
Techniques for Processing Relocatable Lists in PL/I

This manual illustrates usage of PL/I list-processing facilities for processing
relocatable data lists, pointer lists, and lists of lists. Relocatable lists are lists
organized within an area of storage in a way that permits the area to be trans
mitted to an.d from an external storage medium without disturbing the linkage
of list components in the area. Such organization also permits moving lists
about in main storage.

The information in this manual concerning data lists assumes knowledge of
Introduction to the List Processing Facilities of PL/I (GF20-0015) and
Techniques for Processing Data Lists in PL/I (GF20-0018). Some of the
information in this manual assumes knowledge of Techniques for Processing
Pointer Lists and Lists of Lists in PL/I (GF20-0019). The audience for this
manual is assumed to be the experienced programmer.

illustrative programs were processed by the PL/I (F) Compiler (Version 5.1)
under control of the IBM System/360 Operating System (Release 19).

GF20-0020-0

Table of Contents

Preface.

Introduction

Chapter 1. Organizing Relocatable Lists .

AREA ASSIGNMENT .
OFFSET VARIABLES.
RELOCATABLE ORGANIZATIONS FOR

DATA LISTS, POINTER LISTS, AND
LISTS OF LISTS .

INPUT AND OUTPUT STATEMENTS FOR
RELOCATABLE LISTS
The LOCATE Statement
The READ Statement
Self-Defining Records

Chapter 2. Processing Relocatable Lists

CONVERTING ABSOLUTE LISTS TO
RELOCATABLE FORM
CON_DAR Subroutine.
CON PAR Subroutine .
CON_LAR Subroutine .

CONVERTING RELOCATABLE LISTS TO
ABSOLUTE FORM .
CON ORA Subroutine.

First Edition (August 1971)

Page
1

2

3

3
3

7

11
11
13
16

21

23
23
25
27

29
29

CON_PRA Subroutine
CON_LRA Subroutine.

MOVING RELOCATABLE LISTS
MOVE RDL Subroutine .
MOVE_RPL Subroutine

WRITING RELOCATABLE LISTS.
WRITE RDL Subroutine .
WRITE_RPL Subroutine .

READING RELOCATABLE LISTS
READ_RDL Subroutine
READ RPL Subroutine

Chapter 3. Using Relocatable Lists .

AN EXAMPLE THAT TRANSMITS
RELOCATABLE DATA LISTS .

AN EXAMPLE THAT TRANSMITS
RELOCATABLE LISTS OF LISTS.

Summary.

Appendix.

The Recursive Function Procedure CONV
The Recursive Function Procedure CON

Index

Copies of this and other IBM publications can be obtained through IBM branch offices.

A form has been provided at the back of this publication for readers' comments. If this form has
been removed, address comments to: IBM Corporation, Technical Publications Department,
1133 Westchester Avenue, White Plains, N. Y. 10604.

© Copyright International Business Machines Corporation 1971

Page
31
33
35
35
37
39
39
40
43
43
44

47

47

50

56

57

57
58

59

Preface

List processing in PL/I concerns programs which manipu
late the storage addresses and the contents of based vari
ables that are linked by contained locator variables.
Techniques for using the list-processing facilities of PL/I to
manipulate list components in main storage have been
presented in Techniques for Processing Data Lists in PL/I
(GF20-0018) and Techniques for Processing Pointer Lists
and Lists of Lists in PL/I (GF20-0019).

This manual discusses methods used to convert list com
ponents linked within an area by absolute storage addresses
to list components linked within an area by relative storage
addresses. These latter addresses are relative to the begin
ning of the containing area. Such lists are called relocatable
lists because they can be transferred about in main storage
or transmitted to and from external storage for subsequent
processing.

As indicated in the preceding manuals, the primary
advantages of list-processing techniques are efficient main
storage utilization and the ability to preserve the logical
organization of complex data entities that do not lend
themselves to convenient representation by conventional
PL/I arrays and structures. Data of this type occurs in many
nonnumeric applications, such as information storage and

, retrieval, system simulation, engineering design, computer
software production, text editing, and artificial intelligence.
List processing preserves the natural structure of the data
involved in such applications and reduces the complexity of
related programs. The convenience of organizing data in list
form is enhanced by the ability to transmit relocatable lists
to and from external storage as needed by the application.

This manual illustrates the techniques involving relocat
able lists with subroutine and function procedures that
concentrate on specific aspects of creating and moving
relocatable lists. Clarity of presentation has been empha
sized rather than efficient programming techniques. No
attempt has been made to produce "production" code.
Suitable inline code may be preferred for many applica
tions.

Because processing lists in PL/I is an advanced program
ming topic, this manual assumes that the reader is an ex
perienced programmer with a knowledge of PL/I equivalent
at least to that presented in A PL/I Primer (SC28-6808).
Familiarity is assumed with array and structure organiza
tion and with methods for creating and invoking sub
routines and functions. In addition, knowledge of the
information contained in the following publications is
assumed:

Introduction to the List Processing Facilities of PL/I
(GF20-0015)
Techniques for Processing Data Lists in PL/I
(GF20-0018)
Techniques for Processing Pointer Lists and Lists of Lists
(GF20-0019)

Information on the F-level list-processing facilities
appears in IBM System/ 360: PL/I(F) Language Reference
Manual (GC28-8201) and IBM System/360 Operating Sys
tem: PL/I(F) Programmer's Guide (GC28-6594).

1

Introduction

The techniques developed for creating and processing lists
in Techniques for Processing, Data Lists in PL/I and Tech
niques for Processing Pointer Lists and Lists of Lists do not
consider moving a list about in storage or a list to and from
a file. The ability to store a list in a file is important be
cause it allows a list to be processed in stages by successive
runs of either the same program or any other designed to
retrieve the list.

One approach to the external transmission of a list is to
disassemble the components of the list and' to write their
associated data values successively into a file. Then, when
the list is to be processed further, the data values can be
retrieved from the file,,and the list can be ~econstructed
component by component. Transmission of a list in this
manner may have merit with simple linear data lists but
becomes complicated and inefficient when applied to non
linear lists. A more desirable approach is to keep the list
intact within its containing area and to write the area into

2

the file as a unit; however, this method also presents a
problem-pointer values within an area become invalid
when the area is stored at a new location. Since there is no
way of assuring that an area will occupy the same storage
each time it is read from a file, the organization of a list
contained in a retrieved area can generally be assumed to be
destroyed because its linking pointers will be invalid at the
new location.

PL/I overcomes this difficulty in the transmission of a
list by providing special variables called offset variables,
which are used in place of pointer variables and which
remain valid when a list is moved to a new location. An
offset variable is a storage address that is relative to the
beginning of an area. This manual shows how offset vari
ables can be used to organize data lists, pointer lists, and
lists of lists into relocatable form and how such lists can be
written into and read from a file.

Chapter 1. Organizing Relocatable Lists

The organization of relocatable lists depends mainly upon
two PL/I facilities: offset variables, and the assignment
statement applied to area variables. A detailed presentation
of these facilities appears in the companion manual. Intro
duction to the List Processing Facilities of PL/I
(GF20-0015). However, for the purposes of this chapter,
the following discussions present a review of offset variables
and area assignment and show how these facilities may be
used to organize relocatable lists. The discussions also illus
trate how relocatable lists can be moved to new storage
locations and how they can be transmitted to and from
files.

AREA ASSIGNMENT

An area variable is declared with the following attribute:

AREA [(size-expression)]

The size expression determines the number of bytes of
storage reserved for the area. However, the size expression
is optional; when it is not used, an implementation-defined
size is assumed by the PL/I compiler. An asterisk (*) may
be used in place of the size expression when the area vari
able appears as a parameter in either a subroutine or a
function. The asterisk causes the area parameter to assume
the size of the associated area argument.

An assignment statement can contain an area variable to
the left of the equal sign provided the expression on the
right is restricted to either another area variable or a func
tion reference that possesses an area value. Execution of an
assignment statement that contains area variables effec
tively frees all allocations in the receiving area and then
assigns the contents of the source area to the receiving area.
Free-storage gaps are retained during the assignment, so
that allocations within the assigned area maintain their
locations relative to each other.

Illustrations of area assignments appear in Figure 1.1.
The shaded portions of the areas represent free storage that
is available for further allocations of based variables within
the areas. When the source area is smaller than the receiving
area, the assigned area is, in effect, extended with free
storage. Similarly, when the source area is larger than the
receiving area, truncation of free storage occurs at the end
of the assigned area. However, if the truncation involves
allocated storage and not just free storage, the AREA ON
condition occurs, and the contents of the receiving area
become undefined. If no ON-unit appears in an ON state-

ment for the AREA condition, the operating system issues
a comment and raises the ERROR condition. When an
ON-unit is specified and normal return occurs from the
ON-unit, program control returns to the point of inter
ruption.

When an area variable is allocated, it is automatically
given the empty state, which indicates that no storage has
been allocated for based variables within the area. An area
that is not empty can be made empty by assigning to it the
value of an empty area or the value of the built-in function
EMPTY. The effect of such an assignment is to free all
allocations of based variables within the receiving area.
Note that the area itself does not become free but retains
its storage in reserve for further allocations of based vari
ables.

A reference to the built-in function EMPTY uses no
arguments and consists solely of the keyword EMPTY. A
reference to EMPTY cannot appear in an operational
expression; the value of EMPTY is used only to free storage
allocated in a specified area.

Area assignment can be used to transmit any type of
data from one area to another, but, as mentioned earlier,
pointer values contained in the assigned area will generally
be transmitted incorrectly. As a result, area assignment
cannot be used to move a list linked by pointer variables;
the addresses of the list components would not be known
in the receiving area (see Figure 1.2). Note that assigning
the head pointer in the source list to the intended head of
the list in the receiving area would also be incorrect since
the second head would specify the address of the first list
component in the source area and not the address of the
first list component in the receiving area. This difficulty in
pointer transmission is overcome by replacing pointer vari
ables with relocatable variables called offset variables.

OFFSET VARIABLES

An offset variable is a storage address that is relative to the
beginning of an area. An offset variable must be declared
explicitly with the OFFSET attribute, which has the fol
lowing form:

OFFSET(area-variable)

The area variable in parentheses must also be declared ex
plicitly and must be a based variable that is unsubscripted
and has an implied or explicit level number of one.

3

4

AREA1 AREA2

Before Assignment

AREA2=AREA1;

AREA1 AREA2

After Assignment

Figure 1.1. How areas are assigned

..B1_ -4 ...B.QQY1_

HEAD1 DATA

B2-4BQDY2

HEAD2

I
DATA

I

AREA3

AREA3

LINK DATA LINK

LINK

I I
DATA

I
LINK

... ?

B2 -4 BODY2 = B1 -4 BODY1;

HEAD2 = HEAD1;

Figure 1.2. Incorrect use of area assignment to move a list

AREA4

Before Assignment

l AREA4=AREA3;

AREA4

After Assignment

DATA LINK
~

NULL

I
I DATA

I
LINK

I
.. ?

?

Examples:

DECLARE
AREAi AREA(2000) BASED(Pl),
0 OFFSET(AREAl),
(M,N) OFFSET(AREAI) EXTERNAL STATIC,
SWITCH CONTROLLED OFFSET(AREAl),
T(5) OFFSET(AREAl) INTERNAL,
1A,2 X CHARACTER(15), 2 Y OFFSET(AREAI);

As shown in these examples, PL/I allows offset variables
to be individual element variables or elements of arrays and
structures. An offset variable can have any storage class and
scope, and the usual default rules for these types of attri
butes also hold for an offset variable.

The value of an offset variable is always treated as a
relative address and never as an absolute address. The offset
value is relative to the beginning of the area specified in the
associated OFFSET attribute. Assume, for example, that
01 is an offset variable and that AREAl is an area variable
declared as follows:

DECLARE
AREAl AREA BASED(Al),
01 (OFFSET(AREAl);

Assume further that the value of 01 is 75. The 01 specifies
the 75th storage position (in bytes) from the beginning of
AREAL

Values are assigned to offset variables through the assign
ment statement. An offset variable can receive the value of
another offset variable or the value of a pointer variable.•
When the value of a pointer variable is assigned to an offset
variable, the assigned pointer value is automatically ad
justed so that it becomes relative to the beginning of the
area associated with the receiving offset variable. The
address arithmetic performed automatically by the PL/I
program to obtain the offset value is equivalent in effect to
the following calculation:

Offset value =(Pointer value) - (Absolute address of area)

Similar but reverse address arithmetic is performed auto
matically when an offset value is assigned to a pointer vari
able. The offset value is added to the absolute address of
the area specified in the associated OFFSET attribute:

Pointer value =(Offset value)+ (Absolute address of area)

Note that these calculations are performed automatically
by the PL/I program; the programmer cannot apply explicit
arithmetic operations to offset variables in the source pro
gram.

When the value of an offset variable is assigned to
another offset variable, no address arithmetic is performed;

the assignment is direct, so that both offset variables have
the same value.

The following example shows how values are assigned to
offset variables and how the absolute address of a data item
is obtained in an assigned area:

DECLARE
AREAl AREA(500) BASED(AI),
AREA2 AREA(500) BASED(A2),
01 OFFSET(AREAl),
02 OFFSET(AREA2),
DATA_ ITEM BASED (Pl) CHARACTER(SO);

ALLOCATE AREAl SET(Al);
ALLOCATE AREA2 SET(A2);
ALLOCATE DATA_ITEM IN(Al->AREAI) SET(Pl);

A2->AREA2 = Al->AREAl;
01 =Pl;
02 = 01;
P2 = 02;

AREAl and AREA2 are area variables, each of which
reserves 500 bytes of based storage; 01 is an offset variable
associated with AREAl, and 02 is an offset variable as
sociated with AREA2. The based variable DATA_ ITEM is
a character string that requires 80 storage bytes.

When storage is allocated for AREAl, the absolute
address of the allocation is assigned to pointer Al. Simi
larly, pointer A2 receives the absolute address of the stor
age allocated for AREA2. For example, Figure 1.3 assumes
that AREAl is allocated at location 2000 and that AREA2
is allocated at location 4025. The allocation of DAT A
ITEM in Al->AREAl is also assumed to occur at location
2075, which is assigned to pointer Pl.

After Al->AREAl is assigned to A2->AREA2, both
areas contain equivalent storage configurations, as shown in
Figure 1.3. Assignment of pointer Pl to offset 01 produces
the relative address (75 = 2075 - 2000) of DATA_ITEM
within Al->AREAl. This relative address remains un
changed when assigned to offset 02. Assignment of 02, in
turn, to P2 produces the absolute address (4100 = 75 +
4025) of DATA_ITEM in A2->AREA2. Reference to
DATA_ITEM in A2->AREA2 is then possible with the
expression P2->DATA_ITEM. (Note that an offset vari
able cannot be used to qualify a based variable.)The
broken lines in Figure 1.3 distinguish offset variables from
pointer variables.

5

Al Al ~AREA1 A2 A2~AREA2

2000 4025

Pl /,,~DATA ITEM

I 2075

y"
/

01 ,/

P2
~

DATA - ITEM

4100 ... ··~
,

,

02 ,,,,,, .. '

A2~AREA2= Al ~AREA1;

01 =Pl;

/*ASSIGN Al ~AREA1 TO A2~AREA2. */

02 = 01;

/*SET 01 TO RELATIVE ADDRESS OF DATA_ITEM IN Al ~AREA1. */

i* SET 02 EQUAL TO 01. */

P2 = 02; /*SET P2 TO ABSOLUTE ADDRESS OF DATA_ITEM IN A2~AREA2. */

Figure 1.3. Obtaining the absolute address of a data item in an assigned area

Offset values and pointer values form a special type of
program control data called the locator type. Locator data
cannot be converted to any other type, nor can any other
type of data be converted to locator type. Offset variables
can receive offset and pointer values only; the same restric
tion applies to pointer variables.

A null offset value may be assigned to an offset variable
through the. built-in function NULLO, which uses no argu
ments and consists solely of the keyword NULLO. A refer
ence to this function produces a null offset address, which
does not specify any relative storage location.

Although pointer values may be assigned to offset vari
ables and offset values may be assigned, in turn, to pointer
variables, a null offset value cannot be assigned to ·a pointer
variable, nor can a null pointer value be assigned to an off
set variable. These restrictions apply not only tQ explicit
references to NULL and NULLO but also to assigned vari
ables that currently have null pointer or null offset values.

Assume, for example, that Pis a pointer variable and 0
is an offset variable. Then P can be assigned to 0 provided
that P does not have a null value. When the value of P may
be null, an IF statement can be used to ensure proper
assignment:

IFP=NULL
THEN 0 = NULLO;
ELSEO=P;

A similar statement governs the correct assignment of 0 to
P:

6

IFO=NULLO
THEN P =NULL;
ELSEP=O;

As with pointer variables, the comparison operators equal
(=)and not equal (l=) are the only operators that can use
offset variables as operands.

Offset variables, as well as pointer variables, can serve as
arguments and parameters. An offset argument associated
with an offset parameter or a pointer argument associated
with a pointer parameter requires no conversion and there
fore produces no dummy argument. But an offset argument
associated with a pointer parameter or a pointer argument
associated with an offset parameter does require conversion
and will produce a dummy argument. Also, when an offset
argument is associated with an offset parameter, both must
be offset with respect to the same area for the argument
parameter association to be meaningful.

Although the area variable specified in the OFFSET
attribute for an offset variable must be a based area, it is
possible to associate an offset variable with an area that is
not based. Consider the following statements:

DECLARE
AREAi AREA(2000),
DUMMY _AREA AREA(2000) BASED
(DUMMY _POINTER), .
0 OFFSET(DUMMY _AREA);

DUMMY_ POINTER= ADDR(AREAI);

AREAi and DUMMY _AREA are area variables. AREAi
reserves automatic storage, and DUMMY _AREA reserves
based storage. The OFFSET attribute for variable 0 uses
DUMMY _AREA and thus satisfies the requirement that
the area specified in an OFFSET attribute must be based.

When the address of AREAl is assigned to DUMMY_
POINTER, DUMMY _AREA becomes equivalent to
AREAl. Subsequent references to offset variable 0 are
then effectively associated with AREAl.

The size declared for DUMMY_ AREA in the previous
example does not have to be the same as the size of AREAl
and can even be zero. The only purpose of DUMMY_
AREA is to provide a level-one based area variable for the
OFFSET attribute of vatiable 0, so that variable 0 can be
made relative to the starting address of AREAl. The size of
DUMMY _AREA is not important, because it does not
affect the starting address'assigned to DUMMY _AREA
through DUMMY_ POINTER.

RELOCATABLE ORGANIZATIONS FOR
DATA LISTS, POINTER LISTS, AND
LISTS OF LISTS

A relocatable list has the same organization as an absolute
list except that offset variables rather than pointer variables
are used to link the components of the relocatable list. This
section presents illustrations of relocatable organizations
for data lists, pointer lists, and lists of lists and shows how
such lists may be moved from one location to another with
in internal storage. However, procedures for actually con
structing relocatable lists are deferred to Chapter 2. The
emphasis in this section is upon the use of offset variables
as component links in relocatable lists.

Figure 1.4 illustrates the organization of a relocatable
data list and shows the PL/I statements that can be used to
move the list to a new location. Broken lines, instead of

81 -+80DY1

solid lines, indicate the offset links (OL's) and offset head
of each list in the figure. Actual values (in decimal) are
assumed for the offset variables to show that they remain
unchanged when the list is moved.

Two assignment statements perform the relocation of
the data list in Figure 1.4:

B2->BODY2 = Bl->BODYl;
OHEAD2 = OHEADl;

The based area Bl->BODYI contains the body of the list,
which is assigned to the based area B2->BODY2. The
offset variable OHEAD2 receives the offset head OHEADl
of the list. The effect of these assignments is to produce a
separate copy of the original data list.

Since an offset variable cannot be used to qualify a
based variable, it is not possible to refer to a component of
a relocatable list unless the absolute address of the com
ponent is used. As an example, the following statements
show how to obtain the absolute address of the last com
ponent in each of the relocatable data lists illustrated in
Figure 1.4:

DECLARE
BODYl AREA(SOO) BASED(Bl),
BODY2 AREA(SOO) BASED(B2),
I COMPONENT! BASED(Pl),

2 DATA CHARACTER(l),
2 OL OFFSET(BODYl),

1 COMPONENT2 BASED(P2),
2 DATA CHARACTER(l),
2 OL OFFSET(BODY2),

~- - -1-<•~11--D_A_TA_-t--~-5~-1- - - -1 DATA I ~7~ I- --- ·I DATA I N~~LO I

82-+BQDY2

ffi- --......... l_D_A_T_A ___ ~-5-~-11- - - - ... o+-1-D_A_T_A_+1-~-7L_5-11- -- - - ·I DATA I N~~LO I

82-+ 80DY2 = 81-+ 80DY1;

OHEAD2 = OHEAD1;

Figure 1.4. Assigning a relocatable data list to a new area

7

OHEADl OFFSET(BODYl),
OHEAD2 OFFSET(BODY2);

Pl= OHEADl;
Pl = Pl->COMPONENTl .OL;
Pl = Pl->COMPONENTl .OL;
P2=0HEAD2;
P2 = P2->COMPONENT2.0L;
P2 = P2->COMPONENT2.0L;

These statements specify that the area variables BODYl
and BODY2 each reserve 500 bytes of based storage and
that the based variable DATA associated with each list
component is a character string that contains one character.
The offset links (OL'S) in Bl->BODYl and the offset
head OHEADl are declared to be offset with respect to
BODYl. Similarly, the offset links in B2->BODY2 and the

81 ~80DY1

offset head OHEAD2 are declared to be offset with respect
to BODY2. After the above statements are executed,
pointer Pl contains the absolute address of the last com
ponent in Bl->BODYl, and pointer P2 contains the abso
lute address of the last component in B2->BODY2. The
data elements of these two components can then be refer
red to with the following expressions:

Pl->COMPONENTl .DAT A
P2->COMPONENT2.DATA

Figure 1.5 illustrates the organization of a relocatable
pointer list and shows how the list can be moved to a new
area. Three assignment statements are used to move the list:

OHEAD2 = OHEADl;
B2->BODY2 ~ Bl->BODYl;
D2->DATA_AREA2 = Dl->DATA_AREAl;

Note that each component of the list contains two offset
variables: the offset link OL and the offset data pointer
ODP. Both elements must use offset values because pointer

Ela--+-•.,+-l-o-,o-oP_-+--~-40-L---11- - -i .. --1-~-~-:---~-gL_o--il - - -- ... i-i---o-2~-~--1t-N-~-~-L-o-1j

8

I
I

01 ~DATA_AREA1
I

L .. , DATA_ITEM

-82~80DY2

I

l .. , DATA_ITEM I i
L .. I DATA_ITEM

10H~o2, _ - +l--01_~_P_· --1-~-~---11- - ·••+-1--~-~s_P ___ ~_L_o_, _ - ~ ~1--~-~o_P_-1,1-N-~-~-L-o-.1

I
I

02 ~DATA AREA2
I l., DATA_ITEM

OHEAD2 = OHEAD1;

I

! I DATA ITEM -

82 ~ 80DY2 = 81 ~ 80DY1;

D2~DATA_AREA2= 01 ~DATA_AREA1;

Figure 1.5. Assigning a relocatable pointer list to a new area

I
I

L .. , DATA_ITEM

values become invalid when moved by area assignment.
Movement of the data area of a relocatable pointer list is
optional; if the data area is not moved, it can be shared
between the old and new versions of the list body.

