
Student Text

A PL/I Primer

Preface

The purpose of this publication is to provide tutorial
material not only for the person with some knowledge
of computer programming, but also for the novice who
knows little or nothing about data processing.

The first chapter is written solely for the novice. A
reader who is familiar with basic programming tech
niques should skip the first chapter, and begin reading
at Chapter 2, «Basic Elements of PL/I."

Chapter 1, "Communicating with a Computer,"
touches on machine language and introduces the con
cept of symbolic programming. The basic techniques of
programming are illustrated by using symbolic instruc
tions, rather than PL/I, because certain PL/I state
ments can generate so much single-instruction coding
that the details of some of the techniques are hidden.

Further information concerning PL/I can be found
in the following publications:

IBM Operating System/360, PL/I: Language Speci
. fications, Form C28-6571

A Guide to PL/I for FORTRAN Users, Form C20-
1637

Copies of this and other IBM publications can be obtained through IBM branch
offices. Address comments concerning the contents of the publication to
IBM, Technical Publications Department, 112 East Post Road, White Plains, N. Y. 10601

© 1965 by International Business Machines Corporation.

Introduction 4

Chapter 1: Communicating with a Computer. 5
Programming Languages 5

Machine Language .. 5
Assembly Language 6
High-Level Languages 10

Binary and Decimal Notation 10

Chapter 2: Basic Elements of PL/I 11
Character Set 11
Comments , " ... 11
Identifiers ... 12
Data .. 12
Expressions .. 12

Chapter 3: Writing a PL/I Program 14
Fixed-Point and Floating-Point Notation 18

Chapter 4: Data Types .. , 20
Arithmetic Data 20

Fixed-Point Decimal Data .. 21
Sterling Fixed-Point Data 21
Binary Fixed-Point Data 21
Decimal Floating-Point Data , 22
Binary Floating-Point Data 22

String Data 22
Character-String Data 22
Bit-String Data .. 23

Label Data .. 23

Chapter 5: Control Statements. 24
The IF Statement . 24
The DO Statement 26

Chapter 6: Procedures 29
Program Execution. 31

Chapter 7: Recognition of Names. 34

Contents

Chapter 8: Collective Names .. 39
Structures ... 39

Qualified Names 40
Structure Expressions 41

Arrays .. 41
Variable Subscripts .. 43
Array Expressions .. 43

Chapter 9: A Table Look-Up Procedure 44

Chapter 10: Arguments and Parameters 47

Chapter 11: Input/Output 50
File Declaration 50

Standard Files .. 50
Stream-Oriented Transmission 51

List-Directed Data Transmission 51
Data-Directed Data Transmission 52
Edit-Directed Data Transmission 52
The STRING Option .. 55

Record-Oriented Transmission 56
Redefining a Buffer .. 59

Chapter 12: Expressions and Operations 60
Arithmetic Operations 60
Comparison Operations 60
Concatenation Operations 60
Bit-String Operations 60

Chapter 13: Error Control and Program Checking. .. 62
The ON Statement .. 62

Scope of the ON Statement 63
Condition Prefixes " 64

Scope of the Condition Prefix .. 64

Appendix 1: The 48-Character Set. 67

Appendix 2: Permissible Keyword Abbreviations. .. 68

Index of Definitions. .. 69

General Index .. 70

Introd,uction

In the past, throughout the data processing field, cer
tain computers generally were identified with a particu
lar field of activity, either scientific or commercial. Pro
gramming languages were specialized in the same way.
FORTRAN was developed for scientific programming
and COBOL for commercial programming.

Today, computing systems are designed for a broader
range of activity. The new computers are faster and
more powerful. They serve the scientific and commer
cial programmer equally well, and they provide facili
ties for many new programming techniques. None of
the older languages can take advantage of all the power
of the new computers, and more and more computer
installations are handling both scientific and commer
cial programming.

These are the reasons for PL/I. It is a multipurpose
programming language that can be used by both com
mercial and scientific programmers. to handle all of
their programming work and to give them the widest
range of control over the computer.

PL/I has been designed so that any programmer,
no matter how brief or extensive his experience, can

use it easily at his own level. It is simple for the be
ginning programmer; it is powerful for the experienced
one.

A programmer need not know everything about PL/I
to be able to use it. An experienced programmer can use
PL/I to specify almost every detail of every step of a
highly complicated program. A beginner can take ad
vantage of the many automatic features of the language
to do much of his work for him.

The language provides many options in statements,
in descriptions of data or files. Wherever there are al
ternatives, the compiler makes an assumption if no
choice is stated by the programmer. In each case, the
assumption, called a default, is the alternative that
would be required. in the majority of situations. The
default concept is an important part of the simplicity of
PL/I. In many cases, a beginning programmer need not
even know that alternatives exist.

PL/I was developed by IBM in conjunction with rep
resentatives of two customer groups: SHARE, the sci
entific users' organization and GUIDE, the commercial
users' organization.

In the few years since the first use of computers, the
field of data processing has been explosive in its growth.

The computer began as a machine to aid the mathe
matician. Today, computers are used in almost every
science and industry. New computer applications are
being discovered; new programming developments will
provide simpler ways of solving problems.

A computer, however, has no mystic or magical
power. It is merely a tool. Granted, a computer is a tool
that operates swiftly and accurately; yet as a hammer
cannot drive a nail by itself, a computer, undirected,
cannot function.

A computer is not an electronic "brain." It has no
"memory," merely areas that can be magnetized in a
way to represent information.

A computer has no discrimination. It will add apples
and oranges without hesitation. In most computers, all
numbers, letters, and characters are represented inter
nally as expressions of binary digits (1 and 0). (See the
section "Binary and Decimal Notation" at the end of this
chapter.) Although various combinations of binary dig
its, or bits, may arbitrarily have been given meanings,
the computer can consider any piece of data only one
bit position at a time.

A computer has no judgment. It can make no deci
sions except to choose one of two alternatives presented
to it; even then, the choice is dependent upon the value
of one or more binary digits the computer has been di
rected to examine.

2345678

Chapter 1: Communicating With A Computer

A computer can do only what it is told to do and only
in the way it is told to do it. Specific electronic stimuli
cause specific electronic reactions. In effect, a computer
responds to an instruction.

Each instruction causes a certain action to be taken
by the computer. A series of instructions can be written
to direct a computer to take all the necessary action,
step by step, to solve a problem - to receive data, to
process it, and to return the results. Such a series of in
structions is called a program. The notation in which a
program is written is called a programming language.

Programming Languages
A programming language is not used to "talk with" a
computer. The only programming language a computer
can respond to - machine language - is hardly a lan
guage at all. Any programming language that resembles
a human language first must be translated into machine
language before it can have any effect upon the opera
tion of a computer.

Machine Language

Each different kind of computer has its own machine
language, which has been built in by its designers. Fig
ure 1 illustrates a hypothetical, but representative, ma
chine-language instruction as it would appear when
punched into a card.

00
123456789ffln~n~~ffinffi~w~n~M~~V~~W~D~M~~~~~W~G~«~~~~O~~~~M ~~g~~~~~~~~~~~~mnnnMro~nHHw

Itt t t 11111 t 111111111111111111111111111111 t 11111111111111111111111111111111111111

2122

331333 333

444144

55551555 5555555555555555555555555555

66666166 6 6 6 6 5 6 6 666666666666666666666

7777771771771177771717771711717117777717777777177777 7777177777777771771777777771

8888888188 8 8 8 8 8 8 8 8 88888888888888888888

99
123456189ffln~n~~wnffi~w~nnM~~V~~W~D~"~~~~~W~G~«~~~~O~~~~M ~~g~~~~~~~~M~~~mnnnHro~nHHw

j IBM 5081!

Figure l. A Typical Machine-Language Instruction.

Communicating With A Computer 5

Assume that a computer has been engineered to rec
ognize this instruction as indicating the arithmetic func
tion of addition, and that the instruction actually con
sists of three elements, or fields. The fields are 12, 345,
and 678. The first field, 12, is the operation code that in
structs the computer to add. The other two fields, 345
and 678, represent specific locations in the main storage
area of the computer. They are addresses of locations
where data is recorded, or stored.

When the computer executes the instruction, the data
item stored in storage location 345 is added to the data
item stored in location 678. In this case, the sum replaces
the item that originally had been stored in location 678.1

Obviously, programming in machine language is diffi
cult. A programmer would have to memorize the com
plete list of operation codes or continually consult a
reference list.

More difficult than handling the operation codes in
machine language would be the problem of keeping
track of the location of different data items. Even the
smallest computers have thousands of data locations,
each represented by a separate address. A machine
language programmer would have to construct a com
plete address list, noting the location of each data item;
the list would change each time an item is moved from
one location to another.

A computer can be programmed to consult an opera
tion code table and keep track of data addresses. Pro
grams can be written using recognizable symbols, and
the computer can be instructed to translate this sym
bolic language into machine language.

Assembly Language

A program that instructs a computer to translate a lan
guage, instruction by instruction, into machine code is
called an assembler. The program to be translated, or
assembled, is written in assembly language.

An assembly language is a programming language
that has a different, recognizable symbol to represent
each machine operation code, symbols like ADD,
MOVE, or READ. The assembler instructs the compu
ter to substitute the equivalent machine-language oper
ation code for each assembly-language operation code.
Using the hypothetical computer discussed previously,
the assembler would instruct the computer to substitute
the machine-language operation code 12 whenever it
encounters the word ADD.

The handling of data location addresses by an assem
bler demonstrates even greater ingenuity. There is no

1 This type of operation, called storage-to-storage operation, often makes it
necessary for a programmer to establish a particular storage location for use
as a work area; otherwise, the data item that is replaced by the result of a
computation might be irretrievably lost. Some computers are programmed
using special registers where computations take place, thus avoiding this
problem. Some computers use both arithmetic register operations and
storage-to-storage operations, but illustrations in this section assume a com
puter with no such registers.

6 A PL/I Primer

set list of names for the different locations. The pro
grammer chooses any name he wishes. Each name, of
course, must be different from all other names in any
one program, and each must be used consistently for the
same reference.

The machine-language instruction 12345678 might,
in assembly language, be written ADD FIRST TO
SECOND, although more commonly the word TO is
replaced by a comma. Thus, the instruction might be
ADD FIRST, SECOND. In this case, FIRST and SEC
OND actually are names that represent addresses of lo
cations where data is stored in the computer. In concept,
however, they can be considered to be names of the data
items themselves. So a programmer usually chooses
such descriptive names as P A YRA TE or COEFFI
CIENT.2

The assembler causes the computer to construct a
table of names much like the table of operation codes,
except that a machine-language address is associated
with each name. Consequently, a programmer need not
be concerned with where data actually is located; each
time a data name appears, the computer substitutes the
machine-language address of the location where the
data item is to be stored.

Figure 2 illustrates a program as it might be written
using an assembly language. Although the purpose of
this book is to explain the use of PL/I as a programming
language, the details of some basic programming con
cepts can be more easily illustrated in assembly lan
guage coding, since PL/I handles so much program
ming detail automatically. An understanding of these
basic concepts will make it easier to learn PL/I.

Note that there are names, or labels written to the left
of some of the instructions. Their purpose is to identify
the particular instruction. When the assembled program
is loaded into the computer for execution, the machine
language instructions actually occupy storage locations
'within the computer, just as data does. Thus, the label
of an instruction is translated by the assembler into the
address of its associated instruction.

The program is designed to compute the monthly
sales of a company and to print the result, listing total
sales for each salesman, as well as total company sales.
Each card that is read represents a single sale. It lists
the salesman's number and amount of the sale. The
cards are sorted according to salesman number; conse
quently, all sales cards for each salesman are together.

Unless specified otherwise, a program is executed se
quentially, instruction by instruction. If the sequence of

2 With most assembly languages, the operation codes are abbreviated to one
or two letters. Thus, A might be the operation code for "add," M for "mul
tiply," and MV for "move." In the same way, there are usually restrictions
on the number of letters allowed in names, often six or seven. However, to
add' clarity to this discussion, operation codes and names are completely
spelled out.

INSTRUCTION

LABEL OPERATION CODE OPERANDS COMMENTS NUMBER

START READ CARD, READ AREA READ FIRST CARD. 1

MOVE MOVE SALES FIGURE TO STORAGE 2
SALES, MONTHLYTOTAL AREA FOR MONTHLY TOTAL.

LOOP2 MOVE SALESNO, SALESNUMBER SET SALESMAN'S NUMBER. 3

MOVE SALES, MANTOTAL MOVE SALES AMOUNT TO 4
SALESMAN TOTAL.

LOOPl BRANCH LAST CARD PRINT2 IF LAST CARD HAS BEEN READ 5
BRANCH TO PRINT2;

READ CARD, READAREA OTHERWISE, READ NEXT 6
SALESCARD.

COMPARE SALESNO, SALES NUMBER COMPARE SALESMAN NUMBER ON 7
CARD WITH SALESMAN NUMBER
FROM LAST RECORD.

BRANCH UNEQUAL PRINT1 IF NOT THE SAME, BRANCH TO 8
PRINTl;

ADD SALES, MANTOTAL OTHERWISE, ADD SALES TO 9
SALESMAN TOTAL.

ADD SALES, MONTHLYTOTAL ADD SALES TO MONTHLY TOTAL. 10

BRANCH LOOP1 GO BACK TO READ NEXT CARD. 11

PRINTl WRITE SALESNUMBER, MANTOTAL WRITE SALESMAN NUMBER AND 12
HIS TOTAL SALES.

ADD SALES, MONTHLYTOTAL ADD SALES TO MONTHLY TOTAL. 13

BRANCH LOOP2 GO BACK TO SET NEW SALESMAN 14
NUMBER.

PRINT2 WRITE SALES NUMBER, MANTOTAL WRITE REPORT FOR LAST 15

WRITE MONTHLYTOTAL

END

Figure 2. A Hypothetical Assembly Language Program

execution is to be changed, the programmer can specify
that execution branch to a label; the instruction having
that label becomes the next instruction executed. In Fig
ure 2, for example, when instruction 11 is executed, con
trol is transferred back to instruction 5.

The comments to the right of the instructions are not
part of the program. They are a part of the program
mer's own documentation to indicate the reason for
each instruction. Likewise, the numbers to the right are
merely for the programmer's convenience in numbering
the instructions.

This program, called a source program, shows what
the programmer might write and what would be
punched into cards, one instruction per card. The as
sembler instructs the computer to read the source pro
gram, to translate each instruction into machine lan
guage, and to punch the assembled program into
another deck of cards or to write it on magnetic tape or

SALESMAN.

WRITE COMPANY TOTAL. 16

on some other form of storage. The translated program
is called the obiect program; it can be loaded into the
computer and executed.

At the start of the program shown on Figure 2, the
first sales card is read and recorded inside the computer
in READAREA. Since a card has 80 columns and each
column represents one character, READAREA takes up
80 locations in storage (unpunched columns are re
corded as blanks).

The second instruction moves the sales amount to the
area where the monthly total is to be computed. In a

. computer, a move instruction might more accurately be
described as a "copy" instruction, since the data item is
not actually removed from its original location. Conse
quently, instruction 4 also can "move" the sales figure to
the area where the individual salesman's total is to be
computed. A programmer must always remember that
data used in a previously executed program may still be

Communicating With A Computer 7

recorded within the computer; it must not be assumed
that any location in storage is blank or zero unless the
computer is instructed to make it so. A move instruction
causes replacement of any data left in the storage area;
data moved into the location replaces data that had
been there before.

Instruction 3 moves the salesman number from
READAREA to the locations where it will be stored. All
of the information on the card that is necessary to this
program has now been stored, and the next card is read
and recorded in READ AREA, completely replacing the
data that had been recorded there when the first card
was read.

Instructions 5 through 11 are the heart of the pro
gram. They all will be executed repeatedly, once for
each sales card except the first sales card for each sales
man. Such repetitive execution is called looping.

Instruction 5 is one that reveals much about computer
programming. It means "test to see :if the last card has
been processed; if so, branch to PRINT2." Although the
condition being tested can occur only once during the
entire execution of the program, the test is made before
each READ instruction, except the first. The location of
this instruction in the sequence of execution is critical.
It must be executed only when computations are com
plete for all data that has been read up to that point.

Mter each card is read in LOOP1, instruction 7 calls
for a test to see if the salesman's total sales have been
figured. It directs the computer to compare the sales
man number on the card just read with the salesman
number saved in storage. If they agree, the other in
structions in the loop are executed, and instruction 11
causes a branch back to instruction 5 to repeat the loop.

If, however, the salesman number on the card is
different from the salesman number recorded at SALES
NUMBER, it indicates that the total sales have been
computed for the salesman whose number is recorded at
SALESNUMBER. In that case, instruction 8 causes
control to branch to instruction 12, labeled PRINTl.

The salesman's number is written, along with the
salesman's total sales. "Writil1g," in this case, could
mean printing the actual report, or it could mean writ
ing magnetically, on tape, for later printing. The sales
figure is added to the monthly total, and control branch
es back to LOOP2 to initialize SALESNUMBER and
MANTOTAL for the next salesman's records. When the
last card is read and tabulated, totals are written for the
last salesman and the monthly sales total is written.

During assembly of the program shown in Figure 2,
each instruction is translated directly into a single ma
chine-language instruction that is executed by the com
puter when the object program is run. Instructions of
this type are called executable instructions.

Another kind of instruction - not shown in Figure 2
but necessary to every assembly-language program-is

8 A PLII Primer

the non-executable instruction. Non-executable instruc
tions are those that give information needed by the as
sembler in the construction of the table of names and
the assignment of addresses.

For example, the READ instructions indicate that
data read from cards is to be recorded in READAREA.
When the program is executed, READ AREA might be
at location zero or at location 10, 22, or anywhere else
in storage; it is of no concern to the programmer. But he
must make certain that READ AREA, wherever it may
be, is a field of 80 locations in length, one location for
each card column. The non-executable instruction de
scribing READAREA might be written as follows:

READAREA DS CHAR80

The operation code DS means "define storage";
CHAR80 indicates that the area defined is to be large
enough-but no larger than needed-to store 80 charac
ters of data. When it encounters this instruction, the
assembler assigns a machine-language address to
READAREA and skips the addresses of the next 79
character locations before making another address as
signment. If READ AREA is assigned to location 100,
for example, and the above instruction is followed by
SALESNUMBER DS CHAR8, the address assigned
to SALESNUMBER would be 180. The next storage
assignment after that would be 188.

In the illustrated program, certain positions of the
area into which cards are to be read must be redefined
so that individual items of data may be handled sepa
rately. The salesman's number and the sales figure must
be described as they will appear on the card and as they
will be recorded in READAREA. Different computers
provide different methods of doing this. One method is
illustrated by the following instructions:

READAREA
SALESNO
SALES

DS
DS
DS

OCHAR80
CHAR8
CHAR6

In the first instruction, the zero preceding CHAR80 in
dicates that READAREA, which is a total of 80 charac
ters in length, will be redefined and that different por
tions of it will be given different names. When using
this method of redefining a storage area, a programmer
must account for the entire area. Since SALES NO and
SALES require a total of only 14 locations, the remain
ing 66 locations in READAREA must also be redefined.
This could b~ done as follows:

DS CHAR66

This redefined area need not be given a name if it is not
to be used in the program.!

1 This portion of the card also may contain data; in this case it might be a
description of the merchandise sold or the name and address of the buyer.
Although this information is not necessary in figuring total sales, it might be
applicable to some other program in which the same input cards could be
used. The entire card is read, and all data on it is recorded in storage.
Unused data is merely ignored by the program.

READ AREA READAREA
SALESNO
SALES

SALESNUMBER
MANTOTAL
MONTHLYTOTAL

DS
DS
DS
DS
DS
DS
DS

OCHAR80
CHAR8
CHAR6
CHAR66
CHAR8
CHARlO
CHAR14

SALESMAN NUMBER ON CARD
SALES LISTED ON CARD
REMAINDER OF READ AREA
SALESMAN NUMBER IN STORAGE
SALESMAN TOTAL SALES
MONTHLY TOTAL SALES

Figure 3. Non-Executable Instructions

All of the data names used in a program must be de
scribed. The non-executable instructions are usually
kept together, either preceding or following the list of
executable instructions.

Figure 3 illustrates all of the non-executable state
ments required to complete the program shown in
Figure 2.

Macro Instructions

Another kind of instruction that gives information to
the assembler is the macro instruction. A macro instruc
tion instructs the assembler to provide a predetermined
sequence of instructions instead of a single machine
instruction. It might be a commonly used sequence that
is «built in" as a part of the assembly program (for ex
ample, a sequence to round a currency value to the
nearest penny), or it might be a particular sequence of
instructions that the programmer could specify.

Assume that a programmer writes a program that re
quires several simple multiplication operations using
numbers that represent dollars and cents. Also assume
that the product of multiplication replaces the number
being multiplied; thus, it is first necessary to move this
number to a work area, compute the product, and then
move the answer to the desired location.! The follOwing
instructions are needed each time the operation is used:

MOVE MULTIPLICAND, WORKAREA
MULTIPLY WORKAREA, MULTIPLIER
MOVE WORKAREA, PRODUCT

A macro instruction can simplify program writing and
card punching. At the beginning of the program a
macro definition such as the following is written:

PRODUCT MACRO A, B, C
MOVE A, WORKAREA
MULTIPLY WORKAREA, B
MOVE WORKAREA, C
END PRODUCT

The letters A, B, and C, which could be any names or
symbols a programmer chooses, are called parameters.
As they appear in the coding, they represent positions
in the instructions where other names will be substi
tuted. If a programmer wants to compute gross pay
based on hourly rate of pay and hours worked, the fol
lowing macro instruction could be written:

PRODUCT PAYRATE, HOURS, GROSSPAY

1 This method is used here to provide a clearer explanation o(a macro in
struction. The product could be computed in place; the multiplicand could
first be moved to the location where the product is to be stored. During
multiplication, the product would replace the multiplicand and would be
properly located.

The assembler would supply instructions as written in
the macro definition of PRODUCT and would substi
tute-in each instruction-PAYRATE for the letter A,
HO URS for the letter B, and GROSSP A Y for the letter C.

The preceding macro instruction might be followed
by:

PRODUCT
PRODUCT

GROSSPAY, TAXRATE, TAX
GROSSPAY, SOCIALSECURITY, FICA

In other words, the same macro instruction can be used
to figure taxes and social security payments to be with
held. In each case, one written instruction in the source
program provides three machine-language instructions
in the object program.

An engineer might use the same macro instruction to
. compute wattage and voltage, writing the instructions

as follows:

PRODUCT
PRODUCT

AMPS, OHMS, VOLTS
VOLTS,AMPS, WATTS

Note that in each macro statement the names to be sub
stituted, called arguments, are listed in the same order
as the corresponding parameters are listed in the first
line of the original macro definition.

A programmer working with currency values prob
ably would want the product of multiplication accurate
to the nearest cent. Assume that the assembler has a
built-in macro instruction that supplies two machine
language instructions to handle this operation. The pro
grammer might write:

ROUND
ROUND
ROUND

GROSSPAY
TAX
FICA

Or, the built-in macro instruction might be inserted into
the programmer's macro definition. The macro defini
tion could be:

PRODUCT MACRO
MOVE
MULTIPLY
ROUND
MOVE
END

A,B,C
A, WORKAREA
WORKAREA,B
WORKAREA
WORKAREA,C
PRODUCT

If the macro instruction PRODUCT were defined this
way, each use of PRODUCT as a macro instruction
would include the use of ROUND as a macro instruc
tion, and the computed answer would always be round
ed to the nearest cent. A single instruction written in the
program would then supply five machine-language in
structions-three included in the programmer's defini
tion and two supplied by the ROUND macro instruction.

Communicating With A Computer 9

High-Level Languages

As seen with the use of macro instructions, it is possible
to write one instruction that can direct a computer to do
a number of operations; one statement can represent
several instructions. In this manner, a high-level or ma
chine-independent language resembles a series of
macro instructions.

An assembly-language programmer must always con
sider the specific computer being programmed. Macro
instructions can free the programmer from some of the
machine detail; yet he must be aware of the instructions
that are supplied by each macro instruction. Idiosyncra
cies of the computer can get in the way of program
ming; details of writing the program can interfere with
the programmer's concentration on the solution of the
problem.

A high-level language can free a programmer from
the detailed job of writing each individual instruction.
A high-level language, although it may require strict
conformance to syntactic rules, is a programming lan
guage that reads much like English or like mathematical
notation. Each statement in a high-level language de
scribes the action of the step to be taken.

The macro instruction just discussed would be writ-
ten in PLjI as the following statements:

GROSSPAY=PAYRATE 0 HOURS;
TAX=GROSSPAY 0 TAXRATE;
VOLTS=AMPS 0 OHMS;
W A TTS=VOL TS 0 AMPS;

NOTE: The convention in most high-level languages
concerning arithmetic operators is to use the plus sign
and the minus sign in their conventional mathematical
sense. An asterisk (~) denotes multiplication; a slash
(j) denotes division; and a double asterisk (~~) de
notes exponentiation, that is, 2 ~ ~ 4 indicates two raised
to the power of four. The mathematical equal sign (=),
however, may have either of two meanings, depending
upon how it is used. When used as in the preceding
statements, it is called an assignment symbol (the state
ments are assignment statements), and it means «assign
the value of the expression on the right of the (=) sym
bol to the name on the left of the (=) symbol," or "set
the value of the variable on the left equal to the value
of the expression on the right." In other uses, such as
IF A=B ... , the equal sign means the same as the
mathematical equal sign.

A high-level language, like assembly language, re
quires a special program to direct the computer to ex-

10 A PL/I Primer

amine each statement and to expand it and convert it
into the necessary machine instructions. Such a pro
gram, called a compiler, is much larger and more de
tailed than an assembler. A source program translated
by a compiler is said to be compiled. A compiler frees
the programmer from the details of assembly-language
coding as an assembler frees him from the details of ma
chine-language coding. The programmer need have
little concern for specific conventions of a particular
computer. A high-level-language program written for
use with one computer may, without revision or, with
minor revision, be compiled for an entirely different
computer, even when the actual machine-language in
structions and internal representation of the two com
puters differ completely.

A high-level language allows a programmer to con
centrate on the problem at hand; each statement be
comes a broad step toward its solution.

Binary and Decimal Notation

The binary digit-also called a bit-is the basic unit in a digital
computer. From an electronic standpoint, it can be considered
to be a switch; it is either "on" (1) or "off" (0). Different com
puters may recognize certain combinations of binary digits differ
ently, but most of them are concerned with binary notation,
which uses a number system based on the value 2.

In decimal notation, the positions, moving left from the dec
imal point, are units, tens, hundreds, thousands, etc.; moving
right from the decimal point, they are tenths, hundredths, thou
sandths, etc. In binary notation, moving left from the binary
point, the positions are units, twos, fours, eights, sixteens, etc.,
indicating multiplication by two. Moving right from the binary
point, the positions are halves, quarters, eighths, sixteenths, etc.,
indicating division by two.

For example, the decimal number 2304.301 might be analyzed
as follows:

2 times 103 (1000)
3 times 102 (100)
o times 101 (10)
4 times 1oo (1)
3 times 10-1 (0.1)
o times 10-2 (0.01)
1 times 10-3 (0.001)

Total

2000
300

00
4
0.3
0.00
0.001

2304.301

In the same way, the binary number 11011.011 could be ana
lyzed as follows:

1 times 24 (16)
1 times 23 (8)
o times 22 (4)
1 times 21 (2)
1 times 20 (1)
o times 2-1 (~f)
1 times 2-2 (~~)
1 times 2-3 (~~)

16
8
o
2
1
o

11
14
11
18

Total 27%

In most programming languages, the length of an indi
vidual instruction or statement depends upon the span
of a single punched card. If a statement exceeds the
limit of one card, a notation must be made, usually with
a punch in some particular card column, to indicate that
the statement is continued on the following card.

Although most input to a computer begins with a
punched card, input often is transferred to magnetic
tape before it actually is introduced into the computer
for processing. In many applications, statements and
data are introduced into the computer directly from the
keyboard of a typewriter input terminal. Consequently,
the limitation of a single card, either actual or sym
bolic, is artificial.

PL/I has no such artificial limitation. There is no
fixed-length format for input although a compiler may
reserve some card columns. Within the available card
area, PL/I can be written in free fonn; the computer
recognizes a continuous stream of input. Just as a period
indicates the end of this sentence, a semicolon indicates
the end of each PL/I statement. The next statement
may begin immediately in the next available location,
whether card column, tape character, or typewriter
space, or any number of blanks may intervene.

Character Set

There are 60 characters in the PL/I language. These
include:

An extended alphabet of 29 characters; the currency
symbol ($), the commercial "at" sign (@), and the
number sign (#) precede the 26 letters of the English
language alphabet.

