
Techniques for Processing Data Lists in PL/I 

This manual illustrates techniques for processing simple and complex data lists. It is a 
sequel to Introduction to the List Processing Facilities of PL/I (GF20-0015) and assumes 
knowledge of that manual. Illustrative programs were processed by the PL/I (F) 
Compiler 01 ersion 5) under control of the IBM System/360 Operating System 
(Release 18 .6). 

Data lists are made up of based variable structures that contain data plus pointers 
that link the structures. List-processing techniques are useful for handling data that 
has logical complexities not conveniently represented by conventional PL/I array and 
structure representation. 

This manual is intended for the experienced programmer. 

GF20-0018-0 



First Edition (January 1971) 

Copies of this and other IBM publications can be obtained through IBM branch offices. 

A form has been provided at the back of this publication for readers' comments. If this form 
has been removed, address comments to: IBM Corporation, Technical Publications Department, 
.U2 East Post Road, White Plains, New York 10601. 



•reface 

his manual serves as a sequel to the companion text 
itroduction to the List Processing Facilities of PL/I 
}F20-0015). That text describes the facilities for proc
~sing lists in PL/I. The present manual extends the dis
ussion of simple data lists to data lists of arbitrary 
:>mplexity and shows how to develop hierarchical collec
ons of subroutines and functions for manipulating such 
sts. To make the discussion as self-contained as possible, 
:view material has been included on the PL/I facilities for 
rganizing and processing lists (Chapter 1) and on the 
~sentials of subroutines and functions (Appendix 1). 
.ppendix 2 summarizes the language facilities in PL/I for 
rocessing lists. 

List-processing techniques are advantageous for orga
izing and manipulating data whose structure is not con
:miently represented with PL/I arrays and structures. 

Structured data of this type occurs in many nonnumeric 
applications, such as information storage and retrieval, 
engineering design, computer-software production, text 
editing, and artificial intelligence. 

The advanced nature of this manual requires the reader 
to be an experienced programmer who has studied the 
companion text mentioned above and who is skilled in the 
use of subroutines and functions. References to particular 
implementations of PL/I are held to a minimum, but in
formation on the F-level facilities for processing lists 
appears in IBM System/ 360: PL/I Reference Manual 
(GC28-820l) and IBM System/ 360 Operating System: PL/I 
(F)Programmer's Guide (GC28-6594). A bibliography 
provides additional sources of information on list organiza
tions and their applications. 





;,0,ip'R:er 1: Introduction . 

VLHWOSE AND PLAN OF THIS MANUAL . 

m;:viEW OF FACILITIES FOR PROCESSING 
USTS IN Pl/I 

h.iinter Variables . 

Obtaining Values for Pointer Variables . 

Using Pointer Variables in Assignment 
Statements . 

Using Pointer Variables in 9perational 
Expressions 

Bmed Variables 

Qw;;/ifying Based Variables with Pointer 
Variables 

Restrictions on Based Variables 

Contextual Declarations of Pointer 
Variables 

Based Storage . 

P.1rea Variables 

Allocating and Freeing Based Storage in an 
Area 

Emptying an Area 

The A REA ON-condition 

Linking Allocations of Based Storage in 
an Area 

l/\ USTS . 

2: Simple Data lists 

OBGANIZING SIMPLE DATA LISTS. 

PrWCESSING SIMPLE DATA LISTS . 

Crnating a List of Available Storage 
Components 

Page 
1 

1 

1 

1 

1 

2 

2 

2 

3 

3 

4 

4 

5 

6 

6 

7 

7 

9 

10 

10 

10 

11 

AREA_OPEN Subroutine . 11 

Manipulating the Elements of List Components . 12 

Obtaining the Address of a List Component 12 

Assigning Values to the Elements of List 
Components 14 

Obtaining the Values of Elements in List 
Components 

Examples • 

16 

18 

Page 
Manipulating List Components 18 

Obtaining the Size of a Data List 18 

Inserting Data Items into Data Lists 19 

Getting the- Values of Data Items in Data 
Lists . 25 

Deleting Data Items from Data Lists 28 

Removing Data Items from Data Lists . 33 

Replacing Data Items in Data Lists . 34 

Searching for Data Items in Data Lists . 37 

Interchanging Data Items in Data Lists . 39 

Manipulating Sublists and Lists 39 

Inserting Sublists and Lists into Data Lists 40 

Deleting Sublists and Lists from Data Lists 43 

Assigning Sublists and Lists to Data Lists . 43 

Linking Data Lists 47 

Splitting Data Lists 47 

Catenating Data Lists 47 

Searching Data Lists for Sublists . 53 

Testing Data Lists for Equality 53 

Comparing Data Lists 56 

Reversing Data Lists 57 

Sorting Data Lists 57 

Converting Character Strings to and from 
Data Lists 60 

Manipulating Lists Recursively 60 

Recursive Deletion of Data Lists . 63 

Recursive Computation of Data List Sizes. 66 

Recursive Searching for Data Items in Data 
Lists . 69 

Recursive Linking of Data Lists • 

Recursive Testing for Equality of Data 
Lists . 

Recursive Comparison of Data Lists 

Using Simple Data Lists 

Editing Cash Values . 

Removing Edit Symbols from Cash Values 

69 

70 

71 

72 

72 

73 

Expanding a Multiple Assignment Statement. 75 



Page Pag, 
Expanding a Picture Specification . 75 Multidirectional Lists . . 91 

Contracting a Picture Specification • . 79 ADVANCED APPLICATIONS OF COMPLEX 

Adding Variable-Leng'th Integers . 79 DATA LISTS . . 91 

Subtracting Variable-Length Integers . 82 List Representation of Structural Formulas 

Gathering Declare Statements in a 
in Chemistry . 91 

Procedure . 84 List Representation of Geometric Figures. 10' 

REVIEW OF SIMPLE DATA LISTS . 87 List Representation of a Chessboard 10• 

SUMMARY . . 88 REVIEW OF COMPLEX DATA LISTS 10! 

SUMMARY . 111 
Chapter 3: Complex Data Lists . 89 

MORE GENERAL DATA IN LIST Appendix 1: Review of Facilities for 
COMPONENTS . 89 Subroutines and Functions in PL/I 11' 

DESCRIPTIVE DATA IN LIST HEADS . 89 Appendix 2: Summary of List-Processing 
ALTERNATIVE METHODS FOR LINKING Facilities . 11~ 
LIST COMPONENTS . 93 

Two-Way Lists . 93 Bibi iography 11l 

Circular Lists • . 94 Index 11! 



Chapter 1 : Introduction 

PURPOSE AND PLAN OF THIS MANUAL 

Thls manual extends the discussion of list processing pre
sented in the companion manual Introduction to the 
List Processing Facilities of PL/I (GF20-0015). That 
manual describes the facilities for organizing and manipu
lating lists in PL/I and illustrates the advantages of lists 
over the conventional methods for organizing storage with 
arrays and structures. 

The present manual develops techniques for creating 
data lists of any desired complexity. It begins with a re
view of the facilities for organizing lists in PL/I and applies 
these facilities in subsequent chapters to the construction 
of data lists, which are collections of noncontiguous data 
items linked by attached address elements; the data items 
associated with a data list always appear within the body 
of the list. Techniques for processing data lists are pre
sented in subroutine and function form. (Appendix I 
contains a review of PL/I facilities for subroutines and 
functions.) 

Version 5, Release 18.6 of the PL/I (F) Compiler pro
duced the coded examples shown as printouts in this 
manual. The encoded examples were all compiled and 
subjected to elementary machine tests to perform as in
tended, except for four examples that illustrate specialized 
organizations of complex data lists. These were desk
checked, compiled, and executed. Note, however, that 
programming efficiency, speed of execution, core storage 
utilization, etc., are frequently sacrificed in the examples 
and discussions to simplify the presentation and to im
prove readability. 

The program examples are purely illustrative in nature; 
no attempt was made to develop "production" code. 

The list-processing programmer may wish to compare 
the convenience of using subroutines and functions to 
manipulate list components against the better performance 
of inline code. 

REVIEW OF FACILITIES FOR PROCESSING LISTS IN 
PL/I 

The facilities for processing lists in PL/I deal with four 
types of variables: AREA, BASED, OFFSET, and 
POINTER, each of which is discussed in detail in the com
panion manual Introduction to the List Processing 
Facilities of PL/I (GF20-0015). The following discussions 
review the main characteristics of three of these variables: 
POINTER, BASED, and AREA. 

Pointer Variables 

The value of a pointer variable is an absolute address, 
which specifies the actual location of a data item in stor
age. Declaration of an identifier with the POINTER 
attribute establishes the identifier as a pointer variable. 

EXAMPLES: 

DECLARE 
PPOINTER, 
(Q,R) POINTER EXTERNAL STATIC, 
T(5) POINTER INTERNAL, 
V(-2:2,-3:3) POINTER, 
1 A, 

2 X CHARACTER(15), 
2 YPOINTER, 

1 TABLES, 
2 1(5) POINTER, 
2 J(0:4) POINTER; 

As shown in these examples, PL/I allows pointer variables 
to be individual element variables or elements of arrays 
and structures. A pointer variable can have any storage 
class and scope, and the usual default rules for these attri
bute types also hold for a pointer variable. 

Obtaining Values for Pointer Variables 
A pointer variable must receive an absolute address for its 
value before the variable can be manipulated. One way of 
obtaining an absolute address for a pointer variable is 
through the built-in functions ADDR and NULL. A 
reference to the built-in function ADDR has the form: 

ADDR (argument) 

The value returned by ADDR is the absolute address of the 
specified argument. As an example, consider the assign
ment statement: 

P=ADDR(X); 

Assume that Pis a pointer variable and Xis a data variable. 
Then the reference ADDR(X) obtains the absolute address 
of the storage location allocated for X, and the statement 
assigns this absolute address as the value of pointer P. 



An argument variable in a reference to ADDR must be 
an identifier that specifies one of the following types of 
variables: 

1. Element variable 
2. Array 
3. Element of an array 
4. Major or minor structure 
5. Element of a structure 

'It is also possible for an element constant to appear as 
an argument of ADDR. In this case, the PL/I compiler 
creates a dummy-argument variable for the constant, and 
ADDR returns the absolute address of the dummy argu· 
ment. (See Appendix 1 for a discussion of dummy 
arguments.) 

A reference to the built-in function NULL uses no 
arguments and has the form: 

NULL 

This function returns a null address value, which does not 
identify any location in storage. A null address is used to 
clear pointer variables and to test for unallocated storage. 

Note that PL/I does not provide explicit address con
stants for pointer variables. 

Using Pointer Variables in Assignment Statements 

PL/I permits pointer variables to appear in the follow
ing forms of the assignment statement: 

1. element-pointer-variable=element-pointer-expression; 
2. pointer-array=element-pointer-expression; 
3. pointer-array=pointer-array; 

Two or more variables separated by commas may appear 
on the left side of these statements to permit multiple 
assignment. An element-pointer expression on the right 
side of an assignment statement must be either an element
pointer variable or a function reference (built-in or 
programmer-defined) that specifies an element-pointer 
value, that is, a single absolute address. 

Assignment of an element-pointer expression to a 
pointer array causes the value of the expression to be as
signed to every element of the pointer array. When a 
pointer array apprears on the right side of an assignment 
statement, the number of dimensions and the bounds for 
each dimension of the array on the right must be identical 
to those of the receiving pointer array on the left. 

EXAMPLES: 

DECLARE 

2 

(P,Q,R,T(5),V(-2:2,-3:3)) POINTER, 
1A,2 XCHARACTER(15), 2 YPOINTER, 
1TABLES,21(5) POINTER, 2 J(0:4) POINTER; 

The following statements illustrate possible assignments of 
pointer values that involve the above declarations: 

1. P = ADDR(A); 
2. Q,R =NULL; 
3. T(4), V(-2,-3) =P; 
4. A.Y=T(4); 
5. TABLES. I, TABLESJ =NULL; 
6. T =TABLES.I; 

Statements 2, 3, and 5 perform multiple assignments. The 
last three statements show name qualification applied to 
pointer variables. 

Using Pointer Variables in Operational Expressions 

PL/I allows only two operators to use pointer variables as 
operands: the comparison operators equal(=) and not 
equal Cl=). As a result of this restriction, arithmetic 
operations cannot be performed on absolute addresses. 

EXAMPLES: 

Assume that A and Bare arithmetic variables and that 
P,Q,R,S, and Tare pointer variables; then the following 
statements contain permissible uses of pointer variables as 
operands. 

I. If P =NULL THEN GO TO L; 
2. A= (Ql=R); 
3. IF (T=NULL) I ((T=ADDR(B)) & (S=NULL)) THEN 

P=Q; 

Based Variables 

Although the value of a po'inter variable specifies the ab
solute address of a data item, the pointer itself provides no 
information about the data item. For example, a pointer 
variable can specify the absolute address of an array A, but 
neither the pointer name nor the pointer value indicates 
the dimensions of A or the characteristics of its elements. 

To associate descriptive information with the address 
value of a pointer vaariable, PL/l provides a special type of 
variable called the based variable, which is declared with 
the attribute: 

BASED (element-pointer-variable) 

The element-pointer variable within the BASED attribute 
cannot be a based variable, nor can it be subscripted. 

Before reference can be made to a based variable, an 
address value must be assigned to the pointer variable 
specified in the associated BASED attribute. Note that 
declaration of a based variable does not assign an address 
value to its associated pointer variable. 



A reference to a based variable applies the attributes of 
the based variable to the storage location specified by the 
associated pointer variable. Consider the declaration: 

DECLARE NAME CHARACTER(l 5) BASED(P); 

This statement declares the 15-position character string 
called NAME to be a based variable and associates the 
pointer variable P with NAME. For example, let NAME 
appear in the assignment statement: 

NAME = 'JOHN'; 

This statement assigns the character-string constant 
'JOHN' to a 15-position storage area at the location given 
by P. The four characters of the constant are positioned to 
the left in the area and are followed by eleven blank char
acters. 

The BASED attribute is a storage-class attribute along 
with AUTOMATIC, CONTROLLED, and STATIC. 
Appearance of BASED in a DECLARE statement, how
ever, does not produce an allocation of storage. Only when 
an absolute address is assigned to the pointer variable re
lated to the based variable does storage become associated 
with the based variable. Consider, for example, the 
previous declaration of the based variable NAME. Not 
until an absolute address is assigned as the value of pointer 
P does storage become associated with NAME. When this 
association occurs, NAME is said to be "based on" P. 

The value of the pointer variable in a BASED attribute 
can specify a location of any storage class and data tY'Pe, 
including an array or a structure. When applied to a struc
ture, the BASED attribute must appear at level 1 and, 
consequently, applies to all members of the structure. Care 
must be taken, though, when changing the value of the 
pointer related to a based variable to assure compatibility 
between the attributes of the based variable and the data 
at its newly assigned location. 

Qualifying Based Variables with Pointer Variables 

PL/I allows a based variable to be associated with more 
tha.tl one storage area at the same time. This multiple 
association is possible because a based variable by itself 
does not specify a data item, but only a description of 
storage. It is the combination of pointer variable and based 
variable that determines the location and description of a 
data item. 

Since only one pointer variable can appear in a BASED 
attribute, some other facility is required for simul
taneously associating two or more pointers with the same 
based variable. The PL/I facility that permits this multiple 
association is called pointer qualification. It is used to 
distinguish among two or more storage areas associated 
with the same based variable, and allows other pointers to 

override the pointer that was specified in the declaration 
of the based variable. 

Pointer qualification is denoted by a composite symbol 
that resembles an arrow. The symbol consists of a minus 
sign followed immediately by a greater-than symbol(->). 
This composite symbol, however, does not signify an oper
ation; its function is similar to that of the period symbol 
used in the qualified name of a structure element. When 
used, the pointer qualification symbol must always appear 
between two references. The reference on the left must be 
either an element-pointer variable or a reference to the 
built-in function ADDR. When it is an element-pointer 
variable, it cannot be subscripted, nor can it be of the 
based-storage class. The reference on the right of the 
pointer qualification symbol must be a based variable. 

A pointer qualification symbol applies the storage de
scription of the based variable on its right to the storage 
location specified by the pointer value on its left; the 
pointer originally declared with the based variable is over
ridden. As an example, consider the assignment statement: 

A->B=C->B; 

Assume that Bis a based variable, and A and Care non
based, element-pointer variables. The expression C->B 
refers to a data item that has the attribute declared for B 
and the location specified by C. Similarly, the expression 
A->B determines the location and attributes of the area 
to which the data item is assigned. Thus, the pointer qual
ification symbols in this example associate the attributes 
declared for the based variable B with the two distinct 
storage areas addressed by pointers A and C. This use of 
the arrow symbol(->) to associate a based variable with a 
specific pointer variable constitutes pointer qualification. 

Restrictions on Based Variables 

The following restrictions apply to based variables: 
1. The EXTERNAL attribute cannot appear in the 

declaration of a based variable, but a based variable can be 
qualified by an external pointer variable. 

2. Based variables cannot have the INITIAL attribute, 
nor can arrays of based labels be initialized by subscripted 
label prefixes. 

3. Data-directed input and output cannot transmit the 
value of a based variable. 

4. The BASED attribute cannot be specified for the 
parameters of subroutines or functions. 

5. The CHECK ON-condition cannot be applied to a 
based variable. 

6. The VARYING attribute cannot be applied to a 
based variable. 

3 



Contextual Declarations of Pointer Variables 

The appearance of an identifier in one of the following 
contexts serves as a contextual declaration of the identifier 
as a pointer variable: 

1. In a BASED variable 
2. On the left of a pointer qualification symbol (->) 
3. In the SET option of READ, LOCATE, and ALLO

CATE statements {discussed later) 
A contextually declared pointer variable receives the 

AUTOMATIC storage class and INTERNAL scope by 
default. If different attributes are desired, they must ap
pear in an explicit declaration along with the POINTER 
attribute. The pointer variable contextually declared with 
a based variable does not receive the null pointer value as a 
result of the based declaration, and only the INITIAL 
CALL form of the INITIAL attribute is allowed in explicit 
declarations of pointer variables. 

Based Storage 

Based variables can be used with ALLOCATE and FREE 
statements for direct control of storage allocation. 

Allocation of storage for a based variable is performed 
with the ALLOCATE statement, which has the basic form: 

ALLOCATE based-variable; 

When executed, this statement allocates storage for the 
based variable and assigns the absolute address of the allo
cated storage to the pointer variable specified in the 
BASED attribute of the based variable. The attributes 
associated with the based variable determine the amount 
of storage that is allocated. 

EXAMPLE: 

DECLARE 
TABLE{S) BASED(P) FIXED DECIMAL{3); 

ALLOCATE TABLE; 

These statements declare TABLE to be a based array and 
allocate storage for the array. Each of the five elements in 
the array is a three-digit fixed-point decimal integer. The 
location of the allocated storage for the array is automati
cally assigned to pointer P, which appears in the BASED 
attribute of TABLE. 

Reallocation of storage for a based variable does not 
free previously allocated storage for the variable. Instead, 
both the old storage and the new storage are available 
provided the old value of the associated pointer is saved 
before it is automatically replaced by the location of the 
new storage. Several allocations of storage for the same 

4 

based variable may be distinguished by appropriate pointer 
qualification. 

EXAMPLE: 

DECLARE 
T POINTER, 
SWITCH BIT{2) BASED(P); 

ALLOCATE SWITCH; 
T=P; 
ALLOCATE SWITCH; 
T->SWITCH = '11 'B; 
SWITCH= 'IO'B; 

In this example, SWITCH is a based variable that repre
sents a two-position bit string. T and Pare pointer vari
ables. After each allocation of storage for SWITCH, 
pointer P contains the address of the allocated storage. 
Pointer T receives the address of the first allocation before 
the second allocation is executed. The statement T-> 
SWITCH= 'l l 'B; assigns the bit-string constant '11 'B to 
the first storage location allocated for SWITCH. 

As illustrated in the preceding example, each allocation 
of storage for a based variable assigns the address of the 
new allocation to the pointer variable specified in the 
BASED attribute associated with the based variable. When 
two or more allocations of storage are performed concur
rently for the same based variable, the addresses of pre
vious allocations must be saved in separate pointer 
variables; otherwise, the previous addresses will be lost. 

So far, the address of a previous allocation has been 
saved by the assignment statement. But PL/I also provides 
the SET option in an ALLOCATE statement as an alterna
tive method for assigning the address of an allocation to a 
pointer variable. An ALLOCATE statement with a SET 
option has the following form: 

ALLOCATE based-variable SET 
(element-pointer-variable); 

This statement allocates storage for the based variable and 
assigns the address of the allocated storage to the pointer 
variable specified in the SET option. The pointer variable 
must represent a single pointer value; it cannot be the 
name of an array of pointers or a structure of pointers. 

An ALLOCATE statement without a SET option is 
treated as having an implicit SET option that applies to the 
pointer variable in the BASED attribute of the allocated 
variable. An explicit SET option allows the programmer to 
specify a pointer variable different from the one given in 
the BASED attribute of the allocated variable. This other 



pointer receives the address of the allocated storage, and 
the pointer variable in the BASED attribute remains un
changed. 

EXAMPLE: 

DECLARE 
P POINTER, 
VALUE BASED(Q) FLOAT; 

ALLOCATE VALUE; 
ALLOCATE VALUE SET(P); 

The first ALLOCATE statement allocates storage for 
VALUE and assigns the location of the storage to pointer 
Q. The second ALLOCATE statement allocates additional 
storage for VALUE and assigns the location of this new 
storage to pointer P. The value of pointer Q and the stor
age allocated by the first ALLOCATE statement remain 
unchanged by the second allocation. 

Storage allocated for a based variable is freed for pos
sible reuse by the FREE statement, which has the follow
ing form: 

FREE based-variable; 

This statement frees the storage currently associated with 
the based variable. The program obtains the address of this 
storage from the current value of the pointer variable de
clared in the BASED attribute of the based variable. The 
attributes of the based variable determine the amount of 
storage that is freed. 

EXAMPLE: 

DECLARE 
P POINTER, 
ITEM BASED(Q) CHARACTER(! O); 

ALLOCATE ITEM; 
ALWCATE ITEM SET(P); 

FREE 
FREE 

ITEM; 
P->ITEM; 

In these statements, P and Q are pointer variables, and 
ITEM is a character-string based variable. Two allocations 
of storage occur for ITEM. Pointer Q contains the location 
of the first allocation; pointer P, the second. The first free 
statement frees the storage for ITEM at the location speci-

fled by Q. The second FREE statement frees the storage 
for ITEM at the location specified by P. 

A based variable can be used to free a particular alloca
tion of storage only if that storage has been allocated for a 
based variable with the same attributes, including array 
bounds, string lengths, and arithmetic precisions. An at
tempt to free a based variable for which storage has not 
been allocated produces unpredictable results. 

Area Variables 

PL/I provides a type of variable called the area variable, 
which reserves storage for allocations of based variables. 
The area variable permits based allocations to be grouped 
as a unit for convenient input/output transmission or as
signment to another area while maintaining the separate 
identity of each allocation. The following discussion de
scribes how area variables are used to group based alloca
tions. 

An identifier becomes an area variable when it is 
declared with the AREA attribute, which has the form: 

AREA( size-expression) 

The value of the size expression determines the size of the 
area in bytes. However, the expression is optional; when it 
is not used, an implementation-defined size is assumed by 
the PL/I compiler. 

Although an area variable reserves storage for alloca
tions of based variables, it can have any storage class. The 
size of an area with static storage class must appear in the 
AREA attribute as an unsigned fixed-point decimal 
integer constant. The AREA attribute is not restricted to 
element identifiers; it can also be used with array and 
structure identifiers. PL/I also provides for area arguments 
and parameters in subroutines and functions, and the aster
isk notation can be used to denote the size of an area 
parameter. The DEFINED attribute permits an area to be 
defined on another area through overlay or corresponding 
defining; both areas, however, must have the same size. 

EXAMPLES: 

DECLARE 
A STATIC AREA (32767), 
B AREA, 
C AREA(N), 
D AREA(S) CONTROLLED, 
E AREA(lOOOO) BASED(P), 
F(S) AREA(400), 
1 G, 

2 
2 
2 

K 
L 

H AREA(lOO), 
I AREA(200), 
J AREA(300), 
AREA DEFINED B, 
AREA(*); 

5 



This DECLARE statement specifies that: 
1. A is a static area variable that reserves 32767 bytes 

of storage. 
2. B is an automatic area variable that reserves an im

plementation-defined amount of storage. 
3. C is an automatic area variable whose size depends 

on the value of N current at the time the block to which it 
is internal is activated. 

4. Dis a controlled area variable whose size depends 
either on the value of Sat the time an ALLOCATE state
ment allocates storage for D, or on a size specification in 
the ALLOCATE statement, which overrides S. 

5. E is a based area variable that reserves 10,000 bytes 
of storage for each allocation. 

6. Fis an array that contains five area elements, each of 
which reserves 400 bytes of automatic storage. 

7. G is an area structure that contains the three areas H, 
I, and J. H reserves 100 bytes of automatic storage, I re
serves 200 bytes, and J reserves 300 bytes. 

8. K is an area defined on area B. 
9. L is an area parameter that assumes the same size as 

its associated area argument in a subroutine or function 
invocation. 

Allocating and Freeing Based Storage in an Area 

The ALLOCATE statement uses the IN option for based 
allocations within a specified area: 

ALLOCATE based-variable 
SET(pointer-variable) IN( area-variable); 

This statement allocates storage for the based variable 
within the specified area and assigns the location of the 
allocated storage to the pointer variable. The IN option, 
however, is not required; when it is not used, the based 
variable is allocated iri a storage area provided by the 
operating system. 

The FREE statement, as applied to a based allocation in 
a specified area, has the form: 

FREE based-variable 
IN( area-variable); 

The IN option must appear in a FREE statement if the 
based allocation was made within an explicitly specified 
area; otherwise, the option is omitted. 

EXAMPLE: 

DECLARE 

6 

STORE AREA(SOO) 
VALUE BASED(Q) 
R POINTER; 

BASED(P), 
FIXED DECIMAL(S ,2), 

ALLOCATE STORE; 
/* P ADDRESSES AREA STORE. * / 

ALLOCATE VALUE IN(STORE); 
/* Q ADDRESSES ALLOCATION OF VALUE 

IN STORE.*/ 

ALLOCATE VALUE IN(P->STORE) SET(R); 
/* R ADDRESSES SECOND ALLOCATION 

OF VALUE IN STORE. * / 

FREE VALUE IN(STORE); 
/*FREES ALLOCATION OF VALUE 

ADDRESSED BY Q. */ 

FREE R->V ALUE IN(STORE); 
/* FREES ALLOCATION OF VALUE 

ADDRESSED BY R. */ 

The first ALLOCATE statement allocates 500 bytes of 
storage for area STORE and assigns the location of the 
allocated storage to pointer P. 

The second ALLOCATE statement causes storage for 
based variable VALUE to be allocated within P->STORE 
and assigns the location of the allocated storage to pointer 
Q. 

The third ALLOCATE statement generates another 
allocation of VALUE (different from Q->V ALUE) within 
area P->STORE and sets pointer R equal to the location 
of the allocated storage. 

The FREE statements employ the IN option because 
allocations of VALUE were explicitly made in STORE. 
Although the allocations of VALUE become free, the 
storage for area STORE remains allocated. 

Emptying an Area 

When an area is allocated, it automatically receives the 
empty state; that is, it contains no allocations of based 
variables. An area that is not empty can be made empty by 
assigning an empty area to it or by assigning the value of 
the built-in function EMPTY: 

AREAl = EMPTY; 
AREA2 =AREAl; 



The AREA ON-condition 

An attempt to allocate based storage within an area that 
contains insufficient free storage for the allocation pro
duces an AREA ON-condition. If no ON-unit appears in an 
ON statement for the AREA condition, the operating 
system issues a comment and raises the ERROR condition. 

When an ON-unit is specified and normal return occurs 
from the ON-unit, the ALLOCATE statement that raised 
the AREA condition is executed again. If the ON-unit has 
changed the value of a pointer qualifying (explicitly or 
implicitly) the reference to the inadequate area so that the 
pointer value specifies another area, the allocation is reat
tempted within the new area. Failure of the ON-unit to 
provide a larger area may place the program in an error 
loop. 

Linking A/locations of Based Storage in an Area 

Techniques for processing lists depend upon the ability to 
link collections of noncontiguous data items in any desired 
order by attached address elements. The PL/I structure 
organization provides a convenient way of attaching an 
address element to a data item. As an example, consider 
the declaration: 

DECLARE 
1 COMPONENT BASED(P), 
2 DATA CHARACTER(80), 
2 LINK POINTER; 

COMPONENT is a based structure that contains two ele
ments: DATA, which is a character string of 80 positions, 
and LINK, which is a pointer variable. Placing LINK and 
DATA in the same structure effectively attaches LINK to 
DATA. The diagram in Figure 1.1 illustrates this attach
ment. Rectangles represent storage for DATA and LINK, 
and the protruding arrow indicates that LINK is a pointer 
variable whose value points to another allocation of stor
age. 

DATA 

I LINKI ~ .. 
Figure 1.1. A data element with an attached pointer 

Based structure COMPONENT may be used to allocate 
and link storage throughout an area, as indicated in Figure 
1.2. The following statements show how such organization 
of storage may be performed. 

DECLARE 
AREAl AREA(lOOO), 
(AVAIL, TEMP, P) POINTER, 
1 COMPONENT BASED(P), 

2 DAT A CHARACTER(80), 
2 LINK POINTER; 

/* WHEN ALL STORAGE HAS BEEN ALLOCATED IN 
AREAl, SET LINK POINTER OF LAST COM
PONENT TO NULL AND GO TO LABEL NEXT. * / 

ON AREA 
BEGIN; P->LINK=NULL; GO TO NEXT; END; 

/*ALLOCATE FIRST COMPONENT IN AREAl AND 
ASSIGN THE COMPONENT ADDRESS TO 
POINTER AV AIL. * / 

ALLOCATE COMPONENT IN(AREAl) SET(P); AVAIL 
=P; 

/* CONTINUE ALLOCATING COMPONENTS IN 
AREAl UNTIL ALL STORAGE HAS BEEN ALLO
CATED. LINK EACH COMPONENT TO THE PRE
VIOUSLY ALLOCATED COMPONENT.*/ 

L: TEMP=P; 
ALLOCATE COMPONENT IN (AREAl) SET(P); 
TEMP->LINK = P; 
GOTOL; 

NEXT: 

Pointer AV AIL contains the address of the first allocation 
of COMPONENT in AREA 1, and the LINK pointer of 
each allocation contains the address of the next allocation. 
A null address is assigned to the LINK pointer of the last 
allocation. 

The organization shown in Figure 1.2 establishes 
AREAl as a pool of available storage components from 
which free storage may be obtained when needed. Pointer 
AV AIL provides access to the first storage component, and 
successive components are reached by proceeding through 
the LINK pointers of the components. Chaining storage 
components in this way forms a special type of data organ
ization called a list, which may be referred to by the name 
of the head pointer AV AIL. 

Figure 1.3 illustrates how the first two components 
linked to AV AIL may be removed from AV AIL and linked 
to another head pointer to form a second list called LIST 1. 
Similarly, when the components of LISTI are no longer 
needed, they can be relinked to AV AIL, where they be
come available to other lists. 

7 



AREA1 

AVAIL DATA LINK DATA LINK 

-"" i---- Q -.. 

DATA LINK DATA LINK 

~ ~ 

CJ 
DATA LINK DATA LINK 

4 ~ 

CJ 
DATA LINK DATA LINK 

~ ~ NULL 

Figure 1.2. Allocations of based storage linked by pointer variables 

AREA1 

LIST1 DATA LINK DATA LINK 

_.. 
~ NULL --.. 

AVAIL DATA LINK DATA LINK 

~ ~ 

Cl 
DATA LINK DATA LINK 

~ ~ Q 
DATA LINK DATA LINK 

4 ~ NULL 

Figure 1.3. Linking available storage components to another list 

8 



This type of storage manipulation permits the storage 
requirements of a list to vary during the course of program 
execution. A list need reserve only the storage it is actually 
using at any given moment; storage need not lie dormant 
within each list in anticipation of maximum storage re
quirements, as it often does in conventional array and 
structure organizations. As a result, the programmer is 
freed from having to know exactly how much storage each 
list will require. 

Linking storage by means of attached address elements 
can improve the execution time of a program by reducing 
the amount of data that must be moved. For example, if 
the components of a list are to be sorted on their data 
values, it is not necessary to change the physical positions 
of the data values in storage; their logical positions within 
the list can be changed by manipulating the attached ad
dress elements. Logically successive components need not 
occupy physically successive storage locations. Scattered 
components can be linked in any desired order. 

Head 

POINTER DATA POINTER 

~ --
Figure 1.4. Data list 

DATA LISTS 

The type of list organization illustrated in Figures 1.2 and 
1.3 is called a data list because it consists of linked data 
items. The lists in those illustrations possess a linear order
ing: each component except the first has one predecessor, 
and each component except the last has one successor. As 
Figure 1.4 shows, this type of list consists of a head and a 
body. The head is a pointer variable that identifies the list 
and contains the address of the first component in the list. 
The body is a sequence of list components, each of which 
contains a data item and a pointer variable. Except for the 
last pointer, which has a null address, the pointer in a 
component contains the address of the next component in 
the list. 

This type of list organization always requires a head and 
permits the body of a list to contain an arbitrary number 
of components, limited only by available storage. It is 
even possible for the body of a list to contain no com
ponents; in this case, the list is said to be null (see Figure 
1.5). 

Figures 1.4 and 1.5 do not show the area within which 
storage has been allocated for list components. These illus
trations emphasize the main parts of a list and deempha
size the environmental aspects of list organization. They 
also stress the close resemblance between this type of list 
and a character string or a one-dimensional array, the 
major difference being that successive components of a list 
need not occupy contiguous storage locations. 

Examples of subroutines used to allocate based 
variables throughout an area are provided in this manual. 

Body 

DATA POINTER DATA POINTER 

- NULL -

Head 

~ 
POINTER 

NULL 

Figure 1.5. Null list 

9 



Chapter 2: Simple Data Lists 

This chapter develops methods for organizing and manipu
lating simple data lists and shows how these methods may 
be used in list-processing applications. 

ORGANIZING SIMPLE DATA LISTS 

To avoid unnecessary complexity, this chapter uses a 
simple list organization in which each list component con
tains a single alphameric character for its data element. As 
an example, consider this illustration of a simple data list: 

Head 

POINTER DATA POINTER 
L1: -- A 

This list contains three characters: A,>, and O; each is a 
separate component of the list. The identifier Ll, attached 
to the head of the list by a colon, specifies the name of the 
head pointer and, therefore, serves as the name of the data 
list. 

Elimination of descriptive words from the elements of 
the list produces a more compact illustration: 

L1:~ 

Note that a diagonal rather than the keyword NULL in
dicates a null pointer. The following representation, there
fore, specifies that L2 is a null list: 

L2: lSJ 

Also observe that a list of one or more blank characters is 
not a null list, since a blank is an encodable machine char
acter even though it does not have a printable graphic. The 
following list, L3, contains two blank characters: 

L3:~ 

10 

--

Body 

DATA POINTER DATA POINTER 

> - 0 NULL -
Restricting the data element of each list component 

to a single character simplifies the task of developing and 
illustrating list-processing techniques. It also permits 
analogies to be developed between simple data lists and 
character strings. 

The above illustrations of data lists, however, are com
pletely arbitrary and do not form a necessary feature of 
PL/I. 

Chapter 3 discusses data lists with more complex organ
izations that require more elaborate illustrations. 

PROCESSING SIMPLE DATA LISTS 

All data lists, despite the variety of their possible applica
tions, undergo common basic operations, such as inserting, 
retrieving, and deleting list items. Because most operations 
performed on lists require several steps, which may be 
repeated many times during the course of program execu
tion, it is often more convenient and efficient to provide 
these operations in subroutine or function form rather 
than as independent sets of PL/I statements that must be 
duplicated throughout a program. The following discus
sions show how a collection of subroutines and functions 
can be designed to simplify many list-processing opera
tions. The routines cover five general categories: 

1. Creating a list of available storage components 
2. Manipulating the elements of list components 
3. Manipulating list components (not just their ele

ments) 
4. Manipulating sublists and lists 
5. Manipulating lists recursively 



A hierarchical approach is taken in the development of 
routines for each of these categories. Procedures con
cerned with the primitive aspects of storage allocation are 
programmed first and are used in turn to create higher 
level procedures. This approach limits the number of pro
cedures that deal with environmental factors and permits 
the complete collection of subroutines and functions to 
possess an application-oriented emphasis. 

The sequential organization of the routines is main
tained so that each routine uses only those list-processing 
procedures that have been developed earlier. No attempt is 
made at complete programming efficiency. Wherever pos
sible, programming methods have been chosen to simplify 
the presentation for the reader rather than to produce 
efficient code. 

Creating a List of Available Storage Components 

The amount of storage needed by a data list can vary 
during the course of program execution. As new data items 
are inserted into the list, additional storage is required, and 
when data items are deleted from the list, the associated 
storage becomes free. 

The list-processing techniques developed in this chapter 
assume that any storage not needed by a data list is re
served in a special list of available storage components. 
This special list serves as a storage pool, which initially 
contains all the storage used to form the components of 
other lists. 