As with relocatable data lists, offset variables cannot
appear as qualifying pointers in references to the based
components of a relocatable pointer list; absolute addresses
must serve as the qualifying pointers. The following state
ments show how to obtain the absolute address of the last
data item in each of the relocatable pointer lists illustrated
in Figure 1.5:

DECLARE
BODYl AREA(500) BASED(BI),
BODY2 AREA(500) BASED(Bl),
DATA_AREAl AREA(500) BASED(Dl),
DATA_AREA2 AREA(500) BASED(D2),
1 COMPONENTI BASED(Pl),

2 ODP OFFSET(DATA_AREAl),
2 OL OFFSET(BODYI),

1 COMPONENT2 BASED(P2),
2 ODP OFFSET(DATA_AREA2),
2 OL OFFSET(BODY2),

OHEADl OFFSET(BODYl),
OHEAD2 OFFSET(BODY2),
DATA_ ITEM BASED(DATAl) CHARACTER(I),
(DATA1,DATA2) POINTER;

Pl= OHEADI;
Pl = Pl->COMPONENTI .OL;
Pl = Pl->COMPONENTI .OL;
DAT Al= Pl->COMPONENTl.ODP;
P2=0HEAD2;
P2 = P2->COMPONENT2.0L;
P2 = P2->COMPONENT2.0L;
DATA2 = P2->COMPONENT2.0DP;

These statements specify that the area variables BODY I,
BODY2, DATA_AREAl, and DATA_AREA2 each reserve
500 bytes of based storage and that the based variable

. DAT A_ ITEM associated with each list component is a
character string that contains one character. The offset
links (OL's) in Bl->BODYl and the offset head OHEADl
are declared to be offset with respect to BODYl. Since the
data items associated with the list are located in
DI->DATA_AREAI, the offset data pointers (ODP's) in
Bl->BODYl are offset with respect to DATA_AREAl.
Similarly, the offset links (OL's) in B2->BODY2 and the
offset head OHEAD2 are declared to be offset with respect

to BODY2, and the offset data pointers (ODP's) in
B2->BODY2 are offset with respect to DATA_AREA2.

After the above .statements are executed, pointer
DAT Al contains the absolute address of the data item
associated with the last component in Bl->BODYl, and
pointer DATA2 contains the absolute address of the data
item associated with the last component in B2->BODY2.
The following expressions can then be used to refer to these
two data items:

DATAl->DATA ITEM
DATA2->DATA ITEM

Figure 1.6 illustrates the organization of a relocatable
list of lists and shows how the list can be moved to a new
area. As with relocatable pointer lists, three assignment
statements are used to move the relocatable list of lists:

OHEAD2 = OHEADl;
B2->BODY2 = Bl->BODYl;
D2->DATA_AREA2 = Dl->DATA_AREAl;

Again, each component of the list contains two offset vari
ables: the offset link OL and the offset value pointer OVP.
A third element, however, appears in each component of a
relocatable list of lists, namely, the type code T, which
determines whether the offset value pointer (OVP) specifies
the offset address of another list component (type code L)
or the offset address of a data item (type code D).

The following statements show declaration of type code
T and how to obtain the absolute address of the last data
item in each of the relocatable lists of lists illustrated in
Figure 1.6:

DECLARE
BODYl AREA(500) BASED(Bl),
BODY2 AREA(500) BASED(B2),
DATA_AREAl AREA(500) BASED(Dl),
DATA_AREA2 AREA(500) BASED(D2),
1 D_COMPONENTI BASED(Pl),

2 T CHARACTER(l),
2 PAD CHARACTER(3),
2 OVP OFFSET(DATA_AREAl),
2 OL OFFSET(BODYl),

/*THE PAD ELEMENTS ALIGN THE OFFSETS ON
FOUR-BYTE BOUNDARIES*/
I L_COMPONENTI BASED(Pl),

2 T CHARACTER(l),
2 PAD CHARACTER(3),
2 OVP OFFSET(BODYI),
2 OL OFFSET(BODYI),
D _ COMPONENT2 BASED(P2),
2 T CHARACTER(l),
2 PAD CHARACTER(3),

9

~-
~

Bl --*BODYl

T OVP OL

L 180 NULLO

I

~ ... 1~1 OVP

I
I

I
I

01 -*DATA AREAl
I

50

OL 1--- .. 1~1 OVP I N~LLLO I 300 125

L .. 1 DATA_ITEM

I
I

L .. , DATA_ITEM

B2--*BODY2

T OVP OL

L 180 NULLO

I
I

·l~I OVP L

50

I

I
02--*DATA AREA2

OL 1-- -·I~ I OVP IN~LLLO I 300 125

I
I
I

L .. 1 DATA_ITEM ~ ·I DATA_ITEM

OHEAD2 = OHEADl;

82--* BODY2=B1 --* BODY1;

D2--*DATA_AREA2= 01 --*DATA_AREA1;

Figure 1.6. Assigning a relocatable list of lists to a new area

2 OVP OFFSET{DATA_AREA2),
2 OL OFFSET{BODY2),

1 L_COMPONENT2 BASED{P2),
2 T CHARACTER{!),
2 PAD CHARACTER{3),
2 OVP OFFSET{BODY2),
2 OL OFFSET{BODY2),

OHEADI OFFSET(BODYI),
OHEAD2 OFFSET{BODY2),
DATA_ITEM BASED(DATAI) CHARACTER(!),
(DAT Al, DATA2) POINTER;

Pl =OHEADI;
Pl =Pl->L_COMPONENTl.OVP;

10

Pl = Pl->D _COMPONENT! .OL;
DATAl = Pl->D_COMPONENTl.OVP;
P2=0HEAD2;
P2 = P2->L_COMPONENT2.0VP;
P2 = P2->D_COMPONENT2.0L;
DATA2 = P2->D_COMPONENT2.0VP;

These statements specify that the area variables BODYl,
BODY2, DATA_AREAl, and DATA_AREA2 each reserve
500 bytes of based storage and that the based variable
DATA_ ITEM associated with each list component is a
character string that contains one character. Because area

. Bl -->BODYl contains two types of components

(D-components and L-components), separate declarations
(D_COMPONENTl and L_COMPONENTl) are given for
each type. The distinction between the two types of com
ponents is that the offset value pointer (OVP) in D _
COMPONENT! is offset with respect to DATA_AREAl,
while OVP in L_COMPONENTl is offset with respect to
BODYl. However, the offset link (OL) in each type of
component is offset with respect to BODYl, and both use a
single character for the type code (T). Similarly, the two
types of components in B2->BODY2 are declared as D _
COMPONENT2 and L_COMPONENT2. The offset value
pointer (OVP) in D _ COMPONENT2 is offset with respect
to DATA_AREA2, and OVP in L_COMPONENT2 is off
set with respect to BODY2. Also, the offset link (OL) for
each component type in B2->BODY2 is offset with
respect to BODY2, and both types of components use a
single character for the type code (T).

INPUT AND OUTPUT STATEMENTS
FOR RELOCATABLE LISTS

The preceding discussions describe how to move a relocat
able list from one location to another within internal stor
age. The main reason, however, for organizing a list in
relocatable form is to allow it to be recorded on an external
storage medium, such as magnetic tape or magnetic disk,
from which it can be retrieved for further processing at a
later time. Transmission of a relocatable list to and from an
external file requires input and output statements for read
ing and writing the list. Since PL/I does not permit stream
oriented input and output statements (such as GET and
PUT) to read and write the values of pointer variables and
offset variables, record-oriented statements (such as READ
and LOCATE) must be used to transmit a relocatable list to
and from a file. The following discussions describe the
effect of the LOCATE and READ statements upon relocat
able lists.

The LOCATE Statement

Output transmission of a relocatable list is performed with
the LOCATE statement, which has the following form:

LOCATE based-variable
FILE (file-name)
[SET (pointer-variable)] ;

This statement processes sequentially accessed files that are
buffered, and allocates within an output buffer (auto
matically provided for the file) the next available storage
position for the specified based variable. The location of
the allocated storage is assigned to the pointer variable
given in the SET option. The pointer variable allows proper
qualification of references to the based variable in the

buffer. A SET option, however, need not appear in the
LOCATE statement; when it does not, an implied SET is
assumed, which uses the pointer variable.in the BASED
attribute of the specified based variable. After the LOCATE
statement has been executed, values can be assigned to the
based variable in the buffer. If the based variable is a struc
ture, it may require padding elements for boundary align
ment.

Successive executions of the LOCATE statement
produce successive allocations of storage in the buffer. An
attempt to execute a LOCATE statement when the buffer
has become full, momentarily suspends execution of the
LOCATE statement and automatically causes the contents
of the buffer to be transmitted as a block to the associated
file. The buffer is then cleared, and storage is allocated at
the beginning of the buffer for the suspended LOCATE
statement.

The following statements show how the LOCATE state
ment may be used to write a relocatable data list into a file:

DECLARE
OHEAD OFFSET(BODY),
BODY AREA(SOO) BASED(B),
1 LIST_RECORD BASED(RECORD_POINTER),

2 R_HEAD OFFSET(DUMMY _BODY),
2 PADDING CHARACTER(4),

/*PADDING ALIGNS R_BODY ON AN EIGHT-BYTE
BOUNDARY IN THE OUTPUT BUFFER*/

2 R_BODY AREA(SOO),
DUMMY _BODY AREA BASED(DUMMY _POINTER),
OUTFILE FILE RECORD OUTPUT;

LOCATE LIST RECORD
FILE(OUTFILE) SET(RECORD _POINTER);

DUMMY POINTER= ADDR
(RECORD _POINTER->R'--BODY);

RECORD _POINTER->R_HEAD = OHEAD;
RECORD _POINTER->R_BODY = B->BODY;

Figure 1. 7 illustrates the effect of these statements.
B->BODY and OHEAD form the body area and offset
head of the relocatable data list that is transmitted to the
output file OUTFILE. Each record in the file is formed
from the based variable LIST _RECORD, which contains
two elements: R_HEAD and R BODY. R HEAD receives
the value of OHEAD, and R_BODY receives the contents
ofB->BODY.

Observe that R_HEAD is declared to be offset with
respect to the based area DUMMY _BODY. Actually,
R _HEAD should be offset with respect to based area
R_BODY because R_HEAD contains the relative address
of the first list component in R_BODY. But R_BODY has
a level number of two and, therefore, does not satisfy the

11

B~BODY

ffi- __ 1 _.,..,...l _D_A_T_A ___ ~_2L_5--+-I - _ • t_D_A_T_A_..._~~-~-..... 1-__ •I DATA

Output Buffer

OUTFILE

B

G

LIST _RECORD

file-block

LIST _RECORD

B

G

. .

file-block

LIST _RECORD

B

G

LIST_RECORD

file-block

I

B

G

Figure 1. 7. How a relocatable data list is transmitted as a logical record to a file

requirement that the based area in an OFFSET attribute
must. have a level number of one. However, R_HEAD
becomes effectively offset with respect to R_BODY when
DUMMY _BODY and R_BODY are made to occupy the
same location. This overlay is achieved by assigning the
address of R_BODY to the pointer variable DUMMY_
POINTER associated with .DUMMY_ AREA.

This example assumes that environmental information,
such as record type, record size, block size, input/output
device type, unit number, and recording density, is speci
fied in a data definition (DD) statement within the job step
that calls for execution of the program under the operating
system. The block size determines the size of the buffer,
which in Figure 1. 7 is assumed to contain storage for four
allocations of LIST_RECORD. Also note that, when the
size of LIST_ RECORD is given in the appropriate DD
statement, the size must include additional storage ,for the
internal control information associated with R_BODY. For
example, the F-level version of the PL/I compiler adds 16
bytes of internal control information to each area ~ariable.
Additional information on this point appears in IBM Sys
tem/ 360 Operating System: PL/I(F)Programmer's Guide
(GC28-6594).

When the contents of the output buffer are transmitted
to the file, they are wt\tten as a block (also called a physical

12

record). Figure 1. 7 shows successive blocks recorded in
OUTFILE, which is assumed to be on magnetic tape. Each
block is separated by an interblock gap (IBG) and contains
up to four logical records (that is, four allocations of LIST
_RECORD). The number of logical records in a block can
be changed by specifying a different block size in the
associated DD statement.

The transmission of a relocatable data list to an external
file has been discussed. The following discussion pertains
to the transmission of relocatable pointer lists and lists of
lists to an external file.

To write a relocatable pointer list or list of lists into a
file, it is necessary to transmit the data area of the list along
with its head and body. The following statements show
how the head, body, and data area can be combined into a
single logical record:

DECLARE
OHEAD OFFSET(BODY),
BODY AREA(SOO) BASED(B),
DATA_AREA AREA(SOO) BASED(D),
I LIST_RECORD BASED(RECORD_POINTER),

2 R_HEAD OFFSET(DUMMY _BODY),
2 PADl CHARACTER(4),
2 R_BODY AREA(SOO),

2 PAD2 CHARACTER(4),
2 R_DATA_AREA AREA(SOO),

DUMMY _BODY AREA BASED(DUMMY _POINTER),
OUTFILE FILE RECORD OUTPUT;

LOCATE LIST RECORD
FILE(OUTFILE) SET(RECORD _POINTER);

DUMMY _POINTER= ADDR(RECORD _POINTER->
R_BODY);

RECORD _POINTER->R_HEAD = OHEAD;
RECORD_POINTER->R_BODY = B->BODY;
RECORD POINTER->R DATA AREA= D-> - - -

DATA AREA;

These statements apply to both pointer lists and lists of lists
because each type of list contains a head, a body, and a
data area. The statements are also similar to those of the
preceding example except that the data area of the list is
included in the record transmitted to the file.

Inclusion of the data area in the logical record, however,
may cause the record size to become too large and thus
require additional buffer storage. A more convenient record
size can be obtained by splitting the list into two logical
records. The first record can contain the head and body of
the list, and the second record can contain the data area.
This type of transmission is obtained with the following
statements:

DECLARE
OHEAD OFFSET(BODY),
BODY AREA(SOO) BASED(B),
DATA_AREA AREA(SOO) BASED(D),
1 HEAD _BODY _RECORD BASED(RECORD _

POINTER),
2 R_HEAD OFFSET(DUMMY _BODY),
2 PAD CHARACTER(4),
2 R_BODY AREA(SOO),

DUMMY _BODY AREA BASED(DUMMY _POINTER),
OUTFILE FILE RECORD OUTPUT;

LOCATE HEAD BODY RECORD
FILE(OUTFILE) SET(RECORD _POINTER);

DUMMY _POINTER= ADDR(RECORD _POINTER->
R_BODY);

RECORD_POINTER->R_HEAD = OHEAD;

RECORD_POINTER->R_BODY= B->BODY;
LOCATE DAT A AREA

FILE{OUTFILE) SET(RECORD _POINTER);
RECORD_POINTER->DATA_AREA = D->

DATA AREA;

Figure 1.8 illustrates the effect of these statements on a
relocatable list of lists. The first LOCATE statement
obtains storage in the output buffer for the logical record
HEAD _BODY_ RECORD, which receives the head and
body of the relocatable list. The second LOCATE state
ment allocates storage in the output buffer for DATA_
AREA, which is written as an individual logical record. The
buffer in Figure 1.8 contains four logical records (for two
lists), with HEAD _BODY _RECORD and DATA_AREA
occupying alternate positions. When the buffer becomes
full it is automatically written into OUTFILE and cleared
for further transmission.

The READ Statement

After relocatable lists have been written into a file, they can
be retrieved from the file for additonal processing. Retrieval
is accomplished with a READ statement:

READ FILE(file-name) SET{pointer-variable);

This statement obtains the location of the next logical
record in an input buffer associateJi with the specified file
and assigns the location to the pointer variable given in the
SET option. A based variable qualified by the same pointer
will then relate to the fields of the logical record; the based
variable is effectively overlaid on the logical record in the
buffer.

The following statements demonstrate how a relocatable
data list can be read from a file:

DECLARE
OHEAD OFFSET(BODY),
BODY AREA{SOO) BASED(B),
1 LIST_RECORD BASED(RECORD_POINTER),

2 R_HEAD OFFSET(DUMMY _BODY),
2 PAD CHARACTER(4),
2 R_BODY AREA{SOO),

DUMMY _BODY AREA BASED(DUMMY _POINTER),
INFILE FILE RECORD INPUT;

13

B_,.BODY

~ _ _ -+T-L-+--0-'V_P_-+-_O.::....::.L~
~ 180 NULLO

I

OVP

50

OL

300

T OVP OL

D 125 NULLO

L_, DATA_ITEM L_ 1 OATA_ITEM

Output Buffer

HEAD_BODY

RECORD

DATA_.AREA HEAD_BODY

RECORD

DATA_AREA

I

B file-block

G

B

G

file-block

I

B

G

file-block B

G

Figure 1.8. How a relocatable list of lists is transmitted as two l~gical records to a file

READ FILE(INFILE) SET(RECORD _POINTER);
DUMMY _POINTER= ADDR

(RECORD _POINTER->R_BODY);
OHEAD =RECORD _POINTER->R_HEAD;
B->BODY =RECORD _POINTER->R_BODY);

Figure 1.9 illustrates the effect of these statements. The
READ statement obtains the address of the next occur
rence of LIST_RECORD in the input buffer associated
with INFILE and assigns the address to RECORD
POINTER. The head and body of the relocatable llst are
then assigned to OHEAD and B->BODY by the following
statements:

14

OHEAD =RECORD _POINTER->R_HEAD;
B->BODY =RECORD _POINTER->R_BODY;

Each execution of the READ statement advances the
value of RECORD_ POINTER to the location of the next
logical record in the buffer. When the end of the buffer is
reached and an attempt is made to read another logical
record, the program automatically refills the buffer with
the next block from INFILE and assigns the address of the
first logical record in the buffer to RECORD _POINTER.
This process is repeated until the end of the file is reached.

When a relocatable pointer list or list of lists is read from
a file, the data area of the list must also be retrieved along
with the head and body of the list. The following state
ments show how to read a relocatable pointer list or list of

INFILE

I I I 7

I~ file-block B file-block B file-block B)

G G G \

--------~
I

Input Buffer

LIST RECORD LIST RECORD LIST RECORD LIST RECORD - - - -

--~----
)

'
B ""*BODY

ffi-_ -i-l-D_A_T_A_+--~-2L_5 -+I ___ ••""-I _D_A_T_A_-1----~4-~-+I - __ .,..,...._, _D_A_T A--'l1-N..:...·~-LL_L_o-1I

hgure 1.9. How a relocatable data list is retrieved as a logical record from a file

lists when the head, body, and data area are contained in a
single logical record:

DECLARE
OHEAD OFFSET(BODY),
BODY AREA(SOO) BASED(B),
DATA_AREA AREA(SOO) BASED(D),
1 LIST_RECORD BASED(RECORD_POINTER),

2 R_HEAD OFFSET(DUMMY _BODY),
2 PADl CHARACTER(4),
2 R_BODY AREA(SOO),
2 PAD2 CHARACTER(4),
2 R_DATA_AREA AREA(SOO),

DUMMY _BODY AREA BASED(DUMMY _POINTER),
INFILE FILE RECORD INPUT;

READ FILE(INFILE) SET(RECORD _POINTER);
DUMMY POINTER= ADDR

(RECORD _POINTER->R_BODY);
OHEAD =RECORD _POINTER->R_HEAD;
B->BODY = RECORD POINTER->

R_BODY;

D->DATA_AREA =RECORD _POINTER->
R_DATA_AREA;

These statements retrieve either a relocatable pointer list or
a relocatable list of lists because both types contain a head,
a body, and a data area. This example is similar to the
preceding example except that, in this example, the re
trieved record contains a data area.

Had the list originally been split and recorded in the file
as two logical records, one for the head and body, the other
for the data area, then the following statements could be
used to retrieve the list:

DECLARE
OHEAD OFFSET(BODY),
BODY AREA(SOO) BASED(B),
DATA_AREA AREA(SOO) BASED(D),
1 HEAD _BODY _RECORD BASED(RECORD _

POINTER),
2 R_HEAD OFFSET(DUMMY _BODY),
2 PAD CHARACTER(4),

15

16

2 R_BODY AREA(SOO),
DUMMY _BODY AREA BASED(DUMMY _POINTER),
INFILE FILE RECORD INPUT;

READ FILE(INFILE) SET(RECORD _POINTER);
DUMMY _POINTER= ADDR(RECORD _POINTER->

R_BODY);
OHEAD =RECORD _POINTER->R_HEAD;
B->BODY =RECORD POINTER~>

R_BODY;
READ FILE(INFILE) SET(RECORD _POINTER);
D->DATA_AREA =RECORD _POINTER->

DATA_AREA;

INFILE

"' I I

Figure 1.10 illustrates the effect of these statements on a
relocatable list of lists. The first READ statement obtains
the location of the next logical record (HEAD _BODY_
RECORD) in the input buffer associated with INFILE and
assigns the location to RECORD_ POINTER. The head and
body of the list are then assigned to OHEAD and
B->BODY. The second READ statement obtains the
address of the next logical record (DATA_AREA) in the
input buffer and assigns the address to RECORD_
POINTER. The data area is then moved from the buffer to
D->DATA_AREA.

Self-Defining Records

So far, the LOCATE and READ statements have been
restricted to fixed-length recQrds, but it is also possible to
apply these statements to self-defining records. Such re
cords contain a specification of their own size, which per-

I

B file-block B file-block B file-block ~l I G G G

~-----~ ,
Input Buffer

HEAD BODY DATA - -
RECORD

B~BODY

T OVP

L 180

I

L ~1~1
I

D ~DATA AREAi

I

AREA HEAD BODY - - -
RECORD

OL

NULLO

OVP OL 1--- T

50 300 D

L.I DAJA_ITEM

DATA AREA -

OVP OL

125 NULLO

I

L .. 1 DATA_ITEM

Figure 1.10. How a relocatable list of lists is retrieved as two logical records from a file

\

mits them to vary in length. They prove useful in handling
the varying storage requirements associated with list
processing techniques.