The ten digits 0-9.
The following 21 special characters:

NAME CHARACTER

Blank
Equal or assignment symbol
Plus sign +
Minus sign
Asterisk or multiply symbol 4
Slash or divide symbol 1
Left parenthesis (
Right parenthesis)
Comma
Point or period
Single quotation mark or apostrophe
Percent symbol %
Semicolon

Chapter 2: Basic Elements Of PL/I

NAME

Colon
"Not" symbol
"And" symbol
"Or" symbol
"Greater than" symbol
"Less than" symbol
Break character!
Question mark

CHARACTER

-,
&

I
>
<

?

Special characters may be combined to create other
symbols; for example, <= means "less than or equal to,"
1= means "not equal to." The combination 4# denotes
exponentiation (X##2 means X2). Blanks are not per
mitted in such character combinations.

A special 48-character set also is provided for use in
place of the 60-character set. This set is shown in Ap
pendix 1. In all but three cases, the characters of the
reduced set can be combined to represent missing char
acters from the larger set. The percent symbol (%) for
example, is not included in the 48-character set, but a
double slash (II) can be used to represent it. The three
characters that are not duplicated are the commercial
"at" sign, the number sign, and the break character.

The rules for PL/I sometimes specify that an alpha
meric character must be used in certain coding. The
term alphameric refers to any of the 29 alphabetic char
acters and the 10 digits, but not to the 21 special char
acters.

Comments

Programmers frequently insert comments into their pro
grams to clarify the action that occurs at a given point.
These comments enable someone unfamiliar with the
program to follow the programmer's line of thought and
are helpful to the programmer when looking back over
program sections that were written earlier.

Comments are permitted wherever blanks are allowed
in a program. They may be punched into the same cards
as statements, be inserted between statements, or ap
pear in the middle of statements without affecting com
pilation of the program.

The character pair, 14
, indicates the beginning of a

comment. The same characters reversed, # /, indicate its
end. No blanks or other characters can separate these
two characters; the slash and the asterisk must be im
mediately adjacent. The comment itself may contain

1 The break character is the same as the typewriter underline character. It
can be used within a name, such as GROSS-PAY, to improve readability.

Basic Elements of PL/I 11

any characters except the,o / combination, which would
be interpreted as tenninating the comment.

r THIS WHOLE SENTENCE COULD BE
INSERTED AS A COMMENT. ,0/

r SO COULD @#$¢%&l)()_-THIS. l)/

Any characters recognized by the user's system hard
ware may be used in comments. This includes charac
ters that are not in the PL/I character set, such as the
cent sign in the second example above.

Identifiers

An identifier is a combination of alphameric characters
and break characters used in a program as names of
data items, files, and special conditions, and as labels
for statements. The actual words of the language, such
as READ, WRITE, GO TO, etc., also are identifiers
(such language words, called keywords, when used in
proper context, have a specific meaning to the compiler;
they specify such things as the action to be taken, the
nature of the data, the purpose of a name).

An identifier must begin with one of the 29 alphabetic
characters and cannot contain blanks. No identifier can
exceed 31 characters in length; some compliers may
further restrict the length for certain kinds of identifiers.
Following are examples of identifiers:

A BINARY
LOOP WRITE
SALES NUMBER FILE2
XR25 #1200
DECIMAL PAY_NUMBER

The last of these examples (PAY_NUMBER) illustrates
the use of the break character to improve the readability
of an identifier, since blanks are not pennitted.

Data

Data is generally defined as a representation of infor
mation or values. Digits and characters are data; how
ever they are used, they always represent values.

A programmer is concerned with several different
levels of data, different representations of the same
values:

1. Raw data, the values to be processed and the infor
mation that states the problem to be solved

2. The representation of values as the programmer
writes it in his program

3. Compiler input data, the representation as it is
punched into a card or is entered from a typewriter
tenninal; this data is translated into machine-language
data

4. Internal data, the representation as it is main
tained inside the computer

To avoid ambiguity, the unqualified word «data,"
when used in this publication, refers to the representa
tion of values as written in a PL/I program.

Reference to a data item, numeric or alphabetic, is

12 A PL/I Primer

made by using either a variable or a constant (the terms
are not exactly the same as in general mathematical
usage).

A variable is a symbolic name-an identifier-having
a value that may change during execution of a program.
Since it is a name, a variable is not, in itself, a data item;
the value of a variable at any specific time is the data
item to which it refers at that time.

A constant, which is not given a symbolic name, is
unchanging; the data item is its name. Consider the
following statement:

AREA = RADIUS U 2 l) 3.141593;

AREA and RADIUS are variables, the numbers 2 and
3.141593 are constants. Thus, 3.141593 is the data item;
the characters 3.141593 also are written to refer to the
data item.

If the constant 3.141593 is to be used in more than
one place in the program, the programmer probably
would give it a name, probably PI, and would write the
statement as follows:

AREA = RADIUS U 2 l) PI;

In this statement only the digit 2 is a constant; PI is a
variable. Since PI is a data name, the programmer can
change the value it represents. The value of a variable
can remain constant throughout execution of a program;
nevertheless, it is still a variable.

The constant does more than state a value; it demon
strates various characteristics of the data item. For ex
ample, 3.141593 shows that the data item is a decimal
number of seven digits and that six of these digits are
to the right of the decimal point.

The characteristics of a variable are not immediately
apparent in the name. Since these characteristics, called
attributes, must be known, certain keywords are used
to describe the attributes of a variable when it first
appears in the program. The method used for such data
de~cription is discussed in a later chapter.

Expressions

Any identifier, other than language keywords, written
in a PL/I program is called an expression. An expression
may be a single constant or a name, or it may be a
combination of them, L'1cluding operators and other
delimiters.

An arithmetic expression combines arithmetic data
identifiers and arithmetic operators. Arithmetic expres
sions may involve addition (A + B), subtraction (A -
B), multiplication (A <) B), division (A / B), and ex
ponentiation (A <),0 B, or A raised to the power of B) .

A number of arithmetic operations may be included
in a single expression. For example:

A+B-C,o (D/ (E-F» uc
Parentheses within an expression indicate that the pa-

renthesized portion is considered as a single value in
relation to its surrounding arithmetic operators. The
parenthesized portion of an expression is evaluated first,
with innermost parenthesized material taking prece
dence. In the preceding example, D is to be divided by
the value of E minus F; the value obtained by this divi
sion is to be raised to the power of G; and C is to be
multiplied by the value obtained.

Although an expression may contain more than one
data item, it represents the single value obtained after

the expression is evaluated.
The following section, «Writing a PL/I Program,"

illustrates how PL/I statements are written and how
each interacts with other statements. A specific prob
lem is stated, and a program is constructed step by step,
to direct the computer to solve the problem. The illus
trated program is not the only one that would solve the
problem; it may not be the best one. It has been chosen
to demonstrate the ease with which a PL/I program
can be written.

Basic Elements of PL/I 13

Chapter 3: Writing a PL/I Program

A program consists of all the statements necessary to
instruct a computer to solve a problem - to get data,
to process it, and to return the results of the processing
to the programmer.

In analyzing a problem to be solved, a programmer
first must examine the data and determine the manipu
lations necessary to process that data.

Consider a problem of computing interest on a loan.
The basic computation would be to multiply the prin
cipal of the loan by the interest rate. It could be written:

PRINCIPAL ~ RATE

In the program, the value of the expression PRINCI
PAL (/0 RATE could be assigned to a variable written
in an assignment statement.

INTEREST=PRINCIPAL ~ RATE; .
Assume that the program is to compute the interest on
numerous bank loans of different denominations at
varying rates of interest. The interest is compounded
monthly, and in most cases, the borrower makes a
monthly payment to cover the interest charge and to
reduce the principal of the loan.

The programmer need write only two assignment
statements to make the necessary computations:

INTEREST=PRINCIPAL ~ RATE!l2;
BALANCE=PRINCIPAL+INTEREST-PAYMENT;

The first assignment statement computes the monthly
interest charge; the second statement compounds the
interest and deducts the payment to figure the balance
due.

Before the computations can be made, however, the
computer must get the data; that is, it must have the
values for PRINCIPAL, RATE, and PAYMENT.

Certainly the bank would have a record of each loan.
Assume that each record consists of an identifying serial
number, the current principal of the loan, and the inter
est rate. Assume, further, that the records of all the
loans are collected as a set of data into a master file,
arranged in ascending order according to serial number. '

A separate set of data is prepared each month listing
the payments made. Each record consists of the serial
number and the amount of the payment. Records in this
data set are in the same order as those in the master file.

The two GET statements required to obtain the data
are:

14 A PL/I Primer

GET FILE (INPUT) LIST (PAY_#, PAYMENT);
GET FILE (MASTER) LIST (LOAN_#,

PRINCIP AL,RA TE);
INTEREST=PRINCIPAL (t RATE/12;
BALANCE=PRlNCIPAL+1NTEREST~PAYMENT~

The first GET statement indicates that the data is to be
read from the file named INPUT and that the first data
item is to be assigned to PAY _ #, and the second data
item to PAYMENT. The second GET statement indi
cates that the data is to be read from the file MASTER
and that the list of data items is to be assigned to
LOAN_#, PRINCIPAL, and RATE. The data might be
read from punched cards, from magnetic tape, or from
any other medium upon which data is recorded.

After the data is read, the assignment statements are
executed, and the results of the processing are ready to
be returned.

A PUT statement now is added, to write the results .
A second PUT statement directs the creation of an up
dated master file. The two statements are:

: GEtr' FILE~:(iNPtFff LIS;r trAY~#;l?AYM~~'Jf)F
,:CEl" ' FiLE" '(MA,$TElI{):,'~ST" '(L()AN~#,": •• "~: '::';.' '.
, : :e1UN.GIPAL,RA\fE);":!'::'.>.· :,' ' .,
lNTErR~sT~~ruNCIPi\Lr~'MTE'12; "

• :~iUNCE~PRI~cif~iipBESl!~BA~~~~';
PUT FILE (OUTPUT) LIST

(LOAN_#,PRINCIPAL,INTEREST,P AYMENT,
BALANCE);

PUT FILE (NEW_MASTER) LIST
(LOAN_ #,BALANCE,RATE);

The first PUT statement directs the computer to
write, in the file named OUTPUT, the current value of
the following list of variables: LOAN_#, PRINCIPAL,
INTEREST, PAYMENT, and BALANCE. Since actual
printing is a relatively slow process, the data probably
would be written on magnetic tape and actually printed
as another program.

By the time all of the records in MASTER have been
processed, the second PUT statement will have created
a new master file that can be used as MASTER when
the program is run the following month (Note that the
value of BALANCE will be the value of PRINCIPAL
when the new master file is read).

At this point, the statements provide all of the actual
instructions necessary to read, compute, and write the
information for a single loan record. But, since the ob
jective is to process many loans, the program must

NEW_RECORD: GET FILE (INPUT) LIST (PAY_#,PAYMENT);
GET FILE (MASTER) LIST (LOAN_#,PRINCIPAL,RA TE);
INTEREST=PRINCIPAL "" RATEI12;
BALANCE=PRINCIPAL+INTEREST:-PAYMENT;
PUT FILE (OUTPUT) ~IST (LOAN_#,PRINCIPAL,INTEREST,PAYMENT,BALANCE);
PlJT FILE (NEW:-MASTER) LIST (LOAN:-#?BALAN~E,RATE);
GO TO NEW_RECORD;

Figure 4.

function as a loop; control must be transferred from
the last of the sequence of statements back to the first.

A transfer of this type can be made only to a state
ment having a statement label, which is a name chosen
by the programmer and prefixed to the statement by
means of a colon. Any name might be used. In this case,
a programmer might choose the name NEW_RECORD,
since the first GET statement directs the computer to
get a «new record."

Now, a GO TO statement can be used to transfer
control. See Figure 4.

As the program now stands, it might seem that all of
the statements necessary to read, compute, and write
have been included. This presumes, however, that no
conditions will vary, that a payment has been made for
each loan in the master file, that no loan has been over
paid, even that no loan has been completely repaid.

Since a programmer generally cannot examine inter
mediate results during execution of a program, he must
anticipate situations in which unwanted or meaningless
results might be obtained. He must tell the computer
what to do when a decision must be made. His program
must include instructions to the computer to !!lake cer
tain tests and, based upon the results of each test, to
select one of two alternative actions to be taken.

For example, if a loan has been paid in full, the record
of that loan should not appear in the updated master
file. Before an updated record is written, the balance
must be tested, and instructions must be provided to
tell the computer what to do, based upon the result of
the test.

In PL/I, an IF statement is used to specify a test to
be made and to give two alternative actions.

Figure 5 shows how a programmer might write an
IF statement as a test for a paid-up loan.

Note that no semicolon is used after the first portion

of the IF statement. The IF statement is a compound
statement; that is, it is a statement that contains other
statements. The terminating semicolon of the IF state
ment is considered to be the semicolon that terminates
the alternative statements, the statement in the THEN
clause or the statement in the ELSE clause.

In the execution of an IF statement, the stated con
dition is tested. If the condition is found to be true (in
this case, if BALANCE = 0), the statement following
THEN is executed. If the condition is found to be false
(if BALANCE is not equal to zero), the statement fol
lowing THEN is skipped, and the next statement in the
program (the ELSE clause) is executed. When the first
alternative is taken in the example shown, control is
transferred back to the GET statement labeled NEW_
RECORD.

Many IF statements, however, have a THEN clause
that does not cause transfer of control. In those cases,
when the first alternative is chosen, that statement is
executed, and control then skips the next statement (the
statement of the ELSE clause), and execution continues
with the next sequential statement after the statement
of the ELSE clause.

Often the action to be taken in one alternative may
require more than one statement. But since the IF
statement is designed to execute one statement and skip
one statement (or skip one statement and execute the
next statement), it is necessary to indicate that more
than one statement is to be skipped or that more than
one statement is to be executed before a skip is made.
One way this can be accomplished is through the use
of a DO group.

A DO group is a sequence of statements whose begin
ning is defined by a DO statement and whose end is
defined by an END statement. When a DO group is
used as a THEN clause in an IF statement, all of the

$W~C()RD;;GEl';'FltE; (,iNPUT),.LIST· .. (PAY_#jPAYMENT,);
'. GET:.FILE)~MASTER) LIS:r(LOAN.,..-#,.pRINCIPA4*'rE);

INTEREST=PRINCIPAL o. RATE/12;
BALANCE =PRINCIPAL + INTEREST-PAYME NT; . '., .l,'. .' ".'

PUT. FILE .. (OUTPUT) LIST (LOAN~#,PRINCIPALUN"l'EREST .PAYME~T;B~N()E); IF BALANCE=O ., . ..' -, - _ .. - . .

THEN GO TO NEW_RECORD;
ELSE puT FILE (NEW_MASTER) LIST (LOAN_#.13ALANCE,RATE);

CO TONE'Y J={E.CORQ; .

Figure 5.

Writing a PL/I Program 15

statements of the DO group are executed before a skip
is made or all of the statements are skipped and the
ELSE clause is executed. When a DO group is used as
the ELSE clause, all of the statements of that group are
skipped after the THEN clause is executed.

Two other IF statements are necessary in the bank
loan update program. One is a test to make certain
that the current payment record and the current master
record refer to the same loan. The other is a test to avoid
a negative balance, as would be computed if a payment
exceeded the amount due.

Figure 6 illustrates how these IF statements would
appear in the program.

Before any of the information read from the INPUT
file is used in computations, a check is made to avoid
deducting a payment from the wrong loan. If LOAN_#
is not equal to PAY_#, the two records do not refer to
the same loan. Since both files are ordered in ascending
sequence according to serial number, the record from
which PAY_# has been read refers to a loan that is
listed later in the master file, and no payment has been
made during the current month for the loan referred
to by the record from which LOAN_# has been read
(assume that no record will appear in INPUT that does
not have a corresponding record in MASTER).

The interest compounded, and the new master record
is updated with the new principal. Control is returned
to the GET statement labeled MASTER-FILE, another
record is read from the master file, and the LOAN_#
from that new record is compared with the PAY _ # that
had differed from the LOAN_# read from the previ
ous record. This loop is repeated, if necessary, until
LOAN_# is equal to PAY_#, in which case the entire
first alternative is skipped, and the ELSE clause is
executed.

, %
~ ~~/ ~, 0 >;

IF LOAN~# 1 =PAY_#
THEN DO;

PRINCIPAL=PRINCIPAL+INTEREST;

The ELSE clause is another IF statement that is in
serted in the program to avoid computation of a balance
that is less than zero. If there has been no overpayment
- if the payment is less than or equal to the total amount
due - the new balance is computed. If there has been
an overpayment, the THEN clause is skipped and the
DO group is executed. The DO group specifies that
BALANCE is to be set to zero and a refund is to be
computed. The PUT statement in the DO group in
structs the computer to write the serial number of
the loan, the actual characters REFUND: and the
amount to be refunded (the value of the variable
REFUND).

When these has been an overpayment and this DO
group is executed, two records concerning the loan will
be written in the OUTPUT file. In this case, control
passes directly from the end of the DO group to the
next sequential statement. The written record stating
the amount of the refund will be followed by the record
giving the serial number of the loan, the principal be
fore interest had been computed, the monthly interest
charge, the payment, and the balance. In the case of a
loan that has been overpaid, the balance will, of course,
be zero.

Although these «unusual" conditions will arise rarely,
if at all, the first condition is tested for every record
that is read, and the second condition is tested for every
payment record read.

One other condition could arise that would interrupt
the orderly execution of the program. After the last
record of any file has been read, an end-at-file condition
exists. Any further attempt to read from that file would
be unsuccessful, and execution of the program would
be terminated unless the programmer had anticipated
the condition. He must provide instructions to the com-

PuT FILE (NEW_MASTER) LIST (LOAN_#,PRINCIPAL,RATE);
GO TO MASTELFILE;

Figure 6.

END;

THEN :B~ANCE=;:~;NCi:RAL~ll\l1rE~S1~i?~¥'M~NT)" ELSE])'0;' ",i, " ,'", ,,", "" , ' ,,',' '" "

BALANCE=O;
REFUND=PAYMENT-PRINCIPAL + INTEREST;
PUT FILE (OUTPUT) LIST (LOAN_#, 'REFUND: " REFUND);
END;

PUT FILE "'(OUnUT)' ·'tiST:(LoAN~#,fruNCIpAL;iNTEREST,pAYMENT,:aAMNd.E;h
.IF BALA.NCE=O '.... . '.'" .' ',,',", " ".' .. " . ,'.'" " . ,','., ; . '"

'~ENGO,TONEW-RECOIriJ7 " .. ' ',. '.> '. ,., .' ,.,<". ,.,", •. , •• ",,',',"
&'SE·· PUT, .FII E' ~ NEW~)·'J..l5:r,{ LOAN' # '·B~ :.R&ttE'l~: '.;:.",.

~.~~tr:oNEit~~QlU),~:':~':K:,;;~:: .,,' . ',: •. ~~."'" ':\\::0:,~\;~~:i:;:;,:.:~. :rj~:,. \(,;::~;:i.;r \;!.'f ;~~t'~!L~::;"',:' :i~;:.\'.\"

16 A PLII Primer

puter concerning what action it should take when it
encounters an instruction telling it to read from a file
for which the end-of-file condition exists.

The INPUT file probably will contain fewer records
than the MASTER file because payments may not be
made for all the loans. If there is a record in INPUT
corresponding to the last record in MASTER there
would be no problem; the last loan would be updated,
and termination of execution following that would
cause no trouble. But if there are more records in the
MASTER file to be processed after the last record in
INPUT has been processed, termination of execution at
that point would leave the remaining records in MAS
TER unprocessed.

A simple ON statement could prevent such an error:

ON ENDFILE (INPUT) GO TO MASTERJ'ILE;

The ON statement, like the IF statement, is a compound
statement. The semicolon terminating the contained
GO TO statement, in this example, also terminates the
ON statement.

The ON statement instructs the computer to go to
MASTElLFILE after the last record in the INPUT file
has been processed. If there are other records in MAS
TER, they will be read and processed, and the new
master file will be updated for each. After the last rec
ord from MASTER has been processed, an attempt to
read again from MASTER will be unsuccessful, and the
program will be terminated. This will not happen, how
ever, until the objective of the program has been accom
plished.

The position of the ENDFILE statement within the
program is not critical. It need be executed only once,
and it can appear any place within the sequence, so
long as it is executed before the end-of-file condition
arises. Once executed, it remains in force throughout
the rest of the execution of the program, or until it is
overridden by another ON ENDFILE statement that
specifies the same file.

The end of a program, like the end of a DO group, is
indicated by an END statement. The beginning is indi
cated by a PROCEDURE statement, and the entire
block of statements, from PROCEDURE to END, is
called a procedure block, or simply a procedure.

The PROCEDURE statement for this program could
be:

UPDATE: PROCEDURE;

A PROCEDURE statement must have a label, and
the entire procedure may be referred to by that label,
or procedure name. A program may consist of a single
procedure or of several procedures. When there is more
than one procedure in a program, each procedure mime
is called an entry name and may be used somewhat
similarly to the wayan ordinary statement label is used
in a GO TO statement.

Figure 7 shows the entire UPDATE procedure as
it might be written. The pattern of indention of state
ments is not obligatory. But it demonstrates an advan
tage of PL/I in allowing a programmer to plan his own
format of statement sequences. In this case, the format
is designed to improve readability of the written pro
gram. So far as the PL/I compiler is' concerned, the
entire procedure could have been written as' one con
tinuous string of statements separated by semicolons.

An important element of a procedure is the DE
CLARE statement. The DECLARE statement supplies
necessary information to the compiler so that storage
areas can be reserved for the data represented by the
names used in the procedure. A DECLARE statement
describes the characteristics of the data assigned to each
variable; it tells the nature of each file. A name de
scribed in a DECLARE statement is said to be declared
and the words used to describe the characteristics of
the data and files are called attributes. Although the
attributes describe the characteristics of the data, it is
the data name with which the declared attributes are
associated. Consequently, when a data item is assigned
to a name whose attributes describe characteristics that
are different from the attributes of the data forID., the
data item will be converted so that it has the character
istics that are described by the attributes of the name to
which it is assigned. For example, when a binary data
item is assigned to a name that has the DECIMAL
attribute, the data item is converted to the decimal rep
resentation of its value.

It is apparent, then, that a DECLARE statement
specifies whether data assigned to an arithmetic data
name is to be binary or decimal. It also specifies the
maximum number of digits in any data item, and the
number of those digits that represent a fractional por
tion, that is, the number of digits that should be con
sidered to be to the right of the point. And it specifies
whether the value of the data item is to be represented
in fixed-point or Boating-point notation. (Fixed-point
and Boating-point notation are described at the end of
this chapter.)

For example, in the DECLARE statement shown in
Figure 7, PRINCIPAL is declared to be a variable
representing decimal, fixed-point numbers, none of
which will contain more than eight digits, with the two
rightmost digits assumed to represent a decimal frac
tion. RATE is declared to represent decimal, fixed-point
numbers of three digits, with the decimal point assumed
to be to the left of the first digit; each number will
be a three-place decimal fraction such as would be
used to represent a percentage rate during multiplica
tion. The three places provide for percentage rates that
might include tenths of a percent, such as 4.5 percent.

In the same DECLARE statement, LOAN_# and
PAY _ # are declared to be names that will represent

Writing a PL/I Program 17

UPDATE: PROCEDURE;
DECLARE PAY_.#" DECIMAL FIXED (7),

LOAN_# DECIMAL FIXED (7),
PRINCIPAL DECIMAL FIXED (8,2),
BALANCE DECIMAL FIXED (8,2),
PAYMENT DECIMAL FIXED (6,2),
REFUND DECIMAL FIXED (6,2),
INTEREST DECIMAL FIXED (5,2),
RATE DECIMAL FIXED (3,3),
MASTER FILE INPUT,
NEW_MASTER FILE OUTPUT,
INPUT FILE INPUT,
OUTPUT FILE OUTPUT;

ON ENDFILE (INPUT) GO TO MASTER FILE;
NEW_RECORD: GET FILE (INPUT) LIST (PAY_#,PAYMENT);
MASTER-FILE: GET FILE (MASTER) LIST (LOAN_#,PRINCIPAL, RATE);

INTEREST=PRINCIPAL c RATE/12;

Figure 7.

IF LOAN---.:# 1 =PAY---.:#
THEN DO;

PRINCIPAL=PRINCIPAL+INTEREST;
PUT FILE (NEW_MASTER) LIST (LOAN_#,PRINCIPAL,RATE);
GO TO MASTER_FILE;
END;

ELSE IF PAYMENT<=PRINCIPAL+INTEREST
THEN BALANCE=PRINCIPAL+INTEREST-PAYMENT:
ELSE DO;

BALANCE=O;
RIiFUND=PAYMENT-PRINCIPAL + INTEREST;
PUT FILE (OUTPUT) LIST (LOAN---.:#, 'REFUND: " REFUND);
END·

PUT FILE (OUTPUT) LIST (LOAN_#,PRINCIPAL, INTEREST,PAYMENT,BALANCE);
IF BALANCE=O

THEN GO TO NEW_RECORD;
ELSE PUT FILE (NEW_MASTER) LIST (LOAN_#,BALANCE,RATE);

GO TO NEW_RECORD;
END UPDATE;

fixed-point decimal numbers of no more than seven
digits, with no fractional portion.

Table 1. Examples of Data that Could be Processed by UPDATE.

The names MASTER and INPUT are declared to be
£Ie names that represent files to be read from; NEW_
MASTER and OUTPUT, file names that represent files
to be written in.

The use of the words INPUT and OUTPUT as names
for files is an example of another freedom of PL/I. Since
the words OUTPUT and INPUT are also used as at
tributes, they are keywords in the language. Yet they
are not reserved; they may be used as names without
<;ausing any ambiguity.

The UPDATE procedure could be an entire program,
or it could be only one procedure of a larger program
that might, for example, compute all of the bank's
monthly transactions.

Table 1 shows some values that might be represented
by data to be read from INPUT and MASTER during
execution of UPDATE.

18 A PLII Primer

From INPUT From MASTER

Assigned' to Assigned to Assigned to Assigned to Assigned to

PAY_# PAYMENT LOAN_# PRINCIP~L RATE
8212345 50.00 8212345 600.00 .050
8212347 40.00 8212346 1200.00 .055
8212348 60.30 8212347 24.00 .050
8212349 1000.00 8212348 60.00 .060

82 i 2349 24000.00 .055
8212350 880.00 .060
8212351 72.00 .050

A reader can get a better understanding of the UP
DATE procedure by using these numbers to analyze
it, statement by statement, doing the computations,
making the tests, and following the alternative to be
chosen based upon each test.

Table 2 shows the values of the data that would
have been written in OUTPUT and NEWMAS £Ies if
the values in Table 1 were processed by UPDATE:

Table 2. Example of Output if Data in Figure 1 Were Processed
by UPDATE.

Written in

OUTPUT

rwritten from Written from Written from Written from Written from
LOAN_# PRINCIPAL INTEREST PAYMENT BALANCE

8212345 600.00 2.50 50.00 552.50

8212347 REFUND: 15.90

8212347 24.00 . 10 40.00 0

8212348 60.00 .30 60.30 0

8212349 24000.00 110.00 1000.00 23110.00

Written in

NEW---..MASTER

Written from Written from Written from
LOAN_# PRINCIPAL RATE

8212345 552.50 .050

8212346 1205.50 .055

8212349 23110.00 .055

8212350 884.40 .060

8212351 72.30 .050

Fixed-Point and Floating Point Notation

Fixed-point notation is the notation found in everyday
use. It consists of digits and a single point that specifies
the beginning of the fraction (the point usually is omit
ted if there is no fractional portion). For example,
3.141593 is the fixed-point notation for the value of the
mathematical constant pi.

Floating-point notation is used in data processing to
specify values much larger (or smaller) than would be
practical in fixed-point notation. A floating-point data
item in PLjI is written as a field of digits followed by
the letter E, followed by an optionally signed decimal
exponent. The first field may contain a point and may be
preceded by a plus or minus sign.

In either decimal or binary floating point, the eHect
of the exponent on the value is as if the point were
moved the number of digit places indicated by the ex
ponent. Point movement is to the right when a positive
exponent is specified, and to the left when a negative
exponent is specified.

Examples of decimal floating-point data items:
64E46
64E-46
84.35E24
8435E22
.8435E26

The first example represents a value that could be
expressed with the number 64 followed by 46 zeros .
It could be written mathematically as 64 x 1046• The sec
ond example represents a value that could be expressed
by the number 64 preceded by 44 zeros and a point. In
decimal fixed-point notation it would be written:

.0064

The last three examples represent an identical value,
which is 84 septillion 350 sextillion, or 8435 followed by
22 zeros.

It is important to remember that the sign of the ex
ponent merely controls the direction in which the point
is assumed to be moved; it does not indicate a positive
or negative value for the data item. If no sign (or a plus
sign) precedes the first field, the indicated value is not
less than zero.