As a data list grows, additional storage for the list is 
obtained from the list of available storage components. 
Similarly, when list components become free, their storage 
is returned to the list of available storage components. As a 
result, the same storage can be used by many different lists 
during the execution of a program. Sharing storage in this 
way reduces the amount of storage that might lie dormant 
within individual data lists in anticipation of maximum 
storage requirements for each list. 

The creation of a list of available storage components is 
performed in this chapter with the AREA_ OPEN subrou· 
tine, which is discussed next. 

AREA_ OPEN Subroutine 

Figures 2.IA, 2.IB, and 2.lC present the AREA_ OPEN 
subroutine, which requires two arguments: 

1. An area variable throughout which list components 
are allocated 

2. A pointer variable that serves as the head of the list 
of available storage components 

AREA_OPEN Subroutine 

Purpose 
To create a list of available storage components 

Reference 
AREA_OPEN(AREA, LIST) 

Entry-Name Declaration 
DECLARE AREA_OPEN ENTRY(AREA(*), 
POINTER); 

Meaning of Arguments 
AREA --the area variable that is to contain the list 

of available storage components 
LIST --the pointer variable that serves as the head 

of the list of available storage components 

Remarks 
Storage must have been allocated for the AREA 
argument before AREA_ OPEN is invoked. The 
LIST argument is assumed to be null upon entry 
to AREA_ OPEN. 

Other Programmer-Defined Procedures Required 
None 

Method 
Storage for list components is allocated with the 
following based structure: 

1 COMPONENT BASED(P), 
2 DATA CHARACTER(1). 
2 POINTER POINTER, 

Components are allocated throughout AREA until the 
AREA ON-condition occurs. 

The LIST argument contains the address of the first 
component. The POINTER element of each component 
contains the address of the next component. The 
POINTER element of the last component is null. 

Figure 2.lA. Description of the AREA OPEN subroutine for 
creating a list of available storage components 

11 



AREA_OPEN: 
PROCEDURE 

(AREA,LIST>; 
DECLARE 

AREA AREAl*l r 
(LIST, P, Tl POINTER, 
1 COMPONENT BASEO(Pl, 
2 DATA .CHARACTER( lit 
2 POINTER POINTER; 
I* WHEN ALL STORAGE HAS BEEN 
ALLOCATED IN AREA, SET POINTER OF 
LAST COMPONENT, IF ANY, TO NULL AND 
LEAVE SUBROUTINE. *I 
ON AREA 

BEGIN; 
IF 

END; 

P-.=NULL 
THEN 

P->POINTER = NULL; 
GO TO 

END_AREA_OPEN; 

I* ALLOCATE FIRST COMPONENT IN 
AREA, AND ASSIGN COMPONENT ADDRESS 
TO THE POINTER PARAMETER CALLED 
LIST. *I 
P = NULL; 
ALLOCATE COMPONENT IN(AREAI 
SEHPI; 
LIST = P; 
I* CONTINUE ALLOCATING COMPONENTS IN 
AREA UNTIL ALL STORAGE HAS BEEN 
ALLOCATED. LINK EACH COMPONENT 
TO THE PREVIOUSLY ALLOCATED 
COMPONENT. */ 

L: T P; 
ALLOCATE COMPONENT IN(AREAI SETIPI; 
T->POINTER = P; 

GO TO 
L; 

END_AREA_OPEN: 
END 

AREA_OPEN; 

Figure 2.lB. Creating a list of available storage components for 
data lists 

The area argument passed to AREA_ OPEN can be of 
any storage class and is not restricted to a particular size, 
but storage for the area must have been allocated before 
the subroutine is invoked. Although only one area is spec
ified in an invocation of AREA_ OPEN, several invocations 
of the subroutine can allow the list of available storage 
components to occupy more than one area. 

The AREA_ OPEN subroutine must be invoked at least 
once before another list-processing procedure is used; 
otherwise, no storage will be available for list formation. 
The sample procedures in this chapter use the identifier 
LIST as the head pointer of the data list being acted upon. 
The external identifier AV AIL is used as the head pointer 
of a list of storage components that can be inserted into 
the list named LIST. A list component in LIST that be
comes superfluous can be deleted from LIST and inserted 

12 

into AV AIL. As later procedures demonstrate, declaring 
AV AIL to be an external identifier avoids having to pass 
the name of the list of available storage components as an 
argument each time it is used by a subroutine or function. 

The AREA_ OPEN subroutine can be invoked to create 
a list of components named LIST and again to create a 
list of components named AV AIL: 

CALL AREA_ OPEN (AREAl ,LIST); 
CALL AREA_ OPEN (AREA2,AVAIL); 

Note that the allocation of a based variable into an area 
is optional; list components in scattered locations can be 
linked by their pointer elements. However, an area con
taining list components linked by offset variables can be 
moved about in main storage or transmitted to and from 
external storage. An offset variable is a storage address that 
is relative to the address of the beginning of an area. (See 
Introduction to the List Processing Facilities of PL/I, 
GF20-0015, for discussion and illustration of the use of 
offset variables in forming and transmitting relocatable 
data lists.) 

Manipulating the Elements of List Components 

All list-processing operations involve at least one of these 
items: 

1. Address of a list component 
2. Data element of a list component 
3. Pointer element of a list component 

The following discussions develOp subroutines and func
tions that: 

1. Obtain the address of a list component 
2. Assign values to the data and pointer elements of a 

list component 
3. Obtain the values of the data and pointer elements 

of a list component 

These procedures eliminate the syntactic details asso
ciated with PL/I pointer qualification and allow the pro
grammer to view and process data lists in an application
oriented manner. 

Obtaining the Address of a List Component 

Because a list component is formed by allocating a based 
variable, the address of the component must be obtained 
before it can be processed. The following discussions de
velop two function procedures that obtain the address of a 
specified list component: 

1. ADDRESS_ N, which obtains the address of the nth 
component in a data list 

2. ADDRESS_NEXT, which obtains the address of the 
list component that follows a given component 



w 

Subroutine 
Reference 

AREA_ OPEN (STORAGE AREA, AVAIL) 

AVAIL: 

Figure 2.lC. An example of a reference to the AREA_ OPEN subroutine 

Result 

STORAGE AREA 



ADDRESS _N Function Figures 2.2A and 2.2B present the 
ADDRESS_N function procedure. This function requires 
two arguments: 

1. A pointer variable that forms the head of the data 
list in which the specified component appears 

2. An integer that specifies the sequential list position 
(first, second, third, etc.) of the component whose address 
is desired 

The function returns the address of the specified com
ponent. 

ADDRESS_N Function 

Purpose 
To obtain the address of the nth component of a 
data list 

Reference 
ADDRESS_N(LIST, N) 

Entry-Name Declaration 
DECLARE ADDRESS_N ENTRY(POINTER, 
FIXED DECIMAL(5)) 

RETURNS(POINTER); 

Meaning of Arguments 
LIST --the pointer variable that is the head of the 

list to be examined 
N --a fixed-point decimal integer value that 

specifies the component whose address is to 
be obtained; N has a maximum size of five 
digits 

Remarks 
A null pointer value is returned when LIST is null, 
N is less than one, or N is greater than the number 
of components in LIST. 

Other Programmer-Defined Procedures Required 
None 

Method 
The function proceeds through LIST until the 
(n-1 )th component is reached. The pointer element 
of this component contains the address of the nth 
component. 

Figure 2.2A. Description of the ADDRESS_ N function for 
obtaining the address of the nth component of 
a data list 

14 

AOORESS_N: 
PROCEOUREILIST, NI 
RETURNS (POINTFRI; 

DECLARE 
ILIST 1 ADDRESS! POINTER, 
IN 1 11 FIXED DECIMALl51t 
1 COMPONENT BASEOIADDRFSSlt 
2 DATA CHARACTERlll, 
2 POINTER POINTER; 

IF 

DO 

(LIST• NULLlllN<ll 
THEN 

RETURN INULLI; 
ADDRESS • LIST; 

I • 1 BY 11 
IF 

THEN 

IADDRESS->POINTER • NULLI & 
11 .. •NI 

RETURN I NULL I; 
IF 

ENO; 
ENO 

I • N 
THEN 

RETURNIADDRESSI; 
ADDRESS = ADDRESS->POINTER; 

ADDRESS_N; 

Figure 2.2B. Obtaining the address of the nth component of a data 
list 

ADDRESS NEXT Function When list components are 
processed ~sequence, it is inefficient to use the AD
DRESS_ N function to obtain successive list components, 
because the function always searches for a component 
from the beginning of the list. Figures 2.3A and 2.3B 
present the ADDRESS_NEXT function, which causes the 
address of one list component to obtain the address of the 
next component in sequence. ADDRESS_NEXT obtains 
the address of the next component directly from the 
pointer element of the component that is specified by the 
address argument in an invocation of the function. 

Assigning Values to the Elements of List Components 

When data items are inserted into or deleted from a data 
list, the data and pointer elements of list components must 
be changed. The following discussions develop two subrou
tines that perform such changes: 

1. SET_DATA, which assigns a value to the data ele· 
ment of a list component 

2. SET _POINTER, which assigns a value to the pointer 
element of a list component 

SET _DATA Subroutine Figures 2.4A and 2.4B present 
the SET_DATA subroutine, which requires two argu
ments: 

1. Address of a data list component 
2. Character value to be assigned to the data element of 

the list component 



ADDRESS NEXT Function 

Purpose 
To obtain the address of the next component in a 
data list 

Reference 
ADDRESS_NEXT(ADDRESS) 

Entry-Name Declaration 
DECLARE ADDRESS_NEXT ENTRY(POINTER) 

RETURNS(POINTER); 

Meaning of Argument 
ADDRESS --a pointer value that specifies the 

address of a data list component 

Remarks 
The function assumes that ADDRESS represents a 
valid address of a data list component. If ADDRESS 
is null, a null pointer value is returned. 

Other Programmer-Defined Procedures Required 
None 

Method 
The function returns the address contained in the 
pointer element of the component specified by 
ADDRESS. 

Figure 2.3A. Description of the ADDRESS NEXT function 
for obtaining the address of the next component 
in a data list 

ADDRESS_NEXT: 

DECLARE 

IF 

THEN 

END 

PROCEDURE IADDRESSI 
RETURNS (POINTER); 

ADDRESS POINTER, 
1 COMPONENT BASEDIAODRESSI, 
2 DATA CHARACTER(l), 
2 POINTER POINTER; 

ADDRESS = NULL 

RETURN INULLI; 
RETURNIADDRESS->POINTERI; 

ADDRESS_NEXT; 

Figure 2.3B. Obtaining the address of the next component in a 
data list 

SET DATA Subroutine 

Purpose 
To assign a value to the data element of a data list 
component 

Reference 
SET _DATA(ADDRESS, D) 

Entry-Name Declaration 
DECLARE SET _DATA ENTRY(POINTER, 
CHARACTER(1)); 

Meaning of Arguments 
ADDRESS --a pointer that specifies the address of a 

data list component 
D --the value to be assigned to the data 

element of the list component 

Remarks 
The subroutine assumes that ADDRESS represents 
a valid address of a data list component. If ADDRESS 
is null, no assignment is made. 

Other Programmer-Defined Procedures Required 

None 

Method 
The value of D is converted, if necessary, to a 
character string. The leftmost character of the string 
is assigned to the data element of the specified 
element. 

Figure 2.4A. Description of the SET DATA subroutine for 
assigning a value to the data element of a 
component in a data list 

SEt_OATA: 

DECLARE 

IF 

THEN 

END 

PROCEDUREIADDRESS,OI; 

ADDRESS POINTER, 
D CHARACTERll I 1 

1 COMPONENT BASEDIAODRESSJ, 
2 DATA CHARACTERlll, 
2 POINTER POINTER; 

ADDRESS "" NULL 

RETURN; 
ADDRESS->DATA • D; 

SET_DATA; 

Figure 2.4B. Assigning a value to the data element of a component 
in a data list 

15 



Because the subroutine uses the address of a list com· 
ponent, the character value is assigned directly to the data 
element, and no search is made for the appropriate com
ponent from the beginning of the associated list. Later 
discussions present other methods for inserting data items 
into lists. 

SET POINTER Subroutine Figures 2.SA and 2.SB present 
the SET POINTER subroutine. This procedure is similar 
to SET DATA (Figures 2.4A and 2.4B) except that it 
assigns ;n address value to the pointer element of a speci
fied list component. 

SET _POINTER Subroutine 

Purpose 
To assign a value to the pointer element of a data 
list component 

Reference 
SET _POINTER(ADDRESS, P) 

Entry-Name Declaration 
DECLARE SET _POINTER ENTRY(POINTER, 
POINTER); 

Meaning of Arguments 
ADDRESS --a pointer value that specifies the 

address of a data list component 
P --the value to be assigned to the pointer 

element of the list component 

Remarks 
The subroutine assumes that ADDRESS represents a 
valid address of a data list component. If ADDRESS 
is null, no assignment is made. 

Other Programmer-Defined Procedures Required 
None 

Method 
The pointer value represented by P is assigned to the 
pointer element of the specified component. 

Figure 2.SA. Description of the SET_ POINTER subroutine for 
assigning a value to the pointer element of a 
component in a data list 

16 

SET_POINTERI 
PROCEOURECADDRESS,P11 

DECLARE 

IF 

THEN 

END 

P POINTER, 
ADDRESS POINTER, 
1 COMPONENT BASEDCADDRESS1, 
2 DATA CHARACTERC11t 
2 POINTER POINTERI 

ADDRESS • NULL 

RETURN; 
ADDRESS->POINTER • P; 

SET_POINTER; 

Figure 2.SB. Assigning a value to the pointer element of a 
component in a data list 

Obt:aining the Values of Elements in List Components 

Many list-processing operations examine the values of the 
data and pointer elements in list components. The follow
ing discussions develop two function procedures that ob
tain these values: 

1. GET_DATA, which obtains the value of the data 
element in a data list component 

2. GET_ POINTER, which obtains the value of the 
pointer element in a data list component 

GET DATA Function Figures 2.6A and 2.6B present the 
GET - DATA function, which uses the address of a list 
com~nent as its argument. The function returns the char
acter value of the data element in the specified list com
ponent. 

GET POINTER Function Figures 2.7 A and 2.7B present 
the GET POINTER function. This procedure is similar to 
GET DATA (Figures 2.6A and 2.6B) except that it ob
tains the value of the pointer element in a specified list 
component. 

Note that GET POINTER obtains the same value as 
ADDRESS_NEXT(Figures 2.3A and 2.3B). The reason 
for having two different names for the same function is to 
provide an application-oriented emphasis in later pro
cedures. When the pointer value in a list component is 
treated as the address of the next component, it is conven
ient to think in terms of the identifier ADDRESS_ NEXT. 
On other occasions, when the pointer value is used for 
chaining purposes and the emphasis is not on the next list 
component, the identifier GET_POINTER conveys a more 
accurate description of the intended effect. In either case, 
the two functions are interchangeable, since they produce 
the same result. 



GET DATA Function 

Purpose 
To obtain the value of the data element in a data 
list component 

Reference 
GET _DATA(ADDRESS) 

Entry-Name Declaration 
DECLARE GET _DATA ENTRY(POINTER) 

RETURNS(CHARACTER(1)); 

Meaning of Argument 
ADDRESS --a pointer value that specifies the address 

of a data list component 

Remarks 
The function assumes that ADDRESS represents a 
valid address of a data list component. If ADDRESS 
is null, a blank character is returned. 

Other Programmer-Defined Procedures Required 
None 

Method 
The function returns the value of the data element in 
the specified component. 

The value is a single alphameric character. 

Figure 2.6A. Description of the GET DATA function for 
obtaining the value of the data element of a 
component in a data list 

r,fT_fJATA: 
PROCFDURf fADDRESSt 
RFTURNS (CHARACTERClll; 

DFCLARF 

END 

ADDRFSS POINTER, 
1 COMPONENT BASEDCADORESSt, 
2 DATA CHARACTERflt. 
2 POINTER POINTER; 

IF 
ADDRESS • NULL 

THEN 
RETURN(' •t; 
RETURN(ADDRESS->DATAI; 

GET_OATA; 

Figure 2.6B. Obtaining the value of the data element in a 
component of a data list 

GET _POINTER Function 

Purpose 

To obtain the value of the pointer element in a data 
list component 

Reference 
GET _POINTER(ADDRESS) 

Entry-Name Declaration 

DECLARE GET _POINTER ENTRY(POINTER) 
RETURNS(POINTER); 

Meaning of Argument 

ADDRESS --a pointer value that specifies the address 
of a data list component 

Remarks 
The function assumes that ADDRESS represents a 
valid address of a data list component. If ADDRESS 
is null, a null pointer value is returned. 

Other Programmer-Defined Procedures Required 
None 

Method 

The function returns the value of the pointer element 
in the specified component. 

Figure 2. 7 A. Description of the GET_ POINTER function for 
obtaining the value of the pointer element of a 
component in a data list 

GET_POINTER: 
PROCEDURE (ADORESSJ 
RETURNS (POINTERJ; 

DECLARE 

END 

IF 

ADDRESS POINTER, 
1 COMPONENT BASEO(AODRESSJ• 
2 DATA CHARACTER(lJ. 
2 POINTER POINTER; 

ADDRESS "" NULL 
THEN 

RETURN (NULLJ; 
RETURN(AOORESS->POINTERJ; 

GET_POINTER; 

Figure 2. 7B. Obtaining the value of the pointer element in a 
component of a data list 

17 



Examples 

Figure 2.8 contains examples of references to the 
ADDRESS_N, ADDRESS_NEXT, SET_DATA, and 
GET_DATA procedures. GET_POINTER and 
SET_POINTER are not illustrated, because 
GET_POINTER is equivalent to ADDRESS_NEXT, and 
later discussions present a more appropriate opportunity 
for demonstrating the effect of SET_ POINTER. 

Subroutine and Function 
Reference 

SET DATA(ADDRESS_N(L1,4),'A') 

SET _DATA(ADDRESS_NEXT(ADDRESS_N(L2,2)),'X') 

L1: 

Data List 
(before reference) 

L2:~ 

L3:~~ 

L1: 

Data List 
(after reference) 

L2:~ 

SET _DATA(ADDRESS_N (L3,2),GET _DATA(ADDRESS _ N(L3,3))) L3: 

Figure 2.8. Examples of references to the ADDRESS_ N, ADDRESS _NEXT, SET_DATA, and GET_DATA procedures 

Note how the functions ADDRESS_N, 
ADDRESS_NEXT, and GET_DATA appear as arguments 
of other procedures. Nesting function references in this 
manner is called function composition and is permitted to 
an arbitrary depth. Function composition forms an es
sential feature of the .list-processing techniques developed 
in this manual; it produces compact references and reduces 
the need for intermediate variables in which to save func
tion values. 

Manipulating List Components 

The procedures in the previous section deal with list com
ponents individually; they manipulate the parts (elements) 
of list components but do not associate components with 
one another. The following discussions develop procedures 
for manipulating collections of list components. They also 
suppress much of the environmental detail underlying the 
structure of list organization and show how simple data 
lists may be viewed as sequences of data items rather than 
as sequences of storage components. As a result, the ap
plication-oriented aspects of list organization receive 
greater emphasis. 

18 

The operations performed by the procedures in this 
section fall into eight general categories: 

1. Obtaining the size of a data list 
2. Inserting data items into data lists 
3. Getting the values of data items in data lists 
4. Deleting data items from data lists 
5. Removing data items from data lists (and at the same 

time getting the values of the items) 
6. Replacing data items in data lists 
7. Searching for data items in data lists 
8. Interchanging data items in data lists 

Most of the procedures in these categories are constructed 
from previously developed procedures. This method of 
construction shows how the procedures may be organized 
into an integrated collection. 

Obtaining the Size of a Data List 

A simple but common operation performed on data lists is 
counting the number of data items in a list. The following 
discussions develop two function procedures for obtaining 
the size of a list: 

1. SIZE, which uses the ADDRESS_NEXT subroutine 
(presented earlier in Figure 2.3B) 

2. SIZE 1, which does not use other list-processing 
procedures 

The reason for presenting two versions of the same 
function is to show how a procedure may be treated either 
as a primitive routine that does not use other procedures or 
as a higher level routine that is constructed from one or 
more previously developed procedures. 



SIZE Function Figures 2.9A, 2.9B, and 2.9C present the 
SIZE function. This function uses a pointer argument that 
forms the head of the list whose size is desired. The func
tion returns a count of the data items in the specified list. 

SIZE Function 

Purpose 
To obtain the number of data items in a data list 

Reference 
SIZE(LIST) 

Entry-Name Declaration 
DECLARE SIZE ENTRY(POINTER) 

RETURNS(FIXED DECIMAL(5)); 

Meaning of Argument 
LIST --the pointer variable that is the head of the 

list to be examined 

Remarks 

The maximum size is 99999. If LIST is null, a zero 
size is returned. 

Other Programmer-Defined Procedures Required 
ADDRESS_NEXT 

Method 
The function proceeds through LIST, counting 
the number of list components until a null pointer 
element is encountered. 

Figure 2.9 A. Description of the SIZE function for obtaining the 
number of data items in a data list 

Data List 

L1: 

L2: ~ 
L3: ~ 
L4: fSJ 

SIZE: 
PROCEDURE CLISTl 
RETURNS CFIXED DECIMALC5ll; 

DECLARE 

DO 

CLIST,ADDRESSl POINTER, 
N FIXED DECIMALC51; 
ADDRESS • LI ST: 

N • 0 BY 1; 
IF 

END; 
ENO 

ADDRESS • NULL 
THEN 

RETURNCNl; 
ELSE 

ADDRESS • ADDRESS_NEXTCADORESSl; 

SIZE; 

Figure 2.9B. Obtaining the size of a data list 

The ADDRESS_NEXT procedure is used to proceed 
through a list until a null pointer element is detected. 

SIZEJ Function Figures 2.9D and 2.9E present the SIZE I 
function, which produces the same result as the SIZE 
function (Figures 2.9A through 2.9C). The main difference 
between the two functions is that SIZEl uses no other 
list-processing procedures; it is constructed as a primitive 
routine that uses pointer qualification of a based variable 
rather than a function reference to proceed through a 
specified list. 

Inserting Data Items into Data Lists 

So far, list-processing procedures have assumed the exist
ence of data lists and have not shown how list components 
are attached to specified lists. When a data item is inserted 
into a list, a storage component must be obtained from the 
list of available storage components (AV AIL) and linked 
to the list that is to contain the inserted item. Without this 
storage component, no storage would be available for the 
new item. 

Function Function 
Reference Value 

SIZE(L1) 5 

SIZE(L2) 3 

SIZE(L3) 

SIZE(L4l 0 

Figure 2.9C. Examples of references to the SIZE function 

19 



SIZE1 Function 

Purpose 
To obtain the number of data items in a data list 

Reference 
SIZE1 (LIST) 

Entry-Name Declaration 
DECLARE SIZE1 ENTRY(POINTER) 

RETURNS(FIXED DECIMAL(5)); 

Meaning of Argument 
LIST --the pointer variable that is the head of the list 

to be examined 

Remarks 
The maximum size is 99999. If LIST is null, a zero 
size is returned. 

Other Programmer-Defined Procedures Required 
None 

Method 
The function proceeds through LIST, counting the 
number of list components until a null pointer 
element is encountered. 

Figure 2.9D. Description of the alternate function SIZEl for 
obtaining the number of data items in a data list 

StzEl: 
PROCEDURE CLISH 
RETURNS lflXED DECIMllt51); 

DECLARE 

DO 

LIST POINTER, 
ADDRESS POINTER, 
N FIXED DECIMlll5), 
l COMPONENT BlSEDllODRESS), 
2 DATA CHARlCTERll), 
2 POINTER POINTER; 
ADDRESS • LIST; 

N • 0 BY l; 
IF 

ENO; 
ENO 

ADDRESS • NULL 
THEN 

RElURNlN); 
ELSE 

ADDRESS • ADDRESS->POINTER; 

SlZEl; 

Figure 2.9E. An alternative function for obtaining the size of a 
data list 

20 

The folloWing discussions develop four subroutine pro
cedures that insert data items into specified list positions: 

1. INSERT_ND, which inserts a data item into the nth 
position of a data list 

2. INSERT_FD, which inserts a data item into the first 
position of a data list 

3. INSERT _LD, which inserts a data item into the last 
position of a data list 

4. INSERT_NDl, which produces the same results as 
INSERT_ ND but does not use other list-processing pro
cedures 

INSERT_ND Subroutine Figures 2.lOA and 2.lOB pres
ent the INSERT_ ND subroutine procedure, and examples 
of the procedure appear in Figure 2.lOG. INSERT __ ND 
uses three arguments: a data list, a position within the list, 
and a data item to be inserted at that position in the list. 

Insertion of a data item into a list increases the size of 
the list by one and at the same time decreases the size of 
the list of available storage components (AVAIL) by one. 
The size of AV AIL can also be zero when INSERT_ ND is 
invoked; in this case, no data is inserted into the specified 
list, but a message is printed, and control is returned to the 
point of invocation. In a more elaborate system of pro
cedures, attempted use of AV AIL when it is null can trans
fer control to an error procedure where special action can 
be taken, such as allocating additional storage for AV AIL. 

INSERT _FD Subroutine Figures 2.lOC and 2.lOD pres
ent the INSERT_FD subroutine procedure, which inserts 
a data item into the first position of a data list. This pro
cedure is similar to INSERT_ND (Figures 2.lOA and 
2.lOB) but does not require an argument for the insertion 
position, since the first position is always implied. 

Although INSERT _FD is not essential when 
INSERT_ND is available, it is convenient to use when 
insertions frequently occur at the front of lists. 

Figure 2.lOG contains examples of the procedure. 

JNSERT _LD Subroutine Figures 2.lOE and 2.lOF present 
the INSERT_LD subroutine procedure, which inserts a 
data item into the last position of a data list. This pro
cedure is similar to INSERT_FD (Figure 2.lOC and 
2.lOD) but deals with the last rather than the first position 
of a list. 

Figure 2.lOG contains examples of the procedure. 

INSERT_NDJ Subroutine Figures 2.lOH and 2.101 pres
ent the INSERT_NDl procedure, which produces the 
same results as INSERT_ND (Figures 2.lOA and 2.lOB). 
The main difference between the two procedures is that 
INSERT_NDl does not use other list-processing pro
cedures. 



INSERT ND Subroutine 

Purpose 
To insert a data item into the nth position of a 
data list 

Reference 
INSERT _ND(LIST, N, D) 

Entry-Name Declaration 
DECLAREINSERT_ND 

ENTRY(POINTER, FIXED DECIMAL(5), 
CHARACTER(1)); 

Meaning of Arguments 
LIST --the pointer variable that is the head of the 

list to be processed 
N --the position in the list where the data item 

is to be inserted 
D --the data item to be inserted 

Remarks 
When the list is null or N is less than two, the data 
item is inserted into the first position of the list. 
When N exceeds the size of the list, the data item 
is inserted into the last position. N cannot have a 
value greater than 99999. 

Other Programmer-Defined Procedures Required 
ADDRESS_N, SET_DATA, SET _POINTER, and 
SIZE 

Method 
This subroutine does not destroy data previously in 
the list. When an item is inserted, the size of the list 
increases by one. The item previously in the nth 
position becomes the (n+1 )th item. The value of D 
is converted, if necessary, to a character string, and 
the leftmost character of the string is inserted into 
the list. 

Figure 2.lOA. Description of the INSERT ND subroutine for 
inserting a data item into the nth position of a 
data list 

INSERT_ND: 

DECLARE 

IF 

PROCEDURECLIST,N,DI; 

N FIXED DECIMALC5), 
D CHARACTER C 11, 
(P,QI POINTER, 
(LIST, ADDRESSl, ADORESS2, AVAIL 
EXTERNAL! POINTER; 
I• IF LIST OF AVAILABLE STORAGE 
COMPONENTS IS EMPTY THEN PRINT 
MESSAGE ANO RETURN. *I 

AVAIL a NULL 
THEN 

DO; 
PUT 

ENO; 

LIST( 1 LIST OF AVAILABLE STORAGE IS 
EMPTY 1 1; 
RETURN; 

I• ASSIGN DATA ITEM TO FIRST 
COMPONENT IN LIST OF AVAILABLE 
STORAGE. *I 
CALL SET_DATA(AVAIL, DI; 
I• IF LIST IS NULL OR N<2, INSERT 
FIRST COMPONENT OF AVAIL INTO FIRST 
POSITION OF LIST AND RETURN. •I 

IF 
(LIST= NULLllCN<21 

THEN 
DO; 

ENO; 
IF 

AOORESSl = LIST; LIST = AVAIL; 
AVAIL = AOORESS_NCAVAIL,21; 
CALL SET_POINTERCLIST,ADDRESSll; 
RETURN; 

N > SIZE( LISTI 
THEN 

DO; 

00 

END; 

ENO; 

P = LIST; 

WHILE(P ~= NULLI; 
Q = P; P ~ Q->POINTER; 

P, Q->POINTER = AVAIL; 
AVAIL = ADORESS_NCAVAIL, 21; 
P •> POINTER = NULL; 
RETURN; 

I* OTHERWISE OBTAIN THE ADDRESS OF 
THE N-TH COMPONENT OF LIST. *I 
AOORESS2 = AOORESS_NlLIST,NI; 
AOORESSl = AOORESS_NCLIST,N-11; 
I• INSERT FIRST COMPONENT OF AVAIL 
INTO THE N-TH POSITION OF LIST. •I 
CALL SET_POINTERCADDRESSl, AVAILl; 
AOORESSl = AVAIL; 
AVAIL s AOORESS_NCAVAIL,21; 
CALL SET_POINTERCADORESS1,ADORESS21; 

ENO 
INSERT_NO; 

Figure 2.lOB. Inserting a data item into the nth position of a data 
list 

21 



INSERT _FD Subroutine 

Purpose 
To insert a data item into the first position of a. 
data list 

Reference 
INSERT _FD(LIST, D) 

Entry-Name Declaration 
DECLAREINSERT_FD 

ENTRY(POINTER, CHARACTER(1)); 

Meaning of Arguments 
LIST --the pointer variable that is the head of the 

list to be processed 
D --the data item to be inserted 

Remarks 
When the list is null, the data item is inserted into 
the first position of the list. 

Other Programmer-Defined Procedures Required 
INSERT_ND 

Method 
This subroutine uses the INSERT _ND procedure 
with N equal to one: 

CALL INSERT _ND(LIST, 1, D); 

Figure 2.lOC. Description of the INSERT FD subroutine for 
inserting a data item into thef1rst position ofa 
data list 

JNSERT_FD: 
PROCEDURECLIST1DI; 

DECLARE 
LIST POINTER, 
D CHARACTER Cl I; 
CALL INSERT_NDCLIST1l1DI; 

END 
INC:~RT FO: 

Figure 2.1 OD. Inserting a data item into the first position of a 
data list 

22 

INSERT _LO Subroutine 

Purpose 
To insert a data item into the last position of a data 
list 

Reference 
INSERT _LD(LIST, D) 

Entry-Name Declaration 
OECLAREINSERT_LD 

ENTRY(POINTER, CHARACTER(1)); 

Meaning of Arguments 
LIST --the pointer variable that is the head of the 

I ist to be processed 
D --the data item to be inserted 

Remarks 
When the list is null, the data item is inserted into 
the first position of the list. 

Other Programmer-Defined Procedures Required 
INSERT_ND 

Method 
This subroutine uses the INSERT _ND procedure 
with N equal to 99999, which forces the item to be 
inserted into the last position of the list: 

CALL INSERT _ND(LIST, 99999, D); 

Figure 2.lOE. Description of the INSERT LD subroutine for 
inserting a data item into the last position of a 
data list 

JNSERT_LD: 
PROCEDUREILIST,OI; 

DECLARE 
LI ST POINTER, 
D CHARACTERCIJ; 
CALL INSERT_ND(LJST,99999,0I; 

END 
INSERT_LD; 

Figure 2.lOF. Inserting a data item into the last position of a data 
list 



Data List Data List 
(before reference) Subroutine Reference (after reference) 

L1: ~ INSERT _ND(L1 ,1 .'A') L1: ~ 

L1: ~ INSERT_ND(L1 ,2,'A') L1: ~ 
L1: ~ INSERT _ND(L1 ,3,'A') L1: ~ 
L1: ~ INSERT_ ND(L1 ,9,'A') L1: ~ 
L1: ~0SJ INSERT_ ND(L 1,-3,'A') L1: ~ 
L1: ~ INSERT FD(L1,'A') L1: ~ -

L1: ~ INSERT _LD(L1 .'A') L1: ~ 
L2: lSl INSERT _ND(L2,1 .'6') L2: ~ 
L2: [SJ INSERT _ND(L2,2.'6') L2: ~ 

L2: lSl INSERT _FD(L2,'*') I L2: D-.c:::rsJ 
L2: rsJ INSERT LD(L2,'*') L2: D-.c:::rsJ -

Figure 2.lOG. Examples of references to the INSERT_ND, INSERT_FD, and INSERT_LD subroutines 

23 



INSERT _ND1 Subroutine 

Purpose 
To insert a data item into the nth position of a 
data list 

Reference 
INSERT _ND1 (LIST, N, D) 

Entry-Name Declaration 
DECLAREINSERT_ND1 

ENTRY(POINTER, FIXED DECIMAL(5), 
CHARACTER(1)); 

Meaning of Arguments 
LIST --the pointer variable that is the head of the 

list to be processed 
N --the position in the list where the data item 

is to be inserted 
D --the data item to be inserted 

Remarks 
When the list is null or N is less than two, the data 
item is inserted into the first position of the list. 
When N exceeds the size of the list, the data item 
is inserted into the last position. N cannot have a 
value greater than 99999. 

Other Programmer-Defined Procedures Required 
None 

Method 
This subroutine does not destroy data previously 
in the list. When an item is inserted, the size of the 
list increases by one. The item previously in the 
nth position becomes the (n+1 )th item. The value 
of D is converted, if necessary, to a character 
string, and the leftmost character of the string is 
inserted into the list. 

Figure 2.lOH. Description of the alternative subroutine 
INSERT NDl 

24 

JNSERT_NDI: 
PROCFDURFfLIST,N,OJ; 

DECLARE 

IF 

fN.II FIXED DECIMALf51• 
D CHARACTER I 11, 
(LIST, ADDRESSlt AVAIL EXTFRNALJ 
POINTER, 
AOORESS2 POINTER, 
1 COMPONENT BASEOfAOORfSS21t 
2 DATA CHARACTERfllt 
2 POINTER POINTER; 
I* IF LIST OF AVAIL2 STORAGE 
COMPONENTS IS EMPTY THEN PRINT 
MESSAGE ANO RETURN. *I 

AVAIL "' NULL 
THEN 

DO; 
PUT 

END; 

IF 

LISTf 1 AVAIL STORAGE IS EMPTY•J; 
RETURN; 

I* ASSIGN DATA ITEM TO FIRST 
COMPONENT IN LIST OF AVAIL 
STORAGE. •I 
AVAIL->OATA • O; 
I* IF LIST IS NULL OR N<2, INSERT 
FIRST COMPONENT OF AVAIL INTO 
FIRST POSITION OF LIST ANO 
RETURN. *I 

(LIST= NULLJlfN<21 
THEN 

DO; 

ENO; 

00 

ENO; 

END 

AOORESSl = LIST; LIST = AVAIL; 
AVAIL = AVAIL->POINTER; 
LIST->POINTER = AOORESSl; 
RETURN; 

I• OTHERWISE. OBTAIN THE ADDRESS OF 
THE N-TH COMPONENT OF LIST. *I 
AOORESS2 = LIST; I • 2; 

WHILEffAOORESS2->POINTER~•NULLI g 
fl<Nll; 
AOORESS2 = AOORESS2->POINTER; 
I = I + l; 

I* INSERT FIRST COMPONENT OF AVAIL 
INTO THE N-TH POSITION OF LIST. •I 
ADDRESSl = ADDRESS2->POINTER; 
ADDRESS2->POINTER = AVAIL; 
AVAIL = AVAIL->POINTER; 
AOORESS2 = AOORESS2->POINTER; 
AOORESS2->POINTER = AOORESSl; 

INSERT_NDl; 

Figure 2.101. An alternative subroutine for inserting a data item 
into the nth position of a data list 



Getting the Values of Data Items in Data Lists 

Once a data item has been inserted into a list, a common 
operation is to retrieve the item from the list. The follow
ing discussions develop four function procedures for ob
taining the values of data items at specified list positions: 

1. GET_ND, which gets the value of the data item in 
the nth position of a data list 

2. GET_FD, which gets the value of the data item in 
the first position of a data list 

3. GET_LD, which gets the value of the data item in 
the last position of a data list 

4. GET_NDl, which produces the same results as 
GET_ND but does not use other list-processing pro
cedures 

GET _ND Function Figures 2.llA and 2.llB present the 
GET_ ND function procedure, which gets the value of the 
data item in the nth position of a data list. Examples of 
references to the procedure appear in Figure 2.11 G. 

GET_ND uses two arguments: a data list and the posi
tion of a data item in the list. The data item remains in the 
list after the value of the item is returned by GET_ ND. 

GET_ FD Function Figures 2.11 C and 2.1 lD present the 
GET_ FD function procedure, which gets the value of the 
data item in the first position of a data list. Figure 2.11 G 
contains examples of the procedure. 