The declaration of a self-defining record must be made
with a based structure that contains an adjustable string
length, adjustable area size, or adjustable array bound, the
value of which is maintained by a variable within the struc
ture. This variable, however, cannot possess a value until
storage has been allocated for the containing based struc
ture; otherwise, there would be no storage to hold the value
of the variable. Since the amount of storage to be allocated
depends on the value of this variable, a facility is needed for
associating a value with the v~riable before allocation.

PL/I provides this facility through the REFER option,
which has the following general format:

element-variable REFER(element-variable)

Both element variables in the option must be unsubscripted
fixed-point binary variables having the same precision. The
variable to ·the right of the keyword REFER must be an
element of the self-defining based structure, but the vari
able to the left must be declared outside the structure. The
option itself must appear as a string length, area size, or
array bound within the structure. As an example, consider
the following DECLARE statement:

DECLARE
DUMMY _BODY AREA BASED (DUMMY _POINTER),
BINARY _BODY _SIZE FIXED BINARY(16,0), -
1 UST_RECORDBASED (RECORD_POINTER),

2 R_HEAD OFFSET(DUMMY_BODY),
2 R_BODY _SIZE FIXED BINARY(16,0),
2 R_BODY A~A(BINARY _BODY _SIZE

REFER(R_BODY _SIZE));

UST_RECORD is declared to be a self-defining based
structure, which contains three components: R_HEAD,
R_BODY _SIZE, and R_BODY. This declaration can be
used to generate a self-defining record for a relocatable data
list, in which R _HEAD serves as the offset head of the list
and R_BODY contains the relocatable components of the
list. The area attribute for R_BODY uses a REFER option
to specify the size of the area:

BINARY _BODY _SIZE REFER
(R _BODY_ SIZE)

When storage is allocated for UST_RECORD, the size of
R_BODY is obtained from BINARY_BODY _SIZE (which
is declared outside UST_RECORD) and is automatically
assigned to R_BODY _SIZE (which is declared inside UST
_RECORD). It is the programmer's responsibility to assign
the proper value to BINARY _BODY _SIZE before storage

is allocated for UST_ RECORD. By changing the value of
BINARY _BODY_SIZE, the programmer can vary the size
of R _BODY within each generation of UST_ RECORD.

The following example shows how UST_ RECORD may
acquire different lengths when used to write two relocat
able data lists into a file:

DECLARE
OHEADl OFFSET(BODYI);
BODYl AREA(500) BASED(B),
OHEAD2 OFFSET(BODY2),
BODY2 AREA(750) BASED(B),
DUMMY _BODY AREA BASED(DUMMY _POINTER),
BINARY_ BODY_ SIZE FIXED BINARY(l 6,0),
OUTFILE FILE RECORD OUTPUT,
1 LIST_ RECORD BASED(RECORD _POINTER),

2 R_HEAD OFFSET(DUMMY _BODY),
2 R_BODY _SIZE FIXED-BINARY(16,0),
2 R_BODY AREA(BINARY_BODY_SIZE

REFER(R_BODY _SIZE));

BINARY _BODY _SIZE= 500;
WCATE LIST_RECORD

FILE(OUTFILE) SET(RECORD _POINTER);
DUMMY _POINTER= ADDR

(RECORD _POINTER->R_BODY);
RECORD _POINTER->R_HEAD = OHEADl;
RECORD_POINTER->R_BODY = B->BODYI;

BINARY _BODY _SIZE= 750;
WCATE LIST _RECORD

FILE(OUTFILE) SET(RECORD _POINTER);
DUMMY _POINTER= ADDR

(RECORD_POINTER->R_BODY);
RECORD _POINTER->R _HEAD= OHEAD2;
RECORD _POINTER->R_BODY = B->BODY2;

· OHEADl and B->BODYI form the offset head and body
area of the first list, while OHEAD2 and B->BODY2 serve
as the corresponding parts of the second list. The two body
areas have different storage sizes: BODYl contains 500
bytes, and BODY2 contains 750 bytes. Before the first list
is transmitted to OUTFILE, the value 500 is assigned to
BINARY _BODY _SIZE. Execution of the LOCATE state
ment for LIST_ RECORD causes 500 bytes of buffer
storage to be allocated for R_BODY within LIST
_RECORD and this size to be assigned automatically to

17

R_BODY _SIZE. The following statements then fill LIST
_RECORD with the offset head and body area of the first
list:

RECORD _POINrER->R_HEAD = OHEADl;
RECORD _POINTER->R_BODY = B->BODYl;

The same process is used to write the second list into
OUTFILE, but BINARY _BODY _SIZE is set equal to 750
before storage is allocated for LIST _RECORD. This value
causes the .size of area R _BODY to change from 500 bytes
to 750 bytes.

Retrieval of these two lists is illustrated by the following
example:

DECLARE
OHEADl OFFSET(BODYl),
BODY! AREA(500) BASED(B),
OHEAD2 OFFSET(BODY2), .
BODY2 AREA(750) BASED(B),
DUMMY _BODY AREA BASED(DUMMY _POINTER),
BINARY _BODY _SIZE FIXED BINARY(16,0),
(BODY _SIZEl, BODY _SIZE2) FIXED DECIMAL(5),
INFILE FILE RECORD INPUT,
1 LIST _RECORD BASED(RECORD _POINTER),

2 R_HEAD OFFSET(DUMMY _BODY),
2 R_BODY _SIZE FIXED BINARY(16,0),
2 R_BODY AREA(BINARY _BODY _SIZE

REFER(R_BODY _SIZE));

READ FILE(INFILE) SET(RECORD _POINTER);
DUMMY _POINTER= ADDR

(RECORD _POINTER->R_BODY);
OHEADl = RECORD_POINTER->R_HEAD;
B->BODYl = RECORD_ POINTER->R _BODY;
BODY_ SIZEl = RECORD _POINTER->
R~BODY _SIZE;

The first READ statement retrieves a logical record from
INFILE and assigns the location of the record to RECORD
_POINTER. This assignment causes the based structure
LIST _:RECORD to be overlaid on the record. The example
assumes that the retrieved record contains the offset head,
body size, and body area for a relocatable data list that is to
be assigned to OHEADl and B->BODYl.

The REFER option in LIST_ RECORD indicates that
the size of area R_BODY can vary and is automatically
determined by the value of R_BODY _SIZE. Execution of
the following statements causes the head and body of the

18

retrieved list to be assigned to OHEADl and B->BODYl:

OHEADl = RECORD_:POINTER->R_HEAD;
B->BODYl = RECORD_ POINTER->R _BODY;

Note that, although BINARY _BODY _SIZE appears at the
left of the REFER option, its value is not used or changed
in any way by the READ statement. Only a LOCATE state
ment could make use of BINARY _BODY _SIZE. In this
example, the size of the first retrieved body area is assigned,
for further use, to the variable BODY _SIZEl by the state
ment:

BODY SIZEl = RECORD POINTER->
R_BODY _SIZE;

Similar steps are used to read the next relocatable data
list from INFILE and to assign it to OHEAD2 and
B->BODY2. The size of the body area for this second list
is assigned to BODY _SIZE2.

PL/I(F) allows one REFER option in the declaration of
a self-defining based structure. When the REFER option
specifies a string length or an area size, the string or area
must be an element variable and must be the last element in
the structure declaration. If the REFER option appears as
an array bound, the bound must be the upper bound of the
leftmost dimension in the array declaration, and the
REFER option must also belong to the last array variable in
the self-defining structure or to a minor structure that con
tains the last element of the self-defining structure.

Earlier examples, illustrated in Figures 1.8 and 1.10,
showed how to write and read body areas and data areas as
separate logical records that are not self-defining. The fol
lowing discussion shows how those examples can be modi
fied to handle self-defining records. Consider the following
example:

DECLARE
OHEADl OFFSET(BODYl)
BODYl AREA(500) BASED(B),
DATAl AREA(lOOO) BASED(D),
OHEAD2 OFFSET(BODY2),
BODY2 AREA(750) BASED(B),
DATA2 AREA(lOOO) BASED(D),
DUMMY _BODY AREA BASED(DUMMY _POINTER),
BINARY_ SIZE FIXED BINARY(l 6,0),
OUTFILE FILE RECORD OUTPUT,
1 HEAD _BODY _RECORD BASED

(RECORD_POINTER),
2 R_HEAD OFFSET(DUMMY _BODY),
2 R_BODY _SIZE FIXED BINARY(16,0),
2 R_BODY AREA

(BINARY _SIZE REFER(R_BODY _SIZE)),
1 DATA_RECORD BASED(RECORD _POINTER),

2 R_DATA_SIZE FIXED BINARY(16,0),
2 PAD CHARACTER(4),
2 R_DATA AREA(BINARY _SIZE

REFER(R_DATA_SIZE));

BINARY _SIZE= 500;
LOCATE HEAD_BODY_RECORD

FILE(OUTFILE) SET(RECORD _POINTER);
DUMMY POINTER = ADDR

(RECORD _POINTER->R_BODY);
RECORD POINTER->R HEAD= OHEADl;
RECORD=POINTER->R=BODY = B->BODYl;

BINARY _SIZE= 1000;
LOCATE DATA_ RECORD

FILE(OUTFILE) SET(RECORD _POINTER);
RECORD _POINTER->R_DATA = D->DATAl;

BINARY _SIZE= 750;
LOCATEHEAD_BODY_RECORD

FILE(OUTFILE) SET(RECORD _POINTER);
DUMMY _POINTER= ADDR

(RECORD _POINTER->R_BODY);
RECORD _POINTER->R_HEAD = OHEAD2;
RECORD _POINTER->R_BODY = B->BODY2;

BINARY _SIZE= 1000;
LOCATE DATA_RECORD

FILE(OUTFILE) SET(RECORD _POINTER);
RECORD _POINTER->R_DATA = D->DATA2;

This example applies to relocatable pointer lists and lists of
lists. It uses the self-defining based structure HEAD_
BODY _RECORD for the offset head and body area of
each list, and the self-defining based structure DATA_
RECORD for the data area. Two lists are written. The
offset head, body area, and data area of the first list are
specified by OHEADl, BODYl, and DAT Al, while
OHEAD2, BODY2, and DATA2 denote the corresponding
parts of the second list. BODYl and DAT Al contain 500
and 1000 bytes each, and BODY2 and DATA2 contain 750
and 1000 bytes each. These sizes are transmitted with the
associated self-defining records.

Retrieval of these two lists is illustrated by the following
example:

DECLARE
OHEADl OFFSET(BODYl),
BODYl AREA(500) BASED(B),
DATAl AREA(lOOO) BASED(D),
OHEAD2 OFFSET(BODY2),
BODY2 AREA(750) BASED(B),
DATA2 AREA(lOOO) BASED(D),
DUMMY _BODY AREA BASED(DUMMY _POINTER),
BINARY _SIZE FIXED BINARY(16,0),
(SIZEl, SIZE2, SIZE3, SIZE4) FIXED DECIMAL(5),
INFILE FILE RECORD INPUT,
1 HEAD_BODY_RECORD BASED

(RECORD_POINTER),
2 R_HEAD OFFSET(DUMMY _BODY),
2 R_BODY _SIZE FIXED BINARY(16,0),
2 R_BODY AREA(BINARY _SIZE REFER

(R_BODY _SIZE)),
1 DATA_RECORD BASED(RECORD _POINTER),

2 R_DATA_SIZE FIXED BINARY(16,0),
2 PADCHARACTER(4),
2 R_DATA AREA(BINARY _SIZE REFER

(R_DATA SIZE));

READ FILE(INFILE) SET(RECORD_POINTER);
DUMMY _POINTER= ADDR

(RECORD _POINTER->R_BODY);
OHEADl = RECORD_POINTER->R_HEAD;
B->BODYI = RECORD_POINTER->R_BODY;
SIZEI =RECORD _POINTER->R_BODY _SIZE;

READ FILE(INFILE) SET(RECORD _POINTER);
D->DATAl = RECORD_POINTER->R_DATA;
SIZE2 = RECORD_POINTER->R_DATA_SIZE;

READ FILE(INFILE) SET(RECORD _POINTER);
DUMMY _POINTER= ADDR

(RECORD _POINTER->R_BODY);
OHEAD2 =RECORD _POINTER->R_HEAD;
B->BODY2 = RECORD _POINTER->R_BODY;
SIZE3 =RECORD _POINTER->R_BODY _SIZE;

..
READ FILE(INFILE) SET(RECORD _POINTER);
D->DATA2 = RECORD_POINTER->R_DATA;
SIZE4 =RECORD _POINTER->R_BODY _SIZE;

19

This example uses the same self-defining based structure
HEAD BODY RECORD and DATA RECORD as the - - -
preceding example. It retrieves two lists. The parts of the
first list are assigned to OHEADI, BODYI, and DATAI,
and those of the second list are assigned to OHEAD2,
BODY2, and DATA2. The sizes of BODYI and DATAl are
assigned to SIZEl and SIZE2 for possible use by other
statements. SIZE3 and SIZE4 receive the sizes of BODY2
andDATA2 ..

20

Chapter 2. Processing Relocatable Lists

The following discussion develop subroutines that use the
relocation facilities described in the preceding chapter. No
attempt is made, however, at creating a collection of proce
dures for relocatable lists. Instead, it is assumed that lists
will usually be created and manipulated in absolute form
and then converted to relocatable form when they are to be
moved to new locations or transmitted to files. This
approach restricts the procedures needed for relocatable
lists to five categories:

1. Converting absolute lists to relocatable form
2. Converting relocatable lists to absolute form
3. Moving relocatable lists
4. Writing relocatable lists
5. Reading relocatable lists

Each category contains subroutines for three types of lists:
data lists, pointer lists, and lists of lists.

B ~BODY _AREA

The subroutines in these categories are designed to
process an arbitray number of relocatable lists in each area
and are not limited to areas that contain a single list. The
heads of all the relocatable lists in an area are passed to
each subroutine as an array of offset variables. This con
vention permits the number of offset heads in the array
(and consequently, the number of lists in the area) to vary
while at the same time allowing the number of arguments in
each invocation to remain constant. As an example, Figure
2.1 shows the area B->BODY _AREA with three relocat
able data lists, the heads of which are individual offset
variables. The offset head OA VAIL is assumed to identify
the relocatable list of available storage components in the
area. The same area and lists appear in Figure 2.2, but the
offset heads of the lists have been assigned to the array
OHEAD _ARRAY. The subroutines in the following dis
cussions assume an arbitrary size for the array of offset
heads and transmit the array as a self-defining record.

~---
~

..... ~1 ... -_-__ D=A=T=A==:==1_o_2=~=:1 ___ ••+-1-D_A_T_A_-+-_~4-~----;I- ___ ••+I __;;D:..:.A..:...T:..:.A..;__+--~;;..50;;:.L--11-j
I

r--..J
I--· ---.......----,

L .. I DAT A 404LO I--- ·I DAT A 507L5 _J.,...___::D:.:.A..:...T:.:.A..;__-41-..:.0.;::L--ll _ _ . 1 NULLq

~ _ _ _ _i-, _D_A_T_A_-4---~-o-~---11- ___ ••+-l-D_A_T_A ___ ~_L_0--11- __ -••+-1-D_A_T_A_-tl-N-u_oL_LL_o-tl

o~ ~~IL - - - - - ... *l_D_A_T_A_+---,~-~-o--tl- - - ~1--D_A_T_A_+--, ~-~-o--tl - - _ , _D_A_T_A---,~-~-5--ll-1
I

r---~
I

L.,I DATA I 1~5 1-- - .. , DATA I 1~~0 I- - - .. I DATA I 1~~0 l-1
I

r--~
I

L .. j DATA 1,~~o I ---.. I DATA 2~~o 1--- .. I DATA IN~LLLOI

Figure 2.1. Relocatable lists with individual offset heads

21

22

B--+ BODY _AREA

r· ---•1t*l_D_A_T_A_-t--~2-~-1-1----~•~11---D_A_T_A_+--~-~-o--1-l----~~•1r-D_A_T_A_-+--~-50-L---tl-;

OHEAD -
ARRAY

25
690
1100

,- -- -- - - - - - -

l,~11---D_A_T_A_--+-~-4~---11- ___ .,..,,..., _D_A_T_A_-1-----1 OL
I- - - ~I 575

I

~~ - - - - 1 _D_A_T_A _ __,._~~OL_o---tl- - - - , _D_A_T_A ____ __, ·I OL I-~ -990

I
I
I

L __ +-, _D_A_T_A_-+-_1 ~-~-o--il- ____ , _·D_A_T_A_-+-----1 1-----1 OL
1350

OL ~1 1690
1 1~~5 1--_ .,..,,._, _D_A_T_A_-t-----1 DATA

r- - - - -

OL I- _.,,
2100

l ,_D_A_T_A_-+-_10_95-Lo---ll-- - ~1-D_A_T_A_-+----t

Figure 2.2. Relocatable lists with their offset heads stored in an array

DATA

DATA

DATA

I
- ..J

IN~LLLO I

IN~~LO

OL
1445

..,
' I
I _______ __J

DATA
I 1~~0 1--:

- - - - _J

DATA IN~LLLO

CONVERTING ABSOLUTE LISTS
TO RELOCATABLE FORM

The following discussions develop three subroutines for
converting the absolute lists in one area to relocatable lists
in another area:

1. CON_DAR, which converts data lists from absolute
to relocatable form

2. CON_PAR, which converts pointer lists from
absolute to relocatable form

3. CON_LAR, which converts lists of lists from
absolute to relocatable form

CON DAR Subroutine

Purpose

To convert data lists from absolute to relocatable
form

Reference

CON_DAR(BODY _AREA1, HEAD_ARRAY,
BODY _AREA2, OHEAD_ARRAY)

Entry-Name Declaration

DECLARE CON_DAR
ENTRY(AREA(*),(*)POINTER, AREA(*),
(*)OFFSET(DUMMY _BODY _AREA));

Meaning of Arguments

BODY _AREA1 - the area that contains the
bOdies of the absolute lists
being converted to relocatable
form

HEAD _AR RAY - the array that contains the
pointer heads of t.he absolute
lists in BODY _AREA1

These subroutines are used after the absolute lists have
been constructed and processed by other routines and are
ready to be moved to new storage locations or to be written
into files.

CON_DAR Subroutine

Figures 2.3A and 2.3B present the CON_DAR subroutine,
which converts absolute data lists in one area to relocatable
data lists in another area. The subroutine uses four argu
ments: the'body area and head array of the absolute data
lists being converted, and the body area and head array that
are to receive the relocatable data lists during conversion:

BODY _AREA2 - the area that receives the
bodies of the lists after they
have been converted to
relocatable form

OHEAD_ARRAY - thearraythatreceivesthe
offset heads of the relocatable
lists in BODY _AREA2

Remarks

BODY _AREA 1 and BODY _AREA2 can have any
storage class and be of arbitrary and unequal size. If
BODY _AREA2 is not large enough to receive the
converted components of BODY _AREA 1, or if
OHEAD_ARRAY is smaller than HEAD_ARRAY,
or if HEAD_ARRAY is completely null, then
OH EAD _AR RAY is filled with null offset values,
and the content of BODY _AREA2 becomes
undefined.

Other Programmer-Defined Procedures Required

None

Method

Each absolute list in BODY _AREA 1 is reconstructed,
component by component, as a relocatable list in
BODY _AREA2. The data element of each
component is a single character.

Figure 2.3A. Description of the CON_ DAR subroutine for converting data lists from absolute to relocatable form

23

CON_DAR:
PROCEDURElBODY_AREAl, HEAD_ARRAY,
BODY_AREA2, OHEAD_ARRAY);

DECLARE
lDUMMY_POINTER,Cl,C2)POINTER,
lBODY_AREAl, BODY_AREA2) AREA(*),
DUMMY_BODY_AREA BASED
lDUMMY_POINTER) AREA,
lHEAD_ARRAYl*), SAVE) POINTER,
OHEAD_ARRAYl*) OFFSET
lDU~MY_BODY_AREA),

1 COMPONENTl BASEDlCl),
2 DATA CHARACTERll),
2 LINK POINTER,
1 COMPONENT2 BASEDlC2),
2 DATA CHARACTERll),
2 OLINK OFFSETlDUMMY_BODY_AREA);
I* IF AREA CONDITION OCCURS,
BODY_AREA2 IS TCO SMALL TO RECEIVE
CONTENTS OF BODY_AREAl. GO TO
NULL_LIST •*/
ON AREA

GO TO
NULL_LIST;
I* IF OHEAD_ARRAY IS SMALLER THAN
HEAD_ARRAY, GO TO NULL_LIST */

IF
DIMlOHEAD_ARRAY,l)<DIMlHEAD_ARRAY,l)

THEN
GO TO

NULL_LIST;
I* ASSOCIATE OFFSETS OHEAD_ARRAY AND
CLINK WITH BODY_AREA2.*/
DUMMY_POINTER = ADDRlBODY_AREA2);
I* CCNVERT SUCCESSIVE DATA LISTS IN
BODY_AREAl TO RELOCATABLE DATA LISTS
IN BODY_AREA2.*/
J=LBOUNDlOHEAD_ARRAY,1)-1;

BEGIN_CCNVERT_LOOP:
DO

IF

I=LBOUNDlHEAD_ARRAY,l) TO HBOUND
(HEAD_ARRAY,l);
J = J+l;
I* IF I-TH POINTER IN HEAD_ARRAY IS
NULL, SET J-TH OFFSET IN OHEAD_ARRAY
TO NULLO, AND CONVERT NEXT LIST IN
BODY_AREAl.*/

HEAD_ARRAY(I) = NULL
THEN

DO;
OHEAD_ARRAY(J) = NULLO;

END;

DO

END;

GO TO
END_CONVERT_LOOP;

I* ALLOCATE COMPONENT2 IN
BODY_AREA2, AND ASSIGN TO THE
ALLOCATION THE DATA VALUE OF THE
FIRST COM~ONENT IN THE I-TH LlST IN
BODY_AREAl.*/
ALLOCATE COMPONENT2 INlBODY_AREA2)
SETlC2);
OHEAD_ARRAY(J), SAVE = C2;
Cl = HEAD_ARRAYll);
C2->COMPONENT2.DATA = Cl->
COMPONENTl.DATA; ·
I* PERFORM SUCCESSIVE ALLOCATIONS OF
COMPONENT2 IN BODY_AREAl, AND ASSIGN
TO THE ALLOCATIONS THE DATA VALUE OF
SUCCESSIVE COMPONENTS IN THE I-TH
LIST WITHIN BODY_AREAl.*/
Cl = Cl->LINK;

WHILE lCl,=NULL);
ALLOCATE COMPONENT2 IN lBODY_AREA2)
SETlC2);
SAVE->OLINK, SAVE = C2;
C2->COMPONENT2.DATA = Cl->
COMPONENTl.DATA;
Cl = Cl->LINK;

I* ASSIGN A NULL OFFSET
OLINK IN LAST COMPONENT
IN BODY_AREA2.*/
SAVE->OLINK = NULLO;
I* CONVERT NEXT LIST IN
BY EXECUTING NEXT CYCLE
LOOP.*/

VALUE TO
OF J-TH LIST

BODY_AREAl
OF CONVERT

ENO_CONVERT_LOOP:
END;

I* THIS POINT IS REACHED WHEN ALL
DATA LISTS IN BODY_AREAl HAVE BEEN
CONVERTED TO RELOCATABLE DATA LISTS
IN BODY_AREA2. THEREFORE, RETURN
SUBROUTINE CONTROL TO POINT OF
INVOCATION.*/
RETURN;
I* IF THIS POINT IS REACHED, ASSIGN
A NULL OFFSET VALUE TO EACH ELEMENT
OF OHEAD_ARRAY.*/

NULL_LIST:
OHEAD_ARRAY = NULLO;

END
CON_ DAR;

Figure 2.38. The CON_ DAR subroutine used to convert data lists from absolute to relocatable form

24

CON_PAR Subroutine

Figures 2.4A and 2.4B present the CON_PAR subroutine,
which converts absolute pointer lists to relocatable form.
The subroutine uses five arguments: the body area and head
array of the absolute pointer lists being converted, the body
area and head array that are to receive the relocatable
pointer lists during conversion, and the data area, which is
shared by both the absolute and relocatable forms of the
pointer lists.

