
File No. 5360-29
Order No. GY28-6801-6

Program Logic

IBM System/360 Operating System

PL/I Subroutine Library

Program Logic Manual

Program Number 3606-LM-512

This publication describes the internal
specifications of the PL/I Subroutine Library
as a system component of IBM System/360
Operating System. The relationships between the
code produced by the PL/I (F) compiler, the PL/I
Library modules and the control program are
described, and summaries of the properties of
individual modules are provided. This information
is intended for use by those involved in program
maintenance and by system programmers who are
altering the program design. Program logic
information is not necessary for the use and
operation of the program~ therefore, distribution
of this publication 1$ limited to those described
above.

Restricted Distribution

r---1 !Seventh Edition (June, 1972)
I
IThis is a minor revision of, and obsoletes, GY28-6801-0S
land Technical Newsletters GN33-6017 and GY33-6018.
I
!This edition applies to Release 18 of IBM System/360
I Operating System, and to all subsequent releases until
I otherwise indicated in new editions or Technical
I Newsletters. Changes are continually made to the specif
lications hereini before using this publication in
I connection with the operation of IBM systems, consult the
llatest IBM System/360 Bibliography SRL Mewsletter, Form
IN20-360, for the editions that are applicable and current.
L---
RESTRICTED DIS'l'RIBUTION: This publication is intended
primarily for use by IBM personnel involved in program
design and maintenance. It may not be made available to
others without the approval of local IBM management.

The information contained in this publication concerning
Model 195 support is for planning purposes only.

Requests for copies of IBM publications should be made to
your IBM representative or the IBM branch office serving· your
locality.

Address comments concerning the contents of this publication
to IBM United Kingdom Laboratories Ltd., Publications Dept.,
Hursley Park, Winchester, Hampshire, England.

c Copywright International Business Machines Corporation,
1966, 1967, 1968, 1969.

This publication describes the object-time
PL/I Library package which forms an
integral part of the PL/I processing
system. General information covering the
overall design and convention~ is provided
as well as information specific to the
various areas of language support.

The publication is intended primarily
for technical personnel who wish to
understand the structure of the library in
order to maintain, modify, or expand the
PL/I processing system.

Information relevant to this manual is
contained in the following IBM
publications:

IBM system/360:

Principles of Operation, Order No.
GA22-6821

PL/I Language Specifications. Order
GY33-6003

Model 91, Functional Characteristics,
Order No. GA22-6907

IBM System/360 Operating System:

Assembler Language, Order No.
GC28-6514

Introduction, Order No. GC28-6534

Concepts and Facilities, Order No.
GC28-6535

PL/I CF) Language Reference Manual,
Order No. GC28-8201

Linkage Editor 3nd LoadP.r. Order No.
GC28-6538

Job ~ontrol Language User's 3uide.
Order No. 3C28-6703

Job control_Lanquaqe ~eferenc~, Order
No. GC28-6704

PREFACE

System Generation, Order No. GC28-6554

PL/I Subroutine Library Computational
subroutines. Order No. GC28-6590

PL/I (F) Programmer's ~uide, Order No.
GC28-6594

System Control Blocks, Order No.
GC28-6628

supervisor and Data Management
services. Order No. GC28-6646

supervisor and Data Management Macro
Instructions, order No. Gc28-6647

2!~M~essage Proce!sing Program
Services. Order No. GCJ0-2003

QT~M M~qe Control Program, Order No.
GCJ0-2005

PL/I<F> Compiler,_Program Logic Manual,
Order No. GY28-6800

The publication includes two
introductory chapters, 'The PL/I Library'
and 'General Implementation Features',
which contain a general description of the
library as a component of IBM system/36.0
Operating System, and general notes on
features of the operating system and the
PL/I <F> Compiler that are used in the
library implementation. The remainder of
the manual describes the design of the
library modules in relationship to PL/I
language features, and indicates the use
that is made of the control program to
support the design.

The descriptive material is supported by
a set of module description summaries and
several appendixes. The module sunaaries
indicate the salient features of individual
modules in the library package, and act as
guides to the program listings that are
available as part of the PL/I Library
distribution. The appendixes contain
details of the system m~cro instructions
used, 3ystem generation, library
pseudo-registers and macro instructions,
library internal error codes and associated
messages, and PL/I control blocks.

CHAPTER- 1: THE PL/I LIBRARY. •
Function. • • •
Usage • • • • • • • • • • •

Link Library • • • • • •
Instruction set Requirements ••

CHAPTER 2: GENERAL IMPLEMENTArION
FEATURES. • • • • ••••

Naming conventions. • • • •
Reg.isters: Symbolic Names •
Linkage Conventions • • • •
Coding Conventions. • • • •
Library Macro Instructions.
Data·Representation ••••
Communication Conventions. •

Pseudo-Register Vector (PRV)
Library Workspace CLWS.) • • •
Library communication Area (LCA)
Object-Time Dump • • • • • •
Checkpoint/Restart •• · •••
sort/Merge - PL/I Interface.

CHAPTER 3: INPUT/OUTPUT ••••••
Files and Data Sets • • • • • •
File Addressing Technique • • •

Declare Control Block CDCLCB) ••
File Control Block (FCB)
Program Execution.

OPEN/CLOSE Functions.
Explicit Opening. • •

Open Control Block (OCB)
The Open Process • •
The Close Process. •

·Implicit Opening. •

STREAM-Oriented I/O. - . •
Current File. • • • • •
Standard Files. • • • •
SYSPRINT in Multitasking. • • • • •
GET/PUT Object Program Structure. •
Data Specifications • • • •
Executable Format Scheme. •
Options • • • • • • • •••

RECORD-Oriented I/O. • • • • •
Object Program structure. •

General Logic and Flow •
Record-Oriented I/O Control Blocks.

Record Dope vector CRDV)
String Dope Vector (SDV)
Request control Block. •
I/O Control Block (IOCB)
Exclusive Block. • • • •

Access Method Interfaces. •
CONSECUTIVE Data Sets. •
INDEXED Data Sets ••
REGIONAL Data Sets •
TELEPROCESSING Files
OPEN/CLOSE Functions in
Teleprocessing. • •

I/O statements for
Teleprocessing. •

9
9
9
9

• 10

• 11
• 11
• 11
• 11
• 12
• 12
• 12
• 13
. u
• 14
• 15
• 15
• 16
• 16

• 18
• 18
• 18
• 18
• 19
• 20
• 20
• 20
• 21
• 21
• 22
• 22

• 22
• 24
• 24
• 24
• 25
• 27
• 27
• 29

• 29
• 29
• 29
• 32
• 32
• 32
• 32
• 33
• 34
• 34
• 34
• 35
• 37
• 39

• 40

• 41

CONTENTS

Error Handling • • • • • • 41

CHAPTER 4: PL/I OBJECr PROGRA~
MANAGEMENT. • • • • • • • • •

Introduction. • • • • • • • •
Program Initialization •
Block·Housekeeping: Prologues
and Epilogues • • • • • • • •

Storage Managenent • • • • • •
Operating-System Facilities ••

Automatic storage: Storage
Management • • • • . • • • • •

Dynamic Storage Area (DSA)
variable Data Area (VOA) •
Library workspace (LWS) ••
Allocation and Freeing of
Automatic Storage • • • •

Controlled storage: Storage

42
42

• • 42

42
•• 42
•• 43

43
43

• • 41J
4Ei

Management • • • • • • • • • • • • • 45
List Processing: Storage Management • 46

system storage ·- Based variables • 46
rhe AREA Attrib~te •••••••• 46
rhe Area.variable ••••••••• 48
Area Storage for Based Variables • 43
Area variables - Assigment • • • • 48
rhe AREA Condition • • • • • • • • 48

Program Management. • • • • • • • • • 48
Initialization of a PL/I Program • 48
rermination of a PL/I Program. 49
30 ro Statements • • • • • • • • • 49
~n-Onits and Entry-Parameter
Procedures. • • • • • • •

Block Housekeeping • • • •
Jbject-time Optimization •

CHAPTER 5: PL/I OBJE:r PROGRAM
MANAGEMENT IN MULTir~sKING. •

Introduction

Pl/I Tasks • •

Task Attachment and Initialization •
Control Task. • • • • • • • •
control Task subroutines. • •
Initialization of Major Task.
Invocation of subtask • • • •
Initialization of a Subtask •
Message Task. • • • • • • • •

49
•• 50

52

54

54

54

•• 55
55

• • 57
• 59

• • 59
60
60

Exit and rermination ~f Tasks. • • • 60
Normal Termination of a Task. • • • • 60
Abnormal End-of-Task Exit Routine • • 61
GO ro Statements. • • • • • • 61
On-Units and Entry Parameter

Procedures • • • • • • • • • • • • • 61
controlled Storage. • • • • • • • • • 62

Multitasking Pseudo-variables and
Built-In Functions ••••••

COMPLETION Pseudo-Variable.
PRI~RirY Pseudo-variable. • • • •

62
• • 62
•• 62

PRIORITY Built-In Function.
The WAIT statement. • • • •

Alternative I/O Modules for
Multitasking Programs • • •

CHAPTER 6: ERROR AND INTERRUPT
HANDLING •• ,. •.••••

Program Interrupts. • • • •
ON.Conditions •••••••

Action by compiled Code.
Action by the Library. •
System Action. • • • • •

standard system Action and
conditions other than ON
conditions • • • •

Built-.in Functions. • • • •
ONLOC. • • • • • • • • •
ONCODE • • • • • • • • •

Model 91 and Model 195 Interrupt
Handling • • • • • • • • • • • •

Implementation • • • • • • • •
ONCOUNT Built-in Function ••
Flush Instructions. • • • • •
Model 91 and Mojel 195

• 62
• 63

63

• 64
• 64
• 67
• 67
• 68
• 69

• 70
• 70
• 70
• 70

•• 71
71

• • 72
73

Object-Time Diagnostic Messages • 73

CHAPTER 7: MISCELLANEOUS CONTROL
PROGRAM INTERFACES. • • • • • • • • • • 74

FUll and Minimum Control Systems • 74

CHAPTER 8: DATA PROCESSING ROUTINES ••• 75

I/O Editing and Data Conversion. • • 75
Structure of Library Conversion
Package. • • • • • • • 75

Directors. • • • • • • • • 76
Edit-directed I/O. • • • • 76

I/O Editing • • • • • • • • • 76
List- and Data-directed

Input/Output. • • 79
Mode conversions. • • • 79
Type Conversions. • • • • • • 79
String Conversions. • • • 79
Arithmetic Conversions. • • • 80
Data Checking and Error Handling. • • 81

Edit Directed. • • • • 81
List/Data-Directed • • 81
Internal conversions • 81

computational Subroutines. • 82
Mathematical Functions. • 83
Arithmetic Operations and Functions • 83
Array Functions • • 84

String subroutines • • • • • 85

CHAPTER 9: MODULE SUMMARIES. • • 87
· Control Program Interfaces. • 87

Data Processing • • • • • 87
I/O Editing and Data Conversions • 87

Module summaries. • • • • • • • • • • 88

APPENDIX A: SYSTEM MACRO INSTRUCTIONS •• 157

APPENDIX B: SYSTEM GENERATION. • •
System Generation Process.
PL/I Library System

Generation • • • • • • • •

.159

.159

.159

Storage Utilization and Shared Library .159

APPENDIX C: PL/I OBJE:r PROGR1'1\t1
PSEUDO-REGISTERS. • • • • • • • .167

APPENDIX D: LIBRARY M~CRO INSTRUCTIONS .169

APPENDIX E: PL/I LIBR~RY INTERNAL
ERROR CODES AND MESSAGES •

APPENDIX F: DUMP INDEX ••
SYSPRINT Buffer3 • •
Files currently Open •
current File • • •
save Areas • • • •
Other Informati~n.

APPENDIX 3: LENGTHS AND LOCATIONS OF
MODULES

• .171

•• 173
•• 173
• .173
•• 173
•• 173
• .173

•• 177

APPENDIX B: COMPILER-3ENERATED CONTROI.
BLOCKS. • • • • • • • • • • • • • .181

Array Dope Vector (~OV) • • • •• 183
Data Element Descriptor (OED) •••• 185
Dope Vector Descript~r (DVD) ••••• 187
Fornat Element Descriptor (FED) ••• 189
Library communication Area (LCA> ••• 191
Library Workspace (LNS) ••••••• 193
Standard save Area (SSA) ••••••• 195
string Array Dope vector (SADV) ••• 197
String Dope Vector <sov>. • • • .199
Structure Dope vect~r • • .201
Symbol Table (SYMr~B) •• 203

APPENDIX I: INPUT/OUrPur CONTROL
BLOCKS. • • • • • • • • •

Declare Control Block ·cocLCB)
Event variable. • • • • • • •
Exclusive Block •••••••
File Control Block (FCB) •••
Input/~utput Contr~l Block CIJCB)
Open Control Block (OCB) ••
Exanple of Chaining •

•• 205
•• 207
•• 209
• • 211
• • 213
•• 217
• • 221
• .223

Files. • • • • • • • • • •
IOCBs •••••••
Event Variables. •
Exclusive Blocks •

• .223
•• 223
•• 223
• .223

APPENDIX J: STORAGE-M~NAGEMENT CONTROL
BLOCKS. • • • • • • • • • • • • .225

Area Variable • • • • • • • • • 227
Dynamic Storage Area (DSA). • .229
variable Data Area (VOA). • • • .231

APPENDIX ·K: MULTITASKIN3 CONTROL
BLOCKS ••••••••••••

control Task Storage Area •
Dynamic Storage Area (DSA).
Event variable. •
PRV VOA • • • • • • • •
rask Variable • • • • •
rask communication Area

••• 233
• • .235

• • 237
•• 239
•• 241
•• 243
•• 245

APPENDIX L: PL/I L!BRARY MODULE NAME~,
MEMBER NAMES AND ALI~SES. ·• • • .247

INDEX. • • • • • • • • • • • • •• 251

Figure 1. External Names used by the
PL/I Library. • • • • • •

Figure 2. Arithmetic Data
Representaton • • • • • •

Figure 3. Statement-Label Data
Representation. • • • • • • • • •

Figure 4. String Data Representation.
Figure 5. File Addressing scheme. • •
Figure 6. Format of the IHEQFOP Chain
Figure 7. Error Codes Indicating
causes of Failure in Open Process

Figure 8. Flow through the OPEN
Module:; • • • • • • • • • • • • •

Figure 9. Modular Linkage through
Stream-Oriented I/O • • • • • • • • •

Figure 10. Format of the Current File
Pseudo-Register • • • • • • • • • • •

Figure 11. Allocation of SYSPRINT
Resources in Multitasking • • • • • •

Figure 12. Object Program Structure
of GET/PUT. • • • • • • • • • • • • •

Figure 13. Executable Format Scheme •
Figure 14. Data Management Access

Methods for Record-Oriented I/O • • •
Figure 15. Linkage of Access Modules
in Record-oriented I/O. • • • • • • •

Figure 16. IHESAP Entry Points ••••
Figure 17. structure of the Free-core

Chain for Automatic Variables • • • •
Figure· 18. storage Allocation for a
Controlled Variable • • • • • • • • •

Figure 19. Format of Area Variable ••
Figure 20. Example of DSA Chain •••
Figure 21. continuation of the DSA

Chain • • • • • • • • • • • • •
Figure 22. Construction of the
Save-area Chain • • • • • • • •

Figure 23. structure of the DSA chain
when the error-handling subroutine is
entered after a new LWS has been
obtained. • • • • • • • • • • • • • •

Figure 24. Structure of the DSA chain
when the on-wrl.t DSA is attached. • •

Figure 25. Comparison of IHESAP and
IHETSA. • • • • • • • • • • • • • • •

Figure 26. Format of Storage Areas,
save Areas, etc. • • • • • • • •

Figure 27. Parameter List for IHETSAT
Figure 28. Program Interrupts and

PL/I conditions • • • • • •
Figure 29. Flow through the Error

Handling Routine CIHEERR) • • • •
Figure 30. Format of the Program
Interrupt control Area (PICA) • •

Figure 31. Format of the Program
Interrupt Element (PIE) • • • • •

Figure 32. PL/I ON Conditions ••
Figure 33. Format of the search word

Comparator. • • • • • • • •
Figure 34. Module Usage indicated by
Letters of Module Name. • • • • •

• 11

• 13

• 13
• 14
• 18
• 19

• 20

• 21

• 23

• 24

• 26

• 27
• 28

• 30

• 31
• 42

• 45

• 46
• 47
• 50

• 51

• 51

• 52

.. 52

• 54

• 56
• 59

• 64

• 65

• 66

• 66
• 67

• 67

• 75

FIGURES

Figure 35. DED Flag Byte for
Character Representation of an
Arithmetic Data Item. • • • • • •

Figure 36. Structure of the
Conversion Package. • • • • • • •

Figure 37. Input/Output Directors for

• 76

• 77

PL/I Format Items • • • • • • • • • • • 7 8
Figure 38. Conversion for List/Data
Directed I/O. • • • • • • • • •

Figure 39. Modules for Type
conversions • • • • • • • • • •

Figure 40. Modules for String
Conversions • • • • • • • • •

Figure 41. Structure of the
Arithmeric Conversion Package • •

Figure 42. Conversion Code Set in

•• 78

• • 79

• 79

• 80

IHEQERR • • • • • • • • • • • • • • • • 82
Figure 43. Relationship of Data Form

and Sixth Character of Module Name. • • 83
Figure 44. Mathematical Functions • • • 83
Figure 45. Arithmetic Operations and

Functions • • • • • • • • • • • • • • • 84
Figure 46. Array Indexers and

Functions • • • • • • • • • • • • • • • 85
Figure 47. String Operations and

Functions • • • • • • • • • • • • • 86
Figure 48. Coincidence of source and
Target Fields in some Str:i.ng Modules. • 87

Figure 49. Internal Codes for ON
condition Entries • • • • • • • • • • .171

Figure 50. Format of the Array Dope
Vector (ADV) •••••••••••••• 183

Figure 51. Format of the Data Element
Descriptor (DED) •••••••••••• 185

Figure 52. Format of the DED Flag
Byte. • • • • • • • • • • • •••• 185

Figure 53. Library Conununication Area
(LCA) • • • • • • • • • • • • • • • • .191

Figure 54. Standard Format of Library
Workspace CLWS) • • • • • • • • • • • .193

Figure 55. Format of the Standard
save Area CSSA) • • • • • • • • • • • .195

Figure 56. Format of the SSA Flag
Byte. • • • • • • • • .. • • • • • • • .196

Figure 57. Format of the Primary
string Array Doi;>e Vector CSADV) •••• 197

Figure 58. Format of the string Dope
Vector (SDV) •••••••••••••• 199

Figure 58.l Format of the structure
Dope vector CSDV) • • • • • • • .201

Figure 59. Format of the Symbol Table
(SYMTAB). • • • • • • • • • • • • • • .203

Figure 60. Format of the Declare
Control Block (DCLCB) ••••••••• 207

Figure 61. Format of the Event
Variable. • • • • • • • • • • • • • • • 209

Figure 62. Format of Exclusive Block •• 211
Figure 63. FCB for stream-Oriented

I/O •• 213
Figure 64. FCB for Record-Oriented

I/O • • • 213

Figure 65. Format of the I/O control
Block (IOCB). • • • • • • • • • • • • • 217

Figure 66. Values used in Computing
size of IOCB for Various Access
Methods • • • • • • • • • • • • • • •

Figure 67. Format of the Open control
Block (OCB) • • • • • • • • • • • • •

Figure 68. Example of Chaining of I/O
control Block • • • • • • • • · • • • •

Figure 69. Format of Area variable ••
Figure 70. Format of the Dynamic

Storage Area (DSA) ••••••••
Figure 71. Format of the DSA Flag

Byte.
Figure 72. Format of the Variable

Data Area (VDA) • • • • • • • • •

TABLES

Table 1.
Library

Table 2.
Table 3.
Table 4.
Table 5.

Grouping of Modules (Shared
Feature) •••••••••
Housekeeping Package • •
Conversion Package • • •
STRING Function Package.
ARRAY Function Package •

.219

.221

.224

.227

.229

.229

.231

.160

.160

.161

.162

.162

Figure 73. Format of the VOA Flag
Byte. • • • • • • • • • • • • • 231

Figure 74. Format of the PRV VDA •••• 231
Figure 75. Format of LWS VDA •••••• 231
Figure 76. Format of the control Task
Storage Area for Multitasking ••••• 235

Figure 77. Format of the Dynamic
Storage Area CDSA) for Multitasking •• 237

Figure 78. Format of the Event
Variable. .• • • • • • • • • • • • • • • 239

Figure 79. Format of PRV VOA for
Multi tasking. • • • • • • • • • • 241

Figure 80. Format of the Task
Variable. • • • • • • • • • • • • 243

Figure 81. Format of the Task
cooununication Area. • • • • • • .245

Table 6. Arithmetic Function Package •• 162
Table 7. Mathematical Function

Package •••••••••••••••• 163
Table 8. RECORD I/O Package •••••• 163
Table 9. STREAM I/O Package •••••• 163
Table 10. Cross-Reference to Library

Modules and Groups ••••••••••• 164

FUNCTION

The PL/I library was designed as a set of
reentrant load modules, each performing a
single function or a group of related
functions.

The library modules can be divided into two
groups:

1. Those that act as an interface between
compiled code and the IBM system1'360
Operating system; these modules are
mainly concerned with input/output,
dynamic program and storage
management, and error and interrupt
handling.

2. Those that are closed subroutines
specifically designed to perform
arithmetic computations, data
conversions, I/O editing and string
generic built-in functions as the
major part of their task.

USAGE

The linkage editor or linkage loader
combines the object modules from a PL/I
program with their required library modules
to produce executable load modules. rhis
is done by means of the external symbol
dictionary (ESD) which resolves all direct
references to the library modules by
entry-point names (seven-character names>
or, under certain circumstances, by module
name <containing six characters>. (See
'Naming Conventions' - Chapter 2)

The library modules may in turn call
other, secondary, library modules <e.g. as
in data conversion). To ensure that only
the ones required are called, any library
object module that calls a secondary module
is preceded by a linkage-editor LIBRARY
statement. This statement specifies that
the references to the secondary modules
(which are seven-character entry-point
names) should not be resolved unless the
secondary modules are already part of the
input to the load module. For any such
secondary modules called, the compiler
generates an ESD in which the references
are six-character module names.

The PL/I library acts as the sole
interface between compiled code and the
operating system. The compiled code does

CBAPTEB 1: THE PL/I LIBRARY

not issue svcs or system macro instructions
but instead issues a library call.
Although the library module(s) called ~
issue an SVC instruction, it is more
convenient to use system macro
instructions. This method means that when
the operating system changes, only the
library module is rewritten, with the call
to the library.from the compiler remaining
as before. Similarly, if the SVC calling
sequence changes, the system macro is
changed accordingly and the library module
need only be reassembled.

For further details on macro
instructions·, see IBM Systell\/360 Operating
system: Supervisor and Data Management
Macro. Instructions. rhe system macro
instructions used by the library are listed
in Appendix A.

The PLII library for each version of the
F compiler is compatible with previous
versions only. For example, whilst a
module compiled under Version 2 can be
link-edited and executed by an operating
system that includes the Version 3
compiler, the reverse is not possible.

User-designed modules can be substituted
for library modules; each user module is
given the name of the library module it is
meant to replace.

Link Library

certain modules are loaded dynamically
during program execution. These modules
reside in the li~ library (SYSl.LINI<LIB);
they are transient modules and are loaded,
when required, by the system macros LINK,
LOAD and XCTL. DD statements are not
required. The link-library modules are
marked • in Appendix G; they comprise:

1. The print and message modules of the
error and interrupt handling
subroutines.

2. The modules for opening and closing
files.

3. The record-oriented I/O transmission
modules.

4. Special multitasking modules.

These modules can be replaced by
user-designed modules, if required. The

Chapter 1: The PL/I Library 9

user module is placed by the linkage editor
into a partitioned data set (PDS); this
data set must be described in a JOBLIB DD
statement.

All library modules normally residing on
SYS1.LINKLIB may be made resident in the
system when operating under MFT II or MVT.

In an MFT II system, the resident area
is effectively an extension of the nucleus;
in an MVT system, the resident area is a
section of the high order main storage
called the LINK PACK AREA (LPA).

Load Library: all other library modules are
· link-edited with compiled code by the

linkage editor. These modules reside on
SYS1.PL1LIB, and, normally, they may not be

....

10

resident in the system. However, the new
shared library feature permits selected
combinations of modules to be made resident
by combining them into a load module (for a
discussion on the shared library feature,
see Appendix B).

INSTRUCTION SET REQUIREMENTS

The universal instruction set is generally
required for the execution of PL/I
programs. It is possible that
floating-point or decimal instructions may
be used in the execution of programs that
do not use floating-point or decimal data.

I

NAMING CONVENTIONS

PL/I library external names always begin
with IHE; this is followed by two, three or
four characters, according to the name
function <see Figure 1).

REGISTERS: SYMBOLIC NAMES

The following symbolic names are used in
the library modules for general registers
0-15:

Symbolic symbolic
Register Name Register ~

0 RO 8 RH
1 Rl,RA 9 RI
2 RB 10 RJ
3 RC 11 RX,WR
4 RD 12 PR
5 RE 13 DR
6 RF 14 LR,RY
7 RG 15 BR,RZ

The following symbolic names are used
for the floating-point registers:

Symbolic
Register ~

0
2
4
6

FA
FB
FC
FD

CHAPTER 2: GENERAL IMPLEMENTATION FEATURES

LINKAGE CONVENTIONS

Linkage between modules generally follows
the operating system standard calling
sequence. The main features of this are:

1. Arguments are passed by name, not by
value. The addresses of the arguments
are passed, not the arguments
themselves.

2. These addresses are stored in a
parameter list.

3. The address of the list is stored in
register RA.

Full details are provided in IBM system/360
Operating system: Supervisor and Data
Management services.

some PL/I Library modules, however, are
called by a PL/I standard calling sequence.
The main features of this are:

1. Arguments are passed by name.

2. Arguments are passed in general
registers.

This standard can only be used where the
number of arguments is both fixed and less
than eight. If these conditions are not
met, the operating system standard is used.

TWo PL/I Library modules, IHESA and
IHETSA, do not use either of these
standards. The subroutines in these
modules pass arguments by value as well as

r---------,-------T-------------------•-------T--, f Nwnber of IFormat I Use I Meaning I
I Characters I I I I
·-------+------+------------------------+---------------------------------------~
I 5 I IBEXX I I I
I I I Module name I I
I 6 fIHEXXX I IXXX are chosen for mnemonic I
~----------+-------+---------------------------~identification of function. I
I 6 f:IHEXXX I PL/I Library defined macros I I
·---------+-------+--------------------------+---------------------------------------~
I 7 IIBEXXXXf Entry-point name IFirat six characters are module name; I
I I I f the seventh identifies the entry point f
I I I f within the module. I
·--------+-----+---------------------------+--------------------------------------~
I 7 fIHEQXXXf Pseudo-register name fXXX are chosen for mnemonic I
I I I I identification of function. (See I
I I I f Appendix c. > I
L----------L------~---------------------------~--J
Figure 1. External Names used by the PL/I Library

Chapter 2: General Implementation Features 11

by name, and pass them in parameter lists
and in general registers.

In general. whichever standard is used.
whenever one module links to another a save
area must be provided for the contents of
the registers used by the called module.
The save area procedure is:

1. The calling module provides a standard
save area (SSA) for the called module.
The address of this save area is
stored in register DR.

2. If the called module in turn calls
another module, it provides that
module with a save area. Register DR
now contains the address of this new
save area. The save areas are chained
together by the chain-back address
field in the new save area.

3. on return to the calling module, the
following will be unchanged:

Registers RB through LR

Program mask

Program interrupt control area
(PICA)

while the following may be changed:

Registers RO. RA, and BR

Floating-point registers

Condition code

The standard save area is a 72-byte area
in which the contents of all the general
registers can be saved. The format is
described in Appendix B.

The library does not support
inter-module trace. Therefore:

1. The chain-forward field in the SSA is
not set.

2. calling sequence and entry-point
identifiers are not employed.

CODING CONVENTIONS

Because all modules within the PL/I Library
are coded to be reenterable, the following
coding constraints must be observed:

1. The modules are read-only.

2. Workspace (for save areas and

12

temporary work areas) is obtained
within an area dynamically allocated
at program initialization or by a call
to the Get VDA <variable data area>
subroutine in IHESA. (See 'Library
Workspace• in this chapter and in
Chapter 4.)

LIBRARY MACRO INSTRUCTIONS

Seven macro instructions are available for
use in the library modules. To obtain
these macro instructions. use PL/I (F)
SYMLIB tape 360S-LM512 XTOS-00 and IEBUPDTE
to create a partitioned data set named
SYSl.PVTMACS. SYSl.PVTMACS should then be
concatenated with SYSl.~CLIB (the
partitioned data set containing the
standard system macro instructions used by
the operating system>.

Five of the seven macro instructions.
IHEEVT, IHELIB, IHEZAP, IHEXLV, and IHEZZZ,
set up symbolic definitions in the program
listing and the other two, IBESDR and
IHEPRV, set the current addresses of the
standard save area and the pseudo-register
vector (PRV) respectively. The library
macros are described in Appendix o.

DATA REPRESENTATION

Three types of data may exist within a PL/I
program:

1. Arithmetic

2. String

3. Statement-label

The internal representation and other
details of these three types are shown in
Figures 2, 3, and 4. The invocation count
used in the statement-label data
representation is described in Chapter 4.

Arithmetic or string data may be
specified with the PICTURE attribute. A
PICTURE arithmetic data item is called a
numeric field and is represented internally
as a character string. An arithmetic data
item without a PICTURE attribute is called
a coded arithmetic data item (CAD) and is
represented internally in one of three
System/360 formats:

Fixed-point binary
Floating-point
Packed decimal

r-------------T---1
I Data Type I Implementation I
·-----T-------+---------,..-----------,..-------------T-------------------------------------i
1scalel Base IPrecisionl Internal I Alignment I Processing I
I I I I format I I I
·-----i-------.L---------L-----------L-------------L------------------------------------i
I REAL data I
·----~-----T--------T--------1-----------T---------------------------------i I· IBinary I p,q IFixed-pointlp>15: Word)Arithmetic operations are performed I
I I IMax p: 311binary IPS15: Half- Jon p-digit integers: scale factor q I
I I I I I word lis specified in a OED. <see Appendix I
I I I I I I H. 'Data Element Descriptor'.) I
IFixed•-----+---------+-----------+-------------+------------------------------------i
I IDecimall p,q fPacked dee-I Byte !The p digits occupy FLOOR <<p + 2)/2)1
I I IMax p: 151imal I !bytes. Arithmetic operations as for I
I I l<see I I !fixed binary I
I I I note> I I I I
·-----+-------+---------+-----------+-------------+------------------------------------i
I IBinary I p I lpS21: Word I I
I I IMax p: 531 lp>21: Double-I I
I I I !Hexadecimal! word IThe data is normalized in storage I
IFloat•--~--+---------~floating- •-------------~before and after arithmetic operat- I
I fDecimall p tpoint IPS6: Word lions. I
I I IMax p: 161 lp>6: Double-I I
I I I I I word I I
·-----.L-------.L---------L-----------L-------------L-------------------------------------~
I COMPLEX data I
·-----T--~-~--------T-----------,..-------------T-------------------------------------i
I fBinary I p,q IFixed-pointlp>lS: Word IAs for real fixed binary. The real I
I I IMax p: 311binary lpS15: Half- fand imaginary parts occupy adjacent I
I I I I I word !fullwords or halfwords. with the I
I I I I I !real part first. I
f Fixed.-----+---------+-----------+-------------+-----------~-------------------------i
I IDecimall p,q !Packed dee-I Byte)As for real fixed decimal. The real I
I I IMax p: 151imal I land imaginary parts occupy adjacent I
I I I I I lfields, with the real part first. I
·-----+------+---------+-----------+-------------+-------------------------------------i
I IBinary I p I lpS21: Word IAs for real float binary. The real I
I I IMax p: 531 IP>21: Double-land imaginary parts occupy adjacent I
I I I I I ~ord !fullwords or doublewords, depending I
I I I I I Ion the precision, with the real part I
I I I I Hexadecimal I I first. I
I Float.-----+---------~ floating- ~------------+-------------------------------i
I IDecimall p tpoint IPS6: ~ord IAs for real float decimal. The real I
I I fMax p: 161 lp>6: Double-fand imaginary parts occupy adjacent I
I I I I I word I fullwords or doublewords, depending I
I I I I I ton the precision, with the real part I
I I I I I I first. I
L-----.L-------L--------L----------L-------------L------------------------------------J
Note: When p is even, the effective precision for all arithmetic operations except div-

ision is Cp + 1,q>. except when the SIZE condition is being checked. When this
occurs, the first digit in the high-order byte must be checked to ensure that it
is zero.

Figure 2. Arithmetic Data Representaton

0 7 8 31
r------------------------------1 I Invocation count I
·-------T------------------------~ I I ACStatement label) I
L-------L------------------------J
Figure 3. Statement-Label Data

Representation

COMMUNICArION CONVENTIONS

The use of library modules in a PL/I
progra~ requires that:

1. Working storage be provided for the
modules.

Cnapter 2: General Implementation Features 13

r---------T--~---------------~------1 I I Inplementation I
!Data type~---------------T--T----------~
I !Representation I Length I Alignment!
~---------+---------------+--+----------~
I Bit 11 binary digit I I Byte I
I I per bit I Maximum length: 32, 767. If a VARYING attribute is I <see note> I
~-----~--+---------------~declared, maximun length is ieclared length, l--~------1
ICharacterll character pertregardless of the string value. I Byte I
I I byte I I I I
L---------L---~-----------~--~-------~-J
Note: The string occupies CEIL (n/8) bytes. If the string comes within the scope of an

UNALIGNED attribute, the address of the first bit is provided by a byte address and
bit offset in an sov. <see 'String Dope Vector' in Appendix a.>

Figure 4. String Data Representation

2. Techniques for passing information
about arguments and program status be
provided.

Working storage is obtained as library
!!Qikspac~ (LWS). Appendix H gives the
format of LWS, ~hich is allocated by the
library program management modules IHESAP
and IHETSA.

Two modes of communication are available
for passing information:

Explicit: Uses parameter lists and
registers. Csee 'Linkage
conventions'.>

Implicit: Uses pseudo~registers or a
Library communication area.

some library modules are interpretive
(as opposed to declarative>, and
accordingly require that information
regarding the characteristics of their
arguments be supplied. such information is
made available· to the library in the form
of standardized control blocks. rhe forD
and content of the compiler-generated
control blocks in general use throughout
the implementation are described in
Appendix H; one or more blocks is required
according to the nature of the data passed:

14

scalar arguments:
Data element descriptor COED)
String dope vector CSDV)
Symbol table (SYMTAB)

Array arguments:
Array dope vector (ADV>
String array dope vector (SADV)

structures:
Structure dope vector
Dope vector descriptor (DVD)

Formats:
Format element descriptor (FED)

Special-purpose control blocks, such as
the file control block (FCB), are described
in Chapters 3, 4, and 5, and in Appendixes
I, J, and K.

This is an area of task-oriented storage,
addressed through register PR. The PRV
contains a number of pseudo-registers which
effectively operate as implicit arguments
and give information about, for example,
current program status. All references to
specific pseudo-registers within the PRV
are maie by the addition of a fixed
displacement to the PRV base address in
register PR.

A pseudo-register is defined within a
library module as a Q-type address constanL
which is fixed during the linkage editing
process. All pseudo-register address
constants within the PL/I implementation
are two bytes long. rhe maximum size of a
PRV is 4096 bytes. rhe pseudo-registers
used by the PL/I Library are shown in
Appendix :.

Library Workspace (LWS)

Various library modules require working
storage:

1. For internal functions.

2. For linkage to other modules. (A
register save area must be provided.)

Since the library is designed to function
within a multitasking environment, such
storage must be allocated on a
task-oriented basis. Tne storage so
allocated is termed library workspace
(LWS).

Library modules which use LWS refer to
it by means of the PRV. A group of
pseudo-registers in the PRV is set during
LWS allocation to contain the addresses of
contiguous areas within LWS. (See Appendix
H.) Each of these areas is at a different
level.

The notion of level exists because of
inter-module linkage between library
modules:

1. A module which invokes no other
modules is assigned level O.

2. A module which invokes other modules
is assigned a level number greater
than the level number of any invoked
module.

3. A module which transfers control to
another module (i.e., does not expect
a return> is assigned the level number
of that module.

Invocation of the error-and-interrupt
handling subroutine is not considered
sufficient to raise the level number of the
invoking module, since the error subroutine
uses a special level.

Library workspace is allocated as
primary or secondary LWS.

Primary LWS is allocated during program
initialization, before control is passed to
the main procedure. rhe storage thus
obtained is not freed until the PL/I
proqram is finished.

secondary LWS is allocated for special
purposes during proqram execution and is
freed when the situation for which it was
created no longer exists. It is allocated:

1. When an on-unit is entered from a
library module. This may lead to a
recursion problem: library modules ·
called may overwrite this LWS. ro
avoid this, the existing LWS is
stacked, a new one obtained and all
the LWS pseudo-registers updated.

2. When SNAP, system action or error
messages are to be printed. The PRINT
subroutine may overwrite the existing
LWS: to avoid this, the same procedure
is followed as for an on-unit.

The library program management module
IHESAP controls the allocation of LWS and
the setting of library pseudo-registers.
(See Chapter 4.) The library macro IHELIB
controls the length of LWS and of each area
within it. The LWS format can be changed
by changing IHELIB and reassembling IBESAP.

Modules using specific areas in LWS
address these areas by the following
library macros:

IHEPRV: Used to address the LCA or when
using an area as temporary workspace.

IHESDR: Used when a module requires a
standard save area for a module it is
calling.

Library Communication !rea (LCA)

Within the area allocated for library
workspace is an area in which various
symbolic names are defined. These names
are used for implicit communication between
library modules (mainly the data conversion
modules). This area is the library
communication area CLCA>: its format and
the usage of the symbolic names are shown
in Appendix H. The LCA address is stored
in the pseudo-register IHEQLCA.

In the LCA there is a doubleword
immediately before .the first symbolic name.
This contains Cin the first four bytes> the
address of the prior generation of LCA
within a given task. This field is used to
readdress the LCA which existed before an
ON block was entered. IHEQLCA contains the
address of the first symbolic name.

Object-Time Dump

A PL/I user may obtain a dump at any time
by calling one of the following:

IHEDOMC: Dump current task and then
continue execution.

IHEDUMJ: Dump all tasks and then continue
execution.

IHEDUMP: Dump all tasks and terminate
major task Ci.e., terminate the
job step).

IHEDUMT: Dump current task and then
terminate it.

Identification of required information
(such as save-area locations> in the dump
is difficult because this information is
not necessarily stored in locations
arranged in a chronological sequence. To
facilitate reading the dump, therefore, two
subroutines, IHEZZC and IHEZZF, are
provided. They extract certain information
(chiefly about save areas and opened files>
and print it as an index to the dump. Full
details of this information are given in
Appendix F.

Chapter 2: General Implementation Features 15

If a DD card exists, the information
will be printed on the PLlDUMP file <unless
there is something wrong with the PL/I
save-area chains, in which case the
SYSABEND or SYSUDUMP file will be used).
If the data set specified is other than the
SYSOUT file, DISP=MOD should be used on the
DD card. If there is no DD card and the
operating system has the primary control
program or MFT, only the normal indicative
dump will be provided: in an MVT
environment, if there is no DD card, there
will be no dump at all.

Checkpoint/Restart

In an operating system with PCP, MFT II or
MVT, a PL/I user may establish a checkpoint
at any point within a job step by calling
IHECKPS or IHECKPT. If IHECKPT is called,
he must include a DD statement with the
ddname SYSCHK to define the data set on
which the checkpoint information is to be
saved. If IHECKPS is called, any ddname
may be used for the same purpose.

Normally, the automatic restart function
restarts the program at the most recent
checkpoint whenever an abnormal termination
occurs. If, however, a restart is to be
forced by the user, CALL IHEREST must be
specified. Alternatively, the automatic
restart function can be disabled by the
statement CALL IHERESN. This statement
disables the automatic restart for any of
the checkpoints if it is enabled: if it is
already disabled, then it is considered and
treated as a NOP.

Automatic restart can be re-established
by issuing a call to the checkpoint modules
IHECKPT and IHECKPS.

The module IHECKP is called directly
from compiled code. It obtains an ordinary
VOA for use as a save area, rather than
using library workspace, because the CHKPT
macro instruction that is issued by IHECKP
makes use of the first byte of the save
area: the first byte of a save area in LwS
is used for PL/I information. (Refer to
Chapter 4 for a discussion of the VOA and
LWS VDA.) Each time IHECKP is called, it
creates, from a dummy held as part of the
module, a DCB that refers to the data set
defined by the ddname specified as a
parameter to IHECKPS. As well as the
address of the DCB, the checkpoint
identifier specified for IHECKPS is also
passed to the IHECKPT routine.

16

Sort/Merge~ PL/I.Interface

A PL/I procedure may call the operating
system sort/Merge program, using the
library module IHESRT. The publications in
which the operation of Sort/Merge is
described are: IBM System/360 Operating
System: Sort/MerqeL Fora C28-6543, and,
Sort/Merge Program Logic Manual, Form
Y28-6597.

Four entry points, IHESRTA, IHESRTB,
IHESRTC 1 IHESRTD are provided to enable use
to be made of Sort/Merge user exits E15 and
E35 to call PL/I procedures, as required by
the application.

sort/Merge control statements are
supplied as arguments to the PL/I CALL
statement. These arguments correspond in
format to standard sort/Merge control
statements, from which the parameter lists
are generated.

These arguments also specify the PL/I
entry points to be invoked by the user
exits E15 and E35, and any return codes to
be used for inter-program communication.

The normal library conventions for
save-area chaining are not used for this
module. Instead the module allocates a DSA
<with code x•ao• in the first byte). This
is to ensure that if either user exit is
used, the chain-back is through the DSAs
only.

After the parameter list for Sort/Merge
is generated, the following actions are
performed before linking to Sort/Merge:

1. rhe registers in the external save
area of the PL/I procedure are saved
and replaced by special registers
which are used in terminating the sort
when:

a. A PL/I exit procedure is
terminated, due to an error, before
the sort has terminated, or

b. A GO TO from an exit procedure to. a
procedure at a level equal to, .. or
higher than, the calling procedure,
occurs.

Otherwise the PL/I procedure would
terminate allowing the operating
system to regain control, either
directly or indirectly, while the link
to Sort/Merge is still operative, with
a resultant system interrupt. The
registers stored in the special save
area cause the calling procedure to
enter IHESRT and complete the
Sort/Merge operation. Any user exit
calls to tne now non-existent PL/I

I

exit procedures are deleted, before
restoring the external save area and
returning control from the PL/I
procedure.

2. The PICA is set to system action for
program interrupts.

3. Register 13 is set to a special save
area with a chain back address of
zero.

On normal completion of the sort, the
PICA and external save area are reset to

the conditions at entry to IHESRT and
control is returned to the calling program.

If an exit is taken, the PL/I
environment is reestablished and register
13 is reset to the DSA allocated for
IHESRT. The exit procedure is then invoked
and thus the DSA chain is correct.

Before returning to Sort/Merge the PICA
and register 13 are reset to their values
on initial entry to the exit routine in
IHESRT.

Chapter 2: General Implementation Features 17

CHAPTER 3: INPUT/OUTPUT

FILES AND DATA SETS

Within this publication, the term 'data
set' refers to a collection of records that
exist on an external device. A file is
known as such only within a program; it is
possible that, within a given program,
several files will use the same data set
concurrently (direct access only).
Similarly, a data set may be used by
several proqrams, either concurrently or
successively.

The relationship between a file and a
data set is established when the file is
opened. The data set to be associated with
a file is identified by the TITLE option.
If this option is omitted or an implicit
open occurs, a default identifier is formed
from the first eight characters of the file
name. The data set identifier is not the
data set name, but the ddname (i.e., the
name of the DD statement). Error .messages
which are related to file operations use
the full file name (1 through 31
characters>.

The attributes of a file in some
instances restrict the attributes of its
associated data set, but in those instances
where device independence is possible, the
full capabilities of the job control
language DD statement are available. Unit
assignment, space allocation, record format
and length, and various data management
options <such as write-verify) are
established on a dynamic basis.

0 31 0 31
r---------~-T-----1 r-------------------1
I PRV off set I I I I
~-----T ______ J I I I
I I I I I

FILE ADDRESSING TECHNIQUE

In order to accommodate reentrant usage of
a PL/I module, which may imply that the
module exists in read-only storage, the
following technique is employed to
communicate file arguments. ~11 calls from
compiled modules to the library involving
file arguments address a read-only control
block, the DCLCB. The library, using a
field within this control block, is able to
address a cell within the pseudo-register
vector generated for the task. This cell,
the file register, in turn addresses a
dynamically allocated control block, the
file control block (FCB). <see Figure 5.)

This control block, generated during
compilation, contains information derived
from a file declaration (either explicit or
contextual). In addition, it contains the
offset within the PRV of the file register,
a fullword pseudo-register employed within
the file addressing scheme. This
pseudo-register contains the address of a
dynamic storaqe area containing a tile
control block. The DCLCB is read-only, and
thus permits compiled programs to exist
within a reentrant environment <which may
imply that the program is loaded into
supervisor protected storage). The maximum
length of a DCLCB is 56 bytes.

File attributes specified within the
DCLCB may be supplemented, but not
overridden, by attributes specified in the
OPEN statement which opens the file. An

0 31
r-->r-------------------,
I I I
I I I
I I I

I I I •-------------------~ I I I
I L------------+--->I A(FCB) ~-J I I
I I ·-------------------~ ·-------------------~
I I I ' ' A(DCLCB) I
I I I I ~-------------------i
I I I I I I
I I I I I I
I I I I I I L------------------J L-------------------J L-------------------J
Figure 5. File Addressing Scheme

18

exception to this rule is the LINESIZE
option, which overrules record length
information declared in the ENVIRONMENT
attribute.

The format of the DCLCB is described
fully in Appendix I.

File control Block (FCB)

This control block is generated during
program execution when a file is opened.
Dynamic allocation of the FCB storage is
required in order to accommodate reentrant
usage of a given module, for the FCB is not
read-only. The FCB contains fields for
both the PL/I Library and for operating
system data management. The initial
portion of an FCB is PL/I-oriented, while
the second portion is the DCB required by
data management for all data set
operations. The PL/I portion, called the
DCB-appendage, is described in Appendix I;
details of the various DCB constructions
are available in the following IBM
publications:

IBM System/360 Operati~ystem:~stem
Control Blocks

IBM System/360 Operating System:
Supervisor and Data Management Services

IBM System/360 Operating System:
Supervisor and Data Management Macro
Instructions

IBM svstem/360 Operating system:~stem
Programmer's Guide

PRV
r-------------,
I I
I I ·------------i

An FCB is generated for each file opened
within a program; an FCB cannot exist for
an unopened file. FCBs are generated in
task-oriented storage (in the same subpool
as the PRV for the task: subpool 1).

Accordingly, if a file is implicitly
closed because of the termination of the
task that opened it, its FCB is freed and
the file register is set to zero. The
contents of a given file register in a
non-opening upward task are zero.
Subsequent reference to the file may cause
the file to be reopened. (A non-opening
upward task for a given file is a task that
does not open the file, and which is not a
subtask of a task that has opened the
file.)

When a file is opened, its generated FCB
is placed in a chain which links together
(through the TFOP field in the FCB) all
files opened in a given task. When files
are closed, they are removed from the
chain. This chain, which is anchored in
the PRV cell IHEQFOP, exists in order to
perform special PL/I closing processes at
task termination (whether normal or
abnormal). When a task terminates, the
object-program housekeeping routines
determine which files are currently opened
by this task. This is performed by the
relevant housekeeping module calling
IHEOCLD <close>, which scans the chain and
calls IHECLTB to close all files opened in
the current task. If the cell IHEQFOP is
zero, then no files are, at present, opened
by the task. When a subtask is attached,
this cell is initialized to zero in the
newly generated PRV. The IHEQFOP chain is
shown in Figure 6.

Since an FCB is generated in dynamic
storage, its address cannot be determined

IHEQFOPI ·--, •-------------t I I I FCB1 FCB2 v FC1il
I I r-----====----1<--1 r-----====----,<--, r-------------1
I I I I I I I I I I
I I I I I I I I I I
I I •-------------i I •--------·-----i I t-------------i
I I I 0 I L---1 I L--i ITFOP
I I •-------------i •-------------i t-------------i
L------~-----J I I I I I I

I I I I I I
I I I I I I L-------------J L-------------J L-------------J

~ The FCBs are opened in the order 1, 2, 3, etc.

Figure 6. Format of the IHEQFOP Chain

Chapter 3: Input/Output 19

either at compile time or link-edit time;
it is this characteristic of the FCB which
requires the file addressing scheme
outlined above. If a given procedure is
being executed by two or more jobs
(multi-jobbing), an FCB <with its
associated PRV) exists for each job; the
procedure does not, however, necessarily
operate on different data sets. Similarly,
if a file is opened in two parallel
subtasks, an FCB exists for each task.

Program Execution

When program execution is initiated, the
PRV (including all file registers> is
initialized to zero. When a file is opened
(prepared for I/O operations>, its
associated file register is set to address
an FCB; similarly, when a file is closed
explicitly, its file register is again set
to zero.

Since a copy of the PRV of the attaching
task (calling procedure) is provided to the
attached task (called procedure), the state
of a file is communicated downward through
major to minor tasks. If the file is not
open, the file register remains zero. If a
file has gone through the opening process
but has failed to be opened (UNDEFINEDFILE
condition), the high-order byte (bits O to
7) of the file register will contain an
error code that indicates the cause of
failure. The codes consist of two
hexadecimal digits; they are shown in
Figure 7.

If the file register is non-zero, the
file is open and its FCB is also available
to all the subtasks created while the file
was in the open state. This technique of
communicating the state of a file makes it
possible to access a file in two parallel
subtasks.

Two advantages of the use of the DCLCB
in the file addressing scheme are:

1. Because the DCLCB, in conjunction with
an implicit opening statement,
provides all the information necessary
to open a file, a file can be opened
by I/O statements other than the OPEN
statement.

2. Because the DCLCB is part of the
static storage of a load module, its
address is constant throughout program
execution. This address can be used
therefore as the file identification
in ON conditions that relate to files.
ON conditions may be enabled for a
file before it is opened, since the
DCLCB address is always available.

20

r-------T---------------------------------1 I Error I I
I code I Meaning I
~-------+---------------------------------~ 81 Conflict between DECLARE and

OPEN attributes

82 File access method not
supported

83 No block size

84 No DD card

85

86

87

TRANSMIT condition while
initializing data set (only
applicable to DIRECT OUTPUT
REGIONAL files)

Conflict between PL/I
attributes and environment
options ·

Conflict between environment
options and DD parameters

88 Key length not specified

89 Incorrect block size or logical
record size specified

SA Line size greater than
implementation-defined maximum

-------~---------------------------------Figure 7. Error Codes Indicating Causes
of Failure in Open Process

OPEN/CLOSE FUNCTIONS

The opening of a file occurs either
explicitly by the use of an OPEN statement,
or implicitly because of other I/O
operation statements.

Opening a file involves the creation,
within dynamic storage <subpool 1 of the
opening task), of an FCB, the setting of a
file register to address the FCB, and the
invocation of the data management OPEN
executor. The closing of a file involves
invocation of the data management CLOSE
executor, freeing FCB storage, and clearing
the associated file register.

EXPLICIT OPENING

In order to conserve storage, the module
structure of the OPEN and CLOSE processors
involves a 'bootstrap' routine, IHEOCL,
which links to the modules IHEOPN and
IHECLT. In a multitasking environment
IHEOCT links to IHEOPN and IHECTT. The

bootstrap module passes to the loaded
modules the address of a list of all
necessary address constants and
pseudo-register off sets, since these
cannot be set in a module not
link-edited with the executing
program. The list is found in the
library module IHESAP
<non-multitasking> or IHETSA
<multitasking>.

All errors are communicated back to
IHEOCLIIHEOCT by means of the file
registers; IHEOCLIIBEOCT then invokes the
error handling subroutine. The error
conditions are signaled in the high-order
byte of the file register; IHEOCL/IHEOCT,
upon detecting an error condition, sets bit
O of this register to indicate an
unopenable file. The error codes are shown
in Figure 7.

Open control Block (OCB)

one of the parameters which may be passed
to IHEOPN is the open control block (OCB),
which is generated by the compiler. This
four-byte control block indicates the
attributes specified in the OPEN statement.
During the opening process. this
information is merged with that in the
DCLCB in order to construct the proper FCB
and check for attribute conflicts. (See
Appendix I for details of the OCB.)

The Open Process

The flow through the OPEN modules is
illustrated in Figure 8.

The open process is performed by the
modules IHEOPN, IHEOPO, IHEOPP, IBEOPQ and
IHEOPZ which reside within the LINKLIB data
set. These modules are dynamically loaded
in order to conserve object-program
storage. They initially receive control
from a bootstrap module, IHEOCL
<non-multitasking) or IHEOCT
(multitasking); each module, after
performing its functions for all files
being opened, passes control to the next by
the XCTL macro. IHEOPQ then returns to the
bootstrap module.

Open Process, Phase I: IHEOPN: This
performs file attribute checking and
defaulting functions. If a file being
opened is REGIONAL, and is opened for
DIRECT OUTPUT (creation), the module IHEOPZ
is invoked by IHEOPN to initialize (format>
the initial space allocation of the
associated data set. such initialization

is required in order to allow subsequent
direct insertion of records into the data
set. If, in phase I, all files specified
in the OPEN statement have· detected errors,
a return to the bootstrap IHEOCL is made
immediately. Otherwise phases II, III and
IV are invoked and a return is made to
IBEOCL from IHEOPQ.

r---------,
I OCL/OCT I
~-----------~
I OPEN/CLOSE !<---------------------,
I bootstrap I
L---... ------J

I
v

r------------, r-----------, I OPN I I OPZ I
·-----------~ ·-----------~ I OPEN l<--->I REGIONAL I
I Phase I I I Formatting!
L----... ------J L-----------J

I
v

r----------,
I OPO I
·-----------~
I OPEN I
I Phase II I
L----~------J

I
v

r----------, r-----------,
I OPP I I OPQ I
·------------~ ~-----------~

OPEN ·----»I OPEN ·-----J
I Phase III I I Phase IV I
L------------' L-------~--J

Figure 8. Flow through the OPEN Modules

Initialization for REGIONAL data sets of
F format records involves writing dummy
records <and keys, except for REGIONAL (1))
throughout the data set. on the other
hand, initialization for U or V format
records (REGIONAL (3) only> requires merely
that the capacity record (RO) be written in
each track to signal a free track, the
track being automatically cleared as well.

Open Process, Phase II: IHEOPO: This
obtains storage for an FCB for each file
being opened, and sets fields in both the
DCB and the DCB-appendage according to the
declared attributes.

Open.Process, Phase III: IHEOPP: This
executes the OPEN macro, and accepts
DCB-exits.

Open Process, Phase IV: IBEOPQ: This
dynamically loads record-oriented I/O
modules (setting their addresses in the
FCB), and enters the files being opened
into the IHEQFOP chain of files opened in
the current task.

Chapter 3: Input/Output 21

The Close.Process

This process consists of: removing files
from the IHEQFOP chain; freeing dynamically
acquired storage (file control blocks,
buffers. exclusive control blocks. and I/O
control blocks); and deleting any
appropriate dynamically-loaded
record-oriented I/O modules. In the
following description the non-multitasking
module is followed with its multitasking
alternative in parentheses.

Module IHEOCL (IHEOCT) starts the close
process; for an explicit close it links to
IHECLTA (IHECTTA); for an implicit close to
IHECLTB (IHECTTB). If the last operation
on a BUFFERED SEQUENTIAL I.NDEXED OUTPUT
embedded-key file, before it is closed
explicitly. is LOCATE, module IHEOCL
(IHEOCT) replaces the embedded key with the
KEYFROM option, before passing control to
IHECLT <IHECTT). For further information
refer to Indexed Data sets on page 35.

Module IHEOCL (IHEOCT) calls IHEITC to
finish formatting the current extent when
closing a REGIONAL SEQUENTIAL OUTPUT file.
If IHEITC finds a key sequence error due to
a previous LOCATE statemen~ on a REGIONAL
file with u- or V-format records the key
sequence is ignored and a message is
displayed on the console.

The normal return from a KEY on-unit is
to the statement following that in which
the condition is raised. consequently, if
the KEY condition is raised during the
execution of an explicit CLOSE statement,
the file will not be closed unless the
on-unit also includes a CLOSE statement.

In addition, if a file is closed
implicitly (on termination of a task>,
IHEOCL or IHEOCT scans the IHEQFOP chain to
find the file. In a multitasking
environment. if a task is terminated
normally. IHEOCT unlocks all records locked
in the task and frees the ·corresponding
exclusive blocks; if a task is terminated
abnormally, it merely removes the exclusive
blocks from their chains. For an implicit
close, all events associated with event
variables in the IHEQEVT chain are purged,
and the associated IOCBs, if any. are
freed.

Modules IHECLT and IHECTT reside within
the LINKLIB data set and are loaded
dynamically in the same manner as the OPEN
modules. They perform additional special
functions as follows:

Stream-oriented I/O:

22

If OUTPUT with a-format records, the
last record is written.

Record-oriented I/O:

All incomplete event variables
associated with the file are set
complete, abnormal. and inactive, and
the I/O operations are purged.

In a multitasking environment:

1. The event variables in the TEVT
chain are set complete, abnormal,
and inactive.

2. For a REGIONAL EXCLUSIVE file. or
an INDEXED EXCLUSIVE file with
unblock~d records. locked records
are unlocked and all exclusive
blocks in the TXLV chain are freed.

3. For an INDEXED EXCLUSIVE file with
blocked records, the file is
unlocked.

IMPLICIT OPENING

If a file is not open and an I/O operation
is initiated. then one of the compiler
interface modules <IHEIOA. IHEIOB <or
IBEIBT>. or IHEION (or IHEINT)) calls
IHEOCL (or IHEOCT), at implicit-open entry
point IHEOCLC (or IBEOCTC), passing any
implied parameters, and the open process
begins .•

If the OPEN modules return control to
IHEOCL (or IHEOCT) and the file is still
unopened, the UNDEFINEDFILE condition is
raised.

STREAM-ORIENTED I/.O

Although I/O devices available within IBM
System/360 are usually designed to transmit
data in records of various lengths
(blocks>, the stream-oriented facilities
allow a program to ignore record
boundaries. The GET and PUT s·tatements
transmit data between storage and one or
more record areas which.exist within a
buffer, the location within the buffer
being updated as each data field is
accessed. When a record area becomes
filled (if output> or empty (if input>,
another record is obtained. Support for
record access is provided by the data
management access method QSAM <queued
sequential access method). Normally, the
GET and PUT data management macros are used
in the locate mode, to conserve space and
time; paper tape input. however. must use
the MOVE mode. see Figure 9 for the flow
through the stream-oriented I/O modules.

r--------1 I IOA • ,
·--------t

r---i GET ·-----,
IInit/Terml
L--------J

r-------1
IIOB/IBT •1
·-------i

<--i PUT 1---->
f Init/Terml
L---------J

r---------1 r---------1 r---------1
I DDJ I I DOI •1 I LOI .,
1---------~ ·---------i ·---------i
I Array l<--------i Data •-------->I List •----------1
I input I I input I I input I I
L---------J L----T ____ J L----T ____ J I

I I
<------------------J I

r---------, I
I ODO/DDT • I I

•---------i I <-------------i Data •---------> ·--------, I output I
I IOP •1 L----T ____ J

1---------i I
f Printing I r-----i------,

-->!Control 1-------------> I I
L---------J v v

r---------, r---------1
I LOO •1 I DDP I
·---------i ·---------i r--------1 I List I I Array I

L---IOCL/OCT •1<--------------------------1 <------i output I I output I
·-------i L---------J L---------J
I CLOSE I
I l----------------------1
•---------i I r---------, r---------1
I OPEN 1---------------, I I IOX •1 !see P69 •I
I I<-------, I ·---------i ·---------i L----T ___ J I I <------iX/column I I Format I

I I I I format I !directors!
I I I L----T----J L----T ____ J

I I I I I
I I I L------T------J
v I v v

r--------, r----i----, r--------1 r---------,
I OPN I I OPQ I ICLT/CTT I I IOD I
·---------i ·---------i ·--------i ·---------i
I OPEN I I OPEN I I CLOSE I <-------------iDatafieldl
I Phase I I I Phase IVI I I I access I
L----T ____ J L---------J L--------J L---------J

I " v I v
r---------1 r----i---, r----------, r---------1
I OPO I I OPP I I IOF I I PRT/PTT I
·--------i ·--------i ·----------i ·---------i I OPEN I I OPEN I -----------t>I Record I I ~rite I
I Phase II•-->f Phase IIII
L---------J L---------J

r--------1
I SRC •1
·--------i
f DATAFIELDf
IONCHAR I
f ONFILE orl
IONSOURCE I
I I
L--------J

r-------1 I IOC .,

~-------i
IGET/PUT I
I STRING I
I I
L--------J

r--------1 I CNT .,

·--------i
I COUNT/ I
I LINENO I
I I
L--------J

I I access l<-------iSYSPRINT l<---------
1 I (QSAM I L----T ____ J

I IInterface>I I
I L----------J I
L--------------------------J

r--------1 I SRO .,
·--------i
I I
I ONKEY I
L--------J

Note: An asterisk indicates
that the module can be
entered directly from
compiled code.

• Figure 9. Modular Linkage through Stream-Oriented I/O

Chapter 3: Input/Output 23

CURRENT FILE

The current file is that one which is being
operated upon by an I/O statement; it is
established when an operation begins, and
removed when the operation is completed.
The current file is addressed through the
pseudo-register IHEQCFL, which addresses
the DCLCB for the file. This
pseudo-register is available for inspection
upon entry to ON blocks, and during
transmission. Its format is shown in
Figure 10.

0 7 8 31

r--------T--------------------------------1 I 0 I A (DCLCB) I
~--------+--------------------------------~ I I A(Abnormal return> I
L--------.1.--------------------------------J
Figure 10. Format of the current File

Pseudo-Register

Within a stream-oriented data
specification there may exist expressions
which involve function references. In
turn, the function procedure may itself
perform I/O operations or may ref er to ON
blocks that perform I/O operations. When
this situation occurs, it is necessary to
stack the current file pseudo-register.
The presence of the COPY option in a GET
statement and the raising of the TRANSMIT
condition for an item in the data stream
are flagged in the fifth byte of IHEQCFL:

TRANSMIT to be raised on item:
COPY option in statement:~~
Current file in PRV:
current file stacked in DSA:

Bit 5 = 1
Bit 6 = 1
Bit 7 = 0
Bit 7 = 1

stacking of the current file is effected
by the I/O initialization modules; upon
entering such a module (e.g., IHEIOA and
IHEIOB), the contents of the
pseudo-register IHEQCFL are stored in the
DSA (dynamic storage area) of the invoking
procedure, as addressed by register DR.
The stacking cell is termed the current
file pseudo-register update. (See Chapter
4.) Upon termination of an I/O operation,
either normally, or by means of a GO TO
statement out of an ON block, this cell is
copied back into the pseudo-register
IHEQCFL.

GET and PUT statements with the STRING
option employ the current file
pseudo-register, but no abnormal return
entry exists. Instead, the latter four
bytes address a simulated FCB.

24

STANDARD FILES

The standard files, SYSIN and SYSPRINT,
have default titles equivalent to their
file names. The compilation of GET and PUT
statements without explicit FILE options
causes compile-time syntax substitution of
the file names SYSIN and SYSPRINT
respectively. These files have the same
compiled linkage to the library as other
files. Within the librar·y, SYSIN is not
used; the file SYSPRINT, however, is used
in that error messages and listing of data
fields for the COPY and CHECK options
require the presence of this file.

SYSPRINT may be implicitly opened either
by:

1. the first PUT executed in the compiled
procedure, or

2. a call from within the library for the
COPY option or an error message.

If the library attempts to open this file,
and it cannot be opened (missing DD card,
etc.), this situation is flagged and all
error messages will appear on the system
console •. In addition, any COPY options, or
system action for the CHECK condition, will
be ignored. The UNDEFINEDFILE condition is
suppressed in the above cases.

If a compiled procedure attempts to open
SYSPRINT, and it cannot be opened, the
normal UNDEFINEDFILE condition is raised.

Because the library and the source
program both use the SYSPRINT file, it is
necessary that they both ref er to the same
DCLCB. This is achieved by the use of
CSECT facilities within the linkage editor;
both the compiled DCLCB and the
library-supplied DCLCB for SYSPRINT (within
the module IHEPRT) are supplied with the
same name, so that only one of them will be
placed within the linked program. The name
of both CSECTs is IHESPRT; the name of the
associated file register is IHEQSPR.

SYSPRINT IN MULTITASKING

In a multitasking environment, to ensure
that there is no conflict between
operations in different tasks that ref er to
the same non-exclusive file, it is
necessary for the programmer to synchronize
these operations (by using an EVENT
variable, the COMPLBTION pseudo-variable,
and the WAIT statement>. Since the library
uses the file SYSPRINT, it is not possible
for the programmer to synchronize all
operations on thia file. Therefore the

library module that implements PUT
statements for SYSPRINT (IHEIOB), and other
modules that use this file, issue an ENQ
macro instruction before executing each PUT
statement on SYSPRINT, and a DEQ macro
instruction on completion of the operation.
All SYSPRINT operations cannot be enqueued
on the same resource, since this could
result in an interlock situation (two or
more operations, each waiting for the
completion of the others). For example,
this would be the case if a PUT statement
involved a function reference that required
another PUT operation: if both were
enqueued on the same resource, the second
operation could not commence until the
completion of the first, which itself could
not proceed until the function had returned
an answer.

The library resolves the difficulty by
employing a resource counter <the first
byte of the current-file field in the DSA:
see Appendix J). · Before each SYSPRINT
operation is executed, the operation is
enqueued on the resource number in the
counter, and the counter is then
incremented by one: on completion of the
operation, the counter is decremented by
one before the operation is dequeued. When
a new DSA is obtained <on entry to a new
block: see Chapter 4), the resource count
is copied from the DSA of the block from
which the new block was entered.

In the example (Figure 11), when the.
major task <task A) is initialized, the
resource count in its DSA is set to zero.
Task A then attaches tasks B and c, and in
each case the resource count CO> is copied
into the new DSA. Tasks A, B, and c then
request PUT operations, all of which are
enqueued on resource O: in each case the
resource count is then incremented by 1.
These operations are therefore completed in
the order in which they were requested.

During execution of the PUT statement in
task B, an error condition occurs that
involves a library call to print a message
(e.g., UNDERFLOW). The library PUT
statement is enqueued on resource 1, since
the resource counter is incremented after
the task Ptn' statement is enqueued, but
before the statement is executed. The
library PUT operation is therefore not
dependent on the completion of the PUT
statement that raised the error condition.

If a GO TO statement is executed that
passe.s control to a statement preceding a
series of enqueued operations, the program
management routine IHETSAG releases the
DSAs of the blocks thus freed and dequeues
the I/O operations they contain. This is
illustrated in task c (Figure 11), where
control is passed to an on-unit as a result

of an error in a PUT statement in a
function reference made during the
execution of the second PUT statement in
the task. The PUT statement is enqueued on
resource 0, and the resource count is then
incremented. when the function is called,
the resource count (1) is copied into its
DSA: consequently, the next PUT statement
is enqueued on resource 1, and the counter
is again incremented. The count 2 is
copied into the on-unit DSA when control
passes to the on-unit. On execution of the
GO TO statement, which passes control back
to a statement preceding the original PUT
statement, IHETSAG frees the function and
on-unit DSAs, dequeues all the PUT
operations, and resets the resource counter
in the DSA for task C to its value on entry
to the task CO).

No special provision is made for
handling SYSPRINT resources on termination
of a task, since this file cannot be used
by the library end-of-task exit routine.

The qname and rname used in the ENQ and
DEQ macro instructions are:

qname <two words):
Bytes 1-4: A(SYSPRINT FCB)
Bytes 5-8: A(SYSPRINT FCB)

rname Cl byte):
Resource count in DSA

GET/PUT OBJECT PROGRAM STRUCTURE

The code compiled for stream-oriented I/O
GET and PUT statements has the general
structure illustrated in Figure 12. There
are three •call sets' compiled for these
statements:

1. Initialization:

This call invokes one of the I/O
initiator modules, passing:

a. rhe address of the file DCLCB.

b. The address of the termination
call. (This is the abnormal
return which is set within the
current file pseudo-register
IHEQCFL.)

c. The address of the LINE or SKIP
value.

The initialization process includes
stacking the cu~rent file, checking
the specified file (and opening it if
not already open>, and performing any
necessary option operations.

Chapter 3: Input/Output 25

Task B Task A
(major task)

Task c

0

1

0

I
o I

I
r------~-----------------i
I I
I ~------------------------,
I I o I

ENQ I I
Error I I

PUT-----------, I I
I I ENQ

DEQ
I

I ENQ 1
I 1

I
I
I
I

Message
routine
1 I

2

1

I
I
I

ENQ

PUT

DEQ
I
I
I
I

Note: The figures at
the left of each column
indicate the contents of
the resource counters.

0
PUT

DEQ
I
I
I
I

0
PUT

DEQ
I

r------------>I
I
I
I

ENQ
1 Function reference

PUT---------,
I
I

1 PROC:
I
I
I

ENQ
I 2 Error
I PUT--------,
I I I
I I I
I I On-unit
I I
I I 2 BEGIN;
I I I
I I I
I I I
I I I
I I I
L------------DEQ<-------DEQ<-----GO TO

I
I
I
I

Figure 11. Allocation of SYSPRINT Resources in Multitasking

2. Data specification:

26

This is a series of calls to perform
list-, data-, or edit-directed
stream-oriented I/O operations. This
series is omitted only for GET/PUT
statements which have no data
specification. Details of the
implementation of the three forms of
data specification appear in 'Data
Specifications'. below.

3. Termination:

This call invokes the terminal
subroutine of the module which
performed the initialization. At this
point the current file is unstacked
and (for PUT calls) V format output
records have their record-length field
updated.

Call set 1

A
I
I
I
I
I
I

Call set 2
I
I
I
I
I
I
I
v

Call set 3

Figure 12.

r---------~-----,
I I
I Initialization I
I call I
L--------y-------J

I
v

r----------------,
I Data I
I Specification I
I call1 I
L--------T-------J

I
v

I
I
v

r----------------1
I D~a I
I Specification I
I calln I
L--------y-------'

I
v

r----------------1
I I
I Termination I
I call I
L----------------J

Object Program Structure of
GET/PUT

DATA SPECIFJ:CATIONS

There are three forms of data
specification:

Data-directed

List-directed

Edit-directed

compilation of any data specification
yields a series of one or more calls to the
library for transmission of data between
program storage and a record buffer. For
list- and data-directed I/O, the data items
transmitted are passed by means of the
standard linkage described above. (See
'Linkage conventions' in Chapter 2.) The
PL/I standard <using registers> is employed
wherever possible: where it is not, the
operating system standard (using a
parameter list) is employed. For
edit-directed I/O, the 'executable format
scheme' described below is required.

