of Message Indicator -- the message to be transmitted is 
complete. 

ESI End of Segment Indicator -- the segment to be transmitted is 
complete. 

An EGI need not be preceded by an EMI or ESI. An EMI need not 
be preceded by an ESI. 

Identifier-2 must reference a i-character integer without an 
operational sign. The contents of identifier-2 indicate that the 
contents of identifier-l have an end indicator associated with them 
according to the following codes: 

If identifier-2 
contains: 

o 

1 

2 

3 

Then identifier-l has 
associated with it: 

no indicator 

ESI 

EMI 

EGI 

Which 
means: 

no indicator 

End of Segment 
Indicator 

End of Message 
Indicator 

End of Group 
Indicator 

Any character other than 1, 2, or 3 is interpreted as O. 

If the contents of identifier-2 are other than 1, 2, or 3, and 
identifier-l is not specified, then an error is indicated in the 
STATUS KEY field of the associated CD entry, and no data is 
transferred. 

352 Part V -- Special Features 

C' 
-~ 



o 

'STRING Statement (Version 4) 

, , 

2lR!!G,MANIPULATION 

string manipulation statements allow the COBOL programmer 
greater flexibility in data manipulation. With the STRING 
statement he can concatenate two or more subfields into a single 
field. With the UNSTRING statement he can separate contiguous data 
in a single field into multiple logical subfields. The subfields 
need not be contiguous. 

SI'RING statement 

The STRING statement provides juxtaposition of the partial or 
complete contents of two or more data items into a single data 
item. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 

{

identifier-i} [identifier-2J 
STRING 

literal-l literal-2 {
identifier-3} 

Q~~~~!r~Q BY literal-3 
§!~~ 

[{identifier-4} [identifier-51 
literal-4 literal-5 J ••. Q~~!M~!~Q BY literal-6 ] 

{ 

identifier- 6} 

INTO identifier-7 [WITH ~Q!~~~g identifier-8] 

[ON Q~ERFLO~ imperative-statement] 

§!~~ 

______________________________________________________________________ J 

All literals must be described as nonnumeric literals. Each 
literal may be any figurative constant without the optional word 
ALL. 

All identifiers, except identifier-8, must be jescribed 
implicitly or explicitly as-USKGE-fS-5fSPLAY. Identifier-3 and 
identifi~-6~must each reference a fixed length-~ata-rtem~-

!,dent,ifier-7 must represent an ele!qentary data item without 
editing symbols. If a SEPARATE'SIGN clause is specified, it is 
ignored during execution of the STRIN3 statement. 

Identifier-8 must represent an elementary numeric integer data 
item of suffi9ient size to contain a value equal to the size plus 1 
of the area referenced by ~g~~~!~!~~~r. 

All references to identifier-i, identifier-2, identifier-3, 
lit~[al~l, !iteral-£,-and-~~~~~~~~~-appry-equarly-to-rdentrfier-4, 
iden~!fier-5, !g~~~iti~~~~, !!~~~~!~!, !i~~~~!~2, and-!~t~~~!=~~
respectively. and all repetitions thereof. 

String Manipulation 353 



F;I.IUNG Statement «Version 4) 
J'.", 

!g~ntifigr-l, !!~~re!~!, !g~B~!t!~r~~, and !!~~ral~£ represent 
the sending items. !~~~t!~!~£~I represents the receiving item. 

~!t~£al~~ and !g~gt~t!~£~~ indicate the character(s) delimiting 
the move. If the SIZE phrase is used, the complete data item 
defined by !deB~!t!~~=!, !!~~r~!~!, !~~g~!t~~£~~, !!t~£~!~~ is 
moved. 

When a figurative constant is specified as !it~£el-l, li~~£~!~£, 
it refers to an implicit one-character data item whose OS~GE IS 
DISPLAY. 

When the STRING statement is executed, the transfer of data is 
governed by the following rules: 

• Those characters from the sending item(s) are transferred to 
the receving iten in accordance with the rules for alphanumeric 
to alphanumeric moves, except that no SPACE filling is 
provided. (See the MOVE statement in "Procedure Division".) 

• If the DELIMITED phrase is specified without the SIZE option, 
the contents of each sending item are transferred to the 
receiving data item in the sequence specified in the SrRING 
statement, beginning with the leftmost character of the first 
sending item, and continuing from left to right through each 
successive sending item until either: 

1. the delimiting character(s) (!!~~£~!~~L!~~nt!tier-~, or 
lite£el-6/!g~~t!~!~£~~) for this sending item are reached, 
or 

2. the rightmost character of this sending item has been 
transferred. 

rhe delimiting character(s) are not transferred into the 
receiving data item. When the rece1v1ng field is filled, or 
when all of the DELIMITED data in all of the sending fields has 
been transferred the operation is ended. 

• If the DELIMITED phrase is specified with the SIZE option, the 
entire contents of each sending item are transferred, in the 
sequence specified in the STRING statement, to the receiving 
data item. The operation is ended either when all data has 
been transferred or when the receiving field is filled. 

The POINTER option may be used explicitly by the programmer to 
designate where data is to be placed in the receiving area. If the 
POINTER option is specified, !a~~!t!~~~ is explicitly available 
to the user, and he is responsible for setting its initial value. 
The initial value must not be less than one and must not exceed the 
number of character positions of the receiving item. (Note that 
the POINTER item must be defined as of sufficient size to contain a 
value equal to the size of the receiving item plus one. rhis 
precludes the possibility of arithmetic overflow when the system 
updates the pointer. The following rule applies: 

• conceptually, when the STRING statement is executed, the 
following actipns occur. Characters are transferred into the 
receiving item one at a time, beginning at the character 
position indicated by the POINTER value. After each character 
is positioned, the value of the POINTER item '(!g~!!t!t!~~~[) is 
increased by one. The value associated with the POINrER item 
is changed only in this manner. At the termination of any 
STRING operation, the value in the POINTER item always points 
to one character beyond the last character moved into the 
receiving item. 

354 Part V -- special Features 



o 

- ---------------

STRING statement (Version 4) 

No~g: The POINTER value may therefore be used in a subse~uent 
STRING statement to place additional characters immediately to 
the right of those already placed in the receivin~ item. 

If the POINTER option is not specified, the STRING statement 
acts as if the user had s~ecified a ~ointer with an initial value 
of one. When the statenent is executed, the implicit pointer is 
incremented as described above. The im~licit pointer is not 
available to the programmer. 

At the end of execution of a STRING statement, only that portion 
of the receiving item that was referenced during the execution of 
the STRING statement is changed. All other portions of the 
receiving item contain data that was ~resent before this execution 
of the STRING statement. 

If at any time durin~ or after initialization of the STRIN3 
statement, but before execution of the STRING statement is 
completed, the value associated with the POINTER item is less than 
one, or exceeds the nunber of character positions in the receiving 
item, no (further) data is transferred, and, if specified, the 
imegratiyg~~~~gmg~~ in the ON OVERFLOw option is executed. 

If tne ON OVERFLOw option is not specified and the conditions 
described above are encountered, control passes to the next 
statement as written. 

EX~Q!g: The following example illustrates some of the 
considerations that apply to the STRING statement. 

In the Data Division, the programmer has defined the following 
fiel:is: 

77 RPT-LINE PICTURE X(120). 
77 LINE-POS PICTURE 99. 
77 LINE-NO PICTURE 9(5) VALUE 1. 
77 DEC-POINT PICTURE X Value ".". 

In the File Section he has defined the following input record: 

01 RCD-Ol. 
05 CUST-INFO. 

if' CUST-Nl\ME 
10 CUST-l\DDR 

05 BILL-INFO. 
10 INV-NO 
10 INV-l\MT 
10 AMT-PAID 
10 DATE-PAID 
10 BAL-DUE 
10 DATE-DUE 

PICTURE X(15) 
PICTURE X(35) 

PICTURE X(6). 
PICTURE $$,$$$.99. 
PICTURE $$,$$$.99. 
PICTURE xeS). 
PICTURE $$,$$$.99. 
PICTURE xes). 

The programmer wishes to construct an output line consisting of 
portions of the information from RCD-Ol. The line is to consist of 
a line number, customer name and address, invoice number, next 
billing date, and balance due, truncated to the :iollar figure 
shown. 

The record as read in contains the following information: 

J.B.bSMITHbbbbb 
444bSPRINGbST.,bCHICAGO,bILL.bbbbbb 
A14725 
$4,736.S5 
$2,400.00 
09/22/71 
$2, 3,36. S5 
10/22/71 

String Manipulation 355 



t ~"?;'<'~~"~"''''''~''>'W'''<ih''' ",::-:"",,,,,,,,,<,, h,'~ ---~'''''~''!!:''''1-"'''t'''~ :-,.,~ """":»"'<:>~7'\!""~'~~;""~'~~,~ 

!,STRING Statement ~(Ver'si:61f;4)-l 
:~ ", , ..,.,' ~ " ... ,~ ~ h"~ h ... h~:"""'-: ~ ,~:,. ', ... -;"Nh '".. ~.,.~ ... ~,; ~ Ch .-: 

In the Procedure Division, the programmer initializes RPT-LINE 
to SPACES, and sets LINE-pas (which is to be used as the PQINTER 
field) to 4. Then he issues this STRING statement: 

STRING LINE-NO SPACE CUST-INFO DELIMITED BY SIZE INV-NO SPACE 
DATE-DUE SPACE DELIMITED BY SIZE BAL-DUE DELIMITED BY 
DEC-POINT INTO RPT-LINE WITH POINTER LINE-POS. 

When the statement is executed, the following actions take 
place: 

1. The field LINE-NO is moved into positions 4 through 8 of 
RPT-LINE. 

2. A space is moved into position 9. 

3. The group item CUST-INFO is moved into positions 10 through 
59. 

4. INV-NO is moved into positions 60 through 65. 

5. A space is moved into position 66. 

6. DATE-DUE is moved into positions 67-74. 

7. A space is moved into position 75~ 

8. The portion of BAL-DUE that precedes the decimal point is 
moved into positions 76 through 81. 

At the end of execution of the STRING statement, RPT-LINE 
appears as follows: 

Column 
4 10 
I J 
I I 
I I 
V V 

25 
I 
I 
I 
V 

60 
I 
I 
I 
V 

00001 JwB. SMITH 444 SPRING ST., CHICAGO, ILL. A14725 10/22/71 $2,336 

356 Part V -- Special Features 

c 



I··---··.....,...,..··_ ....... -·,.-~,·.....,."..,..,.· ....... ·~·~~·-:-Y:"-·_~·-·..,- ~;-, 
l~~,.,~9~,~~~.~t.~~!~;_ .. (Y.e,~~~2!! ..• 'U 

UNSTRING Statement 

The UNSTRING statement causes contiguous data in a sending field 
to be separated and placed into multiple receiving fields. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 

UNSTRING identifier-1 

~ identifier- 2l f identifier-3 '} 
[DELIMITED BY [ALL] .. ([OR [ALL] .. ] ••• ] 

~literal-1 ) -- ~literal-2 .. 

INTO identifier-4 [DELIMITER IN identifier-5] 

[COUNT IN idpntifier-6] 

[identifier-7 [DELIMITER IN identifier-8] 

[COUNT IN identifier-9] ] ••• 

[WITH POINTER identifier-10] [TALLYING IN identifier-11] 

[ON OVERFLOW imperative-statement] 
L _____________________________________________________________________ J 

Each literal must be described as a nonnumeric literal. In 
addition, each literal may be any figurative constant except the 
figurative constant ALL lite~~l. (That is, the form ALL ALL 
literal may not be specified.) 

Identifier-1, identifier-2, identifier-3, identifier-5, and 
identifier-8 must each be described, implicitly-or-explicitly, as 
an alphanumeric data item. 

I 
Identifier-4 and identifier-7 must each be described, implicitly 

or explicitly, as USAGE DISPLAY. Each may be described as 
alphabetic, alphanumeric, or numeric (without the symbol P in the 
PICTURE character string). 

Identifier-6, identifier-9, identifier-10, and identifier-ll 
must be described as elementary numeric integer data items. 

No identifier may name a level-88 entry. 

The DELIMITER IN option and the COUNT IN option may be specified 
only if the DELIMITED BY option is specified. 

All references to identifier-2, literal-l, identifier-4, 
identifier-5, and identifier-6 apply equally to identifier-3. 
literal-2, identifier-7, identifier-S, and identifier-9, 
respectively, and all repetitions thereof. 

ldentifier-1 represents the sending area. 

Identifier-4 represents the data receiving area. Identifier-~ 
represents the receiving area for delimiters. 

1!teral-l or identifier-2 specifies a delimiter. No more than 
15 delimiters may be specified. 

!Qentifi~r-6 represents the count of the number of characters 
wi thin the sending area isolated by the delimiters for the nlove 

String Manipulation 357 



into the current rece~v~ng area. This value does not include the 
count of the delimiter character(s). 

Identifier-i0 contains a value that indicates a relative 
character position within the sending area. 

Identifier-ii is a counter that records the number of receiving 
areas acted upon during the execution of the UNSTRING statement. 

When the ALL option is specified, two or more contiguous 
occurrences of literal-lor of identifier-2 are treated as if they 
were only one occurrence. However, identifier-5 (the receiving 
area for delimiters) contains as many complete occurrences of the 
delimiter as are present or as it can hold, whichever is smaller. 

When ALL is specified, and two or more delimiters are found, as 
much of the first occurrence of the delimiter as will fit is moved 
into identifier-5. Each additional occurrence of the delimiter is 
moved into identifier-5 only if the complete occurrence will fit. 

When ALL is not specified, and the examination encounters two 
contiguous occurrences of li~gral-i or !~~n~ifi~~, the current 
receiving area for data is either space-filled or zero-filled, 
according to the description of the receiving area. 

Literal-lor iden~ifier-2 may contain any characters in the 
EBCDIC character set. 

Each literal-lor identifier-2 represents one delimiter. When a 
delimiter contains two or more characters, all of the characters 
must be present in contiguous positions in the sending field, and 
in the sequence specified, to be recognized as that delimiter. 
When a figurative constant is used as a delimiter, it stands for a 
single character nonnumeric literal. 

When two or more delimiters are specified in the DELIMITED BY 
option, an OR condition exists. Each non-overlapping occurrence of 
anyone of them is considered a delimiter, and is applied to the 
sending field in the sequence specified in the UNSTRING statement. 
For example, if DELIMITED BY AB OR BC is specified, then an 
occurrence of either AB or BC in the sending field is considered a 
delimiter; an occurrence of ABC is considered an occurrence of AB. 

When the UNSTRING statement is initiated, th~ current receiving 
area is identifier-4. Data is transferred from identifier-i to 
identifier-4 according to the following rules: ------------

• If the POINTER option is specified the string of characters in 
the sending area is examined beginning with the relative 
character position indicated by the contents of the POINTER 
item. If the POINTER option is not specified, the character 
string is examined beginning with the leftmost character 
position. 

• If .the DELIMITED BY option is specified, the examination 
proceeds left to right until a delimiter specified by either 
literal-lor the value in identifier-2 is encountered. If the 
end of the sending item is encountered before the delimiting 
condition is met, the examination terminates with the last 
character examined. 

• If the DELIMITED BY option is not specified, the number of 
characters examined is equal to the size of the current 

358 Part V -- Special Features 

'..""> • 



(j 

C) 

receiving area,. The size of the r.eceiving area depends on its 
data category: 

1. If it is alphanumeric or alphabetic, its size is equal to 
the size of the current receiving area. 

2. If it is numeric, then its size is equal to the integer 
portion of the current receiving field. 

3. If it is described with the SEPARATE SIGN clause, the 
characters examined are one fewer than the size of the 
current receiving area. 

4. If it is described as a variable-length data item. the 
number of characters examined is determined by the current 
size of the receiving area. 

• The characters thus examined (excluding the delimiting 
character(s), if any) are treated as an elementary alphanumeric 
data item, and are moved into the current receiving area 
according to the rules for the MOVE statement. (See the MOVE 
statement in the Procedure Division chapter.) Note that if two 
delimiters are adjccent, that is, with no data characters 
between them, the null receiving field is filled with zeroes or 
spaces, depending on its descri~tion. 

• If the DELIMITER IN option is specified, the delimiting 
character(s) are treated as an elementary alphanumeric data 
item and are moved into identifier-5 according to the rules for 
an elementary move. If the delimiting condition is the end of 
the sending area, then identifier-5 (the DELIMITER) is 
space-filled or zero-filled according to its PICTURE character 
string. 

• If the COUNT IN option is specified, a value equal to the 
number of characters thus examined (excluding the delimiter 
character(s), if any) is moved into identifier-6 according to 
the rules for an elementary move. 

• If the DELIMITED BY option is specified the string of 
characters is further examined beginning with the first 
character to the right of the delimiter. If the DELIMITED BY 
option is not specified the string of characters is further 
examined beginning with the character to the right of the last 
character transferred. 

• After data is transferred to identifier-4, the current 
receiving area becomes identifier-7. The procedure described 
is then repeated either until all the characters in the sending 
area have been transferred, or until there are no more unfilled 
receiving areas. 

The initialization of the data items associated with the POINTER 
phrase or the TALLYING phrase is the responsibility of the user. 

The contents of the data item referenced by identifier-l0 ,(the 
POINTER item) behave as if incremented by one for each character 
examined in the sending area. When the execution of an UNSTRING 
statement with a POINTER option is completed, the contents of 
identifier-l0 contain a value equal to the initial value plus the 
number of characters examined in the sending area. 

When the execution of an UNSTRING statement with the TALLYING 
option is completed, the contents of identifier-ll contain a value 
equal to the initial value plus the number of data receiving areas 
acted upon (including null fields). 

String Manipulation 359 



Either of the following situations causes an overflow condition: 

• An UNSTRING statement is initiated, and the value in the 
POINTER item (identifier-10) is less than one or greater than 
the size of the sending area • 

• If, during the execution of an UNSTRING statement, all 
receiving areas have been acted upon, and the sending area 
still contains characters that have not been examined. 

When an overflow condition exists, the UNSTRING operation is 
terminated. If an ON OVERFLOW option has been specified, the 
imperative-statement included in the ON OVERFLOW option is 
executed. If the ON OVERFLOW option is not specified, control 
passes to the next statement as written. 

Example: The following example illustrates some of the 
considerations that apply to the UNSTRING statement. 

In the Data Division, the programmer has defined the following 
input record to be acted upon by the UNSTRING statement: 

01 INV-RCD. 
05 CONTROL-CHARS PIC XX. 
05 ITEM-IDENT PIC X (20) • 
05 FILLER PIC X. 
05 INV-CODE PIC X(10). 
05 FILLER PIC X. 
05 NO-UNITS PIC 9(6). 
05 FILLER PIC X. 
05 PRICE-PER-M PIC 99999. 
05 FILLER PIC x. 
05 RTL-AMT PIC 9(6).99. 

The next two records are defined as receiving fields for the 
UNSTRING statement. DISPLAY-REC is to be used for printed output. 
WORK-REC is to be used for further internal processing. 

01 DISPLAY-REC. 
05 INV-NO PIC X( 6). 
05 FILLER PIC X VALUE SPACE. 
05 ITEM-NAttiE PIC X (20) • 
05 FILLER PIC X VALUE SPACE. 
05 DISPLAY-DOLS PIC 9(6). 

360 Part V -- Special Features 



C) 

01 WORK-REC. 
05 M-UNITS 
05 FIELD-A 
05 WK-PRICE REDEFINES FIELD-A 
05 INV-CLASS 

PIC 9 (6) .. 
PIC 9(6). 
PIC 9999V99. 
PIC X(3). 

He has also defined the following fields for use as control 
fields in the UNSTRING statement: 

77 DBY-l PIC x. 
77 CTR-l PIC 99. 
77 CTR-2 PIC 99. 
77 CTR-3 PIC 99. 
77 CTR-4 PIC 99. 
77 DLTR-l PIC X .. 
77 DLTR-2 PIC x. 
77 CHAR-Crr PIC 99. 
77 FLDS~FILLED PIC 99. 

In the Procedure Division, the programmer writes the following 
UNSTRING statement to move subfields of INV-RCD to the subfields of 
DISPLAY-REC and WORK-REC: 

UNSTRING INV-RCD DELIMITED BY ALL SPACES OR "/" OR DBY-l 
INTO ITEM-NAME COUNT IN CTR-l 

INV~NO DELIMITER IN DLTR-l COUNT IN CTR-2 
INV-CLASS 
M-UNITS COUNT IN CTR-3 
FIELD-A 
DISPLAY-DOLS DELIMITER IN DLTR-2 COUNT IN CTR-4 
WITH POINTER CHAR-CT 
TALLYING IN FLDS-FILLED 
ON OVERFLOW GO TO UNSTRING-COMPLETE. 

Before the UNSTRING statement is issued. the programmer places 
the value 3 in CHAR-CT (the POINTER item), since he does not wish 
to work with the two control characters at the beginning of 
INV-RCD. In DBY-1 he places a period (.) for use as a delimiter, 
and in FLDS-FILLED (the TALLYING item) he places the value 0 
(ze~o). The following data is then read into INV-RCD: 

Column: 
1 
I 
I 
V 

10 
I 
r 
V 

ZYFOUR-PENNY-NAILS 

20 
I 
I 
V 

30 
1 
I 
V 

40 
I 
] 
V 

50 
I 
1 
V 

707890/BBA 475120 00122 000379.50 

When the UNSTRING statement is executed, the following actions 
take place: 

1. positions 3 through 18 (FOUR-PENNY-NAILS) of INV-RCD are 
placed in ITEM-NAME, left-justified within the area, and the 
unused character positions are padded with spaces. The value 
16 is placed in CTR-l. 

2. Since ALL SPACES is specifed as a delimiter, the 5 contiguous 
SPACE characters are considered to be one occurrence of the 
delimiter. 

String Manipulation 361 

----------------- --- --- ------ -'--_. ------------



3. Positions 24 through 29 (707890) are placed in INV-NO. The 
delimiter character / is placed in DLTR-1, and the value 6 is 
placed in CTR-2. 

4. Positions 31 through 33 are placed in INV-CLASS. The 
delimiter is a SPACE, but since no field has been defined as a 
receiving area for delimiters, the SPACE is merely bypassed. 

5. Positions 35 through 40 (475120) are examined, and are placed 
in M-UNITS. The delimiter is a SPACE, but since no receiving 
field has been defined as a receiving area for delimiters, the 
SPACE is bypassed. The value 6 is placed in CTR-3. 

6. Positions 42 through 46 (00122) are placed in FIELD-A, and 
right-justified within the area. The high-order digit 
position is filled with a 0 (zero). The delimiter is a SPACE, 
but since no field has been defined as a receiving area for 
delimiters, the SPACE is bypassed. 

7. Positions 48 through 53 (000379) are placed in DISPLAY-DOLS. 
The period (.) delimiter character is placed in DLTR-2, and 
the value 6 is placed in CTR-4. 

8. Since all receiving fields have been acted upon and two 
characters of data in INV-RCD have not been examined, the ON 
OVEaFLOW exit is taken, and execution of the UNSTRING 
statement is completed. 

At the end of execution of the UNSTRING statement, DISPLAY-REC 
contains the following data: 

707980 FOUR-PENNY-NAILS 000379 

WORK-REC contains the following data 

475120000122BBA 

CHAR-CT (the POINTER field) contains the value 55, and FLDS-FILLED 
(the TALLYING field) contains the value 6. 

362 Part V -- Special Features 



• APPENDIXES 

A: Intermediate Results 

B: Sample Programs 

c: IBM American National Standard COBOL Formats and Reserved Words 

0: File-Processing Techniques and Applicable Statements and Clauses 

E: ASCII Considerations (Version 3 and Version 4) 

F: SYMBOLIC DEBUGGING (Version 4) 

G: 3505/3525 Processing (Version 4) 

• IBM American National Standard COBOL Glossary 

G 
Supplementary Material 363 





( 

" 0
', 

- - - -----------

APPENDIX A: INTERMEDIATE RESULTS 

This appendix discusses the conceptual compiler algorithms for 
determining the number of integer and decimal places reserved for 
intermediate results. The following abbreviations are used: 

i number of integer places carried for an intermediate result. 

number of decimal places carried for an intermediate resultQ 

either 

• the maximum number of decimal places defined for any operand 
(except for; floating-point"·operands,·: exponents, or divisors)" 
or , """" , , " , 

• the number of decimal places needed for the final result 
field 

whichever is larger, in a particula~ st~tement. 

first operand in a generated arithmetic statement. 

second operand in a generated arithmetic statement. 

number of decimal places defined for opl or op2. respectively~ 

intermediate result field obtained from the execution of a 
generated arithmetic statement or operation. Irl, ir2, etc., 
represent successive intermediate results.. These intermediate 
results are generated either in ~egisters or in storage 
locations. Successive intermediate results may have the same 
location. 

In the case of an arithmetic statement containing only a single pair 
of operands, no intermediate results are generated, except when the 
TRUNC option is specified for COMPUTATIONAL items. Intermediate results 
are possible in the following cases: 

1. In an ADD or SUBTRACT statement containing multiple operands 
immediately following the verb. 

2. In a COMPUTE statement specifying a series of arithmetic 
operations .. 

3. In arithmetic expressions contained in IF or PERFORM statements. 

In such cases, the compiler treats the statement as a succession of 
operations. For example, the following statement: 

COMPUTE Y = A ~ B * C - D / E + F ** G 

is replaced by 

**F 
MULTIPLY B 
DIVIDE E 
ADD A 
SUBTRACT ir3 
ADD ir5 

BY G 
BY C 
INTO D 
TO ir2 
FROM ir4 
TO irl 

yielding irl 
yielding ir2 
yielding ir3 
yielding ir4 
yielding ir5 
yielding Y 

Appendix A: Intermediate Results 365 



COMPILER CALCULATION OF INTERMEDIATE RESULTS 

The number of integer places an ir is calcuLated as follows: 

• The compiler first determines the maximum value that the ir can 
contain by performing the statement in which the ir occurs. 

1. If an operand in this statement is a data-name, the value used 
for the data-name is equal to the numerical value of the 
PICTURE for data-name (e.g., PICTURE 9V99 has the value 9.99). 

2. If an operand is a literal, the literal's actual value is used. 

3. If an operand is an intermediate result, the value determined 
for the intermediate result in a previous arithmetic operation 
is used. 

4. If the operation is division: 

a. If op2 is a data-name, the value used for op2 is the 
minumum nonzero value of the digit in the PICTURE for the 
data-name (e.g., PICTURE 9V99 has the value 0.01). 

b. If op2 is an intermediate result, the intermediate result 
is treated as though it had a PICTURE, and the m~n2mum 
nonzero value of the digits in this PICTURE is used. 

• When the maximum value of the ir is determined by the above 
procedures, i is set equal to the number of integers in the maxi~um 
value. 

• The number of decimal places contained in an ir is calculated as: 

Operation 
+ or -

* / 

** 

Decimal Places 
dl or d2~ whichever is greater 
d1 + d2 
dl - d2 or dmax. whichever is greater 
dmax if op2 is nonintegral or a data-name; 

dl * op2 if op2 is an integral literal 

Note: It is the user's responsibility to ensure that he defines the 
operands of any arithmetic statement with enough decimal places to give 
the desired accuracy in the final result. 

366 Supplementary Material 

c 



C) 
Table 27 indicates the action of the compiler when handling 

intermediate results. 

Table 27. Compiler Action on Intermediate Results 
r--------T---------T-------------T-------------------------------------, 
I Value I Value I Value I J 
) of I of I of I J 
I i + did ) i + dmax I Action Taken 1 
~--------+---------+-------------+-------------------------------------~ 
I <30 I Any 1 Any value I i integer and Q decimal places J 
~------~ value I I are carried for ir J 
I =30 I ] I I 
~--------+---------+-------------+-------------------------------------i 
I >30 I <dmax 1 Any value I 30 - Q integer and Q decimal J 
I ~--------~ I places are carried for ir ) 
I I =dmax I I J 
I ~---------+-------------+-------------------------------------i 
I I >dmax 1 <30 I i integer and 30 - i decimal places) 
I I ~-------------~ are carried for ir J 

I I ~--:~~--------+-------------------------------------~ 
I I I >30 I 30 - dmax integer and dmax decimal ) 
I I I I places are carried for ir ] L ________ ~ _________ ~ _____________ ~ _____________________________________ J 

Appendix A: Intermediate Results 366.1 



r-........... 



o 

The three programs in tnis appendix illustrate several methods of 
accessing mass storage files. The programs are: 

1. CRE~TION OF ~ DIRECT FILE 

2. ;CREATION OF AN INDEXED FILE 

3. OF ~N INDEXED FILE 

Appendix B: Sample Programs 367 

------ ----------



CRE~TION.OF ~ DIRECT FILE 

rhis program creates a file with direct organization through the use 
of an ~CTUAL KEY. The ACTU~L KEY consists of a relative track address 
and a unique record identifier. In the program, a field in the input 
record (CD-ITEM-CODE) is converted to a track address (TRACK-ID) through 
the use of a simple remainder randomizing technique. rhis technique 
consists of dividing the value in the field of the input record 
(CD-IrEM-CODE) by 19, and using the resulting remainder (TRACK-ID) as 
the relative track address. 

IDENrIFICATION DIVI~ION. 
PROGR~M-ID. CREATEDF. 
REM~RKS. ILLUSTRArE CRE~TION OF A DIRECT FILE. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-360-H50. 
OBJECr-COMPUTER. IBM-360-H50. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECr DA-FILE ASSIGN TO D~-2311-D-M~STER 
ACCESS IS RANDOM 
ACTUAL KEY IS FILEKEY. 

SELECr C~RD-FILE ASSIGN ro UR-1442R-S-INFILE 
RESERVE 3 ALTERN~TE ~RE~S. 

D~rA DIVISION. 
FILE SECTION. 
FD D~-FILE 

D~rA RECORD IS DISK 
LABEL RECORDS ARE SrANDARD. 

01 DISK. 
05 DISK-ITEM-CODE 
05 DISK-ITEM-NnME 
05 DISK-STOCK-ON-HAND 
05 DISK-UNIT-PRICE 
05 DISK-STaCK-VALUE 
05 DISK-ORDER-POINT 

FD CARD-FILE 

PIcrURE 
PICTURE 
PICrURE 
PICTURE 
PICrURE 
PICTURE 

X(3). 
X(29) • 
S9(6) 
S999V99 
S9(9)V99 
S9(3) 

USAGE COMP SYNC. 
USAGE CaMP SYNC. 
USAGE COMP SYNC. 
USAGE COMP SYNC. 

L~BEL RECORDS ARE OMITTED 
DArA RECORD IS CARDS. 

01 CARDS. 
05 CD-ITEM-CODE 
05 CD-ITEM-N~ME 
05 CD-STOCK-ON-HAND 
05 CD-UNIT-PRICE 
05 CD-STOCK-VALUE 
05 CD-ORDER-POINT 
05 FILLER 

WORKING-STOR~GE SECTION. 
17, S~\lE 

11 QUOTIENT 
11 ;PRODUCT 
01 FILEKEY. 

05 TRACK-ID 
,05 RECORO-ID 

PROCEDURE DIVISION. 
BEGIN. 

OPEN INPUT CARD-FILE. 
OPEN OUTPUT D~-FILE. 

368 Supplementary Material 

PIcrURE 
PICTURE 
PICrURE 
PICTURE 
PICrURE 
PICTURE 
PICrURE 

X(3). 
X( 29). 
S9(6). 
S999V99. 
S9(9)V99. 
59(3). 
X(23). 

PIcrURE 59(5) US~GE COMP SYNC RIGHT. 
PICTURE 59(4) USAGE COMP SYNC RIGHr. 
PIcrURE 59(4) USAGE COMP SYNC RIGHT. 

PIcrURE 59(5) US~GE COMP SYNC RIGHT. 
PICTURE X(29). 

c 



PARA-1. 

WR. 

READ CARD-FILE AT END 30 TO END-JOB. 
MOVE CD-ITEM-CODE ro SAVE. 
DIVIDE 19 INTO SAVE GIVING QUOTIENT 

REMAINDER TRACK-ID. 
MOVE CD-ITEM-NAME TO RECORD-IO. 
MOVE CD-ITEM-CODE ro DISK-ITEM-COOE. 
MOVE CD-ITEM-NAME TO DISK-ITEM-NAME. 
MOVE cO-SrOCK-ON-HAND TO OISK-STOCK-ON-HAND. 
MOVE CD-UNIT-PRICE TO OISK-UNIT-PRICE. 
MOVE :O-STOCK-VALUE ro DISK-STOCK-VALUE. 
MOVE CD-ORDER-POINT TO DISK-ORDER-POINr. 

WRITE DISK INVALID KEY GO TO ERROR-ROUTINE. 
GO TO PARA-1. 

END-JOB. 
CLOSE CARD-FILE DA-FILE. 
DISPLAY "END OF JOB". 
STOP RUN. 

ERROR-ROUTINE. 
DISPLAY "UNABLE TO WRITE RECORD". 
DISPLAY TRACK-ID. 
GO TO PARA-1. 

Appendix B: Sample Programs 369 



This program creates an indexed file. These records are presented in 
ascending sequence by RECORD KEY. The operating system builds the 
index, prime, and overflow areas. 

IDENTIFICATION DIVISION. 
PROGRAM-ID. CREATEIS. 
REMARKS. ILLUSTRATE CREATION OF INDEXED SE~UENTIAL FILE. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-360-HSO. 
OBJECT-COMPUTER. IBM-360-HSO. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT IS-FILE ASSIGN TO DA-2311-I-MASTER 
RESERVE NO ALTERNATE AREAS 
ACCESS IS SEQUENTIAL 
RECORD KEY IS REC-ID. 

SELECT CARD-FILE ASSIGN TO UR-1442R-S-INFILE 
RESERVE 10 ALTERNATE AREAS. 

DATA DIVISION. 
FILE SECTION. 
FD IS-FILE 

BLOCK CONTAINS S RECORDS 
RE~ORDING MODE IS F 
LABEL RECORDS ARE STANDARD 
DATA RECORD IS DISK. 