GET_FD is similar to GET_ND (Figures 2.llA and 
2.11 B) but does not require an argument to specify the 
item position, because the first position is always implied. 

GET _LD Function Figures 2.1lEand2.1 lF present the 
GET_ LD function procedure, which gets the value of the 
data item in the last position of a data list. Examples of 
the procedure appear in Figure 2.llG. 

GET_ LD is similar to GET_ FD (Figures 2.11 C and 
2.1 lD) but deals with the last rather than the first position 
of a list. 

GET _NDJ Function Figures 2.1 lH and 2.111 present the 
GET_NDl function procedure, which produces the same 
results as GET_ND (Figure 2.1 lA and 2.1 lB). The main 
difference between the two procedures is that GET ND 1 
does not use other list-processing procedures. -

GET _ND Function 

Purpose 
To get the value of the data item in the nth 
position of a data list 

Reference 
GET _ND(LIST, N) 

Entry-Name Declaration 
DECLARE GET _ND ENTRY(POINTER, 
FIXED DECIMAL(5)) 

RETURNS(CHARACTER(1 )); 

Meaning of Arguments 
LIST --the pointer variable that is the head of the 

list to be processed 
N --the position of the data item whose value 

is to be obtained 

Remarks 
A value of N less than one or greater than the number 
of data items in the list causes a blank character to 
be returned. 

Other Programmer-Defined Procedures Required 
ADDRESS_N and GET _DATA 

Method 
The following reference obtains the value of the 
nth item: 

GET _DATA(ADDRESS_N(LIST, N)) 

The nth item remains in the list after its value is 
returned. 

Figure 2.1 lA. Description of the GET ND function for 
getting the data item in the nth position of 
a data list 

25 



GET_ND: 
PROCEDURE (LIST, N) 
RETURNS CCHARACTERCIJ); 

DECLARE 
LIST POINTER, 
N FIXED DECIMALC5); 
RETURNCGET_DATACADDRESS_NCLISt,N>>>; 

END 
GET_ND; 

Figure 2.1 lB. Getting the data item in the nth position of a data 
list 

GET _FD Function 

Purpose 
To get the value of the data item in the first 
position of a data list 

Reference 
GET _FD(LIST) 

Entry-Name Declaration 
DECLARE GET _FD ENTRY(POINTER) 

RETURNS(CHARACTER(1 )); 

Meaning of Argument 
LIST -·the pointer variable that is the head of the 

I ist to be processed 

Remarks 
A null value for LIST causes a blank character to be 
returned. 

Other Programmer-Defined Procedures Required 
GET_DATA 

Method 
The following reference obtains the value of the 
first item: 

GET _DATA(LIST) 

The first item remains in the list after its value is 
returned. 

Figure 2.11 C. Description of the GET FD function for getting 
the data item in the first position of a data list 

26 

GET....;FD: 
PROCEDURE CllSTl 
RETURNS CCHARACTERCll>; 

DECLARE 

END 

l l ST POINTER; 
RETURNCGET_DATACLISTl); 

CET_FD; 

Figure 2.1 lD. Getting the data item in the first position of a data 
list 

GET _LD Function 

Purpose 
To get the value of the data item in the last position 
of a data list 

Reference 
GET _LD(LIST) 

Entry-Name Declaration 
DECLARE GET _LD ENTRY(POINTER) 

RETURNS(CHARACTER(1 )); 

Meaning of Argument 
LIST --the pointer variable that is the head of the 

list to be processed 

Remarks 
A null value for LIST causes a blank character to be 
returned. 

Other Programmer-Defined Procedures Required 
GET _DATA and ADDRESS_NEXT 

Method· 
The ADDRESS_NEXT function .is used to progress 
through the list to the last component. The 
GET _DATA function then obtains the data value in 
the last component. The last item remains in the list 
after its value is returned. 

Figure 2.1 lE. Description of the GET LD function for getting 
the data item in the last position of a data list 



L1: 

L 1: 

L1: 

L1: 

L1: 

L1: 

L1: 

L2: LSJ 
L2: [SJ 

L2: [SJ 

L2: LSJ 

GET_LD1 
PROCEDURE CLISTt 
RETURNS CCHARACTERCltt; 

DECLARE 

DO 

END; 

END 

CLIST, ADDRESSl, ADDRESS2t POINTER; 
ADORESSlt AODRESS2 • LIST; 

WHILECAOORESS2~•NULLI; 
AOORESSl • AOORESS2; 
AOORESS2 • AOORESS_NEXTCADDRESS2t; 

RETURNCGET_DATACAOORESSltt; 

GET_LO; 

Figure 2.1 lF. Getting the data item in the last position of a data 
list 

Function 
Data List Reference 

GET ND(L1,1) -

GET ND(L1,5) -

GET ND(L1,3) 
-

GET ND(L1,0) -

GET_ND(L1,9) 

GET FD(L1) -

GET LD(L1) 

GET ~ND(L2,1) 

GET ND(L2,0) -

GEi FD(L2) -

GET LD(L2) -

Figure 2.llG. Examples of references to the GET_ND, GET_FD, and GET_LD functions 

Function 
Value 

'A' 

'·' 

'B' 

·b· 

·b· 

'A' 

'·' 
' 

·b· 

·b· 

·b· 

·b· 

27 



GET _ND1 Function 

Purpose 
To get the value of the data item in the nth position 
of a data list 

Reference 
GET _ND1 (LIST, N) 

Entry-Name Declaration 
DECLARE GET _ND1 ENTRY(POINTER, 
FIXED DECIMAL(5)) 

RETURNS(CHARACTER(1 )); 

Meaning of Arguments 
LIST --the pointer variable that is the head of the 

list to be processed 
N --the position of the data item whose value 

is to be obtained 

Remarks 
A value of N less than one or greater than the number 
of data items in the list causes a blank character to be 
returned. 

Other Programmer-Defined Procedures Required 
None 

Method 
The nth data item remains in the list after its value is 
returned. 

Figure 2.1 lH. Description of the alternative function GET NDl 
for getting the data item in the nth position of a 
data list 

28 

GET_NDl: 
PROCEDURE !LIST, NI 
RETURNS ICHARACTER!lll; 

DECLARE 

IF 

LIST POINTER, 
ADDRESS POINTER, 
!N,II FIXED DECIMALl51, 
l COMPONENT BASEDIADDRESSlt 
2 DATA CHARACTER!llt 
2 POINTER POINTER; 

ILIST = NULLlllN<ll 
THEN 

DO 

IF 

THEN 

IF 

ENO; 
END 

THEN 

RETURNl 1 1 1; 
ADDRESS = LIST; 

I • l BY l; 

IADDRESS->POINTER = NULL) & 
I I-.=N l 

RETURN I I I,; 

I • N 

RETURNIADDRESS->DATAt; 
ADDRESS = ADDRESS->POINTER; 

GET_NDl; 

Figure 2.111. An alternative method for obtaining the value of the 
nth data item in a data list 

Deleting Data Items from Data Lists 

After a data item has been inserted into a list, it may be 
necessary to delete the item from the list. The following 
discussions develop four subroutine procedures for delet
ing data items from specified list positions: 

1. DELETE_ND, which deletes the data item in the 
nth position of a data list 

2. DELETE_FD, which deletes the data item in the 
first position of a data list 

3. DELETE_LD, which deletes the data item in the 
last position of a data list 

4. DELETE_NDl, which is equivalent to 
DELETE_ND but does not use other list-processing pro
cedures 

These procedures return the deleted storage to the list of 
available storage components, AV AIL. 

DELETE_ND Subroutine Figures 2.12A and 2.12B pres
ent the DELETE_ND subroutine procedure, which deletes 
the data item in the nth position of a data list. Examples 
of the procedure appear in Figure 2.12G. 



DELETE_ND Subroutine 

Purpose 
To delete the data item in the nth position of a data 
list 

Reference 
DELETE_ND(LIST, N) 

Entry-Name Declaration 
DECLARE DELETE_ND ENTRY(POINTER, 
FIXED DECIMAL(5)); 

Meaning of Arguments 
LIST --the pointer variable that is the head of the list 

to be processed 
N --the position of the data item to be deleted 

Remarks 
No data item is deleted when the value of N is less 
than one or greater than the number of items in the 
list. 

Other Programmer-Defined Procedures Required 
ADDRESS_N and SET _POINTER 

Method 
The nth component of LIST is deleted from LIST 
and inserted in the list of available storage 
components, A VAi L. The size of LIST is decreased 
by one, and that of A VAIL is increased by t:>ne. 

Figure 2.12A. Description of the DELETE ND subroutine for 
deleting the data item in the nth position of a 
dat<!- list 

DELETE_ND: 
PROCEDUREtLIST1NJ; 

DECLARE 
N FIXED DECIMAL(5), 
CLIST 1ADDRESS1,ADDRESS2,ADDRESS3, 
AVAIL EXTERNAL) POINTER; 
I* IF LIST IS EMPTY OR N IS LESS 
THAN 11 THEN RETURN. •I 

IF 
(LIST• NULLJICN<ll 

THEN 
RETURN; 
I* DELETE FIRST COMPONENT IF N 
EQUALS 1. •I 

IF 
N • 1 

THEN 
DO; . 

END; 

ADDRESS2 • LI ST; 
LIST• ADDRESS_NCLIST,2J; 

GO TO 
L; 

I• OBTAIN N-TH COMPONENT. •I 
ADDRESS2 • AOORESS_NtLIST,NI; 

IF 
ADDRESS2 • NULL 

THEN 
RETURN; 
ADDRESSl • ADORESS_NCLIST,N-111 
AODRESS3 • ADDRESS_NtLIST,N+l); 
I• DELETE N-TH COMPONENT. •I 
CALL SET_POINTERCADDRESS1,ADDRESS31; 
I• INSERT DELETED COMPONENT INTO 
LIST OF AVAILABLE STORAGE 
COMPONENTS. •I 

LI 
ADORESSl • AVAIL; 
AVAIL • ACORESS2; 
CALL SET_POINTERCAVAIL, ADDRESS11; 

END 
DELETE_ND; 

Figure 2.12B. Deleting the data item in the nth position of a data 
list 

DELETE_ND uses two arguments: a data list and the 
position of a data item in the list. The size of the list de
creases by one after deletion occurs, and the list of avail
able storage components, AV AIL, acquires the storage 
component used by the deleted item. 

29 



DELETE_ FD Subroutine Figures 2 .l 2C and 2.I 2D pres
ent the DELETE_FD subroutine procedure, which deletes 
the data item in the first position of a data list. Figures 
2.12G contains examples of the procedure. 

DELETE_FO is similar to DELETE_ND (Figures 
2.12A and 2.l 2B) but does not use an argument to specify 
the item position, since the frrst position is aiways implied. 

DELETE FD Subroutine 

Purpose 
To delete the data item in the first position of a 
data list 

Reference 
DELETE_FD(LIST) 

Entry-Name Declaration 
DECLARE DELETE_FD ENTRY(POINTER); 

Meaning of Argument 
LIST --the pointer variable that is the head of the list 

to be processed 

Remarks 
No data item is deleted when LIST is null. 

Other Programmer-Defined Procedures Required 
DELETE_ND 

Method 
The following reference is used: 

DE LETE_ND(LIST, 1) 

Figure 2.12C. Description of the DELETE FD subroutine for 
deleting the data item in the first position of a 
data list 

OELETE_FDI 
PROCEOURECLISTt; 

DECLARE . 
LIST POINTER; 
CALL DELETE_NDfLl$T,ltJ 

ENO 
OELETE_FDI 

Figure 2.12D. Deleting the data item in the f"irst position of a data 
list 

30 

DELETE_LD St{broutine Figures 2.12E and 2.12F pres
ent the DELETE_LD subroutine procedure, which deletes 
the data item in the last position of a data list. This pro
cedure is similar to DELETE_FD (Figures 2.12C and 
2.120) but deals with the last rather than the first position 
of a list. 

Figure 2. l 2G contains an example of reference to the 
procedure. 

DELETE_LD Subroutine 

Purp<>se 
To delete the data item in the last position of a data 
list 

Reference 
DELETE_LD(LIST) 

Entry-Name Declaration 
DECLARE DELETE_LD ENTRY(POINTER); 

Meaning of Argument 
LIS1 -·the pointer variable that is the head of the list 

to be processed 

~emarks 
No data item is deleted when LIST is null. 

Other Programmer-Defined Procedures Required 
DELETE_.ND and SIZE 

Method 
The following reference is used: 

DELETE_ND(LIST, SIZE(LIST)) 

Figure 2.12E. Description of the DELETE LD subroutine for 
deleting the data item in the last position of a 
data list 

DELETE_LOI 
PROCEDURE fLISTt; 

DECLARE 
LIST POINTER; 
CALL DELETE_NDfLIST, SIZEfLISTll; 

END 
OE!LETE_LD; 

Figure 2.12F. Deleting the data item in the last position of a data 
list 



L1. 

Ll: 

L 1: 

L 1: 

U: 

Datil List 
(be forn reference) 

---[)·~ 
-- _ _J-

~ [J-l{IT] 

~ 1 0 

~[ill -.o=o-~ 

1 0 ~ 
1 0 1-1 -~$ _r:;-n -'~ L1:~ 

L1: []-t{!LJ -~-·{~]SJ 

L2: [S;J 

---

I L2: LS] 

I L2: ~ 
L~~--

Data List 
Subroutine Reference (after reference) 

DELETE ND(L1,1) L1: ~ -

DELETE - ND(L1,2) L1: ~ 
DELETE ND(L1,3) L 1: ~ -

DELETE - ND(L1 ,5) L1: ~ 
DELETE ND(L1,-2) L 1: ~ -

DELETE FD(L1) L1: ~ -

DELETE LD(L1) L1: ~ -

DELETE - ND(L2,1) L2: [SJ 

DELETE - ND(L2,0) L2: L5J 
DELETE - FD(L2) L2: [SJ 

DELETE - LD(L2) L2: rsJ 
Figure 2.12G. Examples of references to the DELETE ND, DELETE_ FD, and DELETE_ LD subroutines 

31 



DELETE_NDJ Subroutine Figures 2.12H -and 2.121 pres
ent the DELETE_NDI subroutine procedure, which pro
duces the same results as DELETE_ND (Figures 2.12A 
and 2.12B). The main difference between the two pro
cedures is that DELETE_NDI does not use other list
procesSing procedures. 

DELETE_ND1 Subroutine 

Purpose 
To delete the data item in the nth position of a 
data list 

Reference 
DELETE_ND1 (LIST, N) 

Entry-Name Declaration 
DECLARE DELETE_ND1 ENTRY(POINTER, 
FIXED DECIMAL(5)); 

Meaning of Arguments 
LIST --the pointer variable that is the head of the 

list to be processed 
N -·the position of the data item to be deleted 

Remarks 
No data item is deleted when the value of N is less 
than one or greater than the number of items in the 
list. 

Other Programmer-Defined Procedures Required 
None 

Method 
The nth component of LIST is deleted from LIST 
and inserted in the list of available storage 
components, A VAi L. The size of LIST is decreased 
by one, and size of AVAIL is increased by one. 

Figure 2.12H. Description of the alternative subroutine 
DELETE NDl for deleting the data item in 
the nth position of a data list 

32 

DELETE_NDl: 
PROCEDUREILIST,NI; 

DECLARE 
(Nell FIXED DECIMALl51e 
CLIST,ADDRESSl,AVAIL EXTERNALI 
POINTER, 
ADDRESS2 POINTER, 
1 COMPONENT BASEDIAOORESS21t 
2 DATA CHARACTERfllt 
2 POINTER POINTER; 
I* IF LIST IS EMPTY OR N IS LESS 
THAN 1, THEN RETURN. •I 

IF 
ILIST • NULLlllN<ll 

THEN 
RETURN; 
I* DELE~E FIRST COMPONENT IF N 
EQUALS l. *I 
ADDRESS2 • LIST; 

IF 
N • 1 

THEN 
DO; 

END; 

END; 
IF 

LIST • ADDRESS2->POINTER; 
GO TO 

L; 

I• OBTAIN N-TH COMPONENT. •I 
ADDRESS!•• LIST; I• 1; 
DO WHILE\ICADDRESS2->POINTE .. •NULLI 
&II<Nll; I 
ADDRESS! 1• ADDRESS2; 
ADDRESS2 • ADORESS2->POINTER; 
I • I + 1; 

CADDRESS2->POINTER • NULLI & 
I I-.•NI 

THEN 
RETURN; 

END 

I* DELETE N-TH COMPONENT. •/ 
ADDRESSl->POINTER • 
ADORESS2->POINTER; 
I• INSERT DELETED COMPONENT INTO 
LIST OF AVAILABLE STORAGE 
COMPONENTS. •I 

AOORESSl • AVAIL; 
AVAIL • ADDRESS2; 
ADDRESS2->POINTER • ADORESSl; 

DEL ETE_ND l; 

Figure 2.121. An alternative subroutine for deleting the data item 
in the nth position of a data list 



Removing Data Items from Data Lists 

A frequent combination of operations on a list involves 
getting the value of a data item and then deleting the item 
from the list. This combination is referred to as removing a 
data item from a list and may be implemented as a single 
function procedure. The following discussions develop 
three functions for removing data items from specified list 
positions: 

1. REMOVE_ND, which gets and deletes the data item 
in the nth position of a data list 

2. REMOVE_FD, which gets and deletes the data item 
in the first position of a data list 

3. REMOVE_LD, which gets and deletes the data item 
in the last position of a data list 

REMOVE_ND Function Figures 2.13A and 2.13B pres
ent the REMOVE_ND function procedure, which gets and 
deletes the data item in the nth position of a data list. 
Examples of the procedure appear in Figure 2.l 3G. 

REMOVE ND Function 

Purpose 
To get and delete the data item in the nth position 
of a data list 

Reference 
REMOVE ND(LIST, N) 

Entry-Name Declaration 
DECLARE REMOVE ND ENTRY(POINTER, 
FIXED DECIMAL(5)) 

RETURNS(CHARACTER(1)); 

Meaning of Arguments 
LIST ·-the pointer variable that is the head of the 

list to be processed 
N --the position of the data item to be removed 

Remarks 
When the value of N is less than one or greater than 
the number of data items in the list, no data item 
is deleted from the list, and a blank character is 
returned. 

Other Programmer-Defined Procedures Required 
GET ND and DELETE ND 

Method 
This function combines the operations of the 
GET _ND and DELETE_ND procedures. 

Figure 2. l 3A. Description of the REMOVE_ ND function for 
removing the data item in the nth position of a 
data list 

REMOVE_NOa 

DECLARE 

END 

PROCEDURE CLIST, NI 
RETURNS CCHARACTERll)); 

LI ST POINTER, 
N FIXED DECIMALl51, 
D CHARACTERCU; 
0 • GET_NDCLIST,NI; 
CALL DELETE_NDILIST,N); 
RETURNID); 

REMOVE_ND; 

Figure 2.13B. Removing the data item in the nth position of a 
data list 

REMOVE_ND uses two arguments: a data list and the 
position of a data item in the list. The size of the list de
creases by one after the item is deleted and its value re
turned to the point of invocation. The list of available 
storage components, AV AIL, acquires the storage com
ponent used by the removed item. 

REMOVE FD Function Figures 2.13C and 2.13D present 
the REMOVE_FD function procedure, which gets and 
deletes the data item in the first position of a data list. 
Figure 2.13G contains examples of the procedure. 

REMOVE_FD is similar to REMOVE_ND (Figures 
2.13A and 2.13B) but does not require an argument to 
specify the item position, since the first position is always 
implied. 

REMOVE FD Function 

Purpose 

To get and delete the data item in the first position 
of a data list 

Reference 
REMOVE FD(LIST) 

Entry-Name Declaration 

DECLARE REMOVE FD ENTRY(POINTER) 
RETURNS(CHARACTER(1)); 

Meaning of Argument 
LIST --the pointer variable that is the head of the 

list to be processed 

Remarks 
When LIST is null, no data item is deleted from the 
list, and a blank character is returned. 

Other Programmer-Defined Procedures Required 
REMOVE ND 

Figure 2.13C. Description of the REMOVE_FD function for 
removing the data item in the first position of a 
data list 

33 



REMOVE_FD: 
PROCEDURE (LI ST> 
RETURNS CCHARACTER(l)); 

DECLARE 

ENO 

LIST POINTER; 
RETURNCREMOVE_NDCLIST,111; 

REMOVE_FO; 

Figure 2.13D. Removing the data item in the first position of a 
data list 

REMOVE_LD Function Figures 2.13E and 2.13F present 
the REMOVE_LD function procedure, which gets and 
deletes the data item in the last position of a data list. This 
procedure is similar to REMOVE_FD (Figures 2.13C and 
2.13D) but deals with the last rather that the first position 
of a list. 

Examples of the procedure appear in Figure 2.13G. 

Replacing Data Items in Dara Lists 

Replacing a data item in a data list involves changing an 
item already in the list. The following discussions develop 
three subroutine procedures for replacing data items in 
specified list positions: 

I. REPLACE_ND, which replaces the data item in the 
nth position of a data list 

2. REPLACE_FD, which replaces the data item in the 
first position of a data list 

3. REPLACE_LD, which replaces the data item in the 
last position of a data list 

REPLACE_ND Subroutine Figures 2.14A and 2.14B 
present the REPLACE_ ND subroutine procedure, which 
replaces the data item in the nth position of a data list. 
Examples of the procedure appear in Figure 2.14G. 

REPLACE_ ND uses three arguments: a data list, the 
position of the data item to be replaced, and the new data 
item. The procedure combines a deletion and an insertion 
involving the nth position in the list. 

REPLACE_FD Subroutine Figures 2.14C and 2.14D 
present the REPLACE_FD subroutine procedure, which 
replaces the data item in the first position of a data list. 
Figure 2. l 4G contains examples of the procedure. 

34 

REMOVE LD Function 

Purpose 
To get and delete the data item in the last position 
of a data I ist 

Reference 
REMOVE LD(LIST) 

Entry-Name Declaration 
DECLARE REMOVE LO ENTRY(POINTER) 

RETURNS(CHARACTER(1 )); 

Meaning of Argument 
LIST --the pointer variable that is the head of the 

list to be processed 

Remarks 
When LIST is null, no data item is deleted from the 
list, and a blank character is returned. 

Other Programmer-Defined Procedures Required 
REMOVE ND and SIZE 

Method 
The following reference is used: 

REMOVE_ND(LIST, SIZE(LIST)) 

Figure 2.13E. Description of the REMOVE LD function for 
removing the data item in the-last position of a 
data list 

REMOVE_LD: 
PROCEDURE (LIST> 
RETURNS CCHARACTERCll); 

DECLARE 

END 

LIST POINTER; 
RETURNCREMOVE_NDCLIST,SIZE(LISTlll; 

REMOVE_LD; 

Figure 2.13F. Removing the data item in the last position of a 
data list 



w 
VI 

Data List Function Function Data List 
(before reference) Reference Value (after reference) 

L1: ~ REMOVE_ND(L1,1) '*' L1: ~ 
L1: ~ REMOVE_ ND(L 1,2) '$' L1: ~ 
L1: ~ REMOVE_FD(L1) '*' L1: ~ 
L1: ~ REMOVE - LD(L1) '2' L1: ~ 
L1: ~ REMOVE_ND(L1,5) ·t)' L 1: ~ 

L2: [SJ REMOVE_LD(L2) 'b' L2: ISi 
Figure 2.13G. Examples of references to the REMOVE_ ND, REMOVE_ FD, and REMOVE~ LD functions 



REPLACE ND Subroutine 

Purpose 
To replace the data item in the nth position of a 
data list 

Reference 
REPLACE ND(LIST, N, D) 

Entry-Name Declaration 
DECLARE REPLACE ND 

ENTRY(POINTER, FIXED DECIMAL(5). 
CHARACTER(1)); 

Meaning of Arguments 
LIST --the pointer variable that is the head of the 

list to be processed 
N --the position of the data item to be replaced 
D --the data item that replaces the nth data item 

Remarks 
When N is less than one, the value of D becomes the 
first data item in the list. When N exceeds the size of 
the list, the value of D becomes the last item in the 
list. In both of these cases, the size of the list 
increases by one. In other cases, the size of the list 
remains unchanged. 

Other Programmer-Defined Procedures Required 
DELETE NDandlNSERT ND 

Method 
The nth data item in the list is deleted. Then the 
value of D is inserted into the nth position of the 
list. 

Figure 2.14A. Description of the REPLACE ND subroutine for 
replacing the data item in the nth position of a 
data list 

REPLACE_ND:PROCEDURE!LIST, N, DI; 
DECLARE 

END 

1 COMPONENT BASEO(LISTI, 
2 DATA CHARACTER(ll, 
2 POINTER POINTER, 
N FIXED DECIMAL(51r 
D CHARACTER(ll, 
LIST POINTER; 
CALL DELETE_ND(LIST,NI; 
CALL INSERT_ND!LIST,N,DI; 

REPLACE_ND; 

Figure 2.l4B. Replacing the data item in the nth position of a 
data list 

36 

REPLACE FD Subroutine 

Purpose 
To replace the data item in the first position of a 
data list 

Reference 
REPLACE FD(LIST, D) 

Entry-Name Declaration 
DECLARE REPLACE FD 

ENTRY(POINTER, CHARACTER(1)}; 

Meaning of Arguments 
LIST --the pointer variable that is the head of the 

list to be processed 
D --the data item that replaces the first data item 

Remarks 
When LIST is null, D is inserted into the list. 

Other Programmer-Defined Procedures Required 
REPLACE ND 

Method 
The following reference is used: 

REPLACE ND(LIST, 1, D) 

Figure 2.14C. Description of the REPLACE_ FD subroutine for 
replacing the data item in the first position of a 
data list 

REPLACE_FOs 
PROCEDUREILIST,011 

DECLARE 
LI ST POINTER, 
D CHARACTER( 11 I 
CALL REPLACE_NOCLIST,l,OI; 

END 
REPLACE_FD; 

Figure 2.14D. Replacing the data item in the first position of a 
data list 



REPLACE_FD is similar to REPLACE_ND (Figures 
2.14A and 2.14B) but does not require an argument for 
the item position, because the first position is always im
plied. 

REPLACE_LD Subroutine Figures 2.14E and 2.14F 
present the REPLACE _LD subroutine procedure, which 
replaces the data item in the last position of a data list. 
This procedure is similar to REPLACE_FD (Figures 2.14C 
and 2. l 4D) but deals with the last rather than the first 
position of a list. 

Examples of the procedure appear in Figure 2.14G. 

Searching for Data Items in Data Lists 

Table lookup operations are possible on data lists by per
forming serial searches through the lists for specified items. 
The following discussion develops the FIND _D function 
procedure, which performs such a search. 

HND _D Function Figures 2.15A,2.15B, and 2.15C pres
ent the FIND _D function procedure, which searches a list 
for the first occurrence of a specified data item. FIND D 
uses two arguments: the data list to be searched and the 
data item to be searched for in the list. The value returned 
by the function is the position where the item first occurs 
in the list. A zero value indicates that the list does not 
contain the data item. 

Examples of the function procedure appear in Figure 
2.15C. 

REPLACE LD Subroutine 

Purpose 
To replace the data item in the last position of a 
data list 

Reference 
REPLACE LD(LIST, D) 

Entry·Name Declaration 
DECLARE REPLACE LD 

ENTRY(POINTER, CHARACTER(1 )); 

Meaning of Arguments 
LIST --the pointer variable that is the head of the 

list to be processed 
D --the data item that replaces the last data item 

Remarks 
When LIST is null, D is inserted into the list. 

Other Programmer-Defined Procedures Required 
REPLACE ND and SIZE 

Method 
The following reference is used: 

REPLACE_ND(LIST, SIZE(LIST), D) 

Figure 2.14E. Description of the REPLACE LD subroutine 
for replacing the data item in the last position 
of a data list 

REPLACE_LDS 
PROCEDURECLIST,Dt; 

DECLARE 
LIST POINTER, 
D CHARACTERClt; 
CALL REPLACE_NDCLIST,SIZECLISTt,Ot; 

END 
REPLACE_LD; 

Figure 2.14F. Replacing the data item in the last position of a data 
list 

37 



Data List Data List 
(before reference I Subroutine Reference (after reference I 

L1: ~ REPLACE_ND(L1 ,1,'$'1 L1: ~ 
L1: ~ REPLACE_ND(L1,3,'b') L1: ~ 
L2: ~ REPLACE_ ND(L2,0,'*') L2: ~ 
L2: ~ REPLACE ND(L2,3,'*') L2: ~ -

L3: [SJ REPLACE_FD(L3,'A') L3: ~ 
L3: lS] REPLACE - LD(L3,'A') L3: ~ 

Figure 2.14G. Examples of references to the REPLACE_ND, REPLACE_FD, and REPLACE_LD subroutines 

FIND D Function 

Purpose 
To find the position of the first occurrence of a 
specified data item in a data list 

Reference 
FIND_D(LIST, D) 

Entry-Name Declaration 
DECLARE FIND_D ENTRY(POINTER, 
CHARACTER(1)) 

RETURNS(FIXED DECIMAL(5)); 

Meaning of Arguments 
LIST --the pointer variable that is the head of the 

list to be searched 
D --the data item that is to be searched for in 

the list 

Remarks 
When the list does not contain D, the function 
returns a zero value. 

Other Programmer-Defined Procedures Required 
GET _DATA and ADDRESS_NEXT 

Method 
The ADDRESS_NEXT function obtains successive 
addresses of list components. The GET _DATA 
function obtains the value of the data element in 
successive list components. 

Figure 2.lSA. Description of the FIND D function for finding 
the position of a data item in a data list 

38 

FIND_D: 

DECLARE 

DO 

IF 

PROCEDURE °CLIST, DI 
RETURNS CFIXED DECIMALC511; 

CLIST, ADDRESSI POINTER, 
D CHARACTERCllt 
I FIXED DECIMALC51; 
ADDRESS • LIST; 
I • O; 

WHILECADDRESS~•NULLI; 
(•(+1; 

D • GET_DATACADDRESSI 
THEN 

RETURN( I); 
ADDRESS • AODRESS_NEXTCADDRESSJ; 

END; 
RETURNCOI; 

END 
FIND_D; 

Figure 2.lSB. Finding the position of a data item in a data list 



Data List 

L 1: 

L1: 

L1: 

L2: rs;] 

Function 
Reference 

FIND_D(L1,'$') 

FIND D(L1,'.') 

FIND D(L1,'*') 

Function 
Value 

3 

0 

FIND D(L2,'$') 0 

Figure 2.15C. Examples of references to the FIND_ D function 

Interchanging Data Items in Data Lists 

Reordering data items in a list is a common list-processing 
operation. The following discussion develops the SWAP 
subroutine procedure, which interchanges the data items at 
two specified positions in a list. 

SWAP Subroutine Figures 2.16A, 2.16B, and 2.16C pres
ent the SW AP subroutine procedure, which interchanges 
the positions of two data items in a list. The procedure 
uses three arguments: a data list, the position of one item, 
and the position of a second item. If an argument specifies 
a nonexistent list position, no interchange occurs. 

Examples of the subroutine procedure appear in Figure 
2.16C. 

Manipulating Sublists and Lists 

Most of the foregoing procedures apply to single data 
items and not to collections of items in a list. For example, 
the DELETE_ND subroutine (Figures 2.12A and 2.12B) 
deletes only one data item from a list. If all items are to be 
deleted, DELETE_ND must be invoked repeatedly until 
the list becomes null. 

The following discussions develop procedures for ma
nipulating entire lists or portions of lists called sublists. 
The operations performed by these procedures fall into 
twelve general categories: 

1. Inserting sublists and lists into data lists 
2. Deleting sublists and lists from data lists 
3. Assigning sublists and lists to data lists 
4. Linking data lists 
5. Splitting data lists 
6. Catenating data lists 
7. Searching data lists for sublists 
8. Testing data lists for equality 
9. Comparing data lists (greater than, equal to, or 

less than) 
10. Reversing data lists 
11. Sorting data lists 
12. Converting character strings to and from data lists 

SWAP Subroutine 

Procedure 
To interchange the positions of the two data items 
in a data list 

Reference 
SWAP(LIST, N1, N2) 

Entry-Name Declaration 
DECLARE SWAP 

ENTRY(POINTER, FIXED DECIMAL(5), 
FIXED DECIMAL(5)); 

Meaning of Arguments 
LIST --the pointer variable that is the head of the 

list to be processed 
N1 --the position of a data item in the list 
N2 --the position of another data item in the list 

Remarks 
N1 does not have to be less than N2. The list 
remains unchanged, however, when N1 or N2 
specifies a position outside the list or N 1 equals N2. 

Other Programmer-Defined Procedures Required 
ADDRESS_N, GET _DATA, and SET DATA 

Method 
ADDRESS_N obtains the addresses of the list 
components that contain the specified data items. 
GET _DATA obtains the values of the data items. 
SET _DATA assigns each data item to the list 
component of the other. 

Figure 2.16A. Description of the SWAP subroutine for 
interchanging data items in a data list 

39 



More compact programs can be written with these types 
of procedures. They eliminate the additional statements 
needed to control the repeated invocation of procedures 
that process single data items. 

$WAP: 
PRDCEDURECLIST, Nlt N21; 

DECLARE 

Inserting Sublists and Lists into Data Lists 

Data lists are frequently created or extended by copyirtg 
all or part of another list. The following discussions de
velop two procedures for obtaining data items from one 
list and inserting them into another list: 

1. INSERT_SUB, which inserts a portion of one list 
into another list 

2. INSERT_LIST, which inserts a complete list of 
items into another list 

Both procedures obtain storage from the list of available 
storage components, AV AIL. 

END 

IF 

D CHARACTERCllt 
CNl1 N2) FIXED DECIMALC511 
CLIST, ADDRESSlt AOORESS21 POINTER; 
ADDRESSl • AODRESS_N CLIST,Nll; 

ADDRESSl • NULL 
THEN 

RETURN; 
ADDRESS2 • AODRESS_NCLIST,N21; 

IF 
ADDRESS2 • NULL 

THEN 
RETURN; 
D • GET_DATA CADORESSll; 
CALL SET_DATA (AODRESSl, 
GET_DATACADDRESS211; 
CALL SET-DATACADDRESS2, DI; 

SWAP; 

Figure 2.168. Interchanging data items in a data list 

Data List Subroutine Data List 
(before ·reference) Reference (after reference I 

L1: SWAP(L1,1,4) L1: 

L1: SWAP(L 1,4, 1) L1: 

L1: SWAP(L1,2,31 L1: 

L1: SWAP(L1,1,1) L1: 

L1: SWAP(L1,0,1) L1: ~~ 
L1: SWAP(L1,1,5) L1: 

L2: ISJ SWAP(L2,1,1) L2: !SJ 
Figure 2.16C. Examples of references to the SWAP subroutine 

40 



INSERT _SUB Subroutine Figures 2.17A and 2.17B pres
ent the INSERT_SUB subroutine procedure, which inserts 
a portion of the data items in one list into another list. 
Examples of the procedure appear in Figure 2.17E. 

INSERT _SUB Subroutine 

Purpose 
To insert a sublist into a list 

Reference 
INSERT _SUB(LIST1, N 1, LIST2, N2, L) 

Entry-Name Declaration 
DECLARE INSERT_SUB 

ENTRY(POINTER, FIXED DECIMAL(5), 
POINTER, FIXED DECIMAL(5), 
FIXED DECIMAL(5)); 

Meaning of Arguments 
LIST1 ---the list into which the sublist is to be 

inserted 
N1 ---the position in LIST1 at which the sublist 

is to be inserted 
LIST2 ---the list that contains the sublist 
N2 ---the position in LIST2 at which the sublist 

begins 
L ---the number of data items in the sublist 

Remarks 
If N 1 is less than one, the sublist is inserted at the 
front of LIST1. If N 1 exceeds the size of LIST1, 
the sublist is inserted at the end of LIST1. If L 
exceeds the size of LIST2, the sublist is extended with 
blank characters to give it a size of L; however, 
LIST2 is not changed. When N2 is less than one, 
the sublist contains 1-N2 leading blanks followed by 
the first (N2+L-1) characters of LIST2. When 
(N2+L-1) is greater than the size of LIST2, the 
sublist contains the last (SIZE (LIST2)-N2+1) 
characters of LIST2 followed by 
(L-(SIZE(LIST2)-N2+1)) blank characters. In all 
cases, the sublist contains L data items, and LIST2 
is not changed. 

Other Programmer-Defined Procedures Required 
INSERT ND and GET _ND 

Method 
GET ND obtains each sublist data item from 
LIST2, and INSERT _ND inserts each sublist data 
item into LIST1. 