The ON CHECK facilities for data items
being input are supported by compiled code
between data-list item specifications, in

the instances of list- and edit-directed
I/O: data-directed I/O determines the
existence of this condition from the symbol
table entry for a given data item.

EXECUTABLE FORMAT SCHEME

The executable format scheme exists to
support two requirements for edit-directed
data items:

1. The matching at object time of
data-list items with format-list
items.

2. The evaluation of expressions during
an I/O operation.

The scheme exists in compiled code for use
by the library format directors and
conversion package. (See 'I/O Editing and
Data conversion' in Chapter 8.)

The scheme is required because
edit-directed data specifications contain
format lists composed of format items that
may have expressions for replication
factors and format subfields. These
expressions may have to be evaluated with
values read in during a GET operation.
Finally, the use of dynamic replication
factors and the possible existence of array
data-list items of variable bounds prevent
any pre-determinable matching of data-list
items and format-list items.

Basically, the scheme calls for the
existence of two location counters, one for
a compiled series of data-list item
requests, the other for a compiled series
of format-list item specifications. These
two series are compiled as the 'secondary
calling set for a GET or a PUT operation.

To support the dynamic matching of a
format-list item with any data-list item, a
group of format directors exists within the
library; one of these directors receives
the call from the secondary compiled series
of format item specifications. A director
will determine which conversions are
required to satisfy the transmission of a
data item according to its internal
representation (described by its OED) and
its specified external representation
(described by a FED).

The structure of edit-directed compiled
code is illustrated in Figure 13. The
first column, 'Primary code', consists of
calls to units in the second column,
'Secondary code': i.e., data-list items are
requesting a match with a format-list item.
The third column shows the flow within the
library as set up by format directors.

Chapter 3: Input/Output 27

The scheme works as follows:

1. The address of the start of the
format-list code (executable format)
is obtained.

2. Transmission of the first data item is
requested; its storage address and OED
address are loaded into registers RA
and RB.

3. control is transferred to the
executable format; at the same time
the location counter of the data-list
code is updated.

4. The executable format loads, into
register RC, the address of an FED.

5. A call is made to a format director
and at the same time the location
counter of the format-list code is
updated.

Primary Code

Initialization
I
I
v

Secondary Code

6. The format director causes the
conversion package to convert the data
according to OED and FED information,
storing the converted data in the
specified storage address, if input,
or placing it in a buffer, if output.

7. Return is then made to the data-list
code, by means of the data-list
location counter, LR.

8. The above steps, 2 through 7, are
repeated until the end of the
data-list code is reached.

Within both primary and secondary code,
looping and invocation of function
procedures may occur. within secondary
code, the appearance of control format
items (PAGE, SKIP, LINE, COLUMN, X) will
cause the location counter for primary
code, register LR, to be temporarily
altere1, so that control is returned from
the library, not to the primary code, but
to the secondary code. This allows the

r------------i r------------1 r------------1
Request ~---->I Specify ~---->I Format I

ldata item 11 I format I I director l<----------1
ltransmissionl r-->I 1 ~---->I A I I L------------J I L------------J L----T-T _____ J v

I < 1 > I I < 3 > r------------1 r------------------------------------J I I Conversion I
I I I I package I
I I i----------J I I
v I I L------------J r------------1 I r------------1 I r------------1 A

I Request I I I Specify I I I Format I I
ldata item 2~---->I format ~---->I director l<----------J
ltransmissionl I I 2 I I I B I L------------J I L------------J I L-----T ______ J

I I < 2> I
I I I
I I I

.-------------------------------------J
I I I
v I I

r------------1 I I
I Request I I I
ldata item 3~-J I
I transmission I I
L------------J I

I
I

.----------------------------J
I
v

Termination

Figure 13. Executable Format Scheme

28

data-list item which activated the control
format item to be matched with a data
format item.

OPTIONS

COPY: This option causes each data field
accessed during a GET operation to be
listed on the standard output file,
SYSPRINT. This is performed by calling
the module IHEPRT. Each data field
occupies the initial portion of a line.
If there is no DD card for SYSPRINT,
the COPY is ignored by IHEPRT.

STRING: This option causes a character
string to be used instead of a record
from a file. This situation is made
transparent to the normal operation of
the I/O modules since the
initialization module for GET/PUT
STRING (IHEIOC) constructs a temporary
FCB for the string. Information
regarding the address and length of the
string is set in the FCB fields TCBA,
TREM and TMAX. A temporary file
register is created in the second word
of the pseudo-register IHEQCFL. (A
dummy DCLCB is placed in front of the
generated FCB and consists of two bytes
which indicate the offset of the dummy
file register.)

PAGE, SKIP, LINE (print files): These
options cause the current record <which
is equivalent to a 'line'> to be put
out, and a new record area to be
attained. SKIP can also be used with
input to cause the rest of a record in
the input stream to be ignored. Record
handling for these functions is
performed by the module IHEIOP. All
printing options (and format items> are
supported by·use of the ASA control
characters:

1 Page eject
+ Suppress space before printing
b Single space before printing
O Double space before printing

Triple space before printing

Should spacing greater than triple be
required for a LINE or SKIP request, a
series of blank triple space records is
generated, followed by a single or
double space record, if necessary.

SKIP <non-print files>:

1. Input files: The SKIPCn> option
causes the rest of the current
line <record> to be ignored in the
input stream, and a further
<n - 1> lines to be ignored.

2. output files: The SKIPCn> option
causes the remainder of the
current line <record> to be
ignored and Cn - 1) blank lines to
be inserted into the output
stream. Note that, for format F
records, each line is padded with
blanks; for format V and u
records, only the necessary
control bytes and record lengths
are supplied.

RECORD-ORIENTED I/O

OBJECT PROGRAM STRUCTURE

In record-oriented I/O, the data entities
accessible to the source program are data
management logical records <unlike
stream-oriented I/O, where the data
entities are data fields>.

A wider range of record access is
therefore available with record-oriented
I/O: records may be keyed or not, may be
directly or sequentially accessed, and may
be manipulated within the data set by
insertion, replacement, or deletion. The
specific facilities available vary
according to the data management access
method employed to support a given data
set.

The data management facilities employed
are indicated in Figure 14, according to
the organization of the data set. Note
that not only the declared organization but
also the mode of access and the format of
records determine the chosen access method.
Details of the manner in which the access
methods are employed are provided in
'Access Method Interfaces•.

General Logic and Flow

The overall flow of record-oriented I/O
modules is illustrated-in Figure 15.
Modules IHEION(IHEIOG) <non-multitasking)
or IHEINT(IHEIGT) (multitasking) are
general interface modules, one of which is
invoked by a compiled call for any
record-oriented I/O statement, in either a
non-multitasking or multitasking
environment. This module interprets the
requested I/O operation, verifies its
applicability to the specified file <and,
possibly, implicitly opens it), and then
invokes an access method interface module
(characterized by the module names IHEIT•>
to have the operation performed.

Chapter 3: Input/Output 29

r-------------T------------T------T----------T--------------T------T--------------------1
I I I I !Record IAccessl Notes on Use of I
!Organization I Access I Mode !Buffering !Format IMethodl Access Method I
~-------------+------------+------+----------+--------------+------+--------------------~
I I I !BUFFERED IALL IQSAM !Locate-mode I
I I IINPUT I I I I (except paper tape> I
I CONSECUTIVE I SEQUENTIAL IOUTPUT·----------+--------------+------t---------~---------~
I I IUPDATEIUNBUFFEREDIF, u, v IBSAM I I
·-------------+------------+------+----------+--------------+------+--------------------~
I I IINPUT !BUFFERED I I tscan-mode; I
I I IUPDATEI or IF, FB 1 I IESETL/SETL I
I I SEQUENTIAL ·------~UNBUFFEREDI IQISAM ~--------------------~
I INDEXED I I OUTPUT I I I I Load-mode I
I ·------------+------+----------+--------------+------+--------------------~
I I DIRECT IINPUT I IF, FB IBISAM I I
I I I UPDATE I I I I I
·-------------+------------+------+----------+--------------+------+--------------------~

I IINPUT !BUFFERED IF IQSAM/ I I
I SEQUENTIAL IUPDATEI or I (REGIONALC1>,IBSAM3 I I
I ·------~UNBUFFERED! REGIONAL(2))·------+--------------------~
I IOUTPUTI I IBSAM IBSAM Load-mode I
~------------+------+----------~ ·------+--------------------~
I I I IF, u, v I IREGIONAL(1) 2 I
I I I I I !Relative record I

REGIONAL(!) I I I I IBDAM !without keys I
REGIONAL(2) I !INPUT I t<REGIONAL(3)) I IREGIONAL(2) 2 I
REGIONAL(3) I DIRECT IOUTPUTI I I !Relative record I

I I UPDATE I I I I with keys I
I I I I I IREGIONAL(3) 2 I
I I I I I !Relative track I
I I I I I l~ith keys I

·-------------+------------+------+----------+--------------+------+--------------------~
!TELEPROCESSING TRANSIENT I INPUT !BUFFERED IG,R IQTAM I I
I I I OUTPUT I I ' I I
·-------------L------------L------L----------L--------------L------L--------------------~
INote 1: FB is not allowed for UNBUFFERED files I
I Note 2: OUTPUT causes data set to be formatted using BSAM (BDAM load-mode) at open timel
!Note 3: QSAM is used for REGIONAL(!) BUFFERED but not KEYED I
L---J

• Figure 14. Data Management Access Methods for Record-Oriented I/O

Modules IHEION and IHEINT supersede
modules IHEIOG and IHEIGT at Release 17.
The latter are.retained in case a
previously compiled load module is
link-edited with the new library. The new
modules perform the same function as the
old except that they transfer control to
the transmitters rather than link to them.
The transmitters return direct to compiled
code. This avoids saving and restoring
registers between the interface module and
the transmitter.

The verification of a statement is
performed by IHEION (IHEINT in
multitasking> by ANDing toqether a mask at
off set -8 from the FCB and the second word
of the Request control Block. If the
result is zero then the statement is
invalid. The mask in the FCB is set up by
IHEOPQ to indicate which statements are
valid, and the RCB contains the statement
type as a single bit in its second word.

On receiving control, the interface
module first performs any necessary key

30

analysis and record-variable length
checking, and establishes any control
blocks required. It then invokes data
management for the transmission of a
record. After transmission, or (if the
EVENT option is employed) after initiation
of transmission, control returns to the
general interface module IHEION <or
IHEINT), and thence to the compiled
program. Errors may b~ detected within
IHEION (or IHEINT) before an interface
module is invoked, or within an interface
module either b~fore or after data
management has been invoked. The relevant
ON condition is raised when detected.

As indicated by the overall flow
diagram, record-oriented I/O is implemented
in such a fashion that the addition of
further access method interface modules
requires minimal changes (if any) within
other parts of the implementation. The
general interface module IHEION or IHEINT
provides each access method interface
module with a standard parameter set:

Note: An asterisk indicates that
~~- the module can be entered

directly from compiled code

r-------------,
I Compiled ~--------------,
I Code I I
L------T------J V

I r----------,
v I OSW/TSW • I

r-------------------1 ~----------i
I IONCIOG)/INTUGT) • , I WAIT I

•-------------------i I I I compiler I L-----T ____ J
I interf aqe I I L _________ T _________ J I

I I
l<--------------------J
I
I

r--i
I I
v I

r---------, r--------T---------T-----------,~----T _____ T ___________ ,
IOCL/OCT *I r-------------+-----, I I I I I I
~---------i I v v v v v I v v

~-J r------1 r------1 r---------, r---------, Ir---------, r---------,
CLOSE/~----------, I ITB I I ITC I I ITE I I rrH I II ITF I I ITJ I
OPEN ~---------11 ~------i ~------i ·---------i ~---------il~---------i ~---------i

I<-------, II I BSAM I I BSAM I I BISAM I I BISAM I II BDAM I I BDAM I
I I I II I I I CLOAD>I !No Multi-I I Multi- I II No Multi-I I Multi- I
L----T ____ J I II L------J L ______ J I tasking I I tasking I II tasking I I tasking I

I I IL----------, L _________ J L _________ J IL---------J L---------J
l------------11 L-----------+----------T-------------------+----------------------1

f L------------+-------, I I I
v I I I I

r----------, r---------1 I I r-----------T-----i-----T-----------, I
I OPZ I I OPN I I v v v v v I
•----------, •---------i V r-------1 r-------1 r-------1 r-------11
f REGIONAL f <--i OPEN I r---------1 I ITL I I ITO I I ITG I I ITK f I
f formattingf I Phase I I I CLT/CTT I •-------i ~-------i ~-------i ~-------i I
L----------J l----T ____ J ~---------i I QSAM I I QISAM I I QSAM I I QSAM I I

I I CLOSE ~-> I SPANNED I I I I NON- I I SPANNED I I
I I I I OUTPUT! I I ISPANNEDI I INPUT II

r--------------J L---------J L _______ J L-------J L-------J L-------J I
I r----J
I v
v

r----------1 r---------1 r---------1
I OPO I I OPP I I OPQ I
·----------i ·---------i ~---------i
f OPEN ·-->f OPEN ·-->I OPEN ~--J
I Phase II I f Phase IIII I Phase IVI
L---------_J l---------J L---------J.

r-------,
I ITP I
~-------i
I I
I QTAM I
I I
l-------J

•Figure 15. Linkage of Access Modules in Record-Oriented I/O

RA: A(Compiled parameter list)

Parameter list:

ACDCLCB)

ACRecord dope vector/IGNORE/SDV)

A(Event variable)/0/A(Error return)

ACKEYfKEYFROMIKEYTO SDV)/0

A(Request control block)

The record dope vector and the request
control block are described below under
'Record-Oriented I/O Control Blocks'.

The interface modules are also invoked
to handle WAIT statements associated with
I/O events. The WAIT module, having
determined that an event variable (see
Appendix I) is associated with a
record-oriented I/O operation, invokes the
relevant I/O transmitter (!HEIT•>, passing
the following parameters:

Chapter 3: Input/Output 31

RA: A(Compiled parameter list)

Parameter list:

A(DCLCB)

A(IOCB being waited for)

A(Event variable)

(Reserved)

A(Request control block)

The transmitter then completes the
previously initialized record transmission,
and performs any checking required before
returning control to the WAIT module. (See
also 'The WAIT Statement' in 'PL/I Object
Program Management in Multitasking'.)

From the arguments, the interface module
is able to determine fully the operation
requested of it. The location of the
required interface module is available to
IHEION from the FCB associated with the
file; the field TACM in the FCB is set
during the open process to point to the
appropriate dynamically loaded module.

Thus, when extra interface modules are
provided, the only change required in the
open modules is the provision of code to
set TACM and any other FCB fields relevant
to the new access method interface.

RECORD-ORIENTED I/O CONTROL BLOCKS

Record Dope vector <RDV)

The record dope vector is an eight-byte
block that describes the record variable.
Its format depends on the type of statement
and the associated options:

Bytes 0-3: A(INTO/FROM area), or
A(POINTER variable) for SET

option in READ statement,
or

A(buffer) for LOCATE
statement

Byte 4: Reserved

Bytes 5-7: Length of variable

string Dope Vector (SDV)

The address of the string dope vector is
passed instead of that of the record dope
vector to record I/O interface modules when

32

the input or output of v~rying strings is
requested. The string dope vector is an
eight-byte block:

Bytes 0-3: A(INTO/FROM string)

Bytes 4-5: Maximum length of string

Bytes 6-7: Current length of string
<output>, undefined
<input)

Reguest Control Block

This eight-byte block contains the request
codes, in the first four bytes, for various
RECORD I/O operations and options. The
format is defined in the BREQ field of the
I/O control block CIOCB). (See Appendix
I.)

The additional four bytes which are
contained in the compiler argument list are
not copied into the IOCB. Each type of
Record-oriented I/O statement is
represented by one bit as follows:

BiL!!~mbe!:_ §~~~~ment + options

0 READ SET
1 READ SET KEYTO
2 READ SET KEY
3 READ Hf TO
4 READ INTO KEYTO
5 READ INTO KEY
6 READ INTO KEY NOLOCK
7 READ IGNORE
8 READ INTO EVENT
9 READ INTO KEYTO EVENT

10 READ INTO KEY EVENT
11 READ INTO KEY NOLOCK EVENT
12 READ IGNORE EVENT
13 WRITE FROM
14 WRITE FROM KEYFROM
15 WRITE FROM EVENT
16 WRITE FROM KEYFROM EVENT
17 REWRITE
18 REWRITE FROM
19 REWRITE FROM KEY
20 REWRITE FROM EVENT
21 REWRITE FROM KEY EVENT
22 LOCATE SET
23 LOC~TE SET KEYFROM
24 DELETE
25 DELETE KEY
26 DELETE EVENT
27 DELETE KEY EVENT
28 UNLOCK KEY

29-31 Reserved

I/O control Block (IOCB)

Record-oriented I/O employs several data
management access methods that require that
operation requests be provided with a
special form of parameter list. This
parameter list is termed the data event
control block <DECB). A DECB must be
provided for each operation, but may be
reused when the operation is completed. If
several operations are outstanding Cowing
to the use of the EVENT option in I/O
statements, or multitasking), then one DECB
is required for each operation.

In order to meet these requirements, the
PL/I open process allocates one or more I/O
control blocks (IOCB), which are
subsequently manipulated or increased in
number as follows:

DIRECT access (BISAM and BDAM):
The IOCBs are created by
IHEITE(BISAM) or IHEITF(BDAM); for
multitasking, they are created by
IHEITH(BISAM) or IHEITJ(BDAM).
Only one IOCB is created at open
time; any others required are
created when needed.

SEQUENTIAL access (BSAM only):
All the required IOCBs are obtained
at open time; an attempt to use
more than those already in
existence raises the ERROR
condition.

The IOCB format for both these usages is
described in Appendix I.

A number of IOCB fields exist in order
to support the EVENT option. Since the
operation is split into two parts -
initiation through the READ, WRITE, etc.,
statements. and completion by the WAIT
statement -- information regarding a
particular operation must be retained for
use at the time of completion. For
example, if a hidden buffer is employed .for
a READ, the address of the user's record
variable must be retained for subsequent
movement from the buff er to the specified
area.

IOCB -- SEQUENTIAL Usage: Manipulation of
IOCBs for SEQUENTIAL usage is required only
for BSAM, which is employed for:

1. CONSECUTIVE UNBUFFERED files.

2. SEQUENTIAL creation or access of
REGIONAL files which have the KEYED
attribute or are unbuffered.

A number of IOCBs is allocated during the
open process by means of the GETPOOL macro;
subsequent selection of a particular IOCB

is made by a routine similar to that
provided by the GETBUF macro. Whenever an
IOCB is selected, it is entered into the
chain of IOCBs currently in use; the TLAB
field in the FCB points to the last IOCB to
be used.

The chain of IOCBs is required for two
reasons:

1. ~l I/O operations must be checked in
the order in which they were issued.

2. Detection of dummy records for a
REGIONAL <2> or (3) data set requires
reordering of outstanding requests
(due to the use of the EVENT option).

This chain, however, is principally
required for the EVENT option, which can
cause more than one I/O operation to be
outstanding at a given time.

The number of IOCBs (buffers> allocated
is determined by the DD statement
subparameter NCP. The value of this
subparameter should not be greater than 1
unless the EVF.NT option is employed; if
NCP = 1, there is then one IOCB and one
channel program. If NCP is unspecified a
default of 1 is used.

The size of each IOCB varies, depending
upon the organization, the record format of
the data set, and whether or not the file
(if REGIONAL) has the KEYED attribute.
Figure 66 in Appendix I specifies the size
requirements.

IO£~::.=._Q!BEC!_Y§~g~1 Manipulation of
IOCBs for DIRECT usage is required for botn
BDAM and BISAM. One IOCB is allocated to a
DIRECT file when it is opened; subsequent
selection of an IOCB is performed by the
modules IHEITE, IHEITF, IHEITH, and IHEITJ.
Unlike SEQUENrIAL access, the order of I/O
operation is not normally considered.
(Ho~ever, see the BISAM interface modules
IHEITE and IHEITH.)

The chain of IOCBs for a given file is
anchored in the TLAB field in the FCB; the
chain may be extended beyond the original
single IOCB if the EVENT option or
multitasking is used. An extension occurs
if, while there exists an I/O operation
that has not been completed, another I/O
operation is initiated.

IOCBs for DIRECT access are obtained in
subpool zero, in order to cope with
multitask manipulation of the chain. The
chain of one or more IOCBs is released when
the file is closed.

Chapter 3: Input/Output 33

Exclusive Block

When a DIRECT UPDATE file is opened in a
multitasking environment, the interface
module IHEITH (BISAM) or IHEITJ (BDAM) is
loaded instead of IHEITE or IHEITF. IHEITH
and IHEITJ contain code to implement the
EXCLUSIVE attribute. When a record is
locked, an exclusive block is created in
subpool 1 of the current task: the block is
freed when the record is unlocked. The
exclusive block contains the qname (address
of the FCB for the file) and rname <region
number for REGIONAL(l), region number and
key for REGIONAL(2) and (3), and key for
INDEXED) required by the ENQ and DEQ macro
instructions that are issued to lock and
unlock the record. The format of the
exclusive block is given in Appendix I.

ACCESS METHOD INTERFACES

This section describes how the PL/I Library
relates to the various data management
access methods for record-oriented IIO, and
gives details of the support required from
the library for various PL/I features.
This information supplements, but does not
replace, that provided in the module
summaries and in the module listing
prefaces.

CONSECUTIVE Data Sets

The access methods employed for this
organization are QSAM and BSAM. The choice
between them is governed by the file
attributes BUFFERED and UNBUFFERED:

BUFFERED: QSAM (All record formats)
UNBUFFERED: BSAM (F,V,U) (Blocked

records are illegal)

QSAM (IHEITG): A BUFFERED file is
specified in order to take advantage of
automatic transmission, process-time
overlap, and blocking or deblocking of
records. All record formats may be
handled.

The locate mode of the GET and PUT
macros is employed with this access method
<except for paper tape devices) for the
following purposes:

1. To support the SET option in READ and
LOCATE statements, and to support the
REWRITE statement without the FROM
option. Module IHEITG allocates the
data management buffers for the
records, and sets the pointer

34

appropriately. The first byte of a
buffer is always on a doubleword
boundary: for blocked records, the
user must ensure that his alignment
requirements are met by adjusting the
lengths of the variables being
transmitted.

2. To remove or add V-format control
bytes if the INTO or FROM option is
employed.

Paper tape input requires the use of the
move mode to effect translation of the
characters transmitted. The open process
establishes a ~ork area, placing its
address in TREC; the GET macro instruction
specifies this area as the receiving area.
If an illegal character is read from the
paper tape, the access method (QSAM) passes
control to the SYNAD routine in IHEITG;
control returns from the SYNAD routine to
QSAM. When the GET macro instruction has
been satisfied, the data is moved into the
record variable or a pointer is set, and
the TRANSMIT condition is raised.

Closing a data set being created by QSAM
may cause output records to be written by
the close executor. If an error occurs
during the closing process, the operating
system uses the ABEND macro to end the
task.

QSA!1_§Qanned Records (IHEITK,IHEITL):
Buffered vs- or VBS-format records are
processed using QSAM Locate Mode for input
(module IHEITK) and QSAM Data Mode for
output (module IHEITL).

The methods employed are similar to
those described above for module IHEITG
although the following should be noted:

1. Update Mode (REWRITE) is not supported
by the library, since it is not
possible to update complete records
(0/S restriction>.

2. The use of LOCATE or READ SET
statements will cause a work area to
be established equal to the maximum
record size. This area is only
released if there is a subsequent READ
<~ithout SET) or WRITE statement.

BSAM (IHEITB): An UNBUFFERED file is
specified in order to avoid the space and
time overheads of intermediate buffers when
transmitting records. Overlap of
transmission and processing time is only
available if the EVENT option is employed.

BSAM requires the use of DECBs to
communicate information regarding each I/O
operation requested of it: see 'I/O Control
Block (IOCB)' and Appendix I (IOCB) for
details of the DECB. IHEITB selects an

IOCB (which contains a DECB area> from the
IOCB (buffer) pool for each input/output
operation. The IOCBs used for CONSECUTIVE
organization do not contain hidden buffers,
except when V-format records are employed.
Hidden buffers are used in this case so
that the V-format control bytes can be
eliminated from the record before the data
is moved into the record variable. If,
however, the data set consists of F-format
unblocked records, and the size of a record
variable is less than the fixed size of
data set records, a temporary buffer area
is dynamically obtained. The use of a
temporary buffer area for input prevents
the destruction of data following the INTO
area1 for output, it prevents triggering of
the fetch-protect interrupt.

INDEXED Data sets

The access methods employed for this
organization are QISAM and BISAM: they are
used thus:

QISAM: SEQUENTIAL creation and access
BISAM: DIRECT access

All usage of INDEXED data sets requires the
presence of buffers, even though the file
is UNBUFFERED or DIRECT. The buffer is
required in order to deal with a 10-byte
overflow record link-field. Only F- or
V-format records, blocked or unblocked, are
permitted.

QISAM CIHEITD/IHEITN): SEQUENTIAL creation
and access of INDEXED data sets is
performed using this access method.
Creation requires that keys be presented in
ascending collating sequence. The sequence
is checked by the library before the PUT
macro is executed, in order to synchronize
a given WRITE statement with the raising of
the duplicate KEY condition. This
arrangement is necessary because, since PUT
LOCATE is employed, QISAM would normally
raise the condition only on the subsequent
PUT operation.

For records with embedded keys, when a
WRITE statement with a KEYFROM string
shorter than the key length, or a LOCATE
statement, is executed, the KEYFROM string
is placed in an area addressed by TPKA in
the FCB. In the next operation on the file
after a LOCATE statement (including a CLOSE
statement>, the KEYFROM string is compared
with the key embedded in the data in the
buffer. If they are unequal, the KEY
condition is raised. On normal return from
the on-unit, control passes to the next
statement in the program (i.e., the one
following that which caused the KEY
condition to be raised). The process of

comparing keys and raising the KEY
condition is repeated in successive
statements that refer to the file until the
embedded key has been changed. (After a
LOCATE statement has been executed, no
further operations are possible on the file
until the record has been transmitted; for
records with embedded keys, this cannot
occur until the KEYFROM string matches the
embedded key.>

When a file is closed implicitly (i.e.,
on termination of a task), the KEYFROM
string overwrites the key part of the
record in the buffer, and the record is
written onto the data set. If the KEYFROM
string is not identical with the embedded
key, a message is printed out at the
console.

To support the REWRITE statement without
the FROM option, the key is saved on
execution of a READ statement with the SET
option. When the REWRITE statement is
executed, if the embedded key is the same
as the saved key, a PUTX macro instruction
is issued. If the key has changed, the
PUTX macro is not issued and the KEY
<specification) condition is raised.

To support the DELETE statement without
the KEY option, the first byte of the
logical record is set to X'FF' and a PUTX
macro instruction is issued to rewrite the
record.

If the file has the KEYED attribute, and
the mode is INPUT or UPDATE, the QISAM SETL
function is required in order to reposition
the indexes. The parameters for the SETL
macro are such that, for unblocked records,
the recorded key is transmitted as well as
the data record. For a READ statement, if
the KEY string is shorter than the key
length, the string is placed in an area
addressed by TPKA in the FCB. If the file
is not KEYED (indicating that the KEY
option will not be employed>, the QISAM
SErL routine is not loaded during the open
process.

Since buffers are employed, truncation
or padding of records is performed during
the move between the buff er and the record
variable. Padding bytes are undefined in
value.

Closing a data set being created or
updated by QISAM may cause output records
to be written. If an error occurs, output
entry to the SYNAD routine is prevented by
the close process having cleared the
DCBSYNAD field before issuing the CLOSE
macro. The operating system uses the ABEND
macro to terminate the task.

Chapter 3: Input/Output 35

BISAM in a Non-Multitasking Environment
(IHEITF.l'IHEITM): When the TASK option is
not employed, direct access of INDEXED
files. both exclusive and non-exclusive, is
performed by modules IHEITE/IHEITM. For an
exclusive file, IBEIOG treats the UNLOCK
statement as 'no operation' <although it
may implicitly cause the file to be
opened)1 the NOLOCK option is ignored by
IHEITE/IHEITM.

BISAM requires the use of DECBs to
communicate information regarding each I/O
operation requested of it1 see 'I/O control
Block (IOCB)' for details of the DECB and
its use in BISAM.

Since the EVENT option may be employed,
and, moreover, the KEYFROM or KEY
expression may yield a character-string
value in temporary storage, the key value
is moved into the buffer before BISAM is
invoked. Truncation or padding of the
character-string key to conform to the
KEYLEN specification is performed during
the move. A further reason for the move is
that BISAM may destroy the contents of the
key and record fields when adding new
records to a data set.

If the data set consists of unblocked
records, a READ statement need not precede
a REWRITE statement. If blocked records
are used, the sequence must be READ, then
REWRITE, since the READ macro instruction
has the KU parameter, and BISAM requires
this type of READ to be rewritten. The
WRITE K macro instruction used to rewrite
the updated block must address the same
DECB(IOCB) as that used for the READ KU
macro instruction. This is achieved by not
freeing the IOCB used for the READ
operation. On the next operation on the
file, a check is made for such an IOCB: if
one exists, and the operation is not a
REWRITE specifying the same key, the ERROR
condition is raised.

A DELETE statement is implemented by
first issuing a READ KU macro instruction,
then setting the first data byte to X'FF',
and finally rewriting the record with a
WRITE K macro instruction.

BISAM in a Multitasking Environment
(IHEITH/IHEITO): To ensure that the
initialization and chaining of event
variables, IOCBs, and exclusive blocks
cannot be interrupted, the interface module
IHEINT raises the dispatching priority of
the current task to its limit before
calling IHEITH/IHEITO. IHEITH/IHEITO
restore the priority to its original value
before executing an I/O macro instruction.
The formats of the event variable and the
exclusive block are described in Appendix
I, which also includes an example of the
chaining of these blocks.

36

For non-exclusive files, modules
IHEITH/IHEITO perform the same functions as
IHEITE/IHEITM, and in addition chain any
event variables that are made active. Each
event variable is placed in. a chain
anchored in the pseudo-register IHEQEVT in
the PRV for the current task. This chain
enables I/O event variables for which a
WAIT statement has not been executed to be
set complete, inactive, and abnormal when
the task is terminated.

The implementation for exclusive files
includes the following additional features:

1. Files.with unblocked records: When any
operation ref erring to a record
(except WRITE and UNLOCK) is
initiated, the chain of exclusive
blocks anchored in the TXLV field of
the FCB is searched for an existing
exclusive block established in the
current task for the record. If one
exists, the lock statement count
(XSTC) in the exclusive block is
incremented by one. If there is no
exclusive block, one is created in
subpool 1 and inserted in the task
chain (anchored in pseudo-register
IBEQXLV in the current task) and the
file chain (anchored in the TXLV field
of the FCB of the current file). The
lock statement count is set to one,
and the lock bit (XLOK) to one (unless
the operation is READ with NOLOCK),
and the resource is enqueued <i.e.
the record is locked). After control
of the resource has been obtained. it
is dequeued if XLOK = O. The qname
and rname given in the ENQ and DEQ
macro instructions are:

qname <two words):
Byte 0: Zero
Bytes 1-3: A(FCB)
Bytes 4-7: Zero

rname (one word):
Byte 0: X'03'
Bytes 1-3: A(Record key)

After the CHECK macro instruction for
the I/O operation has been executed
(i.e., on execution of the WAIT
statement if the EVENT option is
used), IHEITH/IHEITO raise the
priority of the current task to its
limit, decrease the lock statement
count by one, and then:

1. If the record is no longer locked
(XLOK=O> and the lock statement
count is zero, dechain and free
the exclusive block.

2. If the record is still locked
(XLOK=l), unlock it <unless the
statement is READ without the

NOLOCK option), and set XLOK to
zero. If the lock statement
count is zero, they then dechain
and free the exclusive block.

IHEITH/IHEITO then restore the
dispatching priority to its original
value. When processing V-forrnat
records using IHEITO, the READ, wRITE,
REWRITE, and DELETE statements are
restricted as in 2 below.

2. Files with blocked records: To prevent
other tasks interfering with the READ,
REWRITE sequence, each READ, WRITE,
REWRITE, and DELETE statement is
enqueued on the same resource (i.e.,
there is only one exclusive block for
each file in each task, and it is not
freed until the file is closed).
Control of the resource is retained by
a given task until the WRITE, REWRITE,
or DELETE operation is completed; or,
if the resource was enqueued by a READ
operation, until a REWRITE or UNLOCK
statement is executed. When a READ
statement with the NOLOCK option is
executed, the resource is dequeued
immediately after the task gains
control of it.

The qname and rname given in the ENQ
and DEQ macro instructions are:

qname <two words):
Byte 0: Zero
Bytes 1-3: A(FCB)
Bytes 4-7: Zero

rnarne Cone word):
Byte 0: X'03'
Bytes 1-3: A(FCB)

Apart from these differences, the
implementation is as for files with
unblocked records.

REGIONAL Data Sets

The access methods employed for these
organizations are BSAM and BDAM, as
follows:

BSAM: creation and SEQUENTIAL access
BDAM: DIRECT access

Reys supplied by the source code are
termed 'source keys•. These have two
formats, one of which is interpreted in two
ways:

source key
Qrqanization format

REGIONAL (1):
Relative record addressing,
without recorded keys A

REGIONAL (2):
Relative record addressing,
with recorded keys B

REGIONAL (3):
Relative track addressing,
with recorded keys B

r-------------------------------1
I M I
L-------------------------------J <---------------L--------------->
L = Length of key (1 through 255

bytes)
M = Key value

Only the characters blank and 0 td 9 may
be used in M, which, when converted to
binary, is the relative record position, as
required for the BDAM BLKREF parameter.
The last eight characters are scanned for
an unsigned decimal integer representation;
if less than eight characters exist, only
the available characters are scanned, from
left to right.

When a format-A source key is required
for the KEYTO option, the relative record
position of the current record is converted
from a binary count field into character
representation and is assigned to the last
eight characters of the KEYTO character
string variable. If the variable has fewer
than eight characters, the converted value
is assigned, right to left, to the KEYTO
variable. Format A keys are not appended
to data set records as recorded keys.

r---------------T---------------1
I c I M I
L---------------i---------------J <---------------L--------------->
L = Length of key Cl through 255

bytes)
M = Last eight characters in the

source key
c = The remaining characters in the

source key other than the M
characters

M consists of up to 8 characters, which
can be blanks or O to 9. When converted to
binary, it represents either the relative
record position (REGIONAL (2)), or the
relative track position (REGIONAL (3)).

Chapter 3: Input/Output 37

If L s 8, c does not exist. The C
characters can be any of the 256 characters
available; they are not scanned.

The f ormat-B source key is appended to
output records when they are added to the
data set; the number of characters in the
appended <recorded) key is determined by
the KEYLEN specified for the data set. If
KEYLEN is less than the length of the
source key, the latter is truncated when
appended to its record; if greater, the
source key is padded with blanks.
Similarly; when retrieving keyed records,
the source key is altered to conform to
KEYLEN. This permits 1 though L characters
to be used as the recorded key. The M
characters might thus be used only for
computation of the relative record or track
position.

BSAM (IHEOPZ, IHEITC, IHEITB): Creation
and sequential access of REGIONAL data sets
employs this access method.

SEQUENTIAL creation is performed by the
module IHEITC, which adds records to the
data set in physically sequential record
and track positions. This module also
inserts dummy records. as required, by the
user incrementing the source key position
information by a value greater than one.

When a sequentially created REGIONAL
data set is closed, the current space
allocation <which may be either the initial
or a secondary allocation) is completed:

1. by writing durcuny records CF-format
only), or

2. by setting the capacity records of the
remaining tracks to indicate empty
tracks.

An FCB history flag (TMET) is turned on
when, after writing a record, this record
is seen to be the last one of an extent.
If this flag is off, the close process will
continue the initialization until an
end-of-extent condition is met.

When LOCATE statements are used to
create a REGIONAL data set, an IOCB is
selected from the pool in the normal
manner. The KEYFROM string is evaluated,
and all necessary formatting of the data
set is done, before the pointer is set and
control is returned to compiled code. To
ensure that the record is always aligned on
a doubleword boundary, the open process
rounds up the keylength to a doubleword and
allows space in the IOCB for the keylength
and the block size. Module IHEITC places
the key right-aligned in the key area, thus
ensuring that the key and data are in
contiguous areas, and that the data is
aligned on a doubleword boundary.

38

The record is not actually transmitted
until the next statement on the file <e.g.,
CLOSE, WRITE, LOCATE) is executed. If it
is found on transmission that there is no
room for the record in the region
(REGIONAL(3) v and u format records only),
the capacity record is written and the KEY
sequence error condition is raised. On
normal return from the on-unit, control
passes to the next statement. If this
occurs when a file is closed implicitly <on
termination of a task) or explicitly, a
warning message is printed and the file is
closed (after the initialization of the
current extent has been completed). Note
that it is therefore possible that the
original record associated with the LOCATE
statement may not have been written.

DIRECT creation requires the
initialization of the data set during the
open process; this is performed by the
module IBEOPZ. Subsequently, records may
be added to the data set in a DIRECT
fashion using module IHEITF or IHEITJ.
Initialization of a data set for DIRECT
creation causes:

1. the initial space allocation
(secondary allocation is ignored) to
be written with dummy records
(F-format records, for all REGIONAL
types), or

2. the capacity record of each track of
the initial space allocation to be set
to indicate empty tracks (U-format or
V-format records 1 REGION~L (3), only).

If recorded keys are required, dummy keys
(initial byte X'FF', remaining bytes
undefined) are also written for F-format
records only. If during the initialization
for DIRECT creation an error arises, the
UNDEFINEDFILE condition is raised, the type
of error being indicated by the ONCODE
value.

As SEQUENTI~L access of a REGIONAL data
set <module IBEITB) is performed with BSAM,
it is not possible to support the KEY
option on the READ statement. The KEYTO
option is supported as follows:

REGIONAL (1):

A counter <the TREL field in the FCB)
beginning at zero, is incremented as
each record, including dummy or deleted
records, is read; this is converted to
character string representation and
assigned to the KEYro variable.

REGIONAL (2) and (3):
The recorded key is read in with the
record, and assigned, without
conversion, to the KEYTO variable.
Transmission of the recorded key only
occurs if the file has the KEYED
attribute; otherwise the KEYLEN DCB
field is forced to zero to prevent
input of keys (since, for F or U
records, there are no hidden buffers>~

For both SEQUENTIAL creation and access,
BSAM requires the use of DECBs to
communicate information regarding each I/O
operation requested of it; see 'The I/O
control Block (IOCB)' for details of the
DECB and its use for BSAM. When REGIONAL
data sets with the UNBUFFERED attribute are
accessed (IHEITB) or created CIHEITC),
hidden buffers are present in all cases
except for REGIONAL(1), since the key and
data must be within a contiguous area in a
buffer.

When reading REGIONAL data sets
sequentially, BSAM retrieves all records
within the data set, whether dummy
(deleted> or actual records. For REGIONAL
(2) and (3) data sets, the library prevents
dummy (deleted) records being passed to the
PL/I ~rogram. This is achieved by
inspecting the initial byte of the recorded
key as transmitted to the hidden buffer.
(Hidden buffers are always required for
KEYED SEQUENTIAL access of REGIONAL (2) and
<3> data sets, because BSAM requires that
the recorded key and the record be
transmitted into contiguous storage areas.>

If the initial byte is the dummy, or
deleted, code CX'FF'), the IOCB chain is
reorganized to move each input request down
one entry in the chain; this resynchronizes
the READ statements with the actual
records. The reorganization occurs each
time such a flagged key is detected. This
technique is not available for REGIONAL
(1), since for this type of organization:

1. there is no way of knowing whether the
records are actual or dummy, since
there are no restrictions regarding
the initial byte of the data record,
and

2. there are no recorded keys.

When a READ statement with the SET
option is executed for REGIONAL files, the
data is always aligned on a doubleword
boundary in the IOCB buffer.

BDAM(IHEITF and IHEITJ): DIRECT access to
a REGIONAL data set employs this access
method, the usage depending upon the
REGIONAL type:

REGIONAL (1):
Relative record (block> addressing,
no key argument

REGIONAL (2):
Relative record (block> addressing,
with key search argument

REGIONAL (3):
Relative track addressing,
with key search argument

In the instance of REGIONAL <2> and (3),
the "extended search" feature is always
employed. A user may control the effects
of extended search by using the DCB
subparameter LIMCT; a value may be
specified to limit the number of records or
tracks which are searched for a given keyed
record, or for space to add one. Unless so
limited, searching for records extends
throughout the complete data set.

The BDAM access method requires the use
of DECBs to communicate information
regarding each I/O operation requested of
it; see 'I/O Control Block (IOCB)' for
details of the DECB and its usage for BDAM.
If v format records are used, any IOCB
created will contain a hidden buffer.

The BDAM CHECK macro is issued to check
that the operation is complete. If an
error is found, the BDAM modules enter the
IHEITF SYNAD routine, where the error is
interrogated.

If the TASK option is not used, direct
access of REGIONAL files, both exclusive
and non-exclusive , is performed by module
IHEITF. For an exclusive file, IHEION
treats the UNLOCK statement as 'no
operation• (although it may implicitly
cause the file to be opened>; the NOLOCK
option is ignored by IHEITF.

If the TASK option is employed, module
IHEITJ is loaded instead of IHEITF. The
difference between these modules is the
same as that between IHEITE and IHEITH for
unblocked records. <see 'BISAM in a
Multitasking Environment'.>

TELEPROCESSING Files

The implementation of the teleprocessing
feature employs the queued teleprocessing
access method (QTAM), which handles the
transmission of messages between the
operating system and remote terminals.

Chapter 3: Input/Output 39

Messages accessed by QTAM are handled by
two kinds of program:

1. the message control program, and

2. the message processing program.

PL/I supports the message processing part
of QTAM through process queue facilities,
full descriptions of which can be found in
IBM System/360 Operating System: QTAM
Message Processing Program Services and ~~~
System/360 Operating System: QTAM Mess!!Q_~
Control Program.

QTAM (IHEITP): To the PL/I user, the
process queues appear as TRANSIENT
SEQUENTIAL RECORD FILES, and are processed
by means of the PL/I READ, WRITE and LOCATE
statements.

Additional language required for this
feature is:

TRANSIENT file attribute on DECLARE or
OPEN statements.

ON PENDING (filename) on-unit.

Note: the TRANSIENT attribute conflicts
with the following attributes:-

STREAM
PRINT
UPDATE
DIRECT
BACKWARDS
EXCLUSIVE
UNBUFFERED

New environment options required are:

G(max. length) : record format is a whole
message, or

R(max. length) : record format is a
segment from a message

(max. length being the maximum size of
message segment or record to be read. This
value will be set in the halfword DBLK of
the DCLCB, with information on the format
(G or R) and an indicator showing the file
to be of teleprocessing organisation (see
Appendix I)).

Bit O of flag B (the second byte) of the
open control block (OCB) will be set if the
TRANSIENT attribute appears in the OPEN
statement, and bit 4 of the DCLB byte of
the DCLCB will be set if it appears in the
DECLARE statement.

The options KEYTO (character
string-variable) and KEYFROM <expression)
are also acceptable under a teleprocessing
environment, used with record I/O READ,
WRITE and LOCATE statements. The compiler
deals with these statements as discussed

40

under 'Record Oriented I/O' in this
chapter.

OPE~: the open process will be the same as
for other record-oriented files discussed
earlier in this chapter with the following
additional functions:-

1. Test for conflict between TRANSIENT
and other attributes

2. Create an FCB as previously but with a
DCB for QTAM. The max. length value,
as specified in the ENVIRONMENT
attribute, will be placej in the field
DCBSOWA of the DCB, and the number of
buffers specified in the ENVIRONMENT
attribute will be set in the DCBBUFRQ
field. Cif no buffers are specified,
the default number is two.)

3. Take the DCB exit as for other files
and test the following fields:

a. DCBBUFRQ - if this is still not
set, either by the ENV attribute
or by DD card, then apply the
default of ti.>lo

b. DCBSOWA - if this field is empty,
because the max. length has not
been set in the ENV attribute,
raise the undefined file condition

c. DCBRECFM - if the record format
has not been specified, raise the
undefined file condition.

4. Assuming the tests carried out above
do not raise error conditions, the
OPEN exit routine additionally issues
a GETMAIN macro instruction for an
area large enough to hold the longest
terminal identification plus the max.
length of message plus four bytes for
control information for QTAM
(8 + DCBSOWA + 4). The address of
this area will be held in the DCBTRMAD
field of the DCB. The first eight
bytes of the GETMAIN area will be used
for holding the terminal name, and the
remainder as an intermediate <dummy)
buffer for messages. The address of
the 'message buffer' will be kept in
the FCB (in the TSwA field).

5. Load the teleprocessing transmitter
module IHEITP and set the first word
in the FCB for valid statements as is
the case for other files. The bits·
set and the statements they refer to
are:

for input: bit 1 - READ SET KEYTO
bit 4 - READ INTO KEYTO

for output: bit 14 - WRITE FROM KEYFROM
bit 23 - LOCATE SET KEYFROM

CLOSE: The close process again will be
similar to previously described functions.
but additionally will check to see if the
last operation on the file was LOCATE. If
so, the close module will invoke the
transmitter to write out the last record.
This is in line with the general rules of

·the PUT MOVE mode which is used by this
implementation.

The close routine, after the last record
is written out, will delete module IHEITP
which was loaded at OPEN time.

I/O. Statements for .. _Teleprocessing

All I/O statements on TRANSIENT files
invoke module IHEITP through modules IHEION
<non-multitasking) and IHEINT
<multitasking). The latter two modules
will carry out tests on the validity of
such I/O statements as described under
"General Logic and Flow" in this section.

Input: The transmitter will issue a QTAM
'GET' macro instruction to read the next
sequential instruction on the file, and
record and terminal identification will be
placed in the 'dummy' buffer. The length
of the data read will be found in the first
two bytes of the four byte control
information area. For SET options, the
pointer will be set to point to the data in
the dWllDy buffer. The data will be aligned
on a doubleword boundary.

The terminal identification will be
moved into the KEYTO string. If the length
of the identification field is less than
the KEYTO length, it will be padded with
blanks, unless the KEYTO string is varying,
in which case only the current length will
be set. If the length of the
identification field is greater, it will be
truncated.

Output: The sequence of operations for
output is very similar to those for input,
using a QTAM 'PUT' macro instruction
instead of 'GET'. The data and terminal
identification are placed in the dummy
buffer in the same way, with the control
information set; additionally, the third
byte of the control information will be set

to X'02' to indicate the end of the
message.

Only the first eight characters of the
KEYFROM string will be noved into the
buffer. If there are less than eight
characters in the string, the string will
be padded with blanks to fill all eight
positions. The RECORD condition will be
raised (when necessary) in accordance with
the rules for V-format records.

Error Handling

With the addition of the ON-conditions
listed below, the error handling routine
for teleprocessing files follows the same
course as for other record-oriented files
(for a discussion on ON-conditions, see
chapter 6: "Error and Interrupt Handling").

The ON-conditions associated with
teleprocessing are:

1. ON TRANSMIT (filename> - could be
raised for input only

2. ON RECORD (filename> - could be raised
as for other files. The records in a
teleprocessing file would be treated
as v-format records with the
corresponding rules applying.

3. ON ERROR - could be raised as for
other files with one additional
condition. If the KEYFROM string is
invalid or missing. then an error
condition with an ONCODE of 1020 will
be raised.

4. ON PENDING - is very similar to the ON
ENDFILE condition, with QTAM passing
control to the user through an EODAD
exit routine. If EODAD is not
supplied, then QTAM •waits' until more
data is available. The normal return
from the on-unit which implies this
•wait' will be implemented as follows:

a. Take EODAD exit

b. Raise PENDING condition <when
normal return, then)

c. Zero EODAD field and re-execute
GET macro

d. Reset EODAD to the correct exit
routine address.

Chapter 3: Input/Output 41

CHAPTER 4: PL/I OBJECT PROGRAM MANAGEMENT

INTRODUCTION

The PL/I Library provides facilities for
the dynamic management of PL/I programs.
This involves:

1. Program management: Housekeeping at
the beginning and end of a program or
at entry to and exit from a block.

2. Storage management: Allocation and
f ~eeing of storage for automatic and
controlled variables. and for list
processing.

This section describes the requirements
for these facilities and their
implementation by the library. With the
exceptions of the compiler optimization
routine and storage management for list
processing. all the functions described are
performed by module IHESAP, whose entry
points are listed in Figure 16: full
details are given in Chapter 9. Object
program management in a multitasking
environment is discussed in Chapter 5.

Entry point

I HES ADA
IHESADB
IHESADD
IHESADE
IHESADF
IHESAFA
IHESAFB
IHESAFC
IHESAFD
IHESAFF
IHESAFQ
IHESAPA
IHESAPB
IHESAPC
IHESAPD
I HE SARA
I HES ARC
IHESATA

Get DSA
Get VOA

Function

Get controlled variable
Get LWS
Get library VOA
END
RETURN
GO TO
Free VOA/Free LWS
Free controlled variable
Abnormal program termination

Program initialization

Environment modification
Setting of return code
STAE exit for O/S abnormal
termination

I Figure 16. IHESAP Entry Points

Program Initialization

Certain functions must be carried out on
entry to a PL/I program before the PL/I
main procedure is given control. One of
the library program-initialization
subro~tines is always given control by the

42

supervisor on entry to the program. Its
functions are:

1. Allocation of storage for the PRV.
(See •communications Conventions' in
Chapter 2.)

2. Initial allocation of LWS.

3. Passing of the address of the library
error-handling subroutine (IHEERR>.
which assumes control when an
interrupt occurs, to the supervisor.

Block Housekeeping: Prologues and Epilogues

Prologues and epilogues are the routines
executed on entry to and exit from a PL/I
procedure or begin block. The library
subroutines contain those sections that are
common to all prologues and epilogues. The
functions of the library prologue
subroutine are:

1. To preserve the environment of the
invoking block.

2. To obtain and initialize automatic
storage for the block.

3. To provide chaining mechanisms to
enable the progress of the program to
be traced. A detailed description of
the chaining mechanisms employed is
provided below.

The main functions of the epilogue
subroutine are:

1. To release storage for the block.

2. To recover the environment of the
invoking block before returning
control to it.

Storage Management

In IBM System/360 Operating System. storage
is obtained or freed by using the GETMAIN
and FREEMAIN macros. The library assumes
responsibility for obtaining and freeing
storage in this way in order to:

1. Provide an interface between compiled
code and the control program.

2. Reduce the overhead involved in making
a supervisor call every time storage
is obtained and freed.

3. Set up chaining mechanisms for dynamic
storage.

There are three types of dynamic storage
in PL/I, controlled, automatic, and based.
Based storage is discussed in 'List
Processing: Storage Management'.

Operating-system Facilities

The following facilities appropriate to
this chapter are provided by IBM System/360
Operating system. <see IBM System/360
Operating system: Supervisor and Data
Management Macro Instructions.)

SPIE macro instruction: Specifies the
address of a routine to be entered when
specified program interrupts occur.

STAE macro instruction: specifies the
address of a routine to be entered when a
task terminates abnormally.

ABEND macro instruction: causes a job step
or task to be terminated abnormally.

Write To Operator (WTO) macro instruction:
can be used to write a message on the
operator's console.

R-type GETMAIN: Requests that the
sup~rvisor allocate a contiguous block of
mai* storage to the caller. A subpool
number should be specified. (See below.)

R-tvpe FREEMAIN: Releases a main storage
area. The length, subpool number, and
address of the beginning of the area must
be specified.

subpools: Subpool numbers are of
significance only in an operating syst~m
with MVT.

Subpool zero
The storage in subpool zero is allocated
on a job-step basis, and is never
automatically released until the end of
the job step.

Subpool non-zero
The storage in a subpool with a non-zero
number is allocated on a task basis, and
is automatically released on the
termination of the task that owned the
subpool.

IBM System/360 Operating System:
Supervisor and Data Management Services
contain$ a full discussion of
main-storage management.

AUTOMATIC STORAGE: STORAGE MANAGEMENT

Two types of automatic storage area are
needed to implement the functions described
above. These are:

1. The storaqe area associated with the
execution-of a PL/I block, known as a
dynamic storage area (DSA).

2. The storage area mainly used for
automatic variables whose extents are
unknown at compile time, known as a
variable data area (VOA).

Each type of storage area is identified by
flags set in the first byte. These flags
also indicate the existence of certain
optional entr~es in the storage area. The
flag patterns are shown in Appendix J.

This area, always associated with the
execution of a PL/I block, is used to
record the progress and environment of a
program. It also contains space for
AUfOMAric variables declared in the block
and for various optional entries. The
minimum size of a DSA is 100 bytes. The
format is described in Appendix J.

The address of the DSA associated with a
particular block is held in a
pseudo-register. Hence there is n
pseudo-register for ~~ch block; the group
of these pseudo-registers is known as the
di~~· -The address contained in a
display pseudo-register can be used to
identify the DSA associated with a
non-recursive block when a GO TO statement
specifying a label in that block is
executed.

When a block is entered recursively, a
new DSA is created for the invoked block.
The address of the OS~ associated with the
previous invocation of that block is store.1
in the display field of the new DSA. This
address is already stored in the
appropriate pseudo-register, where it is
now replaced by the address of the new DSA.
When this latest invocation is finished,
the new DSA is freed and the address of the
previous DSA is restored to the appropriate
pseudo-register.

When there is a GO TO statement to a
label in a recursive block or to a label
vaiiabl~, a unique means of identifying the
block oontaining the label is needed. This
is accomplished by means of an invocation
count, which is stored in the
invocation-count field in the DSA during

Chapter 4: PL/I Object Program Management 43

the prologue. The current invocation count
is contained in a pseudo-register and is
increased by one each time a DSA is
obtained.

Variable Data Area (VDA)

A variable data area is a special type of
automatic storage area used for variables
whose extents are not known at compile
time. This storage area is associated with
the storage obtained for a particular
block. The only housekeeping necessary is
that which provides a means of
identification of the type of storage area
and a method of associating it with a
particular block for epilogue purposes.

VDAs are used for three other purposes:

1. Temporary storage for library modules.
These areas are only distinguishable
from an ordinary VOA by the flag byte.
This is to allow them to be freed on a
GO TO, as described in the example in
'OSA Chain' under 'Block
Housekeeping'.

2. The PRV and primary LWS are contained
in a VOA known as the PRV VOA which is
chained back to the external save
area.

3. Secondary LWS is contained in a
special library workspace VOA.

The formats of the VOA, PRV VOA, and LwS
VDA are shown in Appendix J.

Library Workspace (LWS)

The housekeeping associated with library
workspace can be divided into two parts:

1. The identification of the area needed
as library workspace, and chaining
this to a previous allocation of
automatic storage and to any previous
library workspace.

2. The updating of the pseudo-registers
pointing at the various areas in
library workspace.

The first allocation of LWS is contained
in the PRV VDA1 subsequent allocations are
contained in the LWS VOA. The
pseudo-register IHEQLSA always contains the
address of the current LWS. Save areas
within LWS are indicated thus:

1. The address of each save area is held
in a pseudo-register.

44

2. The beginning of each save area is
indicated by X'60' in the first byte.
<A DSA can often be readily
distinguished from a save area in LWS
by the presence of X'S' to X'F' in its
first half byte. Appendix J includes
the format of the first byte of the
DSA.)

~!Qcation and Freeing of Automatic Storage

This section describes the methods of
controlling the allocation and freeing of
automatic storage for VDAs, DSAs and
secondary LWS.

To minimize the number of supervisor
calls necessary to obtain automatic
storage, a fairly large block of storage is
obtained every time a call is made. Areas
are allocated by the library from this
block as required until a request is made
that is too big to be satisfied from the
remaining storage in the block. Another
block is then obtained by a call to the
supervisor. so that a check can be made as
to whether the amount of storage remaining
in a block is sufficient to meet an
allocation, a record of the amount is
stored in the block. When a storage area
is freed, its length is added to the
available length in the block. When the
available length equals the total length of
the block, the block is returned to the
supervisor.

Since storaqe areas are released in the
reverse order to their allocation, a
chain-back mechanism, with a pointer to the
last member of the chain, is provided.

Initially, storage is allocate~ for the
PRV VOA from a 4k or a 6k block. When
further requests are made for storage, they
are satisfied by allocations from the
remaining storage of this block. When a
request cannot be satisfied, a 2k block <or
a block containing a multiple of 2k bytes)
is obtained by means of a GETMAIN macro.
This block is chained to the existing block
by the free-core chain. (See Figure 17.)

In any block that contains unallocated
storage (that is, contains free core>, the
first four words of the unallocated storage
are used for control purposes:

lst~g: Length <in bytes> of the
unallocated storage for that
block <excluding the four
control words)

2nd~~: Block length

3rd~g: A(Free core length in previous
block)

r-------------~-------1 r----------------------1 r----------------------1
I 12!Y I 2k_~ 2k block
I I
I I Used core Used core
I I
~----------------------i<---,
I I I
~----------------------i I
I I I
~---------------------i I
I I I
~----------------------i I I IHEQSFC ~---11

~----------------------i L+->~----------------------i<----1
I I L(Free core> I I
I ~----------------------i I I I Block length I I
I ~----------------------i I L--i Chain-back pointer I I

~----------------------i I
I Chain-forward pointer~---, I
~----------------------i L-->~----------------------~

I I I L (Free core) I
I I ~----------------------i

Free core I I I Block length I
I I ~---~------------------i
I L-i Chain-back pointer I
I ~------------------~---i
t I Zero I
I ~----------------------~
I I I
I I Free core I
I I I
I I I
I I I ----------------------J L----------------------J

Figure 17. Structure of the Free-Core Chain for Automatic Variables

4th word: A(Free core length of following
block)

The first and last blc~ks require a
slightly different usage:

First block: Uses the free-core
pseudo-register IHEQSFC in
the chaining forward and
back:

1. IHEQSFC contains
A<Free-core length of
first block) •

2. 3rd word of block
contains
(A(IBEQSFC) - 12), which
is a dummy free-core
length in the PRV.

Last block: 4th word contains 0

When a request for storage is received,
a search of the free-core lengths, starting
from the first, is made. If a free-core
length equal to or greater than the length
requested is found, the request is

satisfied from that block. The free-core
length and pointers are adjusted, as are
the appropriate pointers in the blocks on
either side.

When storage is freed, the pointers are
adjusted, and the free-core field in the
corresponding block is updated. If a 2k
block becomes available, it is freed by
issuing a FREEMAIN macro, and the free-core
chain pointers are adjusted accordingly.

CONTROLLED STORAGE: STORAGE MANAGEMENT

controlled storage is used for controlled
variables only: it is requested by the
ALLOCATE statement and freed by the FREE
statement.

Allocation of a particular controlled
variable may occur a number of times.
Since the latest allocation is always the
one to be used it is convenient to have a
pseudo-register pointing at it: this
pseudo-register is sometimes referred to as

Chapter 4: PL/I Object Program Management 45

ALLOCATION 2 ALLOCATION 1

r--------------------, r---------T----------, r---------T----------1
I PR ·-, I TIC I PR offset! I TIC I PR offsetl
~-------------------_.. I ~---------~----------~ ·---------~----------~ I I I I Chain-back address •-, I o I
I I I ~--------------------~ I ·--------------------~ I I I I Length I I I Length I
I I L-->~-------------------=-i L-->•--------------------~
I I I I I I
I I I I 1 I
I I I I I I
L-------------------..J L--------------------J L--------------------J
Figure 18. Storage Allocation for a Controlled Variable

an 'anchor word'. Each allocation is
chained back to the previous allocation so
that the pseudo-register can be updated
when the current allocation is freed
(Figure 18). The length of the data is
recorded in the fullword field·following
the chain-back address. The length of the
data is 12 bytes less than the length of
the allocation. The Task Invocation count
is held in the TIC field.

When there is no allocation, the
contents of the pseudo-register are zero.
Each allocation points to the previous
allocation, the pointer being zero in the
first allocation, which is at the bottom of
the stack. Thus the various allocations of
a particular controlled variable become
part of a push-down (ALLOCATE) pop-up
(FREE) list.

When a request is made to storage
management for a new allocation, it is
serviced by issuing a GETMAIN macro.
Twelve bytes are added to the length
requested, for control purposes, and this
new length is rounded up to a multiple of
eight bytes. The length field contains the
actual length requested. The
pseudo-register is updated and points to
word £our of the area. When a request is
made to storage management to free an
allocation, it is serviced by updating the
pseudo-register and issuing a FREEMAIN
macro.

LIST PROCESSING: STORAGE MANAGEMENT

This section describes the functions of
module IHELSP, which controls the
allocation and freeing of storage for the
PL/I list-processing facility. The
functions involved are:

1. Allocation and freeing of system
storage for based variables.

46

2. Allocation and freeing of storage for
based variables in programmer-defined
areas (area variables).

3. Assignments between area variables.

System storage - Based variables

Storage for based variables is allocated
and freed in a similar manner to controlled
storage, but it is not stacked since each
generation is associated with a particular
pointer value: reference may be made to any
current generation of based storage by
associating the appropriate pointer value
with the name of the based variable. A
request for a new generation of based
storage is serviced by issuing a GETMAIN
macro, and storage is freed by the FREEMAIN
macro. Based storage is allocated only in
multiples of eight bytes: the sum of the
length of the variable and its offset from
a doubleword boundary is rounded up to a
multiple of eight bytes. All based storage
allocated in a task is freed at the end of
the task.

The AREA Attribute

The AREA attribute enables a programmer to
define a block· of storage (an area
variable> in which he can collect and make
reference to based data. Space within the
area variable is requested and released by
ALLOCATE and FREE statements that include
an IN(area-variable> clause. Reference can
be made to a based variable contained by an
area variable just as if the based variable
were in system storage. The contents of
one area variable can be assigned to
another area variable, and an area variable
can be handled as a single data item in
input/output operations.

0

r------- 4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

r-----a~

r---12•

... r
t

L-1--,__,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I I
I I
I I
L---r-

1
L_ ---

L ______ _

Fiqure 19.

0 7 8

F lo9s I lenqth of AREA variable

Offset of End of Extent

Off set of lor9est Free Element

Zero if Free List

Allocated

lenqth of Free Element

Offset of next smaller Free Element

Allocated

lenqth of Free Element

Offset of next smaller Free Element

Allocated

Not Allocated

Format of Area Variable

31

-----i
Free

Element

_J

----1
Free

Element

___ _J

Extent

-------~--------

47

The Area Variable

The format of the area variable is shown in
Figure 19. The start of the area is
aligned on a doubleword boundary. The
first four fullwords are used for control
information, the remainder of the area
being the storage requested by the
programmer in declaring the area variable.
The portion of the area that has been
allocated to based variables is termed the
extent. When storage is allocated to an
area variable, its length is set in the
last three bytes of the first word, and the
second word (offset of end of extent) is
set to zero.

Area Storage for Based Variables

Storage for based variables within an area
variable is allocated only in multiples of
eight bytes; each such allocation is termed
an element. The first request for storage
for a based variable is satisfied by the
allocation of the appropriate number of
bytes starting at the beginning of the
unused space; the offset of the end of this
allocation is set in the second word of the
area variable, which now points to the
first available doubleword of unused
storage. Providing no storage has been
freed, further requests are met by further
contiguous allocations from the unused
space, the offset of the end of the extent
being updated each time.

If the last allocation of the extent is
freed, the off set in the second word of the
AREA variable is reduced. However, if
allocations other than the last in the
extent are freed, the extent is not
reduced: spaces, termed free elements, are
left. The length of each free element is
set in its first fullword, and a pointer to
the next smaller free element (in the form
of an off set from the start of the area
variable) is set in the second word. If
there are no smaller free elements, the
second word of the free element points to
the fourth word of the area variable, which
is set to zero. The chain of free elements
is termed the free list 1 and is anchored in
the third word of the area variable, which
contains the off set of the largest free
element. When an area variable contains a
free list, the first bit of the flag byte
is set to 1.

Whenever storage in an area variable is
to be allocated to a based variable, the
free list is searched for the smallest
element that will contain the based
variable. If no free element is large
enough, space is allocated from the unused

48

part of the area. If this, also, is too
small, the AREA condition is raised. When
an element is freed, it is placed in the
free list according to its size. If it is
contiguous with another free element, the
two are merged and included in the free
list as a single element. If the last
element in the extent is freed, the extent
is reduced and the element is not placed in
the free list.

Area Variables - Assigment

When the contents of area variable A are
assigned to area variable B, the current
extent and the control words <except the
length of A) are copied into B. If the
length of B is less than the extent of A,
the AREA condition is raised.

The AREA Condition

If an on-unit is entered when the AREA
condition is raised during the execution of
an ALLOCATE statement. the ALLOCATE
statement is executed again after the
on-unit has been terminated normally. The
return address passed by compiled code is
stored in the library communications area
(WREA) before the on-unit is entered. On
normal termination of the on-unit, IHEERR
returns control to the address in WREA.

If the AREA condition is raised during
the execution of an assignment statement,
the statement is not executed again.

PROGRAM MANAGEMENT

On entry to a PL/I program, one of the
library initialization subroutines
(IHESAPA, IHESAPB, IHESAPC, and IHESAPD) is
always given control by the supervisor; the
entry point that is used depends on the
level of compiler optimization required
(see below) and on whether the PL/I program
is called from an assembler-language
routine. The initialization routine first
obtains storage for the PRV VOA. The
length required is the sum of:

L(PRV) (passed by the linkage editor>

L(LWS) <assembled by the initialization
subroutine>

8 control bytes

since a pseudo-register is referenced by
the addition of a fixed displacement to the
base address in register PR, and the
maximum displacement allowed by the
assembler is 4096 bytes, the length of the
PRV is limited to 4096 bytes. This puts
the upper limit on the combined number of
blocks, files and controlled variables at
about 1000. If the initialization routine
is asked to get a PRV longer than 4096
bytes, a message is printed out on the
console and the program is terminated.

The initialization routine zeros the
PRV, sets up the LWS pseudo-registers, and
issues a SPIE macro instruction naming
IHEERR and a STAE macro instruction naming
IHESTA. In addition. IHESAPA and IHESAPC
enable a PARM parameter on the EXEC card to
be pas~ed to the PL/I program. (See IBM
System/360 Operating System: Job Control
Language User's Guide, and Job Control
Language Reference.) on exit from the
initialization subroutine, register RA
points at a location containing the address
of the SDV of the parameter.

Termination of a PL/I Program

Normal Termination: Normal termination of
a PL/I procedure is achieved by an END or
RETURN statement, either of which involves
releasing the abtomatic storage associated
with the procedure. If a request is made
to free a DSA which would entail freeing
the DSA for the main procedure, IHESAFA
(END) or IHESAFB (RETURN) raises the FINISH
condition and the program branches to the
error-handling subroutine <IHEERR). If and
when this subroutine returns control,
IHESAFA or IHESAFB causes all opened files
to be closed (by calling the library
implicit-close subroutine>. subsequently
all automatic storage, including the PRV
VDA, is returned to the supervisor.
IBESARC is then called to set the return
code and return control to the supervisor.

Abnormal Termination: A PL/I program is
considered to terminate abnormally when the
FINISH condition is raised by any means
other than a RETURN, END, or SIGNAL FINISH
statement (e.g •• when an object-time error
occurs such that the ERROR condition is
raised>. If there is not a GO TO out of
the ERROR or FINISH on-unit (if any>. the
error-handling subroutine <IHEERR) calls
IHESAFQ. which closes all the open files in

the manner described above; IHESAFQ returns
to the supervisor with a return code of
(2000 + any return code already set <module
1024)).

System Termination: If the operating
system schedules the abnormal termination
of a PL/I program, such a termination will
be intercepted and a message will be output
on SYSPRINT if possible; alternatively the
message will be output on the system
console. Control will then be passed back
to the abnormal termination routine of the
operating system.

GO TO Statements

In PL/I. a GO TO statement not only
involves the transfer of control to a
particular label in a block but also
requires the termination of contained
blocks. The housekeeping requirements for
this are:

1. A return address.

2. A means of identifying the automatic
storage associated with the block to
be made current.

Identification of the appropriate storage
depends on whether the environment is
recursive or non-recursive:

Recursive: A count <the invocation count>
is kept of the number of times
any block is entered; this
count can be used to identify
the storage for a particular
invocation.

Non-recursive: The address of the storage
for each block is required.

On-Units and Entry-Parameter Procedures

If, in a recursive environment, the program
enters:

1. an on-unit, or

2. a procedure obtained by calling an
entry parameter,

that environment must be restored to the
state that existed when the ON statement
was executed or the entry parameter was
passed. Similarly, at the exit from the
on-unit or the entry-parameter procedure,
the environment must be restored to its
former state.

Chapter 4: PL/I Object Program Management 49

If the on-unit or entry-parameter
procedure refers to automatic data in
encompassing blocks, these references will
be to the generations that existed when the
ON statement was executed or the entry
parameter was passed. These will not
necessarily be the latest generations.

The correct environment is obtained by .
restoring the display to what it was at the
time the ON statement was executed or the
entry parameter passed.

When an on-unit is to be entered, the
library error-handling subroutine calls
IHESARA and passes it:

1. The address of the on-unit.

2. The invocation count of the DSA
associated with the procedure
containing the ON statement.

When an entry-parameter procedure is to
be called, compiled code branches to
IHESARA and passes it:

1. The address of the called procedure.

2. The invocation count of the passing
procedure.

The state of the display at the time of
passing is determined by examining the DSAs
of active blocks invoked before the passing
procedure. The display is modified and
control is transferred to the called
procedure.

Before an on-unit or an entry-parameter
DSA is freed, the display is restored, in a
similar manner to that described above, to
the state it had immediately before the
on-unit was entered or the entry-parameter
procedure was called.

Block Housekeeping

The chaining of automatic storage areas is
required both for housekeeping purposes and
for storage management. In general, both
these functions are satisfied by the
automatic storage area chain (called the
DSA chain or 'run time stack'). When a
library module.is entered, an offshoot of
the DSA chain, known as the save-area
chain, may be formed.

DSA Chain: The DSA chain consists of the
external save area, PRV VDA, DSAs and VDAs.
DSAs are added to the chain as procedures
and blocks are entered. VDAs are added to
the chain after the DSA of the block in
which they are required. The
pseudo-register IHEQSLA is always set to

50

point at the last allocation in the chain.
Initially it points at the PRV VDA.
Register DR always points to the current
save area.