01 DISK. 
OS DELETE-CODE 
OS REC-ID 
OS DISK-FLD1 
OS DISK-NAME 
OS DISK-BAL 
OS FILLER 

PICTURE 
PICTURE 
PICTURE 
PICTURE 
PICTURE 
PICTURE 

X. 
9(10). 
X(10). 
X(20). 
99999V99. 
X(S2). 

FD CARD-FILE 
RECORDING MODE IS F 
LABEL RECORDS ARE OMITTED 
DATA RECORD IS CARDS. 

01 CARDS. 
OS KEY-ID 
05 CD-NAME 
05 CD-BAL 
OS FILLER 

PICTURE 9(10). 
PICTURE X(20). 
PICTURE 99999V99. 
PICTURE X(43). 

PROCEDURE DIVISION. 
BEGIN. 

OPEN INPUT CARD-FILE. 
OPEN OUTPUT IS-FILE. 

PARA-1. 

ERR. 

READ CARD-FILE AT END 30 TO END-JOB. 
MOVE KEY-ID TO REC-ID. 
MOVE LOW-VALUE TO DELETE-CODE. 
MOVE CD-NAME TO DISK-NAME. 
MOVE CD-BAL TO DISK-BAL. 
WRITE DISK INVALID KEY GO TO ERR. 
GO TO PARA-1 •. 

DISPLAY "DUPLICATE OR SEQ-ERR" UPON CONSOLE. 
DISPLAY KEY-ID UPON CONSOLE. 
GO TO PARA-1. 

END-JOB. 
CLOSE CARD-FILE IS-FILE. 
DISPLAY "END OF JOB" UPON CONSOLE. 
STOP RUN. 

370 Supplementary Material 

r 
\. ' 



( ) 

< h -. '" "»' ".., < ....... ,.,. ~ y" ,.... ~., , " hY ... ~ ., ~N , ,~"',.." j 

'R~!QQM_R§tRI~!~_~ND UPD~TING OF AN INDEXEQ FILE 

This program randomly updates an existing indexej file. The RE~D 
IS-FILE statement causes a search of indexes for an equal compare 
between the NOMIN~L KEY obtained from the input record and the RE:ORD 
KEY of the "r-o file. If an equal compare occurs, the record is upjated, 
and the details of this update are printej. If a matching record is not 
found, the invalid key branch is taken. 

IDENTIFICATION DIVISION. 
PROGRAM-ID. RANDOMIS. 
REMARKS. ILLUSTRATE RANDOM RETRIEVAL FROM IS-FILE. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-360-H50. 
OBJECT-COMPUTER. IBM-360-R50. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT IS-FILE ASSIGN TO D~-2311-L-MASTER 
ACCESS IS RANDOM 
NOMINAL KEY IS KEY-ID 
RECORD KEY IS REC-ID. 

SELECT CARD-FILE ASSIGN TO UR-1442R-S-INFILE 
RESERVE 10 ALTERNATE AREAS. · 

SELECT PRINT-FILE ASSIGN TO UT-2400-S-PROUT 
RESERVE NO ALTERNATE AREAS. 

I-O-CONTROL. 
RERUN ON UT-2400-S-CKPr EVERY 10000 RECORDS OF IS-FILE. 

DATA DIVISION. 
FILE SECTION. 
FD IS-FILE 

BLOCK CONTAINS 5 RECORDS 
RECORD CONTAINS 100 CR~R~CTERS 
LABEL RECORDS ARE STANDARD 
RECORDING MODE IS F 
DATA RECORD lS DISK. 

01 DISK. 
05 DELETE-CODE 
05 REC-ID 
05 DISK-FLDl 
05 DISK-NAME 
05 DISK-BAL 
05 FILLER 

FD CARD-FILE 
RECORDING" MODE IS F 

PICTURE 
PICTURE 
PICTURE 
PICTURE 
PICTURE 
PICTURE 

X. 
9Cl0). 
X( 10) • 
X(20). 
99999V99. 
X(52). 

LABEL RECORDS ARE OMITrED 
DATA RECORD IS CARDS. 

01 CARDS. 
05 KEY-IDA 
05 CD-NAME 
05 CD-AMT 
05 FILLER 

FD PRINT-FILE 
RE:ORDING MODE IS F 

PICTURE 9(10). 
PICTURE X(20). 
PICTURE 99999V99. 
PICTURE X(43). 

LABEL RECORDS ARE STANDARD 
DATA RECORD IS PRINTER. 

Appepdix B: Sample Programs 371 



01 PRINTER. 
05 FORMSC PICTURE X. 
05 PRINT-ID PICTURE X(10). 
05 FILLER PICTURE X(lO). 
05 PRINT-NAME PICTURE X(20). 
05 FILLER PICTURE X(lO). 
05 PRINT-BAL PICTURE $ZZZ,999.99-. 
05 FILLER PICTURE X(lO). 
05 PRINT-AMT PICTURE $ZZZ,ZZZ.99-. 
05 FILLER PICTURE X(lO). 
05 PRINT-NEW-BAL PICTURE $ZZZ,ZZZ.99-. 

WORKING-SrORAGE SECTION. 
77 KEY-ID PIcrURE 9(10). 
PROCEDURE DIVISION. 
BEGIN. 

OPEN INPUT CARD-FILE. 
OPEN OUTPUT PRINT-FILE. 
OPEN 1-0 IS-FILE. 

PARA-l. 
MOVE SPACES TO PRINTER. 
READ CARD-FILE AT END GO TO END-JOB. 
MOVE KEY-IDA ro KEY-ID. 
READ IS-FILE INVALID KEY GO TO NO-RECORD. 
MOVE REC-ID ro PRINT-ID. 
MOVE DISK~NAME' TO PRINT-NAME. 
MOVE DISK-BAL TO PRINr-BAL. 
MOVE CD-AMT TO PRINT-~MT. 
ADD CO-AMT TO DISK-B~L. 
MOVE DISK-BAL TO PRINT-NEW-BAL. 
REWRIrE DISK. 
WRITE PRINTER AFTER POSITIONING 2 LINES. 
GO TO PARA-l. 

NO-RECORD. 
DISPLAY 'NO RECORD FOUND' UPON CONSOLE. 
DISPLAY KEY-ID UPON CONSOLE. 
GO TO PARA-l. 

END-JOB. 
CLOSE CARD-FILE PRINr-FILE IS-FILE. 
DISPLAY 'END OF JOB' UPON CONSOLE. 
srop RUN. 

372 Supplementary Material 



APPENDIX C: AMERICAN NATIONAL STANDARD COBOL FORMAT SUMMARY AND RESERVED WORDS 
The Formats and Reserved Words in this appendix have been printed in a specially reduced size with pages numbered in 
sequence to make up a pocket-sized reference booklet for use when coding IBM FUll American National Standard COBOL 
programs. Although most readers may prefer to retain this reference material within the manual, the booklet can be 
prepared as follows: 

• cut along trim lines. 
• place sheets so that page numbers at lower right-hand corner are in ascending order in odd-number progression 

(i.e., 1,3, 5, etc.); lower left-hand page numbers will then be in descending order in even-number progression 
(Le., 20, 18, 16, etc.). I 

• fold trimmed sheets after collation. 0 

• staple along fold if desired. ~ 
• punch for .ix-hole binder. 

TRIM HFIF 

------------------------------------------~---------------------------------

I (nc) 

(nc) 
(spu) 

20 

WHEN 
WHEN-COMPILED 
WITH 
WORDS 
WORKING-STOllAGE 
WRITE 
WRITE-ONLY 
WRITE-VERIFY 

ZERO 
ZEROES 
ZEROS 

Intll'DaUana. Bu.lD ... MaehlDl' CarparaUan 
Data Prae .. llDlI Dlri.lan 
11!! W •• teh .. ter AnnUl 
Whit. PlaID., Nlw Yark 10&04 

[U.S.A. anly) 

IBM Warld Tradl CarparaUan 
B21 Unltld NIUaDa Plua 
NlwYark, N.wYark 10017 
(Intlrnatlanall 

e e 

e e 

e e 

Printed in U.S.A. Extracted frem GC28-639&4 
Not erdarable _perltelv. 

IB:t.1 Reference Data 

Operating System 

IBM Full 
American 
National 
Standard 
COBOL 

Appendix C: IBM Full American National 
Standard COBOL 

Format Summary and 
Reserved Words 

The general format of a COBOL program is illustrated 
in these format summaries. Included within the general for
mat is the specwc format for each valid COBOL statement. 
All clauses are shown as though they were required by the 
COBOL source program, although within a given context 
many are optional. Several fonnats are included under spe
cial headings, which are different from, or additions to, the 
geneml format. Under these special headings are included 
formats peculiar to the following COBOL features: Sort. 
Report Writer, Table Handling, Segmentation, Source Pro-

gr~=~DebUiihi:~f~~ 
, '> >~' ~ Each of these features is ex-

plained within a special chapter of this publication - IBM 
as Full American National Standard COBOL, Order Nos. 
GC28-6396-3, and -4. 

~ OS{VS COBOL formats are Included and identified as OS/VS COBOL 
only. 

-----------------------------------;~-~~-----------------------------------

Appendix C~ American National Standard COBOL Format summa~y and Reserved Words 373 



o 

2 

TRIM HERE ----------------------------------------------------------
IDENTIFICATION DIVISION - BASIC FORMATS 

SOURCE 
iIDENTIFICATION DIYISION.} 

(ca) PRINTING SOURCE-COMPUTER PROCEDURE 
SPACE i~~~',l (ca) PROCEDURES 
SPACES 

PROGRAM-ID. program-name. PROCEED 
SPECIAL-NAMES (ca) PROCESS 
STANDARD ~. [comment-ent'll] ••• PROCESSING 

INSTALLATION. [comment-ent'll] .•. (xa) PROGRAM I (xa) START 
PROGRAM-ID STATUS 

DATE-WRITTEN. [comment-ent'll) '" STOP 
(xa) QUEUE (xa) STRING 

DATE-COMPILED. [comment-ent'll] •.• e e QUOTE (xa) SUB-QUEUE-l 

~. [comment-ent'll) ••• QUOTES (xa) SUB-QUEUE-2 
(xa) SUB.QUEUE-3 

~. [comment-ent'll] ••. RANDOM SUBTRACT 
RD SUM 

ENVIRONMENT DIVISION - BASIC FORMATS 
READ (ca) SUPERVISOR 

(XBC) READY (xa) SUPPRESS 
(xa) RECEIVE (ca) SUSPEND 

ENVIRONMENT lli.Yllimi, RECORD (xa) SYMBOLIC 
CONFIGURATION ~. • • (X8C) RECORD-OVERFLOW SYNC 

(u) RECORDING SYNCHRONIZED 
~-COMPUTER. computer-name. RECORDS (sp) SYSIN 

{WORDS } 
REDEFINES (spn) SYSIPT 

OBJECT-COMPUTER. computer.name [~ SIZE Integer CHARACTERS ] REEL (spn) SYSLST 

MODULES (ca) REFERENCES (sp) SYSOUT 
[SEGMENT-LIMIT IS prlorlty.number]. --- (ca) RELATIVE (spn) SYSPCH 

RELEASE (sp) SYSPUNCH 
SPECIAL-NAMES. [!unction-name IS mnemonic-name] ..• (xac) RELOAD (sp) SOl 

[CURRENCY SIGN !!i literal] 
REMAINDER (sp) S02 • • REMARKS 

[DECIMAl -POINT IS COMMA]. I (ca) REMOVAL I (ca) TABLE 
RENAMES TALLY 

INPUT-OUTPUT ~. (uc) REORG-CRITERIA TALLYING 

FILE-CONTROL. REPLACING TAPE 
REPORT (ca) TERMINAL 

{~ [OPTIONAL] file name REPORTING TERMINATE 
REPORTS (xa) TEXT 

ASSIGN TO [lnteger-lJ Sflstem-name-! [system.name-2) •.• (X8C) REREAD THAN ,/-" 
RERUN (nc) THEN ( 

[FOR MULTIPJ E tEEL}] RESERVE THROUGH I 
---"- UNIT RESET THRU '-.... RETURN (xa) TIME 

to} [AREA] (xac) RETURN-CODE (nc) TIME-OF-DAY ~ iiifeger-I ALTERNATE AREAS REVERSED TIMES 

tiLE-LIMIT IS } {data-name-I} {data-name-2} 
REWIND TO I (xa) REWRITE I (ca) TOP 

FlLE-LIMITSARE IIteral-I !.!:!!lll lIteral-2 RF (xac) TOTALED 

[{data-name-3} THRU {data-name-4} ] RH (xac) TOTALING 
RIGHT (xac) TRACE literal-3 -- IIteral-4 .•• 
ROUNDED (uc) TRACK 

ACCESS MODE IS {SE~UENTlAL} RUN (nc) TRACK-AREA 
--- - RA bOM (uc) TRACK-LIMIT 

PROCESSING MODE !.§ SEQUENTIAL (ca) SA (uc) TRACKS 
SAME (X8) TRAILING 

~ KEY!.§ data-name SD (xac) TRANSFORM 
SEARCH TYPE 

< tNAL'm'is~;-:-·'''';-"--'·__:_:''1 SECTION 

l\ECORD~rS~MflI~ ,'. :.' '; "1 • e SECURITY (ca) UNEQUAL 
SEEK UNIT 

, TRACK.AREA IS ft:g;me} mARAc:rEJIS " 
(xa) SEGMENT (xa) UNSTRING 

SEGMENT-LIMIT UNTIL 

. :TI\ACK.ilM1TISfl'lfe~er[TRACK '] ~,,></ 'J SELECT UP 
(xa) SEND UPON 

, TRACKS·· .. "''; SENTENCE (Ipn) UPSI-O 
y-v. '''' h '~<' w > ~ {~ .. ;.v:;!..... ,,:..,.~,,,,,*,....,.;;...,.w_'~ ~~ (xa) SEPARATE (spn) UPSI-l 

I-O-CONTROL. SEQUENTIAL (spn) UPSI-2 

['nteger~ JOF~ e e (ue) SERVICE (spn) UPSI-3 
SET (spn) UPSI-4 

RERUN ON system-name EVERY Ullil2 OF] {fi~1;} SIGN (spn) UPSI-5 
SIZE (spn) UPSI-6 

(DC) SKlPl (spn) UPSI-7 
[RECORD] (DC) SKIP2 USACE 

SAME SORT AREA FOR file-name-! {file-name-2) ••• (uc) SKJP3 USE 
SORT USING 

~~ T~PE CONTAINS file-norM-! [~Inleger-I] (X8C) SORT -CORE-SIZE 

[file-name-2 [~lnteger-2]] ... • • (nc) SORT-FILE-SIZE VALUE 
(ca) SORT-MERGE VALUES r·-..... Yw.rm.o.ero. p.;;;;;;.;:r~1"';.7-·'--~--:-~ (xae) SORT-MESSAGE VARYING 

'" ,~CORE-INDEXONR~1t~!L" ,'. < " I, < 1 (X8C) SORT -MODE-SIZE 
I (Ipn) SORT-OPTION 

APr,J..Y tmcoRMWRFiBW ON fl1JN'I4n\&.1 t~.Jl ••• ' " , (xac) SORT-RETURN 

f J\l>PLYREORc.cRITEIUA TO~ ON fil-amfl,.. " ,,' '. 
t'Non:;)1innat a ot·tbe RERUN Clause (tot s~ File&}'" inclu<W wfth Format.:for·tbe· 
-,.;.:.., .... ,~~,~~, .. , . " '. 
I 

-----------------------------------TRlM-H~E--------------------------------

o 

2 
374 Supplementary Material 



/ 

I 
\..~) 

C) 

UoI 

: 
:z: 
~ 
iii 
I-

,,,:1.. .. 
---------------------------------------------------------------------------

r 
I 
I 
I 
I 
I 
I 

18 

(D) 
(n) 
(xa) 

(D) 

(D) 

(ca) 
(uc) 

(uc) 
(ca) 

(ca) 
(n) 

(D) 
(DC) 

(xa) 
(ca) 

(a) 

(ac) 

(a) 

(ca) 

(xa) 

(ca) 
(n) 
(ac) 

(xa) 
(spo) 

(ac) 

(ca) 

(ac) 

(ca) 

(ca) 
I (ca) 

DECIMAL-POINT 
DECLARATIVES 
DELETE 
DELIMITED 
DEUMITER 
DEPENDING 
DEPTH 
DESCENDING 
DESTINATION 
DETAIL 
DISABLE 
DlSP 
DISPLAY 
DlSPLAY-ST 
DlSPLAY-o 
DIVIDE 
DIVISION 
DOWN 
DUPLICATES 
DYNAMIC 

ECI 
EJECf 
ELSE 
EMI 
ENABLE 
END 
END-OF-PAGE 
ENDING 
ENTER 
ENTRY 
ENVIRONMENT 
EOP 
EQUAL 
EQUALS 
ERROR 
ESI 
EVERY 
EXAMINE 
EXCEEDS 
EXCEPTION 
EXHIBIT 
EXIT 
EXTEND 
EXTENDED-SEARCH 

FD 
FILE 
FILE-CONTROL 
FILE-UMIT 
FILE-UMITS 
FILLER 
FINAL 
FIRST 
FOOTING 
FOR 
FROM 

CENERATE 
GIVING 
CO 
GOBACK 
CREATER 
GROUP 

HEADING 
HIGH-VALUE 
HIGH-VALUES 
HOLD 

1-0 
I-O-CONTROL 
ID 
IDENTIFICATION 
IF 
IN 
INDEX 
INDEX-n 
INDEXED 
INDICATE 
INITIAL 
INITIAUZE 
INITIATE 
INPUT 

I 

INPUT-OUTPUT 
(DC) INSERT 
(ca) INSPECf 

INSTALLATION 
INTO 
INVALID 
IS 

JUST 
JUSTIFIED 

KEY 

LABEL 
(DC) LABEL-RETURN 

LAST 
LEADING 

(nc) LEAVE 
LEFr 

(xa) LENGTH 
LESS 

(ca) LIBRARY 
UMIT 
UMITS 

(ca) UN AGE 
(ca) UNAGE-COUNTER 

UNE 
UNE-COUNTER 
UNES 

(xa) UNKAGE 
LOCK 
LOW-VALUE 
LOW-VALUES 

(spo) MASTER-INDEX 
MEMORY 

(xa) MERGE 
(xa) MESSAGE 

MODE 
MODULES 

(ac) MORE-LABELS 
MOVE 
MULTIPLE 
MULTIPLY 

(xac) NAMED 
NEGATIVE 
NEXT 
NO 

(xac) NOMINAL 
NOT 
NOTE 

(spo) NSTD-REELS 
NUMBER 
NUMERIC 

(ca) NUMERIC-EDITED 

OBjECf -COMPUTER 
(ca) OBJECf-PROGRAM 

OCCURS 
OF 
OFF 
OMITTED 
ON 
OPEN 
OPTIONAL 
OR 

I ~:~) g~?~~~~ON 
OUTPUT 

(xa) OVERFLOW 

PAGE 
PAGE-COUNTER 

I (xac) PASSWORD 
PERFORM 
PF 
PH 
PIC 
PICTURE 
PLUS 

(xa) POINTER 
POSITION 

(xac) - POSITIONING 
POSITIVE 

(xac) PRINT-SWITCH 

DATA DIVISION - BASIC FORMATS 

~~ 
FILE SECTION. 

mfik-ntmUI 
BLOCK CONTAINS [Inleger-l !Q] Integer-2 {~~~RDcr:RSl 
RECORD CONTAINS [Integer-l ill] Inleger-2 CHARACfERS 

~~ECO~DlNG MODE ~S moM , 

~ RECORDS AREf ~ 
RECORD IS 1 {OMITTED } 

dala-name-l [dallJ-name-2] ••. ~AREA IS 
, data-~ TOTALED AREA~~" 

VALUE OF dala-name-l IS {literal-l 1 [data-name-J IS {llteral-2 l] 
-- - data-name-2J daIIJ-name-4J .•• 

{
RECORD IS 1 

~ RECORDS AREJ dala-name-l [data-name-2] ..•• 

NOTE: Format for the REPORT Clause Is Included with FormalJ for the REPORT WRITER 
feature. 