Figure 2.17 A. Description of the INSERT_ SUB subroutine 
for inserting a sublist into a list 

INSERT_SUBI 
PROCEDURECllSTl1Nl1llST2,N21lll 

DECLARE 

IF 

lllSTl1LlST2l POINTE•, 
CN,Nl1N2 1l,Il FIXED DECIMAll5\; 

Nl<l 
THEN 

N • l; 
ELSE 

00 

END; 
ENO 

N • Nl; 

1 • 0 TO l-1; 
CAll INSERT_NDlllSTl, N + t, 
GET_NOlllST2, N2 + Ill; 

INSERT_SUB; 

Figure 2.1 7B. Inserting a sublist into a list 

INSERT _LIST Subroutine 

Purpose 
To insert a list into another list 

Reference 
INSERT _LIST(LIST1, N, LIST2) 

Entry-Name Declaration 
DECLARE INSERT _LIST 

ENTRY(POINTER, FIXED DECIMAL(5), 
POINTER); 

Meaning of Arguments 
UST1 --the list into which the second list is to be 

inserted 
N --the position in LIST1 at which the list is 

to be inserted 
LIST2 --the list to be inserted into LIST1 

Remarks 
If N is less than one, LIST2 is inserted at the front 
of LIST1. If N is greater than the size of LIST1, 
LIST2 is inserted at the end of LIST1. 

Other Programmer-Defined Procedures Required 
INSERT SUB and SIZE 

Method 
The following reference is used: 

INSERT SUB(LIST1, N, LIST2, 1, SIZE(LIST2)) 

Figure 2.17C. Description of the INSERT_ LIST subroutine for 
inserting a list into another list 

41 



INSERT_SUB uses five arguments: two data lists, the 
insertion position in the first list, the retrieval position in 
the second list, and the number of items to be inserted. 

The size of the first list increases by the number of 
items inserted. The size of the second list remains un
changed. 

INSERT_ LIST Subroutine Figures 2.l 7C and 2.170 pres
ent the INSERT_LIST subroutine procedure, which in
serts all the data items in one list into another list. Figure 
2.l 7E contains an illustration of the procedure. 

L1: 

INSUT_LISTI 
'ROCEDURECLISTlt Nt LISTZll 

DECLARE 

END 

CLISTlt LISTZI 'OINTERt 
N FIXED DECIMALC511 
CALL INSERT_SUBCLISTlt Nt LISTZ, lt 
SIZECLISTZlll 

INSERT_LISTI 

Figure 2.170. Inserting a list into another list 

Data List 
(before reference) 

Subroutine Data List 
Reference (after reference) 

INSERT_SUB(L1,2,L2,1,2) L1: 

L2:~ 

INSERT_SUB(L2,2,L1,1,2) L1: 

L2: 

INSERT_SUB(L3,1,L1,2,2) L1: 

L3:~ 

INSERT _LIST(L2,3,L1) L1: 

L2: 

Figure 2.17E. Examples of references to the INSERT_ SUB and INSERT_ LIST subroutines 

42 



INSERT_LIST is similar to INSERT_SUB (Figures 
2.17 A and 2.17B) except that an entire list is inserted. As 
a result of this difference, INSERT_ LIST requires only 
three arguments: two lists and the insertion position in the 
first list. 

Deleting Sublists and Lists from Data Lists 

The following discussions develop two subroutine pro
cedures for deleting all or some of the items in a data list: 

1. DELETE _SUB, which deletes a portion of a list 
2. DELETE_LIST, which deletes a complete list 

The storage used by the deleted items is returned to the 
list of available storage components, AV AIL. 

DELETE_SUB Subroutine Figures 2.18A and 2.l8B pres
ent the DELETE_SUB subroutine procedure, which de
letes a portion of a list. Examples of the procedure appear 
in Figure 2.l8E. 

DELETE_SUB uses three arguments: a data list, the list 
position at which deletion starts, and the number of data 
items being deleted. 

DELETE _LIST Subroutine Figures 2.18C and 2.18D 
present the DELETE_LIST subroutine procedure, which 
deletes all items from a list. Figure 2.18E contains an illus
tration of the procedure. 

DELETE_LIST is similar to DELETE_SUB (Figures 
2.18A and 2.18B) but uses only one argument: the list 
being deleted. 

Assigning Sublists and Lists to Data Lists 

The following discussions develop two subroutine pro
cedures for setting a data list equal to all or part of another 
list: 

1. ASSIGN_SUB, which assigns a sublist to a list 
2. ASSIGN_LIST, which assigns an entire list to an

other list 

The effect of these procedures is equivalent to deletion of 
the receiving list followed by insertion of a list. 

DELETE_SUB Subroutine 

Purpose 
To delete a portion of a list 

Reference 
DELETE_SUB(LIST, N, L) 

Entry-Name Declaration 
DECLARE DELETE-'SUB 

ENTRY(POINTER, FIXED DECIMAL(5), 
FIXED DECIMAL(5)); 

Meaning of Arguments 
LIST --the list in which deletion is to occur 
N --the position in LIST at which deletion is to 

start 
L --the number of data items to be deleted 

Remarks 
Data items are deleted from position N to position 
(N+L-1) in LIST. When (N+L-1) exceeds the size of 
LIST, all data items from position N to the end of 
LIST are deleted. If N exceeds the size of LIST, no 
data items are deleted. If N is less than one, the 
first (N+L-1) data items are deleted provided 
(N+L-1) is not negative; if it is negative, no data 
items are deleted. 

Other Programmer-Defined Procedures Required 
DELETE_ND 

Method 
The following reference is used: 

DELETE_ND(LIST, N) 

Figure 2.1 SA. Description of the DELETE SUB subroutine 
for deleting a sublist from a data list 

DELETE_SUB: 
PROCEDURECLIST, N1 L); 

DECLARE 

DO 

ENO; 
ENO 

CN, L, I) FIXED DECIMALC5), 
LIST POINTER; 

I • N TO IN+ L - l); 
CALL DELETE_NOCLIST, NJ; 

OELETE_SUB; 

Figure 2.18B. Deleting a sublist 

43 



DELETE LIST Subroutine 

Purpose 
To delete an entire list 

Reference 
DELETE LIST(LIST) 

Entry-Name Declaration 
DECLARE DELETE_LIST ENTRY(POINTER); 

Meaning of Argument 
LIST --the list to be deleted 

Remarks 
LIST is null after deletion. 

Other Programmer-Defined Procedures Required 
DELETE_SUB and SIZE 

Method 
The following reference is used: 

DELETE_SUB(LIST, 1, SIZE(LIST)) 

Figure 2.18C. Description of the DELETE LIST subroutine 
for deleting a list -

Data List 
(before reference) 

L1: ~ 

L1: ~ 
L1: ~ 
L1: ~ 
L1: ~ 

L1: ~ 

DELETE_L I ST: 
PlltOCEDUlltE C LISTJ; 

DECLARE 
LIST POINTER; 
CALL DELETE_SUBCLIST, 1, 
SIZECLISTH; 

END 
DELETE_LIST; 

Figure 2.1 SD. Deleting a list 

Subroutine Data List 
Reference (after reference) 

DELETE_SUB(L1,1,2) L1: D-t€ISJ 
DELETE_SUB(L1,3,1) L1: ~ 

DELETE_SUB(L1,0,3) L1: []-.[TISf 

DELETE_SUB(L1,2,3) L1: ~ 
DELETE_SUB(L 1,1,3) L1: [SJ 

DELETE - LIST(L1) L1: [SJ 

Figure 2.18E. Examples of references to the DELETE_SUB and DELETE_LIST subroutines 

44 



ASSIGN _SUB Subroutine Figures 2.19A and 2.19B pres
ent the ASSIGN_SUB subroutine procedure, which assigns 
a sublist to a list. Examples of the procedure appear in 
Figure 2.19E. 

ASSIGN_SUB Subroutine 

Purpose 
To assign a sublist to a list 

Reference 
ASSIGN_SUB(LIST1, LIST2, N, L) 

Entry-Name Declaration 
DECLARE ASSIGN_SUB 

ENTRY(POINTER, POINTER, FIXED DECIMAL 
(5). FIXED DECIMAL(5)); 

Meaning of Arguments 
LIST1 --the list to which the sublist is to be 

LIST2 
N 

L 

Remarks 

assigned 
--the list that contains the sublist 
--the position in LIST2 at which the sublist 

begins 
--the number of data items in the sublist 

LIST1 is deleted before it receives the sublist. The 
sublist is then inserted into LIST1 according to the 
conventions of the INSERT _SUB subroutine. 

Other Programmer-Defined Procedures Required 
DELETE LIST and INSERT SUB 

Method 
The following references are used: 

DELETE LIST(LIST1) 
and 

INSERT _SUB(LIST1, 1, LIST2, N, L) 

Figure 2.19A. Description of the ASSIGN SUB subroutine for 
assigning a sublist to a list -

ASSIGN_SUB: 

OECLARE 

ENO 

PROCEOURE(LISTl, LIST2, N, Lt; 

ILIST1,LIST2) POINTER, 
IN,L) FIXED DECIMALl5); 
CALL DELETE_LISTILISTl); 
CALL INSERT_SUB CLISTlt 1, LIST2, 
N, U; 

ASSIGN_SUB; 

Figure 2.l 9B. Assigning a sublist to a list 

ASSIGN_SUB uses four arguments: a receiving list, a 
source list, the position in the source list at which the 
sublist begins, and the number of items in the sublist. The 
source list is not changed by the procedure. 

ASSIGN _LIST Subroutine Figures 2.19C and 2.19D pres
ent the ASSIGN_LIST subroutine procedure, which sets 
one list equal to another. An illustration of the procedure 
appears in Figure 2.19E. 

ASSIGN_LIST is similar to ASSIGN_SUB (Figures 
2.19A and 2.19B) but requires only two arguments: the 
receiving and source lists. 

ASSIGN LIST Subroutine 

Purpose 
To assign one list to another list 

Reference 
ASSIGN LIST(LIST1, LIST2) 

Entry-Name Declaration 
DECLARE ASSIGN_LIST ENTRY(POINTER, 
POINTER); 

Meaning of Arguments 
LIST1 --the list to which the second list is to be 

assigned 
LIST2 --the list to be assigned to LIST1 

Remarks 
LIST1 is deleted before it is assigned the data items 
of LIST2. 

Other Programmer-Defined Procedures Required 
ASSIGN_SUB and SIZE 

Method 
The following reference is used: 

ASSIGN_SUB(LIST1, LIST2, 1, SIZE(LIST2)) 

Figure 2.19C. Description of the ASSIGN LIST subroutine for 
assigning a list to another list 

ASS IGN_LI STs 

DECLARE 

END 

PROCEDUREILISTl, LIST2); 

ILISTl, LIST2) POINTER; 
CALL ASSIGN_SUBILISTl, LIST2, 1, 
SIZEILIST2)); 

ASSIGN_LIST; 

Figure 2.l 9D. Assigning a list to another list 

45 



Data List Subroutine Data List 
(before reference I Reference (after reference I 

L1: ~ ASSIGN_SUB(L1 ,L2,1,21 L1: ~ 
L2: ~ L2: ~ 

L3: !SJ ASSIGN_SUB(L3,L2,2,2) L3: ~ 
L2: ~ L2: ~ 
L1: ~ ASSIGN_SUB(L2,L1,2,3) L1: ~ 
L2: ~ L2: ~ 
L1: ~ ASSIGN~ SUB (L 1,L2, 1,3) L1: ~ 
L2: ~ L2: ~ 
L1: ~ ASSIGN_LIST(L2,L 1 I L1: ~ 
L2: ~ L2: 0-.~ 

Figure 2.19E. Examples of references to the ASSIGN_SUB and ASSIGN_LIST subroutines. 

46 



Linking Data Lists 

Two lists may be combined to form a single list. One way 
of performing this operation is to insert the items of one 
list at the end of another list and to delete the contributing 
list. A more efficient method involves direct linkage of one 
list behind another by address manipulation rather than 
data movement. This method is used in the following dis
cussion to develop the LINK subroutine procedure. 

LINK Subroutine Figures 2.20A, 2.20B, and 2.20C present 
the LINK subroutine procedure, which appends the data 
items of one list behind the items of another list. The 
subroutine uses two arguments: the data lists being linked. 
The appended list becomes null after LINK has been exe
cuted. 

Splitting Data Lists 

The reverse operation of linking two lists is to split a single 
list into two separate lists. The following discussion de
velops the SPLIT subroutine procedure for such an opera
tion. 

SPLIT Subroutine Figures 2.21A, 2.21B, and 2.21C pres
ent the SPLIT subroutine procedure, which divides a list 
into two lists. The subroutine uses three arguments: the 
list to be split, the position where the split is to occur, and 
the list that receives the split items. 

Catenating Data Lists 

When the LINK subroutine (Figures 2.20A through 2.20C) 
is used to link two data lists, both lists are modified by the 
subroutine. If the lists are to remain unchanged, LINK 
cannot be used. 

The following discussion develops the CATENATE 
subroutine procedure for creating a third list from the data 
items of two other lists. 

CATENATE Subroutine Figures 2.22A, 2.22B, and 2.22C 
present the CATENATE subroutine procedure, which links 
the data items of two lists to form a third list. The sub
routine uses three arguments: the two lists to be linked 
and the list that receives the linked items. 

LINK Subroutine 

Purpose 
To append the data items of one list at the end of 
another list 

Reference 
LINK(LIST1, LIST2) 

Entry-Name Declaration 
DECLARE LINK ENTRY(POINTER, POINTER); 

Meaning of Arguments 
UST1 --the list to which the data items of the 

second list are appended 
UST2 --the list whose data items are appended to 

LIST1 

Remarks 
LIST2 is null after its data items are appended to 
LIST1. 

Other Programmer-Defined Procedures Required 
ADDRESS_NEXT and SET _POINTER 

Method 
The ADDRESS_NEXT function is used to progress 
to the last component of LIST1. 

The SET _POINTER subroutine links the last 
component of LIST1 to the first component of 
UST2. LIST2 is then set to null. 

Figure 2.20A. Description of the LINK subroutine for linking 
two lists 

47 



48 

LINKS 
PROCEOUREfLISTl, LIST2t; 

DECLARE 
fLISTlr LIST2r AOORESSlr AOORfSS2t 
POINTER; 

IF 
LISTl • NULL 

THEN 
oo; 

ENO; 

00 

ENO; 

ENO 

LISTl • LIST2; LIST2 • NULL; 
RETURN; 

AOORESS2 • LISTI; 

WHILEfADORESS2~•NULLt; 
AOORESSl • AOORESS2; 
AOORESS2 • AOORESS_NEXTfAOORESS2t; 

CALL SET_POINTERCAOORESSl, LIST2t; 
LI ST2 • NULL; 

LINK; 

Figure 2.20B. Linking two lists 

L1: 

Data List 
(before reference) 

L2:~ 

L3: IS] 

Subroutine Data List 
Reference (after reference) 

LINK(L 1,L2) L1: 

L2: !SJ 
LINK(L2,L1) L1: !SJ 

L2: 

LINK(L 1,L3) L1: 

L3: !SJ 
+---------+---------~----------------------< 

LINK(L3,L2) L2: !SJ 
L3:~ 

Figure 2.20C. Examples of references to the LINK subroutine 



SPLIT Subroutine 

Purpose 
To divide a list into two lists 

Reference 
SPLIT(LIST1, N, LIST2) 

Entry-Name Declaration 
DECLARE SPLIT 

ENTRY(POINTER, FIXED DECIMAL(5). 
POINTER); 

Meaning of Arguments 
LIST1 --the list that is to be split 
N --the position at which LIST1 is to be split 
LIST2 --the list to which the second portion of 

LIST1 is to be assigned 

Remarks 
Before LIST1 is split, LIST2 is deleted. Then the 
data items from position N to the end of LIST1 
are removed from LIST1 and linked to LIST2. 
If N exceeds the size of LIST1, no splitting occurs, 
but LIST2 is deleted. If N is less than or equal to 
one, all data items in LIST1 are linked to LIST2, 
and LIST1 is set to null. 

Other Programmer-Defined Procedures Required 
DELETE_LIST, ADDRESS_N, GET _POINTER, 
and SET _POINTER 

Method 
DELETE LIST deletes LIST2. ADDRESS_N 
obtains the address of the (N-1 )th component of 
LIST1. This pointer element is then assigned to 
LIST2, causing the second portion of LIST1 to 
be linked to LIST2. Finally, the pointer element 
in the (N-1)th component of LIST1 is set to null. 

Figure 2.2 lA. Description of the SPLIT subroutine for 
splitting a list 

SPLIT: 

DECLARE 

THEN 
DO; 

ENO; 

PROCEDURECLISTlt N, LIST2J; 

lLISTlt LIST2t Pl POINTER, 
N FIXED DECIMALC51; 
CALL DELETE_LISTCLIST2J; 

IF 
lN<•ll 

LIST2 • LISTl; LISTI • NULLI 
RETURN; 

P = ADORESS_NCLISTl, N - 11; 
IF 

IP • NULLJ 
THEN 

RETURN; 

END 

LIST2 • GET_POINTERCPJ; 
CALL SET_POINTERCP,NULLJ; 

SPLIT; 

Figure 2.21B. Splitting a list 

49 



50 

.---------------------------------

L1: 

Data List 
(before reference) 

L2:~ 

L3: [SJ 

Subroutine Data List 
Reference (after reference) 

SPLIT(L1 ,5, L3) L1: 

L3: ~ 
SPLIT(L 1,5,L2) L1: 

L2: ~ 

SPLIT(L2,1,L3) L2: [SJ 

L3: ~ 
SPLIT(L3, 1,L2) L2: [SJ 

L3: [SJ 

Figure 2.21C. Examples of references to the SPLIT subroutine 



CATENATE Subroutine 

Purpose 
To form a third list by linking the data items of two 
other lists 

Reference 
CATENATE(LIST1, LIST2, LIST3) 

Entry-Name Declaration 
DECLARE CATENATE 

ENTRY(POINTER, POINTER, POINTER); 

Meaning of Arguments 
LIST1 --the first list to be linked 
LIST2 --the list to be linked behind LIST1 
LIST3 --the list to which the linked data items of 

LIST1 and LIST2 are assigned 

Remarks 
Any two or all three list arguments may be the same 
list. LIST1 and LIST2 are not changed when LIST3 
is different from LIST1 and LIST2. 

Other Programmer-Defined Procedures Required 
INSERT _LIST, ASSIGN_LIST, and DELETE_LIST 

Method 
INSERT _LIST is used to form a temporary list that 
contains the linked data items of LIST1 and LIST2. 
ASSIGN_LIST assigns the temporary list to 
LIST3. DELETE_ LIST deletes the temporary list. 

Figure 2.22A. Description of the CATENATE subroutine for 
catenating two lists and assigning the result to 
a third list 

CATENATE: 
PROCEDURECLISTlt LIST2, LIST31; 

DECLARE 
CllSTl, LIST2, LIST3, Tl POINTER; 
T • NULL; 

ENO 

CALL INSERT_LISTCT, 1, LIST21; 
CALL INSERT_LISTCT, lt LISTll; 
CALL ASSIGN_LISTCLIST3, Tl; 
CALL DELETE_llSTCTI& 

CATENATE; 

Figure 2.22B. Catenating two lists and assigning the result to a 
third list 

51 



52 

Data List 
(before reference) 

L1:~~ 

L2:~ 

L3: lSJ 
L4:~ 

Subroutine Data List 
Reference (after reference) 

CATENATE(L 1,L2,L3) 

CATENATE(L2,L1,L3) 

CATENATE (L4,L2,L4) 

CATENATE(L2,L3,L3) 

L1:~ 

L2:~ 

L3: 

L1:~ 

L2: []-.~~ 

L3: 

L2:~ 

L4:~[ITJ+~ 

L2:~ 

L3:~ 

Figure 2.22C. Examples of references to the CATENATE subroutine 



Searching Data Lists for Sublists 

Retrieval of information from a list may involve a pattern 
search through the list, such as scanning for a repeating 
decimal. The following discussion develops the 
FIND LIST function procedure, which searches a list for 
the appearance of another list. The search can be restricted 
to a portion of the list and need not involve the entire list. 

FIND LIST Function Figures 2.23A, 2.23B, and 2.23C 
present the FIND _LIST function procedure, which 
searches a list between two positions in the list for the first 
appearance of another list. The function uses four argu
ments: the list to be searched, the limiting positions of the 
search, and the list to be searched foL 

When the search is successful, FIND _LIST returns the 
first position where the matching list appears. The func
tion returns a zero value when the search is unsuccessful. 

Testing Data Lists for Equality 

Two data lists may be tested for equality. The following 
discussion develops the EQUAL function procedure, which 
determines whether two lists contain the same data items 
arranged in the same order. 

EQUAL Function Figures 2.24A, 2.24B, and 2.24C pres
ent the EQUAL function procedure, which tests two lists 
for equality both in number and order of data items. The 
function returns a one-bit when the lists are equal and a 
zero-bit when they are not equal. 

FIND_LIST Function 

Purpose 
To search a list between two data positions for the 
first appearance of a second list 

Reference 
FIND LIST(LIST1, N1, N2, LIST2) 

Entry-Name Declaration 
DECLARE FIND LIST 

ENTRY(POINTER, FIXED DECIMAL(5). 
FIXED DECIMAL(5), POINTER); 

Meaning of Arguments 
LIST1 --the list to be searched 
N1 --the position in LIST1 where searching 

begins 
N2 --the position in LIST1 where searching ends 
LIST2 --the list to be searched for 

Remarks 
The function returns the first position between N 1 
and N2 where LIST2 appears in LIST1. If LIST2 is 
not found, the function returns a zero value. A zero 
value is also returned when LIST1 or LIST2 is null 
or N 1 is greater than N2. 

Other Programmer-Defined Procedures Required 
GET _ND and SIZE 

Method 
GET ND obtains data items from each list for 
comparison. 

Figure 2.23A. Description of the FIND_ LIST function for 
finding a list in another list 

53 



FIND_LISTI 
PRDCEDURE(LISTl, Nlt N2, LIST2J 
RETURNS (FIXED DECIMAL(5))1 

DECLARE 
CLISTl, LIST2J POINTER, 
CN1,N2,LL,UL,Sl,S2,I,JI 
FIXED DECIMAL(5)1 
I* IF LISTl OR LIST2 IS NULL, 
RETURN ZERO. •/ 

IF 
(LISTl • NULLllCLIST2 •NULL) 

THEN 
RETURN(OI; 
I* IF LISTl IS SHORTER THAN LIST2, 
RETURN ZERO. •I 
Sl • SIZECLISTlJ; 
S2 • SIZECLIST2J; 

IF 
Sl<S2 

THEN 
RETURN(OI; 
I* INITIALIZE LOWER ANO UPPER 
SEARCH LIMITS. •I 
LL • Nl; UL • N2; 
I• IF LOWER SEARCH LIMIT EXCEEDS 
SEARCH LIMIT, RETURN ZERO. *I 

IF 
LL>UL 

THEN 
RETURN(OI; 
I• IF LOWER SEARCH LIMIT EXCEEDS 
SIZE OF LISTl, RETURN ZERO. •I 

IF 
LL>Sl 

THEN 
RETURN(OJ; 
I• IF LOWER SEARCH LIMIT IS LESS 
THAN ONE, ADJUST LIMIT. •I 

Figure 2.23B. Finding a list in another list 

Data List 

L1: 

L2:~ 

L3: 

L4:~ 

L5: 

L6: [J.[JSI 

L7:~ 

LS: 

L7:~ 

LS: 

Figure 2.23C. Examples of references to the FIND LIST function 

54 

IF 
LL<l 

THEN 

THEN 

LL • l; 
I• IF UPPER SEARCH LIMIT EXCEEDS 
SIZE OF LISTl, ADJUST LIMIT. •I 

IF 
UL>Sl 

UL • Sl; 
I• IF SIZE OF LIST2 EXCEEDS EXTENT 
OF SEARCH, RETURN ZERO. •I 

IF 
S2>(UL - LL + 11 

THEN 
RETURN(OI; 
I• FINO FIRST POSITION OF LIST2 
BETWEEN LOWER ANO UPPER SEARCH 
LIMITS OF LISTl.•/ 

DO 

00 

ENO; 

LS 
ENO; 

ENO 

THEN 

I• LL TO CUL - S2 + 11; 

J • 1 TO S2; 
IF 

GET_NOCLISTl, I + J - ll~•GET_NO 
(LIST2,JI 

GO TO 
LI 

I• LIST2 FOUND AT I-TH POSITION OF 
usn. •1 
RETURNllll 

I• LIST2 NOT FOUND. •I 
RETURN(OI; 

FINO_LIST; 

Function 

Reference 

FIND_LIST(L1 ,1,7,L2) 

FIND LIST(L3,3,6,L4) 

FIND _LIST(L5,2.4,L6) 

FIND _LIST(L7, 1,3,LS) 

FIND _LIST(LS, 1,4,L7) 

Function 
Value 

3 

3 

0 

0 



EQUAL Function 

Purpose 
To test two data lists for equality 

Reference 
EQUAL(LIST1, LIST2) 

Entry-Name Declaration 
DECLARE EQUAL ENTRY(POINTER, POINTER) 

RETURNS (BIT(1)); 

Meaning of Arguments 
LIST1 --the first list 
LIST2 --the second list 

Remarks 
The function returns a one-bit when the lists are 
equal; otherwise, a zero-bit. If both lists are null, 
they are considered to be equal. 

Other Programmer-Defined Procedures Required 
ADDRESS_NEXT and GET _DATA 

Method 
ADDRESS~NEXT obtains successive list components. 
GET _DAT A obtains the data element of each I ist 
component. Testing stops when corresponding list 
positions do not contain equal data items. Lists with 
different sizes are always unequal. 

Figure 2.24A. Description of the EQUAL function for testing 
the equality of two data lists 

L1: 

L2: 

L3: 

L5: rs:! 
L6: [SJ 

Data List 

EQUAL I 
PROCEDURE (LISTI, LIST2t 
RETURNS celTCltt; 

DECLARE 
CLIST1,LIST2,AOORESSl,AO~RESS2t 
POINTER; 

END 

AOORESSl • LISTI; 
AOORESS2 • LIST2; 

IF 
AOORESSl • AOORESS2 

THEN 
RETURNC'l'Bt; 

IF 
CAOORESSl • NULLtlCAOORESS2 • NULLt 

THEN 
RETURNC 1 0 1 1t; 

IF 
GET_OATACAOORESSlt1•GET DATA 
CAOORESS2t -

THEN 
RETURNC 1 0 1 Bt; 
ADDRESSl • ADDRESS_NEXTCADDRESSll; 
ADDRESS2 • AODRESS_NEXTCADORESSZI; 

GO TO 
L; 

EQUAL; 

Figure 2.24B. Testing two data lists for equality 

Function 
Reference 

EQUAL(L1,L2) 

EQUAL(L3,L4) 

EQUAL(L5,L6) 

EQUAL(L7,L8) 

Function 
Value 

'1 '8 

'0'8 

'1 '8 

'0'8 

Figure 2.24C. Examples of references to the EQUAL function 

55 



Comparing Data Lists 

The conventional string comparisons (less than, equal to, 
and greater than) may also be applied to data lists. The 
following discussion develops the COMPARE function 
procedure for comparing two lists. 

COMPARE Function 

Purpose 
To determine whether a list is less than, equal to, or 
greater than another list 

Reference 
COMPARE ( LIST1, LIST2) 

Entry-Name Declaration 
DECLARE COMPARE ENTRY(POINTER, 
POINTER) 

RETURNS(81T(2)); 

Meaning of Arguments 
LIST1 --the first list 
LIST2 --the second list 

Remarks 
When LIST1 equals LIST2, the function returns 
'11 '8. 
When LIST1 is less than LIST2, the function returns 
'01'8. 
When LIST1 is greater than LIST2, the function 
returns '10'8. 

Other Programmer-Defined Procedures Required 
ADDRESS_NEXT and GET _DATA 

Method 
ADDRESS_ NEXT obtains the address of successive 
list components. GET _DATA obtains the data 
element of each component. Comparison begins 
with the first data item in each list and matches 
successive items in corresponding positions. 
Comparison stops when the first unequal match 
occurs. If the end of one list is reached before 
inequality is established, the shorter list is 
considered to be less than the longer. Comparison 
of two null lists produces an equal match. 

Figure 2.25A. Description of the COMPARE function for 
comparing two data lists 

56 

COMPARE: 
PROCEDURE CLISTl, LIST21 
RETURNS CBIT C2J); 

DECLARE 

END 

tDl,D2) CHARACTERtll, 
tLISTl 9 LIST2,ADDRESSl,ADORESS2> 
POINTER; 
ADDRESSl • LISTI; 
ADDRESS2 LIST2; 

IF 
ADDRESSl • ADDRESS2 

THEN 
RETURNt 1 ll 1 8); 

IF 
ADDRESSl • NULL 

THEN 
RETURN( '01'8); 

IF 
ADDRESS2 • NULL 

THEN 
RETURN( 1 10 1 Bl; 
Dl • GET_DATACADDRESSl); 
02 • GET_DATACADDRESS2>; 

IF 
Dl<D2 

THEN 
RETURNC 1 01 1 8); 

IF 
Dl>D2 

THEN 
RETURNC 1 10 1 81; 
ADDRESSl • ADDRESS_NEXTCADORESSll; 
ADDRESS2 • ADDRESS_NEXTCAOORESSZ)& 

GO TO 
L; 

COMPARE; 

Figure 2.25B. Comparing two data lists 

COMPARE Function Figures 2.25A, 2.25B and 2.25C 
present the COMPARE function procedure, which deter
mines whether one list is less than, equal to, or greater 
than another list. The function returns a two-position bit 
string. Both positions contain one-bits when the lists are 
equal. A zero-bit in the left position indicates a less-than 
comparison, and a zero-bit in the right position indicates a 
greater-than comparison. 



Function Function 
Data List Reference Value 

L1: COMPAREIL1,L21 '11 '8 

L2: 1=1 

L3: [}-.~~ COMPAREIL4,L31 '01 '8 

L4: 1<1 

L3: COMPAREIL3,L41 '10'8 

L4: 1» 

L5: ~ COMPARE IL5,L61 '10'8 

L6: 0-.[]SJ 1>1 

L7: [SJ COMPAREIL7,L81 '11 '8 

LB: [SJ I=) 

Figure 2.25C. Examples of references to the COMPARE function 

Reversing Data Lists 

Frequent manipulation of data items at the end of a list 
may become time-consuming, because the addresses of the 
items must be obtained by proceeding serially through the 
list. One way of improving the access time for data items 
at the end of a list is to reverse the order of the items in 
the list. The desired items will then lie at the front of the 
list, and fewer items will have to be passed over. 

The following discussion develops the REVERSE sub
routine procedure for reversing the order of the data items 
in a list. 

REVERSE Subroutine Figures 2.26A, 2.26B, and 2.26C 
present the REVERSE subroutine procedure, which re
verses the order of the data items in a list. The procedure 

removes successive data items from the front of the list 
and inserts them successively at the front of a temporary 
list. When the original list becomes null, it receives the 
items in the temporary list. 

Sorting Data Lists 

The following discussion develops the SORT subroutine 
for arranging the data items of a list in ascending sequence. 

SORT Subroutine Figures 2.27 A, 2.27B, and 2.27C pres
ent the SORT subroutine procedure. The procedure re
moves all items from the list and inserts them in a tempo
rary list. Each item is then reinserted into the original list 
in sort sequence. 

57 



REVERSE Subroutine 

Purpose 
To reverse the order of the data items in a list 

Reference 
REVERSE( LIST) 

Entry-Name Declaration 
DECLARE REVERSE ENTRY(POINTER); 

Meaning of Argument 
LIST --the list to be reversed 

Remarks 
LIST can be null. 

Other Programmer-Defined Procedures Required 
INSERT _FD and REMOVE_FD 

Method 
REMOVE_FD obtains and removes successive data 
items from the first position of LIST. INSERT _FD 
stores each item (as it is obtained) in the first 
position of a temporary list, T. The following 
reference is used: 

INSERT _FD(T, REMOVE_FD(LIST)) 

When LIST becomes null, it is assigned the value of 
pointer T. Then DELETE_LD(LIST) removes 
whatever was in the data item in AVAi L. 

Figure 2.26A. Description of the REVERSE subroutine for 
reversing a data list 

Data List 
(before reference) 

REVERSE I PROCEDURE. usn I 
DECLARE CLIST, Tl POINTER, 
AVAIL EXTERNAL POINTERI 
T • AVAILI 
AVAIL->POINTER • NULLI 
DO WHILE (LIST~· NULLll 
CALL INSERT_FDCTeREMOVE_FDILISTlll 
ENDI 
LIST • Tl 
CALL DELETE_LDCLISTll 

END REVERSEI 

Figure 2.26B. Reversing a data list 

Subroutine Data List 
Reference (after reference I 

L1: ~ REVERSE(L1) L1: ~ 
L2: !SI REVERSE(L2) L2: LSJ 

Figure 2.26C. Examples of references to the REVERSE subroutine 

58 



SORT Subroutine 

Purpose 
To arrange the data items in a list into ascending 
sequence 

Reference 
SORT(LIST) 

Entry-Name Declaration 
DECLARE SORT ENTRY(POINTER); 

Meaning of Argument 
LIST --the list to be sorted 

Remarks 
LIST can be null. 

Other Programmer-Defined Procedures Required 
REMOVE_FD, GET _DATA, ADDRESS_NEXT, 
INSERT _ND, and INSERT _LD 

Method 
All data items are removed from LIST and assigned 
to a temporary list, T. Each item is then reinserted 
into LIST in ascending sequence. 

Figure 2.27 A. Description of the SORT subroutine for sorting 
a data list 

Data List 
(before reference) 

L1: ~ 
L2: [SJ 

Subroutine 
Reference 

SORT(L1) 

SORT(L2) 

Figure 2.27C. Examples of references to the SORT subroutine 

SORTI 
PROCEOURE C LIST II 

OE CLARE 

DO 

DO 

THEN 

CLISTt Te ADDRESS) POINTER, 
D CHARACTERCl), 
N FIXED DECIMALC5); 

IF 
LIST • NULL 

RETURN; 
T • LIST; 
LIST • NULL; 

WHILE (T ... •NULL); 
D • REMOVE_FDCT); 
N • O; 
ADDRESS • LIST; 

WHILECADDRESS ... •NULL1; 
N • N + l; 

IF 
GET_DATACADDRESS1 >• D 

THEN 
DO; 

END; 

END; 

L: 
END; 
END 

CALL INSERT_NDCLIST,N,D1; 
GO TO 

L; 

ADDRESS• ADDRESS_NEXTCADDRESS1; 

CALL INSERT_LDCLIST,D1; 

SORT; 

Figure 2.27B. Sorting a data list 

Data List 
(after reference) 

L1: []--~ 

L2: !SJ 

59 



Converting Character Strings to and from Data Lists 

The similarities between character strings and data lists (as 
developed in this chapter) permit the conversion of char
acter strings to and from data lists. The following discus
sions develop two subroutine procedures for such 
conversions: 

1. STRING_ TO_ LIST, which converts a character 
string to a data list 

2. LIST_TO_STRING, which converts a data list to a 
character string 

STRING _TO _LIST Subroutine Figures 2.28A, 2.28B, 
and 2.28C present the STRING_TO_LIST subroutine 
procedure, which obtains successive characters from the 
character string and inserts them into the data list. The 
character string is not changed by the procedure. 

LIST _TO _STRING Subroutine Figures 2,29A, 2.29B, 
and 2.29C present the LIST_TO_STRING subroutine 
procedure, which obtains successive items from the list and 
inserts them into the string. The data list remains un
changed. 

Manipulating Lists Recursively 

The structure of a simple data list always satisfies one of 
these conditions: 

1. The data list is null. 
2. The data list contains one data item. 
3. Each data item in the list is followed by a data list 

(which may be null). 

These conditions provide an elementary example of 
recursive organization (see Figure 2.30). Insertion of a data 
item into a data list does not change the organization of 
the list; although the size of the list increases, it still retains 
the structure of a list. Similarly, deletion of a data item 
from a data list also results in a list organization. 

60 

STRING_ TO_LIST Subroutine 

Purpose 
To convert a character string to a data list 

Reference 
STRING_TO_LIST(STRING, LIST) 

Entry-Name Declaration 
DECLARE STRING_ TO LIST 

ENTRY(CHARACTER(*), POINTER); 

Meaning of Arguments 
STRING ··the character string to be converted to a 

data list 
LIST --the list to which the converted 

character string is to be assigned 

Remarks 
STRING is a fixed-length character string that can be 
of any storage class. If STRING has a zero length, 
LIST becomes null. In all cases, STRING remains 
unchanged. 

Other Programmer-Defined Procedures Required 
DELETE LIST and INSERT _LD 

Method 
DELETE LIST deletes LIST before conversion 
begins. The built-in function SUBSTR obtains 
successive characters from STRING. INSERT _LD 
inserts successive characters at the end of LIST. 

Figure 2.28A. Description of the STRING TO LIST 
subroutine for converting a character string 
to a data list 



STRING_TO_LIST: 

DECLARE 

DO 

END; 
END 

PROCEDURECSTRING,LIST); 

LIST POINTER, 
STRING CHARACTERC•J, 
I FIXED DECIMALC5); 
CALL DELETE_LISTCLIST>; 

I • 1 TO LENGTHCSTRING); 
CALL INSERT_LDCLIST,SUBSTR 
CSTRING,J,1)); 

STRING_TO_LIST; 

Figure 2.28B. Converting a character string to a data list 

L1: 

L2: [SJ 

Data List 
(before reference I 

Subroutine Data List 
Reference (after reference) 

STRING_TO_LIST('ABCD',L1) L1: 

STRING_ TO_LIST('4F',L2) L2:~ 

Figure 2.28C. Examples of references to the STRING_ TO_ LIST subroutine 

61 



LIST_ TO_STRING Subroutine 

Purpose 
To convert a data list to a character string 

Reference 
LIST_ TO_STRING(LIST, STRING) 

Entry-Name Declaration 
DECLARE LIST_TO_STRING 

ENTRY(POINTER, CHARACTER(*)); 

Meaning of Arguments 
LIST --the list to be converted to a character 

string 
STA ING --the character-string variable to which 

the converted list is to be assigned 

Remarks 
STRING is a fixed-length character string that can be 
of any storage class, but storage must have been 
allocated for it before LIST_ TO_STRING is 
invoked. When the length of STRING is less than 
the size of LIST, excess data items in LIST are not 
inserted into STRING. When the length of STRING 
is greater than the size of LIST, excess positions in 
STRING become blank. When LIST is null, all 
positions in STRING become blank. In all cases, 
LIST remains unchanged. 