Consider a sample program. successive
areas are added to the chain thus:

1. PRV VOA

2. DSA (Main procedure>

3. DSA (Procedure>

4. DSA (Begin block)

r-----------1
PR I PRV VOA ~---> r---------1
--->~-----------~ I I

I I I External I
I PRV I r-~ I

IHEQLSA I I I I save area I
--:_> ~--------t I I I

I I I I I
I LWS 1 I I L-----J
I I I L---------J I

" I I I
r----l.-----, I
I I I
I DSA 1 I<-'
l<Procedure>t
I I L----------J

I\

I
r----L-----1
I I
I DSA 2 I
I (Procedure> I
I I L---------J

I\

I --->r----L----,
I I
I DSA 3 I
I (Begin) I
I I
L----------J

Figure 20. Example of DSA Chain

At this stage the storage map is as
shown in Figure 20. If the begin block
required a VDA this would be added to the
end of the chain. Figure 21 shows an
example in which the begin block required
two VDAs. If the program now executes:

1. An END statement: The storage in the
chain is released, starting with the
area pointed at by IHEQSLA and
finishing when the current DSA has
been released. This leaves the chain
with items 1, 2 and 3 only.

2. A RETURN statement: All areas up to
and including the immediately
encompassing procedure DSA are
released, leaving only items 1 and 2.

It is also possible to release the
last VDA in a chain without releasing any
other areas, by freeing the area pointed at
by IHEQSLA.

If a GO TO statement referring to a
label in the main procedure had been
executed when the situation was as shown in
Figure 21, then either the invocation count
or the display of the main procedure would
be passed to the library subroutine
(IHESAFC). This would then search back up
the chain until it found the DSA with that
invocation count or display, and then make
this DSA current. It would then free:

1. All areas up to and including the DSA
allocated after the DSA to be rnade
current.

2. Any library VDAs or LWS between the
DSA to be made current and the
following DSA. A VDA used by the
library is distinguished from one used
by compiled code by the flags in the
first byte. (See Appendix J.)

A

r-----.L-----,
I I
I DSA 2 I
I I
I I
L-----------J

" I
DR I
--->r-----.L-----,

I I
I DSA 3 I
I I
I I .._ _________ J

A

I
I

r----.L-----,
I I
I VOA I
I I
L-----------J

A

I
IHEQSLA I

--->r-----L-----,
I I
I VOA I
I I
L-----------J

Figure 21. continuation of the DSA Chain

Save-Area Chain: When a PL/I block calls a
PL/I Library subroutine, the save area
passed is that in the DSA for that block.
If the library routine calls a lower-level
library routine, the save area passed is
that of the appropriate level in LWS. Thus
a save-area chain is built up as an
off shoot of the DSA chain. (See Figure
22.) Normally the save-area chain unwinds
itself as control returns up through the
levels; in the example, the chain would be
left with DSAs 1, 2 and 3 remaining.

r-----------, r-----------,
I I I LWS I
I OS A 3 I <-, I I
I I I I LSA I
I I I DR I I
L ___________ J I -->~-----------~

" I I I
I L-----~ Save area I
I I I

r-----.L-----, I I
I t I I
I VOA I ~-----------~
I I I I
L-----------J I I

A I I
I I I

IHEQSLA I I I
--->r-----.L-----, I I

I I I I I VOA I l ___________ J

I I
L-----------J

Figure 22. Construction of the save-area
Chain

Treatment of Interrupts: When a program
interrupt occurs in a subroutine (library
or compiled code>, the library
error-handling subroutine (IHEERR) is
entered and the address of the save area of
that subroutine is set in register DR.
(See Figure 23.)

IHEERR calls IHESADE, passing its own
save area, to get a new LWS (LWS2). If
there is an on-unit corresponding with the
interrupt condition, then, on return from
IHESADE, IHEERR branches to IHESARA (which
modifies the display> and passes it the
save area LSA in LWS2. In turn, IHESARA
branches to the on-unit and passes it the
same save area. The prologue for the
on-unit then calls IHES~DA to obtain a DSA.
The DSA chain can now continue if required.
(See Figure 24.)

If there is no on-unit corresponding to
the interrupt condition, standard system
action is taken. (See Chapter 6.)

There are two possible ways of freeing
the on-unit DSA:

Chapter 4: PL/I Object Program Management 51

1. By a GO TO statement from the on-unit.
If the GO TO is to a statement in a
block associated with DSA 3, or
earlier, then the save-area chain can
simply be forgotten. Registers are
restored from the DSA to become
current.

r-----------, r-----------,
I I I LWS , I
I DSA 3 1<-, I I
I l I I LSA I
L-----------' I ·-----------~<-,

I\ L--~ I
I I Save area I
I I I
I DR I I

r-----4 -----, -->~-----------~ I
I I I ~--J
I VOA I r->I LWE I
I I I I I
L-----------J I ~-----------~

I\ I I I
I I I I
I I I I

r-----4 -----, I I I
I I I I I
I VOA I I I I
I 1 I I I
L---------J I I I

I\ I I I
I I I I

IHEQSLA I I L-----------J
--->r-----4 -----, I

IHEQLSA I LWS VOA I I
--->1----------4 I

I LWS 2 ~--J

I I
I LSA I
~---------4
I I
!Save areas I
I I
L---------J

Figure 23. structure of the DSA chain when
the error-handling subroutine
is entered after a new LWS has
been obtained

2. By the on-unit issuing a request to
storage management to free the on-unit
DSA. When this is done, control is
returned to the error-handling
subroutine at the point following that
from which control was transferred to
the on-unit. The error-handling
subroutine restores DR in the normal
way to point at LWE in LWS 1 and calls
IHESAFD to free LWS 2. Control is
then returned to the interrupted
routine. In the example, the
situation would now be as in Figure
22.

52

r-------1 r---------1
I I I LWS 1 I
I DSA 3 I<-, I I
I I I I LSA I
I I I I I
L---------J I ~-------~ <-,

" I I I I
1 L--~save areal I
I I I I

r----4 ----, ~---------~ I
I l I l I
I VDA 1 r->l LWE •--J
I l I I I
L---------J I ·---------~

" I I I
I I I I
I I I I

r----~----, I I I
I I I •--------~
I VDA I I I
I I I I
L--------J I I

I\ I I
I I I
I I I r----4---, I I

I 1 I I
I LWS 2 ~--J I
I I I
l---------J I

A ---------J
I

IHEQSLA, DR 1
---> r----4----,

I I
I on-unitl
I DSA I
I I
L---------J

Figure 24. Structure of the DSA chain when
the on-unit DSA is attached

Object-time Optimization

The compiler contains an optimization
technique which minimizes the necessary
housekeeping and provides faster execution
of the prologue and epilogue. The
technique can only be applied if the
optimization option (OPT=01.Default) is
specified for the compilation of the main
procedure of a program. In this case, in a
non-multitasking environment, a 512-byte
storage area is reserved at the end of
primary LWS during initialization and
pseudo-register IHEQSLA is set to the
address of that save area. The
pseudo-register IHEQLWF contains the
address of the reserved area attached to
the current LWS. A reserved area is
released only when its associated LWS is
released.

Whenever a DSA is allocated for the
innermost procedure or procedures (at the
same depth) of a nest of procedures, the
optimization technique will try to meet the
requirement from the reserved area. If
this is not possible (because the DSA
requires more than 512 bytes>, the required
storage is obtained in the standard way,
using IHESADA.

A DSA allocated in the reserved area, or
a DSA allocated in STATIC storage at
compile time, is identified by a •one• in
the first bit of the second byte. (See ~
svstem/360 operating svstem: PL/I <F>
compiler, Program Logic Manual for a
discussion of DSAs in STATIC storage.)

Chapter 4: PL/I Object Program Management 53

CHAPTER 5: PL/I OBJECT PROGRAM MANAGEMENT IN MULTITASKING

INTRODUCTION

This section describes the facilities
provided by t.he PL/I Library for the
dynamic management of PL/I multitasking
programs in an operating system with MVT.
PL/I multitasking can be used in a
multijobbing or a multiprocessing
environment.

For multitasking, the program management
module IHESAP is replaced entirely by the
module IHETSA. Although some of the
routines in IHETSA are peculiar to
multitasking, most of them perform similar
functions to the corresponding routines of
IHESAP1 Figure 25 compares the two modules.
Only those features of IHETSA that are not
included in IHESAP are described in detail.
The library facilities for the multitasking
pseudo-variables and built-in functions,
and for the WAIT statement, are described
at the end of this section: Appendix K
gives full details of the PL/I control
blocks for multitasking.

Function

Get DSA
Get VOA
Get controlled variable
Get LWS
'Get library VOA
END
RETURN
GO TO
Free VOA/Free LWS
Free controlled variable
Abnormal program termination

Program initialization

Environment modification
Setting of return code
Initialization of major task
CALL with task option

PL/I TASKS

All tasks created in a PL/I multitasking
program are executed as subtasks of a
common ancestor, the control task. The
control task is the initial task which
receives control from the operating system
at the commencement of program execution.
The use of a control task ensures that
there is always present a task with a
higher priority than that of the major
task, the task for the main procedure. The
control task can then be entered whenever
it is necessary to terminate the major
task, e.g. on execution of a STOP
statement. Subsequent tasks attached by
the major task are known as subtasks.

The management of all tasks in the PL/I
program is carried out by the control task.
It creates and initializes the major task
and any subtasks required and arranges for
the termination of these tasks, either
normally or abnormally. When multitasking
is used in a multiprocessing environment,
it is possible that two or more tasks may
attempt to execute •soft• code <code which
accesses or modifies control blocks) at the

Entry Points

I HE SAP

I HE SADA
IHESAOB
IHESAOD
I HE SADE
IHESADF
I HE SAFA
IHESAFB
IHESAFC
IHESAFD
IHESAFF
IHESAFQ
IHESAPA
IHESAPB
IHESAPC
IHESAPD
I HE SARA
IHESARC

IHETSA

IHErSAD (Alias)
IHETSAV
see Note
IHETSAL
IHETSAW
IHETSAE
I BET SAR
IHETSAG
IHETSAF
See Note
IHETSAY
IHETSAP (Name)
IHETSAA (Alias)

EXTR (abnormal end-of-task exit routine-STAE exit)
EXIT (PL/I abnormal end-of-task routine>
Initialization routine for subtask

IHETSAN
IHETSAC
IHETSAM
IHETSAT
IHETSAX
IHETSAZ
IHESUBA

Note: The allocation and freeing of controlled storage in a multitasking environment
is handled by a separate module, IHETCV, which is called by compiled code.

Figure 25. Comparison of IHESAP and IHETSA

54

same time. So that only one task may
access "soft" code at any one time, the
control task treats all tasks as subtasks
of itself, and supervises these subtasks by
a series of event control blocks; the POST
event control block (PECB) and the WAIT
event control block (WECB) for each task.
A list of PECBs is kept by the control task
in an ECBLJ:ST which is checked every time a
subtask requests access to soft code. When
a request to execute soft code is made, the
control task either POSTs the subtask to
continue (if no other subtask is executing
the same area of soft code) or,
alternatively, keeps the requesting task in
a WAIT state. On completing execution of
the soft code, the subtask informs the
control task which is then free to accept
further requests.

Note: The "soft" areas of code are those
concerned with:

1. Task Attachment

2. End of task

3. End of block with attached tasks

4. PRIORITY pseudo-variable

5. COMPLETION pseudo-variable and EVENT
variable assignment

6. WAIT statement

7. OPEN statement

8. CLOSE statement

9. Exclusive block chaining

TASK ATTACHMENT AND INITIALIZATION

CONTROL TASK

The control task is established at a
priority (16•JSPRI+11), where JSPRI is the
priority specified in the JOB statement for
the PL/I program. The presence of the TASK
option in the PL/I main procedure statement
causes the compiler to insert the name of
one of the initialization routines of
library module IHETSA into control section
IHENTRY. At execution time, control is
passed initially to IHENTRY which then
branches to the initialization routine
selected by the compiler <IBETSAA or
IHETSAP). Execution of the selected
routine constitutes the control task. The
control task obtains contiguous storage
for:

1. Its own save area and workspace (144
bytes)

2. The event control block for the major
task task variable (60 bytes)

3. The PRV VOA for the major task.

The length required for the PRV VOA is
the sum of:

1. Eight control bytes

2. L(PR\1) (passed by the linkage editor>

3. L(LWS) (the total length of workspace
initially required by the library>

4. Four task-oriented words

S. Task Communications Area (TCA) (Four
words long)

(If a PRV longer than 4096 bytes is
requested. a message is printed out on the
console and the program is terminated.)

The format for the complete area of
storage involved, with lengths, is shown in
Figure 26. (Key numbers corresponding to
the above are shown on the left of the
Figure.)

Having allocated these storage areas,
the control task:

1. Uses the area allocated for the TASK
variable of the major task, sets it
active and initializes it, using an
EXTRACT macro to obtain the limit and
dispatching priorities from the TCB
<task control block) set up for the
control task by the operating system.
(The TASK variable contains the task
control information required by the
PL/I Library).

2. creates an EVENT variable for the
major task and sets it active.

3. Sets up an ECBLIST (list of PECBs
currently being waited on> in a 1024
byte area. The ECBLIST initially
contains only the address of the PECB
for the major task. The ECBLIST
continually expands and contracts as
tasks are attached or detached, but
when the ECBLIST becomes equal to
zero, i.e. there are no further tasks
to be attached or detached, control
returns to the calling program <this
would normally be the operating
system>.

4. Sets the CTECB <control task ECB), the
PECB and theWECB of the major task to
zero.

Chapter 5: PL/I Object Program Management in Multitasking 55

L(bytes)

r----------------------------1
DEC

00

12 I I
I Standard Save I
I Area I
I I 12

~----------------------------i
12 I I

I 2nd. Save Area/ I
I Workspace I
I I 144
~----------------------------i

28 I Task variable I 172

~----------------------------i
32 I Event Variable I 204

~----------------------------i
1024 I I

I I
I ECBLIST I
I I 1220
~----------------------------i

4 I CTECB I 1232
~----------------------------i

5. 16 I Task communications I
I Area I 1248

~----------------------------i
1. 8 I VOA Control I

I I 1256
~----------------------------i

2. LPRV I PRV 11256+
I I~~

~----------------------------i
4 I o I

~----------------------------i
4. 4 I o I

~----------------------------i
4 I A(IHEZTASK) 11268+

I I LPRV
~----------------------------i I I 1268

3. LLWS I LWS ILPRV+
I I LLWS
~----------------------------i

16 I Free Core 11284+
I Control ILPRV+
I I LLWS
L----------------------------J
I I
I Available Space I
I I
I I
I I
I I
I I

MAJOR TASK

L(bytes)

r----------------------------,
DEC

00

16 I Task Communications I
I Area I 16
~----------------------------i

8 I VOA Control I
I I 24
~----------------------------i

LPRV I PRV I 24+
I I~~

~----------------------------i
4 I A(DSA of Attaching I 28+

I Task) I LPRV

~----------------------------~
4 I A(PRVVDA of Attaching I 32+

I Task> I LPRV
~----------------------------~

4 I A (Task Variable> I 36+
I I~~

~----------------------------~
I I

4 I ACParameter List) I 40+
I I LPRV
~----------------------------i
I I
I Copied On-Slots I
I I
~----------------------------~
I I
I Parameter List I
I I
~----------------------------~

LLWS I I
I LWS I
I I
~----------------------------i

16 I I
I Free Core Control I
I I
L----------------------------J

Available Space

• Figure 26. Format of Storage Areas, Save Areas, etc.

56

5. Sets up the APLIST, which is a
parameter list consisting of a return
address and a parameter list address,
to be passed to IHETSAM.

6. Sets up an ECBLIST of two words
containing the addresses of the ECB of
the major task and the PECB of the
major task.

7. Attaches the module IHESUB at a
priority one less than the control
task. IHESUB then sets up a parameter
list for IHETSAM and branches to
IHETSAM (This method circumvents the
use of the IDENTIFY macro, thus
enabling the Linkage Loader to be used
when desired).

Note: IHETSAM receives control from IHESUB
which is attached each time a new subtask
is created (all tasks, including the major
task, are considered subtasks of the
control task in this context>. Using the
information stored in register RA, IHETSAM
initializes the major task, a subtask or a
message task, according to the values of
RA:

a. RA is negative: subtask
initialized

b. RA is positive and points to a
fullword whose bit O = 0: major
task initialized

c. RA is positive and points to a
fullword whose bit O = 1: message
task initialized

8. waits on the two words in ECBLIST until
one of them is complete:

a. if the ECB of the major task has
been posted, then an error has
occurred which caused the
operating system to terminate the
task; in this case a message is
put out and the program is
terminated.

b. the PECB of the major task has
been posted. The control task
determines the action it is to
take from the code posted.

CONTROL TASK SUBROUTINES

Having passed control to IHETSAM <via
IHESUB), the control task will go into a
WAIT state on the two word ECBLIST. This
wait may be resolved by a code posted in
four of the thirty bits used for the POST
CODE of the PECB of a subtask, or by
termination of the major task. The code

and the subsequent action to be taken is as
follows:

DECIMAL

1. 0 (ENQUEUE) Control task is to go into
a wait state until subtask has
finished with a soft area of code

2. 4 (ATTACH) Attach a new subtask

3. 8 (PRIORITY) Change the priority of a
specified subtask

4. 12 (DETACH) Special detach routine for
message tasks only.

·5. 20 STOP has been executed.

These subroutines operate in the
following way:

1. Engueue subroutine

2.

This subroutine simulates an
ENQUEUE/DEQUEUE by putting the control
task in a WAIT state so that it is
unable to service requests from other
tasks until the subtask which
requested the enqueue brings the
control task out of the WAIT state.
The functions of this subroutine are:

a. (1) Set a bit •on• in the FLAG
byte of the TCA to indicate
•ENQUEUED•

(2) Set the completion code of the
WECB of the subtask to allow
it to continue

b. Wait on CTECB until posted by
subtask

c. Zero the CTECB

d. Go back to WAIT on ECBLIST.

~~h Subroutine

The functions of this subroutine are:

a. If the TASK or EVENT variables are
already active. post the WECB of
the subtask with the appropriate
error code and go back to wait on
ECBLIST.

b. (1) Initialize the TASK and EVENT
variables. If one or both do
not exist, issue a GETMAIN
macro for dummy TASK or EVENT
variables and set a flag in
the variables so they can be
freed when the task is
detached.

Chapter 5: PL/I Object Program Management in Multitasking 57

(2) Determines that there are not
more than 254 active subtasks:
if more than 254 active
subtasks, post error code.

c. Attach IHESUB with the correct
priority

d. IHESUB passes control to IHETSAM

e. Wait on a two-word ECBLIST for
either the task to terminate Cdue
to no core being available> or
until IHETSAM has completed the
subtask initialization. The
subtask will post back the address
of its TCA when initialization is
completed.

f. Post the WECB of the attachors
subtask with code 0 to indicate no
errors

g. Go back to wait on ECBLIST.

3. Priority Subroutine

Since all tasks are now subtasks of
the control task, any task can change
the priority of any other task. To
accomplish such a priority change,
compiled code invokes entry point
IHETPRA of module IHETPR. IHETPRA in
turn requests the control task to
effect the change via entry point
IHETPRB.

Therefore, the functions of this
subroutine are:

a. Call IHETPRB to perform the
priority change <see 'PRIORITY
Pseudo-Variable' in this chapter)

b. Post WECB of the subtask with zero

c. Go back to wait on the ECBLIST

4. a> Detach Subroutine for Non-Message
Tasks

58

A subtask always requests the
DETACH function of the control
task when it is enqueued (i.e.
the control task is waiting on
CTECB). Therefore, the subtask
must set a code in the CTECB to
request the control task to DETACH
a particular task. The CTECB is
posted with a completion code
equal to the address of the TCA of
the task which is to be detached.

There are three types of tasks to
consider:

<1> The task to be detached is the
requesting task and APLIST is

zero <i.e. task did not
terminate abnormally>. In
this case, the functions of
the control task are:-

(a) Remove the A(PECB) of the
subtask from its ECBLIST

Cb> Detach the TCB of the
subtask

(c) Free the TASK and EVENT
variables if they were
dummy

Cd) Go and wait on the ECDLIST

(2) The task to be detached is not
the requesting task. In this
case, step (d) above will be
replaced by:-

Cd) Wait on CTECB again

The remaining functions are the
same.

(3) The task to be detached is the
requesting task and APLIST is
non-zero Ci.e. task
abnormally ended). In this
case, the functions of the
control task are:-

Ca) Remove ACPECB) of the
subtask from its ECBLIST

Cb) Issue a GETMAIN macro
instruction. In this area
set a flag to indicate to
IHETSAM that a message
task is to be initialised
and to store the
completion code statement
number and offset. The
attached task will link to
IHETEXC, using the
provided workspace.

Cc) Detach the TCB of the
subtask and free dummy
TASK or EVENT variables.

Cd) Attach IHESUB(IHETSAM) and
add the address of its
PECB <which is located in
the GETMAIN area> to the
ECBLIST of the control
task.

Ce) Go and wait on the new
ECBLIST

4. b) Detach Subroutine for Message
~

This routine detaches the
requesting message subtask and
frees the core storage obtained
for it. It then returns to wait
on ECBLIST.

5. ~

When STOP is posted, the control task
sets a flag to indicate this and then
goes to the ENQ subroutine.

INITIALIZATION OF MAJOR TASK

When the major task initialization routine,
IHETSAM, is attached (via the control task
and IHESUB) it has a priority of one less
than the control task. This has the effect
of making the whole program appear to have
a priority of one less than the operating
system limit priority, which allows the
control task to be posted and to assume
control immediately.

IHETSAM is similar to the
non-multitasking initialization routine
IHESAP (described in Chapter 4), but in
addition:

1. A flag bit (bit 8) in the PRV VOA is
set to indicate that it is a
multitasking PRV VDA

2. The address of the task variable is
placed in the PRV VDA and the other
task-oriented words of the PRV VOA are
set to zero <see Appendix Kl

3. A SPIE (Specified Program Interruption
Exit> macro is issued which names the
error-handling module, IHEERR, which

0 31

r--------.------------------------------1

is invoked in case of a program
interrupt

4. A STAE (Specify Task Asynchronous
Exit> macro is also issued which
specifies IHETSAX as the exit routine,
and the address of the TCA as the
address of the STAE parameter list

5. The pseudo-registers IHEQVDA, IHEQFVD,
IHEQADC, IHEQCTS, IHEQTCA, IHEQSLA,
IHEQSFC, and IHEQATV are then
initialized

INVOCATION OF SUBTASK

When a CALL statement with a TASK, EVENT or
PRIORITY option is executed, compiled code
calls the library module IHETSAT, which
requests the control task to attach the
subtask specified in the CALL statement.

When the PL/I program includes the TASK
or EVENT options in a CALL statement, then
compiled code is generated which, at
execution time, is used to initialize the
TASK and EVENT variables. The
initialization consists of setting TASK and
EVENT variables inactive, inserting the
address of the associated symbol table
entry in the TASK variable and setting the
STATUS halfword in the EVENT variable to
zero • Furthermore, compiled code would
have created an argument list (Figure 27)
and inserted its address in register RA.

Pointers to the PRV and DSA of the
attaching task are stored in the two words
of the parameter list reserved for library
use; they are used in chaining tasks in
'mother-daughter' relationships·

If the CALL statement includes a
PRIORITY option, the sum of the relative

01 Flags I A(Task variable> I Zero if no TASK option
·--------i------------------------------i

41 A(Event variable> I Zero if no EVENT option
~-----------------------------------~

Bl Priority relative to attaching task I Flags = X'BO' if no PRIORITY option
·-------------------------------------i

121 A<called procedure> I
~--------------------------------------i

161 For library use I
~--------------------------------------~

201 For library use I X'BO' if no argument list
·--------------------------------------~

241 Argument list for called procedure I
I (X'80' in first byte of last entry I
I indicates end of list> I
L---------------------------------------J Figure 27. Parameter List for IHETSAT

Chapter 5: PL/I Object Program Management in Multitasking 59

priority from the parameter list supplied
by the compiled code and the dispatching
priority in the task variable of the
attaching task is stored in the task
variable of the subtask; if the sum exceeds
the limit priority for the PL/I program
(16•JSPRI+l0l, the dispatching priority for
the subtask is made equal to the limit.
(See IBM System/360 Operating System: PL/I
(F) Programmer's Guide for a discussion of
priority in a PL/I program>. The limit
priority of the attaching task is also
placed in the task variable of the subtask.
If there is no PRIORITY option, and a task
variable exists, the dispatching priority
in the task variable is assumed; if the
task has a dummy task variable, the
dispatching priority is the same as that of
the attaching task at. the time the subtask
is attached.

INITIALIZATION OF A SUBTASK

Module IHETSAT is called by compiled code
when a subtask is to be attached. This
routine stores the address of the PRV and
DSA of the attaching task in the parameter
list, and then stores the address of the
parameter list in APLIST (in the TCA).
Having posted the control task to attach a
subtask, IHETSAT waits until it is informed
by the control task that the subtask has
been attached or an error has been found.
When the WAIT is satisfied, it tests to see
if any errors were detected. If so, it
raises the appropriate ERROR condition and
branches to IHEERRC. If there are no
errors, it returns normally to compiled
code.

on being posted by IHETSAT to attach a
subtask, the control task executes its
attach subroutine which calls IHESUB. The
subtask initialization routine, IHETSAM,
receives control from IHESUB, which is
attached each time a new subtask is
created. At this time, register RA
contains the complement of the address of
the parameter list prepared by compiled
code <Figure 27). This conforms to the
previous discussion on the control task
wherein it was stated "RA is negative;
subtask initialized".

IHETSAM calculates the length of the PRV
VDA and LWS required by the subtask and
issues a GE'TMAIN macro instruction for the
amount of storage needed (rounded up to a
multiple of 2048 bytes):

Then it initializes the PRV VDA as
follows:

60

1. It copies the contents of the PRV of
the attaching task into the PRV of the
new subtask

2. It initializes the pseudo-registers
IHEQTCA, IHEQSLA and IHEQATV, and
zeroes IHEQRTC, IHEQEVT, and IHEQFOP

3. It copies any ON-fields in the DSA of
the attaching task, and the procedure
argument list (if one is being
passed), into the PRV VOA of the new
subtask.

4. It increments the pseudo-register
IHEQTIC by one. (IHETSAM sets IHEQTIC
to zero when it initializes the major
task. Each time a new subtask is
attached, IHETSAM adds one to the
count in IHEQTIC; the count thus
indicates the level of each task
within the hierarchy)

5. It issues a SPIE macro for IHEERRA

6. It issues a STAE macro for IHETSAX.

The control task is then posted to
indicate the completion of the
initialization routine and IHETSAM then
branches to the address of the called
procedure.

MESSAGE TASK

In the case of a message task being
required, IHETSAM sets up register 1 to
contain the address of the parameter list
and then links to IHETEXB to put out a
message. IHETSAM then asks to be detached
by posting the control task and wai.ts until
detached.

EXIT AND TERMINATION OF_!~SKS

NORMAL TERMINATION OF ~ TASK

A PL/I task can be terminated by the
execution of any one of the statements END,
RETURN, STOP and EXIT.

The action taken by the library END,
(IHETSAE) and RETURN (IHETSAR) routines is
similar to that of the GO TO routine
(IHETSAGl; the action differs from that of
the non-multitasking equivalents in that
any tasks attached in the block being
terminated must also be terminated. This
termination is done by means of the CTECB
DETACH routine (see 'Contr.ol Task
Subroutines'>. If the block to be

terminated is also the end of a procedure
called with the TASK option, the control
task is informed and the task is detached.

If it is the end of the major task, the
FINISH condition is raised and the program
branches to the error-handling routine.
The END or RETURN routine will, on
completion, post the control task to detach
the major task. Finally, when the ECBLIST
has no entries left, control is returned to
the calling program.

The abnormal-end-of-task routine
(IHETSAZ) is entered

1. From IHEERR when return is made from
the error routine in a subtask or from
the FINISH routine in the major task.

2. When an EXIT statement is executed in
any task, or

3. When CALL IHEDUMT is executed in any
task.

IHETSAZ detaches the task, and any tasks
that it has attached, in the manner
described under 'GO TO Statements'.

The end-of-program routine IHETSAY is
entered when a STOP.or CALL IHEDUMP
statement is executed in any task. IHETSAY
terminates all subtasks in the manner
described under 'GO TO Statements'. In
both cases, control passes back to the
calling program, by way of the control
task, at completion.

ABNORMAL END-OF-TASK EXIT ROUTINE

If a task terminates abnormally, the STAE
exit routine (!HETSAX) is called. IHETSAX
is specified in the STAE macro and is
invoked whenever a subtask is attached.
The STAE exit routine firstly detaches all
subtasks of the abnormally terminating task
and then informs the control task of the
condition of that subtask. An area of
storage is obtained by the control task in
which the name of the subtask and the
completion code are stored. This storage
area also contains space for a save area to
be used by the message task. The control
task detaches the terminating task and
attaches a task which prints out a message
<as described under 'Control Task
Subroutines') giving the name, if any, of
the subtask, the operating system
completion code, and, in the more common
cases, an indication of the probable error.
The message is put out on SYSPRINT if it is
open, otherwise it is put out on the
console.

To obtain the name of the subtask for
insertion in the message, IHETSAX locates
the task variable of the subtask by
initiating a save-area trace from the PRV
of the current task. The address of the
TCA of the abnormally terminating task is
passed in a parameter list to the STAE exit
routine along with the completion code.

GO TO STATEMENTS

The multitasking housekeeping routine for
GO TO Statements CIHETSAG) differs from its
non-multitasking equivalent only in that if
control is transferred outside the block in
which the statement occurs, any tasks that
are attached in the blocks that are freed
must be terminated. If any tasks have been
attached in the block, the task variable
chain pointer in the DSA will point io the
task variable of the most recently created
subtask. IHETSAG searches the chain
through each DSA in each task until a task
is found that has attached no subtasks;
this task is then terminated by informing
the control task that this task is to be
detached.

The process is repeated until all the
tasks attached in the block, and their
descen1ants, have been terminated. In the
process, all storage associated with these
tasks is returned to the supervisor, and
all files opened in the tasks are closed.

ON-UNITS AND ENTRY PARAMETER PROCEDURES

The multitasking routine IHETSAN modifies a
recursive environment when an on-unit or an
entry parameter procedure is entered or
ended. It differs from the
non-multitasking routine (IHESARA) in two
respects.

1. the chain of recQrsive DSAs is
followed back to the PRV of the major
task, and

2. if a CALL statement calls an entry
parameter procedure with a task
option, the address of the entry
parameter is placed at the top of the
parameter list, the address of IHETSAT
is assigned to the entry parameter,
and IHETSAN is called. When IHETSAN
terminates, it points register RA at
the IHETSAT parameter list and
branches to IHETSAT.

Chapter 5: PL/I Object Program Management in Multitasking 61

CONTROLLED STORAGE

The allocation and freeing of storage for
controlled variables in a multitasking
environment is handled by library module
IHETCV. This module is independent of
IHETSA and is loaded only if the CONTROLLED
attribute is used. When storage is
allocated, the task invocation count from
pseudo-register IHEQTIC is stored in the
first halfword of the controlled variable.
Before a controlled variable is freed, its
task invocation count is checked; if it
does not correspond with the value in
IHEQTIC for the task in which the statement
occurs, the variable is not freed.
Controlled storage is allocated in subpool
O if it is in the major task, and in
subpool 1 if it is in a subtask.

MULTITASKING PSEUDO-VARIABLES AND BUILT-IN
FUNCTIONS

Statements in which the STATUS
pseudo-variable appears, or which contain
the COMPLETION or STATUS built-in function,
are executed from compiled code without a
library call.

COMPLETION PSEUDO-VARIABLE

on execution of an assignment statement in
which the COMPLETION pseudo-variable
appears, the expression on the right-hand
side is evaluated and converted to a
bit-string of length 1 1 which is then
stored at bit 24 of a fullword. Compiled
code then calls IHETEVA, passing the
address of the event variable named in the
pseudo-varia~le, and that of the fullword
(in a list pointed tq by register RA). If
the event variable is active, the ERROR
condition is raised - otherwise IHETEVA
takes the following action:

1. It informs (POSTS) the control task it
wishes to execute soft code and then
waits until the request is satisfied.

2. It sets the I/O flag in the event
variable (bit 1 of the flag byte) to
zero.

3. (a) If the bit string= 'O'B, it sets
bit 1 (the 'complete' bit) of the
ECB in the event variable to zero.

62

(b) If the bit string= 'l'B, it tests
to see whether the event is
already complete. If not complete
it posts the ECB with a completion

code of zero. If it is complete,
IHETEVA does nothing.

4. It informs the control task it has
finished executing soft code(Code = O>

PRIORITY PSEUDO-VARIABLE

The PRIORITY pseudo-variable is used to set
the dispatching priority of a task to a new
value relative to that of the current task.
On execution of an assignment statement in
which the PRIORITY pseudo-variable appears,
the expression on the right-hand side is
evaluated and converted to a fixed-point
binary constant of default precision, which
is assigned to a fullword. Compiled code
then calls IHETPRA, passing the address of
the task variable of the task named in the
pseudo-variable and that of the fullword
(in a list pointed to by register RA). If
the pseudo-variable does not specify a
task, the current task is assumed. IHETPRA
requests the control task to change the
priority of a task by posting a code of· 08
in the PECB of the specified subtask. The
control task branches to IHETPRB which uses
the dispatching priority of the task
variable to compute the new priority.
IHETPRB then stores the new priority value
in the task variable: if the task variable
is already active, it issues a CHAP (change
priority) macro to change the priority of
the associated task. It then assigns to
the task variable the new value of the
dispatching priority, calculated as
follows:

New dispatching priority of named task
= MAX (0,MIN (limit-1,P+N))

where P = dispatching priority of
current task and N = increment

NOTE: Under this system of changing
priorities, any task can change the
priority of any other task.

PRIORITY BUILT-IN FUNCTION

The PRIORITY built-in function yields the
dispatching priority of a task relative to
that of the current task. On execution of
a statement in which the function appears,
compiled code calls IHETPBA, passing the
address of the task variable of the task
named in the function and the address of a
fullword target field <in a list pointed to
by register RA). IHETPBA subtracts the
dispatching priority of the current task
from that of the named task, and assigns
the difference to the target field. The

dispatching priorities are obtained from
the respective task variables.

THE WAIT STATEMENT

When a WAIT statement is executed in a
multitasking environment, compiled code
calls the library module IHETSW, passing
the addresses of the event variables
associated with the statement. IHETSw
first places itself in any queue that may
exist via control task subroutine ENQ so
that the control task may decide when
IHETSW may safely access nsoft code".

It then scans the event variables to see
whether enough events to satisfy the wAIT
statement are complete with regard to the
PL/I program ('complete' bit, ECMP, set to
1). If not, IHETSW scans the ECBs for the
I/O events, and in each case where the I/O
event is complete sets the check bit (EMCH)
in the corresponding event variable to '1'.
A list is then made of all the incomplete
IIO and multitasking events.

If the number of PL/I and I/O complete
events is sufficient to satisfy the WAIT
statements, the relevant I/O transmit
modules are invoked to complete the I/O
events. (See 'General Logic and Flow'
under 'Record-Oriented I/O' in Chapter 3.)
If there are no multitasking events in the
list, and if the number of completed I/O
events is not sufficient and all the I/O
events must be completed to satisfy the
WAIT statement, the check bit in each event
variable is set to 1 and the relevant I/O
transmit module is invoked. If not all the
I/O events need to be waited on, or if
there are some multitasking events in the
list, a multiple WAIT instruction is issued
for the list of incomplete events. When
the macro has been satisfied, if the list

included any I/O events, the cbrresponding
ECBs are scanned and the check bits in the
event variables corresponding to completed
ECBs set to 1; the I/O transmit module is
then invoked.

The I/O event variables that are checked
by the transmit modules are set complete
and the check bits are set to zero. The
event variables are then set inactive and
removed from the task and file chains.
IHETSW then dequeues from the control task
by posting the CTECB ~ith a completion code
of zero.

ALTERNATIVE I/O MODULES FOR MULTITASKING
PROGRAM§.

Alternative multitasking and
non-multitasking modules for input/output
operations have been created in order to
prevent the non-multitasking user from
being inflicted with any multitaskiing
overheads. These modules are:

Non-multitasking

IHEOCL
IHECLT
IHEPRT
IHEIOB
IHEDDO
IHEION

Multitaskino

IHEOCT
IHECTT
IHEPTT
IHEIBT
IHEDDT
IHEINT

The entry points for the multitasking
modules correspon~ with the entry points of
the non-multitasking modules. Modules
which have no alternative form will call
the correct module by extracting its
address from the list addressed by
pseudo-register IHEQADC. This list is
assembled into IHESAP or IHETSA, whichever
is present.

Chapter 5: PL/I Object Program Management in Multitasking 63

CHAPTER 6: ERROR AND INTERRUPT HANDLING

The PL/I Library handles two types of
conditions at object time which cause
interruption to the main flow of a program.
These are:

1. Conditions for which it is possible to
specify an on-unit:

a. Computational program interrupts.

b. Other conditions.

2. Execution error conditions not covered
by a PL/I-defined condition.

If any of these conditions occurs,
control is passed to the library error
handling module IHEERR. (See Figure 29.)
This module is always resident; if it is
necessary to print a message at execution
time, IHEERR links to a group of modules
normally non-resident but brought into
storage when required. These are:

IHEESM:

IHEERD:

IHEERE:

IHEERI:

This loads one of the message
modules and prints the
appropriate message.

Data processing error messages.

Error messages other than those
in the other error message
modules.

Input/output error messages.

IHEERO: Error messages for non-I/O ON
conditions.

IHEERP: Error messages for I/O ON
conditions.

IHEERT: -Multitasking error messages.

The error messages and their associated
ONCODES are described in IBM System/360
Operating System: PL/I (F) Programmer's
Guide.

All the PL/I-specified ON conditions
except I/O SIZE and I/O CONVERSION are
raised by compiled code to facilitate
reference by the error-handling
subroutines. Each ON condition has a code
number <internal to the library) consisting
of two hexadecimal digits. When an ON
condition is raised, the code associated
with it is placed in the error-handling
pseudo-register IHEQERR.

'64

There is an error message for each ON
condition. In some cases the condition
(e.g., CONVERSION) may have a group of
errors associated with it and has therefore
a group of messages. A complete list of
the internal error codes and their
associated messages is given in Appendix E.

PROGRAM INTERRUPTS

Fifteen possible program interrupts can
occur in System/360. seven of these are,
or may be, related to computational
conditions in PL/I <see Figure 28);
on-units may be specified for these
conditions. seven of the remaining eight
are treated as errors of a non-ON type; the
eighth one, significance is not handled.

r-------------------------T----------------1
I Program Interrupts I PL/I Conditions!
~------------------------+----------------~ I Fixed-point overflow I FIXEDOVERFLOW I
I Fixed-point divide I ZERODIVIDE I
I Decimal overflow I FIXEDOVERFLO~ I
I Decimal divide I ZERODIVIDE I
I Exponent overflow I OVERFLOw I
I Exponent underflow I UNDERFLOW I
I Floating-point divide I ZERODIVIDE I
L------------------------i----------------J
Figure 28. Program Interrupts and PL/I

Conditions

Because the user may specify on-units
for handling certain PL/I conditions, when
an interrupt occurs the PL/I program must
gain control to see if there is an on-unit
associated with that particular interrupt.
This is achieved by the GET PRV subroutine
in the IHESA module, which issues a SPIE
macro to:

1. Provide a program interrupt control
area (PICA). This is a six-byte area
<in IHESA) which contains the address
to which control is passed when an
interrupt occurs, and information on
the type of interrupt handled by
IHEERR.

2. cause the supervisor to create a
program interrupt element (PIE>. This
is a 32-byte area which contains the
PICA address and also a save area for
the old PSW and registers 14 to 2 when
an interrupt occurs.

IHURRA
- PROCR-AM - -

INHRRUPTS

SAVI ENVIRONMENT
(SllMUlATES

ANDLING
COMPL£Tf : SET
RESULTS IF
NECESSARY)

YES

- _f!!!_E~ll! __

ON CONDITIONS

NO

LINK TO IHUSH
'-----------------'l'-----------------------""1'---(LOADS MESSAGES

IHUARA
(ON-UNIT ENTRY)

ON·UNIT (EXITS
BACK TO PROGi 1----------..c

NO

GET NEXT DSA

NO

RETURN

YES

TES

YES

YES

YES

TERMINATION

IF SNAP LINK
TO IHUSN

RAISE FINISH
CONDITION

Figure 29. Flow through the Error Handling Routine (IBEERR)

INTO STORAGE)

SELECT
MESSAGE (SI TO
&E PRINTED

YES

RAIS! EllROR
CONDITION

RETURN

YES

NO

ltfTUltN

OETEllMINE
ON-TYPE FllOM
REG.RA

Chapter 6: Error and Interrupt Handling 65

0 3 4 7 8 31

r---T----T--------------------------------1 I I PM I A(Exit subroutine) I
L---~----~--------------------------------J
32 47

r----------------------1 I Interrupt Mask I
L----------------------J
Figure 30. Format of the Program Interrupt

Control Area (PICA)

Definitions of PICA fields:

PM: Program mask

A(Exit subroutine): Address of the entry
point in IHEERR to which control is to
be passed when one of the specified
interrupts occurs. This entry point
is IHEERRA.

Interrupt mask: Indicates to the supervisor
which interrupts are to be handled by
IHEERR. These interrupts are all the
fifteen possible ones except
significance.

0 7 8 31

r--------~-------------------------------1 I I A(PICA) I
~--------~--------------------------------i I OPSW(Bits 0-31) I
~---i I OPSW(Bits 32-63) I
~---i I Register 14 I
~---i I Register 15 I
~---i
I Register 0 I
~-----------------------------------~-----i I Register 1 I
~---i I Register 2 I
1---J Figure 31. Format of the Program Interrupt

Element (PIE)

Definitions of PIE fields:

A(PICA): Address of PICA, for supervisor
use

OPSW: contents of the old program status
word

Registers 14 to 2: contents of these
registers when an interrupt
occurs

on entry to IHEERRA, register RA
contains the address of PIE.

It is possible for another program
interrupt to occur before user corrective
action has been completed. IHEERR has to

66

guard against this eventuality when it
obtains control, otherwise the second
interrupt would cause the supervisor to
terminate the task. To avoid this, the
following method is used:

1. The PSW in PIE (the old PSW) is saved
in the LWE + x '70' area in library
workspace.

2. Bits 40 to 63 of the PSW in PIE are
changed to contain the address of the
appropriate entry point in IHEERR;
control is returned to the supervisor.

3. The supervisor assumes the interrupt
has been handled satisfactorily and
transfers control to the new address
in the PSW in PIE1 thus it enters
module IHEERR again.

Floating-point registers are saved in
the library communication area, and the old
PSW is inspected to find the cause of the
interrupt.

If a fixed-point or decimal overflow
interrupt is forced to occur, the SIZE
condition may be raised. Therefore when
one of these interrupts occurs, the
pseudo-register IHEQERR must be inspected
to see if the SIZE code has been set.
Similarly. if any of the divide interrupts
occurs. IHEQERR must be inspected to see if
the ZERODIVIDE code has been set. If it
has, the condition is disabled and control
returns to the point of interrupt.

Certain very unusual circumstances may
result in a program interrupt occurring
during the execution of IHEERR or of one of
the library modules called, or linked to,
from it. For example, if the program
destroys the PRV. or the DSA chain, or
parts of library workspace, then it is
likely that sooner or later a specification
or addressing interrupt will occur.

Under these circwnstances, the
programmer or systems engineer requires a
dump at the earliest opportunity. To
achieve this, and to prevent any attempt to
re-enter IHEERRA on account of the second
interrupt, a SPIE macro is issued every
time IHEERR is entered. This macro
provides that, in the event of an interrupt
occurring, IBEERR shall be entered at entry
point IBEERRE. Similarly, another SPIE
macro is issued at each exit point, to
restore IHEERRA as the normal entry point
for program interrupts during the execution
of compiled code and library routines.

When IHEERRE is entered, a message is
printed on the console and the program is
abnormally terminated, with a dump.

r-------T-~----------T---------,.---------1
I I IConditionl I
I Type I Condition !Prefixes I Default I
I I lpermittedlsituationl
~-------+-------------+---------+---------i
I I CONVERSION I I I
I I FIXEDOVERFLOW I I All I
I comput- I OVERFLOW I Yes I enabled I
I ational I SIZE I I except I
I I UNDERFLOW I I SIZE I
I I ZERODIVIDE I I I
~-------+-------------+---------+---------i
I List I AREA I No I Always I
I pro- I I I enabled I
lcessingl I I I
~-------+-------------+---------+---------i
I IENDFILE I I I
I I PENDING I I I
I IENDPAGE I I I
IInput/ IKEY I I Always I
I output I NAME I No I enabled I
I I RECORD I I I
I I TRANSMIT I I I
I I UNDEFINED FI LE I I I
~-------+-------------+---------+---------i
I Program I CHECK I I I
!check- f SUBSCRIPT- I Yes I Disabled!
I out I RANGE I I I
I I STRINGRANGE I I I
~-------+-------------+---------+---------i I Prog- I CONDITION I I Always I
trammer-1 I No I enabled I
!named I I I I
~-------+-------------+---------+---------i
I System I ERROR I No I Always I
faction !FINISH I I enabled I
L-------i-------------i---------.1.---------J
Figure 32. PL/I ON Conditions

ON CONDITIONS

The six classes of ON conditions defined in
PL/I are shown in Figure 32. To deal
satisfactorily with the situation when any
of these conditions arise, IHEERR must:

1. Recognize the condition.

2. See if it is enabled.

3. If so, see if there is an on-unit for
the condition.

4. If there is an on-unit, transfer
control to IHESARA, which, after doing
the necessary housekeeping, will
transfer control to the on-unit.

5. If no on-unit, take system action for
the condition.

6. Return to the interrupted program or
terminate, according to the provisions
of the PL/I language.

In order to carry out these operations
IHEERR needs:

1. Information passed when the error
condition arises.

2. Information set by compiled code in
the DSA for each procedure. A
t~o-word ON field is allocated in the
DSA for this purpose. (See Chapter
4.)

Action taken by compiled code in
preparation for the possibility of a
condition arising during execution is
summarized here.

Prolo~~~ The prologue allocates space in
the DSA for:

1. Every ON statement in the block.

2. Each ON condition disabled in the
block.

ON CHECK (identifier !, ••.... identifier n)
is interpreted as n ON statements.

For each of the occurrences given above,
the prologue stores information in the two
words in the DSA ON field:

1st word: Contains the error code for the
~~condition and the address of data

identifying the condition. This word
is called the search word comparator.
(See Figure 33.)

r----------------y------------------------1 I Type of ON I Contents of word I
I condition ~------T-----------------~
I IByte 11 Bytes 2 to 4 I
~----------------+------+-----------------i
I I/O I I A (DCLCB) I
~----------------~ ~-----------------~
I CONDITION I I A (CSECT) I
~----------------iError •-----------------i
!CHECK (label) I IA <symbol name & I
I !code I length) I
I CHECK <variable) I I A <symbol table) I
~----------------~ ·-----------------~ I Others I I Nothing stored I
L----------------~------i-----------------J Figure 33. Format of the Search Word

Comparator

2nd Word: Byte 1: Bits O, 1 and 4 are set
as follows:

Bit 0 = 0 Not the last ON field in the
DSA

= 1 Last ON field in the DSA

Chapter 6: Error and Interrupt Handling 67

Bit 1 1 Condition disabled

Bit 4 = 1 Dummy ON field

In the second word, either bit 1 or bit 4
is set to 1. (See 'Prefix Options',
below.)

ON Statement: When the ON statement is
executed, compiled code stores information
in the second word of the ON field:

Byte 1:

Bit 2 = 0 SNAP not required
= 1 SNAP required

Bit 3 = 0 Normal
= 1 system action required

Bit 4 = 0 No longer dummy

Bytes 2-4: A(on-unit)

Prefix options: An ON field for an ON
condition must be created by the prologue
whenever:

1. An ON statement is present in the
block.

2. An ON condition becomes disabled at
any time during the execution of the
block.

3. CHECK is enabled within the block.

This ON field is always set to dummy by the
prologue. It is also set to disabled if:

1. The condition is disabled by a prefix
option in the block-header statement.

2. The condition is disabled by default
and there is no enabling pref ix option
in the block-header statement, or
within the block. The exceptions to
this are CHECK, SIZE, STRINGRANGE, and
SUBSCRIPTRANGE, which are dealt with
as follows:

CHECK: No ON fields are created if
this condition is disabled by
default

SIZE, STRINGRANGE, and SUBSCRIPTRANGE:
If these conditions are disabled
by default, flags are set in the
flag byte of the DSA as follows:

SIZE: bit 7 = 0
STRINGRANGE bit 2 = 0
SUBSCRIPTRANGE: bit 4 = 0

Execution of an ON statement in the block
causes removal of the dummy flag and
insertion of the flags indicating the
action required. It does not remove the

68

disable flag if on. Execution of a REVERT
statement causes reinstatement of the dummy
flag.

During execution of the block, statements
may be executed which have disabling prefix
options in them. compiled code must be
inserted before and after the statements
to:

1. Set the disable flag before the
statement.

2. Restore the original flags after the
statement.

Similarly, to enable prefix options,
compiled code must:

1. Set the disable flag off before the
statement.

2. Restore the original flags after the
statement.

Pref ix options specified on outer blocks
carry down into internal blocks. The
implementation of these blocks should be as
if the option had been explicit in each of
them.

Action by the Librar!

When an ON condition arises during
execution, IBEERR gains control from one of
the following:

1. The supervisor

2. compiled code

3. Another library module

In case 1, the ON condition code
required is determined by inspection of the
program interrupt code in the old PSW. For
cases 2 and 3, the ON condition code is
passed in pseudo-register IHEQERR, except
for the CHECK and CONDITION conditions,
when a parameter list is used. From this
code and information passed in the calling
sequence, a search word is generated in
library workspace-Tn--af1 three cases: the
format of the search word is identical with
that of the search word comparator
(Figure 33).

When the search word has been created,
IHEERR initiates a s·earch through the chain
of DSAs to determine the action to be
taken. Each DSA is analyzed in turn, from
the end of the chain upwards towards the
beginning. The search proceeds as follows:

1. Bit 6 of the flag byte of the first
available DSA is tested to see if that
DSA contains any ON fields. Then:

a. No ON fields: If the DSA is the
current DSA and the condition is
SIZE, STRINGRANGE, or
SUBSCRIPTRANGE, the flag byte of
this DSA is examined to see if the
condition is disabled:

Disabled: the program returns to
the point of interrupt.

Not disabled: The DSA is ignored.

If the condition is CHECK, the
program returns to the point of
interrupt.

b. ON fields: The first word of each
ON field - the search word
comparator - is compared with the
search word to see if a match is
found. If a match is found, the
second word of the ON field in the
DSA is tested to see what action is
required.

2. If the last ON field is reached before
finding a match, then:

a. If the DSA is the current DSA and
the condition is SIZE, STRINGRANGE,
or SUBSCRIPTRANGE, the
corresponding flags in the DSA are
tested.

b. The error code is tested to see if
the condition is CHECK.

This may result in a return to the point
of interrupt. If not, the next DSA is
obtained and analyzed in the same way.

If a match has been found, then the
following tests are made:

1. Is the condition disabled by a pre~ix
option? (This test can only be
applied when the matching ON field is
contained in the current DSA.)

2.

Disabled: No further processing
in IHEERR; the program returns to
the point of interrupt.

Not disabled: Next test is made.

Is the matching ON field a dummy ON
field?

Dummy ON_field: The field is
ignored and the next DSA is
obtained.

No dumm~ON field: Next test is
made.

3. Is SNAP action required?

SNAP action ~equired: A summary
flow trace is written on the
system output file. This output
contains the ON-condition
abbreviation and trace-back
information identifying the
procedures in the chain. The
statement nunber may optionally
be included. Each procedure is
identified by chaining back
through the DSA chain until a
procedure DSA is found and then
using the contents of register BR
in the appropriate save area.
The search ends when the
chain-back reaches the external
save area. An example of this
output is given in IBM svstem/360
Operating System: PL/I (F)
Programmer's ~uide.

SNAP action not required: Proceed
normally.

In a multitasking program, when the
search word has been created, IHEERR calls
IHETER, which searches the ON fields of the
DSA in a similar manner to IHEERR. In the
absence of a matching ON field, the search
continues until the PRV VOA of the major
task is reached. If a subtask PRV VOA is
encountered during the search, any ON
fields that have been copied into it from
the DSA of the attaching task are also
checked. If a match is not found, the
search continues through the DSAs of the
attaching task.

System Action

System action means writing a message and
then either continuing or raising the ERROR
condition. It is performed if:

1. the system action flag is set in the
matching ON field, or

2. no matching ON field can be found in
the DSA chain.

If a match is found 1 and an on-unit
address is given, then, to guard against
the possibility of recursive use when
control returns from the on-unit by means
of a GO TO statement, a new block of
library workspace is obtained. This LWS is
added to the DSA chain as described in
'PL/I Object Program Management'. In order
to pass control to the on-unit, the

I recursion subroutine in IHESAP is called;
this establishes the correct environment
and then branches to the on-unit. Return
from the on-unit may be made in one of two
ways:

Chapter 6: Error and Interrupt Handling 69

1. On normal completion, control passes
to IHEERR, which returns to compiled
code at the point following the
instruction which caused the condition
to be raised.

2. Execution of a GO TO statement. In
this case the GO TO subroutine
(IHESAFC or IHETSAG) is entered to
carry out the housekeeping described
in Chapters 4 and 5.

STANDARD SYSTEM ACTION AND CONDITIONS OTHER
THAN ON ~ONDITIONS

If an ON condition is raised and there is
no matching ON field for the condition,
standard system action is taken. This
action is defined by the PL/I language.
Another set of error conditions can arise
at object time for which no specific ON
condition is defined in the language (e.g.,
logarithm of a negative number). In these
cases, implementation-defined system action
is taken.

An error message is printed when
PL/I-defined or implementation-defined
system action occurs. Then, depending on
the severity of the condition, either
processing continues or the ERROR condition
is raised. In a non-multitasking program,
or in a major task, raising the ERROR
condition generally leads to the FINISH
condition being raised and then to the
abnormal termination of the job step by the
ABEND macro. The exceptions to this are
when there is a GO TO statement in the
ERROR or FINISH unit. In a multitasking
program, if the ERROR condition is raised
in a subtask, instead of the FINISH
condition being raised, IHETSAZ is invoked.
(See 'Termination of a Task' in Chapter 5.)
A complete list of object-time error
messages, with details of the conditions
that cause them to be issued, is given in
IBM System/360 Oper~tinq __ System: ~- (F)
Programmer's Guide.

When the printing of an error message is
required, the appropriate modules of the
non-resident part of the error package are
dynamically loaded into storage. rhe seven
modules concerned are:

70

IHEERD, IHEERE, IHEERI, IHEERO, IHEERP,
IHEERT: The error message modules;
they contain the error message texts
together with tables to locate the
messag~s. Only the module containing
the required message is loaded.

IHEESM: Contains the code required to
print SNAP and system action messages.
This module is always required.

An action indicator is obtained during the
process to determine whether normal
processing should continue if the ERROR
condition is raised. The appropriate
action is taken when the message has been
printed as output.

BUILT-IN FUNCTIONS

The two built-in functions, ONLOC and
ONCODE, may only be used in an on-unit;
they provide environmental information
associated with the raising of the latest
ON condition.

An interrupt can occur that can cause entry
to the on-unit in which ONLOC is specified.
If this happens, the ONLOC built-in
function identifies the BCD name of the
entry point of the procedure in which the
interrupt occurs.

The address of this BCD name is compute3
by chaining back through the DSA chain
until the first procedure DSA is reached
and by using the contents of BR in the
appropriate save area. The length of this
name and the maximum length are foundi
these two lengths and the pointer to the
BCD name are inserted in the target SDV
whose address has been passed to ONLOC as a
parameter.

If ONLOC is specified outside an
on-unit, a null string is inserted in the
target sov.

ONCODE

The ONCODE built-in function picks up a
value from the WONC field in the library
communication area in LWS previously set by
IHEERR. This value is implementation-
def ined by the type of error that caused
the interruption. It may be specified in
any on-unit. If specified in an ERROR or
FINISH unit, the ONCODE will be that of the
error or condition that caused the ERROR or
FINISH unit to be entered.

If ONCODE is specified outside an
on-unit, a unique ONCODE value (0) is
returned. A list of ONCODEs and an
explanation of their use are given in IBM
System/360 Operating System: PL/I(F)
Programmer's Guide.

MODEL 91 AND MODEL 195 INTERRUPT HANDLING

Program interrupts occurring in code
executed on an IBM System/360 Model 91 or
Model 195 require different treatment from
that described above. This is necessary
because Models 91 and 195 are capable of
executing several instructions
concurrently: hence a situation may arise
in which several program exceptions may
occur before an interrupt is raised.

As soon as a single exception occurs,
Models 91 and 195 ensure that execution of
the instructions already decoded is
completed, and then raise an interrupt.
During execution of these instructions,
further exceptions may occur. If there are
no more instructions to be executed at the
time an exception occurred, then the
interrupt raised is known as a precise
interrupt: the PSW contains the address of
the instruction following that in which the
exception occurred.

If, however, further instructions were
executed, then the interrupt is known as an
imprecise interrupt: the PSW at
interrupt-time contains the address of the
next instruction to be executed, but this
is not necessarily the address of the
instruction following any of the exceptions
raiaed. The instructions causing the
exceptions cannot therefore be identified.
If there is more than one exception prior
to interrupt, then a multiple-exception
imprecise interrupt i$ said to have
occurred. Full details of Model 91 and
Model 195 operation and interrupt handling
are given in IBM System1'360 Model 91,
Functional Characteristics, Form A22-6907,
and IBM System/360 Model 195, Functional
Characteristics, Form A22-6943.

When an imprecise interrupt is raised,
therefore, Models 91 and 195 indicate the
situation by setting the interruption code
and the interruption length code in the PSW
as follows:

1. Recognition that an imprecise
interrupt has occurred: Bits 26-33 are
set to zero for Model 91 and bits
28-33 are set to zero for Model 195.

2. Identification of the type or types of
exception in the interrupt: For Model
91 bits 16-25, and for Model 195 bits
16-27 excluding bit 18 are set as
follows:

16
17
18
19
20
21
22
23
24
25
26
27

Model
91

Implementation

}
Model
195

Model
195

Type of Exception

Protection
Addressing
Specification
Data
Fixed-point overflow
Fixed-point divide
Exponent overflow
Exponent underflow
Significance •
Floating-point divide
Decimal overflow
Decimal divide

The Library module IHEM91 handles the
problems associated with imprecise
interrupts on Models 91 and 195. This
module is obtained by the user specifying
the OBJIN option as a parameter in the EXEC
statement: this creates an ESD entry that
results in IHEM91 being linkage-edited with
the Library error and interrupt module
IHEERR.

Initially, IHEERR tests bits 28-31 of
the PSw to determine if these bits are all
zero (i.e., if an imprecise interrupt
exists>:

1. All zero: Imprecise interrupt: control
is passed to IHEM91

2. Any bit non-zero: No imprecise
interrupt1 IHEERR handles the
situation in the normal way

On receiving .control, IHEM91 tests bits
16-27 excluding bit 24 to determine which
exceptions have occurred. All bits <except
significance) are tested, as more than one
type of exception can occur in an imprecise
interrupt. If the bit tested is on
<non-zero>, then:

1. Condition list: IHEM91 sets an entry
in a list of PL/I conditions and
program exceptions. The list is
stored in the LWE area of Library
workspace (LWS): an entry indicates
that the particular condition or
exception must be raised. The list
consists of from one to eight entries,
processed in the order:

Chapter 6: Error and Interrupt Handling 71

UNDERFLOW
FIXEDOVERFLOW or SIZE
OVERFLOW
ZERODIVIDE
Data exception
Specification exception
Addressing exception
Protection exception

Note: ZERODIVIDE is entered only once
in the list, even if
floating-point divide and
fixed-point divide both occur.
ZERODIVIDE will· be raised on
Model 195 if decimal divide
occurs. aence three exceptions
may result in one ZERODIVIDE on
Model 195. Significance is not
handled, as it is disabled in
all PL/I programs.
FIXEDOVERFLOW and SIZE cannot
both be raised since they are
raised by the same hardware
condition. FIXEDOVERFLOW may be
raised by fixed-point overflow
and decimal overflow on Model
195.

2. Interrupt count: The value in the
ONCOUNT field (WONC + 4) in the LCA is
incremented by 1. Thus the total
value in this field is the total
number of conditions or exceptions to
be raised. When a multiple-exception
imprecise interrupt does not exist
(because there are no exceptions or
only a single exception> the value in
the ONCOUNT field is zero.

IHEM91 then returns control to IHEERR in
order that each condition in the list can
be raised. As described above, a condition
can be handled in one of two ways:

1. By entering an ON-unit, with exit by
either:

a. A normal return
b. A GO TO statement

2. By system action

These rules have to be considerably
extended for handling a multiple-exception
imprecise interrupt:

1. ON unit for __ UNDERFLOW, FIXEDOVERFLOW,
SIZE, OVERFLOW _or ZERODIVIDE:

72

a. Normal return: Next entry in the
list is processed. If there are
no more entries to be processed,
then a return is made to the
address in the PSW.

b. GO TO statement: No more entries
in the list are processed, and no

2.

information indicating the nature
of these unprocessed entries is
given. However, the ONCOUNT
built-in function, when used in an
ON unit, will return the number of
entries remaining unprocessed.

a. For UNDERFLOW: When the error
message has been printed, the next
entry in the list is processed.

b. For FIXEDOVERFLOW, SIZE, OVERFLOW,
or ZERODIVIDE: No further entries
in the list are processed. If the
program terminates as an immediate
result of system action, messages
are printed to indicate the nature
of the unprocessed entries.

3. ERROR .raised for a data,
specification, addressing or
protection exception: No further
entries in the list are processed. If
the program terminates as an immediate
result of the system action, messages
are printed to indicate the nature of
the unprocessed entries.

In order to implement these rules,
IHEERR tests for a multiple-exception
imprecise interrupt after:

1. Return from an ON unit: If a
multiple-exception imprecise interrupt
exists, IHEM91 is entered at a second
entry point in order to:

a. Process the next entry

b. Reduce the ONCOUNT value by one

c. Return to IHEERR

2. Program termination caused by ERROR
condition: If a multiple-exception
imprecise interrupt exits, IHEM91 is
entered at a third entry point. The
condition list is processed in order
to print out a message for each entry
not handled at the time the program
terminated. Program termination is
completed when the list is exhausted.

ONCOUNT Built-in Fune~!~

The ONCOUNT built-in function returns a
non-zero value only when this function is
used in an ON unit entered as a result of a
multiple-exception imprecise interrupt in a
Model 91 or 195. In such a situation, the
binary integer returned is the number of
entries that remain unprocessed (including
the current one> at the time the ONCQUNT
function is used.

Flush Instructions

A program may not operate correctly on
Model 91 or 195 if it requires
identification of the instruction causing
an imprecise interrupt. Similarly, it may
not operate correctly if it requires that
an imprecise interrupt is honored before
some instruction later in the program is
executed. However, the unwanted effects of
imprecise interrupts can usually be
eliminated by placing 'flush' instructions
at certain points in the program. A
'flush' instruction is an Assembler
Language instruction of the form:

BCR x,O

where x is not equal to zero. An
instruction of this type is a no-operation
instruction for all of System/360, but it
is implemented in the Models 91 and 195 in
such a way that its execution is delayed
until all previously decoded instructions
have been executed.

If the OBJIN compiler option is
specified, flush instructions are generated
by the compiler at the following points in
the program:

1. Before every ON statement

2. Before every REVERT statement

3. Before code to set the SIZE condition

4. For every null statement

5. Before code to change pref ix options.

If both the OBJIN and the STMT options are
specified, the compiler generates a flush
instruction to precede every statement in
the program.

Model 91 and Model 195 Object-Time
Diagnostic Messages

If object-time diagnostic messages are
issued as a result of an imprecise
interrupt, the words •AT OFFSET ••• • are

replaced by "NEAR OFFSET ••• •. since in
these circumstances the instruction causing
the interrupt cannot be precisely
identified.

After a multiple-exception imprecise
interrupt on a Model 91 or 195, certain
exceptions will remain unprocessed if the
ERROR condition is raised before all the
exceptions have been handled. If the
program subsequently terminates as a direct
result of the ERROR condition being raised
in these circumstances, one or more of the
following messages will be printed out.

IHE810I

IHE811I

IHE812I

IHE813I

IHE814I

IHE815I

PROTECTION EXCEPTION
UNPROCESSED AFTER
MULTIPLE-EXCEPTION
IMPRECISE INTERRUPT

ADDRESSING EXCEPTION
UNPROCESSED AFTER
MULTIPLE-EXCEPTION
IMPRECISE INTERRUPT

SPECIFICATION EXCEPTION
UNPROCESSED AFTER
MULTIPLE-EXCEPTION
IMPRECISE INTERRUPT

DATA EXCEPTION UNPROCESSED
AFTER MULTIPLE-EXCEPTION
IMPRECISE INTERRUPT

ZERODIVIDE UNPROCESSED
AFTER MULTIPLE-EXCEPTION
IMPRECISE INTERRUPT

OVERFLOW UNPROCESSED AFTER
MULTIPLE-EXCEPTION
IMPRECISE INTERRUPT

Chapter 6: Error and Interrupt Handling 73

CHAPTER 7: MISCELLANEOUS CONTROL PROGRAM INI'ERFACES

one function of the PL/I Library is to
provide a standard interface with the
control program which can be utilized by
compiled code. Detailed implementation is
described in Chapters 3, 4, and 5. The
implementation described here concerns
support for PL/I language statements and
functions with a control program interface
that does not fall into one of the
categories discussed in those chapters.
These are the PL/I statements DISPLAY,
DELAY, STOP and EXIT, and the built-in
functions TIME and DATE.

Full and Minimum Control systems

The full control system of IBM System/360
Operating System will enable the PL/I
Library to issue macro instructions which
support the above-mentioned statements and
functions. The relationship is as follows:

Macro instruction

DELAY STIMER (WAIT)

TIME TIME

DATE TIME

DISPLAY WTO, WTOR (WAIT)

Thus, the library support for language
features is as follows:

DELAY: The execution of the current task
is suspended for the required time.

EXIT and STOP: Both these statements raise
the FINISH condition and then cause
normal termination of the PL/I program.

TIME: The time of day is returned to

74

the caller in the form HHMMSStht where:

HH = hours (24-hour clock)
MM =minutes
SS = seconds

tht = tenths, hundredths and
thousandths of a second

DATE: The date is returned to
the caller in the form YYMMDD where:

YY = year
MM = month
DD = day

,•

DISPLAY: A message may be written on the
console with no interruption in
execution or, if a reply is ~xpected,
execution is suspended until the
operator's reply is received. If the
EVENT option is used when a reply is
expected, execution is continued
without interruption until a
corresponding WAir statement is
encountered; execution is then
suspended until a reply is received.

The multiple console support (MCS)
feature is supported for PL/I usage by
means of the ROUTCDE and DESC <route code
and message descriptor) parameters of the
WTO macro instruction. This feature allows
the use of one Master console and up to 31
secondary consoles. The values provided
for ROUTCDE and DESC, in PL/I are:

DISPLAY

DISPLAY WITH REPLY

ROUTCDE = 2
DESC = 7

ROUTCDE
DESC

= 1
= 7

ERROR MESSAGES (if SYSPRINT not available)
ROUTCDE = 11
DESC = 7

The minimum contra\ system does not
support the TIME and STIMER macro
instructions. Use of the DELAY statement,
and TIME and DATE built-in functions will
result in the ERROR conditions being
raised.

I/O EDITING AND DATA CONVERSION

PL/I allows the user a wide choice in
selecting the representation for his data,
both on the external medium and internally
in storage; considerable flexibility is
permitted in specifying changes of data
type and form. The library conversion
package is designed to implement the full
set of editing and conversion functions.
To avoid unnecessary duplication of code,
standard intermediate forms are used. This
has the effect of reducing the number of
library modules in the package to about
fifty, to cover about two hundred logical
conversions. To speed up processing,
direct routines are provided for some of
the most frequently used conversions, while
the compiler generates in-line code for
some of the simpler ones.

To restrict further the storage
requirements for the library conversion
package, the F level compiler analyses the
actual changes of data required for a
particular execution. som~times these are
not fully known at compile time, and then a
worst case has to be taken. From this
information, by use of the linkage editor
LIBRARY statement and external references
within the compiled modules, the loading of
conversion modules is limited to those
known to be required. This technique can
be of considerable value, especially when
only a small number of data types is used
by the source programmer. Further details
are provided in IBM system/360 Operating
system: PL/I (F) compiler, Program Logic
Ma.!l!!Y.

With one exception, all the modules
contained within the library conversion
package are called by means of the PL/I
standard calling sequence (described in
'Linkage Conventions', Chapter 2). The
exception is IBEVCS <complex-to-string
director) which is called by the operating
system external standard calling sequence.

The letters in the module name indicate
the module usage; see Figure 34.

STRUCTURE OF LIBRARY CONVERSION PACKAGE

To perform a change from a source data item
to a target data item may involve a
succession of steps and the use of several
individual library modules within the

CHAPTER 8: DAT~_PROCESSING ROUTINES

package. The structure of the library
conversion package is shown in Figure 36.

In association with each individual
step, the attributes of the source or the
target fields, or of both, must be known.
The required information is provided in the
calling sequences. Each data item has a
corresponding format element descriptor
(FED) or data element descriptor (DED>.
With one exception, the formats of these
control blocks are described in Appendix H.
The exception is that of a DED generated at
object time for communication between
library modules. <see Figure 35.)

r------------------T----------------------1 I Letters I I
~------------------i I I 1 2 3 4 5 6 I Meaning I
~------------------+----------------------i I I H E D I Director I
~------------------+----------------------i I I H E K I Picture check I
~------------------+----------------------i I I H E V P I Conversion involving I
I I packed-decimal I
I I intermediate, except I
I I IHEVPG and IHEVPH I
~------------------+----------------------i I I H E v F I Conversion involving I
I I floating-point I
I I intermediate I
~------------------+----------------------i I I H E V K I Conversion involving I
I l numeric fields I
~------------------+----------------------i I I H E V s I conversion involving I
I I strings I
~------------------+----------------------i I I B E V c I Conversion involving I
I I external character I
I I data being converted I
I I to type string I
~------------------+----------------------i I I H E V Q I Direct conversion to I
I I improve performance I
~------------------+----------------------i I I H E u P I Mode conversions I
L------------------L----------------------J Figure 34. Module Usage indicated by

Letters of Module Name

This DED is created when it is necessary
to convert a character representation of an
arithmetic value to an intermediate coded
arithmetic data type, prior to conversion
to a string target. The form of this DED
is the same as that for a coded arithmetic
data item (CAD), and consists of a flag
byte and precision bytes representing the
quantities p and q. ~s for coded data, the

Chapter 8: Data Processing Routines 75

r------r--~-----------------------------------~----------------------------~----------,
I I Bit I I ~---------T---------r---------T _________ T _________ T _________ T _________ T---------~
I code I o I 1 I 2 I 3 I 4 I s I 6 I 1 I

~------+---------+---------+---------+---------+---------+---------+---------+---------~
I I I I Non- I I I I I I
I = 0 I 1 I 1 I sterling! Short I 1 I Decimal I Fixed I Real I

~------+---------+---------+---------+---------+---------+---------+---------+---------~
I = 1 I 1 I 1 I Sterling! Long I 1 I Binary I Float I Complex I

L------~---------~---------~---------L---------L---------~---------L---------~---------J
~ Bits O, 1 and 4 are always 1. The hexadecimal '10' superimposed on the OED flag

byte indicates the presence of a half~ord fixed point binary variable. Bit 3 is
set to 1 and bit 6 is set to O.