For most arithmetic computations using floating
point data items, the first field is converted, if necessary,
to a fraction; that is, the point is assumed to be imme
diately to the left of the first non-zero digit. The expo
nent is adjusted accordingly. The fractional portion and
the exponent are treated separately during computa
tions.

Each digit position shift of the point in a decimal
floating-point number multiplies or divides the number
by ten. The floating-point number 40E2 represents the
value 4000. The number 40E3 represents 40,000, while
4OE-1 represents 4.

Binary floating-point data is comparable to decimal
floating-point data except that each digit position shift
of the binary point multiplies or divides the number
by two.

Writing a PL/I Program 19

Chapter 4: Data Types

There are three types of data commonly used in a PL/I
program: arithmetic, string, and statement label.1 Arith
metic data items are binary and decimal fixed-point or
floating-point numbers. String data items are combina
tions of alphameric and special characters or combina
tions of binary digits. Statement-label data items are
character strings used as label prefixes.

The following discussion covers each of these types
of data, showing how data constants are written in a
program and how data variables are define~ and used.

Arithmetic Data
An item of arithmetic data is one with numeric value,
that is, a number. It may be written in a program as a
decimal or binary constant, or it may be the value of a
variable.

Any number has certain characteristics. In the case
of a constant, these characteristics are apparent. The
notation in which a constant is written tells whether the
data item has a decimal or binary base and whether it
has a fixed-point or floating-point scale, and it states the
value of the item. The number 6.5, used in an arithmetic
expression, is a decimal, fixed-point number with the
value of six and one half. This number is expressed by
using only two digits; it is not written 06.5 or 6.50. The
computer need reserve storage space for only digits.
Although the decimal point is not stored in the compu
ter, the result of an arithmetic computation is as if the
point actually appeared; point alignment is maintained.

A data variable, since it is a name, does not demon
strate the characteristics of the data items it will repre
sent. A reader would infer that the name WAGES
would represent currency values. But a computer rec
ognizes words only in the way it has been instructed to
recognize them, or not at all; it assumes only what it has
been instructed to assume.

Attributes must be declared for each variable so that
the compiler can reser-Ie sufficient storage space and use
the proper internal notation for data items assigned to
the variable. (Different kinds of data use different in
ternal notation; for example, decimal notation and bi
nary notation for the same arithmetic value are stored
Ll1 different bit configurations.)

An arithmetic variable must have a DECIMAL or a

1 Certain other types of variables, used in prcgram control, are also classed
as separate data types. They include task, pointer, event, and area variables.
For a discussion of these variables as data types, see «Data Types," Chapter
2 of IBM Operating System/360, PL/I: Language Specifications, Form
C28-6571.

20 A PL/I Primer

BINARY attribute, a FIXED or a FLOAT attribute,
and a precision attribute.

For example, the DECLARE statement for WAGES
might be:

DECLARE WAGES DECIMAL FIXED (5,2);

Note that blanks must always be used to separate the
keyword DECLARE, the name, and the attributes that
are keywords. The precision specification must be en
closed in parentheses and must immediately follow
(with or without an intervening blank) the base attri
bute (DECIMAL or BINARY) or the scale attribute
(FIXED or FLOAT).

The precision attribute specifies the maximum num
ber of digits of any data item to be assigned to the vari
able, and it specifies the location of the assumed deci
mal point. In the above example the precision attribute
(5, 2) declared for WAGES specifies that no data item
assigned to WAGES should contain more than five
digits and that each data item is assumed to have a
decimal point immediately preceding the last two dig
its· that is each number will have two fractional digits
(i~ this c;se, to express a value in cents).

Thus, precision implies a value range. For example,
WAGES could represent any value from -999.99 to
999.99. If any number assigned to WAGES has fewer
than three integer and two fractional digits, zeros will
be inserted to express the value as a five-digit number.
If a number has too many digits, the excess will be lost

. - on the right if too many fractional digits are specified
- on the left if too many integer digits are specified.

If TOTAL is declared to be a decimal fixed-point
variable with precision of (10, 2) any data item validly
assigned to TOTAL, that is, any item representing nu
meric value, will be expressed as a decimal fixed-point
number of ten digits, including two fractional positions.
Assume X represents a decimal floating-point data item
and Y represents a binary fixed-point data item. In exe
cution of the statement TOTAL = X + Y, the data
represented by X and Y would be converted to a com
mon base and scale, the two numbers would be added,
and the computed value would be converted to decimal
fixed-point notation before assignment, that is, before it
becomes the current value of TOTAL.

An arithmetic constant may be preceded by a plus
sign or a minus sign. If unsigned, the constant is as
sumed to have a positive value. The sign of an arithme
tic data item, unlike the point, is recorded in storage
along with the data item. Consequently, the precision

attribute (10, 2) instructs the compiler to reserve suffi
cient storage for ten digits plus the sign.

Fixed-Point Decimal Data

A fixed-point decimal data item consists of one or more
decimal digits. A decimal point may be included. If no
decimal point appears, the point is assumed to be imme
diately to the right of the rightmost digit.

Examples of fixed-point decimal constants as written
in a program:

3.141593
-5280
455.3
.00003
234.

The keywords for decimal fixed-point variables are
DECIMAL and FIXED. Precision is stated by means of
two decimal integers, separated by a comma and en
closed in parentheses. If only one number is specified,
the items are assumed to be integers.

To define PI (3.141593) in this way, the following
statement could be used:

DECLARE PI FIXED DECIMAL (7,6);

This defines the identifier PI as a fixed-point decimal
item of not more than seven digits, six of which are to
the right of the decimal point. This declaration, of
course, just authorizes use of the identifier PI in the
program. No value has been assigned. This could be
done later with an assignment statement, such as:

PI = 3.141593;

The value could also be assigned in the DECLARE
statement, specifying the INITIAL attribute, as follows:

DECLARE PI FIXED DECIMAL (7,6)
INITIAL (3.141593);

This not only defines the identifier PI but gives it an
initial value of 3.141593. The value may be retained
throughout the program, as is probable in this case, or
it may be changed during execution by an assignment
statement.

The statement of precision is critical in the definition
of a variable. A programmer must know the size of the
largest number that will be assigned to the variable dur
ing execution of the program, and define the variable
accordingly. Consider this statement:

SUM=X+Y

If the value of X is 456.3 and the value of Y is .387, the
result of this calculation would be 456.687. The follow
ing list shows how this result would be assigned to SUM
under several possible precision conditions:

VARIABLE DECLARATION

SUM FIXED DECIMAL (6,3)
SUM FIXED DECIMAL (8,4)
SUM FIXED DECIMAL (5,3)
SUM FIXED DECIMAL (6,2)
SUM FIXED DECIMAL (6,4)
SUM FIXED DECIMAL (6)

ASSIGNED VALUE

456.687
0456.6870

56.687
0456.68

56.6870
000456

Note that alignment is on the decimal point, and zeros
are added or digits are deleted to make the item fit the
precision specification. While a programmer must guard
against unwanted truncation, he can also use this char
acteristic as a means of dropping undesired fractional
digits at the time an assignment is made.

The maximum number of digits allowed in a decimal
fixed-point data item is defined for each PL/I compiler.
If precision is not specified when a variable is declared,
the number of digits assumed depends upon the com
piler in use. For example, the maximum might be 15
with the assumed number-default precision-five. With
default precision, the assumed location of the decimal
point is immediately to the right of the rightmost digit.

Sterling Fixed-Point Data

PL/I has a facility for handling data stated in tenus of
British sterling currency value. Although the data may
be written in a program with pounds, shillings, and
pence fields, each separated by a decimal point, this
data is converted and represented internally as a deci
mal fixed-point number representing the equivalent
value in pence. A sterling data constant ends with the
letter L, representing the pounds symbol, for example:

2.4.6L

This sterling constant represents two pounds, four shil
lings, six pence. It will be converted and stored inter
nally as 534 (pence).

A sterling variable is declared with the same attribute
keywords as fixed-point decimal data, FIXED and
DECIMAL. Precision is stated as the number of digits
required to represent the amount in pence.

Binary Fixed-Point Data

A binary fixed-point data item expresses an arithmetic
value using binary notation. It is written as one or more
binary digits with an optional binary point, followed by
the letter B.

Examples of binary fixed-point constants as written
in a program:

CONSTANT

10110B
I1111B
-101B
111.01

-1011.111

DECIMAL EQUIVALENT
22 .
31
-5
7~

A variable is declared to represent binary fixed-point
data by specifying the BINARY, FIXED, and precision
attributes.

Precision of a binary fixed-point variable is specified
by two decimal integers, enclosed in parentheses, to
represent the maximum number of binary digits and the
number of digits to the right of the binary point.

Following is an example of declaration for a binary
fixed-point variable:

DECLARE FACTOR BINARY FIXED (20,2);

Data Types 21

FACTOR is declared to be a variable that can repre
sent an arithmetic data item as large as 20 binary digits,
in addition to a plus or minus sign. The decimal equiv
alent of that value range is from -262,144.25 through
+262,l43.251

The maximum precision and default precision for bi
nary fixed-point data are specified separately for each
different PL/I compiler.

Decimal Floating-Point Data

A decimal floating-point data item is designated in a
program by a field of decimal digits followed by the
letter E followed by a decimal exponent that may be
signed. The first field of digits may contain a decimal
point and may be preceded by a plus or minus sign.

Examples of decimal floating-point data items:

15E23
15E-23
-4835E48
3141593E-6
.003141593E3

The last two examples represent an identical value.
T~e attributes that describe decimal floating-point

variables are DECIMAL and FLOAT. Precision is
stated with a decimal integer enclosed in parentheses.
It specifies the number of digits to be maintained pre
ceding the E. With most computers, floating-point data
items are stored internally with the point immediately
to the left of the first non-zero digit. If an item is as
signed to a variable with a declared precision that is
smaller than the field width of the assigned item, trunca
tion will occur on the right. The least significant digit
is the first that is lost.

Example of declaration of a decimal floating-point
variable:

DECLARE LIGHT_YEARS DECIMAL FLOAT (5);

If the data item .814235E14 were assigned to LIGHT_
YEARS, the rightmost digit of the fraction would be
lost. The item still would represent a value of more than
81 trillion, but the single-digit truncation would de
crease the value of the data item by 500,000,000. If the
data item were .814E14, two zeros would be inserted to
maintain the declared precision, and it would be as if
the item assigned were .81400E14.

Binary Floating-Point Data

A binary floating-point data item, when written in a
program, consists of a field of binary digits followed by
the letter E, followed by a decimal integer exponent
followed by the letter B. The field of binary digits may
contain a binary point and, of course, a plus or minus
sign. The exponent may be signed. As with decimal

1 The value range is as it would be in an IBM System/360 computer. In
some computers, the lowest value that can be represented by 18 binary
integer digits might be -262,143.

22 A PL/I Primer

data, the exponent indicates displacement of the binary
point.

Examples of binary floating-point data:

101lOlE5B
101.101E2B
lllOlE-28B

The attribute keywords for binary floating-point data
are BINARY and FLOAT. Precision is specified by stat
ing the number of digits preceding the E, with precision
expressed as a decimal integer.

DECLARE X BINARY FLOAT (16);

With most computers, binary floating-point data is rep
resented internally with the assumed binary point im
mediately preceding the first 1 digit.

String Data
A string is a connected sequence of characters (or bi
nary digits) that is treated as a single data item. The
length of the string is the number of characters (or
binary digits) it contains.

There are two types of strings: character strings and
bit strings.

Character-String Data

A character-string can include any.digit, letter, or spe
cial character recognized as a character by the user's
computer system. Any blank included in a character
string is considered an integral character of the data
item and is included in the count of the length. Com
ments cannot be inserted within a character string.

Character-string constants, when written in a pro
gram, must be enclosed in single quotation marks. If an
apostrophe or a single quotation mark is a character in
a string, it must be written as two single quotation
marks with no intervening blank.

Examples of character-string constants:

'LOGARITHM TABLE'
'PAGE 5'
'SHAKESPEARE' 'S '" 'HAMLET"'"
'23842'

(2) 'WALLA'

In the last example, the parenthesized number indicates
repetition of the characters and specifies the character
string , WALLA WALLA' (the blank is included as one
of the characters to be repeated). The repetition factor
must be an unsigned decimal integer enclosed in paren
theses to indicate the number of times the characters
are to appear in the actual character string.

Although a character string may be entirely numeric,
such a string cannot be used efficiently in arithmetic
operations with computers in which the internal repre
sentation of numeric characters is different from the
internal representation of arithmetic data.

Character-string data is declared to have the CHAR-

ACTER and length attributes. Length is expressed by
a decimal integer, enclosed in parentheses, which speci
fies the number of characters in the string. For example:

DECLARE NAME CHARACTER (15);

As with other data items declared in this way, the value
of the variable, NAME, is to be assigned during execu
tion of the program. Most data items, however, can also
be given an initial value by declaring the name with the
INITIAL attribute and listing the initial value. For
example:

DECLARE NAME CHARACTER (15)
INITIAL (' JOHN DOE');

Although the declared length is 15, the length of the
string assigned by the INITIAL attribute contains only
8 characters. Blanks are added automatically on the
right to fill out the length. The first character assigned
is always left adjusted, with padding supplied on the
right. In this case, the string would be stored as the
characters JOHN DOE, followed by 7 blanks.

A character string is assigned from left to right. If
the actual string is longer than the declared length, the
excess characters are truncated on the right.

Bit-String Data

A bit-string data item is written in a program as a series
of binary digits enclosed in single quotation marks and
followed by the letter B.

Bit strings are valuable for general use as logical
switches that can be set to 1 or 0 as indicators that
may be necessary later in the program for decision
making.

Bit strings are increasingly used in information re
trieval. Many "yes': or "no" answers can be recorded as
a bit string in a relatively small area. For example, com
puter assistance in medical diagnosis makes wide use
of bit strings.

Examples of bit -string constants:

'l'B
'lllllOlOllOOOl'B
(64) 'O'B

The parenthesized number preceding the last example
is a repetition factor which specifies that the following
digit (or digits) is to be repeated the specified number
of times. The example shown would result in a string of
64 binary zeros.

A bit-string variable is declared to have the BIT and
length attributes. Length represents the number of
binary digits in the string and is indicated by a decimal
integer enclosed in parentheses. The letter B is not an
actual part of the string and is not considered in the
length specification.

Following is an example of declaration of a bit-string
variable:

DECLARE SYMPTOMS BIT (64);

Like character strings, bit strings are assigned to vari
ables from left to right. If a string is longer than the
length declared for the variable, the rightmost digits
are truncated; if shorter, padding, on the right, is with
zeros.

Label Data
A statement label is an identifier written as a prefix to
a statement so that, during execution, program control
can be transferred to that statement through a reference
to its label. A colon separates the label from the state
ment.

ABCDE: DISTANCE = RATE ~ TIME;

In the above example, ABCDE is the statement label.
The statement can be executed either by normal se
quential execution of instructions or by transferring
control to this statement from some other point in the
program by means of a statement such as GO TO
ABCDE.

As used above, ABCDE can be classified further as a
statement-label constant. A statement-label variable is
an identifier that refers to statement-label constants.
Consider the following example:

LBL-A: statement;

LBL_B: statement;

LBL-X = LBL-A;

GO TO LBL_X;

LBL-A and LBL_B are statement-label constants be
cause they are prefixed to statements. LBL-X is a state
ment-label variable. By assigning LBL-A to LBL-X,
the statement GO TO LBL-X causes a transfer to the
LBL-A statement. Elsewhere, the program may contain
a statement assigning LBLB to LBL-X. Then, any ref
erence to LBL-X would be the same as a reference to
LBL_B. This «value" of LBL-X is retained until an
other value is assigned to it.

A statement-label variable must be declared with the
LABEL attribute, as follows:

DECLARE LBL_X LABEL;

Data Types 23

Cha pter 5: Control Statements

The basic unit of a PL/I program is the statement. It
tells the computer what to do, how to do it, and, by its
relationship to other statements, when to do it. As has
been shown, a statement may be considered singly, as
part of a group, or as part of a block, or procedure.

The more commonly used statements have bt:;en dis
cussed as they appeared in the procedure UPDATE:
the assignment statement for making computations;
the IF, ON, and GO TO statements for program control;
the GET and PUT statements for input and output; the
DECLARE statement' for data description; and the
PROCEDURE, DO, and END statements for program
structure.

This section will deal with a more detailed discussion
of the IF and DO statements.

The IF Statement

Three different IF statements were used in the UP
DATE procedure in Chapter 3, as shown in Figure 8.
The location of an IF statement 'vith.in a program is im
portant. The IF statement is inserted in a program at
the point where an exclusive decision between alter
nates must be made.

A logical diagram of the IF statement could look like
this:

IF--< THEN >
ELSE-----

1 IF LOAN_# j= PAY_#
THEN DO;

The second IF statement fits this diagram. The two
paths diverge for the execution of one statement (or
group) and merge again into a single path of execution.
Either the THEN clause or the ELSE clause is exe
cuted, and the other is skipped. No matter which alter
native is chosen as the result of the test, execution con
tinues with the next sequential statement that appears
in the program immediately following the ELSE clause.

The other two IF statements in UPDATE fit a differ
ent logical diagram:

--<THEN--CO TO/
IF

[ELSE] •

In this type of IF statement, one alternative (the THEN
clause in both examples in UPDATE) causes a transfer
of control to some other point in the program. Sequen
tial execution does not continue. The above illustrates
the kind of IF statement in which the keyword ELSE
need not appear. For example, the last IF statement in
UPDATE might have been written:

IF BALANCE = 0
THEN CO TO NEW_RECORD;
PUT FILE (NEW_MASTER) LIST

(LOAN_#, PRINCIPAL, RATE);

If BALANCE is equal to zero, control is transferred to
the READ statement labeled NEW_RECORD; execu
tion of the THEN clause will not be immediately fol
lowed by execution of the next sequential statement. If

PRINCIPAL = PRINCIPAL + INTEREST;
PUT FILE (NEW_MASTER) LIST (LOAN_#, PRINCIPAL, RATE);
GO TO MASTERJILE;
END;

2 ELSE IF PAYMENT <= PRINCIPAL + INTEREST
THEN BALANCE = PRINCIPAL + INTEREST - PAYMENT;
ELSE DO;

BALANCE = 0;
REFUND = PAYMENT - PRINCIPAL + INTEREST;
PUT FILE (OUTPUT) LIST (LOAN_#, 'REFUND: " REFUND);
END;

3 IF BALANCE = 0
THEN GO TO NEW_RECORD;
ELSE PUT FILE (NEW_MASTER) LIST (LOAN_#, BALANCE, RATE);

Figure 8. Examples of IF statements in UPDATE Procedure.

24 A PL/I Primer

BALANCE is not equal to zero, the THEN clause is
skipped, and the next sequential statement is executed.
Exactly the same thing applies to the first IF statement
in UPDATE. If LOAN_# is not equal to PAY_#, con
trol eventually is transferred back to MASTELFILE.
If LOAN_# and PAY_# are equal, the THEN clause is
skipped, and the next sequential statement is executed
whether or not it is preceded by the word ELSE. In UP
DATE, the second IF statement need not have been
written as an ELSE clause.

Both examples land 3 show the THEN clause as
being the one that contains the control-transferring
statement. Such a statement might appear in either
clause.

One other kind of IF statement can be represented
by a third diagram:

IF

A statement representing the above kind of IF state
ment could be as follows:

LOOP1:

IF INDEX = 5
THEN COUNTER = 0;

GET FILE (INPUT) LIST
(SALESNUMBER, SALES);

COUNTER = COUNTER + 1;

GO TO LOOP1;

In the kind of IF statement illustrated above, the alter
natives are «execute the THEN clause" or «do not exe
cute the THEN clause." In either case, the next sequen
tial statement is executed. If the expression tested is not
true, control continues through the logical How of exe
cution. If the expression i~ true, the THEN clause is
executed, and control returns to exactly the same point
where it would have been had the expression not been
true, In this kind of IF statement the word ELSE must
not appear since the ELSE clause would be skipped
whenever the THEN clause is executed.

In the example above, a count is kept of every sales
record that is read for each salesman. The counter is
reset to zero when the value of INDEX reaches five. The
THEN clause is executed only if INDEX equals five
before the first sales record is read. If INDEX does not
equal five, the THEN clause is ignored.

Although the word ELSE may sometimes be omitted,
the word THEN must appear in every IF statement.

IF statements can be nested, one within another, as
in the following example:

IF A = B
THEN IF A = C

THEN D = E;
ELSE F = G;

ELSE F = A;
GO TO LABELl;

In the example, D is made equal to E only if A is
equal to both Band C. If A is equal to B, but not to C,
then F is made equal to G. If A is not equal to B, then F
is made equal to A. If either the innermost THEN clause
(D = E); or the innermost ELSE clause (F = G); is
executed, control skips to the GO TO statement follow
ing the final ELSE clause.

In a series of nested IF statements, each ELSE clause
is paired with an IF, starting at the innermost level. The
computer makes the IF condition tests in the order that
they are written. As soon as it reaches a test that is not
true, the checking stops, and the matching ELSE clause
is executed. Control then is transferred out of the entire
series of IF statements.

In the nesting of IF statements, an associated ELSE
clause mayor may not appear for the outermost IF. But
every nested IF must have an associated ELSE clause
when any IF statement at a higher level requires an
associated ELSE clause.

Assume that a programmer writing the above nested
IF statements does not want to provide a second alter
native for the innermost IF statement; if A is equal to B
but not equal to C, he wants control to go to the state
ment labeled LABELl. He cannot write the statements
as follows:

IF A = C
THEN IFA = C

THEN D = E;
ELSE F = A;

GO TO LABELl;

In this case, the clause ELSE F = A would automati
cally be associated with the innermost IF; it would not
be associated with the first IF, as had been intended. To
avoid such an error, the programmer must insert a null
ELSE, as follows:

IF A = C
THEN IF A = C

THEN D = E;
ELSE;

ELSE F = A;
GO TO LABELl;

A null ELSE is an ELSE with a null statement as its
clause. A null statement, as its name implies, is an empty
statement; the only portion of a statement that appears
is the terminating semicolon. It gives no direction to the
computer. In the above example, the null statement has
no effect other than to supply the necessary ELSE
clause to be associated with the innermost IF. In this
example, if A is equal to B but is not equal to C, the sec
ond alternative of the innermost IF is chosen. Since it is
a null ELSE, control is transferred out of the entire nest
to the next statement, which is GO TO LABELl.

Suppose the programmer wanted control at this point
to be transferred to the LABELl statement with the
stipulation that D should be made equal to E before the
transfer if A is equal to both Band C. He would omit

Control Statements 25

both ELSE clauses, as follows:

IF A = C
THEN IF A = C

THEN D = E;
GO TO LABELl;

This series would cause immediate transfer to LABELl
if A is not equal to B or if A is equal to B but not equal
to C. Otherwise it would cause transfer to LABELl
after D has been made equal to E.

The examples have illustrated the nesting of IF state
ments only to the second level. Much deeper nesting is
allowed; the maximum varies from compiler to compiler.

Any IF statement, at any level, may have a DO group
as either or both of its alternatives.

The DO Statement

In the procedure UPDATE, the DO statement was used
only because DO groups were necessary as a THEN
clause or an ELSE clause. The DO statement can also
be used to define and specify control for a group of
statements to be used as a loop, that is, a series of state
ments to be executed and re-executed one or more times
before control moves on to the next statement after the
group. Every DO statement must have an associated
END statement to define the end of the group.

Consider the following example:

DO COUNTER = I TO 10;
statement-l
statement-2
statement-3
END;
statement-4

The DO and END statements specify that statements 1,
2, and 3, whatever they may be, are a DO group. The
DO statement further specifies that these statements are
to be executed, as a group, ten times before control is
transferred to statement 4. The variable COUNTER is
used to control the number of times the group is exe
cuted. When the DO statement is executed for the first
time, COUNTER is assigned the value 1. Statements 1,
2, and 3 are then executed. When the END statement is
reached, COUNTER is incremented by one, and control
is transferred back to the beginning of the group where
COUNTER is tested to see that it is no larger than 10.
This looping continues until the value of COUNTER
exceeds 10, when control passes on to statement 4. The
above example is exactly equivalent to the following:

COUNTER = 1;
LOOP: IF COUNTER> lO

THEN GO TO NEXT;
statement-l
statement-2
statement-3
COUNTER = COUNTER + 1;
GO TO LOOP;

NEXT: statement-4

NOTE: Since the test is made after COUNTER is incre-

26 A PLII Primer

mented, its value at the end of the loop will be one in
crementation larger than the number of times the loop
is executed. In this case, the value of COUNTER will
be 11 when execution of the loop is complete.

The variable COUNTER, either as used in the DO
statement or as used above, would have to be declared
to represent values as great as 10 (DECIMAL FIXED
(2) or BINARY FIXED (4)).

A PL/I programmer may, however, use certain vari
ables as counters without having to declare them ex
plicitly in a DECLARE statement. Information that is
necessary for storage assignment can be assumed. This
facility in PL/I is called implicit declaration. Any iden
tifier whose first letter is I, J, K, L, M, or N is assumed
to be a variable having BINARY and FIXED attributes,
unless the same identifier is declared elsewhere to have
different attributes. These assumptions, or defaults, are
the same for all PL/I compilers; the precision default
may vary from compiler to compiler.

The DO group in the previous example might have
been written:

DO I = I TO lO;
statement-l .
statement-2
statement-3
END;
statement-4

Unless the single letter I has been declared otherwise, it
is, through its appearance in the statement, implicitly
declared, by default, to be a variable with BINARY and
FIXED attributes and default precision.

A variable used in this way need not be a single letter;
NUMBER, for example, could be used to take advan
tage of implicit declaration, as could 12, 13, 14, etc. Most
programmers, however, find that a single letter is more
convenient.

The same letter may be used as a counter in a number
of different DO loops, so long as the loops are com
pletely separate. For example, statement 4 might be a
DO statement specifying the beginning of another DO
loop. The letter I could be used in that second DO state
ment. Although its value is 11 when the first DO loop is
completed, the value is reset when the second DO state
ment is executed.

In the preceding DO statement, the value of I is in
creased by one each time the DO statement is executed.
Since the variable usually serves as a counter, an incre
ment of one is assumed. However, any increment can
be stipulated. For example:

DO I = 2 TO 10 BY 2;

This DO statement causes the initial value of I to be set
to two. Each time the DO statement is executed there
after, the value is increased by two. Thus, the state
ments of the DO group would be executed five times,
and the final value of I would be 12.

This kind of control expression might be specified
when the counter is also used as a variable in an expres
sion within the DO group. For example, the following
DO group could be used to compute the volume of each
of a series of circular wading pools. Assume that every
pool is 12 inches deep and that the diameters range
from 18 inches to 10 feet, increasing by six inches from
size to size.

DO I = 9 TO 60 BY 3;
VOL = (PI ~ IU2) ~ 12;
PUT FILE (OUTPUT) LIST (I ~ 2, VOL);
END;

The initial value assigned to I is nine, which is equal to
the radius of the smallest wading pool. Each increment
of three makes I equal to the radius of the next larger
size. The volume is computed for each size, and the re
sult is written, along with the diameter of the pool.
Since I has a value equal to the radius, it must be
doubled before it represents the value of the diameter.
PL/I permits expressions such as I ~ 2 to be specified in
a PUT statement. The expression is evaluated exactly as
if it appeared in an assignment statement, and the com
puted value is written as indicated in the data list.

Varying values can be specified as follows:

DO I = 1, 8, 9, 15, 17, 25;

I is assigned each value in tum. After the DO group has
been executed with I equal to 25, control passes to the
next statement following the group. The values need
not be in ascending order; they might have been written
8, 1, 15, 17, 9, 25.

The values of variables may be assigned successively
to the counter in a DO statement:

DO X = A, B, C, D, E, F, G, H;
DIST = X~.588EI3;
PUT FILE (OUTPUT) LIST (X, DIST);
END;

Assume that the variables A through H represent the
light-year distance to certain stars expressed as decimal
floating-point numbers. The first time the DO statement
is executed, the value of A is assigned to X, and the first
statement of the group, the assignment statement, is ex
ecuted. The value of X is multiplied by .588EI3, which
is an approximation of the distance, in miles, that light
travels in one year. The computed value of the expres
sion, which is a floating-point number representing the
distance to the star in miles, is assigned to DIST. Then
the distance of A in light-years and the distance in miles
are written as floating-point numbers. Control returns to
the DO statement, and the value of B is assigned to X
for the second execution of the group. Repetition con
tinues until the distance in miles has been computed
and written for the star represented by H.

Note that the letter X is used for the counter in the
DO statement. As noted before, an identifier whose ini
tialletter is I, J, K, L, ~1, or N can be implicitly declared

to represent binary fixed-point data items. Likewise,
any identifier beginning with a letter other than I
through N can be implicitly declared to be a variable
representing decimal floating-point numbers. Thus,
both X and DIST can be implicitly declared merely
through their appearance in this DO group (any of the
variables A through H might also have been implicitly
declared, although they obviously have appeared else
where in the program when their value was assigned).