CON PAR Subroutine

Purpose

To convert pointer lists from absolute to relocatable
form

Reference

CON_PAR(BODY_AREA1,HEAD_ARRAY
BODY _AREA2, OHEAD_ARRAY,
DATA_AREA)

Entry-Name Declaration

DECLARE CON_PAR
ENTRY(AREA(*). (*)POINTER,

AREA(*),(*) OFFSET
(DUMMY _BODY _AREA). AREA(*));

Meaning of Arguments

BODY _AREA1

HEAD_ARRAY

- the area that contains the
bodies of the absolute lists
being converted to relocatable
form

the array that contains the
pointer heads of the absolute
lists in BODY AREA 1

BODY AREA2 - the area that receives the
bodies of the lists after they
have been converted to
relocatable form

OHEAD ARRAY the array that receives the
offset heads of the relocatable
lists in BODY AR EA2

DATA AREA - the area that contains the

Remarks

data values of the lists before
and after conversion

BODY _AREA1, BODY _AREA2,and DATA_AREA
can have any storage class and be of arbitrary size.
If BODY _AREA2 is not large enough to receive the
converted components of BODY _AREA1, or if
OHEAD_ARRAY issmallerthan HEAD_ARRAY,
or if HEAD_ARRAY is completely null, then
OHEAD_ARRAY is filled with null offset values,
and the content of BODY AREA2 becomes
undefined.

Other Programmer-Defined Procedures Required

None

Method

Each absolute list in BODY _AREA1 is reconstructed,
component by component, as are relocatable lists in
BODY _AREA2. After conversion, both types of
lists share DATA AREA.

Figure 2.4A. Description of the CON_ PAR subroutine for converting pointer lists from absolute to relocatable form

25

CON_PAR:
PROCEDURE(BODY_AREAl, HEAD_ARRAY,
BOOY_AREA2, OHEAD_ARRAY,
DAT A_AREA I;

DECLARE
(BODY_AREAl, BODY_AREA2o DATA_AREAI
AREAi*),
DUMMY_BODY_AREA BASEDIDUMMY_POINTERll
AREA,
DUMMY_DATA_AREA BASED(DUMMY_POINTER21
AREA, '
(HEAD_ARRAY(*I, SAVEi POINTER,
OHEAD_ARRAY(*I
OFFSET(DUMMY_BOOY_AREA),
1 COMPONENT! BASED(Cll,
2 DATA POINTER,
2 LINK POINTER,
l COMPONENT2 BASEDIC21,
2 ODATA-lJFFSET(DUMMY_OATA_AREA I,
2 OLINK OFFSETIOUMMY_OATA_AREAI;
I* IF AREA CONDITION OCCURS,
BOOY_AREA2 IS TOO SMALL TO
RECEIVE CONTENTS OF BOOY_AREAl. GO
TO. NULL_LI ST. *I
ON AREA

GO TO
NULL_LI ST;
I* IF HEAO_ARRAY IS NULL, GC TC
NULL_LIST. *I

00 I = LBOUNOIHEAO_ARRAY,11
TO HBOUNOIHEAO_ARRAY,11;

IF HEAD_ARRAYIII ~=NULL
THEN GO TO G02;

ENO;

G02:

IF

GO TO
NULL_LIST;

I* IF CHEAD_ARRAY IS SMALLER THAN
HEAD_ARRAY, GO TO NULL_LIST. *I

DIM(OHEAO_ARRAY,ll<OIM(HEAO_ARRAY,11
THEN

GO TO
NULL_LIST;
I* ASSOCIATE OFFSETS OHEAD_ARRAY AND
OLINK WITH BODY_AREA2 AND OFFSET
OOATA WITH DATA_AREA. *I
DUMMY_POINTERl = ADDR(BODY_AREA21;
DUMMY_POINTER2 = ADDR(DATA_AREAI;
I* CONVERT SUCCESSIVE POINTER LISTS
IN BOOY_AREAl TO RELOCATABLE
POINTER LISTS IN BODY_AREA2. *I
J = LBOUNDIOHEAD_ARRAY,11-1;

BEGIN_CONVERT_LOOP:
DO

IF

I = LBOUNO(HEAD_ARRAY,11
TO HBOUNDIHEAD_ARRAY,11;
J = J + l;
I* IF I-TH POINTER IN HEAD_ARRAY IS
NULL, SET J-TH OFFSET IN OHEAD _ARRAY
TO NULLC, ANO CONVERT NEXT LIST IN
BODY_AREAl. *I

HEAD_ARRAY (I I = NULL

THEN
DO;

END;

OHEAD_ARRAYIJI = NULLO;
GO TO

ENO_CONVERT_LOOP;

I* ALLOCATE COMPONENT2 IN
BODY AREA2, AND ASSIGN TO THE
ALLOCATION THE DATA POINTER Of THE
FIRST COMPONENT IN THE I-TH LIST IN
BODY_AREAl. *I
ALLOCATE COMPONENT2 IN(BODY_AREA21
SETIC21;
OHEAD_ARRAYIJI, SAVE = C2;
Cl = HEAO_ARRAYIII;

IF

00

DATA = NULL
THEN

ELSE
ODATA = NULLG;

OOATA = DATA;
I* PERFORM SUCCESSIVE ALLOCATIONS
Of COMPONENT2 IN BOOY_AREA2, ANO
ASSIGN TO THE ALLOCATIONS THE DATA
POINTER OF SUCCESSIVE COMPONENTS IN
THE I-TH LIST WITHIN 00DY_AREA1. *I
Cl = Cl->LINK;

WHILE(Ch=NULLI;
ALLOCATE COMPONENT2 INIBOOY_AREA21
SEHC21;
SAVE->OLINK,SAVE = C2;

IF

ENO;

DATA = NULL
THEN

ODATA = NULLO;
ELSE

ODATA = DATA;
Cl = Cl->LINK;

I* ASSIGN A NULL OFFSET VALUE TC
OLINK IN LAST COMPONENT Of J-TH LIST
IN BODY_AREA2. *I
SAVE->OLINK = NULLO;
I* CONVERT NEXT LIST IN BODY_AREAl
BY EXECUTING NEXT CYCLE OF CONVERT
LOOP. *I

END_CONVERT_LOOP:
END;

I* THIS POINT IS REACHED WHEN All
POINTER LISTS IN BODY_AREAl HAVE
BEEN CONVERTED TO RELOCATABLE
POINTER LISTS IN BOOY_AREA2,
THEREFORE, RETURN SUBROUTINE CONTROL
TO POINT OF INVOCATION. */
RETURN;
I* IF THIS POINT IS REACHED, ASSIGN
A NULL OFFSET VALUE TO EACH ELE~ENT
OF OHEAD_ARRAY. *I

NULL_LIST:
OHEAD_ARRAY = NULLO;

END
CON_PAR;

Figure 2.4B. The CON_ PAR subroutine used to convert absolute pointer lists to relocatable form

26

CON LAR Subroutine

Figures 2.SA and 2.SB present the CON_LAR subroutine,
which converts absolute lists of lists to relocatable form.
The subroutine uses six arguments: 'the body area and head
array of the absolute lists of lists being converted, the body
area and head array that are to receive the relocatable lists
of lists during conversion, the data area, which is shared by

CON LAR Subroutine

Purpose

To convert lists of lists from absolute to relocatable
form

Reference

CON_LAR(BODY _AREA1,HEAD_ARRAY,
BODY _AREA2, OHEAD_ARRAY,
DATA_AREA,#SUBS)

Entry-Name Declaration

DECLARE CON_LAR
ENTRY(AREA(*), (*)POINTER,

AREA(*), (*)OFFSET
(DUMMY _BODY _AREA), AREA(*),
FIXED DECIMAL);

Meaning of Arguments

BODY _AREA1

HEAD ARRAY

BODY _AREA2

the area that contains the
bodies of the absolute lists
being converted to relocatable
form

the array that contains the
pointer heads of the absolute
lists in BODY _AREA1

the area that receives the
bodies of the lists after they
have been converted to
relocatable form

both the absolute and relocatable forms of the lists of lists,
and the number of sublists.

The code in CON_ LAR indicates an optional use of the
recursive function procedure CONY shown in the
Appendix. CONY examines the type code in each list com
ponent and takes appropriate conversion action. CONY
returns an offset value.

OHEAD_ARRAY

DATA AREA

#SUBS

Remarks

the array that receives the
offset heads of the relocatable
lists in BODY _AREA2

the area that contains the
data values of the lists before
and after conversion

- the number of sublists

·BODY _AREA1, BODY _AREA2, and DATA_AREA
can have any storage class and be of arbitrary size.
If BODY _AREA2 is not large enough to receive the
converted components of BODY _AREA1, or if
OHEAD_ARRAY is smaller than HEAD_ARRAY,
or if HEAD_ARRAY is completely null, then
OHEAD _AR RAY is filled with null offset values,
and the content of BODY _AREA2 becomes
undefined.

Other Programmer-Defined Procedures Required

CONV (optional)

Method

Each absolute list in BODY _AREA1 is reconstructed,
component by component, as a relocatable list in
BODY _AREA2. After conversion, both types of
listsshareDATA AREA.

Figure 2.5A. l)escription of the CON_LAR subroutine for converting lists of lists from absolute to relocatable form

27

CON LAR:
- PROCEOURE(BOOY_AREAl,HEAD_ARRAY,

BOOY_AREA2 1 OHEAO_ARRAY, OATA_AREA,
#SUBSJ;

DECLARE
#SUBS FIXED DECIMAL,
(SAVE, KEEP, PAC#SUBSll POINTER,
I* PARAMETER #SUBS IS NOT NECESSARY
WHEN FUNCTION CONY IS USED *I
COUMMY_BOOY_POINTER,
OUMMY_OATA_POINTER,Cl,C21POINTER,
(BODY_AREA1 1 BODY_AREA2,DATA_AREAJ
AREA(*),
OUMMY_BODY_AREA
BASEO(OUMMY_BODY_POINTERJ AREA,

.DUMMY _DATA_AREA
BASEO(DUMMY_DATA_POINTERJ AREA,
HEAD ARRAY(*) POINTER,
OHEAD_ARRAY(*)
OFFSETCOUMMY_BOOY_AREAJ,
1 COMPONENTl BASEO(ClJ,
2 TYPE CHARACTER(lJ,
2 VALUE POINTER,
2 LINK POINTER,
1 0 COMPDNENT2 BASEOCC2J,
2 0-0TYPE CHARACTER(l),
2 0-0VALUE DFFSET(OUMMY_DATA_AREAJ,
2 0-0LINK OFFSET(OUMMY_BDDY_AREA),
1 L-COMPONENT2 BASEO(C2J,
2 L-OTYPE CHARACTER(!),
2 L-OVALUE OFFSET(OUMMY_BOOY_AREAJ,
2 L-OLINK OFFSETCDUMMY_BODY_AREAJ;
I• iF AREA CONDITION OCCURS,
BODY AREA2 IS TOO SMALL TO RECEIVE
CONTENTS OF BODY_AREAl. GO TO
NULL_LIST. •I
ON AREA

GO TO
NULL_LIST;
I* IF OHEAO_ARRAY IS SMALLER THAN
HEAD_ARRAY, GO TO NULL_LIST. *I

IF
OIMCOHEAD_ARRAY 1 1J<DIM(HEAD_ARRAY,l)

THEN
GO TO

NULL_LIST;
I* ASSOCIATE OFFSETS OHEAD_ARRAY,
D_OLINK, L_OLINK, ANO L_OVALUE WITH
BOOY_AREA2, ANO OFFSET D_OVALUE WITH
OATA_AREA. •I
DUMMY_BOOY_POINTER =
AOOR(BOOY_AREA2);
DUMMY_DATA_POINTER =
ADOR(OATA_AREAJ;
I• CONVERT SUCCESSIVE LISTS OF
LISTS IN BODY_AREAl TO
RELOCATABLE LISTS OF LISTS IN
BODY_AREA2. *I
PA = NULL;
J = LBOUNO(OHEAO_ARRAY,11-1;

BEGIN_CONVERT_LOOP:
DO

I = LBOUNOCHEAD_ARRAY,ll
TO HBOUNOCHEAO_ARRAY,11;
J = J + l;
K = l;
Cl = HEAD_ARRAYCll;
IF Cl = NULL THEN DO;
OHEAO_ARRAY(J) = NULLO;
GO TO ENO_CONVERT_LOOP;
ENO;

I* OPTION *I
I* TEST *I IF #SUBS ,: 1 THEN GO TO NO_CONV;

USE_CONV:
I* USE THE FOLLOWING CODE
TO EMPLOY FUNCTION CONV
FOR CONVERSIONS */
OHEAO_ARRAY(Jl = CONVCHEAD_ARRAY(I),
BOOY_AREA1 1 BODY_AREA2, OATA_AREAl;
GO TO ENO_CONVERT_LOOP;

I* END OF OPTION */
NO_CONV:

ALLOCATE L_COMPONENT2 INCBOOY_AREA2)
SETCC2l;
SAVE, KEEP, OHEAO_ARRAY(JI = C2;
C2->L._OTYPE = 1 L1 ;

PAIKJ = Cl->VALUE;
Cl = Cl->LINK;
DO WHILECCl ,: NULLll
K = K + l;
ALLOCATE L_COMPONENT2 INCBODY_AREA2)
SETCC2J;
SAVE->L_OLINK = C2;
SAVE = C2;
C2->L_OTYPE = 'L';
PA(KJ = Cl->VALUE;
Cl = Cl->LINK;
ENO;
SAVE->L_OLINK = NULLO;

D_LIST:
DO L = 1 TO #SUBS;
Cl = PA(Ll;
IF Cl =NULL THEN GOTO END_D_LIST;
ALLOCATE O_COMPONENT2 IN(BODY_AREA2)
SETCC2l;
SAVE = C2;
KEEP->L OVALUE = C2;
KEEP = KEEP->L_OLINK;
C2->D_OTYPE = 1 0 1 ;

IF Cl->VALUE = NULL
THEN C2->0_0VALUE = NULLO;
ELSE C2->D_OVALUE = Cl->VALUE;
Cl = Cl->LINK;
DO WHILE(Cl ,: NULL);
ALLOCATE O_COMPONENT2 INCBODY_AREA21
SEHC2J;
SAVE->O_OLINK = C2;
SAVE = C2;
C2->D_OTYPE = 1 0 1 ;

IF Cl->VALUE = NULL
THEN C2->0_0VALUE = NULLO;
ELSE C2->0_0VALUE = Cl->VALUE;
Cl = Cl->LINK;
ENO;
SAVE->O_OLINK = NULLO;

ENO_D_LIST: ENO;
ENO_CONVERT_LOOP:
ENO;

I* WHEN THIS POINT IS REACHED, ALL
LISTS OF LISTS IN BOOY_AREAl HAVE
BEEN CONVERTED TO RELOCATABLE LISTS
OF LISTS IN BOOY_AREA2. THEREFORE,
RETURN SUBROUTINE CONTROL TO POINT
OF INVOCATION. *I
RETURN;
I* IF THIS POINT IS REACHED, ASSIGN
A NULL OFFSET VALUE TO EACH
ELEMENT OF OHEAO_ARRAY. •I

NULL_LIST:
OHEAD_ARRAY = NULLO;

ENO
CON_LAR;

Figure 2.5B. The CON_LAR subroutine used to conv~rt absolute lists of lists to relocatable form

28

CONVERTING RELOCATABLE LISTS
TO ABSOLUTE FORM

The following discussions develop three subroutines for
converting the reloca.table lists in one area to absolute lists
in another area:

1. CON_DRA, which converts data lists from relocat
able to absolute form

2. CON_ PRA, which converts pointer lists from
relocatable to absolute form

3. CON LRA, which converts lists of lists from
relocatable to absolute form

CON_DRA Subroutine

Purpose

To convert data lists from relocatable to absolute
form

Reference

CON_DRA(BODY _AREA1, OHEAD_ARRAY,
BODY _AREA2, HEAD_ARRAY)

Entry-Name Declaration

DECLARE CON_DRA
ENTRY(AREA(*). (*)OFFSET
(DUMMY _BODY _AREA), AREA(*).
(*)POINTER);

Meaning of Arguments

BODY AREA1 - the area that contains the
bodies of the relocatable
lists being converted to
absolute form

OHEAD_ARRAY - thearraythatcontainsthe
offset heads of the relocatable
lists in BODY AREA1

These subroutines are used after the relocatable lists
have been retrieved from files or moved to new st9rage
locations. Conversion of the lists to absolute form permits
them to be processed by routines that accept only absolute
lists.

CON_DRA Subroutine

Figures 2.6A and 2.6B present the CON_DRA subroutine,
which converts data lists from relocatable to absolute form.
The subroutine uses four arguments: the body area and
head array of the relocatable lists being converted, and the
body area and head array that are to receive the absolute
lists during conversion.

BODY _AREA2

HEAD_ARRAY

Remarks

- the area that receives the
bodies of the lists after they
have been converted to abso
lute form

- the array that receives the
pointer heads of the absolute
lists in BODY AREA2

BODY _AREA 1 and BODY _AREA2 can have any
storage class and be of arbitrary and unequal size.
If BODY _AREA2 is not large enough to receive the
converted components of BODY _AREA 1, or if
HEAD_ARRAY is smaller than OHEAD_ARRAY,
or if all positions of OHEAD _AR RAY contain null
offset values, then HEAD _AR RAY is filled with null
pointer values, and the content of BODY _AREA2
becomes undefined.

Other Programmer-Defined Procedures Required

None

Method

Each relocatable list in BODY _AREA 1 is recon
structed, component by component, as an absolute
list in BODY AREA2. The data element of each
component is a single character.

Figure 2.6A. Description of the CON_ DRA subroutine for converting data lists from relocatable to absolute form

29

CON_DRA: ,
PROCEDURE (BOOY_AREAl.OHEAD_ARRAY•
BOOY_AREA2.HEAO_ARRAYt;

DECLARE

IF

(0UMMY_POINTER,Cl,C21POINTER,
(800Y_AREA1,BOOY_AREA2)AREA(•),
OUMMY_BODY_AREA BASED
(OUMMY_POINTERIAREA,
OHEAO_ARRAY(*) CFFSET
IOUMMY_BODY_AREA),
(HEAO_ARRAY(•), SAVE, T'EMP) PO.INTER,
l COMPONENTl BASEO(Cllt
2 DATA CHARACTER(l)•
2 OLINK OFFSETIOUMMY_BODY_AREA),
l COMPONENT2 BASEOIC2),
2 UAIA CnARAClcRiii.
2 LINK PO INTER;
I* .IF AREA CONDITION OCCURS,
BODY_AREA2 IS TOO SMALL TO RECEIVE
CONTENTS OF BOOY_AREAl. GO TO
NULL_LIST.•/
ON AREA

GO TO
NULL_LIST;
I* IF HEAD_ARRAY IS SMALLER THAN
OHEAD_ARRAY• GO·TO NULL~LIST.•/

DIMIHEAD_ARRAY,ll<DIMlOHEAO_ARRAY,l)
THEN

GO TO
NULL_LIST;
I* ASSOCIATE OFFSETS OHEAO_ARRAY AND
OLINK WITH BOOY_AREAl.•/
DUMMY_POINTER = ADOR(BODY_AREA 1);
I* CONVERT EACH RELOCATABLE DATA
LIST IN BODY_AREAl TO AN ABSOLUTE
DATA LIST IN BODY_AREA2.•/
J = LBOUNDlHEAD_ARRAY,11-1;

BEGIN_CONVERT_LOOP:
DO

IF

I = LBOUNO(OHEAO_ARRAY,l) TO HBOUND
lOHEAD_ARRAY,l);
J = J+l;
I* IF I-TH OFFSET IN OHEAO_ARRAY IS
NULLO• SET J-TH POINTER IN
HEAO_ARRAY TO NULL, AND CONVERT NEXT
LIST IN BODY_AREAl.•/ .

OHEAO_ARRAYlI) = NULLO
THEN .