Figure 35. OED Flag Byte for Character Representation of an Arithmetic Data Item

flag byte defines the attributes of the
corresponding data item; bit 1 is set to 1
to indicate that a character representation
of an arithmetic value is referred to.

Directors

The structure chart makes frequent
reference to 'directors•. These modules
are used to fulfil two main purposes:

1. The matching of source element with
target element, which may not be known
at compile time.

2. The controlling of the flow at object
time by means of interpretative
information passed to them.

The latter function is best illustrated by
the arithmetic conversion director
(IBEDMAl, where a single call determines
the flow through a sub-package of over
twenty arithmetic conversion routines.
(See below in 'Arithmetic Conversions'.)

There are director routines at four
levels. (See Figure 36.) They are:

1. Complex format directors.

2. Input/output format directors and the
complex-to-string director.

3. String-to-arithmetic and
arithmetic-to-string directors.

4. Arithmetic conversion director.

All directors except the complex-to-string
director can be called directly from
compiled code; the complex-to-string
director is invoked from the complex format
directors or from list/data-directed input
only.

Any director can call any below it in
the structure.

76

Edit-directed transmission allows the user
to specify the storage area to which data
is to be assigned or from which data is to
be transmitted and the actual form of the
data on the external medium. The
information concerning storage areas is
specified in the source program by means of
a data list, and the information about the
form of the data on the external medium by
means of a format list.

The library conversion package is
designed to implement the executable format
scheme discussed in Chapter 3. This is
done by the object time matching of list
item and format item through the use of the
director routines mentioned above. The set
of I/O directors provided and their
association with the PL/I data format items
is sho~n in Figure 37.

I/O EDITING

Comelex Directors: Complex format items on
the external medium may have real and
imaginary parts of differing attributes.
When the list item and the taraet field are
of type arithmetic, this situation is
handled in the complex director by making
consecutive calls for real and imaginary
format items, and passing control to the
particular format director associated with
the format item.

When the target field is a string,
however, there are two problems with c
format items. First, the data on the
external medium must be scanned dynamically
in order to deduce the attributes of the
format item. The information derived from
this is stored in a special OED. (See
'Structure of Library Conversion Package'.)
This OED is necessary for the conversion of
all format items and constants.

r-------------1
I Compiled I

r-----------------T----------~ code ~----------T-----------------1
I I I I I
v L------y------J I I

r-------------, I I
I Complex I I I

r--~ format ~---------- ---------------->! I
I director I I I L------T ______ J I I

I I I
I I I
v v I

r-------------, r-------------,
I Complex- I !Input/Output I
I to-string I <---------~ format ~--------->
I director I 1 directors ~-1 L ______ T ______ J l------y------J I

I I I
<------ ---------!----------------- -----------------~ I

I I I
I v I I
I r-------------, I I
I I string<-> I I I
~--------->I arithmetic ~---------- --------1------->
I I directors ~---------- ------->I I L------T ______ J I
I I I

<------ ---------!-----------------~ I
I I I
I v v I
I r-------------, r-------------, I
I I Mode I I Decimal I I
•--------->I conversion I<--------- I constant<-> I I
I I routines I I arithmetic I I
I L------y------J L------T ______ J I
I I I<-------~

L---------1-----------------1----------------> I I
v I I v I

r-------------, I I r-------------, I
I Arithmetic I I I I Direct I I
I conversion l<---------i-----------------J I arithmetic I I
I director I I conversion I I L------T ______ J L-------------J I

I r-----------------i I
I I I I
v v v v

LWS
Level

No.

4

3

2

1

0

r-------------1 r-------------1 r-------------, r------------1
I Arithmetic I
I conversion I
I routines I

I · Data I I Picture I I String I
I analysis I
I routines I

I checking I
I routines I

I routines I 0
I I

L-------------J L-------------J L-------------J L------------J
Note: <-> indicates a conversion in either direction

Figure 36. Structure of the Conversion Package

Second, the base, scale and precision of
the real and imaginary parts have to be
compared, to determine the highest set of
attributes, so that the form of the
converted data in the string target may be
known. This is done by invoking a special
director, called the complex-to-string
director, which performs the necessary
analysis on the DEDs of the real and

imaginary parts of the C format item. Each
item is then converted by the rules of type
conversion to coded complex and then to
string.

Ineut/Output Directors1 The input/output
directors named above (other than c format)
perform three major functions. Because
there are slight differences between input

Chapter 8: Data Processing Routines 77

r------------------T----------------T-----------------1
I PL/I I I Module name I
I I ~--------T--------i I format item I Director I Input I Output I
~------------------+----------------+--------+--------i

Complex I c I IHEDIM. I IHEDOM
I I I

Fixed and
floating point

I FIE I IHEDIA I IHEDOA
I I I
I I I

Bit string I B I IHEDID I IHEDOD
I I I

Character string I A I IHEDIB I IHEDOB
I I I

Picture I P(DEC,STL) I IHEDIE I IHEDOE
I p (CHAR) I IHEDIB I IHEDOB

------------------L----------------L--------L--------Figure 37. Input/Output Directors for PL/I Format Items

r---1
I INPUT I
~----------------------T--------------------------T---------------------------------i I String value I List item I Conversion I
~----------------------+--------------------------+---------------------------------~ I I Arithmetic I Character to arithmetic I
I Character string I Character string I Character string assignment I
I I Bit string I Character to bit string I
~----------------------+--------------------------+---------------------------------i I I Arithmetic I Bit string to arithmetic I
I Bit string I Character string I Bit string to character string I
I I Bit string I Bit string assignment I
·----------------------+------------------------·--+---------------------------------i I Arithmetic I Arithmetic I Arithmetic type conversion I
I <including I Character string I Arithmetic to character string I
I expression) I Bit string I Arithmetic to bit string I
~-----------~----------L--------------------------L---------------------------------~ I OUTPUT I
~----------------------T--------------------------T---------------------------------~ I List item I String value I Conversion I
~----------------------+--------------------------+---------------------------------i I Arithmetic I Character representation I Arithmetic to character string I
I I of data value I I
~----------------------+--------------------------+---------------------------------i I Bit string I Bit string in character I Bit to character I
I I form I I
~----------------------+--------------------------+---------------------------------i I Character string I Character string I Character string assignment I
L----------------------L--------------------------L---------------------------------J Figure 38. Conversion for List/Data Directed I/O

and output, the functions are described
under these headings.

Input: A call is made to IHEIOD to request
w bytes and a data field pointer. If the w
bytes can be obtained from the current
buffer, the address returned to the input
director is that of the data field in the
buffer itself. If not, a VOA is obtained
and the requisite field of w bytes is built
up in the dynamic area. The VOA address is
stored in WSDV in the LCA.

These two conditions are normal. If, on
the other hand, an abnormal return occurs

78

at this point, this si~nif ies that an
ENDFILE condition exists and that a return
has been made from an ENDFILE on-unit. In
this case, the I/O director must return
control to the code associated with the
next PL/I source statement, which is
pointed at by the second word of
pseudo-register IHEQCFL.

If there is no abnormal return, the
target OED is inspected by the director
routine and the first stage of the
necessary conversion process is initiated
by means of a suitable call to a routine

below the input director level.
structure chart, Figure 36.)

<see

When the conversion has been completed
and the data item assigned to the list
item, the input director calls the I/O
package again. At this stage, the I/O
routine tests for the TRANSMIT condition,
and, if necessary, calls IHEERR, to specify
that the TRANSMIT condition is active, and
that the format item transmitted is
therefore suspect. In addition, any VOA
that has been allocated is freed.

output: A call is made to the library I/O
package to obtain an address for the
external data item. If the w bytes
specified can be satisfied within the
current buffer, the address of the current
buffer pointer is returned: if not, a VOA
is obtained and the address of this dynamic
storage is passed back. The source OED is
then inspected and a call is made to the
first subroutine in the conversion package
to perform conversion.

After assignment of the data item to a
buffer area or VOA, a call to the
appropriate I/O routine is made from the
output director. If a VOA was used, the
output field is split off into the
appropriate buffers and the dynamic storage
released.

For both input and output, control is
finally returned to compiled code.

List- and Data-directed Input/Output

The total set of conversions required by
list/data-directed I/O is shown in Figure
38.

Since all the conversions represented
deal with change of data from one internal
representation to another, the conversion
package is fully capable of performing the
conversion for list/data-directed I/O. The
type conversions are fully defined in the
PL/I language and the modules that
implement them are given below. Some
examples of list/data-directed I/O are
included in IBM svstem/360 Operating
System: PL/I CF> Programmer's Guide.

MODE CONVERSIONS

Since data may be declared COMPLEX, and
complex values may be written or read by
list-directed and data-directed input and
output, or by the C format item, two
routines are provided to facilitate

conversions of mode during I/O editing and
during conversions between internal
arithmetic and string data.

TYPE CONVERSIONS

Four director routines are provided to
control the flow which enables changes
between data of type string and data of
type arithmetic, as required by the PL/I
language. These.routines are used by
list-, edit- and data-directed I/O and in
some internal conversions.

r-----------T-----------------------------1 I I TO: I
I ~----------T------------------~ I IArithmeticl String I
I I ·--------T---------~ I I I Bit ICharacterj
·-----------+----------+--------+---------~ I FROM: I I I I
I I I I I
I Arithmetic! I IHEDNB I IHEDNC I
I I I I I
I Bit stringl IHEDBN I I I
I I I I I
I Character I IHEDCN I I I
1·string I I I I
L-----------L----------L--------L---------J Figure 39. Modules for Type Conversions

STRING CONVERSIONS

A set of generalized interpretive routines
is provided to support the possible string
conversions and assignments that may exist.
Each module interrogates source and target
information contained in the string dope
vectors and DEDs in order to handle
truncation, padding, and alignment for
fixed and varying strings. Fi9ure 40 shows
the modules provided: it should be noted
that there is no difference between a
source character string with a picture and
one without. as once the data has been
checked into the source field, no further
use is made of the picture.

r---------T-------------------------------1 I I TO: I
I ~------T---------T--------------~ I I Bit ICharacterlCharacter withl
I I I I picture I
~---------+------+---------+--------------~ I FROM: I I I I
I I I I I
I Bit I IHEVSA I IHEVSB I IHEVSF I
I I I I I
I Character I IBEVSD I IHEVSC I IHEVSE I
L---------i------L---------i--------------J Figure 40. Modules for String conversions

Chapter 8: Data Processing Routines 79

ARITHMETIC CONVERSIONS

A direct routine IHEVQA converts
floating-point data to fixed-point binary,
in order to provide fast processing of this
frequently used routine. Normally,
however, all conversions (including this
one> are dealt with by the library
conversion package.

This package carries out editing and
conversions for all type arithmetic source
fields which have type arithmetic target
fields. It also handles conversions of
format items and constants, which are
character representations of arithmetic
type data. The flow control through this
subpackage is achieved by the arithmetic
conversion director described below.

The method employed is to use an
intermediate form of representation
according to the form of the source data
and to relate this intermediate form to the
target data, either by direct conversion or
by use of a second intermediate form (which

implies radix change). The two
intermediate forms in use are:

1. Packed decimal intermediate (PDI)

This consists of 17 digits and a sign,
together with a one-word scale factor
(WSCF) in binary representing powers of
ten.

2. Long floating-point interw.ediate (FPI)

This is the standard internal form, and
consists of 14 hexadecimal digits.

The logical flow through the package is
shown in Figure 41.

The arithmetic conversion director
(IHEDMA) links together the modules
required for a particular arithmetic
conversion. It is called either directly
by compiled code or by other director
routines. The flag bytes in the source and
target DEDs are interrogated to determine
which modules are required for the current
conversion and their order of execution.

r---------1
IArithmeticl

r-------------------------------------~conversion~--------------------------------------1
I I director I I
I r------------1 L----------J r-------------1 I
I I Sterling I VKC I I I
~->!numeric fieldl<--------------1 r--------------i Binary l<--i
I I I VKG I I VPG I constant I I
I L-------------J I I L-------------J I
I I I I
I r-------------1 I I r-------------1 I
I I Decimal I VKB I I VPB I Binary I I
~->!numeric fieldl<--------------~ ~------------->! fixed l<--i
I I data I VKF I I VFD I data I I
I L-------------J I I L-------------J I
I v v I
I r-------------1 r--------------1 r--------------1 I
I I Decimal I VPF I Library I \TPA I Library I I
~->I fixed l<----->lpacked decimall<----->lfloating-pointl I
I I data I VPD I intermediate I VFA I intermediate I I I L_ ____________ J L ______________ J L ______________ J I

I A A I
I r------------1 I I r-------------1 I
I I F format I VPE I I VFC I Floating- I I
~->I character !<--------------~ ~------------->! point I<--~
I I string I VPB I I VFE I data I I I L_ ___________ J 1 I L-------------J I
I I I I
I r-------------1 I I r-------------1 I
I I E format I VPE I I I Bit string I I
L->I character l<--------------J L------------->I constant l<--J

I string I VPC VPH I I
L-------------J L-------------J

Note: The three-letter names, e.g., VKC, are the last three letters of the module name. A
name above the flow lines indicates a conversion from left to right; a name below
the line indicates a conversion from right to left.

Figure 41. Structure of the Arithmeric Conversion Package

80

The library communication area is used to
record information required by successive
modules as follows:

WBRl Address of entry point of second
module

WBR2 Address of entry point of third
module Cif required)

WRCD Target information

The conversion director then passes
control to the first module in the chain;
the first transfers control to the second,
and so on until the conversion is complete.
The last module returns to the program
which called the conversion director. All
the modules which can be first in the chain
set up by the conversion director use the
source parameters passed to this director.
The first conversion is always to the
intermediate form of the same radix as the
source. The results are stored in the
following I£A fields:

WINT Binary results

WINT Decimal results
WSCF

Three modules in the arithmetic package
deal with data on the external medium. Two
modules handle the output of F and E format
items from packed decimal intermediate
format, and the third provides conversion
from F or E format items to packed decimal
intermediate format. The LCA fields used
for these modules are:

WFED ACFED) at input

WFDT ACFED) at output

WSWA Switches
wswc

WOCH ACError character): for ONCHAR
built-in function

WOFD Dope vector for ONSOURCE built-in
function

DATA CHECKING AND ERROR HANDLING

Checking is carried out on data on the
external medium for edit-, data- and list
directed input and on internal data items
taking part in conversions.

All data described by a picture is matched
against the picture description. When a P
format item is read in, this checking is
performed by one of three picture check
routines (decimal, sterling, and character>
which is called by the appropriate input
director.

F/E format items are checked against the
format element descriptor CFED). The
validity of the characters in the data item
is investigated prior to conversion to
packed decimal intermediate format.

If B format items are assigned in the
target OED to a bit string, the items are
checked in the character-to-bit module.
Otherwise, a pre-scan within the B format
input director checks that all characters
in the string are either zero or one.

If A format or B format is specified on
input without a w specification, the
compiled code calls IHEDIL <illegal-input
format director). This routine calls the
execution error package, passing an error
code. This causes a message to be printed
and the ERROR condition to be raised.

List/Data-Directed

Within the conversion package, the
constants which are converted to arithmetic
are checked in the appropriate internal
conversion modules.

Decimal constants are converted by the
F/E-to-PDI routine and are therefore
checked by that routine as above.

Binary constants are checked prior to
conversion to floating-point intermediate.

Bit string constants are checked prior
to conversion to floating-point
intermediate.

Internal Conversions

Checking of data is provided for the
following:

1. Character string to arithmetic.

2. Character string to bit string.

3. Character string to pictured character
string.

Chapter 8: Data Processing Routines 81

4. Bit string to pictured character
string.

In cases 1 to 3 above, if an invalid
character is found the CONVERSION condition
is raised; in case 4, the ERROR condition
is raised.

When CONVERSION is raised, an error code
is passed to IHEERR. The error code passed
depends:

1. On the type of operation <internal,
IIO, or I/O with TRANSMIT condition
raised).

2. On the various formats and conversions
involved. These consist of:

F format
E format
B f onnat
Character string to arithmetic
Character string to bit string
Character string to pictured

character string
P format (decimal, character and

sterling)

Different ONCODE values are set for each,
and may be interrogated in an on-unit
provided for the CONVERSION condition. If
the condition is associated with I/O, it is
also possible that a TRANSMIT condition may
be active. This can be tested in the
on-unit for CONVERSION. A list of ONCODE
values is given in IBM System/360 Ope£ati~~
System: PL/I CF> Proqrammer's Guide.

The conversion package routines set the
following information before invoking the
execution error package:

82

WOFD Dope vector for field scanned

WOCH Address of character in error

IHEQERR Value of the error code. For
I/O editing, a 1 bit is set in
bit zero.

Bits 12 to 15 are set according
to the conversion being
performed. (See Figure 42.)

In addition to the occurrence
of the CONVERSION error, the
SIZE condition can also occur in
the conversion package. Once
again, a distinction is made
between internal conversions and
conversions involving the
external medium. In the latter
case, bit zero in IHEQERR is
again set to one.

r-----------------------------T-----------1
I Conversion I Code I
~-----------------------------+-----------~ F format 1

E format 2
B format 3
Character string to 4

arithmetic
Character string to 5

bit string
Character string to 6

pictured character string
P format (decimal) 7
P format (character) 8
P format (sterling) 9

-----------------------------~-----------
Figure 42. conversion Code Set in IHEQERR

In certain cases an illegal conversion
may be requested or an invalid parameter
may be passed to a conversion routine. In
these cases the conversion package calls
the error-handling subroutine, having set
register RA to point to an error code.
This causes a message to be printed which
describes the error found; the
error-handling subroutine then raises the
ERROR condition.

If a CONVERSION error occurs, the
program can proceed in three ways:

1. If system action is specified, a
message will be printed and the ERROR
condition raised.

2. If CONVERSION is disabled, the
conversion will continue, ignoring the
character in error.

3. If an on-unit exists, it will be
entered. If the on-unit returns
control to the conversion routines,
they will assume that either the
ONCHAR or ONSOURCE pseudo-variable has
been used to correct or replace the
character or field in error, and will
automatically retry the conversion.

Not~: If the pseudo-variables -have not
been used to correct the error, and if the
on-unit attempts to return control to the
conversion, a message will be printed and
the ERROR condition raised.

COMPUTATIONAL SUBROUTINES

Computational subroutines within the PL/I
Library supplement compiled code in the
implementation of operators and functions
within three main groups. These groups
are:

1. Arithmetic evaluation

2. Mathematical functions

3. Array functions

In addition to the description provided
in this document, detailed information on
algorithms and performance is published in
IBM System/360 Operating System: PL/I
Subroutine Library: Computational
subroutines.

A number of error and exceptional
conditions not directly covered by
PL/I-defined ON conditions may occur in
these subroutines. In these cases. a
diagnostic message is printed and the ERROR
condition raised.. By use of the ONCODE
built-in function, the cause of interrupt
may be ascertained in an ERROR unit and
appropriate action may be taken. A list of
the error messages and ONCODEs is given in
IBM system/360 Operating System: PL/I (F)
Proqrammer•s Guide.

When an aggregate of data items is being
processed, the indexing through the
aggregate is achieved by in-line code, as
the library routines generally handle
individual elements only. The array
functions, however,, perform their own
indexing, so that only a single call from
compiled code is made.

For modules handling data in coded form,
character six of the module name indicates
the type of data concerned; the meanings of
this character are given in Figure 43.

r-----------------T--------------~-----1 I Data I Character I
~--------+--------------~ I I R~~,
I Internal form I Real Complex Complex I
~-----------------+----------------------i I Binary I B U I
I Packed decimal I D V I
I Binary or I I
I packed decimal I F X I
I Short float I s W G I
I Long float I L Z H I
L------------------.L---------------------J Figure 43. Relationship of Data Form and

Sixth Character of Module Name

MATHEMATICAL FUNCTIONS

Ttte library provides subroutines to deal
with all float arithmetic generic functions
and has separate modules for short and long
precision real arguments, and also for
short and long precision complex arguments
where these are admissible.

Linkage to all mathematical subroutines
is by means of the operating system
standard.

Where evaluation or conversion of an
argument is necessary, this is done prior
to the invocation of the library module.
Hence, all arguments passed to the
mathematical subroutines must be of scale
FLOAT. As such, it is assumed that the
arguments are normalized in aligned
fullword or doubleword fields for short or
long precision respectively. The results
returned are normalized similarly.

r---1 I Real Arguments I
·-----------------------T--------T--------~ I I Short I Long I
I Function I float I float I
~-----------------------+--------+--------i I SQRT I IHESQS I IHESQL I
I EXP I IHEEXS I IHEEXL I
I LOG,LOG2,LOG10 I IHELNS I IHELNL I
I SIN, COS,SIND,COSD I IHESNS I IHESNL I
I TAN, TAND I IHETNS I IHETNL I
I ATAN, ATAND I IHEATS I IHEATL I
I SINH, COSH I IHESHS I IHESHL I
I TANH I IHETHS I IHETHL I
I ATANH I IHEHTS I IHEHTL I
I ERF, ERFC I IHEEFS I IHEEFL I
L--------------------.L--------.L-------J
r--1 I complex Arguments I
t----------------------~--------T--------~ I I Short I Long I
I Function I float I float I
·----------------------+--------+--------~ I SQRT I IHESQW I IHESQZ I
I EXP I IHEEXW I IHEEXZ I
I LOG I IHELNW I IHELNZ I
I SIN,COS,, SINH., COSH I IHESNW I IHESNZ I
I TAN, TANH I IHETNW I IHETNZ I
I ATAN, ATANH I IHEATW I IHEATZ I
L------------------.L-------.L------J Figure 44. Mathematical Functions

ARITHMETIC OPERATIONS AND FUNCTIONS

·Library arithmetic modules provide support
for all those arithmetic generic functions
and operations for which the F level
compiler neither generates in-line code nor
(as for the functions FIXED, FLOAT, BINARY,
and DECIMAL> uses the library conversion
package.

Linkage between compiled code and the
arithmetic modules is established by means
of the operating system standard for the
functions supported and by means of the
PL/I standard for the operators supported.
The module description summaries provide
information about linkage to individual
modules.

chapter 8: Data Processing Routines 83

Fixed-point data of ten require data
element descriptors (DEDs) to be passed in
order to convey information about precision
<p, q). Binary data is always assumed to
be stored in a fullword correctly aligned,
with 0 < p s 31. Decimal data is always
assumed to be packed in FLOOR (p/2) + 1
bytes, where O < p ~ 15. Where such fields
introduce high-order digits beyond the
specified precision, these digits must not
be significant.

In decimal routines, the target area is
assumed to be of the correct size to
accommodate the result precision as defined
by the language.

Where assignment to a smaller field is
required, the compiled code should generate
an intermediate field for the result and
subsequently make the assignment. This
does not apply to ADD, MULTIPLY and DIVIDE
with fixed-point decimal arquments, which
perform the assignment themselves. Such
action by compiled code avoids much

unnecessary object-time testing and enables
a clear distinction to be made between SIZE
and FIXEDOVERFLOW conditions.

Floating-point arguments are assumed to
be normalized in aligned fullword or
doubleword fields for short or long
precision respectively; the results
returned are similarly normalized.

ARRAY FUNCTIONS

The library provides support for compiled
code in the implementation of the PL/I
array built-in functions SUM, PROD, POLY,
ALL, and ANY. Calls to array function
modules are by means of the operating
system standard; the indexing routines,
which are used internally by the library,
use the PL/I standard calling sequence.

r---1 I ARITHMETIC OPERATIONS I
·---------------------------------------T--------T--------T--------T--------~
I Operation I Binary I Decimal! Short I Long I
I I fixed I fixed I float I float I
·---------------------------------------~--------~--------i--------~--------i
I Real Operations I
·---------------------------------------T--------T--------T--------T--------~ I Integer exponentiation: x••n I IHEXIB I IHEXID I IHEXIS I IHEXIL I
I General exponentiation: x••y I I I IHEXXS I IHEXXL I
I Shift-and-assign, Shift-and-load I I IHEAPD I I I ·---------------------------------------i ________ i ________ i ________ i--------i
I Complex Operations I
·---------------------------------------T--------T--------T--------T--------~ I Multiplication/division: z 1 *z2, z 1 /z2 I IHEMZU I IHEMZV I I I
I Multiplication: z1*z2 I I I IHEMZW I IHEMZZ I
I Division: z~/z2 I I I IHEDZW I IHEDZZ I
I Integer exponentiation: z••n I IHEXIU I IHEXIV I IHEXIW I IHEXIZ I
I General exponentiation: z1**z2 I I I IHEXXW I IHEXXZ I
L---------------------------------------L--------L--------L--------L--------J

r--1 I ARITHMETIC FUNCTIONS I
·---------~--------T--------T--------T--------i
I Function I Binary I Decimalf Short I Long I
I I fixed I fixed I float I fl3at I ·----------i ________ i ________ i ________ i ________ i
I Real Arguments I
·----------T--------~-------T--------T--------i
I MAX, MIN I IHEMXB I IHEMXD I IHEMXS I IHEMXL I
I ADD I - I !HEADD I - I - I
~----------i--------i--------i--------L--------~
I Complex Arguments I
·----------r--------~-------T--------T--------~
I ADD I I IHEADV I I I
I MULTIPLY I IHEMPU I IHEMPV I I I
I DIVIDE I IHEDVU I IHEDVV I I I
I ABS I IHEABU I IHEABV I IHEABW I IHE~BZ I L---------_i ________ i_ _______ i ________ i ________ J

Figure 45. Arithmetic Operations and Functions

84

r----------T------------------------~----------------------1 I I Simple arrays, and I Interleaved string I
I I interleaved arrays of I arrays with fixed- I
I I variable-length strings! length elements I
~----------+------------------------+----------------------~
I Indexers I IHEJXS I IHEJXI I
I ALL, ANY I IHENL1 I IHENL2 I

L----------4------------------------4----------------------J
~ IHEJXI is also used for indexing

through interleaved arithmetic arrays

r-------------~--------------------T---1
I PL/I I Fixed - point I Floating-point arguments I

I functions I arguments ~-------------------~--------------------~
I I I Short precision I Long precision I

\ t-;i;~1;-Ti~~;;1;;;;at-;i;~1;-Ti~~;;1;;;;at-;1;~1;-ri~;;;1;;;;a1
~--------------+--------+-----------+--------+-----------+--------+-----------~
I SUM real I IHESSF I IHESMF I IHESSG I IHESMG I IHESSH I IHESMH I

I Complex I IHESSX I IHESMX I IHESSG I IHESMG I IHESSH I IHESMH I

I I I I I I I I
I PROD real I IHEPSF I IHEPDF I IHEPSS I IHEPDS I IHEPSL I IHEPDL I

I complex I IHEPSX I IHEPDX I IHEPSW I IHEPDW I IHEPSZ I IHEPDZ I

I ~--------i-----------+--------~-----------+--------L-----------~
I POLY real I IBEYGF I IHEYGS I IHEYGL I
I complex I IHEYGX I IHEYGW I IHEYGZ I

L--------------4--------------------4--------------------4--------------------J
Figure 46. Array Indexers and Functions

In all cases, the source arguments are
arrays and the function value returned is a
scalar. The evaluation of this function
value requires only one call from compiled
code, indexing through the array being
handled internally within the library.

In the interests of efficiency, two sets
of modules are provided: those which deal
with arrays whose elements are stored
con~iguously <simple arrays>, and those
which also deal with arrays whose elements
are not in contiguous storage (interleaved
arrays>.

In order to deal with array element
addressing, the library modules require an
array dope vector (ADV or SADV) to be
passed as an argument. The format of these
dope vectors is described in Appendix H.
The number n, the number of dimensions of
the array, is required in addition to the
ADV or SADV, and is passed as a separate
argument.

The PL/I language requires that the
scalar values resulting from the use of the
array functions, SUM, PROD, and POLY,
should be floating-point. Since the
library modules are addressing each array
element successively, the necessary calls
to the conversion routines <to change scale
from FIXED to FLOAT) are made from the SUM,
PROD, and POLY modules which have
fixed-point arguments. In the case of ALL
and ANY functions, it is expected that any

necessary conversion to bit string will be
carried out before the library is invoked.

STRING SUBROUTINES

The library string package contains modules
for handling both bit and character
strings. Generally, individual modules
handle a particular function or operation
for bit or for character string; in the
interests of efficiency however, additional
modules are provided to deal with
byte-aligned data for some of the tit
string operations.

The functions LENGTH and UNSPEC are
handled directly by compiled code: support
for BIT and CHAR is provided in the library
conversion package.

Linkage to the string subroutines is by
means of the operating system standard for
the functions SUBSTR, INDEX and BOOL, and
by the PL/I standard for all others. The
functions REPEAT, HIGH, and LOW use the
PL/I standard as they are implemented as
entry points to the concatenation and
assign/fill routines.

The address and the maximum and current
lengths of a string are passed to library
modules by means of string dope vectors.
All string lengths supplied in SOVs are
assumed to be valid non-negative values;

Chapter 8: Data Processing Routines 85

unpredictable results will ensue if this
condition is not satisfied.

Conversions (e.g. of decimal integers
into binary integers for functions such as
REPEAT) and evaluation of expressions are
handled by the compiler, which is also
responsible for recognising instances of
byte-alignment which are suitable for the
byte-aligned bit functions provided.

The general design of the string package
is influenced by the concept that complete
evaluation of the right-hand side of an
assignment statement occurs before the
assignment. In this evaluation, there is
usually an intermediate stage in which a
partial result is placed in a field acting
as a temporary result field. This does not
prevent the compiler from optimizing by

providing the actual target field of the
assignment as the temporary result field,
subject to the following conditions:

1. If the target field is the same as a
field involved in expression
evaluation, an intermediate area is
required to develop the result <unless
otherwise stated in the module
description summaries). For example,
A= B II A requires an intermediate
field, but A = A & B does not.

2. Padding of fixed-length strings does
not occur automatically when a string
operation is performed, except in the
case of assignment of fixed-length
character strings and fixed-length
byte-aligned bit strings. Separate
routines are available for padding.

r------------T----------T-----------------------T---------1
I PL/I I PL/I I Bit String !Character!
I Operation I Function ~----------T------------~ String I
I I I General !Byte-aligned! I
~------------+----------+----------+------------+---------~

And I I Use BOOL I IHEBSA I
Or I I Use BOOL I IHEBSO I
Not I I Use BOOL I IHEBSN I
Concatenate! REPEAT I IHEBSK I I IHECSK
Compare I I IHEBSD I IHEBSC I IHECSC
Assign I I IHEBSK I IHEBSM I IHECSM
Fill I I IHEBSM I I IHECSM

I HIGH/LOW I I I IHECSM
I SUBSTR I IHEBSS I I IHECSS
I INDEX I IHEBSI I I IHECSI
I BOOL I IHEBSF I I

____________ ..._ _________ i __________ i------------~---------

Fi gure 47. String Operations and Functions

86

This section provides information about
individual modules of the PL/I Library. It
serves as an introduction to the more
detailed accounts given in the prefaces to
the program listings. A brief statement of
function is given; also provided are full
specifications of linkage and inter-modular
dependency. Since many library modules
invoke the execution error package
(IHEERR), no reference is made to this
module in the 'Calls' section. Appendix G
gives the lengths of the modules and
indicates their locations (SYSl.PLlLIB or
SYSl.LINKLIB) ..

CONTROL PROGRAM INTERFACES

The 'Calls' and 'Called by' sections
include the use of the LINK and XCTL macros
to pass control.

DATA PROCESSING

All integral values specified in the
'Linkage' section of the module description
will be represented internally as fullword
binary integers. Target fields will also
be fullwords unless otherwise specified or
implied (for example, for long
floating-point results>.

When FIXED data is passed to the
library, a DED is associated with it in the
linkage. In cases where the DED is not
interrogated, the appropriate entry in .the
'Linkage' section is marked with an
asterisk.

Complex arguments are assumed to have
real and imaginary parts stored next to
each other in that order, so that the
address of the real part suffices for both
of them. Both parts are described by the
same DED.

I/O Editing and Data.conversions

Target fields may, if desired, be
overlapped with source fields in all cases
except IHEVSA, IHEVSB, IHEVSC, IBEVSD,
IHEVSE, and IHEVSF.

CHAPTEB 9: MODULE SUMMARIES

Strings: A source string field may
coincide with a target string field in the
modules listed in Figure 48. It should be
noted that use of the same address for the
dope vectors of source string and target
string is not generally permitted, even
though the string fields themselves may be
overlapped. The exceptions to this are the
entry points IHEBS·KK and IHECSKK, where a
considerable saving of time can be obtained
by using the same address for both the
first source and target sovs.

r----------T------------------------------1 I I source/target coincidence I
I ·---------------T--------------~ I Module I First source IEither source I
I I field only I field I
·----------+---~----------+--------------~ I IHEBSA I Yes I I
I IHEBSO I I Yes I
I IHEBSK I Yes I I
I IHEBSM I Yes I I
I IHEBSF I I Yes I
I IHECSK I Yes I I
I IHECSM I Yes I I
L--~-------~---------------~--------------J
Figure 48. Coincidence of source and

Target Fields in some String
Modules

The first byte of the result produced by
the comparison modules IHEBSC, IHEBSD, and
IHECSC contains:

Contents

0 to 1 Instruction length code 01
2 to 3· Condition code as below
4 to 7 Program mask (calling routine)

The condition code is set as follows :

00 Strings equal

01 First string compares low at first
inequality

10 First string compares high at first
inequality

Arithmetic: Target fields may, if desired,
be overlapped with source fields in all
cases except IHEXIU, IHEXIV. IHEXIW,
IHEXIZ, IBEXXL and IHEXXS.

Mathematical: Target fields may, if
desired·. be overlapped with source fields
in all cases except IHEEFL, IBEEFS, IHELNW,
IHELNZ, IHESQW and IHESQZ.

Chapter 9: Module summaries 87

MODULE SUMMARIES

IHEABN

Entry point: IHEABND

Function:

Default module for system ABEND feature.
Sets function code in register 15.

Linkage:

None

Called by: IHEERR

IHEABU

Entry point: IHEABUO

Function:

ABS<z>, where z is complex fixed-point
binary.

Linkage:

RA: A(Parameter list>
Parameter list:

A(z)
•A <DED for z>
A(Target>

•A(Tarqet OED)

Called by: Compiled code

IHEABV

Entry point: IHEABVO

Function:

ABS(z), where z is complex fixed-point
decimal.

Linkage:

RA: A(Parameter list>
Parameter list:

A(z)
A<DED for z)
A(Target)
A(Target OED)

Called by: Compiled code

IHEABW

Calls: IHESQS

Entry point.: IHEABWO

Function:

88

ABS <z>, where z is complex short
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(z)
A(Target)

·called by: compiled code. IHESQW

IHEABZ

Calls: IHESQL

Entry point: IHEABZO

Function:

ABS(z), when z is complex long
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(z)
A(Target>

Called by: Compiled code. IBESQZ

I HEADD

Calls: IHEAPD

Entry point: IHEAOOO

Function:

ADO(x,y.p.q), where x and y are real
fixed-point decimal. and <p.q) is the
target precision.

Linkage:

RA: A(Parameter list>
Parameter list:

A<x>
A<DED for x>
A(y)
A<DED for y)
A(Target)
A(Target OED)

Called by: compiled code. IHEADV

IHEADV

Calls: !HEADD

Entry point: IBEADVO

Function:

ADD(w,z,p.q>. where wand z are complex
fixed-point decimal. and <p.q) is the
target precision.

Linkage:

RA: A(Parameter list>
Parameter list:

A(w)
A(DED for w)
A(z)
A<DED for z)
A(Target>
A(Target OED)

Called by: compiled code

IHEAPD

Calls: IBEERRB

Entry point IBEAPDA

Function:

To assign x to a target with precision
(p2 , q2>• where xis real fixed-point
decimal with precision (p1 , q1), and P1
s 31.

Linkage:

RA: A(x)
RB: A(DED for x)
RC: A(Target)
RD: A(DED for target)

Called by: !HEADD, IBEDVV, IBEMPV

Entry point_IHEAPDB

Function:

To convert x to precision (31,q2),

where x is real fixed-point decimal
with precision (p1 , q1), and p1 s 31.

Linkage: As for IBEAPDA

Called by: IHEADD, IBEDVV

IBEATL

Entry point IBEATLl

Function:

ATAN(x), where x is real long
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(x)
A(Target)

Called by: Compiled code

Entry point IHEATL2

Function:

ATAN(y,x>, where x and y are real long
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(y)
A(x)
A(Target)

Called by: compiled code, IBEATZ, IHELNZ

Entry point IHEATL3

Function:

ATAND(x), where xis real long
floating-point..

Linkage:

RA: A(Parameter list>
Parameter list:

A(x)
A(Target)

Called by: compiled code

Entry point IBEATL4

Function:

ATAND(y,x>, where x and y are real long
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(y)
A(x)
A(Target)

Called by: compiled code

I HEATS

Entry point IHEATSl

Function:

ATAN(x), where xis real short
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(x)
A(Target)

Called by: Compiled code

Chapter 9: Module summaries 89

Entry point IHEATS2

Function:

ATAN<y,x>, where x and y are real short
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(y)
A(x)
A(Target>

Called by: Compiled code, IHEATW, IHELNw

Entry point IBEATS3

Function:

ATAND<x>. where xis real short
floating-point.

Linkage:

RA: A(Parameter list>
Parameter list:

A(x)
A(Target>

Called by: compiled code

Entry point.IHEATS4

Function:

ATAND(y,x), where x and y are real
short floating-point.

Linkage:

RA: ACParameter list>
Parameter list:

A(y)
A(x)
A(Target>

Called by: compiled code

IBEATW

Calls: !HEATS, IHEHTS

Entry point IHEATWN

90

Function:

ATANCz>, where z is complex short
floating-point.

Linkage:

RA: ACParameter list>
Parameter list:

A(z)
A(Target)

Called by: compiled code

Entry ooint IBEATWH

Calls: IBEATs2. IBEBTS

Function:

ATANH(z), where z is complex short
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(z)
AC Target)

called by: Compiled code

IHEATZ

Calls: IHEATL,IBEBTL

Entry .?oint IBEATZN

Calls: IHEATL2, IHEBTL

Function:

ATAN(z), where z is complex long
floating-point.

Linkage:

RA: A (Parameter list)
Parameter list:

A (z)
A (Target)

Called by: Compiled code

Entry e.2i!!L!!!~

Calls: IHEATL2, IHEHETL

Function:

ATANH <z>, when z is complex long
floating-point.

Linkage:

RA: A (Parameter list)
Parameter list:

A (z)
A (Target)

Called by: compiled code

IHEBEG

calls:

Supervisor (LINK, GETMAIN, FREEMAIN),
IHETOM

Entry point IHEBEGA

Function:

Links to IHETOM to issue a WTO macro
instruction if the PRV is longer than
4096 bytes.

Linkage: None

Called by: IHESAP, IHETSA

Entry point IHEBEGN

Function:

Links to IHETOM to issue a WTO macro
instruction if the program does not
have a main procedure.

Linkage: None

Called by: IHESAP, IHETSA, IHEMAIN

IHEBSA

Entry point: IHEBSAO

Function:

AND operator (i) for two byte-aligned bit
strings.

Linkage:

RA: A(SDV of first operand)
RB: A(SDV of second operand)
RC: A(SDV of target field)

called by: compiled code

IHEBSC

Entry point: IHEBSCO

Function:

To compare two byte-aligned bit strings.

Linkage:

RA: A(SDV of first operand)
RB: A(SDV of second operand)
RC: A(Target)

Called by: compiled code

IHEBSD

Entry point: IHEBSDO

Function:

To compare two bit strings with any
alignment.

Linkage:

RA: A(SDV of first operand)
RB: A(SDV of second operand)
RC: A(Target)

Called by: Compiled code

Entry point: IHEBSFO

Function:

BOOL (Bit string, bit string, string n1
n2 n3 n't).

Linkage:

RA: A(Parameter list)
Parameter list:

A(SDV of first source string)
A(SDV of second source string)
A(Fullword containing bit pattern n1 n2

n 3 n4t right justified)
A(SDV of target field>

Called by: compiled code

IHEBSI

Entry point: IHEBSIO

Function:

INDEX (Bit string, bit string).

Linkage:

RA: A(Parameter list>
Parameter list:

A(SDV of first source string)
A(SDV of second source string)
A(Target field)

Called by: compiled code

IHEBSK

Entry point IHEBSKA

Function:

To assign a bit string to a target
field.

Linkage:

RA: A(SDV of source string>
RB: A(SDV of target field)

Called by: compiled code

Chapter 9: Module summaries 91

Entry point IHEBSKK

Function:

Concatenate operator <II> for bit
strings.

Linkage:

RA: A(SDV of first operand)
RB: A(SDV of second operand)
RC: A(SDV of target field)

Called by: Compiled code, IHESTGA

Entry point IHEBSKR

Function: REPEAT (Bit string,n>.

Linkage:

RA: A(SDV of source string)
RB: A(n)
RC: A(SDV of target field)

Called by: Compiled code

IHEBSM

Entry point IHEBSMF

Function:

To assign a byte-aligned bit string to
a byte-aligned fixed-length target.

Linkage:

RA: A(SDV of source string)
RB: A(SDV of target field)

Called by: Compiled code

Entry point IHEBSMV

Function:

To assign a byte-aligned bit string to
a byte-aligned VARYING target.

Linkage: As for IHEBSMF

Called by: Compiled code

Entry point l'HE BSMZ

92

Function:

To fill out a bit string from its
current length to its maximum length
with zero bits.

Linkage: RA: A(SDV)

Called by: Compiled code

IHEBSN

Entry point: IHEBSNO

Function:

NOT operator <1 > for a byte-aligned bit
string.

Linkage:

RA: A(SDV of operand)
RB: A(SDV of target field)

Called by: Compiled code

IHEBSO

Entry point: IHEBSOO

Function:

OR ·operator <I> for two byte-aligned bit
strings.

Linkage:

RA: A(SDV of first operand)
RB: A(SDV of second operand)
RC: A(SDV of target field)

Called by: Compiled code

IHEBSS

Entry point IHEESS2

Function:

To produce an sov describing the
pseudo-variable or function SUBSTR (Bit
string, i).

Linkage:

RA: A(Parameter list)
Parameter list:

A(SDV of source string)
A<i)
Dummy argument
A(Field for target SDV)

Called by: compiled code

Entry point IHEBSS3

Function:

To produce an sov describing the
pseudo-variable or £unction SUBSTR (Bit
string, i, j).

Linkage:

RA:A(Parameter list>
Parameter list:

A(SDV of source string)
A<i)

A(j)
A(Field for target SDV)

Called by: compiled code

IHEBST

Calls: IHEBSF. IHEBSI. IHEBSS

Entry point: IBEBSTA

Function: Translate bit string

Linkage:
RA: A(Parameter list>
Parameter list:

A(SOURCE/TARGET SDV)
A(REPIACEMENT SDV)
A(POSITIONAL SDV)

Called by: compiled code.

IBEBSV

Calls:

Entry point: IHEBSVA

Function: verify bit string

Linkage:
RA: A(Parameter list>
Parameter list:

A(El SDV)
A(E2 SDV)
A(Result field)

Called by: Compiled code.

IHECFA

Entry point: IBECFAA

Function:

ONLOC: Locates the BCD name of the
proced~re that contains the PL/I
interrupt that caused entry into the
current on-unit. If ONLOC is specified
outside an on-unit. a null string is
returned.

Linkage:

RA: A(Parameter list>
Parameter list: A(Target SDV)

Called by: compiled code

IHECFB

Entry point: IHECFBA

Function:

ONCODE: Returns a value corresponding to
the condition which caused the interrupt.

If specified outside an on-unit. a unique
code (0) is returned.

Linkage:

RA: A(Parameter list>
Parameter list:

A(4-byte word-aligned target)

Called by: compiled code

IHECFC

Entry point: IHECFCA

Function:

ONCOUNT: Returns a value equal to the
number of PL/I conditions and program
exceptions. including the current one.
that have yet to be processed. A zero
value is returned if:

1. ONCOUNT is used outside an ON unit,
or

2. ONCOUNT is used in an ON unit entered
because of a precise interrupt or a
single imprecise interrupt ·

(This built-in function is used in
connection with the Model 91 and 195
option>

Linkage:

RA: A(Parameter list>
Parameter list:

~(4-byte word-aligned target)

Called by: Compiled code

IBECRP

Calls: Supervisor

Entry point: IHECKPS

Function:

Requests the control program checkpoint
facility to save main storage areas and
control information so that the job
step may be restarted from the check
point.

Linkage:
IHECRPS:

RA: A(Parameter list)
Parameter list:

A(ddname SDV)
A(checkid SDV)
A(data set organization SDV)
A(Return code field)

Called by:

compiled code (CALL IBECKPS statement)

Chapter 9: Module summaries 93

Entry point: IHECKPT

Function: As for IHECKPS

Linkage: none

called by: compiled code (CALL IHECKPT
statement>

I·HECLT

calls:

IHESA, ·supervisor (CLOSE, DCBD, DELETE,
FREEMAIN, FREEPOOL, RETURN)

Entry point IHECLTA

Function:

Close files:

1. Free FCB.

2. Set file register to zero.

3. Remove file from IHEQFOP chain.

4. Delete interface modules loaded for
record-oriented I/O.

S. Purge outstanding I/O events,
setting event variables complete,
abnormal, and inactive.

Linkage:

RA: A(Parameter list)
Parameter list:

A(CLOSE parameter list>
A(Private adcons>

CLOSE parameter list:
A(DCLCB1)

(Reserved)
(Reserved)

A(DCLCBn)
(Reserved)
<Reserved)
<High-order byte of last argument
indicates end of parameter list>

Called by: IHEOCL

Entry point IHECLTB

94

Function:

To close all files when a task is
terndnated.

Linkage:

RA: A(Parameter list>
Parameter list:

F(number of files to be closed•4)
A(Adcon list>
A(lst FCB)

A(nth FCB)
(High-order byte of last argument
indicates end of parameter list.)

Called by: IHEOCL

IHECNT

Entry point IBECNTA

Function:

Returns count of scalar items
transmitted on last I/O operation.

Linkage:

RA: A(Parameter list>
Parameter list:

A(DCLCB)
A(Fullword)

Called by: Compiled code

Entry point IHECNTB

Function:

Returns current line number (LINENO).

Linkage: As for IHECNTA

Called by: compiled code

IBECSC

Entry point: IHECSCO

Function:

To compare two character strings.

Linkage:

RA: A(SDV of first operand)
RB: A(SDV of second operand>
RC: A(Target)

Called by: Compiled code

IHECSI

Entry point: IHECSIO

Function:

INDEX (Character string, character
string>.

Linkage:

RA: A(Parametet list>
Parameter list:

A(SDV of first source string>
A(SOV of second source string)
A(Target field)

Called by: Compiled code

IHECSK

Entry point IHECSKK

Function:

Concatenate operator <II> for character
strings.

Linkage:

RA: A(SDV of first operand)
RB: A(SDV of second operand)
RC: A(SDV of target field)

Called by: compiled code

Entry point IHECSKR

Function:

REPEAT (Character string, n).

Linkage:

RA: A(SDV of source string)
RB: A (n)
RC: A(SDV of target field)

Called by: compiled code

IHECSM

Entry point IHECSMF

Function:

To assign a character string to a
fixed-length target.

Linkage:

RA: A(SDV of source string)
RB: A(SDV of target field)

Called by: Compiled code

Entry point IHECSMV

Function:

To assign a character string to a
VARYING target.

Linkage: As for IHECSMF

Called by: Compiled code

Ent~oint IHECSMB

Function:

To fill out a character string from its
current length to its maximum length
1111ith blanks.

Linkage:

RA: A(SDV)

Called by: Compiled code

Entry point IHECSMH

Function: HIGH

Linkage: As for IHECSMB

called by: compiled code

Ent!:Y,_£oint IHECSML

Function: LOW.

Linkage: As for IHECSMB

Called by: compiled code

IHECSS

Ent~Qint IHECSS2

Function:

To produce an SDV describing the
pseudo-variable or function SUBSTR
(Character string, i).

Linkage:

RA: A(Parameter list)
Parameter list:

A(SDV of source string)
J)di)
Dummy argument
~(Field for target SDV)

Called by: compiled code

Ent~eoint IHECSS3

Function:

To produce an SDV describing the
pseudo-variable or function SUBSTR
(Character string, i, j>.

Linkage:

RA: A(Parameter list)
Parameter list:

A(SDV of source string)
A(i)

A(j)
A(Field for target SDV)

Chapter 9: Module summaries 95

Called by: compiled code

IHECST

Calls:

Entry point: -IHECSTA

Function:

Supplements translate character string

Linkage:

RA: A(Parameter list>
Parameter list:

A(SDV of SOURCE/TARGET)
A(SDV of REPLACEMENT)
A(SDV of POSITIONAL)
A(Translate table>

Called by: Compiled code.

IHECSV

Calls:

Entry point: IHECSVA

Function: Supplements verify character
string

Linkage: RA:A(Parameter list>
Parameter list:

A(E1 SDV)
A(E2 SDV)
A(Translate table>
ACResult field>

Called by: Compiled code.

IHECTT

Calls:

IHETSA, Supervisor (CLOSE, DCBD, DELETE,
DEQ, FREEMAIN, FREEPOOL, RETURN)

Entry point IHECTTA

Function:

96

Close files in a multitasking
environment:

1. Free FCB.

2. set file register to zero.

3. Remove file from IHEQFOP chain.

4. Delete interface modules loaded for
record-oriented I/O.

5. Purge outstanding I/O events,
setting event variables complete,
normal, and inactive.

<i> Check that the file is in
the IHEQFOP chain for the
current task.

(ii> Free IOCBs, setting
associated EVENT variables
complete, abnormal, and
inactive.

<iii> Set EVENT variables in TEVT
chain complete, abnormal,
and inactive.

(iv) For REGIONAL EXCLUSIVE
files, or INDEXED EXCLUSIVE
files with unblocked
records, dequeue locked
records and free EXCLUSIVE
blocks in the TXLV chain.

(V) For INDEXED EXCLUSIVE files
with blocked records, unlock
the files ..

Linkage:

RA: A(Parameter list>
Parameter list:

A(CLOSE parameter list>
A(Private adcons>

CLOSE parameter list:
ACDCLCB 1)

A(IDENT SDV1)/0
A(IDENT DE0 11)/0

A(DCLCBn)
A(IDENT SDVn)/0
A(IDENT DEDn)/0
(High-order byte of last argument
indicates end of parameter list>

Called by: IHEOCT

Entry point IHECTTB

Function:

To close all files when a task is
terminated.

Linkage:

RA: A(Pararneter list>
Parameter list:

F(number of files to be closed•4)
A(Adcon list>
A(1st FCB)

..
A(nth FCB)
(High-order byte of last argument
indicates end of parameter list>

Called by: IHEOCT

Entry point IHECTTC

Function:

Implicit close for tasks detached at
undetermined points.

Linkage: as for IHECTTB

Called by: IHEOCT

IHEDBN

Calls: IHEDMA, IHEUPA, IHEUPB

Entry point: IHEDBNA

Function:

To convert a bit string to an arithmetic
target with a specified base, scale,
mode, and precision.

Linkage:

RA: A(Source SDV)
RB: A(Source OED)
RC: A(Target)
RD: A(Target OED)

Called by:

Compiled code, IHEDOA, IHEDOE, IHEDOM

IHEDCN

Calls: IHEDMA, IHEUPA, IHEUPB, IHEVQB

Entry point IHEDCNA

Function:

To convert a character string
containing a valid arithmetic constant
or complex expression to an arithmetic
target with specified base, scale,
mode, and precision. The ONSOURCE
address is stored.

Linkage:

RA: A(Source SDV)
RB: A(SOurce OED)
RC: A(Target)
RD: A(Target OED)
WOFD: A(Source SDV)

Called by:

Compiled code, IHEDIB, IHEDOA, IHEDOE

Entry point IHEDCNB

Function:

As for IHEDCNA, but the ONSOURCE
address is not stored.

Linkage:

As for IHEDCNA, but without WOFD

Called by: As for IBEDCNA

I HEDDI

Calls:

IBEDDJ, IHEIOF, IHELDI, IHESAP, IHETSA

Entry point IHEDDIA

Function:

To read data from an input stream and
assign it to internal variables
according to symbol table information
conventions. Restrictive data list.

Linkage:

RA: A(Parameter list>
Parameter list:

ACSymbol table~>

A(Symbol tablen>
(High-order byte of last argument
indicates end of parameter list.)

Called by: compiled code

Entry point IHEDDIB

Function:

As for IHEDDIA, but no data list.

Linkage:

RA: A(Parameter list>
Parameter list: A(Symbol table chain)

Called by: compiled code

IHEDDJ

Entry point: IHEDDJA

Function:

To compute the address of an array
element from source subscripts and an
ADV.

Linkage:

RA: A(ADV)
RB: A(DED)
RC: A(Field for element address>
RD: A(Symbol table entry, 2nd part)
RE: A(SDV for subscripts)

Called by: IBEDDIA

Chapter 9: Module summaries 97

IHEDDO

Calls:

IHEDDP, IHEIOF, IHELDO, IHEPRT

Entry point IHEDDOA

Function:

To convert data according to
data-directed output conventions and to
write it onto an output stream. For
scalar variables and whole arrays.

Linkage:

RA: A(Parameter list>
Parameter list:

A(Symbol table entrys.>

A(Symbol table entryn>
(High-order byte of last argument
indicates end of parameter list.)

Called by: Compiled code

Entry point IHEDDOB

Function:

As for IHEDDOA but for array variable
elements.

Linkage:

RA: A(Parameter list>
Parameter list:

A(Symbol table entrys.>
A(Element addresss.>

A(Symbol table entryn>
A(Element addressn>
(High-order byte of last argument
indicates end of parameter list.>

Called by: Compiled code

Entry point IHEDOOC

Function:

98

To terminate data-directed transmiss
ion.

Linkage: None

Called by: Compiled code

Entry point IHEDDOD

Function:

As for IHEDDOA, but used to support the
CHECK condition.

Linkage:

RA: A(Parameter list)
Parameter list:

A(Symbol table entry>
A(Element address>

Called by: IHEERR, IHESAPA

Entry point IHEDDOE

Function:

In the absence of a data list, to
convert all data known within a block
according to data-directed output
conventions and to write it onto an
output stream.

Linkage:

RA: A(Parameter list)
Parameter list:

A(First symbol table entry)

Called by: Compiled code

IHEDDP

Entry point IHEDDPA

Function:

To prepare an array for subscript
output operation, and to address the
first element.

Linkage:

RA: A(Field for A(VOA))
RB: A(FCB)
RC: A(Symbol table entry, 2nd part)

Called by: !BEDDO, IHEDDT

Entry point IHEDDPB

Function: To perform subscript output.

Linkage:

RA: A(Parameter list)
Parameter list: A(VDA>

Called by: IHEDDO, IHEDDT

Entry point IHEDOPC

Function:

To address the next element.

Linkage:

RA: A(Parameter list>
Parameter list: A(VDA)
Return codes:

BR=O: Another element
BR=4: End of array

Called by: IHEDDO, IHEDDT

Entry point IHEDDPD

Function:

To prepare an array for subscript
output operation for a given element.

Linkage:

RA: A(Field for A(VDA))
RB: A(FCB)
RC: A(Syrnbol table entry, 2nd part>
RD: A(Elernent)

Called by: IHEDDO, IHEDDT

IHEDDT

Calls:

Supervisor (DEQ,ENQ), IHEDDP, IHEIOF,
IHELDO, IHEPTT

Entry pgint IHEDDTA

Function:

To convert data according to
data-directed output conventions and to
write it onto an output stream. For
scalar variables and whole arrays in a
multitasking environment.

Linkage:

RA: A(Parameter list)
Parameter list:

A(Symbol table entry 1 >

A(Symbol table entryn>
(High-order byte of last argument
indicates end of parameter list)

Called by: Compiled code

Entry point IHEDDTB

Function:

As for IHEDDTA but for array variab~e
elements.

Linkage:

RA: A(Parameter list>
Parameter list:

A(Symbol table entry.>
A(Element address,)

A(Symbol table entryn>
ACElement addressn>
(High-order byte of last argument
indicates end of parameter list>

Called by: Compiled code

Entry point IHEDDTC

Function:

To terminate data-directed transmission
in a multitasking environment.

Linkage: None

Called by: compiled code

Entry point IHEDDTD

Function:

As for IHEDDTA, but used to support the
CHECK condition in a multitasking
environment.

Linkage:

RA: A(Parameter list>
Parameter list:

A(Symbol table entry>
A(Element address)

Called by: IHEERR, IHETSA

Entry point IHEDDTE

Function:

In the absence of a data list, to convert
all data known within a block according
to data-directed output conventions and
to write it onto an output stream in a
multitasking environment.

Linkage:

RA: A(Parameter list)
Parameter list:

A(First symbol table entry>

Called by: Compiled code, IHEDDTA

IHEDIA

Calls:

IHEDMA, IHEDNB, IHEDNC, IHEIOD, IHEUPA,
IHEUPB, IHEVCA, IHEVQB, IHEVSA, IHEVSC

Chapter 9: Module Summaries 99

Entry point IHEDIAA

Function:

To direct the conversion of F format
data to an internal data type.

Linkage:

RA: A(Target or target dope vector>
RB: A(Target OED)
RC: A(FED)

Called by: Compiled code, IHEDIM

Entry pgint IHEDIAB

Function:

To direct the conversion of E format
data to an internal data type.

Linkage: As for IHEDIAA

Called by: As for IHEDIAA

IHEDIE

Calls:

IHEDCN, IHEIOD, IHEKCD, IHEVSC, IHEVSD,
IHEVSE

Entry point IHEDIBA

Function:

To direct the conversion of A format
data to an internal data type.

Linkage:

RA: ACTarget or target dope vector>
RB: A(Target DED)
RC: ACFED)

Called by: compiled code

Entry point IHEDIBB

Function:

To direct the conversion of pictured
character string data to an internal
data type.

Linkage: As for IHEDIBA

called by: Compiled code

IHEDID

Calls:

IHEDBN, IHEDMA, IHEIOD, IHEUPA, IHEUPB,
IHEVSC, IHEVSD, IHEVSE

100

Entry point: IHEDIDA

Function:

To direct the conversion of external B
format data to an internal data type.

Linkage:

RA: ACTarget or target dope vector)
RB: A(Target OED)
RC: A(FED)

Called by: Compiled code

IHEDIE

Calls:

IHEDMA, IHEDMB, IHEDMC, IHEIOD, IHEKCA,
IHEKCB, IHEUPA, IHEUPB, IHEVSC, IHEVSD,
IHEVSE

Entry point: IHEDIEA

Function:

To direct the conversion of external data
with a numeric picture format to an
internal data type.

Linkage:

RA: A(Target or target dope vector>
RB: A(Target OED)
RC: A(FED)

Called by: Compiled code, IHEDIM

IHEDIL

Entry point IHEDILA

Function:

To set up appropriate error handling
when no width specification for A
format input is given.

Linkage: None

Called by: compiled code

Entry point IHEDILB

Function:

As for IHEDILA, but B format

Linkage: None

Called by: Compiled code

IHEDIM

Calls:

IHEDIA, IHEDIE, IBEIOD, IHEKCA, IHEVCA,
IHEVCS

Entry point: IHEDIMA

Function:

To direct the conversion of external data
with c format to an internal data type.

Linkage:

RA: A(Target or target dope vector)
RB: A(Target OED)
RC: A(Real format director)
RD: A(Real FED)
RE: A(Imaginary format director)
RF: A(Imaginary FED)

Called by: Compiled code

IHEDMA

Transfers control to:

IHEVFD, IHEVFE, IBEVKB, IHEVKC, IBEVPE,
IHEVPF, IHEVPG, IHEVPH

Entry point: IHEDMAA

Function:

To set up the intermodular flow to effect
conversion from one arithmetic data type
to another.

Linkage:

RA: A(Source)
RB: A(Source OED)
RC: A(Target)
RD: A(Tarqet OED)

called by:

Compiled code, I/O directors, IHEDBN,
IHEDCN, IHEDNB, IHEDNC, IHELDI, IHEPDF,
IHEPDX, IHEPSF, IHEPSX, IHESMF, IHESMX,
IHESSF, IHESSX, IHEUPB, IBEVCS, IHEVFA,
IHEVFB, IHEVFC, IBEVPA, IHEVPB, IHEVPC,
IHEVPD, IHEVKF, IHEVKG, IHEYGF, IHEYGX

IHEDNB

Calls: IHEI»m, IHEVSA

Entry point: IHEDNBA

Function:

To convert an arithmetic source with
spec~f~ed base, scale, mode, and
precision to a fixed-length bit string or
a VARYING bit string of specified length.

Linkage:

RA: A(Source>
RB: A(Source OED)
RC: A(Target SDV)
RD: A(Target DED)

Called by:

Compiled code, IHEDI, IHEDIE, IHEDOD,
IHEVCS

IHEDNC

Calls:

IHEDMA, IHEUPA, IHEVQC. IHEVSC, IHEVSE

Entry point: IHEDNCA

Function:

To convert an arithmetic source of
specified base, scale, mode, and
precision to a character string or a
pictured character string.

Linkage:

RA: A(Source>
RB: A(Source OED)
RC: A(Target SDV)
RD: A(Target OED)

Called by:

Compiled code, IHEDIA, IHEDIE, IHEDOA,
IHEDOB, IHELDI, IHELDO, IHEVCS

IHEDOA

Calls:

IHEDBN, IHEDCN, IHEDMA, IHEIOD, IHEVQC

Ent~oint IHEDOAA

Function:

To direct the conversion of internal
data to external F format.

Linkage:

RA: A(Source or source dope vector)
RB: A(Source OED)
RC: A(FED)

called by: Compiled code

Entry point IHEDOAB

Function:

To direct the conversion of internal
data to external E format.

Chapter 9: Module summaries 101

Linkage: As for IHEDOAA

Called by: As for IHEDOAA

~

IHEDOB

calls:

IHEDNC, IHEIOD, IHEVSB, IHEVSC, IHEVSE,
IHEVSF

Entry point IHEDOBA

Function:

To direct the conversion of internal
data to external A(w) format.

Linkage:

RA: A(SOurce or source dope vector>
RB: A(SOurce OED)
RC: A(FED)

called by: compiled code

Entry point IHEDOBB

Function:

To direct the conversion of internal
data to external A format.

Linkage:

RA: A(SOurce or source dope vector>
RB: A(SOurce OED)

Called by: Compiled code

Entry point IHEDOBC

Function:

To direct the conversion of internal
data to external pictured character
format.

Linkage: As for IHEDOBA

Called by: compiled code

IHEDOD

Calls: IHEDNB, IHEIOD, IHEVSB, IHEVSC

Entry point IHEDODA

Function:

102

To direct the conversion of internal
data to external B(w) format.

Linkage:

RA: A(Source or source dope vector>
RB: A(Source OED)
RC: A(FED)

Called by: compiled code

Function:

To direct the conversion of internal
data to external B format.

Linkage:

RA: A(Source or source dope vector>
RB: A(Source OED)

Called by: Compiled code

I HE DOE

Calls:

IHEDBN, IHEDCN, IHEDMA, IHEIOD, IHEVSB

Entry point: IHEDOEA

Function:

To direct the conversion of internal data
to external data with a numeric picture
format.

Linkage:

RA: A(Source or source dope vector)
RB: A(Source OED)
RC: A(FED)

Called by: Compiled code, IHEDOM

IH~DOM

calls:

IHEDBN, IHEUPA, IHEUPB, IHEVCA, IHEVCS

Entry point: IHEDOMA

Function:

To direct the conversion of an internal
data type to external c format data.

Linkage:

RA: AC Source or source dope vector>
RB: A(Source OED)
RC: A(Real format director>
RD: A(Real FED)
RE: A(Imaginary format director>
RF: A(Imaginary FED)

Called by: compiled code

IHEDSP

Calls: Supervisor (WAIT, WTO, WTOR,
GETMAIN, POST, FREEMAIN, CHAP)

Ent.ry point.: IREDSPA

Function:

To write a message on the operator's
console, with or without a reply. The
EVENT option can be used for a message
with a reply.

Linkage:

RA: A<Parameter list>
Parameter list:

A(SDV for message>
A(SDV for reply)
A(Event variable>

<The parameter list is either one,
t.wo, or three elements long,
depending on the use of the REPLY and
EVENT options. The high-order byte
of the last argument indicates the
end of the parameter list..>

called by: Compiled code

I BED UM

calls:

Supervisor (ABEND, LINR, POST, SNAP,
WAIT), IHEQMA, IHESAFQ IHETSA, IHEZZC

Entry point IHEDUMC

Function:

Dump current task and then continue
execution.

Linkage:

RA: A(Parameter list>
Parameter list:

F<Number in range 0 through 255)

Called by: Compiled code (CALL IHEDUMC
statement>

Entry point IHEDUMJ

Function:

Dump all tasks and then continue
execution.

Linkage: As IBEDUMC

Called by: Compiled code (CALL IHEDUMJ
st.atement>

~~oint. IHEDUMP

Function:

Dump all tasks and terminate major
task.

Linkage: As IHEDUMC

Called by: Compiled code (CALL IHEDUMP
statement>

Entry point IHEDUMT

Function:

Dump current task and then terminate
it.

Linkage: As IHEDUMC

Called by: Compiled code (CALL IHEDUMT
statement>

IHEDVU

Entry point: IHEDVUO

Function:

DIVIDE(w,z,p,q), where wand z are
complex fixed-point binary, and <p,q> is
the target precision.

Linkage:

RA: A(Parameter list>
Parameter list:

A(W)
A(DED for w)
A(z)
A(DED for z)
A(Target)
A(DED for target>

Called by : compiled code

IHEDW

Calls: IHEAPD

Entry point: IHEDWO

Function:

DIVIDE<w,z,p,q>, where wand z are
complex fixed-point decimal, and Cp,q) is
the target. precision.

Chapter 9: Module Summaries 103

Linkage:

RA: A(Parameter list>
Parameter list:

A(w)
A(DED for w>
A(z)
A(DED for z)
A(Target>
A(DED for target)

Called by: Compiled code

IHEDZW

Entry point: IHEDZWO

Function:

z1/z 2 , where z1 and z 2 are complex short
floating-point.

Linkage:

RA: A<z1>
RB: A<za>
RC: A(Target)

Called by: Compiled code

IHEDZZ

Entry point: IHEDZZO

Function:

z1/z 2 , where z 1 and z 2 are complex long
floating-point.

Linkage:

RA: A(z1>
RB: A(za>
RC: A(Target)

Called by: Compiled code

I HEE FL

Calls: IHEEXL

Entry point IHEEFLF

Function:

ERF<x>. where x is real long
floating-point.

Linka9e:

RA: A(Parameter list}
Parameter list:

A(x)
A(Target)

called by: compiled code

104

Entry point IHEEFLC

Function:

ERFC(x), where xis real long
floating-point.

Linkage: As for IHEEFLF

Called by: compiled code

!!mEF~

Calls: IHEEXS

Entry eoint IHEEFSF

Function:

ERF(x), where xis real short
floating-point.

Linkage:

RA: A(Parameter list>
Parameter list:

A(x)
A(Target)

Called by: compiled code

Ent~Qint IHEEFSC

Function:

ERFC(x), where xis real short
floating-point.

Linkage: As for IHEEFSF

Called by: compiled code

I HE ERO

Function:

Non-resident part of the error-handling
routines. It contains the
data-processing error messages. and when
required is dynamically loaded from
IHEESM (Versions 3 and 4).

Function:

Non-resident part of the error-handling
routines. It contains the input/output
error messages, and when required is
dynamically loaded from IHEESM (Versions
3 and 4).

Function:

Non-resident part of the error-handling
routines. It contains the remaining

error messages. that is. those not
contained in IHEERD. IHEERE. IBEERO and
IHEERP. and when required is dynamically
loaded from IHEESM (Versions 3 and 4).

I HEERN

Function:

Non-resident part of the error package.
It contains the error messages. and is
dynamically loaded as required by IHEERR
<~~rsion 1) or IBEESS <version 2).

IHEERO

Function:

Non-resident part of the error-handling
routines. It contains the error
messages. and when required is
dynamically loaded from IHEESM (Versions
3 and 4).

IHEERP

Function:

Non-resident part of the error-handling
routines. It contains the error
messages. and when required is
dynamically loaded from IHEESM (Versions
3 and 4).

IHEERR

calls:

Supervisor (LINK, SPIE), IHEDDO. IHEDDT.
!HEERS (Version 1), IHEESM. IHEESS
(Version 2>. IHEM91. IHEPRT, IHEPTT.
IHESAP, !HETER, IHETSA
IHEERRE calls: LINK. ABEND with DUMP and
STEP options

Entry point IHEERRA (Program Interrupt):

Function:

To determine the identity of the error or
condition that has been raised, and to
determine what action must be taken on
account of it. several courses of action
are possible. including combinations of:

(1) Entry into an on-unit
(2) SNAP
(3) No action - return to program
(4) Print error message and terminate
(5) Print error message and continue
(6) Set standard results into float

registers
(7) Branches to IHEM91 for imprecise

interrrupts.

Linkage: None

Called by: supervisor

Entry point IBEERRB (ON Conditions):

Function: As for IBEERRA.

Linkage:

RA: A(DCLCB)(for I/O conditions>
IBEQERR: Error code

called by: compiled code. library modules

Entry point IBEERRC (Non-ON errors>:

Function: As for IBEERRA.

Linkage:

RA: A(TWO-byte error code)
A(Four-byte code if source program

error>

Called by: compiled code. library modules

Entry.point IBEERRD (CBECX, CONDITION):

Function: As for IBEERRA.

Linkage:

RA: A(Parameter list)
Parameter list:

One-byte error code
Three-byte A< x>
X: Symbol table

X: Symbol table (CHECK variable>. or
Symbol length and name(CBECK label>,
or
Identifying CSECT(CONDITION)

Called by: compiled code

Entry point IHEERRE

Function:

To accept control when a program
interrupt occurs in IBEERR or in
modules that IHEERR calls or links to1
to link to IBETOM to write a disaster
message on the console1 to ternd.nate
the program and to provide an operating
system ABDUMP.