Other Programmer-Defined Procedures Required 
GET_ND 

Method 
GET _ND obtains successive data items from LIST. 
The first data item is assigned to STRING. 
Remaining data items are inserted into successive 
positions of STRING through the pseudo variable 
SUBSTR. 

Figure 2.29A. Description of the LIST_ TO_ STRING subroutine 

62 

LIST_TO_STRING: 

DECLARE 

00 

ENO; 
END 

PROCEDURE\LIST, STRING); 

LIST POINTER, 
STRING CHARACTERl*J, 
I FIXED OECIMAL(51; 
STRING• GET_NDCLIST,l); 

I• 2 TO LENGTH(STRING1; 
SUBSTRCSTRING,J,l) • GET_NOILIST,J); 

LI ST_TO_STR ING; 

Figure 2.29B. Converting a data list to a character string 



L1: 

Data List and Character String 
(before reference) 

S1: 'FOUR' 

L2:~ 

S2: '4F' 

L3: [SJ 

S3: 'XYZ' 

Subroutine 
Reference 

LIST_ TO _STRING(L1,S1) 

LIST_ TO _STRING(L2,S2) 

LIST_ TO_STRING(L3,S3) 

String 
(after reference) 

S1: 'A182' 

S2: '+3' 

S3: 'bob' 

Figure 2.29C. Examples of references to the LIST_ TO_ STRING subroutine 

List with Three Items 

List with Two Items 

List with One Item i 
~I 
I I 
I Null I 
I L" I 1st I 

.---T-1 --, ~ 
L: A B c 

Figure 2.30. Recursive structure of a data list 

A PL/I procedure may be declared to have the RECUR
SIVE option. An active recursive procedure can be acti
vated from within itself. This successive invocation of itself 
continues until terminated by itself. 

The recursive facilities of PL/I procedures allow list
processing operations to be performed recursively. This 
section develops six recursive procedures for the following 
operations: 

I. Recursive deletion of data lists 
2. Recursive computation of data list sizes 
3. Recursive searching for data items in data lists 
4. Recursive linking of data lists 
5. Recursive testing for equality of data lists 
6. Recursive comparison of data lists 

Note that earlier discussions developed nonrecursive (that 
is, iterative) procedures for each of these operations. The 
relative merits of recursive methods compared to iterative 
techniques is a controversial aspect of computer program
ming. Generally, recursive methods produce more compact 
program statements at the expense of increased execution 
time and storage space. This expense may be justified, 
however, when iterative techniques distort the natural 
organization of a recursive application and produce pro
gramming complexities that can be avoided with recursive 
methods. 

Appendix 1 contains a summary of the recursive facili
ties for PL/I procedures. 

Recursive Deletion of Data Lists 

Figures 2.30A through 2.30D present the DELETER sub
routine procedure, which deletes a data list recursively. 
The procedure performs three basic operation: 

1. Tests whether the list is null 
2. Deletes the first data item in the list 
3. Invokes itself recursively 

Each recursive invocation of DELETER deletes a data item 
from the list. When the list becomes null, control returns 
to each higher level invocation until the original point of 
invocation is reached. 

Figure 2.30C illustrates successive stages in the recursive 
deletion of a data list. 

63 



DELETER Subroutine 

Purpose 
To delete a data list 

Reference 
DELETER(LIST) 

Entry-Name Declaration 
DECLARE DELETER ENTRY(POINTER); 

Meaning of Argument 
LIST --the list to be deleted 

Remarks 
LIST is null after deletion. 

Other Programmer-Defined Procedures Required 
DELETE_FD 

Method 
DELETER is a recursive subroutine. Each 
invocation (initial and recursive) causes 
DELETE_FD to delete the first data item from 
LIST. When LIST becomes null, recursion stops, 
and control returns to the initial point of 
invocation. 

Figure 2.30A. Description of the DELETER subroutine for 
recursive deletion of a data list 

DELETER I 
PROCEDURECLIST) RECURSIVEI 

DECLARE 

THEN 

END 

LIST POINTER; 
IF 

LIST • NULL 

RETURN; 
CALL DELETE_FDCLISTJ; 
CALL DELETERCLISTJI 

DELETER; 

Figure 2.30B. A recursive subroutine for deleting a data list 

64 

LIST: A 

LIST: B 

LIST:~ 

LIST:~ 

B c 

c 

Figure 2.30C. Successive stages in the recursive deletion of a data 
list 

Figure 2.30D shows the flow of control through recur
sive invocations of the DELETER subroutine. To simplify 
the presentation, the diagram duplicates the subroutine at 
each stage of recursion. It also shows the state of the list 
each time control enters the subroutine. 

The diagram begins at the top of Figure 2.30D with 
execution of the statement: 

CALL DELETER {LIST); 

LIST contains two data items, A and B, whose list com
ponents are assumed to be at locations 10 and 75. Since 
LIST is not null the first time control enters DELETER 
item A is deleted by the subroutine DELETE FD and ' 
DELETER is invoked a second time with LIST as ~he 
argument. Again, LIST is not null, and item B is deleted by 
DELETE_FD. When DELETER is invoked for the third 
time, LIST is null, and no further invocations are required. 

The RETURN statement in the third copy of DE
LETER returns control to the END statement in the sec
ond copy of DELETER. This END statement then returns 
control to the END statement in the first copy of DE
LETER. Finally, control returns to the statement that 
follows the original invocation of DELETER. 

In the diagram, solid lines denote flow of control from 
an invoking reference to the invoked procedure, and 
beaded lines represent flow of control from the invoked 
procedure back to the statement that follows the invoking 
reference. 



CALL DELETER(LISTI; LIST: B 

.. 
~ .. NEXT_STATEMENT: ... ; 

j .. 
4DELETER: 

PROCEDURE(LISTI RECURSIVE; 
+ 

DECLARE LIST POINTER; , 
IF LIST=NULL THEN RETURN; 

CALL DELETE_FD(LISTI; 
t 

J. 
... LIST: ~ r---. 

CALL DELETER (LISTI; 

:._ 
:'.'!: ~END DELETER; 

l__I. DELETER: 

PROCEDURE(LIST) RECURSIVE; 

DECLARE LIST POINTER; 

IF LIST=NULL THEN RETURN; 

CALL DELETE FD(LIST); -

~ LIST: [SJ r---J 
CALLrDELETER(LIST); 

..._ 
;:!.. ....:END DELETER; 

4DELETER: 

PROCEDURE(LIST) RECURSIVE; 

DECLARE LIST POINTER; 

:._ ... ..... ----
IF LIST=NULL THEN~; 
CALL DELETE FD(LIST); -
CALL DELETER(LISTI; 

END DELETER; 

Figure 2.30D. Deleting a list recursively 

65 



Recursive Computation of Dat:a List Sizes 

Figures 2 .31 A through 2 .3 lD present the SIZER function, 
which computes the size of a data list recursively. When 
the list is null, SIZER returns a zero value. If the list is not 
null, the procedure returns the value of the expression: 

1 + SIZER(ADDRESS _ NEXT(LIST)) 

Evaluation of this expression requires recursive invocation 
of SIZER. The addresses of successive data items in the list 
serve as the arguments of successive invocations of SIZEll. 

SIZER Function 

Purpose 
To obtain the size of a data list 

Reference 
SIZER(LIST) 

Entry-Name Declaration 
DECLARE SIZER ENTRY(POINTER) 

RETURNS(FIXED DECIMAL(5)); 

Meaning of Argument 
LIST .--the list whose size is to be computed 

Remarks 
The maximum possible size is 99999. If LIST is 
null, the function returns a zero size. 

Other Programmer-Defined Procedures Required 
ADDRESS_NEXT 

Method 
SIZER is a recursive function. Each invocation 
(initial or recursive) causes the value of the 
following expression to be returned: 

1 + SIZER(ADDRESS_NEXT(LIST)) 

When the argument becomes null, recursion stops, 
and control returns to the initial point of 
invocation. 

Figure 2.31A. Description of the SIZER function for 
recursive computation of the size of a data list 

66 

SIZERIPROCEDURE CLISTI RETURNS 

DECLARE 
(FIXED DECl~ALC5tt RECURSIVE; 

LIST POINTER; 
IF LIST • NULL THEN RETURN cot; 
RETURN 
11 +SIZER IADDRESS_NEXTCLISTllJI 

END SIZERS · 

Figure 2.31B. A recursive function for obtaining the size of a data 
list 

The above expression becomes equivalent to an arith
metic series of ones, which is terminated by the zero value 
that is returned when the end of the list is reached. The 
number of ones in the equivalent series equals the number 
of data items in the list. Figure 2.31C illustrates the succes
sive stages performed by SIZER for a data list of three 
items. 

Figure 2.310 shows how program control flows 
through recursive invocations of SIZER. The diagram 
duplicates SIZER at each stage of recursion. It also shows 
the argument value passed by each invocation, the flow of 
control into and out of the function, and the value re- · 
turned to each invoking reference. Since pointer parameter 
LIST has the automatic storage class, storage is auto
matically allocated for parameter LIST at each level of 
recursion, and the address of the next component in the 
list is assigned as the value of the new generation of para
meter LIST. Solid lines in the diagram denote flow of 
control from an invoking reference to the invoked pro
cedure. 

The diagram begins with the execution of the assign
ment statement: 

LENGTH = SIZER(LIST); 

As illustrated, LIST is the head pointer of a two
component data list whose components have been given 
the arbitrary addresses 100 and 250. For a value to be 
assigned to variable LENGTH on the left of the above 
assignment statement, the expression on the right must be 
evaluated first. This expression consists of a reference to 
the SIZER function. 

The head pointer LIST serves as the assignment of the 
reference and has an address value of 100, which is passed 
to SIZER. When control enters the function, storage is 
allocated for parameter LIST, which is internal to the 
procedure, and the value 100 is assigned to this storage. 
Because parameter LIST is not null, the following state
ment is executed: 

RETURN (1 +SIZER (ADDRESS_NEXT (LIST))); 



+ size of remainder 

LIST: 

I 
, A 

I I 
, B 

I 
, c N 

1 + 1 + size of remainder 

LIST: 

I 
, A 

I I 
, B 

I I 
, c N 

size of 
1 + 1 + 1 + remainder 

LIST: 

: 

, A 

I I 
, B c 

1+1+1+0 

LIST: 

I 
, A 

I I 
, B 

I 
, c N 

Figure 2.31C. Successive stages in the recursive computation of the size of a data list 

This statement cannot return control until its expression is 
llValuated. However, the expression itself contains refer
ence to SIZER that causes recursive invocation of the 
function with an argument value of 250. The value 250 is 
obtained from the reference ADDRESS_NEXT (LIST). 

This second invocation of SIZER, which is represented 
by the second copy of the function in Figure 2.3ID, 
causes new storage to be allocated for parameter LIST 
with the address value of 250. Again, parameter LIST does 
not have a null value; therefore, the RETURN statement 
mentioned above is reexecuted in the second copy of the 
function. Once more, return of control is suspended until 
the expression within the RETURN statement is evaluated. 
The evaluation causes a third invocation of SIZER with a 
null argument value. 

When control enters the function for the third time 
(represented by the third copy of SIZER in Figure 2.3 ID), 
new storage is allocated for parameter LIST, to which a 
null value is assigned. At this stage of recursion, the null 
value of parameter LIST causes the statement: 

RETURN(!+ SIZER(ADDRESS_NEXT))); 

In this statement, SIZER has a value of zero, and the value 
returned by the statement, therefore, is one (I = I + O). 
This value is returned to the still previous point of invoca
tion, which occurred within the first copy of the function 
and is also associated with the statement: 

RETURN (I +SIZER (ADDRESS_NEXT (LIST))); 

This time SIZER has a value of one, and the statement 
returns a value of two (2 = I + I) to the previous point of 
invocation, which occurred on the right side of the assign
ment statement: 

LENGTH = SIZER (LIST); 

At this point, the value of two for the function reference is 
assigned to variable LENGTH. 

Throughout the entire evaluation, the data list remains 
unchanged. Each recursive allocation of parameter LIST 
serves as a temporary head pointer for the list and leaves 
the original head pointer undisturbed. 

67 



LIST: A 250 B 

.+ 
4°SIZER: 

value PROCEDURE(LIST) RETURNS(FIXED DECIMAL(5)) 

returned: RECURSIVE; 

2 DECLARE LIST POINTER; 

~ 
IF LIST=NULL THEN RETURN(O); 

l - ~ lRETURN(1 + SIZER(ADDRESS_NEXT(LIST))); 

~ 
_.._1 • END SIZER; 

4SIZER: 

value PROCEDURE,(LIST) RETURNS(FIXED DECIMAL(5)) 

returned: RECURSIVE; 

1 DECLARE LIST POINTER; 

~ 
IF LIST=NULL THEN RETURN(O); 

J 
lRETURN (1 + SljR(ADDRESS_NEXT(LIST))); 

_.. 

~ END SIZER; 

4°SIZER: 

value PROCEDURE(LIST) RETURNS(FIXED DECIMAL(5)) 

returned: RECURSIVE; 

0 DECLARE LIST POINTER; 

"f 
IF LIST=NULL THEN RETURN(O); 

IF LIST=NULL THEN.~; 
RETURN(1 + SIZER(ADDRESS_NEXT(LISTll); 

END SIZER; 

Figure 2.310. Computing the size of a data list recursively 

68 

argument 
passed: 

100 
__. 

1 
argument 

passed: 
250 _, 

1 
argument 

passed: 
NULL 

J 



FINDR Function 

Purpose 
To find the position of the first occurrence of a data 
item in a data list 

Reference 
FINDR(LIST, DI 

Entry-Name Declaration 
DECLARE FINDR ENTRY(POINTER, 
CHARACTER(1ll 

RETURNS(FIXED DECIMAL(511; 

Meaning of Arguments 
LIST --the list to be searched 
D --the data item to be found 

Remarks 
The function returns a zero value when LIST does 
not contain D. 

Other Programmer-Defined Procedures Required 
GET _FD and ADDRESS_NEXT 

Method 
FINDR is a recursive function. A null list argument 
causes a zero value to be returned. When D equals 
GET _FD( LISTI, the value one is returned; 
otherwise, the value of the following expression is 
computed: 

1 + FINDR(ADDRESS_NEXT(LISTI, DI 

This expression produces recursive invocation of 
FINDR while the list argument is not null. The 
value of the expression is assigned to variable N, 
which specifies the position of Din the list. When 
D is not in the list, the value of N equals the size 
of the list and must be set to zero before FINDR 
is terminated. Multiplication of N by variable T, 
which equals one when D is in the list, assures 
proper control over the value of N. Declaring N 
and T to be static variables causes all levels of 
recursion to deal with the same storage for the 
variable. 

Figure 2.32A. Description of the FINDR function for 
recursive searching of a data list 

FINDR: 

DECLARE 

PROCEDURE CLIST, Dt RETURNS 
CFIXED DECIMALC5tt RECURSIVE; 

LIST POINTER,· 
D CHARACTER Cl t, 
CT,Nt FIXED DECIMALC5t STATIC; 
T,N • 1; 

IF 
LIST • NULL 

THEN 
DO; 

END; 

THEN 

END 

T • o; RETURNCOt; 

IF 
D-.•GET_FDCLISTt 

N • 1 + FINDRCADDRESS_NEXT 
CLISTt,Dt; 
RETURN CT•N t ; 

FINDR; 

Figure 2.32B. A recursive function for finding the position of a 
data item in a data list 

Recursive Searching for Data Items in Data Lists 

Figures 2.32A and 2.32B present the FINDR function 
procedure, which performs a recursive search for the first 
occurrence of a data item in a data list. When the data item 
is found, the function returns its position in the list. Ab
sence of the item in the list is indicated by a zero value. 

FINDR computes the position of the data item by 
performing a recursive count similar to the size calculation 
of SIZER (Figures 2.31A, 2.31B, and 2.31C). When the 
data item is not in the list, the position count is changed to 
zero by a zero multiplication factor. 

Recursive Linking of Data Lists 

Figures 2.33A and 2.33B present the LINKR subroutine 
procedure, which links two data lists recursively. Each 
invocation of the subroutine causes the data item at the 
front of one list to be removed and to be inserted at the 
end of a second list. When the first list becomes null, recur
sion stops. 

69 



LINKR Subroutine 

Purpose 
To link two data lists 

Reference 
LINKR(LIST1, LIST2) 

Entry-Name Declaration 
DECLARE LINKR ENTRY(POINTER, POINTER); 

Meaning of Arguments 
LIST1 --the list to which the second list is to be 

linked 
LIST2 --the second list 

Remarks 
LIST2 is null after its data items are linked to LIST1. 

Other Programmer-Defined Procedures Required 
REMOVE FD and INSERT _LO 

Method 
LINKR is a recursive subroutine. Each invocation 
(initial or recursive) removes the first data item from 
LIST2 and inserts the data item at the end of 
LIST1. When LIST2 becomes null, recursion stops, 
and control returns to the initial point of invocation. 

Figure 2.33A. Description of the LINKR subroutine for 
recursive linking of two data lists 

LINKR: 

DECLARE 
PROCEOURECLIST1,LIST2) RECURSIVE: 

CLISTl•LIST2J POINTER; 
IF 

LIST2 • NULL 
THEN 

RETURN; 

ENO 

CALL INSERT_LDCLl~Tl,REMOVE_FD 
CLIST2J I; 
CALL LINKRCLIST1,LIST21; 

LINKR; 

Figure 2.33B. A recursive subroutine for linking two data lists 

70 

Recursive Testing for Equality of Data Lists 

Figures 2.34A and 2.34B present the EQUALR function 
procedure, which performs a recursive test for equlility of 
two data lists. Recursion occurs when data items ih cor
responding list positions are equal. 

The function returns a one-bit when the lists are equal 
and a zero-bit when they are not equal. 

EOUALR Function 

Purpose 
To test two data lists for equality 

Reference 
EOUALR(LIST1, LIST2) 

Entry-Name Declaration 
DECLARE EOUALR ENTRY(POINTER, 
POINTER) 

RETURNS(BIT(1)); 

Meaning of Arguments 
LIST1 --the first list 
LIST2 --the second list 

Remarks 
The function returns a one-bit when the lists are 
equal; otherwise, it returns a zero-bit. Null lists 
are considered equal. 

Other Programmer-Defined Procedures Required 
ADDRESS_NEXT 

Method 
EOUALR is a recursive function. When the data 
items in the first position of each list are not 
equal, the function returns 'O'B; otherwise, it 
returns the value of the following expression: 

EQUALR(ADDRESS NEXT(LIST1), 
ADDRESS_NEXT(LIBT2)) 

This expression causes recursive invocati<:>n of 
EOUALR as long as corresponding data items 
are equal. When one (but not both) of the 
arguments becomes null, recursion stops, and 
the function returns 'O'B. When both 
arguments become null together, recursion 
stops; and the function returns '1'8. 

Figure 2.34A. Description of the EQUALR function for 
recursively testing the equality of two data 
lists 



EQUALR: 
PROCEDURE ILISTlt LIST2) RETURNS 
IBITllll RECURSIVE; 

DECLARE 

END 

ILISTl,LIST2l POINTER; 
IF 

LISTl • LIST2 
THEN 

RETURN(' 1 1 8); 
IF 

LISTl • NULL 
THEN 

RETURNt•o•u; 
If 

LIST2 • NULL 
THEN 

THEN 

RETURN( 1 0 1 8); 
IF 

GET_FDtLISTll~•GET_FDtLIST2l 

RETURN( 1 0 1 81 I 
RETURN(EQUALRtADDRESS_NEXTlllSTllt 
ADDRESS_NEXTlllST2))); 

EQUALR; 

Figure 2.34B. A recursive function for testing the equality of two 
data lists 

Recursive Comparison of Data Lists 

Figures 2.35A and 2.358 present the COMPARER func
tion procedure, which performs a recursive comparison of 
two data lists to determine whether one is less than, equal 
to, or greater than the other. Recursion occurs while data 
items in corresponding list positions are equal. 

For equal lists the function returns the value '11 'B. 
When the first list is less than the second, the function 
returns 'O l 'B. When the first list is greater than the second, 
the returned value is 'lO'B. 

COMPARER Function 

Purpose 
To determine whether a list is less than, equal to, 
or greater than another list 

Reference 
COMPARER(LIST1, LIST2) 

Entry-Name Declaration 
DECLARE COMPARER ENTRY(POINTER, 
POINTER) 

RETURNS(81T(2)); 

Meaning of Arguments 
LIST1 --the first list 
LIST2 --the second list 

Remarks 
When LIST1 equals LIST2, the function returns 
'11 '8. 
When LIST1 is less than LIST2, the function 
returns '01'8. 
When LIST1 is greater than LIST2, the function 
returns '10'8' 

Other Programmer-Defined Procedures Required 
GET FD and ADDRESS NEXT 

Method 
COMPARER is a recursive function. When the data 
item in the first position of LIST1 is less than the 
data item in the first position of LIST2, the function 
returns '01 '8. When it is greater, the function 
returns '10'8. When the data items are equal, the 
function returns the value of the following 
expression: 

COMPARER(ADDRESS NEXT(LIST1), 
ADDRESS NEXT(LIST2)) 

This expression causes recursive invocation of 
COMPARER as long as corresponding data items 
are equal. Recursion stops when one or both of the 
arguments becomes null. When both arguments 
become null together, the function returns '11 '8. 
When only the first argument becomes null, the 
function returns '01 '8. When only the second 
argument becomes null, the function returns 
'10'8. 

Figure 2.35A. Description of the COMPARER function for the 
recursive comparison of two data lists 

71 



COMPARER: 
PROCEDURE ILISTlt LIST2) RETURNS 
18ITl2)) RECURSIVE; 

DECLARE 
ILIST1,LIST2) POINTER, 
101,02) CHARACTERll); 

IF 
LISTl = LIST2 

THEN 
RETURN( I 11' 8); 

IF 
LISTl • NULL 

THEN 
RETURNl 1 01'8); 

IF 
LIST2 • NULL 

THEN 
RETURNC'l0'8); 
01 = GET_FOCLISTlJ; 
02 = GET_FOCLIST2); 

IF 
01<02 

THEN 

THEN 

RETURN I 1 01' 8); 
IF 

01>02 

RETURN I '10' 8) ; 
RETURNCCOMPARERCAODRESS_NEXTCLISTl), 
ADDRESS_NEXTCLIST2))); 

ENO 
COMPARER; 

Figure 2.35B. A recursive function for comparing two data lists 

Using Simple Data Lists 

The similarities between the simple data lists of this 
chapter and character strings in general provide a variety of 
list-processing applications concerned with text editing, 
pattern searching, and symbol manipulation. The following 
discussions develop programs for eight applications in 
these areas: 

1. Editing cash values 
2. Removing edit symbols from cash values 
3. Expanding a multiple assignment statement 
4. Expanding a picture specification 
5. Contracting a picture specification 
6. Adding variable-length integers 
7. Subtracting variable-length integers 
8. Gathering DECLARE statements in a procedure 

Each application uses the procedures developed earlier in 
this chapter, and, although list-processing techniques are 
not essential for these applications, they improve program
ming flexibility and provide greater control over storage 
than is available with more conventional programming 
methods. 

72 

Editing Cash Values 

Figures 2.36A and 2.36B present the $EDIT subroutine 
procedure, which accepts an unedited cash value in list 
form and inserts appropriate edit symbols into the list. 

The procedure assumes that the argument list contains 
no characters other than digits. The number of digits is 
arbitrary and is restricted only by the size of the list of 
available storage components, AV AIL. 

SEOIT: 

DECLARE 

ZEROS: 
DO 

PROCEDURECCASH); 

CASH POINTER, 
COA, 08) CHARACTERll), 
S FIXED OECIMALl5); 

WHILECCASH~•NULL); 
IF 

GET_FDCCASHJ ~= '0' 
THEN 

GO TO 
PERIOD; 
CALL OELETE_FDCCASHJ; 

END ZEROS; 
PERIOD: 

END; 

END; 

ENO; 

S • SIZECCASH); 
IF S • 0 THEN DO; 
CALL STRING_TO_LISTC•so.oo•,CASH); 
RETURN; 

IF S • 1 THEN DO; 
CALL STRING_TO_LISTl 1 $0.0'llREMOVE_FD 
CCASH),CASH); RETURN; 

IF S • 2 THEN DO; 
DA• REMOVE_FOICASH); 
08 • REMOVE_FDICASH); 
CALL STRING_TO_LISTl'S0. 1 llDAllD8,CASH>; 
RETURN; 

CALL INSERT_NDCCASH, S-1, 1 • 1 ); 

S • S-2; 

S • S-3; 
IF 

S>O 
THEN 

DOI 
CALL INSERT_NOCCASH,S+l, 1 ,•t; 

GO TO 

END; 
S_SIGNI 

ENO 

COMMAS; 

CALL INSERT_FDICASH,'1'11 

SEO IT; 

Figure 2.36A. Editing cash values 



L1: 

L2: 

L3: 

Data List 
(before reference) 

~ 2 3 3 

L4:~ 

L5:~ 

L6: [:5:J 

Subroutine Data List 
Reference (after reference) 

$EDIT(L1) L1: 

$EDIT(L2) L2: 

' 1 7 2 . 3 

3 

$EDIT(L3) L3: 

$EDIT(L4) L4: 

$EDIT(L5) L5: 

$EDIT(L6) L6: 

Figure 2.36B. Examples of references to the $EDIT subroutine 

$EDIT deletes leading zeros in the argument list and 
inserts a decimal point, commas, and a dollar sign, as shown 
in Figure 2.36B. Values less than a dollar always receive a 
zero before the decimal point. The size of the argument 

sufficient in particular applications. The $EDIT procedure 
shows how list-processing techniques may be used to con
struct editing procedures for special needs. 

list can either decrease or increase, depending on the num
ber of leading zeros that are deleted and the number of 
edit symbols that are inserted. 

Although PL/I provides extensive editing facilities 
through the PICTURE attribute and the P format item for 
edit-directed input and output, these facilities may not be 

Removing Edit Symbols from Cash Values 

Figures 2.37A and 2.37B present the DE_EDIT subrou
tine procedure, which accepts an edited cash value in list 
form and removes the edit symbols from the list. This 
procedure may be considered to be the inverse of the 
$EDIT procedure (Figures 2.36A and 2.36B). 

73 



74 

DE_EDIT: 
PROCEOURECCASHt; 

DECLARE 
CASH POINTER, 
C CHARACTERClt, 
I FIXED DECIMALC5t; 

DO 

IF 
C-.••s• 

THEN 
IF 

c ...... 
THEN 

IF 
I • 1 TO SIZECCASHt; 
C • REMOVE_FDCCASHt; THEN 

c ...... 

IF 
c ...... 

THEN 
END; 
END 

CALL INSERT_LDCCASH,Ct; 

DE_EDIT; 
Figure 2.3 7 A. Removing edit symbols from cash values 

Subroutine 
Reference 

DE_EDIT(L1) 

DE_EDIT(L2) 

Lt: 

L2: 

L3: 

L4: 

L5: 

L6: 

Lt: 

L2: 

DE_EDIT(L3) L3: 

DE_EDIT(L4) L4: 

DE_EDIT(L5) L5: 

DE_EDIT(L6) L6: 

Data List 
(before reference) 

~ 8 2 . 9 9 

Data List 
(after reference) 

~ 9 9 

~ 4 6 0 

Figure 2.37B. Examples of references to the DE_ EDIT subroutine 



Expanding a Multiple Assignment Statement 

Figures 2.38A and 2.38B present the A_EXPAND subrou
tine procedure, which accepts a multiple assignment state
ment in list form and expands the list to a series of simple 
assignment statements. 

This procedure provides an elementary example of how 
list-processing techniques may be used to construct a PL/I 
compiler. Source statements can be treated as character 
strings, which are converted to list form and then analyzed 
by list-processing procedures. Using successive levels of 
analysis will eventually convert source statements to their 
equivalent object code. 

Expanding a Picture Specification 

Figures 2.39A and 2.39B present the P _EXPAND subrou
tine procedure, which accepts a PICTURE specification in 
list form and expands the list so that it contains no repeti
tion factors. 

This procedure could be used in a PL/I compiler to 
convert source text to a standard internal format. It could 
also be used in a conversion program to alter source text so 
that it becomes acceptable to a restricted compiler that 
does not process all PL/I features, such as repetition 
factors. 

A_EXPANO: 

DECLARE 
PROCEDURECASSIGNMENTI; 

N FIXED DECIMALC51, 
(ASSIGNMENT, RIGHT_HALF) POINTER; 
I• INITIALIZE. •I 
RIGHT_HALF • NULL; 
I* FIND POSITION OF EQUAL SIGN IN 

DO 

ENO; 

ASSIGNMENT LIST. •I 

N • 1 TO SIZECASSIGNMENTI BY l; 
IF 

CGET_NDCASSIGNMENT, NII• ('•' I 
THEN 

GO TO 
BREAK; 

PUT SKIP LISTl 1 NO EQUAL SIGN 1 1; 
GO TO OVER; 
I• SPLIT RIGHT HALF FROM ASSIGNMENT 
LIST ANO INSERT IN RIGHT_HALF 
LIST. *I 

BREAK: 
CALL SPLITCASSIGNMENT,N1RIGHT_HALFI; 
I• REPLACE EACH COMMA IN ASSIGNMENT 

DO 
LIST WITH RIGHT_HALF LIST. •I 

N • 1 BY 1 WHILE 
lN ~> SIZElASSIGNMENTll; 

IF 
lGET_NDlASSIGN,ENT,Nll•C 1 , 1 1 

THEN 
DO; 

END; 
END; 

CALL DELETE_NDCASSIGNMENT 1NI; 
CALL INSERT_LISTCASSIGNMENT 1 N1 
RIGHT_HALFI; 

I* LINK RIGHT_HALF LIST TO 
ASSIGNMENT LIST. */ 
CALL LINKCASSIGNMENT, RIGHT_HALFI; 

OVERt 
END 

A_ EXPAND; 

Figure 2.38A. Expanding an assignment statement 

75 



76 

Subroutine 
Reference 

A_EXPAND(L1) 

A_EXPAND(L2) 

L1: 

L2: 

L3: 

L4: 

L1: 

L2: 

A_EXPAND(L3) L3: 

A_EXPAND(L4) L4: 

Data List 
(before reference) 

~ x * y ; 

~ A , B = 0 ; 

Data List 
(after reference) 

~ B = X * Y ; 

T . A = 0 ; 

B = 0 ; 

Figure 2.3 SB. Examples of references to the A_ EXP AND subroutine 



P_EXPANOt 
PROCEOUREIPICTUREll 

DECLARE 

QUOTElt 

C CHARACTER 111 t 

CPICTURE, EXPANOEOI POINTER, 
FACTOR CHARACTER 161 VARYINGS 
I• INITIALIZE. •I 
EXPANDED • NULLI 
I• INSERT LEFT ENO OF PICTURE LIST 
CUP TO ANO INCLUDING FIRST QUOTE> AT 
FRONT OF EXPANDED LIST. •I 

C • REMOVE_FDIPICTUREI; 
CALL INSERT_LDIEXPANDED,CI; 

IF 
ic ... • • • • > 

THEN 
GO TO 

QUOTEl; 

QUOTE2: 

I• SCAN REMAINDER OF PICTURE LIST 
IUP TO ANO INCLUDING CLOSING 
QUOTEI. */ 

C • REMOVE_FDIPICTUREI; 
IF 

IC • ""I 
THEN 

GO TO 
FINISH; 
I* WHEN CHARACTER IS LEFT PAREN, GO 
TO STATEMENTS THAT OBTAIN REPETITION 
FACTOR. •I 

IF 
IC"' 'l'I 

THEN 
GO TO 

RE PETIT ION_FACTOR; 
I* OTHERWISE, INSERT CHARACTER AT 
END OF EXPANDED LIST ANO GET NEXT 
CHARACTER. •I 
CALL INSERT_LDIEXPANOEO, Cl; 

Figure 2.39A. Expanding a picture specification 

GO TO 
QUOTE2; 
I* INSERT REPETITION FACTOR IN 
FACTOR. •I 

REPETITION_FACTOR: 
FACTOR = ' •; 

NEXT_CHARACTER: 
C • REMOVE_FDIPICTUREI; 

IF 
IC"" 1 1 1 1 

THEN 
GO TO 

EXPAND; 
FACTOR"' FACTORllC; 

GO TO 
NEXT_CHARACTER; 
I* INSERT NEXT CHARACTER THE 
NUMBER OF TIMES SPECIFIED BY FACTOR. ., 

EXPANDs 

DO 

ENDI 

C • REMOVE_FDIPICTUREI; 

N • 1 TO FACTOR; 
CALL INSERT_LDIEXPANOED,CI; 

I• GET NEXT CHARACTER. •I 
GO TO 

QUOTE21 
I• AT THIS POINT, EXPANSION IS 
COMPLETE. INSERT FINAL QUOTE AT END 
OF EXPANDED LIST ANO LINK EXPANDED 
LIST TO PICTURE LIST. •I 

FINISHs 

ENO 

CALL INSERT_LOIEXPANDED,Cll 
CALL LINKIPICTURE, EXPANDEDll 

P_EXPAND; 

77 



78 

Subroutine 
Reference 

P _EXPAND(L1) 

P _EXPAND(L2) 

P _EXPAND(L3) 

L1: 

L2: 

L3: 

L1: 

L2: 

Data List 
(before reference) 

~ X X X I A ' 

Data List 
(after reference) 

Figure 2.39B. Examples of references to the P _EXPAND subroutine 



Contracting a Picture Specification 

Figures 2.40A and 2.40B present the P _ CNTRT subrou
tine procedure, which accepts a PICTURE specification in 
list form and contracts the list by replacing repeated char
acter sequences five or more in length with repetition 
factors. 

This procedure may be treated as the inverse of the 
P _EXP AND procedure (Figures 2.39A and 2.39B). 

p CNTATI 
- PROCFOURECPICTUAEI; 
DECLARE 

DO 

C CHARACTERCllt 
CPICTUREt FACTOR_LISTI 'OINTER, 
CN,Mtltll FIXED OECl,ALCSI, 
AEPETITIOh_FACTOR PICTURE •zzzz9•, 
FACTOA_STAING CHARACTfRCSIS 
I• INITIALIZE. •I 
FACTOR_LIST • NULLS 
I• FINO POSITION OF FlltST QUOTE IN 
PICTURE LIST. •I 

N • 1 BY 11 
IF 

CGET_NDCPICTURE,NI • ''''I 
THEN 

DOI 

ENDS 
ENO; 

N•N+ll 
GO TO 

NEXT_CHAUCTER; 

I• SCAN PICTURE LIST FOR CHARACTER 
SEQUENCES OF LENGTH FIVE OR MORE. •I 

NEXT_CHARACTER: 

DO 

END; 

C • GET_NDCPICTURE,Nt; 
I• IF SECOND QUOTE IS FOUND, 
PROGRAM IS FINISHED. •I 

IF 
cc ..... , 

THEN . 
RETURN; 
I• TEST FOR REPEATED SEQUENCE. •I 

M • N + 1 BY 1; 
IF 

CGET_NDIPICTURE,MJ~•CJ 
THEN 

GO TO 
LENGTH_ TEST; 

I* IF SEQUENCE-LENGTH IS LESS THAN 
FIVE, RESUME SEARCH •I 

LENGTH_ TEST: 
L • M - N; 

IF 
IL<5J 

Figure 2.40A. Contracting a picture specification 

Adding Variable-Length Integers 

Figures 2.41A and 2.41B present the ADD_INT subrou
tine procedure, which adds two variable-length integers in 
list form. The length of each integer is arbitrary and is 
limited only by available storage. The integers need not 
have equal lengths. 

ADD _INT assumes that the argument lists contain only 
numeric characters (signs and decimal points are not per
mitted). The integer in the first argument list is added to 
the integer in the second argument list. The third argument 
receives the result list. 