01-49 {
data-name-l} 
fl!J..ID! 
~ data-name-2 

BLANK WHEN ZERO 

{~FIEP} RIGHT 

{{k,CTYRE} IS character siring 

~~~~] {=tL%} [~:AR,ATECH~tm:R,],"(V=:on3&4)! 
I~RONIZED} [~]

[~IS]

88 condition-name {nt~sI~RE\ IIteral-l [1lI1ll1l1teral-2]

[Illeral-J [THRU IIteral-4]] .••

66 data-name-l ~ dala-name-2 [!!!!!y dala-name-J].

NOTE: Formats for the OCCURS Clause are Included with Formats for the TABLE
HANDLING feature.

WORKING-STORAGE ~.

77 data-name-l

01-49 {dallJ-flllme-l l
FILLER r
~ data-name-2

BLANK WHEN ZERO

UHWFIED} RIGHT

fggn'RE} IS character rtring

: [W,H IS) I!;ltOCnFc} rSEPARAT~ CHARAcrERl

d{~;;~~~;;~}t~] .,. , "',,, ,.
(Verst0ll3 & 4)

I l ___ ----------------------

TRIM HERE

o

2

Appendix C American National standard COBOL Format Summary and Reserved Words 375

----------------------- -- --

TRIM HERE
~---

[~IS]

~ISllleral

~ cond/twn-name ~~E\ Iiteral·l rnrnu IIfBral.J]

[llteral-3 ['Ilm!lI/tmzl.4]] •••

16 datll-flllfll6·1 ~ clIIIII·lI/JfII6·2 [nmY clIIIII-name-3].

Ilona Format. for the OCCURS Clause are Included with Formata for the TABLE
HANDLING feature.

PROCEDURE DIVISION - BASIC FORMATS

{
PROCEDURE DIVISION. }
PROCEDURE lliYlliQ..ij~~lJ.itJ .

ACCEPT Statement

FouuT 1

e e

e

IBM AMERICAN NATIONAL STANDARD
COBOL RESERVED WORDS

ACCEPT
ACCESS
ACl11AL
ADD

(am) ADDRESS
ADVANCING
AFI'ER
ALL
ALPHABETIC

(ca) ALPHANUMERIC

No word In the following list should appear u a
programmer-deBned name. The Iceys that appear before
lOIDe of the word!, and their meanings. are:

(u) before a word means that the word Is an IBM
extension to American National Standard
COBOL.

(uc) before a word means that the word Is an IBM
extension to both American National stand·
ard COBOL and CODASYL COBOL.

(ca) before a word means that the word .. a
CODASYL COBOL reserved word not In-
corporated In Amerlc8P National Standard
COBOL or In IBM \ American NatloDal
Standard COBOL

(op) before a word means that the word .. an
IBM functlon·name established In rupport
of the SPECIAL-NAMES functloa.

(spn) before a word means that the word .. UJed
by an IBM American National Standard
COBOL compUer, but not this compUer.

(am) before a word means that the word Is dellned
by American National Standard COBOL,
but Is not wed by this compUer.

(u) COMP-3
(xa) COMP""

COMPUTATIONAL
(sa) COMPUTATIONAL-l
(aa) COMPUTATIONAL-Z
(an) COMPUTATIONAL-3
(xa) COMPUTATIONAL-"

COMPUTE
CONFIGURATION

(op) CONSOLE
(ca) ALPHANUMERIC-EDITED CONTAINS

CONTROL ALTER
ALTERNATE
AND

(u) APPLY

(sac)

I (ca)

(u)
(18)
(18e)
(u)

(uc)
(u)

(un)

(un)

(spa)

I (18)

(D)
(u)

ARE
AREA
AREAS
ASCENDING
ASSIGN
AT
AUTHOR

BASIS
BEFORE
BEGINNING
BLANK
BLOCK:
BOTIOM
BY

CALL
CANCEL
CBL
CD
CF
CH
CHANGED
CHARACTER
CHARACTERS
CLOCK·UNITS
CLOSE
COnOL
CODE
COLUMN
COM·REG
COMMA
COMMUNICATION
COMP
COMP·l
COMP·2

(uc)

(xa)
(op)

(18C)
(spn)
(spa)
(op)
(op)
(op)
(op)
(op)
(op)
(op)
(op)
(op)
(op)
(op)
(op)

(xa)

(xa)
I (ca)

(xac)
(ca)
(ca)
(ca)

I (ca)
(ca)
(ca)

I (ca)
(ca)

CONTROLS
COPY
CORE·INDEX
CORR
CORRESPONDINC
COUNT
CSP
CURRENCY
CURRENT·DATE
CYL-INDEX
CYL-OVERFLOW
COl
CO2
COl
CM
C05
COO
C07
COS
COO
ClO
Cll
Cl2

DATA
DATE
DATE·COMPILED
DATE·WRITTEN
DAY
DAY·OF.WEEK
DE
DEBUG
DEBUC.CONTENTS
DEBUG·ITEM
DEBUG·LINE
DEBUG·NAME
DEBUG.SUB.l
DEBUG·SUB.2
DEBUG·SUB-3
DEBUCGING

17

--,------------ - - ------------------ - 'TRlM"-HERE- --------- - --------- -- ------ - - -- ---

Q

2
376 Supplementary Material

1&1
DC
1&1
:z:
~
Cii ...

\ '.

~,

\\" -,

C)

°1
~

TRIM HFOF --
~...., h~~' "" ""<"'"

'1$WmTE~
" ~ I'fCOfd.Il4!M tfl.\QlS ~l

Wi.YAlJPlCEY irllpIIl'4titl~
r.iAaT~

, ~XEY~c.~l'Ifl , I ute Sutesate' ,

:', SA!lEl\STANDARD ~ON} PlOCEDtIlU!

ON {ir !filHamt·21 ••. }" '

, :mm:m '
W!lrm Stamnent '

r, ", lU\'lIIrecord-llCmlll [~~l
~, .~K2Y{mperlltl"~l

I~ ,~~ fOOMA" «>SI~COBOLO'"
r ~rtvlrol'lm.'ntOM.~on -lnput·Output Seaton

I
:m:.l::CONTnOL E;JtIj'

t'lLli:-CONTlt0L, , , ,
",', ~fil"n4l!I4 '

, ~ TO 'Vstemofl4m(l-I r~·IItItM-$l •.•• } •..
t, l.o.CONTl\OL Jtntt)'
t I.o.CONTROt.. ,

", ~ ."Clli} AUArOlpu..lltlme.~ t~21··· •
"'o~to OM,lon -' M.rve f;'eCescrlptlon Entry
mm~lItIme ,
, '~CONTAINS ttmegd.l W tnt#gtt'~,CllAt\ACl'EB.Sl

:",,"tuW {~ISJ.lUt} d4lII.ll4!M.l td4to-~il ... l,' '
;,. > ' ~", , ' '

'roetdu;'e OM,ton -' Merge Stateme"t

'~fi1e-~1

"," oN' '1 lEY d4te-~.1 r~c~l .:~ ,

:,',tON' at XEY~t~'J,;)'"
" -,.uEP-amll-2 /iU-llCmlt-3 {~-.4l .,. '"

,> {_i~lS $e:tWn.~lI-l ~.,~l "

16

ADD Statement

FOIUAT 1

{
/dentl/ier.I} ['dentlfin.2] .MID Illeral.I IIlnal.2 ••• IQ Identlfier·m [ROUNDED]

[ldentl/ier-n [~]] • _ • [ON ~ .!ill!!Q!! Imperatloe-llatement]

FoaloUT II

{
ldentlfin.I} {'dentl/ier.2} [ldmt//ier-3]

~ IlIeral.I IIleral-2 IIlerai-3 - - • GIVING

Idenllfier_ [ROUNDED] [ON SIZE rumQll Imperalloe-llatemml]

FOlloUT 3

{
CORRESPONDING} AIW COnR Idenll/ier-I 12 ldenllfier.2 [ROUNDED]

[ON SIZE ERROR Im"erallve-llalemenl]

.. ALTER Statement

_ ALTER procedure-name-I IQ [~IQ] p,ocedure-name.2

[procedu,.-name-3 IQ rPROCEED IQ] procedu,e-name-4] •••
r(:;\Li.'st;;;;;;t'~""W""'·~-''''~~'~-'~'··~~''~''· ,"w,~,., '·1
! 1'.IU.fl ' ," ,,', l
I ~~1~~1,U~.21 •••) 1

_ PO_MAd (V __ l) ":', !
t '~~l~~t~l ••• J 1
t ~CELStl~(V~~) ',' '" . I

r.U:r~f jIW.I } [lltMif..S .] , !
~ V4ln.*1 ~... 1

CLOSE S-;~~-"'*"" ... \,..--_"%.~-~""""" .. ~<>""'....,-';...,'h '....J
FOlloUT 1

gQ§] file-name.I [g] [WITH {~JKEWIND}]

[jiU'nDme-2 [=] [WITH {~tiWIND}]] •••

FOlloUT II

{
NOREWlND}

CLOSE jiU·nam".l [WITH ~-]

{NO~} [Jile·name.2 [WITII ~]] •••

FOaloUT 3

{

NO REWIND }
CLOSE file-name.I {RUENEITLl [WITII LOC-K--]
-- -- fOSlT1ONlNd

{~} {NO REWIND }
[jiU·nam,-2 UNIT [WITH ~"'"]]. - •

- ONINq

COMPUTE Statement

{

'denllfie,.2 }
COMPUTE ldenllfie,·I [ROUNDED] = 1Ileral-1

arllhmellc-e%pre .. 'on
[ON ~ !ill!!Q!!. Imperalloe-lla/ernenl]

DECLARATIVE Section

PROCEDURE !ID:1illlli.
DECLARATIVES.

{lee/Ion-name SECTION. USE .enlenCII. e {paragra"h-namB. {,enlen~ . . } ••• } - •.

Bill DECLARATIVES,

DISPLAY Statement

DISPLAY {~:~~tr.I} [~:~~fi!,-2] ... [UPON {ilJ~'l }]
mnemonIc-name

15

-----------------------------------~~-~~-----------------------------------

Appendix c: American National Standard COBOL Format Summary and Reserved Words 317

._-----------------------------

Page of GC28-6396-3 and -4, Revised 5/15/14, by TNL: GN28-1048

------------------------------------~~-~~~----------------------------------
DIVIDE Statement

FoauAT 1

{
'dentl/ier-I} ~ IItera/-I INTO 'dentlfier-!l [ROUNDED]

[ON ~ !lli!!Q!! 'mperatloe-natement]

FoaloUT 1.2

~ Hf,~!t;-I} fiITO} {:f,~!:~-!l1 ~ 'dentl/ier-3

[ROUNDED] [REMAINDER Identlfier-4] [ON SIZE lliillQ!! Imperatlve-natemen']

ENTER Statement

~ language-name [routine-name].

£N1'1IY Statement

: ENTRY lltertJ.I [USING identifier·] [1dtnt!{ier-21 ••• J <

EXAMINE Statement

FOBIoUT 1

EXAMINE 'dentl/ier~ ALL -- llteral-I {
UNTIL FIRST}

------ ~

[REPLACING BY Uteral-!l]

foau.\T S

EADING EXAMINE 'dentlfier REPLACING ~ literal-I !IT lltera/.!l
{

ALL }

~~
XIT Statement

»< ,,,,

tragraph-name. ~ JPROORAM}.

oiAci: S~~ent
:COBACK.

) TO Statement

atoUT 1

gQ mprocedure-name-l

IIoUT 1I

00 IQ procedure-name-I [procedure-name-a] •.• DEPENDING ON Identl/ier

tatement

~ ". ~,{statement-I } {rug } f statement-!l 1 ~ condltlon'rHEN tilln ~ onmRWl§Jt l~ SENTENCE

FE Statement

lAT 1

J Identl/ier-Il
OVE lUteral-I r '!Q Identl/ier-!l [ldentl/ier-3] ••.

~T 51

~ {~ESPONDING} Identifier-I IQ Identl/ier-!l

lPLY Statement

T 1

Id!!lli: Hf,~!t;-I} m: Ident/fjer-!l [!!IDlliQ!m]

[ON m!l; ERROR Imperatloe-natement]

1I

TIPLY {'dentl/ier-I} BY Iidenti/ier-!l} GIVING Identl/ier-3
-- llteral-I -lliteral-!l --

[~] [ON ~ illillQ!i Imperatlve-statemen,]

• •

: VsAM FORMATS (OSfVS COBOL Only)

! Environment Division - file-Control Entry

FOBloUl' 1 - Sequential VSAM FlIes
< FILE-CONTROL.

(SELP:CT r~) Nt-nom"
ASSICN ro wttem·name-I [4)'nem"llllme-$] •••

[~/nll1gl1r[~~~]l
[OROANIZATION IS SEQUP:NTlAL]
[~MODEIS SEQUENTIAL]
[PASSWOm IS data-narne-l]
[FILE ~ IS aala-namtl-2} . } •••

; FOJIHAT ~ - Indexed VSAM Flies

FlLE-CONTROL.
< {SELECT (il4-fIa'II'ItI

~TOaystem-name.l [fl#Um-name-2) •••

r~ intflqer [~~s] J

ORGA~ONIS~

TIAL}] [~MODEIS .

~ KEY IS4a/a--name.:t
~ IS data-nome-I]
[FILE~ IS date-noflltl.!l} .} •••

Environment Divlsfon - '·O.Control Entry
. r..o·CONTROL.

mm.t:l2li 4)'ntm.namo EVERY Integer RECORDS
OF !ile.name.l1 •.•
[~ [RECORD) AREA

FOR /ile-nam,-2 £/i1I1-n1l1l*3] ••• l ...

DotQ Dlvblon
LABEL RECORDS C1ause ., :

{
IICORDIS 1 fSIANDARD1' j

LABEL CORDS AREf lQM.!!I!m f ~
NOl1i11 Other Data Division clauses have the ~e ')'n~ lor VSAM Illes tbat the)"

have for «her fIIet1. .' 1

Procedure Dfvl.lon
CLOSE Statement

CLOSE fflt-name-l rwrm ~
(/ile-fl4flle.!l {WITH LQ.Q&l1 •••

I DELETE Statement
DELETE N8"IIome RECORD

(INVALID KEY /mpetatloo-#olmnentJ
OPENStal_t

feu /ile-namt-l £file-ntlf1Wo.2] ••• }
N OUTPUT file-name-1 Ifile-namll-3] •••

Ql!L..o file_e.I [file..name-2] • • • • ••
D file-name.l [!ile.name-2] •••

READ Statement

.FOII T 1
~ ~ llimJ RECORD {mIQ.identt/itrJ

[AT tam /mpnatlve-stal/lfl'Ulftl}

FOItM ... T $I
~ 'filII-name RECORD £U:!l'.Q Idtmtl/il1r]
,~KEY fmpera#v~-nat~l,

" ,

15

----------------------------------T~M-H~E----------------------------------

o

2
318 Supplementary Material

c)

TRI~L ..
---:m~:~~W~:=~~S:~:------------------------N==='----------------------------;

STRING Statement NQTI; CMract"' Ifrlng

~ {:::til} [t=:t.:r-2] "'PPJr:n~Br {i'r} OPEN Slntemen!

{fllen'lfin~ r/dtntt~t..jJ] PSLfMlTEDlIY {~=~}1." Foaw.t.T 1 [
lfil"d!4 f VI1tr41-5 • • • ,mE. !mlli [INPUT {file-name ~~i~R~D !!!ill1till] } ... J
m::m/dlmlf~-1 {WITH ~ /l~-81' _ •
[ON QVERFLOW Imptr4tl!»~atemem] _ {QY!!Y! {jile-name [WITH !:!Q ~J } ••• J

[!:Q {file-name} ••. J
UNSTRING Statement

14

UNSTRINC lacnt/fifr.l . •
. - {ldt1lt/jiet.31 t tAt t1 f~'~l 1 1 ' rpELl?DTED BY [~] Illend-! f OR -.. 11/,,,d!.$ f •.•

, WIQ idenllp,,-4 rn1!:UMITER iN klentflier-$l
[Q2lUiI IN IdInlf,wt~l '

[14eptifitt.T t~IN /l~-8J
[~IN idenllfieN)ll •••

lWlTH ~ldIntlfier.101
[TALLYING IN identifier-Ill
{ON ~ tm~w.;totl1lllt1ltl

Foaw.u 1

PERFORM procedure-Mme-I [UllUl procedure-name-lI]

Foaw.t.T It

{
Identifier-I} llillfQl!M procedure-Mme-I [TI!illl procedure-name-lI] Integer-I TIMES

Foawu 3

PERFORM procedure-Mme-I [THRU procedure-Mme-.:!] UNTIL condltlon-I

FoalUT 4

PERFORM procedure-Mme-I ['IHIl1! procedure-Mme-lI]

{
'nder-name-I} {lnder-name-lI} {llteral-3}

VARYING Identlfier-I FROM litera/-ll !IT Idenllfier-3 UNTIL condltlon-I
Identlfier-2

{
'nder-name1 {,nder-name-S} {llteral-6}

[M:l1ill /dentlfier-4 E!!QM :~:~:tr-s !IT Idenllfier-6 !lliTI1 condition-ll

{
,nder-name-ll { Inder-name-B} fllteral-9}

[MIID! /dent/fier-7 f IBQM :~:~:t,-6 !IT l'dentlfier-9 UNTIL condlll0n-3]]

READ Statement

READ file-name RECORD [INTO Identifier]

{tJ'V~D KEY} Imperotloe-Ifatement

, .
nmm:m.fUOId-name tEnQM fdeIItlfi.erl [~mY 'mperatl~)

:«v.w.:: <::..,;:..w"',_"":W>.-..........<w.-.~<~..w-*v"

SEEK Statement

~ file-name RECORD

ST,utT Statem.eIlt

Fouu,. I
~fi/I-nattie [~KEY lm~~-#l.IUment]

FOUUT • (VehIon3&4)

WllIfi/I-fI(J;I'lI',
USINe m d4fa~ {E9~:r- :mlldentlfi4r

~.'_,0h,W!~~~~l..
STOP SlntelDen!

STOP f.RUNl
--lUteralf

7

-----------------------------------~~-~~----------------------------------

Q

2

Appendix C· American National Standard COBOL Format Summary and Reserved Words 379

-- ,-- ------ ------------- -'---------- _._-------------

SUBTRACT Sta!emezlt

FClUlAT I

~ {~,:t:r-I} [~:r.:-2] ••• rnQM Ident/fon-m [ROUNDED]

[ldmt/fon-n [~]) ••• [ON ~ ERROR Im".,-atIOll-naf""'ftlt]

FClUlAT I

S TRA {ldentl/in-I} ['dent/fon.2] {ldent/fon-m} ...Jl!..--.£! lltmd-I Ilteral.2 ••• FROM lltmzl..m ~ Identl/in-n

[~] [ON mg ERROR Imperatloe-6tatIJtnentJ

Fouu.T 3

SUBTRACT {~ESPONDING} Identlfier-l E!IDM Ident/fon-2 [ROUNDED]

USE SenteDce

F_T 1

0pcIcm II

[ON ~ ERROR ImpertJtlN-ltat.ment]

flEEL] ~ {!~:E} STANDARD [BEGINNING] L~

OUTPUT
{

{fik-rtarM} ••• }

~ PROCEDURB ON ~UT •

0pIItm s,

~l llm {!~;E} STANDARD [ENDING] LUIDiI

{

{filII-name} •• • }

LAlIEL PROCEDURE ON rUT .
F_T I

~M:!!!!..STANDARD ERROR PROCEDURE

ON ~
{

{fJ.-ntffM-I} [fi"-nmne-2J • • • }

!:Q

ltiii]@~l:t~
NOTE: Format 3 of the USE Sentence II Included In Format. for the REPORT wnITEn

feature.

WRITE Statement

FOUUT 1

~ ,.cord_e [lBQM Identifier-I] [{!~;E} ADVANCING

lY!!!!!. record-Mme [fl!QM.ldentl/ier-l] ~ !rn! Imperatloe-6tatemftlt

o

2

TRIM HERE

•
13

·---------------------------------T~M-H~E----------------------------------

o

2
380 Supplementary Material

I

\
"--- -

c)

---~

SEGMENTATION - BASIC FORMATS

Environment Division Segmentation Formats

OBJEGr-COMPUTER PARAGRAPH

SEGMENT-UMIT Clause

SEGMENT-LIMIT IS prlorl", mb..-

Procedure Division Segmentation Formats

Priority Numben

'/lction-name SEcrION [prlorl", ... umber].

SOURCE PROGRAM LIBRARY FACILITY

r~;~~:;,~urce ~to~fQm L~~Y fCKUl~ ,

rBMISCud ' , '

!c~,
J>l~SEaT~
t IN$OT," i., ~
£> " ' '" > ' ,', " >

!"'Dm.m'~ I ' ~ ',"
!'~,~'
t ~ (~ < '/ ~ ~ ,

{
Word-4 }

[word-3 m: IIteral-J] 0 00] 0

Idmtl/ilr-2

i:,'OEBUGGING lANGUAGE '..;. BASIC' foRMAts

(,pr~~i.,DM~~n >Oebu9~1~9 "~~ "',,, : ,
[>,mDnT~~~, ' ",' >: , .. , "'" > , :> ','<, ::,' , ':

i, :~,{~;.._} f~l, ',,", ":kr~:' ;':"'.'.';»
" " > ~ l~ljl.~JJ,

t:;.~!~ '" ;.",:.:", . . ·
I'-~/ jlli .u,4f{~~~}~ ~'~}' f' ";'!~I~:' ~ ;';: '}"
t,,:,: 'NE ~,10'I}1EB)VtS§ .unS~",/
f',.o'tuUd. (ven¥mU4i" ,', ,,' ,,' ,«'.I;;" "

r,C!m {/~B';;"l' l' r~~ ','<' /«'
~;:"~~;U' r' I""'i" SJ!F!l!l!~ 11!lfJll!l\WlSJi! ,til, m~Bil~

f~·····'
I»"" " " " , ,
~',~~pllo.Ttm. Oebuwln; '~Ic~t', >

t;,~JtBUG~< ' "', ,<

~">~~ ~~, ' _'" ~', ,,' b,,.c."' ... ~"' .. ,,,,,:,,k_*_~,..:.;"""~~_...;~_.;"'_l"""'.""'".;,,,,""~
12

SORT - BASIC FORMATS

Environment Division Sort Formats

FILE-CONTROL PARAGRAPH - SELEGr SENTENCE

SELEGr Sentence (for GIVING opUon only)

SELECT fils-nam.

ASSIGN TO [/nteger-l] 61Istem-nam/l-l [61I1tem-MmII-2] 0 0 •

OR 61IItem-name-3 [FOR MULTIPLE {~~~i}]
[RESERVE {,nteg/ll'-2} ALTERNATE [AREA]] --- till AREAS .

SELEGr Sentence (for Sort Work Files)

SELECT ,ort-jile-nmne

ASSIGN TO [Integer] 61IItem-name-l [61IItem-nam/l-2] •••

Data Division Sort Formats

SORT-FILE DESCRIPTION

ill lori-fils-name

RECORDING MODE IS mode

{
RECORD IS }

DATA RECORDS ARE clata-name-l [clata-name-2] •••

RECORD CONTAINS [Integer-l TO] Integer-2 CHARACI'ERS

f-'~,"'" .'" tkf' .-.'n}',i!. (Version 4)
'~,_.AA ,,_,~«~'"_w., ,,,_,",.:1

Procedure Division Sort Formats

RELEASE Statement

~ .ori-record-namll [E!!QM Identifier]

RETURN Statement

!!!IT!:!!lli lori-fils-name RECORD [INTO Identifier]

AT ~ Imperatlve-.tatement

SORT Statement

{
DESCENDING} gm:r fils-namll-l ON ASCENDING KEY {clato-name-l) •••

{
DESCENDING}

[ON ASCENDING KEY {clato-name-2} 000] 000

{
INPUT PROCEDURE IS ,ectlon-name-l [TIlli!!: lectlon-name-2]}
~ fih-namll-2

{
OUTPUT PROCEDURE IS .ect/on-name-3 [THRU Iectlon-name-4]}
GIVING iile-namll-3

REPORT WRITER - BASIC FORMATS

Data Division Report Writer Formats

NOTE: Fonnats that appear as Basic Formats within the general description of the Data
DivWon are illustrated there.

FILE SEcrION - REPORT Clause

-----------------------------------;~-~H-----------------------------------.--

Appendix C; American National Standard COBOL Format Summary and Reserved Words 381

Q

2

TRIM HERE

-----~--

REPORT SECTION
REPORT SECTION.

!!!2.!!P!!':;;;;;;;;-
tJNJm CODE mnsmonlc-nlJ_

{ggm:Rgts I~RE} {f]!1;tJer-I [ldmtlfin-Ill • • • }
--- ~ldmtlfi6r-l [ldmt/fi6r-lll •••

~ [g~~isI~REJ Integer-l {~}
~ Integer-Il)
[f!!!tt DETAIL Integer-3)
[1M! DETAIL Integer-4)
[fQQIlliQ Integer-6J.

REPORT GnOUp DESCRIPTION ENTRY

FORauT 1
01 [data-nam,-I)

{
Integer-l }

!:.lli!i NUMBER IS ~ Inlegn-Il
~~

{
Int'g,r-l }

~ GROUP IS ~ Inl'g 1l
~~

lllil'Q!IT ~}
n!!
~ HEADING}
ill
~~} {ldmt/fiBr-n}
".... ~

m%IS gr.ml
wrn:l!QL fQQIlliQ.l {ldentlfier-n}
Q' f f.lliM.
~ fQQIlligl
ff.

RF
lllilQRl' .fQQIllIg}

USAGE Clause:-

FORMAT II
no [data-name-l)

LINE Clause - See Format l'
USAGE Clause.

FORMAT 3
no rdala-nam,-I)
~ NUMBER IS Inlegel'-I
GROUP INDICATE
JUSTIFIED Clause
LINE Clause - See Format 1
PICTURE Clause

RESET ON Jldenllfier-Il
-- 1 FINAL f
BLANK WHE"NZERO Clause

-~e~
~ {, t'nlf er-3} [, entl I]. 0 0 [~datll-Mm.]
~IS lileral-l
USAGE Clause.

FO_MAT ..

10

01 dala-name-l
BLANK WHEN ZERO Clause
COLUMN Clause - See Format 3
GROUP Clause - See Format 3
JUSTIFIED Clause
LINE Clause - See Format 1
NEXT GROUP Clause - See Format 1
PICTURE Clause
RESET Clause - See Format 3

{
SOURCE ClaUSe}
SUM Clause See Format 3
VALUE Clause

TYPE Clause - See Format 1
USAGE Clause.

•

• •

Procedure Division Report Writer Formats

GENERATE Statement

~Identlfier

INITIATE Statement

INmATE report-name-l [report-name-Ill .,.

TERMINATE Statement

TERMINATE report-name-l [report-name-Ill " .

USE Sentence

~ ~~ data-Mme.

TABLE HANDLING - BASIC FORMATS

Data Division Table Handling Formats

OCCURS Clause

FORauT 1

~ Integer-Il TIMES

{
ASCENDING }

[DESCENDING KEY IS dala-name-Il [data-name-3 • • oj o' 0

[~ BY Index-name-I [Index-name-Il) 0 0 oj

FORauT II

~ Inleger-l '!Q Integer-Il TIMES [DEPENDING ON dala-nmM-IJ

{
ASCENDING }

[DESCENDING KEY IS dala-name-Il [dala-Mme-3) ••• J • 0 0

[INDEXED BY Indft-name-I [Indft-name-Il) •••)

USAGE Clause

[USAGEIS]~

Procedure Division Table Handling Formats

SEARCH Statement

FO_auT 1

~ Identlfier-l ['mmNQ {=;;~;-I})

[AT!lli2 Imperatloe-.rtatement-I)

WHEN dltl 1 {
,mperatlVe-.rtaternmt-ll} __ con on- ~~

[WHEN andltl ,,{'mperallve~aternmt-3}) __ c on-... ~~ •• 0

FO_auT S

~ ALL Identlfier-l [AT ~ Imperative-lIIIIement-l)

WHEN ndltl I {'mperallve~atemmt-Il} __ co on- ~~

SET Statement

FO_auT 1

SET {,ndex-name-l [Inde%-name-Ill .. o} TO {!d!.':iti":;;-3}
- Identlfier-l [Identlfier-Il] •.. - "teral-l

FO_auT !I

SET Indft-name-4 [lnde%-name-5l ... {~~ m:l {~:r.t1
I

1~
I ._--, TRIM HE~E

Q

2
382 Supplementary Material

This appendix summarizes the statements and
specified for each file-processing technique.
file-name must be specified in a SELECT clause
Division and must be defined by an FD entry in
Data Division.

clauses that may be
In adaition, each
in the Environment
the File Section of the

Appendix 0: Summary of File-Processing Techniques 383

._---------------------- -- - -

w
en
~

CIl
C
'0
'0
I-'
CD
3
CD
::J
rt
PI
t1
'<

re:
rt
CD
t1
1-"
PI
I-'

STANDARD SEQUEN'I1AL flIES - Required and Optional Entries

Device Required Entries

Type

System-name LABEL RECORDS OPEN

Reader UR [-xxxx)-S-name OMITTED INPUT

Punch UR [-xxxx)-S-name OMITTED OUI'PUT

Printer UR [-xxxx)-S-namc OMITTED OUIPUI'

Tape Uf [-xxxx)-S-name

r
ANDARD

1
INPUf

OMITTED [REVERSEDJ
data-n~e NO REWIND

[TOTAllNG-

~~J .TOTALED}

1----

OUI'PUT
(NO REWIND)

~J
Mass {~} [-xxxx)-S-name rANDARD

}

INPUf
Storage OMITTED

data-name 1-----
(TorALING-
TOTALED) OUI'PUT

f----
1-0

lCreate

f')

Optional Entries

I -
Other ENVIRONMENT BLOCK RECORDING

CLOSE Access Verbs APPLy3 RESERVE ACCESS DIVISION Qauses CONTAINs" MODE USE

[LOCK) READ [INTO) {in:~er} SEQUENTIAL SAME [RECORD) AREA [nTO) m

{~}
ERROR

AT END RERUN

[LOCK) WRITE [FROM) WRITE-ONLY {in~~r} SEQUENTIAL SAME [RECORD) AREA [nTO) m

{H
ERROR I

(V-mode only) RERUN

I [{~~} ADVANCING)

(AFTERroSITIONING)

I
I

{in~~r} SAME [RECORD) AREA

{~}
ERROR [LOCK) WRITE [FROM) WRITE-ONLY SEQUENllAL [nTO) m

eEFORE
}

(V-mode only) RERUN REPORTING
[AFTER ADVANCING)

(AFTER POSITIONING)'

------- 1-----

fENo.oF-PAGEI NO

r~
READ [INTO) WRITE-ONLY {in~~er} SEQUENllAL SAME [RECORD) AREA [nTO) m

m
. LABEL

AT END (V-mode only) RERUN ERROR
NO REWIND MULTIPLE FILE TAPE

:!nONING

------------ ----~

[REEL) WRITE! [FROM) LABEL

[un ~ [~~} ADVANCING)
ERROR

NO REWIND REPORTING
~mON1NG

(AFTER rosmONING)
I

·DISP

I

(UNIT) READ [INTO) RECORD-OVERFLOW {in~~er} SEQUENTIAL SAME [RECORD) AREA [nTO) m

m
AFTER LABEL ,

(LOCK) AT END (notfor S-mode) RERUN ERROR

1---- 1------- I------j
(UNIT) WRITE! [FROM) WR.I'I'B-ONLY AFTER LABEL
[LOCK) lNVALlDKEY (V-mode only) ERROR

WRITE! [FROM) REPORTING

[{~~} ADVANCING)

1----
[AFTER POSITIONING) ------ 1----

[LOCK) READ [INTO) AFTER LABEL·

AT END ERROR

WRITE 2 [FROM)
lNVALlDKEY

REWIU'I'B2 tFROMi
(lNVAUD KEY]

2Updatc 3n _ APPLY ___ haft om., roo 0UI1'UI' fila; boweta. the "Notro.u_
CIIIIIpiB ..:apia tlIem the _. file II op-s roo INPUT 00 1-0_

(--) \,
/

~
'0
'0
(t)

::s
P
I-'
~

o

en
c
§
PI
11
'<
o
HI

tzJ
1-'
......
(t)
I

ttl
11
o
o
CD
en
en
1-'
::s

\Q

1-3
(t)
o
0-
::J
1-'

..0
C
CD
en

w
CO
U1

(J
,,~---

DIRECT FILES (mass storage devices only) - Required and Optionall!.ntries

Required Entri,es

ACCESS KEY System-name LABEL RECORDS

[SEQUENTIAL) f-tAClUALl DA [-xxxx)-D-name {STANDARD}
data-name

---- ..!---;.. ------ ------
~~v~~~ ~,

, [SEQUENTIAL} ACTUAL DA t-xxxx]-D-name {STANDARD}
data-ll2I\1C

, ~~- ~,
- < ~ .' --~

':"V'. 0_~"_ • __ ". ' .- < ~.v ->, -.~ < "'~

RANDOM ACTUAL DA [-xxxx)-D-name {STANDARD}
data-name

RANDOM ACTUAL DA (-xxxx)-W-narne {STANDARD}
data-name

---- --- 1------ -----r - -' - - .' .. - . " , v " ~ ~ , ~,~ ~ym

< AANDOM ACTUAL DA [-xxxxJ-W-name {STANDARD}
data-name

:

: -- , h'v".o- .. --

100ce ~ceand.dd 3Add

('\
\

OPEN

INPUT

Ol.Tn'UT

----- "

INPUT

OUI1'UT

1-0

INPUT

CLOSE

[UNIT)
[LOCK)

(UNIT)
[LOCK}

- '

(LOCK)

[LOCK)

(LOCK)

(LOCK)

--- ---
OUI1'Uf [LOCK)

-- ---
1-0 (LOCK)

4Updalo

~

Optional Entries

RECORDING Other ENVIRONMENT
Access Verbs MODE APPLYS DIVISION Qauses USE

READ [INTO)

m
SAME [RECORD) AREA AFTER LABEL

AT END RERUN ERROR

----- f----- 1------ ----- r------
WRITEl (FROM) F RBCO~VERFLOW

SAME (RECORD) AREA
AFTER LABEL

INVALJDKEY ERROR 1---- ----- TRACK-LIMIT

~H
RERUN

--- -- ,<- _0'

SEEK

m
SAME [RECORD) AREA AFTER LABEL

READ [INTO) RERUN ON RECORDS ERROR
INVALJDKEY

1------ ---- 1------....;. -------
I

SEEK F RECO~VERFWW
WRITE I [FROM)

~-m-- ------- SAME [RECORD) AREA
; TRACK-UMlT'

I INVALJDKEY
- RERUN ON-REcORDS

I

~----- ------ro----- 1-------

I

SEEK

m
SAME (RECORD) AREA

READ (INTO) RERUN ON RECORDS

INVAUDKEY
WRITE2 [FROM)

INVALID KEY

SEEK

m
SAME (RECORD) AREA AFTER LABEL

READ [INTO) RERUN ON RECORDS ERROR
INVALID KEY

:

------f-o---- ----- -------
SEEK F R.ECO~VERFLOW

WRITE I (FROM) 1------ ----- SAME (RECORD) AREA

:)~~~t;:~T_ INVAUDKEY

{:l RERUN ON RECORDS

.... _--- r--- ----- r--<~_:_ --~ I-- - ---: -:- -
SEEK

m
SAME (RECORD) AREA AFTER LABEL

READ [INTO} RERUN ON RECORDS ERROR
INVAUDKEY

WRlTE3 [FROM)
INVALID KEY
~ (FROM)
[INV AUD KEY]
-- - -- _ J"v. "-

SThese APPLY d ldve mearung only (.,. OU11'Uf IiIcs;_,lbe compiler accept. wIaea the _file is opeD<d (0< INPUf.,. H>_

w
CD
0\

en
~

ro
"C
(l)

::I
C1> ::s
rt
III
11

'-<:

~
III
rt
C1>
1'1 ...,.
III
.....

,-"-,~ ___ ~~"""""""~""""""-,,,,,,,,,"""",,,,_,,,"""",,<)I.'.v~,~.:>.,.,...... ,, ,v;:>,,,,,,,<_~..,.,.<*":W.,. ... Y,,,,,,,,,,,, __ ,,,,,,,,,,_,,,,,,,,,,,,_,,,,,,,, -"~~-.¥~-~~'-""-'W-".~."'~

~ /1ND~,FiLEs (mass storage devices only) - Required ar:ci Optional ~ ,

:., ~

;,:

ACCESS 'I KEY

, {SEQUBNnALl L REcoRD. ,

" 'ROCoRD'-

RANDOM

NOMINAL ,<

~..---,
RECORD
{NOMtNALl

~'-:-'-
" 'RECORD

.' '<I-~":"'-, > < ' RECORD

C---""'~

RECORD ,
'iNOMINAL}

RECORD
NOMINAL

R~Entms

s~ 'LABEL RE(x)RDS

riA {·n:xx}.J.name STANDARD

DA [-xxnJ.l-ratne STANDARD

OPEN I. CLOSE Aa:ess Vetbs .

INPUt f', {LOCK} I ReAD, flN1l?l
I-E~ --.;.

START'

I-; ..!...INV~!:YL'_
STAR,. . '
, USING KEY

, '<, IT' 'iT. {INVAUD KEYl .
~ ----.. y

0tTl1'lir ftoCKl < WRlTEl' {FROM} -1.
mvAUDKBY

t--+--I----:--
. W < I {LOCK} READ [INTO}

1NPUr' J fLOCK)

AT END
RfWRlT£2 {FROMl

{lNVAUDKEY} 1-------
START

I-: ~.!..UD_~_
START

USING KEY
, {INVAUD KEY}

ReAD {INTO}
INVAUDKEY

··r~~l-;:;t BFAD ~-;---
INVAUDXBY

WRJTE3 IFROMl
INVAUDKEY

REWRJTE2 {FROM}
tINVAUD XBYJ "

'I'" i -',v < ...

~, "AU .

,f)
(-~\

\

j

APPLy4

REORG-CRITERIA
CORE· INDEX

,I RESERVE

l~~t

NO

Optional Entms

r
Other mvmoNMENT I
'DIVISION~

SAME {RECORD} AMA
RERUN

, SAME {RECORD! AReA
RERUNON RECORDS ,'''''':_-_'''':
SAME {RECORDI AREA
TRACJ<...AREA
RERUN ON ReCORDS

RECORDING ' I BLOCK
MODE CONTAINS , I USE

F m tERROR

F m ERROR

4n-4m.y O~torOtrrrut_~.tfIit~-.,. the_t~lNl'll't_~ <

... ... J • ..,'... .,. \

--\

"

~
'0
'0
CD
::s
Q,I ..,.
X

o

Ul
~
3
3
PI
1'1
'<
o
H'I

"ZJ
.."
CO
I

tt1
11
o
o
CO
en
en
.."
::s
~

~
CO
o
P" ::s
.."

.,Q
~
CO
en

w
Q)
o..,J

i"'\
" I ,,----

"lU!tJ\TrVE "FiLES~(m storage devi~ o.i!y) - Requhed and Optional Entries

Required Entries

" ACCESS KEY System-name LABEL RE(l)RDS

{SEQUENTIAL] (NOMINAL1 DA (-xxxx] ·R·name {STANDARD}
data-name

~

RANDOM NOMINAL DA [-xxxxJ -R-name {STANDARD}
data-name

c--':

OPEN

INPUT

OUIPUT

INPUT

1-0

~,

OptionaJ Entries
I

Other ENVIRONMENT RECORDING
CLOSE Access Verbs DIVISION Clauses MODE USE

,

•

[UNIT) READ [INTO] SAME [RECORD) AREA F ERROR
(LOCK] AT END RERUN AFfER

LABELS

[UNIT] WRITE! [FROM]
[LOCK) INVAUDKEY APPLY RECORD-OVERFLOW

[LOCK] READ [INTO) SAME [RECORD] AREA F ERROR
INVALID KEY RERUN ON RECORDS AFTER

LABELS

[LOCK) READ [INTO)
INVAUDKEY APPLY RECORD-OVERFLOW

REWRITE2 [FROM]
[INY AUD KEY]

tCreate ~e

("--"
\"

(----

---- -- ------

ASCII Environment Division Considerations (Versions 3 and 4)

Program Product Information (Version 3 and Version 4)

The compiler supports the American National Standard Code for
Information Interchange (~SCII). Thus the programmer can create
and process tape files recorded in accordance ~ith the foll~wing
standards:

• American National Standard Code for Information Interchange,
X3.4-1968

• American National Standard Magnetic Tape Labels for Information
Interchange, X3.21-1969

• American National Standard Recorded Magnetic rape for
Information Intercnanqe (800 CPI, NRZI) , X3.22-1961

ASCII encoded tape files, ~hen read into the system, are
automatically translated in the buffers into EBCDIC. Internal
manipUlation of data is performed exactly as if they were EBCDIC
encoded files. For an output file, the system translated the
EBCDIC characters into ASCII in the buffers before writing the file
out on tape. Therefore there are special considerations concerning
ASCII encoded files ~hen they are processed in COBOL. The
following paragraphs discuss these considerations.

I --ENVIRONMENT DIVISIQ~

Environment Division clauses affected by the specification of
ASCII files are the ASSIGN clause and the RERUN clause.

When ASCII files are to be processed, the ~f~~~m=~!m~ in the
ASSIGN clause has the following format:

UT[-devicel-C[-offsetl-name

devic~, if specified, nust specify a magnetic tape device. If this
field is omitted, the magnetic tape device must be specified
through control cards at execution time.

£:in the organization field specifies that an ASCII encoded
sequential file is to be processed, or that an ASCII collated Sort
is to be performed.

offse~ may be specified only for an ASCII file, and then only if a
buffer offset in the range 01 through 99 exists. It is a 2-digit
field, and may be specified as follo~s:

01 through 99 for an input file
04 for an output file (D-mode records only)

Appendix~: ASCII Considerations 389

ASCII FD Entries (Versions 3 and 4)

~ is a 1- to 8-character field specifying the external-name by
which the file is kno~n to the system. . It is the name that appears
in the name field of the DO card for the file.

The system-name in a RERUN clause must not specify an ASCII encoded
file.

ASCII files containing checkpoint records cannot be processed.

In the Data Division there are special consijerations for ASCII
files, both in the File Section and in Data Description Entries.

FILE SECTION

In the File Section the BLOCK CONTAINS, the LABEL RECORDS clause
and RECORDING MODE clause are affectej. There are also special
considerations regarding the compiler default options for recording
mode.

For an ASCII file that contains a Q~f[e~_Qff~~~ field, the
follo~ing considerations apply:

• If the BLOCK CONTAINS clause with the RECORDS option is
specifiej, or if the BLOCK CONTAINS clause is omitted, the
compiler compensates for the buffer offset field •

• If the BLOCK CONTAINS clause with the CHARACTERS option is
specified, the programmer must include the buffer offset area
as part of the physical record.

Note: If the BLOCK CONrAINS 0 C8ARACTERS option is used and the
block size is. determined at object time from the DO card or from
the data set label for the file, then the programmer must calculate
the offset field as part of the block size.

All three options of the clause (O~ITTED/STANDARD/data-name) are
allo~ed. However, if the programmer specifies the ~~~~~~~
option, he must make sure that data-name refers only to user
standard labels. Nonstandard labels are not allowed for ASCII
files.

390 Supplementary Material

o

ASCII Data Description (Version 3 and ij)

For ASCII· files, mode may be specified as F, 0, or V. S mode
: ,~C:\y !lot ,be, specified:----

When the RECORDING MODE clause is not used to specify the mode
~of the. records in an. ~SCII file,. the COBOL compiler determines the
mode by scanning each record description entry. The default option
may be:

F if all the records are defined as being the same size.

o if the records are defined as variable in size, or if the
RECORD CONTAINS clause specifies variable size recorqs.
Internally D mode is the equivalent of V mode for EBCDI~
encoded files.

DATA DESCRIPrION ENrRIES

For ASCII files the Data Description Entries affected are the
PICTURE clause, ~h~,~IGN, c+aus~f and the USAGE clause.

For ASCII files all five categories of data are valid.
, ,

'If a data item is numeric, however, and the item is signed, then
the SIGN clause with the SEPARArE CHARACTER option must also be
t.~J?eci,~~ed!" ,

f'SIGN Clause
I
! ,
t If a data item in an ASCII file is numeric and has a sign, then
[the SIGN clause with the SEPARATE CHARACTER option must be
L~~~ci,~:i:ed." " " ,

USAGE-Clause

For data items in ~SCII files, only the DISPLAY option of the
OSAGE clause is valid.

III-~~-PROCEDURE DIVISION

For ASCII files, there are special considerations in regard to
Label Declaratives and relation conditions.

Appendix E: ASCII Considerations 391

------------ -- - ---

ASCII LABEL Declaratives/Comparisons, (Versions 3 and 4)

LABEL PROCEDURE Declarative

Since the user may n~t specify nonstandard labels for 'an ASCII
file, the BEFORE option of the LABEL PROCEDURE declarative is not
allowed.

~ ,w , ~.;.,

;,Regt:ion.£enllii2!!§. ,
~

, If the ASCII strin;s to be compared contain mixed
'alphabetic/numeric characters and/or special characters, then the' i
iTRANSFORM verb can be used before the comparison is made to ensure
~a valid comparison.

The following example illustrates a method of making ,the
:comparison (Figure 20 shows the necessary COBOL state~ents).
!

one . ~' Suppose that the COBOL programmer specifi~s that
lalphanumeric data item (ASCII-i) from ASCII-FILE is
',with another such data item (ASCII-2), and. that the
:comparison determine the path of program execution.
;may contain any valid COBOL character.

to be compared ;
results of the

Each data item
, 1

When ASCII-RECORD is read into the buffer, the system' chang'es'
,each ASCII character into its EBCDIC equivalent. Therefore,' before,
:a vali~ ASCII comparison can be made, the re~ative position 6f each;
; character '~n the ASCII collating sequence must be reestablished., ,j

, .
, In'the Working-Storage section, the VALUE of ID~Nr-EBCDIC is the
~ascending EBCDIC collating sequence (as sho~n in Figure 20;
~similarly, the VALUE of IDENT-ASCII is the ascending ASCII
icollating sequence. The contents of ASCII-i are moved toDN-l, and!
!the contents of ASCII-2 are moved to DN-2, and DN-l and DN-2 are
)chen\used in the two TRANSFORM statements. (This avoids the
necessity of a second pair of TRANSFORM statements to restore the

; original contents of ASCII-l and ASCII-2.)

When the two TRANSFORM statements' are executed each EBCDIC
character, is exchanged for another EBCDIC character that occupies

'the:original ASCII character's position in the ASCII collating
sequence. rhus, when the comparison is made, it,is valid for the
ASCII collating sequence. '

(Note that if ASClI-l and ASCII-2 are restricted to mixed
alphabetic and numeric characters, then the VALUE clauses in

'IDENT-EBCDIC and IDENT-ASCII need only contain alphabetic and
num~ric characters from the collating sequences. Note too that in
the VALUE clause when quotation marks (") are used as delimiters,
then the quotation mark itself cannot be one of the literals
con~ained ~ithin the deliniter: Similarly, if the apostrophe (I)
used as the .delimiter, then the apostrophe cannot be contained
within the delimit~r.) ,

392 Supplementary Material

ASCII Comparisons (Version 3 and 4)

rr~~~:-#-~-:-~-~~---'---------'-:-~-'-:----------------:------------------~-----~-:tl

Ii . . i I
If '1 11DATA DIVISION. '~f
I'PlLE SECTION.. t 1
,I~FD ASCII-FILE '; 1
1~1 ASCII-RECORD. .H
Ii 05 ASCII-l ! ')
II 05 ASCII-2 ,; 1
II ' t]
Ii U
H • j 1
IIWORK:r:NG-STORAGE SECTION. j I
1~7 IDENT-ASCII PICTURE X(Sl) VALUE tl
I} , " $' O*+,-u/0123456789;<=>ABCDEFGHIJKLMNOPQRSTUVWXYZ". II
In7 IDENT-EBCDIC PICTURE XeSl) VALUE II