Linkage: None

Called by: supervisor

I BEERS

Entry point: IHEERSA

Function:

SNAP: To determine and record the
location of the point of interrupt and to
print the procedure trace-back
information associated with it.

Chapter 9: Module sumnaries 105

Linkage:

RA: A(Third word of a library VOA to
be used as a save area and message
buffer>: words 21 to 23 of the VOA
are used to pass the following
parameters:
21: A(Interrupt VDA)/0
22: A(PRINT routine)
23: A<Current DSA)

Called by: IHEERR (Version 1)

IHEERT

Function:

Non-resident part of the error-handling
routines. It contains the multitasking
error messages, and is dynamically loaded
when required from IHEESM or IBETEX
(Version 4).

IHEESM

Calls:

Supervisor (DELETE, DEQ, ENQ, LOAD),
IHEERD, IHEERE, IHEERI, IHEERO, IHEERP,
IHEERT, IHEPRT, IHEPTT, IHESAP, IHETSA

Entry point IHEESMA

Function:

To print out SNAP and system action
messages.

Linkage:

RA: A(First word of a library VOA to be
used as a save area and message
buffer>

RB: A(CUrrent DSA)

Also passed are:
A(IHEPTTB) or A(IHEPRTB): current LWE

+ 124
A(IHETSAL) or A(IHESADE): current LwE

+ 128
A(IHETSAF) or A(IHESAFD): current LwE

+ 132
Length of PRV: current LWE+102

Called by: IHEERR (Versions 3 and 4)

Entry point IHEESMB

Function:

106

To print CHECK (label> system action
messages.

Linkage:

RA: A(Label)
RB: A(Length of label)

Also passed:
A(IHEPTl'B) or A(IBEPRTB): current LWE

+ 124

Called by: IHEERR (Versions 3 and 4)

I HEE SS

Calls: IHEERN, IBEPRT, IBESAP, IHETSA

Entry point IBEESSA

Function:

To print out SNAP and system action
messages.

Linkage:

RA: A(First word of a library VOA to be
used as a save area and message
buffer>

Also passed are:
A(Interrupt VDA/0):
A(Current DSA):
A(IBESADE):
A(IHESAFE):
A(IHEPRT):

current LWE + 96
current LWE + 100
current LWE + 104
current LWE + 108
current LWE + 112

Called by: IHEERR (Version 2)

Entry point IHEESSB

Function:

,·

To print CHECK (label) system action
messages.

Linkage:

RA: A(Label)
A(Length of label)

Also passed:

A(IBEPRTB): current LWE + 112

Called by: IHEERR (Version 2)

IBEEXL

Entry point: IHEEXLO

Function:

EXP(x), where xis real long
floating-point.

Linkage:

RA: A(Parameter list>
Parameter list:

A(x)
ACTarget)

called by:

Compiled code, IHEEFL, IHEEXZ, IHESHL,
IHESNZ, IHETHL, IHEXXL

IHEEXS

Entry point: IHEEXSO

Function:

EXP<x>, where xis real short
floating-point.

Linkage:

RA: A(Parameter list>
Parameter list:

A(X)
A (Target)

Called by:

Compiled code, IHEEFS, IHEEXW, IHESHS,
IHESNW, IHETHS, IHEXXS

IHEEXW

Calls: IHEEXS, IHESNS

Entry point: IHEEXWO

Function:

EXP<z>, where z is complex short
floating-point.

Linkage:

RA: A(Parameter list>
Parameter list:

A(z)
A (Target)

Called by: compiled code, IHEXXW

IHEEXZ

Calls: IHEEXL, IHESNL

Entry point: IHEEXZO

Function:

EXP(z), where z is complex long
floating-point.

Linkage:

RA: A<Parameter list>
Parameter list:

A(z)
A(Target>

Called by: Compiled code, IHEXXZ

IHEHTL

Calls: IHELNL

Entry point: IHEHTLO

Function:

ATANH(x), where xis real long
floating-point.

Linkage:

RA: A(Parameter list>
Parameter list:

A(x)
A(Target>

Called by: compiled code, IHEATZ

IHEHTS

Calls: IHELNS

Entry point: IHEHTSO

Function:

ATANH<x>, where xis real short
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(x)
A(Target>

Called by: compiled code. IHEATW

I HE I BT

This module is used in a multitasking
environment and is equivalent to module
IHEIOB in a non-multitasking environment.

Calls:

supervisor (DEQ,ENQ), IHEIOP, IHEOCT

Chapter 9: Module Summaries 107

Entry point IHEIBTA

Function:

To initialize the PUT operation, and to
check the file status, in a
multitasking environment:

1. Open
2. Transmit error
3. Invalid

Linkage:

RA: A(Parameter list)
Parameter list:

A(DCLCB)
A(Abnormal return>

Called ty: compiled code

Entry point IHEIBTB

Function:

To initialize PUT, and perform PAGE,
and to check the file status, in a
multitasking environm~nt:

1. Open_
2. Transmit error
3. Invalid

Linkage: As for IHEIBTA

Called by: Compiled code

Entry point IHEIBTC

Function:

To initialize PUT, and perform SKIP,
and to check the file status, in a
multitasking environment:

1. Open
2. Transmit error
3. Invalid

Linkage:

RA: A(Parameter list>
Parameter list:

A(DCLCB)
A(Abnormal return>
A<Expression value>

Called by: Compiled code

Entry point IHEIBTD

Function:

108

To initialize PUT, and perform LINE,
and to check the file status, in a
multitasking environment:

1. Open
2. Transmit error
3. Invalid

Linkage: As for IHEIBTC

Called by: compiled code

Entry point IHEIBTE

Function:

To initialize PUT, and perform PAGE and
LINE, and to check the file status, in
a multitasking environment:

1. Open
2. Transmit error
3. Invalid

Linkage: As for IHEIBTC

Called by: compiled code

Entry point IHEIBTT

Function:

To terminate the PUT operation, in a
multitasking environment.

Linkage: None

Called by: Compiled code

IHEIGT

Entry point: IHEIGTA

Function:

As for IHEINT

IHEINT

This module is used in a multitasking
environment and is equivalent to module
IHEION in a non-multitasking environment.

Calls:

supervisor(CHAP, FREEMAIN, GETMAIN),
IHEITB, IHEITC, IHEITD, IHEITE, IHEITF,
IHEIG, IHEIH, IHEIJ, IHEITP, IHEOCT

Entry point: IHEINTA

Function:

To verify a RECORD I/O request and to
invoke the appropriate data management
interface module to perform the required
operation, in a multitasking environment.

Linkage:

RA: A(Parameter list>
Parameter list:

-A(DCLCB)
A(RDV)/(IGNORE factor)
A(EVENT variable)/(0)/A(Error return)
A(KEYIREYFROMIKEYTO SDV)/(0)
A(Request control block>

Called by: compiled code

IBEIOA

Calls: IHEIOP, IHEOCL, IHEOCT

Entry point IHEIOAA

Function:

To initialize the GET operation, and to
check the file status:

1. Open
2. Endfile
3. Invalid

Linkage:

RA: A(Parameter list)
Parameter list:

A(DCLCB)
A(Abnormal return>

Ca11ed by: Compi1ed code

Entry point IHEIOAB

Function:

To initialize the GET operation, with
the COPY option, and to check the file
status:

1. Open
2. Endfile
3. Invalid

Linkage: As for IHEIOAA

Called by: Compiled code

Entry point IHEIOAC

Function:

To initialize the GET operation with
the SKIP option, and to check the file
status:

1. Open
2. Endfile
3. Invalid

Linkage:

RA: A(Parameter list)
Parameter list:

A(DCLCB)
A(Abnormal return>
A(Expression value)

Called by: compiled code

Entry point IHEIOAT

Function:

To terminate the GET operation.

Linkage: None

Called by: Compiled code

IBEIOB

Calls:

IBEIOP, IHEOCL

Entry point IBEIOBA

Function:

To initialize the PUT operation, and to
check the file status:

1. Open
2. Transmit error
3. Invalid

Linkage:

RA: A(Parameter list>
Parameter list:

A(DCLCB)
A(Abnormal .return)

Called by: Compiled code

Entry point IHEIOBB

Function:

To initialize PUT, and perform PAGE,
and to check the file status:

1. Open
2. Transmit error
3. Invalid

Linkage: As for IBEIOBA

Called by: Compjled code

Entry.point IBEIOBC

Function:

To initialize PUT, and perform SKIP,
and to check the file status:

Chapter 9: Module sunmaries 109

1. Open
2. Transmit error
3. Invalid

Linkage:

RA: A(Farameter -list>
Parameter list:

A(DCLCB)
A(Abnormal return>
A(Expression value>

Called by: compiled code

Entry point IHEIOBD

Function:

To initialize PUT, and perform LINE,
and to check the file status:

1. Open
2. Transmit error
3. Invalid

Linkage: As for IHEIOBC

Called by: compiled code

Entry point IHEIOBE

Function:

To initialize PUT, and perform PAGE and
LINE, and to check the file status:

1. Open
2. Transmit error
3. Invalid

Linkage: As for IHEIOBC

Called by: compiled code

Entry point IHEIOBT

Function:

To terminate the PUT operation.

Linkage: None

called by: compiled code

IHEIOC

Calls: IHESAP, IHETSA

Fntry point IHEIOCA

Function:

110

To initialize the GET operation, with
the STRING option.

Linkage:

RA: A(Parameter list)
Parameter list:

A(SDV)
A(DED)

Called by: compiled code

Entry point IHEIOCB

Function:

To initialize the GET operation, with
the STRING and COPY options.

Linkage: As for IHEIOCA

Called by: compiled code

Entry point IHEIOCC

Function:

To initialize the PUT operation, with
the STRING option.

Linkage: As for IBEIOCA

Called by: compiled code

Entry ooint IHEIOCT

Function:

To terminate the GET or PUT operations,
with the STRING option.

Linkage: None

Called by: compiled code

IHEIOD

Calls: IHEIOF, IHESAP, IBEPRT, IBEPTT,
IHETSA

Entry point IHEIODG

Function:

To obtain the next data field from the
record buffer<s> .•

Linkage:

Library communication area (WSDV)

Called by: Format directors, IBEIOX

Entry point IBEIODP

Function:

To obtain space for a data field in the
record buffer<s>.

Linkage: As for IBEIODG

Called by: Format directors, IHEIOX

Entry point IHEIODT

Function:

To terminate the data field request.

Linkage: As for IBEIODG

Called by: Format directors

IHEIOF

Calls: Data management (QSAM)

Entry point: IBEIOFA

Function:

To obtain logical records via data
management interface modules, and
initialize FCB record pointers and
counters.

Linkage: RA: A(FCB)

Called by:

IHEDDI, IHEDDO, IHEODT, IHEIOD, IHEIOP,
IHEIOX, IHELDI, IBELDO, IHEOCL, IBEOCT,
IHEPRT, IHEPTT

IBEIOG

Entry point: IBEIOGA

Function:

As for IBEION

IHEION

This module is used in a
non-multitasking environment and is
equivalent to module IBEINT in a
multitasking environment.

calls:

Supervisor(FREEMAIN, GETMAIN), IHEI1'B,
IHEITC, IHEITD, IBEITE, IHEITF, IHEITG,
IBEITP, IBEOCL

Entry point: IBEIONA

Function:

To verify a RECORD I/O request and to
invoke the appropriate data management
interface module to perform the required
operation, in a non-multitasking
environment.

Linkage:

RA: A(Parameter list)

Parameter list:
A(DCLCB)
A(RDV)/(IGNORE factor)
A(EVENT variable)/(0)/A(Error return)
A(KEYIKEYFROMIKEYTO SDV)/(0)
A(Request control block)

Called by: Compiled code

IBEIOP

Calls: IHEIOF

Entry point IHEIOPA

Function: PAGE option/format.

Linkage: No explicit parameters

Called by: Compiled code, IHEIOB, IHEIBT

Entry point IBEIOPB

Function: SKIP option/format.

Linkage:

RA: A(FED)
FED: Halfword binary integer

Called by: Compiled code, IHEIOA, IBEIOB,
IBEIBT

Entry point IBEIOPC

Function: LINE option/format.

Linkage: As for IHEIOPB

Called by: As for IBEIOPA

IBEIOX

Calls: IBEIOD, IBEIOF

Entry point IBEIOXA

Function:

To skip next n characters in record(s).

Linkage:

RA: A(PED)
FED: Halfword binary integer

called by: Compiled code

Entry point IHEIOXB

Function:

To place n blanks in record(s).

Linkage: As for IBEIOXA

called by: compiled code

Chapter 9: Module sumnaries 111

Entry point IHEIOXC

Function: To position to COLUMN(n).

Linkage: As for IHEIOXA

Called by: Compiled code

IHEITB

Calls:

Data management (BSAM>. Supervisor (CHAP,
GETMAIN)

Entry point: IHEITBA

Function:

To provide the interface with BSAM for:

1. CONSECUTIVE data sets with the
UNBUFFERED attribute.

2. REGIONAL data sets, whether or not
UNBUFFERED, opened for INPUT/UPDATE

Linkage:

RA: A(FCB)
RB: A(Parameter list>
Parameter list:

A(DCLCB)
A(RDV)/A(IOCB)/A(IGNORE factor)/A(SDV)
A(Event variable)/(0)
A(KEYIREYFROMIKEYTO SDV)/(0)
A(Request control block)

Called by: IHEION, IHEINT

IHEITC

Calls:

Data management (BSAM), Supervisor (CHAP,
GETMAIN)

Entry point: IHEITCA

Function:

To provide the interface with BSAM for
creating REGIONAL data sets when opened
for SEQUENTIAL output.

Linkage:

RA: A(FCB)
RB: A(Parameter list>
Parameter list:

A(DCLCB)
A(RDV)/A(IOCB)
A(Event variable)/(0)/A(Abnormal

return>
A(KEYIKEYFROM SDV)/(0)
A(Request control block)

Called by: IHEION, IHEINT, IHEOCL, IBEOCr

112

IHEITD

Calls:

Data management (QISAM), supervisor
(GETMAIN), IHESAP, IHETSA

Entry point: IHEITDA

Function:

To provide the interface with QISAM for
creating or accessing fixed length record
INDEXED data sets when opened for
SEQUENTIAL access.

Linkage:

RA: A(FCB)
RB: A(Parameter list)
Parameter list:

A<DCLCB)
A(RDV)/A(SDV)
A(Error return)/(0)
A(KEYIKEYFROMIKEYTO SDV)/(0)
ACRequest control block)

Called by: IHEION, IHEINT

I HE I TE

Calls:

Data management (BISAM), supervisor
(GETMAIN), IHESAP

Entry point: IHEITEA

Function:

To provide the interface with BISAM for
accessing fixed length record INDEXED
data sets opened for DIRECT access in a
non-multitasking environment.

Linkage:

RA: A(FCB)
RB: A(Parameter list>
Parameter list:

A(DCLCB)
A(RDV)/A(IOCB)/A(SDV)
A(Event variable)/(0)
ACKEYIKEYFROM SDV)/(0)
A(Request control block)

Called by: IHEION, IHEOSW

IHEITF

Calls:

Data management (BDAM), supervisor
(GETMAIN), IBESAP

Entry point: IBEITFA

Function:

To provide the interface with BDAM for
REGIONAL data sets opened for DIRECT
access in a non-multitasking environment.

Linkage:

RA: A(FCB)
RB: A(Parameter list>
Parameter list:

ACDCLCB)
A(RDV)/A(IOCB)/A(SDV)
ACEvent variable)/(0)
A(KEYIKEYFROM SDV)/(0)
ACRequest control block>

Called by: IHEION

IHEITG

Calls: Data management (QSAM)

Entry point: IHEITGA

Function:

To provide the interface with QSAM for
CONSECUTIVE data sets opened for RECORD
I/O with the BUFFERED attribute.

Linkage:

RA: A(FCB)
RB: ACParameter list>
Parameter list:

A(DCLCB)
ACRDV)/A(SDV)
A(Error return}/(0)
ACO)
A(Request control block)

Called by: IHEION, IHEINT

IHEITH

Calls:

Data management CBISAM>, supervisor
(CHAP, DEQ, ENQ 1 GETMAIN), IHETSA

Entry point: IHEITHA

Function:

To provide the interface with BISAM for
accessing fixed length record INDEXED
data sets opened for DIRECT access in a
multitasking environme~t.

Linkage:

RA: A(FCB)
RB: A(Parameter list)

Parameter list:
A(DCLCB)
ACRDV)/A(IOCB)/A(SDV)
A(Event variable) /(0)
A(KEY I KEYFROM SDV)/(0)
A(Request control block>

Called by: IHEINT, IHETSW

I HEIT~

Calls:

Data management CBDAM), supervisor (CHAP,
DEQ, ENQ, GETMAIN), IHETSA

Entry point: IHEITJA

Function:

To provide the interface with BDAM for
REGIONAL data sets opened for DIRECT
access in a multitasking environnent.

Linkage:

RA: A(FCB)
RB: A(Parameter list>
Parameter list:

A(DCLCB)
A(RDV)/A(IOCB}/A(SDV)
A(Event variable)/(0)
ACKEY I KEYFROM SDV) /(0)
A(Request control block>

Called by: IHEINT

I BE I TIC

Calls:

Data Management CQS~M), supervisor
CGETMAIN, FREEMAIN)

Entry point: IHEITKA

Function:

To ~covide the interface with QSAM for
consecutive data sets opened for RECORD
I/O Input with the BUFFERED attribute and
vs or VBS format records.

Linkage:

RA: A(FCB)
RB: A(Parameter list>
Parameter list:

A(DCLCB)
ACRDV) /A(SDV)
A(Error Return)/(0)
ACO)
A(Request Control Block)

Called by: IHEION, IBEINT

Chapter 9: Module sunnaries 113

IHEITL

Calls:

Data Management (QSAM), Supervisor
(GETMAIN, FREEMAIN)

Entry point: IHEITLA

Function:

To provide the interface with QSAM for
consecutive data sets opened for RECORD
I/O output with the BUFFERED attribute
and vs or VBS format records.

Linkage: as for IHEITK

Called by: IHEION, IHEINT, IHEOCL

IHEITM

Calls:

Data management (BISAM), Supervisor
(GETMAIN), IHESAP

Entry point: IHEITMA

Function:

To provide the interface with BISAM for
accessing variable length record INDEXED
data sets opened for DIRECT access in a
non-multitasking environment.

Linkage:

RA: A(FCB)
RB: A(Parameter list)
Parameter list:

A(DCLCB)
A(RDV)/A(IOCB)/A(SDV)
A(EVENT variable)/(0)
A(KEYIKEYFROM SDV)/(0)
A(Request control block)

Called by: IHEION, IHEOSW

IHEITN

Calls:

Data management (QISAM), Supervisor
(GETMAIN), IHESAP, IHETSA

Entry point: IHEITNA

Function:

To provide the interface with QISAM for
creating or accessing variable length
record INDEXED data sets when opened for
SEQUENTIAL access.

114

Linkage:

RA: A(FCB)
RB: A(Parameter list>
Parameter list:

A(DCLCB)
A(RDV)/A(SDV)
A(Error return)/(0)
A(KEYIKEYFROMIKEYTO SDV)/(0)
A(Request control block)

Called by: IHEION, IHEINT

IHECTO

Calls:

Data management <BISAM),
SUPERVISOR(CHAP,DEQ,ENQ,GETMAIN), IHETSA

Entry point: IHEITOA

Function:

To provide the interface with BISAM for
accessing variable length record INDEXED
data sets opened for DIRECT access in a
multitasking environment.

Linkage:

RA: A(FCB)
RB: A(Parameter list>
Parameter list:

A(DCLCB)
A(RDV)/A(IDCB)/A(SDV)
A(EVENT variable)/(0)
A(KEYIKEYFROM SDV)/(0)
~(Request control block)

Called by: IHEINT, IHETSW

IHEITP

Calls: Data management (QTAM)

Entry point: IHEITPA

Function:

To provide the interface with QTAM for
teleprocessing files opened for record
I/O.

Linkage:

RA: A(FCB)
RB: A(Parameter list>
Parameter list:

A(DCLCB)
A(RDV)/A(SDV)
A(Error return)/(0)
A(KEY SDV)
A(Request control block)

Called by: IHEION, IHEINT

IHEJXI

Calls: IHESAP, IHETSA

Entry point IHEJXII

Function:

TO initialize IHEJXI to give bit
addresses, and to find the first
element of the array.

Linkage:

RA: A(ADV)
RB: A(Number of dimensions>
On return:
RA: Bit address of first element

Called by: IHENL2, IBESTG

Entrv point IHEJXIY

FWlction:

As for IHEJXII but for byte addresses.

Linkage:

RA: A(ADV)
RB: A(Number of dimensions>
On return:
RA: A(First element>

called by:

IHEOSW, IHEPDF, IHEPDL, IHEPDS, IHEPDW,
IHEPOX, IBEPOZ, IHESMF, IHESMG, IHESMH,
IHESMX, IBESTG, IHETSW

Entry point IBEJXIA

Function:

To find the next element of the ar~ay.

Linkage:

No explicit arguments
Implicit arguments:

LCA
VOA, obtained in initialization

On return:
RA: Bit or byte address of the next

element
BR=O: Normal return
BR=4: If the address of the last

element of the array was provided
on the previous normal return

Called by:

All modules calling IBEJXII and IBEJXIY

IBEJXS

Entry.point IHEJXSI

Function:

To find the first and last elements of
an array and to give their addresses as
bit addresses.

Linkage:

RA: A(ADV)
RB: A(Number of dimensions>
On Return:
RO: Bit address of first element
RA: Bit address of last element

Called by: IHENLl

Entry point IHEJXSY

Function:

As for IHEJXSI but for byte addresses.

Linkage:

RA: A(ADV)
RB: A(Number of dimensions)
On return:
RO: A(First element)
RA: A(Last element)

Called by:

IHEPSF, IHEPSL, IHEPSS, IBEPSW, IHEPSX,
IHEPSZ, IHESSF, IBESSG, IHESSB, IHESSX,
IHENLl, compiled code for
initialization purposes

IHEKCA

Entry point: IHEKCAA

FWlction:

To check that external data with a
decimal picture specification is valid
for that specification.

Linkage:

RA: A<source>
RB: A(Source OED)

Called by: IHEDIE, IHEDIM

IHEKCB

Entry point: IHEKCBA

Function:

To check that external data with a
sterling picture specification is valid
for that specification.

Chapter 9: Module sunmaries 115

Linkage:

RA: A (source)
RB: A(Source OED)

Called by: IHEDIE

IHEKCD

Entry point IHEKCDA

Function:

To check that external data with a
character picture specification is
valid for that specification. The
ONSOURCE address is stored.

Linkage:

RA: A(Source>
RB: A(SOurce OED)

Called by: IHEDIB

Entry point IBEKCDB

Function:

As for IHEKCDA. but the ONSOURCE
address is not stored.

Linkage: As for IHEKCDA

Called by: IHELDI

I HELD I

Calls:

IHEDCN• IHEDMA. IHEDNB. IHEDNC, IHEIOF,
IHEKCD. IHEPRT. IHEPTT. IHESAP. IHETSA.
IHEUPA, IHEUPB, IBEVCA, IBEVCS, IHEVSC.
IHEVSD

Entry point IHELDIA

Function:

To read data from an input stream and
to assign it to internal variables
according to list-directed input
conventions.

Linkage:

116

RA: A(Parameter list>
Parameter list:

A(Variables.>
A(DEDs.)

A(Variablen>
A(DE0n)
(High-order byte of last argument
indicates end of parameter list.)

Called by: Compiled code

Entry point IHELDIB

Function:

As for IHELDIA but for single
variables.

Linkage:

RA: A(Variable)
RB: A<DED)

Called by: compiled code

Entry point IHELDIC

Function:

To scan the value field (entry for
data-directed input).

Linkage:

RA: A(Buffer SDV)
RB: A(Control block)
control block: H'VDA count so far'

X'Flag box'<one byte)
Return codes:

BR=O: Not last item
BR=4: Last item
BR=8: End of file encountered before

complete data field collected

Called by: IHEDDI

Entry.point IHELDID

Function:

To assign a value to a variable <entry
for data-directed input).

Linkage:

RA: A(Variable)
RB: A(DED)
RC: A(Control block)
control block: B'VDA count so far'

X'Flag box' <one byte>

Called by: IBEDDI

IHELDO

Calls: IBEDNC. IBEIOF. IBEVSB. IBEVSC

Entry point IHELDOA

Function:

To prepare data for output according to
list-directed output conventions. and
to place it in an output stream.

Linkage:

RA: ACParameter list>
Parameter list:

ACVar1able 1 >
ACDED1)

ACVariablen>
ACDEDn>
<High-order byte of last argument
indicates end of parameter list.)

Called by: Compiled code, IHEDDT

Entry point IHELDOB

Function:

As for IHELDOA, but for only one item
of the list of data.

Linkage:

RA: A(Variable>
RB: ACDED)

Called by: Compiled code, IHEDDT

Entry point IHELDOC

Function:

As for IHELDOA, but used by
data-directed output.

linkage:

RA: A<Variable)
RB: ACDED)
RC: A(FCB)

Called by: IHEDDO, IHEDDT

IHELNL

Entry point IHELNLE

Function:

LOG(x), where x is real long
floating-point.

Linkage:

RA: ACParameter list>
Parameter list:

A(x)
A(Target>

Called i:y:

Compiled code, IHEHTL, IHELNZ, IHEXXL,
IHEXXZ

Entry point IHELNL2

Function:

LOG2(x), where xis real long
floating-point.

Linkage: As for IHELNLE

Called by: As for IHELNLE

Entry point IHELNLD

Function:

LOG10(x), where xis real long
floating-point.

Linkage: As for IHELNLE

Called by: As for IHELNLE

IHELNS

Entry point IHELNSE

Function:

LOG(x), where xis real short
floating-point.

Linkage:

RA: ACParameter list>
Parameter list:

A(x)
A(Target)

Called by:

Compiled code, IHEHTS, IHELNW, IHEXXS,
IHEXXW

Entry point IHELNS2

Function:

LOG2Cx>, where xis real short
floating-point.

Linkage: As for IHELNSE

Called by: As for IHELNSE

Entry point IHELNSD

Function:

LOG10<x>, where xis real short
floating-point.

Linkage: As for IHELNSE

Called by: As for IHELNSE

IHELNW

Calls: !HEATS, IHELNS

Chapter 9: Module Summaries 117

Entry point: IHELNWO

Function:

LOG(z), where z is complex short
floating-point.

Linkage:

RA: A(Parameter list>
Parameter list:

A(z)
A(Target)

called by: compiled code, IHEXXW

IHELNZ

Calls: IHEATL, IHELNL

Entry point: IHELNZO

Function:

LOG(z), where z is complex long
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(z)
A(Target>

Called by: Compiled code, IHEXXZ

IHELSP

Calls: Supervisor (FREEMAIN,GETMAIN)

Function:

Storage management for list processing.

Entry point IHELSPA

Function:

To provide storage in an area variable
for an allocation of a based variable.

Linkage:

118

RA: A(Eight-byte word-aligned parameter
list)

RB: A(ALLOCATE statement)
Parameter list:

Byte 0: Not used
Bytes 1-3: A(Area variable>
Byte 4: Offset of beginning of based

variable from doubleword
boundary

Bytes 5-7: Length of based variable

On return:

RA: A(Eight-byte word-aligned parameter
list>

Parameter list:
Byte 0: Not used
Bytes 1-3: A(Based variable)
Byte 4: Offset of beginning of based

variable from doubleword
boundary

Bytes 5-7: Length of based variable

Called by: Compiled code

Entry point .IRELSPB

Function:

To free storage allocated to a based
variable in an area variable.

Linkage:

RA: A(Eight-byte word-aligned parameter
list)

RB: A(Area variable)
Parameter list:

Byte 0: Not used
Bytes 1-3: A(Based variable)
Byte 4: Offset of beginning of based

variable from doubleword
boundary

Bytes 5-7: Length of based variable

Called by: Compiled code

Ent~oint IHELSPC

Function:

Assignments between area variables.

Linkage:

RA: A(Source area variable)
RB: A(Target area variable)

Called by: Compiled code.

Ent~Qint IHELSPD

Function:

To provide system storage for an
allocation of a based variable <using
GErMAIN macro> •.

Linkage:

RA: A(Eight-byte word-aligned parameter
list>

Parameter list:

Bytes 0-3: Not used

Byte 4: Offset of beginninq of based
variable from doubleword
boundary

Bytes 5-7: Length of based variable

on return:

RA: A(Eight-byte word-aligned parameter
list)

Parameter list:
Byte O: Not used
Bytes 1-3: A(Based variable)
Bytes 4-7: Not used

Called by: Compiled code

Entry point IHELSPE

Function:

To free system storage allocated to a
based variable <using FREEMAIN macro).

Linkage:

RA: A(Eight-byte word-aligned parameter
list>

Parameter list:
Byte O: Not used
Bytes 1 - 3: A(Based variable>
Byte 4: Offset of beginning of based

variable from doubleword
boundary

Bytes 5 - 7: Length of based variable

Called by: compiled code

IBELTT

Calls: IHESAP, IHETSA, compiled code,
operating system

Function:

This module is the transfer vector
table which is link-edited to the PL/I
program when the Shared Library feature
is selected. It formats the standard
section of the PRV and is responsible
for ensuring the correct entry to the
PL/I program from the operating system.
It also sets the address of the
transfer vector tables into the first
pseudo-register of the PRV.

Entry point IHELTTA

Function:

Main entry point from operating system.
Loads library module IBELTVA if this is
not already resident and determines
address Of IBELTVA.

Calls: IBESAP/IHETSA

Called by: operating system

Entry point IHELTTB

Function:

Stores the addresses of the pseudo
entry points of the transfer vector
modules IHELTTA and IHELTVA in the PRV.
<see • below>

Called by: IHESAP/IHETSA

Entry point IHELTTC

Function:

Deletes library module IHELTVA if this
was loaded and returns to the operating
system.

called by:

compiled code <on completion of PL/I
program>

•Pseudo En~~! IHELTTl, IHELTT2,
IHELTT3, IHELTT4, IBELTTS

Function:

These act as reference points for the
transfer vector tables when control is
passed between the resident library
modules and the partition.

IHELTV

Function:

Transfer vector table link-edited to
the resident library modules when
shared library feature is selected.
Formats standard section of PRV and
locates transfer vector table pseudo
entry points.

Called by: IHELTT

Entry point IHELTVA

Function:

contains addresses of pseudo entry
points <•see belo~> in first twenty
bytes.

Called by: IHELTT

•Pseudo Entry Points: IHELTVl, IHELTV2,
IHELTV3, IHELTV4, IHELTVS

Function: as for IHELTT.

IHEM9!

Calls: IHEERR

chapter 9: Module sununaries 119

Entry point IHEM91A

Function:

1. To analyze the exception or
exceptions in an imprecise interrupt
on Models 91 and 195

2. To set up a list of these exceptions
(in LWE)

3. To raise the first of a series of
PL/I conditions corresponding to
these exceptions

Linkage:

PSW at interrupt is in current
LWE + 112

Called by:

IHEERR. when an imprecise interrupt is
detected

Entry point IBEM91B

Function:

To continue raising. in succession, the
PL/I conditions corresponding to the
exceptions.

Linkage:

List of exceptions is in current
LWE + 136

Called by: IBEERR

Entry point IBEM91C

Function:

To print an error message for each
unprocessed exception when, as a result
of the processing of an earlier
exception in the list. a program is
forced to terminate before processing
of the list is complete.

Linkage: None

Called by: IBEERR

IHEMAI

Entry point: IHEMAIN

Function:

Contains address of IBEBEGN; loaded only
if there is no main procedure.

Linkage: None

120

called by: IBESAP, IBETSA

IBEMPU

Entry point: IBEMPUO

Function:

MULTIPLY(w,z,p,q), ~here wand z are
complex fixed binary, and Cp,q) is the
target precision.

Linkage:

RA: A(Parameter list>
Parameter list:

A(w)
A(DED for w>
A(z)
A(DED for z)
A(Target)
A(DED for target>

Called by: Compiled code

IHEMPV

Calls: IHEAPD

Entry point: IHEMPVO

Function:

MULTIPLY(w,z,p.q>, where wand z are
complex fixed decimal, and <p,q) is the
target precision.

Linkage:

RA: A(Parameter list)
Parameter list:

A(w)
A(DED for w>
A(z)
A<DED for z)
A<rarget>
A(DED for target)

Called by: compiled code

IHEMSI

Entry point: IHEMSIA

Function:

To call IHEERRC so that an error message
is printed saying that STIMER facilities
are unavailable.

Called by: compiled code

IHEMST

Entry Point: IHEMSTA

Function:

To call IHEERRC so that an error message
is_printed saying that the TIME facility
is unavailable.

Called by: Compiled code

IHEMSW

Calls:

Supervisor (FREEMAIN, WAIT), I/O transmit
module whose address is in the FCB.

Entry point: IHEMSWA

Function:

1. According to the count passed, to
return to the caller or to wait until
a sinqle I/O event is complete. If
the count is $0, immediate return is
made; otherwise the event is waited
on.

2. To branch to the I/O transmit module
to raise I/O conditions if necessary.

Linkage:

RA: A(Parameter list)
Parameter list:

A (Count)
A(Event variable)

Called by: Compiled code

IHEMXB

Entry point IHEMXBX

Function:

MAX(x1 ,x2 , ••• ,xn>, where X1,Xa and .xn
are real fixed-point binary.

Linkage:

RA: A(Parameter list>
Parameter list:

A<x1>
A<DED for X1>

A<xn>
A(DED for Xn>
A(Target)
A(Target OED)
(High-order byte of last argument
indicates end of parameter list.)

Called by: compiled code

~~oint IHEMXBN

Function:

MIN<x1,X2r•••1xn>r where x 1 ,x2 and Xn
are real fixed-point binary.

Linkage: As for IHEMXBX

Called by: Compiled code

IHEMXQ

Ent!:Y_E?oint IHEMXDX

Function:

MAX(x1 ,X21•••1xn>, where x1 ,x2 and Xn
are real fixed-point decimal.

Linkage:

RA: A(Parameter list)
Parameter list:

A(x 1)

A(DED for X1>

A<xn>
A (OED for Xn>
A(Target>
A(Target OED)
(High-order byte of last argument
indicates end of parameter list.)

called by: Compiled code

Function:

MIN(x1 ,x2 ••• ,xn>1 where x1 ,x2 and Xn
are real fixed-point decimal.

Linkage: As for IHEMXDX

Called by: Compiled code

IHE~!:!

~!Y_2oint IHEMXLX

Function:

MAX<x1,Xa1•••1xn>1 where x1 ,x2 and Xn
are real long floating-point.

Chapter 9: Module summaries 121

Linkage:

RA: A(Parameter list)
Parameter list:

A(x1>
A<x2>

A<xn>
AC Target>
(High-order byte of last argument
indicates end of parameter list.)

Called by: Compiled code

Entry point IHEMXLN

Function:

MINCx 1 ,x2, ••• ,xn>r where x,,x2 and Xn
are real long floating-point.

Linkage: As for IHEMXLX

called by: Compiled code

IHEMXS

Entry point IHEMXSX

Function:

MAX<x1,x2 , ••• ,xnl, where x,,x2 and Xn
are real short floating-point.

Calls: IHEJXS

Linkage:

RA: A(Parameter list)
Parameter list:

A(x 1)

A<x2>

A<xn>
A(Target)
(High-order byte of last argument
indicates end of parameter list.>

called by: compiled code

Entry point IHEMXSN

Function:

MIN<x1,x2, ••• ,xn>1 where x1,x2 and xn
are real short floating-point.

Linkage: As for IHEMXSX

Called by: compiled code

122

IHEMZU

Entry point IHEMZUM

Function:

z,•z2, where z1 and z 2 are complex
fixed-point binary.

Linkage:

RA: A(Z1)
•RB: A(DED for Z11)

RC: A(Z2)
*RD: A(DED for Za)

RE: A(Target>
*RF: A(Target OED

Called by: Compiled code, IHEXIU

Entry point IHEMZUD

Function:

z 1 /z 2 , where z 1 and Za are complex
fixed-point binary.

Linkage:

RA: A(z 1)

RB: A(DED for z.>
RC: A(z 2)

*RD: A(DED for Zal
RE: A(Target)

•RF: A(Target OED)

called by: compiled code

IHEMZV

Entry point IHEMZVM

Function:

z 1 •z2 , where z1 and z 2 are complex
fixed-point decimal.

Linkage:

RA: A<z1>
RB: A(DED for z,)
RC: A(z2>
RD: A(DED for z 2)

RE: A(Target)
•RF: A(Target OED)

Called by: compiled code, IHEXIV

Entry point IHEMZVD

Function:

z 1 /z 2 , where z 1 and z 2 are complex
fixed-point decimal.

Linkage: As for IHEMZVM

Called by: compiled code

IHEMZW

Entry point: IHEMZWO

Function:

z1•z 2 , where z1 and z 2 are complex short
floating-point.

Linkage:

RA: A<z1>
RB: A(za>
RC: A(Target)

called by: Compiled code,IHEXIW

IHEMZZ

Entry point: IHEMZZO

Function:

z1•z2 , where z 1 and z 2 are complex long
floating-point.

Linkage:

RA: A<z1>
RB: A<za>
RC: A(Target)

Called by: Compiled code,IHEXIZ

IHENLl

Calls: IHEJXS

Entry point IHENL1A

Function:

ALL or ANY for a simple array (or an
interleaved array of VARYING elements)
of byte-aligned elements and a
byte-aligned target.

Linkage:

RA: A(Parameter list)
Parameter list:

A(SADV)
A(Number of dimensions>
A(DED of the array)

(A(IHEBSAO) for ALL, or
(A(IHEBSOO) for ANY
A(SDV for Target field >

Called by: compiled code

Entry point IHENLlL

Function:

ALL for a simple array <or an
interleaved array of VARYING elements)
of elements with any alignment, and a
target with any alignment.

Linkage:

RA: A(Parameter list>
Parameter list:

A(SADV)
A(Number of dimensions)
ACDED of the array>
A(IHEBSFO)
ACSDV for target field

Called by: compiled code

Entry point IHENLl~

Function: As for IHENL1L, but ANY.

Linkage: As for IHENL1L

Called by: Compiled code

IHENL2

Calls: IHEJXI

Entry point IHENL2A

Function:

ALL or ANY for an interleaved array of
fixed-length byte-aligned elements and
a byte-aligned target.

Linkage:

RA: A(Parameter list>
Parameter list:

A(SADV)
A(Number of dimensions)

•ACDED of the array)
(A(IHEBSAO) for A.LL, or
(A(IHEBSOO) for ANY
A(SDV for target field)

Called by: compiled code

Entry point IHENL2L

Function:

ALL for an interleaved array of
fixed-length elements with any
alignment, and a target with any
alignment.

Linkage:

RA: ACParameter list)
Parameter list:

A(SADV)
ACNumber of dimensions>

•ACDED of the array)
ACIHEBSFO)
ACSDV for target field)

called by: compiled code

Chapter 9: Module summaries 123

Entry point IHENL2N

Function:

ANY for an interleaved array of
fixed-length elements with any
alignment. and a target with any
alignment.

Linkage:

RA: A(Parameter list>
Parameter list:

A(SADV)
A(Number of dimensions>

•A(DED of the array)
A(IHEBSFO)
ACSDV for target field)

Called by: Compiled code

IHEOCL

Calls:

Supervisor (DCBD. FREEMAIN.LINK>. IBECLr.
IHEIOF. IHEITC. IHEITL. IBEOPN• IHESAP

Entry point IBEOCLA

Function:

Explicit open: links to IBEOPNA;
handles error conditions detected by
IBEOPN. IHEOPO. IBEOPP. IHEOPQ or
IHEOPZ.

Linkage:

RA: A(OPEN parameter list>
Parameter list: see IBEOPN

Called by: compiled code. IHEPRT

Entry point IHEOCLB

Function:

Explicit close: links to IHECLTA.

Linkage:

RA: A(CLOSE parameter list)
Paramet~r list: see IHECLTA

Called by: compiled code

Entry point IHEOCLC

Function:

To perform implicit open.

Linkage:

124

RA: A(OCB)
RB: A(DCLCB)

Called by: IHEIOB. IHEION. IBESAP

Entry point IHEOCLD

Function:

Implicit close:

1. When a task is terminated, to close
all the files opened in the task
(by linking to IHECLTB).

Linkage:

RA: A(PRV of current task)

Called by: IHESAP

IHEOCT

Calls:

supervisor (DCBD, DEQ, FREEMAIN. LINK),
IHECTT, IHEIOF, IHEITC, IHEITL, IBEOPN,
IHETSA

Entry point IHEOCTA

Function:

Explicit open in a multitasking
environment: links to IHEOPNA; handles
error conditions detected by IHEOPN,
IHEOPO, IHEOPP. IHEOPQ or IHEOPZ.

Linkage:

RA: A(OPEN parameter list)
Parameter list: see IHEOPN

Called by: compiled code, IHEPTT

Entry point IHEOCTB

Function:

Explicit close in a multitasking
environment: links to IHECTTA.

Linkage:

RA: A(CLOSE parameter list)
Parameter list: see IHECTTA

Called by: compiled code

Entry point IHEOCTC

Function:

To perform implicit open in a
multitasking environment.

Linkage:

RA: A(OCB)
RB: A(DCLCB)

Called by IHEIBT, IHEINT, IHETSA

Entry point IHEDCTD

Function:

Implicit close:

1. When a task is terminated, to close
all the files opened in the task
(by linking to IHECTTB).

2. To dequeue all records locked by
the task and free the corresponding
EXCLUSIVE blocks.

To set all imcomplete EVENT
variables complete, inactive, and
abnormal, and to free the
associated IOCBs.

Linkage:

RA: A(PRV of current task>

Called by: IHETSA

IHEOPN

Calls:

IHEOPO (via XCTL), IBEOPZ <via LINK),
IHESAP, IHETSA

Entry point: IBEOPNA

Function:

Open files:
1. Merge declared attributes with OPEN

options.
2. Invoke IBEOPO.
3.. Invoke IBEOPZ if declared DIRECT

OUTPUT (REGIONAL (1), (2) and (3)
only) ..

Linkage:

RA: A(Parameter list>
Parameter list:

A(OPEN Parameter list>
A(Private Adcons>

OPEN Parameter list:
A(DCLCB1)

A(OPEN Control block1)/0
A(TITLE-SDV1)/0
(Reserved)
<Reserved>
(Reserved)
A(LINESIZE1)/0
A(PAGE3IZE1)/0

A(DCLCBn)
A(OPEN Control block0)/0
A(TITLE-SDV0)/0
(Reserved)
(Reserved>
(Reserved)
A(LINESIZEn)/0
A(PAGESIZEn)/0
(High-order byte of last argument
indicates end of parameter list.>

Called by: IHEOCL, IHEOCT

IHEOPO

Calls:

Supervisor (DCB,DCBD,DEVTYPE,GETMAIN),
IHEOPP (via XCTL), IHESAP, IHETSA

Entry Point: IHEOPOA

Function:

1. To create and format the FCB.

2. To set file register to A<FCB).

Linkage:

RA: A(Parameter list>
Parameter list:

A(IBEOPN Parameter list)
A(Subparameter list>

subparameter list:
XLq'4•n•(where n is the number of files

to be opened)
X'Access/Organization Codes.'
AL3 (DCLCB1)
XL4'Merged attributes.'

.
X'Access/Organization Coden'
AL3(DCLCBn)
XL4'Merged attribute0 '

NOTE: Access/Organization Code is described
in the module listing.

Called by: IHEOPN

Chapter 9: Module sunmaries 125

IHEOPP

Calls:

Supervisor (DCBD,GETMAIN,GETPOOL,OPEN),
IHEOPQ (via XCTL), IHESAP, IBETSA

Entry point: IHEOPPA

Function:

1. To invoke data management (OPEN
macro>.

2. To establish defaults at DCB exit.

3. To acquire initial IOCBs for BSAM.

Linkage:

RA: A(Parameter list)
Parameter list:

A(IHEOPN Parameter list)
A(Subparameter list>

Subparameter list:
XL4'4•n'(where n is the number of files
to be opened)
X'Access/Organization Code1 '
AL3(DCLCB1>
XL4'Merged attribute1 '

.
X'Access/Organization Coden'
AL3 (DCLCBn)
XL4'Merged attributen'

NOTE: Access/Organization Code is described
in the module listing.

Called by: IHEOPO

IHEOPO

Calls:

Supervisor (DCBD,FREEPOOL,GETMAIN,LOAD),
IHESAP, IHETSA

Entry point: IHEOPQA

Function:

1. To load record-oriented I/O
interface modules.

2. TO link FCBs through the IHEQFOP
chain.

3. To acquire the initial IOCBs for
BDAM and BISAM linkage.

4. To simulate PUT PAGE when opening a
PRINT file.

Linkage:

RA: A(Parameter list>

126

Parameter list:
A(IBEOPN parameter list>
A(Subparameter list>
A(Data management OPEN parameter

list>

Subparameter list:
XL4'4•n• (where n is the number of

files to be opened)
X'Access/Organization Coden'
AL3(DCLCB1>
XL4'Merged attributes1 '

X'Access/Organization Coden'
AL3(DCLCBn>
XL4'Merged attributes0 '

Data management OPEN parameter list:
XL4'4•n' (where n is the number of

files to be opened)
X(Flags for data management OPEN

executors.>
AL3(DCB1>

X(Flags for data management OPEN
executorn>

AL3(DCBn)

NOTE: Access/Organization Code is described
in the module listing.

Called by: IBEOPP

IHEOPZ

Calls:

Supervisor (CBECK,CLOSE,DCB, DCBD, FREE
MAIN,FREEPOOL,GETBUF,GETMAIN,OPEN)

Entry point: IBEOPZA

Function:

To provide the format for the initial
allocation of a volume assigned to a
REGIONAL data set when opened for DIRECT.
OUTPUT.

Linkage:

RA: A<Parameter list>
Parametex list:

A(Merged attributes)
A(Entry in IHEOPN Parameter list)
A(DCLCB)

Called by: IBEOPN

IBEOSD

Calls: TIME macro

Entry point: IBEOSDA

Function: To obtain current date.

Linkage:

RA: A(Parameter list>
Parameter list: A(Target SDV)

called by: compiled code

IHEOSE

Calls: IHESAP, IHETSA (to terminate the
task)

Entry point: IHEOSEA

Function:

To terminate the current task abnormally,
raising the FINISH condition if it is the
major task.

Called by: Compiled code

IHEOSI

Calls: STIMER macro

Entry point: I REOS IA

Function:

To use the STIMER macro with the WAIT
option for the implementation of DELAY.

Linkage:

RA: A(Parameter list)
Parameter list:

Interval of delay, in milliseconds, in
a fullword

Called by: compiled code

IHEOSS

Calls: IHESAP, IHETSA (to terminate the
task)

Entry point: IBEOSSA

Function:

To raise the FINISH condition and
abnonnally terminate the job step.

Linkage: None

Called by: Compiled code

IHEOST

Entry Point: IHEOSTA

Function:

To use the TIME macro to obtain the time
of day.

Linkage:

RA: A(Parameter list)
Parameter list: A(Target SDV)

Called by: Compiled code

IHEOSW

Calls:

supervisor (FREEMAI~,WAIT), IHEJXI,
IHESAP, I/O transmit :nodule whose address
is in the FCB

Entry point: IHEOSWA

Function:

ro determine whether a specified number
of events has occurred. If not, to wait
until the required nu~ber is complete,
and, in the case of I/O events, to branch
to the I/O transmit module <which raises
I/O conditions if necessary).

This module is used in a non-multitasking
environment.

Linkage:

RA: A(Parameter list>
Parameter list:

Word 1:

1. If all events are to be waited
on:

Byte 0 = X'FF'
Bytes 1 - 3 not used

2. If a specified number (N) of
events is to be waited on:

Byte o = x•oo•
Bytes 1 - 3 = A(N)

Subsequent words <one for each element
or array event):

1. Array event:
Byte O = dimensionality
Bytes 1 - 3 = A(ADV)

2. Element event:
Byte o = x•oo•
Bytes 1 - 3 = A(Event variable)

(High-order byte of last argwnent
indicates end of parameter list.>

Called by: Compiled code

IHEPDF

Calls: IHEDMA, IHEJXI

Entry point: IBEPOFO

Chapter 9: Module summaries 127

Function:

PROD for an interleaved array of real
fixed-point binary or decimal elements.
Result is real short or long
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(ADV)
A(Number of dimensions)
A(DED of the array)
A(Target)
A(DED for target>

Called by: compiled co.de

IHEPDL

Calls: IHEJXI

Entry point: IHEPDLO

Function:

PROD for an interleaved array of real
long floating-point elements. Result is
real long floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(ADV)
A(Number of dimensions)
A(Target)

called by: compiled code

IHEPDS

CalJ.s: IHEJXI

Entry point: IHEPDSO

Function:

PROD for an interleaved array of real
short floating-point elements. Result is
real short floating-point.

Linkage:

RA: A(Parameter list>
Parameter list:

A(ADV)
A(Number of dimensions)
A<Target)

called by: compiled code

IHEP··w

Calls: IHEJXI

Entry point: IHEPDWO

128

Function:

PROD for an interleaved array of complex
short floating-point elements. Result is
complex short floating-point.

Linkage:

RA: A(Parameter list>
Parameter list:

A(ADV)
A(Number of dimensions>
A<rarget)

Called by: compiled code

IHEPDX

Calls: IHEDMA, IHEJXI

Entry point: IHEPDXO

Function:

PROD for an interleaved array of complex
fixed-point binary or decimal elements.
Result is complex short or long
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(ADV)
A(Number of dimensions>
A(DED of the array >
A(Target)
A(DED for target)

called by: Compiled code

IHEPDZ

Calls: IHEJXI

Entry point: IHEPDZO

Function:

PROD for an interleaved array of complex
long floating-point elements. Result is
complex long floating-point.

Linkage:

RA: A(Parameter list>
Parameter list:

A(ADVl
A(Number of dimensions>
A(Target>

Called by: compiled code

IHEPRT

Calls:

Super'1isor (WTO. EXTRACT), IHEIOF.
IHEOCL, IHESAP

Entry point IHEPRTA

Function:

To COPY a data field on the SYSPRINT
file, opening it if necessary.

Linkage:

RA: A(Character string)
RB: A(Halfword containing length of

character string)

Called by: IHEIOD,IHELDI

Entry point IHEPRTB

Function:

To write an error message on the
SYSPRINT file. opening it if necessary.
Also, to prepare for system action for
CHECK condition.

Linkage: As for IHEPRTA

Called by: IHEDDO, IHEERR, IHEESM, IHEESS

I HEP SF

Calls: IHEDMA, IHEJXS

Entry point: IHEPSFO

Function:

PROD for a simple array of real
fixed-point binary or decimal elements.
Result is real short or long
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

"'(ADV)
A(Number of dimensions>
A(DED of the array>
A(Target)
A(DED for target>

Called by: Compiled code

IHEPSL

Calls: IHEJXS

Entry point: IHEPSLO

Function:

PROD for a simple array of real long
floating-point elements. Result is real
long floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(ADV)
A(Number of dimensions)
A<rarget>

Called by: Compiled code

I HEP SS

Calls: IHEJXS

Entry point: IHEPSSO

Function:

PROD for a simple array of real short
floating-point elements. Result is real
short floating-point.

Linkage:

RA: A(Parameter list>
Parameter list:

A(ADV)
A(Number of dimensions>
A(Target>

Called by: Compiled code

I HEPS~

Calls: IHEJXS

Entry point: IHEPSWO

Function:

PROD for a simple array of complex short
floating-point elements. Result is
complex short floating-point.

Linkage:

RA: A<Parameter list)
Parameter list:

A(ADV)
A(Number of dimensions)
A(Target)

Called by: compiled code

IHEPSX

Calls: IHEDMA, IHEJXS

Entry point: IHEPSXO

Chapter 9: Module summaries 129

Function:

PROD for a simple array of complex
f ix£d-point binary or decimal elements.
Result is complex short or long
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(ADV)
A(Number of dimensions>
A(DED of the array elements>
A(Target)
A(DED for target>

Called by: compiled code

IHEPSZ

Calls: IHEJXS

Entry point: IHEPSZO

Function:

PROD for a simple array of complex long
floating-point elements. Result is
complex long floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(AOV)
A(Number of dimensions)
A(Target)

Called by: compiled code

I HE PTT

This module is used in a multitasking
environment and is equivalent to module
IHEPRT in a non-multitasking environment.

Calls:

Supervisor (DEQ, ENQ, EXTRACT, WTO),
IHEIOF, IHEOCT, IHETSA

Entry point IHEPTTA

Function:

To COPY a data field on the SYSPRINT
file, opening it if necessary, in a
multitasking environment.

Linkage:

RA: A(Character string)
RB: A(Balfword containing length of

character string)

Called by: IBEIOD, IBELDI, IBETEX

130

Entry point IHEPTTB

Function:

To write, in a multitasking
environment, an error message on the
SYSPRINT file, opening it if necessary.
Also, to prepare for system action for
CHECK condition.

Linkage: As for IBEPTTA

Called by: IHEDDT, IHEERR, IBETSA

I HERES

Entry point: IBEREST

Function:

to restart program at last checkpoint.

Linkage: None

Called by: compiled code

Entry point: IHERESN

Function:

to cancel automatic restart.

Linkage: none

Called by: compiled code, IHESAP

I HE SAP

Calls:

supervisor (FREEMAIN, GETMAIN, SPIE),
IBEBEG, IHEMAN, IHEDDO, IBEOCL, IBEPRT

FUnction:

Storage management in a non-multitasking
environment.

Entry point IHESADA (Get DSA):

Function:

To provide a DSA for a procedure or
begin block and to set DR to point to
it.

Linkage:

RO: Length of DSA
DR: A(Current save area)

called by: Prologues

Entry point IHESADB (Get VOA):

Function:

To get a VDA for compiled code1 sets
RA=A(VDA).

Linkage:

RO: Length of VDA (excluding control
words)

DR: A(Current save area)

Called by: Compiled code

Entry point IHESADD (Get CONTROLLED
variable):

Function:

To provide storage for an allocation of
a controlled variable, and to place the
address of its fourth word in its
pseudo-register.

Linkage:

RO: Length of area (not including
control words)

RA: A(Controlled-variable pseudo
register)

called by: Compiled code

Entry point IHESADE (Get LWS):

Function:

To provide a new LWS, and to update the
LWS pseudo-registers.

Linkage: None

Called by: Library modules

Entry point IHESADF (Get Library VOA):

Function:

To provide a VOA for library modules
and to set RA= A(VDA).

Linkage:

RO: Length of VOA (including control
words)

Called by: Library modules

Entry point IHESAFA (END):

Function:

Frees the DSA current at entry together
with its associated VDAs. Request to
free the DSA of the main procedure
results in raising FINISH, closing all
opened files, releasing automatic

storage to the supervisor and finally
returning to the supervisor with a
return code of zero.

Linkage: None

Called by: Epilogues

En:!:u_eoint IHESAFB !!!~IURN).!_

Function:

Frees all chain elements up to and
including the last procedure DSA in the
chain. Can terminate a main procedure
as in IHESAFA.

Linkage: None

Called by: Compiled code

Ent!Y,_eOint IRESIFC (GO TO):

Function:

The DSA indicated by the invocation
·count, or pointed to by DR, is made
current. All chain elements up to this
DSA, with the exception of its VDAs and
itself, are freed.

Linkage:

RA: A(Eight-byte word-aligned parameter
list>

Parameter list:
Word 1 = Either Invocation count (bit

~word 2 = o>
Or PR offset (bit 0 of word
2= 1)

Word 2 A(Location to which control
is to be returned)

Called by: Compiled code

~n~~-eQint IH~SAFD_!~~~~ VDA/LWS)

Function:

Frees the VOA or LWS at the end of the
DSA chain.

Linkage:

IHEQSLA: A(VDA or LWS to be freed)
(A VOA or LWS can be freed only when it

is the last allocation>

Called by: Compiled code, library modules

Entry point IRES FF (Free controlled
variable):

Function:

Frees the latest allocation of a
controlled variable, and updates the
associated pseudo-register.

Chapter 9: Module summaries 131

Linkage:

RA: A(Controlled variable pseudo
register)

Called by: Compiled code

Entry point IHESAFQ

Function:

To close all files and to return to the
supervisor.

Linkage: None

Called by:

Library modules, IHEDUMP, IHEOSE,
IHEOSS

Entry point IHESAPA

Function:

1. To provide a PRV and LWS for a main
procedure, and to issue a SPIE
macro; then to transfer control to
an address constant named IHEMAIN.

2. To pass a PARM parameter from the
EXEC card.

Linkage:

L(PRV) from linkage editor
L(LWS) from assembly of IHELIB

Called by: Initial entry

Entry Point IHESAPB

Function:

As for IHESAPA, except that the code
handling PARM parameter is bypassed.

Linkage:

L(PRV) from linkage editor
L(LWS) from assembly of IHELIB

Entry point IHESAPC

Function:

As for IHESAPA, but also reserves a
512-byte area for optimization
purposes.

Linkage:

132

L(PRV) from linkage editor
L(LWS) from assembly Of IHELIB

~~~oint IHESAPD 

Function: 

As for IHESAPB, but also reserves a 
512-byte area for optimization 
purposes. 

Linkage: 

L(PRV) from linkage editor 
L(LWS) from assembly or IHELIB 

Function: 

To restore the environment of a program 
to what it was before: 

1. the execution of an ON statement 
associated with the on-unit to be 
entered, or 

2. the passing of the entry parameter 
associated with the called 
procedure. 

Then to branch to the on-unit or the 
procedure. 

Linkage: 

RA: A(Parameter list) 
Parameter list: 

A(Entry parameter). The entry 
parameter is an 8-byte field 
containing: 

1st word: On-unit or entry address 

2nd word: Invocation.count of the 
DSA associated with 
either the passing 
procedure or the 
procedure in which the ON 
statement was executed 

Called by: Compiled code, IHFERR 

Ent!::L.EOint IH§SARC 

Function: 

To place the return code in the 
pseudo-register IHEQRTC. 

Linkage: 

RA: A(Parameter list) 
Parameter list: 

A(Return code) (The return code is 
fullword fixed binary.) 

Called by: Compiled code 



Entry point IHESATA 

Function: 

To provide the interface between O/S 
STAE routine and the PL/I STAE routine. 

Linkage: 

RA = address of O/S STAE parameter 
list. 

Called by: SUPERVISOR 

Calls: 

IHESHL 

Calls: IHEEXL 

Entry point IHESHLS 

Function: 

SINH(x), where x is real long floating
point. 

Linkage: 

RA: A Parameter list) 
Parameter list: 

A(x) 
A(Target) 

Called by: Compiled code 

Entry point IHESHLC 

Function: 

COSH(x), where x is real long 
floating-point. 

Linkage: As for IHESHLS 

Called by: Compiled code 

IHESHS 

Calls: IHEEXS 

Entry point IHESHSS 

Function: 

SINH(x), where x is real short 
floating-point. 

Linkage: 

RA: A(Parameter list) 
Parameter list: 

A(x) 
A<Target> 

Called by: Compiled code 

Entry point IHESHSC 

Function: 

cose<x>, where xis real short 
floating-point. 

Linkage: As for IHESHSS 

Called by: compiled code 

IBESIZ 

Entry point: IHESIZE 

Function: 

to return the length of the PRV in RA. 

Linkage: none 

Called by: IHESAP, IHETSAP 

IHESMF 

Calls: IHEDMA, IHEJXI 

Entry point: IHESMFO 

Function: 

SUM for an interleaved array of real 
tixed-point binary or decimal elements. 
Result is real short or long 
floating-point. 

Linkage: 

RA: A(Parameter list) 
Parameter list: 

A(ADV) 
A(Number of dimensions> 
A(DED of the array> 
A(Target> 
A<DED for target> 

Called by: Compiled code 

IHESMG 

Calls: IHEJXI 

Entry point IHESMGR 

Function: 

SUM for an interleaved array of real 
short floating-point elements. Result 
is real short floating-point. 

chapter 9: Module summaries 133 



Linkage: 

RA: A(Parameter list> 
Parameter list: 

A(ADV) 
A(Number of dimensions> 
A(Target) 

called by: compiled code 

Entry point IHESMGC 

Function: 

SUM for an interleaved array of complex 
short floating-point elements. Result 
is complex short floating-point. 

Linkage: As for IHESMGR 

Called by: compiled code 

IHESMH 

Calls: IHEJXI 

Entry point IHESMHR 

Function: 

SUM for an interleaved array of real 
long floating-point elements. Result 
is real long floating-point. 

Linkage: 

RA: A(Parameter list> 
Parameter list: 

A(ADV) 
A(Number of dimensions> 
A(Target) 

Called by: Compiled code 

Entry point IHESMHC 

Function: 

SUM for an interleaved array of complex 
long floating-point elements. Result 
is complex long floating-point. 

Linkage: As for IHESMHR 

Called by: Compiled code 

IHESMX 

Calls: IHEDMA, IHEJXI 

Entry point: IHESMXO 

Function: 

SUM for an interleaved array of complex 
fixed-point binary or decimal elements. 
Result is complex short or long 
floating-point. 

134 

Linkage: 

RA: A(Parameter list) 
Parameter list: 

A(ADV-> 
A(Number of dimensions) 
A(DED of the array) 
A(l'arget) 
A(DED for target> 

Called by: Compiled code 

IHESN°!! 

En:!;:!:,l_EOint IH~SNLS 

Function: 

SIN(x), where xis real long 
floating-point. 

Linkage: 

RA: A(Parameter list) 
Parameter list: 

A (x) 

A(Target) 

Called by: Compiled code, IHEEXZ, IHESNZ 

~B:!:!:Y-eOint IHESNLZ 

Function: 

SIND(x), where xis real long 
floating-point. 

Linkage: As for IHESNLS 

Called by: compiled code 

Function: 

COS(x), where xi~ real long 
floating-point. 

Linkage: As for IHESNLS 

Called by: Compiled code, IHEEXZ, IHESNZ 

En~!:Y_J?Oint IHESNLK 

Function: 

coso<x>, where x is real long 
floating-point. 

Linkage: As for IHESNLS 

Called by: compiled code 



I HES NS 

Entry point IHESNSS 

Function: 

SIN<x>, where x is real short 
floating-point. 

Linkage: 

RA: A(Parameter list> 
Parameter list: 

A(x) 
A(Target> 

Called by: Compiled code, IHEEXW, IHESNW 

Entry point IHESNSZ 

Function: 

SIND<x>, where x is real short 
f loatinq-point. 

Linkage: As for IHESNSS 

Called by: compiled code 

Entry point IHESNSC 

Function: 

cos<x>, where x is real short 
floating-point. 

Linkage: As for IHESNSS 

Called ty: Compiled code, IHEEXW, IHESNW 

Entry point IHESNSK 

Function: 

COSD(xl, where x is real short 
floating-point. 

Linkage: As for IHESNSS 

called ty: compiled code 

IHESNW 

Calls: IHEEXS, IHESNS 

Entry point IBESNWS 

Function: 

SIN(z), where z is complex short 
floating-point. 

Linkage: 

RA: A(Parameter list> 
Parameter list: 

A(z) 
A(Target> 

Called by: compiled code 

Entry point IHESNWZ 

Function: 

SINH(z), where z is complex short 
floating-point. 

Linkage: As for IHESNWS 

Called by: compiled code 

Entry point IHESNWC 

Function: 

COS(z), where z is complex short 
floating-point. 

Linkage: As for IHESNWS 

Called by: Compiled code 

Entry point IHESNWR 

Function: 

COSH(z), where z is complex short 
floating-point. 

Linkage: As for IHESNWS 

Called by: compiled code 

IHESNZ 

Calls: IHEEXL, IHESNL 

Entry point IHESNZS 

Function: 

SIN(z), where z is complex long 
floating-point. 

Linkage: 

RA: A(Parameter list> 
Parameter list: 

A(z) 
A(Target> 

Called by: compiled code 

Entry point IHESNZZ 

Function: 

SINH(z), where z is complex long 
floating-point. 

Chapter 9: Module Summaries 135 



Link~ge: As for IHESNZS 

Called by: Compiled code 

Entry point IHESNZC 

Function: 

cos<z>, where z is complex long 
floating-point. 

Linkage: As for IHESNZS 

called by: Compiled cone 

Entry point IHESNZK 

Function: 

COSH<z>, where z is complex long 
floating-point. 

Linkage: As for IHESNZS 

called by: compiled code 

IHESP:R 

Entry point: IHESPRT 

Function: 

Contains the default DCLCB for SYSPRINT. 
This module is used only when no other 
DCLCB is provided. 

Called by: IHEPRT, IHEPTT 

IHESQL 

Entry point: IHESQLO 

Function: 

SQRTCx>, where xis real long 
floating-point. 

Linkage: 

RA: ACParameter list> 
Parameter list: 

A (x) 

AC Target> 

Called by: Compiled code, IHEABZ, IHESQZ 

IHESQS 

Entry point: IHESQSO 

Function: 

SQRTCx>, where x is real short 
floating-point. 

136 

Linkage: 

RA: ACParameter list) 
Parameter list: 

A(x) 
ACTargetl 

Called by: Compiled code, IHEABW, IHESQW 

IHESQW 

Calls: IHESQS, IHEABW 

Entry point: IHESQWO 

Function: 

SQRTCzl, where z is complex short 
floating-point. 

Linkage: 

RA: A(Pa.rameter list> 
Parameter list: 

A(z) 
ACTarget> 

Called by: Compiled code 

IHESQZ 

Calls: IHEABZ, IHESQL 

Entry point: IHESQZO 

Function: 

SQRT<z>, where z is complex long 
floating-point. 

Linkage: 

RA: ACParameter list> 
Parameter list: 

A(z) 
ACTarget> 

Called by: Compiled code 

IHESRC 

Entry point IHESRCA 

Function: 

Returns SDV of erroneous field 
CONSOURCE pseudo-variable>. If used 
out of context, the ERROR condition is 
raised. 

Linkage: 

RA: A(Parameter list> 
Parameter list: ACDummy SDV) 



Entry point IHESRCB 

Function: 

Assiqns erroneous character to target 
(ONCHAR built-in function). If used 
out of context, then 'blank' is 
returned. 

Linkage: 

RA: A(Parameter list) 
Parameter list: A(Target SDV) 

Entry point .IHESRCC 

Function: 

Returns SDV of erroneous field 
CDATAFIELD). If used out of context, a 
null string is returned. 

Linkage: As for IHESRCA 

Entry point IHESRCD 

Function: 

Returns SDV of erroneous character.· 
(ONCHAR pseudo-variable>. If used out 
of context, the ERROR condition is 
raised. 

Linkage: As for IHESRCA 

Entry point IHESRCE 

Function: 

Returns SDV of the name of the file 
(ONFILE) which caused entry to the 
current ON block. If used out of 
context a null string is returned. 

Linkage: As for IHESRCA 

Fntry point IHESRCF 

Function: 

Returns SDV of erroneous field 
(ONSOURCE built-in function>. If used 
out of context, a null string is 
returned. 

Linkage: As for IHESRCA 

IHESRD 

Entry point: IHESRDA 

Function: 

Returns SDV of current key CONKEY 
built-in function>. If used out of 
context, a null string is returned. 

Linkage: 

RA: A(Parameter list> 
Parameter list: A(Dummy SDV> 

I HES RT 

Calls: 

IHESAP, IHETSA, Supervisor (GETMAIN, 
FREEMAIN, LINK, SPIE), SORT 

Function: 

To call dynamically, through the use of 
a LINK macro, the operatinq system 
Sort/Merge from Within a PL/I 
procedure, and, optionally, permitting 
the use of Sort/Merge user exits E15 
and E35 to invoke PL/I exit procedures 
contained within the calling PL/I 
procedure. 

Entry point IHESRTA 

Function: 

To call operating system sort/Merge to 
sort a predefined file (SORTIN) placing 
the sorted records on another 
predefined file (SORTOUT). 

Linkage: 

RA: A(Parameter list> 
Parameter list: 

1. A(A character string which 
represents the sort/Merge control 
card to describe the sort fields 
contained in the record.) 

2. A(A character string which 
represents the sort/Merge control 
card to describe the record 
format of the records which are 
to be sorted.) 

3. A(A fullword fixed binary value 
specifying the amount of core 
storage available to Sort/Merge.> 

4. A(A fullword fixed binary value 
to be used as a return code from 
the sort. A return code of O 
indicates the successful 
completion of the sort, 16 
indicates an unsuccessful sort 
operation. > 

5. A(SDV for the DD name replacement 
string). This is an optional 
parameter. 

Called by: compiled code (PL/I source 
statement> 

Chapter 9: ~odule summaries 137 



Entry point IHESRTB 

Function: 

To call operating system sort/Merge to 
sort individual records. passed to 
Sort/Merge through user exit E15 by a 
PL/I exit procedure. onto a predefined 
file (SORTOUT). 

Linkage: 

RA: A(Parameter list> 
Parameter list: 

1. 2. 3. and 4 are as for IHESRrA 

5. A(The PL/I functional procedure 
entry name invoked by Sort/Merge 
user exit E15. This exit 
procedure returns a character 
string representing a record 
which is to be included in the 
sort.> 

6. as for 5 in IHESRTA 

Called by: compiled code (PL/I source 
statement) 

Entry point IHESRTC 

Function: 

To call operating system sort/Merge to 
sort a predefined file (SORTIN>. 
passing individual sorted records 
through Sort/Merge user exit E35 to a 
PL/I exit procedure. 

Linkage: 

RA: A(Parameter list> 
Parameter list: 

1. 2, 3. and 4 are as for IHESRrA 

5. A(The PL/I procedure entry name 
invoked by sort/Merge user exit 
E35. This exit procedure 
receives a sorted record from the 
sort.> 

6. as for 5 in IHESRTA 

Called by: Compiled code (PL/I source 
statement) 

Entry point IHESRTD 

Function: 

138 

To call operating system sort/Merge to 
sort individual records passed to the 
sort by an exit procedure. through user 
exit E15. and to pass the sorted 
records. through user exit E35, to an 
exit procedure. 

Linkage: 

RA: A(Parameter list) 
Parameter list: 

1. 2, 3, and 4 as for IHESRTA 
5. as for IHESRTB 
6. as for 5 IHESRTC 
7. as for 5 in IHESRTA 

Called by: compiled code (PL/I source 
statement) 

I HES SF 

Calls: IHEDMA, IHEJXS 

Entry point: IHESSFO 

Function: 

SUM for a simple array of real 
fixed-point binary or decimal elements. 
Result is real short or long 
floating-point. 

Linkage: 

RA: A(Parameter list) 
Parameter list: 

A(ADV) 
A(Number of dimensions> 
A(DED of the array) 
A(Target> 
A(DED for target) 

Called by: compiled code 

IHESSG 

Calls: IHEJXS 

Function: 

SUM for a simple array of real short 
floating-point elements. Result is 
real short floating-point. 

Linkage: 

RA: A(Parameter list) 
Parameter list: 

A(ADV) 
A(Number of dimensions> 
A(Target> 

Called by: compiled code 

Entry point IHESSGC 

Function: 

SUM for a simple array of complex short 
floating-point elements. Result is 
complex short floating-point. 



Linkage: As for IHESSGR 

Called by: Compiled code 

IBESSB 

Calls: IHF.JXS 

Entry point IHESSHR 

Function: 

SUM for a simple array of real long 
floating-point elements. Result is 
real long floating-point. 

Linkage: 

RA: A(Parameter list> 
Parameter list: 

A(ADV) 
A(Number of dimensions) 
A(Target) 

Called by: Compiled code 

Entry point IHESSBC 

Function: 

SUM for a simple array of complex long 
floating-point elements. Result is 
complex long floating-point. 

Linkage: As for IBESSHR 

Called by: Compiled code 

IBESSX 

Calls: IHEDMA, IBEJXS 

Entry point: IBESSXO 

Function: 

SUM for a simple array of complex 
fixed-point binary or decimal elements. 
Result is complex short or long 
floating-point. 

Linkage: 

RA: A(Parameter list> 
Parameter list: 

A(ADV) 
A(Number of dimensions) 
A(DED of the array > 
A(Target) 
A(DED for target> 

Called by: compiled code 

I BE STA 

Entry point: IBESTAA 

Function: 

Write out error messages under ABEND 
conditions. 

Linkage: 

RA: A (PLIST) 
PLisr: A(Latest save area) 

A(O/S STAE parameter list> 
A<First free core block) 

unused 
A(Adcon list> 
A(SYSPRINT in PRV) 

Called by: IHESAP 

IHESTG 

Calls: IBEJXI, IHEBSK 

Function: 

Given a structure dope vector and its 
DVD, returns a fullword containing the 
string length which would result from 
the concatenation of all the elements 
of the structure. 

Linkage: 

RA: A(Structure dope vector> 
RB: A(DVD) 
RC: A<one-word target field) 

Called by: compiled code 

Entry point IHESTGB 

Function: 

Given a structure dope vector and its 
DVD, assigns the result of 
concatenating all the elements of the 
structure to a string target. 

Linkage: 

RA: A(Structure dope vector) 
RB: A(DVD) 
RC: A(Target) 

Called by: compiled CQde 

IBESTP 

Calls: IBEBSK, IBEBSM, IBEJXI 

Entry point: IHESTPA 

Function: 

Assigns a bit or character string to 
the elements of a scalar. array or 
structure variable. 

Chapter 9: Module sumnaries 139 



Linkage: 

RA: A(Dope Vector> 
RB: A(Dope Vector Descriptor> 
RC: A(SDV) 

Called by: compiled code. 

IHESTR 

Calls: IHESAP, IHETSA 

Fntry point IHESTRA 

Function: 

To compute the address of the first 
~lement of a structure and the total 
length of the structure, using a 
complete structure dope vector. rhe 
result in the two-word target field is~ 

1st word: A(Start of structure>, in 
bytes and bit offset 

2nd word: Length of structure, in 
bytes 

Linkage: 

RA: A(Structure dope vector) 
RB: A(DVD) 
RC: A(Two-word target) 

Called by: Compiled code 

Entry point IHESTRB 

Function: 

140 

Given a partially completed structure 
dope vector, to map a structure 
completely, namely: 

1. Locating each structure base 
element on the alignment boundary 
required by its data type. 

2. Calculating the offset of the start 
of each base element from the byte 
address of the beginning of the 
structure. 

3. Calculating the multipliers of all 
arrays appearing in the structure 
and calculating the offset of the 
virtual origin of each array from 
the byte address of the beginning 
of the structure. 

4. Calculating the total length of the 
structure. 

5. Calculating the offset from the 
maximum alignment boundary in the 
structure to the byte address of 
the start of the structure. 

The result is a completed structure 
dope vector, and a target field which 
contains: 

0 7 8 31 

r-----------------------------------------1 I Zero I 
~-------------T---------------------------~ I Off set I Length I 
L-------------~---------------------------J 
Offset: Offset in bytes from the maximum 

alignment boundary in the structure 
to the start of the structure 

Length: Length of structure, in bytes 

Linkage: As for IHESTRA 

Called by: compiled code 

Entry point IHESTRC 

Function: 

As for IHESTRB, but using the COBOL 
structure mapping algorithm. 

Linkage: As for IHESTRA 

Called by: Compiled code 

I HE SUB 

Calls: IHETSAM 

Entry point: IHESUBA 

Function: 

to be attached by IHETSAP and pass 
control to IHETSA~. 

Linkage: 

RO(length of PRV) 
RA: A(Parameter list) 

Parameter list: 
A(IHETSAM) 
A(Parameter list) 

Called by (attached by): IHETSAP 

IHETAB 

Base address of table: IBETABS 

Function: 

This module is a table of default 
information provided for use at 
installation or when individual program 
replacements are required. It contains: 

1. Default PAGESIZE, LINESIZE, and left 
and right margin positions for all 
PRINT files. 



2. Default tabulation positions for 
list- and data-directed PRINT file 
output. 

IHETCV 

Calls: Supervisor (FREEMAIN,GETMAIN) 

Entry point IRETCVA 

Function: 

To provide storage for an allocation of 
a controlled variable in a multitasking 
environment, and to place the address 
of its fourth word in its 
pseudo-register. 

Linkage: 

RO: Length of area (excluding control 
words) 

RA: A(Controlled-variable 
pseudo-register) 

Called by: Compiled code 

Entry point IHET(VB 

Function: 

Frees the latest allocation of a 
controlled variable in the current 
task, and updates the associated 
pseudo-register. 

Linkage: 
RA: A(Controlled-variable 

pseudo-register> 

Called by: Compiled code 

IHETEA 

calls: Supervisor (POST,WAIT) 

Entry point: IHETEAA 

Function: Event variable assignment. 

Linkage: 

RA: A(Source event variable) 
RB: A(Target event variable) 

called by: Compiled code 

I HETER 

Entry point: IHETERA 

Function: 

To search for a matching ON field in a 
multitasking environment by chaining 
through DSAs and PRV VDAs. A return code 
is set in register BR to indicate the 
result of the search. 

Linkage: DR: A(LWE) 

Called by: IHEERR 

IHETEV 

Calls: Supervisor (POST,WAIT) 

Entry point: IHETEVA 

Function: 

COMPLETION pseudo-variable (COMPLETION(v) 
=expression): sets the specified event 
variable complete or incomplete according 
to the evaluation of the expression. 

Linkage: 

RA: A(Parameter list) 
Parameter list: 

A(Event variable) 
A(Fullword to hold completion value <in 
bit 24)) 

Called by: Compiled code 

IHgI~! 

Calls: 

IHEERT, IHEPTT Supervisor (WTO, LOAD, 
DELETE, EXTRACT, ENQ, DEQ, PU'l') 

En~!Y_E?Oint IHETEXA 

Function: 

To generate a message when a task has 
been terminated while still active due 
to the freeing of the block in which 
the task was attached. 

Linkage: 

RA contains the address of a VOA which 
contains space for the creation of the 
message and t~e following parameters: 

A(IHEPTI'B) 
ACSymbol table entry for which the 

task has been terminated) 
A(IHEQSPR) 

Called by: IHETSA 

En!:~2Qint IH~TEXB 

Function: 

To generate a message when a task has 
been abnormally terminated by the 
operating system. 

Chapter 9: Module Summaries 141 



Linkage: 

DR points to an area of storage 
containg a save area, an area for the 
creation of the message and the 
following parameters: 

completion code 
A(Symbol table entry for the task 

which has been terminated) 
A(IHEQSPR) 

Called by: IHETSA 

Entry point IHETEXC 

Function: 

Version 5 entry point (instead of 
IHETEXB) 

Linkage: 

A(PROC NAME) 
Statement no. when task abended 
Off set when task abended 

A(Symbol table> 
Completion code 

A(SYSPRINT in major PRV) 

Called by: IHETSA 

IHETHL 

Calls: IHEEXL 

Entry point: IHETHLO 

Function: 

TANH<x>, where xis real long floating
point. 

Linkage: 

RA: A(Parameter list> 
Parameter list: 

A(x) 
A(Target> 

Called by: Compiled code, IHETNZ 

IHETHS 

Calls: IHEEXS 

Entry point: IHETHSO 

Function: 

TANH<x>, where xis real short 
floating-point. 

142 

Linkage: 

RA: A<Parameter list> 
Parameter list: 

A(x) 
A(Target) 

Called by: Compiled code, IHETNW 

IHETNL 

Entry point IHETNLR 

Function: 

TAN<x>, where xis real long 
floating-point. 

Linkage: 

RA: A(Parameter list) 
Parameter list: 

A(x) 
A(Target> 

Called by: compiled code, IHETNZ 

Entry point IHETNLD 

Function: 

TAND<x>, where xis real long 
floating-point. 

Linkage: As for IHETNLR 

Called by: compiled code 

IHETNS 

Entry point IHETNSR 

Function: 

TAN<x>, where xis real short 
floating-point. 

Linkage: 

RA: A(Parameter list> 
Parameter list: 

A(x) 
A(Target> 

Called by: compiled code, IHETNW 

Entry point IHETNSD 

Function: 

TAND<x>, where xis real short 
floating-point. 

Linkage: As for IHETNSR 

Called by: compiled code 



I·HETNW 

Calls: IHETHS, IHETNS 

Entry point IHETNWN 

Function: 

TAN<z>, where z is complex short 
floating-point. 

Linkage: 

RA: A(Parameter list> 
Parameter list: 

A(z) 
AC Target> 

Called by: compiled code 

Entry point IHETNWH 

Function: 

TANH(z), where z is complex short 
floating-point. 

Linkage: As for IHETNWN 

Called by: Compiled code 

IHETNZ 

Calls: IHETHL, IHETNL 

Entry point IHETNZN 

Function: 

TAN(z), where z is complex long 
floating-point. 

Linkage: 

RA: A(Parameter list> 
Parameter list: 

A(z) 
A(Target> 

Called by: compiled code 

Entry point IHETNZH 

Function: 

TANH(z), where z is complex long 
floating-point. 

Linkage: As for IHETNZN 

Called by: compiled code 

IHETOM 

Calls: Supervisor (WTO, EXTRACT) 

Entry point IHETOMA 

Function: 

Issues WTO macro instruction if the 
program does not have a main procedure. 

Linkage: 

DR points to an area of storage which 
is used as a save area and as workspace 
to build up the message. 

Called by: IHEBEG 

Ent;,y_point IHETOMB 

Function: 

Issues WTO macro instruction if the PRV 
is longer than 4096 bytes. 

Linkage: 

As for IHETOMA 

Called by: IHEBEG 

Entry point IHETOMC 

Function: 

Issues WTO macro instruction if there 
has been an interrupt in the error 
handler. 

Linkage: 

As for IHETOMA 

Called by: IHEERR 

Entry point IHETOMD 

Function: 

Issues WTO macro instruction if the 
major task of a multitasking program 
has been terminated with an ABEND. The 
message contains the completion code. 

Linkage: 

As for IHETOMA but in addition the 
completion code is passed in the area 
pointed to by DR. 

Called by: IHETSA 

Entry point IHETOME 

Function: 

Issues WTO macro instruction if there 
is an abnormal REY pondition when· 
CLOSING a file after a LOCATE 
statement. The file may be INDEXED 
(with RRP * 0) or REGIONAL. 

Chapter 9: Module summaries 143 



Link.age: as for IHETOMA 

Called by: IHEOCL, IHEOCT 

IHETPB 

Entry point: IHETPBA 

Function: 

PRIORITY built-in function: returns the 
priority of a named task relative to the 
priority of the current task. 

Linkage: 

RA: A(Parameter list> 
Parameter list: 

A (Task variable) 
A(Fullword target field> 

Called by: compiled code 

IHETPR 

Calls: Supervisor (CHAP,POST,WAIT) 

Entry point: IHETPRA 

Function: 

PRIORITY pseudo-variable (PRIORITYCv) = 
expression>: sets the priority of the 
specified task to the given value 
relative to the priority of the current 
task. 

Linkage: 

RA: ACParameter list) 
Parameter list: 

A(Task variable>, or zero (if current 
task> 
A(Relative priority> 

called by: compiled code 

IHETSA 

Calls: 

supervisor (ATTACH, DEQ, DETACH, EXTRACT, 
FREEMAIN, GETMAIN, LINK, POST, SPIE, 
STAE, WAIT), IHEBEG IHEDDT, IHEERR, 
IHEMAI, IHEITA, IHEOCT, IHEPTT, IHESIZ, 
IHETAB, IHETEX 

Function: 

Object program management in a 
multitasking environment. 

144 

Entry point IHETSAA 

Function: 

1. Obtains storage for the PRV VDA, 
task variable, and event variable 
for the major task, ECBLIST, CTECB 
and TCA. 

2. Attaches the PL/I major task and 
then enters a wait stat.e until 
either the event variable for the 
major task or the CTECB is 
completed. 

The execution of IHETSAA is termed the 
control task. Return is made to the 
calling program when there are no 
outstanding tasks in the calling 
program. 

Linkage: 

L(PRV) from IHESIZE 
L(LWS) from assembly of IHELIB 

Called by: 

Program that calls the PL/I program. 

Entry point IHETSAC 

Function: 

To place the return code in the 
pseudo-register IHEQRTC. 

Linkage: 

RA: A(Pararneter list> 
Parameter List: 

A(Return code) (The return code is 
fullword fixed binary.> 

Called by: Compiled code 

Entry_point IHETSAD (Get DSA) 

Function: 

To provide a DSA for a procedure or 
begin block and to set DR to point to 
it. 

Linkage: 

RO: Length of DSA 
DR: ACCurrent save area) 

Called by: Prologues, IHESRT 

Entry point IHETSAE (END) 

Function: 

Frees the DSA current at entry and its 
associated VDAs, and abnormally 
terminates any tasks attached in the 



block. A request to free the first DSA 
in a subtask results in the closing of 
all files opened, the dequeuing of 
resources enqueued, and the release of 
all dynamic storage allocated in that 
task. A request to free the DSA of the 
main procedure also raises the FINISH 
condition, but does not cause 
controlled storage allocated in the 
major task to be freed. 

Linkage: None 

Called by: Epilogues, IHESRT 

Entry point IHETSAF (Free VDA/LWS) 

Function: 

Frees the VOA or LWS at the end of the 
DSA chain. 

Linkage: 

IHEQSLA: A(VDA or LWS to be freed) 
Only the most recently allocated VOA or 
LWS can be freed. 

Called by: Compiled code, library modules 

Entry point IHETSAG (GO TO) 

Function: 

The DSA indicated by the invocation 
count, or pointed to by DR, is made 
current. All chain elements up to this 
DSA, with the exception of its VDAs and 
itself, are freed. Any active tasks 
attached to the DSAs freed are 
abnormally terminated. 

Linkage: 

RA: A(Eight-byte word-aligned parameter 
list> 

Parameter list: 

Word 1=either Invocation count (bit 
0 of word 2=0> 

or PR offset <bit 0 of word 
2=1> 

word 2=A(Location to which control is 
to be returned) 

Called by: Compiled code 

Entry point IHETSAL (Get LWS) 

Function: 

To provide a new LWS, and to update the 
LWS pseudo-registers. 

Linkage: None 

Called by: Library modules 

Entry point IHETSAM 

Function: 

Initializes new subtasks, and, where 
applicable, the PRV and primary LWS for 
the major task. Issues a SPIE and STAE 
macro instructions and branch~s to the 
main procedure. 

Linkage: 

RA: A(Parameter list) 
Parameter list contains control 
information from the control task. 

Called by: IHESUBA 

Entry point IHETSAN 

Function: 

To change the environment of a program 
to that which existed at the time of 

1. the execution of an ON statement 
associated with the on-unit to be 
entered, or 

2. the passing of the entry parameter 
associated with the called 
procedure. 

Then to branch to the on-unit or the 
procedure. 

Linkage: 

RA: A(Parameter list> 
Parameter list: 

A(Entry parameter>. The entry 
parameter is an a-byte field 
containing: 

1st word: on-unit or entry address 

2nd word: Invocation count of the DSA 
associated with either the 
passing procedure or the 
procedure in which the ON 
statement was executed 

Called by: compiled code, IHEERR 

Entry point IHETSAP 

Function: 

As IHETSAA, but also passes a PARM 
parameter from the the EXEC card. 

Chapter 9: Module summaries 145 



Linkage: 

L(PRV) from IHESIZE 
L(LWS) from assembly of IHELIB 

Called by: Initial entry 

Entry point IHETSAR (RETURN) 

Function: 

Frees all chain elements up to and 
including the last procedure DSA in the 
chain. Terminates the main procedure 
and subtasks as in IHETSAE. 

Linkage: None 

Called by: Epilogues 

Entry point IHETSAT 

Function: 

To implement a CALL statement with a 
task option: 

1. Completes the parameter list 
<reserved fields) 

2. Requests control task to attach 
subtask. 

Linkage: 

RA: A(Para~eter list) 
Parameter list: 

A(Task variable) <Byte o = x•so• if 
no PRIORITY option; bytes 1 - 3 = 0 
if no TASK option) 
A(Event variable> (Zero if no EVENT 
option) 
Relative priority 
A(Called procedure> 
Reserved 
Reserved (X'SO' if no argument list) 
Variable length argument list for 
called procedure (Omitted if no 
argument list': X' 80' in first byte of 
last word indicates end of list.) 

called by: compiled code 

Entry point IHETSAV (Get VOA) 

Function: 

To get a VOA for compiled code; sets 
RA=A(VDA). 

Linkage: 

RO: Length of VOA <excluding control 
words) 

DR: A(Current save area) 

called by: Compiled code 

146 

Ent~:£_Qoint IHETSAW (Get Library VDA) 

Function: 

To provide a VOA for library modules 
and to set RA = A(VDA) 

Linkage: 

RO: Length of VOA (including control 
words> 

Called by: Library modules 

Function: 

Function: 

STAE exit routine. Enqueues on control 
task if necessary. Requests detach of 
any subtasks, informs control task that 
task has abnormally terminated. 

Linkage: Hone 

Called by: Supervisor 

Function: 

Completes the implementation of STOP: 
closes all opened files, releases 
dynamic storage, and requests that all 
subtasks of the control task, including 
itself, be detached. 

Linkage: 

RA: Return code 

Called by: IHEDUM, IRETSS 

~~oint IHETSAZ 

Function: 

Abnormal end of task: closes all files 
opened in task, releases dynamic 
storage, and terminates the task and 
all subtasks attached by it. 

Linkage: 

RA: Return code 

Called by: IHEDUM, IHEERR, IHETSE 

!!!!TSE 

Calls: ·IBEERR, IHETSA 

Entry point: IHETSEA 



Function: 

To abnormally terminate the current task, 
and to raise the FINISH condition if the 
current task is the major task. 

Linkage: None 

Called by: Compiled code 

IHETSS 

Calls: IHEERR, IHETSA 

Entry point: IHETSSA 

Function: 

To raise the FINISH condition and 
abnormally termina.te the PL/I program in 
a multitasking environment. 

Linkage: None 

called by: compiled code 

IHETSW 

Calls: IHEERR, IHEJXI 

Supervisor (FREEMAIN,POST,WAIT), IHEJXI, 
IHETSA, the I/O transmission module whose 
address is in the FCB. 

Entry point IHETSWA 

Function: 

To determine whether a specified number 
of events has occurred. If not, to 
wait until the required number is 
complete, and, in the case of I/O 
events, to branch to the I/O 
transmission module <which raises I/O 
conditions if necessary). This module 
is used in a multitasking environment. 

Linkage: 

RA: A(parameter list> 
Parameter list: 

Word 1: 

1. If all events are to be waited 
on: 

Byte 0 = X'FF' 
Bytes 1-3 not used 

2. If a specified number (N) of 
events is to be waited on: 

Byte o = x•oo• 
Bytes 1-3 = A(N) 

Subsequent words (one for each 
element or array event): 

1. Array event: 

2. 

Byte 0 = dimensionality 
Bytes 1-3 = A(ADV) 

Element event: 

Byte 0 = X'OO' 
Bytes 1-3 = A(EVENT variable) 

(The high-order byte of the last 
argument indicates the end of the 
parameter list.) 

Called by: compiled code 

IH~!!f~ 

En~~oint IHEUPAA 

Function: 

To zero the real part of a complex 
coded data item and to return the 
address of the imaginary part. 

Linkage: 

RA: A(Source> 
RB: A(Source OED) 
WRCD: A(Imaginary part) 

Called by: IHEDCN, IHEDBN 

En~~Qint IHf:UPAB: 

Function: 

To return the address of the imaginary 
part of a complex coded data item if 
switch is on, and to zero the imaginary 
part if switch is off. 

Linkage: 

RA: A(Source) 
RB: A(Source OED) 
WSwA: Switch for update address only 
WRCD: A(Imaginary part) 

Called by: 

IHEDBN, IHEDCN, IHEDIA, IHELDI, IHEDIO, 
IHEDIE, IHEDNC, IHEDOM, IHEVCS 

IHEUPB 

Calls: IHEDMA 

Ent!Y_f.oint IHEUPBA: 

Function: 

To zero the real part of a complex 
numeric field and to return the address 
of the imaginary part. 

Chapter 9: Module Summaries 147 



Linkage: 

RA: A(Source> 
RB: A(SOurce OED) 
WRCD: A<Imaginary part> 

Called by: IHEDCN, IHEDBN 

Entry Point IHEUPBB: 

Function: 

To return the address of the imaginary 
part of a complex numeric field if 
switch is on, and to zero the imaginary 
part if switch is off. 

Linkage: 

RA: A(Source> 
RB: A(Source DED) 
WSWA: Switch for update address only 
WRCD: A(Imaginary part> 

Called by: 

IHEDBN, IHEDCN, IHEDIA, IHEDID, IHEDIE, 
IHEDOM, IHEVCS 

IHEVCA 

Entry Point: IHEVCAA 

Function: 

To define the attributes of arithmetic 
data in character form by producing a DED 
(flags, p, q). 

Linkage: 

RA: A(Target OED) 
WNCP: A(Start and end addresses of data 

to be analysed) 

called by: 

IHEDIA, IHEDIM, IHEDOM, IHELDI 

IHEVCS 

calls: 

IHEDMA, IHEDNB, IHEDNC, IHEUPA 

Entry point IHEVCSA 

Function: 

148 

To direct the conversion of character 
representation of complex data to 
internal string data. The character 
data is first converted to coded 
complex, with attributes derived from 
the real and imaginary parts of the 
source data (according to the 

arithmetic conversion package rules> 
and then converted to string. 

Linkage: 

RA: A(Parameter list> 
Parameter list: 

A(Start and end addresses of real 
data) 

A(Real DED) 
A(Start and end addresses of 

imaginary data> 
A(Imaginary OED> 
A(Target SOV) 
A (Target OED) 
A(Real FED) 
A(Imaginary FED). 

Called by: IHEDIM, IHEDOM, IHELDI 

Entry point IHEVCSB 

Function: 

As for IHEVCSA but the conversion is to 
coded complex only. 

Linkage: As for IHEVCSA 

Called by: As for IHEVCSA 

IHEVFA 

Calls: IHEVTB 

Entry point: IHEVFAA 

Function: 

gadix conversion: binary to decimal 
To convert long floating-point to packed 
decimal intermediate. 

Linkage: 

WINT: Long precision floating-point 
number 

Called by: IHEDMA 

IHEVFB 

Entry point: IHEVFBA 

Function: 

To convert a long precision 
floating-point number to a fixed-point 
binary number with specified precision 
and scale 
factor. 

Linkage: 

WINT: Long precision floating-point 
number 

WRCO: A(Target) 
A( Target OED) 



Called by: IHEDMA 

IHEVFC 

Entry point: IHEVFCA 

Function: 

To convert a long floating-point number 
to a floating-point variable with 
specified precision. 

Linkage: 

WINT: Long-precision floating-point 
number 

WRCD: A(Target) 
A (Target DED) 

Called by: IHEDMA 

IHEVFD 

Entry point: IHEVFDA . 

Function: 

To convert a fixed-point binary integer 
with scale factor to long precision 
floating-point. 

Linkage: 

RA: ACSource> 
RB: A(Source OED) 

Called by: IHEDMA 

IHEVFE 

Entry point: IHEVFEA 

Function: 

To convert a floating-point number of 
specified precision to long precision 
floating-point. 

Linkage: 

RA: A(Source) 
RB: A(Source DED) 

Called by: IHEDMA 

IHEVKB 

Entry point: IHEVKBA 

Function: 

To convert a fixed- or floating-point 
decimal numeric field to packed decimal 
intermediate. 

Linkage: 

RA: A(Source> 
RB: A(Source DED) 

Called by: IHEDMA 

IHEVKC 

Entry point: IHEVKCA 

Function: 

To convert a sterling numeric field to 
packed decimal intermediate. 

Linkage: 

RA: ACSource> 
RB: A(Source OED) 

Called by: IHEDMA 

IHEVKF 

Entry point: IHEVKFA 

Function: 

To convert packed decimal intermediate to 
a decimal fixed- or floating-point 
numeric field with specified precision. 

Linkage: 

WINT: Decimal integer 
WSCF: Scale £actor 
WRCD: A(Target) 

A(Target OED) 

Called by: IHEDMA 

IHEVKG 

Entry point: IHEVKGA 

Function: 

To convert packed decimal intermediate to 
a sterling numeric field with specified 
precision. 

Linkage: 

WINT: Decimal integer 
WSCF: Scale factor 
WRCD: A(Target) 

A( Target DEO) 

Called by: IHEDMA 

Chapter 9: Module Summaries 149 



IHEVPA 

Calls: IHEVTB 

Entry point: IHEVPAA 

Function: 

Radix conversion: decimal to binary 
To convert packed decimal intermediate to 
long precision floating-point. 

Linkage: 

WINT: Decimal integer 
W$CF: scale factor 

Called by: IHEDMA 

IHEVPB 

Entry Point: IHEVPBA 

Function: 

To convert packed decimal intermediate to 
an F format item. 

Linkage: 

WINT: Decimal integer 
WSCF: Scale factor 
WFDT: ACFED) 
WRCD: ACTarget) 

Called by: IHEDMA 

IHEVPC 

Entry point: IHEVPCA 

Function: 

To convert packed decimal intermediate to 
an E format item. 

Linkage: 

WINT: Decimal integer 
WSCF: Scale factor 
WFDT: A(FED) 
WRCD: A(Target) 

Called by: IHEDMA 

IHEVPD 

Entry point: IHEVPDA 

Function: 

To convert packed decimal intermediate to 
a decimal integer with specified 
precision and scale factor. 

150 

Linkage: 

WINT: Decimal integer 
WSCF: Scale factor 
WRCD: A(Target) 

A(Target OED) 

Called by: IHEDMA 

IHEVPE 

Entry point: IHEVPEA 

Function: 

To convert an F/E format item to packed 
decimal intermediate. 

Linkage: 

RA: A(Source> 
RB: A(Source OED) 
WFED: A ( FED> 

Called by: IHEDMA 

IHEVPF 

Entry point: IHEVPFA 

Function: 

To convert a decimal integer with 
specified precision and scale factor to 
packed decimal intermediate. 

Linkage: 

RA: A(Source) 
RB: A(Source OED) 

Called by: IHEDMA 

IHEVPG 

Entry point: IHEVPGA 

Function: 

To convert a binary fixed- or floating
point constant to long precision 
floating-point. 

Linkage: 

WCNP: A(Beginning of constant) 
A(End of constant> 

Called by: IHEDMA 

IHEVPH 

Entry point: IHEVPHA 



Function: 

To convert a bit strinq constant with up 
to 31 significant bits to long precision 
floating-point. 

Linkage: 

WCNl: A<Be9innin9 of constant) 
A(End of constant) 

Called by: IBEDMA 

IHEVQA 

Entry point: IBEVQAA 

Function: 

To convert a floating point number of 
specified precision to a fixed-point 
binary number with specified precision 
and scale factor. 

Linkage: 

RA: A<Source> 
RB: A(Source OED) 
RC: A(Target) 
RD: A(Tar9et OED) 

Called by: Compiled code, IHEVQB 

IHEVQB 

Calls: IHEVQA, IHEVTB 

Entry point: IHEVQBA 

Function: 

To convert a decimal constant to a coded 
arithmetic data type. 

Linkage: 

RA: A(First character of constant> 
RB: A<Last character of constant) 
RC: A(Target) 
RD: A(Target OED) 
WFED: A(FED) if constant is part of F or 

E format input 
WSWB: Switches specifying type of source 

string 

Called by: IHEDCN, IHEDIA 

IHEVQC 

Calls: IHEVSC, IHEVSE 

Entry point: IBEVQCA 

Function: 

To convert some coded arithmetic data 
types to F or E format or character 
string. 

Linkage: 

RA: A(Source> 
RB: A(Source DEO) 
RC: A(Target SDV) 
RD: A (Target OED) 
WFDT: A(FED) 
WSWB: Switches specifying type of target 

string 

Called by: IHEDNC, IHEDOA 

IBEVSA 

Entry point: IHEVSAA 

Function: 

To assign a fixed-length or VARYING bit 
string to a fixed-length or VARYING bit 
string. 

Linkage: 

RA: A(Source SDV) 
RB: A(Source OED) 
RC: A(Target SDV) 
RD: A(Target OED) 

Called by: Compiled code, IHEDIA, IHEDNB 

!!!I~ 

Entry point: IHEVSBA 

Function: 

To convert a fixed-length or VARYING bit 
string to a fixed-length or VARYING 
character string. 

Linkage: 

RA: A(Source SOV) 
RB: A(Source OED) 
RC: A(Target SOV) 
RO: A(Target OED) 

Called by: 

Compiled code, IHEDOB, IHEDOD, IHEDOE, 
IBELDO 

IBEVSC 

Entry point: IHEVSCA 

Function: 

To assign a fixed-length or VARYING· 
character string to a fixed-length or 
VARYING character string. 

Chapter 9: Module Summaries 151 



Linkage: ·. 

RA: A(Source SOV) 
RB: A(Source OED) 
RC: A(Target SOV) 
RO: A(Target OED) 

Called by: 

Compiled code, IHEDIA, IHEOIB, IHEOIO, 
IHEDIE, IHEONC, IHEDOB, IHEDOD, IHELDI, 
IHEVQC 

IHEVSD 

Entry point IHEVSDA 

Function: 

To convert a fixed-length or VARYING 
character string to a fixed-length or 
VARYING bit string. The ONSOURCE 
address is stored. 

Linkage: 

RA: A(Source SOV) 
RB: A(Source OED) 
RC: A(Target SDV) 
RD: A(Target OED) 
WOOF: A(Source SDV) 

Called by: 

compiled code, IHEDIB, IHEDID, IHEOIE, 
IHELDI 

Entry point IHEVSOB 

Function: 

As for IHEVSDA, but the ONSOURCE 
address is not stored. 

Linkage: 

AS for IHEVSOA, but without WOOF 

Called by: As for IHEVSDA 

IHEVSE 

Entry point IHEVSEA 

Function: 

To assign a fixed-length or VARYING 
character string to a pictured 
character string. The ONSOURCE address 
is stored. 

Linkage: 

152 

RA: A(SOurce SDV) 
RB: A(Source OED) 
RC: A(Target SDV) 
RD: A(Target OED) 
WOOF: A(Source SDV) 

Called by: 

Compiled code, IHEDIB, IHEDID, IHEDIE, 
I HE DOB 

Entry point IHEVSEB 

Function: 

As for IHEVSEA, but the ONSOURCE 
address is not stored. 

Linkage: 

As for IHEVSEA, but without WOOF 

Called by: IHEDNC, IHEVQC 

IHEVSF 

Entry Point: IHEVSFA 

Function: 

To convert a fixed-length or VARYING bit 
string to a pictured character string. 

Linkage: 

RA: A(Source SDV) 
RB: A(Source OED) 
RC: A(Target SDV) 
RD: A(Target OED) 

Called by: compiled code, IHEDOB 

IHEVTB 

Base address of table: IHEVTBA 

Function: 

This module is a table of long precision 
floating-point numbers representing 
powers of 10 from 1 to 70. It is used by 
the radix conversion routines IHEVPA, 
IHEVQB, and IHEVFA. 

Linkage: 

Not called. Referenced as external data 
by IHEVPA, IHEVQB and IHEVFA. 

IHEXIB 

Entry point: IBEXIBO 

Function: 

x••n, where x is real fixed-point binary 
and n is a positive integer. 

Linkage: 
RA: A(x) 

•RB: A(DED for x) 
RC: A(n) 
RO: A(Target) 

•RE: A(Target DED) 



called by: Compiled code 

I HEX ID 

Entry point: IHEXIDO 

Function: 

x••n, where x is real fixed-point 
decimal, and n is a positive integer. 

Lin"kage: 

RA: A(x) 
RB: ACDED for x) 
RC: A(n) 
RD: A(Target) 
RE: A(Target OED) 

Called by: compiled code 

IHEXIL 

Entry point: IHEXILO 

Function: 

x••n, where x is real long 
floating-point, and n is an integer. 

Linkage: 

RA: A(x) 
RB: A(n) 
RC: A(Target) 

called by: compiled code 

I HEX IS 

Entry point: IHEXISO 

Function: 

x••n, where x is real short 
floating-point, and n is an integer. 

Linkage: 

RA: A(x) 
RB: A(n) 
RC: A(Target) 

called by: compiled code 

IHEXIU 

Calls: IHEMZU 

Entry point: IBEXIUO 

Function: 

z••n, where z is canplex fixed binary and 
n is a positive integer. 

Linkage: 

RA: A(z) 
•RB: A(DED for z) 

RC: A(n) 
RD: A(Target) 

•RE: A(Target) 

Called by: Compiled code 

I HEX IV 

Calls: IHEMZV 

Entry point: IHEXIVO 

Function: 

z••n, where z is complex fixed-point 
decimal and n is a positive integer. 

Linkage: 

RA: A(z) 
RB: A(DED for z) 
RC: A(n) 
RD: A(Target) 

•RE: A(Target OED) 

Called by: Compiled code 

IHEXIW 

Calls: IHEMZW 

Entry point: IHEXIWO 

Function: 

z••n, where z is complex short 
floating-point, and n is an integer. 

Linkage: 

RA: A(z) 
RB: A(n) 
RC: A(Target) 

Called by: Compiled code 

IHEXIZ 

Calls: IHEMZZ 

Entry point: IHEXIZO 

Function: 

z••n, where z is complex long 
floating-point, and n is an integer. 

Linkage: 

RA: A(z) 
RB: A(n) 
RC: A(Target) 

Called by: Compiled code 

Chapter 9: Module summaries 153 



IHEXXL 

Calls: IHEEXL, IHELNL 

Entry point: IHEXXLO 

Function: 

x••y, where x and y are real long 
floating-point. 

Linkage: 

RA: A(y) 
RB: A(x) 
RC: A(Target) 

called by: compiled code 

IHEXXS 

Calls: IHEEXS, IHELNS 

Entry point: IHEXXSO 

Function: 

x••y, where x and y are real short 
floating-point. 

Linkage: 

RA: A(y) 
RB: A(x) 
RC: A(Target) 

called by: compiled code 

IHEXXW 

Calls: IHEEXW, IHELNS, IHELNW 

Entry point: IHEXXWO 

Function: 

z 1••z2 , where z 1 and z2 are complex short 
floating-point. 

Linkage: 

RA: A <za> 
RB: AC z 1) 
RC: A(Target) 

called by: compiled code 

IHEXXZ 

Calls: IHEEXZ, IHELNL, IHELNZ 

Entry point: IHEXXZO 

Function: 

z.••z2 , where Zt and z 2 are complex long 
floating-point. 

154 

Linkage: 

RA: A(z3 ) 

RB: A(z,) 
RC: A(Target) 

Called by: compiled code 

IHEYGF 

Calls: IHEDMA 

Entry point IHEYGFV 

Function: 

POLY (A,X) for both A and X vectors of 
real fixed-point binary or decimal 
numbers. Result is real short or long 
floating-point. 

Linkage: 

RA: A(Parameter list> 
Parameter list: 

A(ADV of argument 1) 
A(DED of argument 1) 
A(ADV of argument 2> 
ACDED of argument 2) 
AC Target) 
A<DED of target) 

called by: compiled code 

Entry point IHEYGFS 

Function: 

As for IHEYGFV but X is scalar. 

Linkage: 

RA: A(Parameter list> 
Parameter list: 

A(ADV of argument 1) 
ACDED of argument 1) 
A(Argument 2> 
A(DED of argument 2> 
A(Target) 
A ( DED Of target) 

Called by: Compiled code 

IHEYGL 

Entry point IHEYGLV 

Function: 

POLY (A,Xl for both A and X vectors of 
real long floating-point numbers. 
Result is real long floating-point. 



Linkage: 

RA: A(Parameter list> 
Parameter-list: 

A<ADV of argument 1> 
ACADV of argument 2) 
A(Target) 

Called by: compiled code 

Entry point IHEYGLS 

Function: 

As for IHEYGLV but X is scalar. 
Linkage: 

RA: ACParameter list> 
Parameter list: 

A(ADV of argument 1 > 
A(Argument 2) 
A(Target) 

Called by: compiled code 

IHEYGS 

Entry point IHEYGSV 

Function: 

POLY (A,X) for both A and X vectors of 
real short floating-point. Result is 
real short floating-point. 

Linkage: 

RA: A(Parameter list> 
Parameter list: 

ACADV of argument 1) 
ACADV of argument 2) 
A(Target> 

Called by: Compiled code 

Entry point IHEYGSS 

Function: 

As for IHEYGSV but X is scalar. 

Linkage: 

RA: ACParameter list> 
Parameter list: 

A CADV of argument 1 > 
A (Argument 2 > 
AC Target) 

Called by: Compiled code 

IHEYGW 

Entry point IHEYGWV 

Function: 

POLY (A,X> for both A and x vectors of 
complex short floating-point. Result 
is complex short floating-point. 

Linkage: 

RA: ACParameter list> 
Parameter list: 

ACADV of argument 1) 
ACADV of argument 2) 
A(Target> 

Called by: compiled code 

Entry point IHEYGWS 

Function: 

As for IHEYGWV, but X is scalar. 

Linkage: 

RA: A(Parameter list> 
Parameter list: 

A(ADV of argument 2) 
ACArgument 1) 
A(Target> 

Called by: Compiled code 

IHEYGX 

Calls: IHEDMA 

Entry point IHEYGXV 

Function: 

POLY (A,X) for both A and X vectors of 
complex fixed-point binary or decimal 
numbers. Result is complex short or 
long floating-point. 

Linkage: 

RA: A(Parameter list) 
Parameter list: 

A(ADV of argument 1) 
A(DED of argument 1) 
A(ADV of argument 2) 
ACDED of argument 2) 
AC Target) 
ACDED of target) 

called by: compiled code 

Entry point IHEYGXS 

Function: 

As for IHEYGXV. but X is scalar. 

chapter 9: Module summaries 155 



Linkage: 

RA: A<Parameter list) 
Parameter list: 

A (ADV of argument 1 > 
ACDED of argument 1) 
ACArgument 2) 
A<DED of argument 2) 
AC Target) 
ACDED of target> 

called by: Compiled code 

IHEYGZ 

Entry point IHEYGZS 

Function: 

As for IHEYGZV, but X is scalar. 

Linkage: 

RA: A(Parameter list) 
Parameter list: 

A(ADV of argument 1) 
A <Argument 2) 
A(Targetl 

Called by: Compiled code 

Entry point IHEYGZV 

Function: 

POLY (A,X) for both A and X vectors of 
complex long floating-point numbers. 
Result is complex long floating-point. 

Linkage: 

RA: A<Parameter list> 
Parameter list: 

A(ADV of argument 1) 
A(ADV of argument 2) 
A(Target> 

Called by: Compiled code 

156 

IHEZZC 

Calls: IHEZZF 

Entry point: IHEZZCA 

Function: 

To provide a SNAP dump with save-area 
trace and information about the PLII 
files that are open. 

Linkage: 

RA: A(Parameter list> 
see source listing for parameter list. 

Called by: IHEOUM 

IHEZZF 

Entry point: IHEZZFA 

Function: 

To provide the save-area trace that forms 
part of the output produced by IHEZZC. 

Linkage:. 

RA: A(Parameter list> 
see source listing for parameter list. 

Cal.led by: IHEZ zc 



APPENDIX A: SYSTIM MACRO INSTRUCTIONS 

The following table lists the system macro instructions used by the PL/I library and 
associates their use with individual library modules. 

S!Stem Macro Librarx Module 

ABEND IHEDUM, IHEERR 

ATTACH IHETSA 

CHAP IHECTT, IHEIGT, IHEITB, IHEITC, I BEITH, IBEITJ, IHEITO 

CHEC:K IHEITF, IHEITJ, IHEOPZ, IHEITB, IHEITC 

CHKPT IHECRP 

CLOSE IBECTT, IBECL.S, IHECLT, IHEOPZ 

DCB IBEOPO, IHEOPZ 

DCBD IRECLT, IBECTr, IHEITB. IHEITC, IHEITD, IHEITE. IHEITF, IHEITG, IHEITH, 
IHEITJ, IHEOCL, IHEOCT, IHEOPO, IHEOPP, IREOPQ, IHEOPZ 

DELETE IHECLT, IHECTT, IHEESM, IHErEX 

DEQ IHECTT, IHEDI>r, I HEE SM, IHEIBr, IHEITH, IHEITJ, IHEOCT, IBEPTT, IHETSA, 
IHETEX, IHEITO 

DETACH IHETSA 

DEVTYPE IHEOPO 

ENQ IHEDDT, IHEESM, IHEIBr, IHEirH, IHEITJ, IBEOCT, IHEPTT, IHETEX, IHEITO 

ESETL IHEITD 

EXTRACT IBETSA, IBETEX, I BET OM, IBEPRl', IBEPTT 

FREEMAIN IBEBEG, IHECLT, IBECTT, IHEDSP, IHEIOG, IBEITB, IHEITC, IBELSP, IBEMSW, 
IBEOCL, IBEOPZ, IHEOSW, IBESAP, IHETCV, IBETSA, IBESRT, IBETSW 

FREEPOOL IHECLT, IHECTT, IBEOPQ, IBEOPZ 

GET IBEITD, IBEITG, IBEI1'P 

GETBUF IBEOPZ 

GETMAIN IBEBEG, IBEDSP, IHEERR, IHEIGr, IBEIOG, IBEITB, IBEITC, IBEITD, IBEITE, 
IBEITF, I BEITH, IHEITJ, IBEITP, IBELSP, IBEOPO, IHEOPP, IHEOPQ, IBEOPZ, 
IBESAP, IBETCV, IHESR1', IBE1'SA 

GETPOOL IBEOPP 

LIN:K IBEBEG, I BED UM, I HEE RR, IHEOCL, IHEOCT, IBEOPN, IBESRT, IBETSA 

LOAD IHEESM, IHB>PQ, IHETEX 

OPEN IHEOPP, IBB>PZ 

POST IBEDSP, I BED UM, IBEIGT, IHEINT, IHEITB, IBEITC, IBEITB, IBEITJ, IBEOCT, 
IBETEA, IHETEV, IHE1'PR1 I BET SA, IBETSW 

Appendix A: system Macro Instructions 157 



system Macro Librar!: Module 

PUT IHEITD, IHEITG, IHEITP, I HE TEX 

PUTX IHEITD, IHEITG 

READ IHEITB, IHEITE, IHEITF, IHEITB, IHEITJ, IBEITK, IHEITM, IHEITN, IHEITO 

RETURN IHECLT, IHECTT 

SETL IHEITD 

SNAP IRED UM 

SPIE IHEERR, IHESAP, IHESRT, IHE?SA 

STAE IBESAP, IHESTA 

STIMER IHEOSI 

TIME IHEOSD, IHEOST 

WAIT IHEDSP, IHEDUM, IBEIGT, IBEINT, IHEITB, IHEITC, IHEITE, IHEITB, IHEITJ, 
IHEMSW, IHEOCT, IHEOSW, IHETEA, IHETEV, IHETPR, IHETSA, IHETSW 

WRITE IHEITB, IHEITC, IHEITE, IHEITF, IHEITB, IHEITJ, IHEOPZ, IBEITL, IBEITM, 
IHEITN, IHEITO 

WTO IHEDSP, IHEOCL, IHEOCT, IHEPRr, I BET OM, IBETEX, IHEPTT 

WTOR IHEDSP 

XCTL IHEOPN, IHEOPO, IHEOPP 

158 



System Generation Process 

IBM system/360 Operating system consists of 
libraries of program modules that can be 
united in a variety of combinations. 
according to options specified by the user. 
The user selects the programming options 
that meet his data processing requirements 
and conform to his machine facilities. The 
selected options are translated into 
program module requirements by the system 
generation process, the modules being 
compiled-into libraries that form the new 
operating system. 

The operating system is generated in two 
stages. First. a series of user-supplied 
macro instructions. which describe the 
machine facilities and programming options 
required. is written. From these, if no 
errors are found, a job stream is 
generated. In the next stage, the job 
stream is proces~ed by the assembler, the 
linkage editor, and utility programs. to 
generate the libraries of modules which 
form the new operating system. The whole 
process is carried out using an existing 
operating system. The system generation 
process is described in IBM System/36Q 
Operating System: System Generation. 

PL/I Library System Generation 

All PL/I library modules are in load module 
form. Before system generation they exist 
on two libraries on the starter system: 

1. SYS1 .• PL1LIB. This PDS contains 
modules which are always required by 
a system using PL/I. 

2. SYS1.LM512. This contains both 
modules which are optionally 
required and modules which will be 
copied into SYSl.LINKLIB. 

Three PL/I library system macros are used. 
whose purpose is to produce COPY control 
cards for inclusion in the job stream. 

The first macro, SGIHESLA, produces COPY 
control cards to copy modules from 
SYS1.LM512 into SYSl.LINKLIB. 

The second macro. SGIHESPB, produces 
COPY control cards to copy the non-optional 
modules on the starter system SYS1.PL1LIB 
into the new SYS1.PL1LIB. 

APPENDIX B: SYSTEM GENERATION 

The third macro, SGIBESPC, tests for the 
COMPLEX arithmetic option. If it is 
present, COPY control cards are produced 
for modules dealing with complex arithmetic 
<about 301 of the total number). The macro 
then tests to see if the TIME and STIMER 
options have been requested and are 
available. If so. COPY control cards are 
produced for IHEOST and IHEOSI. If either 
or both of these options are not required, 
either or both of the dummy modules IHEMST 
and IHEMSI are renamed IHEOST and IHEOSI 
respectively and the appropriate COPY 
control cards are produced. Similarly, if 
the MULTIPLE WAIT option is not requested, 
the SINGLE WAIT module IHEMSW is renamed 
IHEOSW. 

STORAGE UTILIZATION ANQ_SHARED LIERARY 

Users of MVT and MFT control programs 
within the operating system may use the 
shared library feature in which parts of 
the re-entrant PL/I library are resident in 
the operating system. Phis feature enables 
certain modules to be shared between 
partitions or regions, thus greatly 
reducing the storage requirements of an 
individual PL/I program within a partition 
or region. 

Transfer of control between each 
partition and the resident library is 
achieved by means of two transfer vector 
modules, IHELTV and IHELTT. The module 
IHELTT is link-edited to the PL/I program 
and ·controls the calls to the resident 
library. IHELTV is link-edited to ·the 
resident library and controls the calls to 
the partition. correlation between the tw:> 
transfer vector modules is maintained by 
the PRV in each partition. Therefore, 
standardisation of the PRV is implicit in 
this feature. 

Practical implementation of the shared 
library feature necessitates separation of 
the library modules into functional groups. 
These groups are selected by options in the 
SYSGEN PL1LIB macro and are listed in Table 
1. This list includes those modules which 
may~ be made resident <i.e., not 
shareable) and these are placed in Group 1. 
The storage management modules (group 2 or 
3) will always be included in a resident 
library. Tables 2 through 9 show the 
modules in their respective •packages• with 
their associat~d group numbers, whilst 
Table 10 is an alphabetical cross-ref~rence 
list of the modules. 

Appendix B: System Generation 159 



The Shared Library feature is made 
available at system generation time by 
specifying the required options in the 
PLlLIB macro. The specification of these 
options governs the generation of the 
resident load modules IHELTrA and IHELTVA. 

Table 1. Grouping of Modules (Shared 
Library Feature> 

.-----r-----------~--------------1 
tGroupt I 
I No. I Main Functions of the Group I 
·----+---------------~-------------------~ 1 INon-shared modules 

2 tMulti-tasking storage management 
3 INon-tasking storage management 
4 IError handler (ON-units) 
5 IList processing and structure 

I mapping 
6 tBasic conversion package 
7 IEdit conversions 
8 IComplex conversions 
9 IBit string conversions 

10 ICharacter string conversions 
11 IPicture conversions 
12 ISterling conversions 
13 IOptimization=l special conversions 
14 IBit string functions 
15 ICharacter string functions 
16 l'STRING' BIF and PV 
17 IReal non-interleaved arrays 
18 IReal interleaved arrays 
19 tcomplex non-interleaved arrays 
20 IComplex interleaved arrays 
21 IReal arithmetic operators 
22 IComplex arithmetic operators 
23 IReal short arithmetic functions 
24 IReal long arithmetic functions 
25 IComplex short arithmetic functions 
26 tcomplex long arithmetic functions 
27 INon-tasking data-directed I/O 
28 INon-tasking list-directed I/O 
29 tNon-tasking edit~directed I/O 
30 IMulti-tasking data-directed I/O 
31 IMulti-tasking list-directed I/O 
32 IMulti-tasking edit-directed I/O 
33 INon-tasking record I/O 
34 IMulti-tasking record I/O 
35 INon-tasking record I/O wait 
36 tMulti-tasking record I/O wait 

-----.1-------------------------------J 
~ The non-shared modules (Group 1) 
comprise those modules from the 
Housekeeping. String Function. and STREAM 
I/O Packages which cannot reside in the 
shared library. 

IHELTVA consists of the resident 
transfer vectors plus all the library 
modules selected for residency; the .latter 
are link-edited to lHELTVA. IHELTTA 
consists of the non-resident transfer 
vectors. At initial program load time, the 
load module containing IHELTVA must be made 
resident in the link pack area of MVT or 
the resident access methods area of MFT 
control programs. 

160 

Module IHELTTA must be included when a 
user wishes to create the shared library 
feature, and this may be achieved by means 
of the catalogued procedures discussed in 
IBM System/360 Operating.System: PL/I (F) 
Programmer's Guide. 

For details of the PLlLIB macro 
instruction, see IBM.System/360 Operating 
System: System Generation. Main storage 
requirements for this feature are discussed 
in IBM system/360.0peratinq system: Storage 
Estimates. 

Table 2. Housekeeping Package 
r------T-------------~--------, 
I I I Group Number I 
I Module I Description 1--,--,.--r--r--t 
I I 11 12 13 14 15 I 
·-----+------------------+-+--+--+--+--~ IIBEABNI ~BEND option X I I 
IIHETCVI Control Variable IX 
IIHETE~I Event Variable IX 
IIHETERI ON Field IX 
IIHETEVI COMPLETION IX 
IIHETPBI PRIORITY IX 
IIHETPRI PRIORITY IX 
IIHETSAI Storage Manag.t IX 
IIHETSEI FINISH IX 
IIHETSSI FINISH IX 
IIHESAPI storage Manag.t I X 
IIHEOSSI FINISH I x 
IIHEOSEI EXIT I x 
IIHECKPI Checkpoint X I 
IIBEDSPI Display IX I 
IIHEDUMI Dump I IX IX 
IIHESRTI sort x I I 
IIHEERRI Error IX IX 
IIBECFAI ONLOC I I x 
IIHECFBI ONCODE I l x 
IIHECNTI ONLINE I I IX 
IIHEOCL OPEN/CLOSE I x I 
I <non-tasking) I I 
IIHEOCT OPEN/CLOSE x I 
I (multitasking) I 
IIHESRC ONSOURCE IX 
IIHESRD ONKEY X 
IIBELSP List Processing IX 
IIHESTR Structure Mapping X 
IIHEBEG Terminal Error X 
IIHECFC Mod 91 and 195 IX 
I interrupts I 
IIHEM91 Mod 91 and 195 IX 
I errors I 
IIHEMAI Main IX 
IIHEMSI No Timer IX 
IIHEMST No TIME IX I 
IIHEMSWI WAIT I/O Event IX I 
IIHEOSDI Date I IX IX I 
IIHEOSII Delay IX I I I 
I IHEOST I Time I IX I X I 
I IHEPTT I COPY Tasking I IX I I 
IIHEPRTI COPY Non-tasking I I IX I 
I I BERES I Restart IX I I I 
IIHESIZI Length PRV IX I I I 
IIBESPRI SYSPRINT DCLCB IX I I I 
L------i------------------i-.1--~--L--.1.--l 



Table 3. Conversion Package 

r--------,------------------------T-----------------------------------------------1 I I I Group Number I 
I Module I Description •-----T-----T-----,.----~----~-----T-----T-----~ 
I I I 6 I 7 I a I 9 I 10 I 11 I 12 I 13 I 
·--------+------------------------+----~+-----+-----+-----+-----+-----+-----+-----~ IHEDIA F format director I X I X I I I X 

IHEDIB E to Internal I I X I X I I 
IHEDID B to Internal I I X I X I 
IHEDIE Picture to Internal I I X I X X I 
IHEDIL A/B error . I I X I I 
IBEDIM c to Internal I I X I I 
IBEDOA Internal to F/E I X I X I X 
IHEDOB Internal to A I I X I 
IHEDOD Internal to B I I X I 
IHEDOE Internal to Picture I I X I X X 
IHEDOM Int~rnal to C I I X f 
IHEDMA Conversion director I X I X X X X X X 
IHEDNB Arithmetic to Bit I I X 
IHEDBN Bit to Arithmetic I I X 
IHEDCN Bit to Character I I X 1 
IHEDNC Ari th to Character I I X I X 
IBERCA Valid Dec. Picture I I X I X 
IHERCB Valid Sterling Picture I I I X 
IHERCD Valid Char. Picture I I X I 
IHEUPA Address Real complex I I X I 
IHEUPB Address Imag. Complex X X I 
IHEVCA Arith. attributes X I 
IBEVCS complex to Internal X I 
IBEVFA Binary to Decimal X X X I 
IHEVFB Float to Fixed X X X I. 
IHEVFC Float to Float X I 
IHEVFD Fixed to Float X X X I 
IBEVFE Float to Float X I 
IBEVRB Decimal to Packed X I 
IHEVKC Sterling to Packed I X 
IHEVRF Packed to Fixed x 1 
IBEVKG Packed to Sterling I X 
IHEVPA Decimal to Binary X X X I 
IBEVPB Decimal to F X X X I 
IBEVPC Packed to E X X X 1 
IBEVPD Packed to Decimal X X X I 
IHEVPE E/F to Packed X X X I 
IBEVPF Decimal to Packed X X X I 
IHEVPG Fixed to Float X I 
IHEVPB Bit to Float X I 
IHEVSA Varying Bit X I 
IBEVSB varying ·Bit/Character X X I 
IBEVSC Varying Character X I 
IHEVSD Varying Bit/Character X X J 
IBEVSE Character to Picture X I 
IBEVSF Bit to Picture X X J 
IHEVQA Float to Fixed I .X 
IBEVQB Decimal to Arithmetic I X 
IHEVQC I Arith. to E/F/Char. I X 

--------.1...-----------------------"-----.l...----.&.-----L-----.L.----L-----L-----i-----J 

Appendix B: System Generation 161 



Table 4. STRING Function Package 
r--------T---~-----------------T-----------------------1 I I I Group Number I 
I Module I Description ~-----T-----~-----~----~ 
I I I 1 I 14 I 1s I 16 I 
~--------+-----------------------+-----+-----+-----+-----i 

IHEBSA I And I x I 
IHEBSO I or 1 X I 
IHEBSN I Not X I 
IHEBSC I Compare X I 
IHEBSM I Assign X I 
IHEBSK Concat, REPEAT X I 
IHEBSD Compare x 
IHEBSS Compare, SUBSTR x 
IHEBSI INDEX X 
IHEBSF BOOL X 
IHEBSV VERIFY X 
IHEBST TRANSLATE X 
IHECSK REPEAT X 
IHECSC Compare x 
IHECSM Assign, Fill HIGH/LOW x 
IHECSS SUBSTR X 
IHECSI INDEX X 
IHESTG STRING BIT X 
IHESTP STRING PV X 
IHECSV VERIFY X 
IHECST TRANSLATE X --------.L-----------------------L-----i_ ____ .._ ____ i_ ____ J 

Table 5. ARRAY Function Package Table 6. Arithmetic Function Package 
r--------T-------------T------------------1 r--------T-------------T-------------, 
I I I Group Number I I I I Group Numberl 
I Module I Description •----T----T----T---i I Module I Description •------T------1 
I I I 17 I 18 I 19 I 201 I I I 21 I 22 I 
~--------+-------------+----+----+----+---~ ~--------+-------------+------+------i IHEJXS Indexer x I x I x x I IHEXIB X••N x 

IHEJXI Indexer I x I x I IHEXID X .. N x 
IHENL1 ALL ANY x I x I x x I IHEAPD X••N x 
IHENL2 ALL ANY I x I x I IHEXIS X••N x 
I HES SF SUM x I 1 I IHEXXS Shift x 
IHESMF SUM I x I I IHEXIL X••Y x 
IHESSG SUM x I I x I IHEXXL X••Y x 
IHESMG SUM I x I x IHEMZU X•Y X/Y x 
IHESSG SUM x t 1 x IHEXIU X••N x 
IHESMH SUM I x x IHEMZV X•Y X/Y x 
I HEP SF PROO x I IHEXIV X••N x 
I HE PDF PROO I x IHEMZW X•Y x 
I HEP SS PROD x I IHEDZW X(Y x 
IHEPDS PROD I x IHEXIW X••N x 
IHEPSL PROD x I IHEXXW X••Y x 
IHEPDL PROO I x IHEMZZ X•Y x 
IHEYGF POLY x I x IHEDZZ X/Y x 
IHEYGS POLY x I x IHEXIZ X••N x 
IHEYGL POLY x I x IHEXXZ X••Y x 
IHESSX SUM I x IHEMXB MAX MIN x 
IHESMX SUM 1 x IHEMXO MAX MIN x 
IHEPSX PROD I x IHEA:>O ADD x 
I HE POX PROD I x IHEMXS. MAX MIN x 
IHEPSW PROD I x IHEMXL MAX MIN x 
I HEP OW PROD I x IHEMPU MULTIPLY x 
IHEPSZ PROD I x IHEDVU DIVIDE x 
IHEPDZ PROD I x IHEADV ADD x 
IHEYGX POLY I x x IHEMPV MULTIPLY x 
IHEYGW POLY I x x IHEDVV I DIVIDE I x 

I IHEYGZ POLY I x x I l.--------i-----------.L------.L----J L-------4'---------.L----.L----.L--.L--J 

162 



Table 7. Mathematical Function Package 

r-------T--------------T------------1 I I !Group Numberl 
I Module I Description •--r--r--T---~ 
I I 123124125126 I 
·-------+---------_;..------+--+--+--+---i 

IHESQS I SQRT x Ix 
IHEEXS I EXP x IX 
IHELNS I LOG x Ix 
IHESNS I SIN cos x I x 
IHETNS I TAN x Ix 
IHEATS I ATAN x IX 
IHESHS I SINH COSH X X 
IBETBS I TANH X X 
IBEHTS I ATANH X X 
IBEEFS I ERF X X 
IBESQL I SQRT x x 
IHEEXL I EXP x x 
IHELNL LOG X IX 
IHESNL SIN COS X I X 
IHETNL TAN Ix Ix 
IHEATL ATAN IX IX 
IHESBL SI NB COSB IX I X 
IBETBL TANH IX IX 
IBEHTL ATANB Ix Ix 
IHEEFL ERF X IX 
IHESQW SQRT x I 
IHEEXW EXP IX I 
IBELRI LOG IX I 
IHESNW SIN COS SINH COSH IX I 
IHE'l'NW TAN TANH I x I 
IBEATW ATAN ATANH IX I 
IBESQZ SQRT I IX 
IHEEXZ EXP I IX 
IHELNZ LOG I IX 
IHESNZ SIN COS SINB COSH I IX 
IHETNZ TAN TANH I I x 
IBEATZ ATAN ATANH I IX 
IHEABU ABS IX I 
IBEABV ABS IX I 
IHEABW ABS I IX 
IHEABZ ABS I IX 

L-------L--------------.1.--.l.--.L--.I.--

Table 9. STREAM I/O Package 

Table 8. RECORD I/O Package 
,------T-------------------r----------, 
I I !Group Numberl 
f Modulel Description ~--T--T--T--i 
I I I 331341351361 
~------+--------------------+---+--+--+--f 
IIHEIONfI/O transmitter routel X I I I I 
IIHEOSWIWait I/O EVENT I I IX I I 
IIHEOCLIOPEN/CLOSE I x I I I I 
IIHEINTII/O transmitter routel IX I I I 
IIHETSWf Wait I/O EVENT I I I IX I 
IIHEOCTIOPEN/CLOSE I IX I I I 
L-----.1.--------------------"'---.l.--.l.--.l.--J 

r--------~----------------T----------------------------------1 I I I Group Number I 
I Module I Description 1----~---T--~----T----ir----T----i 
I I I 1 I 21 I 28 I 29 I 30 I 31 I 32 I 
·--------+--------------------+---+----+----+----+----+----+----~ 

IHEDDI Read Data X I X I 
IHEDDO Write/Convert Data X I I 
IHEDnJ Array/address X I X I 
IHEDDP Array subscript X X I 
IHEDDT Write Data Tasking X I 
IHEIBT Tasking PUT X X X I 
IHEIOA GET X X X X X X I 
IBEIOB Non-tasking PUT X X X I 
IHEIOC GET string X I 
IHEIOD Dataf ield handler X X I 
IBEIOF Logical records X X X X X X I 
IHEIOP Page/Skip/Line X X X X X X I 
IHEIOX Skip/Column x x I 
IBELDI Read List X X I 
IBELDO Write/Convert List X X I 