DO;
HEAD_ARRAY(J) = NULL;

GO TO
END_CONVERT_LOOP;

ENO;
I* ALLOCATE COMPONENT2 IN
BODY_AREA2, ANO ASSIGN TO THE
ALLCCATION THE CATA VALUE OF THE
FIRST COMPONENT IN THE I-TH LIST IN
BOOY_AREAl.•/
ALLOCATE COMPONENT2 INIBOOY_AREA2)
SET (C2);

,HEAO_ARRAYIJ), SAVE = C2;
TEMP = OHEAO_ARRAYIII;
C2->COMPONENT2.DATA = TEMP->
COMPONENTl.OATA;
I* PERFORM SUCCESSIVE ALLOCATIONS OF
COMPONENT2 IN BODY_AREA2t AND ASSIGN
TO THE ALLOCATIONS THE DATA VALUES
Cf SUCCESS!V~ ca~P~NEM!S !~ !HE I-TH
LIST WITHIN BOOY_AREAl.•/
Cl = TEMP->OLINK;
DO WHILE(Cl ~=NULL);
ALLOCATE COMPONENT2 INlBODY_AREA2)
SET(C2);
SAVE->LINK, SAVE = C2;
C2->COMPONENT2.0ATA = Cl->
COMPONENTl.OATA;

IF

ENO;

Cl->OLINK = NULLO
THEN

Cl = NULL;
ELSE

Cl Cl->OLINK;

I* ASSIGN A NULL VALUE TO LINK IN
LAST COMPONENT OF J-TH LIST IN
eODY_AREA2.•/
SAVE->LINK • NULL;
I* CONVERT NEXT LIST IN BOOY_AREAl
BY EXECUTING NEXT CYCLE OF CONVERT
LOOP.•/

END_CONVERT_LOOP:
ENO;

I* THIS POINT IS REACHED WHEN ALL
RELOCATABLE LISTS IN BODY_AREAl
HAVE BEEN CONVERTED TO ABSOLUTE
LISTS IN BOOY_AREA2. THEREFORE,
RETURN SUBROUTINE CONTROL TO POINT
OF INVOCATION.•/
RETURN;
I* IF THIS POINT IS REACHED, ASSIGN
A NULL VALUE TO EACH ELEMENT OF
HEAD_ARRAY.•/

NULL_LIST:
HEAD_ARRAY = NULL;

END
CON_ORA;

Figure 2.6B. The CON_DRA subroutine used to convert data lists from relocatable to absolute form

30

CON_PRA Subroutine

Figures 2.7A and 2.7B present the CON_PRA subroutine,
which converts relocatable pointer lists to absolute form.
The subroutine uses five arguments: the body area and head
array of the relocatable pointer lists being converted, the
body area and head array that are to receive the absolute
pointer lists during conversion, and the data area, which is
shared by both the relocatable and absolute forms of the
pointer lists.

CON PRA Subroutine

Purpose

To convert pointer lists from relocatable to absolute
form

Reference

CON_PRA(BODY _AREA 1, OHEAD_ARRAY,
BODY _AREA2, HEAD_ARRAY,
DATA_AREA)

Entry-Name Declaration

DECLARE CON_PRA
ENTRY(AREA(*). (*)OFFSET
(DUMMY _BODY _AREA). AREA(*),
(*)POINTER, AREA(*));

Meaning of Arguments

BODY _AREA1 - the area that contains the
bodies of the relocatable
lists being converted to
absolute form

OHEAD _AR RAY - the array that contains the
offset heads of the relocatable
lists in BODY _AREA1

BODY _AREA2

HEAD_ARRAY

DATA_AREA

Remarks

the area that receives the
bodies of the lists after they
have been converted to
absolute form

the array that receives the
pointer heads of the absolute
lists in BODY _AREA2

- the area that contains the
data values of the lists
before and after conversion

BODY _AREA1, BODY _AREA2, and DATA_AREA
can have any storage class and be of arbitrary size.
If BODY _AREA2 is not large enough to receive the
converted components of BODY _AREA 1, or if
HEAD_ARRAY is smaller than OHEAD_ARRAY,
or if all positions of OHEAD_ARRAY contain
null offset values, then HEAD_ARRAY is filled with
null pointer values, and the content of BODY _AREA2
becomes undefined.

Other Programmer-Defined Procedures Required

None

Method

Each relocatable list in BODY AREA1 is recon
structed, component by component, as an absolute
list in BODY _AREA2. After conversion, both types
of lists share DATA AREA.

Figure 2.7 A. Description of the CON_ PRA subroutine for converting pointer lists from relocatable to absolute form

31

CON_PRA:
PROCEOURE(BOOY_AREAl, OHEAO_ARRAY,
BODY_AREA2, HEAO_ARRAY, OATA_AREAJ;

DECLARE
CBOCY_AREA1 1 BOOY_AREA2,0ATA_AREAJ
AREA(*J,

-DUMMY_BOOY_AREA
BASEPCDUMMY_POINTERlJ AREA,
OUMMY_DATA_AREA
BASE0(0UMMY_POINTER2J AREA,
(HEAO_ARRAY(*J, SAVE, TEMPJ POINTER,
OHEAO_ARRAY(•J
OFFSETCCUMMY_BODY_AREAJ,
1 CCMPONENTl BASEO(ClJ,
2 OOATA OFFSETCOUMMY_OATA_AREAJ,
2 OLINK OFFSETCOUMMY_BODY_AREAJ,
1 CCMPONENT2 BASEO(C2f,
2 DATA POINTER,
2 LINK POINTER;
I* IF AREA CONDITION OCCURS,
BODY_AREA2 IS TCO SMALL TO RECEIVE
CONTENTS OF BOOY_AREAl. GO TO
NULL_lIST. *I
ON AREA

GO TO
NULL_LIST;
I* IF All OFFSET VALUES IN
OHEAD_ARRAY ARE NULLO, GO TO
NULL_LI ST. •I

DO I = LBOUNO(OHEAD_ARRAY,lJ
TO HBOUNDCOHEAD_ARRAY,lJ;
IF OHEAD_ARRAY(IJ ,: NULLO
THEN GO TO GOS;

ENO;
GO TO NULL_LIST;

GOS:
I• IF HEAO_ARRAY IS SMALLER THAN
OHEAO_ARRAY GO TO NULL_LIST. */

IF -
DIMlHEAO_ARRAY,lJ<OIM(OHEAD_ARRAY,lJ

THEN
GO TO

NULL_ll ST;
I* ASSOCIATE OFFSETS OHEAO_ARRAY ANO
OLINK WITH BODY_AREA2 AND OFFSET
ODATA WITH OATA_AREA. •I
OUMMY_POINTERl = AOOR(BOOV_AREA2J;
DUMMY_POINTER2 = AODR(DATA_AREA);
I* CONVERT EACH RELOCATABLE POINTER
LIST IN BOOY_AREAl TO AN ABSOLUTE
POINTER LIST IN BOOY_AREA2. *I
J = LBOUNO(HEAO_ARRAY,lJ-1;.

BEGIN_CONVERT_LOOP:
DO

I = LBOUNO(OHEAD_ARRAY,lJ
TO HBOUND (OHEAD_AR,RAY, lJ;
J = J + l;
I* IF I-TH OFFSET IN OHEAO_ARRAY IS
NULLO, SET J-TH POINTER IN
HEAD_ARRAY TO NULL, AND CONVERT NEXT

LIST IN BOOY_AREAl. •I
IF

OHEAD_ARRAY(IJ = NULLO
THEN

DO;

END;

HEAD_ARRAY(JJ = ~ULL;
GO TO

ENO_CONVERT_LOOP;

I* ALLOCATE COMPONENT2 IN BOOY_AREA2,
AND ASSIGN TO THE ALLOCATION THE
DATA POINTER OF THE FIRST COMPONENT
IN THE I-TH LIST IN BODY_AREAl *I
ALLOCATE COMPONENT2 IN(BOOY_AREA2J
SETCC21;
HEAD_ARRAY(JJ, SAVE = C2;
TEMP = OHEAD_ARRAY (I J;
C2->DATA = TEMP->OOATA;
I* PERFORM SUCCESSIVE ALLOCATIONS OF
COMPONENT2 IN BOOY_AREA2, ANO ASSIGN
TO THE ALLOCATIONS THE DATA POINTER
OF SUCCESSIVE COMPONENTS IN THE I-TH
LIST WITHIN BODY_AREAl. *I
Cl = TEMP->OLINK;

DO WHILE
(Cl,=NULLJ;
ALLOCATE COMPONENT2 INCBODY_AREA21
SEHC21;
SAVE->LINK, SAVE = C2;
C2->0ATA : Cl->OOATA;

IF

ENO;

Cl->OLINK = NULLO
THEN

Cl = NULL;
ELSE

Cl = Cl->OLINK;

I* ASSIGN A NULL VALUE TO LINK IN
LAST COMPONENT OF J-TH LIST IN
BOOY_AREA2. */
SAVE->LINK • NULL;
I* CONVERT NEXT LIST IN BODV_AREAl
BY EXECUTING NEXT CYCLE OF CONVERT
LOOP. *I

ENO_CONVERT_LOOP:
END;

I* THIS POINT IS REACHED WHEN All
RELOCATABLE LISTS IN BODV_AREAl
HAVE BEEN CONVERTED TO ABSOLUTE LISTS
IN BODY_AREA2. THEREFORE, RETURN
SUBROUTINE CONTROL TO POINT OF
INVOCATION. *I
RETURN;
I* IF THIS POINT IS REACHED,
ASSIGN A NULL VALUE TO EACH
ELEMENT OF HEAD_ARRAV. *I

NULL_LIST:
HEAD_ARRAY • NULL;

END
CON_PRA;

Figure 2. 7B. The CON_ PRA subroutine used to convert relocatable pointer lists from relocatable to absolute form

32

CON_LRA Subroutine

Figures 2.8A and 2.8B present the CON_LRA subroutine,
which converts relocatable lists of lists to absolute form.
The subroutine uses six arguments: the body area and head
array of the relocatable lists of lists being converted, the
body area and head array that are to receive the absolute
lists of lists during conversion, the data area, which is

CON LRA Subroutine

Purpose

To convert lists of lists from relocatable to absolute
form

Reference

CON_LRA(BODY _AREA1, OHEAD_ARRAY,
BODY _AREA2, HEAD_ARRAY,
DATA_AREA,#SUBS)

Entry-Name Declaration

DECLARE CON_LRA
ENTRY(AREA(*), (*)OFFSET

(DUMMY _BODY _AREA), AREA(*),
(*)POINTER, AREA(*),FIXED
DECIMAL);

Meaning of Arguments

BODY_AREA1 - the area that contains the
bodies of the relocatable
lists being converted to
absolute form

OHEAD_ARRAY - the array that contains the
offset heads of the relocatable
lists in BODY _AREA1

shared by both the relocatable and absolute forms of the
lists of lists, and the number of sublists.

The code in CON_ LRA indicates an optional use of the
recursive function procedure CON shown in the Appendix.
CON examines the type code in each list component and
takes appropriate conversion action. CON returns a pointer
value.

BODY _AREA2 - the area that receives the
bodies of the lists after they
have been converted to
absolute form

HEAD _AR RAY - the array that receives the
pointer heads of the absolute
lists in BODY _AREA2

DATA_AREA - the area that contains the

#SUBS

Remarks

data values of the lists before
and after conversion

- the number of sublists

BODY _AREA1, BODY _AREA2, and DATA_AREA
can have any storage class and be of arbitrary size.
If BODY _AREA2 is not large enough to receive the
converted components of BODY _AREA1, or if
HEAD_ARRAY is smaller than OHEAD_ARRAY,
or if all positionsofOHEAD_ARRAY contain null
offset values, then HEAD_ARRAY is filled with
null pointer values, and the content of BODY _AREA2
becomes undefined.

Other Programmer-Defined Procedures Required

CON (optional)

Method

Each relocatable list in BODY AREA1 is recon
structed, component by component, as an absolute
list in BODY _AREA2. After conversion, both types
of lists share DATA_ AREA.

Figure 2.8A. Description of the CON_ LRA subroutine for converting lists of lists from relocatable to absolute form

33

CON_LRA:
PROCEDURE '80DY _AREA1 ,OHEAD_ARRAY,
BODY_AREA2, HEAD_ARRAY, DATA_AREA,
#SIJBS);

DECLARE
#SUBS FIXED DECIMAL,
(SAVE, KEEP, PA(#SUBS)) POINTER,
I* PARAMETER #SUBS IS NOT NECESSARY
WHEN FUNCTION CON IS USED *I
(BODY_AREA1 9 BODY_AREA2,DATA_AREA)
AREA(•),
DUMMY_BODY_AREA
BASED(DUMMY_BODY_POINTER) ARE~,
DUMMY_DATA_AREA
BASED(DUMMY_DATA_POINTER) AREA,
HEAD_ARRAY(*) POINTER,
(DU~MY_BODY_P01NTER,
DUMMY_DATA_POINTER,Cl,C2)POINTER,
DHEAD_ARRAY(*)
OFFSET(DUMMY_BODY_AREA),
1 D_COMPONENTl BASED(Cl),
2 D_OTYPE CHARACTER(!),
2 D_OVALUE OFFSET(DUMMY~DATA_AREA),
2 D_OLINK OFFSET(DUMMY_BODY_AREA),
1 L_COMPONENTl BASED(Cl),
2 L_OTYPE CHARACTER(!),
2 L_OVALUE OFFSET(DUMMY_BODY_AREA),
2 L_OLINK OFFSET(DUMMY_BODY_AREA),
1 COMPONENT2 BASEDfC2),
2 TYPE CHARACTER(!),
2 VALUE POINTER,
2 LINK POINTER;
I* IF AREA CONDITION OCCURS,
BODY_AREA2 IS TOO SMALL TO RECEIVE ·
CONTENTS OF BODY_AREAl. GO TO
NULL_LI ST. •I
ON AREA '

GO TO
NULL_LIST;
I* IF HEAD_ARRAY IS SMALLER THAN
OHEAD_ARRAY, GO TO NULL_LIST. *I

IF
DIMfHEAD_ARRAY,ll<DIMfOHEAD_ARRAY,l)

THEN
GO TO

NULL_LIST;
I* ASSOCIATE OFFSETS OHEAD:_ARRAY,
D_OLINK, L_OVALUE AND L_OLINK WITH
BODY_AREAl, AND OFFSET O_OVALUE WITH
DATA_AREA. *I .
DUMMY_BODY_POINTER =
ADDR(BODY_AREAll;
DUMMY_DATA_PdINTER =
ADDR(DATA_:AREAI;
I* CONVERT EACH RELOCATABLE LIST OF
LISTS IN BODY_AREAl TO AN ABSOLUTE
LIST OF LiiTS IN BOOY_AREA2. *I
PA = NULL;
J = LBOUND(HEAD_ARRAY,1)-1;

BEGIN_CONVERT_LOOP:
00

I = LBOUND(OHEAD_ARRAY,11
TO HBOUNO(OHEAD_ARRAY,11;
J=J+l;
K = l;
IF OHEAO_ARRAY(I) = NULLO
THEN DO;
HEAD_ARRAY (.J) = NULL;
GO TO ENO_CONVERT_LOOP;

·END;
I* OPTION *I
I* TEST */ IF #SUBS ,. 1 THEN GO TO NO_CON;

USE_CON:

34

I* USE THE FOLLOWING CODE
TO EMPLOY FUNCTION CON
FOR CONVERStONS *I
HEAD_ARRAY(JI = CON(OHEAD_ARRAYU),
BODY_AREAl, BODY_AREA2, DATA_AREA);
GO TO END_CONVERT_LOOP;

I* END OF OPTION *I
NO_CON:

Cl = OHEAD_ARRAY(I); .
ALLOCATE COMPONENT2 IN(BOD9_AREA21
SEHC2J;
SAVE, KEEP, HEAD_ARRAY(J) = C2;
C2->TYPE = 'L';
PA(K) = Cl -> L_OVALUE;
IF Cl->L_OLINK = NULLO
THEN Cl = NULL;
ELSE Cl = Cl->L_OLINK;

DO WHILE(Cl ,: NULL);
K=K+l;
ALLOCATE COMPONENT2 IN(BODY_AREA2)
SEHC21;
SAVE->LINK = C2;
SAVE = C2;
C2->TYPE = 'L';
PA(KI = Cl -> L_OVALUE;
IF Cl->L_OLINK = NULLO
THEN Cl = NULL;
ELSE Cl = Cl->L_OLINK;
END;
SAVE->LINK = NULL;

D_LI ST:
no L = 1 TO #SUBS;
Cl = PA(LI;
IF Cl=NULL THEN GOTO END_D_LIST;
ALLOCATE COMPONENT2 IN(BODY_AREA21
SEHC21;
SAVE = C2;
C2->TYPE = 1 0 1 ;

KEEP-->VALUE = C2;
KEEP = KEEP->LINK;
IF Cl->D_OVALUE = NULLO
THEN C2->VALUE = NULL;
ELSE C2->VALUE = Cl->D_OVALUE;
IF Cl~>D_OLINK = NULLO
THEN Cl = NULL;
ELSE Cl = Cl->D_OLINK;
DO WHILE lCl ,: NULL);
ALLOCATE COMPONENT2 IN(BODY_AREA21
SEHC21;
SAVE-> LINK = C2;
SAVE = C2;
C2->TYPE = 1 D1 ;

IF Cl->D_OVALUE = NULLO
THEN C2->VALUE = NULL;
ELSE C2->VALUE = Cl->D_OVALUE;
IF Cl->D_OLINK = NULLO
THEN Cl • NULL;
ELSE Cl = Cl->D_OLINK;
END;
SAVE->LINK = NULL;

END_D_LIST: END;
END_CONVERT_LOOP:
END;

I* WHEN THIS POINT IS REACHED, ALL
RELOCATABLE LISTS OF LISTS IN
BODY_AREAl HAVE BEEN CONVERTED TO
ABSOLUTE LISTS OF LISTS IN
BODY_AREA2. THEREFORE, RETURN
SUBROUTINE CONTROL TO POINT OF
INVOCATION. *I
RETURN;
I* IF THIS. POINT IS REACHED,
ASSIGN A NULL VALUE TO EACH
ELEMENT OF HEAD_ARRAY. *I

NULL_LIST:
HEAO_ARRAY • NULL;

ENO
CON_LRA;

Figure 2.8B. The CON_LRA subroutine used to convert
relocatable lists of lists from relocatable to
absolute form

MOVING RELOCATABLE LISTS

The following discussions develop two subroutines for
moving relocatable lists from one storage area to another:

1. MOVE_ RDL, which moves relocatable data lists
2. MOVE_RPL, which moves either relocatable pointer

lists or relocatable lists of lists. This subroutine can be
used with either type of list because both types have
a head, a body area, and a data area.

MOVE_RDL Subroutine

Purpose

To move relocatable data lists

Reference

MOVE_RDL(BODY _AREA1,0HEAD_ARRAY1,
BODY _AREA2, OHEAD_ARRAY2)

Entry-Name Declaration

DECLARE MOVE_RDL
ENTRY(AREA(*), (*)OFFSET

(DUMMY _BODY _AREA 1). AREA(*).
(*)OFFSET(DUMMY _BODY _AREA2));

Meaning of Arguments

BODY _AREA1 - the area that contains the
relocatable lists being moved

OHEAD _AR RAY1 - the array that contains the
offset heads of the relocatable
lists in BODY _AREA1

MOVE_RDL Subroutine

Figures 2.9A and 2.9B present the MOVE_RDL sub
routine, which moves relocatable data lists from one area to
another. The subroutine uses four arguments: the body area
and head array of the source lists, and the body area and
head array that are to receive the relocatable lists when
they are moved.

BODY _AREA2 - the area to which the reloca
table lists are moved

OH EAD _AR RA Y2 - the array that receives the
offset heads of the relocatable
lists in BODY _AREA2

Remarks

BODY _AREA 1 and BODY _AREA2 can have any
storage class and .be of arbitrary and unequal size.
If BODY _AREA2 is not large enough to receive
the contents of BODY _AREA1, or if OHEAD_
ARRAY2 is smaller than OHEAD_ARRAY1, then
OHEAD_ARRAY2 is set to NULLO, and the content
of BODY _AREA2 becomes undefined.

Other Programmer Defined Procedures Required

None

Method

Assignment statements are used to move BODY_
AREA1 to BODY:.._AREA2 and OHEAD_ARRAY1
to OHEAD_ARRAY2.

Figure 2.9A. Description of the MOVE_ RDL subroutine for moving relocatable data lists

35

MOVE_RDL:
PROCEDURE
(BOOY_AREAlt OHEAD_ARRAYl,
BODY_AREA2 1 OHEAO_ARRAY2);

DECLARE

BEGIN;

(OUMMY_POINTERlt DUMMY_POINTER2)
POINTER,

'(BOOY_AREA1 1BOOY_AREA2)AREAI*)•
OUMMY_BODY_AREAl BASED
(OUMMY_POINTERl) AREA,
OUMMY_BOOY_AREA2 BASED
(0UMMY_POINTER2) AREA,
OHEAO_ARRAYl(*) OFFSET
(0UMMY_BOOY_AREA1),
OHEAO_ARRAY2(*) OFFSET
(0UMMY_BOOY_AREA2);
I* IF AREA CONDITION OCCURS,
BODY AREA2 IS TCO SMALL TO.RECEIVE
CONTENTS OF BODY_AREAl. SET
OHEAD_ARRAY2 TO NULLO, AND GO TO ENO
OF SUBROUTINE.•/
ON AREA

OHEAD_ARRAY2 = NULLO;
GO TO

END_MOVE_ROL;

ENO;

IF

I• ASSOCIATE OHEAD_ARRAYl AND
OHEAO_ARRAY2 WITH BODY_AREAl ANC
BOOY_AREA2.•I
OUMMY_POINTERl = AOOR(BODY_AREAU;
DUMMY_POINTER2 = AOOR(B.OOY.._AREA2);
I* IF OHEAO_ARRAY2 IS SMALLER THAN
OHEAO_ARRAYlt THEN SET OHEAO_ARRAV2
TO NULLO, ANO GO TO ENO OF
SUBROUTINE, OTHERWISE, ASSIGN
OHEAO_ARRAYl TO OHEAO_ARRAY2.•/

OIM(OHEAO_ARRAY21l)<Ol~(OHEAO~ARRAVl,l)
THEN DO;

OHEAO_ARRAY2 = NULLO;
GO TO

END_MOVE_ROL;
ENO;

ELSE
OHEAO_ARRAY2 = OHEAO_ARRAYl;
I• ASSIGN BOOY_AREAl TO BOOY_AREA2.
AREA CONDITION MAY OCCUR.•/
BOOV_AREA2 = BOOY_AREAl;

END_MOVE_ROL:
ENO

MOVE_ROL;

Figure 2.9B. The MOVE_ RDL subroutine used to move relocatable data lists from one area to another

36

MOVE_RPL Subroutine

Figures 2.lOA and 2.lOB present the MOVE_RPL sub
routine, which moves relocatable pointer lists and relocat
able lists of lists to new storage locations. The subroutine
uses six arguments: the body area, head array, and data area
of the source lists, and the body area, head array, and data
area that are to receive the relocatable lists when they are
moved.