I" " .«+$*) ;-/ ,>'=ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 ff

• ~J
IF7' DN-l jl
h77. DN-2 ! 1
1 ~ , Ii 1
It') IL .. ' ,~l

I ;pROCEDURE DIVISION.. ! I
Il . . II
I", n
I ~ ',I I
I ~EST-ASCI I.. . n
Il MOVE ASClI-1 TO DN-l.. }I
p' MOVE ASCII-2 TO DN-2.; : I] n TRANSFORM DN-l FROM IDENT-EBCDIC TO IDENT-ASCII. ' , I r TRANSFORM DN-2 FROM IDENT-EBCDIC TO IDENT-ASCII. I]
I: IF DN-l IS NOT LESS THAN DN- 2 i I
Ii . PERFORt-1 PROCESS-1 ! I
I! ELSE PERFORM PROCES\S- 2. . .1]
I !, ~ I

, !

II .j!
Ir , ;]
J l>ROCESS ;"1.. ' ,'H
I" , ' " q
II " " '11
J j , II
I FROCESS-2.• 'Ii
I"" '. 'II
ll::::':i:;::;:';:::';;;::':·:":':"-'~:'::::::"":;_":;~'::':"";_~_':"_-"~':'':~::':''-':_~''':'-'_':''_~:':'':':':':''::::':':'~'':':':'..:.:.:...~_~ ____ ~_:._~:.:..:...::::::~~:U
Figure 20. Using the TRANSFORM Statement with ASCII Comparisons

Appendix E: ASCII Considerations 393

ASCII Sort (Version 3 and 4)

r----------------------------------T-----------------------------------,
I EBCDIC Collating Sequence I A~CII Collating Sequence I
~----------------------------------+-----------------------------------~

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.

12.
13.
14.

<
(

+
$

*

/

(space)
(period)
(less than)
(left parenthesis)
(plus symbol)
(currency symbol)
(asterisk)
(right parenthesis)
(semicolon)
(hyphen, minus symbol)
(stroke, virgule,
slash)

(comma)
(ater

-15. = (equal sign)
16. " (quotation mark)

17-42. A through Z
43-52. a through 9

1.
2.
3.
4.

5.
6.
7.
8.
9.

10.
11.
12.

13-22.
23.
24.
25.
26.

27-52.

(

)

* +

/

<
=
>

(left parenthesis)
(right parenthesis)
(asterisk)
(plus symbol>
(comma)
(hyphen, minus symbol)
(period, decimal point)
(stroke, virgule, slash)
a through 9
(semicolon)
(less than)
(equal sign)
(greater than)
A throu;Jh Z

L __________________________________ ~ __________________________________ _

Figure 21. EBCDIC and ASCII Collating Sequences for COBOL Characters -
in Ascending Order

For ASCII collated sorts, there are special considerations in
the Environment Division and in the Data Division.

For ASCII-collated sorts, there are special considerations for
the ASSIGN clauseITMIlIlIlIlIiIlIlIl .. II .. II.1I

The ASSIGN clause in the SELECT sentence for a sort-file
specifies the use of the ASCII collating sequence in the sorting
operation through the ~~~t~m~rr~m~. Svstem-name must take the
folloViing form:

class [-devicel-C-name

C must be encoded in the organization fielj to specify that the
file is to be sortej on the ASCII collating sequence.

rhe £1~~~, dey~£g, and rr~m~ fields have,the same meanings tney
have for sort-file system-names for EBCDIC files, and can be used
to describe the sort Vlork files. Ho~ever, except for the
organization field, the compiler treats the system-nane as
comments.

Note: For an ASCII collated sort, the buffer Q~~~~~ field of ~
~2t~m~rr~mg is not permitted.

394 Supplementary Material

ASCII Sort (Versions 3 and 4')

Checkpoint records for ~SCII collated sorts can be taken.
However, the 2Y2~~m=U~m~ specified in the RERUN clause must not
specify an ~SCII encoded file.

DATA DIVISION

For ASCII-collated sorts, there are special considerations for
the SIGN clause and for the USAGE clause.

SIGN Clause

If an S is specified in the PICTURE of a numeric item to be used
as a sort key 1n an ASCII-collated sort, the SEPARATE option of the
SIGN clause must be specified.

If an ASCII-collated sort is requested, the sort keys must,
explicitly or implicitly, be DISPLAY items.

Appendix E: ASCII Considerations 395

Symbolic Debugging (Version 4)

Program Product Information (Version 4)

A programmer using the Full ~meric~n Nation~l Stanjarj COBOL
Compiler, Version 4, unjer the IBM Operating System, has several
methods available to hin for testing ~nd debugging his programs.
Use of the symbolic debugging features is the easiest and most
efficient method for testing and debugging anj is described in
~etail in this appendiK.

If symbolic debugging is in effect, ~ symbolic formatted jump of
the object program's ~ata area is produced when the program
abnormally terminates. rhis option also enables the programmer to
request dynamic dumps of specified jat~-names ~t strategic points
ct~~i~~g" p~og;~,m "ex»~~qt,i~n",!!, ,IIf "two or more<~'COBOL prog'rafns' a're ,»

;,!nk~fa,d~ted ; together ',an,d one of them termina tea' abnormally, ' a
,orma,tted'dump is prodl.1ceti .for all programs 'in the current calling
":, ~enc'e<compiled wit.h the symbolic deb'uq' option, ,'up to and' " ,,',
"luda~~e ,;~!,I?:~"~~~~"~~~!,',,,",,":_w.,,: d '"""

Note: The terminatinj program need not have been compilej with the
symbolic debugging option.

The abnormal termination dump consists of the following parts:

1. An abnormal termination message, including the number of the
statement and of tne verb being executej ~t the time of an
abnormal termination.

2. Selected areas in the ~ask Global rable.

3. A formatted dump of the Data Division inclujing:

(a) For an SO -- the card number, the sort-file-name, the
type, and the sort record.

(b) For an FO -- the card number, the file-name, the type, the
OOname, the DECB and/or DCB status, the contents of the
OECB and/or DCB in hexadecimal, and the fields of tne
record.

(c) For an RD -- the card number, the report-name, the type,
the report line, and the contents of P~GE-COUNTER anj
LINE-COUNTER if present.

,:~rr'F?rr~",C~i':,~':: ::l:il,'e;>~c~':,~tseif, in,' its, i:mplib~,t f~r~a~~' ?,as":;,~e~il
l;:,t 'a,~~:',tb~',;area ,conta,l.n~!lg th~, me~sag,e, :iat,a ,cur,rently:bE;)ing;:~j

,,, , ';;i:.PJlUi"~Q.~,l"'''::~~~.{'~~~~:.A;:'''::~;:'':'''''' " "" / ':, " :"", ":"': ,,',,'"',,,: :,'L,,:~:,~;",:~:~'J
(e) For an index n~~e -- the n~me, the type, and the contents

in jecimal.

The operation of the symbolic jebugging option is determinej by
two types of control cards placed in the input stream:

~ppendix F: Symbolic Debugging Features (Version 4) 397

------------------.---------- . - ------

Proqram-control/Line-control Cards (Version 4)

Program-control card -- required if abnormal termination
and/or dynamic dumps are requested~

Line-control card
requested.

required only if dynamic dumps are

Program-Control Cards: A program-control card must be present at
execution time for any program requesting symbolic debuggingo A
program-control card must contain the following information:

The 1-8 character program-name of the COBOL program compiled
using symbolic debugging.

The DDname assigned to the file produced at compile time on
SYSUT5.

Additional optional parameters can also be specified:

An entry used to provide a trace of a program-name when
several programs are link edited together~ Each time the
specified program is entered l its program name is displayed.

Two formats of the Data Division area in the abnormal
termination dump are al~owed:

1. Level-al items are provided in hexadecimal. Items
subordinate to level-Ol items are printed in EBCDIC if
possible. Level-77 items are printed both in hexadecimal
and EBCDIC.

2. Level-77 items and items subordinate to level-al items are
provided in EBCDIC. If these items contain unprintable
characters, hexadecimal notation is provided. This is the
default option.

Line-control Cards: A line-control ca~d must contain the following
information:

The card number associated with the point in the Procedure
Division at which the dynamic dump is to be taken. The number
specified is either the compiler-generated card number, or, if
NUM is in effect, the user's number in source card columns 1
through 6.

Additional optional parameters can also be specified:

The position of the verb in the specified line number at which
the dynamic dump is to be taken. When the verb position is
not specified, the first verb in the line is assumed. Any
verb position not exceeding 15 may be specified.

An equivalent to the COBOL statement "OU n AND EVERY m UNTIL k
" This option limits the requested dynamic dumps to

specified times. For example "ON n" results in one dump,
produced the nth time the line number is reached during
execution. "ON n AND EVERY m" results in a dump the first
time at the nth execution of the specified line number, and
thereafter at every ~th execution until end-of-job.

Two formats of the Data Division areas displayed in the
dynamic dump are allowed:

1. Level-al items are provided in hexadecimal. Items
subordinate to level-Ol items are provided in EBCDIC, if
possible. Level-77 items are provided both in hexadecimal
and EBCDIC.

398 supplementary Material

\... .. ./

/--

L,

-- ------------- ----- -- --- ---------- --------------

TESTRUN Sample Program (Version 4)

2. Level-77 items and items subordinate to level-01 items are
provided in EBCDIC. If these items contain unprintable
characters, hexadecimal notation is provided. Note that
if a group item is specified, neither the group nor the
elementary items in the group are provided in hexadecimal.
This is the default option.

Selected areas of the Data Division to be dumped. A single
data-name or a range of consecutive data-names can be specified.
(If the programmer wishes to see a subscripted item, he specifies
the name of the item without the subscript; this results in a dump
of every occurrence of the subscripted item.)

A dump of everything that would be dumped in the event of an
abnormal termination can also be specified. This allows the
programmer to receive a formatted dump at normal end-of-job. To do
this, the programmer must specify the generated statement number of
the STOP RUN" GOJ3ACK, _,or _EXI~ PRO~RAM 'statement.

SAMPLE PROGRAM -- TESTRUN

Figure 22 is an illustration of a program that utilizes the
symbolic debugging feature~. In the following description of the
program and its output, letters identifying the text correspond to
letters in the program listing.

®

®

®

Because the SYMDMP option is requested in the PARM parameter
of the EXEC card, the logical unit SYSUT5 must be assigned at
compile time.

The PARM parameter specifications on the EXEC indicates that
an alphabetically ordered cross-reference dictionary, a flow
trace of 10 procedures, and the symbolic debug option are
being requested.

An alphabetically ordered cross-reference dictionary of
data-names and procedure-names i~ produced by the compiler as
a result of the SXREF specification in the PARM parameter of
the EXEC card.

The file assigned at compile time to SYSUT5 to store SYMDMP
information is assigned to SYSUT9 at execution time.

The SYMDMP control cards placed in the input stream at
execution time are printed along with any diagnostics.

(9 The first card is the program-control card where:

(a) TESTRUN is the PROGRAM-ID.

(b) DD1 is the DDname on the file SYSUT5.

The second card is a line-control card which requests a
(HEX) formatted dynamic dump of KOUNT. NAME-FIELD,
NO-OF-DEPENDENTS, and RECORD-NO prior to the first and
every fourth execution of generated card number 70.

The third card is also a line-control card which requests
a (HEX) formatted dynamic dump of WORK-RECORD and B prior
to the execution of generated card number 81.

The type code combinations used to identify data-names in
abnormal termination and dynamic dumps are defined.
Individual codes are illustrated in Table 28.

Appendix F: Symbolic Debugging Features (Version 4) 399

Debugging TESTRUN (Version 4)

®
®
0

o

®

®

®

®

®

The dynamic dumps requested by the first line-control card.

The dynamic dumps requested by the second line-control card.

Program interrupt information is provided by the system ~hen a
program terminates abnormally.

The statement number information indicates the number of the
verb and of the statement being executed at the time of the
abnormal termination. The name of the program containing the
statement is also provided.

A flow trace of the last 10 procedures executed is provided
because FLOW=10 ~as specified in the PARM parameter on the
EXEC card.

Selected areas of the Task Global Table are provided as part
of the abnormal termination dump.

For each file-name, the generated card number, the file type,
the file status, the file organization, the DCB status, and
the fields of the DCB and DECB, if applicable, are provided.

The fields of records associated with each FD are provided in
the format requested on the program-control card.

The contents of the fields of the working-Storage section are
providei in the format requested on the program-control card.

The value associated ~ith each of the possible subscri~ts is
provided for data items described with an OCCURS clause.

Asterisks appea'ring ~ithin the EBCDIC representation of the
value of a given field indicate that the type and the actual
content of the field conflict.

~: When using the SYMDMP option, level numbers ap~ear
"normalized" in the symbolic dump produced. For example, a group
of data items described as:

01 RECORDA.
05 FIELD-A.

10 FIELD-Al PIC X.
10 FIELD-A2 PIC X.

~ill appear as follo~s in SYMDMP output:

01 RECORDA •••
02 FIELD-A •••
03 FIELD-Al •••
03 FIELD-A2 •••

1. Reference to the statement number information @ provided by
the SYMDMP option sho~s that the abend occurred during the
execution of the first verb on card 81.

2. 3ene~ated card number 81 contains the statement
COMP~TE B = B + 1.

3. Through verification of the contents of B at the time of the
abnormal termination ®, it can be seen that the usage of B
(numeric packed) conflicts ~ith the value contained in the
data area reserved for B (numeric display).

400 Supplementary Material

\
"-.. '

o

Symbolic Debugging Codes (Version 4)

4. The abnormal termination occurred ~hile trying to perform an
addition on a display item.

More complex errors may require the use of dynamic dumps to
isolate the problem area. Line-control cards are included in
TESTRUN merely to illustrate how they are used and the output they
produce.

-Table 28. Individual Type Codes Used in SYMDMP Output
r----------T---, I Code I Meaning I
~----------+---~

A I Alphabetic
B I Binary
D I Display
E I Edited
• I Subscripted Item
F I Floating Point
N I Numeric
P I Packed Decimal
S I Signed
OL I overpunch sign Leading'
'OT I Overpunch Sign Trailing
SL I Separate Sign Leading .
ST I Separate Sign Trailing

----------~---

Appendix F: Symbolic Debugging Features (Version 4) 401

TESTRUN Output (Version 4)

IEF2981 DEBUG SYSOUT=U.
//DEBUG JOB 7074722674,'D. DAVIDSON',MSGLEVEL=l.MSGCLASS=G
//JOBLIB DD DSN=DUMMYOS,UNIT=2314,VOL=SE~=DC156.DISP=SHR
// DD DSN=PRODVER4, DISP=SHR

~/ / EXEC UCOB4CU:;, PARM. COB=' DMAP, PMAP, SXREF, FLOW=10, SYMDMP, QUOTE, NORES'
\!I XXCOB EXEC PGM=IKFCBLOO,REGION=80K,PARM=(LOADI

//COB.SYSPRINT DD SYSOUT=G,OUTLIM=1000
X/SYSPRINT DD SYSOUT=U,OUTLIM=1000
XXSYSUDUMP DD SYSOUT=U,OUTLIM=1000
XXSYSUTl DD SPACE= (CYL, 110,211, UNIT=2314
XXSYSUT2 DD SPACE=(CYL, ClO,2)),UNIT=(2314,SEP=SYSUTl)
XXSYSUT3 DD SPACE=(CYL,110,2)I,UNIT=(2314,SEP=(SYSUT1,SYSUT2)1

~ XXSYSUT4 DD SPACE=(CYL, (10,2), UNIT= (2314, SEP= (SYSUT1, SYSUT2, SYSU'l'31)
~//COB.SYSUT5 DD DSNAME="UT5,UNIT=SYSDA,SPACE=(TRK,(100,1011,

// DISP= (NEW, PASS)
x/SYSUT5 DD SPACE=(CYL,(10,2)I,UNIT=2314,DSN='SYMDBG,DISP=(NEW,PASSI
XXSYSLIN DD DSN='LOADSE.T,DISP=(MOD,PASS),UNIT=2314,SPACE=(CYL, 110,2)1
//COB.SYSIN DD •

00000010
SMF

OOOOOSl'.F
OOOOOSMF
00000040
00000050
00000060
00000070

00000080
00000090

-Figure 22. Symbolic Debugging option: TESTRON <Part 1 of 11)

402 Supplementary Material

\
~...... .../

C)

TESTRUN output (Version 4)

IEC1301 SYSLIB DO STATEMENT MISSING
IEF373I STEP /COB / START 72144.0024
IEF374I STEP /COB / STOP 72144.0029 CPU OMIN 04.09SEC MAIN 781< LCS 01<
STEP COB ENDED. COHP CODE 0004 CORE REQUSTED= 0080~. CORE USED= 0078K.
XXLKED EXEC PGM2IEWL,PARM=(XREF,LIST,LETI.COND=(5,LT,COB). 00000100
xx REGION=96K 00000110
XXSYSLIN DO DSN='LOADSET,DISP=(OLD.DELETEI 00000120
xx DD DDNAME=SYSIN 00000130
XXSYSLMOD DO DSN='GODATA(RUN'.DIS~(NEW,PASS', 00000140
xx UNIT=2314, SPACE=(1024, (50,20,1» 00000150
//LKED.SYSLIB DO DSN=NEWSYMJB,UNIT=2314,VOL=SER=DC157,DISP=SHR
X/SYSLIB DO DSN=SYS1. DYNAMLIB, DISP=SHR
// DO DSNAME=SYS1.DYNAMLIB,DISP=SHR
x/ DO DSN=SYS1.TELCMLIB,DISP=SHR
XXSYSUTl DO UNIT=(2314,SEP=(SYSLIN,SYSLMODI),SPACE=(1024,(50,20»
//LKED.SYSPRINT DO SYSOUT=G,OUTLIM=1000
x/SYSPRINT DO SYSOUT=U,OUTLIM=1000
XXSYSUDUMP DO SYSOUT=U,OUTLIM=1000

IEF373I STEP /LKED / START 72144.0029

00000160

00000170
00000180

SMF
OOOOos!'.F
OOOOOSMF

IEF374I STEP /LKED / STOP 72144.0030 CPU OMIN 00.67sEC !'.AIU 961< LCS OK
STEP Ll<ED ENDED. COMP CODE 0000 CORE REQUSTED= 00961<. CORE USED= 00961<.
XXGO EXEC PGM: •• LKED.SYSLMOD,COND=«S,LT,COBI,(S,LT,LKEDII 00000210
//GO.SYSUDUMP DO SYSOUT=G,OUTLIM=1000 SMF
X/SYSUDUMP DO SYSOUT=U,OUTLIM=1000 OOOOO~kF

®-
XXSYSDBOUT DO SYSOUT=U,OUTLIM=1000 OOOOOSf',F o //GO.DDl DO DSN="UT5, UIIIT=SYSIJA, DISP= (OLD, DE!.ETJ::I
X/DOl DO DSN='SYMDBG,DISP=(OLD,DELETE) 00000240
//GO.SAMPLE DO UNIT=2400,LABEL=(,NLI,DISP=CNEW,OEL~7EI,VOL=SER=TE~TER
//GO.SYSOUT DO SYSOUT=G,OUTLIM=1000 SMF
//GO. SYSDBOUT DO SYSOUT=G,OUTLIM=1000 :WF
//GO.&TEPLIB DO DSN=NEWSYMJB,UNIT=2314,VOL=SER=DCtS7.DISP=SHR
// DO DSNAME=SYS1.~YNAMLIB.DlSP=SHR
/ /GO. SYSDBG DO.
//

-Figure 22. Symbolic Debugging option: TESTRUN (Part 2 of 11)

MU= 2,02

11U= • bO

Appendix F: Symbolic Debugging Features (Versio~ 4) 403

TESTRUN Output (Version 4)

1~1301 SYSDTERM DD STATEMENT MISSING
A 0001 NYC 0
B 0002 NYC 1
C 0003 NYC 2
D .00011 NYC 3
E 0005 liYC II
F 0006 NYC 0
G 0007 NYC 1
B Q008 NYC 2
I 0009 NYC 3
IEFII601 WTP MESSAGE LIMIT EXCEEDED
COMPLETION CODE - SYSTEM=OC7 USER=OOOO
IEF21121 ALLOC. FOR DEBUG GO AT ABEND
IEF237I 136 ALLOCATED TO JOBLIB
IEF237I 355 ALLOCATED TO
IEF2371 2110 ALLOCATED TO PGM= •• DD
IEF2371 2112 ALLOCATED TO SYSUDUMP
IEF2371 2112 ALLOCATED TO SYSDBOUT
lEF2371 2111 ALLOCATED TO DOl
IEF2371 282 ALLOCATED TO SAMPLE
IEF2371 2112 ALLOCATED TO SYSOUT
IEF237I 2112 ALLOCATED TO SYSDBOUT
IEF2371 137 ALLOCATED TO STEPLIB
IEF237I 355 ALLOCATED TO
IEF2371 2111 ALLOCATED TO SYSDBG
IEF2851 DUHMYOS PASSED
IE,.2851 VOL SER NOS= DC156 •
IEF2851 PRODVERII PASSED
IE,.2851 VOL SER NOS= DC160 •
IE,.2851 SYS7211111. T0023117.RVOOO. DEBUG. GODATA PASSED
lE,.2851 VOL SER NOS" 2311100.
IEF2851 SYS7211111. T0023117. SVOOO.DEBUG. ROOOOOll SYSOUT
IE,.2851 VOL SER NOS= 2311102.
IEF2851 SYS7211111.T0023117.SVOOO.DEBUG.R0000012 SYSOUT
1£,.2851 VOL SER NOS= 2311102.
IE,.2851 SYS7211111.T0023117.RVOOO.DEBUG.UT5 DELETED
IEF2851 VOL SER NOS" 2311101.
IEF2851 SYS7211111.T0023117.RVOOO. DEBUG. R0000013 DELETED
IE,.2851 VOL SER NOS= TESTER.
IEF28S1 SYS7211111.T0023117. SVOOO.DEBUG. ROOOOOlll DELETED
IE,.2851 VOL SER NOS= 2311102.
lEF2851 SYS7211111.T0023117. SVOOO.DEBUG. R0000015 DELETED
IE,.2851 VOL SER NOS" 2311102.
IEF2851 NEWSYMJB KEPT
lE,.2851 VOL SER NOS= DC157 •
IEF2851 SYS1.DYNAMLIB KEPT
IEF2851 VOL SER NOS= DC160 •
IEF2851 SYS7211111.T0023117.RVOOO.DEBUG.S0000016 SYSIN
IEF2851 VOL SER NOS= 2311101.
lEF2851 SYS721111i.T0023117.RVOOO.DEBUG.S0000016 DELETED
lEF2851 VOL SER NOS= 2311101.
IEF3731 STEP IGO / START 7211111.0030
IEF37111 STEP /GO / STOP 7211111.0033 CPU OMIN 03.20SEC MAIN 52K LeS ox
STEP GO ENDED. COMP CODE 00C7 CORE REQUSTED= 0052K. CORE USED= 0052X.
IEF2851 DUHMYOS KEPT
lEF2851 VOL SER NOS= DC156 •
lEF2851 PRODVERII KEPT
IEF2851 VOL SER NOS= DC160 •
IEF2851 SYS7211111.T0023117. RVOOO. DEBUG. GODATA DELETED
lEF2851 VOL SER NOS= 2311100.
lEF3751 JOB /DEBUG / START 7211111.00211
lEF3761 JOB IDEBUG / STOP 7211111.0033 CPU OMIN 07.96SEC
JOB DEBUG ENDED. CODE= 00C7 JOB READ IN AT 00.110 ON 7211111 JOB STRTED AT 00.111
••• THIS JOB WAS RUN ON MODEL 6SNG

I'oU= 1.16

ON 7211111 JOB ENDED AT OO.~6

Figure 22. Symbolic Debugging option: TESTRUN (Part 3 of 11)

404 Supplementary Material

Ott 121

o

TESTRUN Sample Program (Version 4)

n S73/1-CB2 '4 tU76 IBII os IIIEIICI" IIATlnUL S'I'AWDIlID COIIOL

UP0011I-1I SlfSLIIl lOT USABLE. COIIPItI'l'IOI COIl'l'IlIUIIG.
ItIDIIP 7 I
StIDRP H I

2

00001
00002
00003
0000/1
00005
00006
00007
00008
00009
00010
00011
00012
00013
000111
00015
00016
00017
00018
00019
00020
00021
00022
00023
000211
00025
00026
00027
00028
00029
00030
00031
00032
00033
000311
00035
00036
00037
00038
00039
00040
000111
000112
OOOU
000l1li
000115
000116
000117
000118
000119
00050
00051
00052
00053
000511
00C55
00056
00057

100010
100020
1000)0
1000110
100050
100060
100070
100080
100090

IDU'l'IrtCl'l'IOI DUISIOII.
PIOGRAII-ID. TES'l'IUII.

10'l'ffOI. PIOGUUU 1A1I!.
I1S'I'ltU'l'10J. II!II YORK PIOGIlIIIIIllG CUTIR.
Dl'l'E-IIIl'1''I'U. JUlY 12, 1968.

DIT!-COllPIL!D. JU 6,1972
JtEIIIIKS. THIS PRoolAlI HIS BEl'll VIIT'I'!'I IS I SIIIPL! PIOGIIII

COBOL OSEIS. It CREI'I'ES III OOTPU'I' PILE liD REIDS IT BICK
InO'l'.

100100 ZlYIROIIIU'I' DUISIOI.
100110 COl PIGOIA'I'IOII SEC'l'IOI.
100120 SOORCI-COIIPUnR. HII-360-H50.
100130 OBJECT-COllPO'l'!R. 1811-360-H50.
1001110 II'O'l'-OO'l'PO'l' SEC'I'IOI.
100150 PILE-COnROL.
100160 SELIC'I' PILE-1 ASSIGI TO 0'l'-2/100-S-SAIIPLE.
100170 SELECT PILE- 2 ASSIGI TO U'l'-2/10o-S-SIIIPLE.

100180 DITI DIUSIO,..
100190 PIlE SEC'I'IOI.
100200 Ie PILI-1
100210 liBEL RECORDS IRE OIlIT'I'ED
100220 BLOCI COITIIIIS 100 CHARAC'l'!RS
100225 RECOIO'COll'l'lIllS 20 CHAIlC'l'!JS
100230 R!CORDIIG 1I00! IS P
1002110 DAU RECORD IS nCOIO-1.
100250 01 RECORo-1.
100260 02 PIELD-A PICTUlIP' IS 1(20).
100270 Ie PILE-2
100280 lABEL RECORDS AlE OIlI'l''I'ED
100290 BLOCI COIITAIIS 5 RECORDS
100300 RECORD COIITAINS 20 CHlRAcrr:RS
100310 nCORDIIG IIODE IS P
100320 DAU RECORD IS RECORO-2.
100330 01 nCOR D- 2.
1003110 02 PIEtD-A PICTon IS 1(20).

1I0RKIIG-STORAGE SECTION.
77 loon PICTOU S99 COMP SYNC.
770:0::~R:ICTURE S99 COIIP SIICy

rOR
15

100350
100360
100370
100375
100380
100395
100/105
1001110-
1001120
100l1li0
1001150
1001160
1001170
1001180
1001190
100')00
100510
100520
100521

02 AUHlBET PICTORE 1(26) 'ALU! -ABCDEPGHIJILIIROPQRS'I'Onnz-.
02 ALPHA REDEPIII!S ALPHIBET PICTORE I OCCORS 26 TIllES.
02 DEPUDEftS PICTORE 1(26) 'ALOE -0123110123/10123/1012311012311 -0-.
02 DEPEIO REDEPII!S DEPEIIDEKTS PICTOR! I OCCORS 26 TIllES.

01 1I01K-IECORD.
02 nIlE-PIELD PICTon I.
02 PILLER PICTORE I VAtU! IS SPAC".
02 nCORD-In PICTOU '999.
02 PILLER PICTURE I VALOE IS SPACE.
02 LOCATIO. PICTORE IAI 'ALUE 15 -Irc-.
02 PILLER PICTURE I 'UO! IS SPICE.
02 10-OP-OEPUDEftS PIeron II.
02 'ILLER PICtURE 1(7) flLOE IS SPACES.
01 RECORDI.

Figure 22. symbolic Debugging option: TESTRUN (Part 4 of 11)

OAT! .JAII fi,1972

Appendix F: Symbolic Debugging Features (Version 4) 405

TESTRUN Output (Version 4)

!l005A
00C59
00060
00C61
00062
OOCEJ
0006"
00065
00066
00067
0006A
00069
00070
00071
00072
ooe73
000711
00075
00076
00077
0007A
0007CJ
00080
00081
00082
OOOel
00084
0008t;
00086

18

100'i22 02 .A PICTUU: 59(11) VAtUP: 121".
10052) 02 B REnEPINES A PICTnRE 59(7) COIIPUTATtOIlA&-].
1005]0 PROC!CURE DIVISION.
100'i1i0 BEGIN. RUDY TRACF..
100550 NOT! THAT THE FOLLOWING OPENS THE OUTPUT FILE TO D! CR!AT!'D
100')60 AIID IIIITIAtIZES COUNTl'RS.
100570 STEP-1. OPEN OUTPUT FTLE-1. IIOYF. ZERO TO KOOll'l' NOII"!8.
100580 1I0TE THAT THE FCLLOWIIIG CR!ATES IIITERIIALLY THF. RF.rORDS to RE
100590 COIITAIIIED III THE PILP!, WRITES TlfP.1I ON 'l'APE, AIID nISPLAYS
100600 TH!II 011 THE COMSOLL
100610 STEP-2. ADD 1 TO ICOOMT, ADD 1 TO 1I01l8!R, IIOY! ALPHA (ICOUIIT) TO
1C0620 IAIIE-FII'!LIl.
100610 IIOY! DEPEND (ICOONT) TO NO-Or-DEP!KDEIITS.
100640 IIOY! KCIIBER TO RECORD-II0.
1006"0 STEP-3. DISPLAY WORK-RECORD UPON CONSOLE. VRIT! BECOID-1 'lOll
100660 ICRII-IIECORD.
100670 STEP-II. P!'BFOBII STPP-2 THRU STEP-] UKTIt ICOOKT IS !'QOIt 1'0 26.
1006AO NCTE THAT THE FOLLOWING CLOS~~ OUT POT AIID RF.OPFIIS IT as
100690 INPUT.
100700 S'IEP-S. CLOSE PILE-1. opn UPOT PIL!-2.
100710 Non THAT TH! FOLLOnKG RUDS DICK TH! FlU nD SIIIGLES our
100720 !P.PlCIEES vnH KO DEP!JDEIITS.
100710 STEP-6. RUD PILE-2 RECOBD IIITO WOBIC-RECOID liT EKD GO TO srlP-8.
100731 COIII'OT! B • D • 1.
1007110 STEP-7. IF KO-OF-DEPEMDEKTS IS EQOAt '1'0 ·0· lion "Z· TO
1 00750 10-OF-DEPUDENTS. EIHIBn' lUllED "OIK-IECOID. GO TO
100760 STlP-6.
100770 STEP-8. CLOSE FILI!!-2.
1007AO STOP lOll.

® ::ROSS-R!F!BEICE DIC'l'IOlaar

Dlra IUII!S D!PN R!F!lElC!

I 000058
ItPRI 000044 000068
1t1'RIBft 00001ll
B 000059 0000A1
DunD 000047 000070
DEPnOEII'lS 000045
PIILD-I 000029
PIILO-l 000037
PIU-1 000017 000064 000072 000077
'IL!-2 000018 000077 000080 000085
KOUIT 000040 000064 000068 000070 oooon
LOCATIOI 0000S3
1I!If-Pl!tt 0000119 000068
JO-Or-D!PEIO!KTS 0000"5 000070 000082
ICIU!U 0000111 00006. 000068 000071
RECORD-IO 000051 000071
lIe010-1 000028 000072
I!CORD-2 000036 000080
neOIOI 00OO"i7
WORIC-nCOID 0000118 000072 000080 000083

Figure 22. Symbolic Debugging Option: TESTRUN (Part 5 of 11)

406 Supplementary Material

(~~

" "

L'~"

o

TESTRUN Output (Version 4)

1«1

PROCPD UPI': NA ,.E:S OHN PP'FHNCI!:

AEGI'I 000061
STEP-l COO064
S'tEP-2 000068 000074
STfP-) 000012 0000711
S'tEP- 4 000074
STfP-o; 000077
S'lEP- /; OOOOAO 0000R3
ST ,p-7 000082
S'tEP- A 0000R5 ooooao

20

CABO F.RROR ,.ESSAGE

se IK'2190I-1i PICTURE CLAUSI': IS SIGNED, VALur CLAUSE UNSIGNED. ASSOIIED POSITIVE.

PHASE
1
2
)

4
S
6
7
8
9 ,
B
e
o
E
P
G

fILE1 PILE2 FILE3 PILE4 PILES
00000000 00000000 oOOOOJIIC 00000000 00000000
COOOOOOO 00000000 00000000 00000000 00000000
00000000 00000206 00000000 00000000 00000000
00000000 00000000 00000000 OOOOOIiOA 00000000
00000000 00000000 000002e1 00000000 00000000
00000000 00000000 00000000 000003~P 00000000
00000000 00000000 00000000 00000000 000001100
00000000 00000000 00000351 000000711 00000000
000000;00 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000
00000000 0000083e 00000010; 00000000 00000000
00000A311 00000000 0000024/; 00000001 00000000
00000000 00000000 COOOOOOO 00000000 OOOCOOOO
00000000 00000000 00000000 00000000 00000000
00000000 00000783 00000000 0000001!:2 00000000
000001P.B 00000000 00000 114 00000000 00000000
00000000 00000000 oooooooe 00000000 00000600

• Figure 22. Symbolic Debugging option: TESTRON (Part 6 of 11)

Appendix F: Symbolic Debugging Features (Version 4)

-------- ------ ---- ---

401

TESTRUN Output (Version 4)

(!)-.rfST"U.. [1:1

~70.01 1.'.(HElt.KOUIT,IIHE-rtEtD,IO-Or-D"O"NDP.IT~,RECORD~IC

(!}-81. (HUt ,ICIII-J!CCIID,e

T.ST.UI UIIDEITlrlED ELEHEITS 01 COlLtlOL CIIOS

.EaIOI. CI.D/'''18

U'160J: 70 ICUtHIlI lOt rouln

TESTRUI '1' CAlC 00007C
LOC CIRD n 1A1I!

(!}-oC0778 0000110 77 Koon

o DOH8 0000119 O. IIIII-flUD

ODC7DI OCOO'i1 02 IlCOID-lle

l' ESfJUI .t CIR r 00007e
toe CARD n IAIIE

o DO 778 0000110 77 Koun

0007118 0000119 0:; IIU-fI!LD

ODOBA 00COS1 ·02 8!eO'D-1I0

UUFOII n CARC 000070
Lee eJlle LV 11111

ODC778 OCOOII 0 77 KCOIiT

01'0788 0000119 0:; NAIIE-rIEL n

001 EUORS raUID II conROt CAiDS

0-fYP! conu usr:o II STllnH' OUTl'U'

cec! ""IIIG

I
AI
All"
D
DE
r
rD
liP
IB-S
10
Io-OL
ID-01'
In-SL
ID-ST
IE
IP
IIP-S
•

• ALPRAIIETIC
• lLl'HAlUII!ltte
• ALPRAIUII~RIC EDITp.n
• DIS PLaY (ST PRLIIG IOIRI!PORT)
• DISILI Y r:DlTED (STUll IG REPOlTt
• rLo.'UG POlIn' (CORP- 1/COIIP-2)
• PLOITI\CG POIlT nUPLA1 l"I'I'E.ut ,tOArIIIG POll'l')
• IIUllure BlllAltt IJNSIGlI!n (CORPt
• IOnnc 8UAI! SYG nn
• IIt'RfRtC DISPLA1 ONSICII!D (EXTEUAL DECIIIALt
• NUHERIC DISPLIY CVP..PUIICH !Ial trADI.a
• IIURUle DrsPtA1 onRPUNCH synl 'l'RlttlllO
• IURr:RIC DISPtAY S"PARAT" sIal tEAer.a
• IItIR,are TlISPLAI SEPARAT! sraN TlIULlla
• IIUI!ERIC !DITfI!D
• ttlllURle PACKEI: D!CII!U OIlSIGUD (COIIP-1)
• IIOII".IC PACK"D D!CtIlAt SrGIED
• SUBSCRIPTlD

'I'IPE VALOr

IIB-~ .01
IRExt 0001

U

IIC ••••
(H~XI II 70; OC()F!

TTP' YUIJ!

HR-S .00;
(HPXI OOO'!:

All

IIC ()00ll

TYP! VALUr:

NP-S .09
(HEXI 0009

u

Figure 22. Symbolic Debugging Option: TESTRUN (Part 7 of 11)

408 Supplementary Material

TESTRUN Output (Version 4)

VDe; IliA VI:I:V .. , Vol neCID-Ie lit UUUI!

(-- tI!nOIi n cnt 000070
Lec elite U 1Il"1 'UP!! YALIII

ODC77! OCOOIIIO 77 IICUIT III'-S .u
(HI I) ooon

ODC71U 0000lIl9 02 un-PULD All

OD07U OOOO'S 1 02 nCOle-IiO 110 1]012

tlS'UUI If CUD 000070
LOC CnD U Ill!! TYPI ULUI

o D077! 00001110 77 KOUI'I' 118-S ."
(nl) 0,011

o C07118 00001119 02 IAU-fllLn AI Q

ODC7Bl 0000\1 02 I"COID-Ie Ie 0016

TU1IUI ''I cnt 000070
Lec CliO U lUI 'II PI VALU!

ODe778 OCOOIIIO 77 IICUI'!' II!-S .21
(Hlr) oon

DOnal 00001119 02 IAIII-PULD All 0

ocnu 0000S1 02 IlCOID-IiO lit 0020

TlStlUi rr clle 000070
LOC CliO U lUI TIP' !lLUI'!

a DO 771 0000.0 77 IOUIT 118-S .2'1
(nx) 001Q

0007118 00001119 02 IAU-fIILD AI T

OD07llA 000051 02 IICCID-IO 110 002111

(!}.n !'I1U1 n cnD 000081
/'~ elle LY 11II1 TTP' !ItO!

I LCC

~,-j oooon 01 'Oll-IICOID
ODC7a1 (Rrr) clIloroPO '0',11005 I1IC1110,D 110111011101110 110110110110
OC07l8 00001119 02 1A1II-.nLD AI A
000789 01101150 02 PILU. All
0007U 000051 02 IlCOID-IO 10 0001
ODC711! 000052 02 rIUII All
OD07U 00005] 02 LOCaTIOI A lYe
ODC7C2 011005111 02 ULlI' n
o C07C] 000055 02 IO-a'-D!!PIIDIIC'ES All
OD07C5 000056 02 rnul n

OC07tO 000059 02 II IIP-!i t, t2 tlt
(HI':O P lPZ''lC1I

-Figure 22. Symbolic Debugging op~ion: TESTRUN (Part 8 of 11)

~ppen4ix F: Symbolic Debugging Features (Version 4) 409

-- ------ .----------~-------

TESTRUN Output (Version 4)

410

1FSTRUN

CCPfLFTIOM cotE z OC7 LAST PSW aErOR~ ABEND = PPO~000000000A06

0-U~T CAIIO NUIIBER/YERB ~!l~BP.1l EXECUTEC -- CAllt NIlIIErR ooooal/VERR N!lllllER 01.

now TRAC!
000068 000072 oaOOfB 00C072 000068 00C072 00006R 000072 000077 000080

(!)-U SI(GLOBAL 'UB IE

SlY I ARIA

SWITCH
11LLI
SCIIT-SIVl
EIITRI-SIYf!
SOBT-COBE-S IZ!
BE Ton-CODE
SCRT-&!TORM
10RKIIIG CELLS

SORT-HLf-S IU
SOB 1-1I00E-51 ZE
EGT-VII TI!L
1GT- 'II 18L
VCON JCn
VII T8L LENGTH
tAUL UTO Rft
CDRRENT PRIORITY
I !P.U G S IV 11 "
COBOL IIIOIcnOR
A (IMIT1)
OEB UG 1A 8 LE P1P
SUHOI! IUR
~ORT OOIlA!!E
UIIUSEC
OEB DG SAVE 11
UIIUS![
PRBAOR CF.LL
GUCI! T)I!L!
UtSEIl
TRANSIEIIT ARfA LENGTH
(Nesp.o
CVUPLCW CELLS
BL CELLS
tlCU[R CPT.LS
1EIIP STORIGE
ELL CELLS

Lec

000q38
000958
000978
On0980
00098"
000988
00098C
0009QO
000Q9"
000996
000998
0009B8
000Q08
0009F8
OOOA 18
000A38
OOOA 58
OoOA7A
ODOA 98
ODOA88
ODOAC8
OOOlCC
ODOA DO
OOOAIlII
000A08
OnOlOC
OOOA DE
OOOAOF
OOOlEO
OnoAE"
000lE8
OnOA1':C
OOOA FO
ODD AI'''
OOOHC
0001110
ODOR 111
000R18
OOOB lC
000R20
000B21
000R2"
(NON P)
000B2C
(NON I':)
000B38
ODCaliO

OATA 01YISIOII OU!!P OP TI!STROIl

VUUI!

009A 9200 OOOOC 768 0000A2P.8 700 DO 1!B6
00026CI!" 00000000 7001l0!01! 00000778
70000ECE 00000870
700000llB
00000000
OOOCOOOO
oooeo BOC
00000000
O';El
5891
0000211';6 00002[lA PFPPFF2E 0000c7F8
F2Ff4005 £8C3"OFO 020011020 "0110110110
6C081B99 50910000 4140COEA 47FOelF8
70000COO 181!00700 FA306058 COIIP.0700
20001000 30COOOOO 000A7788 00000000
0000080C 010090EC 1I00001!811 0000108A
COOOOOOO 70000EOE 00000778 OOOOAlll11
000 CO R70 000 CO £9 E 00001 08A 00000030
11270BOOl 92110B002 92008003 1111105000
1!008111BO ROOC41C7 C0014177 110019102
00000000
00000000
860291112
50EOC008
50500000
4177
00
00
70000EC!
AIISC
000006FO
00000478
00000610

585COOOO 00000000 lF744100 000C1815
000 ro ecc
0001181';
000 CO BOA
o oDe lPD2
06
7EQC;OO
500119600 8002111"0

0000~414 0000A400 00000778

00000000 0000026C
OOOCOOOO OOCOOOOO

0000!23A 700DOEC! 0000A400 000DOR08
00001"14 000DI400 OOOoO'P! 000006PO

00026BSC 00000000 0010ROOO E9"010l'0
000006'0 000006'0 00000R70 60089202
02001000 70000200 00';84000 07000058
58000108 07F8"000 OOOOOFIO 000Dai58
00000001 000A78CO "7,OPOOE 00000!Q6
00000030 00000E9! OOOOOROC 00026Cp':q
000 D06 PO 000 co PH 000006PO OOOOOBOC
8FOOC020 oooooeoc 00011&78 OOOOOP:96
"Q1l090P6 5060BOOQ 06704Q70 917ASOCO

580:;0';0011

Figure 22. Symbolic Debugging Option: TESTRUN (Part 9 of 11)

Supplementary Material

r
I

c

lLC CEllS (leMp)
SEL (IU.S (II0U)
non CElLS (Iell'!)
(T8n (SI! "'"0Il UP) eooalill

000P68

LOC cno n JAil!

@I----... 000017 fD UU-1

00C8OC
o cee2e
000811e

~ 000028 01 J!COJO-1
\!r-Otlll111 000029 02 nnO-A

® . oe0018 '0 UtE-2

oe08E8
000808
oocep/J

~~OAIIOO
~C0778

Ooonl

000036 01 1!(010-2
000037 02 rnlO-A
0000110 77 !!oun
000041 77 lell8U

000042 01. ILL PI
000780 000043 02 11181S!T

0000114 02 ALPHA

@-oe0780
000781
000782
01:0783
00c7ell
o D078,)
00C786
OD0787
oones
000789
00C781
Ot078!
00078C
Ot078e
00C7ey.
01:078f
00C790
OD0791
00C792
OC0793
00C7911
000795
00C796
OD0797

ISUlIl)
1
2
3
II
')

6
7
e
9

10
11
12
13
111
15
16
17
18
19
20
21
22
23
24

TESTRUN Output (Version 4)

"ATl oIYfsrOIf nn"" 01' TP.S1'RUIf

00000799 000007~) OOono~qo OOOOOOqO 800n08811 18141!11 IIl0ll00e 00000001
OloeOBCA 20C60101

Del!

OCB

DnA onISIOI Oil"" 01' T!STlnl

JALOP. TIP!

gSA" 'ItE: CLOSED ORGUI1.ATIOl(: p"'SICAr. SEQll!1lTUL

COOOOOOO 00000000 00000000 00000006
/16000001 9000070C E2Cl0407 03C5/1040
COOOOOOO 00000000 00000000 00000001

II OOOZ lYe 1

00A10000 0000A391 OOCOIIOOO 00000001
02000048 00000001 060D211,)6 0000006.
0000001/1 00000001 00000000 00000000

PILI': OP!1f ORGlIfTZ\TION: PHTSIC~L SP.CII!"TT~L

00000000 00000000 00000000 00000002
46000EC8 9000011811 007CII800 00026C!4
2110128211 00008030 0000&1164 OOOOUOO

All & 0001 IYC 0
18-S +26
III!-S .26

00A1C)00 0200A3QO 00004000 00000001
120'!P.00 000r!C40 060D245~ 00090064
00000014 00000001 00000000 000PrQQ8

AI ·A. ~Bcn!pr.HIJKLIIl(OPQaSTUVWXYZ

~

n
c

" !
po
G
H
I
.1
K
t
!!

" o
P
o
R
S
T
II
V
W
x

• Figure 22. symbolic Oebugging option: TESTRON (Part 10 of 11)

Appenaix F: Symbolic Debugging Features (Version 4) 411

TESTRUN Output (Version 4)

!lATA OIVISTCN n,,,,p 01' 1I'STRO"