IBETAB Page/Line default X X X X I L--------.L-------------------i----.1.-__ _... ___ _... ____ i----.L----"'~-J 

Appendix Ba System Generation 163 



Table 10. Cross-Reference to Library 
Modules and Groups 

r---------T--------------------------1 
IModule Name I Selected Group I 
~------------+---------------~------------i IHEABN 1 

IHEABU 25 
IHEABV 25 
IHEABW 26 
IHEABZ 26 
I HEADD 21 
IHEADV 22 
IHEAPD 21 
IHEATL 24.26 
!HEATS 23.25 
IHEATW 25 
IHEATZ 26 
IHEBEG 1 
IHEBSA 14 
IHEBSC 14 
IHEBSD 14 
IHEBSF 14 
IHEBSI 14 
IHEBSK 14 
IHEBSM 14 
IHEBSN 14 
IHEBSO 14 
IHEBSS 14 
IHEBST 1 
IHEBSV 1 
IHECFA 4 
IHECFB 4 
IHECFC 1 
IHECKP 1 
IHECLT LINKLIB 
IHECNT 4 
IJIECSC 15 
IHECSI 15 
IHECSK 15 
IHECSM 15 
IHECSS 15 
IHECST 15 
IHECSV 15 
IHECTT LINKLIB 
IHEDBN 9 
IHEDCN 10 
!HEDDI 27.30 
IHEDDJ 27.30 
IHEDDO 27 
IHEDDP 27.30 
IHEDDT 30 
IHEDIA 6.7.13 
IHEDIB 7.10 
IH:EDID 7. 9 
IHEDIE 7,11.12 
IHEDIL 7 
IHEDIM 7 
IHEDMA 6.7.8.9.10.11,12 
IHEDNB 9 
IHEDNC 10.13 
IHEDOA 6.7,13 
IHEDOB 7 
IHEDOD 7 
IHEDOE 7,111 12 
IHEDOM 7 
IHEDSP 1 
IHEDUM 2,3 I ___________ ..._ _________________________ , 

164 

r-----------~----------------------------1 
IModule Name I selected Group I 
~------------+----------------------------4 

IHEDVU I 22 
IHEDW I 22 
IHEDZW I 22 
IHEEFL I 24,26 
IHEEFS I 23,25 
IHEERD I LINKLIB 
IHEERE I LINKLIB 
IHEERI I LINKLIB 
IHEERO I LINK LIB 
IHEERP I LINKLIB 
IHEERR 2.3 
IBEERT LINKLIB 
IHEESM LINKLIB 
IHEEXL 24,26 
IHEEXS 23.25 
IHEEXW 25 
IBEEXZ 26 
IBEBTL 24,26 
IHEHTS 23.25 
IBEIBr 30,31,32 
IBEINT 34 
IBEIOA 27,28,29,30,31.32 
IHEIOB 27,28.29 
IHEIOC 1 
IHEIOD 29.32 
IHEIOF 27.28,29,30,31,32 
IHEION 33 
IHEIOP 27.28,29,30,31,32 
IHEIOX 29.32 
IBEITB LINKLIB 
IBEITC LINKLIB 
IHEITD LINKLIB 
I HE I TE LINKLIB 
IBEITF LINKLIB 
IBEITG LINKLIB 
I BE I TB LINKLIB 
IHEITJ LINKLIB 
IBEITK LINKLIB 
I HE I TL LINKLIB 
IHEITP LINKLIB 
IHEJXI 18.20 
IHEJXS 17,18.19,20 
IHEKCA 11.13 
IHEKCB 12 
IHEKCD 10 
IHELDI 28,31 
IHELDO 28,31 
IBELNL 24,26 
IHELNS 23.25 
IHELNW 25 
IHELNZ 26 
IHELSP 5 
IBEMAI 1 
IHEMPO 22 
IHEMPV 22 
IHEMSI 1 
IBEMST 1 
I HE MSW 1 
IHEMXB 21 
IHEMXD 21 
IHEMXL 21 
IHEMXS 21 
IHEMZO 22 

__________ _i ______ -------------



r---------T-----------------1 I Module I I 
I Name I Selected Group I 
~----------+--------------------------i I IHEMZV 22 I 
I IHEMZW 22 I 
I IHEMZZ 22 I 
I IHEM91 1 I 
1 IHENL1 17,18,19,20 I 
I IHENL2 18,20 I 
I IHEOCL 3.33 I 
I IHEOCT 2,34 I 
I IHEOPN LINKLIB I 
I IHEOPO LINKLIB I 
I IHEOPP LINKLIB I 
I IHEOPQ LINKLIB I 
I IHEOPZ LINKLIB I 

IHEOSD 2,3 I 
IHEOSE 3 I 
IHEOSI 1 I 
IHEOSS 3 I 
IHEOST 2.3 f 
IHEOSW 35 
IHEPDF 18 
IHEPDL 18 
IHEPDS 18 
IHEPDW 20 
IHEPDX 20 
IHEPDZ 20 
IHEPRT 3 
IHEPSF 17 
IHEPSL 17 
IHEPSS 17 
IHEPSW 19 
IHEPSX 19 
IHEPSZ 19 
IHEPTT 2 
I HERES 1 
IHESAP 3 
IHESHL 24,26 
IHESHS 23,25 
IHESIZ 2,3 
IHESMF 18 
IHESMG 18,20 
IHESMH 18,20 
IHESMX 20 
IHESNL 24,26 
IHESNS 23,25 
IHESNW 25 
IHESNZ 26 
IHESPR 1 
IHESQL 24,26 
IBESQS 23,25 
IHESQW 25 
IHESQZ 26 
IHESRC 4 
IHESRD 4 
IHESRT 1 
IHESSF 17 
IHESSG 17,19 
IHESSB 17,19 
IHESSX 19 
IHESTA LINKLIB 
IHESTG 16 
IHESTP 16 
IHESTR S 

I IHESUB LINKLIB I 
L-----------.1.--------------------------J 

r-----------,.---------------------------1 I Module I I 
I Name I Selected Group I 
·-----------+--------------------------i I IHETAB I 27,28,30,31 
I IHETCV I 2 
I IHETEA I 2 
I IHETER I 2 
l IHETEV I 2 

IHETEX I LINKLIB 
IHETHL I 24,26 
IHETHS I 23,25 
IHETNL I 24,26 
IHETNS I 23,25 
IHETNW. I 25 
IHETNZ J 26 
I HE TOM LINKLIB 
IHETPB 2 
IHETPR 2 
IHETSA 2 
I HE TSE 2 
IHETSS 2 
IHETSW 36 
IHEUPA 8 
IHEUPB 8 1 11 
IHEVCA 8 
IHEVCS 8 
IHEVFA 6,8,11 
IHEVFB 6,8,11 
IHEVFC 6 
IHEVFD 6,8,11 
IHEVFE. 6 
IHEVKB 11 
IHEVKC 12 
IHEVKF 11 
IHEVJ(G 12 
IHEVPA 6,8,11 
IHEVPB 6,8,11 
IHEVPC 6, 8, 11 
IHEVPD 6,8,11 
IHEVPE 61 8,11 
IHEVPF 6,8,11 
IHEVPG 10 
IHEVPH 9 
IHEVQA 13 
IHEVQB 13 
IHEVQC 13 
IHEVSA 9 
IHEVSB 9,10 
IHEVSC 10 
IHEVSD 9,10 
IHEVSE 10 
IHEVSF 9,10 
I HE VTB 6 
IHEXIB 21 
IHEXIC 21 
IHEXIL 21 
IHEXIS 21 
IHEXIU 22 
IHEXIV 22 
IHEXIW 22 
IHEXIZ 22 
IHEXXL 21 
IHEXXS 21 
IHEXXW 22 
IHEXXZ 22 
IHEYGF 17,18 

-------------iJ.-------~-------------

Appendix B: System Generation 165 



r------------T~--------------------------1 I Module I I 
I Name I Selected Group I 
~------------+----------------------------~ I IHEYGL I 17' 18 I 
I IHEYGS I 17,18 I 
I IHEYGW t 1..7, 18 I 
I IHEYGX I 19,20 I 
I IHEYGZ I 19,20 I 
I IHEZZA I LINRLIB I 
I IHEZZB I LINKLIB I 
I IHEZZC I LINKLIB I 
I IHEZZF I LINKLIB I 
L------------~----------------------------J 

166 



APPENDIX C: PU.I OBJECT PROGRAM PSEUDO-REX;ISTERS 

PL/I object proqtams require 
pseudo-registers (symbolic name format 
IBEQxxx>. sane of which are defined by the 
compiled program, others by the library 
modules. During execution of a program 
register PR always points to the base of 
the PRV <see 'Pseudo-Register Vector'. 
chapter 2). 

IBEQADC 

Pointer to a list of address constants 
for use by the I/O routines: for 
non-multitasking the list is in IHFJ>A, for 
multitasking in IHETSA. 

IHEQA'l'V 

Contains the address of the task 
variable for the current task. 

IHEQCFL 

The current-file pseudo-register, 
8-bytes, word aligned. Used by STREAM I/O 
modules for implicit communication of the 
file currently being operated upon; see 
'Current File' in Chapter 3. 

IHEQCTS 

Contains the address of the save area 
for the control task in a multiprogramming 
environment. 

IHEOERR 

serves as a parameter list when calling 
IHEERRB. The code associated with the ON 
condition to be raised is placed into 
IHEQERR. see 'ON Conditions• in Chapter 6. 

IBEQEV'l' 

The anchor cell for the incomplete I/O 
event variables in a given task. When 
IHEQEV'l' contains zero, no I/O event 
variable in the task is incomplete. 

IBEQFOP 

The anchor·cell of the chain linking the 
FCBs for the files opened in a given task. 
When IHEQFOP is zero, none of the files 
opened in this task are still open. see 
'File control Block' in Chapter 3. 

IHEQFVD 

Pointer to the Free VDA module: IHESAFD 
for non-multitasking, IBETSAF for 
multitasking. 

IBEOINV 

Contains the invocation count, and is 
updated by a library module each time a DSA 
is obtained. 

IBEQLCA 

Pointer to the current generation of the 
library communication area1 see 'Library 
workspace• in Chapters 2 and 4. 

IHEQLPR 

Length of the pseudo-register vector. 

IHEQLSA 

Pointer to the first save area in LWS, 
which serves two purposes: (1) the save 
area provided by the error-handling 
routines for an on-unit, and (2) an area 
where initial task information is saved 
(PICA, program mask, etc.). see Chapter 4. 

IBEQLWO, IHEQLWl, IHEQLW2, IHEQLW3, IHEQLW4 

Pointers to the various levels of 
library workspace ; see 'Library Workspace' 
in Chapters 2 and 4. 

IBEQLWE 

Pointer to the save area and workspace 
used by the error-handling routines when 
calling other library routines <not an 
on-unit). 

IBEQLWF 

Pointer to the reserved area attached to 
the current LWS. Used for optimization in 
storage management~ see 'Object-time 
Optimization' in Chapter 4. 

IBEQRTC 

Contains the return code used in the 
normal termination of a PL/I program. (See 
Chapter 4.) 

IBEOSAR 

Contains an environment count used by 
the display modification module (IHESAR) 
when on-units and entry parameter 
procedures are used in prologues and 
epilogues. 

Appendix C: PL/I Object Program Pseudo-Registers 167 



IBEQSFC 

Pointer to free-core within first block 
of storage obtained by the task 
initialization library module (IHESA); see 
Chapter 4. 

I BE OS LA 

Pointer to the latest element in the DSA 
chain allocated by the storage management 
routines. The area may be a DSA or a VOA. 
see Chapter 4. 

IBEQSPR 

The file register for SYSPRINT. the name 
being.standardized to allow usage of.the 
same FCB for both the source program and 
the library modules. see •standard Files'• 
and 'File Addressing Technique• in Chapter 
3. 

IBEQ'l'CA 

Used only in multitasking. contains the 
address of the tasks TCA. 

IBEQ'l'IC 

Contains the task invocation count. 
which is used in multitasking in the 
freeing of controlled storage. 

IBEQTT1.throuqh IBEQT'l'S 

Contains the pseudo entry points for the 
transfer vector tables held in the 
partition when the Shared Library feature 
is enabled. 

NOTE: The Shared Library feature. involving 
the pseudo-registers abe:>ve. must have the 
common section of the PRV formatted in the 
following sequence: 

168 

IBEQTT1 
TT2 
TT3 
TT4 
TTS 
TVl 
TV2 
TV3 
TVll 
TVS 
LPR 
ADC 
A'l'V 
CFL 
CTS 
ERR 
EV'l' 
FOP 
FVD 

(cont.) IBEQINV 
LCA 
LSA 
LWO 
LW1 
LW2 
LW3 
LWll 
LWE 
LWF 
RTC 
SAR 
SPC 
SLA 
SPR 
'l'IC 
VOA 
XLV 
'1'CA 

IBEQ'l'V1 through IBEcny5 

contains the pseudo entry points for the 
transfer vector tables in resident main 
storage when the Shared Library feature·is 
enabled. 

IBEOVDA 

Pointer to the Get VDA modules in 
non-multitasking set(in IBESAP) to IBESADF; 
in multitasking~ set (in IBE'l'SAM) to 
IBETSAN. 

IBEQXLV 

The anchor cell for the exclusive blocks 
created in a given task. When IHEQXLV 
contains zero. the task has no exclusive 
blocks .. 



IHELIB 

Operands: None 

Result: 

Definitions of LWS pseudo-registers. 
Lengths of save areas in LWS. 
Format of the library communication area. 
Definitions of save area offsets. 
Definitions of standard register 

assignments. 

IHEEVT 

Operands: None 

Result: 

Definitions of the event variable and its 
flags. 

IHEPRV 

Operands: 

A three-character code denoting the last 
three letters of a pseudo-register name 
C default: LCA) 

A code denoting a general register 
(default: WR) 

A keyword parameter OP=XX, where XX is an 
RX instruction (default: L) 

Result: 

The RX operation is 
pseudo-register. 
generally used to 
a pseudo-register 
register. 

IHESDR 

Operands: 

performed on the 
This macro is 
store the contents of 
in a general 

A three-character code denoting a 
workspace level (default: LWO) 

A code denoting a general register other 
than register DR (default: WR) 

APPENDIX D: LIBRARY MACRO INSTRUCTIONS 

Result: 

The address of the required workspace 
level is put into register DR. 

IHEXLV 

Operands: None 

Result: 

Definition of exclusive block and its 
flags. 

I HE ZAP 

Operands: None 

Result: 

Definitions of I/O pseudo-registers. 
Definitions of the file control block and 

its flag bytes. 
Definition of the declare control block. 
Definitions of various I/O address 

constants, parameters, operations and 
options. 

Definitions of the I/O control block and 
its flag bytes. 

Definitions of the I/O event variable and 
its flags. 

IHEZZZ 

Operands: DUMP/none 

Result: 

If the operand is omitted, or is not 
DUMP, a full DSECT is generated. If 
the operand is DUMP, only the parameter 
list for IHEZZC is defined as a DSECT. 

Used only by IHEDUM, IHEZZC, IHEZZF. 

Appendix D: Library Macro Instructions 169 



,. 

170 



APPENDIX E: PL/I LIBRARY INTERNAL ERROR CODES AND MESSAGES 

Among the errors that occur during program 
execution are errors that are covered by 
PL/I-defined conditions. If one of these 
occurs, an appropriate error code is passed 
to IHEERR in pseudo-register IHEQERR. This 
code is a 4-digit hexadecimal number. The 
two high-order digits denote the PL/I 
condition (Figure 49); the others denote 
the errors associated with that condition. 

r---------~-~-T---~----~-----------~-1 
I Code I Condition I 
~---------~----+---~--~----------------~ 

10 STRINGRANGE 
18 OVERFLOW 
20 SIZE 
28 FIXEDOVERFLOW 
30 SUBSCRIPTRANGE 
38 CHECK(label) 
40 CONVERSION 
48 CHECK(variable) 
50 CONDITION(identifier) 
58 FINISH 
60 ERROR 
68 ZERODIVIDE 
70 UNDERFLOW 
78 AREA 
88 NAME 
90 RECORD 
98 TRANSMIT 
AO I/O SIZE 
AS KEY 
BO END PAGE 
BS ENDFILE 
CO I/O CONVERSION 
ca UNDEFINEDFILE 

---------~----i~-~----------~~------
Figur e 49. Internal Codes for ON Condition 

Entries 

If system action is required, an error 
message will be printed. The messages 
relating to the errors for the PL/I 
conditions are given here. 

Error code Message 

1000 STRINGRANGE 

1800 OVERFLOW 

2000 SIZE 

2800 FIXEOOVERFLOW 

3000 SUBSCRIPTRANGE 

4000 CONVERSION 

4001 CONVERSION ERROR IN F-FORMAT 
INPUT 

4002 

4003 

4004 

4005 

4006 

4007 

4008 

4009 

5000 

5800 

6000 

6800 

7000 

7800 

7801 

7802 

8800 

CONVERSION ERROR IN E-FORMAT 
INPUT 

CONVERSION ERROR IN B-FORMAT 
INPUT 

ERROR IN CONVERSION FROM 
CHARACTER STRING TO ARITHMETIC 

ERROR IN CONVERSION FROM 
CHARACTER STRING TO BIT STRING 

ERROR IN CONVERSION FROM 
CHARACTER STRING TO PICTURED 
CHARACTER STRING 

CONVERSION ERROR IN P-FORMAT 
INPUT (DECIMAL) 

CONVERSION ERROR IN P-FORMAT 
INPUT (CHARACTER) 

CONVERSION ERROR IN P-FORMAT 
INPUT (STERLING) 

CONDITION 

FINISH 

ERROR 

ZERODIVIDE 

UNDERFLOW 

AREA SIGNALED 

AREA CONDITION RAISED IN 
ASSIGNMENT STATEMENT 

AREA CONDITION RAISED IN 
ALLOCATE STATEMENT 

UNRECOGNIZABLE DATA NAME 

9000 RECORD CONDITION SIGNALED 

9001 RECORD VARIABLE SMALLER THAN 
RECORD SIZE 

9002 RECORD VARIABLE LARGER THAN 
RECORD SIZE 

9003 ATTEMPT TO WRITE ZERO LENGTH 
RECORD 

9004 ZERO LENGTH RECORD READ 

9800 TRANSMIT CONDITION SIGNALED 

9801 PERMANENT OUTPUT ERROR 

Appendix E: PL/I Library Internal Error Codes and Messages 171 



9802 

A800 

A801 

A802 

A803, 

A804 

A805 

A806 

A807 

BSOO 

C800 

PERMANENT INPUT ERROR 

KEY CONDITION SIGNALED 

KEYED RECORD NOT FOUND 

ATTEMPT TO ADD DUPLICATE KEY 

KEY SEQUENCE ERROR 

KEY CONVERSION ERROR 

KEY SPECIFICATION ERROR 

KEYED RELATIVE RECORD/TRACK 
OUTSIDE DATA SET LIMIT 

NO SPACE AVAILABLE TO ADD 
KEYED RECORD 

END OF FILE ENCOUNTERED 

UNDEFINEDFILE CONDITION 
SIGNALED 

C801 FILE ATTRIBUTE CONFLICT AT 
OPEN 

172 

C802 

C803 

C804 

C805 

C806 

C807 

C808 

C809 

C80A 

C80B 

FILE TYPE NOT SUPPORTED 

BLOCKSIZE NOT SPECIFIED 

CANNOT BE OPENED (NO DD CARD) 

ERROR INITIALIZING REGIONAL 
DATA SET 

CONFLICTING ATTRIBUTE AND 
ENVIRONMENT PARAMETERS 

CONFLICTING ENVIRONMENT AND/OR 
DD PARAMETERS 

KEY LENGTH NOT SPECIFIED 

INCORRECT BLOCKSIZE AND/OR 
LOGICAL RECORD SIZE 

LINESIZE GT IMPLEMENTATION 
DEFINED MAXIMUM LENGTH 

CONFLICTING ATTRIBUTE AND DD 
PARAMETERS 



The dump index provided by the subroutines 
IHEZZA, IHEZZB, and IHEZZC contains 
information about: 

SYSPRINT buffers 

Files currently open 

Current file 

Save areas 

On-units, interrupts and other details 

This information is output to a file called 
PL1DUMP. 

SYSPRINT Buffers 

The contents of each buffer are given, in 
EBCDIC. If U-format records are used, the 
contents of the intermediate buff er used by 
the library are also printed. 

Files currently Open 

File name 

A(DCLCB) 

A(FCB) 

A<DCB) 

File-register off set in PRV 

current File 

I/O Files: File name 

A(DCLCB) 

A(FCB) 

A(DCB) 

STRING Files: A(SOV) 

APPENDIX F: DUMP INDEX 

save Areas 

A trace-back through the save-area chain 
provides the following addresses: 

A(All. save areas, including the 
library save areas) 

A(Current LCA) 

A(PRV VDA) 

A(VDA for LWS2) 

Other Information 

If a CALL was made: A(CALL) 
A(Procedure> or 
A<Entry point of 
library module> 

If a BEGIN block was entered: A(Entry 
point> 

If a program i?terrupt occurs: A(Interrupt) 

If an on-unit was entered: Type of on-unit. 
If this on-unit is the error on-unit and 
was entered as a result of system 
action, the condition causing the system 
action is given. 

If IHEDMA occurs in the trace-back: The 
names of the modules used in the 
conversion are given. 

The statement number <if it exists> is 
given. 

The following program illustrates the 
use of the dump index: 

Appendix Fa Dump Index 173 



TDUMP: PROC OPTIONS (MAIN); 

1 
2 
3 
4 
6 
8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 

TDUMP: PROC OPTIONS(MAIN); 
DCL A CHAR(4)INIT('ABCD'); 

DCL IHESARC ENTRY(FIXED BINARY(31)); 
ON ERROR CALL IHEDUMP; 
ON CONV CALL CONVPROC; 

CALL IHESARC(20); 
PUT LIST ('THIS IS THE FIRST LINE'); 
PUT SKIP LIST('THIS IS THE SECOND 
LINE'); 
OPEN FILE(XYZ) OUTPUr; 
BEGIN; 
X=A; I• CONV ERROR •I 

END ; 
CONVPROC:PROC; 

DCL Y(-32768:-32768,-32768:-32768) CHAR(l); 
Z=Y(32767,32767); I• ADDRESSING ERROR •I 
END TDUMP; I 

The addressing error only occurs if this program is the only one being executed. 

The dump index produced for this program is: 

* • • PL/I F-COMPILER 5TH VERSION • IHEDUMP • • • 

• • • SYSPRINT BUFFERS 

BUFFER 01 

HE FIRST LINE " u YA 3 R IHEOPNA 0 0 

BUFFER 02 

IHE804I ADDRESSING INTERRUPT IN STATEMENT 00017 AT OFFSET +OOOB4 
FROM ENTRY POINT CON\TPROC 

••• FILES CURRENTLY OPEN 

XYZ 
SY SPRINT 

DCLCB OOA488 FCB 03EB40 DCB 03EB70 PR OFFSET OlC 
DCLCB OOA4CO FCB 03EBDO DCB 03EC00 PR OFFSET 020 

••• CHAIN BACK THROUGH SAVE AREAS 

03F9BO DSA FOR ERR ON-UNIT 

03DF10 SECONDARY LIBRARY WORKSPACE 

03DF20 SAVE AREA FOR LIBRARY 

03F690 SAVE AREA FOR LIBRARY 

03F4C8 SAVE AREA FOR LIBRARY 

03F8D8 DSA FOR PROC CONVPROC 

03F828 DSA FOR CONV ON-UNIT 

03F338 SECONDARY LIBRARY WORKSPACE 

03F348 SAVE AREA FOR LIBRARY 

03F018 SAVE AREA FOR LIBRARY 

174 

CALLS IHEDUMP FROM OOAlFA (STMT 5) 

CALLS 00A19C 

CALLS 00A522 

FROM OO'CA3E LCA AT 0 3E3] 

FROM OOCA04 LCA AT 03F730 

INTERRUPT AT OOAF46 LCA AT 03F730 

CALLS OOAEFO 

CALLS OOA264 

CALLS OOA200 

CALLS OOA522 

FROM OOA318 (STMT 17) 

FROM OOA25E (STMT 7) 

FROM OOCA3E LCA AT 03F730 

FROM OOCA04 LCA AT 03FOB8 



03EDB8 SAVE AREA FOR LIBRARY 

03FE50 SAVE AREA FOR LIBRARY 

03F290 DSA FOR BEGIN 

03F1B0 DSA FOR PROC TDUMP 
i 

CALLS OOC728 

CALLS OOBBDO 

CALLS OOAEFO 

FROM OOB9CA LCA AT 03FOB8 

FROM OOAF06 LCA AT 03FOB8 

FROM 00A186 (STMT 13) 

ENTERS BEGIN AT 00A138 

03EC60 PRV - PSEUDO REGISTERS START AT 03EC68 

03FFB4 EXTERNAL SA CALLS OOA020 

••• END OF OUTPUT 

When V-format records are used, the first nine data characters of one of the SYSPRINT 
buffers may be blanked out. 

If there had been a current file, this would have appeared after the section on 'Files 
currently Opened'. 

Appendix F: Dump Index 175 



176 



APPENDIX G: LENGTHS AND LOCATIONS OF MODULES 

The following list canprises all the Module Length 
library modules provided for Version 5 of 
the PL/I <F> compiler. As each module is IBEDDT 760 
aligned on a doubleword boundary in main IHEDIA 784 
storage. the length of each module given IBEDIB 280 
here has been rounded up to a multiple of IHEDID 448 
eight. some of the modules are not IHEDIE 456 
required by Version 5, but are included for IHEDIL 48 
compatibility with previous versions; I BEDIM 528 
numbers in parentheses after the names of IBEDMA 248 
these modules indicate the versions that do IHEDNB 264 
use them. The modules marked • reside in IHEDNC 6118 
the link library (SYSl.LINRLIB); all other IBEDOA 520 
modules are in SYS1.PL1LIB. IHEDOB 328 

IBEDOD 296 
Module Length IHEDOE 2211 

IBEDOM 584 
IHEABN 12 IBEDSP 6118 
IHEABU 224 IHEDUM 420 
IHEABV 544 IHEDVU 488 
IHEABW 128 IHEDVV 576 
IHEABZ 128 IHEDZW 1011 
I HEADD 216 IHEDZZ 104 
IHEADV 96 IHEEFL 688 
IBEAPD 360 I BEEFS 1116 
IBEATL 480 • IBEERD 720 
I HEATS 368 • IHEERE 1704 
IHEATW 288 • IBEERI 896 
IHEATZ 288 • !HEERN (1, 2) 4096 
IHEBEG 128 • IHEERO 856 
IHEBSA 296 • IBEERP 1272 
IHEBSC 272 IBEERR 1824 
IHEBSD 192 • I HEERS (1) 848 
I HEB SF 480 • IHEERT 712 
IHEBSI 296 • IBEESM 1776 
I HEB SIC 472 • IBEESS (2) 1960 
I HEB SM 384 IHEEXL 456 
IHEBSN 192 IHEEXS 248 
I HEB SO 312 IHEEXW 136 
IHEBSS 240 IHEEXZ 136 
IHEBST 584 IBEHTL 264 
IHEBSV 408 IHEHTS 176 
IHECFA 160 IHEIBT 576 
IHECFB 584 IHEIGT (1, 2,3,11) 1344 
IHECFC 88 IHEINT 440 
IHECKP 184 IHEIOA 360 

• IHECLS (1,2,3) 992 IHEIOB 480 
• IHECLT 1368 IHEIOC 288 

IHECNT 72 IHEIOD 672 
IBECSC 200 IBEIOE (1,2,3) 176 
IHECSI 168 IHEIOF 736 
IHECSIC 320 IHEIOG (1,2,3,4) 1104 
IHECSM 280 I BE I OB (2) 200 
IHECSS 224 • IHEIOJ (2,3) 1992 
IHECST 304 IHEION 248 
IHECSV 198 IBEIOP 496 

• IHECTT 1800 IHEIOX 336 
IHEDBN 360 • IHEITB 3781t 
IHEDCN 496 • IBEITC 2640 
I HEDDI 1264 • IHEITD 2280 
IHEDDJ 448 • IBEITE 1760 
I BEDDO 6Q8 • IHEITF 1856 
IHEDDP 640 

Appendix G: Lengths and Locations of Modules 177 



Module Length Module Len~h 

• IHEITG 1168 IHEPTT 792 
• I HE ITH 2616 I BERES 104 
• IHEITJ 2656 IHESAP 2488 
• IHEITK 736 IBESBL 240 
* IHEITL 536 IHESBS 168 
• IHEITM 2720 IHESIZ 16 
• IHEITN 2400 IHESMF 136 
• I HE ITO ·2590 IHESMG 128 
• IHEITP 936 IHESMB 128 

IHEJXI 320 IHESMX 240 
IBEJXS 104 IHESNL 408 
IHEKCA 1560 IHESNS 32C 
IHEKCB 1464 IHESNW 312 
I BEK CD 240 IHESNZ 360 
IHELDI 2112 IHESQL 160 
IHELDO 1048 IBESQS 168 
IBELNL 344 IHESQW 280 
IHELNS 264 IHESQZ 296 
IHELNW 216 IHESPR 32 
IHELNZ 224 IHESRC 31111 
IHELSP 1064 IHESRD 128 
IHEL'l'T varying IBESRT 1360 
IHELTV Varying IHESSF 1811 
IHEM91 344 IHESSG 104 
IBEMAI 8 IBESSB 104 
IHEMPU 312 IHESSX 232 
IBEMPV 288 IHESTA 1128 
I HEMS I 32 IHESTG 1384 
IBEMST 32 IHESTP 14110 
IHEMSW 136 IHESTR 1592 
IBEM.XB 152 • IHESUB 16 
IHEMXD 120 IHETAB 16 
IHEMXL 96 IHETCV 216 
IBEMXS 96 IBETEA 248 
IBEMZU 344 I HETER 272 
IHEMZV 672 IBETEV 256 
IHEMZW 64 * IHETEX 1464 
IHEMZZ 611 IHETBL 248 
IHENL1 280 IHETBS 200 
IHENL2 192 IBETNL 320 
IHEOCL 1352 IHETNS 256 
IHEOCT 2200 IHETNW 176 

• IHEOPN 9811 IHETNZ 176 
• IHEOPO 1992 • IHETOM 512 
• IHEOPP 2008 IBETPB 56 
• IBEOPQ 1368 IHETPR 272 
• IHEOPZ 992 IBETSA 5720 

IHEOSD 216 IHETSE 88 
IHEOSE 80 IHETSS 72 
IHEOSI 72 IHETSW 1520 
IHEOSS 56 IHEUPA 232 
IHEOST 88 I.BEUPB 232 
IBEOSW 10611 IHEVCA 272 
IHEPDF 1411 IHEVCS 480 
IHEPDL 88 IHEVFA 232 
IHEPDS 88 IHEVFB 240 
IHEPDW 120 IHEVFC 40 
IHEPDX 288 IBEVFD 104 
I HEP DZ 120 IHEVFE 32 
IHEPRT 672 IBEVKB 784 
I HEP SF 176 IBEVKC 720 
IHEPSL 72 IBEVKF 1624 
I HEP SS 72 IHEVKG 1248 
I HEP SW 96 IHEVPA 352 
IHEPSX 272 IHEVPB 424 
IHEPSZ 96 IBEVPC 496 

178 



Module Len~h 

IHEVPD 264 
IHEVPE 616 
IHEVPF 72 
IHEVPG 560 
IHEVPH 184 
IHEVQA 224 
IHEVQB 1008 
IHEVQC 616 
IHEVSA 320 
IHEVSB 208 
IHEVSC 176 
IHEVSD 416 
IHEVSE 352 
IHEVSF 240 
IHEVTB 136 
IHEXIB 136 
I HEX ID 136 
I HEX IL 152 
IBEX IS 152 
IHEXIU 144 
IHEXIV 192 
IHEXIW 256 
IHEXIZ 256 
IHEXXL 152 
IHEXXS 144 
IHEXXW 280 
IHEXXZ 280 
IHEYGF 432 
IHEYGL 240 
I HEY GS 240 
IHEYGW 280 
lHEYGX 704 
IHEYGZ 280 

• IHEZZA (3) 1296 
• IHEZZB (3) 1704 
• IHEZZC 3008 
• IHEZZF 1600 

Appendix G: Lengths and Locations of Modules 179 



180 



APPENDIX H: COMPILER-GENERATED CONTROL BLOCKS 

This appendix describes all the compiler-generat.ed control blocks used by the PL/I 
Library except the DCLCB and the OCB, which are described in Appendix I <Input/Output 
Control Blocks). All offsets are given in hexadecimal form. 

Appendix H: Compiler-Generated control Blocks 181 



182 



ARRAY DOPE VECTOR (ADV) 

0 2 3 7 8 15 16 31 
r----T----~-----------------------------1 I BtOf I I Virtual origin I 
• ____ ..._ ____ i------------------------------i 
I Multiplier1 I 
·-----------------------------------------i 
I I 
I I 
I I 
·-----------------------------------------i I Multipliern I 
·-------------------~--------------------i I UppeY bound1 I Lower bound1 I 
·-------------------+---------------------i 
I I I 
I I I 
I · I I 
·-------------------+---------------------i I Upper boundn I Lower boundn I 
L-------------------i---------------------J Figure 50. Format of the Array Dope Vector 

(ADV) 

This control block contains information 
required in the derivation of elemental 
addresses within an array data aggregate. 
The ADV is used for three functions within 
the library: 

1. Given an array, to step through the 
array in row-major order. 

2. Given the subscript values of an array 
element, to determine the element 
address. 

3. Given an element address, to determine 
its subscript values. 

Within PL/I implementation, arrays are 
stored in row-major order, upward in 
storage. The elements of an array are 
normally in contiguous storage; if the 
array is a member of a structure, its 
elements may be discontiguous. Such 
discontiguity, however, is transparent to 
algorithms which employ an array dope 
vector. 

The ADV contains <2n + 1) 32-bit words, 
where n is the number of dimensions of the 
array. The number of dimensions in the 
array is not described within the ADV, but 
is passed to the library as an additional 
argument. 

Definitions of ADV fields: 

BtOf <=Bit offset): For an array of bit 
strings with the UNALIGNED attribute, 
this is the bit offset from the byte 
address of the virtual origin. 

Virtual origin: The byte address of the 
array element whose subscript values 
are all zero, i.e.,XCO, ••• ,O):this 
element need not be an actual member of 
the array, in which case the virtual 
origin will address a location in 
storage outside the actual bounds of 
the array. 

Multiplier: These are fullword binary 
integers which, in the standard ADV 
algorithm, effect dimensional 
incrementation or decrementation to 
locate an element. Bit multipliers are 
used for fixed-length bit string 
arrays: byte multipliers are used for 
everythin9 else. 

Upper Bound: Halfword binary integer, 
specifying the maximum value permitted· 
for a subscript in the ith dimension. 
This value may be negative. 

Lower Bound: Halfword binary integer, 
specifying the minimum value permitted 
for a subscript in the ith dimension. 
The value may be.negative. 

~_!!gorithm: Given subscript values for 
an n-dimensional array, the address of 
any element is computed as: 

n 
Address= origin +_l: s1•M1 i=l 

where s 1 = value of the ith subscript 
Mi= value of the ith multiplier 

For an array of bit strings with the 
UNALIGNED attribute, the origin is a 
bit address formed by concatenating the 
virual origin and the bit offset. For 
all other arrays, the origin is the 
virtual origin. 

Appendix H: Array Dope Vector <ADV> 183 



184 



DATA. ELEMENT DESCRIPTOR (OED) 

r---------,.----------------T-------------------------------------------1 I I I Bytes I 
I I ~-----,.-----T _____ T _____ T _____ T---------------~ 
I Data typel Representation I 1 I 2 I 3 I 4 I 5 I 6 and onwards I 
~---------+----------------+-----+-----+-----+-----+-----+---------------~ 
I I Fixed-point I I I I I I I 
I I Floating-point IFlagsl p I q I I I I 
JArithmeticl Packed decimal I I I I I I I 

I ·----------.-----+-----+-----+-----+----+-----+-------------~ 
I I Numeric field IFlagsl p I q I w I 1 I Picture specn I 

~----------+---------------+-----+-----+-----+-----+-----+---------------~ I I Unpictured IFlagsl I I I I I 
I String •----------------+-----+-----J.-----+-----J.-----L---------------~ I I Pictured IFlagsl 1 I Picture specification I 
l----------i----------------L-----"-----------L--------------------------J Figure 51. Format of the Data Element Descriptor (OED) 

,-----,.------------------------------------------------------------------, I Code I Bit 1 
I ·-----------T-----T---------,.---------T--------T----------,.-------T--------~ I I o I 1 I 2 I 3 t 4 Is t 6 I 7 I 
·------+-----------+----+---------+--~------+--------+--------+-------+-------~ 
I = 0 1 I • JUnalignedl Fixed I Picture! Bit I • I 0 I 
·-----~ 0 = ·-----+---------+---------+--------+----------+------+-------~ 
I I string I I I I No I I I I 
I = 1 I I • I Aligned I Varying I Picturel Charactert • I 0 I 

·------+-----------+-----+---------+---------+--------+--------_;_+-------+--------~ I I I I Non- I I Numeric! I I I 
I = 0 I 1 = t • I sterlingl Short I field I Decimal I Fixed I Real I ·------i Arithmetic•-----f--------+---------+--------f----------f-------+--------~ 
I = 1 I I • I Sterling! Long I Coded I Binary I Float I Complexl L------i----------L-----L---------L---------L--------i_ ________ i_ ______ i_ _______ J 
• These bits are used by the compiler, but, when a DED is passed to a library 

module, they are always set to zero. 

NOTE: the hexadecimal '10' superimposed on the OED Flag byte indicates the presence of a 
halfword fixed point binary variable. Bit 3 is set to 1 and bit 6 is set to o. . 

Figure 52. Format of the OED Flag Byte 

Data element descriptors <DEDs> contain 
information derived from explicit or 
implicit declarations of variables of type 
arithmetic and string. There are four DED 
formats; they are shown in Figure 51. 

Definitions of OED fields: 

Flags: An eight-bit encoded form of 
declared information <Figure 52). Those 
flags which are specif led as zero must be 
set to zero. 

p byte: p is the declared or default 
precision of the data item. 

q byte: q is the declared or default scale 
factor of the data item, in excess-128 
notation (i.e., if the implied fractional 
point is between the last and the 
next-to-last digit, q will have the value 
129). 

For numeric fields, q is the resultant 
scale factor derived from the apparent 
precision as specified in the picture, 
i.e., the number of digit positions after 
a V picture item as modified by an F 
<scale factor> item. 

For fixed decimal pictures, any explicit 
scaling of the form F(tl) is combined 
with the implied scale, as described 
above, and reflected in the OED. The 
F(±I) is then no longer required and is 
removed from the picture. 

w byte: w specifies the number of storage 
units allocated for a numeric field. 

1 byte(s): 1 specifies the number of bytes 
allocated for the picture associated with 
a numeric field. If the data item is 
string, 1 occupies two bytes1 if 
arithmetic, one byte. 

Appendix B: Data Element Descriptor (OED).. 185 



Picture specification: This field 
contains the picture declared for the 
data item. If the data item is string, 
the picture may occupy 1 through 32,767 
bytes: if arithmetic, 1 through 255 
bytes. If the original picture 
specification contained replication 
factors, it will have been expanded in 
full. 

186 



DOPE VECTOR DESCRIPTOR (DVD) 

This provides a key for scanning the 
standard array, string and structure dope 
vectors. It consists of one entry for each 
major structure, minor structure and base 
element in the original declaration. Each 
entry consists of one word and can have one 
of two formats: 

1. Structure: 

0 1 2 7 8 15 
r--T--r-----------T------------------1 
IF11F21 L I N I 
L--i--i-----------i------------------J 

16 31 

r------------------------------------1 
I Offset I 
L------------------------------------J 

F1 = 0 Structure 

F2 = 0 

L = Level of structure 

N = Dimensionality, including 
inherited dimensions 

Offset = Offset of containing 
structure from start of 
DVD 

= - 1 for a major structure 

2. Base element: 

0 1 2 7 8 9 10 15 
r--T--T-----------T--T--T------------1 
IF11F21 L IF5IF61 N I 
L--~--i-----------i--i--i------------J 

16 17 18 23 24 31 
r--T--T-----------T--T--T------------1 
I F3 I F4 I A I I I D I .__.s,__i ___________ .s.__i __ i ____________ J 

F1 = 
F2 = 0 

= 1 

L = 

F5 = 1 
= 0 

F6 = 1 
= 0 

N = 
F3 = 0 

= 1 

F4 = 0 
= 1 

A = 

D = 

= 

Base element 

Not end of structure 
End of structure 

Level of element 

Area variable 
Not area variable 

Event variable 
Not event variable 

Dimensionality 

Not an aligned bit string 
Aligned bit string 

Not a varying string 
varying string 

Alignment in bits CO to 63) 

Length, if not a string, in 
bits 
0 if a string, in which case 
the length is in the dope 
vector 

Appendix H: Dope Vector Descriptor (DVD) 187 



188 



FORMAT ELEMENT DESCRIPTOR (FED) 

This control block contains information 
derived from a format element within a 
format list specification for edit-directed 
I/O. There are five forms of the FED: 

1. Format item E: 

2. 

1 2 3 4 
r-------T~-T---i 

I w I d I s I 
L-------.&.---i ___ J 

w = width of data field in characters 

d = number of digits following decimal 
point 

s = nwnber of significant digits to be 
placed in data field <ignored for 
input> 

Format item F: 

1 2 3 4 
r-------T---T---, 
I w I d I p I 
L-------.L---i---J 

w and d: as for E format 

p = scale factor in excess-128 
notation 

3. Format items A, B, X1 

1 2 
r-------1 
I w I 
L-------J 
w = as for ·E format 

4. Format item P: 

There are two forms of the FED for the 
P format items, these being identical 
to the DEDs for numeric fields and 
pictured character strings. 

s. Printing format items PAGE,SKIP, LINE, 
COLUMN: 

The FEDS for SKIP, LINE and COLUMN are 
halfword binary integers. PAGE does 
not have.an FED. 

Appendix H: Format Element Descriptor <FED) 189 



190 



LIBRARY COMMUNICATION AREA (LCA) 

r--------,.-------T-------------------------------------------------1 
ISymboliclLength I I 
I name l<bytes>I Function I 
~--------+-------+-------------------------------------------------~ O WBRl 4 2nd XCTL address for communication in arithmetic! 

conversion package. I 
4 WBR2 4 3rd XCTL address for communication in arithmetic 

conversion package. 
8 WRCD 8 A'<Target),A(DED): Implicit parameters·for final 

conversion in arithmetic scheme. Stored by 
arithmetic director. 

10 WFED 4 A(Source FED): Implicit parameter for For E 
format input conversion. 

14 WSCF 4 Scale factor for library decimal intermediate 
form. 

18 WSDV 8 Input/output field dope vector. 
20 WINT 9 Library intermediate form storage area. 
29 WSWA 1 Eight 1-bit switches: Intermodular 

communication. 
2A WSWB 1 Eight 1-bit switches: General purpose switches. 
2B wswc 1 Eight 1-bit switches: Not used across calls. 
2C WOFD 8 Dope vector for ONSOURCE or ONKEY built-in 

functions. 
34 WOCH 4 A(Error character): ONCHAR built-in function. 
38 WFCS 150 Character string <in required format) used by 

list-directed and data-directed output. 
CE WCFD 4 Library intermediate FED: String/arithmetic 

conversion. 
D2 WFDT 4 A(Target FED): Implicit parameter for For E 

format output conversion. 
D6 WOOF 8 SDV for DATAFIELD in error. 
DE WCNV 8 Library GO TO control block. 
E6 WFIL 4 A(DCLCB) for ONFILE. 
EA WOKY 8 SDV(Null string>; requested when ONKEY built-in 

function used out of context. 
F2 WEVT 4 AS<event variable). 
F6 WREA 4 Return address for AREA on-unit. 

L--------~-------1.-------------------------------------------------
Alternative entries: 

r--------T------~-------------------------------------------------1 38 I WFCl I 40 I Workspace for interleaved array indexer. I 
60 I WONC I 40 I Error code; storage area for contents of I 

I I I floating-point registers in error-handling I 
I I I subroutines. I 
L--------~-------~-------------------------------------------------J 

r--------T-------T-------------------------------------------------1 38 I WCNP I 4 I Implicit parameter: A(Constant descriptor). I 
3C I WCNl I 8 I A(Start of constant), A(End of constant). I 
44 I WCN2 I 8 I A(Start of constant), A(End of constant). I 

L--------~------1.-------------------------------------------------J Figure 53. Library Communication Area (LCA) 

The library communication area (LCA) is part of library workspace 
(LWS), the format of which is given in Figure 54. The use of LWS and 
LCA is described in •communication Conventions' in Chapter 2. 

Appendix H: Library communication Area (LCA) 191 



192 



LIBRARY WORKSPACE (LWS) 

0 7 8 31 
IHEQLSA------->r--------~-------------------------1 

0 I Flags I Length I 
·--------~-------------------------~ 

4 I Chain-back address I 
·----------------------------------i 

8 I Chain-forward address I 
~----------------------------------~ c I . I 
I Register save area I 
I I 
·----------------------------------~ 

48 I (8 bytes unused> I 
I I 

IHEQLWO------->~----------------------------------~ 
so I I 

I I 
I Workspace level 0 I 
I I 
I I 

IHEQLW1------->•----------------------------------~ 
ES I I 

I I 
I Workspace level 1 I 
I I 
I I 

IHEQLW2------->•----------------------------------i 
1so I I 

I I 
I Workspace level 2 I 
I I 
I I 

IHEQLW3------->~----------------------------------i 
21a I I 

I I 
I Workspace level 3 I 
I I 
I I 

IHEQLW4------->~----------------------------------~ 
2BO I I 

I I 
I Workspace level 4 I 
I I 
I I 

IHEQLWE------->~----------------------------------~ 
348 I I 

I I 
I Workspace level E I 
I I 
I I 

IHEQLCA------->•----------------------------------i 
3EO I I 

I I 
I I 
I Library communication area (LCA) I 
I I 
I I 

IHEQLWF------->L----------------------------------J 

Figure 54. Standard Format of Library Workspace (LWS) 

The use of Library Workspace (LWS) is described in Chapter 2. 
The format of the LCA is given in Figure 53 and that of the SSA 
in Figure 55. 

Appendix H: Library Workspace (LWS) 193 



194 



STANDARD SAVE AREA (SSA) 

Off set C-eneral Register Standard save Area 

symbolic Symbolic 
~ ~ Number Name 0 7 8 31 

r----------T--------------------------------1 
0 OFCD I Flags I Length I 

~----------L--------------------------------i 
4 OFDR 13 DR I Chain-back address I 

~-------------------------------------------i 
8 I Chain-forward address I 

·-------------------------------------------i 
c OFLR 14 LR,RY I I 

~-------------------------------------------i 
10 OFBR 15 BR,RZ I I 

~-------------------------------------------i 
14 OFRO 0 RO I Contents of register I 

~-------------------------------------------i 
le OFRA 1 Rl,RA I I 

·-------------------------------------------i 
lC OFRB 2 RB I contents of register I 

·-------------------------------------------i 
20 OFRC 3 RC I contents of register I 

~-------------------------------------------i 
24 OFRD 4 RD I Contents of register I 

~-------------------------------------------i 
28 OFRE 5 RE I contents of register I 

~-------------------------------------------i 
2C OFRF 6 RF I contents of register I 

·-------------------------------------------i 
30 OFRG 7 RG I contents of register I 

~-------------------------------------------i 
34 OFRH 8 RH I contents of register I 

·-------------------------------------------i 
38 OFRI 9 RI I contents of register I 

·-------------------------------------------i 3C OFRJ 10 RJ I contents of register I 
·-------------------------------------------i 40 OFWR 11 RX,WR I I 
·-------------------------------------------i 44 OFPR 12 PR I Pseudo-register pointer I 
L-------------------------------------------J 

Figure 55. Format of the Standard Save Area (SSA) 

Flags: one-byte code, employed by PL/I 
housekeeping procedures to specify the 
nature of the storage area in which the 
SSA resides. (See Figure 56.) 

Length: Three-byte binary integer 
specifying the total length of the 
storage area in which the SSA resides; 
used by PL/I housekeeping to free 
dynamic storage areas. <See 'PL/I 
Object Program Management'.) When 
OPT=Ol.Default is used, bit 1 of these 
three bytes is used as a flag. 

Chain-back Address: Address of the SSA 
originally provided for a module that 
now calls another module. 

Chain-forward Address: Address of the SSA 
acquired QY a called module. This 
field is not set for any PL/I Library 
module, since intermodule trace is not 
supported within the library. 

Return address of the calling module: 
Contents of register LR on entry to the 
called module, set by the calling 
module to the address of the point of 
return. All PL/I Library modules 
return usi1,1g register LR. 

Entry Point of the called module: Contents 
of register BR on entry to the called 
module. 

Appendix H: Standard Save Area (SSA) 195 



RO to PR: Contents of the specified 
registers on entry to the called 
module. PL/I Library modules save !!! 
registers LR through WR in order to 
meet the requirements of a GO TO 
statement in an on-unit. (See Chapter 
4.) The register PR field is set by 
the subroutine in IHESA that 
initializes the main procedure; it 
remains unchanged throughout the task. 

r---T-------------------------------------1 I I Meaning I 
IBit~------------------T------------------i 
I I = o I = 1 I 
~---+------------------i------------------i I 0 I Always = 1 I 
~---f------------------T------------------i I 1 fNo statement num- !Statement number I 
I lber field in DSA lfield in DSA I 
~---+------------------+------------------i I 2 !No dununy ON field ISTRINGRANGE field I 
I f for STRINGRANGE tcreated as for I 
I I tether ON conditions 
~---+------------------+------------------i I 3 !Procedure DSA f Begin block DSA I 
~---+------------------+------------------i I 4 fNo dummy ON .field ISUBSCRIPTRANGE I 
I lfor SUBSCRIPTRANGElfield created as I 
I I I for other ON con- I 
I I lditions I 
~---+------------------+------------------i I 5 fNon-recursive DSA,fRecursive DSA, I 
I !without display lwith display up- I 
I !update field tdate field l 
~---+------------------+------------------i I 6 INo ON fields 10N fields I 
~---+------------------+------------------i I 7 !No dummy ON field ISIZE field created! 
I lfor SIZE las for other ON I 
I I I conditions I 
L---i------------------i------------------J 
Figure 56. Format of the SSA Flag Byte 

196 



STRING ARRAY DOPE VECI'OR (SADV) 

0 15 16 31 

r-----------------------------------------1 
I I 
I t 
I 1 
I ADV I 
I I 
I I 
I I 
~--------------~--------------------~ 
I Maximum length I Current length/O I 
L--------------------i--------------------J Figure 57. Format of the Primary String 

Array Dope vector (SADV) 

This control block contains information 
required to derive, directly or indirectly 
<through a secondary array of SDV entries>, 
the address of elemental strings. The SADV 
is identical to the basic ADV, with the 
addition of a fullword which describes the 
string length. 

Fixed-length strings require only a 
primary dope vector. The two length fields 

are set to the same value, which is the 
declared length of the strings. 

VARYING strings require, in addition to 
the primary dope vector, a secondary dope 
vector. This consists of SDV entries for 
each elemental string within the array. 
The secondary dope vector is addressed via 
the primary dope vector by the standard ADV 
algorithm; having located the relevant sov 
the actual string data is directly 
addressable. The maximum-length field 
appended to the ADV is set to the declared 
maximum length of each array element. The 
current-length field is set to zero. 

The multipliers of the ADV for a 
fixed-length string apply to the actual 
string data. Those of the ADV for a 
variable-length string apply to the 
secondary dope vector of SDV entries. 

Appendix H: String Array Dope Vector (SADV) 197 



198 



STRING DOPE VECTOR ( SDV) 

0 2 3 7 8 15 16 31 

r----T-----T------------~----------------1 IBtOf I I Byte address of string I 
~----i-----i--------~--------------------~ I Maximum lenqth I current length I l ___________________ i _____________________ J 

Figure 58. Format of the String Dope 
Vector (SDV) 

A string dope vector (SDV) is an 8-byte 
word-aligned block that specifies storage 
requirements for string data. 

Definition of SDV fields: 

BtOf <Bit offset): If the string is a bit 
string, positions 0 to 2 of the SDV 
specify the offset of the first bit of 
the string within the addressed byte. 
The bit offset is only applicable to 
bit strings which form part of a data 
aggregate, and then only if that 
aggregate has the UNALIGNED attribute. 

Byte address of string: For both character 
and bit strings, this three-byte field 

specifies the address of the initial 
byte of the string. 

Maximum length: Halfword binary integer 
which specifies the number of storage 
units allocated for the string; byte 
count if character string, bit count if 
bit string. This value does not vary 
for a particular generation of its 
associated string. 

Current length: Halfword binary integer 
which specifies the number of storage 
units, within the maximum length, 
currently occupied by the string; only 
applicable to strings with the VARYING 
attribute. 

The two length fields exist to 
accommodate strings with the VARYING 
attribute: in the instance of a 
fixed-length string, the two fields contain 
identical values. Both fields may contain 
a maximum value of 32,767. 

Appendix H: String Dope Vector (SDV) 199 



200 



STRUCTURE DOPE VECTOR 

This control block contains information 
required to derive, directly or indirectly, 
the address of all elements of the 
structure. 

which the base elements would have if they 
were not part of a structure, in the order 
in which the elements appear in the 
structure. 

The format of a structure dope vector is 
determined as follows. The dimensions 
which have been applied to the major 
structure or to minor structures are 
inherited by the contained structure base 
elements; undimensioned non-string base 
elements are as,igned a dope vector 
consisting onlyjof a single-word address 
field. The sttjicture dope vector is then 
derived by conc•tenating the dope vectors 

The following structure would result in 
a dope vector of the form shown below in 
Figure 58.1. 

1A, 2B(10), 3C(10) CHAR(6), 

0 31 
r----------+--------------------1 
I c•sjVirtual origin I 
·-----------L-----------------i 
I Multiplier~ I 
·-------------------------------i I Multiplier2 I 
·-------------~---------------i 
I ·upper bound~ J Lower bound~ I 
i----------------+----------------i 

, 
I 
I 
I 
I 
I 
I 
I 
I 

I Upper bounda I Lower bounda I I B'• ·-----------------+---------------i > Dope 
I Maximum length I Current length I 
·----------------.L--------------i 

I Vector 
I 

I D's Virtual origin I I 
·----------------------------------i I Multiplier I 

I 
I 

·--------------~-----------------i I 
I Upper bound I Lower bound I I ·----------------+----------------i I Maximum length I O I 

I 
J 

·-------------.L--------------i I F's Address I 1 ·-------------------------------------1 I I G's Virtual origin I I •------------------------i I 
I Multiplier I I 
i-------------,----------------i > I Upper bound I Lower bound I I •------------.L--------------i I I H's Address I I 
•-----------------,-----------------1 I I Maximum 1ength I Current length I I 
L----------------.L----------------J J 

••• 
Dope 
vector 

•Figure 58.1 Format of the Structure Dope Vector CSDV) 

3D BITC10) VARYING, 
2E, 3F FLOAT(S), 

3G(10) FIXED, 
3H CHAR(3); 

, 
I 
I 
I 

A's 
> Dope 

Vector 

Appendix H: Structure Dope vector 201 



202 



SYMBOL TABLE (SYMTAB) 

0 7 8 15 16 31 
r---------~------------------------------1 I O I Chain-forward address I 
t---------+-------------------------------i I' Length I I 
t---------J I 
I I 
I Identifier I 
I I 
t---------~------------------------------i I D I A(DED) I 
t---------+-------------------------------i I Flags I Field A I 
t---------.L.---------r--------------------i 
I Field B I I 
L--------------------i--------------------J 
Figure 59. Format of the Symbol Table 

(SYMTAB) 

The symbol table consists of one or more 
entries which define the attributes, 
identifier, and storage location of 
variables which appear in the data list for 
data-directed I/O. Each SYMTAB entry 
contains the address of the next entry or a 
stopper. 

Definition of SYMTAB fields: 

Chain-forward address: The address of the 
next entry in the symbol table1 all 
symbols (identifiers> known within a 
given block are chained together. The 
last entry in the chain is signaled by 
a zero chain-forward address. <The 
symbol table of a contained block must 
include the symbol table of the 
containing block1 hence the 
chain-forward address of the last entry 
for variables declared in a contained 
block is that of the first entry in the 
symbol table of the containing block.) 

Length: Number of characters comprising the 
identifier. Maximum length is 255 
characters. 

Identifier: The name declared for a 
variable. If the variable is known by 
a qualified name, the identifier 
includes separating periods. 

D <=Dimensionality): The number of 
dimensions declared for an array 
variable1 D = 0 for scalar variables. 

A(DED): Address of the data element 
descriptor associated with the 
variable. 

Flags: 

Bit 
0 

1 = 1 
2 = 1 
3 
4 

5 6 7 
0 0 0 
0 0 1 

0 1 0 

Field A: 

(Reserved) 
ON CHECR for the variable 
ON CHECR for label variable 
(Reserved) 
(Reserved) 

Variable is STATIC 
Non-structured AUTOMATIC or 
CONTROLLED 
Structured AUTOMATIC or 
CONTROLLED 

If STATIC: Address of data item or its 
dope vector. 

If AUTOMATIC <non-structured): Offset of 
data item or its dope vector 
within DSA. (See note.) 

If AUTOMATIC (structured): Offset of dope 
vector for data item <within a 
structure dope vector), 
relative to origin of DSA. 
<See note.) 

If CONTROLLED <non-structured): Offset to 
data item or its dope vector. 

If CONTROLLED(structured): As for 
AUTOMATIC (structured), but 
offset is relative to origin 
of structure dope vector. 

Field B: 

If STATIC: Not used. 

If AUTOMATIC: Offset of display within 
PRV. 

If CONTROLLED: Offset of the anchor word 
<pseudo-register) of the 
controlled variable. 

Note: See Chapter 4 for description of 
storage class implementation and for 
definition of DSA. 

Appendix B: Symbol Table (SYMTAB) 203 





APPENDIX I: INPUT/OUTPUT CONTROL BLOCKS 

This appendix gives the formats of the control blocks used by the PL/I Library I/O 
interface modules, including those blocks generated by the compiler. The functions of 
the blocks and the way in which they are used by the library are described in Chapter 3. 
In the diagrams, all off sets are in hexadecimal. 

The appendix includes an example of the chaining of I/O control blocks. 

Appendix I: Input/Output Control Blocks 205 



206 



DECLARE CONTROL BLOCK (DCLCB) 

0 7 8 15 16 23 24 31 

r------------------T-------------------1 
0 I DPRO I DCLA I 

~------------------+-------------------i 
4 I DBLK I DLRL I 

~---------T--------f---------T---------i 
8 I DCLD I DBNO I DCLB I DCLC I 

~---------"'-------+---------+-------i 
C I DXAL INCP ValuelReserved I 

~----~-------------"'---------~---------~ 10 I .. · <Reserved) I 
1--------------------------------------i 

14 I <Reserved) I 

~---------T----------------------------i 
18 I DFLN I I 

~---------J I I ,. I 
I DFIL I 
I I 
I I 
I I 
L--------------------------------------J 

Figure 60. Format of the Declare Control 
Block (DCLCB) 

DPRO: Halfword binary integer <set by the 
linkage editor> specifying the offset, 
within the pseudo-register vector 
<PRV), of the pseudo-register 
associated with the declared file. 

DCLA: Four four-bit codes specifying 
the file type, organization, access and 
mode: 

Byte 1 
I:tE! 

0001 xx xx STREAM 
0010 xx xx RECORD 

Organization 

xxxx 0000 CONSECUTIVE 
xxxx 0001 INDEXED 
xxxx 0010 REGIONAL (1) 
xxxx 0011 REGIONAL (2) 
xxxx 0100 REGIONAL (3) 
xxxx 0101 TELEPROCESSING 

(Stream-oriented I/O is supported only 
for data sets Of CONSECUTIVE 
organization.> 

Byte 2 

0001 xxxx 
0010 xxxx 

Access 

SEQUENTIAL 
DIRECT 

<These are used for record-oriented I/O 
only.> 

xxxx 0001 
xxxx 0010 
xxxx 0100 
xxxx 1000 

Mode 

INPUT 
OUTPUT 
UPDATE 
BACKWARDS 

(Stream-oriented I/O uses INPUT and 
OUTPUT only.) 

DBLK: Halfword binary integer specifying 
the length, in bytes, of the blocks 
within the data set: 

F-f ormat records: block length 
specified for data set <constant 
for all blocks except possibly the 
last one>. 

u-, v-, vs- or VBS-format records: 
maximum length of any block in 
data set. 

TP: maximum message length 

DLRL: Halfword binary integer specifying 
the length, in bytes, of the records 
within the data set. Two or more 
records may be grouped (blocked) to 
form one phys~cal block. 

F-f ormat records: record length 
specified for data set <constant 
for all records). 

v-, vs- or VBS-format records: maximum 
length of any record in the data 
set. 

U-format·repords: this specification is 
not permitted1 the block size 
defines the record length. 

Appendix I: Declare Control Block (DCLCB) 207 



DCLD: one byte containing 
ENVIRONMENT options: 

Bit 0Etion 

0 LEAVE 
1 COBOL file 
2 CTLASA 
3 CTL360 
4 INDEXAREA 
5 NOWRITE 
6 REWIND 
7 GENKEY 

DBNO: One-byte binary integer specifying 
the number of buffers to be allocated 
to the file when it is opened, as 
specified by the BUFFERS option. 

DCLB: One byte containing attribute 
codes: 

208 

0 
1 
2 
3 
4 
5 
6 
7 

Attribute 

KEYED 
EXCLUSIVE 
BUFFERED 
UNBUFFERED 
TRANSIENT 
(Reserved) 
(Reserved) 
<Reserved) 

DCLC: Eight-bit code which specifies the 
format of records within the data set: 

Bits Code Format 

0 and 1 01 v 
0 and 1 10 F 
0 and 1 11 u 

2 (Reserved) 
3 1 Blocked 
4 1 VS/VBS 
5 1 PRINT.IG 
6 1 R 
7 (Reserved) 

DXAL: Halfword binary integer specifying 
the count in the INDEXAREA area 
environment option. 

DFLN: One-byte binary integer specifying 
the length <minus one> in bytes of the 
file name in the following field. 

DFIL: Character string, up to 31 bytes 
long, specifying the name of the file. 
If there is no TITLE option in the OPEN 
statement, the first eight characters 
of this name are used as the name of 
the DD statement associated with the 
file during program execution. (The 
compiler wi!l have padded the name with 
blanks to extend it to at least eight 
characters in length.> 



EVENT VARIABLE 

0 7 8 15 16 31 

r------.,-------------------------------~ 
0 I EVF 1 I EVEC I 

~------+-------------------------------i 
4 I EVF2 I EVIO I 

~------...L-------------------------------i 
8 I EVCF I 

~--------------------------------------i 
c I EVCB I 

~------------------T-------------------i 
10 I EVST I Reserved I 

~------------------~-------------------i 
14 I EVFF I 

~----- ---------------------------------i 
18 I EVFB I 

~--------------------------------------i 
1C I EVPR I 

L--------------------------------------J 
Figure 61. Format of the Event Variable 

In a multitasking environment, event 
variables are placed in two chains: 

1. The file chain, which is anchored in 
the TEVT field of the FCB and includes 
all active event variables related to 
a file and for which there is no 
corresponding IOCB. This chain 
enables all associated event variables 
that are not being waited on to be set 
inactive, complete, and abnormal when 
a file is closed. 

2. The task chain, which is anchored in 
the pseudo-register IHEQEVT, and 
includes all active I/O event 
variables associated with the task. 
This chain facilitates the setting of 
those event variables that are not 
being waited on inactive, complete, 
and abnormal on termination of the 
task. 

An example of the chaining of event 
variables is given at the end of this 
appendix. 

EVF1: 

EVEC: 

EVF2. 

EVIO: 

8-bit code containing implementation 
flags: 

Flags code Name 

Active event variable 1000 0000 EMAC 
I/O associations 0100 0000 EMIO 
No WAIT required 0010 0000 EMNW 
FCB address contained 

in t·he first word 0001 0000 EMFC 
This event variable 

is to be checked 0000 1000 EMCH 
DISPLAY event variable 0000 0100 ENDS 
IGNORE option with 

this event 0000 0010 EMIG 

contains the address of the DECB 
associated with the event, or the 
address of the FCB when no IOCB was 
obtained, e.g •I when READ IGNORECO) 
is executed. 

PL/I ECB flag 

Flags 

Wait 
complete 

Not used. 

byte: 

1000 0000 EMWB 
0100 0000 EMCP 

EVCF: Event variable chain-forward pointer 
<task). 

EVCB: Event variable chain-back pointer 
(task). 

EVST: Status field: 
Normal status value: All zeros. 
Abnormal status value: Low-order bit 

is 1, remainder is zero <unless 
set otherwise by STATUS 
pseudo-variable). 

EVFF: Event variable chain-forward pointer 
Cfile>. 

EVFB: Event variable chain-back pointer 
<file>. 

EVPR: Address of the PRV of the task in 
which the associated I/O event was 
initiated. 

Appendix I: Event Variable 209 



210 



EXCLUSIVE BLOCK 

0 7 8 15 16 31 

r--------------------------------1 
0 I XCFF I 

~--------------------------------i 41 tt~ I 
·--------------------------------i 

8 I XCFT I 
·------------------------~-------i Cl tt~ I 
·------------------------------i 

10 I XPRV I 
·------~--------,---------------i 

14 I XFL1 t<Reserved>I XSTC I 
·------.L----------L--------------i 1s I I 
I XQNM I 
I I 
·------+-------------------------i------20 I XLRN I XKYI/XREG I I\ 

•------.L-------------------------i I 
24 I I I 

I I I 
I XKYR I XRNM 
I I I 
i I I 
I I I 
I I v 
L--------------------------------J------Figure 62. Format of Exclusive Block 

Exclusive blocks are placed in two 
chains: 

1. The task chain, which is anchored in 
the pseudo-register IHEQXLV, and 
enables all records locked in a task 
to be unlocked when the task is 
terminated. 

2. The file chain, which is anchored in 
the TXLV field of the FCB, and 
facilitates the freeing of all 
exclusive blocks related to the file 
when it is closed, and facilitates a 
check on whether a record is already 
locked. 

An example of the chaining of exclusive 
blocks is given at the end of this 
appendix. 

XCFF: Chain-forward pointer (file>. 

XCBF: Chain-back pointer (file>. 

XCFT: Chain-forward pointer <task>. 

XCBT: Chain-back pointer <task>. 

XPRV: Address of the PRV for the task in 
which the exclusive block was 
created. 

XFL1: Flags: XLOK: Code 1000 0000 indicates 
that the record associated with the 
exclusive block is locked owing to a 
READ operation or an incomplete 
REWRITE or DELETE operation. 

XSTC: Lock statement count: the number of 
incomplete I/O operations that 
currently ref er to the exclusive 
block. 

XQNM: Eight-byte qname used in the ENQ and 
DEQ macro instructions. The first 
word contains the address of the FCB, 
right-aligned, and the second 
contains zero. 

XRNM: The rname used in the ENQ and DEQ 
macro instructions: 

XLRN: One byte containing the length 
of the rname. 

XKYI/XREG: 
XKYI: INDEXED files (unblocked 

records>: Key of record 
being locked. 
INDEXED files (blocked 
records>: A(FCB>. 

XREG: REGIONAL files: Region 
number of the record 
being locked. 

XKYR: REGIONAL(2) and (3) files: The 
recorded key of the record 
being locked. 

Appendix I: Exclusive Block 211 



212 



FI~E CONTROL BLOCK (FCB) 

0 7 8 15 16 23 24 31 
r--------------------------------------1 

-8 I TVAL I 
~--------------------------------------i 

-4 I TRES I 
~--------T-----------------------------i 

0 I TFLX I TDCB I 
·--------+-----------------------------i 

4 I TTYP I TACM I 
~------f--------T-----------------i 8 I TFLA 1 TFLB I TLEN I 
·--------+---------i-------------------i c I TFIO I TDCL I 
~--------i----------------------------i 

10 I TCBA I 
~----------------~------------------i 

14 I TREM I TMAX I 
~------------------i-------------------i 

18 I TREC I 
~--------------------------------------i 

1C I TCNT I 
t------------------T-------------------i 

20 I TPGZ I TLNZ I 
·------------------f------T----------i 

24 I TLNN I TFLC I TFLD I 
·--------T---------~--------i----------i 

28 I TFLE I TFOP I 
~--------+-----------------------------i 

2C I TFLF I TTAB I 
~------~---------------------------i 

30 I I 
I I 
I I 
I DCB I 
I I 
I I 
I I 
L-------------------------------------J Figure 63. FCB for Stream-Oriented I/O 

TVAL: Word containing bits indicating 
which statements are valid for this 
file 

TRES: Reserved 

TFLX: Eight-bit code specifying error and 
exceptional conditions: 

Conditions 

EOF on data set 
Error on output 
Error on input 
Error on data field 
Do not raise 

TRANSMIT 
List terminator 
ENDPAGE raised 

1000 
0100 
0010 
0001 

0000 
0000 
0000 

0000. TMEF 
0000 TMOE 
0000 TMIE 
0000 TMIT 

1000 TMNX 
0010 TMLC 
0001 TMEP 

0 7 8 15 16 23 24 31 
r--------------------------------------1 -a I TVAL I 
·------------------------------------i 

-4 I TRF.S I 
t--------T------------------------i 

0 I TFLX I TDCB I 
·--------+-----------------------------1 

4 I TTYP I TACM I 
·--------f-------T--------------i 8 I . TFIA I TFLB I TLEN I 
·--------+---------i-------------------i c I TFIO I TDCL I 
·--------i-----------------------------i 10 I TLAB/TCBA I 
·-------------------------------------i 1 4 I TPKA/TSWA I 
·--------------------------------------i 18 I TBBZ/TREL I 
·--------------------------------------i 1C I TADC I 
·--------------------------------------i 20 I TLRR/TAID I 
·------------------T--------~---------i 

24 I TLRL I TFLC I TFLD I 
·--------T---------i--------~----------i 

28 I TFLE I TFOP I 
·--------f---------T-------------------i 2C I TFLF 1 TFMP I <Reserved) I ·--------i ________ i_ _________________ i 

30 I TEVT I 
·--------------------------------------i 

34 I Zero I 
·--------------------------------------i 38 I TXLV• I 
·--------------------------------------i 3C I Zero• I 
·-------------------------------------i 40 I TXLZ• I 
·--------------------------------------i 44 I I 
I I 
I I 
I DCB I 
I I 
I I 
I I 
L-------------------------------------J • These fields are omitted in 

non-multitasking environment: DCB 
commences at byte 38. 

•Figure 64. FCB for Record-Oriented I/O 

TDCB: Address of the DCB part of the FCB. 

TTYP: Eight-bit code specifying I/O.type: 

Appendix I: File control Block (FCB) 213 



!YE! Code Name 

STREAM I/O xxxx 0000 TMDS 
RECORD l/O xxxx 0001 TMRC 
STRING I/O xxxx 0010 TMST 
Temporary flags, 1000 xx xx TM Tl 
valid for single 0100 xx xx TMT2 
I/O call only 0010 xx xx TMT3 

0001 xxxx TMT4 

TACM: Address of I/O transmit module, 
which interfaces with data management 
access methods. The names of all such 
library modules are !HEIT•, where • is 
a letter identifying the module. 

TFLA: Two four-bit codes specifying the 
record format and the current file 
mode: 

Format Code Name 

v <variable) 0001 xx xx TMVB 
F (fixed) 0010 xx xx TMFX 
u (undefined) 0100 xxxx TMUN 
ASA control/print 
file lxxx xx xx TMAS 

Mode Code Name 

INPUT xxxx 0001 TMIN 
OUTPUT xxxx 0010 TMOP 
UPDATE xxxx 0100 TMUP 
BACKWARDS xxxx 1000 TMBK 

TFLB: Eight-bit code specifying the file 
attributes: 

Attribute code Na~ 

EXCLUSIVE lxxx xx xx TMEX 
UNBUFFERED x1xx xxxx TMBU 
Hidden buffers xxlx xx xx TMHB 
SYSPRINT file xxxl xxxx TMPT 
Hidden buff er may 

be required xxxx xlxx TMHQ 
KEYED xxxx xxlx TMKD 
DIRECT xxxx xxxl TMDR 

TLEN: Halfword binary integer, specifying 
the length, in bytes, of the FCB. 

TFIO: Eight-bit code specifying the type 
of 1/0 operation: 

0Eeration Code ~~ 

PUT 1000 0000 TMPW 
GET 0100 0000 TMGR 
EVENT option 
with IGNORE option 0000 0010 TMEI 

COPY option 0000 0001 TMCY 

TDCL: Address of the DCLCB def ininq the 
file. 

214 

TCBA/TLAB: 

STREAM: TCBA: Address of next available 
byte in a buff er. 

RECORD: TLAB: 
Sequential: Address of last 

IOCB obtained. 
Direct: Address of first IOCB 

in chain. 
TCBA: 
Sequential: Address of last 

record located. 

TREM/TMAX/TPKA: 

STREAM: TREM: Number of bytes remaining 
in current record. This value 
is equal to TLNZ when the 
record is initialized for 
output. 
TMAX: Halfword binary integer 
specifying the number of bytes 
in a record: 

Input: the number of bytes 
read. 

Output: the number of bytes 
initially available. 

For v format records, this 
number includes the four-byte 
record control field: for all 
record formats, it includes the 
ASA control byte (if present). 

RECORD: TPKA: Address of previous key. 
(Used for SEQUENTIAL access to 
REGIONAL data sets, LOCATE 
creation of INDEXED data sets, 
and padding key for SEQUENTIAL 
INDEXED data sets.) 
TSWA: Address of data in dummy 
buffer got at OPEN time 

TREC/TBBZ/TREL: 

STREAM: TREC: Address of buffer 
workspace (paper-tape input, 
U-format output). 

RECORD: TBBZ: Length of IOCB. The 
first byte contains the subpool 
number. 

TCNT/TADC: 

TREL: Relative record count. 
(Used only for SEQUENTIAL 
access to REGIONAL data sets.> 

STREAM: TCNT:.Fullword binary integer 
specifying the number of scalar 
items transmitted during the 
most recent 1/0 operation (GET 
or PUT) on the file 



RECORD: TADC: Address of the adcon 
list. 

TPGZ/TLNZ/TLRR/TAID: 

STREAM: TPGZ: Halfword binary integer 
specifying the maximum number 
of lines per page. This field 
is only used for PRINT files. 
A default value of 60 lines is 
assumed if·: 

1. the OPEN statement that 
opens the file does not 
include the PAGESIZE 
option, or 

2. an implicit open occurs. 

TLNZ: Halfword binary integer 
specifying the maximum number 
of characters per line. A 
default line size is obtained 
from the record length 
specified in the ENVIRONMENT 
attribute if: 

1. the OPEN statement that 
opens the file does not 
include the LINESIZE 
option, or 

2. an implicit open occurs. 

If the ENVIRONMENT attribute is 