MOVE RPL Subroutine

Purpose

To move relocatable pointer lists and lists of lists

Reference

MOVE_RPL(BODY _AREA1, OHEAD_ARRAY1,
DATA_AREA1, BODY _AREA2,
OHEAD_ARRAY2, DATA_AREA2)

Entry-Name Declaration

DECLARE MOVE RPL
ENTRY(AREA(*), (*)OFFSET

(DUMMY _BODY _AREA1),
AREA(*), AREA(*),
(*)OFFSET(DUMMY _BODY _AREA2).
AREA(*));

Meaning of Arguments

BODY _AREA1 - the area that contains the
bodies of the relocatable
lists being moved

OHEAD_ARRAY1 - thearraythatcontainsthe
offset heads of the relocatable
lists in BODY _AREA1

DATA_AREA1 - the area that contains the
data values of the lists in
BODY _AREA1

BODY ~AREA2 - the area that receives the
contents of BODY AREA 1

OH EAD _ARR A Y2 - the array that receives the
offset heads of the relocatable
lists in BODY _AREA2

DATA AREA2

Remarks

- the area that receives the data
values of the lists in BODY
AREA2

BODY _AREA1, BODY _AREA2, DATA_AREA1,
and DATA_AREA2 can have any storage class and
be of arbitrary size. If BODY _AREA2 is not large
enough to receive the contents of BODY _AREA 1,
or if DATA_AREA2 is not large enough to receive
the contents of DATA_AREA 1, or if OHEAD _
ARRAY2 is smaller than OHEAD_ARRAY1, then
OHEAD_ARRAY2 is set to NULLO, and the content
of BODY AREA2 and DATA AREA2 becomes - -
undefined.

Other Programmer-Defined Procedures Required

None

Method

Assignment statements are used to move BODY_
AREA1 to BODY _AREA2, OHEAD_ARRAY1 to
OHEAD_ARRAY2, and DATA_AREA1 to
DATA AREA2.

Figure 2.lOA. Description of the MOVE_ RPL subroutine for moving relocatable pointer lists and lists of lists

37

MOVE_RPL:
PROCEOURE(BCOY_AREAl,OHEAO_ARRAYl,
OATA_AREAl, BOOY_AREA2• OHEAO_ARRAY2,
OATA_AREA2);

DECLARE
(BOOY_AREA1 9 0ATA_AREA1,BOOY_AREA2,
OATA_AREA2) AREA(•),
OUMMY_BOOY_AREAl
BASEO(OUMMY~POINTERl) AREA,
OUMMY_BOOY_AREA2
BASED(DUMMY_POINTER2) AREA,
OHEAO_ARRAY 1(*)
OFFSET(OUMMY_BODY_AREAl),
OHEAD_ARRAY2(*)
OFFSET(DUMMY_BODY_AREA2);
I• IF AREA CONDITION OCCURS,
BODY_AREA2 OR DATA_AREA2 IS TOO
SMALL TO RECEIVE CONTENTS OF
BOOY_AREAl OR DATA_AREAl. SET
OHEAD_ARRAY2 TO NULLO, ANO GO TC END
OF SUBROUTINE. •I
ON AREA

BEGIN;

END;

OHEAD_ARRAY2 • NULLO;
GO TO

END_MOVE_RPL;

I• ASSOCIATE OHEAD_ARRAYl AND

OHEAD_ARRAY2 WITH BOOY~AREAl ANO
BOOY_AREA2. */
OUMMY_POINTERl = ADOR(BODY_AREAl);
DUMMY_POINTER2 = AODR(800Y_AREA2);
I• IF OHEAD_ARRAY2 IS SMALLER THAN
OHEAO_ARRAYl, THEN SET OHEAO_ARRAY2
TO NULLO, ANO GO TO ENO OF
SUBROUTINE. OTHERWISE ASSIGN
OHEAO_ARRAYl TO OHEAD_ARRAY2. •I

IF
OIM(OHEAO_ARRAY2,l)<
OIM(OHEAO_ARRAYl,l)

THEN
DO;

END;

OHEAO_ARRAY2 • NULLO;
GO TO

ELSE

END_MOVE_RPL;

OHEAD_ARRAY2 = OHEAD_ARRAYl;
I* ASSIGN BODY_AREAl TC BOOY_AREA2
ANO DATA_AREAl TO OATA_AREA2. AREA
CONDITION MAY OCCUR. •I
BOOY_AREA2 = BODY_AREAl;
OATA_AREA2 = DATA_AREAli

END_MOVE_RPL:
ENO

MOVE_RPL;

Figure 2.lOB. The MOVE_RPL subroutine used to move relocatable pointer lists and relocata,ble lists of lists to new storage locations

38

WRITING RELOCATABLE LISTS

The following discussions develop two subroutines for
writing relocatable lists into a file:

I. WRITE_RDL, which writes relocatable data lists
2. WRITE_RPL, which writes either relocatable pointer

lists or relocatable lists of lists. This subroutine can be
used with either type of list because both types have
a head, a body area, and a data area.

WRITE RDL Subroutine

Purpose

To write relocatable data lists into a file

Reference

WRITE_RDL(DFILE, OHEAD_ARRAY,
BODY _AREA, BODY _SIZE)

Entry-Name Declaration

DECLARE WRITE_RDL
ENTRY(FILE RECORD OUTPUT,

(*)OFFSET(DUMMY _BODY1),
AREA(*), FIXED DECIMAL(5));

Meaning of Arguments

DFILE - the file into which the
relocatable lists are written

OHEAD _ARRAY - the array that contains the
offset heads of the relocatable
lists

BODY _AREA

BODY _SIZE

- the area that contains the
bodies of the relocatable
lists

- the size of BODY _AREA in
bytes

WRITE_RDL Subroutine

Figures 2.1 IA and 2.1 IB present the WRITE_RDL sub
routine, which writes relocatable data lists into a file. The
subroutine uses four arguments: the file that receives the
lists, the head array and body area of the relocatable lists,
and the size of the body area in bytes. The head array and
body area are written as separate self-defining records in
that order.

Remarks

DF I LE must be a sequentially buffered output file.
OHEAD_ARRAY and BODY _AREA can be of any
storage class and have arbitrary size, and are written
as separate logical records in that order. The records
are self-defining: OHEAD_ARRAY is preceded by
a count of its elements, and BODY _AREA is
preceded by its storage size (BODY _SIZE), which
does not include the control storage internally
associated with an area.

Other Programmer-Defined Procedures Required

None

'Method

Separate LOCATE statements are executed for each
of the following record descriptions:

1 OHEAD RECORD BASED(OUTPOINTER1).
2 OUT_OHEAD_SIZE FIXED BINARY(16,0).
20UT_OHEAD_ARRAY

(BINARY _OHEAD_SIZE
REFER(OUT_OHEAD_SIZE))OFFSET
(DUMMY _BODY2),

1 BODY _RECORD BASED(OUTPOINTER2),
2 PADDING2 CHARACTER(4),
2 OUT _BODY _SIZE FIXED BINARY(16,0),
2 OUT _BODY _AREA AREA

(BINARY _BODY _SIZE
REFER(OUT _BODY _SIZE)),

Figure 2.1 lA. Description of the WRITE_ RDL subroutine for writing relocatable data lists into a file

39

WRITE_RDL:

DECLARE

END

PROCEDURE(OUTFILE, OHEAD_ARRAY,
BODY_AREA,BODY_SIZEJ;

tDUMMY_POINTERl, DUMMY_POINTER2,
OUTPOINTERl, 'OUTPOINTER2J
POINTER,
DUMMY_BODYl AREA
BASEDtDUMMY_POINTERlJ,
DUMMY_BODY2 AREA
BASED(DUMMY_POINTER2J,
OHEAD_ARRAY(•J
OFFSET(DUMMY_BODYlJ,
BODY_AREA AREA t•J,
BODY_SIZE FIXED DECIMAL(5J,
BINARY_OHEAD_SIZE FIXED BINARY(l6,QJ,
BINARY_BODY_SIZE FIXED BINARY(l6,QJ,
OUTFILE FILE ~ECORD OUTPUT,
1 OHEAD_RECORD BASEDtOUTPOINTERlJ,
2 OUT_OHEAD_SIZE FIXED BINARY(l6,0J,
2 OUT_OHEAD_ARRAYtBINARY_OHEAD_SIZE
REFER(OUT_OHEAO_SIZEJJ
OFFSETtOUMMY_BOOY2J,
1 BCDY_RECORD BASE0(0UTPOINTER2J,
2 PADDING2 CHARACTER(4),
2 OUT_BOOY_SIZE FIXED BINARYtl6,0J,
2 OUT_BOOY_AREA AREA
(BINARY_BODY_SIZE
REFERtOUT_BOOY_SIZEJJ;
I* ASSOCIATE OHEAD_ARRAY AND
OUT_OHEAO_ARRAY WITH BOOY_AREA. *I
DUMMY_POINTER1,DUMMY_POINTER2 =
ADOR(BOOY_AREAJ;
I* INiTIALIZE SIZE OF
OUT_OHEAD_ARRAY *I
BINARY_OHEAO_SIZE =
OIM(OHEAD~ARRAY,lJ;
I* INITIALIZE SIZE OF
OUT_BODY_AREA *I
BINARY_BODY_SIZE = BODY_SIZE;
I* LOCATE STORAGE IN OUTPUT BUFFER
FOR OHEAD_RECORD, ANO ASSIGN ACCRESS
OF LOCATION TO OUTPOINTERl. *I
LOCATE OHEAD_RECORO FILE(OUTFILEJ
SET(OUTPOINTERlJ;
I* ASSIGN OHEAO_ARRAY TO
OUT_OHEAD_ARRAY IN OHEAD_RECORO. *I
OUTPOINTERl->OUT_OHEAO_ARRAY =
OHEAO_ARRAY;
I* LOCATE STORAGE IN OUTPUT BUFFER
FOR BOOY_RECORO, AND ASSIGN ADDRESS
OF LOCATION TO OUTPOINTER2. *I
LOCATE BODY_RECORD FILEIOUTFILEJ
SET(OUTPOINTER2J;
I* ASSIGN BODY_AREA TO OUT_BODY_AREA
IN BOOY_RECORO. •I
OUTPOINTER2->0UT_BODY_-AREA =
BODY_AREA;

WRITE ROL; .

Figure 2.llB. The WRITE_RDL subroutine used to write
relocatable data lists into a file

40

WRITE _RPL Subroutine

Figures 2.12A and 2.128 present the WRITE_RPL sub
routine, which writes relocatable pointer lists and relocat
able lists of lists into a file. The subroutine uses six
arguments: the file that receives the relocatable lists, the
head array of the lists, the containing body area and its size,
and the associated data area and its size. The head array,
the body area, and the data area are written as separate
self-defining records in that order.

WRITE RPL Subroutine

Purpose

To write relocatable pointer lists and lists of lists into
a file '

Reference

WRITE_RPL(LFILE, OHEAD_ARRAY,
BODY _AREA, BODY _SIZE,
DATA_AREA, DATA_SIZE)

Entry-Name Declaration

DECLARE WRITE_RPL
ENTRY(FILE RECORD OUTPUT, (*)OFFSET

(DUMMY _BODY1), AREA(*), FIXED
DECIMAL(5). AREA(*), FIXED
DECIMAL(5));·

Remarks

LF I LE must be a sequentially buffered output file.
OHEAD_ARRAY, BODY _AREA, and DATA_
AR EA can be of any storage class and have arbitrary
size, and are written as separate logical records in
that order. The records are self-defining: OHEAD _
AR RAY is preceded by a count of its elements, and
BODY _AREA and DATA_AREA are preceded by
their storage sizes, which do not include the control
storage internally associated with the areas.

Other Programmer-Defined Procedures Required

None

Method

Separate LOCATE statements are executed for each

Meaning of Arguments of the following record descriptions:

LF I LE - the file into which the relo-
catable lists are written

OHEAD ARRAY - the array that contains the
offset heads of the relocatable
lists

BODY _AREA the area that contains the
bodies of the relocatable
lists

BODY _SIZE the size of BODY AREA in
bytes

DATA_AREA the area that contains the data
values of the relocatable lists

DATA SIZE the size of DATA_ AREA in
bytes

1 OHEAD_RECORD BASED(OUTPOINTER).
2 OUT _OHEAD_SIZE FIXED BINARY(16,0),
2 OUT_OHEAD_ARRAY

(BINARY _OHEAD_SIZE
REFER(OUT_OHEAD_SIZE)) OFFSET
(DUMMY _BODY2),

1 BODY _RECORD BASED(OUTPOINTER),
2 PADDING2 CHARACTER(4).
2 OUT_BODY _SIZE FIXED BINARY(16,0),
2 OUT _BODY _AREA AREA

(BINARY _BODY _SIZE
REFER(OUT_BODY _SIZE)).

1 DATA_RECORD BASED(OUTPOINTER).
2 PADDING3 CHARACTER(4).
2 OUT_DATA_SIZE FIXED BINARY(16,0),
2 OUT_DATA_AREAAREA

(BINARY _DATA_SIZE
REFER(OUT_DATA_SIZE)).

Figure 2.12A. Description of the WRITE_ RPL subroutine for writing relocatable pointer lists and lists of lists into a file

41

WRITE_RPL:

DECLARE

PROCEDUREIOUTFILE,OHEAD_ARRAY,
BODY_AREA,BOOY_SIZE,DATA_AREA,
DATA_SIZEI;

IOUMMY_PO INTER 1, DUMMY_POINTER2,
OUTPOINTERI POINTER,
DUMMY_BOOYl AREA
BASEDIDUMMY_POINTERllt
DUMMY_BODY2 AREA
BASEDIDUMMY_POINTER21,
OHEAD_ARRAYl*I OFFSETIDUMMY_BOOYll,
BODY_AREA AREA l•I,
BODY_SIZE FIXED DECIMAL(5),
DATA_AREA AREA l*lt
DATA_SIZE FIXED OECIMAL(5),
OUTFILE FILE RECORD OUTPUT,
BINARY OHEAO SIZE FIXED BINARY(l6,0lt
BINARY:BODY_SIZE FIXED BINARY(l6,0I,
BINARY DATA SIZE FIXED BINARY(l6,0I,
l OHEAO RECORD BASEO(OUTPOINTERI,
2 OUT~OHEAD_SIZE FIXED BINARY(l6,0I,
2 OUT_OHEAO_ARRAYIBINARY_OHEAD_SIZE
REFERIOUT_OHEAD_SIZEll
OFFSETIDUMMY_BOOY2lt
1 BODY_RECORO BASEDIOUTPOINTERI,
2 PADDING2 CHARACTER(4),
2 OUT_BODY_SIZE FIXED BINARY(l6,0lt
2 OUT_BODY_AREA AREA
(BINARY_BODY_SIZE REFER
(OUT_BODY_SIZEll,
l OATA_RECORD BASEOIOUTPOINTERlt
2 PADDING3 CHARACTER(41,
2 OUT_DATA_SIZE FIXED BINARY(l610I,
2 OUT_DATA_AREA AREA
IBINARY_DATA_SIZE

END

REFER(OUT_DATA_SIZEll;
I* ASSOCIATE OHEAD_ARRAY ANO
OUT_OHEAD_ARRAY WITH BODY_AREA. •I
DUMMY_POINTERl1DUMMY_POINTER2 =
ADDRIBODY_AREAI;
I* INITIALIZE SIZE OF HEAD ARRAY IN
OHEAO_RECORD, SIZE OF BODY AREA IN
BODY_RECORD, AND SIZE OF DATA
AREA IN DATA_RECORD. *I
BINARY_OHEAD_SIZE =
DIM(OHEAD_ARRAY,11;
BINARY_BODY_SIZE = BODY_SIZE;
BINARY_DATA_SIZE = DATA_SIZE;
I* LOCATE STORAGE IN OUTPUT BUFFER
FOR OHEAD_RECORO, AND ASSIGN
OHEAO_ARRAY TO OUT_OHEAO_ARRAY. *I
LOCATE OHEAD_RECORO FILEIOUTFILEI
SET (OUTPOINTER I;
OUTPOINTER->OUT_OHEAD_ARRAY =
OHEAO_ARRAY;
I* LOCATE STORAGE IN OUTPUT BUFFER
FOR BOOY_RECORO, ANO ASSIGN
BODY_AREA TO OUT_BODY_AREA. *I
LOCATE BOOY_RECORD FILEIOUTFILEI
SET IOUTPOINTER I;
OUTPOINTER->GUT_BOOY_AREA =
BOOY_AREA;
I* LOCATE STORAGE IN OUTPUT BUFFER
FOR DATA_RECORD, ANO ASSIGN DATA
AREA TO OUT_OATA_AREA. */
LOCATE DATA_RECORD FILE10UTFILEI
SETIOUTPOINTERI;
OUTPOINTER->OUT_DA1A_AREA
OATA_AREA;

WRITE_RPL;

Figure 2.12B. The WRITE_RPL subroutine used to write relocatable pointer lists and relocatable lists of lists into a file

42

READING RELOCATABLE LISTS

The following discussions develop two subroutines for
reading relocatable lists from a file:

1. READ _RDL, which reads relocatable data lists
2. READ _RPL, which reads either relocatable pointer

lists or relocatable lists of lists. This subroutine can be
used with either type of list because both types have
a head, a body area, and a data area.

READ RDL Subroutine

Purpose

To read relocatable data lists from a file

Reference

READ_RDL(DFILE, OHEAD_ARRAY,
BODY _AREA, BODY _SIZE)

Entry-Name Declaration

DECLARE READ_RDL
ENTRY(FILE RECORD INPUT, (*)OFFSET

(DUMMY _BODY1),AREA(*). FIXED
DECIMAL(5));

Meaning of Arguments

OF I LE - the file from which the
relocatable data lists are read

OHEAD_ARRAY - thearraythatreceivesthe
offset heads of the relocatable
lists

BODY _AREA - the area that receives the
bodies of the relocatable lists

BODY _SIZE - the size of BODY _AREA in
bytes

READ_RDL Subroutine

Figures 2.13A and 2.13B present the READ_ RDL sub
routine, which reads relocatable data lists from a file. The
subroutine uses four arguments: the file that contains the
relocatable lists, the head array and body area that are to
receive the lists, and a variable that receives the size of the
body area. The head array and body area are assumed to be
contained in separate self-defining records, which are read
in ·that order.

Remarks

DFILE must be a sequentially buffered input file.
OHEAD_ARRAY and BODY _AREA can be of any
storage class and have arbitrary size; their values are
read as separate logical records in that order. The
records are self-defining: the record for OHEAD _
AR RAY is preceded by a count of its offset values,
and the record for BODY _AREA is preceded by the
size of the area in bytes. The size of BODY _AREA
is assigned to BODY _SIZE. An attempt to read past
the end of DFI LE assigns a zero value to BODY _SIZE
and returns control to the invoking procedure.

Other Programmer-Defined Procedures Required

None

Method

Separate READ statements are executed for each of
the following record descriptions:

1 OHEAD_RECORD BASED(INPOINTER).
2 IN_OHEAD_SIZE FIXED BINARY(16,0),
2 IN_OHEAD_ARRAY

(BINARY _OHEAD_SIZE
REFER(IN_OHEAD_SIZE))
OFFSET(DUMMY _BODY2),

1 BODY _RECORD BASED(INPOINTER),
2 PADDING2 CHARACTER(4),
2 IN_BODY _SIZE FIXED BINARY(16,0),
2 IN_BODY _AREA AREA

(BINARY _BODY _SIZE
REFER(IN_BODY _SIZE)),

Figure 2.13A. Description of the READ_ RDL subroutine for reading relocatable data lists from a file

43

READ_ROL:

DECLARE

BEGIN;

PROCEOURE(INFILE1 OHEAD_ARRAY1
BOOY_AREA,BODY_SIZE);

(OUMMY_POINTERl, OUMMY_POINTER21
INPOINTER) POINTER,
OUMMY_BODYl AREA
BASEO(DUMMY_POINTERl)1
DUMMY_BOOY2 AREA
BASE0(0UMMY_POINTER2),
OHEAD ARRAY(*) OFFSET(DUMMY_BODYl),
BODY_SIZE FIXED OECIMAL(5),
BODY_AREA AREA (*)•
INFILE FILE RECORD INPUT,
BINARY_OHEAO_SIZE FIXED BINARY (1610) 1
BINARY_BODY_SIZE FIXED BINARY(l610),
1 OHEAD RECORD BASEOIINPOINTER),
2 IN_OHEAO_SIZE FIXED BINARY(l610),
2 I N_OHEAD_ARRAY (BI NARY _OHEAD_S IZE
REFERIIN_OHEAD_SIZE))
OFFSET(OUMMY_BODY2),
1 BODY_RECORO BASED(INPOINTER),
2 PADDING2 CHARACTER(4),
2 IN_BODY_SIZE FIXED BINARY(l6,0),
2 IN_BODY_AREA AREA
(BINARY_BODY_SIZE
REFER(IN_BODY_SIZE));
I* AT ENO OF INFILE, SET BODY_SIZE TO .
ZERO, ANO ENO SUBROUTINE. *I
ON ENDFILE(INFILE)

BOOY_SIZE = O;
GO TO

END;
END_REAO_ROL;

I* ASSOCIATE OHEAD_ARRAY AND
IN_OHEAD_ARRAY WITH BODY_AREA. */
DUMMY_POINTER1,DUHMY_POINTER2 =
ADDR(BODY_AREA);
I* READ NEXT LOGICAL OHEAD_RECORD
FROM INFILE1 AND SET INPOINTER TO
LOCATION OF OHEAD_RECORD IN INPUT
BUFFER. *I
READ FILEllNFILE) SETllNPOINTER);
I* ASSIGN IN_OHEAD_ARRAY WITHIN
OHEAD_RECORD TO OHEAD_ARRAY. *I
OHEAD_ARRAY =
INPOINTER->IN_OHEAD_ARRAY;
I* READ NEXT LOGICAL BODY_RECORD
FROM INFILE1 AND SET INPOINTER TO
LOCATION OF BODY_RECORD IN INPUT
BUFFER. *I
READ FILE(INFILE) SETllNPOINTER);
I* ASSIGN IN_BODV_AREA W1THIN
BODY_RECORD TO BODY_AREA. */
BODY_AREA =
INPOINTER->IN_BODY_AREA;

END_R EAD_RDL:
END

READ_ROL;

Figure 2.13B. The READ_ RDL subroutine used to read
relocatable data lists from a file

44

READ _RPL Subroutine

Figures 2.14A and 2.148 present the READ _RPL sub
routine, which reads relocatable pointer lists and relocat
able lists oflists from a file. The subroutine uses six
arguments: the file that contains the relocatable lists, an
array to receive the heads of the lists, an area and a variable
to receive the body and the body size of the lists, and an
area and a variable to receive the data area and the data-area
size of the lists. The head array, the body area, and the data
area are assumed to be contained in separate self-defining
records, which are read in that order.