THEN 
DO; 

ENO; 

N • M; 
GO TO 

NEXT_CHARACTER; 

I* CONVERT SEQUENCE-LENGTH TO 
EDITED STRING WITH LEADING ZEROS 
SUPPRESSED. •I 
REPETITION_FACTOR • L; 
I• ASSIGN EDITED STRING TO 
FACTOR_STRING, WHICH HAS ATTRIBUTES 
REQUIRED BY THE STRING_TO_LIST 
SUBROUTINE• •I 
FACTOR_STRING • REPETITIO"-.FACTOR; 
I• CONVERT FACTOR_STRING TO 
FACTOR_LIST. *I 
CALL STRING_TO_LISTlFACTOR_STRING, 
FACTOR_LI ST I; 
I• DELETE LEADING BLANKS FROM 
FACTOR_LI ST• •I 

DO I • 1 BY 1; 
IF 

ENDI 

lGET_FDlFACTOR_LISTl ~·• 'l 
THEN 

GO TO 
PARENTHESES I 
CALL DELETE_FDlFACTOR_LISTl; 

I• INSERT PARENTHESES AT FRONT ANO 
BACK OF FACTOR LIST. •I 

PARENTHESES a 

END 

CALL INSERT_FOlFACTOR_LIST, 'l'll 
CALL INSERT_LDlFACTOR_LIST1'l'll 
I• CONTRACT REPEATED SEQUENCE AND 
INSERT FACTOR_LIST. •I 
CALL DELETE_SUBlPICTURE, N, l-ll; 
CALL INSERT_LISTlPICTURE,N, 
FACTOR_LISTU 
I• SET N TO POSITION OF NEXT 
CHARACTER. DELETE FACTOR_LIST. GO TO 
NEXT_CHARACTER. •I 
N • N + SIZElFACTOR_LISTl + 1; 
CALL DELETE_LISTlFACTOR_LISTl; 

GO TO 
NEXT_CHARACTER; 

P_CNTRT; 

79 



80 

Subroutine 
Reference 

P _CNTRT(L1) 

P _CNTRT(L2) 

P _ CNTRT(L3) 

L1: 

L2: 

L,3: 

L1: 

L2: 

Data List 
(before reference) 

x x x x x x 

x x x x . 

~ z z . 9 • 

Data List 
(after reference) 

~ E ' I 9 I 9 

~ I 1 o I x · 

~'~ 
z z . 9 . 

Figure 2.40B. Examples of references to the P _ CNTRT subroutine 



AOO_lNT: 
PROCEOURECADDENOl,AOOEN02,SUMJ; 

DECLARE 
CADDEND1,ADDEN02,SUMIPOINTER, 
CCARRY, DIGlTl, DlGIT2l 
CHARACTERCllt 
1 SUM_TABLEIO:l,0:9,0:9), 
2 TENS CHARACTERlll, 
2 UNITS CHARACTERlll, 
SUMS_OF_DIGITS_AND_CARRY 
CHARACTERl400l DEFINED SUM_TABLE; 
I* INITIALIZE SUM_TABLE. *I 
SUMS_OF_OIGlTS_AND_CARRY • 

1 00010203040506070809 1 

1 01020304050607080910 1 

1 02030405060708091011 1 

1 03040506070809101112 1 

1 04050607080910111213 1 

1 05060708091011121314 1 

1 06070809101112131415 1 

1 07080910111213141516 1 

1 08091011121314151617 1 

1 09101112131415161718 1 

1 01020304050607080910 1 

'02030405060708091011 1 

1 03040506070809101112 1 

11 '04050607080910111213 1 

11 '05060708091011121314' 
11 1 06070809101112131415' 
11 1 07080910111213141516' 
11 1 08091011121314151617 1 

11 1 09101112131415161718' 
II 1 10111213141516171819 1 ; 

I* CLEAR SUM ANO CARRY. *I 
SUM • NULL; 
CARRY= 1 01 ; 

I* TEST FOR NULL LISTS */ 
IF CCADDENDl • NULLJ & 
CAODEND2 • NULLJJ 
THEN DO; 
CALL INSERT_FOCSUM,'0 1 J; 
RETURN; 
ENO; 
IF ADDENDl • NULL 
THEN DO; 
SUM • ADDEN02; 
RETURN; 
ENO; 
IF ADDEND2 • NULL 

Figure 2.41A. Adding variable-length integers 

THEN DO; 
SUM • ADDENDl; 
RETURN; 
END; 
I* INSERT LEADING ZERO AT FRONT OF 
ADDENDl LIST AND ADOEND2 LIST. *I 
CALL INSERT_FOIADDENDl, 'O'J; 
CALL INSERT_FDCADDEND2, •o•J; 
I• ENTER LOOP THAT COMPUTES SUM OF 
ADDENDl AND ADDEND2. •/ 

LOOP a 
DO WHILECIADDENDl ~· NULLJ I 
CADDEND2 ~· NULLJJ; 
I* REMOVE RIGHTMOST DIGITS OF 
ADDENDS, AND ASSIGN THEM TO DIGITl 
AND DIGIT2. •I 
DIGITl • REMOVE_LDCADDENDlJ; 

IF 
CDIGITl • ' I, 

THEN 

THEN 

DIGITl • '0'; 
DIGIT2 • REMOVE_LDCADDEND2J; 

IF 
CDIGIT2 • ' I, 
DIGIT2 • 1 0 1 1 
I• OBTAIN UNITS DIGIT FOR THE SUM OF 
CARRY, DIGIT2, AND DIGITll AND 
INSERT UNITS DIGIT IN THE FIRST 
POSITION OF SUM LIST. •I 
CALL INSERT_FDCSUM, UNITSCCARRY, 
DIGIT2, DIGITllll 
I• SET CARRY EQUAL TO TENS DIGIT 
FROM THE SUM OF CARRY, DIGIT2, ANO 
DJGJTl. •I 
CARRY•TENSCCARRY 1 DIGIT21DIGITlll 

ENO LOOP; 

ZEROS a 

END 

I• REMOVE LEADING ZEROS FROM SUM •I 

IF IGET_FDISUMI • 1 0 1 1 
THEN DOI 
CALL DELETE_FDISUMll 
GO TO ZEROS; 
END; 
I• IF SUM IS NULL, INSERT 0 •I 
IF SUM • NULL 
THEN CALL INSERT_FOCSUM, 1 01 1; 

ADD_ INT; 

81 



DIGIT1 

0 1 2 3 4 5 6 7 8 9 

0 00 01 02 03 04 05 06 07 08 09 

1 01 02 03 04 05 06 07 08 09 10 
D 2 02 03 04 05 06 07 08 09 10 11 
I 3 03 04 05 06 07 08 09 10 11 12 
G 4 04 05 06 07 08 09 10 11 12 13 
I 5 05 06 07 08 09 10 11 12 13 14 

T 6 06 07 08 09 10 11 12 13 14 15 

2 7 07 08 09 10 11 12 13 14 15 16 
8 08 09 10 11 12 13 14 15 16 17 
9 09 10 11 12 13 14 15 16 17 18 

Sums of digits when previous carry is zero 

DIGIT1 

0 1 2 3 4 5 6 7 8 9 

0 01 02 03 04 05 06 07 08 09 10 
1 02 03 04 05 06 07 08 09 10 u_11 

D 2 03 04 05 06 07 08 09 10 11 12 
I 3 04 05 06 07 08 09 10 11 12 13 
G 4 05 06 07 08 09 10 11 12 13 14 
I 5 06 07 08 09 10 11 12 13 14 15 

T 6 07 08 09 10 11 12 13 14 15 16 
2 7 08 09 10 11 12 13 14 15 16 17 

8 09 10 11 12 13 14 15 16 17 18 
9 10 11 12 13 14 15 16 17 18 19 

Sums of digits when previous carry is one 

Figure 2.41B. Tables for the sums of two digits and a previous 
carry 

The procedure uses a table lookup technique to add the 
two integers digit by digit from right to left. Figure 2.41B 
contains illustrations of the tables used by ADD _INT. The 
first table gives the sums of digit pairs when no carry is 
involved from the previous digit sum. The sums in the 
second table account for a carry of one from the previous 
digit sum. The sum of the rightmost digits in the two in
tegers always assumes a previous carry of zero. The digit in 
the tens position of a sum specifies the carry for the next 
digit pair. 

82 

The following example shows how the tables are used: 

1 0 0 Carried digits 

2 9 7 8 Second integer 

3 1 First integer 

3 0 0 9 Sum 

The first digit pair is 1 and 8, and it assumes a previous 
carry of O; therefore, the first table is used to obtain the 
sum 09. The 9 in the sum becomes the units digit in the 
fmal result, and the 0 becomes the carry for the second 
digit pair. 

The second digit pair is 3 and 7, and its sum (10) is 
obtained from the first table. The 0 in this sum becomes 
the tens digit in the final result, and the 1 becomes the 
carry for the third digit pair. 

At this point, all digits have been used in the first in
teger; therefore, zeros are assumed in the remaining posi
tions until the fmal result is obtained. The third digit pair, 
then, is 0 and 9, and its associated sum (10) is obtained 
from the second table, since the previous carry is 1. The 0 
in this sum forms the hundreds digit of the final result, and 
the 1 is carried to the next position. 

The fourth digit pair is 0 and 2, and its associated sum 
{03) is obtained from the second table. The 3 in this sum 
becomes the leftmost digit in the final result, which is 
3009. 

ADD _INT combines the tables in Figure 2.41B into 
one three-dimensional array. It is then possible to use the 
two digits being added and the carry digit as subscript 
values in references to the associated sum in the array. The 
sums are also arranged as structures in the array, so that 
the units and tens digits of each sum can be referred to 
separately. 

The aggregate total is contained in the list named SUM. 
The advantage of using data lists in this application is 

that they do not impose a specific maximum length on the 
integers being added. As long as the combined lengths of 
the two integers do not exceed available list storage, they 
can have any individual lengths. 

Subtracting Variable-Length Integers 

Figures 2.42A and 2.42B present the SUB_INT subroutine 
procedure, which subtracts two variable-length integers in 
list form. The length of each integer is arbitrary and is 
limited only by available storage. The integers need not 
have equal lengths. 



SUB_INTI 

DECLARE 

PROCEDURECSUBTRAHEND, MINUfND, 
DIFFERENCE,; 

CBORROW, DIGITl, DIGIT2t 
CHARACTER Cl,, 
(SUBTRAHEND, MINUEND, DIFFERENCEt 
POINTER, 
1 DIFFERENCE_TABLECO:l,0:9,0:9,, 
Z TENS CHARACTERCl,, 
Z UNITS CHARACTERCltr 
OIFFERENCES_AND_BORROWED_DIGITS 
CHARACTERC400• 
DEFINED DIFFERENCE_TABLE; 
I* INITIALIZE DIFFERENCE_TABLE. •I 
DIFFERENCES_AND_BORROWED_DIGITS • 

'00191817161514131211' 
11 •01001918171615141312 1 

11 •02010019181716151413' 
11 •03020100191B17161514' 
11 •04030201001918171615' 

1 05040302010019181716 1 

'06050403020100191Bl7' 
1 07060504030201001918 1 

1 08070605040302010019 1 

'09080706050403020100 1 

1 19181716151413121110 1 

1 00191817161514131211' 
1 01001918171615141312 1 

1 02010019181716151413 1 

1 03020100191817161514 1 

1 04030201001918171615 1 

1 05040302010019181716 1 

1 06050403020100191817 1 

'07060504030201001918 1 

1 08070605040302010019 1 ; 

I* CLEAR DIFFERENCE AND BORROW •/ 
DIFFERENCE • NULL: 
BORROW '"' 1 0•; 
I• TEST FOR NULL LISTS •I 
If CISUBTRAHEND • NULLJ & 
(MINUEND = NULLtJ 
THEN DO; 
CALL INSERT_FDCDIFFERENCE,•o••: 
RETURN; 
END; 
IF SUBTRAHEND • NULL 
THEN DO; 

Figure 2.42A. Subtracting variable-length integers 

DIFFERENCE • MINUEND; 
RETURN; 
END; 
I* ENTER LOOP THAT COMPUTES 
DIFFERENCE OF SUBTRAHEND AND 
MINUEND. •I 

LOOP: 
00 WHILECISUBTRAHEND~•NULLJ I 
IMINUENO ~· NULL)J; 
I* REMOVE RIGHTMOST DIGITS OF 
SUBTRAHEND AND MINUEND AND ASSIGN 
THEM TO DIGITl AND DIGIT2. *I 
OIGITl • REMOVE_LDCSUBTRAHENDI; 

IF 
IOIGITl • I I J 

THEN 

THEN 

OIGITl • 1 0 1 ; 

OIGIT2 • REMOVE_LDCMINUENO); 
If 

IDIGIT2 • I I J 

OIGIT2 • 1 0 1 1 
I* OBTAIN UNITS DIGIT FROM THE 
DIFFERENCE Of DIGIT2 ANO THE SUM Of 
OIGITl AND BORROWI 
AND INSERT UNITS DIGIT IN THE 
FIRST POSITION Of DIFFERENCE LIST. *I 
CALL INSERT_FDCDIFFERENCE, UNITS 
&BORROW, DIGIT2, DIGITllll 
I* SET BORROW EQUAL TO TENS DIGIT 
FROM THE DIFFERENCE Of DIGIT2 AND 
THE SUM Of DIGITl AND BORROW. */ 
BORROW • TENSCBORROW, OIGIT2, 
DIGITl 11 

END LOOP; 
I* REMOVE LEADING lEROS FROM 
DIFFERENCE LIST •I 

lEROS2 

ENO 

IF CGET_FOCDIFFERENCEI • '0'1 
THEN DO; 
CALL OELETE_FDCOIFFERENCEll 
GO TO ZEROS; 
ENO; 
I• IF OIFFERENCE•NUlL, INSERT 0 •I 
If DIFFERENCE • NULL 
THEN CALL INSERT_FOCOIFFERENCE,•0•1; 

SUB_ INT; 

83 



SUBTRAHEND 

0 1 2 3 4 5 6 7 8 9 

0 00 19 18 17 16 15 14 13 12 11 

M 1 01 00 19 18 17 16 15 14 13 12 

I 2 02 01 00 19 18 17 16 15 14 13 

N 3 03 02 01 00 19 18 17 16 15 14 

u 4 04 03 02 01 00 19 18 17 16 15 

E 5 05 04 03 02 01 00 19 18 17 16 

N 6 06 05 04 03 02 01 00 19 18 17 

D 7 07 06 05 04 03 02 01 00 19 18 

8 08 07 06 05 04 03 02 01 00 19 

9 09 08 07 06 05 04 03 02 01 00 

Differences of digits when previous borrow is zero 

SUBTRAHEND 

0 1 2 3 4 5 6 7 8 9 

0 19 18 17 16 15 14 13 12 11 10 

M 1 00 19 18 17 16 15 14 13 12 11 

I 2 01 00 19 18 17 16 15 14 13 12 

N 3 02 01 00 19 18 17 16 15 14 13 

u 4 03 02 01 00 19 18 17 16 15 14 

E 5 04 03 02 01 00 19 18 17 16 15 

N 6 05 04 03 02 01 00 19 18 17 16 

D 7 06 05 04 03 02 01 00 19 18 17 

8 07 06 05 04 03 02 01 00 19 18 

9 08 07 06 05 04 03 02 01 00 19 

Differences of digits when previous borrow is one 

Figure 2.42B. Tables for the differences of two digits with and 
without a previous borrow 

SUB_ INT assumes that the argument lists contain only 
numeric characters (signs and decimal points are not per
mitted). The integer in the first argument list (the subtra
hend) is subtracted from the integer in the second 
argument list (the minuend). The value of the subtrahend 
must not exceed the value of the minuend. The third argu
ment receives the result list. 

The procedure uses a table lookup technique to sub
tract the two integers digit by digit from right to left. 
Figure 2.42B contains illustrations of the tables used by 
SUB_INT. The first table gives the differences of digit 
pairs when no borrow was required by the previous digit 
pair to the right. The entries in the second table account 
for a borrow of one by the previous digit pair to the right. 
The difference of the rightmost digits in the two integers 
always assumes a previous borrow of zero. 

84 

The digit in the tens position of a table entry specifies 
the amount borrowed from the minuend digit on the left 
to obtain the difference of two digits. This difference 
appears as the units digit in the table entry. 

The following example shows how the tables are used: 

1 1 0 0 Borrowed digits 

3 0 0 9 Minuend 

3 Subtrahend 

2 9 7 8 Difference 

The first digit pair is 1 and 9, and it assumes a previous 
borrow of O; therefore, the first table is used to obtain the 
associated entry 08. The 8 in this entry becomes the units 
digit in the final result, and the 0 specifies the amount 
borrowed from the minuend digit on the left. 

The second digit pair is 3 and 0, and its associated entry 
(17) is obtained from the first table. The 7 in this entry 
becomes the tens digit in the final result, and the 1 speci
fies the amount borrowed. 

At this point, all digits have been used in the subtra
hend; therefore, zeros are assumed in the remaining posi
tions of the subtrahend until the final result is obtained. 
The third digit pair, then, is 0 and 0, and its associated 
entry (19) is obtained from the second table, since the 
previous borrow is 1. The 9 in this entry becomes the 
hundreds digit of the final result, and the 1 specifies the 
amount borrowed. 

The fourth digit pair is 0 and 3, and its associated entry 
(02) is obtained from the second table. The 2 in this entry 
becomes the leftmost digit in the final result, which is 
2978. 

SUB_INT combines the tables in Figure 2.42B into one 
three-dimensional array. It is then possible to use the 
two digits being subtracted and the previously borrowed 
digit as subscript values in references to the associated 
entry in the array. The entries are also arranged as struc
tures in the array, so that the units and tens digits of each 
entry can be referred to separately. 

Gathering Declare Statements in a Procedure 

So far the applications in this section have been developed 
in subroutine form. As a result, the subroutines have as
sumed the existence of a list of available storage com
ponents. The present application is developed as a 
complete program, which generates a list of available stor
age components for list-processing techniques within the 
program. 

Figure 2.43 presents the DGATHER program, which 
gathers the DECLARE statements in a PL/I procedure so 
that they appear as a single DECLARE statement at the 
front of the procedure. 



DGATHERI 
PROCEDURE; 

DECLARE 
SPACE AREAl327671t 
IDECLARE_LIST, NEW_DECLARE, 
MARGIN, PROCEDURE, AVAIL EXTERNAL, 
SAVE_LISTI POINTER, 
CAROl801 CHARACTERlllt 
C CHARACTER 111 t 
DECLARE_STRING CHARACTERl91t 
DECLARE_TABLEl41 CHARACTERC91t 
ISTRING_SWITCHt COMMENT_SWITCHt 
FINISH_SWITCHI 
BITlll INITIAL l'O'Blt 
IN 1 I,FIRST_SEMICOLON,PROCEOURE_SIZEI 
FIXED DECIMALC51 INITIALIOll 
I• AT THE ENO OF THE SYSIN FILE, 
COMPUTE THE SIZE OF THE PROCEDURE 
LIST ANO GO TO SCAN. •I 
ON ENOFILEISYSINI 

BEGIN; 

ENO; 

PROCEOURE_SIZE • SIZEIPROCEDUREI; 
GO TO 

SCAN; 

I* INITIALIZE. •I 
AVAIL, MARGIN, PROCEDURE, 
DECLARE_LI ST, 
NEW_DECLARE, SAVE_LIST • NULL; 
CALL AREA_OPENCSPACE,AVAILI; 
OECLARE_TABLElll • •;DECLARE •; 
DECLARE_TABLEl21 • •;OECLAREI•; 
DECLARE_TABLEl31 • 1 DECLARE •; 
DECLARE_TABLEl41 • 1 DECLARE('; 
CALL STRING_TO_LISTl 1 0ECLARE '• 
NEW_OECLAREI; 
I• READ INPUT CARDS. FOR EACH CARO, 
INSERT COLUMNS l AND 73 THROUGH 80 
AT END OF MARGIN LIST, ANO 
COLUMNS 2 THROUGH 72 AT END OF 
PROCEDURE LIST. •I 

INPUT: 

DO 

END; 
00 

END; 

GET 
EOIT CCARDI (80 Allll; 
CALL INSERT_LDIMARGIN, CARDClll; 

N = 2 TO 72; 
CALL INSERT_LDCPROCEDURE,CAROINIJ; 

N = 73 TO 80; 
CALL INSERT_LDIMARGIN, CARDINJJ; 

GO TO 
INPUT; 
I• SCAN PROCEDURE LIST FOR DECLARE 
STATEMENTS. *I 

SCAN: 
00 

N = l TO PROCEDURE_SIZE; 
I• GET NEXT CHARACTER ANO TEST IT. *I 
C = GET_NDIPROCEDURE, NJ; 

IF 
IC•""l 

THEN 
GO TO 

STRING_ TEST; 
IF 

IC•'/'I 

Figure 2.43. Gathering declare statements 

THEN 
GO TO 

COMMENT_TEST; 
IF 

STRING_SWITCH 
THEN 

GO TO 
END_SCAN; 

IF 
COMMENT_SWITCH 

THEN 
GO TO 

END_ SCAN; 
IF 

IFIRST_SEMICOLON • 0) 
THEN 

IF 
IC• •;I) 

THEN 
FIRST_SEMICOLON • N; 
I• TEST FOR DECLARE STATEMENT. •I 

FINO_DECLARE: 

00 

CALL ASSIGN_SUBIDECLARE_LIST, 
PROCEDURE, N, 9); 
CALL LIST_TO_STRINGIDECLARE_LIST1 
OECLARE_STRINGJ; 

I • l TO 4; 
IF 

IDECLARE_STRING • OECLARE_TABLECll) 
THEN 

DO; 
I• REPLACE KEYWORD DECLARE WITH BLANKS *I 
DO N • N + l TO N + 7; 

END; 
END; 

CALL REPLACE_NDCPROCEDURE,N, 1 1 1; 
END; 

GO TO 
PROCESS_DECLARE; 

GO TO 
END_ SCAN; 
I* PROCESS DECLARE STATEMENT. *I 

PROCESS_DECLARF: 
I* IN\IRI l'lllhRI ',fi\lli"INI 
WIHHHll 1\1 Ykllllll flt rt 111!1 h"Jfl 
TFRl'llllthllM~ 'd Mlllll 11111 hi 11\111 llF 
NfW_lll Cl hRI l I \J. •I 
11!1 Ill = Ill 1• Y I ; 
C = (;t T_lltl'C l'RllCI llllRI olltl; 
IF C -.= • ;• lltl Ill flll; 
CALL llltSIRl_lllCNfW_IHCLARr,CI; 
CALL RIPLhCl_NlllPROCl!llJRf" 1 N1 1 •); 

fl\ID; 
HSF 011; 
CALL INSfRT_LDClltfW_OFCLARE,•,•); 
CALL RFPLACF_NOC PROCEOIJRF,llt, • t); 
N ., N - l; 
GO TO ENO_SCAlll; 
END; 
END PROCESS_DECLARE; 
I* TEST FCR START OR END OF 
STRING. *I 

STRING_ TEST: 
IF 

STR ING_SW ITCH 
THEN 

IF 
CGET_NOCPROCEDURE, N + 1) = '''') 

85 



THEN 
N • N + 1; 

ELSE 
STRING_SWITCH • •o•e; 

ELSE 
STRING_SWITCH • 1 11 8; 

GO TO 
ENO_SCAN; 
I* TEST FOR START OR END OF 
COMMENT. •I 

COMMENT_TEST: 
IF 

COMMENT _S •H TCH 
THEN 

IF 
GET_NOCPROCEOURE,N-lt •'*' 

THEN 
COMMENT_SWITCH • •o•e; 

ELSE; 
ELSE 

IF 
GET_NDCPROCEOURE, N + lt • '*' 

THEN 
DO; 

COMMENT_SWITCH • 1 1 1 8; 
N•N+l; 

ENO; 
END_SCAN: 
END 

SCAN; 
I• TERMINATE NEW_DECLARE LIST 
WITH A SEMICOLON *I 
CALL REPLACE_LDCNEW_DECLARE,•;•t; 
I• RECONSTRUCT ORIGINAL PROCEDURE 
AND PLACE NEW_DECLARE LIST BEHIND 
LEADING PROCEDURE STATEMENT. *I 
I* SPLIT PROCEDURE LIST AFTER FIRST 
SEMICOLON. *I 
CALL SPLITCPROCEDURE, 
FIRST_SEMICDLON + lt SAVE_LISTI; 

PUT 
PAGE; 
I* PRINT MERGED PROCEDURE AND 
MARGIN LISTS. •I 

OUTPUTl: 

DO 

ENO; 
DO 

C • REMOVE_FDCMARGINJ; 
PUT 

EDITCCJ CACI tt; 

N • 1 TO 71; 
C • REMOVE_FDCPROCEDUREt; 

PUT 
EDITCCJCACltt; 

N • 1 TD B; 
C • REMOVE_FDCMARGINJ; 

PUT 
EDITCCJCACltt; 

Figure 2.43. Gathering declare statement (Continued) 

86 

END; 
PUT 

SKIP; 
IF 

CPROCEDURE~•NULLt 
THEN 

GO TO 
DUTPUTl; 
I• IF FINISH_SWITCH IS ONE, GO TO 
END_DCL_GATHER. *I 

IF 
Ft"ISH_SWITCH 

THEN 
GO TO 

END_DCL_GATHER; 
I• PRINT NEW_OECLARE LIST WITH BLANK 
MARGINS. *I 

DUTPUT2: 
PUT 

DO 

ENO; 

EDITC 1 1 JCACltt; 

N • 1 TO 71; 
C • REMOVE_FDCNEW_OECLAREt; 

PUT 

PUT 

ED IT CC t CA Cl t t ; 

SKIP; 
IF 

CNEW_OECLARE~•NULLI 
THEN 

DD 

END; 

GO TO 
OUTPUT2; 

PUT 

I* LINK REMAINDER OF PROCEDUaE IN 
SAYE_LISt TO PROCEOURE_LIST. •I 
CALL LINKCPROCEOURE, SAVE_LISTI; 
I• POSIT.ON REMAINDER OF PROCEDURE 
SO THAT ORIGINAL FORMAT IS NOT 
DISTURBED. •I 
I • MODCFIRST_SEMICOLON, 111 + l; 

EDIT(' 1 1CCOLUMNCl1t AClll& 

N • 1 TO 171-11; 
C • REMOVE_FDCPROCEDUREI; 

PUT 
EDIT CCI CACltl; 

PUT 
SKIP; 
I• TURN FINISH_SWITCH ON, ANO 
CONTINUE PRINTING REMAINDER OF 
PROCEDURE_LIST AT OUTPUll. •I 
FINISH_SWITCH • 'l'B; 

GD TO 
OUTPUTl; 

END_DCL_GATHER t 
END 

DGATHER; 



DGATHER obtains the procedure from the standard 
system-input file (SYSIN), gathers the DECLARE state
ments at the front of the procedure, and prints the pro
cedure on the standard system-output file (SYSPRINT). 
As a simplification, DGATHER does not permit other 
procedures or begin blocks to appear in the procedure 
being processed. The number of DECLARE statements in 
the procedure is arbitrary, and they may appear anywhere 
within the procedure. 

The major processing steps performed by DGATHER 
are to: 

1. Generate the list of available storage components, 
AVAIL, in the area called SPACE 

2. Obtain successive input cards and insert column 1 
and columns 73 through 80 into the MARGIN list and 
columns 2 through 72 into the PROCEDURE list 

3. Search for DECLARE statements and form a 
NEW _DECLARE list; skip character strings and PL/I 
comments when searching for DECLARE statements 

4. Remove all DECLARE statements from the pro-
cedure and insert the NEW _DECLARE list behind the 
leading PROCEDURE statement 

5. Print the procedure, maintaining as much of the orig
inal format as possible 

STORAGE_AREA 

L1: 

L2: 

AVAIL: 

These steps provide an elementary illustration of how 
list-processing techniques can be used by a compiler to re• 
organize and analyze a source program before it it trans
lated into an object program. 

Note: All of the sample programs in Chapter 2 were 
internal to a single containing procedure. Each entry name 
was declared in the containing procedure. 

REVIEW OF SIMPLE DATA LISTS 

Chapter 2 shows how to generate allocations of based stor
age throughout an area and how to link such allocations 
into a list of available storage components (see AVAIL in 
Figure 2.44). It also shows how to develop subroutines and 
functions that use available storage components to form 
new lists. The subroutines and functions are developed in 
hierarchical fashion so that routines concerned with the 
primitive aspects of storage manipulation can be used in 
turn to create higher level procedures. This approach limits 
the number of procedures that deal with environmental 
factors and permits the complete collection of subroutines 
and functions to possess an application-oriented emphasis. 

Figure 2.44. Simple data lists linked within an area 

87 



The main advantage of simple data lists over array and 
structure organizations is that lists need reserve only the 
storage they are currently using. As a list grows, new stor
age is obtained from the list of available storage com
ponents. Similarly, when list components become free, 
they are returned (relinked) to the list of available storage 
components. As a result, the same storage can be used by 
many different lists during the course of program execu
tion. Sharing storage in this manner reduces the amount of 
storage that might lie dormant within a list in anticipation 
of maximum storage requirements for the list. 

88 

SUMMARY 

I. Chapter 2 shows how to organize and process simple 
data lists in which each component contains a single data 
character. 

2. Representative subroutines and functions are pre-
sented for the following types of operations: 

a. Creating a list of available storage components 
b. Manipulating the elements of list components 
c. Manipulating list components 
d. Manipulating sublists and lists 
e. Manipulating lists recursively 

3. Primitive subroutines and functions are developed 
first and are used in turn to create higher level procedures. 



Chapter 3: Complex Data Lists 

This chapter shows how the simple list organization of 
Chapter 2 may be extended to obtain more general types 
of data lists. These extensions fall into three categories, 
which involve: 

1. Using other types of data in list components besides 
single characters 

2. Storing descriptive information about a list in the 
head of the list 

3. Using additional pointer elements to obtain alterna
tive orderings of list components besides a simple linear 
ordering 

The types of lists produced by these extensions are re
ferred to collectively as complex data lists to distinguish 
them from the simple list organization presented in Chap
ter 2. No attempt is made, however, at developing a col
lection of subroutines and functions that organize and 
process complex lists. The intent of this chapter is to 
indicate how the techniques of the previous chapter may 
be applied to more general list organizations. 

MORE GENERAL DATA IN LIST COMPONENTS 

An elementary extension that can be made to simple list 
organization involves replacing the single-character ele
ments of list components with more general types of data. 
As Figure 3.1 illustrates, data of any type and precision 
may appear in list components. Even arrays and structures 
are permitted. List-processing techniques, as a result, can 
be applied to numeric as well as nonnumeric data, and to 
data collections such as tables, records, and reports. 

Many of the procedures developed in Chapter 2 still 
apply to lists that contain more general types of data. 
Figure 3.2, for example, shows how a list of available stor
age components may be created for lists that contain ar
rays of structures. Except for differences in the declara
tions of the list components, this procedure is identical to 
the corresponding procedure in Figure 2.lB. 

It is also possible to use the compile-time facilities of 
PL/I to simplify the creation of list-processing procedures 
for new types of data in list components. Figure 3.3 shows 
how a general version of the AREA_ OPEN procedure may 
be created for different list components. The procedure 
contains two compile-time statements. The first statement 
(%DECLARE) defines the identifier LIST_COMPONENT 
to be a compile-time character-string variable. The second 
statement is a compile-time assignment statement that 
assigns a character-string value to LIST_ COMPONENT. 

These two statements cause the PL/I compiler to 
modify the text of AREA_ OPEN before its machine
language equivalent is generated. Each appearance of the 
identifier LIST_ COMPONENT in AREA_ OPEN is re
placed with the value of the identifier. Since the value of 
LIST_ COMPONENT in this example is identical to the 
component declaration used throughout Chapter 2, Figure 
3.3 is equivalent to the AREA_ OPEN procedure in Figure 
2.lB. 

Assigning a different component declaration as the 
value of LIST_ COMPONENT would produce a corre
sponding change in the AREA_ OPEN procedure and avoid 
the need for separate copies of the subroutine. 

Similar use of compile-time statements can be applied 
to other list-processing procedures, but some function 
procedures may require extensive modification or com
plete replacement by equivalent subroutine procedures. 
For example, a function procedure cannot return the value 
of a data item that is not an element item. Consequently, a 
list-processing function such as GET_ ND, which gets the 
data item in the nth component of a data list, cannot re
turn the specified data item when it is either an array or a 
structure. Retrieval of the array or structure would have to 
be made with a subroutine that uses a parameter to return 
the desired item. 

Other compile-time statements can be used to choose 
among alternative versions of procedures stored in a list
processing library. 

An introductory presentation of the compile-time facili
ties and their applications appear in the IBM publication 

An Introduction to the Compile-Time Facilities of PL/I 
(SC20-1689). 

DESCRIPTIVE DATA IN LIST HEADS 

A further generalization of list organization involves the 
head of a list, which so far has been restricted to a pointer 
variable that specifies the address of the first list com
ponent. The head of a list can be enlarged, however, so 
that it contains descriptive information about the list be
sides the location of its first component. 

The size of a list, for example, need not be computed 
each time it is requested. The size can be stored in the 
head of the list, where it is readily obtained by direct refer
ence. With this convention, procedures that insert or delete 
list components would automatically adjust the size value 
in the head. 

89 



\0 
0 

Component Declaration 

COMPONENT BASED(Pl, 

2 DATA FIXED DECIMAL(5l, 

2 POINTER POINTER 

COMPONENT BASED(P), 

2 DATA(3) FIXED DECIMAL(5). 

2 POINTER POINTER 

COMPONENT BASED(P), 

2 DATA, 

3 PART# PICTURE 'AXA', 

3 QUANTITY FIXED DECIMAL(2), 

2 POINTER POINTER 

COMPONENT BASED(P), 

2 DATA(2), 

3 VOLUME FIXED DECIMAL(3), 

3 COST FIXED DECIMAL(2), 

2 POINTER POINTER 

Example of Data List 

u = D--1 79064 I ~ -18923 I 1--.i -80901 I 1--..i 14163 N 

L2: -92162 
08143 
21169 

Fixed-point decimal items in a data list 

-38746 00001 
-21171 99990 
-88909 14516 

Arrays in a data list 

28909 
-75092 

17086 

L3: ~ I ~ C2F I r.IFIMK I r+IB:T I i-.liP N 
[ii] ~ G&J G&J LiiJ 

Structures in a data list 

L4: 900 700 300 
75 60 25 

800 500 100 

Arrays of structures in a data Ii st 

Figure 3.1. Examples of data lists with different types of components 



AREA_OPEN2: 
PROCEOURElAREA2tLIST•; 

DECLARE 
AREA2 AREAl••• 
(LIST, T• POINTER, 
1 COMPONENT2 8ASEDlP,, 
2 DATA CHARACTERll,, 
2 VOLUME FIXED OECIMALl3,, 
2 COST FIXED DECIMALl2,, 
2 POINTER POINTER; 
ON AREA 

BEGIN; 

ENO; 

IF 
P-.•NULL 

THEN 
P->POINTER • NULL; 

GO TO 
ENO_ARE A_OPEN2; 

P • NULL; 
ALLOCATE COMPONENT2 INlAREA2,SETlP•; 
LIST • P; 

T • P; 
ALLOCATE COMPONENT2 INlAREA2tSETlPt; 
T->POINTER • P; 

GO TO 
L; 

END_AREA_OPEN2: 
END 

AREA_OPEN2; 

Figure 3.2 Linking components 

SDECLARE LIST_COMPONENT CHARACTER; 
SLIST_COMPONENT • 1 1 COMPONENT 
BASEDCPJr 
2 DATA CHARACTERClJr 
2 POINTER POINTER'S 

AREA_OPEN3: 
PROCEDURECAREA3rLISTJ; 

DECLARE 
AREA3 AREAC•J, 
CLISTr TJ POINTER, 
LI ST_COMPONENT; 
ON AREA 

BEGIN; 

END; 

IF 
P-.•NULL 

THEN 
P->POINTER • NULL; 

GO TO 
END_AREA_OPEN3; 

P • NULL; 
ALLOCATE COMPONENT INCAREA3J SETCPJ; 
LIST • P; 

T • P; 
ALLOCATE COMPONENT INCAREA3, SETCPJ; 
T->POINTER • P; 

GO TO 
L; 

END_AREA_OPEN3: 
END 

AREA_OPEN3; 

Figure 3.3. Using compile-time statements to specify the structure 
of list components 

A possible organization for this type of list head ap
pears in the structure declaration: 

1 LIST, 

2 SIZE FIXED DECIMAL(S), 

2 BODY POINTER 

The identifier LIST serves as the name of the list, and the 
pointer BODY specifies the address of the first component 
in the body of the list. The value of SIZE represents the 
number of components in the list. For an empty list, 
BODY is null, and SIZE has a zero value. 

The DELETE_ND subroutine in Figure 3.4A provides 
an example of a procedure that processes data lists with 
this type of head. The subroutine is similar to the pro
cedure given in Figure 2. l 2B, except that the head of the 
list being processed is a data structure and not a pointer 
element. When a data item is deleted, the size value in the 
list head is decreased by one. Similarly, because the de
leted component is inserted into the list of available stor
age components, AV AIL, the size value in the head of 
AVAIL is increased by one. Figure 3.4B contains examples 
of references to DELETE_ND. 

Observe that DELETE_ND uses two other list
processing procedures: ADDRESS_ N2 and 
SET_POINTER. ADDRESS_N2 (Figure 3.4C) resembles 
the ADDRESS_N procedure in Chapter 2. The two ver
sions cannot be the same, however, because they process 
lists with different types of heads. The same 
SET _POINTER routine is used, since it is not concerned 
with list heads and assumes similar organizations for list 
components. 