Another method of loop control causes looping to
continue as long as a certain condition exists, as follows:

DO WHILE (A < B);

Here, the values of A and B are compared each time
control reaches the DO statement. The computer con
tinues executing the statements in the DO group until
the value of A becomes equal to or greater than the
value of B. Obviously some computation within the DO
group must alter the value of A or B, or the loop will be
unending. The WHILE clause-any expression follow
ing WHILE-must be enclosed in parentheses.

Now, combining the features of both these examples,
there is this form of the DO statement:

DO I = 1 TO 10 WHILE (A < B);

This causes repeated execution of the group either until
the tenth execution is completed or until A no longer is
less than B. As soon as either condition is satisfied, exe
cution ceases, no matter what the status of the other.

If the programmer wants to continue execution until
each of two or more conditio~s is met, he can write:

DO I = 1 TO 10, 11 BY 0 WHILE (A < B);

The group is executed ten times. Then the new condi
tion takes control, and execution continues until A no
longer is less than B. Use of the comma to separate the
control expressions has the effect of setting up succes
sive DO statements for the same DO group (note that
if the TO clause is omitted but the BY clause is in
cluded, execution could continue indefinitely).

The following statement illustrates another variation:

DO I = 1 TO 4, 6 TO 10;

The statements of the group are executed nine times.
When the group is executed, the value of I will be, suc
cessively, 1, 2, 3, 4, 6, 7, 8, 9, 10. The group is not exe
cuted when I has the value 5. It is important to note that
only one variable can be used as a counter in a single
DO statement. More than one variable may appear
(DO I = K TO M might be written), but only one vari
able may appear to the left of an equal sign. Thus, the
following statement would be in error:

DO I = 1 TO 4, J = 6 TO 10;

The above would have to be written as separate DO
statements, each having its own END statement.

DO groups, like IF statements, may be nested. Con
sider this example:

Control Statements 27

DO I = 1 TO 10:
statement-l
statement-2
statement-S

statement-4
statement-5
statement-6
END;

DO J = 1 TO 10;
statement-la
statement-2a
statement-Sa
END;

The statements of the outer DO group-the outer DO
END and statements 1 through 6-would be executed
ten times. The statements of the inner DO group-the
inner DO-END and statements 1a through 3a-would
be executed 100 times, ten times for each execution of
the outer DO group. When the first DO statement is ex
ecuted the first time, I is assigned the value 1. Then
statements 1 through 3 are executed. When control
reaches the second DO statement, J is assigned the
value 1, and the inner loop is executed until the value of
J exceeds 10. Control then passes on to statements 4, 5,
and 6. When the final END statement is reached, con
trol returns to the first DO statement. The counter I is
incremented to 2, and execution proceeds through state
ments 1 through 3. When the second DO statement is
reached for the second time, J is reset to 1, and the inner
DO group again is executed ten times before control
passes to statement 4 for its second execution. The proc
ess is repeated until the outer DO group has been exe
cuted ten times. The inner DO group goes through its
entire looping process immediately following each exe
cution of statement 3.

28 A PL/I Primer

When DO groups are nested, a different variable
must be used for each counter. Had the same counter
been used for both groups in the above example, it
would reach the value of eleven when the first looping
of the nested group was completed. Statements 4, 5, and
6 would be executed for the first time, and control would
go to the next statement after the END statement of the
first DO group. Although the outer loop would be exe
cuted only once, the counter would indicate that it had
been executed ten times.

The example shows nesting only to the second level.
Much deeper nesting is allowed; the maximum varies
from compiler to compiler. In general, the maximum
will be the same as that for nested IF statements.

Whatever the number of nested groups, each con
tained group will be executed to completion for every
single execution of its containing group, just as the
second group, in the above example, is executed to
completion for every single execution of the outer
group.

A DO statement can have a label prefix, and control
can be passed to it through the use of a GO TO state
ment. Control can be passed to a statement within a
DO group only if the group is headed by a simple DO
statement, that is, a DO without any repetitive specifi
cation. Control can, however, be transferred out of a
DO loop; for example, a GO TO statement might be a
THEN or ELSE clause of an IF statement within the
loop.

This discussion has covered only a few of the many
ways DO groups can be used. Virtually the only limita
tion is the programmer's ingenuity.

A program may consist of a single procedure or of sev
eral procedures. During execution of the program, con
trol can go from one procedure to another and can
return to a previously executed or partly executed
procedure.

A procedure is headed by a PROCEDURE statement
and ended by an END statement, as follows (the dots
represent the statements in the procedure) :

UPDATE: PROCEDURE;

END;

Each procedure must have a name, that is, each PRO
CED URE statement must be labeled. A procedure
name denotes an entry point through which control can
be transferred to the procedure.

The division of a program into several procedures is
a feature of PLjI that provides a special convenience to
programmers. The procedures can be written separate
ly, even compiled separately, and executed as a single
program. A long program can be divided into logical
blocks; special procedures can be written for special
purposes. A discussion in the next chapter shows how
this feature also provides great economy in the use of
internal storage space.

Control does not pass automatically from one pro
cedure to the next. Each procedure, except the first,
must be invoked, or called separately from some other
procedure. This usually occurs with the execution of a
CALL statement, for example:

CALL UPDATE;

Execution of this statement in another procedure would
transfer control to the entry point of the procedure
named UPDATE.

The first procedure of a program must have the OP
TIONS (MAIN) attribute specified for it in its PRO
CEDURE statement. At execution time, this procedure
is called automatically to begin execution of the pro
gram.

The diHerent procedures in a program may be en
tirely separate from one another, or some may be nested
within other procedures. Consider the following two
examples:

Example 1:

FIRST: PROCEDURE OPTIONS (MAIN);
statement-l
statement-2
statement-3

Chapter 6: Procedures

statement-4
statement-5
statement-6
END;

UPDATE: PROCEDURE;
statement-a
statement-b
statement-c
END;

The two procedures shown are separate from one an
other; they are external procedures. All of the text of a
procedure, except its entry name, is said to be contained
in that procedure.

Example 2:

FIRST: PROCEDURE
statement-l
statement-2
statement-3
UPDATE: PROCEDURE;

statement-a
statement-b
statement-c
END;

statement-4
CALL UPDATE;
statement-6
END;

In this example, UPDATE is nested within - or con
tained in-FIRST. FIRST is an external procedure; UP
DATE is an internal procedure.

Execution starts with the FIRST: PROCEDURE
statement. Statements 1, 2, and 3 are executed. When
control reaches the UPDATE: PROCEDURE state
ment, that statement is ignored, and execution continues
with statement 4. Upon execution of the fifth statement,
CALL UPDATE, control is transferred to UPDATE.
Statements a, b, and c are executed. When the END
statement in UPDATE is executed, ('ontrol is trans
ferred back to the procedure, FIRST, to execute the
statement immediately following the CALL UPDATE
statement; that is, control is transferred to statement 6.

When UPDATE is called, it is the invoked procedure
and FIRST is the invoking procedure; the CALL UP
DATE statement is the point of invocation.

Any procedure, external or internal, can invoke an
other external procedure, but it cannot directly invoke
an internal procedure that is contained in some other
procedure. Assume that FIRST is a control procedure
as follows:

FIRST: PROCEDURE OPTIONS (MAIN);
CALL A;
CALL B;
CALL C;

Procedures 29

UPDATE: PROCEDURE;
statement-a
statement-b
statement-e
END;

CALL D;
CALL UPDATE;
CALL E;
END;

The CALL A statement invokes the procedure named
A, and control is transferred to A. When it returns to
FIRST, after completion of A, the statement CALL B is
immediately executed, and control is transferred to the
procedure B, later to return to the CALL C statement in
FIRST. Execution of FIRST continues in this way.

Any of the procedures invoked by FIRST might in
voke other procedures. For example, a statement in
procedure A might invoke a procedure Z. But control
eventually returns to the statement in the invoking pro
cedure that immediately follows the point of invocation
(from Z to A and from A to FIRST).

Since UPDATE is an internal procedure contained in
FIRST, FIRST is the only external procedure that can
invoke it. If another procedure, say procedure F, were
contained in UPDATE, only UPDATE could invoke it.
No statement in FIRST could call F.

The following example demonstrates how an internal
procedure can be made available to other external pro
cedures:

PROC_I: PROCEDURE;
statement

BETA: ENTRY;
CALL PROC-A;
PROC--.A: PROCEDURE;

statement

END;
END;

In this exalllple, PROC_l has two entry names,'
PROC_l and BETA. The statement labeled BETA is an
ENTRY statement. An ENTRY statement specifies that
its label can be used in a CALL statement to invoke the
procedure at the point where the ENTRY statement ap
pears. An ENTRY statement declares its label to have
the ENTRY attribute in the same way that a PROCE
DURE statement declares its label to have the ENTRY
attribute. PROC_l can be invoked at its beginning with
a CALL PROC_l statement, or at the ENTRY state
ment with a CALL BETA statement (an ENTRY state
ment can be given any valid label to be used in an in
voking call).

When PROC_l is invoked at BETA, the first state
ment executed invokes PROC--A; the invoking proce
dure has, in effect, called an internal procedure outside
its normal scope. When execution of PROC--A is com-

30 A PL/I Primer

pleted, control returns to the statement in PROC_l that
follows the point of invocation, in the preceding exam
ple, the END statement of PROC_l. Consequently,
control returns to the procedure that invoked PROC_l
at the entry point, BETA.

When PROC_l is invoked at its primary entry point,
at PROC_l, the statements are executed in the order in
dicated by the programmer. When control encounters
the ENTRY statement, it skips to the next statement, in
this case, the CALL PROC--A statement.

More than one procedure may be contained in a sin
gle procedure, either as separate internal procedures or
as nested internal procedures:

PROC_I: PROCEDURE;
statement-I
statement-2
CALL PROC--.A;
PROC_A: PROCEDURE;

statement-4
statement-5

statement-Ia
statement-2a
CALL PROC_B;
PROC_B: PROCEDURE;

statement-Ib
statement-2b
statement-3b
END;

statement-4a
statement-5a
statement-6a
END;

CALL PROC_C;
PROC_C: PROCEDURE;

statement-7
statement-8
statement-9

END_I: END;

statement-Ie
statement-2e
statement-3e
END;

PROC_A, PROC_B, and PROC_C are all contained in
PROC_l. PROC_B also is contained in PROC--A.
PROC_l can invoke either PROC--A or PROC_C;
either PROC--A or PROC_C might invoke one another;
but only PROC--A can invoke PROC--B.

A contained procedure must be wholly within its con
taining procedure; all of the statements of a contained
procedure must appear between the PROCEDURE and
END statements of the procedure in \vhich it is con
tained.

A GO TO statement may be used in an internal pro
cedure to transfer control from that procedure to any
labeled statement (except entry points) in any contain
ing procedure. A GO TO statement, generally, cannot
be used to transfer control between separate procedures
or from an outer procedure to a statement in any of its
contained procedures.

In the previous example, a GO TO statement in
PROC_B could transfer control to a statement in

PROC~ or PROC_1 but not in PROC_C, because
PROC_B is not contained in PROC_C. A GO TO state
ment could also be used to transfer control from
PROC~ or from PROC_C to a statement in PROC_l.
A GO TO statement cannot be used to transfer control
to a statement in PROC_B, or PROC_C; PROC_l can
use a GO TO statement only to transfer control from one
to another of its nine internal statements or to the la
beled END statement.

Control returns to an invoking procedure when the
END statement of an invoked procedure is reached.
Often, there are reasons why a programmer wants con
trol to return before the END statement is reached. The
procedure UPDATE, explained in Chapter 3, illustrates
such a situation.

The execution of UPDATE will end after the end-of
file condition arises for MASTER file. With UPDATE
used as one of several procedures in a program, another
ON statement would be required. The END statement
of the UPDATE procedure could be given a label, say
ENDUP, and the following statement could be inserted
somewhere in the program:

ON ENDFILE (MASTER) GO TO ENDUP;

After the last record in MASTER file is read and proc
essed, control is transferred to the END statement and
is returned to the invoking procedure.

Another method of returning control from an invoked
procedure to its invoking procedure is handled through
the use of the RETURN statement. When a RETURN
statement is executed, the result is the same as if the
procedure had been completely executed; control re
turns immediately to the first statement following the
point of invocation. A RETURN statement could not be
used in the preceding ON ENDFILE statement be
cause a RETURN statement cannot be the contained
statement of an ON compound statement.

A RETURN statement might appear in a procedure
as follows:

IF CNTR = 100
THEN RETURN;

GO TO LOOP;

Presumably, some operation in the procedure is to be
done 100 times and a counter is used, rather than a DO
loop, to control the number of repetitions.

In general, each procedure should be written in such
a way that it is as independent as possible. It usually is
preferable to return control to an invoking procedure
with the use of the END statement or a RETURN state
ment, even if a GO TO statement might be used. It also
is preferable, so far as is possible, to keep all references
to a single variable within the same procedure (or pro
cedures contained in it). The reasons for this will be
made apparent in the following discussions of "Program
Execution" and "Recognition of Names."

Program Execution
Any name that represents a data item actually repre
sents the location in storage where that data item is re
corded. The compiler analyzes the attributes of a vari
able to determine the amount of storage area that is
needed and when it will have to be available.

The fact that certain variables are used in one part of
a program and not used in others makes it possible to
set aside-or allocate-the same physical storage loca
tion, at different times, to different variables.

If during execution of a single procedure, but no
where else in the program, a 100-character field is re
quired for the variable TABLE, the space need not
actually be allocated until execution of that procedure
begins. If TABLE is not referred to again, there is no
need to keep the space reserved after execution of the
procedure is completed. The storage area can be used
for other purposes.

Such dynamic control of storage is called automatic
allocation. Variables declared in a procedure are as
sumed to have the AUTOMATIC storage class attri
bute; they are allocated when the procedure is invoked
and are freed when it is completed.

Some variables may be declared to have the STATIC
storage class attribute; they are allocated when the pro
gram execution begins, and they remain allocated
throughout execution of all the procedures in the
program.

A third storage class is the controlled storage class.
Variables declared to have the CONTROLLED attri
bute are allocated upon execution of an ALLOCATE
statement referring to the variable name. The storage
allocated for a controlled variable is released upon exe
cution of a FREE statement referring to the variable.
Consider the following example:

DECLARE A (50, 50) CHARACTER (15)
CONTROLLED;

ALLOCATE A;

FREE A;

In the DECLARE statement, A is declared to be a two
dimensional array of character strings having the CON
TROLLED attribute. Storage is not assigned for A until
execution of the ALLOCATE A statement. Upon exe
cution of the FREE A statement, storage no longer is
allocated for A; the storage can be used for other pur
poses.

As long as a procedure is active, its automatic vari
ables remain allocated. They are not released until the

Procedures 31

procedure is terminated. The first, or MAIN, procedure
remains active throughout the entire program.

A procedure is activated whenever it is invoked
through any of its entry points-the procedure name or
another entry name. A procedure can be terminated in
any of several ways: when its END statement is exe
cuted, when a RETURN statement in the procedure is
executed, when a STOP statement is executed in any
procedure, or when a GO TO statement transfers con
trol to an outer procedure.

Figure 9 shows a portion of a program that con
sists of at least three external procedures, FIRST,
THIRD, and SIXTH (SIXTH is not illustrated). One'
procedure, SECOND, is contained in FIRST; and two
procedures, FOURTH and FIFTH, are contained in
THIRD, with FIFTH also contained in FOURTH. The
numbers at the left are merely for reference; they are
not part of the program. FIRST is activated automati
cally. When statement 1 is executed, all automatic vari
ables declared in FIRST are allocated. Although SEC
OND is contained in FIRST, it is not activated until it
actually is invoked; only its entry name is made avail
able when FIRST is activated.

Statement 2 invokes SECOND, and allocations for it
are made. Then its statements are executed. When the
END statement in SECOND (statement 7) is executed,
SECOND is terminated, its automatic allocations are

1 FIRST: PROCEDURE OPTIONS (MAIN);
2 CALL SECOND;
3 SECOND: PROCEDURE;
4 statement
5 statement
6 statement
7 END;
8 CALL THIRD:
9 CALL SIXTH;

10 END;
11 THIRD: PROCEDURE;
12 statement
13 CALL FOURTH;
14
15
16
17

statement
statement
FOURTH: PROCEDURE;

statement
18 statement
19 IF M = N THEN RETURN;
20 CALL FIFTH;
21 FIFTH: PROCEDURE;
22 statement

released, and control returns to FIRST. SECOND is
terminated through execution of its END statement.
Storage locations that were automatically allocated
for SECOND are now available for use by other pro
cedures.

Statement 8 invokes THIRD. FIRST remains active
(as it will throughout execution of the entire program),
and THIRD is activated. Again, the internal procedures
are not activated, except that the entry name of
FOURTH is made available to THIRD.

Figure 9 shows why a GO TO statement cannot
be used to transfer control to a labeled statement in an
inner procedure. Since the inner procedures are not
active, statement labels within them are not available.
Even the entry name FIFTH is not available to THIRD.
When an inner procedure is active, however, its outer
procedures also are active; consequently, control can go
to a labeled statement in an outer procedure.

Statement 13 causes the activation of FOURTH
(THIRD remains active, because it has not been termi
nated). If the THEN clause of statement 19 is executed,
control returns to statement 14; FO DR TH is terminated
before it activates FIFTH. In such a case, FOURTH is
terminated through execution of a RETURN statement.

If the comparison in statement 19 reveals that M is
not equal to N, FIFTH is activated. At this point, all but
one of the procedures illustrated are active. Only

23 IF M = N THEN GO TO A;
24 statement
25 END;
26 IF M = N THEN STOP;
27 END;
28 A: statement
29 END;

Figure 9. Termination of blocks.

32 A PL/I Primer

SECOND has been terminated (SIXTH, of course,
and any procedures it might call have not yet been
activated) .

If the THEN clause in statement 23 is executed, both
FIFTH and FOURTH are terminated, and control is
transferred to statement 28, the statement in THIRD
that is labeled A. FOURTH and FIFTH are terminated
when the GO TO statement transfers control to an outer
procedure.

However, if M still is not equal to N, statements 24
and 25 are executed. FIFTH is terminated normally,
and control returns to FOURTH.

If the STOP statement - the THEN clause of state
ment 26-is executed, program execution ceases. All of
the procedures are terminated when the STOP state
ment is executed.

Otherwise, FOURTH is terminated normally, execu
tion returns to statement 14, and the remahing state-

ments of THIRD are executed. When THIRD is termi
nated by execution of its END statement, FIRST is the
only procedure that remains active. It immediately ac
tivates SIXTH. FIRST remains active until control re
turns to execute its END statement Execution of the
END statement of the MAIN procedure has the same
effect as execution of a STOP statement; program exe
cution ceases.

Before control returns from SIXTH, however, other
procedures could be activated; SIXTH might invoke in
ternal procedures contained in it, or it might invoke
other external procedures. Even THIRD might be re
activated.

It is important to note that if THIRD were to be re
activated, its variables would not represent the same
values that they represented before the previous termi
nation. When allocation for a variable is released, its
value no longer can be determined.

Procedures 33

Chapter 7: Recognition of Names

An inference might be drawn from the preceding dis
cussion that no name can be referred to in a procedure
unless the name has been explicitly declared within that
procedure. The inference would be only partly true.

Some names can be referred to in any procedure, re
gardless of the procedure in which they appear in a
DECLARE statement. These names are known through
out the program; their scope is the entire program.
Other names have a more limited scope; they are known
only in parts of the program. A name is known when a
reference to it can be valid. The scope of a name is the
range of the program throughout which the name is
known.

The way a name is declared, the attributes declared
for it, and the procedure in which it is declared can all
have an effect upon the scope of the name.

In this discussion, the word "identifier" refers merely
to the character or characters that constitute a name;
the word "name" refers to an identifier that has been
declared to have specific attributes.

The declaration of a name takes place at the time the
source program is compiled. The compiler must have
full information about every name that appears in a pro
cedure before it can translate the statements into ex
ecutable machine-language code. In some cases, all or
part of the information may be based on assumptions.

A PLjI compiler is written in such a way that any
identifier-except language keywords appearing in their
proper context-is assumed to be a variable representing
arithmetic data that is to be recorded either in decimal
floating-point form or in binary fixed-point form, de
pending upon which letter of the extended alphabet
appears as its initial (or only) character. Thus, any
identifier could be implicitly declared. A~ implicitly de
clared identifier is given BINARY and FIXED attri
butes if its initial character is I, J, K, L, M, or N; other
wise, it is given DECIMAL and FLOAT attributes. An

EXAMPLE: PROCEDURE;

implicitly declared variable is given default precision,
that is, the precision that is assumed by the particular
compiler in use.

These primary assumptions, however, can be over
ridden, either through the context in which the identi
fier is used or through the appearance of the identifier
in a DECLARE statement in which at least one at
tribute is specified for it.

An identifier is contextually declared to be a state
ment label if it appears with a statement as a label pre
fix; it is further contextually declared to have the
ENTRY attribute if the statement is a PROCEDURE
or ENTRY statement. An identifier that is referred to in
a CALL statement also is assumed to be an entry name.
(No assumptions are made about an identifier that ap
pears in a GO TO statement; thus, a label variable must
be given the LABEL attribute in a DECLARE state
ment.) An identifier that appears in an input or output
statement in a context where only a £Ie name can ap
pear is assumed to have the FILE attribute.

An identifier is explicitly declared to have the at
tributes specified for it in a DECLARE statement.

In an implicit or contextual declaration, all of the in
formation needed to classify a name is assumed. If only
a part of the information is explicitly declared for an
identifier, other attributes are assumed, by default,
based upon the attributes that are stated. The name still
is said to be declared explicitly, even though some of
its attributes are not stated explicitly.

The external procedure shown in Figure 10 illus
trates each kind of declaration.

In statement 2, the variables A and B and the £Ie
names INFILE and OUTFILE are explicitly declared.

A and B are explicitly declared to have the FIXED
attribute and a precision attribute (6). Since they are
not completely declared, the DECIMAL attribute is
given to them, by default (default attributes for partly

1
2
3
4
5
6
7
8
9

DECLARE (A,B) FIXED (6), (lNFILE INPUT, OUTFILE OUTPUT) FILE;
ON ENDFILE (INFILE) GO TO PRINT;

10
11
12

LOOP:

PRINT:

Figure 10.

34 A PL/I Primer

1=0;
GET FILE (INFILE) LIST (A,B);
C = A <:! B;
I = I + 1;
PUT FILE (OUTFILE) LIST (C);
GO TO LOOP;
PUT FILE (OUTFILE) LIST (I);
CALL NEXT;
END;

declared arithmetic data names are DECIMAL,
FLOAT, and the default precision specified for the par
ticular compiler).

Both INFILE and OUTFILE are explicitly declared
to be file names, INFILE with the INPUT attribute and
OUTFILE with the OUTPUT attribute. Since they are
explicitly declared, there is no contextual declaration as
a result of their appearance in the GET and PUT state
ments.

Attribute specifications can be factored in a DE
CLARE statement; that is, a common attribute can be
specified for more than one name by enclosing the
names in parentheses and specifying the common at
tribute following the closing parenthesis. The FIXED
attribute specification is factored for A and B, and the
FILE attribute specification is factored for both file
names.

In any DECLARE statement, one or more blanks
must separate the attribute specification for a name, and
each name must be separated from the preceding at
tribute list (or name) by a comma.

Four names are contextually declared in the above
procedure. The procedure name, EXAMPLE, is de
clared to have the ENTRY attribute by its appearance
in the PROCEDURE statement. LOOP and PRINT are
declared to be labels by their appearances as labels in
statements 5 and 10. And NEXT is declared to have the
ENTRY attribute by the context in which it appears in
statement 11. The assumption is made that NEXT ap
pears somewhere else in the program as the label of a
PROCEDURE statement. It is given the ENTRY at
tribute during compilation of this procedure and en
tered in the table of ENTRY names so linkage can be
established when the NEXT procedure is compiled.

Two identifiers, C and I, are implicitly declared in the
procedure EXAMPLE. The variable I, used to count the
number of records processed, is assumed to have
BINARY, FIXED, and default precision attributes; C is
assumed to have DECIMAL, FLOAT, and default pre
cision attributes. (Note that the values of A and B will
be fixed-point data items. When the expression in state
ment 6 is evaluated, the value will be converted to
floating -point scale before it is assigned to C.)

The names I and C are implicitly declared in the pro
cedure EXAMPLE but not in any particular statement
in the procedure. Rather, they are implicitly declared
because they do not appear in any statement that could
supply information about them other than the letters of
their names.

All of the variable names declared in the above pro
cedure are assumed to have the AUTOMATIC storage
class attribute; they will be allocated only while EX
AMPLE is active. They are assumed to have the IN
TERNAL scope attribute; that is, they will be known
only within EXAMPLE. The statement labels, LOOP

and PRINT, also have the INTERNAL attribute. All of
these names are internal names.

EXAMPLE and NEXT, since they are entry names of
external procedures, and the file names INFILE and
OUTFILE, are contextually declared to have th~ EX
TERN AL scope attribute. They are external names, and
they can be used throughout the entire program. File
names can be given the INTERNAL scope attribute by
explicit declaration only.

Within a single procedure that has no contained
blocks, an identifier cannot be declared more than one
time. The same identifier cannot appear in more than
one DECLARE statement within that procedure, even
if the explicitly declared attributes are not conflicting.

The same identifier can, however, be declared more
than once in separate blocks. For example, A is de
clared in EXAMPLE. It could also have been declared
in UPDATE. But a value assigned to A in EXAMPLE
could not be retrieved in UPDATE. Although the iden
tifiers would be identical, the names would be separate
names. The two declarations for A might give A the
same attributes or completely different attributes.

However, a name given the EXTERNAL attribute,
either explicitly or by default, is available to other pro
cedures that also declare the same identifier EXTER
NAL. For example, A might have been declared:

DECLARE A FIXED(6) EXTERNAL;

This DECLARE statement makes A available to any
procedure in the program that also declares A to have
the EXTERNAL attribute. Any other procedure in
which a reference is made to this particular name must
declare A with all of the same attributes, including the
EXTERNAL attribute. The identifier A can still be de
clared intern,ally in some other procedure. In that case,
it is considered a separate declaration-or redeclaration
-of the identifier, and the name has the INTERNAL
scope attribute; it is a different name, representing a
different storage area.

Some external names need not have the EXTERNAL
attribute specified for them in each procedure. A name
that can be contextually declared EXTERNAL in a pro
cedure-an entry name or a file name-need not be ex
plicitly declared EXTERNAL.

The nesting of procedures has a profound effect upon
the scope of names appearing in the procedures. In gen
eral, a name is known throughout the procedure in
which it is declared and throughout most procedures
that are contained in the procedure in which the name
is declared. The exception is any contained procedure
in which the same identifier is redeclared. Most names
declared within an internal block are not known in any
outer block.

Consider the example in Figure 11; it represents the
first external procedure of a program with a single
internal procedure contained in it. Each name appear-

Recognition of Names 35

1
2

FIRST: PROCEDURE OPTIONS (MAIN);
DECLARE (M, N) FLOAT (6) EXTERNAL,

ALPHA FIXED (6, 2), INFILE
FILE INPUT;

CALL SECOND;
SECOND: PROCEDURE;

$
4
5 DECLARE M FIXED (4, 2), TITLE

CHARACTER (8);

6
7
8

9
Figure II.

END;
CALL THIRD;
CALL SIXTH;

END;

ing in the example has a distinctive scope within the
procedure or within the program.

When execution begins, all STATIC names in the
program are allocated, regardless of what procedure
they are declared in. Names declared AUTOMATIC
(explicitly or by default) in statements internal to
FIRST are allocated when FIRST is invoked.

(The phrase internal to refers to all of the text con
tained in a block that is not contained in another block
nested within it. Note the difference between "internal"
and "internal to." In Figure 11, SECOND is an internal
procedure contained in FIRST, but only its entry name
(the name SECOND) is internal to FIRST. The nest
ing of DO groups or IF statements is not a considera
tion. Neither a DO or IF statement nor any nesting of
them has any effect on the scope of names.)

Since the procedure SECOND is not internal to
FIRST, the contained procedure is not activated when
FIRST is invoked. The name SECOND, however, as
declared in statement 4, is internal to FIRST; the entry
name of an internal procedure is considered to be con
tained in (and internal to) the immediately containing
procedure.

Table 3 gives the scope of each name that appears
in Figure 11.

The declaration of M in statement 5 is a redeclaration
of the identifier. The M declared in statement 5 is a dif
ferent variable from the M declared in statement 2. It is
not kno,Xln in procedure FIRST because it is an internal
name, but not internal to FIRST. For the same reason,
TITLE is not known in FIRST.