(-~\

Lec C~RD r V- NA I'E TYPI' VALOE '\
"

o C0798 25 T
01lC799 2(, 1-
0007<) A 0000115 02 DfPfNCFlITS AN 0121"0 12J,,0 123,,0 12),,0 121" a

oeOO,,7 02 OEFI!ND *AN

OOC7'lA
@--<SU~1)

0
OCCHf 2 1
o C079 C J ,
OOC7<;fI " Il con f " II
OOCHI' I; 0
o C07 ~O 7 1
OllC7~ 1 8 2
o COH2 9]

0lle7A J 10 II
o cOHIi 11 0
OOC7A'i 12 1
o C07A6 13 2
ODC7A 7 111 J
o C07 A8 15 II
ODC7A 9 16 0
o D07U 17 1
ODens 18 2
o DOHC 19 3
OtlC7AIl 20 II
o COB! 21 0
ODC7A I' 22 1
o COHO 2] 2
OD(70 1 211 3
OC07P2 2': " ODC7!l] 26 0

0000118 01 WORK-HCOP.C .----0
ODC7A e 0000"9 02 NAI!!-FtELD AM
a C07F9 0000')0 02 PILLER AN
ODC7DA OC0051 02 RII!CCIID-IIO Ifr 0001
o C07 Ef 000052 02 rtLL!!! AN
ODC7111' OCC053 02 (CeATICIl A NYC
o 1:07C2 0000,)" 02 PILLER AN
0007C 3 oe005'; 02 IfC-CI'-DFFI'!IID!IITC; liN
OC07('i 0000')6 02 fILL !R AN

oe0057 01 BlCOPD"
a cono 0000'i8 02 A NO-OT +12311 ~
ODC7D 0 000059 02 R NP-S .1.2*'* R

(Hr.X) F11'21'1CII c:'
DATA OIVISION I'!I!IP 01' TP.STIIIJN

Lec eIRe LV NAil f TIP! VAtU"

END OF COML IlIAl;lfOSTIC nos

eFigure 22. Symbolic Debugging Option: TESTRUN (Part 11 of 11)

c
412 Supplementary Material

r--",

U

Program Product Information (Version 4)

APPENDIX G: 3505/3525 CARD PROCESSING

The IBM 3505 card reader and the 3525 card punch are aO-column
devices that offer more flexible processing capabilities than
former card devices. The 3505 card reade~ can be used for
sequential reading; it can also be used for Optical Mark Read (OMR)
processing. Both the 3505 and the 3525 support Read Column
Eliminate (RCE) p~ocessing. The 3525 card punch, when equipped
with appropriate special features, can be used separately as a card
reader, as a card punch, as an interpreting card punch, and as a
printer (either 2-line o~ multiline printing is available); in
addition, the read, punch, and print functions (any two or all
three) can be combined, so that those functions specified are all
performed during one pass of a card through the device.

Note: The interpreting card punch is' considered one function. It
cannot be combined with the other fun~tions, but is specified
through the DD statement for the data set.

The processing functions are all specified through new
parameters of the DD statement. For OMR and RCE processing, format
descripto~ card(s) must also be included as the first card(s) of
the data set. (For OMR processing, the format descriptor specifies
those columns that are optically marked; for RCE processing, the
format descriptor specifes those columns that are to be ignored.)
Detailed information on these considerations is given in the
publication IBM System/360 Planning Guide for IBM 3505 Card Reader
and IBM 3525 Card Punch On System/370, Order No. GC21-5027.

The following paragraphs describe the special COBOL programming
considerations when these devices are used.

3505 OMR PROCESSING

If the user wishes to inspect the substitution character
(hexadecimal "3F") placed in column ao by the system for a
defective optically marked card, he must specify a record
description of ao characters. (Note that the "3F" is placed in
both card column ao and the defective (unreadable) card column.

3,505/3525 RCE PROCESSING

When RCE processing is specified for input, the user must not
refer to the ignored columns (as specifiea by the format
descriptor), or results are unpredictable.

When RCE processing is specified for output, any data in the
COBOL record that corresponds to the ignored columns (as specified
by the format descriptor) is not punched or printed.

Appendix G: 3505/3525 Card Processing 413

3525 COMBINED FUNCTION PROCESSING

COBOL handles each of the separate functions to be combined as a
separate logical file. Each such logical file has its own file
structure and procedural processing requirements. However. because
such combined function files refer to one physical unit, the user
must observe certain restrictions during processing. The following
sections explain the programming requirements for combined function
processing in OS American National Standard COBOL.

The COBOL language does ,not define the files as being combined
function files; instead, the combined functions are specified
through new parameters for the files' DD statements. (In this way.
the user can, if he so desires, process the same COBOL files as
completely separ~te read, punch. and print files.) The necessary
parameters are given in the publication:

IBM System/360 Planning Guide for IBM 3505 Card Reader and IBM
3525 Card Punch on System/370, Order No. GC21-5027

I -- ENVIRONMENT DIVISION CONSIDERATIONS

For each function, there must be a separate SELECT sentence written
in the Environment Division. Each read function file and each
punch function file must specify RESERVE NO ALTERNATE AREA(S).

SPECIAL-NAMES Paragraph

If /~~~f.l'l9~~ line control of
printed output is desired, mnemonic-names for the purpose can be
specified in the SPECIAL-NAMES Paragraph. The mnemonic-names may
be equated with the following function-names:

COl
C02
C03

C12

Line 1
Line 3
Line 5

Line 23

414 Supplementary Material

o

II -- DATA DIVISION CONSIDERATIONS

For each logical file 1efined in the Environment Division for
the combined function structure, there must be a correspondin~ FD
entry and 01 record description entry in the File Section of the
Data Division.

III -- PROCEDURZ DIVISION CONSIDERArIONS

Input/output operati~ns must proceed in a specified order in the
Procedure Division. In the 3525 device, the card passes first
through the reading stati~n, next thr~ugh the punchin~ station, and
last through the printing station. rherefore, the following
combined functions ~ay be specified, but only in the order shown:

Functions to be
Co:nbined

read/punch/print

read/punch

read/print

punch/print

or:1er of
QQgE:§!t.!.~~§.
read
puncn

[print]

read
punch.

read
[print]

punch.
[print]

Associate::] COBOL
---~~~~g~g~~---
READ ••• Ar END
WRITE ••• ADVANCING/POSlrIONING
wRITE ••• AFTER ADVANCING/POSlrIONIN3

READ ••• AT END
WRIrE ••• ADVAN:ING/POSlrIONING

READ ••• AT END
WRITE AFTER ADVANCING/POSlrIONING

rl'RIrE
WRlrE

ADVAN:IN3/POSITIONIN3
AFrER ADVANCING/~OSIrIO~IN~

All required operations on one card must be completed bef~re the
next card is obtained, ~r there is an abnormal termination of the
job.

The follo~ing Procedure Division considerations in the :OBOL
source program apply:

'> -- -

For any specified function, an OPEN statement must be issued
before the input/output operation for that function is attempted.
rhe following additional considerations apply:

• For the ~~_f~~£~i~~, the file must be opened INPur .

• For the ounch function and e~!.~~_f~~£~iQ~ the file must be
opened OUTPUT~--------

If the user wishes to punch additional data into some of the
cards and not into others, he must issue a dummy ~RlrE statement
for the null cards, first filling the output area with SPACES.

r 'if 'stack-er" select'ion for the' punch function file" is desired, the;
!user gan spe6ify SOl (for stacker one) and 602 (for stacker t~o) as:
i~t:i:.2B:'!!~J!l~§' in the SPE:IAL-NAMES Paragraph. He can then issue
t~~;r,T~. ~I?V~t:lC:~~~, .. ~~~t,~mfant:,sps~ng the associate¢! !!!!!~mg!1!£:'!1e.!!!g!~.

Appendix G: 3505/3525 Card Processin~ 415

---------------------------- --- - ------------

t' M~'W ~.., :"::' '1: < t:' "'~« 'v .,../~ ,< ~ ~ "~~"" ~<~ "'I..,. ~" ~~ "",,~? ',,' <~":,,,.M'~' ~<~~"~/"'~' ~''''''~'' ~ ~ '<'/~' ~o/ , ~~,,"'~~ ~ .w,.., '...,'A,'.., ... <' ,....''t ,, ""< ~ >~ ~.,.:+.~.,.< ".«,~",~"'~.., I .., < ~,,~,""""'''''''''''~ ,.,~,~~, ,..,~ '~~~..,.,~ ,~"'~~ A, ".,::'~;...~~<'....,"I;~"""''":>>>:.,.,.~,.~~~~->>(<::«<:><:~

Alternat1vely,''-,if,':he, specifies ,WRITE ,AFTER~POSITIONING, . ,he, must"J1Se':{
t.he 'identifier,-2 'option.', The" values, placed', in "ideti'tifier 2, before</,l
the, statement is' issued: must he 'v' (for stacker'l) 'or', W: ,(for' stacker,';)
2'>.. ':S:tacker ,selec:tion may ,be specified ,only, for the punch' function'!
f,~:l~~,,,' " ";, ';"!",, ,', -:, ',' ,,' ", ' '," , '" ,:''':~,:;,L:;.~,j

WRITE statement -- Print Function Files

After the punch function operations (if specified) are
completed, the user can issue WRITE statement(s) for the print
function file.

If the user wishes to print additional data on some of the data
cards and not on others, he may omit the WRITE statement for the
null cards.

Any attempt to write beyond the limits of the card results in
abnormal termination of the job {'J'tfi\iif:""the""'~N1)~t)~'::'PAG:e"':ma:f"riot>W:'be""1
~p~~c~~'!~q."'~ ?, ,;"....... ~", ~ ,""" ,~'Y< < '<',<,' ~, '~/, 'I <' "' , '>~

Depending on the capabilities of the specific model in use, the
print file may be either a 2-line print file or a multi-line print
file. Up to 64 characters may be printed on each line.

For a 2-line print file, the lines are printed on line 1 (top
edge of card) and line 3 (between rows 11 and 12). Line control
may not be specified. Automatic spacing is provided.

For a multi-line print file up to 25 lines of characters may be
printed. Line control may be specified. If line control is not
specified, automatic spacing is provided.

Line control is specified by issuing WRITE AFTER ADVANCING
sta tements \' ""or"'"QRI1it''''~lrt!IrwrpOSI'rrON!N<r:"s-:eat'emE!lil:s:l for the pr int
function fife':'" 'fi'line"contr'ol'''Ts used" 'for" on'e "such statement, it
must be used for all other WRITE statements issued to the file.
The maximum number of printable characters, including any SPACE
characters, is 64. The first character of the record defined may
be reserved by the programmer for the line control character;
therefore, the record may be defined as containing up to 65
characters. Such WRITE statements must not specify space
suppression.

Identifier and integer have the same meanings they have for
other WRITE AFTER ADVANCING iQ~:~~~~~,~~'!r':'Pn:~g~~~ statements.
However, such WRITE statements must not increase the line position
on the card beyond the card limits, or abnormal termination
results.

The mnemonic-name of the WRITE AFTER ADVANCING statement may
also be specified. In the SPECIAL-NAMES Paragraph, the following
function-names may be associated with the mnemonic-names:

Function Name
C02
C03
C04

C12

416 Supplementary Material

Meaning
Line 3
Line 5
Li'ne 7

Li"ne 23

,r---",

C)

----------------- -----

CLOSE Statement

When processing is completed, a CLOSE statement must be issued
for each of the combined function files. After a CLOSE statement
has been issued for anyone of the functions, an attempt to perform
processing for any of the functions results in abnormal
termination.

Appendix G: 3505/3525 Card Processing 416.1

(/

o

ACCESS

ACCESS: The manner in which files are referenced by the computer.
Access can be sequential (records are referred to one after another in
the order in which they appear on the file), or it can be random (the
in~ivi~ual recor~s can be referred to in a nonsequential manner).

Actual Decimal Point: The physical representation, using either of the
decimal pOint characters (. or ,), of the decimal point position in a
data item. When specified, it will appear in a printed report, an~ it
requires an actual space in storage.

~crUA~KEX: A key which can be directly use~ by the system to locate a
logical record on a mass storage device. An ACTUAL KE~ must be a ~ata
item of 5 to 259 bytes in length.

Alphabetic~h~ter: A character which is one of the 26 characters of
the alphabet, or a space. In COBOL, the term does ~Q~ include any other
characters.

Aleha~meric_Ch~acter: Any character in the computer's character set.

Aleha~~me~!£_~~i~e~~£h~ra£~~t: A character within an alphanumeric
character string which contains at least one B or O.

Arithmetic EXe£~sion: A state~ent containing any combination of ~ata
names, numeric literals, and figurative constants, joined together by
one or more arithmetic operators in such a way that the statement as a
whole can be reduced to a single numeric value.

~~!thmeti~_Q2~at~: A symbol (single character or 2-character set) or
COBOL verb which directs the system to perform an arithmetic operation.
The following list shows arithmetic operators:

Mean!!!9:
Addition
Subtraction
Multiplication
Division
Exponentiation

*
/

**
&~e~-Decimal Point: A ~ecimal point position which does not involve
the existence of an actual character in a data item. It does not occupy
an actual space in storage, but is use~ by the compiler to align a value
properly for calCUlation.

BLQCK: In COBOL, a group of characters or records which is treatej as
an entity when moved into or out of the computer. The term is
synonymous with the term Physical Record.

Buffe~; A portion of main storage into which data is read or from which
it is written.

~te: A sequence of eight a~jacent binary bits. When properly aligned,
two bytes form a halfwor~, four bytes a fullword, and eight bytes a
doubleword.

Channel: A device that ~irects the flow of information between the
computer main storage an~ the 'input/output devices.

Character; One of a set of indivisible symbols that can be arranged in
sequences to express infornation. These symbols include the letters A
through Z, the decimal digits 0 through 9, punctuation symbols, anj any
other syrrlbols which will be accepte~ by the data-processing system.

IBM American National Standard COBOL Glossary 417

Character Set

Character Set: All the valid :OBOL characters. rhe complete set ~f 51
characters is listed in "Language Considerations."

ChaEacter~strinq: A connected sequence of characters. All COBOL
characters are valid.

Checkpoint: A reference point in a program at which information about
the contents of core storage can be recorded so that, if necessary, the
program can be restarted at an intermediate point.

Class Condition: A statement that the content of an item is wholly
alphabetic or wholly numeric. It may be true or false.

Clause: A set of consecutive :OBOL ~ords ~hose purpose is to specify an
attribute of an entry. rhere are three types of clauses: data,
environment, and file.

COBOL Cbaracter: Any of the 51 valid characters (see CHARACTER) in the
COBOL character set. rhe c~nplete set is listed in "Language
Considerations."

Collatinq-SegueR£~: The arrangement of all valid characters in the
order of their relative precedence. The collating sequence of a
computer is part of the computer design -- each acceptable character has
a predetermined place in the sequence. A collating sequence is used
primarily in comparison operations.

COLUMN-Clause: A COBOL clause used to identify a specific position
within a report line.

Comment; An annotation in the Identification Division or Procedure
Division of a COBOL source pr~gram. A comment is ignored by the
compiler. As an IBM extension, comments may be included at any point in
a COBOL sourc~ program.

communication.Description: In COBOL teleprocessing, an implicitly
defined fixed-format storage area that serves as the interface between
the COBOL object program and the Message Control Program (MCP). It is
specified in the Communication Section.

Communication-DesCr!E~ion~~g~~~: An entry in the Communication Section
of the Data Division that describes the interface bet~een the MCP and
the COBOL TP object program. The entry is composed of the level
indicator CD, followed by a cd-name, and then optionally followed by a
set of independent clauses.

communication-section: The section in the Data Division that describes
the interface area between the MCP and the COBOL rp program. It is
composed of one or more CD description entries that define the fields in
the interface area.

Communications Device: A mechanism (hard~are or hard~are-software)
capable of sending data to a queue and/or receiving data from a queue.
This mechanism may be a computer or a peripheral device. One or more
programs containing Communication Description entries and residing
·~ithin the same computer define one or more of these mechanisms.

Compile-Time; The time during which a COBOL source program is
translated by the COBOL compiler into a machine language object program.

Compiler: A program which translates a program written in a higher
level language into a machine language object program.

Compiler-QiE~£~ing statem~~~: A COBOL statement which causes the
compiler to take a specific action at compile time, rather than the
object program to take a particular action at execution time.

418 Supplementary Material

Compound Condition

Comeound-Condition: A statenent that tests two or more relational
ex~ressions. It may be true or false.

Condition;

• One of a set of specified values a data item can assu~e.

• A simple cond~tional expression: relation conjition, class
condition, condition-name condition, sign conjition, NOT con~ition.

Co~~ition~l sta~~ment: ~ statement which specifies that the truth value
of a condition is to be determined, and that the subsequent action of
the object program is dependent on this truth value.

Conditional Variable: A data item that can assume more than one value;
the value(s) it assumes has a condition-name assigned to it.

condition-Name: The name assigned to a specific value, set of values,
or range of values, that a data item may assume.

Condition~name Condition: A statement that the value of a conditional
variable is one of a set (or range) of values of a ~ata item identified
by a condition-name. The statement may be true or false.

CONFIGURATION SECTION: ~ section of the Environment Division ~f tne
COBOL program. It describes the overall specifications of computers.

Connective: ~ word or a punctuation character that does one of the
following:

• ~ssociates a data-name or paragraph-name with its qualifier

• Links two or more operands in a series

• Forms a conditional expression

CONSOLE; A COBOL mnemonic-name associated with the console typewriter.

contiguous Items: Consecutive elementary or group items in the Data
Division that have a definite relationship with each other.

Control-Break: A recognition of a change in the contents of a control
data item that governs a hierarchy.

Control-B~tes: Bytes associated with a physical record that serve to
identify the record and indicate its length, blocking factor, etc.

control-D~ta Item: A data iten that is tested each time a report line
is to be printed. If the value of the data item has changed, a control
break occurs and special actions are performed before the line is
printed.

CONTROL FOOTING: A report group that occurs at the end of the control
group of which it is a member.

Control-Groue: ~n integral set of related data that is specifically
associated with a control ~ata item.

CO~TROL-HE~DING: A report group that occurs at the beginning of the
control group of which it is a member.

control_H!~~~rchy: A designated order of specific control data items.
The highest level is the final control: the lowest level is the minor
control.

IBM American National Standard COBOL Glossary 419

Core Storage

Core stora~: Storage within the central processing unit of the
computer, so called because this storage eKists in the form of magnetic
cores.

Data DescriQ~io~Entry: An entry in the Data Division that is used to
describe the characteristics of a data item. It consists of a level
number, followed by an optional data-name, followed by data clauses that
fully describe the format the data will take. An elementary data
description entry (or item) cannot logically be subdivided further. A
group data description entry (or item) is made up of a number of related
group and/or elementary items.

DATA. DIVISION: One of the four main component parts of a COBOL program.
The-Data-Oivision describes the files to be used in the program and the
records contained within the files. It also describes any internal
Working-Storage records that will be needed (see "Data Division" for
full details).

Data Item: A unit of recorded information that can be identified by a
symbolic name or by a combination of names and subscripts. Elementary
data items cannot logically be subdivided. Group data items are made up
of logically related group and/or elementary items, and can be a logical
group within a record or can itself be a complete record.

Data-name: A name assigned by the programmer to a data item in a :OBOL
program. It must contain at least one alphabetic character.

DE:L~RATIVES: A set of one or more compiler-directing sections written
at the beginning of the Procedure Division of a COBOL program. The
first section is preceded by the header DE:LARATIVES. The last section
is followed by the header END DECLARATIVES. There are three options:

1. Input/output label handling

2. Input/output error-checking procedures

3. Report Writing procedures

Each has its standard format (see "Procedure Division").

Delimiter: A character or sequence of contiguous characters that
identify the end of a string of characters and that separate the string
of characters from the following string of characters. A delimiter is
not part of the string of characters that it delimits.

Destination: In teleprocessing, the symbolic identification of the
receiver of a transmission (i.e., a message) from a queue.

Destination 2~: In teleprocessing, an MCP storage queue for one or
more messages from one or more remote stations or to one or more remote
stations. Destination queues serve as buffers between a COBOL TP
program and the remote stations.

Device~number; The reference number assigned to any external device.

Digit: Any of the numerals from 0 through 9. In COBOL, the term is not
used in reference to any other symbol.

DIVISION: One of the four major portions of a COBOL program:

• IDENTIFICATION DIVISION, which names the program.

• ENVIRONMENT DIVISION, which indicates the machine equipment and
equipment features to be used in the program.

• DATA DIVISION, which defines the nature and characteristics of data
to be processed.

420 Supplementary Material

Division Header

• PROCEDURE DIVISION, ~hich consists of st~tements directing the
processing of data in a specified manner at execution time.

Division. Header: The COBOL words that injic~te the beginning of a
particular division of a COBOL program. The four division headers are:

• IDENTIFIC~TION DIVISION.

• ENVIRONMENT DIVISION.

• D~T~ DIVISION.

• PROCEDURE DIVISION.

Division-name: The name of cne of the four divisions of a COBOL
program.

~BCDIC Cha~te~: ~ny one of the symbols included in the eight-bit
EBCDIC (Extenjed Binary-Coded-Decimal Interchange Code) set. ~ll 51
COBOL characters are included.

Editing Character: ~ single character or a fixed two-character
combination used to create proper formats for output reports (see
"L~nguage Considerations" for ~ complete list of editing characters).

Elementary Item: A data iten that cannot logically by subdivided.

Entry: Any consecutive set of descriptive clauses terminated by a
period, ~ritten in the Identification, Environment, or Procedure
Divisions of a COBOL program.

Entry-name: ~ programmer-specified name th~t establishes an entry point
into a COBOL suoprogram.

ENVIRONMENT DIVISION: One of the four main component parts of a ~OBOL
program. The Environment Division describes the computers upon ~hich
the source program is compiled and those on which the object program is
executed, and provides a linkage bet~een the logical concept of files
and their records, and the physical aspects of the devices on which
files are stored (see "Environment Division" for full details).

Execution Time: The time at which ~n object program actually performs
the instructions coded in the Procedure Division, using the actual data
provided.

Exponent: A number, indicating how many times another number (the base)
is to be repeated as a factor. Positive exponents denote
multiplication, negative exponents denote division, fractional exponents
denote a root of a quantity. In COBOL, exponentiation is indicated ~ith
the symbol ** followed by the exponent.

F~mode.Records: Records of a fixed length. Blocks may contain more
than one record.

Figurative_£Qrr2tant: A reserved word that represents a numeric value, a
character, or a string of repe~ted values or characters. The ~ord can
be written in a COBOL program to represent the values or characters
without being defined in the Data Division (see "Language
Considerations" for a complete list).

FILE-CONTROL: The name and header of an Environment Division paragraph
in which the data files for a given source program are named and
assigned to specific input/output devices.

File Descriptiorr: An entry in the File Section of the Data Division
that provides information about the identification and physical
structure of a file.

IBM American National Standard COBOL Glossary 421

File-name

File~: A name assigned to a set of input data or output data. A
file-name must include at least one alphabetic character.

FILE.SECTION: A section of the Data Division that contains descriptions
of all externally stored data Cor files) used in a program. Such
information is given in one or more file description entries.

Floating~Point Literal: A numeric literal ~hose value is expressed in
floating-point notation -- that is, as a decimal number follo~ed by an
exponent ~hich indicates the actual placement of the decimal point.

Function~name: A name, specified by IBM, that identifies system logical
units, printer and card punch control characters, and report codes.
When a function-name is associated ~ith a mnemonic name in the
Environment Division, the mnemonic-name may then be substituted in any
format in ~hich such substitution is valid.

Group.Item; A data item made up of a series of logically related
elementary items. It can be part of a record or a complete record.

Header.Label: A record that identifies the beginning of a physical file
or a volume.

Higb~Order: The leftmost position in a string of characters.

IDENTIFICATION DIVISION: One of the four main component parts of a
COBOL program. The Identification Division identifies the source
program and the object program and, in addition, may include such
documentation as the author'S name, the installation ~here ~ritten, date
~ritten, etc., (see "Identification Division" for full details).

Identifier; A data-name, unique in itself, or made unique by the
syntactically correct combination of qualifiers, subscripts, and/or
indexes.

Imperative~Statement: A statement consisting of an imperative verb and
its operands, ~hich specifies that an action be taken, unconditionally.
An imperative-statement may consist of a series of imperative
statements.

Index: A computer storage position or register, the contents of ~hich
identify a particular element in a table.

Index.Data.Item; A data iten in which the contents of an index can be
stored ~ithout conversion to subscript form.

Index~name: A name, given by the programmer, for an index of a specific
table. An index-name must contain at least one alphabetic character.
It is one ~ord (4 bytes) in length.

Indexed-Data~name; A data-name identifier which is subscripted ~ith one
or more index-names.

INPUT~OUTPUT.SECTION: In the Environment Division, the section that
names the files and external media needed by an object program. It also
provides information required for the transmission and handling of data
during the execution·of an object program.

INPUT-PROCEDURE: A set of statements that is executed each time a
record is released to the sort file. Input procedures are optional;
whether they are used or not depends upon the logic of the program.

Input-Queu!; In teleprocessing, an MCP destination queue from ~hich the
COBOL TP program accepts messages from the remote stations.

,422 Supplementary Material

(,

('
\ -.

Integer

Integer: A numeric data item or literal that does not include any
character positions to the right of the decimal point, actual or
assumed. Where the term "integer" appears in formats, "integer" must
not be a numeric data item.

INVALID KEY Condition: A condition that may arise at execution time in
which the value of a specific key associated with a mass storage file
does not result in a correct reference to the file (see the READ,
REWRITE, START, and WRITE statements for the specific error conditions
involved) •

I-O-CONTROL: The name, and the header, for an Environment Division
paragraph in which object program requirements for specific input/output
techniques are specified. These techniques include rerun checkpoints,
sharing of same areas by several data files, and multiple file storage
on a single tape device.

KEY: One or more data items, the contents of which identify the type or
the location of a record, or the ordering of data.

Key Word: A reserved word whose employment is essential to the meaning
and structure of a COBOL statement. In this manual, key words are
indicated in the formats of statements by underscoring. Key words are
included in the reserved word list.

Level Indicator: Two alphabetic characters that identify a specific
type of file, or the highest position in a hierarchy. The level
indicators are: FD, RD, SD.

Level Number: A numeric character or 2-character set that identifies
the properties of a data description entry. Level numbers 01 through 49
define group items, the highest level being identified as 01, and the
subordinate data items within the hierarchy being identified with level
numbers 02 through 49. Level numbers 66, 77, and 88 identify special
properties of a data description entry in the Data Division.

Library-name: The name of a member of a data set containing COBOL
entries," used with the COpy and BASIS statements.

LINKAGE SECTION: A section of the Data Division that describes data
made available from another program.

Literal: A character string whose value is implicit in the characters
themselves. The numeric literal 7 expresses the value 7, and the
ponnumeric literal "CHARACTERS" expresses the value"CHARACTERS.

Logical Operator: A COBOL word that defines the logical connections
between relational operators. The three logical operators and their
meanings are:

OR (logical inclusive -- either or both)

AND (logical connective -- both)

NOT (logical negation)

(See "Procedure Division" for a more detailed explanation.)

Logical Record: The most inclusive data item, identified by a level-01
entry. It consists of one or more related data items.

Low-Order: The right"most position in a string of characters.

Main Program: The highest level COBOL program involved in a step.
(Programs written in other languages that follow COBOL linkage
conventions are considered COBOL programs in this sense.)

IBM American National Standard COBOL Glossary 423

Mantissa

Mantissa: The decimal part of a logarithm. Therefore, the part of a
floating-point number that is expressed as a decimal fraction.

Mass storage: A storage medium -- disk, drum, or data cell -- in which
data can be collected and maintained in a sequential, direct, indexed or
relative organization.

Mass Storage File: A collection of records assigned to a mass storage
device.

Mass Storage File Segment: A part of a mass storage file whose
beginning and end are defined by the FILE-LIMIT clause in the
Environment Division.

Message: In teleprocessing, a string of characters associated with an
end-of-message indicator or end-of-group indicator. A message may
consist of one or more related message segments. See "Message
Indicators".

Message Control Program (MCP): A TCAM communications control program
that supports the processing of messages.

Message Indicators: In COBOL TP programs, three message indicators are
allowed. Each signals that some specific condition exists:

EGI indicates logical end-of-group of a group of messages
EMI indicates end-of-message
ESI indicates end-of-segment

The hierarchy of message indicators is in the order of the preceding
list. Within this hierarchy an EGI is conceptually equivalent to an EGI
EMI, and ESI; an EMI is conceptually equivalent to an EMI and an ESI.
Thus a segment may be terminated by an EGI, EMI, or ESI, and a message
may be terminated by an EGI or EMI.

Message Segment: In teleprocessing, a string of characters that forms a
logical subdivision of a message, and is normally associated with an
end-of-segment indicator. A message segment is the equivalent of a TCAM
record. See "Message Indicators".

~ffiemonic-name: A programmer-supplied word associated with a specific
function-name in the Environment Division. It then may be written in
place of the function-name in any format where such a substitution is
valid.

MODE: The manner in which records of a file are accessed or processed.

Name: A word composed of not more than 30 characters, which defines a
COBOL operand (see "Language Considerations" for a more complete
discussion) •

Noncontiguous Item: A data item in the Working-Storage Section of the
Data Division which bears no relationship to other data items.

Nonnumeric Literal: A character string bounded by quotation marks,
which means literally itself. For example, "CHARACTER" is the literal
for, and means, CHARACTER. The string of characters may include any
characters in the computer's set, with the exception of the quotation
mark. Characters that are not COBOL characters may be included.