The organization of a list head can be as complicated as 
desired so that a wide variety of information can be stored 
in the head, such as: 

1. Maximum size achieved by the list 
2. Number of references made to the list 
3. Name of the list (for output identification) 
4. Who has access to the list 
5. When the list was last processed 

In many respects, an expanded list head resembles the 
label record used for identification and protection pur
poses at the front of many data files. The one essential 
item that the list head must contain, however, is the ad
dress of the first list component. 

91 



DEL ET E_NDZ: END; 
PROCEDURECLIST_HEAD,Nt; 

DECLARE 
I• OBTAIN ADDRESS OF N-TH 
COMPONENT. •I 

N FIXED DECIMALf5f, 
(AODRESSI, AOORESSZ, ADDRESS3J 
POINTER, 
1 LIST_HEAO, 
Z SIZE FIXED DECIMAL(5J, 
Z BOOY POINTER, 
1 AVAIL_HEAO EXTERNAL, 
Z SIZE FIXED DECIMAL(5,, 
Z BODY POINTER; 
I• IF LIST_HEAD IS EMPTY OR N IS 
LESS THAN 1, THEN RETURN. •I 

IF 
(LJST_HEAD.SIZE • Of I fN<lf 

THEN 
RETURN; 
I• DELETE FIRST COMPONENT WHEN 
N • 1. •I 

IF 
N • l 

THEN 

ADDRESS2 = ADDRESS_N21LIST_HEAD,N,; 
IF 

ADDRESS2 = NULL 
THEN 

RETURN; 
ADDRESSl = ADDRESS_N2 
ILIST_HEAD, N - lJ; 
ADDRESS3 = ADDRESS_N2 
(LIST_HEAD, N + l,; 
I• DELETE N-TH COMPONENT AND 
DECREASE LIST_HEAD.SIZE BY 1. •I 
CALL SET_POINTERfAODRESSl, 
ADDRESS3J; 
LIST_HEAD.SIZE = LIST_HEAD.SIZE - l; 
I• INSERT DELETED COMPONENT INTO 
LIST OF AVAILABLE STORAGE 
COMPONENTS AND INCREASE 
AVAIL_HEAD_SIZE BY 1. •I 

DO; 
AODRESSl = AVAIL_HEAD.BODY; 
AVAIL_HEAD.BODY = AODRESS2; 

ADDRESS2 • LIST_HEAD.BODY; 
LIST_HEAO.BODY • ADDRESS_N2 
ILIST_HEAD,2J; 

GO TO 
L; 

END 

CALL SET_POINTERfAVAIL_HEAD.BODY, 
ADDRESSU; 
AVAIL_HEAD.SIZE = AVAIL_HEAD.SIZE+l; 

DELETE_ND2; 

Figure 3.4A. Deleting the data item in the nth position of a data list, the size of which is stored in the list head 

Data List Subroutine Data List 
(before reference) Reference (after reference) 

~ L1: 00003 DELETE - ND(L1,2) L1: 

L2: ~ DELETE_ND(L2,1) L2: I 00000 N 
L3: 00000 t\I DELETE _ND(L3,1) L3: I 00000 ISJ 
L4: 00003 DELETE ND(L4.4) L4: 00003 -

Figure 3.4B. Examples showing how size values in list heads are changed when data items are deleted 

92 

ADDRESS_N2:PROCEDURE(LJST_HEAD, NJ 
RETURNS (POJNTERJ; 

DECLARE 

IF 

1 LI ST_HEAD, 
2 SIZE FIXED DECIMAL(5J, 
2 BODY POINTER, 
N FIXED DECIMAL(5J, 
1 COMPONENT BASEDCADDRESSJ, 
2 DATA CHARACTERClJ, 
2 POINTER POINTER; 

(LIST_HEAD.SIZE • OJ I (N < 1) 

THEN 

DO 

IF 

IF 

RETURN (NULL JI 
ADDRESS • LIST_HEAD.BODY; 

I • l BY 11 

(ADDRESS->POINTER•NULLl&II~•NJ 
THEN RETURN INULL)I 

I • N 
THEN RETURNIADDRESSJ; 
ADDRESS • ADDRESS->POINTER; 

END; 
END ADDRESS_N2; 

Figure 3.4C. Obtaining the address of the nth component in a list, as used by DELETE_ ND2 



ALTERNATIVE METHODS FOR LINKING LIST 
COMPONENTS 

Using more than one pointer element in each list com
ponent permits the components to possess a more complex 
ordering than the simple linear ordering developed so far. 
The following discussions show how additional pointer 
elements may be used to create three general categories of 
lists with complex orderings: 

1. Two-way lists 
2. Circular lists 
3. Multidirectional lists 

Two-Way Lists 

The components of a two-way list are linked in both a 
forward and a backward direction, as illustrated by Figure 
3.5A. Each component contains two pointer elements: one 
for forward linking and the other for backward linking. 
The forward pointer contains the address of the next com
ponent in the list; the backward pointer contains the ad
dress of the previous component. The forward pointer of 
the last component and the backward pointer of the first 
component both contain null address values. 

Although the pointers in the diagram of Figure 3.5A 
point to other pointer elements, it should be understood 
that the pointers always contain the addresses of entire list 
components and not the addresses of elements within the 
components. 

This point is further illustrated by the subroutine pro
cedure FORM TWO WAY in Figure 3.5B, which forms 
the two-way Ii; show~ in Figure 3.5A. As a simplification, 

Component Declaration 

the procedure uses a storage area having external scope and 
assumes that the area contains sufficient storage for an
other list. 

With appropriate modifications, the techniques de
veloped in Chapter 2 can also be applied to this type of 
list. 

The major advantage of a two-way list is that it permits 
scanning operations to be performed with equal efficiency 
in both a forward and a backward direction. In many list
processing applications, it is necessary to stop at a certain 
position in a list and to process earlier portions of the list. 
To reach the earlier portions in a one-way list, a procedure 
must scan through the list from the beginning. Such scan
ning increases program running time, particularly when the 
portions being sought are not at the front of the list. In a 
two-way list, the desired position can be reached by back
ing through the list. 

For example, in a text-editing program that uses list
processing techniques, it might be necessary to delete the 
first sentence of all paragraphs that end with a specified 
word. Such a program would scan to the end of each para
graph before determining whether the first sentence was to 
be deleted. With the text arranged in a two-way list, it 
would generally be more efficient to move backwards from 
the end of a paragraph than to come through the entire 
text to the beginning of the paragraph. 

Similar considerations apply to arithmetic expressions 
that contain nested subexpressions. Scanning such expres
sions by list-processing techniques generally requires fre
quent repositioning in forward and backward directions as 
subexpressions are processed. 

Example of Data List 

1 COMPONENT2W BASED(P), FORWARD: 

~ 2 FORWARD_POINTER POINTER, 

2 DATA CHARACTER(1 ), 

2 BACKWARD_POINTER POINTER BACKWARD: 

Figure 3.SA. Example of a two-way data list 

93 



FORM_TWO_WAY: 

DECLARE 

DO 

END; 

END 

PROCEDURECFORWARDt BACKWARD>; 

AREA2W AREA EXTERNAL, 
(FORWARD, BACKWARD,T) POINTER, 
TABLEC6) CHARACTERCl) 
INITIALC•A•, 'B', •c•, 1 D1 t •E•, 
'F')' 
1 COMPONENT2W BASEDCP), 
2 FORWARD_POINTER POINTER, 
2 DATA CHARACTER(!), 
2 BACKWARD_POINTER POINTER; 
I* ALLOCATE FIRST LIST COMPONENT, 
AND LINK IT TO LIST HEAD. *I 
ALLOCATE COMPONENT2W 
IN CAREA2W) SETCP); 
FORWARD s P; 
P->DATA • TABLE(l); 
P->BACKWARD_POINTER = NULL; 
I* ALLOCATE REMAINING FIVE 
COMPONENTS, AND LINK All COMPONENTS 
IN FORWARD AND BACKWARD DIRECTION. */ 

I = 2 TO 6; 
T = P; 
ALLOCATE COMPONENT2W 
IN CAREA2W) SETCP); 
T->FORWARD_POINTER = P; 
P->DATA • TABLE(!); 
P->BACKWARD_POINTER = T; 

P->FORWARD_POINTER • NULL; 
BACKWARD = P; 

FORM_TWO_WAY; 

Figure 3.SB. Forming a two-way list 

L1: 

Circular Lists 

A circular list is obtained by linking the last component of 
a one-way list to the first component. Similar linking, 
when applied to a two-way list, produces a two-way circu
lar list, as shown in Figure 3.6A. 

Subroutine procedure FORM_ TWO_ WAY_ CIR
CULAR in Figure 3.6B forms the two-way circular list 
illustrated in Figure 3.6A. The subroutine uses an external 
storage area, which is assumed to contain enough free 
storage for another list. When the list is formed, it is linked 
to the list head specified in the invocation of the subrou
tine. 

Circular lists prove useful in applications that perform 
repeated processing of list items. In a time-sharing system, 
for example, each component of a list may contain control 
information for a remote terminal that is requesting com
puter time. Since each terminal receives service for brief 
periods so that no terminal is forced to remain idle very 
long, repeated servicing of the terminals is required until 
each has completed its task. When a terminal becomes 
inactive, its corresponding component is deleted from the 
circular list. Reactivation of a terminal reinserts the as
sociated component into the list. 

Graphic display devices provide another application of 
circular lists. Any data that is displayed on a graphic con
sole must be transmitted continually; otherwise, it will 
fade from the display screen. Placing the display data in a 
circular list provides a convenient way of repeatedly re
trieving and displaying the data until an interrupt condi
tion terminates the display. 

One-way circular list 

L2: 

Two-way circular list 

Figure 3.6A. Examples of circular lists 

94 



FORM_TWO_WAY_CIRCULARt 
PROCEDURECL2)1 

DECLARE 

DO 

END; 

END 

AREAC AREA EXTERNAL, 
CL2t l) POINTER, 
TABLE(~) CHARACTERCll 
INITIALt•w•, •x•, •v•, •z•1, 
l COMPONENTC 8ASED1Plt 
2 FORWARO_POINTER POINTER, 
2 DATA CHARACTER(llt 
2 BACKWARD_POINTER POINTER& 
I• ALLOCATE FIRST LIST COMPONENT, 
AND LINK IT TO LIST HEAD. •I 
ALLOCATE COMPONENTC INIAREAC)SETCPI; 
L2 • P; 
P->DATA • TABLE(l); 
I* ALLOCATE REMAINING THREE 
COMPONENTS, AND LINK ALL COMPONENTS 
IN FORWARD AND BACKWARD 
DIRECTION. *I 

I • 2 TO 4; 
T • P; 
ALLOCATE COMPONENTC INIAREAC)SETIP); 
T->FORWARD_POINTER • P; 
P->DATA • TABLEll); 
P->BACKWARD_POINTER = T; 

I• COMPLETE FORWARD AND BACKWARD 
CIRCULAR LINKS. •I 
P->FORWARD_POINTER = L2; 
L2->BACKWARD_POINTER = P; 

FORM TWO WAY CIRCULAR; 

Figure 3.6B. Forming a two-way circular list 

Component Declaration 

1 COMPONENTH BASED(P), 

2 FORWARD_POINTER POINTER, 

2 DATA CHARACTER(1 ), 

2 HEAD POINTER POINTER 

L1: 

Circular lists also permit more accurate modeling of 
data organizations that contain inherent circularities. Later 
discussions present illustrations of such organizations in 
chemistry, geometry, and the game of chess. 

Note that the circular lists presented in Figure 3.6A do 
not include the list head as part of the circular linkage. As 
Figure 3. 7 A shows, however, the list head can be included 
in the circular linkage. Each component contains a second 
pointer element that points to the list head. This organiza
tion provides each component with quick access to the list 
head. 

An application for this type of list involves the light pen 
on a graphic display device. The light pen can be used to 
refer to a portion of the data on the display screen. If the 
display data is stored within the computer in list form, the 
effect of the light pen is equivalent to selecting a list com
ponent without first determining what list contains the 
component. Storing the address of the list head within 
each component identifies the containing list immediately. 

Subroutine procedure FORM_CIRCU
LAR_TO_HEAD in Figure 3.7B shows how to create the 
list shown in Figure 3.7 A. Observe that this list is actually 
a two-way circular list. The forward linkage does not in
clude the list head, but the backward linkage does. 

Example of Data List 

tmW 
Figure 3. 7 A. Circular list with additional pointer elements that point to the list head 

FORM_CIRCULAR_TO_HEAD: 

DECLARE 
PROCEDURECLlJ; 

AREAH AREA EXTERNAL, 
CLl,ADDRESS_OF_HEAD, Tl POINTER, DO 
TABLE(51 CHARACTER(ll 
INITIAL('l't '~'• '3', ·~•, 1 5 1 1t 
1 COMPONENTH BASEDCPlt 
2 FORWARD_POINTER POINTER, 
2 DATA CHARACTER(!), 
2 HEAD_POINTER POINTER; 
I* OBTAIN ADDRESS OF LIST HEAD. •I END; 
ADDRESS_OF_HEAD • ADDR(Ll); 
I* ALLOCATE AND LINK FIRST LIST 
COM.PONENT. •I END 
ALLOCATE COMPONENTH INCAREAHISET(P); 
Ll = P; 

P->DATA • TABLECl); 
P->HEAD_POINTER • AODRESS_OF_HEAD; 
I* ALLOCATE AND LINK REMAINING FOUR 
COMPONENTS. •I 

I • 2 TO 5; 
T "' P; 
ALLOCATE COMPONENTH INCAREAHISETCPI; 
T->FORWARD_POINTER • P; 
P->DATA • TA8LECII; 
P->HEAD_POINTER • ADDRESS_OF_HEAD; 

I* COMPLETE FORWARD LINK. •I 
P->FORWARD_POINTER • Ll; 

FORM_CIRCULAR_TO_HEAD; 

Figure 3. 7B. Forming a circular list with additional pointer elements that point to the list head 

95 



Multidirectional Lists 

When more than one pointer element is permitted in each 
list component, it is possible for each component to pos
sess more than one immediate predecessor component and 
more than one immediate successor component. The 
multidirectional organization of data lists with such com
ponents serves as a convenient tool for modeling complex 
systems that possess discrete arrangements of their parts. 
Examples of such systems occur in many fields: 

Electrical and communication networks 
Industrial-process scheduling 
PERT and critical path analyses 
Economic and social structures 
Military tactics and logistics 
Switching circuits 
Chemical structures 
Optimization of transportation routes and network 
flows 
Games and puzzles 

The general subject of graph theory provides a mathe
matical foundation for the study of these systems. This 
theory uses circles (or points) interconnected by lines to 
represent the essential organization of a system. In a high
way network, for example, the lines of a graph may repre
sent roads, and circles may denote the points where the 
roads intersect. 

When it is possible to trace a path through a graph and 
return to a previously encountered circle, the graph is said 
to contain a circuit. A graph without circuits is called a 
tree. Examples of both types of graphs appear in Figure 
3.8. 

A special case of a tree graph occurs when each circle 
has at most two immediate successor circles. Such a graph 
is called a binary tree. Figure 3 .9 A shows how a binary 
tree may be used to represent a mathematical expression in 
parentheses ·· free form. The figure also contains a repre
sentation of the binary tree as a data list. Each component 
in the list contains a left pointer and a right pointer, which 
provide the two possible branches from the component. 
This type of list forms a useful feature in many compila
tion techniques. 

The subroutine procedure FORM_BINARY _TREE in 
Figure 3.9B shows how to construct the data list presented 
in Figure 3.9A. In common with the three remaining illus
trations of specialized data lists in this chapter, processing 
of FORM_ BINARY_ TREE has been limited to compila
tion and execution. 

96 

ADVANCED APPLICATIONS OF COMPLEX DATA 
LISTS 

As indicated in the discussion of multidimensional lists, 
the range of possible applications for complex data lists is 
exteneive and easily exceeds the scope of this text. The 
following discussions, therefore, deal with only three ap
plication areas: chemistry, geometry, and the game of 
chess. Since each of these areas is in turn quite broad, no 
attempt is made to develop complete applications. The 
intent of the discussions is to outline some of the ways 
complex list organizations may be used in advanced ap
plications. 

List Representation of Structural Formulas in Chemistry 

Chemistry deals with the structure of matter and its 
changes and uses two types of formulas to describe the 
atomic structure of substances: empirical formulas and 
structural formulas. Examples of empirical formulas for 
common substances are: 

H2 0 -- Water 

C02 -- Carbon Dioxide 

NaCl Sodium Chloride (salt) 

Single or double letters specify atoms: H (hydrogen), 0 
(oxygen), C (carbon), Na (sodium), Cl (chlorine), and S 
(sulfur). Subscripts indicate the number of atoms in a 
molecule (the smallest amount) of a substance. A single 
atom employs no subscript. Therefore, the formula H2 0 
states that a molecule of water contains two hydrogen 
atoms (H2 ) and one oxygen atom (0). 

The formula H2 0 also indicates that an oxygen atom 
has two possible "places of attachment" with other atoms 
and that a hydrogen atom has only one place of attach
ment. In structural formulas these places of attachment are 
made visible by lines, called bonds, which are attached to 
the letter symbol for each atom. 

The top row of Figure 3.10 contains the structural 
formulas for hydrogen (one bond), oxygen (two bonds), 
nitrogen (three bonds), and carbon (four bonds). Other 
atoms have larger numbers of bonds; the maximum is 
seven. 



A graph with circuits 

A graph without circuits (a tree) 

Figure 3.8. Examples of graphs 

97 



Expression: A - (B*((C/DI + (E/F))) 

Expression as a binary tree 

L: 
,----------------, 
I 1 COMPONENTBT BASED(PI, I 
I 2 LEFT POINTER POINTER, I 
I 2 DATA-CHARACTER(1), I l 2 RIGHT_POINTER POINTER : 

L---------~-----J 

Expression as a data I ist 

Figure 3.9A. Representation of a binary tree as a data list 

98 



FORM_BINARY_TREE: 

DECLARE 
PROCEDURE CL I; 

AREA6 AREA EXTERNAL, 
L POINTER, 
(P, Q, R,SI POINTER, 
1 COMPONENTBT BASEO(PI, 
2 LEFT_POINTER POINTER, 
2 OATA CHARACTER(ll, 
2 RIGHT_POINTER POINTER; 
I* FORM E/F. *I 
ALLOCATE COMPONENTBT INIAREA6ISETIPI; 
ALLOCATE COMPONENTBT INIAREA6ISETCQI; 
P->LEFT_POINTER = NULL; 
P->OATA = 'E'; 
P->RIGHT_POINTER = NULL; 
Q->LEFT_POINTER = NULL; 
Q->OATA = 'F'; 
Q->RIGHT_POINTER = NULL; 
ALLOCATE COMPONENTBT INCAREA61SETCRI; 
R->LEFT_POINTER • P; 
R->OATA = '/'; 
R->RIGHT_POINTER = Q; 
I* FORM C/D. *I 
ALLOCATE COMPONENTBT IN(AREA6ISETIPI; 
P->LEFT_POINTER = NULL; 
P->OATA = 'C'; 
P->RIGHT_POINTER = NULL; 
ALLOCATE COMPONENTBT INCAREA61SETCQI; 
Q->LEFT_POINTER = NULL; 
Q->DATA = '0'; 

Figure 3.9B. Forming a binary tree as a data list 

ENO 

Q->RIGHT_POINTER = NULL; 
ALLOCATE COMPONENTBT INCAREA61SETCSI; 
S->LEFT_POINTER = P; 
S->OATA = 1 / 1 ; 

S->RIGHT_POINTER = Q; 
I* FORM CC/DI + CE/Fl. *I 
ALLOCATE COMPONENTBT INCAREA61SETCPI; 
P->LEFT_POINTER = S; 
P->OATA = 1 + 1 ; 

P->RIGHT_POINTER = R; 
I* FORM B•((C/01 + CE/Fil. *I 
ALLOCATE COMPONENTBT IN(AREA61SETCQI; 
Q->LEFT_POINTER = NULL; 
Q->OATA = 'B'; 
Q->RIGHT_POINTER = NULL; 
ALLOCATE COMPONENTBT INCAREA61SET(RI; 
R->LEFT_POINTER = Q; 
R->OATA = '*'; 
R->RIGHT_POINTER = P; 
I* FORM A-lB*((C/01 + CE/Fill. */ 
ALLOCATE COMPONENTBT INCAREA61SET(Q); 
Q->LEFT_POINTER • NULL; 
Q->OATA = 1 A1 ; 

Q->RIGHT_POINTER = NULL; 
ALLOCATE COMPONENTBT IN(AREA61SETIPI; 
P->LEFT_POINTER • Q; 
P->OATA • 1 - 1 ; 

P->RIGHT_POINTER • R; 
L • P; 

FORM_BINARY_TREE; 

99 



I 
H- -o- -N- -c-

I I 
Hydrogen atom Oxygen atom Nitrogen atom Carbon atom 

H 

H-N-H I 
o==o o==c==o I H-C-H 

H I 
H 

02: Oxygen molecule C02: Carbon dioxide NH3: Ammonia CH4: Methane 

H H H H H H H H 

I I I I I I I I 
H-c-c-c-c-c-c-c-c-H 

I I I I I I I I 
H H H H H H H H 

CaH1a: Normal octane 

H 

H H H I 
\I/ c 

c H H H ......_ / ~ /""' H 
H ........._ I I I /H c c 
H-c-c-c-c-c-H II I 
H/ I I I ..........._ H 

_..........c c 

c H c 
H " 

1-' -........... H 

/I\ II\ c 

H H H H H H I 
H 

CaH1a= lsooctane C5H5: Benzene ring 

Figure 3.10. Examples of structural formulas in chemistry 

100 



The structural formulas in the remaining rows of Figure 
3.10 show how atoms are joined by their bonds to form a 
variety of substances: molecular oxygen (in the air we 
breathe), carbon dioxide (formed during respiration), 
ammonia (the gas contained in household cleaners), 
methane (natural gas used for fuel), normal octane (used in 
gasoline), isooctane (used in high-octane gasoline), and 
benzene (a coal-tar derivative used as a solvent). 

Structural formulas prove to be of great importance to 
chemists, because they not only specify the type and num
ber of atoms but also show how the atoms are arranged 
and interconnected within a molecule of a su?stance. Al
though two molecules may contain the same type and 
number of atoms, the atoms may be arranged differently 
and, as a result, form different substances. For example, 
Figure 3.10 shows how 8 carbon and 18 hydrogen atoms 
may be combined to form two different molecules: normal 
octane and isooctane. Both molecules possess the same 
empirical formula, C8 H1 8 , but are actually different sub
stances. 

Data lists provide a convenient way of representing the 
structural organizations of molecules. Figure 3.1 lA con
tains a list representation for the structural formula of 
water (H-0-H). Each list component represents an atom 
and contains a two-position character string for the letter 
symbol of the atom and seven pointer elements, which 
serve as connecting bonds. When an atom has fewer than 
seven bonds, unused pointers are set to null. 

Subroutine procedure FORM_ WATER in Figure 3 .11 B 
shows a way of creating the data list in Figure 3 .11 A. 

Once the structural formula for a molecule is repre
sented as a data list, a variety of procedures can be written 
to analyze the structure of the molecule, to search for 
patterns of atoms, and to simulate chemical experiments. 

List Representation of Geometric Figures 

The use of data lists to represent the geometric arrange
ment of atoms in molecules indicates that data lists may 
also be used to represent the structure of geometric figures 
in general. 

Figure 3.12A shows declarations for the head and com
ponents of a data list that represents a pyramid. Besides 
containing the address of the first list component, the list 
head includes the name and volume of the pyramid. Each 
list component represents a vertex in the figure and con
tains the name and the three coordinates of the vertex. Six 
pointer elements also appear in each list component: one 
pointer links the component to its successor component, 
and the remaining five pointers each link the component 
to other components that form each of the five possible 
faces in the pyramid. If a vertex is not associated with a 
particular face in the pyramid, the corresponding pointer is 
null. 

Structural Formula 
for Water 

List Representation of Structural Formula 
for Water 

-l----------------------------------------1 

WATER: 

r------------, 
I 1 ATOM BASED(P), I 

: 2 SYMBOL CHARACTER(2), : 

H - 0 - H L _3 ~0~0(7) POINTE.£!_ __ _J 

L_ _________ J__ ______________________________________ ~ 

Figure 3.llA. List representation of water 

101 



FORM_WATER: ALLOCATE ATOM INCAREA7J SETCQJ; 
Q->SYMBOL • 1 H1 ; 

DECLARE 
PROCFDURE(WATERJ; 

(WATER,P,QJ POINTER, 
AREA7 AREA EXTERNAL, 
1 ATOM BASED(PJ, 
2 SYMBOL CHARACTER(2Jt 
2 BOND(7J POINTER; 
I• FORM FIRST HYDROGEN ATOM ANO DO 
LINK IT TO POINTER CALLED WATER. •I 
ALLOCATE ATOM INCAREA7J SETCWATER J; ENO; 
WATER->SYMBOL • 'H'; 00 
I• FORM OXYGEN ATOM. •I 
ALLOCATE ATOM INfAREA7J SET(PJ; ENO; 
P->SYMBOL • '0 1 ; 00 
I* LINK HYDROGEN ANO OXYGEN ATOMS.•/ 
WATER->BONOflJ • P; ENO; 
P->BONOU J • WATER; ENO 
I• FORM SECOND HYDROGEN ATOM. •I 

t• LINK SECOND HYDROGEN ATOM TO 
OXYGEN ATOM. •I 
Q->BOND '1 J • P; 
P->BONDC2J • Q; 
I• IN EACH ATOM, SET UNUSED BOND$ 
to NULL •I 

= 2 TO 7; WATER->BONOllJ • NULL; 

= 3 TO 7; P->BONDIIJ • NULL; 

I = 2 TO 7; Q->BOND(IJ • NUtLi 

FORM_WATER; 

Figure 3.llB. Forming the list representation of water 

102 

LIST, 

8 
(0,2,0) 

2 FIGURE POINTER, 

c 
(0,0,0) 

2 FIGURE_NAME CHARACTER(10), 

2 VOLUME FIXED DECIMAL(3,1) 

A (1,1,3) 

D 
(2,0,0) 

VERTEX BASED(P), 

2 POINTER POINTER, 

2 VERTEX_NAME CHARACTER(1), 

2 X_COORDINATE FIXED DECIMAL(1), 

2 Y _COORDINATE FIXED DECIMAL(1 ), 

2 Z_COORDINATE FIXED DECIMAL(1 ), 

2 FACE_ABCPOINTER, 

2 FACE_ABE POINTER, 

2 FACE_ACD POINTER, 

2 FACE_ADE POINTER, 

2 FACE BCDE POINTER 

Figure 3.12A. Head and component descriptions for representing a pyramid as a data list 



LIST: 

PYRAMID 

04.0 

Figure 3.12B. Representation of a pyramid as a data list 

Figure 3. l 2B shows the list representation of the pyra
mid in Figure 3.12A. Successive components for the entire 
pyramid are linked to form a one-way circular list. Succes
sive components for each face are also linked in circular 
fashion. As discussed earlier, circular lists simplify the 
continual display of data on a graphic device. 

Each vertex in the pyramid or in a face of the pyramid 
is obtained by moving through the associated circular list. 
By moving through the face pointers in a particular list 

component, it is possible to select each face that contains 
the associated vertex. 

Subroutine procedure FORM_PYRAMID in Figure 
3.12C shows one way of constructing the data list in 
Figure 3.12B. 

Additional list-processing procedures can be designed to 
enlarge, contract, or change the orientation of a geometric 
figure on a graphic display device and also to create other 
figures by combining subfigures. 

103 



f !JflM_PYJIAMICH 
PROCEDUREILISTr NAME, VOLUMEr 
XlrYlrllrX2rY2,Z2rX3,Y3rZ3r 
x4,y4,z4,x5,y5,z5t; 

DECLARE 

DO 

END; 

NAME CHARACTERflOtr 
VOLUME FIXED DECIMAL13rltr 
cx1,v1,z1,x2,v2,z2,x1,YJ,ZJ, 
x4,y4,z4,x5,y5,z5t FIXED OECIMALflt. 
AREA9 AREAl5000t EXTERNAL, 
(A,e,c,D,E, VC5tt POINTER. 
l LIST, 
2 FIGURE POINTER, 
2 FIGURE_NAME CHARACTERClOt, 
2 VOLUME FIXED DECIMALC21r 
1 VERTEX BASEOCPt, 
2 POINTER POINTER, 
2 VERTEX_NAME CHARACTERCllr 
2 X_COOROINATE FIXED OECIMALCllr 
2 Y_COOROINATE FIXED OECIMALfllr 
2 Z_COORDINATE FIXED OECIMALCllr 
2 FACE_ABC POINTER, 
2 FACE_ABE POINTER, 
2 FACE_ACD POINTER, 
2 FACE_ADE POINTER, 
2 FACE_BCDE POINTER; 
I• ALLOCATE STORAGE FOR FIVE 
VERTICES. •I 

I • 1 TO 5; 
ALLOCATE VERTEX INCAREA9)SETCPt; 
VIit • P; 

I• INITIALIZE LIST HEAD, ANO LI .. 
VERTICES. •I 
FIGURE_NAME • NAME; 
LIST.VOLUME • VOLUME; 
FIGURE • VI U; 
A • Vilt; B • Yl2t; C • YC3t; 
D • Vl4t; E • V(5); 
A->POINTER • B; 
B->POINTER • C; 
C->POINTER • D; 
O->POINTER • E; 
E->POINTER • A; 
I• ASSIGN NAMES TO VERTICES. •I 
A->VERTEX_NAME • 'A'; 
B->VERTEX_NAME • •a•; 
C->VERTEX_NAME • •c•; 

Figure 3.12C. Forming the list representation of a pyramid 

List Representation of a Chessboard 

Various attempts have been made in the field of artificial 
intelligence to program a computer so that it can play a 
game of chess. Although no program has yet been able to 
master chess, modest success has been achieved by some 
programs in playing against human opponents, and the 
game still remains a fertile area for research on such topics 
as pattern recognition, heuristic methods, and machine 
learning. 

The following discussion shows how a data list can be 
used to represent a chessboard and how the chessmen can 

104 

END 

O->YERTEX_NAME • 1 D•; 
E->VERTEX_NAME • •E•; 
I• ASSIGN COORDINATES TO 
VERTICES. •I 
A->X_COORDINATE • Xl; 
A->Y_COOROINATE • YI; 
A->Z_COOROINATE • Zll 
B->X_COOROINATE • X2; 
B->Y_COOROINATE • Y2; 
B->Z_COORDINATE • Z2; 
C->X_COORDINATE • X3; 
C->Y_COORDINATE • Y3; 
C->Z_COORDINATE • Z3; 
D->l_COORDINATE • X4; 
D->Y_COORDINATE • Y4; 
D->Z_COORDIN~TE • Z4; 
E->X_COORDIN~TE • X5; 
E->Y_COORDIN~TE • Y5; 
E->Z_COORDINATE • Z5; 
I• LINK VERTICLES TO FORM FIVE 
FACES. •I 
A->FACE_ABC • B; 
B->FACE_ABC • C; 
C->FACE_ABC • A; 
A->FACE_ABE • B; 
B->FACE_ABE • E; 
E->FACE_ABE • A; 
A->FACE_ACD • C; 
C->FACE_ACD • D; 
D->FACE_ACD • A; 
A->FACE_ADE • D; 
D->FACE_ADE • E; 
E->FACE_ADE • A; 
B->FACE_BCDE • C; 
C->FACE_BCDE • D; 
D->FACE_BCDE • E; 
E->FACE_BCDE • B; 
I• SET UNUSED POINTERS TO NULL. •I 
A->FACE_BCDE. 
B->FACE_Aco. 
B->FACE_ADE. 
C->FACE_ABE. 
C->FACE_ADE. 
D->FACE_ABC. 
D->FACE_ABE. 
E->FACE_ABC, 
E->FACE_ACD • ..ULL; 

FORM_PVRAMID; 

be arranged on the board in initial position. No attempt is 
made at developing a program that actually plays chess; 
such a program lies beyond the scope of this text. 

Figure 3.13A contains an illustration of a chessboard 
and shows the chessmen for white and black arranged in 
initial position. Two-letter abbreviations represent the 
chessmen: WP (white pawn), WR (white rook), WN (white 
knight), WB (white bishop), WQ (white queen), and WK 
(white king). Substituting B for W provides similar ab
breviations for the black chessmen. 



Black 

8 BR BN BB BO BK BB BN BR 

7 BP BP BP BP BP BP BP BP 

6 

5 

4 
,,.~-

3 

2 WP WP WP WP WP WP WP WP 

WR WN WB WO WK WB WN WR 

a b c d e g h 

White 

Figure 3.13A. Chessboard in initial position, showing the 
coordinate system for identifying files and ranks 

Component Declaration 

SQUARE BASED(P), 

2 NAME CHARACTER(2), 

2 MAN CHARACTER(2), 

2 NEIGHBORING_SOUARES, 

3 UP POINTER, 

3 DOWN POINTER, 

3 LEFT POINTER, 

3 RIGHT POINTER, 

3 R UP POINTER, 

3 R DOWN POINTER, 

3 L UP POINTER, 

3 L DOWN POINTER, 

The coordinate system is used for identifying individual 
squares on the board. The letters a through h specify files 
(columns), and the digits 1 through 8 specify ranks (rows). 
The identifier al, for example, represents the lower left
hand square, and the identifier h8 represents the upper 
right-hand square. 

Figure 3.l 3B shows a possible declaration for list com
ponents that represent squares on the board. The com
ponent contains the name of the square (its coordinate) 
and the name of the chessman on the square (a blank name 
indicates an empty square). The component also contains 
eight pointer elements that represent the eight possible 
directions to neighboring squares (as illustrated on the 
right of Figure 3.13B). 

Figure 3.13C shows the list representation for the chess
board. This illustration differs from the list representations 
used earlier. Double-arrowed lines specify two-way linking 
of squares, and the component elements for the names of 
the squares are not shown. These modifications of earlier 
conventions avoid a cluttered diagram. 

The list head (BOARD) points to square Al. Observe 
also that the list is essentially a circular list with many 
circuits. 

The procedure named CHESS in Figure 3.13D contains 
the subroutines named BUILD_BOARD and SET_MEN. 
The subroutine procedure BUILD _BOARD shows how to 
construct the list in Figure 3.13C. Subroutine procedure 
SET_MEN sets the chessmen on the board in initial posi
tion. Neither subroutine uses parameters; external variables 
provide the necessary communication with the sub
routines. 