THIRD and SIXTH are declared contextually to
have the ENTRY and EXTERNAL attributes in state
ments 7 and 8 because they appear LTl CALL statements
and are not otherwise declared in the block. SECOND
is not contextually declared in statement 3, because it is
contextually declared in another statement (number 4)
that gives more specific information about it, that is,
that it is an internal entry name.

36 A PL/I Primer

Table 3. Scope of Names Declared in Procedure FIRST (see
Figure 11).

STATEMENT
REFERENCE

NUMBER NAME USE SCOPE

FIRST external entire program l

entry name

2 M external FIRST, and
floating-point any other

variable procedure in
which it is
declared·
EXTERNAL;
not SECOND
because
identifier is
redeclared in
SECOND

2 N external all of FIRST
floating-point and

variable SECOND,
and any other
procedure in
which it is
declared
EXTERNAL

2 ALPHA internal all of FIRST
fixed-point and
variable SECOND

2 INFILE file name entire program2

4 SECOND internal all of FIRST
entry name

5 M internal SECOND
fixed-point
variable

5 TiTlE internal SECOND
character
string

7 THIRD external entire program
entry name

8 SIXTH external entire program
entry name

lAlthough an entry name is known throughout the declaring block (and
most contained blocks), it cannot, in most cases, be referred to within itself.
The exception is within a procedure having the RECURSIVE attribute,
which allows the block to be reinvoked while it is still active.
2 File names are always assumed to have the EXTERNAL attribute unless
explicitly declared otherwise.

1
2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17

THIRD:

Figure 12.

PROCEDURE;
DECLARE M FIXED (4, 2), SWITCH BIT (1);
CALL FOURTH;
FOURTH: PROCEDURE;

A: statement
END;

DECLARE ALPHA CHARACTER (8),
(M, N) EXTERNAL;
IF M = N THEN RETURN;
CALL FIFTH;
FIFTH: PROCEDURE;

DECLARE SWITCH BIT (1);
GET FILE (INFILE) LIST (I);
M = N + I;
IF M = N THEN GO TO A;
END;

IF M = N THEN STOP;
END;

Figure 12 shows some statements of another external
procedure of the same program.

Table 4 Scope of Names Declared in Procedure THIRD (see

Some of the names that appeared in FIRST are also
known in THIRD. Table 4 gives the scope of each
name that appears in the example.

One of the important reasons for dividing a program
into separate procedures and for nesting some proce
dures within others is for the purpose of limiting or ex
tending the scope of some names. Such scope limitations
can also be made through the use of the BEGIN state
ment.

A BEGIN statement, like a PROCEDURE statement,
heads a block of statements whose end is indicated by
an associated END statement. A block of statements
that is delimited by a BEGIN statement and an END
statement is called a begin block.

A begin block resembles a procedure block in that it
can delimit the scope of names. Names can be declared
in a· begin block, either contextually or explicitly. A
begin block, however, cannot be an external block; it
must be contained in a procedure. It may contain other
blocks, either begin blocks or procedures, which can be
invoked only from within the containing begin block.

A major difference between a procedure and a begin
block is the way in which they are activated. As noted
previously, a procedure is activated remotely, for ex
ample, by a CALL statement; a begin block is activated
through norma! sequential execution. Control automati-
cally passes into a begin block after the statement pre
ceding it has been executed; control passes through the
END statement of a begin block to the next sequential
statement. A begin block can be either the THEN clause
or the ELSE clause of an IF statement, in which case it
functions in much the same way as does a DO group.

A BEGIN statement need not be labeled, but if it is
given a label, control can be passed to the begin block
by a reference to that label in a GO TO statement. The
label of a BEGIN statement cannot be referred to in a

Figure 12).

STATEMENT
REFERENCE

NUMBER NAME USE SCOPE

THIRD external entire program
entry name

2 M internal THIRD not
variable including

FOURTH
and FIFTH!

2 SWITCH internal THIRD and
variable FOURTH2

4 FOURTH internal THIRD,
entry name FOURTH,

and FIFTH

5 ALPHA internal FOURTH and
variable FIFTH

5 M external FIRST,
variable FOURTH,

FIFTH, and
any other
procedure
in which M
is declared
EXTERNAL

5 N external Same asM in
variable 5, plus

SECOND

8 FIFTH interno! FOURTH,
entry name FIFTH

9 SWITCH internal FIFTHz

variable

10 INFILE file name entire program3

10 internal all of THIRD4
variable

16 A statement label all of THIRD

lAlthough M, as explicitly declared in THIRD, has exactly the same attri
butes as the M that is explicitly declared in SECOND, the two are com
pletely different names.
2 The two declarations of SWITCH are different; there is no actual connec
tion between the two names.
3INFILE is contextually declared here. It is the same INFILE that is ex
plicitly declared in FIRST. All file names are assumed to have the EX
TERNAL attribute unless specified otherwise.
4An implicitly declared name is assumed to be declared in the external pro
cedure regardless of where the reference is made to the name within the
procedure.

Recognition of Names 37

CALL statement.
The primary use of the BEGIN statement and a begin

block is to limit the scope of a name, or names, through
a sequentially executed block of statements.

Summary

In a program that consists of a single procedure, the
scope of any name is the entire program. The ability to
limit or extend the scope of a name is a valuable pro
gramming tool; so is the ability to control the allocation
of storage. Consequently, most programs will consist of
more than one procedure.

It is valuable to note the relationships between the
scope of a name and the activation and termination of
blocks in which the name is used.

An external name can be known throughout all the
procedures of a program. All external variables are as
sumed, by default, to have the STATIC storage class
attribute; they remain allocated throughout execution
of the entire program.

An internal name is known only within a single ex-

38 A PL/I Primer

ternal procedure. All internal variables are assumed, by
default, to have the AUTOMATIC storage class attri
bute; they remain allocated only while the block to
which their declaration is internal-the declaring block
-remains active.

The scope of a name includes all blocks contained in
the declaring block except for any block (and its con
taining blocks) in which the identifier is redeclared.

The scope of an external name is through all blocks in
which the identifier is declared, either explicitly or con
textually, to have the EXTERNAL attribute.

The scope of an implicitly declared variable is
through the entire external procedure. The scope of any
other internal name is through that portion of the ex
ternal procedure that could be executed while its de
claring block is active. This implies that the scope of an
internal variable, with the AUTOMATIC attribute, is
that portion of the external procedure in which it would
be expected to be allocated.

An explicit declaration of the STATIC attribute for
an internal variable does not enlarge its scope.

So far in this publication, each data name in discussions
and examples has been shown to refer to a single item
of data.

In PL/I, data can be named so that an entire collec
tion of data items can be referred to by a single name;
certain sub collections can be referred to by another
name, or individual elements can be referred to sep
arately.

There are two kinds of data collections to which col
lective names can be given, structures and arrays. The
major difference between the two is in the kind of data
an array name or a structure name represents. An array
is a table of homogeneous data items; each item has the
same attributes as have all the other items. In an array
of arithmetic items, for example, all of the items have
the same base, scale, and precision; in a character-string
array, all of the items have the same length. The ele
mentary data items of a structure, on the other hand,
need not be of the same data type nor have the same
attributes. Some names in a structure might refer to
string data while other names in the same structure
could refer to arithmetic data.

Collective naming does not alter the data in any way.
Data in a structure or an array is no different from what
it would be if it were -referred to by a single variable.
Collective naming merely gives a programmer more
convenience in referring to and manipulating data.

Structures

A structure is a graded system of names that refers to an
area of internal storage. At the first level, a single name
-the major structure name-refers to all of the data
items stored in the entire area that is allocated to that
structure. At the second level, certain portions of the
area are renamed. This renaming continues until, at the
deepest level, a single name, at any particular point in
time, refers to a single data item; at the deepest level, in
fact, each name is a variable, as previously defined.

Consider a program to figure a weekly payroll. One
employee, John J. Doe, whose pay number is 68584,
works 40 hours of regular time and 5 hours of overtime.
He is paid $4.00 per hour for regular time and $6.00 for
overtime.

His weekly pay record, with all of the above informa
tion, is read and assigned to a structure named PAY-
ROLL. The information could be ordered: -

DOE JOHN J 68584 40 05 400 600

Chapter 8: Collective Names

If this were referred to merely by the name PAYROLL,
it might be treated as a character string; but, as a char
acter string, it would be difficult to get to individual
items within the string, and arithmetic operations would
involve conversion. However, a name can also be given
to each element. The names for J ohn Doe's pay record,
and the data each name represents might, conceptually,
look like this:

PAYROLL

LAST NAME
FIRSTNAME
MIDDLE NAME
PAY_NO
REGLRHOURS
OVTIMHRS
STRATE
OVRTIMRATE

DOE
JOHN
J
68584
40
05
400
600

Thus, a programmer can refer to the entire collection of
data items by the name, PAYROLL, or he can refer to
an individual item by an individual name.

It often is valuable to be able to refer collectively to
more than one, but not all, of ' the variables in a struc
ture. The names of the variables suggest an intermedi
ate classification:

NAME

PAYROLL

HRS

RATE

LAST
FIRST
MIDDLE

REGLR
OVTIM

STRATE
OVRTIM

DOE
JOHN
J

68584

40
05

400
600

The major structure, PAYROLL, contains the substruc
tures, NAME, HRS, and RATE. PAY_NO is not a sub
structure because it represents only a single data item.

During execution of a program in wpich PAYROLL
is used, a number of different pay records would be
read and assigned to PAYROLL. The corresponding
elements of the records would each be assigned to its
proper variable.

A reference to any structure or substructure is a ref
erence to all of the data items referred to by the ele
mentary names in that structure or substructure. It is,
perhaps, clearer to say that a reference to any name is
really a reference to the names at the next deeper level.
That is, a reference to the name at the first level (PAY
ROLL, in the example) is a reference to all of the
names at the second level (NAME, PAY_NO, HRS,
RATE). A reference to a name at the second level
(NAME) is a reference to all of the names in that sub-

Collective Names 39

structure at the third level (LAST, FIRST, and
MIDDLE).

Since there are no levels deeper than LAST, FIRST,
and MIDDLE, they are not substructures. They are
elementary names, like PAY_NO. -

When a structure is declared, the level of each name
is indicated by a level number. The major structure
name, at the first level, always is given the level number
1. Each name at a deeper level is given a greater num
ber to indicate the level depth. For example:

DECLARE 1 PAYROLL, 2 NAME, 3 LAST, 3 FIRST,
3 MIDDLE, 2 PAY_NO, 2 HRS, 3 REGLR, 3 OVTIM,
2 RATE, 3 STRATE, 3 OVRTIM;

The same DECLARE statement could be written as
follows:

DECLARE 1 PAYROLL,
2 NAME,

3 LAST,
3 FIRST,
3 MIDDLE,

2 PAY_NO,
2 HRS,

3 REGLR,
30VTIM,

2 RATE,
3 STRATE,
30VRTIM;

The order of the appearance of names in a declare
statement, along with their level numbers, determines
the structuring. Except for the major structure name, no
particular numbers must be specified. The only require
ment is that deeper level names must have greater num
bers. The major structure name must be declared with
the level number 1, and it must be the first name listed
in the structure declaration. It must be followed by one
of the names at the second level. Each name at the sec
ond level must have a level number greater than 1, and
if it is a substructure, it must be followed by the names
within that substructure. Each substructure is com
pletely declared before the next substructure declara
tion begins, and each substructure must have a level
number equal to or less than the level number of the
immediately preceding substructure at the same level.
For example, if RATE were declared with the level
number 3, it would be considered to be part of the
substructure HRS.

The level numbers of the above structure might have
been declared in this way:

DECLARE 1 PAYP..OLL,
8 NAME,

20 LAST,
20 FIRST,
20 MIDDLE,

6 PAY_NO,
2 HRS,

3 REGLR,
30VTIM,

2 RATE,

40 A PL/I Primer

8 STRATE,
80VRTIM;

Exactly the same structuring would result.
The number of levels allowed within a structure will

vary from compiler to compiler.
When a structure is declared, attributes may be spec

ified for the elementary item names; otherwise, default
attributes would apply. Attributes can be factored in a
structure declaration. For example:

DECLARE 1 PAYROLL,
2 NAME,

3 LAST CHARACTER (12),
3 FIRST CHARACTER (8),
3 MIDDLE CHARACTER (1),

2 PAY_NO CHARACTER (5),
2 HRS,

(3 REGLR,
30VTIM)

FIXED DECIMAL (2),
2 RATE,

(3 STRATE,
30VRTIM)

FIXED DECIMAL (3,2);

Although level numbers must appear with a name in
the DECLARE statement, they do not appear with the
name in any other reference to it.

Qualified Names

All names within a single procedure must be unique.
But within structures, it is often convenient to be able
to use the same identifier for related names. In the
above structure, for example, it would be convenient to
refer to the items in HRS and RATE AS "regular hours"
and "regular rate" and "overtime hours" and "overtime
rate."

In fact, the elements can be given the same names.
The last portion of the structure might be declared:

2 HRS,
3 REGLR,
30VRTIM,

2 RATE,
3 REGLR,
30VRTIM;

The use of a qualified name in referring to the individ
ual item avoids ambiguity. A qualified name is a sub.,
structure or element name that is made unique by qual
ifying it with one or more names at a -higher level. The
individual names within a qualified name are separated
by a period. The above items could be referred to by
the following qualified names:

HRS . REGLR
RATE. REGLR
HRS . OVRTIM,
RATE.OVRTIM

Any of the names in PAYROLL, except PAYROLL it
self, need not be unique within the procedure in which
it is declared.

They all could be qualified. For example:
PAYROLL . NAME
PAYROLL. NAME, LAST

or NAME . LAST
or PAYROLL. LAST

All of the qualifying names need not appear. A name
need be qualified only so far as is necessary to make it
unique.

Structure Expressions

Structure and substructure names can be used in arith
metic or string expressions.

For example, consider the following statement:

PAY = HRS (I. RATE;

PAY, in this case, must be a structure name referring to
two arithmetic variables. The above statement would
have the same effect as the following two statements:

PAY.REGLR= HRS.REGLR (l.RA TE.REGLR;
PAY.OVRTIM=HRS.OVRTIM(l.RATE.OVRTIM;

A reference to a structure or substructure name in an
expression is a reference to all of the elements within
that structure or substructure. In the case of an arithme
tic expression; the expression is evaluated separately
for each set of corresponding' elements.

A structure expression need not be limited to struc
ture names. The expression HRS/5 would be valid and
it would give the same result as the two expressions,
HRS . REGLR / 5 and HRS . OVRTIM / 5.

Summary

A structure is a hierarchy of names built upon a list of
individual variables, so that the variables can be re
ferred to singly or in groups or so that the entire list of
variables can be referred to by a single name.

Structuring has no effect upon the data itseH; it
merely provides greater Hexibility in referring to the
data.

Arrays
An array is a named table of data items all of which
have identical attributes. Only the array, itseH, is given
a name. An individual item of an array is referred to by
giving its location within the array, The location is
specified by a subscript following the array name.

Assume TABLE has been declared to be an array of
12 elements. TABLE (1) refers to the first item in the
list, TABLE (2) to the second, TABLE (3) to the third,
etc. Each of the numbers, (1), (2), or (3), is a sub
script that gives the location, within TABLE, of a par
ticular data item.

An array name is declared in a DECLARE statement
by giving its name, the number of elements in the array,
and the attributes of the items.

DECLARE TABLE (12) DECIMAL FIXED (2);

This specifies that the name, TABLE, refers to an array
of 12 data items, each of which will have a value that
can be represented by two decimal digits. TABLE is

declared to have the dimension attribute of (12). The
bounds of the dimension are 1 and 12. In any declara
tion, the dimension attribute must immediately follow
the array name. Assume that the following numbers
have been assigned to TABLE:

31
43
42
57
64
73
79
79
69
58
49
40

Thus, TABLE (1) would refer to the data item 31,
TABLE (6) to 73, TABLE (12) to 40. The expression
TABLE (7) + TABLE (1) would yield a value of 110.

Assume that the values assigned to TABLE represent
the average temperature of the months of a particular
year. TABLE (1) is the January average, TABLE (2)
is the February average, etc. As TABLE was declared
in the previous DECLARE statement, the data items
could be referred to singly or as a whole. For various
reasons, a programmer might want to consider the year
as divided into quarters; it might be convenient to be
able to use a single reference to all of the average tem
peratures of a quarter of a year. He might declare
TABLE as follows:

DECLARE TABLE (4,3);

In this' statement, the dimension attribute specifies that
TABLE refers to 12 data items, but that TABLE is con
sidered to consist of four lists of three items each. It has
two dimensions, one with bounds of 1 and 4, the other
with bounds of 1 and 3. The data might be recorded in
storage in exactly the same way as with the mst declara
tion, but conceptually it is ordered differently.

Following are two different ways in which the ar
rangement might be conceptually illustrated. The one
on the left treats it as four consecutive lists of three
items each; the one on the right treats it as 'a matrix of
four rows and three columns.

31) TABLE (1,1) TABLE (n,l) (n,2) (n,3)
43 J (1,2) (I,m) 31 43 42
42 (1,3) (2,m) 57 64 73
57

}
(2,1) (3,m) 79 79 69

64 (2,2) (4,m) 58 49 40
73 (2,3)
79) (3,1)
79

f
(3,2)

69 (3,3)
58

}
(4,1)

49 (4,2)
40 (4,3)

With such a two-dimensional array, a programmer can
refer to cross sections of the array (that is, to all of the
variations within the bounds of one dimension) by

Collective Names 41

writing an asterisk in place of that dimension in a sub
scripted name. For example:

PUT LIST (TABLE (1,<J»;

The above statement would have exactly the same re
sult as the following:

PUT LIST (TABLE (1,1), TABLE (1,2),
TABLE (1,3»;

In the example below, the first statement would have
exactly the same effect as the four statements that fol
low it.

A = TABLE (<J,2)1)2;
A(1) = TABLE (1,2) I) 2;
A(2) = TABLE (2,2) I) 2;
A(3) = TABLE (3,2) I) 2;
A(4) = TABLE (4,2) I) 2;

Note that A must be an array of four elements, since
the expression TABLE (<J,2) # 2, would, using TABLE
as declared previously, result in four separate values.

In whatever concept one chooses to visualize an
array, it is important to remember that although the
dimension attribute in the preceding example specifies
a two-dimensional array, the location of each item in
storage could be exactly the same as if it were a one
dimensional or three-dimensional array. It could, in
fact, actually be declared as a three-dimensional array
with the following DECLAR~ statement:

DECLARE TABLE (2,3,2);

Note that the number of specifications, separated by
commas, is the same as the number of dimensions, and
that the product of the numbers is equal to the number
of items in the array: (12), (4,3), (2,3,2,).

U sing the same data, TABLE (2,3,2) might be en
visioned as follows:

31
43
42
57
64
73
79
79
69
58
491
40S

TABLE (1,1,1)
(1,1,2)
(1,2,1)
(1,2,2)
(1,3,1)
(1,3,2)
(2,1,1)
(2,1,2)
(2,2,1)
(2,2,2)
(2,3,1)
(2,3,2)

TABLE (l,n,m) (l,n, 1) (l,n,2)

(1,I,m)
(1,2,m)
(1,3,m)

31
42
64

43
57
73

TABLE (2,n,m) (2,n,l) (2,n,2)

(2,I,m) 79 79
(2,2,m) 69 58
(2,3,m) 49 40

The dimension attribute (2,3,2), specifies that TABLE
represents a list of 12 data items and .that the list will be
referred to as if it consists of two sub-lists, each of which
is further divided into three sub-lists of two items each.

The same result could be achieved through declaring
TABLE as a structure:

DECLARE 1 TABLE,

2 TABLE_I,
3 TABLE_I_I,

4 TABLE_l_1_1, (31)
4 TABLE_l_I-2, (43)

3 TABLE_l_2,

42 A PL/I Primer

4 TABLE_I-2_1,
4 TABLE_l~2,

3 TABLE_l_3,
4 TABLE_l_3_1,
4 TABLE_l_3_2,

2 TABLE-2,
3 TABLK-.Ll,

4 TABLE-2_1_1,
4 TABLE-2_1-2,

3 TABLE~2,
4 TABLE 2 2 1,
4 TABLE~2,

3 TABLE~3,
4 TABLE~3_1,
4 TABLE~3-2;

(42)
(57)

(64)
(73)

(79)
(79)

(69)
(58)

(49)
(40)

The actual data locations referred to could be the same,
no matter how the list is referred to.

Declaring a three-dimensional array for the monthly
temperature averages for one year means that the year
is considered as two six-month periods, witp each six
month period further divided into three two-month
periods.

A more practical application of a three-dimensional
array, used in connection with monthly temperature
averages, would be one that contained all the monthly
averages over a period of years, say ten years. The aver
ages for each year probably would be referred to as in
TABLE (4,3), and the third dimension of the array
would vary through the ten years. It could be declared
as follows:

DECLARE TABLE (10,4,3);

If the list contained temperatures for the years 1951 to
1960, the average temperature for July 1957 would be
referred to as TABLE (7,3,1), or the seventh year, the
third quarter, the first month.

A four-dimensional array might be specified for a
monthly average temperature table that spanned a cen
tury. The century could be divided into decades, each
decade into years, each year into quarters, and each
quarter into months.

DECLARE TABLE (10, 10, 4, 3);

If the above were declared, the subscripted name,
TABLE (6,2,3,1), would represent the first month of
the third quarter of the second year of the sixth decade.

The limit to the number of dimensions that can be
declared for an array is specified for each PL/I com
piler.

If the average temperatures were available over a
period of two centuries, TABLE might be declared as
follows:

DECLARE TABLE (2, 10, 10, 4, 3);

There would be 2,400 items in this five-dimensional
array (2 x 10 x 10 x 4 x 3) .

Think of the rightmost number of any dimension at
tribute as specifying a one-dimensional array. The next
number to the left specifies the number of one-dimen
sional arrays that make up a two-dimensional array. The

next number to the left specifies the number of two
dimensional arrays that make up a three-dimensional
array, etc. In the declaration of TABLE as a five-dimen
sional array, the leftmost number (2) specifies the num
ber of four-dimensional arrays that make up the five
dimensional array.

Variable Subscripts

Subscripts in a name used to refer to an element of an
array need not be numbers. Any variable having an
arithmetic integer value can be used in place of any of
the numbers of a subscript. For example, if ALPHA has
the value 2 and BETA has the value 3, the expression A
(ALPHA, BETA), is the same as the expression A(2,3).

The ability to use variables as subscripts is especially
valuable in DO groups in which array data is manipu
lated. For example, the statements below specify that
the average temperature be written for the month of
February of each year of a century (assume that the
average temperatures have been recorded for every
month of every year since January 1865; assume further
that the variable YEAR has been declared with the at
tributes DECIMAL FIXED (4) and has been given an
initial value of 1865).

DO I = 1 TO 10;
DO J = 1 TO 10;
PUT LIST (YEAR, TABLE (I,J ,1,2));
YEAR = YEAR + 1;
END;

END;

When the first DO statement is executed, I is set equal
to 1, and control passes to the second DO statement,
where J is set equal to 1. When the PUT statement is
executed the first time, both I and J in the expression,
TABLE (I,J,1,2), have the value 1. The year 1865 and
the temperature for February 1865 are written on the
standard output file. YEAR is made equal to 1866, the
END statement is executed, and control returns to the
innermost DO statement. J is incremented, and the op
eration is repeated. When the inner DO group has been
executed ten times, control returns to the outer DO
statement. I is incremented, and control again passes to
the inner DO statement. J is reset to 1, and the loop is
executed 10 more times. This time, the value of I is two;
the temperatures of the second decade are written. The
statements are executed until TABLE (10,10,1,2) has
been written.

Array Expressions

A single element of an array of a..rithmetic data is a sin
gle arithmetic data item. It can be manipulated in the
same way as any other such item.

Likewise, entire arithmetic arrays (or cross-sections
of them) can be used in arithmetic expressions. Such
expressions are evaluated element by element, and a
value is returned for each element. Expressions con
taining array names are array expressions, and they al
ways return an array value.

NOTE: Although an array may be conceived as being
similar to an arithmetic matrix, array expressions are
not always expressions of conventional matrix algebra.

Since array expressions are always evaluated on an
element-by-element basis, all arrays referred to in a sin
gle array expression must have identical dimensions
and bounds.

Examples:

If A is the array: 3 5 8
-2 7 6

5 -6 4

Then -A is the array: -3 -5 -8
2 -7 -6

-5 6 -4

A 0 2 is the array: 6 10 16
-4 14 12
10 -12 8

If B is the array: 2 1 3
4 2 1
8 -2 -3

Then A + B is the array: 5 6 11
-2 9 7
13 -8 1

A 0 B is the array: 6 5 24
-8 14 6
40 12 -12

Summary

An array is a list of homogeneous elements that are re
ferred to by subscripted names. The subscript refers to
the location of the element within the list.

The dimensions declared for an array are merely an
indication of how elements will be referred to; they do
not indicate any particular arrangement of the actual
data items in the storage area.

All of the arrays in the discussion and in the exam
ples have been arithmetic arrays. PLjI allows arrays of
string data, either character-string or bit-string; all ele
ments must be of equal length. A programmer may
even declare a statement-label CL.'"Tay, in which each ele
ment refers to a statement label. Arrays may be ele
ments of a structure. And, in fact, an array may be an
array of structures, in which each element of the array
is an entire structure. All of the structures of an array of
structures must be identical.

Discussions of these other types of arrays can be
found in other PLjI publications.

Collective Names 43

Chapter 9: A Table Look-Up Procedure

The process of looking up a value in a keyed table is so
common an experience that one is apt not to realize the
number of steps involved. For instance, finding a num
ber in a telephone directory is done almost automati
cally.

A telephone directory consists of two lists, a name list
arranged alphabetically and a number list arranged in
no apparent order. Each telephone number, however,
occupies a position in its list corresponding to the posi
tion of the appropriate name in the list of names.

A search is made through the list of names. The initial
letter of the particular name eliminates all but a specific
section of the directory; other subsections are subse
quently eliminated until the correct name is found. The
value sought, the ,telephone number, is then secured
from the corresponding position in the second list. If
the name is not in the first list, the telephone number
is not in the second.

A computer could be programmed to look up tele
phone numbers through the use of arrays and DO
loops. A simple example is shown below.

Assume that the elements of a one-dimensional array
NAME_LIST are the names of 100 persons listed in a
telephone directory. Assume further that the telephone
number for each person is the corresponding element of
another one-dimensional array NUMBER_LIST.
NAME is a variable that represents the name of the
person whose telephone number is sought, and NUM
BER is a variable to which the number, when found, is
to be assigned. The look-up operation might be written:

LOOP: DO I = 1 TO 100; ,
IF NAME = NAME-LIST (I)

THEN GO TO FIND;
END LOOP;

FIND: NUMBER = NUMBER--LIST (I);

During execution of the DO loop, NAME is compared
with each of the elements in NAME_LIST, beginning
with the first. As I is incremented, NAME_LIST (I)
refers to successive elements in the array. When a match
is found between NAME and an element of NAME_
LIST, the telephone number for that name is secured
from the corresponding position in the array NUM
BE~LIST and is assigned to NUMBER.

Despite the speed of a computer, such step-by-step
searching is inefficient. Various techniques are used in
programming to allow faster table searching. Array
manipulation, as provided in PL/I, is one such tech
nique. For example, both of the arrays shown above
could be declared as two-dimensional arrays-NAME_

44 A PL/I Primer

LIST (10,l0) and NUMBE~LIST (10,l0). Each still
would contain 100 elements, but each conceptually
would consist of 10 lists of 10 elements each, allowing
for the elimination of 10 elements with a single test. The
statements directing the search might be written:

J = 10;
DO I = 1 TO 9 WHILE

(NAME> = NAME_LIST (I,J»;
IF NAME = NAME-LIST (I,J)

THEN GO TO FIND;
END;
DO J = 1 TO 10;
IF NAME = NAME-LIST (I,J)

THEN GO TO FIND;
END;

FIND: NUMBER = NUMBER--LIST (I,J);

The first DO loop instructs the computer to examine
the last name in each of the first nine groups of ten.
There is no need to test the tenth group, since after the
ninth is eliminated, only the tenth remains.

The DO statement specifies that two tests are to be
made at the head of the group; either could cause con
trol to be transferred out of the loop. The first test is of
the value of I; when it exceeds 9 (that is, when it is in
cremented to 10) control passes out of the loop. The
second test compares the value of NAME with the cur
rent value of NAME_LIST (I,J). If NAME is greater
than or equal to the element of the list, the DO group
is executed. If NAME is less than the current element
of NAME_LIST, then the name being sought must be
one of the nine preceding names.

When control enters the second DO loop, the value
of I specifies the group of ten that contains the name
being sought. If NAME is less than NAME_LIST
(4,l0), for example, it has already been shown to be
greater than NAME_LIST (3,l0), and the second DO
group makes its first test against NAME_LIST (4,1).
If, however, NAME is greater than NAME_LIST
(9,l0), the value of I will have been incremented to 10
(after the DO group is executed for the ninth time, I is
incremented and tested to see if it is greater than 9;
since it has been incremented to 10, control passes out
of the group with the value of I remaining at 10).