READ RPL Subroutine

Purpose

To read relocatable pointer lists and lists of lists from
a file

Reference

READ_RPL(LFILE, OHEAD_ARRAY,
BODY _AREA, BODY _SIZE,
DATA_AREA, DATA_SIZE)

Entry-Name Declaration

DECLARE READ_RPL
ENTRY(FILE RECORD INPUT, (*)OFFSET

(DUMMY _BODY1), AREA(*). FIXED
DECIMAL(5). AREA(*). FIXED
DECIMAL(5));

Meaning of Arguments

LFILE - the file from which the
relocatable lists are read

OHEAD_ARRAY - thearraythatreceivesthe
offset heads of the relocatable
lists

BODY _AREA - the area that receives the
bodies of the relocatable lists

BODY _SIZE - the size of BODY _AREA in
bytes

DATA_AREA - the area that receives the
data values of the relocatable
lists

DATA_SIZE - thesizeofDATA AREAin
bytes

Remarks

LFI LE must be a sequentially buffered input file.
OHEAD_ARRAY, BODY _AREA, and DATA_AREA
can be of any storage class and have arbitrary size;
their values are read as separate logical records in
that order. The records are self-defining: the record
for OHEAD_ARRAY is preceded by a count of its
offset values, and the records for BODY _AREA and
DATA_AREA are preceded by their storage sizes.
The size of BODY _AREA is assigned to BODY_
SIZE, and DATA_SIZE receives the size of DATA
AREA. An attempt to read past the end of LFI LE
assigns zero values to BODY _SIZE and DATA_ SIZE
and returns control to.the invoking procedure.

Other Programmer-Defined Procedures Required

None

Method

Separate READ statements are executed for each of
the following record descriptions:

1 OHEAD_RECORD BASED(INPOINTER),
2 IN_OHEAD_SIZE FIXED BINARY(16,0).
2 IN OHEAD_ARRAY

(BINARY _OHEAD_SIZE
REFER(IN_OHEAD_SIZE)) OFFSET
(DUMMY _BODY2),

1 BODY _RECORD BASED(INPOINTER).
2 PADDING2 CHARACTER(4).
2 IN_BODY _SIZE FIXED BINARY(16,0),
2 IN_BODY _AREA AREA

(BINARY _BODY _SIZE
REFER(IN_BODY _SIZE)).

1 DATA_RECORD BASED(INPOINTER).
2 PADDING3 CHARACTER(4),
2 IN_DATA_SIZE FIXED BINARY(16,0).
2 IN DATA_AREAAREA

(BINARY _DATA_SIZE
REFER(IN_DATA_SIZE)),

Figure 2.14A. Description of the READ_ RPL subroutine for reading relocatable pointer lists and lists of lists from a file.

45

REAO_RPL:

DECLARE

PROCEOUREIINFILE,OHEAD_ARRAY,
BOOY_AREA,BOOY_SIZE,OATA_AREA,
OATA_SIZEI;

IOUMMY_POINTERl, OUMMY_POINTER2~
INPOINTERl·POINTER,
DUMMY_BOOYl AREA
BASEDIDUMMY_POINTERll,
DUMMY_BOOY2 AREA
BASEDIOUMMY_POINTER21,
OHEAD_ARRAYl*I
OFFSETIDUMMY~BOOYlJ,
BOOY_AREA AREA !*It
BODY_SIZE FIXED OECIMAL(5J,
DATA_AREA AREA t•I,
OATA_SIZE FIXED OECIMALl51,
INFILE FILE RECORD INPUT,
BINARY_OHEAO_SIZE FIXED BINARY(l6,0I,
BINARY_BOOY_SIZE FIXED BINARYl16,0J,
BINARY_OATA_SIZE FIXED BINARY(l6,0J,
l OHEAD_RECORO BASEO(INPOINTERJ,
2 IN_OHEAD_SIZE FIXED BINARY(l6,Q),
2 IN_OHEAO_ARRAY(BINARY_OHEAO_SIZE
REFERlIN_OHEAD_SIZEll
OFFSETlOUMMY_BOOY21,
1 BOOY_RECORO BASEOllNPOINTERI,
2 PADDING2 CHARACTERl41,
2 IN_BODY_SIZE FIXED BINARY(l6,0),.
2 IN_BOOY_AREA AREA(BINARY_BOOY_SIZE
REFERlIN_BOOY_SIZEIJ,
1 OATA_RECORO BASEDllNPOINTERJ,
2 PAOOING3 CHARACTER(4),
2 IN_OATA_SIZE FIXED BINARYl16,0I,
2 IN_DATA_AREA AREAIBINARY_OATA_SIZE
REFER (I N_OAT.A_S I ZE I I;

I* AT ENO OF INFILE, SET BODY_SIZE
ANO OATA_SIZE. TO ZERO, AND END
SUBROUTINE. */
ON ENDFILElINFILEI

BEGIN;

ENO;

BOOY_SIZE,DATA_SIZE = O;
GO TO

END_READ_RPL;

I* ASSOCIATE OHEAD_ARRAY AND
IN_OHEAD_ARRAY WITH BODY_AREA. */
OUMMY_POINTER1,0UMMY_POINTER2 =
ADDRIBODY_AREAI;
I* READ .NEXT LOGICAL OHEAD_RECORD
FROM INFILE. *I
READ FILE(INFILEI SET(INPOINTERI;
I* ASSIGN IN_OHEAD_ARRAY WITHIN
OHEAD_RECORD TO OHEAD_ARRAY. */
OHEAD_ARRAY =
INPOINTER->IN_OHEAD_ARRAY;
I* READ NEXT LOGICAL BODY_RECORD
FROM INFILE. */
READ FILElINFILEI SET(INPOINTERI;
I* ASSIGN IN_BODY_AREA WITHIN
BODY_RECORD TO BODY_AREA. *I
BODY_AREA =
INPCINTER->IN_BODY_AREA;
I* READ NEXT LOGICAL DATA_RECORO
FROM INFILE. *I
READ FILEIINFILEI SETlINPOINTERI;
I* ASSIGN IN_OATA_AREA WITHIN
DATA_RECORO TO DATA_AREA. *I
DAT A_AREA =
INPCINTER->IN_DATA_AREA;

END_READ_RPL:
ENO

REAO_RPL;

Figure 2.14B. The READ_ RPL subroutine used to read relocatable pointer lists and relocatable lists of lists from a file

46

Chapter 3. Using Relocatable Lists

Organizing a list in relocatable form permits the list to be
stored in a file. Transmission of relocatable lists to and
from files allows programs to be run in stages and also
allows libraries of list organizations to be created and main
tained for use by other programs.

The following discussions present two examples of list
transmission. The first example processes relocatable data
lists, and the second processes relocatable lists of lists. Both
examples use the previously developed subroutines for
converting, writing, and reading relocatable lists.

AN EXAMPLE THAT TRANSMITS
RELOCATABLE DATA LISTS

Figures 3.lA through 3.lF present the TRANS_D pro
gram, which provides a simple illustration of how relocat
able data lists may be constructed and then transmitted to
and from a file. The program performs little actual proc
essing of the lists and concentrates mainly on showing how
relocatable data lists can be written into and read from a
file.

TRANS_ D begins by allocating list components in the
storage area ABSOLUTE_BODY _AREA and linking the
components into an absolute list of available storage com
ponents called FREE. Each component contains a single
character as its data element. The program then uses the
components in FREE to create two additional lists, LISTI
and LIST2, which contain ten components each.

TRANS_O:
PROCEDURE;
DECLARE

ILISTl, LIST2, FREE, WORK_POINTER,
OP, Pl POINTER,
ABSOLUTE_HEAO_ARRAYl21 POINTER,
RELOCATABLE_HEAD_ARRAYl21
OFFSET I DUMMY_RELOCAT ABL E_AREAI,
ABSOLUTE_BOOY_AREA AREAl2401,
RELOCATABLE_BODY_AREA AREA 12401,
BOOY_SIZE FIXED DECIMALl51
INITIAL 12401,
OUMMY_RELOCATABLE_AREA
AREA BASEDIDPI,
DFILE FILE RECORD I* RECFM V •I,
1 LIST_COMPONENT BASEDIPI,
2 DATA CHARACTERlll,
2 LINK POINTER,
BLANKS CHARACTERl701;
I* WHEN FREE LIST HAS BEEN FORMED,
GO TO NULL_LINK. *I
ON AREA

GO TO
NULL_L INK;

START:

ON ENOFILE ISYSINI
BEGIN;
CLOSE FILEIOFILEI;
OPEN FILEIDFILEI INPUT;
GO TO OUTPUT;
ENO;

I* INITIALIZE. *I
ABSOLUTE_HEAD_ARRAY = NULL;
RELOCATABLE_HEAD_ARRAY = NULLO;
ABSOLUTE_BODY_AREA,
RELOCATABLE_BODY_AREA = EMPTY;
I* ASSOCIATE RELOCATABLE_HEAD_ARRAY
WITH RELOCATABLE_BODY_AREA. *I
OP= ADDRIRELOCATABLE~BODY_AREAI;
I* FORM ABSOLUTE LIST OF FREE
STORAGE COMPONENTS, AND SET DATA
ELEMENT OF EACH COMPONENT TO
BLANK. *I
ALLOCATE LIST_COMPONENT
INIABSOLUTE_BODY_AREA) SETIFREEI;
WORK_POINTER = FREE;

REPEAT:
ALLOCATE LIST_COMPCNENT
INIABSOLUTE_BODY_AREAI SETIP);
WORK_POINTER->LINK P;
WORK_POINTER->DATA = ' •;
WORK_POINTER = P;

GO TO
REPEAT;

NULL_LI NK:

DO

END;

DO

ENO;

INPUT:

DO

I* IN LAST COMPONENT OF FREE LIST,
SET LINK POINTER TO NULL ANO DATA
ELEMENT TO BLANK. *I
WORK_POINTER->LINK = NULL;
WORK_POINTER->OATA = ' •;
I* FORM ABSOLUTE LISTS, LISTl ANO
LIST2r WITH TEN COMPONENTS EACH
FROM FREE LIST. *I
LIST1 1 WORK_POINTER = fREE;

I = 1 TO 9;
WORK_POINTER =
WORK_POINTER->LINK;

LIST2 = WORK_POINTER->LINK;
WORK_POINTER->LINK = NULL;
WORK_POINTER LIST2;

I = 1 TO 9;
WORK_POINTER = WORK_POINTER->LINK;

FREE = WORK_POINTER->LINK;
WORK_POINTER->LINK = NULL;
I* ASSIGN HEAD POINTERS LISTl
AND LIST2 TO ABSOLUTE_HEAD_ARRAY *I
ABSOLUTE_HEAO_ARRAY(ll = LISTl;
ABSOLUTE_HEAO_ARRAYl2) = LIST2;
OPEN FILEIDFILEI OUTPUT;

I* READ TWO INPUT CARDS AND INSERT
THE FIRST TEN COLUMNS OF FIRST CARD
INTO lISTl AND THE FIRST TEN
COLUMNS OF SECOND CARD INTO LIST2.*/

47

DO

ENO;

ENO;

GET

WORK_POINTER = LIST1,LIST2;

I = l TO 10;

EDITCWORK_POINTER->OATAl(A(ll>;
WORK_POINTER = WORK_POINTER->LINK;

GET EOITlBLANKSl(A(70)1;

I* EMPTY RELOCATABLE_BOOY_AREA. *I
RELOCATABLE_BOOY_AREA = EMPTY;
I* CONVERT DATA LISTS LISTl
ANO LIST2 FROM ABSOLUTE TO
RELOCATABLE FORM. *I
CALL CON_DAR(ABSOLUTE_BOOY_AREA,
ABSOLUTE_HEAO_ARRAY,
RELOCATABLE_BODY_AREA,
RELOCATABLE_HEAD_ARRAY);
I* WRITE RELOCATABLE DATA LISTS *I
CALL WRITE_RDL(OFILE,
RELOCATABLE_HEAD_ARRAYt

· RELOCATABLE_BOOY_AREA, BODY_SIZE>;
I* PROCESS NEXT TWO INPUT CARDS. *I

GO TO
INPUT;

OUTPUT:
I* READ HEAD ARRAY ANO BODY AREA FOR
NEXT SfT OF RELOCATABLE LISTS *I
CALL REAO_ROL(OFILE,
RELOCATABLE_HEAD_ARRAY,
RELOCATABLE_BOOY_AREA,BODY_SIZEI;

BOOY_SIZE = 0
THEN

PRINT:
00

DO

48

GO TO ·
ENO_TRANS_O;
I* EMPTY ABSOLUTE_BOOY_AREA. *I
ABSOLUTE_BOOY_AREA = EMPTY;
I* CONVERT DATA LISTS FROM
RELOCATABLE TO ABSOLUTE FORM. *I
CALL CON_ORA(RELOCATABLE_BOOY_AREA,
RELOCATABLE_HEAO_ARRAY,
ABSOLUTE_BOOY_AREA,
ABSOLUTE_HEAO_ARRAYI;
I* ASSIGN POINTER VALUES OF
ABSOLUTE_HEAO_ARRAY TO LISTl
ANO LIST2. *I
LISTl • ABSOLUTE_HEAO_ARRAY(l);
LIST2 = ABSOLUTE_HEAO_ARRAY(2);
I* PRINT DATA VALUES IN LISTl IN
SUCCESSIVE POSITIONS ON ONE LINE
ANO THOSE OF LIST2 ON NEXT LINE. */

WORK_POINTER= LISTltLIST2;

I = l TO 10;

PUT

ENO;

EOITlWORK_POINTER->OATA)(A(l));
WORK_POINTER = WORK_POINTER->LINK;

PUT SKIP;
END_PRINT:ENO;

ENO

PUT
LISTl'*****'>;

PUT
Sl<IP(2);
I* PROCESS NEXT SET OF
RELOCATABLE·LISTS IN OFILE• *I

GO TO.
OUTPUT;
END_TRANS_O:
CLOSE FILEISYSPRINT);
CLOSE FILE(OFILE);

TRANS_O;

Figure 3.1 A. The TRANS_ D program, which illustrates the
construction of a relocatable data list and its
transmission to and from a file

LISTI and LIST2 obtain their data values from the
standard system-input file, SYSIN. LISTI receives the
characters in cc 1 through 10 of the first input card.
Similarly, the second input card supplies the data values for
LIST2. Sample input cards appear in Figure 3.IB, and
Figure 3.lC shows how the characters from the fust two
input cards are arranged in LISTI and LIST2.

CARD1 -- --

CARD2-- -- -

CARD3- - - - -

CARD4-- -- -

CARDS- - - - -

CARD6- - - - -

CARD7- - - - -

CARDS- - - - -

CARD9- - - - -

CARD10 - - - -

Figure 3.lB. Sample input from SYSIN file

ABSOLUTE_BODY_AREA

LIST1:

LIST2:

FREE:

Figure 3.lC. Examples of absolute data lists

Next, the program assigns the head pointers of LISTI
and LIST2 to the pointer array ABSOLUTE_ HEAD_
ARRAY and invokes the subroutine CON_DAR, which
was discussed in Chapter 2. This subroutine converts the
absolute lists LISTI and LIST2 in ABSOLUTE_BODY _
AREA to relocatable data lists in RELOCATABLE_BODY
_AREA, as illustrated by Figure 3.lD. The array
REWCATABLE _HEAD _ARRAY contains the offset
heads of the relocatable lists. At this point, subroutine
WRITE_RDL writes the relocatable lists into the file,
DFILE, as shown in Figure 3.1 E.

RELOCATABLE BODY AREA

r - - --~-.... EIJ-EIJ-.iBJ--EIJ- i

RELOCATABLE
HEAD_ARRAY:

I r----- - ---- - ---- ---- ...J

: L.ED +EIJ--HJ-..fIJ--£1S]
B~ -----@I]-IT]~--{IT]-.rm-,

I r------- -- - -------
~EO+EIJ-EIJ-ED-EISJ

Figure 3.lD. Examples of relocatable data lists

I

B

G

RE LOCATABLE
HEAD_ARRAY

I

B

G

RELOCATABLE
BODY_AREA

Figure 3.lE. Sample content of DFILE (unblocked)

B

G

49

TRANS_ D contim.Jes processing pairs of input cards and
generating relocatable output for DFILE. When the end
of the SYSIN file is reached, DFILE is closed and reopened
as an input file. The previous processing steps are now
reversed. Subroutine READ _RDL retrieves each relocat
able head array and body area from DFILE, and subroutine

· CON_DRA converts the retrieved lists trom relocatable to
absolute form. The data values of absolute LIST 1 are then
printed in successive positions on a line in the standard
system-output file, SYSPRINT. Similarly, the data values of
LIST2 appear on the next line, as shown in Figure 3 .1 F.
Each pair of output lines is followed by a line of five
asterisks and a blank line. The program terminates when the
end of DFILE is reached.

CARD1 - - - - -

CARD2 - - - - - ·

* * * * *

CARD3- -- -

CARD4- - - - -

* * * * *

CARDS-- -- -

CARDS- - - - -

* * * * *

CARD7- --- -

CARDS- - - - -

* * * * *

CARD9--- -

CARD10
****~

Figure 3.lF. Sample output to SYSPRINT file

AN EXAMPLE THAT TRANSMITS RELOCATABLE
LISTS OF LISTS

Figures 3.2A through 3.2F present the TRANS_L program,
which illus~rates how relocatable lists of lists may be trans
mitted to and from a file. This program resembles the
previous program, TRANS_D, except that it processes
relocatable lists of lists.

50

TRANS_L:
PROCEDURE;

DECLARE
tLiSTl,LIST2,FREE~WORK_POINTER,
SUB1 1 SUB2t DB, P, DJ POINTER,
ABSOLUTE_HEAD_ARRAY(2J POINTER,
RELOCATABLE_HEAD_ARRAY(2J
OFFSETIDUMMY_RELOCATABLE_BODYJ,
(ABSOLUTE_BODY_AREA,
RELOCATABLE_BODY_AREA,
DATA_AREAJ AREA (4001,
DATA_SIZE FIXED DECIMALl51
INITIAL (4001,
BODY_SIZE FIXED DECIMALl51
INITIAL 14001,
DUMMY_RELOCATABLE_BODY
AREA BASED'(DB I,
1 LIST_COMPONENT BASEDIPl9
2 TYPE CHARACTERllJ,
2 VALUE POINTER,
2 LINK POINTER,
DATA_ITEM CHARACTER(lJ BASEDIDJ,
LFILE FILE RECORD I* RECFM = V */•
COUNT FIXED DECIMAL INITCOJ,
#SUBS FIXED DECIMAL INITC2J,
BLANKS CHARACTER (801,
I* WHEN FREE LIST HAS BEEN FORMED,
GO TO NULL_LINK. *I
ON AREA

GO TO
NULL_LINK;
I• WHEN All INPUT CARDS HAVE BEEN
READ FROM SVSIN FILE, CLOSE LFILE
AND REOPEN IT AS AN INPUT FILE.
THEN GO TO OUTPUT. *I

ON ENOFILE ISYSINJ
BEGIN;
CLOSE FILE (

LFILEJ;
OPEN FILE (

ENO;
START:

LFILE I INPUT;
GO TO

OUTPUT;

I* INITIALIZE. */
ABSOLUTE_HEAO_ARRAV = NULL;
RELOCATABLE_HEAD_ARRAV • NULLO;
ABSOLUTE_BOOY_AREA • EMPTY;
RELOCATABLE_BODY_AREA • EMPTY;
I* ASSOClATE RELOCATABLE_HEAO_ARRAY
WITH RELOCATABLE_BODY_AREA. *I
DB = ADDRCRELOCATABLE,_BODV_AREAJ;
I* FORM ABSOLUTE LIST OF FREE
STORAGE COMPONENTS. IN EACH
COMPONENT, SET TYPE CODE TO 1 0 1 AND
VALUE POINTER TO NULL. *I .
ALLOCATE LIST_COMPONENT
INIABSOLUTE_BODV_AREAJ SETIFREEJ;
WORK_POINTER = FREE;

REPEAT:
ALLOCATE LIST_COMPONENT
INIABSOLUTE_BODY_AREAJ SETCPJ;
WORK_POINTER->LINK = P;
WORK_POINTER->VALUE = NULL;
WORK_POINTER->TYPE = 'D 1 ;

WORK_POINTER = P;
GO TO

REPEAT;
NULL_LINK:

DO

ENO;

DO

ENO;

DO

DO

ENO;

DO

END;

END;

I• IN LAST COMPONENT OF FREE LIST,
SET LINK ELEMENT TO NULL, VALUE
ELEMENT TO NULL, AND TYPE CODE TO
IQ I.•/
WORK_POINTER->LINK = NULL;
WORK_POINTER->VALUE • NULL;
WORK_POINTER->TYPE = 1 0 1 ;

I* FORM ABSOLUTE LISTS OF LISTS,
LISTl ANO LIST2, FROM FREE LIST BY
ASSIGNING 12 LIST CO~PONENTS AT THE
TOP LEVEL OF EACH LIST. •I
LISTl = FREE;
WORK_POINTER • LISTl;

I = 1 TO 11;
WORK_POINTER = WORK_POINTER->LINK;

LIST2 • WORK_POINTER->LINK;
WORK_POINTER->LINK • NULL;
WORK_POINTER • LIST2;

I = l TO 11;
WORK_POINTER • WORK_POINTER->LINK;

FREE = WORK_POINTER->LINK;
WORK_POINTER->LINK = NULL;
I• ASSIGN HEAD POINTERS LISTl
ANO LIST2 TO ABSOLUTE_HEAD_ARRAY •I
ABSOLUTE_HEAO_ARRAY(l) = LISTl;
ABSOLUTE_HEAO_ARRAY(2) • LIST2;
I• ORGANIZE THE 12 COMPONENTS IN
LISTl SO THAT THE TOP LEVEL
CONTAINS TWO SUBLISTS WITH FIVE
COMPONENTS EACH. DO THE SAME FOR
LIST2. •I

I = l TO 2;
WORK_POINTER •
ABSOLUTE_HEAO_ARRAY(JJ;
WORK_POINTER->TYPE = 1 L1 ;

WORK_POINTER • WORK_POINTER->LINK;
WORK_POINTER->TYPE = 1 L1 ;

SUBl = WORK_POINTER->LINK;
WORK_POINTER->LINK • NULL;
WORK_POINTER = SUBl;

J = l TO 4;
WORK_POINTER = WORK_POINTER->LINK;

SUB2 = WORK_POINTER->LINK;
WORK_POINTER->LINK = NULL;
WORK_POINTER = SUB2;