Nonswitched Line: In teleprocessing, a line that is a continuous link
between a remote station and the computer. It may connect the central
computer with either a single station or more than one station.

Numeric Character: A character' that belongs to one of the set of digits
o through 9.

424 supplementary Material

(,

'-----"

/"- "

~)
,,/

o

Numeric Edited Character

Numeric-Edited Character: A numeric character which is in such a form
that it may be used in a printed output. It may consist of external
decimal digits 0 through 9, the decimal point, commas, the dollar sfgn,
etc., as the programmer wishes (see "Data Division" for a fuller
explanation).

Numeric.Item: An item whose description restricts its contents to a
value represented by characters chosen from the digits 0 through 9; if
signed, the item may also contain a + or -, or other representation of
an operational sign.

Numeric Literal: A numeric character or string of characters whose
value is implicit in the characters themselves. Thus, 777 is the
literal as well as the value of the number 777.

OBJECT~COMPUTER: The name of an Environment Division paragraph in which
the computer upon which the object program will be run is ~escribe~.

object.Pro~~m: The set of nachine language instructions that is the
output from the compilation of a COBOL source program. The actual
processing of data is done by the object program.

Object.Tine: The time during which an object program is execute~.

QE~n~: The "object" of a verb or an operator. rhat is, the data or
e~uipment governe~ or ~irecte~ by a verb or operator.

Q~erational S~rr: An algebraic sign associated with a numeric data
item, which indicates whether the item is positive or negative.

QEtional.~ord: A reserved wor~ included in a specific format only to
improve the readability of a COBOL statement. If the programmer wishes,
optional words may be omitted.

ourpUT.PROCEDURE: A set of programmer-~efine~ statements that is
executed each time a sorted record is returned from the sort file.
output procedures are optional; whether they are used or not depen~s
upon the logic of the program.

outeut Queue: In teleprocessing, an MCP ~estination queue into which a
COBOL TP program places messages for one or more remote stations.

overflow. Condition: In string manipulation, a condition that occurs
when the sending area(s) contain untransferred characters after the
receiving area(s) have been filled.

Overlay: The technique of repeatedly using the same areas of internal
storage during different stages in processing a problem.

PAG~: A physical separation of continuous data in a report. The
separation is based on internal requirements and/or the physical
characteristics of the reporting medium.

PA~~fQOTI~~: A report group at the end of a report page which is
printed before a page control break is executed.

PAGE HEAQI~~: A report group printed at the beginning of a report page,
after a page control break is executed.

Paragraeh: A set of one or more COBOL sentences, making up a logical
processing entity, an~ precede~ by a paragraph-name or a paragraph
header.

~~E~E~Eh_He~~g~: A word followed by a period that identifies and
precedes all paragraphs in the Identification Division and Environment
Division.

IBM American National Standard COBOL Glossary 425

Paragraph-name

ParaqraEh~~amg: ~ programmer-~efined word that identifies and precedes
a paragraph.

Parameter: A variable that is given a specific value for a specific
purpose or process. In COBOL, parameters are most often used to pass
data values between calling an~ called programs.

Physical Record: A physical unit of data, synonymous with a block. It
can be composed of a portion of one logical record, of one complete
logical record, or of a group ~f logical records.

Print GrouE: An integral set ~f related data within a report.

Priority-number: A number, ranging in value from 0 to 99, which
classifies source program sections in the Procedure Division (see
"Segmentation" for more information).

Procedure: One or more logically connected paragraphs or sections
within the Procedure Division, which direct the computer to perf~rm some
action or series of related actions.

PROCEDURE.DIVISION: One of the four main component parts of a COBOL
program. The Procedure Division contains instructions for solving a
problem. The Procedure Division may contain imperative-statements,
conditional statements, paragraphs, procedures, and sections (see
"Procedure Division" for full details).

Procedure~name: ~ word that precedes and identifies a procedure, used
by the programmer to transfer control from one point of the program to
another.

Pro~; ~ny operation or combination of operations on data.

PrQgram~name: A word in the Identification Division that identifies a
COBOL source program.

Punctuation Character: A comma, semicolon, period, quotation mark, left
or right parenthesis, or a space.

~alifier; A group data-name that is used to reference a non-unique
data-name at a lower level in the same hierarchy, or a section-name that
is used to reference a non-unique paragraph. In this way, the data-name
or the paragraph-name can be made unique.

Queue: In teleprocessing, a logical collection of messages awaiting
transmission or processing.

Queue.Blocks: In teleprocessing, blocks containing status and control
information pertaining to the nessage being processed and to each active
queue. Created when a queue is first accessed by a COBOL rp run unit,
all queue blocks in one region/partition are chained to each other.

Queue Name; In teleprocessing, a symbolic name that indicates to the
MCP the logical path by which a message, or portion of a completed
message, may be accessibl~ in a queue. (The first eight characters must
match the DDname of the DO statement that specifies the queue.)

Random Access; An access mode in which specific logical records are
obtained--fzoGro- or placed into a mass storage file in a nonsequential
manner.

RECORD; A set of one or, more related data items grouped for handling
either internally or by the input/output systems (see "Logical Record").

Record DescriEtion: The total set of data descripe~on entries
associated with a particular logical record.

426 Supplementary Material

('"
" , -".'

(/
'----"

c ")

Record-name

Record-nam~: A data-name that identifies a logical record.

REEL: A module of external storage associated with a tape device.

Relation-Character: A character that expresses a relationship between
two operands. The following are COBOL rel~tion characters:

<

=

Meani!!g
Greater than

Less than

Equal to

Relation Condition: A statement that the value of an arithmetic
expression or data item has a specific rel~tionship to another
arithmetic expression or data item. The statement may be true or false.

Relational Oeerator: A reserved word, or a group of reserved words, or
a group of reserved words and relation characters. A relational
operator plus programmer-defined operands make up a relational
expression. A complete listing is given in "Procedure Division."

Remote Station: In teleprocessing, a control unit and one or more
input/output devices connected to the central computer through common
carrier facilities. A remote station may be a terminal device, or it
may be another computer.

REPORT: A presentation of a set of processed data described in a Repore
File.

Report Descript~on EntEY: An entry in the Report Section of the Data
Division that names and describes the form~t of ~ report to be produced.

Report File: A collection of records, produced by the Report Writer,
th~t can be used to print a report in the desired format.

REPORT FOOTING: A repo~t group that occurs, and is printed, only ~t the
end of a report.

Report Groge: A set of related data that makes up a logical entity in a
report.

REPORT HEADING: A report gr~up that occurs, and is printed, only at the
beginning of a report.

Report Line: One row of printed characters in a report.

Report-name: A data-name th~t identifies ~ report.

REPORT SECTION: A section of the Data Division that contains one or
more Report Description entries.

Reserved-~ord: A word used in a COBOL source program for syntactical
purposes. It must not appear in a program as a user-defined operand.

Routine: A set of statements in a program that causes the computer to
perform-an operation or series of related operations.

Run unit: A set of one or more object programs which function, at
object time, as a unit to provide problem solutions. This compiler
considers a run unit to be the highest level calling program plus all
called subprograms.

S-Mod~Qrd~: Records which span physical blocks. Records may be
fixed or variable in length; blocks may contain one or more segments.
Each segment cont~ins a segment-descriptor field and a control field

IBM American National Standard COBOL Glossary 427

SECTION

indicating ~hether it is the first and/or last or an intermediate
segment of the record. Each block conta~ns ~ block-jescriptor field.

SE~TION: A logic~lly relatej sequence of one or more paragraphs. A
section must always be named.

se~tion tlgader: A combination of words that precejes and identifies
each section in the Environment, Data, and Procedure Divisions.

section-name: A word specifiej by the programmer that precedes anj
identifies a section in the Procedure Division.

Sentence: A sequence of one or more statements, the last ending ~ith a
period followed by a space.

separator: An optional ~ord or character that improves readability.

Se~uential Access: An access mode in ~hich logical records are obtained
from or placed into a file in such a way that each successive access to
the file refers to the next subsequent logical record in the file. The
order of the records is established by the programmer when creating the
file.

Sequential.Processing: The processing of logical records in the order
in ~hich records are accessed.

Sign.Condition: ~ statement that the algebraic value of a data item is
less than, equal to, or greater than zero. It may be true or false.

Sim2le.Condition: An expression that can have two values, and causes
the object program to select between alternate paths of control,
depending on the value found. The expression can be true or false.

Slack Bytes: Bytes inserted between data items or records to ensure
correct alignment of some numeric items. Slack bytes contain no
meaningful data. In some cases, they are inserted by the compiler; in
others, it is the responsibility of the programmer to insert them. The
SY~CHRONIZED clause instructs the compiler to insert slack bytes ~hen
they are needed for proper alignment. Slack bytes bet~een records are
inserted by the programmer.

Sort.File: A collection of records that is sorted by a SORT statement.
The sort file is created and used only while the sort function is
operative.

Sort-File~Description Entry: An entry in the File Section of the Data
Division that names and describes a collection of records that is used
in a SORT statement.

Sort~file~name: A data-name that identifies a Sort File.

Sort-key: The field within a record on ~hich a file is sorted.

Sort-~ork-file: A collection of records involved in the sorting
operation as this collection exists on intermediate device(s).

Soarce; In teleprocessing, the symbolic identification of the
originator of a transmission to a queue.

SOURCE~COMPUTER: The name of an Environment Division paragraph. In it,
the computer upon which the source program will be compiled is
described.

Soarce Program: A problem-solving program ~ritten in COBOL.

Special Character: A character that is neither numeric nor alphabetic.
Special characters in COBOL include the space (), the period (.), as
well as the following: + • / = $ ") (

428 Supplementary Material

c

o

SPECIAL-N»1ES

SPECIAL-NAMES: The name of an Environment Division paragraph, and the
paragraph itself, in which names supplied by IBM are related to
mnemonic-names specified by the programmer.. In addition, this paragraph
can be used to exchange the functions of the comma and the period, or to
specify a substitution character for the currency sign, in the PICTURE
string.

Special Register: Compiler-generated storage areas primarily used to
store information produced with the use of specific COBOL features. The
special registers are: TALLY, LINE-COUNTER, PAGE-COUNTER, CURRENT-DATE,
TIME-OF-DAY, LABEL-RETURN, RETURN-CODE, SORT-RETURN" SORT-FILE-SIZE,
SORT-CaRE-SIZE, ~nd SORT-MODE-SIZE.

Standard Data Format: The concept of actual physical or logical record
size in storage. The length in the Standard Data Format is expressed in
the number of bytes a record occupies and not necessarily the number of
characters, since some characters take up one full byte of storage and
others take up less.

Statement: A syntactically valid combination of words and symbols
written in the Procedure Division. A statement combines COBOL reserved
words and programmer-defined operands.

SUbject of entry: A data-name or reserved word that appears immediately
after a level indicator or level number in a Data Division entry. It
serves to reference the entry.

SUbprogram: A COBOL program that is invoked by another COBOL program.
(programs written in other languages that follow COBOL linkage
conventions are COBOL programs in this sense.)

Subscript: An integer'or a variable whose value references a particular
element in a table.

switched Line: In teleprocessing, a communication line for which no
single continuous path between the central computer and the remote
station exists. Several alternative paths are available for
transmission; the common carrier switching equipment selects the path.
The remote station is continuously connected to the switching center by
an access line associated with a specific telephone number.

SYSIN: The system logical input deviceo

SYSOUT: The system logical output device.

SYSPUNCH: The system logical punch device.

System-name: A name that identifies any particular external device used
with the computer, and characteristics of files contained within it.

Table: A collection and arrangement of data in a fixed fo~m for ready
reference. Such a collection follows some logical order, expressing
particular values (functions) corresponding to other values (arguments)
by which they are reference,d.

Table Element: A data item that belongs to the set of repeated items
comprising a table.

Test Condition: A statement that. taken as a whole. may be either true
or false, depending on the circumstances existing at the time the
expression is evaluated.

Trailer Label: A record that identifies the ending of a physical file
or of a volume.

U-mode Records: Records of unspecified length. They may be fixed or
variable in length; there is only one record per block.

IBM American National Standard COBOL Glossary 429

Unary Operator

UnarY~~~~~2[: ~n arithmetic operator (+ or -) that can precede a
single ~ariable, a literal, or a left parenthesis in an arithmetic
express1on. The plus sign ~ultiplies the value by +1; the minus sign
multiplies the value by -1.

UNIr: A module of external storage. Its dimensions are determine~ by
IBM.

V-mode Records: Records of variable length. Blocks may contain 'more
than-one-record. Each recor~ contains a record length field, and each
block contains a block length field.

Variable: A data item ~hose value may be changej iuring execution of
the object program.

VerQ: A COBOL reserved ~ord that expresses an action to be taken by a
COBOL compiler or an object program.

~2!~~: A module of external storage. For tape devices it is a reel;
for mass storage devices it is a unit.

vo!um~s~it~h_~~~du~~: Standard procedures executed automatically
when the end of a unit or reel has been reached before end-of-file has
been reached.

1. In COBOL: A string of not more than 30 characters, chosen from the
follo~ing: the letters ~ through Z, the digits 0 through 9, and
the hyphen (-). rhe hyphen may not appear as either the first or
last character.

2. In System/360: A fullword is four bytes of storage; a double~ord
is eight bytes of storage; a halfword is two bytes of storage.

~2rd Bound~rY: Any particular storage position at which data must be
aligne~ for certain processing operations in System/360. rhe'halfword
boundary must be divisible by 2, the full~ord boundary must be divisible
by 4, the double~ord boundary nust be divisible by 8.

W~RKIN3~STORAGE SECTION: A section-name (and the section itself. in the
Data Divisron~--The section describes records and noncontiguous data
items that are not part of external files, but are developed and
processed internally. It also defines data items whose values are
assigned in the source program.

430 Supplementary Material

c

(Where more than one page reference is given, the major reference is first.)

Special Characters

• (see period)
< used in relation conditions 159
(and) used in

arithmetic expressions 154,155
compound conditions 163
PICTURE clause 117
subscripting and indexing 297-299

+ (see plus symbol)
$ (see currency symbol, dollar sign)
* used in arithmetic expressions 154,155

(see also asterisks, used in PICTURE
clause)

** used in arithmetic expressions 154,155
used in COBOL entries 38
(see also semicolon)

- (see either hyphen, or minus symbol)
/ used in arithmetic expressions 154,155
/ used in sterling report items 335-337
, (see comma)
> used in relation conditions 159

used in the COMPUTE statement 181
= used in relation conditions 159
• or " used in nonnumeric literals 38

(see also quotation mark)

A, used in a PICTURE clause 118,120
alphabetic items 119
alphanumeric edited items 123
alphanumeric items 121

abbreviations
of compound conditions 164,165
in CORRESPONDING option 178,180,184,197
in END-OF-PAGE option 213
in Identification Division Header 59
in JUSTIFIED clause 115
in PICTURE clause 116
of relational operators 159
in SYNCHRONIZED clause 129
in TYPE clause 275
in USAGE clause 135

abnormal termination
and CANCEL statement 232
and symbolic debugging 397-399

absolute
column number 277
LINE clause in a report 272

ACCEPT statement 218-220
access methods

for direct files 62,63
for indexed files 65
for relative files 64,65
for sequential files 62

ACCESS MODE clause 77,78

ACCESS MODE clause, VSAM (OS/VS
only) V,Vl.l.

acknowledgment 4
actual decimal point

description 119,120
in editing 123,124,127

ACTUAL KEY clause
description 78,79
with direct files 63,64
example 79
format 78
and READ statement 212,210
and REWRITE statement 218,217
and SEEK statement 210
and WRITE statement 216,217

ADD statement
description 179,180
examples 17,18,24
formats 179,180

addition operator 154,155
addressing schemes

indexed 62
relative record 62
relatiVe track 62
sequential 61

algebraic value in a sign condition 162
algorithm

relative indexing 307
slack bytes

computational items 131-134
with an OCCURS clause 131J133
inter-record 133,134
intra-record 130-132

alignment of data items
decimal point 119
editing 124
JUSTIFIED clause 115
PICTURE clause 119,124
RECEIVE statement 350
STRING statement 354
SYNCHRONIZED clause 129,130
UNSTRING statement 359
USING option 234
VALUE clause 142
Working-Storage items 130

ALL literal figurative constant
description 43
in a MOVE statement 199
in a STOP statement 195

alphabetic class test 157,158
alphabetic collating sequence for sort 251
alphabetic data items

allowable symbols 118
in a class test 157,158
description 119,118
internal representation 119,118
JUSTIFIED clause 115

Index 431

in a move 198,199
as a receiving item 198,199,359
in a relation condition 161
in UNSTRING statement 359
USAGE clause 136
VALUE clause 142

alphanumeric collating sequence for
sort 251

alphanumeric data item
allowable symbols 121
in a class test 138
description 121,118
internal representation 121,118
JUSTIFIED clause 115
in a move 198,199
as a receiving item 198.199.359
in a relation condition 161
in UNSTRING statement 359
USAGE clause 136
VALUE clause 142

alphanumeric edited item
allowable symbols 123
description 123 6 118,119
in a move 198,199
as a receiving item 198 n 199
in a relation condition 161
USAGE clause 136

alphanumeric literals 43
ALTER statement

and called programs 229
in debug 9ackets 330
description 186 6 187
effect on GO TO statement 186
example 30,33
format 186
with segmentation 319,187
in a sort procedure 252-254

altering characters 202-204
altering execution sequence 185-196
altering usage of data items 113,114
alternative grouping of data

REDEFINES clause 111-114
RENAMES clause 144-146

AND logical operator
compound conditions 162-165
order of evaluation 163

apostrophe (see quotation mark)
APPLY clause

CORE-INDEX option 87
RECORD-OVERFLOW option 87
REORG-CRITERIA option 88
WRITE-ONLY option 86,87

Area A and Area B
description 52
in reference format 51

arithmetic expressions
characters used 39
in the COMPUTE statement 181
in conditions 159,162
definition 154
evaluation rules 154

arithmetic operators
definition 154
list 154

arithmetic statements
ADD 179,180
COMPUTE 181
CORRESPONDING option 178,180,184,197

432

DIVIDE 181.,182
GIVING option 178
intermediate results 305-306
MULTIPLY 182,183
ROUNDED option 178,179
SIZE ERROR option 179
SUBTRACT 183,184

ascending sequence
ASCII character set 394
EBCDIC character set 160~251,394
sort 251
table handling 303,304

ASCII collated merge (OS/VS only) xxiii
ASCII description 389-395
ASSIGN clause

ASCII considerations 389,394
description 73-76
format 73
with sort

file in GIVING option 246,247
sort work units 247

system nawe 74
Version 3 considerations 74
Version 4 considerations 75

ASSIGN clause (OS/VS only)
general considerations xxxv
merge considerations xxiii
VSAM considerations v,vi

assigning values to a
condition-name 142,143
conditional variable 143,158,108,109
data item 141,142
label 105

assignment of priority numbers 317,318
assumed

decimal point 118
numeric edited items 123
numeric items 121
sterling nonreport items 333,334

decimal scaling positions 118,120,123
pound separator 333
shilling separator 333

asterisk
in arithmetic expressions 154,155
for comments 53,242
in a PICTURE clause

check protect symbol 119,120
numeric edited items 126,127,123
sterling report items 335-337

AUTHOR paragraph 59
automatic

advancing of printer page 214,215
end-of-volume 207
error procedures 175
label handling 171,104

B, used in a PICTURE clause 118,120
alphanumeric edited items 123
numeric edited items 124,123
sterling report items 335,336

BASIS card 324
binary collating sequence 160,251,394
binary data item

description 137,138,121
in DISPLAY statement 220
internal representation 140
in a move 199

" /

----- --- - - ----- -------

in PICTURE clause 121
in a relation condition 161
SYNCHRONIZED clause 130
USAGE clause 137,lqO

blanks (see space)
BLANK clause (see BLANK WHEN ZERO clause)
blank figurative constant (see SPACE
figurative constant)

blank line in source program 53
blank line for spacing reports 272
blank (space) as word separator qO
BLANK WHEN ZERO clause

effect on editing 115
~ format 115

with sterling report items 337
BLOCK CONTAINS clause

ASCII considerations 390
description 98-100
format 98

block-descriptor control field 101,102
blocked records

and BLOCK CONTAINS clause 99
inter-record slack bytes 130,133,134
and recording mode 101,102

body print group 267
boundary alignment 129-13q
boundary alignment not required (OS/VS
only) iii

braces in formats 54
brackets in formats 54
British Standards Institution 332
buffer

allocation 85,86
offset in ASCII files 389
restriction

for 3505 processing 413,q14
for 3525 processing 414

in TP programs 339
truncation 86

bypassing label processing
and LABEL RECORDS clause 103,104
MULTIPLE FILE TAPE clause 86
nonstandard labels 103,104,86
user labels 103,10q,86

byte, contents of
alphabetic and alphanumeric

item 119,121
binary item 137,lQO
external decimal item 136.139
internal decimal item 138,140

C, used in PICTURE clause of sterling
report items 335-337

CALL statement
boundary alignment of identifiers 234
description

dynamic 230,231
static 228-230

formats 228 u 233
limitations with segmentation 230,319
USING option 233-236

CANCEL statement
de?cription 231,232
and dynamic CALL statement 231
format 231
and library management 227,228
and static CALL statement 230

" -----------------------

capacity records
closing a direct file 82
creating a direct file 64
identification of 64,65
and relative files 64,65

capitalized words in formats 54
carriage control character

definition 70
in WRITE statement 21Q,215
and 3505/3525 processing 413-416

categories of data (see PICTURE clause)
CD entry (see communication description
entry)

cd-name
in communication description
entry 3QO,341

and message condition 348
and RECEIVE statement 349
and SEND statement 350,351

chanqing description of data items in
REDEFINES clause 113,114

character set
arithmetic expressions 39
ASCII (illoerican National Standard Code
for Information Interchange) 39Q

COBOL, list of 33
EBCDIC (Extended Binary Coded Decimal
Interchange Code) 37,160,251,394

editing 39
punctuation 38
relation conditions 39
words 37

character string
and item size 117
in NOTE statement 241
in PICTURE clause 117,118
truncation 115

check protect symbol (see asterisk)
checkpoint 83-65,247,248,390,395
class test 157,158
classes of data 116,117
CLOSE options. effect of

random files 225,226
sequential files 223-225

CLOSE statement
description 221-226
example 27
formats 221,222
and 3525 processing 416

CLOSE statement, VSAM (OS/VS only) xxii
COBOL acknowledgment Q
COBOL message segment

and RECEIVE statement 349,350,344
and SEND statement 351-352

COBOL library management
description 13
and dynamic subprogram linkage 227,228

COBOL program organization 47,48
COBOL TP program

CD entry in 340-3Q7
interface with MCP 339-347
MESSAGE condition in 3Q8~349
and RECEIVE statement 349,350
and SEND statement 350-352

CODE clause in Report Writer 264,265,70
codes for COBOL TP programs

END KEY 344,352
ERROR KEY 347

Index 433

line control 344
STATUS KEY 344 r 345 r 348

co4ing form
sample 51
use of 51-53

collating sequence. ASCII 394
collating sequencer EBCDIC 37#160#251,394
collating s79uences for merge (OS/VS

only) xxv].].
COLUMN clause 277
combined function processing on 3525

description 414-416
order of operations 415

combining conditions 162-165
comma, exchanging with period 71,119 r 338
comma, used in a data description
entry 108

comma r used in a PICTURE clause
insertion of 119,120
numeric edited items 123,124#126 r 127

comma, used in a source program 38
comment-entry

in DATE-COMPILED paragraph 60
in Identification Division 59,60

comment lines
in every division 53,242
in Procedure Division 241,242

common exit point for
procedures 195,196,189

common processing facilities, VSAM (OS/VS
only) x-x].~

communication
operating system 44-46,195,218-221,

256,257
operator 195 r 218,219
sort feature 256,257
subprogram 233-237

communication description entry
and COPY statement 321,322,341
description 340-347
examples 345-347
FOR INPUT 340-346
FOR OUTPUT 340,341_346,347
formats 340.341
and message condition 348,349
and message control program (MCP) 339
and RECEIVE statement 349,350
record descriptions in 341,342,346
and SEND statement 350-352
and VALUE clause 141

Communication Section
description 339-347
placement in COBOL program 92 r 93,48
(see also communication description
entry)

COMP items (see binary data items)
COMP-l items (see short precision internal
floating-point data items)

COMP-2 items (see long precision internal
floating-point data items)

COMP-3 items (see internal decimal data
items)

COMP-4 items (see binary data items)
comparison

434

index data items 308 r 161
index-names 308 r 161
nonnumeric operands 160#161

numeric operands 159,161
in relation conditions 159-161

comparisons (OS/VS only) iii
compilation of

copied text 322
debugging packet 330

compile-time debugging packet 330
compiler-directing statements

COpy 320-323
defined 150
ENTER 241
list of 153
NOTE 241,242

compiler features r Versions 3 and 4 11-13
compiler features, OS/VS COBOL 11,12
compiler options

quotation mark 37
sequence checking 51
truncation 117

compound conditions
description 162-165
evaluation rules 163
implied subjects and
relational-operators 164 r 165

logical operators 162
and MESSAGE condition 348
permissible symbol pairs 164
SEARCH statement 310#312

COMPUTATIGNAL items (see binary data items)
COMPUTATIONAL-l items (see short precision
internal floating-point data items)

COMPUTATIONAL-2 items (see long precision
internal floating-point data items)

COMPUTATIONAL-3 items (see internal decimal
data items)

COMPUTATIONAL-4 items (see binary data
. items)
COMPUTATIONAL usage 137,140,133
COMPUTATIONAL-l usage 137,140,135
COMPUTATIONAL-2 usage 137,140,135
COMPUTATIONAL-3 usage 138,140,135
CO~PUTATIONAL-4 usage 138,140,135
COMPUTE statement

description 181
example 24
format 181

computer-name
OBJECT-COMPUTER paragraph 69
SOURCE-COMPUTER paragraph 68
System/370 instruction generation 69

computer-name (OS/VS only) ii
condition-name (see level number 88 items)
condition-name condition

description and format 158
conditional statements

in debugging 326-329
definition 166
example 25,26
IF statement 166-168
list of 151
ON statement 328,329

conditional syntax-checking compilation 13
conditional variables

assigning values to 108#109,143,158
condition-name condition 158
example 143,158
and qualification 49

(

o

conditions
class 157,158
compound 162-165
condition-name 158
message 348
in PERFORM statement 187,189
relation 159-161
in SEARCH statement 309,310,312
sign 162
test 156-162

Configuration Section
copying 321,322
description 68-71
format 68
OBJECT-COMPUTER paragraph 69
SOURCE-COMPUTER paragraph 68
SPECIAL-NAMES paragraph 69-71
and Systern/370 instruction
generation 69

Configuration Section (OS/VS only) ii-iv
connectives. definition 40
CONSOLE

in ACCEPT-statement 218,219
in DISPLAY statement 220
in SPECIAL-NAMES paragraph 70

constants
definition 42
figurative 43
literals 42,43

continuation area
in comments lines 53,242
in ref~rence format 51

continuation line 53
continuation of

ACCEPT operands 219
comments 53,241,242
DISPLAY operands 220
messages 350
nonnumeric literaJs 53
numeric literals 53
words 53

continued line 53
control breaks 260,265,266 (see also

CONTROL clause)
control bytes

BLOCK CONTAINS clause 99
and inter-record slack bytes 134
in S-mode records 102
in V-mode records 101,102

control characters TP 344,345,347-349,352
CONTROL clause

CONTROL report groups 265
description 265,266
format 265
GENERA'I'E statement 281.282
LINE clause 272,273
NEXT GROUP clause 273,274
PAGE LIMIT clause 266-268
RESET clause 278,279
SOURCE clause 279
SUM clause 280
TERMINATE statement 283,284
TYPE clause 275-277

CONTROL report group
GENERATE statement 281,282
incrementing counters 280
LINE clause 272,273
NEXT GROUP clause 273,274

----- -----------------

PAGE LIMIT clause 267
TERMINATE statement 283,,284
TYPE clause 275-277

control hierarchy 265,266
control of sort procedures 252-254
controls in report writer (see CONTROL
clause)

conventions, sterling 332
conversion of data

with DISPLAY 220,221
first character of program-name 60
during a move 198,199
in GIVING option 178

COpy statement
description 320-323
formats 320,321
in a source program 320-323,52

copying
entire program 324
part of a program 320-324

CORE-INDEX option of the APPLY clause 87
core storage for sort 257
CORRESPONDING option

arithmetic statements
ADD 180
description 178
SUBTRACT 184

MOVE statement 197
counter updating 278,279
counting character occurrences with the

EXAMINE statement 200,201
CR, used in a PICTURE clause

description 119,120
numeric edited items 123,125-127
sterling report items 335,337

creating files
direct 62,63,82,83
indexed 65
relative 64,65
sample programs 368-370
standard sequential 62
(see also output files)

creating nonstandard
labels 170-174,103,104

credit symbol (see CR, used in a PICTURE
clause)

cross-footinq 280
CSP system-name defined 70
CURRENCY-SIGN clause

description 70,71
format 70
international considerations 338
restriction 71

currency symbol, used in a PICTURE clause
description 119,120
(see also insertion editing, CURRENCY
SIGN clause)

pound sign 335-338
CURRENT-DATE special register 44
current record pointer (OS/VS only) x
cylinder overflow 87
COl through C12 system-names defined 70

D, used in a PICTURE clause
sterling nonreport items 333,334
sterlinq report items 335-337

Index 435

data description clauses
BLANK WHEN ZERO 115,337
data-name 110
FILLER 110
JUSTIFIED 115
OCCURS 300-307,11b
PICTURE 116-127
REDEFINES 111-114
RENAMES 144-146
SIGN 128,129
SYNCHRONIZED 129-134
USAGE 135-140 n 307,333-337
VALUE 141-143,337

data description entry, definition 107
Data Division

description 92-97
example 20-23
organization 92
report writer considerations

File section 262,263
Report section 264-280

sort considerations 248_249
structure 92
table handling considerations 300-307
teleprocessing considerations 339-347
(see also file description entry, record
description entry)

Data Division (OS/VS only)
merge considerations xxiv,xxv