When the second DO group is entered, J is reset to
one and is incremented until NAME matches an ele
ment in NAME_LIST. Note that J will be incremented
to 10 only if the name is the last element in the entire
table; the tenth element of each of the first nine groups
is tested for equality in the first DO group.

\Vhen a match is found between NAME and an ele-

ment of NAME_LIST, control is transferred to FIND.
Since each telephone number is in the same position in
NUMBER_LIST as the corresponding name in
NAME_LIST, the subscripts that specify the name in
NAME~IST also specify the number in NUMBEIL
LIST. Consequently, NUMBEILLIST (I,J) is assigned
to NUMBER. The assumption is that the value of
NAME always can be found in NAME_LIST; no pro
vision is made for a case in which a name being sought
is not in the table.

Figure 13 is a table look-up procedure that provides
for cases in which the value sought might not actually
be in the table. Assume that the procedure is used in a
program by an insurance company to find the cost of
different kinds of insurance policies. The variable X
represents a code number that identifies a specific type
of policy; the object of the search is the premium for
$1,000 of coverage of that type of policy. The array A
is a list of 1,000 different code numbers, arranged in
ascending order. The array B is a corresponding list of
premiums. When X matches a code number in A, the
corresponding element of B is assigned to the vari
able Y.

Assume further that the data stored in the two tables
is read during execution of another procedure. All vari
ables are declared with the EXTERNAL attribute so
they can be referred to in other procedures of the pro-

LOOKUP: PROCEDURE;
DECLARE «X,A(I0,10,10» FIXED(4), (Y,

B(10,10,10» FIXED (4,2»
DECIMAL EXTERNAL;

II;t IS X IN TABLE A? I;tl
IF X < A(I,I,I)

THEN GO TO ZERO;
IF X > A(10,10,10)

THEN GO TO ZERO;
II;t INITIALIZE J AND K I;t 1

J,K = 10;
r FIND THE CORRECT GROUP OF 100 I;t 1

DO I = 1 TO 9 WHILE (X >= A(I,J,K»;
IF X = A(I,J,K)

THEN GO TO TABLE-B;
END;

r FIND THE CORRECT GROUP OF 10 °1
DO J = 1 TO 9 WHILE (X >= A(I,J,K»;

IF X = A(I,J,K)
THEN GO TO TABLE_B;

END;
II;t FIND THE CORRECT ELEMENT °1

DO K = 1 TO 10 WHILE (X >= A(I,J,K»;
IF X = A(I,J,K)

THEN GO TO TABLE-B;
END;

I" IF X IS NOT IN TABLE-- fjl
ZERO: Y = 0;

RETURN;
II;t ASSIGN THE PROPER VALUE 0/
TABLE-B: Y = B(I,J,K);

END LOOKUP;
Figure 13. A Table Look-up Procedure.

gram. Any procedure that invokes LOOKUP will first
assign to X the code number in question. After control
returns from LOOKUP to the invoking procedure, the
appropriate premium cost will be available at Y.

Both of the arrays are three-dimensional arrays of
1,000 elements; consequently, the first subscript refers
to groups of 100, the second subscript to subgroups of
10, and the third subscript to single elements within a
subgroup.

The first tests made in LOOKUP are to discover
whether or not the value of X lies within the range of
the table. If it does not-if it is less than A(1,1,1) or
greater than A (10,10,10) -control goes to ZERO, the
value of zero is assigned to Y, and control is returned to
the invoking procedure where, presumably, Y will be
tested for a zero value.

If X does lie within the range of the table, J and K are
set to 10 in the multiple assignment statement, and con
trol passes into the first DO loop. (With PL/I, the
same value can be assigned to anum ber of different
variables in a single statement.) The operation of the
DO loop is the same as that described in the previous
example except that here, the WHILE clause compares
X with the last element in each group of 100. The first
comparison is with A (1,10,10), or the 100th element in
the array. If X is greater than or equal to A(1,10,10),
the DO loop is executed. If X is shown to be equal to
A(1,10,10), control is transferred to the statement
labeled TABLE-B and the correct premium cost-the
corresponding element of B-is assigned to Y. Then con
trol reaches the END statement of the procedure and
returns to the invoking procedure. If X is not equal to
A(1,10,10), control returns to the heading of the DO
group, I is incremented to 2, and the WHILE clause
compares X with A(2,10,10).

The looping continues until (1) an exact match is
found, (2) the loop has been executed nine times, or
(3) the test in the WHILE clause shows that X is less
than the current value of A(I,10,10).

In the first case, the correct value from B is assigned
to Y. In the second case, control passes out of the first
DO loop to the second DO loop with the value of I set
at 10 (the variable always is incremented beyond the
top limit set in the DO statement). In the third case,
control passes to the second DO loop with the value of
I specifying the group of 100 whose range contains the
value of X (because X is less than the current value of
A(1,10,10) but greater than the last previous value of
A(1,10,10).

The second DO group functions exactly as the first
except that the object is to find the correct group of ten
elements. The first and third subscripts remain con
stant, the first at the current value of I, and the third at
10. As in the first loop, execution continues until one of
the three conditions is satisfied: (1) the correct value

A Table Look-Up Procedure 45

is found, (2) the loop is executed nine times, or (3) the
WHILE clause test shows that X is less than A (I,J,lO).

When the correct group of ten elements is found, con
trol is transferred to the third DO loop, which steps
sequentially through the group of ten, with the third
subscript incremented from 1 to 10. In most cases, X
will be found before K reaches 10, since K is set to 10
through the first two DO loops. If the correct element is
the last one in the table, K must be incremented to 10
before it will be found.

The WHILE clause appears in the third DO state
ment as an error-control expression, because the value
of X may not be a valid code number in the table. Al
though the table of code numbers must be arranged in
ascending order, it is not necessary that every number

46 A PL/I Primer

be included; for example, consecutive code numbers
might be 8723, 8728, 8843. If the value of X were 8729,
it would be tested against 8728, K would be incre
mented, and the WHILE clause would show that X is
less than 8843. In this case, control would pass out of
the last DO group to the statement labeled ZERO. The
variable Y would be assigned the value zero, and control
would return to the invoking procedure.

This procedure has been described to demonstrate
how PL/I provides ease in manipulating data when
it is organized in arrays. It should not be concluded
that this is the best way to handle a table look-up.
A more efficient method of handling what is basically
the same procedure is explained in the following
chapter.

The name of a variable, a file, etc. can be referred to in
a procedure only if that procedure lies within the scope
of the name. There is, however, a way in which the
scope of a name can be extended to a procedure in
which the name normally would not be known. This is
accomplished by passing the name as an argument of
the invocation. Consider the following example:

ALPHA: PROCEDURE;
DECLARE COST FIXED DECIMAL

(4,2),
TABLE (10,10)

FIXED DECIMAL (6),
OUTFILE FILE OUTPUT;

CALL BETA (COST,TABLE,OUTFILE);

END ALPHA;

In the CALL statement, COST, TABLE, and OUT
FILE are arguments that are passed to BETA as part
of the invocation. Note that the list of names, called the
argument list, is enclosed in parentheses and that the
names are separated by commas. Assume that ALPHA
is one procedure of a program used to compute a com
pany's inventory of stock on hand, and that part of the
task of ALPHA is to compute the number of each of 100
different items, all of which have the same cost. The
total number of each item is assigned as one element of
the 100-element array TABLE. A separate objective of
the program is to compute the total cost of all stock on
hand. That job could be handled by procedure BETA:

BETA: PROCEDURE (X,Y,FILE-A);
DECLARE (X FIXED (4,2),

Z = Y 0) X;

Y (10,10) FIXED (6),
Z (10,10) FIXED (10,2),
TOTAL_COST FIXED (15,2)

STATIC INITIAL (0»
DECIMAL;

'T'£VT' A T (""'IAC'T' = 'T'A'T' A T (""'IAC'T' -+- CTH.,f 17 \ •
.L'-'.L~.L..I_'-"'-'r.J.L - .L'-'.L.l..I...L.J_~'-'U.L I U"-'.I,: \L.J./,

PUT FILE (FILE-A)
LIST (Z,TOTAL_COST);

END BETA;

Procedure BETA is a subroutine, a procedure to which
arguments are passed in the invoking CALL statement.
In the PROCEDURE statement, the names X, Y, and
FILE--.A are contextually declared to be parameters. A
parameter is a name used in a procedure to represent
another name (or some other expression) that is passed
to that procedure as an argument of the invocation. A
name is contextually declared to be a parameter through

Chapter 10: Arguments and Parameters

its appearance in the parameter list of a PROCEDURE
or ENTRY statement.

The CALL BETA statement in ALPHA invokes
BETA and specifies that any reference, within BETA,
to the names in the parameter list - X, Y, and FILE--.A
- actually are references to the names in the argument
list of the invocation - COST, TABLE, and OUTFILE.
Names in an argument list are always associated with
names in the parameter list in the order in which they
appear; that is, the first argument is associated with the
first parameter, the second argument with the second
parameter, etc. The parameter list, like the argument
list, must be enclosed in parentheses and names within
the list must be separated by commas.

In the preceding example, BETA is invoked by a
statement in ALPHA, and the arguments passed are
names that are known in ALPHA. BETA also could be
invoked from other procedures, to compute and write
costs of other inventory items that are stored in other
100-element arrays. With each invocation, an argument,
known within the invoking procedure, must be passed
for each parameter. The question of scope of the names
does not arise, since the passing of a name as an argu
ment effectively extends the scope of that name through
the procedure to which the name is passed.

The passing of an argument does not perform the
same operation as an assignment statement. The name,
itself, is passed, not the value it represents. Conse
quently, storage already allocated for a variable before
it is passed as an argument need not be duplicated as
allocated storage when the subroutine is activated.
However, attributes must be declared - explicitly, con
textually, or implicitly - for each parameter within the
procedure that is headed by the statement in which the
parameter is contextually declared.

In BETA, for example, attributes are explicitly de
clared for both X and Y; the FILE and OUTPUT at
tributes are contextually declared for FILE--.A in the
PUT statement. But a reference to X, Y, or FILE--.A is
actually a reference to another name. When BETA is
invoked by the statement shown in ALPHA, any refer
ence to X is a reference to COST, any reference to Y is
a reference to TABLE, and any reference to FILE--.A is
a reference to OUTFILE. Since storage is allocated for
COST and TABLE when ALPHA is activated, no fur
ther allocation for them is necessary when BETA is
activated. Variables that are not parameters will, of
course, be allocated for a subroutine. The variable
TOTAL_COST, declared in BETA, will be allocated at

Arguments and Parameters 47

the beginning of the program, since TOTAL_COST is
declared to have the STATIC storage class attribute.
And storage for the array variable Z will be allocated
each time BETA is invoked.

In the execution of BETA, the array Z is used as a
work area to hold the results of the array expression
until they can be written. The variable TOTALCOST
is the cost of the total inventory; it is initially set to zero
and is updated and written each time BETA is executed.

The assignment statement

TOTAL-COST = TOTAL_COST + SUM(Z);

makes reference to another kind of procedure that is
similar to a subroutine. The name SUM is the entry
name of a function procedure. A function procedure
(commonly called a function) diHers from a subroutine
in the way it is invoked. A subroutine is invoked by a
CALL statement; a function is invoked by a function
reference, an example of which is contained in the as
signment statement. A fu'nction reference is the appear
ance, in an expression, of a function entry name with
associated arguments.

In the above example, SUM is the entry name of a
procedure that computes the sum of all the elements of
~n array. The appearance of the name SUM and the
argument Z invokes the function SUM and passes the
name Z to a parameter listed in the PROCEDURE
statement of SUM. The function SUM is executed, and
the computed sum of the elements of Z is returned as a
value to the point of invocation, that is, to the function
reference. The expression then is executed as if the
statement had specified the actual value rather than the
function reference.

The function procedure SUM is a built-in function;
that is, it is provided by PL/I as a part of the compiler.
There are a number of built-in functions, which a pro
grammer using PL/I need not write as separate pro
cedures; they are a part of the language, and any of
them may be invoked merely by a function reference.
(A complete list of built-in functions and their descrip
tions appears in the publication PL/I: Language Speci
fications.)

A programmer may, however, write a procedure to be
used as a function. The procedure LOOKUP, discussed
in Chapter 9, might be written as the following function
procedure:

LOOKUP: PROCEDURE (X,A,B);
DECLARE «X,A(lO,1O,10» FIXED (4),

B (10,10,10) FIXED (4,2»
DECIMAL;

r IS X IN TABLE? 0/
IF X<A(l,l,l)

THEN RETURN (0);
IF X>A(lO,1O,10)

THEN RETURN (0);
r FIND THE CORRECT GROUP OF 100 0/

48 A PL/I Primer

DO I = 1 TO 9 WHILE (X >= A (1,10,10»;
IF X = A (1,10,10)

THEN RETURN (B(I;lO;lO)};
END;

/0 FIND THE CORRECT GROUP OF 10 0/
DO J = 1 TO 9 WHILE (X >= A(I,J,10»;

IF X = A(I,J,1O)
THEN RETURN (B (1,J,10»;

END;
/0 FIND THE CORRECT ELEMENT 0/

DO K = 1 TO 10 WHILE (X >= A(I,J,K»;
IF X = A(I,J,K)

THEN RETURN (B(I,J,K»;
END;
RETURN (0);
END LOOKUP;

In the PROCEDURE statement, the names X, A, and
B are contextually declared to be parameters; the DE
CLARE statement specifies attributes for them. Assume,
again, that LOOKUP is a part of an insurance company
program. It might be invoked by the reference to
LOOKUP in the assignment statement shown below.

PREMIUM = THOUSANDS 0 LOOKUP
(CODE,CODE_LIST,COST_LIST);

IF PREMIUM = 0
THEN PUT LIST (CODE, 'NOT IN CODE_LIST');
ELSE ... ;

The assignment statement is written to compute the
total premium cost of a particular insurance policy. The
variable THOUSANDS represents the total value of the
policy in units of $1,000. The argument CODE is a code
number for the particular kind of policy; CODE-LIST
is a table of such code numbers; and COST_LIST is the
corresponding table of costs. When LOOKUP is in
voked, these arguments are passed to it, so that during
execution, X refers to CODE, A refers to CODE-LIST,
and B refers to COST_LIST.

The same procedure might be invoked from other
points in the program with diHerent arguments being
passed. Thus, the same procedure could be used to
search through a number of diHerent 1000-element
tables.

Execution of the procedure is the same as was de
scribed for LOOKUP in Chapter 9 except for the way in
which the procedure is terminated and the way in which
the value being sought is assigned.

A function procedure is terminated by a RETURN
statement of the following form:

RETURN (expression);

It might be interpreted as meaning "return the follow
ing value - along with control- to the point of invoca
tion." For example, if CODE is not included in CODE_
LIST, the RETURN (0) statement would return a zero
value to the point of invocation, and the invoking as-

signment statement would be evaluated as if it had been
written as follows:

PREMIUM = THOUSANDS 0) 0;

A function can return only a single value; consequently,
the expression in a RETURN statement must be an
arithmetic or string expression that represents a single
value.! When CODE is found in CODE_LIST, the
RETURN statement returns the corresponding value
from COST_LIST.

Summary

Through the specification of arguments and parameters,
subroutines and functions can be used throughout a
program to perform the same operations upon many
different data items whose names may be known only
within the invoking procedure.

A subroutine or a function need not lie within the
scope of a name that is referred to within the subroutine
or function; the passing of the name as an argument of
the invocation effectively extends the scope of the name
through the procedure that is thus invoked.

ISome built-in functions can return array or structure values, but program
mer-written functions cannot.

Any kind of name can be passed as an argument.
Examples in this chapter have illustrated data argu
ments and file arguments. Entry names and statement
labels also can be passed, so that a CALL statement or
a GO TO statement can be writt-en in a procedure to
refer to an appropriate name that is passed to it as an
argument. An exception is that most built-in function
names cannot be passed as arguments.

Arguments may be expressions other than names. A
constant can be passed, as can an expression containing
arithmetic or string operators.

An argument must be passed for each parameter ap
pearing in the parameter list of the invoked procedure.
Arguments in the argument list must appear in the same
order as the corresponding parameters in the parameter
list. Both the argument list and the parameter list must
be enclosed in parentheses; expressions in either list are
separated by commas.

Since the name, not the value, is passed, storage need
not be allocated for each parameter that represents a
data variable. However, attributes must be declared for
each parameter - explicitly, contextually, or implicitly
- within the subroutine or function.

Arguments and Parameters 49

Chapter 11: Input/Output

The basic function of input and output is data transmis
sion, getting the data to be processed and returning the
results of the processing. Using one of the simplest
forms of input and output (as has been shown in exam
pIes), a programmer need write only the nature of the
operation, GET or PUT, and a list of data names that
specify where the data is to be stored or where the data
to be written can be found. The full range of input and
output operations, however, allows a programmer to
edit 9-ata and insert symbols such as a dollar sign and a
decimal point, and to control the format and layout of
the printed page.

Data on an external medium is collected in a data set.
In PL/I, a file name is declared for each data set, and
the file name is given file attributes that describe the
data set and the manner in which it will be handled. For
example, the INPUT attribute specifies an existing data
set that is to be read; OUTPUT specifies a data set that
is to be written.

PL/I deals with data sets in two different kinds of
data transmission, stream oriented and record oriented.
With stream-oriented transmission, the data set is con
sidered to be a continuous stream of data items, in char
acter form, to be assigned from the stream to variables,
or from variables into the stream. With record-oriented
transmission, the data set is considered to consist of a
collection of physically separate records, each of which
consists of one or more data items in any form; each rec
ord is transmitted as an entity directly to or from a vari
able or directly to or from an addressable buffer.

The nature of the two kinds of transmission is ex
pressed in the keywords of the statements used in each.
The basic input/output statements in stream-oriented
transmission are GET and PUT, get the next data items
from the stream or put the specified data items into the
stream. In record-oriented transmission, the compara
ble statements are READ and WRITE, read the next
record directly from the data set or write the specified
record directly into the data set. Stream-oriented trans
mission implies data conversion. All of the items in the
stream are in character form. On input, they are con
verted automatically to conform to the attributes of the
variable to which they are assigned; on output, data
items are converted, if necessary, to characters. In rec
ord-oriented transmission, there is no conversion; data
is transmitted exactly as it is recorded, either internally
or on the external medium.

50 A PLII Primer

file Declaration
File attributes, like data attributes, may be declared im
plicitly, contextually, or explicitly. For example, any file
name is assumed to have the EXTERNAL scope attri
butes unless the INTERNAL attribute is declared ex
plicitly. The INPUT attribute is assumed, but a WRITE
statement or a PUT statement can cause contextual
declaration of the OUTPUT attribute.

Unlike data attributes, however, file attributes can be
explicitly declared in two different ways, by their ap
pearance in a DECLARE statement or by their appear
ance in an OPEN statement. A file must be opened be
fore it can be used. The opening of a file associates a
particular data set with the specified file name (a data
set can have a name that is different from the file name,
although usually the two names are the same). The
opening also allows for checking or writing of tape
labels, and it provides a means for a programmer to
specify certain layout specifications if output into the
file is to be printed.

A file may be opened explicitly or implicitly. It is
opened explicitly through execution of an OPEN state
ment. It is opened implicitly if one of a group of state
ments, such as GET or WRITE, is executed prior to
execution of an OPEN statement that specifies the same
file name.

Standard Files

There are two standard system files available for use by
a PL/I programmer. The first is the standard system
input file called SYSIN. The second is the standard sys
tem output print file called SYSPRINT. A GET state
ment that specifies no file name is equivalent to a refer
ence to SYSIN. A PUT statement that specifies no file
name is equivalent to a reference to SYSPRINT. This
type of reference applies only to these two statements;
any other reference to either file must be stated explic
itly. The standard system files need not be declared or
opened explicitly; a standard set of attributes is applied
automatically. For SYSIN, these attributes specify that
it is a stream-oriented input file from which the data
will be obtained in the same sequence as it appears in
the file. For SYSPRINT, the attributes specify stream
oriented output that is to be printed. Both file names are
assumed to have the EXTERNAL scope attribute. Any
of the attributes can be changed by explicit declaration.

Stream-Oriented Transmission
There are three modes of stream-oriented transmission,
list-directed transmission, data-directed transmission,
and edit-directed transmission. Whichever is used, the
following information must be specified explicitly or im
plicitly for each GET or PUT statement:

1. The name of the data set from which data is to be
obtained or to which data is to be assigned; that is, the
file name.

2. A list of variables representing storage areas to
which data items are to be assigned during input, or
from which data items are to be obtained during output.
Such a list is known as a data list.

3. The format of each data item.
In certain circumstances, all of this required informa

tion can be implied; in other cases, only a portion of it
need be stated explicitly. If the file name is not speci
fied, either SYSIN or SYSPRINT is assumed; this ap
plies to any of the three modes of stream transmission.
In list-directed and data-directed transmission, the for
mat need not be specified. In data-directed input, not
even the data list need be specified.

Data items in the stream are written as valid arithme
tic or string constants. For an easier understanding of
stream-oriented data transmission, it is important to re
member that data in the stream always is in character
form. Although a bit string is recorded inside the com
puter in binary digits, the only way it can be printed is
as a string of 1 and 0 ·characters. Except for the enclos
ing quotation marks, there is no way to see the differ
ence between the printed character string '-38.32' and
the printed fixed-point decimal number -38.32. The
character string is composed of six characters (the
minus sign and the decimal point each require a storage
location); it would be truncated if it were assigned to
a string variable with a declared length of less than six.
Yet, the precision of the fixed-point decimal number is
(4,2); only the number of digits is considered.

On stream-oriented input, such characters are con
verted to conform with the attributes of the variable to
which they are assigned. On output, the internal data
representation is converted to character representation.
For example, the 1 and 0 bits of a bit string in storage
are converted to the characters 1 and O.

Binary arithmetic constants cannot be written as
output. The value of a binary fixed-point data item is
converted to decimal fixed-point notation before being
written; the value of a binary floating-point data item
is converted to decimal floating -point notation.

List-Directed Data Transmission

List -directed data transmission permits the program
mer to specify the variables to which data is to be as
signed (or from which data is to be acquired) without

specifically stating a format for the data. The format is
a standard one and is supplied by the compiler. List
directed transmission provides easy input! output oper
ations for programmers who do not require a special
format either on input or output, and who are interested
only in a list of the results of the processing.

The elementary form of the GET and PUT state
ments, when used for list-directed input and output, is:

GET FILE (file name) LIST (data list);
PUT FILE (file name) LIST (data list);

The FILE (file name) is the file specification; LIST
(data list) is the data specification. The file name and
the data list must each be enclosed in parentheses. The
two specifications need not appear in a particular order.
If the file specification is omitted, it is assumed that one
of the standard files is to be used. In list -directed trans
mission, the keyword, LIST, must always head the data
specification.

List-Directed Data Lists

The data list in a list-directed GET statement is a list of
variables (representing internal storage areas) to which
data items in the data stream are to be assigned. The
variables in a data list are separated by commas. An ex
ample of a list-directed GET statement follows:

GET FILE (MASTER) LIST
(LOAN_#, PRINCIPAL, RATE);

The GET statement in the above example causes three
data items from MASTER file to be assigned to the vari
ables of the data list in the sequence in which they are
listed; that is, the first data item is assigned to
LOAN_#, the second to PRINCIPAL, and the third to
RATE. Assignment stops at this point because the data
list has been exhausted.

The data list in a list-directed PUT statement differs
from that of a GET statement only in that a data item
may be represented by an expression other than its
name, for example, an arithmetic expression whose
value is the item to be written. Once evaluated, the
value represented by an expression is transmitted in the
same way that the value represented by a variable is
transmitted. Items in the data list (including expres
sions, if any) are separated by commas. An example of
a list-directed PUT statement £0110,\x/s:

PUT FILE (OUT)
LIST (NAME,6.3 ~RATE,NUMBER-10);

The PUT statement in the above example causes three
data items to be written in the file named OUT. The se
quence in which the data items are written follows the
sequence of the items in the data list; that is, the first
data item is the value represented by the variable
NAME, the second is the value resulting from the eval
uation of the expression 6.3# RATE, the third is the
value resulting from the evaluation of the expression

Input/Output 51

NUMBER-I0. Writing stops at this point.
Note that in list-directed input/output or in any form

of stream-oriented transmission, it is the data list that
determines the amount of data that is obtained from the
stream or inserted into the stream.

Format of List-Directed Data

In list-directed input, successive data items on the ex
tern~l medium must be separated either by commas or
blanks. On output, blanks are supplied between items
automatically.

List-Directed Data Representation

The internal and external representation of a data item
in list-directed transmission is determined by the attri
butes declared for it by the programmer. For example,
a data item for which the attributes CHARACTER
(10) have been declared would be recorded internally
as a character string of length 10. On output, it would
be written the same way. To better understand how this
applies to list-directed GET and PUT statements, as
sume that the standard input me contains the following
data:

'NEW YORK', 'JANUARY', -6.5, 72.6

Assume, further, that the following two statements ap
pear in the program:

DECLARE CITY CHARACTER (12), MONTH
CHARACTER (9), MINTEM FIXED DECIMAL
(4,2), MAXTEM FIXED DECIMAL (5,2);

GET LIST (CITY, MONTH, MINTEM,
MAXTEM);

The GET statement would cause the data items to be
assigned as follows:

1. CITY is assigned the character string NEW YORK,
left adjusted and padded on the right with four blanks.

2. MONTH is assigned the character string JANU
ARY, left adjusted and padded on the right with two
blanks.

3. MINTEM is assigned the value -06.50.
4. MAXTEM is assigned the value 072.60.

The character strings are padded on the right with
blanks to conform with the declared length of the
strings; quotation marks are not maintained internally.
The decimal fixed-point numbers are aligned on the as
sumed decimal point, to conform with the declared pre
cision. Consider the result of the following PUT state
ment:

PUT, LIST (CITY, MONTH, MAXTEM,
MINTEM, 'RANGE: " MAXTEM-MINTEM);

The record would be printed in SYSPRINT:

NEW YORK JANUARY 72.6 -6.5 RANGE: 79.1

Note that if a character string is printed, the single quo
tation marks are not written, whether the string is speci
fied as the value of a variable (CITY and MONTH) or
is specified as a character constant ('RANGE: '). If a

52 A PL/I Primer

character string is written in a me that does not have
the PRINT attribute, the enclosing quotation marks are
supplied, if necessary, and are written.1

Data-Directed Data Transmission

The elementary forms of the GET and PUT statements
in data-directed transmission are written as follows:

GET FILE (file name) DATA;
PUT FILE (file name) DATA (data list);

The data list need not appear in the GET statement be
cause data in the stream must be in the form of a series
of assignment statements that includes each variable
name and the value to be assigned to it.

The data in the input stream might look like this:

A=7.3 B='ABCDE' C(4,2)=9876;

The variables A, B, and C must be known within the
block in which a GET statement obtains these data
items; they would have been declared in the block (or
in a containing block). The effect is the same as if there
were a data list specifying A, B, and C. Note that the
last data item is followed by a semi-colon. It is a char
acter that must appear in the stream to delimit the num
ber of data items to be obtained by a single GET state
ment.

On output, the data list must appear to specify which
data items are to be written into the stream. The PUT
statement, referring to the data items could be:

PUT FILE (OUT) DATA (A,B,C(4,2»;

On input, the assignments can be separated by commas
or by blanks. On output, blanks are supplied and the
semi-colon is written after the last item specified in the
data list.

In data-directed transmission, data items on input or
output are of the same form as specified for list-directed
transmission.

Edit-Directed Data Transmission

Edit-directed data transmission allows a programmer to
specify the format of data as it appears in the stream to
be read and how it will appear when a data item is
written.

The basic format of the GET and PUT statements for
edit-directed transmission is as follows:

GET FILE (file name) EDIT (data list) (format list);
PUT FILE (file name) EDIT (data list) (format list);

If the file specification is omitted one of the standard
files is assumed. The data specification consists of two
parts, the data list and the format list. Each must be en
closed in parentheses. The data list is the same as that
described for list -directed transmission, that is, a list of
variables in a GET statement and a list of variables,

1 When a bit string is written, the single quotation marks do appear, as does
the letter B, even in a PRINT file. The binary digits are converted to the
characters, 1 and O.

constants, or other expressions in a PUT statement. The
format list is a list of format descriptions, each of which
describes the format of an individual data item. The
first format item in the format list describes the format
of the first data item in the data list, the second format
item the second data item, etc.

Following is an example of an edit-directed GET
statement.

GET FILE (INFILE) EDIT (LOAN_#,
PRINCIPAL,RATE) (A(7), F(8,2),F(3,3»;

Items, both in the data list and in the format list, are
separated by commas. It is not necessary for the file
specification to precede the data specification, but the
data list must immediately precede the format list.