J = l TO 4;
WORK_POINTER = WORK_POINTER->LINK;

WORK_POINTER->LINK • NULL;
WORK_POINTER = -
ABSOLUTE_HEAD_ARRAY(IJ;
WORK_POINTER->VALUE = SUBl;
WORK_POINTER =
WORK_POINTER->LINK;
WORK_POINTER->VALUE • SUB2;

I• OPEN LFILE AS OUTPUT FILE. •I
OPEN FILE (

lFILE) OUTPUT;

INPUT:

ENO;

ENO;

END;

OATA_AREA = EMPTY;
DO WORK_POINTER = LISTI, LIST2;
SUBl • WORK_POINTER->VALUE;
WORK_POINTER • WORK_POINTER->LINK;
SUB2 = WORK_POINTER->VALUE;
DO WHILEfSUBl ~·NULL>;
ALLOCATE OATA_ITEM
IN(OATA_AREAJ SET(OJ;
GET EOITfD->OATA_ITEMJ(A(lJJ;
SUBl->VALUE = O;
SUBl = SUBl->LINK;
COUNT = COUNT + l;

DO WHILE(SUB2 ~= NULL);
ALLOCATE DATA_ITEM
JN(OATA_AREAJ SET(OJ;
GET EDIT(O->DATA_ITEMJ(A(lJJ;
SUB2->VALUE = O;
SUB2 = SUB2->LINK;
COUNT • COUNT + l;

GET EDIT (BLANKS) (AC80 - COUNTJJ;
COUNT • O;

I• EMPTY RELOCATABLE_BODY_AREA. •I
RELOCATABLE_BODY_AREA = EMPTY;
I* CONVERT ABSOLUTE LISTS OF
LISTS (LISTl ANO LIST2J TO
RELOCATABLE FORM. •I
CALL CON_LAR(ABSOLUTE_BODY_AREA,
ABSOLUTE_HEAD_ARRAY,
RELOCATABLE_BODY _AREA, .
RELOCATABLE_HEAO_ARRAY,
DATA_AREA, #SUBS>;
I• WRITE RELOCATABLE DATA LISTS INTO
LFILE. •I
CALL WRITE_RPL(LFILE,
RELOCATABLE_HEAO_ARRAY,
RELOCATABLE_BODY_AREA1BOOY_SIZE1
DATA_AREA, DATA_SIZEI;
I• PROCESS NEXT TWO INPUT CARDS. •I

GO TO
INPUT;

OUTPUT:

IF

I• READ HEAD ARRAY, BODY AREA, ANO
DATA AREA FOR NEXT SET OF
RELOCATABlE LISTS OF LISTS IN
LFILE. •I
CALL REAO_RPLCLFILE,
RELOCATABLE_HEAO_ARRAY 1

RELOCATABLE_BODY_AREA, BODY_SIZE,
OATA_AREA, OATA_SIZEJ;
I• IF END OF LFILE IS REACHED
TERMINATE PROGRAM. •I

BOOY _SIZE '"' 0
THEN

GO TO
ENO_TRANS_L;
I• EMPTY ABSOLUTE_BODY_AREA. •I
ABSOLUTE_BODY_AREA • EMPTY;
I• CONVERT LISTS OF LISTS FROM
RELOCATABLE TO ABSOLUTE FORM. •I
CALL CON_LRACRELOCATABLE_BODY_AREA1
RELOCATABLE_HEAD_ARRAY,
ABSOLUTE_BOOY_AREA 1

ABSOLUTE_HEAD_ARRAY 1

DATA_AREA, #SUBS);
I• ASSIGN POINTER VALUES OF
ABSOLUTE_HEAD_ARRAY TO HEAD

51

POINTERS LISTl ANO LIST2 */
LISTl = ABSOLUTE_HEAO_ARRAY(lJ;
LIST2 = ABSOLUTE_HEAO_ARRAY(2J;
I* PRINT ALL DATA VALUES OF LISTl IN
SUCCESSIVE POSITIONS ON ONE LI NE ANO
THOSE OF LlST2 ON NEXT LINE. *I

PRINT:
00 WORK_POINTER = LISTl, LIST2;
IF WORK_POINTER • NULL
THEN GO TO END_PRINT;
SUBl = WORK_POINTER->VALUE;
WORK_POINTER = WORK_POINTER->LINK;
IF WORK_POINTER = NULL
THEN DO;SUB2=NULL;GOTO FIRST;END;
SUB2 = WORK_POINTER->VALUE;
FIRST:
WORK_POINTER = SUBl;
IF WORK_POINTER = NULL
THEN GO TO SECOND;
DO WHILE(WORK_POINTER ~= NULLJ;
P = WORK_POINTER->VALUE;
PUT EDITCP->DATA_ITEMJlAJ;
WORK_POINTER = WORK_POINTER->LINK;
END;
SECCNO:
WORK_POINTER = SUB2;
IF WORK_POINTER = NULL
THEN GO TO END_PRINT;
DO WHILE(WORK_POINTER ~=NULL);
P = WORK_POINTER->VALUE;
PUT EDIHP->DAT°A_ITEM> (A);
WORK_POINTER = WORK_POINTER->LINK;
END;

PUT
SKIP;

ENO_PRINT:
END;

PUT
LISH'*****'>;

PUT
SKIP(2J;
I* PROCESS NEXT SET OF RELOCATABLE
LISTS IN LFILE • *I

GO TO
OUTPUT;

ENO_TRANS_L:

END

CLOSE FILEISYSPRINTJ;
CLOSE FILE(LFILEJ;

TRANS_L;

Figure 3.2A. The TRANS_ L program, which illustrates the
construction of relocatable lists of lists and
transmission to and from a file

52

TRANS_ L begins by allocating list components in the
storage area ABSOLUTE_BODY _AREA and linking the
components into an absolute list of available storage com
ponents called FREE. The program then uses the compo
nents in FREE to create two absolute lists of lists, LISTI
and LlST2, which contain two sublists each at the top level.
Each sublist contains five data (D) components, as shown in
Figure 3.2C.

CARD1 - - - - -

CARD2- - - - -

CARD3- - -- -

CARD4- - - - -

CARD5- - - - -

CARD6- - - - -

CARD7- ~ - - -

CARDS- - - - -

CARD9- -- - -

CARD10 ----

Figure 3.2B. Sample input from SYSIN file

ABSOLUTE_BODY_AREA

LIST1: !-----+---- L i----------L

LIST2: i----------L

FREE:

DATA_AREA

D-+ DATA_ITEM

Figure 3.2C. Examples of absolute lists of lists

DATA_ AREA serves as the storage area for the data
values associated with LISTI and LIST2. The based variable
DATA_ITEM is allocated in DATA_AREA. DATA_ITEM
specifies single characters whose addresses are assigned to
the 20 value pointers in the data components of LISTI and
LIST2. Input is obtained from the standard system-input
file, SYSIN, samples for which appear in Figure 3.2B. The
characters in cc 1 through 10 of each two input cards are
assigned to allocations of DAT A_ ITEM. Figure 3 .2C illus
trates the association between the data content of DAT A
AREA and the lists oflists in ABSOLUTE'--BODY _AREA.
The diagram uses compact representation for LISTI and
LIST2 to avoid excessive usage of arrows.

TRANS_L now invokes the subroutine CON_LAR,
which converts the absolute lists of lists in ABSOLUTE
BODY _AREA to relocatable lists in RELOCATABLE_
BODY _AREA, as illustrated by Figure 3.2D. The array
RELOCATABLE_ HEAD_ ARRAY contains the offset
heads of the relocatable lists. At this point, subroutine
WRITE_RPL writes RELOCATABLE _HEAD _ARRAY,
RELOCATABLE_BODY_AREA,andDATA_AREAas
separate logical records into the file LFILE (see Figure
3.2E).

53

54

RELOCATABLE
HEAO_ARRAY:

RELOCATABLE_BOOY _AREA'

r--"'iLI] 1--------------riT"""Kl
t ., ~

I ' . '
I L-~olcl l.jolAI 1--1 L-... 1°1-1 l-""1°1-1 r•

· I I I r---.----- ---- i--------------
1 l....jolRI l•lolol 1---. ~-lol-1 l-lol-11-,
I i- - - - - - ·- - - - - I J- - -- - - - - - - I

I l"i 0 I 1 N '-...j 0 I - N

B-~ ---ruTI--- - -- - ----- --""iL I l'\J .
~ I

I . r
L ~ 0 I c I I~ 0 I A I l---1 L ~ 0 1-1 1-1°1-1 1--,

I I r----- ------~ 1----------------
j~L~I _l-j 0J0J J-J ~J~~I- Li0l-llJ
I I
L-j o I 2 f\I ~ o 1-1\J

OATA_AREA

0'0ATA ITEM

Figure 3.20. Examples of relocatable lists of lists

\

~~) I I I
RELOCATABLE - RELOCATABLE - OATA_AREA

(B B B

LG
HEAO_ARRAY BOOY_AREA

G G

Figure 3.2E. Sample content of LFILE (unblocked)

TRANS_ L contrinues processing pairs of input cards
and gene.rating relocatable output for LFILE. When the end
of the SYSIN file is reached, LFILE is closed and reopened
as an input file. The previous processing steps are now
reversed. Subroutine READ_ RPL retrieves each head array,
body area, and data area from LFILE, and subroutine CON
_LRA converts the retrieved lists from relocatable to
absolute form. The data values of absolute list LISTI are
then printed in successive positions on a line in the standard
system-output file, SYSPRINT. Similarly, the data values of
LIST2 appear on the next line, as shown in Figure 3 .2F.
Each pair of output lines is followed by a line of five
asterisks and a blank line. The program terminates when.the
end of LFILE is reached.

G (
.....

CARD1 - - - - -

CARD2- - - - -

CARD3- - - - -

CARD4- - - - -

CARD5- - - - -

CARD6- - - - -

* * * * *

CARD7- - - - -

CARDS- - -- -

* * * * *

CARD9- -- - -

CARD10

Figure 3.2F. Sample output to SYSPRINT file

55

SUMMARY.

This manul!-1 shows how to form a relocatable list by using
offset variables rather than pointer variables as component
links in the list. The values of the offset variables remain
valid when the list is moved to a new location within inter
nal storage or transmitted to and from a file.

A relocatable list can be treated as a collective unit by
referring to the area in which the components of the list
have been allocated and linked. Internal and external move
ment of the relocatable list is then achieved by transmitting·
the containing area.

The techniques are summarized below:

1. A list can be treated as a collective unit by referring
to the area in which the list components have been allo
cated. Internal and external movement of a list then be
comes possible by transmitting the containing area.

2. The assignment statement permits the contents of
one area to be assigned to another area. However, pointer
values in the assigned area become invalid in the receiving
area.

3. No operators can be applied to area variables.
4. An area is made empty by assigning it the value of

the builit-in function EMPTY or the value of another
empty area.

5. Assignment of an area effectively frees all alloca
tions in the receiving area and then assigns the content of
the area to the receiving area ..

6. All free-storage gaps are retained within an assigned
area, so that allocations within the assigned area maintain
their locations relative to each other.

7. When the source area is smaller than the receiving
area, the assigned area is effectively extended with free
storage. Similarly, when the source area is larger than the
receiving area, truncation of free storage occurs at the end
of the assigned area. However, if the truncation involves
allocated storage and not just free storage, the AREA ON
condition occurs, and the contents of the receiving area
become undefined.

8. A relocatable list is formed by using offset variables
rather than pointer variables as component links in the list.

9. An offset variable has a relative address as its value
and is declared with the OFFSET attribute, which has the
following form:

OFFSET{ area-variable)

The area variable in parentheses must be based and unsub
scripted and inust have an implied or explicit level number
of one.

56'

10. When the value of a pointer variable is assigned to
an offset variable, the assigned pointer value is auto
matically adjusted so that it becomes relative to the begin
ning of the area associated with the receiving offset.
variable. The address computation is equivalent in effect to
the following calculation:

Offset value= (Pointer value) - {Absolute address
of area)

11. When an offset value is assigned to a pointer vari
able, the offset value is automatically added to the absolute
address of the area specified in the associated OFFSET.
attribute; the result becomes the value of the receiving
pointer:

Pointer value= {Offset value)+ {Absolute
address of area)

12. Assignment of an offset value to an offset variable is
performed without address modification.

13. The programmer cannot apply explicit arithmetic
operations to offset variables in the source program; how
ever, comparisons of offset variables can be made with the
operators equal(=) and not equal (1 =).

14. A null offset value is assigned to an offset variable
through the built-in function NULLO.

15. A null offset value cannot be assigned to a pointer
variable. Similarly, a null pointer value cannot be assigned
to an offset variable.

16. An offset variable cannot qualify a based variable.
The offset value must first be assigned to a pointer variable,
which is then used to qualify the based variable.

17. The values of locator variables (offsets and pointers)
cannot be converted to any other type of data, nor can any
other type of data be converted to locator type.

18. Locator variables may be used as arguments and
parameters. When an offset argument is associated with an
offset parameter, both must be offset with respect to the
same area.

19. Only record-oriented input and output statements
can be used to transmit relocatable lists. The LOCATE
statement is used to transmit lists to a file, and the READ
statement is used to retrieve lists from a file.

20. The subroutines developed in this manual for proc-
essing relocatable lists fall into five categ~ries:

a. Converting absolute lists to relocatable form
b. Converting relocatable lists to absolute form
c. Moving relocatable lists
d. Writing relocatable lists

'e. Reading relocatable lists

APPENDIX

The Recursive Function Procedure CONV

I* FUNCTION PROCEDURE CONY
CAN BE USED WITH CON_LAR *I

I* DECLARE CONY ENTRY
(POINTER, AREA(•), AREA(•), AREA(*))
RETURNSIOFFSET(OUMMY_BODY_AREA)),
DUMMY_BODY_AREA AREA BASED
IOUMMY _PO I NT ER),
DUMMY_POINTER POINTER; */

CONY:
PROCEDURE I LIST,

BODY_AREAltBODY_AREA2tDATA_AREA)
RETURNSIOFFSET(DUMMY_BODY_AREA))
RECURSIVE;
I* CONY IS A RECURSIVE FUNCTION
PROCEDURE THAT CONVERTS A LIST OF
LISTS IN BODY_AREAl TO A
RELOCATABLE LISTS OF LISTS IN
BODY AREA2. THE HEAD POINTER OF THE
LIST-TO BE CONVERTED IS PASSED TO
CONY AS AN ARGUMENT. THE FUNCTION
RETURNS THE OFFSET ADDRESS OF THE
NEW LIST IN BODY_AREA2. *I

DECLARE
LIST POINTER,
0 OFFSET(DUMMY_BODY_AREA),
IDUMMY_BODY_POINTER,
DUMMY_DATA_POINTER,Cl,C2JPOINTER,
IBODY_AREAl,BODY_AREA2,DATA_AREA)
AREAl•>,
DUMMY_BODY_AREA
BASED(DUMMY_BODY_POINTERI AREA,
DUMMY_DATA_AREA
BASED(DUMMY_DATA_POINTERI AREA,
l COMPONENTl BASED(ClJ,
2 TYPE CHARACTER(lJ,
2 VALUE POINTER,
2 LINK POINTER,
l D_COMPONENT2 BASEDIC2J,
2 D_OTYPE CHARACTER(lJ,
2 D_OVALUE OFFSETIDUMMY_DATA_AREA),
2 D_OLINK OFFSETIDUMMY_BODY_AREA),

IF

THEN

IF

l L_COMPONENT2 BASEDIC2J,
2 L_OTYPE CHARAClERll),
2 L_OVALUE OFFSETIDUMMY_BODY_AREAJ,
2 L_OLINK OFFSETIDUMMY_BODY_AREAJ;

LIST = NULL

RETURNINULLOJ;
DUMMY_BODY_POINTER•ADDRIBODY_AREA2);
DUMMY_DATA_POINTER•ADDRIDATA_AREA);
Cl "' LIST;

Cl->TYPE = 1 D1

THEN
DO;

IF

ALLOCATE D_COMPONENT2 IN(BODY_AREA2)
SET(C2J;
C2->D_OTYPE = 1 D1 ;

Cl->VALUE = NULL
THEN

ELSE

END;
ELSE

DO;

END;

END

C2->D_OVALUE = NULLO;

C2->D_OVALUE = Cl->VALUE;
C2->D_OLINK=CONV(Cl->LINK,
BODY_AREA1,BODY_AREA2,CATA_AREA);

ALLOCATE L_COMPCNENT2 IN(80DY_AREA2)
SETIC21;
C2->L OTYPE = 1 L1 ;

C2->L:ovALUE=CONV(Cl->VALUE,
BODY_AREAl, BODY_AREA2, DATA_AREA);
C2->L_OLINK=CONV(Cl->LINK,
BODY_AREAlt BODY_AREA2, DATA_AREA);

o = c2;
RETURN(Q);

CONV;

57

The Recursive Function Procedure CON

I* FUNCTION PROCEDURE CON
CAN BE USED WITH CON_LRA *I

I* DECLARE CON ENTRY
lOFFSETlDUMMY_BODY_AREAJ, AREAC•J,
ARfAl*l 1 AREAl*llRETURNSlPOINTERJ,
DUMMY_BODY_AREA AREA BASED
(OUMMY_PCINTERJ,
OUMMY_POINTER POINTER; *I

CON:
PROCEDURE (RLIST,

BODY_AREA1,BOOY_AREA2,0ATA_AREAI
RETURNSCPOINTERIRECURSIVE;
I* CON IS A RECURSIVE FUNCTION
PROCEDURE THAT CONVERTS A
RELOCATABLE LIST OF LISTS IN
BODY_AREAl TO AN ABSOLUTE LIST Of
LISTS IN BODY_AREA2. THE OFFSET HEAD
OF THE LIST TO BE CONVERTED IS
PASSED TO CON AS AN ARGUMENT. THE
FUNCTION RETURNS THE ABSOLUTE ADDRESS
OF THE NEW LIST IN BODY_AREA2. *I

DECLARE

58

RLIST OFFSET(OUMMY_BODY_AREAJ,
(800Y_AREAl,BOOY_AREA2tDATA_AREAI
AREAC•J,
DUMMY_BOOY_AREA
BASEDCDUMMY_BODY_POINTERI AREA,
DUMMY_DATA_AREA
BASEDCDUMMY_OATA_POINTERI AREA,
(DUMMY_BODY~POINTER,
DUMMY_OATA_POINTER,Cl1C21POINTER1
1 D_COMPONENTl BASEDCClJ,
2 D_OTYPE CHARACTERClJ,
2 D_OVALUE OFFSETCDUMMY_DATA_AREAl1
2 D_OLINK OFFSETCDUMMY_BODY_AREAJ,
1 L_COMPONENTl BASEDCCll,
2 L_OTYPE CHARACTERClJ,
2 L_OVALUE OFFSETCDUMMY_BODY_AREAJ,
2 L_OLINK OFFSETCDUMMY_BODY_AREAI,
1 COMPONENT2 BASEDCC211

IF

THEN

IF

2 TYPE CHARACTERCll1
2 VALUE POINTER,
2 LINK POINTER;

Rll ST = NULLO

RETURN (NULLI ;
DUMMY_BODY_POINTER = ADDRlBODY_AREAll;
DUMMY_DATA_POINTER=ADDRCDATA_AREAI;
C 1 = Rll ST;

Cl->O_OTYPE = 1 0 1

THEN .
DO;

IF

ALLOCATE COMPONENT2
IN lBODY_AREA21 SETlC2J;
C2->TYPE = 1 0';

Cl->D_OVALUE = NULLO
THEN

ELSE

ENO;
ELSE

DO;

ENO;

END

C2->VALUE = NULL;

C2->VALUE = Cl->O_OVALUE;
C2->LINK=CONCC1->D_OLINK,
BODY_AREA1,BODY_AREA2,0ATA_AREAJ;

ALLOCATE COMPONENT2
IN CBODY_AREA21 SET (C21;
C2->TYPE = 1 L1 ;

C2->VALUE=CONlCl->L_OVALUE,
BODY_AREAltBOOY_AREA2,DATA_AREAI;
C2->LINK=CONtCl->L_OLINK,
BODY_AREA1,BODY_AREA2,0ATA_AREA1;

RETURN lC21;

CON;

Index

Page Page
Numbers Numbers

AREA assignment 3,4,35,37 MOVE RDL subroutine 35,36
Area control bytes 12 MOVE_RPL subroutine 37,38
AREA On-condition 3 NULLO function 6
CON function 33,58 Offset variables 3
CON DAR subroutine 23,24 Output buffer 11
CON DRA subroutine 29,30 Padding elements in structures 9, 11
CON LAR subroutine 27,28 Reading relocatable lists 43
CON_LRA subroutine 33,34 READ _RDL subroutine 43,44
CON_PAR subroutine 25,26 READ RPL subroutine 44,45,46
CON_PRA subroutine 31,32 READ statement 13
CONY function 27,57 REFER option 17
EMPTY function 3 Self-defining records 16
External blocks 12 SET option 11
External relocation 39,41 TRANS_D procedure 47,48
FILE attribute 11 TRANS_L procedure 50,51,52
Input/output statements 11 Type codes 9
Internal relocation 35,37 Writing relocatable lists 39
LOCATE statement 11 WRITE RDL subroutine 39,40
Logical records 12 WRITE RPL subroutine 40,41,42·

59

GF20-0020-0

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10804
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

:::i
"ti c

READER1S COMMENT FORM

Techniques for Processing Relocatable

Lists in PL/I

G F20-0020-0

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers). All comments and sugges
tions become the property of IBM. If you wish a reply, be sure to include your name and address.

COMMENTS

fold fold

fold fold

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES, STAPLE AND MAIL.

G F20-0020-0

YOUR ··COMMENTS PLEASE •••

Your ·comments on the other side of this f<;>rm will help us improve future editions of this pub
lication. Each reply will be carefully reviewed by the persons responsible for writing and pub
lishing this material.

Please note that requests for copies of publications and for assistance in utilizing your IBM

system should be directed to your IBM representative or the IBM branch office serving your
locality.

fold fold

...

Attention: Technicol Publications

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY.:.

I BM Corporation

1133 Westchester Avenue

White Plains, N.Y. 10604

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS, N. Y.

••••• •'• ••••••••••••••••••• •·• ••••••••••••••••••••••••••• fl •••

fold

International Businaas Machines Corporation
Data Processing Division 1
1133 Westchester Avenue, White Plains, New Yark 10604
[U.S.A. only) .

IBM-World Trade Corporation
821 United Nations Plaza, New Yark, New Yark 10017
[International)

fold