VSAM considerations ix

data item description entry
definition 107
Linkage Section 97
Working-storage section 96
(see also data description clauses)

data management techniques 61-66
data manipulation statements

EXAMINE 200,201
MOVE 197-199
TRANSFORM 202-204

data movement
and STRING statement 353-356
and UNSTRING statement 357-362
and MOVE statement 197-199
(see also input/output statements)

data-name
definition 41
qualification of 49,50
in reference format 52,53

data-name clause 110
data organization

definition 61
direct 62
indexed 62
relative 62
sequential 61
specification of 74,75

DATA RECORDS clause
description 106
format 106
report writer 262,263
sort 248

DATA RECORDS clause for merge (OS/VS
only) xxv

data reference methods 49,50
data sets .for symbolic debugging 399
data transformation example 202

436

DATE special register description 46,219
DATE-COMPILED paragraph 60
DATE-WRITTEN paragraph 59
DAY special register description 46,219
DB, used in a PICTURE clause

description 119,120
numeric edited items 123,125-127

debit symbol (see DB, used in a PICTURE
clause)

DEBUG card 330
debugginq, symbolic 397-412,12
debugging language

output 326-329
packet 330
statements

DEBUG card 330
EXHIBIT 326-328
ON 328,329 -
TRACE 326

decimal point (see period, in a PICTURE
clause)

decimal point alignment
during a move 198
period insertion character 119,120
in rounding 178
in a size error 179

DECI~AL-POINT IS COMMA clause 69-71
decimal scaling (OS/VS only) ii-iv
declaz;atives

ASCII considerations 392
error processing 175-177
label handling 170-174
sample programs 173,174,287-296
report writer 284,285
section

description 169-177
format 169,150,284

USE sentence 170-177,284.285,289
decrementing index-name
values 306,307,298,299

defaults
ACCESS MODE clause 77
OPEN statement default 207
page format in Report Writer 268
priority number 318
quotation mark character 37
record size

for CONSOLE 219,220
for SYSIN 219
for SYSOUT 220
for SYSPUNCrl 220

recording mode 101,102
segment limit 318
sequence checking 51
truncation 117
USAGE clause 135

DELETE card for copying 324,325
delete code for indexed files 81,65
DELETE statement, VSAM (OS/VS
only) xxi, xxii

delimiter, description 353-355,357-360
DEPENDING ON option

of GO TO statement 185,186
of the OCCURS clause

description 301-303
logical record size
considerations 101

and REDEFINES clause 111

and SYNCHRONIZED clause 133
and VALUE clause 142

depth of a report page 266-268
descending sequence

in sort 250,251
in table handling 301#303

DETAIL report group 275
GENERATE statement 281,282
LINE clause 271,272
NEXT GROUP clause 273,274
SUM counters 279,280
TYPE clause 275,276

detail reporting 281,282
device class 74
device specification

Versions 2 and 3 74
Version 4 75

device type 74
devices valid for VSAM (OS/VS only) iv
difference in subtraction 184
digit positions in numeric edited

items 123
direct access device (see mass storage
device)

direct data organization,
description 62,63

direct files
ACTUAL KEY clause 78,79
ASSIGN clause 73-76
BLOCK CONTAINS clause 98,99
file processing chart 385
initiating access 210,211
invalid key condition

READ statement 212,210
REWRITE statement 218
WRITE statement 216,217,213

labels 103,104
random access 63
READ statement 210,212
record overflow 87
recording mode 101,102
REWRITE statement 217,218
sequential access 63
WRITE statement 216,217,213

direct indexing 306,298
DISPLAY usage

alignment 130
alphanumeric edited items 123
ASCII considerations 391
default 135
description 136
external decimal items 136,139
external floating-point items 136,140
numeric edited items 123
SIGN clause 128
STRING statement 353
SYNCHRONIZED clause 130
UNSTRING statement 357

DISPLAY-ST usage 333-338
DISPLAY statement 220,221,70
disposition of a file

and CLOSE statement 221-226
and OPEN statement 205-207

DIVIDE statement
description 181,182
formats 181,182

division, definition 47
division by zero 182,179

division header, description 52
division operator 154,155
dollar sign (see currency symbol)
double spacing

printer page 212-215
source program listing 331

doubleword
binary items 137
SYNCHRONIZED clause 130
and USING option 234

dummy files 73,,206,207,225
dummy records

direct files 63,82,83
indexed files 65~81
relative files 64~65

dump, symbolic debugging 400-412
dynamic CALL statement (see dynamic

subprogram linkage)
dynamic dump, symbolic debugging 397-400
dynamic subprogram linkage

CALL statement 228,230,231
CANCEL statement 231,232
description 227,228,13
example 236-238
formats 228,231-233
and static CALL statement 230,231

E, in external floating-point
items 122,136,140

in floating-point numeric literals 42
EBCDIC collating sequence (see collating

sequence EBCDIC)
editing

insertion
fixed 125
floating 125,126
simple 124
special 124

replacement 126.,127
sign control symbols

description 119,120
in fixed insertion editing 125
in floating insertion
editing 125,126

in sterling report items 335,337
symbols

in alphanumeric edited items 123
in arithmetic statements 178
description 119,120,39
in numeric edited items 123
in SUM counter description 280

zero suppression 126,127
editing character

description 119,120,39
insertion

fixed 125
floating 125,126
simple 124
special 124

zero suppression and
replacement 126,127

EGI (end of group indicator) 351,352
EJECT statement 331
elementary item

definition 94

Index 437

description (see also data description
clauses) 94.95

renaming 144-146
slack bytes 130

ellipsis (•••) in formats 55
EMI (end of message indicator) 351-352
END DECLARATIVES 169,150
end indicators in TP 351,352
end key codes in TP 344,352
end-of-file

and EMI' 352
when reading 211,212
when sorting 255

end of group indicator (EGI) 351,352
end of message indicator (EMI) 352
end of page condition 215
end of segment indicator (ESI) 351,352
end of volume positioning 207,223-225
ENTER statement 241
ENTRY statement 232,233
Environment Division

and ASCII files 389,390
Configuration Section

OBJECT-COMPUTER paragraph
as conunents 69
and Systern/370 instruction

generation 69
SOURCE-COMPUTER paragraph 68
SPECIAL-NAMES paragraph 69-71

Input-Output section
FILE-CONTROL paragraph 72-82
I-O-CONTROL paragraph 83-88

international considerations 338
sort considerations 246-248
and 3505/3525 processing 4~3,414

Environment Division (OS/VS only)
merge considerations xxiii, xxiv
VSAM considerations v-ix

equal size operands in a relation
condition 160

error bytes 176
error conditions, arithmetic operations

(see SIZE ERROR option in arithmetic
statements)

error declarative, VSAM (OS/VS
only) x~~,xJ.~~

error processing declaratives
description 175-177
format 175
GIVING option information 175-177
and READ 212
and REWRITE 218
and sort 252.253
and WRITE 216

ESI (end of segment indicator) 351,352
evaluation rules

aritrunetic expressions 154,155
compound conditions 163,164
IF statements 166-168

EXAMINE statement
description 200,201
example 146
formats 200
with sterling items 338

exception/error declarative. VSAM (OS/VS
only) xii, xiii

exchanging comma and period 70,71,338
EXEC card, PARM field data 234

438

execution~ prder of in Procedure
Division 150

EXHIBIT statement
and CALL statement 229
description 326-328
format 326

exit point for procedures
error processing 177
label handling 171~172
PERFORM statement 188,189
sort input/output procedures 256

EXIT statement
description 195,196
format 195
and the PERFORM statement 189
with PROGRAM option

description 239
format 239
and subprogram linkage 238,239
and symbolic debugging 399

with sort procedures 256
explanatory comments 241,242,53
exponent

+ or - preceding 122
definition 136
external floating-point
items 122,136,140

floating-point numeric literals 42
internal floating-point items 137,140
representation 122

exponentiation operation 154,155
extended search for direct files

when reading 63,212
when writing 64,216

extended source program library
facility 324,325

external data 91
external decimal items

class test 157,158
collating sequence for sort 251
description 136
internal representation 139
in a move 198,199
and PICTURE clause 121
in a relation condition 161
in UNSTRING statement 359
USAGE clause 135,136,139

external floating-point items
collating sequence 251
description 122,136
internal representation 140,122
in a move 199
and PICTURE clause 122
in a relation condition 161
and SEARCH statement 309
USAGE clause 135,136,140
VALUE clause 142

external name of a file 75

F-mode records
description 101
recording mode 101,102
specification 102,103

FD (see file description entry)

'.

,/

(
'-

('

"'-- ,/

figurative constants
description 43
and dummy records 63-66.81
in the EXAMINE statement 200
in a move 199
in a relation condition 161
in the STRING statement 353,354
in the TRANSFORM statement 202
in the UNSTRING statement 357,358
in the VALUE clause 141

file
definition 91
and FD entry 95,96 J 98-106
and FILE-CONTROL paragraph 72-82
format of logical records 100,101
inter-record slack bytes 133,134

FILE-CONTROL paragraph
ACCESS MODE clause 77,78
ACTUAL KEY clause 78,79
ASSIGN clause 73-76
copying 320-322
description 72-82
FILE-LIMIT clause 77
format 72
NOMINAL KEY clause 80
PROCESSING MODE clause 78
RECORD KEY clause 81
RESERVE clause 76,77
SELECT clause 73
sort considerations 246 n 247
TRACK-AREA clause 82
TRACK-LIMIT clause 82,83

FILE-CONTROL paragraph (O~/VS only)
merge considerations xxiii
VSAM considerations

description v-viii
formats v

file description entry
BLOCK CONTAINS clause 98-100
content 98,96
copying 320-322
DATA RECORDS clause 106
format 98
LABEL RECORDS clause 103-105
RECORD CONTAINS clause 100,101
RECORDING MODE clause 102,103
REPORT clause 262
report writer 262,263
sort 248
VALUE OF clause 105

file description entry, VSAM (OS/VS
only) ix

file information area, OCR (OS/VS
only) xxix

FILE-LIMIT clause 77
file processing chart, VSAM (OS/VS
only) xv

file-processing technique
definition 61
input/output errors 175-177
summary

general 61-65
statements and clauses 383-388

File Section
boundary alignment 130
content 95.96
copying 320-323
file description entry 98-106

use of FILLER 110
format 95
naming data 110
record description entry format 110,111
sort consideration 248
structure 93
VALUE clause 141

file size for sort 256
FILE STATUS clause, VSAM (OS/VS
only) v,v~~~

files, sharing same storage areas 85,86
FILLER clause

and CORRESPONDING option 178
in input CD entry 345,346
in inter-record slack bytes 133,134
in record description entry 110

FINAL control
definition 265
TYPE clause 275,276

final phase of sort 255
FIPS flagger (OS/VS only) xxix-xxxiv
fixed insertion editing 125
fixed-length record format (see F mode

records)
fixed-lenqth records

and recording mode 101-103
record overflow feature 87
size of print line for-reports 263

fixed-point numeric items 135-140,122
fixed-point numeric literal 42
fixed portion of a segmented

program 316-318
fixed storage areas for TP 339-347
floating insertion editing 125,126
floating-point data items (see external
floating-point items, internal
floating-point items)

floating-point numeric literal
definition 42
in a move 199

flowchart
nested IF statement 168
PERFORM statements

varying one identifier 192
varying three identifiers 194
varying two identifiers 193

SEARCH statement 311
footing report groups 275,276
FOR MULTIPLE REEL-UNIT option of the ASSIGN
clause 73,74

format
EXHIBIT statement output 327
logical records 100,101
report page 268

format control of the source prograro
listing 331

format F records (see F-mode records)
format notation 54,55
format U records (see U-mode records)
format V records (see V-mode records)
fraction, internal floating-point
items 138,140

FROM identifier option, VSAM (OS/VS
only) xii

full FIPS flagging (OS/VS only) xxx-xxxii
fullword

binary item 137
SYNCHRONIZED clause 130

Index 439

function-name
in CODE clause 265
description 41
and SPECIAL-NAMES paragraph 70
in WRITE statement 2146213
in 3505/3525 processing 413,414

GENERATE statement 281,282
generic key, ANS COBOL 208 0 209
generic key" VSAM (OS/VS only) xvi
GIVING option

arithmetic statements
ADD 180
description 178
DIVIDE 182
MULTIPLY 183
SUBTRACT 184

error handling declarative 175-177
SORT statement 254,250

glossary 417
GO TO MORE-LABELS 171,172
GO TO statement

with the ALTER statement 186,185
and CALL statement 229
in a debug packet 330
description 185,186
in error processing procedures 175,177
examples 23,25,26
formats 185
with the IF statement 166
in label handling procedures 171~172
with PERFORM statement 188,189
with segmentation 319
in a sort procedure 252-254

GO BACK statement
and CANCEL statement 232
format and description 238-240
and message retrieval 350
and symbolic debugging 399

group
collating sequence 251
contents 94
example 94
report 269-271

GROUP INDICATE clause 278 6 281
group item

definition 94
example 94
in a move 198,199
in an OCCURS clause 302
in a relation condition 161
renaming 144-146,111-114
in a report 269,270
slack bytes 130-133
USAGE clause 135
VALUE clause 142

halfword
binary item 137
SYNCHRONIZED clause 129

halting execution 238-240,195
header labels and USE declaratives 170-172
heading print groups 275,276 .

440

hierarchy
arithmetic expressions 154
called program and CANCEL statement 231
controls in report writer 265
end indicators in TP 351
qualification 49
relations 163
structure of a record 93

high-intermediate FIPS flagging (OS/VS
only) xxii, xxiii

HIGH-VALUE (HIGH-VALUES) figurative
constant

delete code for indexed files 81,65
description 43
in dummy records 63
indexed files 81,65
in a move 199

hyphen
in collating sequence 160,251
and continuing lines 53
in program-names 60
in words 37
(see also minus symbol)

I-O-CONTROL paragraph
APPLY clause 86-88
COpy statement 320-323
description 83-85
format 83
MULTIPLE FILE TAPE clause 86
RERUN clause 83-85
SAME AREA clause 85,86
sort considerations 247,248

I-O-CONTROL paragraph (OS/VS only)
merge considerations xxiii,xxiv
VSAM considerations viii"ix

1-0 files
effect of CLOSE options 222-226
error handling 175-177
label handling 170-172
and OPEN statement 205-207
and REWRITE statement 217,218
and WRITE statement 216,217,213

10 Division header 59
Identification Division

DATE-COMPILED paragraph 60
example 19
PROGRAM-ID paragraph 59,60
structure of 59

identifier, definition 49
identifying records

dummy records 63
by name 110
in reports 264,265

IF statement
examples 25,26
format and description 166-168
and MESSAGE condition 348
nested 167,168

ILEO invalid as subprogram name 230,231
imperative statements

arithmetic 178-184
data-manipulation 197-204
declarative 169-177
definition 150
input/output 205-226

procedure branching 185-196
report writer 281-284
sort 250-256
string manipulation 353-362
table handling 309-313
teleprocessing 349-352

implied subjects and
relational-operators 164,165

IN qualifier connective
used for indexes 299
used for names 49
used for subscripts 298

incrementing
index-name values 296,297,299
LINE-COUNTER special
register 285,286,282

PAGE-COUNTER special register 285.282
SUM counters 280-282

indentation of level numbers 95
independent overflow area for indexed
files 88

independent segment 316-318
index data item

in a move 199
in a relation condition 308,161
USAGE clause description 307

index-name
description 304,305

in OCCURS clause 304-307
in SEARCH statement 310-312
in SET statement 313

in a move 199
in a relation condition 308,161
value in 304 g 305

INDEX option of the USAGE clause (see index
data itero)

INDEXED BY option of the OCCURS clause (see
index-name)

indexed data organization 62
indexed files

access techniques 65
APPLY clause 87,88
ASSIGN clause 74-76
blocking factor 100
file processing chart 386
index in core 87
initiating processing 208,209
invalid key condition

READ 212
REWRITE 217,218
WRITE 216,217

LABEL RECORDS clause 103
NOMINAL KEY clause 80,81
overflow areas 88
READ statement 210-212
RECORD KEY clause 81
recording mode 102
reorganization criteria 88
REWRITE statement 217
START statement 208,209
WRITE statement 212,213,216,211

indexed VSAM files (OS/VS only)
Data Division ix
Environment Division v-ix
overall description iv
permissible I/~ statements xv
Procedure Division ix-xxii
valid devices iv

---- ---------

indexes used as qualifiers 298,299,50
indexing tables

description 298,299
direct 306,298
relative 306,307,298

initial value of a data item 141,142
initializing

direct files 63,64,82
index values 313
items in called programs 229
report writer special registers 283
sort special registers 223
sub-queue names 343
and UNSTRING statement 360

INITIATE statement 282,283,261
initiating

access of a mass storage file 205-210
file processing 205-210
processing of a report 282,283

input CD (see communication description
entry)

input files
effect of close options 222-225
error handlinq 175-177
inter-record slack bytes 133,134
intra-record slack bytes 131-133
label handling 170-172
and OPEN statement 205-207
and READ statement 210-212
record size 100,101
and START statement 208,209

input format for source programs 51-53
input phase of sort 252,253
input/output areas (buffers) shared 76,77
input/output error (see invalid key
conditions, INVALID KEY option)

input/output options chart, VSAM (OS/VS
only) xv

Input-Output Section
copying 320-324
example 19,20
FILE-CONTROL paragraph 72-83
I-O-CONTROL paragraph 83-88
sort considerations 246-248

input/output statements
ACCEPT 218-220
CLOSE 221-226
DISPLAY 220,221
OPEN 205-207
READ 210-212
REWRITE 217,218
SEEK 210
START 208,209
WRITE 212-217

input queue
and CD entry 340-346
and t-lESSAGE condition 348
and message control program (MCP) 339
and RECEIVE statement 349

INSERT card for copying 324,325
insertion editing

fixed insertion 125
floating insertion 125,126
simple insertion 124
special insertion 124

insertion of
asterisks 126,127,119,120
commas 124,119,120

Index 441

._--------

periods 124,119,120
spaces 123-127,118.120.
zeros 123.124,119,120

INSTALLATION paragrap:l 59
integer literals (see fixed-point numeric
literals)

inter-record slack bytes 133,134
interface between COBOL and MCP

CD entry 339-348
and MESSAGE condition 348,349
and RECEIVE statement 349,350
and SEND statement 350-352

intermediate results
arithmetic statements 365,3166
compound conditions 163

internal data 96,97
internal decimal items

allowable characters 138
in a class test 157,158
collating sequence 251
definition 138
internal representation 140,138
in a move 199
and PICTURE clause 121
in a relation condition 161
SYNCHRONIZED clause 130
USAGE clause 138,140,135

internal floating-point items
collating sequence 251
definition 137,138
internal representation 140,137
in a move 199
in a relation condition 161
and SEARCH statement 309
USAGE clause 137,140,135

internal representation
binary items 140,137
external decimal ltems
external floating-point
internal decimal items
internal floating-point
numeric items 139,140

139,136
items 140,136
140,138
items 140,137

sterling items 332-337 ,
international currency considerations 338
interpreting card punch by 3525 413
INTO identifier option, VSAM (OS/VS
only) xii

intra-record slack bytes 131-133
introduction 15-33
INVALID KEY condition, VSAM (OS/VS

only) xi
INVALID KEY option

and error declaratives 175
of the READ statement 212,210
of the REWRITE statement 217,218
of the START statement 208,209
of the WRITE statement 216,217,213

justification
and JUSTIFIED clause 115
and MOVE statement 198
and RECEIVE statement 349,350
and SEND statement 351
and STRING statement 354
and UNSTRING statement 359

JUSTIFIED clause 115

442

KEY clauses
ACTUAL 78,79
NOMINAL 80,81
RECORD 81

key words
definition 40
in format notation 54

keys
for SORT statement 250-252
for START statement 208,209
for table SEARCH 310,312,303,304,301

label handling
ASCII considerations 390
LABEL RECORDS clause 103-105,170
when opening a file 205-207
reading a multivolume file 211
sample program 173,174
for sort 248,249
TOTALED/TO'I'ALING option 104,105
USE declarative 170-174
writing a multivolume file 216,103,104

LABEL RECORDS clause 103-105,170
ASCII considerations 390

LABEL RECORDS clause. VSAM (OS/VS only> ix
LABEL-RETURN special register 45 6 172
leading zeros~ suppression 126-127
left justification 115
length

and BLOCK CONTAINS clause 98,99
and RECORD CONTAINS clause 100,101
binary items 137
DISPLAY items 136
external decimal items 136
external floating-point items 136
internal decimal items 138
internal floating-point items 137
and standard data format 100

level indicator
in Communication Section 340,341,93
definition 52
in file description entry 93
in reference format 52
in report writer feature 264,93
in sort feature 249,93
summary of 93

level number
data description entry 94
indentation of 95
in the reference format 52
special 95,108,109

level number 01 items
boundary alignment 130
CALL statement 234
in the Communication Section 341
COPY statement 320-323
description 107,108,94
in the File section 96-108
format 107
in the Linkage Section 97,108
in the Report Section 269,270
SYNCHRONIZED clause 130
in the Working-Storage Section 97,108

level number 02-49 items
description 94,107,108
format 107
and inter-record slack bytes 133,134

level number 06 items
definition 95
format 107
in RENAMES clause 144-146
rules for use 108

level number 77 items
boundary alignment in Linkage
Section 234

COpy statement 320-323
description 107,108,96
format 107
noncontiguous data items 107
VALUE clause 141,142
in Working-Storage Section 96,108

level numoer 88 items
assigning values to 142,143,108,109
in CD entry 141
in condition-name condition 158
description 142,143
examples 143,158
in FD entry 141
format 108,141
in Linkage section 141
qualification 50,51
range of values for 143,141
and RLDEFINES clause 111
rules for use 108,109
and UNSTRING statement 357
and VALUE clause 141-143
in Working-Storage Section 141

library facility (see source program
library facility)

library management facility
description 13
and dynamic subprogram linkage 227,228

library-name 320-322
LINE clause 271,272
line-control cards 398,399
LINE-COUNTER special register

description 285,286
and GENERATE statement 282
and INITIATE statement 283

Linkage Section
boundary alignment 130,234
content 97,107,108
COPY statement 320-322
data item description entry 107,108,97
format 97
intra-record slack bytes 130
naming data 110
record description entry 107,108,97
structure 92
use of FILLER 110
USING option of the CALL
statement 233-238

VALUE clause 141
list of compiler features

Version 3 11012
Version 4 12g13

literal
in CALL statement 228,230
in CANCEL statement 231
nonnumeric 43
numeric

fixed-point 42
floating-point 42
in STRING statement 353,354
as system-name 70,265

in UNSTRING statement 357,358
in VALUE clause 141-143

load module
and COBOL library management 227,228
and dynamic subprogram
linkage 227,228,231

and symbolic debugging 397
local station 339
location of slack bytes 132,133
logical connectives 40
logical operators 162-165,40
logical record

definition 91
redefining

description 111-114
restriction in File Section 111

renaming 144-146
size of 100,101,107
slack bytes in 130-134

long-precision internal floating-point
items 138,140

low FIPS flagging (OS/VS
only) xxxiii,xxxiv

low-intermediate FIPS flagging (OS/VS
only) xxxiii

LOW-VALUE (LOW-VALUES) figurative constant
description 43
in a move 199

lower-case words in formats 54

magnetic tape (see tape)
magnitude of floating-point items 136,137
main program, definition 238
main storage

released by CANCEL statement 231,232
savings in by use of

COBOL library management. 13
dynamic subprogram linkage 13
optimized object code 13

major control break 265
mantissa

+ or - preceding 122
definition 136
internal representation 140
representation in PICTURE clause 122

mass storage devices
error information 176
list of 74
record overflow feature 87

mass storage files
function of CLOSE statement
function of OPEN statement
function of READ statement
function of START statement
function of WRITE

222-226
205-207
210-212
208,209

statement 212,213,216,217
maximum length

arithmetic operands 179-184
binary items 137
data description entry 107
elementary item 107
external decimal items 136
internal decimal items 138
internal floating-point items
keys in table handling 303
numeric edited items 123
PICTURE character string 117

137

Index 443

record
CONSOLE 219,220
SYSIN 219
SYSOUT 220
SYSPUNCH 220

table elements 302
maximum length keys in merge (OS/VS

only) xxvi
maximum number

index-names 304
keys

sort 252
table handling 303
sub-queue levels 342,343
UNSTRING delimiters 357

maximum number keys in merge (OS/VS
only) xxvi

maximum size (see maximum length)
maximum value for a subscript 297
MCP (message control program)
description 339

MCP/COBOL interface
and CD entry 339,340
and MESSAGE condition 348
and R~CEIVE statement 349
and SEND statement 351,352

NEMORY SIZE clause 69
merge facility (OS/VS only)

Data Division xxiv,xxv
Environment Division xxiii, xxiv
Procedure Division xxv-xxv~ii

merge-file description entry (OS/VS
only) xxv

merge-file-name (OS/VS only) xxv
MERGE statement (OS/VS only) xxv-xxviii
MESSAGE condition

description 348,349
format 348
and input CD updating 348,349,345

message control program (MCP)
description 339

message queues 339-343
message retrieval 349,350
message transmission 350-352
method of data reference 49,50
minor control break 265
minus symbol

in arithmetic expressions 154,155
in collating sequence 160,251
in indexing 306,307,298,299
in the PICTURE clause

description 119,120
external floating-point items 122
numeric edited items 123,125
sterling items 335,338

and the SIGN clause 128
as unary operator 154,155

(see also hyphen)
mnemonic-name

in the ACCEPT statement 218,219
in the CODE clause 265
in the DISPLAY statement 220
in SPECIAL-NAMES paragraph 70
in the WRITE statement 213,214

mode F records (see F-mode records)
mode S records (see S-mode records)
mode U records (see U-mode records)
mode V records (see V-mode records)

444

modification
library text

DELETE and INSERT cards 324,325
sort records

after sorting 253,254
before sorting 252,253

t-'lOVE statement
description 197-199
examples 26,27
formats 197
permissible ~oves 199
rules 198
with sort special registers 257
with sterling items 338

MOVE statement implementation (OS/VS
only) iii

movement of data
and MOVE statement 197-199
and STRING statement 353-356
and UNSTRING statement 357-362

moves (OS/VS only) ~~~
multiline print files on 3525 416
multiple delimiters in UNSTRI~G 357
multiple entry points and CANCEL 230-232
MULTIPLE FILE TAPE clause 86
multiple redefinition of data 112
MULTIPLE REEL/UNIT option of the ASSIGN
clause 73,74,246,247

multiple results
ADD statement 179,180
SUBTRACT statement 183,184

multiplication operator 154,155
MULTIPLY statement

description 182,183
example 25
formats 182,183

multivolume processing
and options of CLOSE statement 221-225
reading 211
user labels 104,105,170-172
writing 216

name
for a data item 110
description 41
field in system-name 75
qualification of 49,50
for a record 110
for a subprogram 230,231

negative operand in a sign condition 162
negative value

in DISPLAY statement 221
in external floating-point items 122
in numeric edited items 123,125-127
in PERFORM statement 189
and PICTURE clause 118-123,125-127
and SIGN clause 128
in sign condition 162

nested
IF statements 167,168
OCCURS clauses 301,302
PERFORM statement 188,189
REDEFINES clauses 112

NEXT GROUP clause
description 273,274
effect of PRINT-SWITCH 285,,274
format 273

'I ..

C
·~· \"

)
/

- --~----~- ---- -----

NOMINAL KEY clause
description 80,81
format 80
indexed files 65
and READ statement 212
relative files 64
and REWRITE statement 217
and START statement 208,209
and WRITE statement 212,,215,216

noncontiguous data items (see level number
77 items)

nonnumeric literals
continuation of 53
definition 43
in the EXAMINE statement 200
in a move 199
in a relation condition 161
VALUE clause 141-143

nonnumeric operands
in a move 198,199
in a relation condition 161

nonstandard labels
GO TO MORE-LABELS 171,172
LABEL RECORDS clause 103,104
LABEL-RETURN special register 45,172
reversed reading 206
system procedures 171
USE declarative 170-172

NOT condition construction
in compound conditions 162-165
in test conditions 156

NOT logical operator
in compound conditions 162
evaluation 163-165

I NOTE statement 241,242
null report group 269
NULLFILE parameter of the DD card (see

dummy files)
number of input/output units 73
numeric character in a PICTURE
clause 119,120

numeric class test 157,158
numeric data item

BLANK WHEN ZERO clause 115
in the class test 156,157
in the EXAMINE statement 200
fixed-point

binary 137,140,135
external decimal 136u 139,135
internal decimal 138 6 140,135

floating-point
external 136,140,135
internal 137,140,135

internal representation 139 n 140
in a move 198,199
as a receiving item 198,,199,359
in a relation condition 161
in UNSTRING statement 359
VALUE clause 142,143

numeric edited items
BLANK WHEN ZERO clause 115
description 123-127
in a move 198,199
as a receiving item 198.199
in a relation condition 161
USAGE clause 136,123

numeric literal
continuation of 53

de.iinition 42
in a move 199
in a relation condition 161
in VALUE clause 142,143

numeric operands
in ADD statement 179,180
in COMPUTE statement 181
in DIVIDE statement 181,182
in MOVE st,atement 198." 199
in MULTIPLY statement 182,183
in relation conditions 161
in SUBTRACT statement 183,184

OBJECT-COMPUTER paragraph
COpy statement 320-323
description 69
format 69
SEGMENT-LIMIT clause 318,69

OBJECT-COMPUTEk paragraph (OS/VS
only) ii,iii

object of a relation condition 159
object program, definition 59
objeGt-time s~routine library

and COBOL library management 13
required with compiler 12

OCCURS clause
algorithm for slack bytes 131
and CD entry 302
description 300-307
direct indexing 306
examples 304,315
formats 301
redefining restriction 111,112
relative indexing 304,305
renaming restriction 144
slack bytes 131-133
value restriction 142

OCR processing (OS/VS only) xxviii,xxix
OF qualifier connective

with indexes and subscripts 298,299
with a name 49

omitted data names in input CD 345,346
omitted end indicator 351
OMR (optical mark read) processing 413
ON statement

and CALL statement 229
formats and description 328,329

OPEN statement
combined function processing on

3525 415
description 205-207
example 23
formats 205,206

OPEN statement, VSAM (OS/VS only) x~~~-xv
operational sign (see sign, SIGN clause)
operator communication 195,218,219
optical mark read (OMR) processing 413
optimized object code 13
optimizing sort performance 256,257
optional words in formats 54,40
OR condition and UNSTRING delimiters 358
OR logical operator in compound
conditions 162-165

order of evaluation for compound
conditions 163

Index 445

order of execution, in Procedure
Division 150

organization
of COBOL program 47
of data 61,62
Data Division 92
Data Division entries 93-95
Environment Division 67
field of system-name 75
Identification Division 59
Procedure Division 149-153

ORGANIZATION clause, VSAM (os/vS
only) v-vii

OS/VS COBOL (OS/VS only)
features 11,12
language i-xxxv

output CD (see communication description
entry)

output files
effect of CLOSE options 223-226
error handling 175-177 I

inter-record slack bytes 133,134
intra-record slack bytes 130-133
label handling 170-174
and OPEN statement 205-207
and WRITE statement 213-217

output listing format
of compiler 51
control of 331

output queue
and CD entry 346,347
and ~essage control program (MCP) 339
and SEND statement 351,352

overflow condition
and STRING statement 355,353
and UNSTRING statement 360,357

overflow of records 87
overlapping data groupings 144-146
overlayable fixed s~gment 316,318
overlaying programs 227,230-240

P, in PICTURE clauses 118,120,142
packed decimal format 138,140
padding in a physical record 99
page change in a report 266-268
PAGE clause (see PAGE LIMIT clause)
PAGE-COUNTER special register

description 285,261
GENERATE statement 282
INITIATE statement 283

PAGE FOOTING report group
LINE clause 271-273
NEXT GROUP clause 273,274
PAGE LIMIT clause 266-268
TERMINATE statement 283
TYPE clause 275-277

page format 266-268
PAGE HEADING report group

GENERATE statement 282
LINE clause 271-273
NEXT GROUP clause 273,274
PAGE LIMIT clause 266-268
TYPE clause 275-277

page number of a report 285,,282,283
paired names for passing
parameters 228,229

446

pairing parentheses
in arithmetic expressions 154,155
ELSE in nested IF statements 167
in subscripts and indexes 297-299
symbols in compound conditions 164

paragraph
DATA-COMPILED 60
FILE-CONTROL 72-83
I-o-CONTROL 83-88
OBJECT-COMPUTER 69
in Procedure Division 149,150,52
PROGRAM-ID 59
SOURCE-COMPUTER 68
SPECIAL-NAMES 69-71

paragraph-name
qualification 49,50
in reference format 52
rules for forming 41

parentheses
in arithmetic expression 154,155
in compound condition 163,164
in conditions 156
in PICTURE clause 117
punctuation rules 38
in subscripting and indexing 297-299

PARM field data from EXEC card 234,97
passing information

between programs 93,233-237