:Matching the first f-ormat item with the first data
name, the above statement specifies that the next seven
characters in the data stream are to be assigned to. the
variable LOAN_#. The A format item implies a char
acter string. In the procedure UPDATE however,
LOAN_# was declared as a decimal fixed-point vari
able with a precision attribute (7). If the above state
ment appeared in UPDATE, the first seven characters
would be converted to decimal fixed-point representa
tion, upon assignment, to conform with the attributes of
LOAN_# (if the first seven characters in the record
contained any characters other than digits - and one
decimal po~t and one plus or minus sign in its proper
place - conversion could not be accomplished, and it
would be in error).

The second format item and the second data name
specify that the next eight characters are to be assigned
to the variable PRINCIPAL. The F(8,2) format item
implies that the characters are digits; it further implies
that no actual decimal point appears among the eight
characters, but that a point is assumed between the
sixth and seventh characters. The external character
representation of the data item is converted to internal
fixed-point decimal representation and assigned to
PRINCIPAL.

The third format item and the third data name spec
ify that the next three characters are to be converted to
decimal fixed-point representation with an assumed
decimal point to the left of the first character, and the
item is to be assigned to RATE.

If a plus or minus sign or a decimal point appears in
the characters in the input stream, it is included in the
number of characters read. For example, -28.32 would
require a format specification of A (6) or F (6,2), for the
entire number to be read. The format specification,
F (4,2), would result in the reading of only the first four
characters (-28.). The value would not, however, be
changed to -.28, even though the format item specifies
the point is to be to the left of the last two digits. An
actual point in the data that is read overrides the loca
tion of an assumed point as specified in the format speci-

fication; upon assignment to a fixed-point variable, the
actual point would not be stored, but the data item
would be aligned so that the location of the point agreed
with the location of the point as declared for the
variable.

If a format list is shorter than the associated data list,
that is, if there are more data items than format items in
a GET or PUT statement, the format list is re-used. For
example, if only two format items were listed with four
data names, the first format item would be associated
with the first data item, the second with the second;
then the first format item would be re-used with the
third data item, and the second format item would be
re-used with the fourth data item. A single format item
could apply to all the items in a data list.

Edit-Directed Data Representation

Edit -directed data transmission allows great saving of
space on the external medium used for input. Since each
format item specifies the number of characters that
make up each data item, there need be no separating
commas or blanks. No decimal point need appear, be
cause the format item specifies the location of the as
sumed decimal point. Quotation marks are not needed
to identify strings.

The examples below show how input data might be
recorded on a card or on tape, first to be used for list
directed input, then for edit-directed input. Assume the
variables to which the data is to be assigned have been
declared as in UPDATE:

LOAN_# FIXED DECIMAL (7), PRINCIPAL FIXED
DECIMAL (8,2), RATE FIXED DECIMAL (3,3)

For list-directed input, the data and the GET statement
would be:

8212349,24000.00,.055
GET LIST (LOAN_#, PRINCIPAL, RATE);

For edit-directed input:

821234902400000055
GET EDIT (LOAN_#, PRINCIPAL, RATE) (F(7),

(F (8,2), F (3,3) ;

format Items

There are two types of format items, data format items
and control format items. Data format items, such as
the ones in the preceding example, describe data items
in the data stream. Control format items specify posi
tioning within the stream or on the printed page. In the
following discussion, all but the control and printing
format items are data format items.

Fixed-Point Format Item: As discussed previously, a
fixed-point format item specifies the appearance of a
decimal fixed-point data item in the data stream. Its
form is F (w,d); w represents the width of the field, or
the total number of characters, including sign and point;

Input/ Output 53

and d represents the number of digits to the right of the
decimal point. If d is not specified, the point is assumed
to be to the right of the rightmost digit.

On output, an actual decimal point is inserted, trail
ing zeros are supplied, if necessary, and a minus sign is
inserted if the value of the data item is less than zero.

The F format item also is used to write fixed-point
binary data, which is converted, on output, to decimal
notation.

Floating-Point Format Item: The format item to
specify the appearance of a decimal floating-point data
item takes the fo~m E (w,d). The letter w represents the
width of the field, and d represents the number of digits
to the right of the point. The field-width specification
(w) represents the total number of characters, includ
ing decimal point, signs, and the letter E; consequently
d must always be specified, since the point always will
be somewhere to the left of E.

On output, a decimal point is inserted, blanks are in
serted to the left if the actual number of characters is
less than w. A minus sign is supplied for the exponent if
the implied location of the point is to the left of its
actual location. A minus sign is inserted to the left of the
first character if the value of the data item is less than
zero.

The E format item is used on output for either deci
mal or binary floating-point data. Binary data is always
converted to decimal notation.

Character-String Format Item: Character strings in
the data stream may be described with the A (w) for
mat item. The letter w represents the number of char
acters in the string. It is always required on input. For
output, if w is omitted, the length is taken as the length
of the specified string.

Quotation marks should not appear in the input
stream because a single quotation mark would be con
sidered to be a single character. Quotation marks are
not written on output.

Bit-String Format Item: Bit strings in the data stream
may be described with the B (w) format item. The let
ter w represents the number of bits in the string. It is
always required on input. On output, if w is omitted,
the length is taken as the' length of the specified bit
string. Neither quotation marks nor the letter B should
appear in the input stream. They are not written on
output.

Picture Format Item: The picture format item, on
input, is used to describe the type of characters in the
stream. On output, it is used to edit the data item and to
specify certain characters to be inserted. The form is
P 'picture specification' . The picture specification is a
string of picture characters. It always is enclosed in sin
gle quotation marks. For example:

P '999V99 I indicates a field of any five decimal nu
meric characters with an implied point
between the third and fourth characters.

54 A PL/I Primer

P , AAA9999 ' indicates a field of any three alphabetic
characters followed by any four decimal
characters.

P , XXXXXX ' indicates a field of any six characters,
either alphabetic, numeric, or special.

Consider the following PUT statements:

PUT FILE (OUTFIL) EDIT (PAYMENT)
(P '$ZZ,ZZ9.99');

PUT FILE (OUTFIL) EDIT (PAYMENT)
(P '$$$,$$9.99') ;

Assume that the first column in the example below rep
resents various values for PAYMENT when the above
statements are executed. The second column represents
the way they would be written upon execution of the
first PUT statement; the third column, the way they
would be written upon execution of the second PUT
statement.

00002532
3844267
0000001

$ 25.32
$38,422.67
$ 0.01

$25.32
$38,422.67

$0.01

Picture characters may also be used to specify internal
characteristics of data with the PICTURE attribute.
For details about the PICTURE attribute and all of the
picture characters that may be used in connection with
it and with the picture format item, see the publication
PL/I: Language Specifications.

Spacing Format Item: The spacing format item X (w)
is a control format item that specifies relative horizontal
spacing. On input, it specifies the number of characters
(w) to be ignored. On output, it specifies that w blanks
are to be inserted into the data stream.

For example:

GET EDIT (LOAN_#,RA~E) (A(7), X(8),F(3,3»;

This statement specifies that the first seven characters
from SYSIN are to be assigned to the character-string
variable LOAN_#, the next eight characters are to be
ignored, and the following three characters are to be
converted to decimal fixed-point notation and assigned
to RATE.

PUT EDIT (LOAN_#,RATE) (A(7), X(8),F(3,3»;

This statement specifies that the values of LOAN_#
and RATE are to be printed in SYSPRINT. The value
of LOAN_# is to be written as a character string of
length seven, and eight blanks are to be inserted before
the value of RA TE is written as a three-digit number,
with a decimal point inserted before the first digit.

Printing Format Items: The printing format items are
used only with files that have the PRINT attribute.
They are PAGE, SKIP (w), LINE (w), and COL
UMN (w).

The PAGE format item specifies that the next output
is to be written on a new page.

The SKIP (w) format item specifies that w-l lines
are to be skipped and the next data item is to be written
on the wth line. If w is omitted, it indicates that the
next data item is to be written on the next line.

The LINE (w) format item specifies that lines are to
"be skipped so that the next data item will be written on
the wth line of the current page.

The COLUMN (w) format item specifies that blanks
are to be inserted so that the first character of the next
data item will be the wth character of the current line.

Note that the SKIP format item, like the X format
item, specifies relative positioning, while LINE and
COLUMN specify absolute spacing.

Example:

PUT EDIT ('MONTHLY BANK LOAN REPORT')
(PAGE,LINE(2),A(24));

PUT EDIT (LOAN_#,PRINCIPAL,INTEREST,
PAYMENT,BALANCE)

(SKIP (3),A(7),COLUMN (l5),F(8,2)),
COLUMN (35),F (3,3) ,COLUMN (45),F (6,2),
COLUMN (65),F(8,2));

The first PUT statement specifies that the heading
MONTHLY BANK LOAN REPORT is to be written
on line two of a new page. The second statement speci
fies that three lines are to be skipped and the value of
LOAN_# is to be written, beginning at the first char
acter of the line; the value of PRINCIPAL, beginning
at the 15th character; the value of INTEREST at the
35th, the value of PAYMENT at the 45th, and the value
of BALANCE at the 65th.

The overall layout of a page of a PRINT £Ie is con
trolled through the use of the P AGE SIZE and LINE
SIZE options of the OPEN statement. For example:

OPEN FILE (OUTFILE) OUTPUT STREAM
PRINT LINE SIZE (120) P AGESIZE (50);

This statement opens the £Ie OUTFILE as a print £Ie.
Lines on the page will be a maximum of 120 characters
in length; depth of each page will be a maximum of
50 lines.

An attempt to print on a page after 50 lines have al
ready been printed (or skipped) will raise the END
PAGE condition and cause an interruption in the same
way that the ENDFILE condition can cause an inter
ruption when an attempt is made to read from a £Ie that
has reached the end of file. The standard system action
for the ENDPAGE condition is to skip to a new page,
but a programmer can establish his own action through
use of an ON ENDPAGE statement.

Remote Format Item

A programmer often can simplify the writing of his pro
gram by use of the remote format item. It has the fol
lowing form:

R(statement label)

The statement label is the label of a FORMAT state
ment written somewhere else in the block. Consider the
following two statements, which could appear in UP
DATE:

PUT EDIT (LOAN_#,PRINCIPAL,
INTEREST,PAYMENT,BALANCE)
(R (LIST-A));

LIST-A: FORMAT (SKIP (3),A(7),COLUMN
(15),F(8,2),COLUMN (35),F(3,3),
COLUMN (45),F(6,2), COLUMN
(65) ,F (8,2));

The remote format item R (LIST --A) indicates that the
format list stated in the FORMAT statement labeled
LIST --A is to be used as the format list for the PUT
statement. The effect is as if the PUT statement actually
contained the format list referred to. The remote format
item and the FORMAT statement are a convenience in
programs in which the same format list is applicable to
a number of different GET or PUT statements.

The String Option

One feature of the GET and PUT statements is con
cerned with internal data transmission, rather than
input and output. In either statement, the FILE (£Ie
name) option can be replaced by the STRING (string
name) option. When the string option is specified, the
statement has nothing to do with a £Ie. In a GET state
ment, it indicates that the designated string is to be
considered as a stream of input characters; in a PUT
statement, it indicates that the designated string is to be
considered as the output stream.

Although the string option can be used with any of
the three modes of stream-oriented transmission, it is
most practical in association with a format list since in
dividual items in the string need not be separated by
commas or blanks.

Consider the following example:

GET STRING (RECORD) EDIT (NAME,PAY_NO,
HOURS,RATE) (A(12),A(7),F(2),F(4,2));

This statement specifies the following:
the character string RECORD, which is recorded

in the internal storage area, is to be scanned
the first 12 characters of the string are to be as

signed to NAME
the next 7 characters are to be assigned to PAY _N 0
the next 2 characters are to be converted to deci

mal fixed-point representation and assigned to
HOURS

the last 4 characters specified are to be converted
to a fixed-point decimal number with two frac
tional digits and assigned to RATE

the remaining characters of the string, if any, are
to be ignored

Input/ Output 55

The PUT statement with a string option is the reverse
of a GET statement:

PUT STRING (RECORD) EDIT (NAME,
PAY_NO, HOURS~RATE) (A(12),A(7),
P '$$99.99');

This statement specifies the following:
the character value of NAME is to be assigned to

the first 12 character positions of the string vari
able RECORD

the character value of PAY_NO is to be assigned to
the next 7 character positions of RECORD

HOURS is to be multiplied by RATE, and the val
ue of the product is to be converted to a charac
ter string and assigned to the next 7 character
positions of RECORD (this substring comprises
the following characters: a dollar sign or a blank,
a dollar sign or a decimal digit, a decimal digit, a
decimal digit, a decimal point followed by two
decimal digits; any of the digits might be zero)

Record-Oriented Transmission
Record-oriented data transmission deals with data sets
that are composed of a series of separate records. Each
record is read or written as an entity, either into or from
an addressable buffer or into or from a specified vari
able (usually a structure or an array).

The data transmission statements used in record
oriented transmission are READ, WRITE, REWRITE,
and LOCATE. Only the READ and WRITE statements
are used when the records are accessed in their physical
sequence from input and output files and are transmit
ted directly to and from specified variables.

Consider the example:
DECLARE 1 PAYROLL,

2 NAME,
3 LAST CHARACTER (12),
3 FIRST CHARACTER (8),
3 MIDDLE CHARACTER (1),

2 PAY_NO CHARACTER (5),
2 RATE,

(3 REGULAR,
3 OVERTIME)

FIXED DECIMAL (3,2);
READ FILE (INFILE) INTO (PAYROLL);

The READ statement causes the record to be read di
rectly into the structure PAYROLL. There is no conver
sion of data types to conform to the attributes declared
for the names. The data in the record must exactly
match the declaration of PAYROLL; that is, the first 12
characters (including any blanks necessary to extend
the string to its declared length) must represent the last
name, the next 8 characters the first name, etc. And the
portion of the record that will be assigned to RATE
must be the valid internal representation of fixed-point
decimal numbers. Since there is no conversion, the data
in the record could not be written in character form. A
record of this sort must have been written by a previ
ously executed program.

56 A PL/I Primer

The following statements might also be a part of the
same program:

DECLARE 1 PAY_RECORD,
2 NAME,

3 LAST CHARACTER (12),
3 FIRST CHARACTER (8),
3 MIDDLE CHARACTER (1),

2 HOURS,
(3 REGULAR,
3 OVERTIME)

FIXED DECIMAL (2),
2 PAY,

(3 REGULAR,
3 OVERTIME)

FIXED DECIMAL (5,2);
GET FILE (TIME_CARD) LIST (PAY_RECORD.

NAME, PAY_RECORD. HOURS);
TEST: IF PAYROLL. NAME = PAY_RECORD. NAME

THEN DO;
PAY = HOURS ~ RATE;
WRITE FILE (WAGES) FROM

(PAY-RECORD) ;
END;

ELSE DO;
READ FILE (INFILE) INTO (PAYROLL);
GO TO TEST;
END;

As shown in the example, both record-oriented and
stream-oriented statements may appear in the same pro
cedure. Assume that the file TI11E_CARD, specified in
the GET statement, represents a data set of punched
cards being read from a card reader. Each card has the
employee's name and the hours worked. The GET state
ment would cause the data, punched in character form,
to be converted to fixed decimal notation for the data
assigned to HOURS. The WRITE statement, however,
would write the record from PAY_RECORD into the
file WAGES exactly as the data appears in internal stor
age, presumably for some other program, since the data
in internal format could not be printed directly.

The files referred to in the READ and WRITE state
ments would have to be declared to have the attributes
RECORD and UNBUFFERED (if neither RECORD
nor STREAM is declared, STREAM is assumed; con
sequently the file used in the GET statement need not
be explicitly declared to have the STREAM attribute).
The RECORD attribute specifies that the file is to be
used with record-oriented statements. The UNBUF
FERED attribute specifies that the data need not go into
a buffer, but may be assigned directly to the variable
specified in the INTO clause of a READ statement or
directly from the variable specified in the FROM clause
of a WRITE statement. The files are assumed to be
SEQUENTIAL, that is, files in which records are ac
cessed in the order of their physical appearance. The
opposite of a sequential file is a direct file, a file in which
each record has an identifying key so that records may

be read or written in any order by specifying the proper
key in the READ or WRITE statement. A direct file
generally must be explicitly declared to have the DI
RECT and the KEYED attributes. The KEYED at
tribute declares that each record has a key, and it speci
fies the number of characters in the key.

1. The implicitly declared file is the standard file
SYSPRI~T; it is both declared and opened as a result
of the PUT statement (line 27).

2. MASTER is declared (line 8) to be an update,
buffered file. It is opened implicitly as a result of the
READ statement (line 14), at which time the SE
QUENTIAL and RECORD attributes are implicitly
applied. An update file is one that is both read from and
written into. In a sequential update file, each record
that is read is rewritten into the file, with or without
change, before another record is read.

The example in Figure 14 further illustrates record
oriented data transmission. It is basically the same pro
cedure UPDATE that is explained in Chapter 3.

Four file names are declared in the example, three of
them explicitly, one implicitly.

1. UPDATE:
2.

3.

4.

5.
6.
7.
8.
9.

10.
11.
12.
13. NEW_RECORD:
14. MASTElLFILE:
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

Figure 14.

PROCEDURE;
DECLARE 1 DETAIL CONTROLLED (N),

2 PAY_# CHARACTER (7),
2 PAYMENT DECIMAL FIXED (6,2),

1 LOAN_INFO CONTROLLED (M),
2 LOAN_# CHARACTER (7),
2 PRINCIPAL DECIMAL FIXED (8,2),
2 RATE DECIMAL FIXED (3,3),

1 STATEMENT CONTROLLED (L),
2 LOAN_INFO,

3 LOAN_# DECIMAL FIXED (7),
3 PRINCIPAL DECIMAL FIXED (8,2),
3 RATE DECIMAL FIXED (3,3),

2 CHARGE DECIMAL FIXED (5,2),
2 PAID DECIMAL FIXED (6,2),
2 NEW_BALANCE DECIMAL FIXED (8,2),

INTEREST DECIMAL FIXED (5,2),
BALANCE DECIMAL FIXED (8,2),
REFUND DECIMAL FIXED (6,2),
MASTER FILE UPDATE BUFFERED,
INPUT FILE INPUT,
OUTPUT FILE OUTPUT;

OPEN FILE (INPUT) RECORD SEQUENTIAL BUFFERED;
ON ENDFILE (INPUT) GO TO MASTEILFILE;
READ FILE (INPUT) SET (N);
READ FILE (MASTER) SET (M);
INTEREST = PRINCIPAL ~ RATE / 12;
IF LOAN_# ,= PAY_#

THEN DO;
PRINCIPAL = PRINCIPAL + INTEREST;
REWRITE FILE (MASTER);
GO TO MASTEILFILE;
END;

IF PAYMENT <= PRINCIPAL + INTEREST
THEN BALANCE = PRINCIPAL + INTEREST - PAYMENT;
ELSE DO;

BALANCE = 0;
REFUND = PAYMENT - PRINCIPAL + INTEREST;
PUT LIST (LOAN_ #, 'REFUND:' ,REFUND);
END;

LOCATE STATEMENT FILE (OUTPUT) SET (L);
STATEMENT. LOANJNFO = LOANJNFO;
CHARGE = INTEREST;
PAID = PAYMENT;
NEW--BALANCE = BALANCE;
LOANJNFO . PRINCIPAL = BALANCE;
REWRITE FILE (MASTER);
GO TO NEW_RECORD;
END UPDATE;

Input/Output 57

3. INPUT is declared as an input £Ie in the DE
CLARE statement (line 9). When the OPEN statement
(line 11) is executed, the additional attributes REC
ORD, SEQUENTIAL, and BUFFERED are explicitly
declared.

4. OUTPUT is declared as an output £Ie (line 10).
It is implicitly opened as a result of the LOCA TE state
ment (line 29), and the RECORD, SEQUENTIAL,
and BUFFERED attributes are implicitly applied.

All four £Ie names are assumed, by default, to be
EXTERNAL names.

The appearance of the CONTROLLED attribute
specification followed by a parenthesized identifier
(lines 2, 3, and 4) contextually declares the associated
structure name to be a based variable and the parenthe
sized identifier to be a pointer variable.

A based variable is a name used in record-oriented
transmission to describe the attributes of a record in a
buffer. A based variable always has the CONTROLLED
storage class attribute; no storage is allocated for it auto
matically. A pointer variable, which has the AUTO
MATIC storage class attribute by default, is used to
point to the location of the buffer that the based variable
describes.

For example, the declaration of DETAIL indicates
that N will point to a buffer into which or from which
records will be read or written, and that each record
will consist of two data items with the same attributes
as those declared for PAY and PAYMENT. When the
READ statement in line 13 is executed, a record is read
from INPUT into a buffer. The second portion of the
statement, SET (N), specifies that the pointer variable
N points to the beginning of the record (in effect, the
value of N is the address of the first storage location of
the buffer). It is as if the record were assigned directly
to DETAIL; a reference to PAY_# becomes a reference
to the first data item in the buffer, a reference to PAY
MENT becomes a reference to the second data item in
the buffer.

The effect of the declaration of the two other based
variables LOAN_INFO and STATEMENT is the same.
Each is used to describe data of a record as it appears
in a buffer.

The second READ statement causes a record to be
read from the update £Ie MASTER. The pointer vari
able M is set. If no payment is made, the principal is
compounded and the REWRITE statement (line 19)
causes the record to be written back into MASTER.
There is no need to specify a variable since the RE
WRITE statement refers to the buffer into which the
record was read. If there is a payment, the REWRITE
statement in line 35 rewrites the updated record in
MASTER.

The LOCATE statement (line 29) does not immedi
ately cause any transmission of data. As it is written

58 A PL/I Primer

here, it specifies that a buffer, as described by the based
variable STATEMENT, is to be allocated and that L is
to be set to point to the buffer. The assignment state
ments (lines 30-33) create a new record in that buffer
from the data in the buffer described by LOAN_INFO,
followed by the values of INTEREST, PAYMENT, and
BALANCE. A LOCATE statement also specifies that
data in the indicated buffer will be written automati
cally immediately before execution of the next LO
CA TE or WRITE statement that specifies the same £Ie
name or immediately before the specified file is closed.

The assignment statement (line 34) :

LOAN~NFO . PRINCIPAL = BALANCE;

updates the record from MASTER, which is rewritten
by the REWRITE statement (line 35) .

In this version of UPDATE, records of repaid loans
are not deleted from the £Ie. Records cannot be deleted
from an update £Ie that is also a sequential file.

For a program of this sort, however, MASTER could
be a direct file in which records are accessed in any
order. Records can be deleted from or added to a direct
update file.

Assume that MASTER is declared as follows:

MASTER FILE UPDATE BUFFERED DIRECT
KEYED (7);

LOAN-INFO might be declared:

1 LOAN_INFO,
2 PRINCIPAL DECIMAL FIXED (8,2),
2 RATE DECIMAL FIXED (3,3),

The declaration of MASTER specifies that any refer
ence to MASTER will include a key specification that
is a string of seven characters. The pay number, as a
character string, could be used as the key. The structure
LOAN-INFO is not a based variable; direct files cannot
be buffered.

The READ statement could be:

READ FILE (MASTER) INTO (LOAN_INFO)
KEY (PAY_#);

After the record is read from INPUT, the PAY _ # is
used as a key to find the correct record in MASTER. In
this case, there is no need for the test shown in line 16
in Figure 14; the two records must refer to the same
loan.

NOTE: This would not allow for updating loan records
for which no payment had been made. A different pro
gram could be written to handle that updating.

The REWRITE statement then would be written as
follows:

REWRITE FILE (MASTER) FROM
(LOAN~NFO) KEY (PAY_#);

The deletion of repaid loan records could be:

IF BALANCE = 0
THEN DELETE FILE (MASTER) KEY

(PAY_#);

Redefining a Buffer

The use of based variables allows operations with data
sets in which format of the records may vary. Consider
the following simple example:

DECLARE 1 FORMAT_l CONTROLLED
(IN_IDENT) ,

2 FORMAT CHARACTER (1),
2 PAY_NUMBER CHARACTER (7),
2 WAGES FIXED DECIMAL (5,2),

1 FORMAT~ CONTROLLED
(IN_IDENT) ,

2 FORMAT CHARACTER (1),
2 PAY_NUMBER CHARACTER (7),
2 WAGES,

3 REGULAR
FIXED DECIMAL (5,2),

3 OVERTIME
FIXED DECIMAL (5,2),

READ FILE (INPUT) SET (IN_IDENT);
IF FORMAT = 'A'

THEN ...

Assume that the first character of the record indicates
the format of the record. If the character is A, it indi
cates the record matches FORMAT_I; if the character
is not A, it indicates the record matches FORMAT---.2.
When the format of the record is determined, the cor
responding based variable is used to refer to the con
tained data items.

Summary
The handling of input and output in PL/I can be done
very simply if only minimum facilities are required. On
the other hand, PL/I provides the facilities for the pro
grammer to maintain careful and detailed control of all
input and output operations.

This discussion has been primarily concerned with
descriptions of specific examples. For complete details
and specifications see PL/I: Language Specifications,
Chapter 7, "Input/Output."

Input/Output 59

Chapter 12: Expressions and Operations

As discussed previously, any identifier other than a key
word that appears in a PL/I statement is an expression.
A single variable is an expression, as is a single constant.
Expressions can refer to arrays (array expressions);
they can refer to structures (structure expressions); or
they can refer to single items of data (called scalar
expressions) .

When one or more single expressions appear in con
junction with operators, the combination is an opera
tional expression, and its type depends upon the nature
of the operator. For example, an arithmetic expression
is one that involves arithmetic operators.

An operator that precedes the variable or constant
(the operand) is a prefix operator (as with - A or + A) ;
an operator that appears between operands is an infix
operator (as in A + B or A - B).

Arithmetic Operations
Most of the examples of operational expressions dis
cussed so far in this book have been arithmetic expres
sions. The arithmetic operators, as noted before are:

+ 4 / 44

Of these, only the plus and minus sign can appear as
prefix operators.

If the operands of an arithmetic expression differ in
base or scale, they are converted to a common base and
scale before evaluation is made. Since the result con
forms with the attributes of the variable to which as
signment is made, there is no need to discuss here the
manner in which different operands are converted. A
detailed discussion is included in the publication PL/I:
Language Specifications.

Data operated upon in an arithmetic expression must
have an arithmetic value.

Comparison Operations
There are three kinds of comparison operations: arith
metic, character, and bit.

The comparison operators are:

< <= 1= >= >

N one of the comparison operators can be a prefix
operator.

Arithmetic comparison involves the comparison of
signed arithmetic values.

Character comparison involves left-to-right, pair-by-

60 A PL/I Primer

pair comparison, according to collating sequence. For
example A> B, B>C, etc. If the operands are of different
lengths, the shorter is extended on the right with blanks.

Bit comparison involves left-to-right comparison of
binary digits. If the operands are of different lengths,
the shorter is extended on the right with binary zeros.

Concatenation Operations
Concatentation operations involve the chaining of char
acters, with no intervening blanks. The concatenation
operator is II, which is written as two "or" (I) symbols.

If the operands are bit -string, the result is a bit string.
In all other cases, the result is a character string. If the
operands are not bits or characters, they are converted
to characters.

Examples:

If A is 7345 with an implied decimal point between
the second and third digits, and if B is 8923, with an
implied point before the first digit, AIIB would result in
the character string '73.45.8923'.

If C is '0111011' Band Dis' III 'B, the result of AIIB
is '0111011111'B.

IfEis 'ABC' andFis 'DEF',theresultofEIIFis
'ABCDEF'.

Bit-String Operations
Bit-string operations involve the following Boolean log
ical operators:

I not
& and
I or

The "not" sign always is a prefix operator; the "and" and
"or" signs always are infix operators.

Bit-string operations are performed on a bit-by-bit
basis, from left to right. If operands are not bit strings,
they are converted before the operation is performed;
If the operands are of different bit -string length, the
shorter will be extended on the right with binary zeros.

The following table shows the result of a bit-to-bit
comparison under each possible circumstance:

A A
NOT NOT AND OR

A S A S S B

1 1 0 0 1 1
1 0 0 1 0 1
0 1 1 0 0 1
0 0 1 1 0 0

Consider the fol1owing examples:

A = 'llOI'B; B 'llll'B; e 'OlO'B

I A 'OOlO'B
Ale 'llO1' B

A&B 'llOI 'B
A&e '0100'B

I A&B '0010'B

Order of Evaluation
Arithmetic expressions are evaluated according to the
priority of the operator. Any expression enclosed in
parentheses is evaluated before any other part of the
expression.

Exponentiation ((> (>), prefix + and prefix - have the
highest priority. These operations will be completed
first, and if more than one of these operators appears in
the same expression, they are evaluated from right to
left.