A Square Linked 
to Neighboring Squares 

Figure 3.13B. Possible directions from a chessboard square to neighboring squares 

105 



8 

7 

6 

5 

4 

3 

2 

A B c D E F G H 

BOARD: 

Figure 3.13C. List representation of a chessboard 

106 



CHESSIPROCEDURE OPTIONSIMAIN,; 

CALL BUILD_BOARD; 
8UILD_80ARDs 

PROCEDURE; 
DECLARE 

00 

00 

END; 

END; 

DO 

DO 

END; 
END; 

DO 

END; 

DO 

DO 

AREA9 AREA 15000,, 
l SQUARE BASEDIP,, 
2 NAME CHARACTERl2,, 
2 MAN CHARACTERl2,, 
2 NEIGHBORING_SQUARES, 
3(UP, DOWN,LEFT, RIGHT, 
R_UP,R_DOWN,L_UP,L_DOWN,POINTER, 
POINTER, 
cs,FILEl8,,RANKl8,,80ARD, 
Al,A2,A3,A4,A5,A6,A7,A8, 
Bl,B2,B3,B4,85,B6,87,88, 
c1,c2,c3,c4,c5,c6,c1,ce, 
Dl,D2,D3,D4,D5,D6,07,08, 
El,E2,E3,E4,E5,E6,E7,E8, 
Fl,F2,F3,F4,F5,F6,F7,F8, 
Gl,G2,G3,G4,G5,G6,G7,G8, 
Hl,H2,H3,H4,H5,H6,H7,H8) 
EXTERNAL POINTER; 
I* FORM 8 BOARD FILES WITH 
NEIGHBORING SQUARES CONNECTED 8Y 
UP_POINTERS. *I 

I • l TO 8; 
S • NULL; 

J • 1 TO 8; 
ALLOCATE SQUARE IN IAREA9) SET (P); 
P->UP "' S; 
S = P; 

FILE(I, = S; 

I* USE DOWN_POINTERS TO CONNECT 
NEIGHBORING SQUARES. *I 

I 1 TO 8; 
P FILECI>; 
S = NULL; 

J = 1 TO 8; 
P->DOWN = S; 
S = P; 
P = P->UP; 

I* INITIALIZE RANK_POINTERS. •I 
P = FILEIU; 

I "' 1 TO 8; 
RANK(I) • P; 

P = P->UP; 

I• USE RIGHT_POINTERS TO CONNECT 
NEIGHBORING SQUARES. •I 

I = 1 TO 7; 
S"' FILECU; 
P = FILECI + t•; 

J • 1 TO 8; 
S->RIGHT = P; 
S • S->UP; 
P = P->UP; 

END; 
END; 

DO 

END; 

DO 

DO 

END; 
END; 

DO 

DO 

END; 

END; 

DO 

END; 

DO 

DO 

END; 
END; 

DO 

END; 

DO 

Figure 3.130. Building a chessboard and setting chessmen on the board (Continued) 

P • FILEC8•; 

I • 1 TO 8; 
P->RIGHT • NULL; 
P • P->UP; 

I• USE LEFT_POINTE\RS TO CONNECT 
NEIGHBORING SQUARES. *I 

I • 1 TO 8; 
P • RANKCI•; 
S • NULL; 

J • 1 TO 8; 
P->LEFT • S; 
S • P; 
P • P->RIGHT; 

I* USE RIGHT-UP-POINTERS TO CONNECT 
NEIGHBORING SQUARES. •I 

I • 1 TO 7; 
S • FILECU; 
P • FILE(I + l); 
P • P->UP; 

J • 1 TO 7; 
S->R_UP • P; 
S • S->UP; 
P • P->UP; 

S->R_UP • NULL; 

S • FILE(8); 

I • 1 TO 8; 
S->R_UP • NULL; 
S • S->UP; 

I• USE RIGHT-DOWN-POINTERS TO 
CONNECT NEIGHBORING SQUARES. •I 

I • l TO 7; 
S • FILE(ll; 
S->R_DOWN • NULL; 
S • S->UPI 
P • FILEll + 111 

J • 1 TO 1; 
S->R_DOWN • P; 
S • S->UP; 
P • P->UP; 

S • FILEC81; 

l • 1 TO 8; 
S->R_DOWN • NULL; 
S • S->UP; 

I* USE LEFT-UP-POINTERS TO CONNECT 
NEIGHBORING SQUARES. *I 
S • FILECU; 

I • 1 TO 8; 
S->L_UP • NULL; 
S • S->UP; 

107 



END; 
DO 

DO 

END; 

END; 

DO 

END; 
DO 

DO 

END; 
END; 

I • 1 TO 7; 
S • FILECU; 
S • S->UP; 
P • FILECI + l>; 

J • 1 TO 7; 
P->L_UP • S; 
P • P->UP; 
S • S->UP; 

P->L_UP • NULL; 

I* USE LEFT-DOWN-POINTERS TO CONNECT 
NEIGHBORING SQUARES. *I 
S • FILECll; 

I • 1 TO a; 
S->L_DOWN • NULL; 
S • S->UP; 

I • 1 TO 7; 
S • FILECI); 
P • FILECI + 11; 
P->L_DOWN • NULL; 
P • P->UP; 

J • 1 TO 7; 
P->L_OOWN • S; 

P • P->UP; 
S • S->UP; 

I* ASSOCIATE INDIVIDUAL POINTERS 
WITH EACH SQUARE. *I 
Al • FILEClJ; A2 • FILEC21; 
A3 • FILEC31; A4 • FILEC4J; 
A5 • FILEC51; A6 • FILEC61; 
A7 • FILEC71; AS • FILEC81; 
Bl • Al->UP; 82 • A2->UP; 
83 • A3->UP; 84 • A4->UP; 
85 • A5->UP; 86 • A6->UP; 
87 • A7->UP; 88 • AS->UP; 
Cl • 81->UP; C2 • 82->UP; 
C3 • 86->UP; C4 • 84->UP; 
C5 • 85->UP; C6 • 86->UP; 
C1 • 87->UP ca • 88->UP; 
Dl • Cl->UP D2 • C2->UP; 
D3 • C3->UP D4 • C4->UP; 
D5 • C5->UP D6 • C6->UP; 
D7 • C7->UP D8 • CB->UP; 
El • Dl->UP E2 • D2->UP; 
E3 • D3->UP E4 • D4->UP; 
E5 • D5->UP E6 • D6->UP; 
E7 • D7->UP ES • DB->UP; 
Fl • El->UP; F2 • E2->UP; 
F3 • E3->UP; F4 • E4->UP; 
F5 • E5->UP; F6 • E6->UP; 
F7 • E7->UP; F8 • EB->UP; 
Gl • Fl->UP; G2 • F2->UP; 
G3 • F3->UP; G4 • F4->UP; 
G5 • F5->UP; G6 • F6->UP; 
G7 • F7->UP; GS • FS->UP; 
Hl • Gl->UP; H2 • G2->UP; 
H3 • G3->UP; H4 • G4->UP; 
H5 • G5->UP; H6 • G6->UP; 
H7 • G7->UP; HS • GS->UP; 

I• ASSOCIATE BOARD POINTER WITH Al 
POINTER. •I 
BOARD • Al; 
I* ASSIGN NAME TO NAME ELEMENT OF 
EACH SQUARE. •I 
Al->NAME • 1 Al 1 ; 

A3->NAME • 1 A3 •I 
A5->NAME • 1 A5 1 ; 

A7->NAME • 1 A7 1 1 
Bl->NAME • 1 81 1 1 
83->NAME • 1 83 1 1 
85->NAME • 1 85 1 1 
87->NAME • 1 87 1 

Cl->NAME • 'Cl I 
C3->NAME • 1 C3 1 

C5->NAME • 1 C5 1 

C7->NAME • 1 C7 1 

Dl->NAME ,. 1 Dl 1 

03->NAME ,. 1 03 1 

05->NAME • 1 05 1 

D7->NAME • 1 D7 1 

El->NAME • 'El I 
E3->NAME • 1 E3 1 

E5->NAME • 1 E5 1 1 
E7->NAME • 1 E7 1 1 
Fl->NAME • 1 Fl'; 
F3->NAME • 1 F3 1 ; 

F5->NAME • 1 F5 1 ; 

F7->NAME • 1 F7 1 ; 

Gl->NAME • 1 Gl'; 
G3->NAME "' 1 G3 1 ; 

G5->NAME "' 1 G5 1 ; 

G7->NAME • 1 G7 1 ; 

Hl->NAME • 'Hl '; 
H3->NAME "' 1 H3 1 ; 

H5->NAME = 1 H5 1 ; 

H7->NAME = 1 H7 1 ; 

A2->NAME • 
A!t->NAME • 
A6->NAME • 
AB->NAME • 
82->NAME • 
84->NAME • 
86->NAME • 
88->NAME • 
C2->NAME • 
C4->NAME • 
C6->NAME • 
C8->NAME • 
02->NAME • 
04->NAME • 
06->NAME • 
DB->NAME • 
E2->NAME • 
E4->NAME • 
E6->NAME • 
ES->NAME • 
F2->NAME • 
F4->NAME • 
F6->NAME • 
FS->NAME • 
G2->NAME = 
G4->NAME • 
G6->NAME • 
GS->NAME "' 
H2->NAME = 
H4->NAME = 
H6->NAME = 
HS->NAME = 

•A2'1 
1 A4 1 1 
1 A6 1 1 
'A8 1 1 
1 82'1 
1 84 1 1 
I 86 1 I 
•ea•; 
1 c2 1 ; 

1 C4 1 1 
1 C6 1 1 
•ca•; 
1 02 1 ; 

I 04 1 J 
1 06 1 ; 

•oe•; 
1 e2 1 ; 

1 E4 1 1 
1 E6 1 1 
•ea•; 
1 F2 1 ; 

1 F4 1 ; 

1 F6 1 ; 

1 F8 1 ; 

1 62 1 

1 64 1 

1 66 1 

1 68 1 

1 H2 1 

1 H4 1 

1 H6 1 

1 H8 1 

CALL SET_MEN; 

SET_MEN: 

DECLARE 

DO 

PROCEDURE; 

1 SQUARE BASEO(PJ, 
2 NAME CHARACTERC211 
2 MAN CHARACTERC211 
2 NEIGHBORING_SQUARES, 
3(UPtOOWN,LEFTtRIGHT, 
R_UPtR_DOWNtl_UP1L_OOWNIPOINTER, 
(Al,A21A31A41A51A61A7,A8, 
e1,e2,e3,e4,e5,e6,e1,ae, 
c1,c2,c3,c4,c5,c6,c1,ce, 
Dl1D2tD3t04,05,06,D7,08, 
EltE21E31E41E5,E6,E7,E8, 
Fl,F2,F3,F4,f51F6,F7,F8t 
GltG2,G3,G4,G51G6,G7,G81 
Hl,H2,H3,H4,H5,H6rH7,H8, 
RANK(8JI EXTERNAL POINTER; 
I* ASSIGN MEN TO INITIAL 
POSITIONS. *I 
Al->MAN .. I WR I; 
A3->MAN = •we•; 
A5->MAN = 1 WK 1 ; 

A7->MAN = 1 WN 1 ; 

P • RANKC21; 

I • 1 TO 8; 
P->MAN • 1 WP 1 ; 

P • P->RI6HT; 

A2->MAN = 
A4->MAN = 
A6->MAN "' 
AB->MAN = 

1 WN•; 
I WQ'; 
•we•; 
1 WR 1 ; 

Figure 3.130. Building a chessboard and setting chessmen on the board (Continued) • 

108 / 



ENO; 

DO 

ENO; 

DO 

DO 

ENDI 
ENDI 
ENO 

ENO 

P • RANK( 71; 

I • 1 TO 8; 
P->MAN • 1 BP 1 ; 

P • P->RIGHT; 

Hl->MAN • 1 BR 1 1 H2->MAN • 1 BN 1 1 
H3->MAN • 1 BB 1 1 H4->MAN • 1 BQ 1 1 
H5->MAN • 1 BK 1 1 H6->MAN • 1 BB 1 1 
H7->MAN • 1 BN 1 1 HB->MAN • 1 BR 1 1 
I• BLANK MAN ELEMENTS OF REMAINING 
SQUARES. •I 

I • 3 TO 61 
P • RANK( I) I 

J • l TO 81 
P->MAN • I I I 
P • P->RIGHTI 

SET_MENI 

BUILD_BDAROI 

PUT SKIP LISTC•CHESS EXECUTED•); 
CLOSE flLElSYSPRINTll 
ENO CHESSI 

Figure 3.13D. Building a chessboard and setting chessmen on the 
board 

REVIEW OF COMPLEX DATA LISTS 

Chapter 3 shows how to create complex data lists by ex
tending the simple list organization of Chapter 2. These 
extensions involve using other types of data in list com
ponents besides single characters, storing descriptive in
formation about a list in the head of the list, and using 
additional pointer elements to obtain alternative orderings 
of list components besides a simple linear ordering. 

Illustrations of complex data lists appear in Figure 3.14. 
L1 is a two-way circular list of eight components. The 
head of the list contains a count of the components, and 
each component possesses two pointers: one for forward 
linking, the other for backward linking. The list of avail
able storage components, AV AIL, has 16 components. As 
illustrated, AV AIL need be linked in a forward direction 
only, because no intricate manipulations are performed on 
its components other than storing and retrieving available 
storage. 

Complex data lists prove useful in modeling intricate 
systems that possess discrete arrangements of their parts. 
Such systems occur in many areas: 

Electrical and communication networks 
Industrial-process scheduling 
PERT and critical path analyses 
Military tactics and logistics 
Switching circuits 
Chemical structures 
Optimization of transportation routes and network 
flows 
Games and puzzles 

109 



STORAGE AREA 

L1: 

8 

AVAIL: 

16 

Figure 3.14. Complex data lists 

SUMMARY 

1. Chapter 3 shows how the simple list organization 
used in Chapter 2 can be modified to create more complex 
data lists. 

2. Modifications can include any or all of the essential 
elements of a simple data list: the head pointer, the com· 
ponent data item, and the component pointer. 

3. Descriptive information about the list, such as the 
size of the list and its name, may be stored in the head of 

110 

the list along with the head pointer. 
4. Each list component can contain data of any type 

and precision, including arrays, structures, and arrays of 
structures. 

5. Each list component can contain more than one 
pointer element, so that components may be linked in 
circular and multidirecHonal fashion. 



Appendix 1: Review of Facilities for Subroutines 
and Functions in PL/I 

This appendix reviews the main facilities for organizing 
and using subroutines and functions in PL/f'. It deals with 
only those features that are used in this manual and does 
not attempt to cover all aspects of subroutines and func
tions. 

ORGANIZING SUBROUTINES 

A subroutine is a procedure block whose PROCEDURE 
statement has the form: 

entry-name: PROCEDURE [(parameter-1,parameter-2, 
... ,parameter-n)]; 

The entry name is a statement label that serves as the name 
of the subroutine. Program control enters the subroutine 
through its entry name when the entry name is referred to 
in an invoking CALL statement. 

Each parameter in a PROCEDURE statement is a var
iable that is used within the subroutine and to which a 
value may be assigned by the CALL statement that invokes 
the subroutine. The parameters may also be used to return 
values to the procedure that contains the invoking CALL 
statement. Attributes for each parameter may be declared 
explicitly, implicitly, or contextually within the subrou
tine. It is also possible for the PROCEDURE statement in 
a subroutine to specify no parameters. 

When an invoking CALL statement sends control to a 
subroutine, the subroutine becomes active and remains 
active until control encounters either a RETURN state
ment or the final END statement of the subroutine. At 
that point, control returns to the statement immediately 
following the invoking CALL statement. 

When used in a subroutine, a RETURN statement has 
the form: 

RETURN; 

An arbitrary number of RETURN statements may appear 
in a subroutine. 

Example: 

SUM: PROCEDURE(VALUEl, VALUE2, TOTAL); 

DECLARE (VALUEl, V ALUE2) FIXED 
DECIMAL(3), 

TOTAL FIXED DECIMAL(4); 

TOTAL= VALUE 1 + V ALUE2; 

RETURN; 

END SUM; 

The name of this subroutine is SUM, and it contains three 
parameters: VALUE 1, V ALUE2, and TOT AL. Parameters 
VALUEl and V ALUE2 receive values when the subroutine 
is invoked. The subroutine then adds the values and assigns 
them to TOTAL. The value of TOTAL also becomes avail
able in the invoking procedure through an associated argu
ment variable. Execution of the RETURN statement sends 
control to the statement immediately following the in
voking statement. Had the RETURN statement been 
omitted in this example, the END statement would have 
returned control. 

USING SUBROUTINES 

Execution of a subroutine requires that it be invoked by a 
CALL statement, which has the form: 

CALL entry-name(argument-1,argument-2, ... ,argument-n); 

The entry name identifies the label attached to the PRO
CEDURE statement of the invoked subroutine. Each argu
ment can be a constant, a variable, or an expression, the 
value of which is automatically assigned to the corre
sponding parameter specified in the PROCEDURE state
ment of the subroutine. 

111 



Within the invoking procedure, explicit declaration of 
the entry name for a subroutine occurs with the ENTRY 
attribute, which has the form: 

ENTRY(parameter-attribute-list-1, ... ,parameter
attribute-list-n); 

Each parameter attribute list specifies the attributes of the 
corresponding parameter in the subroutine. The parameter 
attribute lists permit the invoking procedure to perform 
necessary conversions of argument values before they 
become associated with the corresponding parameter vari
ables. 

Example: 

T SUBIPROCEDURF OPTIONSfMAINI; 
-DECLARE fA,81 FIXED DECl"ALf~I, 

C FIXED DECl"ALf41, 
O CHARACTERC741, 
SU" ENTRYfFIXED DECIMALl31, 

FIXED DECIMALl3t, 
FIXED DECIMALl4tt; 

ON ENDFILE GO TO OVER; 
START: 

GET EDITCA,8,0llfl31,Fl31,Al74JJS 
CALL SUMCA,8,CI; 
PUT EDITCA,8,Ctlfl6t, Fl6t, f(7tt; 
PUT Sl<IP; 
GO TO START; 
SUMrPROCEDUREIVALUEl• VALUE2, TOTALt; 

DECLAREIVALUEl, VALUE2t 
FIXED DECIMALC3J, 
TOTAL FIXED OECIMALC4t; 

TOTAL • VALUEl + VALUE2; 
RETURN; 

END SUM; 
OVER: 
END r_sue; 

This example shows how subroutine SUM may be invoked 
from the main procedure T-SUB. The program gets a card 
from the standard system-input file, SYSIN, and assigns 
the integer in columns 1 through 3 to variable A and the 
integer in columns 4 through 6 to variable B. Invocation of 
subroutine SUM then occurs with the CALL statement: 

CALL SUM(A, B, C); 

Arguments A, B, C become associated with parameters 
VALUE!, VALUE2, and TOTAL in the subroutine. The 
values of VALUE! and V ALUE2 become identical with 
the values of A and B. When the sum of VALUEl and 
V ALUE2 is assigned to TOT AL, the value of argument C 
becomes identical with the value of TOTAL. 

Control returns from the subroutine to the PUT state
ment located immediately after the CALL statement. 

112 

T-SUB then prints the value of A, B, and C on a single line 
of the standard system-output file, SYSPRINT. These 
steps are repeated for each input card until the end of the 
SYSIN file is reached. 

ORGANIZING FUNCTIONS 

A function is a procedure block whose PROCEDURE 
statement has the form: 

entry-name: PROCEDURE(parameter-1,parameter-2, 
... ,parameter-n) RETURNS(result-attribute-list); 

This statement is similar to the PROCEDURE statement 
for subroutines except that it specifies the attributes of the 
value returned by the function. The result attribute list is 
optional; if it is not used, the attributes of the result are 
determined implicitly from the first letter of the function 
entry name (FIXED BINARY(lS) for letters I through N 
and FLOAT DECIMAL(6) for all other alphabetic char
acters). 

A RETURN statement returns control from the func
tion and also specifies the result of the function: 

RETURN( element-expression); 

The expression, which can be a constant, a variable, or an 
operational expression, must be present and must specify a 
single value; it cannot represent an array or a structure 
value. A function can contain an arbitrary number of RE
TURN statements, each with a different element expres
sion: 

Example: 

MULT: PROCEDURE(VALUEl, VALUE2) RETURNS 
(FIXED DECIMAL(6)); 

DECLARE (VALUEl, VALUE2) FIXED 
DECIMAL(3); 

RETURN (VALUE!* VALUE2); 

ENDMULT; 

The function procedure MULT contains two parameters: 
VALUE! and VALUE2. These variables receive values 
when the function is invoked. The RETURN statement 
evaluates the product of VALUE 1 and V ALUE2 and re
turns the result as the value of the function. The attributes 
of the result appear in the PROCEDURE statement as 
FIXED DECIMAL(6). 



USING FUNCTIONS 

A function is not invoked by a statement but by a func
tion reference, which has the form: 

entry-name(argument-1, argument-2, ... ,argument-n) 

A function reference can appear wherever an expression is 
permitted in PL/I, and the value of the reference is the 
result returned by the function procedure. When program 
control returns from the function procedure, it continues 
from the point of the invoking function reference. 
Each argument in a function reference can be a constant, a 
variable, or an expression (which itself may include a func
tion reference). The value of each argument is automati
cally assigned to the corresponding parameter specified in 
the PROCEDURE statement of the function. 

Explicit declaration of the entry name for a subroutine 
occurs with the ENTRY and RETURNS attributes, which 
have the form: 

ENTRY(parameter-attribute-listl, 
... ,parameter-attribute-listn) 

RETURNS( result-attribute-list) 

Each parameter attribute list in the ENTRY attribute 
specifies the attributes of the corresponding parameter in 
the function. The result attribute list contains the attri
butes of the value returned by the function procedure. 

Example: 

T_FUNCT:PROCEDURE OPTIONSCMAINI; 
DECLARE CA1BIFIXED DECIMALC311 

C FIXED DECIMALC6l1 
D CHARACTER C7411 
MULT ENTRYCFIXED DECIMALl311 
FIXED DECIMALC311 
RETURNSCFIXED DECIMALC6JI; 

ON ENDFILE GO TO OVER; 
START: 

GET EDITIA1B1DICFC311FC311AC74JI; 
C • MULTCA1BI; 
PUT EDITCA181CICFC6l1 FC6l1 f(9tl; 
PUT SKIP; 
GO TO START; 
MULT:PROCEDUREIVALUEl1 VALUE21 

RETURNS IFIXED DECIMALl61J; 
DECLARECVALUEl, VALUE21 
FIXED DECIMALC3J; 
RETURN CVALUEl • VALUE2J; 
END MULT; 

OVER: 
END T_FUNCT; 

This example shows how function MULT may be invoked 
from the main procedure T-FUNCT. The program gets a 
card from the standard system-input file SYSIN and as
signs the integer in columns 1 through 3 to variable A and 
the integer in columns 4 through 6 to variable B. Function 
MULT is invoked by the reference MULT(A,B), which 
appears in the assignment statement: 

C = MULT(A,B); 

Arguments A and B become associated with parameters 
VALUE! and V ALUE2 in the function procedure. 
V ALUEl and V ALUE2 receive the values of A and B, and 
the function returns the product of these values. The 
product is then assigned to variable C. 

The program prints the values of A, B, and C on a single 
line of the standard system-output file, SYSPRINT. These 
steps are repeated for each input card until the end of the 
SYSIN file is reached. 

DUMMY ARGUMENTS 

When an argument becomes associated with a parameter, 
the name of the argument, not its value, is passed to a 
subroutine or function. Some arguments, however, do not 
have names. For example, a constant has no name, nor 
does an operational expression. These arguments, there
fore, cannot be associated directly with parameters. The 
compiler must provide storage for such arguments and 
create an internal name for each. These internal names are 
called dummy arguments. They are passed to the invoked 
subroutine or function in place of the original arguments 
that have no names. 

Dummy arguments cannot be addressed directly in 
PL/I. Any changes, however, in the values of their as
sociated parameters will be reflected in the dummy argu
ments, but the values of the original arguments will remain 
unchanged. 

The compiler creates a dummy argument when: 

1. An argument is a constant. 
2. An argument is an expression involving operators. 
3. An argument is enclosed in parentheses. 
4. An argument is a function reference. 
5. An argument is a variable whose data attributes are 

different from the data attributes declared for the as
sociated parameter in an ENTRY attribute within the 
invoking block. 

Changes to the value of a parameter will be reflected in the 
value of the original argument only if a dummy argument 
is not passed. When a dummy argument is not created, the 
argument name is passed directly to the invoked pro
cedure, and the associated parameter becomes identical 
with the argument. 

113 



If an ENTRY attribute is not used in an invoking block 
to describe the attributes of the parameters in the invoked 
procedure, the compiler assumes that the arguments are 
compatible with their associated parameters. If they are 
not compatible, a specification interrupt may occur. 

RECURSIVE SUBROUTINES AND FUNCTIONS 

PL/I allows an active subroutine or function to invoke 
another procedure and permits a sequence of such invoca
tions to proceed to an arbitrary depth. Reinvocation of an 
already active procedure either from within itself or from 
within another active procedure may also occur and forms 
a recursive invocation. The reinvoked procedure is called a 
recursive procedure which must contain the attribute RE
CURSIVE in its PROCEDURE statement: 

entry-name: PROCEDURE(parameter-1, ... ,parameter-n) 

RETURNS(result-attribute-list) RECURSIVE; 

Recursion affects variables that possess automatic storage. 
Recursive invocation of a procedure causes the storage for 
each automatic variable within the procedure to be real
located and also causes the previously allocated storage to 
be saved automatically in a push-down stack. Termination 
of each activation of a recursive procedure restores the 
most previously allocated storage for the automatic vari
ables. 

Recursion does not affect the storage for static vari
ables, controlled variables, or based variables. The storage 
and values of such variables remain directly available at all 
levels of recursion. 

Example: 

FACTORIAL: PROCEDURE(N) RETURNS(FIXED 
DECIMAL(6)) RECURSIVE; 

DECLARE N FIXED DECIMAL(2); 

IF N < = 1 THEN RETURN( I); 

RETURN(N* FACTORIAL(N-1)); 

END FACTORIAL; 

FACTORIAL is a recursive function procedure that con
tains one parameter, N, whose value is a positive integer 
between zero and nine. The function computes the fac
torial value of N, which is the product of the integers from 
one to N and which is denoted mathematically by the 

114 

expression N!. The factorial of three (3 !), for example, is 
six: 

FACTORIAL (3) = 3! = 1 ·2·3 = 6 

By mathematical convention, the factorial of zero is 
one (O! = l}. Note that the factorial function may be de
fined in terms of itself and is, therefore, recursive: 

3! = 3·2! = 3·2·1! = 3·2·1 = 6 

This recursiveness is represented in the FACTORIAL func
tion by the following expression: 

N* F ACTORIAL(N-1) 

Since this expression appears within the FACTORIAL 
procedure, the reference FACTORIAL(N-1) causes recur
sive invocation of FACTORIAL. 

Figure A 1.1 illustrates the flow of program control 
through recursive invocations of the FACTORIAL func
tion. To simplify the presentation, the diagram duplicates 
the function procedure at each stage of recursion. It also 
shows the argument value passed by each invocation, the 
flow of control into and out of the function, and the value 
returned by each invoking reference. Since parameter N 
has the automatic storage class, storage is automatically 
allocated for N at each level of recursion, and its value at 
the previous level is saved for reuse when control returns 
to that level. Solid lines in the diagram denote flow of 
control from an invoking reference, and beaded lines repre
sent flow of control from a RETURN statement. 

The diagram begins at the top with execution of the 
assignment statement: 

RESULT= FACTORIAL(3); 

Before a value can be assigned to variable RESULT on the 
left, the expression on the right must be evaluated. This 
expression consists of a reference to the FACTORIAL 
function with an argum(lnt value of three. When control 
enters the function, storage is allocated for parameter N, 
and it receives the value three. Because N is greater than 
one, the following statement is executed: 

RETURN(N*FACTORIAL(N-1)); 

This statement cannot return control until its expression is 
evaluated. However, the expression itself contains a refer
ence to FACTORIAL that causes recursive invocation of 
the function with an argument value of two (3-1=2). 



RESULT= FACTORIAL(3); 

j 
f 

~ 

• c FACTORIAL: 

value PROCEDURE(N) RETURNS(FIXED DECIMAL(6)) 

returned: RECURSIVE; 

3*2=6 DECLARE N FIXED DECIMAL(2); 

• IF N <= 1 THEN RETURN(1 ); 

,,( 

~ 
~ 

{ RETURN(N * ,.FAC~RIAL(N-1 )); 

END FACTORIAL; 

c=.;-FACTORIAL: 

value PROCEDURE(N) RETURNS(FIXED DECIMAL(6)) 

returned: RECURSIVE; 

2*1=2 DECLARE N FIXED DECIMAL(2); 

~ 
IF N <= 1 THEN RETURN(1 ); 

J 
~ {RETURN(N * FACT~RIAL(N-1)); 

~· 

END FACTORIAL; 

c=::; FACTORIAL: 

value PROCEDURE(N) RETURNS(FIXED DECIMAL(6)) 

returned: RECURSIVE; 

1 DECLARE N FIXED DECIMAL(2); 

l ~ ~ 

IFN<=1THEN~; 
RETURN(N * FACTORIAL(N-1 )); 

END FACTORIAL; 

Figure Al.I. Computing FACTORIAL(3) recursively 

argument 
passed: 

3 

~ 

l 
argument 

passed: 
2 

J 

l 
argument 

passed: 
1 

::y 

This second invocation of FACTORIAL, which is repre· 
sented by the second copy of the function in Figure A 1.1, 
causes the current value (3) of N to be saved and new 
storage to be allocated for N with a value of two. Again N 
has a value greater than one, which causes the previous 
RETURN statement to be reexecuted (in the second copy 
of the function): 

Al .1, the current value (2) of N is saved, and new storage 
is allocated for N with a value of one. At this stage of 
recursion, the value of one for N causes the following 
statement to be executed: 

RETURN(N* FACTORIAL(N-1)); 

Return of control is suspended once more until the expres
sion in the RETURN statement is evaluated. The evalua· 
tion causes a third invocation of FACTORIAL with an 
argument value of one (2·1=1). 

When control enters the function for the third time 
(represented by the third copy of FACTORIAL in Figure 

RETURN( I); 

Since this statement does not contain a reference to 
FACTORIAL, no further recursion occurs, and control 
returns a value of one to the previous point of invocation. 

The previous point of invocation occurred within the 
second copy of the function and is associated with the 
statement: 

RETURN(N* FACTORIAL(N-1)); 

115 



In this statement, N has a value of two, and the value re
turned to the reference FACTORIAL(N-1) is one. This 
statement, therefore, returns a value of two (2*1 = 2) to 
the still previous point of invocation, which occurred 
within the first copy of the function and is also associated 
with the following RETURN statement: 

RETURN(N * FACTORIAL(N-1)); 

This time the value of N is three, and the value returned to 
the function reference is two. Hence, this statement re
turns a value of six (3*2 = 6) to the previous point of 
invocation, which occurred on the right side of the assign
ment statement: 

RESULT= FACTORIAL(3); 

At this point, the value of six for the function reference is 
assigned to variable RESULT. 

Program T-FACT, shown in Figure Al.2, computes the 
factorial value of all the integers from zero through nine 
and prints the results as shown in Figure Al .3. 

T_FACT:PROCEDURE OPTIONSlMAINl; 
DECLARE 

N FIXED DECIMAL(2), 
RESULT FIXED DECIMALl61, 
FACTORIAL ENTRY(FIXED DECIMALl211 

RETURNS (FIXED DECIMAL(6)1; 
PUT LIST(' N FACTORIAL OF N1 l; 
PUT SKIP(2); 
DO N = 0 TO 9 BY l; 

RESULT= FACTORIALlN); 
PUT EDITtN, RESULTl(F(21, Xl51, F(6)); 
PUT SKIP; 

END; 
FACTORIAL:PROCEDURElNl 

RETURNSlFIXED DECIMAL(6))RECURSIVE; 
DECLARE N FIXED DECIMALl2l; 
IF N <= l THEN RETURN(!); 
RETURN(N * FACTORIALlN - 1)1; 

END FACTORIAL; 
END T_FACT; 

Figure Al. 2. Program T _FACT 

116 

N FACTORIAL OF N 

0 l 
l l 
2 2 
3 6 
4 24 
5 120 
6 720 
7 5040 
8 40320 
9 362880 

Figure Al.3. Printout produced by program T _FACT 

SUMMARY OF FACILITIES FOR SUBROUTINES AND 
FUNCTIONS 

This summary divides the facilities for subroutines and 
functions into three categories: statements, attributes, and 
invocations. The description of each facility uses standard 
PL/I syntax. Brackets [) denote optional items, and an 
ellipsis ... specifies optional repetition of the preceding 
item. 

Statements 

entry-name: PROCEDURE [(parameter 
[,parameter] ... )] 

[RETURNS(result-attribute-list)] [RECURSIVE]; 

RETURN [(element-expression)]; 

Attributes 

ENTRY [(parameter-attribute-list [,parameter
attribute-list] ... ) ] 

RETURNS (result-attribute-list) 

Invocations 

Subroutine Invocation 

CALL entry-name[(argument[,argument] ... )] ; 

Function Invocation 

entry-name[(argument[,argument] ... )] 



Appendix 2: Summary of List-Processing Facilities 

The following summary divides the list-processing facilities 
into five categories: attributes, built-in functions, ON
conditions, statements, and miscellaneous features. Facil
ities within each category appear in alphabetic order. 

When used in the format of each facility, brackets [] 
denote optional items; braces { } indicate that a choice 
must be made from the enclosed items, which are sep
arated by an "or" symbol I; and an ellipsis ... specifies 
optional repetition of the precedi~ item. 

Attributes 
AREA [{(size-expression) I(*)}] 
BASED( element-pointer-variable) 
OFFSET (area-variable) 
POINTER 

Built-In Functions 
ADDR(argument-variable) 
EMPTY 
NULL 
NULLO 

ON-Condition 
AREA 

Statements 
ALLOCATE based-variable 

[IN( area-variable)] 
[SET(pointer-variable)] 
[,based-variable 
[IN( area-variable)] 
[SET(pointer-variable)] ] ... ; 

FREE based-variable 
[IN(area-variable)] 
[,based-variable 
[IN(area-variable)]] ... , 

LOCATE based-variable 
FILE( file-name) 
SET(pointer-variable ); 

READ FILE (file-name) 
SET(pointer-variable); 

Miscellaneous Features 
Pointer-qualification symbol: 

-> 

REFER option: 
element-variable REFER (element-variable) 

117 



Bibliography 

The following texts provide additional sources of informa
tion on list processing. 

Barron, D. W. Recursive Techniques in Programming. 
New York: American Elsevier Publishing Company, 
Inc., 1968. 

Berkeley, Edmund C., and Bobrow, D. G. (eds.) The 
Programming Language LSIP: Its Operation and 
Applications. Cambridge, Massachusetts: The M.l.T. 
Press, second printing, 1966. 

118 

Foster, J.M. List Processing. New York: American 
Elsevier Publishing Company, Inc., 1967. 

Fox, L. (ed.) Advances in Programming and Non
Numerical Computation. Oxford, England: Pergamon 
Press, 1966. 

McCarthy, John, Abrahams, P. W., Edwards, D. J., 
Hart, T. P., and Levin, M. I.LIST 1.5 Programmer's 
Manual. Cambridge, Massachusetts: The M.l.T. Press, 
second edition, 1965. 



Index 

$EDIT subroutine 

A_EXPAND subroutine 
ADD INT subroutine 
ADDR built-in-function 
ADDRESS_N function 
ADDRESS_ NEXT function 
ADDRESS_N2 function 
ALLOCATE statement . 
AREA OPEN subroutine . 
AREA_OPEN2 subroutine 
AREA ON-condition 
Area variables . 
ASSIGN_LIST subroutine 
ASSIGN SUB subroutine . 
Assigning pointers 
AVAIL . 

Based attribute 
Based storage 
Based variables 

CATENATE subroutine 
CHESS procedure 
COMP ARE function 
COMPARER function 
Comparing pointers . 
Compile-time statements 
Contextual pointers . 
Creating a list . 

Data lists 
DE EDIT subroutine 
DELETE_ FD subroutine 
DELETE_ LD subroutine 
DELETE LIST subroutine 
DELETE_ND subroutine . 
DELETE_ ND 1 subroutine 
DELETE_ND2 subroutine 
DELETE SUB subroutine 
DELETER subroutine 
DGATHER procedure 

EMPTY built-in-function 
EQUAL function . 
EQUALR function 

FIND D function 
FIND LIST function 
FINDR function . 
FORM_BINARY _TREE subroutine 
FORM_ CIRCULAR_ TO_ HEAD subroutine 
FORM_PYRAMID subroutine 

Page 
. 72 

. 75 

. 81 

14 
15 
92 

4 
. 12 
. 91 

7 
5 

. 45 

. 45 
2 

12 

3 
4 
2 

51 
107 

. 56 

. 72 
2 

89 
4 

11 

9 
74 

. 30 

. 30 

. 44 
29 
32 
92 

. 43 
64 
85 

7 
55 
71 

38 
. 54 
. 69 
. 99 
. 95 
104 

FORM_ TWO_ WAY subroutine . 
FORM_ TWO_ WAY_ CIRCULAR subroutine 
FORM_ WATER subroutine 
FREE statement . 

GET_DATA function 
GET FD function 
GET_LD function 
GET ND function 
GET_ ND 1 function . 
GET_POINTER function 

Head information 

IN option 
INSERT FD subroutine 
INSERT LD subroutine 
INSERT LIST subroutine 
INSERT _ND subroutine 
INSERT _NDl subroutine . 
INSERT SUB subroutine . 

LINK subroutine . 
Linking allocations 
LINKR subroutine 
LIST TO STRING subroutine 

NULL built-in-function 

P CNTRT subroutine 
P EXP AND subroutine 
Pointer variables . 

Qualifying based variables . 

RECURSIVE option 
REMOVE FD function 
REMOVE LD function 
REMOVE_ND function 
REPLACE FD subroutine 
REPLACE LD subroutine 
REPLACE ND subroutine 
Restrictions on based variables 
REVERSE subroutine 

SET_DATA subroutine 
SET _POINTER subroutine 
SIZE function . 
SIZER function 
SIZE 1 function 
SORT subroutine . 
SPLIT subroutine 
STRING TO LIST subroutine 
SUB_ INT subroutine 
SW AP subroutine . 

Page 
. 94 
. 95 
102 

5 

17 
26 
27 
26 
28 
17 

89 

6 
22 
22 
42 
21 
24 
41 

48 
7 

70 
62 

2 

79 
77 

3 

60 
34 
34 
33 
36 
37 
36 

3 
58 

15 
16 
19 
66 
20 
59 

. 49 

. 61 

. 83 

. 40 

119 



GF20-0018-0 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, New York 10601 
(USA only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 



READER'S COMMENT FORM 

Techniques for Processing Data Lists in PL/I GF20-0018-0 

Please comment on the usefulness and readability of this publication, suggest additions and 
deletions, and list specific errors and omissions (give page numbers). All comments and sugges
tions become the property of IBM. If you wish a reply, be sure to include your name and address. 

COMMENTS 

fold fold 

fold fold 

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 
FOLD ON TWO LINES, STAPLE AND MAIL. 



GF20-0018-0 

YOUR COMMENTS PLEASE ••. 

Your comments on the other side of this form will help us improve future editions of this pub
lication. Each reply will be carefully reviewed by the persons responsible for writing and pub
lishing this material. 

Please note that requests for copies of publications and for assistance in utilizing your IBM 

system should be directed to your IBM representative or ·the IBM branch office serving your 
locality. 

fold fold 
................................................................................... • ................................. . 

Attention: Technicol Publications 

BUSINESS REPLY MAIL 
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY ... 

IBM Corporation 

112 East Post Road 

White Plains, N. Y. 10601 

FIRST CLASS 

PERMIT NO. 1359 

WHITE PLAINS, N. Y. 

................................................................................................................... 

fold 

® 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.10601 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

fold 

0 c 