from operating system 234,219
to operating system 239,195

PASSWORD clause, VSAM (OS/VS only) v,viii
pence

nonreport items 333,334
report items 335-337

PERFORM statement
and CALL statement 229
in debug packets 330
and declarative section 171,175,284
description 187-194
flowcharts 192-194
formats 187,188
with segmentation 319,186
and sort procedures 252-254

period \
and comma exchanged 70,71,119,338
in a COpy statement 320,322
in a data description entry 107-109
after a division header 52
after END DECLARATIVES 169
to end section-header 52,149
to end sentence 149
in fixed-point numeric literals 42
in floating-point numeric literals 42
after paragraph-name 520149
in a PICTURE clause 119,120

external floating-point items 122
indicated by P or V 118,120
numeric edited items 123-127
sterling report items 335-337

permanent segment 316,318
permissible

comparisons 161
moves 199
symbol pairs

arithmetic expressions 155
compound conditions 164

PF (see PAGE FOOTING report group)
PH (see PAGE HEADING report group)

\ /

,,,-'- .

\ ..

physical file, definition 91
physical record

definition 91
size specification 98-100

PICTURE clause
allowable characters 118-120
ASCII considerations 391
categories of data

alphabetic 119
alphanumeric 121
alphanumeric edited 123
numeric 121,122
numeric edited 123-127

character string 117,118
format 116
precedence table 120
repetition of symbols 117,118

placement of a key
in the sort file 252
within a table 303

plus symbol
in arithmetic expressions 154,155
in collating sequence 161,251
as unary operator 154,155
in indexing 306.307,298.299
in the PICTURE clause

external floating-point items 122
numeric edited items 123-127
sterlina items 335-337
in the SIGN clause 128,129

pocket select characters
in combined function processing 413-415

- definition 70
in a WRITE statement 213,214

positioning data
within a field 115

positioning a file 205-201~221-225
positive operand in sign condition 162
positive value

in external floating-point items 122
in PERFORM statement 189
unsigned operands 162

pound-report-strinq 335
pound separator 333,335
pound sign

report item 335,337
representation, internal 332

precedence table for PICTURE clause 120
preface 2,3
print line size for report 263
PRINT-SWITCH 285,274
priority numbers

and ALTER statement 319
and CALL statement 319
description 311,318
and PERFORM statement 319
segment limit 318

private library and dynamic CALL 228
procedural statements

(see compiler directing statements,
conditional statements, imperative
statements)

procedure branching statements
ALTER statement 186,181
examples 186,21-30
EXIT statement 195,196
GO TO statement 185,186
PERFORM statement 187-194

---------- ----------

STOP statement 195
Procedure Division

content 149-153
COPY statement 320-323
organization 149,150
Report writer considerations

GENERATE statement 281,282
INITIATE statement 282n283
overall 261
TERMINATE statement 283,284

sort considerations
EXIT statement 256
RELEASE statement 254,255
RETURN statement 255
SORT statement 250-254

statements (see compiler directing
statements, conditional statements,
imperative statements)

sterling considerations 338
string manipulation considerations

STRING statement 353-356
UNSTRING statement 351-362

structure 150
table handling considerations

SEARCH statement 309-312
SET statement 313

teleprocessing considerations
RECEIVE statement 349,350
SEND statement 350-352

USING option on the division
header 233-235,237,150

Procedure Division (OS/VS only)
merge considerations xxv-xxviii
VSAM considerations ix-xx~~

procedure-name, definition 41
procedures in the declaratives section 169
processing considerations (OS/VS

only) xxxv
processing functions

for 3505 reader
optical mark read (arm) 413
read column eliminate (ReE) 413,414

for 3525 punch
combined functions 414-416
interpreting punch 413
read column eliminate (RCE) 413,414

PROCESSING MODE clause 78
processing options (OS/VS only)

optical character reader xxix
VSAM chart xv

program-control cards 398
PROGRAM-ID paragraph 59,60
program-name

rules for formation 60
and subprogram linkage 228,230,231

program termination 238-240
punctuation character

used in formats 54
used in a source program 38

quadruple spacing in source program
listing 331

qualification
and condition-names 143
description 49,50
index-names 298,299
names 49,50
subscripts 297,298

Index 447

------- - ---------_._-------

qualifier connective, definition 40
queue

and CD entry 341-347
description 339
and MCP 339
and MESSAGE condition 348
and RECEIVE statement 349,350
and SEND statement 351,352

queue name
and CD entry 341-343
and MESSAGE condition 348
predefined to MCP 343
and RECEIVE statement 349
and SEND statement 351

queue processing 339
queue structure

and input CD entry 342
and MESSAGE condition 348
and RECEIVE statement 349

quotation mark
default option 37
and nonnumeric litArals 43
and program-name 60

QUOTE (QUOTES) figurative constant 43,202
quotient 181,182

random access
ACCESS MODE clause 77,78
CLOSE statement 221,222n 225,226
definition 62
direct files 63,64
indexed files 65
READ statement 210-212
relative files 64,65
REWRITE statement 217,218
SEEK statement 210
WRITE statement 212 6 213 0 216,217

random multivolume
definition 222
effect of CLOSE options 225,226

random single-volume
definition 222
effect of CLOSE options 225,226

range of a PERFORM statement 188,189,191
range of values

condition-name 141-143
priority numbers 317
sequence numbers on DELETE card 325

RD (see report descxription entry)
read column eliminate (RCE)

processing 413,414
READ statement

description 210-212
examples 24
format 210
and 3525 combined function
processing 415

READ statement, VSAM (OS/VS
only) xv~~,xv~~~

reading backwards, boundary alignment 206
reading nonstandard labels 170-172
READY TRACE statement 326
RECEIVE statement

448

description 349,350
format 349
and input CD entry 344

receiving area
in MOVE statement 198" 199 ('-
in RECEIVE statement 349,350
in STRING statement 354-356 \- -
in UNSTRING statement

for data 357-361
for delimiters 357-361

receiving data item
justification 115
in MOVE statement 198 R 199
in RECEIVE statement 349,350
in STRING statement 353-356
truncation 115
in UNSTRING statement 357-362

record
description 100,101,110-146
level number 94,95
naming 110
slack bytes

between records 133,134
within records 130-133

RECORD CONTAINS clause
description 100,101
format 100
for report writer 263
for sort 249

RECORD CONTAINS clause for merge (OS/VS
only) xxv

record de~cription entry
Communication Section 340,341
definition 110
File section 96
Linkage Section 97
sort records 96 /
Working-Storage Section 97 1\,, __
(see also data description clauses)

RECORD KEY clause 81,65
RECORD KEY clause, VSAM (OS/VS only) v,vii
record length for sort records 249
RECORD-OVERF'LOW option of the APPLY
clause 87

record size for CD entries 342,346
record size default

for ACCEPT statement 219
for DISPLAY statement 220
for report writer 263

recording mode
ASCII considerations 391
defaults 101,102
specification 102,103
types 101,102

RECORDING MODE clause 102,103
ASCII considerations 391

REDEFINES clause
and CD entry 111
description 111-114
examples 111-114
and file section 111
format 111
position when used 111,108
and VALUE clause 142

reference format 54,55
regrouping data items 111-114,144-146
relation character

definition 39
use in relation conditions 159-161 r"-',

/'"
\
",--. 0.' :'

relation condition
ASCII considerations 392-394
characters used 39
description 159-161
format 159
operands allowed 161
in table handling 308
use of condition-name 158

relational-operators
compound conditions 163-165
definition 39
implied 164.165
in relation condition 159

relative files
BLOCK CONTAINS clause 98,99
file processing chart 387
invalid key condition

in a READ statement 212.210
in a REWRITE statement 217,218
in a WRITE statement 216,213

label handling 103,104
physical record size 99
random access 64
recording mode 102
sequential access 64

relative indexing 306,307,298,299
relative LINE clause 271,272
relative organization 62
relative record addressing scheme 62
relative track addressing scheme 62
relative track number 62,78,79
RELEASE statement in sort 254,255
remainder, definition 182
REMARKS paragraph 59
remote station 339
RENAr1ES clause 144-146,107,,108
renaming

data items 144-146,107,108
logical records 95,96

REORG-CRITERIA option of the APPLY
clause 88

reorganization data for indexed files 88
repetition of symbols in a PICTURE
clause 117,118

replacement
of a character 200-204
and COPY statement 320-323
editing 126#1127
of a record 217,218

replacing zero with an asterisk 126,127
replacing zero with a space 126,127,115
REPORT clause 262,263
report description entry

CODE clause 264,265
CONTROL clause 265,266
COpy statement 320-323
definition 264
and GENERATE statement 281,282
PAGE LIMIT clause 266,267

REPORT FOOTING report group
description 267
LINE clause 273
NEXT GROUP clause 274
PAGE LIMIT clause 267
TERMINATE statement 283
TYPE clause 276

report group description entry
COLUMN clause 277

COPY statement 320-323
description 269-271
formats 270
GROUP INDICATE clause 278
LINE clause 271-273
NEXT GROUP clause 273,274
RESET clause 278,279
SOURCE clause 279
SUM clause 279-281
TYPE clause 275-277
VALUE clause 281,279

report groups
definition 269
page format 268
sequence of printing 265,266
types 275-277
USE sentence 284"285

REPORT HEADING report group
description 267
GENERATE statement 282
LINE clause 272
NEXT GROUP clause 273,274
PAGE LIMIT clause 267
TYPE clause 275-277

report-name 264,281
report page format effect on

LINE-COUNTER special register 286
PAGE-COUNTER special register 285
~AGE LIMIT clause 266-268

Report Section
content 264-281,260,261
COpy statement 320-323
formats

report description entry 264
report group description entry 270

report writer
Data Division considerations

File Section 262,263
overall description 260,261
Report section 264
report description entry 264-268
report group description
entry 269-281

Procedure Division considerations
declaratives 284,285
GENERATE statement 281,282
INITIATE statement 282"283
overall description 261
TERMINATE statement 283,284
USE statement 284,285

sample program
coding 287-290
output 292-296

special registers 285,286
required words in formats 54,40
RERUN clause

ASCII considerations 390,395
for processing programs 83-85
at end-of-volume 84
for sort feature 247,248

RERUN clause, VSAM (OS/VS only) viii,ix
RESERVE clause

description 76,77
format 76
and RCE processing 414
and 3525 processing 414

RESERVE clause, VSAM (OS/VS only) v,vi

Index 449

reserved words
definition 40
in formats 54
list of 374-376

RESET clause, Report Writer 278,279
kESET TRACE statement 326
restarting a program 83,84~247,248
retrieving an indexed file 65

and READ statement 210-212
and START statement 208.209

return code
for nonstandard labels 112,45
to operating system 195
for sort. 257
special register 44
from subprogram 239

RETURN-CODE special register
and called programs 239
description 44
and STOP RUN 195

RETURN statement in sort 255
returning control to the operating

system 195,239
reversed reading of a file 205-207
rewinding a tape file

and CLOSE statement 221-225
and OPEN statement 205-207

REWRITE statement 217,218
REWRITE statement, VSAM (OS/VS
only) xx, xxi

rewriting
direct file 217,218,63
index~d file 217,218,65
relative file 217,218,64,65

RF (see REPORT FOOTING report group)
RH (see REPORT HEADING report group)
right justification 115
rolling counters forward 280
ROUNDED option in arithmetic statements

(see also intermediate results)
ADD 179,180
COl-'lPUTE 181
description 178,179
DIVIDE 181,182
MULTIPLY 182,183
SUBTRACT 183,184

rounding in a SIZE ERROR conJition 179

S, used in a PICTURE clause
binary items 137,121
and class test 157
description 118,120
external decimal items 121
fixed-point numeric items 121
internal decimal items 138,121
and SIGN clause 128
sterling nonreport items 333,334

S-mode records
definition 102
and record overflow 103u 102
recording mode 102,103
sharing storage 85,86
spanned. format 102
specification 103

SAME clause 85,86,248
S~£ clause (OS/VS only)

450

merge considerations xxiv
VSAM considerations viii,ix

sample programs
creation of a direct file 368.369
creation of an indexed file 370
random retrieval and updating of an
indexed file 371,372

report writer 287-296
sort 258,259
table handling 314,315
updating a direct file 32,33
user label procedure 173,174

scaling, effect on rounding 179
scaling implementation (OS/VS only) ii-iv
scaling position character (P)

description 118,120
example 142

scientific decimal item (see external
floating-point items)

SD entry for merge (OS/VS only) xxv
SEARCH statement

description 309-312
example 315
flowchart 311
formats 309
index data items 307
modifying indexes 310,312

section
classification in segmentation 317
definition 149
format 150

section header 52,149
section-name 52,150
SECURITY paragraph 59
SEEK statement 210
segment classification 317
SEGMENT-LIMIT clause

description 318,316
format 318,69

segmentation
and ALTER statement 319
and CALL statement 319
classifying segments 317
control of 317
fixed portion 316
and GO TO statement 319
independent segments 316
and PERFORM statement 319
priority numbers 317,318
program organization 316
restrictions on program flow 319
segment limit 318

segmentation restrictions for merge (OS/VS
only) xxviii

SELECT clause
COpy statement 320-324
description 73
file named in GIVING option of SORT

statement 246,247
format 73,246,241
sort-file 247

SELECT clause (OS/VS only)
merge considerations xxiii
VSAM considerations v,vi

semicolon
in a data description entry 108
in Procedure Division 149
in source program 38
in SPECIAL-NAMES paragraph 70

",
(

('

\ .'

SEND statement
description 350-352
formats 350,,351
and output CD entry 351

sending field
in MOVE statement 197-199
in SEND statement 351
in STRING statement 353-356
in UNSTRING statement 357-362

sentence in procedure division 149
SEPARATE CHARACTER option of SIGN clause

and ASCII files 391,395
ignored in STRlhG statement 353
and UNSTRING statement 359

separators
of sentences 149
in sterling items 333-336
of words 38,40

sequence
of COBOL entries

in Data Division 98,108
in Environment Division 72,83
general rule 47
in Identification Division 59
in Report Writer 264 n 270

execution in Procedure Division 150
execution of segmented programs 317
sorting 250 n 251

sequence checking compilation default 51
sequence number in a source program 51
sequence-number-field for copying 323-325
sequential access

ACCESS mode clause 77,78
and BLOCK CONTAINS CHARACTERS
clause 98-100

definition 62
direct files 63
indexed files 65
relative files 64
sequential files 62

sequential data organization 61
sequential files (see standard sequential
files)

sequential multivolume files
definition 222
effect of CLOSE options 222-225
label processing 170-172
and READ statement 211
and WRITE statement 216

sequential single volume files
definition 222
effect of CLOSE options 222-225

sequential VSAM files (OS/VS only>
Data Division ix
Environment Division v-ix
overall description iv
permissible I/O statements xv
Procedure Divis-ion ix-xxii
valid devices iv

serial search of a table 309-311
series connective, definition 40
series of values ~or
condition~name 141-143

SET statement
description 313
format 313
with index data items 307
with indexes 298

shading in text, explained 3
sharing

COBOL library subroutines 13
storage between files 85,86

shilling representation 333,,335-337
snilling separator 333,335-337
short-precision internal floating-point

items
internal representation 140
USAGE clause description 137,135

sign
in ASCII files 391,395
binary items 137,121
and class condition 157
description 118
external decimal items 121
external floating-point items 136,122
fixed-point numeric literals 42
floating-point numeric literals 42
internal decimal items 138,121
internal floating-point items 137
internal representation 139,140
and MOVE statement 198
in PICTURE clause 118,120,121-123,125
and relation condition 159,160
in SIGN clause 128
and sterling items 334,335,337
and STRING statement 353
in subscripts 297
as' unary operator 154"155
and UNSTRING statement 359

SIGN clause
ASCII considerations 391/1395
character S 128
format and description 128
and STRING statement 353
and UNSTRING statement 359

sign condition 162
simple insertion editing 124
single digit level number 95
single spacing of the printer page 214
SIZE ERROR option in arithmetic statements

ADD 179,180
COMPUTE 181
description 179
DIVIDE 181,182
MULTIPLY 182,183
and ROUNDED option 179
SUBTRACT 183,184

SKIP1/SKIP2/SKIP3 statements 331
slack bytes

definition 130
and computational items 131
and OCCURS clause 131-133
inter-record 133,,134,131
intra-record 130-133
and physical record size 99

sort
ASCII considerations 394,395
collating sequence 251
Data Division considerations 248,249
elements of the feature 245
Environment Division considerations

FILE-CONTROL paragraph 246 Q 247
I-a-CONTROL paragraph 247,248

keys 250,251
Procedure Division considerations

EXIT statement 256

Index 1~51

RELEASE statement 254,255
RETURN statement 255
SORT statement 250-254
special registers 256.257

sample progr.am 258 u 259
SORT-CORE-SIZE special register 257
sort-file

COpy statement 320-324
description entry 249
SELECT clause 247

SORT-FILE-SIZE special register 256
sort-key" definition 339
SORT-MESSAGE special register 257
SORT-MODE-SIZE special register 257
SORT-RETURN special register 257
SORT statement

description 250-254
and EXIT statement 256
format 250
and RELEASE statement 252"253
and RETURN statement 254,255

SORT statement considerations (OS/VS
only) xxxv

sort-work-file 249 u 250
SOURCE clause

description 279
format 279
with report groups 276

SOURCE-COMPUTER paragraph 68,320-324
source program

definition 59
and reference format 51-53
resequencing 317

source program lib~ary facility
and CD entry 347,341,320-324
COPY statement 320-324
extended

BASIS 324
DELETE/INSERT 324"325

space
in alphabetic items 119
in BLANK WHEN ZERO clause 115
in collating sequence 160,251
in floating insertion editing 125,126
as a replacement character 125-127
in simple insertion editing 124
as a word separator 40
in zero suppression editing 126.127

SPACE (SPACES) figurative constant
definition 43
in a move 199

spacing source program listing 331
~panned records

definition 103
recording mode 102
specification 103

special character in formats 54
special insertion editing 124
special level numbers 95
special-names definition 41

(see also mnemonic-name)
SPECIAL-NAMES paragraph

452

COPY statement 320-324
CURRENCY SIGN clause 700 71,338
DECIMAL-POINT IS COMMA clause 70,71.338
description 69-71
format 70

system-name is mnemonic-name clause 70
and 3505 processing 413
and 3525 processing 413,414

special register WHEN-COMPILED (OS/VS
only) i,ii

special registers
definition 44
report writer

LINE-COUNTER 285,286
PAGE-COUNTER 285

sort
SORT-CORE-SIZE 257
SORT-FILE-SIZE 256
SORT-MESSAGE 257
SORT-MODE-SIZE 257
SORT-RETURN 257

system
CURRENT-DATE 44
DATE 45,219,220
DAY 45 n 220
LABEL-RETURN 45.172
RETURN-CODE 44,195,239
TALLY (see TALLY special register)
TIME 45,220
TIME-OF-DAY 44

special TP control characters as data 344
squa~e brackets in formats 54
stacked items in formats 54
standard data format

alphabetic items 119
a~phanllineric edited items 123
alphanumeric items 121
fixed-point numeric items 121
logical records 100
numeric edited items 123
physical records 99

standard sequential file
BLOCK CONTAINS clause 98n 99
CLOSE statement 221-225
definition 61
file processing chart 384
labels 103-105,170-174
OPEN statement 205-207
READ statement 210 0 211
r.ecord overflow feature 87
recording mode 101-103
spanned records 102,103
WRITE statement 212-216
WRITE-ONLY option of APPLY clause 86,87

standard system procedures
error routines 175
label handling 171

START statement
description 208,209
formats 208
indexed files 65.80

START statement, VSAM (OS/VS only) xvi
statement

categories 150
compiler-directing, list 153
conditional, list 151
imperative" list ~51.152

definition 149
static CALL s~atement

implementation 228-230
specified with dynamic CALL 230,231

".-----

'. "

'''"-J!

statiG subprogr.am linkage
described 228-2300 232-235

status key. VSAM (OS/VS only)
specification v~viii
values in x,xi

ster~ing currency
international considerations 338
nonreport items

description 333,334
in a move 199
in a relation condition 161

PICTURE symbols allowed 332
Procedure Division considerations 338
repol;'t items

descript-ion 335-337
in a move 199
in a relation condition 161

STOP statement
in calling and called p~ograms 238,239
format and description 195

STOP RUN statement
in calling and called programs 239
description 195~239
and message retrieval
and symbolic debuqging

350
399

257
13

storage available for sort
string manipulation feature
STRING statement

description 353-356
example 355,356
format 353

structure of
COBOL language 35-45
COBOL program 47.48
COBOL records 94,95
Data Division 92~93
Environment Division 67
Identification Division 57
Procedure Division 150

sub-queue structures
and input CD 341-343
and MESSAGE condition 348
and RECEIVE statement 349

subdivisions of data records 94,95
subject

of a condi t·ion 159
implied 164" 16S
of an OCCURS clause 301

subprogram, ILBO invalid as name
in 230,231

subprogri.lm linkage desc~iptions
dynamic 227 0 230-234.236-240
static 228-230H 232-235 n 238-240

subprogram linkage statements
CALL 228-231
CANCEL 231,232
ENTRY 232
EXIT PROGRAM 239
GOBACK 240
STOP RUN 195
termination considerations 238,239
USING option 233-237

subscripts
condition-name 143
description 297 0 298
format 297 u 298
qualiiication of 297,298
restrictions on use 299

substitution
comma for period 700 71,338
dollar sign 70,71,338

subtotaling in a report 2786 279
SUBTRACT statement

description 183,184
example 24
formats 183,184.

subtraction operator 154',155
SUM clause 279-281
SUM counter

definition 280
INITIATE statement 283
resetting to zero 278,279

summary reporting 281,282
summation in a report 278-281
suppr.ess spacing 214n 70
suppression of

leading zeroes 125-127
library entry listing 320,322
pr.inting of a report group 285,274
sequence checking 51

suppr.ession and replacement
editing 126 0 127

suppression symbols 126
symbol' pair in a compound condition 164
symbolic debugging

description 397-401
dump example 402-412
Version 4 feature 12

symbolic portion of ACTUAL KEY 78,79
symbolic queues and sub-queues

and CD entry 341-343
and MESSAGE condition 348
and RECEIVE statement 349

symbols
in arithmetic expressions 154.155
in floating-point literals 42
in PICTURE clause 118-120
in relation conditions 159
in sterling currency formats 332

SYNCHRONIZED clause
description 129,130
format 129
index data items 307
slack bytes 130-134

syntax-checking compilation 13
SYSIN 218,219,70
SYSOUT 220,70
SYSPUNCH 220"270
system closing conventions 223
system features

CURRENT-DATE special register 44
DATE special register 45n 219,220
DAY special register 45,220
LABEL-RETURN special register 45,172
RETURN CODE special reqister 44~195,239
TALLY special register (see TALLY
special register)

TIME special register 45.220
TIME-OF-DAY special register 44

system independent binary items 138
system information and USING option 234
system link library and dynamic CALL 227
system logical input device 218,219
system logical output device 220
system-name

in ASSIGN clause 74,75

Index 453

--------- ------_.

definition 73
in the RERUN clause 84e 248

system-name. VSAM (OS/vS only) v,vi
system routInes

error 175
label handling 171

System/370 device support 413-416
System/370 instruction generation 69
System/370 instructions (OS/VS

only) ii, iii
SOl and S02 system-names." definition 64

table, description 297
table elements 302~297
table handling

Data Division considerations
OCCURS clause 303-307
USAGE clause 307

examples 299n 300.304-307,312
indexing 298n 299

direct 306
relative 306n 307

Procedure Division considerations
relation conditions 308
SEARCH statement 309-312
SET statement 313

sample prog~am 314 6 315
TALLY special register

in the ACCEPT statement 219
description 44
and CALL statement 229
in tHe DISPLAY statement 221
in the EXAM~NE statement 200
in a SOURCE clause 279
as a subscript 297
in a SUM clause 2796 281

tape device" e~ror information 175-177
tape file

label handling 170-1726 103-105
and NO REWIND option 206,211,224
and REVERSED option 205-207

teleprocessing (TP) considerations
Data Division CD entry

copying 341 0 347 0 320-324
FOR INPUT 340-346
FOR OUTPUT 340,346,347

and MCP (message control program) 339
Procedure Division considerations

MESSAGE condition 348,349
RECEIVE statement 349,350
SEND statement 350-352

Version 4 feature 13
TERMINATE statement 283,284
termination of

execution 195
main programs 238,239,195
report processing 283,284
STRING statement 354,,355
subprograms 238-240
UNSTRING statement 360

test conditions .

454

class 157.158
condition-name 158
definition 156
message 348 n 349
relation 159-161
sign 162

THEN
in IF statement 166
in sentences 38,149

TIME special register description 45,220
TIME-OF-DAY special register
description 44

TOTALED/TOTALING option for 1abel
records 104~105

TRACE statement 326
track address in ACTUAL KEY 78,79,62
TRACK-AREA clause 82
TRAC~LIMIT clause 82,63
trailer labels 103-105,170-172
transfer of control

to operating system 1950 237-240
to operator 195fl 218, 219

transfer of data
in MOVE statement 197'-199
in STRING statement 353-356
in UNSTRING statement 3S7-362

TRANSFORM statement 202-204., 338
and ASCII files 392-394

trip~e spacing
p~inter page 215
source program listing 331

truncation
in arithmetic operation 117,179
of buffers 87
in floating insertion editing 126
in receiving field 117,198

two-line print files on 3525 416
TYPE clause 275-277

U-mode records
and BLOCK CONTAINS clause 99
compiler determination for 101,102
definition 103
description 101n 103
and direct files 102
inter-record slack bytes 134
REVERSED option of the OPEN
statement 206

specification 102"103
UHL {User Header Label) 104
unary + and unary - 154,155
unconditional syntax-checking
compilation 13

under.lined words in formats 54
unequal size operands in a relation
condition 160

unique names 49,50
unit in formats 55
unit record volume

definition 222
effect of CLOSE options 223-225
error information 175-177
list 74

unknown message destination 346,347
unsigned numeric operands

considered positive 159n~62,42
in relation condition 159
in sign condition 162

unspecified record format (see U-mode
records)

" '-._.

llNS'?RING statement
aescription 357-362
~xample 360-362

"./ format 357
updating a file

REWRITE statement 217.218
WRITE statement 216"217,213

updating sample program 32033
USAGE clause

alteration by redefining 114
ASCII considerations 391,395
and class condition 157
default option 135
description 135-140"307
formats 135~307
index data items 307
and relation condition 159,160
and STRING statement 353
and UNSTRING statement 357

USE statement (see declaratives)
user-created librar.ies 320-325
user error procedures 175-177
User Header Label (UHL) 104
user labels

and ASCII files 390
and declarative procedures 170-174
description 104
GO TO MORE-LABELS 171v172
and LABEL RECORDS clause 103-105
sample prog~am 173"174

User Trailer Label (UTL) 104
USING option for sort (OS/VS only) xxxv
USING option of subprogram linkage

boundary alignment in 234
in_a called program 232-235#238
in a calling program 228-238
entry points in 228n 229fl232-234
examples 234-238
and EXEC statement PARM field 234
formats and description 233-238
paired operands in 229

utility device list 74
UTL (User Trailer Label) 104

V, used in a PICTURE clause
description 118 6 120
external floating-point items 122
fixed point numeric items 121,137n 138
numeric edited items 123
with P 118
sterling nonreport items 333,334

V-mode records
definition 103
inte~-record slack bytes 121-122
recording mode 101wl02
REVERSED option of the OPEN
statement 206

specification 102,103
specification of physical record
size 98,99

valid forms of the class test 158
VALUE clause

in Communication Section 141
\ condition-names 142v143~158~108.109
-_~description 141-143

examples 1~3"158

in File section 141
formats 141
in Linkage Section
report data items
in Report Section
in Working-Storage

VALUE OF clause 105

141
279",281
141" 279,281
Section 141

variable-length reco~d format (see V mode
records)

variable-length records
description 101-103
and OCCURS DEPENDING ON 302,249
size of print line in a r.eport 263
in sort 249

variable-length table 301-303
Version 3 Compiler features

included in Version 4 12
list of 12
sort enhancements for 256u 257

Version 4 Compiler features
ASSIGN clause and 75
DATE/DAY/TIME special
~egisters 45"46"219,220

dynamic subprogram
linkage 227-232.236u 237

list of 12,13
string manipulation 353-362
symbolic debugging 397-412
teleprocessing (TP) 339-352
Version 3 features included 12
1505/3525 processing 413-416

vertical positioning
of printer file 213-215
of 3525 card file 416

volume-switch
and CLOSE options 223 n 224
label processing 103-105,170
and READ statement 211
and WRITE statement 216

VSAM file processing (OS/VS only)
Data Division ix
Environment Division v-ix
overall description iv
permissible I/O statements xv
Pr.ocedure Division ix-xxii
valid devices iv

wait state, and RECEIVE statement 350
WHEN-COMPILED special register (OS/VS

onl:y) i,ii
word

continuation of in a source program 53
definition 40
t:ypes

name 41
reserved word 40
special name 41

Working-Storage Section
boundary alignment 130
bontent 96 6 97 0 107-109
in COPY statement 320-324
data item description entry 107 0 108,96
example 22,23
format 96
naming data 110
overall description 96,97

Index 455

record desc~iption entry 107,108,97
structure' 93
use of FILLER 110
used in error p~ocessing 177
values of items 141

WRITE ADVANCING considerations (OS/VS
only) xxxv

WRITE-ONLY option of the APPLY
clause 86,87

WRITE statement
description 212-217
error processing 175-177
examples 27
formats 213
and 3525 combined function
processin~ 415-416

WRITE state.mer~t#l VSAM (OS/VS
only) xviii-xx

writing user labels 175-177 nl03,105

X, used in a PICTURE
clause 118 0 120 0 121,123

Z, used in a PICTURE clause
description 118~120
nume~ic edited items 123 0 126,127
sterling report items 335-337
zero suppression editing 126,127

zero divisor 182,179
ZERO (ZEROES H ZEROS) figurative constant

description 43
in a move 199
in place of numeric literal 43
in a relation condi~ion 161

zero insertion 1190 12°"123,124
zero operand '

and BLANK WHEN ZERO 115
relation condition
sign condition 162

161

and size er~or 179 0 182
zero suppression and replacement
edi.ting 126,127

zone bits, external decimal items
zoned decimal items 136 0 139

0, alphanumeric edited 123
end indicator code 34~n352
ERROR KEY code 347
numeric edited items 123-127

136,139

in PICTURE clause 119,1200 123-127
00 as STATUS KEY code 345~348

01-49, level numbers 94 0 95,,108,52

1u end indicator code 3~4~352
ERROR KEY code 347

2# end indicator code 344 u 352

2-line print files on 3525 416

3~ end indicator code 344 0 352

6u used in sterling items 332,333

7", used in sterling items 333,332

8# used in sterling items 333-337,332

9", used in a PICTURE string
alphanumeric edited items 123
description 118,120
external floating-point items 122
fixed-point numeric items 121
numeric edited items 123-127
sterling items 333-337,3~2

20 as STATUS KEY code 345

21 as STATUS KEY code 345

22 as STATUS KEY code 345

29 as STATUS KEY code 345

50 as STATUS KEY code 345

60 as STATUS KEY code 345

66 level number 107 0 108 0 144-146,95

77 level number 107,,108,95

8.8 level number 107-109,,'141-143,95

'r -
\

\ \

2314, 2319, 3330, 3340 VSAM devices (OS/VS
only) iv

3505" processing functions 413,414

3525 processing functions 413-416

3886 OCR processing (OS/VS
only) xxviii, xxix

:/

I,

\ '" ,

.A' .

IBM as Full American
National Standard COBOL
GC28-6396-5

Your comments about this pUblication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever possible. All comments become the property of IBM.

Please do not use this form to ask technical questions about IBM systems and
programs or to request copies of publications. Rather, direct such questions or
requests to your local IBM representative.

If you would like a reply, please provide your name, job title, and business
address (including ZIP code).

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

Reader's
Comment
Form

G C28-6396-5

®

Fold and Staple

Business Reply Mail
No postage necessary if mailed in the U.S.A.

Postage will be paid by:

I 8M Corporation
System Development Division
LDF Publishing-Department J04
1501 California Avenue
Palo Alto, California 94304

Fold and Staple

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(I nternationaU

First Class Permit
Number 439
Palo Alto"California

" c:

»
z
en

8
!Xl a
r

G>
(")
I\J
00 en
eN
co
0')

U,