not specified, the record 
length used is that specified 
in the associated DD statement. 

If none of these specifies a 
record size, and if the file is 
a print file, a default length 
of 120 characters per line is 
assumed. 

The TLNZ value includes all 
characters available within a 
line. 

RECORD: TLRR: Address of IOCB of last 
complete READ operation. This 
is required whenever the EVENT 
option is used: it provides a 
means of identifying the last 
complete READ operation when a 
REWRITE is executed. In the 
case of spanned records this 
field holds the length of the 
previously read record if the 
previous operation was a READ 
SET. 
TAID: Address of dummy work 
area for terminal 
identification. 

TLNN/TLRL: 

STREAM: TLNN: Halfword binary integer 
specifying the current line 
number. 

RECORD: TLRL: Maximum logical record 
length for the file. 

TFLC: TWO 4-bit codes giving: 

1. Type of device. 

2. Further file history. 

Device code Name 

Paper tape 1000 0000 TMPA 
Printer 0100 0000 TMPR 
Previous operation 

was READ with SET 
option 0000 1000 TMPS 

Attempt to close in 
wrong task 0000 0100 TMDT 

OPEN or CLOSE 
in progress 0000 0010 TMOC 

TFLD: Eight-bit code specifying the 
organization of the data set associated 
with the file: 

Organization 

CONSECUTIVE x•oo• 
INDEXED X'04' 
REGIONAL (1) X'OB' 
REGIONAL (2) X'OC' 
REGIONAL (3) X'10' 
TELEPROCESSING X'14' 

TFLE: Eight-bit code specifying 
history of the file: 

the 

History Code 

Preceding operation 
a READ 1000 0000 

IGNORE in progress 0100 0000 
CLOSE in progress 0010 0000 
End of the extent 

reached by the 
last operation 0001 0000 

Preceding operation 
a REWRITE 0000 1000 

Preceding operation 
a LOCATE 0000 0100 

I/O condition on 
CLOSE 0000 0010 

Implicit CLOSE 0000 0001 

TMCN 
TMIX 
TMR1 
TMR2 
TMR3 
TMTP 

~ 

TMRP 
TMIG 
TMCL 

TMET 

TMWP 

TMLT 

TMCC 
TMCT 

TFOP: Address of the prior FCB opened in 
the current task, or zero <if FCB is 
the first FCB opened). 

Appendix I: File Control Block (FCB) 215 



TFLF: Eight-bit code specifying the 
load module code <used by IHECLS, 
IHECLT and IHECTT to specify module 
names in the DELETE macro): 

STREAM: 

Miscellaneous 

TAB table exists 

RECORD: 

Module code 

QSAM 
BDAM 
QI SAM 
BI SAM 
BSAM 
BSAM load mode 
QTAM 
Tab control table 

0000 0001 TMTB 

Code Name 

x•oo• TMQS 
. XI 04 t TMBD 
X'08' TMQI 
x•oc• TMBI 
X'10' TMBS 
X'14' TMBL 
X'18' TMQT 

exists X'01' TMTB 
TTAB: Address of TAB control table (PRINT 

files only>. 

TFMP: RECORD I/O only. This flag is used 
by exclusive files to act as a lockout 

216 

flag when updating the chains of IOCBs 
and exclusive blocks. A TS loop is 
performed on this byte until it is 
freed. When the chaining operation is 
complete, the byte is set to zero. 

TEVT: Pointer to chain of active I/O event 
variables associated with the file, but 
for which there is no corresponding 
IOCB: enables the event variables to be 
set complete, inactive, and abnormal 
when the file is closed. 

TXLV: Pointer to chain of exclusive blocks 
associated with locked records of the 
file: enables locked records to be 
unlocked when the file is closed • 
(Used only in a multitasking 
environment.) 

TXLZ: Length of exclusive block: the first 
byte contains X'01'( the number of the 
subpool in which storage for the block 
is allocated). 

DCB: This field, variable in length and 
format, is the data control block 
defined by data management for the 
various access methods. 



INPUT/OUTPl11' CONTROL BLOCR (IOCB) 

0 7 8 15 16 31 

r---------T-------------------------------1-------------------0 I BACT I BPIO I /\ 
t---------.L-------------------------------i I 

4 I BNIO I I 
~---------T-------------------------------i I 

8 I BERR I BFCB I I 
~---------L-------------------------------~ I 

c I BREQ I I 
~-----------------T--------------------f I I BERC/BEFC/BXTC/BRYC I BRCC I IOCB 
~--------------------.L.-------------------i foundation 

14 I BRVS I I 
~----------------------------------------i 1 

18 I '· BEVN I I 
~-----------------------------------------1 I 

1C I BDF1 /BBF1 I I 
~--------------------~-------------------i I 

20 I BDF2/BBF2 I BDF3/(Reserved) I 1 
~--------------------i--------------------i I 

24 I BDF4/BBF3 I I 
~------------------------------------------1 I 

28 I · BDF5/BBF3 (contd.> I V 

~----------------------------------------+-------------------
2C I BECB/BEXD I /\ " 

~-------------------T--------------------i I I 
30 I BTYP I BLEN I BSAM BDAM/BISAM 

~--------------------J.------------------i DECB DECB 
34 I BDCB I I I 

~------------------------------------------1 I I 
38 I BARE I I I 

~------------------------------------------1 I I 
3C I BSTS/BLOG I v I 

~-----------------------------------------+------ I 
40 I BKVS/BREY I I 

~------------------------------------------1 I 
44 I BBLJ{/BEXI I v 

~----------------------------------------+-------------------
4 8 I BDBF /BXLV I /\ 

~----------------------------------------1 I 
4C I <Reserved) I I 

~----------------------------------------i BDAM/BSAM 
50 I I Hidden 
. I BBBF I buff er 
. I I area 
. I I I 
· I I I 

I I v 
L-----------------------------------------J-------------------

Note: (The IOCB includes the Data Event control Block <DECB) 
-- for the BSAM and BDAM/BISAM Interfaces> 

Figure 65. Format of the I/O Control Block (IOCB) 

BACT: One byte containing an activity flag 
(used only in direct access>: 

X'FF' 
x•oo• 

Meaning 

In use 
Free 

BPIO: Chain-back address of the previous 
I/O control block. 

BNIO: Chain-forward address of the 
next I/O control block. 

BERR: Flag byte for record-oriented 
I/O situations: 

Appendix I: Input/Output Control Block (IOCB) 217 



Situation Code ~ 

IOCB has been checked 0000 0001 BMCH 
I/O error exists 0000 0010 BMER 
End-of-file has 

occurred 0000 0100 BMEF 
Possible lock for 

REWRITE 0000 1000 BMPR 
Lock for 

REWRITE 0001 0000 BMNR 
IOCB for BISAM 

READ UPDATE mode 0100 0000 BMDF 
Dummy buff er acquired 1000 0000 BMDB 

BFCB: Address of the FCB for the file. 

BREQ: Request control block. Four-byte 
field specifying the request codes for 
associated operations <as passed by the 
compiled calling sequence): 

Byte 1 0Eeration 

x• oo• READ 
X'04' WRITE 
x•oa• REWRITE 
x•oc• DELETE 
X'10' LOCATE 
X'14' UNLOCK 
X'18' WAIT 

Bvte 2 OQtion Set 1 

x• oo• None/SET 
X'04' IGNORE 
X'08' INTO/FROM 

~te 3 Option Set 2 

x•oo• None 
X'04' KEYTO 
X'08' NOLOCK 

Byte 4 Option Set 3 

X'20' EVENT option 

X' 40' VARYING record variable 
(INTO) 

x•ao• VARYING KEYTO 

BERC/BEFC/BXTC/BKYC: Error codes for 
various conditions. 

BERC: ERROR condition 

BEFC: ENDFILE condition 

BXTC: TRANSMIT condition 

BKYC: KEY condition 

<see Chapter 6 for details of these 
codes.> 

BRCC: Error code for RECORD condition. 
<see Chapter 6 for details of these 
codes.) 

218 

BRVS: Address of RDV or SDV for record 
variable. 

BEVN: Address of event variable; zero, if 
none exists for associated operation. 

BDF1/BBF1: 

BSAM: BDFl: Address of the user's 
record variable. 

BDAM: BBFl: Address of the user's 
record variab~e. 

BDF2/BBF2: 

BSAM: BDF2: Length, in bytes, of the 
user's record variable. 

BDAM: BBF2: Length, in bytes, of the 
user's record variable. 

BDF3: 

BSAM: Length, in bytes, of the KEYTO 
area. 

BDAM: (Reserved) 

BDF4/BBF3: 

BSAM: BDF4: Address of the KEYTO area. 

BDAM: BBF3: Relative record or track 
number CBLKREF). 

BDFS: BSAM: Relative record number 
(REGIONAL ( 1)). 

BECB/BEXD: 

BECB: The data management event control 
block (ECB). 

BEXD: If BDAM is used, bytes 2 and 3 
<= BEXD) of this field contain 
the BDAM exception codes. For 
definitions of these codes, see 
IBM System/360 Operating System: 
Supervisor and Data Management 
Macro Instructions. 

BTYP: Type of I/O operation <set 
by data management macro). 

BLEN: Length, in bytes, of the records to 
be transmitted. 

BDCB: Address of the DCB. 
BARE: 

Hidden buffers: Address of the 
appended buffer. 

No hidden buffers: Address of the record 
variable. 



BSTS/BLOG: 

BSAM: BSTS: Address of the status 
indicator. 

BDAM: BLOG: Address of the IOB (I/O 
block1 see IBM System/360 
Operating System: System 
Programmer's Guide. 

BISAM: BLOG: Address of the logical 
record. 

BKVS/BKEY 

BSAM: BKVS: Address of SDV for KEYTO. 

BDAM: BKEY: Address of KEY 

BBLI</BEXI: 

BBLI<: Address of BLKREF, the relative 

BEXI: If BISAM is used, one byte 

BDBF/BXLV: 

<= BEXI) contains the BISAM 
exception codes. For definitions 
of these codes, see IBM 
System/360 Operating System: 
Supervisor and Data Management 
Macro Instructions. 

BSAM and BISAM: BDBF: Start of hidden 
buff er. 

BDAM: BXLV: Address of the exclusive 
block (if any) associated with 
record being referenced. 

record or track number <i.e., the BBBF: Start of BDAM/BISAM hidden buffer. 
address of BBF3). 

r-------------T-------------------------------T--------------------------------1 
I I SEQUENTIAL I DIRECT I 
I ·-------------T-----------------+-----------------T--------------~ I I CONSECUTIVE I REGIONAL I REGIONAL I INDEXED I 
I I I (KEYED) I I I 
I I I <1> <2> <3> I <1> <2> <3> I I 
~-------------+-------------+-----~----T-----+-----T-----T-----+--------------~ 
I F-format I A I A I A I A I A I A I A I A I 
I records I B I B I B I B I C I C I C I C I 
I I I s I D1 I D1 I s I D1 I D1 I D1 I 
I I I I Da I Da I I I I D:a I 
I I I I I I I I I 16 I 
I I I I I I I I I <Note 1> I 
·-------------+-------------+-----+-----+-----+-----+-----+-----+--------------~ 
I V-f ormat I A I I I A I I I A I I 
I records I B I I I B I I I C 1 I 
I I D:a I I I D1 I I I D1 I I 
I I I I I Da I I I D:a I I 
·-------------+--------------+-----+-----+-----+-----+-----+-----+--------------~ 
I U-f ormat I A I I I A I I I A I I 
I records I B I I I B I I I C I I 
I I I I I D1 I I I D1 I I 
I I I I I Da I I I I I 
·-------------i-------------.L-----i-----L-----+-----L-----i-----L--------------~ I A: Size of IOCB foundation fNote 1: If RKP ~ O, then D1 = O.f 
I B: Size of BSAM DECB I If RKP = 0 then for blocked I 
I C: Size of BDAM/BISAM DECB lrecords: 0 1 = L, and for I 
I D: Size of hidden buffer: lunblocked records: 01 = 2L, I 
I D1 : Length of recorded key lwhere L = length of recorded I 
I Da: Length of block <record) Ikey. I 
I f Note 2: The data value is ob- I 
I ltained by summing the sizes I 
I lgiven under each entry. I 
L---------------------------------------------i--------------------------------J Figure 66. Value$ used in Computing Size of IOCB for Various Access Methods 

Appendix I: Input/Output Control Block (IOCB) 219 



220 



OPEN CONTROL BLOCK (OCB) 

0 8 12 
.---------,----------,.----------,.---------, I Type I 0 I Access I Mode I 
L---------.L----------L----------.L---------J 
16 20 24 28 31 

r---------,.----------,.----------,.---------1 I Flag A I Flag B I Flag C I Flag D I 
L---------.L----------L----------L---------J 
Figure 67. Format of the Open Control 

Block (OCB) 

Type STREAM 0001 
RECORD 0010 

Access SEQUENTIAL 0001 
DIRECT 0010 

Mode INPUT 0001 
OUTPUT 0010 
UPDATE 0100 
BACRWARDS 1000 

Flag A Bit: 0 KEYED 
1 EXCLUSIVE 
2 BUFFERED 
3 UNBUFFERED 

Flag B 0 TRANSIENT 
Flag c <Reserved) 

Flag D Bit: 0 <Reserved) 
1 PRINT 
2 (Reserved) 
3 (Reserved) 

Appenaix I: Open control Block <OCB> 221 



222 



EXAMPLE OF CHAINING 

Figure 68 contains an example of the 
chaining cf FCBs, IOCBs, event variables, 
and exclusive blocks in a single task. 

The task has opened two files, and the 
addresses of their FCBs CFCB1 and FCB2) are 
stored in the PRV: the FCBs are placed in a 
chain that is anchored in the 
pseudo-register IHEQFOP and uses the TFOP 
fields in the FCBs. The task also has 
access to another file that was opened in a 
higher task; the address of the FCB for 
this file (FCB3) was copied into the PRV 
when the task was attached. (Note that 
this FCB does not appear in the IHEQFOP 
chain.> A DCLCB exists for each file 
declared, but only the one corresponding to 
FCB1 is shown in Figure 68: this file is an 
exclusive file that has been opened for 
DIRECT UPDATE. 

Three of the current I/O operations that 
ref er to FCB1 required IOCBs. The IOCBs 
are placed in a chain anchored in the TLAB 
field of the FCB so that they can be £reed 
when the file is closed. The BXLV field in 
each IOCB addresses the corresponding 
exclusive block. The EVENT option was used 
with two of the I/O operations: the BEVN 
fields in IOCBs 1 and 3 therefore point to 
the corresponding event variables. (The 
third operation originated in another 
task.> 

Event Variables 

The task has four active I/O event 
variables. These are chained from the 
pseudo-register IHEQEVT so that, on 

termination of the task. they can be set 
complete, inactive, and abnormal. (Note 
that the address in the chain-back field 
EVCB in event variable 1 is not that of 
IHEQEVT, but that of the field three words 
higher: IHEQEVT is thus in the same 
position relative to this address as EVCB 
is relative to the first byte of the event 
variable.> Event variables 1, 3, and 4 
relate to the file corresponding to FCB1, 
and must be set complete, inactive, and 
abnormal when the file is closed. 
Communication with event variables 1 and 3 
is established via the corresponding IOCBs. 
But event variable 4, which relates to an 
I/O operation for which an IOCB was not 
required, is placed in a chain anchored in 
the TEVT field of the FCB. Event variable 
2 is related to an I/O operation on another 
file in the task. 

Exclusive Blocks 

For REGIONAL files and INDEXED files with 
unblocked records, an exclusive block 
exists for each record curr~ntly locked; 
all those shown ref er to the file 
corresponding to FCB1. (If the files have 
blocked records, only one exclusive block 
exists for each file in each task: it is 
created the first time a record in the file 
is locked, and is not freed until the file 
is closed.) The exclusive blocks are 
placed in a chain anchored in the TXLV 
field of the FCB so that the blocks can be 
freed when the file is closed. Only two of 
the records have been locked by this task, 
and their exclusive blocks <1 and 3) are 
placed in a chain anchored in 
pseudo-register IHEQXLV so that the records 
can be unlocked on termination of the task. 
<Note that the chain-back fields, XCBT and 
XCBF, in exclusive block 1 point, not to 
IHEQXLV and TXLV, but to fields in the PRV 
and FCB1 that have the same positions 
relative to IHEQX~V and TXLV as the start 
of the exclusive block has relative to XCBT 
and XCBF.) 

Appendix Iz Example of Chaining 223 



w "ii w .... 
# ~ 

c: 
t1 
CD 

0\ 
CD . 
tlj 
)C 

i ... 
CD 

0 .... 
n 
:J" 

"' .... 
::s .... 
::s 

\Q 

0 
1111 

.... 
........ 
0 

0 
0 ::s 
rt 
t1 
0 ... 
bf ... 
0 n 
"" • 

PRV 

--
IHEOXLV 

(2J FCIH FC &2 FCB3 
IHEQFOP 

---------------------------------------------;::=t--~ AIKBT) 
------------ ----------------------------.i 

r- ---======-== ---- --=--=~----, 
I I __ 

1 

I I 

I : r-----
1 I .--r-------
1 I I I 
I I 
I I 
I I 
I I 
I DCLCB j 

TFOP 

L--16~mr I r 
I I I 

I I --., L --- -- --., ~.:.:.:.:..~---,i-----t -':_ I --- I 
--r-< I I 1 ==:::::;,i __ :..::..::-=--1 I 1

1 
I I I 

r---
I I I I 
I I I 

1 
-- I I I I L----- I I I L ______ _ 

I I --------
-+-.. 1 

1 

r -===± I I IO\ I I F==;-L .J I I.!/ --1- I _J --- •. --r-1 I ---- I T c.::..;... _ _, I I I I 
··- I I L- i I 

I I I I 
I I I I 
i : I I 
I I I I __ 

I I I I .--------J-+--, r,, I I 1 F.=-., ... -, ' 0 1 _L_J 
=----, --+J I I --------- ---_:-r _1---1 

-· . I I I C __ :J_f""_, 
I I L ----- EVE I I I I 
1 I I I I I 
I I I I I : 

I I I I : '-------- --
1 I 1 I L--------
1 I I I -------1 1 I I r--J I IT\ I I 

<..!._,:,..,. __ f-~--=--i-J 0 -::_j-t-' L__________ : 
-~ 

© 

EVCf ='1 
EY.C.B I 

I 
I 
I 

-!:..!..;,..:,--~----J 
LINKS FOR TASK 
LINKS FOR Fl LE 

CD 

0 

CD 



APPENDIX J: STORAGE-MANAGEMENT CONTROL BLOCKS 

This appendix gives the formats of the control blocks used by the non-multitasking 
storage-management modules of the PL/I Library~ the formats of the multitasking 
equivalents are given in Appendix R. The functions of the blocks and the way they are 
used are described in Chapter 4. In the diagrams, all offsets are in hexadecimal. 

Appendix J: Storage-Management Control Blocks 225 



226 



AREA VARIABLE 

0 7 8 31 
r---------T----------------------------1 

O 1see Note I Length of Area Variable I 
~---------.L----------------------------i 

4 I Off set of End of Extent I 
~--------------------------------------i 

8 I Offset of Largest Free Element I 
~--------------------------------------i 

C I See Note I 
~--------------------------------------i 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
L--------------------------------------J 

Note: If the area variable contains a free 
~~- list, bit O of the first byte is set 

to 1, and the fourth word is set to 
o. 

Figure 69. Format of Area Variable 

Appendix Ja Area Variable 227 



228 



DYNAMIC STORAGE AREA (DSA) 

0 7 8 31 
r------T-------------------1 0 I Flags I Length I 
·-----i------------------i 

4 I Chain-back address I 
~---------------------------------i 8 I Chain-forward address I 
·-------------------------------i c I I 

· I I . I Register save area I 
· I I 

114 I I 
~-----------------------------------i 48 I current file I 
I I 
·-----------------------------------i 50 I Invocation count I 
I I 
·------------------------------------i 58 OPTIONAL ENTRIES: 

Display 
statement number 
ON fields 

Dope vectors 

AUTOMATIC data 
Workspace 
Parameter lists 

--------------------------J 
Figure 70. Format of the Dynamic Storage 

Area (DSA) 

The mini.mum size of a non-multitasking 
DSA is X'6'' bytes. 

standard Entries 

Standard Save Area: The area starting with 
the flags and continuing up to and 
including the register save area. <see 
Figure SS.and associated text.) 

current File: This field is eight bytes 
long; its use is described in •current 
File' in Chapter 3. In a mul~itasking 
environme~. the first byte is used as the 
SYSPRIN'l' resource counter; see 'SYSPRINT in 
Multitaski119' in Chapter 3. 

Invocation Count: This field is eight bytes 
long and contains: 

1st word: Environment chain-back address or 
zero 

2nd word: Invocation count 

r---T--------- -------------------1 I I Meaning I 
I Bit ~-----------~------------i 
I I =o I =1 I 
·---+------------.L--------------~ I 0 I Always = 1 I 
·--+------~------~----------------i I 1 INo statement num- IStatement number I 
I lber field in DSA lfield in DSA I 
·---+--------------+-----------------i I 2 fNo dummy ON field f STRINGRANGE field 1 
I lfor STRINGRANGE tcreated as for I 
I I I other ON condi- I 
I I ltions I 
·---+---------------+-----------------i I 3 IProcedure DSA IBegin block DSA I 
·---+-----------------+-----------------t I 4 INo dummy ON field ISUBSCRIPl'RANGE I 
I lfor SUBSCRIPl'RANGEf field created as I 
I I I for other ON con- I 
I I f ditions I 
·---+-----------+----------------1 I 5 INon-recursive DSA,fRecursive DSA, I 
I fwithout display f with display up- I 
I lupdate field ldate field I 
·---+--------------+------------------1 I 6 I No ON fields I ON fields I 
·---+----------------+---------------i I 7 )No dummy ON field f SIZE field createdl 
I )for SIZE tas for other ON I 
I I I conditions I L_ __ i, _____________ _... _____________ J 

Figure 71. Format of the DSA Flag Byte 

Optional Entries 

Display: This field is eight bytes long and 
contains: 

1st word: Pseudo-register offset 

2nd word: Pseudo-register update 

If it occurs at all, the display field 
always appears at offset 58. 

statement Number: This field is four bytes 
long; it is described in 'Error and 
Interrupt Handling'. If it occurs at all, 
the statement nwr.ber always appears at 
offset 60; bytes 60-61 are always set to 
zero and bytes 62-63 contain the statement 
number in hexadecimal notation. If there 
is no statement number, this field can be 
used for optional DSA entries, e.g., ON 
fields. 

ON fields: Each ON field is two words long. 

Appendix J: Dynandc Storage Area (DSA) 229 



The ON fields are described in 'ON 
conditions' under •Error and Interrupt 
Handling'. The position of the first ON 
field depends on whether there are entries 
in the display update and statement number 
fields: 

1. No display update, no statement 
number: ON fields begin at offset 58. 

2. Display update, but no statement 
number: ON fields begin at offset 60. 

3. Statement number <with or without a 
display update): ON fields begin at 
off set 64. 

230 

The last ON field is indicated by bit 
0 = 1 in the second word. 

Remaining Entries 

The dope vector formats are described in 
Appendix H ('Compiler-Generated Control 

·Blocks'). The AUTOMATIC data, workspace 
and parameter lists areas are provided for 
use by the compiler. 



VARIABLE DATA AREA (VOA) 0 7 8 31 

r--------T-------------------------------1 OI Flags I Length<= L(PRV) + L(LWS) + 8) I 
0 7 8 31 ·--------~-------------------------------~ r--------T-------------------------------1 41 A(External save area) I 

01 Flags I Length I ·----------------------------------------~ 
·--------.L-------------------------------~ 81 I 

41 Chain-back address I I Pseudo-register vector (PRV) I 
~--------------------------------------~ I I 

81 I ·----------------------------------------4 I o~a I I I 
I I I Library workspace (LWS) I 
L---------------------------------------J I I 

Figure 72. Format of the Variable Data ·----------------------------------------4 Area (VDA) I I 
I LWF(DSA optimization area, I 
I OPT=Ol only I 
I I 
L----------------------------------------J 

Figure 74. Format of the PRV VDA 

0 7 8 31 

r--------~----------------------------1 
O I Flags I Length I 

·---------~----------------------------~ 
4 I Chain-back address I 

r-------------------T---------------------1 ·--------------------------------------~ I Bit I I 8 I Chain-back address I 
•---------~-------~ Meaning I I (previous LWS) I 
I o 1 2 3 I 4 s 6 1 I I ·--------------------------------------~ 
·---------+---------+---------------------~ I <unused) I 
I I I I ·--------------------------------------~ I I 0 0 1 0 I 0 0 0 0 I Ordinary VDA'" I 
·---------+---------+---------------------~ 

10 I I 
I Library workspace (LWS) I 

I 0 O 1 O I O 0 0 1 I VDA obtained for a I I I 
I I I I library subroutinea I 
·--------+---------+-----------------~ 

·--------------------------------------~ I I 
l O O 1 O I O 1 O 1 I VDA containing a I I LWF(DSA optimization area, I 
I I I secondary LWS I I OPT=Ol only) I 
·--------+------+---------------------t I I 
I 0 0 1 0 I 1 0 0 1 I PRV VOA I L---------------------------------l 
L--------~---------.L--------------------J Figure 75. Format of LWS VOA 
Figure 73. Format of the VDA Flag Byte 

~VDA obtained to hold automatic data declared with adjustable bounds or lengths. 

avoA obtained for a library subroutine, or obtained by compiled code for a temporary data 
item. 

Appendix J: Variable Data Area (VDA) 231 



232 



APPENDIX K: MULTITASKING CONTROL BLOCKS 

This appendix describes the control blocks used by the multitasking storage-management 
modules of the PL/I Library. The way in which they are used by the library is described 
in Chapter 5. In the diagrams, all offsets are in hexadecimal. 

Appendix K: Multitasking Control Blocks 233 



234 



CONTROL TASK STORAGE AREA 

Or--------------------------------------1 
I I 
I Save Area I 

4sr--------------------------------------~ 
I I 
I Workspace I 
I I 

9or--------------------------------------i 
I I 
I Major Task Task Variable I 
I I 

ACr--------------------------------------i 
I I 
I Major Task Event Variable I 
I I 

CCr--------------------------------------~ 
I I 
I ECBLIST I 
I I 

4CCr--------------------------------------~ 
I I 
I CTECB I 

4DOL--------------------------------------J 

WORKSPACE: used by control task for 

(a) Parameter list for IHESUB 
Cb) Parameter list for attach macro 
Cc) Parameter list for IHETEXC 

ECBLIST: 256 words for a maximum of 256 
tasks. The last entry in contains 
x•ao• in top byte. 

CTECB: the ECB posted by tasks after 
completion of "soft" code. 

• Figure 76. Format of the Control Task Storage Area for Multitasking 

Appendix K: Control Task Storage Area 235 



236 



DYNAMIC STORAGE AREA (DSA) 

0 7 8 31 
r-------r------------------------------1 

0 I Flags I Length I 
~-------'-------------------------------i 

4 I Chain-back address I 
~--------------------------------------~ 

8 I Chain-forward address I 
~--------------------------------------i 

c I I 
· I I . I Register save area I 
· I I 

44 I I 
~-------------------------------------i 

48 I I 
I I 
I Current file I 
I I 
~--------------------------------------i so I I 
I I 
I Invocation count I 
I I 
~--------------------------------------i 

se I I 
I Display I 
I I 
~-------r------------------------------i 

60 I Flags I Statement number I 
~-------i------------------------------i 

64 I A(Task variable chain) I 
~--------------------------------------i 

68 I Zero I 
~--------------------------------------i 

6C I ON fields I 
I Dope vectors I 
I AUTOMATIC data I 
I Workspace I 
I Parameter lists I 
L--------------------------------------J Figure 77. Format of the Dynamic Storage 

Area (DSA) for Multitasking 

The minimum size of a multitasking DSA 
is X'6C' bytes. 

The multitasking DSA contains two fields 
that do not appear in the non-multitasking 
DSA (Appendix J): the fullword commencing 
at byte 64 contains the address of the 
first task variable in the task-variable 
chain (if any>1 the following fullword is 
always set to zero. The presence of a task 
variable chain is indicated by bit 0 = 1 in 
byte 60. The Get DSA routine IHETSAD 
differs fran its non-multitasking 
equivalent only in that it sets the 
doubleword conunencing at byte 64 to zero. 

Appendix :K: Dynamic Storage Area <DSA) 2 37 



238 



EVENT VARIABLE 

0 7 8 15 16 23 24 31 
r---------T----------------------------1 

O I Flags I Reserved , I 
~---------.1.----------------------------i 

4 I Internal PL/I ECB I 
~--------------------------------------i 

8 I Reserved I 
~--------------------------------------i c I Reserved I 
~------------------T-------------------i 10 I Status I Statement Number I 
~-----------------i-------------------i 

14 I Reserved I 
~--------------------------------------i 18 I Reserved I 
~------~------------------------------i 

lC I External ECB I 
L--------------------------------------J •Figure 78. Format of the Event Variable 

The task event variable is not chained. 

Flags: 

Active event variable 
Dummy event variable obtained 

by control task 
Normal PL/I termination 
Abnormal PL/I termination 

1000 0000 

0100 0000 
0010 0000 
0001 0000 

Internal PL/I ECB: This is the internal 
PL/I event control block. Bit 0 is 
set to 1 when a WAIT macro instruction 
ref erring to this ECB is issued: bit 1 
is set to 1 when a POST macro 
instruction is issued. When a WAIT 
for a task event is specified, this 
ECB is waited on until posted by PL/I 
control task. 

Status: Normal status: set to zero. 
Abnormal status: set to 1. 

Statement Number: Number of the statement 
in which the task was attached. 

External ECB: This ECB is specified to the 
control program when the task is 
attached. When the task is detached, 
the control program posts this ECB. 

Appendix K: Event Variable 239 



240 



PRV VDA 

0 7 8 31 

r-------,.------------------------------1 
0 I Flags I Length of PRV VDA I 

~-------i------------------------------i 
4 I A(External save area) I 

~--------------------------------------i 
a I I 

I Pseudo-register vector <PRV) I 
I I 
~--------------------------------------i 
I A(Attaching DSA) I 
~--------------------------------------i I A(Attaching PRV.VDA) I 
~--------------------------------------i I A(Task variable) I 
~--------------------------------------i 
I A(Parameter list) I 
~--------------------------------------i I Optional entries: I 
I ON field I 
I Parameter list I 
I I 
~--------------------------------------i I Library workspace (LWS) I 
L--------------------------------------J 

Figure 79. Format of PRV VOA for 
Multitasking 

A PRV VDA for multitasking is identified 
by a 1 in the first bit of the length field 
(bit 8 of the PRV VOA). Like its 
non-multitasking counterpart (Appendix J), 
it contains the PRV and primary LWS and is 
chained back to the external save area. It 

differs in the settings of the flag byte 
and in the presence of the following 
additional fields immediately following the 
PRV: 

1st word: Chain back to the DSA of the 
attaching task. 

2nd word: Chain back to the PRV VOA of 
the attaching task. 

3rd word: Andress of its own task 
variable. 

4th word: Address of the parameter list 
for the called procedure; if no 
parameters are being passed, 
this word is set to zero. 

The following fields are omitted if there 
are no entries: 

ON field: When a subtask is attached, the 
entries in the ON field of the 
DSA of the attaching task are 
copied into this field. 

Parameter list: Parameter list for the 
called procedure. 

The settings of the flag byte are as 
follows: 

Major task X'29' 
Subtask X'2D' 
Subtask with entries 
in ON field X'2F' 

Appendix K: PRV VOA 241 



242 



TASK VARIABLE 

0 7 8 15 16 31 
r-------T------------------------------1 0 I Flags I A(PRV VDAl I 
t-------+------------~~--------------i 

4 I I A(TCB) I 
~-------+------------------------------i 

8 I I A(SYMTAB entry) I 
~-------+--------~--------------------i c I I A(Event variable> I 
t-------'--------T----------------------i 

10 I Limit prioritylDispatching I 
I I priority I 
~------~-------4----------------------i 

14 I I Chain-forward address I 
~-------+------------------------------i 

18 I I Chain- back address I 
l-------1.------------------------------J 

Figure 80. Format of the Task Variable 

The task variable contains the task 
control information required by the PL/I 
Library. To enable subtasks to be detached 
when the attaching task is terminated, all 
task variables activated in a task are 
placed in a chain anchored in the DSA of 
the attaching task. Only the first two 
bits of the flag bytes are used: 

Bit 1 : 0 = Task variable inactive <task 
not attached> 

1 = Task variable active 
Bit 2: 0 = CALL with TASK variable 

specified 
1 CALL without TASK variable 

specified 

Appendix K: Task Variable 243 



244 



TASK COMMUNICATION AREA 

Or---------------------------------------1 
I PECB I 

4~---------------------------------------i 
I PLIST I 

8~---------------------------------------i 
I WECB I 

C~-------------T-------------------------i 
I FLAGS I WORKSPACE I 10l-------------i _________________________ J 

• Figure 61. Format of the Task 
communication Area 

The TCA contains the POST and WAIT ECBs 
required by tasks wishing to request 
control task facilities, e.g., CALL another 
task, change priorities, etc. 

PECB: task post ECB; posts code requesting 
control task action 

PLIST: parameter list passed to control 
task 

WECB: task wait ECB; waits until control 
task has accepted request. 

=1 =O 
r---T------------------T------------------1 
IBITI Message I PL/I I 
I 0 I Task I Subtask I 
~---+------------------+------------------i 
IBITI Task enqueued I Not I 
I 1 I on control task I enqueued I 
~---+------------------+------------------i 
IBITI Reserved I Reserved I 
12-61 I I 
~---+------------------+------------------i 
IBITI Enqueued I Not I 
I 7 I on IHEOPEN I enqueued I 
L---i------------------i------------------J 

Appendix K: Task Communication Area 245 



246 



APPENDIX L: PL/I LIBRARY MODULE NAMES, MEMBER NAMES AND J!LIASES 

This appendix contains a table listing the 
PL/I Library modules in alphabetical order 
along with their associated member names 
and aliases. For a description of each 
module, see Chapter 9, Module summaries. 
In the interests of clarity, the preceding 
characters IHE, as indicated by the first 
entries, have been omitted. 

r-------------,.-------------T-------------1 I Module Name I Member Name I Aliases I 
·-------------+-------------+-------------i I IHEABN IHEABNO None 
I ABU ABUO • 
I ABV ABVO • 
I ABW ABWO • 
I ABZ ABZO • 
I ADD ADDO • 
I ADV AOVO • 
I APD APDA APDB 
I ATL ATL4 ATL1, 
I 2 ' 3 I ATS ATS1 ATS 2, 3 

I ' 4 I ATW ATWN ATWB 
I ATZ ATZN ATZH 
I BEG BEGN BEGA 

BSA BSAO None 
BSC BSCO • 
BSD BSDO • 
BSF BSFO • 
BSI BSIO • 
BSK BSKK BSKA, 

BSM BSMF 

BSN BSNO 
BSO BSOO 
BSS BSS2 
BST BSTA 
BSV BSVA 
CFA CFAA 
CFB CFBA 
CFC CFCA 
CRP CKPT 
CLT CLTA 
CNT CNTA 
csc cs co 
CSI CSIO 
CSR CSKR 
CSM CSMF 
css CSS2 
CST CSTA 
csv CSVA 
CTT CTTA 

BSKR 
BSMV, 
BSMZ 
None 
• 

BSS3 
None 
• 
• 
• 
• 
• 

CLTB 
CNTB 
None 
• 

CSKR 
None 
CSS3 
None 
• 

CTTB, 
CTTC 

DBN DBNA DBN 
DCN OCNA DCN, 

OCNB 
DOI DDIA DOIB 
DDJ DOJA DOJ '-------------i _____________ i ____________ _ 

r-------------T------------..,.-------------1 I Module Name I Member Name I Aliases I 
·-------------+-------------+-------------~ I ODO DDOA DDOB, 
I oooc. 

DDOD, 
DDOE 

DDP DOPA DDPB, 

oor DDTA 

DIA OIAA 

DIB DIBA 
DID DIDA 
DIE DIEA 
OIL DILA 
DIM DIMA 
OMA DMAA 
DNB DNBA 
ONC DNCA 
DOA OOAA 

DOB DOBA 

DOD DODA 
DOE DOEA 
DON DOMA 
DSP DSPA 
OUM DUMP 

ow DVDO 
ow DWO 
DZW DZWO 
DZZ ozzo 
EFL EFLC 
EFS EFSF 
ERO ERDA 
ERE EREA 
ERI ERIA 
ERO EROA 
ERP ERPA 
ERR ERRA 

ERT ERTA 
ESM ESMA 
EXL EXLO 
EXS EXSO 
EXW EXWO 
EXZ EXZO 
HTL HTLO 
HTS BTSO 
IBT IBTA 

DOPC, 
DDPD 
DDTB, 
DOTC, 
DOTO, 
DOTE 
DIA, 
DIAB 
DIBB 
None 
DIE 
DILB 
None 
OMA 
DNB 
DNC 
DOA, 
DOAB 
DOBB, 
DOBC 
DODB 
DOE 
None 
• 

DUMC, 
DUMJ, 
DUMT 
None 
• 
• 
• 

EFLF 
EFSC 
None 
• 
• 
• 
• 

ERRB, 
ERRC, 
ERRD 
None 
ESMB 
None 
• 
• 
• 
• 
• 

IBTB, 
IBTC, 
IBTD, 
IBTE 

-------------i-------------1-----------
Appendix L: PL/I Library Module Names 247 



r-------------T-------------T-------------1 r-------------T-------------T-------------1 
I Module Name I Member Name I Aliases I I Module Name I Member Name I Aliases I 
·---------~-+-------------+-------------~ ~-------------+----~------+-------------~ 
I INT INTA None MZW MZWO None 
I IOA IOAA IOAB, MZZ MZZO • 
I IOAC, M91 M91A M91. 
I IOAD M91B, 
I IOB IOBA IOBB. M91C 
I IOBC, NLl NLlN LN1A, 
I IOBO., NL1L 

IOBE NL2 NL2N NL2A. 
IOC IOCA. IOCB, NL2L 

IOCC OCL OCLA OCLB, 
IOO IOOG IOOP OCLC, 
IOF IOFA None OCI.D 
ION IONA " OCT OCTA OCTB, 
IOP IOPA IOPB, OCTC, 

IOPC OCTO 
IOX IOXA IOXB, OPN OPNA None 

IOXC OPO OPOA • 
ITB ITBA None OPP OPPA • 
ITC ITCA • OPQ OPQA • 
ITO ITDA " OPZ OPZA • 
ITE ITEA • OSO OSOA • 
ITF ITFA • OSE OSEA • 
ITG ITGA " OSI OSIA " 
ITH ITHA " oss OSSA • 
ITJ ITJA • OST OSTA " 
ITK ITKA • osw OSWA • 
ITL ITLA " PDF PDFO • 
ITP ITPA " POL POLO " 
JXJ: JXJ:J: JXJ:Y PDS PDSO • 
JXS JXSI JSXY POW PDWO " 
KCA KCAA KCA POX POXO • 
KCB KCBA KCB POZ POZO • 
KCO KCOA Keo. PRT PRTA PRTB 

KCOB PSF PSFO None 
LOI LOIA LOIB. PSL PSLO • 

LDIC, PSS PSSO " 
LDID PSW PSWO • 

LOO LOOA LOOB, PSX PSXO • 
LOOC PSZ PSZO • 

LNL LNLZ LNLD, PTT PTTA PTTB 
LNLE RES REST RESN 

LNS LNSZ LNSD, SAP SAPA SAPB, 
LNSE SAPC, 

LNW LNWO None SAPO, 
LNZ LNZO " SADA 
LSP LSPA LSPB, SHL SBLS SHLC 

LSPC, SHS SBSS SBSC 
LSPD SIZ SIZE None 

LTT LTTA None SMF SMFO • 
LTTB " SMG SMGC SMGR 
LTTC " SMB SMBC SMHR 

LTV LTVA " SMX SMXO None 
MAI MAIN " SNL SNLK SNLC, 
MPU MPUO " SNLS, 
MPV MPVO " SNLZ 
MSI MSIA " SNS SNSS SNSC, 
MST MSTA " SNSK, 
MSW MSWA " SNSZ 
MXB MXBX MXBN SNW SNWK SNNC, 
MXD MXOX MXDN SNWS, 
MXL MXLX MXLN SNWZ 
MXS MXSX MXSN SNZ SNZR SNZC, 
MZU MZUM MZUO SNZS, 
MZV MZCM MZVD SNZZ 

-------------L-------------.1.-------------J -------------~----~------.1.-------------

248 



r-------1---------T-------------1 
I Module Name I Member Name I Aliases I 
·------------+-------------+-------------~ 

SPR SPRT None 
SQL SQLO • 
SQS SQSO • 
SQW SQWO • 
SQZ SQZO • 
SRC SRCA SRCB, 

SRD SRDA 
SRT SRTA 

SSF SSFO 
SSG SSGC 
SSH SSBC 
ssx ssxo 
STA STAA 
STG STGA 
STP STPA 
STR STRA 

SUB SUBA 
TAB TABS 
TCV TCVA 
TEA TEAA 
TER TERA 
TEV TEVA 
TEX TEXA 

TBL TBLO 
TBS TBSO 
TNL TNLD 
TNS TNSD 
TNW TNWB 
TNZ TNZB 
TOM TOMA 

TPB TPBA 
TRP TPRA 
TSA TSAP 

TSE TSEA 
TSS TSSA 
TSW TSWA 
UPA UPAA 
UPB UPBA 
VCA VCAA 
vcs VCSA 

VFA VFAA 
VFB VFBA 
VFC VFCA 
VFD VFDA 
VFE VFEA 
VKB VKBA 
VKC VKCA 
VKF VRFA 
VKG VKGA 
VPA VPAA 
VPB VPBA 

SRCC, 
SRCD, 
SRCE 
None 
SRTB, 
SRTC, 
SRTD 
None 
SSGR 
SSBR 
None 
• 

STGB 
None 
STRB, 
STRC 
None 
• 

TCVB 
None 
TER 
None 
TEXB, 
TEXC 
None 
• 

TNLR 
i:rNSR 
TNWN 
TNZN 
TOMB, 
TOMC, 
TOMD 
None 
• 

TSAA, 
TSAB, 
TSAD, 
TSAO 
None 
• 
• 

UPAB 
UPBB 
VCA 
vcs, 
VCSB 
VFA 
VFB 
VFC 
VFD 
VFE 
VKB 
VKC 
VKF 
VKG 
VPA 
VPB I _______ ..._ _________ .l, ________ J 

r-------------T------------r-------------1 I Module Name I Member Name I Aliases I 
·-------------+-------------+-------------~ 

VPC VPCA VPC 
VPD VPDA VPD 
VPE VPEA VPE 
VPF VPFA VPF 
VPG VPGA VPG 
VPB VPBA VPB 
VQA VQAA None 
VQB VQBA VQB 
VQC VQCA VQC 
VSA VSAA VSA 
VSB VSBA VSB 
VSC VSCA VSC 
VSD VSDA vso, 

VSDB 
VSE VSEA VSE, 

VSEB 
VSF VSFA VSF 
VTB VTBA None 
XIB XIBO • 
XID XIDO • 
XIL XILO • 
XIS XISO • 
XIU XIUO • 
XIV XIVO • 
XIw XIWO " 
XIZ XIZO • 
XXL XXLO • 
xxs xxso • 
xxw xxwo " 
xxz xxzo • 
YGF YGFV YGFS 
YGL YGLV YGLS 
YGS YGSV YGSS 
YGW YGWV YGWS 
YGX YGXV YGXS 
YGZ YGZV YGZS 
ZZA ZZAA None 
ZZB ZZBA • 
zzc ZZCA " 
ZZF ZZFA • 

------------L-------------L-------------

Appendix L: PLII Library Module Names 249 



250 



Indexes to program logic manuals are consolidated in the publication IBM system/360 
Operating system: Program Logic Manual Index, Form Y28-6717. For additional information 
about any subject listed below, refer to other publications listed for the same subject 
in the Master Index. 

<Where more than one page reference is given, the major reference is first.) 

'anchor word' 46 
'bootstrap' routine 20 
•call sets, 25 
'check bit' (EMCH) 63 
'complete bit' (ECMP) 63 
•complete bit' (event variable) 62 
'mother-daughter' relationship 59 
•extended search' feature 39 
•soft' code 55 

A format items 81 
ABEND macro 43 
abnormal return 79 
abnormal termination 70 
abnormal-end-of-task routine 61 
access method interfaces 

CONSECtn'IVE data sets 
BSAM 34 
QSAM 34 

INDEXED data sets 
BISAM 35 
QISAM 35 

REGIONAL data sets 
BDAM 37 
BSAM 37 

additional access modules, record I/O 32 
address of current LWS 44 
addressing interrupt 66 
ADV (Array Dope Vector) 14,84-85 
ADV field definition 183 
aliases of modules 247 
alignment, (fixed/varying strings) 79 
alignment of modules 177 
ALL <arrays) 84-85 
ALLOCATE statement 45 
allocation request 46 
alternative I/O modules (multitasking) 63 
ANY <arrays> 84-85 
APLIST (parameter list) 57 
area storage for based variables 48 
area variable 48,227 
area variable assignment 48 
AREA 

alignment 48 
attribute 46 
based-variables, extent 48 
condition 48 

arguments 
array 14 
conversion of 83-84 
evaluation of 83-84 
in mathematical subroutines 83-84 
scalar 14 

arithmetic assignment, function and 
operations 83-84 

arithmetic conversions and editing 80 

arithmetic data representation 13 
arithmetic target fields 87 
array dope vector (ADV) 14,84-85 
array dope vector (ADV) field 
definition 183 

array functions 83 
array functions 

ALL 84-85 
ANY 84-85 
POLY 84-85 
PROD 84-85 
SUM 84-85 
value returned 84-85 

array element address 183 
array, storage 183 
arrays 

interleaved 84-85 
simple 84-85 

assignment of area 
ATTACH (post code) 
attach subroutine 
automatic restart 
automatic storage 
automatic storage 

allocation 44 

variables 
57 

58 
16 
43 

allocation requirements 44 
chain-back 44 
freeing 44 

automatic transmission 34 

B format items 81 
based-variables 

allocation 46 
area storage 

allocate 48 
element 48 
free elements 48 
free list 48 
offset 48 

system storage 46 

48 

BCD name, address and length 70 
BDAM BLKREF parameter 37 
BDAM 

CHECK macro 39 
DIRECT access of REGIONAL 39 
TASK option 39 

BISAM 
multitasking 

blocked records 37 
unblocked records 36 

non-multitasking 
DELETE 36 
exclusive 36 
KEY 36 
KEYFROM 36 

Index 251 



READ 36 
UNLOCK 36 
wRITE 36 

bit functions. byte aligned 85-86 
bit string conversion 84-85 
bit string/picture character-string 

conversion 82 
block header statement 68 
block housekeeping 42 

epilogues 42 
object program management 50 
prologues 42 

blocks, non-recursive/recursive 43 
BOOL function 85-86 
BSAM 

creation and access 
DIRECT creation 38 
DIRECT initialization 38 
error ONCODE 38 
F-f ormat records 35 
LOCATE 38 
overlap of transmission 34 
READ SET 39 
SEQUENTIAL access of REGIONAL 38 
UNBUFFERED 34 
V-format records 35 

built-in functions <multitasking) 62 
built-in functions 

DATE 74 
ONCODE 70 
ONLOC 70 
TIME 74 

byte-aligned bit functions 85-86 

c format item 79 
CAD (Coded Arithmetic Data Item) 12 
CALL 

with EVENT option 59 
with PRIORITY option 59 
with TASK option 59 

calling sequence, PL/I 11 
chain-back address 12 
chaining of control blocks 223-224 
chaining of IOCB's 205 
change data <internal) 79 
change, priority 62 
CHAP <change priority) macro 62 
character string/arithmetic conversion 81 
character string/bit string conversion 81 
character string/picture character string 
conversion 81 

CHECK option 24 
CHECKPOINT/RESTART 16 
CLOSE functions 

EXPLICIT 20 
IMPLICIT 22 

close process 
explicit 22 
implicit 22 

close QSAM data sets 34 
coded arithmetic data item (CAD) 12 
coding conventions 12 
communication conventions 14 
communication mode 

explicit 14 
implicit 14 

compatibility 

252 

modular 177 
PL/I library 9 

compiled code. edit-directed 27 
COMPLETION pseudo-variable 62 
complex arguments 87 
complex directors 76 
complex-to-string directors 77-78 
computational subroutines 82 
computer-generated control blocks 181 
conditions other than on-conditions 70 
control blocks 14 
control bloc ks 

computer-generated 181 
input/output 217-219 
multitasking 233 
record I/O 32 

control length allocation request 46 
control program interfaces 87 
control task defined 54 
control task ECB CCTECB) S5 
control task storage area 235 
control task 

format 5S 
length$ of areas SS 
priority 55 
save area 55 
subroutines S7 
workspace S5 

CONTROLLED attribute 62 
controlled storage 45 
controlled storage (multitasking) 62 
conventions 

coding 12 
naming· 11 

CONVERSION error code 82 
conversion handling 8S-86 
conversion of arguments 83-84 
conversion to bit string 84-85 
conversion 

functions 75 
of internal arithmetic 79 
mode 79 
package structure 77-78 

conversions. arithmetic 80 
conversions, string 79 
COPY control cards 159 
COPY option 29.24 
counter. location 27 
counter, resources in multitasking 25 
creation of library 159 
CTECB (control task ECB) SS 
current file dump index 173 
current file 

address 24 
function references 24 
stacking 24 

current LWS address 44 

data checking 
data-directed 81 
edit-directed 81 
list-directed 81 

data conversion 7S,87 
data element descriptor CDED) 18S,75,14 
data event control block (DECB) 33 
data form 76 
data list 76 



data 
I/O 

data 
data 
data 
data 

management access methods, record 
30 

processing 87 
processing routines 75 
representation 12,75 
representation 

arithmetic 13 
string 14 

data sets 18 
data specifications 

data-directed 26 
edit-directed 26 

Index 252.l 





list-directed 26 
data-directed data specification 26 
data-directed input/output 79 
DATE built-in function 74 
DCB-appendage 19 
DCLCB <Declare control Block) 207,18 
DECB (Data Event control Block) 33 
decimal overflow interrupt 66 
declare control block (DCLCB) 18,207 
declare control block. format 19 
DED <Data Element Descriptor> usage 14 
DED discussion 185.75 
DED field definition 185 
DED 

creation 75 
flag bYte 75 

DELAY statement 74 
dependency, inter-modular 87 
DESC <message descriptor) 74 
DETACH (post code) 58 
DETACH routine 61 
detach subroutine <non-message) 58 
directors. library format 27 
directors 

complex 76 
input 77-78 
input/output 77-78 
output 79 

disabling prefix options 68 
dispatching priority so.55 
dispatching priority <value) 62 
DISPLAY statement 74 
DISPLAY with EVENT option 74 
divide interrupt 66 
dope vector address restrictions 87 
dope vector descriptor (DVD) 187,14 
DSA (Dynamic Storage Area) 24 
DSA definition 43 
DSA format 229.237 
DSA chain search 68 
DSA 

'run-time stack' 50 
address 43 
chain 50 
format 43 
save-area chain 50 
size 43 

dump (to obtain> 66 
dump index 173 
dump 

object-time 15 
PL/I 16 
read subroutines 15 

DVD (Dope Vector Descriptor) 187,14 
DVD structure 187 
dynamic storage 43 
dynamic storage area (DSA) 24 
dynamic storage area (DSA) definition 43 
dynamic storage area (DSA) format 229,237 

ECB <Event Control Block) 55 
ECBLIST (list of PECB's) 55 
ECMP <'complete bit'> 63 
edit-directed compiled code 27 
edit-directed data specification 26 
edit-directed input/output 76 
editing 75 

editing arithmetic 80 
EMCH ('check bit') 63 
end of major task 61 
END routine 61 
ENQUEUE (post code) 57 
enqueue subroutine 58 
entry-parameter procedures 

(multitasking) 61 
entry-parameter procedures 49 
entry-point names 9 
epilogues 42 
error codes 20 
error codes. OPEN/CLOSE 20 
error handling 64 
error handling 

flowchart 65 
teleprocessing 41 
module IHEERR 64 
data-directed 81 
edit-directed 81 
list-directed 81 

error message printing 70 
error messages, modules 64 
ESD (External Symbol Dictionary) 9 
evaluation of arguments 83-84 
event control block (ECB) 55 
event variables 209.239 
EVENT variable. major task 55 
exclusive block 34,211 
executable format scheme 76.27 
execution of program 20 
exit of tasks 60 
EXIT statement 74 
explicit close 22 
EXPLICIT OPEN/CLOSE 20 
external names 11 
external references 75 
external symbol dictionary (ESD) 9 
EXTRACT macro 55 

F/E format items 84 
FCB (File control Block) 213-216,18 
FCB history flag 38 
FED (Format Element Descriptor> usage 14 
FED format 189.75 
file control block (FCB) 213-216,14 
file control block 

address 19 
discussion 19 

file register 20-21 
file/data set relationship 18 
file 

addressing 18 
attributes 18 
control block 18 
in control block chaining 223-224 

FINISH condition 61 
fixed data to library 87 
fixed-point overflow interrupt 66 
float-arithmetic generic functions 83-84 
floating-point arguments 83-84 
form of data 76 
format directors 

I/O 76 
library 27 
arithmetic conversion 76 
arithmetic-to-string 76 

Index 253 



complex 76 
complex-to-string 77-78 
string-to-arithmetic 76 

format element descriptor (FED) 189,75 . 
format element descriptor (FED) usage 1q 
format item attributes 77-78 
format item 

A/B/X 189,81 
E 189,81 
F 189,81 
p 189 
picture 81 

format list 76 
format of PICA 66 
format, pseudo-register names 167 
format, subfields 27 
format 

SSA 195 
SSA flag byte 196 

formats 14 
FPI (Long Floating Point Intermediate) 80 
FREE statement 45 
free-core chain 

format 4q 
structure 45 

free elements (area storage) 48 
free list (area storage) 48 
FREEMAIN macro 42 
functional groups of modules 159 

general design, string package eS-86 
general implementation features 11 
generation stages (library) 159 
generation, system 159 
GET/PUT code structure 25 
GETBUF macro 33 
GETMAIN macro q2 
GETPOOL macro 33 
GO TO statements 49 
GO TO statements (multitasking) 61 

HIGH/LOW function 85-86 

IDENTIFY macro 57 
IHEABN 88 
IHEABU 88 
IHEABV 88 
IBEABW 88 
IHEABZ 88 
IHEADD 88 
IHEADV 88 
IHEAPD 89 
IHEATL 89 
!HEATS 89 
IHEATW 90 
IHEATZ 90 
IHEBEG 91 
IEEBSA 91 
IHEBSC 91 
IHEBSD 91 
IHEBSF 91 
IHEBSI 91 
IHEBSK 91 
IHEBSM 92 
IHEBSN 92 

254 

I HEB SO 
IHEBSS 
I HEB ST 
IHEBSV 
IHECFA 
IHECFB 
I HE CFC 
IHECKP 
IHECKP 
IHECLT 
IBECNT 
IBECSC 
IBECSI 
IBECSK 
IBECSM 
IBECSS 
IBECST 
IBECSV 
IBECTT 
IHEDBN 
IHEDCN 
I HEDDI 
IHEDDJ 
I BEDDO 
IHEDDP 
IHEDDT 
I HEDI A 
IHEDIB 
IHEDID 
I BED IE 
I BED IL 
XBEDXM 
IBEDMA 
IHEDNB 
I BED NC 
IHEDOA 
IHEDOB 
IBEDOD 
IHEDOE 
IHEDOM 
IHEDSP 
IHEDUM 
IHEDW 
IBEDVV 
IBEDZW 
IHEDZZ 
IBEEFL 
I BEEFS 
IHEERD 
I HEE RE 
IHEERI 
I HEERN 
IBEERO 
I HEE RP 
IHEERR 
I HEERS 
IHEERT 
IBEESM 
I HEE SS 
IHEEXL 
I HEE XS 
IHEEXW 
IBEEXZ 
IHEHTL 
I BE HTS 
I HE I BT 
IBEIGT 
I HE INT 

92 
92 
93 
93 
93 
93 
93 
93 
16 
94 
9q 
94 
94 
95 
95 
95 
96 
96 
96 
97 
97 
97 
97 
98 
98 
99 
99 
100 
100 
100 
100 
101 
101 
101 
101 
101 
102 
102 
102 
102 
103 
103 
103 
103 
104 
104 
104 
104 
104 
104 
104 
105 
105 
105 
105 
105 
106 
106 
106 
106 
107 
107 
107 
107 
107 
107 
108 
108 



IHEIOA 109 IBEPDL 128 
IHEIOB 109 IHEPDS 128 
IHEIOC 110 IHEPDW 128 
IHEIOD po IHEPDZ 128 
IHEIOF 111 IHEPRT 129 
IHEIOG 111 IHEPSF 129 
I HE ION 111 I HEP SL 129 
I BE I OP 111 I HEP SS 129 
IBEIOX 111 I HEP SW 129 
IBEITB 112 IHEPSX 129 
IBEITC 112 IHEPSZ 130 
IBEITD 112 IHEPTT 130 
I BE I TE 112 IHEQxxx (symbolic name of 
IBEITF 112 pseudo-registers) 167 
IBEITG 113 I HERES 130 
I BEITH 113 I HES AP 130,15 
IHEITJ 113 IHESHL 133 
IHEITK 113 I HES HS 133 
IHEITL 114 IHESIZ 133 
IHEITM 114 IHESMF 133 
IHEITN 114 IHESMG 133 
I HE ITO 114 I HES MB 134 
IHEITP 11' IHESMX 134 
IBEJXI 115 I HES NL 134 
IHEJXS 115 I HES NS 135 
IBEKCA 115 I HES NW 135 
IHEKCB 115 I HES NZ 135 
IBEKCD 116 IBESPR 136 
I HELD I 116 IHESQL 136 
IHELDO 116 IHESQS 136 
IBELNL 117 IHESQW 136 
IBELNS 117 IHESQZ 136 
IBELNW 117 I HES RC 136 
IHELNZ 118 IHESRD 137 
IHELSP 118 IHESRT 137,16 
IHELTT 119 I HES SF 138 
IHELTV 119 IHESSG 138 
IBEMAI 120 IHESSH 139 
IBEMPU 120 IHESSX 139 
IHEMPV 120 I HES TA 139 
I HEMS I 120 IBESTG 139 
IHEMS'l' 120 IHESTP 139 
IHEMSW 121 IHESTR 140 
IHEMXB 121 IHESUB 140, 57 
IHEMXD 121 IHETAB 140 
IBEMXL 121 IHETCV 141 
IBEMXS 122 IHETEA 141 
IHEMZU 122 I HETER 1111 
IHEMZV 122 IBETEV 141 
IBEMZW 123 IHETEX 1111 
IHEMZZ 123 IHETffI, 1112 
IHEM91 119, 71 I BE TBS 142 
IHENLl 123 IHETNL 142 
IHENL2 123 IHETNS 142 
IBEOCL 124 IHETNW 1113 
IBEOC'l' 124 IHETNZ 143 
IBEOPN 125 IBETOM 143 
IBEOPO 125 IHETPB 144 
I BE OPP 126 IHETPR 144 
IBEOPQ 126 I BETS A 1114 
IBEOPZ 126 I HE TS AM 57 
IBEOSD 126 I BET SAT 60 
IHEOSE 127 IHETSAT parameter list 59 
IHEOSI 127 IBETSE 146 
IBEOSS 121 IHETSS 1117 
IBEOS'l' 127 IHETSW 147 
IHEOSW 127 IHEUPA 1"7 
IBEPDF 127 IHEUPB 147 

Index 255 



IHEVCA 148 
IHEVCS 148 
IHEVFA 148 
IHEVFB 148 
IHEVFC 149 
IHEVFD 149 
IHEVFE 149 
IHEVKB 149 
IHEVKC 149 
IHEVKF 149 
IHEVKG 149 
IHEVPA 150 
IHEVPB 150 
IHEVPC 150 
IHEVPD 150 
IHEVPE 150 
IHEVPF 150 
IHEVPG 150 
IHEVPH 150 
IHEVQA 151 
IHEVQB 151 
IHEVQC 151 
IHEVSA 151 
IHEVSB 151 
IHEVSC 151 
IHEVSD 152 
IHEVSE 152 
IHEVSF 152 
IHEVTB 152 
IHEXIB 152 
IHEXID 153 
IHEXIL 153 
IHEXIS 153 
IHEXIU 153 
IHEXIV 153 
IHEXIW 153 
IHEXIZ 153 
IHE:XXL 154 
IHEXXS 154 
IHEXXW 154 
IHEXXZ 154 
IHEYGF 154 
IHEYGL 154 
IHEYGS 155 
IBEYGW 155 
IBEYGX 155 
IHEYGZ 156 
IHEZZC 156 
IHEZZF 156 
illegal conversion 82 
illegal input, format director 81 
implementation-defined system action 70 
implicit close 22 
IMPLICIT OPEN-CLOSE 22 
INDEX function 85-86 
indexing routines 84-85 
initialization of program 42 
initialization 

major task 59 
PL/I program 48 
PRV 20 
routines 

entry point 4 8 
exit 49 

of subtask 60 
initiator modules, input-output 25 
INPUT-OUTPUT 18 
input/output 

256 

control block (IOCB) 33,218-219 
control blocks 205 
directors 77-78 
editing 75-76.87 
flag <event variable) 62 
initiator modules 25 
data-directed 79 
list-directed 79 
return of control 79 
statements <teleprocessing) 41 

instruction set requirements 10 
integral values 'linkage' 87 
inter-modular dependency 87 
interface modules.- record I/O 29-30 
interleaved arrays 84-85 
internal change of data 79 
internal conversions 81 
interrupt handling 64 
interrupt handling 

Model 91 and Model 195 71 
interrupt mask 66 
interrupts, treatment of 51 
invali~ parameters 82 
invocation count 12 
invocation of subtask 59 
IOCB <Input-output control 

Block) 33,217-219 
IOCB chaining 

exclusive blocks 223-224 
files 223-224 
IOCB's 223-224 

IOCB, example of chaining 223-224 
IOCB 

creation 33 
DIRECT usage 33 
SEQUENTIAL usage 33 
size 33 

KEY sequence error condition 38 
KEYFROM (teleprocessing) 40 
KEYTO <teleprocessing) 40 

LCA (Library Communication Area> 191,15 
length control bytes 46 
LENGTH function 85-86 
length of PRV 49 
lengths of modules 177 
library communication area (LCA) 191,15 
LIBRARr statement 9,75 
library 

conversion package 75 
creation 159 
external names 11 
format directors 27 
macro instructions 12,169 
selection 159 

library workspace <LWS) 44,193 
library workspace 

definition 14 
levels 

primary 15 
secondary 15 

LIMCT subparameter 39 
limit, priority 59., 55 
LINE option 29 
link library 9 



link pack area (LPA) 10 
linkage 

conventions 11 
specifications 87 

linkage to string subroutines 85-86 
list processing, allocation 46 
list-directed data specification 26 
list-directed input/output 79 
list-processing 

based variables 46 
storage 46 

load library 10 
LOCATE 

GET 34 
PUT 34 

location counter 27 
location of modules 177 
long floating point intermediate 
representation 80 

LOW function 85-86 
LPA (Link Pack Area) 10 
LWS <Library Workspace) 44,193 

def ini ti on U 
pseudo-registers 49 
VOA 44 
format 193 

macro instructions 
system 9,157 
library 12 

macro, library 169 
main-storage management 43 
major task 

defined 54 
end 61 
EVEN!' variable 55 
initialization 59.57 
PRV VDA (allocation) 55 
TASK variable 55 

management 
module (IBESAP) 42 
program 42 
storage 42 

mathematical functions 83-84 
mathematical target fields 87 
MCS (Multiple console support) 74 
message control program 40 
message descriptor (DESC) 74 
message processing program 40 
message segment size 40 
message task 60 
message task, initialization 57 
miscellaneous control program 
interfaces 74 

mode conversions 79 
Model 91,195 

condition list 71 
interrupts, implementation 71 
diagnostic messages 73 
flush instructions 73 
interrupt count 72 
ONCOUNT built-in function 72 

modular linkage 
record I/O 31 
stream I/O 23 

module 
alignment 177 

compatibility 177 
lengths-location 177 
linkage 11 

module names (see also: IHExxx entries in 
alphabetic order) 87-156 

module names/aliases 247-249 
module summaries 87-156 
module usage 9 
modules 

as closed subroutines 9 
as interface 9 

multiple console support (MCS) 74 
multiple ~AIT 63 
multiprocessing 55 
multitasking 

alternative I/O modules 63 
control blocks 233 
indicator flag bit 59 
operations synchronization 24 
allocation of controlled storage 54 
allocation/SYSPRINT resources 26 
built-in functions 62 
controlled storage 62 
freeing of controlled storage 54 
library facilities 54 
modules (IHETSA) 54 
on-units 62 
pseudo-registers 59 
pseudo-variable 62 
resource counter 26 
SPIE macro 59 
STAE macro 54 
task definition 54 

naming conventions 11 
non-recursive block 43 
non-resident transfer vectors 160 

object-time dump 15 
object-time optimization 52 
OBJIN option 71,73 
OCB <open Control Block) 221,21 
ON CHECK 27,67 
ON-condition code number 64 
ON ERROR (teleprocessing> 41 
ON PENDING <teleprocessing) 41 
ON RECORD <teleprocessing) 41 
ON TRANSMIT (teleprocessing> 41 
on-conditions 

compiled code action 67 
disabled 68 
disabled by default 68 
disabling prefix options 68 
library action 68 
ON CHECK 67 
ON STATEMENT 68 
pref ix options 68 
prol ogli e 6 9 
SNAP action 69 
system action 69 

ON-units 49 
on-units <multitasking) 61 
ONCODE built-in function 83 
open control block (OCB) 221,21 
open process 21 
OPEN/CLOSE 

Index 257 



'bootstrap' routine 20 
discussion 20 
error codes 20 
EXPLICIT 20 
files 20 
IMPLICIT 20 
modules 20 

operating-system facilities 43 
optimization, object-time 52 
Option 

OBJIN 71, ?3 
OUTPUT/INPUT 18 
overlap target field 87 

packed decimal intermediate 
representation 80 

padding (fixed-varying strings) 79 
PAGE option 29 
paper tape input 

CONSECUTIVE 34 
illegal characters 34 

parameter list (APLIST) 57 
parameter list (IHETSAT) 59 
partitioned data set CPDS) 10 
POI <Packed Decimal Intermediate) 80 
PDS <Partitioned Data Set) 10 
PECB (Post Event control Block) 55 
PICA <Program Interrupt Control 

Area) 12, 64 
PICA, field definition 66 
PICA, format 66 
picture character string 79 
picture format items 81 
PIE <Program Interrupt Element) 64 
PIE field definitions 66 
PL/I dump 16 
PL/I internal error codes/messages 171 
PL/I library generation 159 
PL/I library system macros 159 
PL/I library 

compatibility 9 
function 9 

PL/I on-conditions 67 
PL/I program management 42 
PL/I program termination 49 
PL/I pseudo-registers 167 
PL/I standard calling sequence 11 
PL/I statements 

DELAY 74 
DISPLAY 74 
EXIT 74 
STOP 74 

POLY (arrays) 84-85 
POST CODE 57 
post event control block (PECB) 55 
precision, binary data 83-84 
precision, decimal data 83-84 
precision, fixed-point data 83-84 
prefix options <on-conditions) 68 
PRIORITY (post code) 58 
priority subroutine 58 
PRIORITY. built-in function 62 
priority 

258 

change 62 
control task 55 
dispatching 55,59 
limit 55,59 

PRIORITY, pseudo-variable 62 
process-time overlap 34 
PROD <arrays) 84-85 
program execution 20 
program initialization 42 
program interrupt control area 

(PICA) 12,64 
program interrupt element (PIE) 64 
program interrupt overlap 66 
program interrupts 64 
program management 42 
program mask <PM) 66 
prologues 42 
PRV (Pseudo-Register Vector) 14 
PRV initialization 20 
PRV length 49 
PRV VDA 241.44 
PRV VOA <multitasking indicator> 59 
PRV.VDA (subtask initialization) 60 
pseudo-register vector (PRV) 14 
pseudo-register, defined 14 
pseudo-registers <multitasking) 59 
pseudo-registers, PL/I object programs 167 
ps'eudo-variables <multitasking) 62 
PUT statements 25 
PUTX macro 35 

q name (ENQ necro) 25 
QI SAM 

close 35 
REY condition 35 
KEYED attribute 35 
keys 35 
PUT LOCATE 35 
REWRITE 35 
use in SEQUENTIAL INDEXED data sets 35 
WRITE KEYFROM 35 

QSAM 
close 34 
spanned records 

LOCATE 34 
READ SET 34 
REWRITE 34 

r name (DEQ macro) 25 
R-type FREEMAIN macro 43 
R-type GETMAIN macro 43 
radix change 80 
RDV (Record Dope Vector) 32 
re-enter prevention 66 
record blocking 34 
record deblocking 34 
record dope vector <RDV) 32 
record input/output 

addition of access modules 32 
control blocks 32 
data management access methods 30 
general flow 29-30 
interface modules 29-30 
logic 29-30 
modular linkage 
statement type 33 
statement verification 31 
transmitters 31 

record variable description 32 
recursion subroutine 69 



recursive block 43 
REGIONAL 'source keys• 

format B 37 
format A 37 
organization 37 

regional data sets 
initialization 21 
open process 21 

Register RA <initialization routine> 57,60 
relative record position, format A 37 
relative record position, format B 37 
REPEAT function 85-86 
replication factors 27 
request codes 32 
request control block 32 
residency of shareable modules 160 
resident area 10 
resident library modules 10 
resident transfer vectors 160 
resource counter, multitasking 26 
restart 

automatic 16 
disabled 16 
forced 16 

RETURN routine 61 
REVERT statement 68 
ROUTCDE <route code) 74 
run-time stack 50 

SADV (String Array Dope Vector) 197,14 
save area (control task) 55 
save area <dump index> 173 
save areas. standard 12 
save-area 

chain 51 
trace 61 

scalar values 84-85 
SDV <string Dope Vector) usage 14 
SDV discussion 32,199 
search word comparator 67 
SET option 34 
shared library 'packages' - tables 160-166 
shared library feature 159,160 
shared library feature. residency of 

modules 160 
shared modules 159 
significance interrupt 64 
simple arrays 84-85 
SIZE code 66 
SIZE condition (conversion> 82 
size of record (teleprocessing) 40 
SKIP option 

non-print files 29 
print files 29 

SNAP 15 
SORT/MERGE 

link 16 
return 17 

source attributes 75 
source keys 

format A 37 
format B 37 

source/target coincidence 87 
specification interrupt 66 
specif !cations. linkage 87 
specifications. data 26 
SPIE macro (multitasking) 59 

SSA (Standard Save Area) 195 
SSA format 195 
STAE exit routine 61 
STAE macro 43 
STAE macro <multitasking) 59 
stages of generation <library) 159 
standard calling sequence 11 
standard files 

SYSIN 24 
SYSPRINT 24 

standard save area (SSA) 195 
standard system action (other than 
on-conditions) 70 

statement verification, record I/O 31 
STATUS halfword 59 
STIMER macro 74 
STOP <post code) 58 
STOP statement 74 
STOP subroutine 59 
storage identification 

non-recursive 49 
recursive 49 

storage management 
macros 42 
control blocks 225 

storage of arrays 183 
storage requirements, subtask 60 
storage utilization 159 
storage 

freed 45 
request 45 
search 45 

stream input/output 
data management 22 
general 22 
GET/PUT statements 25 
initialization modules 24 
mode 22 
modular linkage 23 

string array dope vector (SADV) 197,14 
string conversions 

general 79 
modules 79 

string data representation 14 
string dope vector (SDV) 32,14,999 
string handling 87 
STRING option 29 .• 24 
string package, general design 85-86 
string subroutines 

address of string 85-86 
bit 85-86 
character 85-86 
linkage to 85-86 

Structure Dope Vector 201,14 
structure of conversion package 77-78 
structure, GET/PUT code 25 
structures 14 
subparameter NCP <of DD statement> 33 
subpool 

non/zero 43 
zero 43 

subroutines 
computational 82 
cont·rol task 57 
error/exceptional conditions 83 

SUBSCRIPTRANGE condition 69 
SUBSTR function 85-86 
subtask 

Index 259 



defined 54 
initialization 60.57 
invocation 59 
storage requirements 60 

SUM <arrays) 84-85 
symbol table (SYMTAB) 203,14 
symbolic names 

defined 15 
of registers 11 

SYMTAB (Symbol Table) 203.14 
synchronization, multitasking 
operations 24 

SYSIN files 24 
SYSPRINT buffers. dump index 173 
SYSPRINT files 

implicit open 24 
multitasking 24 
termination 25 

system action (on-conditions) 69 
system generation 159 
system macro instructions 9,157 
SYS1.LM512 159 
SYS1.PL1LIB 159 

target fields 
attributes 75 
arithmetic 87 
mathematical 87 
overlap 87 

task attachment (control task) 55 
task communications area (TCA) 245.55 
task control block <TCB) 55 
task definition 54 
task exit 60 
task hierarchy 60 
task initialization <control task) 55 
task invocation count (TIC) 46 
task invocation count (multitasking) 62 
TASK option 55 
task termination 

abnormal 60 
normal 60 

task variable 243 
task variable address 59 
TCA (Task communications Area) 245,55 
TCB (Task Control Block) 55 
TELEPROCESSING files 

environment options 39 
OPEN/CLOSE 40 

teleprocessing 
CLOSE 41 

260 

error handling 41 
I/O statements 41 
KEYFROM 40 

KEYTO 40 
OPEN 40 
record size 40 
statement validity 41 

terminal identification 41 
terminating statements 60 
termination call 26 
termination of SYSPRINT 25 
termination 

PL/I program 
system 49 
abnormal 49 
normal 49 

TIC (Task Invocation :ount) 46 
TIME built-in function 74 
TIME macro 74 
TITLE option 18 
transfer of control 159 
transfer vector modules 159 
TRANSIENT SEQUENTIAL RECORD files 40 
TRANSMIT condition 24 
TRANSMIT condition test 79 
transmitters. record I/O 31 
truncation (fixed/varying strings) 79 
type conversions <string-arithmetic) 79 
type of initialization (by register RA) 57 

UNDEFINEDFILE condition 20 
unique oncode value 70 
UNSPEC function 85-86 
user selected library modules 159 

value of array function ·84-85 
variable data area (VOA) 44.231 
variable data area (VD~) usage 12 
varying string records 32 
VARYING strings 197 
VOA (Variable Data Area) 44.231 
VOA usage 12 

WAIT (multiple) 63 
wait event control block CWECB) 55 
WAIT statement 63 
WAIT statement. interface modules 32 
WECB <~ait Event Control Block) 55 
workspace <control task) 55 
WREA <library communications areal 48 
WTO (Write to operator) macro 43 

XCTL macro 21 





GY28-6801-6 

llIBlliil 
<ll 

International Businass MachinBB Corporation 
Data ProceBBing Division 
1133 WestchBBter Avenue, White Plains, New Yark 10604 
[U.S.A. only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
!In ta rna tianal] 