Multiplication ((» and division (/) have the second
priority. They are evaluated from left to right.

Addition (+) and subtraction (-) have the lowest
priority. They are evaluated from left to right.

If any other order is desired, parentheses must be
used to indicate the order. For example:

A 0 B / e 00 D is not equivalent to
(A (> B / e)O# D

A 0 B / e is equivalent to
(A 0 B) / e

A / B + e is not equivalent to
A / (B + e)

Bit -string operations, like arithmetic operations, are
evaluated according to the priority of the operator. The
«not" sign (I) has the highest priority; the «or" sign
([) has the lowest priority. Any expression enclosed in
parentheses is evaluated first. For example:

B I e & D is equivalent to B I (e & D)
I B I e is not equivalent to I (B I e)

Expressions and Operations 61

Chapter 13: Error Control and Program Checking

The IF statement has been shown as one way to check
upon the execution of a program-to avoid errors and to
make certain that the proper action is taken at the
proper time. In UPDATE, discussed in Chapter 3, IF
statements were included to avoid computation of a
negative balance and to ensure that each payment
would be applied to the proper loan record. Another IF
statement was written to delete, from the new master
file, the record of any repaid loans.

Control of many similar conditions of a general nature
is supplied by PL/I. The ON ENDFILE statement in
UPDATE is an example of one of these.

These conditions are situations that the computer has
been engineered to recognize and note, or that the com
puter is instructed to recognize and note by coding au
tomatically supplied as part of PL/I.

When one of these conditions arises, normal execu
tion is halted at that point, and an 'inte1'Tuption occurs.
Control is then transferred to a predetermined group or
block that instructs the computer what action to take.
PL/I supplies a standard system action that is to be
taken when any of the conditions arises. In many cases,
this standard system action results in the printing of an
error message and in complete termination of execution.
In some cases, an error message is printed and execution
continues from the point where execution was inter
rupted.

Whenever an interruption occurs, standard system
action is taken unless the programmer provides an al
ternative action with an ON statement.

If an attempt is made to read from a file after the last
record in that file already has been read, the ENDFILE
condition arises. If an illegal data conversion is at
tempted on character-string data, the CONVERSION
condition arises. If an assignment causes loss of high
order (leftmost) digits or bits, the SIZE condition arises.

These are but a few of the many conditions that can
be checked. For all of these conditions except SIZE,
PL/I provides constant monitoring to prevent unno
ticed errors that would affect proper execution of the
program.

The ON Statement
If a programmer specifies action to be taken when an
interruption occurs for a specific condition, his specifi
cation always overrides the standard system action pro
vided by PL/I.

ON ENDFILE (INPUT) GO TO MASTEILFILE;

62 A PL/I Primer

This ON statement appears in UPDATE. Standard
system action when any ENDFILE condition arises
is to print an error message and then to terminate exe
cution of the program. The ON statement in UPDATE
overrides this action, and execution continues until com
pletion of the procedure.

ON OVERFLOW GO TO ERROR;

The OVERFLOW condition can arise during floating
point calculations when the exponent of a computed
floating-point data item exceeds the maximum size al
lowed, as defined for the particular compiler. ERROR
is the label of a statement or the first of several state
ments that specify what action is to be taken, whether
to try to recover from the error or to note the error and
continue with other computations.

The ON statement is a compound statement that con
tains another statement. In the above case, GO TO
ERROR is the contained statement, or the on-unit. An
on-unit can be a single statement or a begin block:

ON FIXEDOVERFLOW BEGIN;
DECLARE (ERROR,

TEMP) FLOAT
DECIMAL;

TEMP = TABLE (I,J);
ERROR = TEMP 1'1< 5280;
PUT LIST

(TABLE (I, J), ERROR);
END;

The FIXEDOVERFLOW condition arises when a com
puted fixed-point data item exceeds the maximum pre
cision allowed by the particular compiler. Assume that
the programmer suspects that the FIXEDOVERFLOW
condition might arise during evaluation of the decimal
fixed-point expression, TABLE (I,J) ~ 5280. If it does,
control is transferred to the on-unit of the ON FIXED
OVERFLOW statement. In the begin block, which is
the on-unit, two temporary floating-point variables,
ERROR and TEMP, are declared. The first assignment
statement assigns to TEMP the value of TABLE (I,J)
converted to floating-point scale. The second assign
ment statement specifies another evaluation of the same
data that caused the interruption, but this time, the eval
uation is made using floating-point data, with the float
ing-point result assigned to ERROR. Identification of
the original data item, TABLE (I,J), is written as a
fixed-point number, and the result of the computation
is written as a floating-point number.

When an on-unit is a begin block, control returns
from its END statement to the statement immediately
following the point where the condition arose. Normal

execution continues from there. If the on-unit is a state
ment that transfers control to some other statement, ex
ecution will not automatically recommence following
the point where the condition arose.

An on-unit can be a null statement:

ON FIXEDOVERFLOW;

In this cas.e, if an interruption occurs due to the FIXED
OVERFLOW condition, no action is taken. Control is
transferred to the on-unit, but since it is a null statement
that specifies no action, execution begins again with the
statement immediately following the evaluation that
caused the condition to arise.

Scope of the ON Statement

The point of execution of an ON statement in a pro
cedure determines the scope of its effectiveness. If a
condition arises before execution of an ON statement
that names that condition, standard system action is
taken. After execution of an ON statement, its effect
holds throughout that block; even if statements that
physically precede the ON statement are reexecuted,
the ON statement is still effective.

More than one ON statement for a specific condition
can appear internal to a single block. A respecification
also can appear in a contained block.

After an ON statement has been executed, its effect
continues through all execution, even if control is trans
ferred to another external procedure, until one of the
following situations changes the effect:

1. Another ON statement for the same condition is
executed.

2. Control is returned to a block in which another ON
statement or standard system action is in effect.

3. A REVERT statement restores the effectiveness of
another ON statement or standard system action.

A REVERT statement specifying a particular condi
tion cancels the effectiveness of any ON statements for
that condition that have previously been executed in
the block to which the REVERT statement is internal.
After a REVERT statement is executed, the action to
be taken if an interruption occurs for the specmed con
dition is the same as it was at the point of invocation of
the block to which the REVERT statement is internal.

. A REVERT statement is ignored unless an ON state
ment, internal to the same block, has established an
on-unit. Consider Figure 15.

In procedure A, standard system action will be taken
if the FIXEDOVERFLOW condition arises before
statement 2 is executed. After statement 2, the effective
on-unit is CALL AERROR. The ON statement (2) con
tinues effective until the ON statement (5) in proce
dure B is executed. When the BEGIN statement is
reached, control passes into the BEGIN block. State
ment 7 immediately establishes a new on-unit (CALL

I. A: PROCEDURE;

2. ON FIXEDOVERFLOW CALL AERROR;

3. CALL B;
4. B: PROCEDURE;

5. ON FIXEDOVERFLOW CALL BERROR;

6. C: BEGIN;
7. ON FIXEDOVERFLOW CALL CERROR;

8. REVERT FIXEDOVERFLOW;
9. CALL D;

10. ON FIXEDOVERFLOW CALL CERROR;

II. END C;

12. END B;

13. END A;
14. D: PROCEDURE;

15. REVERT FIXEDOVERFLOW;

16. END D;

Figure 15.

CERROR) until the REVERT statement reestablishes
CALL BERROR as the effective on-unit. That on-unit
remains effective throughout the external procedure D
(the REVERT statement is not effective since no ON
FIXEDOVERFLOW statement has previously been
executed in D) .

vVhen the END D statement is executed, control re
turns to statement 10 in begin block C, which reestab
lishes CALL CERROR as the effective on-unit. But
when END C is executed, control passes through it to
the next statement in procedure B. The on-unit in state
ment 5 (CALL BERROR) is reestablished, and it con
tinues effective until the END B statement is executed
and control returns to procedure A where the first ON
statement remains effective, and if the FIXEDOVER
FLOW condition arises, the AERROR procedure is
called.

Error Control and Program 63

Condition Prefixes
An interruption for most error conditions of a general
type will occur whether or not an ON statement has
been executed. These conditions are said to be enabled.
An ON statement specifying a particular condition
merely determines the action to be taken when the con
dition arises; an ON statement has nothing to do with
allowing or not allowing an interruption to occur when
the condition does arise. PL/I, however, allows a pro
grammer to control certain interruptions. He can dis
able some conditions that would normally cause inter
ruptions.

This control is established through the use of condi
tion prefixes. An enabling condition prefix is a condition
name, enclosed in parentheses, and prefixed to a state
ment with a colon:

(SIZE): statement

A disabling condition prefix is the same as an enabling
condition prefix, but the characters NO precede the
condition name:

(NOFIXEDOVERFLOW): statement

Blanks are not allowed between the NO and the condi
tion name.

There are only eight condition names that can appear
in a prefix. They are: FIXEDOVERFLOW, CONVER
SION, SIZE, OVERFLOW, UNDERFLOW, ZERO
DIVIDE, SUBSCRIPTRANGE, and CHECK (identi
fier list). The first four condition names have been de
scribed previously. The others are described in the fol
lowing text.

UNDERFLOW. This condition arises when the com
puted exponent of a floating-point number is smaller
than the permitted minimum, as defined for the partic
ular compiler.

ZERODIVIDE. This condition arises when an at
tempt is made to divide by zero, in either a floating
point or fixed-point computation.

SUBSCRIPTRANGE. This condition arises when a
subscripted name appears in a program and the value
of a subscript is outside the bounds of that dimension
of the array.

CHECK (identifier list). The condition arises when
one of the identifiers of the identifier list is involved in
a statement that is executed. The identifiers can be entry
names, statement labels, or variable names. Standard
system action is: an entry name is printed each time the
block is invoked; a statement label is printed each time
the statement is executed; a variable name and its cur
rent value are printed each time it is evaluated.

No condition names but these eight can appear in a
condition prefix. All other conditions are always en
abled and cannot be disabled.

Of the previously listed condition names, only SIZE,
SUBSCRIPTRANGE, and CHECK (identifier list)

64 A PL/I Primer

must be enabled by the programmer. The condition is
enabled if the condition name appears as a prefix to a
statement. For example:

(SIZE): A = B # C;

If the product of B # C is greater than can be expressed
with the precision declared for A, the SIZE condition
will be raised. An interruption will occur, in this case,
since the condition prefix has enabled the condition dur
ing execution of this statement.

A SIZE condition prefix can be prefixed to any state
ment. A CHECK (identifier list) prefix can be prefixed
only to a PROCEDURE or BEGIN statement.

(CHECK (PROC_B, TAX, FICA»: PROC-A:
PROCEDURE;

A condition prefix always precedes any statement labels
that are prefixed to the same statement.

Scope of the Condition Prefix

The scope of a condition prefix depends upon the kind
of statement to which it is prefixed. If the condition
name is prefixed to any statement other than a PRO
CEDURE or BEGIN statement, the condition is en
abled (or disabled) only through the evaluation and
execution of that single statement. If it is prefixed to an
IF statement, its scope is only through the evaluation of
the expression in the IF clause; it affects neither the
THEN clause nor the ELSE clause. If a condition name
is prefixed to a DO statement, its scope is only through
execution of the DO statement itself; the prefix of a DO
statement has no effect upon any other statements of the
DO group.

If the condition name is prefixed to a PROCEDURE
or BEGIN statement, its scope is through the entire
block, including all nested blocks except for any state
ments that lie within the scope of another condition pre
fix in which the same condition is specified differently.

Unlike the scope of an ON statement, the scope of a
condition prefix does not extend to a block that is in
voked remotely. A condition prefix to a CALL state
ment has no effect during execution of the procedure
that the CALL statement invokes.

A condition prefix to a single statement overrides the
scope of a prefix of the statement that heads a block. A
condition prefix to the heading statement of any internal
block overrides the scope of a prefix to the heading
statement of an outer block.

If more than one condition name appears in the
same condition prefix, the names must be separated by
commas.

Consider the example shown in Figure 16. In state
ment 1, the condition prefix enables the SIZE condition
(it is one of the conditions that is not enabled automati
cally; other conditions, OVERFLOW, for example, are
automatically enabled). If either the SIZE condition or

1. (SIZE): ALPHA: PROCEDURE;
2. ON SIZE CALL AERROR;
3. ON OVERFLOW CALL OVERROR;

4. CALL BETA;

5. (NOOVERFLOW, NOSIZE): BETA; PROCEDURE;

6. (SIZE): A = BIIC;

7.
(OVERFLOW, SIZE): GAMMA: BEGIN;

8. ON SIZE CALL BERROR;

9. REVERT SIZE;

10. END GAMMA;

11. END BETA;

12. CALL DELTA;
13. END ALPHA;

Figure 16.

the OVERFLOW condition arise during execution of
statements in the procedure ALPHA, an interruption
will occur. The ON statements (2 and 3) specify action
to be taken if these conditions cause an interruption.

The prefix to statement 5 disables both the OVER-.
FLO\i\T condition and the SIZE condition (both nor
mally would have been enabled, since the procedure
BETA lies within the scope of the condition prefix in
statement 1). The condition prefix in statement 6 over
rides the prefix of the heading statement and enables an
interruption for the SIZE condition during evaluation
and execution of the assignment statement. Note that
although the scope of the prefix of the ALPHA heading
statement has been overridden, the scope of the ON
statement (statement 2) is not affected by the change
in the scope of the prefix for the same condition.

The prefix to the GAMMA: BEGIN statement re
enables both conditions, cancelling the scope of the pre
fix of the BETA: PROCEDURE statement. Although
the action to be taken changes if an interruption for
SIZE occurs during execution of GAM~1A, there will
be an interruption if the condition arises; the change in

scope of the ON statement does not affect the scope of
the prefix.

When the END GAMMA statement is executed and
control returns to BETA, the OVERFLOW and SIZE
conditions are again disabled, to remain so until con
trol returns to ALPHA.

When statement 12 is executed, the DELTA procedure
is invoked. None of the effects of a condition prefix is
transferred to DELTA. However, the effect of each ON
statement (statements 2 and 3) continues into DEL T A
until another ON statement for each condition is exe
cuted.

Summary

A PLjI programmer has, with the ON statement and
the condition prefix, two powerful facilities for program
checking and for controlling errors that might occur
during execution of a program.

The ON statement specifies action to be taken when
an interruption occurs-to recover from an error or to
continue even though an error has occurred. The con
dition prefix allows a programmer to decide when an

Error Control and Program Checking 65

error would preclude successful completion of his pro
gram,

The scope of an ON statement and the scope of a
condition prefix follow two different rules.

The scope of an ON statement continues through the
program until another ON statement for the same con
dition is executed. The scope of a condition prefix to a

66 A PLII Primer

heading statement continues through the external
procedure until another condition prefix is effective.

In some cases (as in procedure BETA), the scope
of an ON statement specifying action to be taken in
case of an interruption can extend through blocks
during which the occurrence of an interruption is
precluded.

Except for certain restrictions, the characters that make
up the 48-character set are the same as those that make
up the 60-character set. These restrictions are given
below.

The following characters are not included:
NAME

Percent
Colon

REPRESENTATION

Not
Or
And
Greater Than
Less Than
Break Character
Semicolon
Number Sign
Commercial "At" Sign
Question Mark

%

1

I
&
>
<

,

@
?

The following three characters are replaced as indi
cated:
SIXTY -CHARACTER SET FORTY-EIGHT-CHARACTER SET

,
% II

NOTE: The two periods that replace the colon must be
immediately preceded by a blank if the preceding char
acter is a period.

The following operators, as used in the 60-character
set, are replaced in the 48-character set by the indi
cated alphabetic operators:

Appendix 1: The 48-Character Set

SIXTY -CHARACTER SET

>
>=
1=
<=
<
1

I
&

II

FORTY-EIGHT-CHARACTER SET

GT
GE
NE
LE
LT
NOT
OR
AND
CAT

The above nine alphabetic operators are "reserved" in
the 48-character set; that is, they must not be used as
programmer-specified identifiers.

In each case, one or more blanks must immediately
precede the alphabetic operator if the preceding char
acter would otherwise be alphameric; also, one or more
blanks must immediately follow if the following char
acter would otherwise be alphameric. For example, to
indicate the comparison of the variables A6 and BQ2Y
for inequality, one would write A6 NE BQ2Y, but not
A6NEBQ2Y, A6 NEBQ2Y, or A6NE BQ2Y. However,
since the equal symbol is usable, the comparison of
these two variables for equality may be written
A6=BQ2Y.

The break character, commercial "at" sign, and num
ber sign are not used in the 48-character set and conse
quently may not be employed in identifiers.

The 48-Character Set 67

Appendix 2: Permissible Keyword Abbreviations

In PL/I, certain keywords can be abbreviated. The ab
breviations themselves are keywords and are recog
nized as synonymous in every respect with the full key
words. The following alphabetical list gives these key
words and their abbreviations:

KEYWORD

AUTOMATIC
BINARY
CHARACTER
CONTROLLED
CONVERSION
DECIMAL
DECLARE
EXTERNAL
FIXEDOVERFLOW
INITIAL
INTERNAL
OVERFLOW
PROCEDURE
SUBSCRIPTRANGE
UNDERFLOW
ZERODIVIDE

68 A PL/I Primer

ABBREVIATION

AUTO
BIN
CHAR
CTL
CONY
DEC
DCL
EXT
FOFL
INIT
INT
OFL
PROC
SUBRG
UFL
ZDIV

Index of Definitions

ADDRESS 6 IDENTIFIER 12
ALPHAMERIC 11 INFIX OPERATOR 60
ARGUMENT 47 INSTRUCTION . 5
ARRAY .. 41 INTERNAL BLOCK 29
ASSEMBLER 6 INTERNAL NAME 35
ASSEMBLY LANGUAGE 6 INTERNAL TO 36
ASSIGNMENT 10 INVOCATION 29
ATTRIBUTE 17 KEYWORD 12
BEGIN BLOCK 37 KNOWN 34
BINARY NOTATION 10 LABEL .. 6
BIT ... 10 LEVEL NUMBER 40
BLOCK .. 17 LOOPING 8
BOUNDS 41 MACHINE LANGUAGE 5
COMPILER 10 MACRO INSTRUCTION 9
COMPOUND STATEMENT 15 NAME .. 34
CONCATENATION 60 NESTING 25
CONSTANT 12
CONTAINED IN 29

OB]ECTPROGRAM 7
OPERATION CODE 6

DATA ... 12 OPERATOR 60
DATA LIST 51 PADDING 23
DATA SET 50 PARAMETER 47
DATA STREAM 50 POINT OF INVOCATION 29
DECISION 15 PRECISION 20
DEFAULT 4 PREFIX
DEFAULT PRECISION 21 CONDITION 64
DIMENSION 41 LABEL 23
DISABLED 64 PREFIX OPERATOR 60
DO GROUP 15 PROCEDURE 17
ENABLED 64 PROGRAM 5
ENTRY NAME 17 PROGRAMMING LANGUAGE .. 5
ENTRY POINT 29 REDECLARATION 35
EXPONENT (OF FLOATING-POINT NUMBER) 19 SCALAR EXPRESSION 60
EXPONENTIATION 10 SCOPE .. 34
EXPRESSION 12 SOURCE PROGRAM .. 7
EXTERNAL NAME 35 STORAGE 6 ..
EXTERNAL PROCEDURE 29 STRING .. 22
FIEI.n ... 6 STRUCI'T~rp.E 39

FILE .. 50 SUBROUTINE 47
FIXED-POINT DATA 19 SUBSCRIPT 41
FLOATING-POINT DATA 19 SUBSTRUCTURE 39

FUNCTION 48 TRUNCATION 21

BITGH-LEVEL LANGUAGE 10 VARIABLE 12

Index of Definitions 69

Index

Activation
of begin block ... 37
of procedure 32ff

Address 6
Alignment of point 20, 21
ALLOCATE statement 31
Allocation 31

automatic 31, 36
controlled 31,58
static 31, 36

Argument
of invocation47
of macro instruction 9
passing of .. 47

Argument list .. 47
Arithmetic data; see Data
Array .. 41,44,47

bounds ... 41
declaration of 41
dimension 41

Array expression .. 43
Assembler 6
Assembly language 6
Assignment 10

multiple 45
Assignment statement 10, 14
Attributes; see also individual attributes 17

factoring of 35, 40
AUTOMATIC attribute .. 31,35

Base attributes 20
Based variable 58
BEGIN statement 37

labeling of .. 38
Begin block .. 37

as ELSE clause 37
as THEN clause 37
as on-unit 62

BINARY attribute 20, 21
Binary data

fixed-point .. 21
floating-point 22
as output ... 51

Binary notation . 10
BIT attribute . 23
Bit .. 10
Bit string data . 23

quotation marks in I/O 52 (footnote)
Bit-string format item 54
Blank 11, 20, 22, 34, 52
Block .. 17
Bounds ... 41
Built-in functions; see Function
BUFFERED attribute 57

CALL statement 29ff, 34
CHARACTER attribute 23
Character setll, 67
Character-string data 22

quotation marks in I/O 52
Character-string format item54
CHECK (identifier list) condition; see ON conditions
COLUMN format item .54
Comma 35, 42, 52
Comment .. 7, 11
Compound statement 15, 17

70 A PL/I Primer

Comparison operations
Compiler
Concatenation.
Conditions; see ON conditions
Constant
Contained in
Contextual declaration; see Declaration
CONTROLLED attribute

with based variable
CONVERSION condition; see ON conditions
Conversion; see Data conversion

..... 50
.10,20,31

... 60

.12
............ 29

.. 31
.58

Data 12
arithmetic 20
collections of 39
label. .23
levels of 12
string .. 22

Data conversion 17, 20, 35, 62
in STREAM transmission 50
not done in RECORD transmission 50

Data-directed data fonnat; see Fonnat
Data-directed transmission 52
Data list. 14,51,52
Data set. 50
Data specification 51
Data stream . 50
Da ta transmission 50

record-oriented ... 56
stream oriented 51

Data types 20
DECIMAL attribute 20, 21, 34
Decimal data

fixed-point 21
floating-point 22
sterling 21

Decision 15, 23, 24ff
DECLARE statement 17, 20ff, 34ff
Declaration 17, 34ff

contextual 34
explicit .. 17, 34, 50

with OPEN statement 50
implicit 26, 27, 34, 37 (footnote)
of files 18, 50, 57

Default 4, 26, 34
Default precision 21, 34
DELETE statement 58
Dimension 41
Dimension attribute 41
DIRECT attribute 57
DO statement 15, 26ff, 44
DO group 15, 26ff, 44

incrementation in 26ff, 44
nesting of 27
repetitive execution 26

Edit-directed data fonnat; see Format
Edit-directed transmission 52
ELSE clause 15, 24ff, 37

null ... 25
END statement 15, 17, 26, 29, 31, 62
End of file 16, 31, 62
ENDFILE condition; see ON conditions
ENDPAGE condition; see ON conditions
ENTRY attribute
ENTRY statement

........ 30,34
. 30,34

Entry name
Entry point

primary
secondary ."

Evaluation of expressions
Execution
Exponent (of floating-point numbers)

.17,19,29,32
.. 29
.30

.... 30

.13,61
.... 6,31,34

... 19
............... . 10 Exponentiation ..

Expression 12, 60ff
arithmetic .'
in PUT statement
array
scalar ..
string

....... 12,60

.... 27,51,52
.... 43

. 60
...... 60

structure , ' 41
EXTERNAL attribute
External name; see Name
External procedure

Factoring of attributes; see Attributes

.35

.29

FILE attribute 18, 50
File 14,50

declaration of 18, 50, 57
contextual .. 34
explicit .. 50
implicit50

input 50
opening of 50, 57

explicit 57
implicit . 58

output 50
standard 50
update. 58

File name 14, 50
File specification 51,52
FIXED attribute 20, 21
Fixed-point data 19

binary 21
decimal .. 21

Fixed-point format item 53
FIXEDOVERFLOW condition; see ON conditions
FLOAT attribute .,. 20, 22, 35
Floating-point data 19

binary ... 22
decimal .. 22

Floating-point format item 54
FORMAT statement 55
Format

of data-directed data 52
of edit-directed data 52
of list-directed data 52
of program 17

Format items 53ff
Format list .. 52
FREE statement 31
Function (procedure) 48

built-in .. 48
Function reference 48

GET statement ' 14,51,52
GO TO statement 15, 24, 30, 32

use between blocks 30, 32
with DO groups 28

High-level language . 10

Identifier 12, 34ff
IF statement 15, 24ff

nesting of .. 25
types of 24£

Implicit declaration; see Declaration
Incrementation in DO loop; see DO group
INITIAL attribute 21, 23
INPUT attribute 50

Input/Output
Input file; see File
Instruction

executable
macro
non-executable

INTERNAL attribute
Internal block
Internal name; see Name
Internal representation

in Input/Output
Internal to
Interruption

see also ON conditions
Invocation; see Procedure
KEYED attribute
Keyword

abbreviation of

............ 50ff

5
8
9
8

... 35
.29

5
.. 56

... 36
...... 16,62

Known...

..... 57
.12
.68
.34

LABEL attribute23
Label data; see Statement-label data
Layout of page 55
Length attribute 23
Level number 40
LINE format item 54
LINESIZE option 55
List-directed data format; see Format
List-directed transmission 51
LOCATE statement 56, 58
Machine language
Macro instruction; see Instruction
MAIN attribute

. 5

................. 29

Name ... 17,34
collective 39ff
data 12
external 35
file .. 50
internal 35
qualified . 40

Nesting
of blocks 30

effect on scope 35
of DO statements 27, 35
of IF statements .' 25, 35

Null ELSE ... 25
Null statement 25

Object program 7
ON conditions 62

CHECK (identifier list) 64
CONVERSION 62
disabling 64
enabling 64
ENDFILE 17, Sl, 62
ENDPAGE 55
FIXEDOVERFLOW 62
OVERFLOW 62
prefixes 64
SIZE .. 62
UNDERFLOW 64
ZERODIVIDE 64

ON statement 17,31,62
OPEN statement 50, 58
Openi~g of fil~s; see Files
Operation coae 6
Operators 10,60

arithmetic .. 60
comparison 60
concatenation 60
infix ... 60
prefix .. 60
string .. 60

OPTIONS attribute 29

Index 71

OUTPUT attribute
Output file; see File
OVERFLOW condition; see ON conditions

Padding
PAGE fonnat item
P AGE SIZE option ..
Parameter

. .50

.... 23,52
" .54

. 55

of macro definition 9
of procedure . 47

Parameter list 47
PICTURE attribute 54
Picture characters 54
Picture fonnat item 54
Point alignment; see Alignment of point
Point of invocation 29, 30
Pointer variable 58
Precision attribute 20, 21ft
Prefix

condition ... 64ft
label .. 15, 23, 28
operator; see Operators

PRINT attribute 54
Printing fonnat items ... 54
PROCEDURE statement 17, 29ft
Procedure 17, 29ft

activation of32ft
external . 29
internal . 29
invocation of . 29
invoked .. 29
invoking 29
MAIN 29
termination of . 32ft

Procedure name 17, 29
Program 5,14,29

execution of' 31
Programming language .. 5
PUT statement 14,27,51,52

Qualified names 40
Quotation mark 22, 52

READ statement 56
RECORD attribute 56
Record-oriented transmission 50, 56H
RECURSIVE attribute 36 (footnote)
Redeclaration 35
Remote format item 55
RETURN statement 31, 48
Return

of control 29ft, 62
of a value .. . 48

REVERT statement 63

72 A PL/I Primer

REWRITE statement .. 56,58

Scalar expression; see Expression
Scale attributes 20
Scope34, 37

of condition prefixes . 64
of names 34ft
of ON statement 63

Scope attributes 35
Semicolon

with statements 11, 15, 17
... 52

...... 56
in data-directed transmission

SEQUENTIAL attribute
SIZE condition; see ON conditions
SKIP fonnilt item 54
Source program
Spacing format item

. 7

Standard files
Statement label
Statement-label data
STATIC attribute
Sterling data "
STOP statement
Storage
Storage class attributes
STREAM attribute
Stream-oriented transmission

........... 54
..................... 50

. .15,23,34
..................... 23

......... . .3L36
" " 21

..................... 32
. 6,31

. 31
......................... 56

.. 50, 51H
............. 55 STRING option

String data
Structure

................................. 22
........ . .. 39

declaration of
level number

............................. 40

Structure expressions
Subroutine
Subscript ..

variables as
Substructure
SYSIN
SYSPRINT

......... 40
.............. 41

........ "47
.... 41

. 43
. 39

....................... 50

....................... 50

Termination of blocks " 32ft, 37
THEN clause ... , 15, 24«, 37
Truncation 21, 22ff
UNBUFFERED 56
UNDERFLOW condition; see ON conditions
UPDATE attribute 57
Update file 57, 58

Variable 12,200
as subscripts 43

WHILE clause 27
WRITE statement 56

ZERODIVIDE condition; see ON conditions

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72

